SEMANTIC PROCESSING OF OUT-OF-VOCABULARY WORDS IN A SPOKEN DIALOGUE SYSTEM

Manuela Boros\(^1\), Maria Aretoulaki\(^2\), Florian Gallwitz\(^2\), Elmar Nöth\(^2\), Heinrich Niemann\(^2\)

\(^1\) Bavarian Research Center for Knowledge Based Systems (FORWISS)
Am Weichselgarten 7
D-91058 Erlangen, Germany
e-mail: boros@forwiss.uni-erlangen.de

\(^2\) Dept. for Pattern Recognition
University of Erlangen-Nuremberg
Martensstrasse 3
D-91058 Erlangen, Germany
e-mail: {name}@informatik.uni-erlangen.de

ABSTRACT

One of the most important causes of failure in spoken dialogue systems is usually neglected: the problem of words that are not covered by the system’s vocabulary (out-of-vocabulary or OOV words). In this paper a methodology is described for the detection, classification and processing of OOV words in an automatic train timetable information system [3]. The various extensions that had to be effected on the different modules of the system are reported, resulting in the design of appropriate dialogue strategies, as are encouraging evaluation results on the new versions of the word recogniser and the linguistic processor.

1. INTRODUCTION

The majority of speech understanding systems have to face the problem of words that are not covered by their current lexicon, i.e. OOV words. In such a case the word recogniser usually recognises one or more different words with a similar acoustic profile to the unknown. These misrecognitions often result in possibly irreparable misunderstandings between the user and the system. This is due to the fact that users rarely realise that they have crossed the boundaries of the system’s knowledge but just notice its suddenly weird behaviour. Therefore it is desirable to have the system detect unknown words and inform the user about them so that s/he might correct the error. This will not only increase the dialogue success rates but also the acceptability of the system to the user (cf. [3]).

In [4] a method was proposed on how to integrate information about the presence of OOV words into statistical language models. This approach allows for both the detection of OOV words by the recogniser and the assignment of a semantic category to each occurrence. In this paper, the further processing of OOV words in a spoken dialogue system is investigated for the domain of train timetable inquiries [3]. Information on OOV words pertaining to certain categories, as provided by the recogniser, can be further employed by the linguistic processor and the dialogue manager, leading to a more cooperative system. The linguistic processor has been extended, so that it can integrate the information about the occurrence of OOV words and pass on the respective semantic data to the dialogue manager. In order for the system to react appropriately to OOV words, special dialogue strategies have been devised and implemented.

2. DETECTION AND CLASSIFICATION OF OOV WORDS

In [4] we presented an approach for the detection of OOV words which implicitly provides information on the word category. This involves the integration of both detection and classification of OOV words directly into the recognition process of an HMM-based word recogniser. With our approach, acoustic information as well as language model information can be used for the purpose of classifying OOV words into different word categories. Currently the same acoustic models are used for all OOV words; only language model information contributes to the assignment of a category to each.

The basic idea behind our approach is to build language models for the recognition of OOV words that are based on a system of word categories. Emission probabilities of OOV words are then estimated for each word category. Even if we include in our vocabulary all words of a category that were observed in the training sample, there is still a certain probability of observing other new words of the same category in an independent test sample or in future utterances. This probability can be estimated from the training sample itself. Details on the calculation of the OOV emission probabilities were given in [4]. Figure 4 shows the principle of this estimation technique for the category CITY of our spontaneous train timetable inquiry sample.

For most of our linguistically-motivated word categories, the OOV probability is 0, because they describe a finite set of words. In the time table inquiry domain there are 5 word categories that are practically infinite (e.g. CITY, REGION, SURNAME). In addition, a category for rare words has been defined that do not fall under any other category (OOV probability 73%) and another for garbage (e.g. word fragments, OOV probability 100%). After integrating OOV probabilities into the language
In order for the Linguistic Processor (LP) to handle names were uttered, as city names constitute a cen-
sure to retain any information that unknown city
eglected in later processing. However, it is most de-
understanding of user utterances and can, hence, be
surnames.
agreement. The system will then be capable of reacting
representation that is passed on to the dialogue man-
LP has to be modified to include it into the semantic
information accessible to the dialogue manager, the
OOV word has been uttered. In order to make this
niser will contain the respective information if an
Word strings delivered by the OOV–extended recog-
the information that the name of the corresponding
city is unknown to the system. The respective feature
structure-like entry is shown below in an abbreviated
and mnemonic form.
morphology: form: oov_city,
syntax: head: (part_of_speech: proper_noun,
number:singular),
semantics: (type:location,
 thecity: (type: city,
 value: oov_city)).
The slot semantics contains the semantic specifi-
ation of a sign. Type: location means that the sign
denotes a certain location that is further specified by
the role thecity, which carries the information that
it is a city whose name is defined by value. Given
that an unknown city name is involved here, the re-
pective value is oov_city.
The addition of the oov_city entry guarantees that an
input string containing a word of type oov_city can
properly be parsed and its semantic representation
correctly built up, leading to the following represen-
tation:
semantics: (type: go,
 thegoal: (type: city,
 value: oov_city)).
This semantic representation correctly contains the
information that the goal of the journey specified by
the user is not covered by the lexicon. This represen-
tation is passed on to the dialogue manager for
interpretation.

4. EXTENSIONS TO THE DIALOGUE
MANAGER

The role of the Dialogue Manager (DMan) in the sys-
tem is to locate the data that is relevant to the task in
the semantic representations provided by the LP, so
that the train information database can be accessed.
Secondly, it is therein that the next system utterance
is planned in accordance with what the user has said
and the current state of the dialogue (cf. 5).
In case of train timetable inquiries, there are two
types of relevant semantic objects: the task param-
eters that should be specified by the user before the DB
can be accessed, namely goalcity, sourcocity, date and
goaltime or sourcetime, and various dialogue markers
(e.g. right, no, thanks) which influence the user-
oriented progression of the dialogue. The most cen-
tral component of the DMan is the Dialogue Mod-
ule, which keeps track of the state of the dialogue
in terms of system and user dialogue acts, as well as
system goals and their satisfaction. An ATN descrip-
tion of the possible dialogue step transitions is used
to generate expectations about the continuation of
the dialogue, in terms of both user and system acts.
This is also the main submodule that had to be ex-
tended in order to incorporate OOV word information
and have appropriate system utterances formulated
accordingly (Section 5).
Before the incorporation of OOV word information in the system, when an OOV word was uttered in relation to one of the task parameters, the DMan would process an acoustically similar city name, for instance. This did not lead to an immediate dialogue failure, as the user was always able to correct the system later on, in which case the system would fall back to its default recovery strategies: it would start by requesting the corresponding parameter value again and cross-checking the remaining parameters after the first or second repetition (and failure). Then the user would be asked to spell the problematic word. Failure to acquire an utterance interpretation at this stage would force the system to close the dialogue by referring the user to a human information officer. The extension of the word recogniser and the LP of the system with meta-knowledge about the occurrence of OOV words has led to the design of new dialogue strategies that take this extra information into account and are adopted on-line in the presence of an OOV word (Fig. 3). Thus, two new dialogue states were incorporated in the corresponding ATN description, which accommodate alternative state transitions in the DMan accordingly: (a) \text{repeat-param} is used to ascertain that an OOV word was indeed uttered, in order to avoid false alarms. It provides a first warning to the user that there may be a problem and asks him/her to repeat just the parameter value involved. (b) \text{warn} follows the default repair mode \text{spell} and involves the notification of the user about the cause of failure so that he/she can either hang up or pose a different query. These extensions of the DMan are illustrated in Section 5.3.

5. EXPERIMENTS AND RESULTS

The evaluation experiments on the word recogniser and the linguistic processor were performed on the EVAR corpus collected while the system was accessible via the German public telephone network. A total number of 1092 dialogues with (naive) users were recorded, comprising 10556 utterances consisting of 37775 words. As test sample we used a subset of these 1092 dialogues containing 2383 utterances.

5.1. Evaluation of the Recogniser

Experiments were carried out using a simple acoustic OOV word model that consists of a fixed number of HMM states with equal probability density functions. For a vocabulary size of 1110 words the OOV rate was 5.3\% in the test sample. Word accuracy (WA) was evaluated by substituting all OOV words by the symbol OOV in both the reference data and the recogniser output.

In the experiments described in this paper a word error rate reduction of 5\% was achieved (Table 3). The Precision (ratio of correctly detected OOV words to the number of hypothesized OOV words) was 30.7\% while Recall (ratio of the number of correctly detected OOV words to the total number of OOV words in the reference data) was 23.7\%. The increase in word accuracy despite the dissatisfactory Precision ratio is due to the fact that OOV false alarms mostly occur when the baseline recogniser produces a recognition error anyway.

Our goal is not only to detect but also to classify OOV words. Of all correctly recognised OOV words (matches of reference OOV words and hypothesized OOV words), the word category is assigned correctly in 94\% of the cases. For the two-class-problem CITY vs. not-CITY the recognition rate is 97\%. These encouraging results show that even pure language model information enables the word recogniser to reliably distinguish between OOV words of different word categories.

5.2. Evaluation of the Linguistic Processor

For the evaluation of the linguistic processor, the metric of semantic concept accuracy (CA) is used. CA measures the system’s ability to detect the semantic concepts that are necessary in order to understand an utterance and was described in detail in [1].

In order to assess the functionality of the extended LP alone, initial testing employed the transliterations of the 2383 utterances as input to the parser. The resulting figure of 93.8\% shows that the semantic coverage of the system is very good, especially if one keeps in mind that the system deals with spontaneous speech (even if transcribed). For the evaluation of the word recogniser and the LP in combination, the recogniser output is taken as input to the parser. Two separate experiments were carried out: one without the possibility to detect and process OOV words and another with the possibility to do so. The first experiment without OOV word information yielded a CA of 73.2\%, the respective WA of the recogniser being 77.1\%. Extending the recogniser to accommodate the detection and classification of OOV words increases its WA to 78.5\% and accordingly results in a higher CA rate of 75.1\% for the extended LP. Table 1 shows the corresponding figures for CA in each case.

INPUT	WA	CA
transliterations	—	93.8
with OOV	78.3	75.5
without OOV	77.1	73.2

Table 1. Preliminary results of LP evaluation.

These figures indicate that the correlation between WA and CA reported in Section 5.1 also holds in the experiments described here. The improvement of the recogniser’s WA due to OOV word detection reported in 5.1 also improves the linguistic processor’s CA.

These results are based on a very strict interpretation of the CA measure: the misrecognition of a (possibly badly pronounced) city name that is in the vocabulary, e.g. “Hamburg”, as oov_city leads to a semantic representation that is “almost” correct; the system reaction of asking the user to repeat the particular piece of information (see Section 5.3) would be
quite natural. We believe that users would be more tolerant to this specific kind of error. However, this counts as one “full” error. Thus, optimising the CA for the recogniser–parser combination will not lead to the ideal overall system performance. Consequently, a better measure for CA would probably be to count this type of error only as a “50%–error”. This hypothesis will be further investigated when a sufficiently large sample of dialogues has been collected with the OOV–extended dialog system.

5.3. Example Dialogue Strategies for OOV Words

On the basis of the user’s reactions in the course of the dialogue and the frequency of conflict between the system’s beliefs and the user’s goals, the system can dynamically modify its communicative and repair strategies, e.g. whether or not there is a confirmation goal for the system. The incorporation in the DMan of the new dialogue states introduced in Section 4, which also consist new system goals, has resulted in a number of alternative dialogue step transitions, the most general of which is schematically shown in Fig. 2 and exemplified in the following dialogue. The labelling of a word as OOV–CITY forces the system to postpone its current goal (e.g. request for another parameter) and activate a confirmation/warning sub-dialogue which should render the system more user-oriented and response generation more acceptable to the user (cf. Fig. 2).

User: I want to go to <Brussels> oov_city.
[goal_city:oov_city]
System: I think the information you require is not covered by our database. Could you, please, repeat the name of the city you want to go to?
[system goal: REPEAT_PARAM]
User: <Brussels> oov_city.
System: Could you please spell the name of this city?
[system goal: SPELL]
User: <B-r-u-s-s-e-l-s> oov_city.
System: Unfortunately, there is no information on train connections for the city you want. Our database only covers German cities. Would you like to proceed with a different query?
[system goal: WARN]
User: Yes.
System: What exactly would you like to know?
[system goal: FURTHER_INFO]

The extended version of the DMan and of the complete train information system will be shortly made available for testing and use over the German public telephone network.

6. CONCLUSION AND FUTURE WORK

In this paper a methodology was proposed and illustrated for the linguistic and semantic processing of OOV words in a spoken dialogue system. The necessary changes and extensions to the word recogniser and the linguistic processor were described as well as appropriate new dialogue strategies that modify the system behaviour accordingly. Evaluation results were also reported regarding the word recogniser and the linguistic processor, which showed an encouraging increase in both word accuracy and semantic concept accuracy. The corresponding error rates dropped by 5% and 7%, respectively. Those OOV words detected by the word recogniser were correctly classified in 94% of the cases.

Current work includes the further improvement and evaluation of the word recogniser and the linguistic processor of the system. In addition, the newly-implemented dialogue strategies will be tested and evaluated under realistic circumstances by making the extended system version accessible via the public telephone network, thus also collecting more test data.

REFERENCES

[1] M. Boros, W. Eckert, F. Gallwitz, G. Hanrieder, G. Görz, and H. Niemann. Towards Understanding Spontaneous Speech: Word Accuracy vs. Concept Accuracy. In Proceedings of ICSLP’96, pp. 1005-1008, Philadelphia, 1996.

[2] W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer, and E.G. Schukat-Talamazzini. A Spoken Dialogue System for German InterCity Train Timetable Inquiries. In EUROSPEECH’93, pp. 1871-1874, Berlin, 1993.

[3] W. Eckert. Gesprochener Mensch-Maschine-DIALOG. Berichte aus der Informatik, Shaker Verlag, Aachen, 1996.

[4] F. Gallwitz, E. Nöth, and H. Niemann. A Category Based Approach for Recognition of Out-of-Vocabulary Words. In Proceedings of ICSLP’96, pp. 228-231, Philadelphia, 1996.

[5] Proceedings of TWLT 11: Dialogue Management in Natural Language Systems. S. LuperFoy, A. Nijholt, and G. Veldhuijzen van Zanten, editors, June, 1996, Enschede, the Netherlands.

[6] S. McGlashan, F. Andry, and G. Niedermair. A Proposal for SIL. Technical Report, ESPRIT Project P2218 SUNDIAL, 1990.

[7] K. Mecklenburg, P. Heisterkamp, and G. Hanrieder. A Robust Parser for Continuous Spoken Language using Prolog. In Proceedings of the Fifth International Workshop on Natural Language Understanding and Logic Programming (NLULP 95), pages 127–141, Lisbon, Portugal, 1995.

[8] R. Rosenfeld. Optimizing Lexical and N-gram Coverage via Judicious Use of Linguistic Data. In EUROSPEECH’95, volume 3, pp. 1763-1766, Madrid, 1995.