Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback

Dawei Ding*, Yihui Quek†, Peter W. Shor‡, and Mark M. Wilde§

*Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA, dding@stanford.edu
†Information Systems Laboratory, Stanford University, Stanford, California 94305, USA, yquek@stanford.edu
‡Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, shor@math.mit.edu
§Heurne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA, mwilde@lsu.edu

Abstract—We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication (1W-LOCC) channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.

I. INTRODUCTION

A famous result of Shannon is that a free feedback channel does not increase the capacity of a classical channel for communication [1]. That is, the feedback-assisted capacity is equal to the channel’s mutual information. Shannon’s result indicates that the mutual information formula for capacity is particularly robust, in the sense that, a priori, one might consider a feedback channel to be a strong resource for assisting communication.

With the rise of quantum information theory, several researchers have found variations and generalizations of Shannon’s aforementioned result, in the context of communication over quantum channels. For example, Bowen proved that the capacity of a quantum channel for sending classical messages, when assisted by a free quantum feedback channel, is equal to the channel’s entanglement-assisted capacity [2], which is in turn equal to the mutual information of a quantum channel [3]–[5]. This result indicates that the mutual information of a quantum channel is robust, in a sense similar to that mentioned above. The result also indicates that the best strategy, in the limit of many channel uses, is to use the quantum feedback channel once in order to establish sufficient shared entanglement between the sender and receiver, and to subsequently employ an entanglement-assisted communication protocol [3]–[5]. Bowen’s result was strengthened to a strong converse statement in [6], [7]. Bowen et al. proved that the capacity of an entanglement-breaking channel for sending classical messages is not increased by a free classical feedback channel [8], and this result was strengthened to a strong converse statement in [9]. Ref. [10] discussed several inequalities relating the classical capacity assisted by classical feedback to other capacities. At the same time, it is known that in general there can be an arbitrarily large gap between the unassisted classical capacity and the classical capacity assisted by classical feedback [11].

Our aim here is to go beyond [8] to establish an upper bound on the classical capacity of an arbitrary, not just entanglement-breaking, quantum channel assisted by a classical feedback channel. Due to the fact that a quantum feedback channel is a stronger resource than a classical feedback channel, an immediate consequence of Bowen’s result [2] is that the entanglement-assisted capacity is an upper bound on the classical capacity assisted by classical feedback. However, since a quantum channel can, in general, establish quantum entanglement [12]–[14] and entanglement can increase capacity [3]–[5], in such cases it may appear difficult to establish an upper bound on this capacity other than the entanglement-assisted capacity. Our main result is that this is actually possible: we prove here that the maximum output entropy of a quantum channel is an upper bound on its classical capacity assisted by classical feedback. As a generalization of this result, we find that the maximum average output entropy is an upper bound on the same capacity for a channel that is a probabilistic mixture of other channels.

The approach that we take for establishing the aforementioned bounds is similar in spirit to approaches used to bound other assisted capacities or protocols [15]–[18]. We identify an information measure that has two key properties: 1) it does not increase under a free operation, which in this case is a one-way local operations and classical communication (1W-LOCC) channel from the receiver to the sender, and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding
to classical correlation and the other to entanglement.

We organize the rest of the paper as follows. Section II provides a formal definition of a protocol for classical communication over a quantum channel assisted by classical feedback. Section III discusses explicitly how to purify such a protocol, which is an important conceptual step for our analysis. Section IV introduces our key information measure and several important supplementary lemmas regarding it. Section V then employs this information measure and the supplementary lemmas to establish the maximum output entropy bound for classical capacity assisted by classical feedback. We apply this bound to the erasure channel and pure-loss bosonic channel in Section VI. We conclude in Section VII.

II. PROTOCOL FOR CLASSICAL COMMUNICATION OVER A QUANTUM CHANNEL ASSISTED BY CLASSICAL FEEDBACK

To begin with, let \(n, M \in \mathbb{N} \), \(\varepsilon \in [0,1) \), and let \(E \geq 0 \). Let \(\mathcal{N}_{A \rightarrow B} \) be a quantum channel, and let \(H \) be a Hamiltonian acting on the input system \(A \) of \(\mathcal{N}_{A \rightarrow B} \). An \((n,M,H,\varepsilon)\) protocol for classical communication over a quantum channel \(\mathcal{N}_{A \rightarrow B} \) consists of \(n \) uses of the quantum channel \(\mathcal{N}_{A \rightarrow B} \), along with the assistance of a classical feedback channel from the receiver Bob to the sender Alice, in order for Alice to send one of \(M \) messages to Bob such that the error probability is no larger than \(\varepsilon \). Furthermore, the average state at the input of each channel use should have energy no larger than \(E \), when taken with respect to the Hamiltonian \(H \).

In more detail, the protocol consists of an initial classical-quantum state \(\sigma_{F_{0}B_{1}'} \), with \(F_{0} \) classical and \(B_{1}' \) quantum, of the form

\[
\sigma_{F_{0}B_{1}'} = \sum_{f_{0}} p(f_{0})|f_{0}\rangle\langle f_{0}| \otimes \sigma_{F_{0}B_{1}'}^{f_{0}}.
\]

It also involves \(n \) encoding channels, with each one denoted by \(\mathcal{E}_{A_{i-1}'F_{i-1} \rightarrow A_{i}A_{i}'} \), for \(i \in \{1, \ldots, n\} \), as well as \(n \) decoding channels, with each of them denoted by \(D_{B_{i}B_{i}' \rightarrow F_{i}B_{i+1}} \), for \(i \in \{1, \ldots, n-1\} \). Note that all \(F \) systems are classical because the feedback channel is constrained to be a classical channel. So this means that each decoding channel is a quantum instrument. The final decoding is denoted by \(D_{B_{n}B_{n}' \rightarrow W}^{n} \).

We now detail the form of such a protocol. It begins with Alice preparing the following classical-quantum state:

\[
\rho_{W'A_{0}'} = \frac{1}{M} \sum_{m=1}^{M} |m\rangle\langle m| \otimes \rho_{A_{0}'}^{m},
\]

for some set \(\{\rho_{A_{0}'}^{m}\}_{m} \) of quantum states. The global initial state is then \(\rho_{W'A_{0}'} \otimes \sigma_{F_{0}B_{1}'} \). Alice then performs the encoding channel \(\mathcal{E}_{A_{0}'F_{0} \rightarrow A_{1}A_{1}'} \) and the state becomes as follows:

\[
\omega_{W'A_{1}'A_{1}B_{1}'}^{(1)} \equiv \mathcal{E}_{A_{0}'F_{0} \rightarrow A_{1}A_{1}'}(\rho_{W'A_{0}'} \otimes \sigma_{F_{0}B_{1}'}). \tag{3}
\]

Alice transmits the \(A_{1} \) system through the first use of the channel \(\mathcal{N}_{A_{1} \rightarrow B_{1}} \), resulting in the following state:

\[
\rho_{W'A_{1}'B_{1}'B_{1}'}^{(1)} \equiv \mathcal{N}_{A_{1} \rightarrow B_{1}}(\omega_{W'A_{1}'A_{1}B_{1}'}^{(1)}).
\]

Bob processes his systems \(B_{1}' \) with the decoding channel \(D_{B_{1}B_{1}' \rightarrow F_{1}B_{2}'} \), and Alice acts with the encoding channel \(\mathcal{E}_{A_{1}'F_{1} \rightarrow A_{1}A_{1}'} \), resulting in the state

\[
\omega_{W'A_{1}'A_{2}'B_{2}'}^{(2)} = (\mathcal{E}_{A_{1}'F_{1} \rightarrow A_{2}A_{2}'} \circ D_{B_{1}B_{1}' \rightarrow F_{1}B_{2}'})(\rho_{W'A_{1}'B_{1}'B_{1}'}). \tag{5}
\]

This process iterates \(n-2 \) more times, resulting in the following states:

\[
\rho_{W'A_{i}'B_{i}'B_{i+1}'} \equiv \mathcal{N}_{A_{i} \rightarrow B_{i}}(\omega_{W'A_{i}'A_{i}B_{i}'}^{(i)}),
\]

\[
\omega_{W'A_{i+1}'B_{i+1}'}^{(i+1)} \equiv (\mathcal{E}_{A_{i}'F_{i} \rightarrow A_{i+1}A_{i+1}'} \circ D_{B_{i}B_{i}' \rightarrow F_{i}B_{i+1}'})(\rho_{W'A_{i}'B_{i}'B_{i}'}). \tag{7}
\]

for \(i \in \{2, \ldots, n-1\} \). The final decoding (measurement) channel \(D_{B_{n}B_{n}' \rightarrow W}^{n} \) results in the following state:

\[
\rho_{W'W} \equiv \langle \text{Tr}_{A_{n}} \circ D_{B_{n}B_{n}' \rightarrow W}^{n} \rangle(\rho_{W'A_{n}'B_{n}'B_{n}'}). \tag{8}
\]

Figure 1 depicts the above protocol for \(n = 3 \).

For an \((n,M,H,\varepsilon)\) protocol, the following is satisfied

\[
\frac{1}{2} \| \mathcal{F}_{WW} - \rho_{W'W} \|_{1} \leq \varepsilon,
\]

where \(\mathcal{F}_{WW} \equiv \frac{1}{M} \sum_{m=1}^{M} |m\rangle\langle m| \otimes |m\rangle\langle m| \) is the maximally classically correlated state. Note that

\[
\frac{1}{2} \| \mathcal{F}_{WW} - \rho_{W'W} \|_{1} = \text{Pr}\{W \neq W'\},
\]

where \(W \) here denotes the uniform random variable corresponding to the message choice and \(W' \) denotes the random variable corresponding to the classical value in the register \(\tilde{W} \) of the state \(\rho_{W'W} \). Furthermore, the following energy constraint applies as well:

\[
\text{Tr}\{HA_{n}\} \leq E, \quad \sigma_{A} \equiv \frac{1}{n} \sum_{i=1}^{n} \omega_{A_{i}}^{(i)},
\]

which limits the energy of the average input state.

III. PURIFIED PROTOCOL

Our goal is to bound the rate of such a protocol. With this in mind, we can devise a protocol that simulates the above one. It consists of purifying each step of the above protocol and Bob keeping a copy of the classical feedback, such that at each time step, conditioned on the value of the message in \(W \) and the feedback in the existing systems labeled by \(F \), the state is pure. To be clear, we go through the steps of the purified protocol. In order to simplify notation, we let \(\tilde{A} \) be a joint system throughout, referring to both the original \(A' \)
system as well as a purifying system, and we take the same

convention for \hat{B}. The initial state of Alice is as follows:

$$\rho_{WA_0} = \frac{1}{M} \sum_{m=1}^{M} |m\rangle\langle m| \otimes \psi^m_{A_0},$$

(11)

where $\psi^m_{A_0}$ is a purification of $\rho^m_{A_0}$, such that tracing over a subsystem of $\psi^m_{A_0}$ gives $\rho^m_{A_0}$. The initial state of Bob is as follows:

$$\sigma_{F_0 B_0} = \sum_{f_0} p(f_0) |f_0\rangle\langle f_0| \otimes |f_0\rangle\langle f_0| \otimes \varphi_{F_0 B_0}^f,$$

(12)

where $\varphi_{F_0 B_0}^f$ is a purification of $\sigma_{F_0 B_0}^f$, such that tracing over a subsystem of $\varphi_{F_0 B_0}^f$ gives $\sigma_{F_0 B_0}^f$, and he keeps an extra copy F_0' of the classical data. Let $\hat{U}_{A_{i-1} F_{i-1} \rightarrow A_i A_{i+1}}$ denote an isometric channel extending the encoding channel $E^{A_{i-1} F_{i-1} \rightarrow A_i A_{i+1}}$ for $i \in \{1, \ldots, n\}$. Since the system F_i is classical, for $i \in \{1, \ldots, n-1\}$, the decoding channel $D_{B_{i-1} B_i' \rightarrow F_i B_{i+1}}$ can be written explicitly as

$$D_{B_{i-1} B_i' \rightarrow F_i B_{i+1}} = \sum_{i} D_{B_{i-1} B_i'} \otimes |f_{i}\rangle\langle f_{i}| F_{i},$$

(13)

such that $\{D_{B_{i-1} B_i'} \otimes |f_{i}\rangle\langle f_{i}| F_{i}\}$ is a collection of completely positive maps such that the sum map $\sum_i D_{B_{i-1} B_i'} \otimes |f_{i}\rangle\langle f_{i}| F_{i}$ is trace preserving. Let $V_{B_i F_{i} B_{i+1}}$ be a linear map such that tracing over a subsystem of $V_{B_i F_{i} B_{i+1}}$ gives the original map $D_{B_{i-1} B_i'} \otimes |f_{i}\rangle\langle f_{i}| F_{i}$. Then we define the enlarged decoding channel $V_{W B_1 B_2 \rightarrow F_1 B_2}$ as

$$V_{W B_1 B_2 \rightarrow F_1 B_2} = \sum_{f_{1}} V_{B_1 F_{1} B_{2}} \otimes |f_{1}\rangle\langle f_{1}| F_{1}.$$

Note that this enlarged decoding channel keeps an extra copy of the classical feedback value for Bob in the register F_1. The final decoding channel in the original protocol is equivalent to a measurement channel, and thus can be written as

$$D_{B_n B_n' \rightarrow W} (\tau_{B_n B_n'}) = \sum_{w} \text{Tr} \left(A_{B_n B_n'} |\tau_{B_n B_n'}\rangle\langle w| \otimes |w\rangle\langle w| W \right),$$

where $\{ A_{B_n B_n'} \}$ is a POVM. We enlarge it as follows in the simulation protocol:

$$V_{B_n B_n' \rightarrow B_{n+1} W} (\tau_{B_{n+1}}) = \sum_{w} \sqrt{A_{B_n B_n'} |\tau_{B_{n+1}}\rangle\langle w| \otimes |w\rangle\langle w| W},$$

(14)

where the meaning of the notation is that the map $\sqrt{A_{B_n B_n'} |\tau_{B_{n+1}}\rangle\langle w|}$ acts nontrivially on the subsystems $B_n B_n'$ in the original protocol and trivially on all other B subsystems, while mapping all B systems to a system B_{n+1} large enough to accommodate all of them. In the simulation protocol, we also consider an isometric channel $U_{A\rightarrow B}^N$ that simulates the original channel $N_{A \rightarrow B}$ as follows: $N_{A \rightarrow B} = T_{E} \circ U_{A \rightarrow B}^N.$

Thus, the various states involved in the purified protocol are as follows. The global initial state is $\rho_{WA_0 \otimes \sigma_{F_0 B_0}^f B_1}$. Alice performs the enlarged encoding channel $U_{A_0 F_0 \rightarrow A_1 A_1}$ and the state becomes as follows:

$$\omega_{W A_1 A_1 B_1 F_0} = U_{A_0 F_0 \rightarrow A_1 A_1} (\rho_{WA_0 \otimes \sigma_{F_0 B_0}^f B_1}).$$

(15)

Alice transmits the A_1 system through the first use of the extended channel $U_{A_1 F_1 \rightarrow A_2 A_1}^1$, resulting in the following state:

$$\rho_{WA_1 B_1 B_1 E_1 F_0} = U_{A_1 F_1 \rightarrow A_2 A_1} (\omega_{W A_1 A_1 B_1 F_0}).$$

(16)

Bob processes his systems $B_1 B_1$ with the enlarged decoding channel $V_{B_1 B_1' \rightarrow F_1 B_2}$, and Alice acts with the enlarged encoding channel $U_{A_1 F_1 \rightarrow A_2 A_1}^2$, resulting in the state $\omega_{W B_1 B_2 E_1 F_0} \equiv \omega_{W A_1 B_1 B_1 E_1 F_0}$. This process iterates $n - 2$ more times, resulting in the following states:

$$\rho_{WA_{n+1} B_{n+1} W E_{n+1}} = U_{A_{n+1} F_{n+1} \rightarrow A_n A_n} (\omega_{W A_{n+1} B_{n+1} E_{n+1} F_{n+1}}).$$

(17)

Note that we recover each state of the original protocol from Section II by performing particular partial traces.

IV. INFORMATION MEASURE FOR ANALYSIS OF PROTOCOL

The key information measure that we use to analyze this protocol is as follows:

$$I(W; CF) + S(C|WF),$$

(18)

where τ_{WFC} is a classical–quantum state of the form

$$\tau_{WFC} = \sum_{w, f} p(w, f) |w\rangle\langle w| W \otimes |f\rangle\langle f| F \otimes \tau_C^{w, f}. $$

(19)

The first term in (17) represents the classical correlation between system W and systems CF, while the second term represents the average entanglement between the system C of the state $\tau_C^{w, f}$ and a purifying reference system.

We now establish some properties of the information measure in (17), which is the basis of the classical–quantum states. Let us first recall the following lemma from [19]:

Lemma 1: Let Φ_{AB} be a pure bipartite state, and let $\{p(x), \varphi_{AB}^x\}$ be an ensemble of pure bipartite states obtained from Φ_{AB} by means of a 1W-LOCC channel of the form

$$\sum_x U_{A \rightarrow A'} \otimes V_{B \rightarrow B'} \otimes |x\rangle\langle x|,$$
where \(\{ \mathcal{V}^x_{B \rightarrow B'} \} \) is a collection of completely positive trace non-increasing maps with \(\mathcal{V}^x_{B \rightarrow B'}(\cdot) = V^x_{B \rightarrow B'}(\cdot) [\mathcal{V}^x_{B \rightarrow B'}]^\dagger \) and \(\{ \mathcal{U}^x_{A \rightarrow A'} \} \) is a collection of isometric channels, so that

\[
\varphi^{x}_{A'B'} = \frac{1}{p(x)} \left(\mathcal{U}^{x}_{A \rightarrow A'} \otimes \mathcal{V}^{x}_{B \rightarrow B'} \right) (\phi_{AB}), \quad (20)
\]

\[
p(x) \equiv \text{Tr} \left(\left(\mathcal{U}^{x}_{A \rightarrow A'} \otimes \mathcal{V}^{x}_{B \rightarrow B'} \right) (\phi_{AB}) \right). \quad (21)
\]

Then the following inequality holds \(S(\theta) \geq S(\theta'|X)_r \), for \(\tau_{X', B'} = \sum x p(x|x) \otimes \varphi^{x}_{A'B'} \).

The above lemma leads to the following one, which is the statement that the quantity in (17) is monotone with respect to 1W-LOCC channels:

Lemma 2: Let \(\tau_{WFAB} \) be a classical–quantum state, with classical systems \(W, F \) and quantum systems \(AB \) pure when conditioned on \(WF \), and let \(\mathcal{M}_{AB \rightarrow A'B'}(\tau_{WFAB}) \) be a 1W-LOCC channel of the form in (19). Then the following holds

\[
I(W; BF)_r + S(B|WF)_\theta \geq I(W; B'FX)_\theta + S(B'|WFX)_\theta,
\]

where \(\theta_{WFAB} = \mathcal{M}_{AB \rightarrow A'B'}(\tau_{WFAB}) \).

Proof. The inequality \(I(W; BF)_r \geq I(W; B'FX)_\theta \) holds from data processing. In more detail, consider that \(\theta_{WF'B'} \) is equal to

\[
\begin{align*}
= \text{Tr}_{A'} \left\{ \sum_x \left(\mathcal{U}^x_{A \rightarrow A'} \otimes \mathcal{V}^x_{B \rightarrow B'} \right) (\tau_{WFAB}) \otimes |x\rangle \langle x|_X \right\} \\
= \sum_x \mathcal{V}^x_{B \rightarrow B'} (\tau_{WF'B'}) \otimes |x\rangle \langle x|_X,
\end{align*}
\]

where the last equality follows because each map \(\mathcal{U}^x_{A \rightarrow A'} \) is trace preserving. So the state \(\theta_{WF'B'} \) can be understood as arising from the action of the quantum instrument \(\sum x \mathcal{V}^x_{B \rightarrow B'} \otimes |x\rangle \langle x|_X \) on the state \(\tau_{WF'B} \), and since this is a channel from \(B \) to \(B' \), the data processing inequality applies so that \(I(W; BF)_r \geq I(W; B'FX)_\theta \). The inequality \(S(B|WF)_\theta \geq S(B'|WFX)_\theta \) follows from an application of Lemma 1 by conditioning on the classical systems \(WF \).

The following lemma places an entropic upper bound on the amount by which the quantity in (17) can increase by the action of a quantum channel \(\mathcal{N}_{A \rightarrow B} \).

Lemma 3: Let \(\tau_{WFAB'} \) be a classical–quantum state, such that the form of the following form:

\[
\tau_{WFAB'} = \sum_{w,f} p(w, f) |w\rangle \langle w|_W \otimes |f\rangle \langle f|_F \otimes \tau_{ABw'.}
\]

Then

\[
I(W; BB'|WF) - [I(W; B'F)_r + S(B'|WF)_\theta] \leq S(B)_\omega,
\]

where \(\omega_{WFBB'} = \mathcal{N}_{A \rightarrow B}(\tau_{WFAB'}) \).

Proof. Consider that

\[
\begin{align*}
I(W; BB'|WF) &+ S(BB'|WF)_\omega \\
& - [I(W; B'F)_r + S(B'|WF)_\theta] \\
&= I(W; BB'|WF) + S(BB'|WF)_\omega \\
& - [I(W; B'F)_r + S(B'|WF)_\theta]
\end{align*}
\]

V. Maximum output entropy bound

Now that we have identified a quantity that does not increase under 1W-LOCC from Bob to Alice and cannot increase by more than the output entropy of a channel under its action, we can use these properties to establish the following upper bound on the rate of a feedback-assisted communication protocol:

Theorem 4: For an \((n, M, H, E, \varepsilon) \) protocol for classical communication over a quantum channel \(\mathcal{N}_{A \rightarrow B} \) assisted by classical feedback, of the form described in Section III, the following bound applies

\[
(1 - \varepsilon) \log_2 M \leq n \sup_{\rho: \text{Tr}(\rho) \leq E} S(\mathcal{N}(\rho)) + h_2(\varepsilon).
\]

Proof. Let us consider the purified simulation of a given \((n, M, H, E, \varepsilon) \) protocol, as given in Section III. We start with

\[
\log_2 M = I(W; \hat{W}) \geq I(W; \hat{W})_\rho + \varepsilon \log_2 M + h_2(\varepsilon),
\]

where we have applied the condition in (34) and standard entropy inequalities. Continuing, we find that

\[
\begin{align*}
& I(W; \hat{W})_\rho \\
& \leq I(W; B_n \hat{B}_n [F_n^{n-1}])_\rho + S(B_n \hat{B}_n [F_n^{n-1}]) \omega(1) \\
& = I(W; B_n \hat{B}_n [F_n^{n-1}])_\rho + S(B_n \hat{B}_n [F_n^{n-1}]) \omega(1) \\
& - \left[I(W; \hat{B}_1 F_0^i)_\omega + S(\hat{B}_0 F_0^i)_\omega \right] \\
& \leq \sum_{i=2}^n I(W; \hat{B}_i [F_0^{i-1}])_\omega + S(\hat{B}_i [F_0^{i-1}])_\omega \\
& - \left[I(W; \hat{B}_1 F_0^{i-1})_\omega + S(\hat{B}_i [F_0^{i-1}])_\omega \right]
\end{align*}
\]

The first inequality follows from data processing and non-negativity of entropy. The first equality follows because \(I(W; \hat{B}_1 F_0^i)_\omega + S(\hat{B}_0 F_0^i)_\omega = 0 \) for the initial state \(\omega(1)_{WF \hat{A}_1 \hat{A}_2 \hat{B}_1 F_0^i} \) (there is no classical correlation between \(W \) and \(\hat{B}_1 F_0^i \) and the state on system \(\hat{B}_0 \) is pure when conditioned on \(F_0^i \)). The last equality follows by adding and subtracting the same term. Continuing, we find that the quantity in the last line above is bounded as

\[
\begin{align*}
\leq & I(W; B_n \hat{B}_n [F_n^{n-1}])_\rho + S(B_n \hat{B}_n [F_n^{n-1}]) \omega(1) \\
& - \left[I(W; \hat{B}_1 F_0^i)_\omega + S(\hat{B}_0 F_0^i)_\omega \right]
\end{align*}
\]
\[+ \sum_{i=2}^{n} I(W; B_i^{-1} B_i^{-1} | F_0^{-2}) \rho^{(i-1)} \]
\[+ S(B_1^{-1} B_1^{-1} | F_0^{-1} W) \rho^{(i-1)} \]
\[- \left[I(W; B_i | F_0^{-1}) \omega^{(i)} + S(\hat{B}_i | F_0^{-1}) \omega^{(i)} \right] \]
\[= \sum_{i=1}^{n} I(W; B_i \hat{B}_i | F_0^{-1}) \rho^{(i)} + S(B_i \hat{B}_i | F_0^{-1}) \rho^{(i)} \]
\[- \left[I(W; \hat{B}_i | F_0^{-1}) \omega^{(i)} + S(\hat{B}_i | F_0^{-1}) \omega^{(i)} \right] \]
\[\leq \sum_{i=1}^{n} S(B_i) \rho^{(i)} \leq n S(B) \left(\sum x \right) \leq n \sup_{\rho: \text{Tr}(H \rho) \leq E} S(N(\rho)). \]

(35)

The first inequality follows from Lemma 2. The first equality follows by collecting terms. The second inequality follows from Lemma 3. The third inequality follows from concavity of \(\log \). The fourth equality follows from Lemma 2. The first equality

\[\text{is a weak converse bound. Going forward from here, it would be good to find strong converse and tighter bounds on the classical capacity assisted by classical feedback.} \]

Acknowledgements. We acknowledge discussions with Xin Wang, Patrick Hayden, and Tsachy Weissman. DD is supported by a National Defense Science and Engineering Graduate Fellowship. YQ is supported by a Stanford Graduate Fellowship and a National University of Singapore Overseas Graduate Scholarship. PWS is supported by the NSF under Grant No. CCF-1525130 and through the NSF Science and Technology Center for Science of Information under Grant No. CCF-0939370. MMW acknowledges NSF grant no. 1350397. DD would like to thank God for all His provisions.

References

[1] C. Shannon, “The zero error capacity of a noisy channel,” *IRE Transactions on Information Theory*, vol. 2, no. 3, pp. 8–19, September 1956.

[2] G. Bowen, “Quantum feedback channels,” *IEEE Transactions on Information Theory*, vol. 50, no. 10, pp. 2429–2434, October 2004.

[3] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channels,” *Physical Review Letters*, vol. 83, no. 15, pp. 3081–3084, October 1999.

[4] ——, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,” *IEEE Transactions on Information Theory*, vol. 48, no. 10, pp. 2637–2655, October 2002.

[5] A. S. Holevo, “On entanglement assisted classical capacity,” *Journal of Mathematical Physics*, vol. 43, no. 9, pp. 4326–4333, September 2002.

[6] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, “The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels,” *IEEE Transactions on Information Theory*, vol. 60, no. 5, pp. 2926–2959, May 2014.

[7] T. Cooney, M. Mosonyi, and M. M. Wilde, “Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication,” *Communications in Mathematical Physics*, vol. 344, no. 3, pp. 797–829, June 2016.

[8] G. Bowen and R. Nagarajan, “On feedback and the classical capacity of a noisy quantum channel,” *IEEE Transactions on Information Theory*, vol. 51, no. 1, pp. 320–324, January 2005.

[9] D. Ding and M. M. Wilde, “Strong converse exponents for the feedback-assisted classical capacity of entanglement-breaking channels,” *Problems of Information Transmission*, vol. 54, no. 1, pp. 1–19, January 2018.

[10] C. H. Bennett, I. Devetak, P. W. Shor, and J. A. Smolin, “Inequalities and separations among assisted capacities of quantum channels,” *Physical Review Letters*, vol. 96, no. 15, p. 150502, April 2006.

[11] G. Smith and J. A. Smolin, “Extensive nonadditivity of privacy,” *Physical Review Letters*, vol. 103, no. 12, p. 120503, September 2009.

[12] S. Lloyd, “Capacity of the noisy quantum channel,” *Physical Review A*, vol. 55, no. 3, pp. 1613–1622, March 1997.

[13] P. W. Shor, “The quantum channel capacity and coherent information,” in *Lecture Notes*, MSRI Workshop on Quantum Computation, 2002.

[14] I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” *IEEE Transactions on Information Theory*, vol. 51, no. 1, pp. 44–55, January 2005, arXiv:quant-ph/0304127.

[15] M. Takeoka, S. Guha, and M. M. Wilde, “The squashed entanglement of a quantum channel,” *IEEE Transactions on Information Theory*, vol. 60, no. 8, pp. 4987–4998, August 2014, arXiv:1310.0129.

[16] M. Christandl and A. Müller-Hermes, “Relative entropy bounds on quantum, private and repeater capacities,” *Communications in Mathematical Physics*, vol. 353, no. 2, pp. 821–852, July 2017.

[17] E. Kaur and M. M. Wilde, “Amortized entanglement of a quantum channel and approximately teleportation-simulable channels,” *Journal of Physics A*, vol. 51, no. 3, p. 035303, January 2018.

[18] J. Berta, C. Hruie, E. Kaur, and M. M. Wilde, “Amortized channel divergence for asymptotic quantum channel discrimination,” August 2018, arXiv:1808.01498.

[19] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” *Physical Review A*, vol. 54, no. 5, pp. 3824–3851, November 1996.

[20] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, “Classical capacity of the lossy bosonic channel: The exact solution,” *Phys. Rev. Lett.*, vol. 92, no. 2, p. 027902, January 2004.
APPENDIX A

MAXIMUM AVERAGE OUTPUT ENTROPY BOUND FOR PROBABILISTIC MIXTURE OF CHANNELS

In this appendix, we provide a simple proof of Theorem 5. The main idea behind the proof is to observe that any feedback-assisted protocol of the form discussed in Section II, which is for communication over a probabilistic mixture channel \(N_{A \rightarrow B} = \sum_z p(Z) N^z_{A \rightarrow B} \), has a simulation of the following form:

1) Before the \(i \)th use of the channel \(N_{A \rightarrow B} \) in the feedback-assisted protocol, Bob selects a random variable \(Z_i \) independently according to the distribution \(p_Z \). He transmits \(Z_i \) over the classical feedback channel to Alice.

2) Each channel use \(N_{A \rightarrow B} \) from the original protocol is replaced by a simulation in terms of another channel \(\mathcal{M}_{AZ' \rightarrow B} \), which accepts a quantum input on system \(A \) and a classical input on system \(Z' \). Conditioned on the value \(z \) in system \(Z' \), the channel \(\mathcal{M}_{AZ' \rightarrow B} \) applies \(N^z_{A \rightarrow B} \) to the quantum system \(A \). Thus, if the random variable \(Z \sim p_Z \) is fed into the input system \(Z' \) of \(\mathcal{M}_{AZ' \rightarrow B} \), then the channel \(\mathcal{M}_{AZ' \rightarrow B} \) is indistinguishable from the original channel \(N_{A \rightarrow B} \).

3) Alice feeds a copy of the classical random variable \(Z_i \) into the \(i \)th use of the channel \(\mathcal{M}_{AZ' \rightarrow B} \).

4) All other aspects of the protocol are executed in the same way as before. Namely, even though it would be an advantage to Alice to modify her encodings and Bob to modify later decodings based on the realizations of \(Z_i \), they do not do so, and they instead blindly operate all other aspects of the simulation protocol as they are in the original protocol.

Our goal now is to establish the inequality in Theorem 5 relating the \(n, M, E, \varepsilon \) parameters of the original \((n, M, H, E, \varepsilon)\) protocol by using the above simulation.

The main observation to make from here is that the same proof from Lemma 3 gives the following bound:

\[
I(W; BB'FZ)_\omega + S(BB'|WFZ)_\omega - [I(W; B'FZ)_\tau + S(B'|WFZ)_\tau] \leq S(B|Z)_\omega,
\]

where \(\omega_{WFZBB'} \) is the following state:

\[
\tau_{WFZBB'} \equiv \mathcal{M}_{AZ' \rightarrow B}(\tau_{WFZZ'AB'})
\]

\[
\sum_{w,f,z} p(w,f,z) |w,f,z,z\rangle \langle w,f,z,z|_{W,F,Z,Z'} \otimes \tau_{AB'}^{w,f,z}.
\]

This follows by grouping \(Z \) with \(F \), but then discarding only \(F \) and \(B' \) at the end of the proof. We then apply this bound, and the same reasoning in the proof of Theorem 4 except that the variables \(Z_0, \ldots, Z_i \) are grouped together with the feedback variables \([F_0^{i-1}]\) and then the same reasoning in (32)–(34) applies. At this point, we invoke (36) and find that

\[
(1 - \varepsilon) \log_2 M \leq \sum_{i=1}^{n} S(B_i|Z_i)_{\rho^{(i)}} + h_2(\varepsilon).
\]

We can then bound the sum over entropies as follows:

\[
\sum_{i=1}^{n} S(B_i|Z_i)_{\rho^{(i)}} \leq n S(B|Z)_{\varphi} = n \sum_z p_Z(z) S(N^z(\varphi)) \leq n \sup_{\rho : Tr(H\rho) \leq E} \sum_z p_Z(z) S(N^z(\rho)).
\]

The first inequality is by concavity of conditional entropy, and the conditional entropy is defined on the averaged channel output state over uses \(\varphi_{BZ} \equiv \sum_z p_Z(z) |z\rangle \otimes N^z(\varphi) \), \(\varphi_A = \frac{1}{n} \sum_{i=1}^{n} \omega_A^{(i)} \). The second equality is by definition of conditional entropy. The third inequality follows from optimizing over states that satisfy the energy constraint in (10). This concludes the proof of Theorem 5.