The Effect of *Malva neglecta* on the Reduction of Inflammatory Agents in Patients with Osteoarthritis

S Maryam Mirghiasi, Mohadese Akhzari, Mahnesa Vassa, Atiye Akbari and S Mahshid Mousavi Baghi

Introduction

Osteoarthritis is the most common joint disease in the world, which is common in the older adults. Nowadays, the osteoarthritis is not considered only as a degenerative disease but it is found to be induced by biomechanical, biochemical and cellular phenomenon [1,2]. The osteoarthritis treatment goals include: reducing swelling and pain in suffering joint and preventing the progression in the destruction of articular cartilage. The current therapies are not often effective since those are associated with some side effects such as peptic ulcers and gastrointestinal bleeding. Because of the degree of inflammation associated with pain in the patients with osteoarthritis, research on the plants with anti-inflammatory properties, although low, in addition to the analgesic effects, can make a substantial contribution to the patients with osteoarthritis, because the side effects caused by steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) are not induced by them.

In this study, we investigated the medicinal plants of Iran and found the role of Malva (*Malva neglecta*) in reducing bone-joint symptoms, therefore, the plant was investigated to determine the most effective dose and to study whether the clinical effects is associated with anti-inflammatory effect. Due to the role of chondrocytes and monocyte/macrophage cells on the process of inflammation in the osteoarthritis, our study was performed on these two cell lines, as a model similar to what occurs in the human osteoarthritis.

Keywords: Osteoarthritis; Malva; Monocytes /macrophages; Chondrocytes

Abstract

Osteoarthritis is a common joint disease in old ages. The current therapies are not often effective, since those are associated with some side effects such as peptic ulcers and gastrointestinal bleeding. Because of the degree of inflammation associated with pain in the patients with osteoarthritis, research on the plants with anti-inflammatory properties, although low, in addition to the analgesic effects, can make a substantial contribution to the patients with osteoarthritis, because the side effects caused by steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) are not induced by them.

In this study, we investigated the medicinal plants of Iran and found the role of Malva (*Malva neglecta*) in reducing bone-joint symptoms, therefore, the plant was investigated to determine the most effective dose and to study whether the clinical effects is associated with anti-inflammatory effect. Due to the role of chondrocytes and monocyte/macrophage cells on the process of inflammation in the osteoarthritis, our study was performed on these two cell lines, as a model similar to what occurs in the human osteoarthritis.

Keywords: Osteoarthritis; Malva; Monocytes /macrophages; Chondrocytes

In this study, we investigated the effects of Malva (*Malva neglecta*) on chondrocytes and monocytes like cells/ human macrophages. Human THP-1 cells are a proper model for acting as a replacement model for monocytes/ macrophages which have been commonly employed in the experimental researches on the pro-inflammatory mediators present in the immune response. Due to the proliferation rate of THP-1 cells, an adequate population of them was applied for the examination to produce an adequate number of habitable cells for analysis. One of the most debilitating symptoms is pain, which is very difficult to control in advanced cases, and causes the long-term and the continuous consumption of analgesic. Eventually, Malva extract is an effective drug to reduce the pain, but the effects need to be studied more closely in order to standardize the usage.

Due to the role of chondrocytes and monocyte/ macrophage cells on the process of inflammation in the osteoarthritis, our study was performed on these two cell lines, as a model similar to what occurs in the human osteoarthritis.

The Study was based on stimulating the cells with lipopolysaccharide, and inducing them to produce inflammatory cytokines IL-1B, TNF-a, PGE2 and induced No.

Then, the effect of Malva on reducing the production of inflammatory mediators was evaluated. Since limb movement disorder is more observed in the anterior limb of cattle, *due to the large weight*.
bearing, as a result, the cartilage in this area was chosen as a model to study the anti-inflammatory effects. On the other hand, the use of large animals in such research due to the more mechanical similarity to human is more considered [5]. In this study, the preparation and the scientific extraction methods of plant and the culture and subculture of prokaryotic cells were studied. The effects of the aqueous extract of Malva were also evaluated in patients with osteoarthritis, as the most common joint disease in the world. In a model similar to osteoarthritis, the changes observed in two cartilage cell lines isolated from the metacarpal joint of Holstein cow and monocytes/macrophages were studied. The structure of cartilage joint is attacked in this disease. In the inflammatory diseases, which cause the destruction of cartilage structure, inflammatory cytokines including TNF-α, PGE2, IL-1β and induced NO are increased that trigger the exacerbation of inflammation in the joints.

Among the pro-inflammatory cytokines involved in the development of osteoarthritis, TNF-α is considered as the main inflammation agent. TNF-α also stimulates the production of a number of inflammatory mediators in the osteoarthritis disease. For example, the expression of iNOS and COX-2 genes increases with the addition of TNF-α to chondrocytes, and consequently, the amount of NO and PGE2 increases. Previous molecular studies performed on medicinal herbs with the anti-inflammatory effects, such as avocado, have indicated that the consumption of these plants reduces the expression of inflammatory cytokine IL-1β, TNF-α, PGE2 and NO genes [6].

Material and Methods

All steps of research was proceed in Rey’s Payam Noor University biotechnology laboratory in Tehran. Malva neglecta was initially obtained from Iran’s center of genetic resources, and then its aqueous extraction was prepared. On the other hand, chondrocyte cells were obtained from the healthy radio carpal joint cartilage of an 8-month-old Holstein cow from Asia Meat Industrial Complex and monocytes/macrophages (THP-1) cells were obtained from the Pasteur Institute of Iran, and were amplified in a sterile medium to the extent necessary. The next steps were accomplished completely identical and separately in the two groups of chondrocyte cells and monocytes/macrophages cells. Following the investigation of Malva extract in different concentrations on the cell samples, the amount of LC50 was determined. Then the cells were treated with LPS to cause inflammatory conditions. Then, RNA isolated from these plants reduces the expression of inflammatory cytokine IL-1β, TNF-α, PGE2 and NO genes by specific primers. ELISA system was used to determine the amount of TNF-α to chondrocytes, and consequently, the amount of NO and PGE2 increases.

Chemicals needed

- Absolute Ethanol
- collagenase I (SIGMA)
- ascorbic acid
- HCl
- RPM 1-1640 medium
- DMEM-F12 medium
- HBSS solution
- citric acid
- dextrose
- sodium bicarbonate
- sodium pyruvate
- B mercaptoethanol
- HEPES solution
- Trypan blue
- Tris Base
- agarose
- EDTA
- PBS

- Ethidium bromide
- NaN3
- KCl
- potassium dihydrogen phosphate (KH2PO4)
- monosodium dihydrogen phosphate
- sodium dodecylsulfate
- SDS
- Xylene Cyanol Blue
- lipopolysaccharide LPS
- regulatory buffers
- penicillin
- streptomycin
- amphotericin B
- gentamicin
- Dnase I
- Taq DNA Polymerase
- HCl
- methanol
- hexane
- ethyl acetate
- RNA extraction Kit

List of primers

- Nucleotide sequences, the melting Temperature of primers and the size of PCR products are as follows:

 1-Specific primers for bovine – COX2
 - Forward: 3’ - CTC TTC CTC CTG TGC CTG AT-5’
 - Reverse: 5’ - TG AGT ATC TTT GAC TGT GGG A-3’
 - Tm forward: 52/9 ºC, Tm reverse: 52 ºC, PCR product size : 100 bp

 2-Specific primers for bovine TNF – α
 - Forward: 3’ - TAA GAA GCC GGT AGC CCA CG-5’
 - Reverse: 5’ - GCA AGG GCT CTT GAT GGC AGA-3’
 - Tm forward: 61 ºC, Tm reverse: 59/4 ºC, PCR product size : 100 bp

 3-Specific primers for bovine IL-1β
 - Forward: 3’ - TAC TCT CCA GGC AAC CTT CTA T-5’
 - Reverse: 5’ - ATC TGC AGC TGG ATG TTT CCA T-3’
 - Tm forward: 56/5 ºC, Tm reverse: 57/2 ºC, PCR product size : 100 bp

 4-Specific primers for bovine iNOS
 - Forward: 3’ - CGG TGC TGT ATT TCC TTA CGA GGC GAA GAA GG-5’
 - Reverse: 5’ - GGT GCT GCT TGT TAG CAG GTC AAG TAA AGG GC-3’
 - Tm forward: 71.5 ºC, Tm reverse: 70/4 ºC, PCR product size : 100 bp

 5-Specific primers for bovine Glyceraldehyde 3- phosphate (GAPDH)
 - Forward: 3’ - ATT CCA CCC ACG GCA AGT T-5’
 - Reverse: 5’ - CGC TCC TGG AAG ATG GTG AT -3’
 - Tm forward: 56/3 ºC, Tm reverse: 56/1, PCR product size : 100 bp

 6-Specific primers for Human TNF-α
 - Forward: 3’ - GAG TGA CAA GCC TGC CCA TGG TGTAGC-5’
 - Reverse: 5’ - GCA ATG ATC CCA AAG TAG ACC TGC CCA GAC T-3’
 - Tm forward: 67/1 ºC, Tm reverse: 69/5 ºC, PCR product size : 100 bp

 7-Specific primers for Human TNF-α
 - Forward: 3’ - GAG GTA CCT GAG CTC GCC ATG GAA -5’
 - Reverse: 5’ - CGT GCA GTT CAG TGA TCC AGG -3’
 - Tm forward: 65 ºC, Tm reverse: 60/4 ºC, PCR product size : 100 bp

 8-Specific primers for Human Glyceraldehyde 3- phosphate (GAPDH)
 - Forward: 3’ - TGA AGG TCG GAG TCA ACG GAT TTG GT-5’
 - Reverse: 5’ - CAT GTG GGC CAT GAG TGC GTC CAC CAC-3’
 - Tm forward: 66/1 ºC, Tm reverse: 67/9 ºC, PCR product size : 100 bp
Isolation, culture and proliferation of chondrocyte cells

Samples were taken from the radiocarpal joint cartilage of an 8-month-old Holstein cow. In the laboratory, in sterile conditions, the cartilages were taken from the internal and external condyle of the lower surface of metacarpal joint, according to what is shown in the (Figure 1).

A layer with the thickness of about 1 mm was isolated and washed out three times by 1M PBS buffer (PH = 7.4) containing a combination of antibiotics, including 50 μg/ml gentamicin and 100 unit/ml penicillin, 100 μg/ml streptomycin (PHARMATEX ITALIA) and 0.25 μg/ml Amphotripcin B (KimiaDaru-Tehran). Then, it was incubated in 220 μl/ml collagenase at 37°C for 4h. After 18h, the content of test tube was mixed for 5 min and filtered through 1mm Wire Strainer Screen, which was sterilized, and the wastes resulted from the impact of the collagenase type II were isolated from chondrocyte cells. The tube was centrifuged for 3 min, the supernatant was discarded and the pellet containing DMEM-F12 supplemented with FBS, 50 μg/ml ascorbic acid,100 u/ml penicillin and 0.25 μg/ml streptomycin, with a density of 5 × 10^6 cell in the 22.2 cm plates at a temperature of 37°C, the humidity of 90% and 5% CO₂, to reach cell density of 80-85%.

Culture and proliferation of monocytes/macrophages (Human THP-1)

A flask containing 60 million monocytes and 60 ml enriched cell culture medium was prepared from Pasteur Institute and incubated at 37°C and 5% CO₂ for 4 to 5 days to reach cell density above 80%. The cells were resuspended slowly over 3 to 4 times in RPMI-1640 medium supplemented with L-gutamin, 10 mM HEPES , 0.1 mM sodium pyruvate, 0.05 mM B-mercaptoethanol, and a series of antibiotics including 50 μg/ml gentamicin,100 U/ml penicillin, 100 μg/ml streptomycin , 0.25 μg/ml amphotripcin B. The LC50 for chondrocyte cells was 50 μg/ml, and the mean was calculated 25 μg/ml. The LC50 for monocyte cells was 15 μg/ml.

cDNA Production: A strand of mRNA was synthesized as template using reverse transcriptase and DNA polymerase enzyme, in the following, cDNA was amplified using RT-PCR standard method [7].

Real-Time PCR: Real-Time PCR method quantitatively measures the copy number of templates such as DNA orc DNA. Therefore, it is able to eliminate the defect of PCR standard method which is End point method.

Study of the gene expression in chondrocyte cells was done by REST 2009 V2.0.13 software.

Data analysis and interpretation of results (Tables 1-4, Graph1,2)

Result	P(H1)	95% Cl	Standard error	Expression	Reaction coefficient	Type	Gene
P(H0=H1)	0.990	0.139-7.307	0.276-5.629	1.000	0.6973	Target	GADPH
P(H0=H1)	0.990	0.236-4.021	0.388-2.578	1.000	0.6973	Target	COX-2 in chondrocyte
P(H0=H1)	0.985	8.586-1.116	0.219-4.564	1.000	0.6973	Target	TNF-α in chondrocyte
P(H0=H1)	0.985	1.517-7.618	0.681-1.443	1.000	0.6973	Target	IL-1β in chondrocyte
P(H0=H1)	0.985	0.116-8.612	0.219-4.564	1.000	0.6973	Target	I NOS in chondrocyte
P(H0=H1)	0.995	0.012-88.842	0.206-4.865	1.000	0.6973	Target	TNF-α in THP-1
P(H0=H1)	0.990	0.236-4.201	0.388-2.578	1.000	0.6973	Target	GADPH in THP-1
P(H0=H1)	0.990	0.198-5.044	0.407-2.458	1.000	0.6973	Target	IL-1β in THP-1

![Chart1](chart.png)

Table 1: Study of the gene expression in chondrocyte cells with the plant extract.
Table 2: Study of the gene expression in chondrocyte cells with the plant extract.

Gene Type	Reaction	Coefficient	Expression	Standard error	Cl 95%	P(H1)	Result
COX-2 in chondrocyte	Target	0.6973	212.941	79.862	-479.974	45.141	UP
IL-1B in chondrocyte	Target	0.6973	828.777	318.019	-2188.912	158.978	UP
iNOS in chondrocyte	Target	0.6973	518.584	197.366	-2188.912	94.078	UP

Table 3: Study of the gene expression in chondrocyte cells with LPS.

Gene Type	Reaction	Coefficient	Expression	Standard error	Cl 95%	P(H1)	Result
GADPH in THP-1	Target	0.6973	67.866	112	128.068	383	UP
IL-1B in THP-1	Target	0.6973	398.318	112.128	-2188.912	67.866	UP
GADPH in THP-1	Target	0.6973	58.913	79.862	-1734.518	17.106	UP
IL-1B in THP-1	Target	0.6973	25.056	7.013	-104.047	1.124	UP
GADPH in THP-1	Target	0.6973	518.584	197.366	-2188.912	17.106	UP
IL-1B in THP-1	Target	0.6973	25.056	7.013	-104.047	1.124	UP
Conclusion

Osteoarthritis is a common joint disease in old ages. It has very advanced destructive activities and is identified by the metabolic changes and the changes on the structure of cartilage, bone and joint surfaces [8]. Management of the osteoarthritis takes place with both pharmacologic and non-pharmacologic treatments. It has been approved that the treatment methods are often ineffective in some patients [9]. Physiology of the osteoarthritis shows that the lower levels of growth factors such as IL-1, IL-10, IL-13 and IL-8 increases the levels of cytokines such as nitrite oxide. All these series of events leads to inflammation with swelling, cartilage cell death and cartilage destruction. Some researchers believe that IL-1B is the primary factor in the destruction of cartilage matrix [10]. In the present study, we have shown that the anti-inflammatory effects of Malva extract are not limited to the chondrocytes and fibroblasts, and the effects are extended to their placement cells of monocyte/macrophage tissue. We proved that the aqueous extract of Malva, in the similar model of monocytes/macrophages which is stimulated with LPS, effectively suppresses the expression of pro-inflammatory cytokine genes. As a result, according to the role of these substances in the disease progression, and given that steroid drugs also reduce the expression of genes involved in this matter, the Malva plant can also be offered as an alternative [7]. As, as well as the expression of cytokine TNF-α gene in chondrocyte cells. If the cells be treated with LPS and the aqueous extract of Malva, measured 95.04%, considering that the steroidal and nonsteroidal drugs reduce the expression of this gene, therefore, the Malva plant can also be effective [11]. The expression of cytokine IL-1B gene decreased to 73.81% in chondrocyte cells in the presence of LPS and the aqueous extract of Malva. Since the mentioned cytokine is involved in the progression of disease, so the
application of the aqueous extract of Malva to treat osteoarthritis seems promising. The expression of COX-2 gene in the presence of the aqueous extracts of Malva and LPS decreased to 93.79%. The steroidal and nonsteroidal drugs also reduce the expression of this gene, therefore, Malva plant can also be offered as an alternative [12]. The expression of pro-inflammatory cytokines TNF-α in THP-1 cells in the presence of the aqueous extract of Malva was measured 84.76%. Furthermore, we confirmed previous findings indicating that Awakado suppresses the expression of PGE2 and NO in chondrocyte cells grown in a single layer [13]. This finding suggests that Malva affects the different cell types involved in inflammation. In this study it was shown that the Malva extract can act as a potent mediator to decrease the inflammation.

However, IL-1B is physiologically more effective than TNF-α. Animal studies have shown that these two cytokines are active in a parallel manner to stimulate the weakening of cartilage that the damage increases with one of the cytokines alone [14]. Malva extract reduces the expression of both TNF-α and IL-1B cytokines that may slow the process of cartilage weakening. The matrix-degrading enzymes also induce the synthesis of pro-inflammatory factors (TNF-α, i NOS, IL-1B, COX-2). The induction of the sccytokines is resulted from the high levels of nitric oxide and prostaglandin, which leads the cartilage weakening. The inhibition of matrix production, and chondrocyte cell death. In contrast, the reduction in the production of prostaglandin and nitric oxide is reported in the pain relief and inflammation [14,15]. Our results confirmed that the Malva extract reduces the expression of inflammatory genes. For the first time, our research indicated that the Malva extract as a potent inhibitor of the cytokine gene expression suppresses the production of prostaglandin and nitrite in both chondrocyte and monocyte-like/macrophage cell lines. In this study, it was shown that the Malva reduces the expression and the production of inflammatory mediators in multiple cell types in the in vitro conditions. By evaluating the effects of Malva on both cell types we proved that the anti-inflammatory effects are not limited to chondrocyte cells and the effects are extended to the monocytes-like/macrophage related to the synovial membrane. When the Malva’s ability to reduce the pro-inflammatory factors was examined in various tissue cell types, its potential role as an alternative and supplement method to traditional NSAIDs (non-steroidal anti-inflammatory drug) used in the treatment of osteoarthritis was confirmed.

References
1. Hawkey CJ, et al. (1998) Omeprazole compared with misoprostol, for ulcers associated with nonsteroidal anti-inflammatory drugs, The New England Journal of Medicine 338:727-734
2. Lawrence R, et al. (1998) Estimates of the prevalence of arthritis and selected Musculo-Budding RA, Russell RG (1989) The effect of tumor necrosis factor alpha and the production 100 of prostaglandin E and of caseinase activity by human articular chondrocytes, Arthritis Rheum; 32:780-4
5. Bunning RA, Russell RG (1989) The effect of tumor necrosis factor alpha and gamma interferon on the resorption of human articular cartilage and on the production 100 of prostaglandin E and of caseinase activity by human articular chondrocytes, Arthritis Rheum; 32:780-4
6. AU.R?phan p?AUA?Frondozc(2006) Effect of different chondroitin sulphate raw material on pro-inflammatory gene expression in chondrocyte and monocytes (Abstract), Int cartilage res soc final program Abstract 1: 90
7. Anderson J.A/ Veterinary Medicine / 10 edition / 2007
8. Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43: 1916-1926.
9. M.Tevfik Dorak/ Real-Time PCR/ taylor&francis Muehleman C, Bareither D, Anderson J.A/ Veterinary Medicine / 10 edition / 2007
10. Barnes EV, Edwards NL (2005) Treatment of osteoarthritis. South Med J 98: 205-209.
11. Dippe p (2008) osteoarthritis. In: A Clinical features. In primer on the Rheumatic Diseases. kliipfl J, stone J, Crofford L, white H (eds) (13th edn) Springer, Newyork, 224-222.
12. Pillinger MH, Rosenthal PB, Tolani SN, Apsel B, Dinsell V, el al. (2008) WHO-ILAR COPCORD Study (Stage 1, Urban Study) in Iran. J Rheumatol 35:138.
13. AdiÅŸen E, Onder M (2007) Allergic contact dermatitis from Laurus nobilis oil induced by massage. Contact Dermatitis 56: 360-361.
14. Davatchi F, Jamshidi AR, Banhashemi AT, Gholami J, Forouzanfar MH, el al. (2008) WHO-ILAR COPCORD Study (Stage 1, Urban Study) in Iran. J Rheumatol 35:138.
15. Chaipinyo K, Oakes BW, van Damme MP (2002) Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen I gels. J Orthop Res 20:1070-1080.
16. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biophasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102: 73-74.
17. Rosen F, McCabe G, Quach J, Solan J, Terkeltaub R, el al. (1997) Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 40: 1275-1281.