ANALYSIS OF TOTAL FLAVONOID LEVELS IN BROWN ALGAE (SARGASSUM SP. AND PADINA SP.) AS ANALGESIC DRUG THERAPY

RUSLIN M1*, AKBAR FUAD HUSAIN2, HAJRAH-YUSUF AS3, SUBEHAN3
1Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Hasanuddin University, Makassar, Indonesia. 2Department of Dental Public Health, Faculty of Dentistry Hasanuddin University, Makassar, Indonesia. 3Laboratory of Phytochemistry, Faculty of Pharmacy Hasanuddin University, Makassar, Indonesia. Email: mruslin@unhas.ac.id

Received: 07 March 2018, Revised and Accepted: 02 April 2018

INTRODUCTION
Indonesia is a country known for its abundant natural resources and very extensive sea areas. Approximately 78% of the Indonesian territory is covered by water with shallow and deep seas [1]. As an archipelagic country with large areas for seaweed cultivation (11,109 km²), Indonesia is endowed with an abundance of tropical seaweed resources [2]. Several studies have shown that marine organisms, seaweed, and marine algae provide a high source of bioactive secondary metabolites that may be useful in the development of new pharmaceutical agents [3,4]. However, until now, marine algae in coastal areas of Indonesia have been neglected, especially in the pharmacological area [1-3].

Marine algae is classified into several types based on the composition of nutrients, pigments, and chemicals, such as Rhodophyta (red algae), Phaeophyta (brown algae), and Chlorophyta (green algae). This marine algae has been considered safe, non-toxic, easy to find, and its availability is not limited to various fields [3,4]. A number of pharmacological activities have been reported on marine algae, for example, anti-tumor, cytoprotective antioxidants, antihelmintic, anticoagulant, antibacterial, antifungal, and hepatoprotective effect, and inhibiting DNA polymerase and xanthine oxidase [4,5]. A study by Hong et al. using Sargassum fulvellum and Sargassum thunbergii indicated the presence of anti-inflammatory, analgesic, and anti-inflammatory activity in mice [6]. In another study conducted by Thennarasan et al., the analgesic effects of brown algae extract from Lobophora variegata showed significant analgesic activity when used in rats induced by chemical stimulants [7].

Although some studies have shown the analgesic activity of brown algae, until now, there is a little to no information available on the analgesic effect of the Sargassum sp. and Padina sp. of brown algae. Recent studies on Sargassum sp. and Padina sp. have primarily focused on anti-inflammatory and hemostatic effects in wound healing. Based on this fact, this study aims to analyze the flavonoid content of brown algae that serves as an analgesic as well as comparing the types of brown algae (Sargassum sp. and Padina sp.) that have the best analgesic effect.

METHODS
This type of research is experimental laboratory with post-test design with control group design. This research was conducted at Laboratorium Biofarmaka Hasanuddin University Faculty of Pharmacy in May 2017. The population of this research is brown algae that grows in Punaga waters, Takalar Regency, South Sulawesi Province. The samples used are Sargassum sp. and Padina sp. Sampling was done using a convenience sampling method.

Preparation of the extracts was done using the maceration method until dense extracts of Sargassum sp. and Padina sp. were obtained. Total flavonoid measurements were performed in triplicate at three different concentrations: 150 ppm, 300 ppm, and 450 ppm. The total flavonoid content of Sargassum sp. and Padina sp. was determined using colorimetric methods with AlCl₃, reagents and spectrophotometry with a standard blank ratio in the laboratory.

Based on the total flavonoid measurement data, a quercetin calibration curve was made resulting in the equation y=0.078x+0.029 (R²=0.994), where y is the absorbance value and x is the quercetin content. Using the quercetin calibration curve, absorbance measurements of Sargassum sp. and Padina sp. samples were used to determine the total flavonoid levels.

RESULTS
The total flavonoid level in Sargassum sp. and Padina sp. samples was determined after absorbance measurements and reported in Tables 1 and 2, respectively.
Table 1 shows the total flavonoid content in Sargassum sp. samples at three concentrations, each performed in triplicate. The average total flavonoid level in the 150 ppm sample is 1.237±0.158%, in the 300 ppm sample is 1.492±0.168%, and in the 450 ppm sample is 1.553±0.087%.

In this study, the measurement results showed that Padina sp. and Sargassum sp. have effective analgesic activity as a pain reliever based on the content of flavonoids they contain. This is supported in research conducted by Thunrasana et al. who tested the analgesic effects of algae extracts from brown type L. variegata. This study found that the content of flavonoids in algae can reduce pain by reducing prostaglandins [7]. Another study by Simpi et al. found that Sargassum ilicifolium is able to relieve pain by producing acetic acid which allows seaweed to produce its analgesic activity both peripherally and centrally [5].

In the results of this study, it was found that the flavonoid content Padina sp. extracts are higher than in the Sargassum sp. extracts and they can serve as an analgesic. Flavonoids are efficacious as analgesics whose mechanism of action inhibits cyclooxygenase enzyme action [13]. This is supported in research by Asmawati et al. who found that brown algae Padina sp. and Sargassum sp. contain flavonoids with good anti-inflammatory biological activity [14].

Brown algae is a source of bioactive secondary metabolites rich in steroids, flavonoids, glycosides, alkaloids, and insecticides. These active metabolites that have large drug values, and therefore, this herb plant and its products can be used to cure various diseases because it has no side effects compared to pharmaceutical drugs [15]. The findings in this study reinforce claims in the health and medicine industry that seaweed can be used as a solution to various symptoms related to inflammation.

CONCLUSION

Both Padina sp. and Sargassum sp. have a total flavonoid content that can act as an analgesic drug. Padina sp. is suspected to have more effective analgesic activity than Sargassum sp. in terms of total flavonoid concentration. Since levels of flavonoids measured in this study are total flavonoid levels, further research on the composition of other active substances in Sargassum sp. and Padina sp. which can act as analgesic drugs needs to be done.

ACKNOWLEDGMENT

Authors would like to thank the local resident of Punaga District, Takalar Regency. who helped us in collecting samples (Sargassum sp. and Padina sp.) for the studies. We are also grateful to the Dean

Table 1: The total flavonoid content of Sargassum sp. using AlCl₃ reagent

Concentration	Replication	Absorbance	Total flavonoid level (%)	Average±SD
150 ppm	I	0.148	1.114	1.237±0.158
	II	0.156		
	III	0.184		
300 ppm	I	0.328	1.318	1.492±0.156
	II	0.380	1.538	
	III	0.399	1.620	
450 ppm	I	0.531	1.453	1.553±0.087
	II	0.588	1.613	
	III	0.580	1.592	

SD: Standard deviation

Table 2: The total flavonoid content of Padina sp. using AlCl₃ reagent

Concentration	Replication	Absorbance	Total flavonoid level (%)	Average±SD
150 ppm	I	0.273	2.167	2.318±0.135
	II	0.303	2.429	
	III	0.295	2.357	
300 ppm	I	0.588	2.420	2.376±0.092
	II	0.553	2.271	
flavonoid	III	0.592	2.439	
450 ppm	I	0.876	2.429	2.375±0.091
	II	0.820	2.270	
	III	0.875	2.427	

SD: Standard deviation
of Faculty of Dentistry Hasanuddin University and the Vice-Rector for Education of Hasanuddin University for their support and assistance.

AUTHORS’ CONTRIBUTION

This work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. M. Ruslin, Fuad Husain Akbar, and A. St. Hajrah Yusuf collected the data, analyzed the data, and wrote the introduction, discussion, and the material and method part. Subehan helped in all the laboratory work, performed, and designed the study.

CONFLICTS OF INTEREST

The authors declare no conflict of interests of this study.

REFERENCES

1. Hutomo M, Moosa MK. Indonesian marine and coastal biodiversity: Present status. Indian J Mar Sci 2005;34:88-97.
2. Heti M, Geldermann J. Managing risks in the Indonesian seaweed supply chain. Clean Techn Environ Policy 2017;19:175-98.
3. Kathiravan V, Panneerselvam N, Palanikumar L. An untapped resource for natural anti-inflammatory compounds from marine macroalgae. Int J Pharm Bio Sci 2015;6:579-95.
4. Oliveira NM, Meira CL, Aguiar RM, Oliveira DM, Moura CW, Filho SA. Biological activities of extracts from padina boergeseni and Sargassumstenoiphylum, seaweeds naturally found in Baia de Todos os Santos, Brazil. Int J Pharm Pharm Sci 2015;7:350-3.
5. Simpi CC, Nagathank CV, Karajji SR, Kalyane NV. Evaluation of marine brown algae Sargassum illicifolium extract for analgesic and anti-inflammatory activity. Pharm Res 2013;5:146-9.
6. Hong DD, Hien HM, Anh HT. Studies on the analgesic and anti-inflammatory activities of Sargassum swartzii(Turner) C. Agardh (Phaeophyta) and ulva reticulataforsskals (Chlorophyta) in experimental animal models. J Biotechnol 2011;10:2308-14.
7. Themaraasan S, Murugesan S, Chidambaranathan N, Sivamurugan V. Analgesic, anti-inflammatory and antipyretic activity of the methanol extracts of brown alga Lobophora variegata (J.V.Lamouroux) womersley ex e.c.olveir. Am J Phytomed Clin Ther 2016;4:42-57.
8. Utami YP, Umar AH, Ernawati E. Analysis of total anthocyanin content on ethanol extract of purple sweet potato (Ipomoea batatas L.) and purple yam (Dioscorea alata L.) with differential pH method. J Pharm Med Sci 2016;1:1-4.
9. Asnani A, Septiana AT. The study of phytochemical properties of brown seaweed extract Sargassum duplicatum using a variety of solvents and methods of extraction. Arimtak 2012;6:22-8.
10. Margareth M. Sargassum sp. Seaweed extraction and extract testing as tyrosinase inhibitors. Repository IPB 2014:10.
11. Marie M. Extraction of brown seaweed Padina sp. and testing the extract as a tyrosinase inhibitor. Repository IPB 2014:9.
12. Nurjanah, Nurilmala M, Anwar E, Lutfiyana N, Hidayat T. Identification of bioactive compounds of seaweed Sargassumsp. and Eucheuma cottonioidty as a raw sunscreen cream. Proc Pak Acad Sci 2017;54:311-8.
13. Syamsul ES, Andani F, Soemarie YB. Analgesic test in etanolik and kerahau extract in white rat. Trad Med 2016;21:99-103.
14. Asmawati A, Hasyim R, Liaingsih AI, Ariani DF. The difference of anti-inflammatory effect of brown algae extract Padina sp. and Sargassum sp. that is derived from Punaga Beach, South Sulawesi. J Dentomaxillofac Sci 2016;1:109-12.
15. Pati MP, Sharma SD, Nayak L, Panda CR. Uses of seaweed and its application to human welfare: A review. Int J Pharm Pharm Sci 2016;8:12-20.