Supplement of

Estimated regional CO₂ flux and uncertainty based on an ensemble of atmospheric CO₂ inversions

Naveen Chandra et al.

Correspondence to: Naveen Chandra (naveennegi@jamstec.go.jp) and Prabir K. Patra (prabir@jamstec.go.jp)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. A comprehensive list of CO$_2$ observations from 50 sites for optimizing fluxes, taken from GML/NOAA - Global Monitoring Laboratory/National Oceanic and Atmospheric Administration (38 sites), CSIRO - Commonwealth Scientific and Industrial Research Organisation (4 sites), LSCE/IPSL - Laboratoire des sciences du climat et de l'environnement/Institut Pierre Simon Laplace (1 site), SIO-CO2 – Scripps Institution of Oceanography (2 sites), SAWS – South African Weather Services (1 site), ECCC - Environment and Climate Change Canada (1 site), and JMA – Japan Meteorological Agency (3 sites). Data until 2019 are taken from obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01, and JMA data are taken from WDCGG. Extension to GVplus_6.1 for 2020 is compiled from GML/NOAA data and WDCGG as appropriate.

Site_Name	Lat	Long	Alt(m)	Operating Institute
co2_alt_surface-flask_1_representative	82.5	-62.5	190.0	GML/NOAA
co2_asc_surface-flask_1_representative	-8.0	-14.4	85.0	GML/NOAA
co2_ask_surface-flask_1_representative	23.3	5.6	2710.0	GML/NOAA
co2_azr_surface-flask_1_representative	38.8	-27.4	19.0	GML/NOAA
co2_bmw_surface-flask_1_representative	32.3	-64.9	30.0	GML/NOAA
co2_brw_surface-flask_1_representative	71.3	-156.6	11.0	GML/NOAA
co2_cba_surface-flask_1_representative	55.2	-162.7	21.3	GML/NOAA
co2_cgo_surface-flask_1_representative	-40.7	144.7	94.0	GML/NOAA
co2_char_surface-flask_1_representative	1.7	-157.2	0.0	GML/NOAA
co2_craz_surface-flask_1_representative	-46.4	51.8	197.0	GML/NOAA
co2_eic_surface-flask_1_representative	-27.2	-109.4	47.0	GML/NOAA
co2_gmi_surface-flask_1_representative	13.4	144.7	0.0	GML/NOAA
co2_hba_surface-flask_1_representative	-75.6	-26.2	30.0	GML/NOAA
co2_hun_surface-flask_1_representative	47.0	16.7	248.0	GML/NOAA
co2_ice_surface-flask_1_representative	63.4	-20.3	118.0	GML/NOAA
co2_izo_surface-flask_1_representative	28.3	-16.5	2372.9	GML/NOAA
co2_key_surface-flask_1_representative	25.7	-80.2	1.0	GML/NOAA
co2_kum_surface-flask_1_representative	19.5	-154.8	3.0	GML/NOAA
co2_mhd_surface-flask_1_representative	53.3	-9.9	5.0	GML/NOAA
co2_mid_surface-flask_1_representative	28.2	-177.4	11.0	GML/NOAA
co2_mlo_surface-flask_1_representative	19.5	-155.6	3397.0	GML/NOAA
co2_nmb_surface-flask_1_representative	-23.6	15.0	456.0	GML/NOAA
co2_nwr_surface-flask_1_representative	40.1	-105.6	3523.0	GML/NOAA
co2_psa_surface-flask_1_representative	-64.9	-64.0	10.0	GML/NOAA
co2_rpb_surface-flask_1_representative	13.2	-59.4	15.0	GML/NOAA
co2_sey_surface-flask_1_representative	-4.7	55.5	2.0	GML/NOAA
co2_shm_surface-flask_1_representative	52.7	174.1	23.0	GML/NOAA
co2_smo_surface-flask_1_representative	-14.2	-170.6	42.0	GML/NOAA
co2_spo_surface-flask_1_representative	-89.0	-24.8	2810.0	GML/NOAA
co2_sum_surface-flask_1_representative	72.6	-38.4	3209.5	GML/NOAA
co2_syo_surface-flask_1_representative	-69.0	39.6	14.0	GML/NOAA
co2_tap_surface-flask_1_representative	36.7	126.1	16.0	GML/NOAA
co2_ush_surface-flask_1_representative	-54.8	-68.3	12.0	GML/NOAA
co2_uta_surface-flask_1_representative	39.9	-113.7	1327.0	GML/NOAA
co2_uum_surface-flask_1_representative	44.5	111.1	1007.0	GML/NOAA
co2_wis_surface-flask_1_representative	30.0	35.1	151.0	GML/NOAA
co2_wlg_surface-flask_1_representative	36.3	100.9	3810.0	GML/NOAA
co2_zep_surface-flask_1_representative	78.9	11.9	474.0	GML/NOAA
co2_cfa_surface-flask_2_representative	-19.3	147.1	2.0	CSIRO
co2_mqa_surface-flask_2_representative	-54.5	159.0	6.0	CSIRO
co2_cya_surface-flask_2_representative	-66.3	110.5	47.0	CSIRO
co2_maa_surface-flask_2_representative	-67.6	62.9	32.0	CSIRO
co2_ams_surface-insitu_11_representative	-37.8	77.5	55.0	LSCE/IPSL
co2_bhd_surface-flask_426_representative	-41.4	174.9	85.0	SIO-CO2
co2_rk1_surface-flask_426_representative	-29.2	-177.9	2.0	SIO-CO2
co2_cpt_surface-insitu_36_marine	-34.4	18.5	230.0	SAWS
co2_fsd_surface-insitu_6_allvalid	49.9	-81.6	210.0	ECCC
-------------------------------	------	-------	-------	------
co2_mnm_surface-insitu_19_representative	24.3	154.0	8.0	JMA
co2_ryo_surface-insitu_19_representative	39.0	141.8	260.0	JMA
co2_yon_surface-insitu_19_representative	24.5	123.0	30.0	JMA
Table S2. The prior and predicted CO$_2$ fluxes (in PgC yr$^{-1}$) for 15 land and 11 ocean regions for 2001 - 2020. The predicted fluxes are shown for ensemble mean of “gc3t”, “gvjf” and all cases (“ensm”). The gc3t are based on the CASA fluxes for land and Takahashi fluxes for ocean. The gvjf prior is based on VISIT+GFED fluxes for land and JMA fluxes for ocean. The “ensm” is the ensemble mean of both gc3t and gvjf cases. The spread denotes the 1-sigma deviation from the mean CO$_2$ flux of 8-8 ensemble inversion cases for gc3t and gvjf as well as 16 ensemble inversion cases for “ensm”.

Land Regions	Prior (gc3t/gvjf)	Predicted gc3t, gvjf, ensm (mean ± spread)	Ocean Regions	Prior (gc3t/gvjf)	Predicted gc3t, gvjf, ensm (mean ± spread)
Boreal N. America	0.0/-0.49	-0.34±0.07 -0.42±0.11 -0.38±0.10	Northern Ocean	-0.28/-0.28	-0.27±0.03 -0.01±0.10 -0.14±0.15
Temp. N. America	0.0/-0.33	-0.60±0.11 -0.59±0.16 -0.59±0.14	North Pacific	-0.51/-0.60	-0.59±0.01 -0.51±0.04 -0.55±0.05
Brazil	0.0/-0.17	0.04±0.08 -0.01±0.04 0.02±0.07	South Pacific	-0.31/-0.54	-0.3±0.01 -0.48±0.01 -0.39±0.09
Central America	0.0/-0.33	-0.04±0.06 -0.24±0.03 -0.14±0.11	East Pacific	0.41 / 0.42	0.48±0.04 0.46±0.02 0.47±0.03
Temp. S. America	0.0/-0.36	0.04±0.06 -0.23±0.07 -0.10±0.15	West Pacific	0.06 / 0.06	0.06±0.0 0.07±0.01 0.07±0.01
Northern Africa	0.0/0.03	-0.11±0.02 -0.0±0.05 -0.06±0.07	North Atlantic	-0.21 / -0.27	-0.28±0.02 -0.27±0.01 -0.27±0.02
Central Africa	0.0/0.12	-0.18±0.07 0.1±0.05 -0.04±0.15	Tropical Atlantic	0.11 / 0.08	0.12±0.01 0.09±0.0 0.11±0.02
Southern Africa	0.0/0.15	-0.08±0.01 0.17±0.01 0.05±0.12	South Atlantic	-0.15 / -0.33	-0.17±0.01 -0.31±0.01 -0.24±0.07
Europe	0.0/-0.54	0.08±0.07 -0.09±0.08	Tropical Indian	0.12 / 0.12	0.07±0.02 0.1±0.02
Region	Values	Global Total			
-----------------	----------------------------	----------------------------------			
Russia	0.0/-0.76 -0.37±0.03 -0.33±0.05 -0.35±0.05	0.09±0.03 -0.43±0.01 -0.49±0.02 -0.46±0.03			
West Asia	0.0/-0.11 -0.04±0.04 -0.09±0.01 -0.06±0.04	0.09±0.03 -0.29±0.02 -0.18±0.02 -0.23±0.06			
South India	-0.43 / 0.53 -0.23 / -0.24	0.43±0.01 -0.49±0.02 -0.46±0.03			
South America	0.0/-0.23 -0.10±0.10 -0.26±0.04 -0.18±0.11	0.43±0.01 -0.49±0.02 -0.46±0.03			
East Asia	0.0/-0.55 -0.42±0.05 -0.57±0.04 -0.49±0.09	0/-3.93 -2.42±0.10 -2.73±0.20 -2.58±0.22			
Southeast Asia	0.0/-0.17 -0.25±0.08 0.0±0.05 -0.13±0.15	-1.4/-2.11 -1.58±0.04 -1.51±0.07 -1.54±0.13			
Oceania	0.0/-0.2 -0.06±0.07 -0.17±0.03 -0.12±0.08	-1.4/-6.06 -4.01±0.08 -4.26±0.07 -4.14±0.14			
Table S3: Correlation coefficient (r) and p values between the mean CO$_2$ flux (predicted/prior) anomaly and Multivariate ENSO Index (MEI) for 2001-2020 (columns 2-4). Correlation coefficients and p values for the prior and predicted mean seasonal cycles are given in the two columns on the right. Correlations in bold indicate statistically significant at 95% confidence intervals.

Regions	r for interannual variability	r for seasonal cycle			
	gc3t (predicted)	gvjf (predicted)	gvjf (prior)	prior gc3t-gvjf	predicted gc3t-gvjf
Land Regions					
Boreal N. America	-0.05 (0.44)	0.07 (0.27)	0.1 (0.13)	0.77 (0.004)	0.9 (0.001)
Temp. N. America	-0.07 (0.29)	-0.26 (0.002)	-0.2 (0.001)	0.8 (0.002)	0.97 (0.001)
Brazil	0.44 (0.001)	0.22 (0.001)	0.28 (0.001)	0.23 (0.48)	0.63 (0.03)
Tropical America	0.32 (0.001)	**0.47 (0.001)**	0.48 (0.001)	0.39 (0.204)	0.94 (0.001)
Temp. S. America	**0.54 (0.001)**	0.08 (0.19)	-0.04 (0.55)	0.88 (0.001)	0.74 (0.01)
Europe	0.19 (0.003)	0.23 (0.001)	0.09 (0.17)	0.83 (0.001)	0.92 (0.001)
Northern Africa	**0.46 (0.001)**	0.26 (0.001)	0.15 (0.02)	0.91 (0.001)	0.88 (0.001)
Central Africa	**0.51 (0.001)**	0.39 (0.001)	0.29 (0.001)	-0.19 (0.55)	0.04 (0.9)
Southern Africa	0.26 (0.001)	0.26 (0.001)	0.23 (0.0001)	0.90 (0.001)	0.95 (0.001)
Russia	-0.01 (0.87)	-0.11 (0.08)	-0.08 (0.19)	0.79 (0.002)	0.92 (0.001)
West Asia	0.19 (0.003)	0.16 (0.01)	0.06 (0.35)	0.83 (0.001)	0.91 (0.001)
South Asia	0.2 (0.002)	0.1 (0.14)	0.09 (0.18)	0.28 (0.38)	0.23 (0.47)
Region	Value 1	Value 2	Value 3	Value 4	Value 5
-----------------	----------	----------	----------	----------	----------
East Asia	0.03	-0.17	-0.21	0.28	0.83
Southeast Asia	0.29	**0.61**	**0.62**	0.19	0.15
Oceania	0.17	0.54	0.56	-0.48	-0.36
Global total	0.43	0.51	0.46	0.80	0.98

Ocean regions

Region	Value 1	Value 2	Value 3	Value 4	Value 5
Northern Ocean	0.09	0.28	0.16	-0.16	0.46
North Pacific	0.1	0.02	-0.13	0.99	0.69
East Pacific	0.1	**-0.35**	-0.49	0.69	0.83
West Pacific	0.09	**-0.62**	**-0.7**	-0.33	0.69
South Pacific	-0.1	-0.24	-0.11	0.97	0.98
North Atlantic	-0.19	-0.14	-0.17	0.99	0.92
Tropical Atlantic	**0.39**	**0.38**	0.1	-0.10	0.63
South Atlantic	0.0	0.04	0.01	0.52	0.65
Tropical Indian	**0.36**	0.09	0.05	0.93	0.78
South Indian	**0.32**	0.25	0.07	0.94	0.95
Southern Ocean	0.23	0.11	-0.08	0.89	0.91
Global total	0.3	-0.07	-0.24	0.95	0.58
Table S4. Mean model-observation bias at different atmospheric layers for individual aircraft observations sites for their available period. Biases greater than ±2 ppm are marked in red, and those greater than ±1 ppm are marked in blue. Model simulation only for ensm fluxes are used.

Site name	LT (0-2 Km)	MT (3-5 Km)	UT (6-8 Km)	All (0-8 Km)								
	Mean Bias (ppm)	# of data points	Mean Bias (ppm)	# of data points	Mean Bias (ppm)	# of data points	Mean Bias (ppm)	# of data points				
co2_aao_aircraft-pfp_1_allvalid	0.11	1442	0.48	784	nan	0	0.28	2810				
co2_above_aircraft-insitu_1_allvalid	0.1	44443	1.31	27232	nan	0	0.77	95415				
co2_above_aircraft-pfp_1_allvalid	-0.16	193	1.92	74	nan	0	0.75	344				
co2_acg_aircraft-insitu_1_allvalid	-0.87	4251	1.32	1683	2.23	4310	0.9	14313				
co2_acg_aircraft-pfp_1_allvalid	-0.22	675	1.03	264	0.91	296	0.43	1520				
co2_act_aircraft-insitu_428_allvalid-b200	-0.47	198597	0.34	81425	-0.57	17218	-0.17	347177				
co2_act_aircraft-insitu_428_allvalid-c130	-0.1	122769	0.34	87700	-0.09	40766	0.06	347919				
co2_act_aircraft-pfp_1_allvalid-b200	-0.95	1987	0.39	563	-0.3	123	-0.49	3022				
co2_act_aircraft-pfp_1_allvalid-c130	-0.14	1451	0.58	614	-0.04	240	0.1	2897				
co2_aia_aircraft-flask_2_represe	-0.14	160	0.01	82	0.1	51	-0.05	353				
------------------------------	-----	-----	-----	-----	-----	-----						
co2_alf_aircraft-pfp_26_repre	-0.06	333	0.01	245	nan	0	-0.09	684				
ntative												
co2_aoa_aircraft-flask_19_all	-0.04	206	-0.18	237	-0.03	1161	-0.04	2500				
valid												
co2_arcpac2008_aircraft-insi	0.01	7489	-1.13	6146	-0.49	3493	-0.66	22586				
t_114_allvalid												
co2_arctas_aircraft-insitu_4	-1.25	17529	0.07	10376	0.42	9382	-0.38	46730				
2_allvalid-dc8												
co2_bgi_aircraft-pfp_1_allv	-0.99	71	0.23	93	-0.08	89	-0.13	334				
alid												
co2_bne_aircraft-pfp_1_allv	-0.46	259	-0.08	248	-0.45	218	-0.28	972				
alid												
co2_brz_aircraft-insitu_20_all	-0.31	77277	1.82	2778	nan	0	0.11	100259				
valid												
co2_calnex2010_aircraft-insi	-3.66	29604	-0.19	4234	0	40	-2.7	39366				
t_114_allvalid												
co2_car_aircraft-pfp_1_allv	-1.33	138	0	2548	-0.01	1964	-0.07	6698				
alid												
co2_cma_aircraft-pfp_1_allv	-1.09	803	0.41	541	-0.11	546	-0.28	2610				
alid												
co2_cob2003b_aircraft-insitu	0.45	5228	0.95	3973	0.38	4122	0.66	16692				
59_allvalid												
co2_cob2004_a	-0.6	18052	1.21	10328	1.75	11583	0.82	50688				
Aircraft-insitu_59_allvalid	co2_cob_aircraft-flask_1_allvalid	co2_cob_aircraft-insitu_59_allvalid	co2_cob_aircraft-pfp_1_allvalid	co2_con_aircraft-flask_42_allvalid	co2_con_aircraft-insitu_42_allvalid	co2_crv_aircraft-pfp_1_allvalid	co2_dc3_aircraft-insitu_428_allvalid	co2_dc3_aircraft-insitu_428_allvalid-dc8	co2_discover-aq_aircraft-insitu_428_allvalid-c130-co	co2_discover-aq_aircraft-insitu_428_allvalid-p3b-ca	co2_discover-aq_aircraft-insitu_428_allvalid	
---------------------------	----------------------------------	-----------------------------------	-------------------------------	----------------------------------	-----------------------------------	-------------------------------	-----------------------------------	-----------------------------------	-----------------------------------	-----------------------------------	-----------------------------------	
	-0.78	61	-1.03	18	-0.56	1	-0.54	108				
	2.53	17434	1.09	16319	0.95	8037	1.52	55783				
	1.39	68	0.27	73	0.69	30	0.7	227				
	-0.22	9	-0.34	14	-0.32	26	-0.31	65				
	-1.23	504283	-0.39	670363	-0.25	631220	-0.55	2449936				
	-2.59	1601	0.95	107	nan	0	-1.68	2103				
	0.6	6800	-0.72	5511	-1.21	3656	-0.36	21178				
	1.64	1066	-2.33	3711	-2.13	4074	-1.7	12459				
	-9.47	5968	-0.44	8304	-1.19	301	-3.57	21114				
	-5.82	18973	-0.46	640	nan	0	-4.2	26822				
	-7.43	8194	-0.81	8840	-0.55	49	-3.5	30057				
Dataset	co2_campaign	Observation	Measurement	co2	Observation	Measurement	co2	Observation	Measurement	co2	Observation	Measurement
-------------------------------	-------------------------------	-------------	-------------	-----	-------------	-------------	-----	-------------	-------------	-----	-------------	-------------
insitu_428_allvalid-p3b-co	-4.42	14239	0.43	6416	0.5	932	-2.36	25077				
co2_dnd_aircraft-pfp_1_allvalid	-0.49	547	0.18	487	0.12	438	-0.02	2075				
co2_eco_aircraft-insitu_1_allvalid	-2.19	26197	-0.31	1463	nan	0	-1.95	30468				
co2_esp_aircraft-pfp_1_allvalid	-0.4	1772	0.37	1494	nan	0	0.08	4563				
co2_etal_aircraft-pfp_1_allvalid	-0.47	1082	0.56	638	0.59	276	0.12	3184				
co2_fli_aircraft-pfp_1_allvalid	-0.18	12	0.39	51	nan	0	0.17	90				
co2_fwi_aircraft-pfp_1_allvalid	-0.39	79	0.29	102	0.15	95	0.17	361				
co2_gsf_aircraft-insitu_430_allvalid	0.38	5903	0.8	11968	0.81	16066	0.77	43427				
co2_haa_aircraft-pfp_1_allvalid	0.03	260	-0.13	543	0.04	370	-0.07	1627				
co2_hfm_aircraft-pfp_1_allvalid	-1.08	451	0.37	392	0.15	361	-0.14	1630				
co2_hil_aircraft-pfp_1_allvalid	-0.48	593	-0.2	727	-0.36	672	-0.31	2622				
co2_hip_aircraft-insitu_59_allvalid	-0.14	21818	0.42	19025	0.31	18172	0.21	77048				
co2_iagosc_caribic_aircraft-flask_457_allvalid	1.97	2	-0.19	29	-0.16	29	-0.11	74				
---	------	------	------	------	------	------						
lid												
co2_iagos-caribic_aircraft-insitu_457_allvalid	-1.18	993	0.58	1768	0.65	6053						
co2_intex-b_aircraft-insitu_428_allvalid	-0.45	1692	-0.27	1327	-0.48	1118						
co2_intex-na_aircraft-insitu_428_allvalid	2.56	14469	1.61	7889	1.55	7626						
co2_inx_aircraft-pfp_1_allvalid	-2.56	238	0.11	12	nan	0						
co2_korus-aq_aircraft-insitu_428_allvalid	-3.84	34197	-0.08	5307	-0.56	9006						
co2_lef_aircraft-pfp_1_allvalid	-0.29	1884	0.25	1115	nan	0						
co2_mci_aircraft-pfp_1_allvalid	-1.29	65	-0.5	10	nan	0						
co2_mrc_aircraft-pfp_1_allvalid	0.15	58	-0.32	1	nan	0						
co2_nha_aircraft-pfp_1_allvalid	-0.9	1373	0.45	789	0.06	536						
co2_oil_aircraft-pfp_1_allvalid	-0.05	87	0.51	113	0.11	106						
co2_orc_aircraft-insitu_3_allvalid-d-merge10	-0.14	8027	-0.16	3635	-0.04	3911						
co2_pfa_aircraft-pfp_1_allvalid	0.08	1152	0.41	1327	0.51	781						
co2_rba-b_aircraft-pfp_1_allvalid	-0.66	334	-0.47	231	nan	0						
pfp_26_representative												
----------------------	---	---	---	---	---	---						
co2_rta_aircraft-pfp_1_allvalid	0.18	437	0.03	792	0.12	332	0.06	2235				
co2_sam_aircraft-pfp_1_allvalid	-0.68	35	-1.31	29	-0.59	23	-1.08	118				
co2_san_aircraft-pfp_1_allvalid	0.3	11	-0.26	90	nan	0	-0.3	154				
co2_san_aircraft-pfp_26_representative	-0.82	1309	-0.31	719	nan	0	-0.66	2458				
co2_sca_aircraft-pfp_1_allvalid	-0.84	525	-0.02	811	-0.32	746	-0.24	2892				
co2_seac4rs_aircraft-insitu_428_allvalid-ER2	0.82	4	1.1	233	0.54	210	0.81	590				
co2_seac4rs_aircraft-insitu_428_allvalid-dc8	1.03	18802	0.09	6688	0.69	6991	0.75	39914				
co2_senex2013_aircraft-insitu_114_allvalid	0.9	30012	1.04	4440	1.1	467	0.88	39610				
co2_sgp_aircraft-pfp_1_allvalid	-0.22	2374	-0.25	1623	1.08	9	-0.23	5513				
co2_songnex2015_aircraft-insitu_114_allvalid	0.04	20404	-0.11	5418	-0.78	4398	-0.1	42549				
co2_start08_aircraft-insitu_59_allvalid	-0.85	1421	-0.46	2548	-0.54	1985	-0.57	8107				
co2_tab_aircraft	-1.98	228	-0.48	163	nan	0	-1.33	463				
pfp_26_representative												
------------------------	---	---	---	---	---	---	---	---	---			
co2_texas2006_aircraft-insitu_114_allvalid	-4.48	28586	0.5	2046	nan	0	-3.87	32653				
co2_tgc_aircraft-pfp_1_allvalid	-0.65	382	-0.34	694	-0.36	594	-0.37	2337				
co2_thd_aircraft-pfp_1_allvalid	-1.06	598	0.32	589	-0.05	535	-0.15	2329				
co2_tom_aircraft-insitu_1_allvalid	0.02	25586	0.13	15139	0.17	17915	0.1	74184				
co2_trace-p_aircraft-insitu_428_allvalid-dc8	-0.07	11133	-0.18	7003	-0.34	6097	-0.2	30887				
co2_trace-p_aircraft-insitu_428_allvalid-p3b	0.32	16956	-0.15	13902	0.1	6935	0.04	50121				
co2_ulb_aircraft-pfp_1_allvalid	0.36	169	0.17	223	nan	0	0.28	546				
co2_wbi_aircraft-pfp_1_allvalid	-0.4	532	0.01	653	-0.36	617	-0.22	2366				
Testing the effect of annually repeating G matrix vs interannually varying G matrix:

This quasi-IAV meteorology approach was done first in Patra et al. (2016) followed by Chandra et al. (2021).

In our inversion, monthly-mean regional a posteriori fluxes (\vec{s}) are based on the observation data (\vec{d}_{obs}) and model simulation (\vec{d}_{ACTM}) of a priori fluxes (\vec{s}_0) (Eq. 2). This equation shows that the a priori model simulation d_{ACTM} is the most important term for the correction (increase or decrease) of the a priori fluxes. Green's function determines the magnitude of flux corrections. Noting the importance of the ($d_{\text{obs}} - d_{\text{ACTM}}$) term compared to J, while the latter is 84 (inversion region) $\times 12$ (months per year) $\times 4$ years (pulse duration) times more computationally expensive, we have decided to put more focus on d_{ACTM}, e.g., testing various emission combinations, transport sensitivity in this study. The figure below shows an example of the “CO$_2$” inversion cases using interannually varying (IAV) meteorology (IAV for both d_{ACTM} and J-matrix) and quasi-IAV meteorology (IAV for both d_{ACTM} but repeating 2009 J-matrix). This plot clearly shows that the flux anomalies can be consistently estimated by the inverse modelling by our quasi-IAV approach. This success is achieved because the forward simulation of prior fluxes contains most of the spatial and temporal variations, and the correction fluxes by inversions are only incremental to the priors for most regions (Fig. 8, Fig. S1).

Figure S1: Regional CO$_2$ fluxes anomalies, similar to Fig. 6, for showing the effect of inter-annually varying J-matrix (J-IAV) vs annually repeating J-matrix corresponding to the year 2009 (J-2009). This checking was conducted using the inversion results submitted to GCP-2018 budget (Le Quéré et al., 2018). Please note that the PFU, MDU and other model setups were differently set at that time and the flux results cannot be compared with those in the present study.
Figure S2. Seasonal variations in monthly-mean CO$_2$ fluxes at regional scales over 15 land (upper 4 rows) and 11 ocean (lower 3 rows) regions, along with global land and ocean totals. Note that all panels use different y-scale. The seasonal cycles only over a few (ill-constrained) regions are significantly corrected by inversions.
Fig S3. Mean CO₂ fluxes and spread (±1σ) among 16 inversion cases over global, three aggregated latitudinal bands and 15 aggregated land regions. The bars in the down-facing directions represent carbon sinks, whereas the bars in the upward-facing directions represent carbon source.
Fig S4. Mean CO$_2$ fluxes and spread among 16 inversion cases ($\pm 1\sigma$) over global, three aggregated latitudinal bands and 11 aggregated ocean regions. The bars in the down-facing directions represent carbon sinks, whereas the bars in the upward-facing directions represent carbon source.
Figure S5: Mismatch between simulated and measured CO2 during HIPPO aircraft campaigns. The observed and modelled data are binned and averaged at intervals of 2.5° latitude and 500-meter altitude. The grey area shows no flights at those altitudes and altitudes. Modelled mole fractions were simulated from the three posterior flux cases. The upper, middle, and the bottom row show simulations for “gc3t”, “gvjf”, and “ensm” cases, respectively. The correlation coefficients (r), mean bias (MB), and root-mean-square error between observations and simulations are also shown in the title.
Figure S6: Same as S2, but for ATom aircraft campaigns.
Figure S7. Validation of simulated CO$_2$ mixing ratios using regular NOAA aircraft profiles over 16 sites (see the location in the middle panel’s inset map). The top panel shows bias (model minus observations) as a function of altitude, and the middle shows the mean bias in the free troposphere (defined between 2 and 8 Km) as a function of latitude. The bottom panel shows the monthly mean bias in the free troposphere over all the latitudes. The contour plots are shown for the “ensm” prescribed flux case, while other plots are shown for all three prescribed emission cases.
Figure S8. Validation of simulated CO₂ mixing ratios using regular NOAA aircraft profiles over two sites located in boreal North America (see also Figure xx for the location of profiles). The left panel shows the bias (model minus observations) as a function of altitude, and the right panel shows the scatter plot between the observed and modelled vertical gradient using three prescribed emissions.
Figure S9. Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four latitude bands at four altitude ranges in three periods: (a) 2001–2010, (b) 2011–2020, (c) 2001–2020. The simulations from three inversion cases are compared to independent CO$_2$ measurements made onboard aircraft over many places of the world between 2 and 8 km above sea level. Aircraft measurements archived in the Cooperative Global Atmospheric Data Integration Project (CGADIP, 2020) from sites, campaigns, or programs that cover at least 9 months between 2001 and 2020, and that have not been assimilated have been used to compute the biases of the differences in four 45° latitude bins. Land and ocean data are used without distinction.

References:

Chandra, N., Patra, P. K., Bisht, J. S. H., Ito, A., Umezawa, T., Saigusa, N., Morimoto, S., Aoki, S., JANSSENS-MAENHOUT, G., Fujita, R., Takigawa, M., Watanabe, S., SAITOH, N. and Canadell, J. G.:
Emissions from the Oil and Gas Sectors, Coal Mining and Ruminant Farming Drive Methane Growth over the Past Three Decades, J. Meteorol. Soc. Japan. Ser. II, 99, doi:10.2151/jmsj.2021-015, 2021.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Havard, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S. and Zheng, B.: Global Carbon Budget 2018, Earth Syst. Sci. Data, 10(4), 2141–2194, doi:10.5194/essd-10-2141-2018, 2018.

Patra, P. K., T. Saeki, E. J. Dlugokencky, K. Ishijima, T. Umezawa, A. Ito, S. Aoki, et al.: Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012), J. Meteorol. Soc. Japan. Ser. II, 94, 91–113. https://doi.org/10.2151/jmsj.2016-006.