Rest Frame Subjet Algorithm with SISCone Jet for Fully Hadronic Decaying Higgs Search

Ji-Hun Kim1,2

1FPRD and Department of Physics, Seoul National University, Seoul, 151-747, Korea
2Theory Division, CERN, CH-1211 Geneva 23, Switzerland

The rest frame subjet algorithm is introduced to define the subjets for the SISCone jet; with this algorithm, an infrared and collinear safe jet shape observable N-subjettiness, \(\tau_N \), is defined to discriminate the fat jet, from a highly boosted color singlet particle decaying to \(N \) partons, from the QCD jet. Using rest frame subjets and \(\tau_N \) on dijets from highly boosted \(H/W/Z \) bosons through \(pp \to HW, HZ \) with \(m_H \approx 120 \text{GeV} \), we found that statistical significance of the signal, from the fully hadronic channels, is about 2\(\sigma \) for 14TeV collisions with \(\mathcal{L} \sim 30 \text{fb}^{-1} \).

Current electroweak precision fits of the standard model(SM) prefer a light Higgs boson1; experimental bounds from LEP1 and Tevatron2 suggest the SM Higgs mass, \(m_H \), is about 120GeV. However, the SM Higgs boson \(m_H \lesssim 135 \text{GeV} \) has been considered hard to discover because it dominantly decays to a b-quark pair. Unlike the signals from leptonic decay modes, to discover because it dominantly decays to a b-quark secondary vertex originating from two b-quarks. The identification of the two b-quarks is crucial for separating the signal from the large background; since gluon splitting into b-quarks is major source of QCD background, the directions of the subjets can be used to reduce the background4. Previously, such two b subjets tagging algorithms are devised for sequential recombination jet algorithms; for example, Cambridge/Aachen(C/A) algorithm17. With a subjet definition for SISCone jet, however, those two b subjets tagging algorithms can also be employed with SISCone jet, too. These reasons have motivated us to devise a subjet algorithm using the SISCone jet algorithm for finding a boosted particle while reducing QCD background.

We considered several possible ways to define the subjet of the SISCone jet. One is, for a given jet, clustering its constituents with a sequential recombination jet algorithm such as C/A with mass drop and filtering(MD-F) techniques3. However, sequential recombination jet algorithms require a larger initial jet radius than SISCone jet algorithm to catch perturbative radiation of the particle; applying C/A MD-F to the SISCone jet is less efficient than using C/A MD-F solely. Other one is clustering the constituents of the jet using SISCone algorithm with a smaller jet radius, \textit{i.e.} applying the jet trimming algorithm8. As the Higgs is boosted highly, however, the cones which define subjets are likely to overlap. Although SISCone algorithm merges the overlapping cones or splits them according to the overlap threshold parameter, we found that this subjet definition is inefficient, too. Last method we considered is to define the subjet in the ‘rest frame’ of the jet.

Recent, there has been a study on the jet substructure via \(pp \to WH, ZH \) where \(H \) is highly boosted to form a single fat jet, and \(W/Z \) decays leptonically9. According to ATLAS detector simulation4, it is expected to also be a promising channel for the Higgs search. Other subjet techniques are also proposed for reconstructing the mass peak of heavy particles5–7 and reducing the QCD contamination effects8. Jet radius also plays an important role for the mass peak reconstruction9, and several schemes for optimizing jet radius to improve the invariant mass distribution are proposed10,11.

Beside jet substructure, ref.12 suggested ‘template overlap’ method to match jet energy flow with the partons directly. The property of color structure of the Higgs decay has also been studied for searching new particle via the double diffractive process13 and the Higgs decaying to the two b-tagged jets14.

To search heavy particles, however, those techniques usually require signal processes to involve additional unusual signatures, such as lepton or missing-\(p_T \), to suppress QCD background; fully hadronic decay channels, such as Higgs production associated with \(W/Z \) boson, \(pp \to HW, HZ \), are still considered too hard to be used for the heavy particle study. Usually, however, cross-sections of hadronic decay channels are, at least, few times larger than (semi-)leptonic decay channels; utilizing them will improve, for instance, the Higgs discovery potential.

In this paper, to identify boosted color singlet particles, we introduce the subjet definition for SISCone jet15 and an infrared and collinear safe jet shape observable, \(\tau_N \). With \(\tau_N \) as an illustration, we investigate the statistical significance of the signals from fully hadronic decay channels of light SM Higgs.

SISCone jet algorithm is one of the best algorithms for reconstructing mass peaks, \textit{i.e.} it has low sensitivity to underlying event(UE) contamination9,10. In many cases including light SM Higgs searches, however, such mass peaks are ruined by huge QCD background contributions. To suppress the background, the underlying structure of the jet is essential, but SISCone jet algorithm misses the informations. Moreover, the jet substructure is also required for the boosted Higgs jet tagging. The boosted Higgs jets contain not a single, but two secondary vertices originating from two b-quarks. The property of color structure of the Higgs decaying to \(N \) partons directly. The property of color structure of the Higgs boson, is highly boosted to form a single fat jet, and \(W/Z \) decays leptonically9. According to ATLAS detector simulation4, it is expected to also be a promising channel for the Higgs search. Other subjet techniques are also proposed for reconstructing the mass peak of heavy particles5–7 and reducing the QCD contamination effects8. Jet radius also plays an important role for the mass peak reconstruction9, and several schemes for optimizing jet radius to improve the invariant mass distribution are proposed10,11.

Beside jet substructure, ref.12 suggested ‘template overlap’ method to match jet energy flow with the partons directly. The property of color structure of the Higgs decay has also been studied for searching new particle via the double diffractive process13 and the Higgs decaying to the two b-tagged jets14.

To search heavy particles, however, those techniques usually require signal processes to involve additional unusual signatures, such as lepton or missing-\(p_T \), to suppress QCD background; fully hadronic decay channels, such as Higgs production associated with \(W/Z \) boson, \(pp \to HW, HZ \), are still considered too hard to be used for the heavy particle study. Usually, however, cross-sections of hadronic decay channels are, at least, few times larger than (semi-)leptonic decay channels; utilizing them will improve, for instance, the Higgs discovery potential.

In this paper, to identify boosted color singlet particles, we introduce the subjet definition for SISCone jet15 and an infrared and collinear safe jet shape observable, \(\tau_N \). With \(\tau_N \) as an illustration, we investigate the
Less UE particles can be, at most, γ with angle, θ. Thus, the rest frame of the particle is identical to the CM frame of its decay products. In contrast, a jet from a colored particle is not a closed system. Although colored partons are almost free at high energy due to asymptotic freedom, they must hadronize and the hadronization process involves exchanging the four momentum. Because the four momentum of the jet is different from that of the hard parton, the rest frame of a colored particle has ambiguities.

We define the jet rest frame as a frame where the four momentum of the jet equals $\mu^\text{rest} \equiv (m^\text{jet}_{\text{inv}}, 0, 0, 0)$. A jet is consisted of its constituent particles. The distribution of constituent particles of a fat jet, in their center of mass frame, is nearly identical to those of the color singlet particle which is produced at rest. Thus, we recluter them in the jet rest frame, i.e. using their four momenta at the rest frame of the jet. For a given jet, the ‘rest frame subjets’ are defined as these recluserd jets. This procedure is illustrated in Fig. 1.

UE affects the jet mass and, thus, the jet rest frame. Consider a fat jet of $p_\mu = \gamma m(1, \beta, \bar{\beta})$, defined by a cone with angle, θ_c. In the jet rest frame, the energy of massless UE particles can be, at most, $\gamma(1 - \beta \cos \theta_c)$ times larger than its energy in the lab frame. For UE particles with $E < 1\text{GeV}$, inside the SISCon jet with a jet radius 0.8 and $\gamma \sim 10$, the factor is about 3; soft massless objects in the lab frame remain soft in the jet rest frame. Moreover, they are collimated to the boost axis, $\cos \theta \sim 0.97$, and unlikely to included the leading rest frame subjets; to be identified as a single fat jet, the angles between the axis and the leading rest frame subjets are usually more large. Thus, the rest frame subjett algorithm is infrared and collinear safe if an infrared and collinear safe jet algorithm is used for the rest frame subjet clustering, and the leading rest frame subjets of fat jets do not much affected by UE particles.

In the jet rest frame, we can treat the constituent particles of the jet as the final state particles of a fictitious event, because it is the center of mass frame for the particles. For example, in the rest frame of the Higgs jet, the constituent particles look like a dijet event from the Higgs produced at rest. To have such a shape, the QCD jet should radiate only one hard parton which is improbable. Since the gluon and quark jets are not closed systems, their shape in the rest frame does not correspond to any physical state, and is more likely to be irregular. Thus, by checking whether a shape of a jet in the rest frame looks like ‘N-jet’ event, i.e. by analyzing whether the jet has N ‘rest frame subjets’, we can discriminate between the fat jet, from the boosted color singlet particle decaying to N partons, and the QCD jet.

To select jets which have N rest frame subjets, we employ the N-jettiness [19]. A global event shape “N-jettiness”, τ_N, is devised to filter out events which have additional undesired jets beyond the required N jets. Treating the constituent particles of the jet as final state particles of a fictitious event, we can apply τ_N to the jet, i.e. calculate “N-subjettiness”, to determine whether the jet has N rest frame subjets. τ_N vanishes in the limit of exactly N infinitely narrow jets; we expect the fat jets tend to result smaller τ_N^j than that of the QCD jet.

Except for it is defined by constituent particles of a jet instead whole final state particles of a event, the definition of τ_N^j is identical to that of τ_N. In the jet rest frame, we tag N most energetic subjets, and define τ_N^j as:

$$\tau_N^j \equiv \frac{2}{(m^\text{jet}_{\text{inv}})^2} \sum_{k \in J} \min\{q_1 \cdot p_k, q_2 \cdot p_k, \ldots, q_N \cdot p_k\}$$

where p_k is four momenta of the constituent particles of the jet, J, and q_i is four momenta of the N energetic subjets. Definitions of τ_N and the rest frame subjet are infrared and collinear safe; and, thus, τ_N^j is also an infrared and collinear safe observable.

τ_N^j is calculated through following steps. Given a hard jet J with p^μ_μ and its constituent particles $\{i| i \in J\}$:

1. Define the boost vector, $\vec{\beta}_J$ to transform p^μ_μ to $p_\mu^\text{rest} \equiv (m^\text{jet}_{\text{inv}}, 0, 0, 0)$.
2. Boost p^μ_μ by $\vec{\beta}_J$, and obtain $p^\mu_\mu^\text{rest}$.
3. Clustering subjet with $p^\mu_\mu^\text{rest}$ and R_{subj}.
4. Sort jets into decreasing E_i^rest order and label N most energetic subjets.

5. Get four momenta of the N subjets in the lab frame, q^μ_i.
of the SM Higgs with \(m_H = 120 \text{GeV} \), through the fully hadronic \(pp \to WH, ZH \) channels where both \(W/Z \) and \(H \) are highly boosted enough to be identified as single fat jets. The PYTHIA 6.4.23 \[20\] with the ATLAS MC09 parameter tune \[21\] and the modified leading-order MRST2007 parton distribution functions \[22\] are used to generate both the signal samples, \(pp \to WH, ZH \), and the background samples, \(pp \to VV, Vj, tj, t\bar{t}, t\bar{b} \) and \(jj \) events at 14TeV. No K-factors are applied to emulate higher order effects.

FastJet 2.4.2 \[23\] with the SISCone plugin \[15\] is used for the jet clustering, and the SISCone in spherical coordinates is used for the rest frame subjet clustering. SISCone jet algorithm has two parameters; the jet radius, \(R \), and the overlap threshold, \(f \). For the fat jet tagging using \(\tau^j_2 \), the jet radius should be set to maximize the mass peak of the signal, and the optimal subjet radius should be set to maximize the discrimination power of \(\tau^j_2 \). With \(m_H = 120 \text{GeV} \), we use \(R = 0.8 \), overlap threshold \(f = 0.75 \) for jet clustering, and \(R = 0.6 \), \(f = 0.75 \) for subjet clustering.

The b-tagging, c-jet misidentification and light-jet misidentification probabilities, \(\epsilon_b \), \(\epsilon_c \), and \(\epsilon_{\text{mis}} \), are crucial factors to the analysis of this letter. According to Ref. \[4\], \(\epsilon_b \sim 70\% \) (corresponding to \(\approx 50\% \) signal efficiency) with \(\epsilon_{\text{mis}} \sim 1\% \) and \(\epsilon_c \sim 10\% \) is expected to be achieved. Although these values are estimated using C/A MD-F algorithm, SISCone jet with the rest frame subjet algorithm can also provide required information; and, thus, compatible with it. Therefore, we employ these values for the analysis in this paper. For estimating the effects on the double b-tag performance of the rest frame subjet, separate event samples are generated with \(B \)-mesons are set to be stable; then, b-tag is assigned to the each subjet with probability \(\epsilon_b \) for b-subjet, \(\epsilon_c \) for c-subjet, and \(\epsilon_{\text{mis}} \) for QCD jet.

To select the signal events which contain two fat jets from the boosted \(H \) and \(V \) of fully hadronic \(pp \to WH, ZH \) channels while reducing QCD backgrounds, we require:

1. No hard leptons with \(p_T > 10 \text{GeV} \), except those from B-mesons.
2. Two hardest jets \(j_1 \) and \(j_2 \) with \(p_T^{j_1, j_2} > 200 \text{GeV} \)
3. \(|y_{j_1j_2}| < 2.5 \) and \(|y_{j_1} - y_{j_2}| < 2.0 \) where \(y_{j_i} \) is rapidity of \(j_i \).
4. Require third hardest jet, \(j_3 \), to be not hard : \(p_T^{j_3} < 30 \text{GeV} \)
5. \(b \)-cut : both of the two energetic rest frame subjets of the Higgs candidate jet are b-tagged.
6. \(\tau^j_2 \)-cut : \(\tau^j_2 \sim 0.08 \)
7. \(\cos \theta_s \)-cut : in the jet rest frame, angles, \(\theta_s \), between two leading rest frame subjets and the boost axis should be large enough to be \(\cos \theta_s < 0.8 \).

To check whether leptons are comes from semi-leptonic decays of \(B \)-meson, we use Pythia's internal data; we have checked that it gives good approximation for the lepton isolation for the purpose of this paper.

\(\cos \theta_s \)-cut plays similar roles of symmetry cut, \(y_{out} \), introduced in Ref. \[7\]. To be reconstructed properly, two \(b \)-quarks of the Higgs jet should be energetic; and it results smaller \(\cos \theta_s \). \(\cos \theta_s \)-cut also reduces the effects of UE. As mentioned previously, UE particles are concentrated along the boost axis in the jet rest frame. Since they are mixed with soft particles from the Higgs jet, however, removing these particle is difficult; and removing them affects the jet mass. By requiring \(\cos \theta_s \)-cut, we can select the fat jets which leading two rest frame subjets are not much contaminated by UE, while preserving the jet mass and reducing QCD backgrounds; for SISCone subjets, we found that it is a more efficient then removing the soft particles near the boost axis.

We define signal and background events as which one of \(j_1, j_2 \) is the Higgs candidate jet, \(i.e. \), has \(m_{\text{inv}} \) in the range between \(120 \pm 10 \text{GeV} \) and passes \(b \)-cut, and other jet has \(m_{\text{inv}} \) in the range between \((m_W \pm 10 \text{ or } m_Z \pm 10 \text{GeV}) \). The result before the \(b \)-cut step of this scheme is shown at Table II. The cross section for signal and background events after applying \(b \)-cut, \(\tau^j_2 \)-cut or both cuts are shown at Table II. Finally, about 36% of QCD dijet backgrounds and less than 5% of the Higgs and other background processes are filtered out by \(\cos \theta_s \)-cut. With \(\mathcal{L} \sim 30 \text{fb}^{-1} \), expected \(m_{\text{inv}} \) distributions are shown at Fig. 3. Note that the mass peaks at \(m_W, m_Z \) should be clearer than the Higgs signals and we expect they can be used for the calibrations. The signal / background ratio, \(S / B \), is about 30 \(/ \) 200; and, thus, the statistical significance of the signal is about \(2\sigma \). With a more conservative \(b \)-tagging efficiency of 60% and a light-quark jet fake rate of 2%, it is decreased to about 1.5\(\sigma \).
leading subjets’ informations and, thus, there is a loose correlation between them; a jet of lower τ_2^j is more likely to pass b-tag cut. About 2% of light quark jets and 6% of gluon jets which have $\tau_2^j < 0.08$ and m_{inv} of 120 ± 10GeV is expected to pass b-cut.

In conclusion, for the boosted color singlet particle searches, we have introduced the jet rest frame, the rest frame subjet, and the N-subjettiness. Using SISCone jet with τ_2, we see that, for the fully hadronic $pp \rightarrow HV$ channels of the SM Higgs with $m_H = 120$GeV, the statistical significance of the signals is about 2σ for 14TeV collisions with $L \sim 30 fb^{-1}$. Although it will be complementary to the known Higgs search channels, the scheme suggested in this letter is rather a proof of concept; the scheme will be improved further to increase the signal to background ratio, and to make full use of the jet rest frame. It involves comprehensive studies on theoretical uncertainties of the scheme, and we left them for the future study. The rest frame subjet can be defined by any jet algorithms, although the effects of UE, and pileup on the scheme depend on the jet algorithm. We also expect the scheme can also be employed for highly boosted colored particles.

The work of JHK has been supported by the Korean-CERN theory collaboration program and KRF-2008-313-C00162. JHK thanks to Josh Cogan, Hyung Do Kim, and Gavin Salam for useful comments and discussions.

TABLE I: Cross section for the signal and background events which one of two hardest jet has $m_{}\text{inv}$, in the range between 120 ± 10GeV and other jet has m_{inv} in the range between $(m_W \pm 10)$GeV. SISCone jet with $R = 0.8$ is used.

σ(fb)	p_T-cut	y-cut	p_T^2-cut
$\sigma(pp \rightarrow HV)$	2.5×10^3	2.4×10^4	1.4×10^5
$\sigma(pp \rightarrow VV)$	6.4×10^3	1.6×10^4	1.1×10^5
$\sigma(pp \rightarrow Vj)$	3.4×10^3	3.0×10^3	1.9×10^2
$\sigma(pp \rightarrow Vj)$	1.4×10^3	1.3×10^3	4.2×10^2
$\sigma(pp \rightarrow Vj)$	1.8×10^3	1.5×10^3	2.9×10^4
$\sigma(pp \rightarrow Vj)$	1.7×10^4	1.1×10^4	3.6×10^4
$\sigma(pp \rightarrow Vj)$	1.3×10^4	1.0×10^4	2.3×10^4
$\sigma(pp \rightarrow Vj)$	4.6×10^2	4.2×10^2	1.0×10^2

TABLE II: Cross section for the signal and background events with a mass window of 20GeV centered on the mass peak after applying b-cut, τ_2^j-cut or both cuts.

σ(fb)	b-cut	τ_2^j-cut	b-cut & τ_2^j-cut
$\sigma(pp \rightarrow HV)$	0.4×10^4	0.2×10^4	0.9×10^0
$\sigma(pp \rightarrow VV)$	0.2×10^3	0.2×10^1	0.1×10^0
$\sigma(pp \rightarrow Vj)$	0.4×10^1	0.7×10^1	0.3×10^1
$\sigma(pp \rightarrow Vj)$	0.5×10^1	0.2×10^1	0.2×10^0
$\sigma(pp \rightarrow Vj)$	0.2×10^2	0.1×10^1	0.3×10^1
$\sigma(pp \rightarrow Vj)$	0.2×10^2	0.8×10^2	0.4×10^0
$\sigma(pp \rightarrow Vj)$	0.1×10^3	0.2×10^2	0.2×10^1
$\sigma(pp \rightarrow Vj)$	0.1×10^3	0.3×10^1	0.4×10^{-1}

[1] J. Alcaraz, arXiv:0911.2604 [hep-ex].
[2] [CDF and D0 Collaboration], arXiv:1007.4587 [hep-ex].
[3] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Phys. Rev. Lett. 100, 242001 (2008) arXiv:0802.2470 [hep-ph].
[4] [ATLAS Collaboration], AT-LHC-PUB-2009-088 (2009).
[5] T. Plehn, G. P. Salam and M. Spannowsky, Phys. Rev. Lett. 104, 111801 (2010) arXiv:0910.5472 [hep-ph].
[6] S. D. Ellis, C. K. Vermilion and J. R. Walsh, Phys. Rev. D 81, 094023 (2010) arXiv:0912.0033 [hep-ph].
[7] D. E. Soper and M. Spannowsky, JHEP 1008, 029 (2010) arXiv:1005.0417 [hep-ph].
[8] D. Krohn, J. Thaler and L. T. Wang, JHEP 1002, 084 (2010) arXiv:0912.1342 [hep-ph].
[9] M. Cacciari, J. Rojo, G. P. Salam and G. Soyez, JHEP 0812, 032 (2008) arXiv:0810.1304 [hep-ph].
[10] D. Krohn, J. Thaler and L. T. Wang, JHEP 0906, 059 (2009) arXiv:0903.0392 [hep-ph].
[11] G. Soyez, JHEP 1007, 075 (2010) arXiv:1006.3634 [hep-ph].
[12] L. G. Almeida, S. J. Lee, G. Perez, G. Sterman and I. Sung, arXiv:1006.2035 [hep-ph].
[13] M. G. Albrow et al. [FP420 R and D Collaboration].
[14] J. Gallicchio and M. D. Schwartz, Phys. Rev. Lett. 105, 022001 (2010) [arXiv:1001.5027 [hep-ph]].
[15] G. P. Salam and G. Soyez, JHEP 0705, 086 (2007) [arXiv:0704.0292 [hep-ph]].
[16] S. Sapeta, Q. C. Zhang and Q. C. Zhang, [arXiv:1009.1143 [hep-ph]].
[17] Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Weber, JHEP 9708, 001 (1997); M. Wobisch and T. Wen-
gler, [arXiv:hep-ph/9907280]
[18] G. P. Salam, “Centre of Mass Top Tagger”, http://www.lpthe.jussieu.fr/~salam/fastjet/tools.html
[19] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. Lett. 105, 092002 (2010) [arXiv:1004.2489 [hep-ph]].
[20] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [arXiv:hep-ph/0603175].
[21] “ATLAS Monte Carlo tunes for MC09,” ATL-PHYS-
PUB-2010-002 (2010)
[22] A. Sherstnev and R. S. Thorne, Eur. Phys. J. C 55, 553 (2008) [arXiv:0711.2473 [hep-ph]].
[23] M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006) [arXiv:hep-ph/0512210].