A Mellin Space Program for W^\pm and Z^0 Production at NNLO

Petra Kováčíková

Deutsches Elektronen-Synchrotron, Platanenallee 6, D-15738 Zeuthen, Germany

Key words QCD, perturbative expansion, factorisation, PDFs, Mellin transform

We present a program for the evaluation of full unpolarized cross sections for the W^\pm and Z^0 production in the narrow width approximation at NNLO in perturbative QCD using Mellin space techniques.

1 Introduction

The Drell-Yan process, originally described in the context of the parton model [1], concerns the production of a lepton pair of large invariant mass in hadron-hadron collisions. With the increase of the centre of mass energy at particle accelerators, the Drell-Yan process led to the discovery of W^\pm and Z^0 bosons at UA1 and UA2 experiments [2,3]. Since then the properties of massive vector bosons have been studied in great detail. At present the production of W^\pm and Z^0 provides an important benchmark for the LHC and a test of the Standard Model (SM) in a new range of centre of mass energies [4].

As guaranteed by the factorisation theorem [5], one can separate the physics of soft energy scales from the physics at hard energy scales where perturbation theory applies. The higher order QCD corrections to the Drell-Yan process have been calculated up to next-to-next-to-leading order (NNLO), see [6–8] and references therein. The full cross section is obtained as a convolution with the parton distribution functions (PDFs) that encode the non-perturbative information.

In this paper, we present a program for evaluation of the full inclusive cross section for W^\pm and Z^0 production in a fast and accurate way using a Mellin space approach. After a brief description of the basic ingredients of the calculation we give formulae for the Mellin transforms. We then present a comparison with the code ZWPROD [7,8] and discuss possible applications and extensions within this framework.

2 Formalism

We consider the inclusive production of a single vector boson $V = W^+, W^-$ or Z^0 in hadron-hadron collision with a centre of mass energy s which subsequently decays into a lepton pair of an invariant mass Q^2. The decay of the vector boson is treated within the narrow width approximation which replaces the propagator by a delta function such that $Q^2 = M_V^2$. We consider massless quarks. The cross section for this process can be expressed as

$$\sigma^{h_1h_2\to V\to l_1l_2}(s) = x\sigma^{V\to l_1l_2}\sigma^V(x, Q^2), \quad x = Q^2/s,$$

where $\sigma^{V\to l_1l_2}$ represents the kinematically independent part of the Born level subprocess $q\bar{q} \to V \to l_1l_2$ (the point-like cross section) multiplied by the appropriate branching ratio. The exact form of the point like cross section can be found in Ref. [7], formulae (A.10) and (A.11). [9]
The perturbative coefficients are known up to NNLO \cite{7,8}, reads

\[W^V(x, Q^2) = \sum_{a,b=q,g} C_{a,b}^V \left[f_a(\mu_f^2) \otimes f_b(\mu_f^2) \otimes \Delta_{ab}(Q^2, \mu_f^2, \mu_r^2) \right](x). \] (2)

The perturbative coefficients are known up to NNLO \cite{7,8}.

\[\Delta_{ab}^{\text{NNLO}}(x, Q^2, \mu_f^2, \mu_r^2) = \sum_{n=0}^{k} \frac{\alpha_s^n(\mu_f^2)}{4\pi} \Delta_{ab}^{(k)}(x, Q^2, \mu_f^2, \mu_r^2). \] (3)

The factor \(C_{a,b}^V \) in Eq. (3) contains information about couplings of vector bosons to partons \(a \) and \(b \). For the detailed form of the Eq. (3) we refer the reader to the paper of Hamberg, Matsuura and van Neerven \cite{7} whose notation we follow closely. The convolution sign represents an integral

\[(f_1 \otimes f_2 \otimes \cdots \otimes f_k)(x) = \int_0^1 dx_1 \int_0^1 dx_2 \cdots \int_0^1 dx_k \delta(x - x_1 x_2 \cdots x_k) f_1(x_1) f_2(x_2) \cdots f(x_k). \] (4)

In principle one can perform the integrals in Eq. (3) directly however, the problem is much better addressed after transforming to Mellin space,

\[f(N) = \int_0^1 dx x^{-N-1} f(x). \] (5)

This transformation turns the integrals in Eq. (3) into ordinary products such that the structure function reads

\[W^V(N, Q^2) = \sum_{a,b=q,g} C_{a,b}^V f_a(N, Q^2) f_b(N, Q^2) \Delta_{ab}(N, Q^2) \quad \mu_f = \mu_r = Q^2, \] (6)

and therefore it is possible to evaluate it in a fast and efficient way. The formula for the inverse Mellin transform defines how to recover the original momentum space result,

\[W^V(x, Q^2) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN x^{-N} W^V(N, Q^2), \] (7)

where \(c \) represents a point on the real axis such that all poles \(N_i \) in the function \(W(N, Q^2) \) lie to the left from \(c \). Further on, we will refer to functions in Mellin space as \(N \) space functions and functions from momentum space as \(x \) space functions.

3 Implementation

The main ingredients of the calculation are the coefficient functions up to NNLO and the parton distribution functions in Mellin space in terms of a complex variable \(N \). The condition \(N \in \mathbb{C} \) is required for the numerical evaluation of the inversion formula (7). For this we adopted the technique implemented in QCD-PEGASUS \cite{10}. The complex integral (7) is rewritten in terms of an integral over a real variable \(z \)

\[W(x, Q^2) = \frac{1}{\pi} \int_0^\infty dz \text{Im}[e^{i\phi} x^{-c-z} e^{i\phi} W(N, Q^2)] \quad N = c + z \exp^{i\phi} \in \mathbb{C} \] (8)

and evaluated using Gaussian quadratures. The parameter \(\phi > \pi/2 \) represents the angle with respect to the positive real axis. Since the rightmost pole of the structure function is \(N_{\text{max}} = 1 \), we chose \(c = 1.5 \). These

2 Several typos appearing in Ref. \cite{7} have been pointed out in \cite{9}
values as well as the maximum value of the integration variable z are flexible and can be modified by the user in the main program if desired. For a more detailed description of the shape of the integration contour we refer to the QCD-PEGASUS manual [10].

The coefficient functions in N space were published previously in Ref. [11], including corrections to the previous literature. The corresponding FORTRAN code is DY.f used together with ANCONT [12]. We performed the Mellin transforms starting from the x space expressions [13] using the harmpol package [14]. The results can be expressed mostly in terms of complex-valued simple harmonic sums [15] and several more complicated ones which we approximated by using the minimax method[3] worked out in detail in [12] previously. The absolute accuracy of our approximation is better than 10^{-9} over the whole kinematic range.

At the moment there are two options for the input parton distribution functions in N space. A toy input corresponds to the one used for the 2001/2 benchmark tables [18] and is used for comparisons with ZWPROD [7, 8] assuming no evolution of PDFs. The general form reads

$$ x f_i,\text{toy}(x, \mu_0^2) = nx^a(1-x)^b, \quad i = q, \bar{q}, g, \quad n, a, b \in \mathbb{R}, \quad (9) $$

which is in Mellin space represented by an Euler beta function

$$ f_i,\text{toy}(N, \mu_0^2) = n \beta(a + N, b + 1). \quad (10) $$

The second option for the PDF input is using the FORTRAN code QCD-PEGASUS [10] which can be linked to our program.

![Comparison with ZWPROD](image)

Fig. 1 Cross section for W^- production up to NNLO in the narrow width approximation using the toy parton distribution functions and a fixed value of the strong coupling constant. Upper part: The full cross section. Lower part: Relative accuracy with respect to the ZWPROD.

4 Results And Outlook

There are several programs on the market using the standard momentum space evaluation [19–21] which can provide a cross-check for our N space calculation. We performed comparisons of the full cross sections with a program ZWPROD written by the authors of the original calculation of the NNLO Drell-Yan

3 We used the MINIMAX routine implemented in Maple

4 Exact expressions were given in [17].
coefficient functions [7,8]. The Fig. 1 shows a comparison for the W^- cross section using toy input for PDFs corresponding to the Eq. (10) with no evolution and a fixed value of the coupling constant $\alpha_s = 0.1$. The relative accuracy is better than 6×10^{-6} in the relevant kinematical range $x \in (10^{-4}, 0.8)$. As an intermediate check, we compared the Mellin inversion of N space coefficient functions against the x space expressions using a program of Gehrmann and Remiddi [22] for the numerical evaluation of harmonic polylogarithms. The framework presented here is suitable for a further implementation of those cross sections where N space coefficient functions are also available, like Higgs production and deep inelastic scattering (DIS) [11, 23–26]. The setup is well suited for merging the program with threshold resummation calculations which are typically performed in Mellin space (see e.g. [27]). For the extraction of PDFs from W^\pm and Z^0 production it would be desirable to have an access to the rapidity distributions in which case one will need to apply double Mellin transforms of two variables N_1 and N_2 however, this is a subject to further study. On the side of PDFs we aim for a direct interface to the LHAPDF grids [28]. Recent results [29] on N space input parametrizations also allow for more flexible input PDF parametrisations in QCD-PEGASUS. Further improvements with respect to the speed of the code are foreseen and together with an upgrade on the input PDFs this code can become a tool for PDF fits, where fast and accurate evaluations of cross sections are needed. The current version of the c++ code can be downloaded from http://www-zeuthen.desy.de/~kpetra/sbp.

Acknowledgements

I would like to thank my advisor Sven-Olaf Moch for continuous support and advice throughout the course of this work and for careful reading of the manuscript. I am grateful to Prof. Johannes Blümlein for useful discussions and comments. This work was supported by the Marie-Curie Research Training Networks MRTN-CT-2006-035505 HEPTOOLS.

References

[1] S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316–320 (1970).
[2] C. Albajar et al., Phys.Lett. B198, 271 (1987).
[3] J. Alitti et al., Phys.Lett. B276, 365–374 (1992).
[4] S. Alekhin, J. Blümlein, P. Jimenez-Delgado, S. Moch, and E. Reya, Phys.Lett. B697, 127–135 (2011).
[5] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl.Phys. B261, 104 (1985).
[6] G. Altarelli, R. Ellis, and G. Martinelli, Nucl.Phys. B157, 461 (1979).
[7] R. Hamberg, W. van Neerven, and T. Matsuura, Nucl.Phys. B359, 343–405 (1991).
[8] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nuclear Physics B 644(1-2), 403 – 404 (2002).
[9] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello, Phys.Rev. D69, 094008 (2004).
[10] A. Vogt, Comput.Phys.Commun. 170, 65–92 (2005).
[11] J. Blümlein and V. Ravindran, Nucl.Phys. B716, 128–172 (2005).
[12] J. Blümlein, Comput.Phys.Commun. 133, 76–104 (2000).
[13] V.Ravindran, unpublished.
[14] E. Remiddi and J. Vermaseren, Int.J.Mod.Phys. A15, 725–754 (2000).
[15] J. Vermaseren, Int.J.Mod.Phys. A14, 2037–2076 (1999).
[16] J. Blümlein and S. Kurth, Phys.Rev. D60, 014018 (1999).
[17] J. Blümlein, Comput.Phys.Commun. 180, 2218–2249 (2009).
[18] W. Giele, E. Glover, I. Hinchliffe, J. Huston, E. Laenen et al., arXiv:hep-ph/0204316 pp. 275–426 (2002).
[19] S. Catani and M. Grazzini, Phys.Rev.Lett. 98, 222002 (2007).
[20] S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, Phys.Rev.Lett. 103, 082001 (2009).
[21] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, arXiv:1011.3540[hep-ph] (2010).
[22] T. Gehrmann and E. Remiddi, Comput.Phys.Commun. 141, 296–312 (2001).
[23] W. van Neerven and A. Vogt, Nucl.Phys. B588, 345–373 (2000).
[24] A. Vogt, S. Moch, and J. Vermaseren, Nucl.Phys.Proc.Suppl. 160, 44–50 (2006).
[25] S. Moch, J. Vermaseren, and A. Vogt, Phys.Lett. B606, 123–129 (2005).
[26] J. Vermaseren, A. Vogt, and S. Moch, Nucl.Phys. B724, 3–182 (2005).
[27] S. Moch, J. Vermaseren, and A. Vogt, Nucl.Phys. B726, 317–335 (2005).
[28] M. R. Whalley, D. Bourilkov, and R. C. Group, arXiv:hep-ph/0508110 (2005), http://hepforge.cedar.ac.uk/lhapdf/.
[29] J. Blümlein, A. Hasselhuhn, P. Kovacikova, and S. Moch, arXiv:1104.3449v1.