Extremal problems for graphical function-indices and \(f \)-weighted adjacency matrix*

Xueliang Li†, Danni Peng

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

(Received: 11 January 2022. Received in revised form: 19 January 2022. Accepted: 28 January 2022. Published online: 5 February 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let \(f(x, y) (f(x)) \) be a symmetric real function (real function) and \(G = (V, E) \) be a graph. Denote by \(d_i \) the degree of a vertex \(i \) in \(G \). The **graphical function-index** \(TI_f(G) (H_f(G)) \) of \(G \) with edge-weight (vertex-weight) function \(f(x, y) (f(x)) \) is defined as \(TI_f(G) = \sum_{uv \in E} f(d_u, d_v) \) (\(H_f(G) = \sum_{i \in V} f(d_i) \)). We can also get a weighted adjacency matrix from the edge-weighted graph, i.e., \(A_f(G) = (a_{ij}^f) \) where \(a_{ij}^f = f(d_i, d_j) \) if vertices \(i \) and \(j \) are adjacent in \(G \), and 0 otherwise. This matrix is simply referred to as the \(f \)-**weighted adjacency matrix**. One can see that the concepts of graphical function-indices and \(f \)-weighted adjacency matrix can cover all the degree-based graphical indices and degree-based adjacency matrices of graphs, such as the Zagreb indices, Randić index, ABC-index, etc., and the Randić matrix, ABC-matrix, GA-matrix, etc. So, for the graphical function-indices \(TI_f(G) \) and \(H_f(G) \) and the \(f \)-weighted adjacency matrix \(A_f(G) \) of a graph \(G \), one can think about finding unified ways to study the extremal problems and spectral problems. This survey is intended to sum up the results done so far on these problems.

Keywords: graphical function-index; edge (vertex)-weight function; \(f \)-weighted adjacency matrix; extremal problems.

2020 Mathematics Subject Classification: 05C09, 05C92.

1. Notation and terminology

First, we give the necessary notation and terminology which will be used throughout this paper. We only consider simple and finite graphs in this paper. For notation and terminology not defined here, we refer the reader to [4, 45]. We use \(V(G) \) and \(E(G) \) to denote the vertex-set and edge-set of a graph \(G \), respectively. A graph \(G \) is called \(k \)-regular if the degree \(d(v) = k \) for every \(v \in V(G) \). Denote the degree of a vertex \(v \) in \(G \) also by \(d_v \). An \((n,m)\)-graph is a graph \(G = (V(G), E(G)) \), where \(m = |E(G)| \) and \(n = |V(G)| \). Let \(G(n,m) \) represent the collection of all \((n,m)\)-graphs, \(G(n) \) represent the collection of all graphs with \(n \) vertices but without isolated vertices. We denote by \(\Delta \) and \(\delta \) the **maximum degree** and **minimum degree** of \(G \), respectively. A graph \(G \) is called **almost regular** if \(\Delta - \delta \leq 1 \) and \(G(n,m) \) is the family of all almost regular \((n,m)\)-graphs.

Note that for an \((n,m)\)-graph \(G \), if we let \(k = \lfloor 2m/n \rfloor \) and \(r = 2m - kn \in \{0, 1, \ldots, n - 1\} \), then \(G \) belongs to \(G(n,m) \) if and only if \(G \) has \(r \) vertices of degree \(k \) and \(n - r \) vertices of degree \(k + 1 \).

As usual, let \(A(G) = (a_{ij}) \) denote the **adjacency matrix** of \(G \), where

\[
 a_{ij} = \begin{cases}
 1 & \text{if } i \text{ and } j \text{ are adjacent in } G, \\
 0 & \text{otherwise}.
 \end{cases}
\]

Then, \(A(G) \) is a symmetric \((0,1)\)-matrix, and therefore all its eigenvalues are real numbers, say \(\mu_1, \mu_2, \ldots, \mu_n \). The spectral radius of \(A \) is \(\rho(A) = \max_{1 \leq i \leq n} |\mu_i| \).

For \(k \) graphs \(G_1, G_2, \ldots, G_k \), the union \(G_1 \cup G_2 \cup \cdots \cup G_k \) is the graph with vertex-set \(V(G_1) \cup V(G_2) \cup \cdots \cup V(G_k) \) and edge-set \(E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k) \). In particular, if \(G_1 = G_2 = \cdots = G_k = G \), we denote \(G_1 \cup G_2 \cup \cdots \cup G_k \) by \(kG \). The join \(G \vee H \) of two graphs \(G \) and \(H \) is the graph obtained by joining edges between each vertex of \(G \) to all vertices of \(H \). We use \(C_n, P_n \) and \(S_n \) to denote a cycle, a path and a star on \(n \) vertices, respectively. \(S_{d,n-d} \) represents a double star on \(n \) vertices with degrees of the two centers equal to \(d \) and \(n - d \), respectively.

2. Background

Nowadays, chemical graph theory has become a popular and important subject of study. In the mathematics subject classification 2020, “chemical graph theory” is given a subject number 05C92 in “05C Graph theory”. Also, “graphical

*In memory and honor of Professor Nenad Trinastić.
†Corresponding author (lxl@nankai.edu.cn).
indices (Wiener index, Zagreb index, Randić index, etc.) is given an independent subject number 05C09. The popular book [45] should be considered as one of the pioneer works on chemical graph theory.

There are many chemical indices [42], such as the first Zagreb index \(M_1 = \sum_{u \in V(G)} d_u^2 \) or \(\sum_{uv \in E(G)} (d_u + d_v) \) [21], the second Zagreb index \(M_2 = \sum_{uv \in E(G)} d_u d_v \) [21], the Randić index \(\chi = \sum_{uv \in E(G)} (d_u d_v)^{-1/2} \) [40], and the Wiener index \(W = \sum_{(u,v) \subseteq V(G)} \text{dist}(u,v) \), where \(\text{dist}(u,v) \) is the distance between \(u \) and \(v \). Usually, these chemical indices are classified into some categories: degree-based, distance-based, subgraph counting-based, eigenvalue-based, mixed, etc. In this survey, we are only concerned with the degree-based indices. We list some of the degree-based indices in Table 1; for more such indices, we refer to [18, 20, 33]. In the past years, a lot of work have been done on these degree-based indices; see [2, 3, 7, 14, 17, 21, 22, 24, 25, 28, 29, 34, 41, 49] and the references therein.

Table 1: Some edge-weight functions and related chemical indices.

\(f(x, y) \)	Name		
\(x + y \)	First Zagreb index		
\(xy \)	Second Zagreb index		
\((x + y)^2 \)	First hyper-Zagreb index		
\((xy)^2 \)	Second hyper-Zagreb index		
\(x^{-3} + y^{-3} \)	Modified first Zagreb index		
\(x - y	\)	Albertson index
\((x/y + y/x)/2 \)	Extended index		
\((x - y)^2 \)	Sigma index		
\(1/\sqrt{xy} \)	Randić index		
\(\sqrt{xy} \)	Reciprocal Randić index		
\(1/\sqrt{x+y} \)	Sum-connectivity index		
\(\sqrt{x+y} \)	Reciprocal sum-connectivity index		
\(2/(x+y) \)	Harmonic index		
\(\sqrt{(x+y-2)/(xy)} \)	ABC index		
\([xy/(x+y-2)]^3 \)	Augmented Zagreb index		
\(x^2 + y^2 \)	Forgotten index		
\(x^{-2} + y^{-2} \)	Inverse degree		
\(2\sqrt{xy}/(x+y) \)	Geometric-arithmetic index		
\((x+y)/2\sqrt{xy} \)	Arithmetic-geometric index		
\(xy/(x+y) \)	Inverse sum index		
\(x + y + xy \)	First Gourava index		
\((x+y)xy \)	Second Gourava index		
\((x+y)^2 \)	First hyper-Gourava index		
\([(x+y)xy]^2 \)	Second hyper-Gourava index		
\(1/\sqrt{x+y+xy} \)	Sum-connectivity Gourava index		
\(\sqrt{(x+y)xy} \)	Product-connectivity Gourava index		
\(\sqrt{x^2 + y^2} \)	Sombor index		
From Table 1, one can see that these chemical indices have the following unified definition. Let $f(x, y)$ be a symmetric real function and G be a graph. The degree-based topological index or chemical index can be defined as

$$TI_f(G) = \sum_{u \in V(G)} f(d_u),$$

which was mentioned by Gutman in [19]. This was also called the bond-incident-degree index $BI(G)$ by Vukičević and Durdević in [46]. We also address it as the TI_f, which was mentioned by Gutman in [19]. This was also called the bond-incident-degree index TI_f.

A topological index can also be represented as $f(d_u, d_v)$, where d_u and d_v are the degrees of vertices u and v, respectively. This motivates us to extend the study on the graphical function-indices f to include indices that can distinguish among graph structures. Nevertheless, if we use a matrix to represent the structure of a molecular graph with weights separately distributed on its pairs of adjacent vertices, it will completely keep the structural information of the graph, i.e., a matrix keeps much more structural information than an index. This motivates us to introduce the following notion of matrix. Let $f(x, y)$ be a symmetric real function, and denote by d_i the degree of a vertex i in G. Then a weighted adjacency matrix $A_f(G)$ of G is defined in [12] as follows: the ij-entry of $A_f(G)$ is

$$A_f(G)(i, j) = \begin{cases} f(d_i, d_j), & ij \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

So, we get a symmetric real matrix, and call it the function-weighted adjacency matrix of G, or simply f-weighted adjacency matrix, with edge-weight function $f(x, y)$. All the eigenvalues of $A_f(G)$ are real, say $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the spectral radius is $\rho(A_f(G)) = \max_{1 \leq i \leq n} |\lambda_i|$.

Although the study on the graphical function-indices TI_f and H_f, and on the f-weighted adjacency matrix A_f has started only in recent years, there have been quite a few publications about them. So, after the above preparations, we are ready to proceed.

3. Results on the graphical function-index $H_f(G)$

Before proceeding, we need more notation and terminology as given below.

Given a real function $f(x)$, let $f_1(x) = f(x + 1) - f(x)$ and $f_{11} = (f_1)_1$. We say that f is convex (concave) if $f_{11} \geq (\leq) 0$, and f is strictly convex (concave) if $f_{11} > (\leq) 0$.

Recently, Tomescu in [43,44] studied $H_f(G)$ for a convex function f. He gave some upper bounds for the function-index $H_f(G)$ and the function f is required to satisfy some other properties except for the convexity. These results are stated as follows.

Theorem 3.1. [43] If $G \in G(n, m)$ maximizes (minimizes) $H_f(G)$ where $f(x)$ is strictly convex (concave), then G has at most one nontrivial connected component C and C has a vertex of degree $|V(C)| - 1$.

Theorem 3.2. [44] Let $n \geq 2$ and $G \in G(n, m)$ such that $1 \leq m \leq n - 1$. If $f(x)$ is a strictly convex function having property that $f(x)$ is differentiable and its derivative is strictly convex, then it holds that

$$H_f(G) \leq f(m) + mf(1) + (n - m - 1)f(0),$$

with equality if and only if $G = S_{m+1} \cup (n - m - 1)K_1$.

Theorem 3.3. [44] If \(n \geq 3, n \leq m \leq 2n - 3 \), \(f(x) \) is a strictly convex function having property that \(f(x) \) is differentiable and its derivative is strictly convex, and \(G \in G(n, m) \) is connected, then it holds that

\[
H_f(G) \leq f(n-1) + f(m-n+2) + (m-n+1)f(2) + (2n-m-3)f(1),
\]

with equality if and only if \(G = K_1 \lor (K_{1,m-n+1} \cup (2n-m-3)K_1) \) (see Figure 1).

Figure 1: The maximal graph \(K_1 \lor (K_{1,m-n+1} \cup (2n-m-3)K_1) \) in Theorem 3.3.

As one can see, Tomescu’s results are all about the upper bounds of \(H_f(G) \). Ali et al. in [1] gave the following lower bound for connected \((n,m)\)-graphs with fewer edges.

Theorem 3.4. [1] Let \(n \geq 4 \) and \(n+1 \leq m \leq 3n/2 \). If \(f(x) \) is a convex (concave) function, then among all connected \((n,m)\)-graphs, the graphs \(G \in G(n, m) \) minimize \(H_f(G) \).

Let \(f \) be a strictly convex function. Recently, we proved in [27] that the extremal graphs are exactly the almost regular graphs, which covers the result of Ali et al.

Theorem 3.5. [27] Let \(n \geq 2 \) and \(G \) be an \((n,m)\)-graph with \(1 \leq m \leq n(n-1)/2 \), and let \(k = \lfloor 2m/n \rfloor \) and \(r = 2m - kn \). If \(f \) is a strictly convex function, then it holds that

\[
H_f(G) \geq rf(k+1) + (n-r)f(k),
\]

and the equality holds if and only if \(G \in G(n, m) \).

Note that graphs in \(G(n, m) \) can be disconnected (see Figure 2). We then constructed connected graphs to show the following result.

Figure 2: Some connected and disconnected almost regular graphs when \(m = n - 1 \).

Theorem 3.6. [27] Let \(n \geq 2 \) and \(G \) be a connected \((n,m)\)-graph with \(n-1 \leq m \leq n(n-1)/2 \), and let \(k = \lfloor 2m/n \rfloor \) and \(r = 2m - kn \). If \(f \) is a strictly convex function, then it holds that

\[
H_f(G) \geq rf(k+1) + (n-r)f(k),
\]

and the equality holds if and only if \(G \) is connected and \(G \in G(n, m) \).

Actually, in [27] we also elaborated some algorithms to generate all the minimal graphs and minimal connected graphs, respectively. It is easy to see that \(G(n, m) \neq \emptyset \), that is, there always exists a graph \(G \) with degree sequence \(d = (d_1, d_2, \ldots, d_n) \) where \(d_i = k+1 \) and \(d_j = k \) for \(1 \leq i \leq r \) and \(r+1 \leq j \leq n \). In fact, it is easy to see that the degree sequence is graphical simply by verifying the conditions in [23]. At first, we give an algorithm to construct some connected graphs with this degree sequence.
Algorithm 1 Find an \((n,m)\)-graph \(G\) with degree sequence \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

Input: \(E^{(0)} = \emptyset, d^{(0)r} = d\) and \(V^{(0)} = (v^{(0)}_1, v^{(0)}_2, \ldots, v^{(0)}_n)\).

Output: An \((n,m)\)-graph \(G = (V^{(l)}, E^{(l-1)})\) with degree sequence \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

1. Set \(l = 1\).
2. Find a permutation \(\sigma\), such that \(\sigma d^{(l-1)r} = (d^{(l)}_1, d^{(l)}_2, \ldots, d^{(l)}_n)\) is non-increasing for \(d^{(l-1)}r = (d^{(l-1)}_1, d^{(l-1)}_2, \ldots, d^{(l-1)}_n)\).
3. if \(d^{(l)}_1 \neq 0\) then
 4. Set \(E^{(l)} = E^{(l-1)} \cup \{v^{(l)}_1, v^{(l)}_2, \ldots, v^{(l)}_n\}\) and \(d^{(l)} = (0, d^{(l)}_2 - 1, \ldots, d^{(l)}_i + 1, 1, d^{(l)}_{i+2}, \ldots, d^{(l)}_n)\).
 5. else go to 7.
6. Set \(l = l + 1\) and go to 2.
7. return \(G = (V^{(l)}, E^{(l-1)})\).

By choosing different permutations \(\sigma\) in Algorithm 1, we can obtain some connected \((n,m)\)-graphs \(G \in \mathcal{G}(n,m)\) which minimize the value of \(H_f(G)\) for every pairs of \(n\) and \(m\). However, from [38] we can get the following algorithm, which can generate all graphs of \(\mathcal{G}(n,m)\).

Algorithm 2 Find all \((n,m)\)-graphs with degree sequence \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

Input: \(n, m\) and \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

Output: \(\mathcal{G}(n,m)\) for any given \(n\) and \(m\).

1. Construct a complete \(n\)-partite graph \(H = (P_1, P_2, \ldots, P_n)\), such that each \(P_i\) for \(1 \leq i \leq r\) has \(k + 1\) vertices and each \(P_j\) for \(r + 1 \leq j \leq n\) has \(k\) vertices.
2. Find all perfect matchings in \(H\), denoted by \(\{M_1, M_2, \ldots, M_l\}\).
3. Set \(\mathcal{G}(n,m) = \emptyset\) and \(s = 1\).
4. while \(s \leq l\) do
 5. Construct a new graph \(G_s\) with vertex-set \(\{p_1, p_2, \ldots, p_n\}\) and \(p_i \sim p_j\) if and only if there is an edge between \(P_i\) and \(P_j\) in \(M_s\).
 6. if \(G_s\) does not have multiple edges and \(G_s \not\cong G\) for any \(G \in \mathcal{G}(n,m)\) then
 7. Set \(\mathcal{G}(n,m) = \mathcal{G}(n,m) \cup \{G_s\}\).
 8. else \(\mathcal{G}(n,m) = \mathcal{G}(n,m)\).
 9. Set \(s = s + 1\) and go to 4.
10. return \(\mathcal{G}(n,m)\).

Note that to check that \(G_s \not\cong G\) for any \(G \in \mathcal{G}(n,m)\) is a very hard nut to crack. Although this algorithm can be used to generate all graphs of \(\mathcal{G}(n,m)\), it cannot guarantee the existence of any graph in \(\mathcal{G}(n,m)\).

The following Algorithm 3 (similar to Algorithm 2) can be used to find all connected graphs in \(\mathcal{G}(n,m)\).

Algorithm 3 Find all connected \((n,m)\)-graphs with degree sequence \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

Input: \(n, m\) and \(d = (d_1, d_2, \ldots, d_n)\) where \(d_i = k + 1\) and \(d_j = k\) for \(1 \leq i \leq r\) and \(r + 1 \leq j \leq n\).

Output: All connected graphs in \(\mathcal{G}(n,m)\) for any given \(n\) and \(m\), denoted by \(\mathcal{G}^*(n,m)\).

1. Construct a complete \(n\)-partite graph \(H = (P_1, P_2, \ldots, P_n)\), such that each \(P_i\) for \(1 \leq i \leq r\) has \(k + 1\) vertices and each \(P_j\) for \(r + 1 \leq j \leq n\) has \(k\) vertices.
2. Find all perfect matchings in \(H\), denoted by \(\{M_1, M_2, \ldots, M_l\}\).
3. Set \(\mathcal{G}^*(n,m) = \emptyset\) and \(s = 1\).
4. while \(s \leq l\) do
 5. Construct a new graph \(G_s\) with vertex-set \(\{p_1, p_2, \ldots, p_n\}\) and \(p_i \sim p_j\) if and only if there is an edge between \(P_i\) and \(P_j\) in \(M_s\).
 6. if \(G_s\) is connected with no multiple edges and \(G_s \not\cong G\) for any \(G \in \mathcal{G}^*(n,m)\) then
 7. Set \(\mathcal{G}^*(n,m) = \mathcal{G}^*(n,m) \cup \{G_s\}\).
 8. else \(\mathcal{G}^*(n,m) = \mathcal{G}^*(n,m)\).
 9. Set \(s = s + 1\) and go to 4.
10. return \(\mathcal{G}^*(n,m)\).
Note that although Algorithm 3 can be used to generate all connected graphs of \(G(n, m)\), it cannot guarantee the existence of any connected graph in \(G(n, m)\).

Remark 3.1. As one can see, there are still problems that are left unsolved for the extremal structures on \(H_f\); for examples, if we consider graphs with more edges, i.e., \(m \geq 2n - 2\) edges, what will happen about the maximal graphs in \(G(n, m)\)?

4. **Results on the graphical function index** \(TI_f(G)\)

Rada and Cruz in [39] obtained some extremal results for graphs in \(G(n)\) with \(n\) vertices but without isolated vertices. For a topological index \(TI_f\) with an associated function \(g(i, j) = \frac{ijf(i, j)}{i+j}\), define the sets

\[
K_{\min}(g) = \{(r, s) \in K : g(r, s) = \min_{(i,j) \in K} g(i,j)\}
\]

and

\[
K_{\max}(g) = \{(r, s) \in K : g(r, s) = \max_{(i,j) \in K} g(i,j)\},
\]

and the complements of \(K_{\min}(g)\) and \(K_{\max}(g)\) in \(K\) are denoted by \(K_{\min}^c(g)\) and \(K_{\max}^c(g)\), respectively. Their results are stated as follows.

Theorem 4.1. [39] Let \(g(i, j) = \frac{ijf(i, j)}{i+j}\). Then for every \(G \in G(n)\),

\[
n \left(\min_{(i,j) \in K} g(i,j) \right) \leq TI_f(G) \leq n \left(\max_{(i,j) \in K} g(i,j) \right),
\]

Moreover, equality on the left-hand side occurs if and only if \(m_{pq} = 0\) for all \((p, q) \in K_{\min}^c(g)\), while equality on the right-hand side occurs if and only if \(m_{rs} = 0\) for all \((r, s) \in K_{\max}^c(g)\).

Theorem 4.2. [39] Let \(g(i, j) = \frac{ijf(i, j)}{i+j}\). Assume \(K_{\min}(g) = \{(1,1)\}\) and \(n\) is odd. If \(g(1,2) < g(i, j)\) for all \((i, j) \in K\) such that \((i,j) \notin \{(1,1),(1,2)\}\), Then for every \(G \in G(n)\),

\[
TI_f(G) \geq (n-3)g(1,1) + 3g(1,2),
\]

and equality occurs if and only if \(G = \frac{n-3}{2}K_2 \cup P_3\) (see Figure 3).

![Figure 3: The minimal graph in Theorem 4.2.](image)

Theorem 4.3. [39] Let \(g(i, j) = \frac{ijf(i, j)}{i+j}\). Assume that \(K_{\max}(g) = \{(1,1)\}\) and \(n\) is odd.

1. **If** \(g(1,2) \geq g(2,2) \geq g(i, j)\) **for all** \((i, j) \in K\) **such that** \((i,j) \notin \{(1,1),(1,2),(2,2)\}\), **then**

\[
TI_f(G) \leq (n-3)g(1,1) + 3g(1,2)
\]

for all graphs \(G \in G(n)\), and equality occurs if and only if \(G = \frac{n-3}{2}K_2 \cup P_3\) (see Figure 4).

2. **If** \(g(2,2) \geq g(1,2) \geq g(i, j)\) **for all** \((i, j) \in K\) **such that** \((i,j) \notin \{(1,1),(1,2),(2,2)\}\), **then**

\[
TI_f(G) \leq (n-3)g(1,1) + 3g(2,2)
\]

for all graphs \(G \in G(n)\), and equality occurs if and only if \(G = \frac{n-3}{2}K_2 \cup C_3\) (see Figure 4).

3. **If** \(g(1,2) = g(2,2) \geq g(i, j)\) **for all** \((i, j) \in K\) **such that** \((i,j) \notin \{(1,1),(1,2),(2,2)\}\), **then**

\[
TI_f(G) \leq (n-3)g(1,1) + 3g(1,2) = (n-3)g(1,1) + 3g(2,2)
\]

for all graphs \(G \in G(n)\), and equality occurs if and only if \(G = \frac{n-3}{2}K_2 \cup P_3\) or \(\frac{n-3}{2}K_2 \cup C_3\).
Theorem 4.4. [26] Let \(n \) and \(m \) be integers such that \(n \geq 2 \) and \(1 \leq m \leq n(n-1)/2 \). If \(f(x,y) \) is convex and partially differentiable with \(\frac{\partial f}{\partial y} \geq 0 \), then we have

\[
TI_f(G) \geq m f(2m/n, 2m/n)
\]

for any \((n, m)\)-graph \(G \), and the bound is sharp since all regular graphs can achieve the lower bound.

For graphs with very few edges, we got the following results.

Theorem 4.5. [26] Let \(n \) and \(m \) be integers such that \(n \geq 2 \) and \(1 \leq m \leq n/2 \). If \(f(x,y) \) is symmetric and \(f_1 > 0 \), then for any \((n, m)\)-graph \(G \), we have \(TI_f(G) \geq m f(1, 1) \), and the equality holds if and only if \(G = mK_2 \cup (n-2m)K_1 \) (see Figure 5).

Notice that these minimal graphs are all almost regular graphs. Next, for graphs with a little more edges, we have the following result.
Theorem 5.1. [26] Suppose \(n \) and \(m \) are integers such that \(n \geq 2 \) and \(n/2 \leq m \leq n - 1 \). If \(f(x, y) \) satisfies that \(f_1 > 0 \), \(f_{11} > 0 \), \(f_{12} \geq 0 \) and \(f(1, 3) > f(2, 2) \), then every minimal graph in \(G(n, m) \) is an almost regular graph. Moreover, if \(f(1, 1) + f(2, 2) = 2f(1, 2) \), then every almost regular graphs is also a minimal graph in \(G(n, m) \).

For a nontrivial component \(G_1 \) of a graph \(G \), a vertex \(v \) is a universal vertex if \(d_v = |V(G_1)| - 1 \). In this situation, the maximal graphs have the following property.

Theorem 4.7. [26] Suppose \(n \) and \(m \) are integers such that \(n \geq 2 \) and \(1 \leq m \leq (n - 1)/2 \). If \(f(x, y) \) has the property \(P \) and satisfies that \(f_1 > 0 \) and \(f_{11} > 0 \), then the maximal graphs in \(G(n, m) \) have exactly one nontrivial component, and the component has a universal vertex.

Remark 4.1. Similarly as one can see, there are still problems that are left unsolved for the extremal structures on \(TI_f \), for examples, if we consider graphs with more edges, i.e., \(m \geq 2n - 2 \) edges, what will happen about the maximal graphs in \(G(n, m) \)?

5. Extremal spectral radius results on the \(f \)-weighted adjacency matrix \(A_f \)

The spectral properties, such as spectral radius, maximum and minimum eigenvalues, energy, etc. should be studied for these \(f \)-weighted adjacency matrices. Actually, there have already been many publications along with this topic. Here we would like to point out that the \(f \)-weighted adjacency matrices of graphs with degree-based weights behave quite different from the traditional \((0,1)\)-adjacency matrix, for example, there is no monotonicity for the spectral radius, for example, if the weight function \(f \) is taken from the ABC-index.

We have obtained the following results on the extremal spectral radius problem.

Theorem 5.1. [10] Let \(T \) be a tree of order \(n \geq 3 \), and \(A(T) \) is the adjacency matrix of \(T \). Then

\[
\rho(A(P_n)) \leq \rho(A(T)) \leq \rho(A(S_n)).
\]

The equalities hold if and only if \(T \cong P_n \) or \(S_n \), respectively.
Theorem 5.2. [37] Let \(f(x, y) = 1/\sqrt{xy} \) be the weight function for Randić index. If \(G \) is a non-empty graph, then
\[
\rho(A_f(G)) = 1.
\]

Theorem 5.3. [6] Let \(f(x, y) = \sqrt{(x + y - 2)/(xy)} \) be the weight function for ABC index. Then
\[
\rho(A_f(P_n)) \leq \rho(A(T)) \leq \rho(A_f(S_n)).
\]
The equalities hold if and only if \(T \cong P_n \) or \(S_n \), respectively.

One can see that the extremal graphs vary quite sensitively depending on the weight functions \(f \). Our purpose is to study the extremal spectral radius problem in a unified way. So far we have only got the following results.

Theorem 5.4. [33] Assume that \(f(x, y) > 0 \) is a symmetric real function, increasing and convex in variable \(x \). Then the tree of order \(n \) with largest spectral radius of \(A_f(T) \) is \(S_n \) or a double star \(S_{d,n-d} \) for some \(d \in \{2, \ldots, n-2\} \) (see Figure 7).

![Figure 7: A star and a double star.](image)

It can be seen here that we get new extremal trees i.e., the double stars, which are different from those given in the first three results.

Theorem 5.5. [33] Assume that \(f(x, y) \) has a form \(P(x, y) \) or \(\sqrt{P(x, y)} \), where \(P(x, y) \) is a symmetric polynomial with nonnegative coefficients and zero constant term. Then the tree of order \(n \) (\(n \geq 9 \)) with the smallest spectral radius of \(A_f(T) \) is unique and it is \(P_n \).

Remark 5.1. Our approach is just a start. More efforts are needed in order to deepen the research on the extremal problems. For examples, one can focus on considering different graph or tree families. One can also consider the weight function \(f \) having some other nice properties.

6. Concluding remarks

It is just a starting point to unify the solutions for extremal problems of graphical function-indices and \(f \)-weighted matrix. In this way, we do not need to deal with chemical or graphical indices and degree-based weighted adjacency matrices of graphs with weight functions as various topological indices one by one separately. However, at the moment, we only solved the case when the indices are defined by a symmetric function \(f(x, y) \) with some particular properties. For those functions \(f(x, y) \) with less restrictions, further study is needed, depending on their functional properties, and on the graph families we focus on. This survey gives a hope that in the near future more results can be worked out for much wider classes of graphical function-indices and \(f \)-weighted adjacency matrices and/or for much wider families of graphs.

For graph energies, the asymptotic values were obtained in [30–32] for \(f \)-weighted adjacency and Laplacian matrices with degree based and degree-distance-based entries where the function \(f \) has very relaxed conditions; for example, continuous and/or differentiable. Since they are about extremal results, we omit their details in this survey.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (through grant No.12131013 and 11871034).

References

[1] A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of \((n, m)\)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89–96.
