Solution of Darcy–Brinkman–Forchheimer Equation for Irregular Flow Channel by Finite Elements Approach

K Muralia), V Kesavulu Naidub) and B Venkateshc)

Department of Mathematics, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
a) k_murali@blr.amrita.edu
b) v_kesavulu@blr.amrita.edu
c) b_venkatesh@blr.amrita.edu

Abstract. The finite element method of solution with curved triangles to solve the three-dimensional, fully-developed Darcy–Brinkman–Forchheimer flow equation in channel with curved side is solved using quasi-linearization and Gauss-Seidel iteration method. Exhaustive numerical computation and numerical experimentation reveals the parameters’ influence on the velocity distributions. A salient feature of the method adopted in the present paper is that it ensures that the errors are almost equally distributed among all the nodes. It is found that the irregular cross-section channel with upward concave boundary decelerates the flow. Numerical experimentation involved different order curved triangular elements and extensive computation revealed that the quintic order curved triangular element yields the desired solution to an accuracy of 10^{-5}. The finite element method is found to be very effective in capturing boundary and inertia effects in the three-dimensional, fully-developed flow through porous media. Further, it prevails with regards to giving the required answer for vast estimations of Forchheimer number when shooting technique fails to do as such. The technique can be effortlessly utilized in some other sporadic cross-area channel.

Keywords: Porous channel, Irregular cross-section, Finite element method, Darcy–Brinkman–Forchheimer, Forced convection, curved triangular element

1. Introduction

The significance of porous media in practical applications is notable in the field (see Nield and Bejan [1], Vafai [2], Rudraiah et al. [3]). Numerous famous specialists supported to have boundary and inertia impacts in governing equations of porous media flow problems. The ongoing work of Skjetne and Auriault [4] gives new bits of knowledge on consistent, non-linear flow in porous media. Additionally the researchers Calmidi and Mahajan [5] exhibited the non-direct, non-Darcy condition as a superb contender for depiction of stream in metal froth porous media. Crafted by Khaled and Vafai [6] take us from additional physical application circumstances into corporeal flows. Their [6] work displays a non-linear flow analysis for high perfused skeletal tissues. In every one of these works, and some more, high stream rate and/or high porosity in porous media warrants the evaluation of the takeoff from Darcy’s law as far as Brinkman friction and super-straight drag, the previous emerging because of strong boundaries and the last caused by form drag because of the strong matrix. The analytical solution of upstream velocity profile for nonlinear flow model in porous channel is determined in Ramos [7]. Limiting our thoughtfulness regarding uni-directional flows, here
we may review two critical works of Vafai and Kim [8], and Nield et al. [9] that are concerned with constrained convection in a channel loaded up with a porous medium. An unflattering, uni-directional, non-straight, non-Darcy flow was assumed in these works. The two works deals with exact solution of the non-direct two-point boundary-value problem emerging in the study. The non-linearity in the two overseeing semi direct differential condition is a quadratic function of velocity. In literature, the terminology connected with this friction is either after the name of Forchheimer [10] or Ergun [11]. In so far as the Darcy friction and viscous shear is concerned, there is a need to have two viscosities (real fluid viscosity and effective viscosity) in the condition (Lauriat and Prasad [12] and Givler and Altobelli [13]). In the present case we consider the non-Darcy impacts because of both boundary and inertia. Poulikakos and Renken [14] carried out a numerical investigation of boundary and inertial impacts on porous medium stream and heat exchange. Parang and Keyhani [15] studied the effect of boundary and inertia effects on mixed convection in an annular region. Hooman [16], Hooman and Gurgenci [17], Sharma et al. [18] and Allan and Hamdan [19] have recent numerical works on non-linear flow model in porous media.

In spite of there being works reporting solution of the Darcy–Brinkman–Forchheimer equation for fully developed two-dimensional rectangular channel, the need to consider irregular cross-section porous channels in many applications necessitates to revisit the problem. In article curved elements are employed with the basis functions chosen to fit the curved boundary of the irregular cross-section. Practical problems involving complex curved boundary domains pose so much computational hardship for finite difference and classical finite element computations. Curved triangular elements with one curved side and two straight sides can map the curved domains better than using the three straight sided triangular elements. Ergatoudis et al. [20] has discussed about the use of curved triangular elements in structural mechanics. The use of parabolic arcs, the derivation of the iso-parametric transformation involving the one curved side and two straight sides are given in the works of Zienkiewicz [21], Macleod and Mitchell [22], Rathod and Karim [23, 24], and Rathod et al. [25].

2. Mathematical formulation

In the case of steady state fully developed flow, we have unidirectional flow in the z -direction inside the tubes in porous channels involving both regular and irregular boundary (see Fig.1a), the Darcy–Brinkman–Forchheimer momentum equation with velocity $u(x, y)$ is

$$
\mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\mu}{K} u - \frac{\rho C_b}{\sqrt{K}} u^2 = \frac{dp}{dz}.
$$

Non-dimensionalise Eq. (1) using the following definitions:

$$
X = \frac{x}{h}, \quad Y = \frac{y}{h}, \quad Z = \frac{z}{h}, \quad U = \frac{U}{u_h}, \quad P = \frac{p_h}{\mu u_h}.
$$

Substituting Eq. (2) in the Eq. (1), we get

$$
\left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) - \Lambda \sigma^2 U - FU^2 = -\Lambda,
$$

where

$$
\Lambda = \frac{\mu}{\mu'} \text{ viscosity ratio (Brinkman number)}
$$
\[\sigma^2 = \frac{h^2}{K} \] (porous parameter)

\[\text{Re} = -\frac{u_h h}{v} \frac{dP}{dZ} \] (Reynolds number)

and

\[F = \Lambda C_b \text{Re} \sigma \] (Forchheimer number).

At this juncture we note that the Brinkman and Darcy numbers used here are actually the inverse of the classical definitions. The definition of the Brinkman, Darcy and Forchheimer numbers in Eq. (3) is the same as that used in Nield et al. [9]. Equation (1)'s non-dimensional form is Eq. (3). We solve Eq. (3) subject to the following boundary condition:

\[U = 0 \text{ on } \partial \Omega, \quad (4) \]

where \(\partial \Omega \) is the boundary of the cross-section \(\Omega \) (see Fig. 1b).

The field problem governed by Eqs. (3) and (4) is solved by using the Galerkin weighted residual method (see Bathe [26], Zienkiewicz et al. [27], and Bhatti [28]). The boundary \(\Omega \) in Fig. 1b is partitioned into many triangular elements \(\Omega_e \) as shown in Fig. 6 so the boundary \(\partial \Omega \) is also divided accordingly. Quadratic, cubic, quartic and quintic order curved triangular elements with one curved side and two straight sides are used in the present paper (see Figs. 2–5). The function \(U \) within the curved triangular element is given as

\[U = \sum_{i=1}^{NP} N_i(\xi, \eta)U_i \quad (5) \]

where \(U_i \)'s are unknown values of \(U \) and \(N_i \)'s are Lagrange interpolants or shape functions for the standard triangular element and

\[NP = \begin{cases}
6 & \text{for 6–node quadratic triangular element,} \\
10 & \text{for 10–node cubic triangular element,} \\
15 & \text{for 15–node quartic triangular element,} \\
21 & \text{for 21–node quintic triangular element.}
\end{cases} \]

The point transformation for the curved triangular elements with one curved side and two straight sides can be expressed in terms of the four points \(t_i \) \(i = 1,2,3,4 \) given by

\[t(\xi, \eta) = t_1 + (t_4 - t_3)\xi + (t_2 - t_3)\eta + \frac{n}{(n-1)}[m_4 - ((n-1)t_2 + t_1)]\xi \eta, \quad (t = X,Y), \quad (6) \]

where \(n = 2,3,4,5 \) for the quadratic, cubic, quartic and quintic curved triangular elements respectively for Figs. 2–5. The detailed derivations are shown in the works of Rathod et al. [25]. By using the transformation in Eq. (6), the Jacobian \(J(\xi,\eta) \) can be expressed as:

\[J(\xi,\eta) = \frac{\partial(X,Y)}{\partial(\xi,\eta)} = \frac{\partial X}{\partial \xi} \frac{\partial Y}{\partial \eta} - \frac{\partial X}{\partial \eta} \frac{\partial Y}{\partial \xi}. \quad (7) \]
Finite element equations for each of the triangular elements for Eq. (3) is obtained by using the Galerkin method of weighted residuals, we get following finite element equation for each element as

\[
[D^e + G^e]_{NP_e,NP_e} \{U^e\}_{NP_e} = \{B^e\}_{NP_e} - \{E^e\}_{NP_e} \quad \text{or} \quad D^e_{i,j} U^e_{i,j} + G^e_{i,j} U^e_{i,j} = B^e_{i} - E^e_{i}, \tag{8a}
\]

where

\[
D^e_{i,j} = \int_{\Omega} \left(\frac{\partial N_i}{\partial X} \frac{\partial N_j}{\partial X} + \frac{\partial N_i}{\partial Y} \frac{\partial N_j}{\partial Y} \right) dX dY = D^e_{X,X} + D^e_{Y,Y}, \tag{8b}
\]

\[
D^e_{X,X} = \int_{\xi=0}^{1} \int_{\eta=0}^{1} \frac{1}{J^e} \left(\frac{\partial N_i}{\partial \xi} \frac{\partial N_j}{\partial \eta} - \frac{\partial N_i}{\partial \eta} \frac{\partial N_j}{\partial \xi} \right) d\eta d\xi,
\]

\[
D^e_{Y,Y} = \int_{\xi=0}^{1} \int_{\eta=0}^{1} \frac{1}{J^e} \left(\frac{\partial N_i}{\partial \eta} \frac{\partial N_j}{\partial \xi} - \frac{\partial N_i}{\partial \xi} \frac{\partial N_j}{\partial \eta} \right) d\eta d\xi,
\]

\[
G^e_{i,j} = \int_{\Omega} \Lambda \sigma^2 N_i N_j dX dY = \int_{\xi=0}^{1} \int_{\eta=0}^{1} \Lambda \sigma^2 N_i N_j J^e d\eta d\xi, \tag{8c}
\]

\[
B^e_{i} = \int_{\Omega} \Lambda N_i dX dY = \int_{\xi=0}^{1} \int_{\eta=0}^{1} \Lambda N_i J^e d\eta d\xi, \tag{8d}
\]

\[
E^e_{i} = \int_{\Omega} \left(\int_{\xi=0}^{1} \int_{\eta=0}^{1} \left(\sum_{j=1}^{NP_e} N_i N_j \right)^2 d\eta d\xi \right) dX dY = \int_{\xi=0}^{1} \int_{\eta=0}^{1} \left(\int_{\xi=0}^{1} \int_{\eta=0}^{1} \left(\sum_{j=1}^{NP_e} N_i N_j \right)^2 d\eta d\xi \right) J^e d\eta d\xi. \tag{8e}
\]

\(i\) and \(j\) takes the values from 1 to \(NP\) in the Eq. (8). Using Gauss quadrature rules over standard given in Rathod et al. [29-31], the Eq. (8) integrals can be numerically evaluated.

Assembling is done after matrices \(D^e, G^e, B^e\) and \(E^e\) related to each element are calculated to get the global matrices \(D, G, B\) and \(E\) related to the whole physical domain. On imposing the boundary conditions, we get

\[
[D + G]_{m,m} \{U\}_{m} = \{B\}_{m} - \{E\}_{m} \quad \text{or} \quad [H]_{m,m} \{U\}_{m} = \{B\}_{m} - \{E\}_{m}, \tag{9}
\]

where

\[H_{i,j} = D_{i,j} + G_{i,j}\]

We get a system of \(m\) nonlinear algebraic equations in \(m\) unknown interior velocities \(U_j\) in Eq. (9). We solve the Eq. (10) by first converting it to quasi-linearized system. Eq. (9) and then applying Gauss-Seidel iterative formula. Eq. (9) in the quasi-linearized form for \(m = 3\) can be written as:

\[
\begin{align*}
(H_{1,1} + E_{1,1}) U_1 + H_{1,2} U_2 + H_{1,3} U_3 &= B_1, \\
H_{2,1} U_1 + (H_{2,2} + E_{2,2}) U_2 + H_{2,3} U_3 &= B_2, \\
H_{3,1} U_1 + H_{3,2} U_2 + (H_{3,3} + E_{3,3}) U_3 &= B_3, \tag{10}
\end{align*}
\]

Gauss-Seidel iterative formula for solving Eq. (10) can be rewritten as:
The convergence criteria can be set as:

\[U_i^k - U_i^{k-1} \leq \text{Tol}, \]

where \(k \) is the iterative number and \(\text{Tol} \) is an acceptable tolerance.

3. Results and discussion

Here the present work intends to propose the finite element method for solving a non-linear, non-Darcy equation with quadratic drag. Before we embark on a discussion of the solution we note here that the definition of Brinkman and Darcy numbers as used in the paper is the inverse of the classical definitions. High-porosity channels of regular or irregular cross-sections are considered for investigating Newtonian fluid flow through it. The boundary effects of the physical problems involving the curved domains are not easily captured by the finite difference and classical finite element method with straight sided triangular elements. Hence, the curved triangular elements with one curved side and two straight sides are used in solving the field problems involving curved boundaries. In solving the present partial differential equation, we get the product of the global derivatives as in Eqs. (8b) & (8c). The higher order bivariate Jacobians in the denominators of the integrand in Eq. (8c) imposes the more numerical integration cost in getting the accurate numerical values. The prime reason for the huge computational cost escalation in evaluating Eq. (8c) is contributed by higher order bivariate Jacobians of the iso-parametric point transformations for cubic, quartic and quintic order triangular elements, since three, four and five are the orders of the iso-parametric point transformations for the cubic, quartic and quintic order curved triangular elements. So, the huge computational burden can be reduced by using the second order sub-parametric transformations (parabolic arcs) of Eq. (6) for all the order triangular elements. Hence, we get a linear bivariate polynomial as Jacobian for all these higher order sub-parametric transformations as in Eq. (7); See Rathod et al. [25]. Therefore, substantial computational cost is reduced in computation of Eq. (8c). Newton-Raphson method gives us a very efficient means of converging to roots of non-linear system of algebraic equations, if we have a sufficiently good initial guess for the initial approximations for all the unknown velocities at nodes, but it’s very difficult to guess for the present problem. Hence, we use a quasi-linearization and Gauss-Seidel iteration method to solve the system of non-linear algebraic equations in Eq. (10) and we have given single initial value guess for all the unknown velocities at nodes and we set \(\text{Tol} = 10^{-6} \). The computation for cross-section with 8 triangular elements for the cross-sections of Fig. 1b, is depicted in Fig. 6. We have used sub-parametric quadratic, cubic, quartic and quintic order triangular elements as in Figs. 2-5 to do the computational experiment. To track the convergence of the solution for the present problem, some common nodal points are picked. The coding for the designed algorithm is done in Mathematica 7.0.

Figs. 2–5 show the mapping of various curved triangles used in the computations into straight triangles. We now discuss the results depicted by the Figs.7a–7f. It is observed that the velocity of the fluid through channel increases when the Forchheimer number \(F \) is zero, which is the solution of the Darcy–Brinkman equation (linear PDE). In Figs. 7a–7f we clearly see the effect of non-linear form drag on the velocity, which is represented by the Forchheimer number \(F \). The velocity decreases as the Forchheimer number \(F \) increases for fixed values of Brinkman number \(\Lambda \) and Darcy number \(\sigma \).
which are depicted in Figs. 7b and 7d. Similarly, the velocity decreases as the Darcy number \(\sigma \) increases for fixed values of Brinkman number \(\Lambda \) and Forchheimer number \(F \) which is depicted in Figs. 7b and 7e or Figs. 7d and 7f. Therefore, the effect of increasing \(F \) is to decrease the velocity which is similar to the effect of increasing Darcy number \(\sigma \). Comparing the results in Figs. 7a–7c, we may make the inference on the effect of Brinkman number \(\Lambda \) on the flow. All results obtained here are in good agreement with the results of Givler and Altobelli [13]. The excellent results on the boundary and inertia effects on flow velocity speak about the utility of the method in capturing detailed flow features. It is important to mention here that the method succeeds in giving the required solution for some parameters’ combination when shooting technique, based on Runge-Kutta-Fehlber45 and modified Newton-Raphson methods, fails for large values of \(F \).
FIGURE 2. Mapping of a 6-node quadratic curve triangle into standard triangle.

(a) Unmapped quadratic triangle
(b) mapped quadratic triangle

FIGURE 3. Mapping of a 10-node cubic curve triangle into standard triangle.

(a) Unmapped cubic triangle
(b) mapped cubic triangle

FIGURE 4. Mapping of a 15-node quartic curve triangle into standard triangle.

(a) Unmapped quartic triangle
(b) mapped quartic triangle
FIGURE 5. Mapping of a 21-node quintic curve triangle into standard triangle.

(a) Unmapped quintic triangle
(b) Mapped quintic triangle

FIGURE 6. Description of the 8-element domain discretization of Fig. 1b.

FIGURE 7a. Contour plot for $\Lambda = 0.8$, $\sigma^2 = 5$, $F = 50$.

FIGURE 7b. Contour plot for $\Lambda=1$, $\sigma^2=5$, $F=50$.

FIGURE 7c. Contour plot for $\Lambda=1.2$, $\sigma^2=5$, $F=50$.
FIGURE 7d. Contour plot for $\Lambda = 1$, $\sigma^2 = 5$, $F = 100$.

FIGURE 7e. Contour plot for $\Lambda = 1$, $\sigma^2 = 10$, $F = 50$.
FIGURE 7f. Contour plot for $\lambda = 1, \sigma^2 = 10, F = 100$.

4. Conclusions

- The non-linear partial differential Eq. (1) is solved by finite element approach the resulted system of equations is naturally non-linear and the solution is obtained by quasi-linearization and a simple iterative Gauss-Seidel method.
- The method is implemented using the mathematical programming package (Mathematica 7.0).
- The errors are fairly divided among all the nodes by the present finite element method.
- The desired accuracy of 10^{-5} in the solution is obtained by the quintic order curved triangular element.
- The present method of finite element can be easily applied to many other practical and complex curved domains also.
- We wish that the present method gives us the required motivation in the usage of the sub-parametric higher order triangular elements.

Nomenclature

- B^e Column Matrix for element e
- B^e_i Elements in Column Matrix B^e
- C_b Form-drag coefficient (nondimensional)
- D^e Square matrix for element e
- $D^e_{i,j}$ Elements in square Matrix D^e
- E^e Column Matrix for element e
- E^e_i Elements in Column Matrix E^e
- F Forchheimer number, $\lambda C_b \text{Re} \sigma$
- G^e Square matrix for element e
- $G^e_{i,j}$ Elements in square Matrix G^e
- H^e Square matrix for element e
• $H_{i,j}^e$ Elements in square Matrix H^e
• h Half channel width
• J^e Jacobian for element e
• K Permeability
• N_i Lagrange shape function at node i
• p Pressure
• $P = \frac{ph}{\mu u_R}$
• Re Reynolds number
• u Velocity of the fluid
• u_R Characteristic velocity
• U Dimensionless velocity, $u_R \left(\frac{U}{\frac{dP}{dz}}\right)$
• x,y,z Global space coordinates
• $X = \frac{x}{h}$
• $Y = \frac{y}{h}$
• $Z = \frac{z}{h}$
• $-\frac{dp}{dz}$ Constant applied pressure gradient

Greek Symbols
• Λ Brinkman number, $\frac{\mu}{\mu'}$
• Ω Interior of the actual domain
• Ω_e Interior of the element
• $\partial\Omega$ Boundary of the actual domain
• ξ, η Local coordinates
• μ Dynamic viscosity
• μ' Actual viscosity
• ρ Density of the fluid
• σ Porous parameter, $\frac{h}{\sqrt{K}}$

Subscripts
• i, j Indices

Superscripts
• e Element number
References

[1] Nield D A and Bejan A 2006 Convection in Porous Media (New York: Springer Verlag)
[2] Vafai K 2005 Hand Book of Porous Media (New York: CRC Press)
[3] Rudraiah N, Siddheshwar P G, Pal D and Vortmeyer D 1988 Non-Darcy effects on transient dispersion in porous media, ASME Proc., Nat. Heat Trans. Conf., ed. H R Jacobs (Houston, Texas: USA) HTD – 96 pp 623–629
[4] Skjetne E and Auriault J L 1999 New insights on steady, non-linear flow in porous media, Eur. J. Mech. B/Fluids 18 131–145
[5] Calmidi V V and Mahajan R L 2000 Forced convection in high porosity metal foams ASME J. Heat Trans. 122 557–565
[6] Khaled A R A and Vafai K 2003 The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans. 46 4989–5003
[7] Ramos J I 1998 Upstream boundary conditions for flows in porous channels Appl. Math. Comput. 93 149–154
[8] Vafai K and Kim S J 1989 Forced convection in a channel filled with a porous medium: An exact solution ASME J. Heat Trans. 111 1103–1106
[9] Nield D A, Junqueira S L M and Lage J L 1996 Forced convection in a fluid-saturated porous medium channel with isothermal or isoflux boundaries J. Fluid Mech. 322 201–214
[10] Forchheimer P H 1901 Wasserbewegung durch Buden Ver. Deutsch. Z. Ing 45 1782–1788
[11] Ergun S 1952 Fluid flow through packed columns Chem. Eng. Prog. 48 89–94
[12] Lauriat G and Prasad V 1987 Natural convection in a vertical porous cavity: A numerical study for Brinkman extended Darcy formulation J. Heat Trans. 109 295–330
[13] Givler R C and Altobelli S A 1994 A determination of the effective viscosity for the Brinkman–Forchheimer flow model J. Fluid Mech. 258 355–370
[14] Poulikakos D and Renken K 1987 Forced convection in a channel filled with porous medium, including the effect of flow inertia, variable porosity and Brinkman friction ASME J. Heat Trans. 109 880–888
[15] Parang M and Keyhani M 1987 Boundary and inertia effect on flow and heat transfer in porous media Int. J. Heat Mass Trans. 24 195–203
[16] Hooman K 2008 A perturbation solution for forced convection in a porous saturated duct J. Comput. Appl. Math. 211 57–66
[17] Hooman K and Gurgenci H 2007 A theoretical analysis of forced convection in a porous saturated circular tube: Brinkman–Forchheimer model Trans. Porous Med. 69 289–300
[18] Sharma R, Bhargava R and Sing I V (2010) Combined effect of magnetic field and heat absorption on unsteady free convection and heat transfer flow in a micropolar fluid past a semi-infinite moving plate with viscous dissipation using element free Galerkin method Appl. Math. Comput. 217 308–321
[19] Allan F M and Hamdan M H 2002 Fluid mechanics of the interface region between two porous layers Appl. Math. Comput. 128 37–43
[20] Ergatoudis I, Irons B M and Zienkiewicz O C, Curved isoparametric quadrilateral finite element analysis Int. J. Solids Struct. 4 31–42
[21] Zienkiewicz O C 1967 The finite Element Method in Structural and Continuum Mechanics (New York: McGraw-Hill)
[22] McLeod R J Y and Mitchell A R 1975 The use of parabolic arcs in matching curved boundaries in the finite element method J. Inst. Math. Appl. 16 239–246
[23] Rathod H T and Shajedul Karim Md 2000 Synthetic division based integration of rational functions of bivariate polynomial numerators with linear denominators over a unit triangle \(0 \leq \xi, \eta \leq 1, \xi + \eta \leq 1\) in the local parametric space \((\xi, \eta)\) Comput. Meth. Appl. Mech. Eng. 181 191–235
[24] Rathod H T and Shajedul Karim Md 2002 An explicit integration scheme based on recursion for the curved triangular finite elements Comput. Struct. 80 43–76
[25] Rathod H T, Nagaraja K V, Kesavulu Naidu V. and Venkatesudu B 2008 The use of parabolic arcs in matching curved boundaries by point transformations for some higher order triangular elements *Fin. Elem. Anal. Des.*, **44** 920–932

[26] Bathe K J 1996 *Finite Element Procedures* (Cambridge (MA) Englewood Cliffs: NJ MIT press)

[27] Zienkiewicz O C, Taylor R L and Zhu J Z 2005 *The Finite Element Method: Its Basis and Fundamentals*, 6th ed. (Oxford: Elsevier)

[28] Bhatti M A 2005 *Fundamental Finite Element Analysis and Applications* (New York: John Wiley & Sons Inc.)

[29] Murali K, V. Kesavulu Naidu and B. Venkatesh. Optimal subparametric finite element approach for a Darcy-Brinkman fluid flow problem through a rectangular channel with one curved side, IOP Conf. Series: Materials Science and Engineering 310 (2018) 012145.

[30] Rathod H T, Nagaraja K V, Venkatesudu B and Ramesh N L 2004 Gauss Legendre quadrature over a triangle *J. Indian Inst. Sci.*, **84** 183–188

[31] Rathod H T, Nagaraja K V and Venkatesudu B 2007 Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface *Appl. Math. Comput.*, **188** 865–876