Analysis of a time-stepping discontinuous Galerkin method for modified anomalous subdiffusion problems

Binjie Li † Hao Luo ‡ Xiaoping Xie §
School of Mathematics, Sichuan University, Chengdu 610064, China

Abstract

This paper analyzes a time-stepping discontinuous Galerkin method for modified anomalous subdiffusion problems with two time fractional derivatives of orders α and β ($0 < \alpha < \beta < 1$). The stability of this method is established, the temporal accuracy of $O(\tau^{m+1-\beta/2})$ is derived, where m denotes the degree of polynomials for the temporal discretization. It is shown that, even the solution has singularity near $t = 0^+$, this temporal accuracy can still be achieved by using the graded temporal grids. Numerical experiments are performed to verify the theoretical results.

Keywords: modified anomalous subdiffusion, discontinuous Galerkin method, stability, convergence.

1 Introduction

This paper considers the following modified anomalous fractional subdiffusion problem:

$$
\begin{cases}
\partial_t u - \left(\kappa_1 D_{0+}^{\alpha} + \kappa_2 D_{0+}^{\beta} \right) \partial_x^2 u = f & \text{in } \Omega \times (0, T), \\
u = 0 & \text{on } \partial\Omega, \\
u(\cdot, 0) = u_0 & \text{in } \Omega,
\end{cases}
$$

where $\Omega \subset \mathbb{R}$ is an open interval, κ_1 and κ_2 are two positive constants, $0 < T < \infty$, $0 < \alpha < \beta < 1$, $u_0 \in H_0^1(\Omega)$, and $f \in L^1(0, T; H^{-1}(\Omega))$.

A considerable amount of research has been devoted to the numerical treatment of time fractional diffusion problems, especially in the past decade. So far, most of the existing algorithms are classified as fractional difference methods, since they employ the L^1 formula, Grünwald-Letnikov discretization or fractional linear multi-step method to discretize the fractional derivatives. Despite their ease of implementation, the fractional difference methods are generally of...
temporal accuracy orders not greater than two; see [30, 13, 29, 3, 19, 34, 6, 32, 2, 5, 16, 20, 9, 15, 31, 12, 28, 10, 17] and the references therein. We also note that Gao et. al [10] designed a formula to approximate the Caputo fractional derivative of order \(\alpha\) \((0 < \alpha < 1)\) and applied this formula to numerically solve time fractional diffusion problems; however, the theory of stability and convergence was not established there. To improve the temporal accuracy, fractional spectral methods, namely those algorithms using spectral methods to discretize the fractional derivatives, were proposed; see [18, 33, 14]. Recently, Mustapha and Mclean ([22, 24, 23]) used the discontinuous Galerkin method to approximate the time fractional derivatives, and they proposed a class of methods that possess high-order temporal accuracy. Moreover, as the fractional difference methods, the numerical solutions of their methods are computed in a step by step fashion.

Due to the nonlocal property of the fractional derivatives, the computation and storage cost of an accurate numerical solution to a time fractional diffusion problem significantly exceeds that to a corresponding normal diffusion problem. Naturally, developing high-order accuracy algorithms, especially those with high-order temporal accuracy, is an efficient way to reduce the cost. However, as aforementioned, generally the best temporal accuracy order of the fractional difference methods is merely two. This motivates us to develop algorithms that possess high-order accuracy in both space and time while retaining the advantage of the fractional finite difference methods.

Following the work of [23] for fractional diffusion equations, we analyze a time-stepping discontinuous Galerkin method for problem (1.1). Firstly, we establish a new stability estimate. Secondly, we prove that the temporal accuracy is \(O(\tau^{m+1-\beta/2})\), and that if \(u\) has singularity near \(t = 0^{+}\), then this temporal accuracy can still be achieved by using graded temporal grids. We note that on appropriate graded temporal grids, [23] obtained the temporal accuracy \(O(\tau^{2-\beta/2})\) in the case of \(m = 1\) and the temporal accuracy \(O(\tau^{m+(1-\beta)/2})\) in the case of \(m \geq 2\).

The rest of this paper is organized as follows. Section 2 introduces some notations. Sections 3 and 4 establish the stability and convergence of the time-stepping discontinuous Galerkin method. Section 5 performs several numerical experiments to verify the theoretical results. Finally, Section 6 gives concluding remarks.

2 Notation

Let us first introduce the Riemann-Liouville fractional calculus operators.

Definition 2.1. For \(0 < \gamma < \infty\) and any \(v \in L^1(0, T; X)\), define

\[
(I_{0+}^{\gamma} v)(t) := \frac{1}{\Gamma(\gamma)} \int_0^t (t-s)^{\gamma-1} v(s) \, ds, \quad 0 < t < T,
\]

\[
(I_{T-}^{\gamma} v)(t) := \frac{1}{\Gamma(\gamma)} \int_t^T (s-t)^{\gamma-1} v(s) \, ds, \quad 0 < t < T,
\]

where \(\Gamma(\cdot)\) is the gamma function.
Definition 2.2. For $0 < \gamma < 1$, define
\[
D_{T^+}^{\gamma,X} := D_{I_{T^+}}^{1 - \gamma,X}, \\
D_{T^-}^{\gamma,X} := -D_{I_{T^-}}^{1 - \gamma,X},
\]
where D is the first-order differential operator in the distribution sense.

Above X is a Banach space and $L^1(0,T; X)$ is a standard X-valued Bochner L^1 space. For convenience, we shall simply use $I_{T^+}^{\gamma}$, $I_{T^-}^{\gamma}$, $D_{T^+}^{\gamma}$, and $D_{T^-}^{\gamma}$, without indicating the underlying Banach space X.

Next we introduce some vector valued spaces. Let X be a separable Hilbert space with an inner product $\langle \cdot, \cdot \rangle_X$ and an orthonormal basis $\{e_j : j \in \mathbb{N}\}$, and let O be an interval. For $0 < \gamma < \infty$, define
\[
H^{\gamma}(O; X) := \left\{ v \in L^2(O; X) : \sum_{j=0}^{\infty} \| (v, e_j)_X \|^2_{H^{\gamma}(O)} < \infty \right\}
\]
and equip this space with the norm
\[
\| \cdot \|_{H^{\gamma}(O; X)} := \left(\sum_{j=0}^{\infty} \| (v, e_j)_X \|^2_{H^{\gamma}(O)} \right)^{\frac{1}{2}},
\]
where $L^2(O; X)$ is an X-valued Bochner L^2 space. If $0 < \gamma < 1/2$, we also introduce the seminorm
\[
| \cdot |_{H^{\gamma}(O; X)} := \left(\sum_{j=0}^{\infty} | (v, e_j)_X |^2_{H^{\gamma}(O)} \right)^{\frac{1}{2}}.
\]

Here, $H^{\gamma}(O)$ is a standard Sobolev space (see [26]), and
\[
|v|_{H^{\gamma}(O)} := \left(\int_{\mathbb{R}} |\xi|^{2\gamma} |\mathcal{F}(v \chi_O)(\xi)|^2 \, d\xi \right)^{\frac{1}{2}}
\]
for each $v \in H^{\gamma}(O)$ with $0 < \gamma < 1/2$, where $\mathcal{F} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the Fourier transform operator and χ_O is the indicator function of the interval O. For $v \in H^{\gamma}(O; X)$ with $i \in \mathbb{N}_{>0}$, define its ith weak derivative $v^{(i)}$ by
\[
v^{(i)} := \sum_{j=0}^{\infty} c_j^{(i)}(t)e_j, \quad t \in O,
\]
where $c_j := (v, e_j)_X$ and $c_j^{(i)}$ is its ith weak derivative. In particular, $v^{(1)}$ is abbreviated to v'.

Additionally, for $0 \leq \delta < 1$, define
\[
L^2_{\delta}(O; X) := \left\{ v \in L^1(O; X) : \|v\|_{L^2_{\delta}(O; X)} < \infty \right\},
\]
where
\[
\|v\|_{L^2_{\delta}(O; X)} := \left(\int_{O} |t|^\delta \|v(t)\|^2_X \, dt \right)^{\frac{1}{2}}.
\]
We note that in the context, standard Sobolev spaces (see \[O\]) and \(P_j(\Omega; X)\) on \(a\) partition of \(\Omega\) consisting of open intervals, and let \(h\) denote the maximum length of the elements in \(K_h\). We introduce a graded mesh subdivision of the temporal interval \((0, T)\). For \(j \in \mathbb{N}_{>0}\) and \(\sigma \geq 1\), we set
\[
\begin{aligned}
t_j &:= (j/J)^\sigma T \\
I_j &:= (t_{j-1}, t_j), \quad \tau_j := t_j - t_{j-1}
\end{aligned}
\] (2.1)
and use \(\tau\) to abbreviate \(\tau_j\). Define
\[
S_h := \{ v_h \in H_0^1(\Omega) : v_h|_K \in P_n(K), \forall K \in K_h \},
\]
\[
W_{h, \tau} := \{ V \in L^2(0, T; S_h) : V|_{I_j} \in P_n(I_j; S_h), \forall 1 \leq j \leq J \},
\]
where \(m \in \mathbb{N}\) and \(n \in \mathbb{N}_{>0}\). Moreover, for \(V \in W_{h, \tau}\) we introduce the following notation:
\[
\begin{aligned}
V_j^+ &:= \lim_{t \to t_j^+} V(t) \quad \text{for } 0 \leq j < J; \\
V_j^- &:= \lim_{t \to t_j^-} V(t) =: V(t_j) \quad \text{for } 0 < j \leq J, \text{ and } V_0 := 0;
\end{aligned}
\]
\[
\|V_j\| := V_j^+ - V_j^- \quad \text{for } 0 \leq j < J.
\]
We note that in the context, \(H^s(\Omega) (s \in \mathbb{Z})\) and \(H_0^s(\Omega) (s \in \mathbb{N}_{>0})\) denote two standard Sobolev spaces (see [26]).

Throughout this paper, we make the following conventions: each \(v \in L^1(\Omega \times (0, T))\) is regarded as an element of \(L^1(0, T; L^1(\Omega))\), also denoted by \(v\); the notation \(a \lesssim b\) means that there exists a positive constant \(C\) depending only on \(\alpha, \beta, m\) or \(n\) such that \(a \leq Cb\), and \(a \sim b\) means \(a \lesssim b \lesssim a\); by \(C_x\) we denote a positive constant that only depends on \(x\) and its value may differ at each of its occurrences; if \(\mathcal{O}\) is a Lebesgue measurable set of \(\mathbb{R}\) or \(\mathbb{R}^2\), then \(\langle \cdot, \cdot \rangle_{\mathcal{O}}\) means \(\int_{\mathcal{O}} \langle \cdot, \cdot \rangle\); if \(X\) is a Banach space, then \(\langle \cdot, \cdot \rangle_X\) denotes the duality pairing between \(X^*\) and \(X\).

3 Main Results

Let us first describe the time-stepping discontinuous Galerkin method to be analyzed as follows: seek \(U \in W_{h, \tau}\) such that
\[
\begin{aligned}
\langle U', V \rangle_{\Omega_T} + \sum_{j=0}^{J-1} \langle [U_j], V_j^+ \rangle_{\Omega_T} + \left(\left(\kappa_1 D_{0+}^\alpha + \kappa_2 D_{0+}^\beta \right) \partial_x U, \partial_x V \right)_{\Omega_T} \\
= \langle R_h u_0, V_0^+ \rangle_{\Omega_T} + \langle f, V \rangle_{L^2(0, T; H_0^1(\Omega))}
\end{aligned}
\] (3.1)
for all \(V \in W_{h, \tau}\), where \(\Omega_T := \Omega \times (0, T)\) and the projection operator \(R_h\) is defined by
\[
\langle \partial_x (v - R_h v), \partial_x v_h \rangle_{\Omega} = 0, \quad \forall v \in H_0^1(\Omega), \forall v_h \in V_h.
\]
Above \(U' \) is understood by
\[
U'|_{I_j} := (U|_{I_j})', \quad 1 \leq j \leq J.
\]

Then, assuming \(X \) to be a Banach space, we define an interpolation operator \(Q^X_v \) as follows [27, Chapter 12]: given \(v \in C((0,T]; X) \cap L^1(0,T; X) \), the interpolant \(Q^X_v \) fulfills, for each \(1 \leq j \leq J \),
\[
\begin{cases}
(Q^X_v)|_{I_j} \in P_m(I_j; X), & \lim_{t \to t_{j-1}^-} (Q^X_v)(t) = v(t_j), \\
\int_{t_{j-1}}^{t_j} (v - Q^X_v) q \, dt = 0 & \text{for all } q \in P_{m-1}(I_j).
\end{cases}
\]

Below we will use \(Q \) instead of \(Q^X_v \) when no confusion will arise.

Now we are ready to state the main results of this paper, and, for convenience, we assume that \(u \) is the solution to problem \((1.1)\).

Theorem 3.1. The scheme \((3.1)\) admits a unique solution \(U \). In addition, if \(f \in L^2(0,T; H^{-1}(\Omega)) \), then
\[
\|U(t_j)\|_{L^2(\Omega)} + \sqrt{\kappa_1} |U|_{H^{n/2}(0,t_j; H^0_0(\Omega))} + \sqrt{\kappa_2} |U|_{H^{n/2}(0,t_j; H^0_0(\Omega))}
\leq \|u_0\|_{H^0_0(\Omega)} + 1/\sqrt{\kappa_2} \|f\|_{L^2(0,t_j; H^{-1}(\Omega))} \tag{3.2}
\]
for each \(1 \leq j \leq J \).

Theorem 3.2. If \(u' \in L^2(0,T; H^0_0(\Omega)) \), then
\[
\|\theta(t_j)\|_{L^2(\Omega)} + \sqrt{\kappa_1} |\theta|_{H^{n/2}(0,t_j; H^0_0(\Omega))} + \sqrt{\kappa_2} |\theta|_{H^{n/2}(0,t_j; H^0_0(\Omega))}
\leq \eta_{j,1} + \eta_{j,2} + \eta_{j,3} \tag{3.3}
\]
for each \(1 \leq j \leq J \), where \(\theta := U - Q_T R_h u \) and
\[
\begin{align*}
\eta_{j,1} &:= k_{min(2,n)} / \sqrt{\kappa_2} \|(I - R_h) u'\|_{L^2(0,t_j; H^0_0(\Omega))}, \\
\eta_{j,2} &:= \sqrt{\kappa_1} \left(\sum_{i=1}^{J} \tau_i^{2-\alpha} \inf_{0 \leq \delta < 1} \frac{t_i^{-\delta}}{1 - \delta} \|(u - Q_T u)'\|_{L^2(I_i; H^0_0(\Omega))}^2 \right) \frac{1}{2}, \\
\eta_{j,3} &:= \sqrt{\kappa_2} \left(\sum_{i=1}^{J} \tau_i^{2-\beta} \inf_{0 \leq \delta < 1} \frac{t_i^{-\delta}}{1 - \delta} \|(u - Q_T u)'\|_{L^2(I_i; H^0_0(\Omega))}^2 \right) \frac{1}{2}.
\end{align*}
\]

Corollary 3.1. If \(u \in H^{m+1}(0,T; H^1(\Omega)) \) and \(u' \in L^2(0,T; H^0_0(\Omega) \cap H^{n+1}(\Omega)) \),
then
\[
\|(u - U)(t_j)\|_{L^2(\Omega)} \leq \nu_{j,1} + \nu_{j,2}
\]
for each \(1 \leq j \leq J \), where
\[
\begin{align*}
\nu_{j,1} &:= k_{min(2,n)+n} / \sqrt{\kappa_2} \|u'\|_{L^2(0,t_j; H^{n+1}(\Omega))} + H^{n+1} \|u(t_j)\|_{H^{n+1}(\Omega)}, \\
\nu_{j,2} &:= \left(\sqrt{\kappa_1} \tau_j^{1+\alpha/2} + \sqrt{\kappa_2} \tau_j^{1+m-\beta/2} \right) \|u\|_{H^{n+1}(0,t_j; H^1(\Omega))}.
\end{align*}
\]
Corollary 3.2. If \(u(x,t) = t^r \phi(x) \) for \((x,t) \in \Omega_T \), with \((\beta-1)/2 < r \leq m+1/2 \) and \(\phi \in H^3_\delta(\Omega) \cap H^{m+1}(\Omega) \), then
\[
\|(u-U)(t_j)\|_{L^2(\Omega)} \lesssim C_{\sigma,r} (\sqrt{h_1} + \sqrt{h_2}) \varepsilon_j \|\phi\|_{H^3_\delta(\Omega)} + h^{n+1} t_j^r \|\phi\|_{H^{m+1}(\Omega)}
\]
for all \(1 \leq j \leq J \), where
\[
\varepsilon_j := \begin{cases}
T^{(1-\sigma)(r+(1-\beta)/2)}_r \sigma(r+(1-\beta)/2) & \text{if } \sigma < \sigma^*, \\
(1 + \ln (j)) T^{r-m-1/2}_{m+1-\beta/2} & \text{if } \sigma = \sigma^*, \\
T^{r-m-1/2}_{m+1-\beta/2} & \text{if } \sigma > \sigma^*,
\end{cases}
\]
\(\sigma \) is the graded parameter in (2.1), and
\[
\sigma^* := \frac{2m + 2 - \beta}{2r + 1 - \beta} \geq 1. \quad (3.4)
\]

Remark 3.1. Due to the fact that
\[
\|U\|_{H^{\beta/2}(0,T;H^3_\delta(\Omega))} \lesssim C_T \|U\|_{H^{\beta/2}(0,T;H^3_\delta(\Omega))},
\]
by Theorems 3.1 and 3.2 we can also derive the stability and error estimates of \(U \) with respect to the norm on \(H^{\beta/2}(0,T;H^3_\delta(\Omega)) \).

Remark 3.2. If \(n \geq 2 \) and the condition of Corollary 3.1 is satisfied, then Theorem 3.2 implies
\[
\|(U - Q_h R_h u)(t_j)\|_{L^2(\Omega)} = O(h^{n+2} + r^{m+1-\beta/2}).
\]
Assume that \(K_h \) is quasi-uniform and \(\{x_i: 1 \leq i \leq N\} \) is the set of all nodes of \(K_h \). Using the standard result
\[
R_h u(x_i, t_j) = u(x_i, t_j), \quad 1 \leq i \leq N,
\]
we obtain
\[
\max_{1 \leq i \leq N} |U(x_i, t_j) - u(x_i, t_j)| = O(h^{n+1} + h^{-1} r^{m+1-\beta/2}).
\]
Therefore, if \(r \) is sufficiently small, then
\[
\max_{1 \leq i \leq N} |U(x_i, t_j) - u(x_i, t_j)| = O(h^{n+1}).
\]

Remark 3.3. Though the graded grids are assumed in (2.1), from the proofs in Section 4 it is easy to see that Theorem 3.1, Theorem 3.2, and Corollary 3.1 still hold for more general temporal grids, with \(\tau_j \) in Corollary 3.1 replaced by \(\max_{1 \leq i \leq j} \tau_i \).

Remark 3.4. First, Corollary 3.2 shows that if \(u \) has singularity near \(t = 0^+ \), then the graded grids in the time direction can improve the temporal accuracy to \(O(r^{m+1-\beta/2}) \) up to an factor \(\ln (j) \) provided that \(\sigma = \sigma^* \). Numerical results show that our estimates are sharp for \(\sigma \leq \sigma^* \). Second, theoretically we can not expect the optimal accuracy \(O(r^{m+1}) \) as \(\sigma \) increases. However, numerical tests indicate that the optimal convergence rate can also be obtained if
\[
\sigma = \sigma^{**} := \frac{2m + 2}{2r + 1 - \beta} > \sigma^*.
\]
Remark 3.5. We note that for the time stepping discontinuous Galerkin discretization of fractional diffusion problems, [23] obtained the temporal accuracy $O(\tau^{2-\beta/2})$ for $m = 1$ and $O(\tau^{m+(1-\beta)/2})$ for $m \geq 2$ on appropriate graded temporal grids.

The rest of this section will briefly discuss the singularity of the solution to problem (1.1) near $t = 0^+$. Let $\{\phi_j\}_{j=0}^\infty$ be an orthonormal basis of $L^2(\Omega)$ such that $\phi_j \in H^1_0(\Omega)$ and

$$-\partial_x^2 \phi_j = \lambda_j \phi_j \quad x \in \Omega,$$

where $\{\lambda_j\}_{j=0}^\infty \subset \mathbb{R}_{>0}$ is a non-decreasing sequence. For each $j \in \mathbb{N}$, define

$$u_j(t) := \langle u(x,t), \phi_j \rangle_\Omega, \quad 0 < t < T,$$

$$f_j(t) := \langle f(x,t), \phi_j \rangle_\Omega, \quad 0 < t < T.$$

Evidently, u_j satisfies the fractional ordinary equation

$$u'_j + \lambda_j (\kappa_1 D^\alpha_{0+} + \kappa_2 D^\beta_{0+}) u_j = f_j \quad t \in (0,T),$$

subject to the initial value condition $u_j(0) = \langle u_0, \phi_j \rangle_\Omega$. An elementary computation yields

$$u_j + \lambda_j (\kappa_1 I^1_{0+} - \alpha + \kappa_2 I^1_{0+} - \beta) u_j = I_{0+} f_j + u_j(0) \quad \text{in } (0,T).$$

Suppose that w_j satisfies

$$w'_j + \lambda_j (\kappa_1 I^1_{0+} - \alpha + \kappa_2 I^1_{0+} - \beta) w_j = 1 \quad \text{in } (0,T).$$

Using the famous Picard iterative process gives

$$w_j(t) = \sum_{p+q=r}^{\infty} \sum_{r=0} \binom{r}{p} \frac{(-\lambda_j \kappa_1)^p (-\lambda_j \kappa_2)^q p^{p(1-\alpha)+q(1-\beta)}}{\Gamma(1+p(1-\alpha)+q(1-\beta))}.$$

It is easy to verify that

$$u_j(t) = u_j(0)w_j(t) + \int_0^t w_j(t-s)f_j(s) \, ds, \quad 0 < t < T,$$

which indicates that the singularity part of u_j belongs to

$$S := \text{span} \left\{ p^{p(1-\alpha)+q(1-\beta)} : p + q > 0, \ p, q \in \mathbb{N} \right\},$$

provided f_j is sufficiently regular. Therefore, since

$$w' \in L^2_0(0,T) \quad \text{for all } w \in S,$$

the assumption $u' \in L^2_0(0,T;H^1_0(\Omega))$ is reasonable. We note that the relation (3.7) has been applied to ordinary differential equations with multi-term fractional derivatives ([11, 21]).
4 Proofs

4.1 Auxiliary Results

Let us first summarize some standard results.

Lemma 4.1 ([4, 1]). If \(v \in H^1_0(\Omega) \cap H^{n+1}(\Omega) \), then
\[
\|(I - R_h)v\|_\Omega + h \|(I - R_h)v\|_{H^1_0(\Omega)} \lesssim h^{n+1} \|v\|_{H^{n+1}(\Omega)}.
\]

If \(v \in H^1_0(\Omega) \) and \(w \in H^1(\Omega) \), then
\[
\langle (I - R_h)v, w \rangle_\Omega \lesssim h_{\min\{2, n\}} \|(I - R_h)v\|_{H^1_0(\Omega)} \|w\|_{H^1(\Omega)}.
\]

If \(v \in H^{m+1}(I_j) \) with \(1 \leq j \leq J \), then
\[
\|(I - Q_{\tau})v\|_{L^2(I_j)} + \tau_j \|(I - Q_{\tau})v\|_{H^1(I_j)} \lesssim \tau_j^{m+1} \|v\|_{H^{m+1}(I_j)}.
\]

Lemma 4.2 ([26]). If \(v \in H^\gamma(\mathbb{R}) \) with \(0 < \gamma < 1 \), then
\[
C_\gamma |v|_{H^\gamma(\mathbb{R})} \lesssim \left(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|v(s) - v(t)|^2}{|s - t|^{1 + 2\gamma}} \, ds \, dt \right)^{\frac{1}{2}} \lesssim C_\gamma |v|_{H^\gamma(\mathbb{R})}.
\]

Lemma 4.3 ([25, 7]). The following properties hold:

- If \(0 < \gamma, \delta < \infty \), then
 \[
 I_{\gamma+} I_{\delta+} = I_{\gamma+\delta+}, \quad I_{\gamma-} I_{\delta-} = I_{\gamma+\delta}.
 \]

- If \(0 < \gamma < \infty \) and \(u, v \in L^2(0, T) \), then
 \[
 \langle I_{\gamma+} u, v \rangle_{(0, T)} = \langle u, I_{\gamma+} v \rangle_{(0, T)}.
 \]

Lemma 4.4. If \(v, w \in H^{\gamma/2}(0, T) \) and \(D_{\gamma+}^0 v \in L^1(0, T) \) with \(0 < \gamma < 1 \), then
\[
\begin{align*}
\langle D_{\gamma+}^0 v, v \rangle_{(0, t)} & = \cos(\gamma \pi / 2) |v|_{\gamma/2}^2(0, t), \quad (4.1) \\
\langle D_{\gamma+}^0 v, w \rangle_{(0, t)} & \leq \cos(\gamma \pi / 2) |v|_{\gamma/2}^2(0, t) |w|_{\gamma/2}^2(0, t), \quad (4.2)
\end{align*}
\]
for all \(0 < t \leq T \).

The proof of the above lemma is contained in [8, Lemmas 2.2, 2.4 and 2.9].

The purpose of the rest of this subsection is to prove the following three lemmas.

Lemma 4.5. For \(0 < t \leq T \), it holds that
\[
\int_0^t |(vw)(s)| \, ds \lesssim \|v\|_{L^2_\beta(0, t)} \|w|_{H^{\beta/2}(0, t)} \quad (4.3)
\]
for all \(v \in L^2_\beta(0, T) \) and \(w \in H^{\beta/2}(0, T) \).
Lemma 4.6. Let $0 < a < b < \infty$ and $0 < \gamma < 1$. If $v' \in L^2_b(a, b)$ with $0 \leq \delta < 1$ and $v(b) = 0$, then
\[
\int_a^b v^2(t)(t - a)^{-\gamma} \, dt \leq \frac{b^{-\delta}}{(1 - \delta)(1 - \gamma)}(b - a)^{2-\gamma} \|v'\|_{L^2_b(a, b)}^2, \quad (4.4)
\]
\[
\int_a^b v^2(t)(b - t)^{-\gamma} \, dt \leq \frac{b^{-\delta}}{(1 - \delta)(1 - \gamma)}(b - a)^{2-\gamma} \|v'\|_{L^2_b(a, b)}^2, \quad (4.5)
\]
\[
\int_a^b \int_a^b |v(s) - v(t)|^2 |s - t|^{-1-\gamma} \, ds \, dt \leq \frac{8b^{-\delta}}{1 - \delta}(b - a)^{2-\gamma} \|v'\|_{L^2_b(a, b)}^2, \quad (4.6)
\]
where $B(\cdot, \cdot)$ is the Beta function.

Lemma 4.7. For $0 < \gamma < 1$, if $v \in H^{\gamma/2}(0, T)$ and $v' \in L^1(0, T)$, then
\[
|I - Q_T|^2 v^2 H^{\gamma/2}(0, t_j) \lesssim C_\gamma \sum_{i=1}^{j} \tau_i^{2-\gamma} \inf_{0 < \delta < 1} \frac{t_i^{-\gamma}}{1 - \delta} \|(v - Q_T v)'\|_{L^2_{\tau_i}}^2, \quad (4.7)
\]
for each $1 \leq j \leq J$.

Lemma 4.8. If $v(t) := t^r, \quad 0 \leq t \leq T,$
with $0 < r \leq m + 1/2$, then
\[
\sum_{i=1}^{j} \tau_i^{2-\gamma} \inf_{0 < \delta < 1} \frac{t_i^{-\gamma}}{1 - \delta} \|(v - Q_T v)'\|_{L^2_{\tau_i}}^2 \lesssim C_{\gamma, \sigma, \tau}
\begin{cases}
T^{(1-\sigma)(2r+1-\gamma)} & \text{if } \sigma < \frac{2m+2-\gamma}{2r+1-\gamma}
(1 + \ln(j))T^{2r-1-2m+2\gamma} & \text{if } \sigma = \frac{2m+2-\gamma}{2r+1-\gamma}
T^{2r-1-2m+2\gamma} & \text{if } \sigma > \frac{2m+2-\gamma}{2r+1-\gamma},
\end{cases}
\quad (4.8)
\]
for each $1 \leq j \leq J$.

Proof of Lemma 4.5. By Lemma 4.2, extending w to $\mathbb{R} \setminus (0, t)$ by zero gives
\[
\int_0^t \int_{-\infty}^0 w^2(s)(s - \tau)^{-1-\beta} \, d\tau \lesssim |w|_{H^{\beta/2}(\mathbb{R})}^2,
\]
which indicates
\[
\int_0^t s^{\beta}w^2(s) \, ds \lesssim |w|_{H^{\beta/2}(\mathbb{R})}^2.
\]
Therefore, the Cauchy-Schwarz inequality yields
\[
\int_0^t |(v w)(s)| \, ds \lesssim \left(\int_0^t s^\beta v^2(s) \, ds \right)^{1/2} \left(\int_0^t s^{\beta}w^2(s) \, ds \right)^{1/2}
\lesssim \|v\|_{L^2_b(0, t)} \|w\|_{H^{\beta/2}(\mathbb{R})},
\]
and hence the fact $|w|_{H^{\beta/2}(\mathbb{R})} = |w|_{H^{\beta/2}(0, t)}$ proves the lemma. \qed
Proof of Lemma 4.6. The proof below shall be brief, since the techniques used are standard (see Minkowski’s integral inequality and Hardy’s inequality). For \(a < t < b \), a simple computing gives

\[
|v(t)| \leq \int_t^b |v'(s)| \, ds \leq \left(\int_t^b s^{-\delta} \, ds \right) \frac{1}{\delta} \left(\int_t^b s^\delta |v'(s)|^2 \, ds \right)^{\frac{1}{2}} \leq \sqrt{\frac{b^{1-\delta} - t^{1-\delta}}{1 - \delta}} \|v'||_{L^2(a,b)} \leq \sqrt{\frac{b^{-\delta} (b - a)}{1 - \delta}} \|v'||_{L^2(a,b)}
\]

so that we obtain

\[
\int_a^b v^2(t)(t - a)^{-\gamma} \, dt \leq \frac{c(b - a)}{1 - \delta} \int_a^b (t - a)^{-\gamma} \, dt \|v'||_{L^2(a,b)}^2 = \frac{b^{-\delta} (b - a)^{2-\gamma}}{(1 - \delta)(1 - \gamma)} \|v'||_{L^2(a,b)}^2
\]

namely the estimate (4.4). Similarly, we have

\[
\int_a^b v^2(t)(b - t)^{-\gamma} \, dt \leq \frac{b^{-\delta} (b - a)}{1 - \delta} \int_a^b (b - t)^{-\gamma} \, dt \|v'||_{L^2(a,b)}^2 = \frac{b^{-\delta} (b - a)^{2-\gamma}}{(1 - \delta)(1 - \gamma)} \|v'||_{L^2(a,b)}^2
\]

namely the estimate (4.5). Finally, let us prove (4.6). Since

\[
\int_a^b \int_a^b \left| v(s) - v(t) \right|^2 |s - t|^{-1-\gamma} \, ds \, dt \\
= 2 \int_a^b \int_a^b \int_t^s \left| v'(\tau) \right|^2 (s - t)^{-1-\gamma} \, d\tau \, ds \, dt \\\n= 2 \int_a^b \int_a^b \int_0^1 \left| v'(t + \theta(s - t)) \right|^2 (s - t)^{1-\gamma} \, d\theta \, ds \, dt \\\n\leq 2(b - a)^{1-\gamma} \int_a^b \left(\int_0^1 \sqrt{\int_t^b \left| v'(t + \theta(s - t)) \right|^2 \, ds} \, d\theta \right)^2 \, dt \\\n= 2(b - a)^{1-\gamma} \int_a^b \left(\int_0^1 \sqrt{\int_t^{t+\theta(b-t)} \left| v'(\eta) \right|^2 \, d\eta} \theta^{-1} \, d\theta \right)^2 \, dt,
\]
the inequality (4.6) is a direct consequence of
\[
\int_a^b \left(\int_0^1 \sqrt{\int_t^{t+\theta(b-t)} |v'(\eta)|^2 \, d\eta} \, d\theta \right)^2 \, dt
\leq \int_a^b \left(\int_0^1 \sqrt{\int_t^{t+\theta(b-t)} \eta \, v'(\eta)^2 \, d\eta} \, d\theta \right)^2 \, dt
\]
\[
= \int_a^b \left(\int_0^1 \theta^{1/2} \sqrt{\int_t^{t+\theta(b-t)} \eta \, v'(\eta)^2 \, d\eta} \, d\theta \right)^2 \, dt
\]
\[
\leq \int_a^b \left(\int_0^1 \theta^{-1/2} \, d\theta \right)^2 \, dt \|v'\|^2_{L^2(a,b)}
\leq \frac{4b^{-\delta}(b-a)}{1-\delta} \|v'\|^2_{L^2(a,b)}.
\]
This lemma is thus proved. ■

Proof of Lemma 4.7. By Lemma 4.2 we only need to prove
\[
I_1 + I_2 + I_3 \leq C \gamma \sum_{j=1}^{j} \tau_i^{2-\gamma} \inf_{0 \leq \delta < 1} \frac{t_i^{-\delta}}{1-\delta} \|v - Q \tau_i v\|^2_{L^2(t_i)}.
\]
where
\[
I_1 = \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} dt \int_{t_{i-1}}^{t_i} |g(t) - g(s)|^2 |t - s|^{-1-\gamma} \, ds,
\]
\[
I_2 = \sum_{i=1}^{j} \sum_{l=i+1}^{j} \int_{t_{i-1}}^{t_i} dt \int_{t_{i-1}}^{t_l} |g(t) - g(s)|^2 |t - s|^{-1-\gamma} \, ds,
\]
\[
I_3 = \int_0^{t_j} |g(t)|^2 \left(\int_{t_j}^{t_j} (s-t)^{-1-\gamma} \, ds + \int_{t_j}^0 (t-s)^{-1-\gamma} \, ds \right) \, dt.
\]
A straightforward calculation gives
\[
\sum_{i=1}^{j} \sum_{l=i+1}^{j} \int_{t_{i-1}}^{t_i} dt \int_{t_{i-1}}^{t_l} g^2(t) |t - s|^{-1-\gamma} \, ds
\]
\[
= \frac{1}{2} \sum_{i=1}^{j} \sum_{l=i+1}^{j} \int_{t_{i-1}}^{t_i} g^2(t) \left((t_{i-1} - t)^{-\gamma} - (t_i - t)^{-\gamma} \right) \, dt
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} g^2(t) (t_i - t)^{-\gamma} \, dt.
\]
and
\[
\sum_{i=1}^{j} \sum_{l=i+1}^{\gamma} \int_{t_{l-1}}^{t_{l}} dt \int_{t_{l-1}}^{t_{l}} g^{2}(s) |t-s|^{1-\gamma} ds
= \frac{1}{\gamma} \sum_{i=1}^{j} \sum_{l=i+1}^{\gamma} \int_{t_{l-1}}^{t_{l}} g^{2}(s) ((s-t_{i})^{-\gamma} - (s-t_{l-1})^{-\gamma}) ds
\leq \frac{1}{\gamma} \sum_{l=2}^{j} \int_{t_{l-1}}^{t_{l}} g^{2}(s)(s-t_{l-1})^{-\gamma} ds.
\]

It follows
\[
\| I_2 \| \leq \frac{2}{\gamma} \sum_{i=1}^{j} \int_{t_{l-1}}^{t_{l}} g^{2}(t)((t_{l-1} - t)^{-\gamma} + (t - t_{l-1})^{-\gamma}) dt.
\]

Therefore, since it is evident that
\[
\| I_3 \| \leq \frac{1}{\gamma} \sum_{i=1}^{j} \int_{t_{l-1}}^{t_{l}} g^{2}(t)((t_{l-1} - t)^{-\gamma} + (t - t_{l-1})^{-\gamma}) dt,
\]

using Lemma 4.6 yields
\[
\| I_2 + I_3 \| \leq \frac{3}{\gamma} \sum_{i=1}^{j} \int_{t_{l-1}}^{t_{l}} g^{2}(t)((t_{l-1} - t)^{-\gamma} + (t - t_{l-1})^{-\gamma}) dt
\leq C \gamma \sum_{i=1}^{j} \tau_{i}^{2-\gamma} \inf_{0 \leq \delta < 1} \frac{t_{i}^{-\delta}}{1-\delta} \| (v - Q_{\tau}v)' \|_{L_{x}^{2}(I_{i})}^{2}.
\]

As using Lemma 4.6 also yields
\[
\| I_1 \| \leq C \gamma \sum_{i=1}^{j} \tau_{i}^{2-\gamma} \inf_{0 \leq \delta < 1} \frac{t_{i}^{-\delta}}{1-\delta} \| (v - Q_{\tau}v)' \|_{L_{x}^{2}(I_{i})}^{2},
\]

we readily obtain (4.9) and thus complete the proof of Lemma 4.7.

Proof of Lemma 4.8. Setting
\[
\delta_{0} := \begin{cases} 1 - r & \text{if } 0 < r < 1/2, \\ 1/2 & \text{if } r \geq 1/2, \end{cases}
\]

by a standard scaling argument we obtain
\[
\| (Q_{\tau}v)' \|_{L_{x}^{2}(I_{1})} \leq C_{r} \| v' \|_{L_{x}^{2}(I_{1})} \leq C_{r} \tau_{1}^{(2r+\delta_{0} - 1)/2}
\]

and hence
\[
\inf_{0 \leq \delta < 1} \frac{t_{1}^{-\delta}}{1-\delta} \| (v - Q_{\tau}v)' \|_{L_{x}^{2}(I_{1})}^{2} \leq \tau_{1}^{-\delta_{0}} \inf_{0 \leq \delta < 1} \frac{t_{1}^{-\delta}}{1-\delta} \| (v - Q_{\tau}v)' \|_{L_{x}^{2}(I_{1})}^{2} \leq C_{r} \tau_{1}^{2r-1}.
\]
Therefore, Lemma 4.1 implies
\[
\sum_{i=1}^{\tau_i} t_{i}^{2-\gamma} \inf_{0 \leq \delta < 1} \frac{t_{i}^{\delta}}{1 - \delta} \|(v - Q)v\|_{L^2(I_i)}^2 \\
\lesssim C_r t_i^{2r+1-\gamma} + \sum_{i=2}^{\tau_i} t_{i}^{2m+2-\gamma} \|u^{(m+1)}\|_{L^2(I_i)}^2.
\]

(4.10)

Since a simple computing yields
\[
\tau_i < \frac{2^{\sigma-1}}{\sigma} J^{-1/\sigma} t_{i-1}^{-1/\sigma}, \quad 2 \leq i \leq J,
\]
it follows
\[
\sum_{i=2}^{\tau_i} t_{i}^{2m+2-\gamma} \|u^{(m+1)}\|_{L^2(I_i)}^2 \\
\leq C_{\sigma,r} \left(J^{-1/\sigma} \right)^{2m+2-\gamma} \int_{t_1}^j t_{i}^{2r-\gamma-(2m+2-\gamma)/\sigma} dt \\
\leq C_{\gamma,\sigma,r} \begin{cases}
T^{2r-1-\gamma} J^{-\sigma(2r+1-\gamma)} & \text{if } \sigma < \frac{2m+2-\gamma}{2r+1-\gamma}, \\
\ln \left(\frac{t_j}{t_1} \right) T^{2r+1-\gamma} J^{-2m-2+\gamma} & \text{if } \sigma = \frac{2m+2-\gamma}{2r+1-\gamma}, \\
t_j^{2r+1-\gamma-(2m+2-\gamma)/\sigma} T^{(2m+2-\gamma)/\sigma} J^{-2m-2+\gamma} & \text{if } \sigma > \frac{2-2m-\gamma}{1+2r-\gamma}.
\end{cases}
\]

(4.11)

Therefore, by (4.10) and (4.11) and the fact $T/J < \tau$, a direct computation yields (4.8) and thus concludes the proof of Lemma 4.8.

\[\square\]

4.2 Proofs of Theorems 3.1 and 3.2 and Corollaries 3.1 and 3.2

Since the proofs of Corollaries 3.1 and 3.2 are straightforward by Theorem 3.2 and Lemmas 4.1 and 4.8, this subsection only proves Theorems 3.1 and 3.2. For $1 \leq j \leq J$, set $\Omega_{t_j} := \Omega \times (0, t_j)$ and define
\[
s_j(V, W) := \sum_{i=0}^{j-1} \langle [V_j^\pm], W_j^\pm \rangle_\Omega, \quad \forall V, W \in W_{h,\tau}.
\]

Lemma 4.9. If $V \in W_{h,\tau}$ and $v \in L^2(\Omega)$, then
\[
\frac{1}{2} \left(\|V_j\|^2_{\Omega} + \|V_j^+\|^2_{\Omega} \right) \leq \langle V', V \rangle_{\Omega_{t_j}} + s_j(V, V),
\]
\[
\frac{1}{2} \left(\|V_j\|^2_{\Omega} - \|v\|^2_{\Omega} \right) \leq \langle V', V \rangle_{\Omega_{t_j}} + s_j(V, V) - \langle v, V_j^+ \rangle_{\Omega},
\]
for all $1 \leq j \leq J$.

The above lemma is contained in the proof of [27, Theorem 12.1].
Proof of Theorem 3.1. Since the stability result (3.2) indicates the unique existence of U, it suffices to prove the former. By Lemmas 4.4 and 4.9, inserting $V = U\chi_{(0,t_{j})}$ into (3.1) yields
\[
\frac{1}{2}\|U_{j}\|_{L^{2}(\Omega)}^{2} + \kappa_{1}\|U\|_{H^{3/2}(0,t_{j};H_{0}^{1}(\Omega))}^{2} + \kappa_{2}\|U\|_{H^{3/2}(0,t_{j};H_{0}^{1}(\Omega))}^{2} \\
\leq \frac{1}{2}\|R_{h}u_{0}\|_{L^{2}(\Omega)}^{2} + \langle f, U \rangle_{L^{\infty}(0,t_{j};H_{0}^{1}(\Omega))},
\]
so that Lemma 4.5 implies
\[
\|U_{j}\|_{L^{2}(\Omega)}^{2} + \kappa_{1}\|U\|_{H^{3/2}(0,t_{j};H_{0}^{1}(\Omega))}^{2} + \kappa_{2}\|U\|_{H^{3/2}(0,t_{j};H_{0}^{1}(\Omega))}^{2} \\
\lesssim \|R_{h}u_{0}\|_{L^{2}(\Omega)}^{2} + \|f\|_{L_{x}^{2}(0,t_{j};H^{-1}(\Omega))}^{2} \|U\|_{H^{3/2}(0,t_{j};H_{0}^{1}(\Omega))},
\]
which, together with the estimate
\[
\|R_{h}u_{0}\|_{L^{2}(\Omega)}^{2} \lesssim \|u_{0}\|_{H_{0}^{1}(\Omega)},
\]
proves (3.2) and thus concludes the proof of Theorem 3.1.

Proof of Theorem 3.2. By integration by parts, using (1.1) yields
\[
\langle f, \theta \rangle_{L^{\infty}(0,t_{j};H_{0}^{1}(\Omega))} = \langle u', \theta \rangle_{\Omega_{j}} + \left\langle (\kappa_{1}D_{0+}^{\alpha} + \kappa_{2}D_{0+}^{\beta}) \partial_{x}u, \partial_{x}\theta \right\rangle_{\Omega_{j}}.
\]
Moreover, substituting $V = \theta\chi_{(0,t_{j})}$ into (3.1) yields
\[
\langle f, \theta \rangle_{L^{\infty}(0,t_{j};H_{0}^{1}(\Omega))} = \langle U', \theta \rangle_{\Omega_{j}} + \left\langle (\kappa_{1}D_{0+}^{\alpha} + \kappa_{2}D_{0+}^{\beta}) \partial_{x}U, \partial_{x}\theta \right\rangle_{\Omega_{j}} + s_{j}(U, \theta) - \langle R_{h}u_{0}, \theta_{0}^{+} \rangle_{\Omega}.
\]
Consequently, it follows
\[
0 = \langle (u - U)', \theta \rangle_{\Omega_{j}} + \left\langle (\kappa_{1}D_{0+}^{\alpha} + \kappa_{2}D_{0+}^{\beta}) \partial_{x}(u - U), \partial_{x}\theta \right\rangle_{\Omega_{j}},
\]
s_{j}(u - U, \theta) - \langle (I - R_{h})u_{0}, \theta_{0}^{+} \rangle_{\Omega},
\]
and then a simple calculation gives
\[
\left\langle \theta', \theta \right\rangle_{\Omega_{j}} + \left\langle (\kappa_{1}D_{0+}^{\alpha} + \kappa_{2}D_{0+}^{\beta}) \partial_{x}\theta, \partial_{x}\theta \right\rangle_{\Omega_{j}} + s_{j}(\theta, \theta) = \mathbb{I}_{1} + \mathbb{I}_{2} + \mathbb{I}_{3},
\]
where $\rho := (I - Q_{+}R_{h})u$ and
\[
\mathbb{I}_{1} = \langle \rho', \theta \rangle_{\Omega_{j}} + s_{j}(\rho, \theta) - \langle (I - R_{h})u_{0}, \theta_{0}^{+} \rangle_{\Omega},
\]
\[
\mathbb{I}_{2} = \kappa_{1} \left\langle D_{0+}^{\alpha} \partial_{x}\rho, \partial_{x}\theta \right\rangle_{\Omega_{j}},
\]
\[
\mathbb{I}_{3} = \kappa_{2} \left\langle D_{0+}^{\beta} \partial_{x}\rho, \partial_{x}\theta \right\rangle_{\Omega_{j}}.
\]
Therefore, Lemma 4.9 implies
\[\|\theta_j\|^2_{L^2(\Omega)} + \kappa_1 |\theta|^2_{H^{\alpha/2}(0,t_j;H^\alpha(\Omega))} + \kappa_2 |\theta|^2_{H^{\beta/2}(0,t_j;H^\beta(\Omega))} \lesssim I_1 + I_2 + I_3. \]

Let us first estimate I_1. By the definition of Q_r, using integration by parts gives
\[
\langle ((I - Q_r)R_h u')', \theta \rangle_{\Omega_{t_j}} + s_j ((I - Q_r)R_h u, \theta) = \sum_{i=1}^{j} \langle ((I - Q_r)R_h u)_{i-1}^+, \theta_{i-1}^+ \rangle_{\Omega} + \sum_{i=1}^{j-1} \langle (I - Q_r)R_h u)_{i-1}^+, \theta_{i}^+ \rangle_{\Omega}
\]
which implies
\[I_1 = \langle u - R_h u', \theta \rangle_{\Omega_{t_j}} + s_j (u - R_h u, \theta) - \langle (I - R_h)u_{0}, \theta_0^+ \rangle_{\Omega} = \langle (I - R_h)u', \theta \rangle_{\Omega_{t_j}}. \]

Therefore, using Lemmas 4.1 and 4.5 yields
\[I_1 \lesssim \eta_{j,1} \sqrt{2} |\theta|_{H^{\alpha/2}(0,t_j;H^\alpha(\Omega))}. \]

Then let us estimate I_2 and I_3. A straightforward calculation gives
\[
I_2 = \kappa_1 \langle D_{0}^\alpha u, \partial \tau (u - Q_r R_h u), \partial_x \theta \rangle_{\Omega_{t_j}} = \kappa_1 \langle D_{0}^\alpha u, \partial \tau (u - Q_r u), \partial_x \theta \rangle_{\Omega_{t_j}} = \kappa_1 \langle D_{0}^\alpha (I - Q_r) \partial \tau u, \partial_x \theta \rangle_{\Omega_{t_j}}, \]
so that Lemmas 4.4 and 4.7 imply
\[I_2 \lesssim \eta_{j,2} \sqrt{2} \kappa_1 |\theta|_{H^{\alpha/2}(0,t_j;H^\alpha(\Omega))}. \]

Analogously, we obtain
\[I_3 \lesssim \eta_{j,3} \sqrt{2} \kappa_1 |\theta|_{H^{\alpha/2}(0,t_j;H^\alpha(\Omega))}. \]

Finally, by the Young’s inequality with ϵ, combining the above estimates for I_1, I_2 and I_3 yields (3.3). This concludes the proof of Theorem 3.2.

5 Numerical Experiments

This section investigates numerically the temporal accuracy of U. We set $\alpha = 0.2$, $\beta = 0.8$, $\kappa_1 = \kappa_2 = 1$, $\Omega = (0,1)$ and $T = 1$, and let
\[u(x,t) := t^r \sin(\pi x), \quad (x,t) \in \Omega_T \]
be the solution to problem (1.1), where $r > 0$ is a constant. To ensure that the spatial discretization error is negligible compared with the temporal discretization error, we set $n = 3$ and $h = 1/32$. Additionally, define
\[
E_1(U) := \max_{1 \leq j \leq J} \left\| (u - U)(t_j) \right\|_{L^2(\Omega)} , \\
E_2(U) := \left\| (u - U)(T) \right\|_{L^2(\Omega)}.
\]
Experiment 1. This experiment investigates the temporal accuracy of U under the condition that u is sufficiently regular and the temporal grid is equidistant ($\sigma = 1$). We set $r = 4$ and present the corresponding numerical results in Table 1. These numerical results show that $E_1(U) = O(\tau^{m+1})$, which exceeds the theoretical temporal accuracy $O(\tau^{m+0.6})$ indicated by Corollary 3.1.

J	$m = 0$	$m = 1$		
	$E_1(U)$	Order	$E_1(U)$	Order
64	1.43e-2	–	3.02e-5	–
128	7.56e-3	0.92	7.20e-6	2.07
256	3.95e-3	0.93	1.71e-6	2.07
512	2.05e-3	0.95	4.08e-7	2.07
1024	1.06e-3	0.96	9.69e-8	2.07

Table 1: $r = 4, \sigma = 1$.

Experiment 2. This experiment investigates the temporal accuracy of U under the condition that u has singularity near $t = 0^+$ and the temporal grid is also equidistant. The corresponding numerical results are displayed in Tables 2 and 3, and they illustrate that $E_1(U) = O(\tau^{r+0.1})$ which agrees with Corollary 3.2. The numerical results also show that the theoretical accuracy $E_1(U) = O(\tau^{m+1-\beta/2})$ indicated by Corollary 3.1 is optimal with respect to the regularity of u. Furthermore, Tables 2 and 3 illustrate the following interesting result:

$E_2(U) = O(\tau^{m+1})$.

Therefore, if only $u(T)$ is concerned, then equidistant temporal grids are sufficient.
Table 2: \(m = 0, \sigma = 1 \).

\(r \)	\(J \)	\(E_1(U) \)	Order	\(E_2(U) \)	Order
0.2	16	2.32e-2	–	5.29e-3	–
	32	1.83e-2	0.34	2.64e-3	1.00
0.5	64	1.46e-2	0.32	1.32e-3	1.00
	128	1.19e-2	0.30	6.55e-4	1.01
	256	9.73e-3	0.29	3.26e-4	1.01
0.8	16	2.09e-2	–	1.09e-2	–
	32	1.34e-2	0.64	5.51e-3	0.99
	64	8.75e-3	0.62	2.76e-3	0.99
	128	5.78e-3	0.60	1.38e-3	1.00
	256	3.85e-3	0.59	6.93e-4	1.00
1.5	16	1.59e-2	–	1.55e-2	–
	32	8.41e-3	0.92	7.89e-3	0.97
	64	4.45e-3	0.92	4.01e-3	0.98
	128	2.37e-3	0.91	2.03e-3	0.98
	256	1.27e-3	0.90	1.02e-3	0.99

Table 3: \(m = 1, \sigma = 1 \).

\(r \)	\(J \)	\(E_1(U) \)	Order	\(E_2(U) \)	Order
0.2	16	1.89e-3	–	1.42e-5	–
	32	1.23e-3	0.62	3.10e-6	2.20
0.5	64	8.10e-4	0.60	6.97e-7	2.15
	128	5.38e-4	0.59	1.60e-7	2.12
	256	3.59e-4	0.58	3.70e-8	2.11
0.8	16	4.08e-4	–	8.36e-6	–
	32	2.16e-4	0.92	1.86e-6	2.17
	64	1.15e-4	0.90	4.26e-7	2.13
	128	6.23e-5	0.89	9.90e-8	2.11
	256	3.38e-5	0.88	2.30e-8	2.10
1.5	16	1.71e-4	–	3.65e-5	–
	32	5.57e-5	1.62	8.36e-6	2.12
	64	1.84e-5	1.60	1.95e-6	2.10
	128	6.13e-6	1.59	4.57e-7	2.09
	256	2.05e-6	1.58	1.08e-7	2.08

Experiment 3. This experiment investigates the temporal accuracy of \(U \) under the condition that \(u \) has singularity near \(t = 0^+ \) and the temporal grid is graded with different parameter \(\sigma > 1 \). We consider \(r = 0.2 \) and \(r = 0.4 \), and list the corresponding numerical results in Tables 4, 5, 6 and 7. For \(1 < \sigma \leq \sigma^* \), the numerical results show that \(E_1(U) = O(\tau^{(r^0(r+0.1))}) \), which agrees with Corollary 3.2. Moreover, in the case of \(\sigma = \sigma^{**} \), the temporal accuracy \(E_1(U) = O(\tau^{m+1}) \) is observed. Here, we recall that \(\sigma^* \) and \(\sigma^{**} \) are defined by (3.4) and (3.5), respectively.
Table 4: \(r = 0.2, \ m = 0 \).

\(\sigma \backslash J \)	16	32	64	128	256	
1.5	\(E_1(U) \)	1.46e-02	1.07e-02	8.02e-03	6.04e-03	4.55e-03
Order	–	0.45	0.42	0.41	0.41	
2(\(\sigma^* \)) \n	\(E_1(U) \)	1.05e-02	7.04e-03	4.82e-03	3.31e-03	2.26e-03
Order	–	0.58	0.55	0.54	0.55	
10(\(\sigma^{**} \)) \n	\(E_1(U) \)	1.11e-02	5.87e-03	3.05e-03	1.57e-03	8.05e-04
Order	–	0.92	0.95	0.96	0.96	

Table 5: \(r = 0.2, \ m = 1 \).

\(\sigma \backslash J \)	4	8	16	32	64	
16	\(E_1(U) \)	2.44e-03	1.35e-03	7.40e-04	3.94e-04	2.01e-04
Order	–	0.86	0.86	0.91	0.97	
3(\(\sigma^* \)) \n	\(E_1(U) \)	3.73e-03	1.01e-03	3.35e-04	1.10e-04	3.30e-05
Order	–	1.89	1.59	1.61	1.73	
20(\(\sigma^{**} \)) \n	\(E_1(U) \)	5.13e-03	1.51e-03	3.81e-04	9.11e-05	2.33e-05
Order	–	1.76	1.99	2.06	1.97	

Table 6: \(r = 0.4, \ m = 0 \).

\(\sigma \backslash J \)	16	32	64	128	256	
1.1	\(E_1(U) \)	2.01e-02	1.34e-02	9.11e-03	6.27e-03	4.35e-03
Order	–	0.58	0.56	0.54	0.53	
1.2(\(\sigma^* \)) \n	\(E_1(U) \)	1.73e-02	1.12e-02	7.42e-03	4.97e-03	3.34e-03
Order	–	0.62	0.60	0.58	0.57	
2(\(\sigma^{**} \)) \n	\(E_1(U) \)	1.41e-02	7.31e-03	3.76e-03	1.92e-03	9.85e-04
Order	–	0.94	0.96	0.97	0.97	

Table 7: \(r = 0.4, \ m = 1 \).

\(\sigma \backslash J \)	4	8	16	32	64	
2	\(E_1(U) \)	2.64e-03	1.29e-03	6.59e-04	3.37e-04	1.71e-04
Order	–	1.03	0.98	0.97	0.98	
3(\(\sigma^* \)) \n	\(E_1(U) \)	2.27e-03	6.69e-04	2.29e-04	7.73e-05	2.53e-05
Order	–	1.76	1.55	1.57	1.61	
4(\(\sigma^{**} \)) \n	\(E_1(U) \)	3.28e-03	8.43e-04	2.02e-04	4.81e-05	1.26e-05
Order	–	1.96	2.06	2.07	1.93	
6 Conclusions

This paper analyzes a time-stepping discontinuous Galerkin method for the modified anomalous subdiffusion problem. We establish the stability of this method and prove that the temporal accuracy is $O(\tau^{m+1-\beta/2})$, and the numerical results confirm that this accuracy is optimal with respect to the regularity of u. Furthermore, if u has singularity near $t = 0^+$, we prove that employing graded grids in the temporal discretization can improve the temporal accuracy to $O(\tau^{m+1-\beta/2})$, which is also verified by the numerical results.

However, further investigations are still needed.

- The numerical results illustrate that if u is sufficiently regular, then
 \[
 \max_{1 \leq j \leq J} \|(u - U)(t_j)\|_{L^2(\Omega)} = O(\tau^{m+1}).
 \]

- Although u has singularity near $t = 0^+$, the numerical results show that
 \[
 \|(u - U)(T)\|_{L^2(\Omega)} = O(\tau^{m+1}).
 \]

- The numerical results also illustrate that if u has singularity near $t = 0^+$, then adopting graded grids in the temporal discretization can improve the temporal accuracy to $O(\tau^{m+1})$.

References

[1] S. C. Brenner and R. Scott. *The mathematical theory of finite element methods*. Springer-Verlag New York, 3 edition, 2008.

[2] C. Chen, F. Liu, V. Anh, and I. Turner. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. *SIAM Journal on Scientific Computing*, 32(4):1740–1760, 2010.

[3] C. Chen, F. Liu, I. Turner, and V. Anh. A fourier method for the fractional diffusion equation describing sub-diffusion. *Journal of Computational Physics*, 227(2):886–897, 2007.

[4] P. G. Ciarlet. *The Finite Element Method for Elliptic Problems*. Society for Industrial and Applied Mathematics, 2002.

[5] M. Cui. Compact finite difference method for the fractional diffusion equation. *Journal of Computational Physics*, 228(20):7792 – 7804, 2009.

[6] W. Deng. Finite element method for the space and time fractional fokker-planck equation. *SIAM Journal on Numerical Analysis*, 47(1):204–226, 2009.

[7] K. Diethelm. *The Analysis of Fractional Differential Equations*. Springer Berlin Heidelberg, 2010.

[8] V. J. Ervin and J. P. Roop. Variational formulation for the stationary fractional advection dispersion equation. *Numerical Methods for Partial Differential Equations*, 22(3):558–576, 2006.
[9] G. Gao and Z. Sun. A compact finite difference scheme for the fractional sub-diffusion equations. *Journal of Computational Physics*, 230(3):586 – 595, 2011.

[10] H. Gao, Z. Sun, and H. Zhang. A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. *Journal of Computational Physics*, 259:33–50, 2014.

[11] S. B. Hadid and Yu. F. Luchko. An operational method for solving fractional differential equations of an arbitrary real order. *Panamerican Mathematical Journal*, 6(1), 1996.

[12] B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou. Error analysis of a finite element method for the space-fractional parabolic equation. *SIAM Journal on Numerical Analysis*, 52(5):2272–2294, 2014.

[13] T.A.M. Langlands and B.I. Henry. The accuracy and stability of an implicit solution method for the fractional diffusion equation. *Journal of Computational Physics*, 205(2):719 – 736, 2005.

[14] Binjie Li, Hao Luo, and Xiaoping Xie. A time-spectral algorithm for fractional wave problems. 2017.

[15] C. Li and C. Xu. Finite difference methods for fractional diffusion equation. *J. Bifur. Chaos*, 22:1230014 – 1230042, 2012.

[16] Changpin Li, Zhengang Zhao, and Yang Quan Chen. *Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion*. Pergamon Press, Inc., 2011.

[17] D. Li and J. Zhang. Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. *Journal of Computational Physics*, 322:415–428, 2016.

[18] X. Li and C. Xu. A space-time spectral method for the time fractional diffusion equation. *SIAM Journal on Numerical Analysis*, 47(3):2108–2131, 2009.

[19] Y Lin and C. Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. *Journal of Computational Physics*, 225(2):1533 – 1552, 2007.

[20] Q. Liu, F. Liu, I. Turner, and V. Anh. Finite element approximation for a modified anomalous subdiffusion equation. *Applied Mathematical Modelling*, 35(8):4103–4116, 2011.

[21] Yurii Luchko and Rudolf Gorenflo. An operational method for solving fractional differential equations with the caputo derivatives. *Acta Mathematica Vietnamica*, 24(2):207–233, 1999.

[22] William Mclean and Kassem Mustapha. Convergence analysis of a discontinuous galerkin method for a sub-diffusion equation. *Numerical Algorithms*, 52(1):69–88, 2009.
[23] Kassem Mustapha. Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Springer-Verlag New York, Inc., 2015.

[24] Kassem Mustapha and William Mclean. Piecewise-linear, discontinuous galerkin method for a fractional diffusion equation. *Numerical Algorithms*, 56(2):159–184, 2011.

[25] S. G. Samko, A. A. Kilbas, and O. I. Marichev. *Fractional integrals and derivatives: theory and applications*. USA: Gordon and Breach Science Publishers, 1993.

[26] L. Tartar. *An introduction to Sobolev spaces and interpolation spaces*. Springer Berlin Heidelberg, 2007.

[27] V. Thomée. *Galerkin Finite Element Methods for Parabolic Problems*. Springer Berlin Heidelberg, 2006.

[28] Z. Wang and S. Vong. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. *Journal of Computational Physics*, 277:1–15, 2014.

[29] S. B. Yuste. Weighted average finite difference methods for fractional diffusion equations. *Journal of Computational Physics*, 216(1):264–274, 2006.

[30] S. B. Yuste and L. Acedo. An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations. *SIAM Journal on Numerical Analysis*, 42(5):1862–1874, 2005.

[31] F. Zeng, C. Li, F. Liu, and I. Turner. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. *SIAM Journal on Numerical Analysis*, 35(6):2976–3000, 2013.

[32] Y. Zhang. A finite difference method for fractional partial differential equation. *Applied Mathematics and Computation*, 215(2):524 – 529, 2009.

[33] M. Zheng, F. Liu, I. Turner, and V. Anh. A novel high order space-time spectral method for the time fractional fokker-planck equation. *SIAM Journal on Scientific Computing*, 37(2):A701–A724, 2015.

[34] P. Zhuang, F. Liu, V. Anh, and I. Turner. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. *SIAM Journal on Numerical Analysis*, 46(2):1079–1095, 2008.