THE INVERSION METHOD OF FOUR-BIT BOOLEAN SAC CRYPTOTRANSFORMS

Fedotova-Piven I. M. – PhD, Assistant Professor, Assistant Professor of the Department of Information Security and Computer Engineering, Cherkassy State Technological University, Cherkassy, Ukraine.

Rudnytskyi V. M. – Dr. Sc., Professor, Head of the Department of Information Security and Computer Engineering, Cherkassy State Technological University, Cherkassy, Ukraine.

Piven O. B. – PhD, Assistant Professor, Professor of the Department of Information Security and Computer Engineering, Cherkassy State Technological University, Cherkassy, Ukraine.

Myroniuk T. V. – PhD, Assistant Professor of the Department of Information Security and Computer Engineering, Cherkassy State Technological University, Cherkassy, Ukraine.

ABSTRACT

Context. Nonlinear systems of Boolean functions play a prominent role in the protection of cryptosystems. The creation and use of new four-bit cryptographic transformations with nonlinear Boolean functions that have the property of strict avalanche criterion is an actual task for increasing the reliability of information protection systems.

Objective. The goal of the work is creating a method for obtaining inverse four-bit cryptographic transformations with the strict avalanche criterion property, which contain balanced Boolean functions only with the operations of inversion and addition modulo two.

Method. A method is proposed for obtaining inverse four-bit cryptographic transformations with the strict avalanche criterion property, each of which contains balanced Boolean functions only with the operations of inversion and addition modulo two. The method simplifies the process of finding inverse cryptographic transformations by creating a class of thirty balanced basic Boolean functions with the required predefined limitations and properties and for finding, within this class, the basic Boolean functions that make up the inverse cryptographic transformation.

Results. The effectiveness of the method is shown for obtaining two inverse four-bit cryptographic transformations with the property of a strict avalanche criterion from two direct four-bit cryptographic transformations with the property of a strict avalanche criterion.

Conclusions. For the first time, there was proposed a method for obtaining inverse four-bit cryptographic transformations with the strict avalanche criterion property for balanced Boolean functions containing two logical operations (inversion and addition modulo two) to ensure reliable information protection. This method is a method of selecting the already existing basic Boolean functions from a predetermined set of balanced basic Boolean functions for direct and inverse cryptographic transformations, whereas the existing methods of searching for inverse cryptographic transformation are methods for calculating each element of the Boolean functions for the inverse cryptographic transformation. The method can be extended to a larger even number of arguments of the balanced Boolean functions of cryptographic transformations to increase the cryptographic resilience.

KEYWORDS: Boolean functions, inverse cryptographic transformation, balancedness, strict avalanche criterion, inversion, addition modulo 2.

ABBREVIATIONS

BBF is a basic Boolean function;
BF is a Boolean function;
CA is a cryptographic algorithm;
CT is a cryptographic transformation;
DCT is a direct cryptographic transformation;
FPBE is a Forward Problem of Boolean equations;
HW is a Hamming weight;
ICT is a inverse cryptographic transformation;
IPBE is a Inverse Problem of Boolean equations;
SAC is a strict avalanche criterion.

NOMENCLATURE

¬ is a sign of the Boolean operation inversion (complementation);
Θ is a sign of the Boolean operation addition modulo 2 (XOR – exclusive OR);
B_{n,n} is a set of all Boolean functions with n inputs and n outputs;
f_{i}(x_{1},...,x_{n}) is the i-th Boolean function with n inputs x_{1},...,x_{n} and 1 output;
F is a Boolean function with n inputs and n outputs;
F_{pi}^{r} is the values of the i-th basic Boolean function of the inverse cryptographic transformation F^{r} ;
f_{j}(x_{1},...,x_{4}) is the j-th basic Boolean function from the set of basic Boolean functions (Table 1);
wt(f) is a Hamming weight of the Boolean function f(x_{1},...,x_{n}) .

INTRODUCTION

Nowadays, the number of users of the Internet and digital mobile networks (such as GSM) is more than 4 billions [1], the amount of data transmission is huge. Therefore, data security plays a crucially important role in this data transmission. One of the main ways to ensure the reliability and safety of information is effective methods of encryption/decryption of data [2] with high cryptographic resilience. Today, computationally resilient cryptosystems generally protect information in a satisfactory way, but quantum computers with computing power far beyond the computing power of any classical com-
BFs play a prominent role in the security of cryptosystems [6]. Their most important cryptographic applications include the analysis and design of S-boxes in block ciphers and the construction of filter/combining functions in stream ciphers [7]. Constructing optimal S-boxes has been a prominent topic of interest for security experts [8]. Also, each reversible BF can be implemented as a reversible circuit [9], whereas reversible circuits are indispensable in error correction [10, 11].

Cryptography of a broad class of CAs is determined by their correspondence to some special criteria of bit transform BFs being implemented in these algorithms [12]. One of such criteria is a SAC [12], that is whenever a single input bit is complemented, each of the output bits changes with a probability of one half [13]. This is essential to diminish any correlation between input and output combinations and to fail to leak information [14]. This also means that there are no functions with fewer bits, that is a good approximation to the given function and the use of which would significantly reduce the amount of work required to decode the message [15]. That is why the design problem of the Boolean SAC-functions is actually and practically important [16].

The object of study is the process of constructing DCT and ICT of BFs defined by systems for the number of arguments 4 and more.

The subject of study is the methods of constructing ICTs of BFs by given DCTs of BFs that have the property of a SAC and contain only the operations of inversion and addition modulo two.

The purpose of the work is creating a method for obtaining inverse four-bit CTs with the SAC property, which contain balanced BFs only with the operations of inversion and addition modulo two for increasing the reliability of information protection systems. The method must have an applicability property on a larger even number of bits.

1 PROBLEM STATEMENT

It is important to study four-bit, eight-bit BFs in public key cryptography [17, 18]. The formalized procedure for construction of four-bit Boolean SAC-functions with the operations of inversion is proposed in [16]. But CTs with four-bit Boolean SAC-functions with the operations of inversion and addition modulo two are insufficiently investigated and remains relevant. Mathematical statement: we have Boolean multiple-output function $F^d \in B_{4,4}$ with 4 inputs and 4 outputs with the SAC property and bijection property (there are no two or more different sets of input values of $F^d \in B_{4,4}$ that corresponds to the same set of the output values). The function $F^d \in B_{4,4}$ contain balanced BFs only with the operations of inversion and addition modulo two. The function $F^d \in B_{4,4}$ forms a direct four-bit CT. It is required to receive a Boolean multiple-output function $F^r \in B_{4,4}$ with 4 inputs and 4 outputs (an ICT). All the sets of input values of the function $F^d \in B_{4,4}$ and all the sets of the output values of the function $F^r \in B_{4,4}$ must be the same, and all the sets of the output values of the function $F^d \in B_{4,4}$ and all the sets of the input values of the function $F^r \in B_{4,4}$ also must be the same.

2 REVIEW OF THE LITERATURE

The problem of finding the roots of a system of nonlinear BFs is analytically intractable and therefore provides the basis for many CAs [12]. The FPBE consists of finding all solutions of a system of Boolean equations, whereas the IPBE aims at reconstructing the mathematical formulae of the system of Boolean equations for given the set of solutions. The FPBE has been extensively treated in the literature [19–22] while the inverse problem seems to have received no or little attention [23].

In papers [23–26], various methods for obtaining inverse Boolean functions with n inputs and 1 output are described for given direct Boolean functions with n inputs and 1 output, but inverse Boolean functions with n inputs and n outputs for given direct Boolean functions with n inputs and n outputs in these papers are not considered.

The paper [30] describes invertible Boolean functions of three variables. The papers [27, 28] describe the properties of the Boolean function with n inputs and n outputs, but the concrete method or algorithm for obtaining the inverse Boolean functions with n inputs and n outputs is not given. Other publications containing a concrete algorithm for obtaining an ICT using a given DCT containing four or more Boolean functions with four or more Boolean variables and two or more different Boolean operations are unknown to the authors of this article.

The existing methods [23–26] of searching for an inverse Boolean functions are methods for calculating each element of the BFs of the inverse Boolean functions for given direct Boolean functions and this situation needs the development of more effective methods for obtaining ICT for given DCT.

3 MATERIALS AND METHODS

We assume that everywhere in the article $n \geq 1, n \in \mathbb{N}$ and $i \in \{1, \ldots, n\}$.

Let $B = \{0;1\}$ denote the Boolean values and $B_{n,n}$ [27] denote the set of all BFs with n inputs and n outputs, where

$$B_{n,n} \stackrel{\text{def}}{=} \{ F \mid F : B^n \to B^n \}. \quad (1)$$
We write $B_n = B_{n,1}$ for each n and assume that each $f_i(x_1,\ldots,x_n) \in B_n$ for each i is represented by a propositional formula over the variables $\{x_1,\ldots,x_n\}$ [27]. Conversely, any n-tuple t of BFs over variables $\{x_1,\ldots,x_n\}$ corresponds to a unique BF $F_t \in B_{n,n}$ [27]. We assume that each function $F \in B_{n,n}$ is represented as a tuple

$$F = (f_1(x_1,\ldots,x_n), \ldots, f_n(x_1,\ldots,x_n)),$$

where $f_i(x_1,\ldots,x_n) \in B_n$ for each i and hence for each $F(x) = (f_1(x), \ldots, f_n(x))$ for each $x \in B^n$ [27].

As known [28], function $F : B^n \to B^n$ is called reversible iff F is bijective, i.e., if each input pattern uniquely maps to an output pattern, and vice versa. Otherwise, it is called irreversible.

Let a DCT and ICT are Boolean multiple-output functions $F^d \in B_{n,n}$ and $F^r \in B_{n,n}$ respectively with n inputs and n outputs. Then not every DCT that satisfies the SAC, has a pertinent ICT. For example, for a DCT $f(x_1,\ldots,x_4) \in B^4$ the ICT because two different sets (for example, a direct set $x_1 = x_2 = x_3 = x_4 = 0$ and an inverse set $x_1 = x_2 = x_3 = x_4 = 1$) of the input values

$$F^d = \begin{bmatrix}
 x_1 \oplus x_2 \\
 x_1 \oplus x_3 \\
 (x_1 \oplus x_2) \\
 (x_2 \oplus x_4)
\end{bmatrix},$$

(2)

of the DCT corresponds to the same set of the output values – the results of the operation (2):

$$F^r = \begin{bmatrix}
 0 \\
 0 \\
 1 \\
 1
\end{bmatrix},$$

and therefore, the property of one-to-one correspondence (bijection) of the ICT $F^r \in B_{n,n}$ is lost.

As known [29], the HW $\text{wt}(f)$ of the BF $f(x_1,\ldots,x_n) \in B^n$ is the number of the nonzero terms in the truth table of the BF:

$$\text{wt}(f) = \sum_{i=1}^{n} x_i.$$

As known [29], the BF $f(x_1,\ldots,x_n) \in B^n$ is balanced if its HW $\text{wt}(f) = 2^n-1$, i.e. the output column of this BF in the truth table contains equal number of 0’s and 1’s.

To date, the problem of the total number of balanced Boolean SAC-functions determination for n variables remains open [16]. The search area of the roots of systems of Boolean equations may be decreased significantly by application of different expedients based on taking into account the special features of BFs constructing the system of nonlinear Boolean equations [12].

We will consider four-bit CTs that satisfy a SAC and are constructed using only Boolean operations of the inversion and addition modulo 2. To synthesize both DCT and ICT, we create a set of BBFs $f_j(x_1,\ldots,x_4) \in B^4$, $j \in \{1,\ldots,30\}$ with such restrictions:

1) all the BBFs from Table 1 are balanced, because the HW of each of them is $2^3 = 8$, that is, a half of the number 16 - the length of the vector of values of each BBF;

2) each BBF from Table 1 contains from one to four variables x_1,\ldots,x_4, and the same variable is included only once in each BBF of the CT;

3) all the BBFs from Table 1 must have noncoinciding sets of values (see Table 2).

We will assume that the BBFs of an ICT will be selected from the same set of BBFs from Table 1. Functions $f_1(x_1,\ldots,x_4), \ldots, f_{30}(x_1,\ldots,x_4)$ are a superposition of variables and operations of inversion and addition modulo 2. Functions $f_{31}(x_1,\ldots,x_4) = 0$ and $f_{32}(x_1,\ldots,x_4) = 1$ for any values of x_1,\ldots,x_4 are not listed in Table 1, because they do not contain operations symbols over variables, that is, there is no explicitly indicated mathematical form of the function.

To construct ICTs that satisfy the SAC, we apply the following method that defines the BBFs of the ICT over

Table 1 – Basic Boolean functions	$f_i(x_1,\ldots,x_4), \ldots, f_{30}(x_1,\ldots,x_4)$	
1) $f_1 = x_1$	11) $f_{11} = x_1 \oplus x_4$	21) $f_{21} = x_1 \oplus x_2 \oplus x_3$
2) $f_2 = x_2$	12) $f_{12} = x_2 \oplus x_3$	22) $f_{22} = x_1 \oplus x_2 \oplus x_4$
3) $f_3 = x_3$	13) $f_{13} = x_2 \oplus x_4$	23) $f_{23} = x_1 \oplus x_3 \oplus x_4$
4) $f_4 = x_4$	14) $f_{14} = x_3 \oplus x_4$	24) $f_{24} = x_2 \oplus x_3 \oplus x_4$
5) $f_5 = \neg(x_1)$	15) $f_{15} = \neg(x_1 \oplus x_2)$	25) $f_{25} = x_3 \oplus x_2 \oplus x_3 \oplus x_4$
6) $f_6 = \neg(x_2)$	16) $f_{16} = \neg(x_1 \oplus x_3)$	26) $f_{26} = \neg(x_1 \oplus x_2 \oplus x_3)$
7) $f_7 = \neg(x_3)$	17) $f_{17} = \neg(x_1 \oplus x_4)$	27) $f_{27} = \neg(x_1 \oplus x_2 \oplus x_4)$
8) $f_8 = \neg(x_4)$	18) $f_{18} = \neg(x_2 \oplus x_3)$	28) $f_{28} = \neg(x_1 \oplus x_3 \oplus x_4)$
9) $f_9 = x_1 \oplus x_2$	19) $f_{19} = \neg(x_2 \oplus x_3)$	29) $f_{29} = \neg(x_2 \oplus x_3 \oplus x_4)$
10) $f_{10} = x_1 \oplus x_3$	20) $f_{20} = \neg(x_3 \oplus x_4)$	30) $f_{30} = \neg(x_1 \oplus x_2 \oplus x_3 \oplus x_4)$

© Fedotova-Piven I. M., Rudnytskyi V. M., Piven O. B., Myroniuk T. V., 2019
DOI 10.15588/1607-3274-2019-4-19

201
the whole set of values at the input and output of the BBFs of DCT.

1. Let’s create Table 2 (truth table) of the values of the BBFs from Table 1 for all possible sets of values of the variables $x_1, ..., x_4$.

2. Let’s create a Table 3 which contains only those BBFs that give the value of 0 for a given set of values $x_1, ..., x_4$.

3. Let’s create a Table 4 which contains only those BBFs that give the value of 1 for a given set of values $x_1, ..., x_4$.
Let’s take a DCT with the property of the SAC, for example

\[F_1^d = \begin{bmatrix} \langle x_1 \oplus x_2 \oplus x_4 \rangle \\ \langle x_1 \oplus x_2 \oplus x_3 \rangle \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} f_27 \\ f_26 \\ f_1 \\ f_2 \end{bmatrix} \quad (3) \]

and we will find ICT \(F_1^r \) for this CT. To do this, create a Table 5 from Table 2. In the left part of Table 5, we write the input values of the variables \(x_1, \ldots, x_4 \), and in the right part of Table 5 the values of the four BBFs of the DCT. We take functions and their values from Table 2.

Table 5 – Sets of values of variables and their pertinent values of the BBFs of the DCT

The values of the variables	The values of the BBFs of a DCT \(F_1^d \)	\(x_1=x_2=x_3=x_4=f_1 \)	\(x_1=x_3=x_4=f_1 \)	\(x_1=x_4=f_1 \)	\(x_2=f_1 \)
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0
1	1	1	1	1	1

5. Since the input values of any DCT are the output values of the pertinent ICT (if it exists), and the output values of the DCT are the input values of the ICT, we will change the places of the left and the right side of Table 5, that is, the set of input and output values of the DCT \((F_{p1}^r, F_{p2}^r, F_{p3}^r, F_{p4}^r) \) – known sets of values of the pertinent four unknown BBFs of the ICP. The \(F_{p1}^r \) is the \(i \)-th part of the \(F_1^r \) ∈ \(B_{n,n} \) . As a result, we obtain Table 6.

Table 6 – Sets of values of variables and their pertinent values of the BBFs of the ICT

The values of variables	The values of unknown BBFs of the ICT \(F_1^r \)						
\(x_1=f_1 \)	\(x_2=f_2 \)	\(x_3=f_3 \)	\(x_4=f_4 \)	\(F_{p1}^r \)	\(F_{p2}^r \)	\(F_{p3}^r \)	\(F_{p4}^r \)
1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
1	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

6. Let’s create a Table 7 where we indicate those BBFs, whose calculation result is equal to the value \(F_{p1}^r \) of the first BBF of the ICT \(F_1^r \) for each set of values \(x_1, \ldots, x_4 \).

Table 7 – All possible BBFs that give the values of the first BBF \(F_{p1}^r \) of the ICT \(F_1^r \)

The values of variables \(x_1=x_2=x_3=x_4 \)	\(F_{p1}^r \) (the values of the first BBF of the ICT \(F_1^r \) for each specified values \(x_1, \ldots, x_4 \) for each row)	The BBFs from the Table 1 that give the value equal to the value of the first BBF \(F_{p1}^r \) of the ICT \(F_1^r \) for each specified values \(x_1, \ldots, x_4 \) for each row
1	1	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
0	0	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
1	0	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
0	1	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
1	1	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
0	0	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
1	1	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
0	0	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)
1	1	\(f_1, f_2, f_3, f_4, f_5, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29} \)

© Fedotova-Piven I. M., Rudnytskiy V. M., Piven O. B., Myroniuk T. V., 2019
DOI 10.15588/1607-3274-2019-4-19

203
It can be seen from Table 7 that only the BBF \(f_3 \) from the set of functions of the Table 1 satisfies all the values \(F_{p1}^r \) from the Table 7. Therefore, \(f_3 = F_{p1}^r \) is the first BBF of the ICT \(F_1^r \).

7. Similarly, we create Table 8 for the second BBF \(F_{p2}^r \) of the ICT \(F_1^r \).

It can be seen from Table 8 that only the BBF \(f_4 \) from the set of functions of the Table 1 satisfies all the values \(F_{p2}^r \) from the Table 8. Therefore, \(f_4 = F_{p2}^r \) is the second BBF of the ICT \(F_1^r \).

\(x_1 = f_1 \)	\(x_2 = f_2 \)	\(x_3 = f_3 \)	\(x_4 = f_4 \)	\(F_{p2}^r \) (the values of the second BBF of the ICT \(F_1^r \))
1	0	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	1	0	0

8. Similarly, we create Table 9 for the third BBF \(F_{p3}^r \) of the ICT \(F_1^r \).

It can be seen from Table 9 that only the BBF \(f_{29} \) from the set of functions of the Table 1 satisfies all the values \(F_{p3}^r \) from the Table 9. Therefore, \(f_{29} = F_{p3}^r \) is the third BBF of the ICT \(F_1^r \).

9. Similarly, we create Table 10 for the forth BBF \(F_{p4}^r \) of the ICT \(F_1^r \).

\(x_1 = f_1 \)	\(x_2 = f_2 \)	\(x_3 = f_3 \)	\(x_4 = f_4 \)	\(F_{p4}^r \) (the values of the forth BBF of the ICT \(F_1^r \))
1	1	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	1	0	0

\(x_1 = f_1 \)	\(x_2 = f_2 \)	\(x_3 = f_3 \)	\(x_4 = f_4 \)	\(F_{p3}^r \) (the values of the third BBF of the ICT \(F_1^r \))
1	1	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	1	0	0

\(x_1 = f_1 \)	\(x_2 = f_2 \)	\(x_3 = f_3 \)	\(x_4 = f_4 \)	\(F_{p4}^r \) (the values of the forth BBF of the ICT \(F_1^r \))
1	1	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	1	0	0

© Fedotova-Piven I. M., Rudnytskii V. M., Piven O. B., Myroniuk T. V., 2019
DOI 10.15588/1607-3274-2019-4-19
204
It can be seen from Table 10 that only the BBF \(f_{28} \) from the set of functions of the Table 1 satisfies all the values \(F_{p4}^r \) from the Table 10. Therefore, \(f_{28} = F_{p4}^r \) is the forth BBF of the ICT \(F_1^r \).

As a result, the ICT for the DCT (3) has a view:

\[
F_1^r = \begin{bmatrix}
F_3 & F_4 & F_{29} & F_{28}
\end{bmatrix} = \begin{bmatrix}
x_3 & x_4 & \neg(x_2 \oplus x_3 \oplus x_4) & \neg(x_1 \oplus x_2 \oplus x_4)
\end{bmatrix}
\]

This method provides the construction of ICTs for four variables and two logical operations (inversion and addition modulo 2), but can be extended to a larger even number of variables.

4 EXPERIMENTS

We prove that the resulting CT (4) is indeed the inverse of the CT (3).

As known, the composition \(f \circ g \) of BBFs \(f(x_1, \ldots, x_n) \in B^n \) and \(g(x_1, \ldots, x_n) \in B^n \) is a function defined by \((f \circ g)(x_1, \ldots, x_n) = f(g(x_1, \ldots, x_n)) \).

As known, the BBF with \(n \) inputs and \(m \) outputs

\[
F(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))
\]

has the inverse BF with \(n \) inputs and \(m \) outputs

\[
F^{-1}(x_1, \ldots, x_n) = (f_1^{-1}(x_1, \ldots, x_n), \ldots, f_m^{-1}(x_1, \ldots, x_n))
\]

if the following equalities hold:

\[
F^{-1}(F(x_1, \ldots, x_n)) = F^{-1}(x_1, \ldots, x_n) = (x_1, \ldots, x_n).
\]

For DCT \(F_1^d \) from Table 11 we have

\[
F(x_1, \ldots, x_n) = (\neg(x_1 \oplus x_2 \oplus x_3), \neg(x_1 \oplus x_2 \oplus x_4), x_1, x_2)
\]

and for ICT \(F_1^r \) from Table 11 we have

\[
F^{-1}(x_1, \ldots, x_n) = (x_3, x_4, \neg(x_2 \oplus x_3 \oplus x_4), \neg(x_1 \oplus x_3 \oplus x_4)).
\]

Indeed,

\[
F_1^{-1}(F_1(x_1, \ldots, x_n)) = x_1; \quad F_2^{-1}(F_2(x_1, \ldots, x_n)) = x_2;
\]

\[
F_3^{-1}(F_3(x_1, \ldots, x_n)) = \neg(x_1 \oplus x_2 \oplus x_3 \oplus x_1 \oplus x_2);
\]

\[
F_4^{-1}(F_4(x_1, \ldots, x_n)) = \neg(x_1 \oplus x_2 \oplus x_4 \oplus x_1 \oplus x_2);
\]

Thus, \(F^{-1}(F(x_1, \ldots, x_n)) = (x_1, x_2, x_3, x_4) \).

Conversely,

\[
F_1^{-1}(F_1(x_1, \ldots, x_n)) = \neg(x_3 \oplus x_4 \oplus x_1 \oplus x_3 \oplus x_4);
\]

\[
F_2^{-1}(F_2(x_1, \ldots, x_n)) = \neg(x_3 \oplus x_4 \oplus x_2 \oplus x_3 \oplus x_4);
\]

\[
F_3^{-1}(F_3(x_1, \ldots, x_n)) = x_3; \quad F_4^{-1}(F_4(x_1, \ldots, x_n)) = x_4;
\]

Thus, \(F(F^{-1}(x_1, \ldots, x_n)) = (x_1, x_2, x_3, x_4) \).

Consequently, DCT (3) has ICT (4).
For DCT F_2^{d} we have

$$F(x_1, x_2, x_3, x_4) = \begin{bmatrix}
\neg(x_1 \oplus x_2 \oplus x_3) \\
x_1 \oplus x_2 \oplus x_3 \\
x_2 \oplus x_3 \oplus x_4 \\
\neg(x_1 \oplus x_2 \oplus x_3)
\end{bmatrix}$$ (6)

Thus, $(x_1 \oplus x_2 \oplus x_3) \oplus (x_1 \oplus x_2 \oplus x_3) = \neg(x_1 \oplus x_2)$

Indeed,

$$f_1^{-1}(f_1(x_1, x_2, x_3, x_4)) = \neg(x_1 \oplus x_2 \oplus x_4)$$

$$f_2^{-1}(f_2(x_1, x_2, x_3, x_4)) = \neg(x_1 \oplus x_2 \oplus x_4) \oplus (x_2 \oplus x_3 \oplus x_4)$$

Conversely, F_1^{d} has ICT F_2^{d}.

$$F_1^{d} = \begin{bmatrix}
(\neg(x_1 \oplus x_2 \oplus x_3) \\
x_1 \oplus x_2 \oplus x_3 \\
x_2 \oplus x_3 \oplus x_4 \\
\neg(x_1 \oplus x_2 \oplus x_3)
\end{bmatrix} = \neg(x_1 \oplus x_2 \oplus x_4)$$

For ICT F_2^{d} we have

$$F^{-1}(x_1, x_2, x_3, x_4) = ((x_1 \oplus x_2 \oplus x_4), (x_1 \oplus x_3 \oplus x_4),$$

$$\neg(x_2 \oplus x_3 \oplus x_4), (x_1 \oplus x_2 \oplus x_3)).$$

Consequently, DCT F_2^{d} (6) has ICT F_2^{d} (5).

5 RESULTS

The results of the construction by this method of two CTs are given in Table 11.

Direct CT	Inverse CT
F_2^{d}	F_1^{d}
F_2^{d}	F_1^{d}

Table 11 – The results of application of the method to selected four-bit CTs satisfying a SAC. Direct and inverse CTs satisfy the SAC

6 DISCUSSION

The existing methods of searching for an ICT are methods for calculating each element of the BBFs of the ICT, whereas proposed by us method is a method of choosing existing BBFs from a predetermined set of BBFs for a DCT and an ICT. The method can be extended to a larger even number of bits.

This method can be used to obtain other ICTs, having DCTs that have the property of SAC and for which there is an ICT.

To date, in the general case, the total number of balanced BBFs of any number of variables with different sets of logical operations on these variables and having the property of a SAC remains unknown [16]. Therefore, the problem of finding systems of balanced BBFs with an even number of variables greater than four for different sets of logical operations and having the property of SAC is a separate important scientific problem that goes beyond the scope of this article.

The article [23] presents methods that handle the inverse problem for the main types of solutions of Boolean
equations of the form \(f(x) = 0 \), where \(f(x) \): \(B \rightarrow B \) and \(B \) is an arbitrary Boolean algebra. The methods [23] are a mixture of purely-algebraic methods and map methods that utilize the variable entered Karnaugh map: (a) Subsumptive general solutions, in which each of the variables is expressed as an interval by deriving successive conjunctive or disjunctive eliminants of the original function, (b) Parametric general solutions, in which each of the variables is expressed via arbitrary parameters which are freely chosen elements of the underlying Boolean algebra and (c) Particular solutions, each of which is an assignment from the underlying Boolean algebra to every pertinent variable that makes the Boolean equation an identity.

But the application of these methods to Boolean functions of the form (1) was not considered in [23].

In the article [31] a mathematical formalism is developed, showing the connection of the inverse Boolean function of the form (1) with its corresponding direct Boolean function of the form (1). But the method of obtaining an inverse Boolean function from a direct Boolean function is not specified in [31], and the conditions for the existence of an inverse Boolean function for a given direct Boolean function are not indicated.

But the method developed in this article makes it possible to effectively find the ICT for any four-bit DCT of BFs containing only the operations of inversion and addition modulo two and satisfying the restrictions 1–3, described in section 3 of this article.

In further studies using the method described in this article, it is possible to increase an even number of variables, which will increase the nonlinearity and cryptographic resilience of CTs.

CONCLUSIONS

The urgent problem of obtaining the inversion method of four-bit Boolean SAC cryptotransforms is solved to ensure reliable information protection.

The scientific novelty of obtained results is that the method for obtaining inverse four-bit CTs with the SAC property for balanced BFs containing two logical operations (inversion and addition modulo two) is proposed for the first time.

The practical significance of obtained results is that this method is a method of selecting the already existing basic four-bit BFs from a predetermined set of balanced BBFs for direct and inverse CTs, whereas the existing methods of searching for ICT are methods for calculating each element of the BFs for the ICT.

Prospects for further research are the modifications of this method to the larger even numbers of arguments of the balanced BFs of CTs to increase the cryptographic resilience.

ACKNOWLEDGEMENTS

The authors would like to thank Vice-Rector for Research of Cherkasy State Technological University Dr. Sc., Faure Emil Vitaliyovich, the Associate Professor of the Department of Information Security and Computer Engineering of Cherkasy State Technological University Ph.D., Associate Professor Shvydkyi Valerii Vasylivych and Head of the Department of Statistics and Applied Mathematics of Cherkasy State Technological University Ph.D., Associate Professor Shcherba Anatoliy Ivanovych for fruitful discussions.

REFERENCES

1. Kemp S. Digital 2019. Essential insights into how people around the world use the Internet, mobile devices, social media, and e-commerce. [Electronic resource]. Access mode: https://wearesocial.com/global-digital-report-2019.
2. Lakhhtaria K. I. Protecting Computer Network with Encryption Technique: A Study, Communications in Computer and Information Science (UCMA 2011), 2011, Vol. 151, No. PART 2, pp. 381–390. DOI: 10.1007/978-3-642-20998-7 47.
3. Deb Nath S., Linke N. M., Figgatt C. et al. Demonstration of a small programmable quantum computer with atomic qubits, Nature, 2016, No. 536, pp. 63–66. DOI: 10.1038/nature18648.
4. Harrow A. W., Montanaro A. Quantum computational supremacy, Nature, 2017, Vol. 549, pp. 203–209. DOI: 10.1038/nature23458.
5. Smart S. E., Schuster D. I., Mazzotti D. A. Experimental data from a quantum computer verifies the generalized Pauli exclusion principle, Communications Physics, 2019, Vol. 2, No. 1, pp. 1–6. DOI: 10.1038/s42005-019-0110-3.
6. Kolokotronis N., Limniti K., Kalouptsidis N. Best Affine and Quadratic Approximations of Particular Classes of Boolean Functions, IEEE transactions on information theory, 2009, Vol. 55, No. 11, pp. 5211–5222.
7. Menezes A. J., Van Oorschot P. C., Vanstone S. A. Handbook of Applied Cryptography. USA, CRC Press, Inc. Boca Raton, 1996, 810 p.
8. Alzaidi A. A., Ahmad M., Doja M. N. at al. A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes, IEEE Access, 2018, Vol. 6, pp. 55405–55418. DOI: 10.1109/ACCESS.2018.2871557.
9. Steinbach B. Problems and New Solutions in the Boolean Domain, UK, Cambridge Scholars Publishing, Newcastle upon Tyne, 2016, 480 p. ISBN (10): 1–4438-8947-4 ISBN (13): 978-1-4438-8947-6.
10. Nielsen M., Chuang I. Quantum Computation and Quantum Information, UK, Cambridge University Press, 2000, 676 p. ISBN 978-1-107-00217-3.
11. Golubitsky O., Maslov D. A study of optimal 4-bit reversible toffoli circuits and their synthesis, IEEE Transactions on Computers, 2012, Vol. 61, No. 9, pp. 1341–1353. DOI: 10.1109/TC.2011.144.
12. Bardis E. G., Bardis N. G., Markovski A. P. at al. Design of Boolean Functions from a great number of variables satisfying strict avalanche criterion, Proceedings of the IEEE/WSEAS/IMACS : 3rd World multiconference on circuits, systems, communications and computers, Athens, July 2009: proceedings. Athens, World Scientific, 1999, pp. 3111–3116.
13. Tang D., Zhang W., Tang X. Construction of balanced Boolean functions with high nonlinearity and good autocorrelation properties, Designs, Codes and Cryptography, 2013, Vol. 67, No. 1, pp. 77–99 DOI: 10.1007/s10623-011-9587-9.
14. Alzaidi A. A., Ahmad M., Doja M. N. at al. A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes, IEEE Access, 2018, Vol. 6, pp. 55405–55418. DOI: 10.1109/ACCESS.2018.2871557.
15. Lloyd S. Counting Functions Satisfying a Higher Order
Strict Avalanche Criterion, **EUROCRYPT ‘89 : Workshop
on the Theory and Application of Cryptographic
Techniques. Advances in Cryptology, 10–13 April 1989: proceedings.** Berlin, Heidelberg, Springer, 1989, Vol. 434, pp. 63–67. DOI: 10.1007/3-540-46885-4_9

16. Bardis N. G. Combinatorial method for Boolean SAC functions
designing, **WSEAS Transactions on Communications,** 2004, Vol. 3, No. 2, pp. 746–752.

17. Gupta Brij B., Dhamma P., Agraval, Haoxiang Wang Computer
and Cyber Security: Principles, Algorithm, Applications,
and Perspectives. New York, CRC Press, Taylor & Francis Group, Boca Raton, 2019, 665 p. ISBN 9780815371335.

18. Dey S., Ghosh R. Cryptanalysis of 4-Bit Crypto S-Boxes in
Smart Applications, **Security in Smart Cities: Models, Applications,
and Challenges. Lecture Notes in Intelligent
Transportation and Infrastructure.** Cham, Springer, 2019, P. 211–253. ISBN 978-3-030-01560-2. DOI: 10.1007/978-3-030-01560-2 10.

19. Woods S., Casinovi G. Efficient solution of systems of Boolean
equations, 96 Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design, 10–14 November 1996: proceeding. San Jose, California, ACM Press, 1996, pp. 542–546.

20. Rudeanu S. Boolean sets and most general solutions of Boolean
equations, **Information Sciences,** 2010, Vol. 180, No. 12, pp. 2440–2447. DOI: 10.1016/j.ins.2010.01.029.

21. Baneres D., Cortadella J., Kishinevsky M. A Recursive Paradigm to Solve Boolean Relations, **IEEE Transactions on Computers,** 2009, Vol. 58(4), pp. 512–527. http://doi.ieeecomputersociety.org/10.1109/TC.2008.165

22. Rushdi Ali M. A., Motaz H. Amashah Using variable-entered Karnaugh maps to produce compact parametric general solutions of Boolean equations, **International Journal of Computer Mathematics,** 2011, Vol. 88, No. 15, pp. 3136–3149. DOI: 10.1080/00207160.2011.594505.

23. Rushdi A. M. A., H. M. Albarakati The Inverse Problem for Boolean Equations, **Journal of Computer Science,** 2012, Vol. 8, No. 12, pp. 2098–2105. DOI: 10.3844/jcssp.2012.2098.2105

24. Bibilo P. N. Decomposition of Boolean functions based on
the solution of logic equations. I. II. III., **Izvestiya Rossijskoj
akademii nauk. Teoriya i sistemy upravleniya,** 2002, No. 4, pp. 53–64; 2002, No. 5, pp. 57–63.; 2003, No. 6. – P. 88–97.

25. Rudeanu S. On the Decomposition of Boolean Functions via
Boolean Equations, **Journal of Universal Computer Science,** 2004, Vol. 10, No. 9, pp. 1294–1301.

26. Primeno E. A. Equivalence classes of invertible Boolean
functions, **Cybernetics,** 1984, Vol. 20, No. 6, pp. 771–776. DOI: 10.1007/BF01072161

27. Soeken M., Wille R., Keszocze O. at al. Embedding of Large Boolean Functions for Reversible Logic, **Journal on Emerging Technologies in Computing Systems,** 2016, Vol. 12, № 4, Article No. 41, pp. 41:1–41:26. DOI: 10.1145/2786982.

28. Soeken M. Abdessaied N., De Micheli G. Enumeration of
Reversible Functions and Its Application to Circuit Complexity, **Proceedings of the 8th Conference on Reversible Computation (RC 2016),** 7–8 July 2016: proceedings. Bologna: Cham, Springer, 2016, Vol 9720, pp. 255–270. ISBN: 978-3-319-40578-0. DOI: 10.1007/978-3-319-40578-0_19.

29. Kavut S., Maitra S., Tang D. Construction and search of balanced Boolean functions on even number of variables
with excellent autocorrelation profile, **Designs, Codes and Cryptography,** 2019, Vol. 87, No. 2–3, pp. 261–276. DOI: 10.1007/s10623-018-0522-1.

30. Lorens C. S. Invertible Boolean functions, **IEEE Transactions on Electronic Computers,** 1964, Vol. EC–13, No. 5, pp. 529–541. DOI:10.1109/pec.1964.263724.

31. Varadharajan V., Wu C.-K. Public key cryptosystems based on boolean permutations and their applications, **International Journal of Computer Mathematics,** 2000, Vol. 74, No. 2, pp. 167–184. DOI: 10.1080/0020716008084932.

Received 07.05.2019.
Accepted 26.09.2019.
МЕТОД НАХОЖДЕНИЯ ОБРАТНЫХ ЧЕТЫРЕХБИТНЫХ БУЛЕВЫХ КРИПТОПРЕОБРАЗОВАНИЙ СО СТРОГИМ ЛАВИННЫМ КРИТЕРИЕМ

Федотова-Пивень И. Н. – канд. техн. наук, доцент, доцент кафедры информационной безопасности и компьютерной инжиниринга Черкасского государственного технологического университета, Черкассы, Украина.
Рудницкий В. Н. – д-р техн. наук, профессор, заведующий кафедрой информационной безопасности и компьютерной инжиниринга Черкасского государственного технологического университета, Черкассы, Украина.
Пивень О. Б. – канд. физ.-мат. наук, доцент, профессор кафедры информационной безопасности и компьютерной инжиниринга Черкасского государственного технологического университета, Черкассы, Украина.
Миронов Т. В. – канд. техн. наук, доцент кафедры информационной безопасности и компьютерной инжиниринга, Черкасский государственный технологический университет, Черкассы, Украина.

АНАНОТАЦИЯ

Актуальность. Нелинейные системы булевых функций играют важную роль в защите криптосистем. Создание и использование новых четырехбитных криптографических преобразований с нелинейными булевыми функциями, обладающими свойством строгого лавинного критерия, является актуальной задачей повышения надежности системы защиты информации. Цель работы является создание метода получения обратных четырехбитных криптографических преобразований со свойством строгого лавинного критерия, которое содержит сбалансированные булевые функции только с операциями инверсии и сложения по модулю два.

Метод. Предложен метод получения обратных четырехбитных криптографических преобразований со свойством строгого лавинного критерия, каждое из которых содержит сбалансированные булевые функции только с операциями инверсии и сложения по модулю два. Метод упрощает процесс поиска обратных криптографических преобразований путем создания класса из тридцати сбалансированных булевых функций с требуемым предопределенным ограничениями и свойствами, а также нахождения в этом классе базовых булевых функций, составляющих обратное криптографическое преобразование.

Результаты. Показана эффективность метода получения двух обратных четырехбитных криптографических преобразований со свойством строгого лавинного критерия из двух прямых четырехбитных криптографических преобразований со свойством строгого лавинного критерия.

Выводы. Впервые был предложен метод получения обратных четырехбитных криптографических преобразований со свойством строгого лавинного критерия для сбалансированных булевых функций, содержащих две логические операции (инверсия и сложение по модулю два) для обеспечения надежной защиты информации. Этот метод представляет собой метод выбора уже существующих базовых булевых функций из заранее определенного набора сбалансированных булевых функций для прямого и обратного криптографических преобразований, тогда как существующие методы поиска обратного криптографического преобразования представляют собой методы для вычисления каждого элемента булевых функций для обратного криптографического преобразования. Метод может быть расширен до большего четного числа аргументов сбалансированных булевых функций криптографических преобразований для повышения криптографической стойкости.

КЛЮЧЕВЫЕ СЛОВА: булевые функции, обратное криптографическое преобразование, сбалансированность, строгий лавинный критерий, инверсия, сложение по модулю 2.

ЛИТЕРАТУРА

1. Kemp S. Digital 2019. Essential insights into how people around the world use the Internet, mobile devices, social media, and e-commerce. [Electronic resource] / S. Kemp. – Access mode: https://wearesocial.com/global-digital-report-2019.
2. Lakharia K. I. Protecting Computer Network with Encryption Technique: A Study / K. I. Lakharia // Communications in Computer and Information Science (UCMA 2011).
3. Demonstration of a small programmable quantum computer with atomic qubits / [S. Debnath, N. M. Linke, C. Figgatt et al.] // Nature. – 2016. – № 536. – P. 63–66. DOI: 10.1038/nature18648
4. Harrow A. W. Quantum computational supremacy / A. W. Harrow, A. Montanaro // Nature. – 2017. – Vol. 549. – P. 203–209. DOI: 10.1038/nature23458

© Fedotova-Piven I. M., Rudnytskyi V. M., Piven O. B., Myroniuk T. V., 2019
DOI 10.15588/1607-3274-2019-4-19
5. Smart S. E. Experimental data from a quantum computer verifies the generalized Pauli exclusion principle / S. E. Smart, D. I. Schuster, D. A. Mazzotti // Communications. Physics. – 2019. – Vol. 2, № 1. – P. 1–6. DOI: 10.1038/s42005-019-0110-3

6. Kolokotronis N. Best Affine and Quadratic Approximations of Particular Classes of Boolean Functions / N. Kolokotronis, K. Limniotis, N. Kalouptsidis // IEEE transactions on information theory. – 2009. – Vol. 55, № 11. – P. 5211–5222.

7. Menezes A. J. Handbook of Cryptography / A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. – USA : CRC Press, Inc. Boca Raton, 1996. – 810 p.

8. A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes / [A. A. Alzaidi, M. Ahmad, M. N. Doja et al.] // IEEE Access. – 2018. – Vol. 6. – P. 55405–55418. DOI: 10.1109/ACCESS.2018.2871557.

9. Steinbach B. Problems and New Solutions in the Boolean Domain / B. Steinbach. – UK: Cambridge Scholars Publishing, Newcastle upon Tyne, 2016. – 480 p. ISBN (10): 1-4438-8947-4 ISBN (13): 978-1-4438-8947-4.

10. Nielsen M. Quantum Computation and Quantum Information / M. Nielsen, I. Chuang. – UK: Cambridge University Press, 2000. – 676 p. ISBN 978-1-107-00217-3.

11. Golubitsky O. A study of optimal 4-bit reversible toffoli circuits and their synthesis / O. Golubitsky, D. Maslov // IEEE Transactions on Computers. – 2012. – Vol. 61, № 9. – P. 1341–1353. DOI: 10.1109/TC.2011.144.

12. Design of Boolean Functions from a great number of variables satisfying strict avalanche criterion / [E. G. Bardis, N. G. Bardis, A. P Markovski et al.] // Proceedings of the IEEE/WSEAS/IMACS : 3rd World multiconference on circuits, systems, communications and computers, Athens, July 1999: proceedings. – Athens: World Scientific, 1999. – P. 3111–3116.

13. Tang D. Construction of balanced Boolean functions with high nonlinearity and good autocorrelation properties / D. Tang, W. Zhang, X. Tang // Designs, Codes and Cryptography. – 2013. – Vol. 67, № 1. – P. 77–99. DOI: 10.1007/s10623-011-9587-9

14. A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes / [A. A. Alzaidi, M. Ahmad, M. N. Doja et al.] // IEEE Access. – 2018. – Vol. 6. – P. 55405–55418. DOI: 10.1109/ACCESS.2018.2871557.

15. Lloyd S. Counting Functions Satisfying a Higher Order Strict Avalanche Criterion / S. Lloyd // EURCRYPT ’89 : Workshop on the Theory and Application of Cryptographic Techniques. Advances in Cryptology, 10–13 August 1989: proceedings. – Berlin, Heidelberg: Springer, 1989. – Vol. 434. – P. 63–67. DOI: 10.1007/3-540-46885-4_9

16. Bardin N. G. Combinatorial method for Boolean SAC functions designing / N. G. Bardin // WSEAS Transactions on Communications. – 2004. – Vol. 3, № 2. – P. 746–752.

17. Gupta Brij B. Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives / Brij B. Gupta, Dharma P. Agrawal, Haoxiang Wang. – London, New York: CRC Press, Taylor & Francis Group, Boca Raton, 2019. – 665 p. ISBN 9780815371335.

18. Dey S. Cryptanalysis of 4-Bit Crypto S-Boxes in Smart Applications / S. Dey, R. Ghosh // Security in Smart Cities: Models, Applications, and Challenges. Lecture Notes in Intelligent Transportation and Infrastructure. – Cham: Springer, 2019. – P. 211–253. ISBN 978-3-030-01560-2. DOI: 10.1007/978-3-030-01560-2_10.

19. Woods S. Efficient solution of systems of Boolean equations / S. Woods, G. Casinovi // 96 Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design, 10–14 November 1996: proceeding. – San Jose, California: ACM Press, 1996. – P. 542–546.

20. Rudeanu S. Boolean sets and most general solutions of Boolean equations / S. Rudeanu // Information Sciences. – 2010. – Vol. 180, № 12. – P. 2440–2447. DOI: 10.1016/j.ins.2010.01.029.

21. Anas B. Recursive Paradigm to Solve Boolean Relations / D. Baneres, J. Cortadella, M. Kishinevsky // IEEE Transactions on Computers. – 2009. – Vol. 58(4). – P. 512–527. DOI: 10.1109/TC.2009.165.

22. Rushdi A. M. A. Using variable-entered Karnaugh maps to produce compact parametric general solutions of Boolean equations / Ali M. A. Rushdi, Motaz H. Amashah // International Journal of Computer Mathematics. – 2011. – Vol. 88, № 6. – P. 3136–3149. DOI: 10.1080/00207160.2011.594505.

23. Rushdi A. M. A. The Inverse Problem for Boolean Equations / A. M. A. Rushdi, H. M. Albarakati // Journal of Computer Science. – 2012. – Vol. 8, № 12. – P. 2098–2105. DOI: 10.3844/jcssp.2012.2098.2105.

24. Bibilo P.N. Decomposition of Boolean functions based on the solution of logic equations. I. II. III. / P. N. Bibilo // Izvestiya Rossiijskoj akademii nauk. Teoriya i sistemy upravleniya. – 2002. – № 4. – P. 53–64; 2002. – № 5. – P. 57–63.; 2003. – № 6. – P. 88–97.

25. Rudeanu S. On the Decomposition of Boolean Functions via Boolean Equations / S. Rudeanu // Journal of Universal Computer Science. – 2004. – Vol. 10, № 9. – P. 1294–1301.

26. Primenko Í. É. Equivalence classes of invertible Boolean functions / Í. A. Primenko // Cybernetics. – 1984. – Vol. 20, № 6. – P. 771–776. DOI: 10.1007/BF01072161.

27. Soeken M. Embedding of Large Boolean Functions for Reversible Logic / [M. Soeken, R. Wille, O. Koscozeck et al.] // Journal on Emerging Technologies in Computing Systems. – 2016. – Vol. 12, № 4, Article No. 41. – P. 41:1–41:26. DOI: 10.1145/2786982.

28. Soeken M. Enumeration of Reversible Functions and Its Application to Circuit Complexity / M. Soeken, N. Abdesaied, G. De Micheli // Proceedings of the 8th Conference on Reversible Computation (RC 2016), 7–8 July 2016: proceedings. – Bologna: Cham, Springer, 2016. – P. 255–270. ISBN: 978-3-319-40578-0. DOI: 10.1007/978-3-319-40578-0_19.

29. Kavut S. Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile / S. Kavut, S. Maitra, D. Tang // Designs, Codes and Cryptography. – 2019. – Vol. 87, № 3–4. – P. 261–276. DOI: 10.1007/s10623-018-0522-1.

30. Lorenz C. S. Invertible Boolean functions / C. S. Lorenz // IEEE Transactions on Electronic Computers – 1964 – Vol. EC–13, № 5. – P. 529–541. DOI: 10.1109/tpec.1964.267242.

31. Varadharajan V. Public key cryptosystems based on boolean permutations and their applications / V. Varadharajan, C.-K. Wu // International Journal of Computer Mathematics. – 2000. – Vol. 74, № 2. – P. 167–184. DOI: 10.1080/00207160008804932.

© Fedotova-Piven I. M., Rudnytskiy V. M., Piven O. B., Myroniuk T. V., 2019 DOI 10.15588/1607-3274-2019-4-19

210