Food groups and risk of squamous cell carcinoma of the oesophagus: a case–control study in Uruguay

E De Stefani*,1, H Deneo-Pellegrini1, AL Ronco1, P Boffetta2, P Brennan2, N Muñoz3, X Castellsague4, P Correa5 and M Mendilaharsu1

1Registro Nacional de Cáncer, Montevideo, Uruguay; 2Unit of Environmental Cancer Epidemiology, International Agency for Research on Cancer, Lyon, France; 3Unit of Field and Intervention Studies, International Agency for Research on Cancer, Lyon, France; 4Servei d’Epidemiologia i Registre del Càncer, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, Spain; 5Louisiana State University Health Sciences Center, Department of Pathology, New Orleans, LA, USA

In the time period January 1998–December 2000, a case–control study on squamous cell cancer of the oesophagus was conducted in Montevideo, Uruguay. The major objective of the study was to estimate the odds ratios (ORs) associated with main food groups. For this purpose, 166 patients afflicted with squamous cell oesophageal cancer and 664 hospitalised controls were frequency matched on age and sex. Both series of patients were administered with a structured questionnaire. Aside from queries related with tobacco smoking, alcohol drinking and maté drinking, patients were interviewed with a food-frequency questionnaire (FFQ) on 64 items, representative of the usual Uruguayan diet. Red meat, salted meat and boiled meat displayed strong direct associations (OR for red meat 2.4, 95% CI 1.4–4.2). On the other hand, fish and total white meat showed moderate protective effect (OR for total white meat 0.5, 95% CI 0.3–0.9). Total fruit intake displayed a strong inverse association (OR for total white meat 0.2, 95% CI 0.1–0.4), whereas total vegetable consumption presented a weak inverse association (OR for total vegetable intake 0.7, 95% CI 0.4–1.2). These results suggest that vegetables, mainly cooked vegetables, are rich in thermolabile protective substances. On the other hand, boiled (stewed) meat, which is ingested at high temperature could be, like maté, a risk factor for squamous cell cancer of the oesophagus.

British Journal of Cancer (2003) 89, 1209 – 1214. doi:10.1038/sj.bjc.6601239 www.bjcancer.com

© 2003 Cancer Research UK

Keywords: oesophageal cancer; fruits; vegetables; stewed meat; salted meat

Nutritional deficiencies have been suspected as risk factors for squamous cell oesophageal cancer for more than 20 years in Eastern countries, like Iran and China (Cook-Mozaffari et al, 1979; Thurnham et al, 1988; Hu et al, 1994). Recent reviews reported on the protective role of vegetables and fruits (Cheng and Day 1996; World Cancer Research Fund 1997). On the other hand, tobacco smoking and alcohol drinking have been considered as the main risk factors in Western countries, like US and European countries (Potter et al, 1981; Launoy et al, 1998; Bosetti et al, 2000). Even in Western countries, diet could play a major role (Cheng and Day, 1996, Launoy et al, 1998). South American countries display high rates of oesophageal cancer, and six case–control studies (Victoria et al, 1987; De Stefani et al, 1990, 1991; Castelletto et al, 1994; Rolón et al, 1995; Castellsague et al, 2000) suggested that hot-maté drinking could be a risk factor for this malignancy. In these studies, tobacco smoking, alcohol drinking and diet also played an important role. Nevertheless, in these studies food groups were restricted by a limited food-frequency questionnaire (FFQ). Finally, two studies, conducted rather recently in Uruguay, examined in detail the role of meat and plant foods in the aetiology of oesophageal cancer (De Stefani et al, 1999, 2001). Since the present study examined 64 food items, and included more than 30 new cases of the malignancy, we considered that the results could be more informative than the results of previous studies. This study, like other hospital based case–control studies, is limited by a number of drawbacks. Recall bias is an important limitation, mainly for cases, and could result in misclassification bias. For this reason, we decided to interview patients about their consumption habits 2 years before the date of the interview. Interviewer bias was avoided by careful training of the workers who personally conducted the interviews. Finally, the lack of validation study of the FFQ is a limitation. On the other hand, the high response rates, both for cases and controls are a strength of this research. Therefore, we decided to examine the role of foods in the aetiology of squamous cell carcinoma of the oesophagus.

MATERIAL AND METHODS

In the time period January 1998–December 2001, a case–control study on squamous cell carcinoma of the oesophagus was carried out in the four major hospitals in Montevideo, Uruguay. In this period, 175 newly diagnosed and histologically verified cases with squamous cell cancer of the oesophagus were considered eligible for the study. Nine patients (5.1%) were too ill and it was decided to exclude this subset of patients. The final number of cases was 166 (response rate 94.8%).
In the same time period and in the same hospitals, 692 patients with conditions not related with tobacco smoking, alcohol drinking and without recent changes in their diets were considered eligible for the study. From this initial number of patients, 28 refused the interview, leading a final total of 664 controls (response rate 95.9%). These controls were frequency matched to cases on age (in decennia) and sex. Controls were afflicted by the following diseases: eye disorders (181 patients, 27.3%), abdominal hernia (145, 21.8%), acute appendicitis (54, 8.1%), diseases of the skin (54, 8.1%), injuries (51, 7.7%), varicose veins (43, 6.5%), urinary stones (33, 5.0%), hydatid cyst (33, 5.0%) blood disorders (33, 5.0%), fractures (32, 4.8%) and osteoarticular disorders (five, 0.7%).

Both cases and controls were administered with a questionnaire shortly after admission. The interviewers were two trained social workers, mostly unaware of the dietary risk factors for oesophageal cancer. The questionnaire included the following sections: (1) a sociodemographic section, (2) a complete tobacco smoking section, (3) a complete alcohol drinking section, (4) a mate section, including queries on daily amount, years of ingestion and temperature, (5) a complete occupation history, including job titles, industry and years of employment, (6) a family history of cancer in first-degree relatives, (7) self-reported height and weight 5 years before the date of the interview, (8) menstrual and reproductive events and (9) a FFQ on 64 food items, considered representative of the usual Uruguayan diet. This FFQ was not validated but was tested for reproducibility with reasonably good results. In brief, foods and beverages were recorded as servings per year. Foods and food groups are shown in appendix.

Statistical methods

Food groups were categorised in quartiles, following the distribution of the control series. In order to compensate overeating or undereating, foods were energy adjusted by the residuals method of Willett and Stampfer (1986). The main food groups (meats, dairy foods, plant foods) were compared with each control condition, taking eye disorders as the referent disease by polytomous regression (Hosmer and Lemeshow, 1989). The results were homogeneous for each food group (data not shown). Relative risks, approximated by the odds ratios (ORs), were estimated by multiple logistic unconditional regression (Breslow and Day, 1980). Tests for trend were calculated after entering the categorical variables as continuous. All calculations were performed with the STATA programme (1999).

RESULTS

The distribution of cases and controls by sociodemographic variables and selected risk factors is shown in Table 1. As expected from the frequency-matched design, age and sex were similarly distributed among both series. Also, residence and urban/rural status were mostly similar among cases and controls. Cases were significantly less educated and showed similar income compared with controls. On the other hand, cases displayed a significantly lower body mass index (P < 0.001) and a higher BMI than controls (P = 0.056). Cases consumed a higher amount of cigarettes than controls (P < 0.001), and ingested more alcohol (P = 0.02). Maté ingestion was higher among cases compared with controls (P = 0.01) and maté drinkers were associated with a higher slope in risk (OR 3.82, 95% CI 1.47 – 9.93, P-value < 0.001).

Odds ratios of squamous cell carcinoma of the oesophagus for significant foods are shown in Table 2. Red meat, stewed meat, salted meat and total grains were directly associated with risk of oesophageal cancer (OR for high intake of stewed meat 2.04, 95% CI 1.16 – 3.58, P-value for trend = 0.002). White meat, fish, cheese, raw vegetables, citrus fruits, other fruits, total fruits, total vegetables and fruits and pulses were inversely associated with risk of squamous cell carcinoma of the oesophagus (OR for high intake of citrus fruits 0.18, 95% CI 0.09 – 0.36, P-value for trend < 0.001).

Total processed meat (see appendix), fried meat, barbecued meat, total dairy foods, butter, whole milk, ice cream, boiled eggs, fried eggs, all desserts, total fat-rich foods (red meat, processed meat, dairy foods, eggs and desserts), cooked vegetables, tubers and total plant foods (all vegetables, all fruits, grains, tubers and pulses) were not associated with risk of squamous cell carcinoma of the oesophagus.

The final model after including all significant foods is shown in Table 3. This model included total white meat (poultry, fish), stewed meat, salted meat, raw vegetables and citrus fruits, citrus fruits being the strongest term (OR for low intake of citrus fruits 5.26, P-value < 0.001). Among nondietary factors, tobacco smoking remained significantly associated with risk of squamous cell carcinoma of the oesophagus (OR for heavy smokers 3.45, 95% CI 1.71 – 7.00, P-value for trend < 0.0001). Also, maté temperature was significantly and positively associated with the malignancy (OR for drinkers of very hot mate 2.09, 95% CI 1.25 – 3.53). Finally, alcohol drinking displayed a significant increased risk (OR 2.32, 95% CI 1.13 – 4.77) (data not included in Table 3).

DISCUSSION

According to the results of the present study, red meat, stewed meat and salted meat were associated with moderate to stronger effects on the risk of squamous cell oesophageal carcinoma. On the other hand, white meat, poultry and fish displayed moderate inverse associations with oesophageal cancer. Among plant foods, total vegetables were weakly associated with this disease, whereas raw vegetables were strongly protective. Finally, total fruits, citrus fruits and other fruits were the most protective food groups with reductions in risk close to 80%

Previous studies on foods and risk of squamous cell oesophageal cancer (Victera et al, 1987; Brown et al, 1998; Bosetti et al, 2000; Castellsagué et al, 2000) displayed stronger effects of fruits compared with vegetables. It is possible that cooked vegetables are not associated with squamous cell oesophageal cancer due to temperature of the water. More specifically, vegetables are rich in thermostable nutrients that are destroyed by the heat in the process of cooking (Tavani et al, 1994; Bosetti et al, 2000). On the other hand, fruits are more often eaten raw, leaving nutrients not affected by the cooking process. Citrus fruits are rich in vitamin C, a potent anticarcinogen in oesophageal cancer (Gao et al, 1994; Bosetti et al, 2000; Castellsagué et al, 2000). Finally, the effect of fruits on previous studies was similar in both histologies, that is, squamous cell carcinoma and adenocarcinoma of the oesophagus (Tzonou et al, 1996; Cheng et al, 2000; Sharp et al, 2001). It should be noted that the last studies (Cheng et al, 2000; Sharp et al, 2001) were conducted only among women.

Stewed meat is a frequent food item in the Uruguayan population, particularly in people of the lower socioeconomic strata and among rural dwellers. In the present study, stewed meat was a strong risk factor for oesophageal cancer. We would suggest that stewed meat acts through thermal injury, like maté drinking (De Stefani et al, 1990; Castellsagué et al, 2000). Studies conducted in other populations implicate soups (Bosetti et al, 2000) and other hot beverages (Hu et al, 1994) as risk factors for squamous cell oesophageal cancer. Also, in this study, salted meat was directly associated with an increased risk of squamous cell oesophageal cancer. Previous studies (World Cancer Research Fund 1997; De Stefani et al, 1999) suggested that salted meat is a rich source of nitrosamines. These substances have been implicated in oesophageal carcinogenesis (Ohshima and Bartsch 1981).
Table 1 Distribution of cases and controls by sociodemographic variables and other risk factors

Variable	Cases	Controls	OR	95 % CI	P-value for trend
Age (years)					
40–49	10 (6.0)	40 (6.0)			
50–59	34 (20.5)	136 (20.5)			
60–69	60 (36.1)	240 (36.1)			
70–79	48 (28.9)	192 (28.9)			
80–89	14 (8.4)	56 (8.4)	NA (2)		
Sex					
Male	137 (82.5)	548 (82.5)			
Female	29 (17.5)	116 (17.5)			
Residence					
Montevideo	63 (37.9)	269 (40.5)		1.0	
Other counties	103 (62.1)	395 (59.5)		1.1	0.8–1.6
Urban/rural status					
Urban	123 (74.1)	501 (75.5)		1.0	
Rural	43 (25.9)	163 (24.5)		1.1	0.7–1.6
Education (years)					
0–2	60 (36.1)	205 (30.9)		1.0	
3–5	69 (41.6)	224 (33.7)		1.0	0.7–1.6
6+	37 (22.3)	235 (35.4)	0.5	0.3–0.8	0.008
Income (US dollars)					
£153	51 (30.7)	257 (38.7)		1.0	
£154+	64 (38.6)	243 (36.6)	1.3	0.9–2.0	
Unknown	51 (30.7)	164 (24.7)			
Body mass index					
£23.2	64 (38.6)	167 (25.1)		1.0	
£23.3–25.2	39 (23.5)	165 (24.9)	0.6	0.4–0.9	
£25.3–27.4	30 (18.1)	166 (25.0)	0.5	0.3–0.8	
£27.5+	33 (19.9)	166 (25.0)	0.5	0.3–0.8	
Total energy intake					
£1781	35 (21.1)	166 (25.0)	1.0		
£1782–2155	39 (22.5)	166 (25.0)	1.1	0.7–1.8	
£2156–2585	43 (25.9)	166 (25.0)	1.2	0.7–2.0	
£2586+	49 (29.5)	166 (25.0)	1.4	0.9–2.3	0.15
Tobacco smoking					
Non-smokers	29 (17.5)	201 (30.3)	1.0		
1–24	19 (11.4)	134 (20.2)	0.9	0.5–1.8	
25–44	28 (16.9)	120 (18.1)	1.6	0.9–2.8	
45–64	40 (24.1)	109 (16.4)	2.5	1.5–4.4	
65+	50 (30.1)	100 (15.1)	3.5	2.0–3.9	<0.001
Alcohol drinking					
Non-drinkers	50 (30.1)	273 (41.1)	1.0		
1–60	29 (17.5)	134 (20.2)	1.2	0.7–1.9	
61–120	34 (20.5)	114 (17.2)	1.6	0.9–2.6	
121–240	30 (18.1)	89 (13.4)	1.8	1.1–3.1	
241+	23 (13.9)	54 (8.1)	2.3	1.3–4.1	0.0005
Mateé drinking					
Non-drinkers	6 (3.6)	83 (12.5)	1.0		
0.1–0.9	36 (21.7)	126 (19.0)	3.9	1.6–9.9	
1.0–1.9	92 (55.4)	329 (49.5)	3.9	1.6–9.2	
2.0+	32 (19.3)	126 (19.0)	3.5	1.4–8.9	0.04
Mateé temperature					
Warm	9 (5.7)	29 (7.6)	1.0		
Hot	117 (74.0)	324 (53.0)	1.2	0.5–2.5	
Very hot	32 (20.3)	27 (7.1)	3.8	1.5–9.9	0.0002
Type of tobacco					
Non-smokers	29 (17.5)	201 (30.3)	1.0		
1–24	19 (11.4)	134 (20.2)	1.2	0.7–1.9	
61–120	34 (20.5)	114 (17.2)	1.6	0.9–2.6	
121–240	30 (18.1)	89 (13.4)	1.8	1.1–3.1	
241+	23 (13.9)	54 (8.1)	2.3	1.3–4.1	0.0005
Type of cigarette					
Non-smokers	29 (17.5)	201 (30.3)	1.0		
Manufactured	34 (20.5)	149 (22.4)	1.6	0.9–2.7	
Hand-rolled	103 (62.0)	314 (47.3)	2.3	1.4–3.6	0.0002

aUnadjusted odds ratios. bPercentages among brackets. cPack-years. dMililitres of ethanol. eLitres day. /C0.
Table 2 Odds ratios of squamous cell cancer of the esophagus for significant food groups

Food*	Cases	Controls	ORc	ORd	95% CI
Red meat					
<234	26 (15.7)	166 (25.0)	1.0	1.0	0.75–2.42
235–365	39 (23.5)	166 (25.0)	1.50	1.35	0.75–2.42
366–469	36 (21.5)	167 (25.1)	1.38	1.17	0.64–2.11
470+	65 (39.2)	165 (24.9)	2.51	2.43	1.40–4.23
P-value trend	<0.001	0.002			
White meat					
<24	66 (39.8)	166 (25.0)	1.0	1.0	0.75–2.42
25–76	37 (22.3)	166 (25.0)	0.56	0.61	0.30–0.92
77–130	32 (19.3)	166 (25.0)	0.48	0.55	0.33–0.92
131+	31 (18.7)	166 (25.0)	0.47	0.51	0.30–0.86
P-value trend	0.001	0.008			
Fish					
0	56 (33.7)	166 (25.0)	1.0	1.0	0.75–2.42
1–12	46 (27.7)	166 (25.0)	0.82	0.90	0.53–1.48
13–52	37 (22.3)	166 (25.0)	0.66	0.78	0.47–1.30
53+	27 (16.3)	166 (25.0)	0.43	0.53	0.30–0.92
P-value trend	0.003	0.02			
Salted meat					
0	128 (77.1)	558 (84.0)	1.0	1.0	0.75–2.42
1–78	14 (8.4)	66 (9.9)	0.92	0.88	0.46–1.68
79+	24 (14.5)	40 (6.0)	2.61	2.19	1.21–3.98
P-value trend	0.002	0.03			
Stewed meat					
<78	26 (15.7)	166 (25.0)	1.0	1.0	0.75–2.42
79–142	30 (18.1)	166 (25.0)	1.15	1.00	0.54–1.85
143–234	51 (30.7)	166 (25.0)	1.96	1.80	1.02–3.16
235+	59 (35.5)	166 (25.0)	2.27	2.04	1.16–3.58
P-value trend	<0.001	0.02			
Grains					
794	31 (18.7)	166 (25.0)	1.0	1.0	0.75–2.42
795–1094	40 (24.1)	166 (25.0)	1.29	1.26	0.72–2.22
1095–1678	41 (24.7)	166 (25.0)	1.32	1.19	0.69–2.07
1679+	54 (32.5)	166 (25.0)	1.74	1.60	1.05–3.08
P-value trend	0.03	0.04			
Cheese					
<52	54 (32.5)	166 (25.0)	1.0	1.0	0.75–2.42
53–78	45 (27.1)	166 (25.0)	0.83	0.86	0.53–1.39
79–234	32 (19.3)	166 (25.0)	0.59	0.61	0.36–1.02
235+	35 (21.1)	166 (25.0)	0.65	0.61	0.36–1.03
P-value trend	0.03	0.04			
Raw vegetables					
<72	65 (39.2)	166 (25.0)	1.0	1.0	0.75–2.42
73–156	46 (27.7)	166 (25.0)	0.71	0.80	0.50–1.28
157–312	32 (19.3)	166 (25.0)	0.49	0.51	0.31–0.85
313+	23 (13.8)	166 (25.0)	0.36	0.39	0.22–0.68
P-value trend	<0.001	<0.001			
Citrus fruits					
0	70 (42.2)	166 (25.0)	1.0	1.0	0.75–2.42
1–78	48 (28.9)	166 (25.0)	0.68	0.62	0.39–0.99
79–182	35 (21.1)	166 (25.0)	0.50	0.47	0.38–0.77
183+	13 (7.8)	166 (25.0)	0.18	0.18	0.09–0.36
P-value trend	<0.001	<0.001			
Other fruits					
<140	63 (37.9)	166 (25.0)	1.0	1.0	0.75–2.42
141–262	48 (28.9)	166 (25.0)	0.76	0.80	0.50–1.27
263–488	30 (18.1)	166 (25.0)	0.48	0.54	0.32–0.91
489+	25 (15.1)	166 (25.0)	0.40	0.54	0.31–0.95
P-value trend	<0.001	<0.001			
Total fruits					
<222	78 (47.0)	166 (25.0)	1.0	1.0	0.75–2.42
223–400	44 (26.5)	166 (25.0)	0.56	0.56	0.35–0.89
401–615	31 (18.7)	166 (25.0)	0.39	0.45	0.27–0.75
616+	13 (7.8)	166 (25.0)	0.17	0.19	0.10–0.37
P-value trend	<0.001	<0.001			
Total veg. and fruits					
<658	66 (40.4)	166 (25.0)	1.0	1.0	0.75–2.42
659–986	47 (28.3)	166 (25.0)	0.70	0.75	0.47–1.20
Poultry and fish were protective foods in our study. In fact, the effect of fish was stronger than the inverse association of poultry. Previous studies reported a protective effect of fish, in particular lean fish (Launoy et al., 1998; Bosetti et al., 2000). Fish is rich in polyunsaturated fats, like olive oil (Launoy et al., 1998; Bosetti et al., 2000). These nutrients were found as inversely associated with the risk of squamous cell oesophageal cancer. The mechanism of action of poultry is less clear in this malignancy. A previous study reported a protective effect of poultry (Bosetti et al., 2000). A recent case–control study on breast cancer also revealed a reduction in risk for total white meat, fish and skinless chicken (Ronco et al., 2003). In this study, the inverse association between skinless and nonfried chicken and breast cancer was suggested as possibly due to its lesser content of fat.

Table 2	(Continued)				
Food	Cases	Controls	OR³	OR⁴	95% CI
987–1405	31 (18.7)	166 (25.0)	0.46	0.53	0.32–0.89
1406+	21 (12.6)	166 (25.0)	0.31	0.38	0.21–0.68
Pulses					
≤6	47 (28.3)	166 (25.0)	1.0	1.0	
7–17	48 (28.9)	166 (25.0)	1.02	0.75	0.45–1.24
18–36	35 (21.1)	166 (25.0)	0.74	0.66	0.39–1.12
37+	36 (21.7)	166 (25.0)	0.76	0.59	0.35–0.99
P-value trend			0.15	0.04	

Table 3 | Final model including food groups |
| --- | --- | --- | --- | --- | --- |
| Food | Cases | Controls | OR³ | OR⁴ | 95% CI |
| White meat | | | | | |
| ≤24 | 66 (39.8) | 166 (25.0) | 1.0 | 1.0 | |
| 25–76 | 37 (22.3) | 166 (25.0) | 0.56 | 0.64 | 0.38–1.09 |
| 77–130 | 32 (19.3) | 166 (25.0) | 0.48 | 0.56 | 0.32–0.97 |
| 131+ | 31 (18.7) | 166 (25.0) | 0.47 | 0.54 | 0.31–0.96 |
| Salted meat | | | | | |
| 0 | 128 (77.1) | 558 (84.0) | 1.0 | 1.0 | |
| 1–78 | 14 (8.4) | 66 (9.9) | 0.92 | 1.00 | 0.50–2.01 |
| 79+ | 24 (14.5) | 40 (6.0) | 2.61 | 2.34 | 1.22–4.49 |
| P-value trend | | | 0.001 | 0.04 | |

Stewed meat | | | | | |
≤78	26 (15.7)	166 (25.0)	1.0	1.0	
79–142	30 (18.1)	166 (25.0)	1.15	0.83	0.44–1.55
143–234	51 (30.7)	166 (25.0)	1.96	1.49	0.83–2.67
235+	59 (35.5)	166 (25.0)	2.27	1.80	1.01–3.24
P-value trend			<0.001	0.007	

Row vegetables | | | | | |
≤72	65 (39.2)	166 (25.0)	1.0	1.0	
73–156	46 (27.7)	166 (25.0)	0.71	0.99	0.61–1.64
157–312	32 (19.3)	166 (25.0)	0.49	0.65	0.38–1.10
313+	23 (13.8)	166 (25.0)	0.36	0.51	0.28–0.93
P-value trend			<0.001	0.009	

Citrus fruits | | | | | |
0	70 (42.2)	166 (25.0)	1.0	1.0	
1–78	48 (28.9)	166 (25.0)	0.68	0.61	0.37–0.98
79–182	35 (21.1)	166 (25.0)	0.50	0.49	0.29–0.82
183+	13 (7.8)	166 (25.0)	0.18	0.19	0.10–0.38
P-value trend			<0.001	<0.001	

*Servings per year. aPercentages among brackets. bUnadjusted ORs. cOdds ratios adjusted for age, sex, residence, urban/rural status, education, body mass index, tobacco smoking, alcohol drinking, mate drinking, and total energy intake.

Poultry and fish were protective foods in our study. In fact, the effect of fish was stronger than the inverse association of poultry. Previous studies reported a protective effect of fish, in particular lean fish (Launoy et al., 1998; Bosetti et al., 2000). Fish is rich in polyunsaturated fats, like olive oil (Launoy et al., 1998; Bosetti et al., 2000). These nutrients were found as inversely associated with the risk of squamous cell oesophageal cancer. The mechanism of action of poultry is less clear in this malignancy. A previous study reported a protective effect of poultry (Bosetti et al., 2000). A recent case–control study on breast cancer also revealed a reduction in risk for total white meat, fish and skinless chicken (Ronco et al., 2003). In this study, the inverse association between skinless and nonfried chicken and breast cancer was suggested as possibly due to its lesser content of fat.

Several studies on oesophageal cancer reported a final model including nondietary and dietary factors (Victora et al., 1987; Castelletto et al., 1994; Launoy et al., 1998; Cheng et al., 2000; Sharp et al., 2001). In our final model, which excluded nondietary factors, citrus fruits were the more significant and stronger term (P-value for trend <0.001), followed by stewed meat (P-value = 0.807) and
fresh vegetables (P-value = 0.009). Tobacco smoking, alcohol drinking and mate temperature remained as significant factors but with slightly reduced risks.

In summary, this study on squamous cell carcinoma of the oesophagus replicates previous studies on the protective effects of raw vegetables, citrus fruits and noncitrus fruits. Also, salted meat, a rich source of nitrosamines, was a strong risk factor. Finally, boiled meat, a component of stews that are ingested very hot is, possibly, a risk factor for this malignancy. The effect of this type of meat is much higher among smokers of black tobacco and hand-rolled cigarettes, compared with smokers of blond tobacco and commercial cigarettes.

REFERENCES

Rosetti C, La Vecchia C, Talamini R, Simonato L, Zambon P Negro E, Trichopoulos D, Lagiou P, Franceschi S (2000) Food groups and risk of squamous cell esophageal cancer in Northern Italy. Int J Cancer 87: 289 – 294

Breslow NE, Day NE (1980) Statistical Methods in Cancer Research. Vol. I – The Analysis of Case–Control studies. IARC Scientific Publications No. 32. Lyon: IARC

Brown LM, Swanson CA, Gridley G, Swanson GM, Silverman DT, Greenberg RS, Hayes RB, Schenone JB, Pottern LM, Schwartz AG, Liff JM, Hoover R, Fraumeni Jr JF (1989) Dietary factors and the risk of squamous cell esophageal cancer among black and white men in the United States. Cancer Causes Control 9: 467 – 474

Castelletto R, Castellsagué X, Muñoz N, Iosovich J, Chopita N, Jmelitsky A (1994) Alcohol, tobacco, maté drinking and esophageal cancer in Argentina. Cancer Epidemiol Biomarkers Prev 4: 557 – 564

Castellsagué X, Muñoz N, De Stefani E, Victoria CG, Castelletto R, Rolón PA (2000) Influence of maté drinking, hot beverages and diet on esophageal cancer risk in South America. Int J Cancer 88: 658 – 664

Cheng KK, Day NE (1996) Nutrition and esophageal cancer. Cancer Causes Control 7: 33 – 40

Cheng KK, Sharp L, McKinney PA, Logan RA, Logan RFA, Chliver CED, Cook-Mozaffari P, Ahmed A, Day NE (2000) The preventability of oesophageal adenocarcinoma in women: a case–control study. Br J Cancer 83: 127 – 132

Cook-Mozaffari P, Azordegan F, Day NE, Ressicauad A, Sabai C, Aramesh B (1998) Oesophageal cancer studies in the Caspian littoral of Iran: results of a case–control study. Br J Cancer 39: 293 – 309

De Stefani E, Brennan P, Boffetta P, Ronco AL, Mendilaharsu M, Deneo-Pellegrini H (2001) Vegetables, fruits, related dietary antioxidants and risk of squamous cell carcinoma of the esophagus: a case–control study in Uruguay. Nutr Cancer 28: 23 – 29

De Stefani E, Deneo-Pellegrini H, Boffetta P, Mendilaharsu M (1999) Meat intake and risk of squamous cell esophageal cancer: a case–control study in Uruguay. Int J Cancer 82: 33 – 37

De Stefani E, Fiero L, Mendilaharsu M, Larrinaga MT, Balci JC, Lateulade S (1991) Factores de riesgo para el cáncer de esófago en Uruguay. Arch Med Int 13: 101 – 106, (Spanish)

De Stefani E, Muñoz N, Esteve J, Vasallo A, Victoria C, Teuchmann S (1990) Mate drinking, tobacco, alcohol, diet and esophageal cancer in Uruguay: a case–control study. Cancer Res 50: 426 – 431

Gao, Y-T, McLaughlin JK, Gridley G, Blot WJ, JI B-T, Dai Q, Fraumeni Jr JF (1994) Risk factors for esophageal cancer in Shanghai, China. II. Role of diet and nutrients. Int J Cancer 58: 197 – 202

Hoosner Jr DW, Lemeshow S (1989) Applied Logistic Regression. New York: John Wiley and sons

APPENDIX

Food items and food groups

Total meat: beef, lamb, poultry, fish, bacon, sausage, blood pudding, liver, mortadella, salami, sausisson, hotdog, ham, salted meat.

Red meat: beef, lamb.

White meat: poultry, fish.

Processed meat: bacon, sausage, blood pudding, mortadella, salami, sausisson, hotdog, ham, salted meat.

Dairy foods: cheese, butter, whole milk, ice cream.

Eggs: boiled eggs, fried eggs, mayonnaise.

Desserts: ‘dulce de leche’ (milk with sugar), rice pudding, custard, marmalade, cake, croissant.

Fat-rich foods: red meat, processed meat, dairy foods, eggs, desserts.

Grains: white rice, maize, polenta, pasta, white bread.

Raw vegetables: carrot, tomato, lettuce, onion.

Cooked vegetables: garlic, swiss chard, spinach, beetroot, winter squash, cabbage, cauliflower, zucchini, red pepper.

Total vegetables: raw vegetables, cooked vegetables.

Citrus fruits: orange, tangerine.

Other fruits: apple, pear, grape, peach, plum, banana, plum, figs, fruit cocktail.

Total fruits: citrus fruits, other fruits.

Total vegetables and fruits: total vegetables, total fruits.

Tubers: potato, sweet potato.

Pulses: chickpeas, kidney bean, lentil.

Total plant foods: grains, total vegetables, total fruits, tubers, pulses.