A Rigidity Theorem for Affine Kähler-Ricci Flat Graph

An-Min Li and Ruiwei Xu

Abstract: It is shown that any smooth strictly convex global solution on \mathbb{R}^n of

$$\det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = \exp \left\{ - \sum_{i=1}^{n} d_i \frac{\partial u}{\partial \xi_i} - d_0 \right\},$$

where $d_0, d_1, ..., d_n$ are constants, must be a quadratic polynomial. This extends a well-known theorem of Jörgens-Calabi-Pogorelov.

2000 AMS Classification: 53A15.

Key words: Pogorelov Theorem; Kähler-Ricci Flat; Monge-Ampère equation.

§1. Introduction

A well-known theorem of Jörgens ($n = 2$ [J]), Calabi ($n \leq 5$ [Ca]), and Pogorelov ($n \geq 2$ [P]) states that any smooth strictly convex solution of

$$(1.1) \quad \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) = 1 \quad \text{on} \quad \mathbb{R}^n$$

must be a quadratic polynomial. In [C-Y] Cheng and Yau gave an analytical proof. Recently Caffarelli and Li [C-L] extended the result for classical solution to viscosity solution.

In this paper we study the following PDE

$$(1.2) \quad \frac{\partial^2}{\partial x_i \partial x_j} \left(\log \det \left(\frac{\partial^2 f}{\partial x_k \partial x_l} \right) \right) = 0,$$

or

$$(1.3) \quad \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) = \exp \left\{ \sum_{i=1}^{n} d_i x_i + d_0 \right\},$$

where $d_0, d_1, ..., d_n$ are constants. Obviously, all solutions of (1.1) satisfy (1.2). Introduce the Legendre transformation of f

$$\xi_i = \frac{\partial f}{\partial x_i}, \quad i = 1, 2, \ldots, n,$$

1The first author is partially supported by NKBRPC(2006CB805905), NSFC 10631050 and RFDP.
\[u(\xi_1, \ldots, \xi_n) = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} - f(x). \]

In terms of \(\xi_1, \ldots, \xi_n, u(\xi_1, \ldots, \xi_n) \), the PDE (1.3) can be written as

\[(1.4) \quad \det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = \exp \left\{ - \sum_{i=1}^{n} d_i \frac{\partial u}{\partial \xi_i} - d_0 \right\}. \]

Note that, under the Legendre transformation, the PDE (1.1) reads

\[(1.1)' \quad \det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = 1 \quad \text{on} \quad \mathbb{R}^n. \]

Given any smooth, bounded convex domain \(\Omega \subset \mathbb{R}^n \) and any smooth boundary value \(\phi \), the existence of the solution of the boundary problem

\[(1.4)' \quad \det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = \exp \left\{ - \sum_{i=1}^{n} d_i \frac{\partial u}{\partial \xi_i} - d_0 \right\} \quad \text{in} \quad \Omega, \quad u = \phi \quad \text{on} \quad \partial \Omega \]

is well-known. So there are many locally solutions to the PDE (1.4). In this paper we prove the following theorem

Main Theorem. Let \(u(\xi_1, \ldots, \xi_n) \) be a \(C^\infty \) strictly convex function defined on whole \(\mathbb{R}^n \). If \(u(\xi) \) satisfies the PDE (1.4), then \(u \) must be a quadratic polynomial.

The PDE (1.2) arises naturally in the construction of Ricci flat Kähler-affine metric for affine manifolds. An affine manifold is a manifold which can be covered by coordinate charts so that the coordinate transformations are given by invertible affine transformations. Let \(M \) be an affine manifold. A Kähler affine metric or Hessian metric \(G \) on \(M \) is a Riemannian metric on \(M \) such that locally, for affine coordinates \((x_1, x_2, \ldots, x_n)\), there is a potential \(f \) such that

\[G_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}. \]

The pair \((M, G)\) is called a Kähler affine manifold or a Hessian manifold, and \(G \) is called Kähler affine metric. Kähler affine metric was first studied by Cheng and Yau in [C-Y-1]. For more details about Hessian manifolds please see [Sh]. Following Cheng and Yau we introduce the concepts of the Kähler Ricci curvature and the Kähler scalar curvature of \(G \) on \(M \). It is easy to see that the tangent bundle \(TM \) is a complex manifold with a natural complex structure in the following way. For coordinate chart \((x_1, x_2, \ldots, x_n)\), we can consider a tube over the coordinate neighborhood with complex coordinate system
The Hessian metric G was naturally extended to be a Kähler metric of the complex manifold TM. The Ricci curvature tensor and the scalar curvature of this Kähler metric are given by respectively

$$R_{ij} = -\frac{\partial^2}{\partial x_i \partial x_j} (\log \det (f_{kl})), \quad R = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f^{ij}_{kl} \frac{\partial^2 (\log \det (f_{kl}))}{\partial x_i \partial x_j}.$$

It is obvious that the restrictions of R_{ij} and R to M are tensors of M. We also call R_{ij} and R the Kähler Ricci curvature and the Kähler scalar curvature of G on M. We say that the metric G is Kähler-Ricci flat if (1.2) holds on M everywhere. In this geometric language, our Main Theorem can be stated as

Main Theorem. Let M be a graph given by a smooth strictly convex function $x_{n+1} = f(x_1, ..., x_n)$ defined in a domain Ω. If the Hessian metric of M is Kähler-Ricci flat and the image of M under the normal mapping is whole \mathbb{R}^n, then f must be a quadric.

Remark 1. In [J-L] the authors have proved that

Theorem. Let M be a Kähler affine manifold. If the Hessian metric of M is Kähler-Ricci flat and complete, then M must be \mathbb{R}^n/Γ, where Γ is a subgroup of isometries which acts freely and properly discontinuously on \mathbb{R}^n.

Remark 2. From our proof of the Main Theorem the following stronger version is also true:

Main Theorem'. Let $u(\xi_1, ..., \xi_n)$ be a C^∞ strictly convex function defined in a convex domain $\Omega \subset \mathbb{R}^n$. If $u(\xi)$ satisfies the PDE (1.4) and if $u(p) \rightarrow \infty$ as $p \rightarrow \partial \Omega$, then u must be a quadratic polynomial.

Remark 3. The global solution of the PDE (1.3) on the x-coordinate plane \mathbb{R}^n is not unique. For example,

$$f(x_1, ..., x_n) = \sum_{i=1}^{n} x_i^2, \quad \text{and} \quad f(x_1, ..., x_n) = \exp\{x_1\} + \sum_{i=2}^{n} x_i^2$$

are global solutions of the PDE (1.3).

Remark 4. Our study in this paper is based on the following differential inequality for Φ (for details see Proposition 3.1 below)

$$\Delta \Phi \geq \frac{n}{n-1} \frac{\|\nabla \Phi\|^2}{\Phi} + \frac{n^2 - 3n - 10}{2(n-1)} \langle \nabla \Phi, \nabla \log \rho \rangle + \frac{(n+2)^2}{n-1} \Phi^2.$$

This type of differential inequality for Φ first appeared in [L-J-1], in which Li and Jia announced that they solved the Chern’s conjecture for 2-dimension and 3-dimension. While
Trudinger and Wang solved Chern’s conjecture for 2-dimension in [T-W]. Li and Jia’s method, which is quite different from that of Trudinger and Wang, is to estimate Φ and $\|\nabla f\|$ based on the differential inequality:

$$
\Delta^B \Phi \geq \frac{n}{2(n-1)} \frac{\|\nabla \Phi\|_{G^B}^2}{\Phi} - \frac{n^2 - n - 2}{2(n-1)} (\nabla \Phi, \nabla \log \rho)_{G^B} \\
+ \left(2 - \frac{(n-2)^2(n-1)}{8n} - \frac{n^2 - 2}{2(n-1)} \right) \frac{\Phi^2}{\rho},
$$

where G^B is the Blaschke metric and Δ^B is the Laplacian with respect to G^B.

However, Li later found a gap in their proof, so the full research paper is not published. In [L-J-2] the author use the similar differential inequality to prove Bernstein properties for some more general fourth order nonlinear PDE for 2 dimension. As a corollary, they fix the gap to 2 dimensional Chern’ conjecture. So far the 3 dimensional Chern’ conjecture is open.

§2. Preliminaries

Let $f(x_1, ..., x_n)$ be a C^∞ strictly convex function defined on a domain $\Omega \subset \mathbb{R}^n$. Denote $M := \{(x, f(x))| x_{n+1} = f(x_1, ..., x_n), (x_1, ..., x_n) \in \Omega\}$. We choose the canonical relative normalization $Y = (0, 0, ..., 1)$. Then, in terms of language of the relative affine differential geometry, G is the relative metric with respect to the normalization Y. Denote by $y = (x_1, ..., x_n, f(x_1, ..., x_n))$, the position vector of M. We have

$$
y_{ij} = \sum A_{ij}^k y_k + f_{ij} Y.
$$

The conormal field U is given by

$$
U = (-f_1, ..., -f_n, 1).
$$

We recall some fundamental formulas for the graph M without proof, for details see [P-1]. The Levi-Civita connection with respect to the metric G is

$$
\Gamma_{ij}^k = \frac{1}{2} \sum f^{kl} f_{ijl},
$$

The Fubini-Pick tensor A_{ijk} and the Weingarten tensor are given by

$$
A_{ijk} = -\frac{1}{2} f_{ijk}, \quad B_{ij} = 0.
$$
The relative Pick invariant is
\[J = \frac{1}{4n(n-1)} \sum f^{il} f^{jm} f^{kn} f_{ij} f_{lmn}. \]

The Gauss equations and the Codazzi equations read
\[R_{ijkl} = \sum f^{mh} (A_{jkm} A_{hil} - A_{ikm} A_{hji}), \]
\[A_{ijk,l} = A_{ijl,k}. \]

From (2.6) we have
\[R_{ik} = \sum f^{mh} f^{ij} (A_{iml} A_{hjk} - A_{imk} A_{hlj}). \]

Denote
\[\rho = [\det(f_{ij})]^{1/(n+2)}, \quad \Phi = \frac{\|\nabla \rho\|^2}{\rho^2}. \]

Let \(\Delta \) be the laplacian with respect to the Calabi metric, which is defined by
\[\Delta = \frac{1}{\sqrt{\det(G_{kl})}} \sum \frac{\partial}{\partial x_i} \left(G^{ij} \sqrt{\det(G_{kl})} \frac{\partial}{\partial x_j} \right). \]

By a direct calculation from (2.10) we have
\[\Delta = \sum f^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \frac{n+2}{2} \frac{1}{\rho} \sum f^{ij} \frac{\partial \rho}{\partial x_j} \frac{\partial}{\partial x_i} \]
\[= \sum w^{ij} \frac{\partial^2}{\partial \xi_i \partial \xi_j} - \frac{n+2}{2} \frac{1}{\rho} \sum w^{ij} \frac{\partial \rho}{\partial \xi_j} \frac{\partial}{\partial \xi_i}, \]
\[\Delta f = n + \frac{n+2}{2} \frac{1}{\rho} \langle \nabla \rho, \nabla f \rangle, \]
\[\Delta u = n - \frac{n+2}{2} \frac{1}{\rho} \langle \nabla \rho, \nabla u \rangle. \]
§3. Calculation of $\Delta \Phi$

The following proposition is proved in [J-L], however, we include here for the reader’s convenience.

Proposition 3.1 Let $f(x_1, \ldots, x_n)$ be a C^∞ strictly convex function satisfying the PDE (1.3). Then the following estimate holds

$$
\Delta \Phi \geq \frac{n}{n-1} \frac{\|\nabla \Phi\|^2}{\Phi} + \frac{n^2 - 3n - 10}{2(n-1)} \langle \nabla \Phi, \nabla \log \rho \rangle + \frac{(n+2)^2}{n-1}\Phi^2.
$$

Proof. From the PDE (1.4) we have

$$
0 = \frac{\partial^2}{\partial x_i \partial x_j} (\log \det (f_{kl})) = -(n+2) \left(\frac{\rho_{ij}}{\rho} - \frac{\rho_i \rho_j}{\rho} \right),
$$

where $\rho_i = \frac{\partial \rho}{\partial x_i}$ and $\rho_{ij} = \frac{\partial^2 \rho}{\partial x_i \partial x_j}$. It follows that

$$
\Delta \rho = \frac{n+4}{2} \frac{\|\nabla \rho\|^2}{\rho}.
$$

Let $p \in M$, we choose a local orthonormal frame field of the metric G around p. Then

$$
\Phi = \frac{\sum (\rho_{ij})^2}{\rho^2}, \quad \Phi_{,i} = 2 \sum \frac{\rho_j \rho_{j,i}}{\rho^2} - 2 \rho_{,i} \sum \frac{(\rho_j)^2}{\rho^3},
$$

$$
\Delta \Phi = 2 \sum \frac{(\rho_{ji})^2}{\rho^2} + 2 \sum \frac{\rho_{j} \rho_{jii}}{\rho^2} - 8 \sum \frac{\rho_{j} \rho_{i} \rho_{ji}}{\rho^3} - (n-2) \left(\frac{\sum (\rho_{j})^2}{\rho^4} \right)^2,
$$

where we used (3.2). In the case $\Phi(p) = 0$, it is easy to get, at p,

$$
\Delta \Phi \geq 2 \frac{\sum (\rho_{ij})^2}{\rho^2}.
$$

Now we assume that $\Phi(p) \neq 0$. Choose a local orthonormal frame field of the metric G around p such that $\rho_{,1}(p) = \|\nabla \rho\|(p) > 0$, $\rho_{,i}(p) = 0$ for all $i > 1$. Then

$$
\Delta \Phi = 2 \sum \frac{(\rho_{ij})^2}{\rho^2} + 2 \sum \frac{\rho_{j} \rho_{jii}}{\rho^2} - 8 \sum \frac{\rho_{j} \rho_{i} \rho_{ji}}{\rho^3} - (n-2) \left(\frac{\rho_{1}}{\rho^4} \right)^2.
$$

Applying an elementary inequality

$$
a_1^2 + a_2^2 + \cdots + a_{n-1}^2 \geq \frac{(a_1 + a_2 + \cdots + a_{n-1})^2}{n-1}
$$

and (3.2), we obtain

\[(3.4) \quad 2\sum \frac{(\rho_{,ij})^2}{\rho^2} \geq 2\frac{(\rho_{,11})^2}{\rho^2} + 4\sum_{i>1} \frac{(\rho_{,ii})^2}{\rho^2} + 2\sum_{i>1} \frac{(\rho_{,ii})^2}{\rho^2} \geq 2\frac{(\rho_{,11})^2}{\rho^2} + 4\sum_{i>1} \frac{(\rho_{,ii})^2}{\rho^2}\]

\[+ \frac{2}{n-1} \frac{(\Delta \rho - \rho_{,11})^2}{\rho^2} \geq \frac{2n}{n-1} \frac{(\rho_{,11})^2}{\rho^2} + 4\sum_{i>1} \frac{(\rho_{,ii})^2}{\rho^2} - \frac{2n + 4 (\rho_{,11})^2 + (n + 4)^2 (\rho_{,1})^4}{2(n-1) \rho^4}.
\]

An application of the Ricci identity shows that

\[(3.5) \quad \frac{2}{\rho^2} \sum \rho_j \rho_{,j,ii} = \frac{2}{\rho^2} (\Delta \rho)_{,1} \rho_{,1} + 2R_{11} \frac{(\rho_{,1})^2}{\rho^2}
\]

\[= 2(n+4) \frac{(\rho_{,1})^2 \rho_{,11}}{\rho^4} - (n+4) \frac{(\rho_{,1})^4}{\rho^4} + 2R_{11} \frac{(\rho_{,1})^2}{\rho^2}.
\]

Substituting (3.4) and (3.5) into (3.3) we obtain

\[(3.6) \quad \Delta \Phi \geq \frac{2n}{n-1} \frac{(\rho_{,11})^2}{\rho^2} + \left(2n - 2 \frac{n + 4}{n-1}\right) \frac{(\rho_{,1})^2 \rho_{,11}}{\rho^3} + 2R_{11} \frac{(\rho_{,1})^2}{\rho^2}
\]

\[+ \left(\frac{(n+4)^2}{2(n-1)} - 2(n+1)\right) (\rho_{,1})^4 + 4\sum_{i>1} \frac{(\rho_{,ii})^2}{\rho^2}.
\]

Note that

\[(3.7) \quad \sum \frac{(\Phi_{,i})^2}{\Phi} = 4 \sum \frac{(\rho_{,11})^2}{\rho^2} - 8 \frac{(\rho_{,1})^2 \rho_{,11}}{\rho^3} + 4 \frac{(\rho_{,1})^4}{\rho^4}.
\]

Then (3.6) and (3.7) together give us

\[(3.8) \quad \Delta \Phi \geq \frac{n}{2(n-1)} \frac{\sum (\Phi_{,i})^2}{\Phi} + \left(2n - 8 \frac{n}{n-1} + 2n\right) \frac{(\rho_{,1})^2 \rho_{,11}}{\rho^3}
\]

\[+ 2R_{11} \frac{(\rho_{,1})^2}{\rho^2} + \left[\frac{(n+4)^2}{2(n-1)} - 2(n+1) - \frac{2n}{n-1}\right] (\rho_{,1})^4.
\]

From (3.1) we easily obtain

\[\rho_{,ij} = \rho_{,ij} + A_{ij1} \rho_{,1} = \frac{\rho_{,i} \rho_{,j}}{\rho} + A_{ij1} \rho_{,1}.
\]

Thus we get

\[(3.9) \quad \Phi_{,i} = \frac{2 \rho_{,1} \rho_{,11}}{\rho^2} - 2 \frac{\rho_{,i} (\rho_{,1})^2}{\rho^3} = 2A_{111} \frac{(\rho_{,1})^2}{\rho^2}, \quad \sum \Phi_{,i} \frac{\rho_{,i}}{\rho} = 2 \frac{(\rho_{,1})^2 \rho_{,11}}{\rho^3} - 2 \frac{(\rho_{,1})^4}{\rho^4}.
\]

7
By the same method as deriving (3.4) we get
\begin{equation}
\sum_{i} (A_{ml})^2 \geq \sum_{i=1}^{n-1} (A_{i1})^2 + \frac{2}{n-1} \sum_{i=1}^{n-1} (A_{i1})^2 + \frac{1}{n-1} \left(\sum A_{i1} - A_{111} \right)^2,
\end{equation}

Then inserting (3.12) and (3.9) into (3.8) we have
\begin{equation}
\Delta \Phi \geq \frac{n}{n-1} \sum_{i} (\Phi_{,i})^2 + \frac{n^2 - 3n - 10}{2(n-1)} \sum_{i} \Phi_{,i}^2 + \frac{(n+2)^2}{n-1} \Phi^2. \quad \square
\end{equation}

§4. Proof of Main Theorem for $n \leq 4$

In the case $n \leq 4$ the proof of the Main Theorem is relatively simple, we first consider this case.

We shall show that $\Phi = 0$ on M everywhere, namely, $\det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = \text{const}$. Therefore the main Theorem follows by J-C-P Theorem. By a coordinate translation transformation and by subtracting a linear function we may suppose that
\[u(0) = 0, \quad u(\xi) \geq 0. \]

Then for any $C > 0$ the set
\[S_u(0, C) := \{ \xi \in \mathbb{R}^n | u(\xi) \leq C \} \]
is compact. Consider the function
\[L = \exp \left\{ -\frac{m}{C - u} \right\} \Phi \]
defined on \(\bar{S}_u(0, C) \), where \(m \) is a positive constant to be determined later. Clearly, \(L \) attains its supremum at some interior point \(p^* \). Then, at \(p^* \),

(4.1) \[\frac{\Phi_{,i}}{\Phi} - hu_{,i} = 0, \]

(4.2) \[\frac{\Delta \Phi}{\Phi} - \sum_{i} (\Phi_{,i})^2 - h' \sum_{i} (u_{,i})^2 - h\Delta u \leq 0, \]

where and later we denote
\[h = \frac{m}{(C - u)^2}, \quad h' = \frac{2m}{(C - u)^3}, \]
and ",," denotes the covariant derivatives with respect to the metric \(G \). Inserting (3.13) (2.13) and (4.1) into (4.2) we get

(4.3) \[\frac{(n + 2)^2}{n - 1} \Phi + \left(\frac{1}{n - 1} h^2 - h' \right) \sum_{i} (u_{,i})^2 - nh + \frac{(n + 2)(n - 3)}{(n - 1)} h \sum_{i} \frac{\rho_{,i} u_{,i}}{\rho} \leq 0. \]

By the Schwarz’s inequality
\[\frac{(n + 2)(n - 3)}{(n - 1)} h \sum_{i} \frac{\rho_{,i} u_{,i}}{\rho} \leq \frac{1}{2(n - 1)} h^2 \sum_{i} (u_{,i})^2 + \frac{(n + 2)^2(n - 3)^2}{2(n - 1)} \Phi. \]
Therefore

(4.4) \[\frac{(n + 2)^2(2 - (n - 3)^2)}{2(n - 1)} \Phi + \left(\frac{1}{2(n - 1)} h^2 - h' \right) \sum_{i} (u_{,i})^2 - nh \leq 0. \]

In the case \(n \leq 4 \) we have

(4.5) \[\frac{(n + 2)^2}{2(n - 1)} \Phi + \left(\frac{1}{2(n - 1)} h^2 - h' \right) \sum_{i} (u_{,i})^2 - nh \leq 0. \]

We choose \(m = 8(n - 1)C \), then \(\frac{1}{2(n - 1)} h^2 - h' \geq 0 \). It follows that, at \(p^* \),

(4.6) \[\exp \left\{ -\frac{8(n - 1)C}{C - u} \right\} \Phi \leq n \exp \left\{ -\frac{m}{C - u} \right\} h \leq \frac{b}{C}, \]

where \(b \) is a constant depending only on \(n \). In the calculation of (4.6) and later we often use the fact that \(\exp \left\{ -\frac{m}{C - u} \right\} \frac{m^2}{(C - u)^2} \) has a universal upper bound. Since \(L \) attains its supremum at \(p^* \), (4.6) holds everywhere in \(\bar{S}_u(0, C) \). For any fixed point \(p \), we let \(C \to \infty \) then \(\Phi(p) = 0 \). Therefore \(\Phi = 0 \) everywhere on \(M \). □
§5. Estimate for $\sum \left(\frac{\partial u}{\partial \xi_i} \right)^2$

For general dimensions ($n > 4$) the proof of the Main Theorem is much more difficult than $n \leq 4$, it needs more estimates. In this section we estimate $\sum \left(\frac{\partial u}{\partial \xi_i} \right)^2$. Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain. It is well-known (see [G]) that there exists a unique ellipsoid E, which attains the minimum volume among all the ellipsoids that contain Ω and that are centered at the center of mass of Ω, such that

$$n^{-\frac{3}{2}}E \subset \Omega \subset E,$$

where $n^{-\frac{3}{2}}E$ means the $n^{-\frac{3}{2}}$-dilation of E with respect to its center. Let T be an affine transformation such that $T(E) = B(0,1)$, the unit ball. Put $\tilde{\Omega} = T(\Omega)$. Then

(5.1) \hspace{1cm} B(0,n^{-\frac{3}{2}}) \subset \tilde{\Omega} \subset B(0,1).

A convex domain Ω is called normalized if it satisfies (5.1). Let u be a smooth strictly convex function defined on Ω such that

(5.2) \hspace{1cm} \inf_{\Omega} u(\xi) = u(p) = 0, \ u|_{\partial \Omega} = 1.

A strictly convex function defined on Ω is called normalized at p if (5.2) holds.

Lemma 5.1 Let Ω_k be a sequence of smooth and normalized convex domains, $u^{(k)}$ be a sequence of smooth strictly convex functions defined on Ω_k, normalized at p_k. Then there are constants $d > 1$, $b > 0$ independent of k such that

$$\sum_i \left(\frac{\partial u^{(k)}}{\partial \xi_i} \right)^2 (0) \leq b, \quad k = 1, 2, \ldots \quad \text{on} \quad \tilde{\Omega}_k.$$

Proof. We may suppose by taking subsequence that Ω_k converges to a convex domain Ω and $u^{(k)}$ converges to a convex function u^∞, locally uniformly in Ω. Obviously, we have the uniform estimate

(5.3) \hspace{1cm} \sum \left(\frac{\partial u^{(k)}}{\partial \xi_i} \right)^2 (0) \leq 4n^3.

For any k, let

(5.4) \hspace{1cm} \tilde{u}^{(k)} = u^{(k)} - \sum \frac{\partial u^{(k)}}{\partial \xi_i}(0)\xi_i - u^{(k)}(0).
Then
\[\tilde{u}^{(k)}(0) = 0, \quad \tilde{u}^{(k)}(\xi) \geq 0, \quad \tilde{u}^{(k)}|_{\partial \Omega_k} \leq C_0, \]
where \(C_0 \) is a constant depending only on \(n \). As \(B(0, n^{-\frac{3}{2}}) \subset \Omega_k \), we have
\[| \nabla \tilde{u}^{(k)} |^2 \leq \frac{C_0^2}{\text{dist}(B(0, 2^{-1}n^{-\frac{3}{2}}), \partial \Omega_k)^2} \leq 4n^3 C_0^2 \]
on \(B(0, 2^{-1}n^{-\frac{3}{2}}) \), where \(\tilde{f}^{(k)} \) is the Legendre transformation of \(\tilde{u}^{(k)} \) relative to 0. For any \(p \in \tilde{\Omega}_k \setminus B(0, 2^{-1}n^{-\frac{3}{2}}) \), we may suppose that \(p = (\xi_1, 0, \ldots, 0) \) with \(\xi_1 > 0 \) by an orthonormal transformation. Then, at \(p \),
\[C_0 + \tilde{f}^{(k)} \geq \tilde{u}^{(k)} + \tilde{f}^{(k)} = \frac{\partial \tilde{u}^{(k)}}{\partial \xi_1} \xi_1. \]
It follows that
\[\frac{\left(\frac{\partial \tilde{u}^{(k)}}{\partial \xi_1} \right)^2}{(C_0 + \tilde{f}^{(k)})^2} < \frac{1}{\xi_1^2} < 4n^3. \]
Therefore there exist constants \(\tilde{d} > 1, \tilde{b} > 0 \) depending only on \(n \) such that
\[\frac{\left(\frac{\partial \tilde{u}^{(k)}}{\partial r} \right)^2}{(\tilde{d} + \tilde{f}^{(k)})^2} < \tilde{b}, \]
where \(\frac{\partial}{\partial r} \) denotes the radial derivative. Note that
\[\frac{\partial u^{(k)}}{\partial \xi_i} = \frac{\partial u^{(k)}}{\partial \xi_i} - \frac{\partial u^{(k)}}{\partial \xi_i}(0), \quad \tilde{f}^{(k)} = f^{(k)} + u^{(k)}(0). \]
It follows from (5.3) and (5.4) that
\[\left(\frac{\partial u^{(k)}}{\partial r} \right)^2 \leq 2 \left(\frac{\partial \tilde{u}^{(k)}}{\partial r} \right)^2 + 8n^3. \]
Then
\[\frac{\left(\frac{\partial u^{(k)}}{\partial r} \right)^2}{(d' + f^{(k)})^2} < b', \]
for some constants \(d' > 1, b' > 0 \) independent of \(k \). Note that
\[| \nabla u^{(k)}(p) | = \frac{1}{\cos \alpha_k} \left| \frac{\partial u^{(k)}}{\partial r}(p) \right|, \]
where α_k is the angle between vectors $\nabla u^{(k)}(p)$ and $\frac{\partial u^{(k)}}{\partial r}(p)$. Since $u^{(k)} = 1$ on $\partial \Omega_k$, $\nabla u^{(k)}(p)$ is perpendicular to the boundary of Ω_k at any $p \in \partial \Omega_k$. As Ω is convex and $0 \in \Omega$, it follows that $\frac{1}{\cos \alpha_k}$ have a uniform upper bound. Then the Lemma 5.1 follows. □

Remark 5.2 We may choose d in Lemma 5.1 such that the following holds for any k

\[(5.10)\quad \frac{|u + f^{(k)}|}{d + f^{(k)}} \leq 1.\]

§6. Estimates of ρ, $\rho^\alpha \Phi$ and $\sum u_{ii}$

From now on we assume that $n \geq 5$. In this section we prove some estimates which we need in the next section. Suppose that $p \in \Omega$ and u is normalized at p. For any positive number $C \leq 1$, denote

$S_u(p, C) = \{ \xi \in \Omega | u(\xi) < C \}$, $\bar{S}_u(p, C) = \{ \xi \in \Omega | u(\xi) \leq C \}$.

Introduce notations:

$A := \max_{p \in S_u(p, C)} \left\{ \exp \left\{ -\frac{m}{C - u} \right\} \rho^\alpha \Phi \frac{(d + f)^{2n}}{(d + f)^2} \right\}$,

$B := \max_{p \in \bar{S}_u(p, C)} \left\{ \exp \left\{ -\frac{m}{C - u} + H \right\} \frac{(h + 2\alpha)^{2n}}{(d + f)^{2n+2}} \right\}$,

where

$\alpha = \frac{(n + 2)(n - 3)}{2} + \frac{n - 1}{4}$, $m = 32(n + 2)C$, $H = \epsilon \frac{\sum x_k^2}{(d + f)^2}$.

From Lemma 5.1, we always choose small enough constant ϵ such that $H < \frac{1}{30}$ in this section.

We prove the following lemmas, which play important role in the proof of the Main Theorem.

Lemma 6.1 Let u be a smooth and strictly convex function defined in Ω which satisfies the equation (1.4). Suppose that u is normalized at 0 and the section $\bar{S}_u(p, C)$ is compact. And assume that there are constants $b_1 \geq 0$, $d > 1$ such that

$\frac{\sum x_k^2}{(d + f)^2} \leq b_1$

on $\bar{S}_u(p, C)$. Then there is a constant $d_1 > 0$, depending only on n, b_1 and C, such that

$A \leq d_1, \quad B \leq d_1$.

12
Proof. Firstly, we show \(A \leq 10B \). To this end, consider the following function

\[
F = \exp \left\{ -\frac{m}{C - u} \right\} \frac{\rho^\alpha \Phi}{(d + f)^{n+2}}
\]
defined on \(S_u(p, C) \). Clearly, \(F \) attains its supremum at some interior point \(p^* \) of \(S_u(p, C) \). Thus, at \(p^* \),

\[
(6.1) \quad \frac{\Phi}{\Phi} = \frac{\alpha \rho^i}{\rho} - \frac{2n\alpha}{n+2} \frac{f^i}{d + f} - hu^i = 0,
\]

\[
(6.2) \quad \frac{\Delta \Phi}{\Phi} - \frac{(\Phi, i)^2}{\Phi^2} + \frac{n+2}{(n-1)} \frac{\Phi}{\Phi} + \frac{2n\alpha}{n+2} \frac{\Delta f}{(d + f)^2} + \frac{2n\alpha}{n+2} \frac{\sum(f, i)^2}{(d + f)^2} - h' \sum(u, i)^2 - h \Delta u \leq 0,
\]

where \(, \ldots \) denotes the covariant derivatives with respect to the metric \(G \). In the calculation of \((6.2) \) we used \((3.2) \). Inserting \((2.12), (2.13) \) and \((3.13) \) into \((6.2) \) we get

\[
\left[\frac{(n+2)\alpha}{2(n-1)} + \frac{(n+2)^2}{n-1} \right] \Phi + \frac{1}{(n-1)} \frac{\sum(\Phi, i)^2}{\Phi^2} + \frac{n+2}{2} \frac{\sum u, i\rho^i}{\rho} - n\alpha \frac{\sum f, i\rho^i}{(d + f)^2} + \frac{2n\alpha}{n+2} \frac{\sum(f, i)^2}{(d + f)^2} - h' \sum(u, i)^2 - nh - \frac{2n\alpha}{n+2} \frac{n}{d + f} \leq 0.
\]

Using \((6.1) \) yields

\[
(6.3) \quad \frac{1}{(n-1)} \sum \left[hu^i + \frac{2n\alpha}{n+2} \frac{f^i}{d + f} - \frac{\alpha \rho^i}{\rho} \right]^2 + \frac{2(n+2)}{n-1} \alpha + \frac{(n+2)^2}{n-1} \right] \Phi \\
+ \frac{(n+2)(n-3)}{n-1} \frac{h\sum u, i\rho^i}{\rho} - \frac{4n\alpha}{n-1} \frac{\sum f, i\rho^i}{\rho} + \frac{2n\alpha}{n+2} \frac{\sum(f, i)^2}{(d + f)^2} - h' \sum(u, i)^2 - nh - \frac{2n^2\alpha}{n+2} \leq 0.
\]

Note that

\[
(6.4) \quad \left| \sum u, i f^i \right| = \left| \sum \frac{\partial u}{\partial \xi^j} \frac{\partial f}{\partial x^k} u_{kj} u^{ij} \right| = \left| \sum \xi \frac{\partial u}{\partial \xi^j} \right| \frac{d + f}{d + f} = \frac{|u + f|}{d + f} \leq 1.
\]

Inserting \((6.4) \) into \((6.3) \), we have

\[
(6.5) \quad \frac{1}{(n-1)} h^2 \sum(u, i)^2 + \left[\frac{4n^2\alpha^2}{(n+2)^2(n-1)} + \frac{2n\alpha}{n+2} \right] \frac{\sum(f, i)^2}{(d + f)^2} - \frac{1}{2} \frac{h\sum u, i\rho^i}{\rho} \\
+ \frac{(n-1)(2n+5)^2}{16} \Phi - \frac{n(2n+5)\alpha}{n+2} \frac{\sum f, i\rho^i}{(d + f)^2} - h' \sum(u, i)^2 - 10B \leq 0.
\]
\[-\left(n + \frac{4n\alpha}{(n-1)(n+2)}\right) h - \frac{2n^2\alpha}{n+2} \leq 0.\]

As \(\alpha = \frac{(n+2)(n-3)}{2} + \frac{n-1}{4}\), it is easy to check that

\[
\frac{4n^2\alpha^2}{(n+2)^2(n-1)} + \frac{2n\alpha}{n+2} = \frac{4n^2\alpha^2}{(n+2)^2(n-1)} \left(1 + \frac{(n+2)(n-1)}{2n\alpha}\right) > \frac{4n^2\alpha^2}{(n+2)(n^2-1)}.
\]

Using the Schwarz’s inequality we get

\[
\frac{1}{2} h \sum \frac{u_i \rho_i}{\rho} \leq \frac{1}{2(n-1)} h^2 \sum (u_i)^2 + \frac{n-1}{8} \Phi,
\]

\[
\frac{n(2n+5)\alpha}{n+2} \sum \frac{f_i \rho_i}{(d+f)\rho} \leq \frac{4n^2\alpha^2}{(n+2)(n^2-1)} \sum (f_i)^2 + \frac{(2n+5)(n^2-1)}{16(n+2)} \Phi.
\]

Note that \(\frac{1}{2(n-1)} h^2 \geq h'\), we get from (6.5)

\[
\frac{(n+2)(n-1)}{4} \Phi - \left(n + \frac{4n\alpha}{(n-1)(n+2)}\right) h - \frac{2n^2\alpha}{n+2} \leq 0.
\]

It follows that

(6.6) \quad \mathcal{A} \leq 10\mathcal{B}.

Secondly, we consider the following function

\[
\tilde{F} = \exp \left\{ -\frac{m}{C-u} + H \right\} \frac{(h+2\alpha)\rho^\alpha}{(d+f)^{\frac{2\alpha}{n+2}}}
\]

defined on \(S_u(p, C)\). Clearly, \(\tilde{F}\) attains its supremum at some interior point \(q^*\) of \(S_u(p, C)\). Thus, at \(q^*\),

(6.7) \quad -hu_j + \frac{h' u_j}{h+2\alpha} + H_j + \alpha \frac{\rho_j}{\rho} - \frac{2n\alpha}{n+2} \frac{f_j}{d+f} = 0,

(6.8) \quad \left(\frac{h''}{h+2\alpha} - \frac{h'^2}{(h+2\alpha)^2} - h'\right) \sum (u_j)^2 + \left(\frac{h'}{h+2\alpha} - h\right) \Delta u

+ \Delta H + \frac{n+2}{2} \alpha \Phi - \frac{2n\alpha}{n+2} \left(\frac{\Delta f}{d+f} - \frac{\sum (f_i)^2}{(d+f)^2}\right) \leq 0
where $h'' = \frac{6n}{(2-\alpha)^4}$. By (2.11) and the Schwarz inequality

\begin{equation}
\sum H_i^2 = \sum \left(\epsilon \frac{2x_i}{(d+f)^2} - 2\epsilon \frac{\sum x_k^2}{(d+f)^3} \delta_{i,j} \right)^2 \leq 8\epsilon H \frac{\sum f_{ii}}{(d+f)^2} + 8H^2 \frac{\sum (f_{ii})^2}{(d+f)^2},
\end{equation}

\begin{equation}
\Delta H = \frac{\epsilon}{(d+f)^2} \left[2 \sum f_{ii} + \frac{n+2}{2} \langle \nabla \log \rho, \nabla (\sum x_k^2) \rangle - 4\epsilon \frac{\sum x_k^2 \sum f_{ii}}{d+f} \right]
+ 6\epsilon \sum x_k^2 \sum (f_{ii})^2 \frac{n+2}{(d+f)^3} - (n+2)\epsilon \sum x_k^2 \langle \nabla \log \rho, \nabla f \rangle \frac{n+2}{(d+f)^3}
\geq \frac{\epsilon}{(d+f)^2} \sum f_{ii} - 27H \frac{\sum (f_{ii})^2}{(d+f)^2} - \frac{3(n+2)^2}{4} H\Phi - 2nH.
\end{equation}

Note that $\frac{(n+2)^2}{2} > n + 2 \geq \frac{n+2}{2}$ and

\begin{equation}
\Phi = \frac{1}{\alpha^2} \sum \left(-hu_i + \frac{h' u_i}{h + 2\alpha} + H_i - \frac{2n\alpha}{n+2} \frac{f_{ii}}{d+f} \right)^2
\geq \frac{1}{2\alpha^2} \sum \left(-hu_i + \frac{h' u_i}{h + 2\alpha} - \frac{2n\alpha}{n+2} \frac{f_{ii}}{d+f} \right)^2 - \frac{1}{\alpha^2} \sum (H_i)^2
\geq \frac{h^2}{4\alpha^2} \sum (u_i)^2 + \frac{n^2}{(n+2)^2} \frac{\sum (f_{ii})^2}{(d+f)^2} - \frac{1}{2\alpha^2} \frac{h^2}{(h+2\alpha)^2} - \frac{1}{\alpha^2} \frac{\sum (H_i)^2}{4} - 4h,
\end{equation}

where we use the fact (6.4). Inserting (2.12), (2.13), (6.9) and (6.10) into (6.8) and using the Schwartz inequality we have

\begin{equation}
\frac{\epsilon}{2} \sum f_{ii} - a_0 \Phi - a_1 h - 3n\alpha \leq 0
\end{equation}

for some constant $a_0 > 0$, $a_1 > 0$ depending only on n. Since $\sum f_{ii} \geq n\rho^{\frac{n+2}{n}}$, we get

\begin{equation}
\frac{\rho^{\frac{n+2}{n}}}{(d+f)^2} \leq \frac{a_0}{\epsilon} \Phi + \frac{2a_1}{\epsilon} h + \frac{6\alpha}{\epsilon},
\end{equation}

It follows that

\begin{equation}
\mathcal{B}^{1+\frac{n+2}{na}} \leq a_2 A + a_3 B,
\end{equation}

15
for some positive constants a_2 and a_3, where we used the fact that $\exp \left\{ -\frac{m}{C-u} \right\} h^\gamma$ has a universal upper bounded for any $\beta > 0$, $\gamma > 0$. By (6.6), we have

(6.14) \[B \leq d_1, \quad A \leq d_1 \]

for some d_1 depending only on C, n and b_1. Thus the proof of Lemma 6.1 is complete.\square

In the following we estimate $\sum u_{ii}$. To this end we first derive a general formula which we need later.

Lemma 6.2 Let $u(\xi)$ be a smooth strictly convex function defined in $\Omega \subset \mathbb{R}^n$. Assume that

\[\inf_{\Omega} u = 0, \quad u|_{\partial \Omega} = C. \]

Consider the function

(6.15) \[F = \exp \left\{ -\frac{m}{C-u} + H \right\} Q\|\nabla K\|^2, \]

where $Q > 0$, $H > 0$ and K are smooth functions defined on $\overline{\Omega}$. F attains its supremum at an interior point p^*. We choose a local orthonormal frame field on M such that, at p^*, $K_1 = \|\nabla K\|$, $K_{i} = 0$, for all $i > 1$. Then at the point p^* we have the following estimates

(6.16) \[
2 \left(\frac{1}{n-1} - \delta - 1 \right) (K_{,11})^2 + 2 \sum K_{,j}(\Delta K)_{,j} \\
+ 2(1 - \delta) \sum A_{ml}^2 (K_{,1})^2 - \frac{(n+2)^2}{8\delta} \Phi(K_{,1})^2 - \frac{2}{\delta(n-1)^2}(\Delta K)^2 \\
+ \left[-h' \sum (u_{i})^2 - h\Delta u + \Delta H + \frac{\Delta Q}{Q} - \frac{\sum (Q_{,i})^2}{Q^2} \right] (K_{,1})^2 \leq 0,
\]

for any small positive number δ.

Proof. We can assume that $\|\nabla K\|(p^*) > 0$. Then, at p^*,

(6.17) \[F_{,i} = 0, \]

(6.18) \[\sum F_{,ii} \leq 0. \]

By calculating both expressions (6.17) and (6.18) explicitly, we have

(6.19) \[
\left(-hu_{,i} + H_{,i} + \frac{Q_{,i}}{Q} \right) \sum (K_{,j})^2 + 2 \sum K_{,j} K_{,ji} = 0,
\]
(6.20) \[2 \sum (K_{,ij})^2 + 2 \sum K_{,j}K_{,jii} + 2 \sum \left(-hu_{,i} + H_{,i} + \frac{Q_{,i}}{Q} \right) K_{,j}K_{,ji} \]
\[+ \left[-h' \sum (u_{,i})^2 - h\Delta u + \Delta H + \frac{\Delta Q}{Q} - \frac{\sum (Q_{,i})^2}{Q^2} \right] (K_{,1})^2 \leq 0. \]

Let us simplify (6.20). From (6.19)

(6.21) \[2K_{,1i} = \left(hu_{,i} - H_{,i} - \frac{Q_{,i}}{Q} \right) K_{,1}. \]

Applying the Schwarz inequality yields

(6.22) \[2 \sum (K_{,ij})^2 \geq 2(K_{,11})^2 + \frac{2}{n-1} (\Delta K - K_{,11})^2 + 4 \sum_{i>1} (K_{,1i})^2 \]
\[\geq 2 \left(\frac{n}{n-1} - \delta \right) (K_{,11})^2 + 4 \sum_{j>1} (K_{,1j})^2 - \frac{2}{\delta(n-1)^2} (\Delta K)^2 \]
for any \(\delta > 0 \). Inserting (6.21) and (6.22) into (6.20) we get

(6.23) \[2 \left(\frac{1}{n-1} - \delta - 1 \right) (K_{,11})^2 + 2 \sum K_{,j}K_{,jii} - \frac{2}{\delta(n-1)^2} (\Delta K)^2 \]
\[+ \left[-h' \sum (u_{,i})^2 - h\Delta u + \Delta H + \frac{\Delta Q}{Q} - \frac{\sum (Q_{,i})^2}{Q^2} \right] (K_{,1})^2 \leq 0. \]

An application of the Ricci identity shows that

(6.24) \[2 \sum K_{,j}K_{,jii} = 2 \sum K_{,j}(\Delta K)_{,j} + 2R_{11}(K_{,1})^2 \]
\[= 2 \sum K_{,j}(\Delta K)_{,j} + 2 \sum A_{ml1}^2 (K_{,1})^2 - (n + 2) \sum A_{11k} \frac{\rho_k}{\rho} (K_{,1})^2 \]
\[\geq 2 \sum K_{,j}(\Delta K)_{,j} + 2(1 - \delta) \sum A_{ml1}^2 (K_{,1})^2 - \frac{(n + 2)^2}{8\delta} \Phi(K_{,1})^2. \]

Consequently, inserting (6.24) into (6.23) we get (6.16). \(\square \)

Lemma 6.3 Let \(u \) be a smooth and strictly convex function defined in \(\Omega \) which satisfies the equation (1.4). Suppose that \(u \) is normalized at \(p \) and the section \(\tilde{S}_u(p,C) \) is compact. And assume that there are constants \(b_2 \geq 0, d > 1 \) such that

\[\frac{\sum x_k^2}{(d + f)^2} \leq b_2, \quad \frac{\rho^\alpha}{(d + f)^{\frac{2\alpha}{n+2}}} \leq b_2, \quad \frac{\rho^\alpha \Phi}{(d + f)^{\frac{2\alpha}{n+2}}} \leq b_2 \]
on $S_u(p, C)$. Then there is a constant $d_2 > 0$, depending only on n, b_2 and C, such that

$$\exp \left\{ - \frac{64(n-1)C}{C-u} \right\} \frac{\rho^u \sum u_{ii}}{(d+f)^{\frac{2n+6}{n^2+2}} \leq d_2}$$
on $S_u(p, C)$, where $\alpha = \frac{(n+2)(n-3)}{2} + \frac{n-1}{4}$.

Proof. Put

$$H = \epsilon (d+f)^2, \quad K = x_1, \quad Q = \frac{\rho^u}{(d+f)^{\frac{2n+6}{n^2+2}}}$$
in (6.15). Now we first calculate $2 \sum K_j(\Delta K)_j + 2(1-\delta) \sum A_{mli}A_{mlj}K_iK_j$. By (2.11) we have in this case

$$\Delta K = \frac{n+2}{2} \langle \nabla \log \rho, \nabla K \rangle,$$

$$2 \sum K_j(\Delta K)_j = (n+2) \frac{\rho_{11}}{\rho} (K,_{1})^2 - (n+2) \frac{(\rho_{1})^2}{\rho^2} (K,_{1})^2 + (n+2) \sum K,_{1i}K,_{1j} \frac{\rho_{ij}}{\rho}$$

$$\geq (n+2) \sum \frac{\rho_{ij}}{\rho} K,_{1i}K,_{1j} - \delta \sum (K,_{1i})^2 - \frac{(n+2)^2 + 1}{4\delta} \Phi(K,_{1})^2$$

for $\delta \leq \frac{1}{4(n+2)}$. We use the coordinates ξ_1, \ldots, ξ_n to calculate $\sum (K,_{ij})^2$ and $\sum A_{mli}^2(K,_{1})^2$. Note that the Levi-Civita connection is given by $\Gamma^k_{ij} = \frac{1}{2} \sum u^{kl}u_{ijl}$. Then

$$K,_{ij} = u_{1ij} - \frac{1}{2} \sum u_{1kl}u^{kl}u_{ij} = \frac{1}{2} u_{1ij},$$

$$\sum (K,_{ij})^2 = \frac{1}{4} \sum u^{ik}u^{j}u_{1ij}u_{1kl},$$

(6.25) $\sum (A_{mli})^2(K,_{1})^2 = \frac{1}{4} \sum u^{ik}u^{j}u_{1ij}u_{1jp}u_{klq}u^{pr}u_{1r}u^{qs}u_{1s} = \sum (K,_{ij})^2$.

In the coordinates x_1, \ldots, x_n we have (see (3.1))

$$\frac{\rho_{ij}}{\rho} = \frac{\rho_{k}}{\rho} \frac{\rho_{ij}}{\rho}, \quad \frac{\rho_{ij}}{\rho} = \frac{\rho_{k}}{\rho} \frac{\rho_{ij}}{\rho} + \sum A_{ij}^k \frac{\rho_{ik}}{\rho},$$

It follows that

(6.26) $(n+2) \sum \frac{\rho_{ij}}{\rho} K,_{i}K,_{j} \leq \delta \sum (K,_{ij})^2 + \frac{(n+2)^2 + 1}{4\delta} \Phi(K,_{1})^2.$

Then

(6.27) $2 \sum K_j(\Delta K)_j + 2(1-\delta) \sum A_{mli}A_{mlj}K_iK_j$
\[\geq (2 - 4\delta) \sum (K_{ij})^2 - \frac{(n + 2)^2 + 1}{2\delta} \Phi(K, i)^2.\]

A direct calculation yields

\[\frac{\Delta Q}{Q} - \sum \frac{(Q_{ij})^2}{Q^2} \geq -\frac{(n\alpha + n + 2)(n + 2)}{8} \Phi - 2n(\alpha + 1).\]

From (6.21) we obtain

\[\sum (K_{1i})^2 = \frac{1}{4} \sum \left[hu_{i} - \alpha \frac{p_{i}}{\rho} + \left(\frac{2n\alpha}{n + 2} + 2 \right) \frac{f_{i}}{d + f} - H_{i} \right]^2 (K, i)^2 \]

\[\geq \frac{1}{16} \left[h^2 \sum (u_{i})^2 + \frac{4n^2\alpha^2}{(n + 2)^2} \frac{(f_{i})^2}{(d + f)^2} \right] (K, i)^2 - \frac{1}{8} \alpha^2 \Phi(K, i)^2 - \frac{1}{4} (K, i)^2 \sum (H_{i})^2 \]

\[\geq \frac{1}{16} \left[h^2 \sum (u_{i})^2 + \frac{4n^2\alpha^2}{(n + 2)^2} \frac{(f_{i})^2}{(d + f)^2} \right] (K, i)^2 - \frac{1}{8} \alpha^2 \Phi(K, i)^2 - \frac{1}{4} (K, i)^2 \sum (H_{i})^2 - a_{4}h(K, i)^2,\]

where we used (6.4), for some positive constant \(a_{4}\). Choose \(\delta = \frac{1}{6(n+2)}\) and \(m = 64(n - 1)C\). Inserting (6.9), (6.10), (6.27), (6.28) and (6.29) into (6.16) and using the Schwarz inequality we get

\[\epsilon \frac{\sum fii}{2 (d + f)^2} - a_{5} \Phi - a_{6}h - a_{7} \leq 0,\]

In the above \(a_{4} = -a_{7}\) denote constants depending only on \(n\). Note that

\[\sum f^{ii} \geq u_{11} = (K, i)^2.\]

It follows that

\[\exp \left\{ \frac{m}{C - u} \right\} \frac{\rho^{n}u_{11}}{(d + f)^{\frac{2n\alpha}{n + 2} + 2}} \leq d_{2}\]

for some constant \(d_{2}\) depending only on \(n, b_{2}\) and \(C\). Similar inequalities for \(u_{ii}\) remain true. Thus the proof of Lemma 6.3 is complete. \(\Box\)

\section*{§7. Proof of Main Theorem}

Let \(u(\xi_{1}, ..., \xi_{n})\) be a locally strongly convex function defined on whole \(\mathbb{R}^{n}\) such that its Legendre function \(f\) satisfying

\[\frac{\partial^2}{\partial x_{i} \partial x_{j}} (\log \det (f_{kl})) = 0.\]
Let $p \in \mathbb{R}^n$ be any point. By a coordinate translation transformation and by subtracting a linear function we may suppose that u satisfying

$$u(\xi) \geq u(p) = 0, \quad \forall \xi \in \mathbb{R}^n.$$

Choose a sequence $\{C_k\}$ of positive numbers such that $C_k \to \infty$ as $k \to \infty$. For any C_k the level set $S_u(p, C_k) = \{u(\xi) < C_k\}$ is a bounded convex domain. Let

$$u^{(k)}(\xi) = \frac{u(\xi)}{C_k}, \quad k = 1, 2, \ldots$$

There exists the unique minimum ellipsoid E of $S_u(p, C_k)$ centered at q_k, the center of mass of $S_u(p, C_k)$, such that

$$n^{-\frac{3}{2}}E \subset S_u(p, C_k) \subset E.$$

Let

$$T_k : \tilde{\xi}_i = \sum a^i_j \xi_j + b_i$$

be a linear transformation such that

$$T_k(q_k) = 0, \quad T_k(E) = B(0, 1).$$

Then

$$B(0, n^{-\frac{3}{2}}) \subset \Omega_k := T_k(S_u(p, C_k)) \subset B(0, 1).$$

Thus we obtain a sequence of convex functions

$$\tilde{u}^{(k)}(\tilde{\xi}) := u^{(k)}\left(\sum b^i_j (\tilde{\xi}_j - b_j), \ldots, \sum b^j_n (\tilde{\xi}_j - b_j)\right)$$

where $(b^i_j) = (a^i_j)^{-1}$.

In the following we will use the coordinates ξ to denote the $\tilde{\xi}$ and $u^{(k)}$ to denote $\tilde{u}^{(k)}$ to simplify the notations. We may suppose by taking subsequences that Ω_k converges to a convex domain Ω and $u^{(k)}(\xi)$ converges to a convex function $u^\infty(\xi)$, locally uniformly in Ω. Consider the Legendre transformation relative to $u^{(k)}$:

$$x_i = \frac{\partial u^{(k)}}{\partial \xi_i},$$

$$f^{(k)}(x_1, \ldots, x_n) = \sum \xi_i \frac{\partial u^{(k)}}{\partial \xi_i} - u^{(k)}(\xi_1, \ldots, \xi_n), \quad (\xi_1, \ldots, \xi_n) \in \Omega_k.$$

Put $\Omega^{(k)*} = \{(x_1, \ldots, x_n) | x_i = \frac{\partial u^{(k)}}{\partial \xi_i}\}$. Obviously, $f^{(k)}$ satisfies (7.1), therefore there are constants $d^{(k)}_1, \ldots, d^{(k)}_n, d^{(k)}_0$ such that

$$\text{(7.2)} \quad \det \left(\frac{\partial^2 f^{(k)}}{\partial x_i \partial x_j}\right) = \exp \left\{\sum d^{(k)}_i x_i + d^{(k)}_0\right\}.$$
We use Lemmas 5.1, 6.1 and 6.3 for each \(u^{(k)}\) with \(C = 1\) to get the following uniform estimates

\[
\frac{\rho^{(k)}}{(d + f^{(k)}) \frac{2n}{n+2}} \leq d_3, \quad \frac{\rho^{(k)} \alpha \Phi^{(k)}}{(d + f^{(k)}) \frac{2n}{n+2}} \leq d_3, \quad \frac{\rho^{(k)} \alpha \sum u^{(k)}_{ii}}{(d + f^{(k)}) \frac{2n}{n+2}} \leq d_3
\]

on \(S_{u^{(k)}}(T^k(p), \frac{1}{2})\) for some constant \(d_3 > 0\), where \(\alpha = \frac{(n+2)(n-3)}{2} + \frac{n-1}{4}\).

Let \(B_R(0)\) be a Euclidean ball such that \(S_{u^{(k)}}(T^k(p), \frac{1}{2}) \subset B_{R/2}(0)\), for all \(k\). The comparison theorem for the normal mapping (see [G] or [L-J-3]) yields

\[
B^*_r(0) \subset \Omega^{(k)*}
\]

for every \(k\), where \(r = \frac{1}{2R} + 1\) and \(B^*_r(0) = \{x|x_1^2 + ... + x_n^2 \leq r^2\}\). Note that \(u^k(T^k(p)) = 0\) and its image under normal mapping is \((x_1, ..., x_n) = 0\). Restricting to \(B^*_r(0)\), we have

\[
-R' \leq f^{(k)} = \sum \xi_i x_i - u^{(k)} \leq R',
\]

where \(R' = \frac{1}{R} + 1\). Therefore \(f^{(k)}\) locally uniformly converges to a convex function \(f^\infty\) on \(B^*_r(0)\) and there are uniform estimates

\[
\rho^{(k)} \leq d_4, \quad (\rho^{(k)} \alpha \Phi^{(k)}) \leq d_4, \quad (\rho^{(k)} \alpha \sum u^{(k)}_{ii}) \leq d_4
\]

on \(B^*_r(0)\) for some constant \(d_4 > 0\).

Lemma 7.1 Let \(f(x)\) be a smooth strictly convex function defined in \(B^*_\delta(0)\) satisfying

\[
-R' \leq f \leq R'.
\]

Then there exists a point \(p^* \in B^*_\delta(0)\) such that at \(p^*\)

\[
\frac{1}{\rho} < \left(\frac{4R'}{\delta^2}\right)^{\frac{n}{n+2}} 2^{\frac{n+1}{n+2}} := d_5.
\]

Proof. If Lemma 7.1 does not hold, we would have

\[
\frac{1}{\rho} \geq d_5 \quad \text{on} \quad B^*_\delta(0).
\]

It follows that

\[
\det(f_{ij}) \geq d_5^{n+2} \quad \text{on} \quad B^*_\delta(0).
\]
Define a function

\[F(x) = \left(\frac{d_n^{n+2}}{2n+1} \right)^{\frac{1}{2n+1}} \left(\sum x_i^2 - \delta^2 \right) + 2R' \text{ on } B^*_\delta(0). \]

Then

\[\det(F_{ij}) = \frac{d_n^{n+2}}{2} < \det(f_{ij}) \text{ in } B^*_\delta(0), \]

\[F(x) \geq f(x) \text{ on } \partial B^*_\delta(0). \]

By the comparison principle, we have

\[F(x) \geq f(x) \text{ on } B^*_\delta(0). \]

On the other hand, note that

\[F(0) = - \left(\frac{d_n^{n+2}}{2n+1} \right)^{\frac{1}{2}} \delta^2 + 2R' = -2R' < f(0). \]

This is a contradiction. □

From Lemma 7.1 and (7.3), for any \(B^*_\delta(0) \) we have a point \(p_k \in B^*_\delta(0) \) such that \(\rho^{(k)}, \frac{1}{\rho^{(k)}}, \Phi^{(k)} \) and \(\sum u_{ii}^{(k)} \) are uniformly bounded at \(p_k \). Therefore there are constants \(0 < \lambda \leq \Lambda < \infty \) independent of \(k \) such that the following estimates hold

\[\lambda < \text{the eigenvalues of } \left(f_{ij}^{(k)} \right)(p_k) < \Lambda. \]

Since \(f^{(k)} \) satisfies (7.2),

\[\Phi^{(k)} = \frac{1}{(n+2)^2} \sum f^{(k)ij} d_i^{(k)} d_j^{(k)}. \]

It follows that

\[\sum (d_i^{(k)})^2 \leq d_6 \]

for some constant \(d_6 > 0 \). Thus

\[\| \nabla \log \rho^{(k)} \|^2_E = \sum \left(\frac{\partial \log \rho^{(k)}}{\partial x_i} \right)^2 = \frac{1}{(n+2)^2} \sum (d_i^{(k)})^2 \leq d_6, \]

(7.4) where \(\| \cdot \|_E \) denotes the norm of a vector with respect to the Euclidean metric. Then for any unit speed geodesic starting from \(p_k \),

\[\frac{d \log \rho^{(k)}}{ds} \leq \| \nabla \log \rho^{(k)} \|_E \leq d_6. \]

(7.5)
Thus for any \(q \) we have

\[
\rho^{(k)}(p_k) \exp\{ -|q - p_k|d_6 \} \leq \rho^{(k)}(q) \leq \rho^{(k)}(p_k) \exp\{ |q - p_k|d_6 \}.
\]

In particular, we choose \(q \) be the point \(x_i = 0 \) for all \(i \geq 1 \). It follows from (7.3) that

\[
\Phi^{(k)}(q) \leq d_7
\]

for some constant \(d_7 > 0 \) independent of \(k \). On the other hand, if \(\Phi(p) \neq 0 \), by a direct calculation yields

\[
\Phi^{(k)}(q) = C_k \Phi(p) \to \infty, \quad \text{as} \quad k \to \infty.
\]

This contradicts to (7.7). Thus

\[
\Phi(p) = 0.
\]

Since \(p \) is arbitrary we conclude that \(\Phi = 0 \) everywhere. Consequently

\[
\det \left(\frac{\partial^2 u}{\partial \xi_i \partial \xi_j} \right) = \text{const.} > 0.
\]

This means that \(M \) is an affine complete parabolic affine hypersphere. By the J-C-P Theorem we conclude that \(M \) must be elliptic paraboloid. This complete the proof of the Main Theorem. \(\square \)

References

[Ca] E. Calabi: Improper Affine Hyperspheres of Convex Type and a Generalization of a Theorem by K. Jörgens. Michigan Math. J., 5(1958), 105-126.

[C-L] L. Caffarelli, Y.Y. Li: An Extension to a Theorem of Jörgens, Calabi, and Pogorelov. Comm. Pure Appl. Math., Vol. LVI,(2003), 549-583.

[C-Y] S.Y. Cheng, S.T. Yau: Complete Affine Hypersurfaces. I. The Completeness of Affine Metrics. Comm. Pure Appl. Math., 39 (1986), no. 6, 839-866.

[C-Y-1] S.Y. Cheng, S.T. Yau: On the Real Monge-Ampère Equation and Affine Flat Structure. Proceedings of the 1980 Beijing Symposium Differential Geometry and Differential Equations, Vol.1,2,3,(Beijing), 339-370. Science Press, 1982.

[G] C.E. Gutiérrez: The Monge-Ampère Equation, Birkhäuser Boston, 2001.

[J] K. Jörgens: Über die Lösungen der Differentialgleichung \(rt - s^2 = 1 \). Math. Ann., 127 (1954), 130-134.
[J-L] F. Jia, A.-M. Li: Complete Kähler Affine Manifolds. Preprint.

[L-J-1] A.-M. Li, F. Jia: Affine Bernstein Problem on Affine Maximal Surfaces. Sichuan Daxue Xuebao, 36(1999), no.6, 1141-1143.

[L-J-2] A.-M. Li, F. Jia: The Bernstein Property of Some Fourth Order Partial Differential Equations. Preprint.

[L-J-3] A.-M. Li, F. Jia: Euclidean Complete Affine Surfaces with Constant Affine Mean Curvature. Ann. Global Anal. Geom., 23(2003), 283-304.

[Sh] H. Shima: The Geometry of Hessian Structures, World-Scientific, 2007.

[T-W] N. Trudinger, X. Wang: The Bernstein Problem for Affine Maximal Hypersurfaces. Invent. Math., 140(2000), 399-422.

[P] A.V. Pogorelov: On the Improper Convex Affine Hyperspheres. Geom. Dedicata, 1 (1972), no. 1, 33-46.

[P-1] A.V. Pogorelov: The Minkowski Multidimensional Problem. John Wiley & Sons, 1978.

An-Min Li
Department of Mathematics
Sichuan University
Chengdu, Sichuan
P.R.China
e-mail:math-li@yahoo.com.cn

Ruiwei Xu
Department of Mathematics
Sichuan University
Chengdu, Sichuan
P.R.China
e-mail:xuruiwei@yahoo.com.cn