Data Article

Protein characterization, purification, and sequence analysis data for plant-made catfish interleukin 22

Lana Elkinsa,c,*, Maureen C. Dolana,b,c,*

a Molecular Biosciences Program, United States
b Arkansas Biosciences Institute, United States
c Department of Biological Sciences, Arkansas State University, P.O. Box 639, Jonesboro, AR 72467, United States

\textbf{Article history:}
Received 15 October 2020
Revised 7 December 2020
Accepted 7 December 2020
Available online 21 December 2020

\textbf{Keywords:}
Interleukin 22
Therapeutant
Recombinant protein
Plant-based production

\textbf{Abstract}

Production and purification of a novel protein in plants results in the generation of multiple data sets leading to an optimized protocol for recovering the recombinant protein. This article presents the data collected in the process used to produce, purify and validate a catfish interleukin 22 (cfIL-22) expressed using a plant-based platform. A commonly used workflow for confirming optimal expression and extraction of the recombinant protein was employed and is outlined herein. The complete research article, including activity analysis of plant-produced cfIL-22, is published in Journal of Biotechnology Elkins and Dolan [1]. Data collected in optimizing the expression, purification and characterization process of cfIL-22 includes stained protein gels and western immunoblot analyses, DNA and protein sequencing, post-translational modification predictions and protein structure predictions. The value of this data lies not only in future work in expressing interleukin 22 orthologs but also provides

\textbf{https://doi.org/10.1016/j.dib.2020.106637
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)}
Specifications Table

Subject	Biochemistry, genetics, and molecular biology
Specific subject area	Production of a recombinant immune protein in plants for use in veterinary medicine
Type of data	Image
Figure	
How data were acquired	Channel catfish Interleukin 22 (cfIL-22) coding sequence was provided by a colleague, Dr. Sylvie Quiniou (USDA-ARS-Catfish Genetics Research Unit, Stoneville MS; Accession #MK956102). All plant leaf-derived samples were resolved by SDS-PAGE and detected by western immunoblotting with anti-histidine antibody and visualized using chemiluminescence with film for monitoring expression of cfIL-22 with a 6X histidine tag; post translational modification and protein sequence analyses were predicted using freeware on Expy.org and MS/MS analysis; protein structure prediction was obtained using I-TASSER and Raptor X modeling software.
Instruments: film developer	Make and model and of the instruments used: SRX-101A Konica Minolta
Raw	Analyzed
Parameters for data collection	Parameters considered for plant infiltration included age of plant (4 weeks post germination) and concentration of the Agrobacteria infiltrate (0.2 OD600). Western immunoblot analyses parameters to consider is equivalent sample loading was normalized based on total volume
Description of data collection	Recovery of total soluble protein extracted from infiltrated leaf tissue using a mortar and pestle was collected for western immunoblot data. Sequence and structure data were collected using software mentioned previously.
Data source location	Institution: Arkansas Biosciences Institute, Arkansas State University
City/Town/Region: Jonesboro, AR	
Country: USA	
Data accessibility	With the article Repository name: Mendeley Data
https://doi.org/10.17632/t2t4kyvwb4.2	
Related research article	Elkins, Lana and Dolan, Maureen C. Plant Production and Functional Characterization of Catfish Interleukin-22 as a Natural Immune Stimulant for Aquaculture Fish. Journal of Biotechnology. In Press.
https://doi.org/10.1016/j.jbiotec.2020.10.017	

Value of the Data

- These data are useful in providing important experiments to include when characterizing a novel recombinant protein and determining optimal conditions for its expression in plants.
- The most direct beneficiaries of this data would be scientists interested in recombinant expression of catfish interleukin 22. These data would also provide insights for developing a workflow to express and produce interleukin 22 protein in other heterologous expression systems. Most broadly, this data is important to consider, when generating a QA/QC checklist, for producing any novel protein using a whole plant production platform.
- The data can be used to identify optimal expression kinetics of similar recombinant proteins produced in plants and other eukaryotic host systems, various useful extraction buffers for improved protein recovery and freely accessible bioinformatics software. This data can
be used in generating a systematic and robust roadmap for optimizing production of other recombinant proteins in plants.

1. Data Description

The channel catfish interleukin 22 (cfIL-22) accession #MK956102 531 nucleotides ([2]; Fig. 1) and 177 amino acids ([2]; Fig. 2) sequences are presented. The amino acid sequence is annotated to highlight sequence features including: signal peptide, phosphorylation sites, and N-glycosylation site. The signal peptide was initially predicted using SignalP prediction software and confirmed with N-terminal sequencing of the plant-produced and purified cfIL-22 protein. The phosphorylation and N-glycan sites were predicted using softwares on Expasy.org. N-glycosylation of the recombinant protein was confirmed using a standard deglycosylation with PNGase F. The amino acid sequence of the purified recombinant cfIL-22 was validated using mass spectrometry (MS/MS analysis).

For detecting the channel catfish interleukin 22 (cfIL-22) with a genetically fused, carboxy-terminus, 6X histidine tag, a western immunoblot using an anti-histidine antibody was performed ([2]; Fig. 3). Protein samples for this analysis were generated from plant leaf tissue, infiltrated with the cfIL-22 plant expression construct. Leaf tissues were collected every 24 h post-infiltration starting at 48 h through 168 h. The bands at ~19 kDa and 22 kDa correspond to a predicted cfIL-22 monomer and bands at ~38 kDa and 44 kDa correspond to a cfIL-22 dimer. The relative intensity of the protein bands on anti-his western immunoblots was used in se-
Structs & extraction. Purified protein extracts of leaf tissue were resolved on a 12% SDS-PAGE and detected with α-His-antibody. No significant difference in the monomeric cfIL-22 bands were observed.

![Fig. 3. Comparison of native and tobacco codon optimized cfIL-22 expression. A. tumefaciens transformed with gene constructs coding for tobacco codon optimized and native cfIL-22 were vacuum infiltrated into 3 independent tobacco plants. Crude protein extracts of leaf tissue were resolved on a 12% SDS-PAGE and detected with α-His-antibody. No significant difference in the monomeric cfIL-22 bands were observed.](image1)

![Fig. 4. Protein extraction buffer determination. Three buffers across a wide range of pH's were tested to find optimal extraction of cfIL-22 from plant leaves, Tris pH 8.5 (1.2 -/+ NaCl), phosphate buffer pH 7.2 (3,4 -/+ NaCl) and citrate buffer pH 6.5 (5,6 -/+ NaCl) were tested. CfIL-22 pl is 8 so it was suspected that the higher pH buffer would help with extraction. Each buffer was also tested +/- salt. The Tris pH 8.5 buffer was the best at extracting with no benefit to addition of salt. Crude protein extracts resolved on a 12% SDS-PAGE and detected by α-His-antibody.](image2)

Selecting the optimal post-infiltration leaf collection time. Protein bands extracted from SDS-PAGs were used in confirming protein identity, by MS/MS analysis, with 82% protein coverage.

An anti-His-western immunoblot was used to compare relative expression levels of two different expression constructs for cfIL-22 in plants ([2]; Fig. 4). Optimized corresponds to protein generated by codon usage aligned with optimal protein expression in tobacco plants. The recombinant cfIL-22 was also expressed using the native coding sequence in catfish.

To identify the best protein extraction conditions for maximizing recovery of cfIL-22 from the leaf tissues, three different buffers were tested. Using isoelectric point (pl) prediction software (Geneious 8.0.4), cfIL-22 has a predicted pl of 7.5 supporting use of a higher pH buffer to favor its extraction. Extraction of cfIL-22 was compared using a basic, neutral or acidic buffer and analysed by anti-his western immunoblotting ([2]; Fig. 5).

To confirm the slower migrating 22 kDa band on western immunoblots was a glycan variant of the predicted cfIL-22 monomer (19 kDa)([2]; Fig. 3-5), a deglycosylation assay was performed. Purified cfIL-22 protein was treated with PNGaseF; an amidase which cleaves the bond between an N-glycan and the asparagine residue within the primary sequence of the protein. Reactions were resolved on a Coomassie-stained SDS-PAG ([2]; Fig. 6). The upper band disappears in the enzyme-treated lane relative to the 22 kDa band in the untreated sample. In addition, an in-
FIG. 5. Post translational modifications of cfIL-22. The signal peptide was predicted using SignalP prediction software and was later confirmed by N-terminal sequencing. Highlighted in red is a possible N-glycosylation site although using NetN glyc predicted this site would not be glycosylated. In green circles are the possible phosphorylation sites predicted by NetPhos. All software used was located on Expasy.org. MS/MS analysis was carried out on the three bands resolved using SDS PAGE. Protein was transferred to PVDF membrane and stained with Coomassie blue safe stain. Bands were cut out and sent for sequencing. Sequencing confirms all three bands are cfIL-22 with 82% protein coverage.

FIG. 6. Upper band recognized as cfIL-22 is N-glycan form. Treatment with PNGaseF enzyme showed removal of upper band and presence on of the lower band shown in lane 2 (black arrow). This indicates the upper band (white arrow) is an N-glycan form of cfIL-22.

creased intensity of the lower unglycosylated band (19 kDa) in the treated sample relative to untreated sample is visible.

The predicted 3-D structure of cfIL-22 using two different prediction softwares, I-TASSER and RaptorX, is shown ([2]; Fig. 7A) respectively. I-TASSER predicted model ribbon structure of cfIL-22 was overlaid on the backbone model of zebrafish IL-22 with strong alignment ([2]; Fig. 7B, panel 1). Of the published IL-22 sequences in the NCBI database at the time of analysis (December 2018), cfIL-22 closely aligns to the zebrafish orthologue. Human IL-22 is the most well characterized IL-22 orthologue in both structure and function. I-TASSER cfIL-22 ribbon model overlaid with the human IL-22 crystal structure also shows strong alignment ([2]; Fig. 7B, panel 2).

2. Experimental Design, Materials and Methods

2.1. cfIL-22 cloning and expression construct design

Catfish IL-22 nucleotide sequence was provided by Dr. Sylvie Quiniou (USDA-ARS-Catfish Genetics Research Unit, Stoneville MS; Accession #MK956102). Synthetic DNA with genetic sequences corresponding to the native catfish IL-22 sequence (cfIL-22) and a codon-optimized sequence for expression in N. benthamiana (cfIL-22 opt) were synthesized (GeneArt®, Thermo Fisher Scientific, Waltham, MA). For both variants, the mature coding sequence of cfIL-22 gene was genetically fused with a 5′ native signal peptide and a 3′ 6X-histidine tag. Both variants of cfIL-22 were cloned into an ampicillin resistant vector (pMA) and sequences verified by the manufacturer.

Gene cassettes were cloned into a pBIB-Kan plant expression vector [3] downstream of the constitutive dual-enhanced 35S Cauliflower Mosaic Virus (deCaMV) promoter (35S) [4], and a translational enhancer from the tobacco etch virus (TEV) [5] and upstream of the Tnos termi-
Fig. 7. Predicted structure of catfish IL-22. The structure prediction software I-TASSER and Raptor X were used to predict the 3-D structure of cfIL-22 (A). The I-TASSER model (ribbon structure) was overlayed with zebrafish IL-22 and human IL-22 (purple backbone structure, B).

nator. Plasmids were transformed into Top 10β E. coli, screened by PCR, and gene sequences confirmed by Sanger sequencing (CRC DNA Sequencing Facility, University of Chicago).

2.2. Recombinant protein expression using an agrobacterium-mediated transient plant production system

Expression constructs of the two variants of the cfIL-22 gene were transformed into Agrobacterium tumefaciens strain LBA4404 using the freeze/thaw method [6]. Following plasmid prep, PCR screening and confirmation by Sanger sequencing, lead A. tumefaciens (Agro) lines with cfIL-22 expression constructs were preserved as glycerol stocks (30% glycerol) and stored at −70°C.

Prior to transient expression in plants, ultracold-preserved, Agro cfIL-22 culture lines were plated and incubated at 28°C on YEP agar plates [10 g/L Bacto-peptone (Difco), 10 g/L yeast extract (Difco), 5 g/L NaCl (Sigma-Aldrich), pH 7.0] containing 0.1 g/L of kanamycin (Sigma-Aldrich; antibiotic selection of the expression construct) and 0.06 g/L of streptomycin (Sigma-Aldrich; selection of the Agro binary vector). Note, plated Agro constructs used for inoculating liquid cultures were used within 2 weeks of plating.

Two to three colonies of a given clone were inoculated into 5 ml YEP medium and cultured at 28°C, on an orbital shaker, at 225 rpm, for ~2 days. The 5 ml bacterial suspensions were transferred to 50 ml of YEP medium containing the antibiotics and cultured for an additional 24 h. To obtain accurate and reproducible quantification of the Agro suspensions, an aliquot of the 50 ml Agro culture was diluted 1:10 in YEP and gentle inversion used to obtain a homogenously mixture prior to measuring the optical density (OD) at 600 nm wavelength by spectrophotometry.
programs. tally

Iowa
Fig. PAGE Core
antibody

tative
tation,

30
tracts
100
0.5
pestle.
purification.

for

Agro

mediated

vacuum

infiltration

method

(\textit{Agro-infiltration})

previously
described

[7].

Briefly,
4–6-
week-old

\textit{N. benthamiana}

plants

were
grown

and

maintained

under

controlled

temperature

(25°C

for

16

h

light

cycle/

21°C

for

8

h

dark

cycle),

light

intensity

(150

µmol)

and

humidity

(70% RH).

Plants

were

vacuum

infiltrated

with

\textit{Agro}

cultures

containing

the

\textit{cfIL-22}

gene.

A

500

ml

\textit{Agro}

culture

is

sufficient

to

infiltrate

approximately

up

to

16

plants

for

each

expression

construct.

An

\textit{Agro}

culture

containing

an

empty

\textit{pBK}

vector

was

used

in

generating

plant

tissue

for

the

protein

negative

control.

\textit{Agro-infiltrated}

tobacco

plants

were

returned

to

the

environmental

growth

chamber.

For
determining

the

optimal

harvest

time,

leaf

tissues

were

collected

daily

from

a

single

plant

beginning

day

2

\((48 \text{ h})\)

through

day

7

\((168 \text{ h})\)

post-infiltration.

At

each

collection

time,

all

leaf

tissue

was,

weighed,

transferred

to

storage

bags,

frozen

in

liquid

nitrogen

and

stored

at

−70°C

until

further

analysis.

After

optimal

expression

of

\textit{cfIL-22}

in

this

host

system

was

established,

plant

tissues

were

similarly

collected

and

stored

in

100

g

aliquots

for

later

\textit{cfIL-22}

purification.

2.3. Recombinant protein extraction and characterization

For

initial

studies,

0.5 g

frozen

leaf

tissues

were

weighed

and

ground

using

a

mortar

and

pestle.

As

frozen

leaf

tissue

collection

ranged

from

5

to

100

g

aliquots,

to

ensure

representative

sampling,

the

frozen

tissue

was

hand

crushed

and

thoroughly

mixed

prior

to

removing

the

0.5 g

sample.

Extraction

buffer

containing

2% PVPP

\((100 \text{ mM Tris pH 8.5; 100 mM citrate pH 6.5; 100 mM phosphate buffer pH 7.2})\)

was

added

and

further

ground

to

a

chilled

liquid

slurry.

Extr

tracts

were

transferred

to

2 mL

microfuge

tubes

and

clarified

by

centrifugation

at

16,000 xg,

for

30

min,

at

4°C.

Supernatants

were

collected

and

samples

were

prepared

for

resolution

on

reducing,

SDS-PAGE.

Protein

supernatants

were

prepared

at

a

final

concentration

of

1X

loading

dye

solution

(LDS;

\textit{Thermo Scientific})

and

0.1 M

DTT,

subject
to
denaturation

at

100°C

for

10

min.

Qualitative

and

quantitative

assessments

of

the

protein

included

SDS-PAGE

(\textit{NuPage 12% Bis-Tris; Invitrogen}) resolution

and
detected

either

by

western

immunoblotting

using

an

anti-His-monoconal

antibody

(\textit{Genscript})

and

chemiluminescent

detection

(\textit{SuperSignal West Pico PLUS})

or
directly

staining

with

\textit{Coomassie Simply Blue Safe Staining} (\textit{Invitrogen}).

For

MS/MS

analysis

~ 1µg

of

the

purified

recombinant

\textit{cfIL-22}

(purification

details

in

accompanying

article,

\textit{Elkins

and Dolan, [11]})

was

resolved

on

SDS-PAGE

(\textit{Invitrogen, Novex, NuPage, 12% BisTris})

and

detected

with

\textit{Coomassie Blue Simply Safe stain}.

The

bands

corresponding
to

\textit{cfIL-22}

were

excised

and

sent

to

the

University

of

Arkansas

for

Medical

Sciences

(\textit{UAMS})

Proteomics

Core

Facility

for

analysis.

Protein

preparation

for

N-terminal

sequencing

involved

resolving

purified

\textit{cfIL-22}

by

SDS-

PAGE

and
electrotransfer

to

PVDF

membrane.

Following

\textit{Coomassie

staining}

(\textit{Simply Blue Safe

stain}),

the

membrane

was

destained

using

20% methanol.

The

visible

bands

on

the

membrane

were

excised

using

a

sterile

scapel

blade

and

sent

to

the

Protein

Facility

(Office

of

Biotechnology,

Iowa

State

University).

Digestion

of

\textit{N-glycans}

from

purified

\textit{cfIL-22}

protein

was

performed

using

the

\textit{PNGase F}

enzyme

(\textit{New

England

Biolabs})

in

accordance

with manufacturer's

guidelines.

Briefly,
\(1 \mu g \textit{cfIL-22}

purified

protein

samples

were

digested

with

\textit{PNGase}

using

the
denaturing

protocol,

for

1

hr,

at

37°C.

The

glycodigests

were

comparatively

analyzed

to

undigested

\textit{cfIL-22}

samples

(mock

control)

immediately

following

the

reaction

period

by

SDS-PAGE

and

western

immunoblotting.

For

structural

predictions

of

\textit{cfIL-22}

protin,

amino

acid

sequences

(published

and

experimentally

established

in

this

study)

were

\textit{was}

submitted

both

to

\textit{I-TASSER}

and

\textit{Raptor X}

modeling

programs.
Ethics Statement

Not required.

CRediT Author Statement

Lana Elkins: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing- original draft. Maureen C. Dolan: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing- review and editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

Dr. Jianfeng Xu for critical analysis and review. Dr. Sylvie Quinou for providing the catfish interleukin-22 sequence. Cristofer Calvo, Alyssa Weyer, and Brandi Mize for constructive review and assistance with experiments.

Funding

This work has been supported by the USDA National Institute of Food and Agriculture (2018-67016-28510) and Arkansas State Biosciences Institute Seed Grant (#200143).

References

[1] L. Elkins, M.C. Dolan, Plant production and functional characterization of catfish interleukin-22 as a natural immune stimulant for aquaculture fish, J. Biotechnol. 325 (2021) 233–240, doi:10.1016/j.jbiotec.2020.10.017.
[2] Lana Elkins, Maureen Dolan, Protein characterization, purification, and sequence data for plant made catfish interleukin 22, Mendeley Data (2020) V2, doi:10.17632/t2tkykvwb4.2.
[3] D. Becker, Binary vectors which allow the exchange of plant selectable markers and reporter genes, Nucl. Acids Res. 18 (1) (1990) 203, doi:10.1093/nar/18.1.203.
[4] E. Lam, P.N. Benfey, P.M. Gilmartin, Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants 86 (20) (1989) 7890–7894.
[5] J.C. Carrington, D.D. Freed, Cap-independent enhancement of translation by a plant potyvirus 5’ nontranslated region, J. Virol. 64 (4) (1990) 1590–1597.
[6] M. Holsters, D. de Waele, A. Depicker, E. Messens, M. van Montagu, J. Schell, Transfection and transformation of Agrobacterium tumefaciens, MGG Mol. Genet. 163 (2) (1978) 181–187, doi:10.1007/BF00267408.
[7] G. Medrano, M.J. Reidy, J. Liu, J. Ayala, M.C. Dolan, C.L. Cramer, Rapid system for evaluating bioproduction capacity of complex pharmaceutical proteins in plants, Methods Mol. Biol. (Clifton, N.J.) 483 (2009) 51–67, doi:10.1007/978-1-59745-407-0_4.