ABSTRACT

Now a days the synthetic and novel drugs are the major source of curing any type of disease, although these chemically synthesized drugs are harmful hazardous and shows toxic effect on the human body, this research formulation is a Polyherbal product (expectorant) which is useful and effective to treat the acute as well as chronic cough mainly chronic cough in patients of all ages. The prolonged chronic cough which last for several months or even years (in some patients) so to treat this “polyherbal anti-tussive syrup” is best mode, this syrup consist of some prominent and effective naturally occurring drugs or medicinal plants like, cinnamon, clove, black paper, Tulsi, honey (as base), and menthol (as cooling agent expectorants). This particulate combination of drugs is very effective for the treatment of cough, although this syrup can also be used for the treatment of the common cold respiratory disorders or nasal problems.

Keywords: Anti-tussive, Medicinal Plants, Polyherbal Formulation, Expectorants, Cough Syrup

*Corresponding Author Email: r.61290@rediffmail.com
Received 10 March 2020, Accepted 01 April 2020
INTRODUCTION

Nature has been a source of medicinal agents for thousands of years, and an impressive number of modern drugs have been isolated from natural sources, particularly plants and with many based on their use in traditional medicine. By using medicinal chemistry and combinatorial chemical and biosynthetic technology, novel natural product needs will be optimized on the basis of their biological activities to yield effective chemotherapeutic and other bioactive agents.¹

During the past decades, public interest in natural therapies, namely herbal medicine, has increased dramatically not only in developing countries but mainly in industrialized countries.² Cough associated with the acute and chronic conditions is commonly in patients of all ages, common cause of cough are bacterial or viral infection on the upper respiratory tract, air pollution cigarette smoking, foreign body, asthma and eosinophilic bronchitis. Only controlling the etiology of cough may not be effective treatment but also addition of desensitizing of cough pathways is also essential.³ Treatment of cough depends on function the cough is serving, when cough indicates an under an underlying illness but treatment should also attempt to control, prevent or eliminate using the cough suppressive agents. In these situations the use of expectorants and anti-tussive agents are indicated not only to alleviate the cough but also to eliminate the more serious events occurring.⁴ During the past decades, public interest in natural therapies, namely herbal medicine, has increased dramatically not only in developing countries but mainly in industrialized countries.⁵

In this research article poly herbal anti-tussive syrup formulation containing some of the natural drugs like Clove (Eugenia aromatica), Cinnamon (Cinnamomum cassia), Black pepper (Piper nigrum), Tulsi (Ocimum sanctum), peppermint (menthol) & Honey (as a base) were formulated and evaluated. These particulate combinations of natural drugs which have cough repellent property are made in form of syrup. These are nontoxic not harmful does not show any of side effect on human body and most superior than of OTC drugs. List of drugs used with their Biological name were shown in Table 1.

Sr.No.	Name of drug	Biological name	Family
1)	Clove	Eugenia aromatica	Myrtaceae
2)	Cinnamon	Cinnamomum cassia	Lauraceae
3)	Black pepper	Piper nigrum	Piperaceae
4)	Tulsi	Ocimum sanctum	Lamiaceae
5)	peppermint	Menthol/ mentha	Mint
6)	Honey	-----	-----

Table 1: Names of Drugs (List of drugs used with their biological name & family)
MATERIALS AND METHOD

Clove
Ripped dried flower of Clove (Syzygium aromaticum) was used. These are easily available in the market in the dried form but it requires drying in sun light for nearly 4 to 5 hrs. Then nearly 20 to 30 g of dried clove was taken for formulation purpose.

Cinnamon
Ripped dried bark of cinnamon (Cinnamomum cassia) was used. These are also easily available in market in dried form it also requires a sun light drying for removal of total moisture. Then nearly 20 to 30g of the cinnamon was taken for the formulation.

Black paper
Dried ripped fruit part of black paper (Piper nigrum) was used. These are small black coloured bean shaped cleaned and cleared. These are also available in market like other drugs. Nearly 10-15g of drug was taken for formulation.

Tulsi
Fresh plucked leaves of tulsi was used which should be weighed nearly 20-25g was taken for formulation.

Peppermint
Menthol crystals which are easily available in the market, just crushed it into powder, and nearly 0.2-0.5g was taken for formulation.

Honey
Any of the marketed branded product honey can be used (Marketed preparation of Dabur honey of 250 ml was used) which is already purified and stabilized, nearly 40-50ml of honey was taken for formulation.

Preparation method for Syrup

Preparation of drug powder
The required amount of the each dried crude drug (clove, cinnamon, black paper) about 20-40g, was taken and crushed into fine powder using the mortar and pestle, the each drug was powdered separately, then each drug was collected in separate vessel and weighed, each drug should full fill the required amount. Clove and cinnamon should weigh nearly 20-40g and black paper nearly 10-15g.

Extraction by maceration
The each powdered drug was taken for the process of maceration. Each drug is socked separately in different beaker containing 400-500ml of distilled water, or slightly alcohol treated water nearly
5% alcohol (2-4ml alcohol in 100ml water). The adequate amount of water was added that means
13-14 times the quantity of drug, and then these beakers were put for nearly 17-24 hours for
undisturbed condition.

Preparation of Tulsi leaves decoction

Firstly, the fresh green leaves of Tulsi should weigh nearly 30-40g was taken and washed and
cleaned properly and added in a beaker and soaked with 400-500ml distilled water (nearly 3-4
times more quantity of drug), then kept aside undisturbed for nearly 4-5 hours, then after 4-5 hours
boiled it until the quantity of water remain less than small portion or one third of original nearly
20-25 ml. Then it was taken and filtered with muslin cloth and stored well.

Preparation decoction of macerated drugs

The powdered drugs which were macerated earlier collected and boiled separately at constant
temperature for 1-1.5 hour, up to when the quantity of water remains less than small portion or one
third original nearly 10-20ml, then decoction was filtered with muslin cloth and stored separately.

Preparation of final poly herbal syrup

In a of 100ml beaker nearly 50ml of honey was taken as the honey is itself syrup so no need to
prepare any syrup as it is a drug constituent as well as the syrup, then it was kept aside. Then the
prepared decoction of all drug constituents (which should be as clove-15ml, cinnamon-15ml,
Tulsi-15ml, black paper-10ml) was taken and mixed well. And while mixing nearly 0.3gm of
menthol was added. Finally the prepared mixture was added in the beaker containing the honey,
and then the mixture was shaken to produce one phase, and kept for stabilization. Lastly final
volume of syrup was made upto 100ml with the water.

Consistency comparison

Formulation F1 & F2 were prepared. F1 contains less concentration of honey as compare to F2
(formulation of F1 & F2 were listed in table -2), the F1 was the syrup which was not passed the
viscosity, density and some other physiochemical parameters because of its poor consistency and
unbalanced stability, then by observing the drawbacks of the first formulation F1 the second
formulation F2 was designed and its formula was structured, which was successful and final, in
first formulation F1 mainly the viscosity and density of syrup were not as the syrup must consist
of the slightly less than the normal values because of less concentration of base Honey which is
responsibility of high viscosity, and then in second formulation F2 the concentration of honey was
increased which was then stable and finalized.
Table 2: Formulation of F1 & F2 formulation

Sr.No	Drugs	Formulation (F1) (per 100ml)	Formulation (F1) (per 100ml)
1	Clove	20ml (decoction)	15ml (decoction)
2	Cinnamon	20ml (decoction)	15ml (decoction)
3	Tulsi	20ml (decoction)	15ml (decoction)
4	Black paper	15ml (decoction)	10ml (decoction)
5	Honey	25ml (marketed)	50ml (marketed)
6	Menthol	0.3g (Crystals)	0.3g (Crystals)
7	Propyl paraben	-	0.2mg

EVALUATION TEST FOR THE POLY HERBAL SYRUP:

Physiochemical parameters of syrup

The herbal syrup was evaluated for various physicochemical parameters such as physical appearance (colour, odour, taste), pH, Density and Specific Gravity.

Colour Examination

Five ml final syrup was taken into watch Glass and placed against white back ground in white tube light. It was observed for its colour by naked eye.

Odour examination

Two ml of final syrup was smelled individually. The time interval among two smelling was kept 2 minutes to nullify the effect of previous smelling.

Test examination

A pinch of final syrup was taken and examined for its taste on taste buds of the tongue. Or simply a pinch of syrup was put on tip off tongue for determining test.

Determination of pH

Placed an accurately measured amount 10 ml of the final syrup in a 100 ml volumetric flask and made up the volume up to 100 ml with distilled water. The solution was sonicated for about 10 minutes. pH was measured with the help of digital pH meter.

Determination of density

Density of the syrup was determined by using the density bottle method by measuring the weight and the volume, by the density bottle average density was found to be 1.43g/ml.

Specific gravity at 25°C

A thoroughly cleaned and dry Pycnometer was selected and calibrated by filling it with recently boiled and cooled water at 25°C and weighing the contents. Assuming that the weight of 1 ml of water at 25°C when weighed in air of density 0.0012g/ml was 0.99602g. The capacity of the Pycnometer was calculated. Adjusting the temperature of the final syrup to about 20°C and the Pycnometer was filled with it. Then the temperature of the filled Pycnometer was adjusted to 25°C,
any excess syrup was removed and weight was taken. The tare weight of the Pycnometer was subtracted from the filled weight. The weight per ml was determined by dividing the weight in air, expressed in g, of the quantity of syrup which fills the Pycnometer at the specified temperature, by the capacity expressed in ml, of the Pycnometer at the same temperature.

Determining the viscosity of syrup

The viscosity of the syrup was determined by using viscometer mainly capillary viscometer, the average viscosity of any syrup at 21-30°C temperature is 700-1300 centipoise or cp, the determined viscosity of syrup was 880 cp.

Stability testing

Stability testing of the prepared poly herbal syrup was performed on keeping the samples at accelerated temperature conditions. Six portions of the final syrup (A1 A2 A3, B1 B2 B3, C1 C2 C3), In these batches A1, A2 & A3 are the syrups without added preservatives and B1 B2 B3 & C1 C2 C3 are the syrups with added preservatives like ethyl paraben, methyl paraben, were taken in amber cooled glass bottles and were kept at accelerated temperature at 7°C, Room temperature (Nearly 23-27°C) and 48°C respectively. The samples were tested for all the physicochemical parameters, turbidity and homogeneity at the interval of 24 hr, 48 hr and 72 hr to observe any change.

Antimicrobial Activity

The antimicrobial activity of the poly herbal syrup was tested by using the cup plate method, & using the agar media, in that four different testing plates were prepared as F1, F2, Control and blank, the F1 plate consist of the syrup without preservatives, F2 plate consist of the syrup with preservatives and control plate consist of the any of standard antimicrobial preparation (Marketed Adulsa syrup containing preservative like methyl paraben & propyl paraben) & the blank, (The microbial culture used is *Escherichia-coli* bacteria). The antimicrobial activity was determined by measuring the diameter of zone of inhibition.

RESULTS AND DISCUSSION

Physicochemical parameters of syrup

The physicochemical parameters such as colour, odour, taste pH, density, specific gravity viscosity of syrup were performed. The evaluation parameters results were listed in Table -3. The prepared Poly herbal anti-tussive syrup is Brownish red, sweet in taste with neutral pH & having good pourability.
Table 3: Physiochemical parameters

Sr. No.	Physiochemical parameters	Observed values (F2)	Observed values (F1)
1	Colour	Brownish red	Brownish red
2	Odour	Aromatic	Aromatic
3	Taste	Sweet aromatic	Sweet aromatic
4	pH	6.98pH	6.51pH
5	Density	1.43g/ml	1.20g/ml
6	Specific gravity	1.39g	1.19g
7	Viscosity	880cp	799cp

Antimicrobial activity

The anti-microbial activity was successfully performed for F1 & F2 syrup. The antimicrobial activity was determined by measuring the diameter of zone of inhibition. The results obtained in the evaluation of the antibacterial activity of both F1 & F2 syrup were depicted in table no.4. It is observed that the F1 plate syrup without added preservatives were shown less antimicrobial activity and less zone of inhibition as compared to the F2 plate syrup with added preservatives, hence there is prominently need to add preservative in poly herbal syrup, the results of antimicrobial activity were shown in the photographic manner in figure-1-3.

Figure: 1. Anti-bacterial activity of polyherbal syrup (Control plate, F1 & F2 plate)

Figure: 2. Plate without added preservative
Figure: 3. Plate with added preservative

Figure: 4. Control plate

Sr. No.	Test micro-organism	Zone of inhibition (mm)	F1	F2	Adulsa Syrup
1	*Escherichia coli*	7.91	10.13	10.37	
2	*Staphylococcus aureus*	10.76	15.91	16.50	

Stability testing

The stability testing was performed by keeping final formulation under variation of temperature of 7°C, 27°C & 43°C for different duration of time as 24hrs, 42hrs, & 72hrs respectively. The results of stability studies were shown in Table -4. This proves the syrup has passed the accelerated stability studies. It is observed that polyherbal syrup was homogeneous & does not show any turbidity & there was no any change in colour, odour, taste & pH under 7°C, 27°C & 43°C.
Table 4: Stability studies through physiochemical parameters

Sample code	Time duration (in hr)	Temperature °C	Parameters	Color	Odour	Taste	pH	Density	Specific gravity	Turbidity/ Homogeneity
A1	7°C	A1	NC	NC	NC	6.98	1.43g/ml	1.39g	No turbidity	
A2	24 hrs	RT	NC	NC	NC	6.98	1.43g/ml	1.39g	OC	
A3	48°C	A3	NC	NC	NC	6.98	1.43g/ml	1.39g	Homogeneity	
B1	7°C	B1	NC	NC	NC	6.98	1.43g/ml	1.39g	No turbidity	
B2	42 hrs	RT	NC	NC	NC	6.98	1.43g/ml	1.39g	OC	
B3	48°C	B3	NC	NC	NC	6.98	1.43g/ml	1.39g	Homogeneity	
C1	7°C	C1	NC	NC	NC	6.98	1.43g/ml	1.39g	No turbidity	
C2	72 hrs	RT	NC	NC	NC	6.98	1.43g/ml	1.39g	OC	
C3	48°C	C3	NC	NC	NC	6.98	1.43g/ml	1.39g	Homogeneity	

RT= Room temperature, OC= original condition, NC= No change, hrs= hours

CONCLUSION

The present study concluded that by giving a comprehensive view of herbal drugs for the treatment of cough as crude drug as well as poly herbal formulations is good alternatives of modern cough drugs which are having a lot of side effects. In the present research polyherbal anti-tussive syrup containing medicinal plants like, cinnamon, clove, black paper, tulsi, honey (as base), and menthol (as cooling agent expectorants) were formulated & prepared evaluated successfully. According to present study it was concluded that the prepared polyherbal anti-tussive syrup shows good physical characteristics, exhibit antimicrobial activity & good accelerated stability study. This research successfully concluded that the formulated poly herbal anti-tussive syrup shows its maximum effect and also decrease in the severity of cough, the good tolerability profile of the syrup makes it particularly useful in patients with cough. Individual ingredients of the syrup have broad spectrum activity like anti-tussive, expectorant, anti-histaminic, bronchodilator and nasal-decongestant anti-allergic, anti-bacterial, and anti-viral supported by the scientific studies. The effectiveness of this poly herbal syrup daily dose of one to two teaspoons to patients with sore throat, hoarseness of voice and condition like chronic bronchitis asthmatic bronchitis, and acute upper respiratory tract infection in patients of all ages.

REFERENCES:

1. Cragg GM, Newman DJ: International collaboration in drug discovery and development from natural sources. Pure Appl. Chem 2005; 77:1923-1942.

2. Calixto JB: Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phyto therapeutic agents). Brazilian Journal of Medical and Biological Research 2000; 33: 179–190.
3. Chung KF, Pavord ID. Prevalence, pathogenesis, and cases of chronic cough. The Lancet 2008; 371(9621): 1364-1374.

4. Aliprandi P, L Cima, MCarrara. Therapeutic use of levoperastine as an anti tussive agent. ClinDruge Invest 2002; 22(4): 209-220.

5. Calixto JB: Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research 2000; 33: 179–190.

6. G. Sandhyarani and K. Praveen kumar, Development of herbal syrup. Asian Journal of Pharmaceutical Science & Technology, 2014; 4(2): 101-103.

7. Public Draft. WHO Guidelines for Herbal Drug Standardization, 2004.

8. Shailesh N. Suvarna Bhasma. Pharma Times, 2005; 37(6): 23.

9. Anonymous, Indian Pharmacopoeia. Govt. of India; Ministry of Health & Family Welfare; Vol-II. Delhi; Controller of Publications, 1986; A-99.

10. Narayana DBA. Stability Studies of Ayurvedic Formulations. Pharma Times, 2005; 37(6): 45-50.

11. Mounyr Balouiri, Moulay Sadiki, Saad Koraichi Ilbonsouda, Methods for in vitro evaluating antimicrobial activity: A review, Journal of Pharmaceutical Analysis 2016; 6 71–79.

12. Tahmina Shammi and Md. Ismam Khalid, Study of antimicrobial activity of two common anti-cough formulations sold in Bangladesh: Stamford Journal of Microbiology, 2017; 7 (1) 7-9.