Management of early gastrointestinal neuroendocrine neoplasms

Hans Scherübl, Robert T Jensen, Guillaume Cadiot, Ulrich Stölzel, Günter Klöppel

Hans Scherübl, Departments of Gastroenterology, Gastrointestinal Oncology and Infectious Diseases, Vivantes Klinikum Am Urban, Berlin 10967, Germany
Robert T Jensen, Digestive Diseases Branch, NIH, Bethesda, MD 20892, United States
Guillaume Cadiot, Service d’Hépato-Gastroentérologie, Hôpital Robert Debré, Reims 51092, France
Ulrich Stölzel, Departments of Gastroenterology and Gastrointestinal Oncology, Klinikum Chemnitz, Chemnitz 09116, Germany
Günter Klöppel, Department of Pathology, Technical University Munich, Klinikum rechts der Isar, München 81675, Germany

Author contributions: Scherübl H performed data acquisition, manuscript conception and writing; Jensen RT performed clinical interpretation and writing; Cadiot G performed clinical interpretation and writing; Stölzel U performed clinical interpretation and writing; Klöppel G performed clinical interpretation, manuscript conception and writing.

Correspondence to: Hans Scherübl, MD, Professor, Klinik für Innere Medizin - Gastroenterologie, Gastrointestinal Onkologie und Infektionologie, Vivantes-Klinikum Am Urban, Akademisches Lehrkrankenhaus der Charité, Dieffenbachstrasse 1, Berlin 10967, Germany. hans.scheruebl@vivantes.de
Telephone: +49-30-130225201 Fax: +49-30-130225205
Received: January 15, 2011 Revised: May 4, 2011 Accepted: May 18, 2011
Published online: July 16, 2011

Abstract

Neuroendocrine neoplasms (NENs) of the stomach, duodenum, appendix or rectum that are small (≤1 cm) and well differentiated can be considered “early” tumors, since they generally have a (very) good prognosis. In the new WHO classification of 2010, these neoplasms are called neuroendocrine tumors/ carcinoids (NETs), grade (G) 1 or 2, and distinguished from poorly differentiated neuroendocrine carcinomas (NECs), G3. NETs are increasing, with a rise in the age-adjusted incidence in the U.S.A. by about 700% in the last 35 years. Improved early detection seems to be the main reason for these epidemiological changes. Both the better general availability of endoscopy, and imaging techniques, have led to a shift in the discovery of smaller-sized (≤10-20 mm) intestinal NETs/carcinoids and earlier tumor stages at diagnosis. Endoscopic screening is therefore effective in the early diagnosis, not only of colorectal adenocarcinomas, but also of NETs/carcinoids. Endoscopic removal, followed up with endoscopic surveillance is the treatment of choice in NETs/carcinoids of the stomach, duodenum and rectum that are ≤10 mm in size, have a low proliferative activity (G1), do not infiltrate the muscular layer and show no angioinvasion. In all the other intestinal NENs, optimal treatment generally needs surgery and/or medical therapy depending on type, biology and stage of the tumor, as well as the individual situation of the patient.

© 2011 Baishideng. All rights reserved.

Key words: Neuroendocrine tumor; Carcinoid; Stomach; Duodenum; Gut; Appendix; Rectum; Small size; Prognosis; Treatment

Peer reviewers: Varut Lohsiriwat, MD, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Scherübl H, Jensen RT, Cadiot G, Stölzel U, Klöppel G. Management of early gastrointestinal neuroendocrine neoplasms. World J Gastrointest Endosc 2011; 3(7): 133-139 Available from: URL: http://www.wjgnet.com/1948-5190/full/v3/i7/133.htm DOI: http://dx.doi.org/10.4253/wjge.v3.i7.133

INTRODUCTION

Gastrointestinal neuroendocrine neoplasms (NENs) have received much attention in recent years with regard to their diagnosis, classification, incidence, prognosis and treatment[1-3]. The most recent achievement is the new WHO classification, which appeared in the second half of 2010.
Gastrointestinal NETs/carcinoids are on the rise[7]. In the U.S.A., the prevalence and the incidence of gastrointestinal NETs/carcinoids has recently been calculated to be 35/100 000 and 5/100 000, respectively[3], revealing a 7-fold increase in the last 35 years. Similar observations have been reported from England[8] and Norway[9]. The most obvious reason for this phenomenon is a better awareness of, and improved diagnostic strategies, for NENs, and an increased and more widespread use of gastrointestinal endoscopy[8-11].

The overall 5-year-survival rate for patients with gastrointestinal NETs/carcinoids has improved by almost 20% in the last 35 years[12-18]. This achievement is largely due to early detection, as gastrointestinal NETs/carcinoids are nowadays more frequently diagnosed at an early asymptomatic stage[2], notably tumors with a size below 10 mm and a G1 differentiation. Due to a lack of controlled prospective studies the management of these “early” gastrointestinal NETs/carcinoids has been a matter of debate. Here we review the retrospective data from large national registries and large hospital series, mainly from Japan, the U.S.A. and Korea.

RISK STRATIFICATION AND PROGNOSIS OF GASTROINTESTINAL NEN DISEASE

The risk of metastatic disease of gastrointestinal NENs correlates with histological differentiation (well or poorly differentiated), proliferative activity (G1-3, Table 2), tumor size, depth of tumor infiltration and angioinvasion. The recently introduced and generally accepted histological grading of gastrointestinal NENs (G1-G3) by the WHO is of major prognostic and therapeutic relevance (Table 2).

Prognosis of gastric NETs/carcinoids

At present, the most common of the gastric NENs, the type 1 (Table 3), is mostly diagnosed at an early stage, with 80%-90% of them being ≤ 1 cm in diameter[19]. These small tumors only rarely cause specific symptoms; in most instances they are found incidentally during a gastroscopy being performed for another reason, such as anemia, reflux symptoms or other non-specific abdominal symptoms. Type 1 gastric NENs, similar to type 1 (Table 3) are usually detected at an early stage, and thus have an excellent long term prognosis. For all gastric carcinoids the prognosis has much improved[16,20-22] with the proportion of advanced tumor stages at diagnosis decreasing from 23.8% in the 1970s and 1980s to 6.5%-7.9% in the 1990s, suggesting that early diagnosis is contributing to patients’ improved survival. In Japan, the rate of advanced stages at diagnosis today is as low as 5.1%[20]. The 5-year-survival rate of patients with gastric NENs has improved from 51% in the 1970s and 1980s to 63% in the 1990s[13-22]. According to a recent analysis of the SEER data by Landry et al[21], the 5-year-survival is now up to 71%.

Small (≤ 1cm), well-differentiated (G1) carcinoids/NETs of the stomach that do not infiltrate the muscularis propria and do not show angioinvasion have been shown to have a very low risk of distant metastatic spread or carcinoid-related death; they are considered early NETs/carcinoids of the stomach.

Prognosis of NETs/carcinoids of the small bowel

In the small bowel, ileal NETs/carcinoids are most frequently found (> 70%), but recent data show that the NE-

Table 1: Comparison of the WHO classification 2010 for gastroenteropancreatic neuroendocrine neoplasms with previous WHO classifications

WHO 1980	WHO 2000	WHO 2010
Carcinoid	WDET*	NET
G1 (carcinoid)		G1
G2		G2*
WDEC*	PDEC	NEC
NEC		G3
Large cell or small cell type		
MEEC	MANEC	TLL
TLL	Hyperplastic and preneoplastic lesions	

G: Grade (for definition, see text and table 2); *In case that the Ki67 proliferation rate exceeds 20%, this NET may be graded G3. WHO: World Health Organization; WDET: Well-differentiated endocrine tumor; WDEC: Well-differentiated endocrine carcinoma; MEEC: Mixed exocrine-endocrine carcinoma; TLL: Tumour-like lesions; NET: Neuroendocrine tumor; WDET: Well-differentiated endocrine tumor; WDEC: Well-differentiated endocrine carcinoma; MEEC: Mixed adenoneuroendocrine carcinoma.

Table 2: Grading of gastrointestinal neuroendocrine neoplasms according to proliferative activity

Grade	Ki-67 index (%)a
G1	≤ 2
G2	3-20
G3	> 20

*aModified according to reference[21,22]; aMIB1 antibody, % of 100 tumor cells in areas of highest nuclear labeling.
Ts of the duodenum are nowadays more common (22%) than previously noted\[^{[29,31,32]}\]. Regarding prognosis, the 5-year survival rate has risen from 51.9% in the 1970s and 1980s to 60.5% in the 1990s\[^{[10]}\]. In an analysis of the years 1999-2004, Strosberg et al. reported a 5-year survival rate of about 75% in patients with metastatic NET/carcinoid disease of the small intestine, receiving multimodal therapy\[^{[17]}\]. An earlier detection of all NETs of the small bowel may have led to improved prognosis\[^{[34]}\], since the proportion of advanced disease of small intestine NETs (at the time of diagnosis) has decreased from 31.3% in the 1970s and 1980s, to 22.4% in the 1990s and finally to < 18.9% in the years between 2002-2004\[^{[16,27]}\]. With duodenal NETs/carcinoids, distant metastases are nowadays observed in less than 6%-10% of the cases\[^{[19,20,29,30]}\]. If duodenal NETs/carcinoids are ≲ 10 mm in size, are G1, show neither angioinvasion nor infiltration of the muscular layer, and have no associated hormonal syndrome, they have a very low metastatic potential and can be considered “early” duodenal NETs/carcinoids. In contrast, duodenal gastrinomas (i.e. duodenal NETs/carcinoids associated with a Zollinger-Ellison syndrome (ZES), with or without multiple endocrine neoplasia 1) as well as jejunal/ileal NETs/carcinoids of only a few millimeters in size, may already have spread to locoregional lymph nodes and/or distant organs such as the liver. Thus, neither for jejunal/ileal NETs/carcinoids nor for duodenal ZES/gastrinomas, is the term “early” appropriate, and should not be used.

Prognosis of rectal NETs/carcinoids

Because of the introduction of colorectal cancer screening, the vast majority (85%-100%) of rectal NETs/carcinoids are nowadays detected at an early stage (Table 4). This has improved patients’ 5-year-survival rate by more than 20%\[^{[10]}\].

The 5-year-survival rate of rectal NETs/carcinoid patients with distant metastases ranges between 15%-30%\[^{[31,32]}\]. For nodal-positive rectal carcinoid disease (without distant metastases detected at the time of diagnosis) the 5-year-survival rate is 54%-73%\[^{[31,32]}\]. In contrast, histologically nodal-negative rectal NETs/carcinoids that are ≲ 1 cm in size do not show angioinvasion or infiltration of the muscular layer have an excellent 5-year-survival rate of 98.9%-100%\[^{[19,20,32,33]}\]. These rectal NETs/carcinoids may be regarded as “early” tumors.

The risk of lymph node metastases of rectal NETs/carcinoids is not lower than the metastatic risk of rectal adenocarcinoma of the same size\[^{[20,33]}\]. Interestingly, neither is the prognosis of patients with metastatic rectal NET/carcinoid disease better than that of patients suffering from metastatic rectal adenocarcinoma of the same size\[^{[31,34]}\].

The clinical significance of histological lymph node involvement in G1-G2 differentiated rectal NETs/carcinoids of 1-2 cm in size is not well studied and therefore not known, at least not in Western countries. Current guidelines published by NANETS do not recommend follow-up of patients with well-differentiated rectal carcinoids/NETs of 1-2 cm in size that have been completely resected and that has not invaded the muscular layer\[^{[18]}\]. Yet ENETS recommends further surveillance of these patients when angioinvasion or invasion of the muscular layer or G2 grading have been reported\[^{[18]}\].

Table 4 Impact of endoscopic screening on the size of detected rectal NETs/carcinoids\[^{[14]}\]

Size of the primary	Without screening (%)	Endoscopic screening (%)
< 10 mm	65-80	93,3-100
11-20 mm	10-22	0-6-7
> 20 mm	10-15	0

DIAGNOSIS OF EARLY NETS/CARCINOID OF THE STOMACH, DUDENUM OR RECTUM

Endoscopic screening and the increasingly widespread...
availability of gastrointestinal endoscopy have led to a shift in the discovery of smaller-sized (≤ 10-20 mm) gastrointestinal carcinoids/NETs at the time of diagnosis. Most of these tumors are asymptomatic, but occasionally they may present with abdominal discomfort, gastrointestinal bleeding, altered bowel habits or in the case of an ampullary NET with jaundice. If they present with hormonal hypersecretion syndromes, as for instance as duodenal gastrinomas associated with ZES (see above), they have often already spread to the regional lymph nodes, despite their small size. These functional intestinal NETs that almost never represent “early” tumors, will not be discussed here in detail (see recent reviews).

Endoscopy is the only method of choice to detect (asymptomatic) gastric, duodenal or rectal NETs/carcinoids at an early stage. So far there are no data available concerning the sensitivity and specificity of radiological and scintigraphic imaging techniques to visualize early gastric, duodenal or rectal NETs/carcinoids (Figure 1).

THERAPY OF EARLY GASTROINTESTINAL NETS/CARCINOIDs

For early NETs/carcinoids of the stomach, duodenum or rectum, the treatment of choice is endoscopic resection. For the treatment and management of more advanced NETs/carcinoids, all the prognostically relevant parameters (see below) have to be taken into account. Best palliative therapy is required for far advanced tumor disease.

Stomach, duodenum and rectum

Small (≤ 1 cm), well-differentiated (G1) NETs/carcinoids of the stomach, duodenum or rectum that do not infiltrate the muscularis propria and do not show angio-invasion have a very low risk of metastatic spread, i.e. they are considered early NETs/carcinoids of the stomach, duodenum or rectum. Endoscopic ultrasound is excellent for determining exact tumor size and to exclude infiltration of the NETs/carcinoids into the muscular wall (muscularis propria).
Table 5 Therapy of gastric NENs

No risk factors (for metastatic disease)	risk factorsa
Size	1-2 cm
Type 1 Surveillanceb	EMR followed by surveillance
Optionally EMR	Surgeryb
Type 2 Surveillancec	EMR followed by surveillance
Type 3 EMR	Surgeryb
Type 4 -	Surgeryb

Risk factors for metastatic disease are angioinvasion or G2-G3 histological grading or infiltration of the muscularis propria or tumor size > 2 cm. Smaller tumors that are G1, measure ≤ 1 cm, show no angioinvasion, are confined both to the tip of the appendix and to the wall (without invasion of the mesoappendix) and have been completely (R0) removed. Such early appendiceal NETs/carcinoids “early appendiceal carcinoid” may be considered for the therapy of choice for sporadic gastrinoma, no MEN1.

Table 6 Therapy of duodenal NENs

Type	≤ 1 cm	1-2 cm	Any size but risk factorsa
Sporadic NET (no gastrinoma, no MEN1)	EMR	Surgery (in case of surgical risk)	
Sporadic gastrinoma	Surgeryb	Surgeryb	
Gastrinoma and MEN1	PPI therapy and surveillance (or surgery)	Surgery (particularly if the gastrinoma is growing)	
NEC (G3)	-	-	

Risk factors for metastatic disease are angioinvasion or infiltration of the muscularis propria; tumor size > 2 cm; somatostatin analogs are being tested in ongoing clinical trials, they should not be used except in clinical trials; followed by endoscopic surveillance of the gastric remnant. Adjuvant (medical) therapy is not established in NET/carcinoid disease. Surgery is the therapy of choice for sporadic gastrinoma (without distant metastases). In (very) elderly patients conservative management may, however, be preferred to surgery. Adjuvant (medical) therapy is not established in NET/carcinoid disease. Well differentiated neuroendocrine tumors have a very low risk of distant metastatic spread. Neither ENETS nor NANETS recommend further surveillance of patients with these early appendiceal tumors. The management of other appendiceal carci-

Table 7 Therapy of rectal NENs

No risk factors (for metastatic disease)	Risk factorsa		
Grade/Size	≤ 1.0 cm	1.1 - 2.0 cm	Any size
G1	EMR or polypectomy or ESD	Surgeryb (in case of surgical risk)	
		for carcinoids of ≤ 11-14 mm in diameter	
G2	EMR, ESD, surgeryb	Surgeryb	
G3	-	Surgeryb	

Risk factors for metastatic disease are angioinvasion or infiltration of the muscularis propria, or tumor size > 2 cm; surgery only in localized NET/NEN disease and systemic medical therapy in advanced tumor/cancer disease. Adjuvant medical therapy is not established for curatively resected, well differentiated NETs/carcinoids of the rectum. G3 neuroendocrine neoplasms of the rectum are always neuroendocrine carcinomas. EMR: Endoscopic mucosal resection; ESD: endoscopic submucosal dissection; NENs: Neuroendocrine neoplasms.

APPENDIX

Appendiceal NENs are usually NETs/carcinoids that are found incidentally in (young) patients undergoing appendectomy for suspected acute appendicitis. The term “early appendiceal NET/carcinoid” may be considered for the tumors that are G1, measure ≤ 10 mm, show no angioinvasion, are confined both to the tip of the appendix and to the wall (without invasion of the mesoappendix) and have been completely (R0) removed. Such early appendiceal carcinoids have a very low risk of distant metastatic spread. Neither ENETS nor NANETS recommend further surveillance of patients with these early appendiceal tumors. The management of other appendiceal carci-
CONCLUSION

New diagnostic techniques have led to increasingly early recognition of early gastrointestinal NETs/carcinoids. The general widespread use and availability of gastrointestinal endoscopy has led to a shift in the discovery of smaller-sized (≤ 10-20 mm) gastrointestinal NETs/carcinoids at the time of diagnosis. In the last 35 years, the overall 5-year survival rate of patients with gastrointestinal carcinoid/NEC disease has increased by almost 20%. Most patients with early, well differentiated (G1) NETs/carcinoids of the stomach, duodenum and rectum can be treated conservatively, and be followed-up by endoscopic surveillance. It should be noted that patients with (previous) NET/carcinoids have a 15%-25% risk for second malignancies including breast, prostate, colorectal or gastric cancer.

REFERENCES

1 Klöppel G, Rindi G, Anlauf M, Perren A, Komminoth P. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch 2007; 451 Suppl 1: 59-27.
2 Klöppel G, Couvelard A, Perren A, Komminoth P, McNicol AM, Nilsson O, Scarpa A, Scoazec JY, Wiedenmann B, Papotti M, Rindi G, Ploßkinger U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology 2009; 90: 162-166.
3 Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, Caplin M, Delle Fave G, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, Sundin A. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2009; 10: 9-12.
4 Rindi G, Klöppel G, Allman H, Caplin M, Couvelard A, de Herder WW, Eriksson B, Falchetti A, Falconi M, Komminoth P, Körner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2006; 449: 395-401.
5 Rindi G, Klöppel G, Couvelard A, Komminoth P, Körner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2007; 451: 757-762.
6 Greene FL, Sobin LH. A worldwide approach to the TNM staging system: collaborative efforts of the AJCC and UICC. J Surg Oncol 2009; 99: 269-272.
7 Yao JC, Hassassian M, Phan A, Doghoby C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB. One hundred years under the "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072.
8 Ellis L, Shale MJ, Coleman MP. Carcinoid tumors of the gastrointestinal tract: trends in incidence in England since 1971. Am J Gastroenterol 2010; 105: 2563-2569.
9 Hauss O, Gastafsson BI, Kidd M, Waldum HL, Droadov I, Chan AK, Modlin IM. Neuroendocrine tumour epidemiology: contrasting Norway and North America. Cancer 2008; 113: 2655-2664.
10 Kaminiski M, Polkowski M, Regula J. Prevalence and endoscopic features of rectal neuroendocrine tumors (carcinoids) among 50148 participants of the Polish colorectal-cancer screening programme. Gut 2007; 56 (Suppl III): A310.
11 Scherübl H. Options for gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9: 203.
12 Hosokawa O, Miyazaki T, Kaizaki Y, Hattori M, Dohden K, Ohta K, Itou Y, Aoyagi H. Decreased death from gastric cancer by endoscopic screening: association with a population-based cancer registry. Scand J Gastroenterol 2008; 43: 1112-1115.
13 Scherübl H, Cadiot G, Jensen RT, Rösch T, Stöbel U, Klöppel G. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy 2010; 42: 664-671.
14 Scherübl H. Rectal carcinoids are on the rise: early detection by screening endoscopy. Endoscopy 2009; 41: 162-165.
15 Scherübl H, Jensen RT, Cadiot G, Stöbel U, Klöppel G. Neuroendocrine tumors of the small bowels are on the rise: Early aspects and management. World J Gastrointest Endosc 2010; 2: 325-334.
16 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97: 954-959.
17 Strosberg J, Gardner N, Kvols L. Survival and prognostic factor analysis of 146 metastatic neuroendocrine tumors of the mid-gut. Neuroendocrinology 2009; 89: 471-476.
18 Zar N, Garmo H, Holmberg L, Rastad J, Hellman P. Long-term survival of patients with small intestinal carcinoid tumors. World J Surg 2004; 28: 1163-1168.
19 Jensen RT, Rindi G, Arnold R, Lopes JM, Brandi ML, Bechtsowe WN, Christ E, Taal BG, Knigge U, Ahlman H, Kweckeboom DJ, O'Toole D. Well-differentiated duodenal tumor/carcinoma (excluding gastrinomas). Neuroendocrinology 2006; 84: 165-172.
20 Ito T, Tanaka M, Sasano H, Osmura YR, Sasaki I, Kimura W, Takano K, Obara T, Ishibashi M, Nakao K, Doi R, Shimatsu A, Nishida T, Komoto I, Hirata Y, Imamura M, Kawabe K, Naka-mura K. Preliminary results of a Japanese nationwide survey of neuroendocrine gastrointestinal tumors. J Gastroenterol 2007; 42: 497-500.
21 Landry CS, Brock G, Scoggins CR, McMasters KM, Martin RC. A proposed staging system for gastric carcinoid tumors based on an analysis of 1,543 patients. Ann Surg Oncol 2009; 16: 51-60.
22 Modlin IM, Lye KD, Kidd M. A 50-year analysis of 562 gastric carcinoids: small tumor or larger problem? Am J Gastroenterol 2004; 99: 23-32.
23 Klöppel G, Clemens A. The biological relevance of gastric neuroendocrine tumours. Yale J Biol Med 1996; 69: 69-74.
24 Ruszniewski P, Delle Fave G, Cadiot G, Komminoth P, Chung D, Kos-Kudla B, Kianmanesh R, Hochhauser D, Arnold R, Ahlman H, Pauwels S, Kweckeboom DJ, Rindi G. Well-differentiated gastric tumors/carcinomas. Neuroendocrinology 2006; 84: 158-164.
25 Rindi G, Bordi C, Rappel S, de Rosso S, Stefani M, Solcia E. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg 1996; 20: 168-172.
26 Rindi G, Azzoni C, La Rosa S, Klersy C, Pasotti D, Rappel S, Stolte M, Capella C, Bordi C, Solcia E. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 1999; 116: 532-542.
27 Bilimoria KY, Bentrem DJ, Wayne JD, Ko CY, Bennett CL, Talmonini MS. Small bowel cancer in the United States: changes in epidemiology, treatment, and survival over the last 20 years. Ann Surg Oncol 2009; 26: 65-71.
28 Soga J. Endocrine carcinomas (carcinoids and their variants) of the duodenum. An evaluation of 927 cases. J Exp Clin Cancer Res 2003; 22: 349-363.
29 Soga J. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer 2005; 103: 1587-1595.
30 Garbrecht N, Anlauf M, Schmitt A, Henoppe T, Sipos B, Raffel A, Eisenberger CF, Knoefel WT, Pavel M, Fottner C, Msholtz
TJ, Rinke A, Arnold R, Berndt U, Plöckinger U, Wiedenmann B, Moch H, Heitz PU, Komminoth P, Perren A, Klöppel G. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. *Endocr Relat Cancer* 2008; 15: 229-241

31 Modlin I, Drozdov I, Gustafsson B, Öberg K, Kidd M. Rectal neuroendocrine tumors - Diagnosis and treatment. In: Modlin I, Öberg K, eds. A century of advances in neuroendocrine tumor biology and treatment. Germany: Felsenstein CCCP; 2007. p124-133

32 Konishi T, Watanabe T, Kishimoto J, Kotake K, Muto T, Nagawa H. Prognosis and risk factors of metastasis in colorectal carcinoids: results of a nationwide registry over 15 years. *Gut* 2007; 56: 863-868

33 Konishi T, Watanabe T, Muto T, Kotake K, Nagawa H. Risk factors for lymph node and distant metastasis in colorectal carcinoids: An analysis of nationwide registry in Japan over 15 years. *J Clin Oncol* 2006; 24: 3620

34 Konishi T, Watanabe T, Nagawa H, Oya M, Ueno M, Kuroyanagi H, Fujimoto Y, Akiyoshi T, Yamaguchi T, Muto T. Treatment of colorectal carcinoids: A new paradigm. *World J Gastrointest Surg* 2010; 2: 153-156

35 Anthony LB, Strosberg JR, Klimstra DS, Maples WJ, O’Dorisio TM, Warner RR, Wiseman GA, Benson AB, Pommier RF. The NANETS consensus guidelines for the diagnosis and management of gastrointestinal neuroendocrine tumors (nets): well-differentiated nets of the distal colon and rectum. *Pancreas* 2010; 39: 767-774

36 Ramage JK, Gorretzi PE, Manfredi R, Komminoth P, Ferone D, Hyrdel R, Kaltzas G, Kotlestimur F, Kyols L, Scoazec JY, Garcia MI, Caplin ME. Consensus guidelines for the management of patients with digestive neuroendocrine tumours: well-differentiated colon and rectum tumour/carcinoma. *Neuroendocrinology* 2008; 87: 31-39

37 Park CH, Cheon JH, Kim JO, Shin JE, Jang BI, Shin SJ, Jeen YT, Lee SH, Ji JS, Han DS, Jung SA, Park DI, Baek IH, Kim SH, Chang DK. Criteria for decision making after endoscopic resection of well-differentiated rectal carcinoids with regard to potential lymphatic spread. *Endoscopy* 2011 Epub ahead of print

38 Plöckinger U, Couvelard A, Falconi M, Sundin A, Salazar R, Christ E, de Herder WW, Gross D, Knapp WH, Knigge UP, Kulke MH, Pape UF. Consensus guidelines for the management of patients with digestive neuroendocrine tumours: well-differentiated tumour/carcinoma of the appendix and goblet cell carcinoma. *Neuroendocrinology* 2008; 87: 20-30

39 Boudreaux JP, Klimstra DS, Hassan MM, Woltering EA, Jensen RT, Goldsmith SM, Nutting C, Bushnell DL, Caplin ME, Yao JC. The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the Jejunum, Ileum, Appendix, and Cecum. *Pancreas* 2010; 39: 753-766

S- Editor Zhang HN L- Editor Herholdt A E- Editor Zhang L