Towards Domain-Independent Supervised Discourse Parsing Through Gradient Boosting

Patrick Huber and Giuseppe Carenini
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada, V6T 1Z4
{huberpat, carenini}@cs.ubc.ca

1 Introduction

Discourse analysis and discourse parsing have shown great impact on many important problems in the field of Natural Language Processing (NLP) (e.g., Ji and Smith (2017); Bhatia et al. (2015); Nejat et al. (2017); Gerani et al. (2014)). Given the direct impact of discourse annotations on model performance and interpretability, robustly extracting discourse structures from arbitrary documents is a key task to further improve computational models in NLP. To this end, a variety of complementary discourse theories have been proposed in the past, such as the lexicalized discourse framework (Webber et al., 2003), the Segmented Discourse Representation Theory (SDRT) (Asher, 1993; Asher et al., 2003), and the Rhetorical Structure Theory (RST) (Mann and Thomp-son, 1988), with RST focusing on the semantic and pragmatic structure of complete monologue documents, as used in this work.

Despite the importance of discourse analysis and discourse parsing for the field of NLP and the obvious value of the RST discourse theory for many downstream applications, one major limitation for a wider application of discourse information is the severe data sparsity issue (for instance, the popular RST-DT (Carlson et al., 2002) and GUM (Zeldes, 2017) treebanks do not exceed a minuscule number of 400 documents). Furthermore, while the data sparsity issue has been a long-standing problem, modern, data-intensive machine learning approaches further reinforce its severity.

In general, three modelling alternatives have been established in the current landscape: (i) Supervised approaches (e.g., Ji and Eisenstein (2014); Feng and Hirst (2014); Joty et al. (2015); Li et al. (2016); Wang et al. (2017); Guz et al. (2020)), performing well in the domain in which they are trained, however, obtain severely reduced performance if a domain shift is present, as shown in Huber and Carenini (2019, 2020). (ii) Distantly supervised models (e.g., Huber and Carenini (2019, 2020); Nishida and Nakayama (2020); Karimi and Tang (2019); Liu et al. (2019); Huber et al. (2021); Xiao et al. (2020)), aiming to overcome the domain adaptation problem by exploiting large-scale supervised datasets from context-sensitive auxiliary tasks (e.g., sentiment analysis). (iii) Self-supervised/unsupervised methods (e.g., Zhu et al. (2020); Koto et al. (2021); Wu et al. (2020); Kobayashi et al. (2019); Huber and Carenini (2021, 2022)), predicting discourse from either pre-trained language models, auto-encoder style frameworks, or by recursively computing dissimilarity scores.

In this landscape of models aiming to overcome the data sparsity and domain dependency of current discourse parsers, we present a new, supervised paradigm directly tackling the domain adaptation issue. Specifically, we introduce the first fully supervised discourse parser designed to alleviate the domain dependency through a staged model of weak classifiers by introducing the gradient boosting framework (Schaal and Atkeson, 1995; Drucker et al., 1994; Schwenk and Bengio, 1997; Badirli et al., 2020) into the process of discourse parsing. Using the underlying assumption that any discourse treebank contains a mix of frequently appearing, general discourse features (applicable to any domain) as well as a number of dataset-related nuances (which are domain-specific), we postulate that a set of weak classifiers is likely to learn increasingly specific and rare features of the training data. Using this assumption, we can reasonably assume that there exists a threshold of weak classifiers, which effectively separates the general features of discourse from
domain-specific characteristics introduced by the dataset. As a result, we aim to separate this mixture of features using the gradient boosting approach with the goal to generate a more domain-independent discourse parser.

2 Approach

Our approach to introducing neural gradient boosting into the domain of discourse parsing builds on top of the state-of-the-art (SOTA) neural shift-reduce parser by Guz et al. (2020); Guz and Carenini (2020). In this work, we aim to extend this previous line of research in three meaningful directions:

2.1 Added Discourse Relations

The method proposed in Guz et al. (2020); Guz and Carenini (2020) reaches SOTA performance on the RST-DT structure and nuclearity prediction, however, does not consider the important relation attribute. In this work, we aim to generate complete discourse trees with all three components, introducing an additional relation-prediction component besides the structure and nuclearity predictor.

2.2 Linguistically Inspired Stack Representations

In the current SOTA method, spans on the stack are truncated by removing tokens from the center of the textual representation (e.g., a sequence of \{t_1, t_2, t_3, t_4\} and a maximal length of 2 results in \{t_1, t_4\}). As shown by the promising performance of the approach, this heuristic assumption seems reasonable, however, lacks linguistic justification. To this end, we propose a new method to reduce stack elements according to the sub-tree nuclearity. This directly follows the argument in Morey et al. (2018), stating that the relation between constituents in an RST-style discourse tree holds between the respective nuclei of the sub-trees.

2.3 Gradient Boosting Approach

Gradient boosting refers to a classical machine learning approach using an ensemble of weak classifiers initially developed for decision trees (Schaal and Atkeson, 1995) and later adopted for neural architectures (Schwenk and Bengio, 1997; Badirli et al., 2020) (oftentimes called neural/deep gradient boosting), which has been shown to benefit important NLP tasks, such as part-of-speech tagging (Abney et al., 1999), sentiment analysis (Athanasiou and Maragoudakis, 2017), and text classification (Kudo and Matsumoto, 2004), delivering robust models when data is scarce. Our model architecture envisioned in this work is presented in Figure 1. Following the gradient boosting paradigm, we start with a single weak classifier (left side in Figure 1) and train a standard shift-reduce model to predict RST-style discourse trees. The number of free parameters, purposely chosen to be small for individual, weak classifiers, is thereby likely to limit the ability of the model to learn complex features and relations, resulting in the initial training step to exploit simple structures,
e.g., resembling purely right-branching trees. After convergence of the initial weak classifier, a second step is introduced with a similar-sized set of free parameters in the shift-reduce parsing component. This time (see the center in Figure 1), the parsing component is trained to improve the performance of the combined prediction consisting of the initial parser in step 1 and the currently trained component. With the parameter-frozen prediction from the first step being combined with the output of the parser in step 2, the combined model is bound to learn more nuanced relationships in the data. Following the gradient-boosting methodology, the second step thereby improves (i.e., boosts) the performance of the joint classifier for samples that the first step did not capture. Repeating this process for n times, an increasingly specific parser is built.

To summarize, we believe that the gradient boosted method in combination with our extensions of the SOTA work by Guz and Carenini (2020) should improve the domain-independence of supervised discourse parsers when trained on small-scale, human-annotated discourse treebanks. With the iterative modelling strategy, our gradient boosted method can likely utilize the limited training data more efficiently, achieving more domain-independent models, while still reaching high performance in-domain.

3 Planned Evaluation

Following our novel extensions proposed in section 2, we plan to evaluate the model along four dimensions:

Performance Comparison to Single-Step Models, namely Guz et al. (2020) and Guz and Carenini (2020), focusing on the potential of multiple, weak classifiers compared to a single-step, strong classifier.

Training Time and Size Requirements: With large models requiring increasingly restrictive training time and resources, the linear combination of weak classifiers allows for more efficient training, making models more accessible, even with severe hardware restrictions.

Number of Free Parameters: We plan to investigate the size of weak classifiers in regard to the number of gradient boosting steps and performance. We believe that this detailed investigation can shed further light onto the potential of gradient boosted approaches for discourse parsing.

Domain Independence Across Steps: Here, we aim to evaluate whether a larger number of gradient boosting steps leads to increased domain-specificity. This evaluation will compare the model performance of the first m gradient boosting steps (with $1 \leq m \leq n$) to gold-standard discourse structures in different domains, aiming to quantify the correlation of gradient boosted modelling steps with increased domain dependency.

4 Conclusion

In this work, we aim to improve current supervised discourse parsers through a gradient-boosted modelling approach and linguistically inspired model adaptations. Compared to previously proposed models, we try to overcome the domain dependency through a staged model capturing increasingly domain-specific information, making better use of the limited amount of gold-standard discourse data. Using more linguistically inspired stack representations and adding a relation classification component, we hope to create a general and domain-independent, fully supervised discourse parser.

References

Steven Abney, Robert E. Schapire, and Yoram Singer. 1999. Boosting applied to tagging and PP attachment. In 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora.

Nicholas Asher. 1993. Reference to abstract objects in discourse, volume 50. Springer Science & Business Media.

Nicholas Asher, Nicholas Michael Asher, and Alex Lascarides. 2003. Logics of conversation. Cambridge University Press.

Vasileios Athanasiou and Manolis Maragoudakis. 2017. A novel, gradient boosting framework for sentiment analysis in languages where nlp resources are not plentiful: a case study for modern greek. Algorithms, 10(1):34.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhownik, Khoa Doan, and Sathiya S Keerthi. 2020. Gradient boosting neural networks: Grownet. arXiv preprint arXiv:2002.07971.
Vanessa Wei Feng and Graeme Hirst. 2014. Better document-level sentiment analysis from rst discourse parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2212–2218, Lisbon, Portugal. Association for Computational Linguistics.

Lynn Carlson, Mary Ellen Okurowski, and Daniel Marcu. 2002. RST discourse treebank. Linguistic Data Consortium, University of Pennsylvania.

Harris Drucker, Corinna Cortes, L.D. Jackel, Yann LeCun, and Vladimir Vapnik. 1994. Boosting and other machine learning algorithms. In William W. Cohen and Haym Hirsh, editors, Machine Learning Proceedings 1994, pages 53–61. Morgan Kaufmann, San Francisco (CA).

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-time bottom-up discourse parser with constraints and post-editing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 511–521, Baltimore, Maryland. Association for Computational Linguistics.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond T. Ng, and Bita Nejat. 2014. Abstractive summarization of product reviews using discourse structure. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1602–1613, Doha, Qatar. Association for Computational Linguistics.

Grigorii Guz and Giuseppe Carenini. 2020. Coreference for discourse parsing: A neural approach. In Proceedings of the First Workshop on Computational Approaches to Discourse, pages 160–167, Online. Association for Computational Linguistics.

Grigorii Guz, Patrick Huber, and Giuseppe Carenini. 2020. Unleashing the power of neural discourse parsers - a context and structure aware approach using large scale pretraining. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3794–3805, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Patrick Huber and Giuseppe Carenini. 2019. Predicting discourse structure using distant supervision from sentiment. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2306–2316, Hong Kong, China. Association for Computational Linguistics.

Patrick Huber and Giuseppe Carenini. 2020. MEGA RST discourse treebanks with structure and nuclearity from scalable distant sentiment supervision. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7442–7457, Online. Association for Computational Linguistics.

Patrick Huber and Giuseppe Carenini. 2021. Unsupervised learning of discourse structures using a tree autoencoder. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):13107–13115.

Patrick Huber and Giuseppe Carenini. 2022. Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2376–2394, Seattle, United States. Association for Computational Linguistics.

Patrick Huber, Linzi Xing, and Giuseppe Carenini. 2021. Predicting above-sentence discourse structure using distant supervision from topic segmentation. arXiv preprint arXiv:2112.06196.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation learning for text-level discourse parsing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13–24, Baltimore, Maryland. Association for Computational Linguistics.

Yangfeng Ji and Noah A. Smith. 2017. Neural discourse structure for text categorization. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 996–1005, Vancouver, Canada. Association for Computational Linguistics.

Shafig Joty, Giuseppe Carenini, and Raymond T. Ng. 2015. CODRA: A novel discriminative framework for rhetorical analysis. Computational Linguistics, 41(3):385–435.

Hamid Karimi and Jiliang Tang. 2019. Learning hierarchical discourse-level structure for fake news detection. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3432–3442, Minneapolis, Minnesota. Association for Computational Linguistics.

Naoki Kobayashi, Tsutomu Hirao, Kengo Nakamura, Hidetaka Kunigaito, Manabu Okumura, and Masaaki Nagata. 2019. Split or merge: Which is better for unsupervised RST parsing? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5797–5802, Hong Kong, China. Association for Computational Linguistics.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021. Discourse probing of pretrained language models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3849–3864, Online. Association for Computational Linguistics.

Taku Kudo and Yuji Matsumoto. 2004. A boosting algorithm for classification of semi-structured text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages 301–308, Barcelona, Spain. Association for Computational Linguistics.

Qi Li, Tianshi Li, and Baobao Chang. 2016. Discourse parsing with attention-based hierarchical neural networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 362–371, Austin, Texas. Association for Computational Linguistics.

Yang Liu, Ivan Titov, and Mirella Lapata. 2019. Single document summarization as tree induction. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1745–1755, Minneapolis, Minnesota. Association for Computational Linguistics.

William C Mann and Sandra A Thompson. 1988. Rhetorical structure theory: Toward a functional theory of text organization. *Text - Interdisciplinary Journal for the Study of Discourse*, 8(3):243–281.

Mathieu Morey, Philippe Muller, and Nicholas Asher. 2018. A dependency perspective on RST discourse parsing and evaluation. *Computational Linguistics*, 44(2):197–235.

Bita Nejat, Giuseppe Carenini, and Raymond Ng. 2017. Exploring joint neural model for sentence level discourse parsing and sentiment analysis. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 289–298, Saarbrücken, Germany. Association for Computational Linguistics.

Noriki Nishida and Hideki Nakayama. 2020. Unsupervised discourse constituency parsing using Viterbi EM. *Transactions of the Association for Computational Linguistics*, 8:215–230.

Stefan Schaal and Christopher Atkeson. 1995. From isolation to cooperation: An alternative view of a system of experts. In *Advances in Neural Information Processing Systems*, volume 8. MIT Press.

Holger Schwenk and Yoshua Bengio. 1997. Training methods for adaptive boosting of neural networks. In *Advances in Neural Information Processing Systems*, volume 10. MIT Press.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017. A two-stage parsing method for text-level discourse analysis. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 184–188, Vancouver, Canada. Association for Computational Linguistics.

Bonnie Webber, Matthew Stone, Aravind Joshi, and Alistair Knott. 2003. Anaphora and discourse structure. *Computational Linguistics*, 29(4):545–587.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020. Perturbed masking: Parameter-free probing for analyzing and interpreting BERT. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4166–4176, Online. Association for Computational Linguistics.

Wen Xiao, Patrick Huber, and Giuseppe Carenini. 2020. Do we really need that many parameters in transformer for extractive summarization? discourse can help! In Proceedings of the First Workshop on Computational Approaches to Discourse, pages 124–134, Online. Association for Computational Linguistics.

Amir Zeldes. 2017. The gum corpus: Creating multilayer resources in the classroom. *Lang. Resour. Eval.*, 51(3):581–612.

Zining Zhu, Chuer Pan, Mohamed Abdalla, and Frank Rudzicz. 2020. Examining the rhetorical capacities of neural language models. In *Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP*, pages 16–32, Online. Association for Computational Linguistics.