Interband magnon drag in ferrimagnetic insulators

Naoya Arakawa

1 The Institute of Science and Engineering, Chuo University, Bunkyo, Tokyo, 112-8551, Japan

(Dated: May 9, 2022)

We propose a new drag phenomenon, an interband magnon drag, and report on interaction effects and multiband effects in magnon transport of ferrimagnetic insulators. We study a spin-Seebeck coefficient S_m, a magnon conductivity σ_m, and a magnon thermal conductivity κ_m of interacting magnons for a minimal model of ferrimagnetic insulators using a $1/S$ expansion of the Holstein-Primakoff method, the linear-response theory, and a method of Green’s functions. We show that the interband magnon drag enhances σ_m and reduces κ_m, whereas its total effects on S_m are small. This drag results from the interband momentum transfer induced by the magnon-magnon interactions. We also show that the higher-energy band magnons contribute to S_m, σ_m, and κ_m even for temperatures smaller than the energy difference between the two bands.

I. INTRODUCTION

Magnon transport is the key to understanding spintronics and spin-caloritronics phenomena of magnetic insulators. For example, a magnon spin current is vital for the spin Seebeck effect. Magnon transport is important also for other relevant phenomena.

There are two key issues about magnon transport in ferrimagnetic insulators. One is about multiband effects. Yttrium iron garnet (YIG) is a ferrimagnetic insulator used in various spintronics or spin-caloritronics phenomena. Its magnons have been often approximated as those of a ferromagnet. However, a study using its realistic model showed that not only the lowest-energy band magnons, which could be approximated as those of a ferromagnet, but also the second-lowest-energy band magnons should be considered except for sufficiently low temperatures. Since the experiments using YIG are performed typically at room temperature, it is necessary to clarify the effects of the higher-energy band magnons on the magnon transport. The other is about interaction effects. The magnon-magnon interactions are usually neglected. However, their effects may be drastic in a ferrimagnet because they can induce the interband momentum transfer, which is expected to cause an interband magnon drag by analogy with various drag phenomena. Nevertheless, it remains unclear how the magnon-magnon interactions affect the magnon transport.

In this paper, we provide the first step towards resolving the above issues and propose a new drag phenomenon, the interband magnon drag. We derive three transport coefficients of interacting magnons for a two-sublattice ferrimagnet and numerically evaluate their temperature dependences. We show that the interband magnon drag enhances a magnon conductivity and reduces a magnon thermal conductivity, whereas its total effects on a spin-Seebeck coefficient are small. We also show that the higher-energy band magnons contribute to these transport coefficients even for temperatures lower than the energy splitting of the two bands.

II. MODEL

Our ferrimagnetic insulator is described by

$$H = 2J \sum_{\langle i,j \rangle} S_i \cdot S_j - h \sum_{i=1}^{N/2} S_i^z - h \sum_{j=1}^{N/2} S_j^z,$$

(1)

where the first term is the Heisenberg exchange interaction between nearest-neighbor spins, and the others are the Zeeman energy of a weak magnetic field ($|h| \ll J$). (The ground-state magnetization is aligned parallel to the magnetic field.) We have disregarded the dipolar interaction and the magnetic anisotropy, which are usually much smaller than J. For concreteness, we consider a two-sublattice ferrimagnet on the body-centered cubic lattice (Fig. 1): i’s and j’s in Eq. (1) are site indices of the A and B sublattice, respectively. There are $N/2$ sites per sublattice. Our model can be regarded as a minimal model of ferrimagnetic insulators because a ferrimagnetic state, the spin alignments of which are given by $S_i = \hat{t}(0 0 S_A)$ for all i’s and $S_j = \hat{t}(0 0 - S_B)$ for all j’s, is stabilized for $J > 0$ with the weak magnetic field. We set $h = 1$, $\kappa_B = 1$, and $a = 1$, where a is the lattice constant.

To describe magnons of our ferrimagnetic insulator, we rewrite Eq. (1) by using the Holstein-Primakoff method. By applying the Holstein-Primakoff transfor-
mation[23–25] to Eq. 1 and using a 1/S expansion[23–25] and the Fourier transformation of magnon operators, we can write Eq. 1 in the form

\[H = H_{\text{KE}} + H_{\text{int}}. \] (2)

Here \(H_{\text{KE}} \) represents the kinetic energy of magnons,

\[H_{\text{KE}} = \sum_q \left(\epsilon_{\text{AA}}(q) a_q^\dagger a_q + \frac{1}{2} \right) \left(\epsilon_{\text{AB}}(q) a_q^\dagger b_q + \epsilon_{\text{BB}}(q) b_q^\dagger b_q \right), \] (3)

where \(\epsilon_{\text{AA}}(q) = 2J_0 S_B h \), \(\epsilon_{\text{AB}}(q) = 2\sqrt{S_A S_B} J_q \), \(\epsilon_{\text{BB}}(q) = 2J_0 S_A - h \), and \(J_q = S J \cos \frac{q}{2} \cos \frac{q}{2} \cos \frac{q}{2} \); \(H_{\text{int}} \) represents the leading terms of magnon-magnon interactions,

\[H_{\text{int}} = -\frac{1}{N} \sum_{q_1,q_2,q_3} \delta_{q_1+q_2,q_3+q_4} (2J_0 - q_1, q_4 q_3 b_q^\dagger b_{q_2} + \sqrt{S_A S_B} J_q q_1^\dagger q_3 a_q^\dagger a_{q_2}, a_{q_1} + \text{(H.c.)}) \] (4)

We can also express \(H_{\text{KE}} \) as a two-band Hamiltonian by using the Bogoliubov transformation[23–25]

\[H_{\text{KE}} = \sum_q \left[\epsilon(q) a_q^\dagger a_q + \epsilon(q) b_q^\dagger b_q \right], \] (5)

where \(\epsilon(q) = h + J_0 (S_B - S_A) + \Delta \epsilon q \), \(\epsilon(q) = -h + J_0 (S_A - S_B) + \Delta \epsilon q \), and \(\Delta \epsilon q = \sqrt{J_0^2 (S_A + S_B)^2 - 4S_A S_B J_0^2} \). For \(S_A > S_B \) we have \(\epsilon(q) < \epsilon(q) \). Note that the Bogoliubov transformation is given by \(a_q = (U_q)_{AA} a_q + (U_q)_{AB} b_q^\dagger \) and \(b_q = (U_q)_{BA} a_q + (U_q)_{BB} b_q^\dagger \), where \((U_q)_{AA} = (U_q)_{BB} = \cosh \theta_q, (U_q)_{AB} = (U_q)_{BA} = -\sinh \theta_q \), and these hyperbolic functions satisfy \(\cosh 2q = (J_0(S_A + S_B))/\Delta \epsilon q \) and \(\sinh 2q = (2S_A S_B J_0)/\Delta \epsilon q \). Then, by using the Bogoliubov transformation, we can decompose \(H_{\text{KE}} \) into the intraband and the interband component[23]. Because of these properties, our model is a minimal model to study the two key issues explained above.

III. DERIVATIONS OF TRANSPORT COEFFICIENTS

We consider three transport coefficients: a spin–Seebeck coefficient \(S_m \), a magnon conductivity \(\sigma_m \), and a magnon thermal conductivity \(\kappa_m \). They are given by \(S_m = L_{12} \), \(\sigma_m = L_{11} \), and \(\kappa_m = L_{22} \), where \(L_{\mu\nu} \)'s are defined as

\[j_S = L_{11} E_S + L_{12} \left(\frac{-\nabla T}{T} \right), \] (6)

\[j_Q = L_{21} E_S + L_{22} \left(\frac{-\nabla T}{T} \right). \] (7)

Here \(j_S \) and \(j_Q \) are magnon spin and heat, respectively, current densities, \(E_S \) is a nonthermal external field, and \(\nabla T \) is a temperature gradient. (Note that one of the possible choices of \(E_S \) is a magnetic-field gradient[23]; \(L_{21} = L_{12} \) holds owing to the Onsager reciprocal theorem. It should be noted that although \(\kappa_m \) is generally given by \(\kappa_m = L_{22} - L_{21} L_{12}, \) our definition \(\kappa_m = L_{22} \) is sufficient to describe the thermal magnon transport at low temperatures at which the magnon picture is valid because the \(L_{22} \) gives the leading temperature dependence. Since a magnon chemical potential is zero in equilibrium, \(j_Q = 0 \), where \(j_Q \) is a magnon energy current density. Hereafter we focus on the magnon transport with \(E_S \) or \(-\nabla T/T \) applied along the \(x \) axis.

We express \(L_{\mu\nu} \)'s in terms of the correlation functions using the linear-response theory[22–24]. First, \(L_{12} \) is given by

\[L_{12} = \lim_{\omega \to i\omega_0} \frac{\Phi_{12}^R(\omega) - \Phi_{12}^R(0)}{i\omega}, \] (8)

where \(\Phi_{12}^R(\omega) = \Phi_{12}(i\Omega_n \to \omega + i\delta) \) (\(\delta = 0^+ \)),

\[\Phi_{12}(i\Omega_n) = \int_0^{T-1} d\tau e^{i\Omega_n \tau} \frac{1}{N} \langle T_{\tau} J_S^x(\tau) J_E(\tau) \rangle, \] (9)

and \(\Omega_n = 2\pi T n \) (\(n > 0 \)). Here \(T_\tau \) is the time-ordering operator\[23\] and \(J_S^x \) and \(J_E \) are spin and energy, respectively, current operators. They are obtained from the continuity equations\[25,26\] (see Appendix A); the results are

\[J_S^x = -\sum_{q, l,l' = A,B} \sum_{\nu, q} v_{l\nu}^{\text{pp}}(q) x_q^\dagger x_{\nu q}, \] (10)

\[J_E = \sum_{q, l,l' = A,B} \sum_{\nu} e_{l\nu}^{\text{pe}}(q) x_q^\dagger x_{\nu q}, \] (11)

where \(v_{l\nu}^{\text{pp}}(q) = (1 - \delta_{l,l'}) \frac{\partial \epsilon_{l\nu}(q)}{\partial q_{\nu}} \), \(x_q = a_q \), \(x_{\nu q} = a_{\nu q} \), \(J_E = \frac{e_{l\nu}^{\text{pe}}(q)}{\partial q_{\nu}} \), \(e_{l\nu}^{\text{pe}}(q) = -e_{l\nu}^{\text{pe}}(q) = \epsilon_{l\nu}(q) \frac{\partial x_{\nu q}}{\partial q_{\nu}} \), and \(e_{l\nu}^{\text{pe}}(q) = \epsilon_{l\nu}^{\text{pe}}(q) = \frac{1}{2} \left(\epsilon_{lA}^{\text{pe}} - \epsilon_{lB}^{\text{pe}} \right) \frac{\partial x_{\nu q}}{\partial q_{\nu}} \). In deriving Eqs. (10) and (11), we have omitted the corrections due to \(H_{\text{int}} \) because they may be negligible\[23\]. Then we can obtain \(L_{11} \) by replacing \(J_E \) in \(\Phi_{12}(i\Omega_n) \) by \(J_S^x \), and \(L_{22} \) by replacing \(J_S^x \) in \(\Phi_{12}(i\Omega_n) \) by \(J_E(\tau) \). Thus the derivation of \(L_{12} \) is enough in obtaining \(L_{\mu\nu} \)'s. In addition, since we can derive \(L_{12} \) in a similar way to the derivations of electron transport coefficients\[27–29\], we explain its main points below. (Note that the Bose–Einstein condensation of magnons is absent in our situation.)

By substituting Eqs. (10) and (11) into Eq. (9) and performing some calculations (for the details see Appendix B), we obtain

\[L_{12} = L_{12}^0 + L_{12}' \] (12)

First, \(L_{12}^0 \), the noninteracting \(L_{12} \), is given by (see Appendix B)

\[L_{12}^0 = \frac{1}{\pi N} \sum_{q, \nu} \sum_{\nu' = \nu + \alpha} v_{\nu' \nu}^{\text{pe}}(q) e_{\nu' \nu}^{\text{pe}}(q) J_{\nu' \nu}^{(1)}(q), \] (13)
where \(v_{\nu \nu'}(q) = \sum_{l} v_{\nu l}^\nu(q) (U_l^\nu (U_{\nu'} q) l_{l'}, \)
\(e_{\nu \nu'}(q) = \sum_{l} e_{\nu l}^\nu(q) (U_l^\nu (U_{\nu'} q) l_{l'}, \)
and
\[
L_{\nu \nu'}(q) = \int_{-\infty}^{\infty} dz \frac{dn(z)}{dz} \text{Im} G^R_{\nu}(q, z) \text{Im} G^R_{\nu'}(q, z). \tag{14}
\]

Here \(n(z) = (e^{z/T} - 1)^{-1}, \) \(G^R_{\alpha}(q, z) = [z - \epsilon_{\alpha}(q) + iv\gamma]^{-1}, \)
\(G^R_{\beta}(q, z) = [z + \epsilon_{\beta}(q) + iv\gamma]^{-1}, \) and \(\gamma \) is the magnon damping. Next, \(L_{12} \) is the leading correction due to the first-order perturbation of \(H_{\text{int}} \), is given by (see Appendix B)

\[
L_{12} = \frac{1}{\pi N^2} \sum_{q, q'} \sum_{i j} v_{\nu i \nu j}(q) e_{\nu i \nu j}(q') v_{\nu j \nu i}(q', q') \times [L_{\nu i \nu j}(q) L_{\nu j \nu i}(q') + L_{\nu j \nu i}(q) L_{\nu i \nu j}(q')], \tag{15}
\]

where

\[
L_{\nu i \nu j}(q) = \int_{-\infty}^{\infty} dz \frac{dn(z)}{dz} \text{Im} G^R_{\nu}(q, z) G^R_{\nu}(q, z), \tag{16}
\]

\[V_{\nu i \nu j}(q, q') = 4J_{q-q'} \sum_{l}(U_l^\nu (U_{\nu} q) l_{\nu l} v_{\nu l \nu i}(q') v_{\nu j \nu i}(q) l_{\nu j \nu i}(q', q'), \]

and \(l \) is \(A \) or \(B \) for \(l = A \) or \(B \), respectively. Then we obtain

\[
L_{11} = L^0_{11} + L^1_{11}, L_{22} = L^0_{22} + L^1_{22}, \tag{17}
\]

where \(L^0_{11}, L^1_{11}, \) and \(L^2_{11} \) are obtained by replacing \(e_{\nu \nu}(q) \) in Eq. (13) by \(-v_{\nu \nu}(q) \), \(e_{\nu \nu}(q) \) in Eq. (15) by \(-v_{\nu \nu}(q) \), and \(v_{\nu \nu}(q) \) in Eq. (15) by \(-e_{\nu \nu}(q) \), respectively.

Since we suppose that the magnon lifetime \(\tau = (2\gamma)^{-1} \) is long enough to regard magnons as quasiparticles, we rewrite Eqs. (13) and (15) by taking the limit \(\tau \to \infty \). First, Eq. (13) reduces to

\[
L^0_{12} \sim L^0_{12 \alpha \alpha} + L^0_{12 \beta \beta}. \tag{18}
\]

where

\[
L^0_{12 \nu \nu'} \sim \frac{1}{N} \sum_{q} v_{\nu \nu}(q) e_{\nu \nu}(q) \frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)}. \tag{19}
\]

(The detailed derivation is described in Appendix C.) This expression is consistent with that obtained in the Boltzmann theory with the relaxation-time approximation.\(^{22}\) Equation (15) shows that \(L_{12} \approx L^0_{12 \nu \nu'} \) at sufficiently low temperatures for \(S_A > S_B \) owing to \(\frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)} \gg \frac{\partial n[\epsilon_{\nu'}(q)]}{\partial \epsilon_{\nu'}(q)} \). Similarly, we obtain

\[
L^0_{11} \sim L^0_{11 \alpha \alpha} + L^0_{11 \beta \beta}, L^0_{22} \sim L^0_{22 \alpha \alpha} + L^0_{22 \beta \beta}. \tag{20}
\]

where \(L^0_{11 \nu \nu'} \) and \(L^0_{22 \nu \nu'} \) are obtained by replacing \(e_{\nu \nu}(q) \) in Eq. (19) by \(-v_{\nu \nu}(q) \) and by replacing \(v_{\nu \nu}(q) \) by \(-e_{\nu \nu}(q) \), respectively. Then, as we show in Appendix C, Eq. (15) reduces to

\[
L_{11} \sim L_{11 \nu \nu'} + L_{11 \nu \nu'} + L_{11 \nu \nu'}. \tag{21}
\]

where \(L_{11 \nu \nu'} \) is the correction due to the intraband interactions,

\[
L_{12 \nu \nu'} = \frac{2}{N^2} \sum_{q, q'} v_{\nu \nu'}(q) e_{\nu \nu}(q') \tau_{\nu \nu'}(q, q') - \frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)} \frac{\partial n[\epsilon_{\nu}(q')]}{\partial \epsilon_{\nu}(q')} \tag{22}
\]

and \(L_{12 \nu \nu'} \) and \(L_{12 \nu \nu'} \) are the corrections due to the interband interactions,

\[
L_{12 \nu \nu'} = \frac{2}{N^2} \sum_{q, q'} v_{\nu \nu'}(q) e_{\nu \nu}(q') \tau_{\nu \nu'}(q, q') - \frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)} \frac{\partial n[\epsilon_{\nu}(q')]}{\partial \epsilon_{\nu}(q')} \tag{23}
\]

Here the \(V_{\nu \nu}(q, q') \)’s are given by

\[
V_{\nu \nu}(q, q') = V_{\nu \nu \nu}(q, q') = V_{\nu \nu \nu}(q, q') = 2J_{q-q'} \sinh 2\theta q \sinh 2\theta q', \tag{24}
\]

Equation (24) shows that the interband components of the magnon-magnon interactions cause the energy-current-drag correction and the spin-current-drag correction, which are, in the case for \(S_A > S_B \), the first and the second term, respectively, of Eq. (24). Furthermore, Eqs. (26) and (27) show that other interband components cause the energy-current-drag corrections \(L_{\nu \nu} \)’s and the spin-current-drag corrections \(L_{\nu \nu} \)’s. Since these interband components cause the interband momentum transfer, \(L_{12 \nu \nu'} \) and \(L_{12 \nu \nu'} \) are the corrections due to the interband magnon drag. The similar corrections are obtained for \(L_{11} \) and \(L_{22} \):

\[
L_{11} \sim L_{11 \nu \nu'} + L_{11 \nu \nu'} + L_{11 \nu \nu'}, \tag{25}
\]

\[
L_{22} \sim L_{22 \nu \nu'} + L_{22 \nu \nu'} + L_{22 \nu \nu'}. \tag{26}
\]
where $L'_{11\text{-intra}}$ and $L'_{22\text{-intra}}$ are the corrections due to the intraband interactions,

$$L'_{11\text{-intra}} = L'_{11\text{-intra-}a} + L'_{11\text{-intra-}b},$$

$$L'_{11\text{-intra-}a} = \frac{2}{N^2} \sum_{q, q'} v_{\nu \nu}^x(q) v_{\nu \nu}^x(q') \tau V_{\nu \nu \nu \nu}(q, q') \times \frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)} \frac{\partial n[\epsilon_{\nu}(q')]}{\partial \epsilon_{\nu}(q')},$$

$$L'_{11\text{-intra-}b} = L'_{22\text{-intra-}a} + L'_{22\text{-intra-}b},$$

$$L'_{22\text{-intra-}a} = \frac{2}{N^2} \sum_{q, q'} \epsilon_{\nu \nu}^x(q) \epsilon_{\nu \nu}^x(q') \tau V_{\nu \nu \nu \nu}(q, q') \times \frac{\partial n[\epsilon_{\nu}(q)]}{\partial \epsilon_{\nu}(q)} \frac{\partial n[\epsilon_{\nu}(q')]}{\partial \epsilon_{\nu}(q')},$$

and $L'_{11\text{-inter1}}$, $L'_{11\text{-inter2}}$, $L'_{22\text{-inter1}}$, and $L'_{22\text{-inter2}}$ are the corrections due to the interband interactions,

$$L'_{11\text{-inter1}} = \frac{4}{N^2} \sum_{q, q'} v_{\alpha \alpha}^x(q) v_{\beta \beta}^x(q') \tau V_{\alpha \alpha \beta \beta}(q, q') \times \frac{\partial n[\epsilon_{\alpha}(q)]}{\partial \epsilon_{\alpha}(q)} \frac{\partial n[\epsilon_{\alpha}(q')]}{\partial \epsilon_{\alpha}(q')},$$

$$L'_{11\text{-inter2}} = L'_{11\text{-inter2-}a} + L'_{11\text{-inter2-}b},$$

$$L'_{11\text{-inter2-}a} = \frac{4}{N^2} \sum_{q, q'} \epsilon_{\alpha \alpha}^x(q) \epsilon_{\beta \beta}^x(q') \tau V_{\alpha \alpha \beta \beta}(q, q') \times \frac{\partial n[\epsilon_{\alpha}(q)]}{\partial \epsilon_{\alpha}(q)} \frac{\partial n[\epsilon_{\alpha}(q')]}{\partial \epsilon_{\alpha}(q')},$$

$$L'_{11\text{-inter2-}b} = L'_{22\text{-inter2-}a} + L'_{22\text{-inter2-}b},$$

$$L'_{22\text{-inter2-}a} = \frac{4}{N^2} \sum_{q, q'} \epsilon_{\alpha \alpha}^x(q) \epsilon_{\alpha \alpha}^x(q') \tau V_{\alpha \alpha \alpha \alpha}(q, q') \times \frac{\partial n[\epsilon_{\alpha}(q)]}{\partial \epsilon_{\alpha}(q)} \frac{\partial n[\epsilon_{\alpha}(q')]}{\partial \epsilon_{\alpha}(q')} - \frac{\partial n[\epsilon_{\beta}(q)]}{\partial \epsilon_{\beta}(q')} + \frac{\partial n[\epsilon_{\beta}(q')]}{\partial \epsilon_{\beta}(q')}.$$

As well as $L'_{12\text{-inter1}}$ and $L'_{12\text{-inter2}}$, $L'_{11\text{-inter1}}$, $L'_{11\text{-inter2}}$, $L'_{12\text{-inter1}}$, and $L'_{12\text{-inter2}}$ are the interband magnon drag corrections.

IV. NUMERICAL RESULTS

We numerically evaluate S_m, σ_m, and κ_m. We set $J = 1$, $h = 0.02J$, and $(S_A, S_B) = (\frac{3}{2}, 1)$. $S_A : S_B = 3 : 2$ is consistent with a ratio of Fe^3T to Fe0 sites in the unit cell of YIG23. The reason why $(S_A, S_B) = (\frac{3}{2}, 1)$ is considered is that the transition temperature derived in a mean-field approximation in this case with $J = 3$ meV at $h = 0$ [i.e., $T_c = (16/3)JS_A(S_B + 1) \sim 557$ K] is close to the Curie temperature of YIG, T_c. To perform the momentum summations numerically, we divide the first Brillouin zone into a N_q-point mesh and set $N_q = 24^3 (= N/2)$ (for more details, see Appendix D). The temperature range is chosen to be $0 < T \leq 10J (= 0.6T_N)$ because a previous study29 showed that the magnon theory in which the magnon-magnon interactions are considered in the first-order perturbation theory can reproduce the perpendicular spin susceptibility of MnF$_2$ up to about 0.6T_N, where T_N is the Néel temperature. For simplicity, we determine τ by $\tau^{-1} = \gamma_0 + \gamma_1 T + \gamma_2 T^2$, where $\gamma_0 = 10^{-2}J$, $\gamma_1 = 10^{-4}$, and $\gamma_2 = 10^{-3}$. (The results shown below remain qualitatively unchanged at $h = 0.08J$ and 0.16J, as shown in Appendix E.)

We begin with the temperature dependence of S_m. Figure 2(a) shows that in the range of $0 < T \leq 2J$ $L_{12} \approx L_{12}^{(a)}$ holds, whereas for $T \geq 3J$ the contribution from $L_{12}^{(b)}$ is non-negligible. For example, at $T = 6J$ we have $L_{12}^{(a)}/L_{12}^{(b)} \approx 0.7$. This result indicates that the higher-energy band magnons contribute to S_m even for $T < [\epsilon_\beta(q) - \epsilon_\alpha(q)] = 7.96J$. This may be surprising because their contributions are believed to be negligible at such temperatures. Then, Fig. 2(a) shows that the magnitude of S_m is enhanced by the intraband correction $L_{12\text{-intra}} = L_{12}^{(a)}$, whereas it is reduced by the interband corrections $L_{12\text{-inter}} = \{L_{12}^{(b)} - L_{12}^{(a)}\}$ and $L_{12\text{-inter1}} = L_{12}^{(a)} + L_{12}^{(b)} - L_{12}^{(a)}$ (Table 1). Among these corrections, $L_{12\text{-inter}}$ gives the largest contribution. (As we will see below, this contrasts with the result of L1 or L2, for which the largest contribution comes from $L_{12\text{-inter}}$ or $L_{22\text{-inter2}}$, respectively.)

The reason why the interband magnon drag corrections $L_{12\text{-inter}}$ and $L_{12\text{-inter1}}$ are small is that the energy-current-drag contributions and spin-current-drag contributions [e.g., $L_{12\text{-inter1}}$ and $L_{12\text{-inter2}}$, as are opposite in sign and are nearly canceled out. Figure 2(a) also shows $L_{12}^{(a)} + L_{12}^{(b)} \approx L_{12}^{(a)}$. These results suggest that the total effects of the interband magnon drag on S_m are small.

We turn to σ_m and κ_m. Their temperature dependences are shown in Figs. 2(b) and 2(c). First, we see the β-band magnons contribute to L_{11} for $T \geq 4J$ and to L_{22} for $T \geq 3J$. This result is similar to that of L_{12} and indicates that the multiband effects are significant also for σ_m and κ_m. The largest effects on L_{22} are due to the property that $\epsilon_{\nu \nu}^x(q)$ includes $\epsilon_{\nu}(q)$ [more precisely, $\epsilon_{\nu \nu}^x(q) = v_{\alpha \alpha}^x(q)\epsilon_{\alpha}(q)$ and $\epsilon_{\beta \beta}^x(q) = -v_{\beta \beta}^x(q)\epsilon_{\beta}(q)$]. Then, Figs. 2(b) and 2(c) show that σ_m is enhanced by $L_{11\text{-inter1}}$ and $L_{11\text{-inter2}}$ and that κ_m is enhanced by $L_{12\text{-inter1}}$ and reduced by $L_{22\text{-inter2}}$ and $L_{12\text{-inter2}}$ (Table 1). [Note that $L_{12\text{-inter2}} = L_{12\text{-inter2-}a} + L_{12\text{-inter2-}b}$ and $L_{12\text{-inter2}}$ and $L_{22\text{-inter2}}$, respectively. Since $L_{11\text{-inter2}}$, $L_{11\text{-inter1}}$, $L_{12\text{-inter1}}$, and $L_{22\text{-inter1}}$ are the interband magnon drag corrections, the above results suggest that the interband magnon drag enhances σ_m and reduces κ_m. This implies that the interband magnon drag could be used to enhance the spin current and to reduce the energy current. Since this drag results from the interband momentum transfer...
induced by the magnon-magnon interactions, its effects could be controlled by changing the band splitting energy considerably via external fields. (Such control is meaningful if and only if the magnon picture remains valid.) Note that for ferrimagnetic insulators the effects of the weak magnetic field on the band splitting energy are negligible because this energy for \(h = 0 \) is of the order of \(J \).

(The actual analysis about the possibility of controlling the interband magnon drag is a future problem.)

V. DISCUSSIONS

We discuss the validity of our theory. Since \(H_{\text{int}} \) could be treated as perturbation except near \(T_C \), we believe our theory is appropriate for describing the magnon transport for \(T < T_C \). It may be suitable to treat the magnon-magnon interactions in the Holstein-Primackoff method because the unphysical processes that can appear in a \(S = 1/2 \) ferromagnet are absent in our case. Then the effects of the magnon-phonon interactions may not change the results qualitatively. First, since the interaction-induced magnon polaron occurs only at several values of \(J \); its effect can be avoided. Another effect is to cause the temperature dependence of \(\tau \), and it could be approximately considered as the temperature-dependent \(\tau \). Although the phonon-drag contributions might change \(S_m \), experimental results suggest that such contributions are small or negligible.

We make a short comment about the relation between our theory and the Boltzmann theory. Our theory is based on a method of Green’s functions, which can describe the effects of the damping and the vertex corrections appropriately. In principle, these effects can be described also in the Boltzmann theory if the collision integral is treated appropriately. However, in many analyses using the Boltzmann theory, the collision integral is evaluated in the relaxation-time approximation, in which the vertex corrections are completely omitted. Since our interband magnon drag comes from the vertex corrections due to the first-order perturbation of the quartic terms, the similar result might be obtained also in the Boltzmann theory if the interband components of the collision integral are treated appropriately.

We remark on the implications of our results. First, our interband magnon drag is distinct from a magnon drag in metals. For the latter, magnons drag an electron charge current via the second-order perturbation of a \(s\)-type exchange interaction. Second, the interband magnon drag is possible in various ferrimagnetic insulators and other magnetic systems, such as antiferromagnets,\(^{23,27,56}\) and spiral magnets.\(^{57,67}\) Note that the possible ferrimagnetic insulators include not only YIG, but also some spinel ferrites, such as CoFe\(_2\)O\(_4\) and NiFe\(_2\)O\(_4\).\(^{68,69}\) Third, our theory can be extended to phonons and photons. Thus it may be useful for study-

\[
\text{FIG. 2. The temperature dependences of (a) } S_m (= L_{12}), \text{ (b) } \sigma_m (= L_{11}), \text{ and (c) } \kappa_m (= L_{22}) \text{ for } (S, S_B) = (\frac{3}{2}, 1) \text{ at } h = 0.02J. \text{ } L^{(a)}_{\mu\eta} \text{ and } L^{(b)}_{\mu\eta} \text{ are defined as } L^{(a)}_{\mu\eta} = \mu_{\eta}^{0} + \mu_{\eta}^{\text{intra}} \text{ and } L^{(b)}_{\mu\eta} = \mu_{\eta}^{0} + \mu_{\eta}^{\text{intra}} + \mu_{\eta}^{\text{inter1}} + \mu_{\eta}^{\text{inter2}}, \text{ respectively. Note that } L_{\mu\eta}^{0} = L_{\mu\eta}^{\text{intra}} + L_{\mu\eta}^{\text{inter1}} \text{ and } L_{\mu\eta}^{\text{intra}} + L_{\mu\eta}^{\text{inter2}}. \text{ For } S_m, \text{ the } L_{12}^{0} \text{ is non-negligible for } T \geq 3J \text{ and the largest term of the drag terms is } L_{12}^{\text{inter1}}, \text{ which enhances } |S_m|. \text{ For } \sigma_m, \text{ the } L_{12}^{0} \text{ is non-negligible for } T \geq 4J \text{ and the largest term of the drag terms is } L_{11}^{\text{inter2}}, \text{ which reduces } \kappa_m. \text{ The effects of the other drag terms are summarized in Table I.}

\text{T A B L E ~ I. The effects of the drag terms on } L_{12} (= S_m), L_{11} (= \sigma_m), \text{ and } L_{22} (= \kappa_m). \text{ For } L_{12}, \text{ the } L_{12}^{0} \text{ is enhanced by } L_{12}^{\text{inter1}} \text{ and reduced by } L_{12}^{\text{inter2}}. \text{ For } L_{11}, \text{ the } L_{11}^{0} \text{ is enhanced by } L_{11}^{\text{intra}}, L_{11}^{\text{inter1}}, L_{11}^{\text{inter2}}, \text{ and } L_{22}^{0} \text{ is enhanced by } L_{22}^{\text{intra}} \text{ and reduced by } L_{22}^{\text{inter1}} \text{ and } L_{22}^{\text{inter2}}.

Transport coefficient	Intra term	Inter1 term	Inter2 term
\(L_{12} \)	Enhanced	Reduced	Reduced
\(L_{11} \)	Enhanced	Enhanced	Enhanced
\(L_{22} \)	Enhanced	Reduced	Reduced

\text{\textcopyright 2023 American Physical Society. The final version is published in Phys. Rev. Lett. 121, 227601 (2018).}

\text{FIG. 2. The temperature dependences of (a) } S_m (= L_{12}), \text{ (b) } \sigma_m (= L_{11}), \text{ and (c) } \kappa_m (= L_{22}) \text{ for } (S, S_B) = (\frac{3}{2}, 1) \text{ at } h = 0.02J. \text{ } L^{(a)}_{\mu\eta} \text{ and } L^{(b)}_{\mu\eta} \text{ are defined as } L^{(a)}_{\mu\eta} = \mu_{\eta}^{0} + \mu_{\eta}^{\text{intra}} \text{ and } L^{(b)}_{\mu\eta} = \mu_{\eta}^{0} + \mu_{\eta}^{\text{intra}} + \mu_{\eta}^{\text{inter1}} + \mu_{\eta}^{\text{inter2}}, \text{ respectively. Note that } L_{\mu\eta}^{0} = L_{\mu\eta}^{\text{intra}} + L_{\mu\eta}^{\text{inter1}} \text{ and } L_{\mu\eta}^{\text{intra}} + L_{\mu\eta}^{\text{inter2}}. \text{ For } S_m, \text{ the } L_{12}^{0} \text{ is non-negligible for } T \geq 3J \text{ and the largest term of the drag terms is } L_{12}^{\text{inter1}}, \text{ which enhances } |S_m|. \text{ For } \sigma_m, \text{ the } L_{12}^{0} \text{ is non-negligible for } T \geq 4J \text{ and the largest term of the drag terms is } L_{11}^{\text{inter2}}, \text{ which reduces } \kappa_m. \text{ The effects of the other drag terms are summarized in Table I.}

\text{T A B L E ~ I. The effects of the drag terms on } L_{12} (= S_m), L_{11} (= \sigma_m), \text{ and } L_{22} (= \kappa_m). \text{ For } L_{12}, \text{ the } L_{12}^{0} \text{ is enhanced by } L_{12}^{\text{inter1}} \text{ and reduced by } L_{12}^{\text{inter2}}. \text{ For } L_{11}, \text{ the } L_{11}^{0} \text{ is enhanced by } L_{11}^{\text{intra}}, L_{11}^{\text{inter1}}, L_{11}^{\text{inter2}}, \text{ and } L_{22}^{0} \text{ is enhanced by } L_{22}^{\text{intra}} \text{ and reduced by } L_{22}^{\text{inter1}} \text{ and } L_{22}^{\text{inter2}}.

Transport coefficient	Intra term	Inter1 term	Inter2 term
\(L_{12} \)	Enhanced	Reduced	Reduced
\(L_{11} \)	Enhanced	Enhanced	Enhanced
\(L_{22} \)	Enhanced	Reduced	Reduced
ing transport phenomena of various interacting bosons. Fourth, our results will stimulate further studies of YIG. For example, the reduction in $|S_m|$ due to the multiband effect could improve the differences between the voltages observed in the spin-Seebeck effect and obtained in the Boltzmann theory of the ferromagnet at high temperatures because the voltage is proportional to S_m.

VI. CONCLUSION

We have studied S_m, σ_m, and κ_m of interacting magnons in the minimal model of ferrimagnetic insulators. We derived them by using the linear-response theory and treating the magnon-magnon interactions as perturbation. We showed that some interband components of the magnon-magnon interactions give the corrections to these transport coefficients. These corrections are due to the interband magnon drag, which is distinct from the magnon drag in metals. Then we numerically calculated the temperature dependences of S_m, σ_m, and κ_m for $(S_A, S_B) = (\frac{3}{2}, 1)$ and $h = 0.02J$. We showed that the total effects of the interband magnon drag on S_m become small, whereas it enhances σ_m and reduces κ_m. The latter result may suggest that the interband magnon drag could be used to enhance the spin current and reduce the energy current. For S_m, the interband corrections become small because they lead to the energy-current-drag contributions and spin-current-drag contributions, which are opposite in sign and are nearly canceled out. We also showed that the contributions from the higher-energy band magnons to S_m, σ_m, and κ_m are non-negligible even for temperatures lower than the band splitting. This result indicates the importance of the multiband effects.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants No. JP19K14664 and JP22K03532. The author also acknowledges support from JST CREST Grant No. JP-MJCR1901.

Appendix A: Derivations of Eqs. (10) and (11)

We explain the details of the derivations of $J^{(S)}_A$ and $J^{(S)}_B$, Eqs. (10) and (11). As described in the main text, they are obtained from the continuity equations. Such a derivation is explained, for example, in Ref. 55.

We begin with the derivation of $J^{(S)}_A$. (Note that the following derivation, which is applicable to collinear magnets, can be extended to noncollinear magnets.) We suppose that the z component of a spin angular momentum, S^z_m, satisfies

$$\frac{dS^z_m}{dt} + \nabla \cdot \mathbf{j}^{(S)}_m = 0,$$ \hspace{1cm} (A1)

where $\mathbf{j}^{(S)}_m$ is a spin current operator at site m. Using this equation, we have

$$\frac{d}{dt} \left(\sum_m R_m S^z_m \right) = - \sum_m R_m \nabla \cdot \mathbf{j}^{(S)}_m = \sum_m \mathbf{j}^{(S)}_m = J^{(S)}_l,$$ \hspace{1cm} (A2)

Here l is A or B when the sum \sum_m takes over sites on the A or the B sublattices, respectively. In deriving the second equal in Eq. (A2) we have omitted the surface contributions. $J^{(S)}_A$ is given by the x component of \mathbf{J}_S, where

$$\mathbf{J}_S = J^{(S)}_A + J^{(S)}_B.$$ \hspace{1cm} (A3)

Combining Eq. (A2) with the Heisenberg equation of motion, we obtain

$$J^{(S)}_l = i \sum_m R_m \left[H, S^z_m \right],$$ \hspace{1cm} (A4)

where H is the Hamiltonian of the system considered. Then, since we focus on the magnon system described by $H = H_{KE} + H_{int}$, where H_{KE} and H_{int} are given in the main text, and treat H_{int} as perturbation, we replace H in Eq. (A4) by H_{KE} and S^z_m in Eq. (A4) either by $S_A - a^\dagger_m a_m$ for $l = A$ or by $-S_B + b^\dagger_m b_m$ for $l = B$; as a result, we obtain

$$J^{(S)}_A = i \sum_{(i,j)} \sum_m R_m \left[h^0_{ij}, S_A - a^\dagger_m a_m \right],$$ \hspace{1cm} (A5)

$$J^{(S)}_B = i \sum_{(i,j)} \sum_m R_m \left[h^0_{ij}, -S_B + b^\dagger_m b_m \right],$$ \hspace{1cm} (A6)

where $H_{KE} = \sum_{(i,j)} h^0_{ij}$ and $h^0_{ij} = (2JS_B + \delta_{i,j}h)a^\dagger_i a_i + (2JS_A - \delta_{i,j}h)b^\dagger_i b_i + 2J \sqrt{S_A S_B} (a^\dagger_i b^\dagger_j + a_i b_j)$. Note that the replacement of H by H_{KE} may be suitable because the corrections due to H_{int} are next-leading terms; and that the replacement of S^z_m by $S_A - a^\dagger_m a_m$ or by $-S_B + b^\dagger_m b_m$ corresponds to the Holstein-Primakoff transformation of the ferrimagnet. After some algebra, we can write Eqs. (A5) and (A6) as follows:

$$J^{(S)}_A = -i2J \sqrt{S_A S_B} \sum_{(i,j)} R_i (a_i b_j - a_i^\dagger b_j^\dagger),$$ \hspace{1cm} (A7)

$$J^{(S)}_B = i2J \sqrt{S_A S_B} \sum_{(i,j)} R_j (a_i b_j - a_i^\dagger b_j^\dagger).$$ \hspace{1cm} (A8)

Combining these equations with Eq. (A3), we have

$$\mathbf{J}_S = -i2J \sqrt{S_A S_B} \sum_{(i,j)} (R_i - R_j) (a_i b_j - a_i^\dagger b_j^\dagger).$$ \hspace{1cm} (A9)
Then, by using the Fourier coefficients of the magnon operators,
\[a_i = \sqrt{\frac{2}{N}} \sum_q a_q e^{i q \cdot R_i}, \quad b_j = \sqrt{\frac{2}{N}} \sum_q b_q e^{i q \cdot R_j}, \quad (A10) \]
we can rewrite Eq. (A9) as follows:
\[J_S = -2J \sqrt{S_A S_B} \sum_q \frac{\partial J_B}{\partial q} (a_q b_q + a_q^\dagger b_q^\dagger) \]
\[= -\sum_q \frac{\partial \epsilon_{AB}(q)}{\partial q} (x_q^\dagger x_q A + x_q A x_q B), \quad (A11) \]
where \(J_q = \frac{1}{N} \sum_{j=1}^{N} e^{i q \cdot (R_j - R_j)} = 8J \cos \frac{q_x}{2} \cos \frac{q_y}{2} \cos \frac{q_z}{2}, \)
\(\epsilon_{AB}(q) = 2J \sqrt{S_A S_B} J_q, \quad x_q A = a_q, \) and \(x_q B = b_q^\dagger. \) Note that \(z \) is the number of nearest-neighbor sites \((z = 8). \)
The component of Eq. (A11) gives Eq. (10).

In a similar way we can obtain the expression of \(J_E. \)
(The following derivation is similar to that for an antiferromagnet[12].) First, we suppose that the Hamiltonian at site \(m, h_m, \) satisfies
\[\frac{dh_m}{dt} + \nabla \cdot j^{(E)} = 0, \quad (A12) \]
where \(j^{(E)} \) is an energy current operator at site \(m. \) Because of this relation, the energy current operator \(J_E \) can be determined from
\[J_E = J_A^{(E)} + J_B^{(E)}, \quad (A13) \]
where \(J_l^{(E)} \) is given by
\[J_l^{(E)} = i \sum_{m,n} R_{mn} [h_m, h_n], \quad (A14) \]
the sum \(\sum_m \) take over sites on the \(A \) or the \(B \) sublattice, and the sum \(\sum_n \) take over sites on sublattice \(l. \) Then, to calculate the commutator in Eq. (A14), we consider the contributions only from \(H_{KE} \) and neglect the corrections due to \(H_{int}, \) as in the derivation of \(J_l^{(S)}. \) As a result, \(h_m \) for \(m \in A \) is given by
\[h_m^0 = (2S_B z + h) a_m^0 a_m + \sqrt{S_A S_B} \sum_j J_j (a_m b_j + a_m^\dagger b_j^\dagger), \quad (A15) \]
and that for \(m \in B \) is given by
\[h_m^0 = (2S_A z - h) b_m^0 b_m + \sqrt{S_A S_B} \sum_i J_i m (a_i b_m + a_i^\dagger b_m^\dagger). \quad (A16) \]
Here \(m \in A \) or \(B \) means that \(m \) is on the \(A \) or \(B \) sublattice, respectively, and \(J_{ij} = J_{ji} = J \) for nearest-neighbor sites \(i \) and \(j. \) Note that \(\sum_{i=1}^{N/2} h_i^0 + \sum_{i=1}^{N/2} h_i^0 B = H_{KE}. \) In our definition, the energy current operator includes the contribution from the Zeeman energy [see Eq. (A14)–(A16)]. Combining Eqs. (A15) and (A16) with Eqs. (A13) and (A14), we have
\[J_E = i \sum_{m,n} R_{mn} [h_m^0, h_n^0] + i \sum_{m,n} R_{mn} [h_m^0 B, h_n^0 B] \]
\[+ i \sum_{m,n} R_{mn} [h_m^0 A, h_n^0 B] + i \sum_{m,n} R_{mn} [h_m^0 B, h_n^0 A]. \quad (A17) \]
Then we can calculate the commutators in Eq. (A17) by using the commutation relations of the magnon operators and the identities \([AB, C] = A[B, C] + [A, C]B\) and \([A, BC] = [A, B]C + BA; C\); the results are
\[[h_m^0 A, h_n^0 A] = S_A S_B \sum_j J_m J_n (a_m a_n - a_m^\dagger a_n^\dagger), \quad (A18) \]
\[[h_m^0 B, h_n^0 B] = S_A S_B \sum_n J_m J_n (b_m b_n - b_m b_n^\dagger), \quad (A19) \]
\[[h_m^0 A, h_n^0 B] = S_A S_B \sum_j J_m J_n (b_m b_n^\dagger - b_m b_n^\dagger) \]
\[+ [2J z (S_A - S_B) - 2h] \sqrt{S_A S_B} J_{mn} \]
\[\times (a_m a_n - a_m a_n^\dagger), \quad (A20) \]
\[[h_m^0 B, h_n^0 A] = S_A S_B \sum_n J_m J_n (b_m b_n^\dagger - b_m b_n^\dagger) \]
\[+ [-2J z (S_A - S_B) + 2h] \sqrt{S_A S_B} J_{mn} \]
\[\times (a_m a_n - a_m a_n^\dagger) \]
\[+ S_A S_B \sum_i J_m J_n (a_i a_i^{\dagger} a_i - a_i a_i^{\dagger} a_i^{\dagger}). \quad (A21) \]
By substituting these equations into Eq. (A17) and performing some calculations, we obtain
\[J_E = 2i \sum_{m,n,j} (R_{mn} - R_{mn}) S_A S_B J_{mn} J_{jm} a_m^\dagger a_n m \]
\[- 2i \sum_{m,n,i} (R_{mn} - R_{mn}) S_A S_B J_{mn} J_{im} b_m b_i^\dagger \]
\[+ i \sum_{m,n} (R_{mn} - R_{mn}) [2J z (S_A - S_B) - 2h] \sqrt{S_A S_B} \]
\[\times J_{mn} (a_m a_n - a_m a_n^\dagger). \quad (A22) \]
As in the derivation of \(J_S, \) we can rewrite Eq. (A22) by using the Fourier coefficients of the magnon operators [Eq. (A10)]; as a result, we have
\[J_E = - \sum_q 2 \sqrt{S_A S_B} J_q 2 \sqrt{S_A S_B} \frac{\partial J_q}{\partial q} (a_q a_q - b_q b_q^\dagger) \]
\[- [J_0 (S_A - S_B) - h] 2 \sqrt{S_A S_B} \frac{\partial J_q}{\partial q} (a_q b_q + a_q^\dagger b_q^\dagger). \quad (A23) \]
Since $\epsilon_{AA} = 2J_0 S_B + h, \epsilon_{BB} = 2J_0 S_A - h,$ and $\epsilon_{AB}(q) = 2\sqrt{S_A S_B} J_q$, we can write Eq. (A23) as follows:

$$J_E = -\sum_q \epsilon_{AB}(q) \frac{\partial \epsilon_{AB}(q)}{\partial q} (a^\dagger_q a_q - b^\dagger_q b_q)$$
$$+ \sum_q \frac{1}{2} (\epsilon_{AA} - \epsilon_{BB}) \frac{\partial \epsilon_{AB}(q)}{\partial q} (a^\dagger_q b_q + a^\dagger_b q)$$
$$\quad = \sum q \sum_{l, l' = A, B} e_E^l (q) x_{ql}^l x_{q'l'}, \quad \text{ (A24)}$$

where $e_{AA}(q) = -\epsilon_{BB}(q) = -\epsilon_{AB}(q) \frac{\partial \epsilon_{AB}(q)}{\partial q}$ and $e_{AB}(q) = e_{BA}(q) \frac{1}{2} (\epsilon_{AA} - \epsilon_{BB}) \frac{\partial \epsilon_{AB}(q)}{\partial q}$. Equation [A24] for the x component is Eq. (11).

Appendix B: Derivations of Eqs. (13) and (15)

We derive Eqs. (13) and (15). As described in the main text, their derivations can be done in a similar way to the derivations of electron transport coefficients. The transport coefficients can be derived by using a method of Green’s function. We first derive L_{12}^0, the noninteracting L_{12}, and then derive L_{12}', the leading correction to L_{12} due to the first-order perturbation of H_{int}.

First, we derive L_{12}^0, Eq. (13). Substituting Eqs. (10) and (11) into Eq. (9), we have

$$\Phi_{12}(i\Omega_n) = -\frac{1}{N} \sum_{q, q'} \sum_{l_1 l_2 l_3 l_4} v_{l_1 l_2}^x(q) e_{l_3 l_4}^x(q')$$
$$\times \int_0^{T-1} d\tau e^{i\Omega_n \tau} \left(T \tau x_{ql}^l (\tau) x_{ql'}^l (\tau) x_{ql}^l x_{ql'}^l \right)$$
$$\quad = -\frac{1}{N} \sum_{q, q'} \sum_{l_1 l_2 l_3 l_4} v_{l_1 l_2}^x(q) e_{l_3 l_4}^x(q')$$
$$\times G^{(11)}_{l_1 l_2 l_3 l_4}(q, q', i\Omega_n), \quad \text{ (B1)}$$

where $\Omega_n = 2\pi T n$ with $n > 0$. (Note that the n and m used in this section are different from those used in Appendix A.) Equation (B1) provides a starting point to derive L_{12}^0 and L_{12}'. To derive L_{12}^0, we calculate $G^{(11)}_{l_1 l_2 l_3 l_4}(q, q'; i\Omega_n)$ in the absence of H_{int} by using Wick’s theorem, the result is

$$G^{(11)}_{l_1 l_2 l_3 l_4}(q, q'; i\Omega_n) = \delta_{q q'} T \sum_m G_{l_1 l_2 l_3 l_4}(q, i\Omega_n + i\Omega_m)$$
$$\times G_{l_1 l_2 l_3 l_4}(q, i\Omega_m), \quad \text{ (B2)}$$

where $G_{l\nu}(q, i\Omega_m)$ is the magnon Green’s function in the sublattice basis with $\Omega_m = 2\pi T m$ and an integer m,

$$G_{l\nu}(q, i\Omega_m) = -\int_0^{T-1} d\tau e^{i\Omega_m \tau} (T \tau x_{ql}(\tau) x_{ql}^\dagger(\tau)). \quad \text{ (B3)}$$

Then the magnon operators in the sublattice basis, x_{ql} and x_{ql}^\dagger, are connected with those in the band basis, $x_{ql'}$ and $x_{ql'}^\dagger$, through the Bogoliubov transformation,

$$x_{ql} = \sum_{\nu = \alpha, \beta} (U_q)_{l\nu} x_{ql'}, \quad \text{ (B4)}$$

where $x_{ql} = \alpha_q, x_{ql'} = \beta_q^\dagger (U_q)_{A\alpha} = (U_q)_{B\beta} = \cosh \theta_q$, and $(U_q)_{A\beta} = (U_q)_{B\alpha} = -\sinh \theta_q; as described in the main text, these hyperbolic functions satisfy $\cosh 2\theta_q = J_0 (S_A + S_B)$ and $\sinh 2\theta_q = 2\sqrt{S_A S_B} J_q$. Thus $G_{l\nu}(q, i\Omega_m)$ is related to the magnon Green’s function in the band basis, $G_{\nu}(q, i\Omega_m)$:

$$G_{l\nu}(q, i\Omega_m) = \sum_{\nu = \alpha, \beta} (U_q)_{l\nu} (U_q)_{l\nu}^\dagger G_{\nu}(q, i\Omega_m), \quad \text{ (B5)}$$

where

$$G_{\alpha}(q, i\Omega_m) = \frac{1}{i\Omega_m - \epsilon_{\alpha}(q)}, \quad G_{\beta}(q, i\Omega_m) = -\frac{1}{i\Omega_m + \epsilon_{\beta}(q)}. \quad \text{ (B6)}$$

Combining Eq. (B5) with Eqs. (B2) and (B1), we have

$$\Phi_{12}(i\Omega_n) = -\frac{1}{N} \sum_q \sum_{\nu, \nu' = \alpha, \beta} v_{\nu, \nu'}^x(q) e_{\nu, \nu'}^x(q)$$
$$\times T \sum_m G_{\nu}(q, i\Omega_n + m) G_{\nu'}(q, i\Omega_m)$$
$$\quad = -\frac{1}{N} \sum_q \sum_{\nu, \nu' = \alpha, \beta} v_{\nu, \nu'}^x(q) e_{\nu, \nu'}^x(q) G^{(11)}_{\nu, \nu'}(q, i\Omega_n), \quad \text{ (B7)}$$

where

$$v_{\nu, \nu'}^x(q) = \sum_{l_1 l_2} v_{l_1 l_2}^x(q) (U_q)_{l_1 \nu} (U_q)_{l_2 \nu'}, \quad \text{ (B8)}$$
$$e_{\nu, \nu'}^x(q) = \sum_{l_1 l_2} e_{l_1 l_2}^x(q) (U_q)_{l_1 \nu} (U_q)_{l_2 \nu'}. \quad \text{ (B9)}$$

Then we can rewrite $G^{(11)}_{\nu, \nu'}(q, i\Omega_n)$ in Eq. (B7) as follows:

$$G^{(11)}_{\nu, \nu'}(q, i\Omega_n) = \int_0^{2\pi z} \frac{dz}{2\pi z} n(z) G_{\nu}(q, i\Omega_n + z) G_{\nu'}(q, z)$$
$$\quad + T [G_{\nu}(q, i\Omega_n) G_{\nu'}(q, 0) + G_{\nu}(q, 0) G_{\nu'}(q, -i\Omega_n)], \quad \text{ (B10)}$$

where $n(z)$ is the Bose distribution function, $n(z) = (e^{z/T} - 1)^{-1}$, and C is one of the contours shown in Fig. 3. Using Eqs. (B10) and (B6), we obtain
The analytic continuation

\[G^{(i)}_{\nu}(q, i\Omega_n) = \int_{-\infty}^{\infty} \frac{dz}{2\pi i} n(z) \left\{ G^R_{\nu}(q, z + i\Omega_n)[G^R_{\nu}(q, z) - G^A_{\nu}(q, z)] + [G^R_{\nu}(q, z) - G^A_{\nu}(q, z)]G^A_{\nu}(q, z - i\Omega_n) \right\}, \]

(B11)

where \(G^R_{\nu}(q, z) \) is the retarded magnon Green’s function,

\[G^R_{\alpha}(q, z) = \frac{1}{z - \epsilon_\alpha(q) + i\gamma}, \quad G^R_{\beta}(q, z) = -\frac{1}{z + \epsilon_\beta(q) + i\gamma}, \]

(B12)

\(G^A_{\nu}(q, z) \) is the advanced one, and \(\gamma \) is the magnon damping. By combining Eq. (B11) with Eq. (B7) and performing the analytic continuation \(i\Omega_n \to \omega + i\delta \) with \(\delta = 0^+ \), we have

\[
\Phi^R_{12}(\omega) = \Phi_{12}(i\Omega_n \to \omega + i\delta) = -\frac{1}{N} \sum_q \sum_{\nu, \nu' = \alpha, \beta} v_{\nu', \nu}^\nu(q)e_{\nu', \nu}^\nu(q) \int_{-\infty}^{\infty} \frac{dz}{2\pi i} n(z)
\]

\[
\times \left\{ G^R_{\nu}(q, z + \omega)[G^R_{\nu}(q, z) - G^A_{\nu}(q, z)] + [G^R_{\nu}(q, z) - G^A_{\nu}(q, z)]G^A_{\nu}(q, z - \omega) \right\}.
\]

(B13)

By using \(G(z + \omega) = G(z) + \omega \frac{dG(z)}{dz} + O(\omega^2) \) and performing the partial integration, we obtain

\[
L^0_{12} = \lim_{\omega \to 0} \frac{\Phi^R_{12}(\omega) - \Phi^R_{12}(0)}{i\omega} = -\frac{1}{4N} \sum_q \sum_{\nu, \nu' = \alpha, \beta} v_{\nu', \nu}^\nu(q)e_{\nu', \nu}^\nu(q) \int_{-\infty}^{\infty} \frac{dz}{\pi} \frac{\partial n(z)}{\partial z} \left[G^R_{\nu}(q, z)G^R_{\nu}(q, z) - 2G^R_{\nu}(q, z)G^A_{\nu}(q, z) + G^A_{\nu}(q, z)G^A_{\nu}(q, z) \right]
\]

\[
= \frac{1}{N} \sum_q \sum_{\nu, \nu' = \alpha, \beta} v_{\nu', \nu}^\nu(q)e_{\nu', \nu}^\nu(q) \int_{-\infty}^{\infty} \frac{dz}{\pi} \frac{\partial n(z)}{\partial z} \text{Im}G^R_{\nu}(q, z)\text{Im}G^R_{\nu}(q, z).
\]

(B14)

In deriving this equation, we have used the symmetry relations \(v_{\nu', \nu}^\nu(q) = v_{\nu' \nu}^\nu(q) \) and \(e_{\nu', \nu}^\nu(q) = e_{\nu' \nu}^\nu(q) \). Equation (B14) is Eq. (13).

Next, we derive \(L'_{12} \), Eq. (15). By using Eq. (B1), we can write the correction due to the first-order perturbation of \(H_{\text{int}} \) as follows:

\[
\Delta\Phi_{12}(i\Omega_n) = \frac{1}{N} \sum_{q, q', l_1, l_2, l_3, l_4 = A, B} v_{l_1 l_2}^\nu(q) e_{l_3 l_4}^\nu(q') \int_0^{T-1} d\tau e^{i\Omega_n \tau} \int_0^{T-1} d\tau_1 (T_{\tau} x_{q l_1}(\tau)x_{q l_2}(\tau)^\dagger x_{q' l_3} x_{q' l_4} H_{\text{int}}(\tau_1)).
\]

(B15)

[Note that \(H_{\text{int}} \) has been defined in Eq. (14).] By using Wick’s theorem\(^{[21]}\), we can calculate \(\langle T_{\tau} x_{q l_1}(\tau)x_{q l_2}(\tau)^\dagger x_{q' l_3} x_{q' l_4} H_{\text{int}}(\tau_1) \rangle \); the result is

\[
\langle T_{\tau} x_{q l_1}(\tau)x_{q l_2}(\tau)^\dagger x_{q' l_3} x_{q' l_4} H_{\text{int}}(\tau_1) \rangle = -\frac{1}{N} \sum_{l_5, l_6, \tau_5, \tau_6 = A, B} V_{l_5 l_6 l_1 l_2}(q, q') G_{l_5 l_1}(q, \tau_1 - \tau) G_{l_2 l_6}(q, \tau - \tau_1)
\]

\[
\times G_{l_1 l_3}(q', \tau_1) G_{l_2 l_4}(q', -\tau_1),
\]

(B16)
where \(G_{II'}(\mathbf{q}, \tau) = T \sum_{m} e^{-i\Omega_{n}\tau} G_{II'}(\mathbf{q}, i\Omega_{n}) \),

\[
V_{i\delta l \delta l' \delta n}(\mathbf{q}, \mathbf{q}') = \begin{cases}
4J_0 & (l_5 = l_6 = l, l_7 = l_8 = \bar{l}), \\
4J_{q-q'} & (l_5 = l_8 = l, l_6 = l_7 = \bar{l}), \\
2J_{q'} \sqrt{\frac{S_{\delta l}}{S_{\delta n}}} & (l_5 = l_6 = B, l_7 = l_8 = \bar{l}), \\
2J_{q} \sqrt{\frac{S_{\delta l}}{S_{\delta n}}} & (l_5 = l_6 = \bar{l}, l_7 = l_8 = B), \\
2J_{q'} \sqrt{\frac{S_{\delta l}}{S_{\delta n}}} & (l_5 = l_6 = A, l_7 = l_8 = \bar{l}), \\
2J_{q} \sqrt{\frac{S_{\delta l}}{S_{\delta n}}} & (l_5 = l_6 = \bar{l}, l_7 = l_8 = A), \\
\end{cases}
\] (B17)

and \(\bar{l} = B \) or \(A \) for \(l = A \) or \(B \), respectively. Then, by substituting Eq. (B16) into Eq. (B15) and carrying out the integrations, we obtain

\[
\Delta \Phi_{12}(i\Omega_{n}) = -\frac{1}{N^2} \sum_{\mathbf{q}, \mathbf{q}'} \sum_{l_1, l_2, \cdots, l_N = A, B} v^{\nu}_{l_1 l_2} G_{l_1 l_2}(\mathbf{q}, \mathbf{q}') V_{i\delta l \delta l' \delta n}(\mathbf{q}, \mathbf{q}') T^2 \sum_{m, m'} G_{l_3 l_4}(\mathbf{q}, i\Omega_{m}) G_{l_5 l_6}(\mathbf{q}, i\Omega_{m+n}) \times G_{l_1 l_2}(\mathbf{q}', i\Omega_{m+N}) G_{l_3 l_4}(\mathbf{q}', i\Omega_{m'}) \times G_{l_5 l_6}(\mathbf{q}', i\Omega_{m'+n+N}).
\] (B18)

Furthermore, we can rewrite this equation by using the Bogoliubov transformation [i.e., Eq. (B4)]; the result is

\[
\Delta \Phi_{12}(i\Omega_{n}) = -\frac{1}{N^2} \sum_{\mathbf{q}, \mathbf{q}'} \sum_{\nu, \nu'} v^{\nu}_{l_1 l_2} G_{l_1 l_2}(\mathbf{q}, \mathbf{q}') V_{i\delta l \delta l' \delta n}(\mathbf{q}, \mathbf{q}') \Delta G_{v_{\nu_1 2v_{\nu_2 3v_{\nu_4}}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}'; i\Omega_{n}), \] (B19)

where

\[
V_{\nu_1 2v_{\nu_2 3v_{\nu_4}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}') = \sum_{l_5, l_6, l_7, l_8 = A, B} V_{i\delta l \delta l' \delta n}(\mathbf{q}, \mathbf{q}') (U_{l_5} U_{l_6} U_{l_7} U_{l_8})_{l_5 l_6 l_7 l_8},
\] (B20)

\[
\Delta G_{v_{\nu_1 2v_{\nu_2 3v_{\nu_4}}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}'; i\Omega_{n}) = T^2 \sum_{m, m'} G_{\nu_1}(\mathbf{q}, i\Omega_{m}) G_{\nu_2}(\mathbf{q}, i\Omega_{m+n}) G_{\nu_3}(\mathbf{q}', i\Omega_{m+n}) G_{\nu_4}(\mathbf{q}', i\Omega_{m'+n+N}). \] (B21)

Since \(v^{\nu}_{l_1 l_2}(\mathbf{q}) \) and \(e^{\nu}_{l_1 l_2}(\mathbf{q}') \) are odd functions in term of \(q_{l_1} \) and \(q'_{l_2} \), respectively, and \(G_{\nu}(\mathbf{q}, i\Omega_{m}) \)'s are even functions, the finite terms of \(V_{\nu_1 2v_{\nu_2 3v_{\nu_4}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}') \) in Eq. (B19), i.e., the terms which are finite even after carrying out \(\sum_{\mathbf{q}, \mathbf{q}'} \), come only from \(V_{ABBA}(\mathbf{q}, \mathbf{q}') = V_{BABA}(\mathbf{q}, \mathbf{q}') = 4J_{q-q'} \) [Eq. (B17)]; because of this property, we can replace Eq. (B20) by

\[
V_{\nu_1 2v_{\nu_2 3v_{\nu_4}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}') = \sum_{l_5, l_6, l_7, l_8 = A, B} 4J_{q-q'} (U_{l_5} U_{l_6} U_{l_7} U_{l_8})_{l_5 l_6 l_7 l_8}. \] (B22)

Then, as in \(G_{v_{\nu_1 2v_{\nu_2 3v_{\nu_4}}} G_{\nu_4}}(\mathbf{q}, i\Omega_{n}) \) [Eq. (B10)], we can replace the sums in Eq. (B21) by the corresponding integrals:

\[
\Delta G_{v_{\nu_1 2v_{\nu_2 3v_{\nu_4}}} G_{\nu_4}}(\mathbf{q}, \mathbf{q}'; i\Omega_{n}) = \left[\int_{C^R} \frac{dz}{2\pi i} n(z) G_{\nu_1}(\mathbf{q}, z) G_{\nu_2}(\mathbf{q}, z + i\Omega_{n}) + A \right] \left[\int_{C^R} \frac{dz'}{2\pi i} n(z') G_{\nu_3}(\mathbf{q}', z') + A' \right]
\] (B23)

where \(A = T[G_{\nu_1}(\mathbf{q}, 0) G_{\nu_3}(\mathbf{q}, i\Omega_{n}) + G_{\nu_1}(\mathbf{q}, -i\Omega_{n}) G_{\nu_3}(\mathbf{q}, 0)], A' = T[G_{\nu_3}(\mathbf{q}', i\Omega_{n}) G_{\nu_4}(\mathbf{q}', 0) + G_{\nu_3}(\mathbf{q}', 0) G_{\nu_4}(\mathbf{q}', -i\Omega_{n})], \) and \(C \) or \(C' \) is one of the contours shown in Fig. 3. By substituting Eq. (B11) into Eq. (B23) and performing the analytic continuation \(i\Omega_{n} \to \omega + i\delta (\delta = 0+) \), we have

\[
\Delta \Phi_{12}(\omega) = \Delta \Phi_{12}(i\Omega_{n} \to \omega + i\delta)
\]

\[
= -\frac{1}{N^2} \sum_{\mathbf{q}, \mathbf{q}'} \sum_{l_5, l_6, l_7, l_8 = A, B} v^{\nu}_{l_1 l_2} G_{l_1 l_2}(\mathbf{q}, \mathbf{q}') V_{i\delta l \delta l' \delta n}(\mathbf{q}, \mathbf{q}')
\times \int_{-\infty}^{\infty} \frac{dz}{2\pi i} n(z) \left[G_{\nu_1}(\mathbf{q}, z) - G_{\nu_1}(\mathbf{q}, z + \omega) \right] \left[G_{\nu_1}(\mathbf{q}, z + \omega) - G_{\nu_1}(\mathbf{q}, z) \right]
\times \int_{-\infty}^{\infty} \frac{dz'}{2\pi i} n(z') \left[G_{\nu_3}(\mathbf{q}', z') - G_{\nu_3}(\mathbf{q}', z' + \omega) \right] \left[G_{\nu_3}(\mathbf{q}', z' + \omega) - G_{\nu_3}(\mathbf{q}', z') \right]. \] (B24)
Then, by performing the calculations similar to the derivation of Eq. (B14), we obtain

\[L_{12}' = \lim_{\omega \to 0} \frac{\Delta \Phi_{12}^R(\omega) - \Delta \Phi_{12}^R(0)}{i\omega} = \frac{1}{4\pi^2 L^2} \sum_{q,q'} \sum_{\nu_1,\nu_2,\nu_3,\nu_4} v_{\nu_1\nu_2}(q) v_{\nu_3\nu_4}(q') V_{\nu_1\nu_2\nu_3\nu_4}(q,q') \left[F_{\nu_1\nu_2}^{(1)}(q) F_{\nu_3\nu_4}^{(11)}(q') + F_{\nu_1\nu_2}^{(11)}(q) F_{\nu_3\nu_4}^{(1)}(q') \right], \]

(B25)

where

\[
F_{\nu\nu'}^{(1)}(q) = -\int_{-\infty}^{\infty} dz \frac{\partial n(z)}{\partial z} \left[G_\nu^R(q,z)G_\nu^R(q,z) + G_\nu^A(q,z)G_\nu^A(q,z) - 2G_\nu^A(q,z)G_\nu^R(q,z) \right],
\]

(B26)

\[
F_{\nu\nu'}^{(11)}(q') = \int_{-\infty}^{\infty} dz' n(z') \left[G_\nu^R(q',z')G_\nu^R(q',z') - G_\nu^A(q',z')G_\nu^A(q',z') \right],
\]

(B27)

A combination of Eqs. (B26), (B27), and (B25) gives Eq. (15).

Appendix C: Derivations of Eqs. (18), (19), (21)–(27)

We explain the details of the derivations of Eqs. (18), (19), (21)–(27). These equations are obtained by deriving the expressions of \(L_{12}' \) and \(L_{12}^0 \) in the limit \(\tau \to \infty \), where \(\tau = (2\gamma)^{-1} \) is the magnon lifetime.

First, we derive Eqs. (18) and (19). Using Eq. (B12), we have

\[
\text{Im} G_\alpha^R(q,z) = -\frac{\gamma}{|z - \epsilon_\alpha(q)|^2 + \gamma^2}, \quad \text{(C1)}
\]

\[
\text{Im} G_\beta^B(q,z) = \frac{\gamma}{|z + \epsilon_\beta(q)|^2 + \gamma^2}. \quad \text{(C2)}
\]

Since \(\tau \to \infty \) corresponds to \(\gamma \to 0 \), we can express \(I_{\nu\nu'}^{(1)}(q) \) [i.e., Eq. (14)] in this limit as follows:

\[
I_{\alpha\alpha}^{(1)}(q) \sim \frac{\partial n[\epsilon_\alpha(q)]}{\partial \epsilon_\alpha(q)} \int_{-\infty}^{\infty} dz \frac{\gamma^2}{(|z - \epsilon_\alpha(q)|^2 + \gamma^2)^2} = \frac{\pi}{2\gamma} \frac{\partial n[\epsilon_\alpha(q)]}{\partial \epsilon_\alpha(q)},
\]

(C3)

\[
I_{\beta\beta}^{(1)}(q) \sim \frac{\pi}{2\gamma} \frac{\partial n[\epsilon_\beta(q)]}{\partial \epsilon_\beta(q)},
\]

(C4)

\[
I_{\alpha\beta}^{(1)}(q) = I_{\beta\alpha}^{(1)}(q) \sim 0.
\]

(C5)

These are Eqs. (18) and (19).

Next, we derive Eqs. (21)–(27). Since \(L_{12}' \) is given by Eq. (15), the remaining task is to derive the expression of \(I_{\nu\nu'}^{(1)}(q) \) in the limit \(\tau \to \infty \). By performing the similar calculations to the derivations of Eqs. (C3)–(C5), we obtain
\[\int_{-\infty}^{\infty} dz n(z) \text{Re} G_{R,\alpha}^{\beta}(q, z) \text{Im} G_{R}^{\beta}(q, z) = -\gamma \int_{-\infty}^{\infty} dz n(z) \frac{Z - \epsilon_\alpha(q)}{[Z - \epsilon_\alpha(q)]^2 + \gamma^2} \approx -\pi \frac{\partial n[\epsilon_\alpha(q)]}{\partial \epsilon_\alpha(q)}, \quad (C8)\]

\[\int_{-\infty}^{\infty} dz n(z) \text{Re} G_{R,\alpha}^{\beta}(q, z) \text{Im} G_{R}^{\beta}(q, z) = \gamma \int_{-\infty}^{\infty} dz n(z) \frac{Z + \epsilon_\beta(q)}{[Z + \epsilon_\beta(q)]^2 + \gamma^2} \approx \pi \frac{n[\epsilon_\alpha(q)]}{\epsilon_\alpha(q) + \epsilon_\beta(q)}, \quad (C9)\]

By combining these equations with Eq. (16), we can express \(I_{\nu \nu'}^{(II)}(q) \) in the limit \(\tau \to \infty \) as follows:

\[I_{\alpha \alpha}^{(II)}(q) \sim -\pi \frac{\partial n[\epsilon_\alpha(q)]}{\partial \epsilon_\alpha(q)}, \quad (C12)\]

\[I_{\beta \beta}^{(II)}(q) \sim -\pi \frac{\partial n[\epsilon_\beta(q)]}{\partial \epsilon_\beta(q)}, \quad (C13)\]

\[I_{\alpha \beta}^{(II)}(q) = I_{\beta \alpha}^{(II)}(q) \sim \pi \frac{n[\epsilon_\alpha(q)] - n[-\epsilon_\beta(q)]}{\epsilon_\alpha(q) + \epsilon_\beta(q)}. \quad (C14)\]

Substituting these equations and Eqs. (C3)–(C5) into Eq. (15), we obtain

\[L'_{12} \sim L'_{12-\text{intra}} + L'_{12-\text{inter1}} + L'_{12-\text{inter2}}, \quad (C15)\]

where

\[L'_{12-\text{intra}} = \sum_{\nu=\alpha,\beta} L'_{12-\text{intra-\nu}}, \quad (C16)\]

\[L'_{12-\text{intra-\nu}} = -\frac{2}{N^2} \sum_{q,q'} v_{\nu \nu'}(q) e_{\nu \beta}^* (q') \tau V_{\nu \nu' \nu} (q,q') \times \frac{\partial n[\epsilon_\nu(q)]}{\partial \epsilon_\nu(q)} \frac{\partial n[\epsilon_\nu(q')]}{\partial \epsilon_\nu(q')} \quad \text{and} \]

\[L'_{12-\text{inter1}} = \sum_{\nu=\alpha,\beta} \left\{ -\frac{2}{N^2} \sum_{q,q'} v_{\nu \nu'}(q) e_{\nu \beta}^* (q') \tau V_{\nu \nu' \nu} (q,q') \times \frac{\partial n[\epsilon_\nu(q)]}{\partial \epsilon_\nu(q)} \frac{\partial n[\epsilon_\nu(q')]}{\partial \epsilon_\nu(q')} \right\}, \quad (C18)\]

In Eq. (C18), \(\nu = \beta \) or \(\alpha \) for \(\nu = \alpha \) or \(\beta \), respectively. Equations (C15)–(C21) are Eqs. (21)–(27).

Appendix D: Remark on the numerical calculation

To calculate \(L'_{\mu \eta} \) and \(L'_{\nu \eta} \) numerically, we perform the momentum summations using a \(N_\eta \)-point mesh of the first Brillouin zone. Since the sublattice of our ferrimagnetic insulator is described by a set of primitive vectors, \(a_1 = t(1 \ 0 \ 0), a_2 = t(0 \ 1 \ 0), \) and \(a_3 = t(0 \ 0 \ 1), \) the primitive vectors for the reciprocal lattice are \(b_1 = 2t(2 \ 0 \ 0), b_2 = 2t(0 \ 2 \ 0), \) and \(b_3 = 2t(0 \ 0 \ 2). \) Thus, in the periodic boundary condition, momentum \(q \) is written in the form

\[q = \frac{m_x}{N_x} b_1 + \frac{m_y}{N_y} b_2 + \frac{m_z}{N_z} b_3, \quad (D1)\]

where \(0 \leq m_x < N_x, 0 \leq m_y < N_y, \) and \(0 \leq m_z < N_z \) with \(N_x N_y N_z = N_\eta = N/2. \) As a result, the first Brillouin zone is divided into the \((N_x N_y N_z)\)-point mesh. In the numerical calculation we set \(N_x = N_y = N_z = 24 \) (i.e., \(N_\eta = 24^3 \)).
Appendix E: Numerical results at $h = 0.08J$ and $0.16J$

We present the additional results of the numerical calculations, the temperature dependences of S_m, σ_m, and κ_m at $h = 0.08J$ and $0.16J$. They are shown in Figs. 4(a)–4(f). Comparing these figures with Fig. 2 we see the results obtained at $h = 0.08J$ and $0.16J$ are similar to those obtained at $h = 0.02J$. Namely, the properties obtained at $h = 0.02J$ remain qualitatively unchanged for other values of h.

1 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takahashi, S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).
2 K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).
3 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11, 391 (2012).
4 S. M. Wu, J. E. Pearson, and A. Bhattacharya, Phys. Rev. Lett. 114, 186602 (2015).
5 Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys. Rev. B 87, 014423 (2013).
6 S. Seki, T. Ideue, M. Kubota, Y. Kozuuka, R. Takagi, M. Nakamura, Y. Kaneko, M. Kawasaki, and Y. Tokura, Phys. Rev. Lett. 115, 266001 (2015).
7 S. M. Wu, W. Zhang, A. KC, P. Borisov, J. E. Pearson, J. S. Jiang, D. Lederman, A. Hoffmann, and A. Bhattacharya, Phys. Rev. Lett. 116, 097204 (2016).
8 H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprags, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Gøernsen, and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013).
9 J. Flipse, F. K. Dejene, D. Wagenaar, G. E. W. Bauer, J. Ben Youssef, and B. J. van Wees, Phys. Rev. Lett. 113, 027601 (2014).
10 S. R. Boona and J. P. Heremans, Phys. Rev. B 90, 064421 (2014).
11 J. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef, and B. J. van Wees, Nat. Phys. 11, 1022 (2015).
12 J. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine, and B. J. van Wees, Phys. Rev. B 94, 014412 (2016).
13 J. J. Cornelissen, J. Shan, and B. J. van Wees, Phys. Rev. B 94, 180402(R) (2016).
14 J. Barker and G. E. W. Bauer, Phys. Rev. Lett. 117, 217201 (2016).
15 T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 66, 1216 (1991).
16 U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett. 68, 1196 (1992).
17 H. C. Tso, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. Lett. 68, 2516 (1992).
18 L. Zheng and A. H. MacDonald, Phys. Rev. B 48, 8203 (1993).
19 Ben Yu-Kuang Hu, Phys. Rev. Lett. 85, 820 (2000).
20 K. Baumann, Ann. Phys. 23, 221 (1963).
21 H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010).
22 G. D. Mahan, L. Lindsay, and D. A. Broido, J. Appl. Phys. 116, 245102 (2014).
23 M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 88, 074703 (2019).
24 A. G. Rojo and G. D. Mahan, Phys. Rev. Lett. 68, 2074 (1992).
25 M. Baily, Phys. Rev. 126, 2040 (1962).
26 M. E. Lucassen, C. H. Wong, R. A. Duine, and Y. Tserkovnyak, Appl. Phys. Lett. 99, 262506 (2011).
27 S. -L. Zhang and S. Zhang, Phys. Rev. Lett. 109, 096603 (2012).
28 F. J. Blatt, D. J. Flood, V. Rowe, P. A. Schroeder, and J. E. Cox, Phys. Rev. Lett. 18, 395 (1967).
29 G. N. Grannemann and L. Berger, Phys. Rev. B 13, 2072 (1976).
30 M. V. Costache, G. Bridoux, I. Neumann, and S. O. Valenzuela, Nat. Mater. 11, 199 (2012).
31 J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake, and J. Shi, Nat. Comm. 7, 10585 (2016).
32 I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000).
33 N. Arakawa, Phys. Rev. B 93, 245128 (2016).
34 C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, Nature (London) 437, 1330 (2005).
35 M. Polini and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007).
36 R. A. Duine and H. T. C. Stoof, Phys. Rev. Lett. 103, 170401 (2009).
37 R. A. Duine, M. Polini, H. T. C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010).
38 T. Liu, G. Vignale, and M. E. Flatté, Phys. Rev. Lett. 116, 237202 (2016).
39 W. Berdanier, T. Scaffidi, and J. E. Moore, Phys. Rev. Lett. 123, 246603 (2019).
40 L. Shi, D. Zhang, K. Chang, and J. C. W. Song, Phys. Rev. Lett. 126, 197402 (2021).
41 L.-S. Xie, G.-X. Jin, L. He, G. E. W. Bauer, J. Barker, and K. Xia, Phys. Rev. B 95, 014423 (2017).
42 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
43 T. Nakamura and M. Bloch, Phys. Rev. 132, 2528 (1963).
44 N. Arakawa, Phys. Rev. Lett. 121, 187202 (2018).
45 N. Arakawa, J. Phys. Soc. Jpn. 88, 084704 (2019).
46 T. Oguchi, Phys. Rev. 117, 117 (1960).
47 N. Arakawa, Phys. Rev. B 99, 014405 (2019).
48 K. Nakata, P. Simon, and D. Loss, Phys. Rev. B 92, 134425 (2015).
49 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
50 G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 41, 1241 (1961) [Sov. Phys.–JETP 14, 886 (1962)].
51 A. A. Abrikosov, L. P. Gor’kov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1963).
52 J. M. Luttinger, Phys. Rev. 135, A1505 (1964).
53 H. Oji and P. Streda, Phys. Rev. B 31, 7291 (1985).
54 H. Kontani, Phys. Rev. B 67, 014408 (2003).
FIG. 4. The temperature dependences of $S_m(= L_{12})$, $\sigma_m(= L_{11})$, and $\kappa_m(= L_{22})$ at $h = 0.08J$ and $0.16J$. h is $0.08J$ in panels (a), (c), and (e) and $0.16J$ in panels (b), (d), and (f). $L_{\mu\eta}^{(a)}$ and $L_{\mu\eta}^{(b)}$ are defined as $L_{\mu\eta}^{(a)} = L_{\mu\eta}^0 + L_{\mu\eta-\text{intra}}$ and $L_{\mu\eta}^{(b)} = L_{\mu\eta}^0 + L_{\mu\eta-\text{intra}} + L_{\mu\eta-\text{inter}}$, respectively. Note that $L_{\mu\eta}^0 = L_{\mu\eta-\text{intra}} + L_{\mu\eta-\text{inter}}$, $L_{\mu\eta} = L_{\mu\eta-\text{intra}} + L_{\mu\eta-\text{inter}}$, and $L_{\mu\eta} = L_{\mu\eta-\text{intra}} + L_{\mu\eta-\text{inter}} + L_{\mu\eta-\text{inter}}$.