Effect of Grey and White Portland Cement Fillers on Flexural and Shear Strength of GFRP Composite Material

D. Harsha Vardhan, D. Sai Chaithanya Kishore, Y. Santhosh Kumar Reddy, K. Manohar Reddy, Gujjala Raghavendra, and Ramesh Rudrapati

1Department of Mechanical Engineering, PVKK Institute of Technology, Ananthapuramu, Andhra Pradesh 515001, India
2Department of Mechanical Engineering, Srinivasa Ramanujan Institute of Technology, Ananthapuramu, Andhra Pradesh 515701, India
3Department of Mechanical Engineering, National Institute of Technology, Warangal 506004, Telangana, India
4Department of Industrial Engineering, Bule Hora University, Bule Hora 144, Ethiopia

Correspondence should be addressed to Ramesh Rudrapati; rameshrudrapati@gmail.com

Received 8 June 2021; Revised 21 June 2021; Accepted 2 July 2021; Published 9 July 2021

Abstract

The mechanical behaviour of glass fiber reinforced polymer (GFRP) composite depends on the type of matrix, filler, and fiber architecture. In order to develop high-strength polymer matrix composites, the composites containing 5%, 10%, and 15% each of Portland grey and white cement filler are prepared by uniformly mixing the epoxy and filler materials, followed by casting by hand layup technique. The flexural and shear test is performed in accordance with ASTM 790 and ASTM D5379, respectively. It has been found that the values of shear strength, flexural strength, and modulus of elasticity vary with the increasing amount of cement component in the polymer. In addition, for a given percentage of the components of the cementitious filler, the values of the mechanical strength of the composites that contain white cement are higher than those of the composites that contain grey cement filler. Damage to composites has been found to involve fiber breakage and delamination primarily.

1. Introduction

The exploration of polymer matrix composites is more on demand, because of their tailorable properties [1–3]. Many researchers are contributing to satisfy the market needs. Among the available polymer composites, the glass fiber reinforced composites are used for exploring more applications because of their incredible mechanical characteristics at low cost [4]. But most of the glass fiber composite failure occurs at matrix fiber interface [5]. In order to make composites stronger, the filler material is introduced into the matrix in micro- and nanoranges. The filler materials show great impact on the mechanical characteristics and failure mechanism, as well as on the fiber matrix bonding [6–9]. From the literature, the researchers have used various kinds of fillers to investigate the effect of the filler material on the characteristics of the composite material. The study is carried out with natural fillers like clay [10]; coconut shell particles [8]; rice husk, wheat husk, and coconut coir [11]; and oil palm shell (OPS) powder [12]. Extensive research was done more with ceramic fillers and man-made fillers such as MWCNT [12], graphite [13], TiO₂, Sic [14], and Al₂O₃ [15]. The size and the shape of the filler also influence the composite characteristics, and the behaviour composite changes with the factors [16].

A very less amount of research was carried out on the use of compound fillers such as cement into the composite materials as a filler material and the studies reveal that the cement fillers help in the improvisation of the mechanical properties. [17–20]. Cement is a composition of various elements such as limestone or calcium oxide (CaO), silicon dioxide (SiO₂), aluminum oxide (Al₂O₃), iron oxide (Fe₂O₃), magnesium oxide (MgO), and sulphur trioxide (SO₃) and other insignificant elements for the formation of compounds. Basically, there are two categories of grey cement and white cement [18, 19]. Grey cement comprises a larger...
amount of iron oxide and manganese oxide compared to white cement. The average granular size of white cement is smaller than that of grey cement. As cement is the combination of fillers commonly using polymer composite, the compound of all those fillers may enhance the mechanical behaviour. This particular aspect has created interest in carrying out this work. To analyse the impact of constituent element combinations, two varieties of Portland cement are considered for the study. It is proved that the glass fiber and cement have a good affinity and they have been used in construction industry as concrete/cement matrix with glass fiber [21–23].

The main objective of the present study was to investigate the effect of cement as a filler in GFRP composites’ flexural and shear strengths. Grey and white commercial cement were chosen to be used as a filler. The results of the study show that the cement fillers exhibit significant impact on material characteristics.

2. Materials and Methods

Woven-Twill glass fiber (0°/90°) was used in the preparation of GFRP composites. Composite samples are prepared by hand layup. Specific percentages by weight of grey and white cement have been added as 5%, 10%, and 15% by weight of the matrix. First of all, the necessary amount of epoxy (Araldite LY556) is taken in a glass beaker and predefined amount of filler is taken in it. The mixture was manually stirred to create an evenly distributed solution. Upon combining the epoxy and the cement properly, a hardener (Araldite HY951) is introduced at a ratio of 1 : 10 by weight of epoxy and the mixture is remixed. As the mixture is ready, in the hand layup method, a portion of epoxy mixture is poured into mould and distributed uniformly. Next a layer of fibers is placed into the mould, and then remaining mixture is poured and distributed uniformly. Composite is exposed to uniform pressure on top surface to boost the penetration of matrix with fiber so that it does not accumulate epoxy or dry fiber spots. The composite can be treated in a compressed state for approximately 24 hours. Upon diagnosis, the composite is cut in order to prepare samples for different mechanical tests [17].

The fabricated samples are cut into samples to perform flexural and shear tests. Samples are coded as C1 for GFRP, C2 to C4 for grey cement fillers in GFRP, and C5 to C7 for white cement fillers as shown in Table 1. The flexural samples are cut into 126 mm × 13 mm according to ASTM D790, as shown in Figure 1. Shear test samples are cut into 76 mm × 19 mm with a middle double V-notch with 90° internal angles and 3.8 mm depth, as per the ASTM D5379 (Iosipescu). Shear test of the composite is as shown in Figure 2. Tests are carried out on computer-aided universal testing machine at a relative humidity of 50 ± 5% and on an environment temperature of 23 ± 2°C with a crosshead speed of 5 mm/min. The flexural modulus is an index of flexibility in bending, in other words, the amount of force consumed per unit area per unit of elongation. In order to analyse the rigidity of the samples, the elongation must be kept constant. In this connection, flexural modulus at 1% of strain is measured in the present work.

S. no.	Specimen code	Sample
1	C1	GFRP
2	C2	GFRP with 5 wt.% weight of grey cement filler
3	C3	GFRP with 10 wt.% weight of grey cement filler
4	C4	GFRP with 15 wt.% weight of grey cement filler
5	C5	GFRP with 5 wt.% weight of white cement filler
6	C6	GFRP with 10 wt.% weight of white cement filler
7	C7	GFRP with 15 wt.% weight of white cement filler

Figure 1: Flexural test specimen dimensions as per ASTM D790.

Figure 2: Dimensions of the shear (Iosipescu) test of composite as per ASTM D5379.

3. Results and Discussion

Three-point bending test is carried out on the plain glass fiber reinforced polymer (GFRP) composites, GFRP composite with grey Portland cement, and white cement filler composites. For each test case, five samples were tested; mean of three samples were taken by eliminating highest and lowest values; the same is presented in Table 2. The failure point of each composite is analysed under three-point bending. The maximum failure bending force, deflection, and then the strengths were carefully examined and discussed. For precise comparison of elasticity of the material under bending, flexural modulus at 1% strain is evaluated and analysed.

Figure 3 shows the scattering of the maximum force that can be bared by the sample under flexural versus maximum deflection exhibited by the sample; for better analysis, the points are joined to root node, with a straight line. The plain GFRP composite has more deflection than any other sample filler doped samples. The maximum deflection is observed as 5.13 mm. It is also observed that, by the addition of grey cement fillers, the material becomes rigid, and its deflection reduced to a great extent during the addition of 5% of the Portland cement.
cement, and the value is only 2.434 mm. With the increase in the filler content to 10 wt.%, the deflection is increased to 4.070 mm. Then the value is again decreased to 2.753 mm for a further increment of 15 wt.% of grey cement in the GFRP. This phenomenon may be due to the addition of grey cement to epoxy, with the matrix becoming hard and brittle. But when it increased to 10 wt.%, there were more particles in the matrix, creating a strong bond between the matrix and fiber interface, and there was no crack observed on the surface and the failure has occurred only due to fiber peeling. With further increase in filler content, the matrix material becomes more rigid, taking much load for each unit of extension compared to other samples. Figure 4 clearly shows this phenomenon; the scanning electron microscopic image obtained at the fractured surface of a sample with 15% grey cement filler shows the fiber pull-out and clear surface without cracks.

With the addition of the white cement fillers to the composite in 5 wt.%, the deflection of the material is reduced from 5.130 mm to 2.015 mm. The samples have become more rigid as the matrix has become stiffer with the addition of the filler content. Further, with the addition of the filler content of the white cement, the material has reduced its stiffness, showing an increase in the deflection. This is maybe due to the fine particle size of the white cement compared to the grey cement, which allows them to add some flexibility to the composite after binding. At the bottom line, the addition of cement fillers to composite makes the composite become rigid, reducing its deflection.

Figure 5 represents the variation of the flexural strength of the samples with the addition of the grey and white Portland cement, with weight percentages of 5 wt.%, 10 wt.%, and 15 wt.% for each case. The flexural strength of the plain-woven rowed GFRP is noted as the 168.29 MPa. Meanwhile, by the addition of the grey cement filler with 5 wt.%, the strength is reduced very slightly from 168.29 MPa to 165.66 MPa. In this case, from Table 2 and Figure 3, it is observed that the deflection is also reduced. The material becomes hard and brittle. With the addition of 10 wt.% of the filler content to the composite, the strength of the composite has increased, and, with the further addition of the cement filler to the composite, the strength tends to increase—the more amount of the cement filler there is in the epoxy, the more strength it obtains. As there is a good affinity between glass fiber and cement fillers, the constituent elements are more or less similar, such as SiO$_2$, CaO, Al$_2$O$_3$, magnesium, and ferrous oxide. More rigorous chemical studies are to be carried out in this domain to explore the affinity between glass fiber and cement. The maximum strength of the composite observed at 15 wt.% of grey cement filler content is 232.19 MPa. The white cement filler has increased the

Table 2: Flexural test results.

S. no.	Specimen code	Maximum force (N)	Maximum deflection (mm)	Flexural strength (MPa)	Flexural modulus at 1% strain (GPa)
1	C1	179.51	5.130	168.29	5.91
2	C2	198.81	2.434	165.66	6.40
3	C3	239.39	4.070	196.21	6.87
4	C4	235.66	2.753	232.19	8.70
5	C5	191.99	2.015	172.55	5.44
6	C6	210.13	3.650	215.26	8.65
7	C7	186.09	3.693	181.67	7.44

Figure 3: Load versus deflection under flexural loading.

Figure 4: Scanning electron microscopy image of flexural test specimen with grey cement filler of 15 wt.%.
strength of the composite with the addition of filler up to 10 wt.%. The maximum strength obtained is 215.26 MPa. Then its value is decreased to 181.67 MPa for 15 wt.% in comparison up to 10 wt.% the white cement filler exhibiting better strength than the grey cement.

Figure 6 shows the flexural modulus of the GFRP composite and hybrid composite samples with the addition of the grey and white Portland cement, with weight percentages of 5 wt.%, 10 wt.%, and 15 wt.% for each case. The results revealed that, at 1% strain, the white cement filler with 5 wt.% exhibited lower modulus than the plain GFRP. The grey cement with 15 wt.% of cement is having more rigid nature, that is, modulus at 1% strain. The modulus increases with an increase in filler percentage compared to the GFRP. As the cement has more bonding nature, due its natural behaviour, particles bond together and exhibit more modulus or rigidity in bending. In the case of white cement for 1% strain, the value of modulus decreased for 5 wt.% followed by plain woven GFRP and then increased for 10 wt.% and then reduced again with the further addition of the white cement filler up to 15 wt.%.

Figure 7 shows the scattering of the maximum force that can be bared by the sample under shear versus maximum elongation exhibited by the sample; for better analysis, the points are joined to root node, with a straight line. The plain GFRP composite has more deflection than any other filler doped samples. The maximum deflection observed is 3.04 mm. It is also observed that, by the addition of grey cement fillers, the material becomes rigid, and its deflection is reduced to a great extent with the addition of 5% of the Portland cement, and the value is only 1.308 mm. With the increase in the filler content to 10 wt.%, the deflection is decreased to 1.31 mm. Then the value is again decreased to 0.81 mm with the further increment of 15 wt.% of grey cement in the GFRP. We may assume that this phenomenon is due to the addition of grey cement to epoxy and the matrix becomes hard and brittle. But when it is increased to 15 wt.%, there are more particles in the matrix, creating a strong bond between the matrix and fiber interface, and no crack is observed on the surface and the failure has occurred only due to fiber peeling. With further increase in filler content, the matrix material becomes more rigid, taking much load for each unit of extension compared to other samples.

With the addition of the white cement fillers to the composite in 5 wt.%, the deflection of the material reduced from 3.04 mm to 1.75 mm. The samples have become more rigid with the matrix attaining more stiffness with the addition of the filler content. Further, with the addition of the filler content, the deflection is reduced to 10 wt.% of the filler. The material reduced its stiffness and has shown an increase in the deflection, with the increase of the filler content of white cement. To conclude, the addition of cement fillers to the composite makes the composite rigid reduce its deflection.

Figure 8 shows the variation of the shear strength of the samples with the addition of the grey and white Portland cement, with weight percentages of 5 wt.%, 10 wt.%, and 15 wt.% for each case. The shear strength of the woven GFRP is noted to be 12.02 MPa. Meanwhile, by the addition of the grey cement filler with 5 wt.%, the strength is increased from 12.02 MPa to 16.54 MPa. From Table 3 and Figure 7, it is observed that the deflection is reduced and the material exhibited more strength with the addition of 10 wt.% of the filler content to the composite. With the further addition of the cement filler to the composite, the strength started...
decreasing. At 10 wt.% of the cement filler in the epoxy, more strength is acquired. As there is a good affinity between glass fiber and cement fillers, in both glass fiber and cement fillers, the constituent elements are more or less similar, such as SiO₂, CaO, Al₂O₃, magnesium, and ferrous oxide. But, for 15 wt.% of grey cement filler, the content is reduced to 13.17 MPa. The white cement filler has increased its strength of the composite with the addition of filler up to 10 wt.%. The maximum strength obtained is 19.32 MPa. The scanning electron microscopy image of this sample is shown in Figure 9, a brittle fracture of the matrix and fiber is apparent. There is more bonding between fiber and matrix, many fibers are broken at the root, and it is observed that there is no noticeable peeling or pull-out of fibers under transverse loading.

Therefore the white cement filler exhibits better strength than the grey cement. In the strength point of view of the composite, white cement filler dominates at all other compositions except at 5 wt.%. At the bottom line, we can say that the grey cement-filled composites were

S. no.	Specimen code	Break force (N)	Break elongation (mm)	Shear strength (MPa)
1	C1	384.41	3.04	12.02
2	C2	357.06	1.38	16.54
3	C3	425.49	1.31	17.32
4	C4	455.20	0.81	13.17
5	C5	357.70	1.75	14.35
6	C6	409.16	1.18	19.32
7	C7	365.11	1.91	17.25
weaker in shear loading compared to the white cement-filled composites.

4. Conclusions

In this study, the effects of grey and white Portland cementitious filler reinforcement on the flexural and shear behaviour of GFRP woven fabric compounds were investigated. Based on the results, the following was concluded:

(i) Material deflection decreases with the addition of cement fillers for both flexural and shear loading, and load-bearing capacity increases.

(ii) The flexural strength of the hybrid GFRP composite with grey cement filler increases with the addition of the filler. Flexural strength of the white cement filler hybrid GFRP composite increases up to 10 wt.%, and then it has reduced with further addition.

(iii) Flexural modulus at 1% strain shows a similar trend to that of the flexural strength of samples.

(iv) Shear strength of both filler composites increases up to 10 wt.% filler content, and then it has reduced.

(v) The white cement filler had more strength than the grey cement filler up to 10 wt.% of filler content in flexural loading. In shear loading, the white cement filler exhibited better strength for 10 wt.% and 15 wt.% composites.

Data Availability

The data used to support the findings of this study are included within the article.

Disclosure

This study was performed as a part of the employment of Bule Hora University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] G. Raghavendra, S. Ojha, S. K. Acharya, and S. K. Pal, "A comparative analysis of woven jute/glass hybrid polymer composite with and without reinforcing of fly ash particles," Polymer Composites, vol. 37, no. 3, pp. 658–665, 2016.

[2] G. Raghavendra, S. Ojha, S. Acharya, S. Pal, and I. Ramu, "Evaluation of mechanical behaviour of nanometer and micrometer fly ash particle-filled woven bidirectional jute/glass hybrid nanocomposites," Journal of Industrial Textiles, vol. 45, no. 6, pp. 1268–1287, 2016.

[3] R. Rampratash and S. Jayabal, "Particle swarm and simulated annealing based intuitive search optimization of flexural behaviors in bioparticles impregnated coir fiber-vinyl ester composites," Polymer Composites, vol. 37, no. 6, pp. 1765–1774, 2016.

[4] D. Harsha Vardhan, A. Ramesh, and B. Chandra Mohan Reddy, “A review on materials used for marine propellers,” Materials Today: Proceedings, vol. 18, no. 7, pp. 4482–4490, 2019.

[5] P. Choudhury, S. Halder, N. I. Khan, J. Wang, and K. M. Pandey, "Enhanced crack suppression ability of hybrid glass fiber reinforced laminated composites fabricated using GNP/epoxy system by optimized UDM parameters," Ultras onics Sonochemistry, vol. 39, pp. 174–187, 2017.

[6] R. Sathesh Raja, K. Manisekar, and V. Manikandan, “Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis,” Materials & Design, vol. 55, pp. 499–508, 2014.

[7] M. Hussain, A. Nakahira, and K. Nishara, "Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion," Materials Letters, vol. 26, no. 3, pp. 185–191, 1996.

[8] S. M. Sapuan, M. Harimiand, and M. A. Maleque, “Mechanical properties of epoxy/coconut shell filler particle composites,” Arabian Journal for Science and Engineering, vol. 28, no. 2, pp. 171–181, 2003.

[9] E. G. Koricho, A. Khomenko, M. Haq, L. T. Drzal, G. Belingardi, and B. Martorana, "Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite," Composite Structures, vol. 134, pp. 789–798, 2015.

[10] T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, "On the nature of polymide-clay hybrid composites," Chemistry of Materials, vol. 6, no. 5, pp. 573–575, 1994.

[11] K. Debnath, V. Dhawan, I. Singh, and A. Dvivedi, “Effect of natural fillers on wear behavior of glass-fiber-reinforced epoxy composites,” in Proceedings of the International Conference on Research and Innovations in Mechanical Engineering, 2014.

[12] O. Nabinejad, D. Sujan, M. E. Rahman, W. Y. H. Liew, and I. J. Davies, "Hybrid composite using natural filler and multi-walled carbon nanotubes (MWCNTs)," Applied Composite Materials, vol. 25, no. 6, pp. 1323–1337, 2018.

[13] S. Das, S. Halder, N. I. Khan, B. Paul, and M. S. Goyat, “Assessing damage mitigation by silanized milled graphite nanoparticles in hybrid GFRP laminated composites,” Composites Part A: Applied Science and Manufacturing, vol. 132, Article ID 105784, 2020.

[14] S.-r. Lu, J. Hongyu, H.-l. Zhang, and X.-y. Wang, “Wear and mechanical properties of epoxy/SiO2–TiO2 composites,” Journal of Materials Science, vol. 40, no. 11, pp. 2815–2821, 2005.

[15] M. R. Petersen, A. Chen, M. Roll, S. J. Jung, and M. Yossef, “Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler,” Composites Part B: Engineering, vol. 78, pp. 109–121, 2015.

[16] S. Samal, "Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite," Powder Technology, vol. 366, pp. 43–51, 2020.

[17] U. S. Rai and R. K. Singh, “Synthesis and mechanical characterization of polymer-matrix composites containing calcium carbonate/white cement filler,” Materials Letters, vol. 58, no. 1-2, pp. 235–240, 2004.

[18] H. Yang, B. C. Ng, H. C. Yu, H. H. Liang, C. C. Kwock, and F. W. Lai, "Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet," Advanced Composites and Hybrid Materials, vol. 4, pp. 1–8, 2021.

[19] N. Pavan Kumar, D. Harsha Vardhan, and B. Anjineyulu, "Fabrication and experimental study of mechanical properties...
of GFRP with white cement as filler material,” *International Research Journal of Engineering and Technology*, vol. 4, 2017.

[20] X. Dongyu, C. Xin, and H. Shifeng, “Investigation of inorganic fillers on properties of 2-2 connectivity cement/polymer based piezoelectric composites,” *Construction and Building Materials*, vol. 94, pp. 678–683, 2015.

[21] B. H. Tekle, A. Khennane, and O. Kayali, “Bond of spliced GFRP reinforcement bars in alkali activated cement concrete,” *Engineering Structures*, vol. 147, pp. 740–751, 2017.

[22] A. Manalo, G. Maranan, B. Benmokrane et al., “Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments,” *Cement and Concrete Composites*, vol. 109, Article ID 103564, 2020.

[23] S. P. Jani, A. S. Kumar, M. A. Khan, S. Sajith, and A. Saravanaan, “Influence of natural filler on mechanical properties of hemp/kevlar hybrid green composite and analysis of change in material behavior using acoustic emission,” *Journal of Natural Fibers*, vol. 16, pp. 1–12, 2019.