Comparative Analysis of Emerging B.1.1.7+E484K SARS-CoV-2 isolates

Ahmed M. Moustafa¹², Colleen Bianco¹, Lidiya Denu¹, Azad Ahmed³, Susan E. Coffin¹, Brandy Neide¹, John Everett⁴, Shantan Reddy⁴, Emilie Rabut⁵, Jasmine Deseignora⁵, Michael D. Feldman⁶, Kyle G. Rodino⁶, Frederic Bushman⁴, Rebecca M. Harris⁶, Josh Chang Mell³, Paul J. Planet¹⁷⁸*

1. Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

2. Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

3. Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA 19129, USA.

4. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

5. Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
6. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

7. Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

8. Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.

Phone

PJP: +1 215-590-1169

AMM: +1 484-506-3640

*Corresponding Author

Emails

AMM: moustafaam@chop.edu

PJP: planetp@chop.edu
Abstract

We report the genome of a B.1.1.7+E484K SARS-CoV-2 from southeastern Pennsylvania and compare to all high-coverage B.1.1.7+E484K genomes (n=235) available. Analyses showed the existence of at least 4 distinct clades of this variant circulating in the US, and the possibility of at least 59 independent acquisitions of the E484K mutation.

Keywords: B.1.1.7+E484K, Variant of concern, escape mutation, convergent, vaccine
Lay Summary

Rapid whole genome sequencing of SARS-CoV-2 has presented the ability to detect new emerging variants of concern in near real time. Here we report the genome of a virus isolated in Pennsylvania (PA) in March 2021 that was identified as the highly transmissible lineage B.1.1.7 (VOC-202012/01) that also has a mutation in the spike protein (E484K) that may negatively impact the efficacy of the immune response to the virus. Since February 2021, only a small number (n=60) of viruses with this profile have been detected in the US, and on submission of this manuscript only 253 have been reported globally (first in the UK in December 2020). Comparison of all currently available, high quality genomes with this profile (n=236), including 5 viruses isolated from PA during the same period, showed 59 independent acquisitions of the E484K mutation. We also show that there are at least 4 distinct versions of this virus circulating in the US, with isolates from Pennsylvania belonging to two of these groups. Increased genomic surveillance will be crucial for detection of emerging variants of concern that can escape natural and vaccine induced immunity.
During the past six months of the pandemic several variants of concern (VOC), each represented by a constellation of specific mutations thought to enhance viral fitness, have emerged in viral lineages from the UK (20I/501Y.V1; B.1.1.7), South Africa (20H/501Y.V2; B.1.351), and Brazil (20J/501Y.V3; P.1). These lineages were concerning due to likely increased transmission rates\(^1\)\(^-\)\(^6\). Two of these lineages, B.1.351 and P.1 were of specific concern because they have the mutation E484K, which has been shown to enhance escape from neutralizing antibody inhibition in vitro\(^7\), and may be associated with reduced efficacy of the vaccine\(^8\)\(^-\)\(^11\). In general, viruses from the B.1.1.7 lineage do not have this mutation. However, in February 2021 Public Health England (PHE) published a concerning report of eleven B.1.1.7 genomes that had acquired the E484K spike mutation\(^12\).

Here we report a B.1.1.7 isolate with the E484K spike mutation isolated in southeastern Pennsylvania (PA). Our laboratory at the Children’s hospital of Philadelphia performed sequencing on randomly selected isolates collected since January 2021. Figure 1A shows the diversity of 114 randomly sequenced genomes. Lineages B.1.1.7, B.1.429 (California), B.1.526 (New York) and R.1 (International lineage with the E484K mutation) accounted for 69% of the sequenced genomes in March. There was a massive increase in lineage B.1.1.7 from 2% (1/47) in February to 42% in March (15/36). Interestingly, one B.1.1.7 isolate from this surveillance collected on 3/24/2021 from a 52 year old male, carried the E484K spike mutation that is present in the South African and Brazilian lineages.

To better understand the relationship between this isolate and publicly available SARS-CoV-2 genomes, we compared it to all available B.1.1.7+E484K high coverage genomes available on GISAID\(^13\) (n=235). Since the first report by PHE in February, a total of 253 B.1.1.7+E484K genomes have been uploaded to GISAID from England and 14 other countries (Germany, France, Italy, Poland, Sweden, Ireland, Netherlands, Portugal, Wales, Turkey, Slovakia, Austria, Czech Republic and USA)\(^13\).
A temporal plot of the number of global B.1.1.7+E484K isolates collected between December 2020 to March 2021 (2-week window) is shown in Figure 1B (as of 04/17/2021). The first isolate of the 60 US isolates available on GISAID was collected on 02/06/2021 from Oregon (OR). Isolates were also reported from 15 other states (New York, North Carolina, Connecticut, Georgia, New Jersey, Maryland, Florida, West Virginia, California, Pennsylvania, Michigan, Texas, Massachusetts, Washington, and Colorado). Of these isolates 48% were from Florida (n=17) and New York (n=12) and 28% were from New Jersey (n=7), California (n=4) and Pennsylvania (n=6). Two isolates were from Oregon (OR), Connecticut (CT), Maryland (MD), and single isolates are recorded from Georgia (GA), Texas (TX), Massachusetts (MA), Washington (WA), Colorado (CO), West Virginia (WV), Michigan (MI), and North Carolina (NC). The number of US isolates in March (n=47 including the PA isolates) was nearly 6 times the number of the isolates reported in February. Since this analysis was completed and at the time of this submission (05/26/2021), there are 1400 B.1.1.7+E484K genomes on GISAID, which raises the concern that more B.1.1.7+E484K sequences may be emerging even as herd immunity increases by natural immunity and vaccines.

Although all 236 B.1.1.7+E484K genomes were typed as B.1.1.7 using Pangolin, a more granular view using our typing tool “GNUVID” shows that they belong to 7 different clonal complexes (CCs 45062, 46649, 49676, 57630, 58534, 62415 and 67441) (Figure 1C and Supplementary Table 1). In the GNUVID typing system, these correspond to 7 of 10 CCs in the B.1.1.7 lineage. For each of these CCs, representative sequences without the E484K mutation have been circulating since at least November 2020, predating the first E484K in each CC. This raised the possibility that the E484K mutation was acquired independently in each of these CCs in independent events.

To test the hypothesis of multiple acquisitions in a rigorous phylogenetic framework we queried the GISAID database for closely related genomes for each of the 236 high quality B.1.1.7+E484K genomes and retrieved 354 closely related B.1.1.7 genomes. Using the phylogeny reconstructed from the combined dataset we performed an ancestral reconstruction using Fitch optimization, which revealed 59 de novo acquisitions of the E484K mutation in the B.1.1.7 lineage.
In the phylogeny, six E484K clades were found in more than one country and four E484K clades in more than 1 US state, suggesting widespread dissemination of these viruses. The genome from PA presented here falls in a well-supported clade of 77 B.1.1.7 isolates, 48 of which have the E484K mutation. Seven of the 48 isolates were from the US (CT, FL, OR, PA and NY), 33 from Sweden, 4 from Denmark, 2 from Poland, 1 from Netherlands and 1 from Germany (Figure 2). The 9 other B.1.1.7+E484K isolates reported from PA, were in a large clade containing US genomes (from CA, CO, FL, MA, MD, MI, NC, NE, NJ, NY, OR, TX, WA, WV). This large well-supported clade also contained isolates from England. Another large clade of 75 B.1.1.7 isolates had 34 isolates that carry the E484K mutation, 30 of them are from the US (CA, CT, FL, MA, NC, NH, NJ, NY, OR). This clade also contained isolates from Germany, Wales and Ireland. Together these analyses support sustained transmission of these three clades within the US and also globally.

Phylogenetic and SNP Analysis in the 236 isolates compared to the reference MN908947.317 (Supplementary Figures 1 and 2) showed that the isolate presented here had 12/17 of the B.1.1.7 defining SNPs (Supplementary Table 2), while the other Pennsylvanian isolate in the same clade had 17/17 of the SNPs. It also shared with 9 other US isolates a stop mutation (A28095T) in ORF8 (Supplementary Figure 2).

Here we present a comparative analysis of the first SARS-CoV-2 B.1.1.7 isolates detected in PA that carry the E484K spike mutation, a mutation that could be associated with reduced efficacy of both vaccine-induced and natural immunity. Our analysis shows that multiple lineages of B.1.1.7+E484K are circulating in the US and globally, and that these lineages have acquired the E484K mutation independently, which argues for strong selective pressure for this mutation.

Methods

A nasopharyngeal swab sample that had residual volume after initial laboratory processing, positive PCR testing for SARS-CoV-2, was obtained for this study. RNA was extracted from nasopharyngeal swab samples using QIAamp Viral RNA Mini (Qiagen). Whole genome sequencing was done by The Genomics Core Facility at Drexel University. Briefly, WGS of extracted viral RNA
was performed as previously described using Paragon Genomics CleanPlex SARS-CoV-2 Research and Surveillance NGS Panel18,19. Libraries were quantified using the Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen) with the Qubit Fluorometer (Invitrogen). Library quality was assessed using Agilent High Sensitivity DNA Kit and the 2100 Bioanalyzer instrument (Agilent). Libraries were then normalized to 5nM and pooled in equimolar concentrations. The resulting pool was quantified again using the Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen) and diluted to a final concentration of 4nM; libraries were denatured and diluted according to Illumina protocols and loaded on the MiSeq at 10pM. Paired-end and dual-indexed 2x150bp sequencing was done using MiSeq Reagent Kits v3 (300 cycles). Sequences were demultiplexed and basecalls were converted to FASTQ using bcl2fastq2 v2.20. The FASTQ reads were then processed to consensus sequence and variants were identified using the ncov2019-artic-nf pipeline (https://github.com/connor-lab/ncov2019-artic-nf). Briefly, the pipeline uses iVar20 for primer trimming and consensus sequence making (options: --ivarFreqThreshold 0.75). A bed file for the Paragon kit primers was used in the pipeline.

All 253 SARS-CoV-2 genomes that were assigned to Pango lineage14 B.1.1.7 and possessing the E484K spike mutation (including the study isolate CHOP_204) were downloaded from GISAID13 on 04/17/2021. An acknowledgement table of the submitting laboratories providing the SARS-CoV-2 genomes used in this study is in Supplemental Table 3. Seventeen sequences were excluded for lower coverage (> 5% Ns) (n=14) and missing collection date (n=3). All the high coverage SARS-CoV-2 genomes (n=236) were assigned a clonal complex using the GNUVID v2.2 database (version January 6th 2021)15. Temporal plots were plotted in GraphPad Prism v7.0a.

To show the relationship amongst the genomes of the 236 isolates, a maximum likelihood tree was constructed. Briefly, consensus SARS-CoV-2 sequences for the 236 isolates were aligned to MN908947.317 using MAFFT’s FFT-NS-2 algorithm21 (options: --add --keeplength). The 5’ and 3’ untranslated regions were masked in the alignment file using a custom script. A maximum likelihood tree using IQ-TREE22 was then estimated using the GTR+F+I model of nucleotide substitution23, default heuristic search options, and ultrafast bootstrapping with 1000 replicates24. The tree was...
rooted to MN908947.3. The snipit tool was then used to summarize the SNPs in the 236 isolates relative to MN908947.3 (https://github.com/aineniamh/snipit). To investigate the number of independent acquisitions of the E484K mutation, a maximum likelihood tree was constructed that has both B.1.1.7 and B.1.1.7+E484K genomes. Briefly, all available genomes were downloaded from GISAID. A Mash25 database of all available GISAID SARS-CoV-2 genomes was sketched (options: -i -p 32 -k 32 -s 10000). As there are hundreds of thousands of B.1.1.7 genomes available, we identified the three closest genomes to each of the 236 B.1.1.7+E484K genomes by sorting the GISAID genomes using the Mash distance (options: -i -p 32 -d 0.00055). This process identified 354 non redundant B.1.1.7 and B.1.1.7+E484K genomes close to the 236 study genomes. A maximum likelihood tree of the 590 (354 + 236) genomes was then produced as discussed. The trees were visualized in iTOL26.
Patient Consent Statement

The sample was obtained by as part of routine clinical care, solely for non-research purposes, carrying minimal risk, and were therefore granted a waiver of informed consent as reviewed under protocol number IRB 21-018726 by the Internal Review Board at the Children’s Hospital of Philadelphia.

Availability of data and material

The sequence has been uploaded to GISAID with accession number EPI_ISL_1629709.

Funding

This work was funded by a grant from the Women’s Committee at Children’s Hospital of Philadelphia. This work was additionally supported by the National Institute of Allergy and Infectious Diseases [1R01AI137526-01 and 1R21AI144561-01A1 to P.J.P. and A.M.M] and National Institute of Nursing Research [R01NR015639 to P.J.P.].

Acknowledgements

We would like to thank the Global Initiative on Sharing All Influenza Data (GISAID) and thousands of contributing laboratories for making the genomes publicly available. A full acknowledgements table is available in Supplementary Table 3. We would like to acknowledge the staff members of the Drexel Genomics Core Facility at the Drexel University College of Medicine for processing and sequencing the isolates.
Authors contributions

AMM and PJP designed and conceptualized the study. AMM, BC, LD, AA, BN, JE, SR, ER, JD, JCM and PJP contributed to the data collection, data analysis, data interpretation and Whole genome sequencing. SEC, MDF, KGR, FB, RMH, JCM and PJP supervised the study and contributed to the data collection, data analysis, and data interpretation. AMM and PJP wrote the first draft of the manuscript. All authors reviewed and approved the final manuscript.

Potential Conflicts of Interest

The authors declare that they have no competing interests.
References

1. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. *Science*, eabg3055, doi:10.1126/science.abg3055 (2021).
2. Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. *medRxiv*, 2020.2021.20248640, doi:10.1101/2020.12.21.20248640 (2020).
3. Faria, N. R. et al. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. *medRxiv*, 2021.2002.2026.21252554, doi:10.1101/2021.02.26.21252554 (2021).
4. Rambaut, A., et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. *https://virological.org/t/563* (2020).
5. Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. *Nature Medicine*, doi:10.1038/s41591-021-01294-w (2021).
6. Volz, E. et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. *medRxiv*, 2020.2012.2030.20249034, doi:10.1101/2020.12.30.20249034 (2021).
7. Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. *eLife* 9, e61312, doi:10.7554/eLife.61312 (2020).
8. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. *Cell*, doi:10.1016/j.cell.2021.02.037.
9. Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. *Cell*, doi:10.1016/j.cell.2021.03.013 (2021).
10. Wu, K. et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. *N Engl J Med*, doi:10.1056/NEJMc2102179 (2021).
11. Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. *Nature*, doi:10.1038/s41586-021-03412-7 (2021).
12. Public Health England. Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01 (Technical briefing 5). *https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959426/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5.pdf* (2021).
13. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision to reality. *Euro Surveill* 22, doi:10.2807/1560-7917.ES.2017.22.13.30494 (2017).
14. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol*, doi:10.1038/s41564-020-0770-5 (2020).
15. Moustafa, A. M. & Planet, P. J. Emerging SARS-CoV-2 diversity revealed by rapid whole genome sequence typing. *bioRxiv*, doi:10.1101/2020.12.28.424582 (2020).
16. Fitch, W. M. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. *Systematic Zoology* 20, 406-416, doi:10.2307/2412116 (1971).
17 Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269, doi:10.1038/s41586-020-2008-3 (2020).
18 Li, C. et al. Highly sensitive and full-genome interrogation of SARS-CoV-2 using multiplexed PCR enrichment followed by next-generation sequencing. bioRxiv, 2020.2003.2012.988246, doi:10.1101/2020.03.12.988246 (2020).
19 Pandey, U. et al. High Prevalence of SARS-CoV-2 Genetic Variation and D614G Mutation in Pediatric Patients with COVID-19. Open Forum Infectious Diseases (2020 (In Press)).
20 Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 20, 8, doi:10.1186/s13059-018-1618-7 (2019).
21 Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059-3066, doi:10.1093/nar/gkf436 (2002).
22 Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 37, 1530-1534, doi:10.1093/molbev/msaa015 (2020).
23 TavarÈ, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57-86 (1986).
24 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 35, 518-522, doi:10.1093/molbev/msx281 (2018).
25 Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17, 132, doi:10.1186/s13059-016-0997-x (2016).
26 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256-W259, doi:10.1093/nar/gkz239 (2019).
Figure Legends

Figure 1. Diversity of SARS-CoV-2 in Philadelphia and global diversity of sequenced B.1.1.7+E484K genomes. A. Stacked area plot showing the diversity of random genomes sequenced by our laboratory at Children’s Hospital of Philadelphia from January, February and March 2021. Ten lineages that were represented by only one genome (B.1.1, B.1.1.106, B.1.1.129, B.1.1.197, B.1.1.281, B.1.1.296, B.1.119, B.1.234, B.1.350, B.1.409) were excluded from the plot. One B.1.526.1 isolate was counted with the parent B.1.526 for easier visualization. B. Stacked area plot showing number of GISAID genomes (n=250) that are B.1.1.7 (20I/501Y.V1) and have the E484K spike mutation over time in the US and globally. C. Diversity of 236 isolates according to GNUVID. Stacked area plot showing relative abundance of circulating clonal complexes (CC) for the 236 B.1.1.7+E484K isolates (typed by GNUVID). The bar plot shows that the isolates belong to 7 different CCs. Isolate EPI_ISL_1385215 was not assigned to any of the 7 CCs (CC255). Fourteen isolates were excluded from the plot as they had > 5% nucleotides designated “N” in the sequence.

Figure 2. SNP-based Phylogeny showing the independent acquisitions of E484K in the B.1.1.7 lineage. Maximum likelihood tree of the B.1.1.7+E484K isolates. US isolates are in red. For the CHOP_204 isolate the alternative allele was called as consensus if its frequency was at least 0.75. The tree was rooted with MN908947.3. The countries of the isolates are shown as a ring. The Pennsylvanian (PA) B.1.1.7+E484K isolates are represented with red stars. The red branches represent ancestral reconstruction of the E484K mutation in the B.1.1.7 lineage. Bootstrap values above 70 are shown on the branches.
Figure 1

A

Number of Sequenced Genomes

January February March

B

Number of Sequenced Genomes

End_Dec Mid_Jan End_Jan Mid_Feb End_Feb Mid_Mar End_Mar Mid_Apr

C

Number of Sequenced Genomes

End_Dec Mid_Jan End_Jan Mid_Feb End_Feb Mid_Mar End_Mar Mid_Apr
Figure 2

Tree scale: 0.001

Country	Bootstrap
Germany	70
Poland	77.5
Czech Republic	85
Croatia	92.5
Austria	100
France	
Netherlands	
Sweden	
England	
Switzerland	
Slovakia	
Belgium	
Denmark	
USA	
Finland	
Italy	
Norway	
Northern Ireland	
Israel	
Ireland	
India	
Wales	
Slovenia	
Scotland	
Portugal	
Turkey	

PA B.1.1.7+E484K Isolates