Identify a novel genetic locus associated with immune-mediated thrombocytopenic purpura

Matthew J. Stubbs,1,2 Paul Coppo,3 Chris Cheshire,2 Agnès Veyradier,4 Stephanie Dufek,2 Adam P. Levine,2 Mari Thomas,1,5 Vaksha Patel,2 John O. Connolly,2 Michael Hubank,6 Ygal Benhamou,3 Lionel Galicier,3 Pascale Poulliin,2 Robert Kleta,2# Daniel P. Gale,2# Horia Stanescu2# and Marie A. Scully1,5#

1Hemostasis Research Unit, ULC, London, UK; 2Department of Renal Medicine, UCL, London, UK; 3Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine, Paris, France; 4Department d'Hematologie, Centre de Référence des Microangiopathies Thrombotiques, Hôpital Lariboisière, Paris, France; 5National Institute for Health Research Cardiometabolic Programme, UCLH/UCL Cardiovascular BRC, London, UK and 6Clinical Genomics, Royal Marsden Hospital, London, UK.

*RK, DPG, HS and MAS contributed equally as co-senior authors.

ABSTRACT

Immune thrombocytopenic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types. Associations were functionally investigated using expression quantitative trait loci (eQTL), and motif binding prediction software. Independent associations consistent with previous findings in iTTP were detected at the HLA locus and in addition a novel association was detected on chromosome 3 (rs9884090, \(P=5.22\times10^{-10}\), odds ratio 0.40) in the UK discovery cohort. Meta-analysis, including the French replication cohort, strengthened the associations. The haploblock containing rs9884090 is associated with reduced protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL \(P<0.05\)), and functional annotation suggested a potential causative variant (rs71767581). This work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-translational modification of its targets may influence disease susceptibility.

Introduction

Thrombotic thrombocytopenic purpura (TTP) is an ultra-rare, life-threatening illness, with an annual incidence of approximately 6/million, and with an untreated mortality approaching 90% (10-20% with prompt intervention). It can affect patients of any age, but often affects young adults (30-40 years) and is more common in women.1 The initial diagnosis of TTP is based on clinical suspicion, but ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity <10 IU/dL confirms the diagnosis. Severe deficiency of ADAMTS13 results in failure to cleave ultra-large von Willebrand Factor multimers (UL-VWF), crucial for normal hemostatic function and proteolytic regulation of VWF. ADAMTS13 deficiency in immune TTP (iTTP) is mediated through immunoglobulin G (IgG) autoantibodies.2,3 The precipitant of the disease in most cases is unclear.4

As with many autoimmune diseases, human leukocyte antigen (HLA) type is associated with the risk of developing iTTP, with HLA-DRB1*11, HLA-DQB1*03 and HLADRB3* increasing risk, and HLA-DRB1*04 and HLA-DRB4 (HLA-DR53) being protective in Europeans.5,6 No genetic risk factors outside the HLA genes have previously been shown to be associated with iTTP.
We performed a genome-wide association study (GWAS) in UK and French iTTP cohorts and identified association of alleles both within and beyond the HLA locus.

Methods

Cohorts

As part of the UK TTP registry, patients were consented for DNA analysis (MREC: 08/H0810/54) (see the Online Supplementary Appendix). Patients on the UK TTP registry were screened for the clinical diagnosis, and confirmed with an ADAMTS13 level <10 IU/dL at diagnosis (utilizing FRET methodology) and the presence of an anti-ADAMTS13 autoantibody. The French replication cohort iTTP samples were obtained from the French Reference Center for iTMA (CNRMAT) and informed consent was obtained from each patient with confirmed iTTP (see above criteria) (Institutional Review Board of Pitie Salpêtrière Hospital, clinical trials.gov Identifier: NCT00426686). The European control genotypes were obtained from the Wellcome Trust Case Control Consortium (WTCCC), both the 1958 British Birth Cohort and National Blood Service control samples. In addition, controls were used from the Illumina reference panel and Oxford controls.

Genotyping, quality control and imputation

TTP samples were genotyped on the Illumina Human Omni Express single-nucleotide polymorphisms (SNP) chips and controls were genotyped on different SNP chips (see the Online Supplementary Appendix). Pre-imputation quality control was performed in all data sets separately, and then in a combined cohort (Online Supplementary Figure S1). Quality control (QC) was performed for individuals and SNP. Individuals were selected for further analysis by European ancestry principal component analysis (PCA) (see the Online Supplementary Figure S2). Only SNP present in all data sets were subsequently analyzed. Genome-wide imputation was performed on markers that had passed quality control, and were present in all datasets using Beagle (version 5.0) utilizing the 1.000 Genome Project Phase 3 as a reference panel. In addition to standardized QC, only SNP with a dosage R2 (DR2) >0.8 were included.

Genome-wide association study and loci characterization

GWAS was performed using SNP & Variation Suite v8, using logistic regression with principal component correction. The logistic regression P-values, odds ratios (OR) were calculated in addition to λ inflation factors, and QQ plots are shown (Online Supplementary Figure S3). A standardized genome wide significance level of 5x10^-8 was applied. For discovery and replication analysis meta-data please contact the authors.

Conditional analyses were undertaken using a full versus reduced regression model. Lead SNP at each locus were used as conditional inputs to determine independence, with results plotted using Locus Zoom software. Imputation of HLA types was performed utilizing SNP2HLA with previously genotyped markers. Imputed HLA types were excluded if the R2 (confidence) was <0.8. Conditional analyses were subsequently performed as described above.

Expression quantitative trait locus (eQTL) analysis was performed to associate identified SNP with differential gene expression. Additional markers in linkage disequilibrium with the lead SNP at the chromosome 3 locus were identified by LD-link (https://ldlink.nci.nih.gov). Functional annotation of the haploblock was performed using ChipSeq data via the UCSC genome browser (https://genome.ucsc.edu). Binding sites of transcription factors (highlighted through genome annotation) were obtained from FactorBook, and position weight matrix (PWM) binding motifs generated. Binding motifs were generated using Mast-Meme.

Results

Discovery cohort

Following quality control as outlined in the methods (Online Supplementary Figure S1) there were 241 TTP cases and 3,200 controls in the UK discovery cohort. Following imputation and quality control 3,649,547 SNP were available for analysis. Association testing was performed using a logistic regression model with PCA correction, and the genomic inflation factor (λ) was 1.0239 (Online Supplementary Figure S3).

In the UK discovery cohort two peaks were identified (Figure 1) (Online Supplementary Figure S4) (lead SNP are summarized in Table 1). The peak with the strongest association corresponded to the class II HLA region on chromosome 6, with 1,017 SNP reaching genome wide significance. The lead SNP rs28383283 located in the intergenic region between HLA-DRB1 and HLA-DQA1 (P=2.20x10^-23, OR 3.12, 95% Confidence Interval [CI]: 2.49-3.83) (Table 1; Figure 2).

Conditional analysis was performed on rs28383283 and the lead SNP following this was rs1064994 (within HLA-DQA1), with a P-value of 1.13x10^-10 (OR 2.20, 95% CI: 2.06-3.37). Following conditioning on both rs28383283 and rs1064994 no further markers reached significance within the class II HLA region, indicating that there are two detectable independent genetic associations with iTTP within the HLA region.

HLA imputation was performed on the UK discovery cohort, and following quality control, 95 imputed HLA alleles remained. HLA-DRB1*11:01 was the allele most strongly associated with iTTP, with a P-value of 3.25x10^-17 (OR 2.79, 95% CI: 2.23-3.50). Following conditional analysis of HLA-DRB1*1101, no other HLA types reached genome wide significance, but HLA-DQA1*03:01 remained significant (with a HLA-only Bonferroni correction, P<5.26x10^-4) at 1.49x10^-6 (OR 0.47, 95% CI: 0.33-0.65) suggesting that the protective effect of this allele is independent of HLA-DRB1*11:01.

In addition to the class II HLA peak on chromosome 6, a novel association was observed on chromosome 3. Sixteen markers reached genome wide significance, with the lead SNP rs9884090(A), having a P-value of 5.22x10^-10 (OR 0.40, 95% CI: 0.29-0.56) (Table 1; Figure 3). Upon conditional analysis of the lead SNP no markers reached genome wide significance indicating one detectable signal at this locus. No statistical epistasis was seen between the chromosome 3 and chromosome 6 associations, with each association being independent. Five genes are annotated within this chromosome 3 haploblock: ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80.

Replication cohort

Within the French replication cohort there were 112 cases and 2,605 controls following quality control as outlined in the methods (Online Supplementary Figures S7 and S2). 3,649,546 SNP were available for analysis, and asso-
The association with the lead SNP in the chromosome 3 haplblock, rs9884090(A), was replicated with a P-value of 0.001 (OR 0.52), and the two independent lead SNPs with the class II HLA peak on chromosome 6 were also replicated (Table 2). The locus zoom plots are shown (Online Supplementary Figures S6 to S8). Imputed HLA type analysis was also consistent with the UK discovery cohort with HLA-DRB1*11:01 and HLA-DQA1*03:03 representing two independent HLA signals.

In addition, a meta-analysis was performed combining the UK and French cohorts (cases 241/112, controls 3,200/2,603 respectively), which demonstrated strengthening of the previously observed signal (rs9884090 P = 1.60x10^-10, OR 0.47, rs23838233 P = 1.22x10^-12, OR 3.70, rs1064994 P = 5.03x10^-20, OR 2.89) (Table 3; Online Supplementary Figure S9).

Expression quantitative trait loci and functional DNA analysis

eQTL data from the Genotype Tissue Expression Project and Blood eQTL Browser for the lead SNP at the chromosome 3 locus (rs9884090) demonstrated significant reduction in expression of POGLUT1 with the protective allele in the majority of tissues tested, including blood cells (P < 0.001). LD-link identified 20 markers found to be in tight linkage disequilibrium (R2 and D’ > 0.20) with rs9884090 contained within the chromosomal region (see the Online Supplementary Table S1). All markers were functionally annotated with information from the UCSC Genome Browser (Human Assembly GRCh37/hg19) (see the Online Supplementary Table S1). One variant was particularly noted, rs71767581 (Ch3, 11918742 AC/-del), which is a 2-basepair deletion in the promoter of POGLUT1. This may be functionally important as the haplblock identified is associated with reduced expression in POGLUT1. Upon analysis of ChipSeq data in UCSC Genome Browser 14 transcription factors were predicted to bind at this site (see the Online Supplementary Table S2), adding further evidence that rs71767581 may be functionally important for POGLUT1 expression.

Discussion

This GWAS, involving two European populations, is the first to be performed in iTTP and shows consistent evidence of association at loci on chromosome 6 and chromosome 3. The associated alleles on chromosome 6 lie within the HLA region and imputation of HLA types and conditional analyses indicated independent association between HLA-DRB1*11:01 (OR 2.79; P = 3.25x10^-15) and HLA-DQA1*03:01 (OR 0.47; P = 1.49x10^-9, post conditional analysis), which are consistent, and in linkage with previously published risk and protective associations with iTTP at this locus. A recent case-control study comparing frequency of alleles only at immune loci in 190 Italian TTP patients and 1,255 controls identified the HLA variant rs6903608, (in addition to HLA-DBB1*05:03) as conferring a 2.5-fold increase of developing TTP.

Here we also identified a novel association of iTTP with alleles on chromosome 3 tagged by the lead SNP rs9884090. Five genes are located within the associated haplblock: ARHGAP31, TAM439A, POGLUT1, TIMMDC1, and CD80. ARHGAP31 (rho GTPase activating protein 31) is associated with the autosomal dominant condition Adams-Oliver Syndrome (OMIM 100300). Mutations within ARHGAP31 have been implicated with abnormal vascular development and VEGF (vascular endothelial growth factor) angiogenesis. Little is understood regarding the function of TAM439A (transmembrane protein 9A). While variants have been implicated in autoimmune disease such as systemic lupus erythematosus and multiple sclerosis, understanding of

Table 1. Lead single nucleotide polymorphisms identified in the UK discovery cohort.

rsID (position)	Minor Allele / Major allele	MAF cases / MAF controls	Logistic regression P-value	Odds Ratio (95% CI)
rs9884090	A/G	0.08/0.19	P = 0.001	0.52
(ch3:119116150)		(0.34-0.81)		
rs23838233	G/A	0.68/0.40	P = 3.87x10^-9	2.57
(ch6:32584153)		(1.87-3.53)		
rs1064994	C/T	0.25/0.11	P = 1.13x10^-10	2.20
(ch6:32611195)		(2.06-3.37)		

Displayed are Minor/Major Alleles, Minor Allele Frequencies (MAF), logistic regression P-value (corrected for principal component analysis stratification), and odds ratio (with 95% Confidence Intervals [CI]). Genomic positions refer to Human Assembly GRCh37/hg19.

Table 2. French cohort replication of lead single nucleotide polymorphisms identified in the UK discovery cohort.

rsID (position)	Minor Allele / Major allele	MAF cases / MAF controls	Logistic regression P-value	Odds Ratio (95% CI)
rs9884090	A/G	0.08/0.19	P = 0.001	0.52
(ch3:119116150)		(0.34-0.81)		
rs23838233	G/A	0.68/0.40	P = 3.87x10^-9	2.57
(ch6:32584153)		(1.87-3.53)		
rs1064994	C/T	0.25/0.11	P = 1.13x10^-10	2.20
(ch6:32611195)		(2.06-3.37)		

Displayed are Minor/Major Alleles, Minor Allele Frequencies (MAF), logistic regression P-value (corrected for principal component analysis stratification), and odds ratio (with 95% Confidence Intervals [CI]). Genomic positions refer to Human Assembly GRCh37/hg19.

Table 3. Meta-analysis combining UK and French Cohorts, showing lead single nucleotide polymorphisms identified in the UK discover cohort.

rsID (position)	Minor Allele / Major allele	MAF cases / MAF controls	Logistic regression P-value	Odds Ratio (95% CI)
rs9884090	A/G	0.08/0.19	P = 1.60x10^-10	0.47
(ch3:119116150)		(0.36-0.60)		
rs23838233	G/A	0.64/0.41	P = 1.22x10^-12	3.70
(ch6:32584153)		(2.81-4.03)		
rs1064994	C/T	0.22/0.11	P = 5.03x10^-25	2.89
(ch6:32611195)		(2.39-3.49)		

Displayed are Minor/Major Alleles, Minor Allele Frequencies (MAF), logistic regression P-value (corrected for principal component analysis stratification), and odds ratio (with 95% Confidence Intervals [CI]). Genomic positions refer to Human Assembly GRCh37/hg19.
its function is lacking. *TIMMDC1* is a membrane embedded mitochondrial complex factor, and is associated with mitochondrial disorders. The protein encoded by the CD80 gene functions as a membrane receptor being activated by CTLA-4 or CD28, both of which are T-cell receptors. The downstream mechanisms are T-cell proliferation and cytokine production. CD80 and its receptors have been associated with focal segmental glomerulosclerosis and systemic lupus erythematosus. POGLUT1 (protein O-glucosyltransferase 1) is mutated in Dowling-Degos disease-4 (an autosomal dominant genodermatosis with progressive and disfiguring reticulate hyperpigmentation and muscular dystrophy, OMIM 615696) and POGLUT1 has been shown to catalyse O-glycosylation of epidermal growth factor (EGF)-like repeats. In vitro work has demonstrated POGLUT1 binds and glycosylates specific coagulation factors including factor VII and factor IX. The haploblock identified in this analysis of iTTP (which is tagged by rs9884090(A)) is associated with significantly decreased *POGLUT1* expression by eQTL. Several other genetic variants contained within this haploblock have been associated with other autoimmune diseases, and the majority of these variants have been shown to be in linkage with our lead variant rs9884090 (see the Online Supplementary Appendix), supporting the findings described here. eQTL analysis is a robust tool, that can associate gene expression with specific genetic variants. Our analysis found rs9884090(A) to have a reduced frequency in iTTP, and rs9884090(A) was shown to be associated with significantly decreased *POGLUT1* expression in different eQTL resources. In order to locate the underlying genetic variant implicated in this reduced *POGLUT1* expression we used LD-link to identify additional variants, and located a 2-basepair deletion with the *POGLUT1* upstream promoter region that is in tight linkage disequilibrium with the lead associated variant (R2/D'>0.80). As rs9884090(A) confers reduced risk of developing iTTP, we hypothesize that reduced expression of *POGLUT1* leads to altered posttranslational modification (O-glycosylation) of key POGLUT1 targets to reduce the risk of iTTP. The evidence we present supports POGLUT1 as the gene of interest, but we cannot exclude other genes within the associated haploblock. The pathway through which POGLUT1’s effects could be mediated remains to be determined. Given there are several reported variants with this haploblock associated with different autoimmune disease, it is likely the downstream functional consequences mediated through POGLUT1 influence immune-regulatory pathways which may generally increase the risk of other autoimmune disease, in addition to iTTP, and may provide insights into potential therapies.

In summary, we have identified a novel genetic variant, rs9884090(A), in two independent populations, which is associated with reduced risk of iTTP. Utilizing linkage disequilibrium we have identified a functional variant in tight LD with the lead SNP in the POGLUT1 promoter...
Figure 2. Locus zoom plots of the chromosome 6 peak in the UK discovery cohort. The upper plot (A) shows the unconditioned analysis with the lead single-nucleotide polymorphisms rs28383233, and the middle plot (B) shows analysis conditioned on the lead SNP rs28383233, revealing independent association with rs1064994. The lower plot (C) shows analysis conditioned on both rs28383233 and rs1064994. Genomic positions refer to Human Assembly GRCh37/hg19, chr6: chromosome 6.
site and eQTL demonstrates reduced POGLUT1 expression associated with this variant. We therefore hypothesize this leads to altered O-glycosylation on POGLUT1 targets. Whilst the exact role of POGLUT1 in the pathophysiology of iTTP requires further downstream functional analysis, this work represents an important step forward in our understanding of iTTP.

Disclosures

MJS received research funding from Shire/Takeda; PC sits on the advisory board and received symposia fees from Sanofi, Alexion and Roche; AV sits on the advisory board of Ablynx/Sanofi, Roche-Chugai, and Shire/Takeda; DPG received honoraria and sits on the advisory board of Alexion; MS consults, received honoraria, sits on the advisory board, received speakers fees from Novartis, received honoraria, sits on the advisory board, received research funding and speakers fees from Shire/Takeda, consults for, received honoraria, sits on the advisory board, received speakers fees from Ablynx/Sanofi and Shire/Takeda, received honoraria, sits on the advisory board and speakers bureau of Alexion, received research funding from Baxalta; All other authors have no conflicts of interest to disclose.

Figure 3. Locus zoom plots of the chromosome 3 peak in the UK discovery cohort. The upper plot (A) shows the unconditioned analysis and the lower plot (B) shows associations of the same markers when conditioned on the lead single-nucleotide polymorphisms (SNP), rs9884090. Genomic positions refer to Human Assembly GRCh37/hg19, chr3: chromosome 3.
Contributions
MJS designed research, recruited patients, performed research, collected data, analyzed and interpreted data, wrote the manuscript; PC designed research, recruited patients, analyzed and interpreted data, wrote the manuscript; CC, SD, VP and APL performed research, collected data, analyzed and interpreted data, wrote the manuscript; AV designed research, recruited patients, analyzed and interpreted data, wrote the manuscript; MT designed research, recruited patients, analyzed and interpreted data, wrote the manuscript; JOC designed research, wrote the manuscript; MH designed research, wrote the manuscript; YB, LG and PP performed research, recruited patients, wrote the manuscript; RK, DPG, HS and MAS designed research, performed research, analyzed and interpreted data, wrote the manuscript.

Acknowledgments
We would like to thank Drs Fairfax, Makino, and Knight from the University of Oxford for sharing ethnically matched control data. We would also like to acknowledge the significant contribution of our collaborators within in UK TTP Registry and the French Reference Center for Thrombotic Microangiopathies, who are listed below:

The members of the UK TTP Registry are:
- Aberdeen Royal Infirmary (H. Watson, M. Greiss, J. Dixon, S. Rodwell, M. Fletcher, Addenbrookes Hospital (W. Thomas, S. MacDonald), Bath Royal United Hospitals (S. Moore, C. Cox), Birmingham University Hospitals (W. Lester, G. Lowe, C. Percy, E. Dwenger, M. Pope), Birmingham Children’s Hospital (J. Motwani), Bournemouth and Christchurch Hospitals (S. Killick, M. Serrano), Bristol University Hospitals (A. Clark, A. Mumford, L. Humphrey, S. Mulligan), Cardiff & Vale University Hospitals (R. Rayment, P. Collins, M. Norton, A. Guerrero, S. Cunningham), Cornwall Hospitals NHS Trust (D. Beech, S. Hunter, B. Mills), Coventry & Warwickshire University Hospitals (O. Chapman, B. Bailiff, A. Pearson, D. Morris), Edinburgh Royal Infirmary (L. Manson, N. Priddie), Glasgow Royal Infirmary (K. Douglas, C. Tait, C. Bagot), Glasgow Royal Hospital for Children (E. Chalmers), Great Ormond Street Hospital (R. Liesner, K. Siibon, A. Taylor, A. Giffen), Guy’s & St Thomas’ NHS Trust (B. Hunt, J. Young), Imperial College NHS Trust (N. Cooper, A. Luqmani, C. Vladescu, D. Paul), Leeds Teaching Hospital NHS Trust (Q. Hill), Leicester Hospitals (K. Goding, K. Sigouste), Royal Liverpool Hospital (T. Dutt, C. Powell), Manchester Children’s Hospital (J. Thachil, J. Granger, S. Boydell), Newcastle Hospitals (T. Biss, J. Wallis, J. Hanley, K. Talles, A. Charlton), Norfolk and Norwich University Hospitals NHS Foundation Trust (H. Lyall, E. Malone, M. Sheridan), Nottingham University Hospitals NHS Trust (G. Swallow, J. Hermonas), Oxford University Hospital NHS Trust (S. Benjamin, C. Deane, A. Eredoghi, K. Santos), Oxford Children’s Hospital (N. Blatmager, S. Pavot, G. Hall, P. Baker), Plymouth University Hospitals NHS Trust (T. Nokes), Poole Hospital NHS Foundation Trust (F. Jack, N. Beamish, A. Wadowski), Portsmouth Hospitals NHS Trust (T. Cranfield, C. James, S. Liu), Royal Devon & Exeter NHS Foundation Trust (J. Coppell, L. Ngw), Sheffield Teaching Hospital NHS Foundation Trust (J. Vanveen, M. Makris, R. MacLean, K. Harrington, S. Megson, R. Fretwell), South Tees Hospitals NHS Foundation Trust (R. Dang, M. David, J. Maddox, D. Winterburn), South Warwickshire NHS Foundation Trust (P. Rose), St George’s University Hospitals NHS Foundation Trust (S. Austin, J. Uprichard, J. Chickathayal, A. Lee), University College London Hospitals (M. Scully, J.P. Westwood, M. Thomas, R. Newton, S. McGuckin, I. Obu, C. Vendramin, L. Keogh J. Shin, M. Stubbs), NHSBT (K. Pendry, K. Sleven) and Southampton University Hospital NHS Foundation Trust (S. Boyce).

The members of the French Reference Center for Thrombotic Microangiopathies (CRN-MAT) are: Augusto Jean-François (Service de Néphrologie, Dialyse et Transplantation, CHU Larrey, Angers); Azoulay Elie (Service de Réanimation Médicale, Hôpital Saint-Louis, Paris); Barbay Virginie (Laboratoire d’Hématologie, CHU Charles Nicolle, Rouen); Benhamou Ygal (Service de Médecine Interne, CHU Charles Nicolle, Rouen); Bordessoule Dominique (Service d’Hématologie, Hôpital Dupuytren, Limoges); Charsasse Christophe (Service de Néphrologie, Centre Hospitalier de Saint-Brieuc); Charvet-Rumpfer Anne (Service d’Hématologie, CHU de Dijon); Chauveau Dominique (Service de Néphrologie et Immunologie Clinique, CHU Rangueil, Toulouse); Chaukroun Gabriel (Service de Néphrologie, Hôpital Sud, Amiens); Coinde Jean-Philippe (Service de Néphrologie, CH Le Mans); Coppo Paul (Service d’Hématologie, Hôpital Saint-Antoine, Paris); Corre Elise (Service d’Hématologie, Hôpital Saint-Antoine, Paris); Delmas Yalissou (Service de Néphrologie, CHU de Bordeaux, Bordeaux); Deschenes Georges (Service de Néphrologie Pédiatrique, Hôpital Robert Debré, Paris); Devadas Alain (Service d’Hématologie, Hôpital Sud-Françilien, Corbeil-Essonnes); Dossot Antoine (Service de Néphrologie, Hôpital Bichat, Paris); Fain Olivier (Service de Médecine Interne, Hôpital Saint-Antoine, Paris); Fakhouri Fadi (Service de Néphrologie, CHU Hôtel-Dieu, Nantes); Frémex-Bacchi Véronique (Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, Paris); Gallicier Lionel (Service d’Immunopathologie, Hôpital Saint-Louis, Paris); Grangé Steven (Service de Réanimation Médicale, CHU Charles Nicolle, Rouen); Guédat Bertrand (Service de Réanimation Médicale, Hôpital Saint-Antoine, Paris); Halimi Jean-Michel (Service de Néphrologie Pédiatrique, Hôpital Bretonneau, Tours); Hamidou Mohamed (Service de Médecine Interne, Hôpital-Dieu, Nantes); Hic Miguel (Service de Médecine Interne, Groupe Hospitalier Pitié-Salpêtrière, Paris); Jacobs Frédéric (Service de Réanimation Médicale, Hôpital Antoine Béclère, Clamart); Joly Bérangère (Service d’Hématologie Biologique, Hôpital Lariboisière, Paris); Kanouni Tarik (Unité d’Hémaphérèse, Service d’Hématologie, CHU de Montpellier); Kaplanis Gilles (Service de Médecine Interne, Hôpital la Conception, Marseille); Lautrette Alexandre (Hôpital Gabriel Montpied, Service de Réanimation Médicale, Clermont-Ferrand); Le Guern Véronique (Unité d’Hémaphérèse, Service de Médecine Interne, Hôpital Cochin, Paris); Mariette Eric (Service de Réanimation, Hôpital Saint-Louis, Paris); Moulin Bruno (Service de Néphrologie, Hôpital Civil, Strasbourg); Mousson Christiane (Service de Néphrologie, CHU de Dijon); Ojeda Urbe Mario (Service d’Hématologie, Hôpital Emile Muller, Mulhouse); Ouchenir Abdelkader (Service de Réanimation, Hôpital Louis Pasteur, Le Coudray); Parquet Nathalie (Unité de Clinique Transfusionnelle, Hôpital Cochin, Paris); Pellet Julie (Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Paris); Pérez Pierre (Service de Réanimation Polyvalente, CHU de Nancy); Poulin Pascale (Service d’Hémaphérèse et d’Autotransfusion, Hôpital la Conception, Marseille); Poulet-Noble Claire (Service de Néphrologie, CHU Lyon-Sud, Lyon); Presne Claire (Service de Néphrologie, Hôpital Nord, Amiens); Provost François (Service de Néphrologie, Hôpital Albert Calmette, Lille); Roudou Eric (Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Paris); Saheb Samir...
References

1. Scully, M, Yarranton H, Lieners R, et al. Regional UK TTP registry: correlation with laboratory ADAMTS13 analysis and clinical features. Br J Haematol. 2010;152(2):194-203.

2. Tait H-M, Raoufi M, Zhou W, et al. ADAMTS13-binding IgG are present in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 2005;95(5):86-92.

3. Rieger M, Mannucci PM, Kremer Hovinga A, Miyata T. FRETS-VWF73, a first fluorogenic reporter for ADAMTS13. Thromb Haemost 2010;103(2):257-262.

4. Coppo P, Busson M, Veyradier A, et al. HLA-DRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians. J Thromb Haemost 2010;8(4):856-859.

5. John M-L, Hitzler W, Scharrer I. The role of human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. Br J Haematol. 2005;129(1):95-103.

6. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of common diseases and 3,000 shared controls. Nature 2007;447(7145):616-678.

7. Illumina. “TOP/BOTTOM” Strand and “A/B” Allele - Technical Note. Illumina SNP Genotyping. 2006.

8. Fairfax BP, Makino S, Radhakrishnan J, et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet. 2012;44(5):502-510.

9. Fairfax BP, Humburg F, Makino S, et al. Innate immune activity conditions the effect of regulatory variants upon monoocyte gene expression. Science. 2014; 343(6175):1246949.

10. Browning RL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 2015;100(3):585-589.

11. Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com. SNP & Variation Suite™ (Version 8.8.1). Golden Helix, Inc.

12. Fadista J, Manning AK, Florez JC, Groz L. The (h)uman genome browser at UCSC. Genome Res. 2002;12(6):996-1006.

13. Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic reporter for ADAMTS13. Thromb Haemost 2010;103(2):257-262.

14. Caron C, DeGeer J, Fournier P, et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a Chinese Han population. BMC Med Genet. 2017;18(1):43.

15. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555-3557.

16. Wang J, Zhuang J, Iyer S, et al. Sequence features and chromatin structure around the genome regions bound by 119 human factor binding. Genome Res. 2012;22(9):1569-1583.

17. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2012;40(18):11066-11072.

18. Ishimoto T, Shimada M, Araya CE, Huskey J, Garin EH, Johnson RJ. Minimal change disease: a CD60 podocytopathy? Semin Nephrol. 2011;31(4):529-535.

19. Kow NY, Mak A. Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol. 2015;2015:249528.

20. Saviero D, Simone R, Bagnasco P, Gese G. The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Auto Immun Highlights. 2010;1(2):79-81.

21. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 2011;138(10):1925-1934.

22. Servián-Morilla E, Takeuchi H, Lee TV, et al. A POGUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med. 2016;8(11):1289-1309.

23. Sterfio J, Steenberg Y, Muranyi A. Calcium-binding EGF-like modules in coagulation proteases: function of the calcium ion in module interactions. Biochim Biophys Acta. 2000;1477(1):51-63.

24. Wouters MA, Rigouotou I, Chu CK, Feng LL, Sparrow DR, Dunwoodie SL. Evolution of distinct EGF domains with specific functions. Protein Sci. 2005;14(4):1091-1103.

25. Li Z, Fischer M, Satkunarajah M, Zhou D, Wouters MA, Ruit J. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat Commun. 2013;4(1):1202-1205.

26. Basmanav FB, Oprisoreanu A-M, Fasternack SM, et al. Mutations in POGUT1 encoding protein O-glucosyltransferase 1 cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet. 2014;94(1):155-158.

27. International Multiple Sclerosis Genetics Consortium (IMSGC). Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum Mol Genet. 2010;19(5):953-962.

28. Sheng Y, Xu J, Wu Y, et al. Association
analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res Ther. 2015;17(1):85.

44. Yao Q, Wang B, Qin Q, Jia X, Li L, Zhang J-A. Genetic variants in TMEM39A gene are associated with autoimmune thyroid diseases. DNA Cell Biol. 2019;38(11):1249-1256.

45. Lenting PJ, Christophe OD, Denis CV von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(15):2019-2028.

46. Verbij FC, Stokhuijzen E, Kaijen PHP, van Alphen F, Meijer AB, Voorberg J. Identification of glycans on plasma-derived ADAMTS13. Blood. 2016;128(21):e51-58.

47. Sorvillo N, Kaijen PH, Matsumoto M, et al. Identification of N-linked glycosylation and putative O-fucosylation sites in plasma derived ADAMTS13. J Thromb Haemost. 2014;12(5):e670-e679.

48. Nowak AA, O’Brien HER, Henze F, et al. ADAMTS-13 glycans and conformation-dependent activity. J Thromb Haemost. 2017;15(6):1155-1166.

49. Janghorban M, Xin L, Rosen JM, Zhang XH-F. Notch signaling as a regulator of the tumor immune response: to target or not to target? Front Immunol. 2018;9:1649.

50. Rong H, Shen H, Xu Y, Yang H. Notch signaling suppresses regulatory T-cell function in murine experimental autoimmune uveitis. Immunology. 2016;149(4):447-459.

51. Yang H, Zheng S, Mao Y, et al. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol. 2016;183(2):280-293.

52. Kukkin CA, Minter LM. The link between autoimmunity and lymphoma: does NOTCH signaling play a contributing role? Front Oncol. 2015;5:51.

53. Bassil R, Orent W, Elyaman W. Notch signaling and T-helper cells in EAE/MS. Clin Dev Immunol. 2013;2013:570731.

54. Sandy AR, Stoolman J, Malott K, Pongtornpipat P, Segal BM, Maillard I. Notch signaling regulates T cell accumulation and function in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol. 2013;191(4):1606-1613.

55. Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol. 2013;13(6):427-437.

56. Hao X, Li Y, Wang J, et al. Deficient O-GlcNAc glycosylation impairs regulatory T cell differentiation and Notch signaling in autoimmune hepatitis. Front Immunol. 2018;9:2089.