Intercomparison measurements of two 33 S-enriched sulfur isotope standards

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Gen, L., et al., “Intercomparison measurements of two 33 S-enriched sulfur isotope standards.” Journal of analytical atomic spectrometry 34, 6 (Mar. 2019): no. 1263 doi 10.1039/C8JA00451J ©2019 Author(s)
As Published	10.1039/C8JA00451J
Publisher	Royal Society of Chemistry (RSC)
Version	Final published version
Citable link	https://hdl.handle.net/1721.1/124850
Terms of Use	Creative Commons Attribution 3.0 unported license
Detailed Terms	https://creativecommons.org/licenses/by/3.0/
1. Introduction

Sulfur has four stable isotopes 32S, 33S, 34S and 36S with approximate abundances of 94.99%, 0.75%, 4.25% and 0.01%, respectively. The relative abundances of these isotopes in geological materials (e.g., rocks, atmospheric aerosols, water, ice, meteorites, etc.) are affected by different geological, atmospheric, biological, and hydrological processes. Therefore, variations in the relative abundances of sulfur isotopes in a variety of terrestrial and extra-terrestrial materials have the potential to serve as useful tracers of the source and transformation of sulfur in different environments, as well as provide information about their physical and/or chemical conditions. The relative abundances of sulfur isotopes are typically measured as the ratios of the rare isotopes (33S, 34S and 36S) to the most abundant isotope, 32S, and expressed as the delta notation which describes a deviation from a primary isotope reference material:

$$\delta^S(\%o) = \left(\frac{R_{\text{ref}}}{R_{\text{spl}}} - 1 \right) \times 1000 \quad (1)$$

where R represents $^{35}S/^{32}S$, and $x = 33, 34$ or 36. The first principal reference material was troilite from the Canyon Diablo meteorite (Canyon Diablo Troilite – CDT). However, CDT was found to be variable in a prior study,1 and thus a V-CDT scale...
was established later by assigning a δ³⁴S value of −0.3‰ relative to V-CDT to an internationally distributed silver sulfide reference material IAEA-S-1.² The assigned value of −0.3‰ was based on intercomparison measurements from fifteen individual laboratories.

The second historic aspect of sulfur isotope analyses has been on δ³⁴S. This occurred because of the difficulty of measuring δ³³S and δ³⁶S using standard combustion techniques, and a strong mass-dependent correlation between δ³³S, δ³⁴S and δ³⁶S that led to the belief that independent information could not be obtained by measuring the two rarest sulfur isotopes. The recognition of mass-independent processes in meteorite samples,³ ⁴ geological samples,⁵ ⁶ ⁷ and atmospheric and ice-core samples,⁸ ⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ as well as the development of new techniques such as the MC-ICP-MS techniques for δ³³S measurement¹⁶ ¹⁷ has made it of interest to have better calibrations over the full range of stable sulfur isotopes. In addition, mass-dependent fractionation processes in the biogeochemical sulfur cycle have also been measured and are known to produce small abundance deviations for δ³³S and δ³⁶S from mass-dependent relationships,¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ ²⁰ ²¹ ²² ²³ ²⁴ ²⁵ The deviation from mass-dependent trends was commonly termed mass-independent fractionation (MIF), although some were strictly related to mass-dependent processes, and expressed as the capital delta notation as follows:

\[
\Delta ^{33}S (\%o) = \delta ^{33}S - [1000 + 1] \times 1000
\]

\[
\Delta ^{36}S (\%o) = \delta ^{36}S - [1000 + 1] \times 1000
\]

These sulfur isotope anomalous signals, Δ³³S and Δ³⁶S, serve as unique proxies to track both mass dependent and mass independent fractionation processes.

Prior community efforts have established a consensus value for the V-CDT scale on the basis of the δ³³S for IAEA-S-1 in order to normalize δ³⁴S measurements of different samples in different laboratories, for data comparability and consistency. Other sulfur reference materials, such as IAEA-S-2 and IAEA-S-3, are also routinely used for the same purpose. Provisional assignments of values for δ³³S and δ³⁶S have been assigned to V-CDT in various studies,²⁶ ²⁷ but a full assignment has yet to be made. Other researchers have resorted to normalizations to IAEA-S-1 (ref. 19) or CDT for δ³³S and δ³⁶S.²⁸ The number of studies reporting Δ³³S and Δ³⁶S of terrestrial and extra-terrestrial samples²⁹ has increased tremendously in the past two decades due to interest in the geological and/or environmental information embedded in Δ³³S and Δ³⁶S signals. Such an increase has resulted in a need for the establishment of working materials and interlaboratory comparisons that will lay the groundwork for establishing a consensus for the normalization of Δ³³S and Δ³⁶S of V-CDT.

Appropriate data normalization, aside from precise and accurate measurements, is necessary to ensure proper interlaboratory data comparison and to reach consensus conclusions according to Δ³³S and Δ³⁶S values measured from the same or similar types of samples.²⁸ Appropriate data normalization is also important for interpretation of small Δ³³S and/or Δ³⁶S values (e.g., 0.03‰). The Δ³³S and Δ³⁶S values are not directly measured, but calculated from the measured δ³³S, δ³⁴S and δ³⁶S values as shown in the above equations. The δ³³S, δ³⁴S and δ³⁶S values are typically measured with respect to a laboratory working reference gas (i.e., SF₆), and then need to be anchored to the V-CDT scale in order to ensure consistent comparison of data among different laboratories. Although consensual δ³⁴S values of international sulfur isotope reference materials have been established, currently there are no consensual Δ³³S and Δ³⁶S values. Here we use the provisional Wing and Farquhar²⁴ V-CDT calibration of IAEA-S-1 which assigns Δ³³S = 0.094‰ and Δ³⁶S = −0.700‰ as the values for IAEA-S-1 on the V-CDT scale. These values correspond to δ³³S and δ³⁶S of −0.061‰ and −1.27‰, respectively. These values along with the community-defined δ³³S value of IAEA-S-1 (~0.300‰) are used to normalize multiple sulfur isotope compositions of particular samples to the V-CDT scale, once the working reference gas is calibrated versus IAEA-S-1, or concurrent measurements of IAEA-S-1 are performed.

Given the small Δ³³S and Δ³⁶S values measured in, e.g., stratospheric and tropospheric sulfate aerosols, marine S-bearing materials, meteorites and Proterozoic geological samples, small errors, scale contraction, or drift in one-point scale normalization can lead to significant differences in the derived Δ³³S and Δ³⁶S values for such samples. In addition, the mechanism behind the origin of S-MIF in atmospheric sulfate is still a subject of debate,³⁶ ³⁷ and observations of small negative Δ³⁶S values in atmospheric sulfate possibly associated with combustion processes³⁸ ³⁹ raise further questions on the photochemical origin of S-MIF. Accurate and precise measurements as well as consistent data normalization are also critical in distinguishing the difference between small non-zero Δ³³S and Δ³⁶S values produced by mass-dependent fractionation processes in biogeochemical sulfur cycles and non-zero Δ³³S and Δ³⁶S values produced by MIF processes, and in further discerning the contributions of different MIF processes. In principle, data normalization can be considerably improved by using two or more points to provide a normalization spanning a wide delta range. To enable proper data normalization and compatible data reporting from different laboratories, secondary reference materials of Δ³³S and Δ³⁶S are necessary in addition to IAEA-S-1. The IAEA-S-1 material is used as a primary reference material to scale or anchor the measured data to the V-CDT scale, rather than a physically real calibration standard.

To date, there is no international sulfur isotope reference material enriched in δ³³S and/or δ³⁶S available for the purpose of global calibration. Individual laboratories generally report Δ³³S and Δ³⁶S values normalized using concurrent IAEA-S-1 measurements, but consensus values of Δ³³S and Δ³⁶S for IAEA-S-1 on the V-CDT scale have not been assigned. In this study, we report the sulfur isotopic compositions of two synthesized sodium sulfate samples artificially enriched in δ³⁴S with different magnitudes. The data we report are from separate analyses performed at five different laboratories. We evaluate
the interlaboratory variations in the reported values and use the data to assess the potential for further use of these samples as secondary reference materials for $\Delta^{34}\text{S}$ data normalization. Concomitantly, these samples are also enriched in ^{17}O for the same reasons as listed for sulfur. The calibration is still in progress and the preliminary result of $\Delta^{17}\text{O} = 3.3 \pm 0.3\%_\text{oo}$ (1σ) is reported only for information purposes. In the following, we will not elaborate more on $\Delta^{17}\text{O}$.

2. Experimental

2.1. Synthesis of samples enriched in ^{33}S

Two sodium sulfate (Na_2SO_4) samples, namely, S-MIF-1 and S-MIF-2, enriched in ^{33}S were prepared in the stable isotope laboratory at the University of California, San Diego. We chose Na_2SO_4 as it is chemically stable, is nontoxic, does not become hydrated, and is widely available and easy to manufacture. The samples were prepared by chemical conversions of a mixture of sulfur powder and sulfur-33 powder. Reagents used included sulfur powder (99.5%, Fisher ACS, Lot: 897542), sulfur-33 powder (99.8%, Isosel, Lot: 07111L35969), H_2O_2 solution (30%, extra pure, Fisher Scientific, Lot: 110251), H_2SO_4 (95%, extra pure, Fisher Scientific, Lot: 49020), NaOH (99.9%, Extra pure, Fisher Scientific), and O_2 (99.999%, Matheson, USA).

For S-MIF-1, 20 g of sulfur powder and 0.00445 g of sulfur-33 powder were weighed and mixed. For S-MIF-2, 20 g of sulfur powder and 0.00015 g of sulfur-33 powder were weighed and mixed. The composition of the initial mixtures corresponded to $\Delta^{33}\text{S}_{\text{VCDT}}$ values of $\sim 30\%_\text{oo}$ and $10\%_\text{o}$ respectively. The powder mixture was transferred into a crucible, and ignited with a flame. The crucible was then placed in a 4 L air-tight glass vessel followed by purging of the glass vessel with a flow of O_2 at a rate of 50 mL min$^{-1}$. As a result, SO_2 was produced and carried by O_2 into a NaOH solution (made of 33 mL ^{17}O-enriched water ($\Delta^{17}\text{O} = 47.7\%_\text{oo}$), 33 mL NaOH (50% w/ w) and 133 mL of pure water (18.2 MΩ)) where SO_2 was trapped as Na_2SO_4. The S^v-containing the NaOH solution was placed in an ice-water bath during the collection process. After the combustion was complete, we suspended the flow of O_2 and slowly added 80 mL 30% H_2O_2 (due to the exothermicity of the reaction) to the NaOH solution in order to oxidize the trapped SO_2^v to SO_2^v. For S-MIF-1, 33 mL H_2SO_4 was added to dilute $\Delta^{33}\text{S}$ to $\sim 10\%_\text{oo}$ and then a few drops of NaOH were added to adjust to neutral pH. For S-MIF-2, no dilution was made and only a few drops of H_2SO_4 were added to adjust to neutral pH. The different treatments of S-MIF-1 and S-MIF-2 in this last step were intended to produce Na_2SO_4 with similar $\Delta^{33}\text{S}$ but different $\Delta^{17}\text{O}$. Both S-MIF-1 and S-MIF-2 were then dried and ground, and the powder was collected and stored. In the end, we recovered ~ 136 g and ~ 55.6 g Na_2SO_4 for S-MIF-1 and S-MIF-2, respectively.

2.2. Isotopic analysis

After preparation, S-MIF-1 and S-MIF-2 were circulated to five laboratories, including the stable isotope laboratory at the Ecole Normale Superieure (ENS) de Lyon, the stable isotope laboratory at the Institut de Physique du Globe de Paris (IPGP), the stable isotope laboratory at the University of Maryland, College Park (UMD), the stable isotope Geo-biology laboratory at the Massachusetts Institute of Technology (MIT) and the stable isotope laboratory at the Tokyo Institute of Technology (TIT). In these laboratories, the isotopic compositions of S-MIF-1 and S-MIF-2 were characterized individually.

In the laboratories of IPGP, UMD, MIT and TIT, S-MIF-1 and S-MIF-2 were analyzed following the conventional SF$_6$ method. In each laboratory, the Na_2SO_4 samples were first reduced to silver sulfide (Ag$_2$S) using the STRongly Reducing hydridoPorphorous-hydrochloric acid (STRIP) method or the Kiba reagent method following the standard procedure described in Forrest and Newman. We note that in practice each laboratory uses slightly different reduction techniques for operational convenience. Briefly, the collected sulfide after sulfate reduction was converted to silver sulfide (Ag$_2$S). After purification, Ag$_2$S was dried, weighed (1–3 mg) and transferred into a small aluminum boat. The aluminum boats were folded and loaded into externally heated nickel reaction tubes. The reaction tubes were evacuated for 0.5–1 hour at $\sim 100^\circ\text{C}$ until the desired vacuum was achieved. F_2 (in excess) was then introduced into the reaction tubes to produce SF$_6$. The reaction tubes were heated to $\sim 250^\circ\text{C}$ and held at this temperature overnight. The produced SF$_6$ gas was purified first using a series of cryogenic techniques and then by gas chromatography using helium as the carrier gas. The purified SF$_6$ was then trapped with liquid nitrogen and transferred under vacuum to a gas-source isotope ratio mass spectrometer (Thermo Fisher MAT 253) where its sulfur isotopic composition was analyzed in dual-inlet mode. Briefly, in each analysis, the sample and reference gas (SF$_6$) were measured one after another for masses of 127 ($^{33}\text{SF}_5$), 128 ($^{33}\text{SF}_5$), 129 ($^{33}\text{SF}_5$) and 131 ($^{33}\text{SF}_5$). In the end, the measured $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values of the sample were expressed in the delta notation with respect to the reference SF$_6$ gas.

In the ENS laboratory, S-MIF-1 and S-MIF-2 were analyzed for sulfur isotopic compositions using multi-collector inductively

| Table 1 | Sample preparation and analysis methods in each laba
Lab	IPGP	UMD	TIT	MIT	ENS
Preparation	STRIP/SF$_6$	STRIP/SF$_6$	Kiba/SF$_6$	STRIP/SF$_6$	Solution/SO$_4^{2–}$
Purification	GC	GC	GC	GC	Resin
Mass spectrometry	MAT-253 DI-IRMS VISC/O	MAT-253 DI-IRMS VISC/O	MAT-253 DI-IRMS VISC/O	MAT-253 DI-IRMS VISC/O	MC-ICP-MS

a VISC/O: variable ion source conductance (sulfur window) open.
Table 2 Sulfur isotopic composition of IAEA-S-1. Values are reported relative to individual laboratory working SF₆ gas

	δ³²S (‰)	δ³³S (‰)	δ³⁴S (‰)	δ³⁶S (‰)	δ³⁵S (‰)	δ³⁶S (‰)
IPGP	−8.734	−17.042	−32.506	0.079	−0.375	
UMD	−8.727	−17.004	−32.079	0.066	−0.019	
Mean	−8.742	−17.047	−32.409	0.074	−0.268	
σ	0.020	0.046	0.294	0.007	0.217	
TTT	3.888	7.510	14.23	0.028	−0.083	
Mean	3.933	7.571	14.361	0.041	−0.072	
σ	0.035	0.063	0.096	0.007	0.043	
MIT	−0.492	−1.021	−2.47	0.034	−0.531	

3. Results and discussion

3.1. Data reduction

The measured δ³⁴S, δ³³S and δ³⁶S values of S-MIF-1 and S-MIF-2 with respect to individual laboratory working reference gas or standard solution are listed in Tables 3 and 4, respectively. These δ³⁴S, δ³³S and δ³⁶S values are raw values, and were calculated relative to the measured δ³³S/³²S (x = 33, 34 or 36) ratio of the working reference gas (i.e., SF₆/SF₆). The working reference gas (i.e., SF₆) used in each laboratory possesses different sulfur isotopic compositions, i.e., ³⁶S/

Table 3 Sulfur isotopic composition of S-MIF-1. Values are reported relative to individual laboratory working SF₆ gas

	δ³²S (‰)	δ³³S (‰)	δ³⁴S (‰)	δ³⁶S (‰)	δ³⁵S (‰)	δ³⁶S (‰)
IPGP	6.116	−6.445	−12.748	9.440	−0.538	
UMD	6.069	−6.584	−13.050	9.465	−0.577	
Mean	6.087	−6.521	−12.685	9.451	−0.331	
σ	0.038	0.063	0.096	0.007	0.043	
TTT	12.304	5.362	9.972	9.546	−0.241	
Mean	12.276	5.300	9.951	9.560	−0.465	
σ	0.037	0.062	0.095	0.007	0.042	
MIT	18.756	35.365	35.485	35.485	35.485	
Mean	14.051	9.517	17.940	9.161	−0.220	
σ	0.083	0.545				

a Values relative to Alfa Aesar standard solution.
values are different. This means the raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values of S-MIF-1 and S-MIF-2 from different laboratories are on different scales (R_{ref} is different), and thus they are very different as shown in Tables 3 and 4.

In Tables 3 and 4, the calculated $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values from raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ data according to eqn (2) and (3) are also listed. Despite the difference in raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values among different laboratories, the $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values of the same sample from different laboratories are almost identical. This is because $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ are relative values reflecting the deviations from the mass-dependent lines, and are not much affected by the scale differences. But when small differences are focused on, they still need to be on the same scale. The means of $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ for S-MIF-1 are 9.50 \pm 0.08$^{\%}$ (1σ, $N = 33$) and 0.11 \pm 0.55$^{\%}$ (1σ, $N = 26$), respectively, and those for S-MIF-2 are 11.36 \pm 0.08$^{\%}$ (1σ, $N = 37$) and -0.03 \pm 0.54$^{\%}$ (1σ, $N = 23$), respectively.

In order to better compare the data from different laboratories and to evaluate the isotopic variability of S-MIF-1 and S-MIF-2, these values need to be anchored on the same scale (i.e., the V-CDT scale). For measurements done at IPGP, UMD, MIT and TTT, the international reference material IAEA-S-1 was also measured at the same time with S-MIF-1 and S-MIF-2, and the results are reported with respect to laboratory working reference gases and listed in Table 2. IAEA-S-1 has a consensual $\delta^{34}\text{S}_{\text{V-CDT}}$ value of $-0.300^{\%}$ but its $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values on the V-CDT scale have not been assigned. Wing and Farquhar44 have compiled $\Delta^{33}\text{S}_{\text{V-CDT}}$ and $\Delta^{36}\text{S}_{\text{V-CDT}}$ data of IAEA-S-1 from the literature, and obtained provisional $\Delta^{33}\text{S}_{\text{V-CDT}}$ and $\Delta^{36}\text{S}_{\text{V-CDT}}$ values of 0.094 \pm 0.004$^{\%}$ and -0.700 \pm 0.100$^{\%}$, respectively. From this the $\delta^{33}\text{S}_{\text{V-CDT}}$ and $\delta^{36}\text{S}_{\text{V-CDT}}$ values of IAEAS-S-1 were also derived to be $-0.061^{\%}$ and $-1.270^{\%}$, respectively. Hereafter, we refer to this scale as the V-CDT scale, but alert the reader to its provisional nature for the rarest isotopes. From the V-CDT values of IAEA-S-1 and its measured mean values with respect to the working gases (Table 2), we obtained the isotopic values of the working reference gas in each laboratory with respect to V-CDT. Finally, the raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values of S-MIF-1 and S-MIF-2 with respect to working reference gases were converted into the V-CDT scale.

For measurements done at the ENS, the $\delta^{34}\text{S}_{\text{V-CDT}}$ value of the working standard solution AA was 4.86 \pm 0.14$^{\%}$, as calibrated using international reference materials. According to the mass-dependent fractionation law, its $\delta^{33}\text{S}_{\text{V-CDT}}$ value was calculated to be $-2.52^{\%}$. These values were then used to convert the raw $\delta^{34}\text{S}$ and $\delta^{33}\text{S}$ data of S-MIF-1 and S-MIF-2 to the V-CDT scale.

The above processes placed all $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values on the same scale, i.e., the V-CDT scale with the same R_{ref}. After all raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ values were anchored on the V-CDT scale, the $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values were re-calculated using eqns (2) and (3).

3.2. Characterization of isotopic variability

The isotopic compositions of S-MIF-1 and S-MIF-2 on the V-CDT scale are listed in Tables 5 and 6, respectively. As shown in these tables, the $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ V-CDT values of S-MIF-1 (or S-MIF-2) from different laboratories are identical. This is as expected because now they are all on the same scale (i.e., R_{ref} is the same in eqn (1)), and the small or negligible difference is due to measurement uncertainties. Considering all data from the five laboratories, the uncertainties of $\delta^{33}\text{S}_{\text{V-CDT}}$ for S-MIF-1 and S-MIF-2 are ± 0.22 and $\pm 0.26^{\%}$ (1σ), respectively, comparable to or better than those of international sulfur reference materials (e.g., $\pm 0.2^{\%}$ for IAEA-SO-6 and $\pm 0.4^{\%}$ for NBS-127). Regarding the $\Delta^{33}\text{S}_{\text{V-CDT}}$ and $\Delta^{36}\text{S}_{\text{V-CDT}}$, it can be noted that they are slightly different from those calculated from the raw $\delta^{34}\text{S}$, $\delta^{33}\text{S}$ and $\delta^{36}\text{S}$ data (Tables 3 and 4). These small differences may be considered to be negligible regardless of the scale when the capital delta values are large, e.g., in the case of $\Delta^{33}\text{S}$ of S-MIF-1, it is 9.50 \pm 0.08$^{\%}$ and 9.54 \pm 0.09$^{\%}$ before and after
anchoring on the V-CDT scale. But when small capital values are the subject of interest, the difference becomes important, e.g., in the case of $\Delta ^{34}$S of S-MIF-1, it is 0.11 ± 0.55‰, and −0.14 ± 0.25‰ before and after anchoring on the V-CDT scale. Overall, the uncertainties of $\Delta ^{33}$S$_{VCDT}$ for S-MIF-1 and S-MIF-2 are ±0.09 and ±0.08‰, respectively. For $\Delta ^{36}$S$_{VCDT}$, the uncertainties are ±0.25 and ±0.13‰ for S-MIF-1 and S-MIF-2, respectively. The relatively large uncertainties in $\Delta ^{36}$S$_{VCDT}$ are in part due to the extremely low abundance of 36S, which makes its accurate measurement more difficult, but maybe more likely come from an isobaric interference on the 131 peak during IRMS measurements probably due to C$_2$F$_7$S$^-$. In addition, the uncertainties of the small delta values are larger than those of the capital delta values as always observed, and the best precision is obtained for $\Delta ^{33}$S$_{VCDT}$. This is because the uncertainties of the small delta values are in part from sample preparation and conversion processes, but these processes would only induce mass-dependent fractionation and thus won’t significantly affect the capital delta values.

It can be noted that the V-CDT values of S-MIF-1 and S-MIF-2 derived from the measurement (one analysis available) done at MIT are slightly different from those done at other labs, i.e., they are at the low end for $\Delta ^{33}$S$_{VCDT}$ but the high end for $\Delta ^{36}$S$_{VCDT}$ among all data derived. However, this is only one measurement and its involvement in the global means did not affect the results (the means and standard deviations) much.

S-MIF-1 was characterized with $\Delta ^{34}$S$_{VCDT}$ = 10.26 ± 0.22‰ (1σ, N = 32), $\Delta ^{33}$S$_{VCDT} = 9.54 ± 0.09‰ (N = 33) and $\Delta ^{36}$S$_{VCDT} = −0.14 ± 0.25‰ (N = 36), and for S-MIF-2, its isotopic compositions were established to be $\Delta ^{34}$S$_{VCDT} = 21.52 ± 0.26‰ (N = 37), $\Delta ^{33}$S$_{VCDT} = 11.39 ± 0.08‰ (N = 37) and $\Delta ^{36}$S$_{VCDT} = −0.33 ± 0.13‰ (N = 24).

The mean $\Delta ^{34}$S$_{VCDT}$, $\Delta ^{33}$S$_{VCDT}$ and $\Delta ^{36}$S$_{VCDT}$ values among all the data and those data from each laboratory including their one sigma standard deviations are plotted in Fig. 1. Overall, the derived $\Delta ^{34}$S$_{VCDT}$, $\Delta ^{33}$S$_{VCDT}$ and $\Delta ^{36}$S$_{VCDT}$ values of S-MIF-1 and S-MIF-2 at the laboratories except for MIT are in good agreement, especially for the $\Delta ^{33}$S$_{VCDT}$ values, which are 9.56 ± 0.01‰ (N = 7), 9.59 ± 0.01‰ (N = 6), 9.52 ± 0.02‰ (N = 12) and 9.58 ± 0.09‰ (N = 6) for S-MIF-1, and 11.42 ± 0.03‰ (N = 5), 11.42 ± 0.01‰ (N = 5), 11.36 ± 0.02‰ (N = 12), and 11.43 ± 0.05‰ (N = 13) for S-MIF-2 at IPGP, UMD, TTT and ENS, respectively. In comparison, the $\Delta ^{33}$S$_{VCDT}$ values of

| Table 5 Sulfur isotopic composition of S-MIF-1 on the V-CDT scale |
|------------------|------------------|------------------|------------------|------------------|
| | $\delta ^{34}$S (‰) | $\delta ^{33}$S (‰) | $\delta ^{36}$S (‰) | $\Delta ^{33}$S (‰) |
| IPGP | 14.907 | 10.458 | 19.419 | 9.535 | −0.545 |
| UMD | 14.878 | 10.381 | 19.484 | 9.545 | −0.332 |
| TTT | 14.837 | 10.206 | 19.224 | 9.596 | −0.257 |
| MIT | 14.704 | 10.123 | 19.410 | 9.503 | 0.089 |
| ENS | 14.689 | 10.122 | 19.529 | 9.498 | 0.210 |
| | 14.715 | 10.122 | 19.447 | 9.515 | 0.128 |
| | 14.693 | 10.114 | 19.466 | 9.497 | 0.162 |
| | 14.703 | 10.116 | 19.450 | 9.506 | 0.142 |
| | 14.695 | 10.133 | 19.443 | 9.506 | 0.103 |
| | 14.844 | 10.147 | 19.768 | 9.533 | −0.116 |
| | 14.865 | 10.141 | 19.801 | 9.517 | −0.073 |
| | 14.883 | 10.146 | 19.800 | 9.532 | −0.084 |
| | 14.870 | 10.144 | 19.776 | 9.520 | −0.103 |
| | 14.885 | 10.146 | 19.799 | 9.534 | −0.084 |
| | 14.888 | 10.420 | 19.763 | 9.535 | −0.127 |
| MIT | 14.393 | 10.246 | 19.879 | 9.130 | 0.323 |
| ENS | 14.869 | 10.054 | 9.703 | 9.516 |
| | 14.755 | 10.199 | 9.557 |
| | 14.720 | 10.050 | 9.557 |
| | 14.877 | 10.286 | 9.593 |
| | 14.980 | 10.357 | 9.659 |
| | 14.738 | 10.320 | 9.436 |
| Mean | 14.810 | 10.262 | 19.467 | 9.538 | −0.144 |
| σ | 0.141 | 0.215 | 0.457 | 0.090 | 0.250 |

Table 6 Sulfur isotopic composition of S-MIF-2 on the V-CDT scale

	$\delta ^{34}$S (‰)	$\delta ^{33}$S (‰)	$\delta ^{36}$S (‰)	$\Delta ^{33}$S (‰)	$\Delta ^{36}$S (‰)
IPGP	22.387	21.392	40.581	11.427	−0.455
UMD	22.385	21.345	40.494	11.449	−0.451
TTT	22.362	21.321	40.325	11.438	−0.573
MIT	22.649	21.956	41.587	11.401	−0.541
ENS	22.523	21.736	41.247	11.388	−0.455
UMD	22.613	21.836	41.379	11.426	−0.516
TTT	22.546	21.704	41.176	11.426	−0.464
MIT	22.407	21.495	40.989	11.395	−0.247
ENS	22.347	21.343	40.633	11.412	−0.307
Mean	22.391	21.421	40.874	11.416	−0.217
σ	0.192	0.257	0.356	0.083	0.125
S-MIF-1 and S-MIF-2 derived at MIT are 9.13 and 10.97‰, respectively.

4. Summary

There is a compelling need to have international sulfur and oxygen isotope reference materials enriched in ^{33}S, ^{36}S and ^{17}O, respectively, to calibrate the $\Delta^{33}\text{S}$, $\Delta^{36}\text{S}$ and $\Delta^{17}\text{O}$ values measured from a variety of atmospheric and geological samples. This is important not only in terms of data comparisons within a laboratory and/or among different laboratories, but also regarding the differentiation of small $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values from mass-dependent and mass independent fractionation processes. Currently there is only one international sulfur reference material, IAEA-S-1, with established $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values ($0.094 \pm 0.004\%$ and $-0.7 \pm 0.1\%$, respectively) reported on the V-CDT scale, but IAEA-S-1 can be regarded more...
as a primary reference material. There are no reference materials with apparently large anomalies in $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$. In this report, we synthesized two sodium sulfate samples, S-MIF-1 and S-MIF-2, artificially enriched in ^{33}S and ^{17}O. The preliminary assessments of their oxygen isotopic compositions yielded $\Delta^{17}\text{O} = 3.3 \pm 0.3\%_\text{oo}$. The sulfur isotopic compositions of these two samples were characterized at five different laboratories using two distinct methods, the conventional IR-MS method and the newly developed MC-ICP-MS method. Except for one data point from the MIT laboratory, results from the other four laboratories are in good consistency. The good precision of these isotopic values indicates isotopic homogeneity of S-MIF-1 and S-MIF-2. Although further calibration efforts may be needed to improve the accuracy of $\Delta^{33}\text{S}_{\text{SV-CDT}}$ assessments of S-MIF-1 and S-MIF-2, their current values can be adopted to calibrate $\Delta^{33}\text{S}$ measurements. In particular, mixing them with other sulfur reference materials with zero $\Delta^{33}\text{S}$ such as IAEA-SO-5 and IAEA-SO-6 should generate working standards with different $\Delta^{33}\text{S}$ values, which can be used to establish a calibration curve spanning a large $\Delta^{33}\text{S}$ range (e.g., 0 to 11%) for better data normalization. These standards are available for the community and can be requested on demand from Joel Savarino.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The Agence Nationale de la Recherche (ANR) via contract NT09-431976-VOLSOL is acknowledged for the financial support for JS. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 700853. This work has also supported by the Japan Society for the Promotion of Science KAKENHI Grant Numbers 16H05884 (S. H.), 25887025, and 17H0105 (N. Y.). S. H. and J. S. appreciate support for this project from JSPS and CNRS under the JSPS-CNRS Joint Research Program. Travel visit support for J. S. was provided by the CNRS/PICS program. JF acknowledges support from NNX16AG39G and the Agouron Foundation. LG acknowledges Marie Curie Individual Fellowship and the University of Science and Technology of China, and additional financial support from the National Key Research and Development Program of China (2016YFA0302200) and National Science Foundation of China (41822605). NM acknowledges the Brazilian Government for a Science without Borders Fellowship (BEX1136-13-5). FA and EA thank Philippe Telouk for help with instrument tuning and INSU and ENS Lyon for support.

References

1 G. Beaudoin, B. E. Taylor, D. Rumble and M. Thiemens, Geochim. Cosmochim. Acta, 1994, 58, 4253–4255.
2 T. B. Coplen and H. R. Krouse, Nature, 1998, 392, 32.
3 G. W. Cooper, M. H. Thiemens, T. L. Jackson and S. Chang, Science, 1997, 277, 1072–1074.
4 H. B. Franz, S. T. Kim, J. Farquhar, J. M. D. Day, R. C. Economos, K. D. McKeegan, A. K. Schmitt, A. J. Irving, J. Hoek and J. Dottin, Nature, 2014, 508, 364–368.
5 J. Farquhar, J. Savarino, T. L. Jackson and M. H. Thiemens, Nature, 2000, 404, 50–52.
6 S. Ono, J. L. Eigenbrode, A. A. Pavlov, P. Kharecha, D. Rumble, J. F. Kasting and K. H. Freeman, Earth Planet. Sci. Lett., 2003, 213, 15–30.
7 J. Farquhar, H. M. Bao and M. Thiemens, Science, 2000, 289, 756–758.
8 H. Ohmoto, Y. Watanabe, H. Ikemi, S. R. Poulson and B. E. Taylor, Nature, 2006, 442, 908–911.
9 J. Farquhar, M. Peters, D. T. Johnston, H. Strauss, A. Masterson, U. Wiechert and A. J. Kaufman, Nature, 2007, 449, 706–709.
10 M. Baroni, J. Savarino, J. H. Cole-Dai, V. K. Rai and M. H. Thiemens, Geophys. Res. Lett., 2008, 113, D20112.
11 J. Cole-Dai, D. Ferris, A. Canciki, J. Savarino, M. Baroni and M. H. Thiemens, Geophys. Res. Lett., 2009, 36, L22703.
12 J. Savarino, A. Romero, J. Cole-Dai, S. Bekki and M. H. Thiemens, Geophys. Res. Lett., 2003, 30, 2131.
13 A. B. Romero and M. H. Thiemens, J. Geophys. Res., 2003, 108, 4524.
14 M. Lin, X. L. Zhang, M. H. Li, Y. L. Xu, Z. S. Zhang, J. Tao, B. Su, L. Z. Liu, Y. A. Shen and M. H. Thiemens, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 8541–8546.
15 R. Shaheen, M. M. Abaunza, T. L. Jackson, J. McCabe, J. Savarino and M. H. Thiemens, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 11979–11983.
16 E. Albalat, P. Telouk, V. Balter, T. Fuji, V. P. Bondanese, M. L. Plissonnier, V. Vlaeminck-Guillen, J. Baccheta, N. Thiam, P. Miossec, F. Zoulim, A. Puisieux and F. Albarede, J. Anal. At. Spectrom., 2016, 31, 1002–1011.
17 G. Paris, A. L. Sessions, A. V. Subhas and J. F. Adkins, Chem. Geol., 2013, 345, 50–61.
18 S. Ono, Space Sci. Rev., 2008, 135, 203–220.
19 S. Ono, B. Wing, D. Johnston, J. Farquhar and D. Rumble, Geochim. Cosmochim. Acta, 2006, 70, 2238–2252.
20 D. T. Johnston, J. Farquhar, B. A. Wing, A. Kaufman, D. E. Canfield and K. S. Habicht, Am. J. Sci., 2005, 305, 645–660.
21 G. M. Luo, S. Richoz, B. van de Schootbrugg, T. J. Algeo, S. C. Xie, S. Ono and R. E. Summons, Geochim. Cosmochim. Acta, 2018, 231, 73–87.
22 D. T. Johnston, S. W. Poulton, P. W. Fralick, B. A. Wing, D. E. Canfield and J. Farquhar, Geochim. Cosmochim. Acta, 2006, 70, 5723–5739.
23 Y. A. Shen, J. Farquhar, H. Zhang, A. Masterson, T. G. Zhang and B. A. Wing, Nat. Commun., 2011, 2, 210.
24 B. A. Wing and J. Farquhar, Geochim. Cosmochim. Acta, 2015, 170, 266–280.
25 S. Ono, W. C. Shanks, O. J. Rouxel and D. Rumble, Geochim. Cosmochim. Acta, 2007, 71, 1170–1182.
26 M. A. Antonelli, S. T. Kim, M. Peters, J. Labidi, P. Cartigny, R. J. Walker, J. R. Lyons, J. Hoek and J. Farquhar, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 17749–17754.
27 J. W. Dottin, J. Farquhar and J. Labidi, Geochim. Cosmochim. Acta, 2018, 224, 276–281.
28 J. Labidi, P. Cartigny and M. G. Jackson, Earth Planet. Sci. Lett., 2015, 417, 28–39.
29 J. M. Eiler, B. Bergquist, I. Bourg, P. Cartigny, J. Farquhar, A. Gagnon, W. F. Guo, I. Halevy, A. Hofmann, T. E. Larson, N. Levin, E. A. Schauble and D. Stolper, Chem. Geol., 2014, 372, 119–143.
30 J. Kaiser and T. Röckmann, Rapid Commun. Mass Spectrom., 2008, 22, 3997–4008.
31 S. Hattori, J. A. Schmidt, M. S. Johnson, S. O. Danielache, A. Yamada, Y. Ueno and N. Yoshida, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 17656–17661.
32 J. R. Lyons, Geophys. Res. Lett., 2007, 34, L22811.
33 A. R. Whitehill, B. Jiang, H. Guo and S. Ono, Atmos. Chem. Phys., 2015, 15, 1843–1864.
34 A. R. Whitehill, C. J. Xie, X. X. Hu, D. Q. Xie, H. Guo and S. H. Ono, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 17697–17702.
35 A. L. Buchachenko, J. Phys. Chem. B, 2013, 117, 2231–2238.
36 S. Kopf and S. Ono, Geochim. Cosmochim. Acta, 2010, 74, A531.
37 J. R. Lyons, Chem. Geol., 2009, 267, 164–167.
38 H. G. Thode, J. Monster and H. B. Dunford, Geochim. Cosmochim. Acta, 1961, 25, 159–174.
39 T. Kiba, T. Tagaki, Y. Yoshimura and I. Kisha, Bull. Chem. Soc. Jpn., 1955, 28, 641–644.
40 J. Forrest and L. Newman, Anal. Chem., 1977, 49, 1579–1584.
41 L. Geng, A. J. Schauer, S. A. Kunasek, E. D. Sofen, J. Erbland, J. Savarino, D. J. Allman, R. S. Sletten and B. Alexander, Rapid Commun. Mass Spectrom., 2013, 27, 2411–2419.
42 J. Savarino, B. Alexander, V. Darmohusodo and M. H. Thiemens, Anal. Chem., 2001, 73, 4457–4462.
43 A. J. Schauer, S. A. Kunasek, E. D. Sofen, J. Erbland, J. Savarino, B. W. Johnson, H. M. Amos, R. Shaheen, M. Abaunza, T. L. Jackson, M. H. Thiemens and B. Alexander, Rapid Commun. Mass Spectrom., 2012, 26, 2151–2157.
44 D. Rumble, T. C. Hoering and J. M. Palin, Geochim. Cosmochim. Acta, 1993, 57, 4499–4512.