Surface phytolith and pollen assemblages of a low-latitude subtropical region in Southwest China and their implications for vegetation and climate

Min Wang1,2, Qing Yang1*, Wanshu Yang1, Lin Shi2, Yu Zhang1, Zining Zhou1, Wuqi Zhang3 and Hongbo Zheng1,4

1Yunnan Key Laboratory of Earth System Science, School of Earth Science, Yunnan University, Kunming, China, 2Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming, China, 3School of History and Archives Science, Yunnan University, Kunming, China, 4School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia

Phytoliths, as a newly developing plant proxy, have broad application prospects in paleoclimate and paleoethnobotany. However, the shortage of studies regarding tropical-subtropical plants and topsoil phytoliths interferes with the research progress on primitive humanity’s utilization of plant resources and paleoclimate in the region. This research focuses on the subtropical mountainous region with a monsoon climate of low latitudes in Southwest China to conduct phytolith morphology analysis of living plants and phytolith/pollen assemblages of topsoil to reveal the indicative significance of vegetation and climate. A total of 111 species from 50 families, including 73 species from 33 tree/shrub families, 31 species from 12 herb families and 7 species from 5 fern families, were collected for morphological characteristics analysis, as well as 19 topsoil specimens for phytolith and pollen assemblage analysis. The results suggest that phytoliths are mainly deposited in situ, with assemblages of topsoil corresponding well with plant types in the quadrat and being able to exhibit constructive species in small regions. In comparison, pollen assemblages of topsoil dominantly respond to regional vegetation due to their long-distance transportation and widespread presence, in addition to their characteristics that correspond to the vegetation in the quadrat. The topsoil phytolith assemblages are mainly based on the elongate-bulliform flabellate-square/rectangle-broadleaf-types (including spheroid echinate), and the vegetation types indicate the subtropical climate. In addition, phytolith assemblages of Poaceae are dominated by collapsed saddle-bulliform flabellate square/rectangle-elongate-point, reflecting warm and humid conditions. The pollen assemblages mainly consist of Pinus, Betula, Alnus, deciduous Quercus, Euphorbiaceae, Rhamnaceae and Polygonum, reflecting tropical-subtropical plant communities and indicating warm and humid conditions. Overall, phytolith and pollen assemblages have unique characteristics and are thus explicitly representative of the low-latitude subtropical monsoon climate.

KEYWORDS
subtropical region, modern vegetation, surface soil phytolith, surface soil pollen, climate
Introduction

As good biological proxies, pollen and phytoliths have attracted extensive attention from palaeoclimate scholars due to their sensitivity to environmental changes as well as their abundance and wide distribution (Herzschuh et al., 2010; Stebich et al., 2015; Lu et al., 2018). At present, studies on the reconstruction of past climate changes based on pollen and phytoliths have been carried out in various regions of the world, making important contributions to palaeoclimate studies (Whitmore et al., 2005; Shen et al., 2006; Lu et al., 2007).

Southwest China is a key area to study the history of the southwest monsoon. In recent years, studies on the reconstruction of paleovegetation, paleoclimate, and paleomonsoon in Southwest China based on fossil pollen have been increasing gradually (Xiao et al., 2014; Zhang et al., 2020). Nevertheless, studies on topsoil pollen in China are mainly concentrated in northern China (Xu Q. H. et al., 2005; Lu et al., 2006; Xu et al., 2007; Li et al., 2008, 2012; Luo et al., 2010) and the Tibetan Plateau (Lu et al., 2004; Wei et al., 2018; Zhang et al., 2018; Qin, 2021), yet these studies conducted in southern China are relatively weak. Previous studies mainly rely on subjective empirical inference when interpreting the environmental significance of sedimentary pollen and phytoliths, failing to give accurate quantitative results. There are differences in types and contents between topsoil pollen/phytoliths and pollen/phytolith assemblages from plant communities; moreover, phytoliths of different plants or different phytoliths of the same plant have distinct vegetation representativeness (Xu D. K. et al., 2005; Liu et al., 2020). This will affect the accuracy of paleoclimate reconstruction based on topsoil pollen and phytoliths. The vegetation representativeness level of topsoil pollen and phytoliths, therefore, is the critical issue restricting the accuracy of paleo-vegetation and palaeoclimate restoration.

Phytoliths also play an irreplaceable role in interpreting the origins and domestication of prehistoric human use of plant resources and cultivated crops (Lu et al., 2007, 2009; Yang et al., 2013; Liu, 2016). Currently, studies regarding phytoliths of modern plants mainly focus on Poaceae (Li et al., 2005; Piperno, 2006; Huan et al., 2015). The silicon morphology of economic crops has also been widely studied, such as Musa basjoo (Ball et al., 2006; Horrocks et al., 2009), Palmae (Xu D. K. et al., 2005), Cucurbita moschata (Piperno et al., 2000), Lagenaria siceraria (Piperno and Strother, 2003), Manihot esculenta, Maranta arundinacea and other tubers (Chandler-Ezell et al., 2006). However, the number of studies on phytoliths of Xylophyta is still relatively low. The possible reason for this lack of study is that the phytoliths of xylophyta vary greatly in morphology, and only a few phytoliths have taxonomic significance (Wang and Lu, 1993). If more detailed taxonomic identification of the phytoliths in xylophyta living in different habitats is conducted, phytoliths may become more accurate environmental indicators, similar to pollen’s implications for vegetation.

In recent years, scholars have intensified the research on the phytolith classification of xylophyta, such as Palmae (Xu D. K. et al., 2005; Fenwick et al., 2011), tropical xylophyta (Bai et al., 2020), common xylophyta in China (Ge, 2016) and xylophyta from Mozambique, East Africa (Mercader et al., 2009). Although there has been gains in understanding, there is a wide variety of species of xylophyta, especially in tropical-subtropical regions, which need to be supplemented by further information on their phytoliths. Compared with pollen, phytoliths have an irreplaceable advantage in local vegetation restoration. Systematic research on the phytolith classification of xylophyta can provide a fundamental reference to vegetation zones, plant communities, and even typical species for pass human activity studies (An et al., 2015).

Some advances have been made in the study of topsoil phytoliths in revealing climatic environments. Wang and Lu (1993) qualitatively summarized cold and warm typal phytoliths according to the spatial distribution of different phytolith types in Chinese topsoil. Since the characteristics of phytolith assemblages on the surface of peatland in northeast China are significantly correlated with latitude, altitude, and humidity, palaeoclimate can be inferred by the climate transfer function (Zhang et al., 2008). The study on phytolith assemblage characteristics in Changbai Mountain found that the paleoenvironmental pattern deduced from the phytolith assemblage was consistent with the results of pollen analysis (Li et al., 2011). However, overall, research on topsoil phytoliths in China is inadequate, particularly in tropical-subtropical regions.

In this paper, the semihumid evergreen broad-leaved forest area of Hengduan Mountain, Southwest China, was selected as the area of interest, and modern plants from Nongke Mountain, Cangyuan, were collected for phytolith morphology analysis; topsoil pollen and phytolith studies in the study area were also conducted. This study is a useful supplement to the phytoliths of modern plants, topsoil phytoliths and pollen in Southwest China, providing a reliable reference and basis for the accurate interpretation and quantitative reconstruction of fossil pollen in the study area.

Location and vegetation information

The study area is located in the middle part of the Lancang River Basin with complex terrain and a great diversity of habitat in western Yunnan, China. Affected by the Indian Monsoon, the monsoon climate of low latitudes in subtropical mountains was warmer and damper (Figure 1), with a mean annual temperature of 17.6°C and annual precipitation of 1740 mm.1 The area is part of the semihumid evergreen broad-leaved forest region in the Hengduan Mountains and largely overlaps with the bamboo-rich area in Asia. The vegetation species are abundant in this area, containing various broad-leaved woody plants (Yunnan Vegetation Compilation Group, 1986), mainly Castanopsis hystrix, Castanopsis indica, and Castanopsis ferox. Pinus yunnanensis forest is widely distributed in

1 http://data.cma.cn/ (Accessed August 26, 2022).
the region, while *Pinus kesiya* is sporadically distributed. Vegetation such as *Schima reinw*, *Alnus nepalensis*, *Quercus acutissima* and *Quercus variabilis* are often scattered on the grassy slopes of barren hills (Yunnan Vegetation Compilation Group, 1986). According to the sampling survey, 1,000–1,300 m in this region was mainly warm bamboo forest and warm evergreen-deciduous broad-leaved forest (The Bambusoideae, Fagaceae, Fabaceae, Moraceae are the main families. And also include Oleaceae, Betulaceae, Urticaceae and vine. Under the forest, *Poaceae*, *Trevesia palmata*, ferns are grown). 1,300–1,950 m, there are mainly bamboo forest, pine forest, *quercus* forest and hazel forest in this region. Contains Euphorbiaceae, Betulaceae, Moraceae, Myricaceae, Juglandaceae, Taxodiaceae and Rhamnaceae. *Poaceae*, Zingiberaceae, Asteraceae and ferns grow under the forest. Corn land distribution in the region. 1,950–2,100 m, mainly pine forests and coniferous forests, including some evergreen broad-leaved components (Theaceae, Betulaceae, Rosaceae and Betulaceae. And Liliaceae, Asteraceae and Zingiberaceae grow under the forest).

Materials and methods

Plant and topsoil sampling

A total of 19 representative quadrats from different altitudes (covering the local mountain vertical vegetation belt) were selected in southern Hengduan Mountain (23°17.71′–23°20.26′N, 99°28.69′–99°34.97′E; altitude: 1,050 – 2,100 m) for plant and topsoil sampling in December 2020 in Cangyuan County. There were 111 species of plants, 19 topsoil samples and 1 moss sample (CYM10, as a parallel sample of CY10) collected (Figure 2).

Topsoil sample collection: A 1 m² quadrat was selected, and topsoil samples were mixed of subsamples of topsoil from the top 2 cm from the 4 corners and the center point of the square quadrat by removing the turf. A total of 19 topsoil samples were used and covered the main vegetation types of the local mountain vertical vegetation zone, and the sampling point information and vegetation types are shown in Tables 1,2.

Plant sample collection: whole plants of herbaceous plants were collected, including roots, stems, leaves and spikes. Mature leaves were mainly collected from woody plants, with only a small number of fine branches also collected. All plant specimen samples were encapsulated individually in cowhide envelopes. In addition, a small number of samples for the analysis of modern plant phytoliths were collected in April and September 2021 in Xishan, Kunming and Kunming Botanical Garden, respectively.

Identification of plant species

Species identification was performed on all collected plant samples. First and foremost, a few common species of plant samples were identified by a botany instructor at Yunnan University, while most of the samples were delivered to Tsingke Biotechnology Co., Ltd. to determine genus and species by DNA barcoding molecular identification technology, usually identified to the genus level, some plants identified to family. The taxonomic information and Latin names of the plant species used are collated with reference to http://www.iplant.cn (Table 1).

Pretreatment methods of plant phytoliths, topsoil phytoliths, and pollen

Plant phytolith extraction: every part of each specimen was cleaned with distilled water in an ultrasonic water bath to remove adhering particles and then dried in an air drying box. The dried materials were cut into smaller parts and placed in separate tubes, and 20 ml (or enough to submerge the materials) saturated nitric acid was added to each tube and left for one night. The next day, the tubes with materials were heated in a water bath until the
solution became clear and transparent. After removing the supernatant, the solutions were centrifuged and rinsed with distilled water 3 times and then with ethyl alcohol twice. Then, the extracted phytoliths in each tube were mounted on separate slides using Canada Balsam for further observation.

Topsoil phytolith extraction: A subsample of 3 g was taken from each collected dried topsoil sample. The dried materials were sequentially processed as follows: (1) organics were removed with hydrogen peroxide; (2) carbonates were dissolved with 10% hydrochloric acid; (3) flotation of phytoliths was accomplished using a ZnBr2 solution (density 2.35 g/cm3); and (4) after cleaning the flotation sample with distilled water and ethyl alcohol, each subsample was mounted on separate slides using Canada Balsam for further observation.

Pollen extraction: A subsample of 3 g was taken from each collected dried topsoil sample. The dried materials were sequentially processed as follows: (1) 10% hydrochloric acid was added; (2) 10% potassium hydroxide was added and heated in a water bath to remove organics; (3) 40% hydrofluoric acid was added to the cleaned sample and heated in a water bath to remove the silicate; (4) 15% hydrochloric acid was added and heated in a water bath to remove the soluble fluoride from the sample; (5) the samples were dehydrated by adding glacial acetic acid, and (6) after removing the supernatant, the solutions were added to a mixture of 9:1 acetic anhydride and concentrated sulfuric acid and heated in a water bath for 5 min. After passing through a 7 μm sieve, each subsample was mounted on separate slides adding glycerol for observation.

Identification and statistics of phytoliths and pollen samples

The average number of phytoliths and pollen in topsoil samples was over 400 grains per sample, where the percentage of phytoliths was calculated excluding two types, stomata and sponge spicules; the percentage of terrestrial pollen was calculated based on the sum of shrubs and terrestrial herbs, while the percentage of pollen was calculated based on the percentage of pollen of trees, shrubs, terrestrial herbs and ferns. Finally, cluster analysis was performed using Tilia and generating phytolith and pollen percentage maps (Grimm, 2004).

Results

Phytolith morphology analysis of modern plants

The results of the field vegetation survey and sampling suggest that the vegetation types of south Hengduan Mountain mainly consist of Fabaceae, Euphorbiaceae, Celastraceae, Fagaceae, Moraceae, Lauraceae, Theaceae, Palmae, Poaceae, Asteraceae and ferns. Fagaceae, Fabaceae and Moraceae account for a relatively large proportion in forests. The vegetation composition of the sampling area changed slightly with elevation. A total of 111 genera and 50 families of modern plant samples were collected, including 73 genera and 33 families of trees and shrubs, 31 genera and 12 families of herbs, and 7 genera and 5 families of ferns. The morphological characteristics of the phytoliths of each family and genus are as follows.

(1) Phytolith morphology of trees and shrubs.

Among the 9 Fagaceae species analyzed, “Y” type/bow type, spiral-spindle, net-spindle, woody-elongate/block, tracheid, polygonal plate, hair cell, hair cell base and silicified stomate (Plate 1).

A total of 12 different types of phytoliths were produced in 13 Fabaceae plants (Plate 1, 29–60), “Y” type/bow type, abbreviated stellate, polygonal plate, globular smooth, short point, tracheid,
Number	Family	Genus	Species	Sampling site
1	Fagaceae	(1 type, not identified)	Cangyuan	
2	Fagaceae	Quercus	Quercus guyverfölya	Cangyuan
3	Fagaceae	Quercus	Quercus acutissima	Cangyuan
4	Fagaceae	Quercus	Quercus alena	Xishan, Kunming City
5	Fagaceae	Quercus	Quercus variabilis	Kunming botanical garden
6	Fagaceae	Quercus	Quercus serrata	Kunming botanical garden
7	Fagaceae	Lithocarpus	Lithocarpus maireri	Cangyuan
8	Fagaceae	Lithocarpus	Lithocarpus glaber	Kunming botanical garden
9	Fagaceae	Cyclobalanopsis	Cyclobalanopsis glaucoides	Kunming botanical garden
10	Fabaceae	Erythrina	Erythrina stricta	Cangyuan
11	Fabaceae	Dalbergia	Dalbergia sisso	Cangyuan
12	Fabaceae	Campylopopsis	Campylopopsis macrocarpa	Cangyuan
13	Fabaceae	Campylopopsis	Campylopopsis delavayi	Cangyuan
14	Fabaceae	Uraria	Uraria crypta	Cangyuan
15	Fabaceae	Bauhinia	(1 type, not identified)	Cangyuan
16	Fabaceae	Bauhinia	Bauhinia purpurea	Cangyuan
17	Fabaceae	Lespedeza	Lespedeza cuneata	Cangyuan
18	Fabaceae	Althezia	Althezia odoratissima	Cangyuan
19	Moraceae	Ficus	(2 type, not identified)	Cangyuan
20	Moraceae	Ficus	Ficus macelollandii	Cangyuan
21	Moraceae	Broussonetia	(1 type, not identified)	Cangyuan
22	Moraceae	Madura	(1 type, not identified)	Kunming botanical garden
23	Lauraceae	Cinnamomum	Cinnamomum pittosporoides	Cangyuan
24	Lauraceae	Neocinnamomum	Neocinnamomum caudatum	Cangyuan
25	Lauraceae	Machilus	Machilus nanmu	Xishan, Kunming City
26	Celastraceae	Celastrus	(1 type, not identified)	Cangyuan
27	Celastraceae	Celastrus	Celastrus paniculatus	Cangyuan
28	Celastraceae	Celastrus	(1 type, not identified)	Cangyuan
29	Acanthaceae	Ilex	(1 type, not identified)	Cangyuan
30	Acanthaceae	Rhus	Rhus chinensis	Cangyuan
31	Acanthaceae	Rhus	(2 type, not identified)	Cangyuan
32	Acanthaceae	Rhus	(2 type, not identified)	Cangyuan
33	Euphorbiaceae	Phyllanthus	Phyllanthus emblica	Cangyuan
34	Euphorbiaceae	Phyllanthus	(1 type, not identified)	Cangyuan
35	Alangiaceae	Alangium	Alangium chinense	Cangyuan
36	Primulaceae	Embelia	Embelia ribes	Cangyuan
37	Aquifoliaceae	Ilex	(1 type, not identified)	Cangyuan
38	Ericaceae	Gaultheria	Gaultheria leucocarpa	Cangyuan
39	Ericaceae	Gaultheria	(1 type, not identified)	Xishan, Kunming City
40	Betulaceae	Alnus	Alnus nepalensis	Cangyuan
41	Betulaceae	Alnus	Alnus cremastogyne	Cangyuan
42	Juglandaceae	Juglans	Juglans regia	Cangyuan
43	Apocynaceae	Epigynum	Epigynum auritum	Cangyuan
44	Apocynaceae	Aganosoma	Aganosoma cymosa	Cangyuan
45	Palmae	Phoenix	Phoenix dactylifera	Cangyuan
46	Palmae	Phoenix	(1 type, not identified)	Cangyuan
47	Melliaceae	Cipadesa	Cipadesa baccifera	Cangyuan
48	Verbenaceae	Vitex	(1 type, not identified)	Cangyuan
49	Rosaceae	Pygeum	Pygeum tapentigii	Cangyuan
50	Rosaceae	Dichotomanthes	Dichotomanthes tristanicarpa	Cangyuan

(Continued)
Number	Family	Genus	Species	Sampling site
51	Loranthaceae	Dendrophthoe	(1 type, not identified)	Cangyuan
52	Salicaceae	Fiocourtia	(1 type, not identified)	Cangyuan
53	Theaceae	Schima	Schima superba	Cangyuan
54	Theaceae	Camellia	Camellia sinensis	Cangyuan
55	Theaceae	Anneslea	Anneslea fragrans	Cangyuan
56	Theaceae	Eurya	Eurya alata	Cangyuan
57	Rhamnaceae	Rhamnus	Rhamnus leptophylla	Cangyuan
58	Rhamnaceae	Hovenia	Hovenia acerba	Kunming botanical garden
59	Santalaceae	Osyris	Osyris quadripartita	Cangyuan
60	Araliaceae	Trevesia	Trevesia palmata	Cangyuan
61	Urticaceae	Urtica	Oreoncide	Cangyuan
62	Melastomataceae	Melaotoma	Melatoma malabathricum	Cangyuan
63	Primulaceae	Myrsine	Myrsine africana	Cangyuan
64	Bignoniaceae	Oroxylum	Oroxylum indicum	Cangyuan
65	Magnoliaceae	Michelia	Michelia figo	Xishan, Kunming City
66	Dioscoreaceae	Dioscorea	Dioscorea hispida	Cangyuan
67	Poaceae	Arundinella	(1 type, not identified)	Cangyuan
68	Poaceae	Imperata	Imperata cylindrica	Cangyuan
69	Poaceae	Phaceurus	Phaceurus latifolius	Cangyuan
70	Poaceae	Cymbopogon	Cymbopogon citratus	Cangyuan
71	Poaceae	Dendrocalamus	Dendrocalamus peculiaris	Cangyuan
72	Poaceae	Bambusa	Bambusa beecheyana	Cangyuan
73	Poaceae	Cupilpedium	Cupilpedium parviflorum	Cangyuan
74	Poaceae	Dendrocalamus	Dendrocalamus giganteus	Cangyuan
75	Poaceae	Heteropogon	Heteropogon contortus	Cangyuan
76	Poaceae	Arthrexson	Arthrexson laccifolius	Cangyuan
77	Poaceae	Cymbopogon	Cymbopogon goeringii	Cangyuan
78	Poaceae	Optinenus	Optinenus undulatifidus	Cangyuan
79	Poaceae	Eleusine	Eleusine indica	Cangyuan
80	Poaceae	Setaria	Setaria pumula	Cangyuan
81	Asparagusaceae	Ophiopogon	Ophiopogon materi	Cangyuan
82	Asparagusaceae	Polygonatum	(1 type, not identified)	Cangyuan
83	Araceae	Alocasia	(1 type, not identified)	Cangyuan
84	Lamiaceae	Elsholtzia	Elsholtzia rugalana	Cangyuan
85	Zingiberaceae	Kaempferia	(1 type, not identified)	Cangyuan
86	Asteraceae	Artemisia	Artemisia argyi	Cangyuan
87	Asteraceae	Bidens	Bidens pilosa	Cangyuan
88	Asteraceae	Vernonia	Vernonia esculenta	Cangyuan
89	Asteraceae	Duhaldea	Duhaldea cappa	Cangyuan
90	Polygonaceae	Polygonum	Polygonum chinense	Cangyuan
91	Musaceae	Musa	Musa basjoo	Cangyuan

(Continued)
woody elongated, epidermal cell, smooth hair cell, hair cell base, palisade mesophyll and siliconized stomata. Many silicified stomata were found in Bauhinia, and a large number of smooth hair cells were found in Campylotropis macrocarpa (Plate 1, 35–41).

Moraceae contains most of the Fagaceae and Fabaceae types, and spheroid echinate (large), spheroid ornate and bird-mouthed hair cell were also seen (Plate 1, 61–63; Plate 2, 1–26).

Lauraceae contains most of the Fagaceae types (except net-spindle and abbreviated stellate (Plate 2, 27–39), and more siliconized stomata are found in Machilus nanmu (Plate 2, 40–42).

The morphology of phytoliths in Celastraceae includes woody-elongate, thorn-elongate, long point, block type, ‘Y’ type/bow type, abbreviated stellate, polygonal plate, tracheid, and siliconized stomata (Plate 2, 43–44; Plate 3, 1–11).

Acanthaceae includes elongate, epidermal cell, spheroid echinate (small), hair cell slalactate and silicifed stomata, among which hair cell slalactate accounts for the majority of phytolith types (Plate 3, 12–18).

Anacardiaceae contains a large number of epidermal cells (Kealhofer and Piperno, 1998). Rhus chinensis (Plate 3, 19–23) includes not only a large number of polygonal plates but also woody-elongate, palisade mesophyll, hair cell base, and siliconified stomata.

Phytoliths are also abundant in Euphorbiaceae (Alexandre et al., 2012). The results show that Euphorbiaceae contains polygonal plate, woody elongate, weakly silicified epidermis, silicified stomata and siliconified mesophyll tissue (honeycomb type; Plate 3, 24–29).

Alangium chinense in Alangiaceae contains abundant phytoliths, including the “Y” type/bow type, abbreviated stellate, polygonal plate, tracheid, woody-elongate, globular smooth, and a large number of smooth hair cells (Plate 3, 30–36).

Embelia ribes in Primulaceae include the woody block, tracheid, silicified stomata, and numerous polygonal plates (Plate 3, 37–41).

Only Ilex was analyzed in Aquifoliaceae, which contained fewer phytoliths and only weakly silicified epidermis and epidermal cell (Plate 4, 1).

Ericaceae contains a large number of phytoliths, mainly including woody-elongate, woody-block, “Y” type/bow type, tracheid, weakly silicified epidermis, and numerous spiral-spindles and net-spindles (Plate 3, 2–12).

The phytolith content in Betulaceae is relatively low, and only polygonal plate, palisade mesophyll and weakly silicide epidermis (Plate 4, 13–16).

Juglans regia was analyzed in Juglandaceae, which contains two forms, woody-elongate and spiral-spindle, among which spiral-spindle has a large content (Plate 4, 17–19).

Apocynacae, including square, rectangle, abbreviated stellate, and palisade mesophyll, etc. (Plate 4, 20–28).

Palme plants contain abundant phytoliths (Xu D. K. et al., 2005; Fenwick et al., 2011), Phoenix dactylifera and one unknown species mainly included two types of phytoliths: spheroid echinate (small, <20 μm) and thorn-elongate (Plate 4, 29–32).

Four phytoliths have been found in the Meliaceae plant Cipadessa baccifera, including palisade mesophyll, polygonal plate, smooth hair cell, and siliconized stomata (Plate 4, 33–36).

Vitex common phytolith types include abbreviated stellate (there are many), polygonal plate, plate-elongate, rectangle, woody-block, and hair cell (Plate 4, 37–43).

Pygeum Topengii contains a large number of abbreviated stellate epidermal cells, and Dichotomanthes tristanicarpa contains a large number of tracheids (Plate 4, 44–47).

The Dendrophthoe of Loranthaceae mainly includes epidermal cell, woody-block, and “Y” type/bow type (Plate 4, 49–51).

Flacourtia rukam of Salicaceae includes the “Y” type/bow type, woody-elongate, polygonal plate, tracheid, and siliconized stomata (Plate 5, 1–5).

A small amount of phytoliths is found in Theaceae plants. In Schima, there are mainly weakly silicified epidermis, wood elongates and tracheids. Anneslea fragrans contains smooth hair cell and tracheid. Eurya alata contains smooth hair cells and woody blocks; phytoliths are not included in Camellia sinensis (Plate 4, 48, 52–54; Plate 5, 6–10).

Rhamnaceae contains woody-elongate, woody-block, tracheid, polygonal plate, smooth hair cell, net-spindle, siliconized stomata and siliconified hair base (Plate 5, 11–18).
TABLE 2. Original records of surface soil sample collection near Nongke Village, Meng Province Town, Cangyuan County.

Sample points	Latitude (N)	Longitude (E)	Elevation (m)	Plant community
Points 1	23°18.0589′	99°28.6919′	1,059	Trees are mainly Fabaceae and Moraceae, including Oleaceae, *Pistacia weinmannifolia*, *Baehnia purpurea*, *Cipadessa baccifera*, and understory Acanthaceae.
Points 2	23°18.1102′	99°29.0518′	1,090	The trees are mainly Fabaceae and Moraceae. There are many vines in the forest. There are Poaceae, *Trevesia palmata*, a small amount of ferns and *Kalopanax septemlobus* under the forest.
Points 3	23°18.104′	99°29.2903′	1,148	Evergreen, deciduous broad-leaved forest, mixed with a variety of trees containing Betulaceae plants, dominated by Urticaceae, shrubs containing Fabaceae, Urticaceae.
Points 4	23°18.0664′	99°29.4343′	1,181	Wild bamboo forest, dominated by Celastraceae.
Points 5	23°17.9572′	99°29.0148′	1,227	Trees are dominated by *Ficus* and *Ageratina adenophora* growing under the forest (Zea mays fields are seen near the sampling points).
Points 6	23°18.0773′	99°29.5373′	1,265	Fabaceae, Acanthaceae, belonging to deciduous forest, shrubbery.
Points 7	23°17.9209′	99°29.6289′	1,308	There are many woody plants, such as *Theaceae*, *Betulaceae*, and Poaceae.
Points 8	23°17.7958′	99°29.6772′	1,366	Trees are dominated by *Pinus*, with Poaceae and *Ageratina adenophora* growing under the forest (Zea mays fields are seen near the sampling points).
Points 9	23°17.793′	99°29.622′	1,375	The low-growing *Quercus*, belonging to arbor and shrub, contains *Euphorbiaceae*, Celastraceae, Fabaceae, and Rhamnaceae plants. Zingiberaceae grows under the forest, and the surface is mossy (mainly).
Points 10	23°17.746′	99°29.5848′	1,409	*Quercus* forest, shrub Fabaceae; Poaceae are the main families under the forest, which can be found in *Phoenix loureiroi* and *Artemisia*.
Points 11	23°19.8485′	99°29.7853′	1,449	*Quercus* forest, shrub Fabaceae; Poaceae are the main families under the forest, which can be found in *Phoenix loureiroi* and *Artemisia*.
Points 12	23°20.256′	99°29.7516′	1,500	Trees include *Pinus*, *Quercus*, *Broussonetia papyrifera*, *Iglans regia*, *Zanthoxylum*, *Phyllanthus emblica*, Fabaceae and unknown species. Under the forest, the dominant species were *Phoenix loureiroi* and Poaceae.
Points 13	23°19.728′	99°30.7019′	1,551	The genus *Quercus* of Fagaceae was the main species, and *Pistacia weinmannifolia* of Fabaceae was the most common species. There were *Ficus* of Moraceae, Lauraceae, and *Phoenix loureiroi* under the forest *Poaceae*, *Aralia japonica* (suspected as artificial cultivation), *Artemisia argyi*, *Ageratina adenophora*, and *Labiatae* were found.
Points 14	23°18.9245′	99°30.9243′	1,659	Pine forest (include *Ficus microcarpa*), mainly Fabaceae *A* *Pistacia weinmannifolia*, containing Rhamnaceae, *Poaceae*, and *Artemisia argyi* under the forest.
Points 15	23°18.0171′	99°32.1412′	1,789	*Pinus* forest, see Fagaceae plant deciduous *Quercus*, evergreen *Quercus*, more *Cunninghamia lanceolata*, see *Poaceae* (mainly), *Ageratina adenophora*, *Pogonatherum crinatum*.
Points 16	23°17.4435′	99°33.8201′	1,839	For evergreen deciduous broad-leaved forest, Betulaceae deciduous trees and Theaceae *Schima*, including Lauraceae.
Points 17	23°17.8703′	99°34.9011′	1,902	The trees have hazelnut forest, see *Eurya japonica*, and there are Fabaceae, Theaceae, and Bambusoideae in the forest shrubs have *Paeonia delavayi*, *Duldeidae cappa*, *Ageratina adenophora* and ferns.
Points 18	23°17.7105′	99°34.9675′	1,981	There are many woody plants, such as *Theaceae*, *Betulaceae*, *Bhns chinensis*, *Pygeum tomentii* and so on. Most of them are *Ageratina adenophora* and *Labiatae*. The pine forest is evergreen tree.
Points 19	23°19.0789′	99°34.9060′	2,031	Vegetation is mainly pine forest, coniferous forest, including *Abies*, understory growth *Liliaceae*, *Asteraceae*, *Zingiberaceae*.

Osyris quadripartite of Santalaceae contains three types of phytoliths: tracheid, siliconized stomata, and numerous epidermal cells (Plate 5, 19–21).

Only one block is found in *Trevesia palmata* of Araliaceae. Phytolith is abundant in *Urticaeae*. In *Oreocnide frutescens*, the content of spiculate hair cell and smooth hair cell is relatively higher, and other forms include polygonal plate, spheroid ornate, tracheid and hair base. The other *Urticaceae* plant contains more forms include spheroid echinate (large), woody-elongate, abbreviated stellate, net-spindle, smooth hair cell, siliconized stomata, and its seeds also contain a large number of smooth hair cells (Plate 5, 22–33).
Melastoma Malabathricum of Melastomataceae has a low phytolith content, with only a weakly silicified epidermis, woody-block, and woody-elongate (Plate 5, 34–36).

Myrsine africana includes four types of phytoliths: polygonal plate, elongate, tracheid, and siliconized stomata (Plate 5, 37–40).
Oroxylum indicum of Bignoniaceae includes weakly silicified epidermis, woody-elongate, and tracheid (Plate 5, 41–43).

The unknown species of Magnoliaceae include epidermal cell, block, and unknown block, and the Michelia figo includes woody-elongate, abbreviated stellate, net-spindle, tracheid, and weakly silicified epidermis (Plate 5, 44–48; 50–54).

Dioscoreaceae includes abbreviated stellate, tracheid, square, palisade mesophyll, siliconized stomata, and long point (Plate 5, 49, 55; Plate 6, 1–4).
Celastrus 1; Celastrus paniculatus 2-5; Celastraceae 6-11; Acanthaceae 12-18
Rhus chinensis 19-23; Euphorbiaceae 24-25; Phyllanthus emblica 26-29
Alangium chinense 30-36; Embelia ribes 37-41

Stomata 1, 5, 18, 23, 27, 28, 41; Thorn-elongate 2; Long point 3; Block 4; Abbreviated stellate 6, 8, 33; “Y” type / bow type 7, 32; Tracheid 9, 10, 36, 39; Woody (elongate) 11, 19, 31; Hair cell stalactite 12, 13, 14; Elongate (Long point?) 15; Epidermal cell 16; Spheroid echinate (small) 17; Polygonal plate 20, 26, 34, 38, 40; Palisade mesophyll 21, 29; Hair cell base 22; Weakly silicified epidermal cell 24; Weakly elongate 25; Smooth hair cell 30; Globular smooth 35; Woody (block) 37

Plate 3
Cunninghamia lanceolata in Cupressaceae is rich in phytolith, including cube, woody-elongate and stone-like. *Pinus yunnanensis* in Pinaceae contains three types of phytoliths, including woody-elongate, cube and stone-like, and *Keteleeria evelyniana* only one stone-like (Plate 6, 5–13).

(2) Phytolith morphology of herbaceous plants.
Flacourtia rukam 1-5; Anneslea fragrans 6-7; Eryxa alata 8-10; Rhamnus leptophylla 11-16
Hovenia acerba 17-18; Oryx quadripartita 19-21; Oreocnide frutescens 22-27; Urticaceae 28-33;
Melastoma malabathricum 34-36; Mysine africana 37-40; Oroxylum indicum 41-43; Magnoliaceae 44-48
Dioscorea alata 49; Michelia figo 50-54; Dioscorea htsipa 55

"Y" type / bow type 1; Woody (elongate) 2, 11, 29, 36, 42, 50; Polygonal plate 3, 12, 24, 37; Tracheid 4, 7, 14, 20, 27, 39, 43, 54; Stomata 5, 16, 18, 21, 33, 40; Smooth hair cell 6, 8, 9, 15, 23, 32; Woody (block) 10, 13, 35; Net-spindle 17, 31, 52; Epidermal cell 19, 44, 45; Spiculate hair cell 22; Hair cell base 25; Spheroid ornate 26; Spheroid echinate (large) 28; Abbreviated stellate 30, 51; Weakly silicified epidermis 34, 41, 53; Elongate 38; Block 46; Unknown 47; Unknown block 48; Long point 49; Palisade mesophyll 55

Plate 5
Poaceae plants are widely distributed in different environments. Bilobate, smooth-elongate, thorn-elongate, sinuate-elongate, square, rectangle, long point and short point all appear in the samples. Collapsed saddle and bamb bulliform flabellate are characteristic of *Dendrocalamus giganteus* and *Dendrocalamus peculiaris* (Plate 6, 14–54; Plate 7, 1–48).
Ophiopogon Mairei contained less phytolith in Asparagaceae, and only bilobate and elongate were found (Plate 7, 49–50).

Phytolith forms of Polygonatum are smooth-elongate, epidermal cell, and short point (Plate 7, 51–53).
Only smooth-elongate and unknown block phytoliths are seen in *Alocasia* (Plate 7, 54; Plate 8, 1).

The phytolith content in Labiatae is very low, with only a small amount of plate-elongate, tracheid types, etc. (Plate 8, 2–5).

The phytolith forms of Zingiberaceae include smooth-elongate, tracheid, polygonal plate, and long point types (Plate 8, 6–11).

Asteraceae has analyzed phytolith morphology in four plants, all of which have a high number of Epidermal cells. The tracheid,
smooth-elongate types, are found in *Artemisia Argyi*. Smooth hair cells are found in *Bidens pilosa* (Plate 8, 12–20).

Polygonum chinense contains fewer phytolith, and only three different types are found in the roots, including unknown block, square, and smooth-elongate types (Plate 8, 23–25).

Musa Basjoo in Musaceae contains phytoliths that can be identified, including two cavate forms. Of course, a previous study by Premathilake et al. (2018) also compared these two forms in some detail (Plate 8, 26–28).

Gesneriaceae contains a small amount of phytolith and only one hair cell (Plate 8, 29).

Cleisostoma paniculatum in Orchidaceae contains a large number of spheroid echinate phytoliths with small individual forms (Plate 8, 21–22).

Dysosma majoeosis in Berberidaceae contains smooth-elongate, plate-elongate, bulliform flabellate, tracheid and block types (Plate 8, 30–34).

Equisetum ramosissimum in Equisetaceae contains smooth-elongate, sinuate-elongate, block, abbreviated stellate, polygonal plate, wavy edge, triangular prism, triangular prism with scrobiculate, tracheid, rectangle, long point, short point, and siliconized stomata. Among ferns, the morphological types with distinguishing characteristics are mainly wavy and triangular prisms and triangular prisms with scrobiculate (Plate 8, 39–49; Plate 9, 1–18).

Phytolith assemblages in surface soil from the research region

Phytoliths in 19 surface soil samples were analyzed, and a total of 12,140 grains were tallied and identified. There are 35 diagnostic morphotypes, mainly including bilobate, collapsed saddle, square, rectangle, cuneiform, bulliform flabellate, thorn-elongate, sinuate-elongate, plate-elongate, short point, long point, tower, tracheid, net-spindle, abbreviated stellate, woody-elongate, globular echinate, and triangular prism (Figure 3). However, some morphotypes identified in plant samples were not found in surface sample assemblages, including hair cell, hair cell base, palisade mesophyll, siliconized stomata, and cavate of *Musa basjoo*.

The phytolith assemblages of surface soil can be divided into three zones, Ph-I, Ph-II and Ph-III, according to a cluster analysis by Tilia (Figure 4), as follows:

- **Ph-I**: The main phytolith assemblage of Ph-I is the collapsed saddle-bamb bulliform flabellate -square/rectangle. This zone includes three sample sites (CY4, CY7 and CY8) from a bamboo-broad-leaved forest in a warm lowland with altitudes ranging from 1,000–1,300 m. The main vegetation communities are *Pinus,*
FIGURE 3
Diagnosis morphotypes of phytoliths in surface soil 1. Bilobate 2. Collapsed saddle 3. Square 4. Rectangle 5. Bulliform flabellate 6. Bambulliform flabellate 7. Smooth-elongate 8. Thorn-elongate 9. Sinuate-elongate 10. Board-elongate 11. Short point 12. Long point 13. Tower 14. Tracheid 15. Net-spindle 16. Abbreviated stellate 17. Woody-elongate 18. Spheroid echinate (small) 19. Pteridophyte type.

FIGURE 4
Chart of the percentage content of topsoil phytoliths in the research area.
natural bamboo forest and wild bamboo forest, and beneath there are Poaceae and Ageratina adenophora. In this phytolith assemblage, collapsed saddle accounts for 20.2% and has the highest content, followed by sinuate-elongate (9%), short point (8.1%), long point (5.3%), bamb bulliform flabellate (4.7%), square (4.7%), and rectangle (6.1%). Among the three sample sites, CY7 has the most spheroid echinate (small), accounting for 6.2%. The collapsed saddle and bamb bulliform flabellate make up the largest portions of samples collected in the bamboo forest area.

Ph-II: The main phytolith assemblage is spheroid echinate (small)-woody (elongate/block). This zone includes four sample sites (CY6, CY10, CY13 and CY17) collected from warm broad-leaved forest and warm coniferous forest (containing an appreciable quantity of Palmae) with altitudes ranging from 1,300 ~ 1,950 m. The main vegetation communities are Quercus, Euphorbiaceae, Fabaceae, Betulaceae, Acanthaceae, etc., and beneath there are Phoenix loureiroi, Poaceae, Duhaldea cappa, Ageratina adenophora and Pteridophyta. In this phytolith assemblage, the content of spheroid echinate (small) was the highest, ranging from 0.3 to 33.4%, with an average content of 14.9%. The average content of woody (elongate/block) is 2.2%. The main diagnostic phytolith morphotype of surface soil samples collected in the Palmae area is spheroid echinate (Palmae type).

Ph -III: The main phytolith assemblage is elongate-point-spheroid echinate (small). This zone includes 12 sampling sites (CY1, CY2, CY3, CY5, CY9, CY11, CY12, CY14, CY15, CY16, CY18 and CY19) main collected from warm broad-leaved forest and warm coniferous forest with altitudes ranging from 1,300 ~ 2,100 m. The main vegetation communities are Quercus, Betulaceae, Fabaceae, Moraceae, Theaceae, Lauraceae and Pinus. And beneath there are Poaceae, Ageratina adenophora, Artemisia. In this phytolith assemblage, Poaceae accounts for a large proportion. The main morphotypes are long point (13.8%), short point (10.7%) and smooth-elongate (12.4%), followed by rectangle (7.3%), square (7.2%), Bulliform flabellate (5.6%), and sinuate-elongate (4.9%). Spheroid echinate (small) accounts for 4.1%, “Y” type/bow type is 1.1%, and woody (elongate/block) type accounts for 2.6%.

Pollen assemblages in surface soil from the Cangyuan region

Pollens in 19 surface soil samples and one moss sample were analyzed. The identified pollens belong to 97 families and 79 genera (49 families). Most of the subtropical semihumid evergreen broad-leaved forest pollen types are included in the assemblages, which are dominated by Pinus (average content 50.5%), Alnus (10.2%), Poaceae (<37 μm; 5%), Artemisia (3.6%), Aster (4.1%), etc. Pollen assemblages of surface soil can be divided into three zones, P-I, P-II and P-III, according to a cluster analysis by Tilia (Figure 5).

P-I: Pollen assemblages represented by Betula-Pinus-Alnus have only one sampling site, CY16. The site is located in evergreen and deciduous broad-leaved forest, with an altitude of 1,839 m. The main vegetation communities are Betula and Theaceae schima. Arboreal plants dominated in the pollen assemblages, including Pinus (16.7%), Betula (21.8%), Alnus (14%), and Loranthaceae (8.4%). Shrub (Semishrub) plants are mainly Urticaceae (8.8%). The content of herbaceous plants, including Poaceae (< 37 μm; 3.6%) and Artemisia (1.2%), is relatively low. Very few ferns are found in the assemblage. The vegetation in the sampling site is mainly deciduous Betulaceae trees, and the pollen assemblage can reflect the vegetation community well.

P-II: The pollen assemblage mainly includes Pinus-Alnus-Poaceae-Artemisia. This zone has 8 surface sampling sites (with altitudes ranging from 1,050–1,950 m) and 1 moss sample (CYM10). Quercus, Fabaceae, Moraceae, Eurya japonica, etc., are dominant plants in those sampling sites, which are warm broad-leaved forest belts. Poaceae, Artemisia and other herbs grow under the forest. The pollen assemblages mainly include Pinus (40.2%), Alnus (11.9%), and deciduous Quercus (2.2%). Pollens from herbaceous plants
showed obvious changes, including Poaceae (<37 μm; 7.4%), Artemisia (3.4%), Aster (5.8%), and Polygonum (3.5%). The pollen assemblages indicate a relatively high content of Pinus and Alnus, while those of modern vegetation Pinus and Alnus are less abundant, which shows that their pollen assemblage is overrepresented. However, Fabaceae and Fagaceae pollen have low representativeness. Mosses abound in CY10 and CVM10, and pollen assemblages also indicate the same situation. Surface soil sampled in CVM10 had the highest fern pollen content, followed by CY1.

P-III: The pollen assemblage is dominated by Pinus, followed by Alnus. This zone has 10 surface sampling sites (with altitudes ranging from 1,050–2,100 m). The main vegetation communities are Fagaceae, Pinus, Fabaceae, Acanthaceae, Theaceae, Alnus, etc., and under there are Poaceae and Ageratina adenophora. Arboreal plants dominate in this pollen assemblage. Compared to P-I and P-II, Pinus had a higher content (63.2%), followed by Alnus (8.1%). Herbaceous plant pollen has a relatively low content, mainly including Poaceae (<37 μm; 3%), Artemisia (4%), Aster (2.8%), and Polygonum (1.3%). Apiaceae accounted for 11.4% in CY6. The content of pteridophytes was slightly lower than that of P-II. Pollen assemblages of sampling sites containing a high content of Pinus, Alnus, and Poaceae are consistent with modern vegetation.

Discussion

Significance of topsoil phytolith and sporo-pollen assemblages for modern vegetation communities

In this study, we probe the relationship between phytolith and sporo-pollen assemblages as well as the surrounding vegetation in the subtropical semihumid broad-leaved evergreen forest of Hengduan Mountain, western Yunnan. We attempt to determine the phytolith and sporo-pollen assemblages that can indicate the subtropical semihumid broad-leaved evergreen forest in this region to provide basic information for the reconstruction of the paleovegetation.

The AP/NAP value in this area was greater than 1, indicating that this area was a forest area (tree pollen content >50%, herb pollen content <45%). The pollen and phytolith in this area were analyzed by PCA and compared with altitude. The results showed that the correlation was weak (The correlation between pollen PC1 + PC2 and altitude was $R^2 = 0.048$, and the correlation between phytolith PC1 + PC2 and altitude was $R^2 = 0.05$), which had little relationship with altitude. But the surface soil phytoliths have good correspondence with sampling site vegetation, indicating that phytoliths have obvious characteristics of in situ deposition. In subtropical lowland and mountainous evergreen broad-leaved forests in the study area, constructive species mainly come from Fagaceae and Fabaceae. In this study, 9 species of Fagaceae and 9 species of Fabaceae modern sample plants were mainly produced, including “Y” type/bow type and spiral-spindle, woody (elongate/block), tracheid, abbreviated stellate, polygonal plate, globular smooth, palisade mesophyll, smooth hair cell, and siliconized stomata. In the warm broad-leaved forest, warm coniferous forest with topsoil phytolith combination contain a small amount of “Y” type/bow type and spiral-spindle, but the proportion of woody plants is relatively small, and the gramineous type phytolith content has a higher percentage. In the bamboo forest area, the contents of the collapsed saddle and bamb bulliform flabellate are higher. Topsoil samples containing Palmae plants are dominated by spheroid echinate (small). This shows that a small range of actual building species can also be reflected in topsoil phytoliths. Phytolith assemblages of topsoil plants in the study area may partly reflect constructive species (e.g., Bambusoideae, Palmae), but most of the samples reflected some nonestablishment species (e.g., Poaceae overrepresented).

The surface soil spore-pollen combination can better reflect the vegetation type in the study area, and the indication of vegetation at the sampling point is slightly weaker than that of phytoliths. Surface soil pollen assemblages with a high pollen content of Pinus show overrepresented characteristics. Most of the sampling sites (CY1, CY2) were Fabaceae and Moraceae, and the pollen of these two plants accounted for a higher proportion in the pollen assemblage of topsoil. The pollen assemblage of Betulaceae (CY3, CY16, CY18) was dominated by Alnus, reaching 16% at CY16, indicating that pollen has good indication for local vegetation. However, the pollen contents of Quercus in the pollen assemblages of the samples (CY5, CY9, CY10, CY13, CY15) were generally low, with a high value (7.3%) only at CY13, indicating that the pollen of Quercus was weakly representative. The above results show that the relationship between surface soil pollen and modern vegetation presents a certain degree of correspondence, but not completely corresponding characteristics, which is related to the long flight distance and widespread of pollen. Therefore, pollen assemblages can reflect the regional (nonlocal) vegetation landscape.

The surface soil phytoliths in the study area are mainly elongate-bulliform flabellate-square/rectangle-woody (including spheroid echinate (small)). Compared with temperate, subtropical and tropical arid, semiarid phytoliths (Zhang et al., 2008; An and Lu, 2010; Bai et al., 2020), this combination has a unique representation of subtropical low latitude mountain vegetation zones. Topsoil pollen assemblages are dominated by Pinus yunnanensis-Betula-deciduous Quercus-Euphorbiaceae-Rhamnaceae and have typical subtropical low latitude mountain vegetation characteristics in southwest China.

Indicative significance of surface soil phytoliths and sporo-pollen assemblages to climate and environment

Different combinations of topsoil can indicate different vegetation features, thus reflecting local climatic conditions. For example, spherical phytoliths are common in topsoil phytoliths in tropical regions (Barboni and Bremond, 2007; Dickau et al., 2009). In the subtropics of China, Gongga Mountain is dominated by a “Y” type/bow type-bilobate-cruiform-saddle combination (An and Lu, 2010). The phytolith assemblages in our study area are
mainly the elongate-bulliform flabellate-square/rectangle-wood (including spheroid echinate) assemblages, and the indicator of the phytolith assemblage type is more inclined to subtropical climate. In particular, the vegetation belt dominated by spheroid echinate (small) phytoliths reflects that the vegetation combination types include Palmaceae plants growing in tropical and subtropical regions.

In the subtropical forests of the study area, there are many Poaceae plants and abundant phytoliths, so they have good performance in the combination of topsoil phytoliths. In general, the proportion of Poaceae phytoliths in the coniferous and broad-leaved mixed forest belt is large, and it is more likely to be overrepresented in warm coniferous forest and warm broad-leaved forest belts. In this study, the phytolith assemblages of Poaceae showed obvious regularity. With the change in altitude from high to low, the percentages of the collapsed saddle and square/rectangle type increased. The long point type showed a decreasing trend with decreasing altitude. Poaceae plants represented by bilobate, square, rectangle, and tower morphologies are mostly found in the middle of the mountain (approximately 1,300–2,000 m). For a long time, the study of Poaceae plants has been relatively mature, and the combined morphology of Poaceae plants can also indicate basic local environmental characteristics. In general, long point phytoliths are dry and cold, collapsed saddle phytoliths are wet, and bulliform flabellate phytoliths are warm (Ge, 2016). In general, the phytolith assemblages of Poaceae in this area were dominated by collapsed saddle-bulliform flabellate-square/rectangle-elongate-point assemblages, reflecting the warm and humid environmental conditions in this area. Combined with the characteristics of the woody phytolith assemblage, it can be determined that the climate is warm and humid, which is in good agreement with the local climate that belongs to the subtropical low latitude mountain monsoon climate. Therefore, the use of phytolith assemblages can better indicate the climatic conditions of the study area, thus providing a basis for paleoclimate research.

The pollen assemblage characteristics can also reflect the vegetation types in different habitats, indicating the climate environment represented by them. The main pollen types in this area are Pinus yunnanensis, deciduous Quercus, Betula, Alnus, Moraceae, Rhamnaceae and Polygonum. Pinus yunnanensis is mainly distributed in the region of 13–18°C (23°–29° N, 98°30′–105° E; Li and Liu, 1984). Deciduous Quercus is widely distributed in subtropical evergreen broad-leaved forests, with southwestern China as the distribution center (Wang et al., 1985). Betula and Alnus are distributed throughout China and have a wide range of habitats. Moraceae is most common south of the Yangtze River (Anhui Flora Cooperative Group, 1987). There are approximately 600 species of Euphorbiaceae, which are widely distributed in tropical and subtropical regions (Guan et al., 2004). The richness of genera and species in the southern region of Rhamnaceae was significantly higher than that in the northern region; that is, the spatial distribution diversity pattern was higher in the south and lower in the north (Li et al., 2021). Yunnan Province is the distribution center of richness of species and genus of Rhamnaceae in China (Huang, 2014). Polygonum is mainly distributed in the Hengduan Mountains, extending westward along the Himalayan Mountains (Zhao and Hou, 2011). In summary, pollen assemblages reflect that the region is mainly a tropical-subtropical plant community, indicating warm and humid climatic conditions.

Conclusion

After the analysis of modern plant samples and topsoil pollen and phytolith assemblages in the semihumid evergreen broad-leaved forest region of Hengduan Mountain in western Yunnan, the following conclusions are drawn: There is a good correspondence between the morphological types of phytoliths in surface soil and modern plants in subtropical low latitude mountainous areas. The surface soil phytoliths and vegetation in this area have good correspondence, and the small-scale actual constructive species can also be reflected in the surface soil phytoliths. In the samples collected from the bamboo forest area and Palmae plants, the percentages of collapsed saddle, bamb bulliform flabellate and spheroid echinate (small) were higher. The pollen samples of topsoil corresponded to the species of modern vegetation surveyed in this area, but Pinus was overrepresented, and Quercus was poorly representative. Pollen and phytolith assemblages have unique combination characteristics, with a strong low latitude subtropical monsoon climate representative.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

This work was jointly supported by the National Natural Science Foundation of China (41991323, U1902208, 41672344), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB26020301), the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0704), and Yunnan Leading Talent Project (202005AB160008).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., and Hilbert, D. W. (2012). The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool. Clim. Past 8, 307–324. doi: 10.5194/cp-8-307-2012

An, X. H., Lu, H. Y., and Chu, G. Q. (2015). Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya. Sci. Rep. 5, 1–13. doi: 10.1038/srep15523

An, X. H., and Lu, H. Y. (2010). Altitudinal distribution of phytolith assemblages in topsoil from the east slope of Gongga Mountain, Southeastern Qinghai-Tibetan plateau and their relationship with vegetation composition. Quat. Sci. 30, 934–945. doi: 10.3966/j.issn.10017410.2010.05.11

Anhui Flora Cooperative Group Qian, X. H., Wu, Z. M., Wu, C. R., et al. (1987). Anhui Flora. Vol. II. Angiospermae. Beijing: China Outlook Publishing House, 1–695.

Bai, Y., Dai, L., and Yeok, F. S. (2020). Vegetation indication of phytolith hassemblages of topsoil on tropical mountains: a sample from Jerai Hill, Malaysia. Quat. Sci. 40, 1301–1311. doi: 10.1126/sciadv.aaw8588

Ball, T., Vrydaghs, L., Hauwe, V. D., et al. (2006). Differentiating banana phytoliths: wild and edible Musa acuminate and Musa balbisiana. J. Archaeol. Sci. 33, 1228–1236. doi: 10.1016/j.jas.2005.12.010

Barboni, D., and Bremond, I. (2007). Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 454–470. doi: 10.1016/j.palaeo.2006.10.012

Chandler-erell, K., Peairsall, D. M., and Zeidler, J. A. (2006). Root and tuber phytoliths and starch grains document manioc (Manihot esculenta). arrowroot (Maranta arundinacea), and Llerén (Calathea sp.) at the real alto site, Ecuador. J. Archaeol. Sci. 33, 2190–2199. doi: 10.1016/j.jas.2005.09.015

Fenwick, R., Lentfer, C. J., and Weisler, M. I. (2011). Palm reading: a pilot study to discriminate phytoliths of four Arecales (Palmae) taxa. J. Archaeol. Sci. 38, 2190–2199. doi: 10.1016/j.jas.2011.03.016

Ge, Y. (2016). Phytoliths in Common Modern Plants of China. Morphology and Implication. University of Chinese Academy of Sciences. Doctoral Dissertation, 1–291.

Griffin, E. C. (2004). Tilia software 2.0.2. Illinois State Museum Research and Collection Center. Springfield.

Guan, Z. B., Zhang, L. X., and Peng, J. M. (2004). Distribution and development of Phyllanthus resources in Xishuangbanna.

Herzschuh, U., Birks, H. J. B., Mischke, S., Zhang, C., and Böhner, J. (2010). A potential of pollen-based climate reconstruction in the loess plateau. Quat. Sci. Rev. 29, 759–772. doi: 10.1016/j.quascirev.2009.11.012

Luo, C. X., Zheng, Z., Tarasov, P., et al. (2009). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: paleoenvironmental reconstruction in the loess plateau. Quat. Sci. Rev. 28, 215–222. doi: 10.1016/j.quascirev.2008.09.005

Shen, C., Liu, K. B., Tang, L., and Overpeck, J. T. (2006). Quantitative relationships of forest and grassland regions of the Tibetan plateau and their relationship with vegetation and climate in Northeast China. Quat. Sci. Rev. 35, 945–957. doi: 10.1016/j.quascirev.2006.09.005

Wang et al. doi: 10.3389/fpls.2022.1007612
Wang, Y. J, and Lu, H. Y. *Research and Application of Plant Silicate*. Beijing: China Ocean Press, 1993: 1–267.

Whitmore, J., Gajewski, K., Sawada, M., Williams, J. W., Shuman, B., Bartlein, P. J., et al. (2005). Modern pollen data from North America and Greenland for multi-scale palaeoenvironmental applications. *Quat. Sci. Rev.* 24, 1828–1848. doi: 10.1016/j.quascirev.2005.03.005

Xiao, X., Haberle, S. G., Shen, J., Yang, X., Han, Y., Zhang, E., et al. (2014). Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. *Quat. Sci. Rev.* 86, 35–48. doi: 10.1016/j.quascirev.2013.12.023

Xu, D. K., Li, Q., and Lu, H. Y. (2005). Morphological analysis of phytoliths in Palmae and its environmental significance. *Quat. Sci.* 25, 123–130. doi: 10.3321/j.issn:1001-7410.2005.06.015

Xu, Q. H., Li, Y. C., Yang, X. L., et al. (2005). Surface pollen assemblages of some major forest types in northern China. *Quat. Sci.* 5, 585–597. doi: 10.3321/j.issn:1001-7410.2005.05.008

Xu, Q. H., Li, Y. C., Yang, X. L., et al. (2007). Quantitative relationship between pollen and vegetation in northern China. *Sci. Sinica* 4, 582–599. doi: 10.1007/s11430-007-2044-y

Yang, X. Y., Barton, H. J., Wan, Z. W., et al. (2013). Sago-type palms were an important plant food prior to rice in southern subtropical China. *PLoS One* 8, 1–8. doi: 10.1371/journal.pone.0063148

Yunnan Vegetation Compilation Group. *Yunnan Vegetation*. Beijing: Science Press, 1986: 753–754.

Zhang, X., Zhen, Z., Huang, K. Y., et al. (2020). Sensitivity of altitudinal vegetation in Southwest China to changes in the Indian summer monsoon during the past 68000 years. *Quat. Sci. Rev.* 239, 1–16. doi: 10.1016/j.quascirev.2020.106359

Zhang, X. R., Hu, K., Fang, S., et al. (2008). Construction and application of Phytolith climate transfer function in peat surface deposits of Northeast China. *Acta Sedimentol. Sin.* 26, 676–682.

Zhang, Y. J., Duo, L., Pang, Y. Z., Felde, V. A., Birks, H. H., and Birks, H. J. B. (2018). Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan plateau, China. *Quat. Int.* 467, 210–221. doi: 10.1016/j.quaint.2018.01.040

Zhao, D. P., and Hou, Y. T. (2011). The geographic distribution of the tribe Polygoneae (Polygonaceae) in China. *Chin. Wild Plant Res.* 30, 14–17. doi: 10.3969/j.issn.1006-9690.2011.03.004