ESBL-Producing *Escherichia coli* from Cows Suffering Mastitis in China Contain Clinical Class 1 Integrons with CTX-M Linked to ISCR1

Tariq Ali 1, Sadeeq ur Rahman 2, Limei Zhang 1, Muhammad Shahid 1, Shiyao Zhang 1, Gang Liu 1, Jian Gao 1 and Bo Han 1*

1 Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China, 2 College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan

The prevalence of pathogenic multi-drug resistant (MDR) extended-spectrum β-lactamase (ESBL)-producing *Escherichia coli* is rapidly increasing, becoming a global concern. In a veterinary context, ESBL-producing *E. coli* are mostly reported in poultry and pigs. Here, we report on the prevalence and characterize ESBL-producing *E. coli* isolated from diverse dairy farms in China. Overall, 36 (23.53%) out of 153 *E. coli* isolates from mastitic milk samples (*n* = 1252) were confirmed as ESBL-producers by double-disc synergy testing and PCR. Nucleotide analysis of PCR amplicons revealed that *bla*~**CTX-M**~ was the predominant ESBL gene detected in 28 (77.78%) isolates, with *bla*~**CTX-M-15**~ being the major (78.57%) allele encoding for ESBLs. Also, 20 (55.56%) and 6 (16.67%) of the ESBL isolates were carrying *bla*~**TEM**~ and *bla*~**SHV**~ genes, respectively, in singlet or in combination. The majority of these isolates belonged to phylo-group A (69.44%) and D (16.67%). Strikingly, all these isolates were found to be MDR showing high resistance to cephalosporins including the fourth generation cefepime and common non-β-lactams. Additionally, class 1 integrons (*intI1*) were found in 30 (83.33%) isolates. Analysis of the class 1 integrons variable regions indicated that they were carrying up to five different gene cassettes conferring resistance to various drugs with a predominant combination of *dfrA17-aadA5* genes in tandem, conferring resistance to aminoglycosides and trimethoprim. However, no ESBL encoding genes were found in the cassettes. Interestingly, 22 (66.11%) of the ESBL isolates were also carrying insertion sequence common region 1 (ISCR1) which was found to be associated with most of the CTX-M genes. Altogether, the current study reports on the high prevalence of ESBL-positive *E. coli*, particularly CTX-M-15, carrying clinical class 1 integrons and ISCR1 elements are likely indicative of their rapid and wider dissemination, posing threats to veterinary and public health. To the best of our knowledge, this is the first comprehensive study to report on the alarming high occurrence of ESBL-producing *E. coli* from mastitic cows in China.

Keywords: *E. coli*, ESBLs, CTX-M-15, integrons, gene cassettes, bovine mastitis
INTRODUCTION

Bovine mastitis, inflammation of the mammary gland, is the most prevalent and economically important disease of dairy animals (Halasa et al., 2007). Mastitis can be caused by a variety of bacterial pathogens, but *Escherichia coli* is one of the leading causes (Dahmen et al., 2013). Antimicrobial agents are used for therapeutic as well as preventive measures against bacterial infections including bovine mastitis in farm animals. Beta-lactams, such as ampicillin and amoxicillin, remain the first-line treatment in veterinary medicine but an increase in drug-resistance to these antibiotics has been observed. Therefore, extended-spectrum cephalosporins (ESC) such as ceftriaxone have been approved in China for the treatment of animal diseases (MAO, 2010). Unfortunately, several recent studies have reported the increasing occurrence of highly resistant extended-spectrum β-lactamase (ESBL)-producing *Enterobacteriaceae*, mainly *E. coli*, isolated from food-producing animals from various countries including China (Rao et al., 2014; Xu et al., 2015; Seni et al., 2016).

Bacterial resistance to β-lactams, popular antibiotics due to their proven safety and efficiency, is increasing at an alarming rate. This resistance is mainly achieved through β-lactamases that can hydrolyse most β-lactam antibiotics including the third and fourth generation ESCs and monobactams (Bush and Jacoby, 2010). ESBLs are predominantly produced in gram negative bacteria, particularly in *E. coli*, and are considered a key mechanism conferring resistance to cephalosporins (Perez et al., 2007). Multi-drug resistance (MDR) has been commonly observed in most ESBL-producers and more alarming, co-resistance to other commonly used antibiotics like aminoglycosides, fluoroquinolones, tetracycline has been often reported (Chen et al., 2010; Timofte et al., 2014; Xu et al., 2015). This renders these organisms resistant to a wide range of antibiotics with limited therapeutic options. ESBL encoding genes have been categorized into three main types: *bla*CTXM, *bla*SHV, and *bla*TEM. The *bla*CTXM has been further categorized into five sub-groups (*bla*CTXM-1, *bla*CTXM-2, *bla*CTXM-9, *bla*CTXM-9, *bla*CTXM-25) and more than 150 variants have been documented (http://www.lahey.org/studies). In the past few years, CTX-M, especially CTX-M-15, has emerged as the most dominant type of ESBLs globally (D’Andrea et al., 2013). Recently, CTX-M-15 producing *E. coli* have been frequently documented from various sources including humans and food producing animals (Timofte et al., 2014; Liu et al., 2015; Xu et al., 2015), showing the broad spectrum of reservoirs carrying and spreading these genes. Food-animal systems are well established reservoirs of ESBL-producing *E. coli*, which can be transmitted from animals to humans by various direct and indirect means (Dahmen et al., 2013; Geser et al., 2015). This is also verified by Madec et al. (2012), they reported that the plasmids carrying CTX-M-15 genes in *E. coli* isolated from cattle were highly similar to those found in ESBL-producing *E. coli* isolates from human beings.

Integrons are genetic elements that play a vital role in the development and dissemination of MDR in clinical isolates due to their ability to capture, integrate and express gene cassettes (Vinue et al., 2008; Chen et al., 2010). Three main classes of integrons (1–3), carrying the gene cassettes encoding for antimicrobial resistance genes, are generally found to be associated with antibiotic resistance genes in pathogenic *E. coli*. Class 1 integrons are the most common in clinical *E. coli*, followed by less frequent class 2 integrons (Vinue et al., 2008; Xu et al., 2015). Class 1 integrons contain a 5′ conserved segment (CS) and 3′CS, followed by a variable region that contains one or more gene cassettes. The 5′CS consists of an integrase gene (*intI1*), a recombination-site (*attI1*), and the Pc promoter(s), and the 3′CS includes *aacA4 and sul1* genes which encode for quaternary ammonium compound and sulphonamide resistance (Hall and Stokes, 1993). Moreover, insertion sequences like ISCR1 (insertion sequence common region 1) as part of the complex class 1 integrons are found to be associated with ESBL and other resistance encoding genes and are probably involved in their mobilization and transposition. ISCR1 may mobilize the truncated 3′CS and nearby sequences from one integron to the 3′CS of another integron utilizing rolling circle transposition, thus facilitating dissemination of resistance elements (Eckert et al., 2006; Toleman et al., 2006).

Limited studies, particularly from China, have characterized ESBL-producing *E. coli* isolated from diseased food producing animals, mainly from mastitic cows (Lu et al., 2010; Timofte et al., 2014). Thus, we designed the current study to investigate the prevalence of pathogenic ESBL-producing *E. coli* and to characterize the ESBL genes and genetic elements which are likely to be responsible for their mobility and dissemination. To the best of our knowledge, this is the first comprehensive study into the molecular characterization of ESBL genes in *E. coli* isolated from dairy cows in China.

MATERIALS AND METHODS

Statement of Ethics

The present study was conducted in accordance with the ethical guide lines of China Agricultural University (CAU), Beijing. Proper ethical approval was granted by the departmental committee of College of Veterinary Medicine, CAU. Sampling was carried according to the standard protocols and with prior consent of the dairy herd’s authority.

Sample Collection and Location

Milk samples of mastitic cows (*n* = 1252) were collected from 61 large commercial dairy herds (2000–40,000 cows/herd) located in 16 provinces of China during January 2015 to May 2016 (*Figure 1* and *Table 1*). Sampling was carried out when the cows were suffering from mastitis and not according to a fixed schedule. The guidelines of the National Mastitis Council (NMC, 1999) were followed for the collection of milk samples from cows. Samples were taken in 50 mL sterile tubes and transported on ice to the laboratory for further processing.

Isolation and Identification of *E. coli*

Milk samples, shortly after arrival, were streaked (10 μL) onto MacConkey Agar (Difco™, Becton Dickinson, Sparks, MD USA)
and incubated at 37°C for 18–24 h. Presumptive *E. coli* colonies with the dark pink to red colors, were further confirmed with the API-20E kit (bioMérieux, Marcy l’Etoile, France) as per instruction of the manufacturer. Biochemically confirmed *E. coli* isolates were further verified by PCR as described previously (Tantawiwat et al., 2005). Confirmed *E. coli* isolates were stored in brain heart infusion broth (BHI; Sigma-Aldrich) containing 30% glycerol at −80°C.

Phenotypic Screening of ESBL-Producers

E. coli isolates were first screened for the phenotypic identification of ESBLs-producers on MacConkey agar containing ceftotaxime (1 mg/L). These presumptive ESBL-producing *E. coli* were further confirmed by double-disc synergy testing in accordance with recommendations of the Clinical and Laboratory Standards Institute (CLSI, 2014), using antimicrobial discs (Becton Dickinson, Sparks, MD USA) of ceftotaxime (30 µg), ceftotaxime plus clavulanic acid (30/10 µg), ceftazidime (30 µg), and ceftazidime plus clavulanic acid (30/10 µg). The test was recorded positive when the zone of inhibition of ceftotaxime plus clavulanic acid or ceftazidime plus clavulanic acid was ≥5 mm larger than their respective single discs (CLSI, 2014).

Genotypic Screening of ESBL-Producing *E. coli* Isolates

Bacterial DNA from ESBL-positive *E. coli* was isolated by the TIANamp Bacteria DNA Kit (TIANGEN, Beijing, China) according to the manufacturer’s instructions. PCR assays were used for the detection of *blaCTX-M*, *blaSHV*, *blaTEM* genes as described previously (Chen et al., 2010). Details of the primers used in this study are shown in Table 2. All ESBL genes relevant PCR amplicons were purified by the TIANquick Midi Purification Kit (TIANGEN, Beijing, China), bi-directionally sequenced and aligned with sequences available in GenBank (Chen et al., 2010). *Klebsiella pneumoniae* ATCC 700603 (ESBL-positive strain) and ddH₂O, instead of template DNA, was used as positive and negative controls, respectively, in all PCR assays.

Phylogenetic Grouping

ESBL-positive *E. coli* isolates were placed in one of the four phylogenetic groups: phylo-group A, group B1, group B2 or group D. For this purpose, a triplex PCR assay targeting the *chuA* and *yjaA* genes and *TspE4* was used as described previously by Clermont et al. (2000). The primers sequences and the annealing temperatures are listed in Table 2.
TABLE 1 | Occurrence of ESBL-producing E. coli isolated from dairy herds located in 16 provinces of China.

Provinces of sampling	No. of dairy herds^a	No. of milk samples^b	E. coli isolates^c	ESBL E. coli from each herd^d	
Anhui	A	63	4	0	
Beijing	B/B1/B2	26 (6/9/11)	5 (2/2/1)	0/0/0	
Fujian	F	12	0	0	
Guangdong	G/G1	98 (23/75)	3 (1/2)	2 (0/2)	
Hebei	Hb/Hb1/Hb2/Hb3	220 (11/10/16/16)	36 (2/0/0/5)	2 (0/0/0/1)	
	/Hb4/Hb5/Hb6/Hb7	/11/12/18/23	/1/0/0/4/5	/0/0/0/1	
	/Hb8/Hb9/Hb10	/24/12/38/14/96	/3/3/6/6/1	/0/0/0/0	
Heilongjiang	H/H1/H2/H3	73 (10/13/10/40)	7 (4/2/0/1)	1 (1/0/0/0)	
Henan	Hn/Hn1/Hn2/Hn3/Hn4	43 (12/6/7/12/6)	5 (2/0/0/2/1)	4 (2/0/2/0/2)	
Inner-Mongolia	I/I1/I2/I3/I4/I5/I6/I7/I8/I9/I10	125 (3/7/49/22/24)	42 (17/14/12/18)	45 (1/2/0/1)	
	/61/11/2/113	/8/7/5/3/6/8/6/11	/5/7/6/3/0	23 (0/0/0/0/0)	
Jiangsu	J	9	4	2	
Liaoning	L	20	4	1	
Ningxia	N/N1/N2/N3	97 (15/32/20/30)	19 (2/7/5/5)	1 (0/1/0/0)	
Shaanxi	Sx-Bj	13	2	0	
Shandong	S/S1/S2/S3	83 (14/14/15/40)	8 (0/1/5/2)	0/0/0/0	
Shanxi	Sx-Cz	6	0	0	
Shanghai	S/S1/S2/S3	59 (16/16/10/17)	10 (1/0/6/3)	0/0/0/0	
Tianjin	T	5	1	0	
Total		61	1252	153 (12.22%)	36 (23.53%)

^aThe letters in the column represent the farm number.
^bThe numbers in parenthesis indicate no. of milk samples corresponding to the respective farm in second column.
^cThe numbers in parenthesis show E. coli isolates from the respective farm.
^dThe numbers in parenthesis indicate ESBL-producing E. coli isolated from the respective farm.

Antibiotic Susceptibility Testing

Antibiotic susceptibility of ESBL isolates was carried out on Mueller-Hinton agar (DifcoTM) against 16 different antibiotics discs (Becton Dickinson, Sparks, MD, USA), using the standard Kirby-Bauer disk diffusion method according to recommendations of the CLSI (2014). The panel of antimicrobial agents consisted of both β-lactam and non-β-lactam antibiotics as listed in Table 3. E. coli ATCC 25922 (ESBL-negative strain) and K. pneumoniae ATCC 700603 (ESBL-positive strain) were used as quality control strains (CLSI, 2014). The isolates were declared as multi-drug resistant (MDR) when found resistant to three or more categories of antimicrobial drugs.

Detection of Integrons, Gene Cassettes and ISCR1

A PCR assay was used to detect Class 1, 2, and 3 integrons in all ESBL-producing E. coli using integron-integrase gene specific primers, intI1, intI2, and intI3, respectively (Dillon et al., 2005). Subsequently, the intI1 positive genotypes (n = 24) were determined by sequencing amplicons derived from PCR for the class 1 integron variable regions as described previously (White et al., 2000). The ISCR1 region was PCR amplified from ESBL-producing isolates using specific primers (Table 2). The sequenced amplicons of the ISCR1 elements were confirmed by BLAST analysis (see below). A combination of primers specific to the ISCR1 elements (Kiiru et al., 2013) elements and consensus primers of ESBL genes were used to verify their association.

PCR-RFLP Genotyping of Class 1 Integron Variable Region Amplicons

A PCR-based restriction fragment length polymorphism (PCR-RFLP) assay was adopted to identify genetic variation in the amplified products using restriction enzyme HinfI (Takara, Shiga Japan) as published previously (Gu et al., 2008). PCR-RFLP products with similar band profiles were regarded as the same genotypes carrying identical gene cassette(s).

Nucleotide Sequencing and Data Analysis

Regardless of the similar PCR-RFLP genotypes, all amplicons of gene cassettes, ISCR1 elements, and ESBL genes were bi-directionally sequenced using ABI 3730 sequencer (Applied Biosystems, Foster City, CA, USA). PCR amplicons of >1.8 kb were further sequenced using primer walking based on the sequenced amplicons. The obtained sequences were subjected to BLAST homology searches in the INTEGRALL database (http://integrall.bio.ua.pt). Other sequence analyses were compared with BLASTN software (http://www.ncbi.nlm.nih.gov/BLAST/). Clone Manager 7 (Sci-Ed software, Denver, USA) and ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) were also used for detailed analysis such as alignments and open reading frames.
TABLE 2 | Details of primers used in this study.

Primers	Sequence (5′ to 3′)	Target gene	Annealing temperature	Amplicons size	References
β-lactamases					
CTX-MA	CGC TTT GCG ATG TGC AG	blaCTX-M	54°C	550-bp	Villegas et al., 2004
CTX-MB	ACC GCG ATA TGG TTG GT				
SHV-F	GGG TTA TTC TTT GTC GC	blashv	58°C	567-bp	Chang et al., 2001
SHV-R	TTA GGG TGG CCA GTC TCT				
TEM-F	ATG AAA TTC TGG AAG AGG AAA	blatem	56°C	1086-bp	Yao et al., 2007
TEM-R	GAC AGT TAC CAA TGG TTA ATC				
INTEGRONS					
intI1-F	CCT CCC GCA CGA TGA TC	intI1	54°C	280-bp	Dillon et al., 2005
intI1-R	TCC AGG CAT CAG CAG GC				
intI2-F	AAA TCT TTA ACC CCG AAA CCG	intI2	54°C	439-bp	Dillon et al., 2005
intI2-R	ATG TCT AAC AGT CCA TTT GTA AAT TCT A				
intI3-F	AGT GGG TGG CGA ATG AGT G	intI3	54°C	599-bp	Dillon et al., 2005
intI3-R	TGT TCT TGT ATC GGC AGG TG				
intI1-VR-F	TCA TGG CTT GTT AGT ACT GT	intI1 variable region	56°C	variable	White et al., 2000
intI1-VR-R	GTA GGG CTT ATT ATG GAC GC				
E. coli-SPECIFIC					
ual	TGG TAA TTA CGG ACG AAG AAA CCG GC	udA	62°C	147-bp	Tantawiwat et al., 2005
uar	ACG CGT GGT TAC AGT CTT GCG				
PHYLO-GROUPS					
chuA-F	GAC GAA CCA AGG GTC AGG AT	chuA	55°C	279-bp	Clermont et al., 2000
chuA-R	TGG CGG CAG TAC CAA AGA GA				
yjaA-F	TGA AGT GTC AGG AGA CGG TG	yjaA	55°C	211-bp	Clermont et al., 2000
yjaA-R	ATG GAG AAT GCG TTC CTC AAC				
tspE4C2-F	GAG TAA TGG CGG AGG ATT CA	tspE4C2	55°C	152-bp	Clermont et al., 2000
tspE4C2-R	CGG GCC AAC AAA GTA TTA CG				
ISCR1					
iscr1-F	CGC CGG AGC AAA CAG GC	iscr1	55°C	469-bp	Kiru et al., 2013
iscr1-R	UAR ACG CGT GGT TAC AGT CTT GCG				

F, forward; R, reverse.

TABLE 3 | Antibiotic susceptibility profiles of ESBL-producing *E. coli* isolates (*n* = 36) from milk of mastitic cows.

Antimicrobial agents	Abbreviations	Conc.* (µg)	Susceptible (%)	Intermediate (%)	Resistance (%)
Ampicillin	AM	10	11.11 (04/36)	02.78 (01/36)	86.11 (31/36)
Amoxicillin/clavulanic acid	AMX/CA	20/10	25.00 (9/36)	11.11 (04/36)	63.89 (23/36)
Cefalexin	CX	30	00.00 (00/36)	00.00 (00/36)	100 (36/36)
Cefaclor	CEC	30	05.56 (02/36)	00.00 (00/36)	94.44 (34/36)
Cefoxatin	FOX	30	83.34 (30/36)	08.33 (03/36)	8.33 (3/36)
Cefotaxime	CTX	30	00.00 (00/36)	00.00 (00/36)	100.0 (36/36)
Ceftazidime	CAZ	30	33.33 (12/36)	00.00 (00/36)	66.67 (24/36)
Cefepime	FEP	30	41.67 (15/36)	11.11 (04/36)	47.22 (17/36)
Aztreonam	AZT	30	13.89 (05/36)	00.00 (00/36)	86.11 (31/36)
Meropenem	MPN	10	100.00 (36/36)	00.00 (00/36)	00.00 (00/36)
Tetracycline	TE	30	16.67 (6/36)	11.11 (04/36)	72.22 (26/36)
Gentamicin	G	10	27.78 (10/36)	11.11 (04/36)	61.11 (22/36)
Ciprofloxacin	CIP	05	55.56 (20/36)	08.33 (03/36)	36.11 (13/36)
Chloramphenicol	C	30	47.22 (17/36)	11.11 (4/36)	41.67 (15/36)
Nalidixic acid	NAL	30	19.44 (07/36)	02.78 (01/36)	77.78 (28/36)
Trimethoprim/sulphamethoxazole	STX	1.25/23.75	25.00 (9/36)	02.78 (01/36)	72.22 (26/36)

*Conc.: concentrations.
RESULTS

Prevalence and Characterization of ESBL-Producing E. coli

Overall, 153 E. coli isolates were recovered from 1252 milk samples of mastitic dairy cows from 16 different provinces of China. Thirty-six (23.53%) isolates were detected as ESBL-producing E. coli by phenotypic confirmatory tests and this was also verified by ESBL genotype specific PCR assay. The distribution of these isolates among different cattle herds is shown in Table 1. The highest occurrence of ESBL producers was observed in the Inner Mongolia province (23 isolates), followed by the Henan region (four isolates).

Figure 2 shows the frequency (%) of various ESBL encoding genes among 36 ESBL-producing E. coli isolated from mastitic milk. Overall, \textit{bla} \textit{CTX-M} was the most prevalent ESBL gene (77.78%; 28/36), while \textit{bla} \textit{TEM} and \textit{bla} \textit{SHV} genes were present in 55.56% (20/36) and 16.67% (6/36) of ESBL-positive isolates, respectively. The \textit{bla} \textit{TEM} and \textit{bla} \textit{SHV} genes were most frequently observed together with \textit{bla} \textit{CTX-M}, rather than alone (Figure 2). Notably, two of the isolates from Inner Mongolia carried three \(\beta\)-lactamase genes (\textit{bla} \textit{CTX-M-15} + \textit{bla} \textit{TEM-1} + \textit{bla} \textit{SHV-12}) in combination. Sequence analysis revealed that \textit{bla} \textit{CTX-M-15} was the dominant (78.57%; 22/28) subtype. The other \textit{bla} \textit{CTX-M} subtypes were: \textit{bla} \textit{CTX-M-14} (10.71%; 3/28), \textit{bla} \textit{CTX-M-1} (3.57%; 1/28), \textit{bla} \textit{CTX-M-3} (3.57%; 1/28), and \textit{bla} \textit{CTX-M-55} (3.57%; 1/28). The phylo-group A was the most prevalent (69.44%; 25/36) among 36-ESBL-positive E. coli followed by group D (16.67%; 6/36), B1 (8.33%; 3/36), and B2 (5.56%; 2/36) as depicted in Table 4.

Antibiotic Susceptibility Profiles

All 36 ESBL-producing E. coli isolates were found to be multiple-drug resistant (MDR). However, different isolates exhibited slight variation in their antibiotic susceptibility profiles against the 16 tested antibiotics (Table 3). The majority of the isolates were resistant to first (cephalexin, 100%), second (cefclor, 94.4%), third (cefotaxime and cefazidime, 100% and 66.67%, respectively), and fourth (cefepime, 58.33%) generation cephalosporins. However, a high rate of susceptibility was observed toward cefamycin (cefotaxin, 83.34%) and carbapenem (meropenem, 100%), but susceptibility to monobactams (aztreonam, 13.89%) was low. The isolates were also resistant to other \(\beta\)-lactam and non-\(\beta\)-lactam antibiotics including ampicillin (88.89%), amoxicillin/clavulanic acid (75.00%), chloramphenicol (52.78%), ciprofloxacin (44.44%), gentamicin (72.22%), nalidixic acid (80.56%), tetracycline (83.33%) and trimethoprim/sulphamethoxazole (75%).

Detection of Integrons, Gene Cassettes and ISCR1

Thirty (83.33%) of the ESBL-producing E. coli carried clinical class 1 integrons but class 2 and class 3 integrons were not detected in any of the isolates. Among the \textit{intI1}+ESBL-producing E. coli, 24 (80.00%) isolates tested positive for the presence of variable regions, while six of the isolates could not be amplified (Table 4). Furthermore, these 24 isolates were also positive for \textit{qacE} \textit{A1}/\textit{sul1} indicating a complete clinical class 1 integron. Integrons lacking 3\textit{CS} were not PCR amplified for \textit{qacE} \textit{A1}/\textit{sul1} (results not shown).

The PCR-amplicon sizes of the inserted gene cassettes ranged between ~1.0 and ~2.2 kb with the most predominant being ~1.7 kb amplicons (Figure 3). Most of the PCR amplicons of the variable regions of gene cassette arrays were a single band. However, two of the isolates produced a double band (of ~1.7 and ~0.2 kb). Subsequent sequence analysis of the gel extracted amplicons indicated that the smaller band was nonspecific amplification. Different band profiles of PCR-RFLP products indicated five distinct genotypic configurations (Figure 4). The most predominant PCR-RFLP genotype produced a profile of ~0.6, ~0.4, ~0.45, ~0.2, and ~0.22 kb restriction fragments consistent with digestion of 1.7 kb PCR amplicon of the variable regions. Amplicons sequence analysis of the variable regions revealed five gene cassettes carrying single or two genes in tandem. The predominant combination was \textit{dfrA17-aadA5} in tandem that conferred resistance to aminoglycosides and trimethoprim. Interestingly, all the CTX-15-positive isolates, except two, carried \textit{dfrA17-aadA5} genes in combination. This was consistent with the antibiotic susceptibility profile of these isolates reflecting resistance to the relevant drugs (Table 4). Surprisingly, no ESBL genes were found encoded in the variable region of the gene cassette array of these isolates. Therefore, \textit{ISCR1} elements were investigated by targeted-PCR. The PCR amplicons of \textit{ISCR1} elements were sequenced and confirmed by homology. Results indicated that \textit{ISCR1} was found in 22 (66.11%) ESBL positive isolates (Table 4). Moreover, \textit{ISCR1} (Accession number KY095113) was found associated with \textit{bla} \textit{CTX-M}, \textit{bla} \textit{TEM} and \textit{bla} \textit{SHV} in 16, 3, and 4 isolates, respectively. Interestingly, all \textit{bla} \textit{CTX-M-15} positive isolates, except one (Hn1-6), have been always found associated with \textit{ISCR1} elements. However, \textit{bla} \textit{TEM}, when found alone or in combination with others, except \textit{bla} \textit{CTX-M-15}, was mainly negative for \textit{ISCR1} elements. The amplicon size resulting from PCR using primer combinations...
Table 4: Characteristics of ESBL-producing E. coli strains (n = 36) isolated from mastitic cows.

E. coli strains	Place of isolation	Phylogenetic groups	ISCR1 association with bla genes	GenBank accession numbers	Phenotypes to other non-β-lactam antibiotics
SHV-1 + + +	Inner Mongolia A	D	+	KY114582	Cip; C; NAL; SXT; TE
dfrA1-aacA4			+	KY114584	
TEM-1 + + − − − −			+	KY114586	
SHV-1 + + +	Inner Mongolia B1	A	−	KY114587	
dfrA1-aacA4			−	KY114588	
TEM-1 + + − − − −			−	KY114591	
SHV-1 + + +	Inner Mongolia C	A	+	KY114592	
dfrA1-aacA4			+	KY114593	
TEM-1 + + − − − −			+	KY114594	
SHV-1 + + +	Inner Mongolia D	A	−	KY114595	
dfrA1-aacA4			−	KY114596	
TEM-1 + + − − − −			−	KY114597	
SHV-1 + + +	Inner Mongolia E	B	+	KY114598	
dfrA1-aacA4			+	KY114599	
TEM-1 + + − − − −			+	KY114600	
SHV-1 + + +	Inner Mongolia F	C	−	KY114601	
dfrA1-aacA4			−	KY114602	
TEM-1 + + − − − −			−	KY114603	
SHV-1 + + +	Inner Mongolia G	A	+	KY114604	
dfrA1-aacA4			+	KY114605	
TEM-1 + + − − − −			+	KY114606	
SHV-1 + + +	Inner Mongolia H	A	−	KY114607	
dfrA1-aacA4			−	KY114608	
TEM-1 + + − − − −			−	KY114609	
SHV-1 + + +	Inner Mongolia I	A	+	KY114610	
dfrA1-aacA4			+	KY114611	
TEM-1 + + − − − −			+	KY114612	
SHV-1 + + +	Inner Mongolia J	B	−	KY114613	
dfrA1-aacA4			−	KY114614	
TEM-1 + + − − − −			−	KY114615	
SHV-1 + + +	Inner Mongolia K	B	+	KY114616	
dfrA1-aacA4			+	KY114617	
TEM-1 + + − − − −			+	KY114618	
SHV-1 + + +	Inner Mongolia L	B	−	KY114619	
dfrA1-aacA4			−	KY114620	
TEM-1 + + − − − −			−	KY114621	
SHV-1 + + +	Inner Mongolia M	B	+	KY114622	
dfrA1-aacA4			+	KY114623	
TEM-1 + + − − − −			+	KY114624	
SHV-1 + + +	Inner Mongolia N	B	−	KY114625	
dfrA1-aacA4			−	KY114626	
TEM-1 + + − − − −			−	KY114627	
SHV-1 + + +	Inner Mongolia O	B	+	KY114628	
dfrA1-aacA4			+	KY114629	
TEM-1 + + − − − −			+	KY114630	
SHV-1 + + +	Inner Mongolia P	B	−	KY114631	
dfrA1-aacA4			−	KY114632	
TEM-1 + + − − − −			−	KY114633	
SHV-1 + + +	Inner Mongolia Q	B	+	KY114634	
dfrA1-aacA4			+	KY114635	
TEM-1 + + − − − −			+	KY114636	
SHV-1 + + +	Inner Mongolia R	B	−	KY114637	
dfrA1-aacA4			−	KY114638	
TEM-1 + + − − − −			−	KY114639	
SHV-1 + + +	Inner Mongolia S	B	+	KY114640	
dfrA1-aacA4			+	KY114641	
TEM-1 + + − − − −			+	KY114642	
SHV-1 + + +	Inner Mongolia T	B	−	KY114643	
dfrA1-aacA4			−	KY114644	
TEM-1 + + − − − −			−	KY114645	
SHV-1 + + +	Inner Mongolia U	B	+	KY114646	
dfrA1-aacA4			+	KY114647	
TEM-1 + + − − − −			+	KY114648	
SHV-1 + + +	Inner Mongolia V	B	−	KY114649	
dfrA1-aacA4			−	KY114650	
TEM-1 + + − − − −			−	KY114651	
SHV-1 + + +	Inner Mongolia W	B	+	KY114652	
dfrA1-aacA4			+	KY114653	
TEM-1 + + − − − −			+	KY114654	
SHV-1 + + +	Inner Mongolia X	B	−	KY114655	
dfrA1-aacA4			−	KY114656	
TEM-1 + + − − − −			−	KY114657	
SHV-1 + + +	Inner Mongolia Y	B	+	KY114658	
dfrA1-aacA4			+	KY114659	
TEM-1 + + − − − −			+	KY114660	
SHV-1 + + +	Inner Mongolia Z	B	−	KY114661	
dfrA1-aacA4			−	KY114662	
TEM-1 + + − − − −			−	KY114663	

Notes:
- ISCR1: Insertion sequence common region 1.
- **:** approximate size of base pair deduced from running the amplicons on 1% agarose gel and sequencing the amplified.
specific to ISCR1 elements and ESBL genes revealed that the ESBL genes were oriented downstream of ISCR1 elements. Altogether, these results indicated that ISCR1 elements are associated with ESBL genes. The detailed characterization of all ESBLs-producing *E. coli* are elaborated in Table 4.

DISCUSSION

In the past few years, ESBL-producing *E. coli* have been increasingly isolated from food-producing animals raising global concerns for veterinary and public health (Seiffert et al., 2013). The current study reports on the higher occurrence (23.53%) of ESBL-producing *E. coli*

...
genes or efflux pump expression regulating genes (Hopkins et al., 2005); nonetheless, plasmid mediated quinolone resistance is also increasingly reported in ESBL-producing E. coli (Xu et al., 2015).

Integrons play an important role in the emergence of MDR bacteria and in the dissemination of resistance genes. Published reports on the characterization of integrons in ESBLs-positive E. coli from dairy cows are scarce, but previous studies have been conducted in other food-animal, humans and the environment (Gu et al., 2008; Chen et al., 2010; Xu et al., 2015). In accordance to these studies, clinical class 1 integrons were found in the majority of ESBL-positive E. coli (83.33%). The gene cassette arrays of the class 1 integron variable regions contained five different gene combinations that likely impart additional resistance features to our isolates (see Table 3). Six of the intI1 positive amplicons were failed to generate gene cassettes which may be related to the absence of 3′CS in these integrons (Lu et al., 2010). The dfA17-aadA5 was the predominant gene array that corroborates with the previous studies in China (Gu et al., 2008; Xu et al., 2015). Strikingly, we determined that majority of bla\textsubscript{CTX-M} genes were associated with ISCR1 elements, but no ESBL genes were found in the class 1 integron cassettes. It agree with other published reports that also did not detect ESBL genes in the cassettes (Kiiru et al., 2013; Kar et al., 2015; Xu et al., 2015). Notably, our findings of the most predominant CTX-M type (bla\textsubscript{CTX-M-1}) and its association with the ISCR1 elements rather than gene cassette arrays indicated that they are more likely mobilized by ISCR1 elements. Conversely, bla\textsubscript{TEM}, when found alone or not associated with bla\textsubscript{CTX-M-1}, was not often found linked to ISCR1, and therefore, was comparatively less prevalent. It has been proposed that antibiotic resistance gene elements are added to the 3′CS of class 1 integrons by co-mobilization with the nearby ISCR1 from the neighbor integron, implying rolling circle transposition and homologous recombination mechanisms, thus facilitating the formation of complex class 1 integrons (Toleman et al., 2006). Taken together, the current high occurrence of multi-resistant ESBL-producing E. coli carrying clinical class 1 integrons and its association with ISCR1 is worrisome. This may suggest these bacteria are armouring against the antibiotics by devising various tools to render antibiotics useless. Fear exists that this co-existence of ESBL genes along with class 1 integrons as gene cassettes and ISCR1 mobile elements would more robustly disseminate resistance elements within bacterial populations. This calls for an efficient control policy with restriction on the consumption of extended spectrum cephalosporins for long term use.

CONCLUSIONS

Here, we report on the high occurrence of ESBL-producing E. coli from bovine mastitis. Genotypic characterization indicated a dominance of bla\textsubscript{CTX-M-15} genes harboring clinical class 1 integrons associated with ISCR1 elements, indicative rapid and wider dissemination potential and posing threats to veterinary and public health. To the best of our knowledge, this is the first comprehensive study to report on the alarming high prevalence of bla\textsubscript{CTX-M-15} and class 1 integron resistance conferring elements in ESBL-producing E. coli from mastitic cows in China.

AUTHOR CONTRIBUTIONS

BH, TA, and SR, conceived and designed the experiment. TA, MS, and SZ, performed the research. JG, GL, and LZ, wrote the manuscript.

FUNDING

This research was supported by the Chinese Twelfth “Five-year” National Science and Technology Support Project (No. 2012BAD12B03), Ministry of Education in China major project (No. 313054), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) State Education Ministry (No. 2012000810042), and the National Natural Science Foundation of China (No. 3151101034) and (NO. 31572587).

ACKNOWLEDGMENTS

The authors thank Dr. Elizabeth Rettedal, Cork Cancer Centre, University College of Cork for editing and reviewing the manuscript.

REFERENCES

Abraham, S., Trott, D. J., Jordan, D., Gordon, D. M., Groves, M. D., Fairbrother, J. M., et al. (2014). Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int. J. Antimicrob. Agents 44, 105–111. doi: 10.1016/j.ijantimicag.2014.04.011

Ali, T., Rahman, A., Qureshi, M. S., Hussain, M. T., Khan, M. S., Uddin, S., et al. (2014). Effect of management practices and animal age on incidence of mastitis in Nili Ravi buffaloes. Trop. Anim. Health Prod. 46, 1279–1285. doi: 10.1007/s11250-014-0641-2

Berge, A. C., Atwill, E. R., and Sischo, W. M. (2005). Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 69, 25–38. doi: 10.1016/j.prevetmed.2005.01.013

Bush, K., and Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 54, 969–976. doi: 10.1128/AAC. 01009-09

Chang, F. Y., Siu, L. K., Fung, C. P., Huang, M. H., and Ho, M. (2001). Diversity of SHV and TEM beta-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel beta-lactamases, SHV-25 and SHV-26. Antimicrob. Agents Chemother. 45, 2407–2413. doi: 10.1128/AAC.45.9.2407-2413.2001

Chen, H., Shu, W., Chang, X., Chen, J. A., Guo, Y., and Tan, Y. (2010). The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. Environ. Pollut. 158, 2459–2464. doi: 10.1016/j.envpol.2010. 03.023
Halasa, T., Huijps, K., Østerås, O., and Hogeveen, H. (2007). Economic effects of D’Andrea, M. M., Arena, F., Pallecchi, L., and Rossolini, G. M. (2013). CTX-M-Eckert, C., Gautier V, and Arlet G. (2006). DNA sequence analysis of the genetic Coque, T. M., Baquero, F., and Canton, R. (2008). Increasing prevalence of CLSI. (2014). 10 Frontiers in Microbiology | www.frontiersin.org

Clermont, O., Bonacorsi, S., and Bingen, E. (2000). Rapid and simple Clermont, O., Bonacorsi, S., and Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000 C. (2014). Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standard Institute. CLSI document M100-S12.C. (2008). Increasing prevalence of Macrolide-resistant pneumococci among inpatients in China. J. Antimicrob. Chemother. 62, 934–937. doi: 10.1093/jac/dkr542 MAO. (2010). Ministry of Agriculture of the People’s Republic of China. Announcement No.1435 of the Ministry of Agriculture. Available online at: www.moa.gov.cn/govpublic/SYJ/201008/t20100823_1622639.html (Online in Chinese). NMC. (1999). Laboratory Handbook on Bovine Mastitis. National Mastitis Council. Madison, WI: NMC Inc. Ohnishi, M., Okatani, A. T., Harada, K., Sawada, T., Marumo, K., Murakami, M., et al. (2013). Genetic characteristics of CTX-M-type extended-spectrum-beta-lactamase (ESBL)-producing Enterobacteriaceae involved in mastitis cases on Japanese dairy farms, 2007 to 2011. J. Clin. Microbiol. 51, 3117–3122. doi: 10.1128/JCM.00920-13 Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N., and Bonomo, R. A. (2007). Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 3471–3484. doi: 10.1128/AAC.01464-06 Rao, L., Lv, L., Zeng, Z., Chen, S., He, D., Chen, X., et al. (2014). Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in foods and animals and the diversity of CTX-M genotypes during 2003-2012. Vet. Microbiol. 172, 534–541. doi: 10.1016/j.vetmic.2014.06.013 Seiffert, S. N., Hilty, M., Perreten, V., and Endimiani, A. (2013). Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist. Updat. 16, 22–45. doi: 10.1016/j.drup.2012.12.001 Seni, J., Falgenhauer, L., Simeo, N., Mirambo, M. M., Imirzalioglu, C., Matee, M., et al. (2016). Multiple ESBL-Producing Escherichia coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front. Microbiol. 7:142. doi: 10.3389/fmicb.2016.00142 Tantawiwat, S., Tansuphasiri, U., Wongwit, W., Wongchotigul, V., and Kitayaporn, D. (2005). Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water. Southeast Asian J. Trop. Med. Public Health 36, 162–169. Timofte, D., Maciuca, I. E., Evans, N. J., Williams, H., Wattret, A., Fick, J. C., et al. (2014). Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 beta-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob. Agents Chemother. 58, 789–794. doi: 10.1128/AAC.00752-13 Toleman, M. A., Bennett, P. M., and Walsh, T. R. (2006). Common regions e.g., orfF13 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. J. Antimicrob. Chemother. 58, 1–6. doi: 10.1093/jac/dkl204 Upadhyay, S., Hussain, M., Mishra, S., Maurya, A. P., Bhattacharjee, A., and Joshi, S. R. (2015). Genetic Environment of Plasmid Mediated CTX-M-15 Extended Spectrum Beta-Lactamases from Clinical and Food Borne Bacteria in North-Eastern India. PLoS ONE 10:e0138056. doi: 10.1371/journal.pone.0138056 Villegas, M. V., Correa, A., Perez, F., Zulugua, T., Radice, M., Gutkind, G., et al. (2004). CTX-M-12 beta-lactamase in a Klebsiella pneumoniae clinical isolate in Colombia. Antimicrob. Agents Chemother. 48, 629–631. doi: 10.1128/AAC.48.3.629-631.2004 Vinué, L., Sáenz, Y., Somalo, S., Escudero, E., Moreno, M. A., Ruiz-Larrea, F., et al. (2008). Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. J. Antimicrob. Chemother. 62, 934–937. doi: 10.1093/jac/dkn331 White, P. A., McIver, C. J., Deng, Y., and Rawlinson, W. D. (2000). Characterisation of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol. Lett. 182, 265–269. doi: 10.1111/j.1574-6968.2000.tb08906.x Xiao, Y. H., Giuse, C. G., Wei, Z. Q., Shen, P., Heddini, A., and Li, L. J. (2011). Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist. Updat. 14, 236–250. doi: 10.1016/j.drup.2011.07.001 Xu, G., An, W., Wang, H., and Zhang, X. (2015). Prevalence and characteristics of extended-spectrum beta-lactamase genes in Escherichia coli isolated from
piglets with post-weaning diarrhea in Heilongjiang province, China. Front. Microbiol. 6:1103. doi: 10.3389/fmicb.2015.01103

Yao, F., Qian, Y., Chen, S., Wang, P., and Huang, Y. (2007). Incidence of extended-spectrum beta-lactamases and characterization of integrons in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Shantou, China. Acta Biochim. Biophys. Sin. (Shanghai) 39, 527–532. doi: 10.1111/j.1745-7270.2007.00304.x

Yu, T., He, T., Yao, H., Zhang, J. B., Li, X. N., Zhang, R. M., et al. (2015). Prevalence of 16S rRNA Methylase Gene rmtB Among Escherichia coli Isolated from Bovine Mastitis in Ningxia, China. Foodborne Pathog. Dis. 12, 770–777. doi: 10.1089/fpd.2015.1983

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Ali, ur Rahman, Zhang, Shahid, Zhang, Liu, Gao and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.