SUPPLEMENTARY MATERIAL

New Lasiodiplodins From Mangrove Endophytic Fungus *Lasiodiplodia* sp. 318

Jiguo Huang\(^a,b\), Jiayi Xu\(^a\), Zhen Wang \(^d\), Dilfaraz Khan\(^a\), Shah Iram Niaz\(^a\), Yonghong Zhu\(^d\), Yongcheng Lin\(^c\), Jing Li\(^a,b*\) and Lan Liu\(^a,b*\)

\(^a\) School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.

\(^b\) South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.

\(^c\) School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.

\(^d\) Department of Histology and Embryology, Zhongshan School of Medical, Sun Yat-sen University, Guangzhou 510080, China.

* Corresponding Author

* Tel and Fax: 86-20-84114834.

E-mail: lijing356@mail.sysu.edu.cn (Jing Li)

E-mail: cesllan@mail.sysu.edu.cn (Lan Liu)
Abstract: Two new lasiodiplodins (1-2) together with three known analogues, were isolated from a mangrove endophytic fungus, *Lasiodiplodia* sp.318\(^8\). Their structures were established by spectroscopic techniques (\(^1\)D- and \(^2\)D-NMR, HR-ESI-MS, etc), and electronic circular dichroism (ECD). Cytotoxic activities of compounds 1–5 were evaluated *in vitro*. Compound 4 was the most potent, with IC\(_{50}\) values of 5.29 μM against MMQ, 13.05 μM against GH3. Preliminary structural-activity analysis indicated that the functional group (resorcinol-3-OH) contribute great to the binding of Lasiodiplodins to the cytotoxic activities.

Keywords: Mangrove endophytic fungus; *Lasiodiplodia*; lasiodiplodins

1. Cytotoxic assay

Following the previous procedures (Wang et al. 2015), Cell Counting Kit-8 assay (CCK-8) (Dojindo, Japan) was used to assess cell proliferation. Briefly, the GH3, MMQ, RPC, REF were seeded on 96-well plates (Nest, China) at a density of 10\(^5\)/ml, 100 μl/well, incubated at 37 °C with 5 % CO\(_2\) for 24 h. According to the manufacturer’s protocol, the CCK8 reagent was added to each well and cells were incubated at 37°C for 1-4 h. The absorbance was measured at 450 nm using a microplate reader and cell proliferation rate relative to the control was calculated.
Table S1. 13C and 1H NMR spectroscopic data (100/400 MHz, CDCl3) for compounds 1-2

Position	δ C	δ H	δ C	δ H
1	168.4			
2	117.0			104.9
3	157.6			165.3
4	96.6	6.24 (1H, s)	101.4	6.29 (1H, br s)
5	157.0			160.6
6	108.1	6.22 (1H, s)	110.9	6.24 (1H, br s)
7	143.1			148.5
8	31.2	2.56 – 2.45 (1H, overlap m)	36.6	2.84 (2H, t, $J = 7.9$ Hz)
		2.40 – 2.31 (1H, m)		
9	30.2	1.52 (2H, overlap m)	31.5	1.63 – 1.48 (2H, overlap m)
10	25.4	1.52 (2H, overlap m)	29.1	1.36 – 1.24 (2H, overlap m)
11	30.5	2.28 – 2.17 (1H, overlap m)	29.3	1.36 – 1.24 (2H, overlap m)
		2.14 – 2.02 (1H, m)		
12	132.3	5.32 (1H, t, $J = 12.6$ Hz)	29.0	1.36 – 1.24 (2H, overlap m)
13	127.7	5.56 – 5.46 (1H, overlap m)	23.7	1.63 – 1.48 (2H, overlap m)
14	40.9	2.56 – 2.45 (1H, overlap m)	43.7	2.44 (2H, t, $J = 7.3$ Hz)
		2.28 – 2.17 (1H, overlap m)		
Position	3	4		
----------	------------	------------		
	δ_C	δ_H	δ_C	δ_H
1	171.8		171.5	
2	105.3		105.0	
3	165.6		165.3	
4	101.4	6.29 (1H, d, $J = 2.6$ Hz)	101.3	6.28 (1H, d, $J = 1.6$ Hz)
5	160.2		160.3	
6	110.6	6.23 (1H, d, $J = 2.4$ Hz)	110.7	6.23 (1H, d, $J = 2.0$ Hz)
7	149.2		148.9	
		3.27 (1H, td, $J = 12.3$ 4.1 Hz)		
8	37.2	2.43 (1H, td, $J = 12.5$ 4.8 Hz)	37.0	2.85 (2H, t, $J = 7.8$ Hz)
9	31.3	1.91 – 1.73 (1H, overlap m)	32.0	1.59 – 1.47 (2H, m)
10	26.9-26.7	1.64 – 1.38 (2H, overlap m)	29.3-29.9	1.34-1.23 (2H, overlap m)

Table S2. 13C and 1H NMR spectroscopic data (100/400 MHz, CDCl$_3$) for compounds 3-4.
No.	1H (ppm)	1H-1H COSY (ppm)	1H-1H COSY (ppm)
11	22.4-22.7	1.64 – 1.38 (2H, overlap m)	29.3-29.9
12	26.9-26.7	1.64 – 1.38 (2H, overlap m)	29.3-29.9
13	22.4-22.7	1.64 – 1.38 (2H, overlap m)	29.3-29.9
14	22.4-22.7	1.64 – 1.38 (2H, overlap m)	31.8
15	26.9-26.7	1.64 – 1.38 (2H, overlap m)	22.6
16	34.7	1.4-1.56 (1H, m)	14.1
		1.91 – 1.73 (1H, overlap m)	0.88 (3H, t, J = 6.7 Hz)
17	73.7	5.24 – 5.15 (1H, m)	61.3
18	21.3	1.36 (3H, d, J = 6.2 Hz)	14.1
	3-OH	12.20 (1H, s)	11.87 (1H, s)

Figure S1 Key 1H–1H COSY (bold), HMBC (arrow) correlations of compounds 1-4
Figure S2 Experimental ECD spectra of 1 and 6 (in MeOH).

\(a \) compound 6: (R)-lasiodiplodin

Figure S3 *In vitro* cytotoxic activities of compounds 1-5

\(a \) Data are expressed in IC\textsubscript{50} values (\(\mu \)M). MMQ: The rat pituitary adenoma cell line. GH3: The rat pituitary adenoma cell lines. RPC: rat normal pituitary cells.

\(b \) 100 \(\mu \)M stand for compound's IC\textsubscript{50} values\(\geq 100 \mu \)M.

\(c \) RPC use as positive control.

\(d \) RPC cells (ScienCell, Logan, UT, USA, NO: R1200), MMQ and GH3, were purchased from Xie-he Bank (Beijing, China). REF were isolated from rat embryonic

Figure S4 The HRESIMS spectrum of compound 1
Figure S5 The 1H-NMR spectrum of compound 1 (CDCl3)

Figure S6 The 13C-NMR spectrum of compound 1 (CDCl3)

Figure S7 The HMBC spectrum of compound 1
Figure S8 The 1H-1H COSY spectrum of compound 1

Figure S9 The HSQC spectrum of compound 1

Figure S10 The DEPT spectrum of compound 1
Figure S11 The HRESIMS spectrum of compound 2

Figure S12 The 1H-NMR spectrum of compound 2 (CDCl3)

Figure S13 The 13C-NMR spectrum of compound 2 (CDCl3)
Figure S14 The DEPT spectrum of compound 2

Figure S15 The HMBC spectrum of compound 2

Figure S16 The 1H-1H COSY spectrum of compound 2
Figure S17 The HSQC spectrum of compound 2