Strangeness $S = -2$ baryon-baryon interactions in relativistic chiral effective field theory

Kai-Wen Li,1,2 Tetsuo Hyodo,2 and Li-Sheng Geng1,3,*

1School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China

2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

3Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

(Dated: September 11, 2018)

Abstract

We study the strangeness $S = -2$ baryon-baryon interactions in relativistic chiral effective field theory at leading order. Among the 15 relevant low energy constants, eight of them are determined by fitting to the state of the art lattice QCD data of the HAL QCD Collaboration (with $m_\pi = 146$ MeV), and the rest are either taken from the study of the $S = -1$ hyperon-nucleon systems, assuming strict SU(3) flavor symmetry, or temporarily set equal to zero. Using the so-obtained low energy constants, we extrapolate the results to the physical point, and show that they are consistent with the available experimental scattering data. Furthermore, we demonstrate that the $\Lambda\Lambda$ and ΞN phase shifts near the ΞN threshold are very sensitive to the lattice QCD data fitted, to the pion mass, and to isospin symmetry breaking effects. As a result, any conclusion drawn from lattice QCD data at unphysical pion masses (even close to the physical point) should be taken with caution. Our results at the physical point, similar to the lattice QCD data, show that a resonance/quasi-bound state may appear in the $I = 0 \Lambda\Lambda/\Xi N$ channel.

PACS numbers: 13.75.Ev, 12.39.Fe

Keywords: Baryon-baryon interactions, strangeness $S = -2$, relativistic chiral effective field theory, lattice QCD simulations

* E-mail me at: lisheng.geng@buaa.edu.cn
I. INTRODUCTION

The strangeness $S = -2$ hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions play a key role in many studies of great interest in hypernuclear physics and nuclear astrophysics, e.g., the existence of the H-dibaryon and Ξ hypernuclei, and the hyperon puzzle. Despite of the large amount of experimental and theoretical efforts, the existence of the H-dibaryon remains inconclusive, see e.g. Refs. [1, 2]. The H-dibaryon was first predicted to exist by Jaffe using the MIT bag model [3] as a deeply bound six-quark state with strangeness $S = -2$, isospin $I = 0$ and spin-parity $J^P = 0^+$, appearing in the 1S_0 partial wave of the $\Lambda\Lambda - \Xi N - \Sigma\Sigma$ coupled channels. Recent lattice QCD simulations performed at $m_\pi \gtrsim 389$ MeV showed some evidence for the existence of a bound H-dibaryon below the $\Lambda\Lambda$ threshold [4–7]. However, subsequent studies showed that when those results are extrapolated to the physical region the H-dibaryon becomes either weakly bound or unbound [8–11]. Lately the HAL QCD Collaboration performed simulations very close to the physical region [2], namely, $m_\pi = 146$ MeV. Using the so-called HAL QCD method and assuming SU(3) flavor symmetry, they obtained an effective $\Lambda\Lambda - \Xi N$ coupled-channel potential. The calculations using such a potential yielded a resonant state in the $\Lambda\Lambda$ channel (a quasi-bound state in the ΞN channel), which, however, show sizable systematic uncertainties, depending on the evolution time t in their simulation. Furthermore, it was shown that the coupled-channel effects between $\Lambda\Lambda$ and ΞN are weak.

Regarding the existence of Ξ hypernuclei [14–16], a moderately attractive interaction is inferred from the $^{12}\text{C}(K^-, K^+)\Xi^2\text{Be}$ reaction [17]. However, subsequent analyses showed that the Ξ potential could be either attractive [17], almost vanishing [18] or weakly repulsive [19]. In 2015, the “KISO” event claimed a deeply bound $\Xi^{-} + ^{14}\text{N}$ hypernucleus [20], indicating at least an attractive ΞN interaction. On the other hand, based on the few-body calculations of the ΞNN hypernucleus [21], a ΞNN bound state might appear, indicating that the ΞN interaction might be strongly attractive.

YN and YY interactions are important inputs to astrophysical studies as well, since hyperons might appear in the interior region of neutron stars. The inclusion of YN interactions results in a softening of the equation-of-state (EoS) of nuclear matter, which is inconsistent with the observations of two-solar-mass neutron stars [22, 23], known as the “hyperon puzzle”. In this case, repulsive YY interactions seem to provide one possible solution by stiffening the EoS [24, 25].

In this work, we study the strangeness $S = -2$ YN and YY interactions in relativistic chiral
effective field theory (ChEFT) at leading order (LO). It is an extension of our previous studies of the nucleon-nucleon (NN) \cite{26,27} and strangeness \(S = -1 \) \(YN \) \cite{28-31} systems. The relativistic ChEFT has been shown to be able to describe the \(NN \), \(\Lambda N \) and \(\Sigma N \) scattering data fairly well, already at LO \cite{26-33}. In contrast to the \(S = 0 \) and \(S = -1 \) sectors, there are only a few experimental data in the \(S = -2 \) sector. Here we will use the latest lattice QCD data of the HAL QCD Collaboration \cite{2} to fix eight of the 15 low energy constants (LECs) at LO. The rest are determined from the \(S = -1 \) sector \cite{29} assuming SU(3) flavor symmetry, or temporarily set equal to zero. In addition, we will extrapolate the results to the physical region and compare them with the available \(\Lambda \Lambda \) and \(\Xi N \) scattering data. The consistency between the lattice QCD simulations, ChEFT and experimental data will be discussed.

The paper is organized as follows: In Sec. II we present a brief overview of the formalism of relativistic ChEFT. The fits to the lattice QCD data are discussed in Sec. III. Phase shifts, cross sections and low energy parameters for the \(\Lambda \Lambda \), \(\Sigma \Sigma \), and \(\Xi N \) systems are shown in Sec. IV. We conclude with a short summary and outlook in Sec. V.

II. BARYON-BARYON INTERACTIONS IN RELATIVISTIC CHIRAL EFFECTIVE FIELD THEORY

ChEFT has been successfully applied to study low-energy (octet) baryon-baryon interactions \cite{34-39} since the pioneering work of Weinberg \cite{40,41}. Compared to phenomenological models, ChEFT has three main advantages. First, it has a deep connection with the underlying theory of the strong interactions, QCD, particularly, chiral symmetry and its breaking. Second, it employs a power counting scheme, which enables one to improve calculations systematically. As a result, one can estimate the uncertainty of the results. In addition, multi-baryon forces can be treated on the same footing as the two-body interactions. Recently, we explored a relativistic ChEFT approach to study the \(NN \) \cite{26} and \(YN \) \cite{29} interactions at LO, in which more relativistic effects are taken into account in the potentials and scattering equation than in the non-relativistic ChEFT.

The main feature of the relativistic formalism is that the complete baryon spinors are retained
multiplied by an exponential form factor,

\[u_B(p, s) = N_p \left(\frac{1}{\sigma_p} \right) \chi_s, \quad N_p = \sqrt{\frac{E_p + M_B}{2M_B}}, \]

where \(E_p = \sqrt{p^2 + M_B^2} \), and \(M_B \) is the averaged baryon mass. Apparently, Lorentz invariance is maintained by such a treatment. Details of the formalism can be found in Refs. [26, 29].

For the strangeness \(S = -2 \) sector, the LO potentials consist of non-derivative four-baryon contact terms (CT) and one-pseudoscalar-meson exchanges (OPME). 15 independent LECs appear in the CT that have to be pinned down by fitting to either experimental or lattice QCD data. Strict SU(3) symmetry is imposed on the CT and the coefficients of OPME, which can be found in e.g. Refs. [37, 38]. However, due to the mass difference of the exchanged mesons (\(\pi, K, \eta \)), SU(3) symmetry is broken in the OPME. We have followed the convention of Ref. [37] and our previous work [29] to redefine the LECs such as \(C_{1S0}^{\Lambda \Lambda} \), instead of using the SU(3) representation such as \(C_{1S0}^{27} \). In addition to the 12 LECs already appearing in the \(S = -1 \) sector [29], 3 more (independent) LECs, defined as

\[V_{CT}^{\Lambda \Lambda \rightarrow \Lambda \Lambda}(1S_0) = \xi_B \left[C_{1S0}^{\Lambda \Lambda}(1 + R_p^2 R_p^2) + \hat{C}_{1S0}^{\Lambda \Lambda}(R_p^2 + R_{\rho'}^2) \right], \]

\[V_{CT}^{\Lambda \Lambda \rightarrow \Lambda \Lambda}(3P_1) = \xi_B \left(-\frac{4}{3} C_{3P1}^{\Lambda \Lambda} R_p R_{\rho'} \right), \]

appear in the \(S = -2 \) sector. Here \(\xi_B = N_p^2 N_{\rho'}^2, R_p = |p|/(E_p + M_B), R_{\rho'} = |p'|/(E_{\rho'} + M_B) \).

To obtain the scattering amplitude \(T^{\nu \nu', J}_{\rho \rho'}(p', p; \sqrt{s}) \), the coupled-channel Kadyshevsky equation is solved,

\[T^{\nu \nu', J}_{\rho \rho'}(p', p; \sqrt{s}) = V_{\rho \rho'}^{\nu \nu', J}(p', p) + \sum_{\rho'', \nu''} \int_0^\infty \frac{dp'' dp''}{(2\pi)^3} M_{B_{1, \nu'}, B_{2, \nu''}} V^{\nu \nu'' J}_{\rho \rho'}(p', p'') T^{\nu'' \nu', J}_{\rho'' \rho'}(p'', p; \sqrt{s}), \]

where \(V^{\nu \nu', J}_{\rho \rho'} \) is the interaction kernel which consists of CT and OPME, \(\sqrt{s} \) is the total energy of the baryon-baryon system in the center-of-mass frame and \(E_{n, \nu''} = \sqrt{p''^2 + M^2_{B_{n, \nu''}}}, (n = 1, 2) \). The labels \(\rho, \rho', \rho'' \) denote the partial waves, and \(\nu, \nu', \nu'' \) denote the particle channels. The Coulomb interaction is not considered in the present work due to the lack of near-threshold data and because it would require a complicated treatment. This is consistent with the lattice QCD simulations [2].

In order to avoid ultraviolet divergence in solving the scattering equation, the chiral potentials are multiplied by an exponential form factor,

\[f_{\Lambda F}(p, p') = \exp \left[-\left(\frac{p}{\Lambda_F} \right)^4 - \left(\frac{p'}{\Lambda_F} \right)^4 \right], \]
with a cutoff value $\Lambda_F = 600$ MeV\(^1\)

III. A FIT TO THE LATTICE QCD RESULTS

Recently the HAL QCD Collaboration performed simulations for the strangeness $S = -2$ baryon-baryon systems with almost physical pion masses ($m_\pi = 146$ MeV) \[^2\]. The so-called HAL QCD approach is employed to extract the potentials from the Nambu-Bethe-Salpeter wave functions on the lattice. Although the resulting potentials should in principle be independent of the measured time slice t, current results shows sizable dependence on the evolution time t, which should be regarded as the systematic uncertainty of the lattice QCD simulation \[^42\]. They obtained results for the $I = 2 \Sigma \Sigma \, ^1S_0$ phase shifts, the $I = 0 \Xi N \, ^3S_1$ phase shifts \[^42\], the $I = 0 \Lambda \Lambda$, and $\Xi N \, ^1S_0$ phase shifts and the inelasticity \[^2\] using the effective $\Lambda \Lambda \rightarrow \Xi N$ coupled channels, instead of the full $\Lambda \Lambda \rightarrow \Xi N \rightarrow \Sigma \Sigma$ coupled channels.

In the present work, we fit these lattice QCD data \[^2, 42\] to determine the relevant eight LECs of the CT. The fits are performed in the following steps:\[^5\]

First, we fitted to the lattice QCD $I = 2 \Sigma \Sigma \, ^1S_0$ phase shifts with the center-of-mass energy $E_{cm} \leq 40$ MeV, where $E_{cm} = \sqrt{s} - M_{B_1} - M_{B_2}$. M_{B_1} and M_{B_2} are the baryon masses of the channel with the lowest energy threshold. This is a single-channel scattering and the two LECs $C_{\Sigma \Sigma \, ^1S_0}$ and $\hat{C}_{\Sigma \Sigma \, ^1S_0}$ can be fixed. All results with $t = 11 - 13$ were used to estimate the central value and the uncertainty of the phase shift at each energy.

Second, the 3S_1 partial wave of the $I = 0 \Xi N$ system is treated in the same way. Note that in our convention the relevant LECs are defined as,

\[
V_{CT,I=0}^{\Xi N \rightarrow \Xi N \, ^3S_1} = \xi_B \left[\frac{1}{9} \left(C_{\Lambda \Lambda}^{\Sigma \Sigma} - C_{\Sigma \Sigma}^{\Lambda \Lambda} \right) (9 + R_p^2 R_p') + \frac{1}{3} \left(\hat{C}_{\Lambda \Lambda}^{\Sigma \Sigma} - \hat{C}_{\Sigma \Sigma}^{\Lambda \Lambda} \right) (R_p^2 + R_p'^2) \right]
\]

\[
= \xi_B \left[\frac{1}{9} C_{\Sigma \Sigma}^{\Lambda \Lambda} \left(9 + R_p^2 R_p' \right) + \frac{1}{3} \hat{C}_{\Lambda \Lambda}^{\Sigma \Sigma} \left(R_p^2 + R_p'^2 \right) \right].
\]

In this case only the two combinations of those four relevant LECs can be pinned down, namely $C_{\Sigma \Sigma}^{\Lambda \Lambda}$ and $\hat{C}_{\Lambda \Lambda}^{\Sigma \Sigma}$. For the LECs (or the combinations of LECs) that contribute to the SU(3) structure

\[^1\] We have chosen the value of Λ_F that can best describe the strangeness $S = -1 \, Y N$ scattering data \[^29\], though acceptable fits to the data can be obtained with a cutoff ranging from 550 to 800 MeV (see Ref. \[^31\] for more discussions).

\[^2\] The relevant masses and coupling constants are fixed at $m_\pi = 146$ MeV, $m_K = 525$ MeV, $m_N = 958$ MeV, $m_\Lambda = 1140$ MeV, $m_\Sigma = 1223$ MeV, and $m_\Xi = 1354$ MeV \[^2\]. In addition, we have used $D + F = g_A = 1.277$, $F/(F + D) = 0.4$ and $f_0 \simeq f_\pi = 92.2$ MeV \[^29\].
10 and 10^* in the 3S_1 partial waves, we have taken their values from the $S = -1$ sector via SU(3) symmetry [29].

Six LECs appear in the spin-singlet $\Lambda\Lambda - \Xi N - \Sigma\Sigma$ coupled channels, $C_{1S0}^{\Sigma\Sigma}$, $\hat{C}_{1S0}^{\Sigma\Sigma}$, $C_{1S0}^{\Lambda\Lambda}$, $\hat{C}_{1S0}^{\Lambda\Lambda}$, $C_{1S0}^{4\Lambda}$ and $\hat{C}_{1S0}^{4\Lambda}$, but two of them $C_{1S0}^{\Sigma\Sigma}$, $\hat{C}_{1S0}^{\Sigma\Sigma}$ have been fixed from the $I = 2 \Sigma\Sigma \, ^1S_0$ phase shifts as described above. Unlike the $I = 2 \Sigma\Sigma \, ^1S_0$ and $I = 0 \Xi N \, ^3S_1$ cases, the lattice QCD data on the $I = 0 \Lambda\Lambda$ and ΞN phase shifts obtained at various time t look rather different. A resonant $\Lambda\Lambda$ state (a quasi-bound ΞN state below the threshold) is found with the $t = 9, 10, 11$ lattice QCD data, but not with the $t = 12$ data. Therefore, we have performed separate fits to the lattice QCD data obtained at different t ranging form 9 to 12. The low energy $\Lambda\Lambda \, ^1S_0$ phase shifts with $E_{cm} \leq 20$ MeV, the $\Lambda\Lambda$, ΞN phase shifts, and the inelasticity with $32 \leq E_{cm} \leq 32.8$ MeV are taken into account. Because the ΞN quasi-bound state appears very close to the ΞN threshold at $E_{cm} = 32$ MeV with $m_\pi = 146$ MeV, the near-threshold data are included.

We summarize the details of the lattice QCD data used and the corresponding LECs in Table I. The values of the S-wave LECs are listed in Table II. The LEC $C_{3P1}^{4\Lambda}$ in the 3P_1 partial wave of the $\Lambda\Lambda \rightarrow \Lambda\Lambda$ reaction is not determined by this analysis, but it contributes to the $\Lambda\Lambda$ and $\Xi^- p$ induced cross sections. We temporarily set $C_{3P1}^{4\Lambda} = 0$ for the calculation of the cross section, assuming that the low-energy cross section is dominated by the S-wave contribution.

Reaction	I	Partial wave	Phase shifts	Corresponding LECs
$\Sigma\Sigma \rightarrow \Sigma\Sigma$	2	1S_0	$E_{cm} \leq 40$ MeV	$C_{1S0}^{\Sigma\Sigma}$, $\hat{C}_{1S0}^{\Sigma\Sigma}$
$\Xi N \rightarrow \Xi N$	0	3S_1	$E_{cm} \leq 40$ MeV	$C_{3S1}^{8\Lambda}$, $\hat{C}_{3S1}^{8\Lambda}$
$\Lambda\Lambda \rightarrow \Lambda\Lambda$	0	1S_0	$E_{cm} \leq 20$ MeV, 32 MeV $\leq E_{cm} \leq 32.8$ MeV	$C_{1S0}^{\Lambda\Lambda}$, $\hat{C}_{1S0}^{\Lambda\Lambda}$, $C_{1S0}^{4\Lambda}$, $\hat{C}_{1S0}^{4\Lambda}$
$\Xi N \rightarrow \Xi N$	0	1S_0	$32 \leq E_{cm} \leq 32.8$ MeV	$C_{1S0}^{\Lambda\Lambda}$, $\hat{C}_{1S0}^{\Lambda\Lambda}$, $C_{1S0}^{4\Lambda}$, $\hat{C}_{1S0}^{4\Lambda}$
Inelasticity	0	1S_0	$32 \leq E_{cm} \leq 32.8$ MeV	
TABLE II. LECs for the S-wave contact terms (in unit of 10^4 GeV^{-2}). The 3S_1 LECs are decomposed with the help of the $S = -1$ scattering data [29], assuming SU(3) symmetry.

$C_{1S0}^{\Sigma \Sigma}$	$\hat{C}_{1S0}^{\Sigma \Sigma}$	$C_{1S0}^{\Lambda \Lambda}$	$\hat{C}_{1S0}^{\Lambda \Lambda}$	$C_{1S0}^{4\Lambda}$	$\hat{C}_{1S0}^{4\Lambda}$
-0.0418	0.1726				
$t = 9$		-0.0154	0.0041	-0.0088	0.3570
$t = 10$		-0.0183	0.0977	-0.0134	0.6544
$t = 11$		-0.0202	-0.0482	-0.0038	0.8982
$t = 12$		0.0157	0.6119	0.1709	-0.1982

$C_{3S1}^{\Sigma \Lambda}$	$\hat{C}_{3S1}^{\Sigma \Lambda}$	$C_{3S1}^{\Sigma \Sigma}$	$\hat{C}_{3S1}^{\Sigma \Sigma}$	$C_{3S1}^{\Lambda \Sigma}$	$\hat{C}_{3S1}^{\Lambda \Sigma}$
0.0137	0.9261	0.0872	-0.4132	0.0230	0.2880

IV. RESULTS AND DISCUSSION

A. The $I = 2 \Sigma \Sigma \ ^1S_0$ phase shifts

In Fig. 1 we show the $I = 2 \Sigma \Sigma \ ^1S_0$ phase shifts. The dashed lines are the fitted results with $m_\pi = 146$ MeV. We obtained a $\chi^2/d.o.f. = 0.08$ after the fits, which indicates a good description of the lattice QCD data. The solid lines are the extrapolations to the physical pion mass, with the isospin symmetry being assumed for the hadron masses. The extrapolations were done by only changing the hadron masses to their physical values, but keeping the coupling constants F, D and f_0 and the other LECs fixed.

For the $\Sigma \Sigma \ ^1S_0$ channel, the phase shifts at the low-energy region are positive, indicating that the attractions are weak, but at the high energy region the interactions become repulsive. In the SU(3) basis, the 1S_0 partial wave of $\Sigma \Sigma \ (I = 2)$, $\Sigma N \ (I = 3/2)$ and $NN \ (I = 1)$ all belong to the same representation of 27. However, the maximum value of the phase shifts are about 10 degrees for the $\Sigma \Sigma$ system, 40 degrees for the ΣN system [29], and 60 degrees for the NN system [26]. This clearly tells that the 27 SU(3) representation is becoming less attractive with the increase of the strangeness. On the other hand, we checked that a simultaneous fit of the Σ^+p cross sections and the lattice $\Sigma \Sigma \ ^1S_0$ phase shifts failed, similar to the attempt at a combined fit of NN and strangeness $S = -1$ YN data [29]. As a result, we conclude that SU(3) breaking effects should
be included if one wishes to simultaneously describe the systems with different strangeness, as also discussed in Ref. [38]. We note that the extrapolation to the physical point only causes minor change of the phase shift.

B. The $I = 0 \Xi N ^3 S_1$ phase shifts

The $\Xi N ^3 S_1$ phase shifts are shown in Fig. 2 with a fitted $\chi^2/d.o.f. = 2.68$. The relativistic ChEFT can describe the low energy lattice data well, but not those of high energies [42]. Namely, lattice data show that the phase shift turns into negative at high energies, which is not reproduced in the present study. It seems that higher order chiral potentials are needed in this channel in order to provide enough repulsion at high energies. In this channel, the phase shift remains almost the same after the chiral extrapolation to the physical point as well.
FIG. 2. Phase shifts of $I = 0 \Xi N^3S_1$ partial waves. The dashed line denotes the result with $m_\pi = 146$ MeV and the solid line denotes the result with the physical pion mass.

C. The $\Lambda\Lambda - \Xi N - \Sigma\Sigma^1S_0$ phase shifts

As for the $\Lambda\Lambda - \Xi N - \Sigma\Sigma$ coupled-channel, which is important for the study of the H-dibaryon, we can obtain a good description of the lattice QCD data on the $\Lambda\Lambda$, ΞN phase shifts and the inelasticity for each $t = 9, 10, 11, 12$, with the corresponding $\chi^2/d.o.f. = 0.42, 0.11, 0.30, 0.01$, respectively. The results are shown in Fig. 3. The sharp resonant state of $\Lambda\Lambda$ (the quasi-bound state of ΞN) is well reproduced for $t = 9 − 11$. However, the extrapolations to the physical pion mass look quite different for $t = 9 − 12$, as shown in Fig. 4. The sharp resonance remains with $t = 9$ and $t = 11$, but it disappears with $t = 10$. For the case of $t = 12$, a quasi-bound state appears in the ΞN system after the extrapolation, while the quasi-bound state is absent at $m_\pi = 146$ MeV. Note that the ΞN threshold has changed after the extrapolation, because the baryon masses changed as well. The origin of this difference of the extrapolation will be discussed in Sec. IV D. We have also calculated the $\Lambda\Lambda$ scattering lengths in the physical region with $t = 9 − 12$, and found that they are consistent with the analyses from the hypernuclear experiments and the analysis of the two-particle correlations in the heavy ion collisions [43–54], as shown in Table III.
TABLE III. Physical ΛΛ 1S_0 scattering length with $t = 9 - 12$ (in units of fm).

t	$a_{1\Lambda\Lambda}^{1S_0}$
9	-0.49
10	-0.60
11	-0.67
12	-1.44
Exp. analyses $^{[43-54]}$	-1.87 \sim -0.5

FIG. 3. $I = 0$ ΛΛ, ΞN 1S_0 phase shifts and the inelasticity with $m_\pi = 146$ MeV and $t = 9 - 12$. The inelasticity η is defined as $S_{ii} = \eta e^{2i\delta_i}$.

D. The ΞN quasi-bound state

Our above study showed that the existence of the ΞN quasi bound sate (the H-dibaryon) is a quite delicate issue. In order to understand the different behavior of the extrapolation, we show the inverse of the 1S_0 scattering length of the ΞN channel multiplied with i, i.e., $i/a_{\Xi N}$, in Fig. 5. Because ΞN is not the coupled channel with the lowest threshold, the scattering length $a_{\Xi N}$ is in general complex due to the decay to the ΛΛ channel. When $|a_{\Xi N}|$ is much larger than the typical length scale of the strong interaction ~ 1 fm, $i/a_{\Xi N}$ represents approximately the pole position of the ΞN scattering amplitude in the complex momentum plane. If $\text{Im}(i/a_{\Xi N}) > 0$, then the pole is in the first Riemann sheet of the complex energy plane, indicating that the ΞN system has a quasi-bound state.

One can see that for $t = 9$ and 10, the evolution from $m_\pi = 146$ MeV to the physical pion mass is similar. The value of the imaginary part decreases and finally becomes negative for $t = 10$ when extrapolated to the physical region, which corresponds to the disappearance of the quasi-bound state in the ΞN system. $\text{Im}(i/a_{\Xi N}) < 0$ indicates that the pole is in the second Riemann sheet of the ΞN channel, which is not the most adjacent sheet to the physical scattering axis and hence the structure is not directly visible in observables. While for $t = 11$ and 12, the trend is opposite. In both cases, the imaginary part of $i/a_{\Xi N}$ increases, and a quasi-bound state appears in
FIG. 4. \(I = 0 \) ΛΛ, ΞN \(^1S_0 \) phase shifts and the inelasticity with \(m_\pi = 146 \text{ MeV} \) (dashed lines) and at the physical point (solid lines) with \(t = 9 - 12 \).

the physical region. Especially for \(t = 12 \), the scale of the movement is relatively larger compared with the other three cases. Such a behavior originates from the values of the LECs with \(t = 12 \), e.g., the magnitude of \(\hat{C}_{\Lambda\Lambda}^{1S_0} \) and \(C_{\Lambda\Lambda}^{4S_0} \) are larger than those with \(t = 9 - 11 \), as shown in Table II. In this way, the fate of the quasi bound state in the extrapolation procedure is very sensitive. Even small change of the inverse scattering length at \(m_\pi = 146 \text{ MeV} \) can result in completely different behavior at the physical point.
FIG. 5. Inverse of the 1S_0 scattering length of the $I = 0 \Xi N$ channel as a function of the pion mass.

The above calculations are performed in the isospin basis, where it is a $\Lambda\Lambda - \Xi N - \Sigma\Sigma$ coupled-channel with a common baryon mass being used for each isospin multiplet. If we consider isospin breaking effects in the baryon masses, we should calculate in the $\Lambda\Lambda - \Xi N - \Sigma\Sigma$ coupled channels. In Fig. 6 we compare the $\Lambda\Lambda^1S_0$ phase shifts obtained with or without isospin symmetry for the baryon masses. Note that with the physical baryon masses, the threshold energy of $\Xi^0 n$ is different from that of $\Xi^- p$, and there appear two threshold cusps around $E_{cm} \sim 25$ MeV. It can be seen that those sharp resonant states have disappeared if the isospin breaking effects are included. Only for the $t = 12$ case the resonant state appears at the $\Xi^0 n$ threshold, which corresponds to a quasi-bound state of the $\Xi^0 n$ system.

We summarize the different scenarios for the existence of a ΞN bound state in Table IV. The results are based on the fits to the central values of the lattice QCD data. It can be seen that the quasi-bound state in the ΞN system is extremely sensitive to the lattice QCD data fitted, to the pion mass, and to the isospin breaking effects. We note that the strong sensitivity of the behavior of the phase shift around the ΞN threshold with respect to the isospin symmetry breaking effect was also discussed in Ref. [38]. However, the $\Lambda\Lambda$ scattering length remains almost the same with or without isospin breaking effects taken into account.
FIG. 6. $\Lambda\Lambda\ ^1S_0$ phase shifts with isospin averaged baryon masses (left) and with physical baryon masses (right).

TABLE IV. Summary of the ΞN quasi-bound state in different scenarios. The quasi-bound state exists for \bigcirc cases.

Lattice data	$t = 9$	$t = 10$	$t = 11$	$t = 12$
$m_\pi = 146$ MeV	\bigcirc	\bigcirc	\bigcirc	
$m_\pi = 138$ MeV with isospin average baryon masses	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Physical hadron masses				\bigcirc

In our study, we have also taken into account the statistical errors of the lattice QCD results. In principle, the lattice QCD simulations are more reliable as the time t increases, but the uncertainties increase as well. To balance reliability and accuracy, we chose the case of $t = 10$ to study the extrapolations taking into account uncertainties. The previous fits were performed using the central values of the ΞN lattice QCD phase shifts with $32 \leq E_{cm} \leq 32.8$ MeV. We have also fitted to the upper bound and lower bound of the lattice QCD results of the ΞN channel3. The near-threshold ΞN phase shifts at $m_\pi = 146$ MeV, at the physical point and the extrapolations of $i/a_{\Xi N}$ for all the three cases are shown in Fig. 7. These results show that as the $\Xi N\ ^1S_0$ phase shifts at $m_\pi = 146$ MeV decrease, the slope of the trajectories with the extrapolation becomes smaller. In particular, if we use the lower bound of the ΞN lattice QCD phase shifts at $t = 10$, the quasi-bound state survives in the physical region.

3 Please refer to Fig. 2(b) of Ref. [2].
FIG. 7. Near-threshold ΞN 1S_0 phase shifts at $m_\pi = 146$ MeV (left), physical point (middle) and the extrapolations of $i/a_{\Xi N}$ (right) with $I = 0$ at $t = 10$ within the lattice QCD error bands.

E. Cross sections and low energy parameters

Finally we compare our results with the available experimental data. We note that the cross sections calculated using the relevant LECs determined with the $t = 9$ and $t = 10$ lattice QCD data are more consistent with their experimental counterparts than those obtained with the $t = 11$ and $t = 12$ lattice QCD data. Following the preceding paragraph, we study the case of $t = 10$ in this sector. In Fig. 8, we show the $\Lambda\Lambda$ and $\Xi^- p$ induced cross sections with the statistical errors discussed previously taken into account. The cross sections are calculated with all the partial waves with total angular momentum $J \leq 2$. The experimental data are taken from Refs. [55, 56]. One can see that our results are consistent with the scattering data, although the latter has a sizable uncertainty. Such a comparison shows that the lattice QCD data (in particular, those obtained with $t = 10$), the relativistic ChEFT approach and the experimental data are in general consistent with each other.

In Table V, we summarize the scattering lengths and effective ranges for various channels with the LECs determined by fitting to the $t = 10$ lattice QCD data. For the sake of comparison, we show as well the next-to-leading order (NLO) and LO [37] heavy baryon (HB) ChEFT [38] results obtained with a cutoff $\Lambda_F = 600$ MeV, those of the NSC97f model [57] and the fss2 model [44]. Note that the Coulomb force is considered in the latter two approaches. The results from different approaches are rather scattered. Clearly, more experimental information are needed to further constrain the $S = -2$ baryon-baryon interactions.

It is interesting to compare our results with those of the NLO HB approach [38]. In particular, the scattering lengths of the $\Sigma^+\Sigma^+$ channel are rather different but those of the $\Lambda\Lambda$ channel are quite similar, as shown in Table V. We note that in Ref. [38] they have fitted to the pp phase
shifts and the Σ^+p cross sections to fix the relevant LECs in the S-wave contact terms with SU(3) breaking effects taken into account and then made predictions for the $\Sigma^+\Sigma^+$ channel. Our study shows that the lattice QCD data seem to prefer a weaker $\Sigma^+\Sigma^+$ attraction than that predicted by the NLO HB approach, indicating the suppression of the attraction as one adds more strangeness into the system may be larger than that considered in Ref. \cite{38} (see also the discussion in Sec. IV A). Note that our results for the $\Sigma^+\Sigma^+$ channel are not dependent on t. On the other hand, the similar results for the $\Lambda\Lambda$ channel can be easily understood. The NLO HB approach fixed the relevant LECs by the empirical value of the $\Lambda\Lambda$ scattering length within the range of $-1 \sim -0.5$ fm, while our fits to the lattice QCD data also yield a $a_{1s0}^{\Lambda\Lambda}$ consistent with its empirical value (see Table 3).

![Graphs showing cross sections](image)

FIG. 8. $\Lambda\Lambda$ and Ξ^-p induced cross sections with the LECs obtained by fitting to the $t = 10$ lattice QCD data. The experimental data are taken from Refs. \cite{55, 56}. The grid bands in $\Xi^-p \to \Lambda\Lambda$ and $\Xi^-p \to \Xi^-p$ reactions show the upper limits from Ref. \cite{55}.
TABLE V. Predicted scattering lengths a and effective ranges r for various channels. The results obtained from HB ChEFT at NLO [38], LO [37] with cutoff $\Lambda_F = 600$ MeV, the NSC97f model [57] and the fss2 model [44] are also shown for the sake of comparison. Note that the Coulomb force is considered in the latter two approaches.

Channel	This work	HB NLO [38]	HB LO [37]	NSC97f [57]	fss2 [44]		
$\Sigma^+\Sigma^+$	$a_{\Sigma^+\Sigma^+}$	$r_{\Sigma^+\Sigma^+}$	-0.80	-1.83	-7.76	6.98	-9.72
$\Xi^0 p$	$a_{\Xi^0 p}$	$r_{\Xi^0 p}$	13.3	6.05	2.00	1.46	2.26
$\Lambda\Lambda$	$a_{\Lambda\Lambda}$	$r_{\Lambda\Lambda}$	-4.55	-7.07	-37.7	-8.94	-9.23
$\Xi^0 n$	$a_{\Xi^0 n}$	$r_{\Xi^0 n}$	72.5	1797	$> 10^4$	912	27.4

V. SUMMARY AND OUTLOOK

Recent progress in lattice QCD simulations provides us an unprecedented opportunity to better understand baryon-baryon interactions that play an important role in studies of hypernuclear and astronuclear physics. In particular, supplementary information on hyperon-nucleon(hyperon) interactions (to scarce experimental data) are key to understanding many important issues of current interest, such as the existence of H, ΩN, and $\Omega\Omega$ dibaryons, and the internal structure of neutron stars. Nevertheless, present lattice QCD simulations still suffer important systematic uncertainties originated from unphysical pion masses as well as coupled channel effects. Careful studies of such effects are urgently needed to fully utilize the state-of-art lattice QCD simulations to advance our understanding of the non-perturbative strong interaction.

In the present work, we have studied the strangeness $S = -2$ baryon-baryon interactions in relativistic chiral effective field theory at leading order. The latest lattice QCD data of the
HAL QCD Collaboration were used to fix the relevant low energy constants. We obtained a good description of the lattice QCD results (with perhaps the exception of the high energy $I = 0 \Xi N^{3}S_{1}$ phase shifts). Extrapolations from $m_{\pi} = 146$ MeV to the physical region were made. The behavior of the ΞN system was found to be very sensitive to the lattice QCD data fitted. In addition, our results can describe the available experimental data very well, which shows the overall consistency between lattice QCD simulations, the relativistic chiral effective field theory and the experimental data.

VI. ACKNOWLEDGEMENTS

The authors are grateful to Kenji Sasaki for providing us the latest lattice QCD results and a careful reading of this manuscript. K. W. L. and T. H. thank Wolfram Weise for useful discussions. This work is partly supported by the National Natural Science Foundation of China under Grants No.11522539, 11735003, by the fundamental Research Funds for the Central Universities, by JSPS KAKENHI Grants No. JP16K17694 and by the Yukawa International Program for Quark-Hadron Sciences (YIPQS). K. W. L. acknowledges financial support from the China Scholarship Council.

[1] J. K. Ahn et al. [KEK-PS E224 Collaboration], Phys. Lett. B 444, 267 (1998).
[2] K. Sasaki et al. [HAL QCD Collaboration], EPJ Web Conf. 175, 05010 (2018).
[3] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) Erratum: [Phys. Rev. Lett. 38, 617 (1977)].
[4] S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. Lett. 106, 162001 (2011) [arXiv:1012.3812 [hep-lat]].
[5] T. Inoue et al. [HAL QCD Collaboration], Phys. Rev. Lett. 106, 162002 (2011) [arXiv:1012.5928 [hep-lat]].
[6] S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. D 85, 054511 (2012) [arXiv:1109.2889 [hep-lat]].
[7] A. Francis, J. R. Green, P. M. Junnarkar, C. Miao, T. D. Rae and H. Wittig, [arXiv:1805.03966 [hep-lat]].
[8] P. E. Shanahan, A. W. Thomas and R. D. Young, Phys. Rev. Lett. 107, 092004 (2011) [arXiv:1106.2851 [nucl-th]].
[9] J. Haidenbauer and U. G. Meissner, Phys. Lett. B 706, 100 (2011) [arXiv:1109.3590 [hep-ph]].

[10] T. Inoue et al. [HAL QCD Collaboration], Nucl. Phys. A 881, 28 (2012) [arXiv:1112.5926 [hep-lat]].

[11] Y. Yamaguchi and T. Hyodo, Phys. Rev. C 94, 065207 (2016) [arXiv:1607.04053 [hep-ph]].

[12] N. Ishii et al. [HAL QCD Collaboration], Phys. Lett. B 712, 437 (2012) [arXiv:1203.3642 [hep-lat]].

[13] S. Aoki et al. [HAL QCD Collaboration], PTEP 2012, 01A105 (2012) [arXiv:1206.5088 [hep-lat]].

[14] M. Yamaguchi, K. Tominaga, T. Ueda and Y. Yamamoto, Prog. Theor. Phys. 105, 627 (2001).

[15] E. Friedman and A. Gal, Phys. Rept. 452, 89 (2007) [arXiv:0705.3965 [nucl-th]].

[16] E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba and T. A. Rijken, Prog. Theor. Phys. Suppl. 185, 152 (2010).

[17] P. Khaustov et al. [AGS E885 Collaboration], Phys. Rev. C 61, 054603 (2000) [nucl-ex/9912007].

[18] M. Kohno and S. Hashimoto, Prog. Theor. Phys. 123, 157 (2010) [arXiv:0909.1385 [nucl-th]].

[19] Krishichayyan, X. Chen, Y.-W. Lui, Y. Tokimoto, J. Button and D. H. Youngblood, Phys. Rev. C 81, 014603 (2010).

[20] K. Nakazawa et al., PTEP 2015, 033D02 (2015).

[21] H. Garcilazo and A. Valcarce, Phys. Rev. C 92, 014004 (2015) [arXiv:1507.03733 [hep-ph]].

[22] P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, Nature 467, 1081 (2010) [arXiv:1010.5788 [astro-ph.HE]].

[23] J. Antoniadis et al., Science 340, 6131 (2013) [arXiv:1304.6875 [astro-ph.HE]].

[24] D. Lonardoni, F. Pederiva and S. Gandolfi, Phys. Rev. C 89, 014314 (2014) [arXiv:1312.3844 [nucl-th]].

[25] K. A. Maslov, E. E. Kolomeitsev and D. N. Voskresensky, Phys. Lett. B 748, 369 (2015) [arXiv:1504.02915 [astro-ph.HE]].

[26] X. L. Ren, K. W. Li, L. S. Geng, B. W. Long, P. Ring and J. Meng, Chin. Phys. C 42, 014103 (2018) [arXiv:1611.08475 [nucl-th]].

[27] X. L. Ren, K. W. Li, L. S. Geng and J. Meng, arXiv:1712.10083 [nucl-th].

[28] K. W. Li, X. L. Ren, L. S. Geng and B. Long, Phys. Rev. D 94, 014029 (2016) [arXiv:1603.07802 [hep-ph]].

[29] K. W. Li, X. L. Ren, L. S. Geng and B. W. Long, Chin. Phys. C 42, 014105 (2018) [arXiv:1612.08482 [nucl-th]].

[30] K. W. Li, X. L. Ren, L. S. Geng and B. Long, PoS INPC 2016, 276 (2017) [arXiv:1701.06272 [nucl-th]].
[31] J. Song, K. W. Li and L. S. Geng, Phys. Rev. C 97, 065201 (2018) [arXiv:1802.04433 [nucl-th]].
[32] X. L. Ren, K. W. Li and L. S. Geng, Nucl. Phys. Rev. 34, 392 (2017) [arXiv:1801.00844 [nucl-th]].
[33] X. L. Ren, K. W. Li and L. S. Geng, arXiv:1709.10266 [nucl-th].
[34] E. Epelbaum, H. W. Hammer and U. G. Meissner, Rev. Mod. Phys. 81, 1773 (2009) [arXiv:0811.1338 [nucl-th]].
[35] R. Machleidt and D. R. Entem, Phys. Rept. 503, 1 (2011) [arXiv:1105.2919 [nucl-th]].
[36] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meissner, A. Nogga and W. Weise, Nucl. Phys. A 915, 24 (2013) [arXiv:1304.5339 [nucl-th]].
[37] H. Polinder, J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 653, 29 (2007) [arXiv:0705.3753 [nucl-th]].
[38] J. Haidenbauer, U. G. Meissner and S. Petschauer, Nucl. Phys. A 954, 273 (2016) [arXiv:1511.05859 [nucl-th]].
[39] J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 684, 275 (2010) [arXiv:0907.1395 [nucl-th]].
[40] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[41] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[42] Private discussion with Kenji Sasaki.
[43] T. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008 (2006) [nucl-th/0603042].
[44] Y. Fujiwara, Y. Suzuki and C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007) [nucl-th/0607013].
[45] I. N. Filikhin and A. Gal, Nucl. Phys. A 707, 491 (2002) [nucl-th/0203036].
[46] I. R. Afnan and B. F. Gibson, Phys. Rev. C 67, 017001 (2003).
[47] I. Filikhin, A. Gal and V. M. Suslov, Nucl. Phys. A 743, 194 (2004) [nucl-th/0406049].
[48] T. Yamada, Phys. Rev. C 69, 044301 (2004) [nucl-th/0403016].
[49] I. Vidana, A. Ramos and A. Polls, Phys. Rev. C 70, 024306 (2004) [nucl-th/0307096].
[50] Q. N. Usmani, A. R. Bodmer and B. Sharma, Phys. Rev. C 70, 061001 (2004).
[51] H. Nemura, S. Shinmura, Y. Akaishi and K. S. Myint, Phys. Rev. Lett. 94, 202502 (2005) [nucl-th/0407033].
[52] A. M. Gasparian, J. Haidenbauer and C. Hanhart, Phys. Rev. C 85, 015204 (2012) [arXiv:1111.0513 [nucl-th]].
[53] K. Morita, T. Furumoto and A. Ohnishi, Phys. Rev. C 91, no. 2, 024916 (2015) [arXiv:1408.6682 [nucl-th]].
[54] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 114, no. 2, 022301 (2015) [arXiv:1408.4360 [nucl-ex]].

[55] J. K. Ahn et al., Phys. Lett. B 633, 214 (2006) [nucl-ex/0502010].

[56] S.J. Kim, presentation at the 12th International Conference on Hypernuclear and Strange Particle Physics, Sendai, Japan, see http://lambda.phys.tohoku.ac.jp/hyp2015/, 2015.

[57] V. G. J. Stoks and T. A. Rijken, Phys. Rev. C 59, 3009 (1999) [nucl-th/9901028].