Role of hepatokines in non-alcoholic fatty liver disease

Yini Ke¹, Chengfu Xu², Jin Lin¹, Youming Li²

¹Department of Rheumatology and Immunology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; ²Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases like type 2 diabetes and obesity. In recent decades, accumulating evidence has revealed that the hepatokines, proteins mainly secreted by the liver, play important roles in the development of NAFLD by acting directly on the lipid and glucose metabolism. As a member of organokines, the hepatokines establish the communication between the liver and the adipose, muscular tissues. In this review, we summarize the current understanding of the hepatokines and how they modulate the pathogenesis of metabolic disorders especially NAFLD.

Key words: non-alcoholic fatty liver disease, hepatokine, Fetuin A, FGF21, selenoprotein P

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, which affects approximately up to 33% adult population.¹⁻² NAFLD is defined by the accumulation of lipids in the liver, in the absence of excessive alcohol consumption, viral hepatitis and other causes of hepatic steatosis, and encompasses a spectrum of conditions, including the simple hepatic steatosis, non-alcoholic steatohepatitis (NASH), hepatic fibrosis and cirrhosis.³ Clinically, hepatic steatosis is referred to as a hepatic triglyceride content exceeding 5% of the total liver weight.⁴ Although the pathogenesis of NAFLD still remained unclear, it is believed that NAFLD is a hepatic manifestation of the metabolic syndrome, and NAFLD significantly increases the risks of type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), hyperuricemia and obesity.⁵⁻⁶ As liver plays a central role in lipid metabolism and glycogen storage, the dysregulation of hepatic glycogen could directly lead to dysglycemia. In pathological conditions, the disturbance of lipid metabolism and defect of insulin signaling pathway gradually contribute to T2DM. In turn, glucose toxicity caused by hyperglycemia upregulates the activity of lipase and cholesteryl ester transfer protein, which further promotes lipogenesis, cholesterol transformation and ultimately, liver inflammation.³

In the recent decades, accumulating evidence revealed that liver may modulate the processes of NAFLD and other metabolic co-morbidities by secreting hepatokines, including fetuin-A, angiopoietin-related growth factor (AGF), fibrosis growth factor 21 (FGF 21), insulin-like growth factor 21 (IGF), selenoprotein P (SeP), leukocyte derived chemotaxin 2 (LECT2), and so on.⁷⁻⁸ Like the other members of organokines such as adipokine, myokine, hepatokine is defined as proteins or protein-like substances secreted mainly or exclusively by liver in an endocrine or paracrine way. In 2006, the Japanese scholar Hotamisligil put forward a hypothesis about metabolism and inflammation. From a genetic and evolutionary perspective, the liver, adipose and hematopoietic tissue maintain their developmental heritage and
share evolutionary underpinnings. There are overlapping pathways regulating both metabolic and immune functions through key regulatory molecules and signaling pathways like JNK, NF-kB pathways. He speculated that the immune response and metabolic regulation are highly integrated and dependent on each other. Dysfunction of central homeostatic mechanism can lead to a punch of chronic metabolic disorders, particularly NAFLD, T2DM and CVD. These diseases also trigger inflammatory responses through metabolic excess, leading to stress and inflammation.[9] In the micro-environment consisting of the secreted organokines, and cells like hepatocytes, hepatic macrophages and Kuffer cells, hepatokines play an essential role, mainly as liver-derived pro-inflammatory factors, to modulate the metabolic progress and pathological conditions of the body. In this review, we outline the recent updates on hepatokines and how they influence the pathogenesis of NAFLD.

FETUIN A

Fetuin A, also named α2-HS-glycoprotein (AHSG), is encoded by human Abg gene. Fetuin A is secreted primarily by the liver, and also by other tissues, including the placenta, adipose tissue and tongue.[10,11] Fetuin A was first discovered as an inhibitor of insulin receptor tyrosine kinase in liver and muscles; nowadays, it is thought to be an important mediator of metabolism, constituting a link between insulin resistance, obesity and NAFLD.[12] In 2002, the Abg gene defected mice was reported with improved insulin sensitivity, indicating its role in insulin regulation pathways.[13] Further, studies of genome-wide association studies (GWAS) revealed that single nucleotide polymorphisms (SNPs) of Abg gene was associated with the pathogenesis of T2DM.[14] Clinically, case control and cohort studies found that serum fetuin A level is significantly elevated in patients with T2DM, NAFLD and atherosclerosis, which makes fetuin A a potential marker of disease predicting and diagnosis.[13–18] In mice with hepatic steatosis, upregulated mRNA level of fetuin A was observed in the liver tissue. Excessive amount of free fatty acid and glucose activated NF-kB and ERK-1/ERK-2 signaling pathway respectively, causing the over-expression of fetuin A.[19] On the other hand, fetuin-A is reported with involvement in low-grade inflammation in NAFLD, acting as an endogenous ligand and scaffold protein for toll like receptor 4 (TLR4), which further promoted the lipid-induced pro-inflammatory response and insulin resistance.[20,21] Fetuin A was also found to greatly promote the secretion of pro-inflammatory cytokines in monocytes and adipose tissue and inhibit the expression of an insulin sensitizing protein, the adiponectin.[22] Moreover, lipid-induced expression of fetuin-A took a part in the induction of induce macrophage migration and polarization in adipose tissues.[10] Therefore, fetuin A participated in the pathogenesis in NAFLD by inducing insulin resistance and activating the inflammatory pathways, acting as a bridge between metabolic dysregulation and inflammatory responses.[23]

FIBROBLAST GROWTH FACTOR 21

Fibroblast growth factor 21 (FGF21) is a 209-amino acid protein mainly secreted by the liver, which can also be detected in pancreas, testis and adipose tissues.[24,25] Growing evidence suggested that FGF21 was a protective factor acting through glucose and lipid metabolism in an insulin independent manner.[26–28] According to the ‘multiple strikes’ theory of the pathogenesis of NAFLD, FGF21 modulates the process of oxidation stress, endoplasmic reticulum stress, mitochondria dysfunction and low-grade inflammation to ameliorate the development of NAFLD.[24,29,30]

FGF21 expression was positively induced by fasting through the activation of peroxisome proliferator-activated receptor (PPAR) alpha by non-esterified fatty acid. GWAS revealed that SNPs of Fgf21 was associated with the pathogenesis of NAFLD.[31] Further studies found that serum FGF21 was elevated in patients with NAFLD verified by MRI or ultrasonography.[26,32–34] Serum FGF21 level was positively correlated with hepatic liver fraction indicated by MRI and liver triglycerides content indicated by biopsy. The tendency of Fgf21 mRNA in NAFLD patients was parallel with that of serum FGF21.[35,36] In the methionine-choline-deficient diet-induced mouse model of NASH, circulating FGF21 was elevated at an early phase, but decreased when severity of NASH aggrivated.[37] Moreover, tumor necrosis factor alpha (TNFα) and oxidation related transcription factor NEF2 could inhibit the transcription of FGF21, leading to down-regulated expression of the protein.[37,38] Based on the evidence above, it is reasonable to believe that FGF21 is a promising biomarker in diagnosis and grading of NAFLD, and that elevated FGF21 in NAFLD patients is a protective feedback to lipotoxicity in lipid metabolism.[39] Consistent with this opinion, studies found that exogenous introduced FGF21 may help slow the progression of NAFLD. After purified FGF21 was injected, the obesity mice induced by high fat diet showed alleviated hepatic steatosis, decreased triglycerides level both in the liver and peripheral blood. The protective effect of FGF21 was partially achieved by down-regulating the expression of fatty acid synthase (FAS) and the transcription factor sterol regulatory element-binding protein 1 (SREBP-1).[40–42] In addition to modulating the lipid metabolism, FGF21 could also enhance the insulin sensitivity of NAFLD mice, decreasing the blood glucose.[43] FGF21-deficient mice showed an impaired glucose homeostasis and weight gain.[44] Moreover,
knockout of FGF-21 in murine models by adenovirus infection resulted in hepatic steatosis, hyperlipidemia and impairment of signaling pathways of lipid metabolism.[39,43] FGF21 is believed to be a metabolic hormone with diverse beneficial effects on energy balance as well as glucose and lipid metabolism, offering a promising strategy to treat NAFLD/NASH. Pre-clinical studies observed that a short-term FGF21 analogues (LY2405319) could effectively improve the insulin sensitivity and lower the serum lipidemia in ob/ob mice.[46,47] Patients with T2DM and obesity received the treatment of LY2405319 reached a similar conclusion. LY2405319 could significantly alleviate insulin resistance, overweight and obesity, and reduce adiponectin level in patients.[47] However, the efficacy of FGF21 in treating metabolic disorders needed to be verified by large-scale and multi-centered trials in the future.

SELENO PROTEIN P

Selenoprotein P (SeP), weighted 42KD, is also a glycoprotein mainly produced and secreted by liver and adipose tissue. Human SeP was encoded by gene Sepp1, located on chromosome 5q31.[48] SeP is a member of the selenoproteins, which plays an important role in the transport of selenium, carrying the selenium from liver to the selenoproteins, which plays an important role in the metabolic clearance rate, glucose infusion rate and FPG. mRNA in the liver was positively correlated with the (FPG) and glycosylated hemoglobin A1c. Also, the T2DM, positively correlated with fast plasma glucose mechanisms of SeP in metabolic disorders. The serum was found to be negatively associated with insulin resistance, overweight and obesity, and reduce adiponectin level in patients.[47] However, the efficacy of FGF21 in treating metabolic disorders needed to be verified by large-scale and multi-centered trials in the future.

SEX HORMONE-BINDING GLOBULIN

Sex hormone-binding globulin (SHBG) is mainly expressed in the liver. The human SHBG locus is located on chromosome 17 p12-p13.[55,56] SHBG binds to the sex hormones and basically functions as a transporter for androgens and estrogens in the blood. However, the level of circulating SHBG has also been shown to be associated with glucose metabolism, quantity of the adipose tissue and metabolism disorders.[57,58] The SHBG level in the liver and peripheral was significantly lower in patients with hepatic steatosis, where serum SHBG was found to be negatively associated with insulin resistance and hyperinsulinemia.[59,60] SHBG level was also shown to be significantly lower in menopausal women patients with NAFLD verified by liver biopsy. After the normalization of age, waistline and BMI, SHBG was an independent risk factor for NAFLD.[61] Similar results were obtained in T2DM patients that they had lower serum SHBG than healthy controls.[62] Serum SHBG levels have been shown to be negatively correlated with the lipid content in the liver. Alleviation of fatty liver through lifestyle interventions resulted in the elevated serum levels of SHBG.[63] The correlation between fatty liver and SHBG has been later supported by subsequent studies.[64,65] A study suggested that adiponectin may decrease SHBG expression by activating AMPK signaling.[66] However, another study claimed that the association of SHBG and insulin resistance is

JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / OCT-DEC 2019 / VOL 7 | ISSUE 4
independent of adiponectin.[53] Moreover, the induction of TNF-\textit{z} in response to the activation of JNK and NF-kB signaling further suppressed the SHBG production in HepG2 cells, indicating that the lower expression of SHBG in NAFLD may be secondary to inflammation.[64] Recent studies showed that the overexpression of SHBG downregulated the lipogenesis by reducing key lipogenic enzymes and reduced the hepatic steatosis, indicating its protective role in NAFLD.[67,68] Therefore, further study is needed to elucidate the role of SHBG in insulin resistance and lipid metabolism.

ANGIOPOIETIN-RELATED GROWTH FACTOR

Angiopoietin-related growth factor (AGF) also named angiopoietin-related protein 6 (ANGPTL6), is encoded by the \textit{Angptl6} gene. It is synthesized in the liver and secreted into the peripheral system.[69] In 2013, Oike \textit{et al.} found a role of AGF in metabolic diseases. AGF KO mice showed obesity, insulin resistance and deposition of fat in the liver and muscle tissues. Overexpression of \textit{Angptl6} in the liver by adenovirus infection resulted in increased blood AGF levels. In human studies, researchers have found that patients with T2DM had increased serum AGF levels.[90,114] In addition, AGF level has been shown to be positively correlated with serum biomarkers for insulin resistance, and negatively correlated with HDL. Moreover, it was found that AGF was elevated in the serum of patients with metabolic disorders, and that AGF may serve as an independent risk factor.[72] Combining animal study and clinical case-control studies, Namkung \textit{et al.} argued that the discrepancy between human phenotype and animal model may be attributed to AGF resistance.[72] A later study conducted by Kitazawa \textit{et al.} found the inhibition of glycol-synthesis by AGF in hepatocytes was dose dependent. AGF may hinder the expression of glucose-6-phosphatase at the transcription and translation level. This regulatory process may involve the phosphatidylinositol and protein kinase B dependent nuclear export of FOXO1.[73] The role of AGF in the development of NAFLD is unclear, however, existing data suggest that AGF may act as a protective factor for the development of NAFLD.

CONCLUSION

NAFLD is becoming the most common liver disease worldwide, and the prevalence is predicted to skyrocket during the next decades.[54] NAFLD and its metabolic co-morbidities tremendously increase the economic cost of public health and welfare.[78] The hepatic steatosis on one hand aggregates the dysregulation of glucose and lipid metabolism, but also make the liver a hotbed for systemic inflammation. During the past two decades, massive studies have revealed that the hepatokine could engage into a network of organokines and modulate metabolisms and pathogenesis of metabolic disorders both in the liver and in distant tissues. Further studies are needed to elucidate the crosstalk between hepatokines and other organokines. The discovery of new hepatokines and further understanding of the working mechanisms of these proteins provide novel strategies to prediction and treatment of the metabolic diseases.

Conflict of Interest

None declared.

Source of Foundation

This work was supported by National Natural Science Foundation of China (Nos. 81722009, 81770573, and 81870400).

REFERENCE

1. Lee HW, Wong VW. Changing NAFLD Epidemiology in China. Hepatology 2019;70:1095–8.
2. Younossi ZM, Golabi P, de Avila L, Minhui Paik J, Srishord M, Fukui N, \textit{et al.} The Global Epidemiology of NAFLD and NASH in Patients with type 2 diabetes: A Systematic Review and Meta-analysis. J Hepatol 2019; 71:793–801
3. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015;313:2263–73.
4. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, \textit{et al.} Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313–21.
5. Giorda C, Forlani G, Manti R, Mazzella N, De Cosmo S, Rossi MC, \textit{et al.} Occurrence over time and regression of nonalcoholic fatty liver disease in type 2 diabetes. Diabetes Metab Res Rev 2017;33.
6. Federico A, Dallio M, Masarone M, Persico M, Loguercio C. The epidemiology of non-alcoholic fatty liver disease and its connection with cardiovascular disease: role of endothelial dysfunction. Eur Rev Med Pharmacol Sci 2016;20:4731–41.
7. Lebensztejn DM, Flisiak-Jackiewicz M, Bialokoz-Kalinowska I, Bobrus-Chociej A, Kowalska I. Hepatokines and non-alcoholic fatty liver disease. Acta Biochim Pol 2016;63:459–67.
8. Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ - linking NAFLD and insulin resistance. Endocr Rev 2019;40:1367–93.
9. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7.
10. Chatterjee P, Seal S, Mukherjee S, Kundu R, Mukherjee S, Ray S, \textit{et al.} Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem 2013;288:28324–30.
11. Denecke B, Graber S, Schafer C, Heiss A, Wolte M, Jahnne-Dechant W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J 2003;376:135–45.
12. Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, \textit{et al.} Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 2006;29:468.
13. Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang XL, Goustin AS, \textit{et al.} Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 2002;51:2450–8.
14. Andersen G, Burgdorf KS, Sparso T, Borch-Johnsen K, Jorgensen T, Hansen T, et al. AHSQ tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: Studies of metabolic traits in 7,683 white Danish subjects. Diabetes 2008;57:1427–32.

15. Stefan N, Hennigke AM, Staiger H, Machann J, Schick F, Krober SM, et al. Alpha(2)-Heremans-Schmid glycoprotein/retinol-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006;29:853–7.

16. Reinehr T, Roth CL. Fetuin-A and Its Relation to Metabolic Syndrome and Fatty Liver Disease in Obese Children Before and After Weight Loss. J Clin Endocrinol Metab 2008;93:4479–85.

17. Dogru T, Genc H, Tapan S, Adan F, Ercin CN, Ors F, et al. Plasma fetuin-A is associated with endothelial dysfunction and subclinical atherosclerosis in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 2013;78:712–7.

18. Perez-Sotelo D, Roca-Rivada A, Larroza-Garcia M, Castelao C, Baamonde I, Balseiro J, et al. Circulating FGF21 Levels in Human Liver is Associated with Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2015;98:2993–3000.

19. Tanaka N, Takahashi S, Zhang Y, Krauss KW, Smith PB, Patterson AD, et al. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochim Biophys Acta 2015;1852:1242–52.

20. Martini H, Erba S, Falaschi M, Andrade-Navarro MA, de Oliveira MJ, et al. The role of serum FGF21 in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol 2010;53:934–40.

Ke et al.: Role of hepatokines in non-alcoholic fatty liver disease
52. Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 2010;12:883–95.
53. Yang SJ, Hwang SY, Choi HY, Yoo HJ, Seo JA, Kim SG, et al. Serum Selenoprotein P Levels in Patients with Type 2 Diabetes and Prediabetes: Implications for Insulin Resistance, Inflammation, and Atherosclerosis. J Clin Endocrinol Metab 2011;96:E1325–9.
54. Misu H, Takayama H, Saito Y, Mita Y, Kikuchi A, Ishii KA, et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 2017; 23:508–16.
55. Khan MS, Knowles BB, Aden DP, Rosner W. Secretion of Testosterone-Estradiol-Binding Globulin by a Human Hepatoma-Derived Cell-Line. J Clin Endocrinol Metab 1981;53:448–9.
56. Berube D, Seralini GE, Gagne R, Hammond GL. Localization of the Human Sex Hormone-Binding Globulin Gene (Shbg) to the Short Arm of Chromosome-17 (17p12-p13). Cytogenet Cell Genet 1990;54:65–7.
57. Perry JRB, Weedon MN, Langenberg C, Jackson AU, Lyssenko V, Sparso T, et al. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum Mol Genet 2010;19:535–44.
58. Lazo M, Zeb I, Nasir K, Tracy RP, Budoff MJ, Ouyang P, et al. Association Between Endogenous Sex Hormones and Liver Fat in a Multiethnic Study of Atherosclerosis. Clin Gastroenterol Hepatol 2015;13:1686–93.
59. Luo J, Chen Q, Shen T, Wang X, Fang W, Wu X, et al. Association of sex hormone-binding globulin with nonalcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond) 2018;15:79.
60. Hua X, Li M, Pan F, Xiao Y, Cui W, Hu Y. Non-alcoholic fatty liver disease is an influencing factor for the association of SHBG with metabolic syndrome in diabetes patients. Sci Rep 2017;7:14532.
61. Polyzos SA, Kountouras J, Tsatsoulis A, Zafeiriadou E, Katsiki E, Patsiaoura K, et al. Sex steroids and sex hormone-binding globulin in postmenopausal women with nonalcoholic fatty liver disease. Hormones (Athens) 2013;12:405–16.
62. Hua X, Sun Y, Zhong Y, Feng W, Huang H, Wang W, et al. Low serum sex hormone-binding globulin is associated with nonalcoholic fatty liver disease in type 2 diabetic patients. Clin Endocrinol (Oxf) 2014;80:877–83.
63. Stefan N, Schick F, Haering HU. Sex Hormone-Binding Globulin and Risk of Type 2 Diabetes. N Engl J Med 2009;361:2675–6.
64. Kavanagh K, Espeland MA, Sutton-Tyrrell K, Barinas-Mitchell E, El Khoury SR, Wildman RP. Liver Fat and SHBG Affect Insulin Resistance in Midlife Women: The Study of Women’s Health Across the Nation (SWAN). Obesity (Silver Spring) 2013;21:1031–8.