冠動脈疾患の遺伝的リスクを体系的に解明
ー国際コンソーシアムによる100万人規模のゲノム解析ー

理化学研究所（理研）生命医科学研究センター循環器ゲノミクス・インフォマティクス研究チームの伊藤薫チームリーダー、小山智史客員研究員、ヒト免疫遺伝研究チームの石垣和慶チームリーダー、東京大学医学部循環器内科学の小室一成教授（東京大学医学部附属病院循環器内科）、東京大学医学部循環器内科学の細谷和男教授らの共同研究グループは、100万人以上のサンプルを用いた「冠動脈疾患（CAD）[1]」のゲノムワイド関連解析（GWAS）[2]を実施し、CADに関わる病態を体系的に明らかにしました。

本研究成果は、CADの背景にある遺伝的基盤の包括的な理解に役立つだけでなく、ゲノム情報に基づくCADの精密医療実現に貢献すると期待できます。

今回、共同研究グループはCADの遺伝的基盤解明のため、ヨーロッパ人、日本人症例100万人以上を対象にGWASを実施し、疾患感受性座位[3]を新たに同定しました。これらの座位を統合的に解析することにより、CAD発症機序への初期発生プロセス、細胞周期シグナル、血管細胞の移動と増殖の関与を明らかにしました。また、新規同定座位の一つがMYO9B遺伝子[4]のエンハンサー[5]活性の変化を通じて血管細胞の運動性を調節しCADリスクを媒介することを、CRISPR-Cas9[6]を用いた実験で示しました。これらの解析により、250以上のCADの疾患感受性座位が同定され、系統的に特徴付けられました。

本研究は、科学雑誌『Nature Genetics』オンライン版（12月6日付）に掲載されました。
背景

冠動脈疾患（CAD）は心臓を栄養する冠動脈が狭窄または閉塞し、心筋に血液の供給が不足または途絶することで、心筋障害を引き起こす疾患です。世界で死亡原因の第一位であるこの重要な疾患は、日本でもがんに次いで第二位を占めます。CAD は環境的要因と遺伝的要因が複雑に影響し合って発症しますが、他の多因子疾患同様に、ゲノムワイド関連解析（GWAS）により多くの疾患感受性座位が明らかになりつつあり、疾患病態や原因リスク因子の解明が可能になってきました。

しかし、これら GWAS で同定される、非タンパク質コード領域に存在する座位の解釈はコンセンサスを欠くため、疾患発症の原因となる遺伝子群を同定することはしばしば困難でした。一方、最近では疾患感受性座位に特化したアプローチと、共有分子経路や機能に関する類似性に基づくアプローチを統合し、原因遺伝子の推定をより確かなものにすることが示唆されています。

そこで共同研究グループは、この統合的アプローチを CAD の GWAS に適応し、これまで解析されていなかった九つの研究、バイオバンク・ジャパン[8]、UK バイオバンク[9]、CARDioGRAMplusC4D 研究[10]を組み合わせ、最終的に 1,378,170人（そのうち CAD 症例 210,842 人）のサンプルを用いてメタ解析[11]を行い、CAD に有意に関連する遺伝子、生物学的経路の同定を試みました。

研究手法と成果

まず、共同研究グループはヨーロッパ人集団を用いてメタ解析を行い、既報・新規合わせて 241 の疾患感受性座位を同定しました。この結果から、以前の解析で報告されたように、CAD は動脈硬化危険因子（LDL コレステロール、中性脂肪、血圧、2型糖尿病、肥満度指数）、および他の心血管疾患（心不全、虚血性脳卒中）と正の遺伝的相関[12]があることが分かりました。

加えて、特定の疾患感受性座位の潜在的な病因を同定するために、UK バイオバンクの 53 の疾患と 32 の形質およびバイオマーカーとの関連を網羅的に調べました。その結果、今回の研究で同定された疾患感受性座位の約 50%は、血中脂質、血圧、空腹時血糖、死亡率など従来の冠動脈危険因子との関連を示しました。その後の関連で上位のものは、肝臓マーカーおよび腎臓マーカーでした。

30 の新規疾患感受性座位のいくつかは、生物学的にもっともらしいと考えられる遺伝子の近くに同定されました。その中には、粥腫（プラナー）[13]形成に関与するトランスフォーミング増殖因子（TGF）-β スーパーファミリー[14]のメンバーであるアクチビン A の受容体をコードする ACVR2A 遺伝子の近傍座位、弹性線維形成の初期段階に介在し大動脈瘤とマルファン様疾患[15]のビールズ症候群[15]に関連しているフィブリリン 2 をコードする FBN2 遺伝子の近傍座位がありました。そして、プラナー内コラーゲンの調節と組織化を通して動脈硬化性プラカーの安定性に影響を及ぼす間質性コラーゲナーゼ[16]であるマトリックスメタプロテアーゼ（MMP）-13 をコードする MMP13 遺伝子の近傍にも疾患感受性座位置が同定されました。
次に、GWASの結果を用いたCADの遺伝的リスク予測能を評価するために、本研究のメタ解析の結果、または2015年に発表されたCARDIoGRAMplusC4D研究のGWAS注1)の要約統計量を用いて、多遺伝子リスクスコア（PRS）[17]を構築し性能を評価しました。Malmö Diet and Cancer Study[18]のサブセット（全サンプル数5,685、そのうちCAD症例数815）において、本研究から構築されたPRSは、2015年の要約統計量を用いて作られたPRSよりも一標準偏差増加当たりの年齢および性別調整ハザードで、冠動脈疾患発症とより強く関連しており（2015年PRSにおけるハザード比1.49、95%信頼区間1.39〜1.59に対し、本研究PRSにおけるハザード比1.61、95%信頼区間1.50〜1.72）、リスク層別化能を改善することができました。

いくつかの確立された危険因子（総コレステロール、HDLコレステロール、収縮期血圧、肥満度指数、2型糖尿病、現在の喫煙状況、CADの家族歴）で調整しても、本研究の結果を用いて構築されたPRSは依然としてCAD発症と強く関連していました（PRS一標準偏差増加分当たりのハザード比1.54、95%信頼区間1.42〜1.66）。また、PRSの上位10%と下位10%集団のリスク比は5.7倍でした。

バイオバンク・ジャパンの大規模なGWASが共同研究グループから近年発表され、東アジア人でのゲノムワイドな関連を評価することができました注2)。今回、異なる民族の結果を組み合わせることで疾患感受性座位の同定が促進される可能性を検証するため、バイオバンク・ジャパンのGWASの要約統計量を今回のヨーロッパ人解析の統計量と合わせてメタ解析しました。その結果、ゲノム全体に有意な新規疾患感受性座位がさらに38領域得られ、合計279のゲノムワイド関連領域が同定されました。

共同研究グループはゲノムワイドな関連データを活用した類似性ベースの遺伝子優先順位付け手法であるPolygenic Priority Score（PoPS）注3)を新たに開発しており注4)、今回の結果にそれを適用しました。遺伝子発現、タンパク質-タンパク質相互作用ネットワーク、生物パスウェイに関するデータを含む19,091の特徴量を予測PoPSモデルに入力し、279の疾患感受性座位の周囲500kbの全てのタンパク質コード遺伝子についてPoPSスコアを計算し、各疾患感受性座位で最も高いPoPSスコアを持つ遺伝子を優先順位付けし、235の遺伝子を同定しました。この中にはLDLR、APOB、PCSK9、SORT1、NOS3、VEGFA、IL6など、CAD発症に関与する多くの確立された遺伝子が含まれていました。

次に、PoPSモデルからCAD関連遺伝子の優先順位付けに最も有益な特徴量を階層的にクラスタリングした結果、2,852のクラスターが得られ、それを優先順位付けに対する相対的な寄与度でランク分けをしました（図）。最も上位のクラスターには、血中脂質（コレステロール・リポタンパク質）の恒常性維持を示す特徴が含まれていました（図の青点）。他の上位クラスターには、細胞移動・輸送・増殖・恒常性維持や、血管細胞機能・運動性、コラーゲン・細胞外マトリックス機能などの血管細胞の機能、移動、増殖、細胞外マトリックスの構造と機能に関わるものなど、CADの病因において確立された経路とメカニズムに関連する機能が含まれていました。さらに、いくつかの上位クラスターは、あまり知ら

科学道
Dreams to the Future
かれていませんが、発達制御や胎生発達などの初期の発生プロセスや細胞周期を含む情報伝達経路が含まれていました。

最後に、19番染色体上のMYO9B遺伝子近傍の新規疾患感受性座標のCADリスクに関する機能的意義を調べました。ヒト冠動脈、大動脈、脛骨（けいこつ）動脈細胞におけるエピゲノム情報から、このゲノム領域が血管組織エンハンサー内に含まれることに注目し、CRISPR-Cas9ゲノム編集技術を用いて内皮細胞、冠動脈血管平滑筋細胞、および単球の該当するエンハンサー配列を削除し、エンハンサー欠失の遺伝子転写へ与える効果を測定しました。すると、エンハンサー欠失により、内皮細胞ではMYO9B遺伝子とHAUS8遺伝子の発現が減少し、冠動脈血管平滑筋細胞においてもMYO9B遺伝子の発現が減少しました。

加えて、これら遺伝子のCAD発症メカニズムへの関与を明らかにするため、単層創傷治癒アッセイを行いました。その結果、エンハンサー欠失させた内皮細胞は、MYO9B遺伝子またはHAUS8遺伝子のいずれかを遺伝子ノックアウトした内皮細胞と同様に創傷治癒の障害を示しました。この結果は、エンハンサーの制御作用が内皮細胞の創傷治癒障害を通じてCADリスクに寄与している可能性を示しています。

注1) the CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nature Genetics volume 47, pages1121–1130 (2015)
注2) 2020年10月6日プレスリリース「冠動脈疾患発症に関する遺伝的変異の影響を解明」https://www.riken.jp/press/2020/20201006_1/index.html
注3) Elle M. Weeks et.al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases medRxiv doi: https://doi.org/10.1101/2020.09.08.20190561
今後の期待

本成果は冠動脈疾患の遺伝的基盤を包括的に解明し、また最新の方法で遺伝子に結び付けることによって、疾患発症の病態解明、治療法の開発の基盤を提供するものです。また PRS の性能改善により、今後のゲノム情報を活用した精密医療の実現に資するものと期待できます。

論文情報

＜タイトル＞
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants

＜著者名＞
Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, Christopher, Grace, Carolina Rosell, Nicholas A Marston, Frederick K Kamanu, Ida Surakka, Loreto Muñoz Venegas, Paul Sherliker, Satoshi Koyama, Kazuyoshi Ishigak, Björn O Åsvold, Michael R Brown, Ben Brumpton, Paul S de Vries, Olga Giannakopoulou, Panagiota Giardoglou, Daniel F Gudbjartsson, Ulrich Guldener, Syed M. Ijlal Haider, Anna Helgadottir, Maysson Ibrahim, Adnan Kastrati, Thorsten Kessler, Theodosios Kyriakou, Tomasz Konopka, Ling Li, Li Lijiang Ma, Thomas Meitinger, Sören Mucha, Matthias Munz, Federico Murgia, Jonas B Nielsen, Markus M Nöthen, Shichao Pang, Tobias Reinberger, Gavin Schnitzler, Damian Smedley, Gudmar Thorleifsson, Moritz von Scheidt, Jacob K Ulirsch, David O Arnar, Noël P Burtt, Maria C Costanzo, Jason Flannick, Kaoru Ito, Dong-Keun Jang, Yoichiro Kamatani, Amit V Khara, Issei Komuro, Iftikhar J Kullo, Luca A Lotta, Christopher P Nelson, Robert Roberts, Gudmundur Thorgersson, Unnr Thorsteinsdottir, Thomas R Webb, Aris Baras, Johan LM Björkegren, Eric Boerwinkle, George Dedoussis, Hilma Holm, Kristian Hveem, Olle Melander, Alanna C Morrison, Marju Orho-Melander, Loukanos S Rallidis, Arno Ruusalepp, Marc S Sabatine, Kari Stefansson, Pierre Zalloua, Patrick T Ellinor, Martin Farrall, John Danesh, Christian T Ruff, Hilary K Finucane, Jemma C Hopewell, Robert Clarke, Rajat M Gupta, Jeanette Erdmann, Nilesh J Samani, Heribert Schunker, Hugh Watkins, Cristen J Willer, Panos Deloukas, Sekar Kathiresan, Adam S Butterworth on behalf of the CARDIoGRAMplusC4D Consortium.

＜雑誌＞
Nature Genetics

＜DOI＞
10.1038/s41588-022-01233-6
補足説明

[1] 冠動脈疾患（CAD）
心臓を栄養する血管のことを冠動脈といい、その冠動脈が狭窄または閉塞して引き起こされる疾患を冠動脈疾患と総称する。これには狭心症や心筋梗塞などが含まれる。CADはCoronary Artery Diseaseの略。

[2] ゲノムワイド関連解析（GWAS）
疾患の発症に影響がある遺伝的多型を網羅的に検出する方法。疾患の罹患状態と全ての遺伝的多型の関係について統計解析を行い、厳格な水準を満たした遺伝的多型のみが疾患に関連するものとして報告される。2002年に理化学研究所が世界に先駆けて報告した手法。GWASはGenome-Wide Association Studyの略。

[3] 疾患感受性座位
単一遺伝子病の原因遺伝子のように、遺伝子に変異があると必ず発症するというものではなく、変異があると発症しやすくなったり、逆に発症しにくくなったりするような染色体上の領域のこと。

[4] MYO9B遺伝子
アクチン系の分子モーター重鎖タンパク質であるミオシンファミリーのメンバーをコードしている遺伝子。この遺伝子の多型によって、セリアック病（タンパク質のグルテン不耐症）や潰瘍性大腸炎（大腸の粘膜にびらんや潰瘍ができる炎症性疾患）になりやすいうことが知られていた。

[5] エンハンサー
遺伝子の転写量を増加させる作用を持つDNA領域のこと。

[6] CRISPR-Cas9
CRISPR-Cas9はDNA二本鎖を切断して、ゲノム配列の任意の場所を削除したり、または塩基配列を置換・挿入することができる遺伝子改変技術。標的に対する設計が容易であることから、さまざまな生物種においてゲノム編集に利用されている。

[7] 多因子疾患
多数の遺伝子が作用し、さらに生活習慣などの環境要因が加わって起こる疾患。高血圧や糖尿病、一般のがんなど、いわゆる生活習慣病と呼ばれる病気が代表的な例。

[8] バイオバンク・ジャパン
2003年に開始されたオーダーメイド医療実現化プロジェクトの基盤事業であり、東京大学医学科学研究所内に設置されている。今回の研究で使用した第一期コホートでは、日本人約20万人から収集したDNAや血清試料を臨床情報・ゲノム情報とともに厳重に保管しており、研究者への試料や情報を提供している。詳細はバイオバンク・ジャパンのウェブサイト（https://biobank.jp.org/index.html）を参照。

[9] UKバイオバンク
英国において設立、維持されている50万人規模のゲノムバイオバンクであり、参加者のゲノム情報、医療情報を収集している。研究者が申請すれば、個人情報の保護の範囲内で自由にゲノム研究を行うことができる。

[10] CARDIoGRAMplusC4D研究
冠動脈疾患に関する世界最大のゲノム研究。米国の研究者らが主導し、多くのゲノムコホートを統合して解析を行っている。冠動脈疾患のゲノム研究における多くの発見は、この研究に根ざしている。CARDIoGRAMplusC4Dは、Coronary ARtery Disease Genome wide Replication and Meta-analysis（CARDIoGRAM）plus The Coronary Artery Disease（C4D）Geneticsの略。

[11] メタ解析
独立して行われた複数の研究の統計解析結果を合算する統計学的手法。

[12] 遺伝的相関
遺伝的原因により二つの形質が共有する分散の割合であり、異なる形質への遺伝的影響の間の相関を表す。

[13] 粥腫（プラク）
アテロームとも呼ばれ、血管の内膜面に血液中に存在するLDLコレステロールや白血球の一つであるマクロファージが沈着したもの。

[14] トランスフォーミング増殖因子（TGF）-βスーパーファミリー
TGF-βは、サイトカインの一種であり、アクチビン/インヒビンファミリー、骨形成因子、成長因子およびグリア細胞株由来神経栄養因子ファミリーを含む大きなグループのタンパク質からなる。そのメンバーは、増殖、分化、遊走を含む細胞プロセス、ならびに胚発生、血管形成、および創傷治癒を含む生理学的プロセスに必須の調節因子である。また、これらのメンバーの発現の異常はヒトの疾患を引き起こすことが知られている。

[15] マルファン様疾患、ビールズ症候群
マルファン症候群は、全身の結合組織の働きが体質的に変化しているために、骨格の症状（高身長・細く長い指・背骨が曲がる・胸の変形など）、眼症状、大動脈瘤など、心臓血管症状を呈する。それに類似した病態を示す疾患をマルファン様疾患と呼ぶ。その中でビールズ症候群は多発性関節拘縮、くも状指、耳介の変形、側弯症、細く長い四肢などを主徴とする常染色体欠損性遺伝疾患。体型的にはマルファン症候群に類似する点が多いが、マルファン症候群では関節弛緩性を呈するのに対し、本症では関節は拘縮する。

[16] 間質性コラーゲナーゼ
細胞外間トリックスの主要な構成物であるコラーゲンを切断する分解酵素。

[17] 多遺伝子リスクスコア（PRS）
ゲノム上の数万から数百万の遺伝的変異の影響を足し合わせることで計算される、個人の疾患へのかかりやすさの推定値や身長、体重の予測値のこと。冠動脈疾患であれ
ば、この値が高いほど発症の可能性が高いとされる。PRS は Polygenic Risk Score の略。

[18] Malmö Diet and Cancer Study
ヨーロッパで 1991 年から 1996 年にかけて、44 歳から 73 歳までの 30,447 人の参加者を登録した前向き集団ベースコホートである。ライフスタイルおよび臨床的因子に関する情報を有する。今回、研究集団全体から、ゲノムデータが入手可能で、登録時に CAD がなかった 28,556 人（94%）が解析された。

[19] ハザード比
フォローアップ中の疾患発症リスクの大きさの指標。基準とするものに対して、発症するリスクが何倍に上がるかを表す。

[20] Polygenic Priority Score (PoPS)
GWAS の要約統計量と遺伝子発現、生物パスウェイ、予測されるタンパク質-タンパク質相互作用のデータを統合することにより、原因遺伝子を同定する新しい方法。

[21] エピゲノム
DNA およびヒストンタンパク質への可逆的な化学修飾の仕組みで、クロマチン構造を変換する反応過程を制御したり、遺伝子を RNA に転写する程度を制御する。

[22] 単層創傷治癒アッセイ
in vivo（生体内）での創傷治癒時の細胞移動を模倣するための in vitro（試験管内）実験。基本的な手順は、細胞単層膜に「傷」を作り、細胞が移動し始めた時から傷を閉じる時までの間で一定時間ごとに画像を撮影し、画像を比較することで細胞の移動速度を定量化する。

共同研究グループ

理化学研究所 生命医科学研究センター
循環器ゲノミクス・インフォマティクス研究チーム
チームリーダー 伊藤 紫（イトウ・カオル）
客員研究員 小山智史（コヤマ・サトシ）

ヒト免疫遺伝研究チーム
チームリーダー 石垣和義（イシガキ・カズヨシ）

東京大学 大学院医学系研究科 循環器内科学
教授 小室一成（コムロ・イッセイ）
（東京大学医学部附属病院 循環器内科）

東京大学 大学院新領域創成科学研究科
メディカル情報生命専攻 複雑形質ゲノム解析分野
教授 鎌谷洋一郎（カマタニ・ヨウイチロウ）
（理研 生命医科学研究センター ゲノム解析応用研究チーム 客員主管研究員）
研究支援

本研究は、ゲノム医療実現推進プラットフォーム事業「マルチオミックス連関による循環器疾患における次世代型精密医療の実現（研究開発代表者：小室一成）」の助成を受けて行われました。

発表者・機関窓口

＜発表者＞

理化学研究所 生命医科学研究センター
循環器ゲノミクス・インフォマティクス研究チーム
チームリーダー 伊藤 薫（イトウ・カオル）
客員研究員 小山 智史（コヤマ・サトシ）

ヒト免疫遺伝研究チーム
チームリーダー 石垣 和慶（イシガキ・カズヨシ）

東京大学 大学院医学系研究科 循環器内科学
教授 小室 一成（コムロ・イッセイ）
（東京大学医学部附属病院 循環器内科）
東京大学 大学院新領域創成科学研究科
メディカル情報生命専攻 複雑形質ゲノム解析分野
教授 鎌谷洋一郎（カマタニ・ヨウイチロウ）

＜機関窓口＞
理化学研究所 広報室 報道担当
Tel: 050-3495-0247 Email: ex-press [at] ml.riken.jp

東京大学医学部附属病院
パブリック・リレーションセンター（担当：渡部、小岩井）
Tel: 03-5800-9188 Email: pr [at] adm.h.u-tokyo.ac.jp

東京大学 大学院新領域創成科学研究科 広報室
Tel: 04-7136-5450 Email: press [at] k.u-tokyo.ac.jp

※上記の[at]は@に置き換えてください。