GENERA OF TWO-BRIDGE KNOTS AND EPIMORPHISMS OF THEIR KNOT GROUPS

MASAAKI SUZUKI AND ANH T. TRAN

ABSTRACT. Let K, K' be two-bridge knots of genus n, k respectively. We show the necessary and sufficient condition of n in terms of k that there exists an epimorphism from the knot group of K onto that of K'.

1. INTRODUCTION

Let K be a knot in S^3 and $G(K)$ the knot group, that is, the fundamental group of the complement of K in S^3. We denote by $g(K)$ the genus of K. Recently, many papers have investigated epimorphisms between knot groups. In particular, Simon’s conjecture in [8], which states that every knot group maps onto at most finitely many knot groups, was settled affirmatively in [2]. In the same Kirby’s problem list [5], Simon also proposed another conjecture. Namely, if there exists an epimorphism from $G(K)$ onto $G(K')$, then is $g(K)$ greater than or equal to $g(K')$? This problem is also mentioned in [9]. It is known that if there exists an epimorphism from $G(K)$ onto $G(K')$, then the Alexander polynomial of K is divisible by that of K'. Moreover, Crowell [7] showed that the genus of an alternating knot is equal to a half of the degree of the Alexander polynomial. Then the above conjecture is true for alternating knots, especially two-bridge knots.

In this paper, we give a more explicit condition on genera of two-bridge knots K and K' such that there exists an epimorphism between their knot groups. As a corollary, we show that if there exists an epimorphism from $G(K)$ onto $G(K')$, then $g(K) \geq 3g(K') - 1$.

A knot is called minimal if its knot group admits epimorphisms onto the knot groups of only the trivial knot and itself. Many types of minimal knots are already shown in [10], [17], [4], [11], [13], [15], and [14]. By using the main theorem of this paper, we obtain several types of minimal knots. For example, a two-bridge knot of genus 2 is minimal if and only if it is not the two-bridge knot $C[2a, 4b, 4a, 2b]$ in Conway’s notation for any non-zero integers a, b.

2. OHTSUKI-RILEY-SAKUMA CONSTRUCTION

In this section, we review some known facts about two-bridge knots, see [5] and [12] for example. Especially, we recall Ohtsuki-Riley-Sakuma construction of epimorphisms between two-bridge knot groups.

2010 Mathematics Subject Classification. 57M25, 57M27.

Key words and phrases. knot group, epimorphism, two-bridge knot, genus.
It is known that a two-bridge knot corresponds to a rational number and that it can be expressed as a continued fraction

\[[a_1, a_2, \ldots, a_{m-1}, a_m] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{m-1} + a_m}}} }, \]

where \(a_1 > 0 \). We define the length of the continued fraction to be

\[\ell([a_1, a_2, \ldots, a_{m-1}, a_m]) = m. \]

Note that the length depends on the choice of continued fractions. For example, we can delete zeros in a continued fraction by using

\[[a_1, a_2, \ldots, a_{i-2}, a_{i-1}, 0, a_{i+1}, a_{i+2}, \ldots, a_m] = [a_1, a_2, \ldots, a_{i-2}, a_{i-1} + a_{i+1}, a_{i+2}, \ldots, a_m]. \]

Then, we can reduce the length by 2, if the continued fraction contains a 0.

Theorem 2.1 (Ohtsuki-Riley-Sakuma [16], Agol [1], Aimi-Lee-Sakuma [3]). Let \(K(r), K(\hat{r}) \) be 2-bridge knots, where \(r = [a_1, a_2, \ldots, a_m] \). There exists an epimorphism \(\varphi : G(K(\hat{r})) \to G(K(r)) \) if and only if \(\hat{r} \) can be written as

\[\hat{r} = [\varepsilon_1 a, 2c_1, \varepsilon_2 a^{-1}, 2c_2, \varepsilon_3 a, 2c_3, \varepsilon_4 a^{-1}, 2c_4, \ldots, \varepsilon_{2n} a^{-1}, 2c_{2n}, \varepsilon_{2n+1} a], \]

where \(a = (a_1, a_2, \ldots, a_m), a^{-1} = (a_m, a_{m-1}, \ldots, a_1), \varepsilon_i = \pm 1 (\varepsilon_1 = 1), \) and \(c_i \in \mathbb{Z} \).

Remark that we can exclude the case where \(c_i = 0 \) and \(\varepsilon_i \cdot \varepsilon_{i+1} = -1 \) without loss of generality (see [17] for details).

A continued fraction \([a_1, a_2, \ldots, a_m] \) is called even if all \(a_i \)'s are even integers. Moreover, it is called reduced if all \(a_i \)'s are non-zero.

3. Main Theorem

First, we define a set \(S_k \) as follows:

\[S_k = \mathbb{N} \cap \left(\bigcup_{r=1}^{k-2} [(2r+1)k + r + 1, (2r+3)k - r - 2] \right). \]

For \(j \in \mathbb{Z} \), we let \(\mathbb{Z}_{\geq j} \) denote the set of all integers greater than or equal to \(j \).

In this section, we show the following theorem.

Theorem 3.1. Let \(K' \) be a two-bridge knot of genus \(k \). There exists a two-bridge knot \(K \) of genus \(n \) such that the knot group \(G(K) \) admits an epimorphism onto \(G(K') \) if and only if

\[n \in \mathbb{Z}_{\geq 3k-1} \setminus S_k. \]

Proof. Recall that the length of the reduced even continued fraction corresponding to a two-bridge knot is twice the genus of the knot, see [3] for example. A continued fraction of a rational number corresponding to \(K' \) can be written as \([a_1, a_2, \ldots, a_{2k}] \) where all \(a_i \)'s are even and non-zero, since the genus of \(K' \) is \(k \). Suppose that there exists an epimorphism from \(G(K) \) onto \(G(K') \). By Theorem 2.1, a rational number corresponding to \(K \) admits a continued fraction in the form

\[[\varepsilon_1 a, 2c_1, \varepsilon_2 a^{-1}, 2c_2, \varepsilon_3 a, 2c_3, \varepsilon_4 a^{-1}, 2c_4, \ldots, \varepsilon_{2r} a^{-1}, 2c_{2r}, \varepsilon_{2r+1} a] \]
where $a = (a_1, a_2, \ldots, a_{2k})$. As mentioned in Section 2, if $c_i = 0$, then we can reduce the length of the continued fraction by 2. After deleting 0, the length of the continued fraction of K is

$$2n = (2r + 1)\ell([a_1, a_2, \ldots, a_{2k}]) + \sum_{i=1}^{2r} w_i = 2(2r + 1)k + \sum_{i=1}^{2r} w_i$$

where

$$w_i = \begin{cases} 1 & \text{if } c_i \neq 0 \\ -1 & \text{if } c_i = 0. \end{cases}$$

We define ℓ as

$$\ell = \frac{1}{2} \sum_{i=1}^{2r} w_i = r - \# \{i \mid c_i = 0, 1 \leq i \leq 2r\}.$$

Then $-r \leq \ell \leq r$ and $n = (2r + 1)k + \ell$. Namely,

$$n \in \mathbb{N} \cap \left(\bigcup_{r \in \mathbb{N}} \left([(2r + 1)k - r, (2r + 1)k + r] \right) \right).$$

Here if $r \geq k - 1$, each interval does not have a gap with the next interval. Therefore the complement of the set to which n belongs is

(3.1) \hspace{1cm} \mathbb{N} \cap \left([1, 3k - 2] \cup \bigcup_{r=1}^{k-2} [(2r + 1)k - r, (2r + 1)k + r - 2] \right).$

Conversely, if n belongs to $\mathbb{Z}_{\geq (3k-1)} \setminus S_k$, we can construct a two-bridge knot K of genus n whose knot group admits an epimorphism onto $G(K')$ as above. \hfill \Box

Corollary 3.2. Let K be a two-bridge knot and K' a knot. If there exists an epimorphism $\varphi : G(K) \rightarrow G(K')$, then

(3.2) \hspace{1cm} g(K) \geq 3g(K') - 1.$$

Remark 3.3. We denote by $c(K)$ the crossing number of a knot K. Let K be a two-bridge knot and suppose that there exists an epimorphism from $G(K)$ onto the knot group $G(K')$ of another knot K'. By the previous paper [17], the following inequality holds

(3.3) \hspace{1cm} c(K) \geq 3c(K').$

Moreover, for a given two-bridge knot K', we can construct a two-bridge knot K with any crossing number satisfying the inequality (3.3) such that $G(K)$ admits an epimorphism onto $G(K')$. However, Theorem 3.1 implies we can not always construct a two-bridge knot K of any genus even if it satisfies the inequality (3.2).

More precisely, if $g(K) \geq 3g(K') - 1$ but $g(K) \in S_{g(K')}$, then there does not exist an epimorphism from $G(K)$ onto $G(K')$. Note that the cardinality of S_k is

$$\sum_{r=1}^{k-2} ((2r + 3)k - r - 2) - ((2r + 1)k + r + 1) + 1 = (k - 1)(k - 2)$$

and that of the set (3.1) is

$$3k - 2 + \# S_k = 3k - 2 + (k - 1)(k - 2) = k^2.$$
4. SMALL GENUS

In this section, we see some examples of small genus. Namely, for a small given n, we describe the continued fractions of two-bridge knots K of genus n which admit epimorphisms onto another knot K' of genus k. Note that by the argument of the proof of Theorem 3.1, we have the following

\[(2r + 1)k - r \leq n \leq (2r + 1)k + r,\]
\[\mathbb{Z}\{i \mid c_i = 0, 1 \leq i \leq 2r\} = (2r + 1)k + r - n.\]

Case: $n = 2$. By Corollary 3.2, the genus of K' is 1. Then we can take $[2a, 2b]$ for a continued fraction of K', where $a, b \in \mathbb{Z} \setminus \{0\}$. The inequality (4.1) implies $r = 1$ or 2. When $r = 1$, one c_i is 0 and the other c_i is not 0 by the equation (4.2). Then the continued fraction of K is

\[\lfloor 2a, 2b, 0, 2b, 2a, 0, 2a, 2b \rfloor = \lfloor 2a, 4b, 4a, 2b \rfloor.\]

Furthermore, if a continued fraction of a two-bridge knot of genus 2 cannot be expressed in this form, then this knot is minimal.

Case: $n = 3$. Similarly, the genus of K' is 1 and $\lfloor 2a, 2b \rfloor$ can be taken as a continued fraction of K'. The inequality (4.1) implies $r = 1$ or 2. When $r = 1$, one c_i is 0 and the other c_i is not 0 by the equation (4.2). Then the continued fraction of K is

\[\lfloor 2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2a, 0, 2a, 2b \rfloor = \lfloor 2a, 4b, 4a, 4b, 4a, 2b \rfloor.\]

Case: $n = 4$. The genus of K' is 1 and a continued fraction of K' is $\lfloor 2a, 2b \rfloor$. The inequality (4.1) implies $r = 1, 2, 3$. When $r = 1$, all c_i’s are not 0. Then the continued fraction of K is

\[\lfloor 2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2b, 2a, 2c_4, 2\varepsilon_5a, 2\varepsilon_5b \rfloor = \lfloor 2a, 4b, 4a, 4b, 2a, 2c_4, 2\varepsilon_5a, 2\varepsilon_5b \rfloor\]

or

\[\lfloor 2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2b, 2a, 0, 2a, 2b \rfloor = \lfloor 2a, 4b, 4a, 4b, 4a, 2b \rfloor.\]

up to mirror image, where $\varepsilon_2, \varepsilon_3 = \pm 1$. When $r = 2$, three c_i’s are 0 and one c_i is not 0. Then the continued fraction of K is

\[\lfloor 2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2b, 2a, 2c_4, 2\varepsilon_5a, 2\varepsilon_5b \rfloor = \lfloor 2a, 4b, 4a, 4b, 2a, 2c_4, 2\varepsilon_5a, 2\varepsilon_5b \rfloor\]

Case: $n = 5$. In this case, the genus of K' is 1 or 2 by Corollary 3.2. First, we consider the case that the genus of K' is 1 and that a continued fraction of K' is
The continued fraction of K continues fraction of ε knot of genus up to 5 is minimal.

By using the above arguments, we obtain a criterion whether a given two-bridge knot of genus up to 5 is minimal.

Theorem 4.1. A two-bridge knot K of genus up to 5 is not minimal if and only if a continued fraction of a rational number corresponding to K can be expressed as

$$[2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 2c_3, 2\varepsilon_4 b, 2\varepsilon_4 a, 2c_4, 2\varepsilon_5 a, 2\varepsilon_5 b]$$

up to mirror image, where $\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_7 = \pm1$. Next, the genus of K' is 2 and the continued fraction of K' is $[2a, 2b, 2c, 2d]$, where $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Then the continued fraction of K is

$$[2a, 2b, 0, 2b, 2a, 0, 2a, 2b, 2c_2, 2\varepsilon_3 a, 2\varepsilon_3 b, 0, 2\varepsilon_3 a, 2\varepsilon_3 b]$$

up to mirror image, where $\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_7 = \pm1$. Next, the genus of K' is 2 and the continued fraction of K' is $[2a, 2b, 2c, 2d]$, where $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Then the continued fraction of K is

$$[2a, 2b, 2c, 2d, 0, 2d, 2c, 2b, 2c, 0, 2c, 2b, 0, 2b, 2a, 0, 2a, 2b, 0, 2b, 2a, 0, 2a, 2b]$$

up to mirror image, where $\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_7 = \pm1$. Next, the genus of K' is 2 and the continued fraction of K' is $[2a, 2b, 2c, 2d]$, where $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Then the continued fraction of K is

$$[2a, 2b, 2c, 2d] = [2a, 2b, 2c, 4d, 2c, 2b, 4a, 2b, 2c, 2d].$$

By using the above arguments, we obtain a criterion whether a given two-bridge knot of genus up to 5 is minimal.
one of the following:

\[[2a, 4b, 4a, 2b], \\
[2a, 4b, 2a, 2c_2, 2e_3a, 2e_3b], [2a, 4b, 4a, 4b, 4a, 2b], \\
[2a, 2b, 2c_1, 2e_2b, 2e_2a, 2c_2, 2e_3a, 2e_3b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 4a, 4b, 4a, 2b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b], \\
[2a, 4b, 4a, 2b, 2c_3, 2e_4b, 2e_4a, 2e_4b], [2a, 4b, 4a, 4b, 2a, 2c_4, 2e_5a, 2e_5b]. \\
\]

where \(a, b, c, d, e_i \neq 0 \) and \(\varepsilon_i = \pm 1 \).

Acknowledgements

The first author was partially supported by KAKENHI (No. 16K05159), Japan Society for the Promotion of Science, Japan. The second author was partially supported by a grant from the Simons Foundation (No. 354595 to AT).

References

[1] I. Agol, *The classification of non-free 2-parabolic generator Kleinian groups*, Slides of talks given at Austin AMS Meeting and Budapest Bolyai conference, July 2002, Budapest, Hungary.

[2] I. Agol and Y. Liu, *Presentation length and Simon's conjecture*, J. Amer. Math. Soc. 25 (2012), 151–187.

[3] S. Aimi, D. Lee, and M. Sakuma, *Parabolic generating pairs of 2-bridge link groups*, in preparation.

[4] G. Burde, *SU(2)-representation spaces for two-bridge knot groups*, Math. Ann. 288 (1990), 103–119.

[5] G. Burde, H. Zieschang, and M. Heusener, *Knots*, De Gruyter Studies in Mathematics, 5, 2014.

[6] P. Cromwell, *Knots and Links*, Cambridge University Press, Cambridge, 2004. xviii+328 pp.

[7] R. Crowell, *Genus of alternating link types*, Ann. of Math. 69 (1959), 258275.

[8] R. Kirby, *Problems in low-dimensional topology*, Geometric topology (Athens, GA, 1993) (Rob Kirby, ed.), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, 35–473.

[9] T. Kitano and M. Suzuki, *Twisted Alexander polynomial and a partial order on the set of prime knots*, Geom. Topol. Monogr. 13 (2008), 307-321.

[10] T. Kitano and M. Suzuki, *Some minimal elements for a partial order of prime knots*, preprint.

[11] M. Macasieb, K.L. Petersen and R. van Lujik, *On character varieties of two-bridge knot groups*, Proc. London Math. Soc., 103 (2011), 473–504.

[12] K. Murasugi, *Knot theory and its applications*, Birkhauser (1996).

[13] F. Nagasato, *On minimal elements for a partial order of prime knots*, Topology Appl. 159 (2012), 1059–1063.

[14] F. Nagasato, M. Suzuki, and A. Tran, *On minimality of two-bridge knots*, Internat. J. Math. 28 (2017), 11 pages.
[15] F. Nagasato and A. Tran, Some families of minimal elements for a partial ordering on prime knots, Osaka J. Math. 53 (2016), 1029–1045.
[16] T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between 2-bridge link groups, Geom. Topol. Monogr. 14 (2008), 417–450.
[17] M. Suzuki, Epimorphisms between two bridge knot groups and their crossing numbers, to appear in Algebr. Geom. Topol.

Department of Frontier Media Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
E-mail address: macky@fms.meiji.ac.jp

Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
E-mail address: att140830@utdallas.edu