Sclerosing stromal tumour of the ovary: A case report and the review of literature

Özhan Özdemir, Mustafa Erkan Sarı, Ertuğrul Şen, Aslıhan Kurt, Ayşeye Burcu İleri¹, Cemal Reşat Atalay

Departments of Obstetrics and Gynecology and ¹Clinics Pathalogy, Ankara Numune Training and Research Hospital, Ankara, Turkey

ABSTRACT

Sclerosing stromal tumours are rare benign ovarian neoplasms of the sex cord stromal that occur predominantly in the second and third decades of life. To date, 208 cases have been recorded in the literature. Most patients have menstrual irregularities and pelvic pain. Infertility and virilisation have also been described. In this article, histopathological features and differential diagnosis of the benign sclerosing stromal tumour were described together with the literature data. It is imperative to consider the differential diagnosis of a sclerosing stromal tumour of the ovary in a young woman with an ovarian tumour. A combination of morphological, immunohistochemical, radiological and clinical findings is needed in differentiating the tumour from thecoma, fibroma/fibrosarcoma, lipoid tumours and Krukenberg tumour.

Key words: Ovary, pelvic pain, sclerosing stromal tumours

INTRODUCTION

Sclerosing stromal tumour (SST), which were defined by Chalvardjan and Scully in 1973 for the first time, is an extremely rare ovarian sex cord stromal tumour with distinctive pathological features and benign nature.¹ Since it was first described by Chavarjian and Scully, fewer than 200 cases have been described in the literature. Most patients are young, with 70% of whom being between 14 and 29 years.² The most frequent presenting complaint is menstrual irregularity and pelvic pain. Macroscopically, they are usually observed as solid and typically unilateral tumours. SST is usually hormonally inactive, but it has been reported that some cases are related to pregnancy and androgenic symptoms.³

Awareness of such entity is crucial because of its histopathologic similarity with other neoplastic and non-neoplastic lesions of the ovary. SST should be distinguished from malignant tumours, but it is difficult to diagnose before surgery by imaging studies. It used to be diagnosed by pathological examination during surgery or after surgery. In this study, the case of ovarian sclerosing stromal tumour is described and its clinicopathologic and immunohistochemical features are reviewed together with the literature data.

CASE REPORT

A 25-year-old woman was presented with pelvic pain during the last 4 months. Physical examination revealed a large, palpable abdomino-pelvic mass. There was no unusual symptoms such as hypermenorrhoea, menstrual irregularities and virilisation. Ultrasound examination showed a 15 cm heterogeneous left ovarian tumour consisting of predominantly solid tissue with several loculated cysts. Laboratory tests including tumour markers and serum hormonal assays were normal in case. The patient underwent laparotomical left oophorectomy and showed a normal uterus and right ovary with the left ovary replaced by a solid mass. Ascites was not present. On gross inspection, the removed left ovarian mass measured 15 × 14 × 13 cm. The mass was grey-white in color and had a smooth and well-encapsulated surface. The cut surface was a mostly solid and slightly oedematous [Figure 1]. The mass was described as benign by frozen analysis. The histologic features included a pseudolobular pattern with widespread areas of sclerosis and a two-cell population of spindle and round cells. Haemangiopericytoma-like vessels, myxoid to fibrotic stroma and focal cystic change were noted. Mitoses and necrosis were absent. Immunohistochemical studies showed positive inhibin [Figure 2]. The final diagnosis was that of sclerosing stromal tumour of the ovary. Post-operative recovery was uneventful.
DISCUSSION

SST is attributable to theca cell-fibrous tumour subtypes of ovarian sex cord-stromal tumour from WHO-2003 classification that is distinctive clinical, pathologic and radiological features, which differentiates it from other stromal tumours. The aetiology of SSTs is unknown. Based on the ultrastructural features, SSTs were thought to arise from pluripotent immature stromal cells of the ovarian cortex. However, SST has been proposed to stem from the perifollicular myoid stromal cells that are normally present in the theca externa. The vascular, sclerotic and edematous stromal changes are constant features of these tumours and relate to the local elaboration of some vascular permeability and growth factors like vascular endothelial growth factor (VEGF). On the other hand, Ismail et al. suggested that endocrine milieu might be responsible for the morphology of SST and they may be developed from preexisting ovarian fibromas.

In the literature, reports of ovarian SSTs are rare. We undertook a MEDLINE® search using keywords ovarian neoplasms and sclerosing stromal tumour to obtain reports on this tumour in the English literature and then extended the search to related reports listed in their references. Until 2003, 114 cases had been reported by Peng et al. We concluded that up to the writing of this paper, a total of 208 cases had been reported and cases identified between 2003 and 2014 were summarised in Table 1.

Ovarian SST occurs more commonly during the second to third decades of life with an average age of occurrence of 25, 9 years (4-73 years) and most of the reported cases have been unilateral. Bilateral SST was depicted in only four cases. The most common signs and symptoms are a palpable pelvic mass, menstural irregularity, pelvic pain and non-specific symptoms related to the ovarian mass and our patient is complained of pelvic pain. Tumour size varies from 1cm to 31cm in diameter. Elevated serum CA125 level and/or ascites were depicted in some cases. Meigs’ syndrome associated with SST of the ovary has been described in four cases.

Sclerosing stromal tumour with an ovarian torsion has been described in two cases.

Sclerosing stromal tumours were reported in which the inactive tumours did not represent endocrine clinical symptoms. However, currently according to several reports, it is the active tumour that produce hormones (estrogenic or androgenic). These tumours synthesised dehydroepiandrosterone and that when steroidogenesis occurred, which caused irregular menses, amenorrhoea, infertility, precocious puberty and virilisation. Endometrial hyperplasia concomittent with SST have also been described which might indicate a status of excessive hormone production. Other authors have documented elevated levels of both estrogenic and androgenic hormones that were corrected after surgery. In several patients with irregular menses, normal menses following the excision of the tumour was noticed. To date, 9 cases of virilising SST of the ovary have been described in the literature and three of the reported virilising SST were diagnosed during pregnancy [Table 2]. A virilising SST of the ovary in a young woman with Mc Cune Albright Synrome was reported in 2013 by Boussaid K et al. In this case, neither hormonal activity nor virilisation was observed. Sclerosing stromal tumours are rarely seen together with pregnancies; only 15 reports of sclerosing stromal tumour of the ovary during pregnancy have been presented [Table 3].

SST can not predict its presence preoperatively on the basis of clinical and ultrasonographic findings alone. It is difficult to distinguish SST consisting of solid and cystic areas from ovarian malignancies on the basis of radiological and macroscopic examination, as these tumours additionally appear very vascular giving the impression of malignant...
Table 1: Overview of all case reports on SST between 2003-2014

Case no and article	Age	Side	Clinic and symptom	CA-125	Tumour size (cm)	Gross appearance	Immunohistochemical staining
Peng HH et al., 2003	24	Left	IM	High	8.4	Solid	SMA(+), vimentin(+), PR(+)
Kim JY et al., 2003 (3 cases)	16	Left	IM	Normal	6	Solid	SMA(+), vimentin(+)
	26	Left	IM	Normal	6	Solid	
	39	Left	IM, pelvic pain	Normal	5.5	Cyst	SMA(+), CA125(-), S100(-), desmin(-)
Kuscu E et al., 2003	34	Right	Pelvic pain, hirsutism, IM	Normal	12.5	Solid	SMA(+), CK(-), S100(-), desmin(-)
Yerli H et al., 2003	34	Right	Amenorrhoea, hirsutism	Normal	10	Solid-cystic	Inhibin(+), vimentin(+), SMA(-), CK(-), ER(-), PR(-)
Deval B et al., 2003	29	Right	Pregnancy	Normal	4.5	Solid-cystic	
Huang SC et al., 2003	31	Right	Pregnancy	High	14	Cyst	
Calabrese M et al., 2004	30	Right	Meigs' syndrome	Normal	19	Solid-cystic	
Bildirici K et al., 2004	17	Right	Pregnancy	Normal	7	Solid-cystic	
Gurbuz A et al., 2004	21	Left	IM	Normal	5,5	Cyst	SMA(+), CK(-), S100(-), desmin(-)
Akbulut M et al., 2004	17	Right	IM, pelvic pain	Normal	10	Solid-cystic	
Bouraouis et al., 2004 (3 cases)	15, 25, 56	Right	IM	Normal	6-14	Solid-cystic	ER(-), Inhibin 4 cases (+); calretinin, SMA, PR 3 cases (+)
Akyildiz EU et al., 2004 (3 cases)	23, 24, 28	Right	IM	Normal	10	Solid-cystic	
Mathur SR et al., 2004 (4 cases)	—	—	—	—	—	—	
Kostopoulou E et al., 2004 (3 cases)	—	—	—	—	—	—	
Kurt G et al., 2004 (6 cases)	16-24	Right	Pelvic pain, pregnancy (2)	Normal	6-14	Solid-cystic	CA125(-)
Popovska S et al., 2005	26	Mean	All case unilateral	IM	Mean 10	Solid-cystic	
Pai RR et al., 2005 (4 cases)	Mean 22,2	Right	IM, pelvic pain	Normal	6	Solid-cystic	SMA(+), CD99(+), desmin(-), S-100(-), EMA(-), CD34 (+)
Pai R et al., 2005 (4 cases)	Mean 22	Right	Abdominal distention	High	20	Solid-cystic	
Arora R et al., 2008	25	Left	Abdominal pain	6	Solid-cystic	SMA(+), CD99(+), desmin(-), S-100(-), EMA(-), CD34 (+)	
Chang W et al., 2006	11	Bilateral	IM	Normal	Left 8,5	Solid-cystic	SMA (+)
Sen N et al., 2006	25	Left	Abdominal distention	Normal	4.5	Solid	
Jung NH et al. 2006	50	Right	Meigs' syndrome	High	18	Solid-cystic	Vimentin(+), reticulin(+), calretinin (+), CD34(-), SMA(-), S-100(-), inhibin (-)
Darghouth CL. et al., 2007	15	Right	Polymenorrhagia	Normal	6	Solid	
Sharma M et al., 2007 (2 cases)	19	Left	Abdominal pain	Normal	6	Solid-cystic	SMA (+)
Iravanloo G et al., 2008	25	Left	Pelvic pain, IM	Normal	23	Solid	
Ergeneli MH et al., 2008	11	Left	Pelvic pain, IM	Normal	23	Solid	
Ismail SI et al., 2010 (Continued)	(Continued)	Left	Pelvic pain, IM	Normal	23	Solid	
Table 1: (Continued)

Case no and article	Age	Side	Clinic and symptom	CA-125	Tumour size (cm)	Gross apperance	Immunohistochemical staining
Park SM et al., 2011	11	Left	Hirsutism	9	Solid		Vimentin(+), SMA(+), inhibin(+), S100(-), CK(-)
Liou JH et al., 2011	18	Right	IM, pelvic pain, Meigs’ Syndrome	High	16,5	Solid	Inhibin (+), Ca-125 (-), CK(-)
Dilbaz B et al., 2011	14	Right	Pelvic pain	Normal	7	Solid	—
Akbulut M et al., 2011	73	Left	Ovarian torsion		14	Solid-cystic	Calretinin(+), inhibin(+), ER(+), PR(+), CK 7(-), CD34(-), vimentin(-), SMA(-), S100(-), chromogranin(-), sinaptophysin(-)
Banik T et al., 2012 (3 cases)	19	Left	IM, abdominal pain	5	Solid		Inhibin(+), CK(-), vimentin(-), SMA(-), desmin(-), EMA(-)
	21	Right	IM		12	Solid-cystic	SMA(+)
	18	Right	Abdominal pain	High	8,5	Solid	Inhibin(+), desmin(-), Vimentin(+), calretinin(+), inhibin(+), PR(2), SMA(+), ER(+), EMA(+), CK 7(-), CK 20(-), AFP(-)
Chung CP et al., 2012	59	Left	IM	1,5	Solid		Vimentin(+), inhibin(+), desmin(-), Vimentin(+), calretinin(+), inhibin(+), PR(+), SMA(+), ER(+), EMA(+), CK 7(-), CK 20(-), AFP(-)
Khanna M et al., 2012	32	Right	IM, pelvic pain	High	16	Solid-cystic	SMA(+)
Suraweera P et al., 2012	33	Right	Hirsutism, Virilisation	Normal	6	Solid-cystic	Vimentin(+), inhibin(+), desmin(-), Vimentin(+), calretinin(+), inhibin(+), PR(+), SMA(+), ER(+), EMA(+), CK 7(-), CK 20(-), AFP(-)
Foteder V et al., 2012	23	Right	Abdominal pain, IM	High	4,7	Solid-cystic	—
Duzcu SE et al., 2012	17			Normal		Solid	—
Kim D et al., 2012	26	Right	Pregnancy	High	6,5	Solid	—
Mahadevappa A et al., 2012	16	Left	IM, pelvic pain, Meigs’ Syndrome	High	17	Solid	—
Sayilgan AT et al., 2012	19	Right	Pelvic pain	High	10	Solid	Vimentin(+), SMA(+), CA125(+), CD34(-), CD99(-), CD100(-), EMA(-), VEGF(-), PLAP(-), CK(-), PAS(-)
Parlagkumus HA et al., 2013	24	Right	Pelvic pain	Normal	2	Solid	Inhibin(+), calretinin(+), vimentin(+), SMA(+), ER(+), PR(+), CD34(+), desmin(-), CK(-), EMA(-)
Boussaid K et al., 2013	24	Left	McCune Albright syndrome, hirsutism, acne, amenorrhoea			Solid	Inhibin(+), vimentin(+), CK(-), WT1(+)
Limaiem F et al., 2013 (2 cases)	16	Left	Pelvic pain	Normal		Solid	SMA(+), inhibin(+), vimentin(+), cytokeratin(-)
	45	Right	Pelvic pain	Normal		Solid-cystic	SMA(+), inhibin(+), vimentin(+), CK(-)
Kutuk MS et al., 2013	18-25	Right	Pregnancy (3), IM (2), abdominal discomfort (2)	All cases normal	6-12	Solid, Solid-cystic	Vimentin, SMA, desmin, inhibin, calretinin, PR all cases (+), ER, CK, CK 7(-), all cases (-), c-kit, melan-A 4 cases (+), CD10-3 cases (+)
Kaygusuz EI et al., 2013 (7 cases)	18-25	Left	Pregnancy (2), IM, pelvic pain, laparoscopic excision (2)	All cases normal	6-12	Solid, Solid-cystic	Vimentin, SMA, desmin, inhibin, calretinin, PR all cases (+), ER, CK, CK 7(-), all cases (-), c-kit, melan-A 4 cases (+), CD10-3 cases (+)
Amal Abd. 2014	19	Right	IM, pelvic pain	High	8,6	Solid-cystic	Calretinin(+), inhibin(+)
Liang YF et al., 2014	25	Right	Ectopic pregnancy	High	5	Solid-cystic	CD34(+), desmin(+), SMA(+), CD33(-), S-100(-), ER(+), PR(-)

EMA – Epithelial membrane antigen; CK – Cytokeratin; SMA – Smooth muscle actin; ER – Estrogen receptors; PR – Progesterone receptors; IM – Irregular menstruation

tumours. Ultrasonography is useful for distinguishing between cystic and solid masses, but can be undetermined in lesion characterisation, such that a differential diagnosis from malignant ovarian neoplasms is not always possible.
Ultrasonography and computed tomography findings of SST show an increased peripheral vascular as seen in malignant tumours. Magnetic resonance imaging findings include typical signal patterns such as hypointense nodules, hyperintense stroma, lobulation, strong enhancement with gadolinium and a peripheral hypointense rim are present.18 The distinct histopathological appearance and immunohistochemistry of SST are important in aiding diagnosis.

Characteristic histological finding of the SST of ovary is the pseudolobular pattern that is formed by the cellular nodules that are separated from each other by hypocellular, oedematous and collagenous stroma. The characteristic pathological findings of the SST of ovary were observed both macroscopically and microscopically in all the cases reported in literature.

Several immunohistochemical markers of the sex-cord stromal tumours were studied in SST. Immunohistochemical analysis for inhibin, smooth muscle actin (SMA), vimentin, estrogen receptors (ER) and progesterone receptors (PR) using formalin-fixed and paraffin-embedded materials showed predominant positivity for a SMA, consistent positivity for inhibin and vimentin, and negativity for S-100 protein and epithelial markers, suggesting a stromal origin of the SST.16,19

Inhibin has been shown to be a useful marker for ovarian sex cord stromal tumours. Inhibin is a specific, but less sensitive marker than calretinin in the diagnosis of ovarian sex cord-stromal tumours. In addition, a correlation was observed between the calretinin and α-inhibin expressions and the luteinisation level of tumour cells.19 Also, inhibin and calretinin have been shown to be more sensitive and specific marker than CD99, A103 (melan-A), CD10 and WT-1 for ovarian sex cord stromal tumours.19 CD34 stains the endothelium of often dilated and branching vascular architecture and clearly distinguishes SST from thecoma and fibroma. αGST positivity within scattered cells appears to be useful in the distinction of SST from diffuse staining thecomas and no staining fibromas.21 Lifschitz-Mercer \textit{et al.}, proved that PR stained positively in SST cells.22 Kostopoulou E \textit{et al.}, defined that a positivity for ER beta was observed in a significantly larger number of cells than that for ER alpha.23 In addition, three copies of chromosome 12 in 13-21\% of all examined SSTs tumour cells was reported using fluorescence \textit{in situ} hybridisation (FISH) analysis.6 One researcher described a patient with SST with monosomy of chromosome 16.24 Although many studies showed variable immunohistochemical analysis.

Table 3: Sclerosing stromal tumour (SST) of the ovary during pregnancy in the literature

Case	Age	Side	Clinic and symptom	CA-125	Tumour size (cm)	Gross appearance
Tiltman, 1985	18	Right	Pregnancy		20	Cystic
Tiltman, 1985	32	Right	Pregnancy	4	4	Solid
Ismail \textit{et al.}, 1990	29	Bilateral	Pregnancy, virilisation	R 14; L 10,5	3	Solid
Cashel \textit{et al.}, 1991	27	Left	Pregnancy, virilisation		50	Solid
Duska LR \textit{et al.}, 1998	31	Right	Pregnancy	3	Cystic	Solid-cystic
Huang SC \textit{et al.}, 2003	30	Right	Pregnancy, pelvic pain	High	14	Cyst
Calabrese \textit{et al.} 2004	21	Right	Pregnancy	7	Solid	
Gurbuz A \textit{et al.}, 2004	16-24	Right	Pregnancy (2 cases)	6-14 (mean 11)	Solid-cystic	
Kurt \textit{et al.}, 2004	19	Right	Pregnancy		6,5	Solid
(126 cases pregnant)	3	Left	Pregnancy		6	Solid
Kim D \textit{et al.}, 2012	19	Right	Pregnancy	5	Solid	
Kaygosuz EI \textit{et al.}, 2013	21	Right	Pregnancy	8,5	Solid	
Kaygosuz EI \textit{et al.}, 2013	19	Right	Pregnancy	6	Solid-cystic	
Liang YF \textit{et al.}, 2014	25	Right	Ectopic pregnancy	50	50	Solid-cystic
for sclerosing stromal tumours, a predominant positivity for inhibin, calretinin, smooth muscle actin and vimentin is a well-known immunohistochemical panel suggesting a stromal origin of the SST.

In conclusion, the patient's young age (generally, the second or third decade of life), the unilaterality of the tumour and the characteristic macroscopic and histopathological appearance of the tumour are essential characteristics for the diagnosis of SST of the ovary. SST is a very rare tumour but tumour markers, hormone tests and ultrasonography, in addition to MRI should be performed when the women are under the age of 30 and the visual inspection reveals 5 cm or more of a solid tumour. Frozen biopsies should also be performed during surgery. The distinct histopathological appearance and immunohistochemistry of SST are important in aiding diagnosis. All cases were diagnosed as benign except for one patient with low-grade malignancy reported in 1990. Surgical resection of the tumour is curative since to date, no local or distant recurrences have been reported in literature. A combination of morphological, immunohistochemical, radiological and clinical findings is needed in differentiating the tumour from thecoma, fibroma/fibrosarcoma, lipid tumours and Krukenberg tumour.

REFERENCES

1. Chalvardjian A, Scully RE. Sclerosing stromal tumor of the ovary. Cancer 1973;31:664-70.
2. Kim JY, Jung KJ, Chung DS, Kim OD, Lee JH, Youn SK. Sclerosing stromal tumor of the ovary: MR-pathologic correlation in three cases. Korean J Radiol 2003;4:194-9.
3. Ismail SM, Walker SM. Bilateral virilizing sclerosing stromal tumors of the ovary in a pregnant woman with Gorlin’s syndrome: Implications for pathogenesis of ovarian stromal neoplasms. Histopathology 1990;17:159-63.
4. Liang YF, Zeng JC, Ruan JB, Kang DP, Wang LM, Chen C, et al. Ovarian sclerosing stromal tumor in a young woman with ectopic pregnancy: Clinical, pathological, and immunohistochemical studies. Int J Clin Exp Pathol 2013;7:456-9.
5. Kaygusuz EI, Cesar S, Cetiner H, Yavuz H, Koc N. Sclerosing stromal tumour in young women: Clinicopathologic and immunohistochemical spectrum. J Clin Diagn Res 2013;7:1932-5.
6. Kawauchi S, Tsuji T, Kaku T, Kamura T, Nakano H, Tsuneyoshi M. Sclerosing stromal tumor of the ovary: A clinicopathologic, immunohistochemical, ultrastructural, and cytogenetic analysis with special reference to its vasculature. Am J Surg Pathol 1998;22:83-92.
7. Peng HH, Chang TC, Hsueh S. Sclerosing stromal tumor of ovary. Med J 2003;26:444-8.
8. Korobowicz E, Wroniec L, Siezieniewska-Skowrońska Z. Sclerosing stromal tumour — a rare ovarian benign neoplasm: Description of three cases. Folia Histochem Cytobiol 2001;39 Suppl 2:131-2.
9. Chang W, Oiseth SJ, Orentlicher R, Agarwal G, Yahr LJ, Cayten CG. Bilateral sclerosing stromal tumor of the ovaries in a premenarchial girl. Gynecol Oncol 2006;101:342-5.
10. Chang YW, Hong SS, Jeen YM, Kim MK, Suh ES. Bilateral sclerosing stromal tumor of the ovary in a premenarchial girl. Pediatr Radiol 2009;39:731-4.
11. Bildirić K, Yalçın OT, Ozalp SS, Peker B, Özden H. Sclerosing stromal tumor of the ovary associated with Meigs’ syndrome: A case report. Eur J Gynaecol Oncol 2004;25:528-9.
12. Jung NH, Kim T, Kim HJ, Lee KW, Lee NW, Lee ES. Ovarian sclerosing stromal tumor presenting as Meigs’ syndrome with elevated CA-125. J Obstet Gynaecol Res 2006;32:619-22.
13. Liou JH, Su TC, Hsu JC. Meigs’ syndrome with elevated serum cancer antigen 125 levels in a case of ovarian sclerosing stromal tumor. Taiwan J Obstet Gynecol 2011;50:196-200.
14. Mahadevappa A, Succhitha S, Sunila R, Manjunath GV. Unusual presentation of benign ovarian tumor: A case report. IJRRMS 2012;2:42-4.
15. Stankovic Z, Savic D, Djurisic S, Stankovic D, Bjelica A. Torsion of ovarian sclerosing stromal tumor in adolescence. J BUON 2008;13:599.
16. Akbulut M, Türk NS, Altınboga AA, Soysal ME. Sclerosing stromal tumor in a postmenopausal woman with an ovarian torsion. Pam Med J 2011;4:39-42.
17. Boussaid K, Meduri G, Maiza JC, Gennero I, Escourrou G, Bros A, et al. Virilizing sclerosing-stromal tumor of the ovary in a young woman with McCune Albright syndrome: Clinical, pathological and immunohistochemical studies. J Clin Endocrinol Metab 2013;98:E314-20.
18. Calabrese M, Zandrino F, Giasotto V, Risone R, Fulcheri E. Sclerosing stromal tumor of the ovary in pregnancy: Clinical, ultrasonography and magnetic resonance imaging findings. Acta Radiol 2004;45:189-92.
19. Zekioglu O, Özdemir N, Terek C, Oszaran A, Dickten Y. Clinicopathological and immunohistochemical analysis of sclerosing stromal tumours of the ovary. Arch Gynecol Obstet 2010;282:671-6.
20. Schneider DT, Janig U, Calaminus G, Göbel U, Harms D. Ovarian sex cord-stromal tumours — a clinicopathologic study of 72 cases from the Kiel Pediatric Tumor Registry. Virchow Arch 2003;443:549-60.
21. Khanna M, Khanna A, Manjari M. Sclerosing stromal tumor of the ovary associated with Meigs’ syndrome: A clinicopathologic study. Case Rep Pathol 2012;2012:592836.
22. Lifschitz-Mercer B, Open M, Kushnir I, Jacob N, Czernobilsky B. Sclerosing stromal tumor presenting as Meigs’ syndrome with elevated serum cancer antigen 125 levels in a case of ovarian sclerosing stromal tumor. Taiwan J Obstet Gynecol 2011;50:196-200.
23. Lopes JM, Seruca R, Hall AP, Branco P, Castedo SM. Cyogenetic study of a sclerosing stromal tumor of the ovary. Acta Radiol 2004;45:189-92.
24. Lifschitz-Mercer B, Open M, Kushnir I, Jacob N, Czernobilsky B. Sclerosing stromal tumor of the ovary: A case report. Case Rep Pathol 2012;2012:592836.
25. Calabrese M, Zandrino F, Giasotto V, Risone R, Fulcheri E. Sclerosing stromal tumor of the ovary in pregnancy: Clinical, ultrasonography and magnetic resonance imaging findings. Acta Radiol 2004;45:189-92.
26. Zekioglu O, Özdemir N, Terek C, Oszaran A, Dickten Y. Clinicopathological and immunohistochemical analysis of sclerosing stromal tumours of the ovary. Arch Gynecol Obstet 2010;282:671-6.
27. Schneider DT, Janig U, Calaminus G, Göbel U, Harms D. Ovarian sex cord-stromal tumours — a clinicopathologic study of 72 cases from the Kiel Pediatric Tumor Registry. Virchow Arch 2003;443:549-60.
28. Khanna M, Khanna A, Manjari M. Sclerosing stromal tumor of the ovary associated with Meigs’ syndrome: A clinicopathologic study. Case Rep Pathol 2012;2012:592836.
Copyright of Nigerian Medical Journal is the property of Medknow Publications & Media Pvt. Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder’s express written permission. However, users may print, download, or email articles for individual use.