Invariant Natural Killer T-Cell Control of Type 1 Diabetes: A Dendritic Cell Genetic Decision of a Silver Bullet or Russian Roulette

John P. Driver,1 Felix Scheuplein,1 Yi-Guang Chen,1 Alexandra E. Grier,1 S. Brian Wilson,2 and David V. Serreze1

OBJECTIVE—In part, activation of invariant natural killer T (iNKT)-cells with the superagonist α-galactosylceramide (α-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development.

RESEARCH DESIGN AND METHODS—We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complexity-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells.

RESULTS—Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell–induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2977 mice.

CONCLUSIONS—This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans. Diabetes 59:423–432, 2010

Invariant natural killer T (iNKT)-cells are a small regulatory lymphocyte subset characterized by their unique ability to recognize glycolipid antigens presented by the major histocompatibility complex (MHC) class I–like CD1d molecule (1). Activated iNKT-cells induce profound multiple effects on innate and adaptive immune responses, primarily through rapid secretion of various cytokines and other agents (1,2). Among the downstream events regulated by activated iNKT-cells is the maturation of dendritic cells (DCs) that subsequently induce various adaptive immune responses (1). Activating iNKT-cells with various agonists has shown promise in modulating DC functions for both stimulating immunological responses against tumors and infectious agents as well as inducing tolerogenic responses for inhibiting autoimmune syndromes (1,3,4). Unfortunately, in regard to possible iNKT-mediated therapeutic approaches in humans, too little is currently known about how iNKT-cells promote differentiation of immunogenic versus tolerogenic DCs. Without an ability to regulate desired downstream DC responses, the danger exists of iNKT-directed protocols exacerbating the disease being treated (3,4). Therefore, much attention is currently focused on characterizing particular courses of iNKT-cell–induced DC differentiation.

Mouse-based studies assessing the ability of iNKT-cells activated by the superagonist α-galactosylceramide (α-GalCer) to enhance antitumor immunity have almost exclusively used the C57BL/6J (B6) or BALB/c strains (5–10). More strains have been evaluated for α-GalCer–induced suppression of various autoimmune syndromes (4). Hence, strain-dependent factors may be important in determining whether activated iNKT-cells induce immunogenic or tolerogenic events. Indeed, there is great strain variability in iNKT-cell numbers that also differ in cytokine production profiles (11). However, it remains unknown to what extent genetic variability may determine whether activated iNKT-cells subsequently induce immunogenic versus tolerogenic differentiation of DCs.

The ability of α-GalCer–activated iNKT-cells to inhibit autoimmune type 1 diabetes development in NOD mice may be at least partly due to downstream maturation of tolerogenic DCs (2). iNKT-conditioned DCs in NOD mice preferentially accumulated in pancreatic lymph nodes where some diabetogenic T-cells subsequently underwent apoptotic deletion, but with a larger proportion becoming functionally anergized (2). However, before α-GalCer–based type 1 diabetes intervention approaches could be considered in humans, it would be important to know whether patient genetic heterogeneity may result in variable types of downstream DC responses. Indeed, in the current study, we found that unlike in NOD mice, in a B6 background stock iNKT-conditioned DCs not only failed to mature to a type 1 diabetes–protective state, but actually support disease development due to differing expression of various T-cell costimulatory and inhibitory molecules.

From 1The Jackson Laboratory, Bar Harbor, Maine; and the 2Diabetes Research Laboratories, Massachusetts General Hospital, Cambridge, Massachusetts.

Corresponding author: David V. Serreze, dave.serreze@jax.org.

Received 29 July 2009 and accepted 20 October 2009. Published ahead of print at http://diabetes.diabetesjournals.org on 10 November 2009. DOI: 10.2337/db09-1116.

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
DCs from α-GalCer-treated NOD donor mice protect NOD and iNKT-cell-deficient NOD CD1dnull recipients from type 1 diabetes induced by adoptively transferred A14 T-cells. Type 1 diabetes incidence for sublethally irradiated (600R) 6- to 8-week-old (A) NOD and (B) NOD CD1dnull recipients of 1–4 x 105 splenic DCs isolated from NOD donors treated 24 h previously with α-GalCer (2 μg) or DMSO. NOD CD1dnull recipients of 1–4 x 105 splenic DCs injected 24 h previously with either α-GalCer or DMSO and fixed in 0.75% paraformaldehyde (15) to prevent further maturation were assessed for ability to activate magnetic bead-purified A14 T-cell responses to the YFENYLEL mimotope peptide using both the previously described enzyme-linked immunosorbsent spot (ELISPOT) production (16) and [H]3thymidine incorporation proliferation assays (12).

Mice. NOD/ShiLtDv mice are maintained at the Jackson Laboratory, B6 mice congenic for the NOD-derived H2D MHC (B6.H2D) are maintained at the N8 backcross generation (12). N12 backcross generation NOD mice congenic for a disrupted CD1d gene (NOD.CD1dnull) have been described (13). NOD mice transgenically expressing the T-cell receptor (TCR) from the diabetogenic A14 CD8+ T-cell clone and also carrying a functionally inactivated RAG1 gene (NOD RAG1null) have been described (14).

Flow cytometric analyses and reagents. α-GalCer was purchased from Alexis Biochemicals (San Diego, CA). Splenic DCs from NOD and B6.H2D mice treated 24 h previously with a single intraperitoneal injection of α-GalCer (2 μg) or vehicle (DMSO) were characterized by flow cytometry. Cell suspensions were Fc receptor blocked with rat (r)IgG and stained with the indicated fluorochrome-conjugated antibodies at 4°C. DCs were identified using a CD11c-specific antibody (N148). Expression levels of various DC surface markers were assessed using antibodies specific for CD80 (16-10AI), CD86 (GL1), CD70 (FR70), CD40 (3/23), pan-MHC I (M1/42), CD70 (10-2.16), programmed death-ligand-1 (PD-L1; RM134L), all purchased from BD Biosciences (San Jose, CA) or eBiosciences (San Diego, CA). In mixed splenocyte studies, anti-CD45.2 (104D.1) was used to distinguish B6.H2D DCs from those of NOD origin. Viable stained cells were detected using LSR II or FACS Calibur flow cytometers (BD Biosciences). Data were analyzed using Flow Jo software (TreeStar, Palo Alto, CA).

Adoptive transfer of DCs and type 1 diabetes. DCs were purified from Collagenase D (Roche)-digested spleens of female NOD or B6.H2D mice injected intraperitoneally 24 h previously with α-GalCer (2 μg) or DMSO using CD11c-conjugated magnetic beads following the manufacturer's directions (Miltenyi Biotec). Between 1 x 105 and 4 x 106 CD11c$^+$ DCs were injected intravenously into sublethally irradiated (600R from a 137Cs source) 6- to 8-week-old syngeneic NOD or B6.H2D mice. DCs were assessed for ability to activate magnetic bead-purified A14 T-cell responses to the YFENYLEL mimotope peptide using both the previously described enzyme-linked immunosorbsent spot (ELISPOT) production (16) and [H]3thymidine incorporation proliferation assays (12).

Dendritic cell cytokine analysis. Splenic DCs were purified as described above from male 6- to 8-week-old NOD or B6.H2D mice injected intraperitoneally 16 h previously with α-GalCer (2 μg) or DMSO. DCs were cultured at a concentration of 5 x 104/ml in tissue culture media for an additional 18 h with or without the addition of anti-CD40 (clone HM40-3, 10 μg/ml) and lipopolysaccharide (LPS, 1 μg/ml), after which supernatants were collected for determination of IL-12, IL-10, and IFN-γ production and [3H]thymidine incorporation.

RESULTS

iNKT-conditioned NOD DCs prevent type 1 diabetes. Although their presence has been associated with the induction of type 1 diabetes resistance, it remained unclear whether iNKT-conditioned DCs in NOD mice directly trigger disease-protective effects. Thus, we determined
whether DCs purified from NOD females treated with α-GalCer or vehicle 24 h previously and adoptively transferred into young (6–8 weeks old) syngeneic recipients differed in ability to protect them from type 1 diabetes normally induced by subsequently infused NOD.Rag1null.AI4 splenocytes (1 × 10⁷) were injected into all DC recipients 24 h later. B and C: Type 1 diabetes incidence for (B) B6.H2g7 and (C) NOD recipients pretreated with a single intraperitoneal injection of α-GalCer (2 μg) or vehicle followed 18 h later by sublethal irradiation (600 R) and intravenous infusion of 1 × 10⁷ NOD.Rag1null.AI4 splenocytes. D and E: Type 1 diabetes incidence for (D) B6.H2g7 and (E) NOD recipients pretreated from 3–4 weeks of age with four once-weekly injections of α-GalCer (2 μg) or vehicle followed by sublethal irradiation (600 R) and intravenous infusion of 1 × 10⁷ NOD.Rag1null.AI4 splenocytes. Recipients received an additional dose of α-GalCer or vehicle 5 days later. Survival curves in (A–E) were compared according to the log-rank test.

We addressed this issue by repeating the DC transfer experiment, but using NOD.CD1dnull recipients lacking iNKT-cells (17). Again, AI4 T-cells induced a significantly lower rate of type 1 diabetes in NOD.CD1dnull recipients previously infused with DCs from α-GalCer than vehicle-pretreated NOD donors (Fig. 1B). Hence, adoptively transferred iNKT-conditioned DCs do not elicit type 1 diabetes resistance by reactivating recipient iNKT-cells. These collective data indicate iNKT-conditioned DCs in NOD mice mature to a state capable of inhibiting diabetogenic T-cells.

iNKT-conditioned DCs from B6.H2g7 mice support type 1 diabetes development. We next asked whether iNKT-conditioned DCs still suppress diabetogenic T-cell responses if derived from a strain such as B6 in which
α-GalCer treatment has been associated with enhancing rather than diminishing immunological effector functions (5–10). B6 background mice congenically expressing the NOD H2g7 MHC (B6.H2g7) are inherently type 1 diabetes resistant, but susceptible to AI4 T-cell–induced disease (18). Thus, we assessed whether splenic DCs purified from B6.H2g7 donors treated 24 h previously with α-GalCer or vehicle differed from those of NOD origin in ability to protect syngeneic recipients from AI4 T-cell–induced type 1 diabetes. Unlike those of NOD origin (Fig. 1A), iNKT-conditioned DCs from B6.H2g7 mice actually accelerated AI4 T-cell–induced type 1 diabetes in syngeneic recipients (Fig. 2A). Similarly, type 1 diabetes was, respectively, accelerated and inhibited in B6.H2g7 and NOD mice receiving a single intraperitoneal injection of α-GalCer 18 h prior to AI4 T-cell infusion (Fig. 2B and C). These results indicate that after single-dose α-GalCer treatment, iNKT-conditioned DCs in NOD and B6.H2g7 mice differentiate to tolerogenic versus immunogenic states, respectively, either inhibiting or supporting AI4 T-cell–induced type 1 diabetes. However, it has been reported that B6 background mice must receive a minimum of three consecutive α-GalCer injections for iNKT-cells to achieve a maturation state supporting the generation of tolerogenic DCs that inhibit development of experimental allergic encephalomyelitis (19). Similarly, NOD mice pretreated with four once-weekly injections of α-GalCer are rendered resistant to AI4 T-cell–induced type 1 diabetes (2). Thus, we tested whether four once-weekly pretreatments with α-GalCer also protected B6.H2g7 mice from subsequent AI4 T-cell–induced type 1 diabetes. Unlike in NOD, multiple pretreatments with α-GalCer failed to protect B6.H2g7 mice from AI4 T-cell–induced type 1 diabetes (Fig. 2D and E). Hence, even after multiple α-GalCer injections, iNKT-conditioned DCs from NOD and B6.H2g7 inhibit or support, respectively, type 1 diabetes development. Furthermore, these collective results suggest the experimental allergic encephalomyelitis–protective DCs engendered in B6 mice pretreated with multiple α-GalCer injections must functionally do so in a way differing from those maturing to a type 1 diabetes inhibitory state in NOD mice after only a single round of iNKT-cell activation. α-GalCer–activated iNKT-cells reportedly inhibit type 1 diabetes in NOD mice in a regulatory T-cell (Treg)—dependent manner (20). However, we could not detect any proportional or functional differences in Tregs from NOD or B6.H2g7 mice pretreated with single or multiple injections of α-GalCer (data not shown). Hence, we assessed whether iNKT-conditioned DCs from NOD and B6.H2g7 mice differed in ability to activate AI4 T-cell effector function. DCs were purified from NOD and B6.H2g7 mice treated with α-GalCer or vehicle 24 h earlier and fixed in 0.75% paraformaldehyde to prevent further maturation in culture (15). They were then used to induce antigen mimotope-mediated activation and proliferation of NOD.Rag1null.AI4 T-cells. Compared with those from vehicle-treated syngeneic controls, iNKT-conditioned DCs from B6.H2g7 mice drove higher levels of antigen-stimulated AI4 T-cell proliferation and IFNγ production (Fig. 3A and B). Conversely, compared with those from vehicle-treated syngeneic controls, iNKT-conditioned DCs from NOD mice did not demonstrate an enhanced ability to support AI4 T-cell proliferation and only marginally increased their IFNγ production (Fig. 3A and B). Hence, iNKT-conditioned NOD and B6.H2g7 DCs differentiate to very different states characterized by a low or potent ability, respectively, to activate diabetogenic AI4 T-cells. These results would also be consistent with our previous findings (2) that although there is an increase in the number of AI4 T-cells that undergo apoptotic deletion in α-GalCer–treated NOD mice, a larger proportion of such effectors is driven to an anergic state.

iNKT-conditioned NOD and B6.H2g7 DCs express different patterns of costimulatory molecules. The capacity of DCs to stimulate T-cells is the net result of MHC and costimulatory molecule as well as proinflammatory and anti-inflammatory cytokine interactions. To determine possible cytokine contributions, iNKT-conditioned DCs were purified from NOD and B6.H2g7 mice 16 h after α-GalCer treatment and cultured for a further 18 h with or without a combination of anti-CD40 and LPS. Supernatants were then assessed for various cytokine levels by enzyme-linked immunosorbent assay. After activation, iNKT-conditioned DCs from B6.H2g7 mice produced higher levels of IL-12 p70 and tumor necrosis factor-α and lower quantities of IL-10 than those of NOD.
origin (supplementary Fig. 1, available in an online appendix at http://diabetes.diabetesjournals.org/content/early/2009/10/31/db09-1116/suppl/DC1). However, although they may contribute to some extent in vivo, it is unlikely that these cytokines are primary factors in the varying ability of NOD and B6.\textit{H}2g7 iNKT-conditioned DCs to activate diabeticogenic T-cells. This is because, unless further activated with anti-CD40 and LPS, neither strain’s iNKT-conditioned DCs produced detectable amounts of the aforementioned cytokines. Furthermore, the fixed NOD and B6.\textit{H}2g7 DCs found in the previously described in vitro assays (Figs. 2 and 3) to vary in ability to activate diabeticogenic A14 T-cells would lack cytokine production capacity. For these reasons, attention was focused on the possibility that varying expression levels of important T-cell costimulatory and inhibitory molecules are responsible for the divergent effects of NOD and B6.\textit{H}2g7 iNKT-conditioned DCs on diabeticogenic A14 T-cells.

As determined by assessing the mean fluorescence intensity (MFI) of specific antibody binding, at 24 h after \textalpha-GalCer treatment, levels of MHC class I and II as well as CD80 and CD86 expression were significantly higher on iNKT-conditioned DCs from B6.\textit{H}2g7 than NOD mice (Fig. 4). Surface CD70 and OX40L levels were upregulated on activated DCs and play important roles in initiating and sustaining T-cell activation through respective interactions with the CD27 and OX40 lymphocyte receptors (22–24). After iNKT-cell activation, expression of both CD70 and OX40L was completely unaltered on NOD but upregulated with the CD27 and OX40 lymphocyte receptors (22–24). After iNKT-cell activation, expression of both CD70 and OX40L was completely unaltered on NOD but upregulated significantly on B6.\textit{H}2g7 DCs (Fig. 4).

CD40 engagement by T-cell–expressed CD40 ligand reportedly contributes to DCs subsequently upregulating expression of CD80 and CD86 costimulatory molecules (25,26). Again, CD40 expression was significantly higher on iNKT-conditioned DCs from B6.\textit{H}2g7 than NOD mice (Fig. 4). However, this CD40 disparity could not explain strain differences in expression of other T-cell costimulatory molecules on iNKT-conditioned DCs. This was demonstrated by the finding that iNKT-conditioned DCs from CD40-deficient B6 mice still efficiently upregulated expression of other T-cell costimulatory molecules (data not shown).

Levels of the important T-cell–inhibitory PD-L1 molecule on iNKT-conditioned DCs from NOD and B6.\textit{H}2g7 mice were also compared. PD-L1 can be expressed on mature DCs and inhibits activated T- and B-cells when engaging PD-1 (27,28). This interaction regulates type 1 diabetes in NOD mice as antibody blockade of either the ligand or receptor accelerates disease onset by inhibiting apoptosis of pathogenic lymphocytes (29). PD-L1 was upregulated on iNKT-conditioned DCs in both strains, but again a more robust response was observed in B6.\textit{H}2g7 mice (Fig. 4). However, based on these collective results, we hypothesized that the induction of differing activity patterns of T-cell costimulatory molecules varying in capacity to override PD-L1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs from NOD and B6.\textit{H}2g7 mice to inhibit or support type 1 diabetes development.

Tolerogenic and immunogenic properties of NOD and B6.\textit{H}2g7 iNKT-conditioned DCs are abrogated by respective treatment with PD-L1– or CD70-blocking antibodies. The T-cell costimulatory molecule we initially chose to test the above hypothesis was CD70 because its expression is unchanged or strongly upregulated on iNKT-conditioned DCs in NOD and B6.\textit{H}2g7 mice, respectively (Fig. 4). Hence, we determined whether either PD-L1 or CD70 blockade altered the ability of iNKT-conditioned DCs from NOD or B6.\textit{H}2g7 mice to stimulate A14 T-cells. In one experiment, DCs were purified from NOD and B6.\textit{H}2g7 mice treated with \textalpha-GalCer and either a PD-L1–blocking antibody or polyclonal rlgG 24 h and 16 h previously and then fixed in 0.75% paraformaldehyde to prevent further maturation in culture (15). PD-L1 blockade was confirmed on DCs directly after fixation (supplementary Fig. 2). DCs

FIG. 4. iNKT-cell–conditioned DCs from NOD and B6.\textit{H}2g7 mice express different patterns of T-cell costimulatory and inhibitory molecules. Flow cytometry was used to determine the mean fluorescence intensity (MFI) of antibody staining of T-cell costimulatory and inhibitory molecules on the surface of naive and iNKT-matured CD11c+ DCs resident within splenocytes of 6- to 8-week-old female NOD and B6.\textit{H}2g7 mice (n = 3) injected intraperitoneally 24 h previously with \textalpha-GalCer (2 \textmu g) or DMSO. Boxed values indicate the within-strain fold change in expression levels of the indicated surface molecule on splenic DCs from \textalpha-GalCer– compared with DMSO-treated mice. Differences across strains in absolute expression levels of surface molecules and the fold change induction within strains above baseline between iNKT-conditioned DCs from NOD and B6.\textit{H}2g7 mice were compared by one-way ANOVA.
were also purified and fixed from NOD and B6.\(^{H2g7}\) mice treated 24 h previously with \(/H9251\)-GalCer and placed in culture together with rIgG or CD70-blocking antibody (the CD70 antibody showed very poor binding persistence in vivo). DCs from each treatment group were used to induce antigenic mimotope-mediated proliferation of purified CFSE-labeled NOD.\(\text{Rag1}^{null}\)AI4 T-cells \((5 \times 10^4 \text{ per well})\) after 3 days in culture. B: DCs were purified from NOD and B6.\(^{H2g7}\) mice treated with \(\alpha\)-GalCer 24 h previously and fixed to prevent further maturation. DCs \((2.5 \times 10^4 \text{ per well})\) were then used to induce antigenic mimotope-mediated proliferation of purified CFSE-labeled NOD.\(\text{Rag1}^{null}\)AI4 T-cells \((5 \times 10^4 \text{ per well})\) in tissue culture media containing 10 \(\mu\)g/ml of anti-CD70 or rIgG. CFSE dilution of AI4 T-cells was assessed after 3 days in culture.

As previously observed, PD-L1 intact iNKT-conditioned DCs from rIgG-treated NOD mice did not efficiently support AI4 T-cell proliferation (Fig. 5A). Conversely, AI4 T-cells proliferated vigorously when PD-L1–blocked iNKT-conditioned DCs from NOD mice were used for antigen presentation. Unlike NOD, PD-L1 intact iNKT-conditioned DCs from B6.\(^{H2g7}\) mice promoted robust AI4 T-cell activation. Furthermore, PD-L1 blockade of iNKT-conditioned B6.\(^{H2g7}\) DCs only marginally increased their AI4 T-cell stimulatory capacity (Fig. 5A).

The greater ability of rIgG control-treated iNKT-conditioned DCs from B6.\(^{H2g7}\) than NOD mice to activate AI4 T-cells correlated with their CD70 expression levels (Fig. 5B). However, addition of the CD70-blocking antibody completely abrogated the ability of iNKT-conditioned DCs from either strain to induce antigen-mediated AI4 T-cell proliferation (Fig. 5B).

These collective data indicate AI4 T-cell activation is sensitive and insensitive to inhibition by PD-L1 signaling from NOD and B6.\(^{H2g7}\) iNKT-conditioned DCs, respectively. This variability is likely due to much higher levels of costimulatory molecules, including CD70, provided to AI4 T-cells by iNKT-conditioned DCs from B6.\(^{H2g7}\) than NOD mice.

PD-L1 blockade inhibits the ability of NOD but not B6.\(^{H2g7}\)-activated iNKT-cells to mediate type 1 diabetes–protective effects. Given the above results, we hypothesized in vivo PD-L1 blockade would abrogate the earlier described ability of \(\alpha\)-GalCer–activated iNKT-cells to inhibit AI4 T-cell–induced type 1 diabetes in NOD but not B6.\(^{H2g7}\) mice. To test this hypothesis, NOD.\(\text{Rag1}^{null}\)AI4
T-cells were injected into sublethally irradiated NOD and B6.H2g7 mice that had been pretreated with α-GalCer or vehicle. The recipients were also treated with a PD-L1-blocking or control antibody simultaneously with and 2 days after AI4 T-cell infusion. PD-L1 blockade abrogated the ability of α-GalCer pretreatments to inhibit AI4 T-cell-induced type 1 diabetes in NOD recipients (Fig. 6A). The inability of iNKT-cell activation to inhibit AI4 T-cell-mediated type 1 diabetes in B6.H2g7 recipients was not further influenced by PD-L1 blockade (Fig. 6B). Thus, the ability of iNKT-cell activation to paradoxically inducing downstream type 1 diabetes–protective responses in NOD, but not B6.H2g7, mice is at least partly due to differing activities of the T-cell–inhibitory PD-L1 molecule.

Differences in both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2g7 mice. Strain differences characterizing DCs, iNKT-cells, or both could contribute to their differential interactions in NOD and B6.H2g7 mice. Hence, we initially determined whether maturation responses of NOD and B6.H2g7 (7) DCs varied in a culture system where they were simultaneously exposed to an equivalent pool of activated iNKT-cells. Equal numbers of NOD and B6.H2g7 splenocytes were cocultured for 48 h in the presence or absence of α-GalCer. In the α-GalCer–stimulated cultures, DCs from NOD mice (CD45.1+) expressed reduced levels of CD86 and PD-L1 (Fig. 7A) compared with those of B6.H2g7 origin (CD45.2+), although each population had been exposed to equivalent iNKT-derived signals. These results suggested differences inherent to DCs from NOD versus B6.H2g7 mice at least partially contribute to their variable responses to activated iNKT-cells.

The mixed splenocyte culture system described above did not allow us to exclude the possibility that NOD versus B6.H2g7 (7) strain differences inherent to iNKT-cells also contribute to variability in the downstream maturation pattern of DCs. Furthermore, although the mixed splenocyte experiment allowed for a matched pool of activated iNKT-cells, it could not exclude the possibility that the differential maturation patterns of NOD and B6.H2g7 DCs in this system were also dependent on contributions from other interactive leukocyte populations. To address these possibilities, purified iNKT-cells and DCs from each strain were cultured together in a “crisscross” fashion in the presence or absence of α-GalCer. Under these conditions, matched numbers of activated iNKT-cells isolated from B6.H2g7 mice had a greater capacity than those of NOD origin to induce upregulation of CD86 and PD-L1 expression on DCs from both strains (Fig. 7C and D). Interestingly, DC maturation responses in this assay system were dependent solely on the strain of origin of the cocultured iNKT-cells. Thus, NOD versus B6.H2g7 strain differences inherent to iNKT-cells contribute to their ability to induce varying states of downstream DC maturation. Furthermore, these results, in conjunction with those from the mixed splenocyte experiment described above, indicate that in addition to activated iNKT-cells, contributions from another leukocyte population(s) are required to induce inherent differences in the subsequent maturation responses of DCs from NOD and B6.H2g7 mice. The identification and functional characterization of this additional leukocyte population(s) that influences whether iNKT-conditioned DCs mature to a tolerogenic or immunogenic state should be a fertile area of future investigation.

DISCUSSION

The present results verify the previously suggested, but not definitively proven, mechanism that α-GalCer–activated iNKT-cells at least partly protect NOD mice from type 1 diabetes by driving the maturation of tolerogenic DCs. In contrast, iNKT-conditioned DCs in B6.H2g7 mice mature to an alternative immunogenic state that supports rather than inhibits AI4 T-cell–induced type 1 diabetes. The downstream maturation of iNKT-conditioned DCs in NOD and B6.H2g7 mice to a tolerogenic versus an immunogenic state is due to the induction of quantitatively
different expression levels of T-cell costimulatory and inhibitory molecules.

A series of T-cell costimulatory molecules were upregulated to a much greater extent on iNKT-conditioned DCs from B6.H2^{g7} than NOD mice. In particular, CD70 and OX40L expression levels were unchanged or strongly upregulated on iNKT-conditioned DCs from NOD and B6.H2^{g7} mice, respectively. This could be significant given a report that iNKT-cells promote CD8⁺/H11001 cytotoxic T-cell responses by inducing CD70 expression on DCs (30). Indeed, without ruling out possible contributions from other costimulatory molecules, CD70 blockade abrogated the ability of iNKT-conditioned B6.H2^{g7} DCs to support diabetogenic AI4 T-cell activation.

Lower levels of costimulatory molecule expression on NOD iNKT-conditioned DCs may explain why they do not support type 1 diabetes development like those of B6.H2^{g7} origin, but do not account for their disease-protective capacity. An explanation for this protection appears to lie in the observation that iNKT-cell–conditioned DCs also upregulate expression of the T-cell–inhibitory PD-L1 molecule. Absolute levels of PD-L1 were higher on iNKT-conditioned DCs from B6.H2^{g7} than NOD mice. However, PD-L1 blockade only marginally enhanced the already strong ability of iNKT-conditioned B6.H2^{g7} DCs to support diabetogenic AI4 T-cell activation. In contrast, PD-L1 blockade significantly enhanced the normally poor ability of iNKT-conditioned NOD DCs to support AI4 T-cell activation. PD-L1 blockade also abrogated the ability of α-GalCer–activated iNKT-cells to induce type 1 diabetes–protective effects in NOD mice. These collective results indicate the relative activity of inhibitory PD-L1 versus various T-cell costimulatory molecules is greater in iNKT-conditioned DCs in NOD than B6.H2^{g7} mice.

The finding that PD-L1 expression plays an important role in the type 1 diabetes–protective capacity of NOD
iNKT-conditioned DCs provides a likely mechanistic explanation for our previous observation that such antigen-presenting cells directly mediate the apoptotic deletion of some AÎ4 T-cells (31). However, the ability of activated iNKT-cells to inhibit type 1 diabetes development in NOD mice is also at least partly Treg dependent (20). Tregs are also reportedly less susceptible than conventional T-cells to PD-1–mediated deletion (32). iNKT-conditioned DCs from NOD and B6.H2b7 mice maintain diabetogenic AÎ4 CD8 T-cells in a relatively quiescent state and a highly activated state, respectively. Hence, iNKT-conditioned DCs in NOD mice may mediate PD-1–dependent apoptotic deletion of at least some diabetogenic T-cells that become activated, but keeping most of such effectors in a quiescent state also allows them to be more easily suppressed by Tregs than in the B6.H2b7 strain. This latter possibility will be the subject of future investigations.

In contrast to our current findings, it has been reported that NOD mice must be pretreated with multiple, rather than a single, injections of α-GalCer to induce type 1 diabetes–protective tolerogenic DCs (33). However, this study used a model system in which new diabetogenic T-cells could be continuously generated from hematopoietic precursors, whereas our studies evaluated the effects of various iNKT-conditioned DC populations on a single bolus of infused AÎ4 effectors.

Inferences for human type 1 diabetes intervention, based upon the ability of iNKT-conditioned DCs from two inbred mouse strains to differentially alter disease development, must be drawn with caution. There is likely to be comparable heterogeneity in iNKT-induced DC responses in humans. Compared with those in other strains, NOD DCs do not mature normally (34,35). This defect may be a pathogenic component of autoimmunity, as NOD DCs matured through ex vivo manipulation become type 1 diabetes protective (36). Similar DC maturation abnormalities reportedly characterize some human type 1 diabetic patients (37–39). If DCs from type 1 diabetic patients are analogous to those of NOD mice, then iNKT-cell activation may also restore their maturation to a tolerogenic state. However, unlike the case in inbred mice, there is likely to be more heterogeneity in the pathogenic basis of type 1 diabetes development in humans, including potential variability in DC functions. Such a scenario should preclude consideration of iNKT-cell agonists as potential type 1 diabetes therapeutic agents until reliable biomarkers are identified to predict how such compounds affect DC maturation in individual patients.

Current data indicate that NOD versus B6.H2b7 strain differences inherent to iNKT-cells contribute to their variable inducible induction of downstream DC maturation responses. NOD and B6.H2b7 mice are further characterized by strain differences inherent to DCs, but are also dependent on contributions from another leukocyte population(s), which underlies their variable iNKT-cell–induced maturation patterns. NOD mice are reportedly characterized by both iNKT-cell and DC anomalies (34,35,40–43). Treatment with α-GalCer may protect NOD mice from type 1 diabetes by compensating for both pathogenic iNKT-cell and DC impairments. Conversely, B6.H2b7 mice have unimpaired iNKT-cells and DCs. This may account for why α-GalCer–treated B6.H2b7 mice, DCs mature to an immunogenic rather than a tolerogenic state.

In summary, iNKT-conditioned DCs in NOD and B6.H2b7 mice mature to a type 1 diabetes–protective or an immunogenic disease-inducing state, respectively. These varying DC maturation states are characterized by differing activity balances of T-cell–inhibitory and costimulatory molecules. This heterogeneity of iNKT-cell and DC interactions in inbred mouse strains raises concerns that should be considered before trying to manipulate this axis as a possible type 1 diabetes intervention approach in genetically heterogeneous humans.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health Grants DK-46266 and DK-51090, Cancer Center Support Grant CA34196, and grants from the Juvenile Diabetes Research Foundation International.

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Fujii S, Shimizu K, Hennii H, Steinman RM. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 2007;220:183–198
2. Chen YG, Choisy-Rossi CM, Holl TM, Chapman HD, Besra GS, Porcelli SA, Shafer DJ, Roopenian D, Wilson SB, Serreze DV. Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 2005;174:1196–1204
3. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004;113:1370–1388
4. Van Kaer L. alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 2005;5:31–42
5. Chung Y, Qin H, Kang CY, Kim S, Kwak LW, Dong C. An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood 2007;110:2013–2019
6. Teng MW, Westwood JA, Darcy PK, Sharkey J, Tsuji M, Francck RW, Porcelli SA, Besra GS, Takeda K, Yagitfa H, Kershaw MH, Smyth MJ. Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res 2007;67:7495–7504
7. Shimizu K, Kurossawa Y, Taniguchi M, Steinman RM, Fujii S. Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 2007;204:2641–2653
8. Ko BJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY, Sakaguchi S, Kang CY. A combination of chemoinmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 2007;67:7477–7486
9. Hong C, Lee H, Oh M, Kang CY, Hong S, Park SH. CD4+ T cells in the absence of the CD8+ cytotoxic T cells are critical and sufficient for NKT cell-dependent tumor rejection. J Immunol 2006;177:6747–6757
10. Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 2007;314:215–250
11. Rynarchczyk SL, Lowenstein H, Mayette J, Foster SR, Danby DE, Howe IW, Aktan I, Meyer RE, Poynter ME, Boyson JE. Widespread natural variation in murine natural killer T-cell number and function. Immunology 2008;125:331–343
12. Choisy-Rossi CM, Holl TM, Pierce MA, Chapman HD, Serreze DV. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience. J Immunol 2004;173:3701–3706
13. Shi FD, Fldstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N. Germ line deletion of the CD1 locus exacerbates diabetes in nonobese diabetic mice. Proc Natl Acad Sci USA 2001;98:6777–6782
14. DiLorenzo TP, Lieberman SM, Takaki T, Honda S, Chapman HD, Santamaria P, Serreze DV, Nathenson SG. During the early prediabetic period in NOD mice, the pathogenic CD8+ T cell population comprises multiple antigenic specificities. Clin Immunol 2002;105:332–341
15. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003;198:267–279
16. Serreze DV, Choisy-Rossi CM, Grier AE, Holl TM, Chapman HD, Gaaban JF, Osborne MA, Zhang W, King BL, Brown A, Roopenian D, Marron MP. Through regulation of TCR expression levels, an Idd7 region gene(s) interactively contributes to the impaired thymic deletion of autoreactive diabetogenic CD8+ T cells in nonobese diabetic mice. J Immunol 2008;180:3250–3259
VARIABLE INKT-CELL CONTROL OF TYPE 1 DIABETES

17. Shi FD, Floedstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 2003;98:6777–6782

18. Takaki T, Lieberman SM, Holl TM, Han B, Santamaria P, Serreze DV, DiLorenzo TP. Requirement for both H2-Dd and H2-Kd for the induction of diabetes by the promiscuous CD8+ T cell clonotype A14. J Immunol 2004;173:2530–2541

19. Kojo S, Seino K, Harada M, Watarai H, Wakao K, Uchida T, Nakayama T, Taniguchi M. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J Immunol 2005;175:3648–3655

20. Ly D, Mi QS, Hussain S, Delovitch TL. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J Immunol 2006;177:3605–3704

21. Schildknecht A, Miescher I, Yagita H, van den Broek M. Priming of CD8+ T cell responses by pathogens typically depends on CD70-mediated interactions with dendritic cells. Eur J Immunol 2007;37:716–728

22. Taraban VY, Rowley TF, Al-Shamkhani A. Cutting edge: a critical role for CD38+CD8+ T cell responses in the generation of autoimmunity in nonobese diabetic mice. J Immunol 2007;181:2438–2445

23. Dahlén E, Hedlund G, Dawe K. Low CD86 expression in the nonobese diabetic mice results in the impairment of both T cell activation and CTLA-4 up-regulation. J Immunol 2000;164:2444–2456

24. Pearson T, Markes TG, Serreze DV, Pierce MA, Mann AP, Wicker LS, Peterson LB, Shultz LD, Mordes JP, Rossini AA, Greiner DL. Genetic disassociation of autoimmunity and resistance to stimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 2003;171:185–190

25. Shinomiya M, Fazel Akbar SM, Shinomiya H, Onji M. Transfer of dendritic cells (DC) ex vivo stimulated with interferon-gamma (IFN-gamma) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice. Clin Exp Immunol 1999;117:38–43

26. Vuckovic S, Withers G, Harris M, Khalid D, Gardiner D, Flesch I, Tepes S, Greer R, Cowley D, Cotterill A, Hart DN. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 2007;123:281–288

27. Jansen A, van Hagen M, Drexhage HA. Defective maturation and function of antigen-presenting cells in type 1 diabetes. Lancet 1995;345:491–492

28. Takahashi K, Honeymon MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J Immunol 1998;161:2629–2635

29. Chen YG, Driver JP, Silveira PA, Sarretourn DV. Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 2007;59:705–712

30. Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N. A defect in interleukin 12-induced activation and interferon-gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 1999;189:963–972

31. Alderson KL, Zhou Q, Berner V, Wilkins DE, Weiss JM, Blazar BR, Welniaik LA, Wiltrop RH, Redelman D, Murphy WJ. Regulatory and conventional CD4+ T cells show differential effects correlating with PD-1 and B7–H1 expression after immunotherapy. J Immunol 2008;180:2981–2988

32. Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y. Ligand-independent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 2008;181:2438–2445

33. Alderson KL, Zhou Q, Berner V, Wilkins DE, Weiss JM, Blazar BR, Welniaik LA, Wiltrop RH, Redelman D, Murphy WJ. Regulatory and conventional CD4+ T cells show differential effects correlating with PD-1 and B7–H1 expression after immunotherapy. J Immunol 2008;180:2981–2988

34. Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y. Ligand-independent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 2008;181:2438–2445

35. Alderson KL, Zhou Q, Berner V, Wilkins DE, Weiss JM, Blazar BR, Welniaik LA, Wiltrop RH, Redelman D, Murphy WJ. Regulatory and conventional CD4+ T cells show differential effects correlating with PD-1 and B7–H1 expression after immunotherapy. J Immunol 2008;180:2981–2988

36. Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y. Ligand-independent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 2008;181:2438–2445

37. Alderson KL, Zhou Q, Berner V, Wilkins DE, Weiss JM, Blazar BR, Welniaik LA, Wiltrop RH, Redelman D, Murphy WJ. Regulatory and conventional CD4+ T cells show differential effects correlating with PD-1 and B7–H1 expression after immunotherapy. J Immunol 2008;180:2981–2988

38. Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y. Ligand-independent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 2008;181:2438–2445

39. Alderson KL, Zhou Q, Berner V, Wilkins DE, Weiss JM, Blazar BR, Welniaik LA, Wiltrop RH, Redelman D, Murphy WJ. Regulatory and conventional CD4+ T cells show differential effects correlating with PD-1 and B7–H1 expression after immunotherapy. J Immunol 2008;180:2981–2988

40. Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y. Ligand-independent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 2008;181:2438–2445

41. Shintomiya M, Fazel Akbar SM, Shinomiya H, Onji M. Transfer of dendritic cells (DC) ex vivo stimulated with interferon-gamma (IFN-gamma) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice. Clin Exp Immunol 1999;117:38–43

42. Vuckovic S, Withers G, Harris M, Khalid D, Gardiner D, Flesch I, Tepes S, Greer R, Cowley D, Cotterill A, Hart DN. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 2007;123:281–288

43. Jansen A, van Hagen M, Drexhage HA. Defective maturation and function of antigen-presenting cells in type 1 diabetes. Lancet 1995;345:491–492

44. Takahashi K, Honeymon MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J Immunol 1998;161:2629–2635

45. Chen YG, Driver JP, Silveira PA, Sarreze DV. Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 2007;59:705–712

46. Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N. A defect in interleukin 12-induced activation and interferon-gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 1999;189:963–972

47. Hammond KJ, Pellicci DG, Poulton LD, Naidenko OV, Scalzo AA, Baxter AG, Godfrey DI. CD1d-restricted NKT cells: an interstrain comparison. J Immunol 2001;167:1164–1173

48. Hammond KJ, Pellicci DG, Poulton LD, Naidenko OV, Scalzo AA, Baxter AG, Godfrey DI. CD1d-restricted NKT cells: an interstrain comparison. J Immunol 2001;167:1164–1173