Impact of disruption between options of plutonium multi-recycling: in PWRs and in SFRs

Jiali LIANG¹, Marc ERNOULT¹, Xavier DOLIGEZ¹, Sylvain DAVID¹, Nicolas THIOLLIERE²

July 1st, 2021

¹ IJCLab, Paris-Saclay University, CNRS/IN2P3 (France)
² Subatech, IMT Atlantique, University of Nantes, CNRS/IN2P3 (France)
Outline

• Uncertainty of nuclear future: which technological orientation?
• Methodology: disruption & robustness assessments
• (Prior) Trajectories of interest: TRJ SFR & TRJ MIX
• Adaptations in case of disruption:
 • From TRJ MIX: SCN MIX2SFR
 • From TRJ SFR: SCN SFR2MOXEUS
• Conclusion
Uncertain Nuclear Future

Nuclear expansion → Risk of U shortages → SFRs – closed FC
Uncertain Nuclear Future

- Uncertain future: technological orientations of Pu multi-recycling → definitive decision?
- Given one implemented strategy (today) → possible to turn to the other direction (future)?

Uncertainty of future → Which system to be studied & which criterion for the assessment?
Methodology

• Strategy robustness (previous study\(^1\)):
 - ✗ Stick to a given future
 - ✓ Adapt to changes

• Disruption of objective/criterion & adaptation

• Application of the method: French fuel cycle & (inspired from) national strategies
• Simulator: CLASS (Core Library for Advanced Scenario Simulation)

\(^1\) Liang et al, Annals of Nuclear Energy, 2021
Outline

• Uncertainty of decisions
• Methodology: disruption & robustness assessments
• (Prior) Trajectories of interest: TRJ SFR & TRJ MIX
• Adaptations after disruption:
 • From TRJ MIX: SCN MIX2SFR
 • From TRJ SFR: SCN SFR2MOXEUS
• Conclusion
Prior: TRJ SFR

• Former “reference” strategy (<2012): SFR deployment for 100% fleet
Prior: TRJ SFR

Pu in the total cycle (ton)

Idle Pu in interim stocks (ton)
Prior: TRJ MIX

• New “reference”: Pu multi-recycling in PWRs (“Multi-year Program of Energy”)
• MIX design: homogeneous mix of multi-Pu oxides & enriched U oxides

![Average Effective Thermal Power (GWth)](image)
Prior: TRJ MIX

"Contradiction": robustness of MIX-related strategy towards the future of SFR deployment?
Outline

• Uncertainty of decisions
• Methodology: disruption & robustness assessments
• (Prior) Trajectories of interest: TRJ SFR & TRJ MIX
• Adaptations after disruption:
 • From TRJ MIX: SCN MIX2SFR
 • From TRJ SFR: SCN SFR2MOXEUS
• Conclusion
SCN MIX2SFR

- Disruption of TRJ MIX: re-estimation of U & reconsideration of SFR deployment
- Adaptation time (t_{ad}): 2065, 2085, 2100

Average Effective Thermal Power (GWth)

- SFR deployment?
- Finish the transition as in TRJ SFR (2120)

MIX fraction in macro-PWR (%) vs **SFR fraction in the fleet (%)**

- min. $t_{e,2SFR}$ (by optimization)
- vs TRJ SFR (year 2120)
Prior strategy MIX + appropriate adaptations: robust if $t_{ad} \leq 2085$

→ Impact on the time when the replacement of fleet with SFRs finishes

t_{ad}	$t_{ad}+1$	$t_{ad}+3$	$t_{ad}+1$	BU_{UOX}	BU_{MIX}
2065	2077	2120	47.7	59.2	
2085	2087	2120	31.8	42.1	
2100	2118	2140	48.6	54.4	

(Unit) year year year GWd/t GWd/t

(vs $t_{e,2SFR} = 2120$ in TRJ SFR)
** 100% fleet of SFRs (~46GWe after 2040) ~ 350t Pu
Outline

• Uncertainty of decisions
• Methodology: disruption & robustness assessments
• (Prior) Trajectories of interest: TRJ SFR & TRJ MIX
• Adaptations after disruption:
 • From TRJ MIX: SCN MIX2SFR
 • From TRJ SFR: SCN SFR2MOXEUS
• Conclusion
SCN SFR2MOXEUS

- Disruption of TRJ SFR: economic issues; max. the use of Pu by multi-MOX in PWRs
- MOXEUS (multi-MOX in PWRs): variable Pu content in the fresh fuel → flexible for diverse Pu quality

- Stop putting new SFRs into service;
- Max. the use of Pu in PWRs?

- min. the peak of idle Pu: min. “\(P_{\text{idle,max}}\) (2140~2160)
- vs TRJ MIX (~ 250 tons)

SCN SFR2MOXEUS

Average Effective Thermal Power (GWth)

t_{ad}	FrMXEf	$t_{e,2MXE}$	BU_{UOX}	BU_{MXE}	$Pu_{idle,max}$
2065	52.8	2087	40.2	37.5	17
2085	34.3	2096	40.1	36.8	174
2100	33.4	2105	38.9	40.0	332
(Unit)	%	year	GWd/t	GWd/t	ton

Prior strategy SFR + appropriate adaptations: robust if $t_{ad} \leq 2085$

Impact of SFR deploy. (<disrupt.) on the use of Pu (>disrupt.)

(vs $Pu_{idle,max} = 250$ tons in TRJ MIX)
Discharged from the last 2 irradiation cycles of SFRs (shut down in 2140)
Conclusion & outlook

• Application of the methodology: robustness assessment
 • Capacity to adapt to future changes

• Disruption TRJ MIX \(\rightarrow\) SCN MIX2SFR
 • Reconsideration of SFRs: min. finish time of deployment
 • Adaptively robust if \(\leq 2085\)

• Disruption TRJ SFR \(\rightarrow\) SCN SFR2MOXEUS
 • Max. the use of Pu by PWRs: min. the peak of idle Pu
 • Adaptively robust if \(\leq 2085\)

• Future work:
 • More output metrics, e.g. reactor lifespan \(\rightarrow\) indicator of industrial constraints
 • Optimization: one optimal strategy \(\rightarrow\) phase space of robust adaptations?
Backup
TRJ MIX FC
FC – adaptations
Nelder-Mead optimization

- Simplex-based
- Reflection, expansion, contraction, shrinkage