Sasakian metric as a Ricci soliton and related results

Amalendu Ghosh1 and Ramesh Sharma2

1Department Of Mathematics, Krishnagar Government College, Krishnagar 741101, West Bengal, India, E-mail: aghosh_70@yahoo.com
2Department Of Mathematics, University Of New Haven, West Haven, CT 06516, USA, E-mail:rsharma@newhaven.edu

Abstract: We prove the following results: (i) A Sasakian metric as a non-trivial Ricci soliton is null η-Einstein, and expanding. Such a characterization permits to identify the Sasakian metric on the Heisenberg group \mathcal{H}^{2n+1} as an explicit example of (non-trivial) Ricci soliton of such type. (ii) If an η-Einstein contact metric manifold M has a vector field V leaving the structure tensor and the scalar curvature invariant, then either V is an infinitesimal automorphism, or M is D-homothetically fixed K-contact.

MSC: 53C15, 53C25, 53D10

Keywords: Ricci soliton, Sasakian metric, Null η-Einstein, D-homothetically fixed K-contact structure, Heisenberg group.

1 Introduction

A Ricci soliton is a natural generalization of an Einstein metric, and is defined on a Riemannian manifold (M, g) by

\[(\mathcal{L}_V g)(X, Y) + 2\text{Ric}(X, Y) + 2\lambda g(X, Y) = 0\] (1)

where $\mathcal{L}_V g$ denotes the Lie derivative of g along a vector field V, λ a constant, and arbitrary vector fields X, Y on M. The Ricci soliton is said to be shrinking, steady, and expanding accordingly as λ is negative, zero, and positive respectively. Actually, a Ricci soliton is a generalized fixed point of Hamilton’s Ricci flow $\overrightarrow{\partial}_t g_{ij} = -2R_{ij}$, viewed as a dynamical system on the space of Riemannian metrics modulo diffeomorphisms and scalings. For details, see Chow et al. [4]. The vector field V generates the Ricci soliton viewed as a special solution of the Ricci flow. A Ricci soliton is said to be a
gradient Ricci soliton, if $V = -\nabla f$ (up to a Killing vector field) for a smooth function f. Ricci solitons are also of interest to physicists who refer to them as quasi-Einstein metrics (for example, see Friedan [9]).

An odd dimensional analogue of Kaehler geometry is the Sasakian geometry. The Kaehler cone over a Sasakian Einstein manifold is a Calabi-Yau manifold which has application in physics in superstring theory based on a 10-dimensional manifold that is the product of the 4-dimensional space-time and a 6-dimensional Ricci-flat Kaehler (Calabi-Yau) manifold (see Candelas et al. [3]). Sasakian geometry has been extensively studied since its recently perceived relevance in string theory. Sasakian Einstein metrics have received a lot of attention in physics, for example, p-brane solutions in superstring theory, Maldacena conjecture (AdS/CFS duality) [9]. For details, see Boyer, Galicki and Matzeu [2].

In [12] Sharma showed that if a K-contact (in particular, Sasakian) metric is a gradient Ricci soliton, then it is Einstein. This was also shown later independently by He and Zhu [8] for the Sasakian case. Recently, Sharma and Ghosh [13] proved that a 3-dimensional Sasakian metric which is a non-trivial (i.e. non-Einstein) Ricci soliton, is homothetic to the standard Sasakian metric on nil^3. In this paper, we generalize these results and also answer the following question of H.-D. Cao (cited in [8]): “Does there exist a shrinking Ricci soliton on a Sasakian manifold, which is not Einstein?” by proving

Theorem 1 If the metric of a $(2n + 1)$-dimensional Sasakian manifold $M (\eta, \xi, g, \varphi)$ is a non-trivial (non-Einstein) Ricci soliton, then (i) M is null η-Einstein (i.e. D-homothetically fixed and transverse Calabi-Yau), (ii) the Ricci soliton is expanding, and (iii) the generating vector field V leaves the structure tensor φ invariant, and is an infinitesimal contact D-homothetic transformation.

Conversely, we consider the following question: “What can we say about an η-Einstein contact metric manifold M which admits a vector field V that leaves φ invariant?” and answer it by assuming the invariance of the scalar curvature under V, in the form of the following result.

Theorem 2 If an η-Einstein contact metric manifold M admits a vector field V that leaves the structure tensor φ and the scalar curvature invariant,
then either \(V \) is an infinitesimal automorphism, or \(M \) is \(D \)-homothetically fixed and \(K \)-contact.

Remark 1 Note that a Ricci soliton as a Sasakian metric is different from the Sasaki-Ricci soliton in the context of transverse Kaehler structure in a Sasakian manifold, for example see Futaki et al. [5]).

Remark 2 Boyer et al. [2] have studied \(\eta \)-Einstein geometry as a class of distinguished Riemannian metrics on contact metric manifolds, and proved the existence of \(\eta \)-Einstein metrics on many different compact manifolds. We would also like to point out that Zhang [18] showed that compact Sasakian manifolds with constant scalar curvature and satisfying certain positive curvature condition is \(\eta \)-Einstein.

Remark 3 Theorem 2 provides a generalization of the infinitesimal version of the following result of Tanno [15] “The group of all diffeomorphisms \(\Phi \) which leave the structure tensor \(\varphi \) of a contact metric manifold \(M \) invariant, is a Lie transformation group, and coincides with the automorphism group \(\mathcal{A} \) if \(M \) is Einstein.” Note that the scalar curvature of an Einstein metric is constant. We also note that the set of all vector fields on a contact metric manifold \(M \), that leave \(\varphi \) and scalar curvature invariant, forms a Lie subalgebra of the Lie algebra of all smooth vector fields on \(M \).

2 A Brief Review Of Contact Geometry

A \((2n+1)\)-dimensional smooth manifold is said to be contact if it has a global 1-form \(\eta \) such that \(\eta \wedge (d\eta)^n \neq 0 \) on \(M \). For a contact 1-form \(\eta \) there exists a unique vector field \(\xi \) such that \(d\eta(\xi, X) = 0 \) and \(\eta(\xi) = 1 \). Polarizing \(d\eta \) on the contact subbundle \(\eta = 0 \), we obtain a Riemannian metric \(g \) and a \((1,1)\)-tensor field \(\varphi \) such that

\[
d\eta(X,Y) = g(X, \varphi Y), \quad \eta(X) = g(X, \xi), \quad \varphi^2 = -I + \eta \otimes \xi
\]

\(g \) is called an associated metric of \(\eta \) and \((\varphi, \eta, \xi, g)\) a contact metric structure. Following [1] we recall two self-adjoint operators \(h = \frac{1}{2} \mathcal{L}_\xi \varphi \) and \(l = R(\cdot, \xi) \xi \). The tensors \(h, h\varphi \) are trace-free and \(h\varphi = -\varphi h \). We also have these formulas for a contact metric manifold.

\[
\nabla_X \xi = -\varphi X - \varphi hX
\]

(3)
\[l - \varphi l \varphi = -2(h^2 + \varphi^2) \] \hfill (4)
\[\nabla_\xi h = \varphi - \varphi l - \varphi h^2 \] \hfill (5)
\[Trl = Ric(\xi, \xi) = 2n - Tr h^2 \] \hfill (6)

where \(\nabla, R, Ric \) and \(Q \) denote respectively, the Riemannian connection, curvature tensor, Ricci tensor and Ricci operator of \(g \). For details see [1].

A vector field \(V \) on a contact metric manifold \(M \) is said to be an infinitesimal contact transformation if \(\mathcal{L}_V \eta = \sigma \eta \) for some smooth function \(\sigma \) on \(M \). \(V \) is said to be an infinitesimal automorphism of the contact metric structure if it leaves all the structure tensors \(\eta, \xi, g, \varphi \) invariant (see Tanno [14]).

A contact metric structure is said to be \(K \)-contact if \(\xi \) is Killing with respect to \(g \), equivalently, \(h = 0 \). The contact metric structure on \(M \) is said to be Sasakian if the almost Kaehler structure on the cone manifold \((M \times R^+, r^2g + dr^2) \) over \(M \), is Kaehler. Sasakian manifolds are \(K \)-contact and \(K \)-contact 3-manifolds are Sasakian. For a Sasakian manifold,

\[(\nabla_X \varphi)Y = g(X, Y)\xi - \eta(Y)X \] \hfill (7)
\[R(X, Y)\xi = \eta(Y)X - \eta(X)Y, \quad Q\xi = 2n\xi \] \hfill (8)

For a Sasakian manifold, the restriction of \(\varphi \) to the contact sub-bundle \(D \) \((\eta = 0) \) is denoted by \(J \) and \((D, J, d\eta) \) defines a Kaehler metric on \(D \), with the transverse Kaehler metric \(g^T \) related to the Sasakian metric \(g \) as \(g = g^T + \eta \otimes \eta \). One finds by a direct computation that the transverse Ricci tensor \(Ric^T \) of \(g^T \) is given by

\[Ric^T(X, Y) = Ric(X, Y) + 2g(X, Y) \]

for arbitrary vector fields \(X, Y \) in \(D \). The Ricci form \(\rho \) and transverse Ricci form \(\rho^T \) are defined by

\[\rho(X, Y) = Ric(X, \varphi Y), \quad \rho^T(X, Y) = Ric^T(X, \varphi Y) \]

for \(X, Y \in D \). The basic first Chern class \(2\pi c_1^B \) of \(D \) is represented by \(\rho^T \). In case \(c_1^B = 0 \), the Sasakian structure is said to be null (transverse Calabi-Yau). We refer to [2] for details.
A contact metric manifold M is said to be η-Einstein in the wider sense, if the Ricci tensor can be written as

$$Ric(X, Y) = \alpha g(X, Y) + \beta \eta(X)\eta(Y)$$

(9)

for some smooth functions α and β on M. It is well-known (Yano and Kon [17]) that α and β are constant if M is K-contact, and has dimension greater than 3.

Given a contact metric structure (η, ξ, g, ϕ), let $\bar{\eta} = a\eta, \bar{\xi} = \frac{1}{a}\xi, \bar{\phi} = \phi, \bar{g} = ag + a(a - 1)\eta \otimes \eta$ for a positive constant a. Then $(\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g})$ is again a contact metric structure. Such a change of structure is called a D-homothetic deformation, and preserves many basic properties like being K-contact (in particular, Sasakian). It is straightforward to verify that, under a D-homothetic deformation, a K-contact η-Einstein manifold transforms to a K-contact η-Einstein manifold such that $\bar{\alpha} = \frac{a+2-2a}{a}$ and $\bar{\beta} = 2n - \bar{\alpha}$. We remark here that the particular value: $\alpha = -2$ remains fixed under a D-homothetic deformation, and as $\alpha + \beta = 2n$, β also remains fixed. Thus, we state the following definition.

Definition 1 A K-contact η-Einstein manifold with $\alpha = -2$ is said to be D-homothetically fixed.

3 Proofs Of The Results

Proof Of Theorem 1: Using the Ricci soliton equation (11) in the commutation formula (Yano [16], p.23)

$$g((\mathcal{L}_V \nabla)(X, Y), Z) = (\nabla_Z Ric)(X, Y)$$

(10)

we derive

$$g((\mathcal{L}_V \nabla)(X, Y), Z) = (\nabla_Z Ric)(X, Y) - (\nabla_X Ric)(Y, Z) - (\nabla_Y Ric)(X, Z)$$

(11)

As ξ is Killing, we have $\mathcal{L}_\xi Ric = 0$ which, in view of (3), the last equation of (8) and $h = 0$, is equivalent to $\nabla_\xi Q = Q\phi - \phi Q$. But for a Sasakian
manifold, \(Q \) commutes with \(\varphi \), and hence \(\text{Ric} \) is parallel along \(\xi \). Moreover, differentiating the last equation of (8), we have \((\nabla_X Q)\xi = Q\varphi X - 2n\varphi X \). Substituting \(\xi \) for \(Y \) in (11) and using these consequences we obtain

\[
(\mathcal{L}_Y \nabla)(X, \xi) = -2Q\varphi X + 4n\varphi X \tag{12}
\]

Differentiating this along an arbitrary vector field \(Y \), using (7) and the last equation of (8), we find

\[
(\nabla_Y \mathcal{L}_Y \nabla)(X, \xi) - (\mathcal{L}_Y \nabla)(X, \varphi Y) = -2(\nabla_Y Q)\varphi X + 2n(\varphi X)QY - 4n\eta(X)Y
\]

The use of the foregoing equation in the commutation formula [16]:

\[
(\mathcal{L}_V R)(X, Y)Z = (\nabla_X \mathcal{L}_V \nabla)(Y, Z) - (\nabla_Y \mathcal{L}_V \nabla)(X, Z) \tag{13}
\]

for a Riemannian manifold, shows that

\[
(\mathcal{L}_V R)(X, Y)\xi - (\mathcal{L}_V \nabla)(Y, \varphi X) + (\mathcal{L}_V \nabla)(X, \varphi Y) = -2(\nabla_X Q)\varphi Y + 2(\nabla_Y Q)\varphi X + 2n(\nabla_Y Q)\varphi X - 2\eta(X)QY + 4n\eta(X)Y - 4n\eta(Y)X
\]

Substituting \(\xi \) for \(Y \) in the foregoing equation, using (12) and the formula \(\nabla_\xi Q = 0 \) noted earlier, we find that

\[
(\mathcal{L}_V R)(X, \xi)\xi = 4(QX - 2nX) \tag{14}
\]

Equation (14) gives \((\mathcal{L}_V g)(X, \xi) + 2(2n + \lambda)\eta(X) = 0 \), which in turn, gives

\[
(\mathcal{L}_V \eta)(X) - g(\mathcal{L}_V \xi, X) + 2(\lambda + 2n)\eta(X) = 0 \tag{15}
\]

\[
\eta(\mathcal{L}_V \xi) = (2n + \lambda) \tag{16}
\]

where we used the Lie-derivative of \(g(\xi, \xi) = 1 \) along \(V \). Next, Lie-differentiating the formula \(R(X, \xi)\xi = X - \eta(X)\xi \) [a consequence of the first formula in (8)] along \(V \), and using equations (14) and (16) provides

\[
4(QX - 2nX) - g(\mathcal{L}_V \xi, X)\xi + 2(2n + \lambda)X = -((\mathcal{L}_V \eta)(X))\xi
\]

By the direct application of (15) to the the above equation we find

\[
\text{Ric}(X, Y) = (n - \frac{\lambda}{2})g(X, Y) + (n + \frac{\lambda}{2})\eta(X)\eta(Y) \tag{17}
\]
which shows that M is η-Einstein with scalar curvature

$$r = 2n(n + 1) - n\lambda$$ \hspace{1cm} (18)

At this point, we recall the following integrability formula [12]:

$$\mathcal{L}_V r = -\Delta r + 2\lambda r + 2|Q|^2$$ \hspace{1cm} (19)

for a Ricci soliton, where $\Delta r = -\text{div} Dr$. A straightforward computation using (17) gives the squared norm of the Ricci operator as $|Q|^2 = 2n(n^2 - n\lambda + \frac{n^2}{4} + 4n^2)$. Using this and (18) in (19), we obtain the quadratic equation $(2n + \lambda)(2n + 4 - \lambda) = 0$. As $\lambda = -2n$ corresponds to g becoming Einstein, we must have $\lambda = 2n + 4$ and hence the soliton is expanding, which proves part (ii). Moreover, equation (18) reduces to $r = -2n$. Thus equation (17) assumes the form

$$\text{Ric}(Y, Z) = -2g(Y, Z) + 2(n + 1)\eta(Y)\eta(Z)$$ \hspace{1cm} (20)

Hence, as defined in Section 2, M is a D-homothetically fixed null η-Einstein manifold, proving part (i). Using (20) in (11) provides

$$(\mathcal{L}_V \nabla)(Y, Z) = 4(n + 1)\{\eta(Y)\varphi Z + \eta(Z)\varphi Y\}$$ \hspace{1cm} (21)

Differentiating this along X, using equations (3) and (7), incorporating the resulting equation in (13), and finally contracting at X we get

$$(\mathcal{L}_V \text{Ric})(Y, Z) = 8(n + 1)\{g(Y, Z) - (2n + 1)\eta(Y)\eta(Z)\}$$ \hspace{1cm} (22)

Equation (20) reduces the soliton equation (1) to the form

$$(\mathcal{L}_V g)(Y, Z) = -4(n + 1)\{g(Y, Z) + \eta(Y)\eta(Z)\}$$ \hspace{1cm} (23)

Next, Lie-differentiating (20) along V, and using (23) shows

$$(\mathcal{L}_V \text{Ric})(Y, Z) = 8(n + 1)\{g(Y, Z) + \eta(Y)\eta(Z)\}$$
$$+ 2(n + 1)\{\eta(Z)(\mathcal{L}_V \eta)(Y) + \eta(Y)(\mathcal{L}_V \eta)(Z)\}$$ \hspace{1cm} (24)

Comparing equations (22) with (21) and substituting ξ for Z leads to

$$\mathcal{L}_V \eta = -4(n + 1)\eta$$ \hspace{1cm} (25)
Therefore, substituting ξ for Z in (23) and using (25) we immediately get

$$\mathcal{L}_V \xi = 4(n+1)\xi.$$

Operating (25) by d, noting d commutes with \mathcal{L}_V and using the first equation of (2) we find

$$(\mathcal{L}_V d\eta)(X,Y) = -4(n+1)g(X,\varphi Y)$$

Its comparison with the Lie-derivative of the first equation of (2) and the use of (23) yields $\mathcal{L}_V \varphi = 0$, completing the proof.

Before proving Theorem 2, we state and prove the following lemma.

Lemma 1 If a vector field V leaves the structure tensor φ of the contact metric manifold M invariant, then there exists a constant c such that

(i) $\mathcal{L}_V \eta = c\eta$, (ii) $\mathcal{L}_V \xi = -c\xi$, (iii) $\mathcal{L}_V g = c(g + \eta \otimes \eta)$.

Though this lemma was proved by Mizusawa in [10], to make the paper self-contained, we provide a slightly different proof as follows.

Proof: Lie-differentiating the formulas $\varphi \xi = 0$ and $\eta(\varphi X) = 0$ and using $\mathcal{L}_V \varphi = 0$, we find $\mathcal{L}_V \xi = -c\xi$, and $\mathcal{L}_V \eta = c\eta$ for a smooth function c on M. Next, Lie-derivative of the formula $\eta(X) = g(X,\xi)$ along V gives

$$(\mathcal{L}_V g)(X,\xi) = 2c\eta(X) \tag{26}$$

The Lie-derivative of the first equation of (2) along V provides

$$(\mathcal{L}_V g)(X,\varphi Y) = ((dc) \wedge \eta)(X,Y) + cg(X,\varphi Y) \tag{27}$$

Substituting ξ for Y in the above equation we get $dc = (\xi c)\eta$. Taking its exterior derivative, and then exterior product with η shows $(\xi c)(d\eta) \wedge \eta = 0$. By definition of the contact structure, $(d\eta) \wedge \eta$ is nowhere zero on M, and so $\xi c = 0$. Hence $dc = 0$, i.e. c is constant. Using this consequence, and equations (26) and (27) we obtain (iii), completing the proof.

Proof Of Theorem 2: By virtue of Lemma 1, we have

$$\mathcal{L}_V g)(Y,Z) = c\{g(Y,Z) + \eta(Y)\eta(Z)\} \tag{28}$$

Differentiating this and using (3) we get

$$(\nabla_X \mathcal{L}_V g)(Y,Z) = -c\{\eta(Z)g(Y,\varphi X + \varphi hX) + \eta(Y)g(Z,\varphi X + \varphi hX)\} \tag{29}$$
Equation (10) can be written
\[
(\nabla_X \mathcal{L}_V g)(Y, Z) = g((\mathcal{L}_V \nabla)(X, Y), Z) + g((\mathcal{L}_V \nabla)(X, Z), Y) \tag{30}
\]
A straightforward computation using (29) and (30) shows
\[
(\mathcal{L}_V \nabla)(Y, Z) = -c\{\eta(Y)\varphi Y + \eta(Y)\varphi Z + g(Y, \varphi h Z)\xi\}
\]
Its covariant differentiation and use of (2) provides
\[
(\nabla_X \mathcal{L}_V \nabla)(Y, Z) = -c\{\eta(Y)\varphi X + \eta(Y)\varphi h X \varphi Y - g(Y, \varphi X + \varphi h X)\varphi Z \nonumber \\
- g(\varphi h Y, Z)(\varphi X + \varphi h X) + g((\nabla\varphi h) Y, Z)\xi\}
\]
Using this in the commutation formula (13) for a Riemannian manifold, contracting at \(X\), and using equations (2), (3) and also the well known formula: \((\text{div}\varphi)X = -2n\eta(X)\) for a contact metric (see [1]), we find
\[
(\mathcal{L}_V \text{Ric})(Y, Z) = c\{-2g(Y, Z) + 2g(h Y, Z) + 2(2n + 1)\eta(Y)\eta(Z)\} - cg((\nabla\varphi h) Y, Z) \tag{31}
\]
Also, Lie-differentiating (9) along \(V\) and using Lemma 1 we have
\[
(\mathcal{L}_V \text{Ric})(Y, Z) = (V\alpha + c\alpha)g(Y, Z) + (V\beta + c(\alpha + 2\beta))\eta(Y)\eta(Z) \tag{32}
\]
Comparing the previous two equations shows that
\[
[V\alpha + c(\alpha + 2)]g(Y, Z) + [V\beta + c\{\alpha + 2\beta - 2(2n + 1)\}]\eta(Y)\eta(Z) \nonumber \\
- c[2g(h Y, Z) - g((\nabla\varphi h) Y, Z)] = 0
\]
On one hand, we substitute \(Y = Z = \xi\) in the above equation getting one equation, and on the other hand, we contract the above equation (noting that both \(h\) and \(\varphi h\) are trace-free) getting another equation. Solving the two equations we obtain
\[
V\alpha + c(\alpha + 2) = 0, \quad V\beta + c(\alpha + 2\beta - 4n - 2) = 0 \tag{33}
\]
The \(g\)-trace of equation (34) gives the scalar curvature
\[
r = (2n + 1)\alpha + \beta \tag{34}
\]
The divergence of (9) along with the contracted second Bianchi identity yields $dr = 2d\alpha + 2(\xi \beta)\eta$. Taking its exterior derivative, and then exterior product with η we have $(\xi \beta)\eta \wedge d\eta = 0$. As $\eta \wedge d\eta$ vanishes nowhere on M, we find $\xi \beta = 0$ whence $dr = 2d\alpha$. Hence $V\alpha = Vr = 0$, by hypothesis. Thus, it follows from (34) that $V\beta = 0$. Consequently, equations (33) reduce to: $c(\alpha + 2) = 0$ and $c(\alpha + 2\beta - 4n - 2) = 0$, and hence imply that, either $c = 0$ in which case V is an infinitesimal automorphism, or $\alpha = -2$ and $\alpha + 2\beta = 4n + 2$. In the second case, adding the two equations gives $\alpha + \beta = 2n$. But, from equation (9) we have $\alpha + \beta = Tr.l$. Therefore, $Tr.l = 2n$, and applying equation (6) we obtain $h = 0$, i.e. M is K-contact. As $\alpha = -2$, the η-Einstein structure is D-homothetically fixed, completing the proof.

4 An Explicit Example

An explicit example of non-trivial Ricci soliton as a Sasakian metric is the $(2n+1)$-dimensional Heisenberg group \mathcal{H}^{2n+1} (which arose from quantum mechanics) of matrices of type

$$
\begin{bmatrix}
1 & Y & z \\
O^t & I_0 & X^t \\
0 & O & 1
\end{bmatrix},
$$

where $X = (x_1, ..., x_n), Y = (y_1, ..., y_n), O = (0, ..., 0) \in R^n, z \in R$. As a manifold, this is just R^{2n+1} with coordinates (x^i, y^i, z) where $i = 1, ..., n$, and has the left-invariant Sasakian structure (η, ξ, φ, g) defined by $\eta = \frac{1}{2}(dz - \sum_{i=1}^n y^i dx^i), \xi = 2\frac{\partial}{\partial z}, \varphi(\frac{\partial}{\partial x^i}) = -\frac{\partial}{\partial y^i}, \varphi(\frac{\partial}{\partial y^i}) = \frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial z}, \varphi(\frac{\partial}{\partial z}) = 0$, and the Riemannian metric $g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^n ((dx^i)^2 + (dy^i)^2)$. Its φ-sectional curvature (i.e. the sectional curvature of plane sections orthogonal to ξ) is equal to -3, so its Ricci tensor satisfies equation (20), as shown by Okumura [11], and hence \mathcal{H}^{2n+1} is a D-homothetically fixed null η-Einstein manifold. Setting $V = \sum_{i=1}^n (V^i \frac{\partial}{\partial x^i} + \bar{V}^i \frac{\partial}{\partial y^i}) + V^z \frac{\partial}{\partial z}$, using equations: $\mathcal{L}_V \xi = 4(n+1)\xi, \mathcal{L}_V \varphi = 0$ obtained in the proof of Theorem 1, and the aforementioned actions of φ on the coordinate basis vectors, shows that V^i and \bar{V}^i do not depend on z and yields the PDEs:

$$
\frac{\partial V^i}{\partial x^j} = \frac{\partial V^i}{\partial y^j}, \quad \frac{\partial V^i}{\partial y^j} = -\frac{\partial V^i}{\partial x^j}, \quad y^i \frac{\partial V^i}{\partial y^j} = \frac{\partial V^z}{\partial y^j}
$$

$$
\bar{V}^j = y^i \frac{\partial V^z}{\partial z} - y^i \frac{\partial \bar{V}^i}{\partial y^j}, \quad \frac{\partial V^z}{\partial z} = -4(n+1)
$$

10
The last equation readily integrates as $V^z = -4(n + 1)z + F(x^i, y^i)$. For a special solution, assuming $F = 0$, $V^i = cx^i$, $V^i = cy^i$ and substituting in the above PDEs, we get $c = -2(n + 1)$, and hence the Ricci soliton vector field $V = -2(n + 1)(x^i \frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial y^i} + 2z \frac{\partial}{\partial z})$. For dimension 3, this reduces to $V = -4(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + 2z \frac{\partial}{\partial z})$ which occurs on p. 37 of [4] without the factor 4, but gets adjusted with our $\lambda = 6$ which is 4 times their $\lambda = 3/2$.

Remark 4 Another conclusion that we draw for Theorem 1 is the following: The value $-2n$ for the scalar curvature r obtained during the proof, and the equation (17) show that the generalized Tanaka-Webster scalar curvature $W = r - \text{Ric}(\xi, \xi) + 4n$ vanishes.

Acknowledgment: We thank the referee for valuable suggestions. R.S. was supported by University Research Scholar grant. This work is dedicated to Bhagawan Sri Sathya Sai Baba and Sri Ramakrishna Paramahansa.

References

[1] Blair, D.E., *Riemannian geometry of contact and symplectic manifolds*, Progress in Math. 203, Birkhauser, Basel, 2002.

[2] Boyer, C.P., Galicki, K. and Matzeu, P., On η-Einstein Sasakian geometry, Commun. Math. Phys. 262 (2006), 177-208.

[3] Candelas, P., Horowitz, G.T., Strominger, A. and Witten, E., Vacuum configurations for superstrings, Nuclear Phys. B 258 (1985), 46-74.

[4] Chow, B., Chu, S., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F. and Ni, L., *The Ricci flow: Techniques and Applications, Part I: Geometric Aspects*, Mathematical Surveys and Monographs 135, American Math. Soc., 2004.

[5] Futaki, A., Ono, H. and Wang, G., Transverse Kaehler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (2009), 585-635.

[6] Friedan, D.H., Non-linear models in $2 + \epsilon$ dimensions, Ann. Phys. 163 (1985), 318-419.
[7] Hamilton, R.S., The Ricci flow on surfaces, Mathematical and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71 (1988), American Math. Soc.

[8] He, C. and Zhu, M., Ricci solitons on Sasakian manifolds, http://arXiv:1109.4407v2 [math.DG] 26 Sep 2011.

[9] Maldacena, J., The large N limit of superconformal field theories and supergravity, Internat. J. Theoret. Phys. 38 (1999), 1113-1133.

[10] Mizusawa, H., On infinitesimal transformations of K-contact and normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A (1964), 5-18.

[11] Okumura, M., On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398-412.

[12] Sharma, R., Certain results on K-contact and (k, µ)-contact manifolds, J. Geom. 89 (2008), 138-147.

[13] Sharma, R. and Ghosh, A., Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Internat. J. Geom. Methods Mod. Phys. 8 (2011), 149-154.

[14] Tanno, S., Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416-430.

[15] Tanno, S., Some transformations on manifolds with almost contact and contact metric structures, II, Tohoku Math. J. 15 (1963), 322-331.

[16] Yano, K., Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.

[17] Yano, K. and Kon, M., Structures on manifolds, World Scientific, 1984.

[18] Zhang, X., A note on Sasakian metrics with constant scalar curvature, J. Math. Phys. 50 (2009), 103505-(1-11).