On Chebyshev type Inequalities using Generalized k-Fractional Integral Operator

Vaijanath L. Chinchane
Department of Mathematics,
Deogiri Institute of Engineering and Management
Studies Aurangabad-431005, INDIA
chinchane85@gmail.com

Abstract

In this paper, using generalized k-fractional integral operator (in terms of the Gauss hypergeometric function), we establish new results on generalized k-fractional integral inequalities by considering the extended Chebyshev functional in case of synchronous function and some other inequalities.

Keywords: Chebyshev inequality, generalized k-fractional integral.
Mathematics Subject Classification: 26D10, 26A33.

1 Introduction

In recent years, many authors have worked on fractional integral inequalities by using different fractional integral operator such as Riemann-Liouville, Hadamard, Saigo and Erdelyi-Kober, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15]. In [12] S. Kilinc and H. Yildirim establish new generalized k-fractional integral inequalities involving Gauss hypergeometric function related to Chebyshev functional. In [5, 10] authors gave the following fractional integral inequalities, using the Hadamard and Riemann-Liouville fractional integral for extended Chebyshev functional.

Theorem 1.1 Let f and g be two synchronous function on $[0, \infty]$, and $r, p, q : [0, \infty) \rightarrow [0, \infty)$. Then for all $t > 0$, $\alpha > 0$, we have

$$2 H D_{1,t}^{-\alpha} r(t) \left[H D_{1,t}^{-\alpha} p(t) H D_{1,t}^{-\alpha} (qfg)(t) + H D_{1,t}^{-\alpha} q(t) H D_{1,t}^{-\alpha} (pfg)(t) \right] +$$

$$2 H D_{1,t}^{-\alpha} p(t) H D_{1,t}^{-\alpha} q(t) H D_{1,t}^{-\alpha} (rfg)(t) \geq$$

$$H D_{1,t}^{-\alpha} r(t) \left[H D_{1,t}^{-\alpha} (pf)(t) H D_{1,t}^{-\alpha} (qg)(t) + H D_{1,t}^{-\alpha} (qf)(t) H D_{1,t}^{-\alpha} (pg)(t) \right] +$$

$$H D_{1,t}^{-\alpha} p(t) \left[H D_{1,t}^{-\alpha} (rf)(t) H D_{1,t}^{-\alpha} (qg)(t) + H D_{1,t}^{-\alpha} (qf)(t) H D_{1,t}^{-\alpha} (rg)(t) \right] +$$

$$H D_{1,t}^{-\alpha} q(t) \left[H D_{1,t}^{-\alpha} (rf)(t) H D_{1,t}^{-\alpha} (pg)(t) + H D_{1,t}^{-\alpha} (pf)(t) H D_{1,t}^{-\alpha} (rg)(t) \right]$$

(1.1)
Theorem 1.2 Let f and g be two synchronous function on $[0, \infty]$, and $r, p, q : [0, \infty) \rightarrow [0, \infty)$. Then for all $t > 0, \alpha > 0$, we have:

$$
H D_{1,t}^{-\alpha}r(t) ×
\left[
H D_{1,t}^{-\alpha} q(t) H D_{1,t}^{-\beta}(pf g)(t) + 2H D_{1,t}^{-\alpha} p(t) H D_{1,t}^{-\beta}(qf g)(t) + H D_{1,t}^{-\alpha} q(t) H D_{1,t}^{-\alpha}(pf g)(t)
\right]
+ \left[
H D_{1,t}^{-\alpha} p(t) H D_{1,t}^{-\alpha} q(t) + H D_{1,t}^{-\alpha} p(t) H D_{1,t}^{-\alpha} q(t)
\right] H D_{1,t}^{-\alpha}(rfg)(t) \geq
H D_{1,t}^{-\alpha}r(t) \left[
H D_{1,t}^{-\alpha}(pf)(t) H D_{1,t}^{-\beta}(qf g)(t) + H D_{1,t}^{-\alpha}(qf g)(t) H D_{1,t}^{-\alpha}(pg)(t)
\right] +
H D_{1,t}^{-\alpha} p(t) \left[
H D_{1,t}^{-\alpha} r(f)(t) H D_{1,t}^{-\beta}(qf)(t) + H D_{1,t}^{-\alpha}(qf)(t) H D_{1,t}^{-\alpha}(r f)(t)
\right] +
H D_{1,t}^{-\alpha} q(t) \left[
H D_{1,t}^{-\alpha} r(f)(t) H D_{1,t}^{-\beta}(r f)(t) + H D_{1,t}^{-\alpha}(r f)(t) H D_{1,t}^{-\alpha}(r g)(t)
\right].
$$

(1.2)

The main objective of this paper is to establish some Chebyshev type inequalities and some other inequalities using generalized k-fractional integral operator. The paper has been organized as follows. In Section 2, we define basic definitions related to generalized k-fractional integral operator. In section 3, we obtain Chebyshev type inequalities using generalized k-fractional. In Section 4, we prove some inequalities for positive continuous functions.

2 Preliminaries

In this section, we present some definitions which will be used later discussion.

Definition 2.1 Two function f and g are said to synchronous (asynchronous) on $[a, b]$, if

$$(f(u) - f(v))(g(u) - g(v)) \geq (\leq) 0,
$$

(2.1)

for all $u, v \in [0, \infty)$.

Definition 2.2 [12, 15] The function $f(x), \text{ for all } x > 0$ is said to be in the $L_{p,k}[0, \infty)$, if

$$
L_{p,k}[0, \infty) = \left\{ f : \|f\|_{L_{p,k}[0,\infty)} = \left(\int_0^{\infty} |f(x)|^p x^k \, dx \right)^{1/p} < \infty \ 1 \leq p < \infty \ k \geq 0 \right\},
$$

(2.2)
Definition 2.3 \[12, 14, 15\] Let \(f \in L^1,0,\infty \). The generalized Riemann-Liouville fractional integral \(I^{\alpha,k}f(x) \) of order \(\alpha, k \geq 0 \) is defined by

\[
I^{\alpha,k}f(x) = \frac{(k + 1)^{1-\alpha}}{\Gamma(\alpha)} \int_0^x (t^{k+1} - t^{k+1})^{\alpha-1} t^k f(t) dt. \tag{2.3}
\]

Definition 2.4 \[12, 15\] Let \(k \geq 0, \alpha > 0 \mu > -1 \) and \(\beta, \eta \in R \). The generalized k-fractional integral \(I^{\alpha,\beta,\eta,\mu}_{t,k} \) (in terms of the Gauss hypergeometric function) of order \(\alpha \) for real-valued continuous function \(f(t) \) is defined by

\[
I^{\alpha,\beta,\eta,\mu}_{t,k}[f(t)] = \frac{(k + 1)^{\mu+\beta+1}t^{(k+1)}(-\alpha-\beta-2\mu)}{\Gamma(\alpha)} \int_0^t \tau^{(k+1)\mu} (t^{k+1} - \tau^{k+1})^{\alpha-1} \times \\
2F_1(\alpha + \beta + \mu, -\eta; \alpha; 1 - \left(\frac{\tau}{t}\right)^{k+1})t^k f(\tau) d\tau.
\]

where, the function \(2F_1(-) \) in the right-hand side of (2.4) is the Gaussian hypergeometric function defined by

\[
2F_1(a, b; c; t) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} t^n t, \tag{2.5}
\]

and \((a)_n\) is the Pochhammer symbol

\[
(a)_n = a(a+1)\ldots(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, \quad (a)_0 = 1.
\]

Consider the function

\[
F(t, \tau) = \frac{(k + 1)^{\mu+\beta+1}t^{(k+1)}(-\alpha-\beta-2\mu)}{\Gamma(\alpha)} \tau^{(k+1)\mu} (t^{k+1} - \tau^{k+1})^{\alpha-1} f(t) dt.
\]

It is clear that \(F(t, \tau) \) is positive because for all \(\tau \in (0, t) \), \((t > 0)\) since each term of the (2.6) is positive.
3 Fractional Integral Inequalities for Extended Chebyshev Functional

In this section, we establish some Chebyshev type fractional integral inequalities by using the generalized k-fractional integral (in terms of the Gauss hypergeometric function) operator. The following lemma is used for our main result.

Lemma 3.1 Let \(f \) and \(g \) be two synchronous function on \([0, \infty[, \) and \(x, y : [0, \infty) \rightarrow [0, \infty) \) be two nonnegative functions. Then for all \(k \geq 0, \ t > 0, \) \(\alpha > \max\{0, -\beta - \mu\}, \) \(\beta < 1, \) \(\mu > -1, \) \(\beta - 1 < \eta < 0, \) we have,

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(xf(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(yg(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(yf(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(xg(t)) \geq I_{t,k}^{\alpha,\beta,\eta,\mu}(xf(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(yg(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(yf(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(xg(t)).
\] (3.1)

Proof: Since \(f \) and \(g \) are synchronous on \([0, \infty[\) for all \(\tau \geq 0, \) \(\rho \geq 0, \) we have

\[
(f(\tau) - f(\rho))(g(\tau) - g(\rho)) \geq 0.
\] (3.2)

From (3.2),

\[
f(\tau)g(\tau) + f(\rho)g(\rho) \geq f(\tau)g(\rho) + f(\rho)g(\tau).
\] (3.3)

Now, multiplying both side of (3.3) by \(\tau^k x(\tau)F(\tau, \tau), \) \(\tau \in (0, t), \) \(t > 0. \) Then the integrating resulting identity with respect to \(\tau \) from 0 to \(t, \) we obtain by definition (2.4)

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(xf(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(yf(t)) + f(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg(t)).
\] (3.4)

Now, multiplying both side of (3.4) by \(\rho^k y(\rho)F(t, \rho), \) \(\rho \in (0, t), \) \(t > 0. \) Then the integrating resulting identity with respect to \(\rho \) from 0 to \(t, \) we obtain by definition (2.4)

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(y(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(xf(t)) + f(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg(t)).
\] (3.5)

This complete the proof of (3.1)

Now, we gave our main result here.

Theorem 3.2 Let \(f \) and \(g \) be two synchronous function on \([0, \infty[, \) and \(r, p, q : [0, \infty) \rightarrow [0, \infty). \) Then for all \(k \geq 0, \ t > 0, \) \(\alpha > \max\{0, -\beta - \mu\}, \) \(\beta < 1, \) \(\mu > -1, \) \(\beta - 1 < \eta < 0, \) we have,

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(y(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(xf(t)) + f(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg(t)).
\] (3.6)
\(\beta < 1, \mu > -1, \beta - 1 < \eta < 0, \) we have,

\[
2I_{t,k}^{\alpha,\beta,\eta,\mu}(p(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t)) + \\
2I_{t,k}^{\alpha,\beta,\eta,\mu}(p(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(pg)(t)) \geq \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t) + \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(pg)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t).
\]

Proof: To prove above theorem, putting \(x = p, y = q, \) and using lemma 3.1, we get

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(p(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t)) \geq \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(pg)(t).
\]

Now, multiplying both side by \((3.7) I_{t,k}^{\alpha,\beta,\eta,\mu}(r(t))\), we have

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(r(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t),
\]

putting \(x = r, y = q, \) and using lemma 3.1, we get

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(r(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t),
\]

multiplying both side by \((3.9) I_{t,k}^{\alpha,\beta,\eta,\mu}(p(t))\), we have

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(p(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(r(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(qf)(t) + I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t),
\]

With the same arguments as before, we can write

\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(q(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t) \geq \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(pf)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(rg)(t).
\]

(3.6)
Adding the inequalities (3.8), (3.10) and (3.11), we get required inequality (3.6).

Here, we give the lemma which is useful to prove our second main result.

Lemma 3.3 Let f and g be two synchronous function on $[0, \infty]$. and $x, y : [0, \infty[\to [0, \infty]$. Then for all $k \geq 0$, $\alpha > 0$, $\gamma > max\{0, -\beta - \mu\}, \gamma > max\{0, -\delta - \upsilon\}$, $\beta, \delta < 1$, $\upsilon, \mu > -1$, $\beta - 1 < \eta < 0$, $\mu - 1 < \zeta < 0$, we have,

$$
I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(yf(t)) + I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))(t) \geq \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t)) + I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t))I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))(t).
$$

(3.12)

Proof: Now multiplying both side of (3.4) by

$$
(k + 1)^{v+\delta+1}t^{(k+1)(-\delta-\gamma-2\upsilon)}\Gamma(\gamma)\rho^{(k+1)v}y(\rho)
$$

(3.13)

which remains positive in view of the condition stated in (3.12), $\rho \in (0, t)$, $t > 0$, we obtain

$$
(k + 1)^{v+\delta+1}t^{(k+1)(-\delta-\gamma-2\upsilon)}\Gamma(\gamma)\rho^{(k+1)v}y(\rho)
$$

$$
(k + 1)^{v+\delta+1}t^{(k+1)(-\delta-\gamma-2\upsilon)}\Gamma(\gamma)\rho^{(k+1)v}y(\rho)g(\rho)
$$

then integrating (3.14) over $(0,t)$, we obtain

$$
I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t))(t) \geq \\
I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x(t))I_{t,k}^{\gamma,\delta,\xi,\upsilon}(y(t))(t),
$$

(3.15)

this ends the proof of inequality (3.12).
Theorem 3.4 Let f and g be two synchronous function on $[0, \infty]$, and $r, p, q : [0, \infty) \to [0, \infty)$. Then for all $t > 0$, $\alpha > 0$, we have:

$$I_{t,k}^{\alpha,\beta,\eta,\mu} r(t) \times$$

$$\left[I_{t,k}^{\alpha,\beta,\eta,\mu} q(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (pqf)(t) + 2I_{t,k}^{\alpha,\beta,\eta,\mu} p(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qfg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} q(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (pf)(t) \right]$$

$$+ \left[I_{t,k}^{\alpha,\beta,\eta,\mu} p(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} q(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} p(t) I_{t,k}^{\alpha,\beta,\eta,\mu} q(t) \right] I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t) \geq$$

$$I_{t,k}^{\alpha,\beta,\eta,\mu} r(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (p(t)) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (pg)(t) \right] +$$

$$I_{t,k}^{\alpha,\beta,\eta,\mu} p(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (r(f))(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t) \right] +$$

$$I_{t,k}^{\alpha,\beta,\eta,\mu} q(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (r(f))(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (pq)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (pf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t) \right].$$

(3.16)

Proof: To prove above theorem, putting $x = p$, $y = q$, and using lemma 3.3 we get

$$I_{t,k}^{\alpha,\beta,\eta,\mu} r(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (p(t)) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (pg)(t) \right] \geq$$

$$I_{t,k}^{\alpha,\beta,\eta,\mu} (p(t)) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (pg)(t).$$

(3.17)

Now, multiplying both side by (3.17) $I_{t,k}^{\alpha,\beta,\eta,\mu} r(t)$, we have

$$I_{t,k}^{\alpha,\beta,\eta,\mu} r(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (p(t)) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (pg)(t) \right],$$

(3.18)

putting $x = r$, $y = q$, and using lemma 3.3, we get

$$I_{t,k}^{\alpha,\beta,\eta,\mu} (r(f))(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t),$$

(3.19)

multiplying both side by (3.19) $I_{t,k}^{\alpha,\beta,\eta,\mu} p(t)$, we have

$$I_{t,k}^{\alpha,\beta,\eta,\mu} p(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (r(f))(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (qg)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu} (qf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t) \right].$$

(3.20)

With the same argument as before, we obtain

$$I_{t,k}^{\alpha,\beta,\eta,\mu} q(t) \left[I_{t,k}^{\alpha,\beta,\eta,\mu} (r(f))(t) I_{t,k}^{\gamma,\delta,\zeta,\nu} (pq)(t) + (pf)(t) I_{t,k}^{\alpha,\beta,\eta,\mu} (rg)(t) \right].$$

(3.21)
Adding the inequalities (3.18), (3.20) and (3.21), we follow the inequality (3.16).

Remark 3.1 If f, g, r, p and q satisfies the following condition,

1. The function f and g is asynchronous on $[0, \infty)$.
2. The function r, p, q are negative on $[0, \infty)$.
3. Two of the function r, p, q are positive and the third is negative on $[0, \infty)$.

then the inequality 3.6 and 3.16 are reversed.

4 Other fractional integral inequalities

In this section, we proved some fractional integral inequalities for positive and continuous functions which as follows:

Theorem 4.1 Suppose that f, g, and h be three positive and continuous functions on $[0, \infty]$, such that

$$
(f(\tau) - f(\rho))(g(\tau) - g(\rho))(h(\tau) + h(\rho)) \geq 0; \ \tau, \rho \in (0, t) \ t > 0, \hspace{1cm} (4.1)
$$

and x be a nonnegative function on $[0, \infty)$. Then for all $k \geq 0, \ t > 0, \ \alpha > \max\{0, -\beta - \mu\}, \gamma > \max\{0, -\delta - \nu\} \ \beta, \delta < 1, \ \nu, \mu > -1, \ \beta - 1 < \eta < 0, \ \delta - 1 < \zeta < 0$, we have,

$$
I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(x(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfgh)(t) + I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xh)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfg)(t)
+ I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xf)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xh)(t) + I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xg)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfg)(t)
\geq I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(x(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfgh)(t) + I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xh)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfg)(t)
+ I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xg)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfh)(t) + I_{t,k}^{\alpha,\beta,\gamma,\delta,\eta,\mu}(xh)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(xfg)(t). \hspace{1cm} (4.2)
$$

Proof: Since f, g, and h be three positive and continuous functions on $[0, \infty]$, we can write

$$
f(\tau)g(\tau)h(\tau) + f(\rho)g(\rho)h(\rho) + f(\tau)g(\tau)h(\rho) + f(\rho)g(\rho)h(\tau)
\geq f(\tau)g(\rho)h(\tau) + f(\tau)g(\rho)h(\rho) + f(\rho)g(\tau)h(\tau) + f(\rho)g(\tau)h(\rho). \hspace{1cm} (4.3)
$$

Now, multiplying both side of (4.3) by $\tau^kx(\tau)F(t, \tau), \ \tau \in (0, t), \ t > 0$. Then the integrating resulting identity with respect to τ from 0 to t, we obtain by
definition (2.4)
\[I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t) + f(\rho)g(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f)(t) + g(\tau)h(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f)(t)) \]
\[+ f(\rho)g(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x h(t))(t) \geq g(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t) + g(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f)(t) \]
\[+ f(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x g h(t))(t) + f(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x g)(t). \]
(4.4)

Now multiplying both side of (4.4) by
\[\frac{(k + 1)^{\nu+\delta+1}t^{(k+1)(-\delta-\gamma-2\nu)}}{\Gamma(\gamma)} \rho^{(k+1)^{\nu}} x(\rho) \]
(4.5)
which remains positive in view of the condition stated in (4.2), \(\rho \in (0, t) \), \(t > 0 \) and integrating resulting identity with respective \(\rho \) from 0 to t, we obtain

\[I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t) + I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t) \]
\[+ I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t) \]
\[\geq I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t) \]
\[+ I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t)I_{t,k}^{\alpha,\beta,\gamma,\delta}(x f h(t))(t). \]
(4.6)

which implies the proof inequality 4.2.

Here, we give another inequality which is as follows.

Theorem 4.2 Let \(f, g \) and \(h \) be three positive and continuous functions on \([0, \infty[, \) which satisfying the condition (4.1) and \(x \) and \(y \) be two nonnegative functions on \([0, \infty). \) Then for all \(k \geq 0, \) \(t > 0, \) \(\alpha \geq \max\{0, -\beta - \mu\}, \gamma \geq \max\{0, -\delta - \nu\} \) \(\beta, \delta < 1, \) \(\nu, \mu > -1, \) \(\beta - 1 < \eta < 0, \) \(\delta - 1 < \zeta < 0, \) we have

\[I_{t,k}^{\alpha,\beta,\eta,\mu}(x)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f g h(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x h(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f g(t)) \]
\[+ I_{t,k}^{\alpha,\beta,\eta,\mu}(x f g(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y h(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x f g(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f h(t)) \]
\[\geq I_{t,k}^{\alpha,\beta,\eta,\mu}(x f g(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y g h(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x f g(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f h(t)) \]
\[+ I_{t,k}^{\alpha,\beta,\eta,\mu}(x f g(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f h(t)) + I_{t,k}^{\alpha,\beta,\eta,\mu}(x f h(t))I_{t,k}^{\gamma,\delta,\zeta,\nu}(y f g(t)) \]
(4.7)

Proof: Multiplying both side of (4.3) by \(\tau^{k}x(\tau)F(t, \tau), \) \(\tau \in (0, t), \) \(t > 0, \)
where \(F(t, \tau) \) defined by (2.6). Then the integrating resulting identity with
respect to \(\tau \) from 0 to \(t \), we obtain by definition (2.4)
\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(xfg)(t) + f(\rho)g(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xf)(t)
\]
\[
+ f(\rho)g(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xh)(t) \geq g(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xfh)(t) + g(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xf)(t)
\]
\[
+ f(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xgh)(t) + f(\rho)h(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg)(t).
\]
(4.8)

Now multiplying both side of (4.8) by
\[
\frac{(k+1)^{v+\delta+1}t^{(k+1)(-\delta-\gamma-2\nu)}}{\Gamma(\gamma)}\rho^{(k+1)v}g(\rho)
\]
(4.9)

which remains positive in view of the condition stated in (4.7), \(\rho \in (0,t) \),
\(t > 0 \) and integrating resulting identity with respective \(\rho \) from 0 to \(t \), we obtain
\[
I_{t,k}^{\alpha,\beta,\eta,\mu}(xfg)(t)I_{t,k}^{\gamma,\delta,\zeta,\nu}(y)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu}(yfg)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(x)(t)
\]
\[
+ I_{t,k}^{\gamma,\delta,\zeta,\nu}(ygh)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg)(t) \geq I_{t,k}^{\gamma,\delta,\zeta,\nu}(ygh)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(xh)(t)
\]
\[
+ I_{t,k}^{\gamma,\delta,\zeta,\nu}(yfg)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(xh)(t) + I_{t,k}^{\gamma,\delta,\zeta,\nu}(ygh)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(x)(t)
\]
\[
+ I_{t,k}^{\gamma,\delta,\zeta,\nu}(yfh)(t)I_{t,k}^{\alpha,\beta,\eta,\mu}(xg)(t).
\]
(4.10)

which implies the proof inequality 4.7.

References

[1] G. A. Anastassiou, *Fractional Differentiation Inequalities*, Springer Publishing Company, Incorporated, New York, NY, 2009.

[2] D. Baleanu, J. A. T. Machado and C. J. Luo, *Fractional Dynamic and Control*, Springer, 2012, pp.159-171.

[3] S. Belarbi and Z. Dahmani, *On some new fractional integral inequality*, J. Inequal. Pure and Appl. Math., 10(3)(2009), Art.86, 5 pp.

[4] V. L. Chinchane and D. B. Pachpatte, *A note on some integral inequalities via Hadamard integral*, J. Fractional Calculus Appl. 4(11)(2013), 1-5.

[5] V. L. Chinchane and D. B. Pachpatte, *On some integral inequalities using Hadamard fractional integral*, Malaya J. Math. 1(1)(2012), 62-66.
[6] V.L. Chinchane and D. B. Pachpatte, *Some new integral inequalities using Hadamard fractional integral operator*, Adv. Inequal. Appl. 2014, 2014:12.

[7] V.L. Chinchane and D. B. Pachpatte, *New fractional inequalities via Hadamard fractional integral*, Internat. J. Functional Analysisis, Operator Theory and Application, 5, 3(2013), 165-176.

[8] V.L. Chinchane and D. B. Pachpatte, *On some new Grüss-type inequality using Hadamard fractional integral operator*, J. Fractional Calculus Appl. Vol. 5(3S) No. 12, pp. 1-10.

[9] Z. Dahmani, *The Riemann-Liouville operator to generate some new inequalities*, Int. J. Nonlinear Sci. volume 12(2011), No.4, pp.452-455.

[10] Z. Dahmani, *Some results associate with fractional integrals involving the extended Chebyshev*, Acta Univ. Apulensis Math. Inform. 27(2011), pp.217-224.

[11] S.L.Kalla and A. Rao, *On Grüss type inequality for hypergeometric fractional integrals*, Matematiche (Catania) 66(1)(2011), 57-64. Amsterdam, 2006.

[12] S.Kilinc and H.Yildirim, *Generalized fractional integral inequalities involving Hypergeometric operators*, International Journal of Pure and Applied Mathematics, 101(1), 2015, 71-82.

[13] S. D. Purohit and R. K. Raina, *Chebyshev type inequalities for the Saigo fractional integral and their q- analogues*, J. Math. Inequal., 7(2), (2013), 239-249.

[14] S.G.Somko, A.A.Kilbas and O.I.Marichev, *Fractional Integral and Derivative Theory and Application*, Gordon and Breach, Yverdon, Switzerland, 1993.

[15] H. Yildirim and Z. Kirtay, *Ostrowski inequality for generalized fractional integral and related equalities*,Malaya J. Mat. 2(3), (2014), 322-329.