Molecular Genetics
Research Article – 98215

Mostafa Saadat*, Fatemeh Mousavi-Kazerooni, Leila Fallahzadeh-Abarghooei

Distribution of genetic polymorphism of CAT C-262T in three Iranian populations

Abstract: Objective: Catalase (CAT) activity is likely to be affected by functional polymorphism of C-262T (rs1001179) in the CAT gene (OMIM: 115500). It is hypothesized that individuals with the lower expressing forms of the CAT polymorphism may be more susceptible to breast cancer. In order to find the allelic frequency of the C-262T polymorphism among Iranian populations, the present study was carried out.

Methods: The total study subjects consisted of 1057, 200, and 200 individuals from Shiraz (Fars province; belong to Persians), Abarku (Yazd province; belong to Persians), and Yasuj (Kohgiluyeh va Boyer-Ahmad province; belong to Lurs), respectively. Genotypic analysis for the CAT C-262T polymorphism was determined by PCR.

Results: The frequency of the T allele was 0.2044±0.0138, 0.1825±0.0193, and 0.1800±0.0192 in Shiraz, Abarku, and Yasuj, respectively. The genotypic frequencies of the control subjects did not show significant deviation from Hardy-Weinberg equilibrium. Statistical analysis indicated that there was no significant difference between these populations for the genotypic distributions of the CAT C-262T polymorphism (χ²=2.73, df=4, P=0.603).

Conclusion: The frequency of the T allele among Iranian populations was very similar to that reported for Caucasians and was higher than Asians and African-American populations.

Keywords: CAT; genetic polymorphism; Iran

*Corresponding author: Mostafa Saadat: Shiraz University, College of Sciences, Department of Biology, Shiraz 71454, Iran, e-mail: saadat@shirazu.ac.ir
Fatemeh Mousavi-Kazerooni: Shiraz University, College of Sciences, Department of Biology, Shiraz 71454, Iran, e-mail: sepiide.mousavi@yahoo.com
Leila Fallahzadeh-Abarghooei: Shiraz University, College of Sciences, Department of Biology, Shiraz 71454, Iran, e-mail: lflhz@yahoo.com

Üç İran popülasyonu için T tipinin dağılımı

Özet: Amaç: Katalaz aktivitesinin, CAT geni (OMIM: 115500) üzerindeki C-262T (rs1001179) polimorfizminin etkilendiği düşünülmektedir. CAT geninin değişik polimorfik türlerinin düşük ekspresyonu olan bireylerde meme kanserine katkıda bulunabileceği varsayılmaktadır. Bu çalışma İran popülasyonlarında C-262T aleli frekanslarını saptamak için yürütülmüştür.

Metod: Bu çalışmada Şiraz (Fars eyaleti, Pers kökenli) bölgesinde 1057, Abarku (Yezidi eyaleti, Pers kökenli) bölgesinde 200, Yasui (Kohgiluyeh va Boyer-Ahmad eyaleti, Lur kökenli) bölgesinde 200 kişi çalışılmıştır. CAT C-262T polimorfizminin genotipik analizleri PCR tekniği kullanılarak saptanmıştır.

Bulgular: Şiraz, Abarku ve Yasui bölgeleri için T aleli frekansı sırasıyla 0.2044±0.0138, 0.1825±0.0193, ve 0.1800±0.0192 olarak bulunmuştur. Kontrol bireylerin genotip frekansları ise Hardy-Weinberg dengesinden sapma göstermemiştir. Ek olarak, CAT C-262T polimorfizmi genotipik dağılımı bu popülasyonlar arasında istatistiksel olarak anlamlı bir fark göstermemiştir (χ²=2.73, df=4, P=0.603).

Sonuç: İran popülasyonlarında saptanan T aleli frekansı beyaz ırk popülasyonları için raporlanan sonuçlarla yakın ancak Asya ve Afrika – Amerikan popülasyonlarından yüksek bulunmuştur.

Anahtar Kelimeler: CAT; genetik polimorfizm; İran

DOI 10.1515/tjb-2015-0024
Received April 21, 2015; accepted June 25, 2015
Introduction

It is well established that transient alterations in reactive oxygen species (ROS) have important regulatory functions, but at high and/or sustained levels, it can cause DNA damage [1,2]. Catalase (CAT; EC 1.11.1.6; OMIM: 115500) is an important enzyme metabolizing hydrogen peroxide (H$_2$O$_2$) and detoxifies H$_2$O$_2$ to oxygen and water. Catalase is a ubiquitous detoxifying enzyme in aerobic cells. The CAT gene had 34 kb long and split into 13 exons [3]. The CAT enzyme activity in human cells is likely to be affected by a functional common C to T substitution genetic polymorphism in the CAT promoter gene (C-262T, rs1001179). Several studies indicating that the T allele was found to be associated with reduced the CAT enzyme activity [4–6].

Oxidative stress is believed to play an important role in the pathogenesis of considerable number of complex multifactorial diseases [7–12]. The CAT enzyme activity is an important component of cell defense against oxidative stress, and the C-262T polymorphism which regulates the expression level of CAT [4–6] may play a role in host response to oxidative stress and indeed variant T allele has been associated with increased risk of several multifactorial traits, including some types of cancers, asthma, glaucoma, and infertility [13–18].

As we mentioned in our previous studies, Iranian populations showed high level of heterogeneity for genetic polymorphisms [19–22]. Based on our knowledge, there are published data on distributions of the CAT C-262T polymorphism among two Iranian populations living in Rasht (Gilan province, north Iran) [18] and Zahedan (Sistanva-Baluchestan province, south east Iran) [23]. However, there have been no data in regard to CAT C-262T polymorphism in Iranian populations living in central and southern parts of Iran. Accordingly, we investigated the CAT C-262T polymorphism distribution in healthy individuals in three Iranian populations. Our study could, therefore, provide information that may be used in the future to assess the relationship between the prevalence of the CAT C-262T polymorphism and susceptibility to several diseases in our population, as well as we get more insight into genetic structure of the Iranian populations.

Materials and Methods

Subjects

The total study subjects consisted of 1057, 200, and 200 individuals from Shiraz (Fars province; belong to Persians), Abarku (Yazd province; belong to Persians), and Yasuj (Kohgiluyeh va Boyer-Ahmad province; belong to Lurs), respectively. All individuals were healthy as assessed by medical history. Data on ethnicity were collected using a simple questionnaire including simple questions like the parental and grandparental ethnicity of each participant. Participants that their mothers and fathers (and also their grandparental) did not belong to same ethnic groups were excluded.

Because the CAT C-262T polymorphism showed significant associations with several multifactorial diseases [13–18], we excluded the participants with positive history for diagnosed cancers, psychiatric disorders, asthma, cataract and cardiovascular diseases. This study was approved by the local ethics committee and informed consent was obtained from each subject before the study.

Populations	CC	CT	TT	Total	T allele (%)	HWE (χ^2)	P-value	df=1
Shiraz	671	340	46	1057	20.44	0.12	0.724	
Abarku	135	57	8	200	18.25	0.40	0.525	
Yasuj	133	62	5	200	18.00	0.50	0.478	

Hardy-Weinberg equilibrium (HWE); Chi-square test (χ^2); degree of freedom (df).

Table 1: Genotypic distribution of the CAT C-262T polymorphism among healthy blood donors in three Iranian populations.

Country/ethnic	T allele (%)	Sample size	References
African-American (USA)	5.0	109	4
China	4.9	308	26
Korea	3.4	400	27
Taiwan	4.9	224	14
Bangladesh	16.8	104	28
Saudi Arabia	15.5	403	15
Iran (Zahedan)	15.0	140	23
Iran (Rasht)	17.6	190	18
Iran (Persians, Shiraz)	20.4	1057	Present study
Iran (Persians, Abarku)	18.2	200	Present study
Iran (Lurs, Yasuj)	18.0	200	Present study
Turkey	21.6	250	29
Russia	18.4	103	6
Slovak Republic	27.1	249	16
Polish	23.9	199	30
Germany	23.0	117	17
England	22.1	3836	31
France	23.2	196	5
USA (Caucasians)	21.5	974	13

Table 2: Distribution of the T allele of CAT C-262T polymorphism in several populations.
Genotyping

Blood samples were obtained from the participants. Immediately after collection, whole blood was stored at −20°C until use. Genomic DNA for PCR was extracted from whole blood [24]. Genotypic analysis for the CAT C-262T polymorphism was determined using the specific primers: 5’-CTG ATA ACC GGG AGC CCC CTG GTG CAT AF3’ and 5’-CTA GGC AGG CCA AGA TTG GAA GCC CAA TGG-3’ as described previously [25]. PCR products were digested by restriction endonuclease EcoR V for 16 h at 37°C. The products were electrophoresed on 1.5% agarose gel. The gels were stained with ethidium bromide and visualized by ultraviolet light. The C allele produced a 190 bp band, whereas the T allele digested by EcoR V and produced 157 and 33 bp bands.

Statistical Analysis

Allelic frequencies were calculated by genotype counting method. For each group, the observed frequencies of the CAT genotypes were assessed for Hardy-Weinberg equilibrium using the χ² statistic. The difference in genotype frequencies between populations was determined using the Chi-square test of goodness of fit. Data analysis was performed using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, USA) (version 11.5). A probability of P<0.05 was considered statistically significant.

Results

The genotypic frequency of the CAT C-262T polymorphism in Shiraz, Abarku, and Yasuj was shown in Table 1. The frequency of the T allele was 0.2044±0.0138, 0.1825±0.0193, and 0.1800±0.0192 in Shiraz, Abarku, and Yasuj, respectively. Among study ethnic groups, Lurs showed lower frequency of the T allele (18.0%).

The genotypic frequencies of the control subjects did not show significant deviation from Hardy-Weinberg equilibrium (For Shiraz: χ²=0.12, df=1, P=0.724; For Abarku: χ²=0.40, df=1, P=0.525; For Yasuj: χ²=0.50, df=1, P=0.478). Statistical analysis indicated that there was no significant difference between these populations for the genotypic (χ²=2.73, df=4, P=0.603) and allelic (χ²=1.95, df=2, P=0.376) distributions of the CAT C-262T polymorphism. Therefore, there was no genetic differentiation between three studied populations (Fst=0.006).

Discussion

It should be noted that the frequency of the T allele was reported 47.6% and 15.0% from Rasht (north Iran) and Zahedan (south east Iran), respectively [18,23]. There is remark difference between Rasht and other reports from both Iranian and other Caucasian gene pools [5,6,13,16,17,23]. At present we have no explanation for this difference.

A comparison of the prevalence of the T allele in our samples with published data from other populations [4–6,13–18,23,26–31] is presented in Table 2. When compared to Asians [14,26,27] and African-Americans [4], the T allelic frequency of Iranian gene pools showed marked differences. The frequency of the T allele in the Iranian populations varied from 18.0% (in Yasuj) to 20.4% (in Shiraz), whereas it was reported to be very low in Korean, Chinese, Taiwanese and African-American populations [4,14,26,27]. The frequency of the T allele among Iranian populations was very similar to that reported for Caucasian populations.

Based on data presented in Table 2, the T allele showed a specific geographical distribution. In overall, the frequency of the T allele revealed distinct differences between Caucasians, Asians and Africans. It has low prevalence in Asian and African [4,14,26,27], whereas the T allele shows higher frequency among Caucasians [5,6,13,16,17,29–31] gene pools. Therefore, it is suggested that the T allele increased from east to west.

Previous reports on other genetic polymorphisms, such as GSTM1, GSTT1, GSTO2, GSTZ1, XRCC1, XRCC4, XRCC7, and ACE, indicated that Iranian gene pools showed heterogeneity with each other and in overall they revealed intermediate frequency in comparison with Caucasians and Asians [19–21,32–34]. However the present study although showed that the T allele is more similar to Caucasians than Asians, there was homogeneity between the study gene pools.

Acknowledgments: The authors are indebted to the participants for their close cooperation. This study was supported by Shiraz University.

Conflict of Interest: The authors have no conflict of interest.

References

[1] Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004; 44:239–67.
[2] Kang DH. Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 2002; 13(4):540–9.

[3] Quan F, Korneluk RG, Tropak MB, Gravel RA. Isolation and characterization of the human catalase gene. Nucleic Acids Res 1986; 14(13):5321–35.

[4] Ahn J, Nowell S, McCann SE, Carter L, Lang NP, et al. Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 2006; 15(6):1217–22.

[5] Nadif R, Mintz M, Jedlicka A, Bertrand JP, Kleeberger SR, Kauffmann F. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli. Free Radic Res 2005; 39(12):1345–50.

[6] Komina AV, Korostileva KA, Gyrylova SN, Belonogov RN, Ruksha TG. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res 2012; 61(6):655–8.

[7] Ambrosone CB. Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2000; 2(4):903–17.

[8] Emerit I. Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 1994; 16(1):99–109.

[9] Loft S, Olsen A, Møller P, Poulsen HE, Tjønneland A. Association between 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion and risk of postmenopausal breast cancer: nested case-control study. Cancer Epidemiol Biomarkers Prev 2013; 22(7):1289–96.

[10] Chang D, Wang F, Zhao YS, Pan HZ. Evaluation of oxidative stress in colorectal cancer patients. Ann Clin Biochem 2002; 39(2):152–9.

[11] Reddy R, Keshavan M, Yao JK. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 2003; 62(3):205–12.

[12] Thiagajaran R, Manikandan R. Antioxidants and cataract. Free Radic Res 2013; 47(5):337–45.

[13] Quick SK, Shields PG, Nie J, Platek ME, McCann SE, et al. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17(5):1345–50.

[14] Tsai SM, Wu SH, Hou MF, Chen YL, Ma H, et al. Oxidative stress-related enzyme gene polymorphisms and susceptibility to breast cancer in non-smoking, non-alcohol-consuming Taiwanese women: a case-control study. Ann Clin Biochem 2012; 49(Pt 2):152–8.

[15] Abu-Amero KK, Azad TA, Mousa A, Osman EA, Sultan T, et al. A catalase promoter variant rs1001179 is associated with visual acuity but not with primary angle closure glaucoma in Saudi patients. BMC Med Genet 2013; 14:84.

[16] Babusikova E, Jesenak M, Evinova A, Banovcin P, Dobrota D. Frequency of polymorphism -262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma. Arch Bronconeumol 2013; 49(12):507–12.

[17] Zarbock R, Hendig d, Szliska C, Klesieek K, Göttling C. Pseudoxanthoma elasticum: genetic variations in antioxidant genes are risk factors for early disease onset. Clin Chem 2007; 53(10):1734–40.

[18] Sabouhi S, Salehi Z, Bahadori MH, Mahdavi M. Human catalase gene polymorphism (CAT C-262T) and risk of male infertility. Andrologia 2015; 47(1):97–101.

[19] Saadat M. Distribution of ACE insertion/deletion (I/D) polymorphism in Iranian populations. Mol Biol Res Commun 2015; 4:63-6.

[20] Nafissi S, Saadat I, Saadat M. Genetic polymorphisms of glutathione S-transferase Z1 in an Iranian population. Mol Biol Rep 2011; 38(5):3391–4.

[21] Rafiee L, Saadat I, Saadat M. Glutathione S-transferase genetic polymorphisms (GSTM1, GSTT1 and GSTO2) in three Iranian populations. Mol Biol Rep 2010; 37(1):155–8.

[22] Amirshahi P, Sunderland E, Farhoud Dö, Tavakoli SH, Daneshmand P, et al. Serum proteins and erythrocyte enzymes of populations in Iran. Hum Hered 1989; 39(2):75–80.

[23] Jafari M, Salimi S, Nakaheia A, Zakeri Z, Sandooghi M, et al. Lack of association between catalase gene C-262T polymorphism and systemic lupus erythematosus. Zahedan J Res Med Sci 2012; 14:49–52.

[24] Newton CR. Mutational analysis: known mutations, in: M.J. McPherson, D. Hames, G.R. Taylor (Eds.), PCR2. A Practical Approach, IRL Press, Oxford, 1995. p. 219–22.

[25] Saadat M, Safaie S, Saadat I. Genetic polymorphism of C-262T catalase and susceptibility to schizophrenia. Maged J Med Sci 2014; 15:74-7.

[26] Mak JC, Leung HC, Ho SP, Ko FW, Cheung AH, et al. Polymorphisms in manganese superoxide dismutase and catalase genes: functional study in Hong Kong Chinese asthma patients. Clin Exp Allergy 2006; 36(4):440–7.

[27] El-Soehemy A, Cornelis MC, Park YW, Bae SC. Catalase and PPARgamma2 genotype and risk of rheumatoid arthritis in Koreans. Rheumatol Int 2006; 26(5):388–92.

[28] Ahsan H, Chen Y, Kibriya MG, Islam MN, Slavkovich VN, et al. Susceptibility to arsenic-induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase. Cancer Lett 2003; 201(1):57–65.

[29] Suzen HS, Gucyener E, Sakalli o, Uckun Z, Kose G, et al. CAT C-262T and GPX1 Pro198Leu polymorphisms in a Turkish population. Mol Biol Rep 2005; 32(1):57–65.

[30] Warchol T, Lianeri M, Wudarski M, Łacki JK, Jagodziński PP. Association between exudative age-related macular degeneration and the G6721T polymorphism of XRCC7 in Polish population. J Hum Genet 2008; 53(1):1035–9.

[31] Pask R, Cooper JD, Walker NM, Hutchings J, et al. No correlation between the catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res 2012; 61(6):655–8.

[32] Amirshahi P, Sunderland E, Farhoud Dö, Tavakoli SH, Daneshmand P, et al. Serum proteins and erythrocyte enzymes of populations in Iran. Hum Hered 1989; 39(2):75–80.

[33] Saadat M. Genetic polymorphisms of XRCC1 polymorphism of DNA double-strand break repair gene XRCC1 in four healthy Iranian populations. Egypt J Med Hum Genet 2015; 3:215–8.