Analysis of Genetic Variation in Circadian Rhythm Genes and Risk of Ovarian Cancer.

Sonali Verma
Shri Mata Vaishno Devi University

Gresh Chander
Shri Mata Vaishno Devi University

Amrita Bhat
Shri Mata Vaishno Devi University

Gh. Rasool Bhat
Shri Mata Vaishno Devi University

Divya Bakshi
Shri Mata Vaishno Devi University

Bhanu Sharma
Shri Mata Vaishno Devi University

Himanshu Rana
Government Medical College Doda

Jyotsna Suri
Government Medical College Jammu

Ajay Wakhloo
Government Medical College Jammu

Supinder Singh
ASCOMs Jammu

Audesh Bhat
Central University of Jammu

Raies Ahmad Qadri
University of Kashmir

Ruchi Shah
Scientistdobt@gmail.com
University of Kashmir
https://orcid.org/0000-0002-7190-8716

Rakesh Kumar
Shri Mata Vaishno Devi University

Research article

Keywords: Single Nucleotide Polymorphisms (SNPs), Jammu and Kashmir (J&K) and Ovarian Cancer (OC)

DOI: https://doi.org/10.21203/rs.3.rs-257989/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Disruption in biological clock due to genetic variations is associated with increased occurrence of cancers such as breast, ovary, prostate, gastrointestinal and hematological malignancies. Circadian rhythm genes regulate the process of ovulation in the ovaries and are highly expressed in ovarian tumors; whereas disturbance in the circadian rhythm pathway is significantly associated with causative risk factors (i.e. endometriosis, PCOS, etc.) of ovarian cancer. Nevertheless, very few studies have been conducted till date where candidate SNPs of circadian rhythm genes proved as the main prognosticators of ovarian cancer risk and intrusiveness. The main purpose of this study was to investigate some common single nucleotide polymorphisms (SNPs) in circadian rhythm genes (rs475715 of \textit{BMAL1/ ARNTL}, rs1026071, and rs228644 of \textit{PER3}, rs3792152 of \textit{REV1}, and rs7302060 of \textit{TIMELESS}) as causative markers of ovarian cancer risk of in the population of Jammu and Kashmir in India.

Results

Our study included a total of 600 samples (200 cases and 400 age and sex-matched controls). Analysis of the genotype data from the selected SNPs indicated most significant association of rs3792152 of \textit{REV1} (OR=1.6, with 95% CI=0.12-1.2, p=0.0003) and rs4757151 of \textit{BMAL1/ ARNTL} (OR=1.847, with 95% CI=1.406-2.426, p=9.15E-06) with the ovarian cancer. The functional putative analysis revealed a significant regulatory effect of both these variants on other genes.

Conclusion

These results suggest that some SNPs in circadian rhythm genes, particularly \textit{BMAL1/ ARNTL} and \textit{REV1}, might be associated with the risk of ovarian cancer in the J&K population of North India.

Background

Ovarian cancer (OC) is one of the most common cancer globally, with more than 239,000 newly diagnosed cases and 152,000 deaths each year [1]. OC ranks 3rd in gynecological malignancies after cervix and uterine cancer [2]. OC has the worst prognosis and the peak death rate. Even though ovarian cancer has a lesser pervasiveness in assessment with breast cancer, it is three times more fatal, and it is foretold that, by the year 2040[3], the death rate of OC will increase significantly. The high death rate in OC patients is mainly due to, asymptomatic and undisclosed progression of the ovarian tumor, deferred beginning of signs and symptoms, and the absence of suitable screening that affects diagnosis of the progressive stages [3]. Despite countless developments in early diagnosis and treatment, OC survival has shown only borderline increase due to the intricacy and heterogeneity of molecular pathways involved, specifically in invasion, relapse of ovaries, and metastasis. Hence, it is crucial to investigate biomarkers to clarify the molecular processes for enlightening the diagnosis of OC. In women, the clock genes under the influence of hormones regulate the ovulation [4]. It was reported that estradiol hormone in ovary is under the influence of gonadotropins which may regulate the expression of clock genes associated with ovarian cancer [5]. From the previous findings, the accruing indication has recommended that circadian clock disturbance is an influential aspect of tumor instigation and proliferation. Epidemiological studies have proved that night workers have raised risk of various cancers (ovary, breast, prostate, and rectal cancer)[5–8] signifying a probable functional association between the biological clock and cancer formation.

It has been proved that abnormal expression of circadian rhythm gene is strongly associated with various types of cancers[9]. Various Preceding reports have also confirmed that the anomalous expression of biological clock genes is strongly correlated with the prognosis of cancer patients [10, 11]. It has been reported that circadian genes play an active role in tumor formation and cancer cell proliferation[10].

Page 2/11
Single-nucleotide polymorphism (SNP) is considered as an important genetic biomarker for the early prediction of risk, their response to treatment, and the proliferation of cancer cells [12]. Reported studies have proved that there were several SNPs of circadian rhythm genes (BMAL1, PER3, PER2, CRY, TIMELESS, REV1) which are significantly associated with the development and progression of various types of cancers (breast ovary, prostate, etc.) [13–17]. Moreover, developing evidence has revealed that SNPs of circadian genes are significantly involved in cancer predisposition [18, 19]. In the present study, we replicated and assessed the effects of candidate variants of circadian rhythm genes (BMAL1 rs475715, PER3 rs228644, REV1 rs379215, and TIMELESS rs7302060) as a case-control study from J&K region of India, which was previously found to be associated with ovarian cancer in North American population by Jim et al [20]

Methods

Sample collection

This case’s control study from the J&K population was conducted in the school of Biotechnology, SMVDU, Katra. The cases included females with a histologically confirmed ovarian cancer. The cases have been obtained from various hospitals and clinics of J&K. Controls were age-matched to the cases. The cases with no familial history of cancer were included in the study. All subjects included in this study were unrelated women of J&K whereas their descendants have lived in the J&K for at least 5 generations. Overall, 600 samples including 200 incident cases of ovarian cancer and 400 population-based controls were enrolled in the study. Written informed consent was obtained from all subjects recruited in this study. During sample collection, pre-designed questionnaire was used to get the information which included age, BMI, hormonal status, age at menarche, menopausal status, histology of tumors, oral contraceptive use and breast nodules (Table 1) from both cases and controls. Patients who undertook radio/chemotherapy were excluded from the study.
Characteristics	Cases (200)	Controls (400)	P value
Age (years) Mean ± S. D	59.2 ± 10.1	56.7 ± 14.4	0.02
BMI Mean ± S. D	22.6 ± 4.52	25.4 ± 4.89	9.74E-12
Menopausal Status			
Premenopausal	124	276	0.33
Post-menopausal	74	124	
Stage			
(I/II)	78		
III/IV	110		
Age at menarche (years)			
> 12	107	215	0.02
< 12	93	185	
Histology of tumors			
Epithelial	138		
Germ cell	9		
Sex cord stromal cell	33		
Metastasis	20		
Oral Contraceptive use			
Yes	80	165	0.1
No	120	165	
Breast Nodules			
Yes	22		
No	162		

Selection of SNP

Total four crucial selected circadian gene variants (*BMAL1* / *ARNTL* rs475715 and rs1026071, *PER3* rs228644, *REV1* rs3792152, and *TIMELESS* rs7302060) previously reported [20] to be associated with ovarian cancer were investigated in the current study. The details of SNPs were mentioned in Additional File1: Table S1. The SNPs were selected for genotyping only based on their M.A.F (Minor allele frequency) value (> 0.03 in Gujarati Indians). Linkage disequilibrium (LD) SNPs were excluded from this study. The primers (amplification and extension) were designed by Sequenom Mass ARRAY® Assay Design 3.0 Software (Sequenom, San Diego, USA). The primers were mentioned in additional file 1: Table S3.

Genotyping and quality control
From the 600 women (200 cases and 400 controls) who provided blood, sufficient DNA was extracted by using manufacturer protocol (Qiagen DNA isolation Kit cat no. 51206). All these subjects were genotyped by the (Sequenom Mass ARRAY platform) using the 384 well chip according to the standardized protocol which were replicated from the study [21]. Software Sequenom Typer was used for the analysis and management of data.

Statistical analysis

The odds ratios (OR) with their 95% confidence intervals (CI) as well as hardy Weinberg equilibrium were estimated by Plink v1.07. Clinical characteristics of cases and controls were compared using the chi-square t-test for variables (Table 1). For the results, SNPs that were not following hardy Weinberg equilibrium (H.W.E) were not included in further analysis.

Logistic regression & stratification analysis was used to estimate the risk or to estimate the association with Odds Ratio at 95% confidence interval and respective level of significance as p-value by using SPSS software. The power of the study was calculated statistically by PS software version 3.1.2 [22].

Putative visualization of variants in the human genome was also done by freely available Insilco tools (SNIPA and Haploreg) [23] [24]. Both tools were used to found the functional annotations i.e., to predict the expression quantitative trait locus (eQTL) of risk associated variants and to find the high linkage disequilibrium SNPs ($r^2 > 0.8$) with selected candidate variants.

Results

Four histopathological types of cases were analyzed. The sample characterized are discussed in Table 1. As estimated, significant differences were observed between cases and controls on ovarian cancer risk factors including age, BMI, age at menarche, breast nodules, oral contraceptive use, and menopausal status (P values < 0.05) (Table 1).

A total of 5 SNPs in association with circadian rhythm was included in the current 2 SNPs ($\textit{REV1}$ rs3792152 & $\textit{BMAL1}$ rs4757151) of circadian rhythm were found to be associated with the risk of ovarian cancer (OR = 1.6, with 95% CI = 0.12–1.2, $p = 0.0003$) and (OR = 1.847, with 95% CI = 1.406–2.426, $p = 9.15E-06$) (Table 2). After logistic regression with age and BMI, rs3792152 of $\textit{REV1}$ having genotype AA was found to be associated with increased risk of ovarian cancer (AA + AG vs. GG: adjusted OR = 1.97, 95% CI 1.25–3.1, $p = 0.003$) and rs4757151 of $\textit{BMAL1}$ having genotype AA was also associated with the increased risk of ovarian cancer (AA + AG vs. GG: adjusted OR = 2.4, 95% CI (1.48–3.87), $p = 0.0003$.}
Table 2
Allele frequency of SNPs in ovarian cancer

S. No	GENE	SNPS	CASES	CONTROLS	ALLELE	OR	P VALUE	DOMINANT	P VALUE	HWE
1	REVI	rs3792152	A = 0.5775, G = 0.4225	A = 0.4571, G = 0.5429	1.6(1.2–2.08)	0.0001	1.97(1.25–3.1)	0.003	0.9184	
2	ARNTL/BMALI	rs1026071	G = 0.3289, A = 0.6711	G = 0.3077, A = 0.6923	1.1(0.83–1.45)	0.48	1.27(0.86–1.86)	0.222	0.2334	
3	ARNTL/BMALI	rs4757151	A = 0.5458, G = 0.4542	A = 0.3941, G = 0.6059	1.84(1.4–2.42)	9.15E-04	2.4(1.48–3.87)	0.00034	0.7339	
4	PER3	rs228644	A = 0.4218, G = 0.5782	A = 0.4716, G = 0.5284	0.81(0.59–1.11)	0.204	0.69(0.41–1.19)	0.186	0.00261	
5	TIMELESS	rs7302060	C = 0.4085, T = 0.5915	C = 0.3469, T = 0.6531	1.3(0.97–1.73)	0.07	1.48(0.96–2.28)	0.072	0.8051	

The SNPs rs1026071 of *BMAL1* (OR = 1.1, 95% CI (0.83–1.45), p = 0.48) & variant rs7302060 (OR = 1.3, 95% CI (0.97–1.73), p = 0.07) of *TIMELESS* gene was found not associated with the ovarian cancer (Table 2). The variant rs228644 of *PER3* was not following HWE (hardy Weinberg equilibrium) and thus was not analyzed further.

The putative visualization of significantly associated variants (rs3792152 of *REVI* & rs4757151 of *BMAL1*) was done by Haploreg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and SNIPA (https://snipa.helmholtzmuenchen.de/snipa3/). These tools predict the possible mechanism underlying the identified associations and determine proxy variants of the identified variants. Haploreg identified that both variants rs3792152 of the *REVI* gene and rs4757151 of the *BMAL1* genes were located in enhancer histone marks. Both risks associated with intronic variants were predicted to change the regulatory binding motifs (Additional File1: Supplementary Figures S1 and Supplementary Figure S2). SNIPA identified that the intronic variant rs3792152 was predicted to have a direct regulatory effect on *C2orf15, LIPT1, LG1*, *MITD1, REV1, TSGA10, TXNDC9* through eQTL (Expression quantitative trait loci) with *REV1* gene, whereas intronic variant rs4757151 was predicted to have a direct regulatroy effect on transcripts (*RN7SKP151 & BTBD10*) through eQTL *ARNTL* (Additional File1: Supplementary Table S2 and Supplementary Figures S3 and Supplementary Figure S4).

Discussion

In this case-control study, we reported the significant association of ovarian cancer with the variants of circadian rhythm gene pathway, predominantly with already reported ovarian cancer risk associated circadian gene variants (*BMAL1 / ARNTL* rs4757151 and rs1026071, *PER3* rs228644, *REV1* rs3792152, and *TIMELESS*rs7302060) [20]. We examined variation in the four most common genes of the circadian pathway (*REV1, ARNTL/BMAL1, TIMELESS, and PER3*) as prognosticators
of ovarian cancer risk and invasiveness. We found that two out of five variants were associated with the risk of ovarian cancer. Specifically, the risk of ovarian cancer was associated with variant rs475715 of BMAL1/ARNTL & rs3792152 of REV1, whereas other variant rs228644 of PER3, rs7302060 of TIMELESS, and rs1026071 of ARNTL were found to be not associated with ovarian cancer in our studied region.

Biological clock in humans called circadian clock / circadian rhythm, autonomously oscillate with a period near 24 hours. The mechanism of the circadian clock is based on the positive/negative response circlets which are produced by core circadian clock genes. The monitoring feedback loop of circadian rhythm consists of PER, CRY, CLOCK, and BMAL1 proteins having a function of regulations in the transcription/translation process. The heterodimer (BMAL1/CLOCK) complex inhibiting or repressing the PER/CRY genes activity in the nucleus region where the monitoring feedback loop formation is completed after the complex (BMAL1/CLOCK) formation which regulates the transcription of Rev-erba and Rora (nuclear receptors)[25].

Findings regarding the circadian rhythm seem to be initiated by both transcriptional and post-transcriptional mechanisms which induce gene expression [26, 27]. The transcription of PER and CRY genes is initiated by two transcription factors CLOCK and BMAL1 / ARNTL. After reaching the grave concentration the PER / CRY reduces the effect of CLOCK / BMAL1 facilitated initiation of their particular genes in a negative feedback loop. It was found that both complex PER / CRY and CLOCK / BMAL1 intricate with each other and bound to chromatin. The regular daily oscillations in clock gene is contributed by protein degradation, phosphorylation, and nuclear entry [28]. The regulation of CRY and PER gene expression generates genetic and biochemical evidence [29] but the regulation of the CLOCK / BMAL1 gene is very much less known. Various studies reported that PER and CRY gene establishes a positive feedback loop in the process of BMAL1 transcription [28–30]

REV1 (REV1-DNA directed polymerase) is a nuclear receptor that acts as a transcriptional repressor in the circadian pathway, where activates and inhibits the transcription of the BMAL1 gene [31]. The BMAL1 transcription is regulated by REV-ERB alpha, thus it acts as a connector link through which components of negative and positive limb constitute to form a molecular link. It determines the length of the period and phase-shifting properties of the biological clock [30]. It was proved that BMAL1 deficient cells due to DNA damage lead to arrest in cell cycle and reveal a possible modulatory effect on tumor suppressor genes i.e. P53. It has been reported that the knockdown of the BMAL1 gene induces cell growth, reduced programmed cell death which appears to play a role in carcinogenesis [32].

Our study is the first replicative case-control association study of clock genes. Jin et al [20] reported that the gene expression of the BMAL1 gene has been controlled by cMYC where the overexpression of cMYC leads to the downregulation of BMAL1. So, it has been suggested that BMAL1 gene variants were significantly associated with the risk of ovarian cancer. The circadian gene variants are associated with prostate cancer which was reported in the GWAS study [33]. In some populations of the world, it has been reported that night workers have disturbed biological clocks where the findings of various studies proved the night working women's and men's are more prone to cancers (Breast, ovary, and prostate cancer) [19, 33–35]. Our results indicated that BMAL1 and REV1: rs475715 & rs3792152 both intronic variants, were associated with ovarian cancer risk. Functional prediction implicated that rs47515 has direct eQTL effect and regulated the expression of C2orf15, LIPT1, LGY1, MITD1, REV1, TSGA10, and TXNDC9 genes, whereas rs3792152 regulates the RN7SKP151 & BTBD10 with BMAL1 gene. These findings suggest that it is located within a region that directly affects expression potentially through the modulation of the histone markers in the enhancer region. Yeh et al, 2014 [36] proved that in the ovarian cancer cell (in CP70 and MCP2) the H3K27 (histone mark) is supplemented in the promoter region of ARNTL / BMAL1 gene, Whereas the presence of inhibitor (GSK126) of EZH2 region reestablished the expression of ARNTL / BMAL1 gene in ovarian cancer cells (in CP70 and MCP2). They also confirmed that there is a sensitivity of chemotherapy drug (cisplatin) in ovarian cancer cells after increasing the expression of the ARNTL / BMAL1 gene. With these findings, it was confirmed that BMAL1 /ARNTL may act as a tumor suppressor by regulating the p53 tumor suppressor pathway in
ovarian cancer [20, 36]. So, our results climax the implication of circadian rhythm gene variation in ovarian cancer susceptibility and suggest an early role for the BMAL1 and REV1 gene in ovarian cancer pathogenesis.

Our results also suggest that the circadian gene variant may play a significant role in the etiology of ovarian cancer. From the literature survey, the identification of a significant association between circadian genes and ovarian cancer is still unpredictable. To the best of our knowledge, the case-control association studies between circadian gene variants and ovarian cancer were investigated in very few studies (20, 25–29). Few of them have found an association with ovarian cancer and other cancers at the variant level [20, 37–39]. Even though various previous research studies have implicated circadian genes in the progression of cancers in women. Nevertheless, our study possibly requires more variants of the circadian rhythm pathway to highlight significant associations between certain circadian genes and the risk of aggressive ovarian cancer.

Conclusion

This study fortifies the current indication supporting the premise of a link between circadian rhythm genes and ovarian cancer risk. Additional studies with larger sample size as well as functional validation of risk associated gene variants is warranted to confirm those findings. Besides these it has been reported that women working during nightshifts are associated with several cancer but its probable role in finding the association between circadian genes and ovarian cancer risk should not be justified till date so this study proposes the need for further studies to investigate the association of carcinogenic effects of circadian disruption in relation with environmental factors, such as night-workers, regular exposure to stressed conditions, irregular diet patterns, and electromagnetic (EM) waves, which disturb circadian rhythm or biological clock by fluctuating the melatonin levels.

Abbreviations

eQTL: expression quantitative trait locus.

M.A.F: Minor allele frequency

LD: Linkage disequilibrium

Declarations

Availability of data and materials

Correspondence and requests related to manuscript should be addressed to R.S or R.K. There is no any copyright material in this manuscript. The data has been incorporated is a result of analysis.

Acknowledgement

The RS, RK and SV thankfully acknowledge the Indian Council of Medical Research (5/10/15/CAR-SMVDU/2018-RBMCH). SV acknowledges Dr. Swarkar Sharma, Dr. Indu Sharma and Dr. Varun Sharma for the suggestions during the scheduling and execution of study.

Funding

The financial support to conduct this study was provided by Indian Council of Medical Research (5/10/15/CAR-SMVDU/2018-RBMCH) for purchasing consumables and equipment's.

Author contribution
R.S, R.K and S.V planned the study. S.V, A.B, G.R.B, B.S and D.B collected the samples. S.V, R.S, A.B and GRB performed experiment in lab. S.V analyzed the results and drafted manuscript. R.S, R.K, A.B, S.S, R.A.Q, H.R and G.C provided critical comments regarding manuscripts. A.W, J.S and H.R provided samples for the study. All authors read and approved the final manuscript.

Ethical Approval

This study was approved by the Institutional Review Board committee of SMVDU with wide reference no. SMVDU/IERB/14/28. Experimental protocols conducted in this study strictly followed the guidelines set by the Institutional Ethical Review Board (IERB) SMVDU.

Competing interests

On behalf of all authors declare that they have no competing interests.

References

1. Reid BM, Permuth JB, Sellers TA: Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017, 14(1):9-32.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018, 68(6):394-424.
3. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H: Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health 2019, 11:287-299.
4. Boden MJ, Varcoe TJ, Kennaway DJ: Circadian regulation of reproduction: from gamete to offspring. Progress in biophysics and molecular biology 2013, 113(3):387-397.
5. Merritt MA, De Pari M,_Vitonis AF, Titus LJ, Cramer DW, Terry KL: Reproductive characteristics in relation to ovarian cancer risk by histologic pathways. Human reproduction (Oxford, England) 2013, 28(5):1406-1417.
6. Wendeu-Foyet MG, Menegaux F: Circadian Disruption and Prostate Cancer Risk: An Updated Review of Epidemiological Evidences. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2017, 26(7):985-991.
7. Blakeman V, Williams JL, Meng QJ, Streuli CH: Circadian clocks and breast cancer. Breast cancer research : BCR 2016, 18(1):89.
8. Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, Giovannucci E, Schernhammer ES: Rotating night shift work and colorectal cancer risk in the nurses’ health studies. International journal of cancer 2018, 143(11):2709-2717.
9. Zhang J, Lv H, Ji M, Wang Z, Wu W: Low circadian clock genes expression in cancers: A meta-analysis of its association with clinicopathological features and prognosis. PloS one 2020, 15(5):e0233508.
10. Li H-X: The role of circadian clock genes in tumors. Onco Targets Ther 2019, 12:3645-3660.
11. Fu L, Kettner NM: The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci 2013, 119:221-282.
12. Deng N, Zhou H, Fan H, Yuan Y: Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8(66):110635-110649.
13. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I et al: Identification of seven loci affecting mean telomere length and their association with disease. Nature genetics 2013, 45(4):422-427, 427e421-422.
14. Dai H, Zhang L, Cao M, Song F, Zheng H, Zhu X, Wei Q, Zhang W, Chen K: The role of polymorphisms in circadian pathway genes in breast tumorigenesis. Breast cancer research and treatment 2011, 127(2):531-540.
15. Markt SC, Valdimarsdottir UA, Shui IM, Sigurdardottir LG, Rider JR, Tamimi RM, Batista JL, Haneuse S, Flynn-Evans E, Lockley SW et al.: Circadian clock genes and risk of fatal prostate cancer. Cancer causes & control : CCC 2015, 26(1):25-33.

16. Chu LW, Zhu Y, Yu K, Zheng T, Yu H, Zhang Y, Sesterhenn I, Chokkalingam AP, Danforth KN, Shen MC et al.: Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate cancer and prostatic diseases 2008, 11(4):342-348.

17. Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, Yi C, Holford TR, Zhu Y: Clock-cancer connection in non-Hodgkin's lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer research 2009, 69(8):3605-3613.

18. Mocellin S, Tropea S, Benna C, Rossi CR: Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies. BMC medicine 2018, 16(1):20.

19. Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S: Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017, 8(14):23978-23995.

20. Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KK et al.: Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). J Genet Genome Res 2015, 2(2).

21. Shah R, Sharma V, Bhat A, Singh H, Sharma I, Verma S, Bhat GR, Sharma B, Bakshi D, Kumar R et al.: MassARRAY analysis of twelve cancer related SNPs in esophageal squamous cell carcinoma in J&K, India. BMC Cancer 2020, 20(1):497-497.

22. Dupont WD, Plummer WD, Jr.: Power and sample size calculations for studies involving linear regression. Controlled clinical trials 1998, 19(6):589-601.

23. Ward LD, Kellis M: HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic acids research 2012, 40(Database issue):D930-934.

24. Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmüller G: SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics (Oxford, England) 2015, 31(8):1334-1336.

25. Kwon I, Choe HK, Son GH, Kim K: Mammalian molecular clocks. Experimental neurobiology 2011, 20(1):18-28.

26. Albrecht U: Invited review: regulation of mammalian circadian clock genes. Journal of applied physiology (Bethesda, Md : 1985) 2002, 92(3):1348-1355.

27. Allada R, Emery P, Takahashi JS, Rosbash M: Stopping time: the genetics of fly and mouse circadian clocks. Annual review of neuroscience 2001, 24:1091-1119.

28. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM: Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107(7):855-867.

29. Yu W, Nomura M, Ikeda M: Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochemical and biophysical research communications 2002, 290(3):933-941.

30. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110(2):251-260.

31. Triqueneaux G, Thenot S, Kakizawa T, Antoch MP, Safi R, Takahashi JS, Delaunay F, Laugel V: The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. Journal of molecular endocrinology 2004, 33(3):585-608.

32. Birky TaB: The contribution of circadian rhythms to cancer formation and mortality. 2014.

33. Wendeu-Foyet MG, Koudou Y, Cénée S, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Bacq D, Deleuze JF et al.: Circadian genes and risk of prostate cancer: Findings from the EPICAP study. International journal of cancer 2019, 145(7):1745-1753.
34. Truong T, Liquet B, Menegaux F, Plancoulaine S, Laurent-Puig P, Mulot C, Cordina-Duverger E, Sanchez M, Arveux P, Kerbrat P et al: Breast cancer risk, nightwork, and circadian clock gene polymorphisms. *Endocrine-related cancer* 2014, 21(4):629-638.

35. Rabstein S, Harth V, Justenhoven C, Pesch B, Plöttner S, Heinze E, Lotz A, Baisch C, Schiffermann M, Brauch H et al: Polymorphisms in circadian genes, night work and breast cancer: results from the GENICA study. *Chronobiology international* 2014, 31(10):1115-1122.

36. Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC, Chan MW: Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. *International journal of oncology* 2014, 45(5):2101-2107.

37. Zhu Y, Stevens RG, Hoffman AE, FitzGerald LM, Kwon EM, Ostrander EA, Davis S, Zheng T, Stanford JL: Testing the Circadian Gene Hypothesis in Prostate Cancer: A Population-Based Case-Control Study. *Cancer research* 2009, 69(24):9315-9322.

38. Qu F, Qiao Q, Wang N, Ji G, Zhao H, He L, Wang H, Bao G: Genetic polymorphisms in circadian negative feedback regulation genes predict overall survival and response to chemotherapy in gastric cancer patients. *Scientific Reports* 2016, 6(1):22424.

39. Lesicka M, Jabłońska E, Wieczorek E, Pepłońska B, Gromadzińska J, Seroczyńska B, Kalinowski L, Skokowski J, Reszka E: Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility. *Int J Mol Sci* 2019, 20(22):5704.