Research article

Haematological profile, blood cell characteristic and serum biochemical composition of cultured brown trout, *Salmo trutta fario* with respect to sex

Zubair Ahmad Sheikh a, Imtiaz Ahmed a, *, Kousar Jan a, Naveed Nabi a, Francesco Fazio b

a DST - Sponsored Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190 006, India
b Department of Veterinary Sciences, University of Messina, Polo Universitario dell`Annunziata, Messina, Italy

ARTICLE INFO

Keywords:
- Aquaculture
- Blood parameters
- Fish
- Sex difference
- Blood cell morphology

ABSTRACT

The purpose of this research is to see how sex affects several haematological, biochemical and blood cell morphology in cultured brown trout, *Salmo trutta fario*. Different haematological parameters, for instance haemoglobin (Hb) concentration, haematocrit (Hct), red blood cell (RBC) and white blood cell (WBC) counts, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) and serum biochemical parameters such as glucose, cholesterol, total protein, albumin, globulin, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), sodium, potassium and phosphorus were analysed. Throughout the study period, male fish had considerably greater Hb content, RBC count and Hct content than female fish, but insignificant (P > 0.05) difference in WBC count, differential leucocyte count, MCV, MCH and MCHC was seen between the two sexes of *Salmo trutta fario*. The majority of biochemical markers showed no significant (P > 0.05) difference, with the exception of AST, ALP, sodium, potassium, and phosphorus, which showed a significant (P < 0.05) difference. Under light microscopy, RBC and differential leukocyte count (neutrophils, lymphocytes, and monocytes) as well as thrombocytes were characterised and discriminated, revealing that the majority of the cells were normal and intact in shape. As a result of the foregoing findings, it is suggested that the data generated be used to identify the health state of fish and to determine the occurrence of various clinical and subclinical disorders, which might assist in enhancing the overall fish population production.

1. Introduction

Global aquaculture is currently one of the fastest expanding sectors of food production, accounting for 50% of total food supply (FAO, 2018; Okocha et al., 2018; Ibrahim et al., 2020). Fish aquaculture, also known as aquafarming, is quickly growing in popularity and has a significant economic influence around the world. Because of its high nutritional quality and biologically active chemicals with good effects on human health, fish is consumed by a wide range of individuals, regardless of their income, age, or health (Gormley, 2006; Lund, 2013). The haematological and biochemical profile of fish is a useful tool for determining the well-being position of various aquatic organisms, together with both farmed and wild fish (Adel et al., 2016; da Silva Correia et al., 2017; Zhao et al., 2018; Sheikh and Ahmed, 2019; Fazio, 2019; Sidiq and Ahmed, 2020; Jan and Ahmed, 2021; Jan et al., 2021), because these indices provide valuable information for learning about fish reactions to stress, contaminants, hypoxia, nutrition, and habitat, as well as ecological and physiological circumstances (Cnaani et al., 2004; Caruso et al., 2005; Walencik and Witeska, 2007; Faggio et al., 2014; Ahmed and Sheikh, 2019, 2020; Ahmed et al., 2019; Fazio, 2019; Suljevic and Mitrasinovic-Brulic, 2020). Age, diet, sex, fish species and strains, sexual maturity cycle, stocking density and feeding regime, seasonal variations, photoperiod, nutritional state, geographical location, disease, physico-chemical variations, temperature and salinity, sampling conditions, anaesthesia type and laboratory techniques, handling and transport, blood collection, handling, storage time of blood samples, anticoagulants used can strongly influence the results obtained from a haematological and biochemical analysis (Adeyemo et al., 2009; Ferri et al., 2011; Gul et al., 2011; Jeronimo et al., 2011; Witeska and Wargocka, 2011; Faggio et al., 2013; Fazio et al., 2013, 2014; Witeska et al., 2015; Cieplinski et al., 2019; Ahmed et al., 2020; Jan et al., 2021). Erythrocytes, one of the major blood constituent, could be utilised to make a diagnosis of anaemia and identify various strategies in fish populations in terms of metabolic oxygen demand (Wilhelm Filho et al.,

* Corresponding author.
E-mail address: imtiazamu1@yahoo.com (I. Ahmed).

https://doi.org/10.1016/j.heliyon.2022.e10247
Received 2 November 2021; Received in revised form 9 June 2022; Accepted 5 August 2022
2405-8440/© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1992). Furthermore, erythrocytes are considered as the primary signal for many adaptive physiological methods in response to different environmental changes (Val et al., 1992). Blood cell characteristics are thought to be a good tool for evaluating the physiological state of fish and the environment in which they reside (Li and Wang, 1995; Zhou et al., 2003; Zhang et al., 2011; da Silva Correa et al., 2017). This blood cell count method has been used in fish farms for a variety of purposes, including medicine administration, parasite infection, pollution, and toxicity (Dias et al., 2011; Ventura et al., 2015; da Silva Correa et al., 2017).

Brown trout, *Salmo trutta fario*, a member of the Salmonidae family, can be found in inland waters in North America, New Zealand, Southern Europe, and Western Asia (Rawat et al., 2011). In the year 1900, trout was introduced to Kashmir (Mitcheli, 1918). Brown trout is currently thriving in the snow-fed streams of Kashmir, and it is the most well-known freshwater fish found in the Lidder, Sindh, Vishaw, Bringi, Ferozpora, and gushing streams. In Jammu and Kashmir, salmonid fish is the most important aquaculture product. Fish housed in hatcheries are primarily used to restock natural populations that are targeted by recreational anglers (Frank-Gopolos et al., 2015). Hatcheries must ensure that the animals employed in the hatching practice are well cared for. As a result, managing the physiological situation of brood stock is extremely important (Wedemeyer, 2002; Geplinski et al., 2019). Blood tests are the simplest and most comprehensive approach to determine animal’s health. During the study period, we decided to examine the impact of sex on fundamental haematological, serum biochemical including blood cell characteristics of farmed mature *S. trutta fario*.

2. Materials and methods

2.1. Collection of fish samples

A total of 38 adult brown trout, *Salmo trutta fario* were furnished by the Dachigam, Laribal, Srinagar: State Government of Fishery Department Hatchery (J&K) for carrying out the current experimental work. Fish were kept in a concrete rectangular raceway and were fed with commercial pellets before the experiment began. Both male and female samples were deemed healthy i.e. bearing no symptoms of deformities or infestations externally. Preceding blood sampling, the fish were moved to a tank and anaesthetized (MS-222 @ 0.3 g/L of water) (Iaria et al., 2019). With 26 gauge plastic syringes having no coagulant, the blood was drawn from the caudal vein and transferred to collecting vials containing lithium heparin which were available commercially. The samples of blood were promptly examined for various haematological parameters after being deposited in lithium heparin anticoagulant vials. The remaining blood samples were transferred to anticoagulant-free eppendorf tubes for the process of serum collection and thereafter biochemical parameter analysis.

2.2. Gender identification and biometric parameters

As indicated in Figure 1, both genders mean length and body weight were measured. *Salmo trutta fario* sexes were determined by looking at the mouth. Male trout have a longer elongated snout and lower jaw with kype, whereas female trout have a small round upper jaw (hooked lower jaw).

2.3. Physico-chemical parameters

Water chemistry parameters of the Laribal hatchery, for instance, pH, water temperature, dissolved oxygen and dissolved free carbon dioxide were calculated by making the use of standardized methods (APHA, 1998) Figure 2.

2.4. Examination of haematological profile

The cyanmethemoglobin technique was used to determine haemoglobin concentration (Lavanya et al., 2011). By making the use of an upgraded Neubauer haemocytometer and Natt-Herrick’s diluent, total erythrocyte and leukocyte count was performed (Natt and Herrick, 1952). The amount of corpuscular count was measured according to Pal et al. (2008) and Parida et al. (2012). The total RBC count per mm³ was calculated as $200 \times 50 \times N = 10,000 \times N (N =$ total number of calculated RBC, dilution factor = 200), and the total WBC count per mm³ was calculated as $20 \times 1 \times L/0.4 \text{ cells} = 50 \times L (L =$ total number of calculated WBC, dilution factor = 50). The amount of haematocrit was determined as per Adebayo et al. (2007). Micro-haematocrit capillaries

Figure 1. Biometric parameters (Length × weight) of male and female *Salmo trutta fario*.
were used for the computation of Hct content, spun at 12,000 rpm for 5 min in a micro-haematocrit centrifuge (REMI RM-12C BL, India) with the results represented as percentage. Dacie and Lewis (1991) equations were used to calculate erythrocyte indices.

2.5. Serum biochemical parameter estimation

Aside from haematological testing, serum was collected through centrifugation for 5 min at 5000 g for biochemical testing. Using the Vet scan biochemistry analyzer (VS2 USA), the serum parameters such as glucose (mg dL\(^{-1}\)), cholesterol (mg dL\(^{-1}\)), total protein (g dL\(^{-1}\)), albumin (g dL\(^{-1}\)), globulin (g dL\(^{-1}\)), alanine aminotransferase (IUL\(^{-1}\)), aspartate aminotransferase (IUL\(^{-1}\)), alkaline phosphate (IUL\(^{-1}\)), sodium, potassium, and phosphorus were evaluated.

2.6. Differential leukocyte count and blood cell size measurement

Smears of blood of four for each specimen of fish were made instantly utilising a precise volume of blood from every vial of blood sample for the morphological investigation of blood cells. The blood smears were air dried before being preserved for 1 min in absolute methanol and stained properly with Wright-Giemsa and Toluidine blue. The stained smears were examined on a Leica DM 7 microscope with Las 4.12 software for morphological investigation of blood cells. The blood smears were air dried before being preserved for 1 min in absolute methanol and stained properly with Wright-Giemsa and Toluidine blue. The stained smears were examined on a Leica DM 7 microscope with Las 4.12 software for morphological investigation of blood cells.

2.7. Statistical analysis

Microsoft Excel was used to sort the experimental data, which was then processed and analysed using SPSS 20 statistical software. To investigate the difference in haematological, biochemical parameters and blood cell characteristics between genders, the data was summarised as mean, standard deviation, and difference between sexes were statistically assessed using the students t-test. Results with a level of significance (P < 0.05) were judged as significant.

3. Results

Haematological parameters, for instance, haemoglobin, total erythrocyte and leukocyte counts, haematocrit, and erythrocyte indices; mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration including differential leucocyte count; lymphocytes, thrombocytes, neutrophils, and monocytes were investigated. Table 1 shows significant (P < 0.05) differences in major haematological parameters of Salmo trutta fario. All through the study period, male fish had significantly (P < 0.05) greater values of haematological parameters such as haemoglobin concentration (Hb), total erythrocyte count (RBC), and haematocrit (Hct), but insignificant (P > 0.05) difference in total white blood cell count, differential leucocyte count, mean corpuscular haemoglobin (MCH), and haematocrit (Hct) was noted.

3.1. Morphology and differential blood cell count

The erythrocyte size and blood cell dimensions of both sexes of Salmo trutta fario is presented in Figures 3, 4, 5, 6, and 7. The study revealed that erythrocytes (RBC), leucocytes and thrombocytes including neutrophils, lymphocytes and monocytes were the most common blood corpuscles recorded in the blood of S. trutta fario as depicted in Figure 8. The differences in blood cell sizes between the two sexes of S. trutta fario showed

Parameters	Male	Female	Combined
Hb (g/dL)	10.68 ± 1.53\(^a\)	9.18 ± 0.94\(^b\)	9.93 ± 1.47
RBC (×10\(^6\) mm\(^{-3}\))	1.89 ± 0.14\(^a\)	1.58 ± 0.36\(^b\)	1.74 ± 0.32
WBC (×10\(^3\) mm\(^{-3}\))	3.06 ± 0.64\(^a\)	2.83 ± 0.71\(^a\)	2.95 ± 0.68
Lymphocytes (%)	45.31 ± 2.11\(^a\)	43.69 ± 1.88\(^a\)	44.50 ± 2.0
Thrombocytes (%)	32.16 ± 1.82\(^a\)	33.76 ± 1.13\(^b\)	33.00 ± 1.48
Neutrophils (%)	14.68 ± 1.62\(^a\)	15.87 ± 1.43\(^a\)	15.29 ± 1.52
Monocytes (%)	7.84 ± 0.82\(^a\)	6.86 ± 0.72\(^a\)	7.40 ± 0.78
Hct (%)	38.47 ± 3.09\(^a\)	32.02 ± 2.31\(^b\)	35.25 ± 4.23
MCH (pg)	56.28 ± 4.82\(^a\)	54.62 ± 5.91\(^a\)	55.46 ± 5.04
MCHC (%)	29.10 ± 3.19\(^a\)	27.19 ± 2.74\(^a\)	28.15 ± 3.09
MCV (fl)	169.67 ± 12.93\(^a\)	167.09 ± 10.83\(^b\)	168.38 ± 11.85

1. Haemoglobin (Hb), 2. Red blood cell (RBC) count, 3. White blood cell (WBC) count, 4. Haematocrit, (Hct), 5. Mean corpuscular haemoglobin (MCH), 6. Mean corpuscular haemoglobin concentration (MCHC), 7. Mean corpuscular volume (MCV), \(^a\)Mean values in a rows sharing the same superscript are not significantly different (P > 0.05).
no significant (P > 0.05) difference except erythrocyte during the current investigation. The adult erythrocytes of both male and female *S. trutta fario* were almost elliptical in shape, with a blue stained centrally positioned nucleus including purple stained homogeneous cytoplasm. The immature erythrocytes, on the other hand, were found to be spherical in shape, smaller in size and lower in number compared to mature erythrocytes, with an oval to round nucleus and mildly purple stained coloured cytoplasm. Similarly, no morphological changes in thrombocytes were seen in both sexes of *S. trutta fario*. Thrombocytes were fusiform, circular, and elliptical in shape, with nuclei that took on the shape of the cells, however kidney-shaped nuclei were detected on rare occasions. In both sexes of *S. trutta fario*, such cells existed alone or in groups and had a bigger nucleus with chromatin clusters and pink stained cytoplasm using Wright-Giemsa stain. Neutrophils, on the other hand, are generally spherical or irregular in shape, with a purple stained nucleus that is placed centrally or eccentrically, and a band or segment shaped nucleus (bilobed, trilobed, tetralobed). Extremely little pale pink or purple granules were seen in the cytoplasm. Lymphocytes were the most prevalent cell type after erythrocytes, with a centrally located nucleus that is dark purple coloured and oval in shape, with the cytoplasm taking up the majority of the cell’s area. On the basis of relative amounts of cytoplasm and diameters, two types of lymphocytes were identified: small and giant lymphocytes. The small as well as the larger lymphocytes had a nucleus which took up the majority of the cell area with cytoplasm being reduced to periphery of the cell. On its overall body surface, lymphocytes occasionally expanded into pseudopodia. The monocytes were oval to round in form, with kidney-shaped eccentrically positioned nuclei. These cells have a bluish green cytoplasm with neither acidophilic nor basophilic
granules. Vacuolated monocytes were uncommonly found. Due to the absence of characteristic granules, monocytes were clearly separated from neutrophils in the current investigation under a light microscope.

3.2. Size and area of peripheral blood cells

We measured and compared the size of each cell type in male and female *Salmo trutta fario*, including erythrocytes, lymphocytes, neutrophils, monocytes and thrombocytes. With the exception of erythrocytes, no significant (P > 0.05) differences in size across genders have been observed.

3.3. Serum biochemical parameters

Table 2 shows the sex-specific blood biochemical characteristics of *Salmo trutta fario*. The majority of biochemical markers showed no significant (P > 0.05) change, except for aspartate aminotransferase (AST), alkaline phosphatase (ALP), sodium, potassium and phosphorus, which showed a significant (P < 0.05) difference.
4. Discussion

Fish are the largest and most diversified species of aquatic organisms because they live in close proximity to their aquatic environment, and any changes in the ecology are promptly reflected in the blood of fish (Jan et al., 2021). Various investigators and researchers have discovered an increasing trend related to the study of haematological and serum biochemical characteristics of fish blood to evaluate the overall health position of fish in recent years, since such blood indices offer dependable knowledge on chronic symptoms, metabolic disorders and deficiencies, before they manifest in the environment (Sheikh and Ahmed, 2019). Salmo trutta fario, a very active fish, has sufficient values for all major haematological markers, according to the current study (Hb, Hct, RBC, WBC, MCV, MCH and MCHC). Several researchers discovered that active fish have greater levels for almost all haematological markers (Ahmed et al., 2020). Aside from fish activity, it has been discovered that sex plays a significant effect on the haematological parameter values of fish (Gabriel et al., 2004; Akinrotimi et al., 2007; Khadjeh et al., 2010; Ahmed et al., 2019; Jan and Ahmed, 2021; Jan et al., 2021). Significantly ($P < 0.05$) all main haematological indices such as Hb, Hct, and RBC were greater in case of males of *S. trutta fario* than females, with the exception of leucocyte (WBC) count that was recorded to be higher in case of females. Our findings are consistent with those of various other researchers that studied fish species such as *Tor putitora* (Kapila et al., 2000), *Onchorhyncus mykiss* (Rehulka et al., 2004), *Rutilus kutum* (Nikoo et al., 2010), *Clarias batrachus* (Acharya and Mohanty, 2014), *Cirrhinus mrigala* (Pradhan et al., 2014), *Sander lucioperca* (Zakes et al., 2016), *Barilius bendelisis* (Sharma et al., 2017), *Hypophthalmichthys molitrix* (Ahmed et al., 2019).

![Lymphocytes](chart1)

Figure 5. E, F cell size and area of lymphocytes from different genders.

![Lymphocytes](chart2)
et al., 2019), *Schizothorax plagiostomus* (Sheikh and Ahmed, 2019), *S. labiatus* (Jan and Ahmed, 2021) and *S. labiatus* (Jan et al., 2021). According to Zakes et al. (2016), the hormone erythropoietin is accountable for enhanced haematological parameters in case of males. The differences in numerous blood cell components associated to sex can also be attributable to the male fish’s higher metabolic rate (Sharma et al., 2017). In contrast, the females of *S. trutta fario* exhibited higher levels of WBC count compared to males that agrees with the studies on other different fish species, for instance, *Labeo rohita* and *T. putitora* (Kapila et al., 2000), *C. batrachus* (Acharya and Mohanty, 2014), *Heterobranchus longifilis* (Suleiman et al., 2016), *B. bendelisis* (Sharma et al., 2017), *Rhinogobio ventralis* (Zhao et al., 2018), *H. molitrix* (Ahmed et al., 2019), *S. labiatus* (Jan et al., 2021) and *S. labiatus* (Jan et al., 2021). According to Zakes et al. (2016), the hormone erythropoietin is accountable for enhanced haematological parameters in case of males. The differences in numerous blood cell components associated to sex can also be attributable to the male fish’s higher metabolic rate (Sharma et al., 2017). In contrast, the females of *S. trutta fario* exhibited higher levels of WBC count compared to males that agrees with the studies on other different fish species, for instance, *Labeo rohita* and *T. putitora* (Kapila et al., 2000), *C. batrachus* (Acharya and Mohanty, 2014), *Heterobranchus longifilis* (Suleiman et al., 2016), *B. bendelisis* (Sharma et al., 2017), *Rhinogobio ventralis* (Zhao et al., 2018), *H. molitrix* (Ahmed et al., 2019),
S. plagiostomus (Sheikh and Ahmed, 2019), S. labiatus (Jan and Ahmed, 2021) and S. labiatus (Jan et al., 2021). Female fish with a greater WBC count have the capability to react rapidly to the multiple changes occurring in the medium as a result of xenobiotic transformation, implying that female fish possess a higher tolerance to deal with harmful toxic stress compared to male fish (George and Akinrotimi, 2017). Other researchers have observed similar findings (Satheeshkumar et al., 2012; Sharma et al., 2017; Ahmed et al., 2019; Jan et al., 2021). Erythrocyte indices such as MCV, MCH and MCHC are based on the amount of Hb occurring in the blood periphery and can aid in the measurement of erythrocyte size. The current study found insignificant (P > 0.05) difference in case of erythrocyte indices within two sexes of S. trutta fario, which is consistent with previous findings (Zhao et al., 2018; Sheikh and Ahmed, 2019; Jan and Ahmed, 2021; Jan et al., 2021).

In addition to haematological parameters, information on biochemical parameters is critical for evaluating the well-being of fish, as majority of pathological indicators arise in the plasma prior to occurrence of clinical diseases (Sheikh and Ahmed, 2019). As a result, biochemical markers play an important role in assessing and detecting disease-related issues in fish (Ahmed et al., 2019). There were insignificant (P > 0.05) differences in glucose, cholesterol, total protein, albumin, globulin and ALT values between the sexes in this investigation. Several researchers have already experimented in numerous fish species and found that the various metabolic parameters do not differ considerably between sexes (Khajevand et al., 2007; Ahmed et al., 2019). Although the plasma glucose level in males of S. trutta fario was found to be greater than in females in our study, many other investigators have also reported similar findings (Charoo et al., 2013; Zakes et al., 2016; Kulkarni, 2017; Zhao et al., 2018;...
Serum glucose is regarded as a critical indicator of a fish’s nutritional state and stress level. According to reports, blood glucose levels in fish vary depending on their age, reproductive stage, size and nutritional state (Percin and Konyalioglu, 2008; Prasad and Charles, 2010). Furthermore, the higher glucose concentration in males could be linked to their faster growth rate and higher efficiency of food conversion (Giberson and Litvak, 2003; Baker et al., 2005). Females of *S. trutta fario* have higher cholesterol levels than males, contrary to popular belief. It’s possible that female fish have a greater cholesterol level since it’s thought to be necessary for gonad development, basal steroid production, and adrenal steroidogenesis (Sharma et al., 2015, 2017; Sheikh and Ahmed, 2019; Jan and Ahmed, 2021; Jan et al., 2021). Our findings are consistent with those of various other researchers (Acharya and Mohanty, 2014; Zakes et al., 2016; Zhao et al., 2018; Ahmed et al., 2019; Jan et al., 2021). Total protein serum level is thought to be the main stable component of blood, and as such, it could be utilised to evaluate the nutritional state, physiological status, stress and fish well-being (Friedrich and Stepanowska, 2001; Riche, 2007). Throughout the investigation, we observed that the values of total protein, albumin and globulin were somewhat more in case of males compared to females of *S. trutta fario*. Other researchers have reported similar findings for different species of fish in the past (Owolabi, 2011; Charoo et al., 2013; Zakes et al., 2016; Kulkarni, 2017; Zhao et al., 2018; Ahmed et al., 2019; Jan et al., 2021).

Enzymes like ALT, AST, and ALP have been found in the blood of all species, including fish, and they perform various physiological activities inside the blood (Kulkarni, 2017). Such enzymes are produced mostly in the liver, and when they are found in blood plasma or serum, they provide specific information on organ disease. It has been discovered that an increase in the level of ALT indicates liver illness more specifically than...
Table 2. Biochemical parameters of cultured brown trout, *Salmo trutta fario*.

Parameters	Male	Female	Combined
Glucose (mg dl⁻¹)	114.60 ± 9.57b	110.54 ± 8.76a	112.57 ± 9.17
Cholesterol (mg dl⁻¹)	178.76 ± 10.56b	182.0 ± 14.42a	180.86 ± 12.50
Total protein (g dl⁻¹)	6.2 ± 0.87a	5.56 ± 1.27b	6.1 ± 1.08
Albumin (g dl⁻¹)	3.23 ± 0.60b	2.89 ± 0.68a	3.06 ± 0.64
Globulin (g dl⁻¹)	2.17 ± 0.78a	2.16 ± 0.88a	2.16 ± 0.83
Alanine aminotransferase (UL⁻¹)	230.6 ± 13.21a	220.20 ± 11.20a	225.43 ± 12.20a
Aspartate aminotransferase (UL⁻¹)	162.65 ± 8.65b	184.60 ± 8.46a	173.67 ± 8.56
Alkaline phosphatase (UL⁻¹)	40.21 ± 3.21a	41.10 ± 5.42b	40.65 ± 4.31
Sodium (mmol L⁻¹)	122.4 ± 6.65b	135.58 ± 7.87b	129.01 ± 7.26
Potassium (mmol L⁻¹)	1.34 ± 0.23a	2.51 ± 0.43b	1.92 ± 0.33
Phosphorus (mmol L⁻¹)	4.20 ± 0.87a	6.32 ± 1.32a	5.25 ± 1.09

Mean values in a rows sharing the same superscript are not significantly different (P > 0.05).

5. Conclusion

The current findings provide a baseline of sex-based data on the haematological, serum biochemistry and characterization of blood cells of *Salmo trutta fario* under normal conditions. Such data gathered in this study could be helpful in monitoring the sex-specific physiological health condition of fish populations. Our study on haematological-chemical characteristics and differential blood cell counts represent a significant scientific contribution to future blood cell characterization and data comparison with other salmonid species. Such fish-related data has also offered an imperative role in promoting the significance of pisciculture and raising environmental consciousness. Furthermore, the findings of this research will assist environmental and aquaculture officials in making informed judgments on the proper management and breeding of fish for human consumption in the future.

Declarations

Author contribution statement

Zubair Ahmad Sheikh, Kousar Jan, Naveed Nabi: Performed the experiment; Wrote the paper.

Imtiaz Ahmed: Conceived and designed the experiments.

Francesco Fazio: Analyzed and interpreted the data.

Funding statement

This work was supported by UGC, New Delhi under the scheme ‘Centre with Potential for Excellence in Particular Areas (CPEPA)’ with grant number F.No. 2-5/2016 (NS/PE).

Data availability statement

Data will be made available on request.

Declaration of interest’s statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.
Acknowledgements

We are thankful to the Head, Department of Zoology, University of Kashmir for providing necessary laboratory facilities.

References

Acharya, G., Mohanty, P.K., 2014. Hematological and serum biochemical parameters in different sexes of walking cat fish, Clarias batrachus (Linnæus, 1758). Int. J. Sci. Res. 3, 1914-1924.

Adel, M., Safari, R., Yeganesh, S., Kumar, P.S., Safiee, P., 2016. Hematological and biochemical profile of pike breeders (Esox lucius Linnaeus) from the Aazali Wetland, Caspian Sea. Proc. Natl. Acad. Sci., India. Sect. B: Biol. Sci. 87, 1271-1276.

Adeyemo, O.K., Okwilaoge, O.O., Afani, J., 2009. Comparative assessment of sodium EDTA and heparin as anticoagulants for the evaluation of hematological parameters in cultured and farmed catfish (Clarias gariepinus). Braz. J. Aquat. Sci. Technol. 13, 19-24.

Ahmed, I., Reshi, Q.M., Fazio, F., 2020. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquacult. Int. 28, 869-899.

Ahmed, I., Sheikh, Z.A., 2019. Hematological and biochemical parameters of five freshwater trout fish species from river Jhelum of Kashmir Himalaya. India. Comp. Clin. Pathol. 28, 771-782.

Ahmed, I., Sheikh, Z.A., 2020. Comparative study of haematological parameters of snow trout Schizothorax mutus and Schizothorax niger inhabiting two different habitats. Eur. Zool. J. 87, 12-19.

Ahmed, I., Sheikh, Z.A., Wani, G.B., Shah, B.A., 2019. Sex variation in hematological and biochemical parameters of M. aurata. Anat. Histol. Embryol. 48, 127-135.

Akinrinola, O.M., Gabriel, U.U., Anyanwu, P.E., Anyanwu, A.O., 2007. Influence of sex, acclimation methods and period on hematology of Sarotherodon melanotheron malabaricus. J. Fish. Biol. 2, 348-352.

APHA. 1998. Standard Methods for the Examination of Water and Waste Water, twentieth ed. American Public Health Association (APHA), Washington, DC, p. 1325.

Baker, D.W., Wood, A.M., Kieffer, J.D., 2005. Juvenile Atlantic and shortnose sturgeons (Acipenser spp) have different hematologic responses to acute and environmental hypoxia. Physiol. Biochem. Zool. 78, 916-925. Retrieved from https://www.journals.uchicago.edu/doi/full/10.1086/432860.

Blazhinc, P.C., Dashley, K.W., 1973. Routine haematological methods for use with fish blood. J. Fish. Biol. 5, 771-781.

Boyar, H.C., 1962. Blood cell types and differential counts in Atlantic herring, Clupea harengus harengus. J. Fish. Biol. 5, 771-781.

Clarke, F., 1998. A Review of the Scientific Findings for Maintaining the Cetaceans in Captivity. In: A report for the Whale and Dolphin Conservation Society (WDCS), Cranned, Troub, A., Tomsman, M., Ron, M., Morgenstern, B., 1998. Comparative study of biochemical parameters in response to stress in Oryctolagus cuniculus. J. Fish. Biol. 85, 1354-1440.

da Silva Correa, S.A., de Souza Abessa, D.M., dos Santos, L.G., da Silva, E.B., Seriani, R., 2017. Differential blood counting in fish as a non-destructive biomarker of water contamination exposure. Environ. Toxicol. Chem. 30, 489–492.

Dacie, S., Lewis, S., 1991. Practical Haematology, seventh ed. Churchill Livingstone, London, p. 563.

Dias, D.D.C., Tachibana, L., Seriani, R., Santos, A.A., Ranzani-Paiva, M.J.T., Romagosa, E., da Silva, L.G., de Souza Abessa, D.M., dos Santos, L.G., da Silva, E.B., Seriani, R., 2018. Comparative study of the hematologic response of fish against virus and bacteria. Dev. Comp. Immunol. 25, 827-839.

Fazio, F., Arfuso, F., Piccione, G., Zumbo, A., Fazio, F., 2014. Effect of three different anticoagulants and storage time on haematological parameters of Mugil cephalus (Linnæus, 1758). Turk. J. Fish. Aquat. Sci. 14, 615-621.

Fazio, F., Cardena, S., Arfuso, F., Marafioti, S., Piccione, G., Fazio, F., 2013. Effect of storage time on haematological parameters in mullet, Mugil cephalus. Cell Biochem. Funct. 31, 412-414.

Fazio, F., 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500, 237-242.

Fazio, F., 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500, 237-242.

Fazio, F., Arfuso, F., Fazio, F., Piccione, G., Caputo, A.R., Piccione, G., 2014. Stability of oxidative stress biomarkers in flathead mullet, Mugil cephalus, serum during short-term storage. Ecol. Indic. 46, 188-192.
Pal, A., Parida, S.P., Swain, M.M., 2008. Hematological and plasma biochemistry in fan thrusted lizard Siamu ponticerianus (Sauria: Agamidae). Russ. J. Herpetol. 15, 110–116. https://www.elibrary.ru/item.asp?id=1931392.

Parida, S.P., Dutta, S.K., Pal, A., 2012. Hematological and plasma biochemistry in Psammodromus blanfordianus (Sauria: Agamidae). Comp. Clin. Pathol. 21, 1387–1394.

Pavlidis, M., Futter, W.C., Katharios, F., Divanach, P., 2007. Blood cell profile of six Mediterranean marine teleost fish species. J. Appl. Ichthyol. 23, 70–75.

Percin, F., Konyalioglu, S., 2008. Serum biochemical profiles of captive and wild northern bluefin tuna (Thunnus thynnus L. 1758) in the eastern Mediterranean. Aquacult. Res. 39, 945–953.

Percin, F., Sibel, K., Kavas, F., Sahin, S., 2010. Serum electrolytes of wild and captive bluefin tuna (Thunnus thynnus L.) in Turkish Sea. J. Anim. Vet. Adv. 9, 2207–2213.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pavlidis, M., Futter, W.C., Katharios, F., Divanach, P., 2007. Blood cell profile of six Mediterranean marine teleost fish species. J. Appl. Ichthyol. 23, 70–75.

Percin, F., Konyalioglu, S., 2008. Serum biochemical profiles of captive and wild northern bluefin tuna (Thunnus thynnus L. 1758) in the eastern Mediterranean. Aquacult. Res. 39, 945–953.

Percin, F., Sibel, K., Kavas, F., Sahin, S., 2010. Serum electrolytes of wild and captive bluefin tuna (Thunnus thynnus L.) in Turkish Sea. J. Anim. Vet. Adv. 9, 2207–2213.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pavlidis, M., Futter, W.C., Katharios, F., Divanach, P., 2007. Blood cell profile of six Mediterranean marine teleost fish species. J. Appl. Ichthyol. 23, 70–75.

Percin, F., Konyalioglu, S., 2008. Serum biochemical profiles of captive and wild northern bluefin tuna (Thunnus thynnus L. 1758) in the eastern Mediterranean. Aquacult. Res. 39, 945–953.

Percin, F., Sibel, K., Kavas, F., Sahin, S., 2010. Serum electrolytes of wild and captive bluefin tuna (Thunnus thynnus L.) in Turkish Sea. J. Anim. Vet. Adv. 9, 2207–2213.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.

Pradhan, S.C., Patra, A.K., Mohanty, K.C., Pal, A., 2014. Hematological and plasma biochemistry in Cyprinus carpio (Hamilton 1822). Comp. Clin. Pathol. 23, 509–518.