Research Article

Ismail Erturk, Erdim Sertoglu*, Cumhur Bilgi, Kenan Saglam, Fatih Yesildal, Ramazan Acar and Taner Ozgurtas

Evaluation of the effects of different treatment modalities on angiogenesis in heart failure patients with preserved ejection fraction via VEGF and sVEGFR-1

Korunmuş ejeksiyon fraksiyonlu kalp yetmezliği hastalarında anjiyojenez üzerine farklı tedavi modalitelerinin etkilerinin VEGF ve sVEGFR-1 aracılığı ile değerlendirilmesi

https://doi.org/10.1515/tjb-2018-0091
Received March 14, 2018; accepted October 17, 2018; previously published online December 10, 2018

Abstract

Objective: In this study, our aim was to investigate the clinical significance of VEGF, sVEGFR-1 in HFpEF patients.

Materials and methods: Seventy-two participants enrolled in this cross-sectional case-control study including HFpEF patients (n=41) and healthy (n=31) subjects. Blood samples were collected and serum VEGF, sVEGFR-1 analysis, and transthoracic echocardiography were performed.

Results and discussion: The average sVEGFR-1 level of HFpEF patient group was significantly higher than the control group (respectively 0.136 ng/L (0.04–0.34), 0.06 ng/L (0.01–0.25); p < 0.001). The average VEGF level of HFpEF patients using beta blocker was significantly higher than the HFpEF patients not using it (respectively 0.585 ± 0.194 ng/L; 0.349 ± 0.269 ng/L; p = 0.025). The average VEGF level of HFpEF patients using statins was significantly higher than the HFpEF patients without a medication (respectively 0.607 ± 0.099 ng/L; 0.359 ± 0.273 ng/L; p = 0.038).

Conclusion: Our study is the first study demonstrating the relations among HFpEF, accompanying morbidities, VEGF and sVEGFR-1 levels. Statins and beta blockers may have positive effects on angiogenesis in HFpEF patients via increasing VEGF levels.

Keywords: Heart failure; VEGF; sVEGFR-1.

Öz

Amaç: Bu çalışmada, korunmuş ejeksiyon fraksiyonlu kalp yetmezliği (KEFKY) hastalarında VEGF, sVEGFR-1’in klinik önemini araştırmayı amaçladık.

Gereç ve yöntem: Çalışmaya KEFKY hatalar (n = 41) ve sağlıklı (n = 31) insanlardan oluşan toplam 72 kişi dahil edildi. Kan örnekleri alındı, serum VEGF ve sVEGFR-1 analizleri ve transtorasik ekokardiyografi gerçekleştirildi.

Tartışma: Hasta grubunun ortalama sVEGFR-1 düzeyi kontrol grubuna göre anlamlı derecede yüksekti (srasıyla 0,136 ± 0,060; 0,074 ± 0,050; <0,001). Beta bloker kullanan hastaların ortalama VEGF düzeyi, Beta bloker kullanmayan hastaların anlamli derece daha yüksekti (srasıyla 0,585 ± 0,194; 0,349 ± 0,269; p = 0,025). Statin kullanan KEFKY hastalarının ortalama VEGF düzeyi, statin kullanmayan KEFKY hastalarından anlamli olarak daha yüksekti (srasıyla 0,607 ± 0,099; 0,359 ± 0,273; p = 0,038).

Sonuç: Çalışmamız, eşlik eden morbiditeler, VEGF ve sVEGFR-1 düzeyleri ile KEFKY arasındaki ilişkileri gösteren ilk çalışmaddir. Statinlar ve beta blokerler artmış VEGF seviyeleri ile KEFKY hastalarında anjiyojenez üzerinde olumlu etkileri olabilir.

Anahtar kelimeler: Kalp yetmezliği; VEGF; sVEGFR-1.
Introduction

Cardiac pump mechanism without an impairment and ejection fraction (EF) is over 50% is called heart failure with preserved ejection fraction (HFpEF) [1, 2]. Several neurohumoral mechanisms play role in the adaptation of the impairment of cardiac functions [3, 4]. As an important contributor of remodeling, formation of new vessels from performed vessels is a process that can be named so-called angiogenesis. Angiogenic molecules play critical roles in endothelial development, microvascular permeability and pathological angiogenesis [5]. Vascular endothelial growth factor (VEGF) is a well known angiogenic molecule. VEGFR-1 is a VEGF receptor which is known as transmembrane proteins. VEGFR-1 mediated signaling participates crucial action by enhancing the vascular permeability [6].

Soluble VEGFR-1 (sVEGFR-1) is produced from messenger RNA of VEGFR-1 and acts like decaying protein. It is probably a negative regulator of VEGF [7].

However, studies reporting the association among serum VEGF and sVEGFR-1 and clinical information of HFpEF patients are very limited and the role of VEGF and sVEGFR-1 in HFpEF patients is still an unclear situation.

From this point of view, we have hypothesized that increased sVEGFR-1 levels may cause the impaired angiogenesis in HFpEF patients and intended to evaluate HFpEF on VEGF (proangiogenic factor) and sVEGFR-1 (an angiogenesis inhibitor) in patients with HFpEF. In our opinion, this study will identify a physiopathological cause in HFpEF cases.

Methods

Subjects

Seventy-two participants consisting of HFpEF cases (n = 41) and healthy subjects as the control group (n = 31) were included in the study. It has been designed as a cross-sectional case-control study. Gülhane Faculty of Medicine Hospital regional ethics council approved this research with protocol number 1491-389-11/1539-267 on November 29th, 2011. The ethical norms of the council on human experimentation (institutional and national) was prepared by Helsinki Declaration in 1975, which was modified in 2008. All patients underwent transthoracic echocardiography for the diagnosis of HFpEF patients in 2011, 2012 and 2013. The symptoms, signs of patients (European Society of Cardiology; 2012) and echocardiographic findings were recorded and used for diagnosis of the HFpEF. The patient group with HFpEF was composed of subjects older than 18 years old with ejection fraction over 50%. The exclusion criteria were the presence of infection, acute or chronic inflammatory disease and situation, high erythrocyte sedimentation rate or CRP, having or suspected malignancy, chronic obstructive pulmonary disease and cerebrovascular accident.

Sampling and laboratory measurements

We obtained fasting blood specimens via venipuncture in BD Vacutainer® serum tubes which include clot activator and polymer gel for sera isolation. We centrifuged samples for obtaining serum samples at 2000 g for 10 min. Just after, we analyzed the biochemical parameters. Two milliliter of serum samples were aliquoted and preserved at −80°C for further analyzes of VEGF and sVEGFR-1 up to working day.

Enzymatic and colorimetric methods with Olympus AU2700 (Beckman Coulter, USA) were used to perform measurements of total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting blood glucose (FBG), urea and creatinine. We calculated low-density lipoprotein cholesterol (LDL-C) by Fridewald’s formula [8]. Automated counter of blood cell (ABX Pentra 120, Horiba, Japan) has been used for complete blood count (CBC) analysis. We analyzed c-reactive protein (CRP) by immunoturbidimetric fixed rate technique by Olympus AU-2700 device (Beckman Coulter, USA).

We determined sera VEGF and sVEGFR-1 levels by commercial ELISA kits (Quanikine®, R&D Systems, Minneapolis, MN, USA) and Synergy HT plate reader (Bio-Tek Instruments Inc., Winooski, VT, USA) [9]. Intra-assay CV and interassay CV were <6.5%, <8.5%, respectively with sensitivity 9 pg/mL in order to evaluate VEGF, while intra-assay CV and inter-assay CV were <3.8%, <9.8%, respectively with sensitivity 13.3 pg/mL in order to evaluate sVEGFR-1.

Statistical analyzes

For statistical analysis, SPSS software (IBM SPSS, ver.24) was used. For the calculations, the statistical significance level (α) was taken as 5%. We noted p-value of 0.05 or less significant. We demonstrated categorical variables with numbers and percentages (%) for
the descriptive statistics; and also demonstrated the continuous (numerical) variables with median, mean, standard deviation, minimum, and maximum values. Non-parametric tests were used for the variables that were not normally distributed. Correlations were analyzed by the Spearman’s nonparametric correlation test. In terms of parameters for comparing the means of the groups in order to evaluate categorical data χ² test was used and Mann-Whitney-U test was used in order to evaluate continuous variables that did not distribute normally. By multiple regression analysis method an estimation equation for the dependent variable “creatinine” is obtained with using independent variable “VEGF and sVEGFR-1”. The predictive model obtained as a result of multiple regression analysis was statistically significant (Anova; p < 0.05). Assumptions of “residuals” were checked by Durbin-Watson test.

Results

The mean age of HFpEF patients and controls were similar (Table 1). The mean results were not different statistically between groups in terms of VEGF, platelet, AST, erythrocyte sedimentation rate (ESR), CRP while mean serum sVEGFR-1, white blood cell (WBC), urea, creatinine, FBG, thyroid stimulating hormone (TSH), ejection fraction (EF) results were higher in HFpEF cases than controls significantly (p < 0.005). Hemoglobin, glomerular filtration rate (GFR), ALT, LDL-C, triglyceride, HDL-C, total cholesterol and ejection fraction (EF) levels were significantly lower in HFpEF group than control subjects (p = ≤0.005) (Table 1).

In correlation analysis, we determined sVEGFR-1 levels correlated positively and significantly (r = 0.481, p < 0.001) with serum creatinine levels in HFpEF cases. The correlation analyzes between serum sVEGFR-1 and GFR levels were significantly correlated negatively in HFpEF cases (r = −0.559, p < 0.001) (Table 2). The coefficients (B) that obtained by estimating creatinine variable with the help of the VEGF and sVEGFR-1 independent variables were demonstrated in Table 3. The increase in both arguments led to a significantly positive increase over creatinine. VEGF independent variable has no statistically significant effect alone (partial regression coefficients). On the contrary, the partial regression coefficient of sVEGFR-1 independent variable was statistically Table 1: Comparison of demographic and laboratory features of patients with HFpEF and control group.

	HFpEF (n=41)	Control (n=31)	p-Value
Gender (M/F)	17/24	14/17	0.813*
Age (years)	75.43±8.04	74.54±8.59	0.653
VEGF (ng/L)	0.33 (0.02–0.86)	0.34 (0.06–0.73)	0.941
sVEGFR-1 (ng/L)	0.136 (0.04–0.34)	0.06 (0.01–0.25)	≤0.001
WBC (10⁹/μL)	8.91±3.82	6.5±2.88	0.003
Hemoglobin (g/dL)	10.6±1.69	13.14±1.97	≤0.001
Platelet (10⁹/μL)	250.2±116	278.2±65.6	0.204
Urea	83 (22–389)	34 (23–87)	≤0.001
Creatinine	1.9 (0.43–9.2)	0.87 (0.57–1.37)	≤0.001
GFR (mL/min/1.73 m²)	28 (5–88)	68 (55–139)	≤0.001
AST (U/L)	21 (4–102)	22 (12–42)	0.926
ALT (U/L)	12 (3–41)	19 (9–40)	0.001
Glucose	102 (66–293)	95 (80–137)	0.198
LDL-C (mg/dL)	89.9±26	109.4±39.6	0.022
Triglyceride (mg/dL)	132 (51–184)	157 (34–330)	0.004
HDL-C (mg/dL)	40 (15–60)	44 (32–62)	0.004
T. Cholesterol (mg/dL)	153.6±34.8	194.2±39.7	≤0.001
ESR (mm/hour)	19 (3–69)	21 (7–42)	0.222
hsCRP (mg/L)	2.1 (0.3–6)	1.2 (0.2–5)	0.13
EF	55.8 (45–65)	63 (55–67)	≤0.001

Data are expressed as the mean ± SD. p-Values were calculated using independent-sample t and Chi square* test.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; EF, ejection fraction; ESR, erythrocyte sedimentation rate; GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitive C-reactive protein; LDL-C, low-density lipoprotein cholesterol; sVEGFR-1, soluble vascular endothelial growth factor receptor-1; T. Cholesterol, total cholesterol; VEGF, vascular endothelial growth factor; WBC, white blood cells;
Bold values denotes significance at p < 0.05.
significant. Residues were not correlated statistically because the Durbin-Watson statistics of residues were smaller than the predictive statistic. The increase of the sVEGFR-1 as an independent variable leads to a positive increase of creatinine.

We observed significantly higher sVEGFR-1 results in HFpEF cases who undergo dialysis than the HFpEF patients without dialysis (respectively 0.16 (0.09–0.33); 0.08 (0.008–0.24); p = 0.002). Significantly higher VEGF results were also determined in HFpEF cases receiving beta-blocker and statin therapies versus without these therapies (respectively 0.58 (0.29–0.86); 0.32 (0.01–0.83); p = 0.02; 0.56 (0.50–0.74); 0.32 (0.01–0.86); p = 0.03).

The sVEGFR-1 levels of HFpEF cases who have atrial fibrillation (AF), coronary artery disease (CAD), chronic kidney disease (CKD) were more the control subjects significantly (p = 0.03) while sVEGFR-1 levels of HFpEF patients undergoing dialysis were more than the HFpEF cases without undergoing dialysis significantly (respectively; 0.16 (0.09–0.33); 0.08 (0.008–0.24); p = 0.002).

Significantly higher levels of sVEGFR-1 results were also observed in HFpEF cases with acetylsalicylic acid, beta blocker, statin, enoxaparin, calcium channel blocker (CCB) and furosemide therapies versus control group (p < 0.05) (Table 4).

Discussion

As far as is known, this is the primary trial demonstrating the importance of sera VEGF and sVEGFR-1 results together

Table 2: Correlation between serum VEGF, sVEGFR-1 levels and laboratory features in HFpEF group (n = 41)

	VEGF (R)	p-Value	sVEGFR-1 (R)	p-Value
sVEGFR-1	–0.580	0.63	1	
WBC	0.022	0.85	0.215	0.07
Hemoglobin	0.110	0.35	–0.505	0.06
Urea	0.127	0.28	0.421	0.08
Creatinine	0.042	0.72	0.481	<0.001
GFR	0.037	0.76	–0.559	<0.001
ALT (U/L)	–0.066	0.58	–0.258	0.06
LDL-C (mg/dL)	–0.027	0.82	–0.205	0.08
Triglyceride (mg/dL)	0.208	0.07	–0.230	0.052
HDL-C (mg/dL)	–0.138	0.24	–0.056	0.64
T. Cholesterol (mg/dL)	–0.060	0.61	–0.231	0.07
EF	0.054	0.65	–0.334	0.06

Correlation analysis among variables was performed by using Spearman’s correlation test. A p-value of <0.05 was considered significant. ALT, alanine aminotransferase; GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; sVEGFR-1, soluble vascular endothelial growth factor receptor-1; T. Cholesterol, total cholesterol; WBC, white blood cells; Bold values denotes significance at p < 0.05.

Table 3: Multiple regression analysis.

Model	Regression coefficients	t	p-Value
	Unstandardized coefficient	Std. error	Beta
(Constant)	–0.004	0.493	
VEGF	1.396	0.842	0.174
sVEGFR1	13.289	2.920	0.477
*ANOVA (Regr.)	df = 2		
Model Summary	R = 0.496	R² = 0.246	Adj. R² = 0.224
Residuals Statistics	Predicted Value: 1.963	Durbin-Watson: 1.770	

Entered Method: *Dependent Variable: creatinine; *Predictor: (Constant): sVEGFR-1, VEGF
Regr.: Regression, sVEGFR-1: Soluble vascular endothelial growth factor receptor 1, VEGF: Vascular endothelial growth factor.
in HFP EF cases. Serum sVEGFR-1 results were significantly more HFP EF cases than control subjects.

As previously demonstrated by numerous studies, VEGF and its receptors promote angiogenesis, while sVEGFR-1 decreases angiogenesis by inhibiting VEGF [10]. In 2010, Kaza et al. have demonstrated an increase in sVEGFR-1 in rat models with hypertrophied myocardium [11]. From this point of view, it brings to mind that increasing levels of sVEGFR-1 levels may be important in terms of angiogenesis and pathophysiology in HFP EF patients. Additionally, DiMarco et al. have found the level of sVEGFR-1 higher than the control group due to inflammation likely to the previous studies. Also, a high level of sVEGFR-1 was demonstrated as an independent risk factor for CKD [12]. Significantly higher levels of sVEGFR-1 were observed among HFP EF patients undergoing dialysis than the HFP EF patients without dialysis in our study. Also in correlation analysis, sVEGFR-1 levels were significantly positively correlated with creatinine levels in HFP EF patients. The correlation analyzes between serum sVEGFR-1 and GFR results were negatively correlated among HFP EF cases significantly. Multiple regression analysis models was found to be statistically significant as mentioned above. The increase of the sVEGFR-1 as an independent variable leads to a positive increase of creatinine. We think that the increase of this sVEGFR-1 is due to low clearance. All these findings bring to mind that sVEGFR-1 levels in HFP EF patients were affected by renal functions and the chronic inflammatory situation of CKD. Additionally, sVEGFR-1 may be one of the mechanism of antiangiogenesis in HFP EF cases with CKD.

However, the VEGF levels in our patient group did not differ from the control group despite the change in the sVEGFR-1 levels. According to some of the literature, VEGF levels of HF cases were more than the control subjects. Friehs et al. demonstrated that receiving VEGF causes retardation the beginning of HF in rabbits with a pressure overload model [13]. Gustafsson et al. showed that exercise training induces angiogenesis in HF cases most probably by VEGF gene expression [14]. Contrast to these kinds

Table 4: Comparison of VEGF, sVEGFR-1 levels and clinical information of patients with HFP EF.

Clinical information	VEGF	sVEGFR-1						
	Median	Minimum	Maximum	P1	P2			
Control	0.34	0.05	0.72	0.05	0.008	0.24		
Dialysis –	0.32	0.01	0.83	0.33	0.41	0.24	0.002	<0.001
Dialysis +	0.34	0.02	0.86	0.16	0.11	0.33	0.58	0.001
CKD –	0.32	0.01	0.83	0.12	0.14	0.33	0.68	0.001
CKD +	0.47	0.05	0.86	0.41	0.10	0.33	0.68	0.001
CAD –	0.31	0.02	0.83	0.12	0.11	0.33	0.68	0.001
CAD +	0.51	0.01	0.86	0.13	0.04	0.22		
HT –	0.34	0.02	0.86	0.89	0.92	0.24	0.42	<0.001
HT +	0.31	0.01	0.77	0.13	0.035	0.33		
AF –	0.34	0.01	0.86	0.81	0.90	0.33	0.35	0.03
AF +	0.22	0.02	0.70	0.12	0.04	0.13		
ARB –	0.32	0.01	0.86	0.61	0.52	0.33	0.20	0.14
ARB +	0.04	0.14	0.60	0.10	0.03	0.22		
Furosemide –	0.32	0.01	0.86	0.96	0.78	0.33	0.27	0.05
Furosemide +	0.40	0.08	0.60	0.12	0.04	0.27		
ASA –	0.32	0.01	0.83	0.09	0.07	0.33	0.31	0.03
ASA +	0.42	0.14	0.86	0.11	0.03	0.19		
Enoxaparin –	0.34	0.01	0.86	0.98	0.92	0.33	0.50	0.002
Enoxaparin +	0.32	0.08	0.77	0.13	0.04	0.27		
Beta Blocker –	0.32	0.01	0.83	0.02	0.01	0.33	0.28	0.001
Beta Blocker +	0.56	0.29	0.86	0.15	0.09	0.22		
CCB –	0.32	0.01	0.86	0.46	0.27	0.33	0.47	0.039
CCB +	0.38	0.08	0.64	0.12	0.04	0.18		
Statins –	0.32	0.01	0.86	0.03	0.01	0.33	0.30	0.21
Statins +	0.56	0.50	0.74	0.08	0.04	0.22		

P1, Comparison of the accompanied diseases or medications used in HFP EF group, P2, Comparison with control group
AF, Atrial fibrillation; ARB, Angiotensin II receptor blocker; ASA, Acetylsalicylic acid; CAD, Coronary artery disease; CCB, Calcium channel blocker; CKD, Chronic kidney disease; HT, Hypertension.
of literature, we have found the VEGF levels were not significantly higher than the control groups. The contribution of VEGF released from platelets and leukocytes in serum is the major difference between plasma and serum. Many points associated with analyzing circulating VEGF are described in a review by Jelkmann and demonstrated that VEGF should be analyzed in plasma [15]. Also, the use of anticoagulant and antiaggregant when collecting the plasma can affect the results [16]. In addition, not only the anticoagulants and antiaggregants but also the analyzing center, centrifuge, and method for analyzing have been found to be independent factors for the analysis of circulating plasma levels of VEGF [17]. With that in mind, it is because of that difficult to compare different studies reporting the levels of VEGF in the blood since there are a lot of factors that can influence the analysis.

In the comparison of VEGF, sVEGFR-1 levels and medication status of patients with HFpEF, we demonstrated the mean level of sera VEGF in patients using beta-blockers was significantly more in the HF cases and the control subjects. In the literature as similar to our results Rudolf A. et al. have demonstrated that carvedilol raises plasma VEGF in HF cases [18]. It is previously well known that VEGF also increases in hypoxic situations [19]. It is not fully understood why VEGF results raised by a potentially anti-ischaemic medication. Thirteen of patients were with CAD in our patient group for explaining the contribution of ischemic situation. Previous studies also demonstrated the induction of angiogenesis by the reduction of heart rate [20]. We want to speculate that the anti-ischemic effect of beta-blockers in HF cases should be because of impairment of angiogenesis with the VEGF production as the angiogenic mediator.

Erbs et al. have demonstrated the increased sera VEGF results in the HF cases with reduced ejection and additionally demonstrated the effect of statins on angiogenesis positively except the effect on the lipids [21]. Cantoni et al. also have shown rosuvastatin increased capillary formation with VEGF by evaluating the effect of rosuvastatin in human mesenchymal stem cells [22]. Our study was the first study evaluating the effect of statins on VEGF in HFpEF. None the patients using statin have also accompanied beta-blocker using. From this point of view, statins may induce angiogenesis via increasing the VEGF results in HFpEF.

This study has some limitations. Firstly, it is limited analyzing only one angiogenic molecule, VEGF and only one anti-angiogenic molecule sVEGFR-1, which makes it difficult to evaluate the disequilibrium of angiogenic/anti-angiogenic factors in HFpEF cases since other angiogenic factors have not been evaluated concurrently. However, we think that the study is meaningful and valuable due to the fact that it has not been studied before in the literature and it is a clinical study. Finally, this study is based on a limited number of patients and thus, cannot ascertain whether these findings apply to other patients with HFpEF. Therefore, clinical studies with more participants should be suitable for approval of these findings.

In conclusion, statins and beta-blockers may have a positive effect on angiogenesis in HFpEF patients via increasing VEGF levels. Although no solid conclusion can be drawn from our study due to the small numbers of patients, it increases awareness about the physiopathological role of sera VEGF in HFpEF patients and the need of further studies.

Declaration of conflict of interest: None

References

1. Fuster V, Alexander RW, O’Rourke R. Pathophysiology and diagnosis of heart failure. Hurst’s The Heart 2002;2:655–80.
2. Davie AP, Francis CM, Caruana L, Sutherland GR, McMurray JJ. Assessing diagnosis in heart failure: which features are any use? QJM 1997;90:335–9.
3. Braunwald E, Chipsey CA, Pool PE, Sonnenblick EH, Ross J Jr, Mason DT, et al. Congestive heart failure: biochemical and physiological consideration. Ann intern Med 1966;64:904–41.
4. Mann DL, Young B. Basic mechanisms in congestive heart failure: recognizing the role of proinflammatory cytokines. Chest 1994;105:897–904.
5. Ferrara N. Molecular and biological properties of vascular endothelial growth factor, J Mol Med 1999;77:527–43.
6. Wada T, Jesmin S, Gando S, Yanagida Y, Mizugaki A, Sultana SN, et al. Angiogenic factors and their soluble receptors predict organ dysfunction and mortality in post cardiac arrest syndrome. Crit Care 2012;16:R171
7. Shapiro NI, Yano K, Okada H, Fischer C, Howell M, Spokes K, et al. A prospective, observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock 2008;29:452–7.
8. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502.
9. Şertoğlu E, Tapan S, Doğru T, Acar R, Doğan T, İnce S, et al. Gilbert’s syndrome: protective effect on endothelial dysfunction. Turk J Biochem 2016;41:451–8.
10. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 2007;101:948–56.
11. Kaza E, Ablasser K, Poutias D, Griffiths ER, Saad FA, Hofstraetter JG, et al. Up-regulation of soluble vascular endothelial growth factor receptor 1 prevents angiogenesis in hypertension myocardium. Cardiovasc Res 2011;89:410–8.
12. DiMarco GS, Reuter S, Hillebrand U, Amler S, König M, Larger E, et al. The soluble VEGF receptor sFlt1 contributes to endothelia
dysfunction in CKD. J Am Soc Nephrol 2009;20:2235–45.
13. Friehs I, Margossian RE, Moran AM, Cao-Danh H, Moses MA,
del Nido PJ. Vascular endothelial growth factor delays onset of
failure in pressure-overload hypertrophy through matrix metal-
loproteinase activation and angiogenesis. Basic Res Cardiol.
2006;101:204–13.
14. Gustafsson T, Bodin K, Sylvén C, Gordon A, Tyni-Lenné R,
Jansson E. Increased expression of VEGF following exercise
training in patients with heart failure. Eur J Clin Invest
2001;31:362–6.
15. Jelkmann W. Pitfalls in the measurement of circulating vascular
endothelial growth factor. Clin Chem 2001;47:617–23.
16. Schlingemann RO, Van Noorden CJ, Diekman MJ, Tiller A,
Meijers JC, Koolwijk P, et al. VEGF levels in plasma in relation to
platelet activation, glycemic control, and microvascular compli-
cations in type 1 diabetes. Diabetes Care 2013;36:1629–34.
17. Walz JM, Boehringer D, Deissler HL, Faerber L, Goepfert JC,
Heiduschka P, et al. Pre-analytical parameters affecting vascular
endothelial growth factor measurement in plasma: identifying
confounders. PLoS One 2016;11:e0145375.
18. de Boer RA, Siebelink HJ, Tio RA, Boomsma F, van Veldhuisen DJ.
Carvedilol increases plasma vascular endothelial growth factor
(VEGF) in patients with chronic heart failure. Eur J Heart Fail
2001;3:331–3.
19. Guillemin K, Krasnow MA. The hypoxic response: huffing and
HIFing. Cell 1997;89:9–12.
20. Wright AJ, Hudlicka O. Capillary growth and changes in heart
performance induced by chronic bradycardial pacing in the rab-
bit. Circ Res 1981;49:469–78.
21. Erbs S, Beck EB, Linke A, Adams V, Gielen S, Kränkel N, et al.
High-dose rosuvastatin in chronic heart failure promotes vascu-
logenesis, corrects endothelial function, and improves cardiac
remodeling – results from a randomized, double-blind, and
placebo-controlled study. Int J Cardiol 2011;146:56–63.
22. Cantoni S, Cavallini C, Bianchi F, Bonavita F, Vaccari V, Olivi E, et
al. Rosuvastatin elicits KDR-dependent vasculogenic response
of human placental stem cells through PI3K/AKT pathway. Phar-
macol Res 2012;65:275–84.