Characteristics of HIV-2 and HIV-1/HIV-2 Dually Seropositive Adults in West Africa Presenting for Care and Antiretroviral Therapy: The IeDEA-West Africa HIV-2 Cohort Study

Didier K. Ekouevi1,2,3*, Eric Balestre1, Patrick A. Coffie2,4, Daouda Minta5, Eugene Messou2,4,6, Adrien Sawadogo7, Albert Minga8, Papa Salif Sow9, Emmanuel Bissagnene4,10, Serge P. Eholie4,10, Geoffrey S. Gottlieb11, François Dabis1, for the IeDEA West Africa collaboration

1 Université Bordeaux Segalen, ISPED, Centre INREED U897- Épidémiologie-Biostatistique, Bordeaux, France, 2 Programme Pacci, Abidjan, Côte d’Ivoire, 3 Département des Sciences Fondamentales et Santé Publique, Université de Lomé, Lomé, Togo, 4 Département de Dermatologie et Infectiologie, UFR Sciences Médiocales, Université Félix-Houphouët-Boigny, Abidjan, Côte d’Ivoire, 5 Centre de Prise en Charge des Personnes vivant avec le VIH, Hôpital du Point G, Bamako, Mali, 6 ACONDA-CePRéF Adultes, Abidjan, Côte d’Ivoire, 7 Hôpital de jour, CHU Sourou Sanou, Bobo Dioulasso, Burkina-Faso, 8 Centre Médical de Suivi de Donneurs de Sang, Projet PRIMO-CI, Abidjan, Côte d’Ivoire, 9 Service des Maladies Infectieuses et Tropicales, CHU de Fann, Dakar, Sénégal, 10 Service des Maladies Infectieuses et Tropicales, CHU de Treichville, Abidjan, Côte d’Ivoire, 11 Departments of Medicine and Global Health, University of Washington, Seattle, Washington, United States of America

Abstract

Background: HIV-2 is endemic in West Africa. There is a lack of evidence-based guidelines on the diagnosis, management and antiretroviral therapy (ART) for HIV-2 or HIV-1/HIV-2 dual infections. Because of these issues, we designed a West African collaborative cohort for HIV-2 infection within the framework of the International epidemiological Databases to Evaluate AIDS (IeDEA).

Methods: We collected data on all HIV-2 and HIV-1/HIV-2 dually seropositive patients (both ARV-naïve and starting ART) and followed-up in clinical centres in the IeDEA-WA network including a total of 13 clinics in five countries: Benin, Burkina-Faso Côte d’Ivoire, Mali, and Senegal, in the West Africa region.

Results: Data was merged for 1,754 patients (56% female), including 1,021 HIV-2 infected patients (551 on ART) and 733 dually seropositive for both HIV-1 and HIV 2 (463 on ART). At ART initiation, the median age of HIV-2 patients was 45.3 years, IQR: (38.3–51.7) and 42.4 years, IQR (37.0–47.3) for dually seropositive patients (p = 0.048). Overall, 16.7% of HIV-2 patients on ART had an advanced clinical stage (WHO IV or CDC-C). The median CD4 count at the ART initiation is 166 cells/mm3, IQR (55–249) among HIV-2 infected patients and 146 cells/mm3, IQR (83–247) among HIV-2 dually seropositive patients. Overall, in ART-treated patients, the CD4 count increased 126 cells/mm3 after 24 months on ART for HIV-2 patients and 169 cells/mm3 for dually seropositive patients. Of 551 HIV-2 patients on ART, 5.8% died and 10.2% were lost to follow-up during the median time on ART of 2.4 years, IQR (0.7–4.3).

Conclusions: This large multi-country study of HIV-2 and HIV-1/HIV-2 dual infection in West Africa suggests that routine clinical care is less than optimal and that management and treatment of HIV-2 could be further informed by ongoing studies and randomized clinical trials in this population.

Introduction

Human Immunodeficiency Virus type 2 (HIV-2) was first isolated in 1986 [1–3]. As compared to the global HIV-1 pandemic, the HIV-2 epidemic has remained essentially confined to West Africa with a limited spread to other regions [4]. In West Africa, between 10–20% of HIV infections are HIV-2 or HIV-1/HIV-2 dual seropositive [5,6] corresponding to 1–2 million people living with this virus in the region [7] although prevalence has been waning over the last few decades [6].

Compared with HIV-1 infection, HIV-2 infection is characterized by a much longer asymptomatic stage, lower plasma viral
load, slower CD4 cell count decline, lower AIDS-related mortality rate [4,8–11], lower rates of mother-to-child transmission [12,13,14], genital tract shedding [13] and sexual transmission [16,17]. Nonetheless, a significant proportion of HIV-2 infected individual’s progress to AIDS and may benefit from antiretroviral therapy (ART) [18].

All antiretrovirals to date have been developed to inhibit HIV-1 replication and many of them are not active against HIV-2. HIV-2 is intrinsically resistant to the non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the fusion inhibitor, enfuvirtide [19–21]. Moreover, only three protease inhibitors (PI) have potent activity against HIV-2: lopinavir, saquinavir and darunavir [21,22]. The nucleoside/âide reverse transcriptase inhibitors (NRTIs) appear to be equally potent against HIV-2 as for HIV-1, however different resistance pathways and a lower genetic barrier to resistance make their use problematic [23,24]. The newer antiretroviral classes, the integrase inhibitors (INI) show promising in vitro activity against HIV-2 isolates [25–28]. Preliminary studies among HIV-2 infected patients showed that the INI class drugs (raltegravir and elvitegravir) is an interesting option among HIV-2 naïve patients as well as those who experience therapeutic failure [29], but remains to be formally evaluated through clinical trials. Of note, INI are already included in some guidelines for HIV-2 infection [22].

There is a lack of evidence-based guidelines on the diagnosis, management and ART use for HIV-2 or HIV-1/HIV-2 dual infections [21,22,30,31] especially in resource-limited settings [21]. The main reasons are that first the efficacy of ART in HIV-2 infection has not been evaluated through randomized clinical trials [7,32] and second observational cohorts generally have had small numbers of patients and shown relatively poor outcome [33–38] although emerging data suggest LPV/r-based regimens have reasonable efficacy [35].

Because of these issues, we designed and organized a West African collaborative cohort of HIV-2 infection within the framework of the International epidemiological Database to evaluate AIDS (IeDEA) [39]. We collected data on all HIV-2 and HIV-1/HIV-2 dually seropositive patients both ARV-naive and ARV-treated and followed-up in clinical centres in the IeDEA-WA network in the West Africa region. Here, we report the characteristics of HIV-2 and HIV-1/HIV-2 dually seropositive adults in West Africa presenting for care and on ART.

Methods

Description of the Cohort

The organization and structure of the Sub-Saharan IeDEA cohorts have been previously described [39] and the HIV-2 cohort collaboration is a newly formed network of HIV-2 and dually HIV-1/HIV-2 seropositive patients in West Africa embedded in the IeDEA-West Africa group. A total of 13 clinics (all are located in urban areas), in five countries (Benin, Burkina-Faso, Cote d’Ivoire, Mali, Senegal) are participating (Figure 1 and Table 1). All of the sites have the capacity to measure CD4 cell counts, hematology and chemistries. Only two countries (Senegal and Cote d’Ivoire) had an equipped laboratory for performing HIV-2 plasma viral load measurements [40–41], however they were not routinely performed.

Schedule of Follow-up

ART was provided by the individual national treatment programs according to their individual treatment algorithms. After initiation into care, patients were typically followed every six months, or were seen in between visits for any intercurrent illness. CD4 count were measured every six months.

Data Collection

Standardized questionnaires capturing the relevant information on HIV-2 care have been developed with an electronic database implemented at the site level. All sites completed retrospectively and then prospectively the specific questionnaires and have entered the data in the unique IeDEA-WA HIV-2 database. The databases from each site are sent every six months to the Regional Centre in Abidjan, Cote d’Ivoire, and Bordeaux, France using compression/encryption software. Data collected include: 1) Baseline demographics: birth date, gender, HIV clinical stage, WHO or CDC stage), ART initiated, clinical assessment, medical history, 2) Follow-up: Clinical assessment (tuberculosis, other diseases/infection, HIV clinical stage, weight, height, medications such as antiretroviral drugs and cotrimoxazole), 3) Biological data: including CD4, haemoglobin, ALAT, ASAT, plasma HIV RNA viral load (when available, and 4) Outcomes: death, loss to follow-up, and transferred out.

Data Management

Clinical and biological questionnaires are collected and centralized at the IeDEA West Africa, Regional office in the Programme PACCI in Abidjan where they are checked for accuracy and completeness and transfer to the INSERM U897 Epidemiology centre in Bordeaux, France, for statistical analysis and cohort description. The database used for the current manuscript included information recorded at enrolment as well as during follow-up up to December 2011.

Statistical Analysis

Continuous variables are described by their median value and interquartile range (IQR); categorical variables are described as percentages. All statistical tests are two-sided, with a type I error of 5%.

Ethical Aspects

The study was designed and performed in accordance with the Declaration of Helsinki and was approved by the National ethics committee (IRB) from Benin: Comité National d’Ethique pour la Recherche en Santé, from Burkina-Faso: Comité d’Ethique pour la Recherche en Santé, from Côte d’Ivoire: Comité National d’Ethique et de la Recherche, from Mali: Comité National d’Ethique pour la Santé et les Sciences de la vie and from Senegal: Comité National d’Ethique pour la Recherche en Santé. A waiver of informed consent was granted by the Institutional Review Boards because we used data collected in routine and used by the national program for monitoring HIV programs. The study procedure did not involve any personal contact with the patients.

Results

As of December 2011 the cohort has captured baseline and follow-up data from 1,754 (56% female) HIV-2 or dually seropositive patients, of whom 1,014 (57.8%) have initiated ART (Table 1). Overall, 1,021 HIV-2 infected patients (551 on ART) and 733 dually seropositive for HIV-1 and HIV 2 (463 on ART) have been enrolled (Table 2).

Among patients whom were ART-naive, the median age was 42.8 years, interquartile range [IQR] (34.9–49.4) for HIV-2 patients and 40.6 years, IQR (34.4–47.2) for dually seropositive patients (p<0.001). At enrolment, 49.1% of HIV-2 patients had
CD4 count ≥500 cells/mm³ versus 22.2% for dually seropositive patients (p<0.001) (Table 2).

At ART initiation, the median age of HIV-2 patients was 45.3 years, IQR (38.3–51.7) and 42.4 years, IQR (37.0–47.3) for dually seropositive patients (p = 0.048). In addition, the proportion of patients aged ≥50 years was twice as high in HIV-2 patients compared with dually seropositive patients (26.0% vs 13.6%, p<0.001). Of note, 16.7% of HIV-2 patients had an advanced clinical stage (WHO stage IV or CDC-C), a figure comparable to the 17.9% observed among dually seropositive patients.

Table 1. Enrollment per clinical center and per country. IeDEA-WA-HIV-2 cohort, as of December 2011.

Country	HIV-2-infected patients (%)	Dually seropositive patients (%)	Total		
	ARV-naive ART	ARV-naive ART			
Benin					
Service de Médecine Interne, CNHU, Cotonou	7 (1.5)	4 (0.7)	6 (2.2)	9 (1.9)	26
Burkina-Faso					
CHU Yalgado, Ouagadougou	44 (9.4)	54 (9.8)	35 (13.0)	66 (14.3)	199
Hôpital de jour, Bobo-Dioulasso	38 (8.1)	41 (7.4)	1 (0.4)	1 (0.2)	81
Côte d’Ivoire, Abidjan	175 (37.2)	112 (20.3)	100 (37.1)	90 (19.4)	477
SMIT, Treichville	85 (18.1)	33 (6.0)	18 (6.7)	36 (7.8)	172
CIRBA, Treichville	48 (10.2)	46 (8.4)	21 (7.8)	31 (6.7)	146
USAC, Treichville	9 (1.9)	37 (6.7)	2 (0.7)	15 (3.2)	63
MTCT-Plus, Yopougon	11 (2.3)	1 (0.2)	2 (0.7)	6 (1.3)	20
CePReF, Yopougon	44 (9.4)	113 (20.5)	77 (28.5)	179 (38.7)	413
Mali, Bamako					
Hôpital point G	1 (0.2)	17 (3.1)	2 (0.7)	5 (1.1)	25
CHU Gabriel Tourné	8 (1.7)	19 (3.5)	6 (2.2)	25 (5.4)	58
Senegal, Dakar					
SMIT, CHU Fann	–	74 (13.4)	–	–	74
TOTAL	470 (100.0)	551 (100.0)	270 (100.0)	463 (100.0)	1754 (100.0)
In all clinical centers, the most commonly used first-line ART regimen was a protease inhibitors (PI) based regimen, which was initiated in 84.0% of HIV-2 patients and 65.9% for dually seropositive patients. The most common PI based regimen prescribed was lopinavir-ritonavir (Aluvia® or Kaletra®) for 36.4% HIV-2 patients and 26.9% for dually seropositive patients on ART. Despite the fact that NNRTIs are not recommended among HIV-2 patients due to intrinsic resistance, it was initiated in 39 (7.1%) of HIV-2 patients and 123 (26.6%) of dually seropositive patients (Table 2). Finally, 3 NRTIs regimens were prescribed for 8.7% of HIV-2 infected patients and for 6.3% of dually seropositive patients. The most prescribed NRTI regimens among HIV-2 infected patients were the followings zidovudine + lamivudine (3TC) (63.3%), stavudine (d4T) + 3TC (30.5%), tenofovir+ (emtricitabine or 3TC) (2.7%) and didanosine + (abacavir+d4T) (1.1%).

The median CD4 count at the ART initiation is 166 cells/mm³, IQR (83–247) among HIV-2 infected patients and 146 cells/mm³, IQR (55–249) among dually seropositive patients (p<0.001). At 24 months on ART, the median CD4 count increased 126 cells/mm³

HIV-2-infected patients (N = 1021)	Dually seropositive patient (N = 733)	p¹	p²			
ARV-naïve (n = 470)	ART (n = 551)	ARV-naïve (n = 270)	On ART (n = 463)			
Age (years)						
Median (IQR)	42.8 (34.9–49.4)	45.3 (38.3–51.7)	40.6 (34.4–47.2)	42.4 (37.0–47.3)	<0.001	0.048
<40	163 (34.8)	144 (26.1)	117 (43.3)	161 (34.8)	<0.001	0.061
40–49	175 (37.3)	185 (33.6)	87 (32.2)	196 (42.3)	0.100	<0.001
>50	100 (21.3)	143 (26.0)	44 (16.3)	63 (13.6)	0.044	<0.001
Unknown	31 (6.6)	79 (14.3)	22 (8.2)	43 (9.3)	0.060	0.732
Gender						
Male	189 (40.2)	234 (42.5)	104 (38.5)	224 (48.4)	0.001	<0.001
Female	279 (59.4)	313 (56.8)	162 (60.0)	236 (51.0)	0.060	0.732
Unknown	2 (0.4)	4 (0.7)	4 (1.5)	3 (0.6)	0.001	<0.001
WHO/CDC stage						
WHO I/II or CDC-A	118 (25.1)	78 (14.2)	29 (10.7)	45 (9.7)	0.001	<0.001
WHO III or CDC-B	45 (9.6)	246 (44.6)	57 (21.1)	254 (54.9)	0.001	<0.001
WHO IV or CDC-C	9 (1.9)	92 (16.7)	7 (2.6)	83 (17.9)	0.001	<0.001
Unknown	298 (63.4)	135 (24.5)	177 (65.6)	81 (17.5)	0.001	<0.001
CD4 count						
Median (IQR)	535 (319–820)	166 (83–247)	282 (108–518)	146 (55–249)	0.044	<0.001
<200	63 (13.4)	265 (48.1)	82 (30.4)	235 (50.8)	0.100	<0.001
200–349	63 (13.4)	121 (22.0)	46 (17.0)	125 (27.0)	0.100	<0.001
350–499	82 (17.5)	25 (4.5)	40 (14.8)	15 (3.2)	0.100	<0.001
500–799	114 (24.2)	13 (2.4)	41 (15.2)	11 (2.4)	0.100	<0.001
>800	117 (24.9)	3 (0.5)	19 (7.0)	2 (0.4)	0.001	<0.001
Unknown	31 (6.6)	124 (22.5)	42 (15.6)	75 (16.2)	0.001	<0.001
ART						
Not on ART	470	–	270	–	<0.001	<0.001
NRTIs+PI	–	463 (84.0)	–	305 (65.9)	0.100	<0.001
NRTIs+NNRTI	–	39 (7.1)	–	123 (26.6)	0.100	<0.001
3 NRTIs	–	48 (8.7)	–	29 (6.3)	0.100	<0.001
Mono/bi-therapy	–	1 (0.2)	–	6 (1.2)	0.100	<0.001
Year of enrolment						
1992–2003	62 (13.5)	51 (9.3)	88 (33.0)	81 (17.5)	<0.001	<0.001
2004–2005	121 (26.4)	126 (22.9)	89 (33.3)	149 (32.2)	0.100	<0.001
2005–2007	96 (21.0)	155 (28.1)	28 (10.5)	100 (21.6)	0.100	<0.001
2008–2011	179 (39.1)	219 (39.7)	62 (23.2)	133 (28.7)	0.100	<0.001

IQR: Interquartile range, ART: antiretroviral treatment.
p¹: comparison between two group of patient on ART, p² = comparison between the two groups of patients in care.
PI: protease inhibitors, NRTI: nucleoside reverse transcriptase inhibitors, NNRTI: non nucleoside reverse transcriptase inhibitors.
$: 15 missing data for enrolment date in care.
doi:10.1371/journal.pone.0066135.t002

Table 2. Socio-demographic, clinical, biological and therapeutic characteristics of HIV-2 and dual seropositive patients. IeDEA-WA-HIV-2 cohort.

In all clinical centers, the most commonly used first-line ART regimen was a protease inhibitors (PI) based regimen, which was initiated in 84.0% of HIV-2 patients and 65.9% for dually seropositive patients. The most common PI based regimen prescribed was lopinavir-ritonavir (Aluvia® or Kaletra®) for 36.4% HIV-2 patients and 26.9% for dually seropositive patients on ART. Despite the fact that NNRTIs are not recommended among HIV-2 patients due to intrinsic resistance, it was initiated in 39 (7.1%) of HIV-2 patients and 123 (26.6%) of dually seropositive patients (Table 2). Finally, 3 NRTIs regimens were prescribed for 8.7% of HIV-2 infected patients and for 6.3% of dually seropositive patients. The most prescribed NRTI regimens among HIV-2 infected patients were the followings zidovudine+lamivudine (3TC) (63.3%), stavudine (d4T) +3TC (30.5%), tenofovir+ (emtricitabine or 3TC) (2.7%) and didanosine+ (abacavir+d4T) (1.1%).

The median CD4 count at the ART initiation is 166 cells/mm³, IQR (83–247) among HIV-2 infected patients and 146 cells/mm³, IQR (55–249) among dually seropositive patients (p<0.001). At 24 months on ART, the median CD4 count increased 126 cells/mm³.
for HIV-2 patients and 169 cells/mm3 for dually seropositive patients (Figure 2). Of 551 HIV-2 patients on ART, 32 (5.8%) died and 56 (10.2%) were considered lost to follow-up during the median time on ART of 2.4 years, IQR (0.7–4.3). Of 463 dually seropositive patients on ART, 21 (4.6%) died and 46 (9.9%) were considered lost to follow-up during a median follow on ART of 2.6 years (0.9–5.5). Table 3 summarizes the follow-up characteristics of both ARV-naïve and ARV-treated HIV-2 and dually seropositive patients.

Discussion

The IeDEA-WA-HIV-2 cohort is a multi-centre, multi-country collaboration on HIV-2 and dually seropositive patients in West Africa, the only region of the world where the two viruses are endemic (HIV-2) and epidemic (HIV-1). This is one of the largest datasets in the world on HIV-2 and provides the opportunity to study HIV-2 in resource-limited settings (RLS). The only other large HIV-2 database is the ACHIEV2E HIV-2 Collaboration in Europe and North America [35]. The IeDEA-WA HIV-2 cohort aims, first, to build and strengthen an operational and clinical research network that describes HIV-2 case management in RLS. Treatment outcomes and their determinants are being investigated by pooling individual patient data, and should thus appropriately inform policies and programmes by examining various models of care, clinical and operational outcomes. The network is reflecting on a similar successful experience of adult treatment centres in lower income countries [39] and aims to rapidly bridge the gap in clinical and programmatic information for people living with HIV-2. Furthermore, this collaboration includes not only patients on ART but also patient “in care” but ARV-naïve. In addition, we have also implemented an HIV-2 and HIV-1/HIV-2 Drug Resistance Database that will allow us to conduct surveys of genotypic resistance and virological response in the future. Moreover, we are in the process of implementing and standardizing plasma HIV-2 RNA viral load quantification across sites.

It is important to note that several centres identified as possible sites of enrolment and follow-up of HIV-2 patients in the West African region did not participate in this collaboration because they do not perform routinely HIV serologic testing that discriminates HIV-1 from HIV-2, (e.g. Nigeria, which has the largest number of HIV-infected patients in West Africa).

In West Africa, rapid HIV assays are often used for the diagnosis of HIV-1 or HIV-2 or dual HIV-1/HIV-2 infection. This strategy is based on the demonstration of virus-specific antibodies using enzyme-linked immunosorbent assay based-technique [21,30,42,43]. In the West African region, current serological tests for the diagnosis of HIV-2 include: 1) For screening purposes: Determine, ELISA and Murex ICEVIH1.0.2., 2) for confirmatory testing and HIV-1, HIV-2 differentiation: Genie II HIV-1/2 (Bio-Rad, Marnes la Coquette, France), Immunocomb HIV 1&2 (Orgenics Ltd, Yavne, Israel), SD Bioline (Standard Diagnostics, Inc., Korca) or HIV-2 and HIV-1 Western

Figure 2. Median CD4 count (cells/µl) and interquartile range, from ART initiation in the HIV-2 cohort, IeDEA West Africa collaboration.
doi:10.1371/journal.pone.0066135.g002

Table 3. Follow-up characteristics. IeDEA-WA-HIV-2 cohort.

	HIV-2-infected patients	Dually seropositive patient
	ARV-naïve (n = 470)	ART (n = 551)
Duration		
Median in years (IQR)	1.1 (0–3.8)	2.4 (0.7–4.3)
<12 months (%)	229 (48.7)	161 (29.2)
12–23 months (%)	60 (12.8)	87 (15.8)
24–37 months (%)	40 (8.5)	72 (13.1)
>37 months (%)	141 (30.0)	231 (41.9)
Status (%)		
Alive	355 (75.5)	449 (81.5)
Deceased	7 (1.5)	32 (5.8)
LTFU*	96 (20.4)	56 (10.2)
Dropped out	5 (1.1)	4 (0.7)
Transferred-out	7 (1.5)	10 (1.8)
	ARV-naïve (n = 270)	ART (n = 463)
Duration		
Median in years (IQR)	0.1 (0–2.0)	2.6 (0.9–5.5)
<12 months (%)	183 (67.8)	126 (27.2)
12–23 months (%)	19 (7.0)	73 (15.8)
24–37 months (%)	19 (7.0)	45 (9.7)
>37 months (%)	49 (18.2)	219 (47.3)
Status (%)		
Alive	190 (70.4)	387 (83.6)
Deceased	10 (3.7)	21 (4.6)
LTFU*	69 (25.6)	46 (9.9)
Dropped out	0(0.0)	1 (0.2)
Transferred-out	1 (0.3)	8 (1.7)

IQR: Intertquartile range, ART: antiretroviral treatment initiated.

*Number of patients lost to follow-up reported and recorded in the HIV-2 database.

1patients without any follow-up are included.
doi:10.1371/journal.pone.0066135.t003
blots. 3) Final confirmation is made when available with PeptiLAV (Bio-Rad), Western blot, HIV DNA PCR (in house), and/or Inno-LIA HIV 1/II (Innogenetics, Belgium) depending on the laboratories. A specific screen on serological testing is ongoing within this collaboration in order to propose soon a common diagnosis algorithm for all the participating centers.

HIV-2 may be underreported because antibody cross-reactivity between HIV-1 and HIV-2 is common and frequently results in misdiagnosis of HIV-2 as HIV-1 or dual infection [44,45]. Therefore screening tests need high sensitivity for HIV-2, while confirmatory testing may require multiple steps in order to reliably distinguish between HIV-1, HIV-2, and HIV-1/HIV-2 dual infection. The consequence of misdiagnosis that results in HIV-2 and dually seropositive patients going on treatment that ignores their HIV-2 as reported here with 7.1% of HIV-2 patients who had initiated NNRTI regimens because the clinician did not know they had HIV-2 at the time of ART initiation. Dual infection can be proven only by the presence of both HIV-1 and HIV-2 DNA or RNA by specific PCR the isolation of both viruses from the same individual [46]. However plasma HIV-2 RNA may be undetectable using current assays, it cannot be used as a diagnostic test. HIV-2 proviral DNA may be low or repeatedly negative in some asymptomatic individuals, making confirmation of diagnosis difficult [47].

CD4 count is the most readily available means for monitoring disease progression in HIV-2-infected patients. However, CD4 count often will not increase as rapidly as it generally occurs with successful therapy of HIV-1 mono-infection [33,34,48]. It has been reported that there is less and slower CD4 count recovery in older patients with HIV-1, limiting the CD4 interpretation of CD4 trajectory in older HIV-2 patients on ART [49]. Thus, there is no validated definition of immunological failure in HIV-2 infection. Consequently, in West Africa, it is difficult to manage HIV-2 patients with ART failure since there are no commercially available viral load and resistance tests for HIV-2 infection [50–52]. There are indeed very limited 1st and 2nd line treatment options for HIV-2 in most RLS in West Africa. The lack of available second-line HIV-2 therapy options should be considered when choosing first-line ART, as the initial regimen choice, narrows later treatment options. Additionally, in HIV-1/HIV-2 dual infection, clinical management needs to focus on controlling both viruses with agents that are active against both HIV-1 and HIV-2 [21].

Finally our large study of HIV-2 and HIV-1/HIV-2 dual infection in West Africa suggests that routine clinical care is less than optimal and that management and treatment of HIV-2 could be further informed by ongoing studies and randomized clinical trials in this population.

Acknowledgments

Special thanks to Gerald Allou, Jean-Claude Azani and Severin Lenaud who are in charge of the monitoring of the IeDEA cohort. The authors want to thank the many professionals dedicated to care in the participating centres and the patients for their participation.

*The IeDEA West Africa Collaboration Study Group (as of January, 2013):

Participating sites (*members of the Steering Committee):

Benin, Cotonou:
- Adults: Djimon Marcel Zannou*, Carin Ahouada, Jocelyn Akakpo, Christelle Ahomadegbe, Josué Akake, Hamady Traoré, Anta Koı¨ta, Niaboula Kone´, Cle´mentine N’Diaye, Tidiani Cisse´, Mamadou Dembele´, Mohammed Fomba, Asse´tou Soukho Kaya, Abdoulaye M Traoré, Elly, Aristophane Koffi Tanon (SMIT, CHU de Treichville), Serge Olivier Koule´, Koffi Charles Anzan, Calixte Guehi (USAC, CHU de Treichville);
- Pediatrics: Edmond Addi Aka*, Koffi Ludji Issouf, Jean-Claude Kouakou, Marie-Sylvie N’Gheche, (ACONDA-GePrEFe); Pety Touré*, Divine Avit-Edi (ACONGA-ACONTUt-Fe); Kouadio Kouakou*, Maglore Moh, Valerie Audoblé Yao (CIRBA); Madeléline Amorissani Folquet*, Marie-Thérèse Dainguy, Cyville Kouakou, Véronique Tanoh, Marie-Ansande, Gladys Oka-Berete, Nathalie Zobo, Patrick Acquah, Marie-Berthe-Kokho (CHU Cocody); Tanoh François Ehoua*, Marguerite Timité-Konan, Lucrèce Dechet Ahoussou, Julie Kebé Assoua, Mabéa Flora Sanì, Clémence Kouadio (CHU Yopougon).

Ghana, Accra:
- Pediatrics: Lorna Remner*, Bamenia Goka, Jennifer Welbeck, Adziri Sakery, Seth Niti Biah (PHU).

Guinea-Bissau:
- Adults: Christian Weije*, Zacarias José Da Silva*, João Paulo (Bandim Health Project), The Bissau HIV cohort study group: Amabelia Rodrigues (Bandim Health Project), David da Silva (National HIV program Bissau), Candida Medina (Hospital National Simao Mendes, Bissau), Ines Oliviera-Souto (Bandim Health Project), Lars Otzgeraad (Dept of Infectious Diseases, Aarhus University Hospital), Alex Lauren (Dept of Infectious Diseases, Odense University Hospital), Morten Sønderby (Dept of Infectious Diseases, Odense University Hospital, Peter Aaby (Bandim Health Project), Anders Formgaard (Dept. of Virology, Statens Serum Institut, Copenhagen), Christian Erikstrup (Dept. of Clinical Immunology), Jesper Eugen-Olsen (Dept. of Infectious Diseases, Hvidovre Hospital, Copenhagen).

Mali, Bamako:
- Adults: Moussa Y Maiga*, Fatoumata Fofana Diakité, Abdoulaye Kalle, Diarra Katié (CH Gabriel Toure), Hamar Alassane Traoré*, Daouda Minta*, Tidjani Cissé, Mamadou Dembéllé, Mohammed Dombia, Mahamadou Fomba, Asssetou Soukho Kaya, Abdoulaye M Traoré, Hamady Traoré, Amadou Abalitna Toure (CH Point G);
- Pediatrics: Fatoumata Dicko*, Mariam Sylaa, Alima Berthé, Hadizatou Célibaly Traoré, Anta Kouta, Niaibouda Koné, Clémentine N’Diaye, Safiatou Touré Célibaly, Mamadou Traoré, Natchata Traoré (CH Gabriel Toure).

Nigeria:
- Adults: Man Charurat* (UMB/IHIV), Samuel Ajayi*, Georgania Alim, Stephen Dapiap, Otu (UATH, Abuja), Festus Igininba (National Hospital Abuja), Okiwara Benson*, Clément Ademabname*, Jesse James, Obaseki, Philip Osadeke (UBTH, Benin City), John Olaseode (OATH, Ille-Ife).

Senegal, Dakar:
- Adults: Papa Salif Sow*, Bernard Diop, Noel Magloire Manga, Judicael Malick Tine* (SMIT, CHU Fann), Babacar Sall*, Fatoumata Ndiaye, Marie-Thérèse Dainguy, Cyville Kouakou, Véronique Tanoh, Marie-Ansande, Gladys Oka-Berete, Nathalie Zobo, Patrick Acquah, Marie-Berthe-Kokho (CHU Cocody); Tanoh François Ehoua*, Marguerite Timité-Konan, Lucrèce Dechet Ahoussou, Julie Kebé Assoua, Mabéa Flora Sanì, Clémence Kouadio (CHU Yopougon).

Togo, Lomé:
- Adults: Akessive Patassi*, Awerou Kotosso, Benjamin Goïlè, Kollection, Chérinet* (Bandim Health Project), Samuel Kani, Kankou Edem Mensah-Ulukong, Pinawe Pakpame (CHU Tokoin/Sylvanus Olympio).
- Pediatrics: Anne-Sophie Koko Lawson-Ex*, Yawo Atououma, Elom Takassi, Améyyo Djela, Ayoko Ephithé-gah, Sherifa El-Hadj Djibríl (CHU Tokoin/Sylvanus Olympio).

Executive Committee: François Dabis (Principal Investigator, Bordeaux, France), Emmanuel Bisangene (Co-Principal Investigator, Bordeaux, France)
Abidjan, Côte d'Ivoire), Elise Arrive´ (Bordeaux, France), Patrick Collie (Abidjan, Côte d'Ivoire), Didier Ekonou (Abidjan, Côte d'Ivoire), Antoine Jaquet (Bordeaux, France), Valérie Lery (Bordeaux, France), Charlotte Lewden (Bordeaux, France), Annie Sassco (Bordeaux, France).

Operational and Statistical Team: Jean-Claude Azani (Abidjan, Côte d'Ivoire), Gérard Allou (Abidjan, Côte d'Ivoire), Eric Balestre (Bordeaux, France), Franck Bohossou (Abidjan, Côte d'Ivoire), Sophie Desmonde (Bordeaux, France), Aida Mounkaila-Harouna (Bordeaux, France), Jean Rivenc (Pessac, France).

Consultants/Working Groups: Xavier Anglaert (Bordeaux, France), Boubacar Ba (Bamako, Mali), Jean Bosco Essanin (Abidjan), Andrea Ciaramello (Boston, USA), Boubacar Ba (Bamako, Mali), Jean Bosco Essanin (Abidjan), Sophie Desmonde (Bordeaux, France), Jean-Serge Elvis Diby (Abidjan, Côte d'Ivoire), Geoffrey S. Gottlieb (Seattle, USA), Apollinaire Goungnepiun Horo (Abidjan, Côte d'Ivoire), Serge N'Zéré Kangah (Abidjan, Côte d'Ivoire), Denis Malvy (Bordeaux, France), David Meless (Abidjan, Côte d'Ivoire), Aida Mounkaila-Harouna (Bordeaux, France), Camille Nellondio (Bordeaux, France), Caroline Shiboski (San Francisco USA), Rodolphe Thibaut (Bordeaux, France).

Coordinating Centre: ISPEV, Uni Bordeaux Segalen, Bordeaux, France.

Regional Office: PAC-CI, Abidjan, Côte d'Ivoire

Methodologic Support: MEREVA, Bordeaux, France

Website: http://www.merева.net/decica

Author Contributions

Conceived and designed the experiments: DKE FD. Performed the experiments: AM SPE AS EM PSS. Analyzed the data: E Balestre PC. Wrote the paper: DKE GG FD SPE PC. Read and approved the final version of the manuscript: PC E Balestre SPE AM E Bissagnene GG DKE FD AM AS PSS DM EM.

References

1. Clavel F (1987) HIV-2, the West African AIDS virus. AIDS. 1: 135–140.
2. Clavel F, Guiard D, Brun-Vezinet F, Chamalet S, Rey MA, et al. (1986) Isolation of a new human retrovirus from West African patients with AIDS. Nature 323: 341–345.
3. Clavel F, Mansinho K, Chamaret S, Favier V, et al. (1987) Human immunodeficiency virus type 2 infection associated with AIDS in West Africa. N Engl J Med 316: 1180–1185.
4. De Cock KM, Adorjano G, Ekinci E, Sibilly T, Koudou J, et al. (1992) Epidemiology and transmission of HIV-2: Why there is no HIV-2 pandemic. Jama 267: 2083–2086.
5. da Silva ZJ, Oliveira I, Andreasen D, Dias F, Rodrigues A, et al. (2008) Changes in prevalence and incidence of HIV-1, HIV-2 and dual infections in urban areas of Bissau, Guinea-Bissau- is HIV-2 disappearing? AIDS 22: 1193–1202.
6. Heitzinger K, Sow PS, Diagne Badiane NM, Gottlieb GS, N’Doye I, et al. (2012) Trends of HIV-1, HIV-2 and dual infection in women attending outpatient clinics in Senegal, 1990-2009. Int J STD AIDS 23: 710–716.
7. Gottlieb GS, Eholie S, Nkengasong JN, Jallow S, Rowland-Jones S, et al. (2008) Changes in prevalence and incidence of HIV-1, HIV-2 and SIV. Antivir Ther 9: 3–12.
8. Hirtzel G, Oliveira I, Andreasen D, Dias F, Rodrigues A, et al. (2008) Changes in prevalence and incidence of HIV-1, HIV-2 and dual infections in urban areas of Bissau, Guinea-Bissau-is HIV-2 disappearing? AIDS 22: 1193–1202.
9. van Tienen C, Schim van der Loeff M, Peterson I, Cotten M, Andersson S, et al. (1998) A call for randomized controlled trials of antiretroviral therapy for HIV-2 infection in West Africa. AIDS 22: 2069–2072; discussion 2073–2074.
10. Marlink R, Kanki P, Thior I, Travus K, Eisen G, et al. (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265: 1587–1590.
11. Popper SJ, Sarr AD, Travus KU, Gueye-Ndiaye MB, Mboup S, et al. (1999) Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis 180: 1116–1121.
12. van Cierien C, Schim van der Leef M, Peterson I, Cotten M, Anderson S, et al. (2011) HTLV-1 and HIV-2 infection are associated with increased mortality in a rural West African community. PLoS One 6: e28026.
13. Gottlieb GS, Sow PS, Hirtzel G, Diagne Badiane NM, Gottlieb GS, N’Doye I, et al. (2012) Equal placebo viral load: a competitive trial among individuals with human immunodeficiency virus (HIV) type 1- and HIV-2-infected individuals from Senegal. West J Infect Dis 185: 903–914.
14. Adorjano Johnson G, De Cock KM, Eholie S, Sibilly T, et al. (1994) Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. Jama 272: 462–466.
15. Burgard M, Jaseron C, Matheon S, Damond F, Hamrene K, et al. (2010) Mother-to-Child Transmission of HIV-2 infection from 1986 to 2007 in the ANRS French Perinatal Cohort EPP-COI. Clinical Infectious Diseases 51: 833–843.
16. O’Donovan D, Ahiroshi K, Milligan P, Ota M, Yamuah L, et al. (2000) Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission of HIV-1, HIV-2 and SIV. Antivir Ther 9: 3–12.
17. Prise en charge médi-cale des personnes infectée-s par le VIH (2010). Recommendations of the group of experts. Rapport 2010 sous la direction du Pr. Patrick Yeni. Available: http://www.sante.gouv.fr/IMG/pdf/Rapport_2010_sur_la_prise_en_charge_medicale_des_personnes_infectees_par_le_VIH_sous_la_direction_du_Patrick_Yeni.pdf. Accessed 2013 April 17.
18. Matheron S (2000) HIV-2 infection: a call for controlled trials. AIDS 22: 2073–2074.
19. Dylweicz J, Eholie S, Maiga M, Zannou DM, Sow PS, et al. (2010) First-year lymphocyte T CD+ response to antiretroviral therapy according to the HIV type in the IDIDA West Africa collaboration. AIDS 24: 1045–1050.
20. Dylweicz J, Matheron S, Lazaro E, Damond F, Bonnet F, et al. (2008) Comparison of viro-immunological marker changes between HIV-1 and HIV-2-infected patients in France. AIDS 22: 457–468.
21. Benard A, van Sighem A, Taieb A, Valadas E, Ruelle J, et al. (2011) Immunovirological Response to Triple Nucleotide Reverse-Transcriptase Inhibitors and Ritonavir-Boosted Protease Inhibitors in Treatment-Naive HIV-2-Infected Patients: The ACHI(E)V(2E) Collaboration Study Group. PLoS One 6: e2074.
22. Schim van der Leef M, Hannaman A, Awasa AA, Ota MO, O’Donovan D, et al. (2003) Survival of HIV-1 and HIV-2 perinatally infected children in The Gambia. Aids 17: 2399–2404.
23. Togun T, Peterson I, Jaffar S, Oko F, Okomo U, et al. (2011) Pre-treatment mortality and loss-to-follow-up in HIV-1, HIV-2 and HIV-1/HIV-2 dually infected patients eligible for antiretroviral therapy in The Gambia, West Africa. AIDS Res Ther 8: 24.
38. van der Ende ME, Prins JM, Brinkman K, Keuter M, Veenstra J, et al. (2003) Clinical, immunological and virological response to different antiretroviral regimens in a cohort of HIV-2-infected patients. AIDS 17 Suppl 3: S55–61.
39. Egger M, Ekouevi DK, Williams C, Lyamuya RE, Mankumbi H, et al. (2011) Cohort Profile: The international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa. Int J Epidemiol.
40. RESAPSI IMEA (2009). Fourth Workshop on Strategies in Antiretroviral Therapy on the theme “Diagnosis, Treatment and Monitoring of HIV-2 Infection and of HIV-1/HIV-2 Dual Infection”. Bassam, Ivory Coast, 13–15 May 2009. Final report.
41. RESAPCI IMEA (2011). Workshop on cohort studies of HIV-2 infected and of HIV-1+2 dually infected individuals. Praia, Cape Verde, 14–16 March 2011. Final report.
42. Imai M, Hayashi T, Kondo M, Saito T, Ito A, et al. (1995) Differentiation of human immunodeficiency virus type 1 (HIV-1) infections with HIV-2-cross-reacting antibody from mixed infections with HIV-1 and HIV-2 by serological absorption test. J Clin Microbiol 33: 1727–1729.
43. Toro C, Amor A, Soriano V (2008) [Diagnosis of HIV-1 non-B subtypes and HIV-2]. Enferm Infecc Microbiol Clin 26 Suppl 13: 66–70.
44. Rouet F, Ekouevi DK, Inwoley A, Chaix ML, Burgard M, et al. (2004) Field evaluation of a rapid human immunodeficiency virus (HIV) serial serologic testing algorithm for diagnosis and differentiation of HIV type 1 (HIV-1), HIV-2, and dual HIV-1-HIV-2 infections in West African pregnant women. J Clin Microbiol 42: 4147–4153.
45. Torian LV, Eavey JJ, Punsalang AP, Pirillo RE, Forpigna LA, et al. (2010) HIV type 2 in New York City, 2000–2008. Clin Infect Dis 51: 1334–1342.
46. Peeters M, Gershay-Damet GM, Fransen K, Koffi K, Coulhaut M, et al. (1992) Virological and polymerase chain reaction studies of HIV-1/HIV-2 dual infection in Cote d’Ivoire. Lancet 340: 339–340.
47. Damond F, Loussert-Ajaka I, Apetrei C, Descamps D, Souquiere S, et al. (1998) Highly sensitive method for amplification of human immunodeficiency virus type 2 DNA. J Clin Microbiol 36: 809–811.
48. Matheron S, Damond F, Benard A, Taieb A, Campa P, et al. (2006) CD4 cell recovery in treated HIV-2-infected adults is lower than expected: results from the French ANRS CO5 HIV-2 cohort. AIDS 20: 459–462.
49. Balestré E, Elodie SF, Lokossue A, Sow PS, Chararat M, et al. (2012) Effect of age on immunological response in the first year of antiretroviral therapy in HIV-1-infected adults in West Africa. Aids 26: 951–957.
50. Damond F, Benard A, Balotta C, Boni J, Gotten M, et al. (2011) An International Collaboration To Standardize HIV-2 Viral Load Assays: Results from the 2009 ACHEE/V2E Quality Control Study. Journal of Clinical Microbiology 49: 3491–3497.
51. Damond F, Benard A, Ruelle J, Alabi A, Kupfer B, et al. (2008) Quality control assessment of human immunodeficiency virus type 2 (HIV-2) viral load quantification assays: results from an international collaboration on HIV-2 infection in 2006. J Clin Microbiol 46: 2088–2091.
52. Chang M, Gottlieb GS, Dragavon JA, Cherne SL, Kenney DL, et al. (2012) Validation for clinical use of a novel HIV-2 plasma RNA viral load assay using the Abbott m2000 platform. J Clin Virol 55: 120–133.