Two positivity conjectures for Kerov polynomials

Michel Lassalle
Centre National de la Recherche Scientifique
Institut Gaspard-Monge, Université de Marne-la-Vallée
77454 Marne-la-Vallée Cedex, France
lassalle @ univ-mlv.fr
http://igm.univ-mlv.fr/~lassalle

Abstract

Kerov polynomials express the normalized characters of irreducible representations of the symmetric group, evaluated on a cycle, as polynomials in the “free cumulants” of the associated Young diagram. We present two positivity conjectures for their coefficients. The latter are stronger than the positivity conjecture of Kerov-Biane, recently proved by Féray.

1 Kerov polynomials

1.1 Characters

A partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ is a finite weakly decreasing sequence of nonnegative integers, called parts. The number $l(\lambda)$ of positive parts is called the length of λ, and $|\lambda| = \sum_{i=1}^{r} \lambda_i$ the weight of λ. For any integer $i \geq 1$, $m_i(\lambda) = \text{card}\{j : \lambda_j = i\}$ is the multiplicity of the part i in λ.

Let n be a fixed positive integer and S_n the group of permutations of n letters. Each permutation $\sigma \in S_n$ factorizes uniquely as a product of disjoint cycles, whose respective lengths are ordered such as to form a partition $\mu = (\mu_1, \ldots, \mu_r)$ with weight n, the so-called cycle-type of σ.

The irreducible representations of S_n and their corresponding characters are also labelled by partitions λ with weight $|\lambda| = n$. We write $\dim \lambda$ for the dimension of the representation λ and χ^λ_μ for the value of the character $\chi^\lambda(\sigma)$ at any permutation σ of cycle-type μ.

Let $r \leq n$ be a positive integer and $\mu = (r, 1^{n-r})$ the corresponding r-cycle in S_n. We write

$$\hat{\chi}^\lambda_r = n(n-1) \cdots (n-r+1) \frac{\chi^\lambda_{r, 1^{n-r}}}{\dim \lambda}$$

for the value at μ of the normalized character.

It was first observed by Kerov[6] and Biane[2] that $\hat{\chi}^\lambda_r$ may be written as a polynomial in the “free cumulants” of the Young diagram of λ.

1.2 Free cumulants

Two increasing sequences \(y = (y_1, \ldots, y_{d-1}) \) and \(x = (x_1, \ldots, x_{d-1}, x_d) \) are said to be interlacing if \(x_1 < y_1 < x_2 < \cdots < x_{d-1} < y_{d-1} < x_d \). The center of the pair is \(c(x, y) = \sum_i x_i - \sum_i y_i \).

To any pair of interlacing sequences with center 0 we associate the rational function

\[
G_{x,y}(z) = \frac{1}{z - x_d} \prod_{i=1}^{d-1} \frac{z - y_i}{z - x_i},
\]

and the formal power series inverse to \(G_{x,y} \) for composition,

\[
G_{x,y}^{(-1)}(z) = z^{-1} + \sum_{k \geq 1} R_k(x, y) z^{k-1}.
\]

Note that \(R_1(x, y) = c(x, y) = 0 \). The quantities \(R_k(x, y), k \geq 2 \) are called the free cumulants of the interlacing pair \((x, y)\).

Being given a partition \(\lambda \), we consider the collection of unit boxes centered on the nodes \(\{(j - 1/2, i - 1/2) : 1 \leq i \leq l(\lambda), 1 \leq j \leq \lambda_i\} \). This defines a compact region in \(\mathbb{R}^2 \), the so-called Young diagram of \(\lambda \). On \(\mathbb{R}^2 \) we define the content function by \(c(u, v) = u - v \).

By convention, the content of a box is the one of its center.

Then it is easily shown that the Young diagram of \(\lambda \) defines a pair of interlacing sequences, formed by the contents \(y_1, \ldots, y_{d-1} \) of its corner boxes, and the contents \(x_1, \ldots, x_{d-1}, x_d \) of the corner boxes of its compliment in \(\mathbb{R}^2 \). We have \(x_1 = -l(\lambda) \), and \(x_d = \lambda_1 \).

Conversely, every pair of interlacing sequences with integer entries and center zero uniquely determines the Young diagram of a partition \(\lambda \).

The free cumulants \(R_k(\lambda), k \geq 2 \) are defined accordingly. These quantities arise in the asymptotic study of representations of symmetric groups [1].

1.3 Known results

The following result was first proved in [2] and attributed to Kerov[6].

Theorem. There exist polynomials \(K_r, r \geq 2 \) such that for any partition \(\lambda \) with \(|\lambda| \geq r \), one has

\[
\hat{\chi}_r^\lambda = K_r(R_2(\lambda), R_3(\lambda), \ldots, R_{r+1}(\lambda)).
\]

These polynomials have integer coefficients.

Let \((R_2, \ldots, R_{r+1})\) be the indeterminates of the “Kerov polynomial” \(K_r \) and define \(|\mu|\) as the “weight” of the monomial \(R_\mu = \prod_{i \geq 2} R_{m_i(\mu)}^{m_i(\mu)} \). We may decompose \(K_r \) in its graded components with respect to the weight, writing

\[
K_r = \sum_{s \geq 2} K_{r,s} \quad \text{with} \quad K_{r,s} = \sum_{|\mu| = s} x^{(r)}_{\mu} \prod_{i \geq 2} R_{m_i(\mu)}^{m_i(\mu)}.
\]
Then it may be proved [2] that the term of highest weight is R_{r+1} and that $K_{r,s} = 0$ when $s = r - 2k$.

Goulden and Rattan [5, 10] have given a general formula for $K_{r,r-2k+1}$, expressing it as some coefficient in a formal power series (see also [3]). As a consequence, one has

$$K_{r,r-1} = \frac{1}{4} \binom{r+1}{3} \sum_{|\mu| = r-1} l(\mu)! \prod_{i \geq 2} \frac{((i-1)R_i)^{m_i(\mu)}}{m_i(\mu)!},$$

which had been conjectured by Biane [2] and differently proved by Šniady [11].

The same method provides an explicit form for $K_{r,r-3}$. But as far as $K_{r,r-5}$ (and lower components) are concerned, it seems very difficult to apply. Rattan [10, Theorem 3.5.12] found a messy expression of $K_{r,r-5}$ giving an idea about the complexity of the problem.

The following positivity property had been conjectured by Kerov [6] and Biane [2] and was recently proved by Féray [4].

Theorem. The coefficients of K_r are nonnegative integers.

The purpose of this note is to present a stronger conjectural property.

2 Conjectures

An algebraic basis of the (abstract) symmetric algebra with real coefficients is formed by the classical symmetric functions, elementary e_i, complete h_i or power-sum p_i. As usual for any partition μ, denote e_μ, h_μ or p_μ their product over the parts of μ, and m_μ the monomial symmetric function, sum of all distinct monomials whose exponent is a permutation of μ.

For a clearer display we write

$$R_\mu = \prod_{i \geq 2} ((i-1)R_i)^{m_i(\mu)}/m_i(\mu)!.$$}

Firstly we conjecture that the Kerov components $K_{r,r-2k+1}$ may be described in a unified way, independent of r.

Conjecture 1. For any $k \geq 1$ there exists an inhomogeneous symmetric function f_k, having maximal degree $4(k-1)$, such that

$$K_{r,r-2k+1} = \binom{r+1}{3} \sum_{|\mu| = r-2k+1} (l(\mu) + 2k - 2)! f_k(\mu) R_\mu,$$

where $f_k(\mu)$ denotes the value of f_k at the integral vector μ. This symmetric function is independent of r.

The assertion is trivial for $k = 1$ since we have $f_1 = 1/4$. Secondly we conjecture the symmetric function f_k to be positive in the following sense.
Conjecture 2. For $k \geq 2$ the inhomogeneous symmetric function f_k may be written

$$f_k = \sum_{|\rho| \leq 4(k-1)} c^{(k)}_{\rho} m_\rho,$$

where the coefficients $c^{(k)}_{\rho}$ are positive rational numbers.

The positivity of the coefficients of $K_{r,r-2k+1}$ is an obvious consequence. We emphasize that the coefficients of f_k in terms of any other classical basis may be negative.

Conjecture 2 is firstly supported by the case $k = 2$. Using the expression of $K_{r,r-3}$ given in [5], we have the following result, whose proof is postponed to Section 3.

Theorem 1. For $k = 2$, we have

$$5760 f_2 = 3m_4 + 8m_{31} + 10m_{22} + 16m_{212} + 24m_{14} + 20m_3 + 36m_{21} + 48m_{13} + 35m_2 + 40m_{12} + 18m_1.$$

Conjecture 2 is secondly supported by extensive computer calculations, giving the values of the positive numbers $c^{(k)}_{\rho}$ for $k = 3, 4$. The two following conjectures have been checked for any K_r with $r \leq 32$.

Conjecture 3. For $k = 3$, the values of $2.6!8!c^{(3)}_{\rho}$ are given by the table below.

8	71	62	61²	53	521	51³	4²	431	42²	421²
9	48	132	224	240	544	908	294	848	1132	1904
41¹	3²	3¹²	3²¹	3²	3¹³	3¹	2⁴	2³¹²	2²¹⁴	2¹⁶
31⁴	1440	2440	3280	5480	9040	4440	7440	12360	20400	33600

7	61	52	51²	43	421	41³	3²¹	3²	3²1²	3²2²	3²1²	3²²²	3²1²	3²²²
216	968	2296	3744	3560	7704	12368	9856	13072	21264	33968				
2⁴¹	2³¹³	2¹⁰	1⁶											
28560	46080	73680	117600											

6	51	42	41²	3²	3²1²	3²	3²	2³	2²¹²	2¹⁴	1⁶
2094	7696	15450	24016	19696	40592	62428	53796	83848	128988	198120	

5	41	32	3¹²	2³	2¹³	1⁵
10588	30072	51096	75232	99640	146200	214040

4	31	2²	2¹²	1⁴
30109	67360	87382	120912	166320

3	2¹	1²
48092	77684	98016

2	1²	1
39884	43928	13200
Conjecture 4. For $k = 4$, the values of $2.8!12!c_p^{(4)}$ are given by the table below.

k	11.1	10.2	10.1^2	93	921	91^3
495	3960	16830	29040	48312	113520	194392
84	831	82^2	82^2	81^4	75	741
99297	296472	403590	692912	1180248	150480	546480
732	731^2	724^2	721^3	71^6	66	651
945120	1626592	2219360	3792480	6439200	172260	733920
642	641^2	63^2	6321	631^3	64	62^4
1543740	2654432	19600992	4611552	7890528	6305640	10797440
621^4	61^9	5^42	5^41^2	543	5421	541^9
18388320	31168800	1811040	3110800	2797872	6566560	11221392
53^41	532^2	532^1	531^1	52^4	52^4^3	521^5
8360352	11420640	1957392	33343968	26812800	45753120	77733600
51^7	4^3	4^3^1	4^22^2	4^21^4	4^2^1^4	43^2
131644800	3402630	10157840	13861540	23751840	40429200	17629920
43^4^2	432^1^4	432^1^3	431^6	42^4	42^4^1^2	42^4^2
30274720	41416480	70724640	120150240	56773080	97050240	165207840
421^b	41^8	3^4	3^21	3^1^3	3^2^3	3^2^1^3
280274400	474454400	22397760	52718400	90162240	72246720	123618880
3^22^1^4	3^1^9	32^1	32^1^9	32^1^9	321^7	31^9
210584640	357315840	169727040	289477440	492072000	834301440	1412328960
2^6	2^1^2	2^1^4	2^1^6	2^1^8	21^10	1^12
233226000	398160000	677678400	115063200	1950278400	3302208000	5588352000

k	10.1	92	91^2	83	821	81^3
25740	184140	708444	1199440	1836252	4210844	7075728
74	731	72^2	721^4	71^4	65	641
3371544	9817984	13294160	22416768	37488576	4518360	15961880
632	631^2	621^4	621^3	61^5	51^7	542
27441744	46345728	62955728	105656256	176236800	18678880	38954344
541^2	53^2	5321	531^3	52^3	52^2^4	52^4
65688480	49454592	113453824	190456128	154321200	259588848	434150016
51^b	4^3	4^21	4^1^4	4^3^1	43^2	432^2
723211200	59989160	137408040	230425440	174697600	237252400	399329280
431^4	421^4	421^4	421^9	41^1^4	3^2	3^4^2
667719360	544244400	912287040	1522644480	2534616000	301150080	507776640
3^22^1^4	3^1^9	32^1	32^1^9	32^1^9	321^7	321^9
691290880	1159603200	1935373440	942671520	1583527680	2648849280	4416612480
31^8	3^1^8	3^1^5	3^1^8	3^1^7	2^1^7	1^11
7350568560	2163722400	3624808320	6054048000	10089797760	16795537920	27941760000
n	10	91	82	81^2	73	721
-----	---------	---------	---------	---------	---------	---------
41	589545	3732696	12880197	21347832	29796624	66542608
71^3	71	64	631	62^2	621^2	61^4
109503504	48249234	136592720	184006988	304004800	498221712	
5^2	541	532	531^2	52^21	521^3	
56379312	192905680	329380304	544358320	736055232	1210234416	
51^p	4^2	4^11^4	43^2	4321	431^4	
1979174160	398071454	657018384	504522128	1126245296	1850729904	
1523067348	2510092224	4113855024	671963680	1427727840	1928190880	
3^21^2	3^21^4	32^51	321^3	321^5	31^1	
3180030560	5210415840	4309828320	7080806880	11585384160	18913547520	
2^6	2^4^2	2^4^1^4	2^4^1^6	21^8	1^10	
5844598200	9618960960	15768879840	25780980960	42087911040	68660524800	
9	7834926	43370910	132689304	214757664	270145656	585908840
61^3	61	54	531	52^2	521^2	51^4
942097728	380072484	1041283232	1395178488	2251722880	3607638624	
4^11	432	431^2	42^1	421^4	41^9	
1253522292	2121348680	3421048224	4600109272	7388286912	11813196960	
3^2	3^21^2	3^21^4	32^3	321^2	321^4	
2679266304	5805122752	9318556608	7798935408	12559063744	20114667264	
31^6	2^4^1	2^4^1^4	2^4^1^6	21^8	1^10	
32123903040	16915888080	27152536320	43428598080	69327800640	110563004160	
8	66992805	319460328	854070228	1345992736	1504935432	
62^2	521	1^3	4^2	431	42^2	
562166208	4945126296	1806665454	4760982424	6336879340		
421^2	41^4	3^2	3^21^2	32^1		
9953455776	15535885752	7959879312	12492469616	16671548080		
321^4	31^5	2^1	2^1^2	2^1^4		
26065233552	40592042160	22229990472	34840460832	54337307568		
21^8	1^8					
84517248240	131257445760					
7	386137224	1557181296	357220960	5460878192	5341858632	
51^2	421	41^3	3^2	32^2	321^2	
10769122320	16360041456	13438992512	1772289864	26967001248		
31^4	2^4^1	2^4^3	21^5	1^7		
40796325216	35619645600	53958337440	81409500480	122509104480		
6	1527234687	5086528128	9789272361	14430109232	12134469600	23282303088
31^4	2^4^2	2^4^1^2	21^4	1^6		
34060600640	30307366254	44384647296	64583789280	93548535360		
---	---	---	---	---		
5	41	32	31^2	2^21		
413557494	11019741678	17318813292	24369700608	31165644708		
21^3	1^5					
43403668704	59946923520					
4	31	22	21^2	1^4		
7478442180	15298473960	19094031000	25180566840	32685206400		
3	21	1				
8579601096	12733485336	15147277200				
2	1^2	1				
5589321408	5773242816	1555424640				

3 Proof of Theorem 1

Following [5, 10] we consider the generating series

\[C(z) = \sum_{i\geq 0} C_i z^i = \left(1 - \sum_{i\geq 2} (i - 1) R_i z^i\right)^{-1}. \]

By classical methods we have

\[C_n = \sum_{|\mu|=n} l(\mu)! R_\mu. \]

It may be shown (see a proof in Section 7 below) that if \(\phi \) is a polynomial in \(i \), there exists a symmetric function \(\hat{\phi} \) such that

\[\sum_{(i,j,k)\in\mathbb{N}^3 \atop i+j+k=n} \phi(i) C_i C_j C_k = \sum_{|\mu|=n} (l(\mu) + 2)! \hat{\phi}(\mu) R_\mu, \]

where \(\hat{\phi}(\mu) \) denotes the value of \(\hat{\phi} \) at the integral vector \(\mu \). For \(\phi(i) = a + bi + ci^2 \), we have

\[\hat{\phi} = a/2 + bn/6 + c(n^2 + p_2)/12. \]

The following explicit form of \(K_{r,r-3} \) was given in [5, Theorem 3.3]

\[K_{r,r-3} = \binom{r+1}{3} \sum_{(i,j,k)\in\mathbb{N}^3 \atop i+j+k=r-3} (a(r) + b(r)i^2) C_i C_j C_k, \]

with

\[a(r) = -\frac{1}{2880}(r - 1)(r - 3)(r^2 - 4r - 6), \quad b(r) = \frac{1}{480}(2r^2 - 3). \]

As a straightforward consequence, we have

\[K_{r,r-3} = \binom{r+1}{3} \sum_{|\mu|=r-3} (l(\mu) + 2)! f_2(\mu) R_\mu, \]
with

\[f_2(\mu) = \frac{1}{2}a(r) + \frac{1}{12}b(r)((r - 3)^2 + p_2(\mu)). \]

But since \(|\mu| = p_1(\mu) = r - 3\), this can be rewritten

\[f_2 = \frac{1}{5760} \left(2p_2p_1^2 + p_1^4 + 12p_2p_1 + 8p_1^3 + 15p_2 + 20p_1^2 + 18p_1 \right). \]

Using for instance ACE [12] we easily obtain

\[f_2 = \frac{1}{5760} \left(3m_4 + 8m_{31} + 10m_{22} + 16m_{21^2} + 24m_4 + 20m_3 + 36m_{21} + 48m_{13} + 35m_2 + 40m_{12} + 18m_1 \right). \]

Observe that in this particular situation, the coefficients of \(f_2 \) in terms of power sums are nonnegative. This property is not true for \(K_{r,r-5} \) and lower components.

Starting from [10, Theorem 3.5.12], Conjecture 3 may probably be proved along the same line.

4 C-expansion

Goulden and Rattan [5, 10] have considered the expansion of Kerov polynomials in terms of the indeterminates \(C_i \). They have given the following positivity conjecture, proved for \(k = 1, 2 \), which is stronger than the one of Kerov and Biane.

Conjecture. For \(k \geq 1 \) the coefficients of \(K_{r,r-2k+1} \) in terms of the \(C_i \)'s are nonnegative rational numbers.

In analogy with Section 2 we conjecture that for any \(k \geq 1 \) one has

\[K_{r,r-2k+1} = \binom{r + 1}{3} \sum_{\nu \in \mathbb{N}^{2k-1}} F_k(\nu) \prod_{i=1}^{2k-1} C_{\nu_i}, \]

where \(F_k \) is an inhomogeneous symmetric function, having maximal degree \(4(k - 1) \) and independent of \(r \).

This is clear for \(k = 1 \) since

\[K_{r,r-1} = \frac{1}{4} \binom{r + 1}{3} C_{r-1}, \]

hence \(F_1 = 1/4 \). For \(k = 2 \) we have seen in Section 3 that

\[F_2(\nu) = a(r) + \frac{1}{3}b(r)p_2(\nu) \]
with \(\nu = (i, j, k) \). Since \(|\nu| = p_1(\nu) = r - 3 \), we obtain

\[
F_2 = \frac{1}{2880} \left(4p_2p_1^2 - p_1^4 + 24p_2p_1 - 4p_1^3 + 30p_2 + 5p_1^2 + 18p_1 \right).
\]

However we emphasize that, unlike those of \(f_2 \), the coefficients of \(F_2 \) in terms of monomial symmetric functions are not positive. One has

\[
F_2 = \frac{1}{2880} \left(3m_4 + 4m_{31} + 2m_{22} - 4m_{212} + 20m_3 + 12m_{21} - 24m_{13} + 35m_2 + 10m_{12} + 18m_1 \right).
\]

Therefore it seems that \(C \)-positivity and \(R \)-positivity are of a different nature.

5 New expansion

For a better understanding of the difference between the \(C \) and \(R \) expansions, it is useful to introduce new polynomials \(Q_i \) in the free cumulants. Define \(Q_0 = 1 \), \(Q_1 = 0 \) and for any \(n \geq 2 \),

\[
Q_n = \sum_{|\mu|=n} (l(\mu) - 1)! R_\mu.
\]

Writing for short

\[
Q_\mu = \prod_{i \geq 2} Q_i^{m_i(\mu)/m_i(\mu)!}, \quad C_\mu = \prod_{i \geq 2} C_i^{m_i(\mu)/m_i(\mu)!},
\]

the correspondence between these three families is given by

\[
Q_n = \sum_{|\mu|=n} (-1)^{l(\mu)} (l(\mu) - 1)! C_\mu,
\]

\[
C_n = \sum_{|\mu|=n} l(\mu)! R_\mu = \sum_{|\mu|=n} Q_\mu,
\]

\[
(1 - n) R_n = \sum_{|\mu|=n} (-1)^{l(\mu)} Q_\mu = \sum_{|\mu|=n} (-1)^{l(\mu)} l(\mu)! C_\mu.
\]

These relations are better understood by using the theory of symmetric functions. Actually let \(A \) be the (formal) alphabet defined by

\[
(i - 1) R_i = -h_i(A), \quad Q_i = -p_i(A)/i, \quad C_i = (-1)^{i} e_i(A).
\]

Writing

\[
u_{\mu} = l(\mu)! \prod_{i \geq 1} m_i(\mu)!, \quad \epsilon_{\mu} = (-1)^{n-l(\mu)}, \quad z_{\mu} = \prod_{i \geq 1} i^{m_i(\mu)} m_i(\mu)!,
\]

\[
u_{\mu} = \prod_{i \geq 1} i^{m_i(\mu)} m_i(\mu)!, \quad \epsilon_{\mu} = (-1)^{n-l(\mu)}.
\]

9
the previous relations are merely the classical properties [9, pp. 25 and 33]

\[p_n = -n \sum_{|\mu|=n} (-1)^{l(\mu)} u_\mu h_\mu / l(\mu) = -n \sum_{|\mu|=n} \epsilon_\mu u_\mu e_\mu / l(\mu), \]

\[e_n = \sum_{|\mu|=n} \epsilon_\mu u_\mu h_\mu = \sum_{|\mu|=n} \epsilon_\mu z_\mu^{-1} p_\mu, \]

\[h_n = \sum_{|\mu|=n} z_\mu^{-1} p_\mu = \sum_{|\mu|=n} \epsilon_\mu u_\mu e_\mu. \]

From these relations, it is clear that \(C \)-positivity implies \(Q \)-positivity, which itself implies \(R \)-positivity. In particular the following conjecture is \textit{a priori} stronger than the one of Kerov-Biane and weaker than the one of Goulden-Rattan.

\textbf{Conjecture 5.} For \(k \geq 1 \) the coefficients of \(K_{r,r-2k+1} \) in terms of the \(Q_i \)'s are nonnegative rational numbers.

The assertion is trivial for \(k = 1 \) since

\[K_{r,r-1} = \frac{1}{4} \left(\frac{r+1}{3} \right) C_{r-1} = \frac{1}{4} \left(\frac{r+1}{3} \right) \sum_{|\mu|=r-1} Q_\mu. \]

This leads us to the following conjecture (with obviously \(g_1 = 1/4 \)).

\textbf{Conjecture 6.} For any \(k \geq 1 \) there exists an inhomogeneous symmetric function \(g_k \), having maximal degree \(4(k-1) \), such that

\[K_{r,r-2k+1} = \left(\frac{r+1}{3} \right) \sum_{|\mu|=r-2k+1} (2k-1)^{l(\mu)} g_k(\mu) Q_\mu, \]

where \(g_k(\mu) \) denotes the value of \(g_k \) at the integral vector \(\mu \). This symmetric function is independent of \(r \).

It is a highly remarkable fact that, in contrast with the \(C \)-expansion, the \(Q \)-positivity is completely analogous to the \(R \)-positivity (and possibly equivalent).

\textbf{Conjecture 7.} For \(k \geq 2 \) the inhomogeneous symmetric function \(g_k \) may be written

\[g_k = \sum_{|\rho| \leq 4(k-1)} a^{(k)}_\rho m_\rho, \]

where the coefficients \(a^{(k)}_\rho \) are positive rational numbers.

The assertion of Conjecture 5 is a direct consequence. Conjecture 7 is supported by the following result for \(k = 2 \), which will be proved in Section 6.
Theorem 2. For $k = 2$, we have

$$8640g_2 = 9m_4 + 20m_{31} + 22m_{22} + 28m_{212} + 24m_{4} + 60m_3 + 84m_{21} + 72m_{13} + 105m_2 + 90m_{12} + 54m_1.$$

Conjecture 7 is also supported by computer calculations, giving the positive numbers $a^{(k)}_\rho$ for $k = 3, 4$.

Conjecture 8. For $k = 3$, the values of $500.5!7!\ a^{(3)}_\rho$ are given by the table below.

	8	71	62	61^2	53	521	51^4	4^2	43	421	41^4	3^2	3^2	32^2
1125	5400	13500	21480	23400	46200	69072	28350	69000	84900					
421^2	41^4	3^2	3^2	32^2	321^4	31^4	2^4	2^1^2	2^1^4					
126168	174864	104400	157152	190704	265632	338880	233208	322128	414432					
21^6	1^8	486720	524160											

	7	61	52	51^2	43	421	41^4	3^2	31^3	3^2	32^2
27000	107400	231000	345360	345000	630840	874320	785760	953520			
321^4	31^4	2^1	2^1	2^1	31^4	1^4					
1328160	1694400	1610640	2072160	2433600	2620800						

	6	51	42	41^2	3^2	321	31^3	3^2	2^3	2^2	1^2
261750	840300	1532250	2121660	1907400	3217080	4095696	3896460	5001672			
21^4	1^0	5853744	6274080								

	5	41	32	31^2	2^1	31^3	1^3
1323500	3322300	5017400	6358480	7740360	8988720	9530400	

	4	31	2^2	21^2	1^4
3763625	7093100	8590950	9830340	10212600	
3	21	1^3			
6011500	8045700	8043000			

	2	1^2	1
4985500	4595000	1650000	

This conjecture has been checked for any K_r with $r \leq 32$. Starting from [10, Theorem 3.5.12], it may probably be proved by the method given in the next section.

We have also obtained the values of the positive numbers $a^{(4)}_\rho$. Listing them here would be tedious, but they are available upon request to the author.
6 Proof of Theorem 2

We start from the following lemma of symmetric function theory. It is better understood in the language of \(\lambda \)-rings. This method allows to handle symmetric functions acting on “sums”, “products” or “multiples” of alphabets. Here we shall not enter into details, and refer the reader to [7, Chapter 2] or [8, Section 3] for a short survey.

If \(f \) is a symmetric function, we denote \(f[\mathbf{A}] \) its \(\lambda \)-ring action on the alphabet \(\mathbf{A} \), which should not be confused with its evaluation \(f(\mathbf{A}) \). For instance \(p_n[-z+2]=-z^n+2 \) and \(p_n(-z+2)=(-z+2)^n \).

Lemma 1. On any alphabet \(\mathbf{A} \) and for any positive integer \(n \), we have

\[
\sum_{(i,j,k)\in\mathbb{N}^3} e_i e_j e_k = \sum_{|\mu|=n} (-1)^{n-l(\mu)} 3^{l(\mu)} z^{-1} p_\mu,
\]

\[
\sum_{(i,j,k)\in\mathbb{N}^3} i^2 e_i e_j e_k = \sum_{|\mu|=n} (-1)^{n-l(\mu)} 3^{l(\mu)-2} \left(n^2 + 2p_2(\mu) \right) z^{-1} p_\mu.
\]

Sketch of proof. Recall the “Cauchy formula” [7, (1.6.6)], or [9, (4.1) p. 62-65] or [8, p. 222],

\[
e_n[\mathbf{A}\mathbf{B}] = \sum_{|\mu|=n} (-1)^{n-l(\mu)} z^{-1} p_\mu[\mathbf{A}] p_\mu[\mathbf{B}].
\]

The first relation evaluates \(e_n[3\mathbf{A}] \) by using this formula together with the identity \(p_\mu[p] = p^{l(\mu)} \) valid for any real number \(p \).

For the second relation, we evaluate similarly \(e_n[(z+2)\mathbf{A}] \). Then we differentiate two times and fix \(z=1 \). At the left-hand side we get \(\sum_{i+j+k=n} i(i-1)e_i e_j e_k[\mathbf{A}] \). At the right-hand side, we compute

\[
\partial^2_z(p_\mu[z+2])\bigg|_{z=1} = \partial^2_z \left(\prod_{i\geq 1} (z^i+2)^{m_i(\mu)} \right)\bigg|_{z=1} = 3^{l(\mu)-2} \left(n^2 - 3n + 2p_2(\mu) \right).
\]

Observe that by differentiating \(r \) times, we might similarly get \(\sum_{i+j+k=n} \binom{i}{r} e_i e_j e_k. \)

Specializing the alphabet \(\mathbf{A} \) as in Section 5, so that

\[
Q_i = -p_i(\mathbf{A})/i, \quad C_i = (-1)^i e_i(\mathbf{A}),
\]

we obtain

\[
\sum_{(i,j,k)\in\mathbb{N}^3} (a+bi+ci^2) C_i C_j C_k = \sum_{|\mu|=n} 3^{l(\mu)} \left(a + \frac{b}{3} n + \frac{c}{9} (n^2 + 2p_2(\mu)) \right) Q_\mu.
\]

By insertion in the expression [5, Theorem 3.3]

\[
K_{r,r-3} = \binom{r+1}{3} \sum_{(i,j,k)\in\mathbb{N}^3} (a(r)+b(r)i^2) C_i C_j C_k,
\]

12
we obtain
\[g_2(\mu) = a(r) + \frac{1}{9} b(r)((r-3)^2 + 2p_2(\mu)). \]
Since \(|\mu| = p_1(\mu) = r - 3\), this can be rewritten
\[g_2 = \frac{1}{8640} \left(8p_2p_1^2 + p_1^4 + 48p_2p_1 + 12p_1^3 + 60p_2 + 45p_1^2 + 54p_1 \right). \]
Using ACE \([12]\) the conversion to monomial functions is performed immediately. \(\square\)

7 Theorem 1 revisited

In Section 3 (proof of Theorem 1) we used the property
\[\sum_{(i,j,k) \in \mathbb{N}^3 \atop i+j+k=n} (a + bi + c i^2) C_i C_j C_k = \frac{1}{2} \sum_{|\mu| = n} (l(\mu) + 2)! \left(a + \frac{b}{3} n + \frac{c}{6} (n^2 + p_2(\mu)) \right) R_\mu, \]
which may also be proved by \(\lambda\)-rings method. It is obtained by specialization of the following lemma.

Lemma 2. On any alphabet \(A\) and for any positive integer \(n\), we have
\[\sum_{(i,j,k) \in \mathbb{N}^3 \atop i+j+k=n} e_i e_j e_k = \frac{1}{2} \sum_{|\mu| = n} (-1)^{n-l(\mu)} \frac{(l(\mu) + 2)!}{\prod_i m_i(\mu)!} h_\mu, \]
\[\sum_{(i,j,k) \in \mathbb{N}^3 \atop i+j+k=n} i^2 e_i e_j e_k = \frac{1}{12} \sum_{|\mu| = n} (-1)^{n-l(\mu)} \frac{(l(\mu) + 2)!}{\prod_i m_i(\mu)!} \left(n^2 + p_2(\mu) \right) h_\mu. \]

Sketch of proof. Recall the “Cauchy formula” \([7, (1.6.3)]\), or \([9, (4.2)\ p. 62-65]\) or \([8, p. 222]\),
\[(-1)^n e_n[A B] = \sum_{|\mu| = n} m_\mu[-B] h_\mu[A]. \]
The first relation evaluates \(e_n[3A]\) by using this formula and the identity \([7, (2.2.2)]\) valid for any real number \(p\),
\[m_\mu[p] = p(p-1) \cdots (p-l(\mu)+1)/\prod_i m_i(\mu)! \].

For the second relation, we evaluate similarly \(e_n[(z+2)A]\). Then we differentiate two times and fix \(z = 1\), obtaining \(\sum_{i+j+k=n} i(i-1)e_i e_j e_k[A]\) at the left-hand side. At the right-hand side, we compute
\[\prod_{i \geq 1} m_i(\mu)! \frac{\partial^2}{\partial z^2} (m_\mu[-z-2]) \bigg|_{z=1} = (-1)^{l(\mu)} (l(\mu) + 2)! \left(n^2 - 2n + p_2(\mu) \right) / 12. \]
\(\square\)
8 Final remark

In this note, we have considered three conjectural developments of the Kerov component $K_{r, r-2k+1}$, namely up to $\binom{r+1}{3}$,

$$
\sum_{\nu \in \mathbb{N}^{2k-1} \atop |\nu|=r-2k+1} F_k(\nu) \prod_{i=1}^{2k-1} C_{\nu_i} = \sum_{|\mu|=r-2k+1} (l(\mu) + 2k - 2)! f_k(\mu) \mathcal{R}_\mu
$$

$$
= \sum_{|\mu|=r-2k+1} (2k - 1)^{|\mu|} g_k(\mu) \mathcal{Q}_\mu.
$$

As indicated above, these relations are better understood in the framework of symmetric functions. Choosing

$$(i - 1)R_i = -h_i(A), \quad Q_i = -p_i(A)/i, \quad C_i = (-1)^i e_i(A),$$

they are the specializations at A of the abstract identities

$$
\sum_{\nu \in \mathbb{N}^{2k-1} \atop |\nu|=n} F_k(\nu) e_\nu = \sum_{|\mu|=n} (-1)^{n-l(\mu)} f_k(\mu) \frac{(l(\mu) + 2k - 2)!}{\prod_i m_i(\mu)!} h_\mu
$$

$$
= \sum_{|\mu|=n} (-1)^{n-l(\mu)} g_k(\mu) (2k - 1)^{|\mu|} z_\mu^{-1} p_\mu.
$$

Moreover these identities are themselves related with the classical Cauchy formulas. Using the values of $p_\mu[p]$ and $m_\mu[p]$ given above, they may be written

$$
(-1)^n \sum_{\nu \in \mathbb{N}^{2k-1} \atop |\nu|=n} F_k(\nu) e_\nu = \sum_{|\mu|=n} f_k(\mu) m_\mu[-2k+1] h_\mu
$$

$$
= \sum_{|\mu|=n} g_k(\mu) p_\mu[-2k+1] z_\mu^{-1} p_\mu.
$$

Therefore it seems plausible that the conjectured positivity properties of f_k and g_k are equivalent, and reflect some abstract pattern of the theory of symmetric functions.

References

[1] P. Biane, *Representations of symmetric groups and free probability*, Adv. Math. **138** (1998), 126-181.

[2] P. Biane, *Characters of symmetric groups and free cumulants*, Lecture Notes in Math. **1815** (2003), 185-200, Springer, Berlin, 2003.
26. P. Biane, *On the formula of Goulden and Rattan for Kerov polynomials*, Sém. Lothar. Combin., 55 (2006), article B55d.

27. V. Féray, *Combinatorial interpretation and positivity of Kerov’s character polynomials*, arXiv 0710.5885.

28. I. P. Goulden, A. Rattan, *An explicit form for Kerov’s character polynomials*, Trans. Amer. Math. Soc. 359 (2007), 3669–3685.

29. S. V. Kerov, talk at IHP Conference (2000).

30. A. Lascoux, *Symmetric functions and combinatorial operators on polynomials*, CBMS Regional Conference Series in Mathematics 99, Amer. Math. Soc., Providence, 2003.

31. M. Lassalle, *Une q-spécialisation pour les fonctions symétriques monomiales*, Adv. Math. 162 (2001), 217–242.

32. I. G. Macdonald, *Symmetric Functions and Hall Polynomials*, Clarendon Press, second edition, Oxford, 1995.

33. A. Rattan, *Character polynomials and Lagrange inversion*, Thesis (2005), Waterloo University.

34. P. Śniady, *Asymptotics of characters of symmetric groups and free probability*, Discrete Math. 306 (2006), 624–665.

35. S. Veigneau, *ACE, an Algebraic Combinatorics Environment for the computer algebra system Maple*, available at http://phalanstere.univ-mlv.fr/~ace/