GLOBAL POINTER: NOVEL EFFICIENT SPAN-BASED APPROACH FOR NAMED ENTITY RECOGNITION

Abstract

Named entity recognition (NER) task aims at identifying entities from a piece of text that belong to predefined semantic types such as person, location, organization, etc. The state-of-the-art solutions for flat entities NER commonly suffer from capturing the fine-grained semantic information in underlying texts. The existing span-based approaches overcome this limitation, but the computation time is still a concern. In this work, we propose a novel span-based NER framework, namely Global Pointer (GP), that leverages the relative positions through a multiplicative attention mechanism. The ultimate goal is to enable a global view that considers the beginning and the end positions to predict the entity. To this end, we design two modules to identify the head and the tail of a given entity to enable the inconsistency between the training and inference processes. Moreover, we introduce a novel classification loss function to address the imbalance label problem. In terms of parameters, we introduce a simple but effective approximate method to reduce the training parameters. We extensively evaluate GP on various benchmark datasets. Our extensive experiments demonstrate that GP can outperform the existing solution. Moreover, the experimental results show the efficacy of the introduced loss function compared to softmax and entropy alternatives.

Keywords: Named Entity Recognition, Relation Extraction, Natural Language Processing, Multi-label loss, Deep Neural Networks

1 introduction

Named entity recognition (NER) task aims to recognize entities, also called mentions, from a piece of text that belong to predefined semantic types such as person, location, organization, etc. NER is a key component in natural language processing (NLP) systems for information retrieval, automatic text summarization, question answering, machine translation, knowledge base construction, etc. Guo et al. [2009], Petkova and Croft [2007], Aone [1999], Mollá et al. [2006], Babych and Hartley [2003], Eitzoni et al. [2005]. Note that NER has been introduced in two forms, including flat
and nested entities. Flat NER has been widely addressed as a sequence labeling problem. Nested entities have shown importance in various real-world applications due to their multi-granularity semantic meaning. However, a given token may have multiple labels and thus renders applying sequence labeling-based approaches unattainable.

With the rapid development of deep neural network (DNN), NER task has experienced a shift towards the contextual representation learning. The earlier DNN-based approaches have treated NER as a sequence labeling problem. They commonly attempt to address each token individually by capturing the type and position information. Despite the effectiveness of these approaches, they cannot perform span-based NER, which is called nested NER, in which the entity consists of more than one token. DNN-based approaches for nested NER usually attempt to learn span-specific deep representation in order to classify the corresponding type. There exist some approaches initiated the solution. The authors of Fu et al. proposed to take the span length information into account during the training process. Another work Shen et al. introduced to jointly address span classification and boundary regression in a unified framework to alleviate the boundary information issue. However, the implantation of these approaches is a bit complicated and may be bothersome in real-world scenarios.

In this paper, we propose a novel solution, namely Global Pointer (GP), to address span-based NER task. Specifically, we leverage the relative positions through a multiplicative attention mechanism. The ultimate goal is to enable a global view that considers the beginning and the end positions (i.e., the head and tail information) to predict the entity. To achieve this, we design two modules to identify the head and the tail of a given entity to enable the inconsistency between the training and inference processes. In addition, to alleviate the burden of class imbalance in NER, we extend the softmax and cross-entropy in a universal loss function. It is noteworthy that the number of parameters of the proposed solution increases when a new entity type is added. Note that the introduced loss can be applied to any task suffering from the label imbalance issue. To remedy this issue, we introduce another extension of GP, namely efficient GP, based on an effective approximate method to reduce the number of parameters. We extensively evaluate GP on various benchmark datasets. Our extensive experiments demonstrate that GP can outperform the existing solution. Moreover, the experimental results show the efficacy of the introduced loss function compared to softmax and entropy alternatives.

In brief, the main contributions are three-fold:

- We propose a novel solution, namely Global Pointer (GP), to address span-based NER task that leverages the relative positions through a multiplicative attention mechanism.
- We extend the softmax and cross-entropy in a universal loss function to perform class imbalance scenarios. NER is an example. In addition, we propose an effective approximation method to reduce the training parameters when a new entity type is added.
- We extensively evaluate the proposed solution on various benchmark datasets. Our extensive experiments demonstrate that the proposed solution can outperform the existing solutions. Moreover, the experimental results validate the efficacy of the introduced loss function compared to softmax and entropy alternatives.

The remaining of the paper is organized as follows. Section 2 reviews related work. Section 3 describes the propose solution. Section 4 presents the experimental settings and empirically evaluates the performance of the proposed solution. Finally, we conclude this paper with Section 5.

2 Related work

NER has received extensive attention of researchers in the last decades. The earlier solutions include rule-based. Unsupervised learning approaches initiated the solution. The authors of Fu et al. proposed to take the span length information into account during the training process. Another work Shen et al. introduced to jointly address span classification and boundary regression in a unified framework to alleviate the boundary information issue. However, the implementation of these approaches is a bit complicated and may be bothersome in real-world scenarios.
With the rapid development of deep neural networks, various approaches were introduced to address NER task as a classification problem. The key idea is to learn entity-specific representation to model the semantic relation between two entities. Convolutional neural networks Yao et al. [2015], Strubell et al. [2017], Zhai et al. [2017], recursive neural networks Li et al. [2017], Gridach [2017], Wang et al. [2018], Akbik et al. [2018], Liu et al. [2019a], Ghaddar and Langlais [2018] and long-short term memory based approaches Huang et al. [2015], Tran et al. [2017], Jie and Lu [2019]. The authors of Zheng et al. [2017], Zhou et al. [2017] introduced to jointly extract the entities and their relations in a unified framework.

Recently, pre-trained language models (PLMs) have mostly achieved the state-of-the-art performance of various NLP tasks Devlin et al. [2018], Liu et al. [2019b], Yang et al. [2019]. Following this approach, NER has experienced a shift towards PLMs. An end-to-end model based on sequence-to-sequence learning with copy mechanism and the graph convolutional networks, which introduced to jointly extract relation and entity from sentences Zeng et al. [2018], Fu et al. [2019]. A reinforcement learning-based approach Zeng et al. [2019] was proposed to tackle the extraction order of relation extraction task. A cascade binary tagging-based framework Wei et al. [2020] was introduced to treat relations as functions mapping subjects to objects in a sentence to alleviate the overlapping problem in relation extraction. Table-Sequence Wang and Lu [2020] consists of two encoders, including a table encoder and a sequence encoder, that work together to learn the entity-specific representation. A partition filter network-based approach Yan et al. [2021] introduced to model two-way interaction between entity and relation extraction tasks. The authors of Yuan et al. [2021] introduced modeling relevant features by leveraging heterogeneous factors, e.g., inside tokens, boundaries, and related spans to enhance span representation, resulting in accurate classification performance.

3 Approach

In this section, we describe the proposed solution. We begin by defining span-based NER task. Then, we present the technical details of our approach. Finally, we present the approximation method to reduce the number of parameters.

3.1 Problem definition

Named Entity Recognition (NER) task aims to extract the entity segments and then correspondingly identify their types in the given text. Let $S = [s_1, s_2, ..., s_M]$ be the possible spans in the sentence. The span s is represented as $s[i : j]$ where i and j are the head and tail indexes, respectively. The goal of NER is to identify all $s \in E$, where E is the entity type set.

3.2 Global Pointer

The architecture of our proposed GP consists of two layers, including token representation span prediction. An illustrative example of GP is shown in Figure 1.
3.2.1 Token Representation

Given a sentence $X = [x_1, x_2, ... x_n]$ with n token, we begin by associating each token in X with its corresponding representation in the pre-training language model (PLM), e.g., BERT. We end up with a new matrix $H \in \mathbb{R}^{n \times v}$, where v is dimension of representation:

$$h_1, h_2, ..., h_n = PLM(x_1, x_2, ..., x_n).$$

3.2.2 Span Prediction

Now that we have already obtained the sentence representation H, we then compute the span representation. To this end, we use two feedforward layers that rely on the begin and end indices of the span.

$$q_{i,\alpha} = W_{q,\alpha}h_i + b_{q,\alpha},$$

$$k_{i,\alpha} = W_{k,\alpha}h_i + b_{k,\alpha},$$

where $q_{i,\alpha} \in \mathbb{R}^d$, $k_{i,\alpha} \in \mathbb{R}^d$ is the vector representation of the token which used to identify the entity of type α. Specifically, the representation of the start and end position is $q_{i,\alpha}$ and $k_{i,\alpha}$ for span $s[i : j]$ of type α. Then, the score of the span $s[i : j]$ to be an entity of type α is calculated as follows:

$$s_{\alpha}(i, j) = q_{i,\alpha}^\top k_{j,\alpha}$$

To leverage the boundary information, we explicitly inject relative position information to the model. We apply ROPE position coding into the entity representation, which satisfies $R_i^\top R_j = R_{j-i}$. In this way, our scoring function is calculated as follows:

$$s_{\alpha}(i, j) = (R_i q_{i,\alpha})^\top (R_j k_{j,\alpha})$$

$$= q_{i,\alpha}^\top R_i^\top R_j k_{j,\alpha}$$

$$= q_{i,\alpha}^\top R_{j-i} k_{j,\alpha}$$

3.3 Parameter Reduction

It is noteworthy to mention that when $W_{q,\alpha}, W_{k,\alpha} \in \mathbb{R}^{v \times d}$, the parameters increase to $2vd$ for each new added entity type. Compared with the method of sequence labeling, the increase of parameters under the same conditions is about $2v$. Generally speaking, $v >> d$, in the bert-base model v is 768, while the common choice of d is 64.

To alleviate this issue, we introduce an approximation technique to enable Global Pointer to perform under fewer parameters settings. In the next sections, we refer to it as Efficient Global Pointer. The key idea is to capture the shared score calculation under each entity type. Specifically, we treat NER task as two subtasks, including extraction and classification. The former extracts segments as entities, and the latter identifies the type of each entity. In this way, the extraction step is equivalent to the NER task with only one entity type. We can complete it with a scoring matrix $(W_q h_i)^\top (W_k h_j)$. The classification step can be read as $w_\alpha[h_i; h_j]$, where $w_\alpha \in \mathbb{R}^{2v}$ denotes the identification of the entity type α, and $[h_i; h_j]$ is the span representation, which is the concatenation of the start and end representations. The new scoring function is the combination of:

$$s_{\alpha}(i, j) = (W_q h_i)^\top (W_k h_j) + w_\alpha[h_i; h_j].$$

Note that the extraction task’s parameters are shared by all entity types. Therefore, when a new entity type is added, the parameters of classification task increase by $2v$, which is less compared to the original number of parameters $2vd$.

To further reduce the parameters, we consider using $[q_i; k_i]$ instead of h_i to represent a token. Then, the final scoring function becomes:

$$s_{\alpha}(i, j) = q_{i,\alpha}^\top k_{j,\alpha} + w_\alpha^\top [q_i; k_i; q_j; k_j],$$

where $w_\alpha \in \mathbb{R}^{4d}$, $[q_i; k_i; q_j; k_j]$ is the span representation. Intuitively, the number of parameters increases for each new entity type is $4d$, which is indeed less than $And 4v$.

Global Pointer
3.4 Class Imbalance Loss

Inspired by the circle loss, we introduce a loss function to alleviate class imbalance. In single-class classification, the cross-entropy loss function is:

\[
\log \left(\sum_{i=1}^{n} e^{s_i} \right) = - \log \left(\sum_{i=1}^{n} e^{s_i} \right) = \log \left(\frac{n}{\sum_{i=1}^{n} e^{s_i}} \right) = \log \left(1 + \sum_{i=1, i \neq t}^{n} e^{s_i} \right),
\]

where \(s_i\) is the non-target score and \(s_t\) is the target score. Here, we consider the loss function in the scenario of multi-label classification. The goal is to make the score of the target class not less than that of the non-target class. Therefore, the loss function is:

\[
\log \left(1 + \sum_{i \in \Omega_{neg}} e^{s_i} \sum_{j \in \Omega_{pos}} e^{-s_j} \right)
\]

where \(\Omega_{pos}\) and \(\Omega_{neg}\) are positive sample set and negative sample set, respectively. Considering the multi-label scenario where the number of classes is not fixed, we introduce an additional class \(TH\) as the threshold value. We expect that the scores of target classes are greater than \(s_{TH}\) and those of non-target classes are less than \(s_{TH}\). Then, the loss function is calculated as:

\[
\log \left(1 + \sum_{i \in \Omega_{neg}} e^{s_i} + \sum_{j \in \Omega_{pos}} e^{s_{TH} - s_j} \right)
\]

Equation 10 can be further simplified as follows:

\[
\log \left(e^{s_{TH}} + \sum_{i \in \Omega_{neg}} e^{s_i} \right) + \log \left(e^{-s_{TH}} + \sum_{j \in \Omega_{pos}} e^{-s_j} \right)
\]

For sake of simplicity, we set the threshold to 0 and the final loss function:

\[
\log \left(1 + \sum_{i \in \Omega_{neg}} e^{s_i} \right) + \log \left(1 + \sum_{j \in \Omega_{pos}} e^{-s_j} \right)
\]

Specifically, the entity type of \(\alpha\) is represented by:

\[
\log \left(1 + \sum_{(q,k) \in P_{\alpha}} e^{-s_{\alpha}(q,k)} \right) + \log \left(1 + \sum_{(q,k) \in Q_{\alpha}} e^{s_{\alpha}(q,k)} \right)
\]

where \(q, k\) represent the start and tail indexes of a span, \(P_{\alpha}\) represents a collection of spans with entity type \(\alpha\), \(Q_{\alpha}\) represents a collection of spans that are not entities or whose entity type is not \(\alpha\), \(s_{\alpha}(q,k)\) is the score that a span \(s[q:k]\) is an entity of type \(\alpha\).

In inference step, the segments that satisfy \(s_{\alpha}(q,k) > 0\) are the output of the entity of type \(\alpha\).

4 Experiments and Evaluation

4.1 Experimental Setup

Dataset. To validate the proposed solution, we conduct extensive experiments on various benchmark datasets. Specifically, we rely on three Chinese NER datasets, including The People’s daily, CLUENER [Xu et al., 2020] and CMeEE.
Global Pointer

Dataset	Train	Test	Sentence length	Number of Entities
The People’s daily	23,182	46,36	46.93	3
CLUENER	10,748	1,343	37.38	10
CMeE	15,000	5,000	54.15	9
CONLL04	4,270	1,079	28.77	4
Genia	16,692	1,854	25.35	5
NYT	56,195	5,000	128	-
WebNLG	5,019	703	128	-
ADE	4,272 (10-fold)	128	2	

Table 1: Statistics of datasets.

Method	The People’s daily	CLUENER	CMeE	CONLL04	Genia
Bert-CRF	95.46	78.70	64.39	85.46	73.02
PFN [Yan et al.]	94.00	79.29	63.68	87.43	74.31
Global Pointer	95.51	79.44	65.98	88.57	74.64

Table 2: Comparative evaluation on various benchmark datasets for flat and nested NER. The results represent the Macro-F1 scores averaged of five runs with different randomization. The Note that all the results are our implementations and best scores are highlighted in bold.

Hongying et al. [2020], which has been widely used in the literature. Moreover, we also experiment with various English datasets, including CONLL04 Roth and Yih [2004], Genia Ohta et al. [2002], NYT Riedel et al. [2010], WebNLG Zeng et al. [2018] and ADE Gurulingappa et al. [2012]. Note that CMeE and Genia were designed for nested NER task, while the others are flat task. Table 1 shows the statistics of the datasets.

Evaluation Metrics
We use strict evaluation metrics that if the entity type and the corresponding entity boundary are correct, the entity is correct. We use F1-score to evaluate the performance of our model.

Parameter Settings
We use 12 heads and layers and keep the dropout probability at 0.1 with 30 epochs. The initial learning rate is $2e^{-5}$ for all layers with a batch size of 32. Note that we used the bert-base model Devlin et al. [2018] to initialize the weights of our GP with Adam optimizer.

Comparative Baselines
We validate the performance of our Global Pointer by comparing it with its alternatives:

- **Bert-CRF**: A baseline for entity extraction task that incorporates pre-trained language model BERT Devlin et al. [2018] and the additional Conditional Random Field (CRF) layer Lafferty et al. [2001].
- **CopyRE** Zeng et al. [2018]. An end-to-end model based on sequence-to-sequence learning with copy mechanism, which introduced to jointly extract relation and entity from sentences.
- **GraphRel** [Fu et al. 2019]. An end-to-end relation extraction model built upon the graph convolutional networks to jointly learn named entities and their corresponding relations.
- **CasRel** Wei et al. [2020]. A cascade binary tagging-based framework introduced to treat relations as functions mapping subjects to objects in a sentence to alleviate the overlapping problem in relation extraction.
- **PFN** Yan et al. A partition filter network-based approach introduced to model two-way interaction between entity and relation extraction tasks.

Moreover, we also compare to the baselines that achieve competitive performance, including Multi-head Bekoulis et al. [2018a], Multi-head + AT Bekoulis et al. [2018b], Rel-Metric Tran and Kavuluru [2019], SpERT Eberts and Ulges [2019].

4.2 Main results
We use the Dev set to select the best model and report the average of five runs on each dataset as shown in Table 2 from which we have made the following observations: (1) our proposed solution gives the best Macro-F1 scores compared to the baselines across all datasets; (2) our Global Pointer can significantly outperform BERT-CRF with more challenging datasets. For example, Global Pointer can achieve even about 0.74 and 1.59 with CLUENER CMeE datasets, respectively, over BERT-CRF. Due to the widely recognized challenge of these datasets, the achieved improvements can be deemed very considerable. Moreover, the experimental results in Table 2 have shown that our proposed solution can achieve a competitive performance compared to the state-of-the-art baselines with less training and inference costs.
Table 3: Comparative evaluation, †, ‡ and § denotes the use of BERT, ALBERT and SCIBERT [Devlin et al. 2018], [Lan et al. 2019], [Beltagy et al. 2019] pre-trained embedding. △ and ▲ denotes the use of micro-F1 and macro-F1 score.

Dataset	Training Speed	Inference Speed	Logistic Regression Score	
	BERT-CRF	Global Pointer	BERT-CRF	Global Pointer
The People’s daily	1x	1.56x	1x	1.11x
CLUENER	1x	1.22x	1x	1x
CMeEE	1x	1.52x	1x	1.13x

Table 4: Comparative evaluation in terms of computational cost between the proposed Global Pointer and BERT-CRF

Furthermore, we compared Global Pointer to its alternative Bert-CRF in terms of computational costs of both training and inference steps. The comparative results are reported in Table 4. As can be seen, our Global Pointer is faster than CRF, especially, with large datasets, such as the People’s daily and CMeEE.

4.3 Relative Position & Class Imbalance loss Evaluation

To illustrate the affect of encoding the relative position information, we conduct an ablation study on the CONLL04 dataset as follows. We drop Non-ROPE encoding component of our Global Pointer and compare the performance as shown in Table 7. As can be seen, the Macro-F1 scores drop even about 11.43%, and thus suggests that a well-designed mechanism that leverages the relative position information can boost the performance on NER task. Moreover, we validate the efficacy of the proposed class imbalance loss function as follows. We replace the proposed loss function with the binary cross-entropy (BCE). We observe that the performance of Global Pointer with BCE drops in terms of precision and F1 scores and thus demonstrates the effectiveness of our proposed loss function.

Table 5: Comparison of the Efficient Global Pointer with the original Global Pointer in F1 score. Best scores are highlighted in bold.

Dataset	Global Pointer	Efficient Global Pointer
The People’s daily	**95.51**	**95.36**
CLUENER	79.44	**80.04**
CMeEE	65.98	**66.54**
4.4 Reduce Parameters Evaluation

In Section 3.3, we introduce a new variant of the proposed solution, namely Efficient Global Pointer, which can perform under less parameters settings. We conduct empirical experiments on the people’s daily, CLUENER and CMeEE datasets to evaluate the performance of both variants. The comparative results are shown in Table 5 from which we have made the following observations. (1) Overall, Efficient Global Pointer can mostly give the best F1 scores. (2) Despite the limited number of parameters, Efficient Global Pointer can still be competitive on the easy dataset, e.g., People’s daily dataset. (3) CLUENER and CMeEE were annotated with 10 and 9 entity types, respectively, which are widely recognized as more challenging datasets; however, Efficient Global Pointer with less parameters can still perform better than its alternative with all parameters. The performance is expected as the number of parameters increases with each entity type leading to an overfitting problem. In brief, the experimental results suggest that a carefully-designed mechanism to reduce the number of parameters can enhance the performance of NER.

4.5 Empirical Analysis

In the section, we perform in-depth analysis in terms of entity length and entity density. Specifically, we conducted relevant experiments on CONLL04 dataset to evaluate the performance of Global Pointer and PFN [Yan et al.]. First, we map the sentences into three groups according to their length: $L < 3$, $3 \leq L < 6$, and $L \geq 6$, denoted as L_1, L_2 and L_3, respectively. Second, we categorized the sentences according to their density: dense $<=$ 0.1, 0.1 < dense $<=$ 0.3, dense $>$ 0.3, denoted as D_1, D_2 and D_3. Note that we use the ratio of the number of entity words to the total number of text words as the index of entity density.

The comparative evaluation is depicted in Table 6. We observe that when the entity length exceeds the half (e.g., 6), Global Pointer can achieve even about 7% improvements higher than PFN in terms of F1 score. These improvements demonstrate the importance of relative position information in the large number of entities recognition. In addition, we also observe that when the density of entities in the text is at the middle level, both models give the worse scores. However, as can be seen, Global Pointer performs better in most scenarios.

5 Conclusions

In this paper, we presented a novel solution to address span-based NER framework, namely Global Pointer (GP), by leveraging the relative positions through a multiplicative attention mechanism. GP is designed of two modules that aim to identify the head and the tail of a given entity to enable the inconsistency between the training and inference processes. Moreover, GP contributed with a novel loss function to address the imbalance label problem. To reduce the training cost, we introduced a new variant of GP based on approximate method to reduce the training parameters. We extensively evaluated GP on various benchmark datasets. Our extensive experiments demonstrate that GP can outperform the existing solution. Moreover, the experimental results show the efficacy of the introduced loss function compared to softmax and entropy alternatives.
References

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition in query. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 267–274, 2009.

Desislava Petkova and W Bruce Croft. Proximity-based document representation for named entity retrieval. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pages 731–740, 2007.

Chinatsu Aone. A trainable summarizer with knowledge acquired from robust nlp techniques. Advances in automatic text summarization, pages 71–80, 1999.

Diego Mollá, Menno Van Zaanen, and Daniel Smith. Named entity recognition for question answering. In Proceedings of the Australasian language technology workshop 2006, pages 51–58, 2006.

Bogdan Babych and Anthony Hartley. Improving machine translation quality with automatic named entity recognition. In Proceedings of the 7th International EAMT workshop on MT and other language technology tools. Improving MT through other language technology tools, Resource and tools for building MT at EACL 2003, 2003.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-entity extraction from the web: An experimental study. Artificial intelligence, 165(1):91–134, 2005.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270, San Diego, California, June 2016a. Association for Computational Linguistics. doi:10.18653/v1/N16-1030 URL https://aclanthology.org/N16-1030.

Beatrice Alex, Barry Haddow, and Claire Grover. Recognising nested named entities in biomedical text. In Biological, translational, and clinical language processing, pages 65–72, 2007.

Zheng Yuan, Yuanhao Liu, Qiyang Yin, Boyao Li, Xiaobin Feng, Guoming Zhang, and Sheng Yu. Unsupervised multi-granular chinese word segmentation and term discovery via graph partition. Journal of Biomedical Informatics, 110:103542, 2020.

Jenny Rose Finkel and Christopher D Manning. Nested named entity recognition. In Proceedings of the 2009 conference on empirical methods in natural language processing, pages 141–150, 2009.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01997, 2015.

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. Pyramidal: A layered model for nested named entity recognition. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5918–5928, Online, jul 2020. Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.525 URL https://aclanthology.org/2020.acl-main.525.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270, San Diego, California, June 2016b. Association for Computational Linguistics. doi:10.18653/v1/N16-1030 URL https://aclanthology.org/N16-1030.

Changmeng Zheng, Yi Cai, Jingyun Xu, HF Leung, and Guandong Xu. A boundary-aware neural model for nested named entity recognition. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 2019.

David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. Entity, relation, and event extraction with contextualized span representations. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5784–5789, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:10.18653/v1/D19-1585 URL https://aclanthology.org/D19-1585.

Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang, and Fei Huang. Boundary enhanced neural span classification for nested named entity recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 9016–9023, 2020.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. Named entity recognition as dependency parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6470–6476, Online, July 2020.
Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari Ostendorf, and Hannaneh Hajishirzi. A general framework for information extraction using dynamic span graphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3036–3046, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:10.18653/v1/N19-1308. URL https://aclanthology.org/N19-1308.

Zexuan Zhong and Danqi Chen. A frustratingly easy approach for entity and relation extraction. arXiv preprint arXiv:2010.12812, 2020.

Zheng Yuan, Chuanqi Tan, Songfang Huang, and Fei Huang. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition. arXiv preprint arXiv:2110.07480, 2021.

Jinlan Fu, Xuanjing Huang, and Pengfei Liu. SpanNER: Named entity re-recognition as span prediction. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 7183–7195, Online. Association for Computational Linguistics.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang, and Weiming Lu. Locate and label: A two-stage identifier for nested named entity recognition. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2782–2794, Online. Association for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Ji-Hwan Kim and Philip C Woodland. A rule-based named entity recognition system for speech input. In Sixth International Conference on Spoken Language Processing, 2000.

Satoshi Sekine and Chikashi Nobata. Definition, dictionaries and tagger for extended named entity hierarchy. In LREC, pages 1977–1980. Lisbon, Portugal, 2004.

Daniel Hanisch, Katrin Fundel, Heinz-Theodor Mevissen, Ralf Zimmer, and Juliane Fluck. Prominer: rule-based protein and gene entity recognition. BMC bioinformatics, 6(1):1–9, 2005.

Alexandra Pomares Quimbaya, Alejandro Sierra Múnera, Rafael Andrés González Rivera, Julián Camilo Daza Rodríguez, Oscar Mauricio Muñoz Velandia, Angel Alberto García Peña, and Cyril Labbé. Named entity recognition over electronic health records through a combined dictionary-based approach. Procedia Computer Science, 100:55–61, 2016.

Shaodian Zhang and Noémie Elhadad. Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts. Journal of biomedical informatics, 46(6):1088–1098, 2013.

György Szarvas, Richárd Farkas, and András Kocsor. A multilingual named entity recognition system using boosting and c4. 5 decision tree learning algorithms. In International Conference on Discovery Science, pages 267–278. Springer, 2006.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming Zhou. Recognizing named entities in tweets. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 359–367, 2011.

Tim Rocktäschel, Michael Weidlich, and Ulf Leser. Chemspot: a hybrid system for chemical named entity recognition. Bioinformatics, 28(12):1633–1640, 2012.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou, and Li-Rong Dai. The fixed-size ordinarily-forgetting encoding method for neural network language models. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 495–500, 2015.

Lin Yao, Hong Liu, Yi Liu, Xinxin Li, and Muhammad Waqas Anwar. Biomedical named entity recognition based on deep neural network. Int. J. Hybrid Inf. Technol, 8(8):279–288, 2015.

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. Fast and accurate entity recognition with iterated dilated convolutions. arXiv preprint arXiv:1702.02098, 2017.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen Zhou. Neural models for sequence chunking. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.
Global Pointer

Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-Chieh Chou, and Wei-Yun Ma. Leveraging linguistic structures for named entity recognition with bidirectional recursive neural networks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2664–2669, 2017.

Mourad Gridach. Character-level neural network for biomedical named entity recognition. Journal of biomedical informatics, 70:85–91, 2017.

Changhan Wang, Kyunghyun Cho, and Douwe Kiela. Code-switched named entity recognition with embedding attention. In Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching, pages 154–158, 2018.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence labeling. In Proceedings of the 27th international conference on computational linguistics, pages 1638–1649, 2018.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. Towards improving neural named entity recognition with gazetteers. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5301–5307, 2019a.

Abbas Ghaddar and Philippe Langlais. Robust lexical features for improved neural network named-entity recognition. arXiv preprint arXiv:1806.03489, 2018.

Quan Tran, Andrew MacKinlay, and Antonio Jimeno Yepes. Named entity recognition with stack residual lstm and trainable bias decoding. arXiv preprint arXiv:1706.07598, 2017.

Zhanming Jie and Wei Lu. Dependency-guided lstm-crf for named entity recognition. arXiv preprint arXiv:1909.10148, 2019.

Tsu-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. GraphRel: Modeling text as relational graphs for joint entity and relation extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1409–1418, Florence, Italy, July 2019. Association for Computational Linguistics. doi:10.18653/v1/P19-1136. URL https://aclanthology.org/P19-1136.

Jue Wang and Wei Lu. Two are better than one: Joint entity and relation extraction with table-sequence encoders. arXiv preprint arXiv:2010.03851, 2020.

Zhiheng Yan, Jianlin Su, Yue Wang, Yuan Tian, and Yi Chang. A novel cascade binary tagging framework for relational triple extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1476–1488, Online, July 2020. Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.136 URL https://aclanthology.org/2020.acl-main.136.

Liang Xu, Qianqian Dong, Cong Yu, Tian, Weitang Liu, Lu Li, Caiquan Liu, Xuanwei Zhang, et al. Cluener2020: fine-grained named entity recognition dataset and benchmark for Chinese. arXiv preprint arXiv:2001.04351, 2020.
Zan Hongying, Li Wenxin, Zhang Kunli, Ye Yajuan, Chang Baobao, and Sui Zhifang. Building a pediatric medical corpus: Word segmentation and named entity annotation. In Workshop on Chinese Lexical Semantics, pages 652–664. Springer, 2020.

Dan Roth and Wen-tau Yih. A linear programming formulation for global inference in natural language tasks. Technical report, Illinois Univ at Urbana-Champaign Dept of Computer Science, 2004.

Tomoko Ohta, Yuka Tateisi, Jin-Dong Kim, Hideki Mima, and Junichi Tsujii. The genia corpus: An annotated research abstract corpus in molecular biology domain. In Proceedings of the human language technology conference, pages 73–77. Citeseer, 2002.

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their mentions without labeled text. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 148–163. Springer, 2010.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus Roberts, Juliane Fluck, Martin Hofmann-Apitius, and Luca Toldo. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. Journal of biomedical informatics, 45(5):885–892, 2012.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. 2001.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. Adversarial training for multi-context joint entity and relation extraction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2830–2836, Brussels, Belgium, October-November 2018a. Association for Computational Linguistics. doi:10.18653/v1/D18-1307 URL https://aclanthology.org/D18-1307.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. Joint entity recognition and relation extraction as a multi-head selection problem. Expert Systems with Applications, 114:34–45, 2018b.

Tung Tran and Ramakanth Kavuluru. Neural metric learning for fast end-to-end relation extraction. arXiv preprint arXiv:1905.07458, 2019.

Markus Eberts and Adrian Ulges. Span-based joint entity and relation extraction with transformer pre-training. arXiv preprint arXiv:1909.07755, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3615–3620, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:10.18653/v1/D19-1371 URL https://aclanthology.org/D19-1371