Density waves and supersolidity in rapidly rotating atomic Fermi gases

G. Möller and N. R. Cooper

Theory of Condensed Matter Group, Cavendish Laboratory, J. J. Thomson Ave., Cambridge CB3 0HE, UK

(Dated: April 29, 2007)

We study theoretically the low-temperature phases of a two-component atomic Fermi gas with attractive s-wave interactions under conditions of rapid rotation. We find that, in the extreme quantum limit, when all particles occupy the lowest Landau level, the normal state is unstable to the formation of “charge” density wave (CDW) order. At lower rotation rates, when many Landau levels are occupied, we show that the low-temperature phases can be supersolids, involving both CDW and superconducting order.

The experimental achievement of condensation of pairs of atoms in two-component Fermi gases with resonant s-wave interactions \[1, 2, 3, 4\] has allowed studies of interacting Fermi systems in regimes not accessible in solid-state systems: notably the transition region between weak and strong interactions (BCS to BEC crossover), and regimes of large density imbalance between the two species. The ability to rotate the gases, revealing a lattice of quantized vortices \[3\], has provided an important diagnostic of superfluidity in these phase-coherent condensates.

A very interesting regime arises in atomic Fermi gases under conditions of rapid rotation (high vortex density). Noting the analogy between rotation and magnetic field in a superconductor, one might anticipate the BCS phase to revert to a normal state above a critical rotation frequency \(\Omega_c = 2 \Omega\). The single particle states then have energies \(\epsilon_v = (2n + 1)\hbar \Omega + \frac{\hbar^2 k^2}{2m}\), where \(v = (n, x, k)\) stands for the LL-index \(n\), the momentum in the Landau gauge \(x\) \[24\], and the wavevector along the rotation axis \(k\). For a non-interacting gas with Fermi energy \(\epsilon_F\), the \(n^{th}\) Landau level has a 1D Fermi surface with Fermi momentum \(\hbar k_{Fn} = |2m(\epsilon_F - (2n + 1)\hbar \Omega)|^{1/2}\) and kinetic energy relative to the bottom of the band \(\epsilon_{Fn} = \frac{\hbar^2 k_{Fn}^2}{2m}\). We describe the instabilities of these Fermi surfaces arising from weak interactions. (We focus on results for attractive interactions, but also report on the repulsive case.)

First, we analyze the effect of rotation on the SC phase, applying BCS theory in the presence of Landau level structure \[3, 7, 11, 12, 13\]. For contact interactions, the gap equation requires regularization at high energies. For solid state systems, the Debye frequency provides a natural cut-off for phonon-mediated attractive interactions. In a cold atomic gas, a natural regularization arises from the (small) lengthscale of the interparticle forces. Using a two-channel model for the Feshbach interaction, this lengthscale enters as the size of the “closed channel” boson (see e.g. \[3, 14, 15\]) and can be taken to zero with the introduction of appropriate counterterms. Following Ref. \[14\], the parameters of the model are the boson energy \(\epsilon_B = 2 \hbar \Omega + \delta + C\) and the coupling \(\alpha_s\) between a closed channel boson and fermions with quantum numbers \(\nu\) and \(\nu'\). Here, \(\delta\) is the detuning of the bosons and \(C\) a counterterm which is set to cancel the boson self energy \(\Sigma(\omega \to 0) = \alpha^2 \sum_{\nu\nu'} |S_{\nu\nu'}|^2 / (\epsilon_{\nu} + \epsilon_{\nu'})\), such that the model reproduces the scattering properties at low energy and \(\Omega \to 0\) \[14, 25\]. The physical scattering parameters are related via \(-\alpha^2/\delta = 4 \pi^2 a_s/m \equiv g\). Treating the ensuing two-channel Hamiltonian within mean field, and assuming a wide Feshbach resonance, yields the linearized gap equation \[14\]

\[
\frac{1}{-a_s} = \hbar \Omega \sum_{n, n'} \infty B_n' \int \frac{dk}{2\pi} \ln\left[\frac{\th{\xi_{n'}} + \th{\xi_{n'}}}{\xi_{n'} + \xi_{n'}} - \frac{2}{\epsilon_{\nu} + \epsilon_{\nu'}} \right]
\]

(1)

with \(B_{n}^{\prime} = \binom{n + n'}{n} 2^{-n - n'}, \xi_{\nu} = \epsilon_{\nu} - \mu\), and the magnetic
length $\ell_0 \equiv (\hbar/2m\Omega)^{1/2}$. The solutions to (1) determine the critical temperature T_c for superconductivity.

Within a semiclassical approximation to (1), T_c vanishes for $h\Omega \gtrsim \Delta^2/\mu$ (Δ is the zero field gap) [6, 7, 9, 11, 12, 13]. The full gap equation (1) admits solutions even in this regime. Then, when T_c is small, the dominant contributions arise from integrating the ‘diagonal’ terms $(n = n')$ [12], which diverge logarithmically at low T for occupied LL’s. Provided $k_BT_c \ll |\mu - \hbar\Omega(2n_{\max} + 1)|$, the off-diagonal terms $(n \neq n')$ can be neglected, and one finds

$$T_c \sim \frac{\hbar\Omega}{k_B} \exp \left\{ -\frac{2\pi}{a_s k_F 0} G(\eta)^{-1} \right\} \quad (2)$$

where $\eta \equiv (\mu - \hbar\Omega)/(2\hbar\Omega)$, $n_{\max} = |\eta|$, and

$$G(\eta) \equiv \frac{1}{\eta} \sum_{n=0}^{n_{\max}} \frac{(2n)!}{(2n+1)!^2} \left(1 - \frac{n}{\eta} \right)^{-\frac{1}{2}} \quad (3)$$

The critical temperature (2) is a strongly oscillating function of $\mu/\hbar\Omega$, with a peak each time a LL depopulates and $G(\eta)$ diverges. The sharp peaks predicted by (2) are rounded in a full of solution of (1) which is required for strong-coupling. The evolution from weak to strong coupling is shown in Fig. 1, which we have computed by solving (1) using a numerical root-finding routine.

Consistent with previous studies of BCS theory in solid state systems [6, 7, 9, 11, 12, 13] we find that

$$\mathcal{H}_t = \frac{g}{L_x L_y L_z} \sum_{\mu \sigma \rho} \sum_{k_1, k_2, k_3} (\delta_{\mu \rho} \delta_{\nu \sigma} - \delta_{\mu \sigma} \delta_{\nu \rho}) \gamma_0^{(n)}(x, y, z) e^{i(x'y' - x'y)} \hat{a}^\dagger_{n, x, k_1, \mu} \hat{b}^\dagger_{n, y, k_2, \sigma} \hat{b}_{n, y', k_3, \rho} \hat{a}_{n, x', k_1 + k_2 - k_3, \sigma} \quad (7)$$

Identical divergences occur in both particle-particle ($p-p$) and particle-hole ($p-h$) diagrams [10], and in diagrams of higher orders. The resulting ensemble of “parquet” diagrams, obtained by mutual insertion of $p-p$ and $p-h$ blocks into one another [17], is most easily analyzed in terms of a renormalization group (RG) approach [18]. This scheme has been applied to spinless electrons in a magnetic field [18]. We generalise this approach to a two-component rotating atomic Fermi gas, and consider particles in the n^{th} LL. Particles at the two Fermi points $k = \pm k_{F_n}$ are represented by separate fermionic field operators $\hat{a}^{(i)}$ and $\hat{b}^{(i)}$. States at the first Fermi point are expanded in terms of the LL wavefunctions [24]

$$\psi_{nxk}(X, Y, Z) = N_n H_n(X - x) e^{ixY + (X - x)^2/2 + ikZ} \quad (5)$$

with lengths measured in units of ℓ_0, the Hermite polynomials H_n and normalization $N_n = (L_x L_y L_z \pi)^{1/2} 2^n n! \eta^{-\frac{1}{2}}$. At the other Fermi point we use the transformed basis

$$\tilde{\psi}_{nyk}(X, Y, Z) = \frac{1}{N_\phi} \sum_x e^{-ixy} \psi_{nxk}(X, Y, Z). \quad (6)$$

For weak coupling, the kinetic energy can be linearized around the Fermi points, $\pm k_{F_n}$. The (logarithmically divergent) part of the contact interaction (amplitude g) describing scattering between opposite Fermi surfaces is
The dependence on the LL index \(n \) arises only in the form of the bare interaction vertex, \(\gamma_0^{(n)}(r) = e^{-i\frac{\pi}{2}}L_n(r^2/2)^2 \), where we introduce \(r \equiv (x, y) \) and \(L_n \) are the Laguerre polynomials. The interaction \(\mathcal{H}_I \) can be viewed as two distinct vertices according to the way spin is conserved, and denoted \(\gamma_{1,2} \) in the usual notations for quasi-1D systems \[10\]. From (7), these vertices have the initial conditions
\[
\gamma_{1,2}^{(n)}(r)|_{\xi=0} = \text{sgn}(g)\gamma_0^{(n)}(r).
\] (8)

Renormalisation of the vertices \(\gamma_{1,2} \) leads to corrections that can be expressed as a power in \(\xi \) \[17\]. The one-loop RG equations can be obtained by adapting the approach of Ref. \[20\] to include the LL structure. We find
\[
\frac{d\gamma_1}{d\xi} = -2\gamma_1 \star \gamma_1 + 2\gamma_1 \star \gamma_2 - 2\gamma_1 \otimes \gamma_2
\] (9)
\[
\frac{d\gamma_2}{d\xi} = 2\gamma_2 \star \gamma_2 - \gamma_1 \otimes \gamma_1 - \gamma_2 \otimes \gamma_2
\] (10)
where the operations \(\star \) and \(\otimes \) arise in p-h and p-p loops, respectively, and are defined by
\[
\gamma_i \star \gamma_j \equiv \int d^2r' \gamma_i(r-r')\gamma_j(r').
\] (11)
\[
\gamma_i \otimes \gamma_j \equiv \int d^2r' \gamma_i(r-r')\gamma_j(r')e^{-ir\land r'}.
\] (12)

The phase factor in (12) is a consequence of the LL structure.

We have solved the RG equations (9,10) with initial conditions (8) for arbitrary Landau level index \(n \), using a standard numerical routine with \(\gamma_{1,2}(|r|) \) discretized uniformly in \(|r| \). (The initial conditions for \(\gamma_{1,2} \) are radially symmetric, and this symmetry is preserved by the RG equations.) To identify instabilities, we calculate the renormalization of the response functions \[20\]. The RG equations for the triangular vertices \(T \) in the (singlet) SC, charge- and spin-density wave (SDW) channels are given in our case by
\[
d\xi T_{SC} = (-\gamma_1 - \gamma_2) \otimes T_{SC}
\] (13)
\[
d\xi T_{CDW} = (-2\gamma_1 + \gamma_2) \star T_{CDW}
\] (14)
\[
d\xi T_{SDW} = \gamma_2 \otimes T_{SDW}.
\] (15)

Initial conditions for the triangular vertices can be chosen as \(T_{1,2}(r)|_{\xi=0} = \delta(r) \), such that all Fourier components are non-zero. We find the smallest value, \(\xi_c \), at which a susceptibility diverges: this indicates a transition into an ordered phase at a critical temperature [see (11)]
\[
T_c \sim \frac{\epsilon_F}{k_B} \exp\left(-\frac{(2\pi)^3\hbar\epsilon_F\ell_0^2}{|g|} \xi_c\right).
\] (16)

In contrast to the full RG equations, the simplified equations describing only p-h ladders can be solved analytically, and provide a useful reference point for our numerical evaluation. The solution for the p-h ladder discussed in Ref. \[18\] can be generalized to arbitrary Landau level \(n \) and yields a transition at a critical temperature which is independent of \(n \) and the sign of \(g \), with \(\xi_c = (2\pi)^{-1} \). For \(g < 0 \) (\(g > 0 \)) the transition is to a CDW (SDW). For p-p ladders, the problem can be solved analytically for \(n = 0 \), where the SC instability occurs for attractive interactions also at \(\xi_c = (2\pi)^{-1} \). By restricting the SC gap equation in the presence of a magnetic field to a single LL (see above and [12]), one can infer \(\xi_c(n) = (2\pi)^{-1}n!/(2\pi(2n)!) \), showing that SC order becomes weak as \(n \to \infty \). These analytic results are reproduced by our numerical approach, when restricted to include p-p or p-h diagrams only. Note that for \(n = 0 \) the CDW and SC instabilities have the same critical temperature. Thus, mean-field theory cannot determine which of these states will form the low-temperature phase.

Our solution of the full RG equations (9,10) shows that, for attractive interactions, CDW order is the dominant instability for all LLs. The critical temperature (10) depends on the LL index, with exponents summarized in Table I. Thus, for \(n = 0 \), the competition between the identical instabilities in p-p and p-h channels (both at \(\xi_c = (2\pi)^{-1} \)) is decided to the advantage of CDW order. The order parameter diverges most strongly at zero in-plane momentum, so the density-waves are aligned with the rotation axis. Thus, the CDW phase in the \(n \)th LL involves a modulation of the particle density along the rotation axis, with period \(\lambda_n^{\text{CDW}} = \pi/k_Fn \). Within one period of the density wave the effective 2D particle density (in that LL) is \(n_{2d,n} = 1/(\pi \ell_0^2) \), such that this LL is fully occupied (its filling factor is \(\nu_n = n_{2d,n} \pi \ell_0^2 = 2 \)). Thus the CDW phase is fully gapped. In the extreme quantum limit, when \(\hbar \Omega < \epsilon_F < 3\hbar \Omega \), \(k_{F0} = \pi^2 n \ell_0^2 \), where \(n \) is the 3D particle density, so the period is \(\lambda_0^{\text{CDW}} = 1/(\pi n \ell_0^2) \). In Fig. II we show the transition temperature into this CDW in the LLL (dashed lines). (For repulsive interactions, we find that SDW order is dominant for all \(n \). See Table II).

Our results show that CDW order always prevails for attractive contact interactions when dynamics are restricted to a single LL. However, at low rotation rates,

\(n \)	0	1	2	3	4	\(\infty \)
\(2\pi \xi_c \)	0.726(4)	0.86(1)	0.91(1)	0.93(1)	0.95(1)	1
\(2\pi \xi_c \)	1.554(4)	1.24(1)	1.16(1)	1.13(1)	1.11(1)	1
the groundstate is the BCS superconducting state (with dilute vortices). How does one reconcile these conclusions? The answer lies in the coupling between LLs. Since the periods of the CDWs, λ_{n}^{CDW}, differ between LLs, we find that the CDW does not gain from inter-LL couplings: there are CDW instabilities at the temperatures set by our calculations for individual LLs, Table I. On the other hand, a SC state can benefit from coherence between LL’s, as the Cooper pairs all have the same (zero) momentum. Thus, although SC within a single LL is less relevant than CDW, the “Josephson” coupling between LLs can stabilise a collective SC state. That said, as the topmost LL, n_{max}, depopulates our results show that the CDW instability in this LL can occur at a higher temperature than the SC state of the entire system. In this case, the first instability (as T is reduced) is to a CDW in the Landau level n_{max}, and one expects a second instability, at lower T, to a SC state formed from the other Landau levels. (The loss of the highest LL from the SC makes little difference to its condensation energy.)

In this way, we predict a supersolid groundstate, involving both CDW of the topmost LL and SC order in the lower LLs. Ultimately, at sufficiently high rotation rate (or low particle density), when all particles occupy the LLL, the groundstate is a CDW without superconducting order.

A striking consequence of our results is that for a rapidly rotating atomic Fermi gas, there should appear spontaneous density wave order, with a period λ_{n}^{CDW} that grows as the particle density in the topmost Landau level decreases. This can be a long lengthscale, so could be measured in experiment directly by in situ absorption. Clearly, the observation of the density waves requires a trap with oscillator length $\ell_{\parallel} > \lambda_{n}^{\text{CDW}}$. For $\ell_{\parallel} < \lambda_{n}^{\text{CDW}}$ there will be a single period of the wave, leading to a quasi-2D regime with 2D particle density in this LL equal to $n_{2d,n} = 1/((\pi\ell_{\parallel}^{2})$. This (incompressible) filled LL will appear as a step in the transverse density profile, as measured in-situ or in an expansion measurement [21].

The results that we have presented are accurate far from the resonance on the BCS side, where interactions are weak. We expect the qualitative behaviour to survive as the resonance is approached. While the detailed energetics of both phases cannot be relied upon for strong coupling, we find that SC is stabilized relative to CDW order for chemical potentials above the LLL as the coupling increases. Presumably, this leads to the suppression of CDW states in any but the lowest LL as one approaches the resonance. Furthermore, we note that the density-wave state(s) we find on the BCS side of the resonance cannot evolve smoothly to the BEC side. A CDW of atoms, with $\nu_{\text{atom}} = 2$ per period, could evolve, to retain the same period, into a CDW of tightly bound molecules with $\nu_{\text{mol}} = 1/2$ per period [22]. However, there must be a phase transition separating these two states, owing to the different edge structures of the phases [23]. Thus, in contrast to the SC phase at low rotation rate, in the extreme quantum limit (at high rotation rate) tuning the interactions across the Feshbach resonance must involve a phase transition.

We thank J. Chalker, M. Gunn, D. Haldane, W. Ketterle, and D. Khmelnitskii for helpful discussions. This work was supported by EPSRC (GR/S61263/01).

[1] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004).
[2] M. W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).
[3] C. Chin et al., Science 305, 1128 (2004).
[4] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Phys. Rev. Lett. 95, 020404 (2005).
[5] M. W. Zwierlein et al., Nature 435, 1047 (2005).
[6] P. Gorkov, Zh. Eksp. Teor. Phys. 36, 1918 (1959), ibid. 37, 833 (1959) [JETP 9, 1364 (1959) & 10, 593 (1960)].
[7] E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
[8] M. Y. Veillette, D. E. Sheehy, L. Radzihovsky, and V. Gurarie, Phys. Rev. Lett. 97, 250401 (2006).
[9] L. W. Gruenberg and L. Gunther, Phys. Rev. 176, 606 (1968).
[10] V. Celli and N. D. Mermin, Phys. Rev. 140, A839 (1965).
[11] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
[12] C. T. Rieck, K. Scharnberg, and R. A. Klemm, Physica C 170, 195 (1990).
[13] M. Rasolt and Z. Tešanović, Rev. Mod. Phys. 64, 709 (1992).
[14] H. Zhai and T.-L. Ho, Phys. Rev. Lett. 97, 180414 (2006).
[15] V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 (2007).
[16] A. A. Abrikosov, J. Low Temp. Phys. 2, 37 (1970), ibid. 2, 175 (1970).
[17] S. A. Brazowskii, Zh. Eksp. Teor. Phys. 61, 2401 (1972), [JETP 34, 1286 (1972)].
[18] V. M. Yakovenko, Phys. Rev. B 47, 8851 (1993).
[19] J. Sólyom, Adv. Phys. 28, 201 (1979).
[20] A. T. Zheleznyak, V. M. Yakovenko, and I. E. Dzyaloshinskii, Phys. Rev. B 55, 3200 (1997).
[21] N. Read and N. R. Cooper, Phys. Rev. A 68, 035601 (2003).
[22] N. R. Cooper, Phys. Rev. Lett. 92, 220405 (2004).
[23] F. D. M. Haldane and E. H. Rezayi, KITP conference, 2004 and private communication.
[24] For later convenience, the internal LL quantum number is denoted x (or y) and coordinate positions as (X, Y, Z), adopting the notations of Ref. [18].
[25] Eq. (4) of Ref. [14] for $Q_{\nu'}$ is incorrect. In our notation, the correct result is ($L_{y} = L_{z} = 1$)

$$S_{\nu'} = c_{X} \delta(k + k') \frac{(-1)^{n_{\nu} - N}}{\sqrt{\sqrt{2\pi} n_{\nu}!\nu_{\nu}}} H_{N}(\ell_{0}\sqrt{2\pi} \bar{x}) e^{-\left(\ell_{0}\bar{x}\right)^{2}}$$

with $\bar{x} = (x - x')/2, N = n + n'$, and $\int dX/(2\pi)c_{X}^{2} = 1$.
[26] At $T = 0$, the kinetic energy of the superfluid flow in the vortex lattice (in the rotating frame) is $\sim \hbar \Omega$ per particle, while the condensation energy is $\sim \Delta^{2}/\mu$ per particle.