Uso tópico de bactérias predadoras reduz a destruição tecidual periodontal em ratos com periodontite experimental: estudo histológico, microtomográfico, imunológico e microbiológico.

PEDRO HENRIQUE FELIX SILVA
PEDRO HENRIQUE FELIX SILVA

Uso tópico de bactérias predadoras reduz a destruição tecidual periodontal em ratos com periodontite experimental: estudo histológico, microtomográfico, imunológico e microbiológico.

Dissertação apresentada à Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo, para obtenção do título de Mestre em Odontologia (Periodontia).

Área de concentração: Periodontia

Orientador: Prof. Dr. Michel Reis Messora

RIBEIRÃO PRETO
2018
Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação da Publicação

Biblioteca Central do Campus USP - Ribeirão Preto.

Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo

Silva, Pedro Henrique Felix Silva.

Uso tópico de bactérias predadoras reduz a destruição tecidual periodontal em ratos com periodontite experimental: estudo histológico, microtomográfico, imunológico e microbiológico / Pedro Henrique Felix Silva; orientador Michel Reis Messora. - Ribeirão Preto, 2018.

172f. : il.

Dissertação (Mestrado)—Universidade de São Paulo, 2018.

1. Doença Periodontal. 2. Predadores biológicos. 3. Ratos. 4.
Bdellovibrio.
SILVA, P. H. F. Uso tópico de bactérias predadoras reduz a destruição tecidual periodontal em ratos com periodontite experimental: estudo histológico, microtomográfico, imunológico e microbiológico: Dissertação apresentada à Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo, para obtenção do título de Mestre em Odontologia (Periodontia).

Aprovado em: ___ / ___ / _____

Banca Examinadora

1) Prof.(a). Dr.(a):__
 Instituição:___
 Assinatura:__

1) Prof.(a). Dr.(a):__
 Instituição:___
 Assinatura:__

1) Prof.(a). Dr.(a):__
 Instituição:___
 Assinatura:__
DEDICATÓRIA
DEDICO

A Deus,
Agradeço diariamente por ter me dado primeiramente o dom da vida. Quando antes de eu ser, ele já me conhecia e me chamava pelo nome. Aquele que me ajuda sempre, o consolador da minha alma, meu abrigo nos momentos mais difíceis da vida. Até aqui o Senhor tem me sustentado e que assim seja até o fim dos dias, pois os teus caminhos sempre são melhores que os meus pensamentos. Meu coração te dei como morada e nele tu habitarás.

Aos meus pais José e Ivaneide,
Como sou grato a vocês por tudo. Vocês são mais do que pais, são anjos dados por Deus. Vocês que me ensinaram o significado da palavra amor, mesmo quando eu errava seus abraços me consolavam com a correção. Com vocês aprendi o que era gratidão, ao voltar para casa no final de cada dia por saber que seus sorrisos estavam lá. Por onde passo eu levo vocês comigo, e faço questão de mostrar o quanto amo vocês e me emocionam. Vejo em vocês meus heróis. Cada ensinamento dado foi o que me tornou mais forte a cada escalada e vocês sempre de perto me acompanhando. Vocês são a melhor parte que existe em mim e esse amor eu levarei daqui para eternidade.

Aos meus irmãos Iliana, Jonatan, Kaio e Malu,
Dizem que irmão são aqueles que nunca nos deixam esquecer que estamos sozinhos no mundo. Hoje posso afirmar com toda certeza a veracidade dessas palavras. Vocês vibraram comigo a cada momento, me suportando até quando eu estava estressado, de mau humor. Ensinaram-me que amar não quer dizer que somos iguais, mas sim que somos diferentes e aprendemos a lidar com as diferenças onde o mundo sem vocês não teria graça. Sempre vejo o melhor de vocês e espero que sejam capazes de enxergarem a si próprio dessa linda forma também. Vocês são a melhor parte que existe em mim e esse amor eu levarei daqui para eternidade.
Aos meus tios, primos e família,

Você foram essenciais no meu crescimento, me mostraram que ninguém faz algo sozinho. A união é o complemento da realização. A vocês sou eternamente grato pelo bom convívio e carinho doados durante todos esses anos.

.
Agradecimentos
Agradeço

A meu orientador Prof. Dr. Michel Reis Messora,

Sou grato por ter me aceitado como orientado, foi um grande presente que recebi na vida. O senhor tem sido fonte de inspiração durante esses anos, sua paixão pela docência e pela pesquisa, me encantou e me fez buscar além do que poderia imaginar. O senhor acompanhou de perto minha evolução, esteve perto quando achei tudo muito complexo e vibrou comigo nos momentos de alegria. Muito obrigado por ter acreditado no meu potencial, por todas as oportunidades que tem me dado, por me ensinar o valor muito além do trabalho. O profissional que tenho me tornado é fruto dos seus ensinamentos e sou grato por tudo.

Aos Professores do Programa de Pós-graduação em Periodontia Dr. Arthur Belém Novaes Júnior, Dr. Sérgio Scombatti e Dr. Mario Taba, agradeço pelos anos de convívio e ensinamentos transmitidos. Foram grandes as experiências vividas nessa casa, muito além do profissional. A Profa. Dra. Daniela Bazan Palioto, minha profunda admiração e gratidão. Obrigado por cada conversa de incentivo, às vezes puxão de orelha, mas que sempre me levaram a ver situações de outra forma. Muitíssimo obrigado pela sua sensibilidade!

Ao Prof. Dr. Sérgio Salvador, obrigado pela atenção sempre dispensada a mim, desde ensinamentos a conversas sobre a vida. O senhor me ensinou desde o básico da microbiologia para cada análise desse projeto e sempre disposto a ajudar. Foram tantas horas dispensadas no laboratório que acabamos nos tornando quase uma família, e de presente ganhei sua amizade que quero levar para o resto da vida. Continue sendo essa pessoa especial e cativante, um modelo de ser humano. Minha eterna gratidão.

A Profa. Dra. Flávia Furlaneto, obrigado pelos ensinamentos transmitidos durantes esses anos, pelo bom convívio e trocas de experiências. Foi um prazer trabalhar em conjunto com a senhora e prof. Michel nessa equipe de pesquisa. Obrigado pelas oportunidades dadas mim e por acreditar no nosso trabalho.
Ao Prof. Dr. Edilson Ervolino e seus alunos, obrigado por ter me recebido tão bem Araçatuba para realização da imunohistoquímica. Ao Prof. Dr. Renato Casarin pela ajuda na realização da análise imunoenzimática. A Profa. Dra. Luciene Figueiredo pela ajuda na realização do checkerboard.

A Profa. Dra. Priscila Paganini, muito obrigado por ter me apresentado a periodontia encantadora e por ter incentivado a seguir a docência. Você foi essencial nesse seguimento.

A Profa. Dra. Heliana Mestrinho, Profa. Dra. Joana Carvalho e Nicole, obrigado por permitirem eu ver de perto a pesquisa científica. Vocês permitiram eu vivenciar experiências únicas em projetos que vocês desenvolvem na UnB, onde o amor ao próximo é vivenciado a cada etapa. Vocês me fizeram acreditar mais ainda estar seguido o caminho correto e sou eternamente grato.

Aos meus amigos do mestrado Marília Reis, Uislen Cadore, Yasmin Dal’Acqua e Kleber Suzuki. Vocês se tornaram minha família, em momentos de desespero me abraçaram e me deram o ombro amigo. Muito obrigado. Átila Nobre e Cristhiam Hernandez obrigado por me acompanarem de perto, por trazerem momentos de alegrias, compartilharem experiências e brindarem o melhor da amizade.

A Renata Cardoso, meu muito obrigado por toda amizade. Você se tornou uma irmã que ganhei aqui. Aquela que me acompanhou em todos os experimentos, mesmo quando estava cansada e sem reclamar. Aquela que me levava comida quando não dava tempo para ir comer. Nos momentos de tristeza, me alegrava. Quando estava nervoso, com sua sensibilidade me acalmava. Dizem que almas amigas se reconhecem no tempo, não tenho dúvida dessa dádiva quando olho para você. Um dos maiores presente que o mestrado poderia me dar, e espero levar para o resto da vida.
Ao Luiz Fernando, pelo bom convívio nesses anos e por toda ajuda durante o decorrer da pesquisa. Sua ajuda foi essencial.

Aos meus amigos pós-graduandos Catarina Tahim, Natacha Malu, Sérgio Lago, Barbará Masalskas, Karine Figueredo, Felipe Torres, Paula Pessoa, Mariana Sales, Cristine Borges, Marcos Invernici, Kelly Villafuerte, André Moreira, Gabriel que me acompanharam ao longo dessa trajetória, muito obrigado. Com a ajuda de vocês ficou mais fácil à caminhada.

As minhas amigas da especialização, Natalia Cintra, Thais Tonini e Camila Costa, muito obrigado pelos momentos compartilhados e por me acompanharem desde aquela época.

As minhas amigas da graduação, Karina e Rafaella, muito obrigado por cada momento e por entenderem as vezes que não podia sair ou visitar-las. Obrigado pela amizade.

À técnica Marina Del Arco, agradeço a ajuda com o preparo e cultivo da cepa no laboratório de Microbiologia da Faculdade de Farmácia de Ribeirão Preto, em todos os experimentos in vitro esteve ao meu lado, literalmente um presente de Deus na minha vida. Só posso agradecer por tudo e por ter se tornando uma grande amiga, onde posso compartilhar todos os momentos.

Ao Fabrício Renier, obrigado pelos bons momentos compartilhados, por me escutar em momentos difíceis, por sempre oferecer um ombro amigo e palavras de sabedoria. Obrigado por ser esse ser humano especial.

Aos técnicos de laboratório Fábiola Singaretti, Roger Fernandes, Adriana Luisa por dividirem os conhecimentos profissionais comigo. Em especial a Milla Sprone Tavares por me ajudar sem medidas em todas as etapas desse projeto, e por se tornar uma amiga. Terão sempre meu respeito e admiração.
As secretárias Aparecida Dulce de Oliveira Negreti, Carla Daniela Lima da Silva e em especial para Maria Izabel, muito obrigado por toda ajuda em documentações, carinho e orientações.

A todos os funcionários da FORP pelo carinho e disponibilidade.

À Faculdade de Odontologia de Ribeirão Preto (FORP) da Universidade de São Paulo, Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro para a realização deste estudo.
EPIGRAFE
“Talvez não tenha conseguido fazer o melhor, mas lutei para que o melhor fosse feito. Não sou o que deveria ser, mas Graças a Deus, não sou o que era antes”.

(Marthin Luther King)
RESUMO

SILVA, P. H. F. Uso tópico de bactérias predadoras reduz a destruição tecidual periodontal em ratos com periodontite experimental: estudo histológico, microtomográfico, imunológico e microbiológico. 2018. 172f. Dissertação (Mestrado) – Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2018.

Este estudo avaliou os efeitos da administração tópica de *Bdellovibrio bacteriovorus* HD100 na periodontite experimental em ratos. 32 ratos foram alocados nos grupos CT, DPT, CT-HD100 e DPT-HD100. No dia 0 do experimento, os animais dos grupos DPT e DPT-HD100 receberam ligaduras de seda ao redor dos primeiros molares inferiores (PMIs). Nos grupos CT-HD100 e DPT-HD100, suspensões de 1 mL contendo *B. bacteriovorus* HD100 foram administradas tópicamente na região subgengival de PMIs nos dias 0, 3 e 7. Nos grupos CT e DPT, administrações tópicas foram realizadas com uma suspensão não contendo *B. bacteriovorus* HD100. Todos os animais foram submetidos à eutanásia no dia 14 do experimento. O tecido gengival, hemi-mandíbulas e biofilme bucal foram coletados para avaliação dos seguintes parâmetros: i) microarquitetura óssea, volume ósseo e nível ósseo alveolar (microtomografia computadorizada por transmissão de raios X – micro-CT); ii) níveis de inserção conjuntiva (análise histomorfométrica); iii) microbiota bacteriana (checkerboard DNA-DNA hybridization); iv) expressão de citocinas inflamatórias e fatores de transcrição (análise imunoenzimática - Multiplex e reação em cadeia da polimerase por transcriptase reversa em tempo real); iii) padrão de imunomarcação para beta defensinas (BD), receptores do tipo Toll (TLR) e grupamentos de diferenciação (CD) (reações imunohistoquímicas). Testes *in vitro* foram também realizados para avaliar o potencial antimicrobiano de *B. bacteriovorus* HD100 contra periodontopatógenos. Os dados foram analisados estatisticamente (*p* < 0,05). O grupo DPT-HD100 apresentou menores porosidade óssea, separação trabecular, nível ósseo alveolar e nível de inserção conjuntiva, bem como maiores volume ósseo e número de trabéculas ósseas quando comparado ao Grupo DPT (*p* < 0,05). O grupo DPT-HD100 apresentou maiores proporções de espécies semelhantes à *Actinomyces* e *Streptococcus* e menores proporções de espécies semelhantes à *Prevotella intermedia*, *Peptostreptococcus micros*, *Fusobacterium nucleatum*, *Fusobacterium polymorphum*, *Eikenella corrodens*, *Eubacterium nodatum*, *Campylobacter gracilis*, *Capnocytophaga sputigena* e *Veillonella parvula* quando comparado ao Grupo DPT. Nas análises de parâmetros imunoinflamatórios, o Grupo DPT-HD100 apresentou maiores níveis
de Proteina quimioatrativa de monócito-1 (MCP-1), Células T normais expressas e secretadas, reguladas por ativação (RANTES), Osteoprotegerina (OPG), Fator de Crescimento Transformador (TGF)-β e Interleucina (IL)-10 e menores níveis de Fator de Necrose Tumoral (TNF)-α, bem como maior padrão de imunomarcação para BD-1, BD-2 e BD-3 quando comparado ao Grupo DPT ($p < 0,05$). Para os níveis de IL-1β, IL-6, Fator Estimulador de Colônias de Macrófagos (M-CSF), Ligante do Receptor Ativador de Fator Nuclear kappa-B (RANK-L) e padrões de imunomarcação para TLR-2, TLR-4, CD-4, CD-8 e CD-57, não foram observadas diferenças entre os grupos DPT e DPT-HD100. Na análise de expressão gênica, o Grupo DPT-HD100 apresentou maior expressão de IL-17, IL-10 e Forkhead box P3 (FOXP3) quando comparado ao Grupo DPT ($p < 0,05$). Nos testes in vitro, as co-culturas de periodontopatógenos (F. nucleatum, P. intermedia e A. actinomycetemcomitans) e B. bacteriovorus HD100 apresentaram menor densidade óptica do que as culturas isoladas de periodontopatógenos em 48 horas. O uso tópico de B. bacteriovorus HD100 modifica os parâmetros imunoinflamatórios e microbiológicos, promovendo um efeito protetor contra a perda óssea alveolar e perda de inserção do tecido conjuntivo em ratos com periodontite experimental.

Palavras-chave: Doença Periodontal; Predadores biológicos; Ratos; Bdellovibrio.
ABSTRACT

SILVA, P.H.F. Topical use of predatory bacteria reduces periodontal tissue destruction in rats with experimental periodontitis: histological, microtomographic, immunological and microbiological study. 2018. 172f. Dissertação (Mestrado) – Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2018.

This study evaluated the effects of topical administration of *Bdellovibrio bacteriovorus* HD100 on experimental periodontitis in rats. Thirty-two rats were allocated in the CT, DPT, CT-HD100 and DPT-HD100 groups. At day 0 of the experiment, animals of the DPT and DPT-HD100 groups received silk ligatures around the mandibular first molars (MFMs). In the CT-HD100 and DPT-HD100 groups, 1 ml suspensions containing *B. bacteriovorus* HD100 were topically administered in the subgingival region of MFMs on days 0, 3 and 7. In the CT and DPT groups, topical administrations were performed with a suspension without *B. bacteriovorus* HD100. All animals were submitted to euthanasia on day 14 of the experiment. The gingival tissue, hemi-mandibles and oral biofilm were collected to evaluate the following parameters: i) bone microarchiteture, bone volume and alveolar bone level (X-ray micro-computed tomography - micro-CT); ii) levels of conjunctive insertion (histomorphometric analysis); iii) microbiological profile (checkerboard DNA-DNA hybridization); iv) expression of inflammatory cytokines and transcription factors (immunoenzymatic analysis - Multiplex and Real-time reverse transcription polymerase chain reaction); iii) immunostaining pattern for Beta defensins (BD), Toll-like receptors (TLR) and Cluster of differentiation (CD) (immunohistochemical reactions). In vitro tests were also performed to evaluate the antimicrobial potential of *B. bacteriovorus* HD100 against periodontopathogens. The data were analyzed statistically (*p* <0.05). The DPT-HD100 Group presented lower bone porosity, trabecular separation, alveolar bone level and connective tissue attachment level, as well as higher bone volume and number of bone trabeculae when compared to the DPT Group (*p* <0.05). The DPT-HD100 Group presented higher proportions of *Actinomyces* and *Streptococcus*-like species and smaller proportions of *Prevotella intermedia*, *Peptostreptococcus micros*, *Fusobacterium nucleatum*, *Fusobacterium polymorphum*, *Eikenella corrodens*, *Eubacterium nodatum*, *Campylobacter gracilis*, *Capnocytophaga sputigena* and *Veillonella parvula*-like species when compared to the DPT Group. In the analysis of immunoinflammatory parameters, the DPT-HD100 Group presented higher levels of Monocyte-1 chemoattractant protein (MCP-1), Regulated on activation, normal T cell expressed and secreted (RANTES), Osteoprotegerin (OPG), Transforming Growth Factor
(TGF)-β and Interleukin (IL)-10 and lower levels of Tumor Necrosis Factor (TNF)-α, as well as a higher immunolabeling pattern for BD-1, BD-2 and BD-3 when compared to the DPT Group (p <0.05). For levels of IL-1β, IL-6, Macrophage Colony Stimulating Factor (M-CSF), Receptor activator of nuclear factor kappa-B ligand (RANK-L) and immunolabeling patterns for TLR-2 TLR-4, CD-4, CD-8 and CD-57, no differences were observed between the DPT and DPT-HD100 groups. In the analysis of gene expression, the DPT-HD100 group presented higher expression of IL-17, IL-10 and Forkhead box P3 (FOXP3) when compared to the DPT Group (p <0.05). In the in vitro tests, co-cultures of periodontopathogens (F. nucleatum, P. intermedia and A. ctinomycetemcomitans) and B. bacteriovorus HD100 showed lower optical density than isolated cultures of periodontopathogens at 48 hours. Topical use of B. bacteriovorus HD100 modifies immunoinflammatory and microbiological parameters, promoting a protective effect against alveolar bone loss and loss of connective tissue attachment in rats with experimental periodontitis.

Keywords: Periodontal Diseases; Biologic predator; Rats, *Bdellovibrio.*
LISTA DE FIGURAS

Figura 1 - Delineamento experimental... 72

Figura 2 - Posicionamento em mesa operatória e instalação de fio de seda ao redor dos primeiros molares inferiores nos animais dos grupos DPT e DPT-HD100... 73

Figura 3 - Proporções médias de 40 espécies bacterianas no biofilme dos animais dos grupos com periodontite experimental e tratados (Grupo DPT-HD100 – linhas azuis) ou não (Grupos DPT – linhas vermelhas) com administrações tópicas da bactéria predadora B. bacteriovorus HD100. % de contagem de sondas de DNA = porcentagem da contagem de DNA de cada espécie em relação à contagem total de DNA das 40 espécies bacterianas avaliadas. *Diferença significativa entre os grupos (Teste t, p < 0,05). ... 90

Figura 4 - Padrão de imunomarcação para BD-1 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com B. bacteriovorus HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm. ... 91

Figura 5 - Padrão de imunomarcação para BD-2 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com B. bacteriovorus HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-2. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm. ... 92

Figura 6 - Padrão de imunomarcação para BD-3 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com B. bacteriovorus HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). TE = tecido epitelial; TC = tecido conjuntivo. Setas = células positivas para BD-3. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm. ... 93
Figura 7 - Padrão de imunomarcação para TLR-2 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com <i>B. bacteriovorus</i> HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contracoloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm .. 94

Figura 8 - Padrão de imunomarcação para TLR-4 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com <i>B. bacteriovorus</i> HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contracoloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm .. 95

Figura 9 - Padrão de imunomarcação para CD-4 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com <i>B. bacteriovorus</i> HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-4. Contracoloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm .. 96

Figura 10 - Padrão de imunomarcação para CD-8 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com <i>B. bacteriovorus</i> HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-8. Contracoloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm .. 97

Figura 11 - Padrão de imunomarcação para CD-57 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com <i>B. bacteriovorus</i> HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-57. Contracoloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm .. 98
Figura 12 - Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para BD-1 (A), BD-2 (B) e BD-3 (C). Letras diferentes representam diferenças estatísticas significativas (Kruskal-Wallis, Dunn, $p < 0,05$)... 99

Figura 13 - Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para TLR-2 (A) e TLR-4 (B). Letras diferentes representam diferenças estatísticas significativas (Kruskal-Wallis, Dunn, $p < 0,05$)... 100

Figura 14 - Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para CD-4 (A), CD-8 (B), CD-57 (C). Letras diferentes representam diferenças estatísticas significativas (Kruskal-Wallis, Dunn, $p < 0,05$).. 100

Figura 15 - Níveis médios (pg/mL) e desvios-padrão de (A) IL-1β, (B) IL-6, (C) TNF-α, (D) MCP-1, (E) M-CSF e (F) RANTES para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, $p < 0,05$).. 102

Figura 16 - Níveis médios (pg/mL) e desvios-padrão de (A) IL-10 e (B) TGF-β para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, $p < 0,05$).. 102

Figura 17 - Níveis médios (pg/mL) e desvios-padrão de (A) RANK-L e (B) OPG para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, $p < 0,05$).. 103
Figura 18 - Médias e desvios-padrão da expressão gênica de IL-10 (A), IL-17 (B) e FOXP3 (C) nos grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes (ANOVA, Tukey, p < 0,05).

Figura 19 - Imagens representativas das reconstruções tridimensionais renderizadas das secções microtomográficas das hemi-mandíbulas direitas dos animais dos grupos CT (A, B), CT-HD100 (C, D), DPT (E, F) e DPT-HD100 (G, H). Vista da superfície vestibular externa (A, C, E e G). Secção sagital da superfície interna (B, D, F e H). CTVox® (versão 3.1.0, Bruker, Kontich, Bélgica). Tamanho do pixel = 7,96 μm.

Figura 20 - Médias e desvios-padrão do volume ósseo (A) porosidade óssea (B), espaçamento trabecular (C), superfície óssea (D) e nível ósseo alveolar (E) com comparações entre os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes indicam diferenças significativas entre os grupos (ANOVA, Tukey, p < 0,05). Tb.Sp = espaçamento trabecular; Tb.N = número de trabéculas.

Figura 21 - Tecidos periodontais na região de bifurcação do primeiro molar inferior dos grupos CT (A, B), CT-HD100 (C, D), DPT (E, F) e DPT-HD100 (G, H). Coloração: Hematoxilina e Eosina. Aumento original = 10x (A, C, G, F); 20x (B, D, F, H). OA = osso alveolar; TF = teto da bifurcação; setas pretas = vasos sanguíneos; cabeça de seta preta preenchida = osteoblastos; asterisco = fibras colágenas desconexas com a presença de edema intersticial; cabeça de seta branca preenchida = cementoclastos; cabeça de seta não preenchida = fibras colágenas interpostas entre o osso alveolar e o cemento radicular.

Figura 22 - Tecidos periodontais na região interproximal entre o primeiro e segundo molares inferiores dos animais dos grupos CT (A), CT-HD100 (B), DPT (C), DPT-HD100 (D). Aumento original = 20x. PMI = primeiro molar inferior; SMI = segundo molar inferior; Seta preta = junção cemento-esmalte; Seta branca = inserção conjuntiva.
Figura 23 - Médias e desvios-padrão do nível de inserção conjuntiva para os grupos CT, CT-HD100, DPT e DPT-HD100, com comparações entre os grupos. NIC = Nível de inserção conjuntiva. Letras diferentes representam diferença significativa entre os grupos (Teste t, p < 0,05)...

Figura 24 - Médias e desvios-padrão de densidade ótica (DO) obtidas nos tempos 0, 24 horas e 48 horas na análise de culturas de *Bdellovibrio bacteriovorus* HD100 (*B.b*) associadas ou não a culturas de *Agregatibacter actinomycetemcomitans* (*A.a*) (*A*), *Prevotella intermedia* (*P.i*) (*B*) e *Fusobacterium nucleatum* (*F.n*) (*C*). Letras diferentes indicam diferenças significativas intragrupos (ao longo dos tempos experimentais) (ANOVA, Tukey, p < 0,05). * = diferença significativa quando comparado à cultura pura do periodontopatógeno (Teste t, p < 0,05)...
LISTA DE TABELAS
LISTA DE TABELAS

Tabela 1 - Relação das cepas bacterianas avaliadas na análise microbiológica por meio do checkerboard DNA-DNA hybridization.. 75
LISTA DE ABREVIATURAS E SIGLAS
Abreviação	Explicação
ATCC	*Americam Type Culture Collection*
BALOs	*Bdellovibrios* e organismos semelhantes
BD	Beta-defensina(s)
BHI	Brain Heart infusion
CCI	Coeficiente de correlação intraclasses
CD	Grupamento(s) de diferenciação
cDNA	DNA complementar
CEUA	Comissão de Ética no Uso de Animal
cm	Centímetro
CO	Crista óssea alveolar
DAA	Diarreia associada a antibióticos
DALYs	*Disability-adjusted life year*
DGGE	Eletroforese em gel de gradiente desnaturante
DNA	Ácido desoxirribonucleico
DO	Densidade óptica
EDTA	Ácido etilenodiamino tetra-acético
ELISA	Imunoensaio enzimático
FCG	Fluido crevicular gengival
fg	Fentograma
FORP	Faculdade de Odontologia de Ribeirão Preto
FOXP3	*Foxhead box P3*
g	Grama
g/mL	Grama/mililitro
GF	Ratos *grem free*
GRA	Genes de resistência aos antibióticos
HI	Hospedeiro-independente
HM Hepes medium	
IBK Ceratoconjuntivite infecciosa bovina	
IL Interleucina	
JCE Junção cemento-esmalte	
KC Quimiocina de queratinócitos	
LPS Lipopolissacarídeo	
Mb Megabases	
MCP-1 Proteína quimioatrativa de monócito-1	
M-CSF Fator Estimulador de Colônias de Macrófagos	
mg Miligrama	
mg/dL Miligrama/decilitro	
mg/mL Miligrama/mililitro	
Micro-CT Microtomografia computadorizada por transmissão de raios X	
mL Mililitro	
mm Milímetro	
mM Milimolar	
MMP Metaloproteinases da matriz	
NAM Ácido N-acetil murâmico	
ng Nanograma	
ng/dL Nanograma/decilitro	
NIC Nível de inserção conjuntiva	
nm Nanômetros	
OPG Osteoprotegerina	
PAMP Padrões moleculares associados aos patógenos	
PBS Solução salina tamponada fosfatada	
pg/mL Picograma/mililitro	
PGA Enzima de hidrólise de poli-N-acetilglucosamina	
PGE2 Prostaglandina E2	
pH Potencial hidrogeniônico	
PO Porosidade Óssea	
PRR Receptores de reconhecimento de padrões	
PSD Disbiose e sinergismo polimicrobiano	
q-PCR Reação em cadeia da polimerase	
qRT-PCR Reação em cadeia da polimerase em tempo real	
RANK-L Ligante do receptor ativador do fator nuclear Kappa-beta	
RANTES Células T normais expressas e secretadas, reguladas por ativação	
RAR Raspagem e alisamento radicular	
rDNA DNA ribossomal	
RNA Ácido ribonucleico	
rRNA Ácido ribonucleico ribossômico	
rRNA RNA ribossomal	
SPF Ratos livres de patógenos específicos	
spp Várias espécies	
SSC Solução salina citratada	
Tb.N Número de trabéculas	
Tb.Sp Espaçamento trabecular;	
TE Tris-EDTA	
TGF-β Fator de crescimento transformador beta	
Th T-helper	
TLR Receptor do tipo Toll	
TNF-α Fator de necrose tumoral-alfa	
TNFRI Receptor de TNF-a	
Treg T reguladoras	
TRIS Tris(hidroximetil) aminometano	
UFC Unidades formadoras de colônia	
UNG Universidade de Guarulhos	
USP Universidade de São Paulo	
Acronimo	Descrição
----------	----------------------------
VO	Volume ósseo
VOI	Volume de interesse
μg	Micrograma
μg/mL	Micrograma/mililitro
μL	Microlitro
μm	Micrometro
LISTA DE SÍMBOLOS
LISTA DE SÍMBOLOS

- Menos
% Por cento
°C Graus Celsius
+ Mais
< Menor
± Mais ou Menos
= Igual
> Maior
≤ Menor ou igual
≥ Maior ou igual
CO₂ Dióxido de carbono
G Unidade de aceleração
H₂ Hidrogênio
HCL Ácido clorídrico
M Concentração molar
n Tamanho da amostra
N₂ Nitrogênio
NA₂HPO₄ Fosfato de sódio dibásico
NaCl Cloreto de sódio
NaOH Hidróxido de sódio
p Probabilidade de significância
SDS Dodecil sulfato de sódio
Z Conjunto de números inteiro
α Alfa
δ Delta
σ Desvio padrão
β Beta
LISTA DE ANEXOS

Anexo 1 - Certificado de aprovação da Comissão de Ética e Uso de Animais em Pesquisa... 144

Anexo 2 - Artigo científico submetido para publicação no periódico *Journal of Dental Research* ... 145
Sumário
SUMÁRIO

1. INTRODUÇÃO ... 41

2. REVISÃO DE LITERATURA .. 44
 2.1 O microbioma bucal .. 45
 2.2 Periodontite – da simbiose à disbiose .. 47
 2.3 Tratamento periodontal mecânico – limitações .. 50
 2.4 Antibióticos – as desvantagens .. 51
 2.5 Predadores biológicos ... 54
 2.6 *B. bacteriovorus* – efeitos em animais .. 59
 2.7 *Bdellovibrio bacteriovorus* e periodontopatógenos .. 64
 2.8 Justificativa .. 66

3. PROPOSIÇÃO .. 67
 3.1 Objetivo Geral .. 68
 3.2 Objetivos Específicos .. 68

4. MATERIAL E MÉTODOS ... 69
 4.1 Modelo experimental .. 70
 4.2 Cálculo do tamanho da amostra ... 71
 4.3 Preparo da cultura bacteriana e administração aos animais .. 71
 4.4 Indução da periodontite experimental ... 73
 4.5 Eutanásia e coleta de material para análises .. 74
 4.6 Avaliação microbiológica .. 74
 4.6.1 *Checkerboard DNA-DNA hybridization* ... 75
 4.6.2 Reação em cadeia da polimerase em tempo real (qPCR) .. 78
 4.7 Análise imunohistoquímica ... 80
 4.8 Análise imunoenzimática .. 82
 4.9 Análise da expressão gênica ... 83
 4.10 Análise com microtomografia computadorizada por transmissão de raios X (micro-CT)...... 84
 4.11 Análise histomorfométrica ... 86
 4.12 Análise *in vitro* da atividade antimicrobiana de *B. bacteriovorus* HD100 86
 4.13 Variáveis de resultado ... 87
 4.14 Análise estatística .. 88

5. RESULTADOS .. 90
 5.1 Avaliação microbiológica ... 91
 5.2 Análise imunohistoquímica .. 92
 5.3 Análise imunoenzimática ... 102
5.4 Análise de expressão gênica .. 104
5.5 Análise com microtomografia computadorizada por transmissão de raios X (micro-CT) 105
5.6 Análise histomorfométrica .. 107
5.7 Análise in vitro da atividade antimicrobiana de Bdellovibrio bacteriovorus HD100 111
6. DISCUSSÃO.. 112
7. CONCLUSÃO... 128
REFERÊNCIAS BIBLIOGRÁFICAS... 130
ANEXOS... 144
1. INTRODUÇÃO
O número de pessoas com condições bucais não tratadas no planeta aumentou de 2,5 bilhões em 1990 para 3,5 bilhões em 2015, com aumento de 64% nos indicadores DALYs (*disability-adjusted life year*). Maiores esforços e abordagens potencialmente diferentes são necessárias se o objetivo das políticas voltadas para saúde bucal é reduzir o nível de doenças bucais e minimizar seu impacto até 2020 (KASSEBAUM et al., 2017).

Dentre as doenças bucais, a doença periodontal ainda é uma condição altamente prevalente na população mundial e possui um caráter imunoinflamatório polimicrobiano (DARVEAU, 2010; KASSEBAUM et al., 2017). A prevalência das formas severas de periodontite praticamente dobrou de 1990 a 2015 no mundo todo (Kassebaum et al., 2017).

Raspagem e alisamento radicular (RAR) é a terapia de escolha para a maioria dos clínicos e é amplamente considerada o "padrão-ouro" para o tratamento da periodontite. Embora a RAR possa reduzir o número de agentes patogênicos periodontais, é incapaz de obter a sua erradicação completa, predispondo pacientes a recidivas de doenças e à disseminação bacteriana por via sistêmica (MOMBELLI et al., 2000). Dessa forma, diferentes protocolos antimicrobianos têm sido utilizados como recurso adjuvante para melhor controle da doença (FERES et al., 2015; MOMBELLI et al., 2011; MOMBELLI, 2018).

Com intuito de limitar o uso de antibióticos e evitar os efeitos nocivos de terapia repetidas e a promoção de resistência bacteriana, novas estratégias de combate a infeções devem ser investigadas, como a bacterioterapia. Esta terapia caracteriza-se pelo uso de bactérias inofensivas para deslocar organismos patogênicos (HUOVINEN, 2001).

Bdellovibrio e organismos semelhantes (BALOs) são proteobactérias altamente móveis que destroem outras bactérias Gram-negativas. BALOs são predadores obrigatórios, desde que eles necessitam capturar macromoléculas de suas presas como fonte de energia para multiplicação. A cepa mais estudada deste grupo é a *Bdellovibrio bacteriovorus* HD100 (VAN ESSCHE et al., 2009; SOCKETT & LAMBERT, 2004).
Estudos in vitro prévios demonstraram que BALOs possuem capacidade predatória sobre espécies patógenas bucais apresentando um perfil antimicrobiano (VAN ESSCHE et al., 2009; DASHIFF & KADOURI, 2011; LOOZEN et al., 2015). *B. bacteriovorus* HD100 foi capaz de eliminar *Fusobacterium nucleatum* e *Aggregatibacter actinomycetemcomitans* em amostras ex vivo (saliva e biofilme subgengival) de pacientes com periodontite, bem como promoveu aumento nas concentrações de *Actinomyces naeslundii* e *Streptococcus mitis*, influenciando a ecologia geral do biofilme (LOOZEN et al., 2015). Os resultados obtidos precisam ser validados em modelos experimentais in vivo.

Os estudos in vivo até o presente momento avaliaram os efeitos de BALOs no tratamento de infecções em frangos, ratos, bovinos, peixes-zebra e camarões brancos (ATTERBURY et al., 2011; CAO et al., 2015; SHATZKES et al., 2015; BOILEAU et al., 2016; WILLIS et al., 2016; SHATZKES et al., 2016; SHATZKES et al., 2017a). Os efeitos de BALOs foram também avaliados na morfologia e microbiota intestinal de ratos saudáveis (SHATZKES et al., 2017b). Todos esses estudos demonstraram a segurança do uso terapêutico de BALOs.

Nenhum estudo in vivo investigou ainda a ação de BALOs na periodontite. O propósito deste estudo foi avaliar microbiologicamente, histomorfometricamente, microtomograficamente e imunologicamente os efeitos da administração de *B. bacteriovorus* HD100 em ratos com periodontite experimental.
2. REVISÃO DE LITERATURA
2.1 O MICROBIOMA BUCAL

A comunidade microbiana bucal representa a associação mais bem caracterizada entre microrganismos e hospedeiro. Existem correlações bem estabelecidas entre a composição qualitativa da microbiota bucal e o estado de saúde/doença (CURTIS et al., 2011). Essas bactérias originam-se de comunidades distintas e altamente especializadas que residem em uma variedade de nichos ambientais na boca humana. Assim, o microbioma bucal humano pode ser visto como um somatório de comunidades microbianas residentes nas superfícies mucosas da língua, mucosa jugal, palato, amígdalas e nos biofilmes que se acumulam nas superfícies dos dentes (CURTIS et al., 2011).

Em indivíduos adultos saudáveis, a maioria das espécies do microbioma bucal pertence aos filos bacterianos *Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes* e *Fusobacteria* (Human Microbiome Project Consortium, 2012). Além disso, *archaea, protozoa, viruses e fungi* estão presentes. Das 700 espécies de bactérias bucais identificadas (Human Oral Microbiome Database, 2016), um indivíduo saudável é colonizado por 100 a 200 bactérias (DEWHIRST et al., 2010; GRIFFEN et al., 2012; ROSIER et al., 2017). A variação da composição da microbiota entre os indivíduos é resultante de diferenças no meio ambiente, genética, idade e estilo de vida do hospedeiro (KILIAN et al., 2016; ROSIER et al., 2017).

As bactérias bucais desenvolveram adesões altamente específicas para proteínas e carboidratos da película adquirida, as quais são bastante diferentes dos mecanismos de adesão de outras bactérias comensais e patogênicas que manifestam tropismos para tecidos altamente específicos. No processo de formação do biofilme bucal, os colonizadores iniciais estabelecem-se na superfície do dente por meio de interações com a película adquirida do hospedeiro e servem como locais de ligação adicionais para colonizadores intermediários e tardios. Este processo demonstra que cada etapa na formação do biofilme dental é altamente
específica e representa uma coevolução entre as diferentes espécies bacterianas bucais e o hospedeiro (SOCRANSKY & HAFFAJEE, 2005; CURTIS et al., 2011).

Estudos recentes que examinaram a interação hospedeiro-bactéria revelaram que as bactérias comensais não só protegem o hospedeiro de bactérias patogênicas pela ocupação de nichos, mas podem também promover o desenvolvimento de estrutura e função adequadas dos tecidos. Esses dados indicam que as comunidades polimicrobianas associadas ao hospedeiro, como aquelas encontradas na cavidade bucal, evoluíram em conjunto com o mesmo e se tornaram parte integrante de um mesmo organismo (LEY et al., 2008; ROBERTS & DARVEAU, 2015).

No intestino, por exemplo, as bactérias comensais podem influenciar a morfologia de vilos e criptas, bem como contribuir para a homeostase do tecido epitelial e desenvolvimento de um sistema imune maduro (GORDON & PESTI, 1971; HOOPER et al., 2001; UMESAKI & SETOYAMA, 2000; XU & GORDON, 2003; MACPHERSON & HARRIS, 2004). Bactérias comensais podem modular a expressão de genes envolvidos em várias funções intestinais importantes, incluindo absorção de nutrientes, função da barreira mucosa, metabolismo xenobiótico, angiogênese e maturação intestinal pós-natal (HOOPER, 2001; ROBERTS & DRAVEAU, 2015).

No que se refere aos tecidos periodontais, a comunidade odontológica está apenas começando a entender as contribuições relativas de bactérias comensais bucais para a organização tecidual altamente especializada e para o padrão de expressão de mediadores inflamatórios seletivos (CURTIS et al., 2011). A colonização comensal parece influenciar o estado de defesa periodontal. Um estudo piloto revelou que ratos livres de patógenos específicos (SPF) contêm níveis mais elevados de interleucina (IL)-1b do que ratos grem free (GF) (DIXON et al. 2004). Foi também relatado que a perda óssea alveolar de ocorrência natural está significativamente comprometida em camundongos GF quando comparados a
animais SPF. A inflamação induzida por bactérias comensais contribui para o controle de patógenos potenciais e, consequentemente, auxilia na manutenção da homeostase dos tecidos periodontais (DIXON et al., 2004; CURTIS et al., 2011).

2.2 Periodontite – da simbiose à disbiose

Em indivíduos saudáveis com bons hábitos de higiene bucal e dieta, a microbiota bucal vive em simbiose com o hospedeiro, evitando a colonização de agentes patogênicos e contribuindo para a fisiologia tecidual (HEZEL & WEITZBERG, 2015). Simbiose pode ser definida como uma composição microbiana, atividade e/ou ecologia que mantém uma relação equilibrada com o hospedeiro, resultando em um estado saudável. No entanto, as perturbações no microbioma causadas por certos fatores de estresse (consumo de carboidratos ou acúmulo de biofilme) podem levar ao desenvolvimento de doenças bucais, como cáries ou doenças periodontais (MARSH 1994, 2003). Nestas doenças bucais, observa-se uma mudança de espécies e funções bacterianas, caracterizando a disbiose (BELDA-FERRE et al., 2012; GRIFFEN et al., 2012; WANG et al., 2013; JORTH et al., 2014; ROSIER et al., 2017).

A periodontite é uma doença polimicrobina imunoinflamatória crônica, sendo a causa mais comum de perda dentária em todo o mundo. Esta doença parece ter múltiplas etiologias, as quais envolvem desordens microbianas e imunológicas (BEREZOW & DARVEAU, 2011). No que se refere às desordens imunológicas, é reconhecido que o sistema de defesa imune inato do hospedeiro é altamente ativo em tecidos saudáveis. Um desequilíbrio ou ruptura na expressão de mediadores inflamatórios contribui de forma significativa para a destruição dos tecidos de suporte dentário (PAGE & KORNMAN, 1997; CHAMPAGNE et al., 2003; VAN DYKE, 2008; DARVEAU, 2010).
As pesquisas envolvendo a identificação de receptores *Toll-like* (TLR), os quais estão diretamente envolvidos no reconhecimento de microrganismos, contribuíram para a constatação de que bactérias comensais e periodontopatogênicas podem ativar respostas imunes inatas (BEUTLER et al., 2003; O’NEILL, 2008; DARVEAU, 2010). Pesquisas que também melhor elucidaram a natureza da comunidade microbiana bucal como um verdadeiro biofilme demonstraram que as interações da comunidade microbiana podem modular a expressão dos mediadores imunes inatos no hospedeiro (DARVEAU et al., 1997; KOLENBRANDER et al., 2006; DARVEAU, 2010; BEREZOW & DARVEAU, 2011). De fato, a resposta inata do hospedeiro às bactérias bucais comensais pode contribuir para a defesa dos tecido periodontais (DIXON et al., 2004). Em resposta às bactérias bucais, as camadas mais externas do epitélio gengival, que estão em íntimo contato com as bactérias bucais comensais, produzem IL-8 e β-defensinas (TONETTI et al., 1994; DARVEAU et al., 1998; KRISANAPRAKORNKIT et al., 2000; HUANG et al., 2004; LU et al., 2005; CHUNG et al., 2007; HASEGAWA et al., 2007; DARVEAU, 2010). Esse estado inflamatório controlado e dirigido por bactérias comensais nos tecidos periodontais clinicamente saudáveis é muito semelhante àquele encontrado no intestino (CHADWICK & ANDERSON, 1992; CEBRA, 1999; DARVEAU, 2010). Muitas citocinas que normalmente estão associadas à inflamação, tais como IL-1β, Fator de necrose tumoral (TNF) e prostaglandina E2 (PGE2), são encontradas no fluido crevicular gengival (FCG) de locais clinicamente saudáveis (KAMMA et al., 2009). Então, pode-se constatar que o periodonto expressa continuamente citocinas, quimiocinas e moléculas de adesão celular que estão intimamente envolvidas na manutenção da homeostase do tecido periodontal (DARVEAU, 2010). O aumento não controlado desses mediadores inflamatórios pode levar à reabsorção do osso alveolar, uma vez que afetam a proporção de Receptor Ativador de Fator Nuclear kappa-B (RANK-L) e Osteoprotegerina (OPG), os quais estão envolvidos nos processos de reabsorção e aposição ósseas (BOYLE et al., 2003; NAGASAWA et al., 2007; COCHRAN, 2008; DARVEAU, 2010).
Considerando a etiologia da periodontite no contexto das desordens microbiológicas, a Periodontite Crônica parece ser verdadeiramente uma doença associada à comunidade microbiana. Portanto, a estabilidade da composição microbiana do biofilme pode ser um bom preditor da saúde periodontal, uma vez que alterações nessa comunidade estão associadas a mudanças no estado clínico dos tecidos do hospedeiro (KUMAR et al., 2006). Recentemente, foi proposto o modelo PSD (disbiose e sinergismo polimicrobiano) para explicar a patogênese da periodontite. De acordo com Hajjishengallis & Lamont (2012), a periodontite é iniciada por uma comunidade microbiana sinérgica e disbiótica e não somente por periodontopatógenos específicos, como aqueles do "complexo vermelho" proposto por Soncrasky et al. em 1994. Ainda, segundo os autores, diferentes membros ou combinações de genes específicos dentro da comunidade polimicrobiana cumprem papéis distintos que podem contribuir para a formação e estabilização de uma microbiota compatível com doenças. Um dos principais requisitos para o surgimento de uma comunidade potencialmente patogênica envolve a capacidade de certas espécies, denominadas “patógenos-chave”, em modular a resposta do hospedeiro, prejudicando a vigilância imunológica e convertendo a homeostasia em um estado disbiótico (HAJJISHENGALLIS & LAMONT, 2012). Os “patógenos-chave” também elevam a virulência de toda a comunidade microbiana por meio de uma comunicação interativa com agentes patogênicos acessórios (HAJJISHENGALLIS & LAMONT, 2012). Outras funções importantes para a patogenicidade exigem a expressão de moléculas diversas (adesinas apropriadas, receptores relacionados, enzimas proteolíticas e estruturas ou ligantes de superfície pró-inflamatórios), as quais atuam de forma combinada como fatores de virulência para sustentar nutricionalmente uma comunidade microbiana disbiótica que causa uma resposta no hospedeiro de natureza não-resolutiva e destrutiva (HAJJISHENGALLIS & LAMONT, 2012).
2.3 Tratamento periodontal mecânico – limitações

RAR é a terapia de escolha para a maioria dos clínicos e é amplamente considerada o "padrão-ouro" para o tratamento da periodontite. No entanto, a RAR sozinha não produz os resultados clínicos desejados em casos mais graves de doença (BEREZOW & DARVEAU, 2011). Embora a RAR possa reduzir o número de agentes patogênicos periodontais, é incapaz de obter a sua erradicação completa, predispondo pacientes a recidivas de doenças e à disseminação bacteriana por via sistêmica (MOMBELLI et al., 2000). Esse fato pode ser explicado pela habilidade das bactérias periodontopatogênicas para penetrarem e se instalarem em células epiteliais gengivais, cemento e dentina radicular, escapando assim da reação imunológica do hospedeiro e dos tratamentos mecânicos convencionais (ADRIAENS et al., 1988; TRIBBLE & LAMONT, 2010). A persistência de periodontopatógenos no interior de tecidos moles e duros contribui para a recorrência da periodontite e para a destruição progressiva dos tecidos de suporte dentário (SILVA et al., 2015; GIANNELLI et al., 2018).

Como a terapia mecânica isolada não pode eliminar completamente todas as bactérias envolvidas na periodontite, protocolos antimicrobianos auxiliares foram testados e avaliados em várias revisões publicadas na literatura (DRISKO & LEWIS, 1996; ELLEN & MCCULLLOCH, 1996; FERES et al., 2015; MOMBELLI et al., 2011; MOMBELLI, 2018). Numerosos ensaios avaliaram os benefícios de antibióticos sistêmicos, agentes antimicrobianos administrados localmente e enxaguatórios antissépticos. Mais recentemente, foi também demonstrado que o efeito antimicrobiano de algumas substâncias pode ser ativado em bolsas periodontais usando o princípio da terapia fotodinâmica (MARTINS et al., 2017; MOMBELLI, 2018).

Atualmente, o protocolo antimicrobiano mais investigado para tratamento da periodontite trata-se do uso sistêmico de amoxicilina e metronidazol combinado com RAR.
Entretanto, o uso de antibióticos pode ter um efeito a curto prazo no que se refere à recolonização bacteriana. Mdala et al. (2013) e Bizzarro et al. (2016) acompanharam por 2 anos e 1 ano, respectivamente, pacientes tratados com antibióticos e RAR. Após 3 meses, não havia mais diferenças no número de microrganismos do complexo vermelho entre pacientes tratados apenas com RAR ou RAR associada ao uso de antibióticos. Sendo assim, os antibióticos, de acordo com esses autores, parecem proporcionar um efeito adicional à RAR a curto prazo. De fato, os sítios tratados são sujeitos à recolonização com uma microbiota semelhante àquela existente antes da terapia. O grau e a velocidade da recolonização dependem do protocolo de tratamento, dos padrões de distribuição de microrganismos periodontais em outros locais da cavidade bucal e da qualidade da higiene bucal do paciente.

De acordo com Mombelli (2018), alguns pesquisadores defendem o uso racional de antibióticos, reservando-os para pacientes com um perfil microbiológico específico. No entanto, os benefícios de protocolos clínicos assistidos por antibiogramas são difíceis de serem visualizados na Periodontia. Dessa forma, com intuito de limitar o uso de antibióticos e evitar os efeitos nocivos de terapia repetidas, esforços adicionais devem ser realizados para otimizar procedimentos capazes de reduzirem/impedirem a colonização microbiana e a recolonização da bolsa periodontal (MOMBELLI, 2018). Esses esforços devem conduzir o desenvolvimento de terapias periodontais alinhadas com os novos conceitos envolvendo microbioma bucal e etiopatogenia das doenças periodontais, ou seja, conceitos que consideram essenciais a existência de inflamação e microbiota simbióticas como sinônimo de saúde bucal.

2.4 Antibióticos – as desvantagens

A diarreia associada a antibióticos (DAA) é uma complicaçãocomum decorrente do uso de antibióticos. A frequência de DAA pode ser alta (26-60%) durante surtos
hospitalares ou moderada (13-29%) durante os períodos endêmicos, sendo relativamente pouco frequente em ambientes ambulatoriais (MCFARLAND, 1998; LEVY et al., 2000; MCFARLAND, 2006). Os fatores de risco para DAA incluem antibióticos de amplo espectro e fatores do hospedeiro (idade, estado de saúde, gênero) (MCFARLAND, 2006). DAA geralmente ocorre 2-8 semanas após a exposição a antibióticos como resultado da perturbação da microbiota intestinal. Um dos papéis da microbiota intestinal é atuar como uma barreira protetora que resista à colonização de patógenos intestinais (MCFARLAND, 2000). Sem essa barreira protetora, os pacientes são suscetíveis à infecção por agentes patogênicos oportunistas (MCFARLAND, 2006).

Um dos efeitos desses tratamentos com antibióticos é a perturbação do desenvolvimento correto da microbiota intestinal infantil e, como resultado, a interrupção do desenvolvimento adequado dos sistemas intestinal, imunológico, metabólico e cerebral (RUSSELL et al., 2013; COX et al., 2014; LIVANOS et al., 2016; NOGACKA et al., 2018). Além disso, após a perturbação inicial induzida por antibióticos, a posterior recuperação completa de uma microbiota associada à saúde não pode ser assegurada. A este respeito, demonstrou-se que a microbiota cecal de camundongos tratados com cefoperazona continua a ser diferente do grupo controle, mesmo 6 semanas após o término do tratamento (ANTONOPOULOS et al., 2009; COX et al., 2014). Estudos em humanos relataram reduções nos níveis de *Bifidobacterium* e aumentos nas enterobactérias em bebês que receberam tratamentos antibióticos (TANAKA et al., 2009; FOUHY et al., 2012; ARBOLEYA et al., 2015). Estudos observacionais com bebês também revelaram recuperação incompleta da microbiota intestinal alguns meses após a interrupção do tratamento com antibiótico (TANAKA et al., 2009; FOUHY et al., 2012). Surpreendentemente, quase não há dados disponíveis que mostram o impacto de antibióticos usados na primeira infância no surgimento de genes de resistência a antibióticos na
microbiota intestinal (GIBSON et al., 2015; NOGACKA et al., 2018). Isso pode constituir uma questão importante em vista dos problemas crescentes com as resistências antimicrobianas. O intestino humano resistente é definido como a coleção de todos os genes do microbioma intestinal que potencialmente codificam resistência a antibióticos (D’COSTA et al., 2006; GILLINGS, 2013; NOGACKA et al., 2018). O enriquecimento do intestino com genes de resistência aos antibióticos (GRA) pode aumentar o risco de transferência dos mesmos para potenciais agentes patogênicos, comprometendo o manejo clínico das infecções. Além disso, é importante considerar que quando as comunidades microbianas são expostas ao desafio constante com antibióticos, elas adquirem resistência a múltiplos medicamentos (TOPRAK et al., 2011; NOGACKA et al., 2018). Embora o modo de adquirir resistência a antibióticos in vivo seja pouco compreendido, verificou-se que a terapia com antibióticos, de fato, ajuda a selecionar membros resistentes da comunidade microbiana ou aqueles microrganismos capazes de adquirir GRA (BARBOSA & LEVY, 2000; NOGACKA et al., 2018).

O surgimento mundial de resistência a agentes antibacterianos é um problema crescente que torna urgente a necessidade de novos tratamentos antimicrobianos para combater infecções bacterianas (HUOVINEN, 2001). Contudo, mesmo que novos agentes estejam em preparação, eles não resolverão todos os problemas de resistência atuais. Além disso, o uso de agentes antibacterianos não só seleciona bactérias resistentes, mas também perturba a microbiota humana normal, o que também pode inibir nossa defesa contra a infecção. Neste contexto, novas estratégias de combate a infecções devem ser investigadas, como a bacterioterapia. Esta terapia caracteriza-se pelo uso de bactérias inofensivas para deslocar organismos patogênicos (HUOVINEN, 2001) sem promover o desenvolvimento de resistências bacterianas.
A interferência em comunidades bacterianas tem sido amplamente estudada. As tentativas de influenciar a colonização de bactérias patogênicas por meio de bactérias inofensivas estão sendo investigadas há décadas (HUOVINEN, 2001). Na saúde humana, a bacterioterapia provavelmente foi esquecida por causa do desenvolvimento contínuo de novos agentes antibacterianos mais potentes e por medo de possíveis efeitos colaterais. As cepas bacterianas não virulentas podem, em princípio, também causar infecções. No entanto, a bacterioterapia já foi usada há muito tempo em animais, por exemplo, para prevenir a infecção de aves com Salmonellas (NURMI & RANTALA, 1973; HUOVINEN, 2001). No futuro, as oportunidades de tratamento podem incluir terapia com bacteriófagos ou utilização de predadores biológicos (HUOVINEN, 2001).

2.5 Predadores biológicos

Uma pequena bactéria Gram-negativa altamente móvel e flagelada (0,2-0,5 μm × 0,5-2,5 μm) foi descoberta em 1962 por Stolp e Petzold quando tentavam isolar bacteriófagos de bactérias patogênicas em plantas do solo (STOLP & STARR, 1963). Eles foram chamados de Bdellovibrio bacteriovorus, um nome que descreve a morfologia e o suposto modo de vida dessas bactérias. Estes microrganismos são curvos e aderem às suas presas, absorvendo o conteúdo das mesmas, como um verdadeiro sanguessuga ("bdella" em grego). Existem três espécies de Bdellovibrio: B. bacteriovorus, Bdellovibrio stolpii e Bdellovibrio starrii (HARINI et al., 2013). Essas espécies integram um grupo de microrganismos nomeados como BALOs.

BALOs são proteobactérias altamente móveis que destroem outras bactérias Gram-negativas. Eles são predadores obrigatórios, desde que necessitam capturar macromoléculas de suas presas como fonte de energia para multiplicação. A cepa mais estudada deste grupo é a Bdellovibrio bacteriovorus HD100. Após atacar sua presa, B. bacteriovorus entra no espaço
periplasmático da mesma e inicia sua multiplicação enquanto destrói o citoplasma da célula presa. Quando o ciclo de multiplicação do predador se completa, a célula presa é destruída liberando a prole do predador no ambiente (SOCKETT & LAMBERT, 2004; VAN ESSCHE et al., 2009). Desde que BALOs não podem infectar células de mamíferos (SIMPSON, 1972) e nenhuma doença infecciosa ou efeitos patogênicos têm sido relacionados aos mesmos, eles são, geralmente, considerados como seguros. BALOs foram isolados de numerosos sítios que estão em íntimo contato com humanos. Eles foram isolados em fezes de gado e de humanos (VAN ESSCHE et al., 2009). Um único estudo descreveu a presença de uma sequência genômica de *Bdellovibrio* na cavidade bucal (PASTER et al., 2002). Portanto, é improvável que efeitos prejudiciais possam ser esperados a partir destes microrganismos. Pode ser hipotetizado que BALOs têm o potencial para serem utilizados como “antibióticos vivos” no tratamento de infecções bucais causadas por bactérias Gram-negativas (VAN ESSCHE et al., 2009).

Estudos sobre a imunogenicidade de *Bdellovibrio* também foram realizados e os resultados mostraram-se altamente promissores para o tratamento de doenças em humanos. As camadas de lipopolissacarídeos (LPS) de BALOs são consideradas únicas pelo fato do Lipídio A destes microrganismos conter resíduos de a-D-manaose e não grupos de fosfato. Portanto, o Lipídio A dessas bactérias está desprovido de quaisquer grupos com carga negativa (SCHWUDKE et al., 2003). Como consequência, eles têm uma afinidade de ligação significativamente menor para os receptores de LPS em células humanas, bem como uma atividade endotóxica muito menor quando comparada à de *Escherichia coli*, por exemplo. Macrófagos humanos quando expostos à BALOs produzem níveis muito reduzidos de TNF-α e IL-6 (SCHWUDKE et al., 2003; DWIDAR et al., 2012).

Starr & Seidler (1971) relataram as dificuldades de contar *Bdellovibrio* em amostras naturais devido à natureza indireta de enumeração pela contagem de placas de presas.
Considerando que a capacidade de predação de uma única cepa de *B. bacteriovorus* pode variar em decorrência do tipo de presa presente, os métodos de contagens indiretas até então realizados na década 70 eram problemáticos (ROGOSKY et al., 2006). Nas últimas décadas, mais atenção foi dispensada para investigação genética de *B. bacteriovorus*. A sequência completa do genoma da cepa *B. bacteriovorus* HD100 foi determinada por Schuster et al. (2004). Um achado notável dos resultados de sequenciamento é que *B. bacteriovorus* mostrou pouca transferência horizontal de genes com outras bactérias. Foi também encontrado em seu genoma um grande número de potenciais enzimas hidrolisantes (150 proteases/peptidases, 20 DNases, 9 RNases, 10 glicanases). Os estudos mostraram ainda que este microrganismo sintetiza suas proteínas quase que exclusivamente durante o estágio em que se encontra no periplasma de outras bactérias (DWIDAR et al., 2012).

Em condições laboratoriais, a interação de BALOs com uma presa bacteriana resulta na lise da cultura da presa e na proliferação do predador. No entanto, as células da presa não são totalmente erradicas da suspensão. Uma pequena população residual permanece, mesmo que os predadores possam ser encontrados em quantidades três a cinco vezes maiores que aquelas da presa (KEYA E ALEXANDER, 1975). No passado, esses resultados foram explicados pela baixa probabilidade de um predador encontrar uma presa em baixas concentrações (VARON E ZEIGLER, 1978; ALEXANDER, 1981). Shemesh & Jurkevitch (2003) demonstraram que a não erradicação da população de presas residuais ocorre devido ao aumento da resistência das células sobreviventes à predação. Portanto, à medida que a resistência na população de presas aumenta, a eficiência da predação diminui (WILKINSON, 2001). No entanto, como a resistência não é total, esse mecanismo pode garantir a sobrevivência do predador e a recuperação da presa. É importante ressaltar que essa resistência bacteriana aos BALOs não enfrenta o mesmo problema que aquela relacionada aos antibióticos. Enquanto nesta última há ocorrência de mutações e transferências genéticas, na
primeira parece ocorrer apenas uma mudança fenotípica que desaparece rapidamente após a remoção do predador (SHEMESH & JURKEVITCH, 2003).

É importante considerar que *B. bacteriovorus*, embora seja o microrganismo mais bem estudado e caracterizado, não é o único que apresenta características predatórias. Estudos filogenéticos de BALOs com base na análise de sequenciamento do DNA ribossomal (rDNA) 16S foram realizados (SCHWUDKE et al., 2001; SNYDER et al., 2002) e identificaram diversas bactérias predatórias. Davidov et al. (2006) sequenciaram o genoma de diferentes BALOs (DWIDAR et al., 2012).

Bdellovibrios também podem crescer de forma livre, formando biofilmes hospedeiro-independente (HI) na natureza. Medina & Kadouri (2009) mostraram que *Bdellovibrios* HI podem manter a capacidade predatória, abandonando o biofilme para atacar presas adicionadas exogenamente (MEDINA & KADOURI 2009; SOCKETT 2009).

As bactérias predatórias têm diferentes estratégias para atacar suas presas (MARTIN, 2002). Essas estratégias podem ser categorizadas, em parte, pela localização do predador em relação à presa. As bactérias do gênero *Myxococci* podem exercer sua capacidade predatória em grupos, como em um ataque de lobo (MARTIN, 2002; BURNHAM et al., 1981). Este tipo de ataque parece não exigir a ligação física do predador com a presa. Os predadores excretam uma variedade de enzimas hidrolíticas que degradam as bactérias próximas, permitindo assim o consumo dos nutrientes dessas presas (DWIDAR et al., 2012). Outra estratégia de ataque é a predação epibiótica, que é exemplificada por *Vampirococcus* (GUERRERO et al., 1986). Na predação epibiótica, o predador apenas adere-se à superfície externa da célula presa para hidrolisar e consumir seus componentes (DWIDAR et al., 2012). A invasão do espaço periplasmico, uma outra estratégia de predação, é realizada por BALOs. Os BALOs são os predadores mais estudados e apresentam esquemas de predação mais complexos envolvendo 7 estágios. O ciclo de vida de *B. bacteriovorus* envolve duas fases distintas, uma fase de ataque
e uma fase periplasmática. Na fase de ataque, as células estão buscando a presa e têm uma forma semelhante a *Vibrios* com um único flagelo polar. Na fase periplasmática, o predador desenvolve-se como um filamento não flagelado enrolado e não septado no periplasma da presa. Antes de abandonar a presa, este filamento divide-se originando diversas proles genéticas flageladas do predador que dá início a uma nova sequência de predação (RUBY & RITTENBERG et al., 1983). Por fim, outra estratégia de predação é realizada pelos *Daptobacters*. Estes últimos podem invadir diretamente o citoplasma da presa, degradar seus componentes, consumí-los e, em seguida, promover a lise da célula (DWIDAR et al., 2012).

Bactérias predadoras podem desempenhar, por exemplo, um importante papel na formação da estrutura e função da comunidade em ecossistemas naturais e de engenharia, como as estações de tratamento de águas residuais (FENG et al., 2016). Essas estações são sistemas de engenharia designados para tratar águas residuais que possuem vários materiais orgânicos e altas concentrações de nutrientes (como nitrogênio e fósforo). O tratamento é dependente da diversidade da comunidade microbiana que coletivamente promove remoção de carbono e nutrientes da água. Esta comunidade se apresenta como um lodo ativado, onde os microrganismos estão aderidos uns aos outros como em um biofilme. Considerando que os biofilmes de lodos são altamente dependentes de uma atividade metabólica coletiva dos microrganismos para uma efetiva remoção de nutrientes, qualquer perturbação no ambiente afetando organismos funcionais chaves pode impactar de forma significativa o desempenho de estações de tratamento de água residuais. FENG et al. (2016) demonstraram que *B. bacteriovorus* podem penetrar em biofilme multispecífica, atingindo espécies sensíveis nas comunidades de lodo nativo. Os autores sugeriram que *B. bacteriovorus* podem reorganizar a estrutura e função da comunidade microbiana em estações de tratamento de águas residuais.

A primeira tentativa de aplicar *Bdellovibrios* no controle de doenças de plantas foi realizada por Scherff em 1973. Em seu estudo, *B. bacteriovorus* (estirpe Bd-17) foi isolado a
partir de raízes de soja e testado quanto à capacidade de controle da praga bacteriana induzida pela infecção por *Pseudomonas glycinea*. Os resultados mostraram que o Bd-17 inibiu o desenvolvimento de *P. glycinea*, sugerindo que *Bdellovibrios* não são prejudiciais para os simbiontes das plantas (DWIDAR et al., 2012).

Em um estudo realizado por Fratamico e Whiting (1995), *B. bacteriovorus* 109 J foi testado quanto à sua habilidade para lisar 32 cepas bacterianas que compreendem seis gêneros de patógenos transmitidos por alimentos. O estudo demonstrou a utilidade potencial dos BALOs no controle biológico de organismos patogênicos e relacionados à deterioração de alimentos, mesmo quando usados em baixas temperaturas (12 e 19 ºC). Em outro estudo do mesmo grupo de autores, foi avaliada a habilidade de *B. bacteriovorus* para remover as bactérias Gram-negativas das superfícies do equipamento de processamento de alimentos (FRATAMICO & COOKE 1996). As cepas *B. bacteriovorus* foram capazes de promover a lise celular de *E. coli* O157:H7 e *Salmonella spp.* presentes em superfícies de aço inoxidável (DWIDAR et al., 2012).

2.6 *B. bacteriovorus* – efeitos em animais

Os estudos in vivo até o presente momento avaliaram os efeitos de BALOs no tratamento de infecções em frangos, ratos, bovinos, peixes-zebra e camarões brancos. Seus efeitos foram também avaliados na morfologia e microbiota intestinal de ratos saudáveis (ATTERBURY et al., 2011; CAO et al., 2015; SHATZKES et al., 2015; BOILEAU et al., 2016; WILLIS et al., 2016; SHATZKES et al., 2016; SHATZKES et al., 2017a; SHATZKES et al., 2017b).

Atterbury et al. (2011) investigaram os efeitos da administração oral de *B. bacteriovorus* HD100 em aves com uma microbiota intestinal normal ou pré-tratadas com *Salmonella*. Após a administração de *Bdellovibrios* em aves não infectadas com *Salmonella,
foi avaliada a saúde e o bem-estar dos animais, bem como quaisquer alterações na morfologia intestinal e na microbiota cultivável. Embora a administração da bactéria predadora tenha alterado a diversidade da microbiota intestinal natural das aves aos dois dias de idade, nenhum efeito adverso no crescimento e bem-estar das mesmas foi observado aos 28 dias de idade. A água potável e o coletor fecal das gaiolas nas quais as aves foram mantidas em grupos durante o experimento não apresentaram contaminação por *Bdellovibrios* após a sua administração. Nas aves pré-tratadas com *Salmonella enterica* serovar *Enteritidis*, a administração oral de *Bdellovibrios* reduziu significativamente o número de *Salmonella* nos conteúdos cecais do intestino das aves e a ocorrência de alterações na morfologia cecal. Este estudo representou o primeiro passo da ciência para aplicação de bactérias predadoras no tratamento de infecções em animais, abrindo possibilidades para o uso desta terapia em humanos.

Cao et al. (2015) avaliram a sobrevivência de camarões brancos do pacífico desafiados com *Vibrio cholerae*. Quarenta camarões foram mantidos em 9 aquários e submetidos a exposição contínua com isolados de *V. cholerae* em uma concentração final de 5×10^6 Unidades Formadoras de Colônias (UFC)/mL. Doses de *Bacteriovorus* H16 em uma concentração final de 3×10^8 UFC/mL foram adicionadas aos aquários. *Bacteriovorus* H16 foi primeiro adicionado em 1 L de água, mantido por 4 h a $30 \pm 1^\circ$C com suficiente aeração e, depois, aplicado nos aquários experimentais. Os camarões foram observados diariamente durante 7 dias sem alimentação e mudança de água. O percentual de sobrevivência dos camarões foi, então, calculado. Os resultados mostraram um efeito protetor positivo de *B. bacteriovorus* H16 no controle da infecção por *V. cholerae*. Enquanto 90% dos camarões não tratados com *B. bacteriovorus* foram a óbito aos 7 dias, aproximadamente 52% dos camarões desafiados com *V. Cholerae* e tratados com *B. bacteriovorus* H16 permaneceram vivos.

Shatzkes et al. (2015) utilizaram inoculações nasais e intravenosas para determinar os efeitos de bactérias predadoras em camundongos. Não foi observada qualquer alteração na
viabilidade de camundongos após a inoculação intranasal ou intravenosa de *B. bacteriovorus* 109J, *B. bacteriovorus* HD100 ou *Micavibrio aeruginosavorus*. A introdução de predadores no trato respiratório dos camundongos provocou uma modesta resposta inflamatória na primeira hora após a exposição, sendo essa resposta reduzida em 24 horas. Os níveis de IL-6 no rim e baço, de TNF no fígado e da quimiocina de queratinócitos (KC) no sangue foram aumentados 3 horas após a injeção intravenosa dos predadores, retornando aos valores basais 18 horas após a inoculação. A análise histopatológica dos tecidos não demonstrou quaisquer alterações decorrentes da inoculação de bactérias predatórias. Além disso, as análises por meio de Reação em Cadeia da Polimerase em tempo real (qPCR) mostraram que as bactérias predadoras inoculadas foram removidas do hospedeiro de forma rápida e eficiente.

Em outro estudo (SHATZKES et al., 2017a), foi também avaliada a segurança da inoculação intravenosa de *Bdellovibrios* em ratos. A inoculação não afetou a viabilidade de ratos e também não promoveu quaisquer alterações histopatológicas em vários órgãos. Os autores observaram um aumento das citocinas pró-inflamatórias duas horas após a inoculação. No entanto, os níveis das citocinas retornaram aos valores basais 18 horas após a inoculação. Além disso, a análise de disseminação bacteriana demonstrou que as bactérias predatórias foram eliminadas eficientemente do hospedeiro 20 dias após a injeção, demonstrando a segurança de aplicação da bacterioterapia. Neste mesmo estudo, os autores investigaram se as bactérias predadoras poderiam reduzir a carga bacteriana *in vivo* proveniente da injeção de *Klebsiella pneumoniae* nas veias caudais de ratos ao longo de 16 ou 24 horas. As bactérias predatórias não conseguiram reduzir significativamente a carga de *K. pneumoniae* no sangue ou evitar a disseminação para outros órgãos. Os resultados sugeriram que bactérias predatórias podem não ser eficazes para o tratamento de infecções agudas no sangue (SHATZKES et al., 2017).
Shatzkes et al. (2016) investigaram se *Bdellovibrios* podem reduzir a carga bacteriana nos pulmões de ratos. Foi realizado, então, um experimento *in vivo* para inoculação intranasal de bactérias predatórias em ratos. Os animais foram submetidos a inoculações intranasais contendo concentrações sub-leais de *K. Pneumoniae*, seguidas da aplicação de múltiplas doses de bactérias predatórias ao longo de 24 h. As bactérias predatórias foram capazes de afetar a carga bacteriana de *K. pneumoniae*, promovendo reduções logarítmicas médias na ordem de 3 log.

Boileau et al. (2016) avaliaram a eficácia de *B. bacteriovorus* 109J para o tratamento de 12 bezerros com ceratoconjuntivite infecciosa bovina (IBK) induzida experimentalmente. Em cada bezerro, foram realizadas queratotomias em ambos os olhos imediatamente antes da inoculação com a estirpe hemolítica Epp63-300 de *Moraxella bovis* (n = 11 bezerros) ou a estirpe não hemolítica 12040577 (1 bezerro). Em cada bezerro inoculado com *M. bovis* Epp63-300, os olhos foram aleatoriamente designados para receber uma solução artificial de lágrima com ou sem *B. bacteriovorus* 109J. As soluções foram administradas em cada olho em 6 doses (0,2 mL / olho, topicalmente) a cada 48 horas. Nos dias em que a solução não foi aplicada, esfregaços da córnea e amostras de lágrimas foram coletadas para cultura bacteriana. Os bezerros foram submetidos à eutanásia aos 12 dias após a inoculação de *M. bovis*. Os olhos foram colhidos para avaliação macroscópica e histológica e para realizações de culturas bacterianas. O bezerro inoculado com *M. bovis* 12040577 não desenvolveu úlceras da córnea. Dos 22 olhos inoculados com *M. bovis* Epp63-300, 18 desenvolveram úlceras corneanas consistentes com IBK em 48 horas após a inoculação. Quatro desses olhos desenvolveram úlceras corneanas secundárias que não eram consistentes com IBK. O tamanho e a gravidade da úlcera corneana e o tempo necessário para a cicatrização da úlcera não diferiram entre os grupos tratados ou não com *B. bacteriovorus* 109J. Os resultados sugeriram que *B. bacteriovorus* 109J não foi eficaz para o tratamento de IBK. No entanto, o modelo
experimental utilizado produziu lesões que não mimetizaram completamente a ocorrência natural de IBK.

Willis et al. (2016) investigaram o uso de *Bdellovibrios* como um tratamento antibacteriano *in vivo* em larvas de peixes-zebra (*Danio rerio*) infectadas com *Shigella flexneri*, uma cepa bacteriana resistente a antibiótico isolada de humanos. Quando injetado em peixes não infectados, *Bdellovibrios* permaneceram no hospedeiro por mais de 24 horas e não provocaram nenhum efeito deletério. A injeção de *Bdellovibrios* em peixes-zebra infectados com uma dose letal de *S. flexneri* promoveu a morte dos patógenos e aumentou a taxa de sobrevivência dos animais. A replicação de *Bdellovibrios* dependentes de *Shigella* no interior das larvas dos peixes-zebra foi avaliada por meio de ensaios de imunofluorescência, os quais indicaram a predação ativa *in vivo*. É importante ressaltar que o *Bdellovibrio* pode ser fagocitado e, em última instância, eliminado pelos neutrófilos e macrófagos do hospedeiro. Contudo, o mesmo possui um tempo de permanência suficiente para destruir agentes patogênicos no hospedeiro. Experimentos em peixes-zebras imunocomprometidos revelaram que os benefícios terapêuticos máximos de *Bdellovibrios* resultaram do sinergismo proveniente da predação bacteriana e da imunidade do hospedeiro. Essa cooperação pode ser importante na luta contra infecções resistentes aos antibióticos.

Shatzkes et al. (2017b) realizaram inoculações intrarretais em ratos *Sprague-Dawley* com bactérias predatórias. As fezes foram coletadas por sete dias após a inoculação para determinar o efeito na diversidade bacteriana intestinal. Os tecidos provenientes do cólon dos ratos não apresentaram alterações histopatológicas. Um aumento moderado nos níveis das citocinas pró-inflamatórias foi observado em 24 e 48 horas após a inoculação. Os níveis de todas as citocinas analisadas, exceto IL-13, retornaram aos valores basais 7 dias após a inoculação. Esses dados indicaram que *B. bacteriovorus* não provocou uma resposta inflamatória robusta no trato gastrointestinal. O sequenciamento do gene 16S RNA
ribossomal (rRNA) após extração do DNA fecal demonstrou mudanças mínimas na representação taxonômica intestinal ao longo da semana. Este estudo mostrou a segurança do uso de bactérias predatórias como uma potencial terapia para tratar infecções intestinais.

2.7 *Bdellovibrio bacteriovorus* e periodontopatógenos

Estudos *in vitro* prévios demostraram que BALOs possuem capacidade predatória sobre espécies patógenas bucais, apresentando um potencial antimicrobiano (VAN ESSCHE et al., 2009; DASHIFF & KADOURI, 2011; LOOZEN et al., 2015). O primeiro estudo *in vitro* na Periodontia investigou se *B. bacteriovorus* HD100 poderiam atacar *A. actinomycetemcomitans* em condições que simularam o ambiente da cavidade bucal. A redução de *A. actinomycetemcomitans* planctônicos foi quantificada por meio de cultura bacteriana e o desenvolvimento de bactérias predatórias foi monitorado por meio de qPCR. Os resultados mostraram que *B. bacteriovorus* pode atacar e eliminar *A. actinomycetemcomitans*, sugerindo um potencial de *B. bacteriovorus* para atuar como antibiótico vivo na prevenção e tratamento da periodontite (VAN ESSCHE et al., 2009).

Dashiff & Kadouri (2011) avaliaram a capacidade predatória *in vitro* de *B. bacteriovorus* 109J sobre diversos periodontopatógenos no estado planctônico, como *A. actinomycetemcomitans*, *Eikenella corrodens*, *F. nucleatum*, *Prevotella intermedia*, *Porphyromonas gingivalis* e *Tannerella forsythia*. *B. bacteriovorus* foi capaz de predar *E. corrodens*, *F. nucleatum* e, principalmente, todos os sorotipos de *A. actinomycetemcomitans* testados. A microscopia das co-culturas mostrou uma redução de *A. actinomycetemcomitans* (menos de 10% das células totais em um campo de visão) e um aumento de *B. bacteriovorus* (90% da população celular em cada campo de visão) após um período de incubação de 48 horas. Os autores avaliaram, ainda, a capacidade de *B. bacteriovorus* 109J em remover biofilmes compostos por *A. actinomycetemcomitans* ou *E. corrodens* desenvolvidos em placas de cultura. A bactéria predatória reduziu a biomassa do biofilme formado em torno de 45% a
81%. Quando a predação de *A. actinomycetemcomitans* foi avaliada em superfícies com e sem saliva, os percentuais de redução do biofilme observados foram 43% e 77%, respectivamente. Em biofilmes compostos por *A. actinomycetemcomitans* em superfícies de hidroxiapatita, *B. bacteriovorus* também foi capaz de reduzir substancialmente a biomassa do biofilme. Esse potencial foi ainda demonstrado em biofilmes metabolicamente inativos (75% de redução da biomassa do biofilme), sendo melhorado nos experimentos com biofilmes tratados com uma enzima de hidrólise de poli-N-acetilglucosamina (PGA).

A predação de *B. bacteriovorus* em diferentes patógenos periodontais já foi descrita. No entanto, é necessário considerar a natureza polimicrobiana da doença periodontal. Loozen et al. (2015) avaliaram a capacidade predatória de *Bdellovibrio* sobre patógenos bucais organizados em um biofilme multiespécie. O efeito de *B. bacteriovorus* HD100 foi avaliado em biofilmes desenvolvidos *in vitro* e compostos por seis espécies de bactérias bucais. Além disso, o efeito da bactéria predadora foi avaliado em amostras *ex vivo* (saliva e biofilme subgengival) de pacientes com periodontite por meio de cultura microbiana, qPCR e eletroforese em gel de gradiente desnaturante (DGGE). Os resultados mostraram que, mesmo em modelos mais complexos (*amostras ex vivo*), *B. bacteriovorus* ainda foi capaz de eliminar *F. nucleatum* e *A. actinomycetemcomitans*. No entanto, a predação sobre *P. intermedia* e *P. gingivalis* não foi validada nos modelos de biofilme multiespécie avaliados. É importante destacar que o efeito de *Bdellovibrio* não foi restrito às bactérias alvo. Mudanças na ecologia geral dos diferentes modelos foram evidentes, como aumento nas concentrações de *A. naeslundii* e *S. mitis*. Os autores concluíram que a eficiência da predação diminuiu quando a complexidade dos modelos aumentou. No entanto, *B. bacteriovorus* foi capaz de atacar dois importantes patógenos bucais, *F. nucleatum* e *A. actinomycetemcomitans*, mesmo quando presentes em amostras clínicas *ex vivo*. Esses efeitos ainda precisam ser validados em modelos *in vivo* com o intuito de verificar o impacto de *Bdellovibrio* em toda a ecologia bacteriana bucal.
2.8 Justificativa

O número de pessoas com condições bucais não tratadas no planeta aumentou de 2,5 bilhões em 1990 para 3,5 bilhões em 2015, com aumento de 64% nos indicadores DALYs (disability-adjusted life year). De fato, as doenças bucais são altamente prevalentes no mundo, representando um grave problema de saúde pública. Maiores esforços e abordagens potencialmente diferentes são necessárias se o objetivo dos programas voltados para saúde bucal é reduzir o nível de doenças bucais e minimizar seu impacto até 2020 (KASSEBAUM et al., 2017).

Dentre as doenças bucais, a doença periodontal ainda é uma condição altamente prevalente na população mundial e possui um caráter imunoinflamatório polimicrobiano (DARVEAU, 2010; KASSEBAUM et al., 2017). A prevalência das formas severas de periodontite praticamente dobrou de 1990 a 2015 no mundo todo (KASSEBAUM et al., 2017). Considerando que i) as atuais abordagens preventivas/terapêuticas para periodontite não têm sido totalmente efetivas para uma parcela da população que apresenta alto risco para a doença e formas mais severas da mesma; ii) que terapias adjuvantes podem ser necessárias para o tratamento periodontal eficaz; iii) que as terapias antimicrobianas adjuvantes disponíveis atualmente podem promover o surgimento de bactérias resistentes; iv) que o número de mortes ocasionadas por agentes patogênicos resistentes deve aumentar para 10 milhões por ano em todo o mundo em 2050, o uso de predadores biológicos como agentes de biocontrole parece ser uma potencial alternativa para o tratamento das doenças periodontais, desde que são seguros para o hospedeiro e apresentam potencial antimicrobiano in vitro contra periodontopatógenos. Nenhum estudo in vivo ainda avaliou o potencial de B. bacteriovorus HD100 no tratamento da periodontite.
3. PROPOSIÇÃO
3.1 Objetivo Geral

✓ Avaliar os efeitos da administração tópica de *B. bacteriovorus* HD100 no tratamento da periodontite experimental induzida por ligadura em ratos.

3.2 Objetivos Específicos

Avaliar em ratos, com ou sem periodontite experimental, tratados ou não com *B. bacteriovorus* HD100:

✓ Microbiota presente em amostras de placa bacteriana por meio de *checkerboard DNA-DNA hybridization* e qPCR;

✓ Expressão de citocinas pró-inflamatórias [IL-6, IL-1β, TNF-α, Fator estimulador de colônias de macrófagos (M-CSF), Proteína quimioatrativa de monócito (MCP)-1, RANK-L e Células T normais expressas e secretadas, reguladas por ativação (RANTES)] e anti-inflamatórias [IL-10, Fator de crescimento transformador beta (TGF-β) e Osteoprotegerina (OPG)] por meio de imunoensaios enzimáticos (Luminex™ xMAP®);

✓ Expressão de beta defensina (BD)-1, BD-2, BD-3, TLR-2, TLR-4, grupamento de diferenciação (CD)-4, CD-8 e CD-57 nos tecidos periodontais por meio de reações imunohistoquímicas;

✓ Expressão gênica de IL-17, IL-10 e *foxhead box P3* (FOXP3) nos tecidos periodontais por meio de Reação em Cadeia da Polimerase por Transcriptase Reversa em Tempo Real (qRT-PCR);

✓ Perda óssea alveolar por meio de análise histomorfométrica e análise com microtomografia computadorizada por transmissão de raios X (micro-CT).
4. MATERIAL E MÉTODOS
4.1 Modelo experimental

A pesquisa foi realizada respeitando-se os princípios éticos da experimentação animal, bem como as normas para a prática didático-científica da vivisseção dos mesmos (Lei 11.794/2008), a Declaração Universal dos Direitos dos Animais da UNESCO (Organização das Nações Unidas para Educação, a Ciência e a Cultura), as normas da Sociedade Brasileira de Ciência em Animais de Laboratório e a legislação em vigor (Lei 9605/1998). Todos os procedimentos com animais foram aprovados pela Comissão de Ética no Uso de Animal (CEUA) da Faculdade de Odontologia de Ribeirão Preto (FORP) da Universidade de São Paulo (USP) (Protocolo 13.1.136.53.5).

Foram utilizados 32 ratos, machos (*Rattus norvegicus, albinus*, Wistar), com idade entre 3 e 4 meses, pesando entre 250 e 300g (Biotério da FORP-USP). Os animais foram acomodados em caixas de polipropileno autoclaváveis e submetidos a um período de 7 dias de aclimatação com o ambiente e com equipe de execução do projeto. A sala foi climatizada a uma temperatura de 22 ± 2°C e com ciclos de 12/12 horas claro-escuro. Durante todo o experimento, os animais consumiram ração sólida selecionada e água *ad libitum*. Antes do estudo começar, os ratos foram identificados por um código numérico. De acordo com uma tabela numérica gerada com uso de um *software* em computador, cada rato foi alocado em um dos seguintes grupos:

- **Grupo CT** – ratos sem DP induzida por ligadura e não tratados com *B. bacteriovorus* HD100 e carboximetilcelulose;
- **Grupo CT-HD100** – ratos sem DP induzida por ligadura e tratados com administração tópica de *B. bacteriovorus* HD100 e carboximetilcelulose;
- **Grupo DPT** – ratos com DP induzida por ligadura e não tratados com *B. bacteriovorus* HD100 e carboximetilcelulose;
- **Grupo DPT-HD100** – ratos com DP induzida por ligadura e tratados com administração tópica de *B. bacteriovorus* HD100 e carboximetilcelulose.

* Nos grupos CT e DPT foram realizados procedimentos *sham* (irrigação apenas com carboximetilcelulose).

4.2 Cálculo do tamanho da amostra

O cálculo do tamanho amostral foi realizado pelo programa *Graphpad Statemate* 2.0 (GraphPad Software, Inc., San Diego, CA, EUA). O tamanho da amostra ideal para assegurar poder de 80% na análise estatística dos dados obtidos neste estudo foi calculado considerando-se as diferenças das médias e desvios-padrão entre os grupos DP e C do estudo de Oliveira et al. (2017), reconhecendo a diferença significante de 5% (δ) entre os grupos, intervalo de confiança de 95% (α = 0,05), desvio padrão (σ) de 23%, as mudanças na média do Volume Ósseo (VO) como variável primária e $[Z_\alpha \times (1.96) + Z_\beta \times (0.84)]^2 = 7.84$. O cálculo da amostra por grupo foi baseado na formula: $n \geq \left\{2[(\sigma)^2/\delta)^2]\right\} \times (Z_\alpha + Z_\beta)^2$. O número mínimo necessário foi de 8 animais por grupo experimental.

4.3 Preparo da cultura bacteriana e administração aos animais

Para o cultivo de *Bdellovibrios bacteriovorus* HD100 (ATCC® 15356, Virginia, EUA) foi utilizado meio de cultura DNB (ATCC® Medium 1603, Virginia, EUA) que apresenta a seguinte composição: caldo nutriente (Difco, Becton, Dickinson and Company, Sparks, Maryland, EUA - 2,4g), extrato de levedura (Difco - 1,5g) e água destilada (1,0 L - q.s.p.). O meio foi autoclavado a 121°C durante 15 minutos. Decorridas 24 horas de incubação a 28°C sob agitação (200 rotações por minuto - rpm), os tubos foram avaliados quanto ao desenvolvimento bacteriano. Com a finalidade de propagação do *B. bacteriovorus* HD100, foi utilizada a bactéria hospedeira *Escherichia coli* ML 35 (ATCC® 43827, Virginia, EUA),
previamente cultivada no meio de cultura *Luria Bertani* (Oxoid, Thermo Scientific, Basingstoke, Hampshire, Reino Unido). A verificação do declínio da turvação da solução, o que indica a lise da célula hospedeira (*E. coli* ML35), foi realizada diariamente durante o período da incubação (6-10 dias) seguindo as recomendações da ATCC (Americam Type Culture Collection, Rockville, MD, EUA). A observação de pequenos bacilos curvos altamente móveis sob microscopia de contraste de fase indicou a presença de *B. bacteriovorus*. Para a separação destes últimos do remanescente de células hospedeiras (*E. coli* ML35), foi efetuada a filtração utilizando-se membranas filtrantes (poros de 1,2 e 0,45 µm). Após centrifugação a 27.000 G por 20 minutos, o sobrenadante foi descartado e o precipitado bacteriano foi suspenso em meio HM (Hepes medium, Sigma-Aldrich, St. Louis, Missouri, EUA) contendo HEPES 25 mM, 3 mM CaCl$_2$ e 2 mM MgCl$_2$ (pH 7,6) (Jurkevitch, 2005). A suspensão foi feita em uma densidade óptica (DO) de 600 nm ajustada para 1 (aproximadamente 1 x 109 UFC/mL) e acrescida de 2% de carboximetilcelulose (Chitprasert et al., 2012).

Nos Grupos DPT e DPT-HD100, as aplicações tópicas de carboximetilcelulose associada ou não a bactérias foram realizadas no momento de colocação das ligaduras, bem como 3 e 7 dias após a instalação das mesmas.

Nos grupos CT e CT-HD100, as aplicações tópicas ocorreram nos seguintes períodos: 7, 10 e 14 dias após o início do experimento (Figura 1). Para administração tópica, foi utilizada seringa de insulina com agulha sem extremidade cortante. 100 µl da suspensão foram utilizados para irrigação subgengival das superfícies mesial, distal, vestibular e lingual dos primeiros molares inferiores dos animais.
4.4 Indução da periodontite experimental

Para a colocação da ligadura nos grupos DP, foi seguida a metodologia descrita por Oliveira et al. (2016). Os animais foram anestesiados por meio de injeção intraperitoneal, com solução de Cloridrato de Xilazina a 2% (2mg/mL) (Rompum® - Bayer Saúde Animal, São Paulo, SP, Brasil) e Cloridrato de Ketamina a 10% (10mg/mL) (Dopalen® - Ceva Saúde Animal Ltda., Paulínia, SP, Brasil) nas respectivas doses de 10 mg/Kg (Xilazina) e 80 mg/Kg (Ketamina). Após a anestesia geral, os animais foram posicionados em mesa operatória, a qual permitiu a manutenção da abertura bucal dos mesmos, facilitando o acesso aos dentes posteriores da mandíbula. Com o auxílio de porta agulha tipo castroviejo (Quinelato, Rio Claro, SP, Brasil) e sonda exploradora odontopediátrica (Golgran, São Paulo, SP, Brasil), foi colocado um fio de seda 4-0 (Ethicon, Johnson & Johnson, São José dos Campos, SP, Brasil) ao redor dos primeiros molares inferiores esquerdo e direito de cada animal (Figura 2). A presença das ligaduras nos animais foi verificada periodicamente. Caso fosse observado perda da ligadura, um novo animal era preparado para o estudo. Todos os animais foram pesados no início do experimento e logo antes da eutanásia.
4.5 Eutanásia e coleta de material para análises

Os animais foram submetidos à eutanásia aos 14 dias após início do experimento. A eutanásia foi realizada pela administração de uma dose letal (150 mg/kg) de tiopentato de sódio (Thiopentax®, Cristália Produtos Químicos Farmacêuticos Ltda., São Paulo, SP, Brasil). Foram coletadas as hemi-mandíbulas direita e esquerda dos animais, biópsias gengivais e ligaduras (grupos com periodontite experimental).

4.6 Avaliação microbiológica

Nos grupos DPT e DPT-HD100, as ligaduras foram removidas logo após a eutanásia dos animais e colocadas em tubos *eppendorf* contendo TE (10 mM Tris–HCl, 1 mM EDTA, pH 7,6). Nos grupos CT e CT-HD100, amostras de biofilme subgengival foram coletadas com uma cureta periodontal estéril (5-6, Mine-five, Hu-Friedy, Chicago, IL, EUA) e também colocadas em solução TE. Posteriormente, 0,1 mL NaOH (0,5 M) foram adicionados em cada tubo *eppendorf* e as amostras foram homogeneizadas e armazenadas a −20 °C. As amostras foram enviadas à Universidade de Guarulhos para contagens de 40 espécies bacterianas usando o método *checkerboard DNA-DNA hybridization* (Socransky et al., 2004), conforme descrição de Sampaio et al. (2009). A detecção e quantificação do *B. bacteriovorus* HD100
nas amostras coletadas foram feitas por qPCR utilizando *primers* específicos com base nas metodologias propostas por Davidov et al. (2006).

4.6.1 Checkerboard DNA-DNA hybridization

Todas as cepas foram adquiridas liofilizadas da ATCC ou do *Forsyth Institute* (Boston, MA, EUA). O conteúdo liofilizado foi reidratado em caldo para crescimento de *Mycoplasma* (Difco Laboratories, Detroit, MI, EUA) e cultivado em ágar-triptose de soja (Difco) contendo 5% de sangue desfibrinado de ovelha (BBL, Baltimore Biological Laboratories, Cockeysville, MD, EUA) a 35°C sob condição de anaerobiose (80% N\textsubscript{2}, 10% CO\textsubscript{2}, 10% H\textsubscript{2}). Algumas bactérias foram cultivadas em meios de cultura enriquecidos de forma a suprir suas necessidades nutricionais. *T. forsythia*, por exemplo, foi cultivada em ágar-triptose de soja com 5% de sangue desfibrilado de ovelha e 10 μg/mL de ácido N-acetil murâmico (NAM) (Sigma Chemical Co., St. Louis, MO, EUA); enquanto *P. gingivalis* cresceu em um meio similar, suplementado com 5% de sangue desfibrilado de ovelha, 0,3 μg/mL de menadiona (Sigma) e 5 μg/mL de hemina (Sigma). As espécies *T. denticola* e *T. socranskii* foram cultivados em caldo para crescimento de Mycoplasma suplementado com 1 mg/mL de glicose (Sigma), 400 μg/mL de niacinamida (Sigma), 150 μg/mL de espermina tetraidrocloridrica (Sigma), 20 μg/mL de isobutirato de sódio (ICN, Costa Mesa, CA, EUA), 1 mg/mL de L-cisteína (Sigma), 5 μg/mL de tiamina pirofosfato (Sigma) e 0,5% de soro bovino (Laborclin, São José dos Pinhais, PR, Brasil).

As cepas bacterianas foram cultivadas anaerobicamente na superfície de ágar-sangue, com exceção das duas espécies de espiroquetas, que foram cultivadas em caldo, por 3 a 7 dias. As colônias foram raspadas e depositadas em tubos plásticos para microcentrífuga de 1,5mL contendo 1mL de solução TE (pH 7,6). As células foram lavadas duas vezes por centrifugação na solução-tampão de TE a 3500g por 10 minutos. Em seguida, as cepas Gram-negativas
foram novamente suspensas e lisadas com dodecilsulfato de sódio (SDS - \(\text{C}12\text{H25NaO4S} \), Synth\(^\circledR\), Labsynth, Diadema, SP, Brasil) a 10% e proteinase K (Sigma) em uma concentração de 20mg/mL. As cepas de bactérias Gram-positivas foram lisadas em 150μL de uma mistura enzimática contendo 15mg/mL de lisozima (Sigma) e 5mg/mL de acromopeptidase (Sigma) em solução tampão TE (pH 8,0). O DNA foi isolado e purificado. As sondas genômicas foram preparadas para cada uma das 40 espécies pela marcação de 1μg do DNA bacteriano com digoxigenina, por meio do kit \textit{random primer digoxigenin labeling} (Roche Diagnostics, Indianápolis, IN, EUA). As espécies avaliadas (Tabela 1) foram selecionadas segundo suas associações com diferentes tipos de doenças ou saúde periodontal.

Tabela 1 - Relação das cepas bacterianas avaliadas na análise microbiológica por meio do \textit{checkerboard DNA-DNA hybridization}

Complexo Azul	Complexo Roxo	Complexo Verde	Complexo Amarelo
\textit{Actinomyces gerencierae}	\textit{Actinomyces odontolyticus}	\textit{Capnocytophaga gingivalis}	\textit{Streptococcus gordonii}
\textit{Actinomyces israelii}	\textit{Vertiluxella parvula}	\textit{Capnocytophaga ochracea}	\textit{Streptococcus intermedius}
\textit{Actinomyces naeslundii}		\textit{Capnocytophaga sutrigera}	\textit{Streptococcus mitis}
\textit{Actinomyces viscosus}		\textit{Escherichia coli}	\textit{Streptococcus oralis}

Complexo Laranja	Complexo Vermelho	Especies “ão-órais”
\textit{Campylobacter gracilis}	\textit{Tannerella forsythia}	\textit{Eubacterium saburreum}
\textit{Campylobacter rectus}	\textit{Porphyromonas gingivalis}	\textit{Gemella morbillorum}
\textit{Campylobacter showae}	\textit{Treponema denticola}	\textit{Leptotrichia buccalis}
\textit{Eubacterium nodatum}		\textit{Propionibacterium acnes}
\textit{Porphyromonas microa}		\textit{Prevotella melaninogenica}
\textit{Prevotella intermedia}		\textit{Neisseria mucosa}
\textit{Prevotella nigrescens}		\textit{Streptococcus anginosus}
\textit{Streptococcus constellatus}		\textit{Selenomonas noxia}
\textit{Fusobacterium Periodonticum}		\textit{Treponema socranskii}
\textit{Fusobacterium nucleatum sap. nucleatum}		
\textit{Fusobacterium nucleatum sap. polymorphum}		
\textit{Fusobacterium nucleatum sap. vincentii}		

As suspensões de biofilme subgingival foram fervidas em banho-maria por 10 minutos e, em seguida, neutralizadas pela adição de 0,8 mL de acetato de amônio a 5M. Cada suspensão de biofilme dental contendo o DNA livre foi depositada em uma das canaletas do \textit{Minislot} 30 (Immunetics, Cambridge, MA, EUA) e transferida para a membrana de nylon (15
x 15 cm) com carga positiva (Amersham Biosciences UK Limited, Buckinghamshire, Inglaterra). As duas últimas das 30 canaletas do Minislot foram ocupadas por controles contendo uma mistura das espécies de microrganismos investigados pelas sondas, nas concentrações correspondentes a 10^5 e 10^6 células, ou seja, 1g e 10g de DNA de cada espécie, respectivamente. A membrana foi removida do Minislot 30 e o DNA nela concentrado foi fixado por aquecimento em forno a 120°C por 20 min. A membrana foi pré-hibridizada a 42°C, por 1 hora, em uma solução contendo 50% de formamida (Vetec Química Fina Ltda, Rio de Janeiro, RJ, Brasil), 1% caseína (Vetec), 5 vezes de solução salina citratada (SSC) (1 vez de SSC= 150mM NaCl - Vetec), 15M de citrato de sódio – pH 7,0 (J.T.Baker, Estado de México, México), 25mM de fosfato de sódio – pH 6,5 (Na$_2$HPO$_4$, Labsynth) e 0,5 mg/mL de RNA de levedura(hexa, Sigma). Em seguida, a membrana foi posicionada no Miniblotter 45 (Immunetics, Cambridge, MA, EUA) com as linhas contendo o DNA das amostras e dos controles posicionadas perpendicularmente às canaletas do aparato. Em cada canaleta do Miniblotter 45 foi adicionada uma sonda de DNA, diluída a aproximadamente 20 g/mL, em 130 μL de solução de hibridização composta de 45% formamida, 5 vezes de SSC, 20mM de Na$_2$HPO$_4$ (pH 6,5), 0,2 mg/ml de RNA de levedura, 10% de sulfato de dextrano (Amersham) e 1% caseína. A hibridização ocorreu dentro de um período mínimo de 20 horas, a 42°C.

Após o período de hibridização, a membrana foi removida do Miniblotter 45 (Immunetics), lavada por 40 minutos a 65°C numa solução adstringente composta por 1% de SDS, 1mM de EDTA e 20mM de Na$_2$HPO$_4$, a fim de remover sondas que não hibridizaram completamente. Em seguida, a membrana foi imersa por 1 hora em uma solução contendo 1% de ácido maleico (C$_4$H$_4$O$_4$, Vetec), 3M NaCl, 0,2M NaOH (Labsynth), 0,3% Tween 20 (Vetec), 0,5% caseína - pH 8,0, e, logo após, por 30 minutos, na mesma solução contendo o anticorpo anti-digoxigenina conjugado à fosfatase alcalina (Roche) em uma concentração de 1:10.000. A membrana foi, então, lavada duas vezes, por 20 minutos, em uma solução de
0,1M de ácido maleico, 3M de NaCl, 0,2M de NaOH, 0,3% de Tween 20 - pH 8,0, e 1 vez, por 5 minutos, em uma solução de 0,1M de Tris HCl, 0,1M de NaCl, pH 9,5.

Para a detecção dos sinais, a membrana foi incubada por 45 minutos a 37°C em uma solução detectora contendo substrato para fosfatase alcalina, CDP-Star™ Detection Reagent (Amersham). Em seguida, a membrana foi colocada em um cassette, Chassi Radiográfico 30 x 40 cm (Konex, São Paulo, SP, Brasil), sob um filme radiográfico 18 x 24 cm (Agfa Gevaert, NV, Bélgica) por aproximadamente 40 minutos.

A leitura dos filmes radiográficos foi realizada por um único examinador treinado e calibrado que desconhecia os grupos experimentais e terapias utilizadas no presente estudo. A leitura foi realizada duas vezes, em dias diferentes, para conferência de resultados. Cada sinal produzido por uma determinada sonda na amostra de biofilme foi comparado, em intensidade, ao sinal produzido pela mesma sonda nas duas linhas de controles contendo 10^5 e 10^6 bactérias (duas últimas das 30 canaletas do Minislot). Desta forma, o número 0 foi registrado quando não houve detecção do sinal; 1 equivaleu a um sinal menos intenso que o controle de 10^5 células; 2 equivaleu a 10^5 células; 3 entre 10^5 e 10^6 células; 4 a aproximadamente 10^6 células; e 5 equivaleu a mais de 10^6 células. Estes registros foram utilizados para determinar os níveis das diferentes espécies investigadas nas diferentes amostras avaliadas (OLIVEIRA et al. 2016).

4.6.2 Reação em cadeia da polimerase em tempo real (qPCR)

Após a coleta, as amostras foram armazenadas em tubos eppendorf de 1,5 mL contendo 150 μL de tampão TE (Merck, Whitehouse Station, Nova Jersey, EUA) e mantidas em freezer a -80 °C até o início dos experimentos. A extração do DNA genômico foi realizada por meio do kit QIAamp DNA mini kit (Qiagen, Germantown, Maryland, EUA), de acordo com especificações do fabricante. Posteriormente, a concentração e a pureza do DNA
genômico foram avaliadas por espectrofotometria em aparelho Multiskan™ GO Microplate Spectrophotometer (Thermo Fisher Scientific, Waltham, Massachusetts, EUA). A leitura foi realizada em dois diferentes comprimentos de onda, 260 nm e 280 nm, para obtenção da concentração de DNA/µL e detecção de contaminação das amostras por proteínas.

A técnica de qPCR foi realizada utilizando-se o sistema SYBRGreen (Invitrogen Corp., Carlsbad, California, EUA), no aparelho StepOne Plus™ Real-Time (Thermo Fisher Scientific). As reações foram realizadas em triplicata com volume final de 13 µL, com quantidade de DNA genômico correspondente a 10 ng e com primers específicos (0,1 µg/µL) para amplificar o gene Bd529 forward (5’ – GGTAAGACGAGGGATCCT - 3’) e Bd1007 Reverse (5’TCTTCCAGTACATGTCAAG-3’) (DAVIDOV & JUCKERVICH 2006). Para cada reação, foram utilizados: a) 7 µL do reagente SYBR Green Master Mix (Invitrogen) contendo fluoróforo SYBR Green, a enzima polimerase AmpliTaq Gold, dNTPs com dUTP e o fluoróforo ROX, utilizado como referência passiva para normalização dos níveis de fluorescência, além dos demais componentes de tampão; b) 2,5 µL de DNA genômico (10 ng); c) 2,5 µL de água Milli-Q RNAse/DNase free (Thermo Fisher Scientific); d) 0,5 µL primer forward (0,1 µg/µL) e e) 0,5 µL primer reverse (0,1 µg/µL). A reação de amplificação foi composta por: a) 95°C por 3 minutos; b) 40 ciclos a 94°C por 30 segundos, 65°C por 30 segundos e 72°C por 30 segundos; c) 72°C por 10 minutos; d) 95°C por 15 segundos, 60°C por 1 minuto e 95°C por 15 segundos.

Para a quantificação absoluta dos dados, foi necessária a construção de uma curva padrão a partir da extração de DNA genômico de cultura pura de B. bacteriovorus HD100. A cepa bacteriana foi cultivada conforme descrição anterior (item 2.2). Após a extração do DNA genômico das culturas puras, sua concentração foi determinada como descrito anteriormente. A partir desta concentração, em ng/µL, e conhecendo o tamanho do genoma da cepa, 3,8
megabases (Mb), foi possível aplicar a fórmula abaixo e descobrir o número de cópias de bactéria (moléculas)/µL (JUNICK & BLAUT 2012):

Número de cópias de genoma de bactéria/µL (moléculas/µL) = concentração do DNA genômico (ng/µL)/9,78 (fg/molécula) *

*[3,8 Mb × massa média de 1 bp (660 g/mol)] / constante de Avogadro (6,022 × 10^{23} moléculas/mol) = 9,78 fg/molécula.

Após os cálculos, realizou-se uma diluição seriada a partir do ponto mais concentrado (10^8 moléculas/µL) sendo possível estabelecer a curva padrão com os pontos: 10^8, 10^7, 10^6, 10^5, 10^4, 10^3, 10^2 e 10^1 moléculas/µL. O intervalo considerado aceitável para a eficiência das curvas foi de 90-110%. Por meio do software StepOnePlus™ Software v2.3 foi possível obter a quantidade de bactéria/µL presente em cada amostra analisada. Três amostras negativas (água) foram submetidas à reação com o primer utilizado.

4.7 Análise imunohistoquímica

As hemi-mandíbulas esquerdas foram dissecadas, fixadas em formol neutro a 10% por 48 horas e descalcificadas por meio de solução de ácido etilenodiamino tetra-acético (EDTA) a 4% durante 90 dias. Após este período, as peças foram desidratadas em álcool absoluto, diafanizadas em xilol e incluídas em parafina. Foram realizados, então, cortes seriados com 4 μm de espessura, no plano méso-distal. Os cortes histológicos foram desparafinizados em xilol e hidratados em série decrescente de etanol (100°- 100°- 100°- 90°- 70° GL). A recuperação antigênica foi realizada através da imersão das láminas histológicas em tampão *Divax Decloaker* (Biocare Medical, Inc., Concord, CA, EUA), em câmara pressurizada (*Decloaking Chamber*, Biocare Medical, Inc., Concord, CA, EUA), a 95°C, por 10 minutos. Entre cada uma das etapas da reação imunohistoquímica, foram feitas lavagens em tampão fosfato salino (PBS) 0,1M - pH 7,4. As secções histológicas foram imersas em 3%
de peróxido de hidrogênio por 1 hora e em 1% de soro albumina bovino por 12 horas, para bloqueio da peroxidase endógena e dos sítios inespecíficos, respectivamente. Lâminas histológicas contendo amostras de todos os grupos experimentais foram divididas em oito lotes. Cada lote foi submetido à incubação, durante 24 horas, com um dos seguintes anticorpos primários: anti-BD-1 (M-69, sc-25573; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, EUA), anti-BD-2 (orb10531; Biorbyt, San Francisco, CA, EUA), anti-BD-3 (I-16, sc-10860; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, EUA), anti-TLR-2 (orb11487; Biorbyt, San Francisco, CA, EUA), anti-TLR-4 (orb11489; Biorbyt, San Francisco, CA, EUA), anti-CD-4 (C-18, sc-1140; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, EUA), anti-CD-8 (orb10325; Biorbyt, San Francisco, CA, EUA) e anti-CD-57 (V-18, sc-49197; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, EUA). Os anticorpos primários foram diluídos em *Dako Antibody Diluent* (Dako North America, Inc., Carpinteria CA, EUA). Nas etapas subsequentes foi utilizado o *Universal LSAB™+ Kit/HRP* (Dako North America, Inc., Carpinteria CA, EUA). As secções histológicas foram incubadas no anticorpo secundário biotinilado durante 2 horas e tratadas com estreptavidina conjugada com a peroxidase da raiz forte por 1 hora. Na revelação foi utilizado como cromógeno o 3,3’- tetacloridrato de diaminobenzidina (Liquid DAB+, Dako North America, Inc., Carpinteria CA, EUA) e os cortes histológicos foram contra-corados com hematoxilina de Harris. Como controle negativo, os espécimes foram submetidos aos procedimentos descritos anteriormente, suprimindo-se a utilização dos anticorpos primários.

Os cortes histológicos foram analisados qualitativamente sob iluminação de campo claro em microscópio óptico por investigador que desconhecia os grupos experimentais. A imunomarcação foi definida como um precipitado de coloração acastanhada nas células e/ou matriz extracelular. Foram analisadas três regiões: região mesial do 1º molar inferior, região interproximal entre o 1º e 2º molares inferiores e região de bifurcação do 1º molar inferior.
Nas três regiões, em um aumento 400 x, foram analisadas área de 600 x 800 μm, cujo limite coronal era o tecido epitelial (regiões mesial e interproximal) ou o teto da bifurcação (região de bifurcação). Foi realizada uma análise semi-quantitativa do padrão de imunomarcação conforme os seguintes escores: ESCORE 0 - padrão nulo de imunomarcação nas três regiões; ESCORE 1 - baixo padrão de imunomarcação (até um terço das áreas analisadas apresentando imunorreatividade); ESCORE 2 - moderado padrão de imunomarcação (aproximadamente dois terços das áreas analisadas apresentando imunorreatividade) e ESCORE 3 - alto padrão de imunomarcação (quase toda a extensão das áreas analisadas apresentando imunorreatividade). O grupo controle foi empregado como ponto de referência para se definir o padrão basal de imunorreatividade, a partir do qual os escores foram atribuídos aos demais grupos experimentais.

4.8 Análise imunoenzimática

As hemi-mandíbulas direitas tiveram seu tecido gengival removido para realização de imunoensaios enzimáticos (ELISA e Luminex™ xMAP®). Com bisturi estéril, a gengiva foi removida da região vestibular e lingual dos primeiros molares inferiores de cada animal. Para análise, os tecidos gengivais coletados foram lavados em PBS associado a um coquetel inibidor de proteases (Sigma-Aldrich). Em seguida, os tecidos foram imersos em nitrogênio líquido e macerados manualmente com gral e pistilo. Os tecidos macerados foram novamente colocados em solução PBS associada a inibidores de proteases e homogeneizados mecanicamente (Ultra-Stirrer ULTRA 80-II, Eikonal do Brasil, São Paulo, SP, Brasil). Após esta etapa, as amostras foram centrifugadas a 4000 rpm durante 15 min em uma temperatura de 4º C. O sobrenadante obtido foi coletado e armazenado a -80º C. Os níveis das citocinas IL-6, TNF-α, MCP-1, IL-10, IL-1β, TGF-β, RANKL, OPG, RANTES, IL-8 e M-CSF foram determinados por meio da tecnologia Luminex™ xMAP®.
Para quantificação de citocinas, utilizou-se kits disponíveis comercialmente (RECYTMAG-65K-05, RBN-31K-1RANKL, RBN-31K-1OPG – Milliplex Map, Merck Millipore, Billerica, MA, EUA) em um analisador MAGPIX® (Luminex Corporation, Austin, TX, EUA). O ensaio foi realizado em uma placa de 96 poços seguindo as instruções do fabricante. Resumidamente, a placa filtro foi umedecida com o washing buffer e, em seguida, a solução foi aspirada dos poços. Beads magnéticos revestidos com os anticorpos monoclonais para os 11 analitos foram adicionados aos poços. As amostras e padrões foram transferidas para os poços e incubadas overnight 4°C. Os poços foram lavados novamente e uma mistura de anticorpos secundários biotinilados foi adicionada. Após a incubação por uma hora, adicionou-se aos poços a Estreptavidina R- ficoeritrina, sendo este conjunto incubado por mais uma hora. Após lavagem para a remoção de reagentes não-ligados, foi acionado sheath fluid (Luminexs, MiraiBio, Alameda, CA, EUA) aos poços. As placas foram, então, analisadas pelo MAGPIX®, obtendo-se a intensidade de fluorescência média. Amostras abaixo do limite de detecção foram registradas como zero. Todas as amostras foram analisadas individualmente e os níveis de citocinas foram estimados a partir de uma curva polinomial de quinto grau utilizando-se o software xPONENT® (Luminex Corporation, Austin, TX, EUA).

4.9 Análise da expressão gênica

As hemi-mandíbulas direitas tiveram seu tecido gengival removido para realização de análise de expressão dos genes IL-17, IL-10 e FOXP3 por meio de qRT-PCR. Com bisturi estéril, a gengiva foi removida da região vestibular e lingual dos primeiros molares inferiores de cada animal. Os blocos de tecido obtidos foram colocados em microtubos esterilizados e congelados imediatamente em nitrogênio líquido e armazenados a -80 °C. O ácido ribonucleico (RNA) foi isolado das biópsias gengivais pelo kit de extração SV Total RNA
Isolation System (Promega, Inc., Madison, WI, EUA) conforme protocolo do fabricante, incluindo tratamento com a enzima DNase para eliminar qualquer resíduo DNA genômico. Um micrograma do RNA total isolado foi transcrito reversamente para DNA complementar (cDNA) com o High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Inc., Forster City, CA, EUA), o qual possui random hexamers, conforme protocolo do fabricante. A análise da expressão gênica dos genes selecionados foi realizada por qRT-PCR utilizando TaqMan GenEx Assay (Applied Biosystems, Inc., Forster City, CA, EUA). Para isto, cada cDNA foi amplificado utilizando o gene constitutivo β-actina como controle endógeno para a normalização. A amplificação foi realizada no CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories Inc, Hercules, CA, EUA) por 40 ciclos, conforme protocolo do fabricante. A fluorescência foi coletada para cada ciclo de amplificação e os dados analisados pelo método $2^{-ΔΔCt}$ para quantificação da expressão relativa (Livak & Schmittgen, 2001).

4.10 Análise com microtomografia computadorizada por transmissão de raios X (micro-CT)

Espécimes não desmineralizados (hemi-mandíbulas direitas) foram escaneados por um sistema de micro-CT de feixe cônico (Skyscan 1172, Bruker, Kontich, Bélgica). O gerador de raio-X foi operado com um potencial de aceleração de 60 kV, corrente de 165 µA e tempo de exposição de 650 ms por projeção. As imagens foram produzidas com um tamanho de voxel de 6x6x6 µm e analisadas conforme descrição de Oliveira et al. (2017).

Usando um software apropriado (Data Viewer®, versão 1.5.0, Bruker, Kontich, Bélgica), os 3 modelos tridimensionais gerados foram rotacionados em uma posição padrão, com os seguintes critérios: (1) no plano transaxial, o 1º molar inferior teve o seu eixo em posição vertical, (2) no plano coronal, o osso mandibular foi verticalmente orientado, com a raiz mesial do 1º molar inferior na posição superior da imagem e (3) no plano sagital, a
superfície oclusal do 1º molar inferior foi horizontalmente posicionada. Medidas lineares foram realizadas em quatro locais diferentes: vestibular, lingual, interproximais e região de bifurcação. Para sítios vestibulares, linguais e interproximais, foram mensuradas as distâncias lineares (µm) da junção cemento-esmalte (JCE) à crista óssea alveolar (CO). Para os sítios interproximais, os dados foram analisados utilizando o *software CT-Analyser®* (CT-Analyser®, versão 1.13.5.1+, Bruker, Kontich, Bélgica). Na região de bifurcação, foi mensurada a distância (µm) entre o centro do teto da bifurcação e a CO. As quatro medidas lineares obtidas em cada animal foram somadas para expressar o valor do nível ósseo alveolar (NOA).

As análises volumétricas foram realizadas com o *software CT-Analyser®* na região de bifurcação do 1º molar inferior. As imagens foram visualizadas no eixo coronal e o intervalo de cortes analisados seguiu os seguintes parâmetros: i) utilizou-se como ponto de partida para a análise o corte microtomográfico no qual as quatro raízes do 1º molar inferior estavam completamente separadas; ii) o corte microtomográfico final foi determinado como aquele em que não era possível visualizar mais o osso inter-radicular na região de bifurcação do 1º molar inferior. O retângulo foi a figura geométrica escolhida para representar a região de interesse a ser analisada. Esta forma geométrica foi adequada por interpolação à área a ser medida e posterior determinação do volume de interesse (VOI). Em seguida, procedeu-se a binarização da imagem para a separação das estruturas óssea e dentária (por diferença de densidade), utilizando uma escala de níveis de cinza (limite inferior - 65 e limite superior - 255; *grayscale threshold* 0-255). Este padrão de binarização foi usado para todas as amostras. Os seguintes parâmetros foram determinados na análise volumétrica: a) VO: percentual do VOI preenchido com tecido ósseo; b) Porosidade Óssea (PO): percentual de porosidades presentes no tecido ósseo determinado no VOI; c) Espaçamento de trabéculas (Tb.Sp): espaçamento (µm) entre as
trabéculas ósseas presentes no VOI; d) Número trabecular (Tb.N): número (μm⁻¹) de trabéculas ósseas presentes no VOI.

4.11 Análise histomorfométrica

As hemi-mandíbulas esquerdas foram dissecadas, fixadas em formol neutro a 10% por 48 horas e descalcificadas por meio de solução de EDTA a 4% durante 90 dias. Após este período, as peças foram desidratadas em álcool absoluto, diafanizadas em xilol e incluídas em parafina. Secções seriadas de parafina (4 μm de espessura) foram obtidas na direção mésio-distal e dispostas em lâminas histológicas. Para a coloração das lâminas, foi utilizada a técnica de Hematoxilina e Eosina (H&E). Os cortes foram analisados com microscopia de luz para estabelecer o nível de inserção conjuntiva (NIC) por meio de medidas histométricas.

Para análise histométrica, foram selecionadas duas lâminas representando a porção vestíbulo-lingual mais central da hemimandíbula. As imagens foram capturadas por uma câmera digital acoplada a um microscópio de luz. Mensurações padronizadas foram determinadas histometricamente com o auxílio de um sistema de análise de imagens digitalizadas e software específico (ImageLab 2000, Diracon Bio Informática Ltda., Vargem Grande do Sul, SP, Brasil).

Foram realizadas, na raiz distal do 1º molar inferior medidas lineares para avaliar o NIC (distância entre a JCE e a inserção conjuntiva). Para cada animal, foi obtida uma média dos valores dos dois cortes analisados.

4.12 Análise in vitro da atividade antimicrobiana de B. bacteriovorus HD100

A atividade antimicrobiana in vitro da bactéria predadora B. bacteriovorus HD100 foi avaliada sobre diferentes microrganismos periodontopatogênicos: A. actinomycetemcomitans (ATCC 33393), P. intermedia (ATCC 25611) e F. nucleatum (ATCC
Para realização do teste *in vitro*, as bactérias *P. intermedia* ATCC® 25611 e *F. nucleatum* ATCC® 25586 foram cultivadas previamente em caldo BHI (Brain Heart infusion, Difco) por 48h a 37°C em anaerobiose [GasPak EZ Anaerobic System BD® (Becton, Dickinson and Company, Sparks, Maryland, EUA)]. A bactéria *A. actinomycetemcomitans* ATCC® 29522 foi cultivada em BHI em condições de microaerofilia (GasPak EZ Campy system - BD®) durante 48 h a 37 °C. Foram, então, realizadas as mensurações da DO 600 nm em espectrofotômetro (Micronal - AJX-1000, São Paulo, SP, Brasil). Em seguida, as culturas foram plaqueadas em ágar-sangue em duplicata para contagens de UFC/mL. Foram ajustadas as DO 600 nm em 1,3; 1,2 e 1,7 (aproximadamente 1x10^8 UFC/mL) para *A. actinomycetemcomitans*, *F. nucleatum* e *P. intermedia*, respectivamente. 250 µL da suspensão de *B. bacteriovorus* (DO 600 nm = 1, aproximadamente 1x10^9 UFC/mL) foram adicionados a 750 µL de suspensão contendo cada um dos periodontopatógenos avaliados nas respectivas DO 600 nm (Loozen et al., 2015). As mudanças microbiológicas nessas co-culturas, bem como em culturas isoladas de cada um dos microrganismos avaliados, foram monitoradas por meio da valiação da DO 600 nm nos tempos 0, 24 e 48 h.

4.13 **Variáveis de resultado**

Foi definida como variável primária deste estudo as diferenças entre os grupos obtidas na análise microtomográfica de VO. Os demais parâmetros microtomográficos, histomorfométrico, microbiológicos, imunoenzimáticos e imunohistoquímicos analisados, bem como os dados de expressão gênica obtidos foram definidos como variáveis secundárias.
4.14 Análise estatística

As análises foram realizadas com o software Bioestat (BioEstat, Versão 5.3. Instituto de Desenvolvimento Sustentável Mamirauá, Amazonas, Brazil). O animal foi considerado como a unidade estatística. Foi adotado nível de significância de 5% ($p < 0.05$). Os dados foram agrupados e apresentados como médias e desvios-padrão (variáveis contínuas) ou medianas, desvios interquartílicos e valores mínimos e máximos (variáveis ordinais). A distribuição dos dados foi verificada pelo teste Shapiro-Wilk. Para os dados que apresentaram distribuição normal, foram selecionados testes paramétricos para análises das diferenças intergrupos. Testes não paramétricos foram aplicados para os dados com distribuição não normal.

Todas as avaliações histométricas, imunohistoquímicas, microbiológicas e microtomográficas foram realizadas por examinadores calibrados. Para calibração dos examinadores um terço da amostra foi avaliada em dois períodos de tempo com um intervalo de 48 horas. O coeficiente de correlação intraclasse (CCI) foi utilizado para determinar a reprodutibilidade dos examinadores nas duas avaliações realizadas. Valores de CCI maiores que 90% foram considerados para assegurar a calibração dos examinadores.

A significância das diferenças entre os grupos para as variáveis histométricas e microtomográficas, bem como para os valores de expressão gênica foi determinada pela análise de variância (ANOVA) seguida pelo teste post-hoc de Tukey. Para análise dos dados imunohistoquímicos, a significância das diferenças entre os grupos foi determinada pelo teste de Kruskal-Wallis, seguido pelo teste post-hoc de Dunn. Nos testes in vitro, as diferenças intragrupos para as culturas isoladas e co-culturas foram avaliadas pela ANOVA seguida pelo teste post-hoc de Tukey. As diferenças de DO entre as culturas isoladas de periodontopatógenos e co-culturas com B. bacteriovorus HD100 em cada tempo experimental (0, 24 e 48 h) foram avaliadas pelo Teste t.
Na análise dos dados obtidos na avaliação imunoenzimática, os valores de cada citocina foram expressos em pg/mL. Os níveis finais das citocinas analisadas foram obtidos pela razão entre os valores inicialmente obtidos com sistema MAGPIX® e os valores de peso das biópsias gengivais. Em cada animal, foi calculada a média e o desvio-padrão dos níveis de todas as citocinas analisadas. A significância das diferenças entre os grupos foi determinada pela ANOVA seguida pelo teste post-hoc de Tukey.

Na análise dos dados obtidos na avaliação microbiológica, os níveis de cada espécie bacteriana foram calculados pela transformação dos escores obtidos na leitura dos filmes radiográficos após a realização do checkerboard DNA-DNA hybridization em valores absolutos: escore 1 = 10.000 células; escore 2 = 100.000 células; escore 3 = 500.000 células; escore 4 = 1.000.000 células e escore 5 = 10.000.000 células. Em cada animal, foi calculada a proporção das contagens (x 10^5) de cada bactéria analisada em relação à quantidade total de bactérias. Foi calculada, então, a proporção média de cada espécie nos diferentes grupos. As diferenças intergrupos foram avaliadas pelo Teste t.
5. RESULTADOS
5.1 Avaliação microbiológica

A Figura 3 apresenta o percentual de sondas de DNA das 40 espécies bacterianas analisadas nos grupos DPT e DPT-HD100, bem como os resultados das comparações entre os grupos. O Grupo DPT-HD100 apresentou menor percentual de periodontopatógenos (espécies semelhantes à *P. intermedia, P. micros, F. nucleatum, F. polymorphum, E. corrodens, E. nodatum, C. gracilis, C. sputigena e V. Parvula*) e maior percentual de espécies compatíveis com saúde periodontal (espécies semelhantes à *A. gereneseriae, A.viscosus e S. sanguinis*) quando comparado ao Grupo DPT.

Não foram detectadas cópias do genoma de *B. bacteriovorus* HD100 nas amostras de biofilme subgengival dos grupos CT, CT-HD100, DPT e DPT-HD100.

Figura 3- Proporções médias de 40 espécies bacterianas no biofilme dos animais dos grupos com periodontite experimental e tratados (Grupo DPT-HD100 – linhas azuis) ou não (Grupos DPT – linhas vermelhas) com administrações tópicas da bactéria predadora *B. bacteriovorus* HD100. % de contagem de sondas de DNA = porcentagem da contagem de DNA de cada espécie em relação à contagem total de DNA das 40 espécies bacterianas avaliadas. *Diferença significativa entre os grupos (Teste t, *p* < 0,05).
5.2 Análise imunohistoquímica

As BD foram detectadas em células dos tecidos periodontais de proteção e de inserção. Houve variação qualitativa e quantitativa no padrão de imunomarcação para BD-1 (Figura 4), BD-2 (Figura 5) e BD-3 (Figura 6) nos diferentes grupos experimentais. BD-1, BD-2 e BD-3 foram detectada em queratinócitos, fibroblastos gengivais, vasos sanguíneos gengivais, fibroblastos do ligamento periodontal, osteoblastos, osteoclastos e osteócitos do osso alveolar.

Figura 4-Padrão de imunomarcação para BD-1 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.
Figura 5 - Padrão de imunomarcação para BD-2 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-2. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm
A expressão imunohistoquímica de TLR-2 e TLR-4 foi detectada em células dos tecidos periodontais de proteção e de inserção (Figuras 7 e 8). No periodonto de proteção, a imunomarcação para TLR-2 e TLR-4 estava presente em fibroblastos gengivais, células inflamatórias e em alguns queratinócitos do estrato basal. As células positivas para TLR foram raras nos grupos sem periodontite experimental. No periodonto de inserção, a imunomarcação para TLR-2 e TLR-4 estava presente, predominantemente, em fibroblastos do ligamento periodontal em todos os grupos experimentais. Nos grupos com periodontite experimental, a imunomarcação estava presente tanto em fibroblastos quanto em células inflamatórias. Alguns osteoclastos foram positivos para TLR2 e TLR-4, especialmente nos grupos com periodontite experimental.
Figura 7- Padrão de imunomarcação para TLR-2 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.
Resultados

Figura 8- Padrão de imunomarcação para TLR-4 nos tecidos periodontais do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). LP = ligamento periodontal; OA = osso alveolar; TC = tecido conjuntivo. Setas = células positivas para BD-1. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.

A imunomarcação para CD-4, CD-8 e CD-57 estava presente em células inflamatórias localizadas na lámina própria da gengiva e no ligamento periodontal (Figuras 9-11). Enquanto nos grupos controle (sem periodontite experimental), as células imunomarcadas estavam difusamente distribuídas, nos grupos com periodontite experimental as células imunomarcadas estavam aglomeradas em pequenos grupos.
Figura 9- Padrão de imunomarcação para CD-4 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-4. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.
Figura 10- Padrão de imunomarcação para CD-8 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-8. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.
Figura 11- Padrão de imunomarcação para CD-57 no tecido conjuntivo gengival do 1º molar inferior de ratos submetidos ou não ao tratamento com *B. bacteriovorus* HD100. Grupos CT (A), CT-HD100 (B), DPT (C) e DPT-HD100 (D). Setas = células positivas para CD-57. Contra-coloração: Hematoxilina de Harris. Aumento original: 1000x. Barras de escala: 25 µm.
As medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos diferentes grupos experimentais para a expressão de BD-1, BD-2, BD-3, CD-4, CD-8, CD-57, TLR-2 e TLR-4, bem como os resultados das comparações entre os grupos podem ser observado nas Figuras 12-14. Na análise de BD, o Grupo DPT-HD100 apresentou maior padrão de imunomarcação para BD-1, BD-2 e BD-3 quando comparado ao grupo DPT ($p < 0,05$). O Grupo DPT apresentou padrão de imunomarcação para BD-1, BD-2 e BD-3 semelhante ao Grupo C. Não foram observadas diferenças significativas no padrão de imunomarcação para TLR-2, TLR-4, CD4, CD8 e CD57 entre os grupos DPT e DPT-HD100. Ambos os grupos apresentaram maior padrão de imunomarcação para todos os TLR e CD analisados, exceto para CD-8, quando comparados ao Grupo C.

Figura 12- Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para BD-1 (A), BD-2 (B) e BD-3 (C). Letras diferentes representam diferenças estatísticas significantes (Kruskal-Wallis, Dunn, $p < 0,05$) Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para BD-1 (A), BD-2 (B) e BD-3 (C). Letras diferentes representam diferenças estatísticas significantes (Kruskal-Wallis, Dunn, $p < 0,05$).
Figura 13- Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para TLR-2 (A) e TLR-4 (B). Letras diferentes representam diferenças estatísticas significantes (Kruskal-Wallis, Dunn, $p < 0,05$).

Figura 14- Medianas, variações interquartílicas e valores máximos/mínimos dos escores atribuídos aos grupos CT, CT-HD100, DPT e DPT-HD100 na análise do padrão de imunomarcação para CD-4 (A), CD-8 (B), CD-57 (C). Letras diferentes representam diferenças estatísticas significantes (Kruskal-Wallis, Dunn, $p < 0,05$).
5.3 Análise imunoenzimática

Os níveis de IL-6, TNF-α, MCP-1, IL-10, IL-1β, TGF-β, RANK-L, OPG, RANTES e M-CSF estão apresentados nas Figuras 15, 16 e 17, bem como os resultados das comparações entre os grupos.

O grupo DPT-HD100 apresentou maiores níveis de MCP-1 e RANTES e menores níveis de TNF-α quando comparado ao grupo DPT ($p < 0,05$). Para os níveis de IL-1β, IL-6, M-CSF e RANK-L, não foram observadas diferenças entre os grupos DPT e DPT-HD100. O Grupo CT-HD100 apresentou maiores níveis de IL-6, TNF-α, e MCP-1 quando comparado ao Grupo C ($p < 0,05$).

O grupo DPT-HD100 apresentou níveis mais elevados de citocinas anti-inflamatórias (IL-10 e TGF-β) e de OPG quando comparado ao grupo DPT ($p < 0,05$).
Resultados

Figura 15- Níveis médios (pg/mL) e desvios-padrão de (A) IL-1β, (B) IL-6, (C) TNF-α, (D) MCP-1, (E) M-CSF e (F) RANTES para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, p < 0,05).

Figura 16- Níveis médios (pg/mL) e desvios-padrão de (A) IL-10 e (B) TGF-β para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, p < 0,05).
Resultados

Figura 17- Níveis médios (pg/mL) e desvios-padrão de (A) RANK-L e (B) OPG para os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes entre os grupos (ANOVA, Tukey, \(p < 0.05 \)).

5.4 Análise de expressão gênica

O Grupo DPT-HD100 apresentou maior expressão de IL-17, IL-10 e FOXP3 quando comparado ao Grupo DPT \((p < 0.05) \) (Figura 18).

Figura 18- Médias e desvios-padrão da expressão gênica de IL-10 (A), IL-17 (B) e FOXP3 (C) nos grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes representam diferenças estatísticas significantes (ANOVA, Tukey, \(p < 0.05 \)).
5.5 Análise com microtomografia computadorizada por transmissão de raios X (micro-CT)

Imagens representativas das reconstruções tridimensionais renderizadas das secções microtomográficas das hemimandíbulas dos animais dos grupos CT, CT-HD100, DPT e DPT-HD100 podem ser observadas na Figura 19.

Os valores de NOA, VO, PO, Tb.Sp e Tb.N obtidos na análise microtomográfica, bem como os resultados das comparações entre os grupos, podem ser observados nas Figura 20. O Grupo DPT-HD100 apresentou menor NOA, PO e Tb.Sp, bem como maior VO e Tb.N quando comparado ao Grupo DPT ($p < 0,05$).
Figura 19- Imagens representativas das reconstruções tridimensionais renderizadas das secções microtomográficas das hemi-mandíbulas direitas dos animais dos grupos CT (A, B), CT-HD100 (C, D), DPT (E, F) e DPT-HD100 (G, H). Vista da superfície vestibular externa (A, C, E e G). Secção sagital da superfície interna (B, D, F e H). CT Vox® (versão 3.1.0, Bruker, Kontich, Bélgica). Tamanho do pixel = 7,96 μm.
Figura 20 - Médias e desvios-padrão do volume ósseo (A) porosidade óssea (B), espaçamento trabecular (C), superfície óssea (D) e nível ósseo alveolar (E) com comparações entre os grupos CT, CT-HD100, DPT e DPT-HD100. Letras diferentes indicam diferenças significativas entre os grupos (ANOVA, Tukey, \(p < 0,05 \)). Tb.Sp = espaçamento trabecular; Tb.N = número de trabéculas.

5.6 Análise histomorfométrica

Os grupos CT (Figura 21A, B) e CD-HD100 (Figura 21C, D) apresentaram ligamento periodontal dentro dos padrões de normalidade. As fibras periodontais encontravam-se inseridas no cemento e osso alveolar. Os tecidos periodontais de ambos os grupos apresentavam grande quantidade de fibroblastos e vasos sanguíneos, bem como um discreto infiltrado inflamatório. *B. bacteriovorus* não promoveu nenhuma alteração histopatológica no Grupo CT-HD100. O tecido ósseo na região de bifurcação, rico em...
osteócitos, apresentou crista regular com aposição de osteoblastos. Na região interproximal (Figura 22 A, B) os epitélios juncional e sulcular estavam íntegros.

No grupo DPT (Figura 21E, F) a superfície óssea era irregular e apresentava muitos osteoclástos ativos na região de bifurcação. O tecido conjuntivo apresentava poucos fibroblastos, edema intersticial, fibras colágenas sem orientação definida e um intenso infiltrado inflamatório, consistindo principalmente de neutrófilos e linfócitos. Áreas de reabsorção radicular foram também observadas. Na região interproximal (Figura 22C), havia perda de inserção conjuntiva e os epitélios juncional e sulcular estavam severamente danificados.

No grupo DPT-HD100 (Figura 21G, H), a CO na região de bifurcação estava posicionada mais coronalmente quando comparada àquela do grupo DPT e apresentava alguns osteoclástos ativos em sua superfície. O tecido conjuntivo adjacente apresentou um número moderado de fibroblastos e fibras colágenas, um grande número de vasos sanguíneos e poucas células inflamatórias (predominantemente neutrófilos). As fibras colágenas presentes estavam mais organizadas que aquelas do Grupo DPT. Na área interproximal (Figura 22D), havia menor perda de inserção conjuntiva que àquela observada no Grupo DPT.

As médias e desvios-padrão do NIC, bem como o resultado das comparações entre os grupos podem ser observados na Figura 23. O grupo DPT-HD100 apresentou menor NIC quando comparado ao Grupo DPT ($p < 0,05$).
Figura 21- Tecidos periodontais na região de bifurcação do primeiro molar inferior dos grupos CT (A, B), CT-HD100 (C, D), DPT (E, F) e DPT-HD100 (G, H). Coloração: Hematoxilina e Eosina. Aumento original = 10x (A, C, G, F); 20x (B, D, F, H). OA = osso alveolar; TF = teto da bifurcação; setas pretas = vasos sanguíneos; cabeça de seta preta preenchida = osteoblastos; asterisco = fibras colágenas desconexas com a presença de edema intersticial; cabeça de seta branca preenchida = cementoclastos; cabeça de seta não preenchida = fibras colágenas interpostas entre o osso alveolar e o cimento radicular.
Figura 22- Tecidos periodontais na região interproximal entre o primeiro e segundo molares inferiores dos animais dos grupos CT (A), CT-HD100 (B), DPT (C), DPT-HD100 (D). Aumento original = 20x. PMI = primeiro molar inferior; SMI = segundo molar inferior; Seta preta = junção cimento-esmalte; Seta branca = inserção conjuntiva.

Figura 23- Médias e desvios-padrão do nível de inserção conjuntiva para os grupos CT, CT-HD100, DPT e DPT-HD100, com comparações entre os grupos. NIC = Nível de inserção conjuntiva. Letras diferentes representam diferença significativa entre os grupos (Teste t, p < 0.05).
5.7 Análise in vitro da atividade antimicrobiana de *Bdellovibrio bacteriovorus* HD100

A Figura 24 mostra as médias e desvios-padrão de DO 600 nm na análise de culturas de *A. actinomycetemcomitans*, *P. intermedia* e *F. nucleatum* associadas ou não ao *B. bacteriovorus* HD100 nos tempos 0, 24 e 48 horas. As co-culturas apresentaram menor DO do que as culturas isoladas de periodontopatógenos em 48 horas ($p < 0.05$).

Figura 2A - Médias e desvios-padrão de densidade ótica (DO) obtidas nos tempos 0, 24 horas e 48 horas na análise de culturas de *Bdellovibrio bacteriovorus* HD100 (*B.b*) associadas ou não a culturas de *Agregatibacter actinomycetemcomitans* (*A.a*) (*A*), *Prevotella intermedia* (*P.i*) (*B*) e *Fusobacterium nucleatum* (*F.n*) (*C*). Letras diferentes indicam diferenças significativas intragrupos (ao longo dos tempos experimentais) (ANOVA, Tukey, $p < 0.05$). * = diferença significativa quando comparado à cultura pura do periodontopatógeno (Teste t, $p < 0.05$).
6. DISCUSSÃO
Este é o primeiro estudo *in vivo* que avaliou os efeitos de BALOs na periodontite experimental. O presente estudo demonstrou que a administração tópica de *B. bacteriovorus* HD100 em ratos com periodontite induzida por ligadura reduziu significativamente o número de alguns periodontopatógenos no biofilme e aumentou o número de bactérias comensais, bem como potencializou a expressão de BD e modulou o perfil de citocinas inflamatórias nos tecidos periodontais. Esses efeitos foram associados a menor perda óssea alveolar nos animais com periodontite experimental e tratados com *B. bacteriovorus* HD100 quando comparados aos animais não tratados com o predador biológico.

No presente estudo, considerando os dados microtomográficos, o uso tópico de bactérias predadoras reduziu em aproximadamente 22% a perda de osso alveolar no grupo DPT-HD100 quando comparado ao Grupo DPT, bem como promoveu melhorias significativas na microarquitetura óssea. Essa redução de perda de osso alveolar foi semelhante àquela obtida por Oliveira et al. (2017) com o uso tópico da bactéria probiótica *Bifidobacterium animalis subsp.* lactis HN019 no tratamento da periodontite experimental em ratos. De fato, a bacterioterapia pode ser uma potencial alternativa para o tratamento das doenças periodontais. A prevalência crescente de resistência a antibióticos é convidativa para o desenvolvimento de novas abordagens terapêuticas antimicrobianas para tratar doenças bucais relacionadas ao biofilme. Essas estratégias devem, idealmente, reduzir os níveis de biofilme sem afetar o equilíbrio biológico geral da cavidade bucal (ALLAKER; DOUGLAS, 2009). Em 2015, os agentes patogênicos resistentes aos antibióticos causaram mais de 50.000 mortes na Europa e nos Estados Unidos da América. O número deverá aumentar para 10 milhões de mortes por ano em todo o mundo em 2050 (LANGDON et al., 2016).

No que se refere à ação de bactérias predadoras contra periodontopatógenos, três estudos *in vitro* prévios investigaram os efeitos de *B. bacteriovorus* (cepas HD100 e 109J) contra periodontopatógenos em estado planctônico e, também, em modelos de biofilme
monoespécie e multiespécie (VAN ESSCHE et al., 2009; DASHIFF & KADOURI, 2011; LOOZEN et al., 2015). Os resultados desses estudos demonstraram que espécies de *Bdellovibrios* atacam *F. nucleatum*, *A. actinomycetemcomitans*, *E. corrodens* e *P. intermedia*. De fato, no presente estudo, *B. bacteriovorus* reduziu o número de *F. nucleatum*, *A. actinomycetemcomitans* e *P. Intermedia* nos experimentos in vitro. Nos experimentos in vivo, os animais do Grupo DPT-HD100 apresentaram menores proporções de espécies semelhantes à *P. intermedia*, *P. micros*, *F. nucleatum*, *F. polymorphum*, *E. corrodens*, *E. nodatum*, *C. gracilis*, *C. sputigena* e *V. parvula* quando comparados àqueles do Grupo DPT. Alguns desses patógenos periodontais são capazes de induzir, in vitro, a apoptose de leucócitos mono e polimorfonucleados (JEWETT et al., 2000), bem como elevam a produção de colagenase 3 (UITTO et al., 2005) por células epiteliais e a liberação de substâncias pró-inflamatórias por leucócitos periféricos (IL-1β, TNF-α e IL-8) (SHEIKHI et al., 2000). Uma vez que a perpetuação da periodontite tem sido atribuída à superatividade de células do sistema imune, em termos de produção de citocinas como IL-1β e TNF-α (PERIASAMY; KOLENBRANDER, 2009), a redução das contagens de espécies patogênicas do complexo laranja (SOCRANSKY et al., 1994), como *F. nucleatum*, pode ser uma etapa crítica para o sucesso da terapia periodontal. Além disso, espécies de *Fusobacterium* podem atuar como uma verdadeira “ponte biológica” na formação de biofilmes bucais, uma vez que aderem-se a quase todas as bactérias bucais (HAUKIOJA et al., 2006). *F. nucleatum* facilita a co-agregação e otimização do crescimento de outros patógenos periodontais, como *A. actinomycetemcomitans*, *P. gingivalis* e *T. forsythia* (SOCRANSKY et al., 1988; PERIASAMY; KOLENBRANDER, 2009).

Considerando ainda os resultados microbiológicos do presente estudo, um achado interessante refere-se ao aumento de espécies semelhantes à *A. gerencseriae*, *A. viscosus* e *S. salivarius* observado no grupo DPT-HD100. Microrganismos desses gêneros são
frequentemente associados com saúde periodontal (LUCAS et al., 2000; AAS et al., 2005; HAJISHENGALLIS et al., 2012; ABUSLEME et al., 2013; ARUNI et al., 2015) e podem auxiliar no controle da inflamação dos tecidos periodontais (DEVINE et al., 2015; KUMAR; MASON, 2015). Streptococcus são uma parte importante da microbiota e exercem papel crucial na colonização microbiana da cavidade bucal (RICKARD et al., 2003). Esses microrganismos influenciam a ecologia microbiana bucal devido à capacidade de aderirem a tecidos moles e duros (GIBBONS; VAN HOUTE, 1971), de metabolizarem uma vasta gama de hidratos de carbono (VADEBONCOEUR; PELLETIER, 1997) e de produzirem substâncias antimicrobianas (ROSS et al., 1993) que influenciam a formação e a composição do biofilme bucal. Portanto, um apropriado balanço de microrganismos comensais imunomodulatórios parece ser essencial para a saúde bucal (DEVINE et al., 2015).

Este é o primeiro estudo que avaliou o potencial predatório de B. bacteriovorus na cavidade bucal. As condições de anaerobiose e temperatura da bolsa periodontal, bem como a presença de saliva são alguns fatores que podem desafiar a viabilidade e a capacidade predatória de B. bacteriovorus no ambiente bucal. No que se refere à viabilidade, alguns estudos in vitro demonstraram que B. bacteriovorus podem sobreviver em ambientes com limitação de oxigênio, temperaturas elevadas e presença de saliva (SEIDLER & STARR, 1969; DASHIF & KADOURI, 2011; LOOZEN et al., 2015). Contudo, níveis reduzidos de oxigênio podem prejudicar o potencial predatório dessas bactérias (DASHIF & KADOURI, 2011), o que desperta dúvidas sobre a efetiva ação das mesmas no controle do biofilme subgengival e na eliminação de periodontopatógenos anaeróbios estritos. Estudos in vitro prévios (DASHIF & KADOURI, 2011; LOOZEN et al., 2015) demonstraram que B. bacteriovorus não foram capazes de reduzirem os níveis de P. gingivalis (microrganismos anaeróbios estritos). Independentemente desses resultados, é importante ressaltar que B. bacteriovorus podem ainda serem úteis no controle das doenças periodontais. Bactérias
discussão
discussão

predadoras podem remover suas presas tolerantes ao oxigênio nas camadas mais superficiais do biofilme e, consequentemente, expor os microrganismos anaeróbios residentes nas camadas mais profundas (DIAZ et al., 2002), tornando-os vulneráveis ao ataque predatório.

No presente estudo, o Grupo DPT-HD100 apresentou proporções de *P. intermedia*, um microrganismo anaeróbio estrito, significativamente menores que aquelas do Grupo DPT.

Os resultados microbiológicos deste estudo devem ser interpretados com cautela, uma vez que não foi possível identificar a microbiota subgengival dos grupos C e C-HD100, bem como a dos grupos DPT e DPT-HD100, antes da colocação de ligaduras por meio do *checkerboard DNA-DNA hybridization*. Uma vez que a sensibilidade do deste método foi ajustada para permitir a detecção de 10^4 células bacterianas, os sinais quimioluminescentes de reações positivas abaixo deste limiar não foram detectados, ainda que os genomas bacterianos pudessem estar presentes em baixas quantidades. Isso está de acordo com os achados de Duarte et al. (????) que não conseguiram detectar sinais em sítios periodontais saudáveis usando o mesmo método em ratos. Técnicas mais sensíveis, como qPCR e sequenciamento envolvendo DNA metagenômico, podem ser ferramentas úteis para superar essa limitação em estudos futuros. Também deve ser enfatizado que os dados microbiológicos representam os resultados da hibridização de DNA de espécies bacterianas de ligadura de ratos com sondas de DNA preparadas usando DNA de espécies bacterianas bucais humanas. Portanto, as 40 espécies examinadas são bem reconhecidas como espécies importantes relacionadas às condições periodontais de saúde e doença em humanos. No entanto, outras espécies envolvidas na destruição periodontal em ratos podem estar presentes, não tendo sido analisadas no presente estudo.

No presente estudo, não foi possível detectar cópias do genoma de *B. bacteriovorus HD100* nas amostras de biofilme subgengival dos grupos CT-HD100 e DPT-HD100. Uma explicação para esse fato está relacionada à permanência transitória de *B. bacteriovorus* em
organismos de mamíferos. Quando *B. bacteriovorus* HD100 foi incolulado por meio da mucosa nasal para tratamento de infecções pulmonares ocasionadas por *K. pneumoniae* em ratos, foi verificado, por meio de qPCR, que os tecidos pulmonares dos animais apresentaram cópias de genomas de *B. bacteriovorus* HD100 por no máximo 48 horas (SHATZKES et al., 2015). Nenhuma cópia do referido genoma foi identificada aos 10 dias pós-operatórios (SHATZKES et al., 2015). Shatzkes et al. (2017) demonstraram que bactérias predadoras foram eliminadas eficientemente do organismo de ratos 20 dias após a inoculação intravenosa das mesmas. Atterbury et al. (2011) não detectaram *B. bacteriovorus* nas fezes e no ambiente cecal de aves jovens tratadas com administração oral de bactérias predadoras. Além da permanência transitória, um fator que também dificulta a identificação de *B. bacteriovorus* no organismo de animais trata-se da baixa abundância relativa dessas bactérias na comunidade microbiana. Assumindo que o intestino de ratos contém em média 10^{13} células bacterianas, a proporção final de deltaproteobactérias (filo ao qual pertence *B. bacteriovorus*) em relação às bactérias comensais é aproximadamente 1/100.000 (ATTERBURY et al., 2011). Dessa forma, técnicas de sequenciamento envolvendo DNA metagenômico são fundamentais para verificar com maior sensibilidade a abundância relativa dessas bactérias.

A modulação da resposta imunoinflamatória do hospedeiro é um outro mecanismo pelo qual a bacterioterapia pode auxiliar no tratamento das doenças periodontais. Paradoxalmente, no presente estudo, a bacterioterapia parece ter elevado os níveis de citocinas pró-inflamatórias. Os animais do Grupo CT-HD100 apresentaram níveis significativamente maiores de IL-6, TNF-α, MCP-1 e RANTES quando comparados àqueles do Grupo CT. Há apenas 4 estudos *in vivo* descritos na literatura que avaliaram os efeitos imunoinflamatórios de bactérias predadoras em animais. Esses estudos avaliaram os efeitos sistêmicos de *Bdellovibrios* após inoculação intravenosa, bem como seus efeitos após administração oral e inoculação nasal (SHATZKES et al., 2015; SHATZKES et al., 2016;
SHATZKES et al., 2017a; SHATZKES et al., 2017b). De forma geral, a administração das bactérias predadoras promoveu aumento dos níveis de citocinas pró-inflamatórias no sangue e, também, em intestino, rim, pulmão, fígado e baço dos animais. Em um recente estudo in vitro, Gupta et al. (2016) observaram que a exposição de macrófagos derivados de monócitos do sangue a B. bacteriovorus e M. aeroginosavorus promoveu aumento na expressão de diversas citocinas pró-inflamatórias e anti-inflamatórias. Uma vez que bactérias predadoras são Gram-negativas, sua introdução em tecidos de mamíferos pode, de fato, dar origem à produção de citocinas inflamatórias em resposta aos componentes imunogênicos, como o LPS (GUPTA et al., 2016). Contudo, essa resposta inflamatória não promove nenhum dano tecidual. Apesar do aumento do nível de citocinas pró-inflamatórias, nenhum dano histológico foi observado nos tecidos pulmonares (Shartzkes et al., 2016) e intestinais (SHATZKES et al., 2017) de ratos após a inoculação de Bdellovibrios. No presente estudo, os animais do Grupo DPT-HD100 apresentaram menor perda óssea alveolar do que os animais do Grupo DPT. Nenhuma alteração histopatológica foi observada nos tecidos periodontais dos animais do Grupo CT-HD100. Tem sido proposto que B. bacteriovorus pode ser intrinsecamente não patogênico para células de mamíferos devido ao seu único LPS neutro-carregado, o qual não induz uma resposta imunogênica robusta nas células (SCHWUDKE et al., 2003).

Este estudo avaliou a resposta imune inata dos tecidos periodontais por meio da análise de BD, TLR e CD-57. Foi avaliada ainda a resposta imune adaptativa por meio da análise de CD-4, CD-8 e FOPX3. Um painel de citocinas pró e anti-inflamatórias também foi investigado. É importante ressaltar que os resultados obtidos não podem considerar os efeitos isolados de qualquer parâmetro investigado, mas sim as possíveis ações sinergísticas dos mesmos, sejam elas já conhecidas ou não, no processo imunoinflamatório periodontal. As interpretações devem também estar associadas aos desfechos microtomográficos e histológicos observados.
As BD humanas são peptídeos pequenos e bem caracterizados com amplas atividades antimicrobianas, participando na resposta imune inata do hospedeiro. BD ligam-se a antígenos e adesinas microbianas, atenuando os efeitos do LPS e reduzindo a expressão de citocinas inflamatórias (KOHLEGRAF et al., 2010). As BD são amplamente expressas na cavidade bucal quando expostas a estímulos originários da microbiota comensal ou patogênica. Alguns estudos verificaram que, em casos avançados de periodontite, a expressão de BD é drasticamente reduzida (KUULA et al., 2008; BRANCATISANO et al., 2011; LIU et al., 2014). De fato, no presente estudo, uma menor expressão de BD-1, BD-2 e BD-3 foi observada nos animais com periodontite experimental mais avançada (Grupo DPT) quando comparados âqueles com uma forma mais branda da doença (Grupo DPT-HD100). Duas hipóteses podem explicar a redução de BD em casos avançados de periodontite. A primeira delas refere-se à degradação desses peptídeos por enzimas proteolíticas produzidas por agentes patogênicos periodontais e pelo próprio hospedeiro (BRANCATISANO et al., 2011). Em relação às enzimas produzidas pelo hospedeiro, as catepsinas B e L, as quais são produzidas predominantemente por macrófagos, aumentam nos tecidos gengivais com o início e progressão da periodontite. Essas enzimas foram capazes de degradar e inativar BD-2 e BD-3 em experimentos realizados in vitro (TAGGART et al., 2003). De acordo com a segunda hipótese, a redução de BD em casos mais avançados de periodontite pode ser explicada pela substituição da resposta imune inata pela resposta imune adaptativa durante o processo evolutivo da doença periodontal (DUNSCHE et al., 2002). Com a invasão bacteriana, as BD estimulam a secreção de quimiocinas, como IL-8 e MCP-1, a partir de células dendríticas. Essas citocinas atuam como quimioatraentes, recrutando fagócitos e linfócitos para o local da infecção (YIN et al., 2010). Então, conforme a doença periodontal se agrava, a resposta imune adaptativa torna-se ativada e limita a ação da resposta imune inata, reduzindo, assim, secreção de BD (GURSOY & KÖNÖNEN, 2012).
Discussão

Ainda em relação à expressão de BD, não se pode descartar a possibilidade de estímulo direto desses peptídeos antimicrobianos pelas bactérias predadoras utilizadas no presente estudo, o que pode ter contribuído para uma maior expressão de BD no Grupo DPT-HD100 quando comparado ao Grupo DPT. Como não há estudos prévios demonstrando os efeitos de bactérias predadoras na expressão de BD, essa hipótese pode ser aventada considerando os estudos que demonstraram os efeitos diretos de microrganismos probióticos no aumento da expressão de BD (FUSCO et al., 2017; OLIVEIRA et al., 2017). Essa hipótese poderia sustentar o conceito de utilização de bactérias predadoras como uma terapia não apenas antimicrobiana, mas também capaz de modular a resposta do hospedeiro. No presente estudo, pode ser observada uma tendência no aumento da expressão de BD no grupo CT-HD100 quando comparado ao Grupo CT. Maiores níveis de IL-6, MCP-1 e RANTES também foram observados no Grupo CT-HD100 quando comparado ao Grupo CT. Em experimentos realizados in vitro, a produção dessas citocinas (IL-6, MCP-1 e RANTES) foi diretamente ligada ao aumento da expressão de BD em queratinócitos (NIYONSABA et al., 2007). Dessa forma, é possível que, no presente estudo, *B. bacteriovorus* possa ter modulado a expressão de citocinas inflamatórias por meio de sua interação com BD nos tecidos periodontais.

As células imunes e epiteliais usam receptores de reconhecimento de padrões (PRR) para identificar bactérias e seus padrões moleculares associados aos patógenos (PAMP). Os PAMPs são altamente conservados e específicos no mundo microbiano (LEE & IWASAKI, 2007; PEYRET-LACOMBE et al., 2009). Os PAMPs bacterianos mais representativos incluem o lipídeo A do LPS, lipopeptídeos e peptídeooglicanos (UEHARA et al., 2005; PEYRET-LACOMBE et al., 2009). TLR são um tipo de PRR que reconhecem uma grande quantidade de PAMPs bacterianos, fúngicos ou virais. Na cavidade bucal, tanto as células imunes quanto as células periodontais expressam TLR (MAHANONDA & PICHYANGKUL, 2007; PEYRET-LACOMBE et al., 2009). Entre os 10 TLR humanos identificados até agora,
TLR-2 e TLR-4 são os mais bem definidos. No presente estudo, os grupos com doença (DPT e DPT-HD100) apresentaram padrões de imunomarcação para TLR-2 e TLR-4 significativamente maiores que aqueles do Grupo CT. Diversos estudos já demonstraram que TLR estão envolvidos na patogênese da doença periodontal (SONG et al., 2013). Os níveis de expressão gênica de TLR-2 e TLR-4 foram significativamente maiores em pacientes com Periodontite Crônica do que em indivíduos com periodonto saudável (BECERIK et al., 2011; Ribeiro et al., 2012). Alguns estudos clínicos demonstraram que a expressão imunohistoquímica de TLR-2 e TLR-4 nos tecidos periodontais de pacientes com Periodontite Crônica foi significativamente maior do que aquela em tecidos de pacientes com periodonto saudável (DUARTE et al., 2012; BEKLEN et al., 2014; LI et al., 2014b). Fibroblastos do ligamento periodontal humano e, também, fibroblastos gengivais humanos de pacientes com Periodontite Crônica expressaram níveis significativamente maiores de TLR-1, TLR-4 e TLR-7 do que aqueles de indivíduos sem doença periodontal (SCHERES et al., 2011; PEYRET-LACOMBE et al., 2009).

Os grupos DPT e DPT-HD100 do presente estudo apresentaram padrões de imunomarcação semelhantes para TLR. TLR podem ser estimulados não apenas por microrganismos patogênicos, mas também por bactérias comensais. A administração de *L. casei* em camundongos saudáveis, por exemplo, aumentou o número de células positivas para TLR-4 quando os mesmos foram comparados aos animais não tratados com esse microrganismo. Este achado, segundo os autores, pode representar uma melhora dos mecanismos fisiológicos de vigilância contra bactérias patogênicas (CASTILLO et al., 2011). A ativação de TLR pode influenciar a expressão de BD e de marcadores inflamatórios, como citocinas ou MMP (ASAI et al., 2003; SUGAWARA et al., 2006; ANDRIAN et al., 2007). O perfil da resposta imunoinflamatória resultante da ativação de TLR pode variar em função do tipo de bactéria que está estimulando o receptor (PEYRET-LACOMBE et al., 2009). Dessa
forma, o mesmo padrão de expressão de TLR-2 e de TLR-4 observado nos grupos DPT e DPT-HD100 do presente estudo pode ter resultado em perfis diferentes de respostas imunoinflamatórias, considerando que ambos os grupos apresentaram diferenças na composição microbiológica do biofilme subgengival. O Grupo DPT-HD100 apresentou proporções significativamente menores de espécies semelhantes ao *F. nucleatum* (um periodontopatógeno), bem como maiores proporções de espécies semelhantes ao *S. sanguinis* (um microrganismo comensal) quando comparado ao grupo DPT. Enquanto a interação de *F. nucleatum* com TLR-2 pode potencializar a síntese de IL-6, IL-8 e MMP-9 em experimentos realizados *in vitro*, a interação de TLR-2 com *S. sanguinis* pode reduzir os níveis de MMP-9 e IL-8 (PEYRET-LACOMBE et al., 2009).

As células *natural killer* (NK), positivas para CD-57, são linfócitos que diferem das células T e B por seu fenótipo e função. A resposta dessas células a patógenos e a células tumorais é quase imediata e ocorre muito antes do desenvolvimento da resposta imune adaptativa, envolvendo especificamente dois principais mecanismos efetores: citotoxicidade e imunoregulação (YOKOYAMA et al., 2004). No presente estudo, os grupos com doença (DPT e DPT-HD100) apresentaram padrões de imunomarcação para CD-57 significativamente maiores que aqueles do Grupo CT. Kopp (1988) observou um aumento de células NK na gengiva de pacientes com Periodontite Crônica quando comparada com a gengiva de indivíduos saudáveis. Stelin et al. (2009) mostraram um aumento significativo no número de células CD57+ de acordo com progressão da doença periodontal. No presente estudo, embora o grupo DPT-HD100 tenha apresentado evidências histológicas de um perfil menos destrutivo de doença quando comparado ao Grupo DPT, não foram observadas diferenças significativas no padrão de imunomarcação para CD-57 entre esses grupos. De fato, a literatura ainda é controversa quando estuda a relação entre células NK e a gravidade da doença periodontal. Enquanto vários estudos demonstraram alguma correlação entre o
estado periodontal e o número e o fenótipo de células NK (WYNNE et al., 1986; KOPP, 1988; FUJITA et al., 1992; STELIN et al., 2009), outros não mostraram nenhum relacionamento (COBB et al., 1989; FUJITA et al., 1992). As células NK foram descobertas em 1975, mas seu papel na patogênese da periodontite ainda é enigmático (WILENSKY et al., 2015). Uma atuação importante dessas células que merece ser ressaltada trata-se do seu potencial de interação com *F. nucleatum*. Quando receptores Ncr1 de células NK interagem com ligantes situado no *F. nucleatum*, há um aumento na secreção de TNF-α e da destruição tecidual (WILENSKY et al., 2015). No presente estudo, o Grupo DPT apresentou maiores proporções de espécies semelhantes à *F. nucleatum* e maiores níveis de TNF-α do que o Grupo DPT-HD100.

Além da imunidade inata, as células da imunidade adaptativa atuam no cenário de patogênese da doença periodontal, especialmente as células T CD4+ e CD8+, denominadas células T-helper (Th). A população de células Th é caracterizada por subconjuntos de células diferentes, como células Th1, Th2, Th17 e T reguladoras (Treg). As células T estão envolvidas em quase todas as interações imunoreguladoras (REINHERZ & SCHLOSSMAN, 1980) e um equilíbrio delicado entre subconjuntos efetores e regulatórios é necessário para a homeostase imunológica (REINHERZ, 1985). No presente estudo, os grupos com doença (DPT e DPT-HD100) apresentaram padrões de imunomarcação para CD-4 e CD-8 significativamente maiores que aqueles do Grupo CT. De fato, diversos estudos realizados em humanos (BERGLUNDH et al., 2002; FUJIHASHI et al., 1994; GEMMELL et al., 1999; KARATZAS et al., 1996, NAKAJIMA et al., 1999, PRABHU et al., 1996; WASSENAAR et al., 1995; YAMAMOTO et al., 1997; GEMMELL et al., 2007) e em ratos (GEMMELL et al., 1998; GEMMELL et al., 2002) demonstraram a participação de células CD4+ e CD8+ na patogênese da doença periodontal. No presente estudo, embora o grupo DPT-HD100 tenha apresentado evidências histológicas de um perfil menos destrutivo de
doença quando comparado ao Grupo DPT, não foram observadas diferenças significativas no padrão de imunomarcação para CD-4 e CD-8 entre esses grupos. Dessa forma, uma explicação para o perfil de doença menos destrutivo observado no grupo DPT-HD100 pode estar relacionada à plasticidade fenotípica de células T em sítios inflamados (NISTALA et al., 2010). A produção de diferentes citocinas e funções biológicas de clones de células T CD8+ de tecidos periodontais inflamados foram analisadas por Wassenaar et al. (1996). Os resultados desse estudo mostraram que, dentro da lesão periodontal, estavam presentes pelo menos dois tipos de células T CD8+, que diferiam-se no fenótipo de superfície, na produção de citocinas e nos mecanismos de ação (WASSENAAR et al., 1996). Enquanto alguns estudos mostraram o envolvimento de células T com a produção de citocinas anti-inflamatórias (GILMOUR & LAVENDER, 2008; MURPHY et al., 2000), outros estudos relacionaram essas células com a produção de citocinas pró-inflamatórias (STELIN et al., 2009; WILENSKY et al., 2015). Então, é possível que, no presente estudo, o Grupo DPT-HD100 tenha apresentado células T com fenótipo diferente daquele das células presentes no Grupo DPT. Essa inferência pode ser feita considerando os níveis de citocinas inflamatórias analisadas. O Grupo DPT-HD100 apresentou maiores níveis de IL-10 e TGF-b (citocinas anti-inflamatórias), bem como níveis reduzidos de TNF-a (citocina pró-inflamatória) quando comparado ao Grupo DPT.

Na análise de expressão gênica do tecido gengival, foi observado um aumento de IL-17, uma citocina produzida por células Th17, no Grupo DPT-HD100 quando comparado ao Grupo DPT. Essa citocina pode desempenhar diferentes papéis, atuando tanto na vigilância imune e integridade de superfícies mucosas (MIOSSEC & KOLLS, 2012; SONG et al, 2016; ABUSLEME & MOUTSOPoulos, 2017), como também na imunopatologia de desordens auto-imunes ou inflamatórias crônicas (Gaffen et al, 2014; ABUSLEME & MOUTSOPoulos, 2017). As propriedades biológicas da IL-17 tornam difícil prever seu
papel em doenças inflamatórias com etiologia polimicrobiana, como a periodontite. A IL-17 é de particular interesse na patogênese da periodontite podendo estar envolvida nos mecanismos inflamatórios e na imunidade protetora antimicrobiana (KHADER et al., 2009; ZENOBIA & HAJISHENGALLIS, 2015). Dessa forma, é possível que a IL-17 exerça efeitos protetores e destrutivos, como sugerido em diferentes modelos experimentais em ratos (YU et al., 2007; ESKAN et al., 2012). No presente estudo, o aumento de IL-17 no Grupo DPT-HD100, o qual apresentou um perfil mais brando de doença quando comparado ao Grupo DPT, pode representar o envolvimento desta citocina na proteção contra patógenos extracelulares (HERNANDEZ-SANTOS & GAFFEN, 2012; KHADER et al., 2009; ZENOBIA & HAJISHENGALLIS, 2015) e indução na produção de peptídeos antimicrobianos (LIANG et al., 2006; ZENOBIA & HAJISHENGALLIS, 2015), como BD. De fato, o Grupo DPT-HD100 apresentou maiores expressões de BD do que o Grupo DPT.

Ainda sobre a expressão gênica, o presente estudo observou um aumento de FOXP3 no grupo DPT-HD100 quando comparado ao grupo DPT. FOXP3 é um fator de transcrição expresso em células Treg. As células Treg FOXP3+ são críticas para manter a tolerância imune, homeostase do sistema imunológico e controle de respostas imunes em direção a agentes patogênicos e tumores. Células Treg são subtipos de células T CD4+ que representam apenas 5-10% do grupo de células T periféricas (JOSEFOWICZ et al., 2007). Essas células são elementos chave na regulação imunitária, pois representam um subconjunto de leucócitos de baixa abundância com grande impacto no sistema imunológico (GARLET et al., 2014). Com base na origem, as células Treg são de dois tipos: células Treg naturais que se originam no timo e células Treg induzíveis que são geradas em certos tecidos periféricos em resposta a fatores antigênicos não humanos (microbianos) (BELKAID & CHEN 2010; SABARISH et al., 2016). No presente estudo, a utilização da bacterioterapia pode ter sido um estímulo para a produção dessas células. O grupo CT-HD100 apresentou maior expressão gênica de FOXP3
quando comparado ao Grupo CT. As células Treg são associadas à produção de IL-10, TGF-b e CTLA-4, bem como à diminuição de fatores pró-inflamatórios e osteoclastogênicos (GARLET, 2010), o que poderia explicar a menor perda óssea alveolar observada no Grupo DPT-HD100 quando comparado ao Grupo DPT.

A periodontite está associada ao aumento de RANK-L e à diminuição dos níveis de OPG no tecido gengival, na saliva e no FCG (OZAKI et al., 2017). No processo de osteoclastogênese, a participação de TNF-a parece fundamental. O processo de reabsorção óssea propriamente dito é mediado pelo acoplamento entre RANK e o receptor de TNF-a (TNFr1), o que estimula a produção de RANK-L (ZHANG et al., 2001). De forma oposta a este mecanismo, as células B secretam OPG, um potente fator anti-osteoclastogênico que preserva a massa óssea (OZAKI et al., 2017). Neste contexto, outro potencial fator anti-osteoclastogênico, trata-se dos níveis de BD-3. Cui et al. (2017) demonstraram que a administração de BD-3 para o tratamento de periodontite experimental reduz os níveis de TNF-a e modula o processo de aposição e reabsorção ósseas. No presente estudo, foi observado um aumento nos níveis de OPG e BD-3, bem como tendência de redução dos níveis de RANK-L no Grupo DPT-HD100 quando comparado ao Grupo DPT. A administração de *B. bacteriovorus* HD100 também reduziu os níveis de TNF-a nos tecidos periodontais. Esses dados envolvendo OPG, BD-3, TNF-a e RANK-L podem explicar os mecanismos pelos quais a bacterioterapia reduziu a reabsorção do osso alveolar no Grupo DPT-HD100.

No que se refere aos mecanismos diretamente envolvidos na reabsorção do osso alveolar é importante também considerar o papel da microbiota neste processo. No presente estudo, foram observadas diferenças marcantes na composição microbiana dos grupos DPT e DPT-HD100. O reconhecimento de que o sistema imunológico e a microbiota são críticos para a homeostase óssea permitiu a evolução do campo da osteoimunologia para a
"osteomicrobiologia". Este termo, introduzido por Ohlsson et al. (2014), refere-se ao papel da microbiota na saúde óssea e aos mecanismos pelos quais a microbiota regula o desenvolvimento esquelético pós-natal, envelhecimento ósseo e perda óssea patológica (HSU & PACIFICI, 2017). A noção de que a microbiota intestinal desempenha um papel crítico no crescimento ósseo é reforçada por estudos envolvendo o uso de antibióticos em camundongos (CHO et al., 2012; COX et al., 2014; WILLIAMS et al., 1996; YAN et al., 2016; NOBEL et al., 2015). Estes estudos demonstraram claramente que o tratamento com antibiótico influencia a massa óssea. Como os antibióticos diminuem o número de bactérias e/ou alteram a diversidade da taxa microbiana dentro do lúmen intestinal, pode inferir-se que a carga bacteriana e a diversidade dentro do intestino são variáveis contribuintes significativas para os mecanismos pelos quais a microbiota intestinal regula a massa óssea (HSU & PACIFICI, 2017). Mecanismos análogos àqueles que ocorrem no ambiente intestinal estão presentes também no ambiente bucal. O estado inflamatório controlado e dirigido por bactérias comensais nos tecidos periodontais clinicamente saudáveis é muito semelhante àquele encontrado no intestino (CEBRA 1999; CHADWICK & ANDERSON 1992; DARVEAU 2010).

O presente estudo forneceu uma prova de conceito de que as BALOs apresentam potencial terapêutico no tratamento da periodontite. É importante que futuras investigações avaliem o período de tempo que B. bacteriovorus HD100 permanece na cavidade bucal após a descontinuação da terapia. Além disso, são necessários mais estudos para avaliar outros modos de aplicação e diferentes regimes terapêuticos. Novos estudos envolvendo técnicas de sequenciamento de DNA metagenômico e análise de transcriptoma serão úteis para avaliar o impacto de predadores biológicos no ecossistema bucal e na resposta imune inata e adaptativa do hospedeiro.
7. CONCLUSÃO
O uso tópico de *B. bacteriovorus* HD100 modifica os parâmetros imunoinflamatórios e microbiológicos, promovendo um efeito protetor contra a perda óssea alveolar e perda de inserção do tecido conjuntivo em ratos com periodontite experimental.
REFERÊNCIAS BIBLIOGRÁFICAS
1. AAS, J. A. et al. Defining the normal bacterial flora of the oral cavity. *J clin microbiol*, v.43, n.11, p.5721-5732, 2005.

2. ABUSLEME, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. *The ISME J*, v.7, n.5, p.1016, 2013.

3. ABUSLEME, L.; MOUTSOPULOS, N. M. IL-17: overview and role in oral immunity and microbiome. *Oral diseases*, v.23, n.7, p.854-865, 2017.

4. ADRIAENS P.A.; DE BOEVER J.A., LOESCHE W.J. Bacterial invasion in root cementum and radicular dentin of periodontally diseased teeth in humans. A reservoir of periodontopathic bacteria. *J Periodontol*, v.59, p.222–230, 1988.

5. ALEXANDER M. Why microbial predators and parasites do not eliminate their prey and hosts. *Ann Rev Microbiol*. v.35, p.113–133, 1981.

6. ALLAKER et al. Novel anti-microbial therapies for dental plaque-related diseases.” *Inter j antimicrobial agents*. V.33, n.1, p.8-13, 2009.

7. ANDRIAN, et al. Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. *J Cell Physiol*, v.211, p.56-62, 2007.

8. ANTONOPoulos D.A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. *Infect Immun*, v.77, p.2367–2375, 2009.

9. ARBOLEYA S. et al. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. *J Pediatr*, v.166, n.538–544, 2015.

10. ARUNI, A. et al. The biofilm community: rebels with a cause. *Curr Oral Heal Rep*, v.2, n.1, p.48-56, 2015.

11. ASAI, T. JINNO, T. OGAWA. Oral treponemes and their outer membrane extracts activate human gingival epithelial cells through toll-like receptor 2. *Infect Immun*, v.71, p.717-725, 2003.

12. ATTERBURY et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. *App Environ microbial*, v.77, p.16 p.5794-5803, 2011.

13. BARBOSA T.M.; LEVY S.B. The impact of antibiotic use on resistance development and persistence. *Drug Resist Updat*, v.3, p.303–311, 2000.

14. BECERIK, S. et al. Toll like receptor 4 and membrane-bound CD14 expressions in gingivitis, periodontitis and CsA-induced gingival overgrowth. *Arch oral biol*, v.56, n.5, p.456-465, 2011.

15. BEKLEN, A., SORSA, T., & KONTTINEN, Y. T. Toll-like receptors 2 and 5 in human gingival epithelial cells co-operate with T-cell cytokine interleukin-17. *Mol Oral Microbiol*, v.24, n.1, p.38-42, 2009.

16. BELDA-FERRE P, et al. The oral metagenome in health and disease. *The ISME J*, v.6, n.1, p.46-56, 2012.

17. BELKAID Y; CHEN W. Regulatory ripples. *Nat Immunol*, v.11, p.1077–78, 2010.
18. BERGLUNDH T, LILJENBERG B, LINDHE J. Some cytokine profiles of T-helper cells in lesions of advanced periodontitis. J Clin Periodontol, v.29, p. 705–709, 2002.

19. BEUTLER, B., et al. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol, v.74, p.479–485, 2003.

20. BIZZARRO, S., et al. Microbial profiles at baseline and not the use of antibiotics determine the clinical outcome of the treatment of chronic periodontitis. Scientific reports, v.6, p.20205, 2016.

21. BOILEAU, et al. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res, v.77, n.9, p.1017-1028, 2016.

22. BOYLE, W. J., SIMONET, W. S., LACEY, D. L. Osteoclast differentiation and activation. Nature, v.423, p.337–342, 2003.

23. BRANCATISANO FL, et al. Reduced human beta defensin 3 in individuals with periodontal disease. J Dent Res, v.90, p.241-245, 2011.

24. BURNHAM JC, COLLART SA, HIGHISON BW. Entrapment and lysis of the cyanobacterium phormidium-luridum by aqueous colonies of myxococcus-Xanthus Pco2. Arch. Microbiol, v.129, p.285-294, 1981.

25. CAO et al. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J invert path, v.130, p.13-20, 2015.

26. CASTILLO, N. A., PERDIGÓN, G., DE LEBLANC, A. D. M. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC microbiol, v.11, n.1, p.177, 2011.

27. CEBRA, J. J. Influences of microbiota on intestinal immune system development. Am J Clin Nutr, v.69, p.1046–1051, 1999.

28. CHADWICK, V. S., ANDERSON, R. P. in Inflammatory Bowel Disease (eds MacDermott, R. P. & Stenson, W. F.) 241–258 (Elsevier Science, Amsterdam, 1992).

29. Champagne, Catherine ME, et al. "Potential for gingival crevice fluid measures as predictors of risk for periodontal diseases." Periodontology 2000 31.1 (2003): 167-180.

30. CHITPRASERT, P., SUDSAI, P., RODKLONGTAN, A. Aluminum carboxymethyl cellulose–rice bran microcapsules: Enhancing survival of Lactobacillus reuteri KUB-AC5. Carbohydrate polymers, v.90, n.1, p.78-86, 2012.

31. CHO I, Y et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, v.488, p.621–626, 2012.

32. CHUNG, W. O., et al. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des, v.13, p.3073–3083, 2007.

33. COBB CM, et al. Comparison of NK-cell (Leu-7+ and Leu-11b+) populations in clinically healthy gingiva, chronic gingivitis and chronic adult periodontitis. J Periodontal Res, v.24, p.1–7, 1989.

34. COCHRAN, D. L. Inflammation and bone loss in periodontal disease. J Periodontol, v.79, p.1569–1576, 2008.
35. COX LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, v.158, p.705–721, 2014.

36. CUI D, et al. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol immunol, v.91, p.65-74, 2017.

37. CURTIS MA, ZENOBIA C, DARVEAU RP. The relationship of the oral microbiota to periodontal health and disease. Cell host & microbe, v.10, n.4, p.302-306, 2011.

38. D’COSTA VM, et al. Sampling the antibiotic resistome. Science, v.311, p.374–377, 2006.

39. DARVEAU RP, et al. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun, v.66, p.1660–1665 1998.

40. DARVEAU RP, TANNER A, PAGE RC. The microbial challenge in periodontitis. Periodontol 2000, v.14, p.12–32, 1997.

41. DARVEAU RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. v.8, n.7, p.481-90 2010.

42. DASHIFF A, DE KADOURI. "Predation of oral pathogens by Bdellovibrio bacteriovorus 109J." Molecular oral microbiology26.1 (2011): 19-34.

43. DAVIDOV et al. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol, v.8, n.9, p.1667-1673, 2006.

44. DEVINE DA, MARSH PD, MEADE J. Modulation of host responses by oral commensal bacteria. J oral microbiol, v.7, n.1, p.26941, 2015.

45. DEWHIRST FE, et al. The BRANCATISANO FL, et al. Reduced human beta defensin 3 in individuals with periodontal disease. J Dent Res, v.90, p.241-245, 2011.

46. DIXON DR, BAINBRIDGE B, DARVEAU RP. Modulation of the innate immune response within the periodontium. Periodontol 2000, v.35, p.53–74, 2004.

47. DRISKO CH, LEWIS LH. Ultrasonic instruments and antimicrobial agents in supportive periodontal treatment and treatment of recurrent or refractory periodontitis. Periodontol 2000, v.12, p.90–115, 1996.

48. DUARTE PM, et al. Expression of Immune-Inflammatory Markers in Sites of Chronic Periodontitis in Patients With Type 2 Diabetes. J periodontol, v.83, n.4, p.426-434, 2012.

49. DUNSCHE A, et al. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci, v.110, p.121–4, 2002.

50. DWIDAR M, MONNAPPA AK, MITCHELL RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep, v.2012;45(2):71-8.

51. ELLEN RP, MCCULLOCH CAG. Evidence versus empiricism: rational use of systemic antimicrobial agents fortreatment of periodontitis. Periodontol 2000, v.10, p.29–44, 1996.

52. ESKAN MA, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol, v.13, p.465–473, 2012.
53. FENG, et al. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. *Environ Microbiol*, v.18, n.11, p.3923-3931, 2016.

54. FERES M, et al. Systemic antibiotics in the treatment of periodontitis. *Periodontol 2000*, v.67, p.131–186, 2015.

55. FOUHY F, et al. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. *Gut Microbes*, v.3, p.203–220, 2012.

56. FRATAMICO PM, COOKE PH. Isolation of Bdellovibrios that prey on Escherichia coli O157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. *J Food Safety*, v.16, p.161-173, 1996.

57. FRATAMICO PM, WHITING RC. Ability of *Bdellovibrio bacteriovorus* 109j to Lyse Gram-Negative Food-Borne Pathogenic and Spoilage Bacteria. *J Food Protect*, v.58, p.160-164, 1995.

58. FUJIHASHI K, et al. Type 1/type 2 cytokine production by CD4+ T cells in adult periodontitis. *J Dent Res*, v.73, p.204, 1994.

59. FUJITA S, et al. Distribution of natural killer cells in periodontal diseases: an immunohistochemical study. *J Periodontol*, v.63, p.686–689, 1992.

60. FUSCO A, et al. Beta-Defensin-2 and Beta-Defensin-3 Reduce Intestinal Damage Caused by Salmonella typhimurium Modulating the Expression of Cytokines and Enhancing the Probiotic Activity of Enterococcus faecium. *J Immunol Res*, 2017.

61. GAFFEN SL, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. *Nat Rev Immunol*, v.14, p.585–600, 2014.

62. GARLET GP, SFEIR CS, LITTLE SR. Restoring host-microbe homeostasis via selective chemoattraction of Tregs. *J Dent Res*, v.93, p.834–39, 2014.

63. GARLET GP. Destructive and protective roles of cytokines in periodontitis: host defence and tissue destruction viewpoints. *J Dent Res*, v.89, p.1349–63, 2010.

64. GEMMELL E, et al. Cytokine profiles of lesional and splenic T cells in *Porphyromonas gingivalis* infection in a murine model. *J Periodontol*, v.69, p.1131–1138, 1998.

65. GEMMELL E, et al. Genetic dependence of the specific T cell cytokine response to *P. gingivalis* in mice. *J Periodontol*, v.73, p.591–596, 2002.

66. GEMMELL E, GRIECEO DA, SEYMOUR GJ. The proportion of IL-4, IFN-gamma and IL-10 positive cells in *P. gingivalis*-specific T cell lines established from *P. gingivalis*-positive subjects. *Oral Microbiol Immunol*, v.14, p.267–274, 1999.

67. GEMMELL E, YAMAZAKI K, SEYMOUR GJ. The role of T cells in periodontal disease: homeostasis and autoimmunity. *Periodontol 2000*. v.43, p.14-40, 2007.

68. GIANNELLI, MARCO, et al. Treatment of severe periodontitis with a laser and light-emitting diode (LED) procedure adjuticative to scaling and root planing: a double-blind, randomized, single-center, split-mouth clinical trial investigating its efficacy and patient-reported outcomes at 1 year. *Lasers in medical science*, p.1-12, 2018.
69. GIBBONS, RJ & VAN HOUTE, J. Selective bacterial adherence to oral epithelial surfaces and its role as an ecological determinant. *Infection and immunity*, v.3, n.4, p.567-573, 1971.

70. GIBSON MK, CROFTS TS, DANTAS G. Antibiotics and the developing infant gut microbiota and resistome. *Curr Opin Microbiol*, v.27, p.51–56, 2015.

71. GILLINGS MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. *Front Microbiol*, v.4, p.4, 2013.

72. GILMOUR J, LAVENDER P. Control of IL-4 expression in T helper 1 and 2 cells. *Immunology*, v.124, p.437–444, 2008.

73. GORDON HA, PESTI L. The gnotobiotic animal as a tool in the study of host microbial relationships. *Bacteriol Rev*, v.35, n.4, p.390-429, 1971.

74. GRIFFEN, ANN L., et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. *The ISME journal*, v.6, n.6, p.1176, 2012.

75. GUERRERO R, PEDROSALIO C, et al. Predatory prokaryotes - predation and primary consumption evolved in bacteria. *Proc Natl Acad Sci U.S.A*, v.83, p.2138-2142, 1986.

76. GUPTA, SHILPI, et al. Effect of predatory bacteria on human cell lines. *PLoS One*, v.11, n.8, e0161242, 2016.

77. GURSOY UK, KÖNÖNEN E. Understanding the roles of gingival beta-defensins. *J Oral Microbiol*, v.4, n.10, p.3402 2012. doi:10.3402/jom.v4i10.15127.

78. H.K. LEE, A. IWASAKI. Innate control of adaptive immunity: dendritic cells and beyond *Semin Immunol*, v.19, p.48-55, 2007.

79. HAJISHENGALLIS G, DARVEAU, RP & CURTIS MA. The keystone-pathogen hypothesis. *Nat Rev Microbiol*, v.10, n.10, p.717, 2012.

80. HAJISHENGALLIS, GEORGE, AND RICHARD J. LAMONT. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. *Mol oral microbiol*, v.27, n.6, p.409-419, 2012.

81. HARINI K, VIDYA A, AND SHRUTHI H. Bdellovibrio bacteriovorus : A future antimicrobial agent? *J Indian S Periodontol*, v.17, n.6, p.823-825, 2013.

82. HASEGAWA, Y. et al. Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species. *Infect. Immun.*, v.75, p.2540–2547, 2007.

83. HAUkIOJA, A., YLI-KNUUTTILA, H., LOIMARANTA, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. *Mol Oral Microbiol*, v.21, n.5, p.326-332, 2006.

84. HERNANDEZ-SANTOS N, GAFFEN SL. Th17 cells in immunity to Candida albicans. *Cell Host Microbe*, v.11, p.425–435, 2012.

85. Hooper LV, et al. Molecular analysis of commensal host-microbial relationships in the intestine. *Science*, v.291, n.5505, p.881-4, 2001.

86. HOOPER LV. Bacterial contributions to mammalian gut development. *Trends Microbiol*, v.12, n.3, p.129-34, 2004 Mar.
87. HSU E, PACIFICI R. From Osteoimmunology to Osteomicrobiology: How the Microbiota and the Immune System Regulate Bone. *Calcif Tissue Int.* 2017 Oct 10. doi: 10.1007/s00223-017-0321-0.

88. HUANG, G. T. et al. Differential regulation of cytokine genes in gingival epithelial cells challenged by *Fusobacterium nucleatum* and *Porphyromonas gingivalis*. *Microbiol Pathog.* v.37, p.303–312, 2004.

89. HUMAN ORAL MICROBIOME. *J Bacteriol.* v.192, n.19, p.5002-5017, 2010.

90. HUOVINEN P. Bacteriotherapy: the time has come: Bacterial interference is an increasingly attractive approach to prevention and therapy. *BMJ: British Medical Journal.* v.323, n.7309, p.353-354, 2001.

91. JEWETT, A., et al. Induction of apoptotic cell death in peripheral blood mononuclear and polymorphonuclear cells by an oral bacterium, *Fusobacterium nucleatum*. *Infection and immunity*, v.68, n.4, p.1893-1898, 2000.

92. JOSEFOWICZ SZ, LU LF, RUDENSKY AY. Regulatory T cells: mechanisms of differentiation and function. *Annu Rev Immunol.* v.30, p.531–64, 2012.

93. JURKEVITCH E. Isolation and classification of Bdellovibrio and like organisms. *Current protocols in microbiology*. 2006 Jan:7B-1.

94. KAMMA, J., et al. Cytokines in gingival crevicular fluid of adolescents and young adults. *Oral Microbiol. Immunol.* V.24, p.7–10, 2009.

95. KARATZAS S, NOVAK MJ, BLIEDEN TM. Cytokine production by *Porphyromonas gingivalis*-specific human T cells. *J Dent Res*, v.75, p.322, 1996 (abstract no. 2435).

96. KASSEBAUM, N. J., et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. *J Dent Res*, v.96, n.4, p.380-387, 2017.

97. KEYA SO, & ALEXANDER M. Regulation of parasitism by host density: the Bdellovibrio–*Rhizobium* interrelationship. *Soil Biol Biochem.*, v.7, p.231–237, 1975.

98. KHADER SA, GAFFEN S, KOLLS JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. *Mucosal Immunol.* V.2, p.403–411, 2009.

99. KILIAN M, et al. The oral microbiome - an update for oral healthcare professionals. *Br Dent J*, v.221, n.10, p.657-666, 2016.

100. KOHLGRAF, KARL G., et al. Defensins attenuate cytokine responses yet enhance antibody responses to *Porphyromonas gingivalis* adhesins in mice. *Future microbiology*, v.5, n.1, p.115-125, 2010.

101. KOLENBRANDER PE. Oral microbial communities: biofilms, interactions, and genetic systems. *Annu Rev Microbiol*, v.54, p.413-37, 2000.

102. KOLENBRANDER, P. E. *et al.* Bacterial interactions and successions during plaque development. *Periodontol 2000*, v.42, p.47–79, 2006.
103. KOPP W. Density and localization of lymphocytes with natural-killer (NK) cell activity in periodontal biopsy specimens from patients with severe periodontitis. *J Clin Periodontol*, v.15, p.595–600, 1988.

104. KRISANAPRAKORNKIT, S. et al. Inducible expression of human β-defensin 2 by *Fusobacterium nucleatum* in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. *Infect Immun*, v.68, p.2907–2915, 2000.

105. KUMAR, P. S., & MASON, M. R. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?. *Front cell and infection microbiol*, v.5, p.35, 2015.

106. KUMAR, PURNIMA S., et al. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. *Journal of clinical microbiology*, v.44, n.10, p.3665-3673, 2006.

107. KUULA H, SALO T, PIRILAÆ, et al. Human beta-defensin-1 and matrix metalloproteinase-25 and -26 expression in chronic and aggressive periodontitis and peri-implantitis. *Arch Oral Biol*, v.53, p.175-186, 2008.

108. LANGDON, AMY, NATHAN CROOK, AND GAUTAM DANTAS. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. *Genome medicine*, v.8, n.1, p.39, 2016.

109. LEVY, DG, STERGACHIS, A, MCFARLAND, LV, et al. Antibiotics and *Clostridium difficile* diarrhea in the ambulatory care setting. *Clin Ther*, v.22, p.91–102, 2000.

110. LEY RE, HAMADY M, LOZUPONE C, et al. Evolution of mammals and their gut microbes. *Science*, v.320, n.5883, p.1647-1651, 2008.

111. LI, J-P., et al. Differential expression of Toll-like receptor 4 in healthy and diseased human gingiva. *Journal of periodontal research*, v.49, n.6, p.845-854, 2014.

112. LIANG SC, TAN XY, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. *J Exp Med*, v.203, p.2271–2279, 2006.

113. LIU J, CHEN J, DU X, HU L, CHEN L. The expression of hBDs in the gingival tissue and keratinocytes from healthy subjects and periodontitis patients. *Arch Oral Biol*, v.59, p.193-198, 2014.

114. LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods*, v.25, n.4, p.402-8, 2001.

115. LIVANOS AE, GREINER TU, VANGAY P et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. *Nat Microbiol*, v.1, p.16140, 2016.

116. LOOZEN, GITTE, et al. Effect of *Bdellovibrio bacteriovorus* HD100 on multispecies oral communities. *Anaerobe*, v.35, p.45-53, 2015.

117. LU, Q., SAMARANAYAKE, L. P., DARVEAU, R. P. & JIN, L. Expression of human β-defensin-3 in gingival epithelia. *J Periodont Res*, v.40, p.474–481, 2005.

118. LUCAS, V. S., BEIGHTON D & ROBERTS, G J. Composition of the oral streptococcal flora in healthy children. *Journal of dentistry*, v.28, n.1, p.45-50, 2000.
119. MACPHERSON AJ, HARRIS NL. Interactions between commensal intestinal bacteria and the immune system. *Nat Rev Immunol* v.4, n.6, p.478-85, 2004 Jun.

120. MARTIN MO. Predatory prokaryotes: An emerging research opportunity. *J Mol Microb Biotechnol* v.4, p.467-477, 2002.

121. MARTINS, SÉRGIO HL, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: A randomized controlled clinical trial. *J clin periodontol*, 2017. https://doi.org/10.1111/jcpe.12744

122. MCFARLAND, LV. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. *Dig Dis* v.16, p.292–307, 1998.

123. MCFARLAND, LV. Normal flora: Diversity and functions. *Microb Ecol Health Dis*, v.12, p.193–207, 2000.

124. MCFARLAND, LYNNE V. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. *The American journal of gastroenterology*, v.101, n.4, p.812, 2006.

125. MDALA, IBRAHIMU, et al. Multilevel analysis of bacterial counts from chronic periodontitis after root planing/scaling, surgery, and systemic and local antibiotics: 2-year results. *Journal of oral microbiology*, v.5, n.1, p.20939, 2013.

126. MEDINA AA & KADOURI DE. Biofilm formation of Bdellovibrio bacteriovorus host-independent derivatives. *Res Microbiol*, v.8, p.33, 2009.

127. MIOSSEC P, KOLLS JK. Targeting IL-17 and TH17 cells in chronic inflammation. *Nat Rev Drug Discov*, v.11, p.763–776, 2012.

128. MOMBELLI A, CIONCA N, ALMAGHLOUTH A. Does adjunctive antimicrobial therapy reduce the perceived need for peri-odontal surgery? *Periodontol 2000*, v.55, p.205–216, 2011.

129. MOMBELLI, ANDREA, et al. Persistence patterns of Porphyromonas gingivalis, Prevotella intermedia/nigrescens, and Actinobacillus actinomycetemcomitans after mechanical therapy of periodontal disease. *J periodontol*, v.71, n.1, p.14–21, 2000.

130. MOMBELLI, ANDREA. "Microbial colonization of the periodontal pocket and its significance for periodontal therapy." *Periodontol 2000*, V.76, n.1, P.85-96, 2018.

131. MURPHY KM, O et al. Signaling and transcription in T helper development. *Annu Rev Immunol*, v.18, p.451–494, 2000.

132. NAGASAWA, T. *et al*. Roles of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin in periodontal health and disease. *Periodontol 2000*, v.43, p.65–84, 2007.

133. NISTALA, K. *et al*. T-cell antigen specificity in humans following stimulation with *Porphyromonas gingivalis*. *Arch Oral Biol*, v.44, p.1045–1053, 1999.

134. NISTALA, K, et al. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. *Proc Natl Acad Sci USA*, v.107, p.14751–14756, 2010.

135. NIYONSABA, F., et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. *Journal of Investigative Dermatology*, v.127, n.3, p.594-604, 2007.
136. NOBEL YR, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. *Nat Commun*, v.6, p.7486, 2015.

137. NOGACKA, et al. Early microbiota, antibiotics and health. *Cellular and Molecular Life Sciences*, v.75, n.1, p.83-91, 2018.

138. NURMI E, RANTALA M. New aspects of Salmonella infection in broiler production. *Nature*, v.241, p.210–211, 1973.

139. OHLSSON C, SJOGREN K. Effects of the gut microbiota on bone mass. *Trends Endocrinol Metab*, v.26, p.69–74, 2014.

140. OLIVEIRA LF, et al. Benefits of *Bifidobacterium animalis* subsp. *lactis* Probiotic in Experimental Periodontitis. *J periodontol*, v.88, n.2, p.197-208, 2017.

141. OLIVEIRA, LFF. Uso tópico de probiótico *Bifidobacterium animalis* subsp. *lactis* HN019 reduz as sequelas teciduais decorrente da periodontite experimental em ratos: estudo microbiológico, histomorfométrico, imunológico e microtomográfico. *Dissertação de mestrand*o. Faculdade de Odontologia de Ribeirão Preto. Universidade de São Paulo. 2016.

142. O’NEILL, L. A. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. *Immunol Rev*, v.226, p.10–18, 2008.

143. OZAKI, Y., et al. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. *PloS one*, v.12, n.9, e0184904, 2017.

144. PAGE, R. C. & KORNMAN, K. S. The pathogenesis of human periodontitis: an introduction. *Periodontol 2000*, v.14, p.9–11, 1997.

145. PASTER BJ, et al. Prevalent bacterial species and novel phylotypes in advanced noma lesions. *J Clin Microbiol*, v.40, p.2187-2191, 2012.

146. PERIASAMY, S., & KOLENBRANDER, P. E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. *Journal of bacteriology*, v.191, n.22, p.6804-6811, 2009.

147. PEYRET-LACOMBE, A., et al. TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. *Cytokine*, v.46, n.2, p.201-210, 2009.

148. PRABHU A, Michalowicz BS, Mathur A. Detection of local and systemic cytokines in adult periodontitis. *J Periodontol*, v.67, p.515–522, 1996.

149. R. MAHANONDA, S. PICHYANGKUL. Toll-like receptors and their role in periodontal health and disease. *Periodontol 2000*, v.43, p.41-55, 2007.

150. RAM SABARISH, et al. Natural T Regulatory Cells (n Treg) in the Peripheral Blood of Healthy Subjects and Subjects with Chronic Periodontitis – A Pilot Study. *J Clin Diagn Res*, v.10, n.3, p.ZC36–ZC39, 2016.

151. REINHERZ EL, SCHLOSSMAN SF. The differentiation and function of human T lymphocytes. *Cell*, v.19, p.821–827, 1980.

152. REINHERZ EL. A molecular basis for thymic selection: regulation of T11 induced thymocyte expansion by the T3-Ti antigen/MHC receptor pathway. *Immunol Today*, v.6: p.75–79, 1985.
153. RICKARD, A. H., et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms. *Trends in microbiology*, v.11, n.2, p.94-100, 2003.

154. ROBERTS FA, DARVEAU RP. Microbial Protection and Virulence in Periodontal Tissue as a Function of Polymicrobial Communities: Symbiosis and Dysbiosis. *Periodontology 2000*, v.69, n.1, p.18-27, 2015.

155. ROGOSKY AM, MOAK PL, EMMERT EA. Differential predation by Bdellovibrio bacteriovorus 109J. *Curr Microbiol*, v.52, p.81–85, 2006.

156. ROSIER, B. T., P. D. MARSH, AND A. MIRA. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. *Journal of dental research*, e0022034517742139, 2017.

157. ROSS, K. F., RONSON, C. W., & TAGG, J. R. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. *Applied and environmental microbiology*, v.59, n.7, p.2014-2021, 1993.

158. RUBY EG & RITTENBERG SC. Differentiation after premature release of intraperiplasmically growing Bdellovibrio bacteriovorus. *J Bacteriol*, v.154, p.32-40, 1983.

159. RUSSELL SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. *Gut Microbes*, v.4, p.158–164, 2013.

160. SCHERES, N., Laine, M. L., Sipos, P. M., Bosch-Tijhof, C. J., Crielaard, W., De Vries, T. J., & Everts, V. Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis. *Journal of periodontal research*, v.46, n.4, p.407-416, 2011.

161. SCHERFF RH. Control of Bacterial Blight of Soybean by Bdellovibrio-bacteriovorus. *Phytopathology*, v.63, p.400-402, 1973.

162. SCHUSTER, S. C., et al. A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. *Science*, v.303, n.689-692, 2004.

163. SCHWUDKE, DOMINIK, et al. "The Obligate Predatory Bdellovibrio bacteriovorus Possesses a Neutral Lipid A Containing α-D-Mannoses That Replace Phosphate Residues similarities and differences between the lipid α and the lipopolysaccharides of the wild type strain B.bacteriovorus hd100 and its host-independent derivative hi100." *J Biol Chem*, v.278, n.30, p.27502-12, 2003.

164. SHATZKES K, et al. Examining the efficacy of intravenous administration of predatory bacteria in rats. *Scientific Reports*, v.7, p.1864, 2017a.

165. SHATZKES K, Singleton E, Tang C, et al. Predatory Bacteria Attenuate Klebsiella pneumoniae Burden in Rat Lungs. *mBio*, v.7, n.6, e01847-16, 2016.

166. SHATZKES, K et al. Effect of predatory bacteria on the gut bacterial microbiota in rats. *Scientific Reports*, v.7, p.43483, 2017b.

167. SHATZKES, K et al. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. *Scientific reports*, v.5, srep12899, 2015.
168. SHEIKHI, M., GUSTAFSSON, A., & JARSTRAND, C. Cytokine, elastase and oxygen radical release by Fusobacterium nucleatum-activated leukocytes: a possible pathogenic factor in periodontitis. *J clin periodontol*, v.27, n.10, p.758-762, 2000.

169. SHEMESH, YAIR, AND EDOUARD JURKEVITCH. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. *Environmental Microbiology*, v.6, n.1, p.12-18, 2004.

170. SILVA N, et al. Host response mechanisms in periodontal diseases. *J Appl Oral Sci*, 23:329–355, 2015.

171. SIMPSON FG. Physiology of the Bdellovibrios. *Adv Microbiol Physiol*, v.8, p.215-261, 1972.

172. SNYDER AR, Williams HN, Baer ML, Walker KE, Stine OC. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. *Int J Syst Evol Microbiol*, v.52, p.2089-2094, 2002.

173. SOCKETT RE, LAMBERT C. Bdellovibrio as therapeutic agents: a predatory renaissance? *Nat Rev Microbiol*: v.2, p.669-675, 2004.

174. SOCKETT RE. Predatory Lifestyle of *Bdellovibrio bacteriovorus*. *Annual Review of Microbiology*, v.63, n.1, p.523-539, 2009.

175. SOCRANSKY, S. S. AND HAFFAJEE, A. D. Periodontal microbial ecology. *Periodontology 2000*, v.38, p.135–187, 2005.

176. SOCRANSKY, S. S., et al. Checkerboard DNA-DNA hybridization. *Biotechniques*, v.17, n.4, p.788-792, 1994.

177. SOCRANSKY, S. S., HAFFAJEE, A. D., & DZINK, J. L. Relationship of subgingival microbial complexes to clinical features at the sampled sites. *Journal of clinical periodontology*, v.15, n.7, p.440-444, 1988.

178. SONG GG et al. Toll-like receptor (TLR) and matrix metalloproteinase (MMP) polymorphisms and periodontitis susceptibility: a meta-analysis. *Molecular biology reports*, v.40, n.8, p.5129-5141, 2013.

179. SONG X, et al. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. *Cell Mol Immunol*, v.13, p.418–431, 2016.

180. STARR MP AND SEIDLER RJ. The bdellovibrios. *Annu Rev Microbiol*, v.25, p.649–78, 1971.

181. STELIN S, et al. Immunohistological analysis of CD1a langerhans cells and CD57 natural killer cells in healthy and diseased human gingival tissue: a comparative study. *J Indian Soc Periodontol*, 2009: 13: 150–154.

182. STOLP H, STARR MP. Bdellovibrio bacteriovorus gen. etsp.n., a predatory, ectoparasitic, and bacteriolytic microorganism. *Antonie Van Leeuwenhoek*, v.29, p.217-48, 1963.

183. SUGAWARA, et al. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. *J Dental Res*, v.85, p.524-529, 2006.

184. TAGGART CC, et al. Inactivation of human β-defensins 2 and 3 by elastolytic cathepsins. *J Immunol*, v.171, p.931–7, 2003.
Referências Bibliográficas

185. TANAKA S, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. *FEMS Immunol Med Microbiol*, v.56, p.80–87, 2009.

186. TONETTI, M. S. et al. Localized expression of mRNA for phagocyte-specific hemotactic cytokines in human periodontal infections. *Infect Immun*, v.62, p.4005–4014, 1994.

187. TOPRAK E et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug stress. *Nat Genet*, v.44, p.101–105, 2011.

188. TRIBBLE GD, LAMONT RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. *Periodontol 2000*, v.52, p.68–83, 2010.

189. UEHARA, Y et al. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. *Cellular Microbiol*, v.7, p.675-686, 2005.

190. UITTO, V. J., et al. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. *Infection and immunity*, v.73, n.2, p.1171-1179, 2005.

191. UMESAKI Y, SETOYAMA H. Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. *Microbes Infect*, v.2, n.11, p.1343-51, 2000.

192. VADEBONCOEUR, C., & PELLETIER, M. The phosphoenolpyruvate: sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. *FEMS microbiology reviews*, v.19, n.3, p.187-207, 1997.

193. VAN DYKE, T. E. The management of inflammation in periodontal disease. *J Periodontol*, v.79, p.1601–1608, 2008.

194. VAN ESSCHE, MARK, et al. Bdellovibrio bacteriovorus attacks Aggregatibacter actinomycetemcomitans. *Journal of dental research*, v.88, n.2, p.182-186, 2009.

195. VARON M & ZEIGLER B. Bacterial predator–prey interaction at low prey density. *Appl Environ Microbiol*, v.36, p.11–17, 1978.

196. WASSENAAR A, et al. Cloning, characterization, and antigen specificity of T-lymphocyte subsets extracted from gingival tissue of chronic adult periodontitis patients. *Infect Immun*, v.63, p.2147–2153, 1995.

197. WASSENAAR A, et al. Type-1 and type-2 CD8+ T-cell subsets isolated from chronic adult periodontitis tissue differ in surface phenotype and biological functions. *Immunology*, v.87, p.113–118, 1996.

198. WILENSKY, A., CHAUSHU, S., & SHAPIRA, L. The role of natural killer cells in periodontitis. *Periodontology 2000*, v.69, n.1, p.128-141, 2015.

199. WILKINSON MHF. Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems. *J Theor Biol*, v.208, p.27–36, 2001.

200. WILLIAMS S, et al. Minocycline prevents the decrease in bone mineral density and trabecular bone in ovariectomized aged rats. *Bone*, v.19, p.637–644, 1996.

201. WILLIS, ALEXANDRA R., et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. *Current Biology*, v.26, n.24, p.3343-3351, 2016.
202. WYNNE SE, et al. In situ demonstration of natural killer (NK) cells in human gingival tissue. *J Periodontol*, v.57, p.699–702, 1986.

203. XU J, GORDON JI. Honor thy symbionts. *Proc Natl Acad Sci U S A*, v.100, n.18, p.10452-9, 2003 Sep 2.

204. YAMAMOTO M, et al. Molecular and cellular mechanisms for periodontal diseases: role of T helper type 1 and Th2 type cytokines in induction of mucosal inflammation. *J Periodontal Res*, v.32, p.115–119, 1997.

205. YAN J, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. *Proc Natl Acad Sci USA*, v.113, p.E7554–E7563, 2016.

206. YIN L, et al. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. *BMC Immunol*, v.11, p.37, 2010.

207. YOKOYAMA WM, KIM S, FRENCH AR. The dynamic life of natural killer cells. *Annu Rev Immunol*, v.22, p.405–429, 2004.

208. YU JJ, et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. *Blood*, v.109, p.3794–3802, 2007.

209. ZENOBIA C, HAJISHENGALLIS G. Basic biology and role of interleukin-17 in immunity and inflammation. *Periodontology 2000*, v.69, n.1, p.142-159, 2015.

210. ZHANG, Y. H., et al. Tumor necrosis factor-α (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. *Journal of Biological Chemistry*, v.276, n.1, p.563-568, 2001.
ANEXOS
Anexo 1 - Certificado de aprovação do Comitê de Ética em Pesquisa

CERTIFICADO CEUA – FORP/USP

Certificamos que o Protocolo n° 2014.1.389.58.2 sobre a pesquisa intitulada “Efeitos da terapia com Bifidobacterium animalis subsp. Lactis HN019 e Bdellovibrios bacteriovoros HD100 na Periodontite experimental em ratos: estudo do perfil microbiológico, imunológico, histológico e genético da resposta do hospedeiro”, sob a responsabilidade do Prof. Dr. Michel Reis Messorra, está em acordo com os Princípios Éticos na Experimentação Animal adotados pela Comissão de Ética no Uso de Animais da Faculdade de Odontologia de Ribeirão Preto, USP, foi APROVADO em reunião da CEUA de 15/07/2014 (totalizando 128 animais).

We hereby certify that the protocol n° 2014.1.389.58.2 regarding the research entitled “Effects of Bifidobacterium animalis subsp. Lactis HN019 and Bdellovibrios bacteriovoros HD100 on the experimental periodontitis in rats: microbiological, immunological, histological and generic features of the host response”, under the responsibility of Prof. Dr. Michel Reis Messorra, is in accordance with the Ethical principles in animal research adopted by the Animal Research Ethics Committee of the School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil, and was approved in 15/07/2014 (totalizing 128 animals).

Ribeirão Preto, 25 de agosto de 2014.

Prof. Dra. Andiara De Rossi Dallegan
Coordenadora da CEUA – FORP/USP
CEUA - FORP/USP

Anexo 2- Artigo científico submetido para publicação no periódico Journal of Dental Research (JDR).
The impact of predatory bacteria on experimental periodontitis

Pedro H. F. Silva, DDS¹; Luiz F. F. Oliveira, DDS, MS¹; Renata S. Cardoso, DDS¹; Milla S. T. Ricoldi MS¹; Luciene C. Figueiredo, DDS, PhD²; Sérgio L. Salvador, Pharm.D, PhD³; Daniela B. Palioto, DDS, PhD¹; Flávia A. C. Furlaneto, DDS, PhD¹; Michel R. Messora, DDS, PhD¹

¹Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo – USP, Ribeirao Preto / SP, Brazil.
²Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil.
³Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil.

Corresponding author:
Michel R. Messora
Av. Café s/n Ribeirão Preto-SP 14020-150
Telephone number: +55 16 3315 4135 Fax number: +55 16 3315 4788
Email address: m.messora@forp.usp.br

Word count: 3.195
Total number of tables/figures: 5
Number of references: 40
Keywords: bacteriotherapy, periodontitis, rats, bone resorption.
ABSTRACT

The aim of study was evaluate effects of topical administration of *Bdellovibrio bacteriovorus* HD100 on experimental periodontitis (EP) in rats. Thirty-two rats were divided into groups C (control; without EP), EP (EP only), C-HD100 (control + *B. bacteriovorus*), and EP-HD100 (EP + *B. bacteriovorus*). On day 0 of the experiment, animals of groups EP and EP-HD100 received cotton ligatures around mandibular first molars (MFM). In groups C-HD100 and EP-HD100, 1 mL of suspensions containing *B. bacteriovorus* HD100 was topically administered in the subgingival region of MFMs on days 0, 3, and 7. In groups C and EP, topical administrations were performed using a sham suspension (without *B. bacteriovorus*). All animals were euthanized at day 14. Gingival tissue, hemimandibles, and oral biofilm were collected. Data were statistically analyzed (*P* <0.05). Group EP-HD100 presented lower bone porosity, trabecular separation, and connective tissue attachment loss (CTAL) as well as increased bone volume and trabecular number than Group EP (*P* <0.05). Group EP-HD100 presented greater proportions of *Actinomyces* and *Streptococcus*-like species and lower proportions of *Prevotella intermedia*, *Peptostreptococcus micros*, *Fusobacterium nucleatum*, *Fusobacterium polymorphum*, *Eikenella corrodens*, *Eubacterium nodatum*, *Campylobacter gracilis*, *Capnocytophaga sputigena* e *Veillonella parvula*-like species than group EP. Group EP-HD100 presented greater levels of osteoprotegerin and gene expression of IL-17, IL-10 and FOXP3 than group EP (*P* <0.05). Topical use of *B. bacteriovorus* HD100 modifies immunoinflammatory and microbiologic parameters promoting a protective effect against alveolar bone loss and CTAL in rats with EP.
INTRODUCTION

The number of people with untreated oral conditions on the planet increased from 2.5 billion in 1990 to 3.5 billion in 2015, with a 64% increase in DALYs (disability-adjusted life year). Further efforts and potentially different approaches are needed if the goal of oral health policies is to reduce the level of oral diseases and minimize their impact by 2020 (Kassebaum et al. 2017).

Among oral diseases, periodontal disease is still a highly prevalent condition in the world population and has a polymicrobial immunoinflammatory character (Darveau 2010; Kassebaum et al. 2017). The prevalence of severe forms of periodontitis practically doubled from 1990 to 2015 worldwide (Kassebaum et al. 2017).

Scaling and Root Planning (SRP) is the therapy of choice for most clinicians and is widely considered the "gold standard" for the treatment of periodontitis. Although SRP can reduce the number of periodontal pathogens, it is unable to achieve complete eradication, predisposing patients to recurrence of diseases and systemic bacterial spread (Mombelli et al. 2000). Thus, different antimicrobial protocols have been used as an adjuvant to better control the disease (Feres et al. 2015; Mombelli et al. 2011; Mombelli 2018).

In order to limit the use of antibiotics and avoid the harmful effects of repeated therapy and the promotion of bacterial resistance, new strategies to combat infections should be investigated, as bacteriotherapy. This therapy is characterized by the use of bacteria to displace pathogenic organisms (Huovinen 2001).

Bdellovibrio and Like-organisms (BALOs) are highly mobile proteobacteria that destroy other Gram-negative bacteria. BALOs are mandatory predators, since they need to capture macromolecules from their prey as a source of energy for multiplication. The
most studied strain is *Bdellovibrio bacteriovorus* HD100 (Van essche et al. 2009; Sockett and Lambert 2004).

Previous *in vitro* studies have demonstrated that BALOs has predatory capacity over oral pathogenic species presenting an antimicrobial profile (Van essche et al. 2009; Dashiff and Kadouri 2011; Loozen et al. 2015). *B. bacteriovorus* HD100 was able to eliminate *Fusobacterium nucleatum* and *Aggregatibacter actinomycetemcomitans* in *ex vivo* samples (saliva and subgengival biofilm) of patients with periodontitis, as well, promoted an increase in the concentrations of *Actinomyces naeslundii* and *Streptococcus mitis*, influencing the general biofilm ecology (Loozen et al. 2015). The results obtained must be validated in experimental models *in vivo*.

In vivo studies to date have evaluated the effects of BALOs in the treatment of infections in chickens, rats, cattle, zebrafish and white shrimps (Atterbury et al. 2011; Cao et al. 2015; Shatzkes et al. 2015; Boileau et al. 2016; Willis et al. 2016; Shatzkes et al. 2016; Shatzkes et al. 2017a). The effects of BALOs were also evaluated in the intestinal morphology and microbiota of healthy rats (Shatzkes et al. 2017b). All these studies have demonstrated the therapeutic safety of the use of BALOs.

There is no *in vivo* study investigated the action of BALOs on periodontitis. The purpose of this study was to evaluate the microbiological, histomorphometric, microtomographic and immunological outcomes following the administration of *B. bacteriovorus* HD100 in rats with experimental periodontitis (EP).

MATERIALS AND METHODS

Sample population and sample size calculation
This study was conducted after review and approval by the Ethics Committee on Animal Experimentation at School of Dentistry of Ribeirao Preto, University of Sao Paulo – FORP/USP (protocol 13.1.136.53.5). Authors followed the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

The ideal sample size to ensure 80% power in the statistical analysis of the data was calculated considering the differences of the means and standard deviations between the EP and C groups of the study by Oliveira et al. (2017), recognizing the 5% significant difference (δ) between the groups, 95% confidence interval (α = 0.05), standard deviation (σ) of 23%, changes in the Bone Volume (BV) mean as a primary variable and \([Z\alpha (1.96) + Z\beta (0.84)] = 7.84\). The calculation of the sample per group was based on the formula: \(n \geq \{2 [(\sigma)^2 / (\delta)^2]\} x (Z\alpha + Z\beta)^2\). The number required was 8 animals per experimental group.

Thirty-two adult male Wistar rats (Rattus norvegicus, albinus), weighing 230-250 g, were used (Central Animal Facility, FORP/USP). The rats were kept in a 12-hour light/dark cycle and temperatures between 22 and 24°C. They were housed in individual metabolic cages and fed with selected solid diet and water ad libitum. Rats were allocated to the following groups (n=8): Group Group C (rats without EP and not treated with B. bacteriovorus HD100); Group C-HD100 (rats without EP and treated with B. bacteriovorus HD100); Group EP (rats with EP and not treated with B. bacteriovorus HD100) and Group EP-HD100 (rats with EP and treated with B. bacteriovorus HD100). All analyzes were performed by calibrated and blinded examiners. Sham procedures (irrigation with carboxymethylcellulose alone) were performed in Groups C and EP.

Induction of EP
In groups EP-HD100 and EP, animals were anesthetized by an intraperitoneal injection of xylazine (Rompum®, Bayer Animal Health, Sao Paulo, SP, Brazil; 10 mg/kg body weight) and ketamine (Dopalen®, Agribands Purina do Brasil Ltda., Paulinia, SP, Brazil; 80 mg/kg body weight). A cotton ligature was placed around their right mandibular first molars, as previously described (Messora et al. 2013).

Preparation of Bacterial Cultures and Administration to the Animals

For *B. bacteriovorus* HD100 culture (ATCC® 15356, Virginia, USA) DNB medium (ATCC® Medium 1603, Virginia, USA) was used. In order to propagate *B. bacteriovorus* HD100, the host strain *Escherichia coli* ML 35 (ATCC® 43827, Virginia, USA), was previously cultured in the Luria Bertani medium (Oxoid, Thermo Scientific, Basingstoke, Hampshire, United Kingdom). The turbidity decline of the solution, indicating host cell lysis (E. coli ML35), was observed daily during the incubation period (6-10 days) following ATCC recommendations (Americam Type Culture Collection, Rockville, MD, USA). The observation of small, highly mobile curved *bacilli* under contrast microscopy phase indicated the presence of *B. bacteriovorus*. For separation of the remaining host cells (E. coli ML35), filtration was performed using filter membranes (1.2 and 0.45 μm pores). After centrifugation at 27,000 g for 20 minutes, the supernatant was discarded and the bacterial precipitate was suspended in HM medium (Hepes medium, Sigma-Aldrich, St. Louis, Missouri, USA) containing 25 mM HEPES (hydroxyethyl piperazineethanesulfonic acid), 3mM CaCl₂ and 2mM MgCl₂ (pH 7.6) (Jurkevitch, 2006). The suspension was made at an optical density (OD) of 600 nm adjusted to 1 [approximately 1 x 10⁹ colony forming units - (CFU) / ml] plus 2% carboxymethylcellulose (Chitprasert et al., 2012).
In groups C and C-HD100, topical applications occurred in the following periods: 7, 10 and 14 days after the start of the experiment. For topical administration, insulin syringe with needle without cutting edge was used. 100 μl of the suspension were used for subgingival irrigation of the mesial, distal, buccal and lingual surfaces of the mandibular first molars of the animals.

Euthanasia

Animals were euthanized with a lethal dose (150 mg/kg body weight) of sodium thiopental (Thiopental®, Cristalia Produtos Quimicos Farmaceuticos Ltda., Sao Paulo, SP, Brazil) at day 14 of the experiment. The hemimandibles were excised and collected, as well, gingival tissue samples and ligatures.

Microbiological analysis

In EP and EP-HD100 groups, ligatures were removed after euthanasia of the animals and placed in eppendorf tubes containing TE (10 mM Tris-HCl, 1 mM EDTA, pH 7.6). In groups C and C-HD100, subgingival biofilm samples were collected with a sterile periodontal curette (5-6, Mine-five, Hu-Friedy, Chicago, IL, USA) and also placed in TE solution. Subsequently, 0.1 mL NaOH (0.5 M) were added to each eppendorf tube and the samples were homogenized and stored at -20 °C. Counts of 40 bacterial species were performed using the checkerboard method DNA-DNA hybridization (Socransky et al., 2004), as previously described (Oliveira et al., 2017).

B. bacteriovorus HD100 was detected and quantified by real-time polymerase chain reaction (qPCR) using specific primers, as proposed by Davidov et al. (2006). Genomic DNA was extracted and the q-PCR technique was performed using the SYBRGreen system (Invitrogen Corp., Carlsbad, California, USA) in StepOne Plus™ Real-Time
The reactions were carried out in triplicate to amplify the Bd529 gene forward (5' – GGTAAGACGAGGGATCCT - 3') and Bd1007 gene Reverse (5'-TCTTCCAGTACATGCAAG-3'). The number of copies of the bacterial genome (molecules) / μL was calculated by dividing the concentration of genomic DNA (ng / μL) of each sample by 9.78*.

* [9.78 = 3.8 Mb (size of the bacterial strain genome) × 660g/mol (average mass of 1 base pair – bp) / 6.022 × 10^23 molecules/mol (Avogadro constant)].

Enzymatic immunoassays

The right hemimandibles had their gingival tissue removed for enzymatic immunoassays (*Luminex™ xMAP®,* MAGPIX analyzer, Luminex Corporation, Austin, TX, USA). The levels of the Receptor activator of nuclear factor kappa-B ligand (RANKL) and Osteoprotegerin (OPG) were determined in gingival tissues using high sensitivity available kits (RBN-31K-1RANKL, RBN-31K-1OPG – Milliplex Map, Merck Millipore, Billerica, MA, USA) and the multiplexing instrument (*Luminex™ xMAP®*) following the manufacturer’s recommendations. The concentrations of each cytokine were estimated from the standard curve using a five-parameter polynomial equation with specific software (xPONENT software, Luminex Corporation).

Gene expression analysis

The right hemimandibles had their gingival tissue removed for expression analysis of the Interleukin (IL)-17, IL-10 and forkhead box P3 (FOXP3) genes by means of real-time reverse transcription polymerase chain reaction (qRT-PCR). RNA was isolated from the gingival biopsies by the SV Total RNA Isolation System extraction kit (Promega, Inc., Madison, WI, USA) according to the manufacturer's protocol, including...
treatment with the DNase enzyme to eliminate any genomic DNA residue. Gene expression analysis of the selected genes was performed by qRT-PCR using TaqMan GenEx Assay (Applied Biosystems, Inc., Forster City, CA, USA). For this, each cDNA was amplified using the constitutive β-actin gene as endogenous control for normalization. Amplification was performed on the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories Inc, Hercules, CA, USA) for 40 cycles, according to the manufacturer's protocol. Fluorescence was collected for each amplification cycle and data analyzed by the 2^ΔΔCt method for quantification of relative expression (Livak and Schmittgen 2001).

Microcomputed tomography (Micro-CT) analyses

Non-demineralized specimens were scanned by a cone-beam micro-CT system (Skyscan 1172, Bruker, Kontich, Belgium). The x-ray generator was operated at an accelerated potential of 60 kV with a beam current of 165 µA and an exposure time of 650 ms per projection. Images were produced with a voxel size of 6x6x6µm. Volumetric measurements were performed as previously described (Oliveira et al. 2017). The following parameters were analyzed: i) BV: percentage of volume of interest (VOI) filled with bone tissue; ii) Bone Porosity (BP): percentage of porosities present in the bone tissue within the VOI; iii) Trabecular Number (Tb.N): number (mm⁻¹) of bone trabeculae present within the VOI; iv) Trabecular Separation (Tb.Sp): total of spaces (mm) present among bone trabeculae within the VOI.

Histomorphometric analysis of periodontal tissues

After routine laboratorial processing (Messora et al. 2013), two sections representing the most central buccal-lingual portion in the furcation area of left mandibular first molars were
selected for histopathological and histometric analyses. In the histometric analysis the attachment loss (AL) was measured as previously described (Oliveira et al. 2017).

Statistical analyses

Changes in the mean BV were defined as the primary outcome variable of the study. The other parameters analyzed were considered secondary outcome variables. Normality and homoscedasticity of the data were verified. The significance level was set at 5%. The significance of differences among groups for BV, BP, Tb.N, Tb.Sp, RANKL, OPG, IL-17, IL-10 and FOXP3 was assessed by analysis of variance (ANOVA) followed by post-hoc Tukey test. Significance of differences between groups EP and EP-HD100 for AL was determined using t-Test.

Regarding the microbiological data, the total DNA probe count for each species and the proportions of each species in relation to the total DNA count of the 40 bacterial species evaluated were computed for each animal and then averaged within the experimental groups. Significance of differences between groups was determined using t-Test.

RESULTS

Microbiological analysis

Figure 1 shows the DNA probes percentage of the 40 bacterial species analyzed in the EP and EP-HD100 groups, as well, the results of the comparisons between the groups. There was no bacterial detection in groups C and C-HD100. The animals of the EP-HD100 Group presented lower proportions of *Prevotella intermedia*, *Peptostreptococcus micros*, *F. nucleatum*, *Fusobacterium polymorphum*, *Eikenella corrodens*, *Eubacterium nodatum*, *Campylobacter gracilis*, *Capnocytophaga sputigena*
and *Veillonella parvula*-like species, as well, larger proportions of *Actinomyces viscosus*, *Actinomyces gereneseriae* and *Streptococcus sanguinis*-like species when compared to those of the EP Group.

There was no detection of the *B. bacteriovorus* HD100 genome in groups C, C-HD100, EP and EP-HD100.

Enzymatic immunoassays

The EP-HD100 Group presented higher levels of OPG when compared to the EP Group (*P* <0.05). (Figure 2A)

Gene expression analysis

The EP-HD100 Group presented higher levels of IL-17, IL-10 and FOXP3 when compared to the EP Group (*P* <0.05) (Figure 2B).

Micro-CT analyses

Representative images of the three-dimensional rendered reconstructions of the microtomographic sections of the hemimandible of the animals of all groups can be observed in Figure 3.

The values of BV, BP, Tb.N and Tb.Sp obtained in the microtomographic analysis, as well as the results of the comparisons between the groups, can be observed in Figure 4. The EP-HD100 Group presented lower BP and Tb.Sp, as well as higher BV and Tb.N than EP Group (*P* <0.05).

Histomorphometric analysis of periodontal tissues

Representative histological images of the periodontal tissues of all experimental groups can be visualized in Figure 5.
The groups C and C-HD100 presented periodontal ligament within the normality patterns. Periodontal fibers were inserted into the cementum and alveolar bone. The periodontal tissues from both groups showed large amount of fibroblasts and blood vessels, as well, a mild inflammatory infiltrate. The bone tissue in the furcation area, was rich in osteocytes, presented a regular crest with osteoblast apposition (Fig. 5, A, B, D and E). In the interproximal region the junctional and sulcular epithelia were intact (Fig. 5, C and F).

In the EP Group (Fig. 5, G and H) the bone surface was irregular and had many active osteoclasts in the furcation area. The connective tissue showed few fibroblasts, interstitial edema, collagen fibers without definite orientation and an intense inflammatory infiltrate, consisting mainly of neutrophils and lymphocytes. Areas of root resorption were also observed. In the interproximal region (Fig. 5I), there was loss of conjunctive attachment and the junctional and sulcular epithelia were severely damaged.

In the EP-HD100 Group (Fig. 5 J and K), the bone crest in furcation area was more coronally positioned when compared to EP Group and had some active osteoclasts on its surface. Adjacent connective tissue has a moderate number of fibroblasts and collagen fibers, a large number of blood vessels and few inflammatory cells (predominantly neutrophils). In the interproximal area (Fig. 5L), there was less loss of conjunctive insertion than that observed in the EP Group.

The EP-HD100 Group presented lower AL when compared to the EP Group (0.1829 ± 0.10 and 0.2967 ± 0.05, respectively, P <0.05).

DISCUSSION
This is the first in vivo study to evaluate the effects of BALOs on EP. Considering the microtomographic data, the topical use of predatory bacteria reduced the loss of alveolar bone by approximately 22%, as well as promoted significant improvements in bone microarchitecture. These results can be explained through the microbiological and immunological findings. The recognition that the immune system and the microbiota are critical for bone homeostasis has allowed the evolution from the field of osteoimmunology to "osteomicrobiology" (Ohlsson and Sjogren 2014). In fact, the microbiota can regulate postnatal skeletal development, bone aging and pathological bone loss (Hsu and Pacifici 2017).

In the present study, the animals of the EP-HD100 Group presented lower proportions of P. intermedia, P. micro, F. nucleatum, F. polymorphum, E. corroden, E. nodatum, C. gracilis, C. sputigena and V. parvula-like species when compared to those in the EP Group, which demonstrated the in vivo predatory capacity of B. bacteriovorus against Gram-negative bacteria in the periodontal pocket environment and corroborated the findings of previous in vitro studies (Dasihff and Kadouri 2011; Loozen et al. 2015). These Gram-negative bacteria that have been reduced in EP-HD100 Group are involved in the pathogenesis of periodontitis and contribute to the destruction of periodontal tissues (Kajiya et al. 2010).

Greater proportions of A. gerencseriae, A. viscosus and S. sanguinis-like species were observed in the EP-HD100 group when compared to the EP Group, which demonstrated the beneficial potential of B bacteriovorus as a biocontrol agent in the buccal ecosystem complex and corroborated the findings of a previous in vitro study (Loozen et al. 2015). Actinomyces and Streptococcus are frequently associated with periodontal health (Hajishengallis et al. 2012, Abusleme et al. 2013) and may aid in the control of inflammation of periodontal tissues (Devine et al. 2015, Kumar and Mason 2015).
In the present study, it was not possible to detect copies of the genome of *B. bacteriovorus* HD100 in the subgingival biofilm samples of groups C-HD100 and EP-HD100. An explanation for this fact is related to the transient permanence of *B. bacteriovorus* in mammalian organisms. When *B. bacteriovorus* HD100 was incolulated through the nasal mucosa to treat pulmonary infections caused by *Klebsiella pneumoniae* in rats, it was verified by qPCR that the lung tissues of the animals presented copies of genomes of *B. bacteriovorus* HD100 by no maximum 48 hours (Shatzkes et al. 2015).

Modulation of the host's immunoinflammatory response is another mechanism by which bacteriotherapy can assist in the treatment of periodontal diseases. The EP-HD100 group presented higher gene expression of FOXP3 when compared to the EP Group. This finding may explain, in part, the lower alveolar bone loss observed in the EP-HD100 Group when compared to the EP Group. FOXP3+ (T-regulatory) cells are associated with the production of anti-inflammatory cytokines [IL-10, Transforming growth factor beta (TGF-β) and cytotoxic T-lymphocyte-associated protein (CTLA)-4)], as well as the reduction of pro-inflammatory and osteoclastogenic factors (Garlet 2010). The EP-HD100 group had higher proportions of OPG and greater IL-10 gene expression. OPG is an important anti-osteoclastogenic factor involved in the process of bone remodeling (Ozaki et al. 2017). IL-10 exerts inhibitory effects on IL-1β and Tumor necrosis factor (TNF)-α, which play synergistic roles in inflammatory process, amplifying the host response (Moore et al. 2001).

The EP-HD100 Group had higher IL-17 expression when compared to the EP Group. IL-17 is of particular interest in the pathogenesis of periodontitis and may be involved in inflammatory mechanisms and antimicrobial protective immunity (Khader et al. 2009; Zenobia and Hajishengallis 2015). In the present study, the increase of IL-17 in
the EP-HD100 Group may represent the involvement of this cytokine in the protection against extracellular pathogens (Hernandez-Santos and Gaffen 2012; Khader et al. 2009; Zenobia & Hajishengallis 2015) and induction in the production of antimicrobial peptides (Liang et al., 2006; Zenobia & Hajishengallis 2015).

The present study provided a proof-of-concept that the BALOs present therapeutic potential in periodontitis treatment. It is important that future investigations evaluate the period of time that *B. bacteriovorus* HD100 remains in the oral cavity after discontinuation of the therapy. Besides more studies are required to evaluate other modes of application and different therapeutic regimens. New studies involving metagenomic DNA sequencing techniques and transcriptome analysis will be useful in assessing the impact of biological predators on the oral ecosystem and the innate and adaptive immune response of the host.

CONCLUSION

Topical use of *B. bacteriovorus* HD100 modifies immunoinflammatory and microbiologic parameters promoting a protective effect against alveolar bone loss and connective tissue attachment loss in rats with EP.

ACKNOWLEDGEMENTS

The authors thank Sao Paulo Research Foundation (FAPESP – Funding 2013/25022-7 and 2015/11835-1). The authors also thank Marina Del Arco (Laboratory Assistant, Department Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo - USP, RibeirãoPreto / SP, Brazil) for technical support during the microbiological procedures. The authors report no conflicts of interest related to this
REFERENCES

1. Abusleme L,Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh, LD et al. 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME j. 7(5):1016.
2. Aruni AW, Dou Y, Mishra A and Fletcher HM. 2015. The biofilm community: rebels with a cause. Curr oral health rep. 2(1):48-56.
3. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness, MJ, Lerner, TR, et al. 2011. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. App and environ microbiol. 77(16):5794-5803.
4. Boileau MJ, Mani R, Breshears MA, Gilmour M, Taylor JD and Clinkenbeard KD. 2016. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am j of vet research. 77(9):1017-1028.
5. Cao H, An J, Zheng W and He S. 2015. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J of invert path. 130:13-20.
6. Chitprasert P, Sudsai P and Rodklongtan A. 2012. Aluminum carboxymethyl cellulose–rice bran microcapsules: Enhancing survival of Lactobacillus reuteri KUB-AC5. Carboh polymers. 90(1):78-86.
7. Darveau RP. 2010. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 8(7):481.
8. Dashiff A and Kadouri DE. 2011. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol oral microbial. 26(1):19-34.

9. Davidov, Friedjing and Jurkevitch. 2006. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms." Environ Microbiol. 8(9):1667-1673.

10. Devine DA, Marsh PD and Meade J. 2015. Modulation of host responses by oral commensal bacteria. J oral microbial. 7(1):26941.

11. Feres M, Figueiredo LC, Soares GMS and Faveri M. 2015. Systemic antibiotics in the treatment of periodontitis. Periodontol 2000. 67(1):131-186.

12. Garlet GP. 2010. Destructive and protective roles of cytokines in periodontitis: host defence and tissue destruction viewpoints. J Dent Res. 89:1349–63

13. Hajishengallis G and Lamont RJ. 2012. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol oral microbial. 27(6):409-419.

14. Hernandez-Santos N, Gaffen SL. 2012. Th17 cells in immunity to Candida albicans. Cell Host Microbe. 11:425–435

15. Hsu E and Pacifici R. 2017. From Osteoimmunology to Osteomicrobiology: How the Microbiota and the Immune System Regulate Bone. Calcif Tissue Int. 1-10.

16. Huovinen P. 2001. Bacteriotherapy: the time has come: Bacterial interference is an increasingly attractive approach to prevention and therapy. BMJ: Brit Med J. 323(7309):353.

17. Jurkevitch E. 2006. Isolation and classification of Bdellovibrio and like organisms. Curr Protoc Microbiol. Jan:7B-1.
18. Kajiya M, Giro G, Taubman MA, Han X, Mayer, MP and Kawai T. 2010. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease. J Oral Microbiol. 2(1), 5532.

19. Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, et al. 2017. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 96(4):380-387.

20. Khader SA, Gaffen S and Kolls JK. 2009. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2:403–411.

21. Kumar PS and Mason MR. 2015. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?. Front Cell Infect Microbiol. 5:35.

22. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 203:2271–2279.

23. Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25(4): 402-408.

24. Loozen G, Boon N, Pauwels M, Slomka V, Herrero ER, Quirynen M and Teughels W. 2015. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 35:45-53.
25. Messora MR, Oliveira LF, Foureaux RC, Taba Jr M, Zangerônimo MG, Furlaneto FA, Pereira, LJ. 2013. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J periodontol. 84(12):1818-1826.

26. Mombelli A. 2018. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000. 76(1):85-96.

27. Mombelli A, Cionca N and Almaglouth A. 2011. Does adjunctive antimicrobial therapy reduce the perceived need for periodontal surgery?. Periodontol 2000. 55(1):205-216.

28. Mombelli A, Schmid B, Rutar A and Lang NP. 2000. Persistence patterns of Porphyromonas gingivalis, Prevotella intermedia/nigrescens, and Actinobacillus actinomycetemcomitans after mechanical therapy of periodontal disease. J periodontol. 71(1):14-21.

29. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 19:683-765.

30. Ohlsson C and Sjogren K. 2014. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 26:69–74

31. Oliveira LFF, Salvador SLS, Silva PHF, Furlaneto FAC, Figueiredo LC, Casarin RC. et al. 2017. Benefits of Bifidobacterium animalis subsp. lactis Probiotic in Experimental Periodontitis. J periodontol. 88(2):197-208.

32. Ozaki Y, Koide M, Furuya Y, Ninomiya T, Yasuda H, Nakamura M and Udagawa N. 2017. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PloS one. 12(9):e0184904.
33. Shatzkes K, Chae R, Tang C, Ramirez GC, Mukherjee S, Tsenova L, Connell ND, Kadouri DE. 2015. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci Rep. 5:srep12899.

34. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S et al. 2016. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio. 7(6):e01847-16.

35. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S et al. 2017a. Examining the efficacy of intravenous administration of predatory bacteria in rats. Sci Rep. 7(1):1864.

36. Shatzkes K, Tang C, Singleton E, Shukla S, Zuena M, Gupta S et al. 2017b. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep. 7:43483.

37. Sockett RE and Lambert C. 2004. Bdellovibrio as therapeutic agents: a predatory renaissance?. Nat Rev Microbiol. 2(8):669.

38. Van Essche M, Quirynen M, Sliepen I, Van Eldere J, Teughels W. 2009. Bdellovibrio bacteriovorus attacks Aggregatibacter actinomycetemcomitans. J Dent Res. 88(2):182-186.

39. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R et al. 2016. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol. 26(24):3343-3351.

40. Zenobia C and Hajishengallis G. 2015. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000. 69(1):142-159.
FIGURE LEGENDS

Figure 1 - Mean proportions of 40 species in the ligature biofilm. % DNA probe counts = percentage of the DNA count of each species in relation to the total DNA count of the 40 bacterial species evaluated. *Significant difference among groups (t test, P <0.05).

Figure 2 - A - Mean levels (pg/g) and Standards Derivations of RANKL and OPG in groups C, C-HD100, EP, and EP-HD100. Different letters indicate significant differences among groups (ANOVA, Tukey, P <0.05). B - Mean levels of gene expression and Standards Derivations of IL-17, IL-10 and FOXP3 in groups C, C-HD100, EP, and EP-HD100. Different letters indicate significant differences among groups (ANOVA, Tukey, P <0.05).

Figure 3 - Three-dimensional rendered reconstructions of the microtomographic sections of groups C (A and B), C-HD100 (C and D), EP (E and F), and EP-HD100 (G and H). Buccal view (A, C, E, and G). Internal surface view, sagittal section (B, D, F, and H). Pixel size = 7.96 mm.

Figure 4 - Means and Standards Derivations of BV (A), BP (B), Tb.Sp (C), and Tb.n (D), and intergroup comparisons. Different letters indicate significant differences among groups (ANOVA, Tukey, P <0.05).
Figure 5 - Histopathologic analysis. Photomicrographs of periodontal tissues in the furcation (A, B, D, E, G, H, J, and K) and interproximal areas (C, F, I, and L) of mandibular first molars: group C (A-C); group C-HD100 (D-F); group EP (G-I); group EP-HD100 (J-L). (Hematoxylin and eosin stain; scale bar: 200 µm = magnification ·100; scale bar: 100 µm = magnification ·200.) AB = alveolar bone; FR = furcation roof; FM = first molar; SM = second molar; unfilled black arrow = blood vessel; black arrowhead = osteoblasts; asterisk = unorganized and detached collagen fibers and interstitial edema; white arrowhead = root cement with resorption areas; unfilled black arrowhead = collagen fibers inserted both in cementum and in alveolar bone; black arrow = cemento-enamel junction; white arrow = CT attachment.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5