Early production of offspring by in vitro fertilization using first-wave spermatozoa from prepubertal male mice

Keiji MOCHIDA¹), Ayumi HASEGAWA¹), Narumi OGONUKI¹), Kimiko INOUE¹, ²) and Atsuo OGURA¹–³)

1) RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
2) Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
3) RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan

Abstract. Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here, we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first reached the caudal region of the epididymes at day 35; however, they were unable to fertilize oocytes. Caudal epidemicul spermatozoa first became competent for oocyte fertilization at day 37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we found that corpus epidemicul spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caudal epidemicul spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epidemicul spermatozoa from male mice aged 40 days can be efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that of the conventional IVF protocol.

Key words: Congenic strain, Epididymis, In vitro fertilization, Mouse, Sperm maturation

Animals

Mature male and female mice of the C57BL/6J strain were pur-
chased from CLEA Japan, Inc. and used in experiments at 10–20 weeks of age. Prepubertal C57BL/6J males (5–6 weeks of age) were produced by the transfer of embryos generated by IVF using these mature males and females. ICR females (CLEA Japan) were used as recipients for embryo transfer at 10–20 weeks of age. All animals were housed under controlled lighting conditions (daily light period, 0700 to 2100 h). The animal experiments described here were approved by the Animal Experimentation Committee of the RIKEN Tsukuba Institute and were performed in accordance with the committee’s guiding principles.

Motility and morphological analyses of sperm

Epididymal spermatozoa from each region (caput, corpus, and cauda) (Fig. 1A) were collected and preincubated in human tubal fluid (HTF) medium [38] for 1 h at 37°C under 5% CO₂ in humidified air. The overall sperm motility, progressive motility, average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), beat cross frequency (BCF), linearity (LIN), and straightness (STR) were assessed by computer-assisted sperm analysis (CASA) using a Hamilton Thorne IVOS computerized semen analyzer (Hamilton Thorne, Beverly, MA). Motile spermatozoa were defined as those with any movement of the sperm head. Spermatozoa with progressive motility were defined as those with a forward, linear-direction movement at a speed > 50.0 μm/sec. All the parameters were measured in > 200 spermatozoa (except in prepubertal males) in at least three different fields. The morphological normality of the spermatozoa was examined under an inverted microscope.

IVF

IVF was performed using epididymal spermatozoa as described previously, with slight modifications [39, 40]. In brief, superovulation was induced in female C57BL/6J mice using an intraperitoneal injection of 7.5 IU of equine chorionic gonadotropin (eCG; Peanex, Sankyo, Tokyo, Japan), followed by 7.5 IU of human chorionic gonadotropin (hCG; “Gonatropin”; ASKA Pharmaceutical, Tokyo, Japan) with a 48–50 h interval. At 16–17 h after hCG injection, cumulus-enclosed oocytes were collected from the ampulla region of the oviducts and preincubated for 1–1.5 h in 80 μl droplets of HTF medium supplemented with or without 1.25 mM reduced glutathione (GSH) [41, 42]. Each droplet contained oocytes collected from one oviduct or oviducts of one female. Sperm masses collected from each region of the epididymis were suspended in 100 μl of sperm preincubation medium (HTF containing 0.4 mM methyl-β-cyclodextrin [43, 44] and 0.1 mg/ml of polyvinyl alcohol instead of bovine serum albumin) and incubated at 37°C under 5% CO₂ in humidified air for 45–60 min. At the time of insemination, the preincubated spermatozoa were transferred into the droplets containing oocytes at a concentration of 200–400 spermatozoa/μl. After 3–4 h of co-incubation, oocytes were freed from spermatozoa and cumulus cells using a fine glass pipette and transferred into 10 μl droplets of CZB medium [45] containing 5.6 mM glucose, 0.1 mg/ml of polyvinyl alcohol, and 3.0 mg/ml of bovine serum albumin. For embryo transfer experiments, a portion of these oocytes were cultured at 37°C under 5% CO₂ in humidified air for approximately 24 h. For the confirmation of sperm penetration, the remaining oocytes were fixed with 2.5% glutaraldehyde and stained with 1% aceto-orcein, in order to visualize the pronuclei [46]. Oocytes with a male and a female pronucleus and a sperm tail in the ooplasm were considered successfully fertilized.

Embryo transfer

Two-cell embryos produced by IVF were transferred into the oviducts of day 1 pseudopregnant females of the ICR strain. In the evening of days 18 and 19, each female was injected subcutaneously with 2 mg of progesterone, to avoid spontaneous delivery. In the morning of day 20, the recipient female mice were examined for the number of implantation sites and live offspring by Caesarian section.

Statistical analysis

The relationship between the presence of spermatozoa at the cauda epididymis and the age or body weight of males was analyzed using Spearman’s correlation coefficient by the rank test. The rates of motile spermatozoa and spermatozoa with abnormal morphology and the values of the kinetic parameters of spermatozoa were evaluated statistically by one-way analysis of variance (ANOVA). The parameters that were calculated as percentages were subjected to arcsine transformation before statistical analysis and significance was set at \(P < 0.05 \). Other statistical analyses were described in the text, as appropriate.
Results

The appearance of spermatozoa at cauda epididymides in prepubertal male mice

We determined the proportion of prepubertal males that had spermatozoa in their cauda epididymides. The epididymides from males at 35, 37, and 42 days contained different amounts of spermatozoa, as clearly observed by transmitted light microscopy (Fig. 1B–D). Spermatozoa were observed in the caudal region in 50% and 70% of males aged 35 and 36 days, respectively (Table 1). However, none (35 days) or only 40% (36 days) of the males had progressively motile spermatozoa. The majority (≥ 90%) of males aged 37 days or older had spermatozoa in the caudal region, most of which were progressively motile. These data indicate that spermatozoa acquire motility about 1 day after their arrival at the cauda epididymis. The plotting of the body weight of individual males in the presence or absence of spermatozoa at cauda epididymides revealed that the timing of the arrival of spermatozoa at the caudal region depended on age (P = 0.001), but not on body weight (P = 0.204) (Fig. 2).

Motility and morphological analyses of spermatozoa retrieved from different regions of the epididymides of adult mice

To assess the functional and morphological maturation of spermatozoa in the epididymides, we collected spermatozoa from the caput, corpus, and caudal regions of the epididymides of prepubertal (37 and 40 days of age) and adult mice (120–180 days of age) (Fig. 1A) and analyzed their motility and morphology. Our CASA analysis indicated that spermatozoa of adult males gradually acquired motility as they descended the epididymis, from the caput to the cauda (Table 2). In prepubertal males, the proportion of motile spermatozoa in the caput region was very low (9–11%), with significant differences from those of corpus or caudal epididymal spermatozoa. Three velocity parameters (VSL, VAP, and VCL) and ALH increased predominantly at the transition from the caput to the corpus, regardless of the age of males. Additional three parameters (BCF, LIN, and STR) showed no or very little region-specific differences.

Table 1. Presence of spermatozoa and spermatozoa with progressive motility in the cauda epididymides of prepubertal males

Age of males (days)	No. (%) of males with spermatozoa	No. (%) of males with spermatozoa with progressive motility
35	4/8 (50)	0/8 (0)
36	7/10 (70)	4/10 (40)
37	9/10 (90)	8/10 (80)
38	9/10 (90)	8/10 (80)
39	9/10 (90)	9/10 (90)
40	10/10 (100)	10/10 (100)
42	9/9 (100)	9/9 (100)

VSL, straight-line velocity; VAP, average path velocity; VCL, curvilinear velocity; ALH, amplitude of the lateral head movement; BCF, beat cross frequency; LIN, linearity; STR, straightness. The data of each parameter were analyzed by one-way ANOVA, followed by a multiple comparison test. a,b P < 0.05 within the same column (Scheffe’s F test). Mean ± SEM, n = 5–7 males.

Table 2. Kinetic parameters of spermatozoa collected from each region of the epididymis

Age	Region of the epididymis	Percentage of spermatozoa with motility	Velocity (μm/sec)	ALH (μm)	BCF (Hz)	LIN (VSL/VCL, %)	STR (VSL/VAP, %)
			VSL	VAP	VCL		
37 days	Caput	11 ± 3.2 a	6 ± 1.7 a	73 ± 6 a	132 ± 13 a	257 ± 20 a	16 ± 1.1 a
	Corpus	44 ± 7.7 b	27 ± 4.4 b	127 ± 11 b	219 ± 19 b	458 ± 30 b	27 ± 2.2 b
	Cauda	36 ± 11.2 b	25 ± 9.6 b	140 ± 24 b	219 ± 27 b	448 ± 52 b	24 ± 2.0 b
40 days	Caput	9 ± 2.4 a	5 ± 1.8 a	70 ± 7 a	141 ± 15 a	268 ± 25 a	16 ± 1.9 a
	Corpus	44 ± 8.1 b	25 ± 4.8 b	132 ± 8 b	236 ± 7 b	484 ± 14 b	29 ± 0.4 b
	Cauda	49 ± 3.5 b	31 ± 2.5 b	151 ± 8 b	251 ± 9 b	524 ± 22 b	28 ± 1.2 b
Adult	Caput	31 ± 8.1 a	14 ± 4.3 a	60 ± 5 a	115 ± 12 a	218 ± 21 a	16 ± 0.8 a
	Corpus	47 ± 8.1 b	23 ± 8.1 b	87 ± 8 b	161 ± 10 b	369 ± 21 b	23 ± 1.3 b
	Cauda	62 ± 5.6 b	31 ± 4.3 b	91 ± 7 b	159 ± 11 b	343 ± 26 b	23 ± 1.2 b

Fig. 2. Relationships between the presence/absence of spermatozoa at the cauda epididymis and body weight or age in prepubertal male mice. The black circles indicate mice with caudal spermatozoa and the white circles indicate those without caudal spermatozoa. The time at which the spermatozoa reached the caudal region depended on age (P = 0.001), but not on body weight (P = 0.204) (Spearman’s correlation coefficient by the rank test).
Microscopic observations revealed that epididymal spermatozoa always contained a certain population of spermatozoa with an abnormal head and/or tail (Fig. 3A–D). At 37 days, the proportion of spermatozoa with abnormal morphology was consistently high throughout the epididymides (Fig. 3E). At 40 days, the proportion of spermatozoa with an abnormal tail was significantly decreased in the caudal region (Fig. 3F). Interestingly, in adult males, the proportion of sperms with a morphologically abnormal head or tail decreased significantly as they passed from the caput to the caudal region (Fig. 3G). As a result, the rate of occurrence of normal-shaped spermatozoa in the caudal region increased with age (Fig. 3H). This is in accordance with the increase in the motility rates of caudal epididymal spermatozoa with an increase in the age of males, described above (Table 2).

Improvement of fertilization rates by the addition of GSH to the oocyte incubation medium

To devise the IVF protocol for prepubertal males, we examined the effect of GSH supplementation to the oocyte incubation medium on fertilization rates because treatment of oocytes with GSH facilitates sperm penetration through the zona pellucida [43]. Spermatozoa from adult (120–180 days) and prepubertal (40–42 days) male mice were used. After IVF using caudal epididymal spermatozoa, the fertilization rate in the absence of GSH was lower in the prepubertal group than it was in the adult group; however, it increased significantly when oocytes were treated with GSH (from 55% to 86%) (Fig. 4A). This was also the case for IVF using corpus epididymal spermatozoa; the fertilization rate in the prepubertal group increased from 6% to 37% in the presence of GSH (Fig. 4B). Therefore, we used GSH supplemented oocyte/fertilization medium for all IVF experiments performed in this study.

Fertilization and developmental ability of spermatozoa from prepubertal male mice

To identify the youngest age at which males can be used for IVF, we performed IVF using spermatozoa isolated from the caput, corpus, and cauda of epididymides from prepubertal mice of different ages (36–42 days) (Fig. 1B–D). The mass of spermatozoa was collected by puncturing the surface of the epididymis with a sharp needle and immediately transferred into a droplet for preincubation (Fig. 5A). At 4–5 h after insemination, oocytes were assessed for fertilization. Oocytes with two pronuclei and a sperm tail were considered to have been fertilized (Fig. 5B). No oocytes were fertilized with spermatozoa at 36 days, regardless of the region of the epididymis from where they were collected. We found that 37 days was the youngest age at which males were able to produce spermatozoa with fertilizing ability; however, the fertilization rates were very low at this time point (5.8% and 2.9% for corpus and caudal spermatozoa, respectively) (Table 3). The fertilization rates using corpus and caudal spermatozoa increased with age, reaching 47.0% and 77.9% respectively at 42 days. A high fertilization rate (72.0%) was obtained when using caudal epididymal spermatozoa at 40 days, whereas it was 22.1% for corpus epididymal spermatozoa. No fertilized oocytes were obtained when using caput epididymal spermatozoa, irrespective of the age of the male, including adulthood (120 days). In Fig. 6, we summarize the three age-related parameters of sperm maturation in the cauda
epididymides that were identified in this study. All three parameters, i.e., the appearance in the cauda, the acquisition of motility, and the acquisition of the fertilization ability, increased in that order with age, with a gap of 1 to 3 days between these events.

Finally, we examined whether the embryos generated via IVF using prepubertal males could develop normally into offspring after embryo transfer. Indeed, following IVF using caudal epididymal spermatozoa at 40 days, live offspring were obtained at term with normal efficiency (52% of the embryos that were transferred). To our knowledge, this study reports the youngest male mice (40 days) to have been used till date to generate viable offspring after IVF (Table 4, Fig. 7A).

Similarly, 50% of the embryos obtained from either corpus or caudal spermatozoa at 42 days developed into offspring (Table 4, Fig. 7B, C). These birth rates are comparable to those of our previous study (58%, 23/40), which used adult male mice of the same strain [40].

Discussion

Although it is known that, in adult mice, spermatozoa undergo functional maturation as they pass through the epididymides, the mechanism by which the first-wave of spermatozoa mature in the epididymides remains unexplored. In this study, we investigated the time course of the first wave of spermatozoa that descended the epididymides with respect to its acquisition of motility and fertilizing ability in prepubertal male mice. Our findings demonstrated that spermatozoa first appeared in the caudal region at 35 days of age, acquired motility at 36 days, and became competent to fertilize oocytes at 37 days of age. At 40 days, the fertilization rate increased to >70%, and the fertilized oocytes developed into live offspring. Therefore, the first-wave of spermatozoa acquired functional competence between 35 and 40 days of age in prepubertal male mice, although the addition of GSH to the IVF medium was necessary for this process. GSH reduces the disulfide bonds (-S-S-) between cysteines that constitute the zona protein, thereby leading to easier penetration of spermatozoa through the zona [41, 44]. The increase in morphologically normal spermatozoa in the cauda epididymides at 40 days might have also contributed to the high fertilization rate observed (Fig. 3H). Importantly, these steps seemed to be dependent on age, and not body weight, which is in contrast with that observed for the sexual maturity of females, which shows dependency on body weight [47].

Our CASA analysis using spermatozoa from different regions of the epididymides provided important clues about how spermatozoa acquire motility in these regions. Spermatozoa with a high velocity appeared in the corpus region, indicating that caput spermatozoa cannot swim fast enough to penetrate the egg investments (cumulus cells and zona

Table 3. Age-related changes in the fertilization rate of epididymal spermatozoa from each region

Age of males (days)	Fertilization rates using spermatozoa from		
	Caput	Corpus	Cauda
36	0 (5)	0 (5)	0 (5)
37	0 (5)	5.8 ± 2.8 (7)	2.9 ± 1.4 (7)
38	0 (5)	18.5 ± 10.0 (7)	2.2 ± 2.2 (6)
39	0 (3)	11.2 ± 5.9 a (7)	48.9 ± 10.3 b (7)
40	0 (2)	22.1 ± 4.3 a (4)	72.0 ± 12.1 b (7)
42	0 (6)	47.0 ± 5.9 a (9)	77.9 ± 8.4 b (9)
120	0 (5)	27.4 ± 6.3 a (8)	97.7 ± 0.9 b (8)

Values are the mean ± SEM (%). The number in parentheses indicates the number of males used. a,b P < 0.05; a′,b′ P < 0.01, Wilcoxon rank-sum test.

Fig. 6. Age-related changes in the percentages of the presence/absence of spermatozoa at the cauda (white bar), of spermatozoa with progressive motility (striped bar), and of fertilization by IVF (black bar) (n = 7–10, refer to Table 1). The black bar indicates the fertility rates of spermatozoa from the caudal region of the epididymis (mean ± SEM, n = 5–9, refer to Table 3). N.T., not tested.

Table 4. Development into offspring after the transfer of embryos obtained via IVF using the first-wave of spermatozoa

Age of males (days)	Region of collection of spermatozoa	Transferred	Implanted	Developed to offspring
40	Cauda	42	40 (95%)	22 (52%)
42	Corpus	24	21 (88%)	12 (50%)
42	Cauda	28	25 (89%)	14 (50%)

There was no significant difference among the three groups with respect to the rates of implantation and offspring generation (Fisher’s exact test).
pellucida). Consistently, spermatozoa from the caput were unable to fertilize intact cumulus-enclosed oocytes but could fertilize them when the cumulus cells and the zona were removed [6], when sperm were microinseminated into the perivitelline space [48], or when sperm were preincubated with corpus or caudal epididymal epithelial cells [49]. It would be interesting to identify the factor(s) of the corpus that may facilitate the high-velocity movement of spermatozoa. In contrast, the proportion of motile spermatozoa gradually increased as they passed from the caput to the cauda. In addition to the motility parameters, other parameters, such as morphological normality, increased as spermatozoa descended the epididymides (Fig. 3G). Numerous epididymal factors are expected to be involved in the maturation processes of spermatozoa in the epididymides.

Intriguingly, the inability of caput spermatozoa to support the processes of fertilization or embryonic development has been reported. Caput spermatozoa injected into oocytes did not transform into pronuclei [50] or did not induce oocyte activation [28]. A more recent study reported that although, embryos were generated using caput spermatozoa by ICSI, they failed to develop to full term because of the lack of the small RNAs supplied by the epididymides [51]. Conversely, injection of caput spermatozoa into oocytes resulted in normal embryonic and fetal development [52, 53]. It remains unclear as to why discrepancies exist regarding the competence of caput epididymal spermatozoa.

There are several advantages in the use of spermatozoa from prepubertal males for the production of offspring. First, if mice carry a mutation that causes death or systemic weakness before puberty (e.g., early-onset diabetes), our IVF protocol using prepubertal males would help the propagation of the mutations to the next generation. Second, we may expect to generate a large number of mice quickly for experimentation purposes. Third, as our IVF protocol may shorten the generation turnover time, the establishment of congenic strains by backcrossing will be completed more quickly compared with conventional IVF (Fig. 8). Using this strategy, we established knockout mouse strains with the NOD/scid background in approximately 7 months, which is a process that requires more than 1 year when using conventional IVF (unpublished).

Acknowledgments

This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (No. 25112009, No. 23220011 and 19H05758 to AO, and No. 18K06045 to KM) and the National BioResource Project of MEXT, Japan.

References

1. Oakberg EF. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 1956;99:391–413. [Medline] [CrossRef]
2. Russell LD, Ettlin RA, Hikim APS, Clegg ED. Histological and histopathological evaluation of the testsis. Cache River Press, Clearwater FL. 1990.
3. Itman C, Mendis S, Barakat B, Loveland KL. All in the family: TGF-β family action in testis development. Reproduction 2006;132:233–246. [Medline] [CrossRef]
4. de Kretser DM, Loveland KL, Meehan T, O’Bryan MK, Phillips DJ, Wreford NG. Inhibins, activins and follistatin: actions on the testsis. Mol Cell Endocrinol 2001;180:87–92. [Medline] [CrossRef]
5. Barakat B, O’Connor AE, Gold E, de Kretser DM, Loveland KL. Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice. Reproduction 2008;136:345–359. [Medline] [CrossRef]
19. Development of the penetration activity of mouse epididymal spermatozoa in vivo and in vitro. J Reprod Fertil 1974; 36: 203–205. [Medline] [CrossRef]

20. Mammalian fertilization. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, 2nd ed. New York: Raven Press; 1994: 189–317.

21. Dacheux JL, Dacheux F, Paquignon M. Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol Reprod 1989; 40: 635–651. [Medline] [CrossRef]

22. Jervis KM, Bobarte B. Dynamic changes in gene expression along the rat epididymis. Biol Reprod 2001; 65: 696–703. [Medline] [CrossRef]

23. Corowall GA. New insights into epididymal biology and function. Hum Reprod Update 2009; 15: 213–227. [Medline] [CrossRef]

24. Skerget S, Rosenow MA, Petritis K, Karr TL. Sperm proteome maturation in the mouse epididymis. PLoS One 2015; 10: e0140650. [Medline] [CrossRef]

25. Young NA, Miyata H, Satoh Y, Muto M, Larsen MR, Attenk RJ, Baker MA, Iwaka M. CRISP/Cas9-mediated mutation revealed cytoplasmic tail is dispensable for IZUMO1 function and fertility in mice. J Clin Invest 2010; 120: 665–674. [Medline] [CrossRef]

26. Dixon B, De Jullio GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MF, Alnajd GE, Bronfeld EG, Larsen MR, Dun MD. Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol Cell Proteomics 2019; 18(Suppl 1): S91–S108. [Medline] [CrossRef]

27. Dias GM, Retamal CA, Tobella I, Arzohult ACV, López ML. Nuclear status of immature and mature stallion spermatozoa. Theriogenology 2006; 66: 354–365. [Medline] [CrossRef]

28. Aleem M, Padwal V, Choudhari J, Balasunor N, Gill-Sharma MK. Sperm protein levels as indicators of fertilising potential in sexually mature male rats. Andrology 2008; 40: 29–37. [Medline] [CrossRef]

29. Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H. Maturation of spermatozoa in the epididymis of the Chinese hamster. An J Anat 1985; 172: 317–330. [Medline] [CrossRef]

30. Fujihara Y, Tokuhiru K, Muro Y, Kondoh G, Araki Y, Iwaka M, Okabe M. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc Natl Acad Sci USA 2013; 110: 8111–8116. [Medline] [CrossRef]

31. Yuan S, Zheng H, Zheng Z, Yan W. Proteomic analyses reveal a role of cytoplasmic droplets as an energy source during epididymal sperm maturation. PLoS One 2013; 8: e77466. [Medline] [CrossRef]

32. Soler C, Yeung CH, Cooper TG. Development of sperm motility patterns in the murine epididymis. Int J Androl 1994; 17: 271–278. [Medline] [CrossRef]

33. Vadnais ML, Aghajanian HK, Lin A, Gerton GL. Signaling in sperm: toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis. Biol Reprod 2013; 89: 67–75. [Medline] [CrossRef]

34. Lakoski KA, Carron CP, Cabot CL, Saling EP. Epididymal maturation and the acrosome reaction in mouse sperm: response to zona pellucida develops coincident with modification of M42 antigen. Biol Reprod 1988; 38: 221–233. [Medline] [CrossRef]

35. Lim M, Lee YH, Xu W, Baker MA, Attenk RJ. Ontogeny of tyrosine phosphorylation-signaling pathways during spermatogenesis and epididymal maturation in the mouse. Biol Reprod 2006; 75: 688–697. [Medline] [CrossRef]

36. Yamauchi Y, Ajduk A, Riel JM, Ward MA. Ejaculated and epididymal mouse spermatozoa are different in their susceptibility to nuclease-dependent DNA damage and in their nucleic acid content. Biol Reprod 2007; 77: 636–647. [Medline] [CrossRef]

37. Sato H, Taketomi Y, Isogai Y, Mikki Y, Yamamoto K, Masuda S, Hosono T, Arata S, Ishikawa I, Ishii T, Kobayashi T, Nakashita H, Ikeda K, Taguchi R, Hara S, Kudo I, Murakami M. Group II secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice. Endocrinology 2010; 120: 1400–1414. [Medline] [CrossRef]

38. Simcay C, Castro C, Hartnett C, Lin CC, Sukhwani M, Orwig K, Schatten G. Post-testicular sperm maturation: centriole pairs, found in upper epididymis, are destroyed prior to sperm’s release at ejaculation. Sci Rep 2016; 6: 31816. [Medline] [CrossRef]

39. Thornton CE, Brown SDM, Glenister PH. Large numbers of mice established by in vitro fertilization with cryopreserved spermatozoa: implications and applications for genetic resource banks, maintenance of genetic screens, and mouse backcrosses. Mamm Genome 1999; 10: 987–992. [Medline] [CrossRef]

40. Byers SL, Payson SJ, Taft RA. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 2006; 65: 1716–1726. [Medline] [CrossRef]

41. Takesh T, Nakagata N. Combination medium of cytoprotective agents containing L-glutamine and methyl-b-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim 2010; 44: 132–137. [Medline] [CrossRef]