SK$_1$ OF AZUMAYA ALGEBRAS OVER HENSEL PAIRS

ROOZBEH HAZRAT

Abstract. Let A be an Azumaya algebra of constant rank n^2 over a Hensel pair (R, I) where R is a semilocal ring with n invertible in R. Then the reduced Whitehead group SK$_1(A)$ coincides with its reduction SK$_1(A/IA)$. This generalizes a result of [6] to non-local Henselian rings.

Let A be an Azumaya algebra over a ring R of constant rank n^2. Then there is an étale faithfully flat commutative ring S over R which splits A, i.e., $A \otimes_R S \cong M_n(S)$. For $a \in A$, considering $a \otimes 1$ as an element of $M_n(S)$, one then defines the reduced characteristic polynomial of a as

$$\text{char}_A(x, a) = \det(x - a \otimes 1) = x^n - \text{Trd}(a)x^{n-1} + \cdots + (-1)^n\text{Nrd}(a).$$

Using descent theory, one can show that $\text{char}_A(x, a)$ is independent of S and the isomorphism above and lies in $R[x]$. Furthermore, the element a is invertible in A if and only if $\text{Nrd}_A(a)$, the reduced norm of a, is invertible in R (see [10], III.1.2, and [14], Theorem 4.3). Let $SL(1, A)$ be the set of elements of A with the reduced norm 1. Since the reduced norm map respects the scalar extensions, it defines the smooth group scheme $SL_{1,A} : T \rightarrow SL(1, A_T)$ where $A_T = A \otimes_R T$ for an R-algebra T. Consider the short exact sequence of smooth group schemes

$$1 \longrightarrow SL_{1,A} \longrightarrow GL_{1,A} \xrightarrow{\text{Nrd}} G_m \longrightarrow 1$$

where $GL_{1,A} : T \rightarrow A_T^*$ and $G_m(T) = T^*$ for an R-algebra T where A_T and T^* are invertible elements of A_T and T, respectively. This exact sequence induces a long exact sequence

(1) $$1 \longrightarrow SL(1, A) \longrightarrow A^* \xrightarrow{\text{Nrd}} R^* \longrightarrow H^1_{et}(R, SL(1, A)) \longrightarrow H^1_{et}(R, GL(1, A)) \rightarrow \cdots$$

Let A' denote the commutator subgroup of A^*. One defines the reduced Whitehead group of A as $SK_1(A) = SL(1, A)/A'$ which is a subgroup of (non-stable) $K_1(A) = A^*/A'$. Let I be an ideal of R. Since the reduced norm is compatible with extensions, it induces the map $SK_1(A) \rightarrow SK_1(\overline{A})$, where $\overline{A} = A/IA$. A natural question arises here is, under what circumstances and for what ideals I of R, this homomorphism would be injective and/or surjective and thus the reduced Whitehead group of A coincides with its reduction. The following observation shows that even in the case of a split Azumaya algebra, these two groups could differ: consider the split Azumaya algebra $A = M_n(R)$ where R is an arbitrary commutative ring (and $n > 2$). In this case the reduced norm coincides with the ordinary determinant and $SK_1(A) = SL_n(R)/[GL_n(R), GL_n(R)]$. There are examples such that $SK_1(A) \neq 1$, in fact not even torsion. But in this setting, obviously $SK_1(\overline{A}) = 1$ for $\overline{A} = A/mA$ where m is a maximal ideal of R (for some examples see [13], Chapter 2).
If I is contained in the Jacobson radical $J(R)$, then $IA \subset J(A)$ (see, e.g., [4], Lemma 1.4) and (non-stable) $K_1(A) \to K_1(A)$ is surjective, thus its restriction to SK_1 is also surjective.

It is observed by Grothendieck ([5], Theorem 11.7) that if R is a local Henselian ring with maximal ideal I and G is an affine, smooth group scheme, then $H^1_{et}(R, G) \to H^1_{et}(R/I, G/I)$ is an isomorphism. This was further extended to Hensel pairs by Strano [15]. Now if further R is a semilocal ring then $H^1_{et}(R, GL(1, A)) = 0$, and thus from the sequence (1) we have the following commutative diagram:

(2)

The aim of this note is to prove that for the Hensel pair (R, I) where R is a semilocal ring, the map $SK_1(A) \to SK_1(A)$ is also an isomorphism. This extends a result of [6] to non-local Henselian rings.

Recall that the pair (R, I) where R is a commutative ring and I an ideal of R is called a Hensel pair if for any polynomial $f(x) \in R[x]$, and $b \in R/I$ such that $\overline{f}(b) = 0$ and $\overline{f}'(b)$ is invertible in R/I, then there is $a \in R$ such that $\overline{a} = b$ and $f(a) = 0$ (for other equivalent conditions, see Raynaud [12], Chap. XI).

In order to prove the statement, we use a result of Vaserstein [17] which establishes the (Dieudonné) determinant in the setting of semilocal rings. The crucial part is to prove a version of Platonov’s congruence theorem [11] in the setting of an Azumaya algebra over a Hensel pair. The approach to do this was motivated by Suslin in [16]. We also need to use the following facts established by Greco in [3, 4].

Proposition 1 ([4], Prop. 1.6). Let R be a commutative ring, A be an R-algebra, integral over R and finite over its center. Let B be a commutative R-subalgebra of A and I an ideal of R. Then $IA \cap B \subseteq \sqrt{IB}$.

Corollary 2 ([3], Cor. 4.2). Let (R, I) be a Hensel pair and let $J \subseteq \sqrt{I}$ be an ideal of R. Then (R, J) is a Hensel pair.

Theorem 3 ([3], Th. 4.6). Let (R, I) be a Hensel pair and let B be a commutative R-algebra integral over R. Then (B, IB) is a Hensel pair.

We are in a position to prove the main theorem of this note.

Theorem 4. Let A be an Azumaya algebra of constant rank n^2 over a Hensel pair (R, I) where R is a semilocal ring with n invertible in R. Then $SK_1(A) \cong SK_1(A)$ where $A = A/IA$.
Proof. Since for any \(a \in A \), \(\text{Nrd}_A(a) = \sqrt{\text{Nrd}_A(a)} \), it follows that there is a homomorphism \(\phi : \text{SL}(1, A) \to \text{SL}(1, \overline{A}) \). We first show that \(\ker \phi \subseteq A' \), the commutator subgroup of \(A' \). In the setting of valued division algebras, this is the Platonov congruence theorem \([11]\). We shall prove this in several steps. Clearly \(\ker \phi = \text{SL}(1, A) \cap 1 + IA \). Note that \(A \) is a free \(R \)-module (see \([1] \), II, §5.3, Prop. 5).

(i) The group \(1 + I \) is uniquely \(n \)-divisible and \(1 + IA \) is \(n \)-divisible.

Let \(a \in 1 + I \). Consider \(f(x) = x^n - a \in R[x] \). Since \(n \) is invertible in \(R \), \(\overline{f}(x) = x^n - 1 \in \overline{R}[x] \) has a simple root. Now this root lifts to a root of \(f(x) \) as \((R, I) \) is a Hensel pair. This shows that \(1 + I \) is \(n \)-divisible. Now if \((1 + a)^n = 1 \) where \(a \in I \), then \(a(a^{n-1} + na^{n-2} + \cdots + n) = 0 \). Since the second factor is invertible, \(a = 0 \), and it follows that \(1 + I \) is uniquely \(n \)-divisible.

Now let \(a \in 1 + IA \). Consider the commutative ring \(B = R[a] \subseteq A \). By Theorem \([4]\) \((B, IB) \) is a Hensel pair. On the other hand by Prop. \([1]\) \(IA \cap B \subseteq \sqrt{IB} \). Thus by Cor. \([2]\) \((B, IA \cap B) \) is also a Hensel pair. But \(a \in 1 + IA \cap B \). Applying the Hensel lemma as in the above, it follows that \(a \) has a \(n \)-th root and thus \(1 + IA \) is \(n \)-divisible.

(ii) \(\text{Nrd}_A(1 + IA) = 1 + I \).

From compatibility of the reduced norm, it follows that \(\text{Nrd}_A(1 + IA) \subseteq 1 + I \). Now using the fact that \(1 + I \) is \(n \)-divisible, the equality follows.

(iii) \(\text{SK}_1(A) \) is \(n^2 \)-torsion.

We first establish that \(N_{A/R}(a) = \text{Nrd}_A(a)^n \). One way to see this is as follows. Since \(A \) is an Azumaya algebra of constant rank \(n^2 \), \(i : A \otimes A^{op} \cong \text{End}_R(A) \cong M_{n^2}(R) \) and there is an étale faithfully flat \(S \) algebra such that \(j : A \otimes S \cong M_n(S) \). Consider the following diagram

\[
\begin{align*}
A \otimes A^{op} \otimes S & \xrightarrow{i \otimes 1} \text{End}_R(A) \otimes S \xrightarrow{\cong} \text{End}_S(A \otimes S) \xrightarrow{\cong} M_{n^2}(S) \\
A^{op} \otimes A \otimes S & \xrightarrow{1 \otimes j} A^{op} \otimes M_n(S) \xrightarrow{\cong} M_n(A^{op} \otimes S) \xrightarrow{\cong} M_{n^2}(S)
\end{align*}
\]

where the automorphism \(\psi \) is the compositions of isomorphisms in the diagram. By a theorem of Artin (see, e.g., \([10]\), §III, Lemma 1.2.1), one can find an étale faithfully flat \(S \) algebra \(T \) such that \(\psi \otimes 1 : M_{n^2}(T) \to M_{n^2}(T) \) is an inner automorphism. Now the determinant of the element \(a \otimes 1 \otimes 1 \) in the first row is \(N_{A/R}(a) \) and in the second row is \(\text{Nrd}_A(a)^n \) and since \(\psi \otimes 1 \) is inner, thus they coincide.

Therefore if \(a \in \text{SL}(1, A) \), then \(N_{A/R}(a) = 1 \). We will show that \(a^{n^2} \in A' \). Consider the sequence of \(R \)-algebra homomorphism

\[
f : A \to A \otimes A^{op} \to \text{End}_R(A) \cong M_{n^2}(R) \to M_{n^2}(A)
\]
and the \(R \)-algebra homomorphism \(i : A \to M_{n^2}(A) \) where \(a \) maps to \(aI_{n^2} \), where \(I_{n^2} \) is the identity matrix of \(M_{n^2}(A) \). Since \(R \) is a semilocal ring, the Skolem-Noether theorem is present in this setting (see \([10]\), Prop. 5.2.3) and thus there is \(g \in \text{GL}_{n^2}(A) \) such that \(f(a) = gi(a)g^{-1} \). Also, since \(A \) is a finite algebra over \(R \), \(A \) is a semilocal ring. Since \(n \) is invertible in \(R \), by Vaserstein’s result \([17]\), the Dieudonné determinant extends to the setting of \(M_{n^2}(A) \).
Taking the determinant from \(f(a)\) and \(gi(a)g^{-1}\), it follows that \(1 = N_{A/R}(a) = a^{n^2}c_a\) where \(c_a \in A'\). This shows that \(SK_1(A)\) is \(n^2\)-torsion.

(iv). Platonov’s Congruence Theorem: \(SL(1, A) \cap (1 + IA) \subseteq A'\).

Let \(a \in SL(1, A) \cap (1 + IA)\). By part (i), there is \(b \in 1 + IA\) such that \(b^{n^2} = a\). Then \(Nrd_A(a) = Nrd_A(b)^{n^2} = 1\). By part (ii), \(Nrd_A(b) \in 1 + I\) and since \(1 + I\) is uniquely \(n\)-divisible, \(Nrd_A(b) = 1\), so \(b \in SL(1, A)\). By part (iii), \(b^{n^2} \in A'\), so \(a \in A'\). Thus \(ker \phi \subseteq A'\) where \(\phi : SL(1, A) \rightarrow SL(1, A')\).

It is easy to see that \(\phi\) is surjective. In fact, if \(\alpha \in SL(1, A)\) then \(1 = Nrd_A(\alpha) = Nrd_A(b)\) thus, \(Nrd_A(a) \in 1 + I\). By part (i), there is \(r \in 1 + I\) such that \(Nrd_A(ar^{-1}) = 1\) and \(ar^{-1} = \alpha\). Thus \(\phi\) is an epimorphism. Consider the induced map \(\overline{\phi} : SL(1, A) \rightarrow SL(1, A)/A'\). Since \(I \subseteq J(R)\), and by part (iii), \(ker \phi \subseteq A'\) it follows that \(ker \overline{\phi} = A'\) and thus \(\overline{\phi} : SK_1(A) \cong SK_1(A)\).

Let \(R\) be a semilocal ring and \((R, J(R))\) a Hensel pair. Let \(A\) be an Azumaya algebra over \(R\) of constant rank \(n\) and \(n\) invertible in \(R\). Then by Theorem 4, \(SK_1(A) \cong SK_1(\overline{A})\) where \(\overline{A} = A/J(R)A\). But \(J(A) = J(R)A\), so \(\overline{A} = M_{k_1}(D_1) \times \cdots \times M_{k_r}(D_r)\) where \(D_i\) are division algebras. Thus \(SK_1(A) \cong SK_1(\overline{A}) = SK_1(D_1) \cdots \times SK_1(D_r)\).

Using a result of Goldman [2], one can remove the condition of Azumaya algebra having a constant rank from the Theorem.

Corollary 5. Let \(A\) be an Azumaya algebra over a Hensel pair \((R, I)\) where \(R\) is semilocal and the least common multiple of local ranks of \(A\) over \(R\) is invertible in \(R\). Then \(SK_1(A) \cong SK_1(\overline{A})\) where \(\overline{A} = A/IA\).

Proof. One can decompose \(R\) uniquely as \(R_1 \oplus \cdots \oplus R_t\) such that \(A_i = R_i \otimes_R A\) have constant ranks over \(R_i\) which coincide with local ranks of \(A\) over \(R\) (see [2], §2 and Theorem 3.1). Since \((R_i, IR_i)\) are Hensel pairs, the result follows by using Theorem 4. \(\square\)

Remarks 6. Let \(D\) be a tame unramified division algebra over a Henselian field \(F\), i.e., the value group of \(D\) coincides with value group of \(F\) and \(char(F)\) does not divide the index of \(D\) (see [18] for a nice survey on valued division algebras). Let \(V_D\) be the valuation ring of \(D\) and \(U_D = V_D^*\). Jacob and Wadsworth observed that \(V_D\) is an Azumaya algebra over its center \(V_F\) (Theorem 3.2 in [18] and Example 2.4 in [8]). Since \(D^* = F^*U_D\) and \(V_D \otimes_{V_F} F \simeq D\), it can be seen that \(SK_1(D) = SK_1(V_D)\). On the other hand our main Theorem states that \(SK_1(V_D) \simeq SK_1(D)\). Comparing these, we conclude the stability of \(SK_1\) under reduction, namely \(SK_1(D) \simeq SK_1(D)\) (compare this with the original proof, Corollary 3.13 in [31]).

Now consider the group \(CK_1(A) = A^*/R^*A'\) for the Azumaya algebra \(A\) over the Hensel pair \((R, I)\). A proof similar to Theorem 3.10 in [3], shows that \(CK_1(A) \cong CK_1(\overline{A})\). Thus in the case of tame unramified division algebra \(D\), one can observe that \(CK_1(D) \cong CK_1(D)\).

For an Azumaya algebra \(A\) over a semilocal ring \(R\), by [1] one has

\[R^*/\text{Nrd}_A(A^*) \cong H^1_{et}(R, SL(1, A)).\]
If \((R, I)\) is also a Hensel pair, then by the Grothendieck-Strano result,
\[R^*/\text{Nrd}_A(A^*) \cong H^1_{\text{ét}}(R, \text{SL}(1, A)) \cong H^1_{\text{ét}}(\overline{R}, \text{SL}(1, \overline{A})) \cong \overline{R}/\text{Nrd}_{\overline{A}}(\overline{A}). \]

However specializing to a tame unramified division algebra \(D\), the stability does not follow in this case. In fact for a tame and unramified division algebra \(D\) over a Henselian field \(F\) with the valued group \(\Gamma_F\) and index \(n\) one has the following exact sequence (see [7], Theorem 1):
\[1 \rightarrow H^1(F, \text{SL}(1, D)) \rightarrow H^1(F, \text{SL}(1, D)) \rightarrow \Gamma_F/n\Gamma_F \rightarrow 1. \]

Acknowledgement. I would like to thank IHES, where part of this work has been done in Summer 2006 and the support of EPSRC first grant scheme EP/D03695X/1.

References

[1] N. Bourbaki, Commutative Algebra, Chapters 1–7, Springer-Verlag, New York, 1989.
[2] O. Goldman, Determinants in projective modules, Nagoya Math. J. 3 (1966), 7–11.
[3] S. Greco, Algebras over nonlocal Hensel rings, J. Algebra, 8 (1968), 47–59.
[4] S. Greco, Algebras over nonlocal Hensel rings II, J. Algebra, 13 (1969), 48–56.
[5] A. Grothendieck, Le groupe de Brauer. III: Dix exposés la cohomologie des schémas, North Holland, Amsterdam, 1968.
[6] R. Hazrat, Reduced \(K\)-theory of Azumaya algebras, J. Algebra, 305 (2006), 687–703.
[7] R. Hazrat, On the first Galois cohomology group of the algebraic group \(\text{SL}_1(D)\), Comm. Algebra, 36 (2008), 381–387.
[8] B. Jacob, A. Wadsworth, Division algebras over Henselian fields, J. Algebra, 128 (1990), 126–179.
[9] T.Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 1991.
[10] M.-A. Knus, Quadratic and Hermitian forms over rings, Springer-Verlag, Berlin, 1991.
[11] V.P. Platonov, The Tannaka-Artin problem and reduced \(K\)-theory, Math USSR Izv. 10 (1976) 211–243.
[12] M. Raynaud, Anneaux locaux Henséliens, LNM, 169, Springer-Verlag, 1070.
[13] J. Rosenberg, Algebraic \(K\)-theory and its applications, GTM, 147, Springer-Verlag, 1994.
[14] D. Saltman, Lectures on division algebras, RC Series in Mathematics, AMS, no. 94, 1999.
[15] R. Strano, Principal homogenous spaces over Hensel rings, Proc. Amer. Math. Soc. 87, No. 2, 1983, 208–212.
[16] A. Suslin, \(SK_1\) of division algebras and Galois cohomology, 75–99, Adv. Soviet Math., 4, AMS, 1991.
[17] L. Vaserstein, On the Whitehead determinant for semilocal rings, J. Algebra, 283 (2005), 690–699.
[18] A. Wadsworth, Valuation theory on finite dimensional division algebras, Fields Inst. Commun. 32, Amer. Math. Soc., Providence, RI, (2002), 385–449.