Phenomenological Implications of the m_t RGE Fixed Point for SUSY Higgs Boson Searches

V. Barger, M. S. Berger, P. Ohmann, and R.J.N. Phillips

aPhysics Department, University of Wisconsin, Madison, WI 53706, USA
bRutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Abstract

In minimal SUSY-GUT models with $M_{SUSY} \lesssim 1$ TeV, the renormalization group equations have a solution dominated by the infrared fixed point of the top Yukawa coupling. This fixed point predicts $m_t \simeq (200 \text{ GeV}) \sin \beta$; combined with the LEP results it excludes $m_t \lesssim 130$ GeV. For m_t in the range $130–160$ GeV, it predicts that the lightest scalar h has mass $60–85$ GeV (detectable at LEP II). At SSC/LHC, each of the five scalars h, H, A, H^\pm may be detectable, but not all of them together; in one parameter region none would be detectable.

For a large top-quark mass $m_t > M_W$, the corresponding Yukawa coupling λ_t is plausibly large at the GUT scale M_G, in which case λ_t evolves rapidly toward an infrared fixed point at low mass scales[1, 2, 3, 4, 5, 6]. The evolution of the top quark Yukawa coupling λ_t is governed by the one-loop renormalization group equation

$$\frac{d\lambda_t}{dt} = \frac{\lambda_t}{16\pi^2} \left[-\sum c_i g_i^2 + 6\lambda_t^2 + \lambda_b^2 \right], \quad (1)$$

with $c_1 = 13/15, c_2 = 3, c_3 = 16/3$; the couplings evolve toward a fixed point close to where the quantity in square brackets in Eq. (1) vanishes. Then the known gauge couplings determine the running mass $m_t(m_t) = \lambda_t(m_t)v \sin \beta/\sqrt{2}$ and hence the pole mass

$$m_t(\text{pole}) = m_t(m_t) \left[1 + \frac{1}{3\pi}\alpha_s(m_t) \right],$$

two-loop evaluations[3] give

$$m_t(\text{pole}) \simeq (200 \text{ GeV}) \sin \beta, \quad (2)$$

where $\tan \beta = v_2/v_1$ is the usual ratio of two Higgs vevs. If $\lambda_t(M_G)$ is below the fixed point, its convergence to the fixed point is more gradual and Eq. (2) does

*Talk presented by V. Barger at Hawaii LCWS (April, 1993).
not necessarily apply. But in practice large $\lambda_t(M_G)$ is favored in many SUSY-GUT solutions; large $\lambda_t(M_G)$ facilitates $\lambda_b(M_G) = \lambda_\tau(M_G)$ Yukawa unification and allows intricate relationships between fermion masses and mixings. It is therefore interesting to pursue the phenomenological implication of Eq. (2).

Figure 1 shows how $\lambda_t(M_G)$ and $\lambda_b(M_G)$ values relate to m_t(pole) and $\tan \beta$ in SUSY-GUT solutions with Yukawa unification; the lower (upper) shaded branches contains the m_t (m_b) fixed-point solutions. There is a small region at the upper right where both fixed point solutions are simultaneously satisfied. Figure 2 shows that the m_t fixed-point behavior is insensitive to GUT threshold corrections in the λ_b/λ_τ ratio, at least for threshold corrections $< 10\%$. The sensitivity of the fixed point to threshold corrections is decreased for larger values of $\alpha_s(M_Z)$ where the solutions tend to have a stronger fixed point character, as indicated by Eq. (1). The perturbative limits of the Yukawa couplings near their Landau poles are shown in Fig. 2(a) as the dashed lines $\lambda_t^G = 3.3$ and $\lambda_b^G = 3.1$.

The minimal SUSY Higgs spectrum contains two CP-even scalars h and H ($m_h < m_H$), a CP-odd pseudoscalar A and two charged scalars H^{\pm}. At tree level their properties are controlled by two parameters $m_A, \tan \beta$. Radiative corrections depend principally on m_t (constrained now by Eq. (2)) and logarithmically on m_t, that we here set at $m_t = 1$ TeV. Assuming $m_t \lesssim 160$ GeV, Eq. (2) constrains $\tan \beta$ to values near 1, where h is relatively light (recall the tree-level relation $m_h < M_Z|\cos 2\beta|$) and the couplings of h are close to those of a Standard Model Higgs boson. LEP Higgs searches
 exclude a region of the $(m_A, \tan \beta)$ plane shown in Fig. 3(a): this translates to forbidden regions in $(m_h, \tan \beta)$ in Fig. 3(b). We see that the fixed-point condition predicts $m_t \gtrsim 130$ GeV, $m_h \gtrsim 60$ GeV, $m_A \gtrsim 70$ GeV; correspondingly $m_{H^{\pm}} \gtrsim 105$ GeV, $m_H \gtrsim 140$ GeV. If in fact $m_t \lesssim 160$ GeV, then $m_h \lesssim 85$ GeV as shown in Fig. 4, and h will be discoverable at LEP II (but none of the other Higgs bosons will). The discovery limits at SSC/LHC (taken here from Ref. [11]) are also
shown in Fig. 4; we see that each of the five Higgs bosons might be discoverable there, but not all at once, and possibly none of them at all.

\[\alpha_s(M_Z) = 0.118 \quad m_b(m_b) = 4.25 \quad M_{\text{SUSY}} = m_{\text{pole}} \]

Fig. 2: RGE results for \(\alpha_s(M_Z) = 0.118 \) with the boundary condition \(m_b(m_b) = 4.25 \) GeV. (a) GUT threshold corrections to Yukawa coupling unification. The solutions strongly exhibit a fixed point corrections, for threshold corrections \(\lesssim 10\% \). Taking a larger supersymmetric threshold \(M_{\text{SUSY}} \) or increasing \(\alpha_s(M_Z) \) moves the curves to the right, so that the fixed point condition becomes stronger. (b) Evolution of the top quark Yukawa coupling for \(\tan \beta = 1 \). The dashed line indicates \(\frac{d\lambda}{dt} = 0 \) which gives an approximation to the electroweak scale value of \(m_t \) with accuracy of order 10%.

Fig. 3: \(m_t \) fixed-point solution regions allowed by the LEP I data: (a) in the \((m_A, \tan \beta) \) plane, (b) in the \((m_h, \tan \beta) \) plane. The top quark masses are \(m_t(\text{pole}) \), correlated to \(\tan \beta \) by Eq. (2).
This work was supported in part by DE-AC02-76ER00881 and TNLRC RGFY9273.

References

[1] B. Pendleton and G. G. Ross, Phys. Lett. B98, 291 (1981); C. T. Hill, Phys. Rev. D24, 691 (1981).

[2] H. Arason, et al., Phys. Rev. Lett. 67, 2933 (1991); Phys. Rev. D47, 232 (1993).

[3] S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. Lett. 68, 1984 (1992); Phys. Rev. D45, 4192 (1992); G. F. Giudice, Mod. Phys. Lett. A7, 2429 (1992).

[4] V. Barger, M. S. Berger, and P. Ohmann, Phys. Rev. D47, 1093 (1993); V. Barger, M. S. Berger, T. Han and M. Zralek, Phys. Rev. Lett. 68, 3394 (1992).

[5] C. D. Froggatt, I. G. Knowles and R. G. Moorhouse, Phys. Lett. B249, 273 (1990); Phys. Lett. B298, 356 (1993).

[6] M. Carena, S. Pokorski, and C. E. M. Wagner, Munich preprint MPI-Ph/93-10.

[7] M. Chanowitz, J. Ellis and M. Gaillard, Nucl. Phys. B128, 506 (1977).

[8] For details see V. Barger et al., University of Wisconsin-Madison preprint MAD/PH/755.

[9] ALEPH Collaboration: D. Decamp et al, Phys. Lett. B246, 623, (1990), B265, 475 (1991); DELPHI Collaboration: P. Abreu et al, ibid B245, 276 (1990), Nucl. Phys. B373, 3 (1992); L3 Collaboration: B. Adeva et al, Phys. Lett. B294, 457 (1992); OPAL Collaboration: M. Z. Akrawy et al, Z. Phys. C49, 1 (1991).

[10] T. Mori, report to Dallas Conference 1992; E. Gross and P. Yepes, CERN-PPE/92-153.

[11] V. Barger et al., Phys. Rev. D46, 4914 (1992).
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9305288v1
This figure "fig3-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9305288v1
This figure "fig4-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9305288v1
This figure "fig5-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9305288v1