Extended Genome Report

Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3

Nyok-Sean Lau, Ka-Kei Sam and Abdullah Al-Ashraf Amirul

Abstract

Yangia sp. CCB-MM3 was one of several halophilic bacteria isolated from soil sediment in the estuarine Matang Mangrove, Malaysia. So far, no member from the genus Yangia, a member of the Rhodobacteraceae family, has been reported sequenced. In the current study, we present the first complete genome sequence of Yangia sp. strain CCB-MM3. The genome includes two chromosomes and five plasmids with a total length of 5,522,061 bp and an average GC content of 65%. Since a different strain of Yangia sp. (ND199) was reported to produce a polyhydroxyalkanoate copolymer, the ability for this production was tested in vitro and confirmed for strain CCB-MM3. Analysis of its genome sequence confirmed presence of a pathway for production of propionyl-CoA and gene cluster for PHA production in the sequenced strain. The genome sequence described will be a useful resource for understanding the physiology and metabolic potential of Yangia as well as for comparative genomic analysis with other Rhodobacteraceae.

Keywords: Yangia, Rhodobacteraceae, Matang mangrove, Halophile, Polyhydroxyalkanoate

Introduction

Yangia is a genus of the Roseobacter group, within the family Rhodobacteraceae, order Rhodobacterales, class Alphaproteobacteria, thus far containing only one species Yangia pacifica [1, 2]. Members of the Roseobacter clade have been widely detected in marine environments, from coastal to open ocean and from surface of the water to abyssal depths [3]. The type strain of Y. pacifica, DX5-10T was isolated from coastal sediment of the East China Sea of the Pacific Ocean [1]. The accumulation of poly(3-hydroxybutyrate), P(3HB) in Y. pacifica DX5-10 was observed. Yangia sp. strain ND199 was recently reported to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV) from structurally unrelated carbon sources [4]. So far, only few bacteria including Haloferax mediterranei, Nocardia corallinia, Pseudomonas sp. EL-2, Rhodococcus sp. NCIMB 40126 and recombinant Escherichia coli can synthesize P(3HB-co-3HV) from single unrelated carbon sources [5–9].

The incorporation of 3HV into 3HB-based polymer increases the flexibility, impact resistance as well as ductility of the polymer [10] and makes the polymer suitable for many industrial applications.

Mangroves are highly productive ecosystems covering approximately 75% of the total tropical and subtropical coastlines. Apart from wood production, mangrove forests support a wide range of functions including coastline protection, nutrient cycling, habitat for endangered species, breeding ground for marine life and have been proven as natural barrier against tsunami [11]. Matang mangrove, Malaysia is widely regarded as the best-managed sustainable mangrove ecosystem in the world. Yangia sp. CCB-MM3, analyzed in the present study, was isolated from soil samples obtained from the Matang mangrove. The sampling location was situated in estuarine mangrove ecosystem that is under both the influence of marine condition and the flow of freshwater. Saline environments including estuaries and coastal marine sites have been focus of study for halophilic organisms that flourish in these habitats. Halophiles have attracted interest as candidates for bioprocessing because of their unique property including the ability to grow in high salt conditions.
containing media, allowing fermentation processes to run contamination free under non-sterile condition [12].

At the time of writing, there are more than 300 genome assemblies from members of the family Rhodobacteraceae but the complete genome from the genus Yangia has not been reported. Here, we present the first complete genome of a Yangia representative and insight into the genes or pathways for polyhydroxyalkanoate (PHA) biosynthesis in this halophilic bacterium.

Organism information
Classification and features
Soil sediment samples (0–10 cm) were collected from Matang Mangrove (4.85228 N, 100.55777 E) located on the west coast of Peninsula Malaysia in October 2014 [13]. The soil samples had moderate salinity (21 ppt) and the temperature was 30 °C on the day of sampling. CCB-MM3 was isolated from the soil samples on low nutrient artificial seawater medium (L-ASWM) agar plates [14]. Bacteriological characteristics of the isolate are summarized in Table 1. The isolate is a Gram-negative, motile and rod-shaped bacterium of 1–2 μm in size (Fig. 1). The strain exhibited growth at 20–40 °C (optimum 30 °C) and pH 5–10 (optimum pH 7.5). Transmission electron microscopy revealed the presence of discrete, electron-transparent inclusions in the cytoplasm of strain CCB-MM3, presumably containing accumulated PHA granules. There are five identical 16S rRNA gene copies in CCB-MM3 genome. When compared to the 16S prokaryotic rRNA database available at EzTaxon [15], the 16S rRNA gene sequence of CCB-MM3 exhibited an identity of 98.8% with the type strain Yangia pacifica DX5-10. A phylogenetic tree was constructed on the basis of 16S rRNA gene sequences of strain CCB-MM3 and other members of the family Rhodobacteraceae. The 16S rRNA gene sequence phylogeny placed CCB-MM3 in the same cluster as Yangia pacifica DX5-10 (Fig. 2). The high 16S rRNA gene sequence similarity and distinct phylogenetic lineage with Yangia pacifica DX5-10

Table 1 Classification and general features of Yangia sp. strain CCB-MM3

MIGS ID Property	Term	Evidence code
Classification	Domain Bacteria	TAS [36]
	Phylum Proteobacteria	TAS [37]
	Class Alphaproteobacteria	TAS [38]
	Order Rhodobacterales	TAS [39]
Family	Genus Yangia	TAS [1]
	Species Yangia sp	TAS [1]
Strain CCB-MM3	Gram stain Negative	IDA
	Cell shape Rod	IDA
	Motility Motile	IDA
	Sporulation Non-sporulating	NAS [1]
	Temperature range 20–40 °C	IDA
	Optimum temperature 30 °C	IDA
	pH range; Optimum 5–10; 7.5	IDA
	Carbon source Maltose, lactate, malate, arginine, glutamate	NAS [1]
MIGS-6 Habitat	Environment	IDA
MIGS-6.3 Salinity	1–10%	IDA
MIGS-22 Oxygen requirement	Aerobic	NAS [1]
MIGS-15 Biotic relationship	Free-living	NAS
MIGS-14 Pathogenicity	Non-pathogenic	NAS
MIGS-4 Geographic location	Malaysia	IDA
MIGS-5 Sample collection	October 2014	IDA
MIGS-4.1 Latitude	4.85228 N	IDA
MIGS-4.2 Longitude	100.55777 E	IDA
MIGS-4.4 Altitude	Sea level	IDA

*Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [41]
suggest that the strain CCB-MM3 belongs to the genus Yangia.

Genome sequencing information

Genome project history

Yangia sp. CCB-MM3 was selected for genome sequencing on the basis of its physiological and phenotypical features, and was part of a study aiming at characterizing the microbiome of mangrove sediments. Genome assembly and annotation were performed at the Centre for Chemical Biology, Universiti Sains Malaysia. The genome project was deposited at GenBank under the accession PRJNA310305. Table 2 summarizes the project information in accordance with the Minimum Information about a Genome Sequence (MIGS).

Growth conditions and genomic DNA preparation

Yangia sp. CCB-MM3 cells for genome sequencing was grown in L-ASWM [0.05% tryptone, 2.4% (w/v) artificial sea water mix (Marine Enterprises International, USA), pH 7.6] under rotation at 30 °C [14]. Genomic DNA extraction was performed using the DNeasy Blood and Tissue Kit (Qiagen, USA). The genomic DNA was quantified using Qubit 3.0 Fluorimeter (Life Technologies, USA) and visualized by agarose gel electrophoresis (0.7%).

To promote PHA biosynthesis in Yangia sp. CCB-MM3, one-stage cultivation was carried out. Pre-culture of strain CCB-MM3 was prepared by growing cells on moderate halophiles (HM) medium containing per litre: 45 g NaCl, 0.25 g MgSO₄·7H₂O, 0.09 g CaCl₂·2H₂O, 0.5 g KCl, 0.06 g NaBr, 0.25 g KH₂PO₄, 2 g yeast extract and 20 g glycerol [4]. The culture was incubated at 30 °C, 200 rpm for 48 h before being harvested. PHA was extracted from lyophilized cells according to the method described previously [16]. 1H nuclear magnetic resonance spectrum was obtained in deuterated chloroform solution of the PHA polymer (25 mg/mL) recorded on a Bruker spectrometer (Bruker, Switzerland) at frequency of 400 MHz.

Table 2 Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	PacBio SMRTbell 10 Kb library
MIGS-29	Sequencing platforms	PacBio RS II
MIGS-31.2	Fold coverage	300 x
MIGS-30	Assemblers	HGAP2
MIGS-32	Gene calling method	RAST
	Locus tag	AYJ57
GenBank ID		CP014595-CP014601
GenBank date of release		July 18, 2016
GOLD ID		Gp0155985
BIOPROJECT		PRJNA310305
MIGS-13	Source material identifier	CCB-MM3
	Project relevance	Biotechnology, environmental
Whole genome sequencing of *Yangia* sp. CCB-MM3 was performed using the PacBio technology. In short, a library was prepared following the PacBio 10 Kb SMRTbell library preparation protocol. The final library was size selected using Blue Pippin electrophoresis (Saga Science, USA). The library was sequenced using two SMRT cells on PacBio RS II platform using P6-C4 chemistry. The run generated 153,311 reads with an average length of 14.46 Kb and a total of 2.22 Gb data. Raw reads were filtered and _de novo_ assembled using hierarchical genome-assembly process v2 protocol in SMRT Analysis v2.3.0 [17]. Two rounds of genome polishing were performed using Quiver to improve the accuracy of the assembly.

Table 3 Genome composition for *Yangia* sp. CCB-MM3

Label	Size (Mb)	Topology	INSDC identifier	RefSeq ID
Chromosome 1	2.902	circular	CP014595	NZ_CP014595.1
Chromosome 2	1.472	circular	CP014596	NZ_CP014596.1
Plasmid 1	0.316	circular	CP014597	NZ_CP014597.1
Plasmid 2	0.274	circular	CP014598	NZ_CP014598.1
Plasmid 3	0.281	circular	CP014599	NZ_CP014599.1
Plasmid 4	0.223	circular	CP014600	NZ_CP014600.1
Plasmid 5	0.054	circular	CP014601	NZ_CP014601.1

Fig. 3 Graphical map showing only chromosomes of *Yangia* sp. CCB-MM3 generated with CGview comparison tool [44]. From outside to the center: genes identified by the COG on forward strand, CDS on forward strand, CDS on reverse strand, genes identified by the COG on reverse strand, RNA genes (tRNAs orange, rRNAs pink, other RNAs grey), GC content (black) and GC skew (purple/green).
Genome annotation

The genome annotation was performed using the rapid annotation using subsystem technology [18]. The predicted *Yangia* sp. protein sequences were compared against the clusters of orthologous groups database using BLASTP. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [19], SignalP [20], TMHMM [21] and CRISPRFinder [22].

Genome properties

The genome of *Yangia* sp. CCB-MM3 is 5,522,061 bp-long and consists of two circular chromosomes and five plasmids (Table 3 and Fig. 3). The genome has a 64.98% GC content (Table 4). There are 5027 predicted protein-coding genes and 69 RNA genes (five rRNA operon and 44 tRNAs). 49 RNA genes are found on chromosome 1 while 20 are on chromosome 2. Of the predicted protein-coding genes, 3774 were assigned with a putative function, while the remaining were annotated as hypothetical proteins. A total of 3945 genes were assigned to COG categories (2343 on chromosome 1; 1068 on chromosome 2; the remaining on plasmids) and a breakdown of their functional assignments is shown in Table 5. The most abundant COG functional category in strain CCB-MM3 were amino acid

Table 4 Genome statistics
Attribute

Genome size (bp)
DNA coding (bp)
DNA G + C (bp)
DNA scaffolds
Total genes
Protein coding genes
RNA genes
Pseudo genes
Genes in internal clusters
Genes with function prediction
Genes assigned to COGs
Genes with Pfam domains
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

Table 5 Number of genes associated with general COG functional categories
Code
J
A
K
L
B
D
V
T
M
N
U
O
C
G
E
F
H
I
P
Q
R
S
–
transport and metabolism, general function prediction only and carbohydrate transport and metabolism.

Insights from the genome sequence

Yangia sp. CCB-MM3 has a large repertoire of genes involved in central carbon metabolism. Briefly, central carbon metabolism in CCB-MM3 includes a complete set of genes encoding glycolysis/gluconeogenesis, pentose phosphate pathway and tricarboxylic acid cycle. *Yangia* sp. CCB-MM3 was isolated from mangrove soil, one of the most carbon-rich ecosystems. Therefore, it is no surprise that the genome of CCB-MM3 comprised a considerable number of carbohydrate-active enzymes including 71 glycosyl transferases, 50 glycoside hydrolases (GH), 31 carbohydrate binding modules and 23 carbohydrate esterases (Table 6). CCB-MM3 contains genes representing 19 GH families (GH 1, 4, 8, 13, 16, 23, 25, 28, 30, 39, 51, 74, 77, 102, 103, 104, 105, 108 and 109) and some of these genes are involved in the utilization of saccharides including D-galacturonate, D-glucuronate, sucrose, maltose, maltodextrin and glycogen (Table 7).

Some species from the *Roseobacter* clade have been characterized as essential players in biogeochemical cycling of organic or inorganic sulfur-containing compounds [23–25]. The genome of *Yangia* sp. CCB-MM3 encodes the enzymes necessary for assimilatory sulfate reduction including sulfate adenylyltransferase (AYJ57_25280), adenylnylsulfate kinase (AYJ57_25275), phosphoadenylylsulfate reductase (AYJ57_02835) and sulfate reductase (AYJ57_02830). Interestingly, CCB-MM3 genome also harbours the complete set of sulfur-oxidizing genes including soxX (AYJ57_01935), soxY (AYJ57_01940), soxZ (AYJ57_01945), soxA (AYJ57_01950), soxB (AYJ57_01955), soxC (AYJ57_01960) and soxD (AYJ57_01965) for thiosulfate oxidation *in vitro*. SoxYZ is the carrier protein that interacts with SoxAX, SoxB and SoxCD; SoxAX cytochrome complex is proposed to link sulfur substrate to SoxYZ; dimanganese SoxB removes oxidized sulfur residue from SoxYZ through hydrolysis; and SoxCD catalyzes the oxidation of reduced sulfur residue bound to SoxYZ [26–29]. These genes encoding essential components of the Sox multienzyme complex are organized in a single locus in CCB-MM3. Analysis of *Yangia* sp. CCB-MM3 genome also revealed that rodanese-like sulfurtransferases (AYJ57_05465, AYJ57_08495, AYJ57_10220, AYJ57_16970 and AYJ57_24415) that can participate in the metabolism of thiosulfate and elemental sulfur during disproportionation are present in the genome.

Although the ability of *Yangia* to grow with free nitrogen gas as sole nitrogen source has not been analyzed yet, all genes necessary for nitrogen fixation were identified in the genome of *Yangia* sp. CCB-MM3. The

Table 6 Carbohydrate active enzymes (CAZy) in the genome of *Yangia* sp. CCB-MM3

Glycoside hydrolase	No. of genes	Glycosyl transferase	No. of genes	Carbohydrate binding module	No. of genes	Carbohydrate esterase	No. of genes
GH1	1	GT2	22	CBM6	3	CE1	8
GH4	1	GT4	22	CBM14	1	CE3	1
GH8	1	GT5	1	CBM35	9	CE4	7
GH13	9	GT8	1	CBM44	2	CE9	1
GH16	2	GT14	2	CBM48	7	CE10	3
GH23	8	GT19	1	CBM50	4	CE11	1
GH25	5	GT20	1	CBM57	5	CE14	1
GH28	1	GT21	2			CE16	1
GH30	1	GT26	4				
GH39	2	GT28	1				
GH51	3	GT30	2				
GH74	1	GT35	1				
GH77	1	GT51	3				
GH102	1	GT81	1				
GH103	5	GT83	1				
GH104	1	GT89	3				
GH105	2	GT92	3				
GH108	1						
GH109	8						
The genome encodes the subunits α and β of molybdenum-iron nitrogenase (AYJ57_00195, AYJ57_00200), its regulatory and accessory proteins (AYJ57_00310, AYJ57_00210, AYJ57_00215 and AYJ57_00315).

PHA metabolism

The ability of *Yangia* sp. CCB-MM3 to accumulate the copolymer P(3HB-co-3HV) with 7 mol% of 3HV from structurally unrelated carbon source was confirmed by NMR analysis (Fig. 4). In *Norcadia corallina* and *Rhodococcus ruber*, P(3HB-co-3HV) is synthesized from simple carbon source by using a pathway in which majority of propionyl-CoA is derived from the methylmalonyl-CoA pathway [30]. Similarly, genes encoding for complete methylmalonyl-CoA pathway were identified in *Yangia* sp. CCB-MM3 (Table 8), suggesting that this is one of the potential pathways involved in providing propionyl-CoA in *Yangia* sp. Succinyl-CoA is an important intermediate of the methylmalonyl-CoA pathway. The isomerization of succinyl-CoA to (R)-methylmalonyl-CoA proceeds through the action of methylmalonyl-CoA mutase (AYJ57_16720). (R)-methylmalonyl-CoA is converted to the (S) form via methylmalonyl-CoA epimerase (AYJ57_06825). The latter is then decarboxylated to propionyl-CoA by methylmalonyl-CoA decarboxylase (AYJ57_16710).

The formation of P(3HB-co-3HV) from its precursors, acetyl-CoA and propionyl-CoA is catalyzed by three enzymes [10] and the genes encoding these enzymes were identified in the genome of CCB-MM3. The first reaction consists of either the condensation of two acetyl-CoA or condensation of acetyl-CoA and propionyl-CoA by β-ketothiolase encoded by multiple phaA in CCB-MM3 (AYJ57_00195, AYJ57_00200, AYJ57_00210, AYJ57_00215 and AYJ57_00310). The resulting intermediate is reduced to 3-hydroxybutyryl-CoA or 3-ketovaleryl-CoA by NADPH-dependent acetoacetyl-CoA reductase encoded by phaB (AYJ57_00175, AYJ57_001215 and AYJ57_00165). The hydroxyacyl-CoA monomers are then incorporated into the growing polymer chain by PHA synthase, encoded by phaC [31]. The genome of *Yangia* sp. CCB-MM3 possesses two PHA synthases genes, *phaC1Ys* and *phaC2Ys* (AYJ57_006535...
and AYJ57_14600) that are located on chromosome 1 and 2, respectively. Both \(\text{phaC1}_{Ys} \) and \(\text{phaC2}_{Ys} \) encode 598 amino acid proteins which show 67 and 81% identity with \(\text{phaC} \) from \text{Citreicella} \ sp. SE45. These PHA synthases belong to Class I that have only one subunit and show preference to short chain length hydroxyacyl-CoA monomers [32].

Besides genes that are directly involved in PHA biosynthesis, gene involved in other aspect of PHA metabolism e.g. PHA depolymerase (\(\text{phaZ} \)) was annotated in the genome of \text{Yangia} \ sp. CCB-MM3. Since PHA is accumulated as storage compound for its producer, some PHA-producers harbour native machinery for the degradation of PHA. The synthesized PHA is catabolized by intracellular PhaZ and subsequently reutilized by cell [33]. However, mechanism of control for PHA biosynthesis or degradation in its native producer is not yet fully understood. Two PHA depolymerases, \(\text{phaZ1}_{Ys} \) and \(\text{phaZ2}_{Ys} \) (AYJ57_12275 and AYJ57_14595) were found in CCB-MM3. Another noncatalytic PHA granule-associated protein, phasin, was found to be encoded by single copy of \(\text{phaP} \) gene (AYJ57_14605) in CCB-MM3. Phasin has putative role in maintaining the stability of PHA granules formed by preventing the coalescence of separated granules [34]. The transcriptional repressor gene \(\text{phaR} \) (AYJ57_10595) that encodes for protein that regulates the transcription of \(\text{phaP} \) was also annotated in CCB-MM3 genome. It was proposed that PhaR functions as a repressor protein of transcription by binding to the upstream region of \(\text{PhaP} \) [35].

Table 8 Genes involved in PHA metabolism in \text{Yangia} \ sp. CCB-MM3

Function	Gene	EC number	No. of genes
Propionyl-CoA supplying pathway			
Methylmalonyl-CoA mutase	\(mcm \)	5.4.99.2	1
Methylmalonyl-CoA epimerase	\(mce \)	5.1.99.1	1
Methylmalonyl-CoA decarboxylase	\(mmcD \)	4.1.1.41	1
PHA biosynthetic pathway			
\(\beta \)-ketothiolase	\(\text{phaA} \)	2.3.1.16	5
NADPH-dependent acetoacetyl-CoA reductase	\(\text{phaB} \)	1.1.1.36	3
PHA synthase	\(\text{phaC} \)	2.3.1.-	2
Other aspect of PHA metabolism			
PHA depolymerase	\(\text{phaZ} \)	3.1.1.75	2
Phasin	\(\text{phaP} \)	–	1
PHA synthesis regulator	\(\text{phaR} \)	–	1

Fig. 4 \(^1H \)-NMR spectrum of P(3HB-co-3HV) isolated from \text{Yangia} \ sp. CCB-MM3 grown on glycerol

Conclusions

At least 300 members of the family \text{Rhodobacteraceae} have publically accessible genomes. \text{Yangia} \ sp. CCB-MM3, however, represents the first sequenced genome from the genus. The strain was selected for genome sequencing by our research group as part of a study focusing on characterizing the microbiome of Malaysia mangrove sediments. The strain CCB-MM3 genome includes genes encoding monomer supplying and biosynthetic pathway for PHA production. Availability of the genome sequence will facilitate further study on the strain’s biological potential and provide reference material for comparative genomic analysis with other \text{Rhodobacteraceae}.
Abbreviations

CBM: Carbohydrate binding module; CE: Carbohydrate esterase; COG: Clusters of orthologous groups; GH: Glycoside hydrolase; GT: Glycerol transferase; HGAP: Hierarchical genome-assembly process; HM: Moderate halophiles medium; L-ASWM: Low nutrient artificial seawater medium; P(3HB): Poly(3-hydroxybutyrate); P(3HB-co-3-HV): Poly(3-hydroxybutyrate-co-3-hydroxyvalerate); PHA: Polyhydroxyalkanoate; RAST: Rapid annotation using subsystem technology; SMRT: Single molecule real-time

Acknowledgements

This project was funded by the Research University (RU) mangrove project grant (1001/PCCB/870009). N.-S. Lau thanks Universiti Sains Malaysia for the post-doctoral fellowship support.

Authors' contributions

NL wrote the manuscript, assembled and annotated the genome. KS performed the laboratory experiments. AAA coordinated the study and the manuscript drafting. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 19 September 2016 Accepted: 8 January 2017
Published online: 23 January 2017

References

1. Dai A, Wang B-J, Yang Q-X, Jiao N-Z, Liu S-J. Xiangia pacifica gen. nov., sp. nov.; a novel member of the Roseobacter clade from coastal sediment of the East China Sea. Int J Syst Evol Microbiol. 2006;56:529–33.
2. Pujalte MJ, Lucena T, Ruiva MA, Arahel DR, Macián MC. The family Rhodobacteraceae. In: Rosenberg E, Delong EF, Stackebrandt E, Lory S, Thompson F, editors. Predicting the prokaryotes-alphaproteobacteria and betaproteobacteria, vol. 4. Berlin: Springer; 2014. p. 439–512.
3. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.
4. Van-Thuc D, Huu-Phong T, Minh-Khuong D, Ha tti-Kaul R. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol. 2015;175:3120–31.
5. Han J, Hou J, Zhang F, Ai G, Li M, Cai L, Liu H, Wang L, Wang Z, Zhang S, et al. Multiple proton coupling enzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloflex maritima: Evidence from genomic sequence. Appl Environ Microbiol. 2013;79:2922–31.
6. Valentin HF, Dennis D. Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardioides coilina: inactivation of mTHB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol. 1996;62:372–9.
7. Son H, Lee S. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from structurally unrelated single carbon sources by newly isolated Pseudomonas sp. EL-2. Biotechnol Lett. 1996;18:1217–22.
8. Haywood GW, Anderson AJ, Williams DR, Dawes EA, Ewing DF. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-Hydroxyvalerate from single carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol. 1991;13:83–8.
9. Chen Q, Wang Q, Wei G, Liang Q, Q. Production in Escherichia coil of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol. 2011;77:4866–93.
10. Tsuge T. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng. 2002;94:579–84.
11. Jusoff K. Malaysian mangrove forests and their significance to the coastal marine environment. Pol J Environ Stud. 2013;22:1383–8.
12. Jusoff K. Malaysian mangrove forests and their significance to the coastal marine environment. Pol J Environ Stud. 2013;22:1383–8.
13. Inoue K, Okada S, Nakamura T, Nakamura M, Takei Y, Tsukada K, et al. Comparison of gene expression levels in two species of mangrove bacteria using glycerol as a carbon source. Biochem Biophys Res Commun. 2005;329:733–40.
14. Tsuge T, Iida S, Watanabe T, Honma S. Identification of a novel CP4-EPSP synthase from a strain of the genus Agrobacterium. J Genet. 2002;81:287–91.
38. Garrity GM, Bell JA, Lilburn TG. Class I. Alphaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2. Second ed. New York: Springer; 2005.
39. Garrity GM, Bell JA, Lilburn TG. Order III. Rhodobacterales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2. Second ed. New York: Springer; 2005.
40. Garrity GM, Bell JA, Lilburn TG. Family I. Rhodobacteraceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2. Second ed. New York: Springer; 2005.
41. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.
42. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
44. Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics. 2012;13:202.