Tumor-Targeting Ability of Novel Anti-Prostate-Specific Membrane Antigen Antibodies

Hsin-Hua Hsieh, Wei-Ying Kuo, Jia-Jia Lin, Hong-Sen Chen, Hung-Ju Hsu, and Chun-Yi Wu*

Cite This: ACS Omega 2022, 7, 31529−31537

ABSTRACT: Patients with prostate-specific membrane antigen (PSMA)-positive tumors can benefit from PSMA-targeted therapy; thus, we have constructed a phage-displayed synthetic antibody library for the production of novel PSMA antibodies with superior PSMA-targeting ability, favoring clinical management. The binding affinities of anti-PSMA antibodies were verified by an enzyme-linked immunosorbent assay (ELISA). Several in vitro and in vivo experiments, including cellular uptake, internalization, and cytotoxicity studies, micro single photon emission computed tomography (microSPECT)/CT, and biodistribution studies, were performed to select the most promising antibody among six different antibodies. The results showed the target affinities of our antibodies in the ELISA assays (7A, 8C, 8E, and 11A) were comparable to the existing antibodies (J591). The half-maximal effective concentrations of 7A, 8C, 8E, 11A, and J591 were 2.95, 6.64, 5.50, 2.08, and 4.79, respectively. The radiochemical yield of 111In-labeled antibodies ranged from 30% to 50% with high radiochemical purity (>90%). In the cellular uptake studies, the accumulated radioactivity of 111In-J591, 111In-7A, and 111In-11A increased over time. The internalized percentage of 111In-11A was the highest (32.14% ± 2.06%) at 48 h after incubation, whereas that of 111In-J591 peaked at 22.43% ± 4.38% at 24 h and dropped to 13.52% ± 3.03% at 48 h postincubation. Twenty-four hours after injection, radioactivity accumulation appeared in the LNCaP xenografts of the mice injected with 111In-11A, 111In-8E, 111In-7A, and 111In-J591 but not in the xenografts of the 111In-8C-injected group. Marked liver uptake was noticed in all groups except the 111In-11A-injected group. Moreover, the killing effect of 177Lu-11A was superior to that of 177Lu-J591 at low concentrations. In conclusion, we successfully demonstrated that 11A IgG owned the most optimal biological characteristics among several new anti-PSMA antibodies and it can be an excellent PSMA-targeting component for the clinical use.

INTRODUCTION

Prostate cancer (PC) ranked second in cancer incidence and was the fifth-most cause of mortality among men in 2020. Although early stage PC can be curatively treated by surgery or radiation therapy, it is sometimes diagnosed only when metastatic disease has developed. At this stage, the prognosis is poor. Androgen deprivation therapy is the standard treatment for patients with widespread metastases. Unfortunately, almost all metastatic PC will eventually become castration-resistant cancer.

Prostate-specific membrane antigen (PSMA), a type-II transmembrane glycoprotein receptor, is overexpressed on the membrane of most types of PC. Antibody 7E11, first developed by Horoszewicz et al., targets PSMA-expressing cells, but its clinical application is limited because its binding site locates in an intracellular domain of PSMA. Unlike 7E11, J591 IgG targets the extracellular epitope of PSMA and demonstrates superior binding affinity and rapid clearance from normal organs. The J591–PSMA complex also facilitates an antibody-mediated endocytosis process, which has rationalized clinical trials of anti-PSMA antibody-based radiopharmaceutical therapy (RPT). In phase I/II trials, around 8% of patients receiving 177Lu-J591 treatment showed tumor remission and a significant reduction in PSA levels. Although higher doses (70 mCi/m²) increased the median overall survival of the 177Lu-J591-treated PC patients, they...
generated more severe side effects such as thrombocytopenia and neutropenia. Recently, a phase I clinical trial demonstrated that alpha-emit ted radionuclide 225Ac-labeled JS91 mitigates xerostomia and nephrotoxicity in metastatic castration-resistant PC (mCRPC) patients. Hamer et al. reported an apparent antitumor activity of 227Th-labeled human anti-PSMA antibody (227Th-PSMA-TTC) against PC in a mouse model. Then they launched a clinical trial of the drug for mCRPC patients (NCT03724747).

As intact antibodies have a longer circulation time than small molecules such as PSMA-617, they are cleared more slowly and impose a higher radiation burden on healthy tissues. In imaging, the time interval between the injection and imaging for radiolabeled antibodies must be increased to raise the target-to-background ratio. Although anti-PSMA antibodies are less attractive than small molecules in RPT applications, several clinical trials related to alpha-emit ted radionuclide-conjugated antibodies are undergoing. In addition, “active” tumor-targeting nanoparticles (ADCs) still require an antibody with specific tumor-targeting ability and low off-target accumulation in the living body. To fill this need, we prepared novel anti-PSMA antibodies on the basis of a phage-display library and determined their biological characteristics using a noninvasive imaging method. From the results, we evaluated the clinical potential of the antibodies.

MATERIALS AND METHODS

Preparation of Novel Anti-PSMA Antibodies. The phage-displayed synthetic scFv libraries were constructed and characterized as described in a previous study. The framework sequence of the GH2 scFv library was derived from an JS91 antibody sequence and cloned into pCANTABSE (GE Healthcare) phagemid via Sfi I and NotI restriction sites. TAA stop codons were introduced in complementarity-determining regions (CDRs) to ensure that only the phagems carrying the mutagenic oligonucleotides would produce pIII fusion scFv on the phage surface. The framework sequence of the GH2 scFv library was derived from the JS91 antibody sequence and cloned into the pCANTABSE (GE Healthcare) phagemid at the Sfi I and NotI restriction sites. TAA stop codons were introduced in the CDRs to ensure that only the phagems carrying the mutagenic oligonucleotides would produce pIII fusion scFv on the phage surface. The positions were mutagenized using synthesized oligonucleotides with the following degenerate codons to produce the designed amino acids in equal molar ratios: Trp/Gly (G[T/G][G]G), Phe/Ser/Tyr (T[T/C/A][C/T]), Gly/Asp/Ser/Gln (G[A/G][G/A][C/T]), Gly/Ala/Ser/Thr/Arg/Pro (G[A/G/C][G/C][T/C]), Ala/Thr/Pro/Ser ([A/G/T/C][A/G/T/C]), Phe/Tyr/Asp/Val/Ile/His/Leu ([A/G/T/C][A/T/C]) and Leu/Ile/Val/Phe/Met ([A/G/T/C][A/G/T/C]). The experimental procedures for the selection and screening of antibodies have been previously published. To reformat the functional scFvs into the antibodies, the primers, and the primers, the functional scFvs into the antibodies, the primers, the functional scFv
aspirated and the well was washed twice with 0.5 mL of iced PBS. The medium and washing buffers were collected into the same counting tube. The coated cells were detached by adding 0.5 mL of 0.25% trypsin, and the well was washed twice with 1 mL of the culture medium. The cell suspension and washing medium were collected into another counting tube. The cellular uptake was expressed as the percentage of administered dose per one million cells (%AD/10^6 cells).

The internalization rates were measured using previously reported methods. Briefly, the cells from the cellular uptake assays were treated with acidic buffer (pH = 2.5) to remove the surface-bound antibodies. The internalization rates were then expressed as a percentage of the radioactivity retained in the cells.

MicroSPECT/CT. MicroSPECT/CT was acquired by the scanner at the Center for Advanced Molecular Imaging and Translation at Chung Gung Memorial Hospital, Taoyuan, Taiwan (nanoSPECT/CT, Mediso, Budapest, Hungary). The xenograft-bearing mice were randomly divided into five groups receiving intravenous injections of different antibodies (111In-11A, 111In-8E, 111In-7A, 111In-8C, or 111In-J591; 18.5 MBq; 0.1 mg IgG/mouse). Static images were acquired at 24 and 48 h postinjection. The tumor-to-muscle (T/M) ratios were calculated from the mean intensities in the regions-of-interest (selected as the tumor and contralateral muscle). The changes in T/M ratios between 24 and 48 h postinjection were calculated as the following relative uptake increments:

\[
\text{relative uptake increment (rUI) = } \frac{T/M_{48} - T/M_{24}}{T/M_{24}}
\]

where \(T/M_{24}\) and \(T/M_{48}\) denote the T/M derived from microSPECT at 24 and 48 h postinjection, respectively.

Biodistribution Studies. The mice were intravenously injected with 1.85 MBq of 111In-labeled anti-PSMA antibodies and euthanized at 24 and 48 h postinjection. The tissues and organs, including blood, heart, lung, liver, stomach, small and large intestines, spleen, pancreas, kidney, bone, bone marrow, brain, muscle, and tumor, were excised and weighed. The radioactivity of each tissue/organ was determined by a gamma counter. The uptake was expressed as the percentage of injected dose per gram of tissue (%ID/g).

Cytotoxicity Assays. Approximately 50,000 LNCaP cells were seeded in the wells of a 24-well plate and incubated overnight. Various concentrations of 177Lu-labeled 11A IgG, J591 IgG, or PSMA-617 were added to the culture medium. At 48 h postincubation, the viability of the cells was determined by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay as previously reported. Briefly, the medium was replaced by the MTT solution (500 μL) and then kept at 37°C for 3 h. After incubation, the MTT solution was removed and dimethyl sulfoxide solution (1 mL) was added to dissolve the formed crystals. The absorbance at 570 nm was recorded by an ELISA reader (TECAN Trading AG, Mannedorf, Switzerland). The concentration at which the drug killed 50% of the cells (EC50) was calculated from the best-fit curves generated by GraphPad Prism software (version 9.2.0).

Statistical Analysis. All values were expressed as mean ± standard deviation. The Student’s t test was applied for the comparison between different groups. Differences with \(p < 0.05\) were regarded as statistically different.

RESULTS

Binding Affinity of Anti-PSMA Antibody to Prostate-Specific Membrane Antigen. The antigen-binding affinities of the anti-PSMA antibodies to the PSMA ECD were analyzed by the ELISA assay. The targeting abilities of 7A, 8C, 8E, and 11A were comparable to that of the commercial antibody J591 (Figure 1). The EC50 levels of 7A, 8C, 8E, 11A, and J591 were 2.95, 6.64, 5.50, 2.08, and 4.79 ng/mL, respectively.

![Figure 1: ELISA analysis of anti-PSMA antibodies.](https://doi.org/10.1021/acsomega.2c04230)

Preparation of 111In-Labeled Antibodies. Figure 2A is a schematic of the 111In-labeling of antibodies. The radiolabeling efficiency of each antibody was around 80%. The uncorrected radiochemical yields of these antibodies ranged from 30% to 50%, and high radiochemical purity (>90%) was observed after purification (Figure 2B).

In Vitro Cellular Uptake and Internalization Assays. The cellular uptakes (expressed as %AD/10^6 cells) of 111In-J591, 111In-7A, and 111In-11A increased over time and were maximized at 25.35 ± 2.36, 4.68 ± 1.00, and 34.26 ± 2.66, respectively, at 48 h postincubation, suggesting that all antibodies specifically targeted PSMA-expressing cells (Figure 3A). The 111In-8E accumulation was significant in the initial stages and plateaued at 24 h after incubation (Figure 3A).

In the internalization assays, 111In-11A alone showed time-dependent behavior and its internalized percentage reached a maximum of 32.14% ± 2.06% at 48 h postincubation, whereas that of 111In-J591 peaked (22.43% ± 4.38%) at 24 h and dropped to 13.52% ± 3.03% at 48 h after incubation (Figure 3B). 111In-8E IgG behaved similarly to 111In-J591, but its maximum internalization level was almost 1.5-fold higher than that of 111In-J591. In contrast, the internalization percentages of 8C and 11D remained low (<5%) throughout the entire experimental period.
Biodistribution Studies. Significant uptakes in the liver, spleen, and kidney were noticed in each group (Figure 5A). The maximum accumulations of 111In-7A, 111In-8E, 111In-11A, and 111In-J591 in the tumor reached $10.53\% \pm 2.49\%$, 15.13%, and 15.13%, respectively.

Figure 2. (A) Synthetic scheme of 111In-labeling. (B) RadioTLC of 111In-labeled anti-PSMA antibodies before and after purification. (C) In vitro stability of 111In-labeled anti-PSMA antibodies in either normal saline (NS) or fetal bovine serum (FBS).
± 2.88%, 42.80% ± 3.24%, and 25.05% ± 2.35%ID/g, respectively. After 48 h, the T/M ratio of 111In-11A was the highest among the antibodies (Figure 5A). Generally, the results obtained from the biodistribution studies were in accordance with that derived from the imaging studies. Strong positive correlations were observed between the T/M ratio and rUI acquired from biodistribution and imaging studies at each time points (Figure 5B,C).

Cytotoxicity of 177Lu-Labeled Anti-PSMA Antibodies. The 177Lu-labeling efficiencies of 11A and J591 IgG were around 70% (Figure 6A). After 48 h of incubation, the EC50 values of 177Lu-11A, 177Lu-J591, and 177Lu-PSMA-617 were 0.47, 0.82, and 3.84 μCi/mL, respectively. The killing effect of 177Lu-11A was superior to that of 177Lu-J591 at low concentrations, but the effects of both antibodies became similar at higher concentrations (Figure 6C). Unlabeled 177Lu-LuCl3 (free 177Lu) caused no significant cell injury (Figure 6D).

DISCUSSION

PSMA is overexpressed on the membranes of almost all types of PC but is found at limited levels in normal tissues.22 Considering the low 5-year survival of mCRPC patients, researchers worldwide are committed to developing PSMA-targeting therapeutics. In our previous studies, we synthesized several novel anti-HER2 antibodies with superior targeting capability using a phage-displayed library technique and screened out the antibodies showing minimal off-target retention by a noninvasive imaging method.20 The potential of the selected antibody, 61 IgG, has also been validated in the development of 61 IgG-modified nanoparticles for boron-neutron capture therapy12 and anti-HER2 ADCs.14 In this study, we aimed to duplicate our previous success in the
identification of anti-PSMA antibodies with optimal biological properties.

J591 IgG is the most commonly used anti-PSMA antibody in modern clinical trials. However, the biological properties of 111In-J591 do not appear to surpass those of 111In-11A IgG. More specifically, the cellular uptake studies showed a time-dependent radioactivity accumulation of 111In-J591, 111In-11A, and 111In-8E IgGs in LNCaP cells, suggesting that these antibodies bind to PC cells over at least 2 days (Figure 3A). Among these antibodies, only 11A IgG showed an increasing internalization rate over time (Figure 3B), which may explain its higher cellular accumulation than the other antibodies (Figure 3A). On the contrary, the nearly unchanged cellular uptake of 111In-8C suggests that it binds to the PSMA but does not induce antibody-mediated endocytosis; accordingly, it stably remains on the cell surface (Figure 3A,B). MicroSPECT confirmed that, in the tumor, the accumulated 111In-11A levels were almost 4-fold higher at 48 h postinjection than at 24 postinjection (Figure 4), implying that antibody-mediated phagocytosis and recycling of PSMAs to the membrane also occurred in vivo. However, the apparent increases in the retained levels of 8E and J591 IgG remained unnoticed because the large molecular weight of antibodies elevates the required time for clearance and potentially increases the radiation burden to normal tissues. 89Zr-J591 imaging confirmed that antibodies are intensely uptaken by the liver and are cleared slowly from the living body. The injection-to-scan acquisition time interval of 89Zr-J591 imaging with a satisfactory tumor-to-background ratio was 8 days. However, monoclonal antibodies generally have low off-target toxicity in the body because they specifically attach to the target. Moreover, unlike 177Lu-PSMA-617, J591 IgG is not retained in the salivary and lacrimal glands so cannot cause severe xerostomia. The primary dose-limiting side effect of 177Lu-J591 is myelosuppression. In the present study, 111In-11A (unlike 111In-J591) was minimally uptaken by the salivary glands and kidneys (Figure 4). In addition, we observed that 11A IgG accumulated to significantly lower levels than J591 in bone marrow (Figure 5A); therefore, it might mitigate the severity of myelosuppression.

On the basis of previous studies, the use of DOTA in radiolabeling needs an elevated temperature (sometimes close to 100 °C), which would greatly affect the reactivity of the antibodies. Second, the metal impurities, such as Ca$^{2+}$, Zn$^{2+}$, and Fe$^{2+}$, produced in the production of Lu-177 are competitors for DOTA chelation in the labeling, possibly resulting in an unsatisfactory radiochemical yield. However, Brom et al. and Watanabe et al. indicated that these impurities affect the labeling efficiency of DTPA-modified antibodies to a lesser extent. Besides, the thermodynamic stability constant (Log K_{MIL}) of the $[^{177}\text{Lu(III)-DTPA}]$ complex is nearly identical with that of $[^{177}\text{Lu(III)-DOTA}]$, suggesting the stability of 177Lu-DTPA-11A may not be the issue. Our
Figure 6. (A) RadioTLC of 177Lu-labeled 11A IgG, J591 IgG, and PSMA-617 before and after purification. (B) In vitro stability of 177Lu-labeled 11A IgG, J591 IgG, and PSMA-617 in either normal saline (NS) or fetal bovine serum (FBS). (C) In vitro killing effect of 177Lu-labeled 11A IgG, J591 IgG, and PSMA-617.
results also confirmed the stability of 177Lu-DTPA-11A is quite high during the entire experimental period (Figure 6B). According to these points, we selected DTPA as the chelate in this proof-of-concept study. 177Lu-11A (~45%) achieved a slightly lower radiochemical yield than 177Lu-JS91 (~45% vs ~60%) but was more stable than 177Lu-JS91 (Figure 6B). 177Lu-11A exerted a more evident in vitro antitumoral effect than 177Lu-JS91 and even 177Lu-PSMA-617 (Figure 6C). The present study was limited to evaluating the PSMA-targeting ability of our self-synthesized antibodies; we did not investigate the in vivo characteristics of 177Lu-11A. As the US Food and Drug Administration has approved 177Lu-PSMA-617 for patients with PSMA-positive mCRPC, there is an increasing need for immunohistochemistry (IHC) staining of tumors with high PSMA affinity and specificity. On the basis of our results, 11A IgG could also serve as a reliable primary antibody against PSMA for IHC staining.

CONCLUSION

We successfully developed and tested several novel anti-PSMA antibodies. The in vitro and in vivo tumor-targeting abilities of 11A IgG were comparable to or superior to those of commercial J591 IgG. The current data demonstrated the excellent potential of 11A IgG as a targeting component for conjugation with therapeutic radionuclides, drugs, or modified membranes of nanoparticles.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c04230.

Results of ELISA and radiolabeling of each anti-PSMA antibody (PDF)

AUTHOR INFORMATION

Corresponding Author

Chun-Yi Wu — Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; orcid.org/0000-0002-8217-1692; Email: chunyiwu@nycu.edu.tw

Authors

Hsin-Hua Hsieh — Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

Wei-Ying Kuo — Genomics Research Center, Academia Sinica, Taipei 115, Taiwan

Jia-Jia Lin — Department of Nuclear Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 236, Taiwan

Hong-Sen Chen — Genomics Research Center, Academia Sinica, Taipei 115, Taiwan

Hung-Ju Hsu — Genomics Research Center, Academia Sinica, Taipei 115, Taiwan

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c04230

Funding

This research was funded by the Ministry of Science and Technology of Taiwan (MOST 108-2314-B-010-062) and Atomic Energy Council of Taiwan (MOST 111-2623-E-499-004-NU).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

All animal studies were approved by the Institutional Animal Care and Use Committee of the China Medical University (CMU2ACUC-2019-104) and National Yang Ming Chiao Tung University (IACUC No. 1100318). We are thankful for the technical support from the Laboratory Animal Center of LinKou Chang Gung Memorial Hospital and Instrumentation Resource Center of National Yang Ming Chiao Tung University.

REFERENCES

(1) Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Ca-Cancer J. Clin.* 2021, 71, 209–49.

(2) Horoszewicz, J. S.; Kawinski, E.; Murphy, G. P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. *Anticancer Res.* 1987, 7, 927–935.

(3) Akhtar, N. H.; Pail, O.; Saran, A.; Tyrell, L.; Tagawa, S. T. Prostate-specific membrane antigen-based therapeutics. *Adv. Urol.* 2012, 2012, 973820.

(4) Liu, H.; Moy, P.; Kim, S.; Xia, Y.; Rajasekaran, A.; Navarro, V.; Knudson, B.; Bander, N. H. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. *Cancer Res.* 1997, 57, 3629–3634.

(5) Smith-Jones, P. M.; Vallabahajosula, S.; Goldsmith, S. J.; Navarro, V.; Hunter, C. J.; Bastidas, D.; Bander, N. H. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. *Cancer Res.* 2000, 60, 5237–5243.

(6) Smith-Jones, P. M.; Vallabahajosula, S.; Navarro, V.; Bastidas, D.; Goldsmith, S. J.; Bander, N. H. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. *J. Nucl. Med.* 2003, 44, 610–617.

(7) Bander, N. H.; Milowsky, M. I.; Nanus, D. M.; Kostakoglu, L.; Vallabahajosula, S.; Goldsmith, S. J. Phase I trial of 177lutetium-labeled JS91, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. *J. Clin Oncol.* 2005, 23, 4591–601.

(8) Tagawa, S. T.; Milowsky, M. I.; Morris, M.; Vallabahajosula, S.; Christos, P.; Akhtar, N. H.; Osborne, J.; Goldsmith, S. J.; Larson, S.; Taskar, N. P.; et al. Phase II study of lutetium-177labeled anti-prostate-specific membrane antigen monoclonal antibody JS91 for metastatic castration-resistant prostate cancer. *Clin. Cancer Res.* 2013, 19, S182–91.

(9) Tagawa, S. T.; Osborne, J.; Niaz, M. J.; Vallabahajosula, S.; Vlachostergios, P. J.; Thomas, C.; Molina, A. M.; Sternberg, C. N.; Singh, S.; Fernandez, E.; et al. Dose-escalation results of a phase I study of 225Ac-JS91 for progressive metastatic castration resistant prostate cancer (mCRPC). *J. Clin Oncol.* 2020, 38, 114.

(10) Tagawa, S. T.; Sun, M.; Sartor, A. O.; Thomas, C.; Singh, S.; Bissassar, M.; Fernandez, E.; Niaz, M. J.; Ho, B.; Vallabahajosula, S.; et al. Phase I study of 225Ac-JS91 for men with metastatic castration-resistant prostate cancer (mCRPC). *J. Clin Oncol.* 2021, 39, S015.

(11) Hammer, S.; Hagemann, U. B.; Zitzmann-Kolbe, S.; Larsen, A.; Ellingsen, C.; Geraudie, S.; Grant, D.; Indrevoll, B.; Smeets, R.; von Ahsen, O.; et al. Preclinical Efficacy of a PSMA-Targeted Thorium-227 Conjugate (PSMA-TTC), a Targeted Alpha Therapy for Prostate Cancer. *Clin. Cancer Res.* 2020, 26, 1985–96.

(12) Wu, C. Y.; Lin, J. J.; Chang, W. Y.; Hsieh, C. Y.; Wu, C. C.; Chen, H. S.; Hsu, H. J.; Yang, A. S.; Hsu, M. H.; Kuo, W. Y. Development of theranostic active-targeting boron-containing gold
nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf. B Biointerfaces. 2019, 183, 110387.

(13) Fay, F.; Scott, C. J. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy. 2011, 3, 381–94.

(14) Kuo, W. Y.; Hsu, H. J.; Wu, C. Y.; Chen, H. S.; Chou, Y. C.; Tsou, Y. I.; Peng, H. P.; Jian, J. W.; Yu, C. M.; Chiu, Y. K.; et al. Antibody-drug conjugates with HER2-targeting antibodies from synthetic antibody libraries are highly potent against HER2-positive human gastric tumor in xenograft models. MAbS. 2019, 11, 153–65.

(15) Diamantis, N.; Banerji, U. Antibody-drug conjugates—an emerging class of cancer treatment. Br J. Cancer. 2016, 114, 362–7.

(16) Chen, H. S.; Hou, S. C.; Jian, J. W.; Goh, K. S.; Shen, S. T.; Lee, Y. C.; You, J. J.; Peng, H. P.; Kuo, W. C.; Chen, S. T.; et al. Preclinical structural configuration of natural antibody repertoires enables potent antibody responses against protein antigens. Sci. Rep. 2015, 5, 12411.

(17) Hou, S. C.; Chen, H. S.; Lin, H. W.; Chao, W. T.; Chen, Y. S.; Fu, C. Y.; Yu, C. M.; Huang, K. F.; Wang, A. H.; Yang, A. S. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries. Sci. Rep. 2016, 6, 31878.

(18) Tung, C. P.; Chen, I. C.; Yu, C. M.; Peng, H. P.; Jian, J. W.; Ma, S. H.; Lee, Y. C.; Jan, J. T.; Yang, A. S. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. Sci. Rep. 2015, 5, 15053.

(19) Hsu, H. J.; Lee, K. H.; Jian, J. W.; Chang, H. J.; Yu, C. M.; Lee, Y. C.; Chen, I. C.; Peng, H. P.; Wu, C. Y.; Huang, Y. F.; et al. Antibody variable domain interface and framework sequence requirements for stability and function by high-throughput experiments. Structure. 2014, 22, 22–34.

(20) Kuo, W. Y.; Lin, J. J.; Hsu, H. J.; Chen, H. S.; Yang, A. S.; Wu, C. Y. Noninvasive assessment of characteristics of novel anti-HER2 antibodies by molecular imaging in a human gastric cancer xenograft-bearing mouse model. Sci. Rep. 2018, 8, 13735.

(21) Wu, C. Y.; Tang, J. H.; Chan, P. C.; Li, J. J.; Lin, M. H.; Shen, C. C.; Liu, R. S.; Wang, H. E. Monitoring Tumor Response after Liposomal Doxorubicin in Combination with Liposomal Vinorelbine Treatment Using 3′-Deoxy-3′-[(18)F]Fluorothymidine PET. Mol. Imaging Biol. 2017, 19, 408–20.

(22) Ghosh, A.; Heston, W. D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell Biochem. 2004, 91, 528–39.

(23) Jones, W.; Griffiths, K.; Barata, P. C.; Paller, C. J. PSMA Theranostics: Review of the Current Status of PSMA-Targeted Imaging and Radioligand Therapy. Cancers (Basel). 2020, 12, 1367.

(24) Pandit-Taskar, N.; O’Donoghue, J. A.; Durack, J. C.; Lyashchenko, S. K.; Cheal, S. M.; Beylergil, V.; Lefkowitz, R. A.; Carrasquillo, J. A.; Martinez, D. F.; Fung, A. M.; et al. A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer. Clin. Cancer Res. 2015, 21, 5277–85.

(25) Brom, M.; Joosten, L.; Oyen, W. J. G.; Gotthardt, M.; Boerman, O. C. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer. EJNMMI Res. 2012, 2, 4.

(26) Liu, F.; Zhu, H.; Yu, J.; Han, X.; Xie, Q.; Liu, T.; Xia, C.; Li, N.; Yang, Z. (68)Ga/(177)Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model. Tumour Biol. 2017, 39, 101042831770551.

(27) Rizvi, S. F. A.; Naqvi, S. A. R.; Roohi, S.; Sherazi, T. A.; Rasheed, R. (177)Lu-DOTA-coupled minigastrin peptides: promising theranostic agents in neuroendocrine cancers. Mol. Biol. Rep. 2018, 45, 1759–67.

(28) Watanabe, S.; Hashimoto, K.; Ishioka, N. S. Lutetium-177 complexion of DOTA and DTPA in the presence of competing metals. J. Radioanul. Nucl. Chem. 2015, 303, 1519–1521.

(29) Spreckelmeyer, S.; Ramogida, C. F.; Rousseau, J.; Arane, K.; Bratanovic, I.; Colpo, N.; Jermilova, U.; Dias, G. M.; Dude, I; Jaraquemada-Peláez, M. d. G.; et al. p-NO2-Bn-H4neunpa and H4neunpa-Trastuzumab: Bifunctional Chelator for Radiometapharmaceuticals and 11In Immuno-Single Photon Emission Computed Tomography Imaging. Bioconjugate Chemistry. 2017, 28, 2145–2159.