Acquired Factor V Inhibitor Complicated with Immune Thrombocytopenia

Fuka Mima¹, Ryota Minami¹, Mizuki Asako¹, Hitomi Matsunaga¹, Yuri Fujita², Yoshimi Takimoto², Sonoko Senda², Wataru Nakahara¹, Mako Ikeda¹ and Shuji Ueda¹

Abstract:
We herein report a patient with a high bleeding tendency as a result of acquired factor V inhibitor and immune thrombocytopenia (ITP). The administration of prednisolone increased the platelet count, but a fatal bleeding event occurred before platelet levels had sufficiently increased. Factor V is stored in not only plasma but also platelets, and platelet-derived factor V might play a local hemostatic role. Bleeding tendency may be high in rare cases where factor V inhibitor is complicated with severe thrombocytopenia. In such patients, physicians should consider aggressive hemostatic therapy, including plasma exchange, in addition to immunosuppressive therapy.

Key words: acquired factor V inhibitor, immune thrombocytopenia, platelet-derived factor V, fatal hemorrhaging

(Intern Med 61: 91-95, 2022) (DOI: 10.2169/internalmedicine.7173-21)

Introduction

Acquired factor V inhibitor is a rare coagulation disorder. The associated hemorrhagic manifestations vary and range from asymptomatic to life-threatening bleeding (1, 2). The reasons for this range of symptoms are gradually being clarified, but the details remain to be elucidated (3).

Functionally important factor V is found in not only plasma but also the alpha granules of platelets, and platelet-derived factor V may play a local hemostatic role in patients with factor V inhibitor (4). Comorbid thrombocytopenia in patients with factor V inhibitor might exacerbate bleeding symptoms.

We herein report a patient with acquired factor V inhibitor and immune thrombocytopenia (ITP) who died of intracranial hemorrhaging.

Case Report

A 71-year-old Japanese woman was referred to our hospital with numerous petechiae and ecchymoses, as well as melena. Her medical history included hypertension, hyperlipidemia, and cerebral infarction. She had no history of bleeding tendency and no significant family history of a bleeding disorder. A hematological examination performed five months before admission showed no abnormal changes, but the patient experienced progressive fatigue and weight loss in the two months before admission. A few days after noticing petechiae and ecchymoses over her entire body, she consulted her family physician. A blood examination revealed anemia and severe thrombocytopenia, and the patient was immediately admitted to our hospital.

On admission, she was conscious, and her vital signs were unremarkable; however, a physical examination revealed conjunctival pallor and numerous petechiae on her limbs and trunk. A peripheral blood analysis showed a white blood cell count slightly above the reference range (8.8×10⁹/L), with a normal differential cell count and a hemoglobin level and platelet count below the reference range (7.0 g/dL and 3×10⁹/L, respectively; Table). The reticulocyte count was 2.4%. Routine coagulation tests revealed both a prolonged prothrombin time (international normalized ratio) (PT-INR; 2.68) and a prolonged activated partial thromboplastin time (APTT; 72.4 s). Platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-associated factor V (PAFv) was below the reference range (4.0% vs. 40.9%). A hospital laboratory test revealed factor V deficiency (95.4% vs. 100%). The patient was immediately admitted to the intensive care unit (ICU). The platelet counts on admission were 3×10⁹/L (Fig. 1). A bone marrow examination revealed normoblastic hyperplasia. A bone marrow biopsy revealed no thrombocytopenia, and a c-kit test was negative. A platelet-aggregating test revealed no abnormalities (Fig. 2). A platelet-ass
were elevated (17.4 μg/mL and 8.4 μg/mL, respectively). fibrin/fibrinogen degradation products (FDP) and D-dimer boplastin time (aPTT; 136.3 seconds). The plasma levels of fibrin/fibrinogen degradation products (FDP) and D-dimer were elevated (17.4 μg/mL and 8.4 μg/mL, respectively).

Antithrombin III (AT III) activity levels were normal, but the thrombin-antithrombin complex (TAT) levels were slightly above the reference range (3.9 ng/mL). A biochemical analysis showed a slight elevation of serum C-reactive protein (CRP; 2.92 mg/dL). Laboratory tests found no indication of hemolysis, such as elevated lactate dehydrogenase (LDH) or total bilirubin. Computed tomography of the whole body showed subcutaneous bleeding in the right hip and intramuscular bleeding in the right thigh (Fig. 1). Gad- troendoscopy showed oozing blood containing hematin (Fig. 2).

To determine whether the prolonged PT and prolonged aPTT were due to a coagulation factor deficiency or circulating anticoagulant, we performed a mixing study with plasma from the patient and a healthy volunteer. Both PT and aPTT improved to near the reference range immediately after the reaction but were prolonged at two hours after the reaction, indicating the presence of a delayed-type inhibitor. Lupus anticoagulant testing with a dilute Russell’s viper venom time (dRVVT) assay was positive (Table), but anti-cardiolipin β2 glycoprotein-I complex antibodies were negative. In addition, we performed the heparplastin test (HPT) and thrombotest (TT). The results were within the reference range (Table). Given the discrepancy with the PT test result, this finding was taken to indicate a factor V defi-
Acquired inhibitors of coagulation factors are antibodies that either inhibit the activity of coagulation factors or increase their clearance, and hemorrhagic diathesis is one of the main clinical manifestations in affected patients. The clinical manifestations associated with factor V inhibitor range from asymptomatic laboratory abnormalities to life-threatening bleeding and thromboembolic events (1, 2, 7). About 20% of patients with factor V inhibitor are asymptomatic; in symptomatic patients, the most common manifestation is mucosal bleeding, such as urinary and gastrointestinal bleeding, followed by subcutaneous bleeding and epistaxis (2, 8). Fatal bleeding, such as intracranial hemorrhaging, has been reported in about 5% to 10% of patients (2, 8).

In contrast with the titers of other coagulation factor inhibitors, the titer of factor V inhibitor does not always correlate with clinical symptoms, and the same is true for factor V activity (2). Studies have suggested that at least two factors may contribute to the variability of bleeding tendency in factor V inhibitor. First, besides being found in plasma (80%), factor V is also stored in the alpha granules of platelets (20%) (9). Plasma factor V is internalized by bone marrow megakaryocytes via specific receptor-mediated processes and then undergoes several modifications that make platelet factor V structurally and functionally different from plasma factor V (4, 10, 11). Platelet-derived factor V might play a local hemostatic role at sites of vascular injury. Patients with congenital factor V deficiency with undetectable plasma factor V seldom experience major bleeding, as residual platelet factor V allows sufficient thrombin to be generated to prevent severe bleeding (10, 11). Thus, hemorrhagic manifestations in factor V inhibitor might be influenced by whether or not the inhibitor affects platelet factor V (12, 13). For example, a patient with factor V inhibitor who did not have a severe bleeding disorder was reported to have a type of inhibitor that neutralized plasma factor V but not the less accessible platelet factor V (12). Second, the bleeding phenotype depends on which factor V epitope is recognized by the inhibitor. Inhibitory anti-factor V antibodies that recognize the C2 domain of the factor V light chain have been reported to be associated with hemorrhagic manifestations (3, 14). Factor V inhibitors from asymptomatic patients both impaired the activated protein C (APC) cofactor activity of factor V in mechanisms that inactivate activated factor VIII and delayed APC-catalyzed cleavage of factor V, indicating that APC resistance helps prevent bleeding in asymptomatic patients (3). Furthermore, activated platelet factor V is proteolyzed more slowly than activated plasma factor V and not completely inactivated by APC (4, 15, 16). These findings strongly suggest that platelet factor V might contribute to the suppression of bleeding in factor V inhibitor. Accordingly, factor V inhibitor combined with thrombocytopenia is likely to increase the bleeding tendency.

Our patient had acquired factor V inhibitor complicated with ITP. Factor V inhibitors are autoantibodies and are associated with various autoimmune diseases (2, 17). How-
ever, to our knowledge, only two case reports have described factor V inhibitor complicated with ITP (18, 19). The clinical course of a female patient with acquired factor V inhibitor described by Higuchi et al. (18) is interesting: although the patient initially presented with deep vein thrombosis from the right superficial femoral vein to the popliteal vein, after one week in the hospital, she developed immune thrombocytopenia, which resulted in decreased platelet count and hemorrhaging. Both that patient and the patient described by Takaku et al. (19) were successfully treated with steroids, which suppressed inhibitor production and increased platelet count. We also administered steroids to our patient; however, while the steroids increased the platelet count, they did not suppress the production of factor V inhibitor. Her hemostasis did not improve, and after a few days, the patient developed intracranial hemorrhaging and died.

While we had hoped that the elevated platelet count might reduce the patient’s bleeding tendency by increasing the availability of platelet-derived factor V, the fatal hemorrhaging occurred before the platelet count had increased sufficiently. In such rare cases where factor V inhibitor is complicated with an extremely low platelet count, patients can have a high bleeding tendency, and physicians should consider aggressive hemostatic therapy, including plasma exchange, in addition to immunosuppressive therapy with drugs, such as prednisolone, cyclophosphamide, and rituximab (20-22).

Along with suppressing the factor V activity, the factor V inhibitor in our patient had lupus anticoagulant characteristics. Similar cases have been reported in the past (23-25). Many factor V inhibitors appear to target the C2 domain of factor V and result in impaired binding of factor V to phospholipids; therefore, the presence of excess phospholipids may partially correct clotting times and show activity similar to lupus anticoagulant (26). Other authors have reported that factor V inhibitors with lupus anticoagulant properties are rarely associated with significant bleeding (24), but fatal hemorrhaging has also been reported (23, 25). No consensus has been reached concerning the association of bleeding or thrombosis risk in factor V inhibitor with lupus anticoagulant properties, and further investigations are warranted.

The authors state that they have no Conflict of Interest (COI).

References
1. Ortel TL. Clinical and laboratory manifestations of anti-factor V antibodies. J Lab Clin Med 133: 326-334, 1999.
2. Franchini M, Lippi G. Acquired factor V inhibitors: a systematic review. J Thromb Thrombolysis 31: 449-457, 2011.
3. Matsumoto T, Nogami K, Shima M. Coagulation function and mechanisms in various clinical phenotypes of patients with acquired factor V inhibitors. J Thromb Haemost 12: 1503-1512, 2014.
4. Gould WR, Simioni P, Silveira JR, Tormene D, Kalafatis M, Tracy PB. Megakaryocytes endocytose and subsequently modify human factor V in vivo to form the entire pool of a unique platelet-derived cofactor. J Thromb Haemost 3: 450-456, 2005.
5. Kadohira Y, Yamada S, Hayashi T, Morishita E, Asakura H, Ichinose A. A discrepancy between prothrombin time and Normotest (Hepaplastintest) results is useful for diagnosis of acquired factor V inhibitors. Int J Hematol 108: 145-150, 2018.
6. Nakata K, Ueda S, Matsunaga H, et al. High titer of acquired factor V inhibitor presenting with a pseudo-deficiency of multiple coagulation factors. Intern Med 57: 393-397, 2018.
7. Ogawa H, Souri M, Kanouchi K, et al. A high titer of acquired factor V inhibitor complicating immune thrombocytopenia. Intern Med 57: 393-397, 2018.
factor V inhibitor in a hemodialysis patient who developed arterial thrombosis. Int J Hematol 109: 214-220, 2019.
8. Boland F, Shreenivas AV. Acquired factor V inhibitors: a review of literature. Ann Hematol Oncol 4: 1168, 2017.
9. Tracy PB, Eide LL, Bowie EJ, Mann KG. Radioimmunoassay of factor V in human plasma and platelets. Blood 60: 59-63, 1982.
10. Duckers C, Simioni P, Rosing J, Castoldi E. Advances in understanding the bleeding diathesis in factor V deficiency. Br J Haematol 146: 17-26, 2009.
11. Duckers C, Simioni P, Spiezia L, et al. Residual platelet factor V ensures thrombin generation in patients with severe congenital factor V deficiency and mild bleeding symptoms. Blood 115: 879-886, 2010.
12. Nesheim ME, Nichols WL, Cole TL, et al. Isolation and study of an acquired inhibitor of human coagulation factor V. J Clin Invest 77: 405-415, 1986.
13. Ajzner E, Balogh I, Haramura G, et al. Anti-factor V autoantibody in the plasma and platelets of a patient with repeated gastrointestinal bleeding. J Thromb Haemost 1: 943-949, 2003.
14. Ortel TL, Moore KD, Quinn-Allen MA, et al. Inhibitory anti-factor V antibodies bind to the factor V C2 domain and are associated with hemorrhagic manifestations. Blood 91: 4188-4196, 1998.
15. Camire RM, Kalafatis M, Cushman M, Tracy RP, Mann KG, Tracy PB. The mechanism of inactivation of human platelet factor Va from normal and activated protein C-resistant individuals. J Biol Chem 270: 20794-20800, 1995.
16. Gould WR, Silveira JR, Tracy PB. Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va. J Biol Chem 279: 2383-2393, 2004.
17. Imashuku S, Hasegawa T, Kubo K, Nakato M, Shima M. Anti-factor V inhibitor in patients with autoimmune diseases: case report and literature review. Int Med Case Rep J 4: 31-34, 2011.
18. Higuchi T, Okamoto T, Kou T, Takeuchi T, Koyamada R, Okada S. Deep vein thrombosis associated with factor V inhibitor followed by immune thrombocytopenia. Ann Hematol 91: 1831-1832, 2012.
19. Takaku T, Kuriyama Y, Shoji N, et al. Simultaneous development of factor V inhibitor and autoimmune thrombocytopenia in a patient with dermatomyositis. Rinsho Ketsueki 43: 1050-1054, 2002 (in Japanese, Abstract in English).
20. Knobl P, Lechner K. Acquired factor V inhibitors. Baillieres Clin Haematol 11: 305-318, 1998.
21. Kajitani M, Ozdemir A, Aguinaga M, Jazieh AR, Flick JT, Antakli T. Severe hemorrhagic complication due to acquired factor V inhibitor after single exposure to bovine thrombin product. J Card Surg 15: 378-382, 2000.
22. Yanagiya R, Kanouchi K, Toubai T, et al. Plasma exchange as an initial treatment for severe bleeding induced by acquired factor V deficiency: a case report and mini literature review. Acta Haematol 144: 82-87, 2021.
23. Shastri KA, Ho C, Logue G. An acquired factor V inhibitor: clinical and laboratory features. J Med 30: 357-366, 1999.
24. Favaloro EJ, Posen J, Ramakrishna R, et al. Factor V inhibitors: rare or not so uncommon? A multi-laboratory investigation. Blood Coagul Fibrinolysis 15: 637-647, 2004.
25. Olson NJ, Robert D, Hedayat AA, Liu X, Ornstein DL. Fatal hemorrhage due to a spontaneous factor V inhibitor with lupus anticoagulant properties. Blood Coagul Fibrinolysis 28: 407-410, 2017.
26. Izumi T, Kim SW, Greist A, et al. Fine mapping of inhibitory anti-factor V antibodies using factor V C2 domain mutants. Identification of two antigenic epitopes involved in phospholipid binding. Thromb Haemost 85: 1048-1054, 2001. 

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).