Viscous Flow past a Body Translating by Time-Periodic Motion with Zero Average

Giovanni P. Galdi
University of Pittsburgh,
Department of Mechanical Engineering and Materials Science,
galdi@pitt.edu

We study existence, uniqueness, regularity and asymptotic spatial behavior of a Navier-Stokes flow past a body, \mathcal{B}, moving by a time-periodic translational motion of period T, and with zero average. For example, \mathcal{B} moves in an oscillating fashion. The flow is also time-periodic with same period T. However, sufficiently “far” from the body, the oscillatory component decays faster than the averaged component, so that the flow shows there a distinctive steady-state character. This provides a rigorous proof of the “steady streaming” phenomenon.