Experimental and simulated CO$_2$ responses of photosynthesis in leaves of *Hippophae rhamnoides* L. under different soil water conditions

Qin Wu*, Cheng Li*, Qiang Chen†

School of Art, Shangdong Jianzhu University, Jinan, Shandong, China

†These authors contributed equally to this work

*Corresponding author: 1063983400@qq.com

*Corresponding author: 905669237@qq.com
Abstract

CO₂ concentrations and soil moisture conditions seriously affect tree growth and physiological mechanisms. CO₂ responses of photosynthesis are an important part of plant physiology and ecology research. This study investigated the photosynthetic CO₂ responses in the leaves of two-year-old Hippophae rhamnoides L. under eight soil water conditions in a semi-arid loess hilly region, and discussed the quantitative relationship between CO₂ responses and soil moisture. CO₂ response curves and parameters were fitted using a rectangular hyperbola model, non-rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Results revealed that the relative soil water content (RWC) required to maintain a high photosynthetic rate (Pₙ) and carboxylation efficiency (CE) ranged from 42.8% to 83.2%. When RWC fell outside these ranges, the photosynthetic capacity (Pₙmax), CE, and CO₂ saturation point (CSP) decreased. CO₂ response curves and three parameters, CE, CO₂ compensation point (Γ), and photorespiration rate (Rₚ), were well fitted by the four models when RWC was appropriate. When RWC exceeded the optimal range, only the modified rectangular hyperbola model fitted the CO₂ response curves and photosynthetic parameters better.

Introduction

Photosynthesis is a complex process affected by many factors in plants, including CO₂ and water, which have important effects[1,2]. CO₂ is the substrate of photosynthesis, and its atmospheric concentration is predicted to reach ~550 μmol·mol⁻¹ by 2050[3,4]. Global water shortages are aggravated by changes due to increasing CO₂ concentrations and the warming climate[5,6]. The increase in CO₂ can cause global climate change and directly affect the metabolism and growth of plants[7,8]. Drought affects plant growth and development severely [9,10], as well as limits photosynthesis through carbon metabolism by restricting CO₂ diffusion[11,12]. However, plants display adaptability and resistance to water deficits[13,14]. Moreover, photosynthetic efficiency is higher within a certain water range, which varies according to the plant species and photosynthetic mechanism[15,16]. CO₂ responses are an important part of plant physiology and ecology research, the measurement and simulation of which are the main approaches for studying photosynthesis[17,18]. The photosynthesis CO₂ response model has played an important role in increasing our understanding of photosynthetic carbon uptake, which has thereby improved our understanding and predictions of plant photosynthetic physiology and its response to environmental changes and biogeochemical systems[19,20]. CO₂ response curves reflect the quantitative relationship between plant net photosynthetic rate (Pₙ) and CO₂ concentration and can be used to estimate photosynthetic parameters, including the CO₂ saturation point (CSP), photosynthetic capacity (Pₙmax), compensation point (Γ), carboxylation efficiency (CE), and photorespiration rate (Rₚ)[21,22].

CO₂ responses have been fitted using biochemical models[23], empirical models[24,25], and optimized models[26,27], which are based on biochemical models. Biochemical models calculate two key model parameters, the maximum rate of carboxylation (Vₑ₅₉₅ₐₓ) and the maximum electron
transport rate \((J_{\text{max}})\)[28,29]. Empirical models include the Michaelis-Menten model [30], rectangular hyperbola model[31], non-rectangular hyperbola model [32], and exponential equation [33], which have been applied in most crops[34,35]and some woody species[36,37]. Ye [38]thought the Michaelis-Menten and rectangular hyperbolic models were essentially the same. In recent years, some studies have proposed an improved rectangular hyperbolic model, namely, the modified rectangular hyperbola model[39,40]. This model has been applied to some plants, including some gramineous plants[41,42], herbs[43,44], and woody plants[45,46]. Results revealed that this new model could overcome the limitations of traditional models and accurately fit the CO\(_2\) response curve and its characteristic parameters. Previous studies on photosynthesis CO\(_2\) response models have focused on the estimation and optimization of key parameters in field crops[47,48]. However, the applicability of different models simulating the CO\(_2\) response data of woody plants under adverse conditions, such as continuous drought, has rarely been reported.

Hippophae rhamnoides L. is a common afforestation species found in the arid and semi-arid regions of Northern China, which has a high economic value and plays an important role in ecological restoration and soil and water conservation. *H. rhamnoides* L. is a non-leguminous and nitrogen-fixing species, deciduous shrubs, and is resistant to barren and dry conditions. In recent years, studies have focused on its growth[49], water consumption[50,51], and photosynthetic light response characteristics[52,53]. These studies have been conducted under water stress, while only a few studies related to the physiological characteristics of drought stress have been conducted[54,55]. However, continuous observations and the examination of photosynthesis CO\(_2\) response in leaves of *H. rhamnoides* L. at many soil moisture gradients during the accelerated soil drought process have not been addressed. Therefore, the quantitative relationship between the photosynthetic CO\(_2\) response process and soil moisture remains unclear.

In this study using potted seedlings of *H. rhamnoides* L., CO\(_2\) response curves and parameters were evaluated and fitted with the rectangular hyperbola model, non-rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model under different soil moisture conditions. The goals of this study were to define the quantitative relationship between photosynthetic CO\(_2\) response processes and soil moisture, as well as explore the applicability of different CO\(_2\) response models to fit CO\(_2\) response processes and parameters. The findings of this study will provide an in-depth understanding of the photosynthetic physiology-ecological characteristics and cultivation of *H. rhamnoides* L. in the loess hilly-gully region of Northern China. Furthermore, the applicability of different CO\(_2\) response models can be evaluated from these findings and used in future studies.

Material and methods

Study area

The experimental site was located in the Tuqiaogou watersheds (37°36′58″N, 110°02′55″E) of Yukou Town, Fangshan County, Shanxi Province, China, a portion of the gully-hilly area of the Loess Plateau in the middle reaches of the Yellow River. This area has a sub-arid, warm temperate, continental monsoon climate. The average annual precipitation is 525.0 mm with more than 70% of
the precipitation concentrated between July and September. The annual potential evaporation is 1839.7 mm with the greatest amount of evaporation occurring between April and June. The annual frost-free period lasts 140 d. The soil is classified as medium loessial soil, and the soil texture is uniform with a pH value ranging from 8.0 to 8.4. Vegetation consists mainly of trees, shrubs, lianas, and subshrubs. Tree species are predominantly *Robinia pseudoacacia*, *Ulmus pumila*, *Platycladus orientalis*, and *Syringa oblata*. Shrubs are mainly *Rosa xanthina* and *Ulmus macrocarpa*. Herbs consist of *Compositae* and *Gramineae*, of which the *Compositae* belong to the *Artemisia* genus. Most of the forest land consists of sparse woodland with poor stand stability.

Materials and water treatments

Two-year-old *H. rhamnoides* L. were used as the experimental materials and were selected carefully to ensure consistency in their height, diameter, and growth. Plants were investigated and marked one by one before transplantation. In March 2018, seedlings were transplanted in containers (50 cm in height, 35 cm in diameter) that had drainage holes in the bottom. A total of six basins with one plant in each pot were used. The relative soil water content (*RWC*) and photosynthetic CO$_2$ responses in the leaves of *H. rhamnoides* L. were determined in August. Three strong plants were selected and watered to saturation, and the initial *RWC* was obtained; the first CO$_2$ response was also determined. Then, soil moisture gradients were obtained every two days through the natural water consumption method after artificially supplying water. The soil mass water content (*MWC*, %) was measured by the stoving method. The *RWC* was considered as the ratio of *MWC* to the field water capacity (*FC*, %). The potting soil *FC* was 24.3%, according to the cutting ring method, and the soil bulk density was 1.26 ± 0.13 g·cm$^{-3}$. Eight *RWC* gradients were obtained and found to be 91.7%, 83.2%, 71.5%, 54.6%, 42.8%, 31.9%, 26.1%, and 21.4%. The experiment was monitored under a canopy with a plastic film covering the top on rainy days to prevent rain from interfering with the *RWC*.

CO$_2$ response determination

Three strong, mature leaves were selected and marked in a central test plant. CO$_2$ responses under different soil moisture conditions were measured using a CIRAS-2 (PP Systems, Hitehin, UK) portable photosynthesis system. The light saturation point for *H. rhamnoides* L. was 1400 μmol·m$^{-2}$·s$^{-1}$[52,54]. Measurements were obtained under each soil moisture condition on separate days. The time of measurements occurred from 08:30 to 11:00 h in completely clear weather to reduce the effects of outside light fluctuations. Measurements were obtained three times for each leaf, and the average value was calculated and used for the analyses. The atmospheric temperature ranged from 24°C to 26°C, and the relative humidity was approximately 60% ± 4.0%. The CO$_2$ concentration in the leaf chamber was controlled and regulated from 0 to 1400 μmol·mol$^{-1}$ by a small cylinder with high CO$_2$ concentrations. The CO$_2$ concentration gradients were 1400, 1200, 1000, 800, 600, 400, 200, 180, 150, 120, 90, 60, 30, and 0 μmol·mol$^{-1}$. The duration of the measurement lasted 120 s at each CO$_2$ concentration, and the apparatus automatically recorded the photosynthetic physiological parameters, including the P_n (μmol·m$^{-2}$·s$^{-1}$) and intercellular CO$_2$ concentration (C_i, μmol·mol$^{-1}$).
Data analysis

CO₂ response curves were drawn with C_i as the horizontal axis and P_n as the vertical axis. According to the measured data point trends, CSP (μmol·mol$^{-1}$), $P_{n\text{max}}$ (μmol·m$^{-2}$·s$^{-1}$), and Γ (μmol·mol$^{-1}$) were estimated and regarded as measured values. CE_Γ (mol·m$^{-2}$·s$^{-1}$) at Γ, the intrinsic carboxylation efficiency (CE_0, mol·m$^{-2}$·s$^{-1}$) at 0 Γ, the absolute value ($CE_{\Gamma0}$, mol·m$^{-2}$·s$^{-1}$) of the slope of the line from $C_i = 0$ to $C_i = \Gamma$ in the CO₂ response curve, and R_p (µmol·m$^{-2}$·s$^{-1}$) were calculated using the traditional linear regression method and used as the measured values to compare to the fitted values of the four models.

Statistical analyses were performed using Microsoft Excel 2003 (Microsoft Corp., Redmond, Wash.). Significant differences were analyzed by a one-way ANOVA and Duncan’s post-hoc test. Nonlinear regression was analyzed using SPSS v18.0 (SPSS Inc., Chicago, Illinois). Data were expressed as the mean ± standard deviation (S.D.), and significance was interpreted as $p < 0.05$.

The CO₂ response curve was fitted using the rectangular hyperbola model, non-rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model (described below).

Rectangular hyperbolic model

The rectangular hyperbolic model is expressed as follows[31]:

$$P_n(C_i) = \frac{aP_{n\text{max}} C_i}{aC_i + P_{n\text{max}}} - R_p$$

(1)

where P_n is the net photosynthesis rate, C_i is the intercellular CO₂ concentration, α is the slope of the CO₂ response curve when $C_i = 0$ (namely, the initial slope of the CO₂ response curve and the initial CE), $P_{n\text{max}}$ is the photosynthetic capacity, and R_p is the photorespiration rate.

CE_Γ, CE_0, and $CE_{\Gamma0}$ are expressed as follows:

$$CE_\Gamma = P_n'(C_i = \Gamma) = \frac{aP_{n\text{max}}^2}{(a\Gamma + P_{n\text{max}})^2}$$

(2)

$$CE_0 = P_n(C_i = 0) = \alpha$$

(3)

$$CE_{\Gamma0} = \left| \frac{R_p}{\Gamma} \right|$$

(4)

Γ is expressed as follows:

$$\Gamma = \frac{R_p \cdot P_{n\text{max}}}{\alpha(P_{n\text{max}} - R_p)}$$

(5)

where the line $y = P_{n\text{max}}$ intersects the linear equation when C_i is below 200 µmol·mol$^{-1}$, and the value of the intersected point on the x-axis is CSP[56].

Non-rectangular hyperbola model

The non-rectangular hyperbola model is expressed as follows [32]:
\[P_n(C) = \frac{\alpha C_i + P_{\text{max}}}{\sqrt{(\alpha C_i + P_{\text{max}})^2 - 4\alpha C_i P_{\text{max}}} - R_p} \quad (6) \]

where \(k \) is the curved angle of the non-rectangular hyperbola; the definitions of other parameters are the same as above.

\[CE_\Gamma, CE_0, \text{ and } CE_{\Gamma0} \text{ are expressed as follows:} \]

\[CE_\Gamma = P'_n(C_i = 0) = \alpha \quad (7) \]
\[CE_0 = P'_n(C_i = 0) = \alpha \quad (8) \]
\[CE_{\Gamma0} = \frac{R_p}{\Gamma} \quad (9) \]

\(\Gamma \) is expressed as follows:

\[\Gamma = \frac{R_p P_{\text{max}} - k R_p^2}{\alpha(P_{\text{max}} - R_p)} \quad (10) \]

where the line \(y = P_{\text{max}} \) intersects the linear equation when \(C_i \) is below \(200 \, \mu\text{mol} \cdot \text{mol}^{-1} \), and the value of the intersected point on the x-axis is \(\text{CSP}[38] \).

Exponential equation

The exponential equation is expressed as follows [33]:

\[P_n(C_i) = P_{\text{max}} \left(1 - e^{-\alpha C_i/P_{\text{max}}} \right) - R_p \quad (11) \]

where the definitions of \(P_n, C_i, P_{\text{max}}, \alpha, \) and \(R_p \) are the same as above.

\[CE_\Gamma, CE_0, \text{ and } CE_{\Gamma0} \text{ are expressed as follows:} \]

\[CE_\Gamma = P'_n(C_i = \Gamma) = \alpha e^{-\alpha C_i/P_{\text{max}}} \quad (12) \]
\[CE_0 = P'_n(C_i = 0) = \alpha \quad (13) \]
\[CE_{\Gamma0} = \frac{R_p}{\Gamma} \quad (14) \]

\(\Gamma \) is expressed as follows:

\[\Gamma = \frac{P_{\text{max}} \ln P_{\text{max}} - R_p}{P_{\text{max}}} \quad (15) \]

where the line \(y = P_{\text{max}} \) intersects with the linear equation at \(C_i \leq 200 \, \mu\text{mol} \cdot \text{mol}^{-1} \), and the value of the intersected point on the x-axis is \(\text{CSP}[57] \).

Modified rectangular hyperbola model

The modified rectangular hyperbola model is expressed as follows [39]:

\[P_n(C_i) = \frac{1 - b C_i}{1 + c C_i} C_i - R_p \quad (16) \]

where \(b \) and \(c \) are coefficients; the definitions of other parameters are the same as above.

\[CE_\Gamma, CE_0, \text{ and } CE_{\Gamma0} \text{ are expressed as follows:} \]

\[CE_\Gamma = P'_n(C_i = \Gamma) = \alpha \frac{1 + (c-b) C_i - b c C_i^2}{(1 + c C_i)^2} \quad (17) \]
\[CE_0 = P'_n(C_i = 0) = \alpha \quad (18) \]
\[CE_{\Gamma0} = \frac{R_p}{\Gamma} \quad (19) \]
CSP and P_{max} are expressed as follows:

$$CSP = \frac{\sqrt{b+c} - b}{c}$$ (20)

$$P_{\text{max}} = a \left(\frac{\sqrt{b+c} - \sqrt{b}}{c} \right)^2$$ (21)

Results

Photosynthetic CO2 response

Fig 1. This is the Fig 1 Title. Photosynthetic CO$_2$ response curves in the leaves of *H. rhamnoides* L. under different soil water conditions (mean ± S.D.).

This is the Fig 1 legend.

Soil moisture significantly affected the photosynthetic CO$_2$ response of *H. rhamnoides* L. (Fig. 1). Under different soil moisture conditions, P_n increased rapidly as C_i increased, when C_i was below ~200 μmol·mol$^{-1}$. P_n increased slowly as C_i increased, and the maximum P_{max} appeared at CSP. When C_i reached CSP, the CO$_2$ response was considerably different under different soil water conditions, specifically when RWC ranged from 42.8% to 83.2%. P_n of each CO$_2$ response curve changed slightly as C_i increased after C_i reached CSP. When RWC was out of the above ranges, P_n decreased considerably after C_i reached CSP, P_n in each curve at the highest C_i was significantly smaller than its P_{max} under the same soil moisture conditions ($p < 0.05$) (Table 1) Clearly, CO$_2$-saturated inhibition had occurred. Furthermore, the CO$_2$ responses to soil moisture had an obvious RWC threshold. The overall level of P_n in each CO$_2$ response curve increased initially, then decreased as RWC decreased. The P_n level was the highest when RWC was 71.5%; thus, an increase or decrease in RWC led to a decrease in the overall P_n level. CSP and P_{max} were high and P_n did not decrease at high CO$_2$ concentrations when RWC ranged from 42.8% to 83.2%; thus, these RWC ranges were suitable for photosynthesis in the leaves of *H. rhamnoides* L.

CO$_2$ response parameter	Relative soil water content (RWC, %)							
	91.7	83.2	71.5	54.6	42.8	31.9	26.1	21.4
C_i ($\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$)	0.0395d	0.0539b	0.0575a	0.0521b	0.0483c	0.0378d	0.0352e	0.0274f
Simulation of CO₂ response curves and characteristic parameters

Table 2. Data on the photosynthetic CO₂ response parameters of Hippophae rhamnoides L. fitted by 4 models.

CO₂ response model	CO₂ response parameter	Relative soil water content (RWC, %)							
		91.7	83.2	71.5	54.6	42.8	31.9	26.1	21.4
Rectangular hyperbola model	CE₀ (mol·m⁻²·s⁻¹)	0.0609	0.0575	0.0587	0.0568	0.0543	0.0561	-	-
	CEΓ (mol·m⁻²·s⁻¹)	0.0582	0.0552	0.0561	0.0537	0.0512	0.0534	-	-

Note: Different letters indicate significant differences between values in the same row (p < 0.05); the same letter indicates no significant differences.
Modified rectangular hyperbola model

Exponential equation

Non-rectangular hyperbola model

determination coefficient R^2

Parameter	Value													
C_{eq} (mol m$^{-2}$ s$^{-1}$)	0.0593	0.0563	0.0572	0.0552	0.0527	0.0546								
CSP (µmol mol$^{-1}$)	433	581	596	539	548	412								
P_{CSP} (µmol m$^{-2}$ s$^{-1}$)	26.22	42.57	45.84	38.4	35.61	19.29								
I' (µmol mol$^{-1}$)	82.78	73.2	70.07	74.33	76.09	85.7								
R_p (µmol m$^{-2}$ s$^{-1}$)	4.91	4.12	4.19	4.1	4.01	4.68								
determination coefficient R^2	0.794	0.991	0.994	0.994	0.993	0.801								

Water is a major limiting factor in the recovery and restoration of vegetation found in the loess, hilly-gully regions of China. RWC seriously affected light-response curves and photosynthetic parameters, which also profoundly affected CO$_2$ response curves and photosynthetic parameters in the leaves of *H. rhamnoides* L. The classical form of a P_n-C_i curve can be summarized in three stages[58,59]. First, an approximately linear segment is observed when $C_i \leq 200$ µmol mol$^{-1}$. Thus, P_n increases rapidly as C_i increases, namely, during the ribulose bisphosphate (RuBP) restriction phase. The slope of the straight line is the mesophyll conductance, CE, which reflects the assimilative capacity of plant responses to low CO$_2$[60,61]. Second, the curved segment is observed when $C_i \approx 200$ µmol mol$^{-1}$ to CSP, and P_n increases slowly as C_i increases, gradually entering the restriction stage of RuBP regeneration[62]. Third, an almost linear segment when $C_i > CSP$, P_n changes insignificantly as C_i increases, moving into the restriction stage of triose-phosphate

Discussion

Effects of soil moisture on CO$_2$ response curves and photosynthetic parameters

The effects of soil moisture on CO$_2$ response curves and photosynthetic parameters were investigated in the leaves of *H. rhamnoides* L. The classical form of a P_n-C_i curve can be summarized in three stages[58,59]. First, an approximately linear segment is observed when $C_i \leq 200$ µmol mol$^{-1}$. Thus, P_n increases rapidly as C_i increases, namely, during the ribulose bisphosphate (RuBP) restriction phase. The slope of the straight line is the mesophyll conductance, CE, which reflects the assimilative capacity of plant responses to low CO$_2$[60,61]. Second, the curved segment is observed when $C_i \approx 200$ µmol mol$^{-1}$ to CSP, and P_n increases slowly as C_i increases, gradually entering the restriction stage of RuBP regeneration[62]. Third, an almost linear segment when $C_i > CSP$, P_n changes insignificantly as C_i increases, moving into the restriction stage of triose-phosphate.
utilization (TPU). P_n at this stage is P_{max}, which reflects photosynthetic electron transport and photophosphorylation activity [63].

The form of the P_n-C_i curve changes when plants encounter stressful conditions, such as drought. Bernacchi et al. [64] considered that numerous factors would influence the curve of P_n-C_i, which included physiological changes (e.g. $V_{\text{cmax}}, J_{\text{max}}$ or R_d) and environmental changes (e.g. drought, temperature and/or atmospheric CO$_2$ concentration). However, the quantitative relationship between this change and soil moisture has remained unclear. This study demonstrated that the photosynthetic P_n-C_i curve of H. rhamnoides L. exhibited a classical form, with P_{max}, CE, CSP, and R_p being high and Γ being low within a suitable RWC range (i.e., 42.8%–83.2%); P_n levels were highest when RWC was 71.3% (Fig. 1; Table 1). Three photosynthetic parameters, P_{max}, CE, and CSP, declined dramatically when soil moisture was beyond this range. H. rhamnoides L. exhibited wide photosynthetic adaptability to soil moisture compared to the suitable RWC ranges of Robinia pseudoacacia L. (50.0%–81.6%), Platycladus orientalis L. (5.3%–75.0%) [65], Syringa oblata Lindl. (58.8%–76.6%) [66], and Ziziphus jujube (46.0%–80.5%) [67].

The common method for obtaining CE is the traditional linear regressive method, whereby CE is the slope of the straight line of the P_n-C_i curve at a low CO$_2$ concentration ($C_i \leq 200 \mu$mol mol$^{-1}$) [35,68]. Many studies have shown that the CE values of different plants vary greatly [69,70]. For example, under normal growth conditions, the CE values of Rheum tanguticum, Anisodus tanguiticus, and Gentiana straminea were approximately 0.0453, 0.1116, and 0.0902 [71], those of two pepper (Capsicum annuum L.) cultivars were approximately 0.145 and 0.159 [74] (Hu et al. 2008), that of Zantedeschia aethiopica was approximately 0.074 [72] (Yiotis & Manetas 2010) and that of Sophora moorcroftiana was about 0.03 [70]. Although Hu et al. [44] showed that soil moisture greatly affects the CE values of plants, the quantitative relationship between CE and soil moisture has remained unclear. According to a previous study, the P_n-C_i curve of photosynthesis does not have a strictly linear relationship at a low CO$_2$ concentration [43].

CO$_2$ response curves and photosynthetic parameters fitted by different models

The major use of different CO$_2$ response models lies in the equations used to fit the CO$_2$ response and its characteristic parameters to extract physiologically meaningful variables; these parameters are used to describe physiological responses of leaves to different treatments [64,73]. For example, CE_1 at the CO$_2$ compensation point, CE_0, and the absolute value of the slope of the line between $C_i = 0$ and $C_i = \Gamma$ on the CE_1 curve can be fitted, and they have clear physiological meaning and unique values. However, the applicability and simulated accuracy of the empirical models are limited by their asymptotic form with no extreme values [38,39] (Ye & Gao 2009, Ye 2010). In some studies [43,45,46], P_{max} was much larger than the measured value, while CSP was far less than the measured value. In particular, the CO$_2$ response curves could not be fitted under stressful conditions. The same problem was noted in this study.

Although the modified rectangular hyperbola model proposed in recent years can fit and analyze various forms of CO$_2$ response curves more accurately [77,41], overcoming the limitations of
other models to a certain extent, there are few reports regarding its application in plants under different soil moisture conditions. This study indicated that when the soil moisture was within a suitable RWC range, the CO$_2$ response curves and characteristic parameters were well fitted by the four models ($R^2 > 0.99$, Fig. 2; Table 2), where the non-rectangular hyperbola model and modified rectangular hyperbola model fit the data better than the other two models (Fig. 2 B, D). When soil moisture was too high or too low, the modified rectangular hyperbola model was better than the other three models fitting the CO$_2$ response process and its characteristic parameters in the leaves of _H. rhamnoides_ L. (Fig. 2 D). This result is consistent with the findings of Jiao & Wei [45] and Lv et al. [46]. This study demonstrated that the simulation results of the photosynthetic-CO$_2$ response model were closely related to soil moisture content.

Conclusions

Research on the effects of soil moisture on the physiological mechanisms related to photosynthetic responses is garnering attention toward CO$_2$ response curves and photosynthetic parameters in trees. This study indicated that soil moisture content affected the CO$_2$ response processes in the leaves of _H. rhamnoides_ L. The photosynthetic P_N-C_i curve exhibited a classical form, with P_{max}, CE, CSP, and R_p being high, while Γ was low when the RWC ranged from 42.8% to 83.2%. _H. rhamnoides_ L. exhibited high photosynthetic efficiency in this soil moisture range, and the P_n levels were highest when RWC was 71.5%. Three photosynthetic parameters, P_{max}, CE, and CSP, declined dramatically when soil moisture was outside the aforementioned range. Thus, the suitable RWC for _P. sibirica_ L. ranged from 46.5% to 81.6%, and the most suitable RWC was ~66.8%.

The CE (i.e. CE_0, CE_{Γ}, $CE_{\Gamma0}$) values of _H. rhamnoides_ L. were significantly different under different soil moisture conditions. For example, the _H. rhamnoides_ L. $CE_{\Gamma0}$ ranged from 0.0260 to 0.0564, with a comparatively higher level > 0.047 in the RWC range of 42.8%–83.2%; the maximum (0.0564) appeared when RWC was 71.5%. CE of _H. rhamnoides_ L. decreased markedly when the soil moisture was too high or too low. When soil moisture was within the suitable RWC range, the CO$_2$ response curves and characteristic parameters were well fitted by the four models ($R^2 > 0.99$). The non-rectangular hyperbola model and modified rectangular hyperbola model fitted better than the other two models ($R^2 > 0.998$). However, when soil moisture exceeded the suitable RWC range, only the modified rectangular hyperbola model fit the CO$_2$ response curves and photosynthetic parameters well. Compared to the other three models, the modified rectangular hyperbola model demonstrated extensive applicability for fitting photosynthetic CO$_2$ responses under different soil moisture conditions.

Acknowledgments

This work was funded by the Doctoral Research Fund of Shandong Jianzhu University (No. XNBS1420). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
References

1. Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 2017;247:454-466. https://doi.org/10.1016/j.agrformet.2017.08.026

2. Guan J, Wang J, Lv XL. \(P_n\)-PAR and CO\(_2 \) responses of \textit{Prunus avium} to drought stress during hard nucleus stage. Advances in Engineering Research, 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018), Paris: Atlantis Press, 2018. https://doi.org/10.2991/iceesd-18.2018.72

3. IPCC. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. USA, Cambridge, Cambridge University Press. 2013. https://doi.org/10.1017/CBO9781107415324.004

4. IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. USA, Cambridge: Cambridge University Press. 2014. https://doi.org/10.1017/CBO9781107415416

5. Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018;562(7726):263–267. https://doi.org/10.1038/s41586-018-0582-4 PMID: 30283137

6. Brito C, Dinis LT, Moutinho-Pereira J, Correia CM. Drought stress effects and olive tree acclimation under a changing climate. Plants (Basel), 2019, 8(7):232-252. https://doi.org/10.3390/plants8070232 PMID: 31319621 PMCID: PMC6681365

7. Ha R, Ma YP, Cao BP, Guo FY, Song LH. Effects of Simulated Elevated CO\(_2 \) Concentration on Vegetative Growth and Fruit Quality in \textit{Lycium barbarum}. Scientia Silvae Sinicae. 2019; 55(6): 28-36. https://doi.org/10.11707/j.1001-7488.20190604

8. Jin JT, Li Y, Li RJ, Liu XL, Li LM. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development. Plant Physiology Journal. 2019; 55(5): 558–68. https://doi.org/10.13592/j.cnki.ppj.2018.0533

9. Karimi S, Rahemi M, Rostami AA, Sedaghat S. Drought effects on growth, water content and osmoprotectants in four olive cultivars with different drought tolerance. International Journal of Fruit Science. 2018;18(3):254–267. https://doi.org/10.1080/15538362.2018.1438328

10. Bhusal N, Han SG, Yoon TM. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (\textit{Malus} \times \textit{domestica} \textit{Borkh.}). Scientia Horticulturae. 2019; 246:535-543. https://doi.org/10.1016/j.scienta.2018.11.02
11. Bellasio C, Quirk J, Beerling DJ. Stomatal and non-stomatal limitations in savannah trees and C4 grasses grown at low, ambient and high atmospheric CO₂. Plant Science. 2018;274:181–192. https://doi.org/10.1016/j.plantsci.2018.05.028 PMID: 30080602

12. Wang YJ, Sperry JS, Venturas MD, Trugman AT, Love DM, Anderegg WRL. The stomatal response to rising CO₂ concentration and drought is predicted by a hydraulic trait-based optimization model. Tree physiology. 2019; 39(8):1416-1427. https://doi.org/10.1093/treephys/tpz038 PMID: 30949697

13. Balducci L, Deslauriers A, Giovannelli A, Rossi S, Rathgeber CB. Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiology. 2013; 33(10):1006-17. https://doi.org/10.1093/treephys/tpu073 PMID: 24150035

14. Falqueto AR, Júnior RAS, Gomes MTG, Martins JPR, Silva DM, Partelli FL. Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 2017;224:238-243. https://doi.org/10.1016/j.scienta.2017.06.019

15. Renninger HJ, Carlo N, Clark KL, Schäfer KVR. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Tree Physiology. 2014; 34 (2): 159-173. https://doi.org/10.1093/treephys/tpt122 PMID: 24488856

16. Liu X, Luo GJ. Effects of soil drought on growth and physiological characteristics in Quercus acutissim. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings. Journal of Northern Agriculture. 2019;47(2):11-14 https://doi.org/10.3969/j.issn.2096-1197.2019.02.03

17. Ziehn T, Kattge J, Knorr W, Scholze M. Improving the predictability of global CO₂ assimilation rates under climate change. Geophysical Research Letters. 2011;38:L10404. https://doi.org/10.1029/2011GL047182

18. von Caemmerer S. Steady-state models of photosynthesis. Plant, Cell & Environment. 2013; 36(9):1617–1630. https://doi.org/10.1111/pce.12098 PMID:23496792

19. Nickelsen K. Explaining Photosynthesis, History, Philosophy and Theory of the Life Sciences 8, Springer Science, Business Media Dordrecht. 2015. https://doi.org/10.1007/978-94-017-9582-1

20. Liang XY, Liu SR. A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology. 2017, 41 (6): 693–706 https://doi.org/10.17521/cjpe.2016.0283

21. Sun JD, Feng ZZ, Leakey ADB, Zhu XG, Bernacchi CJ, Ort DR. Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesis—A case study of CO₂ enrichment and leaf aging effects in soybean. Plant Science. 2014;226:49-60 https://doi.org/10.1016/j.plantsci.2014.06.015 PMID: 25113450
22. Niinemets Ü, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 2015;205(3):973-93. https://doi.org/10.1111/nph.13096 PMID:25318596 PMCID:PMC5818144

23. Farquhar GD, von Caemmerers S, Berry JA. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta.1980; 149(1):78-90. https://doi.org/10.1007/BF00386231 PMID:24306196

24. von Caemmerer S. Biochemical models of leaf photosynthesis. Victoria, Australia: CSIRO Publishing. 2000. https://doi.org/10.1006/anbo.2000.1296

25. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. Fitting photosynthetic carbon dioxide response curves for C₃ leaves. Plant, Cell & Environment.2007;30(9):1035-1040 https://doi.org/10.1111/j.1365-3040.2007.01710.x PMID:17661745

26. Ali A, Xu C, Rogers A, Fisher R, Wullschleger S, Massoud E, Vrugt J, Muss J, McDowell N, Fisher J. A global scale mechanistic model of photosynthetic capacity (LUNAV1. 0). Geoscientific Model Development. 2016;9(2):587–606 https://doi.org/10.5194/gmd-9-587-2016

27. Liu ZS, Yang WY, Yu XL. A new predictive model for Plants Photosynthesis Influenced by Major Climatic Conditions. IOP Conference Series: Earth and Environmental Science.2019;291:1-10. https://doi.org/10.1088/1755-1315/291/1/012016

28. Sharkey TD. What gas exchange data can tell us about photosynthesis. Plant, Cell & Environment. 2016;39(6):1161-3. https://doi.org/10.1111/pce.12641 PMID:26390237

29. Walker BJ, Orr DJ, Carmo-Silva E., Parry MAJ, Bernacchi CJ, Ort DR. Uncertainty in measurements of the photorespiratory CO₂ compensation point and its impact on models of leaf photosynthesis. Photosynthesis Research.2017;132(3): 245–255 https://doi.org/10.1007/s11120-017-0369-8 PMID:28382593 PMCID:PMC5443873

30. Harley PC, Thomas RB, Reynolds JF, Strain BR. Modelling photosynthesis of cotton grown in elevated CO₂. Plant, Cell & Environment. 1992;15(3): 271-282. https://doi.org/10.1111/j.1365-3040.1992.tb00974.x

31. Baly EC. The kinetics of photosynthesis. Proceedings of the Royal Society of London Series B (Biological Sciences) 1935; 117: 218-239. https://doi.org/10.1038/134933a0

32. Thomley JHM. Mathematical Models in Plant Physiology. London:Academic Press. 1976. https://www.researchgate.net/publication/50338630

33. Watling JR, Press MC, Quick WP. Elevated CO₂ induces biochemical and ultrastructural changes in leaves of the C₄ Cereal Sorghum. Plant Physiology.2000;123(3):1143-1152. https://doi.org/10.1104/pp.123.3.1143 PMID:10889263
34. Singh SK, Reddy VR. Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO₂. Physiologia Plantarum. 2016; 157(2):234-54. https://doi.org/10.1111/ppl.12415 PMID: 26806194

35. Bellasio C. A generalised dynamic model of leaf-level C₃ photosynthesis combining light and dark reactions with stomatal behaviour. Photosynth Res. 2019;141(1): 99–118. https://doi.org/10.1007/s11120-018-0601-1 PMID: 30471008

36. Groenendijk M, Dolman AJ, van der Molen MK, Leuning R, Arneth A, Delpierre N, et al. Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology. 2011, 151(1):22-38. https://doi.org/10.1016/j.agrformet.2010.08.013

37. Ellsworth DS, Crous KY, Lambers H, Cooke J. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell & Environment. 2015; 38(6):1142-56 https://doi.org/10.1111/pce.12468 PMID: 25311401

38. Ye ZP. A review on modeling of responses of photosynthesis to light and CO₂. Chin J Plan Ecolo, 2010, 34(6): 727-740. https://doi.org/10.3773/j.issn.1005-264x.2010.06.012

39. Ye ZP, Gao J. Application of a new model of light-response and CO₂-response of photosynthesis in Salvia miltiorrhiza. Journal of Northwest Agriculture and Forestry University (Natural Science Edition). 2009;37(1):129-134. https://doi.org/10.13207/j.cnki.jnwafu.2009.01.005

40. Ye ZP, Duan SH, An T, Kang HJ. Construction of CO₂-response model of electron transport rate in C₄ crop and its application. Chinese Journal of Plant Ecology. 2018,42(10):1000-1008. https://doi.org/10.17521/cjpe.2018.0129

41. Kang HJ, Tao YL, Quan W, Wang W, Ouyang Z. Fitting mitochondrial respiration rates under light by photosynthetic CO₂ response models. Chinese Journal of Plant Ecology. 2014;38(12):1356-1363. https://doi.org/10.3724/SP.J.1258.2014.00130

42. Ye ZP, Wang YJ, Wang LL, Kang HJ. Response of photorespiration of Glycine max leaves to light intensity and CO₂ concentration. Chinese Journal of Ecology. 2017;36(9):2535-2541. https://doi.org/10.13292/j.1000-4890.201709.009

43. Ye ZP, Gao J. Change of carboxylation efficiency of Salvia miltiorrhiza in the vicinity of CO₂ compensation point. Journal of Northwest Agriculture and Forestry University (Natural Science Edition). 2008;36(5): 160-164. https://doi.org/10.3321/j.issn:1671-9387.2008.05.029

44. Hu WH, Hu XH, Zeng JJ, Duan ZH, Ye ZP. Effects of drought on photosynthetic characteristics in two pepper cultivars. Journal of Huazhong Agricultural University. 2008;27(6):776-781. https://doi.org/10.13300/j.cnki.hnlkxb.2008.06.018
45. Jiao YM, Wei XL. Application of two photosynthetic light response and CO2 response curve-fitting models on Karst species. Guizhou Agricultural Sciences. 2010;38(4):162-167,170.
https://doi.org/10.3969/j.issn.1001-3601.2010.04.048

46. Lv Y, Liu TX, Yan X, Duan LM, Zang SW, Han CX. Response of photosynthetic rate of Salix gordejevii and Caragana microphylla to light intensity and CO2 concentration in the dune-meadow transitional area of Horqin sandy land. Chinese Journal of Ecology. 2016;35(12):3157-3164.
https://doi.org/10.13292/j.1000-4890.201612.024

47. Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytol. 2007;176(2):402-14. https://doi.org/10.1111/j.1469-8137.2007.02182.x PMID: 17888119

48. Wang Q, Fleisher D, Timlin D, Reddy V, Chun J. Quantifying the measurement errors in a portable open gas-exchange system and their effects on the parameterization of Farquhar et al. model for C3 leaves. Photosynthetica. 2012; 50(2):223–238. https://doi.org/10.1007/s11099-012-0012-z

49. Wang H, Huang CL, Yang FS, Li HE. Root habitat flexibility of seabuckthorn in the Pisha sandstone area. Chinese Journal of Applied Ecology. 2019; 30(1):157-164.
https://doi.org/10.13287/j.1001-9332.201901.024 PMID: 30907536

50. Guo WH, Li B, Zhang XS, Wang RQ. Effects of water stress on water use efficiency and water balance components of Hippophae rhamnoides and Caragana intermedia in the soil–plant–atmosphere continuum. Agroforestry Systems. 2010;80 (3), 423-435. https://doi.org/10.1007/s10457-010-9337-4

51. Gao GR, Liu JJ, Chen DG, Dong LL, He CY. Leaf water potential and photosynthetic characteristics of two Hippophae rhamnoides cultivars with soil drought. Journal of Zhejiang Agriculture and Forestry University. 2017;34(6):999-1007. https://doi.org/10.11833/j.issn.2095-0756.2017.06.005

52. Cai H X, Wu F Z, Yang W Q. Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedings. Acta Ecologica Sinica. 2011;31(9): 2430-2436.
https://doi.org/10.5846/stxb201209281358

53. Liu JW, Zhang RH, Zhang GC, Guo J, Dong Z. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings. Journal of Forestry Research. 2017;28(2):255-263. https://doi.org/10.1007/s11099-012-0012-z

54. Pei B, Zhang GC, Zhang SY, Wu Q, Xu ZQ, Xu P. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedlings. Acta Ecologica Sinica. 2013;33(5):1386-1396.
https://doi.org/10.5846/stxb201209281358
55. Wu Q, Mou SM, Li XL, Li CR, Guo TY, Liu GS. Physiological and biochemical responses to different soil drought stress in *Hippophae rhamnoides* Linn. Journal of Shandong Jianzhu University. 2015;30(3):231-235. https://doi.org/10.3969/j.issn.1673-7644.2015.03.005

56. Wang JL, Yu GR, Wang BL, Qi H, Xu ZJ. Response of photosynthetic rate and stomatal conductance of rice to light intensity and CO$_2$ concentration in northern China. Chinese Journal of Plant Ecology. 2005;29(1):16-25. https://doi.org/10.17521/cjpe.2005.0003

57. Dong ZX, Han QF, Jia ZK, Ren GX. Photosynthesis rate in response to light intensity and CO$_2$ concentration in different alfalfa varieties. Acta Ecologica Sinica. 2007;27(6):2272-2277. https://doi.org/10.3321/j.issn:1000-0933.2007.06.016

58. Chen GY, Yu GL, Chen Y, Xu DQ. Exploring the observation methods of photosynthetic responses to light and carbon dioxide. Journal of Plant Physiology and Molecular Biology. 2006;32(6):691-696. [https://doi.org/10.3321/j.issn:1671-3877.2006.06.012 PMID: 17167207](https://doi.org/10.3321/j.issn:1671-3877.2006.06.012)

59. Kathilankal JC, Mozdzer TJ, Fuentes JD, McGlathery KJ, D’Odorico P, Zieman JC. Physiological responses of *Spartina alterniflora* to varying environmental conditions in Virginia marshes. Hydrobiologia. 2011;669: 167-181. https://doi.org/10.1007/s10750-011-0681-9

60. Carmo-Silva E, Scales JC, Madgwick PJ, Parry MA. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell & Environment. 2015;38(9):1817-1832. [https://doi.org/10.1111/pce.12425 PMID: 25123951](https://doi.org/10.1111/pce.12425)

61. Young JN, Heureux AM, Sharwood RE, Rickaby RE, Morel FM, Whitney SM. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbonconcentrating mechanisms. J Exp Bot. 2016;67(11):3445-3456. [https://doi.org/10.1093/jxb/erw163 PMID:27129950](https://doi.org/10.1093/jxb/erw163)

62. Gu LH, Pallardy SG, Tu K, Law BE, Wullschleger SD. Reliable estimation of biochemical parameters from C$_3$ leaf photosynthesis–intercellular carbon dioxide response curves. Plant, Cell & Environment. 2010;33(11):1852-1874 [https://doi.org/10.1111/j.1365-3040.2010.02192.x PMID: 20561254](https://doi.org/10.1111/j.1365-3040.2010.02192.x)

63. Farazdaghi H. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO$_2$ and rate-limiting step on the kinetics of C$_3$ and C$_4$ photosynthesis from gas exchange. Biosystems. 2011;103(2):265-284. [https://doi.org/10.1016/j.biosystems.2010.11.004 PMID: 21093535](https://doi.org/10.1016/j.biosystems.2010.11.004)

64. Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, VanLoocke A. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant, Cell & Environment. 2013;36(9):1641-1657. [https://doi.org/10.1111/pce.12118 PMID: 23590343](https://doi.org/10.1111/pce.12118)

65. Zhang GC, Liu X, He KN. Grading of *Robinia pseudoacacia* and *Platycladus orientalis* woodland soil's water availability and productivity in semi-arid region of Loess Plateau. Chinese Journal of...
Applied Ecology. 2003. 14(6):858-862. https://doi.org/10.13287/j.1001-9332.2003.0192 PMID: 12973983

66. Chen XJ, Zhang GC, Zhou ZF, Ma SS. Diurnal variations and response to light of gas exchange parameters of clove (Syringa oblata Lindl.) leaf in loess hilly region. Science of Soil and Water Conservation. 2004;2(4): 102-107. https://doi.org/10.3969/j.issn.1672-3007.2004.04.020

67. Yang R, Lang Y, Zhang GC, Bi SG, Xu HD, Ren RR, et al. Responses of photosynthesis and fluorescence of Ziziphus jujuba var. spinosa to soil drought stress. Acta Botanica Boreali-Occidentalia Sinica. 2018;38(5):922-931. https://doi.org/10.7606/j.issn.1000-4025.2018.05.0922

68. Wang GP, Zhang XY, Li F, Luo Y, Wang W. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica. 2010;48(1):117-126. https://doi.org/10.1007/s11099-010-0016-5

69. Feng X, Dietze M. Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models. New Phytol. 2013;200(4):1132-1144. https://doi.org/10.1111/nph.12454 PMID: 23952643

70. Zhao YW, Duan SR, Zheng Y, Nan JB, Wang MT, Lin L. Comparison of light response curve and CO₂ response curve of Sophora moorcroftiana under several photosynthesis models. Journal of Plateau Agriculture. 2017;1(2):159-165,131 https://doi.org/10.19707/j.cnki.jpa.2017.02.009

71. Shi SB, Li HM, Wang XY, Yue XG, Xu WH, Chen GC. Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-tibet plateau. Acta Phytoecologica Sinica. 2006;30(1): 40-46. https://doi.org/10.17521/cjpe.2006.0006

72. Yiotis C, Manetas Y. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates. Planta. 2010;232(2): 523–531. https://doi.org/10.2307/23391781

73. Zeng W, Zhou G, Jia B, Jiang Y, Wang Y. Comparison of parameters estimated from A/Ci and A/Cc curve analysis. Photosynthetica. 2010;48(3):323–331. https://doi.org/10.1007/s11099-010-0042-3

Appendix

Name and abbreviation

RWC	relative soil water content	MWC	soil mass water content	FC	field water capacity
Pn	net photosynthetic rate	Ci	intercellular CO₂ concentration	CSP	CO₂ saturation point
F	CO₂ compensation points	CE	carboxylation efficiency	Rp	photorespiration rate