The genus *Sterculia* is represented by 200 species which are widespread mainly in tropical and subtropical regions. Some of the *Sterculia* species are classified under different genera based on special morphological features. These are *Pterygota* Schott & Endl., *Firmiana* Marsili, *Brachychiton* Schott & Endl., *Hildegardia* Schott & Endl., *Pterocymbium* R.Br. and *Scaphium* Schott & Endl. The genus *Sterculia* and the related genera contain mainly flavonoids, whereas terpenoids, phenolic acids, phenylpropanoids, alkaloids, and other types of compounds including sugars, fatty acids, lignans and lignins are of less distribution. The biological activities such as antioxidant, anti-inflammatory, antimicrobial and cytotoxic activities have been reported for several species of the genus. On the other hand, there is confusion on the systematic position and classification of the genus *Sterculia*. However, the wide range of the reported flavonoids in the present review is quite significant and can act as a guide for further studies from the chemosystematic point of view. Also the value of the genus *Sterculia* and its related genera in the traditional medicine and their effective biological activities led to the possibilities of finding new sources of drugs for prospect applications.
of the distribution of a wide range of flavonoid constituents, which are believed to play a considerable role in plant chemotaxonomy[5]. Moreover, most of them have shown to possess different biological activities[4].

The following chronological literature survey was achieved aiming to provide helpful guidelines for further studies. In this respect, data on isolation and identification of different types of chemical compounds from plants of the genus Sterculia and the related genera were gathered and reported in addition to those concerned with the biological activities of these plants.

2. Chemical constituents of the genus Sterculia and the related genera

2.1. Flavonoids

A survey of the genus Sterculia and the related genera showed a wide range of flavonoid compounds. They occurred mostly as flavone and flavonol glycosides. The flavone glycosides mainly present are as 7-O-glucoside and 7-O-glucuronide of apigenin, luteolin and chrysoeriol, whereas diosmetin glycosides were not often present. The glycosylation of flavonols at position 3 were common, generally based on quercetin and/or kaempferol. 6- or 8-hydroxyflavones, scutellarein, isoscutellarein, 6-hydroxyluteolin, and hypolaetin were also detected, but that of 6- or 8-hydroxyflavonols were absent. C-glycosylflavonoids were rare; vitexin and apigenin 6,8-di-C-β-D-glucoside were reported in Sterculia colorata Roxb. (S. colorata) and Sterculia foetida L. (S. foetida), respectively[6,7]. A single isoflavone structure with C-glucosyl substituent at position 8 (puerarin) had been also characterized for S. foetida[7]. The determined anthocyanins were pelargonidin and cyanidin derivatives. The classes of the flavonoids reported are outlined in Table 1 and classified based on their chemical structures according to Harborne[5].

2.2. Other phenolic constituents

Mono- and dihydroxy-phenolic acids were isolated from the leaves of S. foetida and S. lychnophora seeds[9,16,18]. Phenolic

Compound	Organ	Species	References	
Flavones	A. pigment	Leaves	S. colorata	[6]
	Flower	F. plataniolius	[8]	
	Leaves	S. foetida	[9]	
	Stem, leaves	P. alata	[10]	
	Leaves	B. acerifolius	[11]	
	Leaves	B. acerifolius	[11]	
	Leaves	S. colorata	[6]	
	Leaves	B. acerifolius	[11]	
	Leaves	S. foetida	[12]	
	Leaves	S. foetida	[12]	
	Leaves	S. colorata	[13]	
	Leaves	S. foetida	[7,9]	
	Leaves	S. colorata	[6]	
	Leaves	B. acerifolius	[11,14]	
	Leaves	S. foetida	[9]	
	Leaves	S. foetida	[9]	
	Leaves	S. colorata	[6]	
	Leaves	S. foetida	[9]	
	Leaves	B. acerifolius	[11]	
	Leaves	S. foetida	[9]	
	Leaves	S. villosa	[15]	
	Leaves	S. foetida	[9]	
	Leaves	S. villosa	[15]	
	Leaves	S. foetida	[9]	

(continued on next page)
Compound	Organ	Species	References
Chrysoeriol 7-O-β-D-glucuronide 6'-methyl ester			
Chrysoeriol 7-O-β-D-glucuronide 6'-ethyl ester			
Luteolin 4'-methyl ether (diosmetin)	Leaves	*S. villosa*	[15]
Diosmetin 7-O-β-D-glucoside			
6-Hydroxyluteolin	Leaves	*S. colorata*	[6]
6-Hydroxyluteolin 6-O-β-D-glucuronide	Leaves	*S. colorata*	[6]
	Leaves	*S. foetida*	[13]
8-Hydroxyluteolin 8-O-β-D-glucuronide (hypolaetin 8-O-β-glucuronide)	Leaves	*S. foetida*	[9,16]
Hypolaetin 8-O-β-D-glucuronide 6'-methyl ester			
Hypolaetin 8-O-β-D-glucuronide 6'-ethyl ester			
6-Hydroxyluteolin	Leaves	*S. colorata*	[6]
6-Hydroxyluteolin 6-O-β-D-glucuronide	Leaves	*S. foetida*	[13]
6-Hydroxyluteolin 6'-O-β-D-glucuronide	Leaves	*S. foetida*	[9,16]

Flavonols

Compound	Organ	Species	References
Kaempferol	Leaves	*F. simplex*	[15]
	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
	Leaves	*B. acerifolius*	[11,14]
Kaempferol 3-O-β-D-glucoside	Stem bark	*S. diversifolia*	[17]
	Seeds	*S. lychnophora*	[18]
	Fruit	*S. scaphigerum*	[19]
Kaempferol 3-O-β-D-rutinoside	Leaves	*F. simplex*	[15]
	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
	Seeds	*S. lychnophora*	[18]
	Fruit	*S. scaphigerum*	[19]

Compound	Organ	Species	References
Kaempferol 3-O-(2",6"-dirhamnosyl)-β-glucoside (K 3-O-(2"-rhamnosylrutinoside))	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
Kaempferol 3-O-(2",6"-dirhamnosyl)-β-galactoside (K 3-O-(2"-rhamnosylrobinoside))	Leaves	*B. rupestris*	[17]

Quercetin

Compound	Organ	Species	References
Quercetin 3-O-arabinoside	Stem bark	*S. diversifolia*	[17]
Quercetin monorhamnoside	Roots	*S. foetida*	[23]
Quercetin 3-O-rhamnoside (quercitrin)	Stem bark	*F. platanifolia*	[24]
	Stem	*F. simplex*	[25,26]
	Leaves	*B. discolor*	[22]
	Leaves	*S. foetida*	[9]
Quercetin 3-O-β-D-glucoside	Leaves	*S. pallens*	[20]
	Leaves	*F. simplex*	[15]
	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
	Leaves	*B. australis*	[21]
	Leaves	*B. acerifolius*	[11,14]
	Leaves	*B. discolor*	[22]
Quercetin 3-O-β-D-galactoside	Leaves	*S. pallens*	[20]
	Leaves	*B. australis*	[21]
	Leaves	*S. foetida*	[7]
Quercetin 3-O-galactoside (hyperoside)	Leaves	*F. simplex*	[15]
	Leaves	*B. acerifolius*	[11,17]
Quercetin 3-O-(6"-α-rhamnosyl)-β-glucoside (rutin)	Leaves	*F. simplex*	[27]
	Leaves	*B. australis*	[21]
	Leaves	*B. acerifolius*	[11,14]
Quercetin 3-O-(2"-α-rhamnosyl)-β-D-glucoside	Leaves	*F. simplex*	[15]
Quercetin 3-O-diglucoside	Leaves	*S. pallens*	[20]
Quercetin 7-methyl ether (rhamnetin)	Leaves	*B. discolor*	[22]
Quercetin 3'-methyl ether (isorhamnetin)	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
	Leaves	*B. acerifolius*	[14]
	Leaves	*B. australis*	[21]
	Seeds	*S. lychnophora*	[18]
	Fruit	*S. scaphigerum*	[19]

(continued on next page)
aldehydes were rare. The genus *Sterculia* comprises two major classes of phenylpropanoids: cinnamic acids and coumarins. Cinnamic acid was isolated from *P. alata*, while the common cinnamic acid derivatives, *p*-coumaric and ferulic acids were reported in *S. foetida*. Lignans and lignins were reported in *P. alata*, while dioxane lignin was obtained from the leaves of *Pterygota macrocarpa* K. Schum. (*P. macrocarpa*) as shown in Table 2 [25,34].

2.3. Terpenoids and steroids

Limited terpenoids have been reported in the genus *Sterculia* and all are represented by triterpenes. Three new ursane triterpenes saponins were recently isolated from the stems of *F. simplex*: 28-β-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl-2α,3α,19α-trihydroxy-12-en-28-ursolic acid, 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl-2α,3α,19α,23-tetrahydroxy-12-en-28-ursolic acid and 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl-2α,3β,19α-trihydroxyurs-12-ene-24,28-dioic acid [34]. Steroids were also found in some species of the same genus; β-sitosterol and stigmastanol were isolated from certain parts of some species, while β-sitosterol-3-O-β-D-glucopyranoside was reported in *S. foetida* and *Sterculia striata* St. Hil. et Naud (S. striata) [28,35]. Table 3 describes the terpenoids and steroids reported in the genus *Sterculia* and related genera.

2.4. Miscellaneous compounds

Species of the genus *Sterculia* were also reported to contain several compounds from other classes, as shown in Table 4. Two

Table 1 (continued)

Compound	Organ	Species	References
Quercetin 3'-methyl ether (isorhamnetin)	Leaves	*B. rupestris*	[17]
Isorhamnetin 3-O-β-D-rutinoside	Stem bark	*S. diversifolia*	[17]
	Leaves	*B. acerifolius*	[14]
	Leaves	*B. rupestris*	[17]
	Stem bark	*S. diversifolia*	[17]
	Leaves	*B. australis*	[21]
	Seeds	*S. lychnophora*	[18]
F. simplex	Fruit	*S. scaphigerum*	[19]
		F. j. Muell.	
		S. kurzleri	
		S. diversifolia	[17]
		S. pallens	
Quercetin 4'-methyl ether-3-O-rhamnose (tamarixetin 3-O-rhamnoside)	Stem bark	*F. simplex*	[25,26]
Quercetin 3,7,3',4'-tetramethyl ether (retusin)	Stem bark	*S. foetida*	[28]
Quercetin 5,7,3',4'-tetramethyl ether	Stem bark	*S. foetida*	[28]
Flavans 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethylchroman-4-one (farrerol)	Roots	*H. barteri*	[29]
C-Glycosyl flavonoids	Leaves	*S. colorata*	[6]
A pigment 6,8-di-C-β-glucoside (vitisin)	Leaves	*S. foetida*	[7]
A pigment 6,8-di-C-β-glucoside (vitisin)	Leaves	*S. foetida*	[7]
Isoflavones 8-C-glucoside-7,4'-dihydroxysoflavone (Puerarin)	Leaves	*S. foetida*	[7]
Isoflavones (3'R)-6, 2'-dihydroxy-7-methoxy-4', 5'-methylenedioxysoflavan (hildegardol)	Roots	*H. barteri*	[29]
2-Hydroxyxmaackiain	Roots	*H. barteri*	[29]
Anthocyanins	Follicles	*S. parviflora*	[30]
Pelargonidin	Follicles	*S. kunstleri*	[30]
Pelargonidin 3-O-arabinoside	Follicles	*S. parviflora*	[30]
Pelargonidin 3-O-galactoside	Follicles	*S. parviflora*	[30]
Pelargonidin 3-O-glucose	Follicles	*S. kunstleri*	[30]
Pelargonidin 3-O-arabinoside	Flower	*B. acerifolius*	[11]
Cyanidin 3-O-arabinoside	Follicles	*S. parviflora*	[30]
Cyanidin 3-O-galactoside	Follicles	*S. parviflora*	[30]
Cyanidin 3-O-glucose	Flower, Leaves	*S. foetida*	[30]
	Leaves	*F. plattnoflia*	[31]
		S. foetida	[13]
Cyanidin 3-O-rutinoside	Flower	*B. acerifolius*	[11]
Leucoanthocyanidin-3-O-α-L-rhamnopyranoside	Roots	*S. foetida*	[23]
Procyanoquinon-β-D-glucoromane	Leaves	*S. foetida*	[13]

F. plattnoflia: *Firmiana plattnoflia* Schott et Endl.; P. alata: *Pterygota alata* (Roxb.) R. Br.; B. acerifolius: *Brachychiton acerifolius* (A.Cunn.ex G.Don) Macarthur; S. villosa: *Sterculia villosa* Roxb.; B. rupestris: *Brachychiton rupestris* (Lindl.) K. Schum; S. diversifolia: *Sterculia diversifolia* G. Don; S. lychnophora: *Sterculia lychnophora* Hance; S. scaphigerum: *Scaphium scaphigerum* (G. Don) Guib. & Planch.; S. pallens: *Sterculia pallens* Wall. Ex. Hochr.; B. australis: *Brachychiton australis* (Schott & Endl.) A. Terrac. B. discolor: *Brachychiton discolor* F. J. Muell.; H. barteri: *Hildegarda barteri* (Mast.) Kostern.; S. parviflora: *Sterculia parviflora* Roxb.; S. kunstleri: *Sterculia kunstleri* King.
3. Biological activities of the genus Sterculia

Several biological activities have been reported in different extracts of certain parts of some species of the genus Sterculia and related genera. Collectively, Table 5 shows the reported activities viz: antimicrobial, antioxidant, anticancer, anti-inflammatory and others.

4. Economical uses

Plants from the genus Sterculia have some economical uses in several countries. Almost leaves and gum were reported to exhibit a broad range of economical properties (Table 6).

Table 2

Phenolics from the genus Sterculia and the related genera.

Compounds	Organ	Species	References
Phenolic acids and aldehydes			
3-Hydroxy-benzaldehyde	Leaves	S. foetida	[9]
4-Hydroxy-3,5-dimethoxy-benzaldehyde	Leaves	F. hainanensis	[32]
3-0-β-Acyl-lupeol	Leaves	S. striata	[26]
3-0-β-Acyl-lupeol	Leaves	B. australis	[35]
Oleaonic acid	Leaves	B. australis	[21]
28-0-β-D-Glucopyranosyl-1-6-0-β-D-glucopyranosyl	Leaves	B. australis	[21]

5. Conclusion

The chronological literature survey confirmed what was originally believed, that the major production of genus Sterculia and related genera is indeed flavonoid metabolites. These results also confirm that flavonoid patterns play a significant role in plant chemotaxonomy. They include flavones, flavone C-glycosides, flavonols, flavans, isoflavones, isoflavans and anthocyanins. Other phenolic constituents such as, phenolic acids and aldehydes, phenyl propanoids, coumarins, lignans and lignins were identified with a much less significance than flavonoids.
Table 4
Miscellaneous compounds from the genus *Sterculia* and the related genera.

Compounds	Organ	Species	References
Alkaloids	Seeds	*B. discolor*	[22]
Caffeine	Seeds	*B. discolor*	[22]
Putine	Seeds	*S. lychnophora*	[18]
Sterculine I	Seeds	*S. lychnophora*	[18]
Sterculine II	Seeds	*S. lychnophora*	[18]
Non-alcohol non-nitrogenous bases	Leaves	*S. lychnophora*	[18]
Choline	Leaves	*F. planatoflia*	[37]
Betaine	Leaves	*F. planatoflia*	[37]
Alcohol	Seeds	*S. lychnophora*	[18]
n-Octacosanol	Leaves	*S. foetida*	[28]
Hexacosanol	Heart-wood	*S. foetida*	[18]
Docosanol	Leaves	*S. guttata*	[38]
Carboxylic acids	Seeds	*S. foetida*	[39]
Ascorbic acid	Leaves	*S. acurens*	[39]
Succinic acid	Seeds	*S. lychnophora*	[18]
Amides	Seeds	*S. lychnophora*	[18]
Triglycerides	Seeds	*B. luridum*	[40]
2-oleodipalmitin	Leaves	*B. diversifolium*	[41]
2-oleo-3-stearopalmi tin	Leaves	*B. diversifolium*	[41]
Sugars	Stem bark	*F. planatoflia*	[42]
Arabinose	Leaves	*F. planatoflia*	[42]
Rhamnose	Leaves	*S. lychnophora*	[44]
Galactose	Leaves	*S. acurens*	[43]
Glucuronic acid	Stem bark	*S. foetida*	[6]
Galacturonic acid	Leaves	*S. foetida*	[43]
Sucrose	Leaves	*S. lychnophora*	[18]
n-butyln-D-mannopyranoside	Seeds	*B. acuminatus, B. gregorii, B. luridum, Brachychiton cu 'Hybridum', B. populneus, S. foetida, B. diversifolium, B. rupestris, B. acerifolius, B. discolor and B. aurous*	[38,39]
Fatty acids	Seeds	*B. acuminatus, B. gregorii, B. luridum, Brachychiton cu 'Hybridum', B. populneus, S. foetida, B. diversifolium, B. rupestris, B. acerifolius, B. discolor and B. aurous*	[38,39]
Oleic, linoleic, malic, tartaric	Seeds	*B. acuminatus, B. gregorii, B. luridum, Brachychiton cu 'Hybridum', B. populneus, S. foetida, B. diversifolium, B. rupestris, B. acerifolius, B. discolor and B. aurous*	[38,39]
Palmitic	Seeds	*B. aurous*	[23]
Dihydroxymalic and dihydroxsteric	Seeds	*B. diversifolium*	[37]
Myristic	Stem bark, leaves	*B. diversifolium*	[37]
Cyclopropenoid fatty acids	Fruits	*S. strina*	[48]

Table 5
The biological/modes of action screened for the genus *Sterculia* and related genera.

Biological activity/mode of action	Organ	Species	References
Antimicrobial activity	Leaves	*S. acurens*	[53]
Cytomegalovirus and encephalomyocarditis viral infections	Leaves	*S. acurens*	[54]
M lid antiprotozoal effect	Seeds	S. guttata	[42]
Active against larvae of *Aedes aegypti* and *Culex quinquefasciatus*	Seeds	S. guttata	[42]
Bactericidal against *S. aureus*	Stem bark, leaves	P. milvraedii	[55]
Strong anti-schistosomal activity (LC50: 11.6 µg/mL)	Leaves, branches	*B. rupestris*	[56]
Potent antifungal plant	Leaves	*S. africana*	[57]
Antibacterial activity	Leaves	*S. foetida*	[58]
Inhibiting the growth of *Staphylococcus aureus* and *Escherichia coli* and *Entamoeba histolytica* parasite	Leaves	P. macrocarpa	[59]
Active against *Escherichia coli, S. aureus, Pseudomonas aeruginosa and Bacillus subtilis* but less active against *Candida albicans*	Leaves	P. macrocarpa	[59]
Moderate antibacterial activity	Wood, branches	*B. diversifolium*	[60]
Enhanced the antioxidant activity of components	Leaves, fruit	*B. diversifolium*	[60]
Moderate activity	Wood, branches	*B. diversifolium*	[60]
Efficient reducing power as well as free radical scavenging property	Leaves	P. alata	[62]
Chinese pharmaceutical formulation for malignant tumours	Leaves	*S. africana*	[57]
High cytotoxic effect in almost all tests	Leaves	*S. foetida*	[7,9]
The ethanol extracts had moderate activity against BGC-823, Bel-7402 and HCT-8 cell lines	Leaves	*S. lychnophora*	[63]
Anti-inflammatory activity	Leaves	*S. lychnophora*	[64-66]
Anti-inflammation	Leaves	*S. foetida*	[9,67]
Laryngopharyngitis diseases and tussilitis	Leaves	*P. macrocarpa*	[59]
Cardiovascular diseases	Leaves	*S. lychnophora*	[70-72]
Induced thrombus formation	Seeds	*F. simplex*	[73]
Cardiac arrest	Leaves	*S. lychnophora*	[76]
Digestive system disorders	Soaked leaves	*P. macrocarpa*	[59]
Stomachache, pains and disorders of digestion	Leaves	*S. lychnophora*	[77,78]
Antiflatulent	Leaves	*P. macrocarpa*	[59]
Urinary tract disorders	Leaves	*S. lychnophora*	[79]
Urolithiasis	Leaves	*S. lychnophora*	[80,81]
Skin problems treatment	Leaves	*S. lychnophora*	[82]
Anti-aging cosmetics	Leaves	*F. planatoflia*	[83]
Skin problems treatment	Leaves	*S. foetida*	[84]
M oxidizing agent	Leaves	*S. lychnophora*	[85]
Tyrosinase inhibitors in skin lightening cosmetics	Leaves	*F. planatoflia*	[86]
Alopoeia and anti-dandruff agent	Leaves	*S. foetida*	[87]
Hair growth stimulation	Leaves	*F. simplex*	[87]
Treatment of UV- induced skin disorders, such as wrinkles, skin thickenings and skin tumors	Leaves	*F. simplex*	[87]

(continued on next page)
other hand, other metabolites were also reported; e.g. terpenoids, steroids, alkaloids as well as sugars and fatty acids. The stems, barks, leaves, fruits and roots of the Sterculia species have various and numerous traditional and medicinal uses in various countries to treat a broad range of ailments, digestive diseases, diabetes, respiratory-related diseases and skin diseases. In addition, various biological activities such as antimicrobial, anti-inflammatory, antioxidant and anticancer have been reported for Sterculia species. The authors recommend further investigations to study infrageneric relationships within Sterculia species to better understand their classification problems.

Table 5

Biological activity/mode of action	Organ	Species	References	
Anti-obesity drugs	Leaves	F. simplex	[89]	
Nutrient agent	Vitamin C (52 mg/100 g)	Plant gum	Sterculia spp.	[96]
Oral and throat diseases	Throat moisturizing agents	Seeds	S. scaphigera	[97]
Promoting salivation	Leaves	S. lychnophora	[98]	
Relieving sore throat	Leaves	S. lychnophora	[99]	
Bronchitis	Roots	F. simplex	[100]	
Central nervous system	Treating narcotic drug abuse	Leaves	S. lychnophora	[101]
Depressant activity on CNS with a sleeping effect	Leaves	S. fortitad	[7,166]	
Naso-sinusitis	Leaves	S. lychnophora	[103]	
Anti-hyperlipidemic	Leaves	S. fortitad	[93]	
Hepato-protective agent	Lowered serum SGOT, SGPT and A LP levels	Leaves	S. fortitad	[93]
To attenuate the development of alcoholic liver disease	Stem bark	F. simplex	[27]	
Miscellaneous diseases treatment	A cute and chronic faucitis and symptoms of hoarseness and aphonia	Leaves	S. lychnophora	[104]
Obstinate halitosis	Seeds	S. scaphigera	[105]	
Berberi	Leaves	F. simplex	[106]	
Bone fracture, trauma-induced paralysis and osteonecrosis	Roots, stem bark	F. simplex	[107]	
Health care	Multiple health care functions	Leaves	S. lychnophora	[76,108]
Blood circulation promoting, blood stasis removing, anti-aging and immunity enhancing effects	Leaves	S. lychnophora	[99]	
Clearing lung, relieving cough and improving immunity	Leaves	S. lychnophora	[109]	
Improving intelligence, eye sight, blood circulation, coronary circulation, nourish liver, lung and throat, body fluid production, regulating nerve, nourishing liver, dispelling blood stasis. Treating malaria, constipation, arteriosclerosis, obesity, hypertension, hyperlipemia, hyperglycemia, thrombosis, intracerebral hemorrhage and relieving itching	Leaves, S. tragacantha stem bark and seeds	[111]		
Sterile materials	S. africana	Leaves	[112]	
Wastewater treatment	Preparation of activated carbon for removing Cu (II) from aqueous solutions	Seeds	S. lychnophora	[114]
Sorption and desorption properties for Pb and Cd	Preparation of activated carbons to adsorb phenol from wastewater	Leaves	F. simplex	[115]
Preparing for treatment	Leaves	P. macrocapra	[118]	
Efficiently remove Cd (II) from aqueous solutions	Leaves	S. simplex	[119]	
Miscellaneous	Production of cement-bonded wood floor boards	Heart wood	P. alata	[120]
Raw material for making pulp and paper	Leaves	S. villosa	[121]	
As a base for cosmetics, bath preparations and detergent formulations	Leaves	F. simplex	[82]	
A wood vinegar composition used as: pest controlling agent, bactericidal agent, detergent, environment improver, plant nutrient, soil conditioner and odor remover	Leaves	S. africana	[122]	
Nutritious effervescent tablets	Leaves	S. africana	[123]	
Effective polymer for the design of different ocular dosage forms: solution or drops, nano-particles, nano-suspensions or suspensions, micro or nano-emulsions, lotions, gels, hydro-gels, in situ forming gels, ointments, inserted films and minitablets	Plant gum	S. fortitad	[124]	

P. milbraedii: Pterygota milbraedii Engi; S. africana: Sterculia africana (Lour.) Fiori; S. scaphigera: Sterculia scaphigera Wall; S. tragacantha: Sterculia tragacantha Lindl.

Table 6

Uses	Organ	Species	References	
Cigarette manufacturing	Flavoring agent and as an additive sprayed on tobacco	Leaves	S. scaphigera	[112]
Cigarette manufacturing	A leafy plant cigarette which meet the requirements of smokers without harm to health	Leaves	F. simplex	[113]
Wastewater treatment	Preparation of activated carbon for removing Cu (II) from aqueous solutions	Seeds	S. lychnophora	[114]
Sorption and desorption properties for Pb and Cd	Preparation of activated carbons to adsorb phenol from wastewater	Leaves	F. simplex	[115]
Preparing for treatment	Leaves	P. macrocapra	[118]	
Efficiently remove Cd (II) from aqueous solutions	Leaves	S. simplex	[119]	
Miscellaneous	Production of cement-bonded wood floor boards	Heart wood	P. alata	[120]
Raw material for making pulp and paper	Leaves	S. villosa	[121]	
As a base for cosmetics, bath preparations and detergent formulations	Leaves	F. simplex	[82]	
A wood vinegar composition used as: pest controlling agent, bactericidal agent, detergent, environment improver, plant nutrient, soil conditioner and odor remover	Leaves	S. africana	[122]	
Nutritious effervescent tablets	Leaves	S. africana	[123]	
Effective polymer for the design of different ocular dosage forms: solution or drops, nano-particles, nano-suspensions or suspensions, micro or nano-emulsions, lotions, gels, hydro-gels, in situ forming gels, ointments, inserted films and minitablets	Plant gum	S. fortitad	[124]	

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Wilkie P, Clark A, Pennington RT, Cheek M, Bayer C, Wilcock CC. Phyllogenetic relationships within the subfamily sterculioideae (Malvaceae/Sterculiaceae-Sterculieae) using the chloroplast gene ndhF. Syst Bot 2006; 31: 160-70.
[2] Stewart Robert Hinsley. Classification: Sterculiaceae. Malvaceae Info; 2005. [Online] Available from: http://www.malvaceae.info/Classification/Sterculiaceae.html [Accessed on 10th March, 2006]
[3] Upson TM, Cullen J. 736. Phytochemistry, Amsterdam: Elsevier; 2006; 39: 170-81.
[4] A I Mughrabun LM, Ahmat N. Medicinal uses, phytochemistry and pharmacology of family Sterculiaceae: a review. Eur J Med Chem 2015; 92: 514-30.
[5] Harborne JB. Flavonoids. In: Natural products of woody plants. Rowe JW, editor. Heidelberg: Springer Berlin Heidelberg; 1989, p. 533-70.
[6] Rajasekharreddy P, Pathipati UR. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and Hela cancer cells. Mater Sci Eng C Mater Biol Appl 2014; 39: 203-12.
[7] Xia P, Song S, Feng Z, Zhang P. [Chemical constituents from leaves of Sterculia foetida]. Zhongguo Zhong Yao Za Zhi 2009; 34(20): 2604-6. Chinese.
[8] Ding X, Li E, Shi C. Studies on the constituents of the petals of Firmiana planifolia (L. F.) M. arsill. Nanjing Yaeyuan Xueba 1986; 6(4): 251.

[9] Xia P. Study on the chemical constituents and bioactivities of Sterculia foetida L. [dissertation]. China: Peking Union Medical College; 2009.

[10] Lin L, Song ZJ, Xu H H. A new phenylpropanoid galactoside and other constituents from Petrygota alata (Roxb.) R. Brown. Biochem Syst Ecol 2010; 38(6): 1238-41.

[11] Farag MA, A bou Zed HA, Hamed MA, Kandeel Z, El-Rafie HM, El-Akad RH. Metabolic fingerprint classification of Brachychiton acerifolius organs via UPLC-qTOF-PDA-MS analysis and chemometrics. Nat Prod Res 2015; 29(2): 116-24.

[12] Shamsundar SG, Paramyothi S. Preliminary pharmacognostical and phytochemical investigation on Sterculia foetida Linn. seeds. Afr J Biotechnol 2010; 9(13): 1978-89.

[13] Shi GZ, inventors; Beijing Beixin-Zhicheng Intellectual Property Agent Co., Ltd., assignee. The use of isoscutellarin for the manufacture of medicine. WIPO Patent WO/2006/089478A1. 2006 Aug 31.

[14] De Laurentis N, Armenise D, Milillo MA, Matrella R. Chemical investigation on Sterculia acerifolia leaves. Rev Ital EPPOS 2003; 36: 21–30.

[15] Hossain MK, Prodhan MA, Even ASM H, Marshd H, Hossain MM. Anti-inflammatory and antidiabetic activity of ethanolic extracts of Sterculia villosa barks on Albino Wistar rats. J Appl Pharm Sci 2012; 2(8): 96-100.

[16] Xia PF, Feng ZM, Yang YN, Zhang PC. Two flavonoid glycosides and a phenylpropanoid glucose ester from the leaves of Sterculia foetida. J Asian Nat Prod Res 2009; 11(8): 766-71.

[17] Desoky EK, Youssef SA. Hypoglycemic effect of Sterculia repens and a comparable study of its flavonoids with a phenylpropanoid glycoside ester from the leaves of Sterculia foetida. J Assoc Pharm Sci 2011; 2(8): 257-61.

[18] Wang RF, Yang YX, Ma CM, Shang MY, Liang JY, Wang X, et al. Alkaloids from the seeds of Sterculia fiscifera. Phytochemistry 2003; 63: 475-8.

[19] Petchlert C, Boonsala P, Payon V, Kitcharoen K, Promsopa S. Antioxidative and antimutagenic effect of malva nut (Sterculia foetida (Pangdahai). Pharm Biocatal Chem 2007; 4(1): 207-12.

[20] Li Z, Tang X, Chen Y, Wei L, Wang Y. Activation of Firmiana simplex leaf and the enhanced Pb (II) adsorption performance: equilibrium and kinetic studies. J Hazard Mater 2009; 169(1-3): 386-94.

[21] Khadavilhavil NS, Gogilavilhavil LN, Yaroah ES, Kemertelidze EP. Lipids from Sterculia planifolia and Hamamelis virginiana seeds. Chem Nat Comp 2007; 43(3): 315-6.

[22] Katade S, Deshmukh M, Phalgun U, Biswas S, Deshpande N. Isolation of straight chain alcohol and ester from Sterculia gutta. Asian J Chem 2008; 20(1): 308-12.

[23] Kumbhare V, Bhargava A. Studies on the nutritional composition of Sterculia species. J Food Sci Technol 1999; 36(6): 542-4.

[24] Petrocini C, Bazan E, Averna V. On the composition of the aril fat of Firmiana hispanica. J Ethnopharmacol 2006; 108(1): 53-56.

[25] Dhage P, Kasture SB, Mohan M. Analgesic, anti-inflammatory, antioxidant and antiulcer activity of ethanolic extract of Sterculia scaphigera Hance (Sterculiaceae) seeds in mice and rats. Int J Biol Pharm Res 2013; 4: 35-45.

[26] Kassem HA, EID HH, Abdel-Latif HA. Chemical constituents of Firmiana hainanensis Kosterm. Bull Fac Pharm Cairo Univ 2002; 40(2): 85-91.

[27] Kassem HA. Study of further phytocconstituents of Brachychiton discolor F.J. Muell. cultivated in Egypt. Bull Fac Pharm Cairo Univ 2007; 45: 155-60.

[28] Dubey P, Tiwari JS. Flavonoids and other constituents of Sterculia genus. J Indian Chem Soc 1991; 68: 426-7.

[29] Ogihara Y, Ogawa M, Aoyama T. The constituents of the barks of Firmiana planifolia Scott et Endl. Nagoya-shiritsu Daigaku Yakugakubu Kenkyu Nempo 1975; 23: 52-32.

[30] Pan JY, Chen SL, Yang MH, Wu J, Sinkkonen J, Zhou K. An update on lignans: natural products and synthesis. Nat Prod Rep 2009; 26(10): 1251-92.

[31] Kim JW, Yang H, Cho N, Kim B, Kim YC, Sung SH. Hepatoprotective constituents of Firmiana simplex stem bark against ethanol insult to primary rat hepatocytes. Pharmacogn Mag 2015; 11(41): 55-60.
Chemical characterization of the oil of Sterculia striata Str. HIL. et NAUD. Nuts. Quin Nova 2004; 23(7): 404-8.

Chaves MH, Barbosa AS, Neto JMM, Aued-Pimentel S, Lago JHG. Characteristics and fatty acid composition of Brachychiton species seeds and the oils (Sterculiaceae). J Agric Food Chem 1991; 39(5): 881-2.

Herrera-Meza S, Martínez AJ, Sánchez-Otero MG, Mendoza-López MR, García-Barradas O, Ortiz-Viveros GR, et al. Fatty acid composition and some physicochemical characteristics of Sterculia apetala seed oils. Grasas y Aceites 2014; doi:10.3989/gya.0223141.

Rao KS. Chinese pharmaceutical formulations for scalp and head. Faming Zhuanli Shenqing Gongkai Shuomingshu 2010; 8 pp. [Chem. Abs. 153: 242285]

Saules M, Klijn J, Ball G, van der Wal A, van Leeuwenhoek A, et al. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. J Ethnopharmacol 2009; 123(3): 483-8.

Yousif F, Hifnawy MS, Soliman G, Boulos L, Labib T, Mahmoud S, et al. Large-scale in vitro Screening of Egyptian native and cultivated plants for schistosomicidal activity. J Ethnopharmacol 2010; 127(4): 543-52.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009; 96(4): 363-75.

Kawada I. Food and cosmetics containing removers of active oxygen. Chemical characterization of the oil of Sterculia diversifolius as a source of natural products: antibacterial and antioxidant activities. BioResources 2014; 9(3): 3835-45.

Boyom FF, Kemege EM, Tepongning R, Ngouama V, Mbacham WF, Orisakeye OT, Olugbade TA. Epicatechin and procyanidin B2 in the air-dried wood, bark, and leaves of Brachychiton diversifolius R. BR: antibacterial, antifungal, and antioxidant activities. BioResources 2014; 9(3): 3835-45.

Chinsembu KC, Hedimbi M. Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative modes of action. Int J Biotechnol Mol Biol Res 2007; 4(3): 1843-50.

Yousif F, Hifnawy MS, Soliman G, Boulos L, Labib T, Mahmoud S, et al. Large-scale in vitro Screening of Egyptian native and cultivated plants for schistosomicidal activity. J Ethnopharmacol 2010; 127(4): 543-52.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Chinsembu KC, Hedimbi M. Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative modes of action. Int J Biotechnol Mol Biol Res 2007; 4(3): 1843-50.

Yousif F, Hifnawy MS, Soliman G, Boulos L, Labib T, Mahmoud S, et al. Large-scale in vitro Screening of Egyptian native and cultivated plants for schistosomicidal activity. J Ethnopharmacol 2010; 127(4): 543-52.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009; 96(4): 363-75.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009; 96(4): 363-75.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009; 96(4): 363-75.

Keskin C, Kacar S. Fatty acid composition of root and shoot samples of some Astragalus L. (Fabaceae) taxa growing in the east and southeast of Turkey. Turk J Biol 2013; 37(1): 122-8.

Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009; 96(4): 363-75.
