The Complete Genome Sequence of the Lactic Acid Bacterium *Lactococcus lactis* ssp. *lactis* IL1403

Alexander Bolotin, 1 Patrick Wincker, 2 Stéphane Mauger, 1, 3 Olivier Jaillon, 2 Karine Malarme, 1 Jean Weissenbach, 2 S. Dusko Ehrlich, 1 and Alexei Sorokin 1, 4

1 Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France; 2 Génoscope, Centre National De Séquençage, BP 191 91006 Evry CEDEX, France

Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus *Streptococcus* and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of *L. lactis* to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of *Salmonella-Escherichia* group.

The questions addressed in research on useful bacteria are often antithetical to those involving pathogens, because one of the basic objectives is to improve rather than to limit bacterial growth. Efficient use of lacticocci by dairy industry requires understanding of many aspects of bacterial physiology, such as use of sugars and proteins from milk for growth, conversion of sugars to lactate, and synthesis of substances involved in cheese flavor, and thus of the relationship between different types of fermentation. The potential for new applications of LAB, such as oral vaccines (Steidler et al. 2000) or production of foreign proteins and metabolites, leads to questions concerning the protein secretion system, biosynthesis of cofactors, and regulation of central metabolism. In addition to questions related to the industrial use of lactococci, fundamental biological questions, such as retrohoming of introns (Cousineau et al. 1998), are also being addressed in *L. lactis*.

There are two subspecies of *L. lactis*, designated initially as *Streptococcus lactis* and *Streptococcus cremoris* and reclassified more recently as *L. lactis* ssp. *lactis* and *L. lactis* ssp. *cremoris*, respectively (Schleifer et al. 1985). The former is preferred for making of soft cheeses and the latter for the hard ones. The two subspecies have been intensely studied, mainly because of their industrial interest, and have became excellent models for research on metabolism, physiology, genetics, and molecular biology of LAB.

Lactic acid bacteria (LAB) are a heterogeneous group of microorganisms that convert carbohydrates into lactic acid. They comprise both pathogens (such as *Streptococcus pneumoniae* or *Streptococcus pyogenes*) and useful bacteria (such as *Streptococcus thermophilus* and *Lactococcus lactis*, which were used for millennia in milk fermentation). Determination and analysis of the genome sequence of a representative LAB is therefore of great interest, as it would provide information allowing us to combat the former and use the latter more efficiently. Until now, no complete and annotated genome sequence of either LAB class has been reported.

In nature, *L. lactis* occupies a niche related to plant or animal surfaces and the animal gastrointestinal tract. It is believed to be dormant on the plant surfaces and to multiply in the gastrointestinal tract after being swallowed by a ruminant. In contrast, “domesticated” species of *L. lactis*, used by dairy industry as starters in cheese fermentation, live in a different niche, which is defined by technological considerations, such as fast growth and rapid production of lactic acid in milk. The importance of *L. lactis* for humankind can be appreciated from the estimate that close to 10^12 tons of cheese are made annually (Fox 1989), leading to human consumption of close to 10^18 lacticocci.

The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.
nistic genome sequencing, has been reported (Bolotin et al. 1999). Here we present the analysis of the accurate sequence of the IL1403 genome, which is the first such report for any lactic acid bacterium. We focus mainly on features related to the importance of _L. lactis_ for humankind, which is its use in dairy fermentation. Also, several unexpected findings are reported, such as a putative chimerical structure of the genome, the possibility that _L. lactis_ can respire, the existence of genes required for DNA transformation, and a discovery of a transfer of genetic information from lactococci to gram-negative enteric bacteria.

RESULTS AND DISCUSSION

Two-Step Sequencing Strategy

The first step of our strategy, designated diagnostic genome sequencing, was described before (Bolotin et al. 1999). Briefly, it implies cloning of relatively short (1–20 kb) genome fragments in _Escherichia coli_ plasmid and phage vectors, and sequencing of a limited number of randomly chosen clones, to a redundancy of about one. A novel procedure, designated multiplex MLA PCR, developed and tested in the course of the long accurate PCR (MLA PCR), developed and tested in the course of the _Bacillus subtilis_ genome sequencing project (Sorokin et al. 1996; Kunst et al. 1997), is then applied for connecting the resulting contigs and synthesizing the missing genome regions, sequenced subsequently by standard methods. This approach allowed us to establish the entire _L. lactis_ genome sequence and assemble it in a unique contig, with a sequencing redundancy of less than two (Bolotin et al. 1999). Three- to fourfold fewer sequencing reactions were required to reach this goal than if the fully random approach were used. For comparison, only 10,235 reactions were needed to assemble _L. lactis_ genome sequence, whereas 40,020 were required for the genome of _Neisseria meningitidis_ (Tettelin et al. 2000), which is of a similar size. Diagnostic sequence allowed us to identify all _L. lactis_ genes that encode proteins sufficiently similar to those present in the databases. However, the elevated error rate, estimated to be ~1%, did not allow us to predict the genes unique for _L. lactis_ or the borders of coding region. To obtain a more complete and reliable description of the _L. lactis_ genome, we carried out a second step of our strategy. It involved random sequencing of additional clones until the overall redundancy of ~6.4 was reached and then primer walking on PCR-generated templates to ensure that each base was sequenced at least four times and at least once on each strand. We designated this step “shotgun polishing” and concluded that the strategy presented here can be a good alternative to the fully random strategy used in most cases (Fraser and Fleischmann 1997). Its advantages should increase even more when a greater number of completely sequenced and thoroughly annotated bacterial genomes becomes available. Carrying out the diagnostic step and polishing only a very little will then be sufficient to determine a reliable genome sequence of bacteria relatively close to the ones that were already sequenced and annotated.

Gene Content

The circular chromosome of _L. lactis_ IL1403 has 2,365,589 bp and an average G+C content of 35.4%. We detected 2310 open reading frames (ORFs) in the sequence, with an average length of 879 bp. Protein-coding genes represent 86% of the genome, stable RNA 1.4%, and noncoding regions 12.6%. These values are similar to those observed for genomes of other bacteria. We have assigned a biochemical or biological role to 64.2% (1482 ORFs) of the genes and classified them into functional categories (Table 1). There are 20.1% of genes (465 ORFs) that match hypothetical coding sequences of unknown function, and the remaining 15.7% (363 ORFs) represent genes with no similarity to known proteins, which can be considered specific for lactococci.

Origin and Terminus of Replication

Approximate position of the replication origin and terminus of the _L. lactis_ chromosome was determined previously, using the GC and AT skews (Fig. 1; Bolotin et al. 1999). It should be noted that the precision of the origin mapping is greater than that of the terminus, as there are conserved elements (dnaA and dnaN genes, DnaA boxes) in the vicinity of the former but not of the latter (rtp gene was not found). We choose as the coordinate 1 of the genome the middle of a _Hind_III site localized near the replication origin (Fig 1).

RNA, IS Elements, and Prophages

Location of six rRNA operons, 62 tRNA genes, the RNA component of RNase P gene (mpB), and the 10S RNA (ssrA) were determined earlier from the diagnostic sequence (Bolotin et al. 1999). There are six different IS elements in the IL1403 chromosome: IS981, IS982, IS983, IS904, IS905, and IS1077, present in 10, 1, 15, 9, 1, and 7 copies, respectively (Fig. 1) and totaling 42 kb. It is remarkable that one or two copies of IS904 always accompany IS1077 and that the relative orientation of the two is generally not the same. The former element might be a satellite of the latter. Another remarkable feature is that three of the IS elements are not randomly distributed over the chromosome (Fig. 1). Seven copies of IS1077 (and the associated IS904) occupy the region between 2150 and 840 kb, encompassing the replication origin, whereas 15 copies of IS983 occupy a different region, between 680 and 2270 kb. The two regions overlap by only ~150 kb. As the 10 copies of IS981 are distributed over the whole genome, the un-
Table 1. Functional Classification of the *Lactococcus lactis* Protein-Coding Genes

Amino Acid Family	Gene(s)	Protein Function
Aromatic amino acids	**aroA**	1802 3-phosphoshikimate 1-carboxyvinyltransferase
L-glutamate	**gltB**	1319 glutamate synthase large subunit
L-citrulline	**gltA**	668 citrate synthase
L-glutamine	**glnA**	2283 glutamine synthetase
L-arginine	**argJ**	806 ornithine acetyltransferase
L-proline	**proA**	1651 gamma-glutamyl phosphate reductase
L-proline	**proB**	1652 glutamate 5-kinase
L-proline	**proC**	1953 pyrrole-5-carboxylate reductase
Histidine	**hisA**	1236 phosphoribosylformiminoo-s-aminomimidazole-carboxamidase ribotide isomerase
Histidine	**hisB**	1234 fructose-1,6-bisphosphate:phosphatase reductase
Histidine	**hisC**	1229 histidinol-phosphate aminotransferase
Histidine	**hisD**	1232 histidinol dehydrogenase
Histidine	**hisF**	1237 cyclase HisF
Histidine	**hisG**	1231 ATP phosphoribosyltransferase
Histidine	**hisH**	1235 amidotransferase
Histidine	**hisI**	1237 phosphorylase AMP cyclohydrolase
Histidine	**hisK**	1238 histidinol phosphatase
Histidine	**hisL**	1230 ATP phosphoribosyltransferase regulatory subunit
Serine	**cysD**	77 O-acetylhomoserine sulffydrase
Serine	**cysE**	1921 serine acetyltransferase
Serine	**cysK**	792 cysteine synthase
Serine	**cysM**	527 cysteine synthase
Serine	**glyA**	592 serine hydroxymethyltransferase
Serine	**hisA**	1236 phosphoribosylformiminoo-s-aminomimidazole-carboxamidase ribotide isomerase
Serine	**hisB**	1234 fructose-1,6-bisphosphate:phosphatase reductase
Serine	**hisC**	1229 histidinol-phosphate aminotransferase
Serine	**hisD**	1232 histidinol dehydrogenase
Serine	**hisF**	1237 cyclase HisF
Serine	**hisG**	1231 ATP phosphoribosyltransferase
Serine	**hisH**	1235 amidotransferase
Serine	**hisI**	1237 phosphorylase AMP cyclohydrolase
Serine	**hisK**	1238 histidinol phosphatase
Serine	**hisL**	1230 ATP phosphoribosyltransferase regulatory subunit
Folic acid	**dfra**	1163 dihydropholate reductase
Folic acid	**fhs**	961 formlate:hydrogenolactone synthase
Folic acid	**folB**	1166 dihydronopterin aldolase
Folic acid	**folC**	1169 folic acid synthase
Folic acid	**folD**	877 tetrahydrofolate dehydrogenase/cyclohydrolase
Folic acid	**folE**	1167 GTP cyclohydrolase I
Folic acid	**folF**	1168 dihydrodopterato synthase
Folic acid	**pabB**	1348 para-amino benzoate synthase component II
Folic acid	**pabB**	1348 para-amino benzoate synthase component I
Heme and porphyrin	**emH**	1609 ferrohelaicase
Heme and porphyrin	**hemK**	589 protoporphyrinogen oxidase
Heme and porphyrin	**hemN**	1154 oxygen-independent coproporphyrogen III oxidase
Menaquinone	**folP**	1168 dihydropteroate synthase
Menaquinone	**folE**	1167 GTP cyclohydrolase I
Menaquinone	**folD**	877 tetrahydrofolate dehydrogenase/cyclohydrolase
Menaquinone	**folC**	1169 folic acid synthase
Menaquinone	**hbs**	961 formlate:hydrogenolactone synthase
Menaquinone	**folB**	1166 dihydronopterin aldolase
Menaquinone	**folC**	1169 folic acid synthase
Menaquinone	**folD**	877 tetrahydrofolate dehydrogenase/cyclohydrolase
Menaquinone	**folE**	1167 GTP cyclohydrolase I
Menaquinone	**folF**	1168 dihydrodopterato synthase
Menaquinone	**pabB**	1348 para-amino benzoate synthase component II
Menaquinone	**pabB**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**ispA**	1349 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**ispB**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**folP**	1168 dihydrodopterato synthase
MenAquinone and ubiquinone	**folC**	1169 folic acid synthase
MenAquinone and ubiquinone	**hfs**	961 formlate:hydrogenolactone synthase
MenAquinone and ubiquinone	**folB**	1166 dihydronopterin aldolase
MenAquinone and ubiquinone	**folC**	1169 folic acid synthase
MenAquinone and ubiquinone	**folD**	877 tetrahydrofolate dehydrogenase/cyclohydrolase
MenAquinone and ubiquinone	**folE**	1167 GTP cyclohydrolase I
MenAquinone and ubiquinone	**folF**	1168 dihydrodopterato synthase
MenAquinone and ubiquinone	**pabB**	1348 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**pabB**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**ispA**	1349 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**ispB**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**folP**	1168 dihydrodopterato synthase
MenAquinone and ubiquinone	**folC**	1169 folic acid synthase
MenAquinone and ubiquinone	**hfs**	961 formlate:hydrogenolactone synthase
MenAquinone and ubiquinone	**folB**	1166 dihydronopterin aldolase
MenAquinone and ubiquinone	**folC**	1169 folic acid synthase
MenAquinone and ubiquinone	**folD**	877 tetrahydrofolate dehydrogenase/cyclohydrolase
MenAquinone and ubiquinone	**folE**	1167 GTP cyclohydrolase I
MenAquinone and ubiquinone	**folF**	1168 dihydrodopterato synthase
MenAquinone and ubiquinone	**pabB**	1348 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**pabB**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**isol**	1349 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**isol**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**isol**	1349 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**isol**	1348 para-amino benzoate synthase component I
MenAquinone and ubiquinone	**isol**	1349 para-amino benzoate synthase component II
MenAquinone and ubiquinone	**isol**	1348 para-amino benzoate synthase component I

(Table continues on pp. 734–746.)
Table 1. (Continued)

Gene	Description
cobQ	1115 cobryic acid synthase
ribA	1024 GTP cyclohydrolase II / 3,4-dihydroxy-2-butane-4-phosphate synthase
ribB	1023 riboflavin synthase alpha chain
ribC	1142 riboflavin kinase
ribD	1023 riboflavin-specific deaminase
ribH	1025 riboflavin synthase beta chain
thioredoxin, glutaredoxin, and glutathione	
gpo	1402 glutathione peroxidase
gshR	864 glutathione reductase
trxA	1692 thioredoxin
trxB1	966 thioredoxin reductase
trxB2	1695 thioredoxin reductase
trxH	396 thioredoxin H-type
Thiamin	
apbE	1125 thiamine biosynthesis lipoprotein
thiD1	1295 phosphomethylpyrimidine kinase
thiD2	485 phosphomethylpyrimidine kinase
thiE	1294 thiamin-phosphate pyrophosphorylase
thiM	1295 hydroxyethylthiazole kinase
Pyridinenucleotides	
nadE	1110 NAD-synthetase
yvdG	2139 pyridinenucleotide-disulfide oxidoreductase
CELL ENVELOPE	
Membranes, lipoproteins, and porins	
bmpA	1462 basic membrane protein A
cdaA	2200 phosphatidate cytidylyltransferase
clsA	988 cardiolipin synthase
clsB	1188 cardiolipin synthase
dgaA	1095 diacylglycerol kinase
lgt	606 prolipoprotein diacylglycerol transferase
pagA	2047 CDP-diacylglycerol-phosphate phosphatidyltransferase
plpA	318 outer membrane lipoprotein precursor
plpB	319 outer membrane lipoprotein precursor
plpC	320 outer membrane lipoprotein precursor
plpD	321 outer membrane lipoprotein precursor
yfIC	596 acylphosphate phosphohydrolase
Murein sacculus and peptidoglycan	
acmA	269 N-acetylmuramidase
acmB	1977 N-acetylmuramidase
acmC	1403 N-acetylmuramidase
acmD	528 N-acetylmuramidase
asd	1667 aspartate-semialdehyde dehydrogenase
dacA	2356 D-alanyl-D-alanine carboxypeptidase
dacB	976 D-alanyl-D-alanine carboxypeptidase
dal	862 alanine racemase
ddl	341 D-alanine-D-alanine ligase
glmU	1952 UDP-N-acetylgalactosamine pyrophosphorylase
mraY	892 phospho-N-acetylmuramoyl-pentapeptide transferase
mreC	2316 cell shape determining protein
mreD	2315 cell shape determining protein
murA1	1314 UDP-N-acetylglucosamine 1-carboxyvinyltransferase
murA2	535 UDP-N-acetylglucosamine 1-carboxyvinyltransferase
murB	1175 UDP-N-acetylenolpyruvoylglucosamine reductase
murC	2119 UDP-N-acetylmuramate-alanine ligase
murD	1634 UDP-N-acetylmuramoylalaneine D-glutamate ligase
murE	1871 UDP-MurNac-tripeptide synthetase

Table 1. (Continued)

Gene	Description
murF	342 D-Ala-D-Ala adding enzyme
murG	1633 peptidoglycan synthesis protein MurG
murl	1313 glutamate racemase
pbp1B	393 penicillin-binding protein 1B
pbp2A	2178 penicillin-binding protein 2a
pbp2B	339 penicillin-binding protein 2B
pbpX	890 penicillin-binding protein
ponA	530 penicillin-binding protein 1A
racD	2310 aspartate racemase
uppS	2201 undecaprenyl pyrophosphate synthetase
Surface polysaccharides, lipopolysaccharides and antigens	
dltA	1293 D-alanine activating enzyme
dltB	1291 peptidoglycan biosynthesis protein
dltC	1290 D-alanyl carrier protein
dltD	1290 D-alanine transfer protein DltD
dltE	145 oxidoreductase
flOL	746 flotillin-like protein
hasC	1378 UTP-glucose-1-phosphate uridylyltransferase
icaA	681 glycosyl transferase
icaB	683 intercellular adhesion protein IcaB
icaC	684 collagen adhesin
kdtB	2239 lipopolysaccharide core biosynthesis protein
mvaA	1611 hydroxymethylglutaryl-CoA reductase
mycA	981 myosin-cross-reactive antigen
pspA	2304 glucosyltransferase-S
pspB	2306 glucosyltransferase-S
rggA	202 rhamnosyltransferase
rggB	203 rhamnosyltransferase
rggE	207 glycosyltransferase
rggF	209 polysaccharide biosynthesis protein
tagB	953 teichoic acid biosynthesis protein B
tagD1	220 glycerol-3-phosphate cytidiltransferase
tagD2	951 glycerol-3-phosphate cytidiltransferase
tagF	952 teichoic acid biosynthesis protein F
tagL	936 exopolysaccharide biosynthesis protein
tagS	948 teichoic acid biosynthesis protein
tagX	945 teichoic acid biosynthesis protein
tagZ	943 teichoic acid biosynthesis protein
ycbB	212 glycosyltransferase
ycbD	213 UDP-glucose 4-epimerase
ycbF	215 LPS biosynthesis protein
ycbG	216 LPS biosynthesis protein
ycbH	217 sugar transferase
ycbI	218 sugar transferase
ycbj	219 LPS biosynthesis protein
ycbk	214 polysaccharide biosynthesis export protein
yijG	899 glycosyl transferase
yjef	949 lipopolysaccharide biosynthesis protein
ymF	1297 glycosyl transferase
ymF	1299 UDP-N-acetylgalactosamine 2-epimerase
yohH	1478 lipopolysaccharide biosynthesis protein
yohJ	1479 lipopolysaccharide biosynthesis protein
ystC	1853 polysaccharide biosynthesis protein
ywaG	2206 glycosyltransferase
ywaG	2207 lipopolysaccharide biosynthesis protein
CELLULAR PROCESSES	
Cell division	
ezzA	2225 cell division regulator
ftsA	1940 cell division protein FtsA
ftsE	1000 cell division ATP-binding protein FtsE
ftsH	27 cell division protein FtsH
ftsK	1705 cell division protein FtsK
ftsQ	1632 cell division protein FtsQ
ftsW1	663 cell division protein FtsW
ftsW2	908 cell division protein FtsW
ftsX	1001 cell division protein

734 Genome Research www.genome.org
Table 1. (Continued)

Gene	Function	
FtsY	825	cell division protein FtsY
FtsZ	1938	cell division protein FtsZ
GidA	1915	glucose inhibited division protein GidA
GidB	1381	glucose-inhibited division protein GidB
GidC	1257	glucose inhibited division protein GidC
MesJ	24	cell cycle protein MesJ
ParA	99	chromosome partitioning protein
RodA	917	rod-shape determining protein
Smc	812	chromosome segregation SMC protein

Cell killing

Gene	Function	
Hly	498	hemolysin like protein

Chaperones

Gene	Function	
DnaK	979	DnaK protein
GroEL	400	60 KD chaperonin
GroES	399	10 KD chaperonin
SugE	25	protein

Detoxification

Gene	Function	
AhpC	336	alkyd hydroperoxide reductase
AhpF	337	alkyd hydroperoxide reductase
SodA	413	superoxide dismutase

Protein and peptide secretion

Gene	Function	
Ffh	1658	signal recognition particle Ffh
IspA	1026	lipoprotein signal peptidase
SecA	118	preprotein translocase SecA subunit
SecE	2175	preprotein translocase SecE subunit
SecG	967	protein-export protein SecG
SecY	2159	preprotein translocase SecY subunit
SipL	2351	signal peptidase I
Tig	536	trigger factor

Transformation

Gene	Function	
CoiA	1785	competence protein CoiA
ComC	2104	type 4 preplin-like protein specific leader peptidase
ComEA	1833	competence protein ComEA
ComEC	1832	competence protein ComEC
ComFA	1098	competence protein ComFA
ComFC	1097	competence protein ComFC
ComGA	2189	competence protein ComGA
ComGB	2188	competence protein ComGB
ComGC	2187	competence protein ComGC
ComGD	2187	competence protein ComGD
ComX	2224	competence regulator ComX
DprA	1254	DNA processing Smp protein
RadA	2150	DNA repair protein RadA
RecQ	1874	ATP-dependent DNA helicase RecQ

Central intermediary metabolism

Gene	Function	
MetK	1971	S-adenosylmethionine synthetase
PcaC	2052	gamma-carboxysucinolactone decarboxylase

Amino sugars

Gene	Function	
FemD	436	phosphoglucoamine mutase
GlmS	1035	glucosamine-fructose-6-phosphate aminotransferase
NagA	1374	N-acetylglucosamine-6-phosphate deacytelase
NagB	1615	glucosamine-6-P isomerase
YlfH	1157	N-acetylglucosamine catabolic protein
YpcD	1524	endo-beta-N-acetylgalactosaminidase

Degradation of polysaccharides

Gene	Function	
Agl	1732	alpha-gluosidase
AmyL	1278	alpha-amylase
AmyY	1734	alpha-amylase

Amino acids and amines

Gene	Function	
AnsB	743	L-asparaginase
AraT	57	aromatic amino acid specific aminotransferase
ArcA	2115	aromatic amino acid specific aminotransferase
ArcB	2114	ornithine carbamoyltransferase
Gene	Description	
------	-------------	
arcC1	carbamate kinase	
arcC2	carbamate kinase	
arcC3	carbamate kinase	
arcT	aminotransferase	
argF	ornithine carbamoyltransferase	
bcaT	branched-chain amino acid aminotransferase	
gadB	glutamate decarboxylase	
hicD	L-2-hydroxyisocaproate dehydrogenase	
ipd	indole-3-pyruvate decarboxylase	
otcA	ornithine carbamoyltransferase	
pdc	phenolic acid decarboxylase	
pfs	5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase	
sdaA	alpha-subunit L-serine dehydratase	
sdaB	beta-subunit of L-serine dehydratase	
yciA	amino acid amidohydrolase	
yjiB	amino acid amidohydrolase	
yjE	aminotransferase	
ylE	3-hydroxyisobutyrate dehydrogenase	
dhaK	dihydroxyacetone kinase	
dhaL	dihydroxyacetone kinase	
dhaM	dihydroxyacetone kinase	
glpD	glycerol-3-phosphate dehydrogenase	
gpdA	glycerol-3-phosphate dehydrogenase	
lctO	L-lactate oxidase	
yjiB	oxidoreductase	
atpA	ATP synthase alpha subunit	
atpB	ATP synthase beta subunit	
atpD	ATP synthase epsilon subunit	
atpE	ATP synthase beta subunit	
atpF	ATP synthase beta subunit	
atpG	ATP synthase gamma subunit	
atpH	ATP synthase delta subunit	
cydA	cytochrome D ubiquinol oxidase subunit	
cdB	cytochrome D ubiquinol oxidase subunit	
fer	ferredoxin	
nrdH	glutaredoxin-like protein	
nrdL	ribonucleotide reductase	
nifJ	pyruvate-flavodoxin oxidoreductase	
nifS	pyridoxal-phosphate dependent aminotransferase	
nifU	NifU protein	
nizD	pyridoxal-phosphate dependent aminotransferase	
qor	quinone oxidoreductase	
ylfJ	NADPH-flavin oxidoreductase	
ylfE	flavodoxin	
yvcC	FMN-binding protein	
kdgA	2-dehydro-3-deoxyphosphogluconate aldolase	
kdgk	2-dehydro-3-deoxygluconokinase	
ackA1	acetate kinase	
ackA2	acetate kinase	
adhA	alcohol dehydrogenase	
adhE	alcohol-acetaldehyde dehydrogenase	
aclD	alpha-acetolactate decarboxylase	
aclC	alpha-acetoglutarate decarboxylase	
als	alpha-acetolactate synthase	

Table 1. (Continued)

Gene	Description
butA	acetoin reductase
butB	2,3-butanediol dehydrogenase
frdC	fumarate reductase flavoprotein subunit
mae	malate dehydrogenase
pfl	pyruvate-formate lyase
pflA	pyruvate-formate lyase activating enzyme
pta	phosphate acetyltransferase
yse	2-nitropropane deoxygenase
fbp	fructose-1,6-bisphosphatase
enoA	enolase
enoB	2-phosphoglycerate dehydratase
fbaA	fructose-bisphosphate aldolase
gapA	glyceroldehyde 3-phosphate dehydrogenase
gapB	glyceroldehyde 3-phosphate dehydrogenase
ldh	L-lactate dehydrogenase
pdhA	PDHE1 component alpha subunit
pdhB	PDHE1 component beta subunit
pdhD	lipoamide dehydrogenase component of PDH complex
bglA	phospho-beta-glucosidase
bglH	beta-glucosidase
bglS	beta-glucosidase A
galE	UDP-glucose 4-epimerase
galK	galactokinase
galM	aldose 1-epimerase
galT	galactose-1-phosphate uridylyltransferase
glk	glucose kinase
gntK	glucanase kinase
gntZ	6-phosphogluconate dehydrogenase
lacC	tagatose-6-phosphate kinase
lacZ	beta-galactosidase
maa	maltose O-acetyltransferase
malQ	4-alpha-glucanotransferase
mflD	mannitol 1-phosphate dehydrogenase
pmf	mannose-6-phosphate isomerase
rbsK	ribokinase
Gene	Description
------	-------------
scrK	1518 fructokinase
thgA	2058 thiogalactoside acetyltransferase
uxaC	1674 glucuronate isomerase
uxuA	1678 D-mannionate dehydratase
uxuB	1679 fructuronate reductase
xylA	1550 xylose isomerase
xylB	1548 xylulose kinase
xylM	1674 aldose 1-epimerase
xylX	1544 beta-1,4-xyllosidase
xynB	1543 acetyltransferase hypothetical protein
yeeB	443 sugar hydrolase
ygjD	694 4-alpha-glucanotransferase
yidC	834 beta-glucosidase
yncA	1321 acetyltransferase
ypbG	1519 sugar kinase
ypcA	1521 beta-glucosidase
ypdB	1532 sugar hydrolase
ypdD	1537 sugar hydrolase
yrcA	1722 phospho-beta-glucosidase
citB	670 aconitate hydratase
citC	1207 acetate-SH-citratelyase ligase
citD	1208 citratelyase acyl-carrier protein
citE	1209 citratelyase beta chain
citF	1210 citratelyase alpha chain
citG	1211 CitG protein
	672 isocitrate dehydrogenase
accA	790 acetyl-CoA carboxylase carboxyltransferase subunit alpha
accB	786 biotin carboxyl carrier protein of acetyl-CoA carboxylase
accC	788 biotin carboxylase
accD	789 acetyl-CoA carboxylase carboxyltransferase subunit beta
acpA	782 acyl carrier protein
acpD	116 acyl carrier protein phosphodiesterase
acpS	862 acyl carrier protein synthase
cfa	1972 cyclopropane fatty acid synthase
fabD	783 malonyl CoA-acyl carrier protein transacylase
fabF	786 3-oxoacyl-acyl carrier protein synthase II
fabG1	784 3-oxoacyl-acyl carrier protein reductase
fabG2	1843 3-oxoacyl-acyl carrier protein reductase
fabH	782 3-oxoacyl-acyl-carrier protein synthase III
fabI	562 NADH-dependent enoyl-ACP reductase
fabZ1	561 hydroxymyristoyl-acyl carrier protein dehydrogenase
fabZ2	787 3R-hydroxymyristoyl-acyl carrier protein dehydrogenase
fadA	1843 acetyl coenzyme A acyltransferase
fadD	655 long-chain acyl-CoA synthetase
hmcM	1614 hydroxymethylglutaryl-CoA synthase
lplL	65 lipoate-protein ligase
plsX	72 fatty acid/phospholipid synthesis protein
thiL	1613 acetyl coenzyme A acyltransferase
ydiD	386 acyl carrier protein phosphodiesterase
yeaG	408 mevalonate kinase
yeaH	410 diposphomevalonate decarboxylase
yebA	411 mevalonate kinase
yscE	1830 lipase

Purines, Pyrimidines, Nucleosides and Nucleotides

Gene	Description
2′-deoxyribonucleotide metabolism	
dcmA	1156 dCMP deaminase
dcdA	1156 ribonucleoside-diphosphate reductase alpha chain
dcdF	1156 ribonucleoside-diphosphate reductase beta chain
nrdE	1004 nucleotide and nucleoside interconversions
cmk	1761 cytidine monophosphate kinase
dukA	494 deoxyribonucleoside kinase
dukB	1171 deoxyribonucleoside kinase
nucA	1101 nucleotidase
pyrH	2088 UMP Kinase
ycJ	301 phosphatase
purA1	2029 adenylsuccinate synthase
purB1	1689 adenylsuccinate lyase
purC	1578 phosphoribosylaminomimidazole-succinocarboxamide synthetase
purD	1554 phosphoribosylamine-glycinamide carboxylase
purE	1553 phosphoribosylpyrophosphate amidotransferase
purF	1572 phosphoribosylpyrophosphate amidotransferase
purH	1560 bifunctional purine biosynthesis protein
purK	1552 phosphoribosylaminomimidazole carboxylase
purL	1575 phosphoribosylformylglycinamidine synthase II
purM	1566 phosphoribosylaminomimidazole synthetase
purN	1565 phosphoribosylglycinamide formyltransferase
purQ	1577 phosphoribosylformylglycinamidine synthase I
pydA	1593 dihydroorotate dehydrogenase A
pydB	1383 dihydroorotate dehydrogenase B
pydC	1082 dihydroorotate
pydE	1081 orotate phosphoribosyltransferase
pyf	1382 orotidine-phosphate decarboxylase
pyZ	1384 dihydroorotate dehydrogenase electron transfer subunit
thyA	1583 thymidylate synthase
yeaB	404 thymidylate kinase

Salvage of nucleosides and nucleotides

Gene	Description
add	2158 adenine deaminase
adk	623 adenine phosphoribosyltransferase
apt	2158 aspartate carbamoyltransferase
apt	623 adenine phosphoribosyltransferase
cdd	1463 cytidine deaminase
deoB	956 phosphopentomutase
deoC	1464 deoxyribosyl-phosphate aldolase
deoD	957 purine nucleoside phosphorylase
gmk	1967 guanylate kinase
hpt	25 hypoxanthine-guanine phosphoryltransferase
ndd	272 anaerobic ribonucleoside-triphosphate reductase
ndg	273 anaerobic ribonucleoside-triphosphate reductase activating protein
Table 1. (Continued)

Gene	Description	Function
pdp	pyrimidine-nucleoside phosphorylase	
prsA	ribose-phosphate pyrophosphokinase	
prsB	ribose-phosphate pyrophosphokinase	
udk	uridine kinase	
udp	uridine phosphoribosyltransferase	
upp	uracil phosphoribosyltransferase	
xpt	xanthine phosphoribosyltransferase	
yfiG	thymidine kinase	
Sugar-nucleotide biosynthesis and interconversions		
cpsM	dTDP-4-keto-6-deoxyglucose-3,5-epimerase	
rmlA	glucose-1-phosphatethymidylyltransferase	
rmlB	dTDP-glucose4,6-dehydratase	
rmlC	dTDP-L-rhamnose synthase	
REGULATORY FUNCTIONS		
General		
ahrC	transcriptional regulator	
aldB	regulatory protein AldR	
argR	arginine catabolic regulator	
birA	bifunctional protein BirA	
codY	transcriptional regulator	
codZ	transcriptional regulator	
copR	transcriptional regulator	
fur	ferric uptake regulator	
gadA	positive regulator	
glnA	nitrogen regulatory protein P-II	
glnB	glutamine synthetase repressor	
gntR	transcriptional regulator	
nadR	transcriptional regulator	
rciA	transcriptional regulator	
rcfA	transcriptional regulator	
rcfB	transcriptional regulator	
relA	transcriptional regulator	
meA	transcriptional regulator	
meB	transcriptional regulator	
meC	transcriptional regulator	
meD	transcriptional regulator	
tagR	transcriptional regulator	
tenA	transcriptional regulator	
yabA	transcriptional regulator	
yabB	transcriptional regulator	
ybdA	transcriptional regulator	
ybdG	transcriptional regulator	
ybeD	transcriptional regulator	
ycfA	transcriptional regulator	
ycfB	transcriptional regulator	
ycfD	transcriptional regulator	
ycfG	transcriptional regulator	
ycfH	transcriptional regulator	
ycfI	transcriptional regulator	
ycfJ	transcriptional regulator	
Two-component systems		
kinA	sensor protein kinase	
kinB	sensor protein kinase	
kinC	sensor protein kinase	
kinD	sensor protein kinase	
KinE	sensor protein kinase	
KinF	sensor protein kinase	
KinG	sensor protein kinase	
KinH	sensor protein kinase	
LysR-family regulators		
fhuR	transcriptional regulator	
mopR	malolactic fermentation system	
AraC-family regulators		
adaA	methylphosphotriester-DNA alkyltransferase	
xylR	xylose operon repressor	
yhiR	transcriptional regulator	
yhiS	transcriptional regulator	
yhiT	transcriptional regulator	
GntR-family regulators		
busR	transcriptional regulator	
kdgR	transcriptional regulator	
Table 1.	(Continued)	
----------	-------------	
rgrA	437 transcriptional regulator	
rgrB	1461 transcriptional regulator	
DeoR-family regulators		
citR	1206 citrate lyase regulator	
lacR	984 lactose transport regulator	
rdrA	797 transcriptional regulator	
rdrB	1332 transcriptional regulator	
MarR-family regulators		
rmaA	750 transcriptional regulator	
rmaB	715 transcriptional regulator	
rmaC	1503 transcriptional regulator	
rmaD	115 transcriptional regulator	
rmaE	1511 transcriptional regulator	
rmaF	1341 transcriptional regulator	
rmaG	781 transcriptional regulator	
rmaH	932 transcriptional regulator	
rmaI	1583 transcriptional regulator	
rmaJ	584 transcriptional regulator	
zitR	2185 zinc transport transcriptional regulator	
BglG-family regulators		
bglR	1493 beta-glucoside operon antiterminator	
GTP-binding proteins		
eraL	355 GTP-binding protein Era	
hflX	225 GTP-binding protein HflX	
obgL	1630 GTP-binding protein Obg	
thfD	2238 GTP-binding protein ThfD	
typA	2094 GTP-binding protein TypA/BipA	
yphL	1330 GTP-binding protein	
yqeL	224 GTP-binding protein	
ysxL	1165 GTP-binding protein	
yyaL	12 GTP-binding protein	
REPLICATION		
Degradation of DNA		
exoA	799 exodeoxyribonuclease A	
recB	5 subunit B of ATP-dependent exonuclease	
recC	8 subunit A of ATP-dependent exonuclease	
sbcA	1354 ATP-dependent dsDNA exonuclease	
sbcD	1357 exonuclease SbcD	
uvrA	1887 exonuclease ABC subunit A	
uvrB	557 exonuclease ABC subunit B	
uvrC	857 exonuclease ABC subunit C	
xseA	878 exonuclease VII large subunit	
xseB	879 exonuclease VII small subunit	
DNA replication, restriction, modification, recombination, and repair		
cshA	100 chromosome segregation helicase	
dinG	1900 ATP-dependent helicase DinG	
dnaA	1 replication initiation protein DnaA	
dnaB	758 replication protein DnaB	
dnaC	754 replicative DNA helicase	
dnaD	1083 DNA replication protein DnaD	
dnaE	496 DNA polymerase III, alpha chain 2	
dnaG	545 DNA primase	
dnaH	2279 DNA polymerase III, subunits beta and tau	
dnapA	759 primosomal protein Dnap	
dnapB	2308 Dnap protein	
dnaN	2 DNA polymerase III, beta chain	
dnaQ	1010 DNA polymerase III, epsilon chain	
gyrA	1123 DNA gyrase subunit A	
gyrB	929 DNA gyrase subunit B	
hexA	2294 mismatch repair protein MutS	
TRANSCRIPTION		
Degradation of RNA		
pnpA	1923 5' to 3' phosphodiesterase nucleotidyltransferase	
pac	810 ribonuclease III	
mnhA	2350 ribonuclease Hil	
mnhB	1329 ribonuclease Hil	
vacB	968 ribonuclease	
vacC	1227 ribonuclease	
RNA synthesis, modification, and DNA transcription		
greA	626 transcription elongation factor GreA	
mfd	19 transcription-repair coupling factor	
nusA	774 transcription termination protein NusA	
nusB	693 transcription termination protein NusB	
nusG	2174 transcription antitermination protein	
queA	1617 S-adenosylhomocysteine tRNA ribosyltransferase	
rluA	2182 pseudouridylate synthetase	
rluB	1308 pseudouridine synthetase	
rluC	1390 pseudouridine synthetase	
rluD	1027 pseudouridine synthetase	
rluE	368 pseudouridine synthetase	
rpoA	2153 DNA-directed RNA polymerase alpha chain	
rpoB	1863 DNA-directed RNA polymerase beta chain	
rpoC	1859 DNA-directed RNA polymerase beta chain	
rpoD	547 major RNA polymerase sigma factor	
Table 1. Continued

Protein	Accession	Function
rpoE	624	DNA-directed RNA polymerase delta chain
rrmA	1365	rRNA methyltransferase
rsuA	2327	rRNA methyltransferase
sigX	2243	RNA polymerase ECF sigma factor
smpB	1777	tmRNA-binding protein SmpB
sunL	1958	rRNA methylase
trmA	1607	tRNA methyltransferase
yfjD	597	tRNA/rRNA methyltransferase
rRNA processing		
rheA	354	ATP-dependent RNA helicase
rheB	416	ATP-dependent RNA helicase
rimM	1607	16S rRNA methylase

TRANSLATION

Aminoacyl tRNA synthetases

Protein	Accession	Function
alaS	1780	alanyl-tRNA synthetase
argS	2117	arginyl-tRNA synthetase
asnS	1896	asparaginyl-tRNA synthetase
aspS	2041	aspartyl-tRNA synthetase
cysS	1919	cysteinyl-tRNA synthetase
gltX	2141	glutamyl-tRNA synthetase
glyS	1102	glycyl-tRNA synthetase
hisS	2043	histidyl-tRNA synthetase
ileS	1933	isoleucyl-tRNA synthetase
leuS	829	leucyl-tRNA synthetase
lysS	377	lysyl-tRNA synthetase
metS	800	methionyl-tRNA synthetase
pheS	2010	phenylalanyl-tRNA synthetase
proS	2197	prolyl-tRNA synthetase
serS	1768	seryl-tRNA synthetase
traS	391	tryptophanyl-tRNA synthetase
valS	2250	valyl-tRNA synthetase

Degradation of proteins, peptides, and glycopeptides

Protein	Accession	Function
gcp	294	O-sialoglycoprotein endopeptidase
htrA	2205	Exported serine protease
pepA	394	Glutamyl aminopeptidase
pepC	1948	Aminopeptidase C
pepD	249	Dipeptidase
pepDB	1601	Dipeptidase
pepF	1784	Oligopeptidase F
pepM	601	Mathionine aminopeptidase
pepN	304	Aminopeptidase N
pepO	1867	Neutral endopeptidase
pepP	691	Aminopeptidase P
pepQ	1698	Proline dipeptidase
pepT	1878	Tripeptidase

Protein modification

Protein	Accession	Function
def	555	Polypeptide deformylase
pknB	1956	Serine/threonine protein kinase
pmpA	1782	Protein maturation protein
pmsR	2085	Peptide methionine sulfoxide reductase
pmsX	1594	Peptide methionine sulfoxide reductase
ppiA	3689	Peptidyl-prolyl cis-trans isomerase A
ppiB	914	Peptidyl-prolyl cis-trans isomerase C
ppl	1957	Protein serine/threonine phosphatase

Table 1. Continued

Protein	Accession	Function
ptpL	2284	Protein-tyrosine phosphatase
ytaD	1905	Protein-tyrosine phosphatase

Ribosomal proteins: synthesis and modification

Protein	Accession	Function
rpmA	105	Methyltransferase
rplA	2079	50S ribosomal protein L1
rplB	2168	50S ribosomal protein L2
rplC	2170	50S ribosomal protein L3
rplD	2169	50S ribosomal protein L4
rplE	2164	50S ribosomal protein L5
rplF	2162	50S ribosomal protein L6
rplG	753	50S ribosomal protein L9
rplH	1302	50S ribosomal protein L10
rplI	2080	50S ribosomal protein L11
rplJ	1301	50S ribosomal protein L12
rplK	2347	50S ribosomal protein L13
rplL	2165	50S ribosomal protein L14
rplM	2160	50S ribosomal protein L15
rplN	2166	50S ribosomal protein L16
rplO	2152	50S ribosomal protein L17
rplP	2152	50S ribosomal protein L18
rplQ	2153	50S ribosomal protein L19
rplR	2151	50S ribosomal protein L20
rplS	2151	50S ribosomal protein L21
rplT	2167	50S ribosomal protein L22
rplW	2169	50S ribosomal protein L23
rplX	2165	50S ribosomal protein L24
rpmA	1091	50S ribosomal protein L27
rpmB	196	50S ribosomal protein L28
rpmC	2166	50S ribosomal protein L29
rpmD	2160	50S ribosomal protein L30
rpmE	1640	50S ribosomal protein L31
rpmF	96	50S ribosomal protein L32
rpmG	622	50S ribosomal protein L33
rpmGB	96	50S ribosomal protein L33
rpmGC	2175	50S ribosomal protein L33
rpmH	134	50S ribosomal protein L34
rpmI	1912	50S ribosomal protein L35
rpmJ	2154	50S ribosomal protein L36
rpmK	854	30S ribosomal protein S1
rpmL	2228	30S ribosomal protein S2
rpmM	2166	30S ribosomal protein S3
rpmN	284	30S ribosomal protein S4
rpmO	2161	30S ribosomal protein S5
rpmP	2275	30S ribosomal protein S6
rpmQ	2355	30S ribosomal protein S7
rpmR	2162	30S ribosomal protein S8
rpmS	2347	30S ribosomal protein S9
rpmT	2170	30S ribosomal protein S10
rpmU	2153	30S ribosomal protein S11
rpmV	2355	30S ribosomal protein S12
rpmW	2154	30S ribosomal protein S13
rpmX	2164	30S ribosomal protein S14
rpmY	911	30S ribosomal protein S15
rpmZ	2165	30S ribosomal protein S16
rpmA2	2165	30S ribosomal protein S17
rpmB2	2274	30S ribosomal protein S18
rpmC2	2167	30S ribosomal protein S19
rpmD2	2179	30S ribosomal protein S20
rpmE2	2237	30S ribosomal protein S21
rpmF2	293	Acetyltransferase
rpmG2	293	Acetyltransferase
rpmH2	740	Acetyltransferase
rpmI2	798	Acetyltransferase
rpmJ2	776	Probable ribosomal protein
rpmK2	1962	Methyl-5'-tRNA formyltransferase
gatA	166	Glu-tRNA amido transferase subunit A
Table 1. (Continued)		

Translation factors		
gatB 168 Glu-tRNA amidotransferase subunit B		
gatC 165 Glu-tRNA amidotransferase subunit C		
ksgA 690 kasugamycin dimethyltransferase		
mpa 132 ribonuclease P protein component		
tgt 156 queine tRNA-ribosyltransferase		
trmH 1942 tRNA-guanosine methyltransferase		
trnU 853 tRNA-methyltransferase		
truA 485 tRNA pseudouridine synthase A		
truB 1141 tRNA pseudouridine synthase B		
TRANSPORT AND BINDING PROTEINS		
General		
ecsA 2075 ABC transporter ATP binding protein		
ecsB 2074 ABC transporter permease protein		
mscI 2171 large conductance mechanosensitive channel protein		
yabE 16 ABC transporter ATP-binding protein		
yahG 74 ABC transporter ATP binding protein		
yaiE 87 transporter		
yajA 90 transporter		
ybaB 102 ABC transporter ATP binding protein		
ycfB 251 ABC transporter ATP binding protein		
ycfC 252 ABC transporter permease protein		
ycfI 260 ABC transporter ATP binding protein		
ycfG 262 ABC transporter ATP binding protein		
ychD 276 ABC transporter ATP-binding protein		
ychE 277 ABC transporter ATP-binding protein		
ychf 278 ABC transporter permease protein		
ydaG 310 ABC transporter ATP binding and permease protein		
ydbA 312 ABC transporter ATP binding and permease protein		
ydcE 325 ABC transporter ATP binding protein		
ydcF 326 ABC transporter permease protein		
ydaA 382 permease		
yfaC 520 ABC transporter ATP binding protein		
yfcB 521 ABC transporter permease protein		
yfgE 563 ABC transporter ATP binding protein		
ygfF 564 ABC transporter permease protein		
ygfA 652 ABC transporter ATP-binding protein		
ygfB 653 ABC transporter permease protein		
yhcA 721 ABC transporter ATP-binding and permease protein		
yif 886 transporter		
yijC 894 ABC transporter permease protein		
yijD 895 ABC transporter ATP binding protein		
yjcA 921 ABC transporter ATP binding protein		
yjcC 993 ABC transporter ATP-binding protein		
yijD 994 ABC transporter permease protein		
yjf 996 transporter		

Table 1. (Continued)
Amino acids, peptides and amines
arcD1 2112 arginine/ornitine antiporter
arcD2 2107 arginine/ornitine antiporter
bmQ 685 branched chain amino acid permease
busAA 1475 betaine ABC transporter ATP binding protein
busAB 1474 betaine ABC transporter permease and substrate binding protein
choQ 865 choline ABC transporter ATP binding protein
choS 867 choline ABC transporter permease and substrate binding protein
ctrA 113 cationic amino acid transporter
dtpT 705 di-/tri-peptidetransporter
gmdC 1326 glutamate-gamma-aminobutyrate antiporter
glnP 1818 glutamine ABC transporter permease and substrate binding protein
glnQ 1819 glutamine ABC transporter ATP-binding protein
glkP 1856 glutamate ABC transporter permease protein
glkQ 1855 glutamate ABC transporter ATP-binding protein
gltS 559 glutamate or arginine ABC transporter substrate binding protein
lysP 2277 lysine specific permease
lysQ 370 lysine specific permease
oppA 1906 oligopeptide ABC transporter substrate binding protein
oppB 1908 oligopeptide ABC transporter permease protein
oppC 1907 oligopeptide ABC transporter permease protein
oppD 1910 oligopeptide ABC transporter ATP binding protein
oppF 1909 oligopeptide ABC transporter ATP binding protein
Gene

optA
optB
optC
optD
optF
optS
potA
potB
potC
potD
yagE
ydcB
ydcC
ydcG
yjgD
yjgE
ylcA
yqfD
ysfD
yvfD
phnA
phnB
phnC
phnE
pstA
pstB
pstC
pstD
pstE
pstF
yafB
glpF
gntP
lacS
maeP
malE
malF
malG
mleP
mspK
rbsA
rbsB
rbsC
rbsD
rggC
tagG
tagH
uuxT
yxIT
xynT
yngE
yngF
yngG
ypgD
ypcG
ypcH
ypdA
yqgE
yvdD
amtB
cadA
copA
copB
feoA
feoB
fhuB
fhuC
fhuD
fhuG
kupA
kupB
magA
mlsA
mtsB
mtsC
nah
pacL
ydaE
yddA
ydiF
yfgQ
ygfE
Gene

yieF
yjdJ
yliI
yndG
yoaB
yogJ
ypbB
yqeI
yqgG
ysdE
ytdB
yuiA
yxdC
zitP
zitQ
Nucleosides, purines and pyrimidines
pbuX
pnuC1
pnuC2
pyrP
PTS system
celB
fruA
mtlA
mtlF
ptbA
ptcA
ptcB
ptcC
ptnA8
ptnC
ptnD
ptsH
ptsI
ptsK
yidB
yldD
yleE
Multidrug resistance
bld
cydC
cydD

| Table 1. (Continued) |

| Lactococcus lactis IL1403 Genome Sequence |

Gene	Description
ImrP	Integral membrane protein
napC	Multidrug-efflux transporter
pmrA	Multidrug resistance efflux pump
pmrB	Multidrug resistance efflux pump
yidF	Transporter
ycdH	Transporter
ydiC	Efflux pump antibiotic resistance protein
ylfF	Membrane-bound transport protein
yjeE	Multidrug resistance protein
yniG	Drug-export protein
ypeE	Transporter
ypiB	Transporter
yqiI	Multidrug transporter
yweA	Membrane protein
yxbD	Transporter
OTHER CATEGORIES	

Gene	Description
ArsC	Arsenate reductase
ClpB	ClpB protein
ClpC	ATP-dependent protease ATP-binding subunit
ClpE	ATP-dependent protease ATP-binding subunit
ClpP	ATP-dependent Clp protease proteolytic subunit
ClpX	ATP-dependent Clp protease
Cpo	Non-heme chloride peroxidase
CspD	Cold shock protein D
CspE	Cold shock protein E
CtsA	Carbon starvation protein
CtsR	Transcriptional regulator
DinF	Damage-inducible protein DinF
DinP	DNA-damage-inducible protein P
DpsA	Non-heme iron-binding ferritin
GrpE	Stress response protein GrpE
HrcA	Heat-inducible transcription repressor HrcA
OsmC	Osmotically inducible protein
PhoL	Phosphate starvation inducible protein
Tpx	Thiol peroxidase
YbjA	Reductase
YbiE	General stress protein GSP13
Drug and analog sensitivity	
BacA	Undecaprenol kinase
Bar	Acryltransferase
PacA	Penicillin acylase
PacB	Penicillin acylase
YmdC	Kanamycin kinase
Phage related functions and prophages	
pi101	Prophage pi1 protein 01, integrase
pi102	Prophage pi1 protein 02
pi103	Prophage pi1 protein 03, transcriptional regulator
pi104	Prophage pi1 protein 04, transcriptional regulator
pi105	Prophage pi1 protein 05
pi106	Prophage pi1 protein 06
pi107	Prophage pi1 protein 07
pi108	Prophage pi1 protein 08
pi109	Prophage pi1 protein 09
pi110	Prophage pi1 protein 10, transcriptional regulator
pi111	Prophage pi1 protein 11, recombinase
pi112	Prophage pi1 protein 12
pi113	Prophage pi1 protein 13, replisome organisser
pi114	456
pi115	457
pi116	457
pi117	458
pi118	458
pi119	459
pi120	459
pi121	459
pi122	460
pi123	460
pi124	460
pi125	461
pi126	461
pi127	462
pi128	462
pi129	462
pi130	462
pi131	463
pi132	464
pi133	464
pi134	465
pi135	466
pi136	467
pi137	468
pi138	469
pi139	470
pi140	470
pi141	471
pi142	471
pi143	472
pi144	474
pi145	477
pi146	480
pi147	482
pi148	482
pi149	483
pi150	1037
pi151	1038
pi152	1039
pi153	1039
pi154	1040
pi155	1040
pi156	1041
pi157	1041
pi158	1042
pi159	1042
pi160	1043
pi161	1043
pi162	1044
pi163	1045
pi164	1045
pi165	1046
pi166	1046
pi167	1047
pi168	1048
pi169	1048
pi170	1049
pi171	1049

pi223	1049	prophage pi2 protein 23
pi224	1050	prophage pi2 protein 24
pi225	1051	prophage pi2 protein 25
pi226	1051	prophage pi2 protein 26
pi227	1052	prophage pi2 protein 27
pi228	1052	prophage pi2 protein 28
pi229	1053	prophage pi2 protein 29
pi230	1054	prophage pi2 protein 30, terminase
pi231	1055	prophage pi2 protein 31
pi232	1056	prophage pi2 protein 32
pi233	1057	prophage pi2 protein 33, capsid protein
pi234	1058	prophage pi2 protein 34
pi235	1059	prophage pi2 protein 35
pi236	1059	prophage pi2 protein 36
pi237	1059	prophage pi2 protein 37
pi238	1060	prophage pi2 protein 38
pi239	1060	prophage pi2 protein 39
pi240	1061	prophage pi2 protein 40
pi241	1061	prophage pi2 protein 41
pi242	1062	prophage pi2 protein 42
pi243	1064	prophage pi2 protein 43
pi244	1065	prophage pi2 protein 44
pi245	1068	prophage pi2 protein 45
pi246	1069	prophage pi2 protein 46
pi247	1069	prophage pi2 protein 47
pi248	1070	prophage pi2 protein 48
pi249	1070	prophage pi2 protein 49
pi250	1070	prophage pi2 protein 50
pi251	1071	prophage pi2 protein 51, holin
pi252	1071	prophage pi2 protein 52, muramidase
pi301	1414	prophage pi3 protein 01
pi302	1415	prophage pi3 protein 02
pi303	1415	prophage pi3 protein 03
pi304	1416	prophage pi3 protein 04
pi305	1416	prophage pi3 protein 05, muramidase
pi306	1417	prophage pi3 protein 06, holin
pi307	1418	prophage pi3 protein 07
pi308	1419	prophage pi3 protein 08
pi309	1420	prophage pi3 protein 09
pi310	1421	prophage pi3 protein 10
pi311	1422	prophage pi3 protein 11
pi312	1424	prophage pi3 protein 12
pi313	1425	prophage pi3 protein 13, tail component
pi314	1428	prophage pi3 protein 14
pi315	1431	prophage pi3 protein 15
pi316	1431	prophage pi3 protein 16, tail component
pi317	1432	prophage pi3 protein 17, major tail protein
pi318	1433	prophage pi3 protein 18, tail component
pi319	1433	prophage pi3 protein 19, tail component
pi320	1433	prophage pi3 protein 20, head-tail joining protein
pi321	1434	prophage pi3 protein 21
pi322	1435	prophage pi3 protein 22, major head protein precursor
pi323	1436	prophage pi3 protein 23, ATP dependent Clp protease
pi324	1436	prophage pi3 protein 24
pi325	1437	prophage pi3 protein 25, head-tail joining protein
pi326	1438	prophage pi3 protein 26, terminase large subunit
pi327	1439	prophage pi3 protein 27, terminase small subunit
pi328	1440	prophage pi3 protein 28
pi329	1440	prophage pi3 protein 29
pi330	1441	prophage pi3 protein 30
pi331	1441	prophage pi3 protein 31
pi332	1442	prophage pi3 protein 32
Protein	Accession	
1443	prophage	protein 33
1443	prophage	protein 34
1443	prophage	protein 35, deoxyuridine 5'-triphosphate nucleotidohydrolase
1444	prophage	protein 36
1444	prophage	protein 37
1445	prophage	protein 38
1445	prophage	protein 39
1446	prophage	protein 40
1446	prophage	protein 41
1446	prophage	protein 42
1447	prophage	protein 43
1447	prophage	protein 44
1447	prophage	protein 45
1448	prophage	protein 46, DNA replication protein
1449	prophage	protein 47, repressor
1450	prophage	protein 48, single strand binding helix destabilising protein
1450	prophage	protein 49
1451	prophage	protein 50
1451	prophage	protein 51
1452	prophage	protein 52
1452	prophage	protein 53
1452	prophage	protein 54
1453	prophage	protein 55, antirepressor
1453	prophage	protein 56, cro-like repressor
1454	prophage	protein 57, cI-like repressor
1455	prophage	protein 58
1455	prophage	protein 59
1456	prophage	protein 60, integrase
1720	prophage	integration protein
36	prophage	protein 01, hypothetical regulator
36	prophage	protein 02
37	prophage	protein 03, terminase subunit
37	prophage	protein 04
38	prophage	protein 05, DNA primase
40	prophage	protein 06
40	prophage	protein 07
41	prophage	protein 08
41	prophage	protein 09
41	prophage	protein 10
42	prophage	protein 11, transcriptional regulator
42	prophage	protein 12
42	prophage	protein 13
43	prophage	protein 14
44	prophage	protein 15, transcriptional regulator
44	prophage	protein 16
45	prophage	protein 17
45	prophage	protein 18
45	prophage	protein 19
46	prophage	protein 20
47	prophage	protein 21
48	prophage	protein 22
49	prophage	protein 23, integrase
50	prophage	protein 24, integrase
50	prophage	protein 25
50	prophage	protein 26, transcriptional regulator
50	prophage	protein 27
50	prophage	protein 28, excisionase
50	prophage	protein 29
51	prophage	protein 30
51	prophage	protein 31
51	prophage	protein 32
52	prophage	protein 33
52	prophage	protein 34
52	prophage	protein 35
52	prophage	protein 36
53	prophage	protein 37
53	prophage	protein 38
54	prophage	protein 39
54	prophage	protein 40
54	prophage	protein 41
54	prophage	protein 42
54	prophage	protein 43
54	prophage	protein 44
55	prophage	protein 45
55	prophage	protein 46
56	prophage	protein 47
56	prophage	protein 48
57	prophage	protein 49
58	prophage	protein 50
59	prophage	protein 51
60	prophage	protein 52
60	prophage	protein 53
60	prophage	protein 54
61	prophage	protein 55
62	prophage	protein 56
63	prophage	protein 57
64	prophage	protein 58
65	prophage	protein 59
66	prophage	protein 60, integrase

Transposon related functions

Accession	Description
tra1077A	53 transposase of IS1077A
tra1077B	140 transposase of IS1077B
tra1077C	375 transposase of IS1077C
tra1077D	628 transposase of IS1077D
tra1077E	838 transposase of IS1077E
tra1077F	2156 transposase of IS1077F
tra1077G	2217 transposase of IS1077G
tra904A	54 transposase of IS904A
tra904B	138 transposase of IS904B
tra904C	40 transposase of IS904C
tra904D	374 transposase of IS904D
tra904E	627 transposase of IS904E
tra904F	836 transposase of IS904F
tra904G	839 transposase of IS904G
tra904H	2155 transposase of IS904H
tra904I	2215 transposase of IS904I
tra904J	1225 transposase of IS904J
tra904A	92 transposase of IS981A
tra904B	93 transposase of IS981B
tra904C	651 transposase of IS981C
tra904D	729 transposase of IS981D
tra904E	1217 transposase of IS981E
tra904F	1222 transposase of IS981F
tra904G	1276 transposase of IS981G
tra904H	1586 transposase of IS981H
tra904I	1748 transposase of IS981I
tra904J	2103 transposase of IS981J
tra904K	640 transposase of IS982
tra903A	682 transposase of IS983A
tra903B	707 transposase of IS983B
tra903C	958 transposase of IS983C
tra903D	1338 transposase of IS983D
tra903E	1396 transposase of IS983E
tra903F	1556 transposase of IS983F
tra903G	1755 transposase of IS983G
tra903H	1954 transposase of IS983H
tra903I	1978 transposase of IS983I
even distribution of three other IS elements is not caused by a particular property of the \textit{L. lactis} cell. We suggest that this distribution indicates a lateral transfer of a large portion of the genome from a lactococcus donor, carrying one type of IS, to a recipient, carrying the other type. Two lines of evidence lend support to this hypothesis. First, IS1076, which corresponds to the association of IS1077 and IS904 described above, is distributed over the whole genome of the strain \textit{L.lactis} ssp. \textit{cremoris} MG1363 (Le Bourgeois et al. 1995) rather than being restricted to one region of the genome. This transposon has, therefore, no particular hot region for insertion in the lactococcal genome. Second, the restriction map of another strain, \textit{L. lactis} ssp. \textit{lactis} DL11, coincides with that of IL1403 in the area between \textit{rrnF} (550 kb) and \textit{rrnE} (1980 kb), while it is divergent elsewhere (Le Bourgeois et al. 1992). We suggest that DL11 may be close to one of the putative parental strains of IL1403. Investigations of the distribution of IS1077 and IS983 among different lactococci might allow identification of both putative parents of the IL1403 strain.

Three potential prophages, designated \textit{pi}1, \textit{pi}2, and \textit{pi}3, were detected at positions near 460, 1050, and 1460 kb (Fig. 1). They are large (35–44 kb), encode 49–60 proteins, and are related to known temperate phages of \textit{L. lactis}. Another three prophages, designated \textit{ps}1, \textit{ps}2, and \textit{ps}3, are localized near 42, 509, and 2020 kb (Fig. 1). They are small (11–15 kb), encode only 16–23 proteins and might be satellites of the other phages, as they lack most of the genes that code for phage structural elements. A copy of IS983 is present in \textit{ps}3, which might, thus, be defective. The six prophages comprise a total of 175 kb of DNA and 221 protein coding genes. Recently, Chopin et al. (2001) characterized five phages, which can be found in the supernatant of IL1403 after mitomycin C treatment, and demonstrated the correspondence between the phage DNA extracted from the supernatant and the chromosome sequence. Phage \textit{bIL285} from the supernatant corresponds to \textit{pi}2, \textit{bIL286} to \textit{pi}3, \textit{bIL309} to \textit{pi}1, \textit{bIL310} to \textit{ps}1, and \textit{bIL312} to \textit{ps}2. \textit{ps}3, designated also as \textit{bIL311} (Chopin et al. 2001), cannot be induced, probably because of the IS983 element present in its genome. Detecting the circular forms of DNA of these phages allowed precise determination of the integration sites. About 9.2\% of the \textit{L. lactis} genome is thus

\begin{table}
\centering
\caption{(Continued)}
\begin{tabular}{lll}
\hline
\textbf{Gene} & \textbf{Start (kb)} & \textbf{Function} \\
\hline
\textit{tra983J} & 2012 & transposase of IS983J \\
\textit{tra983K} & 2017 & transposase of IS983K \\
\textit{tra983L} & 2084 & transposase of IS983L \\
\textit{tra983M} & 2148 & transposase of IS983M \\
\textit{tra983N} & 2203 & transposase of IS983N \\
\textit{tra983O} & 2268 & transposase of IS983O \\
yafG & 53 & hypothetical protein \\
yafI & 55 & hypothetical protein \\
yajE & 92 & transposase \\
yajG & 94 & transposase \\
ybdk & 138 & hypothetical protein \\
ybdL & 139 & hypothetical protein \\
ybeG & 141 & hypothetical protein \\
ydhD & 373 & hypothetical protein \\
ydhE & 375 & hypothetical protein \\
yfjB & 593 & transposon-related protein \\
ygcD & 628 & hypothetical protein \\
ygeE & 629 & hypothetical protein \\
yjff & 651 & transposase \\
yjhc & 729 & transposase \\
yidF & 837 & hypothetical protein \\
yidG & 838 & hypothetical protein \\
yidH & 839 & hypothetical protein \\
yimA & 1212 & integrase \\
yimB & 1217 & transposase \\
ymcD & 1222 & transposase \\
ymFD & 1259 & integrase-recombinase \\
ymbH & 1276 & transposase \\
ypl & 1587 & transposase \\
yrdA & 1748 & transposase \\
yui & 2104 & transposase \\
yvfC & 2157 & hypothetical protein \\
yvfD & 2156 & hypothetical protein \\
yvfE & 2216 & hypothetical protein \\
yvbc & 2217 & hypothetical protein \\
\textbf{Other} & & \\
\textit{crtK} & 574 & carotenoid biosynthetic protein CrtK \\
yebB & 412 & carotenoid biosynthetic protein \\
\hline
\end{tabular}
\end{table}
formed by IS elements and prophages, suggesting that they may be important for horizontal gene transfer in these bacteria.

Paralogous Gene Families

We define here as a paralogous protein family a group of proteins within which each protein shares at least one homologous domain with another protein of the group. By this criterion, there are 370 paralogous families, comprising 1189 gene products, in the *L. lactis* genome. Among the smaller families (<10 members) there are 208 of two members, 80 of three, 36 of four, 13 of five, 13 of six, 8 of seven, 4 of eight, and 2 of nine. The larger families contain 10, 11, 15, 18, 26, and 60 members, the last corresponding to ATP-binding proteins of ABC transporters, as is the case in many bacteria. In the four smallest families, distribution of the number of proteins resembles that of *B. subtilis* (Kunst et al. 1997). It decreases, very approximately, twofold when the family member count increases by one (568: 273:168:100 in *B. subtilis* and 416:240:144:65 in *L. lactis* for doublets, triplets, quadruplets, and quintuplets, respectively).

Information Processing and Gene Regulation

Information processing refers to the genes constituting replication, transcription, and translation machinery. In *L. lactis*, it is overall very similar to that of *B. subtilis*, the best characterized AT-rich gram-positive bacterium (Kunst et al. 1997). There are 67 genes involved in DNA metabolism in *L. lactis*. All the genes involved in DNA replication in *B. subtilis* are present in *L. lactis*, including counterparts of *dnaB*, *dnaD*, and *dnaI*, genes essential for initiation of replication in *B. subtilis* and absent in gram-negative bacteria. Two DNA-polymerase III α-chain genes, one corresponding to *polC* and another to *dnaE* of *B. subtilis*, were also detected in *L. lactis*. In contrast, *E. coli* has only the *dnaE* gene.

Transcription machinery in both *L. lactis* and *B. subtilis* comprises some 30 genes other than the α-factors. However, the number of α-factors differs greatly, as there are only three in *L. lactis*, while there are 18 in *B. subtilis*, pointing to a considerable difference in the mode of gene-expression regulation in the two organisms. Translation machinery comprises 119 genes in *L. lactis* and 131 genes in *B. subtilis*. There are no duplicated aminoacyl-tRNA synthetase genes in *L. lactis*, while there are three (for threonine, tyrosine, and histidine) in *B. subtilis*. Posttranslational protein modification genes mostly differ, as there are 27 such genes in *B. subtilis* and only 10 in *L. lactis*. A particular regulation of translation might also operate in *L. lactis*. As discussed more fully below, all the late competence genes of *L. lactis* seem to be controlled by a mechanism relaying on leaderless mRNAs and, thus, on a particular mode of translation. Recent evidence shows that the involvement of translation initiation factor 3, present in all bacteria, in start codon recognition is important for restriction of translation in such systems (Tedin et al. 1999). This provides a link between regulation of translation and competence in *L. lactis*. Such interaction has not been detected previously.

Analysis of homology allowed us to assign regulatory functions to 138 genes, half of which were classified further by their similarity to regulatory proteins of known families. The overall number of regulatory systems is about twofold lower in *L. lactis* than in *B. subtilis*, but the proportion of these genes is similar in the two organisms. Among the interesting differences is a much lower number of the two-component signal transducers in *L. lactis* than in *B. subtilis* (eight instead of 34) and of α-factors (three instead of 18), both of which regulate complex responses to changing environmental conditions.

Energy Metabolism and Transporters

The most important industrial applications of *L. lactis* are based on its energy metabolism, which leads mainly to the production of high amounts of lactic acid (homolactic fermentation). Anaerobic glycolysis is the principal energy-generating process in *L. lactis*, and very little of the fermented sugar (∼5%) is used for synthetic reactions (Poolman 1993). All the genes required for the conversion of the glucose to pyruvate are present in the genome. The pyruvate is converted into lactic acid, thus allowing the oxidation of reduced NAD and the lactate dehydrogenase gene *ldh*, essential for this process, was studied intensely (Griffin et al. 1992). Three other genes, highly similar to *ldh* (*ldhB*, *ldhX* and *hcd*) are present in the genome, but their role is not known. The product of the last gene has a high similarity (42% identity) to hydroxyisocaproate dehydrogenase and may, therefore, be involved in the metabolism of branched-chain amino acids. Lactate is transported into the growth medium, causing the efflux of protons and, thus, providing transmembrane potential indispensable for growth and energy recycling (Ten Brink et al. 1985).

Genome analysis indicates that the full citric acid cycle, gluconeogenesis enzymes, and many anaplerotic reactions do not exist in *L. lactis*. Unexpectedly, the functions necessary for aerobic respiration are encoded in the genome. *L. lactis* has *mer* and *cytABCD* operons, encoding proteins required for menaquinone synthesis and cytochrome d biogenesis. It also has three genes involved in the late steps of heme synthesis (*hemH*, *hemK*, and *hemN*, required for oxidation of porphyrinogen and attachment of iron to heme) but not the genes required for the early steps. *L. lactis* may thus be able to carry out oxidative phosphorylation if the topoporphyrinogen is provided. Indeed, improved growth properties in media containing hemin were
observed for certain Streptococci (Sijpesteijn 1970; Mickelson 1972). The genome analysis thus suggests the existence of aerobic respiration in this bacterium, generally considered an exclusively fermentative microorganism.

Use of L. lactis in the food industry also exploits its ability to form fermentation products other than lactate (mixed acid fermentation). The balance of products depends on activities of enzymes that act on the key metabolite generated by glycolysis, the pyruvate. A number of genes encoding such enzymes (pyruvate dehydrogenase, pdhABC; α-acetolactate synthase, als; pyruvate-formate lyase, pf; and lactate dehydrogenase, ldh) have been identified previously in L. lactis and confirmed by genome analysis. We detected a novel gene, posL, encoding pyruvate oxidase, which also acts on pyruvate and might, therefore, play a role in switching between different fermentation modes.

Besides gene activity, the availability of cofactors, such as NADH and FAD, also affects the balance of different fermentation products. Artificial changing of NADH/NAD ratio in L. lactis can redirect carbon flow from lactic acid to acetoin and diacetyl (Lopez de Felipe et al. 1998). There are more than five NADH dehydrogenase genes in the L. lactis genome, which may affect the type of fermentation products. Some NADH dehydrogenases generate hydrogen peroxide, which is toxic for the cells. L. lactis has no gene encoding catalase, which can remove the toxic H₂O₂. However, there is a gene encoding thiol peroxidase (tpx) and two genes (ahpC and ahpF) encoding alkyl hydroperoxide reductases. These proteins could possibly act on H₂O₂. Active sodA, encoding superoxide dismutase, which converts oxygen radicals to H₂O₂, was shown to be important for the oxidative stress response (Sanders et al. 1995). Also, the gshR gene encoding glutathion reductase may be involved in response of L. lactis to the aerobic growth conditions.

The heterofermentative metabolism takes place in L. lactis when pentose-phosphate pathway is active, as in this case, glycolysis generates not only a three-carbon compound that can be converted to lactate but also a two-carbon compound. We detected glucose-6P dehydrogenase (zwf), phosphogluconate dehydrogenase (gdh), and ribuloso-5P epimerase (rpe), which can lead to the formation of xyluloso-5P. Phosphoketolase, encoded by ptk gene, can catalyze formation of glycer- aldehyde-3P and acetyl-P, which enters the fermentation pathways that yield lactate and ethanol, respectively.

Understanding the molecular basis of the switch between different fermentation types is of interest not only for standard uses of L. lactis but also for the metabolic engineering in this organism, aiming to enhance synthesis of certain metabolites to industrially useful levels. We detected a correlation between the presence of the phosphoenolpyruvate dependent transport system (PTS) and the fermentation profile for a given carbon source. PTS systems for fructose, mannose, sucrose or trehalose, mannitol, and cellobiose are present in the genome, and the homolactic fermentation profiles were reported for growth on fructose, mannose, glucose (which uses mannose or mannitol PTS) and sucrose (Cocaing-Bousquet et al. 1996). In contrast, mixed acid or heterofermentation profiles were observed for growth on galactose, xylose, maltose, glucose, ribose, and lactose, which are not imported by a PTS system. When L. lactis cells harbor a plasmid encoding lactose-specific PTS system, lactose fermentation becomes homolactic (Gasson 1983). Our genome analysis thus strengthens the proposal that sugar consumption rate, which is the highest when PTS system is available, determines the ability for efficient homolactic fermentation (Cocaing-Bousquet et al. 1996). The correlation of information derived from genome analysis with experimental data on fermentation product distribution indicates that critical parameters regulating the final product balance may be found by a thorough analysis of the carbon source use and transport systems.

Proteases and Amino Acid Catabolism Genes
Proteases and peptidases provide a selective advantage for bacteria growing in milk, as this medium is rich in caseins and relatively poor in free amino acids. Amino acid catabolism has an impact on fermentation regulation and on the flavor of dairy products.

Genome sequence revealed 19 protease-encoding genes (Table 1). These include the membrane protease HtrA, which is responsible for degradation of the precursors of foreign exported proteins (Pouquet et al. 2000). Some 16 peptidases from LAB were characterized previously, including the products of 13 genes detected in L. lactis (Christensen et al. 1999).

Catabolism of amino acids usually starts by deamination. Arginine catabolic genes, organized in an operon near 2110 kb, encode the enzymes for the deamination pathway as well as the arginine tRNA synthetase, suggesting complex regulation. Another operon for arginine catabolism, near 1755 kb, contains genes arcC3 and otcA. It could have a regulatory function, as it also contains the genes ilvH and yrfE, representing a signal transduction system of a new type. Aspartate aminotransferase (aspC) and asparaginase (ansB) are involved in aspartate and asparagine catabolism. No genes for aspartate decarboxylase or aspartase were detected, although such enzymatic activities were identified in Lactobacillus, another prominent group of LAB (Rollan et al. 1985). Recent studies on catabolism and biosynthesis of glutamate in L. lactis identified the existence of a pathway leading to the production of γ-aminobutyrate (GABA; Sanders et al. 1998). We identified
gadRCB operon for GABA production, gltBD genes for glutamate synthase, and an operon involved in citric acid metabolism: pyCA, gltA, citB, and lcl. Under appropriate physiological conditions, products of some of these genes might carry out glutamate catabolism, rather than biosynthesis. Serine can be directly converted to pyruvate by serine dehydratase encoded by the sdaAB operon.

Genome sequence provides inventory of 12 aminotransferases, of which some can initiate degradation of aromatic, branched-chain, and sulfur-containing amino acids, important for cheese flavor. The specificity of seven aminotransferases (aspC, serC, argD, glmS, hisC, aspB, and arcT) can be predicted from sequence comparisons, whereas those of other five (araT, nifZ, yeiG, bcaT, and ytfE) are less obvious. It was recently shown that araT and bcaT are involved in the degradation of aromatic and branched-chain amino acids, respectively (Yvon et al. 2000). The product of ytfE might be specific for methionine, as the gene is cotranscribed with the relevant biosynthesis genes. Degradation of tryptophane seems to proceed via indole aldehyde because of indole pyruvate decarboxylase gene ipd. It is not clear which pathways L. lactis uses to catabolize phenylalanine and tyrosine. It is possible that phenyl pyruvate and p-OH-phenyl pyruvate are degraded further by decarboxylation. This would depend on the specificity of the phenolic acid decarboxylase encoded by pdc.

Amino Acid, Vitamin, and Nucleotide Biosynthesis
L. lactis requires certain metabolites in the growth medium, although it has a genetic potential to synthesize some of them. Synthetic medium for L. lactis should contain at least six amino acids (isoleucine, valine, leucine, histidine, methionine, and glutamic acid) and seven vitamins (biotin, pyridoxal, folic acid, riboflavin, nicotinamide, thiamine, and pantothenic acid; Jensen and Hammer 1993). L. lactis has the genes to synthesize the 20 standard amino acids and at least four co-factors (folic acid, menaquinone, riboflavin, and thioetherin). One reason for the requirement of the compounds that can potentially be synthesized is that some of the existing genes are not functional, as was reported previously for amino acid biosynthesis genes (Godon et al. 1993). We carefully checked sequencing tracks for the genes that could contain a frameshift mutation and could not rule out the presence of a mutation in 30 of them. This relatively high level of pseudogenes in IL1403 could possibly be, at least in part, caused by the treatments used to care the parental strain of its plasmids (Chopin et al. 1984).

Milk does not contain sufficient levels of purine compounds to support growth of L. lactis and, therefore, de novo biosynthesis is necessary (Dickely et al. 1995). We detected 57 genes involved in this metabolism. Therefore, physiological and genomic evidence shows that L. lactis has sufficient and fairly active capacities for biosynthesis and also for salvage of nucleic acid compounds.

Cell Wall Metabolism
Many L. lactis properties that are important for applications, such as phage sensitivity, stress resistance, autolysis, and mucosal immunostimulation, depend on the structure of the cell wall. There are 29 genes encoding enzymes required for the synthesis of the main cell wall component, peptidoglycan. Among these, three encode amino acid racemases: dal for alanine, murK for glutamate, and racD for aspartate. D-alanine and D-glutamate are the components of linear peptide moieties of peptidoglycan, whereas D-aspartate forms cross-bridges. There are no genes for synthesis of modified peptidoglycan, containing D-lactate or D-serine instead of D-alanine, reported for several other LAB.

Cheese ripening can be accelerated by induction of enzymes that process peptidoglycan. There are six genes related to such processing in L. lactis: dacA and dacB, encoding alanine–alanine carboxypeptidase; and acmA, B, C, and D, encoding four lysozymes. Carboxypeptidases alone cannot cause the cell lysis, as their activity does not destabilize the wall. Modulation of the level of their production can, however, influence the action of lysozymes. acmA, responsible for separation of daughter cells, was used for artificial induction of autolysis (Buist et al. 1997).

Lipoteichoic acid is another main component of the L. lactis cell wall. Neither teichoic nor teichuronic acids were detected in this microorganism (Valyasevi et al. 1990). However, there is a cluster of seven tag genes near 950 kb. Only three genes from teichuronic acid biosynthesis pathway were found: ycbK, ycbF, and ycbH, corresponding to tuaB, tuaC, and tuaG of B. subtilis. dlt operon, encoding D-alanylation of lipoteichoic acid, is of crucial importance for properties of the cell wall and whole-cell physiology. A knockout mutation in dltD causes filamentous growth and UV sensitivity and facilitates penetrability of the cells (Duwat et al. 1997).

Synthesis of extracellular polysaccharides is important for the industrial use of many LAB, as these polymers affect the texture of the fermented products. There are >20 genes involved in the biosynthesis of such molecules in the region near 200 kb. They encode functions providing activated sugars and other components involved in production of surface or extracellular polysaccharide. A plasmid that carries an operon involved in the formation of the repeating unit, linking activated sugar to the lipid carrier, export, and polymerization, was recently identified (Van Kranenburg et al. 1997). Conjunction of plasmid-carried and chromo-
somal functions presumably determine the amounts and the structure of extracellular polysaccharides.

Protein Secretion

L. lactis has only eight genes identified as implicated in protein secretion. Contrary to *B. subtilis* and *E. coli*, this bacterium does not have *secDF* genes, known to improve the secretion efficiency (Pogliano and Beckwith 1994; Bolhuis et al. 1998). There is only one membrane protease, HtrA, involved in degradation of hybrid exported proteins (Pouquet et al. 2000). Gene *pmpA* (protein maturation protein) encodes a homolog of PrsA from *B. subtilis* and might be involved in stabilization of secreted proteins by facilitating their folding. *L. lactis* was shown to secrete up to 20 mg/L of foreign protein with optimized gene constructs (Le Loir et al. 1998). This value could possibly be improved by manipulating the gene expression levels and supplying the missing components of the secretion machinery.

Competence to Genetic Transformation

Natural competence to DNA transformation was not demonstrated in *L. lactis*. We detected four operons (*comE, comF, comC, and comG*) containing genes similar to the late competence genes from *B. subtilis* and *S. pneumoniae*. In addition, we found a gene for ComX, which is similar to the *S. pneumoniae* ECF-type α-factor required for transcription of the competence genes (Lee and Morrison 1999). The regions preceding the first ORF of the four operons resemble competence promoters from *S. pneumoniae* and might be transcribed by ComX. There are three common sequences in front of all competence operons, two of which, GGTACATT and TTTTCGTATA, are in the −35 and −10 domains of the promoter, while the third, AGTATG, includes the ATG start codon of the first gene in each operon. The relative position of the three conserved elements indicates that all mRNAs start at the ATG codon of the first gene and are, therefore, leaderless, lacking the canonical ribosome-binding site. Search for the consensus sequence over the whole genome, using PatScan (Dsouza et al. 1997), revealed six such promoters other than those of the late competence operons. The genes downstream of these promoters are *radA, colA, dprA, recQ, ssbA*, and *yqfG*. Only the *radA* gene, encoding a DNA repair protein, has leaderless mRNA. Three of the genes, *colA, dprA, and recQ*, affect DNA transformation in *S. pneumoniae, H. influenzae*, and *B. subtilis*, respectively (Karudaparam et al. 1995; Fernandes et al. 1998; Pestova and Morrison 1998). *ssbA* encodes single-strand DNA-binding protein and could be involved in the processing of transforming DNA, which enter gram-positive bacteria in the single-stranded form. *yqfG* encodes a protein of unknown function. The existence of the competence-related genes in *L. lactis* indicates that this bacterium might be naturally transformable by DNA. There are no genes homologous to those involved in early steps of competence development in *S. pneumoniae*, which indicates that, in *L. lactis*, the regulation cascade upstream of ComX α-factor is very different from that in *Streptococci*.

Another difference between *L. lactis* and *S. pneumoniae* competence systems is that the leaderless mRNAs are present in the former organism only. The translation of such mRNAs requires that they start precisely at the initiation codon of the gene (Kravchenko et al. 1988; Van Etten and Janssen 1998). Synthesis of competence-related proteins would, therefore, not take place on spurious transcription of the cognate genes by leakage from upstream operons. This might tighten the control of the competence development and does limit it to very strict environmental conditions.

Horizontal Gene Transfer between Lactococci and Gram-Negative Enteric Bacteria

We detected a gene of unknown function, designated *ycdB*, which appears to be present in all bacteria and some eukaryotes. The level of identity between the YcdB protein and a homolog from *S. pyogenes* or *S. pneumoniae*, phylogenetically close to *L. lactis*, is ~80%, while the identity with the homologous genes from gram-negative bacteria is ~40%. Very surprisingly, the *E. coli* and *S. typhimurium* genomes encode not only a protein that is 40% identical with YcdB but also a protein that is 94% identical to YcdB. We conclude that this second *ycdB* gene has been transferred from lactococci to enteric bacteria. The divergence of the synonymous nucleotide sites in *L. lactis* IL1403, compared with *Salmonella* and *E. coli*, is ~10%. If the rate of nucleotide changes at such sites is ~1% per million years (Ochman et al. 1999), the genes in *Salmonella/E. coli* and *L. lactis* IL1403 started to diverge 10 million years ago. However, comparison of the *ycdB* genes in different strains of lactococci and in gram-negative enteric bacteria may reveal even more closely related genes and allow us to better assess the time of the gene transfer, the species that may have been involved in the transfer, and the mechanism of the transfer. Nevertheless, anticipating that closer homologs will be found, it is tempting to speculate that the transfer may have taken place in the digestive tract of ruminants, if it involved wild-type lactococci, or of humans, if it involved the domesticated lactococci, massively introduced there by cheese consumption.

Analysis of completely sequenced genomes, available from the NCBI server, revealed that most bacteria have only one homolog to YcdB. Some (*E. coli, S. typhimurium, B. subtilis, E. faecalis*, and *Shewanella putrefaciens*), however, have two, indicating that the family might be undergoing an expansion where, at least for enteric bacteria, a lateral gene transfer from lactococci might be a driving force. As the function of this gene is
unknown, the advantage that the second copy confers is not known. Elucidation of the gene function would help to answer this question.

METHODS

Genome Cloning, Sequencing, and Data Verification

The strain IL1403 is a plasmid-free derivative of the strain IL594, isolated from a cheese starter culture (Chopin et al. 1984). Diagnostic sequencing, involving 10,235 sequencing reactions and yielding a total of 4,687,630 bases, has been described previously (Bolotin et al. 1999). Further sequencing was carried out to assure that each nucleotide in the genome was read at least four times and at least once on each strand. For this purpose, a collection of short insert clones was constructed. A total of 9,888,620 bases, covering 93% of the total genome, were produced by 15,578 more sequencing reactions. To reduce the error rate level to <0.01%, 978 more reactions, with average read length of 632 bases, were carried out using genome-specific primers. The redundancy of the final assembling is 6.44.

Informatics and Gene Nomenclature

Assembling manual corrections of sequencing errors and consensus generation were carried out concurrently with data accumulation, using the XBASE program (Dear and Staden 1991; version 14.0). To predict protein-coding regions, we used a conceptual translation of the whole genome in six possible coding frames. The predicted proteins >60 amino acids were checked for the statistical consistency with the output of the GENMARK program (Borodovsky and McIninch 1993) using parameters for Streptococcal genes. EBI server (http://www2.ebi.ac.uk/genemark) and pyogenes_3.xdr matrix dated November 14, 1996, were used for this analysis. The presence of a putative ribosome-binding site upstream of the 3′ end of the candidate was searched next. As a ribosome binding site, we considered the presence of initiator codon ATG, TTG, or GTG and a short sequence homologous to the 3′ end of 16S rRNA of L. lactis (5′-GGAUCACCCUCUUCUAU3′) upstream of it (Chiaruttini and Milet 1993). Genome notation was done by using several homemade shell or Perl scripts, generating convenient html format tables linked to BLAST (Altschul et al. 1990) output files. NCBI server (http://www.ncbi.nlm.nih.gov/Entrez) was used to generate updated bacterial protein databases. Homology analysis of YcdB with the unpublished genome sequences was carried out by using the relevant NCBI server (http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html). The functional classification of genes was done according to the list of categories presented earlier (Bolotin et al. 1999). Fully automatic computer-generated classification was used as the starting material. Each protein was then analyzed by an expert to improve the category assignment, which is presented in Table 1 and Figure 2. The expert usually used three means to confirm or to alter the automated function assignment and classification: first, phylogenetic or COGnitor (Tatusov et al. 1997) assisted scrutiny of BLAST or FASTA results (performed with different parameters); second, complete knowledge of particular biochemical pathways or biological systems, existing in other than L. lactis IL1403 organisms (such as protein secretion or the competence system). Phage-specific proteins were classified to those because of their clustering in the areas identified as prophages. Also, specialized databases (Quentin et al. 1999) were used by the expert to classify the ABC transporters; third, results of numerous experiments in L. lactis, published previously (148 functional assignments). Although it is never absolutely explicit, the provided classification of gene functions in L. lactis IL1403 is biological, rather than biochemical. L. lactis paralogous gene families were constructed by searching each predicted protein against all predicted proteins, using BLASTP with different parameters. Alignments of proteins in the identified families were then scrutinized to make a decision of how many proteins belong to a family. This decision was based either on the size of homologous domains or on the similarity levels. A protein was always assigned to only one family of paralogs.

We tried to keep the same gene symbols as proposed by the previous authors for ORFs with functions experimentally confirmed in L. lactis (148 genes). A y prefix with the gene symbol consistent with its position on the chromosome (Fig. 2) was kept for unascertained functions (1149 genes). Other gene symbols, consistent with those for homologs found in other bacteria, are proposed here (1017 genes).

Accessibility of Data

The nucleotide sequence of the L. lactis IL1403 genome is available from NCBI with accession no. AE005176. Updated annotations are supported at the Genétique Microbienne (INRA) server at http://spock.jouy.inra.fr. A PatScan of Ross Overbeek (Douza et al. 1997) for pattern searches in DNA sequence and proteins, implemented for IL1403, and peptide spectrum identification tool PeptOko for L. lactis proteome research are also available from this server.

ACKNOWLEDGMENTS

We thank Jacek Bordovski and Saulius Kulakauskas for giving samples of the L. lactis IL1403 strain and Marie-Christine and Alain Chopin, Patrick Duwat, Emmanuel Janet, Alexandra Gruss, Emmanuelle Maguin, Isabelle Poquet, Pierre Renaut, and Catherine Robert for helpful discussions. We thank also the Genome Centers that contributed to the Unfinished Microbial Genome Database available for BLAST search through the NCBI server (http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html).

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

Bolotin, A., Brochhuizen, C.P., Sorokin, A., van Roosmalen, M.L., Venema, G., Bron, S., Qax, W.J., and van Dijl, J.M. 1998. SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J. Biol. Chem. 273: 21217–21224.

Bolotin, A., Mauger, S., Malarme, K., Ehrlich, S.D., and Sorokin, A. 1999. Efficiency of secretion of proteins. J. Biol. Chem. 273: 21217–21224.
Bolotin et al.

1999. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Leeuwenhoek 76: 27–76.

Borodovsky, M. and McIninch, J. 1993. GENMARK: A parallel gene recognition for both DNA strands. Comput. Chem. 17: 123–133.

Buist, G., Karsens, H., Nauta, A., van Sinderen, D., Venema, G., and Kok, J. 1997. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, Acm. Appl. Environ. Microbiol. 63: 2722–2728.

Chianuttini, C. and Milet, M. 1993. Gene organization, primary structure and RNA processing analysis of a ribosomal RNA operon in Lactococcus lactis. J. Mol. Biol. 230: 57–76.

Chopin, A., Chopin, M.C., Moiillo-Batt, A., and Langella, P. 1984. Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11: 260–263.

Dickely, F., Nilsson, D., Hansen, E.B., and Johansen, E. 1995. Dear, S. and Staden, R. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907–3911.

Dickely, F., Nilsson, D., Hansen, E.B., and Johansen, E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

Douro, M., Larsen, N., and Overbeek, R. 1997. Searching for patterns in genomic data. Trends Genet. 13: 497–498.

Duwat, P., Cochu, A., Ehrlich, S.D., and Gruss, A. 1997. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473–4479.

Fernandez, S., Sorokin, A., and Alonso, J.C. 1998. Genetic recombination in Bacillus subtilis 168: Effects of recU and recS mutations on DNA repair and homologous recombination. Cell 94: 451–462.

Dear, S. and Saden, R. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907–3911.

Dickely, F., Nilsson, D., Hansen, E.B., and Johansen, E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

Douro, M., Larsen, N., and Overbeek, R. 1997. Searching for patterns in genomic data. Trends Genet. 13: 497–498.

Duwat, P., Cochu, A., Ehrlich, S.D., and Gruss, A. 1997. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473–4479.

Fernandez, S., Sorokin, A., and Alonso, J.C. 1998. Genetic recombination in Bacillus subtilis 168: Effects of recU and recS mutations on DNA repair and homologous recombination. Cell 94: 451–462.

Dear, S. and Saden, R. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907–3911.

Douro, M., Larsen, N., and Overbeek, R. 1997. Searching for patterns in genomic data. Trends Genet. 13: 497–498.

Duwat, P., Cochu, A., Ehrlich, S.D., and Gruss, A. 1997. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473–4479.

Fernandez, S., Sorokin, A., and Alonso, J.C. 1998. Genetic recombination in Bacillus subtilis 168: Effects of recU and recS mutations on DNA repair and homologous recombination. Cell 94: 451–462.

Dear, S. and Saden, R. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907–3911.

Dickely, F., Nilsson, D., Hansen, E.B., and Johansen, E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

Douro, M., Larsen, N., and Overbeek, R. 1997. Searching for patterns in genomic data. Trends Genet. 13: 497–498.

Duwat, P., Cochu, A., Ehrlich, S.D., and Gruss, A. 1997. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473–4479.

Fernandez, S., Sorokin, A., and Alonso, J.C. 1998. Genetic recombination in Bacillus subtilis 168: Effects of recU and recS mutations on DNA repair and homologous recombination. Cell 94: 451–462.

Dear, S. and Saden, R. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907–3911.

Dickely, F., Nilsson, D., Hansen, E.B., and Johansen, E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

Douro, M., Larsen, N., and Overbeek, R. 1997. Searching for patterns in genomic data. Trends Genet. 13: 497–498.
W., Fiers, W., and Remaut, E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355.
Tatusov, R.L., Koonin, E.V., and Lipman, D.J. 1997. A genomic perspective on protein families. Science 278: 631–637.
Tedin, K., Moll, I., Grill, S., Resch, A., Graschopf, A., Gualerzi, C.O., and Blasi, U. 1999. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol. Microbiol. 31: 67–77.
Ten Brink, B., Otto, R., Hansen, U.P., and Konings, W.L. 1985. Energy recycling by lactate flux in growing and non-growing cells of Streptococcus cremoris. J. Bacteriol. 162: 383–390.
Tettelin, H., Saunders, N.J., Heidelberg, J., Jeffries, A.C., Nelson, K.E., Eisen, J.A., Ketchum, K.A., Hood, D.W., Peden, J.F., Dodson, R.J., et al. 2000. Complete genome sequence of Natrierea meningitidis serogroup B strain MC58. Science 287: 1809–1815.
Valyasevi, R., Sandine, W.E., and Geller, B.L. 1990. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882–1889.
Van Etten, W.J., and Janssen, G.R. 1998. An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol. Microbiol. 27: 987–1001.
Van Kranenburg, R., Marugg, J.D., van Swam, I.I., Willem, N.J., and de Vos, W.M. 1997. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387–397.
Yvon, M., Chambellon, E., Bolotin, A., and Roudot-Algaron, F. 2000. Characterisation and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO763 Appl. Environ. Microbiol. 66: 571–577.

Received October 31, 2000; accepted in revised form February 5, 2001.