Behaviour and metabolism during tonic immobility (death-feigning) in *Eucryptorrhyncha scrobiculatus* and *E. brandti* (Coleoptera: Curculionidae)

HUIJUAN LI and **JUNBAO WEN*†

Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University College of Forestry, No. 35, Tsinghua East Rd., Haidian district, Beijing 100083, P.R. China; e-mails: lhuij@bjfu.edu.cn, wenjb@bjfu.edu.cn

Key words. Coleoptera, Curculionidae, *Eucryptorrhyncha*, defence strategy, anti-predator behaviour, thanatosis, death-feigning, metabolic rate

Abstract. The antipredator behaviour, tonic immobility (TI) is a valuable defence that enables insects to increase their chance of survival and is a trade-off between fleeing and protection. How the TI strategies of insects respond to environmental factors, however, remains a largely understudied subject. In this paper the effect of four factors (mechanical stimulation, light, sound and temperature) and metabolic responses were used to evaluate TI behavioural and physiological adaptions in *Eucryptorrhyncha scrobiculatus* (ESCR) and *Eucryptorrhyncha brandti* (EBRA). In the behavioural experiment, the metaventrite, which is the stimulus-sensing region in ESCR and EBRA, was subjected to mechanical stimulation. Light lengthened the TI duration in ESCR males, while sound had the opposite effect in ESCR and EBRA. The effect of temperature on the duration of TI was variable: in ESCR, the duration was shorter at low (15°C) and high (32°C) temperatures, but in EBRA, it was longer at the low (15°C) temperature. In the metabolism experiment, ESCR and EBRA metabolic rates (MR), was significantly dependent on whether they were in a state of TI or not. The TIMR declined to 76.90% in ESCR and 71.40% in EBRA. These results indicate that TI in ESCR and EBRA differed under different external conditions and contributes to the understanding of the physiological regulation of ecological traits of insect TI.

INTRODUCTION

When some insects are disturbed by predators they curl up and remain motionless or fall from their original resting places and behave as if dead, and in the absence of further stimulation recover and resume activity after a few minutes (Humphreys & Ruxton, 2018). This is called tonic immobility (TI), death feigning, thanatosis, animal hypnosis, playing dead, immobilization catatonia, playing possum or quiescence (Ruxton, 2006; Acheampong & Mitchell, 2010; Li et al., 2019) and is widely used by animals to limit injury and as a means of escape.

Previous papers report there is a trade-off between fleeing and defence (Ohno & Miyatake, 2007), because individuals control the duration of TI when threatened by a predator or disturbed by an environmental factor (Lima, 1998). How the TI strategies of insects respond to environmental factors including touching, light, sound and temperature has recently attracted more attention. For example, the TI of *Callosobruchus chinensis*, *C. maculatus*, *Tribolium castaneum* and *Timema cristinae* is induced by touching or dropping (Nakayama & Miyatake, 2009; Farkas, 2016; Matsumura et al., 2016), of *Leptonotarsa decemlineata* by shaking or light flashes (Metspalu et al., 2002) and of larvae of *Gryllus bimaculatus*, *Apis mellifera*, *Agriotes fuscicollis* by specific sounds (e.g., bird song) (Little, 1962; Nishino & Sakai, 1996; Acheampong & Mitchell, 2010; Ritter et al., 2016). However, not all factors induce TI directly. For example, specific sounds (alarm calls) can increase the duration of TI in *Gallus gallus* (Pochron & Thompson, 2019) and in two species of *Callosobruchus*, *C. chinensis* and *C. maculatus* (Miyatake et al., 2008a), high incidence of TI is associated with low temperatures (15°C and 20°C) and its duration is correlated negatively with increase in ambient temperature when TI is induced by touching. Thus, the variation in TI in different species associated with environmental factors is worthy of further study.

Recent studies indicate that TI behaviour also depends on the sex and weight of an insect (Li et al., 2019; Konishi et al., 2020). For example, TI in *C. chinensis* stimulated by touching, is longer in heavy females than males (Hozumi & Miyatake, 2005), in *T. castaneum*, it is shorter in females than males (Miyatake et al., 2008b) and in *L. decemline-
Methods

Species and rearing conditions

This study was carried out from May to July 2018. Adults of the two species of weevil were collected in Haizi Village, Ningxia, China (106.34°N, 38.10°N) and reared at the Lingwu Forest Quarantine Station. Plots of pure stands of tree of heaven were sampled and average temperatures in the plots ranged from 15°C to 32°C and the photoperiod was 13L : 11D (Wen et al., 2017).

Quarantine Station. Plots of pure stands of tree of heaven were collected using forceps between 9:00 and 12:00 and experienced on between 12:01 and 20:00 (Ji et al., 2018). Because both weevils are diurnal, the weevils descended in order to hide between 17:00 and 20:00 and were collected in Haizi Village, Ningxia, China (106.34°N, 38.10°N). Given that the variation associated with sex and weight differ between species or individuals, it is necessary to consider the condition of insects when investigating and comparing the duration and frequency of TI under different environmental conditions.

An authentic-looking prey “death” might deceive a predator into believing that the prey is inedible and giving up. What is the difference between prey that exhibit TI and those that do not? Several studies report that physiological changes associated with TI are unique. During TI in rabbits, the respiratory rate is close to zero and heart rate decreases by 33% (Giannico et al., 2014). In *L. decemlineata*, the metabolic rate during TI is approximately 50% of the normal rate (Metspalu et al., 2002). This indicates that during TI energy consumption is lower and there is a trade-off between metabolic rate and TI, but it is unclear how prevalent this relationship is among insects. We suppose that the differences in energy consumption and metabolic rate before and after TI might help us understand how it is regulated physiologically in insects and, therefore, more investigations are needed.

Eucryptorrhynchus scrobiculatus (Motschulsky, 1854) (Ji et al., 2017) and *Eucryptorrhynchus brandti* (Harold, 1880) (Coleoptera: Curculionidae) are the most destructive pests of the tree of heaven (*Ailanthus altissima*) and are highly host-specific (Herrick et al., 1938). Both exhibit TI behaviour when the metaventrite (the metathorax between the middle and hind legs) is touched (Li et al., 2019). Concerns about *E. scrobiculatus* (ESCR) and *E. brandti* (EBRA) are numerous and mainly about their bioecology, chemical ecology, prevention and control (Wen et al., 2018; Guo et al., 2019; Yang et al., 2019). Because the TI behaviour of ESCR and EBRA has not yet been described in terms of ecology and physiology we propose to do this for these two closely related species.

In this study, the extent to which the TI of ESCR and EBRA is regulated by touch, light, sound or temperature and the metabolic differences before and after TI were determined. The associations between weight and sex and the intensity of TI in terms of duration and frequency in different environments are discussed.

Experimental conditions and TI

Here, the TIs of ESCR and EBRA are described as the spontaneous behaviour in which antennae and proboscises are completely contracted and appendages are strongly folded and pressed close to the abdomen when these weevils are subjected to external stimulation (Fig. 1). To induce TI behaviour, forceps were used to touch the metaventrite (the metathorax between the middle and hind legs) (Fig. 2) (Li et al., 2019). If a weevil did not respond, the same stimulus was applied a second or third time; if there was no response after three stimuli, the duration of TI was zero. If they entered a TI state, its duration was recorded using a stopwatch until the first visible movement. If the duration was longer than 1 s (Matsumura et al., 2016), it was recorded as a TI, which ranged from 1–3,600 s.

Fig. 1. Photographs of adult female *E. scrobiculatus* and *E. brandti* in the curled tonic immobility (TI) posture (a, c) and normal posture (b, d). Photo by Huijuan Li.
To determine weevil metabolism the normal metabolic rates for both species (NMR, the carbon dioxide released by resting weevils) and their TIMRs were recorded. Metabolic rate was measured using a closed flow respirometer (RES-1/RES-2; Sable Respirometry Systems, North Las Vegas, NV, USA) at 25°C ± 1°C. The incubators were controlled at a constant temperature and the 15 ml respiratory chamber was placed in one of the incubators. The carbon dioxide and moisture in the chamber was absorbed by calcium hydroxide and anhydrous calcium sulphate, respectively, and the gas flow used for the measurements was 100 ml/min. Before each experiment weevils were starved for 24 h, and then one weevil was placed in the chamber for 10 min to acclimatize and then its NMR was measured for 15 min and replicated five times (ESCR females n = 5; ESCR males n = 5; EBRA females n = 5; EBRA males n = 5). After the NMR test, the weevils were first placed in the culture box to acclimatize for 30 min and then induced to adopt TI before placing them individually in the chamber and measuring their TIMRs. The MR formula is as follows:

\[
MR = \frac{SVPa}{8.314 \times 10^3 \times WT}
\]

In the formula, S is the slope of the change in CO₂, V is the volume of the chamber (ml), Pa is the atmospheric pressure (kPa), W the weight of the adult tested (g), T the temperature in the chamber (K) and 8.314 is the model parameter.

Data analysis

To test for the effects of light, sound, temperature and MR on the duration of TI, the statistical significance was analysed using a single-factor analysis of variance (one-way ANOVA) followed by Tukey’s HSD multiple comparison tests \((P < 0.05)\) (R-186 3.2.2). To test for the effects of mechanical stimulation on the duration of TI, the sex and body weight were considered to be variables of the weevils and a General Linear Model was constructed (SPSS Statistics v. 17.0). Assumptions about the normality and homogeneity of variances were verified, and all results in the text are mean values and standard errors (mean ± SE).

RESULTS

Mechanical stimulation

The duration and frequency of TI induced by mechanical stimulation were associated with weight (EBRA: \(n = 25, P = 0.789\); ESCR: \(n = 25, P = 0.697\)) and sex (EBRA: \(n = 25, P = 0.196\); ESCR: \(n = 25, P = 0.782\)) (Table 1, Fig. 4). When considering the interactions between weight and sex, no significant differences were detected (EBRA: \(n = 100, P = 0.180\); ESCR: \(n = 100, P = 0.139\)). However, TI in ESCR was longer (163.62 ± 14.43 s) than in EBRA (123.88 ± 15.26 s) \((n = 200, P = 0.040)\).

Influence of light

As shown in Fig. 5-1, the duration of TI in ESCR males was longer than that of females when exposed to light (n
Influence of sound

The trends in variation in the TI of ESCR males and females in the different sound conditions were very similar (Fig. 5-3). Tukey’s HSD indicated that low-frequency sound (2-kHz) reduced the duration of TI in ESCR males and females (n = 30, \(P = 0.010 \); n = 30, \(P = 0.020 \)). At high frequencies, the duration of TI in EBRA females was longer than that recorded for males (n = 30, \(P = 0.040 \); n = 30, \(P = 0.010 \)). Low- and mid-frequency sounds reduced the duration of TI in EBRA males (n = 30, \(P = 0.030 \); n = 30, \(P = 0.040 \)), but not significantly so in females. No differences were recorded in frequency of TI (Fig. 5-4).

Influence of temperature

Temperature affected ESCR and EBRA differently, and there was no significant difference between the sexes in the duration of TI (Fig. 5-5). The duration of TI in EBRA at the low temperature (15°C) was significantly longer than at the optimal (25°C) and highest temperature (32°C) (n = 25, \(P = 0.020 \); n = 25, \(P = 0.030 \)). However, the duration of TI in ESCR was shorter at 15°C and 32°C than at 25°C (n = 25, \(P = 0.040 \); n = 25, \(P = 0.040 \)). No differences were recorded in the frequency of TI (Fig. 5-6).

Metabolism

There were significant associations between MR and TI (Fig. 6). During TI the MR of ESCR declined significantly to 76.90% of its normal MR and in EBRA to 71.40%.

DISCUSSION

The results define the TI traits of two species of *Eucryptorrhynchus* (ESCR and EBRA). First, these two related species have the same stimulus-sensing region (the metaventrite), which is sensitive to touch and their TI behaviour was affected by light, sound and temperature. Second, our first investigation of their behaviour and metabolism revealed that only the duration of TI varied greatly between species and individuals and, therefore, it was a more important index for evaluating TI behaviour under different environmental conditions. When comparing these results with those of previous studies on TI in *T. castaneum*, *C. formicarius* and other species (Konishi et al., 2020; Miyatake 2001), this investigation of the TI of ESCR and EBRA had referential value.

Because TI in ESCR and EBRA was induced by touching the metaventrite, we designed experiments to determine...
Fig. 5. Duration and frequency of TI recorded in the dark and light, different levels of sound and different temperatures. ESCR – *Eucryptorrhynchus scrobiculatus*; EBRA – *Eucryptorrhynchus brandti*. M – male; F – female. 5-1: duration of tonic immobility (TI) in light and dark conditions. Asterisks indicate significant differences for ESCR-F and ESCR-M. 5-2: frequency of TI under light and dark conditions. 5-3: duration of TI at different levels of sound. Asterisks indicate significant differences for EBRA-F and EBRA-M. 5-4: frequency of TI at different levels of sound. 5-5: duration of TI at different temperatures. 5-6: frequency of TI at different temperatures. Error bars – standard errors (SE). * P < 0.05.
whether body weight and sex affected TI, which is the case for *C. chinensis*, *C. maculatus* and *T. freemani* (Hozumi & Miyatake, 2005; Miyatake et al., 2008a; Konishi et al., 2020). In different weight groups and sexes the duration of TI in ESCR and EBRA in response to mechanical stimulation did not differ significantly. However, our results differed from those for *C. chinensis* and *C. maculatus*, which indicate that body size is significantly associated with the duration of TI and that it is significantly longer in females than in males (Hozumi & Miyatake, 2005). In some beetles, the intensity of death-feigning varies between species, and even within species, which confirms that death-feigning is more complex. Matsumura et al. (2016) and Miyatake et al. (2019) conclude that this difference in “depth of death feigning” is genetically determined. Our results indicate that a comprehensive understanding of the intensity of TI in ESCR and EBRA is worth further study.

Because previous studies report that light affects TI (Metspalu et al., 2002), we carried out experiments to determine whether light lengthens the duration of TI. Surprisingly, our results revealed that the duration of TI in ESCR males was significantly longer in light, while that of females was significantly decreased, but neither sex of EBRA responded to light. However, the duration of TI of nocturnal *C. formicarius* in light is longer, possibly because there is a high risk of daytime predation (Miyatake, 2001; Kuriwada et al., 2009). We suspect that the diurnal rhythm might play an important role in controlling the duration of TI. In addition, light stimuli might affect vision, the nervous system, or circadian rhythms and thereby act as a signal controlling the lengthening or shortening of the duration of TI (Wen et al., 2018). For example, the duration of TI in *Cathaica fasciola* increases as light intensity increases (Zhang et al., 2009). A possible explanation of the different effects of light on the two diurnal weevils (ESCR and EBRA) studied is that the diurnal rhythm and physiological differences between species modulate the light stimuli.

In most animals, auditory cues control the duration of TI (Humphreys & Ruxton, 2018). For instance, the duration of TI in domestic chickens (*G. gallus*) increased when exposed to specific alarm calls of 1 to 4 kHz (Pochron & Thompson, 2019). Our data revealed that low-frequency sound (2-kHz) significantly reduced the duration of TI in ESCR males and females, and in EBRA males. Only EBRA females were unaffected by sound. Because the hearing systems of prey alerts them to the presence of a predator, the interference of a response to sound was not considered in this study; the results of this study do not support the theory that sound is a danger signal that induces TI behaviour instead of warning prey to run away.

Optimal temperature is essential for survival, as it is involved in regulating physiological metabolism, energy trade-offs and behavioural patterns in insects (Zhao & Chen, 1980). When exposed to a low temperature (15°C) duration of TI in EBRA was more likely to be longer, which is similar to *C. fasciola*, *C. chinensis* and *C. maculatus* (Miyatake et al., 2008a; Zhang et al., 2009), in which low temperatures increase the duration of TI. However, in ESCR the duration TI at low (15°C) and high (32°C) temperatures was shorter, similar to previous results for mantises (Holmes, 1906). Our results indicate that variations in the duration of TI recorded in different temperature conditions might reflect differences in physiology and further study is needed to reveal the relationship between temperature and the physiology of TI.

Because metabolism is a component of environmental adaptation (Xu & An, 2002; Casas et al., 2015), TI intensity might be associated with metabolism (Brooks et al., 2011; Krams et al., 2014). Our results indicate that the MR of EBRA was greater than that of ESCR and TIMR declined to 76.90% in ESCR and 71.40% in EBRA. Similarly, in *L. decemlineata* the normal metabolic rate is about twice as high as during TI (Metspalu et al., 2002). This indicates that TI is not only a defence against predators, but that the low-energy consumption is physiologically determined.

Although the mechanisms regulating TI in insects are unknown, there is evidence that the sympathetic nervous system, parasympathetic nervous system (Klemm, 1977; Alboni et al., 2008; Giannico et al., 2014), or femoral chordotonal organs (Nishino & Sakai, 1996) may be involved. The brain is active during TI as the insect actively monitors the external environment (Alboni et al., 2008). For example, central nervous system processing remains intact during TI in chickens (Gentle et al., 1989). In addition, based on optogenetic and electrophysiological studies, the subcortical pathway in the SC-pulvinar-amygdala mediates TI mechanisms in mice (Wei et al., 2015; Munch et al., 2020). Importantly, the expression of dopamine-related genes in the tyrosine metabolism pathway of *T. castaneum* differ in populations selected for long and short duration of TI (Uchiyama et al., 2019; Konishi et al., 2020). Our study
also provides experimental and theoretical evidence supporting the need for further studies on the TI mechanism.

In conclusion, the TI behaviour of ESCR and EBRRIA in which low-energy consumption was regulated by light, sound and temperature, indicate that these two weeves are ideal research models for further studies on the ecological traits and physiological regulation of TI in all species.

ACKNOWLEDGEMENTS. This work was supported by the National Natural Science Foundation of China (32071774). We thank the Forest Quarantine Station in Lingwu city for providing the laboratory and equipment. We also thank the Institute of Zoology of the Chinese Academy of Sciences, including Q.S. Chi. W. Wang who helped us record the metabolic rate data.

REFERENCES

ACHAEMPONG S. & MITCHELL B.K. 2010: Quiescence in the colorado potato beetle, Leptinotarsa decemlineata. — Entomol. Exp. Appl. 82: 83–89.

ALBION P., ALBION M. & BERTEORELLE G. 2000: The origin of vas-ovagal syncope: to protect the heart or to escape predation? — Clin. Auton. Res. 18: 170–178.

BROOKS E.J., SLOMAN K.A., LASSA S., HASSAN H.L., DANYLCHUK A.J., COOK S.J. & SUSKI C.D. 2011: The stress physiology of extended duration tonic immobility in the juvenile lemon shark, Negaprion brevirostris (Poey, 1868). — J. Exp. Mar. Biol. Ecol. 409: 351–360.

CASAS J., BODY M., GUTZWILLER F., GIRON D., LAZZARI C.R., PIN-CEBOURDE S., RICHARD R. & LANDRES A.L. 2015: Increasing metabolic rate despite declining body weight in an adult parasitoid wasp. — J. Insect Physiol. 79: 27–35.

CARUSO T.E. 2016: Body size, not maladaptive gene flow, explains death-feigning behaviour in Timema cristinae stick insects. — Evol. Ecol. 30: 623–634.

GENTLE M.J., JONES R.B. & WOOLEY S.C. 1989: Physiological changes during tonic immobility in Gallus gallus var domestici. — Physiol. Behav. 46: 843–847.

GIANNICO A.T., LIMA L., LANGE R.R., FROES T.R. & MONTANIFERREIRA F. 2014: Proven cardiac changes during death-feigning (tonic immobility) in rabbits (Oryctolagus cuniculus). — J. Compar. Physiol. (A) 200: 305–310.

GUO W.J., YANG K.L., ZHANG G.Y. & WEN J.B. 2019: Supplementary nutrition of Eucryptorrhynchus brandti (Coleoptera: Curculionidae: Cryptorrhynchiinae): effect of Allianthus altissima host tissues on ovary maturation and oviposition. — Environ. Entomol. 48: 953–960.

HERRECK N.J., SALOM S.M., KOK L.T. & MCAFAY T.J. 1938: Life history, development, and rearing of Eucryptorrhynchus brandti (Coleoptera: Curculionidae) in quarantine. — Ann. Entomol. Soc. Am. 104: 718–725.

HOLMES S.J. 1906: Death-feigning in Ranatra. — J. Compar. Neurol. Psychol. 16: 200–216.

HOZUMI N. & MIYATAKE T. 2005: Body-size dependent difference in death-feigning behavior of adult Callosobruchus chinensis. — J. Insect Behav. 18: 557–566.

HUMPHREYS R.K. & RUXTON G.D. 2018: A review of thanatosis (death feigning) as an anti-predator behaviour. — Behav. Ecol. Sociobiol. 72: 22, 16 pp.

JI Y.C., GAO P., ZHANG G.Y., WEN C. & WEN J.B. 2017: Micro-habitat niche differentiation contributing to coexistence of Eucryptorrhynchus scrobiculatus Motschulsky and Eucryptorrhynchus brandti (Harold). — Biocontr. Sci. Technol. 27: 1180–1194.

KLEMM W.R. 1977: Identity of sensory and motor systems that are critical to the immobility reflex (“Animal Hypnosis”). — Psychol. Rec. 27: 145–159.

KONISHI K., MATSUMURA K., SAKUNO W. & MIYATAKE T. 2020: Death feigning as an adaptive anti-predator behaviour: Further evidence for its evolution from artificial selection and natural populations. — J. Evol. Biol.

KRAMS I., KIVULENIECE I., KUUSIK A., KRAMA T., FREEBERRY T.M., MAND R., IVASCOVA L., RANTALA M.J. & MAND M. 2014: High repeatability of anti-predator responses and resting metabolic rate in a beetle. — J. Insect Behav. 27: 57–66.

KURINOWA T., KUMANO N., SHIMOMOTO K. & DAI H. 2009: Copulation reduces the duration of death-feigning behaviour in the sweet potato weevil, Cylas formicarius. — Anim. Behav. 78: 1145–1151.

LI H.J., ZHANG G.Y., JI Y.C. & WEN J.B. 2019: Effects of starvation on death-feigning in adult Eucryptorrhynchus brandti (Coleoptera: Curculionidae). — Ethology 125: 645–651.

LIMA S.L. 1998: Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. — Adv. Study Behav. 27: 215–290.

LITTLE H.F. 1962: Reactions of the honey bee, Apis mellifera L., toortifial sounds and vibrations of known frequencies. — Ann. Entomol. Soc. Am. 55: 82–89.

LOU D., XU X., LI J., ZHOU H., LIU X., LI Q. & YU D. 2013: Acoustic characteristics and their comparison of six species of wood borers. — Plant Quarant. 27: 6–10.

MATSUMURA K. & MIYATAKE T. 2019: Influence of artificial selection for duration of death feigning on pre-and post-copulatory traits in male Tribolium castaneum. — J. Ethol. 37: 265–270.

MATSUMURA K., Sasaki K. & MIYATAKE T. 2016: Correlated responses in death-feigning behavior, activity, and brain biogenic amine expression in red flour beetle Tribolium castaneum strains selected for walking distance. — J. Ethol. 34: 97–105.

METSPALU L., KUUSIK A. & HRESAK K. 2002: Tonic immobility in adult Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) evoked by mechanical and optical stimuli. — Eur. J. Entomol. 99: 215–219.

MICHIELSEN A. 1992: Hearing and sound communication in small animals: evolutionary adaptations to the laws of physics. In Webster D.B., Fay R.R. & Popper A.N. (eds): The Evolutionary Biology of Hearing. Springer, New York, pp. 61–77.

MIYATAKE T. 2001: Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Cylindridae). — J. Insect Behav. 14: 421–432.

MIYATAKE T., OKADA K. & HARANO T. 2008a: Negative relationship between ambient temperature and death-feigning intensity in adult Callosobruchus maculatus and Callosobruchus chinensis. — Physiol. Entomol. 33: 83–88.

MIYATAKE T., TACHIZU K., SASAKI K., OKADA K., KATAYAMA K. & MORIYA S. 2008b: Pleiotropic antipredator strategies, fleeing and feigning death, correlated with dopamine levels in Tribolium castaneum. — Anim. Behav. 75: 113–121.

MIYATAKE T., MATSUMURA K., KITAYAMA R., OTUKI K., YUHAI J., FUJISAWA R. & NAGAYA N. 2019: Arousal from tonic immobility by vibration stimuli. — Behav. Genet. 49: 478–483.

MÜNCH D., EZZA N.G., FRANCISCO A.P., TASTEKIN I. & RIBEIRO C. 2020: Nutrient homeostasis – translating internal states to behavior. — Cur. Opin. Neurol. 60: 67–75.

NAKAYAMA S. & MIYATAKE S. 2009: Positive genetic correlations between life-history traits and death-feigning behavior in adzuki bean beetle (Callosobruchus chinensis). — Evol. Ecol. 23: 711–722.

NISHINO H. & SAJAI M. 1996: Behaviorally significant immobile state of so-called thanatosis in the cricket Gryllus bimaculatus
DeGeer: its characterization, sensory mechanism and function. — *J. Comp. Physiol. (A)* **179**: 613–624.

Ohno T. & Miyatake T. 2007: Drop or fly? Negative genetic correlation between death-feigning intensity and flying ability as alternative anti-predator strategies. — *Proc. R. Soc. (B)* **274**: 555–560.

Pochron S. & Thompson R. 2019: Sound repetition rate controls the duration of tonic immobility in chicks (*Gallus gallus*). — *Behav. Process.* **166**: 103901, 9 pp.

Ritter C., Mol F.D., Richter E., Struck C. & Katroshchan K.U. 2016: Antipredator behavioral traits of some agriotes wireworms (Coleoptera: Elateridae) and their potential implications for species identification. — *J. Insect Behav.* **29**: 214–232.

Ruxton G. 2006: Behavioural ecology: grasshoppers don’t play possum. — *Nature* **440**: 880.

Ruxton G.D., Allen W.L., Sheerratt T.N. & Speed M.P. 2018: *Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry*. Oxford University Press, New York, 304 pp.

Uchiyama H., Sasaki K., Hinowasa S., Tanaka K., Matsumura K., Yama S. & Miyatake T. 2019: Transcriptomic comparison between beetle strains selected for short and long durations of death feigning. — *Sci. Rep.* **9**: 14001, 9 pp.

Wei P., Nan L., Zhang Z., Liu X., Tang Y.Q., He X.B., Wang L., Wu B., Zheng Z., Liu Y. & Li J. 2015: Processing of visually evoked innate fear by a non-canonical thalamic pathway. — *Nat. Commun.* **6**: 6756, 13 pp.

Wen X.J., Zhang G.Y., Ji Y.C. & Wen J.B. 2017: Effect of variable temperature on the development of *Eucryptorrhynchus brandti* (Coleoptera: Curculionidae). — *Environ. Entomol.* **46**: 1151–1155.

Wen C., Ji Y.C., Zhang G.Y., Tan S.B. & Wen J.B. 2018: Phototactic behaviour of *Eucryptorrhynchus scrobiculatus* and *E. brandti* (Coleoptera: Curculionidae) adults. — *Biocontr. Sci. Technol.* **28**: 544–561.

Xu J. & An S. 2002: The omparison study on the resting metabolic rate of mandarin vole (*Microtus mandarinus*). — *J. Qufu Norm. Univ. (Nat. Sci.)* **28**: 83–85.

Yang K.L., Wen X.J., Ren Y. & Wen J.B. 2019: Novel trunk trap net designs for the control of *Eucryptorrhynchus scrobiculatus* (Coleoptera: Curculionidae). — *Pest Manag. Sci.* **75**: 2618–2626.

Zhang M.Z., Zong Y., Wang X.Y., Cai X. & Zhang Z.Y. 2009: Study on the death-feigning behavior of the harmful mollusk, *Cathaica fasciola* (Draparnaud, 1801). — *Sci. Agric. Sin.* **42**: 3914–3921.

Zhao Y. & Chen Y. 1980: *Economic Insect Fauna of China. Vol. 20. Coleoptera: Curculionidae I*. China Science Press, Beijing, xi + 184 pp. [in Chinese].

Received March 16, 2021; revised and accepted September 15, 2021
Published online October 11, 2021