Factorized linear discriminant analysis for phenotype-guided representation learning of neuronal gene expression data

Mu Qiao* & Markus Meister
Division of Biology and Biological Engineering
California Institute of Technology
Pasadena, CA, 91125
{muqiao, meister}@caltech.edu

Abstract

A central goal in neurobiology is to relate the expression of genes to the structural and functional properties of neuronal types, collectively called their phenotypes. Single-cell RNA sequencing can measure the expression of thousands of genes in thousands of neurons. How to interpret the data in the context of neuronal phenotypes? We propose a supervised learning approach that factorizes the gene expression data into components corresponding to individual phenotypic characteristics and their interactions. This new method, which we call factorized linear discriminant analysis (FLDA), seeks a linear transformation of gene expressions that varies highly with only one phenotypic factor and minimally with the others. We further leverage our approach with a sparsity-based regularization algorithm, which selects a few genes important to a specific phenotypic feature or feature combination. We applied this approach to a single-cell RNA-Seq dataset of Drosophila T4/T5 neurons, focusing on their dendritic and axonal phenotypes. The analysis confirms results from the previous report but also points to new genes related to the phenotypes and an intriguing hierarchy in the genetic organization of these cells.

1 Introduction

The complexity of neural circuits is a result of many different types of neurons that specifically connect to each other. Each neuronal type has its own phenotypic traits, which together determine the role of the neuronal type in a neural circuit. Typical phenotypic descriptions of neurons include features such as dendritic and axonal laminations, electrophysiological properties, and connectivity [1–3]. However, the genetic programs behind these phenotypic characteristics are still poorly understood.

Recent progress in characterizing neuronal cell types and investigating their gene expression, especially with advances in high-throughput single-cell RNA-Seq [2], provides an opportunity to address this challenge. With massive data generated from single-cell RNA-Seq, we now face a computational problem: how to factorize the high-dimensional data into gene expression modules that are meaningful to neuronal phenotypes? Specifically, given phenotypic descriptions of neuronal types, such as their dendritic stratification and axonal termination, can one project the original data into a low-dimensional space corresponding to these phenotypic features and their interactions, and further extract genes critical to each of these components?

This problem can be approached by well-known methods with limitations. For instance, canonical correlation analysis (CCA) could find linear transformations of the data and the phenotypic features

*Contact for correspondence. Current address: Apple Inc., Cupertino, CA, 95014. Alternative email: muqiao0626@gmail.com.
As a start, let us consider only two phenotypic features of neurons, dendritic stratification, and axonal lamination. We first asked whether we could factorize, for example, gene expressions and phenotypic features from autoencoders, as they are non-linear architectures. Here we propose a new analysis method named factorized linear discriminant analysis (FLDA). Inspired by multi-way analysis of variance (ANOVA) [9], this method factorizes data into components corresponding to phenotypic features and their interactions, and seeks a linear transformation that varies highly with one specific factor but not with the others. The linear nature of this approach makes it easy to interpret, as the weight coefficients directly inform the relative importance of each gene to each factor. We further introduce a sparse variant of the method, which constrains the number of genes contributing to each linear projection. We illustrate this approach by applying FLDA to a single-cell transcriptome dataset of T4/T5 neurons in Drosophila [10], focusing on two phenotypes: dendritic location and axonal lamination.

2 factorized linear discriminant analysis (FLDA)

Suppose that we are given gene expression data of single neurons which are typically very high-dimensional. These cells are classified into cell types, as a result of clustering in the high-dimensional space and annotations based on prior knowledge or verification outcome [11-13]. We know the phenotypic traits of each neuronal type, therefore each type can also be jointed defined by the phenotypic features. We want to find an interpretable low-dimensional embedding in which certain dimensions represent factors of phenotypic features or their interactions. This requires that variation along one of the axes in the embedding space causes the variation of only one factor. In reality, this is hard to satisfy due to noise in the data, and we relax the constraint by letting data projected along one axis vary largely with one factor while minimally with the others. Indeed, motivated by the linear factor models used in that maximally correlate with each other [4,5]. However, this approach cannot factorize gene expressions according to individual features, making the result hard to interpret. Another approach to this problem is autoencoders and variants [6,8]. It is challenging to understand the relationship between gene expressions and phenotypic features from autoencoders, as they are non-linear architectures.

As a start, let us consider only two phenotypic features of neurons, dendritic stratification, and axonal lamination, both of which can be described with discrete categories, such as different regions or layers in the brain [16,17,1,10]. Suppose that each cell type can be jointly represented by its dendritic location indexed as i and axonal lamination indexed as j, with the number of cells within each cell type n_{ij}. This representation can be described using a contingency table (Figure 1A,B). Note here that we allow the table to be partially filled.

Let $x_{ijk}(k \in 1, 2, ..., n_{ijk})$ represent the expression values of g genes in each cell ($x_{ijk} \in \mathbb{R}^{g}$). How to find linear projections $y_{ij} = u^T x_{ijk}$ and $z_{ijk} = v^T x_{ijk}$ that are aligned with features i and j respectively (Figure 1C)? We first asked whether we could factorize, for example, y_{ijk}, with respect to components depending on features i and j. Indeed, motivated by the linear factor models used in

Figure 1: Illustration of our approach. (A,B) In the example, cell types are jointly represented by two phenotypic features. If only some combinations of the two features are observed, one obtains a partial contingency table (B) instead of a complete one (A). (C) We seek linear projections of the data that separate the cell types in a factorized manner corresponding to the two features. Here u, v, and w are aligned with Feature 1, Feature 2, and the interaction of both features, with the projected coordinates y, z, and s respectively.
multi-way ANOVA and the idea of partitioning variance, we constructed an objective function as the following, and found u^* that maximizes the objective (see detailed analysis in Appendix A):

$$u^* = \arg \max_{u \in \mathbb{R}^g} \frac{u^T N_A u}{u^T M_e u}$$

When we have a complete table, and there are a levels for the feature i and b levels for the feature j, we have

$$N_A = M_A - \lambda_1 M_B - \lambda_2 M_{AB}$$

where M_A, M_B, and M_{AB} are the covariance matrices explained by the feature i, the feature j, and the interaction of them. λ_1 and λ_2 are hyper-parameters controlling the relative weights of M_B and M_{AB} with respect to M_A. M_e is the residual covariance matrix representing noise in gene expressions. Formal definitions of these terms are the following:

$$M_A = \frac{1}{a-1} \sum_{i=1}^{a} \sum_{j=1}^{b} (m_{i.} - m_.)(m_{i.} - m_.)^T$$

$$M_B = \frac{1}{b-1} \sum_{i=1}^{a} \sum_{j=1}^{b} (m_{.j} - m_.)(m_{.j} - m_.)^T$$

$$M_{AB} = \frac{1}{(a-1)(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} (m_{ij} - m_{i.} - m_{.j} + m_.)(m_{ij} - m_{i.} - m_{.j} + m_.)^T$$

$$M_e = \frac{1}{N-ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \left[\frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} (x_{ijk} - m_{ij})(x_{ijk} - m_{ij})^T \right]$$

where

$$m_. = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} m_{ij}$$

$$m_{i.} = \frac{1}{b} \sum_{j=1}^{b} m_{ij}$$

$$m_{.j} = \frac{1}{a} \sum_{i=1}^{a} m_{ij}$$

in which

$$m_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} x_{ijk}$$

An analogous expression provides the linear projection v^* for the feature j, and w^* for the interaction of both features i and j. Similar arguments can be applied to the scenario of a partial table to find u^* or v^* as the linear projection for the feature i or j (see Appendix B for mathematical details).

Note that N_A is symmetric and M_e is positive definite. Therefore the optimization problem is a generalized eigenvalue problem [18]. When M_e is invertible, u^* is the eigenvector associated with the
largest eigenvalue of $M_e^{-1} N_A$. In general, if we want to embed x_{ijk} into a d-dimensional subspace aligned with the feature i ($d < a$), we can take the eigenvectors with the d largest eigenvalues of $M_e^{-1} N_A$, which we call the top d factorized linear discriminant components (FLDs). Since multi-way ANOVA can handle contingency tables with more than two dimensions, our analysis can be easily generalized to more than two features.

3 Sparsity-based regularization of FLDA

To select genes important to each phenotypic feature, we impose sparseness on the number of genes contributing to each axis. Briefly, we try to solve the following optimization problem:

$$ u^* = \arg \max_{u \in \mathbb{R}^g} \frac{u^T N_A u}{u^T M_e u} \quad \text{subject to} \quad ||u||_0 \leq l $$

(11)

from which the number of non-zero elements of u^* is less or equal to l.

This is also known as a sparse generalized eigenvalue problem. To solve it, we used a recently developed statistical approach, the truncated Rayleigh flow method (Rifle). The algorithm of Rifle is composed of two steps [19]:

(1) obtain an initial vector u_0 that is close to u^*. We used the solution from the non-sparse FLDA as an initial estimate of u_0.

(2) iteratively, perform a gradient ascent step on the objective function, and then execute a truncation step that preserves the l entries of u with the largest values and sets the remaining entries to 0.

Pseudo-code for this step is presented below:

```plaintext
procedure RIFLE($N_A, M_e, u_0, l, \eta$)
    $\eta$ is the step size
    $t = 1$
    while not converge
        $\rho_{t-1} \leftarrow \frac{u_{t-1}^T N_A u_{t-1}}{u_{t-1}^T M_e u_{t-1}}$
        $C \leftarrow I + (\frac{\eta}{\rho_{t-1}})(N_A - \eta_{t-1} M_e)$
        $u_t \leftarrow \frac{Cu_{t-1}}{||Cu_{t-1}||_2}$
        Truncate $u_t$ by keeping the top $l$ entries of $u$ with the largest values and setting the rest entries to 0
        $u_t \leftarrow \frac{u_t}{||u_t||_2}$
        $t \leftarrow t + 1$
    end while
    return $u_t$
end procedure
```

4 Related method - linear discriminant analysis (LDA)

We name our method FLDA because its objective function has a similar format as that of linear discriminant analysis (LDA) [20,21]. LDA also models the difference among data organized in pre-determined classes. Formally, LDA solves the following optimization problem:

$$ u^* = \arg \max_{u \in \mathbb{R}^g} \frac{u^T \Sigma_b u}{u^T \Sigma_e u} $$

(12)

where Σ_b and Σ_e are estimates of the between-class and within-class covariance matrices respectively.

Different from FLDA, the representation of these classes is not explicitly formulated as a contingency table composed of multiple features. The consequence is that, when applied to the example problem in which neuronal types are organized into a two-dimensional contingency table with phenotypic features i and j, in general, axes from LDA are not aligned with these two phenotypic features.
However, in the example above, we can perform two separate LDAs for the two features. This allows the axes from each LDA to align with its specific feature. We call this approach “2LDAs”. There are two limitations of this approach: first, it discards information about the component depending on the interaction of the two features which cannot be explained by a linear combination of them; second, it explicitly maximizes the segregation of cells with different feature levels which sometimes is not consistent with a good separation of cell type clusters.

5 Experiments

5.1 Datasets

In order to compare FLDA with LDA and the “2LDAs” approach and show the difference quantitatively, we created synthetic datasets. Four types of cells, each containing 25 examples, were generated from a Cartesian product of two features \(i \) and \(j \), organized in a 2x2 complete contingency table. Expressions of 10 genes were generated for these cells, in which the levels of Genes 1-8 were correlated with either the feature \(i \), the feature \(j \), or the interactions of them, and the levels of the remaining 2 genes were purely driven by noise (Figure 2A). Details of generating the data can be found in Appendix C, and analysis of these synthesized data is reported in Results.

To illustrate FLDA in analyzing single-cell RNA-Seq datasets for real problems of neurobiology, and demonstrate the merit of our approach in selecting a few important genes for each phenotype, we used a dataset of Drosophila T4/T5 neurons [10]. T4 and T5 neurons are very similar in terms of general morphology and physiological properties, but they differ by the location of their dendrites in the medulla and lobula, two distinct brain regions. T4 and T5 neurons each contain four subtypes, with each pair of the four laminating their axons in a specific layer in the lobula plate (Figure 3A). Therefore, we can use two phenotypic features to describe these neurons: the feature \(i \) indicates the dendritic location at the medulla or lobula; the feature \(j \) describes the axonal lamination at one of the four layers (a/b/c/d) (Figure 3B). In this experiment, we focused on the dataset containing expression data of 17492 genes from 3833 cells collected at a defined time during brain development.

5.2 Data preprocessing

The T4/T5 neuron dataset was preprocessed as previously reported [13, 15, 22]. Briefly, transcript counts within each column of the count matrix (genes \(\times \) cells) were normalized to sum to the median number of transcripts per cell, resulting in the normalized counts Transcripts-per-median or \(\text{TPM}_{gc} \) for Gene \(g \) in Cell \(c \). We used the log-transformed expression data \(E_{gc} = \ln (\text{TPM}_{gc} + 1) \) for further analysis. We adopted a common approach in single-cell RNA-Seq studies that is based on fitting a relationship between mean and coefficient of variation [23, 24] to select highly variable genes, and performed FLDA on the expression data with only these genes. As the number of cells was less than the number of genes, we first performed principal component analysis (PCA) and kept
Figure 3: FLDA on the dataset of T4/T5 neurons. (A) T4/T5 neuronal types and their dendritic and axonal phenotypes. (B) T4/T5 neurons can be organized in a complete contingency table. Here i indicates the dendritic location and j indicates the axonal termination. (C) SNR metric of each discriminant axis. (D) Projection of the data into the three-dimensional space consisting of the discriminant axis for the feature i (FLD$_i$) and the first and second discriminant axes for the feature j (FLD$_{j1}$ and FLD$_{j2}$). (E-G) Projection of the data into the two-dimensional space made of FLD$_i$ and FLD$_{j1}$ (E), FLD$_{j1}$ and FLD$_{j2}$ (F), or FLD$_{j2}$ and FLD$_{j3}$ (the third discriminant axis for the feature j) (G). Different cell types are indicated by different colors as in (A) and (D).

principal components (PCs) explaining $\sim 99\%$ of the total variance. In this experiment below, we set the hyper-parameters λs in Equation (2) to 1.

5.3 Metrics

We included the following metrics to evaluate our method: We specified a metric of signal-to-noise ratio (SNR) to measure how well each discriminant axis separates cell types compared with noise estimated from the variance within cell type clusters; We defined explained variance (EV) for each discriminant axis to measure how much variance of the feature i or j is explained among the total variance explained by that axis; We calculated mutual information (MI) between each discriminant axis and each feature, to quantify how "informative" an axis is to a specific feature; Built on the calculation of MI, we included the modularity score which measures whether each discriminant axis depends on at most one feature [25]. The implementation details of these metrics can be found in Appendix D.

6 Results

To quantitatively compare the difference between FLDA and the alternative models of LDA and "2LDAs", we measured the proposed metrics from analyses of the synthesized datasets (Figure 2A). Given that the synthesized data were organized in a 2x2 contingency table, each LDA of the "2LDAs" approach could find only one dimension for the specific feature i or j. Therefore, as a fair comparison, we only included the corresponding dimensions in FLDA (FLD$_i$ and FLD$_j$) and the top two linear discriminant components (LDs) in LDA. The overall SNR values normalized by that of LDA and the
We extracted a list of 20 genes each for the axis of FLDA to plot expression profiles of these genes in the eight neuronal types (Figure 4B,D). For both axonal termination and dendritic phenotype, we applied FLDA to the dataset of Drosophila T4/T5 neurons. The T4/T5 neurons could be organized into two groups, a/b vs c/d, corresponding to the upper or lower lobula plate, and FLD_{1j} divides them into another two, a/d vs b/c, indicating whether their axons laminate at the middle or lateral part of the lobula plate (Figure 3E,F). Unexpectedly, among these three dimensions, FLD_{1j} has a much higher SNR than FLD_{1i} and FLD_{3j}, whose SNR values are similar. This suggests a hierarchical structure in the genetic organization of T4/T5 neurons: they are first separated into either a/b or c/d types, and subsequently divided into each of the eight subtypes. In fact, this exactly matches the sequence of their cell fate determination during development, as revealed in a previous genetic study [26]. Finally, the last discriminant axis of the axonal feature FLD_{3j} separates the group a/c from b/d, suggesting its role in fine-tuning the axonal depth within the upper or lower lobula plate (Figure 3G). For this dataset, we also quantified the proposed metrics whose values are listed in Table 4.

To seek gene signatures for the discriminant components in FLDA, we applied the sparsity-based regularization to constrain the number of genes with non-zero weight coefficients. Here we set the number to 20, a reasonable number of candidate genes to be tested in a follow-up biological study. We extracted a list of 20 genes each for the axis of FLD_{1i} or FLD_{1j}. The relative importance of these genes to each axis is directly informed by their weight values (Figure 3A,C). Side-by-side, we plotted expression profiles of these genes in the eight neuronal types (Figure 3B,D). For both axes, the genes critical in separating cells with different feature levels are differentially expressed in corresponding cell types. On our gene lists, consistent with the original report [10], we found indicator genes for dendritic location such as TjAP-2, dpr2, CG34155, and CG12065, and those for axonal lamination such as klg, bi, pros. In addition, we found genes that were not reported in the previous study. For example, our results suggest that the genes Thor and pHCl-1 are important to the dendritic phenotype, and Lac and Mip are critical to the axonal phenotype. These are promising genetic targets to be tested in biological experiments.

Finally, FLDA allowed us to examine the component that depends on the interaction of both features and identify its gene signature, which provides clues to transcriptional regulation of gene expressions in the T4/T5 neuronal types (Figures 5 and 6). For instance, DIP_{ela} is exclusively expressed in T5c/d neurons, suggesting its expression is turned on only when the dendritic transcriptional program is set for T5 neurons and the axonal program is for c/d types. Oppositely, Neto is selectively enriched in T4a/b neurons, indicating activation of its expression under the condition that the dendritic transcriptional program is set for T4 neurons and the axonal program is for a/b types. These are known as the “AND” and “NOR” logics in genetic programs [27].
Selected genes for the dendritic phenotype

Selected genes for the axonal phenotype

Figure 4: Critical genes extracted from the sparse algorithm. (A) Weight vector of the 20 genes selected for the dendritic phenotype (FLD$_i$). The weight value is indicated in the color bar with color indicating direction (red: positive and green: negative) and saturation indicating magnitude. (B) Expression patterns of the 20 genes from (A) in eight types of T4/T5 neurons. Dot size indicates the percentage of cells in which the gene was expressed, and color represents average scaled expression. (C) Weight vector of the 20 genes selected for the axonal phenotype (FLD$_j$). Legend as in (A). (D) Expression patterns of the 20 genes from (C) in eight types of T4/T5 neurons. Dot size indicates the percentage of cells in which the gene was expressed, and color represents average scaled expression. Legend as in (B).

7 Discussion

Single-cell RNA-Seq has generated a large amount of neuronal transcriptomic data [11–15]. However, neurons display a great variety of phenotypes, making it a challenging task to understand transcriptional programs behind these phenotypic features [28]. Motivated by ANOVA, we developed FLDA to address this challenge. We illustrated FLDA focusing on two phenotypes of T4/T5 neurons in Drosophila, dendritic location and axonal termination. As multi-way ANOVA is applied to multiple factors, our approach can be easily generalized to more than two phenotypic features and applicable to additional characteristics such as electrophysiology and connectivity [3, 2].

FLDA factorizes gene expression data into features and their interactions, and finds a linear projection of the data that varies with only one factor but not the others. This provides a modular representation aligned with the factors [29]. Ridgeway and Mozer (2018) argued that modularity together with explicitness could define disentangled representations. Our approach is linear, which presents an explicit mapping between gene expressions and phenotypic features, therefore our approach can potentially serve as a supervised approach to disentanglement [30–32].

The linear nature of FLDA makes it extremely easy to interpret the representations, as the weight vector directly informs the relative importance of each gene. To allow the selection of a small set of critical genes, we leveraged our approach with sparse regularization. This makes FLDA especially useful to experimentalists who can take the list of genes and test them in follow-up genetic experiments. However, data other than gene expression may require non-linear representation learning. One way to deal with this is to use kernel tricks which are commonly used in machine learning [33]. As a future direction, we also hope to generalize ideas from this work to deep learning models.
8 Appendix

8.1 A. Objective functions

Here we derive the objective functions used in our analysis. Again if $x_{ijk} (k \in 1, 2, \ldots n_{ij})$ represents the expression values of g genes in each cell ($x_{ijk} \in \mathbb{R}^g$), we seek to find a linear projection $y_{ijk} = u^T x_{ijk}$ that is aligned with the feature i.

8.1.1 Inspiration from ANOVA

We asked what is the best way to factorize y_{ijk}. Inspired by multi-way ANOVA [9], we identified three components: one depending on the feature i, another depending on the feature j, and the last one depending on the interaction of both features. We therefore followed the procedures of ANOVA to partition sums of squares and factorize y_{ijk} into these three components.

Let us first assume that all cell types defined by i and j contain the same number of cells. With cell types represented by a complete contingency table (Figure 1A), y_{ijk} can be linearly factorized using the model of two crossed factors. Formally, the linear factorization is the following:

$$ y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk} \quad (13) $$

where y_{ijk} represents the coordinate of the kth cell in the category defined by i and j; μ is the average level of y; α_i is the component that depends on the feature i, and β_j is the component that depends on the feature j; $(\alpha \beta)_{ij}$ describes the component that depends on the interaction of both features i and j; $\epsilon_{ijk} \sim \mathcal{N}(0, \sigma^2)$ is the residual of this factorization.

Let us say that the features i and j fall into a and b discrete categories respectively. Then without loss of generality, we can require:

$$ \sum_{i=1}^{a} \alpha_i = 0 \quad (14) $$

$$ \sum_{j=1}^{b} \beta_j = 0 \quad (15) $$

$$ \sum_{i=1}^{a} (\alpha \beta)_{ij} = \sum_{j=1}^{b} (\alpha \beta)_{ij} = 0 \quad (16) $$

Corresponding to these, there are three null hypotheses:

$$ H_{01} : \alpha_i = 0 \quad (17) $$

$$ H_{02} : \beta_j = 0 \quad (18) $$

$$ H_{03} : (\alpha \beta)_{ij} = 0 \quad (19) $$

Here we want to reject H_{01} while accepting H_{02} and H_{03} in order that y_{ijk} is aligned with the feature i.

Next, we partition the total sum of squares. If the number of cells within each cell type category is n, and the total number of cells is N, then we have

$$
\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}(...))^2 = bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}(...))^2 + an \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}(...))^2 \\
+ n \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i..} - \bar{y}_{.j} + \bar{y}(...))^2 + \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ijk})^2
$$

(20)

where \bar{y} is the average of y_{ijk} over the indices indicated by the dots. Equation (20) can be written as

$$SS_T = SS_A + SS_B + SS_{AB} + SS_e$$

(21)

with each term having degrees of freedom $N - 1, a - 1, b - 1, (a - 1)(b - 1)$, and $N - ab$ respectively. Here SS_A, SS_B, SS_{AB}, and SS_e are partitioned sum of squares for the factors $\alpha_i, \beta_j, (\alpha\beta)_{ij}$, and the residual.

ANOVA rejects or accepts a null hypothesis by comparing its mean square (the partitioned sum of squares normalized by the degree of freedom) to that of the residual. This is done by constructing F-statistics for each factor as shown below:

$$F_A = \frac{MS_A}{MS_e} = \frac{SS_A}{a - 1}$$

(22)

$$F_B = \frac{MS_B}{MS_e} = \frac{SS_B}{b - 1}$$

(23)

$$F_{AB} = \frac{MS_{AB}}{MS_e} = \frac{SS_{AB}}{(a - 1)(b - 1)}$$

(24)

Under the null hypotheses, the F-statistics follow the F-distribution. Therefore, a null hypothesis is rejected when we observe the value of a F-statistic above a certain threshold calculated from the F-distribution. Here we want F_A to be large enough so that we can reject H_{01}, but F_B and F_{AB} to be small enough for us to accept H_{02} and H_{03}. In other words, we want to maximize F_A while minimizing F_B and F_{AB}. Therefore, we propose maximizing an objective L:

$$L = F_A - \lambda_1 F_B - \lambda_2 F_{AB}$$

(25)

where λ_1 and λ_2 are hyper-parameters determining the relative weights of F_B and F_{AB} compared with F_A.

8.1.2 Objective functions under a complete contingency table

When the numbers of cells within categories defined by i and j (n_{ij}) are not all the same, the total sum of squares cannot be partitioned as in Equation (20). However, if we only care about distinctions between cell types instead of individual cells, we can use the mean value of each cell type cluster (\bar{y}_{ij}) to estimate the overall average value ($\bar{y}(...)$, and the average value of each category i ($\bar{y}_{i..}$) or j ($\bar{y}_{.j}$). Therefore, Equation (20) can be modified as the following:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}(...))^2 = bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}(...))^2 + an \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}(...))^2 \\
+ \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\bar{y}_{ij} - \bar{y}_{i..} - \bar{y}_{.j} + \bar{y}(...))^2 + \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ijk})^2
$$

(26)
where

\[
\bar{y}_{ij} = \frac{\sum_{k=1}^{n_{ij}} y_{ijk}}{n_{ij}} \quad (27)
\]

\[
\bar{y}_{i..} = \frac{\sum_{j=1}^{b} \bar{y}_{ij.}}{b} \quad (28)
\]

\[
\bar{y}_{j..} = \frac{\sum_{i=1}^{a} \bar{y}_{ij.}}{a} \quad (29)
\]

\[
\bar{y}.. = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \bar{y}_{ij.}}{ab} \quad (30)
\]

If we describe Equation (26) as:

\[
\tilde{SS}_T = \tilde{SS}_A + \tilde{SS}_B + \tilde{SS}_{AB} + \tilde{SS}_e \quad (31)
\]

then following the same arguments, we want to maximize an objective function in the following format:

\[
L = \frac{\tilde{SS}_A}{a-1} - \lambda_1 \frac{\tilde{SS}_B}{b-1} - \lambda_2 \frac{\tilde{SS}_{AB}}{(a-1)(b-1)} \frac{\tilde{SS}_e}{N-ab} \quad (32)
\]

8.1.3 Objective functions under a partial contingency table

When we have a representation of a partial table, we can no longer separate out the component that depends on the interaction of both features. Therefore, we use another model, a linear model of two nested factors, to factorize \(y_{ijk} \), which has the following format:

\[
y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{ijk} \quad (33)
\]

Note that we now have \(\beta_{j(i)} \) instead of \(\beta_j + \alpha\beta_{ij} \). In this model, we identify a primary factor, for instance, the feature denoted by \(i \) which falls into \(a \) categories, and the other (indexed by \(j \)) becomes a secondary factor, the number of whose levels \(b_i \) depends on the level of the primary factor. We merge the component depending on the interaction of both features into that of the secondary factor as \(\beta_{j(i)} \).

Similarly, we have

\[
\sum_{i=1}^{a} \sum_{j=1}^{b_i} \left[\frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}..)^2 \right] = \sum_{i=1}^{a} \sum_{j=1}^{b_i} \left(\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}.. \right)^2 + \sum_{i=1}^{a} \sum_{j=1}^{b_i} \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij.})^2 \quad (34)
\]

which can be written as

\[
\tilde{SS}_T = \tilde{SS}_A + \tilde{SS}_B + \tilde{SS}_e \quad (35)
\]

with degrees of freedom \(N-1, a-1, M-a, \) and \(N-M \) for each of the terms, where \(M \) is:

\[
M = \sum_{i=1}^{a} b_i \quad (36)
\]
Therefore, we want to maximize the following objective:

\[
L = \frac{s_{SA}}{a-1} - \lambda \frac{s_{SB}}{M-a}
\]

(37)

\section*{8.2 B. FLDA with a partial contingency table}

Here we provide the mathematical details of FLDA under the representation of a partial table. When we have a partial table, if the feature \(i \) is the primary feature with \(a \) levels, and the feature \(j \) is the secondary feature with \(b_i \) levels, then \(N_A \) in Equation (1) is defined as follows:

\[
N_A = M_A - \lambda M_{B|A}
\]

(38)

where

\[
M_A = \frac{1}{a-1} \sum_{i=1}^{a} \sum_{j=1}^{b_i} (m_{ij} - m_{..}) (m_{ij} - m_{..})^T
\]

(39)

\[
M_{B|A} = \frac{1}{M-a} \sum_{i=1}^{a} \sum_{j=1}^{b_i} (m_{ij} - m_{..}) (m_{ij} - m_{..})^T
\]

(40)

and \(M \) is defined as in Equation (36). Correspondingly, \(M_e \) in Equation (1) is defined as:

\[
M_e = \frac{1}{N-M} \sum_{i=1}^{a} \sum_{j=1}^{b_i} \left[\frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} (x_{ijk} - m_{ij}) (x_{ijk} - m_{ij})^T \right]
\]

(41)

and

\[
m_{..} = \frac{1}{M} \sum_{i=1}^{a} \sum_{j=1}^{b_i} m_{ij}
\]

(42)

\[
m_{ij} = \frac{1}{b_i} \sum_{j=1}^{b_i} m_{ij}
\]

(43)

The remaining mathematical arguments are the same as those for the complete table. In this scenario, because we don’t observe all possible combinations of features \(i \) and \(j \), we cannot find the linear projection for the interaction of both features.

\subsection*{8.3 C. Implementation details of data synthesis}

To quantitatively compare FLDA with LDA and the “2LDAs” approach, we synthesized data of four cell types, each of which contained 25 cells. The four cell types were generated from a Cartesian product of two features \(i \) and \(j \), where \(i \in \{0, 1\} \) and \(j \in \{0, 1\} \). Expressions of 10 genes were generated for each cell. The expression value of the \(h \)th gene in the \(k \)th cell of the cell type \(ij \), \(g_{ijk} \), was defined as the following:

\[
g_{ijk}^1 = i + \epsilon_{ijk}
\]

(44)

\[
g_{ijk}^2 = j + \epsilon_{ijk}
\]

(45)
\[g_{ijk}^3 = i \land j + \epsilon_{ijk} \] (46)

\[g_{ijk}^4 = i \lor j + \epsilon_{ijk} \] (47)

\[g_{ijk}^5 = 2i + \epsilon_{ijk} \] (48)

\[g_{ijk}^6 = 2j + \epsilon_{ijk} \] (49)

\[g_{ijk}^7 = 2i \land j + \epsilon_{ijk} \] (50)

\[g_{ijk}^8 = 2i \lor j + \epsilon_{ijk} \] (51)

\[g_{ijk}^9 = \epsilon_{ijk} \] (52)

\[g_{ijk}^{10} = 2 + \epsilon_{ijk} \] (53)

where

\[i \land j = \begin{cases} 1, & \text{if } i = 1, j = 1 \\ 0, & \text{otherwise} \end{cases} \] (54)

and

\[i \lor j = \begin{cases} 0, & \text{if } i = 0, j = 0 \\ 1, & \text{otherwise} \end{cases} \] (55)

were interactions of the two features. Here \(\epsilon_{ijk} \) was driven by Gaussian noise, namely,

\[\epsilon_{ijk} \sim \mathcal{N}(0, \sigma^2) \] (56)

We synthesized datasets of 5 different \(\sigma \) values (\(\sigma \in \{0.2, 0.4, 0.6, 0.8, 1.0\} \)). This was repeated 10 times and metrics for each \(\sigma \) value were calculated as the average across the 10 repeats.

8.4 D. Implementation details of the metrics used in the study

We measured the following metrics in our experiments:

8.4.1 Signal-to-Noise Ratio (SNR)

Because we care about the separation of cell types, we define the SNR metric as the ratio of the variance between cell types over the variance of the noise, which is estimated from within-cluster variance. For the entire embedding space, given \(q \) cell types, if the coordinate of each cell is indicated by \(c \), then we define the overall SNR metric as the following:

\[
SNR_{overall} = \frac{\text{tr}(\Sigma_{p=1}^q n_p (\bar{c}_p - \bar{c}_.)(\bar{c}_p - \bar{c}_.)^T))}{\text{tr}(\Sigma_{p=1}^q \Sigma_{k=1}^{n_p} (c_{pk} - \bar{c}_p)(c_{pk} - \bar{c}_p)^T)}
\] (57)

where \(\bar{c}_p \) is the center of each cell type cluster, and \(\bar{c}_. \) is the center of all data points.
Let \(c \) denote the embedded coordinate along a specific dimension. The SNR metric for that axis is therefore:

\[
SNR = \frac{\sum_{p=1}^{n_p} n_p (\bar{c}_p - \bar{c}_{..})^2}{\sum_{p=1}^{n_p} \sum_{k=1}^{n_p} (c_{pk} - \bar{c}_p)^2}
\]

(58)

8.4.2 Explained Variance (EV)

We want to know whether the variation of a specific dimension is strongly explained by that of a specific feature. Therefore, we measure, for each axis, how much of the total explained variance is explained by the variance of the feature \(i \) or \(j \). Formally, given the embedded coordinate \(y_{ijk} \), we calculate the EV as the following:

\[
EV_i = \frac{\sum_{a=1}^{a} \sum_{b=1}^{b} n_{ij} (\bar{y}_{i..} - \bar{y}_{...})^2}{\sum_{a=1}^{a} \sum_{b=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{...})^2}
\]

(59)

\[
EV_j = \frac{\sum_{a=1}^{a} \sum_{b=1}^{b} n_{ij} (\bar{y}_{j..} - \bar{y}_{...})^2}{\sum_{a=1}^{a} \sum_{b=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{...})^2}
\]

(60)

where \(\bar{y} \) is the average of \(y_{ijk} \) over the indices indicated by the dots.

8.4.3 Mutual Information (MI)

The MI between a discriminant axis \(u \) and a feature quantifies how much information of the feature is obtained by observing data projected along that axis. It is calculated as the MI between data representations along the axis \(y = u^T X \) and feature labels of the data \(f \), where \(X \) is the original gene expression matrix:

\[
I(y, f) = H(y) + H(f) - H(y, f) = -\sum_{y \in Y} p(y) \log_2 p(y) - \sum_{f \in F} p(f) \log_2 p(f) - \sum_{y \in Y} \sum_{f \in F} p(y, f) \log_2 p(y, f)
\]

(61)

Here \(H \) indicates entropy. To calculate \(H(y) \) and \(H(y, f) \), we discretize \(y \) into 10 bins.

8.4.4 Modularity

Ridgeway and Mozer (2018) argued that in a modular representation, each axis should depend on at most a single feature. Following the arguments in their paper, the modularity score is computed as follows: we first calculate the MI between each feature and each axis \((m_{if} \text{ denotes the MI between one axis } i \text{ and one feature } f) \). If an axis is perfectly modular, it will have high mutual information for only one feature and zeros for the others, we therefore compute a template \(t_{if} \) as the following:

\[
t_{if} = \begin{cases}
\theta_i, & \text{if } f = \arg \max_g m_{ig} \\
0, & \text{otherwise}
\end{cases}
\]

(62)

where \(\theta_i = \max_g m_{ig} \). We then calculate the deviation from the template as:

\[
\delta_i = \frac{\sum_j (m_{if} - t_{if})^2}{\theta_i^2 (N - 1)}
\]

(63)

where \(N \) is the number of features. The modularity score for the axis \(i \) is \(1 - \delta_i \). The mean of \(1 - \delta_i \) over \(i \) is defined as the overall modularity score.
References

[1] Joshua R. Sanes and Richard H. Masland. The types of retinal ganglion cells: Current status and implications for neuronal classification. *Annu. Rev. Neurosci.*, 38:221–246, July 2015.

[2] Hongkui Zeng and Joshua R. Sanes. Neuronal cell-type classification: Challenges, opportunities and the path forward. *Nature Reviews Neuroscience*, 18(9):530–546, September 2017.

[3] Nathan W. Gouwens, Staci A. Sorensen, Jim Berg, Changkyu Lee, Tim Jarsky, Jonathan Ting, Susan M. Sunkin, David Feng, Costas A. Anastassiou, Eliza Barkan, Kris Bickley, Nicole Blesie, Thomas Braun, Krissey Brouner, Agata Budzillo, Shiella Caldejon, Tamara Casper, Dan Castelli, Peter Chong, Kirsten Crichton, Christine Cuhaciany, Tanya L. Daigle, Rachel Dalley, Nick Dee, Tseg Desta, Song-Lin Ding, Samuel Dingman, Alyse Doperalski, Nadezhda Dotson, Tom Egdorf, Michael Fisher, Rebecca A. de Frates, Emma Garren, Marissa Garwood, Amanda Gary, Nathalie Gaudreault, Keith Godfrey, Melissa Gorham, Hong Gu, Caroline Habel, Kristen Hadley, James Harrington, Julie A. Harris, Alex Henry, DiJon Hill, Sam Josephsen, Sara Kebede, Lisa Kim, Matthew Kroll, Brian Lee, Tracy Lemon, Katherine E. Link, Xiaoxiao Liu, Brian Long, Rusty Mann, Medea McGraw, Stefan Mihalas, Alice Mukora, Gabe J. Murphy, Lindsay Ng, Kiet Ngo, Thuc Nhi Nguyen, Philip R. Nicovich, Aaron Oldre, Daniel Park, Sheana Parry, Jed Perkins, Lydia Potekchina, David Reid, Miranda Robertson, David Sandman, Martin Schroeder, Cliff Slaughterbeck, Gilberto Soler-Llavina, Josef Sulc, Aaron Szafer, Bosiljka Tasic, Naz Taskin, Corinne Teeter, Nivreta Thatra, Herman Tung, Wayne Wakeman, Grace Williams, Rob Young, Zhi Zhou, Colin Farrell, Hanchuan Peng, Michael J. Hawrylycz, Ed Lein, Lydia Ng, Anton Arkhipov, Amy Bernard, John W. Phillips, Hongkui Zeng, and Christof Koch. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. *Nat. Neurosci.*, 22(7):1182–1195, July 2019.

[4] Harold Hotelling. RELATIONS BETWEEN TWO SETS OF V ARIATES. *Biometrika*, 28(3-4):321–377, December 1936.

[5] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On Deep Multi-View Representation Learning: Objectives and Optimization. *arXiv:1602.01024 [cs]*, February 2016.

[6] Fangxiang Feng, Xiaojie Wang, and Ruifan Li. Cross-modal Retrieval with Correspondence Autoencoder. In *Proceedings of the 22nd ACM International Conference on Multimedia*, MM ’14, pages 7–16, Orlando, Florida, USA, November 2014. Association for Computing Machinery.

[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. *Science*, 313(5786):504–507, July 2006.

[8] Rohan Gala, Nathan Gouwens, Zizhen Yao, Agata Budzillo, Osnat Penn, Bosiljka Tasic, Gabe Murphy, Hongkui Zeng, and Uygar Sümühl. A coupled autoencoder approach for multi-modal analysis of cell types. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 9267–9276. Curran Associates, Inc., 2019.

[9] Ronald Aylmer Fisher. *The Correlation between Relatives on the Supposition of Mendelian Inheritance*. Royal Society of Edinburgh, 1918.

[10] Yerbol Z Kurmangaliyev, Juyoun Yoo, Samuel A LoCascio, and S Lawrence Zipursky. Modular transcriptional programs separately define axon and dendrite connectivity. *eLife*, 8:e50822, November 2019.

[11] Evan Z. Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh, Allison R. Bialas, Nolan Kamitaki, Emily M. Martersteck, John J. Trombetta, David A. Weitz, Joshua R. Sanes, Alex K. Shalek, Aviv Regev, and Steven A. McCarroll. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell*, 161(5):1202–1214, May 2015.

[12] Bosiljka Tasic, Vilas Menon, Thuc Nhi Nguyen, Tae Kyung Kim, Tim Jarsky, Zizhen Yao, Boaz Levi, Lucas T. Gray, Staci A. Sorensen, Tim Dolbeare, Darren Bertagnolli, Jeff Goldy, Nadiya Shapovalova, Sheana Parry, Changkyu Lee, Kimberly Smith, Amy Bernard, Linda Madisen,
Susan M. Sunkin, Michael Hawrylycz, Christof Koch, and Hongkui Zeng. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. *Nat. Neurosci.*, 19(2):335–346, February 2016.

[13] Karthik Shekhar, Sylvain W. Lapan, Irene E. Whitney, Nicholas M. Tran, Evan Z. Macosko, Monika Kowalczyk, Xian Adiconis, Joshua Z. Levin, James Nemensh, Melissa Goldman, Steven A. McCarroll, Constance L. Cepko, Aviv Regev, and Joshua R. Sanes. COMPREHENSIVE CLASSIFICATION OF RETINAL BIPOLAR NEURONS BY SINGLE-CELL TRANSCRIPTOMICS. *Cell*, 166(5):1308–1323.e30, August 2016.

[14] Bosiljka Tasic, Zizhen Yao, Lucas T. Graybuck, Kimberly A. Smith, Thuc Nghi Nguyen, Darren Bertagnolli, Jeff Goldy, Emma Garren, Michael N. Economo, Sarada Viswanathan, Osnat Penn, Trygve Bakken, Vilas Menon, Jeremy Miller, Olivia Fong, Karla E. Hirokawa, Kanan Lathia, Christine Rimorin, Michael Tieu, Rachael Larsen, Tamara Casper, Eliza Barkan, Matthew Kroll, Sheana Parry, Nadiya V. Shapovalova, Daniel Hirschstein, Julie Pendergraft, Heather A. Sullivan, Tae Kyung Kim, Aaron Szafer, Nick Dee, Peter Groblewski, Ian Wickersham, Ali Cetin, Julie A. Harris, Boaz P. Levi, Susan M. Sunkin, Linda Madisen, Tanya L. Daigle, Loren Looger, Amy Bernard, John Phillips, Ed Lein, Michael Hawrylycz, Karel Svoboda, Allan R. Jones, Christof Koch, and Hongkui Zeng. Shared and distinct transcriptomic cell types across neocortical areas. *Nature*, 563(7729):72–78, November 2018.

[15] Yi-Rong Peng, Karthik Shekhar, Wenjun Yan, Dustin Herrmann, Anna Sappington, Gregory S. Bryman, Tavé van Zyl, Michael Tri. H. Do, Aviv Regev, and Joshua R. Sanes. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. *Cell*, 176(5):1222–1237.e22, February 2019.

[16] Seung Wook Oh, Julie A. Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas, Quanxin Wang, Chris Lau, Leonard Kuan, Alex M. Henry, Marty T. Mortrud, Benjamin Ouellette, Thuc Nghi Nguyen, Staci A. Sorensen, Clifford R. Slaughterbeck, Wayne Wakeman, Yang Li, David Feng, Anh Ho, Eric Nicholas, Karla E. Hirokawa, Phillip Bohn, Kevin M. Joines, Hanchuan Peng, Michael J. Hawrylycz, John W. Phillips, John G. Hohmann, Paul Wohntuka, Charles R. Gerfen, Christof Koch, Amy Bernard, Chinh Dang, Allan R. Jones, and Hongkui Zeng. A mesoscale connectome of the mouse brain. *Nature*, 508(7495):207–214, April 2014.

[17] Thomas Euler, Silke Haverkamp, Timm Schubert, and Tom Baden. Retinal bipolar cells: Elementary building blocks of vision. *Nature Reviews Neuroscience*, 15(8):507–519, August 2014.

[18] Benyamin Ghojogh, Fakhri Karray, and Mark Crowley. Eigenvalue and Generalized Eigenvalue Problems: Tutorial. *arXiv:1903.11240 [cs, stat]*, March 2019. Comment: 8 pages, Tutorial paper.

[19] Kean Ming Tan, Zhaoran Wang, Han Liu, and Tong Zhang. Sparse generalized eigenvalue problem: Optimal statistical rates via truncated Rayleigh flow. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80(5):1057–1086, 2018.

[20] R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. *Annals of Eugenics*, 7(2):179–188, 1936.

[21] Geoffrey McLachlan. *Discriminant Analysis and Statistical Pattern Recognition*. Wiley-Interscience, Hoboken, N.J, August 2004.

[22] Nicholas M. Tran, Karthik Shekhar, Irene E. Whitney, Anne Jacobi, Inbal Benhar, Guosong Hong, Wenjun Yan, Xian Adiconis, McKinzie E. Arnold, Jung Min Lee, Joshua Z. Levin, Dingchang Lin, Chen Wang, Charles M. Lieber, Aviv Regev, Zhigang He, and Joshua R. Sanes. Single-cell profiles of retinal neurons differing in resilience to injury reveal neuroprotective genes. *bioRxiv*, page 711762, July 2019.

[23] Hung-I. Harry Chen, Yufang Jin, Yufei Huang, and Yidong Chen. Detection of high variability in gene expression from single-cell RNA-seq profiling. *BMC Genomics*, 17 Suppl 7:508, August 2016.
[24] Shristi Pandey, Karthik Shekhar, Aviv Regev, and Alexander F. Schier. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. *Curr. Biol.*, 28(7):1052–1065.e7, April 2018.

[25] Karl Ridgeway and Michael C Mozer. Learning Deep Disentangled Embeddings With the F-Statistic Loss. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems 31*, pages 185–194. Curran Associates, Inc., 2018.

[26] Filipe Pinto-Teixeira, Clara Koo, Anthony Michael Rossi, Nathalie Neriec, Claire Bertet, Xin Li, Alberto Del-Valle-Rodriguez, and Claude Desplan. Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit. *Cell*, 173(2):485–498.e11, April 2018.

[27] David Sprinzak and Michael B. Elowitz. Reconstruction of genetic circuits. *Nature*, 438(7067):443–448, November 2005.

[28] H. Craig Mak and Quincey Justman. Genotype-Phenotype Mapping Meets Single Cell Biology. *Cell Systems*, 4(1):1–2, January 2017.

[29] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and New Perspectives. *arXiv:1206.5538 [cs]*, June 2012.

[30] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised Learning with Deep Generative Models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 27*, pages 3581–3589. Curran Associates, Inc., 2014.

[31] Tejas D Kulkarni, William F. Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep Convolutional Inverse Graphics Network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information Processing Systems 28*, pages 2539–2547. Curran Associates, Inc., 2015.

[32] Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian representation learning with oracle constraints. *arXiv:1506.05011 [cs, stat]*, March 2016. Comment: 16 pages, published in ICLR 16.

[33] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods in machine learning. *Ann. Statist.*, 36(3):1171–1220, June 2008. Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org).

9 Additional Information

Sigma	0.2	0.4	0.6	0.8	1
EV_j of FLD_i	0.94915015	0.89798334	0.83949665	0.75799516	0.66325434
EV_j of FLD_j	0.03684044	0.04535285	0.02913673	0.01936836	0.01216407
EV_j of FLD_i	0.03665295	0.04499388	0.02981225	0.02231451	0.01190785
EV_j of FLD_j	0.94874927	0.89794858	0.82187076	0.74982447	0.65690059
I(i, FLD_i)	0.99360769	0.99308033	0.95913323	0.86075507	0.71272067
I(i, FLD_j)	0.49493103	0.28223236	0.15676406	0.090115	0.07770875
I(j, FLD_i)	0.4643901	0.28223236	0.15676406	0.090115	0.07770875
I(j, FLD_j)	0.99298066	0.98740331	0.94179684	0.85538379	0.73796543
Table 2: MI and EV metrics measured from LDA on the synthesized data

Sigma	EV_i of LD1	EV_i of LD2	EV_j of LD1	EV_j of LD2
0.2	0.48776682	0.4769204	0.51329241	0.6015657
0.4	0.45116523	0.44081294	0.51243319	0.46221964
0.6	0.52330355	0.36777595	0.36741921	0.47571376
0.8	0.42727731	0.44296763	0.3870769	0.37019437
1	0.36337134	0.32343567	0.33454171	0.32053017

Table 3: MI and EV metrics measured from “2LDAs” on the synthesized data

Sigma	EV_i of LD_i	EV_i of LD_j	EV_j of LD_i	EV_j of LD_j
0.2	0.97822626	0.00520168	0.97847676	0.9780679
0.4	0.92099596	0.0094905	0.92212988	0.99508033
0.6	0.85186621	0.00939646	0.83392262	0.96055224
0.8	0.76552256	0.00952869	0.75588205	0.87531047
1	0.66916737	0.00696314	0.66316636	0.73704612

Table 4: Metrics measured from FLDA, LDA and “2LDAs” on the dataset of T4/T5 neurons

Model	Axis	SNR	EV_i	EV_j	I(i, u)	I(j, u)	Modularity
FLDA	FLD_i	47.4564008	0.94162107	2.09E-05	0.99569955	0.07323188	0.99459067
	FLD_j_1	17.7680626	0.004905	0.97893759	0.00952869	0.99800712	0.99972387
	FLD_j_2	13.6348569	0.00949837	0.9284645	0.00946416	0.99806253	0.99972387
	FLD_j_3	4.56306359	8.00E-07	0.81863597	0.005781	0.94929582	0.99996294
LDA	LD1	48.1795978	0.94162107	2.09E-05	0.99569955	0.07323188	0.99459067
	LD2	18.2363587	0.004905	0.97893759	0.00952869	0.99800712	0.99972387
	LD3	14.016217	0.00949837	0.9284645	0.00946416	0.99806253	0.99972387
	LD4	4.64133888	8.00E-07	0.81863597	0.005781	0.94929582	0.99996294
2LDAs	LD_i	47.3372616	0.94162107	2.09E-05	0.99569955	0.07323188	0.99459067
	LD_j_1	17.4834949	0.004905	0.97893759	0.00952869	0.99800712	0.99972387
	LD_j_2	13.7035177	0.00949837	0.9284645	0.00946416	0.99806253	0.99972387
	LD_j_3	4.57167846	8.00E-07	0.81863597	0.005781	0.94929582	0.99996294

Figure 5: Additional plots for FLDA on the dataset of T4/T5 neurons. (A, B) Projection of the original gene expression data into the two-dimensional space made of the first and second (FLD_{ij}^1 and FLD_{ij}^2) (A) or the second and third (FLD_{ij}^2 and FLD_{ij}^3) (B) discriminant axes for the component that depends on the combination of both features i and j. Different cell types are indicated in different colors as in (B).
Figure 6: Additional plots for critical genes extracted from the sparse algorithm. (A) Weight vector of the 20 genes selected for the interaction of both dendritic and axonal features (FLD_{ij}). The weight value is indicated in the color bar with color indicating direction (red: positive and green: negative) and saturation indicating magnitude. (B) Expression patterns of the 20 genes from (A) in eight types of T4/T5 neurons. Dot size indicates the percentage of cells in which the gene was expressed, and color represents average scaled expression.