Nutritional Values of Onion Bulbs with Some Essential Structural Parameters for Packaging Process

Rokayya Sami 1,*, Abeer Elhakem 2, Mona Alharbi 2, Nada Benajiba 3, Manal Almatrafi 1 and Mahmoud Helal 4

1 Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; manal.almatrafi@uconn.edu
2 Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; a.elhakem@psau.edu.sa (A.E.); mh.alharbi@psau.edu.sa (M.A.)
3 Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah Bint Abdullahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; nabenajiba@pnu.edu.sa
4 Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; helal.mo@tu.edu.sa
* Correspondence: rokayya.d@tu.edu.sa

Abstract: Onions belong to the Allium genus that has been frequently used for human diet and the traditional medication due to the bioactive compounds. The main nutritional values, vitamins, and amino acid compositions of onion bulbs (Yellow, Red, Green, Leek, and Baby onions) with some essential structural parameters for the packaging process were investigated. Physical and structural parameters with frictions were applied for the packaging process. The results reported that moisture content was the main component of onion bulbs (88.65%). Besides, they were rich in proteins (9.22–13.21 g/100 g infresh weight) (FW). Results reported that Red and Yellow varieties established the largest vitamin C and carotenoids contents (45.07 mg/100 g−1 FW) and (1.44 µg/mL FW), respectively. The major amino acid was arginine which was highly found in Green variety (17.62 mg/g FW) and a relatively high amount of glutamic and aspartic acids as (9.88–14.89 mg/g FW) and (4.93–10.55 mg/g FW), respectively. Yellow variety established the largest width, thickness, surface area, aspect ratio, and sphericity. The highest static and kinetic frictions were established on steel (0.14–0.52) and (0.75–0.96), respectively. This study presents the nutritional evidence of onion varieties for the human diet besides the horticultural processing for packaging quality improvement.

Keywords: onions; nutritional values; vitamins; amino acids; physical; friction

1. Introduction

Onion (Allium cepa L.) belongs to the Alliaceae family which is mostly used as a staple food due to the presence of essential oils that gain strong flavor and taste in diet [1]. It has various forms as a whole, raw, flakes, ground, liquid, dried, or even fermented for culinary uses [2]. It has high effective nutrients as proteins, carbohydrates, sugars (glucose, fructose, galactose, arabinose), vitamins (C, β-carotenes), minerals (calcium, iron, sulfur) with some flavonoids and polyphenols components. Onion is commonly used in many medicinal purposes as a traditional medicine for the treatment of skin diseases, microbial growth, gastrointestinal problems, worms, and injuries [3,4]. Several epidemiological studies established that onion consumption can decrease the development risks for many diseases, such as inflammatory, coronary heart, cancer, respiratory problems due to their bioactive components [5–7]. Besides, the onion amino acids link with the sensory response of the “umami” taste [8]. Onions contain huge amounts of arginine that acts as a nitrogen reservoir and a quantity amounts of lysine and glutamic acids [9]. Therefore, onion plays an essential role in the human diet. Physical and structural parameters of food stuff participate in a significant role in processing and packaging operations. Besides, foods
are highly complex systems that demand much ingenuity due to the data scantiness in scientific researches. Physical structural parameters of various onion varieties vary with several factors such as their proximate chemical compositions [10]. Among these structural parameters, mass, weight, volume, densities, projected area, and friction forces are the most essential in the sizing, grading, sorting, conveying, and packaging systems [11]. Therefore, the relationship between weight and both intermediate diameters and geometric attributes is needed to determine the best time for harvesting [12].

This research established the main nutritional values, vitamins, and amino acid compositions of several onion bulbs with some essential structural parameters for providing authentic information about onion the packaging process to design and fabrication of sorting and separation equipments for the onions.

2. Materials and Methods

2.1. Chemical and Reagents

All the solvents and reagents used in this research work were without any further purification. All standards for vitamins and amino acids were from (Sigma, St. Louis, MI, USA).

2.2. Plant Material

Onion bulbs of five different varieties, namely Yellow, Red, Green, Leek, and Baby were used in this research work. Onion pulp types were (Red, Yellow, and Baby), while leek was pale green (Approximately 607.44 mm) and green onion was larger than the leek (approximately 1055.63 mm) in length. The bulbs were purchased from commercial stores in Taif City, Saudi Arabia. The 20 bulbs of each variety were examined in the department of food science and nutrition, College of Science, Taif University.

2.3. Sample Preparation for Nutritional Values

The selected onion bulbs were cleaned, socked into salty water for 20 min to inhibit the microbial activity, and cut into slices as $10 \times 20 \text{mm}^2$ to maintain uniform drying. Freeze-dried was achieved (ALPHA 1-4 LSC, Osterode am Harz, Germany) at 0.04 amber and -50°C for 2 days. After drying, the onion slices were grounded to powder, packaged, and stored at -80°C until extract.

2.4. Determination of Protein, Ash, Fiber, Crude Fat, Carbohydrate, and pH Contents of Onion Bulbs

Standard recommended methods were done to determine the chemical analysis levels of protein, ash, fiber, crude fat, carbohydrate, and pH contents according to the method elaborated in the Association of Official Analytical Chemists AOAC [13].

2.5. Vitamin C Analysis (HPLC)

The vitamin C determination was achieved according to the modified method of Rokayya et al. [14]. Chromatographic analyses were detected by an Agilent HPLC system (2000 ECOM, Chrastany u Prahy, CZ 252 19, Czech) at (254 nm) with UV detection. Analytical column YMC-Triart C18 (150 \times 4.6 mm) was used as the mobile phase of A/B 33/67; A: 0.1 M potassium acetate, distilled water 50:50, pH (4.9) and 1 mL/min for the flow rate at the ambient temperature.

2.6. Carotenoids Determination

The carotenoids determination was achieved according to the HOLM methodology [15]. The microwave extraction assay (Start E, Osterode am Harz, Germany) was detected by a Spectrum spectrophotometer at a wavelength of 440 nm (754 PC, Shanghai, China).
2.7. Amino Acid Measurement

Onion aliquots of about 10 mg of proteins were mixed with 9 mL of 6 M HCl [8]. After the sealing process, the onion extracts were hydrolyzed at 110 °C for 24 h after influencing by nitrogen gas. Extracts were diluted with (0.02 N) HCl, filtered and examined by an amino acid analyzer (Hitachi L-8800, Tokyo, Japan).

2.8. Physical Properties

Moisture content \((M_c)\) was detected by using the standard methods of AOAC [13]. The average size of the 20 bulbs of each variety, the three linear dimensions namely, length \((L)\), width \((W)\), and thickness \((T)\) were evaluated by a digital caliper with an accuracy of 0.01 mm [16]. Mass \((M)\) of individual onions was determined through a digitalized sensitive balance with a capacity of 0–1200 g and an accuracy of ±0.01 g. The aspect ratio \((S_p)\) was calculated according to Rokayya and Ebtihal [17]. Geometric mean diameter \((D_g)\), arithmetic mean diameter \((D_a)\), square mean diameter \((D_s)\), and equivalent diameter \((D_e)\) were calculated based on the mathematical expression of the ellipsoidal bodies [18].

\[
S_p = \frac{W}{L} \tag{1}
\]
\[
D_a = \frac{L + W + T}{3} \tag{2}
\]
\[
D_g = (LWT)^{0.333} \tag{3}
\]
\[
D_s = \left(\frac{LW + WT + TL}{3}\right)^{0.333} \tag{4}
\]
\[
D_e = \frac{D_a + D_s}{3} \tag{5}
\]

The actual volume \((V_m)\) was evaluated from the relationship given by Amin et al. [19] then the shape was assumed as a regularly geometrical shape, i.e., prolate spheroid \((V_{psp})\) and ellipsoid \((V_{ell})\) shapes, and thus their volumes were evaluated by the relationships:

\[
V_m = \frac{w}{\gamma} \tag{6}
\]
\[
V_{psp} = \frac{4\pi}{3} \left(\frac{L}{2}\right) \left(\frac{W}{2}\right)^2 \tag{7}
\]
\[
V_{ell} = \frac{4\pi}{3} \left(\frac{L}{2}\right) \left(\frac{W}{2}\right) \left(\frac{T}{2}\right) \tag{8}
\]

where \(w\) is the weight of the displaced water and \(\gamma\) is the weight density of water. Surface area \((S)\) and sphericity \((\phi)\) have been calculated by the equations [20]:

\[
S = \pi D_g^2 \tag{9}
\]
\[
\phi = \frac{D_g}{L} \tag{10}
\]

where \(D_g\) is the geometric mean diameter.

The packing coefficient was evaluated according to the formula [21]:

\[
\lambda = \frac{V}{V_o} \tag{11}
\]

where \(V\) is the true bulk of bulbs and \(V_o\) is the bulk of the box.
2.9. Structural Parameters

The true density (ρ_t) and bulk density (ρ_b) of onions were measured by using the standard liquid displacement method, while the density ratio (ρ_r) and percentage of porosity (P) were described by Rokayya and Ebtihal [17].

The projected area of onions to length, width, and thickness (PAL, PAW, and PAT) was determined by using a digital camera (Canon SX 210-IS, 14 Mpxels) and the Image Tool for Windows (version 7.00) program as follows [11]:

$$CPA = \frac{PAL + PAW + PAT}{3} \tag{12}$$

where PAL, PAW, and PAT are the projected areas at right angles to length, width, and thickness, respectively.

The static and kinetic coefficients of friction were established on several structural materials, such as steel, iron, glass, and plastic, by using friction equipment, while the angle tilt was read from a graduated scale as follows [16]:

$$\mu_s = \tan(\theta) \tag{13}$$

$$\mu_k = \frac{F_d}{N} \tag{14}$$

where μ_s is static, μ_k is kinetic, θ is the tilt angle, F_d is the measured friction and N is the normal force.

2.10. Data Analysis

The data were expressed as mean (+/−) standard deviation, subjected to analysis of variance (ANOVA) with three replications, and statistical analysis was applied by using SPSS 16.00 for Windows. Duncan’s test as a posthoc test was used at a $p < 0.05$ significance level.

3. Results and Discussion

3.1. Nutritional Values

Figure 1 represents the results of the nutritional values carried out on some onion bulb varieties. Protein content varied overall from 9.22 g/100 g FW (Green) to 13.21 g/100 g FW (Leek), Figure 1a. It was found that protein content agreed with that of onion bulbs investigated by Abdou et al. [22] that ranged from 9.84 to 12.09 g/100 g. The protein daily allowance is 50 to 63 g protein/day as per USDA recommendations (2000) [23]. About 80% of protein intake can be of vegetable origin, especially in developing countries, as it is more economic than animal protein. Therefore, onion consumption might supply a considerable amount for human needs.

However, ash contents varied from 3.02 g/100 g FW (Leek) to 4.92 g/100 g FW (Baby), Figure 1b. These results were similar to the other onion varieties [1].

As shown in Figure 1c, the fiber content values vary between 1.69 g/100 g FW in the Baby variety and 1.81 g/100 g FW in Green samples. Higher fiber content can be related to several factors, including the type and age [24].

Abhayawick et al. [10] established similar results of crude fat in onion bulbs to our contents, varying from 2.01 to 3.72 g/100 g FW. All onion bulbs have high crude fat, especially the Red variety, Figure 1d.

The carbohydrate content of different bulbs was varied; the Green variety had the highest at 83.04 g/100 g FW, followed by Leek at 79.88 g/100 g FW, Figure 1e. On the other hand, the Red variety had the lowest carbohydrate content at 77.20 g/100 g FW compared with other onion bulbs. All bulbs had a slightly higher carbohydrate content than the varieties reported by Elizabeth et al. [1].

The results for acidity were 6.24 (Baby) to 6.61 (Leek), Figure 1f. The low acidity might be a limitation for onion preservation [25].
Figure 1. Nutritional values: protein (a), ash (b), fiber (c), crude fat (d), carbohydrate (e), and pH (f) contents of onion bulbs.
3.2. Vitamin C and Carotenoid Values

In this research, the extraction of vitamin C using HPLC with fluorometric detectors was carried out. Though the use of UV detection coupled with HPLC for water-soluble vitamins is a sophisticated and expensive procedure, at the same time, it has been established to be a reliable, fast, and simple method [14]. Figure 2a shows the vitamin C contents for different onion bulbs, which is considered as a water-soluble antioxidant. The daily vitamin C intake should be 45–50 mg according to the World Health Organization [26]. The results reported that the largest vitamin C value was detected in the Red variety (45.07 mg/100 g FW) followed by the Baby variety (38.12 mg/100 g FW), while Green and Leek varieties showed the lowest (10.10 and 12.03 mg/100 g FW, respectively). These values were nonetheless higher than those reported for other onion bulbs [22].

![Graphs showing vitamin C and carotenoid values](image)

Figure 2. Vitamin C (a) and carotenoid values (b).

Carotenoid content can be influenced by several factors, such as variety, climate, genetic variability, and fertilizers [27]. In this study, Figure 2b reports that the highest carotenoid content was found in the Yellow variety (1.44 µg/mL FW), compared to the Baby variety (0.57 µg/mL FW). Green and Leek varieties reported similar values (0.80–0.85 µg/mL FW). A similar finding was reported for carotenoids that explained that the increased values could be related to sufficient nitrogen uptake which can cause onion bulbs to absorb more nitrogen and to build more chlorophyll structures [28].

3.3. Amino Acid Profile

The amino acid profile of the onion bulbs is shown in Figure 3, listing a total of 17 amino acid concentrations in mg/g FW. The major amino acid was arginine which was found to have the highest level in the Green variety (17.02 mg/g FW), followed by the Leek variety (12.30 mg/g FW). These results were in agreement with those of Lee et al. [29], who established arginine as the major amino acid in various onion bulbs. Methionine and cysteine were the minor amino acids in onion bulbs, varying from 0.007–0.013 mg/g FW and 0.015–0.023 mg/g FW, respectively. The results showed a relatively large amount of glutamic and aspartic acids from 9.88–14.89 mg/g FW and 4.93–10.55 mg/g FW, respectively. These two amino acids have a crucial role as a nitrogen source during the maturation period and are responsible for the “umami” taste of onions [30,31].
3.3. Amino Acid Profile

The amino acid profile of the onion bulbs is shown in Figure 3. Aspartic acid, serine, glycine, histidine, arginine, threonine, alanine, proline, cysteine, tyrosine, valine, methionine, lysine, isoleucine, leucine, and phenylalanine were present in the onion bulbs.

3.4. Physical and Structural Parameters

Table 1 shows the physical and structural parameters of five onion bulbs. The average moisture content (M_w) of the fresh onion bulbs was high for all varieties (88.65%). The Yellow variety had the highest value (92.59%). Abdou et al. [22] reported similar moisture contents for onion varieties cultivated in Cameroon. As a result, rotting and sprouting are influenced by high moisture content [10,11]. Green onion produced the longest length of 106.98 cm; the Yellow bulb had the largest thickness and width. From Ghabel et al. [32], who studied Iranian onions, the values of length, width, and thickness were in agreement with the onion variety bulbs. Green onion gave the highest mean weight (236.67 g), followed by Yellow, Red, Green, Leek, and Baby onion, respectively.

The highest and the lowest diameters were observed for Yellow and Leek, respectively. Against Ghabel et al. [32], geometric mean diameter results were recorded (69.23–73.14 mm). The highest and the lowest values of actual volume were for Green and Leek varieties, respectively. The results were in agreement with Bahnasawyet al. [33]. The ellipsoid and prolate spheroid volumes were (245.23, 250.26 cm3), (201.42, 202.78 cm3), (304.27, 302.04 cm3), (20.53, 20.28 cm3), and (22.45, 31.54 cm3) for onion varieties Yellow, Red, Green, Leek, and Baby, respectively. The mean surface area was 187.08, 163.56, 53.74, 165.33, and 38.70 cm2, respectively. Sphericity of onion varieties was 0.99, 0.93, 0.08, 0.05, and 0.82 for Yellow, Red, Green, Leek, and Baby onion, respectively.

The relationships between the main dimensions and mass are as follows:

- For Yellow bulb: $L = 1.00X W = 1.02X T = 0.35X M$
- For Red bulb: $L = 1.12X W = 1.13X T = 0.54X M$
- For Green onion: $L = 46.31X W = 45.90X T = 4.58X M$
- For Leek onion: $L = 80.32X W = 78.12X T = 63.67X M$
- For Baby bulb: $L = 1.14X W = 1.59X T = 2.16X M$

Figure 3. Amino acid profile.
Table 1. Some structural parameters of onion bulbs.

Varieties	Yellow	Red	Green	Leek	Baby
M_c	92.59 ± 0.21 b	92.17 ± 0.07 a	85.60 ± 0.57 c	91.05 ± 0.21 b	81.84 ± 0.52 d
L	77.82 ± 6.46 b	77.93 ± 6.34 b	1069.78 ± 82.03 a	618.55 ± 69.41 c	42.37 ± 2.97 d
W	78.00 ± 7.07 a	69.94 ± 8.00 b	23.10 ± 1.51 d	7.77 ± 1.14 e	37.46 ± 3.44 c
T	76.55 ± 5.72 a	69.40 ± 8.64 b	23.30 ± 1.37 c	7.93 ± 0.86 d	26.79 ± 2.04 c
M	227.63 ± 50.74 a	155.41 ± 53.51 b	236.67 ± 36.98 a	11.70 ± 5.69 c	19.70 ± 2.28 c
D_S	77.04 ± 5.22 a	71.91 ± 6.69 b	82.81 ± 5.30 c	33.50 ± 3.80 d	34.75 ± 2.30 c
D_D	77.46 ± 5.19 a	72.42 ± 6.59 a	372.06 ± 28.18 b	211.42 ± 23.63 d	35.54 ± 2.36 b
D_S	18.10 ± 0.81 a	17.29 ± 1.06 a	25.48 ± 1.23 b	14.76 ± 1.08 d	10.72 ± 0.47 c
D_D	57.53 ± 3.74 a	53.88 ± 4.78 a	160.12 ± 11.48 b	86.56 ± 9.37 d	27.00 ± 1.71 c
V_m	245.56 ± 53.14 a	168.73 ± 69.00 b	248.99 ± 131.05 c	21.09 ± 9.34 c	22.60 ± 20.41 c
V_{el}	245.23 ± 50.16 a	201.42 ± 55.16 b	304.27 ± 59.17 c	20.53 ± 7.23 c	22.45 ± 4.71 c
V_{pp}	250.26 ± 55.37 a	202.78 ± 53.88 b	302.04 ± 61.27 c	20.28 ± 7.87 c	31.54 ± 7.74 c
S_p	1.01 ± 0.11 a	0.90 ± 0.10 b	0.02 ± 0.00 c	0.01 ± 0.00 d	0.08 ± 0.07 b
S	187.08 ± 25.44 a	163.56 ± 30.17 c	53.74 ± 6.67 c	165.33 ± 16.93 a	38.70 ± 5.18 b
q	0.99 ± 0.06 a	0.93 ± 0.07 b	0.08 ± 0.00 d	0.05 ± 0.00 c	0.82 ± 0.04 c
λ	0.47 ± 0.02 b	0.35 ± 0.03 c	0.65 ± 0.10 a	0.68 ± 0.04 a	0.40 ± 0.10 b,c
L/W	1.00 ± 0.12 c	1.12 ± 0.13 c	46.31 ± 1.77 b	80.32 ± 9.07 a	1.14 ± 0.09 c
L/T	1.02 ± 0.10 d	1.13 ± 0.14 d	45.90 ± 1.73 b	78.12 ± 5.96 a	1.59 ± 0.13 c
L/M	0.35 ± 0.07 b	0.54 ± 0.14 b	4.58 ± 0.50 b	63.67 ± 32.31 a	2.16 ± 0.13 b
L/D_g	1.01 ± 0.07 d	1.09 ± 0.09 cd	12.91 ± 0.29 b	18.49 ± 1.03 a	1.22 ± 0.05 c
L/p	78.93 ± 10.90 c	84.90 ± 11.45 c	13825.81 ± 1292.70 a	11451.19 ± 1559.47 b	51.74 ± 4.96 d

Each value is presented as (SD±). Data with various uppercase superscript letters indicate significantly using the test of Duncan’s multiple ranges.

The highest true and bulk densities were 1299.59 and 400.22 kg/m3 for the Baby onion variety, respectively, shown in Table 2. The corresponding values for Yellow were 926.44, 365.61 kg/m3, Red 986.24, 323.78 kg/m3, Green 1062.11, 224.47 kg/m3, and Leek 579.79, 188.18 kg/m3. A true density of 1025–1063 kg/m3 was found in a previous study [10]. Bulk density results in Ghabel et al. [32] showed an agreement with our study. Density information is needed in the separation processes of onion bulbs [17]. The highest value of the density ratio was for the Baby onion variety and the lowest was for the Green onion variety. The porosity of Green onion had the highest value of 76.66%; on the other hand, Baby onion recorded the lowest value of 55.08%.

Table 2. Volume and density characteristics.

Varieties	Yellow	Red	Green	Leek	Baby
ρ_t	926.44 ± 45.81 a	986.24 ± 289.53 a	1062.11 ± 274.31 a	579.79 ± 199.26 b	1299.59 ± 737.06 a
ρ_b	365.61 ± 17.74 b	323.78 ± 19.48 c	224.47 ± 21.54 d	188.18 ± 32.55 e	400.22 ± 26.65 a
ρ_b/ρ_t	39.54 ± 2.57 b	35.53 ± 11.74 b	23.34 ± 10.53 b	36.44 ± 17.47 a	44.92 ± 36.00 b
P	60.46 ± 2.57 a	64.47 ± 11.74 a	76.66 ± 10.53 a	63.56 ± 17.47 b	55.08 ± 36.00 a

Each value is presented as (SD±). Data with various uppercase superscript letters indicate significantly using the test of Duncan’s multiple ranges.

3.5. Projected Area and Frictions

The projected area and coefficients of friction are given in Table 3. The mean projected areas perpendicular to the main dimensions were 68.24, 65.78, and 63.90 cm2 for Yellow, 51.36, 50.36, 55.19 cm2 for Red, 4.33, 114.53, 119.57 cm2 for Green, 4.33, 33.71, 25.91 cm2 for Leek, and 9.75, 10.85, 12.34 cm2 for Baby onion varieties for L, W, and T, respectively. It was established that the projected areas for the Green variety were the highest (79.47 cm2) and the Baby onion variety had the lowest (10.98 cm2).
Table 3. Projected area and friction characteristics.

Varieties	Yellow	Red	Green	Leek	Baby
PAL	68.24 ± 9.26 a	51.36 ± 16.72 b	4.33 ± 3.19 c	4.33 ± 3.19 c	9.75 ± 0.84 c
PAW	65.78 ± 11.17 b	50.36 ± 14.76 c	114.53 ± 13.53 a	33.71 ± 3.17 d	10.85 ± 1.99 e
PAI	63.90 ± 11.93 b	55.19 ± 13.48 b	119.57 ± 7.30 a	25.91 ± 6.03 c	12.34 ± 1.47 d
CAP	65.97 ± 10.68 b	52.30 ± 14.30 c	79.47 ± 5.90 a	21.32 ± 3.37 d	10.98 ± 1.09 e

Static coefficient of friction, μ_s
Steel
Iron
Glass
Plastic

Kinetic coefficient of friction, μ_k
Steel
Iron
Glass
Plastic

Each value is presented as (SD±). Data with various uppercase superscript letters indicate significantly using the test of Duncan’s multiple ranges.

The highest static friction was established on steel (0.14–0.52), followed by glass (0.11–0.38), iron (0.07–0.34), and plastic (0.09–0.26) due to the frictional properties of surface materials. The kinetic friction was established on steel (0.75–0.96), followed by iron (0.54–0.96), plastic (0.62–0.82), and glass (0.46–0.73).

4. Conclusions

This research work aimed to study the comparative analysis of the main nutritional values, vitamins, and amino acid compositions of five varieties of onion bulbs with some essential structural parameters for the packaging process. Onion bulbs had high protein content, fat, and ash and low fiber and carbohydrates contents. Additionally, they gave an acceptable impression in terms of vitamins and amino acids, with a predominance of arginine. Results for nutritional values help in gaining better views on onion benefits, while the structural parameters help in designing equipment for the packaging process and sorting.

Author Contributions: Methodology, R.S.; writing—review and editing, M.H.; N.B.; R.S.; A.E.; M.A. (Mona Alharbi); M.A. (Manal Almatrafi); funding acquisition, R.S., N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request from the corresponding author.

Acknowledgments: Taif University Researchers Supporting Project Number (TURSP-2020/140), Taif University, Taif, Saudi Arabia. This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Conflicts of Interest: The authors declared no conflict of interest.
Abbreviations

CAP Criteria projected area, cm2

D_a Arithmetic mean diameter, mm

D_e Equivalent mean diameter, mm

D_g Geometrical mean diameter, mm

D_s Square mean diameter, mm

F_d Measured friction force, N

L Length, mm

M Mass, g

W Width, mm

M_c Moisture content, %

N Normal force, N

P Porosity, %

PAL First projected area, cm2

PAT Third projected area, cm2

PAW Second projected area, cm2

ρ_b Bulk density, Kg/cm3

ρ_t Density ratio

ρ_t True density, Kg/cm3

S_p Aspect ratio

S Surface area, cm2

T Thickness, mm

V True bulk of onions, cm3

V_{ell} Ellipsoid volume, cm3

V_m Onion actual volume, cm3

V_o Bulk of the box, cm3

V_{psp} Prolate spheroid volume, cm3

w Weight of the displaced water, Kg

γ Weight density of water, Kg/cm3

θ Tilt angle of the friction device, deg

λ Packing factor

μ_k Kinetic coefficient of friction

μ_s Static coefficient of friction

ϕ Sphericity

References

1. Tame, V.T.; Afolabi, E.T. Effect of Drying Methods and Packaging on the Nutritional Values of Onions (*Allium cepa* L.) Bulbs. *Asian Plant Res. J.* 2020, 47–55. [CrossRef]

2. Bahadoran, Z.; Mirmiran, P.; Momenan, A.A.; Azizi, F. Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: A longitudinal follow-up study. *J. Hypertens.* 2017, 35, 1909–1916. [CrossRef]

3. Kandoliya, U.K.; Bodar, N.; Bajaniya, V.K.; Bhadja, N.; Golakiya, B.A.; Sciences, A. Determination of nutritional value and antioxidant from bulbs of different onion (*Allium cepa*) variety: A comparative study. *Int. J. Curr. Microbiol. App. Sci.* 2015, 4, 635–641.

4. Sami, R.; Bushnaq, T.; Radhi, K.; Benajiba, N.; Helal, M. Prevalence of thinness cases and dietary diversity among learners of various education stages in Taif Region, Saudi Arabia. *Afr. J. Food Agric. Nutr. Dev.* 2020, 21, 17081. [CrossRef]

5. Sami, R.; Garsa, A.; Eman, E.; Helal, M. Saudi community care awareness food facts, nutrients, immune system and COVID-19 prevention in taif city among different age categories. *Afr. J. Food Agric. Nutr. Dev.* 2021, 21, 17213–17233. [CrossRef]

6. Upadhyay, R.K. Nutraceutical, pharmaceutical and therapeutic uses of *Allium cepa*: A review. *Int. J. Green Pharm.* 2016, 10, 46–64.

7. Sami, R.A.; Khojah, E.Y.; Elgarni, E.A.; Benajiba, N. Evaluation of Nutritional Status for Some Sensitive Sets and its Relationship to Natural Antioxidants. *J. King Abdulaziz Univ. Med Sci.* 2017, 24. [CrossRef]

8. Sami, R.; Lianzhou, J.; Yang, L.; Ma, Y.; Jing, J. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (*Abelmoschus esculentus*) Grown in Different Geographical Locations. *BioMed Res. Int.* 2013, 2013, 574283. [CrossRef] [PubMed]

9. Lee, J.; Harnly, J.M. Free amino acid and cysteine sulfoxide composition of 11 garlic (*Allium sativum* L.) cultivars by gas chromatography with flame ionization and mass selective detection. *J. Agric. Food Chem.* 2005, 53, 9100–9104. [CrossRef]

10. Elhakem, A.H.; Benajiba, N.; Koko, M.Y.; Khojah, E.; Sami, R. DPPH, FRAP and TAEC Assays with Postharvest Cabbage (*Brassica oleracea*) Parameters During the Packaging Process. *Pak. J. Biol. Sci.* 2021, 24, 182–187. [CrossRef]
11. Sami, R.; Khojah, E. Physical-mechanical Estimation of Pepper (Capsicum annuum L.) Fruit Varieties. *J. Northeast Agric. Univ.* 2016, 23, 61–69. [CrossRef]

12. Khoshnam, F.; Tabatabaeeifar, A.; Varnamkhasti, M.G.; Borghesi, A. Mass modeling of pomegranate (Punica granatum L.) fruit with some physical characteristics. *Sci. Hortic.* 2007, 114, 21–26. [CrossRef]

13. Association of Official Analytical Chemists. *Official Methods of Analysis of Association of Official Analytical Chemists*, 15th ed.; AOAC: Arlington, VA, USA, 2011.

14. Sami, R.; Li, Y.; Qi, B.; Wang, S.; Zhang, Q.; Han, F.; Ma, Y.; Jing, J.; Jiang, L. HPLC Analysis of Water-Soluble Vitamins (B2, B3, B6, B12, and C) and Fat-Soluble Vitamins (E, K, D, A, and β-Carotene) of Okra (Abelmoschus esculentus). *J. Chem.* 2014, 2014, 831357. [CrossRef]

15. Petrovic, B.; Pokluda, R. Influence of Organic Fertilizers on Onion Quality. *Pol. J. Environ. Stud.* 2013, 22, 2105–2115. [CrossRef]

16. Sami, R.; Li, Y.; Qi, B.; Wang, S.; Zhang, Q.; Han, F.; Ma, Y.; Jing, J.; Jiang, L. HPLC Analysis of Water-Soluble Vitamins (B2, B3, B6, B12, and C) and Fat-Soluble Vitamins (E, K, D, A, and β-Carotene) of Okra (Abelmoschus esculentus). *J. Chem.* 2014, 2014, 831357. [CrossRef]

17. Sami, R.; Khojah, E. Evaluation of physical properties of okra (Abelmoschus esculentus L.) pods with different structural characteristics. *Res. Crop.* 2019, 20, 73–78. [CrossRef]

18. Sami, R.; Khojah, E.; Elgarni, E.; Aljumayi, H. Morphological-Mechanical Properties of Five Different Tomato Varieties in Kingdom of Saudi Arabia for High Techniques in Harvesting, Handling and Manufacturing. *Tikrit J. Agric. Sci.* 2016, 16, 1–11.

19. Taheri-Garavand, A.; Rafiee, S.; Keyhani, A. Study on some morphological and physical characteristics of tomato used in mass models to characterize best post harvesting options. *Aust. J. Crop Sci.* 2011, 5, 433–438.

20. Fathollahzadeh, H.; Mobli, H.; Jafari, A.; Rajabipour, A.; Ahmadi, H.; Borghesi, A.M. Borghesi Effect of Moisture Content on Some Physical Properties of Barberry. *Am. Eurasian J. Agric. Env.* 2008, 3, 789–794.

21. Topuz, A.; Topakci, M.; Canakci, M.; Akinci, I.; Ozdemir, F. Physical and nutritional properties of four orange varieties. *J. Food Eng.* 2005, 66, 519–523. [CrossRef]

22. Armand, A.B.; Scher, J.; Aboubakar, G.A.; Roger, P.; Montet, D.; Moses, M.C. Effect of three drying methods on the physicochemical composition of three varieties of onion (Allium cepa L.). *J. Food Sci. Nutr.* 2018, 1, 17–24.

23. United States Department of Agriculture. *Nutritional Dietary (RDA) Recommended Dietary Allowance*; IFA: Berlin, Germany, 2000.

24. Sami, R.; Alshehry, G.; Ma, Y.; Abdelazez, A.; Benajiba, N.J.J.O.F.; Research, N. Evaluation of Some Specific Components Existences in Okra (Abelmoschus Esculentus L. (Moench)) Cultivated from Different Areas. *J. Food and Nutr. Res.* 2019, 7, 155–161.

25. Armand, A.B.; Vroumsia, T.; Bernard, N.G.; Nicolas, N.Y.; Dimity, M.Y. Effect of solar and electric drying on the content of the phenolic compounds and antioxidant activity of three Varieties of onion (Allium cepa L.). *Int. J. Biol. Pharm. Allied Sci.* 2012, 1, 204–220.

26. World Health Organization. *Vitamin and Mineral Requirements in Human Nutrition*, 2nd ed.; WHO: Beijing, China, 2004.

27. Soltoft, M.; Bysted, A.; Madsen, K.H.; Mark, A.B.; Bügel, S.G.; Nielsen, J.; Knuthsen, P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. *J. Sci. Food Agric.* 2011, 91, 767–775. [CrossRef]

28. Zhang, E.; Duan, Y. Effects of Long-term Nitrogen and Organic Fertilization on Antioxidants Content of Tomato Fruits. *J. Hortic.* 2016, 3. [CrossRef]

29. Lee, E.J.; Yoo, K.S.; Jifon, J.; Patil, B.S. Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulfur, and sugar contents. *J. Food Sci.* 2009, 74, C475–C480. [CrossRef]

30. Hansen, S.L. Content of Free Amino Acids in Onion (Allium cepa L.) as Influenced by the Stage of Development at Harvest and Long-term Storage. *Acta Agric. Scand. Sect. B Soil Plant Sci.* 2001, 51, 77–83. [CrossRef]

31. Wang, H.; Sun, Y.; Li, Y.; Tong, X.; Regenstein, J.M.; Huang, Y.; Ma, W.; Sami, R.; Qi, B.; Jiang, L. Effect of the condition of spray-drying on the properties of the polypeptide-rich powders from enzyme-assisted aqueous extraction processing. *Dry. Technol.* 2019, 37, 2105–2115. [CrossRef]

32. Ghabel, R.; Rajabipour, A.; Ghassem-Varnamkhasti, M.; Oveis, M. Modeling the mass of Iranian export onion (Allium cepa L.) varieties using some physical characteristics. *Res. Agric. Eng.* 2010, 56, 33–40. [CrossRef]

33. Bahnasawy, A.H.; El-Haddad, Z.A.; El-Ansary, M.Y.; Sorour, H.M. Physical and mechanical properties of some Egyptian onion cultivars. *J. Food Eng.* 2004, 62, 255–261. [CrossRef]