HuR and GRSF1 modulate the nuclear export and mitochondrial localization of IncRNA $RMRP$

Ji Heon Noh1,4, Kyoung Mi Kim1,4, Kotb Abdelmohsen1, Je-Hyun Yoon1, Amaresh C. Panda1, Rachel Munk1, Jiyoung Kim1, Jessica Curtis2, Christopher A. Moad3, Christina M. Wohler3, Fred E. Indig3, Wilson de Paula1, Dawood B. Dudekula1, Supriyo De1, Yulan Piao1, Xiaoling Yang1, Jennifer L. Martindale1, Rafael de Cabo2, and Myriam Gorospe1*

SUPPLEMENTAL DATA:

SUPPLEMENTAL MATERIALS AND METHODS
SUPPLEMENTAL REFERENCES
SUPPLEMENTAL FIGURE LEGENDS
SUPPLEMENTAL FIGURES
SUPPLEMENTAL MATERIALS AND METHODS

Use of CRISPR/Cas9 system to prevent GRSF1 expression in HEK293 cells

The genome editing CRISPR/Cas9 system was used in HEK293 cells to generate stable knockout cells. Three single guide RNAs (sgRNAs) were designed according to a CRISPR design tool provided at http://crispr.mit.edu, and the guide sequence oligos were cloned into a plasmid containing Cas9 and the sgRNA scaffold (pSpCas9(BB)-2A-Puro (PX459) V2.0) (Addgene, #62988) following a ‘scarless’ cloning strategy described previously (Ran et al. 2013). HEK293 cells were transfected with each CRISPR plasmid using lipofectamine 2000 and maintained in culture for 3 days. After 2 days of puromycin (3 μg/mL) selection, cells were seeded at low density and maintained in culture media with puromycin for isolating single clones (2-3 weeks).

Western blot analysis

Protein lysates, prepared in RIPA buffer (50 mM Tris-HCl [pH 7.2], 150 mM NaCl, 1% NP40, 0.1% SDS, 0.5% DOC, 1 mM PMSF, 25 mM MgCl₂, supplemented with a phosphatase inhibitor cocktail) or modified extraction buffer (MEB) (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM MgCl₂, 1% NP-40, protease inhibitor cocktail, 1 mM PMSF) were separated by electrophoresis in SDS-containing polyacrylamide gels (SDS-PAGE), and transferred onto nitrocellulose membranes (Invitrogen iBlot Stack). Primary antibodies recognizing HuR, CRM1, Lamin B, HSP90, p53, TOMM40, PNPase, GAPDH, β-actin, GST, and GFP were from Santa Cruz Biotechnology. Primary antibodies recognizing ACO2, AUH, Twinkle, IMMT, ATP5A, PCB, OGDH, and TIMM23 were from Abcam. Anti-GRSF1 and anti-Flag were from Sigma, and anti-phospho-AMPKα (Thr172) was from Cell Signaling Technology. HRP-conjugated secondary antibodies were from GE Healthcare.

RIP analysis

For immunoprecipitation (IP) of endogenous RNP complexes (RIP analysis) from whole-cell extracts (Lee et al. 2010), cells were lysed in 20 mM Tris-HCl [pH 7.5], 100 mM KCl, 5 mM MgCl₂ and 0.5% NP-40 for 10 min on ice and centrifuged at 10,000 × g for 15 min at 4°C. The supernatants were incubated with protein A-Sepharose beads (GE Healthcare) coated with antibodies that recognized HuR or with control IgG (Santa Cruz Biotechnology) for 1.5 h at 4°C. After the beads were washed with NT2 buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM MgCl₂ and 0.05% NP-40), the complexes were incubated with 20 units of RNase-free DNase I (15 min at 37°C) and further incubated with 0.1% SDS/0.5 mg/ml Proteinase K (15 min at 55 °C) to remove DNA and proteins, respectively. The RNAs isolated from the IP materials was further assessed by RT-qPCR analysis. To detect mitochondrial interactions of RBPs (GRSF1 and PNPase) with
RNA, isolated mitochondria were lysed in MEB, and IP was performed following the procedure as previously described (Jourdain et al. 2013) with minor modifications.

Biotin pulldown analysis

To transcribe biotinylated transcripts, PCR fragments were prepared using forward primers that contained the T7 RNA polymerase promoter sequence, as described (Abdelmohsen et al. 2009); primers are listed in the supplemental Table S1. After purification of the PCR products, biotinylated transcripts were synthesized using MEGAscript™ T7 kit (Life Technologies). Whole-cell lysates (500 μg per sample) were incubated with 1 μg of purified biotinylated transcripts for 1 h at room temperature, followed by isolation of RNP complexes using Streptavidin-coupled Dynabeads (Invitrogen). The proteins present in the pulldown material were detected by Western blot analysis. Biotinylated RMRP was synthesized by T7 RNA polymerase using linearized pcDNA3-RMRP as a template. For affinity pulldown of endogenous human RMRP, biotin-labeled DNA oligomers complementary to human RMRP (0.5-1 μg) were incubated with HEK293 cell lysates (a 15-cm dish was used per reaction) for 2 h and the complexes were isolated with Streptavidin-coupled agarose beads. Antisense and sense oligomer sequences are listed (Table S1). Antisense oligomers ASO-1 and ASO-2 are shown in Fig. S2A.

Subcellular fractionation

Cytoplasmic and nuclear fractions were prepared using NE-PER extraction reagents (PIERCE) according to the manufacturer’s instructions. The purity of each fraction was assessed by immunoblotting using antibodies that recognized exclusively nuclear (Lamin B) or cytoplasmic (HSP90) proteins or by RT-qPCR analysis to amplify nuclear RNA (NEAT1). To obtain the nuclear fractions with minimal cytoplasmic contamination, buffer daunry (0.5% NP-40, 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.4) including 10 mM EDTA was used as described previously (Weil et al. 2000). Crude mitochondria were isolated from cultured HEK293 cells. Briefly, cells were scraped, centrifuged, and washed once with ice-cold PBS. After subsequent centrifugation, the cell pellets were resuspended in a hypotonic buffer (20 mM HEPES [pH 7.3], 1.5 mM MgCl₂, 10 mM KCl), vortexed at low speed for 5 sec, and incubated on ice for 2 min. CHAPS buffer (20 mM HEPES [pH 7.3], 8% (w/v) CHAPS) was added and vortexed vigorously 5 times while incubating on ice for 5 min. Hypertonic buffer (20 mM HEPES [pH 7.3], 420 mM mannitol, 140 mM sucrose, 2 mM EGTA) was then added with equal volume of hypotonic buffer, and gently mixed by inverting the tubes several times. After centrifugation at 2,000 × g, 4°C for 10 min, supernatants were collected and centrifuged again at 2,000 × g for 10 min to remove nuclei. From the supernatant, mitochondria were pelleted down at 12,000 × g for 15 min. The crude mitochondria were washed with an isotonic buffer (20 mM HEPES [pH 7.3], 210 mM mannitol, 70 mM sucrose) and stored on ice until used.
For sub-mitochondrial fractionation, crude mitochondria were first incubated with hypotonic buffer on ice for 30 min, whereupon the same volume of hypertonic buffer was added to stop the swelling. After centrifugation, samples were treated with RNase A (2 mg/mL) (Life technologies) to remove nuclear and cytosolic RNAs, as previously described (Mercer et al. 2011). RNase A activity was neutralized by addition of proteinase K (PK; 50 μg/mL). RNaseOUT (Invitrogen) was used to inhibit RNase A activity before RNA isolation. The mitoplast pellet was obtained by centrifugation at 12,000 × g and treated with RNase A again as described above. Purified mitochondria or matrix were incubated in mitochondria solubilizing buffer at 65 ºC for 5 min. RNA was isolated using TRIzol reagent and treated with RNase-free DNase I (Roche) for 1 h at 37 ºC. RNA was then extracted by acidic phenol (Ambion).

RNA import assay

In vitro RNA import assay was performed as previously described (Wang et al. 2010; Wang et al. 2015) with minor modifications. Mitochondria were isolated from mouse liver tissue by using percoll (GE Healthcare) gradients. Briefly, the liver was excised and washed in PBS to remove blood, placed in 20-30 mL of homogenization buffer (20 mM HEPES [pH 7.3], 210 mM mannitol, 70 mM sucrose) supplemented with 2 mM EGTA, and chopped into pieces. The chopped liver was homogenized using a Potter-Elvehjem homogenizer with the Teflon pestle rotating at ~1,600 rpm at 4 ºC. The homogenate was transferred into a fresh tube and centrifuged at 2,000 × g for 5 min; that supernatant was transferred into another tube and centrifuged at 13,000 × g for 15 min. The pellet was resuspended in homogenization buffer and centrifuged again at 2,000 × g for 5 min; the supernatant was transferred to a fresh tube and centrifuged at 13,000 × g for 15 min to get a crude mitochondrial pellet. Three layers of Percoll gradients (40, 23, and 15% from bottom to top) were prepared; the crude mitochondria were resuspended in 15% Percoll and laid on the top of Percoll gradients, and centrifuged at 30,700 × g for 5 min. The fraction with the intact mitochondria was removed carefully, washed in excess homogenization buffer, and centrifuged at 13,000 × g several times to remove the remaining Percoll. Crude mitochondria from HEK293 cells (2 × 10⁹ cells per sample) were isolated as described previously (Clayton and Shadel, 2014) and purified by Percoll gradient as explained above.

The purified mitochondria (100-200 μg) were incubated with *in vitro*-transcribed RNA (labeled with α-³²P-CTP) in 200 μL of import assay buffer (0.2 M mannitol, 75 mM sucrose, 25 mM KCl, 5 mM MgCl₂, 5 mM ATP, 2 mM DTT, 15 mM succinate, 10 mM HEPES [pH 7.4]) at 30°C for 10 min. After import, mitochondria preparations were incubated with RNase A (50 μg/mL) at 30°C for 20 min. The mixture was transferred to a new tube and incubated at 30°C for an additional 10 min. Mitochondria were pelleted down at 12,000 × g for 5 min at RT and incubated at 65°C for 5 min in 100 μL of mitochondria solubilizing buffer (1% SDS, 100 mM NaCl, 10 mM Tris-HCl, pH 7.4) which was preheated at 95°C with 25 μg/mL of
proteinase K. RNA was isolated from the solubilized mitochondria using TRIzol. The imported RNA was separated by 6% urea-PAGE (Invitrogen) and visualized using a PhosphorImager.

Biotinylation and purification of 4-SU labeled RNA
Nascent RNA was metabolically labeled by addition of 4-thiouridine (4-SU, Sigma, 100 μM final concentration) to the culture medium for 12 h. Total RNA was extracted using TRIzol, and used in biotinylation reactions as previously described with minor modifications (Rabani et al. 2011). 4-SU-labeled RNA (15 μg) was then biotinylated in a labeling reaction that included 30 μL of Biotin-HPDP (Pierce, Cat #21341) dissolved in dimethylformamide (DMF) at a concentration of 1 mg/mL and 20 μL of 10× biotinylation buffer (100 mM Tris-HCl, pH 7.4, 10 mM EDTA) at room temperature for 1.5 h with rotation. RNA was purified using chloroform/isoamylalcohol (24:1) extraction. RNA was precipitated at 20,000 × g for 20 min with a 1/10 volume of 5 M NaCl and an equal volume of isopropanol. Pellets were washed once with an equal volume of 75% ethanol and centrifuged again at 20,000 × g for 10 min. The RNA pellet was resuspended in 100 μL of RNase-free water with 0.1 mM EDTA. The labeled RNA was heated at 65°C for 5 min, chilled on ice quickly, and incubated with 100 μL of streptavidin beads (Miltenyi Biotec) with rotation for 15 min. Beads were applied to the equilibrated μMacs columns (Miltenyi Biotec) and washed with 65°C or room temperature washing buffer (100 mM Tris-HCl, pH 7.5, 10 mM EDTA, 1 M NaCl, and 0.1% Tween20) three times each. Biotinylated RNA was then eluted directly into 700 μL Buffer RLT (Qiagen) using 100 μL of freshly prepared 100 mM dithiothreitol (DTT) twice with a 3 min interval. RNA was recovered using RNeasy MinElute spin columns (Qiagen) following the manufacturer’s instructions and studied by RT-qPCR analysis.

Confocal microscopy
Cells were imaged with an instant structured illumination microscope (iSIM) built in the lab of Dr. Hari Shroff, NIBIB (York et al. 2013). Z-sections (100 nm) were obtained with an Olympus Plan Apo 60x/NA 1.45 TIRFM objective and deconvolved with iSIM deconvolution software. Images were opened with Image J (FUJI64) and brightness/contrast was adjusted with the auto B/C function. Several sections (average 0.6 μm) were merged into a maximum intensity projection, which were colored and saved as .tif files, or binary masks were created after background reduction for quantitation in Image J. Statistics were performed on six sections of each sample group, with Student’s unpaired t test used for determining significance.

Mitotracker staining and immunofluorescence
Cells were grown in MatTek dishes with phenol-free DMEM (Invitrogen). For Mitotracker staining, 100-200 nM of Mitotracker Green FM or CMXROS-Red (Invitrogen) were added to the dishes and cells were
incubated at 37°C for 20 min. Cells were imaged in a heated stage supplied with humidified air supplemented with 5% CO\textsubscript{2}, mounted on a Zeiss LSM 710 confocal microscope under a 40×/NA 1.3 objective. For indirect immunofluorescence, HEK293 cells on MatTek dishes were processed as described previously (Partridge et al. 2003). Primary antibodies used were anti-Complex IV mAb (1D6E1A8, Invitrogen), rabbit anti-VDAC1 (Abcam, ab135585) and anti-Mitofilin (Abcam, ab110329), all used at 1:100 dilution. Secondary antibodies were goat anti-mouse IgG or goat anti-rabbit IgG, highly cross-adsorbed, conjugated to Alexa Fluor 488 or 568 (Invitrogen).

RNA secondary structure

The secondary structures of human RMRP (Pluk et al. 1999) and predicted in silico structures of deletion mutant RMRPs were drawn by using VARNA software (Darty et al. 2009).

Transmission Electron Microscopy

Samples were fixed in 2.5% glutaraldehyde, 3 mM MgCl\textsubscript{2}, in 0.1 M sodium cacodylate buffer [pH 7.2] overnight at 4 °C. After rinsing with the buffer, samples were postfixed in 1% osmium tetroxide in buffer (1 h) on ice in the dark followed by rinsing with 0.1 M sodium cacodylate buffer. Samples were left at 4 °C for 16 h in buffer, rinsed with 0.1 M maleate buffer, and stained with 2% uranyl acetate (0.22-µm filtered) for 1 h in 0.1 M maleate, dehydrated in a graded series of ethanol, propylene oxide and embedded in Eponate 12 (Ted Pella) resin. Samples were polymerized at 60 °C overnight. Thin sections, 60- to 90-nm thick, were cut with a diamond knife on the Reichert-Jung Ultracut E ultramicrotome and picked up with naked 200 mesh copper grids. Grids were stained with 2% uranyl acetate (aq.) followed by lead citrate, and observed with a Philips CM120 at 80 kV. Images were captured with an AMT XR80 high-resolution (16-bit) 8 M pixel camera.

Detection of free 5’ ends of the newly synthesized mtDNA (O\textsubscript{H})

Mitochondrial DNA was prepared by using a mtDNA isolation kit (Abcam, ab65321), and ligation-mediated PCR (LMPCR) was performed as described (Kang et al. 1997) with some modifications. Briefly, a unidirectional linker was prepared by annealing 6 nmol of LMPR1 (5’-GCGGTGACCCGGAGATCTGTATTC-3’) and 2 nmol of LMPR2 (5’-GAATACAGATC-3’) in 40 µL of annealing buffer (10 mM Tris-HCl [pH 7.5], 50 mM NaCl, 1 mM EDTA) by heating at 95°C in a water-filled heat block for 5 min followed by cooling to RT for 40-60 min. The annealed linker was stored on ice. Primer 1 (5’-ACATCACGATGGAGATCT-3’) was extended in 20 µL of the first-strand synthesis reaction mixture consisting of 2 µL of 10× Vent pol buffer, 2 µL of 0.25 mM dNTP, 6 µL of 0.1 pmol/µL of primer 1, 1 µL of Vent pol (NEB, M0254), and 0.4 µg of DNA. DNA was then denatured at 95 °C for 5 min,
and the primer was annealed at 55 °C for 30 min, after which polymerization was performed at 75 °C for 10 min. For ligation of the linker, 50 µL of ice-cold ligation mixture (45 mM Tris-HCl [pH7.5], 8 mM MgCl₂, 20 mM DTT, 5 mg/mL BSA, 1 mM ATP, 2 µL of double-stranded linker (100 pmol), 3 Weiss of T4 DNA ligase) including the synthesized DNA above was prepared, and the ligation reaction was performed at 16 °C for 20 h. DNA was precipitated by addition of 1/10 vol of 3M NaOAc and 2.5 vol of EtOH, and incubation at -20°C. After washing with 75% EtOH once, the DNA pellet was solubilized in 60 µL of water, and then 40 µL of PCR amplification mix [10 µL of 10× Vent polymerase buffer, 10 µL of LMPR1 (1 pmol/µL stock), 10 µL of ligation PCR primer 2 (5’-GAGCTCTCCATGCATTTGGT-3’) (2 pmol/µL stock), 4 µL of 5 mM dNTP mix, 1.5 µL of Vent polymerase (NEB), 4.5 µL of water] was added to the DNA solution. DNA was denatured at 95 °C for 5 min, and then the reaction continued for 25 PCR cycles of 95 °C for 1 min, 60 °C for 2 min, and 75 °C for 3 min plus an extra 5 sec for each cycle. Final extension was allowed to proceed at 75 °C for 10 min.

The sequencing library was prepared using Illumina TruSeq ChIP Sample Prep according to the manufacturer’s protocol (Illumina, San Diego, CA) with slight modifications. In short, the ends of the fragments were repaired and As (adenosines) were added to the 3’ end. Adapters were ligated to the DNA fragments and a 18-cycle PCR amplification reaction was performed after size selection (100-400 bases) on a 4.5% agarose gel followed by cluster generation and paired-end (PE) sequencing for 2×10⁶ bases with Illumina HiSeq 2500 sequencer (Rapid-Run mode). The resulting BCL files were converted to FASTQ files for analysis.

For analysis, linkers LMPR1 and LMPR2 as well as Illumina adapters were carefully removed using the cutadapt program; low-quality bases were removed using a Q20 cut-off. After cleaning, sequences were aligned using Bowtie2 using the high sensitivity option against the hg19 mitochondrial sequence. The aligned locations and strand information were exported into MS Excel file. The number of reads from both + and - strands at each nucleotide position (the first nucleotide following the linker sequence) was normalized by the total number of reads counted from each sequencing reaction. For analysis of the replication start sites, the region spanning 145 to 225 nucleotide position covering the most upstream site among the 5’ ends previously reported [nucleotide position 250 (Kang et al. 1997)] was selected.
SUPPLEMENTAL REFERENCES

Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, Kuwano Y, Galban S, Becker KG, Kamara D, de Cabo R, Gorospe M. 2009. Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J 28: 1271-1282.

Clayton DA and Shadel GS. 2014. Isolation of mitochondria from cells and tissues. Cold Spring Harb Protoc. 10: pdb.top074542.

Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974-1975.

Partridge JJ, Lopreiato JO Jr, Latterich M, Indig FE. 2003. DNA damage modulates nucleolar interaction of the Werner protein with the AAA ATPase p97/VCP. Mol Biol Cell 14: 4221-4229.

Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnrke A, Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A. 2011. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29: 436-442.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8: 2281-2308.

Wang G, Shimada E, Nili M, Koehler CM, Teitell MA. 2015. Mitochondria-targeted RNA import. Methods Mol Biol 1264: 107-116.

Weil D, Boutain S, Audibert A, Dautry F. 2000. Mature mRNAs accumulated in the nucleus are neither the molecules in transit to the cytoplasm nor constitute a stockpile for gene expression. RNA 6: 962-975.

Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. 2012. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 18: 900-914.

York AG, Chandris P, Nogare DD, Head J, Wawrzusin P, Fischer RS, Chitnis A, Shroff H. 2013. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat Methods 10: 1122-1126.
SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Additional information on the mitochondrial transcriptome. (A) Mitochondrial transcripts encoded by nuclear DNA (total 555 transcripts) identified previously (Mercer et al. 2011). Protein-coding, non-coding, and pseudogene RNAs are grouped; FPKM, fragments per kilobase of transcript per million mapped reads. (B) Transcripts (476 total) enriched in mitoplasts purified from WI-38 human diploid fibroblasts were identified by RNA-Seq analysis (GSE73458).

Figure S2. Predicted RMRP secondary structure and RMRP-interacting RBPs. (A) Secondary structure of RMRP drawn by using the VARNA software. The cleavage site for RNA processing in mitochondria (processing region), the complementary sequences targeted by antisense oligomers (ASO-1 and ASO-2), and the predicted sequence pair forming an internal stem (internal stem) are indicated. (B) Partial list of RNA-binding proteins (RBPs) interacting with RMRP identified by biotin pulldown and mass spectrometry; cut-off for inclusion was set at 15 peptides per protein minimum. (C) Venn diagram representing the intersections among three groups of proteins: MitoCarta (mitochondria-localized proteins), RBP DB (RNA-binding proteins in database), and RMRP targets (RMRP-interacting proteins). (D) RIP analysis of the interaction of HuR with a known target transcript, VHL mRNA (Abdelmohsen et al. 2009), in HeLa cells.

Figure S3. Further characterization of HuR binding to RMRP. (A) The levels of a nuclear transcript, the lncRNA NEAT1, were measured to monitor the specificity of HuR silencing upon nuclear export of RMRP. (B) Forty-eight hours after transfecting HuR or Ctrl siRNAs, HEK293 cells were either left intact (whole-cell lysate, WCL) or were fractionated into cytosolic (Cytosol) and mitochondrial (Mitoch.) components (Materials and Methods). The levels of HuR, GRSF1, and p53 were assessed by Western blot analysis. (C) Regions of HuR interaction with RMRP, as determined by HuR PAR-CLIP analysis (Kishore et al. 2011). (D) In silico-predicted structures of the RMRP fragments shown in Fig. 3D.

Figure S4. Further characterization of GRSF1 binding to RMRP. (A) Western blot analysis of outer mitochondria membrane-resident protein TOMM40 and matrix-resident proteins Aconitase 2 (Aco2) and GRSF1 in mitoplasts that were either left untreated or treated with Proteinase K (PK) and RNase A. After osmotic shock, the supernatant (S) and mitoplast pellet (P) were prepared for analysis (left). Relative levels of four mitochondria DNA-encoded RNAs (mtRNAs) and two negative controls (nuclear RNAs NEAT1 and MALAT1) in matrix samples prepared from HEK293 cells (right). (B) A construct expressing chimeric protein YFP-MS2 (Materials and Methods), bearing a strong nuclear localization signal (NLS), was
overexpressed in HEK293 cells to monitor the extent of nuclear contamination in the matrix preparation. GFP and the mitochondrial matrix protein Twinkle were detected by Western blot analysis. (C) The levels of mt-RNR1, normalized to GAPDH mRNA (left), and the levels of mt-ATP6 and mt-CYB mRNAs normalized to noncoding RNA mt-RNR1 (right), were compared between control and GRSF1-silenced HEK293 cells. (D-F) HEK293 cells were transfected with control siRNA, GRSF1 siRNA or IMMT (mitofilin) siRNA; 48 h later, mitochondria were isolated and fractionated into the mitoplast pellet and the supernatant as described above. GRSF1, IMMT, and PNPase were assessed by Western blot analysis (D). The levels of 18S rRNA and 5S rRNA were assessed by RT-qPCR analysis (E), and mt-CYB and mt-RNR1 RNAs were detected by RT-qPCR analysis in IMS and matrix (F). (G) PCR templates for in vitro transcription of the full-length RMRP, which also includes the specific nucleotide stretch from the vector backbone (RMRP FL-Vec, lane 4) and a fragment which has no GRSF1 binding motif (RMRP f2/f3-Vec, lane 6) were amplified (left). After in vitro transcription, biotin-labeled RNAs were subjected to electrophoresis through 6% urea-polyacrylamide gels to assess the quality of the RNA (right). (H) Full-length, radiolabeled RMRP was imported into mitochondria isolated from mouse liver. After incubation, imported RNA was isolated, subjected to 6% UREA PAGE, and detected by PhosphoImager. (I) Schematic depiction of a full-length RMRP and three fragments synthesized in vitro (f1, f2, and f3 as shown in Fig. 3D, top). GRSF1 interaction with the different segments of RMRP was assessed by Western blot analysis in each of the biotin pulldown reactions (bottom). Input, 10, 5 μg of lysates; Beads, pulldown reactions without biotinylated RNA.

Figure S5. Submitochondrial localization of GRSF1. (A) Basal OCR in HeLa cells after silencing (left) and after overexpressing (right) GRSF1 compared with the respective control populations. (B) Genomic DNA was extracted from control and GRSF1-silenced HEK293 cells, and qPCR analysis was used to determine the relative number of mitochondrial DNA by estimating the cycle numbers of mitochondrial genes ND1 and ND2, and the nuclear β-globin gene, HBB. (C) Seventy-two h after silencing RMRP using AS-LNA, mitochondria were isolated and the levels of mitochondria-encoded mt-ATP6, mt-CO1, and mt-CYB mRNAs were quantified by RT-qPCR analysis. (D) Representative bioanalyzer electropherograms for amplified DNA fragments for size selection (100-400 bases). (E) RMRP sequences from four different species were aligned by using LocARNA algorithm (Will et al. 2012) (http://rna.informatik.uni-freiburg.de/LocARNA/Input.jsp) to illustrate the partial conservation in RMRP among these species. The blue square indicates the reported GRSF1-interaction motif A(G)₄A.
Figure S6. Integrated model of the subcellular transport and localization of RMRP by RBPs HuR and GRSF1. HuR is involved in exporting RMRP from the nucleus to the cytosol via the CRM1 export factor. Once RMRP is internalized into the mitochondria matrix, GRSF1 binds RMRP, retains it in the matrix, facilitates RMRP promotion of mitochondrial respiration, and enhances RMRP-mediated generation of primers for mtDNA replication. See text for details.
Nuclear DNA-encoded ncRNAs

- **Antisense:** 8
- **LncRNA:** 9
- **rRNA:** 75
- **Sense-intronic:** 1
- **snRNA:** 21

Total: 555 transcripts

(Cut-off = FPKM > 1.0) (Mercer et al., 2011)

Transcript ID	Chr	Str.	Start	End	Transcript Name	Transcript Biotype	HG19 Description
ENST00000416718	chr1	+	569755	570302	RP5-857K21.11-001	pseudogene	
ENST00000387059	chr1	+	28975111	28975245	RNU11-201	snRNA	RNA, U11 small nuclear
ENST00000386451	chr1	-	228763894	228764013	RNU55-201	rRNA	RNA, 55 ribosomal 9
ENST000003864991	chr10	-	327994	328065	RNU9P298-201	RNA	RNA, 55 ribosomal pseudogene 298
ENST00000602946	chr12	-	6649599	6647536	RPS-94D5.9-001	antisense	
ENST000003655568	chr12	-	120729565	120729706	RNU4-A2-201	snRNA	RNA, U4 small nuclear 2
ENST00000355637	chr14	-	5033559	5035359	RN75L2-001	antisense	RNA, 7SL cytoplasmic 1
ENST00000578231	chr14	-	50320345	50320362	RN75L3-201	misc_RNA	RNA, 7SL, cytoplasmic 3
ENST00000480232	chr14	-	50325270	50325657	RN75L2-201	misc_RNA	RNA, 7SL, cytoplasmic 2
ENST000003813825	chr19	+	49468557	49470139	FTL-001	protein_coding	ferritin, light polypeptide
ENST00000582110	chr21	+	35677429	35677943	AP000318.1-201	miRNA	
ENST00000584058	chr3	+	15780021	15780315	RN75L4-201	misc_RNA	RNA, 7SL, cytoplasmic 4, pseudogene
ENST00000365124	chr3	+	150905885	150906010	RNU55P145-201	rRNA	RNA, 55 ribosomal pseudogene 145
ENST00000368445	chr3	+	134502277	134502397	RNU55P141-201	rRNA	RNA, 55 ribosomal pseudogene 141
ENST00000364932	chr3	+	179876573	179876765	RNU55P149-201	rRNA	RNA, 55 ribosomal pseudogene 149
ENST00000465508	chr9	+	79186730	79186787	AL161626.1-201	miRNA	
ENST00000602291	chr9	+	35657747	35658025	RP7-859F3.10-001	lincRNA	RMRP
ENST00000387347	chrM	+	1670	3229	MT-RNR2-201	Mt_tRNA	mitochondrially encoded 16S RNA
ENST000003631390	chrM	+	3306	4262	MT-ND1-201	protein_coding	mitochondrially encoded NADH dehydrogenase 1
ENST000003812789	chrM	+	14746	15887	MT-CYB-201	protein_coding	mitochondrially encoded cytochrome b
ENST00000387405	chrM	-	5760	5826	MT-TC-201	Mt_tRNA	mitochondrially encoded tRNA cysteine
ENST00000361681	chrM	-	11418	14673	MT-ND6-201	protein_coding	mitochondrially encoded NADH dehydrogenase 6
ENST00000419932	chrX	+	108297360	108297792	RNU285-001	pseudogene	RNA, 285 ribosomal 5
ENST00000518596	chrY	+	10037763	10037915	RNU85-85F6-201	RNA	RNA, 5.85 ribosomal pseudogene 8
Figure S2

A

![ASO-2 processing region with PNPase](image)

B

#	RBPs identified in the upper band (# peptides >=15)	Gene Symbol	Accession Number	# Peptides	
1	heterogeneous nuclear ribonucleoprotein H	HNRPH1	gi	5031753	68
2	heterogeneous nuclear ribonucleoprotein F	HNRPF	gi	4835760	64
3	far upstream element-binding protein 3	FUBP3	gi	15065892	46
4	heterogeneous nuclear ribonucleoprotein H2	HNRPH2	gi	74090687	42
5	G-rich sequence factor 1 isoform 1	GRSF1	gi	14919321	32
6	tumor susceptibility gene 101 protein	TSG101	gi	5454140	28
7	plasminogen activator inhibitor 1 RNA-binding protein isoform 1	SERBP1	gi	55340879	24
8	tubulin beta chain	TUBB	gi	29765785	24
9	TNF receptor-associated factor 2	TRAP2	gi	22027612	23
10	RNA-splicing ligase RtcB homolog	C22orf2B	gi	7057015	22
11	RNA-binding motif protein, X chromosome isoform 1	RBMX	gi	56896405	19
12	heterogeneous nuclear ribonucleoprotein M isoform a	HNRPM	gi	14141152(+1)	18
13	insulin-like growth factor 2 mRNA-binding protein 1 isoform 1	IGF2BP1	gi	62372072	17

C

![AKAP1 (A kinase (PRKA) anchor protein 1), GRSF1 (G-rich RNA sequence binding factor 1), PNPT1 (polyribonucleotide nucleotidyltransferase 1)](image)

D

#	RBPs identified in the lower band (# peptides >=15)	Gene Symbol	Accession Number	# Peptides	
1	heterogeneous nuclear ribonucleoproteins A2/B1 isoform B1	HNRNA2B1	gi	14043072	124
2	heterogeneous nuclear ribonucleoprotein A1 isoform b	HNRNA1	gi	14043070(+)	100
3	heterogeneous nuclear ribonucleoprotein H3 isoform a	HNRPH3	gi	14114167(+)	62
4	serine protease HTRA2, mitochondrial isoform 1 preprotein	HTRA2	gi	7091477	40
5	eukaryotic translation initiation factor 2 subunit 1	EIF2S1	gi	4785566	40
6	eukaryotic translation initiation factor 3 subunit I	EIF3I	gi	4503513	38
7	RNA-binding protein Musashi homolog 2 isoform a	MUS2	gi	20373175(+)	28
8	caspin ion I isoform alpha isoform 2	CASKIA1	gi	89303572	27
9	eukaryotic translation initiation factor 3 subunit M	EIF3M	gi	23397429	28
10	heterogeneous nuclear ribonucleoprotein A0	HNRNA0	gi	6803036	24
11	transcriptional activator protein P53-beta	PURB	gi	15147219	23
12	heterogeneous nuclear ribonucleoprotein A3	HNRNA3	gi	34740329	22
13	RNA 2-O-methyltransferase ribozyme	FSL	gi	2056468	21
14	RNA-binding protein 4 isoform 1	RBM4	gi	93277122	21
15	heterogeneous nuclear ribonucleoproteins C1/C2 isoform a	HNRNC1	gi	11716997(+)	19
16	heterogeneous nuclear ribonucleoprotein A/B isoform a	HNRNA1	gi	55666619(+1)	19
17	mitochondrial import inner membrane translocase subunit TIM50	TIMM50	gi	48520559	19
18	ELAV-like protein 1	ELAVL1	gi	38201714	18
19	leucine-rich repeat-containing protein 56	LRR59	gi	40525624	16
20	eukaryotic translation initiation factor 3 subunit J	EIF3J	gi	30281438	16
21	replication factor C subunit 4	RFC4	gi	459491	16
22	RNA/np complex 1 interacting phosphatase	DUSP11	gi	205627447	16
23	heterogeneous nuclear ribonucleoprotein F	HNRNPF	gi	4820760	15
24	replication factor C subunit 6 isoform 4	RFC6	gi	32194786(+1)	15
25	serine-threonine kinase receptor-associated protein	STRAP	gi	148727341	16
Supernatant
Mitoplast
PNPase
GRSF1
IMMT
siRNA:

C

D

E

F

H

I

A

B

PCR products on Agarose gel

1 μl of RNA
6% UREA PAGE
Recruitment to replication sites?

Oxygen consumption

OX-PHOS Complexes

RMRP

GRSF1

Noh et al. page 17

Noh_FigS6

HuR

RMRP

HuR

CRM1

MATRIX

CYTOPLASM

NUCLEUS

MITOCHONDRIA