ON THE NON-VANISHING OF GENERALIZED KATO CLASSES FOR ELLIPTIC CURVES OF RANK 2

FRANCESC CASTELLA AND MING-LUN HSIEH

Abstract. We prove the first cases of a conjecture by Darmon–Rotger on the non-vanishing of generalized Kato classes attached to elliptic curves E over \mathbb{Q} of rank 2. Our method also shows that the non-vanishing of generalized Kato classes implies that the p-adic Selmer group of E is 2-dimensional. The main novelty in the proof is a formula for the leading term at the trivial character of an anticyclotomic p-adic L-function attached to E in terms of the derived p-adic height of generalized Kato classes and an enhanced p-adic regulator.

Contents

1. Introduction 1
2. Derived p-adic height pairings 5
3. Perrin-Riou’s theory for Lubin–Tate formal groups 8
4. Euler system construction of theta elements 15
5. Proof of the main theorem 24
6. Numerical examples 25
References 27

1. Introduction

1.1. Motivating question. Let E be an elliptic curve over \mathbb{Q} (hence modular by [BCDT01]), and let $L(E, s)$ be its Hasse–Weil L-series. A major advance towards the Birch and Swinnerton-Dyer conjecture was the proof by Gross–Zagier [GZ86] and Kolyvagin [Kol88] of the implication

$$\text{ord}_{s=1} L(E, s) = 1 \implies \text{ord}_{s=1} L(E, s) = \text{rank}_\mathbb{Z} E(\mathbb{Q})$$

(1.1)

The proof of (1.1) resorts to choosing an imaginary quadratic field K for which the construction of Heegner points on E (over ring class extensions of K) becomes available and such that $\text{ord}_{s=1} L(E/K, s) = 1$. By the Gross–Zagier formula, the basic Heegner point $y_K \in E(K)$ is then non-torsion, which by Kolyvagin’s work implies that $E(K)$ has rank 1. Since y_K descends to $E(\mathbb{Q})$ precisely when $L(E, s)$ vanishes to odd order at $s = 1$, the above implication follows.

A more recent major advance is Skinner’s converse [Ski14] to the theorem of Gross–Zagier and Kolyvagin, taking the form of the implication

$$\text{rank}_\mathbb{Z} E(\mathbb{Q}) = 1 \text{ and } \#\text{III}(E/\mathbb{Q})[p^\infty] < \infty \implies \text{ord}_{s=1} L(E, s) = 1$$

(1.2)

for certain primes p of good ordinary reduction for E. The proof of (1.2) uses progress [Wan19] towards an Iwasawa main conjecture over an auxiliary imaginary quadratic field K as before.
which under the hypotheses of [L2] implies $y_K \notin E(Q)_{\text{tors}}$ by the p-adic Gross–Zagier formula of [BDP13], yielding the conclusion by the classical Gross–Zagier formula.

It is natural to wonder about the extension of these results for elliptic curves E/Q of rank 2. Since a stumbling block in this setting is the lack of a systematic construction of algebraic points on E playing the role of Heegner points, a most urgent question to ask might be the following:

Question 1.1. Let E be an elliptic curve over Q of rank 2, and choose an imaginary quadratic field K with

$$\text{ord}_{s=1} L(E/K, s) = \text{ord}_{s=1} L(E, s) = 2. \tag{1.3}$$

Can one use K to produce explicit nonzero classes in the p-adic Selmer group $\text{Sel}(Q, V_p E)$ for suitable primes p?

Here $\text{Sel}(Q, V_p E)$ denotes the inverse limit under the multiplication-by-p maps of the usual p^n-descent Selmer groups $\text{Sel}_{p^n}(E/Q) \subset H^1(Q, E[p^n])$ tensored with Q_p, thus sitting in the exact sequence

$$0 \to E(Q) \otimes Z_p \to \text{Sel}(Q, V_p E) \to T_p \text{III}(E/Q) \otimes Z_p Q_p \to 0,$$

where $T_p \text{III}(E/Q)$ should be trivial, since $\text{III}(E/Q)$ is expected to be finite.

In this paper, for good ordinary primes p, we provide an affirmative answer to Question 1.1 with condition [L3] replaced by an algebraic counterpart:

$$\text{rank}_Z E(K) = \text{rank}_Z E(Q) = 2 \quad \text{and} \quad \# \text{III}(E/Q)[p^\infty] < \infty.$$

Moreover, we prove analogues of the implications

$$y_K \notin E(Q)_{\text{tors}} \implies \dim_{Q_p} \text{Sel}(Q, V_p E) = 1$$

and

$$\text{rank}_Z E(Q) = 1 \quad \text{and} \quad \# \text{III}(E/Q)[p^\infty] < \infty \implies y_K \notin E(Q)_{\text{tors}}$$

appearing in the course of [L1] and [L2], respectively, in the rank 2 setting, with y_K replaced by certain generalized Kato classes in $\text{Sel}(Q, V_p E)$.

1.2. A conjecture of Darmon–Rotger for rank 2 elliptic curves.

Following their spectacular work [DR17a] on the Birch and Swinnerton-Dyer conjecture for elliptic curves twisted by certain degree four Artin representations, Darmon–Rotger formulated in [DR16] a non-vanishing criterion for the generalized Kato classes introduced in [DR17a]. In this paper, we consider the special case of their conjectures concerned with elliptic curves of rank 2.

Let E/Q be an elliptic curve of conductor N, and let K be an imaginary quadratic field of discriminant prime to N. Fix a prime $p > 2$ of good ordinary reduction for E, and assume that $p = \mathfrak{p}
\mathfrak{p}$ splits in K. Let $\chi : G_K = \text{Gal}(\overline{Q}/K) \to C^\times$ be a ring class character of conductor prime to Np with $\chi(\overline{\mathfrak{p}}) \neq \pm 1$, and set $\alpha := \chi(\overline{\mathfrak{p}})$, $\beta := \chi(p)$.

Let $f \in S_2(\Gamma_0(N))$ be the newform associated with E by modularity, so that $L(E, s) = L(f, s)$, and let g and h be the weight 1 theta series of χ and χ^{-1}, respectively. As explained in [DR16] (in which g and h can be more general weight 1 eigenforms), attached to the triple (f, g, h) and the prime p one has four generalized Kato classes

$$\kappa(f, g_\alpha, h_{\alpha^{-1}}), \kappa(f, g_\alpha, h_{\beta^{-1}}), \kappa(f, g_\beta, h_{\alpha^{-1}}), \kappa(f, g_\beta, h_{\beta^{-1}}) \in H^1(Q, V_{fgh}), \tag{1.4}$$

where $V_{fgh} \simeq V_p E \otimes V_g \otimes V_h$ is the tensor product of the p-adic representations associated to f, g, and h. The class $\kappa(f, g_\alpha, h_{\alpha^{-1}})$ arises as the p-adic limit

$$\kappa(f, g_\alpha, h_{\alpha^{-1}}) = \lim_{\ell \to 1} \kappa(f, g_\ell, h_\ell)$$

Question 3.1. Let E be an elliptic curve over Q of rank 2, and choose an imaginary quadratic field K with

$$\text{ord}_{s=1} L(E/K, s) = \text{ord}_{s=1} L(E, s) = 2. \tag{1.3}$$

Can one use K to produce explicit nonzero classes in the p-adic Selmer group $\text{Sel}(Q, V_p E)$ for suitable primes p?

Here $\text{Sel}(Q, V_p E)$ denotes the inverse limit under the multiplication-by-p maps of the usual p^n-descent Selmer groups $\text{Sel}_{p^n}(E/Q) \subset H^1(Q, E[p^n])$ tensored with Q_p, thus sitting in the exact sequence

$$0 \to E(Q) \otimes Z_p \to \text{Sel}(Q, V_p E) \to T_p \text{III}(E/Q) \otimes Z_p Q_p \to 0,$$

where $T_p \text{III}(E/Q)$ should be trivial, since $\text{III}(E/Q)$ is expected to be finite.

In this paper, for good ordinary primes p, we provide an affirmative answer to Question 1.1 with condition [L3] replaced by an algebraic counterpart:

$$\text{rank}_Z E(K) = \text{rank}_Z E(Q) = 2 \quad \text{and} \quad \# \text{III}(E/Q)[p^\infty] < \infty.$$

Moreover, we prove analogues of the implications

$$y_K \notin E(Q)_{\text{tors}} \implies \dim_{Q_p} \text{Sel}(Q, V_p E) = 1$$

and

$$\text{rank}_Z E(Q) = 1 \quad \text{and} \quad \# \text{III}(E/Q)[p^\infty] < \infty \implies y_K \notin E(Q)_{\text{tors}}$$

appearing in the course of [L1] and [L2], respectively, in the rank 2 setting, with y_K replaced by certain generalized Kato classes in $\text{Sel}(Q, V_p E)$.

1.2. A conjecture of Darmon–Rotger for rank 2 elliptic curves.

Following their spectacular work [DR17a] on the Birch and Swinnerton-Dyer conjecture for elliptic curves twisted by certain degree four Artin representations, Darmon–Rotger formulated in [DR16] a non-vanishing criterion for the generalized Kato classes introduced in [DR17a]. In this paper, we consider the special case of their conjectures concerned with elliptic curves of rank 2.

Let E/Q be an elliptic curve of conductor N, and let K be an imaginary quadratic field of discriminant prime to N. Fix a prime $p > 2$ of good ordinary reduction for E, and assume that $p = \mathfrak{p}
\mathfrak{p}$ splits in K. Let $\chi : G_K = \text{Gal}(\overline{Q}/K) \to C^\times$ be a ring class character of conductor prime to Np with $\chi(\overline{\mathfrak{p}}) \neq \pm 1$, and set $\alpha := \chi(\overline{\mathfrak{p}})$, $\beta := \chi(p)$.

Let $f \in S_2(\Gamma_0(N))$ be the newform associated with E by modularity, so that $L(E, s) = L(f, s)$, and let g and h be the weight 1 theta series of χ and χ^{-1}, respectively. As explained in [DR16] (in which g and h can be more general weight 1 eigenforms), attached to the triple (f, g, h) and the prime p one has four generalized Kato classes

$$\kappa(f, g_\alpha, h_{\alpha^{-1}}), \kappa(f, g_\alpha, h_{\beta^{-1}}), \kappa(f, g_\beta, h_{\alpha^{-1}}), \kappa(f, g_\beta, h_{\beta^{-1}}) \in H^1(Q, V_{fgh}), \tag{1.4}$$

where $V_{fgh} \simeq V_p E \otimes V_g \otimes V_h$ is the tensor product of the p-adic representations associated to f, g, and h. The class $\kappa(f, g_\alpha, h_{\alpha^{-1}})$ arises as the p-adic limit

$$\kappa(f, g_\alpha, h_{\alpha^{-1}}) = \lim_{\ell \to 1} \kappa(f, g_\ell, h_\ell)$$
as \((g_{\ell}, h_{\ell})\) runs over the classical weight \(\ell \geq 2\) specializations of Hida families \(g\) and \(h\) passing through the \(p\)-stabilizations
\[
g_{\alpha} := g(q) - \beta g(q^p), \quad h_{\alpha^{-1}} := h(q) - \beta^{-1} h(q^p),
\]
in weight 1, and where \(\kappa(f, g_{\alpha}, h_{\alpha^{-1}})\) is obtained from the \(p\)-adic étale Abel–Jacobi image of certain higher-dimensional Gross–Kudla–Schoen diagonal cycles [GK92, GS95] on triple products of modular curves.

One of the main results of [DR17a] is an explicit reciprocity law (just stated for \(\kappa(f, g_{\alpha}, h_{\alpha^{-1}})\) here) of the form
\[
(1.5) \quad \exp^*(\text{res}_p(\kappa(f, g_{\alpha}, h_{\alpha^{-1}}))) = (\text{nonzero constant}) \cdot L(f \otimes g \otimes h, 1),
\]
whereby the classes \((1.4)\) land in the Bloch–Kato Selmer group \(\text{Sel}(\mathbb{Q}, V_{fgh}) \subset H^1(\mathbb{Q}, V_{fgh})\) precisely when the triple product \(L(f \otimes g \otimes h, s)\) vanishes at \(s = 1\); the main conjecture of [DR16] went further to predict that these classes span a non-trivial subspace of \(\text{Sel}(\mathbb{Q}, V_{fgh})\) precisely when \(L(f \otimes g \otimes h, s)\) vanishes to order exactly 2 at \(s = 1\).

Since for our specific \(g\) and \(h\) we have the factorization
\[
(1.6) \quad L(f \otimes g \otimes h, s) = L(E, s) \cdot L(E^K, s) \cdot L(E/K, \chi^2, s),
\]
where \(E^K\) is the \(K\)-quadratic twist of \(E\), arising from the decomposition
\[
(1.7) \quad V_{fgh} \simeq (V_P \otimes \text{Ind}_{K}^{\mathbb{Q}}) \oplus (V_P \otimes \text{Ind}_{K}^{\mathbb{Q}} \chi^2),
\]
the cases of the main conjecture of Darmon–Rotger concerned with elliptic curves of rank 2 may be stated as follows, where we let
\[
(1.8) \quad \kappa_{\alpha, \alpha^{-1}}, \kappa_{\alpha, \beta^{-1}}, \kappa_{\beta, \alpha^{-1}}, \kappa_{\beta, \beta^{-1}} \in H^1(\mathbb{Q}, V_P E)
\]
be the natural image of the classes \((1.4)\) under the projection \(H^1(\mathbb{Q}, V_{fgh}) \to H^1(\mathbb{Q}, V_P E)\).

Conjecture 1.2 (Darmon–Rotger). Assume that \(L(E^K, 1)\) and \(L(E/K, \chi^2, 1)\) are both nonzero. Then the following are equivalent:

1. The classes \((1.4)\) span a non-trivial subspace of \(\text{Sel}(\mathbb{Q}, V_P E)\).
2. \(\dim_{\mathbb{Q}_p} \text{Sel}(\mathbb{Q}, V_P E) = 2\).
3. \(\text{rank}_{\mathbb{Q}_p} E(\mathbb{Q}) = 2\).
4. \(\text{ord}_{s=1} L(E, s) = 2\).

Remark 1.3. Of course, the equivalence of (2) \(\iff\) (3) amounts to the finiteness of \(\text{III}(E/\mathbb{Q})[p^\infty]\), and the equivalence (3) \(\iff\) (4) is the rank 2 case of the Birch–Swinnerton-Dyer conjecture.

Conjecture \((1.4)\) is a special case of [DR16] Conj. 3.2] and testing the predicted non-vanishing criterion for \((1.8)\) experimentally presented an “interesting challenge” at the time of its formulation (see [loc.cit., §4.5.3]). As an application of the main results of this paper, numerical examples supporting this conjecture will be presented in [5].

1.3. Main results.

Let \(\tilde{\rho}_{E,p} : G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Aut}_{\mathbb{F}_p}(E[p])\) be the residual Galois representation associated to \(E\), and write
\[
N = N^+ N^-
\]
with \(N^+\) (resp. \(N^-\)) divisible only by primes which are split (resp. inert) in \(K\). Consider the strict Selmer group defined by
\[
\text{Sel}_{\text{str}}(\mathbb{Q}, V_P E) := \ker\left(\text{Sel}(\mathbb{Q}, V_P E) \stackrel{\log_p}{\longrightarrow} \mathbb{Q}_p \right),
\]
where \(\log_p\) denotes the composition of the restriction map \(\text{loc}_p : \text{Sel}(\mathbb{Q}, V_P E) \to E(\mathbb{Q}_p) \otimes \mathbb{Q}_p\) with the formal group logarithm \(E(\mathbb{Q}_p) \otimes \mathbb{Q}_p \to \mathbb{Q}_p\).
Theorem A. Assume that $L(E^K, 1)$ and $L(E/K, \chi^2, 1)$ are both nonzero, and that
- $\bar{\rho}_{E,p}$ is irreducible,
- N is square-free,
- $\bar{\rho}_{E,p}$ is ramified at every prime $q | N$.

Then $\kappa_{\alpha, \alpha - 1} = 0$ and the following statements are equivalent:

(i) The class $\kappa_{\alpha, \alpha - 1}$ is a non-trivial element in Sel(\mathbb{Q}, V_pE).

(ii) $\text{dim}_{\mathbb{Q}_p}\text{Sel}^{\text{str}}(\mathbb{Q}, V_pE) = 1$.

Remark 1.4. The hypotheses in Theorem A imply in particular that E has root number $+1$, and either of the statements (i) or (ii) implies that $L(E, 1) = 0$ by [Kat04]. Thus the elliptic curves in Theorem A all satisfy (1.9) $\text{ord}_s L(E, s) \geq 2$.

On the other hand, if the root number of E is $+1$ and $\bar{\rho}_{E,p}$ is irreducible and ramified at some prime q, by [BFH90] and [Vat03] there exist infinitely many imaginary quadratic fields K and ring class characters χ of prime-power conductor such that the following hold:
- q is inert in K,
- every prime factor of N/q splits in K,
- $L(E^K, 1) \neq 0$ and $L(E/K, \chi^2, 1) \neq 0$.

Therefore, by Theorem A the generalized Kato classes (1.3) provide an explicit construction of non-trivial Selmer classes for rank 2 elliptic curves analogous to the construction of Heegner classes for rank 1 elliptic curves. The tables of §6 exhibit numerical examples satisfying the rank part of the BSD conjecture and the hypotheses of Theorem A, yielding the first instances of non-trivial generalized Kato classes for rank 2 elliptic curves.

Remark 1.5. Another construction of non-trivial classes in Sel(\mathbb{Q}, V_pE) for elliptic curves E/\mathbb{Q} satisfying (1.9) will appear in forthcoming work by Skinner–Urban (see [SU06, Urb13]). Their construction of Selmer classes is completely different from that of generalized Kato classes, and it would be very interesting to compare the two constructions.

We obtain immediately from Theorem A the following result towards Conjecture 1.2.

Corollary B. Let the hypotheses be as in Theorem A. If $\text{rank}_{\mathbb{Z}}F_E(\mathbb{Q}) = 2$ and $\text{III}(E/\mathbb{Q})[p^\infty]$ is finite, then the generalized Kato classes $\kappa_{\alpha, \alpha - 1}$ and $\kappa_{\beta, \beta - 1}$ are both non-zero and generate the strict Selmer group $\text{Sel}^{\text{str}}(\mathbb{Q}, V_pE)$.

The above corollary has the flavor of a rank 2 analogue of Skinner’s converse to Kolyvagin’s theorem [Skil4]. In the opposite direction, Theorem A also yields the following rank 2 analogue of Kolyvagin’s theorem in terms of generalized Kato classes.

Corollary C. Let the hypotheses be as in Theorem A. Then the implication

$$\kappa_{\alpha, \alpha - 1} \neq 0 \implies \text{dim}_{\mathbb{Q}_p}\text{Sel}(\mathbb{Q}, V_pE) = 2$$

holds.

1.4. Outline of the proofs. We conclude the Introduction with a sketch of the proof of the implication (ii) \implies (i) in Theorem A, establishing the non-vanishing of $\kappa_{E,K} := \kappa_{\alpha, \alpha - 1} \in H^1(\mathbb{Q}, V_pE)$.

- Step 1: Euler system construction of Bertolini–Darmon theta elements.

Denote by Γ_∞ the Galois group of the anticyclotomic \mathbb{Z}_p-extension of K. Building on generalizations of Gross’ explicit form of Waldspurger’s special value formula [Wal85, Gros87], one can construct a p-adic L-function $\Theta_f/K \in \mathbb{Z}_p[\Gamma_\infty]$ interpolating “square-roots” of the central critical values $L(E/K, \phi, 1)$, as ϕ runs over finite order characters of Γ_∞ (see [BD96, CHIS]).
The element $\Theta_{f/K}$ has been widely studied in the literature, but its place in Perrin-Riou’s vision [PR00, LZ14], whereby p-adic L-functions ought to arise as the image of families of special cohomology classes under generalized Coleman power series maps, remained mysterious.

Letting $\kappa(f, gh) = \{\kappa(f, g_\ell, h_\ell)\}_\ell$ be the p-adic family of diagonal cycle classes giving rise to $\kappa(f, g_\alpha, h_{\alpha-1})$ in the limit at $\ell \to 1$, in [4] we prove that

$$\text{Col}^\eta(\text{loc}_p(\kappa(f, gh))) = \Theta_{f/K} \cdot (\text{nonzero constant}),$$

where Col^η is a generalized Coleman power series map defined in terms of an anticyclotomic variant of Perrin-Riou’s big exponential map. The proof of (1.10) combines a refinement of the explicit reciprocity law of Darmon–Rotger [DR17a] with a factorization of the p-adic triple product L-function [Hsi19].

- **Step 2: Leading coefficient formula and derived p-adic heights.**

Viewing (1.10) as an identity in the power series ring $\mathbb{Z}_p[T] \simeq \mathbb{Z}_p[\Gamma_\infty]$, its value at $T = 0$ recovers the implication

$$L(E, 1) = 0 \implies \kappa_{E,K} \in \text{Sel}(\mathbb{Q}, V_{pE}).$$

To further deduce the non-vanishing of $\kappa_{E,K}$ we consider the leading coefficient of (1.10) at $T = 0$. To that end, let

$$\text{Sel}(K, V_{pE}) = S^{(1)} \supset S^{(2)} \supset \cdots \supset S^{(r)} \supset \cdots \supset S^{(\infty)}$$

be the filtration defined by Bertolini–Darmon [BD93] and Howard [How04], and the associated derived anticyclotomic p-adic height pairings

$$h^{(r)}: S^{(r)} \times S^{(r)} \to \mathbb{Q}_p.$$

From the standard properties of $h^{(r)}$, one can easily see that if

$$\text{Sel}(\mathbb{Q}, V_{pE}) = \text{Sel}(K, V_{pE}) \quad \text{and} \quad \dim_{\mathbb{Q}_p} \text{Sel}(\mathbb{Q}, V_{pE}) = 2,$$

as we have under the hypotheses of Theorem A, the filtration (1.11) reduces to

$$\text{Sel}(\mathbb{Q}, V_{pE}) = S^{(1)} = S^{(2)} = \cdots = S^{(r)} \quad \text{and} \quad S^{(r+1)} = S^{(r+2)} = \cdots = S^{(\infty)} = \{0\}$$

for some $r \geq 2$. Setting

$$\rho := \text{ord}_{T=0} \Theta_{f/K}(T),$$

one can deduce that $r \geq \rho$ from the work of Skinner–Urban [SU14]: in particular, $\text{Sel}(\mathbb{Q}, V_{pE}) = S^{(\rho)}$. Based on the explicit Rubin-style formula for derived p-adic heights established in §3, we prove that for any basis (P, Q) of $\text{Sel}(\mathbb{Q}, V_{pE})$, the ρ-th derived p-adic height $h^{(\rho)}(P, Q)$ is non-zero, and

$$\kappa_{E,K} = \frac{\bar{\theta}_{f/K}^\rho(P, Q)}{h^{(\rho)}(P, Q)} \cdot (P \otimes \log_p Q - Q \otimes \log_p P) \cdot (\text{explicit nonzero constant in } \overline{\mathbb{Q}}),$$

where $\bar{\theta}_{f/K} := (\frac{d}{dx})^\rho \Theta_{f/K}(T)|_{T=0}$ is the leading coefficient of $\Theta_{f/K}$ (see Corollary 5.1 for the precise statement). This in particular implies the non-vanishing of $\kappa_{E,K}$.

Acknowledgements. We would like to thank John Coates, Dick Gross, and Barry Mazur for their comments on earlier drafts of this paper.

2. Derived p-adic height pairings

In this section, we review the definition of the derived p-adic height pairings in [How04].
2.1. **Notation and definitions.** Let \(p \) be a prime, let \(K \) be a number field, and let \(\Sigma \) be a finite set of places of \(K \) containing the archimedean places and the places above \(p \). Let \(K_\Sigma \) be the maximal algebraic extension of \(K \) unramified outside \(\Sigma \) and set \(G_{K,\Sigma} = \text{Gal}(K_\Sigma/K) \). Let \(K_\infty/K \) be a \(\mathbb{Z}_p \)-extension in \(\Sigma \), and assume that all primes above \(p \) are totally ramified in \(K_\infty \). Denote by \(K_n \) be the subfield with of \(K_\infty \) with \([K_n:K] = p^n\), and let \(\Gamma_n = \text{Gal}(K_n/K) \) and \(\Gamma_\infty = \text{Gal}(K_\infty/K) \). Let \(\Lambda = \mathbb{Z}_p[\Gamma_\infty] \) and let \(\kappa_\Lambda : G_{K,\Sigma} \to \text{Gal}(K_\infty/K) \to \Lambda^{\Sigma} \) be the tautological character \(\kappa_\Lambda(\sigma) = \sigma|_{K_\infty} \). Let \(\nu : \Gamma_\infty \to \Gamma_\infty \) be the involution \(\gamma \mapsto \gamma^{-1} \), and for any \(\Lambda \)-module \(M \) and \(k \in \mathbb{Z} \), let \(M\{k\} \) be the \(G_{K,\Sigma} \)-module \(M \) on which \(G_{K,\Sigma} \) acts via \(\kappa_\Lambda^k \).

Let \(\mathcal{O} \) be a local ring finitely generated over \(\mathbb{Z}_p \), let \(\mathfrak{m} \) be the maximal ideal of \(\mathcal{O} \), and put \(\Lambda_{\mathcal{O}} = \Lambda \otimes_{\mathbb{Z}_p} \mathcal{O} \). Denote by \(\text{Mod}_\mathcal{O} \) the category of \(\mathcal{O}[G_{K,\Sigma}] \)-modules finite free over \(\mathcal{O} \). For \(T \) an object of \(\text{Mod}_\mathcal{O} \) we let \(T_\Lambda = T \otimes_{\mathcal{O}} \Lambda_{\mathcal{O}} \{ -1 \} \) be the \(G_{K,\Sigma} \)-module \(T \otimes_{\mathcal{O}} \Lambda_{\mathcal{O}} \) twisted by \(\kappa_\Lambda^{-1} \).

Let \(K \) be the localization of \(\Lambda_{\mathcal{O}} \) at the prime \(\mathfrak{m} \Lambda_{\mathcal{O}} \), and set \(P = K/\Lambda_{\mathcal{O}} \). Likewise we define \(T_K = T \otimes_{\mathcal{O}} K \{-1\} \) and \(T_P = T \otimes_{\mathcal{O}} P \{-1\} \). We shall denote the limits

\[
H^1(K_\infty, T) := \lim_n H^1(K_n, T), \quad \hat{H}^1(K_\infty, T) := \lim_n \hat{H}^1(K_n, T)
\]

with respect to the restriction and corestriction maps, respectively. Let

\[\text{pr}_{K_n} : \hat{H}^1(K_\infty, T) \to H^1(K_n, T) \]

be the canonical projection map. Throughout we shall make use of the identification

\[H^1(K, T_\Lambda) = \hat{H}^1(K_\infty, T) \]

deduced from \([\text{How04}] \) Lem. 1.4] and Shapiro’s lemma. Let \(T^* = \text{Hom}(T, \mathcal{O}(1)) \) and denote by \(e : T \times T^* \to \mathcal{O}(1) \) the canonical \(G_{K,\Sigma} \)-equivariant perfect pairing, which uniquely extends to a perfect \(G_{K,\Sigma} \)-equivariant pairing

\[e_\Lambda : T_\Lambda \times T_\Lambda^* \to \Lambda_{\mathcal{O}}(1) \]

classified by

\[e_\Lambda(t \otimes \lambda_1, s \otimes \lambda_2) = \lambda_1 \lambda_2 e_\Lambda(t, s) \]

for all \(\lambda_1, \lambda_2 \in \Lambda_{\mathcal{O}} \).

For any place \(v \) of \(K \) and any finite extension \(L \) of \(K_v \), let \(\text{inv}_L : H^2(L, \mathcal{O}(1)) \simeq \mathcal{O} \) be the invariant map and let \(\langle \cdot, \cdot \rangle_L : H^1(L, T) \times H^1(L, T^*) \to \mathcal{O} \) be the perfect pairing \(\langle z, w \rangle_L := \text{inv}_L(z \cup w) \), and define the bilinear pairing

\[\langle \cdot, \cdot \rangle_{K_\infty,v} : H^1(K_v, T_\Lambda) \times H^1(K_v, T_\Lambda^*) \to H^2(K_v, \Lambda_{\mathcal{O}}(1)) \simeq \mathcal{O} \]

by \(\langle z, w \rangle_{K_\infty,v} = \text{inv}_v(e_\Lambda(z \cup w)) \). Fix a topological generator \(\gamma \) of \(\Gamma_\infty \) and set

\[g_n := \gamma^{p^n} - 1 \in \Lambda. \]

Thus \(\Lambda_{\mathcal{O}}/(g_n) \simeq \mathcal{O}[\Gamma_n] \), and if \(z = (z_n) \in H^1(K_v, T_\Lambda) = \lim_n H^1(K_{n,v}, T) \) and \(w = (w_n) \in H^1(K_v, T_\Lambda^*) = \lim_n H^1(K_{n,v}, T^*) \), then

\[\langle z, w \rangle_{K_\infty,v} \mod g_n = \sum_{\tau \in \Gamma_n} (z_n^{-1}, w_n)_{K_n,v} \tau. \]

(2.1)

Let \(\mathcal{F} = \{ H^1_{T}(K_v, T_K) \}_{v \in \Sigma} \) be a Selmer structure on \(T_K \), namely a choice of \(K \)-submodule \(H^1_{T}(K_v, T_K) \subset H^1(K_v, T_K) \) for every \(v \in \Sigma \), and let \(H^1_{T}(K_v, T_P) \) be the image of the natural map \(H^1_{T}(K_v, T_K) \to H^1(K_v, T_P) \) induced by the quotient \(K \to P \). Define the Selmer module \(H^1_{T}(K, T_P) \) to be the kernel of the map

\[H^1(G_{K,\Sigma}, T_P) \to \prod_{v \in \Sigma} H^1(K_v, T_P)/H^1_{T}(K_v, T_P). \]
2.2. Abstract Rubin formula. In this subsection, we suppose that \(m = 0 \) for some \(m > 0 \), namely that \(\mathcal{O} \) is Artinian. By [How04, Lem. 1.2], we then have

\[
K = \bigcup_{n=0}^{\infty} \Lambda_{\mathcal{O}} \frac{1}{g_n}.
\]

Moreover, by [How04, Lem. 1.5] and Shapiro’s lemma, there is a natural isomorphism

\[
\eta_\gamma: H^1(K, T_P) = \lim_{\longleftarrow} H^1(K, T_{\Lambda} \otimes \Lambda \mathcal{O} g_n^{-1}/\Lambda_{\mathcal{O}}) \simeq \lim_{\longleftarrow} H^1(K, T_{\Lambda}/g_n T_{\Lambda}) = H^1(K_\infty, T).
\]

By definition, for \(z = \{z_n\} \in \tilde{H}^1(K_\infty, T) \) we have

\[
\eta_\gamma(z) = \frac{z}{\gamma - 1} \in H^1(K, T).
\]

For each \(n \), let \(H^1(J, T) \) be the Selmer module consisting of classes \(s \in H^1(K, T) \) such that \(J \in \{H^1(K, T) \text{ such that the image of } s \text{ in } H^1(K_\infty, T) \text{ belongs to } \eta_\gamma(H^1(J, T))\} \). Thus

\[
H^1(J, T) = \lim_{\longleftarrow} H^1(J, T) = \eta_\gamma(H^1(J, T)).
\]

Let \(J \) be the augmentation ideal of \(\Lambda_{\mathcal{O}} \), i.e., the principal ideal of \(\Lambda_{\mathcal{O}} \) generated by \(\gamma - 1 \), and for \(r > 0 \) put

\[
Y^{(r)}_T := H^1(J, T)[r] \cap J_{r-1}^{-1} H^1(K, T).
\]

This defines a decreasing filtration \(Y^{(1)}_T \supset Y^{(2)}_T \supset Y^{(2)}_T \supset \cdots \).

Let \(F_{\Sigma} = \{H^1_{\Sigma}(K_v, T^K_v)\}_{v \in \Sigma} \) be the Selmer structure on \(T^K_v \) such that \(H^1_{\Sigma}(K_v, T^K_v) \) and \(H^1_{\Sigma}(K_v, T^K_v) \) are orthogonal complements under local Tate duality for every \(v \in \Sigma \), and let

\[
[-,-]_{CT}: H^1_{\Sigma}(K, T_P) \times H^1_{\Sigma}(K, T_P) \to P
\]

be the \(\Lambda_{\mathcal{O}} \)-adic Cassels–Tate pairing of [How04, Thm. 1.8]. The \(r \)-th derived height pairing

\[
h^{(r)}_s(-,-): Y^{(r)}_T \times Y^{(r)}_T \to J^r/J^{r+1}
\]

in [How04, Def. 2.2] is defined by

\[
h^{(r)}_s(z, w) := (\gamma - 1)^{r} \cdot [\eta^{-1}_\gamma(z), \eta^{-1}_\gamma(w)]_{CT}
\]

writing \(z = (\gamma - 1)^{r-1} u \) with \(u \in H^1_{\Sigma}(K, T_P) \). Note that \([\eta^{-1}_\gamma(u), \eta^{-1}_\gamma(w)]_{CT} \in (\gamma - 1)^{-1} \Lambda/\Lambda \), so that \(h^{(r)}_s(z, w) \) belongs to \(J^r/J^{r+1} \).

The following is a restatement of [How04, Thm. 2.5], which can be viewed as an abstract generalization of Rubin’s formula [Rub94, Thm. 3.2(ii)] (cf. [Nek06, Prop. 11.5.11]).

Proposition 2.1. Let \(z \in Y^{(r)}_T \) and \(w \in Y^{(r)}_T \). Suppose that there exist \(z \in H^1(K, T_{\Lambda}) \) and \(w_\Sigma = (w_v) \in \bigoplus_{v \in \Sigma} H^1_{\Sigma}(K_v, T^K_v) \) such that \(\text{pr}_K(z) = z \) and \(\text{pr}_{K_v}(w_v) = \text{loc}_v(w) \). Then

\[
h^{(r)}_s(z, w) = -\sum_{v \in \Sigma} (z, w_v)_{K_{\Lambda_v}} \pmod{J^{r+1}}.
\]

Proof. Let \(y = \eta^{-1}_\gamma(z) \in H^1_{\Sigma}(K, T_P) \) and \(t = \eta^{-1}_\gamma(w) \in H^1_{\Sigma}(K, T_P) \). Choose cochains \(\tilde{y} \in C^1(G_{K,\Sigma}, T^K_K) \) and \(\tilde{t} \in C^1(G_{K,\Sigma}, T^K_K) \) lifting \(s \) and \(t \), respectively, let \(\epsilon_0 \in C^2(G_{K,\Sigma}, P(1)) \) be such that \(d\epsilon_0 = d\tilde{y} \cup \tilde{t} \), and choose \(\ell_\Sigma \in \bigoplus_{v \in \Sigma} Z^1(G_{K_v, T^K_v}) \) lifting \(\text{loc}_v(t) \in \bigoplus_{v \in \Sigma} Z^1(K_v, T^K_v) \). According to the definition of the Cassels–Tate pairing [How04, (2), p. 1321], we find that

\[
h^{(r)}_s(z, w) = (\gamma - 1)^2 \cdot [y, t]_{CT} = (\gamma - 1)^2 \cdot \text{inv}_\Sigma(\text{loc}_\Sigma(\tilde{y}) \cup \tilde{t} - \text{loc}_\Sigma(\epsilon_0)).
\]
Let \(\tilde{z} \in \check{Z}^1(G_{K,\Sigma}, T_{\lambda}) \) and \(\tilde{w}_\Sigma \in \bigoplus_{v \in \Sigma} \check{Z}^1(G_{K_v}, T_{\lambda}) \) be cocycles representing \(z \) and \(w_\Sigma \). Then \(\check{y} = \tilde{z}/(\gamma - 1) \) and \(\tilde{t}_\Sigma = \tilde{w}_\Sigma/(\gamma - 1) \) are liftings of \(z \) and \(t_\Sigma \), and using (2.3) with \(\epsilon_0 = 0 \) (note that \(d\tilde{z} = 0 \)), we obtain

\[
\begin{align*}
 h^{(r)}(z, w) &= (\gamma - 1)^2 \cdot \text{inv}_\Sigma(e_{\Lambda}(\frac{\text{loc}_\Sigma(z)}{\gamma - 1} \cup \frac{\tilde{w}_\Sigma}{\gamma - 1})) \\
 &= -\text{inv}_\Sigma(e_{\Lambda}(\text{loc}_\Sigma(z) \cup w_\Sigma)) = -\sum_{v \in \Sigma} (z, w_v)_{K_v,v} \pmod{J^{r+1}}.
\end{align*}
\]

This completes the proof. \(\square \)

2.3. Derived \(p \)-adic heights for elliptic curves. Let \(E \) be an elliptic curve over \(K \) with good ordinary reduction at every place above \(p \). Let \(T = \varprojlim_k E[p^k] \) be the \(p \)-adic Tate module of \(E \), and take \(\Sigma \) to consist of the archimedean places, the places above \(p \), and the places of bad reduction of \(E \). Let \(T_k = E[p^k] \), and consider the modules \(Y_{T_k}^{(r)} \) defined in (2.4) taking for \(F \) the Selmer structure in [How04 Def. 3.2]. Since \(T_k^\dagger = T_k \) and \(F^\perp = F \) by the Weil pairing, the discussion of (2.2) yields a derived height pairing \(h_{\mathbb{Z}/p^k \mathbb{Z}} \). The constructions of \(Y_{T_k}^{(r)} \) and \(h_{\mathbb{Z}/p^k \mathbb{Z}} \) are clearly compatible under the quotient map \(\mathbb{Z}/p^{k+1} \mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z} \), and in the limit they define

\[
Y_T^{(r)} := \varprojlim_k Y_{T_k}^{(r)}, \quad h^{(r)} := \varprojlim_k h_{\mathbb{Z}/p^k \mathbb{Z}}^{(r)}.
\]

According to [How04 Lem. 4.1] there is canonical isomorphism

\[
(2.6) \quad Y_T^{(1)} \otimes_{\mathbb{Z}_p} Q_p \simeq \text{Sel}(K, V_p E).
\]

Letting \(S_p^{(r)}(E/K) \) be the subspace of \(\text{Sel}(K, V_p E) \) spanned by the image of \(Y_T^{(r)} \subset Y_T^{(1)} \) under the isomorphism (2.6), we have \(S_p^{(1)}(E/K) = \text{Sel}(K, V_p E) \) and for every \(r > 0 \) we obtain the \(r \)-th derived \(p \)-adic height pairing

\[
h^{(r)}: S_p^{(r)}(E/K) \times S_p^{(r)}(E/K) \to J^r/J^{r+1} \otimes_{\mathbb{Z}_p} Q_p,
\]

where \(J \) is the augmentation ideal of \(\Lambda = \mathbb{Z}_p[[\Gamma_\infty]] \).

Corollary 2.2. Let \(z, w \in S_p^{(r)}(E/K) \). Suppose that there exist a global class \(z \in \check{H}^1(K_\infty, T) \) and local classes \(w_v \in \varprojlim_n H^1_{\text{fin}}(K_{n,v}, T) \) for every \(v \mid p \) such that \(\text{pr}_{K_v}(z) = z \) and \(\text{pr}_{K_v}(w_v) = \text{loc}_v(z) \). Then

\[
h^{(r)}(z, w) = -\sum_{v \mid p} \langle \text{loc}_v(z), w_v \rangle_{K_v, v} \pmod{J^{r+1}}.
\]

Proof. This follows from Proposition 2.1 and the fact that \(H^1(K_{n,v}, T) \otimes Q_p = 0 \) for \(v \nmid p \). \(\square \)

3. Perrin-Riou’s theory for Lubin–Tate formal groups

In this section we explicitly compute the derived \(p \)-adic height pairings for elliptic curves via Perrin-Riou’s big exponential maps.

3.1. Preliminaries. We begin by reviewing the generalization of Perrin-Riou’s theory [PR94] to Lubin–Tate formal groups developed in [Kob15]. Throughout we fix a completed algebraic closure \(\mathbb{C}_p \) of \(Q_p \). Let \(Q_p^\ur \subset \mathbb{C}_p \) be the maximal unramified extension of \(Q_p \) and let \(Fr \in \text{Gal}(Q_p^\ur/Q_p) \) be the absolute Frobenius. Let \(F/Q_p \) be a finite unramified extension and let \(\mathcal{O} = \mathcal{O}_F \) be the valuation ring of \(F \). Put

\[
R := \mathcal{O}[X].
\]
Let $\mathcal{F} = \text{Spf } R$ be a relative Lubin–Tate formal group of height one defined over \mathcal{O}, and for each $n \in \mathbb{Z}$ set $\mathcal{F}^{(n)} := \mathcal{F} \times_{\text{Spec } \mathcal{O}, \mathbb{F}_p} \text{Spec } \mathcal{O}$. The Frobenius morphism $\varphi_{\mathcal{F}} \in \text{Hom}(\mathcal{F}, \mathcal{F}^{(-1)})$ induces a homomorphism $\varphi_{\mathcal{F}} : R \to R$ defined by

$$\varphi_{\mathcal{F}}(f) := f^{\text{Fr}} \circ \varphi_{\mathcal{F}},$$

where f^{Fr} is the conjugate of f by Fr. Let $\psi_{\mathcal{F}}$ be the left inverse of $\varphi_{\mathcal{F}}$ satisfying

$$\varphi_{\mathcal{F}} \psi_{\mathcal{F}}(f) = p^{-1} \sum_{x \in \mathcal{F}[p]} f(X \oplus_{\mathcal{F}} x).$$

Let $F_\infty = \bigcup_{n=1}^{\infty} F(\mathcal{F}[p^n])$ be the Lubin–Tate \mathbb{Z}_p^\times-extension associated with the formal group \mathcal{F}, and for every $n \geq -1$, let F_n be the subfield of F_∞ with $\text{Gal}(F_n/F) \simeq (\mathbb{Z}/p^{n+1}\mathbb{Z})^\times$ (so $F_{-1} = F$). Letting $G_\infty = \text{Gal}(F_\infty/F)$, there is a unique decomposition $G_\infty = \Delta \times \Gamma_\infty^F$, where $\Delta \simeq \text{Gal}(F_0/F)$ is the torsion subgroup of G_∞ and $\Gamma_\infty^F \simeq \mathbb{Z}_p$.

For every $a \in \mathbb{Z}_p^\times$, there is a unique formal power series $[a](X) \in R$ such that

$$[a]^{\text{Fr}} \circ \varphi_{\mathcal{F}} = \varphi_{\mathcal{F}} \circ [a] \quad \text{and} \quad [a](X) \equiv aX \pmod{X^2}.$$

Letting $\varepsilon_{\mathcal{F}} : G_\infty \xrightarrow{\sim} \mathbb{Z}_p^\times$ be the Lubin–Tate character, we let $\sigma \in G_\infty$ act on R by

$$\sigma \cdot f(X) := f([\varepsilon_{\mathcal{F}}(\sigma)](X)),$$

thus making R into an $\mathcal{O}[G_\infty]$-module.

Lemma 3.1. $R^{\varphi=p=0}$ is free of rank one over $\mathcal{O}[G_\infty]$.

Proof. This is a standard fact. See [Kob18] Prop. 5.4. \qed

Let $L \subset \mathbb{C}_p$ be a finite extension over \mathbb{Q}_p, and let V be a finite-dimensional L-vector space on which $G_{\mathbb{Q}_p}$ acts as a continuous L-linear crystalline representation. Let $D(V) = D_{\text{cris}, \mathbb{Q}_p}(V)$ be the filtered φ-module associated with V over \mathbb{Q}_p and set

$$\mathcal{D}_\infty(V) := D(V) \otimes_{\mathbb{Z}_p} R^{\varphi=p=0} \simeq D(V) \otimes_{\mathbb{Z}_p} \mathcal{O}[G_\infty].$$

Let $d : R \to \Omega_R$ be the standard derivation. Fix an invariant differential $\omega_{\mathcal{F}} \in \Omega_R$, and let $\log_{\mathcal{F}} \in R \hat{\otimes} \mathbb{Q}_p$ be the logarithm map satisfying $\log_{\mathcal{F}}(0) = 0$ and $d \log_{\mathcal{F}} = \omega_{\mathcal{F}}$. Let also $\partial : R \to R$ be defined by $df = \partial f \cdot \omega_{\mathcal{F}}$.

Let $\epsilon = (\epsilon_n) \in T_p\mathcal{F} = \lim_{\longrightarrow n} \mathcal{F}^{(n+1)}[p^{n+1}]$ be a basis of the p-adic Tate module of \mathcal{F}, where the inverse limit is with respect to the maps $\varphi_{\mathcal{F}}^{-(n+1)} : \mathcal{F}^{(n+1)}[p^{n+1}] \to \mathcal{F}^{(n)}[p^n]$. Following [Kob18] p. 42, we associate to ϵ and $\omega_{\mathcal{F}}$ a p-adic period $t_\epsilon \in B_{\text{cris}}^+$ for \mathcal{F} as follows. For each n, there exists a unique isomorphism $\varphi_n^\dagger : \mathcal{F}^{(n)} \to \mathcal{F}$ such that

$$\varphi_{\mathcal{F}}^{-(n+1)} \circ \varphi_{\mathcal{F}}^{-(n)} \circ \varphi_{\mathcal{F}}^{-(n-1)} \circ \cdots \circ \varphi_{\mathcal{F}}^{-1} \circ \varphi_{\mathcal{F}} \circ \varphi_{\mathcal{F}} = [p^n] \circ \varphi_n^\dagger.$$

Put $w_n := \varphi_n^\dagger((\epsilon_n-1) \in \mathcal{F}[p^n])$, so that $[p](w_n) = w_{n-1}$ by definition. Let $A_{\text{inf}} = A_{\text{inf}}(\mathcal{O}_{\mathbb{C}_p} / \mathcal{O}_F)$ and $\theta : A_{\text{inf}} \to \mathcal{O}_{\mathbb{C}_p}$ be as defined in [Fon94] §1.2.2. It is not difficult to show that there is a unique sequence (\tilde{w}_n) of elements in $\mathcal{F}(A_{\text{inf}})$ such that $[p](\tilde{w}_n) = \tilde{w}_{n-1}$ and $\theta(\tilde{w}_n) = w_n$, and we set $t_\epsilon := \log_{\mathcal{F}}(\tilde{w}_n) \in B_{\text{cris}}^+$. This p-adic period t_ϵ satisfies

$$D_{\text{cris}, F}(\varepsilon_{\mathcal{F}}) = F t_\epsilon^{-1}, \quad \varphi_{t_\epsilon} = \varepsilon_{\mathcal{F}} \cdot \omega_{\mathcal{F}}.$$

Fix an extension $\varepsilon_{\mathcal{F}} : \text{Gal}(F_\infty / \mathbb{Q}_p) \to L^\times$ of the Lubin–Tate character $\varepsilon_{\mathcal{F}}$, and for each $j \in \mathbb{Z}$ let $V(j) := V \otimes_L \varepsilon_{\mathcal{F}}^j$ denote the j-th Lubin–Tate twist of V. By definition, $D_{\text{cris}, F}(V(j)) = D(V) \otimes_{\mathbb{Q}_p} F t_\epsilon^{-1}$. Define the derivation $d_\varepsilon : \mathcal{D}(V(j)) \to \mathcal{D}(V(j-1))$ by

$$d_\varepsilon f := \eta_{t_\epsilon} \otimes \partial g, \quad \text{where } f = \eta \otimes g \in D_{\text{cris}, F}(V(j)) \otimes_{\mathcal{O}} R^{\varphi=p=0},$$

where $\varepsilon_{\mathcal{F}}$ is the uniformizer in F such that $\varphi_{\mathcal{F}}^\dagger(\varepsilon_{\mathcal{F}}) = \varepsilon_{\mathcal{F}} \cdot \omega_{\mathcal{F}}$.
and the map
\[\tilde{\Delta} : D_\infty(V) \to \bigoplus_{j \in \mathbb{Z}} \mathcal{D}_{\text{cris},F}(V\langle-j\rangle) / (1 - \varphi) \]
by \(f \mapsto (\partial^j f(0)t^j_x \mod (1 - \varphi)) \).

Remark 3.2. When \(F = \mathbb{G}_m \), we have \(F_\infty = F(\zeta_\infty) \), the corresponding Lubin–Tate character is the \(p \)-adic cyclotomic character \(\varepsilon_{\text{cycl}} : G_\mathbb{Q} \to \mathbb{Z}_p^\times \), \(\varphi_{\mathbb{G}_m}(f) = f^{Fr}((1 + X)^p - 1) \), and \(\psi_{\mathbb{G}_m}(f) \) is given by the unique power series such that
\[\varphi_{\mathbb{G}_m} \psi_{\mathbb{G}_m}(f) = p^{-1} \sum_{\gamma = 1} f(\zeta(1 + X) - 1). \]

If we take \(\omega_{\mathbb{G}_m} \) to be the invariant differential \((1 + X)^{-1}dX \), then \(\varphi = (1 + X) \frac{d}{dX} \) and \(\log_{\mathbb{G}_m} \) is the usual logarithm \(\log(1 + X) \). In the following, we fix a sequence \(\{\zeta_n\}_{n=1,2,3,...} \) of primitive \(p^n \)-th roots of unity with \(\zeta_{p^n} = \zeta_p \), and let \(t \in D(V) \) be the \(p \)-adic period corresponding to \((\zeta_p, 1) \in T_p \mathbb{G}_m \).

3.2. Perrin-Riou’s big exponential map and the Coleman map.

For a finite extension \(K \) over \(\mathbb{Q}_p \), let
\[\exp_{K,V} : D(V) \otimes \mathbb{Q}_p K \to H^1(K, V) \]
be Bloch–Kato’s exponential map [BK90, §3]. In this subsection, we recall the main properties of Perrin-Riou’s map \(\Omega_{V,h} \) interpolating \(\exp_{F, (V_j)} \) as \(j \) runs over non-negative integers \(j \).

Let \(V^* := \text{Hom}_L(V, L(1)) \) be the Kummer dual of \(V \) and denote by
\[[\cdot, \cdot]_V : D(V^*) \otimes K \times D(V) \otimes K \to K \otimes \mathbb{Q}_p L \]
the \(K \)-linear extension of the de Rham pairing
\[(\cdot, \cdot)_{dR} : D(V^*) \times D(V) \to L. \]
Let \(\exp^\star_{K,V} : H^1(K, V) \to D(V) \otimes K \) be the dual exponential map characterized uniquely by
\[\text{Tr}_{K/Q_p}([x, \exp^\star_{K,V}(y)]_V) = ([\exp^\star_{K,V}, (x), y]_V, \]
for all \(x \in D(V^*) \otimes K, y \in H^1(K, V) \).

Choose a \(G_{\mathbb{Q}_p} \)-stable \(\mathcal{O}_L \)-lattice \(T \subset V \), and let
\[\hat{H}^1(F_\infty, T) = \lim_n H^1(F_n, T), \quad \hat{H}^1(F_\infty, V) = \hat{H}^1(F_\infty, T) \otimes \mathbb{Q}_p \]
be the Iwasawa cohomology \(\mathbb{Z}_p[G_\infty] \)-modules associated with \(V \). We denote by
\[\text{Tw}_j : \hat{H}^1(F_\infty, V) \simeq \hat{H}^1(F_\infty, V(j)) \]
the twisting map by \(\zeta_j^\tau \). For a non-negative real number \(r \) and any subfield \(K \) in \(\mathbb{C}_p \), we put
\[\mathcal{H}_{r,K}(X) = \left\{ \sum_{n \geq 0, \tau \in \Delta} c_{n, \tau} \cdot \tau \cdot X^n \in K[\Delta] \mid \sup_n |c_{n, \tau}|_p n^{-r} < \infty \text{ for all } \tau \in \Delta \right\}, \]
where \(|\cdot|_p \) is the normalized valuation of \(K \) with \(|p|_p = p^{-1} \). Let \(\gamma \) be a topological generator of \(\Gamma_\infty \), and denote by \(\mathcal{H}_{r,K}(G_\infty) \) the ring of elements \(\{ f(\gamma - 1) : f \in \mathcal{H}_{r,K}(X) \} \), so in particular
\[\mathcal{H}_{0,K}(G_\infty) = \mathcal{O}_K[G_\infty] \otimes \mathbb{Q}_p. \]
Put
\[\mathcal{H}_{\infty,K}(G_\infty) = \bigcup_{r \geq 0} \mathcal{H}_{r,K}(G_\infty). \]

For \(n \geq -1 \), we define a map
\[\Xi_{n,V} : D(V) \otimes \mathbb{Q}_p \mathcal{H}_{\infty,F}(X) \to D(V) \otimes \mathbb{Q}_p F_n \]
For simplicity, we shall write \(H^{\lambda} \) for all \(\lambda \in \Omega_{V,h} \) which is \(\tilde{\lambda} \)-linear and characterized by the following interpolation property. Let \(\exp_{F_n,V(j)}(\Xi_{n,V(j)}(d^{-j}G)) \in H^1(F_n,V(j)) \), and if \(j \leq -h \), then

\[
\exp_{F_n,V(j)}(\pr_{F_n}((T_{V,j} \circ \Omega^e_{V,h}(g))) = \frac{1}{(-h-j)!} \cdot \Xi_{n,V(j)}(d^{-j}G)) \in D(V(j)) \otimes_{Q_p} F_n,
\]

where \(G \in D(V) \otimes_{Q_p} \mathcal{H}_{h,F}(X) \) is a solution of the equation

\[
(1 - \varphi \otimes \varphi_{F}) G = g.
\]

Moreover, if \(D_{[s]} \) is a \(\varphi \)-invariant \(Q_p \)-subspace of \(D(V) \) such that all eigenvalues of \(\varphi \) on \(D_{[s]} \) have \(p \)-adic valuation \(s \), then \(\Omega^e_{V,h} \) maps \((D_{[s]} \otimes R^{\psi=0})^{\tilde{\lambda}=0} \) into \(\tilde{H}^1(F_{\infty},T) \otimes_{\tilde{\lambda}} \mathcal{H}_{s+h,F}(G_{\infty}) \).

Proof. In the case \(\mathcal{F} = G_m \), the construction of \(\Omega^e_{V,h} \) and its interpolation property at integers \(j \geq 1 - h \) is due to Perrin-Riou [PR94] §3.2.3 Théorème, §3.2.4(i)], while the interpolation formula at integers \(j \leq -h \) is a consequence of the “explicit reciprocity formula” proved by Colmez [Col98] Thm. IX.4.5]. Their methods can be adapted to general relative Lubin–Tate formal groups of height one. Furthermore, if \(\Omega_{V,h} \) and the interpolation at \(j \geq 1 - h \), and in [Zha05 Thm. 6.2] for the explicit reciprocity formula.

To introduce the Coleman map, we further assume the following hypothesis:

\[
\mathcal{D}_{\infty}(V) = D_{\infty}(V).
\]

For simplicity, we shall write \(\mathcal{H}_K \) for \(\mathcal{H}_{K}(G_{\infty}) \) in the sequel. We let

\[
[-, -]_V : D(V^*) \otimes_{Q_p} \mathcal{H}_F \times D(V) \otimes_{Q_p} \mathcal{H}_F \rightarrow L \otimes_{Q_p} \mathcal{H}_F
\]

be the pairing defined by

\[
[\eta_1 \otimes \lambda_1, \eta_2 \otimes \lambda_2]_V = \langle \eta_1, \eta_2 \rangle_{dR} \otimes \lambda_1 \lambda_2
\]

for all \(\lambda_1, \lambda_2 \in \mathcal{H}_F \). For any \(e \in R^{\psi=0} \) and \(e \) a generator of \(T_p \mathcal{F} \), there is unique \(O_L[G_{\infty}] \)-linear Coleman map \(\text{Col}^e_\mathcal{F} : \tilde{H}^1(F_{\infty},V^*) \rightarrow D(V^*) \otimes_{Q_p} \mathcal{H}_F \) characterized by

\[
\text{Tr}_{F/F_p}(\text{Col}^e_\mathcal{F}(z), \eta)_V = \langle z, \Omega_{V,h}(\eta \otimes e) \rangle_{F_{\infty}} \in L \otimes_{Q_p} \mathcal{H}_F
\]

for all \(\eta \in D(V) \).

Let \(\mathcal{Q} \) be the completion of \(Q_p \) in \(C_p \), let \(W \) be the ring of integers of \(\mathcal{Q} \), and set \(F_n^w = F_n Q_p^w \). Let \(\sigma_0 \in \text{Gal}(F_{\infty}^w/Q_p) \) be such that \(\sigma_0 Q_p^w = F_r \) is the absolute Frobenius. Fix an
isomorphism \(\rho : \hat{G}_m \simeq \mathcal{F} \) defined over \(\mathcal{W} \) and let \(\rho : \mathcal{W}[T] \simeq R \otimes_{\mathcal{O}} \mathcal{W} \) be the map defined by \(\rho(f) = f \circ \rho^{-1} \). Then we have
\[
\varphi_{\mathcal{F}} \circ \rho = \rho^{Fr} \circ \varphi_{\hat{G}_m}.
\]

Let \(e \in R^{\psi,x=0} \) be a generator over \(\mathcal{O}[G_{\infty}] \) and write \(\rho(1+X) = h_e \cdot e \) for some \(h_e \in \mathcal{W}[G_{\infty}] \). This implies that \(e(0) \in \mathcal{O}^x \). Now we fix \(\epsilon = (\epsilon_n)_{n=0,1,2,...} \) to be the generator of \(T_p \mathcal{F} \) given by
\[
\epsilon_n = \rho^{Fr}_{-(n+1)} (\zeta_p^{n+1} - 1) \in \mathcal{F}^{(n+1)}[p^{n+1}].
\]

Let \(\eta \in D(V) \) be such that \(\varphi \eta = \alpha \eta \) and of slope \(s \) (i.e. \(|\alpha|_p = p^{-s} \)). For every \(z \in \hat{H}^1(F_{\infty}, V^*) \), we define
\[
\text{Col}^n(z) := \sum_{j=1}^{[F:Q_p]} \left[\text{Col}^n_{\mathcal{F}}(z^{0,\ell} \cdot \eta), h_e \cdot \sigma_0^j \in \mathcal{H}^{s+h,LQ}(\hat{G}_{\infty}) \right]
\]
where \(\hat{G}_{\infty} := \text{Gal}(F_{\infty}/Q_p) \), and \([-,-] : D(V^*) \otimes \mathcal{H}_{Q} \times D(V) \to \mathcal{H}_{LQ} \) is the image of \([-,-]_V \) under the natural map \(L \otimes Q_p \), \(\mathcal{H}_{Q} \to \mathcal{H}_{LQ} \).

For any integer \(j \), put
\[
z_{-j,n} := \text{pr}_{F_{n}}(\text{Tw}_{-j}(z)) \in \hat{H}^1(F_{n}, V^*(1-j)).
\]
We say that a finite order character \(\chi \) of \(\hat{G}_{\infty} \) has conductor \(p^{n+1} \) if \(n \) is the smallest integer \(\geq -1 \) such that \(\chi \) factors through \(\text{Gal}(F_{n}/Q_p) \).

Theorem 3.4. Suppose that \(\text{Fil}^{-1} D(V) = D(V) \) and let \(h = 1 \). Let \(\psi \) be a \(p \)-adic character of \(\hat{G}_{\infty} \) such that \(\psi = \chi \mathcal{F} \) with \(\chi \) a finite order character of conductor \(p^{n+1} \). If \(j < 0 \), then
\[
\text{Col}^n(z)(\psi) = \frac{(-1)^{j-1}}{(-j-1)!} \prod_{\tau \in \text{Gal}(F_{n}/Q_p)} \chi^{-1}(\tau) \left[\log_{F_n,V^*(1-j)} z_{-j,n} \otimes t^{-j}, \varphi^{-(n+1)} \eta \right] \]
If \(j \geq 0 \), then
\[
\text{Col}^n(z)(\psi) = j!(1)^{j} \prod_{\tau \in \text{Gal}(F_{n}/Q_p)} \chi^{-1}(\tau) \left[\exp_{F_n,V^*(1-j)} z_{-j,n} \otimes t^{-j}, \varphi^{-(n+1)} \eta \right]
\]
Here \(\tau(\psi) \) is the Gauss sum defined by
\[
\tau(\psi) := \sum_{\tau \in \text{Gal}(F_{n}/F_{ur})} \psi_{\text{cyc}}^{-1}(\tau \sigma_0^{n+1}) \zeta_p^{n+1}.
\]

Proof. This follows from the explicit reciprocity formula in Theorem 3.3 and the computation and in [Kob28 Thm. 5.10] (cf. [LZ13 Thm. 4.15]).

3.3. The derived \(p \)-adic heights and the Coleman map

Let \(E \) be an elliptic curve over \(Q \) with good ordinary reduction at \(p \), and let \(V = T_p E \otimes_{\mathcal{O}_p} L \) with \(L \) a finite extension of \(Q_p \). We have \(\text{Fil}^{-1} D(V) = D(V) \) and \(V^* = V \). Let \(\omega_E \) be the Néron differential of \(E \), regarded as an element in \(D(H^1_{et}(E/Q_p)) \). We fix an embedding \(\iota_p : Q \hookrightarrow C_p \), and for any subfield \(H \subset Q \), let \(\hat{H} \) denote the completion of \(\iota_p(H) \) in \(C_p \).
Let K be an imaginary quadratic field in which $p = p\mathbb{F}$ splits, with p the prime of K above p induced by ι_p. Let K_∞ be the anticyclotomic \mathbb{Z}_p-extension of K, and set $\Gamma_\infty = \text{Gal}(K_\infty/K)$ and $\hat{\Gamma}_\infty = \text{Gal}((\hat{K}_\infty/Q_p))$. For any integer $c > 0$ let H_c be the ring class field of K of conductor c, and choosing c to be prime to p, put $F = H_c$. Let $\xi \in K$ be a generator of $p[F:Q_p]$ and let F_∞ be the Lubin–Tate \mathbb{Z}_p-extension over F associated with $\xi/\overline{\xi}$. By [Kob18 Prop. 3.7] we have $F_\infty = \bigcup_{n=0}^{\infty} H_{p^n}$, and hence F_∞ is a finite extension of \hat{K}_∞. Moreover, hypothesis (3.2) holds since $D(V)^{\varphi}\mathbb{Q}_p = \{0\}$ for any $j \in \mathbb{Z}$, given that the φ-eigenvalues of $D(V)$ are p-Weil numbers while $\xi/\overline{\xi}$ is a 1-Weil number.

Let $\alpha_p \in \mathbb{Z}_p^\times$ be the p-adic unit eigenvalue of the Frobenius map φ acting on $D(V)$, and let $\eta \in D(V) = D(H^1_\phi(E/F, Q_p)) \otimes D(L(1))$ be a φ-eigenvector of slope -1 such that

$$\varphi \eta = p^{-1} \alpha_p \cdot \eta$$

and hence $\langle \eta, \omega \rangle_{dR} = 1$.

Let $e \in R^{\varphi = 0}$ be a generator over $\mathcal{O}_F[[G_\infty]]$ such that $e(0) = 1$. Applying the big exponential map $\Omega_{V,1}$ in Theorem 3.3 we define

$$(3.4) \quad w^\eta = \Omega_{V,1}(\eta \otimes e) \in \hat{H}^1(F_\infty, V).$$

The following lemma is a standard fact.

Lemma 3.5. We have

$$\text{pr}_F(w^\eta) = \exp_{F,V} \left(\frac{1 - p^{-1} \varphi^{-1}}{1 - \varphi} \eta\right) \in H^1(F, V).$$

Proof. Let $g = \eta \otimes e$ and let $G(X) \in D(V) \otimes \mathcal{H}_1, Q(X)$ such that $(1 - \varphi \otimes \varphi_F)G = g$. Then we have

$$G(e_0) = \eta \otimes e(e_0) - \eta + (1 - \varphi)^{-1} \eta.$$

The equation $\psi_F e(X) = 0$ implies

$$\sum_{\zeta \in F^{Fr^{-1}}[p]} e^{\zeta} = 0.$$

It follows that

$$\text{Tr}_{F_0/F}(G^{Fr^{-1}}(e_0)) = \sum_{\tau \in \text{Gal}(F_0/F)} \eta \otimes e(e_0^\tau) - \eta + (1 - \varphi)^{-1} \eta = \frac{p \varphi - 1}{1 - \varphi} \eta,$$

and hence

$$\text{pr}_F(w^\eta) = \text{cor}_{F_0/F}(\Xi_0, V(G)) = \exp_{F,V} \text{Tr}_{F_0/F} \left(\frac{p^{-1} \varphi^{-1}(G^{Fr^{-1}}(e_0))}{1 - \varphi} \eta\right) = \exp_{F,V} ((1 - p^{-1} \varphi^{-1})(1 - \varphi)^{-1} \eta).$$

This completes the proof. \qed

Lemma 3.6. Let Q_p^cyc be the cyclotomic \mathbb{Z}_p^\times-extension of Q_p. Let $\sigma_{\text{cyc}} \in \text{Gal}(F^\text{ur}_\infty/Q_p)$ be the Frobenius such that $\sigma_{\text{cyc}}|Q_p^\text{cyc} = 1$ and $\sigma_{\text{cyc}}|Q_p^\text{ur} = \text{Fr}$. For each $z \in \hat{H}^1(\hat{K}_\infty, V)$, we have

$$\langle z, \text{cor}_{F_\infty/K_\infty} (w^\eta) \rangle_{K_\infty} = \text{pr}_{K_\infty} (\text{Col}^\eta(z)) \sum_{i=1}^{[F:Q_p]} \frac{\sigma_{\text{cyc}}^i|K_\infty}{[F_\infty : K_\infty] : h^e_{\text{cyc}}} \in \mathcal{W}[\hat{K}_\infty] \otimes Q_p.$$

Proof. We first recall that for every $e \in (R \otimes \mathcal{W})^{\varphi_F = 0}$, the big exponential map $\Omega_{V,1}(\eta \otimes e)$ in Theorem 3.3 is given by

$$\Omega_{V,1}(\eta \otimes e) = (\exp_{F_n,V}(\Xi_n, V(G^\eta)))_{n=0,1,2,...},$$
where $G_e \in D(V) \otimes \mathcal{H}_1 \mathcal{Q}(X)$ is a solution of $(1 - \varphi \otimes \varphi_\mathcal{Q}) G_e = \eta \otimes \epsilon$. By the definition of G_e, we verify that
\begin{equation}
\Xi_{n,V}(G_e) = p^{-(n+1)}(\varphi^{-(n+1)} \otimes 1) G_e^{\text{Fr}^{-(n+1)}}(\epsilon_n)
\end{equation}

\[= \sum_{m=0}^{\infty} (p\varphi)^{-(n+1)} \varphi^m \eta \otimes e^\text{Fr}^{-(n+1)}(\epsilon_{n-m})
\]

\[= \sum_{m=0}^{n+1} (p\varphi)^{-(n+1)} \varphi^m \eta \otimes e^\text{Fr}^{-(n+1)}(\epsilon_{n-m}) + p^{-(n+1)}(1 - \varphi \otimes \text{Fr}^{-(n+1)}(\eta \otimes \epsilon(0))).
\]

Put $z_n = \text{pr}_K(z)$ and $\hat{G}_n = \text{Gal}(F_n/F)$. Following the computation in [Kob18, Thm. 5.10], we find that $[\text{pr}_K(\text{Col}_e(z)), \eta]$ is given by
\begin{equation}
\sum_{m=0}^{\infty} \sum_{\gamma \in \hat{G}_n} \exp_{\hat{K}_n,V}(z_n^{-1}\sigma_0^{n+1-m}) \gamma, \sum_{\tau \in \hat{G}_n} (p\varphi)^{-(n+1)} \varphi^m \eta \otimes e^\text{Fr}^{-(n+1)}(\epsilon_{n-m}) \tau \sigma_0^{n+1-m} \tau|_{K_n}.
\end{equation}

On the other hand,
\begin{equation}
\text{pr}_K((z, \text{cor}_{F_n/K_n}(w^n)))|_{K_n} = \frac{1}{[F_n : K_n]} \sum_{j=1}^{[F_n : Q_p]} \text{pr}_K((z^{\sigma_0^j}, w^n)|_{F_n}) \sigma_0^j|_{K_n},
\end{equation}

and $\text{pr}_K((z^{\sigma_0^j}, w^n)|_{F_n})$ equals
\begin{equation}
\sum_{\gamma \in \hat{G}_n} \exp_{\hat{K}_n,V}(z_n^{-1}\sigma_0^{n+1-m}) \gamma, \sum_{\tau \in \hat{G}_n} (p\varphi)^{-(n+1)} \varphi^m \eta \otimes e^\text{Fr}^{-(n+1)}(\epsilon_{n-m}) \tau \sigma_0^{n+1-m} \tau|_{K_n}
\end{equation}

From this, it follows immediately that
\begin{equation}
\text{pr}_K((z, \text{cor}_{F_n/K_n}(w^n)))|_{K_n} = \frac{1}{[F_n : K_n]} \sum_{j=1}^{[F_n : Q_p]} \text{pr}_K((z^{\sigma_0^j}, w^n)) \sigma_0^j|_{K_n}
\end{equation}

On the other hand, by definition,
\begin{equation}
\text{Col}^p(z) = \sum_{j=1}^{[F_n : Q_p]} \text{Col}_{g_\rho}(z^{\sigma_0^j}, \eta) \sigma_0^j
\end{equation}

with $g_\rho = \rho(1+X)$. From [36] with $e = g_\rho$ and the fact that $g_\rho^{\sigma_0^{m-n-1}}(\epsilon_{n-m}) = \zeta_{p^{m-n-1}} \in Q_p^{\text{cyc}}$, we deduce that
\begin{equation}
\text{Col}_{g_\rho}(z^{\sigma_0^j}, \eta) = \text{Col}_{g_\rho}(z^{\sigma_0^j}, \eta),
\end{equation}
so \((\text{Col}^0(z))^\sigma = \text{Col}^0(z) \cdot \sigma^\text{cyc}\). Now the lemma follows from [3,7]. □

Now we give a formula for the derived \(p\)-adic heights over \(K\) in terms of the Coleman map over \(F_\infty\). For every prime \(v\) of \(K\) above \(p\), let \(H^1_{\text{fin}}(K_v, V) \subset H^1(K_v, V)\) be the Bloch–Kato finite subspace, and set

\[
\log_{\omega_E,v} = \langle \log_{K_v,V}(-), \omega_E \otimes t^{-1} \rangle_{dR} : H^1_{\text{fin}}(K_v, V) \to L.
\]

Since \(p\) is a prime of good reduction for \(E\), by [BK90, Cor. 3.8.4] we have \(H^1_{\exp}(K_v, V) = H^1_{\text{fin}}(K_v, V)\), where \(H^1_{\exp}(K_v, V) \subset H^1(K_v, V)\) is the image of \(\exp_{K_v,V}\). For the ease of notation, we write \(\text{Col}^p(-)\) for \(\text{pr}_K(\text{Col}^p(-))\) in what follows.

Proposition 3.7. Let \(z, x \in S^r_p(E/K) \otimes Q_pL\), and suppose that there exists \(z \in \hat{H}^1(\hat{K}_\infty, V)\) such that \(\text{pr}_K(z) = x\). If \(\text{Col}^p(\text{loc}_v(z)) \in J^r\mathcal{W}[\hat{\Gamma}_\infty] \otimes Q_p\) for some \(v \in \{p, \overline{p}\}\), then

\[
h^r_z(x, z) = \frac{-1}{1 - \alpha_p} \cdot \frac{1}{1 - \alpha_p^{-1}} \left[F : Q_p \right]^{-1} \left(\langle \log_{\omega_E,p}(-), \omega_E \otimes t^{-1} \rangle_{dR} \right) \bmod J^{\alpha_p} \mathcal{W} \otimes Q_p,
\]

where \(\overline{x}\) and \(\overline{z}\) are the complex conjugates of \(x\) and \(z\).

Proof. Let \(w_p := \text{cor}_{F_\infty/\hat{K}_\infty}(w^n) \in \hat{H}^1(\hat{K}_\infty, V)\). Since \(\dim_{Q_p} H^1_{\text{fin}}(Q_p, V) = 1\), we can write

\[
\text{loc}_p(x) = c \cdot \text{pr}_{Q_p}(w_p) = c \cdot \text{cor}_{F/Q_p}(\text{pr}_F(w^n))
\]

for some \(c \in Q_p\). By Lemma 3.5,

\[
\langle \log_{Q_p,V}(\text{loc}_p(x)), \omega_E \otimes t^{-1} \rangle_{dR} = c[F : Q_p] \cdot \left(\frac{1 - \varphi^{-1}}{1 - \varphi} \eta, \omega_E \otimes t^{-1} \right)_{dR}.
\]

Since \(\varphi \eta = p^{-1} \alpha_p \cdot \eta\), this shows that

\[
c = \frac{1}{1 - \alpha_p^{-1}} \cdot [F : Q_p] \cdot \log_{\omega_E,p}(x).
\]

Applying Corollary 2.2, we find that that

\[
h_z^r(x, z) = \left(-1 - p^{-1} \alpha_p \right) \cdot \left(1 - \alpha_p^{-1} \right)^{-1} \cdot [F : Q_p]^{-1}
\]

\[
\times \left(\langle \log_{\omega_E,p}(x), \langle \text{loc}_p(z), w_p \rangle_{K_\infty} + \log_{\omega_E,p}(\overline{z}) \cdot \langle \text{loc}_p(\overline{z}), w_p \rangle_{K_\infty} \right) \bmod J^{\alpha_p} \mathcal{W} \otimes Q_p,
\]

Since \(\rho(1 + X) = h_x \cdot e\) and \(e(0) = 1\), we find that \(1 = e(0) \cdot (h_x|_{\gamma = 1})\) and hence \(h_x \equiv 1 \pmod J\). The assertion now follows from the above equation and Lemma 4.6. □

4. Euler system construction of theta elements

In this section we prove Theorem 4.1, recovering the square-root anticyclotomic \(p\)-adic \(L\)-functions of Bertolini–Darmon [BD90] (in the definite case) as the image of a \(p\)-adic family of diagonal cycles [DR17a] under the Coleman map of [3,2].

4.1. Ordmary \(\Lambda\)-adic forms. Fix a prime \(p > 2\). Let \(\mathbb{P}\) be a normal domain finite flat over \(\Lambda := \mathcal{O}/[1 + p\mathbb{Z}_p]\), where \(\mathcal{O}\) is the ring of integers of a finite extension \(L/Q_p\). We say that a point \(x \in \text{Spec } \mathcal{O}(\mathbb{Q}_p)\) is **locally algebraic** if its restriction to \(1 + p\mathbb{Z}_p\) is given by \(x(\gamma) = \gamma^{k_x} \epsilon_x(\gamma)\) for some integer \(k_x\), called the **weight** of \(x\), and some finite order character \(\epsilon_x : 1 + p\mathbb{Z}_p \to \mu_{p^\infty}\); we say that \(x\) is **arithmetic** if it has weight \(k_x \geq 2\). Let \(\mathbb{X}^\circ_{ar}\) be the set of arithmetic points.
Fix a positive integer N prime to p, and let $\chi : (\mathbb{Z}/Np\mathbb{Z})^\times \to \mathcal{O}^\times$ be a Dirichlet character modulo Np. Let $S^0(N, \chi, \mathbb{I})$ be the space of ordinary \mathbb{I}-adic cusp forms of tame level N and branch character χ, consisting of formal power series

$$ f(q) = \sum_{n=1}^{\infty} a_n(f) q^n \in \mathbb{I}[q] $$

such that for every $x \in \mathbb{X}_\mathbb{I}^+$ the specialization $f_x(q)$ is the q-expansion of a p-ordinary cusp form $f_x \in S_{k, \chi}(Np^{r_x+1}, \chi^2 q^{-k_x} \epsilon_x)$. Here $r_x \geq 0$ is such that $\epsilon_x(1+p)$ has exact order p^{r_x}, and $\omega : (\mathbb{Z}/p\mathbb{Z})^\times \to \mu_{p-1}$ is the Teichmüller character.

We say that $f \in S^0(N, \chi, \mathbb{I})$ is a primitive Hida family if for every $x \in \mathbb{X}_\mathbb{I}^+$ we have that f_x is an ordinary p-stabilized newform (in the sense of [Hsi19 Def. 2.4]) of tame level N. Given a primitive Hida family $f \in S^0(N, \chi, \mathbb{I})$, and writing $\chi = \chi' \chi_p$ with χ' a Dirichlet modulo N (resp. p), there is a primitive $f^i \in S^0(N, \chi_p \mathbb{I}, \mathbb{I})$ with Fourier coefficients

$$ a_{\ell}(f^i) = \begin{cases} \chi'(\ell) a_{\ell}(f) & \text{if } \ell \nmid N, \\ a_{\ell}(f) \chi^2 \chi_p(\ell)^{-1} & \text{if } \ell \mid N, \end{cases} $$

having the property that for every $x \in \mathbb{X}_\mathbb{I}^+$ the specialization f_x^i is the p-stabilized newform attached to the character twist $f_x \otimes \chi$.

By [Hid86] (cf. [Wil88 Thm. 2.2.1]), attached to every primitive Hida family $f \in S^0(N, \chi, \mathbb{I})$ there is a continuous \mathbb{I}-adic representation $\rho_f : G_{Q} \to \text{GL}_2(\text{Frac} \mathbb{I})$ which is unramified outside Np and such that for every prime $\ell \nmid Np$,

$$ \text{tr} \rho_f(\text{Frob}_\ell) = a_{\ell}(f), \quad \det \rho_f(\text{Frob}_\ell) = \chi \omega^2(\ell) \ell^{a_{\ell}(f) - 1}, $$

where $\ell \in \mathbb{I}^\times$ is the image of $\omega^{-1}(\ell)$ under the natural map $1 + p\mathbb{Z}_p \to \mathcal{O}[1 + p\mathbb{Z}_p]^\times = \Lambda^\times \to \mathbb{I}^\times$. In particular, letting $\langle \varepsilon_{\text{cyc}} \rangle : G_{Q} \to \mathbb{I}^\times$ be defined by $\langle \varepsilon_{\text{cyc}} \rangle(\sigma) = \langle \varepsilon_{\text{cyc}}(\sigma) \rangle_1$, it follows that ρ_f has determinant $\chi_1 \varepsilon_{\text{cyc}}^{-1}$, where $\chi_1 : G_{Q} \to \mathbb{I}^\times$ is given by $\chi_1 := \sigma:\varepsilon_{\text{cyc}}^{-2}\langle \varepsilon_{\text{cyc}} \rangle_1$, with σ the Galois character sending $\text{Frob}_\ell \mapsto \chi(\ell)^{-1}$. Moreover, by [Wil88 Thm. 2.2.2] the restriction of ρ_f to G_{Q_p} is given by

$$ \rho_f|_{G_{Q_p}} \sim \begin{pmatrix} \psi_f & * \\ 0 & \psi_f^{-1} \chi_1^{-1} \varepsilon_{\text{cyc}}^{-1} \end{pmatrix} \quad (4.1) $$

where $\psi_f : G_{Q_p} \to \mathbb{I}^\times$ is the unramified character with $\psi_f(\text{Frob}_p) = a_p(f)$.

4.2. Triple product p-adic L-function. Let

$$ (f, g, h) \in S^0(N_f, \chi_f, \mathbb{I}_f) \times S^0(N_g, \chi_g, \mathbb{I}_g) \times S^0(N_h, \chi_h, \mathbb{I}_h) $$

be a triple of primitive Hida families. Set

$$ \mathcal{R} := \mathbb{I}_f \hat{\otimes} \mathbb{I}_g \hat{\otimes} \mathbb{I}_h, $$

which is a finite extension of the three-variable Iwasawa algebra $\mathcal{R}_0 := \Lambda \hat{\otimes} \Lambda \hat{\otimes} \Lambda$, and define the weight space $\mathcal{X}_{\mathcal{R}}^f$ for the triple (f, g, h) in the f-dominated unbalanced range by

$$ \mathcal{X}_{\mathcal{R}}^f := \left\{ (x, y, z) \in \mathcal{X}_f^+ \times \mathcal{X}_g^+ \times \mathcal{X}_h^+ : k_x \geq k_y + k_z \text{ and } k_x \equiv k_y + k_z \pmod{2} \right\}, $$

where \mathcal{X}_g^+ (and similarly \mathcal{X}_h^+) is the set of locally algebraic points in Spec $\mathbb{I}_g(\overline{\mathbb{Q}}_p)$ for which $g_q(g)$ is the q-expansion of a classical modular form.

For $\phi \in \{ f, g, h \}$ and a positive integer N prime to p and divisible by N_ϕ, define the space of A-adic test vectors $S^0(N, \phi, \mathbb{I}_\phi)_{\phi}$ to be the \mathbb{I}_ϕ-submodule of $S^0(N, \chi_\phi, \mathbb{I}_\phi)$ generated by $\{ \phi(q^d) \}$, as d ranges over the positive divisors of N/N_ϕ.

For the next result, let $N := \text{lcm}(N_f, N_g, N_h)$, and consider the following hypothesis:

$$ (\Sigma^-) \quad \text{for some } (x, y, z) \in \mathcal{X}_{\mathcal{R}}^f, \text{ we have } \varepsilon_q(f_x^0, g_y^0, h_z^0) = +1 \text{ for all } q \mid N. $$
Here \(\varepsilon_q(f^0_x, g^0_y, h^0_z) \) denotes the local root number of the Kummer self-dual twist of the Galois representations attached to the newforms \(f^0_x, g^0_y, \) and \(h^0_z \) corresponding to \(f_x, g_y, \) and \(h_z, \) respectively.

Theorem 4.1. Assume that the residual representation \(\bar{\rho}_f \) satisfies

\[
(CR) \quad \bar{\rho}_f \text{ is absolutely irreducible and } p\text{-distinguished},
\]

and that, in addition to \((\Sigma^-),\) the triple \((f, g, h)\) satisfies

\[
(ev) \quad \chi_f \chi_g \chi_h = \omega^{2a} \text{ for some } a \in \mathbb{Z},
\]

\[
(sq) \quad \gcd(N_f, N_g, N_h) \text{ is square-free.}
\]

Then there exist \(\Lambda \)-adic test vectors \((\tilde{f}^*, \tilde{g}^*, \tilde{h}^*) \) and an element

\[
\mathcal{L}_f^p(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*) \in \mathcal{R}
\]

such that for all \((x, y, z) \in \mathcal{X}_R\) of weight \((k, \ell, m):\)

\[
\nu(x, y, z)(\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*)^2) = \frac{\Gamma(k, \ell, m)}{2^n(k, \ell, m)} \cdot \frac{\mathcal{E}(f_x, g_y, h_z)^2}{\mathcal{E}_0(f_x)^2 \cdot \mathcal{E}_1(f_x)^2} \cdot \prod_{q \mid N} c_q \cdot \frac{L(f^0_x \otimes g^0_y \otimes h^0_z, c)}{\pi^{2(k-2)} \cdot \|f^0_x\|^2},
\]

where:

- \(c = (k + \ell + m - 2)/2, \)
- \(\Gamma(k, \ell, m) = (c - 1)! \cdot (c - m)! \cdot (c - \ell)! \cdot (c + 1 - \ell - m)!, \)
- \(\alpha(k, \ell, m) \in \mathcal{R} \) is a linear form in the variables \(k, \ell, m, \)
- \(\mathcal{E}(f_x, g_y, h_z) = (1 - \beta_{f_x, \alpha_g, \alpha_h})(1 - \beta_{f_x, \beta_g, \beta_h})(1 - \beta_{f_x, \gamma_g, \gamma_h})(1 - \beta_{f_x, \delta_g, \delta_h}), \)
- \(\mathcal{E}_0(f_x) = (1 - \beta_{f_x, \alpha_g}), \quad \mathcal{E}_1(f_x) = (1 - \beta_{f_x, \beta_g}), \)

and \(\|f^0_x\|^2 \) is the Petersson norm of \(f^0_x \) on \(\Gamma_0(N_f). \)

Proof. See [Hsi19] Thm. A. More specifically, the construction of \(\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*) \) under hypotheses \((CR), (ev),\) and \((sq)\) is given in [Hsi19] \S 3.6 (where it is denoted \(\mathcal{L}_F^f \)), and the proof of its interpolation property assuming \((\Sigma^-)\) is contained in [Hsi19] \S 7.

4.3. **Triple tensor product of big Galois representations.** Let \((f, g, h)\) be a triple of primitive Hida families with \(\chi_f \chi_g \chi_h = \omega^{2a} \) for some \(a \in \mathbb{Z}. \) For \(\phi \in \{f, g, h\}, \) let \(V_{\phi} \) be the natural lattice in \(\text{Frac} \mathbb{L}_\phi \) realizing the Galois representation \(\rho_\phi \) in the étale cohomology of modular curves (see [Oht04]), and set

\[
\mathbb{V}_{fgh} := V_f \otimes V_g \otimes V_h.
\]

This has rank 8 over \(\mathcal{R}, \) and by hypothesis its determinant can be written as det \(\mathbb{V}_{fgh} = \chi^2 \varepsilon_{\text{cyc}} \) for a \(p\)-ramified Galois character \(\chi \) taking the value \((-1)^a \) at complex conjugation. Similarly as in [How07] Def. 2.1.3], we define the **critical twist**

\[
\mathbb{V}_{fgh}^\dagger := \mathbb{V}_{fgh} \otimes \chi^{-1}.
\]

More generally, for any multiple \(N \) of \(N_\phi \) one can define Galois modules \(V_{\phi}(N) \) by working in tame level \(N \); these split non-canonically into a finite direct sum of the \(\mathbb{L}_\phi \)-adic representations \(V_{\phi} \) (see [DR17a] \S 1.5.3]), and they define \(\mathbb{V}_{fgh}^\dagger(N) \) for any \(N \) divisible by \(\text{lcm}(N_f, N_g, N_h). \)

If \(f \) is a classical specialization of \(\bar{f} \) with associated \(p\)-adic Galois representation \(V_f, \) we let \(\mathbb{V}_{f,gh} \) be the quotient of \(\mathbb{V}_{fgh} \) given by

\[
\mathbb{V}_{f,gh} := V_f \otimes V_g \otimes V_h.
\]

Denote by \(\mathbb{V}_{f,gh}^\dagger \) the corresponding quotient of \(\mathbb{V}_{fgh}^\dagger, \) and by \(\mathbb{V}_{f,gh}^\dagger(N) \) its level \(N \) counterpart.
4.4. Theta elements and factorization. We recall the factorization proven in [Hsi19, §8]. Let $f \in S_2(pN_f)$ be a p-stabilized newform of tame level N_f defined over O, let $f^\circ \in S_2(N_f)$ be the associated newform, and let $\alpha_p = \alpha_p(f) \in O^\times$ be the U_p-eigenvalue of f. Let K be an imaginary quadratic field of discriminant D_K prime to N_f. Write

$$N_f = N^+N^-$$

with N^+ (resp. N^-) divisible only by primes which are split (resp. inert) in K, and choose an ideal $\mathfrak{R}^+ \subset O_K$ with $O_K/\mathfrak{R}^+ \simeq \mathbb{Z}/N^+\mathbb{Z}$.

We assume that $pO_K = \mathfrak{p}O_K$ splits in K, with \mathfrak{p} the prime of K above p induced by our fixed embedding $\mathbb{Q} \hookrightarrow \mathbb{C}_p$. Let $\Gamma_\infty = \text{Gal}(K_\infty/K)$ be the Galois group of the anticyclotomic \mathbb{Z}_p-extension of K, fix a topological generator $\gamma \in \Gamma_\infty$, and identity $O[[\Gamma_\infty]]$ with the one-variable power series ring $O[[T]]$ via $\gamma \mapsto 1 + T$. For any prime-to-p ideal \mathfrak{a} of K, let $\sigma_\mathfrak{a}$ be the image of \mathfrak{a} in the Galois group of the ray class field $K(p^{\infty})/K$ of conductor p^{∞} under the geometrically normalized reciprocity law map.

Theorem 4.2. Let χ be a ring class character of K of conductor cO_K with values in O, and assume that:

1. $(pN_f, cD_K) = 1$,
2. N^- is the square-free product of an odd number of primes,
3. $\tilde{\rho}_f$ is absolutely irreducible and p-distinguished,
4. if $q|N^-$ is a prime with $q \equiv 1 \pmod{p}$, then $\tilde{\rho}_f$ is ramified at q.

Then there exists a unique element $\Theta_{f/K, \chi}(T) \in O[[T]]$ such that for every p-power root of unity $\zeta \in \mathbb{Q}_p$:

$$\Theta_{f/K, \chi}(\zeta - 1)^2 = \frac{p^n}{\alpha_p^{2n}} \cdot \mathcal{E}_p(f, \chi, \zeta)^2 \cdot \frac{L(f^\circ/K \otimes \chi \epsilon, 1)}{(2\pi)^2 \cdot \Omega_{f^\circ, N^-}} \cdot u_K^2 \cdot D_K \chi \epsilon_{\zeta} \cdot \epsilon_{\sigma_0^+} \cdot \epsilon_p,$$

where:

- $n \geq 0$ is such that ζ has exact order p^n,
- $\epsilon_{\zeta} : \Gamma_\infty \to \mu_{p^n}$ be the character defined by $\epsilon_{\zeta}(\gamma) = \zeta$,
- $\mathcal{E}_p(f, \chi, \zeta) = \left\{ \begin{array}{ll} (1 - \alpha_p^{-1}(\mathfrak{p})) & \text{if } n = 0, \\ 1 & \text{if } n > 0, \end{array} \right.$
- $\Omega_{f^\circ, N^-} = 4 \cdot \|f^\circ\|_{\Gamma_0(N_f)}^2 \cdot \eta_{f^\circ, N^-}$ is the Gross period of f°,
- $\sigma_0^+ \in \Gamma_\infty$ is the image of \mathfrak{R}^+ under the geometrically normalized Artin’s reciprocity map,
- $u_K = |O_K^\times|/2$, and $\epsilon_p = \{\pm 1\}$ is the local root number of f° at p.

Proof. See [BD96] for the first construction, and [CH18, Thm. A] for the stated interpolation property. \hfill \Box

When χ is the trivial character, we write $\Theta_{f/K, \chi}(T)$ simply as $\Theta_{f/K}(T)$. Suppose now that f is the specialization of a primitive Hida family $f \in S^a(N_f, \ell)$ with branch character $\chi_f = 1$ at an arithmetic point $x_1 \in \mathcal{X}_f^+$ of weight 2. Let $\ell \nmid pN_f$ be a prime split in K, and let χ be a ring class character of K of conductor $\ell^{2m}O_K$ for some even $m > 0$. Set $C = D_K\ell^{2m}$ and let

$$g = \theta_{\chi}(S_2) \in S^b(C, \omega^{-1}) \otimes \eta_{K/Q}, O[S_2], \quad h = \theta_{\chi^{-1}}(S_3) \in S^c(C, \omega^{-1}) \otimes \eta_{K/Q}, O[S_3])$$

be the primitive CM Hida families constructed in [Hsi19, §8.3], where $\eta_{K/Q}$ is the quadratic character associated to K. The p-adic triple product L-function of Theorem [11] for this triple (f, g, h) is an element in $\mathcal{R} = \mathbb{I}[S_2, S_3]$; in the following we let

$$L_p^f(\tilde{f}^*, g^*h^*) \in O[[S]]
denote the restriction to the “line” \(S = S_2 = S_3 \) of its image under the specialization map at \(x_1 \).

Let \(\mathbb{K}_\infty \) be the \(\mathbb{Z}_p \)-extension of \(K \), and let \(K_p^\infty \) denote the \(p \)-ramified \(\mathbb{Z}_p \)-extension in \(\mathbb{K}_\infty \), with Galois group \(\Gamma_p^\infty = \text{Gal}(K_p^\infty/K) \). Let \(\gamma_p \in \Gamma_p^\infty \) be a topological generator, and for the formal variable \(T \) let \(\Psi_T : \text{Gal}(\mathbb{K}_\infty/K) \to \mathcal{O}[T]^{\times} \) be the universal character defined by

\[
\Psi_T(\sigma) = (1 + T)^{l(\sigma)}, \quad \text{where } \sigma|_{K_p^\infty} = l_p(\sigma).
\]

Denoting by the superscript the action of the non-trivial automorphism of \(K/\mathbb{Q} \), the character \(\Psi_T^{1-c} \) factors through \(\Gamma_\infty \) and yields an identification \(\mathcal{O}[[\Gamma_\infty]] \simeq \mathcal{O}[T] \) corresponding to the topological generator \(\gamma_1^{1-c} \in \Gamma_\infty \). Let \(p^b \) be the order of the \(p \)-part of the class number of \(K \). Hereafter, we shall fix \(v \in \overline{\mathbb{Z}_p^\times} \) such that \(v = \varepsilon_{\text{cyc}}(\gamma_p^p) \in 1 + p\mathbb{Z}_p \). Let \(K(\chi, \alpha_p)/K \) (resp. \(K(\chi)/K \)) be the finite extension obtained by adjoining to \(K \) the values of \(\chi \) and \(\alpha_p \) (resp. the values of \(\chi \)).

Proposition 4.3. Set \(T = v^{-1}(1 + S) - 1 \). Then

\[
\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^* \tilde{h}^*) = \pm \Psi_T^{1-c}(\sigma_{\omega_1}) \cdot \Theta_{f/K}(T) \cdot C_{f,\chi} \cdot \sqrt{L_{\text{alg}}(f/K \otimes \chi^2, 1)},
\]

where \(C_{f,\chi} \in K(\chi, \alpha_p)^\times \) and

\[
L_{\text{alg}}(f/K \otimes \chi^2, 1) := \frac{L(f/K \otimes \chi^2, 1)}{\pi^2 \Omega_{f,c,N^-}} \in K(\chi).
\]

Proof. This is the factorization formula of [HS19, Prop. 8.1] specialized to \(S = S_2 = S_3 \), using the interpolation property of \(\Theta_{f/K,\chi^2}(T) \) at \(\zeta = 1 \).

Remark 4.4. The factorization of Proposition 4.3 reflects the decomposition of Galois representations

\[
\mathcal{V}_{f,gh}^\dagger = (V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \Psi_T^{1-c}) \oplus (V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \chi^2).
\]

4.5. Euler system construction of theta elements. For the rest of the paper, assume that \(f, g = \theta_\chi(S) \), and \(h = \theta_{\chi^{-1}}(S) \) are as in [4.3], viewing the latter two in \(S^0(C, \omega^{-1} \eta_K/\mathbb{Q}, \mathcal{O}[S]) \).

Keeping the notations from [4.3] by DR16, §1 there exists a class

\[
\kappa(f, gh) \in H^1(Q, \mathcal{V}_{f,gh}^\dagger(N))
\]

constructed from twisted diagonal cycles on the triple product of modular curves of tame level \(N \) (we shall briefly recall the construction of this class in Theorem 4.10 below), where we may take \(N = \text{lcm}(N_f, C) \).

Every triple of test vectors \(\tilde{F} = (\tilde{f}, \tilde{g}, \tilde{h}) \) defines a Galois-equivariant projection

\[
\text{pr}_{\tilde{F}} : H^1(Q, \mathcal{V}_{f,gh}^\dagger(N)) \to H^1(Q, \mathcal{V}_{f,gh}^\dagger)
\]

and we let

\[
\kappa(\tilde{f}, \tilde{g}, \tilde{h}) := \text{pr}_{\tilde{F}}(\kappa(f, gh)) \in H^1(Q, \mathcal{V}_{f,gh}^\dagger).
\]

Since \(\Psi_T^{1-c} \) gives the universal character of \(\Gamma_\infty = \text{Gal}(K_\infty/K) \), by [4.3] and Shapiro’s lemma we have the equalities

\[
H^1(Q, \mathcal{V}_{f,gh}^\dagger) = H^1(Q, V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \Psi_T^{1-c}) \oplus H^1(Q, V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \chi^2) = \hat{H}^1(K_\infty, V_f(1)) \oplus H^1(K, V_f(1) \otimes \chi^2).
\]

Let \(g \) and \(h \) be the weight 1 eigenform \(\theta_\chi \) and \(\theta_{\chi^{-1}} \), respectively, so that the specialization of \((g, h) \) at \(T = 0 \) (\(\Leftrightarrow S = v - 1 \)) is a \(p \)-stabilization of the pair \((g, h) \).
Lemma 4.5. Assume that $L(f \otimes g \otimes h, 1) = 0$ and that $L(f/K \otimes \chi^2, 1) \neq 0$. Then for every choice of test vectors $F = (\tilde{f}, \tilde{g}, \tilde{h})$ we have:

1. $\kappa(\tilde{f}, \tilde{g}, \tilde{h}) \in \tilde{H}^1(K_{\infty}, V_f(1))$.
2. $\text{loc}_{\tilde{\kappa}}(\kappa(\tilde{f}, \tilde{g}, \tilde{h})) = 0 \in \tilde{H}^1(K_{\infty, \tilde{\kappa}}, V_f(1))$.

Proof. Let $\kappa = \kappa(\tilde{f}, \tilde{g}, \tilde{h})$ and for every $? \in \{f, g, h\}$, let $V_?V_f$ be the rank one subspace of V_f fixed by the inertia group at p. By (4.7), in order to prove (1) it suffices to show that some specialization of κ has trivial image in $H^1(K, V_f(1) \otimes \chi^2)$. Let

$$\kappa_{f, gh} := \kappa|_{S=E} \in H^1(Q, V_{fgh}) = H^1(K, V_f(1)) \oplus H^1(K, V_f(1) \otimes \chi^2),$$

where $V_{fgh} := V_f(1) \otimes V_g \otimes V_h$. As noted in [DR17a, p. 634], the Selmer group $\text{Sel}(Q, V_{fgh}) \subset H^1(Q, V_{fgh})$ is given by

$$\text{Sel}(Q, V_{fgh}) = \ker \left(H^1(Q, V_{fgh}) \xrightarrow{\partial_p, \text{loc}_{\tilde{\kappa}}} H^1(Q_p, V_f^{-1}(1) \otimes V_g \otimes V_h) \right),$$

where ∂_p is the natural map induced by the projection $V_f \twoheadrightarrow V_f^{-1} := V_f/F^0V_f$, and so

$$\text{Sel}(Q, V_{fgh}) = \text{Sel}(K, V_f(1)) \oplus \text{Sel}(K, V_f(1) \otimes \chi^2).$$

The implications $L(f \otimes g \otimes h, 1) = 0 \Rightarrow \kappa_{f, gh} \in \text{Sel}(Q, V_{fgh})$ and $L(f/K \otimes \chi^2, 1) \neq 0 \Rightarrow \text{Sel}(K, V_f(1) \otimes \chi^2) = 0$, which follow from [DR17a, Thm. C] and [CH15, Thm. 1], respectively, thus yield assertion (1).

We proceed to prove (2). We know that the local class $\text{loc}_p(\kappa)$ belongs to $H^1(Q_p, F^+V_{fgh})$, where

$$F^+V_{fgh} := (F^0V_f(1) \otimes F^0V_g \otimes V_h + F^0V_f(1) \otimes V_g \otimes F^0V_h + V_f(1) \otimes F^0V_g \otimes F^0V_h) \otimes \chi^{-1}$$

is a rank four subspace of V_{fgh}^\dagger (see [DR17a, Cor. 2.3]). In our case where $(g, h) = (\theta_{\chi, \theta_{\chi^{-1}}}, 1)$, we have

$$F^+V_{fgh} = V_f(1) \otimes \Psi_T^{-c} + F^0V_f(1) \otimes (\chi^2 \otimes \chi^{-2}),$$

where Ψ_T is viewed as a character of G_{Q_p} via the embedding $K \hookrightarrow Q_p$ induced by p. From part (1) of the lemma, it follows that

$$\text{loc}_p(\kappa) = (\text{loc}_p(\kappa), \text{loc}_p(\tilde{\kappa})) \in H^1(K_p, V_f(1) \otimes \Psi_T^{-c}) \oplus \{0\} \subset H^1(K_p, V_f(1) \otimes \Psi_T^{-c} \oplus H^1(K_p, V_f(1) \otimes \Psi_T^{1-c}) = H^1(Q_p, V_f(1) \otimes \text{Ind}_K^Q \Psi_T^{1-c}).$$

We thus conclude that $\text{loc}_p(\tilde{\kappa}) = 0$, and hence $\text{loc}_{\tilde{\kappa}}(\kappa) = 0$. \hfill \square

From now on, assume that $f^0 \in S_2(N_f)$ is the newform corresponding to an elliptic curve E/Q with good ordinary reduction at p. In particular, $V_f(1) \simeq V_pE$, and under the conditions in Lemma 4.3 we have the class $\kappa(\tilde{f}, \tilde{g}, \tilde{h}) \in \tilde{H}^1(K_{\infty}, V_pE \otimes L)$.

The following key theorem is a variant of the “explicit reciprocity law” of [DR17a, Thm. 5.3] in our setting in terms of the Coleman map constructed in 3.2.

Theorem 4.6 (Darmon–Rotger). Assume that $L(f \otimes g \otimes h, 1) = 0$ and that $L(f/K \otimes \chi^2, 1) \neq 0$. Then $\text{loc}_{\tilde{\kappa}}(\kappa(\tilde{f}, \tilde{g}, \tilde{h})) = 0$ and

$$L_f^0(\tilde{f}, \tilde{g}, \tilde{h}) = \frac{\alpha_p}{2} \cdot (1 - \alpha_p^{-1}a_p(g)a_p(h)^{-1}) \cdot \text{Col}^0(\text{loc}_p(\kappa(\tilde{f}, \tilde{g}, \tilde{h})))$$

where $\tilde{F}^* = (\tilde{f}^*, \tilde{g}^*, \tilde{h}^*)$ is the triple of test vectors from Theorem 4.7.
Consider the triple product of modular curves over \mathbb{Q}:

$$W_{s,s} := X_0(Np) \times X_s \times X_s,$$

where $X_0(Np)$ and X_s are the classical modular curves attached to the congruence subgroups $\Gamma_0(Np)$ and $\Gamma_1(Np^s)$, respectively, and the model for the latter is the one for which the cusp ∞ is defined over \mathbb{Q}. The group $G_{s}(N) := (\mathbb{Z}/Np^s\mathbb{Z})^\times$ acts on X_s by the diamond operators $\langle a; b \rangle$ ($a \in (\mathbb{Z}/N\mathbb{Z})^\times$, $b \in (\mathbb{Z}/p^s\mathbb{Z})^\times$), and we let

$$W_s := W_{s,s}/D_s$$

be the quotient of $W_{s,s}$ by the action of the subgroup $D_s \subset G_{s}(N) \times G_{s}(N)$ consisting of elements of the form ($\langle a; b \rangle; (a; b^{-1})$). Let $\Delta_{s,s,s} \in \operatorname{CH}^2(W_{s,s})/(\mathbb{Q}(\xi_s))$ be the class in the Chow group defined by the "twisted diagonal cycle" defined in (41), and let $\Delta_s \in \operatorname{CH}^2(W_s)/(\mathbb{Q}(\xi_s))$ denote its natural image under the projection $p_s : W_{s,s} \to W_s$. By Proposition 1.4, after applying the correspondence $\varepsilon_{s,s}$ in (47) the cycle $\Delta_{s,s,s}$ becomes null-homologous, and so

$$\Delta_s := \varepsilon_{s,s}(\Delta_{s,s,s}) \in \operatorname{CH}^2(W_s)/(\mathbb{Q}(\xi_s)),$$

letting $\varepsilon_{s,s}$ still denote the linear endomorphism of $\operatorname{CH}^2(W_s)$ defined by the above correspondence. Let $\varepsilon_s : G_{Q} \to (\mathbb{Z}/p^s\mathbb{Z})^\times$ be the mod p^s cyclotomic character, and let X^\dagger_s be the twist of X_s by the cocycle $\sigma \in G_{Q} \mapsto \langle 1; \varepsilon_s(\sigma) \rangle$. By Proposition 1.6, we may alternatively view

$$\Delta_s \in \operatorname{CH}^2(W^\dagger_s)/(\mathbb{Q}),$$

where W^\dagger_s the quotient of $W^\dagger_{s,s} := X_0(Np) \times X_s \times X^\dagger_s$ be a diamond action defined as before.

Consider the p-adic étale Abel–Jacobi map

$$\operatorname{AJ}_{et} : \operatorname{CH}^2(W^\dagger_s)/(\mathbb{Q}) \to H^1(\mathbb{Q}, \operatorname{H}^3_{et}(W^\dagger_s/\mathbb{Q}, \mathbb{Z}_p)(2)).$$

Let $e_{ord} = \lim_n U_p^n$ be Hida’s ordinary projector. Set

$$V^\dagger_{s,s} := H^1_{et}(X_0(Np)/\mathbb{Q}, \mathbb{Z}_p) \otimes e_{ord}(H^1(X_s/\mathbb{Q}, \mathbb{Z}_p)(1)) \otimes e_{ord}(H^1(X^\dagger_s/\mathbb{Q}, \mathbb{Z}_p)(1)),$$

and let $V^\dagger_s := (V^\dagger_{s,s})_{D_s}$ denote the D_s-co-invariants. Let $\varpi_2 : X_{s+1} \hookrightarrow X_s$ be the degeneracy map given by $\tau \mapsto p\tau$ on the complex upper half plane, which naturally defines

$$(\varpi_2)_s = (1, \varpi_2, \varpi_2)_s : V^\dagger_{s+1,s+1} \to V^\dagger_{s,s}.$$

Let $\tilde{\kappa}_s \in H^1(\mathbb{Q}, V^\dagger_{s,s})$ denote the image of $\operatorname{AJ}_{et}(\Delta_s)$ under the composite map

$$H^1(\mathbb{Q}, H^3_{et}(W^\dagger_s/\mathbb{Q}, \mathbb{Z}_p)(2)) \xrightarrow{\varepsilon_s \circ pr_{s,s}} H^1(\mathbb{Q}, H^3_{et}(W^\dagger_s/\mathbb{Q}, \mathbb{Z}_p)(2)) \xrightarrow{(1, e_{ord} \circ pr_{1,1})} H^1(\mathbb{Q}, V^\dagger_{s,s})(D_s)(2)),$$

where the first arrow is defined by Lemma 1.8, and $pr_{1,1}$ is the projection onto the $(1, 1, 1)$-component in the Künneth decomposition for $H^3_{et}(W^\dagger_s/\mathbb{Q}, \mathbb{Z}_p)$. By Proposition 1.8, we have $$(\varpi_2)_s(\tilde{\kappa}_{s+1}) = (1, U_p, 1)(\tilde{\kappa}_s),$$ and hence we obtain the compatible family

$$\kappa_\infty := \lim_s (1, U_p, 1)^{-s}(\tilde{\kappa}_s) \in H^1(\mathbb{Q}, V^\dagger_{s,s})$$

with limit with respect to the maps induced by (41)(11). The triple (f, g, h) defines a natural projection $\varpi_{f,g,h} : V^\dagger_{s,s} \to V^\dagger_{f,g,h}(N)$, and following Definition 1.15 one sets

$$\kappa(f, gh) := \varpi_{f,g,h}(\kappa_\infty) \in H^1(\mathbb{Q}, V^\dagger_{f,g,h}(N))$$.
this is the class in \(\mathfrak{H}_c \). Now, to prove the equality (4.9) in the theorem, it suffices to show that both sides agree at infinitely many points. Let \(x \in \mathcal{X}_+^\times \) have weight 2 with \(\zeta := \epsilon_x(1+p) \in \mu_{p-\infty} \) a primitive \(p^s \)-th root of unity, and set

\[
\kappa(f, g, h_x) := \kappa(f, gh)\big|_{T=\zeta^1-1}.
\]

Directly from the definitions (cf. Proposition 2.5), we have

\[
\kappa(f, g, h_x) = a_p(g_x)^{-s} \cdot \varpi_f g, h_x(AJ_{\Delta_x}) \in H^1(\mathcal{Q}, V_{f g, h_x}(N)),
\]

where \(V_{f g, h_x}(N) \) is the \((f, g, h_x)\)-isotypical component of \(\mathcal{H} \), and \(\varpi_f g, h_x \) is the projection to that component. By Corollary 2.3 and (77), the image of \(\kappa(f, g, h_x) \) in the local cohomology group \(H^1(\mathcal{Q}, V_{f g, h_x}(N)) \) lands in the Bloch–Kato finite subspace \(\mathcal{H}_{\mathrm{fin}}(\mathcal{Q}, V_{f g, h_x}(N)) \subset H^1(\mathcal{Q}, V_{f g, h_x}(N)) \), and so we may consider the image \(\log_p \kappa(f, g, h_x) \) of this restriction under the Bloch–Kato logarithm map

\[
\log_p : \mathcal{H}_{\mathrm{fin}}(\mathcal{Q}, V_{f g, h_x}(N)) \to (\mathfrak{Fil}^0 D_{f g, h_x}(N))^\vee,
\]

where \(D_{f g, h_x}(N) \) by the de Rham comparison isomorphism, we have

\[
D_{f g, h_x}(N) \cong H^1_{\mathrm{DR}}(X_0(Np)/\mathcal{Q}, Q_p(\zeta)/\mathcal{Q})(1)[g_x] \times H^1_{\mathrm{DR}}(X_0/\mathcal{Q}, Q_p(\zeta)(1)[h_x],
\]

As in p. 639, attached to the test vectors \((f, g, h_x)\) one has the de Rham classes \((\eta_f, \omega_{g_x}^0, \omega_{h_x}^0)\), and comparing Proposition 2.10 and Corollary 2.11 we deduce from (4.12) that

\[
\langle \log_p \kappa(f, g, h_x), \eta_f \otimes \omega_{g_x}^0 \otimes \omega_{h_x}^0 \rangle_{\mathrm{DR}} = a_p(g_x)^{-s} \cdot \langle \Delta_p(\Delta_x), \eta_f \otimes \omega_{g_x}^0 \omega_{h_x}^0 \rangle_{\mathrm{DR}} = \epsilon(x, g, h_x) \cdot \sigma_x^{-1} \cdot \alpha_p^{-1} \cdot a_p(g_x)^{-s} \cdot \alpha_p(h_x)^{-s} \cdot \tau_p(f, g \Delta h^t).
\]

Taking \((f, g, h)\) to be the test vectors \(\Phi^* \) from Theorem 4.1 above, the construction in [Hsi19, §3.6] yields \(\mathcal{Z}_{\mathcal{H}}(f, g h) = f^\vee \cdot (g^{-1} h^t) \). Since by construction \(\mathcal{H} \) specializes at \(x \) to \(\mathcal{H}^t_x \), we thus see as in the proof of Theorem 4.16 that

\[
\langle \log_p \kappa(f, g, h_x), \eta_f \otimes \omega_{g_x}^0 \otimes \omega_{h_x}^0 \rangle_{\mathrm{DR}} = \mathcal{E}(f, g, h_x) \cdot \sigma_x^{-1} \cdot \alpha_p^{-1} \cdot a_p(g_x)^{-s} \cdot \alpha_p(h_x)^{-s} \cdot \mathcal{Z}_{\mathcal{H}}(f, g h^t)(x).
\]

On the other hand, letting \(\psi_x := \psi_T|_{T=\zeta^1-1} \), we obtain that \((g_x, h_x)\) is a pair of theta series attached to the characters \((\chi \psi_x^1, \chi \lambda^1)\) of \(G_K \) with \(a_p(g_x) = \chi \psi_x^1(\sigma) \) and \(a_p(h_x) = \chi^{-1} \psi_x^{-1}(\sigma) \). Moreover, we have

\[
\epsilon_x|_{\mathcal{G}_K} = \psi_x^1 + \epsilon_{\sigma} \cdot \psi_x^1, \quad \psi_x^{-1} = \phi_x^1 \cdot \psi_x^{-1}
\]

for some finite order character \(\phi_x \) of \(\mathrm{Gal}(F_{\infty}/\mathcal{Q}_p) \), viewing the character in the left-hand side of this equality as character on \(\mathrm{Gal}(F_{\infty}/F) \) by composition with \(\mathrm{Gal}(F_{\infty}/F) \subset \mathrm{Gal}(F_{\infty}/\mathcal{Q}_p) \to \mathrm{Gal}(K_{\infty,p}/K_p) \subset \Gamma_{\infty} \). Setting \(\eta = \eta_f \otimes t^{-1} \) and \(z_x = \log_p(\kappa(f, g^p h^t)) \), we thus see that

\[
\langle \log_p \kappa(f, g, h_x), \eta_f \otimes \omega_{g_x}^0 \otimes \omega_{h_x}^0 \rangle_{\mathrm{DR}} = \langle \log_p(z_x) \otimes t, \eta \rangle_{\mathrm{DR}} = g(x) \cdot \alpha_p(a_p(g_x)^{-s} \cdot \alpha_p(h_x)^{-s} \cdot \mathcal{Z}_{\mathcal{H}}(f, g h^t)(x),
\]

using Theorem 3.3 with \(j = -1 \) for the last equality. Comparing (4.13) with (4.14) and letting \(s \) vary, the result follows.

We can now immediately deduce the following key cohomological construction of \(\Theta_{f/K} \):
Theorem 4.7. With notations and assumptions as in Theorem 4.6, we have

\[
\text{Col}^q(\text{loc}_p(\kappa(f^*, \tilde{g}^* h^*))) = \pm \Psi_T^{\omega - 1} (\alpha_p) \cdot \Theta_{f/K}(T) \cdot \sqrt{L_{\text{alg}}(E/K \otimes \chi^2, 1)} \cdot \frac{2C_{f, \chi}}{\alpha_p (1 - \alpha_p \bar{\chi}(\mathbf{F})^2)},
\]

where \(C_{f, \chi} \in K(\chi, \alpha_p)^\times\) is the non-zero algebraic number as in Proposition 4.3

Proof. Note that \(\alpha_p(g)a_p(h)^{-1} = \chi(\mathbf{F})^2\). The theorem thus follows immediately from Proposition 4.3 and Theorem 4.6. \(\square\)

4.6. **Generalized Kato classes.** Set \(\alpha = \chi(\mathbf{F})\), and denote by \((g_a, h_{a-1})\) the weight 1 forms obtained by specializing the Hida families \((g, h)\) at \(S = v - 1\). Thus \(g_a\) (resp. \(h_{a-1}\)) is the \(p\)-stabilization of the theta series \(g = \theta_\chi\) (resp. \(h = \theta_{\chi^{-1}}\)) having \(U_p\)-eigenvalue \(\alpha\) (resp. \(\alpha^{-1}\)). By specialization, the \(O[S]-\text{adic class in}\) (4.3) yields the class

\[
\kappa(f, g_a, h_{a-1}) := \kappa(f, \tilde{g}^* h^*)|_{S=v-1} \in H^1(Q, V_{fgh}),
\]

where \(V_{fgh} := V_f \otimes V_g \otimes V_h\). Setting \(\beta = \chi(p)\) and alternatively changing the roles of \(p\) and \(\mathbf{F}\) in the construction \(g\) and \(h\) we thus obtain the four \textit{generalized Kato classes}

\[
(4.15) \quad \kappa(f, g_a, h_{a-1}), \kappa(f, g_{a-1}, h_{a}), \kappa(f, g_{a-1}, h_{a}), \kappa(f, g_{a}, h_{a-1}) \in H^1(Q, V_{fgh}).
\]

From now on, we assume that \(\alpha \neq \pm 1\), so that the four classes (4.15) are \textit{a priori} distinct. Recall that \(f\) is the \(p\)-stabilization of the newform associated to an elliptic curve \(E/Q\), so that \(V_f(1) \simeq V_pE\), and let \(\kappa_{\alpha, a-1}, \kappa_{\alpha, a}, \kappa_{\beta, a-1}, \kappa_{\beta, a} \in H^1(K, V_pE \otimes L)\) be the image of the classes (4.15) under the map \(H^1(Q, V_{fgh}) \to H^1(K, V_pE \otimes L)\) induced by (1.7).

Corollary 4.8. Assume that \(L(E/K, 1) = 0\) and that \(L(f/K \otimes \chi^2, 1) \neq 0\). Then:

1. \(\kappa_{\alpha, a-1}, \kappa_{\beta, a-1} \in \text{Sel}(K, V_pE \otimes L)\).
2. \(\kappa_{\alpha, a} = \kappa_{\beta, a-1} = 0\).

Proof. By the factorization (1.6), the inclusions in part (1) follow from the proof of Lemma 4.5. To see part (2), we make use of the 3-variable generalized Kato class

\[
\kappa := \kappa(f, g, h')(S_1, S_2, S_2) \in H^1(Q, \Psi_{fgh'}^\dagger),
\]

defined in \[\text{DR17A} \quad \S 3.7 (119)\] attached to the triple \(f = f(S_1), g = \theta_\chi(S_2)\) and \(h' = \theta_\chi(S_3)\). Thus \(\kappa(f, g_a, h_{a-1})\) is the specialization \(\kappa((1 + p)^2 - 1, v - 1, v - 1)\). Let

\[
\kappa' := \kappa((1 + p)^2 - 1, v(1 + T) - 1, v(1 + T)^{-1} - 1) \in H^1(Q, \Psi_{fgh'}^\dagger),
\]

where \(\Psi_{fgh'}^\dagger \simeq V_pE \otimes (\text{Ind}_K^Q \chi^2 \oplus \text{Ind}_K^Q \Psi_{T}^{1-c})\). As in Lemma 4.5 by \[\text{DR17B} \quad \text{Prop. 3.28}\] the class \(\text{loc}_p(\kappa')\) belongs to \(H^1(Q_p, F^+\Psi_{fgh'}^\dagger)\), where

\[
F^+\Psi_{fgh'}^\dagger = V_pE \otimes \chi^{-2} + F^0V_pE \otimes (\Psi_{T}^{1-c} \oplus \Psi_{T}^{1-c}).
\]

It follows that the projection \(\kappa_F'\) of \(\kappa'\) into \(\hat{H}^1(K_\infty, V_pE)\) is crystalline at \(p\), and hence \(\kappa_F'\) is a Selmer class for \(V_pE\) over the anticyclotomic \(\mathbf{Z}_p\)-extension \(K_\infty/K\). Since the space of such universal norms is trivial by Cornut–Vatsal \[\text{CV05}\] (the sign of \(E/K\) is +1 in our case), this shows that \(\kappa_F' = 0\) and therefore \(\kappa(f, g_a, h_{a-1}) = \kappa_{a, a-1} = 0\). The vanishing of \(\kappa_{a, a-1}\) is shown in the same manner. \(\square\)
5. Proof of the main theorem

Proof of Theorem A. Let $V = V_p E \otimes_{Q_p} L$ and $S = \text{Sel}(K, V)$. Let $S^{(r)} := S_p(E/K) \otimes_{Q_p} L$ be the subspaces in \mathcal{S}_3 and $S^{(\infty)}$ be the subspace of anticyclotomic universal norms. By \cite[Thm. 4.2]{How04} we have the filtration
\begin{equation}
S = S^{(1)} \supset S^{(2)} \supset \cdots \supset S^{(r)} \supset S^{(r+1)} \supset \cdots \supset S^{(\infty)},
\end{equation}
and $S^{(r+1)}$ is the null space of the r-th derived height pairing $h^{(r)}: S^{(r)} \times S^{(r)} \rightarrow J^r/J^{r+1} \otimes L$. In addition, by \cite[Remark 1.12, Thm. 4.2]{How04} we have for every $x, y \in S^{(r)}$
\begin{equation}
\tag{5.2}
h^{(r)}(x, y) = (-1)^{r+1} h^{(r)}(y, x); \quad h^{(r)}(x^\tau, y^\tau) = (-1)^r h^{(r)}(x, y),
\end{equation}
where τ denotes the complex conjugation. Since $L(E^P, 1) \neq 0$, we have $\text{Sel}(Q, V_p E^P) = \{0\}$ by Kolyvagin’s work \cite{Ko88} (or Kato’s \cite{Kat04}), and so letting S^+ be the subspace of S fixed by τ, this shows
\begin{equation}
S = S^+.
\end{equation}
By \cite[(5.2)]{5.2}, this implies that $h^{(1)}$ is identically zero, and so $S = S^{(2)}$; by the same argument, $S^{(r)} = S^{(r+1)}$ for every odd $r \geq 1$. On the other hand, $S^{(\infty)} = \{0\}$ by Cornut–Vatsal \cite{CV05}.

We first prove the implication (ii) \Rightarrow (i). Suppose that $\dim_{Q_p} \text{Sel}_{str}(Q, V_p E) = 1$. By p-parity \cite{Nek01}, this implies that $\dim_{Q_p} \text{Sel}(Q, V_p E) = 2$ and the composite map
\begin{equation}
\log_{\omega_{E,p}}: S = \text{Sel}(K, V) \xrightarrow{\log_p} H^1_{\text{fin}}(K_p, V) \xrightarrow{3.3} L
\end{equation}
is nonzero. Under our hypotheses we have
\begin{equation}
\dim_L S = \dim_{Q_p} \text{Sel}(Q, V_p E) = 2.
\end{equation}
In view of \cite[(5.2)]{5.2}, we thus find that \cite[(5.1)]{5.1} reduces to
\begin{equation}
S = S^{(1)} \supset S^{(2)} \supset \cdots \supset S^{(r)} \supset \cdots \supset S^{(\infty)} = \{0\}
\end{equation}
for some (even) integer $r \geq 2$ and the derived p-adic height $h^{(r)}$ is a non-degenerate pairing on $S^{(r)}$.

Let X_{∞} be the Pontryagin dual of $\text{Sel}_{p=\infty}(E/K_{\infty})$, which is known to be Λ-torsion \cite{BD05}. Let $J \subset \Lambda$ be the augmentation ideal, and fix a pseudo-isomorphism
\begin{equation}
X_{\infty} \cong M \oplus M', \quad \text{with} \quad M \cong \mathbb{Z}/J^{e_1} \oplus \mathbb{Z}/J^{e_2} \oplus \cdots
\end{equation}
with M' a torsion Λ-module having characteristic ideal prime to J. By \cite[Cor. 4.3(c)]{How04} we have $e_i = \dim_L (S^{(i)}/S^{(i+1)})$; letting $L_p \subset \Lambda$ be a generator of the principal ideal $\text{char}(X_{\infty})$, combining \cite[(5.3)]{5.3} and \cite[(5.4)]{5.4} this shows that
\begin{equation}
\ord_L L_p = 2r.
\end{equation}

On the other hand, by our hypotheses on $\tilde{p}_{E,p}$ the divisibility in the Iwasawa main conjecture due to Skinner–Urban \cite{SU14} (see \cite[§3.6.3]{loc.cit.}) implies that $(\Theta^2_{f/K}) \supset (L_p)$, and so
\begin{equation}
s^{\rho} \geq \rho := \ord_f(\Theta^2_{f/K}).
\end{equation}
Let $\tilde{\theta}_{f/K}$ be the leading coefficient of $\Theta^2_{f/K}$ defined by
\begin{equation}
\tilde{\theta}_{f/K} := \Theta^2_{f/K}(T) \pmod{J^p/J^{p+1}} \in J^p/J^{p+1}.
\end{equation}
From \cite[(5.3)]{5.3} and \cite[(5.5)]{5.5} we see that $S = S^{(\rho)}$. Thus combining the derived p-adic height formula in Proposition 3.7, Theorem 4.7, and part (2) of Lemma 4.5 we deduce that for every $x \in S^{(\rho)} = S$ we have
\begin{equation}
\tag{5.6}
h^{(\rho)}(\kappa_{\alpha, \alpha^{-1}}, x) = \frac{1 - p^{-1} \alpha_p}{1 - \alpha_p} \cdot \tilde{\theta}_{f/K} \cdot \log_{\omega_{E,p}}(x) \cdot C,
\end{equation}
where \(\alpha_p \) is the \(p \)-adic unit root of \(X^2 - a_p(E)X + p = 0 \) and \(C \) is a non-zero algebraic number with \(C^2 \in K(\chi, \alpha_p)^\times \). Since \(\tilde{\theta}_{f/K} \neq 0 \) and as noted above our hypotheses imply that the map \(\log_{\omega_{E,p}} \) is non-zero, we see that \(r = \rho \) and the non-vanishing of \(\kappa_{\alpha,\alpha^{-1}} \) follows.

Now we proceed to establish the implication (i) \(\Rightarrow \) (ii). Suppose that \(\kappa_{\alpha,\alpha^{-1}} \neq 0 \). We shall prove that \(\dim_L S = 2 \) and \(\log_{\omega_{E,p}} \) is a non-zero map. Consider again the filtration \(\Theta \). Then the combination of Proposition 5.4 Theorem 4.7 and part (2) of Lemma 4.5 shows that the class \(\kappa_{\alpha,\alpha^{-1}} \) belongs to \(S^{(\alpha)} \) with \(\rho = \ord_f(\Theta_{f/K}) \); in particular, \(S^{(\alpha)} \neq 0 \). With notations as in (5.3), this implies that \(e_{r_0} \neq 0 \) for some even \(r_0 \geq \rho \), and so \(e_{r_0} \geq 2 \) by (5.2). On the other hand, we have

\[
2\rho \geq e_1 + 2e_2 + \cdots + re_r + \cdots
\]

according to the divisibility in the Iwasawa main conjecture due to Bertolini–Darmon [BD05] (see also [PW11]). This implies that \(e_\rho = 2 \) and \(e_r = 0 \) if \(r \neq \rho \). We thus conclude that \(\dim_L S = 2 \) and \(h^{(\rho)} \) is non-degenerate on \(S^{(\alpha)} = S \). In light of (5.6), this shown that the map \(\log_{\omega_{E,p}} \) is non-zero, yielding the proof of the implication (i) \(\Rightarrow \) (ii).

The following is an immediate consequence of the height formula (5.6):

Corollary 5.1. The class \(\kappa_{\alpha,\alpha^{-1}} \mod \mathbb{Q}^\times \) depends only on \(K \), not on the auxiliary choice of ring class character \(\chi \). Moreover, as elements in \(E(\mathbb{Q}) \otimes_{\mathbb{Z}} L \), we have

\[
\kappa_{\alpha,\alpha^{-1}} = C \cdot \frac{1 - \rho^{-1} \alpha_p}{1 - \alpha_p} \cdot \frac{\tilde{\theta}_{f/K}}{h^{(\rho)}(P, Q)} \cdot (P \otimes \log_p Q - Q \otimes \log_p P)
\]

for any basis \((P, Q) \) of \(E(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q} \).

This suggests that the refined conjecture [DR16, Conj. 3.12] in this case should follow from the \(p \)-adic Birch–Swinnerton-Dyer formula of [BD98, Conj. 4.3].

6. Numerical examples

In this section, we give examples of elliptic curves of rank 2 having non-trivial generalized Kato classes. To be more precise, we consider elliptic curves \(E/\mathbb{Q} \) with

\[
\ord_{s=1} L(E, s) = \text{rank}_\mathbb{Z} E(\mathbb{Q}) = 2
\]

and conductor \(N \in \{ q, 2q \} \) with \(q \) an odd prime. We take a square-free integer \(-\Delta < 0 \) such that \(K = \mathbb{Q}(\sqrt{-\Delta}) \) has class number one, \(q \) is inert in \(K \), and \(L(E/K, 1) \neq 0 \), and take a prime \(p > 3 \) of good ordinary prime for \(E \) which is split in \(K \) and such that \(E[p] \) is an irreducible \(G_\mathbb{Q} \)-module. For every triple \((E, p, -\Delta) \), letting \(f \in S_2(\Gamma_0(N)) \) be the newform associated to \(E \), we give numerical examples where the associated theta element

\[
\Theta_{E/K}(T) = \Theta_{f/K}(T) \in \mathbb{Z}_p[[T]]
\]

vanishes to order exactly 2 at \(T = 0 \). When that is the case, by the work of Bertolini–Darmon [BD95, BD05] on the anticyclotomic Iwasawa main conjecture (see [BD05, Cor. 3]), it follows that \(\text{Im}(E/K)[p^\infty] \) is finite. Moreover, the residual representation \(E[p] \) must ramify at \(N^- = q \) by [Rib90, Thm. 1.1] and we checked that \(E[p] \) is irreducible, either by [Maz78] for \(p \geq 11 \) or checking that the elliptic curves we consider have no rational \(m \)-isogeny for \(m > 3 \) according to Cremona’s tables. Thus for every ring class character \(\chi \) with \(L(E/K, \chi^2, 1) \neq 0 \) (as one can always find by virtue of [Vat03, Thm. 1.4], as extended in [CH13, Thm. D]), the examples below provide instances where the generalized Kato class \(\kappa_{E,K} \) is a nonzero class in the 2-dimensional \(\text{Sel}(\mathbb{Q}, V_p E) \) by virtue of Corollary B.

To explain these numerical examples, we prepare some notation. Let \(B/\mathbb{Q} \) be the definite quaternion algebra of discriminant \(q \). Let \(R \) be an Eichler order of level \(N/q \) and \(\Cl(R) \) be

\footnote{As extended by Pollack–Weston [PW11] to allow for weaker hypotheses.}
the class group of \(R \). Let \(f_E : \text{Cl}(R) \to \mathbb{Z} \) be the \((p\text{-adically normalized})\) Hecke eigenfunction associated with \(f \) by the Jacquet–Langlands correspondence. Fix an optimal embedding \(\mathcal{O}_K \hookrightarrow R \) and an isomorphism \(i_p : R \otimes \mathbb{Z}_p \cong M_2(\mathbb{Z}_p) \) such that \(i_p(K) \) lies in the subspace of diagonal matrices. For \(a \in \mathbb{Z}_p^* \) and an integer \(n \), put
\[
 r_n(a) = i_p^{-1}(\begin{pmatrix} 1 & a p^{-n} \\ 0 & 1 \end{pmatrix}) \in \hat{B}^x, \quad \hat{B} := B \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}.
\]

Consider the sequence \(\{ P_n^a \}_{n=0,1,...} \) of right \(R \)-ideals defined by \(P_n^a := (r_n(a)R) \cap B \). The images of these ideals \(P_n^a \) in \(\text{Cl}(R) \) are usually referred to Gross points of level \(p^n \). Letting \(u = 1 + p \), we define the \(n \)-th theta element \(\Theta_{E/K,n}(T) \in \mathbb{Z}_p[T] \) by
\[
 \Theta_{E/K,n}(T) := \frac{1}{\alpha_p^{n+1}} \sum_{i=0}^{p^n-1} \sum_{a \in \mathbb{Z}_{p-1}} (\alpha_p \cdot f_E(P_n^{aw}) - f_E(P_n^{aw+1})) (1 + T)^i.
\]

By the definition of theta elements in \cite[§2.7]{BD96}, if \(K \) has class number one, we then have
\[
 \Theta_{E/K}(T) \equiv \Theta_{E/K,n}(T) \pmod{(1 + T)^{p^n - 1}}.
\]

Since \((p^n,(1+T)p^n-1) \subset (p^n,Tp)\) and \(p > 2 \), to check the vanishing \(\Theta_{E/K}(T) \) to exact order \(2 \) at \(T = 0 \), it suffices to compute \(\Theta_{E/K,n}(T) \) for sufficiently large \(n \). The following examples were obtained by implementing the Brandt module package in SAGE.

\(E \)	\(p \)	\(-\Delta \)	\(\Theta_{E/K,2}(T) \mod (p^2,Tp) \)
389a1	11	-2	\(107^2 + 69T^3 + T^4 + 103T^5 + 106T^6 + 66T^7 + 11T^8 + 55T^9 + 110T^{10} \)
433a1	11	-7	\(87^2 + 22T^3 + 86T^4 + 7T^5 + 10T^6 + 12T^7 + 29T^8 + 88T^9 + 48T^{10} \)
446c1	7	-3	\(22T^2 + 27T^3 + 3T^4 + 167T^5 + 11T^6 \)
563a1	5	-1	\(18T^2 + 9T^3 + 5T^4 \)
643a1	5	-1	\(T^2 + 21T^4 \)
709a1	11	-2	\(27T^2 + 114T^3 + 3T^4 + 14T^5 + 36T^6 + 15T^7 + 42T^8 + 44T^9 + 91T^{10} \)
718b1	5	-19	\(3T^2 + 20T^3 + 12T^4 \)
794a1	7	-3	\(47T^2 + 23T^3 + 8T^4 + 24T^5 + 7T^6 \)
997b1	11	-2	\(71T^2 + 41T^3 + 83T^4 + 197T^5 + 114T^6 + 111T^7 + 101T^8 + 46T^9 + 102T^{10} \)
997c1	11	-2	\(54T^2 + 38T^3 + 36T^4 + 81T^5 + 82T^6 + 18T^7 + 72T^8 + 95T^9 + 4T^{10} \)
1034a1	5	-19	\(22T^2 + 4T^3 + 6T^4 \)
1171a	5	-1	\(6T^2 + 6T^3 + 20T^4 \)
1483a1	13	-1	\(128T^2 + 148T^3 + 127T^4 + 162T^5 + 30T^6 + 149T^7 + 141T^8 + 97T^9 + 49T^{10} + 13T^{11} + 29T^{12} \)
1531a1	5	-1	\(16T^2 + 7T^3 + 21T^4 \)
1613a1	17	-2	\(128T^2 + 165T^3 + 224T^4 + 287T^5 + 140T^6 + 211T^7 + 147T^8 + 160T^9 + 59T^{10} + 122T^{11} + 195T^{12} + 43T^{13} + 207T^{14} + 214T^{15} + 285T^{16} \)
1627a1	13	-1	\(101T^2 + 151T^3 + 58T^4 + 104T^5 + 3T^6 + 165T^7 + 128T^8 + 63T^9 + 17T^{10} + 55T^{11} + 166T^{12} \)
1907a1	13	-1	\(72T^2 + 131T^3 + 32T^4 + 142T^5 + 84T^6 + 104T^7 + 90T^8 + 105T^9 + 38T^{10} + 92T^{11} + 116T^{12} \)
1913a1	7	-3	\(41T^2 + 167T^3 + 28T^4 + 23T^5 + 14T^6 \)
2027a1	13	-1	\(54T^2 + 128T^3 + 93T^5 + 83T^6 + 161T^7 + 113T^8 + 133T^9 + 49T^{10} + 151T^{11} + 13T^{12} \)
E	p	$-\Delta$	$\Theta_{E/K,3}(T) \mod (p^3, T^p)$
-------	-----	-----------	---
571b1	5	-1	$100T^2 + 100T^3 + 15T^4$
1621a1	11	-2	$1089T^2 + 807T^4 + 9867^5 + 586T^6 + 1098T^7 + 772T^8 + 228T^9 + 1296T^{10}$

References

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, *On the modularity of elliptic curves over \mathbb{Q}: wild 3-adic exercises*, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

[BD95] Massimo Bertolini and Henri Darmon, *Derived p-adic heights*, Amer. J. Math. 117 (1995), no. 6, 1517–1554.

[BD96] M. Bertolini and H. Darmon, *Heegner points on Mumford-Tate curves*, Invent. Math. 126 (1996), no. 3, 413–456.

[BD05] M. Bertolini and H. Darmon, *Iwasawa’s main conjecture for elliptic curves over anticyclotomic \mathbb{Z}_p-extensions*, Ann. of Math. (2) 162 (2005), no. 1, 1–64.

[BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, *Generalized Heegner cycles and p-adic Rankin L-series*, Duke Math. J. 162 (2013), no. 6, 1033–1148.

[BFH90] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, *Nonvanishing theorems for L-functions of modular forms and their derivatives*, Invent. Math. 102 (1990), no. 3, 543–618.

[BK90] Spencer Bloch and Kazuya Kato, *L-functions and Tamagawa numbers of motives*, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.

[CH15] Masataka Chida and Ming-Lun Hsieh, *On the anticyclotomic Iwasawa main conjecture for modular forms*, Compos. Math. 151 (2015), no. 5, 863–897.

[CH18] __________, *Special values of anticyclotomic L-functions for modular forms*, J. Reine Angew. Math. 741 (2018), 87–131.

[Col98] Pierre Colmez, *Théorie d’Iwasawa des représentations de de Rham d’un corps local*, Ann. of Math. (2) 148 (1998), no. 2, 485–517.

[CV05] C. Cornut and V. Vatsal, *CM points and quaternion algebras*, Doc. Math. 10 (2005), 263–309.

[DR16] Henri Darmon and Victor Rotger, *Elliptic curves of rank two and generalised Kato classes*, Res. Math. Sci. 3 (2016), Paper No. 27, 32.

[DR17a] __________, *Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions*, J. Amer. Math. Soc. 30 (2017), no. 3, 601–672.

[DR17b] __________, *Stark-Heegner points and generalised Kato classes*, Preprint (2017), available at http://www.math.mcgill.ca/darmon/pub/pub.html.

[Fon94] Jean-Marc Fontaine, *Le corps des périodes p-adiques*, Astérisque (1994), no. 223, 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[GK92] Benedict H. Gross and Stephen S. Kudla, *Heights and the central critical values of triple product L-functions*, Compositio Math. 81 (1992), no. 2, 143–209.

[Gro87] Benedict H. Gross, *Heights and the special values of L-series*, Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187.

[GS95] B. H. Gross and C. Schoen, *The modified diagonal cycle on the triple product of a pointed curve*, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649–679.

[GZ86] Benedict H. Gross and Don B. Zagier, *Heegner points and derivaties of L-series*, Invent. Math. 84 (1986), no. 2, 225–302.

[Hid86] Haruzo Hida, *Galois representations into $\text{GL}_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms*, Invent. Math. 85 (1986), no. 3, 545–620.

[How04] Benjamin Howard, *Derived p-adic heights and p-adic L-functions*, Amer. J. Math. 126 (2004), no. 6, 1315–1340.

[How07] __________, *Variation of Heegner points in Hida families*, Invent. Math. 167 (2007), no. 1, 91–128.

[Hsi19] Ming-Lun Hsieh, *Hida families and p-adic triple product L-functions*, American Journal of Mathematics, to appear. Preprint, arXiv:1705.02717 (2019).

[Kat04] Kazuya Kato, *p-adic Hodge theory and values of zeta functions of modular forms*, Astérisque (2004), no. 295, ix, 117–290, Cohomologies p-adiques et applications arithmétiques. III.

[Kob18] Shinichi Kobayashi, *A p-adic interpollation of generalized Heegner cycles and integral Perrin-Riou twist*, preprint, available at the website https://sites.google.com/view/shinichikobayashi/.

[Kol88] V. A. Kolyvagin, *Finiteness of $E(\mathbb{Q})$ and $\text{Sha}(E, \mathbb{Q})$ for a subclass of Weil curves*, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671.

[LS14] David Loeffler and Sarah Livia Zerbes, *Iwasawa theory and p-adic L-functions over \mathbb{Z}_p^2-extensions*, Int. J. Number Theory 10 (2014), no. 8, 2045–2095.
[Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.

[Nek01] Jan Nekovář, On the parity of ranks of Selmer groups. II, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 99–104.

[Nek06] ———, Selmer complexes, Astérisque (2006), no. 310, viii+559.

[Oht00] Masami Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000), no. 3, 557–583.

[PR94] Bernadette Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81–161, With an appendix by Jean-Marc Fontaine.

[PR00] ———, p-adic L-functions and p-adic representations, SMF/AMS Texts and Monographs, vol. 3, American Mathematical Society, Providence, RI, 2000, Translated from the 1995 French original by Leila Schneps and revised by the author.

[PW11] Robert Pollack and Tom Weston, On anticyclotomic μ-invariants of modular forms, Compos. Math. 147 (2011), no. 5, 1353–1381.

[Rib90] K. A. Ribet, On modular representations of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476.

[Rub94] Karl Rubin, Abelian varieties, p-adic heights and derivatives, Algebra and number theory (Essen, 1992), de Gruyter, Berlin, 1994, pp. 247–266.

[Ski14] Christopher Skinner, A converse to a theorem of Gross, Zagier, and Kolyvagin, Preprint, arXiv:1405.7294 (2014).

[SU06] Christopher Skinner and Eric Urban, Vanishing of L-functions and ranks of Selmer groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 473–500.

[SU14] ———, The Iwasawa Main Conjectures for GL_2, Invent. Math. 195 (2014), no. 1, 1–277.

[Urb13] Eric Urban, On the rank of Selmer groups for elliptic curves over \mathbb{Q}, Automorphic representations and L-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 651–680.

[Vat03] V. Vatsal, Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), no. 2, 219–261.

[Wal85] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173–242.

[Wan19] Xin Wan, Iwasawa main conjecture for Rankin-Selberg p-adic L-functions, Algebra Number Theory (to appear, 2019).

[Wil88] A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573.

[Zha04] Shaowei Zhang, On explicit reciprocity law over formal groups, Int. J. Math. Math. Sci. (2004), no. 9-12, 607–635.

Department of Mathematics, University of California Santa Barbara, CA 93106, USA

E-mail address: castella@ucsb.edu

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan

E-mail address: mlhsieh@math.sinica.edu.tw