Albumin-fibrinogen ratio and fibrinogen-prealbumin ratio as promising prognostic markers for cancers: an updated meta-analysis

Da-wei Sun¹, Lin An² and Guo-yue Lv¹*

Abstract

Objective: Provide an updated and comprehensive evaluation of the prognostic value of the albumin-fibrinogen ratio (AFR) and the fibrinogen-prealbumin ratio (FPR) for patients with cancer.

Materials and methods: Four databases (PubMed, Web of Science, Cochrane Library, and WanFang) were searched. The primary endpoints were overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). Pooled data were synthesized using StataMP 14 and expressed as hazard ratios (HRs) and 95% confidence intervals (CIs).

Results: This update examined 19 studies (7282 cases) that assessed the correlation of AFR with cancer prognosis. Pooled univariate and multivariate analyses indicated significant correlations of low AFR with poor OS (HR 2.18, 95% CI 1.87–2.55 and HR 1.75, 95% CI 1.54–2.00, respectively), poor DFS (HR 1.89, 95% CI 1.54–2.32 and HR 1.51, 95% CI 1.29–1.76, respectively), and poor PFS (HR 1.68, 95% CI 1.42–1.99 and HR 1.48, 95% CI 1.16–1.88, respectively). Pooled univariate and multivariate analyses of 6 studies (2232 cases) indicated high FPR significantly correlated with poor OS (HR 2.37, 95% CI 2.03–2.77 and HR 1.97, 95% CI 1.41–2.77, respectively). One study reported that high FPR correlated with poor DFS (univariate analysis: HR 2.20, 95% CI 1.35–3.57; multivariate analysis: HR 1.77, 95% CI 1.04–2.99) and one study reported a correlation of high FPR with poor PFS in univariate analysis alone (HR 1.79, 95% CI 1.11–2.88).

Conclusion: A low AFR and a high FPR correlated with increased risk of cancer mortality and recurrence. AFR and FPR may be promising prognostic markers for cancers.

Keywords: Albumin-fibrinogen ratio (AFR), Fibrinogen-prealbumin ratio (FPR), Cancer, Prognostic, Meta-analysis

Introduction

Cancer incidence and mortality are rapidly increasing worldwide. There were an estimated 18.1 million newly diagnosed cancer cases and 9.6 million cancer deaths throughout the world during 2018 [1]. Research indicates that during the twenty-first century cancer will be the second-leading cause of death in the USA [2] and the single most important barrier to increasing life expectancy worldwide [1]. Moreover, the 5-year relative survival rate for all cancers is only 67%, thus indicating that prognoses of patients with cancer remain poor [3]. Therefore, evidenced-based resources are needed to improve survival from cancer and to identify patient characteristics that affect prognosis.

Malnutrition is common in cancer patients and is associated with increased morbidity and mortality [4]. Serum levels of albumin and prealbumin are common indicators of nutritional status. Albumin, which normally accounts for more than 50% of blood protein, is synthesized and secreted from the liver, and its concentration reflects the protein status of the blood and internal organs [5]. It functions as the major modulator of plasma oncotic pressure, and it also transports a variety of substances, including endogenous physiological metabolites and exogenous ligands...
The pretreatment serum albumin level in a cancer patient is generally used to assess nutritional status and predict prognosis [7]. Prealbumin, also known as transthyretin, has a much shorter half-life and smaller serum pool than albumin. Its main functions are to bind and transport endogenous proteins and small molecules. Prealbumin is more sensitive to changes in protein-energy status than albumin, and its concentration closely reflects recent dietary intake rather than overall nutritional status [8]. Prealbumin concentration can therefore be regarded primarily as a marker of at-risk patients who require nutritional monitoring [9]. In particular, the prealbumin level provides a quantitative measure of the efficacy of a nutritional care plan and an indication of the need to modify interventions [5].

Clinicians have long recognized specific associations of hemostatic system disorders with diverse cancers. The polypeptide fibrinogen is the central protein in the hemostasis pathway and occurs as a deposit in most tumors that occur in humans and experimental animals [10]. Fibrinogen is a 340 kDa hexameric plasma glycoprotein synthesized by the liver and consists of three pairs of non-identical polypeptide chains, the α-, β-, and γ-chains [11]. Fibrinogen deposit within the tumor stroma, especially the extracellular matrix, serves as a scaffold that supports the binding of growth factors which promote cellular responses associated with tumor cell adhesion, proliferation, and migration during cell growth and angiogenesis [12]. An elevated serum fibrinogen level is commonly associated with poor overall survival (OS) in human cancers [13].

Previous meta-analyses of cancer patients indicated that several ratios of pretreatment systemic inflammatory markers or nutritional markers, such as the neutrophil-lymphocyte ratio (NLR) [14], the albumin-globulin ratio (AGR) [15], and the C-reactive protein-albumin ratio (CAR) [16], can predict prognosis. Recent studies have examined the albumin-fibrinogen ratio (AFR) and/or the fibrinogen-prealbumin ratio (FPR) as prognostic indicators in cancer. For instance, a previous study examined the albumin-fibrinogen ratio or “fibrinogen albumin ratio” or “fibrinogen prealbumin ratio” or “prealbumin fibrinogen ratio.” The reference lists of initially identified studies were also scrutinized to identify additional relevant studies.

Materials and methods
Search strategy
Potential studies were identified by searching four online databases (PubMed, Web of Science, Cochrane Library, and WanFang) using PRISMA guidelines [18]. All studies that were published up to Oct 22, 2019, were identified using the search terms: “albumin fibrinogen ratio” or “fibrinogen albumin ratio” or “fibrinogen prealbumin ratio” or “prealbumin fibrinogen ratio.” The data extracted from each article included author names, publication year, country, cancer category, cancer stage, study design (prospective or retrospective), primary treatment option, optimal cut-off value and method used to select the optimal cut-off value, number of cases (total and numbers above and below the cut-off value), prognostic outcome, hazard ratios (HRs) with 95% confidence intervals (CIs), method of data analysis, data source (crude data or fitted curve), and follow-up interval. HR data were extracted from univariate and multivariate analyses if available.

Statistical analysis
When prognostic outcomes were provided as Kaplan-Meier curves, Engauge Digitizer 4.1 software was used to read the curves and identify the times of deaths. These data, defined as time-event outcomes, were used to calculate HRs and 95% CIs using the method of Tierney et al. [19]. These data were then synthesized and expressed as HRs with 95% CIs using StataMP 14. Cochran’s Q and I² statistics were utilized to assess the heterogeneity among included studies [20]. When there was significant heterogeneity (P < 0.1 and/or I² > 50%), pooled data were analyzed using a random-effects
model; otherwise, a fixed-effects model was used. All statistical tests were two-sided, and a \(P \) value less than 0.05 was deemed statistically significant. The statistical analyses, stratification analyses, and sensitivity analyses were the same as those used in our previous publications [15, 21].

Results

Study selection

We initially identified 1805 records, and 995 of these records remained after removal of duplicates (Fig. 1). After review of the titles and abstracts, we excluded an additional 971 records. We reviewed the full text of 24 records and ultimately included 21 studies in the quantitative analysis [22–42].

Characteristics of included studies

Nineteen of the included studies evaluated the role of AFR in cancer prognosis, 7 more studies than examined in the previous meta-analysis of the prognostic value of AFR in cancer [17]. In addition, 7 of the included studies examined the prognostic value of FPR in cancer prognosis. We thoroughly evaluated the prognostic value of the AFR and FPR in cancers by analysis of OS, DFS, and PFS (Table 1).

Effect of AFR on OS, DFS, and PFS

The association of AFR with OS was reported in 18 studies (7211 cases) using univariate analysis and in 17 studies (6704 cases) using multivariate analysis. Based on the univariate analyses, the pooled results of a random-effects model (\(I^2 = 73.6\%, P = 0.000 \)) showed a significant association between low AFR and poor OS (HR 2.18, 95% CI 1.87–2.55, \(P = 0.00 \)) (Fig. 2a). Based on the multivariate analyses, the pooled results of a random-effects model (\(I^2 = 34.0\%, P = 0.084 \)) also showed a significant association between low AFR and poor OS (HR 1.75, 95% CI 1.54–2.00, \(P = 0.00 \)) (Fig. 2b).

The association of AFR with DFS was reported in 5 studies (1815 cases) using univariate analysis and in 4 studies (1505 cases) using multivariate analysis. Based on the univariate analyses, the pooled results of a random-
Table 1: Characteristics of studies included in the meta-analysis

Author [Ref.]	Year	Country	Cancer category	Case no.	Cancer stage	Design type	Primary treatment option	Optimal cut-off for AFR/FPR	No. > against No. < (cut-off)	Prognostic outcomes	Hazard ratio (95% CI)	Data origin	Follow-up period (months)
Chen et al. [22]	2019	China	Colorectal cancer	430	Metastatic	Prospective	Mixed modality but targeted therapy	9.9 by X-tile (AFR)	NR	OS, PFS	OS(U),1.73 (1.35–2.21), Cohort 1	Crude	More than 36
Chen et al. [22]	2019	China	Colorectal cancer	77	Metastatic	Prospective	Radiochemotherapy	9.9 by X-tile (AFR)	NR	OS, PFS	OS(U), 1.75 (0.93–3.31), Cohort 2	Crude	More than 36
Yu et al. [23]	2019	China	Ovarian cancer	313	Advanced	Retrospective	Surgery plus chemotherapy	7.78 by ROC (AFR)	162/151	OS, PFS	OS(U), 2.50 (1.44–4.09), Subgroup 1	Crude	At least 12
Zhang et al. [24]	2019	China	Colorectal cancer	71	Metastatic	Retrospective	Chemotherapy	10.63 by ROC (AFR)	23/48	PFS	PFS(U), 1.91 (1.14–3.20), Subgroup 1	Crude	Median 6.67 (1.86–27.17)
Li et al. [25]	2019	China	Ovarian cancer	186	I–IV (FIGO)	Retrospective	Surgical resection	Score = 0 (AFR)	148/38	OS	OS(U), 1.92 (1.56–2.23), Subgroup 1	Crude	Median 45.5 (2.0–45.5)
Ying et al. [26]	2019	China	NSCLC	270	III–IV (TNM)	Retrospective	Chemotherapy	8.02 by ROC (AFR)	119/151	OS, PFS	OS(U), 1.93 (1.28–2.98), Subgroup 1	Crude	Up to 60
Author [Ref.]	Year	Country	Cancer category	Case no.	Cancer stage	Design type	Primary treatment option	Optimal cut-off for AFR/FPR	No. > against No. < (cut-off)	Prognostic outcomes	Hazard ratio (95% CI)	Data origin	Follow-up period (months)
---------------	------	---------	-----------------	---------	--------------	-------------	---------------------------	-----------------------------	-----------------------------	-------------------	----------------------	-------------	------------------------
Du [27]	2019	China	Gallbladder cancer	220	Metastatic	Retrospective	Chemotherapy mainly	15.45 by X-tile (AFR)	NR	OS	(1.09–2.78)	Crude	More than 36
Wang [28]	2019	China	CRLM	452	Metastatic	Retrospective	Surgical resection	13.16 by X-tile (AFR)	260/192	OS, DFS	Crude	Median 28	
Chen et al. [29]	2018	China	NSCLC	529	I–III (AJCC)	Retrospective	Surgical resection	967 by ROC (AFR)	392/137	OS, DFS	Crude	Median 35.0 (1–78.5)	
Gao et al. [30]	2018	China	ESCC	153	0–III (AJCC)	Prospective	Surgical resection	93 by ROC (AFR)	128/25	OS	Crude	More than 36	
Li et al. [31]	2018	China	Lung cancer	412	I–IV	Prospective	Multiple modality	78 by ROC (AFR)	NR	OS	Crude	More than 36	
Sun et al. [32]	2018	China	Colorectal cancer	702	I–III (AJCC)	Prospective	Surgical resection	92 by X-tile (AFR)	562/118	OS	Crude	More than 36	
Liang et al. [33]	2018	China	Soft tissue sarcoma	310	IA–IV (AJCC)	Retrospective	Surgical resection	13,77 by ROC (AFR)	176/134	OS, DFS	Crude	Median 91.5	

Table 1 Characteristics of studies included in the meta-analysis (Continued)
Author [Ref.]	Year	Country	Cancer category	Case no.	Cancer stage	Design type	Primary treatment option	Optimal cut-off for AFR/FPR	No. > against No. <(cut-off)	Prognostic outcomes	Hazard ratio (95% CI)	Data origin	Follow-up period (months)
Xu et al. [34]	2018	China	HCC	151	0-C (BCLC)	Retrospective	Surgical resection	16.1 by ROC (AFR)	50/101	OS, DFS	OS(U),2.15 (1.35–3.40)	Crude	Median 33.8 (1–86)
Sun et al. [35]	2018	China	ESCC	373	I–III (AJCC)	Retrospective	Surgical resection	Score = 0 (AFR)	154/219	OS, DFS	OS(U),1.69 (1.27–2.24)	Crude	Median 51.9
Xu et al. [36]	2018	China	Gallbladder cancer	154	0–IVB (AJCC)	Retrospective	Surgical resection	125 by ROC (AFR)	71/83	OS	OS(U),4.63 (2.99–7.17)	Crude	Median 17
Zou et al. [37]	2018	China	Leukemia	191	A–C (Binet stage)	Retrospective	Untreated	97 by X-tile (AFR)	171/20	OS	OS(U),3.65 (1.67–7.99)	Crude	Median 51 (1–270)
Zhang et al. [38]	2017	China	Gastric cancer	360	II–III (AJCC)	Retrospective	Surgical resection	89 by X-tile (AFR)	290/70	OS	OS(U),2.34 (1.59–3.45)	Crude	More than 36
Hwang et al. [39]	2017	Korea	Breast cancer	793	I–III (AJCC)	Retrospective	Surgical resection	1408 by ROC (AFR)	538/255	OS	OS(U),2.42 (1.66–4.47)	Crude	Median 44.0 (0–197)
Tan et al. [40]	2017	China	ESCC	1135	T1-4aN0-3 (AJCC)	Retrospective	Surgical resection	125 by X-tile (AFR)	625/510	OS	OS(U),1.38 (1.22–1.56)	Curve	More than 60
Zhang et al. 2019	China	HCC		230	A–C (BCLC)	Prospective	Surgical resection	15.6 by X-tile (FPR)	NR	OS, DFS	OS(U),5.07	Crude	More than 36
Author [Ref.]	Year	Country	Cancer category	Case no.	Cancer stage	Design type	Primary treatment option	Optimal cut-off for AFR/FPR	No. > against No. < (cut-off)	Prognostic outcomes	Hazard ratio (95% CI)	Data origin	Follow-up period (months)
--------------	------	---------	----------------	---------	--------------	-------------	--------------------------	----------------------------	----------------------------	-------------------	------------------	-------------	--------------------------
Li [42]	2019	China	NSCLC	360	IIB–IV (AJCC)	Retrospective	Chemotherapy	21.24 by ROC (FPR)	151/209	OS	OS(M),4.16 (2.06–8.39)	Crude	Data 3–45
Du et al. [27]	2019	China	Gallbladder cancer	220	Metastatic	Retrospective	Chemotherapy mainly	31.84 by X-tile (FPR)	NR	OS	OS(U),1.93 (1.26–2.97)	Crude	More than 36
Sun et al. [32]	2018	China	Colorectal cancer	555	I–III (AJCC)	Prospective	Surgical resection	18.3 by X-tile (FPR)	230/325	OS	OS(U),2.40 (1.57–3.67)	Crude	More than 36
Zhang et al. [38]	2017	China	Gastric cancer	360	II–III (AJCC)	Retrospective	Surgical resection	12.1 by X-tile (FPR)	246/114	OS	OS(U),3.37 (2.02–5.64)	Crude	More than 36
Chen et al. [22]	2019	China	Colorectal cancer	430	Metastatic	Prospective	Mixed modality but targeted therapy	22.8 by X-tile (FPR)	NR	OS	OS(U),2.33 (1.42–3.82), Cohort 1	Crude	More than 36
Chen et al. [22]	2019	China	Colorectal cancer	77	Metastatic	Prospective	Radiochemotherapy	22.8 by X-tile (FPR)	NR	OS	OS(U),4.47 (1.65–12.14), Cohort 2	Crude	More than 36
Zhang et al [24]	2019	China	Colorectal cancer	71	Metastatic	Retrospective	Chemotherapy	18.49 by ROC (FPR)	23/48	PFS	PFS(U),1.79 (1.11–2.88)	Crude	Median 6.67

NSCLC non-small cell lung cancer, CRLM colorectal liver metastases, ESCC esophageal squamous cell carcinoma, HCC hepatocellular carcinoma, AFR albumin to fibrinogen, FPR fibrinogen to prealbumin ratio, NR not reported, ROC receiver operating characteristic, U univariate, M multivariate
Fig. 2 Forest plots of the relationship between AFR and OS via univariate analyses (a) and multivariate analyses (b).
effects model ($I^2 = 58.7\%, P = 0.046$) demonstrated a significant association between low AFR and poor DFS (HR 1.89, 95%CI 1.54–2.32, $P = 0.00$) (Fig. 3a). Based on the multivariate analyses, the pooled results of a fixed-effects model ($I^2 = 0.0\%, P = 0.724$) also showed a correlation of low AFR with poor DFS (HR 1.51, 95%CI 1.29–1.76, $P = 0.00$) (Fig. 3b).

The association of AFR with PFS was reported in 6 studies (1352 cases) using univariate analysis and in 2 studies (583 cases) using multivariate analysis. According to a fixed-effects model, meta-analysis showed that low AFR was associated with poor PFS in the univariate analyses (HR 1.68, 95%CI 1.42–1.99, $P = 0.00$; $I^2 = 0.0\%, P = 0.689$) (Fig. 4a) and in the multivariate analyses (HR 1.48, 95%CI 1.16–1.88, $P = 0.00$; $I^2 = 0.0\%, P = 0.340$) (Fig. 4b).

Effect of FPR on OS, DFS, and PFS

The correlation of FPR with OS was evaluated in 6 studies (2232 cases) using both univariate and multivariate analyses. The pooled data of a fixed-effects model ($I^2 = 40.8\%, P = 0.119$) indicated a significant association.
between high FPR and poor OS in the univariate analysis (HR 2.37, 95%CI 2.03–2.77, P = 0.00) (Fig. 5a). The pooled data of a random-effects model (I² = 72.2%, P = 0.001) also showed a significant relationship between high FPR and poor OS in the multivariate analysis (HR 1.97, 95%CI 1.41–2.77, P = 0.00) (Fig. 5b). Only two studies evaluated the correlation of FPR with DFS [41] and PFS [24], so we did not perform a pooled meta-analysis of these results. One of these studies examined 230 cases of hepatocellular carcinoma (HCC) and found a significant association between high FPR and poor DFS based on univariate analysis (HR 2.20, 95%CI 1.35–3.57, P = 0.001) and multivariate analysis (HR 1.77, 95%CI 1.04–2.99, P = 0.034). The other study examined 71 cases of metastatic colorectal cancer and found a significant association between high FPR and poor PFS (HR 1.79, 95%CI 1.11–2.88, P = 0.017) based on univariate analysis alone.

Subgroup meta-analysis for AFR and OS
In this update, there was heterogeneity among the studies that examined the relationship of AFR with
OS. Thus, we performed subgroup analyses based on the AFR cut-off value, methods of choosing the cut-off value, study design, number of cases, cancer classification, publication time, treatment option, and data source. Our results indicated that the relationship between AFR and OS remained despite variation of these factors. At the same time, the heterogeneity was eliminated in some of the subgroup meta-analyses when classified by these factors (Tables 2 and 3).

Sensitivity analysis

In the initial meta-analysis of the relationship of AFR and OS from the multivariate analyses (Additional file 1), an apparently paradoxical plot (using crude HR with 95% CI in the original study) was present in one subgroup of the study by Li et al. [25]. Therefore, we deleted this subgroup during the meta-analysis. The sensitivity analysis (Additional files 2 and 3) indicated that all the included studies were nearly close to the central line, except the study by Li et al. [42]. In addition, the results of
the sensitivity analysis indicated that omitting any single study did not change the overall effects of each pooled meta-analysis.

Discussion

Cancer is a devastating disease, and patients typically have poor prognoses. Therefore, research is needed to identify novel prognostic factors, because these factors may help to improve risk stratification and lifestyle decisions of these patients [43].

We assessed the value of ratio indexes derived from serum albumin, prealbumin, and fibrinogen—AFR and FPR—as prognostic markers for human cancers in this updated meta-analysis. Relative to the previous meta-analysis [17], this update has two strengths. First, we included 7 more studies that examined the relationship between AFR and cancer prognosis, and we also evaluated the impact of AFR on OS, DFS, and PFS using the pooled results from univariate and multivariate analyses. Second, we identified 7 additional studies that evaluated FPR as a prognostic marker in human cancers. The pooled results indicated that a high FPR correlated with poor OS, poor DFS, and poor PFS. These results thus indicated that a low AFR and a high FPR correlated with an increased risk of cancer mortality and recurrence.

We must note that the values of the AFR and FPR indexes themselves do not affect the survival outcomes of cancer patients. Instead, the underlying proteins (albumin, prealbumin, and fibrinogen) and biological processes that determine the AFR and FPR are responsible

Table 2 Subgroup meta-analyses of the relationship between AGR and OS via univariate analyses

Potential confounding factor	No. of studies	No. cases	Hazard ratio with 95%CI	P value	I² (%) for heterogeneity	P value for heterogeneity
Overall survival (OS)	18	7211	2.18 (1.87–2.55)	0.000	73.6	0.000
Methods for choosing AFR cut-off value						
X-tile	7	3567	1.78 (1.49–2.13)	0.000	53.4	0.036
Score	2	559	2.67 (2.13–3.36)	0.000	57.8	0.015
ROC	9	3085	1.88 (1.63–2.18)	0.000	0.0	0.479
Cut-off value of AFR						
> 9.7	8	3722	2.15 (1.65–2.80)	0.000	81.9	0.000
≤ 9.7	8	2930	2.38 (1.91–2.95)	0.000	45.7	0.075
Score = 0	2	559	1.88 (1.63–2.18)	0.000	0.0	0.479
Study designed type						
Retrospective	14	5437	2.33 (1.91–2.85)	0.000	80.4	0.000
Prospective	4	1774	1.83 (1.55–2.16)	0.000	0.0	0.978
Number of cases						
< 360	9	1948	2.45 (2.00–3.02)	0.000	51.9	0.028
≥ 360	9	5263	1.97 (1.61–2.41)	0.000	76.2	0.000
Cancer classification						
Lung cancers	3	1211	2.52 (1.52–4.17)	0.000	79.2	0.008
Digestive cancers	10	4207	1.94 (1.60–2.35)	0.000	71.6	0.000
Gynecological cancers	2	499	2.01 (1.71–2.36)	0.000	0.0	0.484
Other cancers	3	1294	3.05 (2.27–4.11)	0.000	0.0	0.806
Publication time						
After 2019	6	1948	1.88 (1.68–2.10)	0.000	0.0	0.880
Before 2019	12	5263	2.40 (1.85–3.11)	0.000	84.0	0.000
Treatment option						
Surgical resection	12	5298	2.26 (1.84–2.79)	0.000	82.1	0.000
Others	6	1913	1.94 (1.65–2.27)	0.000	0.0	0.629
HR source						
Crude data	17	6076	2.24 (1.96–2.57)	0.000	55.7	0.002
Curve estimation	1	1135	1.38 (1.22–1.56)	0.000	–	–
for this relationship. Serum albumin and prealbumin are two of the most commonly used indicators for assessing malnutrition, and malnutrition adversely affects the outcomes of cancer patients, in that it increases the incidence of infections, the length of hospital stay, and the risk of death [44]. However, serum albumin level is also reduced in patients with locally advanced or metastatic malignancies irrespective of the presence of malnutrition [45]. In these patients, a low albumin level has an adverse influence on the outcome of anticancer therapy [46]. Inflammation also affects the visceral synthesis of albumin and prealbumin. As a key regulator of inflammation [47], fibrinogen can induce tumor angiogenesis and metastasis by directly interacting with endothelial cells, by indirectly interacting with other regulators of angiogenesis [10], and by enhancing tumor cell invasion and metastasis through epithelial-to-mesenchymal transition (EMT) signaling [48].

Although albumin/prealbumin, and fibrinogen abnormalities are well-documented prognostic markers in cancer patients, not all cancer patients suffer from deficiencies of albumin/prealbumin and an overabundance of fibrinogen; some patients only have an albumin/prealbumin deficiency or only a fibrinogen overabundance. The ratio indexes that we used—AFR and FPR—better reflect the levels of both albumin/prealbumin (representing nutrition) and fibrinogen (representing hemostasis or inflammation).

Additionally, serum albumin, prealbumin, and fibrinogen are available in the medical records of most cancer patients, and measurements are inexpensive and reproducible. Thus, use of the AFR and FPR as prognostic markers in cancers has great potential. In summary, both AFR and FPR could be promising markers of cancer

Table 3 Subgroup meta-analyses of the relationship between AGR and OS via multivariate analyses
Potential confounding factor
--
Overall survival (OS)
Methods for choosing AFR cut-off value
X-tile
ROC
Score
Cut-off value of AFR
> 9.7
≤ 9.7
Score = 0
Study designed type
Retrospective
Prospective
Number of cases
< 360
≥ 360
Cancer classification
Lung cancers
Digestive cancers
Gynecological cancers
Other cancers
Publication time
After 2019
Before 2019
Treatment option
Surgical resection
Others
prognosis. These results may help to guide future cancer treatments by identifying sub-populations with different prognoses.

There were some weaknesses in this updated meta-analysis. The main weakness is that the relationship of FPR on DFS and PFS was based on only one included study, rather than a meta-analysis. Second, there was heterogeneity among the studies included, and our pooled results were nearly all based on random-effects models. Differences in the baseline values and characteristics of patients, treatment options, and cut-off values, and other factors among studies may account for this heterogeneity. Third, there was publication bias regarding the relationship between AFR with OS (more than 10 studies), though we did not present these results or funnel plots.

Conclusions
A low AFR and a high FPR correlated with an increased risk of cancer mortality and recurrence. Thus, AFR and FPR may be promising prognostic markers for cancers.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12957-020-1786-2.

Additional file 1. Forest plots of the relationship between AFR and OS via multivariate analyses, before deleting the subgroup with paradoxical results (Li et al. 2019, subgroup 1).

Additional file 2. Sensitivity analysis of the correlation of AFR with OS via univariate analyses (A) and multivariate analyses (B); with DFS from univariate analyses (C) and multivariate analyses (D); and with PFS from univariate analyses results (E) and multivariate analyses (F).

Additional file 3. Sensitivity analysis of the correlation of FPR with OS via univariate analyses (A) and multivariate analyses (B).

Abbreviations
AFR: Albumin to fibrinogen; CRLM: Colorectal liver metastases; ESCC: Esophageal squamous cell carcinoma; FPR: Fibrinogen to prealbumin ratio; HCC: Hepatocellular carcinoma; M: Multivariate; NR: Not reported; NSCLC: Non-small cell lung cancer; PFS: Progression-free survival; ROC: Receiver operating characteristic; U: Univariate

Acknowledgements
Not applicable.

Authors’ contributions
SDW and LGY conceived this research, performed the design, and analyzed the data. SDW and AL performed the data extraction, and drafted and revised the manuscript. All authors reviewed and approved the final manuscript.

Funding
This research was funded by the Science and Technology of Jilin Province (No. 2019010102021H).

Availability of data and materials
The data used and analyzed in the current study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China. 2Department of Hand surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China.

Received: 12 September 2019 Accepted: 5 January 2020
Published online: 13 January 2020

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69(1):7–34.
3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016; 66(4):271–89.
4. Álvaro Sanz E, Garrido Silés M, Rey Fernández L, Villatoro Robles R, Rueda Domínguez A, Ablés J. Nutritional risk and malnutrition rates at diagnosis of cancer in patients treated in outpatient settings: early intervention protocol. Nutrition. 2019;57:148–53.
5. Loftus TJ, Brown MP, Slith JH, Rosenthal MD. Serum levels of prealbumin and albumin for preoperative risk stratification. Nutr Clin Pract. 2019;34(3):340–8.
6. Sondereby P, Bukrinski JT, Hebditch M, Peters GH, Curtis RA, Harris P. Self-interaction of human serum albumin: a formulation perspective. ACS Omega. 2018;3(11):16105–17.
7. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;9:69. https://doi.org/10.1186/1475-2891-9-69.
8. Ingenbleek Y, Young VR. Significance of transthyretin in protein metabolism. Clin Chem Lab Med. 2002;40(12):1281–91.
9. Shenkin A. Serum prealbumin. Is it a marker of nutritional status or of risk of malnutrition? Clin Chem. 2006;52(12):2177–9.
10. Staton CA, Brown NJ, Lewis CE. The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther. 2003;3(7):1055–7.
11. Shaffer JA, Higgins DL. Human-fibrinogen. Crit Rev Clin Lab Sci. 1988; 26(1):1–41.
12. Simpson-Haidaris PJ, Rybarczyk B. Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann N Y Acad Sci. 2001;936:406–25.
13. Perisanidis C, Psymi A, Cohen EE, Engelmann J, Heinige G, Perisanidis B, et al. Prognostic role of pretreatment plasma fibrinogen in patients with solid tumors: a systematic review and meta-analysis. Cancer Treat Rev. 2015; 41(10):960–70.
14. Mei ZB, Shi L, Wang B, Yang J, Xiao Z, Du P, et al. Prognostic role of pretreatment blood neutrophil-to-lymphocyte ratio in advanced cancer survivors: a systematic review and meta-analysis of 66 cohort studies. Cancer Treat Rev. 2017;58:1–13.
15. Lv GY, An L, Sun XD, Hu YL, Sun DW. Pretreatment albumin to globulin ratio can serve as a prognostic marker in human cancers: a meta-analysis. Clin Chim Acta. 2018;476:81–91.
16. Xu HJ, Ma Y, Deng F, Ju WB, Sun XY, Wang H. The prognostic value of C-reactive protein/albumin ratio in human malignancies: an updated meta-analysis. Onco targets Ther. 2017;10:3059–70.
17. Zhang Y, Xiao GL. Prognostic significance of the ratio of fibrinogen and albumin in human malignancies: a meta-analysis. Cancer Manag Res. 2019; 11:3381–93.
18. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
19. Tierney JF, Stewart LA, Gherzi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:1–16.
20. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.
21. Sun DW, Zhang YY, Sun XD, Chen YJ, Ji X, Li SQ, et al. Prognostic value of oncoprotein value in hepatocellular carcinoma: a meta-analysis. Clin Chim Acta. 2015;448:161–9.
22. Chen QQ, Zhang L, Sun F, Li SQ, You XH, Jiang YH, et al. Elevated FPR confers to radiochemoresistance and predicts clinical efficacy and outcome of metastatic colorectal cancer patients. Aging (Albany NY). 2015;11:716–32.
23. Yu W, Ye Z, Fang X, Jiang X, Jiang Y. Preoperative albumin-to-fibrinogen ratio predicts chemotherapy resistance and prognosis in patients with advanced epithelial ovarian cancer. J Ovarian Res. 2019;12:88.
24. Zhang L, Zhang J, Wang Y, Dong Q, Piao H, Wang Q, et al. Potential prognostic factors for predicting the chemotherapeutic outcomes and prognosis of patients with metastatic colorectal cancer. J Clin Lab Anal. 2019;33(6):22958. https://doi.org/10.1002/jcla.22958.
25. Li Y, Yang JH, Cheng SS, Wang Y. Prognostic significance of FA score based on plasma fibrinogen and serum albumin in patients with epithelial ovarian cancer. Manage Cancer Res. 2019;11:797–705.
26. Ying J, Zhou DF, Gu TJ, Huang J, Liu H. Pretreatment albumin/fibrinogen ratio as a promising predictor for the survival of patients with colorectal cancer undergoing radical left-sided colorectal surgery. World J Gastroentrol. 2018;24(3):327–341. Article in Chinese.
27. Xu WY, Ye Z, Fang X, Jiang X, Jiang Y. Preoperative albumin-to-fibrinogen ratio predicts chemotherapy resistance and prognosis in patients with advanced epithelial ovarian cancer. J Ovarian Res. 2019;12:88.
28. Zhang L, Zhang J, Wang Y, Dong Q, Piao H, Wang Q, et al. Potential prognostic factors for predicting the chemotherapeutic outcomes and prognosis of patients with metastatic colorectal cancer. J Clin Lab Anal. 2019;33(6):22958. https://doi.org/10.1002/jcla.22958.
29. Li Y, Yang JH, Cheng SS, Wang Y. Prognostic significance of FA score based on plasma fibrinogen and serum albumin in patients with epithelial ovarian cancer. Manage Cancer Res. 2019;11:797–705.
30. Chen S, Yan H, Du L, Shen B, Ying H, et al. Prognostic significance of pre-resection albumin/fibrinogen ratio in patients with non-small cell lung cancer: a propensity score matching analysis. Clin Chim Acta. 2018;482:203–8.
31. Gao QF, Qu JC, Huang XH, Xu YM, Li SQ, Sun F, et al. The predictive and prognostic role of a novel ADS score in esophageal squamous cell carcinoma patients undergoing esophagectomy. Cancer Cell Int. 2018;18:153. https://doi.org/10.1186/s12935-018-0468-2.
32. Li SQ, Jiang YH, Lin J, Zhang J, Sun F, Gao QF, et al. Albumin-to-fibrinogen ratio as a promising biomarker to predict clinical outcome of non-small cell lung cancer individuals. Cancer Med. 2018;7(4):1221–31.
33. Sun F, Peng HX, Gao QF, Li SQ, Zhang J, Chen QQ, et al. Preoperative circulating FPR and CCF score are promising biomarkers for predicting clinical outcome of stage I-II colorectal cancer patients. Cancer Manag Res. 2018;10:2151–61.
34. Liang Y, Wang W, Que Y, Guan Y, Xiao W, Fang C, et al. Prognostic value of the fibrinogen/albumin ratio (FAR) in patients with operable soft tissue sarcoma (STS). BMC Cancer. 2018;18(1):942. https://doi.org/10.1186/s12885-018-4856-x.
35. Xu Q, Yan Y, Gu S, Mao K, Zhang J, Huang P, et al. A novel inflammation-based prognostic score: the fibrinogen/albumin ratio predicts prognosis of patients after curative resection for hepatocellular carcinoma. J Immunol Res. 2018;2018:18. https://doi.org/10.1155/2018/6195249.
36. Sun SY, Chen PP, Meng LX, Li L, Mo ZX, Sun CH, et al. High preoperative plasma fibrinogen and serum albumin score is associated with poor survival in operable esophageal squamous cell carcinoma. Dis Esophagus. 2019;32(1). https://doi.org/10.1093/dote/doy057.
37. Xu WY, Zhang HH, Xiong JP, Yang XB, Bai Y, Lin JZ, et al. Prognostic significance of the fibrinogen-to-albumin ratio in gastric cancer patients. World J Gastroenterol. 2018;24(9):3281–92.
38. Zhou YX, Qiao J, Zhu HY, Lu RN, Xu Y, Cao L, et al. Albumin-to-fibrinogen ratio as an independent prognostic parameter in untreated chronic lymphocytic leukemia: a retrospective study of 191 cases. Cancer Res Treat. 2015;47(2):664–71.
39. Zhang J, Li SQ, Liao ZH, Jiang YH, Chen QQ, Huang B, et al. Prognostic value of a novel FPR biomarker in patients with surgical stage II and III gastric cancer. Oncotarget. 2017;8(43):75195–205.
40. Huwai LA, Cheng J, Roh EY, Kim J, Oh S, Kim YM, et al. Prognostic influence of preoperative fibrinogen to albumin ratio for breast cancer. J Breast Cancer. 2017;20(3):254–63.
41. Zhang L, Chen QQ, Li SQ, Zhang J, Min QH, Gao QF, et al. Preoperative fibrinogen to prealbumin ratio as a novel predictor for clinical outcome of hepatocellular carcinoma. Future Oncol. 2019;15(1):3227–36.
42. Li RT, Sun ZQ, Wang HB. Prognostic value of fibrinogen-to-prealbumin ratio in patients with advanced non-small cell lung cancer. Chin Clin Oncol. 2019;24(3):237–41. Article in Chinese.
43. Riley RD, Moons KGM, Snell KE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ. 2019;364:k4597. https://doi.org/10.1136/bmj.k4597.
44. Viruza AV, Camblor-Alvarez M, Luengo-Pérez LM, Grande E, Alvarez-Hernández J, Sendrós-Maduro MJ, et al. Nutritional support and parenteral nutrition in cancer patients: an expert consensus report. Clin Transl Oncol. 2018;20:619–20.
45. Demê D, Telækes D. Prognostic importance of albumin in oncology. Orv Hetil. 2018;159:996–106.
46. Hoogenboezem EN, Duvall CL. Hamesing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev. 2018;130:73–89.
47. Dvalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;34(1):43–62.
48. Shu YJ, Wang H, Bao RF, Wu XS, Ding Q, Cao Y, et al. Clinical and prognostic significance of preoperative plasma hyperfibrinogenemia in gallbladder cancer patients following surgical resection: a retrospective and in vitro study. BMC Cancer. 2014;14:565. https://doi.org/10.1186/1471-2407-14-565.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions