Association of nurse staffing grade and 30-day mortality in intensive care units among cardiovascular disease patients

Jae-Hyun Kim¹b,∗

Abstract

After the implementation of a policy differentiating inpatient nursing fees, no study is found in the nursing literature for intensive care unit (ICU) patients admitted with cardiovascular (CV) disease exclusively in Korea. This study investigates the relationship between ICU nurse staffing and 30-day mortality using large representative claim database.

National Health Insurance Service-Senior (NHIS-Senior) claim database from 2002 to 2013, which was released by the Korean National Health Insurance Service (KNHIS), was used in this study. We included CV disease inpatients as a primary diagnostic code (I20-I25) who had their ICU utilization records from differentiating inpatient nursing fees code, resulting in 17,081 subjects.

After adjusting for confounders, the hazard ratio (HR) for 30-day mortality after discharge (HR: 1.177; P: .018) and in-hospital 30-day mortality (HR: 1.145; P: .058) were higher in general hospital (GH) than in tertiary hospital (TH). In GH setting, HR for 30-day mortality after discharge (HR: 1.499; P: .010) and in-hospital 30-day mortality (HR: 1.377; P: .042) were higher in grade 7 to 9 than grade 1 to 2, but not in TH setting.

This study shows that ICU nurse staffing related to improved mortality risk in GHs. Therefore, adequate nurse staffing to provide safe and high-quality care can be ensured by continuous monitoring and evaluation of nurse staffing.

Abbreviations: CCI = charlson comorbidity index, CV = cardiovascular, GH = general hospital, HR = hazard ratio, ICU = intensive care unit, KNHIS = Korean National Health Insurance Service, TH = tertiary hospital.

Keywords: aging, care, mortality, nurse staffing

Key Points

• Significant relationship between nurse staffing grade and mortality in general hospital.
• General hospitals have a relatively lower need to improve nurse staffing than tertiary hospitals.
• Nurse staffing grade in tertiary hospital was not significantly associated with possibilities of dying.

1. Introduction

Admission to the intensive care unit (ICU) has been known as a risk factor for increased morbidity and mortality outcomes, especially in those with cardiovascular (CV) disease. Although ICU for the severely ill patients is associated with specialized clinical team with access to the most technologically sophisticated equipment to provide close nursing surveillance and life-sustaining interventions, advances in technology are just tools to support health care staff in closely monitoring and properly treating patients who are critically ill. Nurses of skilled health care staffs in hospitals are crucial to providing good-quality care services, providing patients with holistic care 24-hour a day.

A recent systematic review suggests that better nurse staffing is associated with improved patient outcomes. Although some researchers express skepticism about its sensitivity to nursing care quality, mortality of those patients is often used as an important indicator for hospital quality. Although research evidence has increased concerning the relationship between bed-to-nurse ratio and patient outcomes in Korea, hospital administrators tend to reduce nurse staffing to decrease hospital costs and maximize efficiency of operation.

Several countries regulate minimum requirements of nurse staffing or offer financial incentives for guaranteed nursing care quality. In 1999, the Korean government implemented a new incentive policy for nurse staffing, namely differentiating inpatient nursing fees by nurse staffing levels to financially incentivize hospitals to improve nurse staffing and the quality of nursing care services. At first, there were 6 grades of nurse staffing levels based on the nurse-to-bed ratio only for general care units of all types of hospital, which extended to 7 grades of

Editor: Giovanni Tarantino.

The authors have no conflicts of interest to disclose.

Supplemental Digital Content is available for this article.

∗Department of Health Administration, College of Health Science, Dankook University, Cheonan, Institute of Health Promotion and Policy, Dankook University Cheonan, Republic of Korea.

Correspondence: Jae-Hyun Kim, Department of Health Administration, College of Health Science, Dankook University, Cheonan, 31116, Korea (e-mail: kjh930529@gmail.com).

Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

Medicine (2018) 97(42):e12895
Received: 17 May 2018 / Accepted: 10 September 2018
http://dx.doi.org/10.1097/MD.0000000000012895
nurse staffing levels in general hospitals (GHs) in 2007 and 9 grades in 2008 (see Supplemental Digital Content which demonstrates the differentiating nursing fees and code according to staffing level, http://links.lww.com/MD/C564).\(^{[11,14]}\)

After the implementation of the policy, differentiating inpatient nursing fees, a few studies have been published on the effects of the policy on nurse staffing in Korea.\(^{[12,15-18]}\) However, no study is found in the nursing literature for ICU patients admitted with CV disease exclusively and thus, we examine the relationship is found in the nursing literature for ICU patients admitted with CV disease exclusively and thus, we examine the relationship between ICU nurse staffing and patient mortality using large representative claim database.

2. Methods

2.1. Study design and data source

Study data were obtained from National Health Insurance Service-Senior (NHIS-Senior) claim database from 2002 to 2013 which was released by the Korean National Health Insurance Service (KNHIS).\(^{[19]}\) The initial NHIS-Senior cohort data was comprised of 558,147 participants. Approximately 10% of the 60 years and above elderly population in 2002 was analyzed, using a stratified random sampling method, excluding non-citizens and special purpose employees with an unidentified income level. The baseline cohort members were followed for 11 years until 2013 unless the beneficiaries were disqualified due to death or emigration. Detailed methods for establishing and ensuring the representativeness of NHIS-Senior cohort were published on the KNHIS website (https://nhiss.nhis.or.kr/bd/asy/bdaya001v.do).\(^{[19]}\) For the analysis we included CV disease inpatients as a primary diagnostic code (I20-I25) in the International Classification of Diseases, 10th revision (ICD-10) who had their ICU utilization records from differentiating inpatient nursing fees code, resulting in 17,081 subjects. This study does not need ethical approval because it is not a study using human derivatives, and all subjects are encrypted and cannot be identified.

2.2. Independent variable

The highest nurse staffing grade was grade 1 (beds/nurse ratio < 0.5), with the lowest nurse staffing grade being grade 9 (beds/nurse ratio ≥ 2.0). Level of nurse staffing was categorized into 4 groups in each year: grade 1 to 2, grade 3 to 4, grade 5 to 6, and grade 7 to 9.

3. Dependent variable

3.1. All-cause mortality

Thirty-day mortality after discharge was determined by death certificates and discharge diagnosis was determined at the time of discharge by calculating the admission date and length of stay. In-hospital 30-day mortality was determined by mortality date after admission date.

3.2. Control variables

The present analyses included age, sex, income, type of insurance, region, primary diagnosis, route of admission, Charlson Comorbidity Index (CCI), organization type, number of doctors, and hospital technology as control factors; all of the covariates were categorical except for age, and number of doctors. Sex was grouped into male and female. Based on the premiums of the National Health Insurance, which reflects household income in our database, all the people were divided into 10 quintiles and we were further categorized into 3 groups: low (≤ 3), middle (4–7), or high (8–10). Region was categorized into metropolitan (Seoul), urban (Daejeon, Daegu, Busan, Incheon, Kwangju, or Ulsan), and rural (otherwise). Primary diagnosis of CV disease was categorized into 5 groups: angina pectoris (I20), acute myocardial infarction (I21), subsequent myocardial infarction (I22), certain current complications following acute myocardial infarction (I23), other acute ischemic heart diseases (I24), and chronic ischemic heart disease (I25). Route of admission was categorized into emergency and outpatient, and CCI was grouped as scores of 0, 1, 2, and over 3. Organization type of hospital was categorized into 3 groups: public, corporate, and private. Based on our previous research\(^{[20]}\) as a proxy to sophisticated equipment, hospital technology was investigated. Using SAS Rank function, hospital technology was categorized into 3 groups.

3.3. Statistical analysis

Chi-square test, log-rank test, analysis of variance (ANOVA), and Cox proportional hazards models were used to investigate the association between nurse staffing and mortality. For all analyses, the criterion for statistical significance was \(P < .05\), 2-tailed. All analyses were conducted using the SAS statistical software package, version 9.4 (SAS Institute Inc., Cary, NC).

4. Results

4.1. General characteristics of CV disease ICU patients

Table 1 shows the general characteristics for 30-day mortality after discharge and in-hospital 30-day mortality, respectively. Of 17,081 patients with CV disease, 8428 patients (49.3%) used ICU in tertiary hospital (TH) and 8653 patients (50.7%) used in GH. Of the patients admitted to low hospital technology, 14.2% died within 30 days after discharge and 12.9% died within 30 days, respectively (Table 1, Fig. 1). In addition, the prevalence of 30-day mortality after discharge and in-hospital 30-day mortality was 10.3% and 9.3%, respectively (Table 1). Of those admitted to TH, the prevalence of 30-day mortality after discharge and in-hospital 30-day mortality was 8.5% and 7.7%, respectively. Of those admitted to GH, the prevalence of 30-day mortality after discharge and in-hospital 30-day mortality was 12.1% and 10.9%, respectively (Table 2).

4.2. Adjusted effect of nurse staffing level on mortality by hospital type

After adjusting for all of these confounders, the hazard ratio (HR) for 30-day mortality after discharge (HR: 1.177; \(P: .018\)) and in-hospital 30-day mortality (HR: 1.145; \(P: .058\)) in GH were higher than TH (Table 3).

Table 4 showed adjusted effect between nurse staffing level and 30-day mortality according to hospital type (e.g., TH and GH). After adjusting for all confounders in TH, HR in both 30-day mortality after discharge and in-hospital 30-day mortality were not statistically significant, but in GH setting, HR for 30-day mortality after discharge (HR: 1.499; \(P: .010\)) and in-hospital 30-day mortality (HR: 1.377; \(P: .042\)) were higher in grade 7 to 9 than grade 1 to 2. In addition, hospital technology, which is considered to be an important indicator of mortality of hospital
in ICU, was associated with 1.33 times higher mortality (HR in in-hospital 30-day mortality: 1.328; \(P \) = .002) in hospital with low technology than high technology.

5. Discussion

This study shows the differences that exist in grade of ICU nurse staffing with 30-day mortality among CV disease inpatients in Korea. An important finding of this study was that there was a more significant relationship between nurse staffing grade and mortality at GH rather than TH. In Korea, GHs are institutions that have a minimum of 100 inpatient beds and provide physician specialist services in major areas (e.g., internal medicine, surgery, and pediatrics) and THs indicate GHs that are approved to provide most types of advanced medical care and treat severely ill patients. So, GHs have a relatively lower need to improve nurse staffing than THs because they may be delivering care to patients with less critical conditions than those in THs. In contrast, nurse staffing grade in TH was not significantly associated with possibilities of dying. THs play a role as specialized care providers in Korea. Patients who require more intensive care tend to be admitted to THs following an easily obtainable referral from a primary care physician, where they can receive specialized high-quality care.\(^{[21]}\) Therefore, it is possible that there are higher

Table 1

Characteristics	Total	No	Yes	\(P \) value											
	N	%	Mean	SD	Mean	SD	P value	Mean	SD	Mean	SD	P value			
Age	17,081	100.0	73.5	6.5	77.9	7.3	<.0001	73.5	6.5	78.0	7.4	<.0001			
Number of doctors	17,081	100.0	359.5	305.0	266.5	247.8	<.0001	338.8	304.8	264.6	244.3	<.0001			
Hospital type			No	N	%	N	%	No	N	%	N	%	<.0001	<.0001	
Tertiary hospital (TH)	8428	49.3	7713	91.5	715	8.5	.064	.067							
General hospital (GH)	8653	50.7	7603	87.9	1050	12.1	.001	.001							
CCI	6752	39.5	6012	89.0	740	11.0	.001	.001							
0	3904	23.0	3250	89.5	414	10.5	.001	.001							
1	2593	15.2	2342	90.3	251	9.7	.001	.001							
≥3	3802	22.3	3442	90.5	360	9.5	.001	.001							
Sex			Male	8697	50.9	7868	90.5	829	9.5	7964	91.5	743	8.5		
	Female	8384	49.1	7448	88.8	936	11.2	7538	89.9	846	10.1	.056	.098		
Income	4450	26.1	3960	89.0	490	11.0	.001	.001							
Low	4378	25.6	3909	89.3	469	10.7	.001	.001							
Middle	8253	48.3	7447	90.2	806	9.8	.001	.001							
High													.011	.071	
Type of insurance			Community insurance	5606	32.8	5045	90.0	561	10.0	5107	91.1	499	8.9		
	Workplace insurance	10,033	56.7	8983	89.5	1050	10.5	9075	90.5	958	9.6	.001	.001		
Medical Aid	1442	8.4	1268	89.3	154	10.7	.001	.001							
Region			Metropolitan	3582	21.0	3232	90.2	350	9.8	3274	91.4	308	8.6		
	Urban	3725	21.8	3312	88.9	413	11.1	3347	89.9	378	10.2	.001	.001		
	Rural	9774	57.2	8772	89.8	1002	10.3	8871	90.8	903	9.2	.001	.001		
Primary diagnosis			Angina pectoris	6604	38.7	6400	96.9	204	3.1	6427	97.3	177	2.7		
	Acute myocardial infarction	7778	45.5	6428	82.6	1530	17.4	6548	84.2	1230	15.8	.001	.001		
	Subsequent myocardial infarction	48	0.3	38	84.4	7	15.6	.001	.001						
	Certain current complications following acute myocardial infarction	24	0.1	16	66.7	8	33.3	.001	.001						
	Other acute ischemic heart diseases	90	0.5	76	84.4	14	15.6	.001	.001						
	Chronic ischemic heart disease	2540	14.9	2358	92.8	728	7.2	2385	93.0	155	6.1	.001	.001		
Route of admission			Emergency	9253	54.2	8058	87.1	1195	12.9	8163	88.2	1090	11.8		
	Outpatient	7628	45.8	7258	92.7	570	7.3	7329	93.6	409	6.6	.001	.001		
Organization type			Public	263	1.5	202	76.8	61	32.3	206	78.3	57	21.7	.001	.001
	Corporate	16,290	95.4	14,672	90.1	1618	9.9	14,836	91.1	1454	8.9	.001	.001		
	Private	528	3.1	442	83.7	86	13.6	450	85.2	78	14.8	.001	.001		
Hospital technology			Low	6036	35.3	5180	85.8	856	14.2	5260	87.1	776	12.9		
	Middle	6118	35.8	5598	91.5	520	8.5	5657	92.5	461	7.5	.001	.001		
	High	4927	28.8	4538	92.1	389	7.9	4575	92.9	352	7.1	.001	.001		
Total	17,081	100.0	15,316	89.7	1,765	10.3	.001	.001							

CCI = Charlson Comorbidity Index, SD = standard deviation.
proportion of patients with greater severity of illnesses such as CV disease for the delivery of intensive and sophisticated care for patients in THs. Thus, this result suggests that mortality risk of THs that had highly intensive and complex medical technology in ICU may be more affected by advanced medical technology rather than nursing personnel.

The UK Department of Health and Intensive Care Society has proposed a minimum standard of a nurse-to-patient ratio of 1:1 for ICU patients.[22,23] The state of Victoria, Australia, has implemented a minimum ratio of 1 nurse to 1 unconscious patient or 2 to 4 highly dependent patients.[24] However, in Korea, this policy did not include adequate levels of nurse staffing, such as the mandated minimum nurse-to-patient ratios. Although there is a regulation regarding nurse staffing in hospital, approximately 50% of hospitals do not comply with the regulation, largely because there are no penalties for noncompliance.[25] Moreover, it does not consider the occupancy rate and does not reflect the number of direct nursing hours. Therefore, policymakers should

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Thirty-day mortality after discharge (left) and in-hospital 30-day mortality (right) for tertiary (upper) and general (lower).}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
 & \multicolumn{2}{c|}{Total} & \multicolumn{2}{c|}{30-day mortality after discharge} & \multicolumn{2}{c|}{In-hospital 30-day mortality} \\
 & \multicolumn{2}{c|}{No} & \multicolumn{2}{c|}{Yes} & \multicolumn{2}{c|}{No} & \multicolumn{2}{c|}{Yes} \\
\hline
 & N & \% & N & \% & N & \% & N & \% \\
\hline
Level of nurse staffing in TH & & & & & & & & \\
Grade 1–2 & 1762 & 20.9 & 1603 & 91.0 & 159 & 9.0 & 1624 & 92.2 \\
Grade 3–4 & 1729 & 20.5 & 1535 & 88.8 & 194 & 11.2 & 1546 & 89.4 \\
Grade 5–6 & 54 & 0.6 & 43 & 79.6 & 11 & 20.4 & 45 & 83.3 \\
Grade 7–9 & 4883 & 57.9 & 4532 & 92.8 & 351 & 7.2 & 4565 & 93.5 \\
Total & 8428 & 100.0 & 7713 & 91.5 & 715 & 8.5 & 7780 & 92.3 \\
\hline
Level of nurse staffing in GH & & & & & & & & \\
Grade 1–2 & 584 & 6.8 & 530 & 90.8 & 54 & 9.3 & 534 & 91.4 \\
Grade 3–4 & 2047 & 23.7 & 1797 & 87.6 & 250 & 12.2 & 1824 & 89.1 \\
Grade 5–6 & 927 & 10.7 & 801 & 86.4 & 126 & 13.6 & 814 & 87.8 \\
Grade 7–9 & 5095 & 58.9 & 4475 & 87.8 & 620 & 12.2 & 4540 & 89.1 \\
Total & 8653 & 100.0 & 7603 & 87.9 & 1050 & 12.1 & 7712 & 92.3 \\
\hline
\end{tabular}
\end{table}
consider several approaches to recommend improving nurse staffing. Ideally, every hospital, to see how differences in policies and financial performance affect the cost-effectiveness of staffing and its effect on quality of health care, should be monitored.\[26,27\]

In a variety of healthcare and clinical settings, further research on the workforce is urgently required to guide decisions about safe staffing levels to ensure patient safety, because nurses and doctors may substitute 1 another, so that units that are short of doctors may compensate by hiring more nurses.\[28\]

A large number of units and patients analyzed in this study, as well as the use of appropriate methods for the structure of the data, are additional strengths of this study. These results will hopefully be developed in future qualitative and quantitative research. Despite access to a large national sample, this study has limitations in terms of interpreting and comparing results with other studies. Major limitation relates to risk adjustment in patient mortality. Although age, gender, income, type of insurance, residential region, primary diagnosis, and comorbidity for risk adjustment were used, we were not able to adjust treatment of ICU variable that may affect risk of mortality because of lack of information. Inaccuracy of risk adjustment may lead to skewed results. Furthermore, because our claim database analyzed do not contain any clinical findings or information about the disease’s severity, we were unable to consider all possible covariates associated with risk of mortality. Therefore, our analytic approach was to apply regression models separately to tertiary and GHs because they had groups of patients and disease severity. Inclusion of hospital characteristics (i.e., ownership, hospital technology) should contribute indirectly to reducing variations in disease severity. Additional measures

Table 3

	30-day mortality after discharge	In-hospital 30-day mortality				
	HR	SE	P value	HR	SE	P value
Age	1.067	0.003	<.0001	1.069	0.004	<.0001
Number of doctors	1.000	0.000	.107	1.000	0.000	.046
Hospital type						
Tertiary hospital (TH)	1.000	1.000				
General hospital (GH)	1.177	0.069	.018	1.145	0.071	.058
CCI						
0	0.954	0.066	.475	0.991	0.069	.894
1	0.976	0.073	.764	0.982	0.077	.810
2	0.957	0.083	.597	1.006	0.086	.944
≥3	1.000	1.000				
Sex						
Male	1.038	0.050	.460	1.026	0.052	.626
Female	1.000	1.000				
Income						
Low	1.043	0.069	.538	1.073	0.072	.326
Middle	1.078	0.060	.210	1.107	0.062	.103
High	1.000	1.000				
Type of insurance						
Community insurance	1.208	0.104	.069	1.282	0.110	.023
Workplace insurance	1.278	0.106	.020	1.412	0.111	.002
Medical Aid	1.000	1.000				
Region						
Metropolitan	1.168	0.065	.017	1.162	0.068	.029
Urban	1.090	0.060	.151	1.126	0.062	.056
Rural	1.000	1.000				
Primary diagnosis						
Angina pectoris	0.421	0.104	<.0001	0.441	0.111	<.0001
Acute myocardial infarction	2.044	0.082	<.0001	2.243	0.088	<.0001
Subsequent myocardial infarction	1.513	0.388	.286	1.778	0.389	.139
Certain current complications following acute myocardial infarction	6.342	0.363	<.0001	6.859	0.388 <.0001	
Other acute ischemic heart diseases	1.375	0.280	.255	1.476	0.291	.181
Chronic ischemic heart disease	1.000	1.000				
Route of admission						
Emergency	1.105	0.055	.068	1.133	0.057	.030
Outpatient	1.000	1.000				
Organization type						
Public	1.506	0.170	.016	1.608	0.176	.007
Corporate	0.948	0.117	.652	0.932	0.122	.567
Private	1.000	1.000				
Hospital technology						
Low	1.427	0.066	<.0001	1.426	0.068	<.0001
Middle	1.073	0.069	.308	1.066	0.072	.370
High	1.000	1.000				

CCI = Charlson Comorbidity Index.
that take account of severity of illness are needed for more complete risk adjustment. Second, the rates of nurse turnover at different types of hospitals were not considered in this study. A higher turnover rate will increase the cost of employing nurses, and so further studies considering nurse turnover will be helpful to understand the nurse staffing levels at specific hospitals. Finally, we used an anonymized and auto-generated claim database with ICD-10 codes, limiting validation of the individual ICD codes. In particular, there is frequent under-reporting of certain medical conditions resulting in incomplete coding.\cite{29,30}

6. Conclusions

The findings of this study show that increased nurse staffing levels related to improved mortality risk in ICU of GHs in Korea. Therefore, adequate nurse staffing to provide safe and high-quality care can be ensured by continuous monitoring and evaluation of nurse staffing. These findings recommend that a strategy need to be developed towards better compliance to conduct future research.

Author contributions

KJH contributed to designing the study and editing the manuscript. JHK collected, analyzed and interpreted the data and writes the manuscript. Data curation: Jae Hyun Kim. Formal analysis: Jae Hyun Kim. Funding acquisition: Jae Hyun Kim. Investigation: Jae Hyun Kim. Methodology: Jae Hyun Kim. Project administration: Jae Hyun Kim. Resources: Jae Hyun Kim. Software: Jae Hyun Kim.
References

[1] Tam Y, Steven FA, Hillman KM, et al. Using administrative data to develop a nomogram for individualizing risk of unplanned admission to intensive care. Resuscitation 2008;79:241-8.

[2] Bastero-Minon P, Russell JL, Humphl T. Frequency, characteristics, and outcomes of pediatric patients readmitted to the cardiac critical care unit. Intensive Care Med 2012;38:1332–7.

[3] Sandelowski M. Devices and Desires: Gender, Technology and American Nursing. The University of North Carolina Press, , Chapel Hill, London;2000.

[4] West E, Rafferty A-M, Rowan K. Preserving the humanity of care in intensive care. Resuscitation 2008;79:241

[5] Zulli R, Nicosia F, Borroni B, et al. Increased prevalence of silent overt coronary artery disease. Clin Neurol Neurosurg 2008;110:791

[6] Lankshear AJ, Sheldon TA, Maynard A. Nurse staffing and healthcare outcomes: a systematic review of the international research evidence. ANS Adv Nurs Sci 2005;28:163–74.

[7] Tong PK. The effects of California minimum nurse staffing laws on nurse labor and patient mortality in skilled nursing facilities. Health Econ 2011;20:802–16.

[8] Tourangeau AE, Czanley LA, Jeffs L. Impact of nursing on hospital mortality: a focused review and related policy implications. Qual Saf Health Care 2006;15:4–8.

[9] Cho SH, Yun SC. Bed-to-nurse ratios, provision of basic nursing care, and in-hospital and 30-day mortality among acute stroke patients admitted to an intensive care unit: cross-sectional analysis of survey and administrative data. Int J Nurs Stud 2009;46:1092–101.

[10] Buchan J. A certain ratio? The policy implications of minimum staffing ratios in nursing. J Health Serv Res Policy 2005;10:239–44.

[11] Kim Y, Kim J. Impact of a financial incentive policy on Korean nurse staffing. Int Nurs Rev 2015;62:171–9.

[12] Ministry of Health & Welfare. Notification no. 2006-97: Details of revised application standard and methods for medical care benefits and relative value scale. 2006. Available at: http://www.mw.go.kr/front_new/hs jsp0402w.jsp?PAR_ME-NU_ID=03&MENU_ID=030402&BOARD_ID=220&BOARD_FLAG=03&CONT_SEQ=39840&page=1. Accessed June 20, 2014.

[13] Kim MA. Reform of nursing differentiation fee regulation: for the development of hospital nursing. Webzine Daehankanho 2007;46(1):4–.

[14] Ministry of Health & Welfare. Notification no. 2007-272: Revision of medical care benefits and relative value scale. 2007. Available at: http://www.mw.go.kr/front_new/hs jsp0403w.jsp?PAR_ME-NU_ID=03&MENU_ID=03030403&BOARD_ID=220&BOARD_FLAG=03&CONT_SEQ=39840&page=1. Accessed June 20, 2014.

[15] Cho SH, June KJ, Kim YM, et al. Changes in hospital nurse staffing after implementing differentiated inpatient nursing fee by staffing grades. J Korean Acad Nurs Adm 2008;14:167–75.

[16] Kim YM, Kim J, June KJ, et al. Changing trend in grade of nursing management fee by hospital characteristics: 2008–2010. J Korean Clin Nurs Res 2010;16:99–109.

[17] Yoon HS, Kim J. Activity-based costing analysis of nursing activities in general hospital wards. J Korean Acad Nurs Adm 2013;19:449–61.

[18] Cho SH, Hwang JH, Kim J. Nurse staffing and patient mortality in intensive care units. Nurs Res 2008;57:322–30.

[19] Lee J, Lee JS, Park SH, et al. Cohort profile: the national health insurance service-national sample cohort (NHIS-NSC), South Korea. Int J Epidemiol 2016;46:15.

[20] Kim JH, Lee Y, Park EC. Beyond volume: hospital-based healthcare technology as a predictor of mortality for cardiovascular patients in Korea. Medicine (Baltimore) 2016;95:e3917.

[21] Chun CR, Kim SY, Lee JY, et al. Republic of Korea: health system review. Health Syst Transit 2009;11:1–84.

[22] Adomat R, Hewson A. Assessing patient category/dependence systems for determining the nurse/patient ratio in ICU and HDU: a review of approaches. J Nurs Manag 2004;12:299–308.

[23] Beattie J, Calpin-Davies PJ. Workforce dilemmas: a comparison of staffing in a generalist and a specialist intensive care unit. Intensive Crit Care Nurs 1999;15:52–7.

[24] Australian Nursing Federation-Victorian, Branch, Summary of nurse-patient ratio agreement. 2000. Available at: http://www.anfvc.asn.au/news_briefs/news_ration%20summary.htm. Accessed on February 2, 2007.

[25] Cho S, June KJ, Kim Y, et al. Changes in hospital nurse staffing after implementing differentiated inpatient nursing fees by staffing grades. J Korean Acad Nurs Adm 2008;14:167–75.

[26] Spetz J. Public policy and nurse staffing: what approach is best? J Nurs Adm 2005;35:14–6.

[27] White KM. Policy spotlight: staffing plans and ratios. Nurs Manage 2006;37: 18–22, 4.

[28] Carmel S. Boundaries obscured and boundaries reinforced: incorporating a strategy of occupational enhancement for intensive care. Sociol Health Illn 2006;28:154–77.

[29] Bhattacharyya T, Iorio R, Healy WL. Rate of and risk factors for adult inpatient mortality after orthopaedic surgery. J Bone Joint Surg Am 2002;84-A:562–72.

[30] Iezzoni LI, Foley SM, Daley J, et al. Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality. JAMA 1992;267:2197–203.