Identification of a novel small-molecule Keap1-Nrf2 PPI inhibitor with cytoprotective effects on LPS-induced cardiomyopathy

Cheng-Shi Jiang‡a, Chun-Lin Zhuang‡b, Kongkai Zhu‡a, Juan Zhangcd, Luis Alexandre Muehlmanncd, João Paulo Figueiró Longoc, Ricardo Bentesa Azevedo, Wen Zhangb, Ning Menga* and Hua Zhanga*

a School of Biological Science and Technology, University of Jinan, Jinan 250022, China
b School of Pharmacy, Second Military Medical University, Shanghai 200433, China
c Faculty of Ceilandia, University of Brasilia, Brasilia 72220275, Brazil
d Institute of Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil

Chemistry

General: commercially available reagents were used without further purification. Organic solvents were evaporated with reduced pressure using a Buchi R-100 rotary evaporator. Reactions were monitored by TLC using Yantai Jiangyou (China) GF254 silica gel plates. Silica gel column chromatography was performed on silica gel (300-400 mesh) from Qingdao Haiyang Ltd. (China). NMR spectra were measured on Bruker Avance 600 spectrometer. Chemical shifts were expressed in δ (ppm) and coupling constants (J) in Hz using solvent signals as internal standards (CDCl3, δH, 7.26 ppm; δC, 77.0 ppm). ESI-MS was recorded on an Agilent 6460 Triple Quadr LC/MS, and HR-ESI-MS spectrum were recorded on an Agilent Q-TOF 6520.

Purities of synthetic compounds were analyzed on an Agilent 1260 HPLC using a ZDRBAX SB-C18 column (4.6×150 mm), with UV detection at 254 nm and a linear A-B gradient (A: MeOH; B: H2O) at a flow rate of 1 mL/min.
Figure S1 1H NMR spectrum of 3

Figure S2 MS spectrum of 3
Figure S3 IR spectrum of 3

Figure S4 1H NMR spectrum of ZJ01
Figure S5 13C NMR spectrum of ZJ01

Figure S6 ESI-MS spectrum of ZJ01
Figure S7 HR-ESIMS spectrum of ZJ01

Figure S8 IR spectrum of compound ZJ01
Figure S9 HPLC chromatogram (70–100% MeOH-H2O in 20 minutes) of ZJ01

Figure S10 1H NMR spectrum of ZJ02
Figure S11 13C NMR spectrum of ZJ02

Figure S12 ESI-MS spectrum of ZJ02
Figure S13 HR-ESIMS spectrum of ZJ02
Figure S14 Equilibrium binding curve fit of ZJ01

Figure S15 Sensorgrams and equilibrium binding curve fit of S47 in SPR assay

Figure S16 (A) Putative binding mode of ZJ01 (blue) and ZJ02 (purple) to Keap1; (B) Schematic diagram showing interactions between ZJ02 and Keap1.
Figure S17 Effect of S47 on the distribution of Nrf2 in H9c2 cells. H9c2 cells were treated with different concentrations of ZJ01 for 6 h. Immunofluorescence staining analysis of Nrf2 location. Nuclei were counterstained with DAPI.
Figure S18 Effects of S47 on the expression of pro-inflammatory cytokines and ROS in LPS-treated H9c2 cells. H9c2 cells were stimulated with 1 μg/ml LPS and treated with or without 8 μM S47 for 6 h. (A) The expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 were determined by RT-PCR; (B) The intracellular ROS level was examined by DCHF. **p < 0.01 vs. control, #p < 0.05 vs. LPS group. n = 3.

Figure S19 Effect of S47 on the Nrf2 nuclear accumulation in vivo. C57BL/6 mice were treated intraperitoneally with different concentrations of S47 for 12 hours. The nuclear and non-nuclear Nrf2 protein levels of cardiomyocytes were determined by western blotting technology.