Supplementary Information

Oxygenated Acyclic Diterpenes with Anticancer Activity from the Irish Brown Seaweed *Bifurcaria bifurcata*

Vangelis Smyrniotopoulos 1, Christian Merten 2, Daria Firsova 1, Howard Fearnhead 3, and Deniz Tasdemir 1,4,5*

1 School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland; vsmy@hotmail.com; daria.firsova@abbvie.com
2 Ruhr-Universität Bochum, Organische Chemie 2, Universitätsstraße 150, 44801 Bochum, Germany; christian.merten@ruhr-uni-bochum.de
3 Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; howard.fearnhead@nuigalway.ie
4 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
5 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany

* Correspondence: dtasdemir@geomar.de; Tel.: +49-431-600-4430, ORCID ID: 0000-0002-7841-6271

List of Figures

Figure S1. 1H NMR spectrum of compound 1 (500 MHz, CDCl3).
Figure S2. 13C NMR spectrum of compound 1 (125 MHz, CDCl3).
Figure S3. gHSQC spectrum of compound 1 (500/125 MHz, CDCl3).
Figure S4. gCOSY spectrum of compound 1 (500 MHz, CDCl3).
Figure S5. gHMBC spectrum of compound 1 (500/125 MHz, CDCl3).
Figure S6. NOESY spectrum of compound 1 (500/125 MHz, CDCl3).
Figure S7. HR-ESIMS report of compound 1.
Figure S8. FT-IR spectrum of compound 1.
Figure S9. 1H NMR spectrum of compound 2 (500 MHz, CDCl3).
Figure S10. 13C NMR spectrum of compound 2 (125 MHz, CDCl3).
Figure S11. gHSQC spectrum of compound 2 (500/125 MHz, CDCl3).
Figure S12. gCOSY spectrum of compound 2 (500 MHz, CDCl3).
Figure S13. gHMBC spectrum of compound 2 (500/125 MHz, CDCl3).
Figure S14. HR-ESIMS report of compound 2.
Figure S15. FT-IR spectrum of compound 2.
Figure S16. 1H NMR spectrum of compound 3 (600 MHz, C6D6).
Figure S17. 13C NMR spectrum of compound 3 (150 MHz, C6D6).
Figure S18. gHSQC spectrum of compound 3 (600/150 MHz, C6D6).
Figure S19. gCOSY spectrum of compound 3 (600 MHz, C6D6).
Figure S20. gHMBC spectrum of compound 3 (600/150 MHz, C6D6).
Figure S21. NOESY spectrum of compound 3 (600 MHz, C6D6).
Figure S22. HR-ESIMS report of compound 3.
Figure S23. FT-IR spectrum of compound 3.
Figure S24. 1H NMR spectrum of compound 4 (500 MHz, CDCl3).
Figure S25. gHSQC spectrum of compound 4 (500/125 MHz, CDCl3).
Figure S26. gCOSY spectrum of compound 4 (500 MHz, CDCl3).
Figure S27. gHMBC spectrum of compound 4 (500/125 MHz, CDCl3).
Figure S28. HR-ESIMS report of compound 4.
Figure S29. FT-IR spectrum of compound 4.
Figure S30. 1H NMR spectrum of compound 5 (500 MHz, CDCl3).
Figure S31. 13C NMR spectrum of compound 5 (125 MHz, CDCl3).
Figure S32. gHSQC spectrum of compound 5 (500/125 MHz, CDCl3).
Figure S33. gHMBC spectrum of compound 5 (500/125 MHz, CDCl3).
Figure S34. HR-ESIMS report of compound 5.
Figure S35. FT-IR spectrum of compound 5.
Figure S36. 1H NMR spectrum of compound 6 (600 MHz, CDCl3).
Figure S37. 13C NMR spectrum of compound 6 (150 MHz, CDCl3).
Figure S38. gCOSY spectrum of compound 6 (600 MHz, CDCl3).
Figure S39. gHMBC spectrum of compound 6 (600/150 MHz, CDCl3).
Figure S40. HR-ESIMS report of compound 6.
Figure S41. FT-IR spectrum of compound 6.
Figure S42. Comparison of the IR/VCD spectra of 1 with those of 9 and calculations.
Figure S1. 1H NMR spectrum of compound 1 (500 MHz, CDCl$_3$)

Figure S2. 13C NMR spectrum of compound 1 (125 MHz, CDCl$_3$)
Figure S3. gCOSY spectrum of compound 1 (500 MHz, CDCl$_3$)

Figure S4. gHSQC spectrum of compound 1 (500/125 MHz, CDCl$_3$)
Figure S5. gHMBC spectrum of compound 1 (500/125 MHz, CDCl₃)

Figure S6. NOESY spectrum of compound 1 (500 MHz, CDCl₃)
Figure S7. HR-ESIMS report of compound 1
Figure S8. FT-IR spectrum of compound 1.

Figure S9. 1H NMR spectrum of compound 2 (500 MHz, CDCl$_3$)
Figure S10. 13C NMR spectrum of compound 2 (125 MHz, CDCl$_3$)

Figure S11. gCOSY spectrum of compound 2 (500 MHz, CDCl$_3$)
Figure S12. gHSQC spectrum of compound 2 (500/125 MHz, CDCl₃)

Figure S13. gHMBC spectrum of compound 2 (500/125 MHz, CDCl₃)
Figure S14. HR-ESIMS report of compound 2
Figure S15. FT-IR spectrum of compound 2

Figure S16. 1H NMR spectrum of compound 3 (600 MHz, C$_6$D$_6$)
Figure S17. 13C NMR spectrum of compound 3 (150 MHz, C$_6$D$_6$)

Figure S18. gCOSY spectrum of compound 3 (600 MHz, C$_6$D$_6$)
Figure S19. gHSQC spectrum of compound 3 (600/150 MHz, C₆D₆)

Figure S20. gHMBC spectrum of compound 3 (600/150 MHz, C₆D₆)
Figure S21. NOESY spectrum of compound 3 (500 MHz, C₆D₆)
Figure S22. HR-ESIMS report of compound 3
Figure S23. FT-IR spectrum of compound 3

Figure S24. 1H NMR spectrum of compound 4 (500 MHz, CDCl$_3$)
Figure S25. gHSQC spectrum of compound 4 (500/125 MHz, CDCl₃)

Figure S26. gCOSY spectrum of compound 4 (500 MHz, CDCl₃)
Figure S27. gHMBC spectrum of compound 4 (500/125 MHz, CDCl₃)
Figure S28. HR-ESIMS report of compound 4
Figure S29. FT-IR spectrum of compound 4

Figure S30. 1H NMR spectrum of compound 5 (500 MHz, CDCl$_3$)
Figure S31. 13C NMR spectrum of compound 5 (125 MHz, CDCl$_3$)

Figure S32. gHSQC spectrum of compound 5 (500/125 MHz, CDCl$_3$)
Figure S33. gHMBC spectrum of compound 5 (500/125 MHz, CDCl₃)
Figure S34. HR-ESIMS report of compound 5
Figure S35. FT-IR spectrum of compound 5

Figure S36. 1H NMR spectrum of compound 6 (600 MHz, CDCl$_3$)
Figure S37. 13C NMR spectrum of compound 6 (150 MHz, CDCl$_3$)

Figure S38. gCOSY spectrum of compound 6 (600 MHz, CDCl$_3$)
Figure S39. gHMBC spectrum of compound 6 (600/150 MHz, CDCl$_3$)
Figure S40. HR-ESIMS report of compound 6
Figure S41. FT-IR spectrum of compound 6

Figure S42. (a) Comparison of the IR/VCD spectra of 1 with those of eleganediol (9) and calculations for a fragment. (b) Fragment used in the calculations that has been shown before (Chem. Commun., 2015, 51, 16217) to be sufficient to describe the observed VCD signatures of eleganediol (9).