Maximal Unitarity at Two Loops

Kasper J. Larsen
Nikhef

Durham, LMS Symposium
Polylogarithms as a Bridge between Number Theory and Particle Physics

July 12, 2013

Based on 1108.1180, 1205.0801, 1208.1754
(with S. Caron-Huot, H. Johansson and D. Kosower)
Part 1: Introduction

- motivations for studying amplitudes
- modern methods for computation at one loop
The searches at LHC for physics beyond the Standard Model require a detailed understanding of background, especially QCD, processes.
Examples of signals and QCD backgrounds

Signal: An example of a Higgs boson process:

\[\begin{array}{c}
g \\
H \\
g
\end{array} \rightarrow \begin{array}{c}
W^- \\
\mu^- \\
\bar{\nu}_\mu \\
W^+ \\
q \\
\bar{q} \} 2 \text{ jets}
\end{array} \]

Background: An example of a QCD background process:

\[\begin{array}{c}
g \\
W^- \\
g
\end{array} \rightarrow \begin{array}{c}
\bar{d} \\
\mu^- \\
\bar{\nu}_\mu \\
u \} 2 \text{ jets}
\end{array} \]
In fact, there are two important motivations:

- **LHC phenomenology**
 Quantitative estimates of QCD background: needed for precision measurements, uncertainty estimates of NLO calculations, and reducing renormalization scale dependence.

- **Reveal fascinating structure in QFT**
 For $\mathcal{N} = 4$ SYM: hidden symmetries (integrability \rightarrow non-perturbative solution) and new dualities (to Wilson loops and correlators).
 For $\mathcal{N} \leq 4$: connection to multivariate complex analysis and algebraic geometry.
In practice, the Feynman diagram prescription produces a very large number of terms: e.g. for the five-gluon tree-level amplitude

\[k_1 \cdot k_4 \varepsilon_2 \cdot k_1 \varepsilon_1 \cdot \varepsilon_3 \varepsilon_4 \cdot \varepsilon_5 \]
Feynman diagrams hide simplicity

Yet, the final result for five-gluon tree-level amplitude is simple,

\[A_{5}^{\text{tree}}(1^\pm, 2^+, 3^+, 4^+, 5^+) = 0 \]

\[A_{5}^{\text{tree}}(1^-, 2^-, 3^+, 4^+, 5^+) = \frac{i\langle 1 2 \rangle^4}{\langle 1 2 \rangle \langle 2 3 \rangle \langle 3 4 \rangle \langle 4 5 \rangle \langle 5 1 \rangle}. \]

This strongly suggests there should exist better methods for computing amplitudes.

At one-loop level, unitarity has proven very successful, allowing e.g. the calculation of \(qg \rightarrow W + \) multi-jets.

This talk is about extending generalized unitarity (systematically) to two loops.
Integral reductions and integral basis

Feynman rules \rightarrow numerator powers in integrals

At one loop, all such integrals can be expanded in a basis.

For example, consider the box insertion

\[\ell \cdot k_4 = \frac{1}{2} \left((\ell + k_4)^2 - \ell^2 \right) \]

This can be reduced to

\[\begin{array}{c}
2 \\
\ell \\
3 \\
4
\end{array} = \begin{array}{c}
2 \\
\ell \\
3 \\
4
\end{array} \]
Integral reductions and integral basis

Feynman rules \(\rightarrow \) \textit{numerator powers in integrals}

At one loop, all such integrals can be expanded in a \textit{basis}.

For example, consider the box insertion

\[
\begin{align*}
\ell \cdot k_4 &= \frac{1}{2} \left((\ell + k_4)^2 - \ell^2 \right),
\end{align*}
\]

By using the identity \(\ell \cdot k_4 = \frac{1}{2} \left((\ell + k_4)^2 - \ell^2 \right) \), this can be reduced to
Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

\[A^{(1)} = c_1 + c_2 + c_3 + c_4 + \text{rational terms} \]
The modern unitarity approach (1/2)

Use integral reductions to write the one-loop amplitude as a linear combination of \textit{basis integrals}

\[A^{(1)} = c_1 + c_2 + c_3 + c_4 \]

\[\text{+ rational terms} \]

To determine \(c_i \), apply cuts \(\frac{1}{(\ell - K)^2} \longrightarrow \delta((\ell - K)^2) \) to both sides.
The modern unitarity approach (1/2)

Use integral reductions to write the one-loop amplitude as a linear combination of basis integrals

\[A^{(1)} = c_1 + c_2 + c_3 + c_4 \]

+ rational terms

To determine \(c_i\), apply cuts \(\frac{1}{(\ell - K)^2} \rightarrow \delta((\ell - K)^2)\) to both sides.

Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:
The modern unitarity approach (1/2)

Use integral reductions to write the one-loop amplitude as a linear combination of *basis integrals*

\[A^{(1)} = c_1 + c_2 + c_3 + c_4 \]

+ rational terms

To determine \(c_i \), apply cuts \(\frac{1}{(\ell - K)^2} \rightarrow \delta((\ell - K)^2) \) to both sides. Applying a quadruple cut [Britto, Cachazo, Feng] isolates a single box integral:

\[\frac{1}{2} \sum_{\text{kin sols } j=1}^{4} A_j^{\text{tree}} \]
A triple cut will leave $4 - 3 = 1$ free complex parameter z. Parametrizing the loop momentum,

$$\ell^\mu = \alpha_1 K_1^{b\mu} + \alpha_2 K_2^{b\mu} + \frac{z}{2} \langle K_1^{-} | \gamma^\mu | K_2^{-} \rangle + \frac{\alpha_4(z)}{2} \langle K_2^{-} | \gamma^\mu | K_1^{-} \rangle$$

one obtains an explicit formula for the triangle coefficient [Forde]
Part 2: From trees to two loops

- maximal cuts at two loops
- constructing two-loop amplitudes out of tree-level data
- elliptic integrals in $\mathcal{N} = 4$ SYM amplitudes
Expand the massless 4-point two-loop amplitude in a basis, e.g.

\[A_{4}^{2-\text{loop}} = c_{1}(\epsilon) + c_{2}(\epsilon) + \text{ints with fewer props} + \text{rational terms} \]
Expand the massless 4-point two-loop amplitude in a basis, e.g.

\[A^{2-\text{loop}}_4 = c_1(\epsilon) + c_2(\epsilon) \]

Compute \(c_1(\epsilon) \) and \(c_2(\epsilon) \) according to

\[\prod_j A^\text{tree}_j \rightarrow \text{MACHINE} \rightarrow c_1(\epsilon) \text{ and } c_2(\epsilon) \]
Expand the massless 4-point two-loop amplitude in a basis, e.g.

\[A_{4}^{2\text{-loop}} = c_{1}(\epsilon) + c_{2}(\epsilon) \]

Compute \(c_{1}(\epsilon) \) and \(c_{2}(\epsilon) \) according to

The machinery: \textit{contour integrals} \(\oint_{\Gamma_{j}}(\cdots) \)

The philosophy: basis integral \(I_{j} \leftrightarrow \text{unique } \Gamma_{j} \text{ producing } c_{j} \)
The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

\[
\int d^4 p \, d^4 q \prod_{i=1}^{7} \frac{1}{\ell_i^2} \quad \rightarrow \quad \int d^4 p \, d^4 q \prod_{i=1}^{7} \delta^\mathbb{C}(\ell_i^2) = \oint_\Gamma \frac{dz}{z(z + \chi)},
\]

produces (cf. [Buchbinder, Cachazo]), setting \(\chi \equiv \frac{t}{s} \),

\[
\int \frac{dz}{z(z + \chi)}.
\]

a contour integral in the complex plane.
The anatomy of two-loop maximal cuts

Cutting all seven visible propagators in the double-box integral,

\[
\int d^4 p d^4 q \frac{1}{\ell_i^2} \prod_{i=1}^{7} \rightarrow \int d^4 p d^4 q \prod_{i=1}^{7} \delta^C(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z + \chi)},
\]

produces (cf. [Buchbinder, Cachazo]), setting \(\chi \equiv \frac{t}{s} \),

\[
\int d^4 p d^4 q \prod_{i=1}^{7} \frac{1}{\ell_i^2} \rightarrow \int d^4 p d^4 q \prod_{i=1}^{7} \delta^C(\ell_i^2) = \oint_{\Gamma} \frac{dz}{z(z + \chi)},
\]

a contour integral in the complex plane.

Jacobian poles \(z = 0 \) and \(z = -\chi \): composite leading singularities encircle \(z = 0 \) and \(z = -\chi \) with \(\Gamma = \omega_1 C_\epsilon(0) + \omega_2 C_\epsilon(-\chi) \)

\(\rightarrow \) freeze \(z \) ("8th cut")
Choosing contours: *die Qual der Wahl*

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \longrightarrow 8 independent leading singularities
Choosing contours: *die Qual der Wahl*

Six inequivalent classes of solutions to on-shell constraints

4 massless external states \rightarrow 8 independent leading singularities

How do we select contours within this variety of possibilities?
Principle for selecting contours

To fix the contours, insist that

vanishing Feynman integrals must have vanishing heptacuts.

This ensures that

\[I_1 = I_2 \implies \text{cut}(I_1) = \text{cut}(I_2). \]
Principle for selecting contours

To fix the contours, insist that

\[\text{vanishing Feynman integrals must have vanishing heptacuts.} \]

This ensures that

\[I_1 = I_2 \implies \text{cut}(I_1) = \text{cut}(I_2). \]

Origin of terms with vanishing $\mathbb{R}^D \times \mathbb{R}^D$ integration:

reduction of Feynman diagram expansion to a \textit{basis of integrals}

(including use of integration-by-parts identities).

Remarkable simplification:

- 4 massless external states: \[22 \longrightarrow 2 \text{ double-box integrals} \]
- 5 massless external states: \[160 \longrightarrow 2 \text{ “turtle-box” integrals} \]
- 5 massless external states: \[76 \longrightarrow 1 \text{ pentagon-box integral} \]
There are two classes of constraints on Γ's:

1) Levi-Civita integrals. For example,

\[
\varepsilon(p, 1, 2, 4) = 0 \quad \implies \quad \varepsilon(p, 1, 2, 4) = 0
\]
There are two classes of constraints on Γ’s:

1) Levi-Civita integrals. For example,

\[
\varepsilon(p, 1, 2, 4) = 0 \quad \Rightarrow \quad \varepsilon(p, 1, 2, 4) = 0
\]

2) Integration by parts (IBP) identities must be preserved. For example,

\[
\frac{\chi}{8s_{12}} - \frac{3}{4}s_{12} + \cdots \quad \Rightarrow \quad \frac{\chi}{8s_{12}} - \frac{3}{4}s_{12} + \cdots
\]
The constraints in the case of four massless external momenta:

\[
\begin{align*}
\omega_1 - \omega_2 &= 0 \\
\omega_3 - \omega_4 &= 0 \\
\omega_5 - \omega_6 &= 0 \\
\omega_7 - \omega_8 &= 0 \\
\omega_3 + \omega_4 - \omega_5 - \omega_6 &= 0 \\
\omega_1 + \omega_2 - \omega_5 - \omega_6 + \omega_7 + \omega_8 &= 0
\end{align*}
\]

leaving \(8 - 4 - 2 = 2\) free winding numbers.
Master contours: the concept

Going back to the two-loop basis expansion

\[A_{4}^{2\text{-loop}} = c_{1}(\epsilon) + c_{2}(\epsilon) \]

and applying a heptacut one finds

\[\prod_{j=1}^{6} A_{j}^{\text{tree}} = c_{1}(\epsilon) + c_{2}(\epsilon) \]

+ ints with fewer props
+ rational terms
Master contours: the concept

Going back to the two-loop basis expansion

\[A_4^{2-\text{loop}} = c_1(\epsilon) + c_2(\epsilon) \]

and applying a heptacut one finds

\[\prod_{j=1}^{6} A_j^{\text{tree}} = c_1(\epsilon) + c_2(\epsilon) \]

Exploit free parameters \(\rightarrow \exists \) contours with

\[P_1 : (\text{cut}(I_1), \text{cut}(I_2)) = (1, 0) \]
\[P_2 : (\text{cut}(I_1), \text{cut}(I_2)) = (0, 1) . \]

We call such \(P_i \) master contours.
Master contours: results

With four massless external states,

\[
c_1 = \frac{i\chi}{8} \int_{P_1} \frac{dz}{z(z + \chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z)
\]

\[
c_2 = -\frac{i}{4s_{12}} \int_{P_2} \frac{dz}{z(z + \chi)} \prod_{j=1}^{6} A_{j}^{\text{tree}}(z)
\]

With our choice of basis integrals, the \(P_i \) are

\[n = \text{winding number} \]
Characterizing the on-shell solutions

There are six solutions for the heptacut loop momenta

Set \(k_i^\mu = \lambda_i \sigma^\mu \tilde{\lambda}_i \) and classify each vertex according to

\[
\lambda_a \propto \lambda_b \propto \lambda_c \quad (\text{MHV}) \quad \rightarrow \quad \bullet
\]

\[
\tilde{\lambda}_a \propto \tilde{\lambda}_b \propto \tilde{\lambda}_c \quad (\text{MHV}) \quad \rightarrow \quad \circ
\]
heptacut solutions \rightarrow Riemann spheres

\[c_\triangle = \oint_{C_\epsilon(\infty)} \frac{dz}{z} \prod_{j=1}^{3} A^{\text{tree}}_j(z) \]

points $\in S_i \cap S_j \rightarrow$ no notion of \bullet or $\circ \rightarrow$ resp. prop. is soft
also: $S_i \cap S_j \subset \{\text{leading singularities}\}$

two-loop leading singularities \rightarrow IR singularities of integral
Observation: leading-singularity residues cancel between virtual (a) and real (b) contributions to cross section in complete analogy with the KLN theorem on IR cancelations.
Classification of heptacut solutions

Arbitrary # of external states. Define

\[
\mu_i \equiv \begin{cases}
 m & \text{if } i^{th} \text{ vertical prop. } \in 3\text{-pt. vertex} \\
 M & \text{if } i^{th} \text{ vertical prop. } \notin 3\text{-pt. vertex}
\end{cases}
\]

The solution to \(\ell_i^2 = 0, \ i = 1, \ldots, 7 \) is

- case 1 (M,M,M,M): 1 torus
- case 2 (M,M,m,m) etc.: 2 \(\mathbb{CP}^1 \) with \(S_i \leftrightarrow \) distrib. of \(\bullet, \bigcirc \)
- case 3 (M,m,m,m) etc.: 4 \(\mathbb{CP}^1 \) with \(S_i \leftrightarrow \) distrib. of \(\bullet, \bigcirc \)
- case 4 (m,m,m,m): 6 \(\mathbb{CP}^1 \) with \(S_i \leftrightarrow \) distrib. of \(\bullet, \bigcirc \)
Uniqueness of master contours

Limits $\mu_i \to m \implies$ chiral branchings: torus $\mu_3 \to m$

Each torus-pinching: new IR-pole + new residue thm
\[\implies \# \text{ of lead. sing. same in all cases} \]

In all cases:
\[\# \text{ of master } \Gamma\text{'s} = \# \text{ of basis integrals} \]
\[\implies \text{all linear relations are preserved} \]
\[\implies \text{perfect analogy with one-loop generalized unitarity} \]
Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.
The IBP constraints are invariant under flips.

Reverse logic \rightarrow demand constraints to be invariant under flips and π-rotations.

$\{M,m,m\}$ case: choose basis, e.g. $\omega_{1,2,5,6} = 0$

$r_1^{(b)}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(b)}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) = 0$

where, in fact, $r_1^{(b)} = r_2^{(b)} \neq 0$.
Symmetries and systematics of IBP constraints

The IBP constraints are invariant under flips.

Reverse logic \rightarrow demand constraints to be invariant under flips and π-rotations.

\{M,m,m\} case: choose basis, e.g. $\omega_{1,2,5,6} = 0$

\[r_1^{(b)}(\omega_3 + \omega_4 + \omega_7 + \omega_8) + r_2^{(b)}(\omega_9 + \omega_{10} - \omega_{11} - \omega_{12}) = 0 \]

where, in fact, \(r_1^{(b)} = r_2^{(b)} \neq 0 \).

\{m,m,m\} case:

1) constraint from \{M,m,m\} case inherited.

2) new flip symmetry \rightarrow new constraint:

\[r_1^{(c)}(\omega_3 + \omega_4) + r_2^{(c)}(\omega_{11} + \omega_{12} - \omega_{13} - \omega_{14}) = 0 \]

as expressed in the basis $\omega_{1,2,5,6,7,8} = 0$.

In fact, \(r_1^{(c)} = -r_2^{(c)} \neq 0 \).
Integrals with fewer propagators

Solution to slashed-box on-shell constraints:

On-shell constraints leave $8 - 5 = 3$ free complex parameters.

Multivariate residues depend on the order of integration.

Example: $f(z_i) = \frac{z_1}{z_2(a_1z_1 + a_2z_2)(b_1z_1 + b_2z_2)}$. Residues at $(z_1, z_2) = (0, 0)$:

$$
\frac{1}{(2\pi i)^2} \int_{C_\epsilon(0) \times C_\epsilon'(0)} dz_1 \, dz_2 \, f(z_i) = \frac{1}{a_1 b_1}
$$

$$
\frac{1}{(2\pi i)^2} \int_{C_\epsilon(0) \times C_\epsilon'(0)} dz_1 \, dz_2 \, f(z_i) = \frac{a_2}{a_1(a_1 b_2 - a_2 b_1)}
$$

Kasper J. Larsen Nikhef Maximal Unitarity at Two Loops
Elliptic curves vs. polylogs

\[
\begin{align*}
\text{sunrise integral not expressible through polylogs} & \quad \rightarrow \quad \text{neither should 10-point integral be} \\
\text{Analytic expression} & \quad \leftrightarrow \quad \text{maximal cut?} \\
\text{Wilson-loop amplitude correspondence} & \quad \rightarrow \quad \text{Maximal Unitarity at Two Loops}
\end{align*}
\]

\[\mathcal{N} = 4 \ \text{SYM:} \quad A^{(2)}(10-\text{scalar } N^3\text{MHV}) \quad \infty\]
Conclusions and outlook

- First steps towards fully automatized two-loop amplitudes
- Integration-by-parts identities \rightarrow reduce \# of Feynman integrals by factor of 10-100

- Two-loop master contours are unique
 \rightarrow perfect analogy with one-loop unitarity

- Classification of maximal-cut solutions

- Maximal cuts contain vital information:
 pinches/punctures \rightarrow IR/UV divergences
 branch cuts \rightarrow non-polylogs in uncut integral

- Underlying algebraic geometry \rightarrow deeper understanding of maximal cuts (i.e., contour constraints)
Integrals and integral bases

- ideal two-loop basis: chiral integrals
- evaluate 4-point chiral integrals analytically
The two-loop integral coefficients c_i have $O(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.
The two-loop integral coefficients c_i have $\mathcal{O}(\epsilon)$ corrections. Important to know, as the integrals have poles in ϵ.

IR-finite integrals $\rightarrow \mathcal{O}(\epsilon)$ corrections not needed for amplitude

Candidates: num. insertions $\rightarrow 0$ in collinear int. regions, e.g.

\[
I_{++} \equiv I\left[1\ell_1|2\rangle\langle 3|\ell_2|4\right] \times [23\langle 14\rangle
\]

\[
I_{+-} \equiv I\left[1\ell_1|2\rangle\langle 4|\ell_2|3\right] \times [24\langle 13\rangle
\]

Essentially the chiral integrals of [Arkani-Hamed et al.]

I_{++} and I_{+-} lin. independent \rightarrow use in any gauge theory

Philosophy: maximally IR-finite basis

\rightarrow minimize need for cuts in $D = 4 - 2\epsilon$
$I_{+\pm}$ are finite \longrightarrow can be computed in $D = 4$

1) Feynman parametrize

$$I_{++} = -\chi^2 \left(1 + (1 + \chi) \frac{\partial}{\partial \chi} \right) I_1(\chi) \quad \text{and} \quad I_{+-} = -(1 + \chi)^2 \left(1 + \chi \frac{\partial}{\partial \chi} \right) I_1(\chi)$$

where

$$I_1(\chi) = \int d^3a \, d^3b \, dc \, c \, \delta(1 - c - \sum_i a_i - \sum b_i) \left(\sum_i a_i \sum b_i + c(\sum_i a_i + \sum b_i) \right)^{-1}$$

$$\frac{1}{\left(a_1 a_3 (c + \sum_i b_i) + (a_1 b_4 + a_3 b_6 + a_2 b_5 \chi) c + b_4 b_6 (c + \sum_i a_i) \right)^2}$$

2) “Projectivize”

$$I_1(\chi) = 6 \int_1^\infty dc \, \int_0^\infty d^7(a_1 a_2 a_3 a_4 b_1 b_2 b_3 b_4) \frac{1}{\text{vol(GL(1))}} \frac{1}{(cA^2 + A.B + B^2)^4}$$
3) Obtain symbol

Integrate projective form one variable at the time, at the level of the symbol.

\[S[l_1(\chi)] = \frac{2}{\chi} [\chi \otimes \chi \otimes (1 + \chi) \otimes (1 + \chi)] - \frac{2}{1 + \chi} [\chi \otimes \chi \otimes (1 + \chi) \otimes \chi] \]

4) “Integrate” symbol, using

a) \(l_1 \) has transcendentality 4 (fact, not a conjecture)
b) \(l_1 \) has no \(u \)-channel discontinuity
c) Regge limits:

\[
l_1(\chi) \to \frac{\pi^2}{6} \log^2 \chi + \left(4\zeta(3) - \frac{\pi^2}{3}\right) \log \chi + O(1) \quad \text{as} \quad \chi \to 0
\]

\[
l_1(\chi) \to 6\zeta(3) \frac{\log \chi}{\chi} + O(\chi^{-1}) \quad \text{as} \quad \chi \to \infty
\]
In conclusion, for the “chiral” integrals

\[I_{++} \equiv I \left[[1|\ell_1|2]\langle 3|\ell_2|4] \right] \times [2\ 3]\langle 1\ 4] \]
\[I_{+-} \equiv I \left[[1|\ell_1|2]\langle 4|\ell_2|3] \right] \times [2\ 4]\langle 1\ 3] \]

we find the results

\[I_{++}(\chi) = 2H_{-1,-1,0,0}(\chi) - \frac{\pi^2}{3} \text{Li}_2(-\chi) \]
\[+ \left(\frac{\pi^2}{2} \log(1+\chi) - \frac{\pi^2}{3} \log \chi + 2\zeta(3) \right) \log(1+\chi) - 6\chi\zeta(3) \]

\[I_{+-}(\chi) = 2H_{0,-1,0,0}(\chi) - \pi^2 \text{Li}_2(-\chi) - \frac{\pi^2}{6} \log^2 \chi - 4\zeta(3) \log \chi - \frac{\pi^4}{10} - 6(1+\chi)\zeta(3) \]

Actual chiral integrals: transcendentality-breaking terms cancel.