Determinants of intramyocellular lipid accumulation after dietary fat loading in non-obese men

Yuko Sakurai, Yoshifumi Tamura, Kageumi Takeno, Naoki Kumashiro, Fumihiko Sato, Saori Kakehi, Shinichi Ikeda, Yuji Ogura, Norio Saga, Hisashi Naito, Shizuo Katamoto, Yoshiro Fujitani, Takahisa Hirose, Ryuzo Kawamori, Hirotaka Watada

ABSTRACT

Aims/Introduction: Accumulation of intramyocellular lipid (IMCL) is associated with insulin resistance. However, the factors affecting the change in IMCL remain to be elucidated. The aim of the present study was to determine the factors that influence the change in IMCL level after high-fat loading.

Materials and Methods: The study subjects were 37 non-obese men. Each subject consumed a high-fat diet for 3 days after a normal-fat diet for 3 days. After each diet program, IMCL levels in the tibialis anterior (TA-IMCL) and soleus (SOL-IMCL) were measured by proton magnetic resonance spectroscopy. Glucose infusion rate (GIR) was evaluated by euglycemic hyperinsulinemic clamp as an index of peripheral insulin sensitivity.

Results: The high-fat diet significantly increased TA-IMCL and SOL-IMCL by ~30% and ~20%, respectively (P < 0.05), whereas it did not significantly alter GIR. The increase in SOL-IMCL, but not in TA-IMCL, negatively correlated with serum high molecular weight (HMW)-adiponectin (r = −0.36, P < 0.05) and HMW-total-adiponectin ratio (r = −0.46, P < 0.05). Although high-fat diet-related changes in SOL-IMCL showed high inter-individual variations, in subjects doing exercise, changes in SOL-IMCL (r = 0.55, P < 0.05) and TA-IMCL (r = 0.61, P < 0.05) positively correlated with daily physical activity level. In contrast, in sedentary subjects, changes in SOL-IMCL (r = −0.50, P < 0.01) and TA-IMCL (r = −0.48, P < 0.05) negatively correlated with daily physical activity.

Conclusions: HMW-adiponectin and daily physical activity are determinants of IMCL accumulation by a high-fat diet. Interestingly, the effect of daily physical activity on the change in IMCL depends on the level of regular exercise. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00091.x, 2011)

KEY WORDS: Adiponectin, Intramyocellular lipid, Physical activity

INTRODUCTION

One of the main features of type 2 diabetes is insulin resistance in skeletal muscles1-3. Previous studies have shown that intracellular fat accumulation in skeletal muscle correlates closely with insulin sensitivity4-6. Intracellular substances related to intramyocellular lipid (IMCL), such as diacylglycerol and ceramide, activate signal transduction pathways and might elicit insulin resistance in skeletal muscle7.

The level of IMCL is affected by dietary composition. Several groups reported that a high-fat diet increases IMCL levels in healthy subjects4,7 and endurance runners7,9. Of these, Bachmann et al.10 reported that 3-day high-fat diet intake increased IMCL levels in the tibialis anterior muscle (TA) and decreased insulin sensitivity. They also reported a high inter-individual variation of IMCL changes after fat loading. We have also investigated the effect of high-fat loading on IMCL level in TA, and found that a 3-day fat challenge significantly altered IMCL levels in endurance runners, but not in sprinters9. These results also support the existence of inter-individual differences in the susceptibility to accumulation of IMCL on fat loading.

Physical activity also affects IMCL level4,7,9,11. For example, 1-h exercise at 65% maximum oxygen uptake was reported to decrease the IMCL level by ~25% in healthy subjects7. These results suggest that vigorous physical activity rapidly decreases the IMCL level in healthy subjects7,11. However, the long-term effects of exercise on IMCL level seem to be more complex. We reported previously that calorie restriction with moderate intensity physical activity (50–60% of maximum oxygen uptake) resulted in a decrease in IMCL and increase in insulin-mediated glucose uptake in peripheral tissues in type 2 diabetic patients10.

In the same study, we also found that changes in total physical activity correlated negatively with changes in IMCL10. In contrast, in endurance athletes, the IMCL level is higher than in healthy subjects, although their insulin sensitivity is higher than healthy subjects10. This phenomenon is known as the athlete’s paradox and is related to chronic vigorous physical activity,
Dietary Manipulation

During the intervention period, subjects were provided a packed meal. Each subject was provided a 3-day isocaloric normal-fat loading (25% fat, 55% carbohydrate, 20% protein) and a 3-day high-fat diet (60% fat, 20% carbohydrate, 20% protein). The fat composition of the high-fat diet was ~45% saturated, ~30% monounsaturated and ~25% polyunsaturated fatty acid. This fat composition is relatively high saturated fat and low unsaturated fat diet compared with the common Japanese diet (~30% saturated, ~40% monounsaturated and ~30% polyunsaturated fatty acid). Weight-maintained dietary calorie intake was estimated by basal metabolic rate and daily physical activity level. The energy and food content-controlled diets were prepared by a food company (Musashino Foods, Saitama, Japan) and food intake was monitored during the study.

Proton Magnetic Resonance Spectroscopy

IMCL was measured in the overnight fasting state, as described previously. Briefly, IMCL values of the right TA and soleus muscle (SOL) were measured by 1H-MRS using a knee coil (VISART 1.5T; EX V4.40; Toshiba, Tokyo, Japan). Voxels (1.2 × 1.2 × 1.2 cm³) were positioned in the muscle, avoiding visible interfascial fat and blood vessels, and the voxel sites were matched carefully at each examination. The imaging parameters were set as follows: repetition time, 1500 ms; echo time, 136 ms; acquisition numbers, 192 and 1024 data points over a 1000-kHz spectral width. After examination, resonance was quantified by reference to the methylene signal intensity (S-fat), with peaks being observed at ~1.25 ppm. IMCL was quantified by the S-fat and using a creatine signal at 3.0 ppm (Cre) as the reference, and was expressed as the ratio relative to Cre (S-fat/Cre).

Euglycemic Hyperinsulinemic Glucose Clamp

Intravenous cannulas were placed in both forearms; one was used for insulin and glucose infusion, and the other for blood glucose sampling. Using an artificial pancreas (STG22; Nikkiso, Shizuoka, Japan), an euglycemic hyperinsulinemic glucose clamp study (target plasma glucose level of 95 mg/dL and insulin infusion rate of 100 mU/m²/min) was carried out as reported previously. The steady-state glucose infusion rate (GIR) was observed from 105 to 120 min. Peripheral insulin concentration rose to 198 ± 3 μU/mL (mean ± SEM), which is known to completely suppress endogenous glucose production. Thus, the mean GIR during that period was used as a marker of peripheral insulin sensitivity. Respiratory gases were analyzed using open-circuit auto O₂ and CO₂ analyzers with a
hot-wire flow meter (MetaMax) before and after the clamp study. Metabolic flexibility was defined as insulin stimulated change in respiratory quotient (ΔRQ)20.

Statistical Analysis
All data are expressed as mean ± SEM. Differences between the two groups were tested using the unpaired t-test. Data collected before and after treatment were compared using the paired t-test. Spearman’s non-parametric rank correlation coefficient was used to evaluate the correlation among various metabolic parameters. Multiple linear regression analysis was used to analyze independent determinants of changes in IMCL after high-fat loading. The data of total adiponectin and HMW-adiponectin were log-transformed to yield a normal distribution before analysis. Statistical significance was set at $P < 0.05$.

RESULTS
Characteristics of Subjects and High-Fat Diet Induced Changes in Metabolic Parameters
Table 1 shows the effects of dietary intervention on various metabolic parameters and physical activity levels. Physical activity level was comparable during both dietary interventions. Fasting blood glucose and FFA levels were also comparable, whereas insulin concentrations were significantly decreased after the high-fat diet. Total adiponectin concentrations were slightly, but significantly, decreased after the high-fat diet, whereas high molecular weight (HMW)-adiponectin level was not changed.

Changes in GIR and Regional IMCL Levels After High-Fat Diet
We investigated the effect of high-fat loading on IMCL and GIR. High-fat loading increased the TA-IMCL level significantly by ~30% (from $2.13 ± 0.19$ to $2.68 ± 0.23$ S-fat/Cre, $P < 0.01$, Figure 1a), as well as SOL-IMCL level by ~20% (from $8.32 ± 0.69$ to $10.1 ± 0.82$ S-fat/Cre, $P < 0.01$, Figure 1b). In contrast, the high-fat diet did not significantly change the steady-state GIR (Figure 1c). As shown in Figure 1, a high inter-individual variation was noted in the effects of fat loading on IMCL and GIR changes. Next, we investigated the correlation between both parameters. There was a significant correlation between changes in TA- and SOL-IMCL ($r = 0.49$, $P = 0.005$). Although changes

![Figure 1](image)

Figure 1 | Changes in intramyocellular lipid (IMCL) and glucose infusion rate (GIR) during euglycemic hyperinsulinemic glucose clamp study in a high-fat diet. (a) IMCL level in the tibialis anterior muscle (TA) after a normal-fat and high-fat diet. Close-up figure is also shown. (b) IMCL level in soleus muscle (SOL) after normal fat and high-fat diet. (c) GIR after normal fat and high-fat diet.

Table 1	Various clinical parameters after normal-fat and high-fat diet	
Normal fat	High fat	
Daily physical activity (kcal/day)	$276.3 ± 163$	$269.9 ± 151$
Insulin (µg/mL)	$4.26 ± 0.32$	$3.32 ± 0.24^*$
Glucose (mg/dL)	$86.2 ± 0.9$	$85.9 ± 0.8$
FFA (mmol/l)	$0.42 ± 0.02$	$0.41 ± 0.02$
Total adiponectin (mg/mL)	$4.03 ± 0.31$	$3.79 ± 0.28^*$
High molecular weight adiponectin (mg/mL)	$1.46 ± 0.17$	$1.37 ± 0.16$
High molecular weight/total adiponectin ratio	$0.34 ± 0.02$	$0.34 ± 0.02$

Data are mean ± SEM. FFA, free fatty acid. *$P < 0.05$ compared with normal-fat diet.
in TA-IMCL did not significantly correlate with those in GIR ($r = -0.17$, $P = 0.33$), changes in SOL-IMCL significantly and negatively correlated with those in GIR ($r = -0.41$, $P < 0.05$).

Factors Associated with Increased IMCL After High-Fat Loading

To identify the factors responsible for the increase of IMCL after high-fat loading, we examined the relationship between changes in IMCL and various baseline parameters associated with fat metabolism, including body fat, IMCL level, FFA, GIR, fat oxidation rate, metabolic flexibility (ARQ), maximum oxygen uptake, daily physical activity, total-adiponectin, HMW-adiponectin and HMW- to total-adiponectin ratio. The percentage change in SOL-IMCL after the high-fat diet correlated significantly with baseline SOL-IMCL ($r = -0.57$, $P < 0.01$, Figure 2a), HMW-adiponectin ($r = -0.36$, $P < 0.05$ Figure 2b) and HMW-/total-adiponectin ratio ($r = -0.46$, $P < 0.05$, Figure 2c), but not with any other parameter listed (data not shown). The multiple linear regression analysis identified baseline SOL-IMCL ($P < 0.001$), HMW-adiponectin ($P < 0.05$) and HMW-/total-adiponectin ratio ($P < 0.05$) as independent determinants of changes in IMCL.

Table 2 | Clinical basal parameters of the non-regular exercising and regular exercising groups

Clinical parameter	NRE	RE
n	17	20
Age (years)	24.8 ± 0.7	22.6 ± 0.6*
Weight (kg)	68.4 ± 2.5	67.8 ± 2.1
BMI (kg/m²)	22.8 ± 0.7	22.8 ± 0.6
Fat (%)	17.8 ± 1.3	16.7 ± 1.4
Daily physical activity (kcal/day)	239.5 ± 20.2	301.7 ± 21.5*
Maximum oxygen uptake (mL/kg/min)	44.5 ± 1.5	53.7 ± 2.3*
RQ	0.82 ± 0.01	0.81 ± 0.01
IMCL-TA (S-fat/Cre)	2.01 ± 0.31	2.23 ± 0.25
IMCL-SOL (S-fat/Cre)	7.91 ± 1.22	8.67 ± 0.76
GIR (mg/kg/min)	9.7 ± 0.5	10.6 ± 0.4
Total adiponectin (mg/mL)	3.61 ± 0.40	4.39 ± 0.45
High molecular adiponectin (mg/mL)	1.20 ± 0.21	1.68 ± 0.25

Data are mean ± SEM. BMI, body mass index; GIR, glucose infusion rate; IMCL-TA, intramyocellular lipid in tibialis anterior muscles; RQ, respiratory quotient; SOL-IMCL, intramyocellular lipid in soleus muscle. *P < 0.05 compared with the non-regular exercising (NRE) group.
SOL-IMCL after high-fat loading. Similar analyses for TA-IMCL identified baseline TA-IMCL level \((r = -0.54, P < 0.01, \text{Figure 2d}) \) as the only significant determinant of percentage change in TA-IMCL after high-fat loading (data not shown).

Interaction Between Regular Exercise and Daily Physical Activity on IMCL

Evidence suggests that regular exercise and daily physical activity are regarded as candidate susceptible factors for IMCL level after high-fat loading. Thus, we evaluated the role of daily physical activity after dividing the subjects into two groups depending on the habit of regular exercise: the regular exercise (RE) group and the non-regular exercise (NRE) group. As shown in Table 2, the NRE group were significantly older. Daily physical activity level and maximum oxygen uptake were significantly higher in the RE group than the NRE group. High-fat diet did not significantly change the steady-state GIR in both groups (data not shown). In the NRE group, TA-IMCL and SOL-IMCL significantly increased after high-fat diet (TA; from 2.01±0.31 to 2.57±0.37 S-fat/Cr, \(P < 0.05 \), SOL; from 7.91±1.22 to 10.57±1.46 S-fat/Cr, \(P < 0.01 \)). In addition, there was a negative correlation between changes in TA-IMCL and SOL-IMCL with daily physical activity in the NRE group (TA; \(r = -0.48, P < 0.05 \), \text{Figure 3a}, SOL; \(r = -0.50, P < 0.01 \), \text{Figure 3b}). In contrast, changes in TA-IMCL and SOL-IMCL positively correlated with daily physical activity in the RE group (TA; \(r = 0.61, P < 0.05 \), \text{Figure 3c}, SOL; \(r = 0.55, P < 0.05 \), \text{Figure 3d}).

Next, we divided the subjects into two groups depending on maximum oxygen consumption: low maximum oxygen uptake (<50 mL/kg/min, \(n = 16 \)) group and high maximum oxygen uptake (≥50 mL/kg/min, \(n = 11 \)) group. As estimated, in the low maximum oxygen uptake group, both changes in TA-IMCL and SOL-IMCL negatively correlated with daily physical activity (TA; \(r = -0.54, P < 0.05 \), \text{Figure 4a}, SOL; \(r = -0.55, P < 0.01 \), \text{Figure 4b}). In contrast, changes in TA-IMCL positively correlated with physical activity in the high maximum oxygen uptake group (TA; \(r = 0.74, P < 0.01 \), \text{Figure 4c}, SOL; \(r = 0.36, P = 0.29 \), \text{Figure 4d}).

DISCUSSION

The present study evaluated the effect of 3-day high-fat loading on IMCL in non-obese healthy subjects. High-fat loading significantly increased IMCL, whereas a high inter-individual variation in IMCL changes was observed. Serum HMW-adiponectin and

Figure 3 | Relationship between daily physical activity and percentage change in intramyocellular lipid (IMCL) levels in regular exercise (RE) and non-regular exercise group (NRE) groups. (a,b) Correlation between daily physical activity and percentage change in IMCL levels in (a) tibialis anterior muscle (TA) and (b) soleus muscle (SOL) in NRE group. (c,d) Correlation between daily physical activity and percentage change in IMCL levels in (c) TA and (d) SOL in the RE group.
HMW-/Total-adiponectin ratio were identified as determinants of changes in IMCL by a high-fat diet. Intriguingly, the change in IMCL correlated positively with daily physical activity in the RE group, whereas the change in IMCL correlated negatively with daily physical activity in the NRE group.

In the present study, GIR was not changed after the high-fat diet, although we observed a significant increase in IMCL. IMCL is partly metabolized to diacylglycerol (DAG), which activates PKC that, in turn, impairs insulin signal transduction. Thus, DAG could be, at least partly, involved in the mechanism of lipid induced insulin resistance in skeletal muscle1–3. However, most of the lipid detected by 1H-MRS method is triglyceride, which might not affect insulin sensitivity1–3. Therefore, increased IMCL does not always indicate elevated DAG level in myocytes. The inconsistency between IMCL and GIR might be, at least in part, a result of the methodological limitation of IMCL measurement by 1H-MRS.

Adiponectin, a 30-kDa protein, is secreted from adipocytes and has been shown to increase AMP-activated protein kinase (AMPK) activity and decrease IMCL level, resulting in improved insulin sensitivity in animal models21. Adiponectin exists in a wide range of multimer complexes and circulates in plasma in three forms: a trimer (low-molecular weight [LMW]), a hexamer (trimer–dimer) of medium-molecular weight (MMW), and a larger multimeric high-molecular weight (HMW) form22. It has been suggested that HMW-adiponectin level and HMW-to-total adiponectin ratio might be superior biomarkers than total adiponectin level for insulin resistance and glucose intolerance23–25. In fact, our data showed that HMW-adiponectin and HMW-/total-adiponectin ratio are good predictors of changes in IMCL level after high-fat loading, whereas total-adiponectin level did not significantly correlate with the change in IMCL. In contrast, some data showed that adiponectin is negatively associated with IMCL in humans26,27, whereas the other group reported no significant correlation between adiponectin and IMCL28. This discrepancy might be due to the fact that total adiponectin is not as sensitive a biomarker as HMW-adiponectin to represent IMCL level.

It has been shown that increased physical activity augments fat oxidation during high-fat loading29. In addition, it has been reported that uncontrolled physical activity level during 3-day fat loading affects the susceptibility for IMCL accumulation after a high-fat diet3. Consistent with these data, in the NRE group or in the low maximum oxygen uptake group, we observed a
negative correlation between daily physical activity level and IMCL change after high-fat loading.

In contrast, the daily physical activity level positively correlated with the change in IMCL level in the RE group. Similar correlations were also observed in the high maximum oxygen uptake group. Moderate exercise carried out after a meal reportedly results in several times higher plasma triglyceride (TG) and FFA uptake in the exercising legs, as well as for at least 4 h post-exercise, whereas leg TG uptake is almost unchanged after meal ingestion without exercise. It has been consistently shown that high-fat loading after one bout of exercise results in an overshoot of IMCL level from baseline. In addition, it has been shown that FFA uptake in skeletal muscles during prolonged exercise is higher in trained subjects compared with the untrained. FFA uptake in skeletal muscle is regulated, at least in part, by lipoprotein lipase (LPL). LPL hydrolyzes TG and several transport proteins transport FFA into myocytes, and its activity is acutely reduced by only ~4 h of physical inactivity and was augmented by vigorous exercise. In addition, the amount of LPL protein in skeletal muscle is elevated by regular exercise. Interestingly, it has been reported that the mRNA level of LPL in skeletal muscle positively correlated with the rate of IMCL repletion after exhaustive exercise. Because IMCL level is determined by a balance between FFA influx and expenditure, these results suggest that physical activity-induced FFA uptake might be exaggerated by regular exercise compared with the consumption of IMCL, thus enhancing IMCL accumulation. Further studies, including measurement of FFA kinetics, are required to confirm this hypothesis.

One limitation of the present study is that regular exercise has been defined at a relatively lower physical activity level (more than 30 min more than once a week), thus all of the regular exercise might not lead to the same conclusion. Another limitation of the present study is that we included only male subjects. It has been reported that fatty acid metabolism in skeletal muscle in males is different from females. Higher levels of IMCL were observed in female subjects compared with male subjects. mRNA level of LPL in skeletal muscle was 160% higher in women than in men. In addition, IMCL depletion during exercise was significantly higher in males compared with females. Thus, the effects of a high-fat-diet and physical activity on IMCL accumulation and insulin sensitivity might differ between males and females.

Type I muscle fibers (oxidative slow-twitch) have relatively higher fat oxidation and IMCL level compared with type II fibers (glycolytic fast-twitch). Previous studies reported a tight correlation between TA- and SOL-IMCL, although TA muscle contains relatively more type II fibers. Our data also showed a good correlation between changes in TA- and SOL-IMCL levels, suggesting that inter-individual variation in IMCL change after a high-fat diet might be conserved in all types of skeletal muscles.

In conclusion, 3-day high-fat loading in normal men resulted in a significant increase in IMCL. Inter-individual variations in IMCL change might modulate insulin sensitivity after high-fat loading. HMW-adiponectin, daily physical activity and regular exercise might be susceptibility factors for IMCL accumulation during high-fat loading.

ACKNOWLEDGEMENTS

This study was supported in part by a High Technology Research Center Grant and Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Ono Medical Foundation, Diabetes Masters Conference, and MIZUNO Sports Foundation. We thank Mrs. Mutsuko Yoshikawa, Naoko Daimaru, Eriko Magoshi and Kiyomi Nakamura for their excellent technical assistance. This work was carried out in Juntendo University School of Medicine, Tokyo, Japan. We declare that we have no conflict of interest.

REFERENCES

1. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32(Suppl. 3): 14–23.
2. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr 2002; 22: 325–346.
3. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 2003; 27(Suppl. 3): S6–S11.
4. Bachmann OP, Dahl DB, Brechel K, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 2001; 50: 2579–2584.
5. Krasak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999; 42: 113–116.
6. Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, et al. Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 2001; 50: 2337–2343.
7. Decombaz J, Schmitt B, Ith M, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 2001; 281: R760–R769.
8. Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, et al. Intramyocellular lipid content and molecular adaptations in response to a 1-week high-fat diet. Obes Res 2005; 13: 2088–2094.
9. Tamura Y, Watada H, Igarashi Y, et al. Short-term effects of dietary fat on intramyocellular lipid in sprinters and endurance runners. Metabolism 2008; 57: 373–379.
10. Tamura Y, Tanaka Y, Sato F, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2005; 90: 3191–3196.
Determinants of IMCL accumulation

11. Larson-Meyer DE, Newcomer BR, Hunter GR. Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol 2002; 282: E95–E106.

12. Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755–5761.

13. van Loom LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch 2006; 451: 606–616.

14. Thamer C, Machann J, Bachmann O, et al. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 2003; 88: 1785–1791.

15. Dube JJ, Amati F, Stefanovic-Racic M, et al. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am J Physiol 2008; 294: E882–E888.

16. Ebinuma H, Miyazaki O, Yago H, et al. A novel ELISA system for selective measurement of human adiponectin multimers by using proteases. Clin Chim Acta 2006; 372: 47–53.

17. Sato F, Tamura Y, Watada H, et al. Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects. J Clin Endocrinol Metab 2007; 92: 3326–3329.

18. Tamura Y, Watada H, Sato F, et al. Effects of metformin on peripheral insulin sensitivity and intracellular lipid contents in muscle and liver of overweight Japanese subjects. Diabetes Obes Metab 2008; 10: 733–738.

19. Groop LC, Bonadonna RC, DelPrato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205–213.

20. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.

21. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

22. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784–1792.

23. Payani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004; 279: 12152–12162.

24. Hara K, Horikoshi M, Yamauchi T, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 2006; 29: 1357–1362.

25. Fisher FF, Trujillo ME, Hanif W, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia 2005; 48: 1084–1087.

26. Thamer C, Machann J, Tschirner O, et al. Relationship between serum adiponectin concentration and intramyocellular lipid stores in humans. Horm Metab Res 2002; 34: 646–649.

27. Weiss R, Dufour S, Groszmann A, et al. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 2003; 88: 2014–2018.

28. Perseghin G, Lattuada G, De Cobelli F, et al. Serum retinol-binding protein-4, leptin, and adiponectin concentrations are related to ectopic fat accumulation. J Clin Endocrinol Metab 2007; 92: 4883–4888.

29. Smith SR, de Jonge L, Zachwieja JJ, et al. Concurrent physical activity increases fat oxidation during the shift to a high-fat diet. Am J Clin Nutr 2000; 72: 131–138.

30. Enevoldsen LH, Simonsen L, Bulow J. Postprandial triacylglycerol uptake in the legs is increased during exercise and post-exercise recovery. J Physiol 2005; 568: 941–950.

31. Turcotte LP, Richter EA, Kiens B. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol 1992; 262: E791–E799.

32. Goldberg LJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res 2009; 50(Suppl): S86–S90.

33. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol 2003; 551: 673–682.

34. Hamilton MT, Etienne J, McClure WC, et al. Role of local contractile activity and muscle fiber type on LPL regulation during exercise. Am J Physiol 1998; 275: E1016–E1022.

35. Seip RL, Angelopoulos TJ, Semenovich CF. Exercise induces human lipoprotein lipase gene expression in skeletal muscle but not adipose tissue. Am J Physiol 1995; 268: E229–E236.

36. Schmitt B, Fluck M, Decombaz J, et al. Exercise-induced alterations in intramyocellular lipids and glycogen during exercise. J Appl Physiol 2001; 90: 1267–1274.

37. Perseghin G, Scifo P, Pagliato E, et al. Gender factors affect fatty acids-induced insulin resistance in nonobese humans: effects of oral steroidal contraception. J Clin Endocrinol Metab 2001; 86: 3188–3196.

38. Sieg B, Roespoff C, Glatz JF, et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol 2004; 97: 1209–1218.

39. Zehnder M, Ith M, Kreis R, et al. Gender-specific usage of intramyocellular lipids and glycogen during exercise. Med Sci Sports Exerc 2005; 37: 1517–1524.

40. Hwang JH, Pan JW, Heydari S, et al. Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 2001; 90: 1267–1274.