Factors influencing overall survival rates for patients with pineocytoma

Aaron J. Clark · Michael E. Sughrue · Michael E. Ivan · Derick Aranda · Martin J. Rutkowski · Ari J. Kane · Susan Chang · Andrew T. Parsa

Received: 5 January 2010 / Accepted: 12 April 2010 / Published online: 12 May 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Given its rarity, appropriate treatment for pineocytoma remains variable. As the literature primarily contains case reports or studies involving a small series of patients, prognostic factors following treatment of pineocytoma remain unclear. We therefore compiled a systematic review of the literature concerning post-treatment outcomes for pineocytoma to better determine factors associated with overall survival among patients with pineocytoma. We performed a comprehensive search of the published English language literature to identify studies containing outcome data for patients undergoing treatment for pineocytoma. Kaplan–Meier analysis was utilized to determine overall survival rates. Our systematic review identified 168 total patients reported in 64 articles. Among these patients, 21% underwent biopsy, 38% underwent subtotal resection, 42% underwent gross total resection, and 29% underwent radiation therapy, either as mono- or adjuvant therapy. The 1 and 5 year overall survival rates for patients receiving gross total resection versus subtotal resection plus radiotherapy were 91 versus 88%, and 84 versus 17%, respectively. When compared to subtotal resection alone, subtotal resection plus radiation therapy did not offer a significant improvement in overall survival. Gross total resection is the most appropriate treatment for pineocytoma. The potential benefit of conventional radiotherapy for the treatment of these lesions is unproven, and little evidence supports its use at present.

Keywords Pineocytoma · Surgery · Gross Total Resection · Radiotherapy · Survival

Introduction

Pineocytomas account for 0.4–1.0% of all intracranial tumors [1]. The published literature on the appropriate management of this tumor is sparse due to the relative rarity of this lesion, and thus management of pineocytoma varies between centers based on clinician preference. Studies often combine pineocytomas with other pineal region tumors of different histologies [2, 3]. This is a significant limitation of such analyses, as different tumor histology portends markedly different prognoses, and requires different treatment paradigms.

Because of these limitations, the expected prognosis for patients with these tumors after surgery is not well known [3, 4]. Further, the relative benefit of post-operative adjuvant radiotherapy for patients with this tumor is not known, and thus the importance of obtaining gross total resection is unclear. Due to the difficult location of these tumors and the high risk of serious neurological complications, this is an important question that demands a more definitive answer [5].

To attempt to address these concerns, we systematically reviewed the published literature with the aim of determining if surgical resection of any kind is superior to biopsy alone, if subtotal resection with adjuvant post-operative radiotherapy can replace gross total resection, as it has in other tumors, and to determine the role of radiotherapy in patients with subtotal resection.
Materials and methods

Article selection

A systematic search of the existing English language literature was conducted to assemble a comprehensive review of overall survival after treatment of pineocytoma. Articles were identified via PubMed search using Boolean searches with key words “pineocytoma” alone and in combination with “treatment,” “mortality,” and “morbidity.” After reviewing these articles, a thorough review of all references was additionally performed.

All references that contained disaggregated data specifically addressing post-treatment survival with adequate follow-up in patients who had undergone surgery (biopsy or resection) of histologically confirmed pineocytoma were included in our analysis. Any paper that did not provide at least some follow-up survival data for pineocytoma patients was excluded.

Data extraction

Tumor characteristics including median largest dimension and volume were not consistently reported in our included studies, preventing analysis. Treatment modality was stratified into three groups based on reported extent of resection. These included gross total resection (GTR), subtotal resection (STR), and simply biopsy. Further substratification of data was performed based on treatment with or without post-operative adjuvant fractionated radiotherapy (XRT).

Useable data regarding stereotactic radiosurgery as sole or post-operative adjuvant therapy for this lesion was too sparse (2 patients) to draw any meaningful statistical comparisons, and thus these patients were excluded from our analysis. Overall survival (PFS) was calculated at the 1-year and 5-year time points. If study data were presented such that these variables could not be reliably ascertained, these studies were excluded from further analysis.

Statistical analysis

Pearson’s χ^2 test was used to analyze for differences in pre-operative categorical factors including gender and presence of hydrocephalus. Fisher’s exact test was used if there were less than five values per cell. Analysis of variance (ANOVA) was used to evaluate for statistical differences in pre-operative continuous factors, including age. Kaplan–Meier analysis was used to generate overall survival curves. Differences in time to mortality were analyzed by the log-rank test. Cox proportional hazard modeling was used to assess for differences in overall survival adjusting for differences in pre-operative variables. Analyses were carried out using SPSS version 16.0 (SPSS, Inc.).

Results

Clinical characteristics of included patients

Our search identified a total of 64 references [1–64] which met our inclusion criteria, providing disaggregated data on 168 patients with pineocytoma (Table 1). Males made up 52% of the population, and females 48%. The median age among patients was 30 years. Presenting symptoms most commonly encountered included headaches (75%), nausea (23%), and visual changes (17%). The presenting sign most commonly encountered included hydrocephalus (65%). Most tumors were of conventional histology (72%).

146 patients included data describing extent of tumor resection. Of these, 61 (42%) underwent GTR, 55 (38%) underwent STR, and 30 patients (21%) underwent biopsy. Post-operative XRT or radiosurgery (RS) was utilized on 29% of patients. Patients were followed from 3 to 165 months. Shorter follow-up times were reported in case reports or among patients who expired.

The effect of surgical resection of any kind compared to biopsy alone

When comparing rates of overall survival in patients who underwent biopsy, with or without radiation therapy, and those who underwent any surgical resection, with or without radiation therapy, there were no significant differences between the two groups in gender or age ($\chi^2 P = 0.8$, ANOVA $P = 0.06$, respectively). Notably, patients treated with surgical resection suffered pre-operative hydrocephalus.
more often than patients undergoing biopsy alone (71 vs. 50%, $\chi^2 P < 0.05$). When comparing surgical resection versus biopsy, the 1 and 5 year overall survival rates were 89 versus 82%, and 76 versus 64%, respectively. Although the trend was toward improved survival with surgical resection, this difference did not reach statistical significance (log-rank, $P = 0.19$) (Fig. 1). Thus, despite a suggestion of benefit we have insufficient data to definitive conclude that surgical resection provides a survival benefit compared to a biopsy with or without XRT.

Subtotal resection with adjuvant radiation cannot replace gross total resection

Overall survival rates between patients undergoing GTR without radiation therapy versus patients undergoing subtotal resection STR plus adjuvant XRT were compared to analyze potential prognostic factors. When comparing patient characteristics between the two groups, there were no significant differences in gender ($\chi^2 P = 0.4$), age (ANOVA $P = 0.9$), or presence of hydrocephalus (Fisher’s exact test $P = 0.08$). The one and five- year overall survival rates for the GTR group versus the STR plus XRT group was 91% versus 88%, and 84 versus 17%, respectively. On Kaplan–Meier analysis, these differences represented a statistically significant improvement (log-rank, $P < 0.05$) (Fig. 2).

The role of adjuvant radiation in cases of subtotal resection

We performed a subgroup analysis to determine whether post-operative adjuvant XRT combined with STR offered a survival advantage compared to patients receiving STR alone. There were no significant differences in gender (Fisher’s exact $P = 0.2$), age (ANOVA $P = 0.8$), or pre-operative rates of hydrocephalus between the groups (Fisher’s exact $P = 0.6$). The 1 and 5 year overall survival rates for the STR group versus the STR plus XRT group was 77 versus 88%, and 77 versus 17%, respectively. Although there is a trend toward decreased survival in patients treated with subtotal resection plus radiation therapy, this difference was not statistically significant (log-rank, $P = 0.14$) (Fig. 3).

Discussion

At present, the post-treatment prognosis of patients with pineocytoma remains unclear. Furthermore, there is no
clear agreement on what treatment course to utilize in order to best minimize patient mortality rates [65, 66]. The rarity of these tumors has made it difficult to define the behavior of this lesion and its response to therapy.

In lieu of class 1 data, we have systematically reviewed the published English language literature on pineocytoma in an attempt to provide better information and guidance in the management of these tumors. Our analysis suggests that aggressive surgical resection provides a survival benefit over subtotal resection. When compared to GTR, the addition of adjuvant XRT to STR does not appear to provide an equivalent survival outcome.

On further analysis of patients receiving STR versus those undergoing STR plus XRT, the addition of adjuvant radiation does not yield a survival benefit when compared to STR alone. Considered in light of the superiority of GTR to STR, it would appear that pineocytoma is relatively resistant to radiation and is optimally treated with aggressive surgery rather than XRT.

Study limitations

Our goal in authoring the current study was to summarize the published literature regarding pineocytoma. However, it should be acknowledged that this review is not class 1 or 2 data, and should ideally be supplanted with more definitive data if and when this becomes available. Our analysis is limited by the quality and accuracy composite studies, and may reflect source study biases. It is impossible for us to control for the quality of the data reported in the literature. We cannot confirm the histologic grade, extent of resection, and adequacy of radiation therapy, which likely vary between studies, therefore rendering it impossible to validate these common definitions across all publications in which they are reported. Furthermore, our use of Kaplan–Meier analysis largely precludes the use of formal meta-analysis methods, including the calculation of a Q-statistic which allows for a determination of survival data heterogeneity. This consequently prevents us from addressing the potential for systematic flaws or differences among studies in a statistically meaningful way. Finally, due to the diverse range of data presentation, we are limited in our ability to study and control for certain variables. Potential confounders inconsistently presented across studies cannot be reviewed.

Conclusion

In conclusion, we have assembled a systematic review of the published pineocytoma literature and offer data on survival rates following different treatment strategies. These data appear to indicate optimal survival rates following GTR. Given the relatively rarity of this tumor, this study aims to improve upon the small sample sizes offered by individual institutions by providing a more comprehensive review of outcome characteristics for patients with pineocytoma.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Amendola BE, Wolf A, Coy SR, Amendola MA, Eber D (2005) Pineal tumors: analysis of treatment results in 20 patients. J Neurosurg 102 Suppl: 175–179
2. Costenbader KH, Fidias P, Gilman MD, Qureshi A, Tambouret RH (1983) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 35-1983. A 25-year-old woman with increasingly frequent headaches. N Engl J Med 309: 542–549, 1983
3. Barber SG, Smith JA, Hughes RC (1978) Melatonin as a tumour marker in a patient with pineal tumour. Br Med J 2:328
4. Apuzzo ML, Stieg PE, Starr P, Schwartz RB, Folkerth RD (1996) Surgery of the Soul’s cistern. Neurosurgery 39:1022–1029
5. Borit A, Blackwood W, Mair WG (1980) The separation of pineocytoma from pineoblastoma. Cancer 45:1408–1418
6. Bendersky M, Lewis M, Mandelbaum DE, Stanger C (1988) Serial neuropsychological follow-up of a child following craniospinal irradiation. Dev Med Child Neurol 30:816–820
7. D’Andrea AD, Packer RJ, Ronke LB, Bilaniuk LT, Sutton LN, Bruce DA, Schut L (1987) Pineocytomas of childhood. A reappraisal of natural history and response to therapy. Cancer 59: 1353–1357
8. Dario A, Cerati M, Taborelli M, Finzi G, Pozzi M, Dorizzi A (2000) Cyto genetic and ultrastructural study of a pineocytoma case report. J Neurooncol 48:131–134
9. Dempsey PK, Kondziolka D, Lunsford LD (1992) Stereotactic diagnosis and treatment of pineal region tumours and vascular malformations. Acta Neurochir (Wien) 116:14–22
10. Deshmukh VR, Smith KA, Rekate HL, Coons S, Spetzler RF (2004) Diagnosis and management of pineocytomas. Neurosurgery 55:349–355 (discussion 355–347)
11. Disclafani A, Hudgins RJ, Edwards MS, Wara W, Wilson CB, Levin VA (1989) Pineocytomas. Cancer 63:302–304
12. Engel U, Gottschalk S, Niehaus L, Lehmann R, May C, Vogel S, Janisch W (2000) Cystic lesions of the pineal region—MRI and pathology. Neuroradiology 42:399–402
13. Fukushima T, Tomonaga M, Sawada T, Iwasaki H (1990) Pineocytoma with neuronal differentiation—case report. Neurol Med Chir (Tokyo) 30:63–68
14. Glanzmann C, Seelentag W (1989) Radiotherapy for tumours of the pineal region and suprasellar germinomas. Radiother Oncol 16: 31–40
15. Harada K, Hayashi T, Anegawa S, Torigoe R, Maeda K, Toda K, Sugita Y, Utsunomiya H (1993) Pineocytoma with intratumoral hemorrhage following ventriculoperitoneal shunt—case report. Neurol Med Chir (Tokyo) 33:836–838
16. Hasegawa T, Kondziolka D, Hadipanayis CG, Flickinger JC, Lunsford LD (2002) The role of radiosurgery for the treatment of pineal parenchymal tumors. Neurosurgery 51:880–889
17. Hazen S, Freiberg SR, Thomas C, Wallman J, Clerkin EP, Lo TC (1989) Multiple distinct intracranial tumors: association of
pinealoma and craniopharyngioma. Case report. Surg Neurol 31:381–386
18. Herrick MK, Rubinstein LJ (1979) The cytological differentiating potential of pineal parenchymal neoplasms (true pinealomas). A clinicopathological study of 28 tumours. Brain 102:289–320
19. Jackson AS, Plowman PN (2004) Pineal parenchymal tumours: I. Pineocytoma: a tumour responsive to platinum-based chemotherapy. Clin Oncol (R Coll Radiol) 16:238–243
20. Jooma R, Kendall BE (1983) Diagnosis and management of pineal tumours. J Neurosurg 58:654–665
21. Jouvet A, Saint-Pierre G, Fauchon F, Privat K, Bouffet E, Ruchoux MM, Chauveine C, Fevre-Montange M (2000) Pineal parenchymal tumours: a correlation of histological features with prognosis in 66 cases. Brain Pathol 10:49–60
22. Knerim DS, Yamada S (2003) Pineal tumours and associated lesions: the effect of ethnicity on tumor type and treatment. Pediatr Neurosurg 38:307–323
23. Kobayashi T, Kida Y, Mori Y (2001) Stereotactic gamma radiation for pineal and related tumors. J Neurooncol 54:301–309
24. Komoda K, Imaoka T, Tomita S, Ohmoto T (1997) Pineocytoma. J Neurooncol (2010) 100:255–260 259
25. Kurisaka M, Arisawa M, Mori T, Sakamoto T, Seike M, Mori K, Ishii H, Yoshimoto T (1999) Therapeutic strategies and surgical resection of a pineal tumor containing elements of germinoma and astrocytoma. Neurosurgery 16:373–378
26. Lee MA, Leng ME, Tiernan EJ (2001) Risperidone: a useful adjunct for behaviour disturbance in primary cerebral tumours. Palliat Med 15:255–266
27. Linggood RM, Chapman PH (1992) Pineal tumors. J Neurooncol 12:85–91
28. Mandera M, Marcol W, Bierzynska-Macyszyn G, Kluczewska E, Drogosiewicz M, Mandera M, Lewin-Kowalik J, Roszkowski M (2003) Papillary pineocytoma in child: a case report. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151:121–123
29. Matsukuru K, Imaoka T, Tomita S, Ohmoto T (1997) Pineocytoma with massive intratumoral hemorrhage after ventriculoperitoneal shunt—case report. Neurol Med Chir (Tokyo) 37:911–915
30. Mawrin C, Grimm c, von Falkenhauen U, Kirches E, Scherlach C, Kanakis D, Verwerk C, Bolte C, Firsching R, Dietzmann K (2003) Pineal ependymoid coinciding with pineocytoma. Acta Neurochir (Wien) 145:783–787
31. Mena H, Rushing EJ, Ribas JL, Delahunt B, McCarthy WF (1996) Pineal parenchymal tumors: a correlation of histological features, including nucleolar organizer regions, with pathological findings in three cases of childhood pineocytoma. Cancer Genet Cytogenet 94:936–945
32. Schulte F, Herrmann HD, Muller D, Franke H, Saeger W, Spaar FW, Bartels S (1987) Pineal region tumours of childhood. Eur J Paediatr 146:233–245
33. Shirane R, Shamoto H, Umezawa K, Su CC, Kumaite T, Jokura H, Yoshimoto T (1999) Surgical treatment of pineal region tumours through the occipital transfenestral approach: evaluation of the effectiveness of intra-operative micro-endoscopy combined with neuronavigation. Acta Neurochir (Wien) 141:801–808 (discussion 808–809)
34. Steinbok P, Berlin CL, Aan K (1977) Pineocytomas presenting as subarachnoid hemorrhage. Report of two cases. J Neurosurg 47:776–780
35. Tamaki N, Yin D (2000) Therapeutic strategies and surgical results for pineal region tumours. J Clin Neurosurg 7:125–128
36. Tracy PT, Hanigan WC, Kalyan-Raman UP (1986) Radiological and pathological findings in three cases of childhood pineocytomas. Childs Nerv Syst 2:297–300
37. Tuscher F, Herrmann HD, Muller D, Franke H, Saeger W, Spaar FW, Bartels S (1987) Pineal region tumours of childhood. Eur J Paediatr 146:233–245
38. Ueki K, Tanaka R (1980) Treatments and prognoses of pineal region tumours—experience of 110 cases. Neurol Med Chir (Tokyo) 20:169–171
39. Vaquero J, Coca S, Martinez R, Escandon J (1990) Papillary pineocytoma. Case report. J Neurosurg 73:135–137
40. Vaquero J, Ramirez M, Martinez R, Coca S, Bravo G (1990) Clinicopathological experience with pineocytomas: report of five surgically treated cases. Neurosurgery 27:618–618 (discussion 618–619)
61. Vorkapic P, Pendl G (1987) Microsurgery of pineal region lesions in children. Neuropediatrics 18:222–226
62. Vorkapic P, Waldhauser F, Bruckner R, Biegelmaier C, Schmidbauer M, Pendl G (1987) Serum melatonin levels: a new neurodiagnostic tool in pineal region tumors? Neurosurgery 21: 817–824
63. Weisberg LA (1984) Clinical and computed tomographic correlations of pineal neoplasms. Comput Radiol 8:285–292
64. Ziyal IM, Sekhar LN, Salas E, Olan WJ (1998) Combined supra/infratentorial-transsinus approach to large pineal region tumors. J Neurosurg 88:1050–1057
65. Kida Y, Kobayashi T, Tanaka T, Mori Y (2000) Radiosurgery for bilateral neurinomas associated with neurofibromatosis type 2. Surg Neurol 53:383–389 (discussion 389–390)
66. Linskey ME, Lunsford LD, Flickinger JC (1990) Radiosurgery for acoustic neurinomas: early experience. Neurosurgery 26:736–744 (discussion 744–735)