Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids

Key words: sialic acid/ganglioside/molecular dynamics/conformation/NMR/antibody

Gangliosides are sialic acid-containing glycosphingolipids that are ubiquitous components of the mammalian plasma membrane. They are assumed to play important roles in the interaction of cells with their environment, and are apparently involved in the regulation of many cellular events (Hakomori, 1990, 1991; Kopitz, 1996). Since the carbohydrate part of naturally occurring gangliosides can be modified, e.g., by 9-O-acetylation of sialic acids (Reuter and Schauer, 1987), the presence of such alterations prompts evaluation of their structural impact on conformation and molecular recognition. Following this reasoning, we have focused in the present study on GD1a and its 9-O-acetylated derivative GD1b (Neu5,9Ac2) carrying the N-acetyl-9-O-acetylneuraminic acid exclusively linked to the terminal galactose moiety of the tetrasaccharide backbone Gaβ1-3GalNAcβ1-4Galβ1-4Glc, whereas the internal galactose residue is substituted by N-acetylneuraminic acid (Gowda et al., 1984). A schematic representation of the oligosaccharide part of GD1a (Neu5,9Ac2), denoted as fragment IV in the text, is shown in Figure 1.

In relation to the knowledge about the occurrence of O-acetylated gangliosides, relatively little is known concerning the functions of this modification. A major impact of O-acetylation of sialic acids may be the protection against the action of sialidases (Schauer, 1979, 1982; Varki, 1992), which initiate the catabolism of these compounds. In addition, 9-O-acetylation is considered a differentiation marker in developmental processes (Varki, 1992; Klein et al., 1994; Schauer et al., 1995) or, e.g., in the form of the gangliosides GD3 (Neu5,9Ac2) and GD2 (Neu5,9Ac2), as tumour-associated antigens in human melanomas (Cheresh et al., 1984a,b; Thurin et al., 1985; Ravindranath et al., 1988; Manzi et al., 1990; Sjoberg et al., 1992). Owing to the rather high level of expression of GD3 (Neu5,9Ac2) in melanomas, attempts to turn this feature into therapeutic benefit have been initiated (Ravindranath et al., 1989; Ritter et al., 1989, 1990). Turning from tumours to viral infections, sialic acid O-acetylation can mediate or prevent receptor binding, as shown for viral adhesion. Whereas it reduces the extent of binding of the pathogenic influenza A-virus strain, the adhesins of the C-type virus and the coronavirus exhibit a high affinity to this modified sialic acid residue (Herrler et al., 1985; Zimmer et al., 1992, 1994; Schultz et al., 1993). Masking of ligand recognition by 9-O-acetylation is not restricted to pathogens, as substantiated by the lack of binding of the B-cell adhesion molecule CD22b to the modified sialic acid (Sjoberg et al., 1994). It has also recently been shown that the 9-O-acetyl group of Neu5,9Ac2 interferes with sialoglycollation binding (Kelm et al., 1994). In this...
context the presence of a polyclonal antibody fraction in human serum with apparent specificity for 9-O-acetylated sialic acids is intriguing (Ahmed and Gabius, 1989; Zeng and Gabius, 1992). The expression of specific binding proteins in serum supports the notions that O-acetylation can be a marker for recognition events by proteins and that the presence of such markers in certain tumour types may serve as target for the binding of natural antibodies and for attempts of active immunisation. However, detailed information about the recognition mechanism of O-acetyl groups on a molecular level is important to understand their biological role(s). Therefore, we used \(\text{G}_{\text{DIA}} \) and \(\text{G}_{\text{DIA}} \) (\(\text{Neu5,9Ac}_2 \)) in the present study as proper models to contribute to the evaluation of the specific role(s) of O-acetylation of sialic acids in complex glycoconjugates.

Results and discussion

For this study CVFF was selected because it is a well established force field, describing the conformational behaviour of GM3-gangliosides in good agreement with the NMR data (Siebert et al., 1992). During the parametrization and validation of CVFF (Hagler et al., 1974, 1979a,b), emphasis has also been put on the description of intermolecular forces, especially OH-bonds in small charged molecules. Thus, the bifunctionality of the OH-group (hydrogen bond donor as well as hydrogen bond acceptor) is included in the parametrization. This is a basic feature important for carbohydrates. Calculated structural parameters such as bond lengths and bond angles are comparable to other force fields used to describe carbohydrate properties. It should be pointed out that CVFF does not contain—as many other force fields do—any special parametrization or term to describe the anomeric and/or exoanomeric effect. Good agreement between experimental and theoretical results for model oligosaccharides using CVFF to explore the conformational space has been reported during the last few years (Balaji et al., 1992, 1994; Siebert et al., 1992, 1996a,b; Asensio et al., 1995; von der Lieth et al., 1996), although the force field is not able to reproduce consistently the correct vibrational frequency, which is an indication for possible limitations of accuracy of the force field (Homs et al., 1990; Marti et al., 1994). Nonetheless, it has proven useful to process binding data of oligosaccharide ligands for the asialoglycoprotein receptor (Balaji et al., 1993) and the conformational behaviour of high-mannose oligosaccharides (Balaji et al., 1994). To further substantiate our choice of the force field, we refer to a study where NMR data of \(\alpha \)-lactoside have been compared with the results of molecular dynamics (MD)-simulations using the CVFF, CVFF91, AMBER, and AMBER/Homans parametrization (Asensio et al., 1995). It was found that the conformational behaviour predicted by CVFF is closer to the experi-
mental results, as for example the one resulting from AMBER/Homans parametrization. In the same line of reasoning the conformational space of maltose has been explored using different force fields (CVFF, CVFF91, AMBER, AMBER/Homans, MM+) (Kozar, 1995). In accordance with Asensio et al. (1995), the results obtained by the use of CVFF reach the predictive quality of the other force fields.

MD-derived conformations of fragments and of the complete oligosaccharide chain of G_{D1a} (Neu5,9Ac$_2$)

NMR-derived, energetically minimized molecular mechanics (MM) conformations of fragments of the carbohydrate chain of G_{D1a} (Neu5,9Ac$_2$) with an increasing length starting from the non-reducing terminus of the oligosaccharide chain were used as input data for 1000 ps MD simulations at 300 K to study the influence of non-bonded interactions on the conformation of the complete molecule. The corresponding NMR data that are available from the literature (Scarsdale et al., 1990; Sabesan et al., 1991a,b; Acquotti et al., 1994, Poppe et al., 1994) were obtained for the non-O-acetylated G_{D1a} and proved to be helpful for comparing this study with our own results (Siebert, 1990) that already included NMR measurements of the 9-O-acetylated derivative G_{D1a} (Neu5,9Ac$_2$).

The following oligosaccharide parts of G_{D1a} (Neu5,9Ac$_2$) were generated and then separately analysed as detailed in Materials and methods:

(I): Neu5,9Ac$_2$-2-OGalB1-3GalNAc;

(II): Neu5,9Ac$_2$-2-OGalB1-3GalNAcB1-4Gal;

(III): Neu5,9Ac$_2$-2-OGalB1-3GalNAcB1-4(Neu5Ac$_2$-3)Gal;

(IV): Neu5,9Ac$_2$-2-OGalB1-3GalNAcB1-4(Neu5Ac$_2$-3)GalB1-4Glc.

The Neu5,9Ac$_2$-2-OGal linkage in fragments I and II shows transitions between two distinct conformations as can be deduced from the two sets of Φ, Ψ angles of this linkage (Figure 2a). This conformational behaviour is similar to that determined by MD simulations for Neu5Ac$_2$-3Gal linkages in G$_{M3}$ gangliosides (Siebert et al., 1992) and in oligosaccharide chain fragments of glycoproteins (Siebert et al., 1993). The flexibility of the Neu5,9Ac$_2$-2-OGal linkage is reduced in fragment III, in which a second sialic acid (Neu5Ac) is linked α-glycosidically to the 3 position of the internal galactose. This change can be recognized from the data in Figure 2a, where only one pair of Φ, Ψ values can be deduced with confidence from the MD calculations, and from the Φ, Ψ trajectories, given in Figure 3, that indicate a high flexibility of the Neu5,9Ac$_2$-2-OGal in fragment II than in fragment III. A further extension of fragment III to fragment IV, which represents the complete oligosaccharide chain of G_{D1a} (Neu5,9Ac$_2$), does not seem to alter significantly the conformation with respect to fragment III (Figure 2a).

In addition, the orientations of both sialic acid glycerol side chains are given for fragment IV, revealing an appreciable flexibility of both side chains as indicated by the corresponding values of ω_0 and ω_p, respectively (Figure 2b,c). A similar degree of flexibility of the sialic acid side chain(s) was also calculated for shorter fragments (I-III) of the oligosaccharide. These results yield further refined information about the existence of distinct conformers depending on the oligosaccharide chain length on the basis of previous literature data about G_{D1a} (Acquotti et al., 1994). To address the argument that the monitored simulation time of 1000 ps at 300 K could be too short to register the range of additional conformational changes, a temperature increase to 400 K was included into the simulation (Sun and Kollman, 1992). No significant changes with regard to the values obtained for 300 K and shown here were detected.

A major drawback of MD calculations in vacuum is the explicit exclusion of solvent molecules that can easily be exchanged. The explicit exclusion of solvent molecules that can easily be exchanged. For proteins it has been reported that good agreement with the crystal structures of proteins can be derived from the MD calculations, and from the Φ, Ψ trajectories, given in Figure 3, that indicate a high flexibility of the Neu5,9Ac$_2$-2-OGal in fragment II than in fragment III. A further extension of fragment III to fragment IV, which represents the complete oligosaccharide chain of G_{D1a} (Neu5,9Ac$_2$), does not seem to alter significantly the conformation with respect to fragment III (Figure 2a).

In addition, the orientations of both sialic acid glycerol side chains are given for fragment IV, revealing an appreciable flexibility of both side chains as indicated by the corresponding values of ω_0 and ω_p, respectively (Figure 2b,c). A similar degree of flexibility of the sialic acid side chain(s) was also calculated for shorter fragments (I-III) of the oligosaccharide. These results yield further refined information about the existence of distinct conformers depending on the oligosaccharide chain length on the basis of previous literature data about G_{D1a} (Acquotti et al., 1994). To address the argument that the monitored simulation time of 1000 ps at 300 K could be too short to

MD simulations of G_{D1a} (Neu5,9Ac$_2$) with explicit inclusion of water and DMSO

MD simulations with application of suitable dielectric constants ε as well as with the tedious and time-consuming calculations with the inclusion of the actual solvent molecules are practically feasible due to the availability of adequate computer programs. Thus, corresponding calculations for G_{D1a} (Neu5,9Ac$_2$) over a time period of 150 ps have been carried out in water and DMSO, both of which have also been used as solvents for the NMR experiments of this ganglioside, and for G_{D1a}. Although the inclusion of solvent or as a box with periodic boundary conditions leads to a more accurate description of the oligosaccharide dynamics than obtained with simulations at certain ε values, the computational calculations become extremely time-consuming for larger molecules. For proteins it has been reported that good agreement with the crystal

Table 2. MD calculations of the Φ, Ψ angles of the glycosidic linkages

Fragment	Φ (SD)	Ψ (SD)
Neu5,9Ac$_2$2-3Gal	-80 (15)	-20 (10)
GalB1-3GalNAc	-160 (15)	-22 (14)
fragment II	-65 (10)	17 (19)
Neu5,9Ac$_2$2-3Gal	-81 (19)	7 (14)
GalB1-3GalNAc	-165 (15)	-19 (10)
GalNAcB1-4Gal	-13 (15)	14 (13)
fragment III	-97 (18)	-19 (13)
Neu5,9Ac$_2$2-3Gal	-25 (21)	-21 (11)
GalB1-3GalNAc	22 (9)	16 (10)
GalNAcB1-4Gal	-165 (11)	-15 (9)
fragment IV	-96 (27)	27 (13)
Neu5,9Ac$_2$2-3Gal	-22 (23)	-24 (10)
GalB1-3GalNAc	38 (10)	15 (10)
fragment IV	-170 (9)	-20 (9)
GalB1-4Glc	39 (27)	-8 (18)

Table 3. MD calculations of the Φ, Ψ angles of the glycosidic linkages

Fragment	ϕ (SD)	ω (SD)
-65 (9)	180 (10)	50 (15)
-65 (9)	180 (23)	50 (17)
-30 (18)	-55 (19)	
Fig. 3. Conformational behaviour of oligosaccharide fragments of the carbohydrate chain of the ganglioside. The trajectories of a 1000 ps MD simulation of G\textsubscript{D1} (Neu5,9Ac\textsubscript{2} at 300 K and e = 80 represent the time-dependent alteration of the glycosidic angles Φ and Ψ of the Neu5,9Ac\textsubscript{2}-3Gal-linkage of either fragment II (A) or fragment III (B).
structure can be achieved when a single hydration sphere and a distance-dependent dielectric constant were used (Guentot and Kollman, 1992, 1993). Consequently, it appears credible to simulate with this assumption and then extend to as much solvent water as is computationally feasible. The results of MD simulations are described in Figure 4, where the Φ, Ψ angles obtained for the glycosidic linkages of fragment IV are given for G_{Dla} (*Neu5,9Ac2) in a water box with periodic boundary conditions (Figure 4a), in a water layer (Figure 4b), and in a DMSO box with periodic boundary conditions (Figure 4c). In the case of the periodic boundary conditions, the integration step had to be reduced to 0.125 fs, because local overheating effects will otherwise cause ring inversions, which mainly occur for the GalNAc-residue, whereas calculations with the water layer did not give ring-inversion or evaporation under these conditions. All these simulations of G_{Dla} (*Neu5,9Ac2) yielded similar results independent of the nature of the solvent, which corroborate the data obtained by MD simulations of G_{Dla} (*Neu5,9Ac2) with no explicit inclusion of water molecules at dielectric constants ε of 4 or 80. The only difference that appears to be significant is exhibited in the Galβ1-4Glc linkage within fragment IV. It may adopt various Φ, Ψ angles depending on the type of the solvent and the solvation sphere, underscoring its remarkable flexibility already displayed in simulations with deliberate alterations of the ε-value without explicit consideration of solvent molecules.

Interaction analysis of G_{Dla} (*Neu5,9Ac2)

The apparently tremendous influence of the inner N-acetylmuramic acid (*Neu5Ac) on the conformation and flexibility of the complete oligosaccharide chain of G_{Dla} (*Neu5,9Ac2) (fragment IV) clearly indicates that interactions between different, spatially separated parts of G_{Dla} (*Neu5,9Ac2) can exist. Thus, an interaction analysis of the constituents of G_{Dla} (*Neu5,9Ac2) and, for comparison, G_{Dla} will probably allow comprehension of the relevance of individual influences. Likewise, the impact of the presence of the 9-O-acetyl group can be studied in this kind of analysis. The MD simulations of energetically minimized G_{Dla} (*Neu5,9Ac2) and G_{Dla} served as a basis for the interaction analysis. For this aim, the complete oligosaccharide chains of the two gangliosides were treated as composed of 15 different structural units A–O (Figure 5). Energy values describing these interactions are listed in Figure 6. These data result from a simulation at 300 K using a dielectric constant of ε = 4 after 500 and 1000 ps of simulation time. The van der Waals energy values can be calculated by subtracting the Coulomb energy values from the total energy values. Total energy values exceeding about ±2 kcal/mol are considered to be indicative of an interaction of different structural units. The indicated simulations allow deduction of contacts of distant monosaccharide residues that are not observable by NMR measurements, i.e., interactions between the N-acetyl substituent of the outer sialic acid moiety with the pyranose ring of the inner N-acetylmuramic acid (C-M) and, in the context of these studies most interestingly, between the 9-O-acetyl group of the outer sialic acid unit and the pyranose ring of N-acetylgalactosamine (A-H). Since the interactions H-J and C-M are not dependent on 9-O-acetylation, they are also seen in the case of G_{Dla}, whereas the contact A-H is only present in G_{Dla} (*Neu5,9Ac2). Its absolute energy value is rather low (~0.22 kcal/mol) after 1000 ps simulation. However, it is significantly less favourable after 500 ps (~1.19 kcal/mol) than after 1000 ps. The intermediate energy values obtained at the various 50 ps intervals over the whole simulation period of 1000 ps show the same differences as given here exemplarily for 500 and 1000 ps rather than a steady decrease to ~0.22 kcal/mol. This result is consistent with the notion that the interaction seen, e.g., after 1000 ps simulation can exist within one conformational arrangement, but is not strong enough to arrest the whole oligosaccharide chain in a corresponding conformation. It has to be noted that the same results that are not detectable by direct NOE contacts due to the distances of appropriate protons of more than 4 Å were obtained with MD simulations using different dielectric constants ε as well as under explicit consideration of the presence of solvent molecules.

Conformational aspects of G_{Dla} (*Neu5,9Ac2)

On the basis of NMR spectroscopic data and computational calculations, the establishment of a hydrogen bonding network between the external and the internal sialic acid, which may influence the overall conformation of G_{Dla}, has been discussed (Scarsdale et al., 1990; Sabesan et al., 1991a; Acquotti et al., 1994; Poppe et al., 1994). Consequently, the introduction of a 9-O-acetyl group may weaken this hydrogen bonding network between the two sialic acid moieties, leading to a completely different conformation or dynamic behaviour. The present data notably extend available information about G_{Dla} in explicitly including solvent molecules in the calculation and in performing interaction analyses. In addition, a detailed conformational and dynamic analysis of G_{Dla} (*Neu5,9Ac2) is given here for the first time. It is obvious that the conformational impacts described in the literature for G_{Dla} are confirmed herein. 9-O-Acetylation of the outer sialic acid apparently does not lead to...
a conformation that is significantly changed with regard to the non-O-acetylated ganglioside. Although a specific interaction of the 9-O-acetyl group with the N-acetylgalactosamine residue in G_{D1a} (^6Neu5,9Ac_2) can be deduced, it does not yield a rigid conformation based on this contact and still allows a remarkable flexibility of the glycerol side chain of the outer sialic acid, as can also be deduced from the corresponding torsional angles. Taking all these results together one possible conformation of G_{D1a} (^6Neu5,9Ac_2) can be given, as depicted in Figure 7.

Binding of G_{D1a} (^6Neu5,9Ac_2) to a 9-O-acetylated sialic acid-specific antibody preparation

Although our results indicate that the conformations of G_{D1a} (^6Neu5,9Ac_2) and G_{D1a} are very similar, the observable inter-
action between the 9-O-acetyl group and the pyranose ring of the N-acetylgalactosamine residue in the simulation may also indicate the occurrence of a distinct position of these chain constituents within one possible conformer (Figure 7). To explain preferential binding of 9-O-acetylated sialic acid derivatives to receptor proteins on a molecular level, this functional group must be accessible to the binding protein like the polyclonal IgG fraction from human serum used in this study in order to serve as a docking place for a corresponding receptor. To provide evidence for such an interaction, one-dimensional 1H-NMR-spectra of G01a (Neu5,9Ac2) in D2O/DPC in the absence and presence of the antibody fraction were recorded.

Fig. 6. Values of the sum of van der Waals energy and Coulomb energy (part above diagonal separation) and of the Coulomb energy alone given in kcal/mol (part below diagonal separation) of the structural elements A–O (Figure 5) of G01a (Neu5,9Ac2) (a and b) and for G01c (c and d) derived from corresponding MD calculations after simulation times of 500 ps (a and c) and 1000 ps (b and d). A, 9-O-acetyl group of the glycerol side chain of Neu5,9Ac2 (a and b) or 9-OH group of the glycerol chain of Neu5Ac (c and d); B, glycerol side chain of sialic acid; C, N-acetyl side chain of sialic acid; D, carboxyl group of sialic acid; E, sialic acid without A, B, C, and D; F, Gal; G, N-acetyl side chain of GalNAc; H, GalNAc without G; I, Gal; J, glycerol side chain of Neu5Ac; K, N-acetyl side chain of Neu5Ac; L, carboxyl group of Neu5Ac; M, Neu5Ac without J, K, and L; N, Glc; O, Cer.
As shown in Figure 8, a and b, the signal of the methyl signal from the 9-O-acetyl group almost disappears after addition of the antibody fraction (Figure 8b) when compared to the starting conditions without added receptor (Figure 8a). When this antibody fraction is incubated with the monosaccharide Neu5,9Ac2, a considerable line broadening is seen. In the case of non-O-acetylated Neu5Ac and Neu5Gc monosaccharides, no significant line broadening could be detected. Hence, it can be concluded that the methyl protons of the 9-O-acetyl group of Neu5,9Ac2 specifically interact with amino acids in the binding site of the protein. The fact that the intramolecular interactions of Gd10 (Neu5,9Ac2) are not strong enough to preferentially establish one conformation with the 9-O-acetyl substituent buried within the molecule guarantees that this group is accessible for an intermolecular recognition processes, providing a measurable contact region for a 9-O-acetyl-recognising domain of a receptor.

\textbf{Conclusion}

The computer-assisted generation of oligosaccharide fragments as parts of a more complicated structure, newly introduced in

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	
A	---	---	0.25	-0.03	-0.45	-0.13	0.07	-0.57	0.18	-0.43	0.05	-0.12	-0.25	-0.03	-0.03	
B	0.31	0.35	---	-0.04	---	0.26	0.55	-0.94	1.10	-0.75	-0.49	-1.30	-3.72	-0.20	-0.21	
C	-0.01	-0.05	-0.40	---	2.68	-0.04	0.01	-0.01	-0.02	0.00	-0.01	-0.03	0.00	0.00	0.00	
D	-0.30	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
E	0.00	-0.16	0.76	3.84	---	---	0.42	---	1.51	-0.37	0.48	-1.12	-1.33	-0.33	-0.29	
F	0.08	-0.05	0.43	0.00	-0.50	1.17	---	---	0.65	-0.28	0.43	-1.15	-1.66	-0.83	-0.34	
G	-0.45	-0.05	-1.86	0.05	2.56	---	---	---	2.82	-1.33	-0.78	1.40	0.62	0.53	---	
H	0.19	0.07	1.20	0.00	-1.75	1.79	3.16	---	1.74	0.81	2.52	---	---	---	0.99	
I	-0.05	-0.47	-0.36	0.00	0.29	-0.15	-0.12	-0.15	-0.22	---	0.09	-0.99	---	0.08	0.03	
J	0.06	-0.05	0.63	0.00	-0.74	0.50	0.45	-1.27	0.98	0.14	---	-0.27	---	-0.20	-0.26	
K	-0.08	-0.44	-0.16	0.04	-0.48	-0.32	0.04	0.29	3.85	-0.10	-0.04	---	---	-0.02	-0.01	
L	-0.21	-0.01	-2.31	-0.01	2.04	-1.10	-0.83	2.48	---	---	---	---	---	---	0.33	0.43
M	-0.03	-0.01	-0.20	0.00	0.28	-0.31	-0.68	0.73	---	0.10	-0.19	0.01	0.43	---	---	
N	-0.03	0.01	-0.21	0.00	0.32	-0.28	-0.33	0.54	-0.91	0.04	-0.26	-0.01	0.44	---	---	
O	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	

\textbf{Fig. 6. Continued}
this investigation, followed by MD calculations of these partial structures proved to be very helpful in studying the influence of individual residues on the total saccharide conformation and dynamic behaviour, as did the interaction analysis that was also developed for the present study, and allows recognition of interactions that cannot be detected as direct NOE contacts. This approach enabled delineation of conformations for such a complex branched molecule like G_{D1a} (*Neu5,9Ac₂).

On this structural basis, inherent flexibility and at least partial accessibility of the 9-O-acetyl group of G_{D1a} (*Neu5,9Ac₂) could be deduced for the oligosaccharide chain. The experimental proof for the assumed accessibility of this group for a receptor was accomplished by NMR measurements with the ganglioside and a 9-O-acetyl-binding IgG fraction from human serum revealing the participation of the methyl protons of the 9-O-acetyl group in this recognition process. With these tools in hands, we will be able to further investigate carbohydrate-protein interactions in solution on a molecular level and set a basis for an improved understanding of many fundamental biological processes, which also may have relevance for clinical

![Stereo plot of G_{D1a} (*Neu5,9Ac₂), representing the conformation as deduced from MD calculations of fragment IV after 1000 ps and the corresponding data from the interaction analysis.](Image)

![NMR-signal of the 9-O-acetyl group of G_{D1a} (*Neu5,9Ac₂) (1 mg). (a) In the free state; (b) after addition of 4 mg of the affinity-purified polyclonal IgG fraction with preferential affinity to 9-O-acetylated sialic acids; for comparison, the signals of the H3 eq of both sialic acids *Neu5,9Ac₂ and *Neu5Ac are also given.](Image)
applications (Gabius et al., 1995; Gabius, 1996; Gabius and Gabius, 1996).

Material and methods

Deuterated solvents (D$_2$O and DMSO-d$_6$; both 99.96 atom % D) and the detergent dodecylphosphocholine-d$_4$ (DPC-d$_4$) were purchased from Merck, Sharp and Dohme (Montreal, Canada). Neu5Ac and Neu5Gc were isolated from bovine submandibular gland mucin (Reuter et al., 1983). Neu5,9Ac$_2$ was obtained from Neu5Ac by treatment with trimethyl orthoacetate according to a published procedure (Ogura et al., 1987). G$_{12a}$ and G$_{10}$ (Neu5,9Ac$_2$) were isolated from red blood cells of Wistar and CAP rats, following a well-established procedure (Leeden and Yu, 1982; Gowda et al., 1984).

Preparation of polycyclonal antibody fraction

Human serum from normal donors served as source to purify the polyclonal antibody (IgG) fraction with preferential affinity to O-acetylated sialic acids (Ahmed and Gabius, 1989; Zeng and Gabius, 1992; Zeng et al., 1992). In brief, after removal of any serum components with affinity to the Sepharose 4B matrix and of any galactose-binding proteins by affinity chromatography over lactose-bearing Sepharose 4B the resulting serum fraction was passed over the affinity matrix obtained by conjugation of Neu5,9Ac$_2$ to a bovine submaxillary mucin to divinyl sulfone-activated Sepharose 4B (Ahmed and Gabius, 1989) and eluted with 0.1 M NH$_4$OH (pH 11) followed by immediate neutralisation. After affinity chromatography over protein A-Sepharose 4B, an IgG fraction was obtained, which nearly exclusively comprises IgG$_2$. The eluted protein was dialysed against phosphate-buffered saline and finally against water and lyophilised. The protein content was determined by the dye-binding assay adapted for microtiter plates (Reddembali and Campbell, 1985) using bovine serum albumin as reference.

NMR measurements

For the preparation of mixed micelles (Eaton and Hakomori, 1988; Siebert et al., 1992), the purified gangliosides G$_{12a}$ and G$_{10}$ (Neu5,9Ac$_2$) (2 mg, each) and DPC-d$_4$ were mixed in deuterated potassium phosphate buffer at pH 6 in a molar ratio of 1:40. The exchanged solvent was twice exchanged with D$_2$O, with intermediate lyophilization, and the sample was dried in high vacuum and finally dissolved in 0.4 ml of D$_2$O for NMR measurements. In addition, mixed micelles of G$_{12a}$ and G$_{10}$ (Neu5,9Ac$_2$) and DPC-d$_4$ in D$_2$O (corresponding to 2 mg ganglioside) were incubated with the affinity-purified antibody fraction (4 mg of protein) before analysis. In a series of NMR experiments the gangliosides G$_{12a}$ and G$_{10}$ (Neu5,9Ac$_2$) (2 mg each), which had been dried in high vacuum, were dissolved in 0.4 ml of DMSO-d$_6$ for performing NMR studies (Siebert, 1990). All NMR spectra were obtained at a frequency of 500 MHz on a Bruker AM-500 spectrometer equipped with an Aspect 3000 computer and process controller.

Molecular dynamics calculations

The oligosaccharide parts of G$_{12a}$ and G$_{10}$ (Neu5,9Ac$_2$) were generated by successively linking the appropriate monosaccharides to the chain starting from the non-reducing end with the aid of the SUGAR program of the CARBYD interface (von der Lieth et al., 1989). The coordinates for the sugar ring atoms were taken from the Cambridge Crystallographic Data Bank. Substitution of the exocyclic groups was accomplished with the aid of the MOLBUILD program (Liefers, 1983). The MM calculations were run on an IBM 3000 computer with the use of the standard MM2(87) force field (Burkert and Neu, 1974, 1979a,b) implemented in the 2.9 program (Biosym Technologies, San Diego, USA) and the Consistence Valence Force Field (CVFF) program (Liliefors, 1983). The MM calculations were run on an IBM 3090 computer with the use of the standard MM2(87) force field (Burkert and Neu, 1974, 1979a,b) implemented in the 2.9 program (Bio-

Handling water molecules in these simulations proved to be very challenging. Therefore, only a small number of water molecules were included in the simulation box to allow for sufficient distance to the solute. This was necessary because the groove of the carbohydrate molecules is narrow and water molecules can easily get trapped in it. Therefore, the simulation box was set up such that the carbohydrate molecules are surrounded by a number of water molecules at the top and bottom, but not on the sides. This was done to prevent hydration of the molecule from the side of the simulation box. The water molecules were added to the simulation box using the SOAK option of INSIGHT II. The details for the simulation using periodic boundary conditions were as follows: simple point charges for the water molecules, 631 water molecules, unit cell dimensions of x = 35 Å, y = 25 Å, and z = 25 Å, angles : $\alpha = \beta = \gamma = 90^\circ$; equilibrium time 50 ps at 300 K and state of thermal equilibrium for the rest of the simulation. A 5 Å thick layer of water molecules around G$_{12a}$ (Neu5,9Ac$_2$) was generated and applied in conjunction with a distance-dependent dielectric constant. A time integration step of 0.1 fs and a cut-off distance of non-bonded interactions of 12 Å were chosen. Additionally, MD-simulations in the solvent DMSO were carried out using the model solvent of Mierke and Kessler (1992) under the following conditions: periodic boundary, simple point charges for the DMSO molecules, 288 DMSO molecules, unit cell dimensions of x = 35 Å, y = 35 Å, and z = 35 Å, angles : $\alpha = \beta = \gamma = 90^\circ$, equilibrium time 50 ps at 300 K and state of thermal equilibrium for the rest of the simulation. All simulations in the presence of solvent molecules were performed on an IBM-SP2 parallel machine using the parallel version of DISCOVER and four processors.

Dihedral angles Φ and Ψ are defined as follows. Φ: C1-C2-O-C3, Ψ: C2-O-C3-H3 for Neu5Ac0-C3-Gal, Φ: H1-C1-O-CX, Ψ: C1-O-CX-HX for the other glycosidic linkages, Φ correspond to Φ_4, Ψ correspond to Ψ_4, according to the IUPAC conventions. The angles describing the O-acetylated gercrylcerol side chain of the external sialic acid are ω_4, H6-C6-C7-H7, ω_4, H7-C7-C8, ω_4, H8-C8-C9-O9; ω_4, C9-C9-O9-C10, and ω_4, C9-O9-C10-C11, with C10 being the carbonyl C atom of the 9-O-acetyl group and C11 as methyl C atom of this substituent. The angles of the non-O-acetylated gercrylcerol side chain, ω_4, ω_4, ω_4, ω_4, are defined analogously. All torsion angles listed in the Figures 2 and 4 are averaged values from the trajectories.

Acknowledgements

This investigation was supported by the Human Capital and Mobility Program of the European Community, the D.-M.-Scheel-Stiftung für Krebsforschung and by the Netherlands Foundation for Chemical Research (SON). We sincerely thank Prof. Dr. Janusz Dabrowski from the Max-Planck-Institut für Medizinische Forschung in Heidelberg for highly esteemed help and many fruitful discussions; Prof. Dr. Heinz Staab, head of the Department of Organic Chemistry at the Max-Planck-Institut für Medizinische Forschung, for valuable access to the 500 MHz-NMR spectrometer; and Dr. Dale F. Mierke and Prof. Dr. Horst Kessler from the Technische Universität München, Organisch-Chemisches Institut, for making available to us the software for MD calculations including DMSO as solvent.

Abbreviations

DPC, dodecylphosphocholine; G$_{12a}$ (Neu5,9Ac$_2$), G$_{10}$ with N-acetyl-9-O-acylneuraminic acid bound to the external galactose residue; Neu5Ac in G$_{12a}$ or G$_{10}$ (Neu5,9Ac$_2$), N-acetylneuraminic acid bound to the internal galactose residue; Neu5Ac, N-acetylneuraminic acid; Neu5,9Ac$_2$, N-acetyl-9-O-acylneuraminic acid; Neu5Gc, N-glycolylneuraminic acid.

References

Acquarito, D., Cantu, L., Ragg, E. and Sonnino, S. (1994) Geometrical and conformational properties of ganglioside GaINAc-G$_{12a}$ in the liquid crystalline phase. Biochemistry, 33, 591-595.

Ahmed, H. and Gabius, H.-J. (1989) Purification and properties of a Ca$^{2+}$-independent sialic acid-binding lectin from human placenta with preferential affinity to O-acetyl sialic acids. J. Biol. Chem., 264, 18673-18678.

Allinger, N.L., Kol,R.A. and Imam, M.R. (1988) Hydrogen bonding in MM2. J. Compt. Chem., 9, 591-595.

Asensio, J., Martin- Pastor, M. and Jimenez-Babeiro, J. (1995) The use of CVFF and CVFF91 force fields in conformational analysis of carbohydrate mol-
ecules Comparison with AMBER molecular mechanics and dynamics calculations for methyl α-lactoside. Int. J. Biol. Macromol., 17, 137-148.

Balaji,P.V., Qaba,P.K. and Rao,V.S.R. (1993) Molecular dynamics simulations of asialo-glycoprotein Biochemistry, 32, 12599-12611.

Balaji, P.V., Qaba, P.K. and Rao, V.S.R. (1994) Molecular dynamics simulations of high mannose oligosaccharides. Glycobiology, 4, 497-515.

Burkert,U. and Allinger,N.L. (1982) Molecular Mechanics, American Chemical Society, Washington, DC.

Cheresh,D.A., Reisfeld,R.A. and Varli,A.P. (1984a) O-Acetylation of disialoganglioside G_{D3} by human melanoma cells creates a unique antigenic epitope. Science, 222, 5844-5846.

Cheresh,D.A., Varli,A.P., Varki,N.M., Stalcup,W.B., Levine,J. and Reisfeld,D.R.A. (1984b) A monoclonal antibody recognizes an O-acetylated sialic acid in a human melanoma-associated ganglioside. J. Biol. Chem., 259, 7453-7459.

Eaton,H.L. and Hakomori,S. (1988) Conformation of mixture-bound gangliosides by 2D proton NMR spectroscopy Third Chemical Congress of North America, Abstract CARB 91, Toronto.

Gabius,H.-J. and Gabius,S. (1996) Glycosciences: Status and Perspectives. Chapman & Hall, Weinheim.

Guenot,J. and Kollman,P.A. (1993) Molecular dynamics studies of DNA-binding protein: an evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor Protein Sci., 1, 1185-1205.

Guenot,J. and Kollman,P.A. (1992) Molecular dynamics studies of DNA-binding protein: an evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor Protein Sci., 1, 1185-1205.

Hagler,A.T., Dauber,P. and Lifson,S. (1979b) Consistent force field studies of gangliosides containing different si- nal hydrocarbon and the analysis of the energetics and packing of carboxyls acids. J. Am. Chem. Soc., 101, 5131-5141.

Hakomori,S. (1990) Biofunctional role of glycosphingolipids. J. Biol. Chem., 265, 18713-18716.

Hagler,A.T., Huler,E. and Lifson,S. (1974) Energy functions for peptides and proteins. Deviation of a consistent force field including the hydrogen bond for the conformation of polyalanine. J. Am. Chem. Soc., 96, 5316-5327.

Hagler,A.T., Lifson,S. and Dauber,P. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.

Hagler,A.T., Dauber,P. and Lifson,S. (1979a) Consistent force field studies of interactions between remote residues in gangliosides. Carbohydr. Res., 50, 374-409.
Sjoberg, E.R., Manzi, A.E., Khoo, K.H., Dell, A. and Varki, A. (1992) Structural and immunological characterization of O-acetylated GD2—evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells. *J. Biol. Chem.*, 267, 16200–16211.

Sjoberg, E.R., Powell, L.D., Klen, A. and Varki, A. (1994) Natural ligands of B cell adhesion molecule CD22b can be masked by 9-O-acetylation of sialic acids. *J. Cell Biol.*, 126, 549–562.

Sun, Y. and Kollman, P.A. (1992) Conformational sampling and ensemble generation by molecular dynamics simulations: 18-Crown-6 as a test case. *J. Comput. Chem.*, 13, 33–40.

Thurin, J., Herlyn, M., Hindsgaul, O., Strømberg, N., Karlsson, K.-A., Elder, D., Steplewski, Z. and Koprowski, H. (1985) Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-O-acetyl GD3. *J. Biol. Chem.*, 260, 14556–14563.

Varki, A. (1992) Diversity in the sialic acids. *Glycobiology*, 2, 25–40.

von der Lieth, C.-W., Schmitz, M., Poppe, L., Hauck, M. and Dabrowski, J. (1989) CARBHYD—ein computergrafisches Interface zur Konstruktion, Wiedergabe und Konformationsberechnung von Poly- und Oligosaccharchanden. In Gauglitz, G. (ed.), *Software-Entwicklung in der Chemie 3* Springer Verlag, Heidelberg, pp. 371–378.

von der Lieth, C.-W., Kozár, T. and Hull, W.E. (1996) A (critical) survey of modeling protocols used to explore the conformational space of oligosaccharides. *J. Mol. Struct. (Theochem)*, in press.

Zeng, F.-Y. and Gabius, H.-J. (1992) Sialic acid-binding proteins: characterization, biological function and application. *Z. Naturforsch.*, 47c, 641–653.

Zeng, F.-Y., Wegenka, U. and Gabius, H.-J. (1992) Purification and properties of a fucoidan-binding protein from human placenta and its identification as immunoglobulin G. *Int. J. Biochem.*, 24, 1329–1340.

Zimmer, G., Reuter, G. and Schauer, R. (1992) Use of influenza C virus for detection of 9-O-acetylated sialic acids on immobilized glycoconjugates by esterase activity. *Eur. J. Biochem.*, 204, 209–215.

Zimmer, G., Suguri, T., Reuter, G., Yu, R.K., Schauer, R. and Herrler, G. (1994) Modification of sialic acid by 9-O-acetylation is detected in human leucocytes using the lectin property of influenza C virus. *Glycobiology*, 4, 343–349.

Received on February 3, 1996; revised on March 23, 1996; accepted on April 24, 1996