Ab-initio studies of exciton g factors:

Monolayer transition metal dichalcogenides in magnetic fields

Thorsten Deilmann,∗ Peter Krüger, and Michael Rohlfing

Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany

(Dated: April 30, 2020)

Abstract

The effect of a magnetic field on the optical absorption in semiconductors has been measured experimentally and modeled theoretically for various systems in previous decades. We present a new first-principles approach to systematically determine the response of excitons to magnetic fields, i.e. exciton g factors. By utilizing the GW-Bethe-Salpeter equation methodology we show that g factors extracted from the Zeeman shift of electronic bands are strongly renormalized by many-body effects which we trace back to the extent of the excitons in reciprocal space. We apply our approach to monolayers of transition metal dichalcogenides (MoS$_2$, MoSe$_2$, MoTe$_2$, WS$_2$, and WSe$_2$) with strongly bound excitons for which g factors are weakened by about 30%.

∗ thorsten.deilmann@wwu.de
I. INTRODUCTION

The response of a semiconductor to magnetic fields is intimately linked to its quantum mechanical properties. The two main effects, the Zeeman and the diamagnetic shift, have been employed by many researchers to study the electronic and optical properties of, e.g., bulk semiconductors1,2, quantum dots3,4, or recently atomically thin materials, e.g., two-dimensional transition metal dichalcogenides (TMDCs)5–8. The nature of the quantum mechanical states involved in optical processes (excitons, i.e. electron-hole pairs) determines its shift in the magnetic field, the so-called exciton g factor. Due to the unique character of each excitation, g factors allow for their identification and the analysis of their properties. E.g. interlayer excitons in bulk MoTe$_2$ have been discovered by the different sign of its g factor9. In TMDCs often a variety of exciton lines with different shifts are found with measured values of about -4, -8, or even stronger10. For higher excited Rydberg excitons 2s, 3s, etc. stronger g factors than for its 1s counterpart have been reported11–13. Changing values have also been observed in temperature and doping dependent measurements14,15. At present, however, a conclusive understanding and ab-initio prediction of exciton g factors is still missing.

On a single particle level, the fundamental theory of semiconductors in magnetic fields has been formulated by Kohn16 and Roth17 around the 1960s. For the calculation of the magnetization, i.e. the \mathbf{k}-integrated magnetic moment, it has later been reformulated on the basis of the Berry phase, e.g. for ferromagnets18–22. Most theoretical descriptions to evaluate exciton g factors are based on models applying $\mathbf{k} \cdot \mathbf{p}$ theory10,23–30. Within these approaches, however, only the individual magnetic moments of single electrons and holes are considered while the excitonic many-body nature of the correlated electron-hole pair is typically ignored.

In this Letter, we present a new first-principles approach merging the evaluation of the \mathbf{k}-resolved orbital magnetic moments and the properties of the excitons to calculate its g factors. These calculations employ ab-initio density functional theory (DFT) and the GW-Bethe-Salpeter equation (BSE)31,32. While the explicit use of magnetic fields is challenging in a self-consistent approach, it is certainly possible to utilize the wave functions to calculate band- and \mathbf{k}-dependent magnetic moments from perturbation theory. To this end, we rewrite the original approach16,17 into the form of Chang et al18. The resulting magnetic moments
take into account the full Bloch states, i.e. the calculations are beyond a local approximation which treats only contributions from small spheres around the atoms. To evaluate exciton g factors we consider the spatial structure of the excitation gained from the BSE. After introducing our approach for MoSe$_2$, we discuss the results for the five well-known TMDC monolayers MoS$_2$, MoSe$_2$, MoTe$_2$, WS$_2$, and WSe$_2$ and compare them to experiment. We show that exciton g factors based on full Bloch states are enhanced with respect to those from the local approximation while they are weakened by their many-body character.

A quantum mechanical system in a homogeneous magnetic field (we use $B = (0, 0, B_z)$ as in most experiments) is described by the effective one-particle Hamiltonian

$$\hat{H}^\text{eff} = \hat{H}_0^\text{eff} + \frac{e}{2m_e}(\hat{L}_z + g_e\hat{S}_z)B_z + \frac{e^2}{2m_e}(x^2 + y^2)B_z^2$$

$$=: \hat{H}_0^\text{eff} - \hat{m}_zB_z + \mathcal{O}(B_z^2), \quad (1)$$

where $\hat{H}_0^\text{eff}\ket{\Psi_{nk}^0} = E_{nk}\ket{\Psi_{nk}^0}$ is the non-perturbed DFT or GW Hamiltonian, respectively, including spin-orbit coupling. \hat{L}_z and \hat{S}_z are angular momentum and spin operator and g_e is the free electron g factor. In this study we will focus on the linear Zeeman term $\hat{m}B$ (we omit the index z for brevity) and neglect the diamagnetic term which is quadratic in B.

The magnetic moment can be further divided into

$$\hat{m} =: \hat{m}^\text{orb} + \hat{m}^\text{spin} = -\frac{e}{2m_e}\hat{L} - \frac{eg_e}{2m_e}\hat{S}. \quad (2)$$

In the case of an isolated hydrogen atom these numbers correspond to the magnetic quantum number m_l and the spin quantum number m_s. In a periodic semiconductor its expectation value for band n at k can be calculated by $m_{nk} = \langle \Psi _{nk}^0 | \hat{m}_n^{\text{orb}} | \Psi _{nk}^0 \rangle + \langle \Psi _{nk}^0 | \hat{m}_n^{\text{spin}} | \Psi _{nk}^0 \rangle$.

II. MAGNETIC MOMENTS OF BLOCH STATES

While the calculation of the spin part in Eq. (2) is easy once the spinors are known, the evaluation of the orbital part is more delicate. The spatial dependency of the operator $\hat{L}_z = x\hat{p}_y - y\hat{p}_x$ prevents a straightforward calculation and we will discuss two different approaches: (i) The most simple way to tackle the problem is a local approximation as it has been carried out earlier for the magnetization\cite{22,33}. Within this approximation, we can easily evaluate

$$m_{nk}^{\text{orb,loc}} = \langle \Psi _{nk} | x\hat{p}_y - y\hat{p}_x | \Psi _{nk} \rangle_{\text{loc}} \quad (3)$$
in a basis of Gaussian orbitals\cite{34} in a local sphere around each atom in the unit cell, yielding the data of Fig. 1(a). However, in regions of the Brillouin zone where the Berry curvature is large (see Supplemental Material) this approximation for the magnetic moments clearly fails (see Fig. 1(a,b)). (ii) To account for the full Bloch states, i.e. considering the different contributions of \hat{L}_z with the lattice-periodic wave function in different unit cells, we follow the approach proposed by Kohn\cite{16} and Roth\cite{17}

$$
\bar{m}_{n\mathbf{k}}^{\text{orb}} = -\frac{i\mu_B}{m_e} \sum_{n' \neq n} \left(\frac{\langle u_{n\mathbf{k}} | \hat{p}_x | u_{n'\mathbf{k}} \rangle \langle u_{n'\mathbf{k}} | \hat{p}_y | u_{n\mathbf{k}} \rangle}{E_{n'\mathbf{k}} - E_{n\mathbf{k}}} - \frac{\langle u_{n\mathbf{k}} | \hat{p}_y | u_{n'\mathbf{k}} \rangle \langle u_{n'\mathbf{k}} | \hat{p}_x | u_{n\mathbf{k}} \rangle}{E_{n'\mathbf{k}} - E_{n\mathbf{k}}} \right).
$$

(4)

By using the commutator relation $i [\hat{H}, x_j] = \frac{\hbar}{m_e} \hat{p}_{x_j}$ one can transform Eq. (4) to Eq. (5), which has been derived by Chang et al.\cite{18} for the magnetic moment of a wave packet

$$
m_{n\mathbf{k}}^{\text{orb}} = \mu_B \text{Im} \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \left| \hat{H}(k) - E_{n\mathbf{k}} \right| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle.
$$

(5)

Taking special care on the nonlocal pseudopotential\cite{35,36}, we find that both, Eq. (4) and Eq. (5) lead to equivalent magnetic moments at the ±K point if we consistently use DFT or GW energies, respectively, and the corresponding wave functions\cite{37}. We note that the increased gap in GW\cite{38,39} generally leads to larger magnetic moments. Due to the numerical stability (Eq. (4) diverges for degenerated states) we employ Eq. (5) in the following yielding the data of Fig. 1(b).

III. MAGNETIC MOMENTS OF THE BANDS IN MoSe$_2$

In a TMDC monolayer like e.g. MoSe$_2$ each band consists of a superposition of different orbitals of different atoms. Close to the K point the character of the topmost valence bands is dominated by the Mo atoms with a contribution of more than 80% which stems from the d orbitals, whose major part of about 90% is related to the spherical harmonics $Y_{2,\pm 2}$ ($d_{x^2-y^2}$ and d_{xy} orbitals). The remaining 18% are shared by p_x and p_y orbitals of Se atoms. In contrast to this, the lowest conduction band is dominated by Mo $Y_{2,0}$ (d_{z^2} orbital) with a share of about 55%. In Fig. 1(a) the resulting local magnetic moment (Eq. (3)) is shown. Indeed, as the discussion of the special harmonics suggests, we find a value of $m_{\text{VB,K}}^{\text{orb,loc}} = 1.93 \mu_B$ for both spin-orbit split valence bands and of $m_{\text{CB,K}}^{\text{orb,loc}} = -0.09 \mu_B$ for
the conduction bands. Further away from the K point the moments almost vanish. At −K the sign of the orbital moment is exactly reversed. In general we find the orbital magnetic moments of MoSe\textsubscript{2} to be $-2 \leq m_{\text{orb,loc}}^n \leq 2$ for bands close to the Fermi level, which corresponds well to the s, p, and d wave function character. Note that, e.g. in the ΓM direction, the magnetic moments are zero even though strong p and d characters are observed, which underlines the importance of the relative phase of the contributing orbitals in the superposition.

However, this local approximation is over-simplified. In a periodic semiconductor the correct physical states are Bloch waves. Taking this into account[16,17] reveals several important quantitative differences (Fig. 1b)). While the orbital momentum at Γ remains zero, the situation at ±K is distinctly changed. For the valence bands we find slightly different values close to 4 while m_{orb} of the conduction bands is slightly smaller than 2 μ_B based on DFT. The difference to the local picture is given as the so-called valley contribution[10] $m_{\text{val}} = m_{\text{orb}} - m_{\text{loc}}^{\text{orb}} = 2.1$ and 1.8 μ_B, respectively. When employing GW the deviations from the local approximation are even larger and we calculate $m_{\text{orb}} = 5.6$ and $3.2 \mu_B$ ($m_{\text{val}} = 3.7$ and 3.3 μ_B), respectively. If not noted explicitly, we will stick to the DFT results and refer

![DFT band structure of MoSe\textsubscript{2}](image)

FIG. 1. DFT band structure of MoSe\textsubscript{2}. In a) the bands are colored according to the expectation values of the local orbital magnetic moments $m_{nk}^{\text{orb,loc}}$ (Eq. (3)). In contrast to this, in b) the orbital magnetic moment m_{nk}^{orb} including the contribution from the Bloch states is shown (Eq. (5)). The corresponding color scale is shown in units of μ_B. In c) a zoom in along KΓ−K is shown in which the spin contributions have been added. The colors refer to the total magnetic moments $m_{nk} = m_{nk}^{\text{orb}} + m_{nk}^{\text{spin}}$. On the left side we break down the different contributions of m at the K point (see main text).
For calculating the entire magnetic moment the spin part is still missing. In Fig. 1c) we show a zoom-in with the bands colored according to $m_{nk} = m^{\text{orb}}_{nk} + m^{\text{spin}}_{nk}$. At the $\pm K$ points the valence and conduction bands have opposite spin direction due to the spin-orbit interaction. Hence, at K the two topmost valence bands have a magnetic moment of about $m_{\text{VB},K} = 2.8$ and $5.0 \mu_B$, respectively. The same happens for the two lowest conduction bands which are close in energy ($m_{\text{CB},K} = 2.7$ and $0.5 \mu_B$). Also the spin part acts with a reversed sign at $-K$ so that $m_{n,K} = -m_{n,-K}$ holds. We observe similar but quantitatively different results for all TMDC monolayers. We will subsequently discuss and compare the numbers (see Tab. I below).

IV. EVALUATION AND INTERPRETATION OF EXCITON g FACTORS

We now deduce the effects of a small magnetic field on excitons. In an over-simplified picture an exciton would be a transition from one point k in a valence band to another point $k + Q$ in a conduction band, and its change with the magnetic field would be given by the difference $m_{c,k+Q} - m_{c,k}$. However, this approximation (which means neglecting the electron-hole interaction) is known to be unsatisfactory for most systems and, in particular, for 2D systems with large exciton binding energies. The state-of-the-art approach to account for two-particle excitations is the BSE which is given in the Tamm-Dancoff approximation by

$$
(\epsilon_{c,k} + Q - \epsilon_{v,k})A_{vck}^{(N,Q)} + \sum_{v'c'k'} K_{vck,v'c'k'}(Q)A_{v'c'k'}^{(N,Q)} = \Omega^{(N,Q)} A_{vck}^{(N,Q)}. \quad (6)
$$

Here, $\Omega^{(N,Q)}$ is the energy of exciton N and $A_{vck}^{(N,Q)}$ its amplitudes, which contain the complete spatial structure. Again we assume moderate magnetic fields, i.e. that the change of electron-hole interaction $K_{vck,v'c'k'}(Q)$ due to the field can be neglected. Consequently, the influence of a magnetic field on the energy of an exciton is given by the field induced change of the band-structure energy differences $\epsilon_{c,k+Q} - \epsilon_{v,k}$ of all contributing transitions. We can eventually evaluate the effective exciton g factor of the exciton N with momentum Q by

$$
g^{(N,Q)} = 2 \sum_{vck} |A_{vck}^{(N,Q)}|^2 (m_{c,k+Q} - m_{v,k}) / \mu_B. \quad (7)
$$
FIG. 2. a,b) Difference of the magnetic moments of MoSe₂’s first and second conduction band (CB, CB+1), respectively, and the valence band (VB). The results are shown on a (24 × 24) mesh with colors from red to blue denoting the differences. Note that the abrupt changes (e.g., red to blue) are related to band crossings. c) k-dependent exciton wave function of the first bright (A) exciton on a logarithmic scale. Note that due to the magnetic field the ±K degeneracy is lifted. The resulting exciton g factor is calculated by multiplying the magnetic moments with the exciton wave functions (see Eq. (7)).

In experiment (effective) g factors are typically defined on the basis of the energy difference between measurements with right- and left-handed circular polarized light $g \mu_B B := \Omega_\sigma^+ - \Omega_\sigma^-$ [13]. This results in the factor 2 in Eq. (7). If excitonic effects were neglected, the g factor of the transition from (v, k) to $(c, k + Q)$ could be approximated by

$$g_{\text{band}}^{(v \rightarrow c + Q)} = 2(m_{c + Q} - m_{v k})/\mu_B.$$

Eq. (7) is a generalization of g_{band}. Our results show that g is more than 30% smaller compared to g_{band} due to the spatial structure of the excitons.

V. EXCITON g FACTORS OF MoSe₂

Using Eq. (7) we are now able to calculate the energy splitting of excitons in a magnetic field, i.e. its g factors. In Fig. 2a,b) the resulting differences of the magnetic moments between the valence band and the first and second conduction bands are shown. These differences are weighted in Eq. (7) by the square of the exciton wave function, which is shown on a logarithmic scale in Fig. 2c) for the case of the exciton at K. In Mo-based TMDCs the exciton transition to the lowest conduction band is bright due to the same spin
character[14,15], i.e. the so-called A exciton. We find that the interband transition exactly at K involves a change of the magnetic moment of $-2.3\,\mu_B$ while at $-K$ the moment is reversed, which would yield $g_{\text{band}}^A = 2 \cdot (-2.3) = -4.6$. Away from $\pm K$ the absolute value of the magnetic moment decreases (see Supplement for details) and if we take the k space dependent structure into account we find a distinctly weaker g^A factor of -3.2. The second excited Rydberg state is considerably more extended in real space and hence more localized in reciprocal space. Consequently $g^{A_{2s}} = -3.7$ is much stronger, even though stemming from the same band[11]. In the following we refer our wording to the absolute values of the g factor. The transition to the second conduction band (VB+1) is the first dark transition. In Fig. 2(b) the calculated magnetic moments are shown. Here, we find a distinctly larger difference of the magnetic moments of $-4.6\,\mu_B$ at K and a decrease close to K as discussed before. The weighted sum amounts to $g^D = -7.4$ (compared to $g_{\text{band}}^D = 2 \cdot (-4.6) = -9.2$). Besides momentum direct excitons discussed before, we can also use Eq. (7) to evaluate indirect excitons[40]. We find, e.g., for the lowest energy transitions $g = 12.0$ ($g_{\text{band}} = 15.6$) for $K \rightarrow K'$ and $g = -6.0$ ($g_{\text{band}} = -8.6$) for $K \rightarrow \Lambda$.

VI. COMPARISON OF DIFFERENT TMDCS

Tab. I compiles our data of all five TMDC monolayers studied here. We first focus on the difference of the transition exactly at K. Changing the chalcogen atom from S to Se and further to Te leads to an increase in g_{band}^A. E.g. for Mo the value changes from -4.3, to -4.6 and -4.9, respectively. If the metal atom is tungsten, the magnetic moments are smaller and we find -3.5 and -3.9. The transition from the second highest valence band (VB-1) at K (corresponding to the B exciton), results in a very similar trend. However, compared to g_{band}^A the strength of the magnetic moment is increased by 0.1 to 0.4.

As discussed above, the exciton g factors are also sensitive to the region around K. In all cases we find that the difference of the magnetic moments decreases away from K and thus the g factors are clearly smaller compared to the interband values g_{band} at the K point. For the Mo-based TMDCs we find g^A ranges between -3.1 and -3.4, while WS\textsubscript{2} and WSe\textsubscript{2} have values of -2.8 and -3.0, respectively. For the different materials the trends of the g factors follow the trends described for g_{band} for both the A and B exciton. The reduction of the exciton g factor compared to g_{band} is slightly stronger in Mo-based TMDCs and is
resemble the main contribution of the bright A and B transitions (e.g. for MoS
2
 are slightly larger by about 0.2 µm
our magnetic moments
several experimental measurements of the g factor of the A and B exciton are listed. Note that for
our magnetic moments m we expect an error of about ±0.05 µB, as well as about ±0.1 for the g
factors.

Material	m_{VB,1/VB,K}	m_{CB/CB+1,K}	\(g_{\text{band}}^{A/B}\)	\(g^{A}\)	\(g^{B}\)
MoS2	2.94/5.10	2.98/0.76	-4.24/-3.46	-3.06/-3.10	-1.710/12
MoSe2	2.81/5.03	2.74/0.46	-4.58/-4.70	-3.22/-3.28	-3.810/11
MoTe2	2.71/5.03	2.60/0.21	-4.86/-5.00	-3.36/-3.36	-4.610/12
WS2	3.29/5.94	1.35/4.21	-3.46/-3.88	-2.76/-2.80	-3.710/11
WSe2	3.15/5.91	0.99/3.97	-3.88/-4.32	-3.00/-3.22	-1.610/11

approximately 30%.

We note in passing that employing quasi-particle energies in Eq. (5) leads to g factors that are slightly larger by about 0.2, i.e. \(g^{A} = -3.2\), -3.4, -3.6, -3.0, and -3.3, respectively, for the materials listed in Tab. I.

Several experimental studies on exciton g factors have been performed in TMDC monolayers and their results are listed in Tab. I. In general the data is quite scattered and values between -1.6 and -4.6 are observed for the A excitons. E.g. for MoSe2 six measurements are available which range between -3.8 and -4.4. All in all, a one to one comparison of our results to experiment is not easily possible. Within measurements from the same groups (e.g.10,12) one can observe a weak tendency that W-based TMDC have smaller values compared to Mo-based. If we compare \(g_{\text{band}}\) to experiment, one seems to find a very reasonable agreement. The decrease of about 30% of the exciton g factors results in generally slightly smaller values compared to the experiment. However, we note that experiments are not performed for free-standing monolayers. Additional dielectric screening (e.g. of the substrate) results in a weakening of the exciton binding energy, a larger spatial extent of the exciton, a smaller extent in \(k\) space, and eventually in larger exciton g factors. For hBN substrate/encapsulation, e.g., the g factor increases by about 0.1/0.2. We believe that the dependence of the g factor on the environment might partially explain the scattering of experiments in Tab. I.

Furthermore, g factors for higher excited Rydberg excitons (2s etc.) have been measured11,13.
In most cases the g factors of $2s$ excitons increase compared to $1s$. As the spatial extent of these ns excitons increases with n, i.e. their extent in k space decreases. This is perfectly in line with our results discussed above.

VII. CONCLUSION

In summary, we have proposed an approach to calculate magnetic moments and exciton g factors of semiconductors from first principles. Excluding excitonic effects, we obtain g_{band} factors ranging between -3.5 to -4.9 for monolayer WS$_2$ to MoTe$_2$, respectively. Employing GW+BSE calculations we find a distinct reduction of about 30% resulting in g factors which range between -2.8 and -3.4 for the excitons. Compared to the experimental results, our calculated values and trends are in good agreement and open a pathway for better understanding the change of optical properties of semiconductors in magnetic fields.

We note that calculations of g_{band} for TMDCs have recently been posted.

ACKNOWLEDGMENTS

We thank Ashish Arora for many constructive discussions and helpful comments. The authors gratefully acknowledge the financial support from German Research Foundation (DFG project no. DE 2749/2-1), the Collaborative Research Center SFB 1083 (project A13), and the funding of computing time provided by the Paderborn Center for Parallel Computing (PC2).
Supplement to

Ab-initio studies of exciton g factors:

Monolayer transition metal dichalcogenides in magnetic fields

SI. DFT AND GW/BSE CALCULATIONS

As a basis for the many-body calculations of the transition metal dichalcogenides (TMDCs) we first carry out a DFT calculation in the local density approximation (in the parametrization of Perdew and Zunger59). Norm-conserving pseudopotentials60 in the Kleinman-Bylander form61 are used. The spin-orbit interaction is included in j-dependent pseudopotentials62,63 and is thus fully taken into account. We employ a basis of 3 shells of Gaussian orbitals (30 functions with s, p, d, and s^* symmetry for each atom, with decay constants from 0.16 to 2.5 α_B^{-2}). In our approach, the wave function of the crystal is given by84

$$
\Psi_{n\mathbf{k}}(\mathbf{r}) = \sum_{\alpha\mu} c^{n,k}_{\alpha\mu} \chi^k_{\alpha\mu}(\mathbf{r}),
$$

where α denotes the orbital and τ_μ the position of the basis atom. n and \mathbf{k} are the band number and the \mathbf{k} point, while $c^{n,k}_{\alpha\mu}$ are the coefficients resulting from the variation of the trial functions containing Gaussian orbitals $\varphi_{\alpha\mu}$

$$
\chi^k_{\alpha\mu}(\mathbf{r}) = \sum_{R_j} e^{ik(\tau_\mu+R_j)} \varphi_{\alpha\mu}(\mathbf{r} - \tau_\mu - R_j).
$$

For the DFT calculations of TMDCs, a mesh of 12 × 12 \mathbf{k}-points is employed in the two-dimensional Brillouin zone.

For the following GW/BSE calculations we utilize the GdW approach64. This has been successfully used to describe the electronic and optical properties of TMDCs as discussed in detail in Ref.69.

SII. CALCULATION OF THE MAGNETIC MOMENTS IN THE LOCAL APPROXIMATION

We evaluate the matrix elements of the angular momentum operator in z as
\[
\langle \hat{L}_z \rangle_{\alpha \mu, \alpha' \mu'}^k = \int_{uc} d^3r \chi_{\alpha \mu}^k(r) \hat{L}_z \chi_{\alpha' \mu'}^k(r)
\]
\[
= \sum_{R, R_j} e^{i k (\tau_{\mu'} + R_{\mu'} - \tau_{\mu} - R_j)} \int_{uc} d^3r \varphi_{\alpha \mu}^* (r - \tau_{\mu} - R_j) \{x \hat{p}_y - y \hat{p}_x\} \varphi_{\alpha' \mu'}^* (r - \tau_{\mu'} - R_{\mu'})
\]
\[
\approx \sum_{R_j \in NN} e^{i k (\tau_{\mu'} - \tau_{\mu})} \int_{\mathbb{R}^3} d^3r \varphi_{\alpha \mu}^* (r - \tau_{\mu}) \{x \hat{p}_y - y \hat{p}_x\} \varphi_{\alpha' \mu'}^* (r - \tau_{\mu'} - R_{\mu'})
\]
\[
= \langle \hat{L}_z \rangle_{\alpha \mu, \alpha' \mu'}^{loc,k}.
\]
(S1)

We note that the last step is an approximation and the extra terms due to the transformations \(r \to r - R_j \) etc. are neglected and only contributions from nearest neighbours are taken into account symmetrically. When including these terms, the resulting sums are hard to converge and the evaluation using derivatives by \(k \) is more convenient as described in the main text.

We note that even if the magnetic moments in this local approximation have a large discrepancy, its differences and the excitonic \(g \) factors are in reasonable agreement to Eq. (5). We find \(g_{A,loc}^A = -3.5, -3.5, -3.3, -3.3 \), and \(-3.4\) (in the order of Tab. I) which are slightly larger due to less strongly varying magnetic moments close to \(\pm \mathbf{K} \).

SIII. CONVERGENCE OF THE MAGNETIC MOMENTS

In our work we typically use a local Gaussian basis set with orbitals \(l_{\max} \leq 2 \). This allows a precise evaluation of the wave function which is sufficient for the calculation of the local magnetic moments. Considering the full Bloch state, we introduce a complete orthogonal set \(1 = \sum_{n'} |u_{n'k}\rangle \langle u_{n'k}| \) in the full evaluation of

\[
m_{nk}^{\text{orb}} = \mu_B \sum_{n'} (E_{n'k} - E_{nk}) \times \Im \left(\left\langle \frac{\partial u_{nk}}{\partial k_x} \right| u_{n'k} \right) \left(\left\langle u_{n'k} \right| \frac{\partial u_{nk}}{\partial k_y} \right). \quad (S2)
\]

However, for the completeness assumed here, we find that \(l_{\max} \leq 2 \) is not sufficient and we have implemented and employed \(l_{\max} \leq 4 \), i.e. 35 functions with \(s, p, d, f, \) and \(g \) symmetry. Note that the difference quotient is given by the finite-difference\cite{footnote} for which the phase has to be aligned.
FIG. S1. m_{orb} at the K point of the four valance and conduction bands, respectively. The results for the MoS$_2$ monolayer for different l_{max} of different Gaussian basis sets are connected by dashed lines as guide to the eye. Compared to Tab. 1 (main text) the spin part is still missing.

The resulting magnetic moments depending on l_{max} are shown in Fig. S1. While the usage of f orbitals at the Mo atoms is essential for the valence bands, the results are well converged including further orbitals. We note that it is essential to include all bands n' in Eq. (S2) as the factor of the energy difference increases for the higher-lying bands. When trying to use less bands (not shown), we find that m_{orb} of the valence bands decreases distinctly and the resulting magnetic moments and g factors are smaller compared to the converged results.

As addressed in the main text, the magnetic moments especially at $\pm K$ are effected by the Berry curvature. The curvature for the monolayer MoSe$_2$ is shown in Fig. S2.

The evaluation of Eqs. (4) and (5) is mostly carried out within DFT in the main text. By employing many-body perturbation theory in the GW approximation, we can correct for the underestimated band gap. For TMDC monolayers it has been found that $\Psi^{\text{GW}} \approx \Psi^{\text{DFT}}$ is a good approximation, which means that only the energies E_{nk} change. In Tab. I we present the resulting magnetic moments and exciton g factors. We have employed a scissors shift after we have checked that the result is almost identical to band dependent energy shifts.

The magnetic moments of the lowest conduction band have been measured indirectly. Values of 1.84, 1.08, and 1.3 µB have been reported for MoSe$_2$, WS$_2$, and WSe$_2$, respectively.
FIG. S2. Berry curvature of MoSe$_2$ corresponding to Fig. 1 in the main text. The results are in good agreement with Feng et al. In regions with large Berry curvatures the local approximation is particularly bad.

Material	$m_{\text{VB-1/VB, K}}$	$m_{\text{CB/CB+1, K}}$	g_{band}^{A/B^-}	$g^{A/B}$
MoS$_2$	4.0/6.4	4.2/1.8	$-4.4/-4.4$	$-3.2/-3.3$
MoSe$_2$	4.0/6.6	4.2/1.6	$-4.8/-4.8$	$-3.4/-3.5$
MoTe$_2$	4.0/6.9	4.4/1.4	$-5.0/-5.2$	$-3.6/-3.6$
WS$_2$	4.8/8.4	2.7/6.5	$-3.8/-4.2$	$-3.0/-3.0$
WSe$_2$	4.6/8.6	2.3/6.5	$-4.2/-4.6$	$-3.3/-3.5$

We calculate magnetic moments of 2.7, 1.4, and 1.0 μ_B, respectively, when Bloch states are taken into account (Tab. 1, main text). We conclude that we find reasonable agreement in contrast to the local approximation in which we observe approximately $+1$, -1, and $-1\mu_B$, respectively. Employing the GW approximation (Tab. I) the magnetic moments are clearly larger.
FIG. S3. \(g\) factor of the A exciton of the MoS\(_2\) monolayer for different \(N \times N\) grids.

SIV. CONVERGENCE OF THE EXCITON \(g\) FACTORS

Employing the Bethe-Salpeter equation (which includes the screened direct and the bare exchange interaction) the excitons are described using a \(N \times N\) mesh, i.e. \(N \times N\) cells in real space are evaluated and \(N \times N\) points raster the Brillouin zone in reciprocal space (see Fig. 2c in the main text, we solve the BSE in the entire Brillouin zone). The differences of the magnetic moments \(\Delta m\) and thus the resulting exciton \(g\) factors depend on the chosen \(k\) points.

In Fig. S3 we compare the resulting \(g\) factor for different grids. We find that our result is converged to better than 0.02 \(\mu_B\) for the employed 24 \(\times\) 24 mesh in Fig. 2 (main text) which we employ for all materials in the main text.

SV. CONTRIBUTIONS OF THE MAGNETIC MOMENTS

The magnetic moment consists of a spin part \(m^{\text{spin}}\) and an orbital part \(m^{\text{orb}}\). The latter one (as resulting from Eq. (5), main text) can be understood as a local orbital part \(m^{\text{orb}}_{\text{loc}}\) (Eq. (3) in main text) and a remaining correction arising due to the different contributions of \(\hat{L}_z\) in different unit cells. The second contribution \(m^{\text{val}} := m^{\text{orb}} - m^{\text{orb}}_{\text{loc}}\) corresponds to the valley term discussed in Ref. 10.

In Fig. S4 we present the contributions for all five TMDCs while in Fig. S5 we show the \(k\) dependence of these contributions. We note that \(m^{\text{val}}\) and the effective mass show opposite trends with a stronger gradient of the effective mass.
FIG. S4. The different contributions of the magnetic moments m^{spin}, $m^{\text{orb}}_\text{loc}$ (Eq. (3), main text), and $m^{\text{val}} = m^{\text{orb}} - m^{\text{orb}}_\text{loc}$ (Eq. (5), main text) are given for each band at the K point (in μ_B). The sketched bands are colored according to the spin character. The sums $m = m^{\text{orb}} + m^{\text{spin}}$ are given in Tab. 1 of the main text. Note that excitonic effects are missing.

FIG. S5. The different contributions of the magnetic moments m^{spin}, $m^{\text{orb}}_\text{loc}$ (Eq. (3), main text), and $m^{\text{val}} = m^{\text{orb}} - m^{\text{orb}}_\text{loc}$ (Eq. (5), main text) are plotted in the KM direction close to the K point. In addition the effective masses of the bands are shown with its scale on the right side. In a) and b) the highest valence band and lowest conduction band of MoSe$_2$ are shown.
1 J.A. Wilson and A.D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” *Advances in Physics* **18**, 193335 (1969).

2 Y. Yafet, “g Factors and Spin-Lattice Relaxation of Conduction Electrons,” (Academic Press, 1963) p. 1.

3 M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck, “Electron and Hole g Factors and Exchange Interaction from Studies of the Exciton Fine Structure in In$_{0.60}$Ga$_{0.40}$As Quantum Dots,” *Phys. Rev. Lett.* **82**, 1748 (1999).

4 J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, “Spin coherence in semiconductor quantum dots,” *Phys. Rev. B* **59**, 10421(R) (1999).

5 Yilei Li, Jonathan Ludwig, Tony Low, Alexey Chernikov, Xu Cui, Ghidewon Arefe, Young Duck Kim, Arend M. van der Zande, Albert Rigosi, Heather M. Hill, Suk Hyun Kim, James Hone, Zhiqiang Li, Dmitry Smirnov, and Tony F. Heinz, “Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe$_2$,” *Physical Review Letters* **113**, 266804 (2014).

6 G. Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, J. Yan, D. G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and X. Xu, “Magnetic control of valley pseudospin in monolayer WSe$_2$,” *Nature Physics* **11**, 148 (2015).

7 Ajit Srivastava, Meinrad Sidler, Adrien V. Allain, Dominik S. Lembke, Andras Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe$_2$,” *Nature Physics* **11**, 141 (2015).

8 Ashish Arora, Robert Schmidt, Robert Schneider, Maciej R. Molas, Ivan Breslavetz, Marek Potemski, and Rudolf Bratschitsch, “Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe$_2$ at High Magnetic Fields,” *Nano Letters* **16**, 3624 (2016).

9 Ashish Arora, Matthias Drppel, Robert Schmidt, Thorsten Deilmann, Robert Schneider, Maciej R. Molas, Phillipp Maranhn, Marek Potemski, Michael Rohlfing, and Rudolf Bratschitsch, “Interlayer excitons in a bulk van der Waals semiconductor,” *Nature Communications* **8**, 639 (2017).
10 Maciej Koperski, Maciej R Molas, Ashish Arora, Karol Nogajewski, Miroslav Bartos, Jan Wyzula, Diana Vaclavkova, Piotr Kossacki, and Marek Potemski, “Orbital, spin and valley contributions to Zeeman splitting of excitonic resonances in MoSe$_2$, WSe$_2$ and WS$_2$ Monolayers,” 2D Materials **6**, 015001 (2018).

11 Shao-Yu Chen, Zhengguang Lu, Thomas Goldstein, Jiayue Tong, Andrey Chaves, Jens Kunstmann, L. S. R. Cavalcante, Tomasz Woniak, Gotthard Seifert, D. R. Reichman, and et al., “Luminescent Emission of Excited Rydberg Excitons from Monolayer WSe$_2$,” Nano Letters **19**, 2464 (2019).

12 M. Goryca, J. Li, A. V. Stier, T. Taniguchi, K. Watanabe, E. Courtade, S. Shree, C. Robert, B. Urbaszek, X. Marie, and et al., “Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields,” Nature Communications **10**, 4172 (2019).

13 Erfu Liu, Jeremiah van Baren, Takashi Taniguchi, Kenji Watanabe, Yia-Chung Chang, and Chun Hung Lui, “Magnetophotoluminescence of exciton rydberg states in monolayer WSe$_2$,” Physical Review B **99**, 205420 (2019).

14 Zefang Wang, Kin Fai Mak, and Jie Shan, “Strongly Interaction-Enhanced Valley Magnetic Response in Monolayer WSe$_2$,” Physical Review Letters **120**, 066402 (2018).

15 Erfu Liu, Jeremiah van Baren, Takashi Taniguchi, Kenji Watanabe, Yia-Chung Chang, and Chun Hung Lui, “Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor,” Physical Review Letters **124**, 097401 (2020).

16 Walter Kohn, “Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian,” Physical Review **115**, 14601478 (1959).

17 L.M. Roth, “Theory of bloch electrons in a magnetic field,” Journal of Physics and Chemistry of Solids **23**, 433 (1962).

18 Ming-Che Chang and Qian Niu, “Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands,” Physical Review B **53**, 7010 (1996).

19 Di Xiao, Junren Shi, and Qian Niu, “Berry Phase Correction to Electron Density of States in Solids,” Physical Review Letters **95**, 137204 (2005).

20 T. Thonhauser, Davide Ceresoli, David Vanderbilt, and R. Resta, “Orbital Magnetization in Periodic Insulators,” Physical Review Letters **95**, 137205 (2005).

21 Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Reviews of Modern Physics **82**, 1959 (2010).
22 J.-P. Hanke, F. Freimuth, A. K. Nandy, H. Zhang, S. Blügel, and Y. Mokrousov, “Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures to topological orbital ferromagnets,” Phys. Rev. B 94, 121114(R) (2016).

23 Morten Willatzen and Lok C. Lew Yan Voon, The kp Method (Springer Berlin Heidelberg, 2009).

24 Laura M. Roth, Benjamin Lax, and Solomon Zwerdling, “Theory of Optical Magnetooptical and Spin-Orbital Effects in Semiconductors,” Physical Review 114, 90 (1959).

25 Craig E. Pryor and Michael E. Flatté, “Landé g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 026804 (2006).

26 Andor Kormnyos, Pter Rakyta, and Guido Burkard, “Landau levels and shubnikovde haas oscillations in monolayer transition metal dichalcogenide semiconductors,” New Journal of Physics 17, 103006 (2015).

27 Ashish Arora, Maciej Koperski, Artur Slobodeniuk, Karol Nogajewski, Robert Schmidt, Robert Schneider, Maciej R Molas, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch, and Marek Potemski, “Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe₂, MoSe₂ and MoTe₂,” 2D Materials 6, 015010 (2018).

28 Maciej Bieniek, Marek Korkusiński, Ludmila Szulakowska, Pawel Potasz, Isil Ozfidan, and Pawel Hawrylak, “Band nesting, massive Dirac fermions, and valley Landé and Zeeman effects in transition metal dichalcogenides: A tight-binding model,” Phys. Rev. B 97, 085153 (2018).

29 D. V. Rybkovskiy, I. C. Gerber, and M. V. Durnev, “Atomically inspired kp approach and valley Zeeman effect in transition metal dichalcogenide monolayers,” Physical Review B 95, 155406 (2017).

30 Habib Rostami and Reza Asgari, “Valley Zeeman effect and spin-valley polarized conductance in monolayerMoS2in a perpendicular magnetic field,” Physical Review B 91, 075433 (2015).

31 Michael Rohlfing and Steven G. Louie, “Electron-Hole Excitations and Optical Spectra from First Principles,” Physical Review B 62, 4927 (2000).

32 Giovanni Onida, Lucia Reining, and Angel Rubio, “Electronic Excitations: Density-Functional versus Many-Body Green’s-Function Approaches,” Rev. Mod. Phys. 74, 601 (2002).

33 P. Feriani, S. Heinze, G. Bihlmayer, and S. Blügel, “Unexpected trend of magnetic order of 3d transition-metal monolayers on W(001),” Phys. Rev. B 72, 024452 (2005).

34 Jürgen Wieferink, Peter Krüger, and Johannes Pollmann, “Improved Hybrid Algorithm with
Gaussian Basis Sets and Plane Waves: First-Principles Calculations of Ethylene Adsorption on β-SiC (001) - (32),” Physical Review B 74, 205311 (2006).

35 C. J. Pickard and M. C. Payne, “Second-order kp perturbation theory with Vanderbilt pseudopotentials and plane waves,” Physical Review B 62, 4383 (2000).

36 Tae Yun Kim, Andrea Ferretti, and Cheol-Hwan Park, “Effects of spin-orbit coupling on the optical response of a material,” Physical Review B 98, 245410 (2018).

37 Zachary H. Levine and Douglas C. Allan, “Linear optical response in silicon and germanium including self-energy effects,” Phys. Rev. Lett. 63, 1719 (1989).

38 Lars Hedin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139, A796 (1965).

39 Matthias Drüppel, Thorsten Deilmann, Jonathan Noky, Philipp Marauhn, Peter Krüger, and Michael Rohlfing, “Electronic excitations in transition metal dichalcogenide monolayers from an LDA + GdW approach,” Physical Review B 98, 155433 (2018).

40 Ganesh Sundaram and Qian Niu, “Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects,” Physical Review B 59, 14915 (1999).

41 Sten Haastrup, Mikkel Strange, Mohnish Pandey, Thorsten Deilmann, Per S. Schmidt, Nicki F. Hinsche, Morten N. Gjerding, Daniele Torelli, Peter M. Larsen, Anders C. Riis-Jensen, Jakob Gath, Karsten W. Jacobsen, Jens Jørgen Mortensen, Thomas Olsen, and Kristian S. Thygesen, “The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals,” 2D Materials 5, 042002 (2018).

42 G. Strinati, “Dynamical Shift and Broadening of Core Excitons in Semiconductors,” Physical Review Letters 49, 1519 (1982).

43 Andreas V. Stier, Kathleen M. McCreary, Berend T. Jonker, Junichiro Kono, and Scott A. Crooker, “Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS2 and MoS2 to 65 Tesla,” Nature Communications 7, 10643 (2016).

44 G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek, and X. Marie, “In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules,” Physical Review Letters 119, 047401 (2017).

45 Thorsten Deilmann and Kristian Sommer Thygesen, “Dark Excitations in Monolayer Transition Metal Dichalcogenides,” Physical Review B 96, 201113(R) (2017).
Thorsten Deilmann and Kristian Sommer Thygesen, “Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides,” 2D Materials 6, 035003 (2019).

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, “Excitonic Linewidth Approaching the Homogeneous Limit in MoS$_2$-Based van der Waals Heterostructures,” Physical Review X 7, 021026 (2017).

A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, “Magnetoeffectons in large area CVD-grown monolayer MoS$_2$ and MoSe$_2$ on sapphire,” Phys. Rev. B 93, 165412 (2016).

David MacNeill, Colin Heikes, Kin Fai Mak, Zachary Anderson, Andor Kornnyos, Viktor Zlyomii, Jiwoong Park, and Daniel C. Ralph, “Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe$_2$,” Physical Review Letters 114, 037401 (2015).

G Wang, L Bouet, M M Glazov, T Amand, E L Ivchenko, E Palleau, X Marie, and B Urbaszek, “Magnetooptics in transition metal diselenide monolayers,” 2D Materials 2, 034002 (2015).

Gerd Plechinger, Philipp Nagler, Ashish Arora, Andrs Granados del guila, Mariana V. Ballottin, Tobias Frank, Philipp Steinleitner, Martin Gmitra, Jaroslav Fabian, Peter C. M. Christianen, and et al., “Excitonic Valley Effects in Monolayer WS$_2$ under High Magnetic Fields,” Nano Letters 16, 78997904 (2016).

Jonas Zipfel, Johannes Holler, Anatolie A. Mitioglu, Mariana V. Ballottin, Philipp Nagler, Andreas V. Stier, Takashi Taniguchi, Kenji Watanabe, Scott A. Crooker, Peter C. M. Christianen, Tobias Korn, and Alexey Chernikov, “Spatial extent of the excited exciton states in WS$_2$ monolayers from diamagnetic shifts,” Physical Review B 98, 075438 (2018).

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single Photon Emitters in Exfoliated WSe$_2$ Structures,” Nature Nanotechnology 10, 503506 (2015).

Matthias Drüppel, Thorsten Deilmann, Peter Krüger, and Michael Rohlfing, “Diversity of trion states and substrate effects in the optical properties of an MoS$_2$ monolayer,” Nature Communications 8, 2117 (2017).

Diana Y. Qiu, Felipe H. da Jornada, and Steven G. Louie, “Screening and Many-Body Effects in Two-Dimensional Crystals: Monolayer MoS$_2$,” Physical Review B 93, 235435 (2016).

Tomasz Woźniak, Paulo E Faria Junior, Gotthard Seifert, Andrey Chaves, and Jens Kunst-
mann, “Exciton g-factors of van der waals heterostructures from first principles calculations,” arXiv:2002.02542 (2020).

57 Jonathan Förste, Nikita V Tepliakov, S Yu Kruchinin, Jessica Lindlau, Victor Funk, Michael Förg, Kenji Watanabe, Takashi Taniguchi, Anvar S Baimuratov, and Alexander Hägele, “Exciton g-factors in monolayer and bilayer wse$_2$ from experiment and theory,” arXiv:2002.11646 (2020).

58 Fengyuan Xuan and Su Ying Quek, “Valley zeeman effect and landau levels in two-dimensional transition metal dichalcogenides,” arXiv:2002.11993 (2020).

59 J. P. Perdew and Alex Zunger, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Physical Review B 23, 5048 (1981).

60 D. R. Hamann, “Generalized Norm-Conserving Pseudopotentials,” Physical Review B 40, 2980 (1989).

61 Leonard Kleinman and D. M. Bylander, “Efficacious Form for Model Pseudopotentials,” Physical Review Letters 48, 1425 (1982).

62 L. A. Hemstreet, C. Y. Fong, and J. S. Nelson, “First-principles calculations of spin-orbit splittings in solids using nonlocal separable pseudopotentials,” Physical Review B 47, 4238 (1993).

63 Bernd Stärk, Peter Krüger, and Johannes Pollmann, “Magnetic anisotropy of thin Co and Ni films on diamond surfaces,” Physical Review B 84, 195316 (2011).

64 Michael Rohlfing, “Electronic excitations from a perturbative LDA+GdW approach,” Physical Review B 82, 205127 (2010).

65 Na Sai, Karin M. Rabe, and David Vanderbilt, “Theory of structural response to macroscopic electric fields in ferroelectric systems,” Physical Review B 66, 104108 (2002).

66 Wanxiang Feng, Yuguai Yao, Wenguang Zhu, Jinjian Zhou, Wang Yao, and Di Xiao, “Intrinsic spin hall effect in monolayers of group-vi dichalcogenides: A first-principles study,” Physical Review B 86, 165108 (2012).

67 T. P. Lyons, S. Dufferwiel, M. Brooks, F. Withers, T. Taniguchi, K. Watanabe, K. S. Novoselov, G. Burkard, and A. I. Tartakovskii, “The valley zeeman effect in inter- and intra-valley trions in monolayer WSe$_2$,“ Nature Communications 10, 2330 (2019).