A framework for proving the self-organization of dynamic systems
Emmanuelle Anceaume, Xavier Défago, Maria Potop-Butucaru, Matthieu Roy

To cite this version:
Emmanuelle Anceaume, Xavier Défago, Maria Potop-Butucaru, Matthieu Roy. A framework for proving the self-organization of dynamic systems. [Research Report] Rapport LAAS n° 10746, LAAS. 2010, pp.26. inria-00534372

HAL Id: inria-00534372
https://inria.hal.science/inria-00534372v1
Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Framework for Proving the Self-organization of Dynamic Systems

Emmanuelle Anceaume1, Xavier Défago2, Maria Potop-Butucaru3, and Matthieu Roy4

1 CNRS UMR 6074, IRISA, Rennes, France
Emmanuelle.Anceaume@irisa.fr
2 School of Information Science, JAIST, Nomi, Ishikawa, Japan
defago@jaist.ac.jp
3 LIP6, INRIA-Université Paris 6, France
maria.gradinariu@lip6.fr
4 LAAS-CNRS, Toulouse, France
matthieu.roy@laas.fr

Abstract. This paper aims at providing a rigorous definition of self-organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information regarding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pastry) and the others are specific implementations of Ω (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems.

1 Introduction

Self-organization is an evolutionary process that appears in many disciplines. Physics, biology, chemistry, mathematics, economics, just to cite a few of them, show many examples of self-organizing systems. Crystallization, percolation, chemical reactions, proteins folding, flocking, cellular automata, market economy are among the well-admitted self-organizing systems. In all these disciplines, self-organization is described as a process from which properties emerge at a global level of the system. These properties are solely due to local interactions among components of the system, that is with no explicit control from outside the system. Influence of the environment is present but not intrusive, in the sense that it does not disturb the internal organization process.

In the newly emerging fields of distributed systems (peer-to-peer systems, ad-hoc networks, sensors networks, cooperative robotics), self-organization becomes one of the most desired properties. The major feature of all recent scalable distributed systems is their extreme dynamism in terms of structure, content, and
load. In peer-to-peer systems (often referred as to P2P systems), nodes continuously join and leave the system. In large scale sensor, ad-hoc or robot networks, the energy fluctuation of batteries and the inherent mobility of nodes induce a dynamic aspect of the system. In all these systems there is no central entity in charge of their organization and control, and there is an equal capability, and responsibility entrusted to each of them to own data [21]. To cope with such characteristics, these systems must be able to spontaneously organize toward desirable global properties. In peer-to-peer systems, self-organization is handled through protocols for node arrival and departure, as provided by distributed hash tables based-overlay (e.g., CAN [29], Chord [13], Pastry [15,28]), or random graph-based ones (e.g., Gnutella [18], GIA [10]). Secure operations in ad-hoc networks rely on a self-organizing public-key management system that allows users to create, store, distribute, and revoke their public keys without the help of any trusted authority or fixed server [3]. Recent large scale applications (e.g., persistent data store, monitoring) exploit the natural self-organization of peers in semantic communities to provide efficient search [17,23,30]. Self-organizing heuristics and algorithms are implemented in cooperating robots networks so that they can configure themselves into predefined geometric patterns (e.g., [16,32,35]). For instance, crystal growth phenomenon inspired Fujibayashi et al. [16] to make robots organize themselves into established shapes by mimicking spring properties.

Informal definitions of self-organization, and of related self∗ properties (e.g., self-configuration, self-healing or self-reconfiguration) have been proposed previously [4,34,35]. Specifically, Babaoğlu et al. [4] propose a platform, called Anthill, whose aim is the design of peer-to-peer applications based on self-organized colonies and swarms of agents. Anthill offers a bottom-up opportunity to understand the emergent behavior of complex adaptive systems. Walter et al. [34] focus on the concept of reconfiguration of a metamorphic robotic system with respect to a target configuration. Zhang and Arora [35] propose the concepts of self-healing and self-configuration in wireless ad-hoc networks, and propose self-stabilizing solutions for self∗-clustering in ad-hoc networks [11]. Note that a comprehensive survey of self-organizing systems that emanate from different disciplines is proposed by Serugundo et al. [29].

The main focus of this paper is to propose a formal specification of the self-organization notion which, for the best of our knowledge, has never been formalized in the area of scalable and dynamic systems, in spite of an overwhelming use of the term. Reducing the specification of self-organization to the behavior of the system during its non-dynamic periods is clearly not satisfying essentially because these periods may be very short, and rare. On the other hand, defining self-organization as a simple convergence process towards a stable predefined set of admissible configurations is inadequate for the following two reasons. First, it may not be possible to clearly characterize the set of admissible configurations since, in dynamic systems, a configuration may include the state of some key parameters that may not be quantified a priori but have a strong influence on the dynamicity of the system. For instance, the status of batteries in sensor net-
works, or the data stored at peers in P2P systems. Second, due to the dynamic behavior of nodes, it may happen that no execution of the system converges to one of the predefined admissible configurations.

Hence our attempt to specify self-organization according to the very principles that govern dynamic systems, namely high interaction, dynamics, and heterogeneity. High interaction relates to the propensity of nodes to continuously exchange information or resources with other nodes around them. For instance, in mobile robots systems, infinitely often robots query their neighborhood to arrange themselves within a predefined shape. The dynamics of these systems refer to the capability of nodes to continuously move around, to join or to leave the system as often as they wish based on their local knowledge. Finally heterogeneity refers to the specificity of each entity of the system: some have huge computation resources, some have large memory space, some are highly dynamic, some have broad centers of interest. In contrast, seeing such systems as a simple mass of entities completely obviates the differences that may exist between individual entities; those very differences make the richness of these systems.

The tenets mentioned above share as a common seed the locality principle, i.e., the fact that both interactions and knowledge are limited in range. The first contribution of this paper is a formalization of this idea, leading first to the notion of local self-organization. Intuitively, a locally self-organizing system should reduce locally the entropy of the system. For example, a locally self-organized P2P system forces components to be adjacent to components that improve, or at least maintain, some property or evaluation criterion. The second contribution of the paper is the proposition of different classes of self-organization through safety and liveness properties that both capture information regarding the entropy of the system. Basically, we propose three classes of self-organization. The first one characterizes dynamic systems that converge towards sought global properties only during stable periods of time (these properties can be lost due to instability). The second one depicts dynamic systems capable of infinitely often increasing the convergence towards global properties (despite some form of instability). Finally, the last one describes dynamic systems capable of continuously increasing that convergence. We show that complex emergent properties can be described as a combination of local and independent properties.

The remaining of this paper is organized as follows: Section 2 proposes a model for dynamic and scalable systems, and in particular enriches the family of demons to capture the churn of the system. Section 3 proposes an overview of self-stabilization and superstabilization models. Section 4 formalizes the notion of self-organization by introducing local and global evaluation criteria. Section 5 characterizes different classes of self-organization through liveness and safety properties. Each class is illustrated with different study cases. Section 6 extends the concept of self-organization for one criteria to the one of self-organization for a finite set of independent criteria. Section 7 concludes and discusses open issues.
2 Model

2.1 Dynamic System Model

Communication Graph. The physical network is described by a weakly connected graph. Its nodes represent processes of the system and its edges represent communication links between processes. In the following, this graph is referred to as the physical communication graph. We assume that the physical communication graph is subject to frequent and unpredictable changes. Causes of these changes are either due to volunteer actions (such as joins and leaves of nodes in P2P systems, moving of a robot in cooperating robots networks, or power supply limitation in sensors networks) or accidental events (such as nodes failures in a network of sensors, the sudden apparition of an obstacle that may temporarily hide some region of a network of robots, or messages losses in a P2P system). Therefore, even if the number of nodes in the system remains constant, the physical graph communication may change due to modifications in the local connectivity of nodes.

Data Model. Nearly all modern applications in the dynamic distributed systems are based on the principle of data independence—the separation of data from the programs that use the data. This concept was first developed in the context of database management systems. In dynamic systems, in particular in P2P systems, the presence of data stored locally at each node plays a crucial role in creating semantic based communities. As a consequence, data are subject to frequent and unpredictable changes to adjust to the dynamics of the nodes. In addition, for efficiency reasons it may be necessary to aggregate data, or even to erase part of them. Consequently data can be subject to permanent or transient failures.

Logical communication graph. The physical communication graph combined with the data stored in the network represent the (multi-layer) logical communication graph of the system, each logical layer \(l \) being weakly connected. In order to connect to a particular layer \(l \), a process executes an underlying connection protocol. A node \(n \) is called active at a layer \(l \) if there exists at least one node \(r \) which is connected at \(l \) and aware of \(n \). The set of logical neighbors of a node \(n \) at a layer \(l \) is the set of nodes \(r \) such that the logical link \((n, r)\) is up (\(n \) and \(r \) are aware of each other) and is denoted \(N^l(n) \). Notice that node \(n \) may belong to several layers simultaneously. Thus, node \(n \) may have different sets of neighbors at different logical layers. In peer-to-peer systems, the (multi-layer) communication graph is often referred to as the logical structured overlay when the communication graph is structured (as it is the case with CAN \[24\], Pastry \[22\], and Chord \[31\]), or unstructured logical overlay when the graph is random (as for example Gnutella, and Skype). In sensors or ad-hoc networks, connected coverings (such as trees, weakly connected maximal independent sets or connected dominating sets) represent the logical communication graph.
Note that in sensors networks, cooperating robots networks, and ad-hoc networks, the logical communication graph may coincide with the physical communication one. On the other hand, P2P logical overlays do not usually share relationships with the physical location of peers.

2.2 State Machine-Based Framework

To rigorously analyze the execution of the dynamic systems, we use the dynamic I/O automata introduced by Attie and Lynch [3]. This model allows the modeling of individual components, their interactions and their changes. The external actions of a dynamic I/O automata are classified into three categories, namely the actions that modify data (by replication, aggregation, removal, or writing), the input-output actions (I/O actions), and the actions reflecting the system dynamics. Regarding this last category, we identify connection (C) and disconnection (D) actions. These actions model the arrival and departure of a node in a P2P system, or the physical moving of a robot by decomposing its movement as disconnection followed by connection actions, or the removal of a too far away sensor from the view of a sensor (because of power supply limitation).

A configuration is the state of the system at time t together with the communication graph and data stored in the system. An execution is a maximal sequence of totally ordered configurations. Let c_t be the current configuration of the system. It moves to configuration c_{t+1} after the execution of either an internal, an input/output action, or a dynamic action. A fragment of execution is a finite sub-sequence of an execution. Its size is the subsequence length. A static fragment is a maximal-sized fragment that does not contain any C/D actions.

Let $f = (c_i, \ldots, c_j)$ be a fragment in a dynamic I/O automaton execution. We denote as $\text{begin}(f)$ and $\text{end}(f)$ the configurations c_i and c_j respectively. In the sequel, all the referred fragments are static and are denoted by f or f_i. Thus, an execution of a dynamic I/O automaton is an infinite sequence of fragments $e = (f_0, \ldots, f_i, \ldots f_j, \ldots)$ interleaved with dynamic actions.

2.3 Churn Model

As previously described, both the logical communication graph and the system data are subject to changes. Whatever their causes, we refer to these changes as to the churn of the system. Note that this definition is compliant with the one proposed by Brighten Godfrey et al [4] which defines churn as the sum, over each configuration, of the fraction of the system that has changed during that configuration, normalised by the duration of the execution.

Interestingly, the effect of the churn on the system computations is similar with the effect of synchrony in classical distributed systems and in particular in the theory of self-stabilization where the demon/scheduler abstraction captures the system synchrony [1]. According to that synchrony, a hierarchy of schedulers that ranges from centralized to arbitrary ones exists. In short a demon is a predicate defined over the forest of executions (in the sense defined above) of a
A system under a scheduler is the restriction of the executions of the system to those verifying the scheduler predicate.

To capture the churn of the system we enrich the demons family with a new class of demons — the dynamic demons or dynamic schedulers. The predicate of a dynamic demon characterizes the dynamic actions (C/D) of the system.

In the following we propose four classes of dynamic demons. Note that for the best of our knowledge, all churn models discussed so far in distributed systems area are covered by these four classes.

Bounded dynamic demon Under this demon, the number of C/D actions during any execution of the system is finite and a bound on this number is known. In [24], the authors consider an α-parameterized system where the α parameter is a known lower bound on the number of nodes that eventually remain connected within the system. In this model augmented with some communication synchrony the authors propose the implementation of the Ω oracle discussed later in this paper.

Finite dynamic demon Under this demon, the number of C/D actions during any execution of the system is finite but the bound is unknown. That is, protocols designed under this demon cannot use the bound on the number of nodes active in the system. Different forms of the finite dynamic scheduler have been proposed in [1]. Delporte et al. [22] propose agreement algorithms compliant with this demon.

Kernel-based dynamic demon Under this demon, between any two successive static fragments f_i and f_{i+1} of any execution of the system, there exists a non-empty group of nodes G_i for which the local knowledge is not impacted by C/D actions. Baldoni et al. [5] extend this characterization to specific topological properties of the communication graph. Specifically, the authors define the churn impact with respect to the diameter of the graph, and distinguish three classes of churn. In the first one, the diameter of the graph is constant and every active node in the system can use this knowledge. In the second class, the diameter is upper bounded but active nodes do not have access to that upper bound. Finally, in the third one the diameter of the system can grow infinitely.

Arbitrary dynamic demon Under this demon, there is no restriction on the number of C/D actions that can occur during any execution of the system. That is, at any time, any subset of nodes can join or leave the system and there is no stabilization constraint on the communication graph.

In the following we discuss different candidate models for self-organization and further propose our model. In this framework we further revisit the lookup primitives of CAN [26] and Pastry [27], the leader election problem [24], and the one-shot query problem [5]. We show the level of self-organization solutions to these problems ensure according to the strength of the dynamic demon.
3 Candidate Models for Self-organization

The ultimate goal of our work is to formally define the notion of self-organization for dynamic systems and to capture the conditions under which these systems are able to self-organize. In the following we discuss two candidate models to capture the self-organization of dynamic systems: the self-stabilization and the super-stabilization models [1].

In static systems, self-stabilization [1] is an admirable framework offering models and proof tools for systems that have the ability to autonomously reach legitimate (legal) behavior despite their initial configuration.

Definition 1 (Self-stabilization). Let S be a system and L be a predicate over its configurations defining the set of legitimate configurations. S is self-stabilizing for the specification SP if and only if the following three properties hold:

- (convergence) Any execution of S reaches a legitimate configuration that satisfies L.
- (closure) The set of legitimate configurations is closed.
- (correctness) Any execution starting in a legitimate configuration satisfies the specification SP.

The following theorem enlightens the limits of the self-stabilization definition in dynamic systems. Specifically, Theorem 1 shows that for each static demon D and for each self-stabilizing system S under D there exists a dynamic demon D' such that S does not self-stabilize under $D \land D'$. In other words, the self-stabilization of a system in dynamic settings is strongly related to the demon definition. Note that similar arguments informally motivated the study of super-stabilizing systems [2].

Theorem 1. Let S be a system self-stabilizing under demon D. Let L be the set of the legitimate configurations of S. There exists a dynamic demon D' such that S does not self-stabilize under D'.

Proof. The proof is based on the following intuitive idea which is depicted in Figure 1. For each execution of S an isomorphic execution that does not converge under $D \land D'$ is constructed. Let e be the execution of S under D and let D' be defined as follows: each transition in S under D that leads to a legitimate configuration is replaced by a dynamic action such that the new configuration is illegitimate. Since S is self-stabilizing under D then any execution e of S under D reaches a legitimate configuration. Consequently, in each execution e there exists a configuration c_1 that precedes the legitimate configuration, cl. An arbitrary dynamic demon can always obtain from c_1 a new illegitimate configuration by replacing for example all the processes in c_1 with fresh processes erroneously initialized.

Applying recurrently the replacement technique we can construct an infinite execution of S under $D \land D'$ that never converges to a legitimate configuration. Hence, the system is not self-stabilizing under an arbitrary dynamic demon.
Note that self-stabilization captures the self-aspects of dynamic systems, in particular its self-organization, as long as i) the churn period is finite or ii) static fragments are long enough so that the system stabilizes before a new period of churn occurs.

Because of the complexity of the new emergent systems (i.e., P2P, sensors networks, robot networks) in terms of both topology and data dynamicty, coverage of these assumptions is low. To go further in that direction, SuperStabilization has been proposed in the pioneering work of Dolev and Herman [12]. Superstabilization proposes a proof framework that does not restrict the characterization of the system behavior to static fragments only but rather extends it to dynamic periods.

Specifically, superstabilization proposes techniques for repairing a self-stabilizing algorithm after C/D actions, such as the joining of fresh nodes or after topological changes due to the creation/removal of communication links.

Definition 2 (Superstabilization). A protocol or algorithm is (continuously) superstabilizing with respect to the class of topological changes Γ if and only if it is self-stabilizing and for every execution e beginning in a legitimate state and containing only topology changes of type Γ the passage predicate is verified for every configuration in e.

Note that Γ, the class of topological changes addressed by superstabilization, are either single topology changes or multiple topology changes provided that either each change is completely accommodated before the next change occurs or changes are concurrent and each set of concurrent changes is totally absorbed before the next concurrent set occurs. This hypothesis is crucial for the safety of the system. Otherwise the impossibility result shown in Theorem 1 applies.

In [13,20] the authors propose automatic mechanisms that transform self-stabilizing algorithms into superstabilizing ones. Colouring, spanning tree construction, depth first search, and mutual exclusion are among the studied algorithms. The basic idea of the transformation is the following one: when a topology change is detected the system is frozen until the topology is repaired. During this repairing period, the system verifies a transition predicate that captures the system state just after the topology change occurred.
As will be clarified in the following sections, contrary to superstabilization we propose to characterize the notion of convergence for a dynamic system and propose sufficient conditions for a system to self-organize according to the churn model.

It should be noted that any self-stabilizing or superstabilizing system is also self-organizing under a finite dynamic scheduler or in systems where each dynamic period is followed by long enough stability periods. However, a self-organizing system is not necessarily self-stabilizing or superstabilizing. We argue that our study is complementary to the studies related to both self-stabilization and superstabilization, and opens an alternative way for designing superstabilizing systems. That is, superstabilization offers techniques for enforcing self-stabilizing systems to keep their properties despite topology changes. However, most of the systems are not self-stabilizing which restricts applicability of the superstabilization approach. We advocate that a superstabilizing system can be obtained from a self-organizing system enriched with modules in charge of the system stabilization.

4 From Local Self-organization to Self-organization

As discussed in the Introduction, self-organization is a global property that emerges from local interactions among nodes. To formally define what is a self-organized system, we first look at the system at a microscopic level, and then extend this study to the macroscopic level, i.e., at the system as a whole.

4.1 Local Evaluation Criterion

Self-organization refers to the fact that the structure, the organization, or global properties of a system reveal themselves without any control from outside. This emergence results only from internal constraints due to local interactions between its components or nodes. We model these local constraints as an objective function or evaluation criterion that nodes try to continuously maximize.

An objective function or evaluation criterion of a node p is an abstract object defined on p's local state and the local states of all its one/multi-hop neighbors. Note that typically, the knowledge of a node is restricted to its one-hop neighbors (as it is the case in sensors networks, cooperative robots networks, or P2P systems). However, it may happen that in some fine grained atomicity models (as the read/write atomicity of Dolev [11]) each node maintains copies of both its local state and the ones of its neighbors at more than one hop from itself. Therefore in these models it makes sense for a node to compute an evaluation criterion based on both its local state and the ones of its multi-hop neighbors.

In the following, $\gamma_{p,c}$ will denote the evaluation criterion at node p in configuration c. $\gamma_{p,c}$ is a $[0,1]$ function defined on a co-domain CD equipped with a partial order relation R. The relation R is the \leq relation on real numbers. Function $\gamma_{p,c}$ represents the aggregate of $\gamma_{p,c}(q)$ for all neighbors q of p in configuration c.
In order to define the local self-organization, we introduce the notion of stable configurations. Informally, a configuration \(c \) is \(p \)-stable for a given evaluation criterion in the neighborhood of node \(p \) if the local criterion reached a local maximum in \(c \).

Definition 3 (\(p \)-stable configuration). Let \(c \) be a configuration of a system \(S \), \(p \) be a node, \(\gamma_{p,c} \) be the local criterion of \(p \) in configuration \(c \) and \(\preceq \) be a partially order relation on the codomain of \(\gamma_{p,c} \). Configuration \(c \) is \(p \)-stable for \(\gamma_{p,c} \) if, for any configuration \(c' \) reached from \(c \) after one action executed by \(p \), \(\gamma_{p,c'} \preceq \gamma_{p,c} \).

Definition 4 (Local self-organization). Let \(S \) be a system, \(p \) be a process, and \(\gamma_p \) be the local criterion of \(p \). \(S \) is locally self-organizing for \(\gamma_p \) if \(S \) eventually reaches a \(p \)-stable configuration.

In P2P systems local self-organization should force nodes to have as logical neighbors nodes that improve a sought evaluation criterion. Module \(\text{[]} \) executed by node \(p \), referred to as LSA in the sequel, proposes a local self-organizing generic algorithm for an arbitrary criterion \(\gamma_p \). Note that existing DHT-based peer-to-peer systems execute similar algorithms to ensure self-organization with respect to specific criteria (e.g., geographical proximity) as shown in the sequel. The nice property of our generic algorithm is its adaptability to unstructured networks.

LSA is based on a greedy technique, which reveals to be a well adapted technique for function optimization. Its principle follows the here above intuition: Let \(q \) such that \(q \in N^{\gamma_p}(p) \), and \(r \) such that \(r \in N^{\gamma_q}(q) \) but \(r \not\in N^{\gamma_p}(p) \), where \(N^{\gamma_p}(p) \) and \(N^{\gamma_q}(q) \) are the logical neighborhoods of \(p \) and \(q \) respectively with respect to criterion \(\gamma_p \). If \(p \) notices in configuration \(c \) that \(r \) improves the evaluation criterion previously computed for \(q \), then \(p \) replaces \(q \) by \(r \) in \(N^{\gamma_p}(p) \).

Inputs of this algorithm are the evaluation criterion \(\gamma_p \). Note that existing DHT-based systems execute this algorithm to ensure self-organization with respect to specific criteria (e.g., geographical proximity) as shown in the sequel. The nice property of our generic algorithm is its adaptability to unstructured networks.

In P2P systems local self-organization should force nodes to have as logical neighbors nodes that improve a sought evaluation criterion. Module \(\text{[]} \) executed by node \(p \), referred to as LSA in the sequel, proposes a local self-organizing generic algorithm for an arbitrary criterion \(\gamma_p \). Note that existing DHT-based peer-to-peer systems execute similar algorithms to ensure self-organization with respect to specific criteria (e.g., geographical proximity) as shown in the sequel. The nice property of our generic algorithm is its adaptability to unstructured networks.

Theorem 2 (Local Self-organization of LSA). Let \(S \) be a system and \(\gamma_p \) be an objective function of node \(p \). If \(p \) executes the LSA algorithm with \(\gamma_p \), then \(S \) is a locally self-organizing system for \(\gamma_p \).

Proof. Let \(p \) be a node in the system executing the LSA algorithm. Assume that \(S \) does not locally self-organize in the neighborhood of \(p \). That is, there is an execution of \(S \), say \(e \), that does not include a \(p \)-stable configuration.

Assume first that \(e \) is a static execution (i.e., no C/D action is executed during \(e \)). Let \(c \) be the first configuration in \(e \). By assumption of the proof, \(c \) is not \(p \)-stable. Thus there is a neighbor of \(p \), say \(q \), that has itself a neighbor improving...
Module 1 Local Self-Organization Algorithm for Criteria γ Executed by p in configuration c (LSA)

Inputs:
- γ_p: the evaluation criterion used by p;
- $N^{\gamma_p}(p)$: p neighbors for the evaluation criterion γ;

Actions:
- \mathcal{R} : if $\exists q \in N^{\gamma_p}(p), \exists r \in N^{\gamma_p}(q) \setminus N^{\gamma_p}(p), \gamma_{p,c}(q) < \gamma_{p,c}(r)$
 then $N^{\gamma_p}(p) = N^{\gamma_p}(p) \cup \{r_{\text{max}}\} \setminus q$;
 where $r_{\text{max}} \in N^{\gamma_p}(q), \gamma_{p,c}(r_{\text{max}}) = \max_{r' \in N^{\gamma_p}(q), \gamma_{p,c}(q) \leq \gamma_{p,c}(r')} \gamma_{p,c}(r')$

the evaluation criterion. Hence, rule \mathcal{R} (Module 1) can be applied which makes r replacing q in the neighbors table of p. By applying the assumption of the proof again, the obtained configuration is not stable, hence there is at least one neighbor of p which has a neighbor which improves the evaluation criteria. Since the evaluation criteria is bounded and since the replacement of a neighbor is done only if there is a neighbor at distance 2 which strictly improves the evaluation criterion, then either the system converges to a configuration c_{end} where the evaluation criterion reaches its maximum for some neighbors of p, or the evaluation criterion cannot be improved.

In other words, for each node q neighbor of p we can exhibit a finite maximal string:

$$\gamma_{p,c_0}(q_0) < \gamma_{p,c_1}(q_1) < \ldots < \gamma_{p,c_m}(q_m)$$

where q_0 is the node q and $q_i, i = 1, m$ are the nodes which will successively replace the initial node q. Let c_{end} be the configuration where the node q_m is added to the neighbors table of p. In c_{end} the value of $\gamma_{p,c_{\text{end}}}(q_m)$ is maximal hence, either c_{end} is stable, or no neighbor of q_m improves the evaluation criterion. Thus c_{end} is stable. Consequently, there exists a configuration in \mathcal{E}, namely c_{end}, which is p-stable.

Assume now that the execution e is dynamic, hence the system size and topology may be modified by nodes connection and disconnection. Assume that node p joins the system. This case is similar to the previous one, where p executes rule \mathcal{R} of Module 1 a finite number of times until it reaches a p-stable configuration.

Now, let us study the case where the system is in a p-stable configuration and, due to the connection of some node r, p’s neighborhood changes. That is r appears in p’s neighborhood. Suppose that r improves γ_p. Then p applies rule \mathcal{R}. As previously shown, the system reaches in a finite number of steps a p-stable configuration.

4.2 Global Evaluation Criterion

We now introduce the notion of global evaluation criterion, denoted in the following γ. The global evaluation criterion evaluates the global organization of the
system at a given configuration. More precisely, the global evaluation criterion is the aggregate of all local criteria. For instance, if the evaluation criterion is the logical proximity (i.e., the closer a process, the higher the evaluation criterion), then optimizing the global evaluation criterion γ will result in all processes being connected to nearby processes.

Let γ_p be the local criterion of process p, and \preceq be a partially order relation on the codomain of γ_p. In the sequel we focus only on global evaluation criteria γ that exhibit the following property:

Global evaluation criterion property

$$\forall f, \forall c_1, c_2 \in f, \gamma(c_1) \prec \gamma(c_2) \text{ if } \exists p, \gamma_p(c_1, \gamma_p) \prec \gamma_p(c_2, \gamma_p) \text{ and } \forall t \neq p, \gamma_t(c_1, \gamma_t) \preceq \gamma_t(c_2, \gamma_t)$$

Intuitively, the increase of the value of a local criterion will determine the increase of the global criterion if the other local criteria increase their values or remain constant. An example of criterion that meets such requirements is the union/intersection of $[0, 1]$-valued local criteria. Namely, γ is the sum of a local aggregation criterion γ: $\gamma(c) = \sum_{p \in S} \gamma_p(c)$.

We now define the notion of self-organization in a dynamic system:

Definition 5 (Self-organization). Let S be a system, p be a process, and γ_p be the local criterion of p. System S is self-organizing if $\forall p \in S$, S is locally self-organizing for γ_p.

5 From Weak Self-organization to Strong Self-organization

The next three sections present the different forms of self-organization a dynamic system should exhibit. These different forms of self-organization are strongly related to the churn model the system is subject to. In its weakest form, self-organization is only required during static fragments, i.e., in absence of any dynamic actions. Clearly, this imposes no restriction on the churn model, and thus weakly self-organized systems should be able to tolerate an arbitrary dynamic demon. In its strongest form, self-organization should guarantee that the system as a whole is able to maintain or even progressively increase its global knowledge at any time during its execution (that is in both static fragments and instability periods). Contrary to its weakest form, this limits the strength of the demon. In particular this requires that in any configuration there exists some part of the system (not necessarily the same one) for which the knowledge remain constant or even increases. Therefore, this imposes that during instability periods, some part of the system does not get affected by churn. This behavior is encapsulated in the kernel-based dynamic demon. Finally, in between these two extreme forms, self-organization should guarantee that infinitely often the entropy of the system should reduce, that is period of times during which the
objective function at each node should increase or at least remain constant. This
requires to limit the number of C/D dynamic actions that may occur during any
system execution. All these different forms of self-organization are described ac-
cording to a safety and liveness property. Safety must be preserved at all times,
while liveness can be temporarily hindered by instability, but eventually when
the system enters static fragments some progress must be accomplish.

5.1 Weak Self-Organization

The weak self-organization is defined in terms of two properties. The weak liveness
property says that for each static fragment f_i, either (1) f_i is stable, or
(2) there exists some fragment f_j, in the future of f_i, during which the global
evaluation criteria strictly improves (see Fig. 2). The safety property requires
that the global evaluation criteria never decreases during a static fragment. Form-
ally, we have:

Definition 6 (Weak Self-Organization). Let S be a system and γ be a global
evaluation criterion defined on the configurations of S. A system is weakly self-
organizing for γ if the following two properties hold (recall that $(f_0, \ldots, f_i, \ldots)$
stand for static fragments):

Property 1 (Safety Property).

$$\forall e = (f_0, \ldots, f_i, \ldots), \forall f \in e : \gamma(\text{begin}(f)) \leq \gamma(\text{end}(f)).$$

Property 2 (Weak Liveness Property).

$$\forall e = (f_0, f_1, \ldots, f_j, \ldots), \forall f_i \in e, \exists f_j \in e, j \geq i : \gamma(\text{begin}(f_j)) < \gamma(\text{end}(f_j))$$

or $\forall p \in S, \text{begin}(f_j)$ is p-stable.

The following theorem gives a sufficient condition to build a weakly self-
organizing system:

Theorem 3 (Weak Self-organization). Let S be a system and γ be a global
objective function. System S is weakly self-organizing for γ if for any node p
affinity system S locally self-organizes in p’s neighborhood.

Proof. Let e be an execution of system S.

Safety Let f be a static fragment in e. By assumption S is locally self-organizing for γ_p for any node $p \in S$. Thus we have two situations: either p executes some particular actions in f that makes $\gamma_p(\text{begin}(f)) \prec \gamma_p(\text{end}(f))$ true or p does not execute any action and in that case, $\gamma_p(\text{begin}(f)) \preceq \gamma_p(\text{end}(f))$. Overall, by definition of a global objective function this leads to $\gamma(\text{begin}(f)) \preceq \gamma(\text{end}(f))$. This proves Property 1.

Weak liveness Let p be some node in S. Let f_i be an arbitrary static fragment in e. By assumption S is locally self-organizing. Thus there is a static fragment f_j, $i \leq j$ in e such that p executes a particular action in f_j that makes $\gamma_p(\text{begin}(f_j)) \prec \gamma_p(\text{end}(f_j))$. Overall, for any f_i there is a fragment f_j such that $\gamma(\text{begin}(f_j)) \prec \gamma(\text{end}(f_j))$. This completes the proof of Property 2, and ends the proof of the theorem.

\[\square \]

5.2 Case Study of Weak Self-Organization: CAN

In this section, we prove the self-organization of CAN. CAN \cite{25} is a scalable content-addressable network, the principle of which is to use a single namespace—the d-dimensional torus $[0,1]^d$—for both data and nodes. Data and CAN nodes are assigned unique names within this namespace, and each node is responsible for a volume surrounding its identifier in the torus. The distributed algorithm executed on a node arrival or departure ensures that the complete torus volume is partitioned between all participating CAN nodes.

These algorithms are crucial for the self-organization of the system, since the topology of CAN changes only when nodes enter or leave the system. In the following, we show how these protocols fit into our self-organization framework. Consider the following local criterion at node p:

$$\gamma_p^{\text{CAN}}(q) \overset{\text{def}}{=} \frac{1}{1 + \text{dist}(p,q)},$$

where dist is the Cartesian distance in the torus.

Lemma 1 (CAN). CAN is weakly self-organized with respect to γ_p^{CAN} objective function.

Proof. We show that protocols for node insertion and node removal in CAN perform actions that keep the system in a p-stable configuration.

Node Removal. When a node leaves the system, its previous neighbors’ evaluation criteria decrease, since the distance to the leaving node is infinite. As we are only concerned with fragments in which no disconnection can occur, let us consider actions taken by the protocol subsequently to the leaving of node p. Just after the departure of p, every neighbor of p saw a decrease in its evaluation function, and starts to look for a new neighbor. The algorithm used by CAN \cite{24,23} is designed in such a way that the newly chosen neighbor is optimal with respect to the Cartesian distance. Hence, in the
fragment following the leaving of \(p \), the criterion for every neighbor of \(p \) increases. Once each node which used to be a neighbor of the leaving node has completed the protocol, then the topology of CAN does not change unless a connection or another disconnection occur. Hence, the departure protocol leaves the system in a \(p \)-stable configuration.

Node Insertion. The insertion of a node is a two-step operation. In the first step, the node \(p \) that wants to join the system computes an \(\text{id} \), which is a point in the \(d \)-torus, and then gets the IP address of some CAN node \(q_0 \). The second step is the actual insertion: (1) \(q_0 \) sends a message to the node \(q_1 \) responsible for the volume containing the \(\text{id} \) computed by \(p \), then (2) \(p \) contacts \(q_1 \) which, in turn, contacts its neighbors and splits its volume in order to maximize the uniform distribution of nodes within the torus, and finally (3) \(p \) enters the system with a volume defined by its \(\text{id} \) and by \(q_1 \) and its neighbors.

The key point here is that, for any node \(r \) in the torus, when a new node \(p \) is inserted in CAN, it becomes a neighbor of \(r \) only if \(p \) is closer to \(r \) than one of \(r \)'s previous neighbors. Hence, the Cartesian distance from \(r \) to its neighbors is either the same or reduced, when compared to the situation before the insertion: the evaluation criterion for every node in the system is improved by an insertion. Thus by Theorem 3, this makes CAN weakly self-organized. \(\square \)

5.3 Case Study of Weak Self-Organization: Pastry

Pastry [27] is a general substrate for the construction of peer-to-peer Internet applications like global file sharing, file storage, group communication and naming systems. Each node and key in the Pastry peer-to-peer overlay network are assigned a 128-bit node identifier (\(\text{nodeId} \)). The \(\text{nodeId} \) is used to indicate a node’s position in a circular \(\text{nodeId} \) space, which ranges from 0 to \(2^{128} - 1 \). The \(\text{nodeId} \) is assigned randomly when a node joins the system. The distributed algorithms run upon node arrivals and departures rely on local structures (i.e., routing table, leaf set, and neighborhood set) to ensure that nodes are correctly positioned on the circular \(\text{nodeId} \) space. In the following we study Pastry self-organization by characterizing the local criterion used by any node \(p \) to update the routing table, the leaf set and the neighborhood set. These local criterion are respectively denoted by \(\gamma_{\text{Pastry}, \text{routing}}(\cdot) \), \(\gamma_{\text{Pastry}, \text{neighbor}}(\cdot) \), and \(\gamma_{\text{Pastry}, \text{leaf}}(\cdot) \).

Routing Table The routing table \(R(p) \) of any node \(p \) contains the \(\text{nodeIds} \) of the nodes that share a common prefix with \(p \) node. More precisely, it is organized into \(\lceil \log_{2^b} N \rceil \) rows with \(2^b - 1 \) entries each. Each of the \(2^b - 1 \) entries at row \(\ell \) refers to a node whose \(\text{nodeId} \) shares the first \(\ell \) digits of \(p \) nodeId, but whose \(\ell + 1 \)th digit has one of the \(2^b - 1 \) possible values other than the \(\ell + 1 \)th digit of \(p \) nodeId. If several nodes have the appropriate prefix, the one which is the closest according to distance metric \(\text{dist} \) to node \(p \) is chosen. Consider the following local criterion at node \(p \):

\[
\gamma_{\text{Pastry,routing}}^p(q) \overset{\text{def}}{=} \frac{f(i, j, k, n)}{\text{dist}(k, n)}, \quad (2)
\]
where dist is a scalar proximity metric, and f is defined in Relation (3). Let p and q be two nodes such that \(p = p_0 p_1 \ldots p_{\lfloor \log_2 N - 1 \rfloor} \), and \(q = q_0 q_1 \ldots q_{\lfloor \log_2 N - 1 \rfloor} \)

\[
f(i, j, p, q) = \begin{cases}
1 & \text{if } \bigwedge_{l=0}^{i-1} (p_l = q_l) \land (j = q_i) \text{ is true} \\
0 & \text{otherwise.}
\end{cases}
\]

Relation (3)

Lemma 2 (Pastry, Routing). Pastry is weakly self-organized with respect to \(\gamma_p^{\text{Pastry, routing}} \) objective function.

Proof. We show that the algorithms used for node arrival and node removal perform actions that leave the system in a \(p \)-stable configuration.

Node Removal. Suppose that some node \(q \) leaves the system. Then, the evaluation criterion \(\gamma_p^{\text{Pastry, routing}}(q) \) of node \(p \) is set to zero. Thus, node \(p \) tries to update its failed routing table entry \(R^i_k(p) \). This is achieved by asking the node pointed by another entry \(R^i_k(p) \) with \(i \neq d \) for an appropriate reference. If none of the nodes of the row have a pointer on a lived node, \(p \) asks for nodes referred to row \(l + 1 \), thereby casting a wider net. With high probability, this procedure eventually finds an appropriate node if such a node exists in the system. Thus, \(p \) updates its evaluation criterion. By Theorem 3, the system reaches a \(p \)-stable configuration.

Node Arrival. Suppose that some node \(p \) joins the system. Then by construction, \(p \) initializes its state tables and informs other nodes of its presence. It is assumed that \(p \) knows initially about a nearby Pastry node \(q_0 \), according to the proximity metric. The insertion algorithm enables the new node \(p \) to find a node \(q_\ell \) whose nodeId is numerically closest to \(p \)'s nodeId. Node \(p \) obtains the \(\ell \)-th row of its routing table from the node encountered along the path from node \(q_0 \) to node \(q_\ell \) whose nodeId matches \(p \) in the first \(\ell - 1 \) digits. Assuming the triangle inequality holds in the proximity space, an easy induction leads to the fact that the entries of the \(\ell \)-th row of \(q_\ell \) routing table should be close to \(p \). Thus \(\gamma_p^{\text{Pastry, routing}} \) progressively increases. We now show how the routing tables of the affected nodes are updated to take into account the arrival of node \(p \). Once node \(p \) reaches node \(q_\ell \), \(p \) sends a copy of the \(\ell \)-th row of its routing table to all the nodes that are pointed to in that row \(\ell \). Upon receipt of such a row, a node checks whether node \(p \) or one of the entries of that row are nearer than the existing entry (if one exists). In that case, the node replaces the existing entry by the new one. Thus the evaluation criterion for all these nodes is improved by an insertion. Note that even if the evaluation criterion is improved, due to the heuristic nature of the node arrival and the fact that the practical proximity metrics do not satisfy the triangle inequality, one cannot ensure that the routing table entries produced by a node arrival are the closest to the local node. To prevent that such an issue leads to a deterioration of the locality properties, routing table maintenance is periodically triggered.

\(\square \)
Neighborhood Set The neighborhood set contains the nodeIds and IP addresses of the $|M|$ nodes that are closest according to the proximity metric of node p. The typical value for the size of this set is 2^b or 2×2^b. Consider the following local criterion at node p:

$$\gamma_p^{\text{Pastry, neighbor}}(q) \overset{\text{def}}{=} \frac{1}{1 + \text{dist}(p, q)} \quad (4)$$

where dist is a scalar proximity metric.

Lemma 3 (Pastry, neighbor). Pastry is weakly self-organized with respect to $\gamma_p^{\text{Pastry, neighbor}}$ objective function.

Proof. We show that the algorithms used for node arrival and node removal perform actions that leave the system in a p-stable configuration.

Node Removal. The neighborhood set is periodically checked. If some node q does not respond to requests of node p (leading to decrease $\gamma_p^{\text{Pastry, neighbor}}(q)$), p asks other members of this set to give it back their neighbor sets. Node p checks the distance of each of the new nodes, and inserts the node that is the closest to it. Thus, for each neighbor q of p, $\gamma_q^{\text{Pastry, neighbor}}$ increases. Theorem 3 implies that the system reaches a p-stable configuration.

Node Arrival. As previously said, when a new node p joins the system it contacts a node close to it. This node gives its neighborhood set to p so that p is able to initialize its own neighborhood set, increasing thus its objective function. Clearly, since q_0 is in the proximity of p, both have a close neighborhood. Then p proceeds as explained here above, and transmits a copy of its neighborhood set to each of the nodes found in this set. Those nodes update their own set if p is an appropriate node. Thus the objective function for all these nodes is improved by an insertion.

This completes the proof of the lemma. \square

Leaf Set The leaf set is the set of nodes with the $L/2$ numerically closest larger nodeIds, and the $L/2$ nodes with numerically closest smaller nodeIds, relative to p nodeld. Typical values for L are 2^b or 2×2^b. Consider the following local criterion at node p:

$$\gamma_p^{\text{Pastry, leaf}}(q) \overset{\text{def}}{=} \frac{1}{1 + \text{dist}_{\text{nodeId}}(p, q)} \quad (5)$$

where dist is the proximity metric in the nodeId space.

Lemma 4 (Pastry, leaf). The Pastry system with respect to the leaf set is a weak self-organizing system using the $\gamma_p^{\text{Pastry, leaf}}$ criterion.

Proof. We show that the algorithms used for node arrival and node removal perform actions that leave the system in a p-stable configuration.
Node Removal. Suppose that some node \(q \) leaves or fails. Then for all nodes \(p \) that are neighbors of \(q \), we have \(\gamma_p^{\text{Pastry,leaf}}(q) \) decreased. To replace a node in the leaf set, \(p \) contacts the node with the largest index with respect to \(q \), and asks that node for its leaf set. This leaf set may overlap \(p \)'s leaf set and may contain nodes which are not in \(p \)’s leaf set. Among these new nodes, \(p \) chooses the appropriate one to insert into its leaf set. Thus, unless \(L/2 \) fail simultaneously, then \(p \)'s evaluation criterion increases.

Node Arrival. The same argument as above applies, except that the node that gives to \(p \) its leaf set is no more node \(q_0 \) but \(q_n \), since \(q_n \) has the closest existing nodeId with respect to \(p \). Then \(p \) proceeds as explained above, and transmits a copy of its leaf set to each of the nodes found in this set. Those nodes update their own set if \(p \) is an appropriate node. Thus the objective function for all these nodes is improved by an insertion.

5.4 Self-Organization

As previously described, the weak self-organization definition applies to static fragments. Nothing is guaranteed during dynamic ones (i.e., fragments in which connections / disconnections occur or data are modified). For example, Pastry self-organization protocol may cause the creation of multiple, isolated Pastry overlay networks during periods of IP routing failures. Because Pastry relies almost exclusively on information exchanged within the overlay network to self-organize, such isolated overlays may persist after full IP connectivity resumes.

A self-organized system should be able to infinitely often increase its knowledge even in presence of churn. We characterize this gradual enrichment through the safety property as defined above and a liveness property that says that either (1) infinitely often, there are static fragments during which the knowledge of the system enriches (cf. Fig. 3), or (2) all the processes have reached a stable state.

![Fig. 3. Illustration of the liveness property.](image)

Definition 7 (Self-Organization). Let \(S \) be a system and \(\gamma \) be a global evaluation criterion defined on the configurations of \(S \). A system is self-organizing for \(\gamma \) if both safety as defined in Property 1 and liveness hold, with the liveness property defined in Property 3.
Property 3 (Liveness Property).

\[\forall e = (f_0, \ldots, f_i, \ldots, f_j, \ldots), \forall f_i \in e, \exists f_j \in e, \ j \geq i : \gamma(\text{end}(f_i)) \prec \gamma(\text{end}(f_j)) \]

or \[\forall p \in S, \text{begin}(f_j) \text{ is } p\text{-stable} \]

Theorem 4 (Self-organization). Let \(S \) be a locally self-organizing system. If, for any execution \(e = (f_0, \ldots, f_i, \ldots, f_j, \ldots) \) of \(S \) and for all static fragments \(f_i \) and \(f_{i+1} \) in execution \(e \) we have \(\gamma(\text{end}(f_i)) \leq \gamma(\text{begin}(f_{i+1})) \) then, \(S \) is self-organizing.

Proof. From the local self-organization of \(S \), for all \(f_i \), it exists \(f_j \) such that \(\gamma(\text{begin}(f_j)) \prec \gamma(\text{end}(f_j)) \). Using the hypothesis, we have

\[\gamma(\text{begin}(f_i)) \preceq \gamma(\text{end}(f_i)) \preceq \gamma(\text{begin}(f_{i+1})) \ldots \preceq \gamma(\text{begin}(f_j)) \prec \gamma(\text{end}(f_j)). \]

Thus \(S \) is self-organizing. \(\square \)

In the following we show that the eventual leader algorithm proposed in [24] is self-organizing.

5.5 Case Study of Self-Organization: Eventual Leader

Informally, an eventual leader service provides nodes with the identity of a node, and eventually the identity returned by the service is the identity of a node that will remain in the system until the end of its execution. Implementing this service has received a lot of attention both in practical and theoretical area. In this work, we focus on a solution proposed by Raynal et al. [24]. Their solution focuses on a dynamic system. The churn model assumed in their solution is characterized by a bounded dynamic demon. Specifically, it is assumed that there is a set of nodes, \text{STABLE}, such that each node in \text{STABLE} after having joined the system never leaves the system nor fails. The size \(\alpha \) of this set is common knowledge, that is, each node in the system knows that there is a time after which \(\alpha \) nodes will never leave nor join the system. Note however that identities of these nodes are not known.

The proposed algorithm implements the leader oracle \(\Omega \) through function \texttt{leader}(). Oracle \(\Omega \) satisfies the following property:

Eventual leadership problem[24]: There is a time \(t \) and a node \(\ell \) such that \(\ell \in \text{STABLE} \), and after \(t \), every invocation of \texttt{leader}() by any node \(p \) returns \(\ell \).

The idea of their algorithm is as follows. Each node \(i \) maintains a set of nodes identities, denoted \(\text{trust}_i \), timestamped with a logical date locally computed (\(\text{date}_i \)). Initially \(\text{trust}_i = \Pi \), with \(\Pi \) the full universe of node identifiers. The aim of the algorithm is that eventually \(\text{trust}_i \) is the same for each node \(i \). Specifically node \(i \) repeatedly queries all the nodes of the system to determine which nodes are up and waits until it receives the first \(\alpha \) responses. Then \(i \) updates \(\text{trust}_i \).
by making the intersection between its local trust set and the responses it has received from the other nodes. It then broadcasts trusti through the invocation of a reliable broadcast primitive) to all the nodes in the system. A node j that receives a trust set either adopts it if the logical date of trustj is older than the received one, or updates it by considering the intersection of the local and received trust sets. If after j’s update, trustj is empty then j starts a new epoch with trustj = Π. When leader() is invoked on i then if trusti ≠ Π or trusti ≠ Π then the smallest identifier belonging to trusti is returned, otherwise i is returned.

We now show that the eventual leader algorithm of Raynal et al. [24] is self-organizing with respect to the following property: “Eventually leader() returns the same node to every node belonging to the system”. Consider the following local criteria at node p:

\[γ_p(t) \overset{\text{def}}{=} (\text{trust}_p(t), \text{date}_p(t)) \]

where trustp(t) is the set of trust processes at time t and datep(t) is the logical date of the trust set at time t. Define the partial order ≤ as follows:

\[γ_p(t) ≤ γ_p(t') \text{ if and only if } \text{trust}_p(t') ≤ \text{trust}_p(t) \text{ or } \text{date}_p(t) ≤ \text{date}_p(t') \]

Lemma 5. The eventual leader algorithm [24] is self-organizing with respect to γp as defined in Relation (6) equipped with the partial order defined in Relation (7).

Proof. Proof of the lemma is done by showing that the eventual leader algorithm satisfies Properties 1 and 3.

Safety Consider a static fragment. Three cases are possible: case i) during that fragment, both the received trust set and the local one have been updated during the same epoch. From the algorithm, the updated local trust set cannot be a superset of the old one. Case ii) during that fragment the received trust set is more recent than the local one. From the algorithm, the local logical date is updated with the received one. Finally, case iii) during that fragment, the local trust set is empty. From the algorithm, the local date is incremented. Therefore, in all cases, for any static fragment we have γp(t) ≤ γp(t') for any t' > t, which meets Property 1.

Liveness By correctness of the eventual leader algorithm [24] and the finite arrival churn model it follows that the set trust eventually contains the same set of processes. That is, there is a time t such that trustp(t') is stable for any t' > t. Since, trustp(t') does not change, the logical date does not change either. Hence, γp eventually reaches a p-stable configuration for any p in the system. Therefore, the system is locally self-organizing which proves Property 3.

This completes the proof of the lemma. □

Corollary 1. The eventual leader algorithm of Raynal et al. [24] is self-organizing with respect to property: “Eventually leader() returns the same node to each node belonging to the system".
5.6 Strong Self-Organization

The specification of both the liveness and the weak liveness properties do not preclude nodes to reset their neighbors lists after C/D actions. To prevent the system from “collapsing” during dynamic periods, each node whose neighborhood is not impacted by churn should keep local information. Such a property would ensure that for those nodes the global evaluation criterion restricted to these nodes would be at least maintained between the end of a static fragment and the beginning of the subsequent one. In the following this group of nodes is called the kernel of the system. More precisely, given two successive configurations \(c_i \) and \(c_{i+1} \) with their associated graphs \(G_i \) and \(G_{i+1} \), the static common core of \(G_i \) and \(G_{i+1} \) is the sub-graph common to \(G_i \) and \(G_{i+1} \) minus all nodes for which the neighborhood has changed. Formally,

Definition 8 (Topological Kernel). Let \(G_1 \) and \(G_2 \) be two graphs, and \(\Gamma_{G_i}(p) \) be the set of neighbors of node \(p \) in \(G_i \), with \(i = 1, 2 \). Let \(\text{Ker}T(G_1, G_2) \) be the topological static common core of \((G_1, G_2)\). Then

\[
\text{Ker}T(G_1, G_2) \overset{\text{def}}{=} G_1 \cap G_2 \setminus \{ p : \Gamma_{G_1}(p) \neq \Gamma_{G_2}(p) \}
\]

Since we study systems in which self-organization may be data-oriented (typically peer-to-peer systems), we propose a data-oriented definition of the static core of the system. That is, given two successive configurations \(c_i \) and \(c_{i+1} \), the data static common core of \(c_i \) and \(c_{i+1} \) is:

Definition 9 (Data Kernel). \(\text{Ker}D(c_i, c_{i+1}) \overset{\text{def}}{=} D_i \cap D_{i+1} \), where \(D_i \) is the system data in \(c_i \).

In the following, \(\text{Ker}^* \) denotes either \(\text{Ker}T \) or \(\text{Ker}D \). We can now state the following property:

Property 4 (Kernel Preservation Property). Let \(S \) be a system and \(\gamma \) be a global evaluation criterion defined on the configurations of \(S \). Let \(e = (f_0, \ldots, f_i, f_{i+1}, \ldots) \) be an execution of \(S \) and let \(K_i = \text{Ker}^*(\text{end}(f_i), \text{begin}(f_{i+1})) \). Then,

\[
\forall i, \ \gamma(\text{Proj}_{K_i}(\text{end}(f_i))) \preceq \gamma(\text{Proj}_{K_i}(\text{begin}(f_{i+1})))
\]

where \(\text{Proj}_{K_i}(c) \) is the sub-configuration of \(c \) corresponding to the kernel \(K_i \).

We have

Definition 10 (Strong Self-Organization). Let \(S \) be a system and \(\gamma \) be a global evaluation criterion defined on the configurations of \(S \). \(S \) is strongly self-organizing for \(\gamma \) if it is self-organizing for \(\gamma \) (cf Definition 7) and it verifies Property 4.

In the following we show that the One shot query algorithm presented in [5] is strongly self-organized.
5.7 Case Study of Strong Self-Organization: One Shot Query

We illustrate the notion of strong-self organization through the one-shot query problem. The one-time query problem, originally defined by Bawa et al. [6], can be informally described as follows. The system is made of many nodes interconnected through an arbitrary topology. Data is distributed among a subset of the nodes. Some node in the system issues a query in order to aggregate the distributed data, without knowing where the data resides, how many processes hold the data, or even whether any data actually matches the query. Formally, let $\text{query}(Q)$ denote the operation a node invokes to aggregate the set of values $V = \{v_1, v_2, \ldots\}$ present in the system and that match the query. Then a solution to the one shot query problem should satisfy the following two properties [6]:

One shot query problem[6] Let p be some node that invokes a $\text{query}(Q)$ operation at time t.

- **Termination Property** The $\text{query}(Q)$ operation completes in a finite time δ.
- **Validity Property** The set of data V returned by the $\text{query}(Q)$ operation includes at least all the values held by any node q such that q was connected to p through a sub-graph of the graph that represents the (physical) network from time t to $t + \delta$.

In this paper, we consider the solution proposed by Baldoni et al. [5]. Their solution focuses on a dynamic system subject to a restricted kernel-based dynamic demon (cf Section 2.3). Specifically, they assume that the physical communication graph G guarantees a bounded diameter not known in advance. Note that in their work, the logical graph matches G. In addition, they augment the system with a perfect failure detector [9], that is a distributed oracle that allows each node to reliably update the view of its neighborhood (i.e., when node p invokes its perfect failure detector, p learns which of its neighbors have failed (or are disconnected)).

In this model, the authors propose a DFS-based algorithm that solves the one-shot query specification [5]. Specifically, when node q receives a $\text{query}(Q)$ message, q checks whether one of its neighbors has not already received this query by checking both the querying set (i.e., the set of nodes that have already sent the $\text{query}(Q)$ message and are waiting for the replies from their neighborhood), and the replied set (i.e., the set of nodes that have provided their value upon receipt of the $\text{query}(Q)$ message). In the affirmative, q sends back the first of them the $\text{query}(Q)$ message and waits until either it receives a reply from that node, or that node is detected failed by q failure detector. Node q proceeds similarly with all its other neighbors. Then q sends back a reply message with the set V of values and the updated replied set or, if node q is the initiator of the query it returns only the set V of values.

In the following we show that the DFS one-shot query algorithm of Baldoni et al. [5] is strongly self-organizing with respect to the following property: “The initiator of a query receives at least all the values held by nodes that are connected to it through a subgraph of G during the whole query process”.
Consider the local evaluation criterion defined as follows:

\[
\gamma_p \overset{\text{def}}{=} \frac{|\text{replied}_p|}{|\text{target}_p| \setminus |\text{noResponseButFailed}_p|}
\]

(8)

where the set \(\text{replied}_p\) contains the set of nodes that answered the query, the set \(\text{target}_p\) encompasses the set of \(p\)'s neighbors (including \(p\) itself) the first time \(p\) received the query message, and \(\text{noResponseButFailed}_p\) is the set of nodes that have not yet replied but have failed since \(\text{target}_p\) was initialized.

Lemma 6. The one-query algorithm proposed by Baldoni et al [5] is strongly self-organizing with respect to \(\gamma_p\) as defined in Relation (8).

Proof. We show that the algorithm proposed by Baldoni et al [5] verifies the kernel preservation property (cf. Property [3]) and is self-organizing (cf. Definition [7]).

Let \(\text{kernel}\) be the set of nodes which are connected to the query initiator during the query process through subgraph \(G' \subseteq G\). By definition this set of nodes does not change during instability periods. Let \(p \in \text{kernel}\). During instability, the evaluation criterion \(\gamma_p\) evolves as follows:

- either \(\gamma_p\) increases. This is the case if and only if \(i)\) at least one of \(p\)'s neighbors replied and none of its neighbors that failed did have time to reply to \(p\) or \(ii)\) \(p\) did not received any reply and at least one of its failed neighbors did not have time to reply before failing.
- or \(\gamma_p\) does not change.

Therefore, the kernel preservation property is met. Regarding the self-organizing part of the proof, by correctness of their algorithm (cf. [3]), node \(p\) eventually receives the reply from each of its non failed neighbors. Consequently, \(\gamma_p\) is eventually equal to 1, that is \(\gamma_p\) reaches a \(p\)-stable configuration. By Theorem [4], the algorithm is also self-organizing. \(\square\)

Corollary 2. The one shot query algorithm of Baldoni et al. [33] is strongly self-organizing with respect to property: “The initiator of a query receives at least all the values held by nodes that are connected to it through a subgraph of \(G\) during the whole process”.

Finally, we can establish a hierarchy of self-organizing classes. Basically, a class gathers a set of self-organization properties that capture the same information about system entropy. That is, class A is stronger than class B in the hierarchy if the entropy guaranteed by class A encompasses the entropy guaranteed by class B. We have:

Theorem 5 (Self-organization Hierarchy). weak self-organization \(\subset\) self-organization \(\subset\) strong self-organization

Proof. Straightforward from definitions [4, 7] and [14]. \(\square\)
Composition of self-organization criteria

The concept of self-organization can be easily extended to a finite set of criteria. In the following we show that when criteria are not interfering, i.e., when they are independent, then one can build a self-organizing system for a complex criterion by using simple criteria as building blocks. Using the previous example where the local evaluation criterion was proximity, a second global evaluation criterion is needed to decrease the number of hops of a lookup application. For instance, we may want to use a few long links to reduce the lookup length.

Definition 11 (Independent Criteria). Let S be a system and let γ_1 and γ_2 be two global criteria defined on the configurations of S. Let c be a configuration of S and sc and sc' be the sub-configurations of c spanned by γ_1 and γ_2. γ_1 and γ_2 are independent with respect to c if $sc \neq sc'$. γ_1 and γ_2 are independent with respect to S if for any configuration c in S, γ_1 and γ_2 are independent with respect to c.

Definition 12 (Monotonic Composition). Let S be a system and let $\gamma_i \in \gamma_1 \times \ldots \times \gamma_m$ be a monotonic composition of criteria γ_i, $i \in I$ if the following property is verified: $\forall \gamma_i, \gamma_i(c_1) < \gamma_i(c_2)$ if and only if $\exists \gamma_i(c_1) \sim \gamma_i(c_2)$ and $\forall j \neq i \in I, \gamma_j(c_1) \preceq \gamma_j(c_2)$.

Theorem 6 (Multi-criteria Self-organization). Let S be a system and let $\gamma_1 \ldots \gamma_m$ be a set of independent evaluation criteria. If S is weakly, respectively strongly, self-organizing for each γ_i, $i \in [1..m]$ then S is weakly, respectively strongly, self-organizing for $\gamma_1 \times \ldots \times \gamma_m$.

Proof. Let e be a configuration of S and let e_i be the projection of e on the sub-configurations modified by γ_i. Since S is self-organizing with respect to γ_i then e_i is self-organizing with respect to γ_i.

Safety proof. Let f be a static fragment in configuration e and let f_i be the projection of f on the sub-configurations spanned by γ_i. From the hypothesis, for all i, $\gamma_i(\text{begin}(f_i)) \leq \gamma_i(\text{end}(f_i))$, hence $\gamma_i(\text{begin}(f)) \leq \gamma_i(\text{end}(f))$. So, $\gamma(\text{begin}(f)) \leq \gamma(\text{end}(f))$.

Weak liveness proof. Let f_i be a fragment. There is f_j and γ_k such that $\gamma_k(\text{begin}(f_j)) < \gamma_k(\text{end}(f_j))$. Using the safety for all $\gamma_j, j \neq k$ it follows $\gamma(\text{begin}(f_j)) < \gamma(\text{end}(f_j))$.

Overall, S is weak self-stabilizing for γ. The proof for strong self-organization follows using a similar reasoning.

Note that Pastry is self-organizing (cf. Definition 12, Theorem 6) for any monotonic composition of the routing, neighborhood and leaf set criteria.
7 Discussions & Open Problems

In this paper, we have proposed a framework for defining and comparing the self-organizing properties of dynamic systems. Self-organization is a key feature for the newly emerging dynamic networks (peer-to-peer, ad-hoc, robots or sensors networks). Our framework includes formal definitions for self-organization, together with sufficient conditions for proving the self-organization of a dynamic system. We have illustrated our theory by proving the self-organization of two P2P overlays: Pastry and CAN and two fundamental abstractions in distributed computing: the leader oracle \(\Omega \) and the one-shot query problem.

We have also provided a generic algorithm that ensures the self-organization of a system with respect to a given input criterion. Our algorithm is based on the greedy technique, and relies solely on the local knowledge provided by the direct neighborhood of each process. This algorithm can be used as a building-block in the construction of any self-organized DHT-based or unstructured peer-to-peer systems.

Recently, two other formal definitions for self-organization have been proposed in [7] and [14]. In [14] a system is self-organized if it is self-stabilizing and it recovers in sub-linear time following each join or leave. Furthermore, it is assumed that joins and leaves can cause only local changes in the system. Obviously, this definition is too strong to capture the self-organization of P2P systems like Chord or CAN. In [7] the authors extend the definition proposed in [14] in order to capture the self-organization of existing P2P systems. Following [14] a self-organizing system of \(n \) processes is a system that maintains, improves or restores one or more safety properties following the occurrence of a subset of external actions involving the concurrent joins of up to \(n \) processes or the concurrent departures of up to \(\frac{n}{2} \) processes with a sub-linear recovery time per join or leave. However, no study case is proposed.

Several problems are left open for future investigation. The first one is the design of a probabilistic extension to our model. This study is motivated by the fact that connection/disconnection actions are well-modeled by probabilistic laws. Essentially, the liveness property could be redefined using the Markov chains model for probabilistic dynamic I/O automata. Moreover, since our generic algorithm for self-organization uses a greedy deterministic strategy, it may reach just a local maximum for the global criterion. Adding randomized choices could be a way to converge (with high probability) to a global maximum.

We also intend to extend our framework towards a unified theory of the self\(^*\) properties of dynamic systems (i.e., self-healing, self-configuration, self-reconfiguration, self-repairing). To this end, we need to extend our case study to other dynamic systems like robots networks and large scale ad-hoc or sensors networks, that may offer complementary insides for understanding the rules that govern complex adaptive systems.
Acknowledgments

We thank Lisa Higham and Joffroy Beauquier for their valuable comments on an earlier version of this paper.

References

1. M. Kawazoe Aguilera. A pleasant stroll through the land of infinitely many creatures. SIGACT News, 35(2):36–59, 2004.
2. E. Anceaume, X. Dégao, M. Gradinariu, and M. Roy. Towards a theory of self-organization. In Proceedings of the 9th International Conference on Principles of Distributed Systems (OPODIS), 2005.
3. P. Attie and N. Lynch. Dynamic input/output automata: a formal model for dynamic systems. In Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 314–316, 2001.
4. O. Babaoglu, H. Meling, and Montresor A. Anthill: A framework for the developments of agent-based peer-to-peer systems. Proceedings of the International Conference on Distributed Computing Systems (ICDCS), 2002.
5. R. Baldoni, M. Bertier, M. Raynal, and S. Tucci Piergiovanni. Looking for a definition of dynamic distributed systems. In Proceedings of International Conference on Parallel Architectures and Compilation Techniques (PACT), pages 1–14, 2007.
6. M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity in dynamic networks. Journal of Computer and System Sciences, 73, May 2007.
7. A. Berns and S. Ghosh. Dissecting self-* properties. In Proceedings of the IEEE International Conferences on Self-Adaptive and Self-Organizing Systems (SASO), pages 10–19, 2009.
8. S. Capkun, L. Buttyan, and J. P. Hubaux. Self-organized public-key management for mobile ad-hoc networks. Transactions on Mobile Computing, 2003.
9. T.D Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225–267, 1996.
10. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like p2p systems scalable. In Proceedings of the Annual ACM Conference of the Special Interest Group on Data Communication (SIGCOMM), 2003.
11. S. Dolev. Self-Stabilization. The MIT Press, 2000.
12. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. In Proceedings of the Second Workshop on Self-Stabilizing Systems (SSS), 1995.
13. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. Chicago Journal Theoretical Computer Science, 1997.
14. Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-stabilizing and self-organizing distributed algorithm. Theoretical Computer Science, 410(6-7):514–532, 2009.
15. P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer storage utility. In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS VIII), 2001.
16. K. Fujibayashi, S. Murata, K. Sugawara, and M. Yamamura. Self-organizing formation algorithm for active elements. Proceedings of the IEEE International Symposium on Reliable Distributed Systems (SRDS), pages 416–422, 2002.
17. L. Garcés-Erice, E. W. Biersack, and P. Felber. Multi+: Building topology-aware overlay multicast trees. In Proceedings of the 15th International Workshop on Quality of Future Internet Services (QoFIS), pages 11–20, 2004.
18. Gnutella. Gnutella website. http://gnutella.wego.com.
19. P. Brighten Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed systems. In Proceedings of the Annual ACM Conference of the Special Interest Group on Data Communication (SIGCOMM), 2006.
20. T. Herman. Superstabilizing mutual exclusion. Distributed Computing, 13(1):1–17, 2000.
21. G. Kan. Harnessing the benefits of a disruptive technology. O’Reilley & Associates, 2001.
22. H. Fauconnier M. Abboud, C. Delporte-Gallet. Agreement and consistency without knowing the number of correct processes. Proceedings of International Conference on New Technologies of Distributed Systems (Notère)), 2008.
23. A. Montresor, M. Jelasity, and Ö. Babaoğlu. Robust aggregation protocols for large-scale overlay networks. In Proceedings of the 39th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 19–28, 2004.
24. A. Mostéfaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, and A. El Abbadi. From static distributed systems to dynamic systems. In Proceedings of the IEEE International Symposium on Reliable Distributed Systems (SRDS), pages 109–118, 2005.
25. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Proceedings of the Annual ACM Conference of the Special Interest Group on Data Communication (SIGCOMM), pages 161–172. ACM press, 2001.
26. S. P. Ratnasamy. A Scalable Content-Addressable Network. PhD thesis, University of California at Berkeley, 2002.
27. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of the 4th IFIP/ACM Middleware Conference (Middleware ’01), pages 329–350, 2001.
28. A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale, persistent peer-to-peer storage utility. In Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP), pages 188–201, 2001.
29. G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos, S. Mosta®faoui, O. F Rana, M. Ulieru, P. Valckenaers, and C. Van Aart. Self-Organisation: Paradigms and Applications. 2004.
30. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using interest-based locality in p2p systems. Proceedings Infocom’03, 2003.
31. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the ACM SIG/COMM, pages 149–160, aug 2001.
32. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation of geometric patterns. SIAM Journal of Computing, 28:1347–1363, 1999.
33. S. Tucci-Piergiovanni and R. Baldoni. Eventual leader in the infinite arrival message-passing system model. In Proceedings of the 22nd International Symposium on Distributed Computing (DISC), short paper, 2008.
34. J. E. Walter, J. L. Welch, and N. M. Amato. Distributed reconfiguration of metamorphic robot chains. Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 171–180, 2000.
35. H. Zhang and A. Arora. Gs3 : Scalable self-configuration and self-healing in wireless networks. *Proceedings of the 21st Annual ACM Symposium on Principles of Distributed Computing (PODC)*, pages 58–67, 2002.