Cold plasma treatment of seeds: deciphering the role of contact surfaces through multiple exposures, randomizing and stirring

T Dufour* and Q Gutierrez

LPP, Sorbonne Université, CNRS, Ecole Polytech., University Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, 4 Place Jussieu, 75252 Paris, France

E-mail: thierry.dufour@sorbonne-universite.fr

Received 7 June 2021, revised 23 August 2021
Accepted for publication 10 September 2021
Published 22 September 2021

Abstract

Cold plasma technologies are an efficient approach to improve the germination properties of seeds, especially in a stacking configuration within a dielectric barrier device (DBD). In such dry atmospheric plasma priming process, we show that a helium-nitrogen plasma treatment of 20 min can reduce the median germination time of lentil seeds from 1420 min to 1145 min, i.e. a gain in vigor of 275 min (or +19.4%). Considering that this result depends on the plasma-seed interaction and therefore on the contact surfaces between the seeds and the plasma, a topographic modeling of a 100 seeds-stack is performed in the DBD. This model drives to the distinction between the seed–seed contact surfaces (276 contacts standing for a total area of 230.6 mm²) and the seed-wall contact surfaces (134 contacts standing for a total area of 105.9 mm²). It turns out that after a single plasma treatment, the outer envelope of each seed is 92% exposed to plasma: a value high enough to support the relevance of the plasma process but which also opens the way to process optimizations. In this outlook, we propose to replace the single 20 min plasma treatment by a ‘plasma sequence’, i.e. a succession of shorter plasma treatments whose total duration remains 20 min. Between two successive plasma treatments, the seeds can follow either a trapping procedure (seeds in same positions and orientations) or a randomizing procedure (seeds in same positions but reoriented) or a stirring procedure (seeds vigorously shaken). As an example, a sequence of ten plasma treatments (upon 2 min) separated by short stirring procedures leads to a gain in vigor as high as 405 min (+28.5%) vs 275 min (+19.4%) for a single plasma treatment of 20 min. We propose to understand these results by correlating the gain in vigor with the water uptake of the seeds (increase from 29% to 55%) and the wettability state of their coating (decrease of contact angle from 113.5° to about 38°).

Keywords: seed plasma-interaction, plasma-stirring process, plasma agriculture, seeds vigor, dry atmospheric plasma process

(Some figures may appear in colour only in the online journal)
1. State of the art

1.1. What is priming

In the life cycle of a seed plant, germination appears as the most critical developmental phase where the embryonic cells undergo a programmed transition from a quiescent state (mature seed) to a highly active metabolic state (vigorous young seedling) [1]. As shown in figure 1(a), most mature seeds are found or stored in a dry state (S-phase) characterized by a water content typically lower than 10% and a resulting water potential as low as —100 to —350 MPa [2]. Sprinkling seeds with water drives to a water uptake mechanism sequenced into three canonical phases:

(i) The imbibition (I-phase) corresponds to a drastic increase in water content upon the first ten hours. The seeds exhibit limited biochemical activity, although light reactions and some oxidative processes are possible. The water impregnation of the seed is not homogeneous and depends on the nature of its constituents. Since protein is more hydrophilic than starch, the hydration of the protein-rich embryo is easier than the starchy endosperm [2]. The diffusion of water into the cells of dry seeds fragilizes their membranes, causing rapid leakage of solutes and low molecular weight metabolites into the surrounding imbibing solution. This phase is also characterized by DNA repair, mitochondria repair and synthesis of proteins using extant mRNA’s [3].

(ii) The activation (A-phase) corresponds to a plateau, i.e. a period of limited or no water uptake although seeds undergo important physiological modifications, including mitochondria maturation, protein synthesis, storage reserve metabolism and production of specific enzymes [2]. As an example, the combined action of the proteasome and peptidases drive to the degradation of seed storage proteins.

(iii) The germination (G-phase) where a further increase in water uptake occurs and where the embryo axis elongates and breaks through the covering layers for the protrusion of the radicle [4].

Primming is a pre-sowing method commonly used by seed multiplier farmers, farmer seed enterprises and phytosanitary companies to improve the germinative properties of seeds, e.g. increasing the germination rate or improving the median germination time. This technique consists into partially hydrating seeds to initiate the metabolic activities of germination without bringing them to term, i.e. before reaching the radicle protrusion [7].

Among the various priming treatments carried out in routine, hydropriming appears as one of the simplest to implement. As sketched in figure 1(b), seeds are soaked into water to achieve the imbibition (I-phase) and then the activation (A-phase) without fully completing it. Then, the seeds are re-dried (D-phase) to original moisture content to prevent the emergence of the radicle [8]. Upon this stage, orthodox seeds can be dried to water contents as low as 2%–5% without risking any damage. Conversely, recalcitrant seeds cannot survive desiccation if water content is lower than 12%–31% [9]. The main strength of this technique lies in the non-use of chemicals, making it both cheap and environment friendly. However, it should be pointed out that hydropriming suffers from several weaknesses: (a) its duration is relatively long, typically from 1 d to 1 week, while its multi-stage organization requires skilled workers, (b) the water diffusion and absorption phenomena are uncontrolled owing to free water availability and to the affinity of seed tissues to water (c) the non-uniform hydration of the seeds upon their imbibition phase result into an unsynchronized metabolic activation and therefore inhomogeneity in the appearance of radicles [5].

Alternatives to hydropriming include halopriming (seeds immersed in inorganic salts solutions like NaCl, NaNO₃, MnSO₄), thermopriming (seeds exposed to thermo-controlled environments), hormopriming (seeds imbibed in presence of growth regulators such as abscisic acid, auxins, gibberellins, …) as well as osmopriming [10]. That latter technique consists into soaking the seeds in a solution with a fixed osmotic potential to ensure a slower diffusion of water in the seed and

Figure 1. Time variations of seed water content after contact with water. (a) Timeline without priming technique, (b) timeline including hydropriming process, (c) timeline including dry atmospheric plasma-priming (DAPP). This figure is a summary diagram from [2, 5] and [6] adapted to plasma processes.
therefore a better control of the first phases activating the germination process [6]. Thus, in the case of *R. pseudoacacia L.*, the effect of osmotic stress induced by the addition of increasing concentrations of PEG6000 results in decreasing germination rates. As an example, soaking seeds at—0.2 MPa drives to germination rates twice lower than with pure water while soaking seeds at—1 MPa totally prevents the germination phenomenon [11].

1.2. Dry atmospheric plasma priming (DAPP)

A different and innovative way to prime seeds relies on the utilization of cold atmospheric plasmas following a dry route. The so-called dry atmospheric plasma-priming (DAPP) could lead to similar performances as those obtained with conventional priming techniques with—as a major asset—a single-step treatment achieved on a much shorter processing time (<1 h). As already reported in the literature and as synthesized hereafter, DAPP can be achieved using various plasma reactors, some of them operating at low pressure (typically <1 mbar) and others at atmospheric pressure.

Low-pressure RF plasma processes are successfully utilized to improve the germination of various seeds like *Moringa oleifera* seeds. Their exposure to an RF plasma of argon during 1 min at 100 W and 2 Torr allows the increase in their germination by 20% and the subsequent shoot growth by more than 30% [12]. Complementarily with these results, it has been shown that plasma can favor the diffusion of mineral elements in the coat of Quinoa seeds exposed to a capacitive RF reactor at 0.1 mbar, resulting in higher germination rate [13]. Low-pressure RF plasmas can also inactivate seedborne bacteria showing a high pathogenicity. Hence, in the case of cabbage seeds artificially contaminated by *Xanthomonas campestris pv. campestris* (Xcc), Ono et al. demonstrates how *Xanthomonas campestris pv. campestris* (Xcc), Ono et al. demonstrates how *Xanthomonas campestris* (Xcc). Ono et al. demonstrates how *Xanthomonas campestris* (Xcc) and *Xanthomonas campestris* (Xcc) to deactivate seed-treated bacteria from a hybrid plasma reactor. For example, *Xanthomonas campestris* pv. *campestris* (Xcc) and *Xanthomonas campestris* pv. *campestris* (Xcc) are decreased following a 2-log factor, while other experiments show that, on the contrary, plasma corona processes can be engineered to purposely increase seed’s germination rate. Hence, the treatment of black soybean seeds to an air corona device for 2 min results into germination rates three times higher than those from control group [19]. In parallel to corona processes, DBDs figure among the most promising reactors especially because seeds can be stacked in the interelectrode gap, thus offering the ability of treating large amounts of seeds. So far, most of these so-called seed-stacked DBDs are supplied with a carrier gas (argon, helium) eventually mixed with a reactive gas. Molina et al. supply their DBD with helium to improve the germination of wheat seeds, while Ji et al. prefer molecular nitrogen to boost the slow germination rate of *Coriandrum sativum* [20, 21]. Interestingly, if the interelectrode gap and the seeds characteristic diameters are small enough (typically ≤4 mm), plasma can be directly ignited in ambient air, as shown in the works of Yi et al., making the process particularly attractive for industrials [22].

2. Experimental setup, materials and methods

2.1. Seeds

In this research work, lentil (*Lens culinaris*, from Radis & Capucine company) is used as an agronomic model for various reasons. First, the global annual production rate of lentils reaches 3.6 million tons, which makes this edible legume one of the most consumed in the world [23]. Second and despite this success, several (a)biotic stresses limit the growth and cultivation of lentils, hence the need to adopt new treatments instead of (or in addition to) the selection strategies which are currently being studied to improve their genotypes and adapt them to diverse agro-climatic conditions [24]. Third, lentil figures among the legumes requiring the shortest cooking time, typically 15 min, resulting in reduced nutrient losses (e.g. only 15% and 25% loss of thiamine and niacin respectively) [25]. Because they are rich in vegetable proteins, antioxidants, vitamins and minerals, lentils have many health benefits.

2.2. Seed-stacked dielectric barrier device

The DBD—whether seed-stacked or not—is constituted by a rectangular quartz tube (30 cm length, 6 × 15 mm inner...
Figure 2. Sketch diagram of the seed-stacked dielectric barrier, (b) picture of the seed-stacked DBD during τ_{off} and (c) during τ_{on}.

section) plated by two aluminum electrodes. As sketched in figure 2(a), the resulting interelectrode gap ($6 \times 15 \times 65 \text{ mm}^3$) can contain approximately 100 seeds of lentils (the unitary volume of one seed being 23.84 mm3). The DBD is supplied with 6 kV in amplitude at a frequency of 500 Hz (sine form) using a high voltage generator composed of a function generator (ELC Annecy France, GF467AF) and a power amplifier (Crest Audio, 5500 W, CC5500). It is supplied with a gas mixture of helium (1 slm) and molecular nitrogen (150 sccm) at atmospheric pressure. Before switching on the plasma, a purge procedure is achieved by injecting a He-N$_2$ gas mixture in the DBD to drastically reduce residual air background. In the figure 2(b) (plasma off) and 2(c) (plasma on), the dielectric barrier is in contact with the upper horizontal plane of the seed stack while the counter electrode is in contact with its lower horizontal plane, consistently with figure 2(a).

2.3. Sequences and procedures of dry atmospheric plasma priming

The seeds are exposed to the plasma following different sequences and procedures defined as follows.

A sequence corresponds to a succession of N plasma treatments, keeping in mind that the duration of a sequence (τ_{sequence}) corresponds to the duration of N single plasma treatments as written in equation (1). Each plasma treatment can be broken down into an active phase where the seeds are effectively exposed to plasma during τ_{on} and a passive phase where seeds remain unexposed to plasma upon a timeout $\tau_{\text{off}} = 2 \text{ min}$ (equation (2)). The figures 2(b) and (c) illustrate the seed-stacked DBD during these two phases. For a given sequence, the plasma exposure times (τ_{on}) have always the same value, hence explaining why equations (3) and (4) lead to (5). Whatever the sequence, the total exposure time to plasma is $\tau_{\text{pl}} = 20 \text{ mins}$ as shown in equation (6).

\[
\begin{align*}
\tau_{\text{sequence}} &= N.\tau_{\text{treatment}} \\
\tau_{\text{treatment}} &= \tau_{\text{on}} + \tau_{\text{off}} \\
\tau_{\text{sequence}} &= N.(\tau_{\text{on}} + \tau_{\text{off}}) \\
\tau_{\text{sequence}} &= N.\tau_{\text{on}} + N\tau_{\text{off}} \\
\tau_{\text{sequence}} &= \sum_{i=1}^{n} \tau_{\text{on},i} + \sum_{i=1}^{n} \tau_{\text{off},i} \\
\tau_{\text{sequence}} &= \frac{\tau_{\text{pl}}}{20 \text{ min}} + \sum_{i=1}^{n} \tau_{\text{off},i}.
\end{align*}
\]

A procedure corresponds to the ‘mobility state’ of the seeds upon the τ_{off} timeouts. Three types of procedures are considered, as sketched in figure 3(b): (a) The ‘trapping procedure’ where seeds’ individual positions and orientations remain the same in the DBD upon each τ_{off} and therefore all along
τ_{sequence}, (b) the ‘randomizing procedure’ where a single reorientation of the seeds is performed in their stacked configuration so that their individual positions remain unchanged (c) the ‘stirring procedure’ where—during each τ_{off}—the seeds are extracted from the plasma-reactor, vigorously shaken during 1 min in a sealed glass flask of 250 ml (mean stirring distance = 30 cm, mean frequency = 3 Hz) and reintroduced in the plasma reactor.

2.4. Diagnostics and methods

2.4.1. Electrical characterizations. The electrical characterization of plasma is achieved with an analog oscilloscope (Wavesurfer 3054, Teledyne LeCroy) and high voltage probes (Tektronix P6015A 1000:1, Teledyne LeCroy PPE 20 kV 1000:1, Teledyne LeCroy PP020 10:1). Current peaks are analyzed by placing a current transformer (Pearson company, model 2877) between the DBD counter-electrode and the ground, as sketched in figure 2(a). Then, a statistical analysis on peaks distributions is achieved using the Peak Analyzer toolbox of the Origin software. Baseline mode is set to ‘Asymmetric Least Squares Smoothing’ while asymmetric factor, threshold, smoothing factor and number of iterations are set to 0.001, 0.02, 10 and 10 respectively. The electrical power deposited in the DBD is determined using the Lissajous method which relies on the addition of a capacitor.
(C_m = 100 pF) between the counter-electrode and the ground. Capacitance and resistance values of the seeds are measured using an LCR meter (HM-8118 model from Rohde & Schwarz) so as to assess their apparent conductivity and permittivity.

2.4.2. OES. Optical emission spectroscopy is utilized to identify the radiative species from plasma. The spectrometer (SR-750-B1-R model from Andor company) is equipped with an ICCD camera (Istar model) which operates in the Czerny Turner configuration. Its focal length is 750 mm while diffraction is achieved with a 1200 grooves mm\(^{-1}\) grating in the visible range. The following parameters are selected for all experiments: exposure time = 0.1 s, number of accumulations = 50, readout rate = 3 MHz, gate mode = ‘fire only’, intensification factor = 4000, insertion delay = ‘ultra fast’.

2.4.3. Temperature measurements. Temperature measurements of the seeds and of the walls’ DBD reactor are performed using a thermal probe from TESTO company (model 826) that allows infrared temperature measurements (spectral range = 8–14 μm) as well as contact point measurements with an accuracy of 0.1 °C.

2.4.4. Topographical modeling of the contact surfaces in the seed-stacked DBD. Solid modeling of the seed-stacked DBD is achieved using Blender software (version 2.81). Blender allows to perform advanced real-time physics simulation using the Bullet Physics engine: a professional open-source library developed by Coumans et al for collision detection, rigid body and soft body dynamics [26]. The library is free and the open-source software subject to the terms of the zlib License [27, 28]. Bullet Physics targets real-time and interactive use in games, visual effects, robotics and reinforcement learning. The physical properties of the Blender environment are utilized by default, in particular gravity with a value of −9.810 on the Z axis. The interelectrode gap of the DBD and a collection of 100 seeds are modelled by two types of mesh objects showing rigid body properties: the interelectrode gap is modeled by a parallelepiped mesh of \(6 \times 15 \times 50 \) mm\(^3\) while each seed is represented by an icosphere of level 6. This icosphere corresponds to a polyhedral ellipsoid characterized by its 20480 triangles and its three radii whose averages values (\(\mu_1 = 4.4, \mu_2 = 4.5 \) mm and \(\mu_3 = 2.1 \) mm) result from calculations performed on a sample of 30 real seeds of lentils. To make the model closest to the reality, each seed is made unique by slightly deforming it and by slightly changing its three radii. Their resizing is performed so that each of the three variables \(\mu \) take 100 values according to a Gaussian distribution, centered around \(\mu \) and included in the 2σ-range (95.4%). Among the 100-seeds collection, seeds present therefore the following typical dimensions: 4.4 (±1.0) × 4.5 (±1.0) × 2.1 (±1.0) mm\(^3\). The collection and magnified views are shown in figure 4.

2.4.5. Drop shape analysis. Shape analysis of water drops deposited on seeds coating is achieved by measuring contact angles to evaluate the wettability state of seeds teguments. A drop shape analyzer engineered and assembled at laboratory is utilized to measure the water contact angles (WCAs) following the Sessile drop method. All WCA measurements result from drops of milli-Q water, 10 μl in volume. Here, each WCA value is an average of ten drops deposited on ten different seeds.

2.4.6. Water uptake. Water uptake is the parameter assessing the amount of water absorbed by a seed after its imbibition. It can be expressed in a dimensionless form as shown in equation (7):

\[
\xi(t) = 100 \times \frac{m(t) - m_0}{m_0}
\]

where \(m_0 \) and \(m(t) \) correspond to the mass of the seed sample in the native state and at a post-imbibition time \(t \) respectively. Here, one sample is composed of 50 seeds. The weights are measured using an analytical balance (SARTORIUS company, model Entris 124i-1S) with readability of 0.1 mg and reproducibility ±0.1 mg.

2.4.7. Germination assays. Germination assays are carried out in accordance with the recommendation of FAO [29]. The effects of plasma are systematically evaluated on four independent samples of 100 seeds, i.e. 400 seeds in total. The following procedure is followed:

(a) Utilization of organic cotton square pads (8 cm × 8 cm × 3 mm) as test substrates placed in Petri dishes.
(b) Soaking of each substrate with 10 ml of tap water whose chemical parameters are calculated from the sanitary control agency of the water distribution network in Paris and reported in table 1 [30].
(c) Distribution of each 100-seeds sample into 20-seeds batches per Petri dish. The seeds are evenly spaced from each other, at a distance of 2.5 times their diameter. Thus, the possible spread of fungal molds is avoided.
(d) Storage of the seeds at 20 °C and RH = 40% in the dark throughout the germination follow-up.

3. Results and discussion

3.1. Characterization of the seed-stacked dielectric barrier device

Stacking seeds in a plasma reactor does not guarantee a systematic ‘plasma-seed’ interaction, i.e. an action of the seeds on plasma properties correlated with an action of plasma on the seeds’ biological properties. For example, a too low ionization degree of plasma will not drive to enhanced germination properties of the seeds. Likewise, placing only a dozen of seeds whose volume occupies 1% of the interelectrode volume will not significantly modify the plasma properties.
Figure 4. (a) Collection of 100 real lentil seeds including magnification view on the outer surface of a seed, (b) collection of 100 tridimensional phantom seeds modelled with Blender software including enlarged views on the tridimensional mesh. The elementary lengths and areas are 50 μm and 1.25×10^{-3} mm2 respectively.

Table 1. Chemical parameters of the tap water used for seeds imbibition.

Parameter	Average
Turbidity	0.4 NFU
Free chlorine	0.1 mg(Cl$_2$)/L
Conductivity	590.8 μS cm$^{-1}$
pH	7.6
Iron	9.4 μg l$^{-1}$
Nitrates	47.8 mg l$^{-1}$
Ammonium	0.0 mg l$^{-1}$
E. coli	0 n/(100 ml)
Hardness	29.2$^\circ$f
Calcium	108.1 mg l$^{-1}$
Bicarbonates	295.0 mg l$^{-1}$

3.1.1. Electrical characterization. A simple way to verify the action of seeds on plasma is to evaluate the electrical properties of the DBD with/without seeds. On that purpose, the time profiles of the plasma voltage (V_{pl}) and plasma current (I_{pl}) are represented in figures 5(a) and (b) respectively. If the absence/presence of seeds does not significantly change the profile of V_{pl}, a strong effect is observed on the peaks of current: their magnitude appears roughly twice lower if seeds are introduced in the plasma reactor. From an ‘equivalent electrical circuit’ point of view, the stack of seeds corresponds to a resistor in parallel with a capacitor [31]. Its resistance value is so high that the electric charges passing from the electrode to the counter-electrode are never transferred through this stack; they are only transferred by the plasma, through the interstices. Therefore, the DBD voltage remains unchanged whether a stack of seeds is in the reactor (or not) and, where appropriate, regardless of the resistance value of this stack. Conversely, the presence of seeds in the reactor modifies the amplitude of the current peaks; these are more numerous and half as intense in amplitude. This is because when a streamer (plasma) propagates from the electrode to the counter-electrode, it encounters a certain number of dielectric obstacles (= seeds) in its path which locally modify the electric field. Depending on the topography of each seed, the electric field can then be more intense in some directions to the detriment of others, resulting in a more complex spatial distribution and to the generation of more current peaks of lower magnitude.

Owing to the measurement capacitor (C_m) placed between the counter-electrode and the ground (figure 2), the Lissajous diagram of the DBD can be plotted, as shown in figure 5(c) where Q_{DBD} and V_{DBD} are the electrical charge and the operating voltage applied between the two electrodes, respectively. The area comprised inside the closed curves are the same and correspond to a plasma power of 1.32 W (± 0.05 W) with/without seeds. However, depending on whether seeds are placed in the plasma reactor, Lissajous’s figure shows two major discrepancies:

(a) The slopes of the AB edges are $\xi_{\text{off}} = 3.04$ pF (without seeds) and $\xi_{\text{off}}^{\text{with}} = 4.95$ pF (with seeds). Same values are obtained along the DC edges.

(b) The slopes of the DA edges are close so that $\xi_{\text{off}}^{\text{non}} \approx \xi_{\text{off}}^{\text{with}} = 37.5$ pF. Same values are obtained along the CD edges. Besides, these left and right edges exhibit discontinuities corresponding to the current peaks and therefore to the electrical charge of each plasma filament. These discontinuities are particularly visible when the DBD is not filled with seeds (black curve).
To clearly evidence the direct action of the seeds on the temporal distribution of Q_{fil} (electrical charge of each individual plasma filament), a statistical analysis of the current peaks is achieved over 500 periods, hence covering an equivalent time of 1 s. The figure 5(d) indicates that without seeds (black bars), the values of Q_{fil} range from 1 nC to 50 nC with many filaments characterized by values in the 1–6 nC range. Stacking seeds in the DBD leads to a reorganization of the plasma filaments: the values of Q_{fil} spread over a wider interval (from 1 nC to 87 nC) and are typically comprised between 8 nC and 20 nC. Also, the number of filaments is much without seeds: a maximum as high as 1.6×10^5 filaments is obtained at 4 nC versus only 1.0×10^3 filaments at 10 nC in the seed stack configuration. Finally, whatever the configuration (DBD with/without seeds), the total electrical charge remains the same over 1 s and estimated to a value of 48.4 µC.

3.1.2. Identification of the active species in the plasma phase. If stacking seeds in the reactor modifies the electrical properties of plasma, one may expect similar modifications in its radiative properties. The figure 6 (and its insets) shows the emission spectrum of the He-N$_2$ plasma for wavelengths comprised between 250 and 800 nm. Unsurprisingly, the helium peaks are detected (e.g. the one at 706.4 nm) as well as the bands of the second positive system of molecular nitrogen (e.g. the band headed at 337.1 nm). A low OH emissive band is also observed at 308.9 nm, probably due to traces of water vapor in the reactor and/or in the helium bottle. Overall, introducing seeds in the DBD drives to a significant decrease in all the emissive peaks and bands, with a rough factor of 10. This drop is to be correlated with the lower values of Q_{fil} obtained in presence of seeds (figure 5(d)).

More generally, the chemical composition of the plasma gas can play an important role on the germination properties of seeds, in particular on their vigor, as demonstrated in our previous work [32]. A plasma of helium with residual air background (Air/He <0.001) drives to the production of OH and O radicals that can contribute to improve the vigor parameter (gain in time close to +13%). The admixture of molecular oxygen to helium can however induce adverse biological effects owing to a too large production of ozone: at 150 sccm of O$_2$, the gain in vigor is only +9%. On the contrary, the addition of
molecular nitrogen to helium helps greatly to reduce median germination times, through the production of reactive nitrogen species, with a gain in time close to +16%. For this reason, in this work, helium and molecular nitrogen flow rate were fixed at 1 slm and 150 sccm respectively (150 sccm corresponding to the maximum value of the flowmeter device).

3.1.3. Characterization of the seeds stacked in the DBD reactor. The temperature of the walls’ DBD reactor as well as of the seeds is measured during their exposure to plasma using the thermal probe from TESTO. Since a value of 33.4 °C (±0.3 °C) is evidenced, one may wonder if the treatment does not risk slightly modifying the water content natively present in the seeds. The mass of a 100 seeds’ stack is measured before and after its exposure to plasma during 20 min, resulting in the mass values of 3144.4 mg (±0.8 mg) and 3127.5 mg (±0.4 mg) respectively. As the relative variation of mass remains as low as \(\frac{3144.4 - 3127.5}{3127.5} \times 100 \% \approx 0.53\%\), one can reasonably infer that our treatment has negligible effects on seeds internal water organization.

The electrical capacitance and resistance of lentil seeds are also measured using an LCR meter device to infer their apparent conductivity and relative permittivity. By assuming that the equivalent electrical model of a seed corresponds to a resistor in series with a capacitor, the LCR meter provides the following resistance and capacitance values: \(R_{\text{seed}} = 12.564 \pm 0.704 \ \text{M}\) and \(C_{\text{seed}} = 0.939 \pm 0.014 \ \text{pF}\). Electrical conductivity is estimated using equation (8), considering \(L = 2.26 \ \text{mm}\) as the thickness of the seed (which is also the distance between the two LCR probes upon the measurement) while \(S = 1.589 \times 10^{-2} \ \text{m}^2\) is the section of the seed. As a result, \(\sigma_{\text{seed}} = 1.131 \times 10^{-5} \ \text{S} \text{m}^{-1}\). Considering that the average mass of a single seed is 31.4 mg, the apparent conductivity is given by \(\sigma_{\text{app}} = \frac{\sigma_{\text{seed}}}{m_{\text{seed}}} = 3.60 \ \mu \text{S cm}^{-1} \text{g}^{-1}\). Complementarily, the relative permittivity of the seed can be estimated using equation (9) where \(\varepsilon_0 = 8.854 \times 10^{-12} \ \text{F m}^{-1}\) is the vacuum permittivity. Even if this equation provides a rough approximation, we find \(\varepsilon_r = 15.07\); a value quite consistent with those in the literature [33, 34].

Although this article does not aim to understand the ins and outs of these two physical parameters and how they can influence the plasma properties, it appears that the values of \(\sigma_{\text{app}}\) and \(\varepsilon_r\) have not significantly changed before/after a 20 min plasma exposure. This is probably due to the native water content which is very low, and which cannot drive to a water loss higher than 1% wt.

\[
\sigma_{\text{seed}} = \frac{1}{R_{\text{seed}}} \tag{8}
\]

\[
\varepsilon_r = \frac{C_{\text{seed}}}{\varepsilon_0} \frac{L}{S} \tag{9}
\]

3.1.4. Characterization of the contact surfaces within the seed-stacked DBD. If stacking seeds in the DBD modifies the electrical and optical properties of cold plasma, we will see that, in turn, the plasma can modify the seeds through the coating hydrophilization, their higher water uptake and their shorter median germination times (enhanced vigor). One can reasonably infer that the magnitude of these effects is directly correlated with the number and areas of the plasma-seed contact surfaces and therefore depends on several limiting factors:

(a) The existence of dead regions in the DBD where the gas is not ionized for various reasons (asymmetry of the electrodes, pressure gradients, electrodes slightly unparalleled, plasma generated by guided ionization waves, etc)

(b) As shown in the ICCD photograph in figure 7(a), the areas of the seed-seed contact surfaces \(A_{\text{a}_{\text{a}_{\text{a}}}}\) and seed-wall contact surfaces \(A_{\text{a}_{\text{a}_{\text{a}}}}\) are strongly related to seeds’ features, especially their geometry and stiffness:

(a) Concerning the geometry, it turns out that spherical seeds (e.g. cabbage, turnip) have very small contact areas unlike flattened seeds (e.g. pepper, carrot).

(b) Concerning the seed stiffness, two seeds with very hard seed coats or solid shells (e.g. sunflower seeds) cannot deform when placed in contact, resulting in a low contact surface area. Conversely, two soft seeds in contact can deform and share a larger contact surface area. This stiffness parameter depends also on exogeneous parameters like pressure, humidity and temperature. Thus, a plasma treatment whose gas temperature remains close to ambient temperature will not change the seeds thermoelastic properties while it will in the case of plasma exposures with gas temperature close to 60 °C.

Before assessing the total area of the seed-plasma contact surfaces \(A_{\text{a}_{\text{a}_{\text{a}}}}\), one must evaluate the dimensional parameters of the seeds as unitary elements within the DBD. Considering that the three-dimensional representation of a seed is an ellipsoid, the calculation of its volume \(V_{\text{seed}}\) is given by equation (10) where \(r_1, r_2\) and \(r_3\) are the first, second and third radius of

![Figure 6. Optical emissions spectrum of plasma generated in the DBD supplied in helium (1 slm) and molecular nitrogen (150 sccm), \(f = 500 \ \text{Hz}\).](image-url)
T Dufour and Q Gutierrez

Figure 7. (a) ICCD imaging pictures of seeds stacked in the dielectric barrier device during τ_{off} and τ_{on} phases. (b) Solid modeling of the seed-packing and its resulting contact surfaces, whether seed-seed (green, $a_{s/s}$) or seed-wall (red, $a_{s/w}$). (c) Snapshot of the seed-stacked DBD configuration simulated under Blender and showing the contact surface areas (mm2). (d) Distribution of the contact surface areas in the seed-stacked DBD.

Figure 7. (a) ICCD imaging pictures of seeds stacked in the dielectric barrier device during τ_{off} and τ_{on} phases. (b) Solid modeling of the seed-packing and its resulting contact surfaces, whether seed-seed (green, $a_{s/s}$) or seed-wall (red, $a_{s/w}$). (c) Snapshot of the seed-stacked DBD configuration simulated under Blender and showing the contact surface areas (mm2). (d) Distribution of the contact surface areas in the seed-stacked DBD.

this ellipsoid. Although the surface area of a seed (a_{seed}) can be accurately calculated using elliptic integrals (Jacobi integrals), the Thomsen formula seems more convenient as shown in equation (11). The value of the p parameter is 1.6075, so that the maximum relative error in Thomsen’s approximation is 1.061% at most [35]. Considering that the mean dimensions of a lentil seed are $4.43 \times 4.55 \times 2.11$ mm3, the average volume and area of a single seed are $v_{\text{seed}} = 22.27$ mm3 and $a_{\text{seed}} = 42.73$ mm2, respectively. Based on this information, $A_{s/pl}$ can be estimated using equation (11) where a_{seed}, $a_{s/s}$ and $a_{s/w}$ stand for the total area of a single seed, the area of a seed-seed contact surface and the area of a seed-wall contact surface, respectively. Similarly, in equation (12), A_{seeds}, $A_{s/s}$ and $A_{s/w}$ represent the sums of these elementary areas inside the DBD. A solid modelling of the seed stack DBD is performed using Blender and the settings detailed in section 2.4.3 so as to determine $A_{s/s}$ and $A_{s/w}$ (or $a_{s/s}$ and $a_{s/w}$) and then deduce $A_{s/pl}$.

The figure 7(b) illustrates the resulting seed-seed contact surfaces (green color) and seed-wall contact surfaces (red color) modeled by Blender inside the $6 \times 15 \times 65$ mm3 interelectrode gap considering a stack of 100 seeds. Unsurprisingly, the spatial distribution of these contact surfaces appears quite homogeneous as well as their orientations. For the sake of clarity, an enlarged view of the contact surfaces distributions is represented in figure 7(c) including the values of their areas expressed in mm2. The contour of each contact surface is perfectly smooth thanks to a large number of vertices and testifies a high mesh resolution. The figure 7(d) reports the number of seed-seed and seed-wall contact surfaces as a function of their areas. These curves are fitted with Cauchy distributions (also known as Lorentzian functions) following equation (14), where a^* indicates the area for which the distribution peak is reached while γ stands for the half-width at half-maximum. The a^* values are 0.61 mm2 and 0.81 mm2 for the seed-wall distribution and the seed-seed distribution respectively. As reported in table 2, global parameters can also be extracted from these distributions, especially their numbers: 134 seed-wall and 276 seed-seed contact surfaces are identified. The resulting number ratio of these contact surfaces is 0.48 and depends on seeds type as well as on the volume of the interelectrode gap. For a same type of seeds, a larger interelectrode gap will obviously drive to a smaller ratio while for a same interelectrode gap volume, smaller seeds will increase the value of this ratio. Considering that $a_{\text{seed}} = 42.73$ mm2 (equation (11)), the corresponding value of the seeds stack is $A_{\text{seeds}} = 4273$ mm2. Keeping in mind that the sum of all contact surface is $A_{s/s} + A_{s/w} = 336.5$ mm2, the proportion of A_{seeds} which remains unexposed to plasma ($\eta_{\%}$) is deduced from equation (15) with a value of 7.9%. In consequence, $A_{s/pl}$ is close to 92%: a value large enough to guarantee the relevance of the plasma process for priming seeds but which, at the same time, opens the way to process optimizations aiming at improving the germinative parameters. This issue is addressed in the following sections 3.1 and 3.2 through the implementation of sequences and procedures already introduced in section 2.3.
Table 2. Key numbers relating to the seed-to-seed \((A_{S/S})\) and seed-to-wall \((A_{S/W})\) contact surfaces.

Types of contact surfaces	All
Number of contact surfaces	276 134 409
Sum of contact surfaces (mm²)	230.6 105.9 336.5
Average contact surface (mm²)	0.84 (±0.02) 0.79 (±0.07) 0.82 (±0.03)

Figure 8. Influence of the number of stirring procedures (a) on germination potential, (b) on water uptake of seeds 7 h after their imbibition, (c) on contact angles of water drops deposited on seeds coatings. Each stirring procedure lasts 2 min and is not combined with plasma.

Figure 9. Germination curves of lentil seeds either from control group or from plasma group \((N = 1, \tau_{im} = 20\) min).
according to equation (16) where \(V_{\text{seeds}} \) and \(V_{\text{reactor}} \) stand for the volume of the 100 seeds and for the reactor volume containing the seeds respectively. Considering that the average volume of a lentil seed is 23.84 mm\(^3\) and that 100 of them are introduced in \(V_{\text{reactor}} \) (6 \(\times \) 15 \(\times \) 65 mm\(^3\)), the occupancy rate is estimated at 40.7%. This value is significantly lower than the one calculated in our previous work where a value as high as 0.67 = 67% is found because of the larger dimensions of the reactor (30 cm\(^3\)) [31].

3.2. Seeds modifications resulting from plasma sequences and procedures

In the next experiments, seeds are always exposed to plasma during 20 min, consistently with figure 3 and regardless the number of implemented sequences and procedures. As a reminder, we call sequence a succession of \(N \) plasma treatments and procedure a mobility state of the seeds upon the timeouts, i.e. trapping, randomizing or stirring procedure (section 2.2).

3.2.1. Reference case: without plasma

Before estimating whether biological effects can be obtained by combining procedures and plasma sequences, it is first necessary to verify whether procedures alone are likely to induce such effects. In the case of trapping or randomizing procedures alone (i.e. no coupling with plasma), the biological effects would naturally be similar to those from the control group. However, the question arises for the stirring procedure where the shocks undergone by the seeds could modify the morphology of their tissues. Therefore, the lentil seeds are stirred according to the instructions detailed in section 2.2. and \(N \) procedures of stirring are performed with \(N = 0, 1, 2, 3, 4, 6, 8 \) and 10 (2 min each, 100 seeds per 250 ml-sealed glass flask).

The influence of the stirring procedure—and more precisely the number of times it is repeated—is evaluated through three parameters described in figure 8: the median germination time (\(\tau_{50} \)), the water uptake (\(\xi \)) and the WCAs. In figure 8(a), a significant increase of \(\tau_{50} \) is observed with a value increasing from 1420 min (control group) to more than 2000 min for \(N > 6 \). As a result, the stirring procedure slows down the germination vigor and seems inappropriate. In figure 8(b), the parameter \(\xi \) measured 7 h after imbibition shows values close to 30% regardless of \(N \). Similarly, the WCA in figure 7(c) are close to 110\(^\circ\) for \(N \) comprised between 1 and 10. A very slight decrease seems visible but remains insufficient to conclude on a change in the wettability state. All these results clearly show that when the stirring procedure is carried out alone (i.e. not combined with plasm), seeds’ vigor is not improved.

3.2.2. Effects on seeds vigor

The figure 9 shows two germination curves of lentil seeds, one for the control group and the other for the plasma group (\(N = 1 \) treatment of 20 min). The median germination time (\(\tau_{50} \)) of a germination curve is deduced by the orthogonal projection on the time axis of 50% of the final germination rate. Here, \(\tau_{50} \) reaches a value of 1400 min for the control group and only 1132 min for the plasma group. The gain in vigor (\(G_{\text{vigor}} \)) is estimated to 270 min and results from subtracting the two median germination times. The effect of plasma on the germination potential is not discussed here since a value as high as 100% is already reached for the control group.

For a total plasma exposure \(\tau_{\text{pl}} = 20 \) min, we propose now to verify if the fame value of \(G_{\text{vigor}} \) is obtained for different types of plasma sequences, i.e. for \(N \) varying between 1 and 10. The figure 10 shows \(G_{\text{vigor}} \) as a function of \(N \) considering the trapping (figure 10(a)), randomizing (figure 10(b)) and stirring (figure 10(c)) procedures. Three important observations are noteworthy:

- A rise in \(G_{\text{vigor}} \) is obtained whatever the procedure implemented within a sequence. This increase is especially important for \(N \) going from 1 to 2 and fades beyond, meaning that changing the position of the seeds only

![Figure 10](image-url)
once guarantees a quasi-total exposure of the seeds to plasma. This observation can be supported on the point of a probabilistic view: while a single plasma treatment leaves $\eta_{\text{G}} = 7.9\%$ of the outer seed coat unexposed to plasma, a sequence of 2 plasma treatments leaves $0.08^2 = 6.4 \times 10^{-3} = 0.64\%$ of surface unexposed to plasma. Then, a sequence of 3 plasma treatments would theoretically drive to $0.08^3 = 5.12 \times 10^{-3} = 0.05\%$ of seeds surface unexposed to plasma. In consequence, implementing a higher number of plasma treatments (with shorter τ_{on} to maintain $\tau_{\text{pl}} = 20$ min) would further randomize the seeds within the DBD but appears useless owing to the low value affected to the η_{G} parameter (here, only 7.9%). Conversely, other seed-stacked DBD characterized by higher η_{G} could require a higher number (N) of plasma treatments.

- The randomization procedure leads to values of G_{vigor} that are higher than those of the trapping procedure where, as a reminder, the position and orientation of the seeds is unchanged during the timeouts of 2 min. While G_{vigor} reaches a value of 275 min for a single treatment of 20 min, this same parameter peaks at around 340 min for $N = 4$, 6 and 10 (i.e. 5 min, 3 min 20 s and 2 min respectively). Limiting randomization to $N = 2$ or 3 seems appropriate in regard of the aforementioned probabilistic point of view.

- As seen in figure 8(a), the stirring procedure alone leads to an increase in the median germination time and has therefore no beneficial effect on germination. However, its sequencing with plasma drives exactly to the opposite phenomenon conclusion. Not only does the stirring procedure reduce median germination times (and therefore increase G_{vigor} values), but it does also more effectively than the trapping and randomizing procedures. Furthermore, the G_{vigor} values are even more important for sequences including high values of N: while G_{vigor} is 275 min for a single treatment of 20 min, it goes to 345 min for two treatments ($\tau_{\text{on}} = 10$ min) and to 405 min for ten treatments ($\tau_{\text{on}} = 2$ min). In all cases, the exposure time to the plasma remains the same but the cumulative duration of the stirrings increases, going from 1 min for $N = 1$–10 min for $N = 10$. It is considered that the stirring procedure enhances the effects of plasma through two phenomena. First, a stirring procedure performed after plasma could enhance the penetration of RONS from the outermost layers of the seeds to deeper layers as well as reveal areas of the seeds that were not exposed to plasma. Second, the stirring procedure generates shocks that could modify the seeds morphology, both on the outer layers (e.g. microcracks in the seed coat leading to faster imbibition of the seed) and in the bulk (e.g. reorganization of intercellular spaces).

3.2.3. Effects on seeds coating wettability

Although $\tau_{\text{pl}} = 20$ min for all the experiments, great discrepancies are obtained on the resulting values of G_{vigor}. This biological parameter can be correlated with surface and core properties of the seed to better understand the underlying mechanisms.

A simple way to proceed is to measure (i) the WCAs (surface parameter) to deduce the integumentary wettability of the seeds and (ii) the imbibed masses (bulk parameter) to deduce seeds’ water uptake.

The figure 11(a) shows photographs of milli-Q water drops deposited on lentil seeds either unexposed or exposed to plasma. The effect of plasma is clearly evidenced through the spreading of the drop which attests a surface hydrophilization. This property can result from a chemical functionalization of the most superficial layers of the seed and/or from a modification of its physical properties, i.e. irreversible ablation or etching of these layers. The deformation of the drop is evaluated by measuring the WCA according to the Sessile drop method. The values of these WCAs are shown in figure 11(b) for the N sequences and the three procedures. While the native WCA is estimated at 113.5°, a single 20 min plasma treatment lowers this value to 37.7°. It should be noted that an increase in N drives to a slight strengthening of this hydrophilic state only for the stirring or randomizing procedures but not for the trapping. Moreover, when N is fixed, the stirring always leads to WCA values lower than those of the randomizing, and the randomizing leads to values smaller than those of the trapping. We put forward that (a) the plasma allows the grafting of RONS in the form of chemical functions like O, OH, COOH and (b) the
stirring procedure favors the seeds’ peeling, hence inducing an increase in surface roughness and therefore a larger apparent surface. The stirring procedure is also likely to favor the diffusion of reactive species towards deeper layers. As supported by optical emission spectroscopy, OH and N$_2^*$ species could be involved in the production and diffusion of RONS but other active species as well, especially the non-radiative ones.

Overall, the plasma sequences and procedures modify the seed wettability for values similar to those already obtained with the single treatment of 20 min. Since the discrepancies in the G_{vigor} values greatly depend on the implementation of sequences and procedures, it seems unlikely that the modification of the surface properties explains the variations of G_{vigor}.

3.2.4. Effects on seeds water uptake.

The water uptake (ξ) defined by equation (7) is an indirect indicator of the seed’s permeability as well as of the water retention capacity. Figure 12(a) represents ξ as a function of time for seeds originating either from the control group or from a plasma sequence including $N = 10$ plasma treatments separated by stirring procedures. The discrepancy between the two curves is close to 20% from the first to the eleventh hour. The figure 12(b) shows the value of ξ at $t = 7$ h for the various plasma sequences and procedures described above. While ξ has a value of 29% for seeds in the control group, it turns around 40% for the seeds exposed to the single 20 min plasma treatment ($N = 1$). Unsurprisingly, the coupling of plasma treatments with a trapping procedure does not change ξ, whatever the values of N. Conversely, the randomization procedure slightly improves the water uptake and this effect is all the more reinforced as N is increased (e.g. ξ reaches a value of 44% for $N = 10$). Finally, the most remarkable effects are obtained with the stirring procedure since $\xi = 48\%$ for $N = 2$ and this value becomes as high as 55% for $N = 10$. All these results suggest that the stirring procedure substantially improves seeds water uptake but poorly affects the coating wettability.

It is interesting to note that the variations of ξ and WCA evolve in a coherent way: an increase in ξ (greater water absorption) being correlated with a decrease in WCA (hydrophilization). However, the variations of WCA are much smaller than those of ξ, probably because the analysis depth of the Drop Shape Analyser is typically limited to a few 10 nm (i.e. extreme surface). By their morphologies, seeds are rough and even porous structures. It is therefore entirely possible that reactive species can accumulate deep in the seed, where the Drop Shape Analyser can no longer detect them.

4. Conclusion

Stacking seeds in the DBD reactor drives to modifications of the plasma properties through (a) an increase in the number of filaments, with lower individual energies and a spreading of their distribution towards higher electrical charges, (b) a decrease in the plasma emission through a decay in the He lines and molecular nitrogen bands. In turn, cold plasma in the DBD modifies the median germination times of seeds, driving to a gain in vigor of at least 4 h in comparison with the control. The action of the seeds on the plasma properties and the simultaneous action of plasma on the seeds’ germinative properties demonstrate the existence of a seed-plasma interaction. This interaction can be limited by dead regions in the DBD (resulting for example from non-paralleled electrodes) as well as by the number of seed-seed and seed-wall contact surfaces. In our configuration, the topographic modeling of the seed-stacked DBD predicts the existence of 409 contact surfaces, including 276 of seed-seed type and 134 of seed-wall type. The cumulative area of these contact surfaces is 336.5 mm2 including 230.6 mm2 for $A_{S/S}$ and 105.9 mm2 for $A_{S/W}$. As a result, the proportion of seeds area exposed to plasma is estimated to 92% which supports the relevance of the process for technological transfer towards seed companies. The remaining 8% can be exposed to plasma through a set of plasma sequences and procedures. In outlook, it could be interesting to verify this numerical estimate by performing non-intrusive experimental...
measurements based on microtomography analyzes on a synchrotron line. For a same plasma exposure $\tau_{pl} = 20$ min, a significant increase in G_{vigor} is obtained through an increasing number of treatments performed over shorter τ_{on} and combined with procedures upon the timeouts ($\tau_{off} = 2$ min). The three investigated procedures (trapping, randomizing and stirring) highlight the importance of the plasma-seed contact surface during the treatments. Indeed, G_{vigor} can increase from 275 min ($N = 1$) to more than 405 min ($N = 10$, stirring procedure). The coating wettability and the water uptake have been measured before/after plasma treatment to correlate them with G_{vigor}. For the single-step plasma treatment of 20 min, WCA can reach a value as high as 33◦. We have also demonstrated a beneficial effect of plasma on seed water uptake: while a single plasma treatment increases ξ from 29% to 40%, the sequence-procedure combination improves this effect, especially for a high number of stirrings (ξ reaches a value as high as 56% for $N = 10$). Performing plasma sequences and procedures seems an original and effective approach to optimize biological effects, as long as they have already been triggered by the plasma. In the case of lentil seeds stacked in the DBD, randomization can theoretically decrease η_{pl} from 8% to 0.64% (sequence of two treatments) and even down to 0.05% (sequence of three treatments). The stirring procedure not only maximizes A_{upl} (as in the randomization procedure) but also significantly improves vigor, probably due to better diffusion of RONS in the seed but also morphological modifications of the tissues whether outer (e.g. microcracks in the coating) or inner (e.g. intercellular spaces).

Plasma sequence coupled to stirring procedure appears as a promising option to efficiently improve seeds vigor and potentially other germinative properties such as germination rate. Such coupling would deserve more experimental studies, especially to determine the optimal operation window of the shocks since a too low magnitude would have no effect while a too high magnitude could induce damages.

Data availability statement
The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments
This work is supported by grants from Région Ile-de-France (Sesame, Ref. No. 16016309) and ABIOMEDE platform through the Sorbonne Université Platform programme. This work is partly supported by French network No. GDR 2025 HAPPYBIO.

ORCID ID
T Dufour https://orcid.org/0000-0002-0397-368X

References
[1] Galland M, Huguet R, Arc E, Cuffg G, Job D and Rajiou L 2014 Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination Mol. Cell. Proteom. 13 1–17
[2] Hartmann H T, Kester D E, Davies F T Jr. and Geneve R L 2010 Hartmann and Kester’s Plant Propagation Principles and Practices, Pearson Editor 8th (Upper Saddle River, NJ: Prentice Hall) edn ch 7, p 928
[3] Derek Bewley J 1997 Seed germination and dormancy Plant Cell 9 1055–1066
[4] Finch-Savage W E and Leubner-Metzger G 2006 Seed dormancy and the control of germination New Phytol. 171 501–23
[5] Lutts S, Benincasa P, Wojtylja L, Szymon Kubala S, Pace R, Lechowska K, Quinet M and Genczarcska M 2016 Seed Priming: New Comprehensive Approaches for an Old Empirical Technique (Rijeka: IntechOpen) ch 1, p 46
[6] Di Girolamo G and Barbanti L 2012 Treatment conditions and biochemical processes influencing seed priming effectiveness Ital. J. Agron. 7 178–88
[7] Dezfuli P M, Shariﬁ-zadeh F and Jammohammadi M 2008 Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.) ARPJ Agric. Biol. Sci. 3 22–25
[8] Lemmens E, Deleu L J, De Brier N, De Man W L, De Proft M, Prinsen E and Delcourt J A 2019 The impact of hydro-priming and osmo-priming on seedling characteristics, plant hormone concentrations, activity of selected hydrolytic enzymes, and cell wall and phytate hydrolysis in sprouted wheat (Triticum aestivum L.) ACS Omega 4 22089–100
[9] Roberts E H 1973 Predicting the storage life of seeds Seed Sci. Technol. 1 499–514
[10] Hesabi S, Vazan S and Golzardi F 2014 Investigation the effect of osmopriming and hydropriming on germination behaviour of alfalfa (Medicago sativa) and maize (Zea mays) Int. J. Biosci. 5 182–8
[11] Toumi M, Barris S, Seghiri M, Cheriguene H and Aid F 2017 Effet de plusieurs méthodes de scariﬁcation et du stress osmotique sur la germination des graines de Robinia pseudoacacia L., Effet de several methods of scarification and osmotic stress on seed germination of Robinia pseudoacacia L. C. R. Biol. 340 264–70
[12] Dawood N 2020 Effect of RF plasma on Moringa seeds germination and growth J. Taibah Univ. Sci. 14 279–84
[13] Gómez-Ramírez A, López-Santos C, Cantos M, Garcia J L, Molina R, Cotrino J, Espinós J P and González-Elipe A R 2017 Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation Sci. Rep. 7 5924
[14] Ono R, Uchiha S, Hayashi N, Kosaka R and Soeda Y 2017 Inactivation of bacteria on plant seed surface by low-pressure RF plasma using a vibrating stirring device Vacuum 136 214–20
[15] Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R and Dong Y 2014 Effect of cold plasma treatment on seed germination and growth of wheat Plasma Sci. Technol. 16 54–58
[16] Soulier M 2020 PhD thesis ‘Caractérisation et optimisation d’une source plasma pour le traitement de semences dans le domaine agroalimentaire’ under the supervision of P. GUILLOT and J. LO, DPHE laboratory. Institut National Universitaire Champollion, Albi, France

[17] Ono R, Uchida S, Hayashi N, Kosaka R and Soeda Y 2017 Inactivation of bacteria on plant seed surface by low-pressure RF plasma using a vibrating stirring device Vacuum 136 214–220

[18] Kim J W, Puligundla P and Mok C 2017 Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds J. Sci. Food Agric. 97 128–34

[19] Nucifera N, Kanie M A J, Pratwi S H, Pratwi R, Putro S P and Nur M 2016 Corona discharge plasma technology to accelerate the growth of black soybean plants J. Nat. Sci. Res. 6 35–40

[20] Molina R, Lalueva A, López-Santos C, Ghobeira R, Cools P, Morent R, De Geyter N and González-Elipe A R 2021 Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds Plasma Process Polym. 18 e2000086

[21] Ji S H et al 2015 Assessment of the effects of nitrogen plasma and plasma-generated nitric oxide on early development of coriander sativum Plasma Process. Polym. 12 1164–73

[22] Li Y, Wang T, Meng Y, Qu G, Sun Q, Liang D and Hu S 2017 Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed Plasma Chem. Plasma Process. 37 1621–34

[23] Kumar S, Barpete S, Kumar J, Gupta P and Sarker A 2013 Global lentil production: constraints and strategies SATSA Mukhapatra—Annual Technical Issue 17 p 13

[24] Kumar J, Gupta S, Gupta P, Dubey S, Tomar R S S and Kumar S 2016 Breeding strategies to improve lentil for diverse agro-ecological environments Indian J. Genet. 76 530–49

[25] Satya S, Kaushik G and Naik S N 2010 Processing of food legumes: a boon to human nutrition Mediterr. J. Nutr. Metab. 3 183–95

[26] Tan J, Zhang T, Coumans E, Iscen A, Bai Y, Hafner D, Bohez S and Vanhoucke V 2018 Sim-to-real: learning agile locomotion for quadruped robots (arXiv:1804.10332v2 [Cs.ro]) (https://arxiv.org/pdf/1804.10332.pdf)

[27] Erwin Coumans 2020 Bullet real-time physics simulation (available at: https://pybullet.org/wordpress/)

[28] Erwin Coumans 2015 Bullet 2.83 Physics SDK Manual (available at: https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf) (consultation carried out in December 2020)

[29] Willan R L 1987 A Guide to Forest Seed Handling Chapter 9, 202/ M-31 (Roma: FAO Forestry paper) (available at: www.fao.org/3/AD232E/AD232E00.htm#TOC)

[30] (available at: www.eaudeparis.fr/la-qualite-de-leau-a-paris/)

[31] Judée F and Dufour T 2020 Seed-packed dielectric barrier device for plasma agriculture: understanding its electrical properties through an equivalent electrical model J. Appl. Phys. 128 1–17

[32] Dufour T, Gutierrez Q and Bailly C 2021 Sustainable improvement of seeds vigor using dry atmospheric plasma priming: evidence through coating wettability, water uptake, and plasma reactive chemistry J. Appl. Phys. 129 084902

[33] Solyom K, Lopez P R, Esquivel P and Vásquez-Caicedo A L 2020 Effect of temperature and moisture contents on dielectric properties at 2.45 GHz of fruit and vegetable processing by-products ASC Adv. 10 16783–90

[34] Sacilik K and Colak A 2010 Determination of dielectric properties of corn seeds from 1 to 100 MHz Powder Technol. 203 365–70

[35] Thomsen L 1986 Weak elastic anisotropy Geophysics 51 1954–66