Observing ultra-high-energy cosmic particles from space: \textit{S-EUSO}, the Super-Extreme Universe Space Observatory Mission

\textbf{A Santangelo}1,3 \textbf{and A Petrolini}2

1 Institute für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität Tübingen, Sand 1, DE-72076 Tübingen, Germany

2 Dipartimento di Fisica dell’Università di Genova and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italia

E-mail: andrea.santangelo@uni-tuebingen.de

\textit{New Journal of Physics} \textbf{11} (2009) 065010 (16pp)

Received 4 March 2009
Published 30 June 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/6/065010

\textbf{Abstract.} The experimental search for ultra-high-energy cosmic messengers, from $E \sim 10^{19}$ eV to beyond $E \sim 10^{20}$ eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra-high-energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra-high-energy particles might, also, carry evidence of unknown physics or of exotic particles that are relics of the early universe.

To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space-based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high-energy universe.

In this paper, we focus on the \textit{Super Extreme Universe Space Observatory} (\textit{S-EUSO}), a mission concept developed in the framework of the first Announcement of Opportunity of the ‘Cosmic Vision 2015–2025’ program, the long-term science plan of the European Space Agency. \textit{S-EUSO} will observe from space, in a free flyer configuration, the extensive air showers produced by

3 Author to whom any correspondence should be addressed.
Observations of cosmic particles at ultra-high energies, from a few 10^{19} eV to beyond 10^{20} eV, are an extraordinary opportunity to explore this yet largely unknown universe and present us a tremendous experimental challenge. It is expected that observations of cosmic rays and neutrinos at ultra high energies will provide entirely new information on the sources and on the physical mechanisms capable of accelerating these extreme messengers to macroscopic energies. Moreover, these messengers might also carry evidence of unknown physics or of exotic particles, relics of the early Universe. To carry out such an ambitious program, high statistics and high-quality observations are needed. The very low flux of these particles, about 1 particle km$^{-2}$ sr$^{-1}$ millennium$^{-1}$ at energies $E \geq 10^{20}$ eV [1], requires experiments with large acceptances and good understanding of systematic uncertainties. The Super-Extreme Universe Space Observatory (S-EUSO) [2] is a space-based mission to explore the universe through the study of ultra-high-energy cosmic particles.
S-EUSO will observe from space, in a free flyer configuration, the extensive air showers (EAS) produced by ultra-high-energy cosmic rays which traverse the Earth’s atmosphere. Using a target volume and instantaneous geometrical aperture far greater than that achievable from the ground, S-EUSO is expected to obtain accurate measurements of the nature, energy and arrival direction of the primary particles.

The ground-based Pierre Auger Observatory [3] and the Japanese Experiment Module (JEM)-EUSO [4] space mission will hopefully provide in the near future solid bases for the beginnings of particle astronomy. However only a large innovative space-based next-generation mission, which aims at an instantaneous geometrical aperture of the order of \(A \approx 10^6 \, \text{km}^2 \, \text{sr} \), can increase the statistics of events with \(E \geq 10^{20} \, \text{eV} \) by a few orders of magnitude, allowing the identification of the sources of ultra high energy particles.

In this paper, we first describe (section 2) the scientific reasons at the base of the S-EUSO concept. We then introduce the S-EUSO observational approach (section 3) and the instrument and mission features (section 4). The requirements and expected performance are discussed in section 5.

The S-EUSO concept has been developed in the framework of the first Announcement Opportunity of the European Space Agency ‘Cosmic Vision 2015–2025’ program, the long term science plan of the Agency. More than 100 scientists from 40 research groups from Europe, Russia, US and Japan participated in the proposal.

2. The S-EUSO science case

Experimenters routinely observe atmospheric showers from particles whose energies reach macroscopic values up to about a few tens of joules. This dwarfs energies achieved in particle accelerators by about eight orders of magnitude in the detector frame (fixed target experiments) and three orders of magnitude in the centre-of-mass (collider experiments). Explanations range from conventional shock acceleration in extreme environments to particle physics beyond the Standard Model and processes taking place at the earliest moments of our universe [5].

Ultra high energy cosmic particles are thought to come from extra-galactic distances. Propagation in largely unknown galactic and extra-galactic magnetic fields deflects trajectories of charged cosmic rays, limiting proton astronomy to \(E > 10^{19} \, \text{eV} \). On the other hand, the Greisen Zatsepin and Kuz’m effect (GZK) [6] makes the Universe opaque to proton energies of \(E > 5 \times 10^{19} \, \text{eV} \). Shortly after the discovery of the cosmic microwave background (CMB), Greisen and Zatsepin and Kuz’m independently predicted that pion-producing interactions of cosmic ray protons with CMB photons of target density \(\sim 400 \, \text{cm}^{-3} \) would produce a cut-off in their spectrum at energies greater than \(E \sim 5 \times 10^{19} \, \text{eV} \), when the pion production threshold is reached. The reaction \(p \gamma \rightarrow \Delta^+ \rightarrow p\pi^0/n\pi^+ \) will quickly slow down the proton and lead to an effective attenuation length of about 50 Mpc for a proton of \(10^{20} \, \text{eV} \). Due to the GZK effect a ‘flux suppression’ is expected in the spectrum [7] which makes their detection difficult.

2.1. The current observational scenario

Ultra-high-energy cosmic rays still exist. After the pioneering detection, back in the 1960s, of the first event with the Volcano Ranch Array by Linsley [8], ultra-high-energy particles have been detected by several independent ground-based experiments, including Haverah Park,
Yakutsk, AGASA, Fly’s Eye, HiRes and recently AUGER (for an historical review see [9]). To date a maximum energy of $\sim 3.2 \times 10^{20}$ eV has been reported in the literature [10].

The observation scenario has been the subject of an intense debate in recent years: the flux and spectral shape measured by the AGASA observatory [11] did not show evidence of a GZK feature, and did not agree with the one observed by the HiRes experiment [12]. This puzzling scenario was clarified by the measurement of the Pierre AUGER Observatory which together with HiRes reported definitive evidence of the GZK effect [1, 13].

A second point of discrepancy was the small-scale clustering of events. Small-scale anisotropies (six pairs and one triplet for events with $E \geq 5 \times 10^{19}$ eV and within the 2.5° AGASA angular resolution) were observed by AGASA and interpreted as evidence for compact sources of ultra-high-energy cosmic rays [14]. These findings were not confirmed by HiRes [15] even though a cluster of five events from the combined published AGASA-HiRes data set was reported by Farrar et al. [16]. The breakthrough in the field came again with AUGER’s discovery of a statistical correlation between the 27 highest energy events ($E \geq 5.7 \times 10^{19}$ eV) and the anisotropically distributed galaxies in the 12th Veron-Cetty and Veron catalogue of active galactic nuclei (AGN) [17].

2.2. Science goals

The seminal measurement of AUGER marks the beginning of charged particle astronomy. However, it does not prove that AGNs are the sources of ultra-high-energy cosmic rays. Any class of sources which correlate with large-scale distribution of matter might be a possible candidate population. AUGER’s events show correlation with Infrared Astronomical Observatory Point Source Catalog Redshift Survey (IRAS PSCz) sources [18] and with HI emitting galaxies [19]. To understand which are the sources of these events and to discriminate among the various competing models of acceleration, the identification of the sources and the measurement of the spectra of the single sources are crucial. This research program requires exposures a few orders of magnitude larger than the southern site of the AUGER observatory.

Cosmic rays are mainly charged particles, and therefore they can be used to map galactic and local intergalactic magnetic fields. Protons with $E \geq 6 \times 10^{19}$ eV are deflected by $\sim 1^\circ$ traversing μG (nG) field over a kpc (Mpc). To map the local magnetic field it is necessary to measure deflections in a 4π coverage of the sky. Full sky coverage of ultra-high-energy particle flux at high statistics can identify the sources and measure deflections, therefore mapping the local magnetic environment. This has strong implications in cosmology and astrophysics.

Although charged particle astronomy is at the core of the science case of future cosmic ray observatories, other observational windows can be opened by such enterprises. The neutrino Universe is still unexplored at high and ultra-high energies. Neutrinos have the advantage over charged cosmic rays of being electrically neutral and not deflected by magnetic fields. Ultra-high-energy neutrinos point back to the point of their creation. Due to their low interaction cross section, detection of astrophysical neutrinos demands an extraordinarily large volume. S-EUSO will significantly increase the target volume compared to current or planned generation experiments, enabling the exploration of the neutrino Universe [20]. Moreover, measurements of neutrino–nucleon cross sections by comparing the rate of horizontal and up-going air showers induced by neutrinos have been discussed in literature [21, 22]. In this respect, Palomares-Ruiz et al have conducted a detailed analysis of the acceptances for space and ground-based detectors,
finding that the rate of Earth-skimming neutrino-induced showers is much higher when observed over the ocean from space than when observed from the ground [23].

Finally we mention that, as demonstrated by AUGER [24], another window that large aperture observatories can open is the direct detection of photons above the CMB attenuation.

2.3. Planning observatories for the future: why from space?

AUGER studies will be extended to the northern hemisphere with a second site consisting of 4000 detector stations, to be deployed in Colorado, US. AUGER North aims at reaching a geometrical area of $A_{\text{geo}} \sim 2 \times 10^4 \text{ km}^2$. This converts into an effective aperture of more than $A_{\text{eff}} \sim 45 \,000 \text{ km}^2$ sr.

In any post-AUGER scenario observations from space are likely to be essential. Space-based observatories can in fact reach a practical instantaneous geometrical aperture up to $A_{\text{eff}} \sim 2.5 \times 10^6 \text{ km}^2$ sr that translates in a target mass of more than 10^{12} ton, with full sky coverage. Assuming a duty cycle $\eta \sim 10–20$ and an operation time of about 5 years this converts into an exposure of $A_{\text{exp}} \sim (1.2–2.0) \times 10^6 \text{ km}^2$ sr yr.

The original idea to observe, by means of space-based devices looking at Nadir nighttime, the fluorescence light (300–400 nm) produced by an EAS proceeding in the atmosphere, goes back to 1979, when Linsley firstly suggested the ‘SOCRAS’ concept [25]. The ‘SOCRAS’ concept triggered the AIRWATCH program in Europe, which after a few years led to EUSO.

The **Extreme Universe Space Observatory (EUSO)**, was originally an ESA lead international mission designed for the Columbus module on the International Space Station (ISS, at 430 km), characterized by an $A_{\text{exp}} \sim (1.3–3.2) \times 10^5 \text{ km}^2$ sr yr. The phase A study was successfully completed in 2004. Although EUSO was technically ready, ESA did not continue the mission mainly due to programmatic uncertainties related to the ISS. The EUSO mission concept has been recently re-oriented to JEM-EUSO. The JEM-EUSO space observatory, led by Japan, is an EUSO-like concept to be accommodated on the JEM of ISS. The mission is currently in its phase A/B. Several aspects like the optics, the sensors quantum efficiency and the trigger scheme have been improved with respect to EUSO. The instantaneous geometrical aperture of the mission is $A_{\text{geo}} \sim 1.5 \times 10^5 \text{ km}^2$ which converts to $A_{\text{exp}} \sim (2.1–4.3) \times 10^5 \text{ km}^2$ sr yr (5 years in operation) [26].

In 2007, following a call for opportunities from ESA in the framework of the scientific program of the agency for next decade (the ‘Cosmic Vision Program 2015–2025’), a proposal for a large aperture **free-flyer observatory** for ultra-high-energy studies was submitted to the agency: the S-EUSO mission [2, 27]. Thanks to its planned higher orbit, S-EUSO will have an instantaneous geometrical aperture larger by a factor of six with respect to JEM-EUSO. Moreover, because of its larger optics and better photon detection efficiency, S-EUSO is expected to reach significantly lower thresholds than JEM-EUSO. The higher quality signal could increase the duty cycle. We therefore expect that S-EUSO will collect a factor of ten more events than JEM-EUSO.

2.4. Scientific objectives

S-EUSO is expected to detect several thousands of events at $E \geq 5 \times 10^{19}$ eV. The main science objectives of S-EUSO are as follows:
(i) The extension of the measurement of cosmic ray spectrum beyond $E \approx 10^{20}$ eV, reaching $E \approx 10^{21}$ eV.

(ii) The detailed map of the arrival distribution of cosmic rays extended to the entire sky. The localization and identification of ‘compact’ sources. The map of the deflections.

(iii) The study of the spectra of individual sources.

(iv) Composition studies in the energy range $E \sim 10^{19}–10^{20}$.

Other scientific objectives of the mission are as follows:

(i) The measurement of the flux of ‘compact’ and diffuse sources of ultra-high-energy neutrinos.

(ii) The search and identification of horizontal and skimming showers induced by τ neutrinos.

(iii) The measurement of the flux of the ultra-high-energy photon component.

Other scientific objectives specific to atmospheric science are not discussed here. We refer the reader to the S-EUSO proposal [2] for details.

2.5. Scientific requirements

The scientific objectives summarized above dictate the following scientific requirements:

(i) Low-energy threshold (flat efficiency plateau \sim100%) at $E_{\text{th}} \simeq 10^{19}$ eV.

(ii) Statistical uncertainty on the energy measurement: $\Delta E/E \approx 0.1$ at 10^{19} eV.

(iii) Instantaneous geometrical aperture averaged on orbit: $A_{\text{geo}} \geq 2 \times 10^6$ km2 sr. The duty cycle is not included: current estimates, based on the EUSO studies, indicate $\eta \approx (0.1–0.2)$.

(iv) An angular granularity corresponding to $\Delta \ell \approx 1$ km at the Earth.

(v) An average angular resolution on the reconstructed direction of $\Delta \chi \approx 1^\circ–2^\circ$ at 10^{20} eV; the angular resolution strongly depends on the EAS zenith angle: inclined EAS will have a better than average angular resolution.

(vi) An average angular resolution on the reconstructed particle direction of $\Delta X_{\text{max}} \approx 20–50$ gr cm$^{-2}$ at 10^{20} eV; resolution on X_{max} depends also on the EAS zenith angle.

3. The observational approach

S-EUSO uses the Earth’s atmosphere, viewed from space at night, as a calorimeter to measure the nature, energy and arrival direction of the ultra-high-energy particle induced EAS. The S-EUSO observational method is shown in figure 1. It is based on the measurement of fluorescence photons produced by the EAS as it progresses through the atmosphere.

3.1. The S-EUSO observational technique

A hadronic particle (interaction length ~ 40 g cm$^{-2}$ at $E \sim 10^{20}$ eV) penetrating the Earth atmosphere generates a shower of secondary particles. The number of these secondary particles, largely dominated by electrons/positrons, reaches at shower maximum $N \geq 10^{14}$, proportional to the energy of the primary particle. The total energy carried by the charged secondary particles ($\sim 0.5\%$) is converted into fluorescence photons through the excitation of the air N$_2$ molecules.
Figure 1. Left panel: the S-$EUSO$ observational approach (original figure from [30]). Right panel: the formation of the tracks in the X, Y versus time planes (original from [39]). The typical size of the pixel correspond to $\Delta \ell \approx 0.7 \text{ km}$ on Earth. The typical value for the Gate Time Unit (GTU) is $2.5 \mu \text{s}$.

The fluorescence light is isotropic and proportional, at any point, to the number of charged particles in the EAS. The total amount of light produced is proportional to the primary particle energy and the shape of the EAS profile (in particular the atmospheric depth of the EAS maximum) contains information about the primary particle identity. The fluorescence yield in air, Y_{air}, in the 330–400 nm wavelength range, is about $Y_{\text{air}} \approx 4.5$ photons per charged particle per meter at $h \lesssim 20 \text{ km}$, depending, in a known way, on altitude, pressure, temperature and air composition [28, 29]. Uncertainties are $\sim 15\%$. The main emission lines are located near the three wavelengths 337, 357 and 391 nm. The fluorescence emission of the shower is rather constant for $h < 15 \text{ km}$ and appears as a thin luminous disc of radius of the order of 0.1 km and depth of the order a few meters. It moves through the atmosphere at the speed of light.

Highly beamed Cherenkov radiation is generated as well by the ultra-relativistic particles in the EAS and partly scattered by the atmosphere itself. The additional observation of the diffusely reflected Cherenkov light (reflected either by land, sea or clouds) provides additional information, such as the landing point and timing, useful to improve the EAS reconstruction. It greatly helps in determining the EAS parameters. While the amount of observed Cherenkov photons depends on the reflectance and geometry of the impact surface, the directionality of the Cherenkov beam provides a precise extrapolation of the EAS to the first reflecting surface. The Cherenkov light will be seen as a bunch of photons coming from a limited region in a short time interval. The total number of Cherenkov photons generated in the 330–400 nm wavelength range is roughly of the same order of magnitude as the number of generated fluorescence photons. Cherenkov light scattered at high angles during the EAS development can reach S-$EUSO$ by multiple scattering.

Typically, for a 10^{20} eV EAS, a few thousand photons will reach the S-$EUSO$ detector. As the S-$EUSO$ telescope has a mirror system associated with a fast counting, pixelized photodetector on the focal surface, S-$EUSO$ will detect not only the number of arriving photons but also their direction and time of arrival. It is the observation of this specific space–time correlation that identifies, very precisely, the presence of an ultra high-energy shower (see figure 1).
3.2. Atmosphere, background and the duty cycle

The atmosphere acts as signal generator (fluorescence and Cherenkov light), as a signal attenuator (scattering and absorption) and as source of background.

The atmosphere is relatively transparent down to $\lambda \approx 330$ nm, where the ozone absorption becomes strong. Preliminary simulations show that for typical cloud-less atmosphere models the vertical transmission coefficient from the Earth’s surface to $S\text{-EUSO}$, is $t \gtrsim 0.3$, in all the interesting wavelength range. Of course multiple scattering will generate some background. The main atmospheric components affecting the signal transmission are Rayleigh and Mie scattering, ozone absorption (severe up to $\lambda \simeq 330$ nm), and the presence of clouds (affecting either signal transmission and EAS characterization). Losses are dominated by Rayleigh scattering. Real-time measurements of these components are mandatory to control $S\text{-EUSO}$ systematics.

The main background component is the random night-glow background from the Earth’s albedo. A second relevant component is due to the light from air-glow, which has been measured by several experiments [31, 32]. The random background also has contributions from zodiacal light, star light and artificial scattered light. In addition, many different sources can give rise to background events that must be discriminated from cosmic ray events. They include man-made lights, auroras, natural photo-chemical effects (in the atmosphere, sea and on land) and low-energy cosmic radiation. The signal associated with these background sources develops typically in a timescale of the order of a millisecond to be compared with the tens–hundreds of microseconds time duration of the ultra high-energy shower signal. Therefore these spurious events can be discriminated and rejected through studies of the kinematic of the tracks.

Based on the known available data we estimate for $S\text{-EUSO}$ a conservative value of $(3–10) \times 10^{11}$ photons m$^{-2}$ s$^{-1}$ sr$^{-1}$ in the wavelength range 330–400 nm [2].

A precise value for the duty cycle can be hardly estimated and dedicated measurements from space would be crucial. The duty cycle depends on the amount of background level that can be accepted by $S\text{-EUSO}$ without compromising data reconstruction. This is of course a function of the energy. Partial moon-light may, in some instances, not prohibit the $S\text{-EUSO}$ detector from observing very high-energy EAS. We preliminarily estimate the duty cycle to be $\eta \simeq (0.1–0.2)$. More details can be found in [33].

3.3. The observation of EAS from space

$S\text{-EUSO}$ will observe the Earth’s atmosphere during night-time and low moon-light conditions, by looking down to nadir with large aperture and large field of view optics, focusing the image onto a highly pixelized and fast photo-detector. The spatial and temporal development of the EAS in the atmosphere are therefore recorded.

The sufficiently fast response of $S\text{-EUSO}$ allows to determine the direction of the cosmic ray primary by means of one single observation point. An EAS will be seen as a point moving inside the field of view with a direction and an angular velocity depending on the EAS direction. The EAS velocity can be decomposed into its parallel and perpendicular components with respect to the line of sight joining $S\text{-EUSO}$ to any suitable point of the EAS. As the speed of the EAS is known (equal to the speed of light) the EAS direction can be easily determined from kinematics considerations.

Several main features of the space based observation can be anticipated. $S\text{-EUSO}$ will have a large instantaneous geometrical aperture of the order of $A_{\text{eff}} \sim 2.5 \times 10^6$ km2 sr that
translates to a target mass of more than 10^{12} ton. The geometrical acceptance of any space experiment is well defined by the field of view. However, the fact that the observed part of the atmosphere is continuously changing requires an atmosphere monitoring device. For space-based experiments the distance of the EAS, which develops in the lowest part of the atmosphere, is an approximately known quantity, in contrast to ground-based experiments where a strong correction due to the proximity effect is mandatory. Photon propagation from the EAS to the experimental apparatus occurs, for space experiments, through the less dense part of the atmosphere. Moreover, the effect of Mie scattering is considerably reduced as the aerosols are mainly concentrated in the lowest part of the atmosphere. Contamination of the fluorescence light by direct Cherenkov light is small for space experiments, unlike ground-based detectors. The EAS development can be registered in position and time when the EAS hits land or sea by detecting the diffusely reflected Cherenkov landmark. The same applies when reflection occurs by a cloud layer, provided that the height of the cloud layer is known. All sky coverage is possible with one single experiment, depending on the orbit. Observation of deeply penetrating EAS, from primary particles interacting deeply in the atmosphere (like neutrinos), is possible by the direct observation of the EAS development and starting point.

4. The experimental apparatus

4.1. Architecture of the instrument

The S-EUSO mission is an enlarged and improved free-flyer version of the former EUSO mission concept. It surpasses EUSO by a much larger aperture and by exploiting novel technologies. Table 1 summarizes the main features of the instrument and of the mission. S-EUSO consists of the following parts:

- Main telescope operating in the near-UV. It is a large aperture, large field of view fast, pixelized instrument working in single photon counting mode. Its parts are:
 - Main reflective deployable optics consisting of:
 - the main mirror: a large, lightweight, segmented, nearly spherical, deployable mirror;
 - the corrector plate on the entrance pupil (deployable as well);
 - the optical filters;
 - active control mechanisms for both the mirror and the corrector plate;
 - supporting structure and ancillary arts;
 - the optical baffle.
 - The photo-detector (PD) on the FS of the optics made of:
 - the photo-sensors; arrays of Geiger-mode avalanche photo diodes (GAPDs) as baseline;
 - the light-collection system, to increase the acceptance of the photo-sensors;
 - the front-end electronics;
 - the back-end, trigger and on-board data-handling electronics.

- The atmospheric monitoring system:
 - a dedicated LIDAR;
 - an infrared camera.
Table 1. The main S-EUSO baseline parameters and design goals.

Main physical parameters	
Operating wavelength range (WR)	$330 \text{ nm} \lesssim \lambda \lesssim 400 \text{ nm}$
Background (in WR)	$(3–15) \times 10^{11} \text{ photons m}^2 \text{s}^{-1} \text{sr}^{-1}$
Average atmospheric transmission (in WR)	$K_{\text{atm}} \gtrsim 0.4$

Orbital parameters	
Orbit perigee	$r_P \simeq 800 \text{ km}$
Orbit apogee	$r_A \simeq 1100 \text{ km}$
Orbit inclination	$i \approx (50^\circ – 60^\circ)$
Orbital period	$T_0 \simeq 100 \text{ min}$
Velocity of the ground track	$v_{\text{GT}} \simeq 7.5 \text{ km s}^{-1}$
Pointing and pointing accuracy	Nadir to within $\Delta \xi \simeq 3^\circ$

Satellite parameters	
Satellite envelope shape	Frustum of a cone
Diameters	$D_{\text{max}} \simeq 11 \text{ m}$ and $D_{\text{min}} \simeq 7 \text{ m}$
Length	$L \simeq 10 \text{ m}$
Operational lifetime	$(5–10) \text{ years}$

Main instrument parameters and requirements	
Type	Deployable catadioptric system
Main mirror	$D_M \simeq 11 \text{ m}$
Entrance pupil and corrector plate	$D_{\text{EP}} \simeq 7 \text{ m}$
Angular granularity	$\Delta \ell \approx 0.7 \text{ km at the Earth}$
Optics throughput	$\epsilon_0 \gtrsim 0.7$
$f/#$	≈ 0.6
Optics spot size diameter on the FS	$3–5 \text{ mm}$
Instrument field of view, half-angle:	$\gamma_M = 0^\circ–25^\circ$
Total length of the optics	$\approx 9 \text{ m}$
Focal surface size (diameter)	$\approx 4 \text{ m}$
PDE	$\epsilon_{\text{PDE}} \gtrsim 0.25$
Number of detector channels	$\approx 1.2 \text{ million}$
Size of the pixels on the PD	$\approx 4 \text{ mm}$
Photo-sensor	GAPD
Power consumption	less than 2 mW per channel

Main performance parameters and requirements	
Low-energy threshold	$E_{\text{th}} \approx 10^{19} \text{ eV}$
Instantaneous geometrical aperture	$A_G \approx 2.0 \times 10^6 \text{ km}^2 \text{sr}$
Statistical error on the energy measurement	$\Delta E/E \approx 0.1 \text{ at } E \approx 10^{19} \text{ eV}$
Angular resolution on the primary direction	$\Delta \chi \approx (1^\circ–5^\circ)$
Observation duty cycle	$\eta \approx (0.1–0.2)$

Main budgets (at the present level of knowledge)	
Mass	5 ton
Power	5 kW
Telemetry	20 Gbit orbit$^{-1}$
Other crucial parts of the instrument are the monitoring, alignment and calibration system; the central control unit providing the intelligence to all the systems; the control and power systems. These are discussed in detail in [2].

4.1.1. The optics. Mission constraints require the optics to be lightweight and deployable. The proposed optics baseline is based on a catadioptric design, in a Schmidt configuration. The baseline approach has been investigated in the context of an ESA study for an Earth-looking LIDAR telescope [34, 35]. A similar solution was studied by NASA for OWL [36]. The main advantage of this design is to reach the requirements only through a single spherical mirror, with the off-axis performance greatly improved by the front correcting plate, with almost no chromatic aberrations and with UV transmission enhanced with respect to refractive optics. Having an $f/\# = 0.7$, the almost spherical PD is small, implying overall mass saving. Design studies have used a 5 m entrance pupil diameter, but they can be relatively easily scaled to the desired dimension. The field of view is 25° (half-angle), and the obscuration is limited.

Protection against stray light is crucial: beside a light shield covering the lateral side, a front baffle is being studied. The mirror is deployed with a series of petals around a central structure. The design is being optimized to use the biggest monolithic focal surface that will fit in the Ariane 5 fairing. Because of the size and of the difficulty to control temperature gradients, the optical surfaces (both the primary mirror and the corrector plate) must be actively controlled. The coupling between the thin optical surface of the primary and the stiff lightweight support structure is made through an array of actuators for the adjustment of the optical surface via active control: this is necessary for improving the optical performance, for in-orbit alignment but also for compensating thermoelastic deformations of the support. In the current baseline design 15 kg m^{-2} 1-mm-thick Zerodur and carbon fiber reinforced plastic is used for the supporting back plane.

4.1.2. The focal surface. The overall structure of the focal surface is being designed to follow a modular scheme. It consists of small autonomous functional units (elementary cells) assembled in larger modules (PD modules). Modules are independent structures tied to each other by a common support structure and having a shape determined by the layout of the focal surface. The modular approach is crucial to allow sharing of resources, like supporting structures, power lines, cables, connectors and electronics, among sensors. The requirements for the PD modules are: (i) capability to measure at single photo-electron level; (ii) good charge resolution; (iii) high photon detection efficiency $\epsilon > 0.6$; (iv) good time resolution (two-pulse separation 2–3 ns); (v) pixel size $L_{\text{pixel}} \sim 5 \text{ mm}$; (vi) low power consumption $< 10 \text{ mW cm}^{-2}$; (vii) low dark current (much less than background) and (viii) lifetime of more than 10 years.

Multi-anode photo-multipliers (PMTs), flat panel PMTs and GAPDs, also called silicon photo-multipliers (SiPMs), are currently being investigated as S-EUSO possible sensors. Potential problems of PMTs are the limited photon detection efficiency, non-homogeneity of the response, relatively high power consumption, poor flexibility in the design, and a rather weak and relatively heavy mechanical structure. APDs can be arranged in large arrays which consist of about 10^3 pixels. Large size photo diodes arrays are the baseline sensor for S-EUSO. Their most attractive feature is the potentially high photon detection efficiency (> 0.5) and the capability of single photon counting. Compactness of size and volume, low bias voltages, very high gain of $10^6–10^7$, insensitivity to magnetic fields, low power consumption are other advantages. Larger size arrays, $5 \times 5 \text{ mm}^2$ or better $10 \times 10 \text{ mm}^2$, with high detection efficiency, low dark-counts,
low crosstalk and enhanced sensitivity in UV and blue light are required for S-$EUSO$. Currently, arrays of size 5×5 mm2, micro-pixel size enlarged to $100 \times 100 \mu$m2 and photo-detection efficiency of 50% at ~ 500 nm are being developed by the Semiconductor Laboratory of the Max Planck Institute for Physics [37]. Dark rate is $\sim 0.5–2.0$ MHz mm$^{-2}$ at room temperature and can be reduced by one or two orders of magnitude by cooling the temperature down to $T \sim (-10)–(-30)$°C. Hamamatsu Photonics has developed 1×1 mm2 arrays which employ inverse polarity for avalanche photo-diodes (p-on-n structure). This inverse structure enhances the sensitivity to UV and blue light. Drawbacks are the narrow range of operational bias voltages and high optical crosstalk between micro-pixels. INFN has developed multi-avalanche photodiodes arrays of type n-on-p from 1 to 16 mm2. The current devices are optimized for blue light, with a 50% geometrical factor on 50×50 micro-pixel. Crosstalk below 1% and excellent timing resolution (50 ps for single photon counting) have been obtained. Back-illumination-drift avalanche photo-diode arrays are also being developed. A photo-detection efficiency of 85% or more in the range 330–400 nm could be reached. Due to the large drift volume, dark current and crosstalk may be relatively higher compared to other systems.

4.1.3. Electronics and trigger. The expected signal from an EAS is a track, a list of space–time correlated hits on the focal surface. Each hit is a bunch of photons in a pixel (~ 10 photons μs$^{-1}$ near the energy threshold; up to a few thousands photons per μs at ultra-high energies). The expected background is several photons per μs, with significant variations. Typical EAS have a length from about ten up to a hundred pixels. The electronics and the trigger system must be capable of sustaining the high rate due to night-glow background and be tolerant to the enormous signals generated by lighting and human activities. As the background is variable in space and time along the orbit, we plan an on-board threshold setting system and a background subtraction system.

Front end electronics will be a custom ASIC highly integrated with the sensors. It has to provide pre-amplification, shaping and photon counting capability, with a programmable and self-adjusting threshold, background subtraction and zero suppression. To cope with luminous events (highest energy cosmic rays, Cherenkov reflection, luminous background sources) the front-end electronics must also provide charge integration. Eventually a track finding logic, in order to search for EAS like events, is necessary. At very low energy near threshold the expected signal is of the same order of magnitude as the background. With these small numbers, it is advisable to count the photons with a suitable preamplifier–discriminator–counter chain and identify the signal by putting a threshold on the counter, which should be periodically reset by a system clock. In this way, with a suitable on-chip logic, the system could have a self-adjusting threshold and subtract the expected background from each hit. We define the periodic reset clock as a GTU. Typical on-board programmable values of this gate range between 500 ns–2 s, depending on the operating conditions. The single photon counting technique will finally provide the number of collected photons for each GTU and for each pixel, allowing full reconstruction of the energy and direction of the EAS. More details can be found in [38] and references therein. The trigger system has to provide a fast trigger capable of managing several hundreds of thousands of channels. It has to be selective in order to tag the EAS signal while rejecting the background in an efficient way. The subtraction of the fluctuating background signal will be implemented in real time, making use of the Poisson property of systems based on counting.
4.1.4. The monitoring system. The main purpose of the atmospheric monitoring system is to characterize the Earth’s atmosphere inside the field of view of the instrument. The measurement objectives are (i) mapping of the opaque clouds and determination of the cloud-top altitude; (ii) mapping of the sub-visible clouds and determination of their attenuation. The present concept for the monitoring system is based on the combination of several elements. An infra red camera will ensure mapping of the horizontal cloud coverage as well as the inputs for estimation of the cloud top with bias. The LIDAR measurements of the cloud-top altitude will be performed in several selected directions with high precision and will be used to correct the bias in the IR camera. The proposed LIDAR will be a back-scatter type using wavelength in the UV spectral range, coinciding with the wavelength EAS fluorescence light. In this way it is possible to use the telescope as LIDAR receiver, where only several of the detectors will be used for back-scatter signal detection. A calibration of the efficiency of the instrument, using the molecular back-scatter signal and/or the signal scattered from cloud top and surface would be also possible as well as evaluation of the albedo of the sea and land-mass surface. Details are found in [2].

4.2. Potentially critical issues affecting feasibility and performance

Several critical points have been identified in this challenging project. Only a full feasibility study, the so-called phase-A study of a space mission, can address them.

- The deployable optics is a very challenging engineering task. However large optics are highly desirable for many other future space applications. S-EUSO will benefit from other similar projects [40]. Moreover, a deployable catadioptric system has been studied by ESA in the context of an earth-looking LIDAR telescope. Deployability of the optics was also studied by NASA in the context of the OWL concept [36].
- The total background, including the random night-glow background, is very high: an online subtraction, essential also to reduce the fake trigger count-rate, must be implemented.
- The observed field of view is continuously changing: a continuous monitoring and recording of the relevant atmospheric parameters is required. The proposed concept is being validated through end to end specific simulations.
- Orbit optimization is dictated by several requirements: observational energy range, reduction of man-made background, atmospheric phenomena, maximum night versus day exposure, repetitive passages above specified ground-sources, very large drag coefficient and off-geometrical centre-of-mass.
- Optimal stray-light control of the large field of view as well as PD protection from intense light (via attitude control and/or a shutter) are critical aspects of the current study.
- Data-handling, calibration and alignment for one million channels in orbit.

The demanding requirements have an impact on resources. A careful experiment optimization is required which needs to collect as much information as possible during the phase of mission conception and design. A well defined road-map with intermediate steps is required [41].
5. Instrumental requirements and expected performance

The \textit{S-EUSO} mission is an enlarged version of the EUSO mission [39]. It improves the performance of EUSO by increasing the aperture and by exploiting novel technologies. A detailed analysis, leading to the results summarized in this paper can be found in [2] and in [30]. The current scientific scenario calls for an experiment capable of detecting weakly interacting particles, with an order of magnitude lower energy threshold and an order of magnitude larger instantaneous geometrical aperture, with respect to EUSO, operating long enough to get an exposure greater than feasible on Earth.

To increase the instantaneous geometrical aperture the height of the orbit can be increased. This makes the signal fainter thus requiring an even larger photon collection capability. The orbital parameters must then be chosen to optimize the performance. In particular, to extend the observational energy an elliptical orbit is considered.

The basic parameter that drives the performance is the photon collection capability. It depends on the optics entrance pupil diameter (optics aperture) and on the total photon collection efficiency. The optical efficiency can be improved by using a catadioptric optical system with a slightly reduced field of view, $\gamma_M = 20^\circ - 25^\circ$, to get a better average optical efficiency. The gain with respect to EUSO is ≈ 1.5 assuming an optical efficiency $\gtrsim 0.7$. The decreased instantaneous geometrical aperture can be recovered with higher orbits. The photon detection efficiency can improve by a factor ≈ 4, thanks to the newly developed GAPD sensors which feature a much larger quantum efficiency and a higher filling factor.

The optics aperture is the only sizable parameter which depends on mission constraints. The maximum value of the entrance pupil diameter is chosen under the constraints of a non-deployable focal surface. The reflective deployable optical system has a $f/# = 0.7$, with a goal of $f/# = 0.6$. Using this assumption a factor ≈ 10 improvement with respect to EUSO is expected.

These figures alone give a factor ≈ 60 improvement in the total photon collection capability. If one accounts for a perigee height two times larger than EUSO, one still has more than a factor 10 with respect to EUSO, allowing to bring the total EAS detection efficiency down to $E_{th} \approx 10^{19}$ eV, as the EUSO efficiency plateau was reached at about 10^{20} eV. We assume an elliptical orbit with apogee in the range $r_A = (800–1200)$ km and perigee as low as possible, compatible with constraints like atmospheric drag. The perigee is currently assumed to be in the range $r_A = (600–1000)$ km. The current baseline is: $r_P = 800$ km and $r_A = 1100$ km. The EAS triggering and reconstruction efficiency is another factor which will be improved by exploiting the increased number of photons.

The goal is to achieve an angular granularity of 0.04$^\circ$ corresponding to $\Delta \ell \approx 0.7$ km when observing at half-FIELD from an orbital height $(r_P + r_A)/2$. The resulting PD pixel size is $d = 4$ mm and the resulting number of channels is 1.2 million. The resulting orbit averaged instantaneous geometrical aperture is $A_{eff} \approx 2 \times 10^6$ km2 sr. This might be increased further by choosing a higher apogee, if advantageous. The outline of the estimations leading to the above instrumental requirements from the scientific requirements are summarized in [30]. The instantaneous geometrical aperture can also increase if the apparatus is tilted with respect to the local nadir by some angle α_{tilt}. To estimate the area observed on the ground with a tilted apparatus a Monte-Carlo integration has been performed in [30]. For $\alpha_{tilt} \geq 30^\circ$ the instantaneous geometrical aperture can be increased up to a factor of 3–5. The drawbacks of the tilting mode however should be taken into careful consideration. Looking at the far extreme
of the field of view, drastically increases the role of atmospheric absorption implying that the effective energy threshold in the far part of the field of view increases. Also angular resolution at the far extreme becomes worse unless the pixel size is reduced. Excellent stray-light control is also required. Tilting, together with the large field of view, might affect the duty cycle, as the large area observed at Earth would more often include day-time areas. The main \textit{S-EUSO} baselines parameters and design goals resulting from the previous analysis are summarized in table 1.

6. Conclusions

In this paper, we have described the science rationale, the scientific and instrument requirements and the conceptual design of a next-generation space mission for the exploration of the ultra-high-energy Universe. Although the mission appears technologically feasible we are aware that several critical issues which range from background assessment, to technology readiness of the components, to the management of a complex one million channels readout and to the optimization of the atmosphere monitoring system should be addressed. Such a challenging space-based experiment certainly requires a number of developments to optimize the design, qualify the observational technique, perform preliminary measurements and test critical parts. In particular, measurements of air fluorescence yield, of the Cherenkov albedo, and of the background observed from space are crucial. Technological tests via stratospheric airplane flights and or balloon flights can help in optimizing the mission parameters. However a small instrument on-board a mini-satellite could provide a detailed characterization of the background and of the duty cycle in space conditions and a test of critical technological items. As well a measurement of the light level far off-nadir for stray-light control could be obtained. So the road ahead is not easy. However we believe that such a mission, though challenging, is essential to unveil at the end of the decade the still unexplored ultra-high-energy Universe.

Acknowledgments

This paper is largely based on the work done by the EUSO and the \textit{S-EUSO} collaboration which is reported in detail in \cite{2,39}. So we wish to warmly thank all members of these collaborations. We wish also to recall that without Livio Scarsi’s restless and enthusiastic efforts the space-based research for ultra-high-energy particles would not have reached its present exciting state.

References

\cite{1} Abraham J \textit{et al} (The Pierre Auger Collaboration) 2008 \textit{Phys. Rev. Lett.} \textbf{101} 061101
\cite{2} Santangelo A \textit{et al} 2007 \textit{The S-EUSO Proposal} \url{http://astro.uni-tuebingen.de/groups/uhe/cv-proposal/S-EUSO-proposal-29.06.2007.pdf}
\cite{3} Watson A A 2008 \textit{Nucl. Instrum. Methods} A \textbf{588} 221
\cite{4} Takahashi Y \textit{et al} 2007 \textit{J. Phys.: Conf. Ser.} \textbf{65} 012022 \url{http://jemeuso.riken.jp/}
\cite{5} Blasi P 2005 \textit{Mod. Phys. Lett.} A \textbf{20} 3055
\cite{6} Greisen K 1966 \textit{Phys Rev. Lett.} \textbf{16} 748
\quad Zatsepin G T and Kuz’min V A 1966 \textit{Zh. Eksp. Teor. Fiz.} \textbf{4} 114
\quad Zatsepin G T and Kuz’min V A 1966 \textit{JETP Lett.} \textbf{4} 78
\cite{7} Stecker F 1968 \textit{Phys. Rev. Lett.} \textbf{21} 1016

\textit{New Journal of Physics} \textbf{11} (2009) 065010 (\url{http://www.njp.org/})
[8] Linsley J 1963 Phys. Rev. Lett. 10 146
[9] Nagano M and Watson A A 2000 Rev. Mod. Phys. 72–73 689
[10] Bird D J et al 1993 Phys. Rev. Lett. 71 3401
[11] Takeda M et al 2003 Astropart. Phys. 19 447
[12] Abu-Zayyad T et al (HiRes Collaboration) 2004 Phys. Rev. Lett. 92 151101
[13] HiRes 2008 Phys. Rev. Lett. 100 101101
[14] Takeda M et al 1999 Astrophys. J. 522 225
[15] Abbasi et al 2004 Astrophys. J. 610 L79
[16] Farrar G R et al 2006 Astrophys. J. 642 L89
[17] Abraham J et al (The Pierre Auger Collaboration) 2007 Science 318 938
[18] Kashti T and Waxman E 2008 J. Cosmol. Astropart Phys. JCAP05(2008)006
[19] Ghisellini G et al 2008 arXiv:0806.2393 [astro-ph]
[20] Berezinsky V 2005 arXiv:astro-ph/0509675
[21] Kusenko A and Weiler T 2005 Phys. Rev. Lett. 88 161101
[22] Fargion D, Mele B and Salis A 1999 Astrophys. J. 157 725
[23] Palomares-Ruiz S, Irinia A and Weiler T J 2006 Phys. Rev. D 73 083003
[24] Abraham J et al (The Auger Collaboration) 2008 Phys. Rev. Lett. 100 211101
[25] Linsley J 1982 Proc. Workshop on Very High Energy Cosmic-Ray Interactions (University of Pennsylvania) ed M L Cherry, K. Lande and R I. Steinberg p 476
[26] Taskahashi Y et al (JEM-EUSO Collaboration) 2009 New J. Phys. 11 065009
[27] Santangelo A, Petrolini A and Plagnol E 2005 Physics and astrophysics at ultra high energies—a cosmic vision theme for the search of UHE CR and neutrinos from space Proc. 39th ESLAB Symposium Noordwijk, The Netherlands ed F Favata et al
[28] Kakimoto F et al 1996 Nucl. Instrum. Methods A 372 527
[29] Nagano F et al 2004 Astropart. Phys. 22 235
[30] Pallavicini M, Pesce R, Petrolini A and Thea A 2008 The observation of extensive air showers from space arXiv:0810.5711v1 [astro-ph]
[31] Barbier L M et al 2005 Astropart. Phys. 22 439
[32] Garipov G K et al 2005 JETP Lett. 82 185
[33] Berat C et al 2003 The light of the night sky in EUSO: duty cycle and background Proc. 28th ICRC (Tsukuba, Japan)
[34] Mazzinghi P et al 2006 An ultra-lightweight, large aperture, deployable telescope for advanced LIDAR applications Proc. 6th Int. Conf. on Space Optics, Noordwijk, The Netherlands (ESA SP-621)
[35] Simonetti F, Romoli A, Mazzinghi P and Bratina V 2006 Opt. Eng. 45 053001
[36] Stecker F W et al 2004 Nucl. Phys. C 136 433
[37] Teshima M et al 2007 arXiv:0709.1808 [astro-ph]
[38] Catalano O, Maccarone M C and Sacco B 2008 Astropart. Phys. 29 104
[39] Scarsi L et al 2003 The EUSO Redbook Internal Note EUSO-PI-REP-002
[40] Lillie C F and Whiddon W B 2004 Deployable optics for future space observatories Space 2004 Conf. and Exhibit (28–30 September 2004, San Diego, CA) AIAA 2004-5894 http://pdf.aiaa.org/preview/CDReadyMSPACE2004_1_014/PV2004_5_894.pdf
[41] Lillie C F 2005 Large deployable telescopes for future space observatories UV/Optical/Space IR Telescopes: Innovative Technologies and Concepts II (Proc. SPIE vol 5899) ed H A MacEwen pp 108–19
[42] Petrolini A 2008 Nucl. Instrum. Methods A 588 201

New Journal of Physics 11 (2009) 065010 (http://www.njp.org/)