Research Article

Athletes’ Ankle Injury Features and Rehabilitation Methods Based on Internet Big Data

Xinke Li¹ and Meisheng Kang²

¹School of Physical Education&Health, Yulin Normal College, Yulin, 537000 Guangxi, China
²Business School, Yulin Normal College, Yulin, 537000 Guangxi, China

Correspondence should be addressed to Meisheng Kang; kangmeisheng@ylu.edu.cn

Received 2 March 2022; Revised 6 April 2022; Accepted 21 April 2022; Published 10 May 2022

With the development of science and technology and the improvement of living standards, people are paying more and more attention to sports and health. However, the foot joints are very important joints in the human body and are one of the most vulnerable parts in sports. Foot joint sprain is a common clinical disease in orthopedics, accounting for the first place of joint ligament sprain. If the treatment is not timely or appropriate, it often leaves pain and joint instability, followed by osteoarthritis. The rate of repeated injuries after the first injury is very high. Due to the rapid development of visual sensing technology, computer technology, and image processing technology, Internet big data has been widely used in food, medical treatment, construction, chemical industry, electronics, packaging, automobile, and other fields. This article mainly studies the characteristics and rehabilitation methods of athletes’ ankle injuries based on Internet big data. Based on Internet big data, this paper studies the function and structural stability of the foot joints and analyzes the causes of gymnast foot joint injuries. On this basis, this paper puts forward the treatment method of ankle joint injury. In this paper, 20 male competitive bodybuilders with ankle joint injury on one side were randomly divided into experimental group and control group. The experimental group received proprioception recovery training, and the control group received normal functional recovery training. Experimental results show that the proprioception training of foot joint can improve the dynamic balance ability of gymnasts and effectively prevent the occurrence of foot joint injury. In this paper, the stability of the anterior and posterior foot joints was measured by comparing the control group with the experimental group. After 6 weeks of proprioception training, there was no significant difference between the static balance ability of one foot and the healthy part of the injured side foot joints (\(P > 0.05 \)).

1. Introduction

With the advent of the cloud era, big data has also attracted more and more attention. Big data, also known as massive data, refers to the collection of massive data, which can be retrieved, managed, processed, and sorted out in a reasonable time to help enterprises make business decisions. The analyst team believes that big data is usually used to describe a large amount of unstructured data and semistructured data created by a company. These data will spend too much time and money when downloaded to a relational database for analysis [1–3].

Foot joint injury is one of the most common sports injuries, accounting for 10 to 30 percent of the total sports injuries. The ankle joint is the flexion and garrison joint with the largest load on the human body. When standing, the whole body weight falls on the ankle joint, and the load value when walking is 5 times of the body weight. Therefore, ankle sprain is the most prone trauma in daily life. The most important technique in aerobics is jumping. The movement of a series of calisthenics basically depends on the ankle, and the knee, of wide bone flex stretch cushion, reduces the impact that moves to joint and reduces the harm to human body. Therefore, this study clarified the effects of aerobic training on the muscle strength, muscle strength perception, and joint motion perception of the participants’ foot joints, providing a reference basis for improving the stability of foot joints and preventing and reducing foot joint injuries.
The ankle is a saddle joint with a wide front and narrow back position of the lower leg. The increase in the angle between the lower leg and the back of the foot during exercise is critical for maintaining balance and preventing injury. The ankle joint is the basis of ankle function and stability. The strength of ankle joint is directly related to the stability of supporting the whole body when completing the action. In aerobics, there are many jumps, and athletes need to control the height, distance, speed, and ankle force of the jump, which requires the athlete’s vision, body, and balance to work together. On the other hand, the instability of ankle function sex can make athletic result drops.

2. Proposed Method

2.1. Ankle

2.1.1. Physiological and Anatomical Characteristics of Ankle. The ankle is a saddle joint with a wide front and narrow back of the talus. When the foot is in the flexion position of the sole, there is a large number of varus gap, which is easy to cause varus and damage the lateral collateral ligament during exercise. In aerobics, the ankle is mostly used, and excessive fatigue is the external factor leading to the injury [7, 8]. In the ankle joint, the foot is at right angles to the normal position of the lower leg. The increase in the angle between the lower leg and the back of the foot during exercise is called toe flexion, and vice versa. In the normal position, the ankle joint is not easy to move laterally through the reinforcement of the surrounding ligaments, but easy to bend and extend. Ankle joint is often sprained in training, most of which are foot flexion, which suddenly turns inward, resulting in strong traction and injury of lateral ankle ligament [9, 10]. Valgus causes damage to the medial collateral ligament, also known as the deltoid ligament. The medial ligament of the ankle is very strong. When the medial collateral ligament is damaged, it is easy to be combined with avulsion fracture. But when the occurrence of medial injury, it is easy to combine the fracture, the formation of compound injury. Figure 1 shows the CT image of the ankle joint.

2.1.2. Structural Stability of the Ankle. In order to understand the proprioception and muscular strength characteristics of the foot joints, it is necessary to first understand the components of the foot joints. Ankle joint is one of the most important joints in human body, and it is the basis to guarantee the normal life of human body [11]. Anatomically, the ankle joint is the joint from the bone to the thigh, also known as the gauntlet joint. The fossa consists of the inferior tibial articular surface, the medial side of the fibula leg joint, the lateral side of the fibula foot joint, and the distal articular head. The foot joint package can be relaxed back and forth, retractable, with ligaments on both sides. These ligaments are the medial deltoid ligaments, which fan down from the medial malleolus and rest on the shoulder bone, the distance bone, and the heel bone. There are three lateral ligaments: anterior ligament of the calf, medial ligament of the ankle, and posterior ligament of the calf. All three ligaments begin laterally and stop at the anterior, inferior, and posterior ends of the distance bone and the heel bone. In the ankle ligament injury, the most common is the lateral injury, especially fibula ligament injury. The major muscles of the foot joint are the triceps, tibialis posterior, long neck, and long neck muscles. Fibula has long tendons and short tendons on the outside of the lower leg: the tibial tendon of the foreleg, extensor tendon of the sole of the foot, extensor tendon, and the third peroneal muscle [12, 13]. In fixing these muscles, the foot joints act as fulcrum for movement. In the distal fixation, the thigh is moved with the foot joint as the fulcrum. The ligaments around the foot joint participate in the movement of the foot joint. Before the foot touches the ground, the relaxation of the ligaments around the foot joint is conducive to the integration of the bones of the foot joint. After the foot touches the ground, it can induce the stabilization of the foot joint and the movement of the distance from the bone.

Therefore, the physiological anatomic structure of the ankle is the basis of ankle function and stability. The strength of ankle joint is directly related to the stability of supporting the whole body when completing the action. In aerobics, there are many jumps, and athletes need to control the height, distance, speed, and ankle force of the jump, which requires the athlete’s vision, body, and balance to work together. On the other hand, the instability of ankle function sex can make athletic result drops.
2.1.3. Functional Stability of the Ankle. The mechanical function of the ankle joint is mainly the stabilization function of the ligaments around the foot joint and the joint package. The motor function mainly includes foot sole bending and dorsiflexion movement and varus valgus movement, and the neutral position of the internal and external rotation of the ankle refers to the angle perpendicular to the finger. The coordinated movement of the ankle, that is, the correctness of the so-called ankle posture, is mainly reflected in maintaining the stability of the foot below the center of gravity through the force in the opposite direction and evasion. Around the front axis of the foot joint, the foot is flexed and stretched (foot flexion or sole flexion; upward extension or dorsiflexion). The foot joint is basically a one-way joint, and the distance from the bone is mainly along the horizontal axis to represent the sagittal plane movement, which deviates from the coronal plane and promotes dorsolateral and sole flexion. The foot joint and the distance bone joint complement each other, forming a functional complex like the universal joint. The function of the foot joint is mainly in the sagittal plane, and the function of the subosseous joint is mainly in the coronal plane. In dorsiflexion of foot joint with external roll and plantar flexion with internal rotation, the subtalar joint may be combined with dorsiflexion, valgus, and varus. Plantar flexion incorporates internal and external rotation. When walking, the foot joint movement is almost always accompanied by the movement of the subosseous joint. On the contrary, the subosseous joint and the subosseous joint complement each other and move continuously.

2.2. Causes and Preventive Measures of Ankle Injury. The basic steps of calisthenics are alternating system, step system, ground system, foot lifting system, and leg system. Most of these technical movements are mainly based on the spring technique and carried out through the flexion and extension of the foot joints [14, 15]. Body sensation and strength play an important role in everything from body balance to ankle control. When the body and strength feel poor, the ankle is relatively unstable, and the possibility of sports injury increases, which directly affects the training and sports performance. The ankle joint technique of competitive calisthenics runs through the whole movement, and the difficulty of gymnastic movement and jumping rotation increases gradually.

2.2.1. More Difficult Movements. The calisthenic movement is a very difficult item and needs the superb technique for the performance, many difficult moves consist of support, jumps, and turns. These difficult movements will inevitably add to the load on the ankle, especially if the ankle is suddenly thrown into an explosive jump, and the ankle will bear two to four times the weight of the body. When athletes do not have good basic physical quality but are force to learn more difficult and complex technical movements, artificially, they will lack the necessary foundation and cannot complete the difficult technical movements. Therefore, these difficult movements will inevitably increase the possibility of ankle injury.

2.2.2. Too Long Training Time. Calisthenics training time is also the cause of ankle injuries. Because of the long training, the ankle is always under strain. Long-term training and the pressure on the ankle joint is too great, so that the ankle joint is constantly subjected to friction and compression, resulting in excessive fatigue of the ankle joint and resulting in ankle joint injury.

2.2.3. Weak Local Forces. Weak ankle and leg strength is another cause of ankle injuries. In aerobics, there are many jumping movements. Athletes need to fall from heights for a long time, such as kneeling and jumping and splitting in the air. At that time, the strength of the ankle joint was relatively weak, and the buffering effect could not be well controlled when landing, resulting in a short extension, flexion, and valgus of the ankle joint during landing and resulting in ankle joint injury. On the other hand, due to the weak force, some technical movements will be due to their own quality errors, resulting in irregular movements and deformation and resulting in ankle joint injury. It requires that the ankle joint must be strengthened in training or practice to meet the requirements of high-intensity sports.

2.2.4. Insufficient Preparatory Activities. In normal teaching and training, teachers generally pay more attention to the learning of teaching content and technical action. They do not pay enough attention to the lesson preparation activities, resulting in too short lesson preparation time, leading to students in the lesson preparation activities perfunctory. Ankle injuries are caused by intense training, especially aerobic exercise, because of their own characteristics, is more prone
to injury. Winter is the season for ankle injuries. As a result of this period of time, the temperature is lower, the human body capillary contracts, the muscle elasticity decreases, and the viscosity increases; therefore, the leg can cause ankle joint pain and sprain because of insufficient preparation for the movement. Preparatory activities mainly play the following three roles: first, improve muscle temperature and increase the elasticity and extension of muscles and ligaments, second is to improve the skill level of physical participation in sports internal organs, and third is to regulate the psychological function.

2.3. Treatment of Ankle Injury

2.3.1. Routine Treatment. Following, an ankle injury is the "price" principle of the usual treatment in the acute phase, which is the initial braking rest to avoid load, to eliminate swelling, and to allow the tissue to repair itself. Within 48 hours, ice compress was performed on the ankle joint to reduce bleeding and pain then wrapped with a small amount of tape, and finally, the injured ankle was raised higher than the heart to achieve analgesia, cooling, and hemostasis. In severe cases, the stent should be fixed. After receiving basic protection, go to the hospital to take X-ray photos as soon as possible to rule out the possibility of fracture. The basic pain symptoms in the acute phase are relieved, and traditional Chinese medicine is usually used. Athletes' injured ankles are treated with massage, acupuncture, electrotherapy, and rehabilitative practitioners. In the course of treatment, it is necessary to ensure the range of motion of the ankle joint to prevent joint adhesion and the decrease of the range of motion of the ankle joint of the new fibrous tissue. Usually the treatment of ankle injury site is mainly to prevent the injury of the patient to prevent adverse effects to play a certain amount of protection. But the main use of human physiology knowledge of this method of hemostasis and cooling, the lack of clinical effect of rehabilitation, the need to relieve pain and other normal function of the ankle muscle strength training, make their ankle joint get sufficient exercise.

2.3.2. Muscle Strength Training. An injury is accompanied by pain, swelling, effusion, and other symptoms. Braking and physical therapy are carried out in the pretreatment, and muscle strength training is carried out before the joint movement area is recovered and the pain is reduced or disappeared. The purpose of muscle strength training after foot joint injury is to recover the muscle dysfunction caused by motion brake reduction, such as incapacitated tendon atrophy, and to recover the articular tendon weakness caused by foot joint injury. Muscle training to increase muscle strength of the associated muscles around the foot joint is considered an important means to improve joint stability and prevent reinjury. However, the report showed that the negative effects of ligament damage were more significant than the functional changes in muscle strength in motor disorders such as closed soft tissue injuries and joint sprains. Although the muscle tis-

sue around the foot joint was not damaged and muscle strength did not decline, the function of the foot joint was limited. Although the muscle strength of the ankle's associated tendons is strengthened, the ankle can also facilitate recovery and prevent repeated injuries. Some of the findings suggest that the increased muscle strength around the ankle, ankle safety, and ankle stability no longer reduce the risk of injury.

How important muscle strength training is to the rehabilitation treatment of ankle injury, the physiological system of the effect of muscle strength training on ankle rehabilitation still needs further research, and maybe because of the muscle machine, the muscle strength training that leads to the increase of muscle function has the effect of promoting the rehabilitation of ankle. Therefore, in the current research results, muscle strength training is considered to be the first treatment method to consider in the early rehabilitation training of foot joint injury.

2.3.3. Neuromuscular Control. Proprioception training is not a specific training method, but through different training methods, the body's main body fully elicits the sensory acceptor and proprioception to judge the body's shape, and after the perception of the movement process, the unit seeks the comprehensive adjustment of nerve and muscle activity activation. In rehabilitation training after a sprained ankle, as a balance of choice, many therapists restore the function of the ankle to train the nerves; muscle control function is one of the important methods. According to research, there is a certain signal after an ankle sprain, but the relevant empirical research is not very clear. In training, in order to maintain the stability of the ankle joint, its rehabilitation balance function plays a great role. It is usually necessary to train the patient to balance on the uneven plane, such as rotating plate, foam material, special ankle movement balance training machine, standing on the adjustable imbalance plane, by the ankle receptor around the agent to participate in the exercise of the adjustment, which helps improve the stability of the ankle. This balance training has been studied in different sports to improve joint proprioception and reduce the risk of reinjury. The training does to some extent increase the stability of the foot joint and reduce the risk of recurrent sprain, but it is necessary to investigate whether there is a potential association with the physiological mechanism and the enhanced neural control function of the surrogate receptors around the foot joint.

2.4. Big Data. Big data, or huge amount of data, refers to the amount of data involved is so large that it is impossible to capture, manage, process, and organize within a reasonable time through the current mainstream software tools to help enterprises make business decisions more positively. Big data has the characteristics of large scale, fast flow speed, and rich forms. Big data has been widely used and developed in aviation, e-commerce, and other fields, making up for the previous data acquisition methods and expanding the breadth and depth of data utilization. Figure 2 shows the application areas of big data.

...
3. Experiments

3.1. Data Collection. In this paper, 20 male competitive calisthenics players with ankle joint injury of only one foot were randomly selected as the research object: experienced unilateral ankle joint sprain within half a year, no ankle joint sprain in the last month, no history of lower limb fracture or operation, and the other side of the foot joint was not injured. The pretensile test and range bone tilt test were negative. According to the basic conditions of the research subjects' age, height, weight, etc., this article randomly divided 10 subjects into the experimental group and the control group in order to compare the damage of knee and ankle muscle strength and function of injured athletes and the degree of recovery after training. The age distribution is shown in Table 1. There was no significant difference between the two groups \((P > 0.05) \), which could be compared. All subjects fully understood the purpose and process of the experiment and spontaneously participated in the experiment. The specific conditions of the two groups are shown in Table 2.

3.2. Experimental Method. In this paper, all the experimental intervention and data mining processes were completely completed in a professional sports rehabilitation training hall, and the whole process of the experimental process was monitored, so as to achieve timely adjustment and authenticity of the experimental data. The experimental group received proprioception recovery training, and the control group received normal functional recovery training. The experimental group and the normal training group were given 6 weeks, 3 times a week, of about 40 minutes of exercises on foot joint function. The experimental intervention was performed once a day for 1 test subject, and the same training could not be performed more than twice a day. Intervention sessions are held Monday through Friday from 9 a.m. to 12 a.m. and from 2 p.m. to 5 p.m. Experimental interventional rehabilitation training was carried out on 6 persons in the experimental group and the normal training group each day. During the experiment, this study tried to create an atmosphere consistent with the usual training, so as to ensure that each subject's lifestyle did not need to change, and they would not receive any other rehabilitation training and physical sensory training. At the same time, there was no uncomfortable stimulation.

3.3. Test Index

3.3.1. Ankle Stability Test. Overall static parameters reflect the ability of the ankle joint to balance and stabilize. Front and rear axial static parameters reflect the ability of the ankle joint to balance and stabilize in the front and back directions. Left and right axial static parameters reflect the ability of the ankle joint to balance and stabilize in the left and right directions.

3.3.2. Ankle Proprioception Test. The overall stability index (SI) reflects the overall average swing angle or swing of the subject when standing. The anterior-posterior stability index
(A/PSI) reflects the average swing angle or swing of the subject on the sagittal plane when standing. The left-right stability index (M/LSI) reflects the average swing angle or swing of the subject on the frontal plane when standing. The lower the above value, the smaller the degree of body shaking, indicating that the balance ability is stronger.

3.4. Statistics. This article uses Excel2010 to process the data before and after the experiment. All parameters are expressed in the form of mean ± standard deviation. SPSS18.0 software is used for mathematical statistical analysis. The test method is multivariate analysis of variance and paired sample T test. The significance level is 0.05.

4. Discussion

4.1. Test Results and Analysis of Injured Ankle Balance Function

4.1.1. The Static Balance Ability of the Affected Ankle Joint. Before and after the experiment, the experimental group and the control group were tested on the balance of the ankle. In this article, we tested each study object using the one-legged static balance test feature of the pro-kin system. Each subject was tested according to standard procedures, using the same test instrument. After the completion of the test, the test results of 20 subjects were collected and counted. Then, the three important indexes of stability of ankle joint in one-foot static balance function test system were analyzed. Then, the three indexes are calculated as the mean and standard deviation. The results of one-foot static balance test of the affected ankle joint are shown in Table 3 and Figure 3.

As we can see from Table 2 and Figure 1, intervention before the experiment, according to the control group and experimental group of ankle joint parts of a single static balance test results, can be seen, and after an ankle injury, ankle joint parts of the overall static parameters than health intactness of the overall static significantly increased \((P < 0.05)\), especially front axle static parameters are significantly different \((P < 0.05)\), and the difference of front axle static parameter is not obvious \((P > 0.05)\). That is to say, the stability of the foot joint changes after the injury, especially the static parameters of the left and right axis direction are significantly different, and the potential risk of unstable reinjury of the foot joint is significantly increased. After 6 weeks of ankle function recovery training, the two groups of affected ankle joints were tested on the static balance function of one foot. There was a significant difference between the experimental group and the experimental group \((P < 0.05)\). There were significant differences in the foot joints of the training group compared with those before the experiment \((P < 0.05)\). This suggests that six weeks of training in the ankle function recovery system can effectively improve the stability of the damaged ankle joint.

4.1.2. Healthy Ankle Joint Static Balance Ability of One Foot. The main foot joint is the foundation and key to complete the new gymnastic balance movement. The balance pose requires not only the strength of the flexor muscles but also the strength of the muscles to be extended by combining with the ankle to achieve the balance. The quality of the balance movement is mainly determined by the development balance of the conventional ankle joint force and the joint

Index value	Overall static parameters	Front and rear axial static parameters	Left and right axial static parameters
Before (Test)	3.7	2.5	3.4
After (Test)	2.7	2.1	2.6
Before (Control)	3.7	2.5	3.4
After (Control)	2.8	2.3	2.4

Figure 3: Test result of the static balance ability of the affected ankle.
improvement of flexion and extension. Low-level athletes spontaneously teach the foot joint force imbalance, and the stability of the balance movement is poor. Therefore, in the balance movement of the new gymnastics to the strength of the ankle joint, the main demand is the strength of the flexion and extension group of the coordination of balanced development and common improvement. The results of static balance ability test of healthy ankle joint are shown in Table 4 and Figure 4.

As shown in Table 3 and Figure 2, according to the results of measuring the static balance ability of one foot in the experimental group and the normal training group before the experimental intervention, the overall static parameters of the healthy foot joints in the experimental group were not significantly different from those in the control group ($P > 0.05$). After 6 weeks of training on the recovery of foot joint function, the static balance function of one foot in two groups of healthy joints was tested again. After the experiment, there was no significant difference in the static balance ability of one foot in the affected side foot joint compared with that before the experiment ($P > 0.05$), and there was no significant difference between the affected side foot joint in the comparison group and before the experi-

Test group	Before	After	Control group	After
Overall static parameters	2.9	2.8	2.7	2.7
Front and rear axial static parameters	2	2.1	2.1	2.1
Left and right axial static parameters	2.4	2.5	2.2	2.3

Figure 4: One-leg static balance ability of the healthy ankle.

Table 5: Test results of dynamic balance ability with both eyes open and standing on both feet.

	Before (test)	After (test)	Before (control)	After (control)
Overall static parameters	0.237	0.136	0.321	0.246
Front and rear axial static parameters	0.189	0.067	0.241	0.193
Left and right axial static parameters	0.104	0.069	0.133	0.127

Figure 5: Test results of dynamic balance ability with eyes open and standing on both feet.

As shown in Table 3 and Figure 2, according to the results of measuring the static balance ability of one foot in the experimental group and the normal training group before the experimental intervention, the overall static parameters of the healthy foot joints in the experimental group were not significantly different from those in the control group ($P > 0.05$). After 6 weeks of training on the recovery of foot joint function, the static balance function of one foot in two groups of healthy joints was tested again. After the experiment, there was no significant difference in the static balance ability of one foot in the affected side foot joint compared with that before the experiment ($P > 0.05$), and there was no significant difference between the affected side foot joint in the comparison group and before the experi-
magnitude of foot joint load did not affect the functional training of injured foot joint balance.

4.2. Test Results and Analysis of Ankle Joint Function with Standing Feet

4.2.1. Dynamic Balance Ability when Standing with Eyes and Feet Open. In general, the lower the balance index, the less the body shakes and the higher the balance. In this paper, the results of proprioception test of ankle joint when standing with eyes and feet open were analyzed by multifactor dispersion analysis: gender: male and female; combination: experimental group and control group; test cycle: six weeks. It had a significant impact on the overall stability index (SI) and the left and right stability index (M/LSI) of open eyes before and after the test, and had a significant difference in the SI and M/LSI values after 6 weeks of training ($P < 0.05$). The stability index (A/PSI) was lower after training than before, but there was no significant difference ($P > 0.05$). The results of the dynamic balance test when standing with both eyes and feet are shown in Table 5 and Figure 5.

We can see from Figure 3 that the different value of the overall stability index before and after the experiment is more significant than that of the control group. In this paper, professional sample T test was used for data analysis, and the analysis index was the anteroposterior stable index (a/psi) and the left and right stable index (m/lsi). In this paper, it was found that when standing with the eyes open, the change of the stability index was greater than that of the left and right stability index, and the difference was significant ($P < 0.05$).

4.2.2. Dynamic Balance Ability when Standing with Eyes Closed and Feet Closed. In this paper, the dynamic balance ability of the experimental group and the control group was measured before and after the experiment. There was no significant difference in the dynamic balance ability of the two groups before the experiment, and the left and right stability index (M/LSI) of the experimental group was obvious after the experiment, that is, the left and right stability index of the experimental group was significantly smaller than that of the control group after the experimental training. There was a significant difference in the left and right eye closure stability index (M/LSI) before and after training, and the index test value decreased significantly after the training. In terms of overall stability index and before and after stability index, compared with before training, the value after training tends to decrease, but there is no significant difference. Table 6 and Figure 6 show the test results of standing dynamic balance ability with closed eyes and feet.

Overall static parameters	Before (test)	After (test)	Before (control)	After (control)
Front and rear axial static parameters	0.186	0.217	0.034	0.231
Left and right axial static parameters	0.113	0.142	0.020	0.167

As can be seen from Figure 4, for the left-right stability index when standing with eyes closed and feet closed, the posttest index value of the experimental group and the comparison group was smaller than the pretest value. The left and right eye closing stability index and right and right foot stability index of the experimental group with proprioception training were significantly reduced compared with the control group with normal rehabilitation training, which also indicated that the balance stability of proprioception training was better. After the anteroposterior stability index and the left and right stability index were analyzed by the corresponding sample T test, the anteroposterior stability index was significantly larger than the left and right stability index under the two-vertical condition of eye closure ($P < 0.05$).

5. Conclusions

(1) The experiment in this study shows that after the foot joints are damaged, the proprioception of the foot joints of competitive aerobic players will be affected and their ability will be reduced. Normal functional recovery training for damaged foot joints can help restore proprioception. Under the reduced condition, the proprioceptive function of the foot joint did not change, although the load was reduced. Therefore, weight loss training can be applied in the early stage of foot joint injury to help competitive bodybuilders recover the function of damaged foot joint.
(2) In the experiment in this paper, we found that the longer the treatment period, the stronger the proprioception of ankle fracture. This indicates that swelling, pain, and other symptoms appear in the acute phase of the foot joint injury. Proprioception training of injured foot joints has a long recovery period and no obvious effect in a short time, but it is a process of cumulative effect. Since this paper only carried out 6 weeks of rehabilitation training, the recovery effect needs a long-term follow-up, so the optimal recovery period of ankle sprain is worth further study. The 6-week targeted training time is still too short, resulting in insufficient training intensity of heavy stimulation and enhanced training, and the growth of explosive force and muscle strength is relatively slow, which cannot significantly improve the physical quality of the subjects.

(3) Through the experiment, it is found that after the ankle joint sprain of bodybuilders, the feeling of the main body of the ankle will decline, and the earlier the recovery treatment of the body’s sensory function, the better the treatment effect of the injury and can avoid the injury to practice, so as to prevent the ankle injury again. This paper will also strengthen the study and research of ankle injury and continue to innovate and enrich the rehabilitation therapy, and the comprehensive application of these rehabilitation methods is for the rehabilitation of athletes to provide a theoretical basis for the injury.

Of course, there are still some deficiencies in this study. The sample size selected in the experiment is too small. Only 20 athletes with ankle injury are selected, and there are only 10 cases in each group. The sample size can be increased. This conclusion is more convincing. At the same time, the time span can be larger and can be extended to the whole year.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declared no potential conflicts of interest with respect to the research, author- ship, and/or publication of this article.

Acknowledgments

This work was supported by the 2020 Key Research Base of Humanities and Social Sciences in Guangxi Universities (2020YJJD0006) and Guangxi Higher Education Undergraduate Teaching Reform Project of 2021 (General Project A): Exploration and Application of Precision Hybrid Teaching Mode in Sports Rehabilitation Professional Skills Courses (no. 2021JGA293).

References

[1] S. Rajendran, O. I. Khalaf, Y. Alotaibi, and S. Alghamdi, “MapReduce-based big data classification model using feature subset selection and hyperparameter tuned deep belief network,” Scientific Reports, vol. 11, no. 1, article 24138, 2021.

[2] C. A. T. Romero, J. H. Ortiz, O. I. Khalaf, and A. R. Prado, “Business intelligence: business evolution after industry 4.0,” Sustainability, vol. 13, article 10026, 2021.

[3] J. Awan, M. S. M. R. Mazhar, H. Nobanee, A. Yasin, and O. I. Khalaf, "A big data approach to black Friday sales," Intelligent Automation and Soft Computing, vol. 27, no. 3, pp. 785–797, 2021.

[4] K. J. Hunt, Y. Goeb, A. W. Behn, B. Criswell, and L. Chou, "Ankle joint contact loads and displacement with progressive syndesmotic injury," Foot & Ankle International, vol. 36, no. 9, pp. 1095–1103, 2015.

[5] K. W. Janssen, B. C. V. D. Zwaard, C. F. Finch, W. V. Mechelen, and E. A. L. M. Verhagen, "Interventions preventing ankle sprains; previous injury and high-risk sport participation as predictors of compliance," Journal of Science & Medicine in Sport, vol. 19, no. 6, pp. 465–469, 2016.

[6] F. M. P. De Castro, R. Aquino, J. A. Berti, L. G. C. Gonçalves, and E. F. Puggina, “Strength training with vascular occlusion: a review of possible adaptive mechanisms,” Human Movement, vol. 18, no. 2, pp. 3–14, 2017.

[7] L. Qi and L. Ying, "Retraction notice: the research on the impact of green beans sports drinks on relieving fatigue in sports training," Open Biomedical Engineering Journal, vol. 10, no. 1, pp. 113–113, 2016.

[8] P. Fuerst, A. Gollhofer, and D. Gehring, “Preparation time influences ankle and knee joint control during dynamic change of direction movements,” Journal of Sports Sciences, vol. 35, no. 8, pp. 1–7, 2017.

[9] H. Lee and N. Hogan, “Energetic passivity of the human ankle joint,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 12, pp. 1416–1425, 2016.

[10] S. Choi, J. Lee, Y.-H. Roh, and J. Kim, "Surgical treatment of knee and ankle joint contractures resulting from chronic tophaceous gout," JCR: Journal of Clinical Rheumatology, vol. 21, no. 5, pp. 281–282, 2015.

[11] K. C. Seo, S. H. Park, and K. Y. Park, "Impact of wearing a functional foot orthotic on the ankle joint angle of frontal surface of young adults with flatfoot," Journal of Physical Therapy Science, vol. 29, no. 5, pp. 819–821, 2017.

[12] K. Klos, P. Simons, T. Mückley, B. Karich, T. Randt, and M. Knobe, “Frakturen des oberen Sprunggelenks beim älteren Patienten,” Der Unfallchirurg, vol. 120, no. 11, pp. 979–992, 2017.

[13] H. Wang and S. R. Brown, "The effects of total ankle replacement on ankle joint mechanics during walking," Journal of Sport and Health Science, vol. 6, no. 3, pp. 340–345, 2017.

[14] K. Żebrowska and K. Homonick, "The influence of foot arch on ankle joint torques and sEMG signal amplitude in selected lower leg muscles," Advances in Rehabilitation, vol. 30, no. 3, pp. 69–80, 2016.

[15] M. S. Al-Quraishi, A. J. Ishak, S. A. Ahmad et al., "Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications," Medical & Biological Engineering & Computing, vol. 55, no. 5, pp. 747–758, 2017.