MOLECULAR CHARACTERIZATION OF EXTENDED SPECTRUM BETA-LACTAMASE AMONG CLINICAL MULTIDRUG RESISTANT ESCHERICHIA COLI IN TWO HOSPITALS OF NIAMEY, NIGER

Fody1,2*, A. M., Bagré1,3, T. S., Traoré1, A. K., Yacouba4, A., Dembelé5, R., Boubou6, L., Inoussa2, A., Sidikou7, R., Traoré8, A. S., Gassama-Sow9, A. and Barro1, N.

1 Laboratoire de Biologie Moléculaire d’Épidémiologie et de Surveillance des Agents Transmissibles par les Aliments (LaBESTA). Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN). Département de Biochimie-Microbiologie. UFR en Sciences de la vie et de la Terre. Ecole Doctorale Sciences et Technologies. Université Ouaga I Pr Joseph Ki-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; 2 Laboratoire de Biologie, Hôpital National de Niamey (HNN), BP 238 Niamey, Niger; 3 Unité de Bactériologie Expérimentale, Institut Pasteur de Dakar, 36, avenue Pasteur, BP 220, Dakar, Sénégal; 4 Laboratoire de Bactériologie-virologie, centre hospitalo-universitaire Yalgado Ouédraogo Ouagadougou, Burkina Faso; 5 Laboratoire de Biotechnologies Faculté des Sciences et Technologies Université Abdou Moumouni de Niamey B.P.: 12022, Niamey, Niger.

ABSTRACT

Objective: The aim of this study was to identify the multiple ESBL genes in Multidrug-resistant (MDR) Escherichia coli isolated in various biological samples in two hospitals of Niamey.

Methodology: A total of 195 multidrug-resistant Escherichia coli were included in the study. These isolates were tested using polymerase chain reaction (PCR) for detection of the presence of blaCTX-M, blaTEM, blaSHV and blaOXA-1 beta-lactamase genes.

Results: A total of 27.7% of Escherichia coli isolates were ESBL producing strains. Globally, the blaTEM gene was the most prevalent (70.3%) followed by blaCTX-M (43.1%), blaOXA-1 (31.8%) and blaSHV (4.1%) genes. The four genes type of ESBL were founded simultaneously only in stool samples. Furthermore, none blaSHV gene was found in other samples type.

Conclusion: This study showed the presence of various ESBL genes among clinical MDR Escherichia coli. That is why a rational use of antibiotic and appropriate methods of screening ESBL genes in routine laboratories in Niger is needed to control the ESBL genes dissemination.

Keywords: MDR Escherichia coli, ESBL, bla genes, PCR, Niamey, Niger.

*Corresponding author. Email: juniorfodym@gmail.com Tel: +22796577781; +22667231547

RESUME

CARACTERISATION MOLECULAIRE DES BETALACTAMASES A SPECTRE ETENDU CHEZ LES SOUCHES DE ESCHERICHIA COLI MULTI RESISTANTES DANS DEUX HOPITAUX DE NIAMEY, AU NIGER

Fody1,2*, A. M., Bagré1,3, T. S., Traoré1, A. K., Yacouba4, A., Dembelé5, R., Boubou6, L., Inoussa2, A., Sidikou7, R., Traoré8, A. S., Gassama-Sow9, A. and Barro1, N.

1 Laboratoire de Biologie Moléculaire d’Épidémiologie et de Surveillance des Agents Transmissibles par les Aliments (LaBESTA). Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN). Département de Biochimie-Microbiologie. UFR en Sciences de la vie et de la Terre. Ecole Doctorale Sciences et Technologies. Université Ouaga I Pr Joseph Ki-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; 2 Laboratoire de Biologie, Hôpital National de Niamey (HNN), BP 238 Niamey, Niger; 3 Unité de Bactériologie Expérimentale, Institut Pasteur de Dakar, 36, avenue Pasteur, BP 220, Dakar, Sénégal; 4 Laboratoire de Bactériologie-virologie, centre hospitalo-universitaire Yalgado Ouédraogo Ouagadougou, Burkina Faso; 5 Laboratoire de Biotechnologies Faculté des Sciences et Technologies Université Abdou Moumouni de Niamey B.P.: 12022, Niamey, Niger.

*Corresponding author. Email: juniorfodym@gmail.com Tel: +22796577781; +22667231547
INTRODUCTION

Resistance to beta-lactam antibiotics is an increasing problem and beta-lactamase production in Gram-negative bacteria, is one of the most common mechanisms of drug resistance. Beta-Lactamases, very diversified due to their continuous mutation, belong to the Ambler classes A (1) and are usually plasmid-encoded that also harbor resistant genes to other antimicrobial classes with resulting multidrug-resistant isolates (2, 3). These multidrug resistant (MDR) Gram negative bacilli belonging to the Enterobacteriaceae family are increasingly responsible for hospital infections (bacteremia urinary tract and intra-abdominal infection) in many countries (4, 5). The MDR extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (ESBLE) have become a concern in medical bacteriology regarding antimicrobial treatment and infection control in hospitals (6). Indeed, these enzymes (ESBL) have the capacity to hydrolyze extended-spectrum cephalosporins and monobactam antibiotics, but are inhibited by clavulanic acid (7, 8). The emergence of ESBL-producing isolates has important clinical and therapeutic implications. High prevalence of ESBL-producing Enterobacteriaceae has been reported in the literature for clinical samples from a variety of infection sites (9). In the past decade, there has been a significant increase in the prevalence of resistance to extended spectrum cephalosporin in Escherichia coli (10). From the clinical and epidemiological side, the ESBL-producing Escherichia coli represent a significant therapeutic challenge as they are resistant to all beta-lactam antibiotics currently available and other antibiotic families alternative (fluoroquinolones, cotrimoxazole, aminosides or tetracyclines), to except cephamycins (cefoxitin and cefotetan) and carbapenems (imipenem and ertapenem) (11, 12). Different types of ESBLs have been found in different countries. There are currently three main ESBL (TEM, SHV and CTX-M) types, which are the most widespread and clinically relevant (13). The TEM and SHV types were first reported from Klebsiella pneumoniae in Western Europe. In the late 1990s, the prevalence of TEM and SHV had decreased, while that of CTX-M, especially associated to species Escherichia coli increased (10). The CTX-M type beta-lactamases represent a rapidly emerging group worldwide, which have been found in Enterobacteriaceae, particularly in Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Salmonella typhimurium (14). Genotypic tests have the potential to accurately identify different genes encoding the ESBLs (15). Several reports have described the prevalence of ESBLs genes in the Middle East North Africa region and most of the Gulf Cooperation Countries (16). So the detection of specific genes by PCR and sequencing are commonly used for final confirmation of ESBL producers. The association of ESBLs and the presence of TEM, SHV, OXA and CTX-M-type enzymes have been investigated in many studies (17). However, there are insufficient scientific data on the ESBLs gene characterization available from Niger.

To our knowledge, no data are so far available on ESBL-producing Escherichia coli clinical isolates in Niger. The aim of this study was to screen the presence of bla TEM, bla SHV, bla OXA-1 and bla CTX-M genes among clinical MDR Escherichia coli isolated from various biological samples in Niamey.

MATERIALS AND METHODS

Samples collection

The present prospective study was conducted from March 2014 to June 2016 in the medical biology laboratory of “hôpital national de Niamey” and “hôpital national Lamordé” in Niamey, Niger. The isolates were obtained from various samples. Multidrug resistant Escherichia coli isolates, were isolated from stool (n=49), urinary tract infection...
(n=134), pus (n=7), blood (n=4), and vaginal swabs (n=1) samples.

Bacterial identification and antibiotic susceptibility testing

Isolation, identification, antimicrobial susceptibility testing of isolates and phenotypic characterization of ESBL were described in our previous study (18). All isolates included in this study were multidrug resistant.

Preparation of DNA

Total DNA was extracted as previously described by Steward (19) using boiling process. Samples were cultured onto Bromo-Cresol Pourpre (BCP) agar and incubated at 37°C for 24 hours. For DNA extraction, two loopful of each strain were homogenized into 250 µl of sterile water. The mixture was boiled for 10 min and centrifuged for 10 min. After 5 min at room temperature, the supernatant was collected and used for the PCR reactions.

Detection of blaTEM, blaSHV, blaOXA-1 and blaCTX-M genes.

The beta-lactamase genes blaTEM, blaSHV, blaOXA-1, and blaCTX-M were detected by PCR using specific primers (Table 1). PCR mixtures were prepared by using 2.5 µl of template DNA, 4.0 µl of Master Mix PCR (Solis BioDyne, Estonia), 0.5 µl of Forward primer, 0.5 µl of Reverse primer in a final volume of 20 µl. Amplification conditions were 94°C for 5 min following 35 cycles of 94°C for 30 Sec, 55°C for 60 Sec, and 72°C for 60 Sec with a final extension at 72°C for 10 min. PCR amplified fragments were separated by agarose gel (1% w/v) electrophoresis in 1 X TAE buffer and visualized under UV light.

TABLE 1: BETA-LACTAMASE GENES PRIMERS

Genes	Primers	Sequences (5’-3’)	Amplicon size (bp)
blaTEM	TEM-F	ATAAAATCTTGAAGACGAAA	1080
	TEM-R	GACAGTTACCAATGCTTAATCA	
blaSHV	SHV-F	TTATCTCCCTGGTAGCACC	650
	SHV-R	GATTGGCTGATTTGCTCGG	
blaOXA-1	OXA-1-F	ATGAAAAACAAATACATAC	890
	OXA-1-R	AATTAGTAGTGTTAGAATGG	
blaCTX-M	CTX-M-F	GTTACAATGTGAGAAGCAG	593
	CTX-M-R	CCGTTCCGCTATTACAAAC	

Ethical considerations

All biological specimens were collected as part of the routine clinical management of patients. The study was approved by the medical establishment committee of hôpital national de Niamey” and “hôpital national Lamordé” in Niamey and permission to conduct the study was obtained from the hospital authorities of Niger.

Statistical analysis

Data analysis was carried out using Microsoft Excel 2013 and Med Cal version 11.0.1.0. P < 0.05 was considered to be statistically significant.

RESULTS

A total of 195 MDR *Escherichia coli* were included in this study. Among these isolates, 27.7% (54/195) were positive for the phenotypic character of extended spectrum beta-lactamases. Molecular analysis had shown the presence of various beta-lactamase genes. The genes identified by PCR method using specific primers i.e TEM, SHV CTX-M and OXA-1 on agarose gel were shown in Figures 1 and 2.

FIGURE 1: PCR AMPLIFICATION OF E. COlI blaTEM GENES
Forty nine (49) MDR *Escherichia coli* isolates from stool samples were tested for ESBL resistant genes. Overall, *bla* _TEM_ gene was the most prevalent (93.9%) followed by *bla* _OXA-1_ (71.4%), *bla* _CTX-M_ (65.3%) and *bla* _SHV_ (16.3%) (*P* < 0.0001) (Table 2). All the fourteen (14) ESBL isolates positive by phenotypic method, were positive for the *bla* _TEM_ gene (100%), 85.7% for the *bla* _CTX-M_ gene, 85.7% for the *bla* _OXA-1_ gene and 21.4% for *bla* _SHV_ gene (*P* < 0.0001) as indicated in Table 3. Globally, *bla* _SHV_ gene was only detected in stool samples.

TABLE 2: DISTRIBUTION OF BETALACTAMASE GENES FROM MDR E. COLI

Clinical source	Stools N=49	Urine N=134	Pus N=7	Blood N=4	Vaginal swabs N=1
bla _TEM_ n (%)	46 (93.9)	82 (61.2)	4 (57.1)	4 (100)	1 (100)
bla _SHV_ n (%)	8 (16.3)	0 (0)	0 (0)	0 (0)	0 (0)
bla _OXA-1_ n (%)	35 (71.4)	20 (14.9)	5 (71.4)	2 (50)	0 (0)
bla _CTX-M_ n (%)	32 (65.3)	45 (33.6)	5 (71.4)	2 (50)	0 (0)

About the 134 MDR *Escherichia coli* isolated from urine samples, *bla* _TEM_ gene was the most prevalent (61.2%), followed by *bla* _CTX-M_ (33.6%) and *bla* _OXA-1_ (14.9%) respectively (Table 2). Out of the thirty-seven (37) ESBL isolates positive by phenotypic method, 27 (73.0%) were positive for *bla* _TEM_ gene, 13 (35.1%) for *bla* _CTX-M_ gene, and 3 (8.1%) for *bla* _OXA-1_ gene (*P* < 0.0001) (Table 3). None of the isolates was positive for *bla* _SHV_ genes.

The study of seven (7) MDR *Escherichia coli* isolated from pus samples, showed the presence of *bla* _CTX-M_ gene, *bla* _OXA-1_ gene and *bla* _TEM_ gene with a prevalence of 71.4%, 71.4% and 57.1% respectively. The *bla* _SHV_ gene was not found in any of the isolates (Table 2). There was no significant difference between the expressing of these genes in pus samples (*P* = 0.3735).

Only the *bla* _CTX-M_ gene (50%) and *bla* _OXA-1_ gene (50%) were found in *Escherichia coli* isolates positive for ESBL by phenotypic method (Table 3).

In the four (4) MDR *Escherichia coli* isolated from blood culture samples, *bla* _TEM_, *bla* _OXA-1_ and *bla* _CTX-M_ genes were found in 100%, 50%, and 50% respectively (Table 2). However, *bla* _TEM_ (100%), *bla* _OXA-1_ (100%) and *bla* _CTX-M_ (100%) were found in *Escherichia coli* isolates producing ESBL by phenotypic method (Table 3).

Concerning vaginal swabs, only *bla* _TEM_ gene was found in *Escherichia coli* isolates as indicated in Table 2 and Table 3.
In this study, there was co-existence of ESBL genes in some *Escherichia coli* isolates. The co-existence of *bla* _TEM_ and *bla* _CTX-M_ genes was found in stool, blood, pus and urine samples in 63.3%, 50%, 42.9%, 22.4% (P = 0.0002) respectively, while *bla* _TEM_ gene and *bla* _OXA-1_ gene were detected in 57.1%, 50.0%, 71.4%, and 4.5% respectively. The co-existence of three ESBL genes belonging to group *bla* _CTX-M* + *bla* _TEM* + *bla* _OXA-1_ genes was observed in 57.1%, 50%, 28.6% and 3% respectively from stool, blood, pus and urine samples (P < 0.0001). However, other multiple co-detection of ESBL genes belonging to different groups: *bla* _CTX-M* + *bla* _SHV* (14.3%), *bla* _CTX-M* + *bla* _TEM* + *bla* _SHV* (12.2%), *bla* _CTX-M* + *bla* _SHV* + *bla* _OXA-1* (14.3%) were observed in stool samples. A combination of four genes (12.2%), *bla* _CTX-M* + *bla* _TEM* + *bla* _SHV* + *bla* _OXA-1* genes was found only in *Escherichia coli* isolated from stool samples (Table 4).

TABLE 3: DISTRIBUTION OF ESBL GENES FROM MDR E. COLI POSITIVE TO ESBL

Clinical source	Stool	Urine	Pus	Blood	Vaginal swabs					
ESBL genes	**ESBL +**	**ESBL -**	**ESBL +**	**ESBL -**	**ESBL +**	**ESBL -**				
bla _TEM_ n (%)	**N=14**	**N=35**	**N=37**	**N=97**	**N=2**	**N=5**	**N=1**	**N=3**	**N=0**	**N=1**
bla _SHV_ n (%)	31 (63.3)	30 (22.4)	3 (42.9)	2 (50.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _OXA-1_ n (%)	7 (14.3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _CTX-M_ + *bla* _TEM_ + *bla* _SHV_ n (%)	28 (57.1)	6 (4.5)	5 (71.4)	2 (50.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _CTX-M_ + *bla* _TEM_ + *bla* _OXA-1_ n (%)	6 (12.2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _CTX-M_ + *bla* _SHV_ + *bla* _OXA-1_ n (%)	28 (57.1)	4 (3.0)	2 (28.6)	2 (50.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _CTX-M_ + *bla* _TEM_ + *bla* _SHV* + *bla* _OXA-1_ n (%)	7 (14.3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bla _CTX-M_ + *bla* _TEM_ + *bla* _SHV* + *bla* _OXA-1_ n (%)	6 (12.2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

TABLE 4: DISTRIBUTION OF VARIOUS ESBL GENES COMBINATIONS ACCORDING TO CLINICAL SAMPLES

ESBL genes combination	Clinical sources	Stool	Urine	Pus	Blood	Vaginal swabs
bla _CTX-M* + *bla* _TEM* + *bla* _SHV* n (%)	**N=49**	**N=134**	**N=7**	**N=4**	**N=1**	
bla _CTX-M* + *bla* _TEM* + *bla* _SHV* n (%)	7 (14.3)	0 (0)	0 (0)	0 (0)	0 (0)	
bla _CTX-M* + *bla* _TEM* + *bla* _SHV* + *bla* _OXA-1_ n (%)	7 (14.3)	0 (0)	0 (0)	0 (0)	0 (0)	
bla _CTX-M* + *bla* _TEM* + *bla* _SHV* + *bla* _OXA-1_ n (%)	6 (12.2)	0 (0)	0 (0)	0 (0)	0 (0)	

DISCUSSION

Over the last decades, many studies have demonstrated the presence of ESBL resistance genes in bacteria isolated from patients during various infections (20-22). This study reported the results of molecular characterization of ESBL resistance genes in MDR *Escherichia coli* strains isolated in two hospitals of Niamey, Niger. The study of *Escherichia coli* producing ESBL (14 isolates) isolated from stool samples, had shown that the most frequent ESBL gene was *bla* _TEM_ followed by *bla* _CTX-M_ , *bla* _OXA-1_ and *bla* _SHV_ genes. However, previous studies from Qatar reported a higher prevalence of *bla* _CTX-M_ gene (66.1%), *bla* _SHV_ (53.2%) and *bla* _TEM_ (40.4%) (9). In another study, the predominant ESBL genes, were *bla* _CTX-M_ , *bla* _TEM_ and *bla* _SHV_ (23). Other studies in clinical isolates showed that *E. coli* harbored *bla* _SHV_ gene (88.9%), *bla* _OXA_ (44.4%) and *bla* _CTX-M_ genes (44.4), and *bla* _TEM_ gene (22.2%) (24). These results were contradictory to our results. The difference would be due to the sampling from different hospitals and from different geographic locations, whereas in our study, samples were collected only from two hospital setting. This study revealed that, out of the 37 *E. coli* producing ESBL isolated from urine samples, the percentage of *bla* _TEM_ was 73.0% followed by *bla* _CTX-M_ (35.1%) and *bla* _OXA-1_ (8.1%). Karimian et al. in Iran, reported similar data: *bla* _TEM_ and *bla* _CTX-M_ genes were observed in 71.2% and 37.3% of *E. coli* isolates, respectively (25). In our study, none of the isolate harbored *bla* _SHV_ gene. A similar finding was reported
from Thai studies. (26). But our results contradicted those reported in some studies conducted by Egyptian and Indian authors, in which bla_{SHV} gene was detected among urinary E. coli isolates (27, 28). Also, in East Africa, ESBL genes, bla_{CTX-M}, bla_{TEM}, bla_{SHV} and bla_{OXA} were found frequently (23). Thus, this required a better understanding of the ESBL genes in order to give useful data about their epidemiology. In this study, only 4 MDR Escherichia coli isolated from blood culture were tested for ESBL genes. Thus, the co-existence of bla_{TEM}, bla_{OXA-1} and bla_{CTX-M} was only seen in one strain producing EBSL. Our results correlated with other results reported in some African’s countries which showed a significantly lower proportion of ESBL in blood cultures than in other specimens (29). The previous finding was contradicted with the finding of a Burkina Faso study which had shown the highest proportion of ESBL genes in blood samples (30). Whereas, none of ESBL-producing isolates carried bla_{SHV} or bla_{CTX-M} genes as reported in Ghana (31). This discrepancy can be explained by differences in the antimicrobials use between countries. The present study reported the multiple co-existence of ESBL genes. Thus, 63.3% of isolates from stool samples harbored two ESBL genes belonging to groups of bla_{CTX-M} + bla_{TEM} followed by blood samples (50%), pus samples (42.9%) and urine samples (22.4%). The greatest frequency of beta lactamase gene in E. coli samples was related to TEM/CTX-M in previous study as reported in Iran (32). The co-existence of bla_{TEM} + bla_{CTX-M} genes and bla_{SHV} + bla_{CTX-M} genes in two strains were reported in India (33). This study revealed that the co-existence of three (3) ESBL genes (bla_{CTX-M} + bla_{TEM} + bla_{OXA-1}) was observed in 57.1%, 50%, 28.6% and 3% of the Escherichia coli isolates respectively in stool, blood, pus and urine samples. This result was also found in another study conducted in Bangladesh (24). These results indicated that ESBL-producing Escherichia coli frequently harbored more than one beta-lactamase genes. Overall, only isolates from stool samples harbored simultaneously four (4) ESBL genes (bla_{CTX-M} + bla_{TEM} + bla_{SHV} + bla_{OXA-1}). According to a previous study in Lebanon, 15.9% of Escherichia coli harbored the four ESBL genes (34). The genetic diversity of bla genes in isolates, suggested that resistance genes can easily move from one specie to another with the possibility of easy interspecies transfer. This study was conducted in two hospitals of Niamey; it may reflect the local antibiotic resistance patterns and this may be a limitation.

CONCLUSION

This first study in Niger showed a high incidence of ESBL resistance genes among clinical Escherichia coli isolates from two laboratories in two hospitals (Hôpital National de Niamey and Hôpital National Lamordé) of Niamey. Many isolates harboring more than one ESBL resistance genes, were also detected. Therefore, immediate implementation and recommendations for antimicrobial management and infection control measures were necessary to prevent the spread of these genes across the whole country.

ACKNOWLEDGEMENTS

This study was supported by CAMPUS France. The authors thank the “Institut Pasteur de Dakar” for the characterization of ESBL genes. They also thank the laboratories LABESTA of Ouagadougou University, “hôpital national de Niamey” and “hôpital national Lamordé” of Niamey, Niger.

REFERENCES

1. Ambler, R. P., Coulson, A. F., Frère, J. M., Ghysen, J. M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G., and Waley, S. G. A standard numbering scheme for the class A bêtalactamases. Biochem J. 1991; 276: 269-270

2. Dallenne, C., Da Costa, A., Decré, D., Favier, C. and Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important b-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010; 65: 490-495

3. Rakotonirina, H. C., Garin, B., Randrianirina, F. Richard, V. Talarmin, A. and Arlet, G. Molecular characterization of multidrug-resistant Extended-spectrum b-lactamase-producing Enterobacteriaceae isolated in Antananarivo, Madagascar. BMC Microbiol. 2013; 13: 85

4. Sun, H. Y., Chen, S. Y., Chang, S. C., Pan, S. C., Su, C. P., and Chen, Y. C. Community-Onset Escherichia coli and Klebsiella pneumoniae bacteremia: Influence of Health Care Exposure on Antimicrobial Susceptibility. Diagn Microbiol Infect Dis. 2006; 55: 135-141

5. Canton, R., Novais, A., Valverde, A., Machado, E., Peixe, L. Baquero, F. and Coque, T. M Prevalence and Spread of Extended-Spectrum Betalactamase-Producing Enterobacteriaceae in Europe. Clin Microbiol Infect. 2008; 14: 144-153

6. Drieux, L. Brossier, F. Sougakoff, W. and Jarlier, V. Phenotypic detection of extended-spectrum
Beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect. 2008; 14: 90-103

7. Paterson, D. L. and Bonomo, R. A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin Microbiol Rev. 2005; 18: 657-686

8. Lina, T. T., Khajanchi, B. K., Azmi, I. J., Islam, M. A., Akter, B. M. M., Banik, A., Alim, R., Navarro, A., Perez, G., Cravioto, A., Talukder, K. A. Phenotypic and Molecular Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Bangladesh. PLoS ONE. 2014; 9: e108735

9. Ahmed, M. A. S., Bansal, D., Acharya, A., Elmi, A. A., Hamid, J. M., Ahmed, A. M. S., Chandra, P., Ibrahim, E., Sultan, A. A., Doiphode, S., Bilal, N. E. and Deshmukh, A. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum betalactamase producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob Res Infect Control. 2016; 5: 4

10. Canton, R., Coque, T. M. The CTX-M beta lactamase pandemic. Curr Opin Microbiol. 2006; 9: 466-75

11. Grall, N., Andremont, A., Armand-Lefèvre, L. Résistance aux carbapénèmes: vers une nouvelle impasse? J Anti-infect. 2011; 13: 87-102

12. El bouamri, M. C., Arsalane, L., Zerouali, K., Katfy, K., El kamouni, Y., Zouhair, S. Molecular characterization of extended spectrum-lactamase-producing Escherichia coli in a university hospital in Morocco, North Africa. Afr J Uro. 2015; 21: 161-166

13. Giamarellou, H. Multidrug resistance in Gram-negative bacteria that produce extended-spectrum b-lactamases (ESBLs). Clin Microbiol Infect. 2005; 11: 1-16

14. Liu, W., Chen, L., Li, H., Duan, H., Zhang, Y., Liang, X., Li, X., Zou, M., Xu, L. and Hawkey, P. M. Novel CTX-M beta lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother. 2009; 63: 895-900

15. Polstfuss, S., Bloemberg, G. V., Giger, J., Meyer, V., Böttger, E. C., Hombach, M. Evaluation of a diagnostic flow-chart for detection and confirmation of extended spectrum b-lactamases (ESBL) in Enterobacteriaceae. Clin Microbiol Infect. 2012; 18: 1194-2004

16. Zowawi, H. M., Balkhy, H. H., Walsh, T. R., Paterson, D. L. Betactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula. Clin Microbiol Rev. 2013; 26: 361-80

17. Mugnaioni, C., Luzzaro, F., De Luca, F., Brigante, G., Perilli, M., Amicosante, G., Stefani, S., Toniolo, A., and Rossolini, G. M. CTX-M type extended-spectrum beta-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrob Agents Chemother. 2006; 50: 2700-2706

18. Fody, A. M., Boubou, L., Moussa, A., Bawa, H. I., Konaté, A., Yaou, C., Zongo, C., Salaou, C., Daouda, A., Sidikou, R., Traoré, A. S. and Barro, N. Phenotypic detection of extended spectrum betalactamase in multidrug-resistant Escherichia coli from clinical isolates in Niamey, Niger. Afr. J. Microbiol. Res. 2017; 11: 712-717

19. Steward, C. D., Rasheed, J. K., Hubert, S. K., Biddle, J. W., Raney, P. M., Anderson, G. J., Williams, P. P., Britain, K. L., Oliver, A., McGowan, J. E., and Tenover, F. C. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum beta-lactamase detection methods. J Clin Microbiol. 2001; 39: 2864-2872

20. Hoban, D. J., Lascols, C., Nicolle, L. E., Badal, R., Bouchillon, S., Hackel, M., Hawser, S. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study. Diagn Microbiol Infect Dis. 2012; 74: 62-7

21. Sharma, M., Pathak, S., Srivastava, P. Prevalence and antibiogram of extended spectrum β-lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res. 2013; 7: 2173-7

22. Tansarli, G. S., Poulidakos, P., Kapaskelis, A., Falagas, M. E. Proportion of extended-spectrum β-lactamase (ESBL)-producing isolates among Enterobacteriaceae in Africa: evaluation of the evidence-systematic review. J Antimicrob Chemother. 2014; 69: 1177-84

23. Sonda, T., Kumburu, H., Zwetselaar, M. V., Alifrangis, M., Lund, O., Kibiki, G. and Aarestrup, F. M. Meta-analysis of proportion estimates of
Extended-Spectrum-Beta-Lactamase producing Enterobacteriaceae in East Africa hospitals. *Antimicrob Res Infect Control*. 2016; 5: 18

24. Islam, S. S., Malek, Md. A., Haque, A. K. M. F., Talukder, K. A., Akhter, M. Z. Beta Lactamase Genes of Extended Spectrum Beta Lactamase Producing *Escherichia coli* from Anorectal Sepsis Cases in Bangladesh. *Bangladesh J Microbiol*. 2013; 30: 23-29

25. Karimian, M., Rostamzad, A., Shoaei, P. Extended spectrum b-lactamase-producing strains of *Escherichia coli* in hospitalized children in Isfahan, Iran. *Avicenna J Clin Microbiol Infect*. 2015; 2: e27096.

26. Udomsantisuk, N. P., Nunthapisud, T., Tirawatanapong, and Dansuputra, M. Molecular characterization of extended spectrum beta-lactamase among clinical isolates *Escherichia coli* and *Klebsiella pneumoniae*. *J. Med. Assoc. Thai*. 2011; 94: 1504–1512.

27. Salah, M., Azab, M., Halaby, H., Hanora, A. Mutations in β-lactamases detected in multidrug resistant gram negative bacteria isolated from community acquired urinary tract infections in Assiut, Egypt. *Afr. J Microbiol. Res*. 2016; 10: 1938-1943

28. Nisha, K. V., Veena, S. A., Rathika, S. D., Vijaya, S. M., Avinash, S. K. Antimicrobial susceptibility, risk factors and prevalence of *bla* cefotaximase, temoneira, and sulphydryl variable genes among *Escherichia coli* in community-acquired pediatric urinary tract infection. *J Lab Physicians*. 2017; 9: 156-62.

29. Sangare, S. A., Maiga, A. I., Guindo, I., Maiga, A., Camara, N., Savadogo, S., Diallo, S., Bougoudogo, F., Armand-Lefèvre, L., Andremont, A., Maiga, I. I. Prevalence of extended-spectrum beta-lactamase-producing *Enterobacteriaceae* isolated from blood cultures in Africa. *Med Mal Infect*. 2015; 45: 374–82

30. Ouedraogo, A. S., Sanou, M., Kissou, A., Sanou, S., Solaré, H., Kaboré, F., Poda, A., Aberkane, S., Bouzinbi, N., Sano, I., Nacro, B., Sangaré, L., Carrière, C., Decré, D., Ouégraogo, R., Jean-Pierre, H. and Godreuil, S. High prevalence of extended-spectrum β-lactamase producing *Enterobacteriaceae* among clinical isolates in Burkina Faso. *BMC Infect Dis*. 2016; 16: 326

31. Mensah, D. O., Nkrumah, N. O., Bonney, E. Y., Mensah, E. O., Danso, K. T., Osei, Y. D. and Sackey, S. T. Genetic characterization of TEM-type ESBL-associated antibacterial resistance in *Enterobacteriaceae* in a tertiary hospital in Ghana. *Ann Clin Microbiol Antimicrob*. 2016; 15: 29

32. Tayh, G., Sallem, R., Yahia, H. B., Gharsa, H., Klibi, N., Boudabous, A., Slama, K. B. First report of extended-spectrum beta-lactamas among clinical isolates of *Escherichia coli* in Gaza Strip, Palestine. *J Glob Antimicrob Res*. 2016; 6: 17-21

33. Krishnamurthy, V., Vijaykumar, G. S., Kumar, S. M., Prashanth, H. V., Prakash, R., Nagaraj, E. R. Phenotypic and Genotypic Methods for Detection of Extended Spectrum β Lactamase Producing *Escherichia coli* and *Klebsiella pneumoniae* Isolated from Ventilator Associated Pneumonia. *J Clin Diagn Res*. 2013; 7: 1975-1978

34. Daoud, Z., Sokhn, E. S., Masri, K., Cheaito, K., Ahmad, N. H., Matar, G. M. and Doron, S. *Escherichia coli* isolated from urinary tract infections of Lebanese patients between 2005 and 2012: epidemiology and profiles of resistance. *Front Med*. 2015; 2: 11