The surroundings of the superluminal source GRS 1915+105

L. F. Rodríguez and I. F. Mirabel

1 Instituto de Astronomía, UNAM, J. J. Tablada 1006, Morelia, Michoacán, 58090 México
email: luisfr@astrosmo.unam.mx

2 CEA/DSM/DAPNIA/Service D’Astrophysique, Centre d’Études de Saclay, F-91191 Gif-sur-Yvette, France
email: mirabel@discovery.saclay.cea.fr

3 Instituto de Astronomía y Física del Espacio, C.C. 67, Suc. 28. 1428, Buenos Aires, Argentina

Received ; accepted

Abstract. We have carried out radio studies of the surroundings of the superluminal microquasar GRS 1915+105. Our main goal was to understand the possible relation of GRS 1915+105 with two infrared/radio sources that appear symmetrically located with respect to GRS 1915+105 and aligned with the position angle of the relativistic ejecta. We have also studied a nearby supernova remnant to test if the event that created the remnant could have been the progenitor of this hard X-ray binary.

Key words: ISM: HII regions – ISM: individual objects: IRAS 19124+1106, IRAS 19132+1035, SNR 45.7-0.4 – ISM: supernova remnants – X-rays: stars

1. Introduction

Great advances have been made at radio, infrared, and X-ray wavelengths in the study of the microquasar GRS 1915+105 (Mirabel & Rodríguez 1994; 1998), the first superluminal source found in our Galaxy. Much less attention has been paid to its surroundings, in particular trying to search for nearby supernova remnants that could be associated to the formation of this hard X-ray binary, and also to understand where in the interstellar medium is the large kinetic energy of the relativistic ejecta (reaching 10^{43} ergs; Rodríguez & Mirabel 1999) being dissipated.

In this paper we present a large-scale mosaic image at 20-cm continuum of the environment of GRS 1915+105 searching for nearby supernova remnants and other extended objects. We also report on extensive radio continuum and recombination line studies of two infrared/radio sources, IRAS 19124+1106 and IRAS 19132+1035, that appear symmetrically located with respect to GRS 1915+105 and aligned with the position angle of the relativistic ejecta. All the observations were made with the Very Large Array of NRAO[1].
2. Large scale 20-cm continuum map

During 1997 December 14 we did a 3×3 mosaic of the surroundings of GRS 1915+105 at 20-cm continuum using the VLA in the D configuration. The resulting image is shown in Figure 1. The most important objects in the region are identified in this Figure. GRS 1915+105 was undetectable at the epoch of the observations and its position is marked with a cross. To its NW and SE we can see the two IRAS sources, IRAS 19124+1106 and IRAS 19132+1035, that will be discussed below. IRAS 19124+1106 appears projected in close association with a complex of H II regions that includes well-studied sources as G45.46+0.06.

To the NE of GRS 1915+105 we can see the supernova remnant SNR 45.7-0.4. This remnant was first observed at 30.9 MHz by Kassim (1988) with the Clark Lake telescope. It was later observed by Fürst et al. (1987) at 1.4, 2.7, 4.7, and 10.6 GHz with the Bonn telescope. The Bonn observations show spectral indices in the range of -0.3 to -0.5, and at 4.75 GHz 21% polarization in the arc-shaped structure shown in Figure 1.

Are SNR 45.7-0.4 and GRS 1915+105 related? In the sky, and assuming a distance of 12.5 kpc, GRS 1915 appears displaced by about 40 pc from the centroid of SNR 45.7-0.4. The proper motion study of GRS 1915+105 by Dhawan, Mirabel, & Rodríguez (1998) sets an upper limit of 100 km s\(^{-1}\) for the velocity of the source with respect to its galactic position. Then, if GRS 1915+105 is a binary ejected during the supernova event that produced SNR 45.7-0.4, it required about 400,000 years to get to its present position. This time interval seems to be much larger than typical lifetimes for detectable supernovae (∼100,000 years) and we consider unlikely a common origin for both objects.

3. IRAS 19124+1106 and IRAS 19132+1035

These two bright IRAS sources are also relatively bright radio continuum sources and appear symmetrically located with respect to GRS 1915+105 (see Figure 1). Furthermore, their position angle with respect to GRS 1915+105 is very similar to that of the relativistic ejecta (∼150°). IRAS 19124+1106 has PSC IRAS flux densities at 12, 25, 60, and 100 µm of 3.9, 19.6, 260.6, and 581.5 Jy, while IRAS 19132+1035 has PSC IRAS flux densities at 12, 25, 60, and 100 µm of 6.9, 34.0, 277.4, and 488.8 Jy. The IRAS colors are characteristic of embedded H II regions.

3.1. Matching-beam continuum

We carried out matching-beam (∼4″) observations of the two IRAS sources by observing at 20-cm (B configura-
Fig. 3. VLA maps at 20 (top), 6 (middle), and 2 cm (bottom) of IRAS 19132+1035. The half power contour of the beam, with diameter of 4", is shown in the bottom right corner. Contours are -4, 4, 6, 8, 10, 15, 20, 40, 60, 100, 200, 300, and 400 times 0.05 mJy beam\(^{-1}\).

Table 1. Flux densities of IRAS 19124+1106 and IRAS 19132+1035

	\(S_\nu\) (20-cm)	\(S_\nu\) (6-cm)	\(S_\nu\) (2-cm)
IRAS 19124+1106	114±4	130±4	114±4
IRAS 19132+1035	60±4	63±4	52±6

In Figures 2 and 3 we show the matching-beam maps of IRAS 19124+1106 and IRAS 19132+1035, respectively, at 20, 6, and 2-cm. IRAS 19124+1106 appears to be a classical cometary H II region. There is, however, a remarkable feature in IRAS 19132+1035. To its northwest edge a linear feature of non-thermal spectrum is clearly observable. The approximate flux densities for this feature at 20, 6, and 2-cm are 5, 2, and \(\leq 1\) mJy, respectively, for a spectral index of \(-0.8\). This feature points back approximately to GRS 1915+105. There are several possible explanations for this non-thermal feature.

1) It could be a non-thermal jet produced by the interaction of the ejecta from GRS 1915+105 with the H II region. Furthermore, it can be speculated that the interaction of the relativistic ejecta with the molecular cloud at this position (Chaty et al. 1998) could have induced star formation.

2) It could be a background source that happens to lie along the line of sight. This possibility seems unlikely, given that the lineal feature is relatively bright (\(\sim 5\) mJy at 20-cm) and that it is aligned toward GRS 1915+105.

3) The feature could be a non-thermal jet emanating from the star that ionizes the H II region or even from one of the lower-mass stars that probably formed in this region, since stars tend to form in groups. Radio continuum jets have been observed to emanate from many young stars. However, the majority are of thermal (i.e., free-free) nature (Rodríguez 1997), although a few appear to be non-thermal (i.e., synchrotron) emitters (Wilner et al. 1997).

3.2. \(H_9\alpha\) radio recombination line

In addition to the continuum study, we observed the \(H_9\alpha\) recombination line during 1998 January 15. At that epoch the array was in its lowest angular resolution D configuration. The observations were made using 0134+329 as absolute amplitude calibrator, 1226+023 as bandpass calibrator, and 1923+210 as phase calibrator.

The spatially-integrated continuum and \(H_9\alpha\) line parameters are given in Table 2 and the \(H_9\alpha\) spectra are shown in Figure 4. The observed recombination line parameters are also typical of H II regions. We have used
Table 2. H92α Radio Recombination Line Observations

Source	S_C (mJy)	S_L (mJy)	Δv (km s$^{-1}$)	v_{LSR} (km s$^{-1}$)	Angular Size (″)
IRAS 19124+1106	131.7±0.9	14.9±1.0	25.4±1.9	57.3±0.9	15±2
IRAS 19132+1035	61.0±0.3	8.9±1.1	23.4±3.2	75.7±1.6	20±3

Table 3. Derived Parameters from the H92α and 3.6-cm Continuum Observations

Source	Distance (kpc)	T_e (K)	Physical Size (pc)	N_i (phot s$^{-1}$)	ZAMS Star Required	n_e (cm$^{-3}$)	M_{HII} (M$_{\odot}$)	τ_e (nepers)
IRAS 19124+1106	7.4	6800±600	0.54	6.0×1075	O9	5.4×102	3.5	0.002
IRAS 19132+1035	6.0	5900±1000	0.59	1.7×1027	B0	2.6×102	2.1	0.001

Fig. 4. H92α spectra of IRAS 10124+1106 (left) and IRAS 19132+1035 (right). The dashed line is the least-squares Gaussian fit to the data.

The derived IRAS luminosities are $3.3\times10^4 L_{\odot}$ and $2.4\times10^4 L_{\odot}$ for IRAS 19124+1106 and IRAS 19132+1035, respectively. These luminosities correspond to an O9.5 ZAMS star and a B0 ZAMS star, and agree well with the stellar classes inferred from the ionized gas (see Table 3).

The derived IRAS luminosities are perfectly consistent with those of compact H II regions that seem to be closer than GRS 1915+105 (7.4 kpc and 6.0 kpc, instead of 12.5 kpc). The only anomaly remains the linear non-thermal feature observed in IRAS 19132+1035. It should also be noted that IRAS 19132+1035 has a sharp edge towards the south, that could be related to either a bow shock or an ionization front.

4. Conclusions

1. We find that the supernova SNR 45.7-0.4 is too far from GRS 1915+105 too ascribe a common origin to both objects.
2. The bright IRAS/radio sources IRAS 19124+1106 and IRAS 19132+1035 appear to be H II regions ionized by late O or early B stars. We find that a peculiar non-thermal feature is associated with IRAS 19132+1035, but cannot reach a firm conclusion on its nature.

Acknowledgements

L. F. R. acknowledges the support of DGAPA, UNAM and CONACyT, M´exico.

References

Brand, J. & Blitz, L., 1993, A&A 275, 67
Chaty, S. et al., 1998, in preparation.
Dhawan, V., Mirabel, I.F., & Rodríguez, L.F., 1998, in preparation.
Downes, D., Wilson, T. L., Bieging, J., & Wink, J., 1980, A&A Suppl. 40, 379
Kassim, N.E., 1988, ApJS 68, 715
Fürst, E. et al., 1987, A&AS, 69, 403
Mirabel, I.F. & Rodríguez, L.F., 1994, Nature 371, 46
Mirabel, I.F. & Rodríguez, L.F., 1998, Nature 392, 673
Rodríguez, L.F., 1997, in IAU Symp. No. 182 Herbig-Haro Flows and the Birth of Low Mass Stars, eds. B. Reipurth & C. Bertout, Kluwer, p. 83.
Rodríguez, L.F. & Mirabel, I.F., 1999, to appear in ApJ
Wilner, D.J., Reid, M.J., Menten, K.M., & Moran, J.M., 1997, in Low Mass Star Formation - from Infall to Outflow, Poster proceedings of IAU Symposium No. 182 on Herbig-Haro Objects and the Birth of Low Mass Stars, eds. F. Malbet & A. Castets, Chamonix, p. 193.