Understanding Urban Land Use through the Visualization of Points of Interest

Evgheni Polisciuc
CISUC
Departement of Informatics Engineering
University of Coimbra
Coimbra, Portugal
evgheni@dei.uc.pt

Ana Alves
CISUC, DEI
University of Coimbra & Polytechnic Institute of Coimbra
Coimbra, Portugal
ana@dei.uc.pt

Penousal Machado
CISUC
Departement of Informatics Engineering
University of Coimbra
Coimbra, Portugal
machado@dei.uc.pt

Abstract

Semantic data regarding points of interest in urban areas are hard to visualize. Due to the high number of points and categories they belong, as well as the associated textual information, maps become heavily cluttered and hard to read. Using traditional visualization techniques (e.g. dot distribution maps, typographic maps) partially solve this problem. Although, these techniques address different issues of the problem, their combination is hard and typically results in an efficient visualization. In our approach, we present a method to represent clusters of points of interest as shapes, which is based on vacuum pack- age metaphor. The calculated shapes characterize sets of points and allow their use as containers for textual information. Additionally, we present a strategy for placing text onto polygons. The suggested method can be used in interactive visual exploration of semantic data distributed in space, and for creating maps with similar characteristics of dot distribution maps, but using shapes instead of points.

1 Introduction

Understanding the urban land use is one of the central pillars of urban planning and management. Traditionally this analysis relies on census surveys having limitations in terms of spatial and temporal scale. However, with the advent, and wide deployment of pervasive computing devices (e.g. cell phones, GPS devices, smart cards and digital cameras) some of these limitations may be overcome. For instance, collecting and analyzing information of how people use urban space may be done dynamically and in more precise way.

By using services of modern web platforms (e.g. Facebook, Foursquare, etc.), a user leaves “digital footprints”. These are precise data in terms of temporal (when) and spatial locations (where), and in general, can be captured without human intervention. The information about human activity (what) if not explicitly introduced by humans may be inferred by other ways. One of which is about to retrieve the information about visited place. This place, denominated Point of Interest (POI), offers a range of services and has special utility. Such information is not always available. Hence, it is necessary to enrich semantically the information about the visited places, in order to understand what was done there. Collecting information of how people use urban space has become a very important task on creating the city image from the perspective of its inhabitants, since places are often associated by meaning, i.e. relationship between people and places.

Most smart devices integrate contextual processing. However, it is difficult to enable context-awareness without semantic information. Although, semantic information has been available for years, the Internet, in most cases, abandons such information. In a recent work Alves (2012) presented various perspectives on semantic enrichment of places and extraction of such information from the Internet.

That said, there is a necessity of proper visualization that depicts large amounts of point-based data along with textual information. Geovisualization field provides techniques to visualize georeferenced data, known as thematic maps. One of the well known techniques to represent point-based data is a dot distribution map. However, this kind of maps is limited to representation of points on the map, additionally using color to distinguish points that belong to different groups. On the other hand, typographic maps are used to represent textual information on the map regarding natural and artificial features of urban space (e.g. street names, rivers, places, etc.). But, in order to visu-
alize both textual and point-based information one cannot simply overlay two maps. In this case the visualization becomes highly cluttered and illegible. Moreover, it would be difficult to reveal spatial patterns in such hard-overlapped maps. Therefore, from these observations we propose a method to represent this kind of information in a visualization with low degree of visual clutter retaining the possibility to both reveal high-level information and detailed exploration of the map.

Our approach consists in creating visual elements that convey spatial distribution of POIs of same type (a cluster), as well as the distribution of clusters in urban area. More precisely, our algorithm generates a shape for each group of POIs revealing its unique visual form in regard to their geographic distribution. Additionally, textual information – clusters tags and POI names – are drawn using different typeface weights and scaled according to the relevance of each cluster.

With that said, in this paper we present a method for visualizing clusters of POIs and the associated semantic information. The dataset is detailed in section 3. The shape of each cluster is calculated using a vacuum package metaphor (see details in section 4). Additionally, this paper presents an interactive web-based application that allows exploring the data with varying degree of details (see section 5).

2 Background and Related Work

Our approach touches on diverse methods and techniques of visualization of spatial information. In this work we consider dot distribution maps. This type of maps are especially efficient in visualization of distribution and densities of point-based data. Regarding the visualization of textual information our approach relies on typographic maps. This particular type of subjective maps efficiently communicates textual information prioritizing typographic hierarchy depending on the relevance of information.

Dot distribution maps, often referred to as density map, they represent spatial distribution of geo-referenced data using basic graphical element – a point (Slocum, 2009). Each point on the map is used to represent either one datum with known geo-location, or aggregation of values. Additionally, dot distribution maps are used to depict densities in corresponding geographic areas, rather than specific locations.

A historical example of the use of a dot distribution map is the disease map produced by John Snow (Tufte and Graves-Morris, 1983). This map depicts the distribution of cholera in London. Deaths are represented by dots and eleven water pumps are represented by crosses. The observation led Snow to discover that cholera occurred in the areas near the Broad Street water pump. This map helped understand the issue of the cholera by revealing disease patterns in spatial context.

One of a more recent example of density map is the Racial Dot Map by Cable (2013). This visualization depicts geographical distribution, population density and racial diversity of people living in USA. Each dot represents one individual person at smaller zoom levels and aggregation of dots at national or regional levels. The color encodes race and ethnicity of inhabitants.

Typographic maps may be seen as an “artistic” representation of textual information, rather than an accurate mapping of spatial data. Often, the information being represented by these maps is a description of the relationship of the place and its meaning, which depends of many human, cultural, political, social or historical factors. Therefore, these kind of maps are considered subjective maps (Chen, 2011).

In typographic maps, as the name indicates, textual information is represented using typography. For instance, the maps drawn by Paula Scher are mainly typographical, representing the world, its continents, countries, islands, etc. through typography (Scher, 1990 2010). Likewise, the maps produced by Axis Maps, depict the information about locations and space using text (Axis Maps, nd). Moreover, the geometry of each word is curved along a path, mimicking the shape of the object being represented (e.g. streets, parks, rivers, etc.). This typographic maps were composed with auxiliary of software-based tools (e.g. Adobe Illustrator) and represent information using digital typography. Finally, the graphical elements are placed over OpenStreetMap. These works, the maps by Scher and axisMaps, are good examples of intelligent usage of typographical hierarchy, which makes these maps efficient in the communication of subjective and imprecise information, even with high degree of visual overload.

A more recent research presents a method for automatic construction of typographic maps by merging textual information with spatial data.
(Afzal et al., 2012). Given a vector map the algorithm places textual labels in space along the polylines and polygons in accordance with defined visual attributes and constraints. Additionally, the authors describe a method to represent regions as text by filling its interior and repeating the text as necessary. Likewise, our approach uses principles of this technique to align textual labels to a path.

Finally, the work of Cranshaw et al. (2012) is tightly related to our approach, especially in what concerns portraying a city using methods to visualize point-based data and their clusters. The authors introduce a method that consists of a clustering model for mapping a city regarding collective behaviors of its inhabitants and further visualization on the map. This map depicts dynamics, structure and portrayal of a city using clusters, so called *Livehoods*, of geospatial data from Foursquare check-ins. Given geospatial social data generated by hundreds of thousands of people the visualization represents distinct areas of the city regarding activity patterns. The resulting aggregated clusters of check-ins represent so called mental map of the city, the vision of urban space from the perspective of its inhabitants. This enables the study of the structure and composition of a city based on social media its residents generate.

3 Data Description and Design Requirements

Our dataset consists of points of interest (POIs) from the greater metropolitan area of Boston, Massachusetts, USA. POIs contain associated semantic information and are aggregated in meaningful groups (e.g. restaurants, colleges, industry, etc.). More precisely, POIs were tagged with semantic information retrieved from diverse web sources (e.g. Foursquare, Upcoming Yahoo, etc.) (Oliveirinha et al., 2010), and aggregated in clusters using methods proposed by Alves et al. (2011). The dataset comprises 751 clusters of POIs with the following attributes: tag and id of each cluster, geographic coordinates of their centroids, and relevance of a cluster. Additionally, each POI in the dataset is characterized by geographic location (latitude and longitude), name and id. Ultimately, the data types are categorical – POI names and cluster tags – and quantitative – relative relevance of each cluster.

In order to guide the design of our visualization, we established the following design requirements, that define the boundaries for the project:

- The visualization should create a digital layer of urban space.
- It should use a simple and clear visual language, establishing a strong relationship between urban space and POIs.
- In order to reflect geographic nature of data the information should be visualized on a map.
- It should be interactive and run in real-time, supporting the process of data exploration and high-level information acquisition.
- The interactive application should follow the so called *Visual Information-Seeking Mantra*, introduced by Shneiderman (1996), which consists of overview first, zoom and filter, then details-on-demand.
- Finally, the visualization should be easy-to-understand by a general user with no analytic background, therefore presenting a good balance between aesthetics and functionality, without visual overload of display.

4 Representation of POI Clusters

This section covers the process for determining the shapes that describe POI clusters. More precisely, first the concept of vacuum package metaphor is introduced. Then we proceed with the description of an algorithm for polygon calculation given a set of points. Then, we present a method for smoothing the corners of generated polygons. Finally, we discuss the strategy for using typeface weight as visual variable and text placing.

4.1 Concept

In order to understand the distribution of POIs in space and within the corresponding clusters we plotted them using a dot distribution map (see Figure 1). In this visualization each POI is depicted by a point: The category it belongs to is represented with a color. The observation of this visualization led us to the conclusion that each cluster has its unique and recognizable shape. For instance, the same happens with the shapes for countries and continents of the world, to which diverse meanings and symbolisms are associated.
We found this idea particularly interesting and implemented a method that allows us to characterize sets of POIs through their shapes. This approach allows us to eliminate color from representation reducing visual overload. Ultimately, due to amount and diversity of categorical data the use of color is inefficient.

The shape that characterizes a given set of points is known as convex hull, i.e. the polygon that encompasses a set of points. This is, the minimal convex set of points containing the entire set. One of the many algorithms to compute convex hull was proposed by Andrew (1979), which is based on the rubber band metaphor. The convex hull can be visualized as a rubber band that is stretched so that it surrounds all the points and then released enclosing all the points.

For certain applications the convex hull does not represent well the boundaries of a set of points. For instance, a convex hull for a set of points that form a C letter would have a shape close to ellipse. In other words, the region that is defined by convex hull does not represent the region that is formed by the points.

This problem has already been addressed by many researches, and is know as computation of non-convex or concave hull (see e.g. Moreira and Santos (2007) and Duckham et al. (2008)). One of the methods to compute shape of a set of points was introduced by Edelsbrunner et al. (1983), and is know as two-dimensional alpha-shapes. As mentioned by Edelsbrunner, an alpha shape can be imagined as a huge mass of ice-cream containing pieces of chocolate; then using a sphere-formed ice-cream spoon we carve all the parts of ice-cream without bumping into chocolate pieces; if we now straighten all the "round" faces we will get an intuitive description of what is called the alpha-shape. Although, the alpha-shape is a standardized formal description of a set of points this method assumes multi-polygon reconstruction of the geometry, and often produces polygons that contain holes, which is not desirable in our visualization.

We address this problem by combining the principles of alpha-shape and vacuum packing metaphor. This metaphor can approximately be seen as following: imagine a plastic bag containing a set of points; then the oxygen is removed creating vacuum inside the bag; when the bag is completely shrunk it become tightly fitted to its content. This metaphor is intuitive description of our approach. The following section gives a formal description of the algorithm to compute a shape of a set of points heterogeneously distributed in geographic space.
4.2 Algorithm

This section describes an algorithm for the calculation of a concave hull based on the vacuum package metaphor. The calculation of a polygon is an iterative process with the maximum number of iterations defined by a user. The process passes through the calculation of convex hull, which defines an initial set of edges. Each edge is characterized by starting and ending points in ordered array, and by stretchiness, which models a behavior of an elastic band. Finally, the shape of each set of points is calculated independently.

Considering the set of points S to be our input, the algorithm proceeds as follows:

1. Let L be an initially empty list that will contain the points that define the polygon.

2. Calculate the convex hull, and store the set of points in L in clock-wise order.

3. For each iteration and for each edge – i.e., for each pair of consecutive points in L, which we designate by A and B:
 - If the length of the edge is bigger than predefined minimum length, then continue to the next step. Otherwise, skip.
 - The edge AB is divided by half at the center, defining an isosceles triangle $\triangle ABC$, where A and B are the starting and ending points in L, respectively, and C is the central point.
 - C is pushed inside the polygon by a force vector \vec{f}, which is perpendicular to the edge AB.
 - The magnitude of the force \vec{f} varies proportionally to the stretchiness of AB edge, which is a function of its length, and the distance of C from its original location, say M. i.e. shorter edges have smaller \vec{f}.
 - If one of the points, say P, in the set S is inside the triangle, then the P is appended to the L in the order AP and PB, consequently, creating two new edges.
 - The process is repeated until the maximum number of iterations is reached or all the edges have their lengths smaller than defined minimum length.

Determining if a point P is inside the triangle $\triangle ABC$ is done by calculating cross products of vectors $AP \times AB$, $BP \times BC$, and $CP \times CA$. If all the values are negative, then the point is inside the triangle. Otherwise, the point is outside. Finally, at a simulation instance there might be two points inside the triangle. In this case considered only the one that is closest to the M point – middle point that divides AB by half.

Figure 2 displays two shapes of clusters that were calculated by the algorithm given two sets of points from our dataset. Also, this figure schematically illustrates the described algorithm at a simulation instance – the points that compose a polygon are marked with circles, the edges are represented with black line, and the lines that make up the triangles are painted in red. As can be observed in Figure 2, image on the right, even complex shapes are well defined.

4.3 Visual Refinement and Label Placing

Having calculated all the polygons we proceed to smooth their corners, which gives an organic representation of a shape. Also, this facilitates the process of placing textual labels onto polygons.

The problem of corner smoothing can be divided in two parts – round the corners that make interior angles smaller and greater than 180° (for the purpose of simplicity we label them as S and G corners, respectively). In order to create a smooth polygon there should be enough free space allocated to append additional points that compose a
new polygon. This is done by translating perpendicularly each edge to a certain distance, say \(d\), placing them outside the original polygon. Then we proceed by calculating the \(S\) corners, simply connecting two consecutive translated segments with an arc that is centered at the corner point and with the radius equal to \(d\). The arc is then fragmented with small segments, the number of which is dictated by defined minimum length. The \(G\) corners, on the other hand, are computed using Bezier equation (Farin et al., 2002). The two control points have the same location, which is the point of intersection of the two edges that makeup the corner. The end points are the middle point of each of two translated edges. Finally, the curve is partitioned with small segments. The Figure 3 is a schematic representation of the smoothing of polygons.

Figure 3: Schematic construction of round corners.

The second part of visual refinement consists of placing textual information onto polygons. As was mentioned earlier, our data consist of two types of text data – most relevant tag for each cluster, and names of each individual POI. In order to represent this data two different strategies were used. In the first case, the cluster tags were positioned on center of the polygon being represented using typeface weights to represent their weights. In the second case, the names of POIs were placed onto the polygon and curved along the contour of the shape.

As mentioned above, we used typographic weight as a visual variable to represent relevance of each category of POIs. According to Lupton (2014), in typography, all typefaces are organized into families. Within a family typefaces are divided and ordered according their weights (e.g. regular, bold, etc.). In modern typography there are families that contain up to nine weights classified as falling – thin, extra light, light, regular, medium, semi-bold, bold, black and heavy. So, we used these to encode the relevance of each category, by dividing all values in eight ranges and assigning each range to a typographic weight. Due to ordered nature of data the typographic weights were assigned starting with thin up to heavy typefaces (see Figure 4).

For the second type of textual information we used an approach inspired in typographic maps. The name of POIs are placed onto polygon and the words are curved along with the shape. One of the problems of curved words is the fact that they visually distort the word when placed on the path junctions. This is, the words are visually breaking apart creating discontinuous reading. One of the solutions to address this problem is to distort the characters, like in maps by Paula Scher. However, in digital typography these manipulations are undesirable and are considered a bad practice (Lupton, 2014). So, our solution consisted in: drawing the letters perpendicularly to the path they are placed onto; when a letter appears on a junction of two segments we use a weighted angle depending on the percentage of occupied space on each of segments. In other words, the imaginable rectangle that holds a character always keeps its base corners on top of each segment (see Figure 5). Finally, the tracking – space between characters – is increased, when the letters are placed on \(G\) corners, and decreased, when the letters are placed on \(S\) corners. This diminishes the visual discontinuities in reading.

Finally, all the methods were combined and the result is displayed on Figure 6. As can be observed...
the visualization become less cluttered in comparison with dot map representation. The clusters of POIs are characterized by an organic shape, which facilitates the placement and continuous reading of textual information. Text labels, on the other hand, try to mimic the contour without substantial visual distortion. Also, it is easy to understand that this approach is less efficient when small clusters are considered, due to limited space to display all the textual information.

5 Application and Limitations

This section presents an application of the described techniques combined into one visualization model. First, an interactive web-based application, which uses the described methods applied on another dataset with a similar nature of information, is discussed. Then, we enumerate the limitations of presented approach.

The interactive web-based application follows the principles of Visual Seeking Mantra – overview first, zoom and filter, then details-on-demand. In the first screen the user can find a general view of the map. In this view the visualization depicts only the shapes of clusters, which gives a first impression about the data and its distribution in space. It is important to note that in the second dataset POIs have multiple associated tags, i.e. a POI may belong to different categories. Consequently, POI clusters may overlap, which means that overlapping areas provide multiple services. For instance the area of restaurants might coincide with the area of shopping. That said, the user can easily identify these cases in general view (see Figure 7, image on the left).

Filtering and zoom-and-pan are also important functionalities of the application. Using the panel on the left the user can select individual categories to display and filter the visualization by average weight of the relevance, by the number of POIs in cluster, among others. Selecting the categories also reveals their names and places them as described in previous sections, although using only one typographic weight. To navigate on the map the user can use zoom-and-pan. The visualization dynamically updates details of the shapes and presents different levels of cluster aggregation according to zoom level (see Figure 7, image in the middle).

Finally, the application provides additional details on demand. This is done by directly selecting clusters on the map. In this case the panel on the left updates and displays more detailed information about the selected cluster (e.g. a list of POIs in the group, impact of each category the cluster belongs to, number of POIs). Additionally, the clusters that share the same category are also highlighted on the map, such that the distribution of clusters within similar category is revealed (see Figure 7, image on the right).

As can be observed in the web-application the labels are not shown, due to high amount of textual information, which makes the visualization run slow in a web browser. Nevertheless, this functionality is implemented in offline visualization. As it can be observed, there are overlapping areas. As such, the shapes are painted with transparent color, in order to highlight highly overlapped areas on the map. Allowing the user to perceive urban areas that provide multiple services can be easily found on the map. Thus, providing higher-level information that would be difficult to visualize by other means.

6 Conclusion

In this article, we presented a method to represent clusters of POIs along with their semantic information. This method integrates visual characterization of a set of points and the methods to represent textual information. Given clusters of POIs the presented method creates a visual layer that characterizes urban space in accordance with the meanings of places, which derives from the digital footprints that the inhabitants leave. For this reason, we presented a novel approach that calculates a concave hull of a set of points. This method enables the creation of a unique integral polygon, which is calculated using vacuum package metaphor. Ultimately, each polygon characterizes a set of points with a unique organic looking shape.

Additional textual information is added by placing names of POIs on a path defined by a poly-
gon. In the proposed strategy the characters were placed perpendicularly to the segment they belong, and using a weighted angle when placed on the corners. Additionally, we introduced a visual variable to encode the relevance of a category – the typographic weight. The data variable’s values are divided in equal ranges, and then each bin is associated with a typographic weight in the order from thin to heavy.

Finally, this visualization was implemented as web-based application and applied on another dataset. The interactive web application gives an overview of data at general zoom level. Then the user can zoom-in and obtain a detailed view of the visualization. Additionally, using the filter panel the user can choose individual category and filter the visualization by different parameters. Finally, more details, such as cluster impact or the list of POIs in cluster, are given on demand.

Acknowledgements

This work was supported by the InfoCrowds project - FCT-PTDC/ECM-TRA/1898/2012FCT.
References

Shehzad Afzal, Ross Maciejewski, Yun Jang, Niklas Elmqvist, and David S Ebert. 2012. Spatial text visualization using automatic typographic maps. *IEEE Transactions on Visualization & Computer Graphics*, (12):2556–2564.

Ana O Alves, Filipe Rodrigues, and Francisco C Pereira. 2011. Tagging space from information extraction and popularity of points of interest. In *Ambient Intelligence*, pages 115–125. Springer.

Ana Cristina da Costa Oliveira Alves. 2012. Semantic enrichment of places. understanding the meaning of public places from natural language texts.

Alex M Andrew. 1979. Another efficient algorithm for convex hulls in two dimensions. *Information Processing Letters*, 9(5):216–219.

Axis Maps. n.d. Typographic maps. http://store.axismaps.co.uk/. Accessed: 2015-06-10.

Dustin Cable. 2013. Racial dot map. *Weldon Cooper Center for Public Service, University of Virginia.*

Xiaoji Chen. 2011. *Seeing differently: cartography for subjective maps based on dynamic urban data.* Ph.D. thesis, Massachusetts Institute of Technology.

Justin Cranshaw, Raz Schwartz, Jason I Hong, and Norman M Sadeh. 2012. The livehoods project: Utilizing social media to understand the dynamics of a city. In *ICWSM*.

Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. 2008. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. *Pattern Recognition*, 41(10):3224–3236.

Herbert Edelsbrunner, David G Kirkpatrick, and Raimund Seidel. 1983. On the shape of a set of points in the plane. *Information Theory, IEEE Transactions on*, 29(4):551–559.

Gerald E Farin, Josef Hoschek, and Myung-Soo Kim. 2002. *Handbook of computer aided geometric design.* Elsevier.

Ellen Lupton. 2014. *Thinking with type.* Chronicle Books.

Adriano Moreira and Maribel Yasmira Santos. 2007. Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points.

João Oliveirinha, Francisco Pereira, and Ana Alves. 2010. Acquiring semantic context for events from online resources. In *Proceedings of the 3rd International Workshop on Location and the Web*, page 8. ACM.

Paula Scher. 1990–2010. Typographic maps. http://paulaschermaps.com/. Accessed: 2015-06-18.

Ben Shneiderman. 1996. The eyes have it: A task by data type taxonomy for information visualizations. In *Visual Languages, 1996. Proceedings., IEEE Symposium on*, pages 336–343. IEEE.

Terry A Slocum. 2009. *Thematic cartography and geovisualization.* Prentice hall.

Edward R Tufte and PR Graves-Morris. 1983. *The visual display of quantitative information*, volume 2. Graphics press Cheshire, CT.