Prevalence of Cervical Canal Stenosis in Patients with Femoral Fracture: A Retrospective Single-Center Study

Hirotsgu Omi1, Toru Yokoyama2, Takuya Naraoka3, Sanae Omi4 and Kazunari Takeuchi2

1) Department of Orthopaedic Surgery, Omi Orthopaedic Clinic, Hirosaki, Aomori, Japan
2) Department of Orthopaedic Surgery, Odate Municipal General Hospital, Odate, Akita, Japan
3) Department of Orthopaedic Surgery, Fujinomiya City General Hospital, Fujinomiya, Shizuoka, Japan
4) Department of Radiology, Kin-ikyo Chuo Hospital, Sapporo, Hokkaido, Japan

Abstract:
Introduction: Cervical spine surgery reduces falls and subsequent femoral fractures. Nonetheless, current evidence on the prevalence of cervical cord compression (CCC) and increased signal intensity (ISI) in patients with femoral fractures is limited. We aimed to determine the prevalence of CCC and ISI and characterize the physical status and imaging findings using cervical spine magnetic resonance imaging (MRI) and brain computed tomography (CT) in patients with femoral fractures.

Methods: This study included 173 patients (140 women, 33 men) with femoral fractures caused by falling, who underwent both cervical spine MRI and brain CT. CCC cases classified as grade 2 (compression of less than one-third of the spinal cord) or higher were investigated. The ISI of the severely affected intervertebral disc level was evaluated using T2-weighted MRI. Hand grip strength and myelopathic signs were also evaluated. Data analysis was performed using the \(\chi^2 \) test, Fisher’s exact test, and Student’s t-test.

Results: Among the 173 patients, 83 (48.0%) had CCC, 29 (16.8%) had ISI, and 68 (39.3%) had abnormal brain CT findings. There was no ISI in patients in the non-CCC group. The patients’ average age in the CCC group was significantly higher than that in the non-CCC group. There was no significant difference in the proportion of myelopathic sign and abnormal brain CT findings between the CCC and non-CCC groups or between the ISI and non-ISI groups. Bilateral hand grip strength was significantly negatively correlated with the stenosis rate (right, \(p=0.047 \); left, \(p=0.0018 \)).

Conclusions: In conclusion, our study showed that patients with femoral fractures had a high frequency of cervical canal stenosis and intracranial lesions using cervical spine MRI and brain CT.

Keywords: cervical cord compression, hip fracture, cognitive impairment, magnetic resonance imaging, computed tomography, silent brain infarction, hand grip strength

Introduction
Cervical myelopathy is a disabling syndrome associated with symptomatic spinal cord compression caused by cervical degenerative disease. Patients often present with various symptoms, such as hand clumsiness, worsening handwriting, difficulty in grasping objects, numbness in the hands, and increasing difficulty with balance and ambulation1. A Japanese population-based study further reported a prevalence of 24.4% for cervical cord compression (CCC)2. Nonetheless, the subtle and varied presentations of cervical myelopathy can result in a delayed diagnosis or misdiagnosis of cervical myelopathy3.

Recent reports have shown that the progression of cervical myelopathy, including gait imbalances, can lead to falls and subsequent fragility fractures4. In particular, hip fractures are serious injuries that can worsen the mortality rate5. This can result in subsequent fractures6 and an increase in the medical cost7. Some authors have demonstrated that cervical surgery reduces falls and therefore recommend it8. However, there is a paucity of information on CCC and increased signal intensity (ISI) in the cervical spi-
nal cord of patients with femoral fractures, including muscle strength and myelopathic signs, which may be factors for surgical decision-making. Additionally, brain lesions and cognitive impairment may deteriorate an individual’s physical capacity. The present study aimed to determine the prevalence of CCC and ISI in patients with femoral fractures and to characterize the physical status and imaging findings of these patients using cervical spine magnetic resonance imaging (MRI) and brain computed tomography (CT).

Materials and Methods

This research has been approved by the Institutional Review Board of the authors’ affiliated institution, and written informed consent was obtained from all the patients or their families.

From July 2009 to May 2013, 192 patients with femoral fractures caused by falls were admitted to the authors’ affiliated institution. Patients who underwent both cervical spine MRI and brain CT were included in our study.

Physical and mental examinations

Deep tendon reflexes, including those of the biceps, triceps, patella, and Achilles tendon, were examined. Pathologic reflexes, including the Hoffmann’s, Wartenberg’s, and Babinski’s reflexes and ankle clonus, were examined in each patient. Patients with hyperreflexia at levels below the segment of canal stenosis or any positive pathologic reflex were determined to have myelopathic signs according to the report by Seichi et al.12 The grip strength of each hand was measured using a Jamar hydraulic hand dynamometer (Lafayette Instrument Co., Lafayette, IN, USA). Additionally, patients were asked simple questions such as their current location as well as the date and time; if they could not answer, they were deemed to have cognitive impairment.

Imaging examinations

All the patients underwent cervical spine MRI (EXCITE HD 1.5 Tesla; GE Healthcare, Chicago, IL, USA), and T2-weighted images (repetition time: 3000, echo time: 0.0, flip angle: 90.0°) in the sagittal plane were acquired with a section thickness of 4 mm. The cervical canal stenosis rate was calculated by dividing the anteroposterior diameter of the spinal cord at the compressed disk level by that at the caudal normal disk level. Following the Wakayama Spine Study13, one spine surgeon assessed from the C2-C3 to C7-Th1 levels and divided the patients into five groups according to the grades of canal stenosis or any positive pathologic reflex.

Results

Baseline characteristics

The study included 173 patients (140 women and 33 men) with an average age of 81.9 years (range, 46-100 years). Regarding history of brain disease, 5 patients had cerebral hemorrhage, 4 had brain infarction, 1 had brain tumor resection, 1 had subdural hematoma, 1 had subarachnoid hemorrhage, and 1 had spino cerebellar degeneration. Eighty-two patients had right femoral fractures, 91 had left femoral fractures, and none had bilateral femoral fractures (Table 1). Femoral fractures were located at the femoral neck in 45 patients, trochanter in 109, sub-trochanter in 6, diaphysis in 9, and supracondylar femur in 3. The treatment included proximal femoral intramedullary nailing in 110 patients, multiple pinning in 6, plating in 7, bipolar hip arthroplasty in 34, intramedullary nailing in 5, and conservative treatment in 11 (Table 2).

Physical and mental examinations

Among the 173 patients included in the study, 107 (61.8%) exhibited some myelopathic signs and 84 (48.6%) had cognitive impairment. The average right hand grip strength of 171 patients (2 patients could not be examined because of cognitive impairment) was 8.9±7.7 kg, and there was a significant negative correlation with the stenosis rate.
in Fig. 1, the prevalence of CCC (the grade was 0 in 51 patients, 1 in 36, 2 in 59, 3 in 22, and 4 in 2, and 59 in the non-CCC group had myelopathic sign; there was no significant difference in the ratio of myelopathic sign between the groups (χ^2 test, $p=0.37$). There was no significant difference in the ratio of abnormal brain CT (χ^2 test, $p=0.46$) as well as in the ratio of cognitive impairment between the CCC and non-CCC groups (χ^2 test, $p=0.57$). The average right hand grip strength of the CCC group was 7.1±6.9 kg, and that of the non-CCC group was 10.3±7.6 kg, which was significantly different (Student’s t-test, $p=0.006$) (Table 4).

ISI vs. non-ISI groups

The ISI group comprised 25 women and 4 men, whereas the non-ISI group comprised 118 women and 26 men; the sex proportion was not significantly different between the two groups (χ^2 test, $p=0.17$). The average age of the patients in the ISI group was 81.4±9.4 years, and that of the patients in the non-ISI group was 84.3±8.3 years; the age was not significantly different between the groups (Student’s t-test, $p=0.13$). Nineteen patients in the ISI group and 89 in the non-ISI group showed myelopathic sign; there was no significant difference in the ratio of myelopathic sign between the groups (χ^2 test, $p=0.17$). There was no significant difference in the ratio of abnormal finding on brain CT (χ^2 test, $p=0.8$) as well as in the ratio of cognitive impairment between the ISI and non-ISI groups (χ^2 test, $p=0.29$). The average right hand grip strength of the ISI group was 6.2±6.3 kg, and that of the non-ISI group was 9.4±7.9 kg, which was significantly different (Student’s t-test, $p=0.041$). The average left hand grip strength of the ISI group was 6.4±6.5 kg, and that of the non-ISI group was 9.3±7.5 kg, which was not significantly different (Student’s t-test, $p=0.056$) (Table 5).

Discussion

The strength of our study is that we obtained the exact frequency of cervical canal stenosis and intracranial lesions in patients with femoral fracture using cervical MRI and...
Figure 1. Frequency of the Cervical Canal Stenosis Grades by Ages.
Grade 0: normal; grade 1: disappearance of the subarachnoid space without spinal cord compression; grade 2: stenosis <1/3; grade 3: ≥1/3 stenosis <2/3; grade 4: stenosis ≥2/3.

Grade	0	1	2	3	4	Total
C2/3	0					
C3/4	10 (2)	8 (4)	1 (1)			19 (7)
C4/5	22 (4)	8 (5)				31 (9)
C5/6	24 (8)	6 (4)	1 (1)			32 (13)
C6/7	3 (0)					3 (0)
C7/Th1						
Total	53 (0)	37 (0)	59 (14)	22 (13)	2 (2)	173 (29)

All numbers within parentheses “()” indicate the numbers of patients with increased signal intensity on magnetic resonance imaging.

Grade 0: normal; grade 1: disappearance of the subarachnoid space without spinal cord compression; grade 2: stenosis <1/3; grade 3: ≥1/3 stenosis <2/3; grade 4: stenosis ≥2/3.

Table 3. Stenosis Grade, Disc Level, and Increased Signal Intensity.

brain CT for the first time. Previous studies on cervical myelopathy in patients with femoral fractures did not perform any imaging examination\(^4,5\). Our study showed that the prevalence of CCC and ISI in patients with femoral fracture was 47.9% (83 of 173 patients) and 16.8% (29 of 173 patients), respectively. The prevalence of CCC and ISI is higher than those of past reports on Japanese residents. For example, the CCC rate in 70-79-year-old patients was as high as 32.5% in our study, while it was 22.9% in the Wakayama Spine Study\(^2\). The prevalence of ISI among patients aged 70-79 years was as high as 12.5% in our study, while it was 6.5% among healthy volunteers without symptoms related to sensory or motor disorders, or severe neck pain\(^14\). The higher prevalence of CCC and ISI in our patients supports the idea that cervical myelopathy is a risk factor for falls and subsequent femoral fractures.

Based on the previously reported positive predictive value of ISI of 88.9\(^\%\), it can be inferred that at least 14.9% of patients had cervical myelopathy in this study. This frequency is reasonable because it was close to that previously reported by Radcliffe et al. (18\%)\(^4\), indicating that treating these patients may prevent several femoral fractures. Kimura et al. reported that surgical intervention for degenerative cervical myelopathy was effective in reducing the frequency of falls in a prospective study\(^11\). Horowitz et al. revealed that the surgical management of cervical spondylotic myelopathy may be protective against the risk of fragility fracture\(^5\); however, the authors also reported that 58 cervical decompression surgeries are needed to prevent only one fragility fracture. If femoral fractures are most efficiently prevented
by spine surgery, screening methods should be considered to select the most suitable patients.

Our study showed a strong relationship between hand grip strength and cervical canal stenosis. Low hand grip strength was found to be a significant predictor of reduced gait ability in patients with hip fracture in recent reports16-18. Our new findings indicate that CCC is involved in the mechanism between hand grip strength and gait ability. Therefore, CCC may decrease hand grip strength and increase susceptibility to falls. Grip strength measurement can be an important test not only for predicting walking ability but also for screening for cervical myelopathy. The myelopathic sign is not related to CCC or ISI, and it is thought that common diseases of the elderly, such as brain lesions, spinocerebellar degeneration, and lumbar spinal canal stenosis, may modify the myelopathic sign19-21. Therefore, the assessment of

Characteristic	CCC Group (n=83)	Non-CCC Group (n=90)	p-value
Sex, n			0.17
Female	72	71	
Male	11	19	
Age, years	84.4±8.5	79.5±9.3	0.0004
Myelopathic sign, n	49	59	0.37
Abnormal brain CT finding	35	33	0.46
Cognitive impairment, n	46	46	0.57
Right hand grip strength, kg	7.7±6.8	9.9±8.4	0.06
Left hand grip strength, kg	7.1±6.9	10.3±7.6	0.006
Fracture type, n			0.42
Neck	8	21	
Trochanteric	53	56	
Subtrochanteric	1	5	
Diaphyseal	3	6	
Supracondylar	2	1	
Periprosthetic	0	1	
Fracture side, n			0.9
Right	39	43	
Left	44	47	

Characteristic	ISI Group (n=29)	Non-ISI Group (n=144)	p-value
Sex, n			0.58
Female	25	118	
Male	4	26	
Age, years	84.3±8.3	81.4±9.4	0.13
Myelopathic sign, n	19	89	0.17
Abnormal brain CT finding	12	56	0.8
Cognitive impairment, n	18	74	0.29
Right hand grip strength, kg	6.2±6.3	9.4±7.9	0.041
Left hand grip strength, kg	6.4±6.5	9.3±7.5	0.056
Fracture type, n			0.29
Neck	5	40	
Trochanteric	23	86	
Subtrochanteric	0	6	
Diaphyseal	0	9	
Supracondylar	1	2	
Periprosthetic	0	1	
Fracture side, n			0.76
Right	13	69	
Left	16	75	
myelopathic signs alone is not useful for screening for cervical spinal canal stenosis.

Sixty-eight of the 173 patients (39%) had abnormal brain CT findings, and most of the findings (61/68) were low-density areas representing old brain infarctions or brain hemorrhages. Considering that there were only 13 patients with a known history of brain disease, most of them may have had silent brain infarction based on a past brain MRI study. Silent brain infarction has been reported to increase the risk of cognitive impairment, which decreases psycho-motor speed and memory performance. Similar results were obtained in our study; patients with abnormal brain CT findings were significantly more likely to have cognitive impairment than those without. Therefore, brain disease may be an important risk factor for falls as well as cognitive impairment.

In the present study, the prevalence of cognitive impairment was 48.6%, which is higher than the reported rate of 10%-20% among 80-84-year-old adults without femoral fracture in Japan. The high cognitive impairment rate in our study indicates that this impairment may be a risk factor for falls and subsequent fractures; this is consistent with the findings of previous studies showing that cognitive impairment leads to gait function deterioration. We found that the prevalence of CCC and ISI was not related to the prevalence of cognitive impairment. From this result, we hypothesized that cervical myelopathy and cognitive impairment may independently contribute to the tendency toward falls. The high prevalence of cognitive impairment suggests that improving mental aspects of patients is the key for treating cervical myelopathy and hip fracture.

One of the limitations of this study is that the patients were not interviewed about the symptoms of cervical myelopathy, such as the numbness of fingers or gait disturbance, due to severe cognitive impairment. If these symptoms were determined, the frequency of cervical myelopathy could have been calculated. Another study limitation was that the imaging examinations, i.e., cervical radiography or cervical CT, could not be used to evaluate the prevalence of cervical ossification of the posterior longitudinal ligament. Finally, the diagnosis of cognitive impairment in this study might not be accurate, as the diagnosis was not made by a psychiatrist based on brain MRI findings or a questionnaire. Furthermore, it is possible that the diagnosis of cognitive impairment may have been affected by delirium in the acute phase of trauma.

In conclusion, our study showed that of 173 patients with femoral fracture, 83 (48.0%) had CCC, 29 (16.8%) had ISI, and 68 (39.3%) had abnormal brain CT findings. This study showed the prevalence of cervical spinal stenosis using MRI. Further research is required to determine the prevalence of cervical myelopathy.

Conflicts of Interest: The authors declare that there are no relevant conflicts of interest.

Sources of Funding: No funds were received in support of this work.

Acknowledgement: The authors are grateful to the Department of Radiology at the Odate Municipal General Hospital for the image diagnosis.

Author Contributions: Toru Yokoyama designed the study.

Hirotsgu Omi, Toru Yokoyama, Kazunari Takeuchi, and Takuya Naraoa performed the medical examinations.

Sanee Omi wrote about brain CT.

Hirotsgu Omi evaluated cervical spine MRI and wrote the manuscript.

Ethical Approval: This study was approved by the institutional review board of the Odate Municipal General Hospital (approval number: 02-21).

Informed Consent: Written informed consent was obtained from all patients or their families.

References

1. Rao R. Neck pain, cervical radiculopathy, and cervical myelopathy: pathophysiology, natural history, and clinical evaluation. J Bone Joint Surg Am. 2002;84(10):1872-81.

2. Nagata K, Yoshimura N, Muraki S, et al. Prevalence of cervical cord compression and its association with physical performance in a population-based cohort in Japan: the Wakayama spine study. Spine. 2012;37(22):1892-8.

3. Behrbalk E, Salame K, Regev GJ, et al. Delayed diagnosis of cervical spondylotic myelopathy by primary care physicians. Neurosurg Focus. 2013;35(1):E1.

4. Radcliff KE, Curry EP, Trinba R, et al. High incidence of undiagnosed cervical myelopathy in patients with hip fracture compared with controls. J Orthop Trauma. 2016;30(4):189-93.

5. Horowitz JA, Puvanesarajah V, Jain A, et al. Fragility fracture risk in elderly patients with cervical myelopathy. Spine. 2019;44(2):96-102.

6. Haentjens P, Magaziner J, Colón-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010;152(6):380-90.

7. Katsoulis M, Benetou V, Karapetyan T, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017;281(3):300-10.

8. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721-39.

9. Blume D, Nguyen ND, Milch VE, et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(1):513-21.

10. Mori T, Tamiya N, Jin X, et al. Estimated expenditures for hip fractures using merged healthcare insurance data for individuals aged ≥ 75 years and long-term care insurance claims data in Japan. Arch Osteoporos. 2018;13(1):37.

11. Kimura A, Takeshita K, Shiraishi Y, et al. Effectiveness of surgical treatment for degenerative cervical myelopathy in preventing falls and fall-related neurological deterioration: a prospective multi-institutional study. Spine. 2020;45(11):E631-8.
12. Seichi A, Takeshita K, Kawaguchi H, et al. Neurologic level diagnosis of cervical stenotic myelopathy. Spine. 2006;31(12):1338-43.
13. Takahashi M, Sakamoto Y, Miyawaki M, et al. Increased MR signal intensity secondary to chronic cervical cord compression. Neuroradiology. 1987;29(6):550-6.
14. Nakashima H, Yakawa Y, Suda K, et al. Abnormal findings on magnetic resonance images of the cervical spines in 1211 asymptomatic participants. Spine. 2015;40(6):392-8.
15. Harrop JS, Narooji S, Maltenfort M, et al. Cervical myelopathy: a clinical and radiographic evaluation and correlation to cervical spondylotic myelopathy. Spine. 2010;35(6):620-4.
16. Di Monaco M, Castiglioni C, De Toma E, et al. Handgrip strength is an independent predictor of functional outcome in hip-fracture women: a prospective study with 6-month follow-up. Medicine. 2015;94(6):e542.
17. Pareyon D, Gellera C, Castellotti B, et al. Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol. 1999;246(5):389-93.
18. Rhee J, Helfin J, Hamasaki T, et al. Prevalence of physical signs in cervical myelopathy: a prospective, controlled study. Spine. 2009;34(9):890-5.
19. Edwards W, LaRocca S. The developmental segmental sagittal diameter in combined cervical and lumbar spondylosis. Spine. 1985;10(1):42-9.
20. Edwards W, LaRocca S. The developmental segmental sagittal diameter in combined cervical and lumbar spondylosis. Spine. 1985;10(1):42-9.
21. Edwards W, LaRocca S. The developmental segmental sagittal diameter in combined cervical and lumbar spondylosis. Spine. 1985;10(1):42-9.
22. Vermeij MW, Ikram MA, Tanghe HL, et al. Incidental findings on brain MRI in the general population. Neurology. 2003;60(18):1821-8.
23. Vermeer SE, Prins ND, den Heijer T, et al. Silent brain infarcts and the risk of dementia and cognitive decline. Neurology. 2003;60(18):1821-8.
24. Meguro K, Tanaka N, Kasai M, et al. Prevalence of dementia and dementing diseases in the old-old population in Japan: the Kurashihara Project. Implications for long-term care insurance data. J Neurol Neurosurg Psychiatry. 2012;83(4):226-34.
25. Allali G, Annweiler C, Blumen HM, et al. Gait phenotype from mild cognitive impairment to moderate dementia: results from the GOOD initiative. Eur J Neurol. 2016;23(3):527-41.
26. Seitz DP, Adunuri N, Gill SS, et al. Prevalence of dementia and cognitive impairment among older adults with hip fractures. J Am Geriatr Soc. 2011;59(8):1356-61.