The effect of bur preparation on the surface roughness and reline bond strength of urethane dimethacrylate denture base resin

Mirza Rustum Baig, Fazrina TM Ariff, Norsiah Yunus

Department of Prosthetic Dentistry, University of Malaya, Kuala Lumpur, Malaysia

ABSTRACT

Background: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.

Aim: To investigate the effect of bur preparation on the surface roughness (R_a) of Eclipse™ denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.

Materials and Methods: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R_a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.

Results: One-way ANOVA revealed significant differences ($P<0.05$) in R_a and SBS values for all the groups. Post-hoc Tukey’s HSD test showed significant differences ($P<0.05$) between all the groups in the R_a values. For SBS also there were significant differences ($P<0.05$), except between standard bur and control.

Conclusions: 1) There was a statistically significant difference in the R_a of Eclipse™ specimens prepared using different carbide burs ($P<0.05$). 2) There was a statistically significant difference in the relined SBS ($P<0.05$) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.

Key words: Denture base resin, reline bond strength, surface roughness, urethane dimethacrylate
divided into three equal groups according to the type of bur preparation: standard carbide, fine carbide (Edenta; Hauptstrasse, Switzerland), and control (no preparation). All specimens were prepared by the same operator by running a bur at 20,000 rpm along the surface of the specimen for 1 min.

Surface roughness (R_a) of the specimens was measured using a contact stylus profilometer (Ambios XP-1; Santa Cruz, USA). The cutoff length was 2 mm, with a measuring length of 10 mm. Three measurements were made for each specimen and the mean R_a values were used for the statistical analysis.

Reline resin (Kooliner; GC America, Alsip, USA) (15 mg powder/6 ml liquid monomer) was mixed and poured into a brass ring (internal diameter 6 mm) placed on the specimens. After polymerization, the specimens were stored for 24 h in water at 37°C. SBS testing was then done on a universal testing machine (Shimadzu, Tokyo, Japan) at 1.0 mm/min crosshead speed. Specimens were examined under a stereomicroscope (Kyowa SD-2PL; Tokyo, Japan) at a magnification of ×10 to examine the nature of the bonding failure.

RESULTS

The R_a and relined SBS values for different groups of Eclipse™ specimens are shown in Table 1. For R_a values, one-way ANOVA and post-hoc Tukey’s HSD test revealed significant differences between the groups ($P<0.05$). The highest R_a was recorded with the standard bur. One-way ANOVA for relined SBS showed significant differences ($P<0.05$) and post-hoc Tukey’s HSD test also showed significant differences ($P<0.05$), except between standard bur and control ($P>0.05$). The lowest SBS was observed with fine bur. The mode of bonding failure for all groups was 100% adhesive. Figure 1 is a schematic illustration and Figure 2 is the SEM (Scanning electron microscopic) view showing Eclipse™ surface configuration with different TC bur preparations and in the control.

DISCUSSION

The data obtained support rejection of the null hypothesis for the effect of bur preparation on the R_a and SBS of Eclipse™ resin. However, there was no significant difference in SBS values between standard bur and control; thus, for this variable, the data do not support rejection of the null hypothesis.

Preparation with carbide burs produced rougher surfaces than that seen on unprepared specimens; this is in agreement with an earlier study[5] where trimming with rotary instruments was used to roughen the acrylic resin surface. The difference in the appearance of the surface was also evident from the SEM views [Figure 2].

Increase in R_a due to bur preparation did not offer any additional advantage in terms of improved reline SBS. One plausible reason for this could be that due to the composite nature of Eclipse™ resin, more fillers were likely to be exposed to the surface after removal of the resin matrix–rich outermost layer by trimming [Figure 1].

The difference in the appearance of the surface was also evident from the SEM views [Figure 2].

Table 1: Mean surface roughness, R_a (µm) and relined SBS (MPa) of Eclipse™ specimens with different TC bur preparations, and control specimen

Preparation	Surface roughness (R_a) (µm) Mean (S.D)	SBS (MPa) Mean (SD)	Mode of bonding failure % (A / C / M)
Control (no preparation)	3.57 (0.23)	6.00 (2.00)*	100 / 0 / 0
Fine bur	5.96 (0.31)	2.20 (0.62)	100 / 0 / 0
Standard bur	6.92 (0.67)	4.80 (0.97)*	100 / 0 / 0

A - Adhesive; C - cohesive; M - mixed; *$P>0.05$

A limitation of this study was that only one type of reline resin was tested and, hence, the results cannot be generalized to other materials. Further studies are recommended to investigate different types of commercially available reline resins.
REFERENCES

1. Ali IL, Yunus N, Abu-Hassan MI. Hardness, flexural strength and flexural modulus comparisons of differently cured denture base systems. J Prosthodont 2008;17:545-9.
2. Ahmad F, Yunus N. Shear bond strength of two chemically different denture base polymers to reline materials. J Prosthodont 2009;18:596-602.
3. Takahashi Y, Chai J. Assessment of shear bond strength between three denture reline materials and a denture base acrylic resin. Int J Prosthodont 2001;14:531-5.
4. Jagger RG, Al-Athel MS, Jagger DC, Vowles RW. Some variables influencing the bond strength between PMMA and a silicone denture lining material. Int J Prosthodont 2002;15:55-8.
5. Radford DR, Watson TF, Walter JD, Challacombe SJ. The effects of surface machining on heat cured acrylic resin and two soft denture base materials: a scanning electron microscope and confocal microscope evaluation. J Prosthet Dent 1997;77:200-8.

CONCLUSIONS

- There is a statistically significant difference in the R_a of Eclipse™ specimens prepared using different carbide burs ($P<0.05$).
- There is a statistically significant difference in the relined SBS ($P<0.05$) when prepared using different burs, but no significant difference between standard bur and control group.

Thus, we conclude that the type of bur used to prepare the denture for relining may affect the surface roughness and the resultant reline bond strength of Eclipse™ denture base resin.

ACKNOWLEDGMENTS

Supported by Grant No. PS315/2007B from University of Malaya, Kuala Lumpur, Malaysia.

REFERENCES

1. Ali IL, Yunus N, Abu-Hassan MI. Hardness, flexural strength and flexural modulus comparisons of differently cured denture base systems. J Prosthodont 2008;17:545-9.
2. Ahmad F, Yunus N. Shear bond strength of two chemically different denture base polymers to reline materials. J Prosthodont 2009;18:596-602.
3. Takahashi Y, Chai J. Assessment of shear bond strength between three denture reline materials and a denture base acrylic resin. Int J Prosthodont 2001;14:531-5.
4. Jagger RG, Al-Athel MS, Jagger DC, Vowles RW. Some variables influencing the bond strength between PMMA and a silicone denture lining material. Int J Prosthodont 2002;15:55-8.
5. Radford DR, Watson TF, Walter JD, Challacombe SJ. The effects of surface machining on heat cured acrylic resin and two soft denture base materials: a scanning electron microscope and confocal microscope evaluation. J Prosthet Dent 1997;77:200-8.

How to cite this article: Baig MR, Ariff FT, Yunus N. The effect of bur preparation on the surface roughness and reline bond strength of UDMA denture base resin. Indian J Dent Res 2011;22:210-2.

Source of Support: University of Malaya, Kuala Lumpur, Malaysia (Grant No. PS315/2007B).
Conflict of Interest: None declared.

Author Help: Reference checking facility

The manuscript system (www.journalonweb.com) allows the authors to check and verify the accuracy and style of references. The tool checks the references with PubMed as per a predefined style. Authors are encouraged to use this facility, before submitting articles to the journal.

- The style as well as bibliographic elements should be 100% accurate, to help get the references verified from the system. Even a single spelling error or addition of issue number/month of publication will lead to an error when verifying the reference.
- Example of a correct style
 Sheahan P, O’leary G, Lee G, Fitzgibbon J. Cystic cervical metastases: Incidence and diagnosis using fine needle aspiration biopsy. Otolaryngol Head Neck Surg 2002;127:294-8.
- Only the references from journals indexed in PubMed will be checked.
- Enter each reference in new line, without a serial number.
- Add up to a maximum of 15 references at a time.
- If the reference is correct for its bibliographic elements and punctuations, it will be shown as CORRECT and a link to the correct article in PubMed will be given.
- If any of the bibliographic elements are missing, incorrect or extra (such as issue number), it will be shown as INCORRECT and link to possible articles in PubMed will be given.

Fig. 2: SEM views, with original magnification of x6000: (a) Control Eclipse™ specimens processed against glass showing smooth surface appearance. (b) Irregular areas created by fine bur preparation, with some smooth surfaces retained. (c) More irregular areas with lesser smooth surfaces, created by standard bur preparation (arrows show exposed filler particles)
