Multiple vector-borne pathogens of domestic animals in Egypt

Hend H. A. M. Abdullah1,2, Nadia Amanzougahene2, Handi Dahmana1,2, Meriem Louni2, Didier Raoult2, Oleg Mediannikov2*

1 Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt, 2 Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France

* olegusss1@gmail.com

Abstract

Vector Borne Diseases (VBDs) are considered emerging and re-emerging diseases that represent a global burden. The aim of this study was to explore and characterize vector-borne pathogens in different domestic animal hosts in Egypt. A total of 557 blood samples were collected from different animals using a convenience sampling strategy (203 dogs, 149 camels, 88 cattle, 26 buffaloes, 58 sheep and 33 goats). All samples were tested for multiple pathogens using quantitative PCR and standard PCR coupled with sequencing. We identified Theileria annulata and Babesia bigemina in cattle (15.9 and 1.1%, respectively), T. ovis in sheep and buffaloes (8.6 and 7.7%, respectively) and Babesia canis in dogs (0.5%) as well as Anaplasma marginale in cattle, sheep and camels (20.4, 3.4 and 0.7%, respectively) and Coxiella burnetii in sheep and goats (1.7 and 3%; respectively). New genotypes of Anaplasma centrale, Anaplasma ovis, Anaplasma platys-like and Borrelia theileri were found in cattle (1.1, 3.4, 3.4 and 3.4%, respectively), Anaplasma platys-like in buffaloes (7.7%), Anaplasma marginale, Anaplasma ovis, Anaplasma platys-like and Bo. theileri in sheep (3.4, 1.7, 1.7 and 3.4%, respectively), Anaplasma platys, Anaplasma platys-like and Setaria digitata in camels (0.7, 5.4 and 0.7%, respectively) and Rickettsia africae-like, Anaplasma platys, Dirofilaria repens and Acanthochelonema reconditum in dogs (1.5, 3.4, 1 and 0.5%, respectively). Co-infections were found in cattle, sheep and dogs (5.7, 1.7, 0.5%, respectively). For the first time, we have demonstrated the presence of several vector-borne zoonoses in the blood of domestic animals in Egypt. Dogs and ruminants seem to play a significant role in the epidemiological cycle of VBDs.

Author summary

Vector Borne Diseases (VBDs) are considered emerging and re-emerging diseases that represent a global burden. Diagnosis of these diseases is challenging due to nonspecific febrile illness, difficulty of isolation, and cross-reactivity of serological methods. Therefore, the current study is the first large-scale epidemiological study in which molecular screening and characterization of multiple vector-borne pathogens in different animal hosts were performed to better understand the endemicity of VBDs in Egypt. We detected for the first time Anaplasma centrale, Anaplasma ovis, a novel Anaplasma platys-like and Borrelia theileri.
Support of this research. The funders just collection and analysis, decision to publish, or supported the study through chemical availability. Competing interests: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Vector Borne Diseases (VBDs) are emerging and re-emerging infectious diseases, that pose a health threat to humans, livestock, companion animals and wildlife [1]. VBDs are a global burden and cause severe economic losses through high mortality rates and production declines in the livestock industry, as well as impacts on human and animal health [2,3]. Moreover, about a quarter of vertebrate pathogens of veterinary importance are VBDs [4]. The World Organization for Animal Health (OIE) list includes many VBDs such as piroplasmoses, anaplasmoses and Q fever. The epidemiology and spread of VBDs are influenced by various factors such as globalization and increasing international trade, urbanization, climate change, travel and mobility of animals which pose unprecedented challenges to clinicians and veterinarians [5–6].

Piroplasmoses are tick-borne infectious diseases caused by apicomplexans of the order Piroplasmida, which includes three genera namely: Theileria, Babesia and Cytauxzoon [7]. Theileria annulata, T. ovis and Babesia bigemina are etiological agents of tropical theilerioses and babesiosis in ruminants especially cattle, buffalo and sheep [8]. Similarly, Ba. canis and Ba. vogeli are the main causative agents of canine babesiosis [9]. Piroplasmoses are common in Asia, Southern Europe and Africa [10]. The main clinical signs of piroplasmoses are fever and hemolytic anemia and deaths of up to 50% in the case of acute infection in susceptible herds [11,12]. Recovered animals may become asymptomatic carriers with long-term persistent infection [13,14]. Piroplasmoses have been detected in several provinces of Egypt and are widespread [15–18].

Anaplasmataceae include many tick-borne bacteria that infect mammals and consist of at least five genera: Anaplasma, Ehrlichia, Neoehrlichia Neorickettsia, and Aegyptianella [19–20]. Bovine anaplasmosis caused by Anaplasma marginale and An. centrale mainly in tropical and subtropical regions cause mild to severe anemia in ruminants [20,21]. Ovine anaplasmosis is a neglected mild disease in sheep, goats and wild ruminants caused by An. ovis and is common in different areas of the world [22,23]. In addition, there are many Anaplasmataceae bacteria pathogenic to dogs, such as An. platys and Ehrlichia canis [24,25]. Overall, these bacteria could cause persistent infection in mammals making them reservoir, which has lasting effect on the spread and new outbreaks of anaplasmosis [26,27]. In Egypt, anaplasmosis has been reported in cattle, water buffaloes and camels in different provinces [16,28–34].

Rickettsioses are bacterial infectious diseases that cause health problems in humans and animals worldwide [35,36]. Rickettsiae are divided into spotted fever group (SFG; mainly transmitted by ticks), typhus group (TG; transmitted by lice and fleas), Rickettsia bellii group and Rickettsia (R.) conorii and R. sibirica mongolitimonae, R. massiliae have been detected in ticks and animals in Africa [39–43]. In Egypt, SFG have been identified in vectors, animals and humans since 1989 [44–48]. SFG rickettsiae were found in ticks (Hyalomma sp. and Rhipicephalus
sanguineus) collected in Sinai province [49–51]. Moreover, R. siberica mongolitimonae was detected in a French traveler returning from Egypt [52]. Finally, R. africae was detected by molecular biology in Hyalomma sp. and camels [53–55].

Borrelioses are zoonotic infectious diseases and are divided into two groups: Lyme disease group (caused by Borrelia burgdorferi and related species) and relapsing fever group [56]. Relapsing fever borrelioses are arthropod-borne spirochetal diseases, usually transmitted by soft ticks; they are common in subtropical regions worldwide [57]. In Africa, relapsing fever is most common in the northern hemisphere and is caused by various Borrelia spp. such as Bo. hispanica, Bo. duttonii, and Bo. crocidurae [57–60]. Bo. theileri is the etiological agent of bovine borreliosis in ruminants, which causes anemia and fever and, unlike other members of the relapsing fever spirochetes, is transmitted by hard ticks [58]. In Egypt, data on borrelioses in animal hosts are sparse. Only the few studies have detected Bo. burgdorferi [61,62] and Bo. theileri in hard ticks [62].

Q fever is a zoonosis that infects humans and animals through direct contact or a tick bite [63]. Coxiella burnetii is the causative agent of Q fever that may be severe in humans [64]. Infection in animals it is usually subclinical except that reproductive diminution and abortions may occur [65]. Coxiella burnetii infects a wide range of animals, especially sheep, goats, cattle and camels, which serve as reservoirs [64,66]. In Egypt, the seroprevalence of C. burnetii was estimated in buffaloes, sheep, cattle and camels [67–70]. In addition, C. burnetii has been detected molecularly in goats, camels and ticks (H. dromedarii) [70–72].

Filarial nematodes are vector-borne helminths belonging to the order Spiruridae, suborder Spirurina and families Filaridae and Onchocercidae and pose a serious threat to humans and livestock [73,74]. Dirofilaria repens and D. immitis, followed by Acanthocheilonema sp. are the most important etiological agents of filarial infections in dogs [9,73,75]. Setaria digitata is a filarial nematode of cattle and buffaloes and is not pathogenic to these natural hosts, but when transmitted by mosquitoes to accidental hosts such as camels and horses, it can have serious pathological effects [76,77]. In Egypt, information on filarial infections in ruminants and dogs are scarce. In Africa, there are some reports of filarial infections in different places of the continent [78–80].

Diagnosis of all these diseases is challenging due to the non-specific febrile illness, difficulty in isolation and cross reactivity of serological methods [35,59]. Therefore, the advanced molecular techniques have been used to increase the sensitivity and specificity of diagnosis, to detect previously unknown pathogens and distinguish closely related species [5]. In Egypt, the epidemiology and prevalence of these diseases remain neglected and poorly understood. To date, few studies have been conducted on individual VBDs in vectors or animal hosts. Here, we provide the first data for molecular screening and characterization of multiple vector-borne pathogens in different animal hosts to better understand the epidemiological approach of VBDs in Egypt.

Materials and methods

Ethical approval

This study was approved by the Medical Research Ethics Committee at the National Research Centre, Egypt with the number 19058.

Study area and samples collection

We conducted a cross-sectional observational study with a total of 557 apparently healthy domestic animals (203 dogs, 149 camels, 88 cattle, 26 buffaloes, 58 sheep and 33 goats) using a convenience sampling strategy [81]. Animal blood samples were randomly collected from
different provinces in Egypt between 2016 and 2018. The details of the sample locations were presented in Fig 1 and Table 1. For each animal host, 5 ml of blood was collected in a sterile EDTA tube using a sterile syringe and stored at -20˚C for molecular purposes. The prevalence of infection of different pathogens by different animal hosts was calculated according to Thrusfield et al. [81].

DNA extraction

DNA was extracted from 200 μl of each blood sample using EZ1 DNA Blood Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The extracted DNA was stored at -20˚C until use for molecular screening.

Screening of multiple pathogen DNA by qPCR

All samples were first screened for pathogen DNA by qPCR using genus-specific primers and probes targeting the 5.8S rRNA gene of piroplasms, the 23S rRNA gene of Anaplasmataceae, the gltA gene of Rickettsia sp., the 16S rRNA gene of Borrelia sp., the IS1111 of C. burnettii, BartoITS3 of Bartonella sp. and the pan-fil 28S rRNA gene of Filariidiae. For positive Filariidiae in dog samples, a triplex qPCR targeting Cox1 was used to detect *D. immitis*, *D. repenes* and *Ac. reconditum*. The sequence of primers and probes used in this study is showed in Table 2.

The qPCR was performed using a CFX 96 Real Time System (Bio-Rad Laboratories, Foster City, CA, USA). The total reaction volume of 20 μl included 10 μl of Eurogentec Master Mix Roche, 0.5 μl of each primer, 0.5 μl of FAM-labeled probe, 0.5 μl of UDG, 5 μl of DNA template, and 3 μl of DNAse- and RNAse-free water. Thermal cycling was performed according to the instructions provided by the manufacturer of the Master Mix PCR kit. To evaluate the PCR reaction, a positive control (pathogen DNA) and a negative control were added to each
reaction. The sample was considered positive if the cycle threshold (Ct) was less than 35 Ct [82].

Standard PCR and sequencing

All samples considered positive by qPCR were subjected to standard PCR and sequencing. Primers targeting 969 bp and 1200 bp region of the 16S rRNA gene, respectively, were used to identify *Piroplasma* and *Borrelia*. For the identification of Anaplasmataceae, standard PCR were performed with primers targeting a 520 bp fragment of the 23S rRNA gene. The positive samples with 23S rRNA gene were confirmed with *Anaplasma* genus-specific primers targeting the 525 bp fragment of the *rpoB* gene. *Rickettsia* genus-specific primers targeting the *gltA* gene were used and the positive samples were confirmed by the *ompB* gene. Moreover, multi-spacer typing (MST) for *C. burnetii* was performed by amplifying of three intergenic spacers (Cox2, Cox5 and Cox18). Identification of Filariidae was performed using 18S rRNA primers targeting 1155 bp. All primer sequences used in standard PCR and sequencing are listed in Table 2. All PCR reactions were performed in an Applied Biosystems 2720 Thermal Cycler model (Thermo Fisher Scientific Courttaboeuf, France) using AmpliTaq 360 Master Mix (Thermo Fisher Scientific Courttaboeuf, France) according to the manufacturer’s recommendations. Negative and positive controls were included in each reaction. PCR products were visualized by electrophoresis on a 1.5% agarose gel stained with Syper Safe stain (Invitrogen, USA) and analyzed using Lab Image software (BioRad, Marnes-La-Coquette, France).

PCR products were purified using NucleoFast 96 PCR plates (Macherery Nagel, EURL, Hoerdt, France), according to the manufacturer’s recommendation. The purified PCR products were sequenced using the Big Dye Terminator Cycle Sequencing Kit (Perkin Elmer Applied Biosystems, Foster City, CA, USA) with an ABI automated sequencer (Applied Biosystems). The sequences obtained were assembled and edited using ChromasPro software.

Table 1. The information data of collected samples.

Provinces	Geographic coordinates	Animal Hosts	Locations	Numbers of Animals
Cairo	30° 03’ 45.47” N, 31° 14’ 58.81” E	Dog	Police Academy (El-Abbassia)	75
			Police Academy (El-Tagamoia)	67
			Police Academy (El-Dowaika)	61
		Camel	Police Academy (Gasr-El Swiss)	52
Giza	29° 58’ 27.00” N, 31° 08’ 2.21” E	Camel	Police Academy (El-Haram)	96
		sheep	households	5
		Goat	households	6
Beni-Suef	29° 03’ 60.00” N, 31° 04’ 60.00” E	Cattle	households	63
		Sheep	households	48
		Goat	households	20
		Buffalo	households	20
Qalyubia	30.41’N, 31.21’E	Cattle	households	2
		Buffalo	households	6
		Goat	households	2
Sinai	28° 32’ 13.79” N, 33° 58’ 14.39” E	Sheep	households	5
		Goat	households	5
		Camel	Free rearing	1
El-Wady El-Geded	24°32’44”N, 27°10’24”E	Cattle	households	11
Qena	26° 09’ 60.00” N, 32° 42’ 59.99” E	Cattle	households	10
Beheira	30.61’N, 30.43’E	Cattle	households	2

https://doi.org/10.1371/journal.pntd.0009767.t001
Phylogenetic analyses

Multiple sequence alignments were performed between the obtained sequences and other reference sequences in GenBank using CLASTAL W in MEGA software version X [83]. Phylogenetic trees were inferred using the Maximum-Likelihood method and Tamura-Nei model with 500 bootstrap replicates in MEGA X software [83,84].
Results

In this study, all samples (557) were screened by qPCR. None of the animals were positive for Bartonella sp., while different animal hosts were positive for piroplasms, Anaplasma sp., Rickettsia sp., Borrelia sp., C. burnetii and Filaria sp (Table 3).

Fifty of 557 (8.9%) animal hosts were positive for piroplasms based on 5.8S rRNA qPCR system. Standard PCR and sequencing based on 18S rRNA gene succeeded in amplifying and identifying two Theileria sp.; T. annulata in cattle (14/88), T. ovis in sheep and buffaloes (5/58 and 2/26, respectively) and two Babesia sp.; Ba. bigemina in cattle (1/88) and Ba. canis in dogs

Animal Hosts	No. of examined Animals (Total = 557)	Pathogens amplified	No. of infected Animals (%)
Cattle	88	Piroplasmida	15/88 (17%)
		T. annulata	14/88 (15.9%)
		Ba. bigemina	1/88 (1.1%)
		Anaplasmataceae	25/88 (28.4%)
		An. marginale	18/88 (20.4%)
		An. centrale	1/88 (1.1%)
		An. ovis	3/88 (3.4%)
		An. platys-like	3/88 (3.4%)
		Borrelia sp.	3/88 (3.4%)
		Bo. theileri	5/88 (5.7%)
		Co-infection:	
		An. marginale + T. annulata	2/88 (2.3%)
		An. marginale + Bo. theileri	1/88 (1.1%)
		An. centrale + T. annulata	1/88 (1.1%)
		An. platys-like + Ba. bigemina	1/88 (1.1%)
Buffalo	26	Piroplasmida	2/26 (7.7%)
		T. ovis	2/26 (7.7%)
		Anaplasmataceae	
		An. platys-like	
Sheep	58	Piroplasmida	5/58 (8.6%)
		T. ovis	4/58 (6.9%)
		Anaplasmataceae	2/58 (3.4%)
		An. marginale	1/58 (1.7%)
		An. ovis	1/58 (1.7%)
		An. platys-like	2/58 (3.4%)
		Borrelia sp.	
		Bo. Theileri	
		Co-infection:	
		C. burnetii	1/58 (1.7%)
		An. platys-like + Bo. theileri	1/58 (1.7%)
Goat	33	C. burnetii	1/33 (3%)
Camel	149	Anaplasmataceae	10/149 (6.7%)
		An. marginale	1/149 (0.7%)
		An. platys	1/149 (0.7%)
		An. platys-like	8/149 (5.4%)
		Filaridae	1/149 (0.7%)
Dog	203	Piroplasmida	1/203 (0.5%)
		Ba. canis	7/203 (3.4%)
		Anaplasmataceae	3/203 (1.5%)
		An. platys	3/203 (1.5%)
		Rickettsia sp.	2/203 (1%)
		Rickettsia africaine-like	1/203 (0.5%)
		Filaridae	
		D. repens	1/203 (0.5%)
		Ac. reconditum	
		Co-infection:	
		R. africaine-like + Anaplasma	1/203 (0.5%)

https://doi.org/10.1371/journal.pntd.0009767.t003
(1/203). However, camels and goats were free of Piroplasmida DNA. The overall prevalence of piroplasmoses in different animal hosts was 23/557 (4.1%) as it was 17% in cattle, 8.6% in sheep, 7.7% in buffaloes and 0.5% in dogs. In our study, BLAST analysis revealed that cattle were positive for *T. annulata* and *Ba. bigemina*, including two genotypes of *T. annulata*, one genotype in 13 cattle with 100% (910/910) similarity to those of *T. annulata* detected in donkey blood in Turkey (GenBank: MG569892), a new genotype in one cattle with 99% (908/910) identity to the same reference dataset, and a new genotype of *Ba. bigemina* in one cattle with 99% (865/866) identity to those of *Ba. bigemina* detected in cattle blood from Switzerland (GenBank: KM046917). Similarly, we found that 5 sheep and 2 buffaloes were positive for a genotype of *T. ovis* with 100% (897/897) identity to *T. ovis* detected in wild sheep from Turkey (GenBank: KT851427). Finally, we identified *Ba. canis* in a dog with 100% (884/884) similarity to those of *Ba. canis vogeli* detected in a dog from Egypt (GenBank: AY371197). The phylogenetic tree of these genotypes was illustrated in Fig 2.

For Anaplasmataceae, 172 out of 557 (30.9%) animal hosts were positive for anaplasmoses by 23S rRNA qPCR system. Based on the 23S rRNA gene, only 87 out of 557 animal hosts were successfully amplified by standard PCR, consequently, sequencing identified only 48 out of 557. The overall prevalence of anaplasmoses in different animals was 8.6%, with 28.4% in cattle (25/88), 6.9% in buffaloes (4/58), 7.7% in sheep (10/149) and 3.4% in dogs (7/203), while goats were free of anaplasmoses (25/88), 6.9% in buffaloes (4/58), 7.7% in sheep (2/26), 6.7% in camels (10/149) and 3.4% in dogs (7/203), while goats were free of anaplasmoses (25/88). Points of reference

In our study, BLAST analysis revealed that cattle, sheep and camels were positive *An. marginale*, including two different genotypes of *An. marginale*, the first originated from sixteen cattle, two sheep and one camel with 100% (455/455) similarity to those of *An. marginale* detected in *Rh. bursa* collected from cattle in France (GenBank KY498335), and another new genotype was detected in two cattle with 99% (454/455) identity to the same reference dataset (GenBank KY498335). Moreover, one case of cattle was positive for *An. centrale* with 100% identical to *An. centrale* strain Israel (GenBank NR076686). From cattle and sheep, a genotype of *An. ovis* was identified with 100% (454/454) similarity to *An. ovis* in sheep blood from Niger (GenBank KJ644694). We found that dogs and camels were positive for *An. platys*, including two different genotypes of *An. platys*, one genotype from six dogs and one camel with 100% (458/458) identity to *An. platys* in dog blood from France (GenBank KM021425) and another genotype from one dog with 100% (458/458) homology to *An. platys* in dog blood from France (GenBank KM021414). Finally, from cattle, buffaloes, sheep and camels, a new potential Anaplasma sp. was identified including, four different genotypes of this Anaplasma sp., the first genotype from six camels, the second from two camels, the third from one cattle and one sheep and the last from two cattle and two buffaloes with 98% (450/458), 98% (448/458), 98% (447/458) and 97% (446/458) similarity, respectively, to *An. platys* in dog blood from France (GenBank KM021414). Sequence analysis of this Anaplasma species revealed that this species has a homology score below 99% (more than 10 nucleotides different) and are closely related to *An. platys*, that means these sequences could be considered as potential new species of Anaplasma and can be called as *An. platys*-like. The phylogenetic tree showed that the new potential Anaplasma sp. in two separates and well-supported branches (bootstraps 99 and 96) belong to the cluster of *An. platys* (Fig 3).

To better characterize different Anaplasma genotypes, *rpoB* genus-specific PCR primers were applied and 23 good quality sequences were identified. The result revealed that, 12 cattle and one sheep were positive for a genotype of *An. marginale* with 100% (487/487) homology with *An. marginale* in *Rhipicephalus bursa* from France (KY498345), and another genotype of *An. marginale* from one cattle with 99% (486/487) similarity with the same reference dataset. We also identified that cattle and sheep were positive for *An. ovis*, one genotype was found in two cattle and another in a sheep with 100% (489/489) and 99% (487/489) identical to those of *An. ovis* in sheep blood from Niger (GenBank KY644695), respectively. From dogs, we...
identified a new genotype of An. platys obtained from two dogs with 99% (488/489) homology to An. platys in dog blood from France (GenBank KX155493). Finally, from cattle, buffaloes and sheep, a new potential species of Anaplasma was identified, its sequences had a homology score of less than 90%, confirming that these sequences are likely to be a new potential species of Anaplasma (like 23S rRNA gene). The only two different genotypes (one from two buffaloes and another from a cattle and a sheep) showed a low identity of 89% (432/486) and 88% (431/486), respectively, with An. platys in dog blood from France (GenBank KX155493), while identification of the genotype derived from camels failed. Phylogenetic analysis revealed a new potential Anaplasma sp. (An. platys-like) in a separate and well-supported branch (bootstraps 99) with the same clade belonging to An. platys (Fig 4).
Rickettsial infection was detected by qPCR targeting gltA gene in dogs (3/557; 0.54%); the other animal hosts were free of rickettsiosis. To identify *Rickettsia* sp., standard PCR and sequencing were performed using gltA gene, and it was possible to amplify a 728 bp fragment of this gene from these three positive samples. A BLAST search of the obtained sequences with those in GenBank revealed that two different genotypes, one genotype was 100% (728/728) identical with *R. africae* previously detected in *H. dromedarii* from Egypt (GenBank: HQ335126), and the other sequence had 99% (726/728) identity with the same reference. Moreover, *ompB* gene was used to confirm the detection of *R. africae*-like infection in dogs. Based on the BLAST search, the sequences obtained from dogs were identified as *R. africae* (GenBank: MN629894) and showed (757/758) 99% similarity with the reference strain of *R. africae* detected in a traveler returning from Tanzania (GenBank: KU721071). The phylogenetic tree of these *R. africae*-like in dogs based on gltA was shown in Fig 5.

Fig 3. 23S rRNA based phylogenetic analysis of genotypes identified in this study. Phylogenetic tree highlighting the position of *Anaplasma* sp. in the present study (Bold) related to other *Anaplasma* sp. and *Ehrlichia* sp. available in GenBank. The sequence of 23S rRNA were aligned using CLUSTAL W and phylogenetic inferences were constructed in MEGA X using Maximum Likelihood based on Tamura-Nei Model for nucleotide sequences with 500 bootstrap replicates. There was a total of 432 positions in the final dataset. The scale bar represents a 5% nucleotide sequence divergence.

https://doi.org/10.1371/journal.pntd.0009767.g003

Rickettsial infection was detected by qPCR targeting gltA gene in dogs (3/557; 0.54%); the other animal hosts were free of rickettsiosis. To identify *Rickettsia* sp., standard PCR and sequencing were performed using gltA gene, and it was possible to amplify a 728 bp fragment of this gene from these three positive samples. A BLAST search of the obtained sequences with those in GenBank revealed that two different genotypes, one genotype was 100% (728/728) identical with *R. africae* previously detected in *H. dromedarii* from Egypt (GenBank: HQ335126), and the other sequence had 99% (726/728) identity with the same reference. Moreover, *ompB* gene was used to confirm the detection of *R. africae*-like infection in dogs. Based on the BLAST search, the sequences obtained from dogs were identified as *R. africae* (GenBank: MN629894) and showed (757/758) 99% similarity with the reference strain of *R. africae* detected in a traveler returning from Tanzania (GenBank: KU721071). The phylogenetic tree of these *R. africae*-like in dogs based on gltA was shown in Fig 5.

Fig 3. 23S rRNA based phylogenetic analysis of genotypes identified in this study. Phylogenetic tree highlighting the position of *Anaplasma* sp. in the present study (Bold) related to other *Anaplasma* sp. and *Ehrlichia* sp. available in GenBank. The sequence of 23S rRNA were aligned using CLUSTAL W and phylogenetic inferences were constructed in MEGA X using Maximum Likelihood based on Tamura-Nei Model for nucleotide sequences with 500 bootstrap replicates. There was a total of 432 positions in the final dataset. The scale bar represents a 5% nucleotide sequence divergence.

https://doi.org/10.1371/journal.pntd.0009767.g003
Screening of *Borrelia* sp. in all animal hosts we found that 3 cattle and 2 sheep were positive for *Borrelia* sp. (5/557; 0.9%). Standard PCR and sequencing using 16S rRNA gene identified it as *Bo. theileri*. Alignment of five obtained sequences of *Borrelia* sp. from our samples revealed that all sequences were identical to each other. Furthermore, comparison of the obtained sequences with sequences from the GenBank database showed that 1139/1143 (99%) identity with *Bo. theileri* detected in *Rh. geigyi* in Mali (GenBank: KF569941). The phylogenetic position of this new *Bo. theileri* genotype was shown in Fig 6.

Two out of 557 (0.36%) blood samples from one sheep and one goat tested positive for *C. burnetii* DNA by qPCR targeting IS1111. MST genotyping was performed using Cox2, Cox5 and Cox18, with only Cox2 successfully identified and the other spacers failing amplification.

![Fig 4. rpoB gene based phylogenetic analysis of genotypes identified in this study. Phylogenetic tree highlighting the position of *Anaplasma* sp. in the present study (Bold) related to other *Anaplasma* sp. and *Ehrlichia* sp. available in GenBank. The sequence of rpoB gene were aligned using CLUSTAL W and phylogenetic inferences were constructed in MEGA X using Maximum Likelihood based on Tamura-Nei Model for nucleotide sequences with 500 bootstrap replicates. There was a total of 534 positions in the final dataset. The scale bar represents a 10% nucleotide sequence divergence.](https://doi.org/10.1371/journal.pntd.0009767.g004)
A BLAST search for the two sequences obtained showed that (351/351) 100% identity with the reference sequences of *C. burnetii* recorded in GenBank.

Concerning Filariidae, four out of 557 (0.7%) animal hosts collected from three dogs and one camel tested positive for *Filaria* sp. DNA. By BLAST analyses, two dogs were found to have *D. repens* with 100% identity to those of *D. repens* previously detected in a Japanese woman returned from Europe (GenBank AB973229), and another sequence obtained from one dog showed 99% (1114/1119) similarity to *A. viteae* (GenBank: DQ094171). Moreover, *S. digitata* with (1107/1111) 99% identity to *S. digitata* from UK (GenBank: DQ094175) was found in a camel. The phylogenetic analysis of these *Filaria* sp. was constructed and presented in Fig 7.
Finally, seven of different animal hosts were positive for more than one vector-borne pathogen (co-infections; 7/557; 1.3%). In cattle, five co-infections were observed (5/88; 5.7%) as *An. marginale* plus *T. annulata* (2/88; 2.3%), *An. marginale* plus *Bo. theilerii* (1/88; 1.1%), *An. centrale* plus *T. annulata* (1/88; 1.1%) and *An. platis*-like with *Ba. bigemina* (1/88; 1.1%). Moreover, one co-infection in sheep was recorded as *An. platis*-like plus *Bo. theilerii* (1/58; 1.7%) and one case in dogs *R. africae*-like with *Anaplasma* (1/203; 0.5%) (Table 3).

Discussion

The sustainable and economic progress of developing countries depends mainly on domestic animal resources, as they provide vital food, draught power and manure for crop production, and generate income [85]. However, animal-associated diseases, especially, VBDs are a global burden [2]. Recently, the spectrum of VBDs affecting animals has expanded and the attention of clinicians and veterinarians is growing. Therefore, the diagnosis of VBDs is crucial to...
develop the epidemiological mapping of these diseases and this can be achieved through the advances in molecular biology [86].

Concerning piroplasmoses, the overall prevalence among animal hosts was 4.1%, including the highest prevalence among cattle 17%, then sheep 8.6%, buffaloes 7.7% and dogs 0.5%. Based on the 18S rRNA gene, two genotypes of *T. annulata* were detected in cattle from different provinces (El-Wady El-Geded, Beni-Suef, Qena and Beheira) and one case of *B. bigemina* was detected in cattle from Beni-Suef. In accordance to our results, many studies reported the high prevalence of *T. annulata* compared to other piroplasms in cattle from different provinces in Egypt [87–89]. In the current study, we observed that the majority of cases (10 out of 15) were detected in cattle from El-Wady El-Geded province that in accordance with Al-Hosary et al. [89], who stated that the prevalence of *T. annulata* in cattle from El-Wady El-Geded province was 63.6%. This finding might be due to the climate in this province, which is dry and sunny throughout the year, which is conducive to tick activity [89]. Likewise, we identified

Fig 7. 18S rRNA based phylogenetic analysis of genotypes identified in this study. Phylogenetic tree highlighting the position of *Filaria* sp. in the present study (Bold) related to other *Filaria* sp. available in GenBank. The sequence of 18S rRNA were aligned using CLUSTAL W and phylogenetic inferences were constructed in MEGA X using Maximum Likelihood based on Tamura-Nei Model for nucleotide sequences with 500 bootstrap replicates. There was a total of 1110 positions in the final dataset. The scale bar represents a 10% nucleotide sequence divergence.

https://doi.org/10.1371/journal.pntd.0009767.g007
Anaplasma ovis in sheep from Giza and Beni-Suef and buffaloes from Beni-Suef. In Egypt, there are few studies reporting T. ovis in sheep [90] and buffaloes [91]. In parallel, a recent study reported that T. ovis was detected in sheep from Menoufia and El-Wady El-Geded province [92], implying that this pathogen is widespread in sheep throughout Egypt. Finally, we detected one case of Ba. canis in a dog from Cairo province with 100% identity with Ba. canis vogeli detected in a dog from Egypt (GenBank: AY371197). Canine babesiosis is distributed worldwide and was later detected in Egypt by Passos et al. [93] and Salem and Farag [94]. In Africa, Ba. canis vogeli has been detected in different regions such as South Africa [95], Tunisia [96] and Côte d’Ivoire [80].

Family Anaplasmataceae was known to cause human and animal diseases, is transmitted by ticks and has a worldwide distribution [26,97]. In the current study, the overall prevalence of anaplasmosis was 30.9% (172/557) by qPCR, while we obtained only 48 samples with good quality sequences, possible due to the higher sensitivity of qPCR compared to standard PCR or due to the co-infection with family Anaplasmataceae. The overall infection rate of An. marginale was 3.8% (21/557) in cattle, sheep and camels from different localities (Beni-Suef, Qena, El-Wady El-Geded and Cairo). In Egypt, An. marginale was first mentioned in the national report in 1966, after which the disease was reported in numerous provinces [32–34,98]. Several studies reported endemicity of An. marginale in cattle [16,28,31–34], buffaloes [30] and camels [29]. However, An. marginale was detected for the first time in sheep. To our knowledge, An. marginale has not yet been described in sheep. For the first time, An. centrale was detected in a bovine from El-Wady El-Geded province, Egypt. Anaplasma centrale is closely related to An. marginale but less pathogenic, so it has been used as a live vaccine to protect against bovine anaplasmosis [99,100]. We also found that sheep and cattle from Beni-Suef province (upper Egypt) were positive for An. ovis with a prevalence rate of 0.7% (4/557). To the best of our knowledge, An. ovis has never been detected in cattle and sheep in Egypt. In parallel, a recent study reported that An. ovis was detected in sheep in Menoufia province (one of Delta provinces) [34], implying that this pathogen is widespread in cattle and sheep throughout Egypt. Anaplasma ovis is the etiological agent of ovine anaplasmosis in small ruminants and causes mild and subclinical infections [23]. In Africa, some studies reported An. ovis in sheep from Tunisia [101], Senegal [25] and Algeria [102,103], and in cattle from Algeria [103]. In addition, we found that dogs from Cairo and a camel from Giza province were positive for two genotypes of An. platys, with an infection rate of 1.4% (8/557). In Egypt, An. platys was never molecularly identified in dogs and camels. Later, Loftis et al. [51] detected An. platys in ticks collected from dogs. Anaplasma platys is the causative agent of canine anaplasmosis, which causes severe thrombocytopenia in dogs [104]. Interestingly, we detected that cattle, buffaloes and sheep from Beni-Suef province and camels from Giza and Cairo provinces were positive for a new potential Anaplasma sp. with a prevalence rate of 2.5% (14/557). This probably new species was genetically related to canine Anaplasma platis, which is why it was commonly referred to as An. platys-like. This An. platys-like genotype has never been detected in Egypt, except in a recent study where An. platys-like bacterium was detected only in cattle in Menoufia province [34], implying that this new potential pathogen circulates between different animal hosts (excluding dogs that seem to be susceptible for a type An. platys only) and different provinces in Egypt. Later, An. platys-like was detected in various animal hosts such as cattle in Italy [105], Algeria [106] and Tunisia [107], camels in Tunisia [108,109] and sheep and goats in South Africa [110] and Senegal [25]. Various Anaplasma sp. were identified by the 23S RNA gene and which further confirmed by the rpoB gene.

Rickettsioses are VBDs of humans and animals and are mainly transmitted by ticks [35]. In Africa, the human pathogens R. africae, R. aeschlimannii, R. conorii and R. massiliae have been identified in ticks and animals [39–41]. In our study, rickettsial DNA was detected in dogs
from Capital Cairo with a prevalence of 1.5% (3/203) in dogs. Phylogenetic analysis showed that our genotypes (R. africae-like) clustered in a separate and well-supported branch (bootstrap 94) with R. africae previously detected in Egypt (Fig 5) [53]. To the best of our knowledge, R. africae has not been previously detected in dogs anywhere in the world. Thus, this is the first detection of R. africae-like pathogens in dog anywhere in the world. African tick-bite fever, a benign disease with severe complications in elderly populations, and transmitted mainly in the south and West Africa by Amblyomma variegatum [35,111]. Likewise, R. africae was identified in other tick genera as Hyalomma sp. [42,53,54,112] and in Rh. sanguineus (the most common tick parasitizing dogs) [113].

Relapsing fever borrelioses caused by group of the spirochete group Borrelia sp. and is transmitted by soft and hard ticks [57]. In the present study, we identified Bo. theileri in bovine and ovine blood for the first time in Beni Suef province, Egypt, with an overall prevalence of 0.9% (5/557). Alignment of five sequences obtained revealed that there is a new potential genotype of Bo. theileri circulating between cattle and sheep in Beni-Suef province, which is 99% identical to Bo. theileri found in Rh. geigyi in Mali [58]. Borrelia theileri is considered one of the relapsing fever borreliae and the etiological agent of bovine borreliosis in cattle, transmitted by hard ticks, mainly Rhipicephalus sp. [114]. In Egypt, Bo. theileri was reported in Rh. annulata collected from donkeys in the same province [115]. Later, Bo. theileri was also detected in Rh. annulata in Egypt [62]. Recently, some studies have detected Bo. theileri in cattle such as Argentina [116] and Cameroon [117]. Similarly, Bo. theileri has been detected in the blood of sheep in Algeria [102]. It appears that, Bo. theilerii is not exclusively pathogenic to cattle.

Q fever is a tick-borne disease that is a major public health concern [65]. The infection in human manifests as acute or chronic febrile disease often associated with endocarditis and abortion [65]. In Egypt, Q fever was first detected in a high-risk group of cattle farmers [118]. Later, many reports demonstrated the prevalence of the disease in goats, sheep, cattle and camels [67–72,119,120]. In this study, the overall prevalence of Q fever in sheep and goats from Sinai province is 0.3% (3% in goats and 1.7% in sheep). This result was in accordance with Abdel-Moein and Hamza [71] who reported an overall prevalence of Q fever of 0.9% and 3.4% in goats. PCR and sequencing amplified only Cox2 with a 100% match with the reference recorded in GenBank. Therefore, we suspect that the identified species is, however, Rickettsia rickettii which is the natural filarial nematode of the Bovidae and the adult worm is resident...
in the peritoneal cavity [128,129]. Accidental transmission of _S. digitata_ to unnatural hosts such as horses, donkeys, sheep and goats causes worrisome pathological problems such as corneal opacity and blindness [74,130,131–133].

Finally, we reported 1.3% (7/557) co-infections in animals, with the highest percentage in cattle 5.7% (5/557). Co-infection in cattle is common and has been reported in many studies [33,34,117,134]. We observed that all cases of co-infections including _Anaplasma_ sp. with another pathogen such as piroplasms, _Borrelia_ or even _Rickettsia_. Regarding the endemicity of VBDs, we observed the most infected region in Beni-Suef province, where the same genotypes or even new potential pathogens circulated between different animal hosts with a risk of transmission to other adjacent provinces and to humans. Furthermore, we observed that the highest prevalence among animal hosts was anaplasmoses (48/557; 8.6%), followed by piroplasmoses (23/557; 4.1%). Molecular analysis revealed an interesting diversity of these VB pathogens in ruminants and dogs. Therefore, further studies are needed for a better understanding of the epidemiological mapping of pathogen-host-vector in this region or even in the whole Egypt.

In conclusion, the current study is the first large-scale epidemiological observational study that performed molecular screening and characterization of multiple vector-borne pathogens in different animal hosts for better understanding of the endemicity of VBDs in Egypt. We identified for the first time _An. centrale_, _An. ovis_, a new _An. platys_-like and _Bo. theileri_ in cattle, a new _An. platys_-like in buffaloes, _An. marginale_, _An. ovis_, a new _An. platys_-like and _Bo. theileri_ in sheep, _An. platys_, a new _An. platys_-like and _S. digitata_ in camels and _R. africae_-like, _An. platys_, _D. repens_ and _Ac. reconditum_ in dogs in Egypt. Therefore, ruminants and dogs in Egypt are reservoirs for multiple neglected, emerging and re-emerging vector-borne pathogens, especially new potential pathogens. Our observational study aimed to describe the repertory of possible vector-borne zoonotic pathogens in Egypt. However, convenient sampling approach did not permit us to evaluate the association of identified pathogens with host characteristics and to describe the geographic distribution of pathogens that limited our study. Further studies are needed to determine the pathogen-host-vector connections and other epidemiological factors of VBDs throughout Egypt, as well as to decipher the zoonotic potential of newly identified genotypes and their animals and public health significance.

Author Contributions

Conceptualization: Hend H. A. M. Abdullah, Oleg Mediannikov.

Data curation: Hend H. A. M. Abdullah.

Formal analysis: Hend H. A. M. Abdullah, Didier Raoult, Oleg Mediannikov.

Funding acquisition: Oleg Mediannikov.

Investigation: Hend H. A. M. Abdullah.

Methodology: Hend H. A. M. Abdullah, Nadia Amanzougaghene, Handi Dahmana, Meriem Louni, Oleg Mediannikov.

Project administration: Oleg Mediannikov.

Resources: Didier Raoult, Oleg Mediannikov.

Software: Hend H. A. M. Abdullah, Nadia Amanzougaghene, Oleg Mediannikov.

Supervision: Didier Raoult, Oleg Mediannikov.

Validation: Didier Raoult, Oleg Mediannikov.

Visualization: Didier Raoult, Oleg Mediannikov.
Writing – original draft: Hend H. A. M. Abdullah.
Writing – review & editing: Hend H. A. M. Abdullah, Nadia Amanzougaghene, Handi Dahmana, Meriem Louni, Didier Raoult, Oleg Mediannikov.

References
1. Kules J, Potocnako va L, Bhide K, Tomassone L, Fuehrer HP, Horvatić A, et al. 2017. The Challenges and Advances in Diagnosis of Vector-Borne Diseases: Where Do We Stand? Vector Borne Zoonotic Dis. 2017; 17(5):285–296. https://doi.org/10.1089/vbz.2016.2074 PMID: 28346867
2. WHO, The World Health Report-Changing History 95 World Health Organization. 2004; 96 p.
3. Lew–Tabor AE, Rodriguez–Valle M. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick-borne diseases.Ticks Tick-Borne Dis. 2016; 7:573–85. https://doi.org/10.1016/j.ttbdis.2015.12.012 PMID: 26723274
4. Bergquist R, Stensaard AS, Rinaldi L. Vector-borne diseases in a warmer world: Will they stay or will they go? Geospatial Health. 2018; 13(1):699. https://doi.org/10.4081/gh.2018.699 PMID: 29772870
5. Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. International Journal for Parasitology. 2005; 35: 1309–18. https://doi.org/10.1016/j.ijpara.2005.06.005 PMID: 16126213
6. Baneth G, Bourdeau P, Bourdoiseau G, Bowman D, Breitschwerdt E, Capelli G, et al. Vector-Borne Diseases—constant challenge for practicing veterinarians: recommendations from the CVBD World Forum. Parasit Vectors. 2012; 5(55). https://doi.org/10.1186/1756-3305-5-55 PMID: 22433172
7. Schregg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, et al. Mitochondrial genome sequences and structures aid in the resolution of Piroplasms phylogeny. PLoS One. 2016; 11:1–27. https://doi.org/10.1371/journal.pone.0157021 PMID: 27332128
8. Brown C. 2008. Tropical theileriosis. In: Brown C, Torres A. (Eds.), Foreign Animal Diseases, 7th ed. Boca Publications, Florida, USA, 2008; 401–4.
9. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vector-borne diseases of zoonotic concern: part two. Trends Parasitol. 2009; 25(5): 228–35. https://doi.org/10.1016/j.pt.2009.02.005 PMID: 19346164
10. Bishop RP, Odongo DO, Mann DJ, Pearson TW, Sugimoto C, Haines LR, et al. Theileria. In: Nene V., Kole C. (Eds.), Genome Mapping and Genomics in Animal–Associated Microbes. Springer–Verlag Berlin Heidelberg, Berlin. 2009; 191–231.
11. Antoniassi NAB, Correa AMR, da Silva Santos A, Pavarini SP, Sonne L, Bandarra PM, et al. Surto de babesiose cerebralem bovinos no Estado do Rio Grande do Sul. Ciencia Rural. 2009; 39:933–6.
12. Schnittger L, Florin-Christensen M. Parasitic Protozoa of Farm Animals and Pets. 2018.
13. Bono MF, Mangold AJ, Baravalle ME, Valentini BS, Thompson CS, Wilkowsky SE, et al. Efficiency of a recombinant MSA-2c-based ELISA to establish the persistence of antibodies in cattle vaccinated with Babesia bovis. Vet Parasitol. 2008; 157:203–10. https://doi.org/10.1016/j.vetpar.2008.07.025 PMID: 18783887
14. OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Office International des Epizooties/World Organization for Animal Health, Paris. 2008.
15. Ibrahim HM, Adjou Moumouni PF, Mohammed-Geba K, Sheir SK, Hashem ISY, Cao S, et al. Molecular and serological prevalence of Babesia bigemina and Babesia bovis in cattle and water buffalos under small-scale dairy farming in Beheira and Faiyum Provinces, Egypt. Veterinary Parasitology. 2013; 198(1–2): 187–92. https://doi.org/10.1016/j.vetpar.2013.08.028 PMID: 24075417
16. El-Ashker M, Hotzel H, Gwida M, El-Beskawy M, Silaghi C, Tomaso H. Molecular biological identification of Babesia, Theileria, and Anaplasm a species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray. Vet Parasitol. 2015; 207:329–34. https://doi.org/10.1016/j.vetpar.2014.12.025 PMID: 25591406
17. Mahmoud MS, El-Ezz NT, Abdel-Shafy S, Nassar SA, El Namaky AH, Khalil WK, et al. Assesment of Theileria equi and Babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches. Parasit Vectors. 2016; 9: 260. https://doi.org/10.1186/s13071-016-1539-9 PMID: 27146413
18. Abo El Fadl EA, El-Ashker M, Sugarumka K, Kayano M. Discriminant analysis for the prediction and classification of tick-borne infections in some dairy cattle herds at Dakahlia Governorate, Egypt. Japanese Journal of Veterinary Research. 2017; 65(3): 127–33.
19. Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some
species of *Ehrlichia* with *Anaplasma*, *Cowdria* with *Ehrlichia* and *Ehrlichia* with *Neorickettsia*, descriptions of six new species combinations and designation of *Ehrlichia equi* and ‘HGE agent’ as subjective synonyms of *Ehrlichia phagocytophila*. Int J Syst Evol Microbiol. 2001; 51:2145–65. https://doi.org/10.1099/00270773-51-5-2145 PMID: 11760958

20. Pruneau L, Mounènè A, Meyer DF, Marcelino I, Lefrançois T, Vachières N. Understanding Anaplasmataceae pathogenesis using “Omics” approaches. Front Cell Infect Microbiol. 2014; 4:86. https://doi.org/10.3389/fcimb.2014.00086 PMID: 25072029

21. Aubry P, Geale DW. A review of bovine anaplasmosis. Transbound Emerg Dis. 2011; 58:1–30. https://doi.org/10.1111/j.1865-1682.2010.01173.x PMID: 21040509

22. de la Fuente J, Atkinson MW, Naranjo V, Fernández de Mera IG, Mangold AJ, Keating KA, et al. Sequence analysis of the Msp4 gene of *Anaplasma ovis* strains. Vet Microbiol. 2007; 119:375–81. https://doi.org/10.1016/j.vetmic.2006.09.011 PMID: 17052866

23. Renneker S, Abd J, Salih DE, Karageç T, Bilgic H, Torina A, et al. Can Anaplasma ovis in small ruminants be neglected any longer? Transbound Emerg Dis. 2013; 60(Suppl 2):105–12. https://doi.org/10.1111/tbed.12149 PMID: 24589109

24. Dahmani M, Davoust B, Sambou M, Bassene H, Scandola P, Ameur T, et al. Molecular investigation and phylogeny of species of the Anaplasmataceae infecting animals and ticks in Senegal. Parasit Vectors. 2012; 5:349. https://doi.org/10.1186/1756-3305-5-349 PMID: 3140746

25. Dahmani M, Davoust B, Rousseau F, Raoult D, Fenollar F, Mediannikov O. Natural Anaplasmataceae infection in *Rhipicephalus bursa* ticks collected from sheep in the French Basque Country. Ticks Tick-Borne Dis. 2017; 8:18–24. https://doi.org/10.1016/j.ttbdis.2016.09.009 PMID: 27666778

26. Parola P, Paddock DC, Socolovschi C, Labruna BM, Mediannikov O, Kermil T, et al. Update on Tick-Borne rickettsioses around the World: A Geographic Approach. Clin Microbiol Rev. 2013; 26:657–702. https://doi.org/10.1128/CMR.00032-13 PMID: 24092850

27. Pruneau L, Moumènè A, Meyer DF, Marcelino I, Lefrançois T, Vachières N. Understanding Anaplasmataceae pathogenesis using “Omics” approaches. Front Cell Infect Microbiol. 2014; 4:86. https://doi.org/10.3389/fcimb.2014.00086 PMID: 25072029

28. El-Naga TRA, Barghash SM. Blood Parasites in Camels (*Camelus dromedarius*) in Northern West Coast of Egypt. J Bacteriol Parasitol. 2016; 7:258.

29. Elhariri MD, Elhelw RA, Hamza DA, Soliman DE. Molecular detection of *Anaplasma marginale* in the Egyptian water buffaloes (*Bubaloes bubalis*) based on major surface protein 1. J Egyp Soc Parasitol. 2017; 47:247–52.

30. Fereig RM, Mohamed SGA, Mahmoud H, AbouLaila MR, Guswanto A, Nguyen TT, et al. Seroprevalence of *Babesia bovis*, *B. bigemina*, *Trypanosoma evansi*, and *Anaplasmataceae* antibodies in cattle in southern Egypt. Ticks Tick Borne Dis. 2017; 8:125–31. https://doi.org/10.1016/j.ttbdis.2016.09.009 PMID: 27789159

31. Parvizi O, El-Adawy H, Melzer F, Roesler U, Neubauer H, Mertens-Scholz K. Seroprevalence and Molecular Detection of Bovine Anaplasmosis in Egypt. Pathogens. 2020; 9(1):64. https://doi.org/10.3390/pathogens9010064 PMID: 31963251

32. AL-Hosary A, Raoult D, Rickettsial evolution in the light of comparative genomics. Biological Reviews of the Cambridge Philosophical Society. 2011; 86:379–405. https://doi.org/10.1111/j.1469-185X.2010.00151.x PMID: 20716256
38. Kelly PJ, Beati L, Mason PR, Matthewman LA, Roux V, Raoult D. Rickettsia africanae sp. nov., the etiological agent of African tick bite fever. Int J Syst Bacteriol. 1996; 46(2): 611–4. https://doi.org/10.1099/00207713-46-2-611 PMID: 8934912

39. Beati L, Meskini M, Thiers H, Raoult D. Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsiae associated with Hyalomma marginatum ticks. International Journal of Systematic Bacteriology. 1997; 47:548–54. https://doi.org/10.1099/00207713-47-2-548 PMID: 9103647

40. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clinical Microbiology Reviews. 1997; 10:694–719. https://doi.org/10.1128/CMR.10.4.694 PMID: 9336669

41. Boudebouch N, Sarith M, Socolovsc hi C, Amarouch H, Hassar M, Raoult D, et al. Molecular survey for spotted fever group rickettsia in ticks from Morroco. Clinical Microbiology and Infection. 2009; 15:259–60. https://doi.org/10.1111/j.1469-0691.2008.02226.x PMID: 19456813

42. Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape J-F, Raoult D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis. 2010; 4 (9):e821. https://doi.org/10.1371/journal.pntd.0000821 PMID: 20856858

43. Sambou M, Faye N, Bassène H, Diatta G, Raoult D, Mediannikov O. Identification of rickettsial pathogens in ixodid ticks in northern Senegal. Ticks Tick Borne Dis. 2012; 3(5):552–6. https://doi.org/10.1016/j.ttbdis.2012.04.002 PMID: 23908548

44. Botros BA, Soliman AK, Darwish M, El Said S, Morrill JC, Ksiazek TG. Seroprevalence of murine typhus and fievre boutonneuse in certain human populations in Egypt. The Journal of tropical medicine and hygiene. 1989; 92:373–8. PMID: 2514278

45. Soliman AK, Botros AB, Ksiazek GT. Seroprevalence of Rickettsia typhi and Rickettsia conorii infection among rodents and dogs in Egypt. The Journal of Tropical Medicine and Hygiene. 1989; 92:345–9. PMID: 2509729

46. Corwin A, Habib M, Olson J, Scott D, Ksiazek T, Watts MD. The prevalence of arboviral, rickettsial, and Hantaanlike viral antibody among school children in the Nile delta of Egypt. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1992; 86:677–8. https://doi.org/10.1016/0035-9203(92)90189-j PMID: 1363163

47. Corwin A, Habib M, Watts D, Darwish M, Olson J, Botros B, et al. Community-based prevalence profile of arboviral, rickettsial, and Hantaan-like viral antibody in the Nile River Delta of Egypt. The American Journal of Tropical Medicine and Hygiene. 1993; 48:776–83. https://doi.org/10.4269/ajtmh.1993.48.776 PMID: 8101432

48. Reynolds, M. G. Serologic evidence for exposure to spotted fever and typhus group rickettsioses among persons with acute febrile illness in Egypt. In: Proceedings of Fourth International Conference on Emerging Infectious Diseases, Atlanta. 2004.

49. Lange JV, El Dessouky AG, Manor E. Spotted fever rickettsiae in ticks from the northern Sinai Governorate. Am J Trop Med Hyg. 1992; 46:546–51. https://doi.org/10.4269/ajtmh.1992.46.546 PMID: 1599048

50. Loftis AD, Reeves WK, Szumlas DE. Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella, Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis. Am J Trop Med Hyg. 2006; 75:41–8. PMID: 16837707

51. Loftis AD, Reeves WK, Szumlas DE. Rickettsial agents in Egyptian ticks collected from domestic animals. Exp. Appl. Acarol. 2006; 40:67–81. https://doi.org/10.1007/s10493-006-9025-2 PMID: 17004028

52. Socolovsc hi C, Barbarot S, Lefebvre M, Parola P, Raoult D. Rickettsia sibirica mongolitimonae in travelers from Egypt. Emer Infec Dis. 2010; 16:1495–6. https://doi.org/10.3201/eid1609.100258 PMID: 20735946

53. Abdel-Shafy S, Allam ATN, Mediannikov O, Parola P, Raoult D. Molecular detection of spotted fever group rickettsiae associated with ixodid ticks in Egypt. Vector-Borne and Zoonotic Diseases. 2012; 12:1–14. https://doi.org/10.1089/vbz.2011.0705 PMID: 21995261

54. Abdulaham AMH, El-Molla A, Salib AF, Allam ATN, Ghazy AA, Abdel-Shafy S. 2016. Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii (Acari: Ixodidae) vectors of rickettsioses in Egypt. Vet World. 9: 1087–101. https://doi.org/10.14202/vetworld.2016.9.1087 PMID: 27847418

55. AbdullaHHAM, El-Molla A, Salib AF, Allam ATN, Ghazy AA, Sanad MY, et al. Molecular Characterization of Rickettsiae Infecting Camels and Their Ticks Vectors in Egypt. Bacterial Empire. 2019; 2 (1):10–8.

56. Haitham E, Raoult D, Drancourt M. Relapsing fever borreliosis in Africa. Am J Trop Med Hyg. 2013; 89:288–92. https://doi.org/10.4269/ajtmh.12-0691 PMID: 23926141
57. Trape JF, Diatta G, Arnathau C, Bitam I, Sarthi M. The epidemiology and geo-graphic distribution of relapsing fever borreliosis in West and North Africa, with a review of the *Ornithodoros erraticus* complex (Acarii: Ixodida). PLoS One. 2013; 8:e78473. https://doi.org/10.1371/journal.pone.0078473 PMID: 24223812

58. McCoy BN, Maiga O, Schwang T. Detection of *Borrelia theileri* in *Rhipicephalus geigyi* from Mali. Ticks Tick Borne Dis. 2014; 5(4):401–3. Top of FormBottom of Form https://doi.org/10.1016/j.ttbdis.2014.01.007 PMID: 24709337

59. Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzoug A, N'Douba A, et al. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d'Ivoire. PLoS Negl Trop Dis. 2016; 10(1):e0004367. https://doi.org/10.1371/journal.pntd.0004367 PMID: 26771308

60. Hagen RM, Frickmann H, Ehlers J, Kröger A, Margos G, Hizo-Teufel C, et al. Presence of *Borrelia* spp. DNA in ticks, but absence of *Borrelia* spp. of *Leptospira* spp. DNA in blood of fever patients in Madagascar. Acta Trop. 2018; 177:127–34. https://doi.org/10.1016/j.actatropica.2017.10.002 PMID: 28986249

61. Adham FK, Entitithal M, Abd-El-Samie EM, Refaat M, Gabre RM, El Hussein H. Detection of tick blood parasites in Egypt using PCR assay for *Borrelia burgdorferi sensu lato*. J. Egypt. Soc. Parasitol. 2010; 40(3):553–64. PMID: 21268526

62. Hassan MI, Gabr HSM, Abdel-Shafy S, Hammad KM, Mokhtar MM. Prevalence of tick-vectors of *Theileria annulata* infesting the one-humped camels in Giza, Egypt. J. Egypt. Soc. Parasitol. 2017; 47(2):425–32.

63. Mediannikov O, Fenollar F, Socolovschi C, Diatta G, Bassene H, Molez JF, et al. *Coxiella burnetii* in humans and ticks in rural Senegal. PLoS Negl Trop Dis. 2010; 4:e654. https://doi.org/10.1371/journal.pntd.0000654 PMID: 20866003

64. Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D. From Q fever to *Coxiella burnetii* infection: A paradigm change. Clin Microbiol Rev. 30(1):115–90. https://doi.org/10.1128/CMR.00045-16 PMID: 27656520

65. Guattato R, Seegers H, Taurel AF, Joly A, Beauden F. Prevalence of *Coxiella burnetii* infection in domestic ruminants: A critical review. Vet Microbiol. 2011; 149(1–2):1–16. https://doi.org/10.1016/j.vetmic.2010.10.007 PMID: 21153008

66. Berri M, Arricau-Bouvry N, Rodolakis A. PCR-based detection of *Coxiella burnetii* from clinical samples. In: Sachse K. and Frey J., editors. Methods in Molecular Biology. Humana Press Inc., Totowa. 2003:153–61.

67. Mazzyad SA, Hafezo AO. Q fever (*Coxiella burnetii*) among man and farm animals in North Sinai, Egypt. J Egypt Soc Parasitol. 2007; 37:135–42. PMID: 17580573

68. Gwida M, El-Ashker M, El-Diasty M, Engelhardt C, Khan I, Neubauer H. Q fever in cattle in some Egyptian governorates: A preliminary study. BMC Res Notes. 2014; 7(12):881. https://doi.org/10.1186/1756-0500-7-881 PMID: 25481509

69. Horton KC, Wasfy M, Samaha H, Abdel-Rahman B, Safwat S, Fadeel MA, et al. Serosurvey for zoonotic viral and bacterial pathogens among slaughtered livestock in Egypt. Vector Borne Zoonotic Dis. 2014; 14(8):633–9. https://doi.org/10.1089/vbz.2013.1525 PMID: 25198525

70. Abdallah HHAM, Hussein AH, Abd El-Razik AK, Barakat MAA, Soliman AY. Q-fever a neglected disease of Camels in Egypt. Vet World. 2019; 12(12):1945–50. https://doi.org/10.14202/vetworld.2019.1945-1950 PMID: 32095045

71. Abdel-Moein KA, Hamza DA. The burden of *Coxiella burnetii* among aborted dairy animals in Egypt and its public health implications. Acta Trop. 2017; 166(2):92–5. https://doi.org/10.1016/j.actatropica.2016.01.011 PMID: 27845064

72. Abdallah HHAM, El-Shanawany EE, Abd-El-Shafy S, Abou-Zeina HAA, Abd-Elrahman EH. Molecular and immunological characterization of *Hyalomma dromedarii* and *Hyalomma excavatum* (Acari: Ixodidae) vectors of Q fever in camels. Vet World. 2018; 11(8):1109–19. https://doi.org/10.14202/vetworld.2018.1109-1119 PMID: 30050371

73. Otranto D, Capelli G, Genchi C. Changing distribution patterns of canine vector borne diseases in Italy: leishmanios vs. dirofilariosis. Parasit. Vectors. 2009; 2(Suppl 1):S2.

74. Perumal AN, Gunawardene YI, Dassanayake RS. *Setaria digitata* in advancing our knowledge of human lymphatic filariasis. J Helminthol. 2016; 90:129–38. https://doi.org/10.1017/S0022149X15000309 PMID: 25924635

75. Brianti E, Gaglio G, Napoli E, Giannetto S, Dantas-Torres F, Bain O, et al. New insights into the ecology and biology of *Acanthocheilonema reconditum* (Grassi, 1889) causing canine subcutaneous filariosis, Parasitology. 2012; 139:530–6. https://doi.org/10.1017/S0022149X12002198 PMID: 22336052
76. Tamilman P, Zama MMS, Pathak R, Muneeswaran NS, Karthik K. A retrospective study of ocular occurrences in domestic animals: 799 cases. Vet world. 2013; 6:274–6.

77. Maharana BR, Potliya S, Ganguly A, Bisla SR, Mishra C, Ganguly I. First report of the isolation and phylogenetic characterization of equine *Setaria digitata* from India based on mitochondrial COI, 12S rDNA, and nuclear ITS2 sequence data. Parasitol Res. 2020; 119(2):473–81. https://doi.org/10.1007/s00436-019-06587-1 PMID: 31897790

78. Albrechtová K, Sedláèí K, PetrŒíèkova Ž, Hlaváèí J, Mihalca DA, Lesingrian A, et al. Occurrence of *filaria* in domestic dogs of Samburu pastoralists in Northern Kenya and its associations with canine distemper. Vet Parasitol. 2011; 182:230–8. https://doi.org/10.1016/j.vetpar.2011.05.042 PMID: 21724332

79. Siwila J, Mwase TE, Nejsam P, Simonsen EP. Filarial infections in domestic dogs in Lusaka, Zambia, Vet Parasitol. 2015; 210:250–4. https://doi.org/10.1016/j.vetpar.2015.04.009 PMID: 25944406

80. Medkour H, Laidoudi Y, Athias E, Bouam A, Dizoe S, Davoust B, et al. Molecular and serological detection of animal and human vector-borne pathogens in the blood of dogs from Côte d’Ivoire. Comparative Immunology, Microbiology and Infectious Diseases. 2020; 69:101412. https://doi.org/10.1016/j.cimid.2019.101412 PMID: 31981798

81. Thrusfield M, Christley R, Brown H, Diggle PJ, French N, Howe K, Kelly L, O’Connor A, Sargeant J, Wood H. Veterinary Epidemiology: Fourth Edition. (4th ed.) Wiley-Blackwell. 2017. https://doi.org/10.1016/j.foodchem.2017.11.074 PMID: 29287469

82. Sokhna C, Mediannikov O, Fenoil L, Bassene H, Diatta G, Tall A, et al. Point-of-Care Laboratory of Pathogen Diagnosis in Rural Senegal. PLoS Negl Trop Dis. 2013; 7:e1999. https://doi.org/10.1371/journal.pntd.0001999 PMID: 23350001

83. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetic Analysis 83.

84. Salem NY, Farag HS. Clinico-pathological findings in *B. canis* infected dogs in Egypt. Comparative Clinical Pathology. 2014; 29(5):1305–7.
95. Matjila PT, Penzhorn LB, Bekker PJC, Nijhof MA, Jongejan F. Confirmation of occurrence of Babesia canis vogeli in domestic dogs in South Africa. Vet Parasitol. 2004; 122:119–25. https://doi.org/10.1016/j.vetpar.2004.03.019 PMID: 15177716

96. M’ghirbi Y, Bouattour A. Detection and molecular characterization of Babesia canis vogeli from naturally infected dogs and Rhipicephalus sanguineus ticks in Tunisia. Vet Parasitol. 2008; 152:1–7. https://doi.org/10.1016/j.vetpar.2007.12.018 PMID: 18242865

97. Parola P, Raoult D. Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis. 2001; 32(6):897–928. https://doi.org/10.1086/319347 PMID: 11247714

98. CAPMAS. Animal Diseases. Available online: https://www.capmas.gov.eg/

99. Herrdon DR, Palmer GH, Shkav K, Knowles DP, Brayton K. Complete genome sequence of Anaplasma marginale sub sp centrale. J Bacteriol. 2010; 192(1):379–80. https://doi.org/10.1128/JB.01330-09 PMID: 19854912

100. Bell-Sakyi L, Palomaro AM, Bradford EL, Shkap V. Propagation of the Israeli vaccine strain of Anaplasma centrale in tick cell lines. Vet Microbiol. 2015; 179:270–6. https://doi.org/10.1016/j.vetmic.2015.07.008 PMID: 26210950

101. Belkahia H, Ben Said M, El Hamdi S, Yahiaoui M, Gharbi M, Daaloul-Jedidi M, et al. First molecular identification and genetic characterization of Anaplasm a ovis in sheep from Tunisia. Small Rumin Res. 2014; 121:404–10.

102. Aouadi A, Leulmi H, Boucheikchchouk M, Benakhla A, Raoult D, Parola P. Molecular evidence of tick-borne hemoproteozoon-parasites (Theileria ovis and Babesia ovis) and bacteria in ticks and blood from small ruminants in Northern Algeria. Comparative Immunology, Microbiology and Infectious Diseases. 2017; 50:34–9. https://doi.org/10.1016/j.cimid.2016.11.008 PMID: 28131376

103. Sadeddine R, Diarra AZ, Laroche M, Mediannikov O, Righia S, Benakhla A, et al. Molecular identification and molecular characterisation of protozoal and bacterial organisms in domestic animals and their infesting ticks from northeastern Algeria. Ticks and Tick-borne Diseases. 2020; 11(2):101330. https://doi.org/10.1016/j.ttbdis.2019.101330 PMID: 31786146

104. Nair ADS, Cheng C, Ganta CK, Sanderson MW, Alleman AR, Munderloh UG. et al. Comparative Experimental Infection Study in Dogs with Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum. PLoS One. 2016; 11:e0148239. https://doi.org/10.1371/journal.pone.0148239 PMID: 26840398

105. Zobba R, Anfossi AG, Pinna Parpaglia ML, Dore GM, Chessa B, Spezzigu A, et al. Molecular investigation and phylogeny of Anaplasma spp in Mediterranean ruminants reveal the presence of neutrophil-tropic strains closely related to A. platys. Appl Environ Microbiol. 2014; 80:271–80. https://doi.org/10.1128/AEM.03129-13 PMID: 24162569

106. Dahmani M, Davoust B, Benterki MS, Fenollar F, Raoult D, Mediannikov O. Development of a new PCR-based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comp Immunol Microbiol Infect Dis. 2015; 4:39–45. https://doi.org/10.1016/j.cimid.2015.02.002 PMID: 25748051

107. Ben Said M, Belkahia H, El Mabrouk N, Saidani M, Alberti A, Zobba R, et al. Anaplasma platys-like strains in ruminants from Tunisia. Infect Genet Evol. 2017; 49:226–33. https://doi.org/10.1016/j.meegid.2017.01.023 PMID: 28130168

108. Belkahia H, Ben Said M, Sayahi L, Alberti A, Messadi L. Detection of novel strains genetically related to Anaplasma platys in Tunisian one-humped camels (Camelus dromedarius). J Infect Dev Ctries. 2015; 9:1117–25. https://doi.org/10.3855/jidc.6950 PMID: 26517487

109. Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Messadi L. Improving specific detection and updating phylogenetic data related to Anaplasma platys-like strains infecting camels (Camelus dromedarius) and their ticks.Ticks Tick-borne Dis. 2019; 10:101260. https://doi.org/10.1016/j.tbbdis.2019.07.004 PMID: 31327747

110. Berggoetz M, Schmid M, Sten D, Wyss V, Chevillon C, Pretorius AM, et al. Tick-borne pathogens in the blood of wild and domestic ungulates in South Africa: interplay of game and livestock. Ticks Tick-borne Dis. 2014; 5:166–75. https://doi.org/10.1016/j.tbbdis.2013.10.007 PMID: 24418761

111. Socolovschi C, Huynh TP, Davoust B, Gomez J, Raoult D, Parola P. Transovarial and trans-stadial transmission of Rickettsiae africae in Amblyomma variegatum ticks. Clin Microbiol Infect. 2009; 15 Suppl 2: 317–8. https://doi.org/10.1111/j.1469-0691.2008.02278.x PMID: 19456811

112. Kern I, Djibrabou O, Mediannikov O, Ayach B, Rolain JM, Raoult D, et al. Rickettsia africae in Hyalomma dromedarii ticks from sub-Saharan Algeria. Ticks Tick-borne Dis. 2012; 3(5–6):377–9. https://doi.org/10.1016/j.tbbdis.2012.10.013 PMID: 23164496

113. Ogo NI, de Mera IG, Galindo RC, Okubanjo OO, Iruwa HM, Agbede RI, et al. Molecular identification of tick-borne pathogens in Nigerian ticks. Vet Parasitol. 2012; 187(3–4):572–7. https://doi.org/10.1016/j.vetpar.2012.01.029 PMID: 22326937
| Page | Reference |
|------|-----------|
| 114. | Smith RD, Miranpuri GS, Adams HJ, Ahrens HE. *Borrelia theileri*: isolation from ticks (*Boophilus microplus*) and tick-borne transmission between splenectomized calves. Am J Vet Res. 1995; 46(6):1396–8. |
| 115. | Abdullah HHAM, Aboelsoud D, Farag KT, Abdel Megeed NK, Abdel-Shafy S, Parola P, et al. (2021): Molecular characterization of some equine vector-borne diseases and associated arthropods in Egypt. Preprint. https://doi.org/10.21203/rs.3.rs-26089/v1 |
| 116. | Morel N, De Salvo MN, Cicuttin G, Rossner V, Thompson CS, Mangold AJ, et al. The presence of *Borrelia theileri* in Argentina. Vet Parasitol Reg Stud Reports. 2019; 17:100314. https://doi.org/10.1016/j.vprsr.2019.100314 PMID: 31303227 |
| 117. | Abanda B, Paguem A, Abdoulmoumini M, Kingsley TM, Renz A, Eisenbarth A. Molecular identification and prevalence of tick-borne pathogens in zebu and taurine cattle in North Cameroon. Parasit. Vectors. 2019; 12(1):448. https://doi.org/10.1186/s13071-019-3699-x PMID: 31511038 |
| 118. | Botros BA, Soliman AK, Salib AW, Olsen J, Hibbs RG, Williams JC, et al. *Coxiella burnetii* antibody prevalence in North-East Africa determined by enzyme immunooassay. J Trop Med Hyg. 1995; 98(3):173–8. PMID: 7783275 |
| 119. | Khalifa ON, Elhoﬁy IF, Fahmy AH, Mona MM, Agag MA. Seroprevalence and molecular detection of *Coxiella burnetii* infection in sheep, goats and human in Egypt. ISIO J Microbiol Biotechnol Food Sci. 2016; 2(1):1–7. |
| 120. | Klemmer J, Njeru J, Emam A, El-Sayed A, Moawad AA, Henning K, et al. Q fever in Egypt: Epidemiological survey of *Coxiella burnetii* specific antibodies in cattle, buffaloes, sheep, goats and camels. PLoS One. 2018; 13(2):e0192188. https://doi.org/10.1371/journal.pone.0192188 PMID: 29466380 |
| 121. | Mohammed OB, Jarelnabi AA, Aljumaa RS, Alshaikh MA, Bakhet AO, Omer SA, et al. *Coxiella burnetii*, the causative agent of Q fever in Saudi Arabia: Molecular detection from camel and other domestic livestock. Asian Pac J Trop Med. 2014; 7(9):715–9. |
| 122. | Hussein MF, Alshaikh MA, Al-Jumaa RS, Garel Nabi A, Al-Khalifa I, Mohammed OB. The Arabian camel (*Camelus dromedarius*) as a major reservoir of Q fever in Saudi Arabia. Comp Clin Path. 2015; 24(4):887–92. |
| 123. | Farkas R, Mag V, Gyurkovszky M, Takács N, Vörös K, Solymosi N. The current situation of canine dirofilariosis in Hungary. Parasitol Res. 2020; 119(1):129–35. https://doi.org/10.1007/s00436-019-06478-5 PMID: 31754854 |
| 124. | Capelli G, Genchi C, Baneth G, Bourdeau P, Gobbi L, et al. Recent advances on *Dirofilaria repens* in dogs and humans in Europe. Parasit. Vectors. 2018; 11(1):663. |
| 125. | Magnis J, Lorentz S, Guardone L, Grimm F, Magi M, Naucke TJ, et al. Morphometric analyses of canine blood microfilariae isolated from the Knot’s test enables *Dirofilaria immitis* and *D. repens* species-specific and *Acanthocheilonema* genus-specific diagnosis, Parasit. Vectors. 2013; 6(1):3–7. https://doi.org/10.1186/1756-3305-6-48 PMID: 23442771 |
| 126. | Sivagurunathan A, Atwa MEA. A case of *Acanthocheilonema reconditum* in a dog. Intl J Med Sci. 2017; 2(1):25–6. |
| 127. | Schwan VE. Filariosis of Domestic Carnivores in Gauteng, KwaZulu-Natal and Mpumalanga Provinces, South Africa, and Maputo Province, Mozambique. 2009. |
| 128. | BinoSundar ST, D’Souza PE. Morphological characterization of *Setaria* worms collected from cattle. J Parasit Dis. 2015; 39(3):572–6. https://doi.org/10.1007/s12639-013-0399-x PMID: 26345074 |
| 129. | Kaur D, Ganai A, Parveen S, Borkatka S, Yadav A, Katoch R, et al. *Setaria Digitata* Occurrence of in a cow. J Parasit Dis. 2015; 39(3):477–8. https://doi.org/10.1007/s12639-013-0374-6 PMID: 26345055 |
| 130. | El-Azazy OM, Ahmed YF. Patent infection with *Setaria digitata* in goats in Saudi Arabia. Vet Parasitol. 1999; 82(2):161–6. https://doi.org/10.1016/s0304-4017(98)00264-7 PMID: 10321587 |
| 131. | Wijesundera WS, Chandrasekharan NV, Karunamayake EH. A sensitive polymerase chain reaction-based assay for the detection *Setaria Digitata* of the causative organism of cerebrospinal nematodiasis in goats, sheep and horses. Vet Parasitol. 1999; 81:225–33. https://doi.org/10.1016/s0304-4017(98)00248-9 PMID: 10190666 |
| 132. | Radwan AM, Ahmed NE, Elakabawy LM, Ramadan MY, Elmadawy RS. Prevalence and pathogenesis of some filarial nematodes infecting donkeys in Egypt. Vet World. 2016; 9:888–92. https://doi.org/10.14202/vetworld.2016.888-892 PMID: 27651679 |
| 133. | Shin J, Ahn KS, Suh GH, Kim HJ, Jeong HS, Kim S, et al. *Setaria Digitata* First blindness cases of horses infected with (Nematoda: Filarioidea) in the Republic of Korea. Korean J Parasitol. 2017; 55(6):667–71. https://doi.org/10.3347/kjp.2017.55.6.667 PMID: 29320823 |
| 134. | Bursakov SA, Kovalchuk SN. Co-infection with tick-borne disease agents in cattle in Russia. Ticks and Tick-borne Dis. 2019; 10(3):709–13. https://doi.org/10.1016/j.ttbdis.2019.03.004 PMID: 30878569 |
135. Dahmana H, Amanzougahene N, Davoust B, Carette O, Normand T, Demoncheaux JP, et al. Great diversity of Piroplasmida in Equidae in Africa and Europe, including potential new species. Vet. Parasitol.: Regional Studies and Reports. 2019; 18:100332.

136. Rolain J-M, Stuhl L, Maurin M, Raoult D. Evaluation of antibiotic susceptibilities of three rickettsial species including *Rickettsia felis* by a quantitative PCR DNA assay. 2002. Antimicrob Agents Chemother. 46: 2747–51. https://doi.org/10.1128/AAC.46.9.2747-2751.2002 PMID: 12183224

137. Roux V, Rydkina E, Eremeeva M, Raoult D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol. 1997; 47:252–61. https://doi.org/10.1099/00207713-47-2-252 PMID: 9103608

138. Roux V, Raoult D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein *ompB* (*ompB*). Int J Syst Evol Microbiol. 2000; 50:1449–55. https://doi.org/10.1099/00207713-50-4-1449 PMID: 10939649

139. Bottieau E, Verbruggen E, Aubry C, Socolovschi C, Vlieghe E. Meningoencephalitis complicating relapsing fever in traveler returning from Senegal. Emerg Infect Dis. 2012; 18(4):697–8. https://doi.org/10.3201/eid1804.111771 PMID: 22469185

140. Glazunova O, Roux V, Freylikman O, Sekeyova Z, Foumous G, Tyczka J, et al. *Coxiella burnetii* genotyping. Emerg Infect Dis. 2005; 11:1211–17. https://doi.org/10.3201/eid1108.041354 PMID: 16102309

141. Raoult D, Roblot F, Rolain JM, Besnier JM, Loulergue J, Bastides, et al. First isolation of *Bartonella alsatica* from a valve of a patient with endocarditis. J Clin Microbiol. 2006; 44(1):278–9. https://doi.org/10.1128/JCM.44.1.278-279.2006 PMID: 16390990

142. Laidoudi Y, Davoust B, Varloud M, Niang EHA, Fenollar F, Mediannikov O. Development of a multiplex qPCR-based approach for the diagnosis of *Dirofilaria immitis, D. repens* and *Acanthocheilonema reconditum*. Parasit. Vectors. 2020; 13(1):319. https://doi.org/10.1186/s13071-020-04185-0 PMID: 32571427

143. Laidoudi Y, Medkour H, Levasseur A, Davoust B, Mediannikov O. New Molecular Data on *Filaria* and its *Wolbachia* from Red Howler Monkeys (Alouatta macconnelli) in French Guiana-A Preliminary Study. Pathogens. 2020; 9,626. https://doi.org/10.3390/pathogens9080626 PMID: 32752052

144. Laidoudi Y, Ringot D, Watier-Grillot S, Davoust B, Mediannikov. A cardiac and subcutaneous canine dirofilariosis outbreak in a kennel in central France. Parasites. 2019; 26,72.