Review Article

Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

Khushwant S. Bhullar and H. P. Vasantha Rupasinghe

Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3

Correspondence should be addressed to H. P. Vasantha Rupasinghe; vrupasinghe@dal.ca

Received 10 March 2013; Accepted 29 April 2013

Academic Editor: Nilanjana Maulik

Copyright © 2013 K. S. Bhullar and H. P. V. Rupasinghe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), Parkinson’s disease (PD), and Huntington’s disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.

1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD), stroke, and Parkinson’s disease (PD) represent a major clinical problem in the developed countries [1, 2] and are major economic burdens for health care systems [3]. Dietary [4], genetic, and molecular factors [5] are important determinants in progression and intervention of neurodegenerative diseases. AD is a common cause of dementia and mortality in the United States. Total numbers of reported deaths due to AD have increased in past years, and it is among 10 leading causes of deaths in the United States [6]. Amyloid-β (Aβ) peptides derived from amyloid precursor protein (APP) via γ-secretase and β-secretase cleavage are hallmarks of AD [7]. Cellular prion protein (PrP(C)) [8] and oxidative stress [9] mediate Aβ neurotoxicity, and the latter contributes to neuronal death by lowering intracellular glutathione. Along with Aβ, tau protein alteration in neuronal microtubules also contributes to the pathology of AD [10]. Abnormal phosphorylation and aggregation of tau protein leads to neural dysfunction and leads to pathological events which cause neuronal dysfunction in AD [11]. Failed clearance of Aβ aggregates resulting from impaired autophagy may also contribute to AD [12]. AD is also characterized by elevated peripheral blood cytokine concentrations for interleukin-(IL-) 6, tumor necrosis factor alpha (TNF-α), IL-1β, transforming growth factor beta (TGF-β), IL-12, and IL-18 suggestive of a pro-inflammatory response in AD pathology [13].

Multiple sclerosis (MS) is another neurodegenerative disease characterized by chronic inflammation accompanied by demyelination of neurons in brain [14]. MS is characterized by symptoms like mood disorder, fatigue, vision changes, muscle weakness, and motor changes [15]. Chemokines like IL-17, chemokine (C-C motif) ligand 17 (CCL17), and CCL20 are suggested as major mediators in MS neuroinflammation and pathology [16].

Stroke is the third leading cause of mortality, loss of cognitive functions, and heavy socioeconomic burden in the United States [17]. Similar to MS, stroke or cerebral ischemia is a pathological condition accompanied by inflammation...
and immune system disease [18]. One minute of cerebral ischemia is estimated to destroy approximately 2 million neurons and 14 million synapses [19]. Like AD and MS, inflammatory cytokines including TNF-α and IL-1 and IL-6 play modulatory role in stroke pathology [20]. Transcription factor, nuclear factor kappa B (NFκB), is an important regulator in pathology of inflammation and neuronal cell survival, as its activation leads to cell death in cerebral ischemia [21].

PD is a progressive neurodegenerative disease; its familial forms are characterized by mutations of six genes including clinically important ATP13A3 resulting in cognitive impairment and depression [22]. Some PD cases also involve changes in micro-RNA and α-synuclein level in patients [23]. Like other neurodegenerative diseases, PD also involves elevated levels of proinflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), CCL-5, macrophage inflammatary protein-α (MIP-α), IL-8, interferon-gamma (IFNγ), IL-1β, and TNFα [24]. After examining cytokines in 52 PD patients, researchers [25] suggested involvement of TNF-α in production and maintenance of nonmotor symptoms. Mitochondrial dysfunction also plays an important role in pathogenesis of PD [26] similar to AD [27], MS [28], and stroke [29].

Huntington’s disease (HD) is another neurological disorder causing cognitive impairment, accompanied by oxidative stress and mitochondrial dysfunction. It results from increased number of CAG triplet nucleotide repeats and expanded polyglutamine region of huntingtin protein [30]. HD pathology leads to elevated levels of chemokines like eotaxin-3, MCP-1β, eotaxin, MCP-1, and MCP-4 [31].

The pathophysiology of neurological disorders is also accompanied by alterations in electrical activity of neurons at cellular level. The voltage gated ion channels are required for action potential generation and its propagation in neurons, and their dysfunction contributes to pathology of neurodegenerative diseases. The brain electrical activity is significantly changed in AD and dementia leading to impaired verbal memory and cognitive skills [32]. The Kv3 subfamily of K+ channel subunits, which possess ability of fast repolarization of action potential [33], are compromised and slowed down in AD [34]. The upregulation of the K(v)1.3 potassium channel also plays important role in immunopathogenesis of multiple sclerosis and presents therapeutic option by blocking K+ channels [35]. As sodium channels (Na1.8, Na1.5) play an important role in electrical activity of neurons, their overloading is thus an important mediator in axonal degeneration in MS [36, 37]. Such electric disturbances are also found in PD [38] which impose energy burden by Ca2+ entry through L type voltage-dependent channels [39]. Similarly, sodium and potassium channel abnormalities are proposed to contribute to HD pathogenesis [40, 41].

There are a few clinically relevant medicines and therapies available for AD, HD, MS, PD, and stroke. A few clinically active, yet expensive, options such as acetylcholinesterase inhibitors, interferon β-1a, levodopa, tetrabenazine, and tissue type plasminogen activator (tPA) are available for AD [42], MS [43], PD [44], HD [45], and stroke [46], respectively. In wake of these pathologies and limited clinical treatments, alternative and preventive therapeutics are required which can control the occurrence and progression of neurodegenerative diseases. All the neurodegenerative diseases discussed above have the common features of pathogenesis which include cytokine changes, genetic alterations, immunomodulation, inflammation, mitochondrial dysfunction, oxidative stress, prions, and protein dysfunction. Recent research has shown that dietary polyphenols target the pathological manifestations of neurological disorders with their ability to cross blood-brain barrier [47] as they control neuronal disease pathogenesis at a molecular and symptomatic level by targeting these common features of neurodegeneration pathology. Polyphenols are naturally occurring phytochemicals found in fruits and vegetables, exhibiting strong neuroprotective properties [48]. Important dietary sources of polyphenols include apples, berries, cocoa, herbs, red wines, seeds, onions, and tea [49]. Dietary polyphenols have also been implicated in prevention of oxidative damage and LDL oxidation [50–52]. This review briefly outlines the pharmacological role of polyphenols in preventing neurodegenerative diseases based on the most recent scientific literature (Figure 1).

2. Polyphenols and Pharmacological Properties

2.1. Alzheimer’s Disease and Dementia

Polyphenols exhibit neuroprotective properties including therapeutic action in AD and dementia. Green and white tea extracts have been shown to inhibit acetylcholinesterase which indicates their potential in treatment of age-related disorders such as AD [53]. Green tea polyphenols protect primary rat cortical neurons against Aβ-induced cytotoxicity [54]. In mouse model studies [55], polyphenols of grapes improved cognitive functions in mouse model of AD. As well, epicatechin metabolite 3’-O-methyl-epicatechin-5-O-β-glucuronide had improved synaptic transmission through cyclic adenosine monophosphate (cAMP) response element binding protein. In transgenic mice model studies, grape seed polymeric polyphenol extract has been shown to inhibit oligomerization of Aβ peptides and contributed to reduction in cognitive impairments in transgenic mice [56]. A similar study showed that polyphenols of grapes exhibited potential in neutralizing abnormal folding of tau proteins [57]. Earlier studies using animal models [58, 59] also confirm anti-Aβ action of grape seed polyphenols.

Resveratrol, a polyphenol abundant in grapes and red wines, inhibited Aβ 42 fibril formation [60] and protected from Aβ neurotoxicity by inhibiting inducible nitric oxide synthase inhibition [61]. Resveratrol, with possibly high bioavailability in lipid core nanocapsules, exhibited therapeutic action in AD [62]. Flavonoid fisetin and its analogues also inhibited Aβ fibril formation and have emerged as new drug candidates for AD treatment [63]. Morin (2′,3′,4′,5,7-pentahydroxyflavone) has shown to prevent neuronal cell death by protecting neurons against tau hyperphosphorylation induced by Aβ [64]. Similarly, in transgenic mouse model studies [65], tannic acid has displayed the attenuation of Aβ deposition by decreasing cleavage of β-carboxyl terminal amyloid precursor protein (APP) fragment and controlled...
neural inflammation. A flavonoid, 7,8-dihydroxyflavone, has been shown to improve cognitive abilities in 5XFAD transgenic mouse model of AD by activation of tyrosine receptor kinase B leading to reduction in β-secretase enzyme levels and amyloid beta (Aβ) synthesis [66]. Similarly, liquiritigenin improved memory in Tg2576 mice model of AD, as it attenuated astrocytosis and decreased the Notch-2 expression as the latter can contribute to neuronal decay [67]. Unlike resveratrol, quercetin and rutin not only inhibited Aβ formation but also disaggregated Aβ fibrils in AD studies [68]. Both compounds also prevented scopolamine-induced amnesia in animal model systems [69]; however, resveratrol did not reverse scopolamine-induced deficit [70]. Rutin has been found to control oxidative stress, malondialdehyde, and glutathione disulfide formation in SH-SY5Y neuroblastoma cells. Rutin has also attenuated the inflammatory cascade by decreasing cytokines like TNF-α and IL-1β [71]. Ferulic acid, a phenolic acid, has also exhibited higher neuroprotection against Aβ toxicity than quercetin [72]. Recent research findings have shown that polyphenols have therapeutic relevance in both cell and animal model studies. The ability of polyphenols to improve synaptic transmission by elevating cAMP, target multiple signaling pathways, and reduce Aβ toxicity suggests their therapeutic utility for age-related disorders like AD and dementia.

2.2. Multiple Sclerosis. Multiple sclerosis is a neurodegenerative disease characterized by autoimmune-mediated demyelination in the CNS resulting in paralysis and cognitive deficits. MS therapies can reduce inflammation and downregulate immune function [73]. Resveratrol, a silent mating type information regulation 2 homolog1 (SIRT1) activator, has exhibited prevention of neural loss without immunosuppression in experimental autoimmune encephalomyelitis (EAE) model of MS [74]. Pharmaceutical grade formulation of resveratrol SRT301 was found to attenuate neural damage in EAE through SIRT1 activation [75]. Cell culture studies [76] have also shown SIRT1-mediated neuroprotection by resveratrol. Quercetin was found to control immune response via modulation of IL-1β and TNF-α and reduced the proliferation of peripheral blood mononuclear cells isolated from multiple sclerosis patients [77]. Epigallocatechin-3-gallate (EGCG) exhibited neuroprotective effects by modulating neuroinflammation and attenuating neural damage [78]. Quercetin [79], apple polyphenols [80], myricetin, and piceatannol [81] have also activated SIRT1, thus exhibiting potential in MS treatment. Earlier studies have also shown [82] that flavonoids limit demyelination in MS suggesting their potential against neuro-inflammation and related disorders. Preclinical data has shown that polyphenols exhibit potential to block neural inflammation and damage by activation of SIRT1 pathway along with modulation of inflammatory cytokines. The potential of polyphenols on limiting demyelination makes them prospective therapeutics in age-related MS and amyotrophic lateral sclerosis (ALS).

2.3. Ischemic Stroke. Various epidemiological studies suggest that diet rich in polyphenols can extend neuroprotection...
and lower the risk and severity of stroke, the third leading cause of mortality [83]. Experimental evidence using rodent and cellular models also indicates neuroprotective potential of dietary polyphenols in cerebral ischemia. Green tea polyphenol, EGCG, has exhibited neuroprotective action by downregulation of matrix metalloproteinases (MMP) in mice model of cerebral ischemia [84]. Green tea polyphenols have also been found to protect neurons against hypoxia-induced ischemic injury by controlling inflammation cascade and attenuating decline in transmembrane potential [85]. Quercetin has been found to attenuate ischemic injury by controlling acid-sensing ion channel led calcium dysregulation and lipid peroxidation in neurons [86]. Another study with similar experimentation has supported neuroprotective role of quercetin, based on its ability to block sodium channels [87]. Quercetin with similar antioxidant therapy to green tea polyphenols has reduced the level of MMP-9 and attenuated blood-brain barrier disruption in cerebral ischemia (CI) studies [88]. Researchers have also hypothesized neuroprotective action of quercetin in CI to be based on its inhibitory action against MMP [89]. Rutin has been found to control neural damage in CI through downregulation of p53, a protein which leads to necrosis in stroke [90]. It has also shown the attenuation of glutathione peroxidase, glutathione reductase, and inflammatory cytokines in rodent model of ischemic stroke [91]. In addition, resveratrol has been found to extend protection against ischemic injury by improving brain energy metabolism and controlling oxidative stress during ischemia injury in animal model studies [92], along with the modulation of release of multiple therapeutic neurotransmitters and neuromodulators during ischemic injury [93]. The flavonoid fisetin has shown neuroprotective action during cerebral ischemia as it stopped infiltration of macrophages and dendritic cells into ischemic hemisphere, thus controlling neural inflammation and damage [94]. Another flavonoid baicalin has been shown to reduce ischemic stroke damage by targeting multiple therapeutic targets like MMP-9 [95], caspase-3, oxidative stress [96], and p38 mitogen-activated protein kinase (MAPK) [97] and by downregulating toll-like receptor (TLR2/4) pathway [98]. The experimental data reveals that polyphenols may prevent, attenuate, or slow down, via multiple mechanisms, the course of stroke and age-related neural disorders. Since the risk for stroke increases with age, consumption of polyphenol-rich diet seems to be an important preventive strategy.

2.4. Parkinson’s Disease (PD). PD is a neurodegenerative disease accompanied by inflammation and oxidative stress resulting in loss of dopaminergic neurons in the substantia nigra [137]. Polyphenols with their ability to attenuate oxidative stress and inflammation present therapeutic option in neurodegenerative disease. Resveratrol has been shown to inhibit the loss of dopaminergic neurons in rat model of PD [76]. Resveratrol has also been shown to reduce neural inflammation in PD by lowering mRNA levels of cyclooxygenase-2 (COX-2) and TNF-α mRNA in the substantia nigra [100] along with attenuation of oxidative stress, lipid peroxidation, and protein carbonyl (PC) in rat model of PD [138]. Oxyresveratrol has demonstrated attenuation of neural damage in SH-SY5Y cells by elevating levels of SIRT1 and downregulating expression of caspase-3, c-Jun N-terminal kinase (JNK), and c-Jun transcription factors [139]. Ferulic acid, like oxyresveratrol, has demonstrated neuroprotective effect via downregulation of JNK pathway [140]. Quercetin administration to neurons attenuated 1-methyl-4-phenylpyridinium (MMP) evoked microglia activation, which is a precursor for PD pathogenesis [124]. Studies have also shown that quercetin promises neuroprotection in PD mouse model by stimulating glutathione peroxidase (GPx), superoxide dismutase (SOD), Na(+) and K(+) ATPase [141]. Quercetin suppressed cell death in PD cell model while its metabolite quercetin-3-O-β-glucoronide, due to its low absorption, did not affect cell viability [142]. Another study showed that conversion of quercetin metabolites to its aglycone in neural cells is essential for neuroprotective activity [143]. These studies had shown consistent results as compared to a contradictory report [144] which showed that quercetin had no neuroprotective role in PD cells and rat models. Other polyphenols such as baicalein [145], kaempferol [146], caffeic acid [147], and EGCG [148] have been shown to extend neuroprotection in PD studies. Similarly, polyphenolic extracts from various plants have also exhibited pharmacological role in PD studies. For instance, polyphenols-rich mulberry fruit extracts have shown antioxidant and antiapoptotic effect in SH-SY5Y cells by modulating caspase-3, B-cell lymphoma (Bcl-2), and BCL2-associated X protein (Bax) [149].

2.5. Huntington’s Disease. CAG triplet nucleotide repeats and expanded polyglutamine region of huntingtin protein form basis of HD [30]. Polyphenols hold pharmacological relevance, as they are associated with numerous benefits including antiaging, anti-inflammatory, and anticancer effects. Resveratrol has been found to exhibit positive effects in transgenic mouse model of HD via SIRT1 activation of peroxisome proliferative activated receptor, gamma, and coactivator 1 alpha (PGC-1α) signaling pathway [76]. Studies have further demonstrated the Ras-extracellular signal-regulated kinase activation by resveratrol and fisetin as the basis for neuroprotection in models of HD [150]. Likewise, hesperidin and naringenin, abundant in citrus fruits, induced neuroprotection in rats possibly via nitric oxide synthase (NOS) inhibition [151]. Curcumin has been shown to control Huntington aggregates and improve various transgene-dependent parameters, thereby promising therapeutic action in HD [152]. Grape and green tea polyphenols have also exhibited potential for treating/preventing HD disease pathogenesis [153, 154]. The overall preclinical data suggests that polyphenols extend strong neuroprotection through genetic and immunological modulation, thus promising clinical prevention or delay of neurological disorders like PD and HD.

3. Polyphenols and Oxidative Stress

A large body of literature supports the antioxidant potential of polyphenols against oxidative stress. Resveratrol is a potent antioxidant in vitro [155] and in vivo as it attenuates oxidative stress in both animal [156] and various cell model studies.
[157]. Resveratrol has been shown to extend antioxidant effect by reducing the production of reactive oxygen species (ROS) and superoxide ions [158]. Similarly, quercetin has also shown protection against oxidative stress and related disorders [159]. In a variety of cell and disease models, quercetin has been shown to engage in various signaling pathways to attenuate oxidative stress and exhibit pharmacological properties [51, 114]. Polyphenol-rich green tea and its principal constituent EGCG were found to ameliorate oxidative stress in various studies [160, 161]. Other polyphenols such as puerarin [162], baicalin [163], and phloridzin [136] also attenuated oxidative stress in various disease models. Apart from in vitro and in vivo evidence, sufficient clinical evidence also suggests the antioxidant potential of polyphenols. A clinical study [164] showed that polyphenol-rich diet reduced LDL oxidation and modulated cluster of differentiation 40-ligand (CD40L) gene expression, thus contributing to attenuation of AD pathology [167]. It has also been found to decrease plasma total homocysteine, reversing memory impairment in rat through decrease in Aβ toxicity. Flavonoids and other dietary polyphenols have shown neuroprotective effects in neuronal ischemia through NfκB pathway. flavonoids, including kaempferol, quercetin, acacetin, apigenin, and luteolin, inhibit Aβ1-40 and Aβ1-42 via NfκB pathway downregulation [101]. Similarly, soybean isoflavone has reversed memory impairment in rats through decrease in NfκB expression [102]. Other flavonoids such as resveratrol and baicalin inhibit Aβ-induced neural inflammation via a mechanism involving downregulation of NfκB signaling pathway [103, 168]. Activation of NfκB is an important event in ischemic injury and contributes to both inflammation and cell death [21]. Silymarin, a flavonolignan from milk thistle (Silybum marianum), has protected against cerebral ischemia by inhibiting signal transducer and activating transcription (STAT-1) pathway and NfκB [105]. Tetrahydroxystilbene glucoside from Polygonum multiflorum has protected neurons from cerebral ischemia by activating SIRT1 and inhibiting NfκB signaling pathway in neurons [58]. Quercetin administration has also protected rat brain against oxidative stress and hypoxia-induced damage through NfκB inhibition [166]. Similarly, catechin hydrate and fisetin have been shown to protect rat brain against ischemic injury and oxidative damage by inhibiting expression of NfκB and proinflammatory cytokines such as IL-1β and TNF-α [83, 94]. It is observed that recent research advances confirm an immunomodulatory role of polyphenols as they control inflammatory response by inhibiting NfκB expression.

4. Polyphenols and Signal Transduction Pathways

4.1. Akt/P13K/mTOR Pathway

Resveratrol has exhibited neuroprotection against brain ischemia through P13K/Akt pathway by downregulating the expression of glycogen synthase kinase 3 (GSK-3β) and cAMP response element binding (CREB) proteins [99]. Resveratrol increased cAMP and modulated Akt pathway in cell model studies [144]. Baicalein also protects against ischemia through P13K/Akt pathway [126]. The scientific evidence suggests therapeutic intervention by polyphenols via P13K/Akt pathway (Table 1).

4.2. NfκB Pathway

NfκB is an important mediator in inflammatory process and contributes to Aβ toxicity. Flavonoids and other dietary polyphenols have shown neuroprotective effects in neuronal ischemia through NfκB pathway. Flavonoids, including kaempferol, quercetin, acacetin, apigenin, and luteolin, inhibit Aβ1-40 and Aβ1-42 via NfκB pathway downregulation [101]. Similarly, soybean isoflavone has reversed memory impairment in rats through decrease in NfκB expression [102]. Other flavonoids such as resveratrol and baicalin inhibit Aβ-induced neural inflammation via a mechanism involving downregulation of NfκB signaling pathway [103, 168]. Activation of NfκB is an important event in ischemic injury and contributes to both inflammation and cell death [21]. Silymarin, a flavonolignan from milk thistle (Silybum marianum), has protected against cerebral ischemia by inhibiting signal transducer and activating transcription (STAT-1) pathway and NfκB [105]. Tetrahydroxystilbene glucoside from Polygonum multiflorum has protected neurons from cerebral ischemia by activating SIRT1 and inhibiting NfκB signaling pathway in neurons [58]. Quercetin administration has also protected rat brain against oxidative stress and hypoxia-induced damage through NfκB inhibition [106]. Similarly, catechin hydrate and fisetin have been shown to protect rat brain against ischemic injury and oxidative damage by inhibiting expression of NfκB and proinflammatory cytokines such as IL-1β and TNF-α [83, 94]. It is observed that recent research advances confirm an immunomodulatory role of polyphenols as they control inflammatory response by inhibiting NfκB expression.

4.3. PPAR Pathway

 Peroxisome proliferator activated receptor gamma (PPAR gamma) plays a role of a biomarker in cerebral ischemia as CI results in its upregulation and translocation to nucleus from the cytosol. Baicalein has reversed PPAR gamma expression and also suppresses its translocation to nucleus [104]. Resveratrol has attenuated the MMP-9 by modulating the peroxisome proliferator activated receptor (PPAR) alpha expression in hypoxia model of neurons [107]. Pterostilbene, a resveratrol derivative, has significant effect on the downregulation and normalization...
of PPAR-α expression in SAMP8 mouse model studies [108]. The scientific evidence shows that benefits associated with polyphenols in age-related and other disorders are associated with downregulation of PPAR pathway.

4.4. Nrf2/ARE/HO1 and HIF-1 Pathway. Nuclear factor (erythroid-derived 2-) like 2 (Nrf2) pathway is also involved in Sestrin2 (Sesn2), also known as HIF5, a p53 target gene expression which leads to encoding of antioxidant proteins [169]. Epicatechin has protected neurons against stroke and oxidative stress by upregulation of Nrf2 cascade and heme oxygenase-1 (HO1) enzyme [109]. Similarly, resveratrol has also been shown to protect brain through increased expression of Nrf2, HO-1 expression, and downregulation of apoptotic enzymes like caspase-3 [110]. Xanthohumol, a prenylated chalcone, has demonstrated neuroprotective action by inhibiting HIF-1 pathway and it further stopped signal transduction pathway leading to apoptosis by caspases [111]. Resveratrol, apart from Nrf2 and HO-1 expression, has protected against ischemic injury in cells by downregulation of mRNA expression of hypoxia inducible factors-1α (HIF-1α) [112]. Upregulation of Nrf2 and HO-1 pathways by polyphenols in response to oxidative insult shows protective role of these compounds in brain health and oxidative damage.

5. Polyphenols and Immune Response

Proinflammatory cytokines and genes contribute to inflammation and neuronal death in various neurological disorders. Most of the therapeutics target cytokines and other immune responses for therapeutic intervention. Polyphenols are well known for their anti-inflammatory activities and thus control neuroinflammation and neural death. EGCG has been found to inhibit expression of monocyte chemotactic protein (MCP-1/CCL2) and IL-1β, thus protecting blood-brain barrier (BBB) integrity during pathological inflammation [170]. In another study, EGCG inhibited cytokine and chemokines including IL-1β, IL-6, and MCP-1 [116]. Resveratrol has also controlled hippocampal inflammation by reducing expression of MCP-1 mRNA levels [118]. Polyphenols, that is, catechin, caffeic acid, and transresveratrol, reduced production of inflammatory markers MCP-1, MIP-1α, MIP-1β, chemokine receptor-1 (CCR1), and CCR2 in vascular wall [119]. Polyphenol-rich olive oil controlled inflammation by inhibiting proinflammatory CD40, a costimulatory protein found on antigen presenting cells, gene expression [164]. EGCG reduced expression of inflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand (CXCL10), CCL22, CCL 17, and TGF-β, promising strong neuroprotection in AD and stroke [117]. Quercetin has been shown to inhibit proinflammatory cytokines like IL-1β, IL-6, COX-2, CD40, and TNFα receptor-associated factor-1 (TRAF1) [120]. A similar study [121] showed that quercetin exhibits neuroprotective effect in PC12 cells and zebrafish possibly by downregulating expression of proinflammatory genes like IL-1β and COX-2. Resveratrol also reduced neuroinflammation and improved memory along with IL-1β inhibition [115]. Resveratrol has exhibited restoration of BBB integrity and inhibited rising levels of IL-17A, T-helper 17 lymphocytes, and MMP [171]. Apple polyphenols have also reduced expression of a wide range of neuroinflammatory markers including IL-1β, IL-6, IL-17, IL-22, CXCL9, CXCL10, CXCL11, and IFN-γ, thus providing immune-modulatory effects against inflammation [122]. Studies have also shown that blueberry and apple polyphenols can attenuate neuroinflammation and improve cognitive impairment, possibly by lowering the expression of IL-1β and TNFα in rat hippocampus [172, 173]. About 20 structurally related flavonoids have been shown to inhibit hypoxia-induced STAT3 tyrosine phosphorylation promoting cell survival [174]. Fisetin and quercetin protected neurons against LPS-induced inflammation by inhibiting TNFα production and JNK/Jun phosphorylation [120, 139]. Resveratrol administration during ischemic stroke inhibits neuronal damage along with reduced expression of IL-1β and TNFα [175]. Overall, polyphenols modulate immune response in neurodegenerative diseases as they induce expression of antiapoptotic factors, control neuroinflammation, and modulate cell signaling under stress (Table 2). These features of polyphenols make them strong neuroprotective candidates and support their translation from laboratory to clinical trials.

6. Polyphenols and Metal Ion Chelation

Iron and copper play important roles in the generation of ROS through redox cycling and subsequent neurodegeneration. Metal accumulation in brain contributes to pathology of diseases like AD, MS, PD, and HD [176, 177]. EGCG exhibited iron chelating ability in SH-SY5Y neuroblastoma cells along with the inhibition of apoptotic factors like BCL2-associated agonist of cell death (Bad), Bax, and caspase-3 [178]. EGCG has exhibited stronger chelation of iron compared to desferrioxamine and increased transferrin receptor protein along with the elevation in mRNA levels in SH-SY5Y neuroblastoma cells [179]. Electron paramagnetic
resonance studies [180] demonstrated the interaction of EGCG and gallic acid as ligands to copper coordination sphere, thus demonstrating Cu modulatory potential of these polyphenols. Also, iron modulation by curcumin in rat brain homogenate has been observed, thus warranting that curcumin-based therapy in AD and PD disease models [181]. Curcumin has extended neuroprotection in a rat model of PD against 6-hydroxydopamine treatment through its iron chelating activity and reduced degeneration of neurons [182]. Similarly, curcumin's ability to reverse neurodegeneration in a Parkinson's mouse model has been shown [183]. Apart from iron chelation, NFκB modulation by curcumin has also contributed to the reduction in 6-OHDA-induced neurodegeneration [184]. Rosmarinic acid, a phenolic acid found in Lamiaceae herbs, protected neurons against 6-OHDA treatment by lowering the expression of Bax/Bcl-2 at gene level and decreasing iron level in both MES23.5 dopaminergic cells and a rat model of PD [185,186]. It is evident that polyphenols are potent metal chelators and extend neuroprotection against iron- and copper-induced oxidative stress and neurotoxicity via metal chelation, modulation of signal transduction, oxidative stress, and inflammation.

7. Polyphenols and Prions

Prion proteins are involved in neurodegenerative diseases, and their conformational transition forms basis of prion diseases. The pathology of prion proteins has been inhibited by EGCG and ECG, thus exhibiting neuroprotective potential [187]. Studies have also confirmed the antiprion activity of resveratrol through autophagy activation in neuroblastoma cells [188]. Resveratrol also protected mouse neurons against PG14-PrP (mutant prion protein) expression [189]. Curcumin also downregulated the prion pathology in neuroblastoma cells [190]. Therefore, polyphenols seem to protect neurons against prion diseases by controlling prion mutation and pathology.

8. Polyphenol and Anti-Acetylcholinesterase Activity

Pathology of neurodegenerative diseases including AD includes deficiency of neuromediator acetylcholine, thus making acetylcholinesterase (AChE) inhibitors as important clinically relevant drugs in AD and other dementia [191]. Black chokeberry extract, a rich source of polyphenols, in combination with lemon juice inhibited AChE [192]. The prenylated flavonoids from paper mulberry (Broussonetia papyrifera) were potent inhibitors of AChE, thus exhibiting neuroprotective potential [193]. Studies have shown that a polyphenol-rich blueberry extract also inhibited AChE activity in vitro [194]. Polyphenols extracted from Paulownia tomentosa fruits exhibited inhibitory action against both AChE and butyrylcholinesterase (BChE) [195]. Quercetin was found to improve cognitive ability and exhibit neuroprotection against trimethyltin-induced neurotoxicity by inhibiting AChE [196]. A report has also shown that quercetin inhibited AChE activity and improved cognitive abilities in streptozotocin-treated mice [197]. Quercetin and maluraxanthone, from Maclura tinctoria and Dyer's mulberry, respectively, inhibited both AChE and BChE in vitro by competitive and noncompetitive inhibition, respectively [199]. Molecular docking studies [191] have indicated the hydrophobic interactions and strong hydrogen bonding of both flavonoids with enzymes as basis of their inhibitory activity. Polyphenols from Cistus laurifolius L. also exhibited cholinesterase inhibitory effects against AChE and BChE, supporting a neuroprotective role of polyphenols [198]. A herbal tea from Paulownia barbatus leaves reduced AChE activity by 40% and its principal constituent, natural polyphenol rosmarinic acid, reduces ACHE activity by 25% [199]. Galangin, a flavonol isolated from rhizome of Alpiniae officinarum, has also exhibited strong AChE inhibition [200]. EGCG enhances huperzine As (acetylcholinesterase inhibitor) effects against AChE as its supplementation leads to 88–91% inhibition [201]. Later reports have supported that EGCG supplementation with huperzine A improves cognitive abilities in AD [202]. Linarin, a flavonoid found in Linaria species, inhibited AChE activity in neuronal PC12 cells and extended potential for neuroprotection in AD and related disorders [203]. All these pieces of evidences suggest that polyphenols are potent AChE and BChE inhibitors, thus warranting neuroprotection and improved cognitive functions in AD and related dementia.

9. Polyphenols and Autophagy-Related Proteins

Flavonoids such as hesperetin and hesperidin inhibited Aβ-induced glucose metabolism impairment in neurons and downregulated Aβ stimulated autophagy, resulting in improved cognitive functions [204]. Kaempferol also protected SH-SY5Y and primary neurons from rotenone toxicity through induction of autophagy [154]. Resveratrol exhibited neuroprotective effect by activating AMPK-SIRT1 autophagy pathway in PD cell model studies [205]. Brain-related autophagy studies have a wide research gap, and polyphenols have strong potential for inducing neuroprotection via autophagy and its related pathways.

10. Polyphenols as Neuronal Mitochondria Medicine

Polyphenols from wine are known to reduce oxidative stress and increase the expression of antioxidant enzymes like catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase [131]. Resveratrol upregulates antiapoptotic Bcl-2 protein and downregulates Bax protein expression [206]. Resveratrol also acted as mitochondrial antioxidant by elevating the levels of antioxidants trioredoxin-2 (TRX2) and X-chromosome-linked inhibitor of apoptosis protein [207]. Another study has shown that resveratrol increased expression of Bcl-2, thus preventing neuronal apoptosis [100]. Similarly, resveratrol controlled oxidative stress in PC12 cells and inhibited mitochondria-mediated apoptosis by downregulating Bax and upregulating Bcl-2 [212]. Similarly, lutein has shown protection of mice against ischemic
Table 3: Modulation of mitochondrial targets by polyphenols.

Target	Polyphenol	Effect	References
AP-1	EGCG	Downregulation	[116]
Bad/Bax	Resveratrol	Downregulation	[112]
Ferulic acid	Resveratrol	Downregulation	[124]
Bcl-2	Lutein	Upr egulation	[125]
	Baicalein	Upr egulation	[126]
Cox-2	Lutein	Downregulation	[125]
	Hesperidin	Downregulation	[127]
Hibiscus sabdariffa polyphenols		Downregulation	[128]
GCLM	Chrysin, apigenin, luteolin	Upr egulation	[129]
	Chrysin, apigenin, luteolin	Upr egulation	[129]
GPX	EGCG	Upr egulation	[130]
Red wine polyphenols		Upr egulation	[131, 132]
3,3′,5,5′-tetra-t-butyl-biphenyl-4,4′-diol		Upr egulation	[133]
HO-1	Butein, apigenin	Upr egulation	[129]
	Luteolin	Upr egulation	[134]
IFN-γ	Quercetin	Downregulation	[135]
JNK	Quercetin	Downregulation	[135]
	EGCG	Downregulation	[116]
Hibiscus sabdariffa polyphenols		Downregulation	[128]
JUN	Quercetin	Downregulation	[135]
SOD	Phloridzin	Upr egulation	[136]

Injury by enhancing the Bcl-2 levels and downregulated Cox-2 and pancreatic ER kinase (PERK) [125]. Baicalein also regulated Bcl-2 and antagonized cytochrome c release in cytosol [126]. Similarly, ferulic acid, a phenolic acid, attenuates mitochondria apoptosis by inhibiting Bax, tBid expression, and elevating Bcl-2-like proteins [124]. Important transcription factors of ERK/Nrf2 pathway like glutamate cysteine ligase catalytic (GCLC) and glutamate-cysteine ligase, modifier subunit (GCLM), are upregulated by flavones like chrysin, apigenin, and luteolin to combat oxidative stress [129]. Glutathione peroxidase (GPx) levels were modulated by red wine polyphenols resulting in combat of oxidative stress [132]. Similarly, phenolic antioxidant 3,3′,5,5′-tetra-t-butyl-biphenyl-4,4′-diol also controlled expression of GPx and HIF-1α in hypoxia studies [133]. Various polyphenols like butein, phloretin, chrysin, apigenin, and luteolin activated HO-1 (HMOX1), GCLC, and GCLM through expression of ERK/Nrf2 pathway [129, 134]. Quercetin has also downregulated inflammatory cascade by lowering the expression of JNK, c-Jun, and interferon-γ inducible protein [135]. Similarly, p-JNK and COX-2 were downregulated by polyphenols from Hibiscus sabdariffa L. providing transcription from oxidative stress and pathological inflammation [128]. EGCG controlled mitochondria lead inflammation by lowering transcription of JNK and activator protein-1 (AP-1) [116]. Neuroprotection through the phosphatidylinositol 3-kinase (PI3K) and MAPK has also been shown by flavone glycoside [113]. Hesperidin carsonic acid, a major rosemary polyphenol, exhibited strong anti-inflammatory action in neurons under hypoxia stress by inhibiting ROS, MAPKs, caspase-3, and COX-2 [127]. Lowering of JNK serves as mitochondrial therapy not only in stroke but also in AD as JNK activation in AD brain leads to tau hyperphosphorylation and Aβ pathogenesis [208]. Curcumin and resveratrol exhibited neuroprotection through increased activity of NAD(P)H quinone oxidoreductase (NQO1) via Nrf2 pathway in astrocytes [209]. Similarly, structurally modified isomers of resveratrol also elevated the NQO1 activity, thus promising antioxidant effects through Nrf2 pathway [210]. ECG modulated endophilin-B1, also known as SH3GLB1, which is required for maintaining mitochondrial morphology and plays important role in apoptosis [211, 212]. EGCG has also increased expression of mitochondrial antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPX) [130]. Flavonoid-enriched fraction (AF4) isolated from the peel of “Northern Spy” apples has been shown to suppress the expression of IL-1β, TNF-α, and IL-6 in a mouse model of hypoxic-ischemic (HI) brain damage [123]. Phloridzin, also an apple polyphenol, has been shown to increase expression of SOD1 and SOD2 genes, thus protecting mitochondria against oxidative stress [80]. Polyphenols are important mitochondrial therapeutics as they play a role in mitochondrial biochemistry by modulating apoptosis, antioxidant action, signal transduction, and inflammation (Table 3).

11. Polyphenols and Ion Channels

The neuroprotective benefits of polyphenols are often attributed to their antioxidant activity and their ability to modulate the cell signaling pathways [105, 124, 155]. Sodium channels (Na+, 1.5) involved in pathology of MS were found to be blocked by red grape polyphenols like quercetin,
catechin, and resveratrol in rodent and cell model studies [87, 213]. G protein-coupled inwardly rectifying potassium (KIR3) channels, involved in neuron signaling and membrane excitability [214], are activated by naringin (flavonoid glycoside), thus exhibiting potential for improving cognition in AD [215]. EGCG’s neuroprotective effect was proposed to occur through inhibition of high-voltage-activated calcium currents (I_{HVA}) and NMDA-induced inward currents (I_{NMDA}) along with elevation of Ca^{2+} through PLC-IP3 pathway [216]. Similarly, curcumin exhibited modulation of a wide range of ionic channels including Ca^{2+}-release-activated Ca^{2+} channels (I_{CRAC}), voltage-gated K+ channel (I_{Kv}), intermediate-conductance Ca^{2+}-activated K+ channel (I_{SKCa}), and the cytoplasmic Ca^{2+} concentration Δ[Ca^{2+}] in Jurkat-T cells [217]. However, the current literature has a research gap of specific ion channel study (Kv3 subfamily of K+ channel subunits) in disease-specific conditions. Overall, the ability of polyphenols to modulate ion channels and action potential [218] complements their ability to protect neurons from disorders and thus supports the growing evidence that polyphenols may act as neuroprotectants in several neuropathological conditions.

12. Concluding Remarks

In conclusion, recent scientific evidence suggests that neurodegenerative diseases are accompanied by oxidative stress, inflammation, metal accumulation, and mitochondrial dysfunctions. Various physiological mechanisms are altered by these pathological changes which contribute to etiology of neurodegenerative diseases like stroke, MS, PD, AD, and HD. The prevention and treatment of these disorders with complex mechanisms need novel therapeutic strategies targeted for multiple genes and proteins. Polyphenols are natural plant...
secondary metabolites which exhibit remarkable multipotent ability to control and modulate ROS, metal toxicity, inflammation, apoptosis, signal transduction, ion channels, and neurotransmitters. Polyphenolic dietary antioxidants, particularly resveratrol, EGCG, quercetin, and other fruit polyphenols, are potent neuroprotectants (Figure 2). Their direct usage and dietary supplementation could act as antioxidant and neuroprotective therapy for treatment of these diseases. Most of experimental and epidemiological studies suggest that dietary polyphenols activate antioxidant pathways such as Nrf2/HO1 and downregulate NFκB, MMPs, PPAR, HIF-1, and STAT pathways. Polyphenols also modulate immune response by inhibiting proinflammatory biomarkers such as CCL17, CCL22, CCR1, CCR2, MIPα, MIP β, CXCL (9, 10, 11), IFN-γ, TNF-α, and IL(β, 6, 17A, 22). These salient properties of polyphenols help to reduce two hallmarks of neurodegeneration, that is, oxidative damage and inflammation.

Polyphenols also protect mitochondria from pathological events by triggering prosurvival cell signaling. Polyphenols increase antioxidant enzymes, that is, catalase, superoxide dismutase (SOD1, SOD2), and prosurvival Bcl-2 and PERK pathways. Downregulation of Bad/Bax, c-jun, JNK, COX-2, AP-1, and caspase-3 also contributes to the survival of neurons. Polyphenols also help in improving cognitive abilities by inhibiting AChE and BChE. The inhibition of these enzymes plays an important role in clinical medicine of AD. Apart from their anti-AChE activity, polyphenols also induce metal chelation and modulate autophagy and prion proteins. These features along with reduction of Aβ toxicity, reduction of neural lesions, and activation of cell survival genes are of particular relevance to neurodegenerative diseases. The activation of novel spectrum of these molecular targets forms underlying mechanism of neuroprotection by polyphenols. The lack of toxic effect and availability from natural sources makes polyphenols as clinically relevant therapeutics in neurodegeneration.

The future of polyphenol research needs to aim towards clinical acceptance of health claims from preclinical in vitro and animal model studies. Therefore, future studies focusing on human clinical trials of several potent polyphenols and their combinations should be carried out. Furthermore, polyphenols must be investigated for the risk assessment and safety evaluation to observe any undesirable effects. The success in clinical research of polyphenols will decide their pharmacological relevance for humans.

Abbreviations

Abbreviation	Description
AAP	Amyloid precursor protein
AChE	Acetylcholinesterase
AD	Alzheimer's disease
AP-1	Activator protein-1
Aβ	Amyloid beta
Bad	BCL2-associated agonist of cell death
BAX	BCL2-associated X protein
BBB	Blood-brain barrier
BChE	Butyrylcholinesterase
Bcl	B-cell lymphoma
Bcl2	B-cell lymphoma 2
cAMP	Cyclic adenosine monophosphate
CCL	Chemokine (C-C motif) ligand
CCR	Chemokine receptor
CD	Cluster of differentiation
CI	Cerebral ischemia
COX	Cyclooxygenase
CREB	cAMP response element binding protein
CXCL	Chemokine (C-X-C motif) ligand
EAE	Experimental autoimmune encephalomyelitis
ECG	Epicatechin gallate
EGCG	Epigallocatechin gallate
GCLC	Glutamate cysteine ligase catalytic
GCLM	Glutamate-cysteine ligase, modifier subunit
GPx	Glutathione peroxidase
GSK	Glycogen synthase kinase
HD	Huntington's disease
HIF	Hypoxia inducible factor
HIF-1	Hypoxia inducible factor-1
HO	Heme oxygenase
IFNγ	Interferon-gamma
IL	Interleukin
JNK	c-Jun N-terminal kinase
MAPK	Mitogen activated kinase-like protein
MIP-1	Monocyte chemoattractant protein-1
MIP	Macrophage inflammatory protein
MMP	Metalloproteinases
MS	Multiple sclerosis
NFkB	Nuclear factor-kappa B
NOS	Nitric oxide synthase
NQO1	NAD(P)H quinone oxidoreductase
Nrf2	Nuclear factor- (erythroid-derived 2-) like 2
PC	Protein carbonyl
PD	Parkinson's disease
PGC-1α	Peroxisome proliferative activated receptor, coactivator 1 alpha
PI3K	Phosphatidylinositol 3-kinase
PPAR	Peroxisome proliferator activated receptor
PrP(c)	Cellular prion protein
ROS	Reactive oxygen species
SIRT-1	Silent mating type information regulation 2 homolog
SOD	Superoxide dismutase
STAT	Signal transducer and activation of transcription
TGFβ	Transforming growth factors β
TLR	Toll-like receptor
TNFα	Tumor necrosis factor-alpha
TRAF	TNF receptor associated factor
TRX	Thioredoxin

References

[1] C. W. Hung, Y. C. Chen, W. L. Hsieh, S. H. Chiou, and C. L. Kao, “Ageing and neurodegenerative diseases,” *Aging Research Reviews*, vol. 9, no. 1, pp. S36–S46, 2010.
[2] C. A. Ross and S. J. Tabizi, "Huntington’s disease: from molecular pathogenesis to clinical treatment," *Lancet Neurology*, vol. 10, no. 1, pp. 83–98, 2011.

[3] J. Olesen, A. Gustavsson, M. Svensson, H. U. Wittchen, and B. Jonsson, "The economic cost of brain disorders in Europe," *European Journal of Neurology*, vol. 19, no. 1, pp. 155–162, 2012.

[4] S. L. Albarracin, B. Stab, Z. Casas et al., "Effects of natural antioxidants in neurodegenerative diseases," *Nutritional Neuroscience*, vol. 15, no. 1, pp. 1–9, 2012.

[5] J. Lundkvist and J. Näsland, "γ-secretase: a complex target for Alzheimer’s disease," *Current Opinion in Pharmacology*, vol. 7, no. 1, pp. 112–118, 2007.

[6] M. Heron, "Deaths: leading causes for 2008," *National Vital Statistics Reports*, vol. 6, no. 60, pp. 1–20, 2012.

[7] C. J. Phiel, C. A. Wilson, V. M. Y. Lee, and P. S. Klein, "GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides," *Nature*, vol. 423, no. 6938, pp. 435–439, 2003.

[8] E. Biasini, U. Unterberger, I. H. Solomon et al., "A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity," *Journal of Neuroscience*, vol. 33, no. 6, pp. 2408–2418, 2013.

[9] M. Zampagni, D. Wright, R. Cascella et al., "Novel s-acyl glutathione derivatives prevent amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models," *Free Radical Biology and Medicine*, vol. 52, no. 8, pp. 1362–1371, 2012.

[10] M. Kolarova, F. G. Sierra, A. Bartos, and J. Rincy, "Structure and pathology of tau protein in Alzheimer’s disease," *International Journal of Alzheimer’s Disease*, vol. 2012, Article ID 731526, 13 pages, 2012.

[11] K. Mi and G. V. Johnson, "The role of tau phosphorylation in pathogenesis of Alzheimer’s disease," *Current Alzheimer’s Research*, vol. 3, no. 5, pp. 449–463, 2006.

[12] D. S. Yang, P. Stavrides, P. S. Mohan et al., "Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits," *Brain*, vol. 134, no. 1, pp. 258–277, 2011.

[13] W. Swardfager, K. Lancett, L. Rothenburg, A. Wong, J. Cappell, and N. Herrmann, "A meta-analysis of cytokines in Alzheimer’s disease," *Biological Psychiatry*, vol. 68, no. 10, pp. 930–941, 2010.

[14] R. Dutta and B. D. Trapp, "Gene expression profiling in multiple sclerosis brain," *Neurobiology of Disease*, vol. 45, no. 1, pp. 108–114, 2012.

[15] T. Ziemssen, "Symptom management in patients with multiple sclerosis," *Journal of Neurological Sciences*, vol. 311, no. 1, pp. S48–S52, 2011.

[16] A. K. Lyszczarz, A. Szczuciński, M. A. Pawlak, and J. Losy, "Clinical study on CXCL13, CCL17, CCL20 and IL-17 as immune cell migration navigators in relapsing-remitting multiple sclerosis patients," *Journal of the Neurological Sciences*, vol. 300, no. 1-2, pp. 81–85, 2011.

[17] A. R. Meneza, C. J. Lavie, R. V. Milani, and J. Okeefe, "The effects of statins on prevention of stroke and dementia: a review," *Psychosomatics*, vol. 52, no. 5, pp. 420–429, 2012.

[18] M. M. Luheshi, K. I. Kovacs, G. Lopez-Castejon, D. Brough, and A. Denes, "Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localized to area of focal neuronal loss and penumbral tissues," *Journal of Neuroinflammation*, vol. 29, no. 8, p. 186, 2011.

[19] J. L. Saver, "Time is brain—quantified," *Stroke*, vol. 37, no. 1, pp. 263–266, 2006.

[20] A. Tuttolomondo, D. Di Raimondo, R. di Sciacca, A. Pinto, and G. Licata, "Inflammatory cytokines in acute ischemic stroke;...
C. Lampl, X. You, and V. Limmroth, “Contentsofpolyphenols
andmitigatesAlzheimer-likepathologyintransgenicmice,”The
JournalofClinicalNutrition,vol.64,no.3,pp.691–6927,2010.

H. Ushikubo, S. Watanabe, Y. Tanimoto et al., “3, 3’, 4’, 5, 5’
Pentahyroxyflavoneisapotentinhibitorofamyloidβfibril
formation,”NeurotoxicityLetters,vol.513,no.1,pp.51–56,2012.

E. J. Gong, H. R. Park, M. E. Kim et al., “Morinattenuatestau
hyperphosphorylationbyinhibitingGSK3β,”Neurobiologyof
Disease,vol.44,no.2,pp.223–230,2011.

T. Mori, K. Rezai-Zadeh, N. Koyama et al., “Tannicacidsinanat-
uralβ-secretaseinhibitorthatprevents cognitivenonpairmand
mitigatesAlzheimer-likepathologyintransgenicmice,”The
JournalofBiologicalChemistry,vol.287,no.9,pp.6912–6927,
2012.

L. Devi and M. Ohno, “7, 8-dihydroxyflavone,asmallmole-
culeTrKBagonist,reversestheexpressionofamyloidβfibril
andmitigatesAlzheimer-likepathologyintransgenicmice,”The
JournalofBiologicalChemistry,vol.287,no.9,pp.6912–6927,
2012.

R. T. Liu, J. T. Tang, L. B. Zhou, J. Y. Fu, and Q. J. Lu, “Liquid-
iritigenatinattenuatesthelearningandmemorydeficitsinanamy-
loid precursortransgenicmousemodel,”Neuropsychopharma-
cology,vol.37, no.2, pp. 434–444, 2012.

S. K. Richetti, M. Blank, K. M. Capiotietal., “Quercetinand
rutin prevent scopalone-induced memory impairment in zebrafish,”BehavioralBrainResearch,vol.217,no.1,pp.10–15,
2011.

R. Gupta, L. K. Gupta, P. K. Mediratta, and S. K. Bhattacharya,
“Effectofresveratrolonscopolamineinducedcognitiveimpair-
ment in mice,”PharmacologicalReports,vol.64,no.2,pp.438–
444,2012.
[71] S. W. Wang, Y. J. Wang, Y. J. Su et al., “Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress and decreases the production of nitric oxide and proinflammatory cytokines,” *Neurotoxicology*, vol. 33, no. 3, pp. 482–490, 2012.

[72] S. Jagota and J. Rajadas, “Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans,” *Neurochemical Research*, vol. 37, no. 1, pp. 40–48, 2012.

[73] C. Sievers, M. Meira, F. Hoffmann, P. Fontoura, L. Kappos, and R. L. Lindberg, “Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects,” *Clinical Immunology*, vol. 144, no. 1, pp. 70–79, 2012.

[74] Z. Fonseca-Kelly, M. Nassrallah, J. Uribé et al., “Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis,” *Frontiers in Neurology*, vol. 3, p. 84, 2012.

[75] K. S. Shindler, E. Ventura, M. Dutt, P. Elliott, D. C. Fitzgerald, and A. Rostami, “Oral resveratrol reduces neuronal damage in a model of multiple sclerosis,” *Journal of Neuro-Ophthalmology*, vol. 30, no. 4, pp. 328–339, 2010.

[76] D. J. Ho, N. Y. Calingasan, E. Wille, M. Dumont, and M. F. Beal, “Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease,” *Experimental Neurology*, vol. 225, no. 1, pp. 74–84, 2010.

[77] Z. Sternberg, K. Chadha, A. Lieberman et al., “Quercetin and interferon-β modulate immune response(s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients,” *Journal of Neuroimmunology*, vol. 205, no. 1-2, pp. 142–147, 2008.

[78] K. Herges, J. M. Millward, N. Hentschel, C. Infante-Duarte, O. Aktas, and F. Zipp, “Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation,” *PloS ONE*, vol. 6, no. 10, Article ID e25456, 2011.

[79] J. M. Davis, E. A. Murphy, M. D. Carmichael, and B. Davis, “Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance,” *American Journal of Physiology*, vol. 296, no. 4, pp. R1071–R1077, 2009.

[80] L. Xiang, K. Sun, J. Lu et al., “Anti-aging effects of phosphazin, an apple polyphenol, on yeast via the SOD and Sir2 genes,” *Bioscience, Biotechnology and Biochemistry*, vol. 75, no. 5, pp. 854–858, 2011.

[81] K. S. Hong, J. I. Park, M. J. Kim et al., “Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catechin and hypoxic precondition effect of polyphenol,” *Toxicology and Applied Pharmacology*, vol. 259, no. 2, pp. 210–218, 2012.

[82] J. I. A. Hendriks, H. E. De Vries, S. M. A. Van Der Pol, T. K. Van Den Berg, E. A. F. Van Tol, and C. D. Dijkstra, “Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study,” *Biochemical Pharmacology*, vol. 65, no. 5, pp. 877–885, 2003.

[83] M. Asahaq, S. S. Raza, M. M. Khan et al., “Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia,” *Neurochemical Research*, vol. 37, no. 8, pp. 1747–1760, 2012.

[84] J. W. Park, J. S. Hong, K. S. Lee, H. Y. Kim, J. J. Lee, and S. R. Lee, “Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia,” *Journal of Nutritional Biochemistry*, vol. 21, no. 11, pp. 1038–1044, 2010.

[85] K. S. Panickar, M. M. Polansky, and R. A. Anderson, “Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures,” *Nutritional Neuroscience*, vol. 12, no. 3, pp. 105–113, 2009.

[86] A. K. Pandey, P. P. Hazari, R. Patnaik, and A. K. Mishra, “The role of AS1Ca in neuroprotection elicited by quercetin in focal cerebral ischemia,” *Brain Research*, vol. 1383, pp. 289–299, 2011.

[87] Y. Yao, D. D. Han, T. Zhang, and Z. Yang, “Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons,” *Phytotherapy Research*, vol. 24, no. 1, pp. 136–140, 2010.

[88] J. K. Lee, H. J. Kwak, M. S. Piao, J. W. Jang, S. H. Kim, and H. S. Kim, “Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats,” *Acta Neurochirurgica*, vol. 112, no. 6, pp. 1477–1487, 2010.

[89] A. K. Pandey, S. Verma, P. Bhattacharya, S. Paul, A. Mishra, and R. Patnaik, “An in-silico strategy to explore neuroprotection by quercetin in cerebral ischemia: a novel hypothesis based on inhibition of matrix metalloproteinase (MMPs) and acid sensing ion channel 1a (ASIC1a),” *Medical Hypothesis*, vol. 79, no. 1, pp. 76–81, 2012.

[90] M. M. Khan, A. Ahmad, T. Ishrat et al., “Rutin protects the neural damage induced by transient focal ischemia in rats,” *Brain Research*, vol. 1292, pp. 123–135, 2009.

[91] A. A. Abd-El-Fattah, M. M. El-Sawalhi, E. R. Rashid, and M. A. El-Ghazaly, “Possible role of vitamin E, coenzyme Q10 and rutin in protection against cerebral ischemia/reperfusion injury in irradiated rats,” *International Journal of Radiation Biology*, vol. 86, no. 12, pp. 1070–1078, 2010.

[92] H. Li, Z. Yan, J. Zhu, J. Yang, and J. He, “Neuroprotective effects of resveratrol on ischemic injury mediated by improving brain energy metabolism and alleviating oxidative stress in rats,” *Neuroparmacology*, vol. 60, no. 2-3, pp. 252–258, 2011.

[93] C. Li, Z. Yan, J. Yang et al., “Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats,” *Neurochemistry International*, vol. 56, no. 3, pp. 495–500, 2010.

[94] M. Gelderblom, F. Leyboldt, J. Lewerenz et al., “The flavonoid fisetin attenuates posts ischemic immune cell infiltration, activation and infract size after transient cerebral middle artery occlusion in mice,” *Journal of Cerebral Flow and Blood Metabolism*, vol. 32, no. 5, pp. 835–843, 2012.

[95] X. K. Tu, W. Z. Yang, R. S. Liang et al., “Effect of baicalin on matrix metalloproteinase-9 expression and blood brain barrier permeability following focal cerebral ischemia in rats,” *Neurochemical Research*, vol. 36, no. 11, pp. 2022–2028, 2011.

[96] Y. Cao, X. Mao, C. Sun et al., “Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways,” *Brain Research Bulletin*, vol. 85, no. 6, pp. 396–402, 2011.

[97] L. Cui, X. Zhang, R. Yang et al., “Baicalein is neuroprotective in rat MCAO model: role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2,” *Pharmacology Biochemistry and Behavior*, vol. 96, no. 4, pp. 469–475, 2010.

[98] X. K. Tu, W. Z. Yang, S. S. Shi et al., “Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia,” *Neurochemical Research*, vol. 36, no. 11, pp. 2022–2028, 2011.

[99] F. Simao, A. Matte, A. S. Pagnussant, C. A. Netto, and C. G. Salbego, “Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB signaling pathway in rat brain following permanent cerebral ischemia,” *Inflammation*, vol. 34, no. 5, pp. 463–470, 2011.

[100] F. Jin, Q. Wu, Y. F. Lu, Q. H. Gong, and J. S. Shi, “Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in...
Dissociation between the antioxidative and neuroprotective effects of flavonoids

P. M. I. H. Han, S. K. A. H. Imhoff, J. W. L. Johnson, and A. B. Pant, "Ischemic insult induced apoptotic pathway," Neurobiology of Disease, vol. 36, no. 12, pp. 2352–2362, 2011.

J. Ren, C. Fan, N. Chen, J. Huang, and Q. Yang, "Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf-2 and HO-1 in rats," Neurochemical Research, vol. 36, no. 12, pp. 2352–2362, 2011.

T. L. Yen, C. K. Hsu, W. J. Lu et al., "Neuroprotective effects of Xanthohumol, a prenylated flavonoid from hops (Humulus lupus), in ischemic stroke of rats," Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 12, pp. 1951–1961, 2010.

J. Ren, C. Fan, N. Chen, J. Huang, and Q. Yang, "Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf-2 and HO-1 in rats," Neurochemical Research, vol. 36, no. 12, pp. 2352–2362, 2011.

M. Agrawal, V. Kumar, M. P. Kashyap, V. K. Khanna, G. S. Randhawa, and A. B. Pant, "Ischemic insult induced apoptotic changes in PC12 cells: protection by trans resveratrol," European Journal of Pharmacology, vol. 666, no. 1–3, pp. 5–11, 2011.

J. Nones, T. C. E. Spoehr, and E. C. Gomes, "Hesperidin, a flavone glycoside, as mediator of neuronal survival," Neurochemical Research, vol. 36, no. 10, pp. 1776–1784, 2011.

C. M. Liu, Y. Z. Sun, J. M. Sun, J. Q. Ma, and C. Cheng, "Protective role of quercetin lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NFκB pathway," Biochimica et Biophysica Acta, vol. 1820, no. 10, pp. 1693–1703, 2012.

J. Abraham and R. W. Johnson, "Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice," Rejuvenation Research, vol. 12, no. 6, pp. 445–453, 2009.

M. E. Cavet, K. L. Harrington, T. R. Vollmer, K. W. Ward, and J. Z. Zhang, "Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells," Molecular Vision, vol. 17, pp. 533–542, 2011.

S. U. Noh and Y. M. Park, "The effect of green tea polyphenols on macrophtage migration inhibitory factor-associated steroid resistance," The British Journal of Dermatology, vol. 166, no. 3, pp. 653–657, 2012.

E. O. Lee, H. J. Park, J. L. Kang, H. S. Kim, and Y. H. Chong, "Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures," Journal of Neurochemistry, vol. 112, no. 6, pp. 1477–1487, 2010.

G. D. Norata, P. Marchesi, S. Passamonti, A. Pirillo, F. Violi, and A. L. Catapano, "Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice," Atherosclerosis, vol. 191, no. 2, pp. 265–271, 2007.

A. A. Qureshi, X. Tan, J. C. Reis et al., "Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by d-tocotrienol and quercetin," Lipids in Health and Disease, vol. 10, no. 239, pp. 1–22, 2011.

Z. J. Zhang, L. C. V. Cheang, M. W. Wang, and S. M. Y. Lee, "Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammatory gene expression in PC12 cells and in zebrafish," International Journal of Molecular Medicine, vol. 27, no. 2, pp. 195–203, 2011.

J. A. Skyberg, A. Robison, S. Golden et al., "Apple polyphenols require T cells to ameliorate dextran sulfate sodium-induced colitis and dampen proinflammatory cytokine expression," Journal of Leukocyte Biology, vol. 90, no. 6, pp. 1043–1054, 2011.

P. G. W. Keddy, K. Dunlop, J. Warford et al., "Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemia brain injury," PLoS ONE, vol. 7, no. 12, Article ID e51324, 2012.

J. Bourrival, M. Plouffe, J. Renaud, C. Provencher, and M. G. Martinoli, "Quercetin and sesamin protects dopaminergic cells from MPP(+) -Induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system," Oxidative Stress and Cellular Longevity, vol. 2012, Article ID 921941, 2012.

S. Y. Li, D. Yang, Z. J. Fu, T. Woo, D. Wong, and A. C. Lo, "Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke," Neurobiology of Disease, vol. 45, no. 1, pp. 624–632, 2012.

C. Liu, J. Wu, K. Xu et al., "Neuroprotection by baicalin in ischemic brain injury involves PTEN/AKT pathway," Journal of Neurochemistry, vol. 112, no. 6, pp. 1500–1512, 2010.

C. W. Hou, Y. T. Lin, Y. L. Chen et al., "Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress," Nutritional Neuroscience, vol. 15, no. 6, pp. 257–263, 2012.

E. S. Kao, J. D. Hsu, C. J. Wang, S. H. Yang, S. Y. Cheng, and H. J. Lee, "Polyphenols extracted from hibiscus sabdariffa L. inhibited lipopolysaccharide-induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression," Bioscience, Biotechnology and Biochemistry, vol. 73, no. 2, pp. 385–390, 2009.

C. S. Huang, C. K. Lii, A. H. Lin et al., "Protection by chrysin, apigenin and luteolin against oxidative stress is mediated by

Oxidative medicine and cellular longevity
the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cystine ligase in rat primary hepatocytes,” *Archives of Toxicology*, vol. 87, no. 1, pp. 167–168, 2013.

[130] Q. Ye, L. Ye, X. Xu et al., “Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway,” *BMC Complementary and Alternative Medicine*, vol. 28, no. 12, p. 82, 2012.

[131] S. Martín, E. González-Burgos, M. E. Carretero, and M. P. Gómez-Serrallanes, “Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes,” *Food Chemistry*, vol. 128, no. 1, pp. 40–48, 2011.

[132] M. S. Fernández-Pachón, G. Berná, E. Otoalaurruchi, A. M. Troncoso, F. Martín, and M. C. García-Parrilla, “Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake,” *Journal of Agriculture and Food Chemistry*, vol. 57, no. 15, pp. 6578–6583, 2009.

[133] T. T. H. Duong, S. Antao, N. A. Ellis, S. J. Myers, and P. K. Witting, “Supplementation with a synthetic polyphenol limits oxidative stress and enhances neuronal cell viability in response to hypoxia-re-oxygenation injury,” *Brain Research*, vol. 1219, pp. 8–18, 2008.

[134] Y. C. Yang, C. K. Lii, A. H. Lin et al., “Induction of glutathione synthesis and heme oxygenase 1 by flavonoids butein and phloretin is mediated through ERK/Nrf2 pathway and protects against oxidative stress,” *Free Radical Biology and Medicine*, vol. 51, no. 11, pp. 2073–2081, 2011.

[135] A. Overman, C. C. Chuang, and M. McIntosh, “Quercetin attenuates dopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease,” *Human Molecular Genetics*, vol. 20, no. 2, pp. 261–270, 2011.

[136] P. Kumar and A. Kumar, “Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide,” *Behavioural Brain Research*, vol. 206, no. 1, pp. 38–46, 2010.
Oxidative Medicine and Cellular Longevity

stimulates human platelet nitric oxide production,” *Journal of Nutrition*, vol. 138, no. 9, pp. 1602–1608, 2008.

[159] M. Akhlaghi and B. Bandy, “Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death,” *Oxidative Medicine and Cellular Longevity*, vol. 2012, Article ID 782321, 9 pages, 2012.

[160] M. Brückner, S. Westphal, W. Domshcke, T. Kucharzik, and B. Y. Shin, S. H. Jin, I. J. Chou, and S. H. Ki, “Nrf2-ARE pathway regulates induction of Sestrin-2 expression,” *Molecular Nutrition and Food Research*, vol. 53, no. 10, pp. 1263–1280, 2009.

[161] E. Ansó, A. Zuazo, M. Irigoyen, M. C. Urdaci, A. Rouzat, and J. J. Martinez-Irujo, “Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism,” *Biochemical Pharmacology*, vol. 79, no. 11, pp. 1600–1609, 2010.

[162] J. A. Shin, K. E. Lee, H. S. Kim, and E. M. Park, “Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain,” *Neurochemical Research*, vol. 37, no. 12, pp. 2686–2696, 2012.

[163] D. J. Bonda, H. Lee, J. A. Blair, X. Zhu, G. Perry, and M. A. Smith, “Role of metal dyshomeostasis in Alzheimer’s disease,” *Metallomics*, vol. 3, pp. 267–270, 2011.

[164] S. A. Schneider, J. Hardy, and K. P. Bhatia, “Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings and treatment considerations,” *Movement Disorders*, vol. 27, no. 1, pp. 42–53, 2012.

[165] Y. Avramovich-Tirosh, L. Reznichenko, T. Amit et al., “Neuroprotection by resveratrol: APP regulation and amyloid-β peptide reduction by novel multi-functional brain permeable iron-chelating-antioxidants, M-30 and green tea polyphenol, EGCG,” *Current Alzheimer Research*, vol. 4, no. 4, pp. 403–411, 2007.

[166] L. Reznichenko, T. Amit, H. Zheng et al., “Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease,” *Journal of Neurochemistry*, vol. 97, no. 2, pp. 527–536, 2006.

[167] K. F. Pirker, M. C. Baratto, R. Bososi, and B. A. Goodman, “Influence of pH on the speciation of copper (II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid,” *Journal of Inorganic Biochemistry*, vol. 112, pp. 10–16, 2012.

[168] A. Dairam, R. Fogel, S. Daya, and J. L. Limson, “Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate,” *Journal of Agricultural and Food Chemistry*, vol. 56, no. 9, pp. 3350–3356, 2008.

[169] X. X. Du, H. M. Xu, H. Jiang, N. Song, J. Wang, and J. X. Xie, “Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease,” *Neuroscience Bulletin*, vol. 28, no. 3, pp. 253–258, 2012.

[170] W. Tripanichkul and E. O. Jaroensupparerk, “Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model,” *The International Journal of Neuroscience*, vol. 122, no. 5, pp. 263–270, 2012.

[171] J. Wang, X. X. Du, H. Jiang, and J. X. Xie, “Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappaB modulation in MES23.5 cells,” *Biochemical Pharmacology*, vol. 78, no. 2, pp. 178–183, 2009.

[172] J. Ren, C. Fan, N. Chen, J. Huang, and Q. Yang, “Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf-2 and HO-1 in rats,” *Neurochemical Research*, vol. 36, no. 12, pp. 2352–2362, 2011.

[173] J. Wang, H. Xu, H. Jiang, X. Du, P. Su, and J. Xie, “Neurorescuing effect of rosmarinic acid on 6-hydroxydopamine-lesioned nigral dopamine neurons in rat model of Parkinson’s disease,” *Journal of Molecular Neuroscience*, vol. 47, no. 1, pp. 113–119, 2012.

[174] A. S. Rambold, M. Miesbauer, D. Olschewski et al., “Green tea extracts interfere with the stress-protective activity of PrPC and
the formation of PrPSc,” *Journal of Neurochemistry*, vol. 107, no. 1, pp. 218–229, 2008.

[188] J. K. Jeong, M. H. Moon, B. C. Bae et al., “Autophagy induced by resveratrol prevents human prion protein mediated neurotoxicity,” *Neurochemical Research*, vol. 73, no. 2, pp. 99–105, 2012.

[189] N. Bizat, J. M. Peyrin, S. Haik et al., “Neuron dysfunction is induced by prion protein with an insertion mutation via a Fyn kinase and reversed by sirtuin activation in *Caenorhabditis elegans*,” *Journal of Neuroscience*, vol. 30, no. 15, pp. 5394–5403, 2010.

[190] I. Hafner-Bratkovic, J. Gaspersic, L. M. Smid, M. Bresjanac, and R. Jeral, “Neuron dysfunction is induced by prion protein with an insertion mutation via a Fyn kinase and reversed by sirtuin activation in *Caenorhabditis elegans*,” *Journal of Neurochemistry*, vol. 30, no. 15, pp. 5394–5403, 2010.

[191] M. T. H. Khan, I. Orhan, F. S. Šenol et al., “Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies,” *Chemical Biological Interactions*, vol. 181, no. 3, pp. 383–389, 2009.

[192] A. Girones-Vilaplana, P. Valenta, P. B. Andrade, F. Ferreres, D. A. Moreno, and C. Garcia-Viguera, “Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential,” *Food Chemistry*, vol. 134, pp. 2090–2096, 2012.

[193] H. W. Ryu, M. J. Curtis-Long, S. Jung et al., “Anticholinesterase potential of flavonoids from paper mulberry (*Broussonetia papyrifera*) and their kinetic studies,” *Food Chemistry*, vol. 132, no. 3, pp. 1244–1250, 2012.

[194] M. A. Papandreu, A. Dimakopoulou, Z. I. Linardaki et al., “Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity,” *Behavioural Brain Research*, vol. 198, no. 2, pp. 352–358, 2009.

[195] J. K. Cho, Y. B. Ryu, M. J. Curtis-Long et al., “Cholinesterase inhibitory effects of geranylated flavonoids from *Paulownia tomentosa* fruits,” *Bioorganic and Medicinal Chemistry*, vol. 20, no. 8, pp. 2595–2602, 2012.

[196] G. N. Choi, J. H. Kim, J. H. Kwak et al., “Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure,” *Food Chemistry*, vol. 132, no. 2, pp. 1019–1024, 2012.

[197] S. Tota, H. Awasthi, P. K. Kamat, C. Nath, and K. Hanif, “Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice,” *Behavioural Brain Research*, vol. 209, no. 1, pp. 73–79, 2010.

[198] E. K. Akkol, I. O. Orhan, and E. Yesilada, “Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from *Cistus laurifolius* L. leaves,” *Food Chemistry*, vol. 131, no. 2, pp. 626–631, 2012.

[199] S. Porfírio, P. L. V. Fale, P. J. A. Madeira, M. H. Florêncio, L. Ascensão, and M. L. M. Serralheiro, “Antiacetylcholinesterase and antioxidant activities of *Plectranthus barbatus* tea, after in vitro gastrointestinal metabolism,” *Food Chemistry*, vol. 122, no. 1, pp. 179–187, 2010.

[200] A. J. Y. Guo, H. Q. Xie, R. C. Y. Choi et al., “Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro,” *Chemico-Biological Interactions*, vol. 187, no. 1–3, pp. 246–248, 2010.

[201] J. Xiao, X. Chen, L. Zhang, S. G. Talbot, G. C. Li, and M. Xu, “Investigation of the Mechanism of enhances effect of EGCG on huperzine A inhibition of acetylcholinesterase activity in rats by a multispectroscopic method,” *Journal of Agricultural and Food Chemistry*, vol. 56, pp. 910–915, 2008.

[202] L. Zhang, H. Cao, J. Wen, and M. Xu, “Green tea polyphenol (-)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin,” *Nutritional Neuroscience*, vol. 12, no. 4, pp. 142–148, 2009.

[203] H. Lou, P. Fan, R. G. Perez, and H. Lou, “Neuroprotective effects of linarin through activation of the P33K/Akt pathway in amyloid-β-induced neuronal cell death,” *Bioorganic and Medicinal Chemistry*, vol. 19, no. 13, pp. 4021–4027, 2011.

[204] S. M. Huang, S. Y. Tsai, J. A. Lin, C. H. Wu, and G. C. Yen, “Cytoprotective effects of hesperetin and hesperidin against amyloid β-induced impairment of glucose transport through downregulation of neuronal autophagy,” *Molecular Nutrition and Food Research*, vol. 56, no. 4, pp. 601–609, 2012.

[205] Y. Wu, X. Li, J. X. Zhu et al., “Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease,” *Neurosignals*, vol. 19, no. 3, pp. 163–174, 2011.

[206] Z. Li, L. Pang, F. Fang et al., “Resveratrol attenuates brain damage in a rat model of focal ischemia via up-regulation of hippocampal Bcl-2,” *Brain Research*, vol. 1450, pp. 116–124, 2012.

[207] M. Kairisalo, A. Bonomo, A. Hyrskyluoto et al., “Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells,” *Neurochemistry Letters*, vol. 488, no. 3, pp. 263–266, 2011.

[208] C. Ploai, X. Antoniou, A. Scip et al., “JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models,” *Journal of Alzheimer's Research*, vol. 26, no. 2, pp. 315–329, 2011.

[209] H. Erlank, A. Elmann, R. Kohen, and J. Kanner, “Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones and quinones,” *Free Radical Biology and Medicine*, vol. 51, no. 12, pp. 2319–2327, 2011.

[210] W. Zhang and M. L. Go, “Methoxylation of resveratrol: effects on induction of NAD(P)H Quinone-oxidoreductase 1 (NQO1) activity and growth inhibitory properties,” *Bioorganic and Medicinal Chemistry Letters*, vol. 21, no. 3, pp. 1032–1035, 2011.

[211] M. Karbowska, S. Y. Jeong, and R. J. Youle, “Endophilin B1 is required for the maintenance of mitochondrial morphology,” *Journal of Cell Biology*, vol. 166, no. 7, pp. 1027–1039, 2004.

[212] J. I. Ahn, K. J. Jeong, M. J. Ko et al., “Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate,” *Molecular and Cellular Toxicology*, vol. 6, no. 2, pp. 169–177, 2010.

[213] C. H. R. Wallace, I. Baczkó, L. Jones, M. Fercho, and P. E. Light, “Inhibition of cardiac voltage-gated sodium channels by grape polyphenols,” *British Journal of Pharmacology*, vol. 149, no. 6, pp. 657–665, 2006.

[214] D. Ma, N. Zerangue, K. Raab-Graham, S. R. Fried, Y. N. Jan, and L. Y. Jan, “Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart,” *Neuron*, vol. 33, no. 5, pp. 715–729, 2002.

[215] T. T. Yow, E. Pera, N. Absalom et al., “Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q,” *British Journal of Pharmacology*, vol. 163, no. 5, pp. 1017–1033, 2011.

[216] J. H. Wang, J. Cheng, C. R. Li, M. Ye, Z. Ma, and F. Cai, “Modulation of Ca2+ signals by epigallocatechin-3-gallate (EGCG) in cultured rat hippocampal neurons,” *International Journal of Molecular Sciences*, vol. 12, no. 1, pp. 742–754, 2011.
[217] D. H. Shin, E. Y. Seo, B. Pang et al., “Inhibition of Ca\(^{2+}\)-release-activated Ca\(^{2+}\) channel (CRAC) and K\(^+\) channels by curcumin in Jurkat-T cells,” *Journal of Pharmacological Sciences*, vol. 115, no. 2, pp. 144–154, 2011.

[218] Y. L. Wu, A. Ohsaga, T. Oshiro et al., “Suppressive effects of red wine polyphenols on voltage-gated ion channels in dorsal root ganglionic neuronal cells,” *Tohoku Journal of Experimental Medicine*, vol. 206, no. 2, pp. 141-150, 2005.