Relationship between mindfulness, stress, and performance in medical students in pediatric emergency simulations

Abstract

Objectives: Pediatric teams of emergency departments work under extreme stress, which affects high-level cognitive functions, specifically attention and memory. Therefore, the methods of stress management are being sought. Mindfulness as a process of intentionally paying attention to each moment with acceptance of each experience without judgment can potentially contribute to improving the performance of medical teams. Medical simulation is a technique that creates a situation to allow persons to experience a representation of a real event for the purpose of education. It has been shown that emergency medicine simulation may create a high physiological fidelity environment similarly to what is observed in a real emergency room. The aim of our study was to determine whether the technical and non-technical skills of medical students in the course of pediatric high fidelity simulations are related to their mindfulness and stress.

Participants and methods: A total of 166 standardized simulations were conducted among students of medicine in three simulation centers of medical universities, assessing: stress sensation (subjectively and heart rate/blood pressure), technical (checklists) and non-technical skills (Ottawa scale) and mindfulness (five facet mindfulness questionnaire): ClinicalTrials.gov ID: NCT03761355.

Results: The perception of stress among students was lower and more motivating if they were more mindful. Mindfulness of students correlated positively with avoiding fixation error. In the consecutive simulations the leaders' non-technical skills improved, although no change was noted in their technical skills.

Conclusion: The results of our research indicate that mindfulness influence the non-technical skills and the perception of stress of medical students during pediatric emergency simulations. Further research is needed to show whether mindfulness training leads to improvement in this field.

Keywords: medical education, mindfulness, pediatric emergency medicine, medical simulation, non-technical skill

1. Introduction

Pediatric emergency department staff work in intense, chaotic and unpredictable environments and have been shown to have the highest levels of psychosocial distress among all healthcare providers [1]. Stress affects high-level cognitive functions, specifically attention and memory, and this increases the already high stakes for young doctors. The effects of stress can have both enhancing and impairing effects on learning and memory [2]. Lapses in attention increase the risk of serious consequences such as medical errors, failure to recognize life-threatening signs and symptoms, and other essential patient safety issues [3]. Therefore, the methods of stress management are being sought. One of the candidates may be mindfulness. Mindfulness is a process of intentionally paying attention to each moment with curiosity, openness and acceptance of each experience without judgment [4]. This is achieved through an attitude of lack of valuation, clarity, acceptance, patience, sincerity, unexpectedness, loving kindness, care and compassion for the current situation. The goal of mindfulness is to empower individuals to respond to situations consciously rather than automatically. All these features can have a potentially positive effect on medical education. Being mindful is associated with decreased stress, anxiety, depression, improved mood, self-empathy and empathy among medical students [5]. So it is possible that mindfulness could enhance medical
students’ capacity for focused attention and concentration by increasing present moment awareness in pediatric emergency cases. Certainly mindfulness is a major strategy to enhance wellness in emergency medicine residency training programs [6]. Medical simulation is a technique that creates a situation or environment to allow persons to experience a representation of a real event for the purpose of practice, learning, evaluation, testing or to gain understanding of systems or human actions [7]. It has been shown that emergency medicine simulation may create a high physiological fidelity environment similarly to what is observed in a real emergency room [8]. We can teach skills, clinical decision making, communication and teamwork in an environment that is safe for the patient and the student (“psychological reality and safety”) [9]. Simulation scenarios cover technical (e.g. diagnostic and therapeutic procedures) and non-technical skills. Non-technical competences are the skills of communication, leadership, teamwork, situational awareness, decision-making, resource management, safe practice, adverse event minimization, and professionalism, also known as behavioral or teamwork skills [7]. Life-threatening situations are less frequent in pediatric than in adult emergencies, and also requirements for non-technical and technical skills may be stronger in pediatrics and neonatology than in other fields of healthcare [10]. Therefore the high-fidelity simulation should be used to teach practically all aspects of pediatric acute care [11].

No research has been performed concerning the association between being mindful, stress and performance in emergency medicine under standardized conditions. The aim of our work was to test the hypothesis that technical and/or non-technical skills of medical students during pediatric emergency simulations are related to their mindfulness and stress. In general, we anticipated that the results of our study could lead to better understanding of the mechanisms that influence performance of medical students during pediatric emergency cases and may enable them to improve their skills in their future professional life.

2. Participants and methods

2.1. Participants

The project was planned as an observational cohort study in a group of graduating medical students (Clinical Trials.gov ID: NCT03761355). The research was conducted between October 2017 and October 2018 in three Polish medical simulation centers. The inclusion criterion was being a graduating student of medicine and consent to participate in the study. The exclusion criterion was pregnancy. The design of the study is presented on figure 1.

Medical simulations

The simulations were constructed as high-fidelity scenarios in life-threatening situations in children (topics: supraventricular tachycardia, febrile convulsions, bronchial asthma, ketoadicosis, anaphylactic shock, paracetamol intoxication). They started in the morning and were identical for all groups of students (the same introduction to the simulator and medical equipment based on checklists and the same order of the scenarios). The level of task difficulty was intermediate and was evaluated based on the pilot simulations with both students and young doctors. Each scenario had two equal goals - technical and non-technical e.g. treatment of exacerbation of asthma due to pneumonia and avoiding fixation error (i.e. not only asthma but also pneumonia as a cause of the poor general condition of the child). During the implementation of the simulation scenario, the students played different roles (team manager, member of the medical team or actor – the patient’s caregiver). The analysis concerns only the scenarios in which the students acted as team leaders (skills and interactions with the other participants of the simulation were assessed). The following data of medical students were assessed: age, sex and the fact of participating in mindfulness training or other secular or religious meditations. Stress and its impact on simulation were assessed both subjectively by participants (in a five-step scale from mobilizing to discouraging; the higher the score, the greater or more discouraging the stress, maximum 5 points) as well as by assessing the heart rate and blood pressure. Medicines taken and the amount of caffeine consumed by students every day and before the simulation were also noted, as well as the subsequent number of the simulation on a given day and during the entire medical studies (our students start simulation curriculum at 4th year of the faculty).

2.2. Technical and non-technical skills

Technical skills were assessed on the basis of checklists designed for each scenario. The assessment was divided into an interview, physical examination, diagnosis and treatment. The more points on the scale, the better the technical skills (maximum 10 points).

Non-technical skills were assessed by the Ottawa Crisis Resource Management Global Rating Scale (Ottawa GRS) and checklist [12], [13]. The Ottawa GRS, an instrument developed for crisis resource management skill assessment, was designed for acute care physicians and is also widely used in medical simulation. It has well-defined rating scales for each of its categories: leadership skills (stays calm and in control during crisis, prompt and firm decision-making), situational awareness (avoids fixation error), communication skills (communicates clearly and concisely, uses directed verbal /non-verbal communication, listens to team input), problem solving (organized and efficient problem solving approach, considers alternatives during crisis), resource utilization (calls for help appropriately, utilizes resources at hand) [12]. Each cat-
Figure 1: Design of the study – flow diagram of the methods used to assess medical students’ stress, mindfulness and performance before and after pediatric emergency simulations.

egory is measured on a seven-point anchored ordinal scale with descriptive anchors to provide guidelines on alternating points along the scale. These descriptions are added to reduce personal bias in interpreting performance. The higher the Ottawa GRS score, the better the non-technical skills (maximum 42 points).

Prior to the research protocol all instructors were trained in the assessment of non-technical skills by GC and KT – international experts in this field. Non-technical skills were assessed by two independent instructors/observers during each simulation in each center. All the instructors had more than two years of work experience in the simulation center, performing and assessing at least 50 simulations of high-fidelity each year. They were all trained for the minimum of 3 years in simulation and debriefing. The inter-rater coefficient of variation was 5% for the assessment of non-technical skills. Mean scores between the two observers were used as the reference value.

2.3. Mindfulness

Mindfulness was assessed before the simulations according to the short version of Five Facet Mindfulness Questionnaire (FFMQ) in Polish adaptation and validation [14], [15]. FFMQ is used to measure the depth of mindfulness, that is, the specific state of attention, which is the result of constantly directing attention, in the non-evaluative and non-judgmental way, to what is happening at the present moment. FFMQ evaluates five factors: conscious presence, non-reactivity, non-judgment, observation and description. The higher the FFMQ score, the higher the level of mindfulness.

The study design was approved by the Ethics Committee at the Medical University of Bialystok in accordance with the Declaration of Helsinki (No R-I-002/358/2017). Signed informed consent was obtained from students. The rates of consent was 94.9%. The main reason for the consent refusal was lack of time to complete the survey. Students who agreed to participate in the study and those who did not give their consent did not differ in sex, age or in technical and non-technical skills assessment scores.

Data are presented as means and standard deviation (SD) and rates of incidence of a given characteristic in the evaluated group of students. Univariate analysis was conducted using the Mann-Whitney U test for continuous variables and the Chi-square test for the nominal ones. Spearman’s rank correlation coefficient was used to evaluate the relationships between mindfulness, stress and performance of medical students in simulations. A p<0.05 was considered statistically significant. Statistical analysis was performed using the Statistica 13 software (StatSoft, Tulsa, OK, USA). Only students with all data available were included in the analysis.

3. Results

In total, 166 students were qualified for the study. As each student played a role of a team leader in a pediatric emergency situation at least once, 166 simulations were analyzed. Data referring to age, sex, meditation/prayer, use of caffeine and medicines, and stress before and after simulations are shown in table 1. The average results of students on the scales of technical and non-technical skills and mindfulness are presented in table 2. Relationships between mindfulness, performance and stress of medical students in pediatric emergency simulations – Spearman’s rank correlation coefficient – are shown in table 3.

3.1. Stress and students’ mindful presence

The students’ perception of stress before and during simulation correlated with their mindfulness. The lower perception level of stress before simulation was related to total mindfulness, lower reactivity and lower level of judgment (see table 3). In addition, stress appearing during simulation was perceived as more mobilizing if the students were characterized by more conscious presence and higher level of description of the present moment (see table 3). Participation in meditations/prayers did not affect the other parameters assessed in the study. No correlation
Table 1: Data of medical students participating in pediatric simulations.

Number of participants	166
Number of simulations	166
Mean age ±SD	24.5 ±1.2
Sex	M – 50 (30.1%) F – 116 (69.9%)
Participation in meditation courses / prayers	regular - 33 (19.8%) irregular - 39 (23.4%)
The usual use of caffeine (cups/day)	<1 – 60 (36.1%) 1–2 – 82 (49.4%) ≥3 – 24 (14.5%)
The use of caffeine during the last 12 hours before simulation (cups)	<1 – 122 (73.5%) 1–2 – 42 (25.3%) ≥3 – 2 (1.2%)
The use of medicine that influenced the heart rate	6 (3.6%)
Mindfulness:	(mean ±SD)
Total	3.2 ±0.4
Nonreact	2.8 ±0.7
Observe	3.4 ±0.8
Actaware	3.2 ±0.4
Describe	3.6 ±0.6
Nonjudge	3.2 ±0.7

Table 2: Results concerning technical, non-technical skills and mindfulness in medical students during pediatric emergency simulations.

Technical skills* (mean ±SD)	Total	8.0 ±1.3
Non-technical skills** (mean ±SD)	Total	29.4 ±5.7
	Overall performance	4.7 ±1.1
	Leadership skills	4.9 ±0.9
	Problem solving skills	5.2 ±1.0
	Situational awareness skills	4.0 ±0.9 **
	Resources utilization skills	5.1 ±1.1
	Communication skills	5.2 ±1.1

Mean subjective perception of stress before and after simulation (1 – no stress, 5 – very stressed)	2.2 ±0.8 vs. 2.4 ±0.9 (p>0.05)
Heart rate before and after the scenario	76.9 ±10.6 vs. 77.3 ±15.9 (p>0.05)
Blood pressure before and after the scenario (systolic / diastolic, mmHg)	119.9 / 71.2 vs. 78.5 / 8.9 (p<0.05)
Subjective assessment of the influence of stress on the performance during simulation (1 – mobilizing, 5 – discouraging)	2.34 ±0.73

was also observed in the use of caffeine permanently and before simulation in relation to pre-simulation stress, the heart rate and blood pressure before and after simulation. No differences were found between meditating and non-meditating students in the mindfulness scale (non-reactivity, observation, conscious action, describing and not judging).

3.2. Stress and performance of medical students

The stress experienced before a simulation influenced some of the parameters on the non-technical skills scale (the Ottawa GRS). There was a positive correlation between the subjective feeling of stress before the simulation and the obtained results in terms of team management and communication in the team (see table 3); the perceived stress was not related to technical skills assessed by a dedicated, standardized checklist. The total outcome of students in technical skills was not correlated with the total score obtained in non-technical skills. However, a situational awareness (the Ottawa GRS) was associated with a higher score in technical skills (see table 3). The analysis of all completed simulations showed that all non-technical skills improved along with the number of high-fidelity medical simulations performed by a given team (r=0.33, p<0.001). This correlation was not observed in the case of technical skills (p>0.05). A comparison of the Ottawa GRS scores showed statistically significantly lower average scores for situational awareness skills (fixation error) than for other non-technical skills of medical students (p <0.001) (see table 2). Situational awareness skills did not correlate with stress,
using caffeine, medications or participating in meditations/prayers.

3.3. Mindfulness and performance

The results of the students obtained in checklists in the area of technical skills did not correlate with their mindfulness (p>0.05). Similarly, the FFMQ scale total score was not related to the total score obtained using the Ottawa GRS for non-technical skills. However, avoiding fixation error (situation awareness skills) was positively associated with conscious action on the mindfulness scale (see table 3). Mindfulness of students did not correlate with a change in the level of perceived stress, or alterations in heart rate and pressure before and after a simulation.

4. Discussion

In standardized conditions of pediatric high-fidelity simulations, we searched for links of conscious presence with technical and non-technical skills as well as the perception of stress by medical students. The stress was milder and more motivating if the students were more mindful. Mindfulness of students correlated positively with avoiding fixation error. The results of our research indicate the importance of mindfulness and stress in teamworking during simulated pediatric emergency cases. So far, no such research has been carried out, and the effect of mindfulness on physicians’ performance in emergency medicine, whether beneficial or not, was only hypothetical.

In our group of medical students the total score on the technical skills scale did not correlate with the overall result of the non-technical competencies. However, one of the soft skills components, i.e. greater situation awareness, resulted in a higher score on the technical skills scale. In similar conditions of pediatric simulations no direct relationship was found between situation awareness and goal achievement [16]. In that study, consensus on the primary problem (shared mental model) led to faster achievement of predefined goals. However, in other acute care simulations, non-technical skills significantly predicted students’ clinical performance as assessed by nurses [17]. In one of the studies, like in our group, repeating the simulation improved non-technical skills, such as communication, teamwork, situational awareness and decision making [18]. However, Clarke et al. showed that the only variable affecting the overall assessment of non-technical competencies during simulations (also evaluated by the Ottawa GRS) was the residents’ progress in the specialization program (so-called PGY status) or clinical experience rather than stress or its subjective feeling [19].

It is extremely difficult to perform research that can show the impact of mindfulness on patient care. In the present study we showed for the first time that mindfulness is associated with non-technical skill i.e. avoiding fixation error in pediatric emergency simulations. In our opinion, situation awareness (fixation error) was the weakest non-technical skill among all the skills assessed using the Ottawa GRS scale. During the pre-briefing, students often uttered a probable diagnosis aloud and were fixing on it during the simulation, without verifying the hypothesis, despite all data received (interview, physical examination, additional test results). Loss of situation awareness can lead to errors. On the other hand the Simulation-Based Crisis Resource Management training implemented among pediatric cardiac intensive care unit providers has improved situational awareness including reporting of doubts concerning the appropriate procedure to the team leader [20].
The FFMQ scores obtained by our medical students were similar to the results reported from the group of 800 Polish adults among whom the scale was validated, thus indicating that medical students are as mindful as other adult Poles [14]. In our observation, a higher level of mindfulness not only reduced the subjective perception of stress before simulation, but also correlated with its more motivating impact during the simulation scenario. The results of some studies indicate a connection between mindfulness and well-being or education and work in medical professions and in students of medical courses. Such mindfulness effects as reduced stress, increased self-regulation (the ability to effectively manage one’s thoughts and actions to complete a task) can be particularly useful for medical students during pediatric emergency cases. A meta-analysis of 19 studies concerning the use of mindfulness in medical students showed that mindfulness-based interventions decrease stress, anxiety, depression and improve mindfulness, mood, self-empathy and empathy [5]. As revealed by the authors of that analysis, mindfulness training can be relatively easily adapted and integrated with modern teaching of medicine. A focus on the present moment can help young doctors concentrate on what is really important, which may refer both to helping patients and themselves. Mindfulness objective is to allow healthcare workers to keep a distance from a mentally and emotionally stressful environment. Mindfulness can also be helpful in teaching professionalism, including accepting one’s own boundaries, priorities and being resilient. In one study, more mindful residents asked for help more often and seemed to be more open toward feedback [21]. In our simulations, one of the technical skills, in some scenarios, was to call a specialist for consultation. However, we found no connection between greater mindfulness and more frequent requests for help in this area. Learning critical thinking, developing cognitive and affective biases, using such processes as reflection and mindfulness can lead to greater creativity, lateral thinking, and innovation in the diagnosis and treatment of patients [22]. Perhaps the routine diagnostic and therapeutic process that does not always produce a desired effect should be enriched with the awareness of the inhibitors and facilitators of rationality in decision making. It seems that the simulation room is a very good place to learn mindfulness in diagnostic and therapeutic procedures before applying this technique in real medical life [23].

The strength of our study is the unique pediatric character of the simulation, a large number of participants and simulations, great experience of simulation centers involved in the project, lack of voluntary nature of the research and standardized conditions for study implementation. The limitations of our study are certainly the subjectivity and difficulty of the Ottawa GRS application for the non-technical skills. However, this tool is considered to be easier to use, more practical and more reliable than a similar instrument i.e. Anesthetists’ Non-Technical Skills (ANTS) behavioral marker system [13]. Our project also lacks self-assessment of students’ activities, and it would be extremely interesting to compare it with the assessment of instructors. However, our attempts to carry out such assessments failed: students were not able to evaluate their actions using quite complicated scales. Moreover, the outcome of our research conducted with medical students cannot fully translate into the real world of physicians, since the final effect involves a great deal of additional factors as well as professional environment or family, etc., which determine the attainment of mindfulness objectives in everyday work with patients in hospital or outpatient clinic.

Does greater mindfulness indeed influence the actions of doctors in real medical situations? Should mindfulness be included in the university curriculum for medical students? Should mindfulness be taught as an elective or obligatory subject? It would be interesting to check when the interventions are optimal – at the beginning or end of the study, at the start or finish of the residency period? These and many other questions should be answered in future randomized trials.

5. Conclusions

The results of our research indicate a relationship between mindfulness of medical students and their non-technical skills and the perception of stress in simulations of pediatric emergency situations. Further research is needed to show whether mindfulness training leads to changes in this field. Perhaps mindfulness courses should be included in the medical university curriculum and early career of a young doctor to reduce stress and improve the diagnostic and therapeutic effectiveness of physicians working individually and in teams.

Abbreviations

- ANTS – Anesthetists’ Non-Technical Skills
- FFQM – Five Facet Mindfulness Questionnaire
- HRV – heart rate variability
- Ottawa GRS – Ottawa Crisis Resource Management Global Rating Scale

Authors’ contributions

JC, WL, GC, TB and KT designed the study; JC and WL were a major contributors in writing the manuscript; WL, KL, TB and KT collected and analysed the patient’s data; all authors read and approved the final manuscript.

Data availability

The raw data sets including data base (in Microsoft Access) used to support the findings of this study are available from the corresponding author upon request.
References

1. Bragard I, Seghaye MC, Farhat N, Solowianiuk M, Saliba M, Etienne AM, Schumacher K. Implementation of a 2-Day Simulation-Based Course to Prepare Medical Graduates on Their First Year of Residency. Pediatr Emerg Care. 2018;34(12):857-861. DOI: 10.1097/PEC.0000000000000930

2. Vogel S, Schwabe L. Learning and memory under stress: implications for the classroom. NPI Science Learn. 2016;1:16011. DOI: 10.1038/npijlearn.2016.11

3. Botha E, Gwin T, Purpora C. The effectiveness of mindfulness based programs in reducing stress experienced by nurses in adult hospital settings: a systematic review of a quantitative evidence protocol. JBI Database System Rev Implement Rep. 2015;13(10):21-29. DOI: 10.11124/jbsir-2015-2380

4. Kabat-Zinn J. Mindfulness-Based Interventions in Context: Past, Present, and Future. Clin Psychol Sci Pract. 2003;10(2):144-156. DOI: 10.1093/clipsy.bpg016

5. McConville J, McAleer R, Hahne A. Mindfulness Training for Health Professional Students: The Effect of Mindfulness Training on Psychological Well-Being, Learning and Clinical Performance of Health Professional Students: A Systematic Review of Randomized and Non-randomized Controlled Trials. Explore (NY). 2017;13(1):26-45. DOI: 10.1016/j.explore.2016.10.002

6. Ross S, Liu EL, Rose C, Chou A, Battaglione N. Strategies to Enhance Wellbeing in Emergency Medicine Residency Training Programs. Ann Emerg Med. 2017;70(6):891-897. DOI: 10.1016/j.annemergmed.2017.07.007

7. Lopreiato JO. Healthcare Simulation Dictionary. Rockville, MD: Agency for Healthcare Research and Quality; 2016. Zugänglich unter/available from: http://www.ashh.org/dictionary

8. Daglioni Dias R, Scalabrini Neto A. Stress levels during emergency care: A comparison between reality and simulated scenarios. J Crit Care. 2016;33:8-13. DOI: 10.1016/j.jccr.2016.02.010

9. Bragard I, Farhat N, Seghaye MC, Schumacher K. High fidelity simulation: a new tool for learning and research in pediatrics. Rev Med Liege. 2016;71(10):455-459.

10. Cavičchiolo ME, Cavallin F, Staffier A, Pizzol D, Materiana E, Wingi OM, De Deit L, Pütoto G, Trevisanuto D. Decision making and situational awareness in neonatal resuscitation in low resource settings. Resuscitation. 2019;134:41-48. DOI: 10.1016/j.resuscitation.2018.10.034

11. Shetty R, Thyagarajan S. Simulation in pediatrics: Is it about time? Ann Card Anaesth. 2016;19(3):505-510. DOI: 10.4103/0971-9784.185543

12. Kim J, Neïlipoivitz D, Cardinal P, Chiu M. A comparison of global rating scale and checklist scores in the validation of an evaluation tool to assess performance in the resuscitation of critically ill patients during simulated emergencies. Sim Healthcare. 2009;4(1):6-16. DOI: 10.1097/SHI.0b013e3181880472

13. Jirativanont T, Raksaamani K, Aroonpraksakul N, Apidechakul P, Suraseranivongse S. Validity evidence of non-technical skills assessment instruments in simulated anaesthesia crisis management. Anaesth Intensive Care. 2017;45(4):469-475. DOI: 10.1177/0310057X1704500410

14. Radon S. Validation of the Polish adaptation of the Five Facet Mindfulness Questionnaire. Ann Psychol. 2014;17(4):737-760.

15. Bohmleijer E, ten Klooster PM, Fiedderus M, Veehof M, Baer R. Psychometric properties of the five facet mindfulness questionnaire in depressed adults and development of a short form. Assessment. 2011;18(3):308-320. DOI: 10.1177/1073191111408231

16. Coolen E, Draaisma J, Loeffen J. Measuring situation awareness and team effectiveness in pediatric acute care by using the situation global assessment technique. Eur J Pediatr. 2019;178(6):837-850. DOI: 10.1007/s00431-019-03358-z

17. Cha JS, Anton NE, Mizota T, Hennings JM, Rendina MA, Stanton-Maxey K, Ritter HE, Stefanidis D, Yu D. Use of non-technical skills can predict medical student performance in acute care simulated scenarios. Am J Surg. 2019;217(2):323-328. DOI: 10.1016/j.amjsurg.2018.09.028

18. Marker S, Mohr M, Østergaard D. Simulation-based training of junior doctors in handling critically ill patients facilitates the transition to clinical practice: an interview study. BMC Med Educ. 2019;19(1):11. DOI: 10.1186/s12909-018-1447-0

19. Clarke S, Horeczko T, Cotton D, Bair A. Heart rate, anxiety and performance of residents during a simulated clinical encounter: a pilot study. BMC Med Educ. 2014;14:153. DOI: 10.1186/1472-6920-14-153

20. Allan CK, Thiagarajan RR, Beke D, Imprescia A, Kappus LJ, Garden A, Hayes G, Laussen PC, Bacha E, Weinstock PH. Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg. 2010;140(3):646-652. DOI: 10.1016/j.jtcvs.2010.04.027

21. Verweij H, van Ravestijn H, van Hooft ML, Lagro-Janssen AL, Speckens AE. Does Mindfulness Training Enhance the Professional Development of Residents? A Qualitative Study. Acad Med. 2018;93(9):1335-1340. DOI: 10.1097/ACM.0000000000002260

22. Croskerry P. Adaptive expertise in medical decision making. Med Teach. 2018;40(8):803-808. DOI: 10.1080/0142159X.2018.1484898

23. Park CW, Holtschneider ME. A case for mindfulness. Simulation-based six strategy framework. J Nurses Prof Dev. 2018;34(3):164-165. DOI: 10.1097/NND.0000000000000447

Corresponding author:
Wlodzimierz Łuczynski
Medical University of Białystok, Department of Medical Simulations, Szpitalna 30, PL-15-294 Białystok, Poland,
Phone: +48 85 686 5253
wlodzimierz.luczynski@umb.edu.pl

Please cite as
Loś K, Chmielewski J, Cebula G, Bielecki T, Torres K, Łuczynski W. Relationship between mindfulness, stress, and performance in medical students in pediatric emergency simulations. GMS J Med Educ. 2021;38(4):Doc78. DOI: 10.3205/zma001474, URN: urn:nbn:de:0183-zma0014749

Funding
The study was funded by Medical University of Białystok, Poland.

Competing interests
The authors declare that they have no competing interests.

Loś et al.: Relationship between mindfulness, stress, and performance ...
Beziehung zwischen Achtsamkeit, Stress und Leistung von Studierenden der Medizin bei pädiatrischen Notfallsimulationen

Zusammenfassung

Ziele: Pädiatrische Teams arbeiten in Notfallabteilungen unter extremem Stress, der hochkognitive Funktionen, insbesondere Aufmerksamkeit und Gedächtnis, beeinflusst. Daher wird nach Methoden des Stressmanagements gesucht. Achtsamkeit ist ein Prozess, bei dem jedem Moment bewusst Beachtung geschenkt wird, jede Erfahrung ohne Beurteilung angenommen wird, was potenziell zu einer Verbesserung der Leistung ärztlicher Teams beitragen kann. Medizinische Simulation ist eine Technik, in der eine Situation geschaffen wird, in der Personen die Möglichkeit gegeben wird, zu Ausbildungszwecken Erfahrungen in Form der Darstellung eines echten Ereignisses zu machen. Es hat sich gezeigt, dass in Notfallmedizinssimulationen eine sehr genaue physiologische Umgebung geschaffen werden kann, die ähnlich dem Geschehen ist, was in einer echten Notfallabteilung beobachtet wird. Das Ziel unserer Studie war es, festzustellen, ob die fachlichen und nichtfachlichen Fähigkeiten von Studierenden der Medizin im Verlauf der pädiatrischen hochgenauen Simulationen eine Beziehung zu ihrer Achtsamkeit und ihrem Stress aufweisen.

Teilnehmer und Methoden: Es wurden insgesamt 166 standardisierte Simulationen mit Medizinstudenten in drei Simulationszentren an medizinischen Hochschulen durchgeführt, bei denen Stressempfinden (subjektiv und Herzfrequenz/Blutdruck), fachliche (Checklisten) und nichtfachliche Fähigkeiten (Ottawa-Skala) sowie Achtsamkeit (Fünf-Facetten-Achtsamkeitsfragebogen), Clinical Trials.gov ID: NCT03761355, untersucht wurden.

Ergebnisse: Die Wahrnehmung von Stress seitens der Medizinstudenten war geringer und motivierender, wenn sie achtsamer waren. Die Achtsamkeit der Studierenden korrelierte positiv mit der Vermeidung von Fixation Errors. In den fortlaufenden Simulationen verbesserten sich die nichtfachlichen Fähigkeiten der Teilnehmer, jedoch wurde keine Veränderung der fachlichen Fähigkeiten festgestellt.

Schlussfolgerung: Die Ergebnisse unserer Forschung deuten darauf hin, dass Achtsamkeit nichtfachliche Fähigkeiten und die Wahrnehmung von Stress bei Medizinstudenten in pädiatrischen Notfallsimulationen beeinflusst. Weitere Forschungen sind nötig, um zu zeigen, ob Achtsamkeitstraining zu Verbesserungen in diesem Bereich führt.

Schlüsselwörter: ärztliche Ausbildung, Achtsamkeit, pädiatrische Notfallmedizin, ärztliche Simulation, nichtfachliche Fähigkeiten

1. Einführung

Mitarbeiter pädiatrischer Notfallabteilungen arbeiten in einer intensiven, chaotischen und unvorhersehbaren Umgebung und es wurde festgestellt, dass sie unter allen Mitarbeitern im Gesundheitswesen das höchste Level von psychosozialem Stress aufweisen [1]. Stress beeinflusst hochkognitive Funktionen, insbesondere Aufmerksamkeit und Gedächtnis, und dies führt zu einer Erhöhung der sowieso schon hohen Anforderungen an junge Ärzte. Die Auswirkungen von Stress können sowohl verbessern als auch beeinträchtigende Wirkungen auf das Lernen und das Gedächtnis haben [2]. Ein Nachlassen der Aufmerksamkeit erhöht das Risiko ernsthafter Konsequenzen, wie z. B. Behandlungsfehler, Nichterkennen lebensbedrohlicher Anzeichen und Symptome, sowie weitere wesentliche Punkte der Patientensicherheit [3]. Daher
ist man auf der Suche nach Methoden des Stressmanagements. Einer der Kandidaten könnte Achtsamkeit sein. Achtsamkeit ist ein Prozess, bei dem bewusst auf jeden Moment mit Neugierde, Offenheit und Akzeptanz für jede Erfahrung geachtet wird, ohne dass gewertet wird [4]. Dies wird erreicht durch eine Einstellung fehlender Wurtung, von Klarheit, Akzeptanz, Geduld, Aufichtigkeit, Plötzlichkeit, liebender Freundlichkeit, Sorge und Mitgefühl für die gegenwärtige Situation. Das Ziel von Achtsamkeit ist es, den Einzelnen zu befähigen, in Situationen bewusst anstatt automatisch zu reagieren. Alle diese Merkmale können potenziell positive Auswirkungen auf die ärztliche Ausbildung haben. Achtsam zu sein wird unter Medizinstudenten in Verbindung gebracht mit vermindertem Stress, Angst, Depression, verbesserter Stimmung, Selbstmitgefühl und Mitgefühl [5]. Daher ist es möglich, dass Achtsamkeit die Fähigkeit von Medizinstudenten bzgl. fokussierter Aufmerksamkeit und Konzentration durch eine Erhöhung des Bewusstseins für den Augenblick in pädiatrischen Notfallsituationen verbessert. Ganz sicher ist Achtsamkeit eine wichtige Strategie zur Verbesserung des Wohlbefindens in Notfallmedizin-Ausbildungsprogrammen [6].

Die medizinische Simulation ist eine Technik, die eine Situation oder Umgebung schafft, die es Personen erlaubt, durch Wiedergabe eines echten Ereignisses Erfahrungen zum Zweck der Praxis, des Lernens, der Evaluatiion, des Testens oder des Erlangens von Kenntnissen von Systemen oder menschlichen Handlungen zu machen [7]. Es hat sich gezeigt, dass in Notfallmedizinssimulationen eine sehr genaue physiologische Umgebung geschaffen werden kann, die ähnlich dem Geschehen ist, was in einer echten Notfallabteilung beobachtet wird [8]. Wir können Fähigkeiten, klinische Entscheidungsfindung, Kommunikation und Teamwork in einer Umgebung lehren, die für Patienten und Studierende sicher ist (“psychologische Realität und Sicherheit”) [9]. Simulationszenarien decken fachliche (z. B. diagnostische und therapeutische Verfahren) sowie nichtfachliche Fähigkeiten ab. Nichtfachliche Kompetenzen sind Fähigkeiten wie Kommunikation, Führungsstärke, Teamwork, situationsbezogenes Bewusstsein, Entscheidungsfindung, Ressourcenmanagement, sichere Praxis, Minimierung nachteiliger Ereignisse und Professionalität, auch bekannt als behavoriale oder Teamwork-Fähigkeiten [7]. Lebensbedrohliche Situationen treten in Notfällen in der Pädiatrie seltener auf als in der Erwachsenenmedizin, und auch die Anforderungen an fachliche und nichtfachliche Fähigkeiten sind in der Pädiatrie und Neonatologie größer als in anderen Bereichen des Gesundheitswesens [10]. Daher kann die hochgenaue Simulation angewandt werden, um sämtliche Aspekte der pädiatrischen Akutversorgung praktisch zu unterrichten [11].

Es wurde keine Forschung durchgeführt hinsichtlich eines Zusammenhangs zwischen achtsamem Verhalten, Stress und Leistung in der Notfallmedizin unter standardisierten Bedingungen. Das Ziel unserer Arbeit war, die Hypothese zu testen, dass fachliche und/oder nichtfachliche Fähigkeiten von Medizinstudenten während pädiatrischer Notfallsimulationen einen Zusammenhang aufweisen zu ihrer Achtsamkeit und ihrem Stress. Ganz allgemein nahmen wir an, dass die Ergebnisse unserer Studie zu einem besseren Verständnis der Mechanismen führen könnte, die die Leistung von Medizinstudenten während der pädiatrischen Notfälle beeinflussen, und diese befähigen, ihre Fähigkeiten für ihren zukünftigen Berufsweg zu verbessern.

2. Teilnehmer und Methoden

2.1. Teilnehmer

Das Projekt wurde geplant als eine beobachtende Kohortenstudie einer Gruppe von STUDIERENDEN DER MEDIZIN im Abschlussjahrgang (ClinicalTrials.gov ID: NCT03761355). Die Forschungsarbeit wurde an drei polnischen medizinischen Simulationszentren zwischen Oktober 2017 und Oktober 2018 durchgeführt. Die Inklusionskriterien waren: Studierende der Medizin im Abschlussjahrgang und Zustimmung zur Teilnahme an der Studie. Ausschlusskriterien war eine bestehende Schwangerschaft. Der Studienaufbau wird in Abbildung 1 gezeigt.

Medizinische Simulationen

Die Simulationen wurden als hochgenaue Szenarien lebensbedrohlicher Situationen bei Kindern aufgebaut (Themen: supraventrikuläre Tachykardie, Fieberkrämpfe, Bronchialasthma, Ketoazidose, anaphylaktischer Schock, Paracetamol-Intoxikation). Sie begannen vor mittags und wurden basierend auf Checklisten sowie dieselbe Reihenfolge der Szenarien). Das Schwierigkeitsniveau der Aufgaben lag im mittleren Bereich und wurde basierend auf der Pilotsimulation sowohl mit Studierenden als auch mit jungen Ärzten evaluiert. Jedes Szenario hatte zwei gleichrangige Ziele – fachliche und nichtfachliche Fähigkeiten, z. B. Behandlung der Verschlimmerung des Astmas aufgrund Pneumonie und die Verhinderung von Fixation Errors (d. h. nicht nur das Asthma, sondern auch die Pneumonie als Ursache des schlechten Allgemeinzustands des Kindes). Während der Durchführung des Szenarios übernahmen die Studierenden verschiedene Rollen (Teamleiter, Mitglied des Ärzteteams oder Akteur – Betreuer des Patienten). Die Analyse bezog sich nur auf die Szenarien, in denen die Studierenden als Teamleiter auftraten (Fähigkeiten und Interaktionen mit anderen Teilnehmern der Simulation wurden bewertet).

Die folgenden Angaben zu den Medizinstudenten wurden bewertet: Alter, Geschlecht und ob an Achtsamkeitstraining oder anderen sächlaren oder religiösen Meditationsuren teilgenommen worden war. Stress und dessen Auswirkung auf die Simulation wurden bewertet, sowohl subjektiv durch die Teilnehmer (auf einer 5-Stufen-Skala von mobilisierend bis entmutigend: je höher der Punktestand, desto größer bzw. entmutigender der Stress,
Höchstzahl: 5 Punkte) als auch durch Messung der Herzfrequenz und des Blutdrucks. Von den Studierenden täglich und vor der Simulation eingenommene Medikamente und Koffeinzufluss wurden ebenfalls verzeichnet sowie die laufende Nummer der Simulation an einem Tag und während der gesamten Studie (unsere Studierenden begannen das Simulationskursikulum im 4. Jahr an der Fakultät).

2.2. Fachliche und nichtfachliche Fähigkeiten

Fachliche Fähigkeiten wurden auf Grundlage von Checklisten eingeschätzt, die für jedes Szenario erstellt worden waren. Die Einschätzung wurde aufgeteilt in eine Befragung, körperliche Untersuchung, Diagnose und Behandlung. Je mehr Punkte auf der Skala erreicht wurden, desto besser die fachlichen Fähigkeiten (Höchstzahl: 10 Punkte).

Nichtfachliche Fähigkeiten wurden bewertet nach der Ottawa Crisis Resource Management Global Rating-Skala (OttawaGRS) und anhand von Checklisten [12], [13]. Die Ottawa GRS, ein Instrument, das für die Einschätzung von Krisenressourcen-Managementfähigkeiten entwickelt wurde, wurde für Ärzte in der Notfallversorgung entworfen und wird auch häufig bei medizinischen Simulationen verwendet. Sie hat gut definierte Bewertungsskalen für jede Kategorie: Führungskräfte (bleibt in Krisensituationen ruhig und kontrolliert, schnelle und sichere Entscheidungsfindung), situationsbezogenes Bewusstsein (vermeidet Fixation Errors), Kommunikationsfähigkeit (kommuniziert klar und präzise, verwendet direkte verbale / nichtverbare Kommunikation, hört auf Beiträge aus dem Team), Problemlösung (organisiertes und effizientes Herangehen an Problemlösung, überdenkt während der Krisensituation Alternativen), Ressourcennutzung (ruft angemessen nach Hilfe, nutzt vorhandene Ressourcen) [12]. Jede Kategorie wird nach einer 7-Punkte-Ordnungsskala mit beschreibenden Ankerpunkten gemessen, um Richtlinien zu alternierenden Punkten auf der Skala zur Verfügung zu stellen. Diese Beschreibungen werden hinzunommen, um eine persönliche Voreingenommenheit bei der Auslegung der Leistung einzuschränken. Je höher die Punktzahl auf der Ottawa GRS, desto besser die nichtfachlichen Fähigkeiten (Höchstzahl: 42 Punkte).

Vor der Forschungsarbeit wurden alle Ausbilder bzgl. der Bewertung nichtfachlicher Fähigkeiten durch GC und KT ausgebildet, die internationalen Experten auf diesem Gebiet sind. Nichtfachliche Fähigkeiten wurden durch zwei unabhängige Ausbilder / Beobachter während jeder Simulation in jedem Zentrum bewertet. Alle Ausbilder besaßen mehr als zwei Jahre Berufserfahrung in Simulationszentren, und hatten jedes Jahr mindestens 50 hochgenaue Simulationen durchgeführt bzw. bewertet. Sie hatten alle mindestens drei Jahre Ausbildung in Simulation und Abschlussauswertung hinter sich. Der Abweichungskoeffizient zwischen den Bewertern betrug für die Einschätzung nichtfachlicher Fähigkeiten 5%. Die Durchschnittspunktzahlen zwischen den beiden Beobachtern wurden als Referenzwerte verwendet.

2.3. Achtsamkeit

Achtsamkeit wurde vor den Simulationen gemäß der Kurzversion des Fünf-Facetten-Achtsamkeits-Fragebogens (Five Facet Mindfulness Questionnaire (FFMQ)) in der polnischen Version und Validierung bewertet [14], [15]. FFMQ wird verwendet, um die Tiefe der Achtsamkeit zu messen, d. h. den spezifischen Zustand der Aufmerksamkeit, der auf nicht evaluierende und nicht wertende Weise das Ergebnis konstant gerichteter Aufmerksamkeit ist, die auf das gerichtet ist, was im gegenwärtigen Moment geschieht. FFMQ evaluiert fünf Faktoren: bewusste Gegenwart, Nichtheftigkeit, keine Wertung, Beobachtung und Beschreibung. Je höher die FFMQ-Punktzahl, desto höher das Achtsamkeitsniveau.

Der Studienaufbau wurde vom Ethikausschuss der Medizinischen Universität Bialystok gemäß der Erklärung von Helsinki (Nr R-I-002/358/2017) genehmigt. Von den Studierenden wurde eine informierte schriftliche Zustimmung eingeholt. Die Zustimmungsrate betrug 94,9%. Der Hauptgrund für eine Verweigerung der Zustimmung war Zeitmangel beim Ausfüllen der Übersicht. Die Studierenden, die ihre Zustimmung zur Teilnahme an der Studie erteilten, und diejenigen, die keine Zustimmung erteilten, unterschieden sich nicht in Geschlecht, Alter oder bei Bewertungspunktzahlen hinsichtlich fachlicher und nichtfachlicher Fähigkeiten.
Die Daten werden als Durchschnittswerte und Standardabweichungen (SD) dargestellt, sowie als Inzidenz eines bestimmten Merkmals in einer evaluierten Studierendengruppe. Eine univariante Analyse wurde unter Verwendung des Mann–Whitney U-Tests für kontinuierliche Variablen und des Chi-Square-Tests für nominale Variablen verwendet. Spearmans Rang-Korrelationskoeffizient wurde für die Evaluatorung der Beziehungen zwischen Achtsamkeit, Stress und Leistung der Medizinstudenten in den Simulationen verwendet. A p<0,05 wurde als statistisch signifikant angesehen. Die Statistikanalyse wurde unter Verwendung der Software Statistica 13 (StatSoft, Tulsa, OK, USA) durchgeführt. Nur Studierende mit sämtlichen verfügbaren Daten wurden in die Analyse einbezogen.

3. Ergebnisse

Insgesamt qualifizierten sich 166 Studierende für die Studie. Da jeder Studierende mindestens einmal die Rolle eines Teamleiters in einer pädiatrischen Notfallsimulation übernahm, wurden 166 Simulationen analysiert. Die Angaben zu Alter, Geschlecht, Meditation/Gebet, Koffeinzufuhr und Medikamenteneinnahme sowie Stress vor und nach den Simulationen werden in Tabelle 1 gezeigt. Die Durchschnittswerte der Studierenden auf der Skala der fachlichen bzw. nichtfachlichen Fähigkeiten sowie Achtsamkeit finden sich in Tabelle 2. Die Beziehungen zwischen Achtsamkeit, Stress und Leistung der Medizinstudenten in pädiatrischen Notfallsimulationen – Spearmans Rang-Korrelationskoeffizient – werden in Tabelle 3 gezeigt.

3.1. Stress und achtsame Anwesenheit der Studierenden

Die Wahrnehmung von Stress seitens der Studierenden vor und nach der Simulation korreliert mit ihrer Achtsamkeit. Das niedrigere Stress-Wahrnehmungsniveau vor der Simulation stand in Beziehung zur Gesamtschachtsamkeit, niedrigerer Reaktivität und einem geringeren Level an Wertung (siehe Tabelle 3). Zudem wurde Stress während der Simulation eher als mobilisierend wahrgenommen, wenn die Studierenden durch eine bewusstere Anwesenheit und ein höheres Niveau der Beschreibung des gegenwärtigen Moments charakterisiert waren (siehe Tabelle 3). Die Teilnahme an Meditationen/Gebeten beeinflusste die sonstigen Parameter der Studie nicht. Es wurde auch keine Korrelation beobachtet zwischen der permanenten Einnahme von Koffein bzw. Einnahme kurz vor der Simulation und Stress, Herzfrequenz und Blutdruck vor der Simulation. Es fanden sich auf der Achtsamkeitsskala keine Unterschiede zwischen meditierenden und nicht meditierenden Studierenden (Nichtreakтивität, Beobachtung, bewusstes Handeln, Beschreiben und Nichtwertung).

3.2. Stress und Leistung von Medizinstudenten

Der vor einer Simulation empfundene Stress beeinflusste einige der Parameter der Skala der nichtfachlichen Fähigkeiten (Ottawa GRS). Es bestand eine positive Korrelation zwischen dem subjektiven Stressempfinden vor der Simulation und den erreichten Ergebnissen hinsichtlich Teammanagement und Kommunikation im Team (siehe Tabelle 3); der empfundene Stress stand in keiner Beziehung zu fachlichen Fähigkeiten, die mittels einer speziellen standardisierten Checkliste beurteilt wurden. Das Gesamtergebnis der Studierenden bei fachlichen Fähigkeiten zeigte keine Korrelation zur erreichten Gesamtpunktzahl bei nichtfachlichen Fähigkeiten. Jedoch bestand eine Beziehung zwischen situationsbezogenem Bewusstsein (Ottawa GRS) und einer höheren Punktzahl bei fachlichen Fähigkeiten (siehe Tabelle 3).

Die Analyse aller durchlaufenen Situationen zeigte, dass alle nichtfachlichen Fähigkeiten sich mit zunehmender Anzahl der hochgenauen medizinischen Simulationen, die von einem Team absolviert wurden, verbesserten (r=0,33, p<0,001). Diese Korrelation konnte bei fachlichen Fähigkeiten nicht beobachtet werden (p>0,05). Ein Vergleich der Ottawa-GRS-Punktzahlen zeigte statistisch signifikant niedrigere Durchschnittswerte bei Fähigkeiten des situationsbezogenen Bewusstseins (Fixation Error), als bei anderen nichtfachlichen Fähigkeiten der MedizinstudentInnen (p<0,001) (siehe Tabelle 2). Fähigkeiten des situationsbezogenen Bewusstseins korrelierten nicht mit Stress, der Zufuhr von Koffein, Einnahme von Medikamenten oder der Teilnahme an Meditationen/Ge beten.

3.3. Achtsamkeit und Leistung

Die in den Checklisten erreichten Ergebnisse der Studierenden im Bereich fachliche Fähigkeiten korrelierten nicht mit ihrer Achtsamkeit (p>0,05). Ähnlich stand auch die Gesamt-FFMQ-Punktzahl nicht in Beziehung zu erreichten Ottawa GRS-Gesamtpunktzahl bei nichtfachlichen Fähigkeiten. Jedoch war die Vermeidung von Fixation Errors (Fähigkeiten des situationsbezogenen Bewusstseins) positiv verbunden mit bewusstem Handeln auf der Achtsamkeitsskala (siehe Tabelle 3). Die Achtsamkeit von Studierenden korrelierte nicht mit einer Änderung des empfundenen Stresslevels oder Veränderungen der Herzfrequenz und des Blutdrucks vor und nach einer Simulation.

4. Diskussion

Unter standardisierten Bedingungen pädiatrischer hochgenauer Simulationen suchten wir nach Verbindungen zwischen der bewussten Anwesenheit und fachlichen bzw. nichtfachlichen Fähigkeiten sowie Stresswahrnehmung seitens Studierender der Medizin. Der Stress war geringer und motivierender, wenn die Studierenden achtsamer waren. Achtsamkeit bei den Studierenden...
Tabelle 1: Angaben zu Medizinstudenten, die an pädiatrischen Simulationen teilgenommen haben.

Ausprägung	Häufigkeit
Anzahl der Teilnehmer	166
Anzahl der Simulationen	166
Durchschnittsalter ±SD	24,5 ±1,2
Geschlecht	M – 50 (30,1%) W – 116 (69,9%)
Teilnahme an Meditationskursen / Gebeten	regelmäßig: 33 (19,8%) unregelmäßig: 39 (23,4%)
Gewöhnliche Koffeinzufuhr (Tassen/Tag)	<1 – 60 (36,1%) 1±s2: 82 (49,4%) ≥3: 24 (14,5%)
Einnahme von Koffein während der letzten 12 Stunden vor der Simulation (Tassen)	<1 – 122 (73,5%) 1±s2: 42 (25,3%) ≥3: 2 (1,2%)
Einnahme von Medikamenten, die die Herzfrequenz beeinflussen	6 (3,6%)

Achtsamkeit: (Durchschnitt ±SD)

Gesamtscore	3,2 ±0,4
keine Reaktion	2,8 ±0,7
beobachten	3,4 ±0,8
bewusstes Handeln	3,2 ±0,4
beschreiben	3,6 ±0,6
nicht wertend	3,2 ±0,7

Tabelle 2: Ergebnisse bezüglich fachlicher und nichtfachlicher Fähigkeiten sowie Achtsamkeit bei Medizinstudenten während pädiatrischer Notfallsimulationen.

Fachliche Fähigkeiten* (Durchschnitt ±SD)	Gesamtscore
Gesamtscore	8,0 ±1,3
Gesamtleistung	29,4 ±5,7
Führungsqualitäten	4,7 ±1,1
Problemlosungsfähigkeit	4,9 ±0,9
Situationsbezogene	5,2 ±1,0
Bewusstseinsfähigkeit	4,0 ±0,9***
Ressourcenutzungsfähigkeit	5,1 ±1,1
Kommunikationsfähigkeit	5,2 ±1,1

Nichtfachliche Fähigkeiten** (Durchschnitt ±SD)	Durchschnittliche subjektive
Stresswahrnehmung vor und nach Simulation (1 – kein Stress, 5 – sehr gestresst)	2,2 ±0,6 vs. 2,4 ±0,9 (p<0,05)
Herzfrequenz vor und nach Szenario	76,9 ±10,6 vs. 77,3 ±15,9 (p<0,05)
Blutdruck vor und nach Szenario (systolisch / diastolisch, mmHg)	119,9 ±11,2 / 78±5,9 vs. 124,0 ±13,4 / 84±5,2 (p=0,05)
Subjektive Einschätzung des Einflusses von Stress auf Leistung während der Simulation (1 – mobilisierend; 5 – entmutigend)	2,34 ±0,73

*max 10 Punkte, **max 42 Punkte, ***Durchschnittsergebnisse für alle Studierenden statistisch signifikant niedriger als bei anderen nichtfachlichen Fähigkeiten (p<0,001)

korrelierte positiv mit der Vermeidung von Fixation Errors. Die Ergebnisse unserer Forschung deuten auf eine Biedeutung von Achtsamkeit und Stress beim Teamwork während simulierter pädiatrischer Notfälle hin. Bislang hat es dazu noch keine Forschung gegeben, und die Auswirkungen von Achtsamkeit auf die Leistung von Ärzten in der Notfallmedizin, gleich, ob vorteilhaft oder nicht, waren bisher rein hypothetisch. In unserer Gruppe von Medizinstudenten korrelierte die Gesamtpunktzahl der fachlichen Fähigkeiten nicht mit dem Gesamtergebnis nichtfachlicher Kompetenzen. Jedoch führte eine Soft Skill-Komponente, nämlich das größere situationsbezogene Bewusstsein, zu einer höhere n Punktzahl bei den fachlichen Fähigkeiten. Unter vergleichbaren Bedingungen pädiatrischer Simulationen fanden sich keine direkten Zusammenhänge zu situationsbezogenem Bewusstsein und dem Erreichen der Ziele [16]. In dieser Studie führte ein Konsens bzgl. des Primärproblems (geteiltes mentales Modell) zur schnelleren Erreichung der vordefinierten Ziele. Jedoch prognostizierten in anderen Akutversorgungssimulationen nichtfachliche Fähigkeiten signifikant die klinische Leistung der Studierenden, die durch Krankenschwestern bewertet wurde [17]. In einer der Studien führte, wie in unseren Gruppen, die Wiederholung der Simulation zur Verbesserung nichtfachlicher Fähigkeiten, wie z. B. Kommunikation, Teamwork, situationsbezogenes Bewusstsein und Entscheidungsfindung [18]. Jedoch zeigten Clarke u. a., dass die einzige Variable, die die Gesamteinschätzung der nichtfachlichen Kompetenzen während der Simulationen (ebenfalls mit der Ottawa GRS bewertet) beeinflusste, der Fortschritt der Mediziner im Spezialisierungsprogramm (sogenannter PGY Status) bzw. die klinische Erfahrung positiv korrelierte.
Es ist äußerst schwierig, Forschung durchzuführen, die den Einfluss von Achtsamkeit auf die Patientenversorgung aufzeigt. In der vorliegenden Studie haben wir erstmals gezeigt, dass Achtsamkeit in Zusammenhang steht mit nichtfachlichen Fähigkeiten, d. h. mit der Vermeidung von Fixation Errors in pädiatrischen Notfallsituationen. Unserer Ansicht nach war das situationsbezogene Bewusstsein (Fixation Error) die schwächsten nichtfachliche Fähigkeit unter allen bewerteten Fähigkeiten unter Verwendung der Ottawa GRS-Skala. Während der Vorbereitung äußerten die Studierenden eine wahrscheinliche Diagnose laut und waren dann während der Simulation darauf fixiert, ohne diese Hypothese zu verifizieren, trotz aller verfügbaren Daten (Befragung, körperliche Untersuchung, zusätzliche Testergebnisse). Der Verlust des situationsbezogenen Bewusstseins kann zu Irrtümern führen. Auf der anderen Seite hat die Umsetzung des Simulationsbasierten Krisen-Ressourcenmanagement-Trainings, das von pädiatrischen Herzintensivpflegeabteilungen angeboten wird, das situationsbezogene Bewusstsein verbessert, einschließlich des Berichtens von Zweifeln hinsichtlich geeigneter Maßnahmen an den Teamleiter [20].

Die von unseren Medizinstudenten erreichten FFMQ-Punktzahlen waren vergleichbar denen, die von einer Gruppe von 800 polnischen Erwachsenen berichtet wurde, deren Skala validiert wurde; das deutet darauf hin, dass Studierende der Medizin genauso achtsam sind, wie andere erwachsene Polen [14]. Unserer Beobachtung nach verminderte ein höherer Grad an Achtsamkeit nicht nur die subjektive Wahrnehmung von Stress vor einer Simulation, sondern korreliert auch mit einem motivierenderen Einfluss während des Simulationszusammenhangs. Das Ergebnis einiger Studien deutet auf eine Beziehung zwischen Achtsamkeit und Wohlbehinden bzw. Ausbildung und Arbeit in Gesundheitsberufen und im Medizinstudium hin. Auswirkungen von Achtsamkeit, wie vermindelter Stress, erhöhte Selbsterregulierung (die Fähigkeit, eigene Gedanken und Handlungen effektiv zu kontrollieren, um eine Aufgabe zu lösen), können für Medizinstudenten während pädiatrischer Notfälle sehr nützlich sein. Eine Metaanalyse von 19 Studien hinsichtlich der Nutzung von Achtsamkeit bei Medizinstudenten zeigte, dass Achtsamkeit-basierte Interventionen Stress, Ängste und Depressionen vermindern und Achtsamkeit, Stimmung, Selbstmitgefühl und Mitgefühl verbessern [5]. Wie von den Autoren dieser Analyse offengelegt, kann ein Achtsamkeitstraining relativ einfach an die moderne medizinische Lehre adaptiert und in diese integriert werden. Das Fokussieren auf den gegenwärtigen Moment kann jungen Ärzten helfen, sich darauf zu konzentrieren, was wirklich wichtig ist, und das hilft sowohl den Patienten als auch ihnen selbst. Das Ziel der Achtsamkeit ist, es Mitarbeitern im Gesundheitswesen zu erlauben, Abstand zur mental und emotional anstrengenden Arbeitsumgebung zu halten. Achtsamkeit kann hilfreich sein, Professionalität zu lehren, einschließlich der Akzeptanz eigener Grenzen, Prioritäten zu setzen und belastbar zu werden. In einer Studie wurden achtsamere Ärzte häufiger um Hilfe gebeten und schienen offener für ein Feedback zu sein [21]. In unseren Simulationen war eine der fachlichen Fähigkeiten in einigen Szenarien, einen Spezialisten zur Beratung hinzuzuziehen. Wir fanden jedoch keinen Zusammenhang zwischen größerer Achtsamkeit und häufigerem Bitten um Hilfe in diesem Bereich. Das Erlernen kritischen Denkens, das Entwickeln kognitiver und affektiver Tendenzen, die Verwendung dieser Prozesse...
zur Reflexion und Achtsamkeit kann zu größerer Kreativität, Denken jenseits gewohnter Strukturen und Innovation bei der Diagnose und Behandlung von Patienten führen [22]. Vielleicht sollten routinemäßige Diagnostik und therapeutische Prozesse, die nicht immer die gewünschten Ergebnisse erzielen, angereichert werden durch das Bewusstsein für die Inhibitoren und Facilitatoren von Rationalität bei der Entscheidungsfindung. Es scheint, dass der Simulationsraum ein guter Ort ist, um Achtsamkeit bei diagnostischen und therapeutischen Verfahren zu erlernen, bevor diese Technik im echten Arztleben angewendet wird [23].

Die Stärken unserer Studie bestehen im einzigartigen pädiatrischen Charakter der Simulation, der großen Anzahl der Teilnehmer und Simulationen, der großen Erfahrung der am Projekt beteiligten Simulationszentren, dem Mangel an Freiwilligkeit der Forschung und den standardisierten Bedingungen der Umsetzung der Studie. Die Beschränkungen unserer Studie liegen sicherlich in der Subjektivität und der Schwierigkeit der Anwendung der Ottawa GRS-Skalazugl. der nichtfachlichen Fähigkeiten. Jedoch gilt dieser Maßstab als einfacher, praktischer und zuverlässiger in der Anwendung als vergleichbare Instrumente, d. h. das Anesthetists' Non-Technical Skills (ANTS) System zu behavioralen Markern [13]. Unser Projekt fehlt es zudem an einer Selbsteinschätzung der studientypischen Aktivitäten, und es wäre äußerst interessant, es mit der Einschätzung der Ausbilder zu vergleichen. Jedoch schlugen unsere Versuche zur Durchführung einer solchen Einschätzung fehl: die Studierenden waren nicht in der Lage, ihre Handlungen unter Verwendung von ziemlich komplizierten Skalen zu evaluieren. Außerdem kann das Ergebnis der mit Medizinstudenten durchgeführten Forschung nicht vollständig auf die echte Arbeit von Ärzten übertragen werden, da die endgültigen Auswirkungen viele zusätzliche Faktoren umfassen sowie eine professionelle Umgebung oder Familie etc., die die Erreichung der Ziele der Achtsamkeit in der alltäglichen Arbeit mit Patienten in einem Krankenhaus oder einer Ambulanz bestimmen.

Hat größere Achtsamkeit Einfluss auf die Handlungen von Ärzten in echten medizinischen Situationen? Sollte Achtsamkeit in das Universitätskurrikulum für Medizinstudenten aufgenommen werden? Sollte Achtsamkeit als Wahl- oder Pflichtfach unterrichtet werden? Es wäre interessant, zu überprüfen, wann die Eingriffe optimal sind – zu Beginn oder zum Ende des Studiums, zu Beginn oder zum Ende des klinischen Ausbildungszentrums? Diese und viele weitere Fragen sollten zukünftig in randomisierten Versuchen untersucht werden.

5. Schlussfolgerungen

Die Ergebnisse unserer Forschung deuten auf einen Zusammenhang zwischen Achtsamkeit bei Medizinstudenten und ihren nichtfachlichen Fähigkeiten sowie der Wahrnehmung von Stress in der Simulation pädiatrischer Notfallsituationen hin. Weitere Forschungen sind notwendig, um zu zeigen, ob Achtsamkeitstrainings zu Veränderungen in diesem Bereich führen. Vielleicht können Achtsamkeitskurse im medizinische Universitätskurrikulum und den frühen Berufsweg von jungen Ärzten aufgenommen werden, um Stress zu reduzieren und die diagnostische und therapeutische Wirksamkeit von allein oder im Team arbeitenden Ärzten zu verbessern.

Abkürzungen

• ANTS – Anesthetists’ Non-Technical Skills
• FFQM – Five Facet Mindfulness Questionnaire
• HRV – heart rate variability
• Ottawa GRS – Ottawa Crisis Resource Management Global Rating Scale

Beiträge der Autoren

JC, WL, GC, TB und KT haben die Studie entworfen; JC und WL haben wesentliche Beiträge zum Manuskript geleistet; WL, KL, TB und KT haben die Patientendaten gesammelt und analysiert; sämtliche Autoren haben das endgültige Manuskript gelesen und genehmigt.

Datenverfügbarkeit

Die Rohdatensätze, einschließlich Datenbank (in Microsoft Access), die für die Ergebnisse dieser Studie verwendet wurden, können auf Nachfrage von den Korrespondenzautoren erfragt werden.

Förderung

Die Studie wurde von der Medizinischen Universität in Białystok, Polen, finanziert.

Interessenkonflikt

Die Autoren erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur

1. Bragard I, Seghaye MC, Farhat N, Solowianiuk M, Saliba M, Etienne AM, Schumacher K. Implementation of a 2-Day Simulation-Based Course to Prepare Medical Graduates on Their First Year of Residency. Pediatr Emerg Care. 2018;34(12):857-861. DOI: 10.1097/PEC.0000000000000930

2. Vogel S, Schwabe L. Learning and memory under stress: implications for the classroom. NPJ Science Learn. 2016;1:16011. DOI: 10.1038/npjscilearn.2016.11
3. Botha E, Gwin T, Purpora C. The effectiveness of mindfulness based programs in reducing stress experienced by nurses in adult hospital settings: a systematic review of quantitative evidence protocol. JBL Database System Rev Implement Rep. 2015;13(10):21-29. DOI: 10.11124/jbsir-2015-2380

4. Kabat-Zinn J. Mindfulness-Based Interventions in Context: Past, Present, and Future. Clin Psychol Sci Pract. 2003;10(2):144-156. DOI: 10.1093/clipsy.bpg016

5. McConville J, McAleer R, Hahne A. Mindfulness Training for Health Profession Students-The Effect of Mindfulness Training on Psychological Well-Being, Learning and Clinical Performance of Health Professional Students: A Systematic Review of Randomized and Non-randomized Controlled Trials. Explore (NY). 2017;13(1):26-45. DOI: 10.1016/j.explore.2016.10.002

6. Ross S, Liu EL, Rose C, Battaglioli N. Strategies to Enhance Wellness in Emergency Medicine Residency Training Programs. Ann Emerg Med. 2017;70(6):891-897. DOI: 10.1016/j.annemergmed.2017.07.007

7. Lopreiato JO. Healthcare Simulation Dictionary. Rockville, MD: Agency for Healthcare Research and Quality; 2016. Zugänglich unter/available from: http://www.ahsih.org/dictionary

8. Daglius Dias R, Scalabrini Neto A. Stress levels during emergency care: A comparison between reality and simulated situations. J Crit Care. 2016;33:8-13. DOI: 10.1016/j.jcrc.2016.02.010

9. Bragard I, Farhat N, Seghaye MC, Schumacher K. High fidelity simulation: a new tool for learning and research in pediatrics. Rev Med Liege. 2016;71(10):455-459.

10. Cavicchio ME, Cavallin F, Staffier A, Pizol D, Matediana E, Wingi OM, Da Dalt L, Putoto G, Trevisanuto D. Decision making and situational awareness in neonatal resuscitation in low resource settings. Resuscitation. 2019;134:41-48. DOI: 10.1016/j.resuscitation.2018.10.034

11. Shetty R, Thyagarajan S. Simulation in pediatrics: Is it about time? Ann Card Anaesth. 2016;19(3):505-510. DOI: 10.4103/0971-9784.185543

12. Kim J, Neilipovitz D, Cardinal P, Chiu M. A comparison of global rating scale and checklist scores in the validation of an evaluation tool to assess performance in the resuscitation of critically ill patients during simulated emergencies. Sim Healthcare. 2009;4(1):5-16. DOI: 10.1097/SIH.0b013e3181880472

13. Jirativanont T, Raksamani K, Aroonpruksakul N, Apidechakul P, Suraseranivongse S. Validity evidence of non-technical skills assessment instruments in simulated anaesthesia crisis management. Anaesth Intensive Care. 2017;45(4):469-475. DOI: 10.11177/0310057X170450041D

14. Radon S. Validation of the Polish adaptation of the Five Facet Mindfulness Questionnaire. Ann Psychol. 2014;17(4):737-780.

15. Bohlmeijer E, ten Klooster PM, Fledderus M, Veehof M, Baer R. Psychometric properties of the five facet mindfulness questionnaire in depressed adults and development of a short form. Assessment. 2011;18(3):308-320. DOI: 10.1177/1073191111408231

16. Coolen E, Draaisma J, Loefven J. Measuring situation awareness and team effectiveness in pediatric acute care by using the situation global assessment technique. Eur J Pediatr. 2019;178(6):837-850. DOI: 10.1007/s00431-019-03358-z

17. Cha JS, Anton NE, Mizota T, Hennings JM, Rendina MA, Stanton-Maxey K, Ritter HE, Stefanidis D, Yu D. Use of non-technical skills can predict medical student performance in acute care simulated scenarios. Am J Surg. 2019;217(2):323-328. DOI: 10.1016/j.amjsurg.2018.09.028

18. Marker S, Mohr M, Østergaard D. Simulation-based training of junior doctors in handling critically ill patients facilitates the transition to clinical practice: an interview study. BMC Med Educ. 2019;19(1):11. DOI: 10.1186/s12995-018-1447-0

19. Clarke S, Horeczko T, Cotton D, Bair A. Heart rate, anxiety and performance of residents during a simulated critical clinical encounter: a pilot study. BMC Med Educ. 2014;14:153. DOI: 10.1186/1472-6920-14-153

20. Allan OK, Thiagarajan RR, Beke D, Imprescia A, Kappus LJ, Garden A, Hayes G, Laussen PC, Bacha E, Weinstead PH. Simulation-based training delivered directly to the pediatric cardiac intensive care unit engenders preparedness, comfort, and decreased anxiety among multidisciplinary resuscitation teams. J Thorac Cardiovasc Surg. 2010;140(3):646-652. DOI: 10.1016/j.jtcvs.2010.04.027

21. Verweij H, van Ravestijn H, van Hooff ML, Lagro-Janssen AL, Speckens AE. Does Mindfulness Training Enhance the Professional Development of Residents? A Qualitative Study. Acad Med. 2018;93(9):1335-1340. DOI: 10.1097/ACM.0000000000002260

22. Croskerry P. Adaptive expertise in medical decision making. Med Teach. 2018;40(8):803-808. DOI: 10.1080/0142159X.2018.1484988

23. Park CW, Holltschneider ME. A case for mindfulness. Simulation-based six strategy framework. J Nurses Prof Dev. 2018;34(3):164-165. DOI: 10.1097/NND.0000000000000447

Korrespondenzadresse:
Włodzimierz Łuczynski
Medizinische Universität Białystok, Abteilung für Medizinische Simulationen, Szpitalna 30, PL-15-294 Białystok, Polen, Tel: +48 85 686 5253
wlodzimierz.luczynski@umb.edu.pl

Bitte zitieren als
Łoś K, Chmielewski J, Cebula G, Bielecki T, Torres K, Łuczyński W. Relationship between mindfulness, stress, and performance in medical simulations. GMS J Med Educ. 2021;38(4):Doc78. DOI: 10.3205/zma001474, URN: urn:nbn:de:0183-zma0014749

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001474.shtml

Eingereicht: 02.07.2020
Überarbeitet: 22.11.2020
Angenommen: 25.01.2021
Veröffentlicht: 15.04.2021

Copyright
©2021 Łoś et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.