ISOLATION OF POTENTIAL ANTIMICROBIAL METABOLITE FROM ENDOPHYTIC BACILLUS AMYLOLIQUEFACIENS DL06 OF CARNIVOROUS PLANT DROSERA BURMANNII VAHL.

MADHUBANTI CHAUDHURI¹, PAUL AK¹, ARUNDHATI PAL²*

¹Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India. ²Post Graduate, Department of Botany, Serampore College, Hooghly, West Bengal, India. Email: arundhatipalcu@gmail.com

Received: 06 November 2020, Revised and Accepted: 24 December 2020

ABSTRACT

Objectives: Exploitation of bacterial endophytes for production of antimicrobial substances has led to the discovery of novel natural metabolites of diverse chemical nature. The present study focuses attention toward optimization of cultural conditions for production of antimicrobial compound(s) by an endophytic bacterium DL06 followed by its extraction and partial purification.

Methods: The leaf endophytic bacterium Bacillus amyloliquefaciens DL06 (GenBank Accession no. MK696415, Microbial Culture Collection Accession no. 4186) isolated from carnivorous plant Drosera burmannii has been identified as a potent producer of antimicrobial metabolite following agar cup assay against several test bacterial and fungal strains. Cultural conditions for production of antimicrobials were optimized by “one variable at a time” method. The active fraction was isolated and purified partially using solvent extraction, thin-layer chromatography, and high performance liquid chromatography (HPLC) analysis.

Results: B. amyloliquefaciens DL06 produced maximum antimicrobial compound in tryptic soy broth and Davis–Minglohi’s medium when grown under shake culture. Production of the antimicrobial metabolite has been optimized for the inoculum density, aeration, temperature, pH as well as carbon, and nitrogen sources. The antimicrobial metabolite was extracted from the cell-free culture filtrate in butanol and partially purified by silica gel column chromatography and HPLC.

Conclusions: The antimicrobial metabolite, tentatively identified as quercetin showed broad spectrum bioactivity affecting several fungi and a number of Gram-positive and Gram-negative bacteria.

Keywords: Carnivorous plant, Drosera burmannii, Bacterial endophytes, Antimicrobial metabolite, Bacillus amyloliquefaciens.

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2021v14i1.40187. Journal homepage: https://innovareacademics.in/journals/index.php/ajpcr

INTRODUCTION

The search for new and effective antibiotics and chemotherapeutic agents has prompted over the last few decades due to the development of multidrug resistance in human pathogenic microorganisms. Moreover, due to a number of environmental issues, the use of synthetic chemicals demands their replacement by natural substances, particularly from microbial sources as an alternative to control human and plant pathogens [1].

The enormous diversity of microorganisms harnessed from wide range of ecological niches has long been utilized by the mankind for the production of huge number of pharmaceuticals including antimicrobial substances [2]. Endophytic microorganisms residing inside the plants without producing any visible damage to the host plant are relatively under explored microbial population [3]. These hidden microbial communities have received substantial attention in recent years for their ability to produce novel bioactive secondary metabolites which are of special importance not only for the benefit of host plant but also for human beings as successful source of drugs. Functional metabolites produced by the endophytic microbes have a great potential for application in agricultural, food, pharmaceutical, and biotechnological industries [1,4]. Although many of these endophytic natural products have been demonstrated to exert antioxidant, anti-diabetic, and immunosuppressive effects, a significant portion of them was established as antimicrobials [1,5-8].

Carnivorous plants show unique trapping organs for insect prey digestion and nutrient uptake. They have attracted the attention of the scientific community in the recent past because of distinctive plant metabolites and novel products. Species of Nepenthes and Drosera have been reported to be used traditionally in India and Southeast Asian countries for their therapeutic activity in treatment of gastrointestinal and lung ailments [9,10]. Moreover, Buch et al. [11] have demonstrated antibacterial activity in the digestive fluid of Nepenthes spp. as well as from the fungal endophytes isolated from the fluid. Likewise, the endophytic fungi from Nepenthes ampullaria and Nepenthes mirabilis showed inhibition against a number of bacterial and fungal species [12,13]. However, the potentials of endophytic bacteria of carnivorous plants for production of antimicrobial metabolites have not been explored adequately and deserve due attention.

We have made preliminary investigations on the bioactive potentials of bacterial endophytes of Drosera burmannii [14,15]. In the present study, an attempt has been made to evaluate the production of antimicrobial metabolite by Bacillus amyloliquefaciens, a leaf endophyte of D. burmannii, and assess the in vitro efficacy of the metabolite against selected bacterial and fungal test strains.

METHODS

Source and maintenance of bacterial cultures

The bacterium Bacillus DL06, a leaf endophyte of carnivorous plant D. burmannii Vahl, was isolated previously [15] and used throughout this study. The bacterium was maintained on slopes of nutrient agar by repeated sub-culturing.

The test organisms used for assessment of antimicrobial activity include Acinetobacter baumannii MTCC 1425, Bacillus cereus MTCC 1272, Bacillus subtilis MTCC 441, Escherichia coli MTCC 1867, Klebsiella
pneumoniae MTCC 530, Proteus vulgaris MTCC 426, Pseudomonas aeruginosa MTCC 1638, Pseudomonas cepacia MTCC 4684, Salmonella typhimurium MTCC 3224, Staphylococcus aureus MTCC 2943, Staphylococcus epidermidis MTCC 3383, Staphylococcus haemolyticus MTCC 435, Vibrio cholerae 0139; Alternaria solani MTCC 2101, Aspergillus niger MTCC 281, Curvularia lunata MTCC 2030, Fusarium oxysporum MTCC 1755, Penicillium citrinum MTCC 1256, Rhizoctonia solani MTCC 4633, Saccharomyces cerevisiae MTCC 170, Saccharomyces boulardii CNCM I-745, Sclerotium rolfsii, and Trichoderma viride. While the bacterial and fungal cultures were maintained on nutrient agar and Czapek Dox agar, respectively, yeast extract peptone dextrose agar was used for Saccharomyces only.

Characterization and identification of the endophytic bacterial isolate

The bacterium DL06 was characterized morphologically and physiobiochemically according to standard microbiological methods [16]. Exponentially growing bacterial cells in nutrient broth was used for scanning electron microscopy (Carl Zeiss Zeiss Evo 18). Antibiotic sensitivity pattern was determined following the Kirby-Bauer disc diffusion method [17]. The diameter of inhibition zones was measured to the nearest mm and the organism was categorized as resistant, intermediate, and sensitive following DIFCO Manual 10th edition [18].

The 16S rRNA gene sequence analysis was carried out using two universal primer sets 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-CGGTTACCTTGTTACGACTT-3′). Consensus sequence of 16S rDNA was generated and compared with closely related neighbor sequences retrieved from the NCBI database using BLAST search. Phylogenetic analysis was performed using the software package MEGA 6.0 after obtaining multiple alignments of the data available from the public databases by Thompson et al. [19].

Time-course of growth and production of antimicrobials

Erlenmeyer flasks (250 ml) containing 50 ml of mineral salts medium were inoculated with overnight grown culture and incubated at 32°C under continuous shaking (120 rpm) for 144 h. Samples were withdrawn at regular interval for determination of growth and antimicrobial activity. Growth was measured by estimating the cell dry weight and expressed as g/L. Antibacterial activity of the cell-free culture filtrate was assessed by agar cup assay following passage through membrane filter (0.2 μm) and freshly grown cultures of E. coli and A. niger were used as test organisms.

Determination of optimum conditions for production of antimicrobial metabolites

To determine the optimum conditions for production of antimicrobial metabolite, one variable at a time method was used and variations were made in the composition of growth media, inoculum density, aeration, temperature, pH, carbon, and nitrogen sources. Growth and antimicrobial activity were assessed following the method described above.

Isolation and partial purification of the antimicrobials

The bacterium was grown in mineral salts medium under optimized cultural conditions. The antimicrobial metabolite was obtained from the cell-free culture filtrate following solvent extraction procedure using petroleum ether, benzene, diethyl ether, dichloromethane, ethyl acetate, dimethyl sulfoxide, chloroform, and butanol. Individual solvent fractions were evaporated to dryness under reduced pressure, dissolved in sterile distilled water, and assayed for antimicrobial activity by agar cup assay. Preparative thin-layer chromatography (TLC) of the active solvent fraction was performed using a number of solvent systems, spots were detected under ultraviolet light, and bioactivity was assayed as described above.

Butanol extraction was carried out from 1 L of cell-free culture filtrate and concentrated to 30 ml. For column chromatography, the concentrated butanol fraction (30 ml) was loaded in a silica gel column (mesh size 60–120, 20 mm×350 mm) pre-equilibrated with chloroform:methanol (1:3) mixture. The metabolites were eluted with chloroform:methanol (1:3) as the solvent system at a flow rate of 1 ml/min and fractions of 0.5 ml each were collected. Individual fractions were assayed for antimicrobial activity following evaporation and dissolution in sterile distilled water.

The pooled active fractions obtained from the silica gel column were evaporated to dryness, dissolved in 2 ml sterile distilled water, and subjected to high performance liquid chromatography (HPLC) using Agilent 1290 Infinity II with pump model G1328 C and detector model G 7115 A. The C18 column (4.6 mm×250 mm) was used and peaks were detected at 280 nm. Phosphoric acid (0.5%) and methanol (90%) were used as mobile phases for gradient run of 15 min at a flow rate of 2 ml/min and injection volume of 100 μl. The fractions were collected with Agilent Infinity II Open LAB Chemstation Workstation model M830A and checked for antimicrobial activity following the usual agar cup assay.

RESULTS

Characterization and identification of isolate DL06

The endophytic isolate DL06 formed rough, white colonies on nutrient agar. Bacterium DL06 is Gram-positive, aerobic, motile rod (Fig. 1), forming endospores, and produced intra- and extracellular enzymes such as catalase, oxidase, amylase, nitrate reductase, pectinase, and protease. The optimum temperature and pH for growth were 32°C and 7, respectively. It tolerates a maximum concentration of 3% NaCl. The isolate could utilize as well as ferment a number of carbon sources. It showed resistance to polymyxin B, vancomycin, and chloramphenicol but was sensitive to erythromycin, ampicillin, ciprofloxacin, rifampicin, gentamycin, trimethoprim, tetracycline, chlorotetracycline, novobiocin, and norfloxacin (Table 1). These morphological and physio-biochemical features of the isolate DL06 were compared with the standard descriptions available in the Bergey’s Manual of Determinative Bacteriology [20] and was assigned to the genus Bacillus.

The nucleotide sequence of the 16S rRNA gene (1456 bp) of the bacterium DL06 was found to have 99% similarity with B. amyloliquefaciens and designated as B. amyloliquefaciens DL06. The nucleotide sequence of 16S rRNA gene of the strain DL06 has been submitted to the GenBank database of NCBI with an accession number of MK 696415 and the live culture has been deposited to the Microbial Culture Collection (MCC) and National Centre for Microbial Resource, Pune, India, under the accession number MCC 4186 (Fig. 2).

Time-course of growth and production of antimicrobials

The growth-associated production of antimicrobial metabolite from B. amyloliquefaciens DL06 was evaluated by growing bacterium in...
mineral salts medium under shake-flask culture and bioactivity was assessed following agar cup assay against \textit{E. coli} and \textit{A. niger}. Production of antimicrobial metabolite was found to initiate during the active phase of growth which attained its highest titer (diameter of inhibition zone 33 mm against \textit{A. niger}) during the late stationary phase (120 h) (Fig. 3).

Spectrum of bioactivity of \textit{B. amyloliquefaciens} DL06

The cell-free culture filtrate from \textit{B. amyloliquefaciens} DL06 was evaluated for antimicrobial spectrum determination following agar cup assay using test bacterial and fungal strains (Table 2). The metabolite showed broad spectrum of activity affecting \textit{B. cereus}, \textit{S. haemolyticus}, \textit{S. epidermidis}, \textit{P. aeruginosa}, and \textit{K. pneumoniae} among the bacteria and \textit{A. solani}, \textit{C. lunata}, \textit{S. rolfsii}, \textit{R. solani}, \textit{F. oxysporum}, \textit{T. viride}, and \textit{S. boulardii} among the fungi.

Optimization of cultural conditions

During the present study, a number of cultural conditions affecting growth and production of antimicrobial metabolites were optimized using one variable at a time. The variables include culture media of different composition, inoculum density, aeration, temperature, pH, carbon, and nitrogen sources. Among different complex and synthetic media tested, bioactivity against \textit{A. niger} was found to be high in tryptic soy broth and Davis–Mingioli’s medium followed by mineral salts medium (MSM), Straw infusion medium (SI), and Gause’s synthetic medium (GSM) (Fig. 4).
Maximum growth and production of antimicrobial metabolite occurred at an inoculum dose of 1.5% (v/v) and at culture volume:flask volume ratio (CVF) of 1:5. The optimum temperature and pH for antimicrobial activity were recorded at 32°C and 6.6, respectively. Among the 12 different carbon sources tested, glucose at a concentration of 2.2% (w/v) was found to be most effective for production of antimicrobial metabolite. Likewise, tryptone was the best utilized nitrogen source for bioactivity and maximum growth as well as antimicrobial activity was observed at a concentration of 1.2 g/L (Table 3).

Isolation and partial purification of the antimicrobials

The antimicrobial metabolites produced by *B. amyloliquefaciens* DL06 in mineral salts medium was extracted from the cell-free culture filtrate using a number of solvents. The antimicrobial metabolite was best extracted in butanol; however, dichloromethane and ethyl acetate as extractants were not that efficient (Table 4).

The butanolic extract when subjected to TLC using a number of solvent systems, maximum number of spots was detected in the chloroform:methanol (1:3) mixture. Preparative TLC revealed that the third spot (C3) with Rf value of 0.84 was having bioactivity. The second spot (C2) with more or less identical Rf value (0.87) as detected in ethanol:water:chloroform (4:4:2) mixture also showed a comparatively lesser degree of inhibition (Table 5).

Further, the concentrated butanolic extract of the cell-free culture filtrate was subjected to column chromatography (silica gel, 60–120 mesh size) using chloroform:methanol (1:3) mixture as the solvent system. Fractions, 5 ml each were collected, evaporated to dryness and assayed for antimicrobial activity after dissolving in sterile water.

Bioactivity obtained in fractions 7 and 8 were pooled and subjected to HPLC (Agilent1290 Infinity II) analysis. Six distinct peaks with retention time were visualized in the chromatogram (Fig. 5). The compound with retention time 12.5 min showing antimicrobial activity was observed at a concentration of 0.84. The second compound with retention time 12.5 min showing antimicrobial activity was observed at a concentration of 0.84. The second compound with retention time 12.5 min showing antimicrobial activity was observed at a concentration of 0.84. The second compound with retention time 12.5 min showing antimicrobial activity was observed at a concentration of 0.84.

DISCUSSION

The increasing demand for discovery of new antimicrobials has led the scientific community to explore the vast diversity of endophytic microorganisms in plants as potential bioresource for bioactive metabolites [1]. Several studies have reported the isolation of large number of chemically diverse group of antimicrobials from endophytes of different plant sources [13,21-23].

Association of microbial communities in the internal environment of carnivorous or insectivorous plants has received attention only in the last few decades. Both culture dependent and culture independent studies have established the occurrence of endophytic bacteria and fungi in these spectacular plants [24-28]. While preliminary reports

Table 3: Optimization of cultural conditions for growth and production of antimicrobial metabolite by Bacillus amyloliquefaciens DL06

Parameter	Test range	Optimum condition	Growth, CDW (g/L)	Diameter of inhibition zone (mm)
Inoculum dose (%)	0.5–2	1.5	0.5±0.01	21.5±0.71
Aeration (CVF)	1:10, 1:5, 2:5, 3:5, 4:5	1:5	0.7±0.08	21.5±0.71
Temperature (°C)	28–42	32	0.75±0.11	20.5±0.71
pH	5–10.6	6.6	0.8±0.08	23.5±0.71
Carbon (%) (w/v)	1.6–2.4	2.2	0.5±0.11	20.5±0.71
Glucose (%, w/v)	1.6–2.4	2.2	0.5±0.11	20.5±0.71
Nitrogen source	Pep, Trp, Cas, YE, NHCl, (NH)2SO4, NaNO3, NHNO3	Trp	0.6±0.11	21.5±0.41
Tryptone (g/L w/v)	0.6–1.4	1.2	1.0±0.03	22.5±0.71

Values represent mean of triplicate experiments ± standard deviation; CVP: Culture volume by flask volume ratio; glu – glucose, gal – galactose, suc – sucrose, ara – arabinose, fru – fructose, tre – trehalose, sor – sorbitol, man – mannose, mnn – mannitol; Pep – peptone, Cas – casamino acid, Trp – tryptone, YE – Yeast extract.
on antimicrobial activities of fungal endophytes of *N. mirabilis* and *N. ampullaris* [12] and the bacterial endophytes of *Drosera* and *Utricularia* [14,15] have recently been published, no in depth studies on their metabolites have been undertaken so far. The present study is based on the production, partial characterization, and optimization of antimicrobial metabolite from a leaf endophytic bacterium *Bacillus* DL06 from *D. burmannii*. The Gram-positive, endospore forming motile rod-shaped bacterium was identified as *Bacillus amyloliquefaciens* DL06 (GenBank Accession number MK696415; MCC Accession no. 4186) based on phenotypic features and 16S rRNA gene sequence analysis (Fig. 1 and 2 and Table 1). Occurrence of *B. amyloliquefaciens* as endophyte is not new and has already been reported from different plant sources (Table 6).

Cell-free culture filtrate of *Bacillus* DL06 was found to inhibit the growth of *B. cereus*, *S. haemolyticus*, *S. epidermidis*, *P. aeruginosa*, and *K. pneumoniae* among the bacteria tested and *A. solani* and *C. lunatas* among the fungi (Table 2). Comparison of antimicrobial activities of the present isolate DL06 with those of endophytic *B. amyloliquefaciens* reported previously [29-34] was carried out (Table 6). While the metabolites produced by *B. amyloliquefaciens* PEBA-20 endophytic to poplar exhibited both antifungal and antibacterial activities [31], leaf endophyte *B. amyloliquefaciens* HY-10 from *Hyptis suaveolens* demonstrated activity against clinical pathogens including *Shigella dysenteriae* and *Candida* spp. [32]. Bhoonobtong et al. [34] reported isolation and purification of antibacterial metabolites from *B. amyloliquefaciens* UD25 that inhibited several bacterial test strains including *S. aureus* (MRSA). A novel antimicrobial protein was reported from endophytic *B. amyloliquefaciens* that showed biocontrol of *Fusarium chlamydosporum* [35]. Recently, Wang and Wang [33] showed that resistance of sweet potato was elicited against two fungal pathogens due to *in vitro* occurrence of endophytic *B. amyloliquefaciens* YTB1407.

Time-course studies for growth and production of antimicrobial metabolite were carried out (Fig. 3). Suitable media for production of the metabolite by *B. amyloliquefaciens* DL06 (Fig. 4) and the optimum cultural conditions were determined (Table 3). The bioactive compound

Table 4: Solvent extraction of antimicrobial substance produced by *Bacillus amyloliquefaciens* DL06*
Solvent
Test organism
Escherichia coli
Aspergillus niger
Petroleum ether
Benzene
Diethyl ether
Dichloromethane
Ethyl acetate
Dimethyl sulfoxide
Chloroform
Butanol
*Antimicrobial metabolite was extracted from the culture filtrate of the isolate after 120 h of growth and assayed against test organisms following agar cup method. NI: No inhibition, Values represent mean of triplicates standard deviation

Table 5: Preparative thin-layer chromatography of the butanol fraction of cell-free culture filtrate of *Bacillus amyloliquefaciens* DL06*
Solvent system
Test organism
Escherichia coli
Aspergillus niger
Ethanol:water:cholorform (4:4:2)
Chloroform:methanol (1:3)
Benzene:ethyl acetate (1:9)
*Individual spots were eluted and antimicrobial activity assayed against test organisms following agar cup method. NI: No inhibition, Values represent mean of triplicates standard deviation

Fig. 5: High performance liquid chromatography chromatogram of the antimicrobial metabolites produced by *Bacillus amyloliquefaciens* DL06
Bacillus amyloliquefaciens strains	**Source of endophyte**	**Isolation medium**	**Antimicrobial spectrum**	**Fungus**	**Test method used**	**Metabolite identified/chemical nature**	**Reference**
PEBA 20	Stem of *Populus tomentosa*	Nutrient agar	*Bacillus subtilis*, *Bacillus cereus*, *Bacillus megaterium*	Saccharomyces cerevisiae, Xanthomonas campestris, *Ralstonia solanacearum*, Botryosphaeria dothidea *Ralstonia solanacearum*	Disc diffusion and agar-well diffusion assay	NR [31]	
BZ6-1	Peanut stem	Luria-Bertani agar	*Staphylococcus aureus* (MRSA), *Pseudomonas aeruginosa*, *Bacillus cereus*, *Escherichia coli*	NR	Agar-well diffusion assay	Homologue of surfactin and fengycin A	[30]
UD25	Medicinal plant *Memecylon edule*	Nutrient agar	NR	*Alternaria alternata*, Fusarium oxysporum, Colletotrichum cassiipes Candida spp.	Cross-streak method	[34]	
Bhu-v2, August-M1, August-M2, Halycon1	Seed of ornamental plants	Trypticase soy agar	NR	*Escherichia coli*, *Staphylococcus aureus*, *Shigella dysenteriae*	Disc diffusion assay	Absorbance at 254 nm ($\lambda_{\text{max}} = 1.541$)	[32]
HY-10	*Hyptis suaveolens*	Nutrient agar	*Bacillus subtilis*, *Staphylococcus aureus*, *Shigella dysenteriae*	Fusarium solani, Ceratocystis fimbriata	In vitro and pot trial assays	Expression of SA-responsive NPR 1 and PR 1 genes in the host	[33]
YTB1407	*Ipomoea batatas*	NR	NR	*Fusarium solani*, *Ceratospora fimbriata*	[36,37]		
DL06	Leaf of *Drosera burmannii*	Nutrient agar	*B. subtilis*, *E. coli*, *Staphylococcus aureus*, *Staphylococcus haemolyticus*, *Staphylococcus epidermidis*, *Pseudomonas aeruginosa*, Klebsiella pneumoniae	*Aspergillus niger*, Saccharomyces cerevisiae, *Alternaria solani*, *Sclerotium rolfsii*, *Rizoctonia solani*, *Curvularia lunata*, *Fusarium oxysporum*	Agar cup diffusion assay	Tentatively quercetin	Present study

NR: Not reported

was extracted in butanol (Table 4), preparative TLC was performed (Table 5) followed by HPLC analysis (Fig. 5), and the active fraction was determined tentatively as quercetin. The plant flavonol quercetin belongs to the flavonoid group of polyphenols. Inhibitory action of quercetin has been observed against *S. aureus*, *P. aeruginosa*, *P. vulgaris*, and *E. coli* [36,37]. Quercetin also showed antifungal effects against *Cryptococcus* spp. and *Candida* spp. [38-40]. Several reports document the production of different flavonoids from microbial endophytes. Quercetin was detected in secondary metabolites of endophytic bacteria of *Cosmos caudatus* leaf which showed anticancer and antimicrobial properties [41]. Endophytic fungi from *Pinus roxburghii* produce flavonoids having antimicrobial properties [42]. Flavonoids having bioactive potentials were identified from endophytic fungi of the medicinal plant *Tragia involucrata* which included vanillin, quercetin, caffeic acid, and ferulic acid [43]. As of now, Lee et al. [12] have shown antimicrobial properties of the fungi endophytic to *Nepenthes* spp. It had inhibitory activities against *Streptococcus pyogenes*, *Enterococcus faecalis*, and *Ganoderma boninense*.

CONCLUSIONS

The present study reports on the production of antifungal and antibacterial compound by a leaf endophyte *B. amyloliquefaciens* isolated from the carnivorous plant *D. burmannii* Vahl. Production of antimicrobial compound by the endophytic bacterial isolate was further optimized. The antimicrobial compound was purified and chemical nature of the active fraction was tentatively determined as quercetin. The research deserves special attention for application of bacterial endophytes from carnivorous plants in the field of pharmaceutical biotechnology.
ACKNOWLEDGMENTS
We express our sincere gratitude to Prof. G. G. Maiti, Department of Botany, University of Kalyani and Dr. D. Maity, Department of Botany, University of Calcutta, Kolkata, for collection and taxonomic identification of the plant material.

AUTHORS’ CONTRIBUTIONS
This work was carried out in collaboration between all authors. Author MC performed the experiments and prepared the draft manuscript. Author AKP designed the experiments. Author AP managed the analyses of result and literature survey. AKP and AP prepared the final manuscript. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest.

AUTHOR’S FUNDING
Financial assistance to Madhubanti Chaudhuri from University Grants Commission, New Delhi, India, is duly acknowledged.

REFERENCES
1. Strebel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003;67:491-502.
2. Demain AL. Biology of antibiotic formation. In: Vandamme EJ, editor. Biotechnology of Industrial Antibiotics. New York: Marcel Dekker Inc.; 1984. p. 33-42.
3. Stone JK, Bacon CW, White JF. An overview of endophytic microbes: Endophytism defined. In: Bacon CW, White JF, editors. Microbial Endophytes/ New York: Marcel Dekker; 2009. p. 3-29.
4. Guteirez RM, Gonzales AM, Ramirez AM. Compounds derived from endophytes: A review of phytochemistry and pharmacology. Curr Med Chem 2012;19:2992-3030.
5. Castillo UF, Strebel GA, Ford EJ, Hess WM, Porter H, Jensen HB, et al. Compendium of botany. Microbiology. 10th ed. New York: Marcel Dekker 1966;45:493.
6. Xie J, Wu Y, Zhang T, Zhang M. New antimicrobial compounds of Novel antibiotics: An overview. Pharmacogn Rev 2013;7:11-6.
7. Castillo UF, Strebel GA, Ford EJ, Hess WM, Porter H, Jensen HB, et al. Compendium of botany. Microbiology. 10th ed. New York: Marcel Dekker 1966;45:493.
8. Jayatilake PL, Munasinghe H. Antimicrobial activity of cultivable root endophytes from the carnivorous plant Pinguicula vulgaris. Mycol Prog 2012;11:53-58.
9. Naseem F, Kayang H. Fungal endophytes associated with Nepenthes khasiana Hook. F, an endemic plant of Meghalaya, India. Int J Curr Res Life Sci 2018;7:1907-12.
10. White JR, Torres MS, Sullivan RF, Jabbour RE, Chen Q, Tadych M, et al. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of Vanilla orchids. Microcos Res Tech 2014;77:1-12.
11. Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. J Oncol Lett 2013;5:1787-92.
12. Li H, Soares MA, Torres MS, Bergen M, White JR Jr. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental host a resistance to diseases and insect pests. J Plant Interact 2015;2015:10.224-9.
13. Wang X, Liang G. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum. Biomed Res Int 2014;2014:465435.
14. Yin X, Xu L, Xu L, Fan S, Liu Z, Zhang X. Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms. Afr J Microbiol Res 2011;5:340-5.
15. Das I, Panda M, Rath CC, Tayang K. Bioactivities of bacterial endophytes isolated from leaf tissues of Hyptis suaveolens against some clinically significant pathogens. J Appl Pharm Sci 2017;7:131-6.
16. Wang C, Wang Y. Endophytic Bacillus amyloliquefaciens strain BT1407 elicits resistance against two fungal pathogens, Fusarium oxysporum f. sp. isolated from Ipomoea batatas (L.) J Plant Physiol 2020;253:154260.
17. Bhoonobtong A, Sodngan S, Boonlue S, Bunyatratchata W, Moungkoi W. Antibiotics constituents of endophytic Bacillus amyloliquefaciens strain UD25 extracted from a medicinal plant, Memecylon edule Roxb. Chiang Mai J Sci 2015;44:78-99.
18. Zhu H, Pan Y. A novel antibiotic protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum. Biocontrol 2019;64:737-48.
19. Wozniacka E, Kuzniar A, Nowak D, Nykiel E, Kopacz M, Gruszecka J, et al. Comparative study on the antibacterial activity of some flavonoids and their sulfonic derivatives. Acta Pol Pharm 2013;70:569-63.
20. Chaudhuri et al.
Asian J Pharm Clin Res, Vol 14, Issue 1, 2021, 163-170
Asyiah IS. Flavonoids from endophytic bacteria of *Cosmos caudatas* Kunth. leaf as anticancer and antimicrobial. Asian J Pharm Clin Res 2018;11:200-4.

42. Bhardwaj A, Sharma D, Jadon N, Agarwal PK. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of *Pinus roxburghii*. Arch Clin Microbiol 2015;6:1-9.

43. Danagoudar A, Joshi CG, Ravi SK, Kumar HG, Ramesh BN. Antioxidant and cytotoxic potential of endophytic fungi isolated from medicinal plant *Tragia involucrata* L. Pharmacogn Res 2018;10:188-94.