Results on $\beta\beta$ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I

M. Agostini15, M. Allardt1, A.M. Bakalyarov13, M. Balata1, I. Barabanov11, N. Barros4, L. Baudis19, C. Bauer7, N. Becerici-Schmidt14, E. Bellotti18,5, S. Belogurov12,11, S.T. Belyaev11, G. Benato19, A. Bettini16,17, L. Bezrukov11, T. Bode15, D. Borowicz15, V. Brudanin4, R. Brugnera16,17, B. Budjáš1, A. Caldwell14, C. Cattadori9, A. Chernogorov12, V. D’Andrea1, E.V. Demidova12, A. di Vacci1, A. Domula7, E. Doroshkevich11, V. Egorov4, R. Falkenstein18, O. Fedorova11, K. Freund18, N. Frodyma3, A. Gangapane11,17, A. Garfagnini16,17, P. Grabmayr18, V. Gurentsov11, K. Gusev13,5,15, A. Hegai18, M. Heisel7, S. Hemmer16,17, G. Heusser7, W. Hofmann7, M. Hult9, L.V. Inzhelchik11,a, J. Janiczkó Csáthy15, J. Jochum18, M. Junker4, V. Kazalov11, T. Kihm7, I.V. Kirpichnikov12, A. Kirsch7, A. Klimenko7,5,b, K.T. Knöpfle7, O. Kochetov3, V.N. Kornoukhov12,11, V.V. Kuzminov11, M. Laubenstein1, A. Lazzaro15, V.I. Lebedev13, B. Lehnert4, H.Y. Liao14, M. Lindner7, I. Lippi17, A. Lubashevskyi7,5, B. Lubsandorzhiev11, G. Lutter9, C. Macolino1, B. Majorovits14, W. Maneschg7, E. Medinaceli16,17, M. Misiaszek3, P. Moseev11, I. Nemchenok5, D. Palioselitis12, K. Panas3, L. Pandola4, K. Pelczer3, A. Pulia10, S. Riboldi10, N. Rumyantseva5, C. Sada16,17, M. Salathe7, C. Schmitt18, J. Schreiner7, O. Schulz14, B. Schwingenheuer7, S. Schönhert15, O. Selivanenko11, M. Shirchenko13,5, H. Simgen7, A. Smolnikov7, L. Stanco17, M. Stepaniuk7, C.A. Ur17, L. Vanhoefer14, A.A. Vasenko12, A. Veresnikova11, K. von Sturm16,17, V. Wagner2, M. Walter19, A. Wegmann7, T. Wester4, H. Wilsenach7, M. Wojcik3, E. Yanovich7, P. Zavarise1, I. Zhitnikov5, S.V. Zhukov13, D. Zinatulina3, K. Zuber4, G. Zuzel3

1INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
2INFN Laboratori Nazionali del Sud, Catania, Italy
3Institute of Physics, Jagiellonian University, Cracow, Poland
4Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
5Joint Institute for Nuclear Research, Dubna, Russia
6Institute for Reference Materials and Measurements, Geel, Belgium
7Max Planck Institut für Kernphysik, Heidelberg, Germany
8Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy
9INFN Milano Bicocca, Milano, Italy
10Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy
11Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
12Institute for Theoretical and Experimental Physics, Moscow, Russia
13National Research Centre “Kurchatov Institute”, Moscow, Russia
14Max-Planck-Institut für Physik, München, Germany
15Physik Department and Excellence Cluster Universe, Technische Universität München, München, Germany
16Dipartimento di Fisica e Astronomia dell’Università di Padova, Padova, Italy
17INFN Padova, Padova, Italy
18Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
19Physik Institut der Universität Zürich, Zürich, Switzerland

Received: date / Accepted: date
Abstract A search for neutrinoless $\beta\beta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices $n = 1, 2, 3, 7$ were searched for. No signals were found and lower limits of the order of 10^{23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with 76Ge. A new result for the half-life of the neutrino-accompanied $\beta\beta$ decay of 76Ge with significantly reduced uncertainties is also given, resulting in $T_{1/2}^{\nu\nu} = (1.926 \pm 0.095) \times 10^{21}$ yr.

Keywords double beta decay · Majoron emission · enriched 76Ge

PACS 23.40.-s β decay; double β decay; electron and muon capture · $14.80.Va$ majorons · $21.10.Tg$ Lifetimes, widths · $27.50.+e$ mass $59 \leq A \leq 89$

1 Introduction

Neutrinoless double beta ($0\nu\beta\beta$) decay is regarded as the gold-plated process for probing the fundamental character of neutrinos. Observation of this process would imply total lepton number violation by two units and that neutrinos have a Majorana mass component. Although the main focus of experimental efforts lies on the detection of $0\nu\beta\beta$ decay mediated by light Majorana neutrino exchange, there are also many other proposed mechanisms which are being searched for. Some exotic models predict $0\nu\beta\beta$ decays proceeding through the emission of a massless Goldstone boson, called Majoron. Predictions of different models depend on its transformation properties under weak isospin, singlet [1], doublet [2] and triplet [3]. Precise measurements of the invisible width of the Z boson at LEP [4] greatly disfavour triplet and pure doublet models. Several new Majoron models have been developed subsequently in which the Majoron carries leptonic charge and cannot be a Goldstone boson [5, 6] or in which the $0\nu\beta\beta$ decay proceeds through the emission of two Majorons [7].

All these models predict different shapes of the two emitted electrons’ summed energy spectrum. The predicted spectral shapes are essentially defined by the phase space of the emitted particles:

$$\frac{dN}{dK} \sim G \sim (Q_{\beta\beta} - K)^n$$ \hspace{1cm} (1)

where K is the summed energy of the two electrons, G is the phase space, $Q_{\beta\beta}$ is the Q value of the $0\nu\beta\beta$ decay and n is the spectral index of the model. Single Majoron emitting $\beta\beta$ decays can be roughly divided into three classes, $n = 1, 2, 3$. Double Majoron emitting decays can have either $n = 3$ or $n = 7$. Their characteristic spectral shapes differ from that of two-neutrino $\beta\beta$ decay $(2\nu\beta\beta)$, for which $n = 5$. This allows for discrimination between the processes.

Experimental searches for $\beta\beta$ decay mediated by emission of one or two Majorons ($0\nu\beta\beta\chi$) have been performed by the Heidelberg-Moscow experiment (HDM) for 76Ge [8, 9]; by NEMO-2 and NEMO-3 for 100Mo, 116Cd, 82Se, 96Zr, 130Te [10, 11]; by ELEGANT V for 100Mo [12]; by DAMA [13] and by KAMLAND-Zen for 136Xe [14]. None of these experiments have seen an excess of events that could be interpreted as a Majoron signal; they reported lower limits on the half-lives of the processes that involve Majoron emission.

The $2\nu\beta\beta$ decay process conserves lepton number and is independent of the nature of the neutrino. It has been detected for eleven nuclides so far, with measured half-lives ($T_{1/2}^{\beta\beta}$) in the range of $7 \times 10^{18} - 2 \times 10^{24}$ yr [15, 16, 17]. The knowledge of $T_{1/2}^{\beta\beta}$ allows for extraction of the nuclear matrix element, $M^{2\nu}$, which can provide some constraints on that of $0\nu\beta\beta$ decay, $M^{0\nu}$, if the evaluations of M for the two processes are performed within the same model [18, 19].

This paper reports on the search for neutrinoless double beta decay of 76Ge with Majoron emission ($0\nu\beta\beta\chi$) and a new analysis of the half-life of the $2\nu\beta\beta$ decay of 76Ge using data collected by the GERDA experiment during its Phase I. $2\nu\beta\beta$ decay is a well established and previously observed process, while $0\nu\beta\beta\chi$ decay is a hypothetical one. In the first case the half-life is extracted, while for the second one a limit is set. This leads to slightly different approaches in the analyses leading to different data sets and background components being used.

2 The GERDA experiment

The main aim of the GERDA experiment [20] at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy is to search for $0\nu\beta\beta$ decay of 76Ge. The core of the setup is an array of high-purity germanium (HPGe) detectors made from isotopically modified material with 76Ge enriched to $\sim 86\%$ (enriched Ge), mounted in low-mass copper supports (holders) and immersed in a 64 m3 cryostat filled with liquid argon (LAr). The LAr serves as cooling medium and shield against external backgrounds. The shielding is complemented by water in a...
tank of 10 m in diameter which is instrumented with photomultipliers to detect Cherenkov light generated in muon-induced showers [20].

The array of HPGe detectors is arranged in strings. Each string is enclosed with a cylinder, made from 60 µm thick Cu foil, called mini-shroud, to mitigate the background coming from the decay of 42Ar present in the LAr. Moreover, in order to prevent contamination from radon within the cryostat, a cylinder, made from 30 µm thick Cu foil, called radon-shroud, separates the central part of the cryostat, where the detectors are located, from the rest. The HPGe detector signals are read out with custom-made charge sensitive preamplifiers optimized for low radioactivity, which are operated close to the detectors in the LAr. The analog signals are digitized with 100 MHz Flash ADCs (FADC) and analyzed offline. If one of the detectors has an energy deposition above the trigger threshold (40-100 keV), all channels are read out. Reprocessed p-type coaxial detectors from the HoM [21] and IGEX [22] experiments were operated together with Broad Energy Germanium (BEGe) type detectors manufactured by Canberra [23,24].

As explained in section 5, some background components have different effects on the two detector types due to their peculiar geometry. A schematic drawing of a coaxial detector type is shown in the top part of Fig. 1, while the lower part depicts that for a BEGe type detector.

![Schematic sketch of a coaxial HPGe detector (top) and a BEGe detector (bottom) with their different surfaces and dead layers (drawings not to scale), adapted from Ref. [25].](image)

Fig. 1 Schematic sketch of a coaxial HPGe detector (top) and a BEGe detector (bottom) with their different surfaces and dead layers (drawings not to scale), adapted from Ref. [25].

3 Data taking and data selection

Phase I data taking lasted from November 9, 2011, to May 21, 2013. The total exposure collected comprises 19.2 kg·yr for the coaxial detectors and 2.4 kg·yr for the BEGe detectors. In this paper, the entire exposure collected by the BEGe detectors (BEGe data set) and 17.9 kg·yr from the coaxial detectors (golden data set) are used [25,26]. For the coaxial detectors, a data set collected for 1.3 kg·yr exposure during a restricted time period around the deployment of the BEGe detectors is discarded due to a higher background level. Also one of the coaxial detectors, RG2, is not considered for the data analysis starting from March 2013, as its high voltage had to be reduced below depletion voltage due to increased leakage current. The energy calibration of the detectors was performed using the information from dedicated calibration runs. For these calibration runs, three 228Th sources were lowered to the vicinity of the detectors. The stability of the energy scale was monitored by performing such calibration runs every one or two weeks. Moreover, the stability of the system was continuously monitored by injecting charge pulses into the test input of the preamplifiers. Using physics data, the interpolated FWHM values at Q_{33} averaged with the exposure are (4.8 ± 0.2) keV for the coaxial detectors and (3.2 ± 0.2) keV for the BEGe detectors.

All steps of the offline processing of the GERDA data were performed within the software framework GElatio [27]. The energy deposited in each detector was extracted from the respective charge pulse by applying a approximate Gaussian filter [28]. Non-physical events, such as discharges, cross-talk and pick-up noise events, were rejected by quality cuts based on the time position of the rising edge, the information from the Gaussian filter, the rise time and the charge pulse height, which must not exceed the dynamic range of the FADCs. Pile-up and accidental coincidences were removed from the data set using cuts based on the baseline slope, the number of triggers and the position of the rising edge. The rate of pile-up and accidental coincidence events is negligible in the GERDA data due to the extremely low event rate. The loss due to mis-classification by the quality cuts was $<0.1\%$ for events with energies above 1 MeV. All events that come within 8 µs of a signal from the muon veto were rejected. Finally, only events that survive the detector anti-coincidence cut were considered. This means, that all events with an energy deposition >50 keV in more than one detector in the array were not taken into account. Since $2\nu\beta\beta$ and $0\nu\beta\beta$ events release their energy within a small volume inside the detectors, almost no signal events were lost by this
cut, while a part of the γ-induced background events were rejected.

4 Analysis Strategy

The two analyses described in this paper are different in the sense that for $2\nu\beta\beta$ decay a parameter is extracted for a well established and known process, while in the case of the search for $0\nu\beta\beta\chi$ decay limits for a hypothetical process are set. In order to minimize the systematic uncertainties for the extraction of the $T_{1/2}^{2\nu}$, it is favorable to use a well defined and controlled subset of the data and to use only well identified background processes. For $0\nu\beta\beta\chi$ limit setting it is favorable to maximize the exposure and to take into account all known possible background processes that can not be unambiguously detected but could mimic $0\nu\beta\beta\chi$ decay.

For the $T_{1/2}^{2\nu}$ analysis the golden data set (17.9 kg yr) with the coaxial detectors is used in order to have a large data sample obtained in well controlled experimental conditions. The Majoron analysis uses both the golden data set and the BEGe data set for a total exposure of 20.3 kg yr in order to maximize the sensitivity.

The background model for the $T_{1/2}^{2\nu}$ analysis uses a minimal number of components, assuming all sources near to the detectors [25, 29]. For the Majoron analysis, an expanded model is used [30], taking into account also additional medium and far distant positions for some of the sources. This becomes necessary when searching for rare processes such as Majoron emission, where all possible sources of background which could simulate the exotic process have to be considered. Therefore, even the slight differences resulting, for example from a variation of the source position, have to be evaluated.

In both analyses, the experimental spectra of the coaxial and BEGe detectors are analyzed using the Bayesian Analysis Toolkit (BAT) [31].

5 The background model

The background sources considered in the models were identified by their prominent structures in the energy spectra and were also expected on the basis of material screening measurements. The spectral shapes of individual background contributions were obtained by using a detailed implementation of the experimental setup in the Monte Carlo (MC) simulation framework MAGe [32]. A Bayesian spectral fit of the measured energy spectrum with the simulated spectra was performed in an energy range from 570 keV up to the end of the dynamic range at 7500 keV. The low energy limit is motivated by the β-decay of 39Ar, which gives a large contribution up to its Q_β-value of 565 keV.

The following background components were used for the extraction of the $T_{1/2}^{2\nu}$ (minimum model in Refs. [25, 29]): (1) 76Ge $2\nu\beta\beta$ decay, (2) 214Bi, 228Ac, 228Th, 60Co and 42K decays in the close vicinity of the detectors (<2 cm, represented by decays in the detector holders in the MC simulation), (3) decays of 60Co inside the detectors, constrained by the maximum expected activity from their cosmogenic activation history, (4) 42K decays in LAr assuming a uniform distribution, (5) α-model that accounts for α decays originating from 210Po and 226Ra contaminations on the p^+ surface of the detectors as well as from 222Rn in the LAr, and finally (6) 214Bi decays on the p^+ surface, constrained by the estimated 226Ra activity from the α-model.

The parameters of all components besides the constrained ones were given a flat prior probability distribution. There are no strong correlations between the model parameters since all considered background components have characteristic features such as γ-ray lines or peak-like structures at different energies. The ratios of the γ-ray line intensities from the individual considered background sources suggest contaminations dominantly in locations close to the detectors. Hence, the minimum model takes into account only the close-by source locations. Nevertheless, the screening measurements indicate contaminations of materials in farther locations as well. An additional contribution can come from 42K decays at or near the detector n^+ surfaces (see Fig. 1) with a specific activity higher than that for the uniform distribution assumption. This component is the dominating one for the BEGe data set, as the thinner dead layer thickness of BEGes of roughly 1 mm allows penetration of the electrons emitted in the decay of 42K to the active volume, while for coaxial detectors the dead layer thickness of ~ 2 mm efficiently shields this background component.

The spectral shapes of the contributions from the background sources without significant multiple γ peaks at different source locations differ only marginally. This makes it impossible to pinpoint the exact source locations given the available statistics of the measured spectra. Therefore, variations of the source locations for the considered decays were taken into account when evaluating the systematic uncertainty on $T_{1/2}^{2\nu}$. For the Majoron analysis additional background components were used [30], including also medium and far distant contributions. For the coaxial detectors 42K on the n^+ and on the p^+ contacts was added to the list of the close sources of the previous background model. For medium distances, i.e. between 2 cm and 50 cm from the detectors, contributions from the following sources
were added: 214Bi, 228Th and 228Ac. A 228Th contamination was chosen as a representative for far distant sources (above 50 cm). Whenever possible, screening measurements were used to constrain the lower limit of the expected background events.

In the Majoron analysis, also the data collected with the BEGe diodes were used in order to maximize the exposure. Consequently, the background model developed for these detectors was used [25,30]. The same close, medium and far distant sources as for the coaxial detectors were used. 68Ge was added as internal source. This was necessary in order to take into account the cosmic activation of the germanium due to the recent production of these diodes.

6 Determination of the half-life of $2\nu\beta\beta$ decay

6.1 Analysis

The $T_{1/2}^{2\nu}$ of $2\nu\beta\beta$ decay of 76Ge was determined considering the golden data set of Phase I, amounting to an exposure of 17.9 kg-yr, and using the background model prediction for the contribution of the $2\nu\beta\beta$ spectrum to the overall energy spectrum. Details of the background analysis can be found in Ref. [29].

The global fit for the background modeling was performed on the summed energy spectrum of the coaxial detectors using a bin width of 30 keV. Thus, the scaling parameter of the $2\nu\beta\beta$ spectrum in the model, N_{AV}^{fit}, gives the number of events in the $2\nu\beta\beta$ spectrum in the fit window of 570–7500 keV for all detectors. Using this result for the number of measured $2\nu\beta\beta$ events, the half-life is calculated as

$$T_{1/2}^{2\nu} = \left(\frac{\ln 2}{N_{AV}^{\text{fit}}} \sum_{i=1}^{N_{\text{det}}} M_i t_i f_{76,i} \left[f_{AV,i} \varepsilon_{AV,i}^{\text{fit}} + (1 - f_{AV,i}) \varepsilon_{DL,i}^{\text{fit}} \right] \right),$$

where N_A is Avogadro’s constant and $m_{\text{enr}} = 75.6$ g is the molar mass of the enriched material. The summation runs over all the detectors (N_{det}) considered in the data set. All detector related parameters like the detector mass (M_i), the time of the data taking for each detector (t_i), the fraction of 76Ge atoms ($f_{76,i}$), the active volume fraction ($f_{AV,i}$), and the detection efficiencies in the active volume ($\varepsilon_{AV,i}^{\text{fit}}$) and in the dead layer ($\varepsilon_{DL,i}^{\text{fit}}$) are taken into account separately for the individual detectors. All values are listed in Table 1. The efficiency $\varepsilon_{AV,i}^{\text{fit}}$ ($\varepsilon_{DL,i}^{\text{fit}}$) corresponds to the probability that a $2\nu\beta\beta$ decay taking place in the active volume (dead layer) of the detector deposits detectable energy in the fit window considered for the background model.

Table 1

Parameters for the coaxial detectors (upper part) and for the BEGe detectors (lower part): live time, t, total mass, M, the fraction of 76Ge atoms, f_{76}, and the active volume fraction, f_{AV}. For the coaxial detectors, the first uncertainty on f_{act} is the uncorrelated part, the second one the correlated contribution. The values for M, f_{76} and f_{AV} are taken from Ref. [25].

detectors	t [days]	M [kg]	f_{76} [%]	f_{AV} [%]
enriched coaxial detectors				
GD32B	280.0	0.717	87.7 ± 1.3	89.0 ± 2.7
GD32C	304.6	0.743	87.7 ± 1.3	91.1 ± 3.0
GD32D	282.7	0.723	87.7 ± 1.3	92.3 ± 2.6
GD35B	301.2	0.812	87.7 ± 1.3	91.4 ± 2.9
enriched BEGe detectors				

The detection efficiencies, on average $\varepsilon_{AV,I}^{\text{fit}} = 0.667$ and $\varepsilon_{DL}^{\text{fit}} = 0.011$, are obtained through dedicated MC simulations. The statistical uncertainty due to the number of simulated events is on the order of 0.1 %.

The background model resulted in a scaling parameter of $N_{AV}^{\text{fit}} = 25690 \pm 310$ for the $2\nu\beta\beta$ spectrum, which is the best fit parameter. The uncertainty is given by the smallest 68% probability interval of the marginalized posterior probability distribution. Using this result, the half-life derived according to Eq. 2 is

$$T_{1/2}^{2\nu} = 1.926^{+0.022}_{-0.022} \times 10^{21} \text{ yr}.$$

6.2 Systematic Uncertainties

The systematic uncertainties affecting the results for $T_{1/2}^{2\nu}$ were grouped into the three categories (i) detector parameters and fit model, (ii) MC simulation, and (iii) data acquisition and selection. The contributions to the total systematic uncertainty on $T_{1/2}^{2\nu}$ are summarized in Table 2.

(i) detector parameters and fit model

- The systematic uncertainty on the active 76Ge exposure ($\mathcal{E}_{AV,76}$) was determined using a MC approach. $\mathcal{E}_{AV,76}$ is defined as

$$\mathcal{E}_{AV,76} = \sum_{i=1}^{N_{\text{det}}} M_i t_i f_{AV,i} f_{76,i}.$$

For evaluating its uncertainty, the parameters of the individual detectors were randomly sampled from
Table 2 Contributions to the systematic uncertainty on $T_{1/2}^{2\nu}$ taken into account in this work. The total systematic uncertainty is obtained by combining the individual contributions in quadrature.

Item	Uncertainty on $T_{1/2}^{2\nu}$ [$\%$]
Active 76Ge exposure	± 4
Background model components	± 1.4
Binning	± 0.5
Shape of the $2\nu\beta\beta$ spectrum	< 0.1
Subtotal fit model	± 4.3
Precision of the Monte Carlo geometry model	± 1
Accuracy of the Monte Carlo tracking	± 2
Subtotal Monte Carlo simulation	± 2.2
Data acquisition and handling	< 0.1
Total	± 4.8

Gaussian distributions with mean values and standard deviations according to the corresponding values listed in Table 1. The correlated terms for f_{AV} were also taken into account. The uncertainty on the live time t is 0.3 %, whereas the total detector masses are known with good accuracy (uncertainty smaller than 0.1 %). The calculation yields $E_{AV,76} = (13.45 \pm 0.54)$ kg yr. The uncertainty of 4% is driven by the uncertainties on f_{AV} and f_{76}, which mainly affect the number of 76Ge nuclei in the active volume of the detectors, with a relatively smaller impact on the detection efficiency for the background sources.

The reference background model used for determining $T_{1/2}^{2\nu}$ accounts only for the dominant source locations in the setup. The systematic uncertainty due to the choice of the background model components was evaluated by repeating the global fit with alternative models, which account for different source locations for all the background sources considered in the reference model. The model that accounts for 228Th and 228Ac contributions also in the radon-shroud instead of only in the holders results in a 1.4 % longer $T_{1/2}^{2\nu}$. The same increase occurs if 40K in the radon-shroud is added to the model components. The model including the contribution from 214Bi in the radon-shroud in addition to the p^+ surface and holders yields a 0.7 % longer $T_{1/2}^{2\nu}$. In all the cases mentioned above, the contribution from background in the $2\nu\beta\beta$ spectrum region increases, since the peak-to-Compton ratio of the γ-rays decreases for farther source locations leading to longer $T_{1/2}^{2\nu}$ estimates. Excluding contributions from very close source locations, like 214Bi on the p^+ surface and 60Co on the germanium, results in a smaller increase of the best $T_{1/2}^{2\nu}$ estimate. In this case, the contributions from these components are compensated by 214Bi and 60Co decays in the holders, respectively. Consequently, the source locations are moved further out with respect to the reference model. Consistently, the models that include additional contributions from close source locations yield a decrease in the $T_{1/2}^{2\nu}$ value, e.g. including 214Bi in LAr close to the p^+ surface (-1.0 %) or 42K on the n^+ (-1.2 %) and p^+ (-0.6 %) surfaces. Comparing alternative background models to the reference one, the deviations in the $T_{1/2}^{2\nu}$ result range between -1.2 % and +1.4 %.

- For the standard fit, a bin width of 30 keV was used for the data and MC energy spectra. In order to take into account the systematic uncertainty related to binning effects, the fit was repeated twice using bin widths of 10 and 50 keV. The bin width of 10 keV was chosen in order to minimize as much as possible the bin size taking into account the energy resolution of ≈ 4.5 keV of the coaxial detectors and the necessity to have enough statistics in all bins. Above 50 keV, peak structures are washed out, leading to a deterioration of the fit. The deviations in the $T_{1/2}^{2\nu}$ result range between -0.5 % and +0.5 % with respect to that using the standard bin width.

- The primary spectrum of the two electrons emitted in the $2\nu\beta\beta$ decay of 76Ge, which was then fed into the MC simulation, was sampled according to the distribution given in Ref. [33] implemented in DECAYO [34]. The systematic uncertainty due to the assumed $2\nu\beta\beta$ spectral shape was evaluated by comparing the spectrum generated by DECAYO to the one given in Ref. [35]. Considering the analysis window used for background modeling, the maximum deviation is 0.2 % and the total deviation of the integral in the analysis window is 0.1 %. When the fit with the background model is repeated using the
comes from the uncertainty on the active

The largest contribution to the systematic uncertainties

of 4.9 % is dominated by the systematic uncertainties.

The total uncertainty

with the latter combining in quadrature the statistical

implemented in

MaGe

from the precision of the experimental geometry model

(ii) MC simulation

The uncertainty related to the MC simulation arises

from the precision of the experimental geometry model

implemented in MAGE (1 %) and from the accuracy of

particle tracking (2 %) performed by GEANT4 [38,39].

The total MC simulation uncertainty was estimated to

be 2.2 % by summing in quadrature the aforementioned

contributions.

(iii) Data acquisition and selection

The trigger and reconstruction efficiencies for physical

events are practically 100 % above 100 keV in GERDA.

The performance of the quality cuts applied in Phase I

data has been investigated through a visual analysis.

The total uncertainty related to data acquisition

and selection was estimated to be less than 0.1 %.

Summing in quadrature the uncertainties of the three

groups gives a total systematic uncertainty of ±4.8 %.

6.3 Results and Discussion

Fig. 2 shows the experimental data together with the

best fit model for the golden data set. The different

components of the minimum background model are also

reported. The model is able to reproduce the experi-

mental data well, as shown in the lower panel of the

figure by the residuals.

The best estimate of the $T_{1/2}$ of the $2\nu\beta\beta$ decay of

76Ge is:

$$T_{1/2}^{2\nu} = \left(1.926^{+0.025}_{-0.022,\text{stat}} ^{+0.092}_{-0.092,\text{syst}} \right) \cdot 10^{21} \text{ yr}$$

$$= (1.926 \pm 0.095) \cdot 10^{21} \text{ yr}, \quad (5)$$

with the latter combining in quadrature the statistical

(fit) and systematic uncertainties. The total uncertainty

of 4.9 % is dominated by the systematic uncertainties.

The largest contribution to the systematic uncertainties

comes from the uncertainty on the active 76Ge exposure

(4 %), which can only be reduced by performing new

and more precise measurements of the active masses

of the coaxial detectors. Other significant contributions

are related to the Monte Carlo simulations (2.2 %) and
to the background model assumptions ($^{+1.4}_{-1.2}$ %). The latter
have been significantly reduced in this analysis compared
to the analysis of the first 5 kg yr of Phase I data
reported in Ref. [41], where the systematic uncertainty
due to the background model was -2.1 %. The new result
is in good agreement with that mentioned above.
Adding further identified components to the reference
background model results in a slight increase of the best
$T_{1/2}^{2\nu}$ estimate.

The background level achieved in GERDA Phase I
is about one order of magnitude lower with respect
to predecessor 76Ge experiments, and has allowed the
measurement of $T_{1/2}^{2\nu}$ with an unprecedented signal-to-
background ratio of 3:1 in the 570–2039 keV interval.

The ratio amounts to 4:1 for the smaller interval of
600–1800 keV.

7 Limits on Majoron-emitting double β-decays of 76Ge

7.1 Analysis

The search for $0\nu\beta\beta_{\chi}$ was performed using the golden
and BEGe data sets, amounting to a total exposure of
20.3 kg yr. The analysis employed the background
model described in section 5. The information from the
two data sets was combined in one fit, while keeping
their energy spectra distinct. A separate fit was per-
formed for each spectral index, containing the back-
ground contributions, the contributions from $2\nu\beta\beta$ de-
cay, and also the Majoron component under study. A
single parameter, $T_{1/2}^{2\nu}$, is considered common for the
two data sets. It is defined as the half-life of the respec-
tive Majoron accompanied mode.

In order to improve the detection efficiency for the
Majoron processes with low n ($n = 1, 2$), a slightly
different event selection was used with respect to the
$T_{1/2}^{2\nu}$ analysis. If an event occurs with energy deposition
in two detectors and the energy deposit in the detector
where the decay took place is below the threshold for the anti-coincidence cut, the event contributes to the
energy spectrum of the other detector. Therefore,
when determining the total energy spectrum resulting
from decays in one of the detectors, the energy spectra
from all detectors in the array have to be taken into
account. Such a selection has no impact on the detection
efficiency for the Majoron process with $n = 3$ and
7 and $2\nu\beta\beta$ decay. The content of the i-th bin in the
combined energy spectrum of all N_{det} detectors in the
array, for decays taking place in the active and dead part of detector α, becomes:

$$
\lambda_i^{0,0\nu\chi} = \frac{(\ln 2) N_A}{m_{\nu_\alpha} T_{1/2,\alpha}^0} M_\alpha f_{0,\alpha} \cdot \left[f_{AV,\alpha} \sum_{j=1}^{N_{det}} t_j \epsilon_{AV,j}^{0,0\nu\chi} \Phi_{AV,i,j}^{0,0\nu\chi} \right] + (1 - f_{AV,\alpha}) \sum_{j=1}^{N_{det}} t_j \epsilon_{DL,j}^{0,0\nu\chi} \Phi_{DL,i,j}^{0,0\nu\chi}
$$

(6)

with $\Phi_{AV,i,j}^{0,0\nu\chi}$ ($\Phi_{DL,i,j}^{0,0\nu\chi}$) giving the content of the i-th bin of the normalized energy distribution recorded with detector j for $0\nu\beta\beta\chi$ taking place in the active (dead) volume of detector α. Summing up the simulations of decays in all N_{det} detectors results in the final model spectrum:

$$
\lambda_i^{0,0\nu\chi} = \sum_{\alpha=1}^{N_{det}} \lambda_i^{0,0\nu\chi}.
$$

(7)

For all four Majoron modes ($n = 1, 2, 3, 7$) only lower limits on the half-life can be given. They were obtained from the 90% quantiles of the marginalized posterior distributions. These lower limits for $T_{1/2}^{0,0\nu\chi}$, not taking into account the systematic uncertainties, are in units of 10^{23} yr: >4.4, >1.9, >0.9, and >0.4 for $n = 1, 2, 3$, and 7, respectively. The respective half-life of the $2\nu\beta\beta$ process derived from this analysis amounts to in units of 10^{21} yr: $1.96 \pm 0.03_{\text{stat}}$, $1.97 \pm 0.03_{\text{stat}}$, $1.98 \pm 0.03_{\text{stat}}$, and $1.99 \pm 0.03_{\text{stat}}$. Within the uncertainties coming from the different background models and the different data

Fig. 2 Upper panel: experimental data (markers) and the best fit model (black histogram) for the golden data set. The contribution from $2\nu\beta\beta$ (green) and from the single background components are also shown. Lower panel: ratio between experimental data and the prediction of the best fit model. The green, yellow and red regions are the smallest intervals containing 68%, 95% and 99% probability for the ratio assuming the best fit parameters, respectively [40].
sets of the two analyses, the derived $T_{1/2}^{0\nu\beta\beta}$ values are in agreement ($<1\sigma$) with that discussed in section 6.3.

7.2 Systematic Uncertainties

The systematic uncertainties were divided into the three categories (i) detector parameters and fit model, (ii) MC simulation, and (iii) data acquisition and selection.

(i) detector parameters and fit model

Uncertainties from the fitting procedure were folded into the posterior distribution of $T_{1/2}^{0\nu\beta\beta}$ with a MC approach. Each source of uncertainty is described by a probability distribution. The fitting procedure was repeated 1000 times, each time drawing a random number for each source of uncertainty according to its probability distribution:

- Material screening measurement results were used to constrain the minimum number of events expected from close and medium distant sources of the 214Bi and 228Th decays. Gaussian distributions describing these lower limits used in the fit were derived from the mean and standard deviations of the screening measurements. For details see Ref. [25].

- As for the $T_{1/2}^{0\nu\beta\beta}$ analysis, the standard fit uses a bin width of 30 keV for the data and MC energy spectra. In order to determine the systematic uncertainty related to binning effects, the bin width was sampled uniformly from 10 keV to 50 keV.

- Uncertainties on the active volume fractions enter the model in several ways. On the one hand, the MC energy spectra for all internal sources, that is for $2\nu\beta\beta$, $0\nu\beta\beta\chi$, 60Co, and 68Ga decays, are affected, as the fraction of decays taking place in the active and dead part of the detectors changes with changing f_{AV}. On the other hand, the uncertainty on the active volume fraction also plays a role for the shape of the energy spectrum due to 42K decays on the n^+ surface. Larger f_{AV} means thinner n^+ dead layer and thus the possibility of an increased contribution from the electrons to the spectrum. For smaller f_{AV} and thicker n^+ dead layer, their contributions are expected to be reduced. The active volume fraction for each detector was sampled from a Gaussian distribution with mean and standard deviation according to Table 1. For the coaxial detectors, the partial correlations of the uncertainty were taken into account. The simulated spectra of the internal sources as well as of the 42K decays on the n^+ surface are composed according to the sampled active volume fractions.

- The uncertainty on the fraction of enrichment in 76Ge of the germanium that constitutes the detectors plays a role when converting the number of events attributed to $0\nu\beta\beta\chi$ into $T_{1/2}^{0\nu\beta\beta}$. The probability distribution of $f_{0\nu}$ for each detector is given by a Gaussian function with mean values and standard deviations as listed in Table 1.

- The data does not allow the resolution of the ambiguity regarding the exact positions of the near and medium distant sources. The 214Bi decays serve as a representative in order to estimate the impact of this uncertainty. Their near position is represented by decays in the holders, in the mini-shroud or on the n^+ surface of the detectors, each having a probability of 1/3 in the sampling process. The medium distant position is represented by decays in the radon-shroud or in the LAr, having a probability 1/2 in contrast.

- Extensive studies of the characteristics of the BEGe diodes suggest the presence of a transition layer between the region where the detector is fully efficient and the external dead region [36,37]. An uncertainty as high as $\pm 0.5\%$ on the lower limits of $T_{1/2}^{0\nu\beta\beta}$ is estimated for this effect in the case of the BEGe detectors. This uncertainty was folded into the total marginalized posterior distribution a posteriori. The corresponding uncertainty for the coaxial detectors is estimated to be negligible.

The marginalized posterior distributions for $T_{1/2}^{0\nu\beta\beta}$ derived from each of the 1000 individual fits were summed up. The resulting total marginalized posterior distribution accounts for the statistical as well as for the listed systematic uncertainties related to the fit model.

As for the $T_{1/2}^{0\nu\beta\beta}$ analysis, the uncertainties on the active volume fractions and on the enrichment fractions are major contributions to the total uncertainty on the limits for $T_{1/2}^{0\nu\beta\beta}$. However, the largest source of uncertainty is the composition of the fit model and the individual background contributions. In the case of $n = 1$, a fit with a bin width of 50 keV weakens the limit by $\approx 16\%$ compared to the standard fit, while the result for $T_{1/2}^{0\nu}$ is not affected at all. The stability of the $T_{1/2}^{0\nu}$ results shows the validity of the fit. The use of the alternative close and medium distant source positions for 214Bi decays leads to maximal variations of $+8.3\%$ and -12.6% of the limit on $T_{1/2}^{0\nu\beta\beta}$.

(ii) MC simulation

As in the case of the $T_{1/2}^{0\nu\beta\beta}$ measurement, a total MC simulation uncertainty of 2.2% has to be taken into account for effects related to the geometry implementation and particle tracking. It is folded into the total marginalized posterior distributions. No effect on the lower limits is observed for any of the spectral modes.

(iii) Data acquisition and selection
Table 3: Experimental results for the limits on $T_{1/2}^{0\nu\chi}$ of ^{76}Ge for the Majoron models given in Refs. [7,42,43,44]. The first section considers lepton number violating models (I) allowing $0\nu\beta\beta$ decay, while in the second section lepton number conserving models (II) are listed, where $0\nu\beta\beta$ decay is not allowed. The first column gives the model name, the second the spectral index, n, the third the information on whether one Majoron, χ, or two Majorons, $\chi\chi$, is emitted, the fourth if the Majoron is a Goldstone boson, the fifth provides its lepton number, L, the sixth the experimental limit on $T_{1/2}^{0\nu\chi}$ of ^{76}Ge obtained in this analysis. The nuclear matrix elements, $\mathcal{M}^{0\nu\chi}$, the phase space factor, $G^{0\nu\chi}$, and the resulting effective couplings, (g), are given in the seventh, eighth and ninth columns, respectively. The limits on $T_{1/2}^{0\nu\chi}$ of ^{76}Ge for the Majoron models and (g) correspond to the 90% quantiles of the marginalized posterior probability distribution. For the case of $n = 1$, the nuclear matrix element, $\mathcal{M}^{0\nu\chi}$, from Refs. [45,46,47,48,49,50,51] and the phase space factor, $G^{0\nu\chi}$, from Ref. [52] are used for the calculation of (g). The given range covers the variations of $\mathcal{M}^{0\nu\chi}$ in these works. For $n = 3$ and 7, (g) is determined using the matrix elements and phase space factors from Ref. [42]. The results for $0\nu\beta\beta\chi$ ($n = 3, 7$) account for the uncertainty on $\mathcal{M}^{0\nu\chi}$. For $n = 2$, only the experimental upper limit is given.

Model	n	Mode	Goldstone boson	L	$T_{1/2}^{0\nu\chi}$ [1023yr]	$\mathcal{M}^{0\nu\chi}$	$G^{0\nu\chi}$ [yr$^{-1}$]	(g)
IB	1	χ	no	0	> 4.2	$(2.30 - 5.82) \times 10^{-17}$	$< (3.4 - 8.7) \times 10^{-5}$	
IC	1	χ	yes	0	> 4.2	$(2.30 - 5.82) \times 10^{-17}$	$< (3.4 - 8.7) \times 10^{-5}$	
ID	3	$\chi\chi$	no	0	> 0.8	$10^{-3 \pm 1}$	$6.32 - 10^{-19}$	$< 21^{\pm 4.5}$
IE	3	$\chi\chi$	yes	0	> 0.8	$10^{-3 \pm 1}$	$6.32 - 10^{-19}$	$< 21^{\pm 4.5}$
IF	2	χ	bulk field	0	> 1.8	–	–	–
IB	1	χ	no	-2	> 4.2	$(2.30 - 5.82) \times 10^{-17}$	$< (3.4 - 8.7) \times 10^{-5}$	
IIC	3	χ	yes	-2	> 0.8	0.16	2.07×10^{-19}	$< 4.7 \times 10^{-2}$
IID	3	$\chi\chi$	no	-1	> 0.8	$10^{-3 \pm 1}$	$6.32 - 10^{-19}$	$< 21^{\pm 4.5}$
IIE	7	$\chi\chi$	yes	-1	> 0.3	$10^{-3 \pm 1}$	1.21×10^{-18}	$< 22^{\pm 4.9}$
IIF	3	χ	gauge boson	-2	> 0.8	0.16	2.07×10^{-19}	$< 4.7 \times 10^{-2}$

The uncertainty from data acquisition and selection is estimated to be below 0.1% and does not alter the derived limits on $T_{1/2}^{0\nu\chi}$.

7.3 Results and Discussion

Fig. 3 shows the global model for the case of spectral index $n = 1$ together with the energy spectra for both the coaxial and the BGe data sets. The contributions from the background contaminations, from the $2\nu\beta\beta$ decay only, and the combined spectra from the background contaminations and $2\nu\beta\beta$ decay are drawn separately. The 35868 events in the data spectrum of the golden data set were matched with 35834 events in the best-fit model for $n = 1$. Of those events, in the best fit, 54.5 are attributed to $0\nu\beta\beta\chi$. For the BGe data set, the best-fit model contains 5081.4 counts for the 5035 measured events. In this fit, 7.8 events are attributed to $0\nu\beta\beta\chi$ decay. The limit of $T_{1/2}^{0\nu\chi}$ at 90% C.I. derived from the fit is also drawn (green histogram). The upper limits at 90% C.I. for the remaining three modes are reported for illustrative purpose (blue histogram for $n = 2$, orange for $n = 3$ and red for $n = 7$). The maximum of the corresponding distributions shifts to higher energy with the diminishing of the spectral index n. The resulting lower limits on $T_{1/2}^{0\nu\chi}$, determined as the 90% quantiles of the posterior probability distributions and taking into account all uncertainties related to the fit model, are (in units of 10^{23} yr): >4.2, >1.8, >0.8 and >0.3 for $n = 1, 2, 3$ and 7, respectively. The results are summarized in Table 3 for the different Majoron models.

The limits on $T_{1/2}^{0\nu\chi}$ presented here are the most stringent limits obtained to date for ^{76}Ge. The limits for $n = 1$ and $n = 3$ are improved by more than a factor six [9], the limit for $n = 7$ is improved by a factor five [8] compared to previous measurements. The limit for the mode with $n = 2$ is reported here for the first time.

From the lower limits on $T_{1/2}^{0\nu\chi}$, upper limits on the effective neutrino-Majoron coupling constants (g) for the models with $n = 1, 3$ and 7 can be calculated using the following equations:

$$1/T_{1/2}^{0\nu\chi} = |\langle g \rangle|^2 \cdot G^{0\nu\chi}(Q_{\beta\beta}, Z) \cdot |\mathcal{M}^{0\nu\chi}|^2$$

(8)

and

$$1/T_{1/2}^{0\nu\chi} = |\langle g \rangle|^4 \cdot G^{0\nu\chi\chi}(Q_{\beta\beta}, Z) \cdot |\mathcal{M}^{0\nu\chi\chi}|^2$$

(9)

for single and double Majoron emission, respectively. The matrix element for the models with $n = 1$ (IB, IC and IIB) are taken from Refs. [45,46,47,48,49,50,51], whereas the phase space factor is that of Ref. [52]. The matrix elements for the models with $n = 3$ (ID, IE, IIC, IID, IIF) and with $n = 7$ (IE) as well as the corresponding phase space factors are taken from Ref. [42]. The results for the upper limits on (g) are also
shown in Table 3. The coupling constants allow a comparison with other isotopes. The best limits on $0\nu\beta\beta$ decay of isotopes other than ^{76}Ge have been obtained for ^{100}Mo [10] and ^{136}Xe [14]. When comparing with the case of ^{100}Mo, it becomes obvious that the limits on $T_{1/2}^{0\nu\chi}$ determined in the present analysis are about one order of magnitude more stringent, for the case of $n = 7$ even two orders of magnitude. However, due to the differences in the matrix elements and the phase space factors, the resulting limits on $\langle g \rangle$ from ^{100}Mo and ^{76}Ge are comparable. The limits for $\langle g \rangle$ derived from ^{136}Xe are a factor of two to five more stringent due to the higher limits that had been measured for $T_{1/2}^{4\nu\chi}$.

8 Conclusions

Phase I of the GERDA experiment, located at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, has been executed between November 2011 and May 2013. Utilizing the collected exposure of Phase I, an improved result of the half-life of the $2\nu\beta\beta$ process in ^{76}Ge was obtained and new limits for the half-lives of the Majoron-emitting double beta decays were produced.
The half-life for the $2\nu\beta\beta$ process is determined to be:

$$T_{1/2}^{2\nu} = (1.926 \pm 0.095) \cdot 10^{21} \text{ yr} .$$ \hspace{1cm} (10)

Thanks to the extremely low background level in the GERDA experiment, with a signal-to-background ratio of 3:1 in the 570–2039 keV interval and a refined background model, the measurement has an unprecedented precision ($<5\%$) with respect to previous experiments using 76Ge. The new result is in good agreement with the one derived from a smaller data set with 5 kg·yr exposure [41]. The inclusion of more components into the reference background model results in a slight increase of the best estimate for $T_{1/2}^{2\nu}$.

Majoron emission processes were searched for in the energy spectra using an exposure of 20.3 kg·yr. The analysis was performed for all four possibilities of the spectral index n ($n = 1, 2, 3, \text{ and } 7$). No indication for a contribution of $0\nu\beta\beta\chi$ was found in any of the cases. Lower limits on the half-lives, $T_{1/2}^{0\nu\chi}$, were determined from the quantiles of 90\% probability of the marginalized posterior probability distributions. The results constitute the most stringent limits on $T_{1/2}^{0\nu\chi}$ of 76Ge obtained to date. For the standard mode ($n = 1$), the lower limit is determined to be:

$$T_{1/2}^{0\nu\chi} > 4.2 \cdot 10^{21} \text{ yr} .$$ \hspace{1cm} (11)

From the lower limit on $T_{1/2}^{0\nu\chi}$, an upper limit on the effective neutrino-Majoron coupling constant, $\langle g \rangle$, can be inferred:

$$\langle g \rangle < (3.4 - 8.7) \cdot 10^{-5} .$$ \hspace{1cm} (12)

Acknowledgments

The GERDA experiment is supported financially by the German Federal Ministry for Education and Research (BMBF), the German Research Foundation (DFG) via the Excellence Cluster Universe, the Italian Istituto Nazionale di Fisica Nucleare (INFN), the Max Planck Society (MPG), the Polish National Science Centre (NCN), the Foundation for Polish Science (MPD programme), the Russian Foundation for Basic Research (RFBR), and the Swiss National Science Foundation (SNF). The institutions acknowledge also internal financial support.

The GERDA Collaboration thanks the directors and the staff of the LNGS for their continuous strong support of the GERDA experiment.

References

1. Y. Chikashige, R. H. Mohapatra and R. D. Peccei, Phys. Rev. Lett. 45, 1926 (1980).
2. R. Santamaria and J. W. F. Valle, Phys. Rev. Lett. 60, 397 (1988).
3. G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).
4. The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, The OPAL Collaboration, The SLD Collaboration, The LEP Electroweak Working Group, The SLD Electroweak and Heavy Flavour Groups, Phys. Rep. 427, 257 (2006).
5. C. P. Burgess and J. M. Cline, Phys. Lett. B 298, 141 (1993).
6. C. P. Burgess and J. M. Cline, Phys. Rev. D 49, 5925 (1994).
7. P. Bamert, C. P. Burgess and R. N. Mohapatra, Nucl. Phys. B 449, 25 (1995).
8. M. Günther et al., Phys. Rev. D 54, 3641 (1996).
9. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).
10. R. Arnold et al., Nucl. Phys. A 765, 483 (2006).
11. R. Arnold et al., Nucl. Phys. A 678, 341 (2000); J. Argyriades et al., Phys. Rev. C 80, 032501 (2009); J. Argyriades et al., Nucl. Phys. A 847, 168 (2010); R. Arnold et al., Phys. Rev. Lett. 107, 062504 (2011); A. Barabash and V. Brudanin, (NEMO-3 Collaboration), Phys. At. Nucl. 74, 312 (2011).
12. K. Fushimi et al., Phys. Lett. B 531, 190 (2002).
13. R. Bernabei et al., Phys. Lett. B 546, 23 (2002).
14. A. Gando et al., (KAMLAND-Zen Collaboration), Phys. Rev. C 86, 021601(R) (2012).
15. A. S. Barabash, Phys. Rev. C 81, 035501 (2010).
16. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995).
17. V. I. Tretyak and Yu G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002); N. Ackerman et al., (EXO Collaboration), Phys. Rev. Lett. 107, 212501 (2011) (arXiv:1108.4193v2); A. Gando et al., (KAMLAND-Zen Collaboration), Phys. Rev. C 85, 045504 (2012) (arXiv:1201.4646v2).
18. V. A. Rodin, A. Faessler, F. Šimkovic and P. Vogel, Nucl. Phys. A 766, 107 (2006); V. A. Rodin, A. Faessler, F. Šimkovic and P. Vogel, Nucl. Phys. A 793, 213 (2007) (erratum).
19. F. Šimkovic, A. Faessler, V. A. Rodin, P. Vogel and J. Engel, Phys. Rev. C 77, 045503 (2008); F. Šimkovic, R. Hodak, A. Faessler, P. Vogel, Phys. Rev. C 83, 015502 (2011); E. Caufier, F. Nowacki and A. Poves, Phys. Lett. B 771, 62 (2012); J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009); J. Suuronen and O. Civitarese, J. Phys. G: Nucl. Part. Phys. 39, 085105 (2012); O. Civitarese and J. Suuronen, Nucl. Phys. A 761, 313 (2005).
20. K. H. Ackermann et al., (GERDA Collaboration), Eur. Phys. J. C 73, 2330 (2013).
21. M. Günther et al., Phys. Rev. D 55, 54 (1997).
22. A. Morales, Nucl. Phys. B 77, 335 (1999).
23. C. S. NV., Lammerdries 25, B-2439 Olen, Belgium.
24. M. Agostini et al., (GERDA Collaboration), Production, Characterization and Operation of 76Ge Enriched BEGe Detectors in GERDA accepted by Eur. Phys. J. C.
25. M. Agostini et al., (GERDA Collaboration), Eur. Phys. J. C 74, 2764 (2014).
26. M. Agostini et al., (GERDA Collaboration), Phys. Rev. Lett. 111, 122503 (2013).
27. M. Agostini, L. Pandola, P. Zavarise and O. Volynets, J. Instrum. 6, P08013 (2011).
28. M. Agostini, L. Pandola and P. Zavarise, J. Phys. Conf. Ser. 368, 012047 (2012).
29. N. Becerici-Schmidt, Results on Neutrinoless Double Beta Decay Search in GERDA: Background Modelling and Limit Setting, Ph. D. thesis, Technische Universität München and Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) (2014).
30. S. Hemmer, Study of Lepton Number Conserving and Non-Conserving Processes using GERDA Phase I data, Ph. D. thesis, Technische Universität München (2014).
31. A. Caldwell, A. Kollar and K. Kröninger, Comput. Phys. Commun. 180, 2197 (2009).
32. M. Boswell et al. IEEE Trans. Nucl. Sci. 58, 1212 (2011).
33. V. I. Tretyak and Yu. G. Zdesenko At. Data Nucl. Data Tables 61, 43 (1995).
34. O. A. Ponkratenko, V. I. Tretyak and Yu. G. Zdesenko, Phys. At. Nucl. 63, 1282 (2000).
35. J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).
36. M. Agostini, et al., (GERDA Collaboration), Eur. Phys. J. C 73, 2583 (2013).
37. E. Aguayo et al., Nucl. Instr. Meth. A 701, 176 (2013).
38. S. Agostinelli et al., (GEANT Collaboration), Nucl. Inst. Meth. A 506, 250 (2003); J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).
39. K. Amako et al., IEEE Trans. Nucl. Sci. 52, 910 (2005); E. Poon and F. Verhaegen, Med. Phys. 32, 1696 (2005); G. Cirrone, et al., Nucl. Instr. Meth. A 618, 315 (2010).
40. R. Aggarwal and A. Caldwell, Eur. Phys. J. Plus 127, 24 (2012).
41. M. Agostini, et al., (GERDA Collaboration), J. Phys. G: Nucl. Part. Phys. 40, 035110 (2013).
42. M. Hirsch, H. Klapdor-Kleingrothaus, S. Kovalenko, and H. Fias, Phys. Lett. B 372, 8 (1996).
43. C. D. Carone, Phys. Lett. B 308, 85 (1993).
44. R. N. Mohapatra, A. Perez-Lorenzana and C. A. S. de Pires, Phys. Lett. B 491, 143 (2000).
45. F. Šimkovic, V. Rodin, A. Faessler and O. Vogel, Phys. Rev. C 87, 045501 (2013).
46. M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
47. T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010).
48. J. Menéndez, A. Poves, E. Caurier and F. Nowacki, Nucl. Phys. A 818, 139 (2009).
49. J. Barea, J. Kotila and F. Iachello, Phys. Rev. C 87, 014315 (2013).
50. J. Suhonen and O. Civitarese, Nucl. Phys. A 847, 207 (2010).
51. A. Meroni, S. Petcov and F. Šimkovic, J. High Energy Phys. 2013, 1 (2013).
52. J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).