Molecular Evolution and Functional Divergence of the Ca²⁺ Sensor Protein in Store-operated Ca²⁺ Entry: Stromal Interaction Molecule

Xinjiang Cai

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America

Receptor-mediated Ca²⁺ signaling in many non-excitatory cells initially induces Ca²⁺ release from intracellular Ca²⁺ stores, followed by Ca²⁺ influx across the plasma membrane. Recent findings have suggested that stromal interaction molecules (STIMs) function as the Ca²⁺ sensor to detect changes of Ca²⁺ content in the intracellular Ca²⁺ stores. Human STIMs and invertebrate STIM share several functionally important protein domains, but diverge significantly in the C-terminus. To better understand the evolutionary significance of STIM activity, phylogenetic analysis of the STIM protein family was conducted after extensive database searching. Results from phylogeny and sequence analysis revealed early adaptation of the C-terminal divergent domains in Urochordata, before the expansion of STIMS in Vertebrata. STIMs were subsequently subjected to one round of gene duplication as early as in the Euteleostomi lineage in vertebrates, with a second round of fish-specific gene duplication. After duplication, STIM-1 and STIM-2 molecules appeared to have undergone purifying selection indicating strong evolutionary constraints within each group. Furthermore, sequence analysis of the EF-hand Ca²⁺ binding domain and the SAM domain, together with functional divergence studies, identified critical regions/residues likely underlying functional changes, and provided evidence for the hypothesis that STIM-1 and STIM-2 might have developed distinct functional properties after duplication.

INTRODUCTION

In response to appropriate stimuli, virtually all types of animal cells can initiate spatial and temporal changes of cytosolic free Ca²⁺ concentrations to regulate a wide range of physiological processes [1]. Accordingly, animal cells employ a repertoire of membrane transporters such as Ca²⁺ channels, Ca²⁺ ATPases, and cation/Ca²⁺ exchangers to control cytosolic Ca²⁺ [2,3]. One important mode of Ca²⁺ influx across the plasma membrane involves Ca²⁺ release from intracellular Ca²⁺ store through the inositol 1,4,5-trisphosphate receptors, followed by activation of store-operated Ca²⁺ (SOC) channels [4]. SOC currents, for instance, the Ca²⁺ release activated Ca²⁺ (CRAC) current (I_{CRAC}), have been well characterized biophysically and pharmacologically, whereas the molecular identities of SOC entry have remained elusive for almost two decades [4].

Within the last two years, accumulating evidence suggests that stromal interaction molecules (STIMs) and Orai proteins might act as the Ca²⁺ sensor in the intracellular Ca²⁺ store and the putative CRAC channel at the plasma membrane, respectively [5-7] (but also see reference [8]). Overexpression of both STIMs and Orai molecules generate currents that recapitulate the properties of I_{CRAC} [9-11]. STIMs are single-span membrane proteins [12] with an unpaired N-terminal EF-hand Ca²⁺ binding domain critical for the Ca²⁺ sensor function [13-15]. In addition, STIMs contain an N-terminal sterile a motif (SAM) domain and a C-terminal (cytoplasmic) coiled-coil/ERM domain [12]. Following intracellular Ca²⁺ store depletion, STIM-1 accumulates and redistributes at distinct membrane regions, and then leads to activation of I_{CRAC} [15,16]. Mutations of conserved acidic residues in the EF-hand domain of STIM-1, which presumably reduce its Ca²⁺ affinity, mimic the Ca²⁺ store depletion phenomenon with constitutively active SOC entry [14,15]. Furthermore, in vitro studies also suggest that the N-terminal EF-hand and SAM region of human STIM-1 exists as monomers when binding to Ca²⁺, but readily undergoes oligomerization in the Ca²⁺-depleted state [17]. Taken together, compelling evidence has suggested that STIM-1 functions as the Ca²⁺ store sensor in SOC entry. In contrast, the role of the closely related STIM-2 protein in regulating I_{CRAC} is less defined [13,15,18]. In response to Ca²⁺ store depletion, STIM-2 may behave differently and negatively regulate STIM-1-induced SOC entry [18].

To further understand the significance of I_{CRAC} in regulating many cellular functions, it is important to define the molecular and cellular mechanisms for STIM-mediated activation of CRAC channels. Evolutionary analysis can provide useful guides for molecular, biophysical, and biochemical analyses of functional and regulatory mechanisms of ion channels and transporters [19], as shown in our previous work on the phylogeny and structural analysis of the cation/Ca²⁺ exchangers [2] and the membrane protein adaptor molecule ankyrin [20]. Our recent report on the Orai protein family, the putative CRAC channel subunit, has also provided novel insights into our understanding of the evolution and structural domains of Orai proteins [3].
In the present work, I have applied rigorous evolutionary and bioinformatics analysis to (1) elucidate the evolutionary history and gene duplication events in the STIM protein family by extensive database searching and constructions of phylogenetic trees; (2) identify potential sequence determinants underlying functional divergence of STIM proteins after gene duplication by mapping specific residues onto the STIM protein domains and detecting putative residues subjected to distinct selective evolutionary constraints with maximum likelihood estimates. Functional significance of these findings will also be discussed in relation to applying evolutionary information to structure and function studies of STIM proteins.

RESULTS AND DISCUSSION
Duplication of the STIM Protein Family During Chordate Evolution
Identification and characterization of STIM molecules as an essential component mediating \(I_{\text{CRAC}} \) in *Caenorhabditis elegans* (STIM-1)\(^{[21,22]}\), *Drosophila melanogaster* (STIM-1 and -2)\(^{[13,15]}\) suggest that STIM proteins are evolutionarily conserved across metazoans. However, a comprehensive analysis of the phylogenetic relationship of the STIM protein family is important to understand results from biological experiments in terms of evolutionary significance, such as the evolution of critical protein domains and functional divergence of duplicated gene products, among others.

Here, by extensive database searching, 40 nonredundant STIM sequences were identified from 22 species analyzed in this study (Table S1 in Supplementary Information), including sequences from Echinodermata *Strongylocentrotus purpuratus*, Urochordata *Ciona intestinalis*, and several nonmammalian Vertebrata species. Phylogenetic trees constructed with maximum likelihood (Fig. 1), maximum parsimony, and neighbor-joining methods as well as weighted neighbor-joining analysis (data not shown) were compared to infer the congruent phylogeny. The identical overall tree topologies generated from these different molecular phylogenetic approaches indicated consistent and reliable results for evolutionary relationships of the STIM protein family. Homologues of STIM-1 and -2 are present as early as in bony fishes (*Takifugu rubripes*, *Tetradon nigroviridis*, *Danio rerio*), while *C. intestinalis* and *S. purpuratus* appear to contain only one copy of STIM molecule in each genome (Figs. 1 and 2, and Table S1). *C. intestinalis* has been shown to comprise single copies of many vertebrate gene families\(^{[20,23]}\) likely arising from hypothesized large-scale genome duplications in vertebrates diverging from Urochordata and Cephalochordata\(^{[24]}\). Thus, gene duplication of the STIM family appeared to have occurred as early as in Utelecostomi lineage to give rise to the two major STIM branches in vertebrates. Orai molecules also underwent a round of gene duplication at the early stage of vertebrates\(^{[3]}\). Duplication of STIM and Orai proteins, and possibly, other subunits, might have evolved to fit the adaptation of SOC entry into more advanced vertebrate physiology.

In fish genomes, STIM underwent a second round of duplications that resulted in, as far as can be ascertained in the current database, four copies of STIM molecules in each fish genome (Fig. 1 and Table S1). The fish-specific genome duplication is speculated to have occurred approximately 350 million years ago, after splitting from other vertebrates\(^{[25]}\). While possibly due to functional redundancy, most fish-specific duplicated genes were subsequently lost, the remaining duplicated genes might have evolved new functions. Indeed, sequence analysis of these duplicated fish STIMs reveals substantial sequence divergence even in the conserved protein domains (Figs. 3 and 4).

The Orai protein family also exhibits fish-specific duplications in the Orai-1 group\(^{[3]}\). It remains intriguing if duplicated Orai and STIM molecules specific in the fish genomes cohere to perform as yet uncharacterized, novel functions.

Invertebrate STIMs, human STIM-1 and STIM-2 share several highly conserved protein domains including the EF-hand Ca\(^{2+}\)-binding domain, the SAM domain, and the coiled-coil/ERM domain, but diverge remarkably C-terminal to the coiled-coil/ERM domain\(^{[12]}\). Human STIM molecules contain a proline-rich domain and a lysine-rich tail domain at the C-terminus (Fig. 2). The C-terminal lysine-rich region of human STIM-1, but not the proline-rich domain, has been demonstrated to be involved in activating CRAC channels in mammalian cells\(^{[26]}\). It has been hypothesized that the lysine-rich-domain-mediated regulation of CRAC channels is a vertebrate-specific adaptation\(^{[26]}\). Analysis conducted in this study, however, reveals the presence of the proline-rich domain and the lysine-rich domain in *C. intestinalis*, suggesting early adaptation of these two domains in Urochordates before the expansion of STIMs in vertebrates (Fig. 2).

Figure 1. Maximum likelihood tree of the STIM protein family. The phylogenetic tree constructed with the program PROML\(^{[44]}\) shows the evolutionary relationship of the STIM protein family. The two vertebrate branches, STIM-1 and STIM-2, are indicated with black arrows. Fish-specific duplications in vertebrate STIM branches are indicated with black bars. Sequences that failed in the 5% chi-square test of Tree Puzzle\(^{[44]}\) were removed for further phylogenetic analysis (Table S1). The unit of branch length is the expected fraction of amino acids substitution. Aae, *A. aegypti*; Aga, *A. gambiae*; Ame, *A. mellifera*; Bta, *B. Taurus*; Cel, *C. elegans*; Cfa, *C. familiaris*; Dme, *D. melanogaster*; Dre, *D. rerio*; Fru, *F. rubripes*; Gga, *G. gallus*; Hsa, *H. sapiens*; Mmu, *M. musculus*; M. mulatta; Mus, *M. musculus*; Ptr, *P. troglodytes*; Rno, *R. norvegicus*; Spu, *S. purpuratus*; Tca, *T. castaneum*; Tni, *T. nigroviridis*; Xla, *X. laevis*; Xtr, *X. tropicalis*.
doi:10.1371/journal.pone.0000609.g001
the sequence alignment of the C-terminal lysine-rich regions from representative species. The lysine-rich domain is absent in STIM of Nematoda, Arthropoda and Echinodermata. Therefore, the primordial form of vertebrate STIMs with all the conserved protein domain structures seemed to have evolved in *C. intestinalis* during early Chordata evolution. We also made similar observations on the evolution of the Orai protein family [3]. The single copy of Orai protein in *C. intestinalis* also contains similar domain structures of vertebrate Orai molecules. Thus, STIM and Orai in Urochordata might have evolved to establish the primordial functional properties of vertebrate-type I_{CRAC} detected in mammals, presumably representing the vertebrate-type I_{CRAC}, displays similar biophysical properties with I_{CRAC} observed in *D. melanogaster* S2 cells, but differs in their inactivation properties [27]. Their different inactivation properties have been proposed to correlate with the adaptation of the lysine-rich domain in Chordata, and possibly involve interaction between the lysine-rich domain of STIMs and a stretch of basic residues immediately preceding the first transmembrane segment of Orai proteins [28].

In addition, SOC currents measured in the *C. elegans* intestinal cells and HEK cells overexpressing *C. elegans* STIM and Orai homologues also exhibit some distinct properties despite many similarities with mammalian I_{CRAC} [29]. It remains to be determined whether the functional properties of SOC currents in *C. intestinalis* would be more similar to mammalian I_{CRAC} than those of SOC currents observed in Protostomes.

The Ka/Ks ratios are often used to detect positive selective pressures over the coding sequence of a gene [30]. The ratios calculated between members of STIM-1 or between members of STIM-2 are much less than 1, such as 0.1775 for HsaSTIM-1 (human) vs. XtrSTIM-1 (frog) and 0.0510 for HsaSTIM-1 (human) vs. MusSTIM-1 (mouse), suggesting strong purifying selections (evolutionary constraints) within each vertebrate STIM group. Therefore, although STIM-1 and -2 diverged after duplication, their individual functional properties might have been highly conserved across vertebrate species.

Evolution of the EF-hand and SAM domains with Structural Correlations

To gain novel insights into the evolutionary perspective on the structure and function relationships of STIMs, I utilized two complementary approaches: (1) mapping potentially critical residues by sequence alignments of STIM structural domains across representative species; (2) detecting phylogeny-based site-specific evolutionary rate changes with the program DIVERGE [31]. Duplication of STIM molecules only occurred in vertebrates.

Figure 2. Evolution of the protein domains in the STIM protein family. Schematic representations of protein domains of representative STIM molecules based on phylogeny of bilaterian animals [51]. The proline-rich domain and the lysine-rich domain of STIM molecules, which are absent in worms, insects and sea urchin, first appeared in Urochordata, as shown in *C. intestinalis*. Duplication of STIM molecules speculated to have occurred after Cephalochordata/Urochordata divergence is indicated with "?". Fish-specific duplication of STIMs (Fig. 1) is not illustrated here. C, C-terminus; K-rich, lysine-rich domain; N, N-terminus; P-rich, proline-rich domain; TMS, transmembrane segment.

doi:10.1371/journal.pone.0000609.g002

Figure 3. Sequence alignment of the lysine-rich domain from representative species. Shown is the sequence alignment of the lysine-rich domain of STIM molecules, which are numbered according to human STIM-1 and STIM-2.

doi:10.1371/journal.pone.0000609.g003

	HsaSTIM-1	DmsSTIM-1a	DmsSTIM-1b	HsaSTIM-2	DmsSTIM-2a	DmsSTIM-2b	CinSTIM	DmeSTIM	CbrSTIM
671	RKRFPL-	RKKHFP-	RKKHFP-	KPSKIK-	KPSKIK-	KPSKIK-	SSKRFP-	SSKRFP-	SSKRFP-
RRFPLK	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-	RKKHFPK-
	685	919	933	933	933	933	933	933	933

PLoS ONE | www.plosone.org 3 July 2007 | Issue 7 | e609
Thus, I will focus subsequent evolution and divergence analysis on vertebrate STIM molecules.

The EF-hand and SAM domains at the N-terminus of STIMs are highly conserved across metazoans (Figs. 4A and 4B) [12]. EF-hand domain is believed to function as the Ca\(^{2+}\) sensor in the intracellular Ca\(^{2+}\) stores [14,15] while SAM domain is thought to mediate protein-protein interactions of STIM proteins [17]. STIMs contain an unpaired EF-hand domain. Although EF-hand domains usually occur as pairs in proteins, this problem could be resolved by oligomerization of STIM molecules [12,17]. The consensus EF-hand sequence contains about 6 to 7 Ca\(^{2+}\) ligands coordinated in a 12-residue Ca\(^{2+}\) binding loop, which usually starts with an Asp and ends with a Glu [32]. The main-chain carbonyl oxygen atom of the central residue (-Y position) in the Ca\(^{2+}\) binding loop contributes as one Ca\(^{2+}\) ligand, followed immediately by a hydrophobic amino acid (usually, Ile, Val or Leu) and another residue at the -X position. These three residues (i.e. Tyr-Ile-Asp in PDB entry 1CTA, Fig. 4A) [33] form a short \(\beta\)-sheet structure linking the Ca\(^{2+}\)-binding loops with the side chain of the hydrophobic residue positioned in the center of the hydrophobic core of the EF-hand domain. The \(\beta\)-sheet structure is proposed to orchestrate the conformational changes of the N-terminal and the C-terminal parts of the Ca\(^{2+}\)-binding loop upon Ca\(^{2+}\) binding, and induce coordinated movements of the two \(\alpha\)-helices surrounding the Ca\(^{2+}\)-binding loop and the resultant overall conformational changes of the EF-hand domain [32].

The chicken troponin C site III structure (PDB entry 1CTA, chain A) [33] emerged as a significant hit to the EF-hand domain sequences of human STIM-1 and -2 during similarity searches of the SWISS-Model server [34] or the PDB database [35]. Alignment of the EF-hand domain of representative STIM molecules reveals the highly conserved residues required for Ca\(^{2+}\) ligand binding, compared with the troponin C site III (Fig. 4A) and other EF-hand domain-containing sequences (data not shown). STIM molecules possess the conserved EF-hand domain structure composed of the 12-residue Ca\(^{2+}\)-binding loop.
and the two surrounding α-helices. Consistent with the role as the Ca²⁺ sensor, mutation of Ca²⁺ ligand residues in Drosophila STIM-1 and human STIM-1 causes constitutive activation of CRAC channels by mimicking Ca²⁺ store depletion [14,15]. However, similar mutations in the human STIM-2 EF-hand domain do not appear to interfere with the observed inhibitory function of human STIM-2 [10], suggesting that the EF-hand domain in STIM-2 might not be important for STIM-2 inhibitory activity. It should be noted that such mutations might alter some unknown, yet uncharacterized, functional properties of STIM-2.

One noteworthy difference between human STIM-1 and -2, and other EF-hand domain sequences is the proposed β-sheet sequence (Fig. 4A) [32,33]. The first residue (–Y position) of the β-sheet, whose main-chain carbonyl oxygen serves as a Ca²⁺ ligand, is most often Tyr/Phe/Thr in consensus EF-hand sequences. In all identified invertebrate STIMs and vertebrate STIM-1 molecules, the corresponding residue at the –Y position is Asn/Asp/Ser, compared with predominately Gly in identified vertebrate STIM-2 proteins (except Ala in DreSTIM-2a). Gly is known to be an intrinsically destabilizing residue in β-sheets [36,37]. Whether this change to Gly in STIM-2 molecules plays a role in Ca²⁺-binding by affecting the coordinated conformational changes resulting from Ca²⁺ binding [32], as described above, remains to be established. In addition, the third residue (–X position) is Asp in most invertebrate STIMs and all vertebrate STIM-1, consistent with the consensus EF-hand domain sequence. In contrast, the corresponding residue in vertebrate STIM-2 is Ghu, occurring less often at –X position.

Nevertheless, the overall EF-domain sequences of STIM molecules, especially the Ca²⁺ ligands, appear to be similar to the consensus EF-domain Ca²⁺-binding sequence. Interestingly, functional divergence analysis did not identify any significant hit in the EF-hand domain region of vertebrate STIM branches. Instead, half (five out of ten) residues detected as high probability binding [32,33], as described above, remains to be established. In addition, the third residue (–X position) is Asp in most invertebrate STIMs and all vertebrate STIM-1, consistent with the consensus EF-hand domain sequence. In contrast, the corresponding residue in vertebrate STIM-2 is Ghu, occurring less often at –X position.

Next, the SAM domain sequences of representative STIM molecules were aligned and analyzed (Fig. 4B). The SAM domain is a ~70-residue domain believed to mediate protein interactions in a wide range of signaling molecules [38]. In vitro biophysical characterization revealed Ca²⁺-dependent conformational changes and associated oligomerization in the human STIM-1 EF-SAM domain [17]. STIM molecules possess helix bundle arrangements similar to other SAM domains (data not shown). Two critical hydrophobic residues (aligned positions at L216 and L218 in PDB entry 1V85, marked in Fig. 4B) are believed to be thermodynamically important for SAM domain interactions to form the oligomeric state [39]. These two residues are located at the oligomeric interface of the SAM domain in many other proteins, and may reflect evolution from a common ancestor structure. Mutations of these two residues to Ala could significantly affect SAM domain interactions. These two residues are conserved as Leu and Val in STIM-1, and Ile and Val in most STIM-2 molecules, while not in fish STIM-2 proteins (Fig. 4B). The SAM domain of fish STIM-2a/b molecules might have evolved differently or land vertebrates regained the conserved module by convergent evolution after diverging from fish species.

Phylogeny-based Functional Divergence Analysis of Vertebrate STIMs

Gene duplications provide a means to evolve novel biological functions, and changes in protein functions may then yield different evolutionary constraints on duplicated genes [40]. To gain evolutionary statistics on the functional divergence of the duplicated vertebrate STIMs, the two vertebrate STIM branches were analyzed with the program DIVERGE [31]. 11 of the aligned sites showed posterior probabilities >0.33. The 9th site fell in a less defined region and was excluded for further analysis. The neighbor-joining tree used for DIVERGE (Fig. S1) is available in Supplementary Information. The localization of the residues with significant posterior probabilities was mapped onto the structural model of vertebrate STIM molecules, indicated with black arrows. The highly conserved double cysteine-pair region is shown as a double “C” before the EF-hand domain in the N-terminus, C, C terminus; N, N terminus. doi:10.1371/journal.pone.0000609.g005

Figure 5. Sites with altered evolutionary rates identified by posterior probability of functional divergence. A. The posterior probability of functional divergence between vertebrate STIM-1 and STIM-2 branches were calculated with the program DIVERGE [31]. 11 of the aligned sites showed posterior probabilities >0.33. The 9th site fell in a less defined region and was excluded for further analysis. The neighbor-joining tree used for DIVERGE (Fig. S1) is available in Supplementary Information. B. The localization of the residues with significant posterior probabilities was mapped onto the structural model of vertebrate STIM molecules, indicated with black arrows. The highly conserved double cysteine-pair region is shown as a double “C” before the EF-hand domain in the N-terminus, C, C terminus; N, N terminus. doi:10.1371/journal.pone.0000609.g005

Analysis of STIM Proteins
substantial ($\theta = 0.224$). In line with evidence from our structural analysis above, the divergence analysis has again implicated that STIM-1 [5–7] might have maintained the basic functional properties of Protostomia STIMs [27,29] in mediating SOC entry although acquisition of the C-terminal divergent domains might add some new regulatory properties [27] in response to new evolutionary pressure. In contrast, STIM-2 likely diverged to evolve novel functional properties in vertebrates [18]. Knockdown of STIM-2 does not affect SOC entry and [L_\text{c,ER}] in mammalian cells [13] and co-expression of STIM-2 and Orai-1 generates phenotypes similar to those of HEK cells expressing Orai-1 alone [11]. Posterior probability analysis of the program also identified residues likely contributing to the functional divergence (Fig. 5), 10 of which are calculated with significant posterior probabilities more than 0.33 in well-defined regions. The first two residues are located in the highly conserved cysteine-pair region [12] at the N-terminus, with each residue two spaces before corresponding cysteine residues. Three residues are present at the linker region between the EF-hand domain and the SAM domain with another two in the SAM domain, possibly involved in conformational changes at the EF-hand and SAM region in the presence or absence of Ca$^{2+}$. One residue localizes to the S/P-rich region, with a potential Ser phosphorylation site only in human STIM1 (probability 0.50) (Met in human STIM-2). The remaining two residues are found in the lysine-rich domain. Overall, functional divergence analysis supports that STIM-1 and -2 diverged after gene duplication and displayed shifts in the evolutionary rates in specific residues.

In conclusion, this study has revealed detailed evolutionary history of the STIM protein family, an essential component of the Ca$^{2+}$ release-activated Ca$^{2+}$ entry. Urochordata appear to possess all the conserved protein domains of vertebrate STIM molecules, indicating that modern STIM structure/function is a Chordata adaptation. Subsequent gene duplication in vertebrates as early as 380 million years ago likely occurred before the divergence of the Euteleostomi lineage led to two distinct STIM branches. Evolutionary analysis supports the hypothesis from biophysical studies that STIM-1 and -2 might have evolved different functional properties, with changes in the evolutionary rates after duplication. This study, together with the recent report on molecular evolution of Orai proteins [3], present the first rates after duplication. This study, together with the recent report and physiological studies that STIM-1 and STIM-2 have evolved to evolve new functional properties in vertebrates [18]. Knockdown of STIM-2 does not affect SOC entry and [L_\text{c,ER}] in mammalian cells [13] and co-expression of STIM-2 and Orai-1 generates phenotypes similar to those of HEK cells expressing Orai-1 alone [11].

Calculation of the Ratio of Nonsynonymous (Ka) to Synonymous (Ks) Rate

The Ka/Ks ratios of selected STIM molecules were calculated with yn00 implemented in PAML (Version 3.15) [48]. mRNA sequences were retrieved from NCBI database and submitted to the PAL2NAL web server (http://coot.embl.de/pal2nal/) [49] along with related multiple protein sequence alignment. The PAL2NAL server first converts each protein sequence in the multiple sequence alignment into DNA sequences in a regular expression pattern, which are then compared with the input nucleotide sequences to search for the corresponding codon alignment. The resulting codon alignments in PAML format were then subjected to Ka/Ks ratio calculation with yn00.

Functional Divergence and Site-specific Evolutionary Rate Estimates after Duplication

Site-specific changes in evolutionary rate after gene duplication (type I functional divergence) was estimated to detect functional divergence of a protein family [31,30]. Maximum likelihood estimate for theta, the coefficient of functional divergence, was measured with the program DIVERGE (version 2.0) [31]. A de novo neighbor-joining tree was constructed with Poisson distance and re-rooted. Clusters of refined protein sequences were then selected for likelihood ratio tests and posterior site analysis.

SUPPORTING INFORMATION

Table S1 List of Proteins Used for Analyses

Figure S1 Neighbor-joining tree used for the program DIVERGE. The tree was constructed with Poisson distance matrix implemented in DIVERGE, and re-rooted with the invertebrate STIM sequence AmeSTIM. The two branches for STIM-1 and STIM-2 were then selected as corresponding clusters for subsequent functional divergence analysis between two branches.

ACKNOWLEDGMENTS

Author Contributions

Conceived and designed the experiments: XC. Performed the experiments: XC. Analyzed the data: XC. Contributed reagents/materials/analysis tools: XC. Wrote the paper: XC.
REFERENCES

1. Berridge MJ, Bootman DM, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nature Reviews Molecular Cell Biology 4: 517–529.

2. Cai X, Lyton J (2004) The cation/Ca+ exchanger superfamily: phylogenetic analysis and structural implications. Molecular Biology and Evolution 21: 1692–1703.

3. Cai X (2007) Molecular evolution and structural analysis of the Ca2+ release-activated Ca2+ channel subunit, orac. J Mol Biol 368: 1284–1291.

4. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85: 757–810.

5. Taylor CW (2006) Store-operated Ca2+ entry: a STIMulating StOrai. Trends Biochem Sci 31: 597–601.

6. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, et al. (2006) Emerging perspectives in store-operated Ca2+ entry: Roles of Orai, Stim and TRP. Biochim Biophys Acta 1765: 1147–1160.

7. Soboloff J, Spassova MA, Dzadek MA, Gill DL (2006) Calcium signals mediated by STIM and Orai proteins—a new paradigm in inter-organellar communication. Biochim Biophys Acta 1763: 1161–1168.

8. Liao Y, Erdebeben C, Yildirim E, Abramowitz J, Armstrong DL, et al. (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104: 6602–6607.

9. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, et al. (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8: 771–773.

10. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, et al. (2006) Orai and STIM reconstitute store-operated calcium channel function. J Biol Chem 281: 20661–20665.

11. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, et al. (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281: 24979–24990.

12. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, et al. (2006) Calcium signals and fertility. J Physiol: [Epub ahead of Print].

13. Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36: 96–99.

14. Gu X, Vander Kelen V (2002) DIVERGE: phylogeny-based analysis for functional-strucutural divergence of a protein family. Bioinformatics: 300–501.

15. Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359: 569–525.

16. Shaw GS, Hodges RS, Sykes BD (1992) Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy. Biochemistry 31: 9572–9580.

17. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31: 3381–3385.

18. Grishman SJ, Mott HR, Stott KM, Nielsen PR, Evertts KA, et al. (2004) Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogen-activated protein kinase pathway-modulating protein STE50 and analysis of its interaction with the STE11 SAM. J Biol Chem 279: 2192–2201.

19. Berridge MJ, Bootman DM, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nature Reviews Molecular Cell Biology 4: 517–529.

20. Cai X (2007) Evolutionary patterns of the Ca2+ release-activated calcium store sensor with a novel channel inactivation mechanism. The 2007 VII European Symposium of the Protein Society: 133 (abstract).

21. Strange K, Yan X, Lorin-Nebel C, Xing J (2007) Physiological roles of STIM1 and Orai homologs and CRAC channels in the genetic model organism Caenorhabditis elegans. Cell Calcium: doi:10.1016/j.ceca.2007.1002.1007 [In Press].

22. Yeakley MO, Joazeiro RC, Belfort M (2004) Evolutionary divergence of STIM proteins analyzed by phylogenetic analysis and sequence comparisons. J Mol Biol 341: 309–317.

23. Yeromin AV, Roos J, Kozak JA, Derinck TJ, et al. (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437: 902–905.

24. Yeromin AV, Roos J, Kozak JA, Derinck TJ, et al. (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437: 902–905.

25. Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36: 96–99.

26. Huang GN, Zeng W, Kim JY, Han L, et al. (2006) STIM1 carboxyl-terminal activation activates native SOC, Itcra and TRPC1 channels. Nat Cell Biol 8: 1003–1010.

27. Yeromin AV, Roos J, Staunormann KA, Cahalan MD (2004) A store-operated calcium channel in Drosophila S2 cells. J Gen Physiol 123: 167–182.

28. Cai X (2007) Evolutionary patterns of the Ca2+ release-activated channel and the Ca2+ store sensor with a novel channel inactivation mechanism. The 2007 VII European Symposium of the Protein Society: 133 (abstract).

29. Strange K, Yan X, Lorin-Nebel C, Xing J (2007) Physiological roles of STIM1 and Orai homologs and CRAC channels in the genetic model organism Caenorhabditis elegans. Cell Calcium: doi:10.1016/j.ceca.2007.1002.1007 [In Press].