Experience with the potassium binder patiromer in hyperkalaemia management in heart failure patients in real life

Alberto Esteban-Fernández1,2*, Carolina Ortiz Cortés3, Silvia López-Fernández4,5, Alejandro Recio Mayoral6, Francisco Javier Camacho Jurado7, Inés Gómez Otero8, María Molina1,2, Luis Almenar Bonet9,10 and Raquel López-Vilella9,10

1Faculty of Health Sciences, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, Spain; 2Cardiology Service, Hospital Universitario Severo Ochoa, Leganés, Spain; 3Cardiology Service, Hospital San Pedro de Alcántara, Cáceres, Spain; 4Heart Failure Unit, Cardiology Service, Hospital Universitario Virgen de las Nieves, Granada, Spain; 5IDIBELL, Instituto de Investigación Biosanitaria ibs, Granada, Spain; 6Cardiology Service, Hospital Universitario Virgen Macarena, Sevilla, Spain; 7Cardiology Service, Hospital Universitario de Puerto Real, Cádiz, Spain; 8Cardiology Service, Hospital Universitario de Santiago, A Coruña, Spain; 9Heart Failure and Transplant Unit, Cardiology Service, Hospital Universitari i Politècnic La Fe, Valencia, Spain; and 10CIBERCV, Valencia, Spain

Abstract

Aims Hyperkalaemia (HK) is common in heart failure (HF) patients, related to renal dysfunction and medical treatment. It limits medical therapy optimization, which impacts prognosis. New potassium (K) binders help control HK, allowing better medical management of HF.

Methods and results A retrospective multicentre register included all outpatients with HF and HK (K ≥ 5.1 mEq/L) treated with patiromer according to current recommendations. We evaluated analytic and clinical parameters before starting the treatment and at 7, 30 and 90 days, as well as adverse events related to patiromer and treatment optimization. We included 74 patients (71.6% male) with a mean age of 70.8 years (SD 9.2). Sixty-seven patients (90.5%) presented HK in the previous year. Forty patients (54.1%) underwent down-titration of a renin–angiotensin–aldosterone inhibitor (RAASi) or a mineralocorticoid receptor antagonist (MRA), and 27 (36.5%) stopped any of them due to HK. Initial K was 5.5 mEq/L (SD 0.6), with a significantly reduction at 7 days (4.9 mEq/L (SD 0.8); P < 0.001), maintained at 90 days (4.9 mEq/L (SD 0.8); P < 0.001). There were no other electrolyte disturbances, with a slight improvement in renal function [glomerular filtration rate 39.6 mL/min (SD 20.4) to 42.7 mL/min (SD 23.2); P = 0.005]. Adverse events were reported in 33.9% of patients, the most common being hypomagnesaemia (16.3%), gastrointestinal disturbances (14.9%) and HK (2.8%). Withdrawal of patiromer was uncommon (12.2%) due to gastrointestinal disturbances in 66.7% of cases.

Nine patients (12.2%) started on a RAASi, and 15 patients (20.3%) on an MRA during the follow-up. Forty-five patients (60.8%) increased the dose of RAASi or MRA, increasing to target doses in 5.4 and 10.8% of patients, respectively. At 90 days, NTproBNP values were reduced from 2509.5 pg/mL [IQR 1311–4,249] to 1396.0 pg/mL [IQR 804–4263]; P = 0.003, but the reduction was only observed in those who optimized HF medical treatment [NTproBNP from 1950.5 pg/mL (IQR 1208–3403) to 1349.0 pg/mL (IQR 804–2609); P < 0.01]. NYHA functional class only improved in 7.5% of patients, corresponding with those who optimized HF medical treatment. Compared with the previous 3 months before patiromer treatment, the rate of hospitalization was reduced from 28.4 to 10.9% (P < 0.01), and the emergency room visits from 18.9 to 5.4% (P < 0.01).

Conclusions In a real-life cohort of patients with HF, patiromer reduced and maintained K levels during 3 months of follow-up. The most common adverse events were hypomagnesaemia and gastrointestinal disturbances. Patiromer helps optimize medical treatment, increasing the percentage of patients treated with RAASi and MRA at target doses. At the end of follow-up, natriuretic peptides values and hospital visits were reduced, suggesting the benefit of optimizing HF medical treatment.

© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Introduction

Heart failure (HF) clinical practice guidelines recommend treating HF patients with a renin–angiotensin–aldosterone system inhibitor (RAASI), a beta-blocker, a mineralocorticoid receptor antagonist (MRA) and a sodium-glucose cotransporter type 2 inhibitor (SGLT2i) at the maximum tolerated doses to reduce mortality and HF hospitalization.\(^1,2\) However, real-life registers demonstrated that only 30% of patients achieved the target doses (TD) of these drugs.\(^3\) One of the most common causes of reducing or stopping some of these drugs, especially RAASI and MRA, is hyperkalaemia (HK), sometimes associated with chronic kidney disease (CKD). HK is responsible for 8.5% of patients not taking a RAASI and up to 35% in the case of MRA.\(^3,4\) The underuse and withdrawal of these drugs are related to poor prognosis.\(^3–7\)

The incidence of HK in patients with HF is estimated to be around 4–8%, depending on the chronic or acute onset, and has been associated with an increase in mortality.\(^8–10\) Its appearance is associated with age, comorbidities (CKD, hypertension, diabetes and cancer) and, importantly, RAASI and MRA treatment.\(^4,9\) Clinical guidelines recommend using new K-binders [patiromer and sodium zirconium cyclosilicate (SZC)] to manage HK in HF patients to maintain and optimize HF treatment.\(^2,11–13\)

Patiromer is an oral K-binder that exchanges K with calcium (Ca) in the distal colon, increasing its excretion through the digestive tract.\(^14\) Several trials have demonstrated the efficacy of patiromer to control HK in the long-term follow-up, allowing the maintenance and optimization of RAASI and MRA.\(^15–19\) Also, the studies demonstrated its safety, with a low incidence of HK or severe gastrointestinal effects, as occurs with ion-exchange resins.\(^16,17\)

This study aims to evaluate the safety and efficacy of patiromer in patients with chronic HF and HK in real-life conditions, considering K management, medical treatment optimization and clinical events in a short-term follow-up.

Methods

A retrospective multicentre register included all outpatients with chronic HF and HK that started patiromer from September 2019 (when patiromer was marketed in Spain, with the indication for treating HK in adults) to June 2021, according to clinical practice and guidelines recommendations.\(^11–13\) HK has been defined as K \geq 5.1 mEq/L in the moment of patiromer beginning or the presence of at least one episode of HK during the last year. The patients were recruited in seven Spanish multidisciplinary HF units. The ethics committee of Hospital Universitario Severo Ochoa approved the study, and all patients consented to participate in the registry. The study complies with the Declaration of Helsinki.

The follow-up and HF drug optimization were made according to physician clinical practice in each hospital. We have included all HF patients regardless of left ventricular ejection fraction (LVEF) if RAASI or MRA treatment was indicated due to LVEF dysfunction or concomitant comorbidities, especially arterial hypertension and coronary artery disease.\(^2\)

Patient data were collected before starting patiromer, at 7, 30 and 90 days. Different variables were analysed: (i) medical history, vital signs, New York Heart Association (NYHA) functional class; (ii) LVEF and right ventricular function with tricuspid annulus plane systolic excursion (TAPSE); (iii) previous treatments as well as presence and function of cardiac devices at the time of inclusion; (iv) blood test parameters; (v) HK episodes in the previous 12 months and HF drug modification due to HK; (vi) aspects related to patiromer: starting dose, drug dose modifications or discontinuation during the titration and reported adverse effects (gastrointestinal effects, hypomagnesaemia, HK, hypercalcaemia, others); (vii) aspects related to medical treatment of HF: starting RAASI or MRA, dose modifications, discontinuation during the follow-up and maximum tolerated dose (target dose); (viii) occurrence of clinical events: death, emergency room visits or hospital admission [cardiovascular (CV) causes, non-CV causes and HK].

The study considered angiotensin-converting enzyme inhibitor (ACEi), angiotensin type II blockers (ARBs) or sacubitril/valsartan (SV) as RAASI and MRA separately. TD of drugs are the ones considered in HF guidelines.\(^1,2\) CKD was defined as a mean estimated glomerular filtration rate (eGFR) < 60 mL/min.

Statistical analysis

Quantitative variables are shown as mean and standard deviation (or median and interquartile range if they do not follow a Gaussian distribution). Adjustment to normality was assessed with the Kolmogorov–Smirnov test. Categorical variables are shown as frequencies and percentages. Continuous quantitative variables were compared using Student’s t-test.
or the sum of Wilcoxon ranges in non-parametric data and
categorical variables with the chi-square and Fischer’s exact
test. An ANOVA with paired measures was performed to
compare analytical parameters during the follow-up. We
analysed NTproBNP reduction, NYHA improvement and clinical
outcomes in the whole population and according to med-
ical treatment optimization (starting or increasing the dose of
RAASi or MRA during the follow-up). The analysis was per-
formed with SPSS 21.0 and STATA 17.0.

Results

Seventy-four patients were included, with a mean age of
70.8 years (SD 9.2). Patients were more frequently male with
a high prevalence of CV risk factors, ischaemic disease, CKD,
reduced LVEF and NYHA II functional class (Table 1). Patients
were well treated (Table 2), with a high percentage receiving
RAASi (81.1%) and beta-blockers (96.0%). Less patients re-
cieved therapy with diuretics (64.9% loop diuretics and
thiazides), MRA (48.6%) and SGLT2i (18.9%). The per-
centage of patients with non-reduced LVEF was low
(12.2% thiazides), MRA (48.6%) and SGLT2i (18.9%). The per-
centage of patients with non-reduced LVEF was low
(18.9%), and all of them had arterial hypertension or coro-
nary artery disease (47.3% ischaemic disease and 68.9% arte-
rial hypertension).

Sixty-seven patients (90.5%) had presented a history of
documented HK in the previous 12 months. The mean of
HK episodes was 2.0 (SD 1.9), and all of them had arterial hypertension or coro-
nary artery disease (47.3% ischaemic disease and 68.9% arte-
rial hypertension).

At the beginning of patiromer treatment, mean K levels
were 5.5 mEq/L (SD 0.6) (Table 3). All patients started
patiromer with a dose of 8.4 mg once a day (o.d). Most pa-
thents received patiromer at lunchtime (35.1%) or
mid-morning (28.4%). At 7 days, K was significantly reduced
to a mean of 0.6 mEq/L (P = 0.001) (Table 3). The reduction in
K levels was maintained during the follow-up (Figure 1),
with 25.7% of patients needing to increase the patiromer
dose to 16.8 mg o.d. There was a trend in magnesium (Mg)
reduction, but the analysis was limited due to only eight pa-
thents with all the determinations available. Renal function
was stabilized, with a statistical trend to improve eGFR during
the follow-up [39.6–42.7 mL/min; P = 0.005]. NTproBNP
values were significantly reduced at 90 days from a median
of 2509.5 pg/mL [IQR 1311–4249] to 1396.0 pg/mL [IQR
804–4263], P = 0.003 (Table 3 and Figure 2). The reduction
was only observed in those who optimized medical treatment
[1950.5 (IQR 1208–3403) vs. 1349.0 (IQR 804–2609); P < 0.01].

33.9% of patients reported at least one episode of an ad-
verse event (AE) related to patiromer during the follow-up
(Table 4). The most frequent were hypomagnesaemia
(16.3%), gastrointestinal disturbances (14.9%) and HK
(2.8%). Nine patients (12.2%) stopped patiromer during the
follow-up due to AE related to the drug. The most frequent
cause was gastrointestinal disturbances (66.7%), with no
withdrawal related to hypomagnesaemia or K disturbances.

The changes in HF medical treatment were made mainly in
the first month after the patiromer introduction. Within the
first 3 months, 12.2% of patients started a RAASI, and
20.3% an MRA (Table 2). Thirty-five patients (47.3%) in-
creased the dose of RAASI, achieving target doses in 5.4%.
Seven patients (9.5%) increase the dose of MRA, achieving
target doses in 10.8% (Table 2). Twenty-four patients
(32.4%) at 30 days and 31 (41.9%) at 90 days did not increase

Table 1 Basal characteristics of patients treated with patiromer

Parameter	Patients (n = 74)
Sex (female), n (%)	21 (28.4)
Age (years)	70.8 (9.2)
Hypertension, n (%)	51 (68.9)
SBP (mmHg)	119.2 (18.8)
DBP (mmHg)	69.7 (10.8)
Diabetes, n (%)	39 (52.7)
Dyslipidaemia, n (%)	44 (59.5)
CKD, n (%)	51 (68.9)
BMI (kg/m²)	27.2 (4.6)
Sinus rhythm, n (%)	44 (59.5)
HR (b.p.m.)	69.5 (10.5)
HF aetiology, n (%)	
Ischaemic	25 (34.3)
Dilated/familial	18 (24.3)
Valvular	7 (9.5)
Other	14 (18.9)
LVEF (%)	36.7 (12.4)
TAPSE (mm)	18.8 (4.1)
Median NTproBNP (pg/mL)	2509.5 (1,311–4,249)

Type of HF, n (%)

- Reduced LVEF | 50 (67.6)
- Mild-reduced LVEF | 10 (13.5)
- Preserved LVEF | 14 (18.9)

Functional class, n (%)

- NYHA I | 4 (5.4)
- NYHA II | 46 (62.2)
- NYHA III | 20 (27.0)

Devices (ICD/CRT), n (%)

- Previous hospital admission*, n (%) | 21 (28.4)
- CV causes | 19 (25.7)
- Non-CV causes | 1 (1.4)
- Hyperkalaemia | 1 (1.4)
- Previous emergency room visit*, n (%) | 14 (18.9)
- CV causes | 9 (12.2)
- Non-CV causes | 3 (4.1)
- Hyperkalaemia | 2 (2.7)

BMI, body mass index; CKD, chronic kidney disease; CRT, cardiac resynchronization therapy; CV, cardiovascular; DBP, diastolic blood pressure; HF, heart failure; HR, heart rate; ICD, implanted cardiac defibrillator; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; SBP, systolic blood pressure.

*3 months before starting patiromer treatment.
drugs doses because of other causes than HK (more frequently hypotension and kidney failure).

Clinical events were not frequent during the follow-up (Table 4). Nearly 7% of patients visited the emergency room or were admitted to the hospital at 30 days and 9.5% at 90 days. Only one patient had an HK episode treated in the emergency room. Compared with the previous 3-month period before patiromer treatment, the number of hospital admissions (28.4% vs. 10.9%; \(P < 0.01 \)) and emergency room visits (18.9% vs. 5.4%; \(P < 0.01 \)) were significantly reduced. Forty-seven patients (63.5%) did not improve NYHA class at the end of follow-up, three improved (4.1%), and nine deteriorated functional class (12.2%) (Tables 1 and 4). The improvement and deterioration of NYHA class only happened in those patients who modified medical treatment.

Discussion

HK is common in HF patients and often limits disease-modifying medical therapy. New K-binders have emerged in recent years, controlling this common complication and allowing better medical management of HF. However, there are little data on their use in clinical practice. This study found that treatment with patiromer normalized K levels at 7 days maintained at 3 months. This treatment was safe and well tolerated, with a similar profile as reported in clinical trials and pharmacovigilance data. In our study, 12.2% of patients started RAASi, and 20.3% MRA during the follow-up, with a significant increase in the percentage of patients in TD (5.4% in RAASi and 10.8% in MRA). At 90-day follow-up, natriuretic peptides values and hospital visits were
Figure 1 Evolution of potassium levels during the follow-up. a = K before patiromer treatment vs. K at 7 days ($P < 0.05$). b = K before patiromer treatment vs. K at 90 days ($P < 0.05$).

Figure 2 Evolution of NTproBNP levels during the follow-up. a = NTproBNP before patiromer treatment vs. NTproBNP at 90 days ($P < 0.05$).
Table 4 Adverse effects and clinical events related to patiromer during the follow-up

Event	7 days	30 days	90 days
AE episodes, n (%)	14 (18.9)	13 (17.6)	14 (18.9)
Gastrointestinal disturbances	4 (5.4)	5 (6.8)	5 (6.8)
Hypomagnesaemia	7 (9.5)	8 (10.8)	7 (9.5)
Hypokalaemia	2 (2.7)	0 (0)	0 (0)
Hypercalcaemia	0 (0)	0 (0)	1 (1.4)
Hyperkalaemia	0 (0)	0 (0)	1 (1.4)
Own patient decision	1 (1.4)	0 (0)	0 (0)
Withdrawal of patiromer, n (%)^a	2 (2.7)	2 (2.7)	5 (6.8)
AE incidence, n (%)	13 (17.6)	7 (9.5)	5 (6.8)
Gastrointestinal disturbances	4 (5.4)	3 (4.1)	4 (5.4)
Hypomagnesaemia	7 (9.5)	4 (5.4)	1 (1.4)
Hypokalaemia	2 (2.8)	0 (0)	0 (0)
Patiromer increase dose, n (%)	0 (0)	16 (21.6)	3 (4.1)
Clinical events, n (%)	0 (0)	5 (6.8)	7 (9.5)
Hospital admission, n (%)	3 (4.1)	5 (6.8)	
CV causes	1 (1.4)	2 (2.7)	
Non-CV causes	2 (2.7)	3 (4.1)	
Hyperkalaemia	0 (0)	0 (0)	
Emergency room visit, n (%)	2 (2.7)	2 (2.7)	
CV causes	0 (0)	1 (1.4)	
Non-CV causes	1 (1.4)	1 (1.4)	
Death, n (%)	0 (0)	0 (0)	1 (1.4)
Functional class, n (%)			
NYHA I	9 (12.2)		
NYHA II	36 (48.6)		
NYHA III	15 (20.3)		

AE, adverse event; CV, cardiovascular; NYHA, New York Heart Association.

^aNine patients (12.1%) discontinued patiromer during the follow-up: six for gastrointestinal causes (one of them changed to CZS with good tolerance and no new HK); one for own patient decision without no new HK episodes during the follow-up; one for hyperkalaemia; one for HK, with a change to CZS.

^bConsidering only one episode for each patient.

^cDistribution according to optimization of medical treatment during the follow-up: (i) patients who changed treatment: two CV episodes, two non-CV and one hyperkalaemia; (ii) patients who did not change treatment: two CV episodes, five non-CV and one death (non-CV death in a patient admitted to hospital).

Reduced, suggesting a clinical benefit of optimizing HF medical treatment.

The evidence-guided treatment at TD, including RAASi and MRA, is recommended to reduce mortality and HF admission. In our cohort, although 81.1% of patients received an RAASi, only 16.2% were in TD. In MRA, the rate was lower, with only 48.6% of patients receiving treatment and 9.5% in TD. Some studies previously showed the undertreatment of HF patients in real life, frequently due to drugs AE, renal function impairment and therapeutic inertia, impacting prognosis. In the European Society of Cardiology (ESC) HF Long-Term Registry, including 12 440 patients, 89% received RAASi, but only 29% were in TD, and 59% an MRA (31% TD).⁵

HK is a common cause of not optimizing medical treatment, especially MRA, as 54.1% of our patients had reduced HF medical treatment and 36.5% stopped some specific drug due to HK in the previous year. In a subanalysis of ESC HF Long-Term Registry concerning only Spanish hospitals,⁵ including 3587 patients, K was responsible for 5% of patients not having TD and 14% not taking RAASi. In MRA, 15% did not receive TD, and around 30% were not taking them because of HK. In our experience, the control of K with patiromer helps to optimize treatment, especially during the first month, as almost 55.4% of patients changed medical treatment since patiromer treatment. The number of patients treated with RAASi increased by 12.2% and MRA by 20.3%. Also, the percentage of patients in TD increases by 5.4% in RAASi and 10.8% in MRA, considering that up to 50% of patients had limited drugs optimization due to other causes, especially hypotension and CKD.

Clinical guidelines recommend starting or increasing RAASi and MRA with a K between 4 and 5 mEq/L and patients with a range between 5.1 and 6.0 mEq/L associating a K-binder. Traditional resins must be avoided due to the published cases of intestinal necrosis, the risk of congestion due to Na exchange and poor gastrointestinal tolerance. Only 20% of our patients received resins before starting patiromer. In our study, K is reduced by 0.6 mEq/L at 7 days, and K levels were maintained in the normal range at 90 days. Some studies have demonstrated that patiromer reduced K levels in 48–72 h and remained stable in the long-term.^{8,17,23}

In the AMETHYST-DN trial, which included 306 patients with CKD, diabetes and/or HF, the reduction of K was 0.5 mEq/L at 4 weeks in mild HK, with normal-ranged values at 52 weeks. It is essential to maintain patiromer to control K because its withdrawal is related to new HK, which impacts prognosis.^{8,17}

Patiromer was safe in clinical practice, with a lower incidence of non-serious AE than reported in other studies (33.9% vs. 47–62%).^{3,16,18,19,23} Rossignol et al. published an article comparing all data obtained from the clinical trial programme, including 666 patients,^{16,17,19,24} and data from the global pharmacovigilance database over 4 years (2016–2019), including 45 000 patient-years.²⁵ This report’s most common non-serious AE were gastrointestinal disturbances (18% in clinical programme and 15% in pharmacovigilance data), similar to our cohort (14.9%). Like other studies, most AE were mild²³ and was detected in the first month of patiromer treatment.²³

In our study, hypomagnesaemia was more frequent than in the Rossignol et al. study (16.3% vs. 6% in the clinical programme), although conclusions were interfered by most of our patients had not Mg close monitoring. The periodical control of Mg and the other electrolytes is recommended in HF patients.^{11,13,26} Although hypomagnesaemia related to patiromer used to be mild and did not carry to cardiac arrhythmias, it is recommended to supplement in cases with Mg < 1.5 mg/dL.^{9,26} The incidence of HK is also very low (5% in the clinical programme, 0.5% in pharmacovigilance data and 2.8% in our cohort), and only one case had to be resolved in the emergency room. The incidence of serious AE, none of them related to patiromer, was also very low in our study, similar to that reported by Rossignol et al.
(6% hospitalization in pharmacovigilance data vs. 6.8% at 90 days in our cohort).

The possibility of optimizing K management with patiromer and subsequent HF treatment optimization may impact prognosis. Our study showed that natriuretic peptide values were reduced, and hospitalization and emergency room visits decreased, suggesting a clinical benefit of HF medical treatment optimization in the short term. Interestingly, there was a trend to improve renal function, considering that almost 70% of our patients had CKD. We have limited clinical events’ impact data, with a similar rate reported in other studies but a short follow-up. The DIAMOND-HF trial (NCT03888066) [Patiromer for the Management of Hyperkalemia in Subjects Receiving RAASi Medications for the Treatment of Heart Failure] will not answer this question due to a recent change in the primary endpoint. Another ongoing international registry, the CARE HK in HF, evaluates the real-life factors that influence RAASi treatment in patients with HF and HK and the impact on outcomes.

Our study has some limitations. First of all, there were some missing visits or incomplete data collection during follow-up related to a retrospective registry’s research nature. Second, no specific follow-up protocol was performed according to usual clinical practice. However, this makes it a registry that realistically shows the multicentre experience with patiromer in actual practice. Third, we analysed the short-term management of patiromer and had no data about the potential reduction of clinical events related to long-term drug improvements. Finally, the sample size is small to conclude that patiromer impacts clinical outcomes, although this is the higher cohort of patients of patiromer published in real life.

Conclusions

Potassium was normalized during the K-binder patiromer treatment in our cohort, with a safety profile similar to clinical trials and pharmacovigilance data. Patiromer was helpful to optimize HF treatment, significantly increasing the percentage of patients treated with RAASi and MRA and the number of patients in TD. At the end of follow-up, natriuretic peptides values and hospital visits were reduced, which may be related to K management and medical optimization.

Conflict of interest

AEF declares to have received fees for presentations and participation as an expert in the Advisory Board from AstraZeneca and Vifor Pharma. None of the authors declare conflicts of interest.

Funding

This work was supported by an unrestricted grant from Vifor Pharma.

References

1. Writing Committee, Maddox TM, Januzzi JL Jr, Allen LA, Breathett K, Butler J, Davis LL, Fornarow GC, Ibrahim NE, Lindenfeld J, Masoudi FA, Motiwala SR, Oliverson F, Patterson JH, Walsh MN, Wasserman A, Yancy CW, Youmans QR. 2021 update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: Answers to 10 pivotal issues about heart failure with reduced ejection fraction: A report of the American College of Cardiology Solution Set Oversight. J Am Coll Cardiol. 2021; 77: 772–810.

2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkiene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray J, Mubazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibeland AK. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42: 3599–3726.

3. Maggioni AP, Anker SD, Dahlström U, Filippatos G, Tonikowski P, Zannad F, Aimir O, Chioncel O, Leiro MC, Drozdz J, Erglis A, Fazilbegovic E, Fonseca C, Fruhwald F, Gatzow P, Goncalvesova E, Hansanein M, Hradec J, Kavoliuniene A, Lainscak M, Logeart D, Merkely B, Metra M, Persson H, Seferovic P, Temizhan A, Tousoulis D, Tavazzi L. on behalf of the Heart Failure Association of the ESC (HFA)Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12 440 patients of the ESC heart failure long-term registry. Eur J Heart Fail. 2013; 15: 1173–1184.

4. Vardeny O, Wu DH, Desai A, Rossignol P, Zannad F, Pitt B, Solomon SD, RALES Investigators. Influence of baseline and worsening renal function on the efficacy of spironolactone in...
patients with severe heart failure: Insights from RALES (randomized Aldactone evaluation study). J Am Coll Cardiol. 2012; 60: 2082–2089.

5. Ouwerkerk W, Voors AA, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P, Hillege HL, Lang CC, ter Maaten JM, Ng LL, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zannad F, Metra M, Zwinderman AH. Determinants and clinical outcome of up titration of ACE-inhibitors and beta-blockers in patients with heart failure: A prospective European study. Eur Heart J. 2017; 38: 1883–1890.

6. Ferreira JP, Rossignol P, Machu JL, Sharma A, Girerd N, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, ter Maaten JM, Metra M, Ng L, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zwinderman AH, Voors A, Zannad F. Mineralocorticoid receptor antagonist pattern of use in heart failure with reduced ejection fraction: Findings from BIOSTAT-CHF. Eur J Heart Fail. 2017; 19: 1284–1293.

7. Vicent I, Esteban-Fernández A, Gómez-Bueno M, de Juan J, Díez-Villanueva P, Iniesta AM, Ayesta A, González-Saldívar H, Rojas-González A, Bover-Freire R, Iglesias D, García-Aguado M, Perea-Egido JA, Martínez-Sellés M. Sacubitril/Vvalsartan in acute heart failure patients with cardiovascular disease treated with renin angiotensin aldosterone system inhibitors: Coordinated by the working group on cardiorenal pharmacotherapy of the European Society of Cardiology. Eur Heart J Cardiovasc Pharmacother. 2018; 4: 180–189.

8. Núñez J, Bayés-Genís A, Zannad F, Rossignol P, Núñez E, Bodí V, Miñana G, Santos E, Chorro FJ, Mollar A, Carratalá A, Navarro J, Górriz JL, Lupón G, Santas E, Chorro FJ, Mollar A, Zannad F. Mineralocorticoid receptor antagonist pattern of use in heart failure with reduced ejection fraction: Findings from BIOSTAT-CHF. Eur J Heart Fail. 2017; 19: 1284–1293.

9. Vicent I, Esteban-Fernández A, Gómez-Bueno M, de Juan J, Díez-Villanueva P, Iniesta AM, Ayesta A, González-Saldívar H, Rojas-González A, Bover-Freire R, Iglesias D, García-Aguado M, Perea-Egido JA, Martínez-Sellés M. Sacubitril/valsartan in acute heart failure patients with cardiovascular disease treated with renin angiotensin aldosterone system inhibitors: Coordinated by the working group on cardiorenal pharmacotherapy of the European Society of Cardiology. Eur Heart J Cardiovasc Pharmacother. 2018; 4: 180–189.

10. de la Fuente-Padrón A, Pérez-Ruiz JM, Fernández-Robles A, Zawadzki R, Berman L, Buysse J. Mechanism of action of a nonabsorbed cross-linked polymer that treats hyperkalemia in patients with heart failure: Recommendations from the SEC-SEMI. Rev Clínica Española (English Ed). 2022; 222: 235–240.

11. Li L, Harrison SD, Cope MJ, Park C, Lee BM, Agarwal R. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2019; 394: 1540–1550.

12. Pitt B, Garza D, Mayo MR, Garza D, Stasiv Y, Wittes J, Christ-Schmidt H, Berman L, Pitt B, OPAL-HK Investigators. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015; 372: 211–221.

13. Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: Are they safe and effective? J Am Soc Nephrol. 2010; 21: 733–735.

14. Pitt B, Garza D. The tolerability and safety profile of patiromer: A novel polymer-based potassium binder for the treatment of hyperkalemia. Expert Opin Drug Saf. 2018; 17: 525–535.

15. Pitt B, Bushinsky DA, Kitzman DW, Ruschitzka F, Metra M, Filippatos G, Rossignol P, du Mond C, Garza D, Berman L, Lainsova M, on behalf of the Patiromer-204 Investigators. Evaluation of an individualized dose titration regimen of patiromer to prevent hyperkalemia in patients with heart failure and chronic kidney disease. ESC Heart Fail. 2018; 5: 257–266.

16. Rossignol P, David L, Chan C, Conrad A, Weir MR. Safety and tolerability of the potassium binder patiromer from a global pharmacovigilance database collected over 4 years compared with data from the clinical trial program. Drugs - Real World Outcomes. 2021; 8: 315–323.

17. Esteban-Fernández A, Alonso Salinas G, de Juan Baguá J, Fernández-Fresnedo G, Górriz Magaña I, Iniesta AM, Rivera-Juárez A, Cobo Marcos M. Fisiopatología, diagnóstico y tratamiento de la hipomagnesemia en pacientes con insuficiencia cardíaca. REC CardioClinics. 2021; 56: 299–308.