Enhanced Self-Phase Modulation in Silicon Nitride Waveguides Integrated With 2D Graphene Oxide Films

Yuning Zhang, Student Member, IEEE, Jiayang Wu, Senior Member, IEEE, Yunyi Yang, Yang Qu, Housssein El Dirani, Romain Crochemore, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Baohua Jia, Fellow, Optica, and David J. Moss, Fellow, IEEE

Abstract—We experimentally demonstrate enhanced self-phase modulation (SPM) in silicon nitride (Si$_3$N$_4$) waveguides integrated with 2D graphene oxide (GO) films. GO films are integrated onto Si$_3$N$_4$ waveguides using a solution-based, transfer-free coating method that enables precise control of the film thickness. Detailed SPM measurements are carried out using both picosecond and femtosecond optical pulses. Owing to the high Kerr nonlinearity of GO, the hybrid waveguides show significantly improved spectral broadening compared to the uncoated waveguide, achieving a broadening factor of up to \sim3.4 for a device with 2 layers of GO. By fitting the experimental results with theory, we obtain an improvement in the waveguide nonlinear parameter by a factor of up to 18.4 and a Kerr coefficient (n_2) of GO that is about 5 orders of magnitude higher than Si$_3$N$_4$. Finally, we provide a theoretical analysis for the influence of GO film length, coating position, and its saturable absorption on the SPM performance. These results verify the effectiveness of on-chip integrating 2D GO films to enhance the nonlinear optical performance of Si$_3$N$_4$ devices.

Index Terms—Nonlinear optics, integrated waveguides, self-phase modulation, graphene oxide.

I. INTRODUCTION

SELF-PHASE modulation (SPM) is a fundamental third-order nonlinear optical process that occurs when an optical pulse travelling in a nonlinear medium, where a varying refractive index of the medium is induced by the Kerr effect, thus produces a phase shift that leads to a change in the pulse’s spectrum [1]–[3]. It has been widely used as a relevant all-optical modulation technology for a variety of applications in broadband optical sources [4], [5], optical spectroscopy [6], [7], pulse compression [8], [9], optical logic gates [10], [11], optical modulators / switches [12], [13], optical diodes [14], [15], and optical coherence tomography [16], [17].

The ability to realize SPM based on-chip integrated photonic devices will reap attractive benefits of compact footprint, high stability, high scalability, and low-cost mass production [18]–[21]. Although silicon (Si) has been a dominant device platform for integrated photonics [22]–[24], its strong two-photon absorption (TPA) at near-infrared wavelengths leads to a low nonlinear figure-of-merit (FOM = $n_2 / (\beta TPA)$, where n_2 is the Kerr nonlinearity, βTPA is the TPA coefficient, and λ the wavelength) ranging between 0.3 – 0.7 [25], which significantly limits the SPM performance of Si devices in the telecom band (Generally, the higher the FOM, the better the SPM performance). Significant effort has been made to introduce p-i-n junctions across silicon waveguides to sweep the free carriers generated by TPA and hence mitigate the free carrier effects [26]–[29]. While this indeed can reduce or eliminate the effects of free carriers, they do not, however, increase the intrinsic material nonlinear FOM of silicon, which is fundamental and depends solely on the band structure. To address this, other complementary metal-oxide-semiconductor (CMOS) compatible integrated platforms such as silicon nitride (Si$_3$N$_4$), high-index doped silica glass (Hydex), and amorphous silicon [30] have been exploited for nonlinear optics due to their low TPA in this wavelength range, which results in a nonlinear FOM that is much higher than Si [30]–[34].

Manuscript received 30 March 2022; revised 9 May 2022; accepted 16 May 2022. Date of publication 23 May 2022; date of current version 29 August 2022. The work of Christian Grillet and Christelle Monat was supported by the International Associated Laboratory in Photonics between France and Australia (LIA ALPhFA). This work was supported in part by Australian Research Council Discovery Projects Programs under Grants DP150102972 and DP190103186, in part by Swinburne ECR-SUPRA Program, in part by Industrial Transformation Training Centers scheme under Grant IC180100005, in part by the Beijing Natural Science Foundation under Grant Z1800007, in part by Agence Nationale de la Recherche (ANR) under Grant MIRISCOMB, ANR-17-CE24-0028, and in part by H2020 European Research Council (ERC) under Grant GRAPHICS, 648546. (Corresponding authors: Yuning Zhang; Jiayang Wu; Baohua Jia; David J. Moss.)

Yuning Zhang, Jiayang Wu, Yang Qu, and David J. Moss are with the Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (e-mail: yuningzhang@swin.edu.au; jiayangwu@swin.edu.au; yqu@swin.edu.au; dmoss@swin.edu.au).

Yunyi Yang and Baohua Jia are with the Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (e-mail: yunyi.yang@swin.edu.au; bjia@swin.edu.au).

Houssein El Dirani was with the CEA-LETI, Minatec, Optics and Photonics Division, 38054 Grenoble, France. He is now with STMicroelectronics, 38026 Crolles Cedex, France (e-mail: houssein.eldirani@cea.fr).

Romain Crochemore is with CEA-LETI, Minatec, Optics and Photonics Division, 38054 Grenoble, France (e-mail: romain.crochemore@cea.fr).

Corrado Sciancalepore was with the CEA-LETI, Minatec, Optics and Photonics Division, 38054 Grenoble, France. He is now with Soitec SA, 38190 Bernin, France (e-mail: corrado.sciancalepore@cea.fr).

Pierre Demongodin, Christian Grillet, and Christelle Monat are with Institut des nanotechnologies de Lyon, UMR CNRS 5270, Ecole Centrale Lyon, F-69130 Ecully, France (e-mail: pierre.demongodin@ec-lyon.fr; christian.grillet@ec-lyon.fr; christelle.monat@ec-lyon.fr).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/JSTQE.2022.3177385.

Digital Object Identifier 10.1109/JSTQE.2022.3177385.
The Si$_3$N$_4$ and Hydex platforms have been highly successful, forming the basis of integrated Kerr microcombs, largely a result of their negligible TPA and extremely high nonlinear FOM $>>1$ in the telecom band. For these platforms, however, their low intrinsic Kerr nonlinearity ($n_2 = 2.6 \times 10^{-19}$ m2/W and $\sim 1.3 \times 10^{-19}$ m2/W$^{-1}$ for Si$_3$N$_4$ and Hydex, respectively, over an order of magnitude lower than Si [32], [35]), still poses a fundamental limitation with respect to the nonlinear efficiency [36], [37].

Recently, the on-chip integration of two-dimensional (2D) materials with ultrahigh Kerr nonlinearity has proven to be an effective way to overcome the limitations of these existing platforms and improve their nonlinear optical performance [38]–[41]. Enhanced SPM has been demonstrated in integrated waveguides incorporating graphene [42]–[44], MoS$_2$ [45], WS$_2$ [46], and graphene oxide (GO) [47]. Amongst the different 2D materials, GO has shown many advantages for implementing hybrid integrated photonic devices with superior SPM performance, including a large Kerr nonlinearity (about 4 orders of magnitude higher than Si [48], [49]), relatively low loss compared to other 2D materials (over 2 orders of magnitude lower than graphene [50], [51]), facile synthesis processes [52], [53], and high compatibility with CMOS fabrication [54], [55]. In our previous work [47], we demonstrated enhanced SPM of picosecond optical pulses in Si waveguides integrated with 2D GO films, achieving a maximum spectral broadening factor (BF) of ~ 4.3 and enhanced FOM by up to 20 times.

In this paper, we demonstrate significantly improved SPM performance for Si$_3$N$_4$ waveguides integrated with 2D GO films. By using a solution-based, transfer-free coating method, we achieve on-chip integration of GO films with precise control of their thicknesses. Owing to the mode overlap between the Si$_3$N$_4$ waveguides and the GO films that have an ultrahigh Kerr nonlinearity, the hybrid waveguides exhibit a significantly improved nonlinearity, thus yielding the enhanced SPM of optical pulses after propagation through them. We perform SPM measurements using both picosecond and femtosecond optical pulses centered at telecom wavelengths. Compared to the uncoated Si$_3$N$_4$ waveguide, the GO-coated waveguides show more significant spectral broadening for both the picosecond and femtosecond optical pulses, achieving a maximum BF of ~ 3.4 for a device with 2 layers of GO. We also fit the SPM experimental results with theory and obtain a Kerr coefficient (n_2) for GO that is about 5 orders of magnitude higher than Si$_3$N$_4$. Finally, we discuss the influence of GO film’s length, coating position, and saturable absorption on the SPM performance. For Si waveguides the main challenge is to enhance the nonlinear FOM, whereas for Si$_3$N$_4$ waveguides the challenge is to enhance the nonlinear parameter $\gamma = 2\pi n_2/\lambda A_{\text{eff}}$, where A_{eff} is the effective mode area) since their FOM is very large already. We obtain an enhancement in γ by a factor of up to ~ 18.4 for a Si$_3$N$_4$ waveguide coated with 2 layers of GO, compared to the uncoated waveguide, accompanied by only a modest increase in the linear loss of about 3 dB/cm per layer of GO and with no measurable decrease in the nonlinear FOM. These results confirm the high nonlinear optical performance of Si$_3$N$_4$ waveguides integrated with 2D GO films.

II. DEVICE FABRICATION AND CHARACTERIZATION

Fig. 1(a) shows a schematic of a GO-coated Si$_3$N$_4$ waveguide with a monolayer GO film. The bare Si$_3$N$_4$ waveguide was fabricated via a CMOS-compatible crack-free method [56]–[58]. First, two-step deposition of Si$_3$N$_4$ film was achieved via low-pressure chemical vapor deposition (LPCVD) for strain management and crack prevention. Next, 248-nm deep ultraviolet lithography and CF$_4$/CHF$_3$/F$_2$/O$_2$ fluorine-based dry etching were employed for patterning the Si$_3$N$_4$ waveguides. A silica upper cladding was then deposited using high-density plasma-enhanced chemical vapor deposition (HDP-PECVD), followed by opening a window on it down to the top surface of the Si$_3$N$_4$ waveguides via lithography and dry etching processes. Finally,
the 2D layered GO film was coated onto the Si$_3$N$_4$ waveguide by using a solution-based method that enabled transfer-free and layer-by-layer film coating, as reported previously [51]–[53], [55]. Compared to the sophisticated and cumbersome film transfer processes (e.g., using scotch tape) employed for on-chip integration of other 2D materials such as graphene and transition metal dichalcogenides (TMDCs) [44], [45], [59], our GO coating method is much more precise and repeatable, enabling precise control of the GO layer number (i.e., film thickness, with a high resolution of ~2 nm), large-area film coating, and good film attachment on to integrated chips [49], [53]. In addition, although solution dropping methods are simple and rapid for coating GO films over large areas [60], [61], their low film uniformity and large film thicknesses make it difficult to achieve highly precise control of the film thickness on the order of nanometer, which limit the fabrication of ultrathin 2D GO films needed for this work. Figs. 1(b-i) and (b-ii) show a schematic cross section and the transverse electric (TE) mode profile of the GO-coated Si$_3$N$_4$ waveguide in Fig. 1(a), respectively. The interaction between light and the GO film possessing an ultrahigh Kerr nonlinearity can be excited by the waveguide evanescent field, which underpins the enhancement of the SPM response in the hybrid waveguide.

Fig. 1(c) shows a microscope image of a Si$_3$N$_4$ integrated chip uniformly coated with a monolayer GO film, where the coated GO film exhibits good morphology, high transmittance, and high uniformity. The opened window on the silica upper cladding of the uncoated Si$_3$N$_4$ chip enables control of the film length and placement of the GO film that are in contact with the Si$_3$N$_4$ waveguide. Note that this can also be realized by patterning GO films on planarized Si$_3$N$_4$ waveguides (without silica upper cladding) via lithography and lift-off processes, as we did in our previous work [50]. In this work, we used Si$_3$N$_4$ waveguides with opened windows mainly because they have lower coupling loss and propagation loss, which is beneficial for boosting the nonlinear response of SPM.

Figs. 1(d-i) and (d-ii) show the measured Raman spectra of a Si$_3$N$_4$ chip before and after coating 2 layers of GO, respectively, where the presence of the representative D and G peaks of GO in the latter one verifies the successful on-chip integration of the GO film [50]. According to our previous measurements [47], [50], [51], the GO film thickness shows a near linear relationship with layer number at small film thickness (i.e., layer numbers <100), and the thickness for 1 layer of GO is ~2.0 nm. For the GO-coated Si$_3$N$_4$ waveguides used in the following SPM measurements, the measured film thicknesses for 1 and 2 layers of GO are ~2.1 nm and ~4.3 nm, respectively.

III. LOSS MEASUREMENTS

Fig. 2 shows the experimental setup used for measuring both loss and SPM of GO-coated Si$_3$N$_4$ waveguides. Three different laser sources were employed, including a tunable continuous-wave (CW) laser and two different fiber pulsed lasers (FPLs) that can generate nearly Fourier-transform limited picosecond (pulse duration: ~1.9 ps) and femtosecond optical pulses (pulse duration: ~180 fs) centered at telecom wavelengths. An optical isolator was inserted after the laser source to prevent the reflected light from damaging it. A variable optical attenuator (VOA) and a polarization controller (PC) were used to tune the power and polarization of the input light, respectively. For both the loss and SPM measurements, TE polarization of input light injected into the device under test (DUT) was chosen because it supports in-plane interaction between the waveguide evanescent field and the 2D GO film, which is much stronger compared to the out-of-plane interaction given the significant optical anisotropy of 2D materials [38], [51]. We used inverse-taper couplers at both ends of the Si$_3$N$_4$ waveguide, which were butt coupled to lensed fibers to achieve light coupling into and out of the DUT. To avoid introducing any spectral filtering distortions, we did not use any optical couplers in our loss and SPM measurements since the operation bandwidth of our optical couplers was not large enough to cover the whole spectrum of the femtosecond optical pulses.

For the loss measurements, the power of the light before and after passing the DUT was measured by two optical power meters, i.e., OPM 1 and OPM 2. All the three laser sources were used to measure the loss of bare and GO-coated Si$_3$N$_4$ waveguides. The corresponding results are compared in Fig. 3.

Fig. 3(a) shows the insertion loss (IL_{CW}) of GO-coated Si$_3$N$_4$ waveguides versus input CW light power. Unless otherwise specified, the input power of CW light or optical pulses in this paper represents the power coupled into the waveguide after excluding the fiber-to-chip coupling loss. The measured
waveguides versus input power of picosecond optical pulses. It is also worth mentioning that the GO-induced excess propagation loss is about 100 times lower than graphene-induced excess propagation loss in graphene-coated Si$_3$N$_4$ waveguides [57], [63], highlighting the low material absorption of GO compared to graphene and its advantage for implementing nonlinear photonic devices with relatively low loss. Unlike graphene that has zero bandgap, GO has an opened bandgap enabled by the isolated sp^2 clusters within the sp^3 C–O matrix. The bandgap of GO is typically between 2.1 eV – 3.6 eV [49], [64], [65], which is much larger than both the single photon (0.8 eV) and two-photon (1.6 eV) energies at 1550 nm, thus yielding both low linear loss as well as nonlinear loss induced by TPA at telecom wavelengths. In principle, GO with a bandgap > 2 eV has negligible linear absorption below its bandgap. The light absorption of practical GO films is mainly caused by defects as well as scattering loss stemming from imperfect layer contact and film unevenness [47], [50], [51]. Since these sources are determined by the fabrication processes that are hard to quantitatively analyze, it is difficult to estimate the minimum linear loss that practical GO films can achieve. What is clear, however, is that there is still significant room to reduce the linear loss arising from these sources by optimizing the film fabrication processes.

As can be seen, the insertion loss does not show any obvious variation with the power of the input CW light, reflecting that the power-dependent loss induced by the photo-thermal changes in the GO films is negligible. This is because the photo-thermal changes are sensitive to the average light power coupled into the GO-coated waveguides [50], [54], and the average power of the input CW light here (< 7 mW) is much lower than what is typically needed to induce the significant photo-thermal changes (> 40 mW) seen in our previous work [50], [54], [62]. For CW light, when the input average power is between 7 mW and 40 mW, the insertion loss of the hybrid waveguides is still constant and unchanged since the power in this range is not high enough to induce obvious photothermal changes in the GO films, as we observed in Ref. [50]. On the other hand, for optical pulses with an input average power in the same range, there would be more significant changes in the measured insertion loss induced by the saturable absorption (SA) of GO, since the corresponding peak power is much higher than that used for our loss measurements. According to our previous measurements using CW light [50], there is no device damage when the average power is below the threshold for photo-thermal changes. Damage to the GO films can only be induced by at input powers that are much higher than the threshold for photo-thermal changes.

According to the results in Fig. 3(a), the excess propagation losses induced by the GO films are ~ 3.0 dB/cm and ~ 6.1 dB/cm for the hybrid waveguides with 1 and 2 layers of GO, respectively. These values are slightly higher than those of GO-coated dope silica waveguides [51], [52] but lower than those of GO-coated Si waveguides [47], mainly due to the moderate GO mode overlap in the GO-coated Si$_3$N$_4$ waveguides. It is also worth mentioning that the GO-induced excess propagation loss is about 100 times lower than graphene-induced excess propagation loss in graphene-coated Si$_3$N$_4$ waveguides [57], [63], highlighting the low material absorption of GO compared to graphene and its advantage for implementing nonlinear photonic devices with relatively low loss.

In both Figs. 3(b-i) and 3(b-ii), the measured excess propagation loss induced by the SA ($\Delta\text{IL}_{\text{pulses}}$) of GO-coated Si$_3N_4$ waveguides versus input power of picosecond and femtosecond optical pulses, respectively. These values are slightly higher than those of GO-coated dope silica waveguides [51], [52] but lower than those of GO-coated Si waveguides [47], mainly due to the moderate GO mode overlap in the GO-coated Si$_3$N$_4$ waveguides. It is also worth mentioning that the GO-induced excess propagation loss is about 100 times lower than graphene-induced excess propagation loss in graphene-coated Si$_3$N$_4$ waveguides [57], [63], highlighting the low material absorption of GO compared to graphene and its advantage for implementing nonlinear photonic devices with relatively low loss. Unlike graphene that has zero bandgap, GO has an opened bandgap enabled by the isolated sp^2 clusters within the sp^3 C–O matrix. The bandgap of GO is typically between 2.1 eV – 3.6 eV [49], [64], [65], which is much larger than both the single photon (0.8 eV) and two-photon (1.6 eV) energies at 1550 nm, thus yielding both low linear loss as well as nonlinear loss induced by TPA at telecom wavelengths. In principle, GO with a bandgap > 2 eV has negligible linear absorption below its bandgap. The light absorption of practical GO films is mainly caused by defects as well as scattering loss stemming from imperfect layer contact and film unevenness [47], [50], [51]. Since these sources are determined by the fabrication processes that are hard to quantitatively analyze, it is difficult to estimate the minimum linear loss that practical GO films can achieve. What is clear, however, is that there is still significant room to reduce the linear loss arising from these sources by optimizing the film fabrication processes.
GO. In contrast, the result for the uncoated Si₃N₄ waveguide does not show such a trend. This indicates that there is saturable absorption (SA) induced by the GO films in the hybrid waveguides. The SA was triggered by the optical pulses with high peak powers, resulting from the saturation of excited electrons filling the conduction band and hence preventing further transitions due to Pauli blocking [66], [67]. In contrast, such SA-induced loss changes were not observed with CW light at much lower peak powers, even for the same average power as the optical pulses. Similar phenomena have also been observed for the GO-coated Si waveguides [47] and graphene-coated Si₃N₄ waveguides [57]. In our experiment, we also note that the change in the loss of the hybrid waveguides was not permanent, and the measured IL_{pulse} in Fig. 3(b) is repeatable.

Fig. 3(c) depicts the SA-induced excess propagation loss (ΔSA, after excluding the linear propagation loss) versus the peak power of the input optical pulses, which is extracted from the results in Figs. 3(a) and (b). The negative values of ΔSA indicate that the loss decreases with light power, showing an opposite trend to TPA where the loss increases with light power [25], [39], [68]. The decreased loss induced by SA can facilitate more significant SPM driven by a high optical power. For femtosecond pulses, the decrease in loss is more significant than that for picosecond pulses, which can be attributed to their relatively high peak power that induces more significant SA in the GO.

IV. SPM Measurements

In the SPM measurements, we used the same FPLs and the same fabricated devices as those employed for loss measurements in Section III to measure the SPM-induced spectral broadening. As shown in Fig. 2, picosecond or femtosecond optical pulses generated by these FPLs were coupled into the DUT, and the output signal was sent to an optical spectrum analyzer (OSA) for observation of spectral broadening. The corresponding results for the picosecond and femtosecond optical pulses are compared in Figs. 4 and 5, respectively. In our experiments, the total length of the single mode fiber (SMF) between the pulsed laser and the DUT was about 1 m. A comparative experiment was performed to verify that the spectral broadening was mainly due to the DUT rather than the input SMF. For this reference measurement we replaced the DUT with a VOA that had the same insertion loss, and observed no obvious spectral broadening at the output. In addition, we performed simulations using the nonlinear parameter of standard SMF and the peak power of optical pulses in our experiment, the results also confirmed that the contribution from the input SMF to the spectral broadening was negligible.

Fig. 4(a) shows the normalized spectra of picosecond optical pulses before and after propagation through the uncoated and GO-coated Si₃N₄ waveguides. The peak power of the input picosecond optical pulses was kept the same at ~20 W. The output spectrum from the uncoated Si₃N₄ waveguide shows slight spectral broadening compared to the input pulse spectrum, which is mainly induced by the SPM in the Si₃N₄ waveguide. In contrast, the output spectra after propagating through the GO-coated Si₃N₄ waveguides show more significant spectral broadening, reflecting the enhanced SPM in these hybrid waveguides.

To quantitively compare the spectral broadening in these waveguides, we calculated the BFs for the measured output spectra. The BF is defined as [43], [47], [57]:

$$BF = \frac{\Delta \omega_{rms}}{\Delta \omega_0}$$ \hspace{1cm} (1)$$

where Δω₀ and Δω_{rms} are the root-mean-square (RMS) spectral widths of the input and output signals, respectively.

Fig. 4(b) shows the output spectra after propagation through the hybrid waveguide with 2 layers of GO measured using picosecond optical pulses with different peak powers. We chose 6 different input peak powers ranging from 7 W to 20 W – the same as those in Fig. 3(b-i). As expected, the spectral broadening of the output spectra becomes more significant as the peak power increases.

To quantitively compare the spectral broadening in these waveguides, we calculated the BFs for the measured output spectra. The BF is defined as [43], [47], [57]:

$$BF = \frac{\Delta \omega_{rms}}{\Delta \omega_0}$$ \hspace{1cm} (1)$$

where Δω₀ and Δω_{rms} are the root-mean-square (RMS) spectral widths of the input and output signals, respectively.
Fig. 5. SPM experimental results using femtosecond optical pulses. (a) Normalized spectra of optical pulses before and after propagation through the GO-coated Si$_3$N$_4$ waveguides with 1 and 2 layers of GO. (b) Optical spectra measured at different input peak powers for the hybrid waveguides with 2 layers of GO. (c) BF of the measured output spectra versus input peak power for the hybrid waveguides with 1 and 2 layers of GO.

In (b) and (c), the corresponding results for the uncoated Si$_3$N$_4$ waveguides are also shown for comparison.

The BF shows a significant increase with the peak power of the input optical pulses. As can be seen, the BF for the GO-coated Si$_3$N$_4$ waveguides is higher than that of the uncoated waveguide, and the BF for the hybrid waveguide with 2 layers of GO is higher than that for the device with 1 layer of GO, showing agreement with the results in Fig. 4(a). The BF increases with the peak power of the optical pulses, which is consistent with the results in Fig. 4(b). At a peak power of ~20 W, a maximum BF of ~1.3 is achieved for the hybrid waveguide with 2 layers of GO.

Fig. 5(a) shows the normalized spectra of femtosecond optical pulses after passing through the hybrid waveguides show more significant spectral broadening compared to the uncoated waveguide. Fig. 5(b) shows the output spectra measured at different input peak powers for the hybrid waveguide with 2 layers of GO, showing the similar trend as that in Fig. 4(b). The peak power of the input femtosecond optical pulses ranged from 98 W to 160 W – the same as those in Fig. 3(b-i). The calculated BF for the uncoated and GO-coated Si$_3$N$_4$ waveguides versus the input peak power are shown in Fig. 5(c). A maximum BF of ~3.4 is achieved at a peak power of 160 W for the hybrid waveguide with 2 layers of GO, which is ~2.6 times higher than the maximum BF achieved for the picosecond optical pulses. This mainly results from the relatively high peak power of the femtosecond optical pulses that drives more significant SPM in the hybrid waveguide.

V. THEORETICAL ANALYSIS AND DISCUSSION

Based on the theory in Refs. [21], [47], [69], we simulated the evolution of optical pulses traveling along the GO-coated Si$_3$N$_4$ waveguides using the nonlinear Schrodinger equation as follows:

$$\frac{\partial A}{\partial z} = -i\beta_2 \frac{\partial^2 A}{\partial t^2} + i\gamma |A|^2 A - \frac{1}{2} \alpha A$$ \hspace{1cm} (2)

where $i = \sqrt{-1}$, $A(z, t)$ is the slowly varying temporal pulse envelope along the propagation direction z, β_2 is the second-order dispersion coefficient, and γ is the waveguide nonlinear parameter. The overall loss factor α includes both the linear propagation loss and the SA-induced excess propagation loss that are discussed in Fig. 3.

Unlike in Refs. [47], [69], there are no free carrier absorption (FCA) and free carrier dispersion (FCD) items in Eq. (2) since the TPA in both Si$_3$N$_4$ and GO (with bandgaps >2 eV) is negligible at near-infrared wavelengths. We retain only the second-order dispersion item in Eq. (2) because the physical length of the waveguides (i.e., ~20 mm) is much smaller than the dispersion length [70]. In our simulation, we divided the GO-coated Si$_3$N$_4$ waveguides into uncoated (with silica cladding) and hybrid segments (coated with 1.4-mm-long GO films). Numerically solving Eq. (2) was performed for each segment, and the output from the previous segment was set as the input for the subsequent one.

Figs. 6(a) and (b-i) show the measured and fit spectra of the input picosecond pulses and the output signal after propagation through the uncoated Si$_3$N$_4$ waveguide, respectively. The simulated spectrum evolution of the input optical pulses propagating along the uncoated waveguide is shown in Fig. 6(b-ii). The peak power of the input picosecond pulses is ~20 W. The fit spectra and spectrum evolution were calculated based on Eq. (2), which show good agreement with the experimental results. The slight discrepancies between the measured and fit spectra mainly result from imperfections of the input pulse spectrum. The fit γ for the uncoated Si$_3$N$_4$ waveguide is ~1.5 W$^{-1}$ m$^{-1}$ – in agreement with the reported values in previous literature [20], [50], [71].

Figs. 6(c-i) and (d-i) show the measured and fit spectra for the output signals after transmission through the hybrid waveguides
Fig. 6. (a) Measured and fit spectra of input picosecond optical pulses. (b-i) Measured and fit output spectra after propagation through the uncoated Si$_3$N$_4$ waveguides. (b-ii) Simulated spectra evolution along the uncoated Si$_3$N$_4$ waveguide. (c-i) Measured and fit output spectra after propagation through the hybrid waveguide with 1 layer of GO. (c-ii) Simulated spectra evolution along the hybrid waveguide with 1 layer of GO. (d-i) Measured and fit output spectra after propagation through the hybrid waveguide with 2 layers of GO. (d-ii) Simulated spectra evolution along the hybrid waveguide with 2 layers of GO. Insets in (c-ii) and (d-ii) show zoom-in views for the GO-coated regions. In (b) – (d), the peak power of the input picosecond pulses is \(\sim 20 \text{ W} \).

with 1 and 2 layers of GO, respectively. The input peak power is the same as that in Fig. 6(b). The corresponding spectrum evolutions along the hybrid waveguides are shown in Figs. 6(c-ii) and (d-ii). As can be seen, the theoretical simulations also agree well with the experimental results. The fit \(\gamma \)'s for the hybrid waveguides with 1 and 2 layers of GO are \(\sim 11.5 \) and \(\sim 27.6 \), respectively, which are \(\sim 7.7 \) and \(\sim 18.4 \) times that of the uncoated Si$_3$N$_4$ waveguide, reflecting the significantly improved Kerr nonlinearity for the hybrid waveguides. The significant Kerr nonlinearity is also confirmed by the dramatical spectral broadening within the GO-coated region, as shown in the insets of Figs. 6(c-ii) and (d-ii).

Similar to Fig. 6, we also performed simulations based on Eq. (2) to fit the experimental results of femtosecond optical pulses. The measured and fit spectra of the input femtosecond pulses and the output signal after propagation through the uncoated Si$_3$N$_4$ waveguide are shown in Figs. 7(a) and (b-i) respectively. Figs. 7(c-i) and (d-i) show the measured and fit spectra for the output femtosecond signals after transmission through the hybrid waveguides with 1 and 2 layers of GO, respectively. The simulated spectrum evolution of the input pulses corresponding to Figs. 7(b-i), 7(c-i), and 7(d-i) are shown in Figs. 7(b-ii), 7(c-ii), and 7(d-ii), respectively. In all of these figures, the peak power of the input femtosecond pulses is \(\sim 160 \text{ W} \). As can be seen, all the theoretical curves show good agreement with the experimental ones. The fit \(\gamma \) for the uncoated Si$_3$N$_4$ waveguide and the hybrid waveguides with 1 and 2 layers of GO are the same as those obtained by fitting the experimental results of picosecond optical pulses in Fig. 6, highlighting the high consistency and further confirming the enhanced Kerr nonlinearity for the hybrid waveguides. Similar to the insets of Figs. 6(c-ii) and (d-ii), there is also dramatical spectral broadening within the GO-coated region in the insets of Figs. 7(c-ii) and (d-ii).

Based on the fit \(\gamma \)'s of the hybrid waveguides, we further extract the Kerr coefficient \((n_2) \) of the layered GO films using [52], [72], [73]:

\[
\gamma = \frac{2\pi}{\lambda_c} \frac{\int S_2 \int_D n_2^2(x, y) \left| \int S_2 dxdy \right|^2}{\left[\int S_0 (x, y) S_2 dxdy \right]^2}
\]
Fig. 7. (a) Measured and fit spectra of input femtosecond optical pulses. (b-i) Measured and fit output spectra after propagation through the uncoated Si$_3$N$_4$ waveguides. (b-ii) Simulated spectra evolution along the uncoated Si$_3$N$_4$ waveguide. (c-i) Measured and fit output spectra after propagation through the hybrid waveguide with 1 layer of GO. (c-ii) Simulated spectra evolution along the hybrid waveguide with 1 layer of GO. (d-i) Measured and fit output spectra after propagation through the hybrid waveguide with 2 layers of GO. (d-ii) Simulated spectra evolution along the hybrid waveguide with 2 layers of GO. Insets in (c-ii) and (d-ii) show zoom-in views for the GO-coated regions. In (b) – (d), the peak power of the input femtosecond pulses is ~ 160 W.

where λ_c is the pulse central wavelength, D is the integral of the optical fields over the material regions, S_z is the time-averaged Poynting vector calculated using mode solving software, $n_0(x, y)$ is the refractive index profiles calculated over the waveguide cross section and $n_2(x, y)$ is the Kerr coefficient of the different material regions. The values of n_2 for silica and Si$_3$N$_4$ used in our calculation were 2.60×10^{-20} m2 W$^{-1}$[32] and 2.59×10^{-19} m2 W$^{-1}$, respectively, with the latter obtained by fitting the experimental results for the uncoated Si$_3$N$_4$ waveguide.

As can be seen, the γ defined in Eq. (3) is weighted by the Kerr coefficient n_2 of the different material regions. Despite the small material region for the 2D GO films, its ultrahigh Kerr coefficient (about 5 orders of magnitude higher than Si$_3$N$_4$) can still yield significantly improved γ’s for the hybrid waveguides. The fit γ’s of the hybrid waveguides with 1 and 2 layers of GO are ~ 11.5 W$^{-1}$m and ~ 27.6 W$^{-1}$m, respectively, which are ~ 7.7 and ~ 18.4 times that of the uncoated Si$_3$N$_4$ waveguide. The extracted n_2 of 1 and 2 layers of GO are $\sim 1.23 \times 10^{-14}$ m2 W$^{-1}$ and $\sim 1.19 \times 10^{-14}$ m2 W$^{-1}$, respectively. Both of the values are about 5 orders of magnitude higher than that of Si$_3$N$_4$ and agree reasonably well with our previous measurements [50]. Note that the n_2 of 1 layer of GO is higher than that of 2 layers of GO. We infer this may result from the increased inhomogeneous defects within the GO layers and imperfect contact between the multiple GO layers. Nonetheless, the higher GO mode overlap for the thicker 2-layer film, compared to the single-layer film, resulted in a more than doubling of the nonlinear parameter γ.

Based on the SPM modeling in Eq. (2) and the fit parameters obtained from Figs. 6 and 7, we further investigate the influence of GO film length (L_c) and coating position (L_0) on the SPM performance of GO-coated Si$_3$N$_4$ waveguides.

Figs. 8(a) and (b) show the calculated BFs versus L_c and input peak power (P_{peak}) for picosecond and femtosecond optical pulses after propagation through the hybrid waveguides, respectively. In each figure, (i) and (ii) show the results for the waveguides with 1 and 2 layers of GO, respectively. The coating position is fixed at $L_0 = 0.7$ mm – the same as those of
Fig. 8. (a) BFs versus GO film length (L_c) and input peak power (P_{peak}) for picosecond optical pulses after propagation through the hybrid waveguides. (b) BFs versus L_c and P_{peak} for femtosecond optical pulses after propagation through the hybrid waveguides. (c) BFs versus GO coating position (L_0) and P_{peak} for picosecond optical pulses after propagation through the hybrid waveguides. (d) BFs versus L_0 and P_{peak} for femtosecond optical pulses after propagation through the hybrid waveguides. In (a) – (d), (i) and (ii) show the corresponding results for the waveguides with 1 and 2 layers of GO, the black points mark the results corresponding to the device parameters and input powers in Figs. 4 (a) and 5 (a). In (a) and (b), $L_0 = 0.7$ mm. In (c) and (d), $L_c = 1.4$ mm.

The BF can also be improved by coating thicker GO films (i.e., $L_c = 19.3$ mm and $P_{\text{peak}} = 30$ W) and 25.0 (at $L_c = 19.3$ mm and $P_{\text{peak}} = 240$ W) being achieved for the picosecond and femtosecond optical pulses, respectively. This reflects that there is a large room for improvement in the SPM-induced spectral broadening by increasing the GO film length and the input peak power. The BF can also be improved by coating thicker GO films (i.e., $N > 2$), which was used for increasing the FWM conversion efficiency in Ref. [50]. The increased GO film thickness will also lead to loss increase for the hybrid waveguides and hence creates a need to balance the trade-off between the Kerr nonlinearity and loss [36], [37].

Figs. 8(c) and (d) show the calculated BFs versus L_0 and P_{peak} for picosecond and femtosecond optical pulses after propagation through the hybrid waveguides, respectively, where the film length is fixed at $L_c = 1.4$ mm. The simulation results marked by the black points also agree well with the experimental results in Figs. 4 and 5. The BF increases with both L_c and P_{peak}, with maximum BFs of 4.2 (at $L_c = 19.3$ mm and $P_{\text{peak}} = 30$ W) and 25.0 (at $L_c = 19.3$ mm and $P_{\text{peak}} = 240$ W) being achieved for the picosecond and femtosecond optical pulses, respectively. This reflects that there is a large room for improvement in the SPM-induced spectral broadening by increasing the GO film length and the input peak power. The BF can also be improved by coating thicker GO films (i.e., $N > 2$), which was used for increasing the FWM conversion efficiency in Ref. [50]. The increased GO film thickness will also lead to loss increase for the hybrid waveguides and hence creates a need to balance the trade-off between the Kerr nonlinearity and loss [36], [37].

The fabrication of devices with optimized GO film lengths and the demonstration of higher SPM performance will be the subject of future work. The integration of GO films with longer lengths is not a problem because our GO film coating method enables large-area film coatings with high-uniformity. The film coating area is limited only by the size of the substrate and the solution container [53]. To improve the SPM performance, the waveguide length can be increased compared to the current devices (i.e., 20 mm).

Previously, we fabricated hybrid SOI nanowires with much thicker GO films (up to 20 layers) and measured their SPM performance [47]. We also performed detailed theoretical analysis for the influence of GO film’s length, thickness, and coating position on the SPM performance [37]. In this work, the maximum GO film thickness for the fabricated device is 2 layers (i.e., ~ 4.3 nm), which is mainly used to compare the spectral broadening performance for the picosecond and femtosecond optical pulses. According to our simulation in Ref. [37], it is anticipated that better SPM performance can be achieved for Si$_3$N$_4$ waveguides with more than 2 layers of GO. To achieve this, the GO film length needs to be optimized to balance the trade-off between loss and Kerr nonlinearity. As discussed in Section III, the decreased loss induced by the SA in the GO films affects the SPM performance. In Figs. 9(a) and (b), we show the influence of the SA on the spectral broadening of picosecond and femtosecond optical pulses after propagation through the hybrid waveguide with 2 layers of GO, respectively. In each figure, the solid curve shows the result when considering the SA that induces a slightly reduced loss, whereas the dashed curve shows the result that was calculated using a constant linear loss of GO measured at low CW powers (i.e., the loss in Fig. 3(a)). As can be seen, the SA of GO has a positive influence and yields more significant spectral broadening for both the picosecond and femtosecond optical pulses. The difference for the femtosecond pulses is more obvious, showing a similar trend to the results for the loss decrease in Fig. 3(b) and reflecting that there is a more significant influence of the SA on the spectral broadening for optical pulses with higher peak powers.

In Table I, we provide comparisons for the parameters of the GO-Si$_3$N$_4$ waveguides in this work and the GO-Si waveguides in Ref. [47]. We note that the trade-offs and challenges involved
with integrating GO films into these two very different platforms, are in turn very different. Compared to the GO-Si waveguides, GO-Si$_3$N$_4$ waveguides have a larger waveguide geometry, which results in lower mode overlap with GO films. Such a reduced GO mode overlap yields a lower GO-induced excess propagation loss, at the expense of a weaker light-GO interaction. Despite this, the nonlinear parameter γ of the GO-Si$_3$N$_4$ waveguide with 1 layer of GO is still \sim7.7 times that of the uncoated waveguide. In contrast, there is only about a 2-fold improvement in the γ of the GO-Si waveguide with 1 layer of GO. This mainly due to the relatively low n_2 of Si$_3$N$_4$ compared to Si, reflecting that integrating GO onto Si$_3$N$_4$ waveguides has a more dramatic impact on improving the nonlinear performance. In contrast to Si that has strong TPA at near infrared wavelengths, the TPA of Si$_3$N$_4$ in this wavelength range is absent, which yields much higher values of nonlinear FOM for both the uncoated and GO-coated Si$_3$N$_4$ waveguides. Hence, the motivation in integrating GO films onto Si waveguides lies very much in increasing the nonlinear FOM, whereas for Si$_3$N$_4$ waveguides, the main benefit of integrating GO films is to increase the nonlinearity (i.e., nonlinear parameter γ) without introducing additional nonlinear loss.

Finally, our observation of SA in the GO-coated Si$_3$N$_4$ waveguides effectively equates to having a negative nonlinear FOM, and so the very concept and utility of introducing a FOM, as first proposed [74], arguably does not apply here. For both the Si and Si$_3$N$_4$ platforms, reducing the GO film loss further through improved fabrication and integration methods (e.g., by using GO solutions with improved purity and optimized flake sizes) will directly benefit the nonlinear performance of all devices that incorporate GO films.

Table I

Parameters	Si	Si$_3$N$_4$
Refractive index n_2	3.48	1.99
n_2 (10^{-19} m2/W)	6.00	2.59
A_0 (μm2)	0.08	0.70
Waveguide length (mm)	3.0	20.0
GO film length (mm)	2.2	1.4
Waveguide propagation loss (dB/cm)	4.3	0.5
Excess propagation loss of 1 layer of GO (dB/cm)	20.5	3.0
γ_{WG} (W^{-1}m^2)	288.0	1.5
γ_{hybrid} (W^{-1}m^2)	668.0 (N = 1)	11.5 (N = 1)
	990.0 (N = 2)	27.6 (N = 2)
Fit n_2 of GO (10^{-14} m$/W$)	1.42 (N = 1)	1.23 (N = 1)
	1.33 (N = 2)	1.19 (N = 2)
FOM	1.1 (N = 1)	$>>1$
	2.4 (N = 2)	$>>1$
Ref.	[47]	This work

aThese values are at 1550 nm.
bA$_0$: effective mode areas for the bare waveguides.
c\(\gamma_{WG}\): nonlinear parameters of the bare waveguides.
d\(\gamma_{hybrid}\): nonlinear parameters of the hybrid waveguides with 1 and 2 layers of GO.
eThe definition of FOM = n_2/β_{TPA} is the same as those in Refs. [25], [27], with n_2 and β_{TPA} denoting the effective Kerr coefficient and TPA coefficient of the waveguides, respectively, and λ the light wavelength at 1550 nm.

VI. Conclusion

We experimentally demonstrate enhanced SPM in Si$_3$N$_4$ waveguides integrated with 2D GO films. The integration of GO films is achieved by using a solution-based, transfer-free coating method with precise control of the film thickness. SPM measurements are performed using both picosecond and femtosecond optical pulses. The GO-coated Si$_3$N$_4$ waveguides show more significant spectral broadening than the uncoated waveguide, with a maximum BF of \sim3.4 being achieved for a device with 2 layers of GO. The experimental results show good agreement with theory, achieving up to \sim18.4 times improvement in the waveguide nonlinear parameter compared to uncoated waveguide and a fit n_2 of GO that is about 5 orders of magnitude higher than Si$_3$N$_4$. Analysis for the influence of GO film’s length, coating position, and SA on the SPM performance is also provided. This work demonstrates that the Si$_3$N$_4$ can be effectively transformed into a highly performing CMOS-compatible nonlinear photonic platform by integrating 2D GO films.
REFERENCES

[1] R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A, vol. 17, no. 4, Apr. 1978, Art. no. 1448.
[2] G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol. 25, no. 11, pp. 2297–2293, Nov. 1989.
[3] L. Wu et al., “Recent advances of spatial self-phase modulation in 2D materials and passive photonic device applications,” Small, vol. 16, no. 35, Jul. 2020, Art. no. 2002252.
[4] H. Guo et al., “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nature Photon., vol. 12, no. 6, pp. 330–335, Jun. 2018.
[5] Y. Yu et al., “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev., vol. 8, no. 5, May 2014.
[6] J. Hult, R. Watt, and C. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Exp., vol. 15, no. 18, pp. 11385–11395, Aug. 2007.
[7] K. Kaltenecker et al., “Near-infrared nanospectroscopy using a low-noise supercontinuum source,” APL Photon., vol. 6, no. 6, Jun. 2021, Art. no. 066106.
[8] N. Kree et al., “Pulse compression of ultrashort UV pulses by self-phase modulation in bulk material,” Appl. Sci., vol. 3, no. 1, pp. 153–167, Feb. 2013.
[9] M. Peccianti et al., “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Exp., vol. 18, no. 8, pp. 7625–7633, Apr. 2010.
[10] L. Wu et al., “ID3® 0D hybrid dimensional heterojunction-based photonic logic gate and isolator,” Appl. Mater. Today, vol. 19, Jun. 2020, Art. no. 100589.
[11] P. Singh, D. Tripathi, S. Jaiswal, and H. Dixit, “All-optical logic gates: Designs, classification, and comparison,” Adv. Opt. Technol., Apr. 2020, Art. no. 275083.
[12] L. Wu et al., “2D tellurium based high-performance all-optical nonlinear photonic devices,” Adv. Funct. Mater., vol. 29, no. 4, Nov. 2019, Art. no. 1806346.
[13] L. Wu et al., “2D MXene: MXene-based nonlinear optical information converter for all-optical modulator and switcher,” Laser Photon. Rev., vol. 12, no. 10, Oct. 2018, Art. no. 1870055.
[14] Y. Dong et al., “Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes,” Adv. Mater., vol. 30, no. 10, Jan. 2018, Art. no. 1705714.
[15] S. Konorov et al., “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B, vol. 78, no. 5, pp. 547–550, Mar. 2004.
[16] S. Moon and D. Kim, “Ultra-high-speed optical coherence tomography with subpicosecond supercontinuum source,” Opt. Exp., vol. 14, no. 24, pp. 11575–11584, Nov. 2006.
[17] K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 µm ultrashort-pulse laser system for ultra-high-resolution optical-coherence tomography,” Opt. Lett., vol. 35, no. 21, pp. 3631–3633, Oct. 2010.
[18] E. Duflos, Y. Tse, H. Chen, N. Panoui, and R. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Exp., vol. 14, no. 12, pp. 5524–5534, Jun. 2006.
[19] O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Exp., vol. 12, no. 5, pp. 829–834, Mar. 2004.
[20] D. Tan, K. Ikeda, P. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett., vol. 96, no. 6, Feb. 2010, Art. no. 061101.
[21] D. Duchesne et al., “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Exp., vol. 17, no. 3, pp. 1865–1870, Jan. 2009.
[22] W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: Methods, tools and challenges,” Laser Photon. Rev., vol. 12, no. 4, Mar. 2018, Art. no. 1700237.
[23] S. Feng et al., “Silicon photonics: From a microresonator perspective,” Laser Photon. Rev., vol. 6, no. 2, pp. 145–177, Aug. 2012.
[24] G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, Aug. 2010.
[25] J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon., vol. 4, no. 8, pp. 535–544, Aug. 2010.
[26] A. Gajda et al., “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased pin junction,” Opt. Exp., vol. 20, no. 12, pp. 13100–13107, May. 2012.
Yuning Zhang (Student Member, IEEE) received the bachelor’s degree from the Tianjin University of Science and Technology, Tianjin, China, in June 2013, and the master’s degree from the Beihang University, Beijing, China, in March 2017. She is currently working toward the Ph.D. degree with the Optical Sciences Centre, Swinburne University of Technology, Melbourne, VIC, Australia, under the supervision of Prof. David J. Moss and Dr. Jiayang Wu. Her current research focuses on functional integrated photonic devices incorporating 2D materials. She is a Student Member of the IEEE Photonics Society.

Jiayang Wu (Senior Member, IEEE) received the B.Eng. degree in communication engineering from Xidian University, Xi’an, China, in 2010, and the Ph.D. degree in electronics engineering from Shanghai Jiao Tong University, Shanghai, China, in December 2015. After that, he joined the Swinburne University of Technology, Melbourne, VIC, Australia, and became a Postdoctoral Research Fellow in 2016. He is currently a Senior Research Fellow and a Senior Lecturer with the Optical Sciences Centre, Swinburne University of Technology. His current research interests include integrated photonics, nonlinear optics, 2D materials, and optical communications. As of May 1st of 2022, he has more than 190 refereed publications in SCI journals and EI conference proceedings, highlighted by Nature, Advanced Materials, Nature Communications, Small Methods, Nano Letters, and Advanced Optical Materials. He is also an inventor on 15 filed patents about integrated photonic devices and optical communication technologies. In 2021, Dr. Wu was awarded the Australian National Research Award as a top researcher in the field of Optics & Photonics (only one person).

Yunyi Yang received the master’s degree from the Beijing Institute of Technology, Beijing, China, in July 2014, and the Ph.D. degree from the Swinburne University of Technology, Melbourne, VIC, Australia, in February 2019. After that, he continued his research with Swinburne, as a Research Fellow in 2019. He is currently a Senior Nano Engineer with the School of Science, Computing and Engineering Technologies, Swinburne University of Technology. His current research interests include 2D metamaterials, integrated photonics, nonlinear optics, and nanophotonic devices.

Yang Qu received the bachelor’s and master’s degrees from the Beijing Institute of Technology, Beijing, China, in June 2014, and March 2018, respectively. He is currently working toward the Ph.D. degree with the Optical Sciences Centre, Swinburne University of Technology, Melbourne, VIC, Australia, under the supervision of Prof. David J. Moss and Dr. Jiayang Wu. His current research focuses on functional integrated photonic devices incorporating 2D materials.

Houssen El Dirani received the Ph.D. degree from the Ecole Centrale de Lyon, Lyon, France, in 2019, for his doctoral research on the development of high quality silicon nitride chips for integrated nonlinear photonics. He then spent two and half years with STMicroelectronics, Crolles, France, as a Process Integration Engineer of BiCMOS technologies. He is currently a Process Integration Engineer with LIGENTEC SA, Corbeille-Essonne, France. His work is focused on the industrialization and improvement of photonics technologies.

Romain Crochemore’s biography is not available at the time of submission.

Corrado Sciancalepore received the M.Sc. degree in engineering physics from Politecnico di Torino, Turin, Italy, in 2009, and the Ph.D. degree in optical and electrical engineering from the École Centrale de Lyon, Écully, France, in 2012. He is currently a Technical Marketing Manager within the Specialty-SOI Business Unit, Soitec. From 2013 to 2020, he was with the CEA-LETI, Grenoble, France, as a permanent Researcher in silicon photonics within the Optics and Photonics Division. In 2020, he was hired by SOITEC, Bernin, France. He is the author or coauthor of more than 110 journal articles and international conference proceedings on cutting-edge silicon photonics circuits, III-V optoelectronics, and VCSEL photonics.
Pierre Demongodin received the bachelor’s degree from Université Claude Bernard of Lyon, Villeurbanne, France, in 2015, the master’s degree from the Grenoble INP Phelma, Grenoble, France, in 2017, and the Ph.D. degree from Lyon University, Lyon, France, in April 2022. He is currently a Postdoctoral Researcher with Institut des Nanotechnologies de Lyon, Lyon, France. His research focuses on the study of the nonlinear optical properties of graphene on photonics at telecom wavelength.

Christian Grillet received the Ph.D. degree in photonics integrated devices from Ecole Centrale de Lyon, Lyon, France, in 2003. After nine years with the ARC Center of Excellence CUDOS-University of Sydney, Sydney, NSW, Australia, where he was In-charge of the “All-Optical Switch” CUDOS flagship project, he joined the Institut des Nanotechnologies de Lyon (INL), Ecole Centrale de Lyon, as a CNRS Researcher in 2012 to launch and lead an international effort around the emerging field of integrated nonlinear Mid-IR photonics with seminal contributions in particular on mid-IR integrated broadband sources (e.g., chip-based bright, coherent, octave-span mid-IR super continuum source in SiGe waveguides). His primary research interests include nonlinear optics, integrated optics, silicon photonics, nanophotonics, broad-band sources, and mid-infrared.

Christelle Monat received the Ph.D. degree in photonics integrated devices from Ecole Centrale de Lyon, Lyon, France, in 2003. She then spent two years with Ecole Polytechnic Federal de Lausanne, Lausanne, Switzerland, to work on single photon sources, before she joined the ARC Center of Excellence CUDOS-University of Sydney, Sydney, NSW, Australia, where he was In-charge of the Slow light CUDOS flagship project, till 2010. She is currently a Professor with Ecole Centrale de Lyon, and undertakes her research on nonlinear integrated optics, within the Institut des Nanotechnologies de Lyon. Her research interests include the generation of broadband light sources at telecom wavelength and in the mid-IR, and also hybrid integrated platforms for efficient nonlinear devices including with the use of 2D materials.

Baohua Jia (Fellow, Optica) received the B.Sc. and M.Sc. degrees from Nankai University, Tianjin, China, and the Ph.D. degree from the Swinburne University of Technology, Melbourne, VIC, Australia, in 2007. She is currently a Full Professor with the School of Science, RMIT University, Melbourne, VIC, Australia. Before joining RMIT, she was the Founding Director of Centre for Translational Atomaterials, Swinburne University of Technology. Her research interests include fundamental light and nano- and atomaterial interaction. Her work on laser manipulation of 2D materials has led to the design and fabrication of functional nanostructures and nanomaterials for effective harnessing and storage of clean energy from sunlight, purifying water, and air for clean environment, and imaging, spectroscopy, and nanofabrication using ultrafast laser toward fast-speed all-optical communications and intelligent manufacturing.

David J. Moss (Fellow, IEEE) received the B.Sc. degree in physics from the University of Waterloo, Waterloo, ON, Canada, in 1981, and the M.Sc. and Ph.D. degrees in nonlinear optics from the University of Toronto, Toronto, ON, Canada, in 1983 and 1988, respectively. He is currently the Director of the Optical Sciences Centre, Swinburne University of Technology, Melbourne, VIC, Australia, leading research programs in a wide variety of areas, including integrated nonlinear nanophotonics, telecommunications, quantum optics, bio-photonics, renewable energy, and others. From 1988 to 1992, he was with the National Research Council of Canada, Institute for Microstructural Sciences, Ottawa, Ottawa, ON, Canada, working on III–V optoelectronic devices. From 1992 to 1994, he was a Senior Visiting Scientist with Hitachi Central Research Laboratories, Tokyo, Japan, working on high-speed optoelectronic devices for 10 Gb/s fiber optic telecommunications systems. From 1994 to 1998, he was a Senior Research Fellow with the Optical Fiber Technology Centre, University of Sydney, Sydney, NSW, Australia. From 1998 to 2003, he was a Manager with JDS Uniphase, Ottawa, ON, Canada, leading a team developing products for 40 Gb/s telecommunications systems. From 2003 to 2013, he was with the University of Sydney and the Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), working on ultrahigh bandwidth optical signal processing, integrated nonlinear nanophotonic circuits and photonic crystal devices. He is a fellow of the IEEE Photonics Society and Fellow of the Optical Society of America.