The importance of membrane proteins cannot be underestimated in sequenced genomes in eukaryotes and prokaryotes. They account for 25–30% of all proteins (ORFs) identified as they receive much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.

Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors

Abbreviations: NRP1, neuropilin-1; RTK, receptor tyrosine kinase; TCR, T-cell receptor; TM, transmembrane

Membrane proteins are critical in a diverse array of cellular functions, such as cell-cell communication, detection of environmental changes, transport of substances inside and outside of cells, energy transduction, enzymatic activities. They also have a structural role in maintaining cell shape, size and polarity. In multi-cellular eukaryotes, membrane proteins are also more specialized as receptors for many extracellular signals (hormones, growth factors, neurotransmitters), recognition molecules in the immune system and adhesion molecules. Other important classes of membrane-interacting peptides such as amphipathic helices, antimicrobial peptides and cell-penetrating peptides will not be discussed here.

The long-standing structural view of biological membranes known as the fluid-mosaic model was proposed by Singer and Nicolson almost 40 y ago. This model gave an initial vision where low concentrations of proteins were embedded in a fluid “sea” of lipids. This view has now become more complex to take into account the importance of protein-protein and protein-lipid interactions, the crowding of proteins at the cell surface and the existence of complex specialized “domains” associating specific proteins and lipids and assuming discrete functions. Indeed, it was recognized long ago that TM and membrane-associated proteins occupy environments in the cell membrane where the protein concentration in two dimensions is quite large and can exert a large influence on clustering and thus functions. This evolution of the model reflects also the highly dynamic nature of intramembrane interactions. The contribution of lipids to the complexity of membrane organization and the regulation of membrane bioactivities is now well recognized and described by the lipid raft concept.

Concerning the major problem of protein insertion in the membrane lipid bilayer, the two-stage model was proposed 20 y ago. Its main tenets, the insertion of independently stable helices across the membrane, followed by helix-helix interactions to form higher order structures still hold true. The model has been more recently extended to a third stage which considers events such as folding of extracellular loops, insertion of peripheral domains and quaternary structure formation.

In this model, the lateral association of TM helices within the lipid bilayer is the second stage in the folding of membrane proteins and lipids and assuming discrete functions.9 Indeed, it was recognized long ago that TM and membrane-associated proteins occupy environments in the cell membrane where the protein concentration in two dimensions is quite large and can exert a large influence on clustering and thus functions.10 This evolution of the model reflects also the highly dynamic nature of intramembrane interactions.7,11,12 The contribution of lipids to the complexity of membrane organization and the regulation of membrane bioactivities is now well recognized and described by the lipid raft concept.13,14

Concerning the major problem of protein insertion in the membrane lipid bilayer, the two-stage model was proposed 20 y ago. Its main tenets, the insertion of independently stable helices across the membrane, followed by helix-helix interactions to form higher order structures still hold true. The model has been more recently extended to a third stage which considers events such as folding of extracellular loops, insertion of peripheral domains and quaternary structure formation.

In this model, the lateral association of TM helices within the lipid bilayer is the second stage in the folding of membrane proteins and lipids and assuming discrete functions.9 Indeed, it was recognized long ago that TM and membrane-associated proteins occupy environments in the cell membrane where the protein concentration in two dimensions is quite large and can exert a large influence on clustering and thus functions.10 This evolution of the model reflects also the highly dynamic nature of intramembrane interactions.7,11,12 The contribution of lipids to the complexity of membrane organization and the regulation of membrane bioactivities is now well recognized and described by the lipid raft concept.13,14
proteins. Dimerization of TM helices is the simplest example of such lateral association, and has been much studied in the context of polytopic membrane protein assembly. But, it may also play a role in signaling across cell membranes by associating two similar or different proteins in an active (or inactive) dimer or by creating larger oligomeric structures.7 Many examples of such membrane complexes are known, e.g., the photosynthetic apparatus,18 ATPases,39 virus assembly machinery,20 immune signaling,21,22 G protein-coupled receptors,24,25 etc.

It is becoming increasingly clear that protein interactions, both transient and stable, are far more extensive than originally appreciated. These protein complexes can present a very wide range of stabilities and form highly coordinated networks that govern biological processes. This is true for soluble proteins, but also for membrane proteins. Thus, in this context, the role attributed to membrane-spanning helices has changed dramatically over the past 10 years. Once mostly regarded as mere membrane anchors, TM domains are now recognized as full-time actors of protein-protein interactions. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. Many aspects of this topic have recently been reviewed in excellent papers.7,11,12,26-41 A brief summary of current knowledge, obtained through biophysical, biochemical, cell biological and genetic studies can be put forward:

1. TM helices are usually 20–23 amino-acids long, with a large over-representation of hydrophobic residues. Polar residues are rare, especially negatively charged ones, whereas single-spanning segments are more hydrophobic than multi-spanning helices.30,42

2. Analysis of polytopic membrane structures and studies on model or natural single TM peptides has provided many insights on packing “rules” for TM helices. Sequence and geometric motifs have been found to drive these interactions, in a similar way as small modular domains (such as leucine zippers) that mediate soluble proteins interactions. The majority of these motifs can be classified in a rather limited number.31,38 The geometry of these packing motifs is quite variable with right-hand or left-hand crossing motifs, and crossing angles as large as 40°. Surprisingly, Walters and DeGrado found out that about two thirds of these motifs pack small chain amino-acids (Gly, Ala and Ser).18 In these motifs, the small amino-acids are separated by three other residues, thus been usually called Gx3G or GX2G motif or GAS motif. This motif was first recognized and much studied in the case of glycoporin A (see below) and has been characterized now in many other examples of interacting TM helices. Other characteristic motifs contain polar residues which contribute hydrogen bonds or charged residues which make static interactions.53,54

A word of caution: the existence of one such short interaction short motifs in a TM sequence does not necessarily imply a significant interaction. For instance, about one third of Gx3G motifs in a non-redundant database of membrane protein structures are not interacting with another helix (Duneau JP, unpublished results). And, it has to be stressed that residues adjacent to a sequence motif also contribute to the interactions.45-48

3. Associations between helical TM domains are dynamic by nature. Different types of motion of TM α helices have been described: lateral translation, piston, rotation parallel to the membrane (pivot or tilt) and rotation perpendicular to the membrane.15,12 The dynamic character of these interactions is of prime importance for cell signaling, which absolutely requires the capacity to be regulated and reversibility.17

Single-Spanning Membrane Proteins: A Very Large “Family” with Very Diverse Functions

In 1992, Bormann and Engelman concluded their review entitled, “Intramembrane helix-helix association in oligomerization and transmembrane signaling”49 with this prediction: “An oligomerization/conformational change model would predict that new sites of close contact would occur between the domains of the receptor molecule, some of which may be between the transmembrane helices. Therefore, experimenters should be able to generate peptides or small molecules that can specifically interfere with either the oligomerization or generation of new close-contact sites involved in the conformational change of the receptor that leads to signaling. In this way, specific receptors might be targeted for inhibition or possibly activation using binding events inside the bilayer.”

This somewhat prophetic view has been slow to materialize, but recent years have seen much progress in our knowledge of structural as well as functional aspects of helix-helix interactions in membranes. As several excellent reviews have recently been published on many facets of these interactions (see above), this review will focus on a sub-class of membrane proteins, the single-spanning or bitopic proteins. Strikingly, this is the most abundant membrane protein class, representing more than half of all membrane protein in analyzed genomes.2,50,51 Comparative genomics have allowed for structural/functional classifications of membrane proteomes. Unsurprisingly, it was verified that eukaryotes have a higher proportion of proteins for communication since multicellular organisms require a strict control of cell-interactions.52 Figure 1 shows the comparative distribution of bitopic proteins from human and E. coli genomes.

Remarkably, proteins associated with signaling (receptors and ligands), cell structure and adhesion, represent about 50% of the total in the human genome. It should be stressed that such estimations have to be considered with care because of the difficulty of predicting precisely TM segments vs. hydrophobic signal sequences. Nevertheless, it can be noted that many of these bitopic proteins do participate in the regulation of cell adhesion, cell migration and cell proliferation and differentiation. A short list includes receptor tyrosine kinases (RTKs), many of their ligand precursors (e.g., EGF family), immunoglobulin superfamily receptors, integrins, plexins, syndecans, neuropilins, cadherins and so on.

The presence in that list of adhesion proteins and receptors is quite intriguing since they have very tight functional connections
To date more than 300 publications dealing with helical TM domain interactions of membrane proteins can be found, not counting studies of de novo designed sequences. Some extensive lists can be found in recent reviews. In Table 1, we present a selective list of such TM peptides associations limited to those bitopic proteins playing a role in cell adhesion and migration, and more loosely in cell signaling. In this table we give some indications on the techniques used, with reporter assay representing the Toxcat method and its derivatives, and cell assay meaning all biochemical and functional techniques used in intact cells. Molecular dynamics simulations and the numerous physicochemical methods used in many cases are not mentioned, as much more detail can be found in the review by Bordag and Keller. TM sequence data with motifs are to be found in Rath et al. Some features of this summary table can be underlined. First, many examples come from the RTK family. This is not surprising in view of the great importance of this family of receptors in the control of cell proliferation and differentiation and its roles in pathologies such as cancer or skeletal disorders. Also, one of the first characterized disease-causing mutations in a TM segment was found in Neu/erbB2, which was initially identified as an oncogene by NIH/3T3 transfection analysis of cDNA from ethynitrosourea-induced rat neuroblastomas. This also led to the delineation of an interaction motif resembling that of glycoporphin

Experimental Evidence for TM Domain Importance

Early evidence for the importance of helix-helix interactions in integral membrane proteins assembly and oligomerization came in the late 80s from the first crystal structures (bacteriorhodopsin and photosynthetic reaction centers) and mutational analysis of polytopic and bitopic proteins. Highly specific interactions between TM helices had already been demonstrated, the most prominent examples being glycoporphin A and M13 phage coat protein, both forming SDS resistant dimers, as well as phospholamban which forms pentamers. Glycoporphin A was the first protein for which a specific role of TM helices interactions was evidenced, and became the paradigm for these intramembrane interactions. Many more examples of such interactions have since been described, although a comprehensive understanding of structure-function relationships has yet to be achieved.

To date more than 300 publications dealing with helical TM domain interactions of membrane proteins can be found, not counting studies of de novo designed sequences. Some extensive lists can be found in recent reviews. In Table 1, we present a selective list of such TM peptides associations limited to those bitopic proteins playing a role in cell adhesion and migration, and more loosely in cell signaling. In this table we give some indications on the techniques used, with reporter assay representing the Toxcat method and its derivatives, and cell assay meaning all biochemical and functional techniques used in intact cells. Molecular dynamics simulations and the numerous physicochemical methods used in many cases are not mentioned, as much more detail can be found in the review by Bordag and Keller. TM sequence data with motifs are to be found in Rath et al.

Some features of this summary table can be underlined. First, many examples come from the RTK family. This is not surprising in view of the great importance of this family of receptors in the control of cell proliferation and differentiation and its roles in pathologies such as cancer or skeletal disorders. Also, one of the first characterized disease-causing mutations in a TM segment was found in Neu/erbB2, which was initially identified as an oncogene by NIH/3T3 transfection analysis of cDNA from ethynitrosourea-induced rat neuroblastomas. This also led to the delineation of an interaction motif resembling that of glycoporphin.
Table 2 presents disease-associated mutations in the TM domains of bitopic proteins. Again, RTKs are over-represented. The most salient feature is that most mutations represent the replacement of an hydrophobic residue by a polar one. It has been shown that in TM domains, mutations involving polar residues, and ionizable residues in particular (notably arginine), are more often associated with protein malfunction than in soluble proteins.

To summarize this brief overview, a large body of recent and less recent experimental evidences concur to demonstrate that intramembrane interhelical interactions are definitely more widespread than previously considered for bitopic proteins. The functional effects of mutations in the TM domains of these proteins in disease confirm a pivotal role for these interactions. The next section will survey the current structural understanding of inter-helix interactions in bitopic proteins.

Structural Data: NMR and Modelling

Despite their obvious importance, the effectiveness of tools to study the structure of integral membrane proteins lags far behind that of water-soluble proteins. This is due to several interlinked reasons: the difficulties to solubilize and purify these hydrophobic proteins, the disordered nature of their lipid environment and the complex nature of many membrane proteins which are oligomers of one or several polypeptides.

One major consequence of these technical hurdles is the under-representation of membrane protein structures in the PDB database. At the end of 2008 and 2009, only 217 unique structures of membrane proteins were available (http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html). Although progress is rapid, this to be compared with about 20,000 known structures.
The first one was Glycophorin A, followed later by a few TM homodimers from RTKs (erbB2, EphA1 and EphA2), sub-unit ζ of the TCR, Bcl2 (an apoptosis regulator acting on mitochondrial membranes) and only one heterodimer of integrin subunits. These structures are depicted in Figures 3 and 4, and a summary of the experimental conditions is given in Table 3.

A few facts are striking about the structures depicted in Figure 3, besides their very small number and the fact that all but one were determined in the past four years. The dimers are generally right-handed, with the exception of the TCR ζ-ζ (zeta-zeta) dimer and the EphA2 receptor. Both of these structures, however, are atypical as far as can be told based on such a limited sample. The ζζ TM dimer is disulfide-bridged at its N-terminal end, and its other dimer interactions are mostly polar, with the exception of a Leu9-Leu9' self-contact (which is not obvious based on the published models). The EphA2 receptor structure is unique within this limited set, as it features the classic GX3G dimerization for soluble proteins. Also for many membrane proteins, only the structure of soluble sub-domains is known, which leads to incomplete understanding of structure-function relationships in these usually complex proteins. The situation is somewhat worse for bitopic membrane proteins, for which less than ten structures are available, be they monomeric or dimeric. This neglect is certainly due to several factors. The usual difficulties to express, purify and obtain suitable environment for crystallization or NMR are possibly worsened for bitopic proteins which can be less stable. Also, the prevalent belief until recently that these single helices are mere membrane anchors made them unworthy targets for structural studies.

Structural data

For bitopic proteins, the very few available structures were obtained by NMR. Some are monomeric structures, such as M13 major coat protein or sarcolipin (www.drorlist.com/nmr/MPNMR.html). Only seven structures of dimers of TM helices, to date, have been deposited in the PDB. The first one was Glycophorin A, followed later by a few TM homodimers from RTKs (erbB2, EphA1 and EphA2), sub-unit ζ of the TCR, Bcl2 (an apoptosis regulator acting on mitochondrial membranes) and only one heterodimer of integrin subunits. These structures are depicted in Figures 3 and 4, and a summary of the experimental conditions is given in Table 3.

There are a few facts about the structures depicted in Figure 3 that are noteworthy. All the dimers are generally right-handed, except for the TCR ζ-ζ (zeta-zeta) dimer and the EphA2 receptor. The ζζ TM dimer is disulfide-bridged at its N-terminal end, and its other dimer interactions are mostly polar, with the exception of a Leu9-Leu9' self-contact. The EphA2 receptor structure is unique within this limited set, as it features the classic GX3G dimerization for soluble proteins.

Table 1

Protein (UniProtKB ID)	Function	Method(s)	Reference(s)
I. Receptors			
All RTKs (n = 58)	RTK, receptor tyrosine kinase	Reporter assay	108
EGFR family (erbB 1-4)	RTK	Reporter assay	74, 75, 109
(P00533, P04626, P21860, Q15303)		FRET	79, 110
FGFR 1-4, fibroblast growth factor receptors	RTK	Cell and reporter assays, FRET	114–121
(P11362, P21802, P22607, P22455)		Cell assay	122
VEGFR-2 (P35968)	RTK	Cell assay	122
PDGFR (P16234, P09619)	RTK	Cell assay	59–62, 123
RET (P07949)	RTK	Cell assay	124
Erythropoietin receptor (P19235)	Cytokine receptor	Cell assay	125–129
PRL-R, prolactin receptor (P16471)	Cytokine receptor	Cell assay	130
EphA1, Ephrin type-A receptor 1 (P21709)	RTK	FRET	131
Insulin & IGF-1 receptors (P06213, P08069)	RTK	Cell assay, FRET	132–134
Neurilpin 1 (P97333)	Co-receptor for semaphorins and VEGF	Cell and reporter assays, FRET	103, 136
major histocompatibility complex class II	Immune response	Cell and reporter assays, FRET, Flow cytometry	137–139
(alpha and beta chains)	Immune response	Cell assay	140
II. Adhesion molecules	Cell-Adhesion receptors	Cell and reporter assays	93, 141–146
Syndecans (P18827, P34741, O75056, P31431)	Cell surface adhesion co-receptors	Reporter assay	147, 148
Myelin protein P0 (P25189)	Myelin adhesion	Reporter assay	149
Cadherins (P12830, O15943)	Calcium-dependent cell adhesion molecules	Cell and reporter assays	150, 151
Synaptobrevin-2 (P63027)	Targeting and fusion of transport vesicles	Cell and reporter assays	152, 153
III. Others	Unknown	Cell and reporter assays, FRET, etc.,	40, 67, 154–157
Glycophorin-A (P02724)	Apoptosis inducer	Reporter assay	72, 158
APP, amyloid precursor protein (P05067)	Synapse formation regulator	Cell assay	159–162

From left to right, columns give the name of protein with its ID in the UniProt Protein knowledgebase (www.uniprot.org/), function of the protein, methods used and references.
Table 2. Selected examples of disease-associated mutations in the TM domains of bitopic proteins

Protein (OMIM ID)	Function	Disease(s)	Mutation(s)	Reference(s)
I. Receptors				
erbB 2 (*164870)	RTK	Neuroblastoma (rat) Breast cancer polymorphism	V664E	111, 163 164
FGFR family	RTK	Dysplasias: Osteoglophonic dysplasia	C379R, etc.,	165
FGFR1 (*136350)	RTK	Beare-Stevenson Cutis gyrata syndrome	Y375C	166
FGFR2 (*176943)	RTK	Achondroplasia, Crouzon syndrome with Acanthosis nigricans	G380R, A391E, etc.,	167–169
FGFR3 (*134934)	RTK	Cancers	G388R	170
FGFR4 (*134935)	Receptor for interleukin-2	Visceral leishmaniasis	G245R	171
II. Adhesion molecules				
Myelin Protein P0 (*159440)	Major structural protein of peripheral myelin	Charcot-Marie-Tooth disease, Dejerine-Sottas syndrome	I162M, G163R, G167R	172–174
TACI (*604907)	Tumor necrosis factor receptor	Immunodeficiency	A181E	175

From left to right, columns give the name of protein with its ID in the OMIM (Online Mendelian Inheritance in Man) database (www.ncbi.nlm.nih.gov/omim/), function of the protein, nature of the associated disease(s), mutation(s) and references.

Figure 3. Views of TM helix dimer structures from NMR. For each dimer, two views are presented, one showing the crossing angle and the second, rotated by 90 degrees around the (pseudo)-symmetry axis, showing the structure of the interface. Structures are: (A) Glycophorin A (1afo), (B) ζ-ζ dimer of T cell receptor (2 hac), (C) Receptor tyrosine kinase EphA1 (2k1k), (D) Integrin alphaIIb-beta3 TM complex (2k9i), (E) Receptor tyrosine kinase EphA2 (2k9y), (F) BNip3 TM domain dimer (in mitochondrial outer membrane) (2ka1), (G) TM domain of growth factor receptor ErbB2 (2jwa). Properties fo the structures are summarized in Table 1. Residues belonging to dimerization motifs or participating in dimer contacts are outlined in space-filling or stick representation and colored by amino acid type: Gly (yellow), Ala (brown), Val (tan), Leu (green), Ile (green), Glu/Asp (purple), Ser (orange), Thr (mauve), Pro (gray), Tyr (blue-gray), Cys (lime). Molecular graphics rendered with VMD.
significant sources of variation remain: the location of the dimer motif in the TM sequence, which results in the helices being pinned together at various heights in the membrane, and the deviation of the TM secondary structure from ideal α-helices. When extracting the latter information from NMR-based models, the possible presence of arbitrary restraints on secondary structure should be kept in mind. In recent structures, such restraints would include terms in the empirical potential used to model motifs facing away from the dimer interface. Instead, dimerization is mediated by a heptad repeat motif, and the authors suggest that switching between dimerization modes involving either motif could have functional significance, as has been proposed for other families of RTKs.74-76

Common features do emerge among the right-handed dimer structures. All are mediated by GpA-like small-residue-containing dimerization motifs spanning two or three helical turns. Two

Table 3. Summary of experimental conditions and geometry of TM helix dimer structures represented in Figure 3

Structure	Experimental conditions	pH	Dimer motif	Contact pairs (bold for polar contacts)	Angle
GpA (1afo)	5% DPC micelles	6.0	G79X3G	I76-G80, G83-V84	R -40°
ζ- ζ (2hac)	DPC/SDS 5:1 micelles	7.0	none	C2 (disulfide), D6, L9, Y22, T27	L
EphA1 (2k1k, 2k1l)	DMPC/DHPC 1:4	4.3	A550X3GX3G, A560X3G	E154, A1550, V551, G554-L555, G558-A559	R -44°
EphA2 (2k9y)	DMPC/DHPC 1:4	5.0	G70X3G (outward-facing)	L151, I154-G159	L 20°
BNip3 (2j5d)	DMPC/DHPC 1:4	5.0	A550X3GX3G	S172-H173, G180, G180-I181	R -45°
BNip3 (2ka1, 2ka2)	DPC/DPPC	5.1	A550X3GX3G	S172-H173, G180, G180-I181	R -34°
ErbB2 (2jwa)	DMPC/DHPC bicelles	5.0	T70X5S0X3G	S656, G660	R -42°
for simulation-based refinement; predicted secondary structures have been shown to vary depending on the choice of potential.77 The fewer the NMR restraints, the more model refinement must rely on molecular interaction potentials. Taking this trend to its limit, purely physics-based approaches for ab initio prediction of TM dimer structures seem increasingly usable.

Another informative representation of the structure of helix dimers is provided by the projection of the helix surface in a dimer, as made with Ptuba (Fig. 4).78 Ptuba was developed to simplify the visualization of the surfaces of 3D helices as pseudo 2D projections that can be color coded to represent various aspects of their properties. Briefly, this software “unfolds” the 3D structure of an helix and draws it as a duplicated surface. In Figure 4, the unfolded surfaces are colored according to the distance between atoms of the two helixes in NMR structure. In the lower part of the figure, residues are indicated in one letter code and colored according to averaged distances between helices for Ca and all atoms of each residue in the dimer. Panel A depicts the surface of the glycophorin A helix where the interacting residues involve a relatively wide strip of surface with numerous closed contacts distributed along the interacting patch. The central panel (Fig. 4B) shows the surface of one ErbB2 helix, which in spite of a very similar geometry, shows a smaller interacting surface and less marked proximities than glycophorin A. This can be related to experimental data (FRET) showing that this homodimerization is weaker.79,80 Finally, in the TCR ζ-ζ TM domains the interface extends all along one helix face but involves only a handful of very local, short-distance contacts (Fig. 4C).

From sequences to structures. Molecular modeling and computer simulations are increasingly used for simulations of lateral association and oligomerization of TM helices. Predictions of TM interaction can rely on two distinct approaches (reviewed in Punta et al. 2007).41 Homology modeling and ab initio or de novo design. The first approach mainly concerns cases where 3D templates are available, and obviously this is not the case for the association of single-spanning TM proteins. However, the glycophorin A TM NMR structure has been used as a modeling template each time a GAS motif was thought to be involved in interactions. However, all GAS motifs do not necessarily lead to unique packing geometry.31,38

The other method used to predict structural organization of membrane proteins relies on de novo (knowledge based) or ab initio (thermodynamics) approaches. The principle may be formulated very simply: one has just to find pairwise interactions between TM domains. The early success of the primary algorithms are nowadays always present in strategies that concern all membrane proteins. They comprise three main tasks: first, the prediction of TM domain stretches from sequence; second, the prediction of the orientation of the TM segment relatively to the membrane and the remainder of the protein and third, the prediction of contact maps between the distinct helices. Early approaches for the prediction of TM stretches relied on propensity scales to describe the partition of the protein sequence in membrane.82 They quickly attained relatively good precision results. Today, best “modern” algorithms are able to reach 80% in accuracy at the topology level for membrane proteins. This high precision was thought to be definitively attained only by Hidden Markov Models (TMHMM)83 or Neural Networks approach (PHDhtm).84 More recently a first principle method based on the partition energetics of the translocon machinery was developed (TopPred85),86 which performs equally as the previous algorithms. An additional improvement of the predictor using HMM (SCAMPI) rises further the performances for correct topology prediction.85

This kind of de novo algorithm is of prime interest for single spanning TM domains which are more conserved than for polytopic proteins,34 and for which the usefulness of statistics coming from polytopic membrane proteins remains to be assessed. Also, importantly for bitopic proteins, efforts have been made to discriminate signal peptides which can be mistaken from authentic TM segments and thus lead to errors in topology.2,86 Prediction of membrane protein structure needs also a correct estimation of the orientation of helix faces relative to the membrane protein interior and exterior. Early developments involved the calculation of hydrophobic moment with physically based approaches. However the hydrophobicity difference is by far less pronounced in membrane proteins than in soluble ones. Such an approach was not proved as very useful even for multiple spanning membrane proteins.87

In recent years progress was made towards the prediction of contact maps between TM segments by including residue conservation (LIPS)88 and co-evolution.89 The accuracy for lipid exposed surface prediction reached 88% with LIPS. Contact map predictors were implemented using Neural Networks89 and Support Vector Machine (Tmhit).90 Their accuracy was argued to be between 31–57%. To our knowledge, those recently developed methods have not been applied to the prediction of associations of single spanning TM proteins. Probably, algorithms could be adapted to that situation; however, applying those methods to single-spanning TM domains is not obvious since divergence in sequences could not be sufficient to detect such correlated mutations. The fact that TM domains of bitopic membrane proteins are more conserved than others precludes the practical use of such methods. In fact, for a long time, prediction of interactions between single transmembrane domain have been based on de novo approach using sophisticated molecular mechanics methods.91 The ability of such modeling to achieve good predictions has been demonstrated92 and verified experimentally (CHAMP).93 The complexity of such protocols currently precludes genome wide analysis of potential single TM associations.

In conclusion, biases in structural databases toward polytopic membrane proteins and difficulties of interpretation of evolutionary data for bitopic proteins limits the usefulness of ab initio approaches. In addition, the de novo strategy suffers from inherent complexity and, overall, a deficit of available experimental validation, particularly at the structural level. So more work needs to be done to measure structural and environmental constraints that specifically apply on single TM assemblies. NMR and other experimental data, including biological assays, mutational scanning and biophysical measurements should feed strategies to
develop new kinds of prediction algorithms optimized towards this class of proteins.

Perspectives and Questions

Together with other reviews in this focus issue, this overview of TM-TM interactions in bitopic proteins signaling demonstrates their functional importance. Nevertheless, it is clear that many questions remain to be answered, and much technical progress is needed before we get a comprehensive knowledge of all the structural and dynamic aspects of interactions (homologous and heterologous) between intramembrane helices. This understanding is necessary to describe protein-mediated information transfer across the membrane during cell signaling.

It must be stressed that the common view that bitopic membrane receptors activation or inactivation is due to ligand-activated homodimerization (or heterodimerization) is certainly oversimplistic. Very briefly, the case of the EGFR/ErbB family receptor illustrates the limits of the “divide and conquer” strategy for multi-domains membrane proteins. Structures of nearly all the parts of ErbB receptors have now been solved through crystallography or NMR, namely extracellular, transmembrane, juxta-membrane and kinase domains. Nevertheless, it has become clear that the sum of these parts does not fully account for receptor properties, including their allosteric regulation. Moreover, the existence of large oligomers or aggregates of ErbB receptors at the cell surface has been widely documented. Elucidation of the role of TM domains interactions in the assembly of such large ErbB structures, and in the transfer of conformational changes through the lipid bilayer, certainly represent major challenges.

An interesting point about the interaction TM motifs evoked in the introduction is that they usually lie on a well defined “face” of the helix. Other motifs can exist on other sides, opening the possibility for higher order interactions with other TM domains. In this way, interactions between TM helices could serve as “adapter domains” participating in the assembly of dynamic and evolving multimeric complexes with new functions.

Short hydrophobic peptide mimics of TM segments have already proven useful as tools to decipher the role of interactions between TM helices, notably in cultured cell models (see Table I). But could such peptides be considered as drug templates? In general, contrary to early disdain towards the use of peptides or short proteins, much emphasis is now put on the interest of biologicals, in general, and peptides in particular. Furthermore, inhibition of protein-protein interactions is beginning to hold its promises. A spectacular example is the 36-amino-acid peptide enfuvirtide (Fuzeon®, Roche), which targets the HIV-1 envelope protein and inhibits CD4 receptor binding thereby preventing HIV-1 entry into the host T cell.

Finally, very few examples of TM peptide activity in animal models are found in the literature. One very recent example is the demonstration by some of us that a synthetic peptide mimicking the transmembrane domain of Neuregulin-1 (NRP1) blocks the biological functions of this Plexin and VEGFR coreceptor. The sequence of this TM domain contains two adjacent GxxG motifs, and various biochemical and functional assays have revealed the remarkable specificity of the strategy. In particular, FRET analysis showed the lack of hetero-interactions between wild type and mutant version of the peptide (3 glycines of the motif replaced by 3 valines). At the cellular level, this peptide blocked Semaphorin-3A induced differentiation of PC12 cells while not affecting NGF-induced PC12 differentiation, thereby demonstrating a selective inhibition of NRP1-dependent pathways. These interesting properties pushed us to examine how this peptide could be used as a novel therapeutic agent in a pathological context. To this end, we have explored the migratory and proliferative capacity of brain tumor cells in its presence. This choice was motivated by the major role of NRP1 in brain tumor progression and tumor associated angiogenesis, a key step for cancer progression. Strikingly, we found that the peptide blocked VEGF-induced endothelial and tumor cell migration and proliferation in vitro. Moreover, our data demonstrate in orthotopic and heterotopic graft models of brain tumors that the growth of rat and human glioma is strongly reduced (up to 80%) in the presence of the peptide. Thus, this preclinical study suggests that targeting TM domain interactions possibly represents a clear alternative to current protein inhibitors.

Indeed, much progress has recently been made in developing techniques that will help designing molecules targeting protein TM domains. These include truncating native TM regions such as the core peptide, directed evolution with the E5 protein and computational design (CHAMP) with integrins. It is also interesting to note that some derivatives of TM peptides, containing D-amino acids or modified with hydrophobic moieties, are also active. These examples all demonstrate that it is possible to design small peptides or peptidomimetics that specifically modulate much larger target membrane proteins by acting within cell membranes. While several questions related to the stability, biodistribution or toxicity of such TM peptides have yet to be addressed, these developments represent the first steps towards a new generation of peptide drugs.

In conclusion, we certainly have only seen the tip of the iceberg. More studies using a wide variety of methods, from single TM helices to integrated views in biochemical (e.g., lipid vesicles) and cellular contexts are required to describe TM-TM interactions, together with contribution of the increasing power and pertinence of computational methods. A better understanding of structure-function relationships of these interactions is necessary to apprehend such fundamental biological processes as membrane biogenesis, membrane protein folding and assembly in the plane of the membrane, as well as their contribution to the “vertical” information transfer across the membrane.

Acknowledgements

Financial support from the Agence Nationale de la Recherche (ANR) is gratefully acknowledged.
25. Bordag N, Keller S. Alpha-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26.
26. White SH. Biophysical dissection of membrane proteins. Nature 2009; 459:344-6.
27. Rath A, Tulumello DV, Deber CM. Peptide models of membrane protein folding. Biochemistry 2009; 48:9306-45.
28. Harrington SE, Ben-Tal N. Structural determinants of transmembrane helical proteins. Structure 2009; 17:1092-103.
29. Arce J, Sturgis JN, Dunlop JP. Dissociating membrane protein architecture: an annotation of structural complexity. Biopolymers 2009; 91:815-29.
30. Moore DT, Berger BW, DeGrado WF. Protein-Protein Interactions in the Membrane: Sequence, Structural and Biological Motifs. Structure 2006; 14:1991-1001.
31. Marsh D. Protein modulation of lipids and vice-versa, in membranes. Biochim Biophys Acta 2008; 1778:1545-75.
32. Mackenzie KR, Flemming KG. Association energetics of membrane spanning alpha-helices. Curr Opin Struct Biol 2008; 18:47-54.
33. Zviling M, Kochva U, Arkin IT. How important are transmembrane helices of biotopic membrane proteins? Biochim Biophys Acta 2007; 1768:387-92.
34. von Hejne G. The membrane protein universe: what’s out there and why bother? J Intern Med 2007; 261:543-57.
35. Schneider D, Finger C, Prodohl A, Volkamer T. From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria. Curr Protein Pept Sci 2006; 9:65-44.
36. Rath A, Johnson RM, Deber CM. Peptides as transmembrane segments: decoupling the determinants for helix-helix interactions in membrane proteins. Biopolymers 2007; 88:217-32.
37. Walters RF, DeGrado WF. Helix-packing motifs in membrane proteins. Biopolymers 2007; 88:13658-63.
38. Sachs JN, Engelman DM. Introduction to the membrane protein reviews: the interplay of structure, dynamics and environment in membrane protein function. Annu Rev Biochem 2006; 75:787-701.
39. MacKenzie KR. Folding and stability of alpha-helical integral membrane proteins. Chem Rev 2006; 106:1931-77.
40. White SH. Membrane protein insertion: the biology-physcis nexus. J Gen Physiol 2007; 129:363-9.
41. Jones DT, Taylor WR, Thornton JM. A mutation data matrix for transmembrane proteins. FEBS Lett 1994; 339:269-75.
42. Herrmann JR, Panitz JC, Unterreitmeier S, Fuchs A, Frishman D, Langosch D. Complex patterns of histidine, hydroxylated amino acids and the GxxG motif mediate high-affinity transmembrane domain interactions. J Mol Biol 2009; 385:912-23.
43. Sennes A, Engel DE, DeGrado WF. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 2004; 14: 645-67.
44. Dawson JP, Melyonyk RA, Deber CM, Engelman DM. Sequence content strongly modulates association of polar residues in transmembrane helices. J Mol Biol 2003; 331:255-62.
45. Herrmann JR, Fuchs A, Panitz JC, Eckert T, Unterreitmeier S, Frishman D, et al. Ionic Interactions Promote Transmembrane Helix-Helix Association Depending on Sequence Context. J Mol Biol 2010; 396:452-61.
46. Melyonyk RA, Kim S, Curran AR, Engelman DM, Bowie JU, Deber CM. The affinity of GXXGG motifs in transmembrane helix-helix interactions is modulated by long-range communication. J Biol Chem 2004; 279:16591-7.
47. Zhang J, Lazaridis T. Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues. Biophys J 2009; 96:4418-27.
48. Bornmann BJ, Engelman DM. Intramembrane helix-helix association in oligomerization and transmembrane signaling. Annu Rev Biophys Biomol Struct 1992; 21:223-42.
49. Jones DT. Do transmembrane protein superfolds exist? FEBS Lett 1998; 423:281-5.
50. Liu J, Rost B. Comparing function and structure between entire proteomes. Protein Sci 2001; 10:1793-9.
51. Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Huaeh AJ. Signalling receptor: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE 2003; RE9.
52. Oriani-Roussau V, Ponzi H. Adhesion proteins meet receptors: a common theme? Adv Cancer Res 2008; 101:63-92.
53. Lemmon MA, Engelman DM. Specificity and promiscuity in membrane helix interactions. FEBS Lett 1994; 346:17-20.
54. Mackenzie KR, Engelman DM. Structure-based prediction of the stability of transmembrane helix-helix interactions: The sequence dependence of glycoporin A dimerization. Proc Natl Acad Sci USA 1998; 95:5833-9.
55. Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J 2010; 39:609-21.
56. Killian JA, Nyholm TK. Peptides in lipid bilayers: the power of simple models. Curr Opin Struct Biol 2006; 16:473-9.
57. Cymer E, Schneider D. Lessons from viruses: controlling the function of transmembrane proteins by interfering transmembrane helices. Curr Med Chem 2008; 15:779-85.
58. Taltbert-Slagle K, DiMaio D. The bovine papillomavirus E5 protein and the PDGF beta receptor: it takes two to tango. Virology 2009; 384:345-51.
59. Oates J, Hicks M, Daifton TR, DiMaio D, Dixon AM. In vitro dimerization of the bovine papillomavirus E5 protein transmembrane domain. Biochemistry 2008; 47:8985-92.
60. Oates J, King G, Dixon AM. Strong oligomerization behavior of PDGFBeta receptor transmembrane domain and its regulation by the juxtamembrane regions. Biochim Biophys Acta 2010; 1798:605-15.
61. Cammert TJ, Jun SJ, Cohen EB, Barerra FN, Engelman DM, Dimaio D. Construction and genetic selection of small transmembrane proteins that activate the human erythropoietin receptor. Proc Natl Acad Sci USA 2010; 107:3447-52.
62. Robertson SC, Tynan JA, Donoghue DJ. RTK mutations and human syndromes when good receptors turn bad. Trends Genet 2000; 16:265-71.
63. Li E, Hiraito K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 2006; 45:6241-51.
64. Partridge AW, Thierien AG, Deber CM. Missense mutations in transmembrane domains of proteins: pharmorhoryptic propensity of polar residues for human disease. Proteins 2004; 54:648-56.
65. Macle-Allamand C, Duquesne K, Lebrun R, Scheuring S, Sturgis JN. Antenna mixing in photosynthetically membrane proteins from Phaeospirillum molischianum. Proc Natl Acad Sci USA 2010; 107:3537-42.
66. MacKenzie KR, Prestegard JH, Engelman DM. A transmembrane helix dimer: structure and implications. Science 1997; 276:131-3.
67. Bocharov EV, Mineev KS, Volynsky PE, Ermoluk YS, Tkach EN, Sobol AG, et al. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 2008; 283: 6930-6.
78. Bocharov EV, Mayzel ML, Volkynsky PE, Goncharuk MV, Ermolovsk YS, Schulga AA, et al. Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA. J Biol Chem 2008; 283:29855-95.

79. Bocharov EV, Mayzel ML, Volkynsky PE, Mineev KS, Tkach EN, Ermolovsk YS, et al. Left-Handed Dimer of EphA2 Transmembrane Domain: Helix Packing Diversity among Receptor Tyrosine Kinases. Biophys J 2010; 98:881-9.

80. Call S, Schneid JR, Xu C, Lunt RA, Chou J, Wucherpfennig KW. The structure of the zeta.eps transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 2006; 127: 355-68.

81. Sulistio ES, Mackenzie KR. Structural basis for dimerization of the BNI3 transmembrane domain. Biochemistry 2009; 48:5106-20.

82. Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alphabeta3 transmembrane complex explains integrin transmembrane signaling. EMBO J 2009; 28:1351-61.

83. Bevers AJ, Damianoglou A, Oates JE, Rodger A, Dixon AM. Sequence dependent oligomerization of the Neu transmembrane domain suggests inhibition of conformational switching by oncogenic mutant. Biochemistry 2010; 49:2811-20.

84. Elbein S, Cai WH, Schneider D. Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J Mol Biol 2009; 389:10-6.

85. Gerber D, Sal-Mon N, Shai Y. Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 2004; 279:21777-81.

86. Yoda T, Sugita Y, Okamoto Y. Comparisons of force fields for proteins by generalized ensemble simulations. Chem Phys Lett 2004; 386:460-5.

87. Duneau JP, Vegh AP, Sturgis NJ. A dimerization model of the transmembrane domain of Neu. J Mol Model 2005; 23:365-15.

88. Duneau JP, Vegh AP, Sturgis NJ. A dimerization hierarchy in the transmembrane domains of the HER receptor family. Biochemistry 2007; 46:10209-10.

89. Stanley AM, Fleming KG. The transmembrane domains of ErbB receptors do not dimerize strongly in micelles. J Mol Biol 2005; 347:759-72.

90. Punta M, Forrest LR, Bigelow H, Kernytsky A, Liu LC, Bender V. T-cell antigen receptor transmembrane domain: structural studies of living cells. J Cell Sci 2008; 121:3207-37.

91. Shabat A, Horvath G, Szollosi J, Nag P. Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 2008; 95:6386-48.

92. Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004; 3:301-17.

93. George SR, Ng GY, Lee SP, Fan T, Varghese G, Wang C, et al. Blockade of G protein-coupled receptors and the G protein gamma-subunit by a triazine-based membrane peptide: novel strategy for functional inhibition of membrane proteins in vitro. J Pharmacol Exp Ther 2003; 307:481-9.

94. Mansolios N, Collier S, Taylor J, Pollard J, Harrison LC, Bendor V. T-cell antigen receptor transmembrane peptides modulate T-cell function and T-cell-mediated disease. Nat Med 1997; 3:84-8.

95. Nasarre C, Roth M, Jacob L, Roth L, Koncina E, Thien A, et al. Pepptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene 2010; 29:2381-92.

96. Quintana FJ, Gerber D, Bloch I, Cohen IR, Shai Y. A structurally altered D,L-amino acid TCRalpha transmembrane peptide interacts with the TCRalpha and inhibits T-cell activation in vitro and in an animal model. Biochemistry 2007; 46:2137-25.

97. Sal-Mon N, Gerber D, Shai Y. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins. J Mol Biol 2004; 344: 855-64.

98. Gerber D, Shai Y. Chirality-independent protein-protein recognition between transmembrane domains in vivo. J Mol Biol 2002; 322:491-5.

99. Amon MA, Ali M, Bendor V, Chan YN, Toth I, Manolios N. Lipidation and glycosylation of a T cell antigen receptor (TCR) transmembrane hydrophobic peptide dramatically enhances in vitro and in vivo function. Biochem Biophys Acta 2006; 1765: 879-88.

100. Finger C, Escher C, Schneider D. The Single Transmembrane Domain of Human Receptor Tyrosine Kinases Encode Self-Interactions. Sci Signal 2009; 2:56.

101. Mendrola JM, Berger MB, King MC, Lemmon MA. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 2002; 277:4704-12.

102. He L, Hristova K. Pathogenic activation of receptor tyrosine kinases in human malignant membranes. J Mol Biol 2008; 384:1130-42.

103. Bargmann CI, Huang MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986; 46:549-57.

104. Burke CL, Lemmon MA, Coren BA, Engelman DM, Stern DF. Dimerization of the p185neu trans- membrane domain is necessary but not sufficient for transformation. Oncogene 1997; 14:687-96.

105. Bennasroune A, Fickova M, Gardin A, Dirrig-Grosh S, Aunis D, Cremel G, et al. Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol Cell Biol 2004; 15:3464-74.

106. Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 1996; 15:520-7.

107. Li Y, Mangasarian K, Mansukhani A, Basilico C. Activation of FGF receptors by mutations in the transmembrane domain. Oncogene 1997; 14:1397-406.

108. Ronchetti D, Greco A, Compasso S, Coolumbo D, Delli P, Otsuki P. FGF3 receptor mutations in multiple myeloma cell lines with (R14): comparative analysis of R373C, K605E and the novel G384D mutations. Oncogene 2001; 20:3553-62.

109. Iwamoto T, You M, Li E, Spangler J, Tomich JM, Hristova K. Synthesis and initial characterization of FGF3 transmembrane domain: consequences of sequence modifications. Biochim Biophys Acta 2005; 1668:240-7.

110. Li E, You M, Hristova K. FGF3 dimer stabilization due to a single amino acid pathogenic mutation. J Mol Biol 2006; 356:600-12.

111. Merzlyakov M, Chen L, Hristova K. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method. J Membr Biol 2007; 215:93-103.

112. You M, Spangler J, Li E, Han X, Ghosh T, Hristova K. Effect of pathogenic cysteine mutations on FGR3 transmembrane domain dimerization in detergents and lipid bilayers. Biochemistry 2007; 46:11039-46.

113. Peng WC, Lin X, Torres J. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 2009; 18:450-9.

114. Dosch DD, Ballmer-Hofer K. Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. Faseb J 2010; 24:32-8.

115. Talbert-Slage K, Marfat S, Barrera FN, Khurana E, Oates J, Gerstein M, et al. Artificial transmembrane oncopolypeptides smaller than the bovine papillomavirus E5 protein redefine sequence requirements for activation of the placket-derived growth factor beta receptor. J Virol 2009; 83:9777-85.

116. Kijar S, Korukowa K, Petrinjaquelle M, Abrescia C, Ibanez CF. Self-association of the transmembrane domain of RET undergoes oncogenic activation by MEN2A mutations. Oncogene 2006; 25:7086-95.

117. Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Hensia YL, et al. Activation of the erythropoietin receptor by the gyp5-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999; 18:3334-47.

118. Kubarkzy KE, Ruan W, Gureicka R, Cohen J, Ketteler R, Wannick SS, et al. Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 2001; 11:110-5.

119. Seubert N, Royer Y, Staerk J, Kubarkzy KE, Mouadul V, Krishnakumar S, et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell Biol 2003; 12:1359-70.
membrane homomeric interactions in the integrin

ture, allostery, and bidirectional signaling. Annu Rev
Biol 2007; 366:517-24.

etin receptor transmembrane domain in micelles. J Mol
Biochemistry 2006; 45:1365-72.

domain interactions in the absence of clustering.

JW , Bennett JS. Activation of individual alphaIIbbeta3

alphaIIbbeta3: roles of the transmembrane and cyto-
domain interactions in the assembly of class II MHC

cells. EMBO J 1992; 11:2917-24.

lysine or arginine residues in the transmembrane region

the T cell antigen receptor. Requirement of either the

gene encoding fibroblast growth factor receptor 3
account for achondroplasia, hypochondroplasia and

thanatophoric dysplasia. Acta Paediatr Suppl 1996;

Cutis gyrata

Acanthosis nigricans

D ews IC, Mackenzie KR. Transmembrane domain-induced
oligomerization. Biochemistry 2002; 41:19553-64.

Marchesi VT. An alternative interpretation of the amy-
loid precursor protein transmembrane sequence are

Motor and Sensory Neuropathy Type III). Nat Genet

2008; 1138:84-94.

Bargmann CI, Weinberg RA. Increased tyrosine kinase
activity associated with the protein encoded by the
activated neu oncogene. Proc Natl Acad Sci USA 1988;

Siddig A, Mohamed AO, Kamal H, Awad S, Hassan

HER-2/neu E655Val polymor-

and the risk of breast cancer. Ann NY Acad Sci

2008; 1138:84-94.

White KE, Cabral JM, Davis SI, Fishburn T, Evans

Ichikawa S, et al. Mutations that cause osteoglo-

phonic dysplasia define novel roles for FGFR2 in

bone elongation. Am J Hum Genet 2005; 76:361-7.

Przybylo KA, Puznekas W, Zhang J, Golabi M, Bias

B, Bhandal MJ, et al. Fibroblast growth factor receptor
2 mutations in Beare-Stevenson Cutsis gyrata

syndrome. Nat Genet 1996; 13:492-4.

Meyers GA, Orlow SJ, Munro IR, Przybyla KA, Jabs
EA, Wilkens RL, Grant CS, et al. TACI is mutant in

variable immuno-deficiency and IgA deficiency. Nat Genet

2005; 37:829-34.

Daley DO, Rapp M, Grunstein M, Krendel K, Drew

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of the 50 gene in Dejerine-Sottas disease (hereditary

to show more of a good thing. Trends Genet

1997;13:178-22.

Bange J, Prechtl C, Cheburkin Y, Speck K, Harbeck

N, Schmitt M, et al. Cancer progression and tumor cell

to be associated with the FGFR4 Arg388 allele. Cancer Res 2002; 62:840-7.

Bucheton B, Arigo L, Chevillard C, Marquet S, Kheir

MM, Murganti A, et al. Identification of a novel G245R

polymorphism in the II-2 receptor beta membrane

proximal domain associated with human visceral leish-

maniasis. Genes Immun 2007; 8:79-83.

Hayasaki K, Himoro M, Sawaiha Y, Nanao K,

Takahashi T, Takada G, et al. De novo mutation of the

50 gene in Dejerine-Sottas disease (hereditary

motor and sensory neuropathy type III). Nat Genet

1993; 5:266-8.

Boekel H, Takashima H, Garcia CA, Olney RK,

Johnson J, Berry K, et al. Charcot-Marie-Tooth disease

and related neuropathies: mutation distribution and
genotype-phenotype correlation. Ann Neurol 2002;

11:190-201.

Eggers SD, Kowani SC, Melii G, Corinthal DR,

Clinical and genetic description of a family with

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of MPZ. Muscle Nerve 2004;

29:867-9.

Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla

F, Schneider L, et al. TACI is mutant in common vari-

able immunodeficiency and IgA deficiency. Nat Genet

2005; 37:829-34.

Daley DO, Rapp M, Grunstein M, Krendel K, Drew

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of the 50 gene in Dejerine-Sottas disease (hereditary

to show more of a good thing. Trends Genet

1997;13:178-22.

Bange J, Prechtl C, Cheburkin Y, Speck K, Harbeck

N, Schmitt M, et al. Cancer progression and tumor cell

to be associated with the FGFR4 Arg388 allele. Cancer Res 2002; 62:840-7.

Bucheton B, Arigo L, Chevillard C, Marquet S, Kheir

MM, Murganti A, et al. Identification of a novel G245R

polymorphism in the II-2 receptor beta membrane

proximal domain associated with human visceral leish-

maniasis. Genes Immun 2007; 8:79-83.

Hayasaki K, Himoro M, Sawaiha Y, Nanao K,

Takahashi T, Takada G, et al. De novo mutation of the

50 gene in Dejerine-Sottas disease (hereditary

motor and sensory neuropathy type III). Nat Genet

1993; 5:266-8.

Boekel H, Takashima H, Garcia CA, Olney RK,

Johnson J, Berry K, et al. Charcot-Marie-Tooth disease

and related neuropathies: mutation distribution and
genotype-phenotype correlation. Ann Neurol 2002;

11:190-201.

Eggers SD, Kowani SC, Melii G, Corinthal DR,

Clinical and genetic description of a family with

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of MPZ. Muscle Nerve 2004;

29:867-9.

Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla

F, Schneider L, et al. TACI is mutant in common vari-

able immunodeficiency and IgA deficiency. Nat Genet

2005; 37:829-34.

Daley DO, Rapp M, Grunstein M, Krendel K, Drew

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of the 50 gene in Dejerine-Sottas disease (hereditary

to show more of a good thing. Trends Genet

1997;13:178-22.

Bange J, Prechtl C, Cheburkin Y, Speck K, Harbeck

N, Schmitt M, et al. Cancer progression and tumor cell

to be associated with the FGFR4 Arg388 allele. Cancer Res 2002; 62:840-7.

Bucheton B, Arigo L, Chevillard C, Marquet S, Kheir

MM, Murganti A, et al. Identification of a novel G245R

polymorphism in the II-2 receptor beta membrane

proximal domain associated with human visceral leish-

maniasis. Genes Immun 2007; 8:79-83.

Hayasaki K, Himoro M, Sawaiha Y, Nanao K,

Takahashi T, Takada G, et al. De novo mutation of the

50 gene in Dejerine-Sottas disease (hereditary

motor and sensory neuropathy type III). Nat Genet

1993; 5:266-8.

Boekel H, Takashima H, Garcia CA, Olney RK,

Johnson J, Berry K, et al. Charcot-Marie-Tooth disease

and related neuropathies: mutation distribution and
genotype-phenotype correlation. Ann Neurol 2002;

11:190-201.

Eggers SD, Kowani SC, Melii G, Corinthal DR,

Clinical and genetic description of a family with

Charcot-Marie-Tooth disease type 1B from a trans-
novel mutation of MPZ. Muscle Nerve 2004;

29:867-9.

Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla

F, Schneider L, et al. TACI is mutant in common vari-

able immunodeficiency and IgA deficiency. Nat Genet

2005; 37:829-34.