Effectiveness of Modified Buzhong Yiqi Decoction In Treating Myasthenia Gravis: Study Protocol For A Series Of N-of-1 Trials

Senhui Weng (✉ 782106945@qq.com)
Guangzhou University of Chinese Medicine

Jinghao Li
Guangzhou University of Chinese Medicine

Benshu Chen
Guangzhou University of Chinese Medicine

Long He
Guangzhou University of Chinese Medicine

Zhuotai Zhong
Guangzhou University of Chinese Medicine

Linwen Huang
Guangzhou University of Chinese Medicine

Fengbin Liu
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Qilong Jiang
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Research Article

Keywords: Modified Buzhong Yiqi Decoction, myasthenia gravis, N-of-1 trials, traditional Chinese medicine, gut microbiota

Posted Date: September 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-669706/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Myasthenia gravis (MG) is an acquired autoimmune disease with high heterogeneity. The disease is chronic, relapsing repeatedly and progressive with acute exacerbation occasionally. Although the treatment of MG has developed, it is still unsatisfactory and has some unexpected side effects. Traditional Chinese medicine (TCM) has shown great potential in MG treatment, including relief of muscle weakness syndrome, improvement of patient's quality of life and reduction of side effects of western medicine. The purpose of this study is to evaluate the effectiveness of Modified Buzhong Yiqi Decoction (MBYD) as an add-on therapy for MG through a small series of N-of-1 trials.

Methods: Single-centre, randomized, double-blind, 3 crossover N-of-1 trials will be conducted to enroll 12 adult patients with MG diagnosed as spleen-stomach deficiency syndrome or spleen-kidney deficiency syndrome in TCM. Each N-of-1 trial has 3 cycles of two 4-week periods containing the MBYD period and placebo period. The wash-out interval of 1-week is prior to switching each period. Primary outcome: Quantitative Myasthenia Gravis (QMG). Secondary outcomes: the following scales: myasthenia gravis composite (MGC), myasthenia gravis activities of daily living profile (MG-ADL), myasthenia gravis quality of life (MG-QOL); the level of CD4+FoxP3+Treg cells and cytokines (IL-4, IL-17A, INF-γ, TGF-β) in the peripheral blood; the alterations of the composition of gut microbiota; reduction of the side effects of western medicine.

Discussion: Paired t tests or Wilcoxon signed rank tests will be used to analyse this trials’ data and the results we arrived at will be interpreted cautiously. We assumed that this study would reveal that MBYD is effective for MG and provide robust evidence of the efficacy of TCM to treat MG.

Trial registration: Chinese Clinical Trial Register, ID: ChiCTR2000040477, registration on 29 November 2020, http://www.chictr.org.cn/showprojen.aspx?proj=64688.

Background

Myasthenia gravis (MG), characterized by weakness symptoms of various muscle groups such as ptosis, dysphagia, dyspnea, limb weakness and so on, is an antibody-mediated acquired autoimmune disease. The prevalence rate of MG ranges from 2.19 to 36.71 per 100,000, which depends on the geographic location(1). Most MG patients (about 85%) have detectable antibodies against the acetylcholine receptor (AChR) in their serum(2). It is a chronic, progressive, and stubborn neuromuscular disease that seriously affects MG patients’ quality of life.

The pathogenesis of MG has not entirely cleared. However, it was determined that it is highly correlated to immune dysregulation. CD4+T cells and their cytokines play a crucial role in the development and the progress of MG. CD4+ Foxp3+ regulatory T (Treg) cells, which are responsible for suppressing the immune response (3), have a protective pole in MG. Inflammatory cytokines such as interferon(IFN)-γ and interleukin(IL)-17 increase the anti-AChR level and aggravate MG weakness symptoms while anti-
inflammatory cytokines such as transforming growth factor(TGF)-β and IL-4 downregulate anti-AChR level and alleviate weakness symptom. (4, 5)

On the other hand, with the development of metagenomics, metabolomics, metatranscriptomics and other omics, gut microbiota has attracted more and more attention and become an important frontier in understanding the development and progression of diseases (6). In recent years, studies revealed that gut microbiota in MG patients has lower biodiversity and a lower Firmicutes/Bacteroidetes ratio as well as a significantly lower Clostridium content than that in healthy people. The disorder of gut microbiota promotes immune inflammation response, which aggravates the severity of MG. (7, 8)

MG is usually treated with conventional western medicine such as acetylcholinesterase inhibitors, glucocorticoid and other non-steroidal immunosuppressants with dissatisfactory clinical effects in some patients, the risk of unconscionable dosage and unwanted adverse effect where Traditional Chinese medicine (TCM) can take a complementary and alternative effect. A study found that using TCM combined with western medicine might improve the total effect and reduce the risk of MG relapse (9). According to the TCM characteristic theory of “spleen governing muscle”, MG is generally diagnosed as “spleen qi deficiency syndrome” and thereby, strengthening spleen and replenishing qi is a common therapeutic strategy of MG in TCM, which has played a positive role in clinical practice of MG. (10, 11)

Buzhong Yiqi Decoction (BYD), a classical qi-supplementing formula in TCM, is the most frequently used prescription to treat MG. A study showed that BYD modulated the balance of Treg and Th17 cells in patients with MG, downregulated the serum AChR antibody level (12). Modified BYD (MBYD) is based on BYD and adds other Chinese herbs to treat MG patients’ specific or concurrent symptoms synergistically. A pharmacological study demonstrated that Huangqi, Wuzhimaotao, and Gancao, which are all in MBYD, have pharmacological components of acetylcholinesterase inhibitors (13). Several clinical observations demonstrated that treating MG by combining MBYD with western medicine is more effective than western medicine alone. (14-16) However, high-level evidence of the effectiveness of MBYD for treating MG has yet to be constituted.

In this study, we will detect the level of Treg cells by flow cytometry and cytokines (IL-4, IL-17A, INF-γ, TGF-β) by ELISA to investigate how MBYD modulates immunoregulatory cells and cytokines. What’s more, studies have found that TCM contains complex compounds that, after taken orally, will inevitably interact with gut microbiota and modulate the structure and metabolism of gut microbiota and thereby obtain their therapeutic effects. (17, 18) we innovated to investigate the alterations of gut microbiota after TCM treatment in N-of-1 trials. This method has not been reported in previous studies. We collected stool samples from MG patients at baseline and after each cycle to determine the changes of the gut microbiota with MBYD treatment through multiple cross-controls.

The rationales for the trials

Considering MG is a rare disease with high heterogeneity, conventional large-scale RCT trials are challenging to carry out. Single-case of randomized controlled trial (also called “N-of-1”) is a multiple-crossover, two-phase cross design in a single patient to compare the efficacy of two interventions (or an
intervention and a placebo), which requires an exceedingly smaller sample size than RCT(19). There are some reasons why we will conduct this trial:

1) N-of-1 trials provide the most rigorous evidence possible of the effectiveness of the intervention in the individuals by multiple-crossover randomized controls(20). Therefore, evidence from several N-of-1 trials can be gathered to create the efficacy estimates of the population treatment.

2) N-of-1 trials are fit for chronic, nonself-limited, relatively stable diseases requiring long-term medication treatment. Therefore, we set a rule that participants should have a stable phase in MG for at least 3 months.

3) TCM is characterized by syndrome differentiation and individualized intervention. N-of-1 trials can design various intervention measures flexibly for individuals. Hence, this method is relevant to the clinical practice of TCM. Nowadays, TCM N-of-1 trials, as the most compatible clinical method with TCM clinical diagnosis and treatment, have been widely concerned. (21-23)

Objectives

In this study, our objective is to comprehensively evaluate the effectiveness of MBYD in the treatment of MG. We assumed that this study would provide a credible conclusion that MBYD is an effective prescription for MG, which alleviates clinical symptoms, enhances the quality of life of MG patients and reduces the side effects of western medicine. Furthermore, this study investigated the alterations of the level of Treg cells and cytokines (IL-4, IL-17A, TGF-β, IFN-γ) in peripheral blood and the gut microbiota in the intestinal tract of MG patients at baseline and after each phase so as to preliminarily explore how MBYD effects the immune system and gut microbiota in MG patients.

Method

Trial design

Because of the heterogeneous components of Chinese herbs, the onset time and half-time of Chinese herbs are hard to confirm(24). According to previous clinical observation and preliminary trial(11), we decided to set the intervention period or control period for 4 weeks and the wash-out interval for 1 week. Each cycle comprises a 4-week intervention period with MBYD combining conventional western medicine and a 4-week control period with placebo with the same western medicine in random order. The wash-out interval prior to switching each period makes carryover effects minimized. Hence, there are 29 weeks in all involving 3 cycles in this study (Figure1). The conventional western medicine that the patients take still follows his/her original therapeutic schedule. In view that patients with MG cannot stop taking conventional western medicine for a few days, which may aggravate their condition rapidly and lead to serious adverse events, only MBYD or placebo granules are washed out while western medicine are maintained during the wash-out interval. The protocol is conducted in light of the SPIRIT reporting guidelines(25) and obeys the Conventional Protocol Items: CONSORT extension for reporting N-of-1 trials.
Participants

The First Affiliated Hospital of Guangzhou University of Chinese Medicine (GZUCM) that we conduct the study is one of the centers for MG treatment in China and many MG patients coming to visit every year. That means adequate patients will be recruited at the inpatient and outpatient visits in the hospital.

The patients will be selected if they adapt to the inclusion criteria as follows:

1. Patients aged between 18 to 65 and gender is not limited
2. Patients diagnosed with MG based on ‘The Chinese guidelines for the diagnosis and treatment of myasthenia gravis (2020)’: patients with typical clinical features of MG (fluctuating myasthenia) excluded from other diseases and meeting any of the following three points, including pharmacological examination, electrophysiological characteristics or serum antibody detection (27)
3. Patients attached to the spleen-stomach deficiency syndrome or spleen-kidney deficiency syndrome will be enrolled which is based on ‘The guidelines for clinical diagnosis and treatment of internal medicine of traditional Chinese Medicine: myasthenia gravis (2020)’ (28)
4. Patients identified as class II or III according to myasthenia gravis foundation of America (MGFA) clinical classification (29) and are in the stable stage of MG at least 3 months
5. Patients with Quantitative Myasthenia Gravis (QMG) score more than 6
6. Patients treated with glucocorticoid administration should not take more than 15mg prednisone (or an equivalent dose of other glucocorticoids) per day.

The exclusion criteria are following:

1. Female patients who are pregnant or lactating or have a pregnancy plan during the trial
2. Patients with other autoimmune diseases (e.g., polymyositis, multiple sclerosis, rheumatoid arthritis) that may impact the assessment and treatment
3. Patients with severe heart, kidney, liver, lung, hematological system, infectious diseases or cancer
4. Patients with neuropsychiatric disorders that cannot cooperate
5. Patients received plasma exchange, glucocorticoid or gamma-globin pulse therapy within 3 months
6. Patients received thymectomy within half a year
7. Patients with hypersensitivity of any drug in this trial
8. Patients participating in other trials
9. Patients consumed antibiotics, probiotics or anti-acids during the previous two months

The withdrawal criteria are following:
1. Patients with serious adverse effect (SAE) or suspected unexpected serious adverse reaction (SUSAR)

2. Patients with myasthenic crisis or worsening of symptoms requiring any treatment other than the trial medication

3. Patients who decide to withdraw from the trial or lose follow-up

The finished cycles before the withdrawal will be analyzed as part of the trial. We will still follow up with withdrawn participants until their planned end in order to appraise any adverse effects of the trial medication.

Interventions

In consideration of the hardship in guaranteeing the quality of the decoction, we intend to use granules in this study. The conventional western medicine administration such as pyridostigmine, low-dose prednisone and immunosuppressants is in the light of their prestudy treatment schedule. In order to avoid the effects of other Chinese herbs, any drug containing ingredients from Chinese herbs is not allowed except MBYD. Moreover, patients are not allowed to take antibiotics, probiotics, or anti-acids, which can obviously affect gut microbiota.

The MBYD consists of *Astragalus Membranaceus* (*Huangqi*), *Radix Fici Simplicissimae* (*Wuzhimaotao*), *Rhizoma Atractyloidis Macrocephalae* (*Baizhu*), *Radix Codonopsitis* (*Dangshen*), *Poria Cocos* (*Fuling*), *Radix Bupleuri* (*Chaihu*), *Cimicifuga Foetida* (*Shengma*), *Pericarpium Citri Reticulatae* (*Chenpi*), *Angelica Sinensis* (*Danggui*), *Semen Coicis* (*Yiyiren*), *Rhizoma Dioscoreae* (*Shanyao*), *Radix Liquiritiae* (*Gancao*), *Radix Scrophulariae* (*Xuanshen*). Patients with MG who have spleen qi-deficiency syndromes and kidney deficiency syndromes are usually diagnosed with spleen-kidney deficiency syndrome according to TCM theory and in that case, *Morinda officinalis* (*Bajitian*), *Cistanche Salsa* (*Roucongrong*), *Semen Cuscutae* (*Tusizi*), *Comus Officinalis* (*Shanzhuyu*), *Taxillus sutchuenensis Danser* (*Sangjisheng*), *Rosa laevigata Michx* (*Jinyingzi*), which are together used to replenish kidney qi, will be added in MBYD. Both the MBYD granules and the placebo granules were manufactured by Guangdong Yifang Pharmaceutical Co. Ltd. (10g/bag, 2 bags three times a day, last number: J2004021). The placebo granules were identical to the MBYD granules in appearance, texture, color and odor.

Outcomes

Given the multi-component and multi-target characterization of TCM, an all-round assessment of its effective evaluation is significant. In this study, the primary outcome is the QMG score. The secondary outcomes are following:

1. TCM syndrome score. Assessing TCM syndrome score is based on ‘Diagnosis standards for common syndromes in traditional Chinese medicine’ (30) issued by the Chinese Medicine Diagnostic Branch of China Association of Traditional Chinese Medicine. The measurement information of each
symptom and sign of MG patient are weighted and summed according to the values of different symptoms and signs.

2. The scores of the following scales: myasthenia gravis composite (MGC), myasthenia gravis activities of daily living profile (MG-ADL), myasthenia gravis quality of life (MG-QOL)

3. The level of CD4+ Foxp3+ Treg cells and cytokines (IL-4, IL-17A, INF-γ, TGF-β) in the peripheral blood

4. The alteration of gut microbiota. Before the trials begin and after each period, we will collect the patients’ fresh fecal samples and then immediately store them in the laboratory freezer at -80°C until analyses. We will analyze the gut microbiota in the stool samples in order to explore the mechanism of MBYD in MG therapy at the microbiological level by the 16S rRNA gene sequencing.

5. The reduction of side effects of western medicine for MG treatment

The safety assessments consist of the following items:

1. Laboratory tests, including serum alanine aminotransferase, aspartate aminotransferase, urea nitrogen, creatinine and routine blood tests

2. Vital signs, physical examination and electrocardiograph

3. Adverse events occurring during the study, including MG crisis, drug allergy, hepatorenal insufficiency, and other adverse drug reactions

The outcomes and the safety assessments will be conducted before the trials begin and at the end of each period.

Sample size

We conducted the preliminary trial that 5 patients had finished the first cycle. The mean and standard deviation (SD) of QMG scores (the primary outcome) difference between the MBYD and placebo groups was (3.0±2.5). According to the sample size calculation of paired sample mean comparison, we used the two-sided test and set the type I error α of hypothesis test as 0.05 and the error β of class II as 0.1. The sample size was calculated as 10 by using PASS 15.0 software. Considering the 20% of lost follow-up rate, we set the sample size as 12.

Randomization, blinding and treatment allocation

We mark the intervention (MBYD) as A and the control (placebo) as B. Then, each cycle can be recorded as AB or BA. The clinical research associate (REA) uses SPSS 26.0 to set a random seed and generate a random number. Each generated odd number is regarded as AB and even number is regarded as BA. The first to third digits are allotted to the first participant, the fourth to sixth digits are allotted to the second participant, and so on. For example, if the first six digits of the generated number is 453728, then the first participant will receive 3 cycles as BA, AB and AB and the second participant will receive 3 cycles as AB, BA and BA.
The allocation result will be written and put into an opaque and sealed envelope. The granule storage and distribution will be in charge of the REA. Participants and investigators will both be blinded until the end of the trials.

In our experience, MBYD is usually mild and fewer side effects. In case of SAEs related to MBYD, the supervisor and primary researchers shall decide whether emergency blind breaking is necessary, in order to know what kind of medicine the patient is taking in time. When breaking the blind, researchers should write the date, the reason for opening the blind and sign on the envelope.

Statistical methods

All data collected will be recorded on the CRFs and then inputted into the Electronic Data Capture (EDC) system and proofread by two independent researchers. Each cycle containing the MBYD and the placebo period is considered as a pair in N-of-1 trials. We will combine the results of all complete cycles, analyse them, and then produce a posterior probability of the difference between the MBYD treatment and the placebo. If data are normally distributed, paired \(t \) test will be used for a single case. And if the data do not obey normal distribution, Paired Wilcoxon signed rank tests will be conducted to analyze the data (31). The data will be analysed by using SPSS 26.0 software, and \(P < 0.05 \) is considered statistically significant.

Discussion

According to our rich clinical experience, we found that TCM treatment can alleviate fatigue and muscle weakness and improve the quality of life of MG patients. A series of N-of-1 trials is currently a helpful tool for maximizing clinical benefits for an individual patient and has significant potential to supply convincing effective information for most clinical fields (32). It can be seen as conducting multiple RCTs on individuals. TCM is highly consistent with N-of-1 trials because TCM is characterized by syndrome differentiation and holism emphasizing individualized treatment. In recent years, more and more scholars have paid attention to TCM N-of-1 trials.

It is challenging to assess the effectiveness of TCM because of its heterogeneous ingredients, multiple targets and miscellaneous effects. In this study, we plan to use QMG, MGC and MG-ADL clinical rating scales to evaluate the severity of MG and MG-QOL15 for assessing the quality of life in MG patients and the TCM symptom scale for analyzing the syndrome improvement. Meanwhile, the reduction of the side effects of western medicine, safety and the level of Treg cells and related cytokines are also our outcomes so as to comprehensively evaluate the effectiveness of TCM. In addition, the changes of gut microbiota through TCM treatment can also be used as a method to evaluate the effectiveness of TCM. Therefore, we innovated to use multiple crossovers within the N-of-1 trials for detecting and analyzing the composition of gut microbiota, aiming to form credible evidence that the effect of TCM on how to modulate the composition of gut microbiota in MG patients.
For TCM N-of-1 trials, previous studies published or conducted have an inferior reporting quality (33). On the one hand, because of the multi-target and confounding effect of TCM, it is hard to determine the half-time and onset time, which brings the difficulty to set the period of intervention and wash-out. On the other hand, how to evaluate the clinical effectiveness of TCM still needs to be further improved. Besides, a part of TCM treatments may have a slow onset of clinical effects and do not show curative effects in a short period, which brings some difficulties to the conductions of TCM N-of-1 trials. Nevertheless, TCM N-of-1 trials still have great potential and their future is worth looking forward to.

Trial Status

The recruitment began on 5 Dec 2020, and we expect this study to be completed by 30 May 2022.

Abbreviations

MG: myasthenia gravis; QMG: Quantitative Myasthenia Gravis; TCM: Traditional Chinese medicine; MGC: myasthenia gravis composite; MG-ADL: myasthenia gravis activities of daily living profile; MG-QOL: myasthenia gravis quality of life; BYD: Buzhong Yiqi Decoction; MBYD: Modified Buzhong Yiqi Decoction; N-of-1: Single-case randomised controlled trial; RCT: Randomised controlled trial; GZUCM: Guangzhou University of Chinese Medicine; CENT: CONSORT extension for reporting N-of-1 trials; CRF: Case report form; AChR: acetylcholine receptor; Treg cell: regulatory T cell; INF-γ: interferon-γ; TGF-β: transforming growth factor-β; IL: interleukin; SAE: serious adverse effect; SD: standard deviation; REA: research associate; EDC: Electronic Data Capture.

Declarations

Competing interests

SW and JL contributed equally and are co-first authors. The authors declare that they have no competing interests

Funding

This study was supported by the Scientific Research Team Training Project Of Guangzhou University of Chinese Medicine (grant number 2019KYTD101) and the National Natural Science Foundation of China (NSFC) (grant number 81904133).

All patients we recruited will provide written informed consent before participation. Ethical approval was acquired from the Ethics Committee of The First Affiliated Hospital of GZUCM, No. ZYYECK[2019]119. We will bear the cost of granules and relevant examinations during the study. Data usage will obey the ordinances of the hospital’s data oversight committee. De-identify results will be announced in peer-reviewed journals and be presented in academic meetings and scientific conferences. The results will also be informed to the participants at the end of the trials.
Author contributions

SW, FL and QJ were the Chief Investigators who conceived the study, led the proposal and protocol development. JL and BC contributed to study design and to development of the proposal. SW, JL were the lead trial methodologist. LH, ZZ provided statistical expertise and designed the statistical analysis. SW, JL and LwH wrote the study protocol with input from other authors. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to the Scientific Research Team Training Project Of Guangzhou University of Chinese Medicine and the National Natural Science Foundation of China for their funding support in this study.

Consent for publication

All the authors gave their consent to publish the paper.

Competing interests

The authors announced that they have no competing interests.

References

1. Bubuioc A, Kudebayeva A, Turuspeikova S, Lisnic V, Leone M. The epidemiology of myasthenia gravis. Journal of medicine life. 2021;14(1):7–16.
2. Gomez A, Van Den Broeck J, Vrolix K, Janssen S, Lemmens M, Van Der Esch E, et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity. 2010;43:353–70.
3. Rodríguez-Perea A, Arcia E, Rueda C, Velilla P. Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol. 2016;185(3):281–91.
4. Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y, et al. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol. 2021;203(3):366–74.
5. Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J Clin Med. 2021;10(11).
6. Feng W, Ao H, Peng C, Yan D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res. 2019;142:176–91.
7. Qiu D, Xia Z, Jiao X, Deng J, Zhang L, Li J. Altered Gut Microbiota in Myasthenia Gravis. Front Microbiol. 2018;9:2627.
8. Zheng P, Li Y, Wu J, Zhang H, Huang Y, Tan X, et al. Perturbed Microbial Ecology in Myasthenia Gravis: Evidence from the Gut Microbiome and Fecal Metabolome. Adv Sci (Weinh). 2019;6(18):1901441.
9. Yang XQ, Liu L, Yang WY, Dong HH, Yang YR, Li Y. Efficacy and Safety of the TCM Qi-Supplementing Therapy in Patients with Myasthenia Gravis: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med. 2017;2017:6512572.

10. Jiang X, Chen G, Huang J, Xie L, Shen D, Jiang K, et al. Modified Buzhong Yiqi decoction for myasthenia gravis: A systematic review protocol. Medicine. 2018;97(50):e13677.

11. Weng S, Fan Z, Qiu G, Liu F, Huang L, Li J, et al. Therapeutic efficacy and immunoregulatory effect of Qiangji Jianli Capsule for patients with myasthenia gravis: Study protocol for a series of randomized, controlled N-of-1 trials. Medicine. 2020;99(51):e23679.

12. Xinyan LIU. FAN Lei.Effects of Buzhong Yiqi Decoction on Treg Lymphocyte,Lymphocyte Subsets and on the Curative Effects of Elderly Patients with Myasthenia Gravis. WORLD CHINESE MEDICINE. 2020;15(21):3336–9.

13. Cui L, Wang Y, Liu Z, Chen H, Wang H, Zhou X, et al. Discovering New Acetylcholinesterase Inhibitors by Mining the Buzhongyiqi Decoction Recipe Data. J Chem Inf Model. 2015;55(11):2455–63.

14. Huang YY. integrated traditional Chinese and Western medicine in the treatment of 18 cases of myasthenia gravis. Henan Traditional Chinese Medicine. 2014;34:2432–3.

15. Zu LH. “Effective observation on treating myasthenia gravis with the Buzhong Yiqi decoction plus hormone,” Clinical Journal of Chinese Medicine, pp. 28–76, 2015.

16. Qi G, Gu S, Liu P, Yang H, Dong H, “Effects of combined traditional Chinese medicine with immunosuppressive agents for patients with myasthenia gravis,” International Journal of Clinical and Experimental Medicine, vol.8, no. 10, pp.19044– 19050, 2015.

17. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Corrigendum: Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature communications. 2017;8:16130.

18. Lyu M, Wang Y, Fan G, Wang X, Xu S, Zhu Y. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Frontiers in microbiology. 2017;8:2146.

19. Senn S. Sample size considerations for n-of-1 trials. Stat Methods Med Res. 2019;28(2):372–83.

20. OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Oxford: Oxford Centre for Evidence-Based Medicine; 2011.

21. Huang H, Yang P, Wang J, Wu Y, Zi S, Tang J, et al. Investigation into the Individualized Treatment of Traditional Chinese Medicine through a Series of N-of-1 Trials. Evidence-based complementary and alternative medicine: eCAM. 2018;2018:5813767.

22. Li J, Wei D, Niu J, Yang M, Ge L, Wang X, et al. Potential Facilitators and Barriers to Awareness of N-of-1 Trials for Physicians in Traditional Chinese Medicine. Altern Ther Health Med. 2018;24(2):44–9.

23. Xie T, Yu Z. N-of-1 Design and Its Applications to Personalized Treatment Studies. Statistics in biosciences. 2017;9(2):662–75.
24. Li J, Hu J, Zhai J, Niu J, Kwong J, Ge L, et al. CONSORT extension for reporting N-of-1 trials for traditional Chinese medicine (CENT for TCM): Recommendations, explanation and elaboration. Complement Ther Med. 2019;46:180–8.

25. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hrøbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 Explanation and Elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586.

26. CONSORT extension for reporting N-of-1 trials (CENT). 2015 Statement. BMJ (Clinical research ed). 2016;355:i5381.

27. Chang Ting. The Chinese guidelines for the diagnosis and treatment of myasthenia gravis (2020). Chin J Neuroimmunol Neurol. 2021;28(01):1–12.

28. China Association of Chinese Medicine. The guidelines for clinical diagnosis and treatment of internal medicine of traditional Chinese Medicine[M]. China Press of Traditional Chinese Medicine; 2020.

29. Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.

30. Medicine DSoCAoTC. The Diagnostic Criteria of TCM Constant Witness. Journal of TCM University of Hunan. 2008(05):3–8 + 20.

31. Huang H, Yang P, Wang J, et al. Investigation into the Individualized Treatment of Traditional Chinese Medicine through a Series of N-of-1 Trials. Evid Based Complement Alternat Med. 2018;2018:5813767.

32. Guyatt G. N of 1 randomized trials: a commentary. J Clin Epidemiol. 2016;76:4–5.

33. Li J, Gao W, Punja S, Ma B, Vohra S, Duan N, et al. Reporting quality of N-of-1 trials published between 1985 and 2013: a systematic review. J Clin Epidemiol. 2016;76:57–64.

Figures
Patients with MG in stable phase are selected according to inclusion criteria

Sign the Informed Consent

A(or B) W B(or A) W B(or A) W A(or B) W B(or A) W A(or B)

Cycle1 Cycle2 Cycle3

Analyze data and produce reports

Figure 1 Design of the study. A is for the MBYD period, B is for the placebo period. W is for the wash-out interval. The order A and B in each cycle will be randomised. Figure not to scale.

See image above for figure legend.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SPIRITchecklist1.docx