Existence and multiplicity of solutions for a nonlinear Schrödinger equation with non-local regional diffusion

Claudianor O. Alves
Universidade Federal de Campina Grande
Unidade Acadêmica de Matemática
CEP: 58429-900 - Campina Grande - PB, Brazil
calves@mat.ufcg.edu.br

César E. Torres Ledesma
Departamento de Matemáticas,
Universidad Nacional de Trujillo,
Av. Juan Pablo II s/n. Trujillo-Perú
ctl576@yahoo.es

Abstract
In this article we are interested in the following nonlinear Schrödinger equation with non-local regional diffusion

\[(-\Delta)_{\phi_{\epsilon}}^\alpha u + u = f(u) \quad \text{in} \quad \mathbb{R}^n, \quad u \in H^\alpha(\mathbb{R}^n), \quad (P_{\epsilon}) \]

where \(\epsilon > 0, 0 < \alpha < 1 \), \((-\Delta)_{\phi_{\epsilon}}^\alpha\) is a variational version of the regional Laplacian, whose range of scope is a ball with radius \(\rho_{\epsilon}(x) = \rho(\epsilon x) > 0 \), where \(\rho \) is a continuous function. We give general conditions on \(\rho \) and \(f \) which assure the existence and multiplicity of solution for \((P_{\epsilon})\).

MSC: 45G05, 35J60, 35B25

1 Introduction
The aim of this article is to study the nonlinear Schrödinger equation with non-local regional diffusion

\[(-\Delta)_{\phi_{\epsilon}}^\alpha u + u = f(u) \quad \text{in} \quad \mathbb{R}^n, \quad u \in H^\alpha(\mathbb{R}^n), \quad (P_{\epsilon}) \]

where \(\epsilon > 0, 0 < \alpha < 1, n \geq 2 \) and \(f : \mathbb{R} \to \mathbb{R} \) is a \(C^1 \) function. The operator \((-\Delta)_{\phi_{\epsilon}}^\alpha\) is a variational version of the non-local regional laplacian, with range of scope determined by function \(\rho_{\epsilon}(x) = \rho(\epsilon x) \), where \(\rho \in C(\mathbb{R}^n, (0, +\infty)) \).
As pointed out in [12], when studying the singularly perturbed equation (see equation (1.3) below), the scope function ρ, that describes the size of the ball of the influential region of the non-local operator, plays a key role in deciding the concentration point of ground states of the equation. Even though, at a first sight, the minimum point of ρ seems to be the concentration point, there is a non-local effect that needs to be taken in account.

Recently, a great attention has been focused on the study of problems involving the fractional Laplacian, from a pure mathematical point of view as well as from concrete applications, since this operator naturally arises in many different contexts, such as obstacle problems, financial mathematics, phase transitions, anomalous diffusions, crystal dislocations, soft thin films, semipermeable membranes, flame propagations, conservation laws, ultra relativistic limits of quantum mechanics, quasi-geostrophic flows, minimal surfaces, materials science and water waves. The literature is too wide to attempt a reasonable list of references here, so we derive the reader to the work by Di Nezza, Patalluci and Valdinoci [3], where a more extensive bibliography and an introduction to the subject are given.

In the context of fractional quantum mechanics, non-linear fractional Schrödinger equation has been proposed by Laskin [19], [20] as a result of expanding the Feynman path integral, from the Brownian-like to the Lévy-like quantum mechanical paths. In the last 10 years, there has been a lot of interest in the study of the fractional Schrödinger equation, see the works in [6], [7], [10], [16] and [25]. In a recent paper Felmer, Quaas and Tan [10] considered positive solutions of nonlinear fractional Schrödinger equation

$$(-\Delta)^\alpha u + u = f(x, u) \text{ in } \mathbb{R}^n.$$ (1.1)

They obtained the existence of a ground state by mountain pass argument and a comparison method devised by Rabinowitz in [28] for $\alpha = 1$. They analyzed regularity, decay and symmetry properties of these solutions. At this point it is worth mentioning that the uniqueness of the ground state of $(-\Delta)^\alpha u + u = u^{p+1}$ in \mathbb{R} for general $\alpha \in (0, 1)$, where $0 < p < 4\alpha/(1 - 2\alpha)$ for $\alpha \in (0, \frac{1}{2})$ and $0 < p < \infty$ for $\alpha \in [\frac{1}{2}, 1)$, was proved by Frank and Lenzmann in [9]. Recently, the result of [9] has been extended in any dimension when α is sufficiently close to 1 by Fall and Valdinoci in [8] and later for general $\alpha \in (0, 1)$ by Frank, Lenzmann and Silvestre in [13]. We also mention the work by Cheng [6], where the fractional Schrödinger equation

$$(-\Delta)^\alpha u + V(x)u = u^p \text{ in } \mathbb{R}^n$$ (1.2)

with unbounded potential V was studied. The existence of a ground state
of (1.2) is obtained by Lagrange multiplier method and the Nehari manifold method is used to obtain standing waves with prescribed frequency.

On the other hand, research has been done in recent years regarding regional fractional laplacian, where the scope of the operator is restricted to a variable region near each point. We mention the work by Guan [14] and Guan and Ma [15] where they study these operators, their relation with stochastic processes and they develop integration by parts formula, and the work by Ishii and Nakamura [17], where the authors studied the Dirichlet problem for regional fractional Laplacian modeled on the p-Laplacian.

Very recently Felmer and Torres [11, 12], considered positive solutions of nonlinear Schrödinger equation with non-local regional diffusion

\[\varepsilon^{2\alpha}(-\Delta)^{\alpha}_{\rho}u + u = f(u) \text{ in } \mathbb{R}^n, \quad u \in H^{\alpha}(\mathbb{R}^n). \]

(1.3)

The operator \((-\Delta)^{\alpha}_{\rho}\) is a variational version of the non-local regional Laplacian, defined by

\[\int_{\mathbb{R}^n} (-\Delta)^{\alpha}_{\rho}uv dx = \int_{\mathbb{R}^n} \int_{B(0, \rho(x))} \frac{[u(x+z) - u(x)][v(x+z) - v(x)]}{|z|^{n+2\alpha}} dz dx. \]

Under suitable assumptions on the nonlinearity \(f\) and the range of scope \(\rho\), they obtained the existence of a ground state by mountain pass argument and a comparison method devised by Rabinowitz in [28] for \(\alpha = 1\). Furthermore, they analyzed symmetry properties and concentration phenomena of these solutions. These regional operators present various interesting characteristics that make them very attractive from the point of view of mathematical theory of non-local operators.

Furthermore, in a recent paper [26], Pu, Liu and Tang have considered the problem

\[(-\Delta)^{\alpha}_{\rho}u + V(x)u = f(u, x) \text{ in } \mathbb{R}^n, \quad u \in H^{\alpha}(\mathbb{R}^n), \]

(1.4)

by assuming that \(\rho\) and \(V\) are bounded from below and there exist \(r_0 > 0\) such that for any \(M > 0\),

\[\lim_{|y| \to \infty} \text{meas}(\{x \in \mathbb{R}^n : |x - y| \leq r_0, \quad V(x) \leq M\}) = 0, \]

and the nonlinearity \(f(x, u)\) satisfy suitable condition, they have proved the existence of a nonnegative ground state solution for (1.4). Moreover, we should mention that the Dirichlet boundary value problem on a bounded domain with regional diffusion were investigated by the second author in [29].
Motivated by these previous results, in this paper we intend to consider new class of functions \(\rho \), more precisely we will consider the following classes:

Class 1: \(\rho \) is periodic

\((\rho_1) \) \(\rho \in C(\mathbb{R}^n, (0, +\infty)) \) and

\[0 < \rho_0 = \inf_{x \in \mathbb{R}^n} \rho(x). \]

\((\rho_2) \) \(\rho(x + T) = \rho(x), \ x \in \mathbb{R}^n, \ T \in \mathbb{Z}^n. \)

Class 2: \(\rho \) is asymptotically periodic

\((\rho_3) \) There is a continuous periodic function \(h_\infty : \mathbb{R}^n \to \mathbb{R} \) such that

\[0 < \rho_0 = \inf_{x \in \mathbb{R}^n} \rho(x) \leq \rho(x) \leq h_\infty(x) \ \forall x \in \mathbb{R}^n. \]

\((\rho_4) \)

\[|h_\infty(x) - \rho(x)| \to 0 \text{ as } |x| \to +\infty. \]

Class 3: \(\rho \) has finite global minimum points

The function \(\rho \) verifies \((\rho_1) \) and

\((\rho_5) \)

\[\rho_\infty = \lim_{|x| \to +\infty} \rho(x) > \rho(x), \ \forall x \in \mathbb{R}^n. \]

\((\rho_6) \) There are only \(l \) points \(a_1, a_2, \ldots, a_l \in \mathbb{R}^n \) such that

\[\rho(a_i) = \inf_{x \in \mathbb{R}^n} \rho(x), \ \forall i \in \{1, \ldots, l\}. \]

Without lost of generality, we will assume that

\[\inf_{x \in \mathbb{R}^n} \rho(x) = 1 \text{ and } a_1 = 0. \]

Associated with the function \(f \), we assume the following conditions:

\((f_1) \) \(f \in C^1(\mathbb{R}, \mathbb{R}) \) and

\[\lim_{|t| \to \infty} \frac{f(t)}{|t|^{q-1}} = 0, \ \lim_{|t| \to \infty} \frac{f(t)}{|t|^2} = +\infty \]

for some \(q \in (2, 2^*_\alpha) \), where \(2^*_\alpha = \frac{2n}{n-2\alpha}. \)
\((f_2)\) \(f(t) = o(|t|), \text{ as } |t| \rightarrow 0.\)

\((f_3)\) There exists \(\theta \geq 1\) such that \(\theta F(t) \geq F(\sigma t)\) for \(t \in \mathbb{R}\) and \(\sigma \in [0, 1]\), where

\[F(t) = f(t)t - 2F(t), \text{ where } F(t) = \int_0^t f(s)ds. \]

Now we are in a position to state our main existence theorem.

Theorem 1.1. Assume \(0 < \alpha < 1, n \geq 2\) and \((f_1) - (f_3)\). If \(\epsilon = 1\) and

\(i)\) \(\rho\) belongs to Class 1

or

\(ii)\) \(\rho\) belongs to Class 2 and \(f\) also satisfies

\[(f_4)\] \(\frac{f(t)}{|t|}\) is strictly increasing in \(t\),

then problem \((P_\epsilon)\) possesses a non-trivial weak solution. Moreover, if \(\rho\) belongs to Class 3 and \(f\) satisfies \((f_1), (f_2), (f_4)\) and

\[(f'_3)\] There exists \(\theta > 2\) such that

\[0 < \theta F(t) \leq f(t)t \text{ where } F(t) = \int_0^t f(s)ds,\]

then there is \(\epsilon_* > 0\), such that problem \((P_\epsilon)\) has at least \(l\) non-trivial weak solutions for \(\epsilon \in (0, \epsilon_*)\).

Before concluding this introduction, we would like point out that in the proof of Theorem 1.1 we adapt some ideas explored in Alves, Carrião & Miyagaki [2], Cao & Noussair [4], Cao & Zhou [5], Hsu, Lin & Hu [22], Lin [23] and Hu & Tang [24]. In the above papers the authors have studied the existence and multiplicity of solution for problems involving the Laplacian operator.

The plan of the paper is as follows: In Section 2, we review some properties of the function space which will be used. In Section 3, we prove some technical lemmas in while in Section 4 we prove the main result. Finally, in Section 5 we write a remark about the existence of ground state solution.

2 Preliminaries

The fractional Sobolev space of order \(\alpha\) on \(\mathbb{R}^n\) is defined by

\[H^\alpha(\mathbb{R}^n) = \left\{ u \in L^2(\mathbb{R}^n) : \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(z)|^2}{|x - z|^{n+2\alpha}} dz dx < \infty \right\}, \]
endowed with the norm
\[\|u\|_\alpha = \left(\int_{\mathbb{R}^n} |u(x)|^2 dx + \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(z)|^2}{|x - z|^{n+2\alpha}} dz dx \right)^{1/2}.\]

Given a function \(\rho\) as above, we define
\[\|u\|_2^2 = \int_{\mathbb{R}^n} \int_{\mathcal{B}(0,\rho(x))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |u(x)|^2 dx. \tag{2.1}\]

and the space
\[H^\alpha_{\rho}(\mathbb{R}^n) = \{ u \in L^2(\mathbb{R}^n) : \|u\|_2^2 < \infty \}.\]

We note that, if \(\rho\) satisfies \((\rho_1)\), there exists a constant \(\tilde{C} > 0\) such that
\[\|u\|_\alpha \leq \tilde{C} \|u\|.\]

This inequality implies that \(H^\alpha_{\rho}(\mathbb{R}^n) \hookrightarrow L^q(\mathbb{R}^n)\) is continuous for any \(q \in [2, 2^*_\alpha]\) and \(H^\alpha_{\rho}(\mathbb{R}^n) \hookrightarrow L^q_{\text{loc}}(\mathbb{R}^n)\) is compact for any \(q \in [2, 2^*_\alpha]\) (for more details, see [12]). From the above remark, we ensure that
\[H^\alpha(\mathbb{R}^n) = H^\alpha_{\rho}(\mathbb{R}^n) = H^\alpha_{\rho_1}(\mathbb{R}^n) = H^\alpha_{h_{\infty}}(\mathbb{R}^n).\]

Moreover, the norms \(\|\| \|_\alpha, \|\|_2\|\) and
\[\|u\|_\infty^2 = \int_{\mathbb{R}^n} \int_{\mathcal{B}(0, h_{\infty}(x))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |u(x)|^2 dx.\]

are equivalents on \(H^\alpha(\mathbb{R}^n)\).

We would like point out that if \(\rho\) is a \(\mathbb{Z}^n\)-periodic function and \(y \in \mathbb{Z}^n\), a simple change variable gives
\[\int_{\mathbb{R}^n} \int_{\mathcal{B}(0, \rho(x+y))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx = \int_{\mathbb{R}^n} \int_{\mathcal{B}(0, \rho(x))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx.\]

The above equality will be used frequently in our paper.

The following lemma is a version of the concentration compactness principle proved by Felmer and Torres [12].

Lemma 2.1. Let \(n \geq 2\). Assume that \(\{u_k\}\) is bounded in \(H^\alpha_{\rho}(\mathbb{R}^n)\) with
\[\lim_{k \to \infty} \sup_{y \in \mathbb{R}^n} \int_{\mathcal{B}(y,R)} |u_k(x)|^2 dx = 0,\]
for some \(R > 0\). Then \(u_k \to 0\) in \(L^q(\mathbb{R}^n)\) for \(q \in (2, 2^*_\alpha)\).
Associated with \((P_\epsilon)\) we have the functional \(I : H^\alpha_{\mu_\epsilon}(\mathbb{R}^n) \to \mathbb{R}\) defined by

\[
I(u) = \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{B(0,\rho_\epsilon(x))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |u(x)|^2 dx \right) - \int_{\mathbb{R}^n} F(u(x)) dx.
\]

(2.2)

From \((f_1)\), \(I \in C^1(H^\alpha_{\mu_\epsilon}(\mathbb{R}^n), \mathbb{R})\) with its Fréchet derivative given by

\[
I'(u)v = \int_{\mathbb{R}^n} \int_{B(0,\rho_\epsilon)} \frac{[u(x + z) - u(x)][v(x + z) - v(x)]}{|z|^{n+2\alpha}} + \int_{\mathbb{R}^n} u(x)v(x) dx
\]

- \int_{\mathbb{R}^n} f(u(x))v(x) dx,

for \(u, v \in H^\alpha_{\mu_\epsilon}(\mathbb{R}^n)\). Therefore, the critical points of \(I\) are weak solutions of \((P_\epsilon)\).

3 Technical lemmas

In this section, we are going to prove some technical results, for that purpose we take borrow some ideas of [12] and [21]. First all, we would like point out the following properties involving the function \(f\):

Property 3.1.

1. By condition \((f_1)\) and \((f_2)\), for any \(\tau > 0\) there exists a constant \(C_\tau > 0\) such that

\[
|F(t)| \leq \tau |t|^2 + C_\tau |t|^q.
\]

(3.1)

2. By \((f_3)\), we deduce that

\[
\mathcal{F}(t) = f(t)t - 2F(t) \geq 0, \text{ for all } t \in \mathbb{R}.
\]

Furthermore, if \(t > 0\) then we have

\[
\frac{\partial}{\partial t} \left(\frac{F(t)}{t^2} \right) = \frac{tf(t) - 2F(t)}{t^3} \geq 0.
\]

(3.2)

By \((f_2)\),

\[
\lim_{t \to 0^+} \frac{F(t)}{t^2} = 0.
\]

(3.3)

Next, from (3.2) and (3.3), we conclude that \(F(t) \geq 0\) for all \(t \in \mathbb{R}\).

Using the above properties we are ready to prove our technical results.
Lemma 3.1. The functional \(I \) satisfies the mountain pass geometry.

Proof. By (3.1),
\[
I(u) \geq \frac{1}{2} \|u\|^2 - \tau \|u\|_{L^2}^2 - C_\tau \|u\|_{L^q}^q
\geq \left(\frac{1}{2} - \tau C_2\right) \|u\|^2 - C_\tau C_q \|u\|^q.
\]

Let \(\tau > 0 \) small enough such that \(\frac{1}{2} - \tau C_2 > 0 \) and \(\|u\| = \zeta \). Since \(q > 2 \), we can take \(\zeta \) small enough such that
\[
\frac{1}{2} - \tau C_2 - C_\tau C_q \zeta^{q-2} > 0.
\]

Therefore
\[
I(u) \geq \zeta^2 \left(\frac{1}{2} - \tau C_2 - C_\tau C_q \zeta^{q-2}\right) := \beta > 0.
\]

Now, by \((f_1)\),
\[
\lim_{|t| \to \infty} \frac{F(t)}{|t|^2} = +\infty.
\]

Then, for \(\varphi \in C_0^\infty(\mathbb{R}^n) \setminus \{0\}, \)
\[
\lim_{|t| \to \infty} \int_{\mathbb{R}^n} \frac{F(t\varphi)}{|t|^2} dx = +\infty.
\]

Consequently,
\[
\frac{I(t\varphi)}{|t|^2} = \frac{1}{2} \|\varphi\|^2 - \int_{\mathbb{R}^n} \frac{F(t\varphi)}{|t|^2} dx \to -\infty, \text{ as } |t| \to \infty.
\]

Thereby, setting \(t_0 > 0 \) large enough and \(e = t_0 \varphi \), we have \(I(e) < 0 \). \(\square \)

Lemma 3.2. Assume \((f_1) - (f_2), \epsilon = 1 \) and that \(\rho \) belongs to Class 1 or 2. Let \(c \in \mathbb{R} \) and \(\{u_k\} \subset H_\rho^\alpha(\mathbb{R}^n) \) be a sequence such that
\[
I(u_k) \to c \quad \text{and} \quad I'(u_k) \to 0 \quad \text{as } k \to \infty.
\] \hspace{1cm} (3.4)

Then \(\{u_k\} \) is bounded in \(H_\rho^\alpha(\mathbb{R}^n) \).

Proof. To begin with, we recall that
\[
\rho_0 \leq \rho(x) \leq \rho_* \quad \forall x \in \mathbb{R}^n.
\]
for $\rho_\ast = \sup_{x \in \mathbb{R}^n} \rho(x)$. Hence, the functions below

$$||u||_0 = \left(\int_{\mathbb{R}^n} \int_{B(0,\rho_0)} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} \, dz \, dx + \int_{\mathbb{R}^n} |u(x)|^2 \, dx \right)^{\frac{1}{2}}$$

and

$$||u||_* = \left(\int_{\mathbb{R}^n} \int_{B(0,\rho_\ast)} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} \, dz \, dx + \int_{\mathbb{R}^n} |u(x)|^2 \, dx \right)^{\frac{1}{2}}$$

are equivalents norms to $|| \cdot ||$ on $H^\alpha_{\rho}(\mathbb{R}^n)$. Now, arguing by contradiction we suppose that $\{u_k\}$ is unbounded. Then, up to a subsequence, we may assume that

$$||u_k|| \to \infty \text{ as } k \to \infty.$$

Thus

$$c = \lim_{k \to \infty} \left(I(u_k) - \frac{1}{2} I'(u_k)u_k \right) = \lim_{k \to \infty} \int_{\mathbb{R}^n} \left(\frac{1}{2} f(u_k(x))u_k(x) - F(u_k(x)) \right) \, dx. \quad (3.5)$$

Let $w_k = \frac{u_k}{||u_k||}$, then $\{w_k\}$ is bounded in $H^\alpha_{\rho}(\mathbb{R}^n)$. We claim that,

$$\lim_{k \to \infty} \sup_{y \in \mathbb{R}^n} \int_{B(y,2)} |w_k(x)|^2 \, dx = 0. \quad (3.6)$$

Otherwise, for some $\delta > 0$, up to a subsequence we have

$$\sup_{y \in \mathbb{R}^n} \int_{B(y,2)} |w_k(x)|^2 \, dx \geq \delta > 0.$$

Let $z_k \in \mathbb{R}^n$ such that

$$\int_{B(z_k,2)} |w_k(x)|^2 \, dx \geq \tau := \frac{\delta}{2} > 0 \quad (3.7)$$

and $v_k(x) = w_k(x + z_k)$. By the change of variable $\tilde{x} = x + y_k$, we find

$$||w_k||_0 \leq ||v_k|| \leq ||w_k||_*$$

from where it follows that $\{v_k\}$ is also bounded in $H^\alpha_{\rho}(\mathbb{R}^n)$. Passing to a subsequence, we obtain

$$v_k \to v \text{ in } L^p_{loc}(\mathbb{R}^n) \text{ and } v_k(x) \to v(x) \text{ a.e. } x \in \mathbb{R}^n.$$
Since
\[\int_{B(0,2)} |v_k(x)|^2 \, dx = \int_{B(z_k, 2)} |w_k(x)|^2 \, dx \geq \tau > 0, \quad (3.8) \]
we see that \(v \neq 0 \). Let \(\tilde{u}_k(x) = \|u_k\|v_k(x) \). If \(v(x) \neq 0 \), we have the limit \(|\tilde{u}_k(x)| \to +\infty \) which together with (f3) leads to
\[\frac{F(\tilde{u}_k(x))}{|\tilde{u}_k(x)|^2} |v_k(x)|^2 \to +\infty. \quad (3.9) \]
The last limit combine with (3.9) to give
\[\frac{1}{2} - c + o(1) = \int_{\mathbb{R}^n} \frac{F(u_k(x))}{\|u_k\|^2} \, dx \]
\[= \int_{\mathbb{R}^n} \frac{F(\tilde{u}_k(x))}{\|u_k\|^2} \, dx \]
\[\geq \int_{\{v \neq 0\}} \frac{F(\tilde{u}_k(x))}{|\tilde{u}_k(x)|} |v_k(x)|^2 \, dx \to +\infty, \quad (3.10) \]
which is impossible. This shows (3.6). Then, by Lemma 2.1
\[w_k \to 0 \text{ in } L^q(\mathbb{R}^n), \quad \forall \ q \in (2, 2^*_\alpha). \quad (3.11) \]
We are going to get a contradiction as follow. By Property 3.1 - (1), given \(\tau > 0 \), there exists \(C_\tau > 0 \) such that
\[|F(t)| \leq \tau |t|^2 + C_\tau |t|^q. \quad (3.12) \]
Since \(\|w_k\| = 1 \), there exists a constant \(K > 0 \) such that
\[\|w_k\|^2_{L^2} \leq K. \]
Therefore, by (3.11) and (3.12)
\[\limsup_{k \to \infty} \int_{\mathbb{R}^n} |F(w_k(x))| \, dx \leq \limsup_{k \to \infty} (\tau \|w_k\|^2_{L^2} + C_\tau \|w_k\|^q_{L^q(\mathbb{R}^n)}) \leq \epsilon K. \]
Since \(\tau \) is arbitrary, we deduce
\[\lim_{k \to \infty} \int_{\mathbb{R}^n} F(w_k(x)) \, dx = 0. \quad (3.13) \]
Now, we choose a sequence \(\{t_k\} \in [0, 1] \) such that
\[I(t_k u_k) = \max_{t \in [0, 1]} I(t u_k). \quad (3.14) \]
Given $\sigma > 0$, noting that $(4\sigma)^{1/2} \parallel u_k \parallel \in (0, 1)$ for k large enough, (3.13) ensures that
\[
I(t_k u_k) \geq I((4\sigma)^{1/2} w_k) = \frac{1}{2} \|(4\sigma)^{1/2} w_k\|^2 - \int_{\mathbb{R}^n} F((4\sigma)^{1/2} w_k(x)) dx
\]
\[
= 2\sigma - \int_{\mathbb{R}^n} F((4\sigma)^{1/2} w_k(x)) dx \geq \sigma.
\]
Namely, $I(t_k u_k) \to +\infty$. But $I(0) = 0$ and $I(u_k) \to c$, then by (3.14) we see that $t_k \in (0, 1)$ and
\[
0 = t_k \frac{d}{dt} I(t_k u_k) \bigg|_{t = t_k} = \int_{\mathbb{R}^n} \int_{B(0, \rho(x))} \frac{|t_k u_k(x + z) - t_k u_k(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} V(x)|t_k u_k(x)|^2 dx
\]
\[
- \int_{\mathbb{R}^n} f(t_k u_k(x)) t_k u_k(x) dx.
\]
Now from (3.15) and (f_3),
\[
\int_{\mathbb{R}^n} \left(\frac{1}{2} f(u_k) u_k - F(u_k) \right) dx \geq \frac{1}{\theta} \int_{\mathbb{R}^n} \left(\frac{1}{2} f(t_k u_k) t_k u_k - F(t_k u_k) \right) dx
\]
\[
= \frac{1}{\theta} \frac{1}{2} \|t_k u_k\|^2 - \int_{\mathbb{R}^n} F(t_k u_k) dx
\]
\[
= \frac{1}{\theta} I(t_k u_k) \to +\infty.
\]
This contradicts with (3.5). Thereby, $\{u_k\}$ is bounded. \square

4 Proof of Theorem 1.1

In the sequel, we will analysis the classes $(\rho_1), (\rho_2)$ and (ρ_3) separately.

4.1 Class 1: ρ is periodic

Let $c = \inf_{\gamma \in \Gamma} \max_{t \in [0, 1]} I(\gamma(t)) > 0$, then by the Ekeland variational principle, there is a sequence $\{u_k\}$ such that
\[
I(u_k) \to c \text{ and } I'(u_k) \to 0.
\]
By Lemma 3.2, $\{u_k\}$ is bounded in $H_\rho^\alpha(\mathbb{R}^n)$. In what follows, fix
\[
\delta = \lim_{n \to \infty} \sup_{y \in \mathbb{R}^n} \int_{B(y, 2)} |u_k(x)|^2 dx.
\]
If $\delta = 0$, the Lemma 2.1 yields

$$u_k \to 0 \text{ in } L^q(\mathbb{R}^n), \forall q \in (2, 2^*_\alpha).$$

Then, arguing as in (3.13),

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} F(u_k(x))dx = 0 \text{ and } \lim_{k \to \infty} \int_{\mathbb{R}^n} f(u_k(x))u_k(x)dx = 0. \quad (4.2)$$

The above limits together with (3.5) implies that $c = 0$, a contradiction. Therefore $\delta > 0$. So there exists a sequence $\{y_k\} \subset \mathbb{Z}^n$ and a real number $\tau > 0$ such that

$$\int_{B(0,2)} |v_k(x)|^2dx = \int_{B(y_k,2)} |u_k(x)|^2dx > \tau, \quad (4.3)$$

where $v_k(x) = u_k(x + y_k)$. Moreover, since $\|v_k\| = \|u_k\|$, going if necessary to a subsequence, there is $v \in H^\alpha_\rho(\mathbb{R}^n) \setminus \{0\}$ such that

$$v_k \rightharpoonup v \text{ in } H^\alpha_\rho(\mathbb{R}^n) \text{ and } v_k \to v \text{ in } L^p_{\text{loc}}(\mathbb{R}^n);$$

Furthermore, by the \mathbb{Z}^n invariance of the problem, $\{v_k\}$ is also a $(PS)_c$ sequence of I. Thus for every $\varphi \in C^\infty_0(\mathbb{R}^n)$,

$$I'(v)\varphi = \lim_{k \to \infty} I'(u_k)\varphi = 0.$$

So $I'(v) = 0$ and v is a nontrivial weak solution of (P_e). Moreover, (f_4) together with Fatou’s Lemma gives $I(v) \leq c$.

4.2 Class 2: ρ is asymptotically periodic

Hereafter, we denote by $I_\infty : H^\alpha_{h_\infty}(\mathbb{R}^n) \to \mathbb{R}$ the functional

$$I_\infty(u) = \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{B(0,h_\infty(x))} \frac{|u(x+z) - u(x)|^2}{|z|^{n+2\alpha}}dzdx + \int_{\mathbb{R}^n} |u(x)|^2dx \right) - \int_{\mathbb{R}^n} F(u(x))dx$$

and by $w_\infty \in H^\alpha_{h_\infty}(\mathbb{R}^n)$ be a nontrivial critical point of I_∞, which was obtained in the last subsection. Then,

$$I_\infty(w_\infty) \leq c_\infty \text{ and } I'_\infty(w_\infty) = 0,$$
where c_∞ denotes the mountain pass level of I_∞. Since we are assuming (f_4), we know that

$$c_\infty = \inf_{u \in N_\infty} I_\infty(u)$$

where

$$N_\infty = \{ u \in H^\alpha_{h_\infty}(\mathbb{R}^n) \setminus \{0\} : I'_\infty(u)u = 0 \},$$

and so, $I_\infty(w_\infty) = c_\infty$. If c denotes the mountain pass level associated with I, the condition (ρ_3) gives $c \leq c_\infty$. Next, we will study the following situations:

\[\begin{align*}
 & c = c_\infty \quad \text{and} \quad c < c_\infty. \\
\end{align*} \]

Case 1: $c = c_\infty$.

As $\rho \leq h_\infty$ and $I'_\infty(w_\infty)w_\infty = 0$, we have that

$$I'(w_\infty)w_\infty \leq 0,$$

hence there is $t \in (0,1]$ such that

$$tw_\infty \in N = \{ u \in H^\alpha_\rho(\mathbb{R}^n) \setminus \{0\} : I'(u)u = 0 \}.$$

By (f_4),

$$c = \inf_{u \in N} I(u),$$

then, as $t \in (0,1]$,

$$c \leq I(tw_\infty) = I(tw_\infty) - \frac{1}{2} I'(tw_\infty)(tw_\infty) \leq I_\infty(w_\infty) - \frac{1}{2} I'_\infty(w_\infty)(w_\infty),$$

that is,

$$c \leq I_\infty(w_\infty) - \frac{1}{2} I'_\infty(w_\infty)(w_\infty) = I_\infty(w_\infty) = c_\infty.$$

Since we are supposing that $c = c_\infty$, we deduce that $u^* = tw_\infty$ verifies

$$I(u^*) = c \quad \text{and} \quad I'(u^*) = 0.$$

By (f_4), it is easy to prove that u^* is a critical for I, which finishes the proof.

Case 2: $c < c_\infty$.

Hereafter, we denote by $\{u_n\} \subset H^\alpha_\rho(\mathbb{R}^n)$ a sequence which satisfies

$$I(u_k) \to c \quad \text{and} \quad I'(u_k) \to 0.$$

By using standard arguments, we know that $\{u_k\}$ is a bounded sequence in $H^\alpha_\rho(\mathbb{R}^n)$. Hence, for some subsequence, there is $u \in H^\alpha_\rho(\mathbb{R}^n)$ such that

$$u_k \to u \quad \text{in} \quad H^\alpha_\rho(\mathbb{R}^n).$$
Claim: \(u \neq 0 \).

If \(u = 0 \), there are \(R, \eta > 0 \) and \(\{ y_k \} \subset \mathbb{R}^n \) such that
\[
\limsup_{k \to +\infty} \int_{B_R(y_k)} |u_k|^2 \, dx \geq \eta. \tag{4.4}
\]
Indeed, otherwise we must have
\[
\lim_{n \to +\infty} \sup_{y \in \mathbb{R}^N} \int_{B_R(y)} |u_k|^2 \, dx = 0.
\]
Then, by Lemma 2.1,
\[
u_k \to 0 \quad \text{in} \quad L^q(\mathbb{R}^n) \quad \forall q \in (2, 2^*),
\]
from where it follows that
\[
\int_{\mathbb{R}^n} f(u_k)u_k \, dx \to 0.
\]
The above limit together with \(I'(u_k)u_k = o_n(1) \) implies that \(u_k \to 0 \) in \(H^\alpha_p(\mathbb{R}^n) \), which contradicts the limit \(I(u_k) \to c > 0 \).

Setting \(v_k(x) = u_n(x + y_k) \) and considering \(y_k \in \mathbb{Z}^n \), we have that \(\{ v_k \} \) is bounded in \(H^\alpha_{h^\infty}(\mathbb{R}^n) \) and there is \(v \in H^\alpha_{h^\infty}(\mathbb{R}^n) \) such that
\[
v_k \to v \quad \text{in} \quad H^\alpha_{h^\infty}(\mathbb{R}^n)
\]
and
\[
\int_{B_R(0)} |v|^2 \, dx \geq \eta > 0
\]
which shows \(v \neq 0 \).

From (4.4), it is easy to see that \(|y_k| \to +\infty \). Then, by \((\rho_4) \)
\[
\rho(x + y_k) \to h^\infty(x) \quad \forall x \in \mathbb{R}^n \quad \text{as} \quad k \to +\infty.
\]
The above limit and \(I'(u_k)(v(\cdot - y_k)) = o_k(1) \) combine to give
\[
I'(v)v \leq 0.
\]
Thus, there is \(s \in (0, 1] \) such that \(su \in \mathcal{N}_\infty \). Consequently,
\[
c_{\infty} \leq I_\infty(sv) = I_\infty(sv) - \frac{1}{2} I'_\infty(sv)(sv) \leq I_\infty(v) - \frac{1}{2} I'_\infty(v)(v).
\]
Since
\[I_\infty(v) - \frac{1}{2} I'_\infty(v)(v) = I(v) - \frac{1}{2} I'(v)(v) \]
it follows
\[c_\infty \leq I(v) - \frac{1}{2} I'(v)(v). \]

On the other hand, the Fatou’s Lemma leads to
\[I(v) - \frac{1}{2} I'(v)(v) \leq \liminf_{k \to +\infty} (I(v_k) - \frac{1}{2} I'(v_k)(v_k)) = \liminf_{k \to +\infty} (I(u_k) - \frac{1}{2} I'(u_k)(u_k)) \]
that is,
\[c_\infty \leq \liminf_{k \to +\infty} I(u_k) = c \]
which is a contradiction, because we are supposing \(c < c_\infty \).

From this \(u \neq 0 \) and \(I'(u) = 0 \), which implies that \(I \) has a nontrivial critical point. Moreover, by Fatou’s Lemma, it is possible to prove that \(I(u) = c \).

4.3 Class 3: \(\rho \) has finite global minimum points

Hereafter, we will consider the following energy functional
\[J_\epsilon : H_\rho^\alpha(\mathbb{R}^n) \to \mathbb{R} \]
defined by
\[J_\epsilon(u) = \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{B(0, \rho_\epsilon(x))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |u(x)|^2 dx \right) - \int_{\mathbb{R}^n} F(u(x)) dx. \]

It is easy to see that \(J_\epsilon \in C^1 \left(H_\rho^\alpha(\mathbb{R}^n), \mathbb{R} \right) \) with
\[J'_\epsilon(u)v = \int_{\mathbb{R}^n} \int_{B(0, \rho_\epsilon(x))} \frac{|u(x + z) - u(x)||v(x + z) - v(x)|}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} u(x)v(x) dx - \int_{\mathbb{R}^n} f(u(x))v(x) dx, \]
for any \(u, v \in H_\rho^\alpha(\mathbb{R}^n) \). Thus, the critical points of \(J_\epsilon \) are (weak) solutions of \((P_\epsilon) \). Since the functional \(J_\epsilon \) is not bounded from below on \(H_\rho^\alpha(\mathbb{R}^n) \) , we will work on Nehari manifold \(\mathcal{N}_\epsilon \) associated with the functional \(J_\epsilon \), given by
\[\mathcal{N}_\epsilon = \{ u \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{0\} : J'_\epsilon(u)u = 0 \} \]
and with the level
\[c_\epsilon = \inf_{u \in \mathcal{N}_\epsilon} J_\epsilon(u). \]
It is possible to prove that \(c \) is the mountain pass level of functional \(J_\epsilon \), see Willem [30].

For \(\rho \equiv 1 \), we consider the problem

\[
(-\Delta)_1^\alpha u + u = f(u) \quad \text{in } \mathbb{R}^n, \quad u \in \mathcal{H}_1^\alpha(\mathbb{R}^n). \tag{P_\infty}
\]

Associated with the problem \((P_\infty)\), we have the energy functional

\[
J_\infty(u) = \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{B(0,1)} \frac{|u(x+z) - u(x)|^2}{|z|^{n+2\alpha}} \, dz \, dx + \int_{\mathbb{R}^n} |u(x)|^2 \, dx \right) - \int_{\mathbb{R}^n} F(u(x)) \, dx,
\]

the level

\[
c_\infty = \inf_{u \in \mathcal{M}_\infty} J_\infty(u)
\]

and the Nehari manifold

\[
\mathcal{M}_\infty = \{ u \in \mathcal{H}_\infty^\alpha(\mathbb{R}^n) \setminus \{0\} : J_\infty'(u)u = 0 \}.
\]

For \(\rho \equiv \rho_\infty \), we fix the problem

\[
(-\Delta)^\alpha_{\rho_\infty} u + u = f(u) \quad \text{in } \mathbb{R}^n, \quad u \in \mathcal{H}_\rho_\infty^\alpha(\mathbb{R}^n), \tag{P_\rho_\infty}
\]

and as above, we denote by \(J_\rho_\infty, c_\rho_\infty \) and \(\mathcal{M}_\rho_\infty \) the energy functional, the mountain pass level and Nehari manifold associated with \((P_\rho_\infty)\) respectively.

The following result concerns the behavior of \(J_\epsilon \) on \(\mathcal{M}_\epsilon \). Once its proof is standard, we omit it

Lemma 4.1. The functional \(J_\epsilon \) is bounded from below on \(\mathcal{M}_\epsilon \). Moreover, \(J_\epsilon \) is coercive on \(\mathcal{N}_\epsilon \).

As an immediate consequence of the last lemma, we have

Corollary 4.1. Let \(\{u_k\} \) be a sequence in \(\mathcal{N}_\epsilon \) and \(J_\epsilon(u_k) \to c_\epsilon \). Then \(\{u_k\} \) is bounded in \(\mathcal{H}_\rho^\alpha(\mathbb{R}^n) \).

The next theorem is a version of a result compactness on Nehari manifolds due to Alves [1] for regional fractional laplacian. It establishes that problem \((P_\infty)\) has a ground state solution.

Theorem 4.1. Let \(\{u_k\} \subset \mathcal{M}_\infty \) be a sequence with \(J_\infty(u_k) \to c_\infty \). Then,
I. $u_k \to u$ in $H_1^\alpha(\mathbb{R}^n)$,

or

II. There is $\{y_k\} \subset \mathbb{R}^n$ with $|y_k| \to +\infty$ and $w \in H_1^\alpha(\mathbb{R}^n)$ such that $w_k = u_k(\cdot + y_k) \to w$ in $H_1^\alpha(\mathbb{R}^n)$ and $J_\infty(w) = c_\infty$.

Proof. Similarly to Corollary 4.1, we can assume that $\{u_k\}$ is a bounded sequence, and so, there is $u \in H_1^\alpha(\mathbb{R}^n)$ and a subsequence of $\{u_k\}$, still denoted by itself, such that $u_k \rightharpoonup u$ in $H_1^\alpha(\mathbb{R}^n)$. Applying the Ekeland’s variational principle, there is a sequence $\{w_k\}$ in M_∞ with

$$w_k = u_k + o_k(1), \quad J_\infty(w_k) \to c_\infty$$

and

$$J'_\infty(w_k) - \tau_k E'_\infty(w_k) = o_k(1), \quad (4.5)$$

where $(\tau_k) \subset \mathbb{R}$ and $E_\infty(w) = J'_\infty(w)w$, for any $w \in H_1^\alpha(\mathbb{R}^n)$.

Since $\{w_k\} \subset M_\infty$, (4.5) leads to

$$\tau_k E'_\infty(w_k)w_k = o_k(1).$$

Gathering (f_1) and Lemma 2.1, it is possible to prove that there is $\eta_1 > 0$ such that

$$E'_\infty(u)u \leq -\eta_1, \quad \forall u \in M_\infty.$$

From this, $\tau_k \to 0$ as $k \to \infty$,

$$J_\infty(u_k) \to c_\infty \text{ and } J'_\infty(u_k) \to 0.$$

Consequently, u is critical point of J_∞.

Next, we will study the following possibilities: $u \neq 0$ or $u = 0$.

Case 1: $u \neq 0$.
By Fatou’s Lemma, it is easy to check that

\[
c_{\infty} \leq J_{\infty}(u) = J_{\infty}(u) - \frac{1}{\theta} J'_{\infty}(u) u
\]

\[
= \left(\frac{1}{2} - \frac{1}{\theta} \right) \|u\|^2 + \int_{\mathbb{R}^N} \left(\frac{1}{\theta} f(u)u - F(u) \right) dx
\]

\[
\leq \liminf_{k \to \infty} \left\{ \left(\frac{1}{2} - \frac{1}{\theta} \right) \|u_k\|^2 + \int_{\mathbb{R}^N} \left(\frac{1}{\theta} f(u_k)u_k - F(u_k) \right) dx \right\}
\]

\[
\leq \limsup_{k \to \infty} \left\{ \left(\frac{1}{2} - \frac{1}{\theta} \right) \|u_k\|^2 + \int_{\mathbb{R}^N} \left(\frac{1}{\theta} f(u_k)u_k - F(u_k) \right) dx \right\}
\]

\[
= \lim_{k \to \infty} \left\{ J_{\infty}(u_k) - \frac{1}{\theta} J'_{\infty}(u_k) u_k \right\} = c_{\infty}.
\]

Hence,

\[
\|u_k\|^2 \to \|u\|^2 \quad \text{in} \quad \mathbb{R},
\]

from where it follows that \(u_k \to u\) in \(H_1^\alpha(\mathbb{R}^n)\).

Case 2: \(u = 0\).

In this case, we claim that there are \(R, \xi > 0\) and \(\{y_k\} \subset \mathbb{R}^n\) satisfying

\[
\limsup_{k \to \infty} \int_{B_R(y_k)} |u_k|^2 dx \geq \xi. \tag{4.6}
\]

If the claim is false, we must have

\[
\limsup_{k \to \infty} \sup_{y \in \mathbb{R}^n} \int_{B_R(y)} |u_k|^2 dx = 0.
\]

Thus, by Lemma 2.1,

\[
u_k \to 0 \quad \text{in} \quad L^p(\mathbb{R}^n), \quad \forall \ p \in (2, 2^*_a).
\]

Recalling \(J'_{\infty}(u_k) u_k = o_k(1)\), the last limit yields

\[
\|u_k\|^2 \to 0,
\]

or equivalently

\[
u_k \to 0 \quad \text{in} \quad H_1^\alpha(\mathbb{R}^n),
\]

18
leading to $c_\infty = 0$, which is absurd. This way, (4.6) is true. Setting

$$w_k(x) = u_k(x + y_k),$$

we have that

$$J_\infty(w_k) = J_\infty(u_k) \text{ and } \|J'_\infty(w_k)\| = \|J'_\infty(u_k)\|,$$

that is, $\{w_k\}$ is a sequence $(PS)_{c_\infty}$ for J_∞. If $w \in H^\alpha_1(\mathbb{R}^n)$ denotes the weak limit of $\{w_n\}$, it follows from (4.6),

$$\int_{B_R(0)} |w|^2 \, dx \geq \xi,$$

and so, $w \neq 0$.

By repeating the same argument of the first case for the sequence $\{w_k\}$, we deduce that $w_k \to w$ in $H^\alpha_1(\mathbb{R}^n)$, $w \in \mathcal{M}_\infty$ and $J_\infty(w) = c_\infty$.

4.3.1 Estimates involving the minimax levels

The main goal of this section is to prove some estimates involving the minimax levels c_ϵ and c_∞. First of all, we recall the inequality

$$J_\infty(u) \leq J_\epsilon(u) \quad \forall u \in H^\alpha_\rho(\mathbb{R}^n),$$

which implies

$$c_\infty \leq c_\epsilon, \quad \forall \epsilon > 0.$$

Lemma 4.2. The minimax levels c_ϵ and c_ρ_∞ satisfy the inequality $c_\epsilon < c_\rho_\infty$. Hence, $c_\infty < c_\rho_\infty$.

Proof. In a manner analogous to Theorem 4.1, there is $U \in H^\alpha_\rho(\mathbb{R}^n)$ such that

$$J_{\rho_\infty}(U) = c_{\rho_\infty} \quad \text{and} \quad J'_{\rho_\infty}(U) = 0.$$

In the sequel, let $t > 0$ be satisfy $tU \in \mathcal{M}_\epsilon$. Thereby,

$$c_\epsilon \leq J_\epsilon(tU).$$

Since that by (ρ_5), $\rho_\infty > \rho(x)$ for all $x \in \mathbb{R}^n$, we derive

$$c_\epsilon < J_{\rho_\infty}(tU) \leq \max_{s \geq 0} J_{\rho_\infty}(sU) = J_{\rho_\infty}(U) = c_{\rho_\infty}.$$

Using the last lemma, we are able to prove that J_ϵ verifies the $(PS)_d$ condition for some values of d. 19
Lemma 4.3. The functional J_ε satisfies the $(PS)_d$ condition for $d \leq c_\infty + \tau$, where $\tau = \frac{1}{2}(c_{\rho_\infty} - c_\infty) > 0$.

Proof. Let $\{v_k\} \subset H^\alpha_\rho(\mathbb{R}^n)$ be a $(PS)_d$ sequence for functional J_ε with $d \leq c_\infty + \tau$. Similarly to Corollary 4.1, $\{v_k\}$ is a bounded sequence in $H^\alpha_\rho(\mathbb{R}^n)$, and so, for some subsequence, still denoted by $\{v_k\}$,

$$v_k \rightharpoonup v \text{ in } H^\alpha_\rho(\mathbb{R}^n),$$

for some $v \in H^\alpha_\rho(\mathbb{R}^n)$. Now, by using standard arguments, it is possible to prove that

$$J_\varepsilon(v_k) - J_\varepsilon(w_k) - J_\varepsilon(v) = o_k(1) \quad (4.7)$$

and

$$\|J_\varepsilon'(v_k) - J_\varepsilon'(w_k) - J_\varepsilon'(v)\| = o_k(1), \quad (4.8)$$

where $w_k = v_k - v$. Since $J_\varepsilon'(v) = 0$ and $J_\varepsilon(v) \geq 0$, from (4.7)-(4.8), $\{w_k\}$ is a $(PS)_{d^*}$ sequence for J_ε with $d^* = d - J_\varepsilon(v) \leq c_\infty + \tau$.

Claim 1. There is $R > 0$ such that

$$\limsup_{k \to \infty} \sup_{y \in \mathbb{R}^n} \int_{B_R(y)} |w_k|^2 dx = 0.$$

If the claim is true, we have

$$\int_{\mathbb{R}^n} f(w_k) w_k \, dx \to 0.$$

On the other hand, by (4.8), we know that $J_\varepsilon'(w_k) = o_k(1)$, then

$$\|w_k\|^2 \to 0$$

that is, $w_k \to 0$ in $H^\alpha_\rho(\mathbb{R}^n)$, and so, $v_k \to v$ in $H^\alpha_\rho(\mathbb{R}^n)$.

Proof of Claim 1: If the claim is not true, for each $R > 0$ given, we find $\xi > 0$ and $\{y_k\} \subset \mathbb{R}^n$ such that

$$\limsup_{k \to \infty} \int_{B_R(y_k)} |w_k|^2 \geq \xi > 0.$$
Using that \(w_k \to 0 \) in \(H_\rho^\alpha(\mathbb{R}^n) \), it follows that \(\{ y_k \} \) is an unbounded sequence. Setting
\[
\tilde{w}_k = w_k(\cdot + y_k),
\]
we have that \(\{ \tilde{w}_k \} \) is bounded in \(H_\rho^\alpha(\mathbb{R}^n) \). Thus, there are \(\tilde{w} \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{ 0 \} \) and a subsequence of \(\{ \tilde{w}_n \} \), still denoted by itself, such that
\[
\tilde{w}_k \rightharpoonup \tilde{w} \in H_\rho^\alpha(\mathbb{R}^n).
\]
Moreover, since \(J'_\rho(w_k)\phi(\cdot - y_k) = a_k(1) \) for each \(\phi \in H_\rho^\alpha(\mathbb{R}^n) \), we obtain
\[
0 = \int_{\mathbb{R}^n} \int_{B(0,\rho_\infty)} \frac{[\tilde{w}(x + z) - \tilde{w}(x)][\phi(x + z) - \phi(x)]}{|z|^{n+2\alpha}} + \int_{\mathbb{R}^n} \tilde{w}(x)\phi(x)dx \\
- \int_{\mathbb{R}^n} f(\tilde{w}(x))\phi(x)dx,
\]
from where it follows that \(\tilde{w} \) is a weak solution of \((P_{\rho_\infty}) \). Consequently,
after some routine calculations,
\[
c_{\rho_\infty} \leq J_{\rho_\infty}(\tilde{w}) = J_{\rho_\infty}(\tilde{w}) - \frac{1}{\theta} J'_{\rho_\infty}(\tilde{w}) \tilde{w} \leq \lim \inf_{k \to \infty} \left\{ J_\rho(w_n) - \frac{1}{\theta} J'_\rho(w_n)w_n \right\} = d^*,
\]
that is, \(c_{\rho_\infty} \leq c_\infty + \tau \), which is an absurd because \(\tau < c_{\rho_\infty} - c_\infty \). Therefore, the Claim 1 is true.

In what follows, let us fix \(\gamma_0, r_0 > 0 \) such that
\[
\begin{align*}
\bullet & \quad B_{\gamma_0}(a_i) \cap B_{\gamma_0}(a_j) = \emptyset \text{ for } i \neq j \quad \text{and} \quad i, j \in \{ 1, \ldots, \ell \} \\
\bullet & \quad \bigcup_{i=1}^\ell B_{\gamma_0}(a_i) \subset B_{r_0}(0). \\
\bullet & \quad K_{\gamma_0} = \bigcup_{i=1}^\ell B_{\frac{\gamma_0}{2}}(a_i)
\end{align*}
\]
Besides this, we define the function \(Q_\epsilon : H_\rho^\alpha(\mathbb{R}^n) \to \mathbb{R}^n \) by
\[
Q_\epsilon(u) = \frac{\int_{\mathbb{R}^n} \chi(\epsilon x)|u|^2dx}{\int_{\mathbb{R}^n} |u|^2dx},
\]
where \(\chi : \mathbb{R}^n \to \mathbb{R}^n \) is given by
\[
\chi(x) = \begin{cases}
 x & \text{if } |x| \leq r_0 \\
 \frac{x}{r_0 \frac{x}{|x|}} & \text{if } |x| > r_0.
\end{cases}
\]
The next two lemmas will be useful to get important \((PS) \)-sequences associated with \(J_\epsilon \).
Lemma 4.4. There are $\delta_0 > 0$ and $\epsilon_1 > 0$ such that if $u \in M_\epsilon$ and $J_\epsilon(u) \leq c_\infty + \delta_0$, then

$$Q_\epsilon(u) \in K_M$$

for $\epsilon \in (0, \epsilon_1)$.

Proof. If the lemma does not occur, there must be $\delta_k \to 0$, $\epsilon_k \to 0$ and $u_k \in M_\epsilon$ such that

$$J_{\epsilon_k}(u_k) \leq c_\infty + \delta_k$$

and

$$Q_{\epsilon_k}(u_k) \notin K_M$$.

Fixing $s_k > 0$ such that $s_k u_k \in M_\infty$, we have

$$c_\infty \leq J_\infty(s_k u_k) \leq J_{\epsilon_k}(s_k u_k) \leq \max_{t \geq 0} J_{\epsilon_k}(t u_k) = J_{\epsilon_k}(u_k) \leq c_\infty + \delta_k.$$

Hence,

$$\{s_k u_k\} \subset M_\infty \text{ and } J_\infty(s_k u_k) \to c_\infty.$$

Applying the Ekeland’s variational principle, we can assume without loss of generality that $\{s_k u_k\} \subset M_\infty$ is a sequence $(PS)_{c_\infty}$ for J_∞, that is,

$$J_\infty(s_k u_k) \to c_\infty \text{ and } J'_\infty(s_k u_k) \to 0.$$

According to Theorem 4.1, we must consider the following cases:

i) $s_k u_k \to U \neq 0$ in $H_\rho^\alpha(\mathbb{R}^n)$;

or

ii) There exists $\{y_k\} \subset \mathbb{Z}^n$ with $|y_k| \to +\infty$ such that $v_k = s_k u_k(\cdot + y_k)$ is convergent in $H_\rho^\alpha(\mathbb{R}^n)$ for some $V \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{0\}$.

By a direct computation, we can suppose that $s_k \to s_0$ for some $s_0 > 0$. Therefore, without loss of generality, we can assume that

$$u_k \to U \text{ or } v_k = u_k(\cdot + y_k) \to V \text{ in } H_\rho^\alpha(\mathbb{R}^n). \quad (4.9)$$

Analysis of i).

By Lebesgue’s dominated convergence theorem

$$Q_{\epsilon_k}(u_k) = \frac{\int_{\mathbb{R}^n} \chi(\epsilon_k x)|u_k|^2 dx}{\int_{\mathbb{R}^n} |u_k|^2 dx} \to \frac{\int_{\mathbb{R}^n} \chi(0)|U|^2 dx}{\int_{\mathbb{R}^n} |U|^2 dx} = 0 \in K_M.$$

22
leading to \(Q_{\varepsilon_k}(u_k) \in K_{\varepsilon_k} \) for \(k \) large, which is absurd.

Analysis of ii).

From the equality \(J'_{\varepsilon_k}(u_k)(u_k) = 0 \), we see that

\[
0 = \int_{\mathbb{R}^n} \int_{B(0,\rho(\varepsilon_k x + \varepsilon_k y_k))} \frac{|v_k(x + z) - v_k(x)|^2}{|z|^{n+2\alpha}} dx + \int_{\mathbb{R}^n} |v_k|^2(x) dx \\
- \int_{\mathbb{R}^n} f(\hat{w}(x)) \phi(x) dx,
\]

Now, we will study two cases:

I) \(|\varepsilon_k y_k| \to +\infty \)

and

II) \(\varepsilon_k y_k \to y \), for some \(y \in \mathbb{R}^n \).

If I) holds, the limit (4.9) gives

\[
\int_{\mathbb{R}^n} \int_{B(0,\rho_\infty)} \frac{|V(x + z) - V(x)|^2}{|z|^{n+2\alpha}} dx + \int_{\mathbb{R}^n} |V|^2 dx - \int_{\mathbb{R}^n} f(V(x))V(x) dx = 0,
\]

and so, \(V \in \mathcal{M}_\infty \). Thereby,

\[
c_{\rho_\infty} \leq J_{\rho_\infty}(V) = J_{\rho_\infty}(V) - \frac{1}{\theta} J'_{\rho_\infty}(V)V \leq \liminf_{k \to \infty} \left\{ J_{\infty}(u_k) - \frac{1}{\theta} J'_{\infty}(u_k)u_k \right\} = c_\infty,
\]

that is, \(c_{\rho_\infty} \leq c_\infty \), which contradicts Lemma 4.2.

Now, if \(\varepsilon_k y_k \to y \) for some \(y \in \mathbb{R}^n \), arguing as above we get

\[
c_{\rho(y)} \leq c_\infty, \quad (4.10)
\]

where \(c_{\rho(y)} \) the mountain pass level of the functional \(J_{\rho(y)} : H^\alpha_\rho(\mathbb{R}^n) \to \mathbb{R} \) given by

\[
J_{\rho(y)}(u) = \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{B(0,\rho(y))} \frac{|u(x + z) - u(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |u(x)|^2 dx \right) - \int_{\mathbb{R}^n} F(u(x)) dx.
\]

Observe that

\[
c_{\rho(y)} = \inf_{u \in \mathcal{M}_{\rho(y)}} J_{\rho(y)}(u)
\]
where
\[\mathcal{M}_{\rho(y)} = \left\{ u \in H^\alpha_\rho(\mathbb{R}^N) \setminus \{0\} : J'_{\rho(y)}(u)u = 0 \right\}. \]

If \(\rho(y) > 1 \), a similar argument explored in the proof of Lemma 4.2 shows that \(c_{\rho(y)} > c_\infty \), which contradicts the inequality (4.10). Therefore, \(\rho(y) = 1 \) and \(y = a_i \) for some \(i = 1, \cdots, \ell \). Consequently,

\[Q_{\epsilon_k}(u_k) = \int_{\mathbb{R}^n} \chi(x|\epsilon_kx|)u_k|^2 dx \]
\[= \int_{\mathbb{R}^n} \chi(x|\epsilon_kx + \epsilon_ky_k|)v_k|^2 dx \]
\[\to \int_{\mathbb{R}^n} \chi(y)|V|^2 dx = a_i \in K_{2\gamma}. \]

From this, \(Q_{\epsilon_k}(u_k) \in K_{2\gamma} \) for \(k \) large, which is a contradiction, since by assumption \(Q_{\epsilon_k}(u_k) \notin K_{2\gamma} \).

From now on, we will use the ensuing notation

- \(\theta_i^\epsilon = \{ u \in \mathcal{M}_\epsilon : |Q_\epsilon(u) - a_i| < \gamma_0 \} \),
- \(\partial \theta_i^\epsilon = \{ u \in \mathcal{M}_\epsilon : |Q_\epsilon(u) - a_i| = \gamma_0 \} \),
- \(\beta_i^\epsilon = \inf_{u \in \theta_i^\epsilon} J_\epsilon(u) \)

and

- \(\tilde{\beta}_i^\epsilon = \inf_{u \in \partial \theta_i^\epsilon} J_\epsilon(u) \).

The above numbers are very important in our approach, because we will prove that there is a \((PS)\) sequence of \(J_\epsilon \) associated with each \(\theta_i^\epsilon \) for \(i = 1, 2, \cdots, \ell \). To this end, we need of the following technical result

Lemma 4.5. There is \(\epsilon^* > 0 \) such that

\[\beta_i^\epsilon < c_\infty + \tau \quad \text{and} \quad \tilde{\beta}_i^\epsilon < \tilde{\beta}_i^\epsilon, \]

for all \(\epsilon \in (0, \epsilon^*) \), where \(\tau = \frac{1}{2}(c_{\rho_{\infty}} - c_\infty) > 0 \).

Proof. From now on, \(U \in H^\alpha_\rho(\mathbb{R}^n) \) is a ground state solution for \(J_\infty \), that is,

\[J_\infty(U) = c_\infty \quad \text{and} \quad J'_\infty(U) = 0 \quad (\text{See Theorem 4.1}). \]

For \(1 \leq i \leq \ell \), we define the function \(\hat{U}_i^\epsilon : \mathbb{R}^N \to \mathbb{R} \) by

\[\hat{U}_i^\epsilon(x) = U(x - \frac{a_i}{\epsilon}). \]
Claim 2. For all $i \in \{1, ..., \ell\}$, we have that
\[
\limsup_{k \to +\infty} (\sup_{t \geq 0} J_\epsilon(t\hat{U}^i_k)) \leq c_\infty.
\]

By change of variable gives
\[
J_\epsilon(t\hat{U}^i_k) = \frac{t^2}{2} \left(\int_{\mathbb{R}^n} \int_{B(0, \rho((ax+a_i)))} \frac{|U(x+z) - U(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |U(x)|^2 dx \right) - \int_{\mathbb{R}^n} F(tU(x))dx.
\]

Moreover, we know that there exists $s = s(\epsilon) > 0$ such that
\[
\max_{t \geq 0} J_\epsilon(t\hat{U}^i_k) = J_\epsilon(s\hat{U}^i_k).
\]

By a direct computation, it follows that $s(\epsilon) \not\to 0$ and $s(\epsilon) \not\to \infty$ as $\epsilon \to 0$. Thus, without loss of generality, we can assume $s(\epsilon) \to s_0 > 0$ as $\epsilon \to 0$. Thereby,
\[
\limsup_{\epsilon \to 0} \left(\max_{t \geq 0} J_\epsilon(t\hat{U}^i_k) \right) \leq \frac{s_0^2}{2} \left(\int_{\mathbb{R}^n} \int_{B(0, \rho((ax+a_i)))} \frac{|U(x+z) - U(x)|^2}{|z|^{n+2\alpha}} dz dx + \int_{\mathbb{R}^n} |U(x)|^2 dx \right) - \int_{\mathbb{R}^n} F(s_0U(x))dx.
\]

Consequently,
\[
\limsup_{\epsilon \to 0} (\sup_{t \geq 0} J_\epsilon(t\hat{U}^i_k)) \leq c_\infty \quad \text{for } i \in \{1, ..., \ell\}.
\]

Since $Q_\epsilon(\hat{U}^i_k) \to a_i$ as $\epsilon \to 0$, then $\hat{U}^i_k \in \theta^i_k$ for all ϵ small enough. On the other hand, by Claim 2, $J_\epsilon(\hat{U}^i_k) < c_\infty + \delta_0^i$ holds also for ϵ small enough. This way, there exists $\epsilon^* > 0$ such that
\[
\beta_\epsilon^i < c_\infty + \frac{\delta_0^i}{4}, \quad \forall \epsilon \in (0, \epsilon^*).
\]

Thus, decreasing δ_0 if necessary, we can assume that
\[
\beta_\epsilon^i < c_\infty + \tau, \quad \forall \epsilon \in (0, \epsilon^*).
\]
In order to prove the other inequality, we observe that Lemma 4.4 yields
\[J_\epsilon(u) \geq c_\infty + \delta_0 \] for all \(u \in \partial \theta^i_\epsilon \) and \(\epsilon \in (0, \epsilon^*) \). Therefore,
\[J_\epsilon(u) \geq c_\infty + \delta_0 + \delta_0 \] for all \(u \in \partial \theta^i_\epsilon \) and \(\epsilon \in (0, \epsilon^*) \).

Therefore,
\[\tilde{\beta}^i_\epsilon \geq c_\infty + \frac{\delta_0}{2}, \quad \text{for} \quad \forall \epsilon \in (0, \epsilon^*) \]

for \(\epsilon \in (0, \epsilon^*) \).

Lemma 4.6. For each \(1 \leq i \leq \ell \), there exists a \((PS)_{\beta^i_\epsilon}\) sequence, \(\{u^i_k\} \subset \theta^i_\epsilon \) for functional \(J_\epsilon \).

Proof. By Lemma 4.5, we know that \(\beta^i_\epsilon < \tilde{\beta}^i_\epsilon \). Then, the lemma follows adapting the same ideas explored in [23]. □

4.3.2 Conclusion of the proof for Class 3.

Let \(\{u^i_k\} \subset \theta^i_\epsilon \) be a \((PS)_{\beta^i_\epsilon}\) sequence for functional \(J_\epsilon \) given by Lemma 4.6. Since \(\beta^i_\epsilon < c_\infty + \tau \), by Lemma 4.3 there is \(u^i \) such that \(u^i_k \to u^i \) in \(H^\alpha_\rho(\mathbb{R}^n) \).

Thus,
\[u^i \in \theta^i_\epsilon, \quad J_\epsilon(u^i) = \beta^i_\epsilon \] and \(J'_\epsilon(u^i) = 0 \).

Now, we infer that \(u^i \neq u^j \) for \(i \neq j \) as \(1 \leq i, j \leq \ell \). To see why, it remains to observe that
\[Q_k(u^i) \subset B_{\gamma_0}(a_i) \quad \text{and} \quad Q_k(u^j) \subset B_{\gamma_0}(a_j). \]

Once
\[B_{\gamma_0}(a_i) \cap B_{\gamma_0}(a_j) = \emptyset \quad \text{for} \quad i \neq j, \]

it follows that \(u^i \neq u^j \) for \(i \neq j \). From this, \(J_\epsilon \) has at least \(\ell \) nontrivial critical points for all \(\epsilon \in (0, \epsilon^*) \), which proves the theorem. □

5 A remark about the existence of Ground state solution

Now we are going to show that the problem \((P_\epsilon)\) has a ground state by supposing only \((f_1) - (f_3)\) and that \(\rho \) belongs to Class 1 or 2. Let
\[m = \inf_{\mathcal{O}} I(u), \quad \text{(5.1)} \]

where \(\mathcal{O} = \{ u \in H^\alpha_\rho(\mathbb{R}^n) \setminus \{0\} : I'(u) = 0 \} \).

26
Suppose that u is an arbitrary critical point of I. By Property 3.1 - (2),
\[
F(t) \geq 0 \text{ for all } t \in \mathbb{R}.
\] (5.2)

Then
\[
I(u) = I(u) - \frac{1}{2} I'(u)u = \frac{1}{2} \int_{\mathbb{R}^n} F(u(x))dx \geq 0
\] (5.3)
which implies that $m \geq 0$. Therefore $0 \leq m \leq I(v) < +\infty$. Let $\{u_k\} \subset O$ be a sequence such that
\[
I(u_k) \to m \text{ as } k \to \infty.
\]

Then, for some $\beta > 0$ we have
\[
\|u_k\| \geq \beta.
\] (5.4)

Arguing as in the proof of Lemma 3.2, $\{u_k\}$ is bounded in $H^1_\rho(\mathbb{R}^n)$. Let δ as in (4.1) associated to $\{u_k\}$. If $\delta = 0$, then
\[
\lim_{k \to \infty} \int_{\mathbb{R}^n} f(u_k(x))u_k(x)dx = 0,
\]
and hence
\[
\|u_k\|^2 = I'(u_k)u_k + \int_{\mathbb{R}^n} f(u_k(x))u_k(x)dx \to 0.
\] (5.5)

This contradicts with (5.4). Therefore $\delta > 0$ and there exists a sequence $\{y_k\} \subset \mathbb{Z}^n$ such that $v_k(x) = u_k(x + y_k)$ satisfies
\[
I'(v_k) = 0 \quad \text{and} \quad I(v_k) = I(u_k) \to m \text{ as } k \to \infty,
\]
and v_k converges weakly to some $v \neq 0$, a nonzero critical point of I. Furthermore, by (5.2) and Fatou's Lemma we deduce
\[
I(v) = I(v) - \frac{1}{2} I'(v)v = \frac{1}{2} \int_{\mathbb{R}^n} F(v(x))dx
\]
\[
\leq \liminf_{k \to \infty} \frac{1}{2} \int_{\mathbb{R}^n} F(v_k(x))dx
\]
\[
= \liminf_{k \to \infty} \left(I(u_k) - \frac{1}{2} I'(u_k)u_k \right) = m.
\]

Therefore, v is a nontrivial critical point of I with $I(v) = m$.

27
Remark 5.1. We note that, by Theorem 1.1, \(v \) is a nontrivial solution but it is possible that \(m = I(v) = 0 \), because we are assuming that
\[
F(t) \geq 0 \quad \forall t \in \mathbb{R}.
\]
To ensure that \(m > 0 \), it suffices to assume in addition that
\[
F(t) > 0, \quad \text{for } t \neq 0.
\]
This is the case if \(f \) satisfies the following condition \((f_4)\). In fact
\[
2F(t) = 2 \int_0^t \frac{f(s)}{s} sds < 2 \int_0^t \frac{f(t)}{t} sds = f(t)t, \tag{5.6}
\]
which implies that \(F(t) > 0 \). Furthermore, under this condition we can show that the mountain pass critical point is a ground state, namely
\[
m = c = \inf_{u \in \mathcal{N}} I(u),
\]
where
\[
\mathcal{N} = \{ u \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{0\} : I'(u)u = 0 \}.
\]
In fact, by Remark 3.1, \(I \) has the mountain-pass geometry, and we can introduce the following class of paths:
\[
\Gamma = \{ \gamma \in C([0, 1], H_\rho^\alpha(\mathbb{R}^n)) : \gamma(0) = 0, \quad I(\gamma(1)) < 0 \}.
\]
The mountain-pass level
\[
c = \inf_{\gamma \in \Gamma} \sup_{\sigma \in [0, 1]} I(\gamma(\sigma)) > 0
\]
is therefore associated to \(\Gamma \). Furthermore, by Remark 3.1 and following the ideas of [12], we can show that for any \(u \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{0\} \), there is a unique \(t_u = t(u) > 0 \) such that \(t_u u \in \mathcal{N} \) and
\[
I(t_u u) = \max_{t \geq 0} I(tu),
\]
and we note that
\[
m_* = \inf_{u \in H_\rho^\alpha(\mathbb{R}^n) \setminus \{0\}} \max_{t \geq 0} I(tu).
\]
where
\[
m_* = \inf_{u \in \mathcal{N}} I(u)
\]
28
On the other hand, given any \(u \in \mathcal{N} \), we may define the path \(\gamma_u(t) = t(u_t) \), where \(T(u_t) < 0 \) and obtain that \(\gamma_u \in \Gamma \). Thus, \(c \leq m^* \).

The other inequality follows from the fact that, for any \(\gamma \in \Gamma \), there exists \(t \in (0,1) \) such that \(\gamma(1) \in \mathcal{N} \). To prove this fact, we note that if \(I'(u)u \geq 0 \), then, by (5.6) we get

\[
I(u) = \frac{1}{2} \|u\|^2 - \int_{\mathbb{R}^n} F(u(x))dx
\]

\[
= I'(u)u + \frac{1}{2} \int_{\mathbb{R}^n} F(u(x))dx
\]

\[
\geq 0
\]

So, if we assume that \(I'(\gamma(t))\gamma(t) > 0 \) for all \(t \in (0,1] \), then \(I(\gamma(t)) \geq 0 \) for all \(t \in (0,1] \), contradicting \(I(\gamma(1)) < 0 \). In conclusion, we have proved that

\[
m^* = c.
\]

On the other hand,

\[
m \geq m^* \quad \text{and} \quad c \geq m,
\]

from where it follows that

\[
m = m^* = c.
\]

References

[1] C.O. Alves, Existence and Multiplicity of Solution for a Class of Quasi-linear Equations. Advanced Nonlinear Studies 5, (2005), 73–87.

[2] C. O. Alves, P. C. Carrião and O. H. Miyagaki, Nonlinear perturbations of a periodic elliptic problem with critical growth, J. Math. Anal. Appl. 260 (2001), 133-146.

[3] E. Di Nezza, G. Patalluci and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces”, Bull. Sci. math., 2012.

[4] D.M. Cao and E.S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in \(\mathbb{R}^N \), Ann. Inst. Henri Poincaré 13(5) (1996), 567–588.

[5] D.M. Cao and H.S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \(\mathbb{R}^N \), Proc. Roy. Soc. Edinburgh Sect. 126A (1996), 443–463

29
[6] M. Cheng, “Bound state for the fractional Schrödinger equation with unbounded potential”, J. Math. Phys., 53, 043507 (2012).

[7] J. Dong and M. Xu, “Some solutions to the space fractional Schrödinger equation using momentum representation method”, J. Math. Phys. 48, 072105 (2007).

[8] M. Fall and E. Valdinoci, “Uniqueness and nondegeneracy of positive solutions of \((-\Delta)^\alpha u + u = u^p\) in \(\mathbb{R}^n\) when \(\alpha\) is close to 1”, arXiv:1301.4868v2 [math.AP] 14 Jul 2013.

[9] R. Frank and E. Lenzmann, “Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb{R}\)”, Acta Math., 210 No 2, 261-318 (2013).

[10] P. Felmer, A. Quaas and J. Tan, “Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142, No 6, 1237-1262 (2012).

[11] P. Felmer and C. Torres, “Radial symmetry of ground states for a regional fractional nonlinear Schrödinger equation”, Communication on pure and applied analysis, 13(6), 2395-2406 (2014).

[12] P. Felmer and C. Torres, “Non-linear Schrödinger equation with non-local regional diffusion”, Calc. Var. DOI 10.1007/s00526-014-0778-x

[13] R. Frank, E. Lenzmann and L. Silvestre, “Uniqueness of radial solutions for the fractional Laplacian”, to appear in Comm. Pure Appl. Math. 2015, DOI 10.1002/cpa.21591.

[14] Q-Y. Guan, “Integration by Parts Formula for Regional Fractional Laplacian.” Commun. Math. Phys. 266, 289329 (2006).

[15] Q-Y. Guan and Z.M. Ma, “The reflected \(\alpha\)-symmetric stable processes and regional fractional Laplacian.” Probab. Theory Relat. Fields 134(4), 649694 (2006)

[16] X. Guo and M. Xu, “Some physical applications of fractional Schrödinger equation”, J. Math. Phys. 47, 082104 (2006).

[17] H. Ishii and G. Nakamura, “A class of integral equations and approximation of \(p\)-Laplace equations”, Calc. Var. 37, 485-522(2010).
[18] L. Jeanjean, “On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbb{R}^n”, Proc. Roy. Soc. Edinburgh 129, 787-809 (1999).

[19] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268, 298 - 305 (2000).

[20] N. Laskin, “Fractional Schrödinger equation”. Phys. Rev. E 66, 056108 (2002).

[21] S. Liu, “On ground states of superlinear p-Laplacian equations in \mathbb{R}^n”, J. Math. Anal. Appl. 361, 48-58 (2010).

[22] T.S Hsu, H.L. Lin and C.C Hu, Multiple positive solutions of quasilinear elliptic equations in \mathbb{R}^N, J.Math. Anal. Appl. 388(2012), 500–512.

[23] H.L. Lin, Multiple positive solutions for semilinear elliptic systems, J. Math. Anal. Appl. 391 (2012), 107–118.

[24] K. Hu and C.L. Tang, Existence and multiplicity of positive solutions of semilinear elliptic equations in unbounded domains., J. Differential equations 251(2011), 609–629.

[25] E. de Oliveira, F. Costa, and J. Vaz, “The fractional Schrödinger equation for delta potentials”, J. Math. Phys. 51, 123517 (2010).

[26] Y. Pu, J. Liu and C. Tang, “Ground states solutions for non-local regional Schrödinger equations”, Electronic Journal of Differential Equations, 2015, No. 223, pp. 1-16 (2015).

[27] P.H. Rabinowitz, “Minimax method in critical point theory with applications to differential equations”, CBMS Amer. Math. Soc., No 65, 1986.

[28] P.H. Rabinowitz, “On a class of nonlinear Schrodinger equations”, ZAMP, 43, 270-291(1992).

[29] C. Torres, “Nonlinear Dirichlet problem with non local regional diffusion”, Fract. Calc. Apple. Anal., Vol 19, No 2, 379-393(2016).

[30] M. Willem, Minimax Theorems, Birkhäuser, Boston, Basel, Berlin, 1996.