A novel UV pumped yellow-emitting phosphor Ba2YAlO5:Dy3+ for white light-emitting diodes

Bin Deng1,2*, Jun Chen1,2, Chong-song Zhou1,2 and Hui Liu1,2

1College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, P. R. China; 2 Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Chenzhou 423043, Hunan, P. R. China;

Abstract. A series of novel Dy3+ activated aluminate Ba2Y1-xDyxAI O3 (x = 0.01–0.30) red-emitting phosphors were synthesized through a high-temperature solid-state route at 1380°C. The X-ray diffraction patterns revealed that the samples were well crystallized in the space group P21/c (No. 14). The spectrum analysis revealed that under UV light excitation, Ba2YAlO5:Dy3+ phosphor exhibited blue and yellow peaks corresponding to F3/2 → H5/2 transition and F5/2 → H3/2 transition, respectively. The optimum dopant concentration of Dy3+ ions is around 2 mol% and the critical transfer distance of Dy3+ is calculated as 29 Å. The concentration quenching mechanism between Dy3+ has been investigated. Results indicate that Ba2YAlO5:Dy3+ offers the excellent optical properties as a potential yellow-emitting phosphor candidate for n-UV LEDs.

1 Introduction

Dy3+ as the activator can be doped into suitable hosts to obtain white light emission in a single phase. It can present two characteristic emission bands in luminescence spectrum, F3/2 → H5/2 at 488 nm (blue) and F5/2 → H3/2 at 580 nm (yellow)[1, 2]. The feasibility of the phosphor to generate white light is actually indicated by the Yellow and Blue (Y/B) ratios [3].

Recently, white light-emitting diodes (WLEDs) have gained enormous interest from scientists and engineers as a promising light source, which are important candidates for solid-state lighting due to its high luminous efficiency, compactness, long-lifetime, diversity design, fast switching material stability and environmentally friendly [4, 5]. LEDs are regarded as environmentally friendly because they have not utilized the toxic elements such as mercury (excitation light source) and colloidal cadmium selenide quantum dots. The most commercially available W-LEDs are fabricated by a combination of InGaN LED chips with Y3Al5O12:Ce3+ yellow-emitting phosphor [1]. But the above method suffers some major disadvantages in the red spectral region, including correlated color temperature that is higher than 4500 K and color rendering index that is lower than 80. Another effective method is to utilize near-UV LEDs chips coupled with multi-phosphors of red, green and blue phosphor [6, 7].

The aluminates have been extensively explored as hosts for phosphors due to their excellent optical properties [8, 9]. In this paper, we report the red emitting phosphors Ba2Y1-xDyxAI O3 (x = 0.01–0.30) under NUV (Near Ultraviolet) excitation. The phase purity, photoluminescence (PL) properties, influence of doping concentration, and chromaticity coordinate of the Ba2YAlO5:Dy3+ phosphors were investigated.

2 EXPERIMENTAL PROCEDURE

The synthesis of powder samples Ba2Y1-xDyxAI O3 (x = 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) phosphors with the concentration of Dy3+ from 1 to 30 mol% was carried out by conventional solid stated reaction in air. Al2O3 (nanopowder, A.R.), BaCO3 (A.R.), Y2O3 (99.99%), and Dy2O3 (99.99%) were completely mixed and ground in an agate mortar. Then the mixtures were put into an alumina crucible and preheated at 600 °C in air for 3 h. After that, the samples were reground completely and calcined in air at 1380 °C for 5 h. The associated reaction equations are as follows:

$$\text{4BaCO}_3 + (1-x)\text{Y}_2\text{O}_3 + \text{Al}_2\text{O}_3 + x\text{Dy}_2\text{O}_3 \rightarrow \text{Ba}_2\text{Y}_{1-x}\text{Dy}_x\text{Al}_2\text{O}_5 + \text{volatile products}$$

X-ray powder diffraction (XRD) was performed with Philips X’Pert MPD (Philips, Netherlands) with Cu Kα radiation (λ = 1.5418 Å) to identify the phase purity of the as-prepared samples. Data collection was carried out in the range of 2θ = 10°–70°. Luminescence properties of the synthesized phosphors were performed using FLS 920 spectrometer (Edinburgh) at room temperature.

3 RESULTS AND DISCUSSION

* Corresponding author: dengbinxnu@163.com (Bin Deng)
The phase purity of the Ba$_2$YAlO$_5$:0.02Dy$^{3+}$ phosphors are identified by XRD and depicted in Fig. 1. All the diffraction peaks of the sample were consistent with the standard card (No.37-0292) for the Ba$_2$YAlO$_5$. The lattice constants of Ba$_2$YAlO$_5$:0.02Dy$^{3+}$ are calculated to be $a = 13.1702$ Å, $b = 7.4539$ Å, $c = 5.7102$ Å and $V = 527.22$ Å3, respectively. It suggests that the Dy$^{3+}$ ions substituted the Y$^{3+}$ sites in Ba$_2$YAlO$_5$ due to their similar ionic radii of Dy$^{3+}$ ($r = 0.912$ Å) and Y$^{3+}$ (0.900 Å) when coordination number = 6 [10].

The emission spectrum of Ba$_2$YAlO$_5$:0.02Dy$^{3+}$ excited at 357 nm is shown in Fig. 3. The PL spectrum consists of four sharp lines in 450-750 nm attributing to the 4P$_{0,2}$, 4H$_{15/2}$, 4H$_{11/2}$, 4G$_{11/2}$ and 4H$_{15/2}$ → 4I$_{15/2}$ transition, respectively [14]. The peak at 357 nm is the strongest one which results from 4H$_{15/2}$ → 4P$_{0,2}$ transition. Thus, the Ba$_2$YAlO$_5$:Dy$^{3+}$ phosphors are suitable for InGaN-chip based w-LEDs.

The emission spectrum of Ba$_2$YAlO$_5$:0.02Dy$^{3+}$ excited at 357 nm is shown in Fig. 3. The PL spectrum consists of four sharp lines in 450-750 nm attributing to the 4P$_{0,2}$→4H$_{15/2}$, 4H$_{15/2}$→4G$_{11/2}$ and 4H$_{15/2}$→4I$_{15/2}$ transition, respectively [14]. The peak at 357 nm is the strongest one which results from 4H$_{15/2}$→4P$_{0,2}$ transition. Thus, the Ba$_2$YAlO$_5$:Dy$^{3+}$ phosphors are suitable for InGaN-chip based w-LEDs.

The critical energy transfer distance (R_c) between Dy$^{3+}$ ions in Ba$_2$Y$_{1-x}$Dy$_x$AlO$_5$ phosphors can be evaluated by the following formula given by Blasse [17]:

$$R_c = 2\left(\frac{3V}{4\pi x_N}\right)^{1/3}$$

where N means the formula units per unit cell, x represents the critical concentration of Dy$^{3+}$, and V is the volume of the unit cell. Taking the appropriate values of N, V, and x (2, 526.48 Å3, and 0.02, respectively) for the Ba$_2$YAlO$_5$:0.02Dy$^{3+}$ phosphors, we estimate R_c to be about 29 Å, which is far greater than 5 Å. Thus, the concentration quenching mechanism of Dy$^{3+}$ ions can be mainly ascribed to the multipole–multipole interaction.

Figure 4 showed the concentration influences to the PL intensities of Ba$_2$Y$_{1-x}$Dy$_x$AlO$_5$ phosphors ($x = 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30$).
In summary, we have synthesized a series of aluminate yellow-emitting $\text{Ba}_2\text{YAlO}_5:\text{Dy}^{3+}$ phosphors by a solid-state reaction. The XRD examined results confirmed that all the compounds crystallize in the space group $P2_1/c$ (14). The synthesized phosphors $\text{Ba}_2\text{YAlO}_5:\text{Dy}^{3+}$ was excited by 357 nm, and showed a strong yellow-emitting emission at 580 nm which was assigned to the $^4\text{F}_{9/2} \rightarrow ^4\text{H}_{13/2}$ transition of Dy^{3+} ions. When the doping concentration was over 2 mol%, the phosphor appeared concentration quenching phenomenon. The electric dipole-dipole interaction is the concentration quenching mechanism of $\text{Ba}_2\text{YAlO}_5:\text{Dy}^{3+}$ phosphors. All the above properties indicated the Dy^{3+}-activated Ba_2YAlO_5 phosphors could be a new yellow-emitting candidate for color mixing in the white light-emitting diode.

Acknowledgment

The authors thank Hunan provincial key laboratory of Xiangnan rare-precious metals compounds and applications and the construct program of the key discipline in Hunan province for financial support.

References

1. B. Liu, C. Shi, Appl. Phys. Lett. 86(19), 191111 (2009)
2. Q. Su, H. Liang, C. Li, H. He, Y. Lu, J. Li, Y. Tao, J. Lumin. 122, (927) (2007)
3. Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, F. Zou, J. Alloys Compd. 192(1), 25 (1993)
4. Z. Xia, Q. Liu, Prog. Mater Sci. 84(59) (2016)
5. P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. 158(6), R37 (2011)
6. R.J. Xie, N. Hirosaki, Y. Li, T. Takeda, Materials 3(6), 3777 (2010)
7. R. Yu, A. Fan, M. Yuan, T. Li, Q. Tu, J. Wang, Opt. Mater. Express 6(7), 2397 (2016)
8. F.M. Emen, R. Altinkaya, V.E. Kafadar, G. Avsar, T. Yeşilkaynak, N. Kulcu, J. Alloys Compd. 681(32), 260 (2016)
9. W. You, Z. Xiao, F. Lai, X. Ye, Q. Zhang, H. Jiang, C. Wang, J. Liao, X. Liu, S. Zhong, J. Mater. Sci. 51(11), 1 (2016)
10. R.D. Shannon, Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography A32(5), 751 (1976)
11. S. Liu, J. He, Z. Wu, J.H. Jeong, B. Deng, R. Yu, J. Lumin. 200(164) (2018)
12. P. Dorenbos, J. Phys.: Condens. Matter 15(49), 8417 (2003)
13. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49(10), 4424 (1968)
14. G. Lakshminarayana, H. Yang, J. Qiu, J. Solid State Chem. 182(4), 669 (2009)
15. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14(5), 2224 (2002)
16. D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22(6), 1063 (1954)
17. G. Blasse, B.C. Grabmaier, Springer-Verlag, Berlin, Heidelberg 46 (1994)
18. L.G. Van Uitert, J. Electrochem. Soc. 114(10), 1048 (1967)