Innovation, Technology and User Experience in Museums: Insights from Scientific Literature

David Ovallos-Gazabon¹, Farid Meléndez-Pertuz², Carlos Collazos-Morales³, Ronald Zamora-Musa⁴, César A. Cardenas³, and Ramón E.R. González⁵

¹ Universidad Simon Bolivar, Barranquilla, Colombia
² Departamento de Ciencias de la Computación y Electrónica, Universidad de la Costa, Barranquilla, Colombia
⁴ Universidad Cooperativa de Colombia, Bucaramanga, Colombia
⁵ Departamento de Física, Universidad Federal de Pernambuco, Recife, Brazil

Abstract. Museums play an important role in preserving the heritage and cultural legacy of humanity, however, one of their main weaknesses in regards the user is their static nature. At present, and in the face of the development of diverse technologies and the ease of access to information, museums have upgraded their implementation of technologies aimed at improving the user experience, trying more and more to access younger audiences with a sensitivity and natural capacity for the management of new technologies. This work identifies trends in the use of technological tools by museums worldwide and the effect of these on the user or visitor experience through a review of scientific literature. To complete the work, we performed a search of the publications in the Scopus® referencing database, and downloaded, processed, and visualized the data using the VOSviewer® tool. The main trends identified in this context of analysis are related to the role of museums with the development and improvement of the user experience; orientation to young audiences and innovation driven by the user through Interactive Systems, digital games, QR Codes, apps, augmented reality, virtual reality and gamification, among others. The objective of the implementation of new technologies in the context of museums is to satisfy the needs of contemporary communication, for all types of content and aimed at an increasingly digital audience, in order to ensure positive interaction and feedback from ideas with social and cultural changes.

Keywords: User experience · Museum · Literature review · Innovation · VOSviewer

© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12249, pp. 819–832, 2020.
https://doi.org/10.1007/978-3-030-58799-4_59
1 Introduction

Literature points out that innovation as an object of scientific interest is not a new phenomenon and that it had its beginnings since the emergence of humanity itself and has generated great changes in the world order [1]. Similarly, it is considered that organizations that are not able to face technological change and the rapid accumulation of new knowledge will have a lag, mainly in terms of productivity and competitiveness [2].

The implementation of technology in the field of museums became a challenge that has been tilting after a period of transition towards its correct employment, generating new, fascinating and innovative experiences that have managed to increase the interest of people to visit Museums [3–9], to achieve this, tools such as ICT (Information and Communication Technologies) have been used, through which techniques such as interactive or 3D systems were implemented [10–12], generating as a result that children and young people are attracted by this type of mediation.

With the advent of the digital age, these new technologies have been applied in museums to provide more pleasant and educational experiences, implementing interactive screens and digital games, this combination of artifacts allows a positive interaction of feedback of ideas with social and cultural changes [13–16].

Considering the above, it is possible to point out that the use of technology has been a fundamental element in the improvement of the museum experience by visitors [7, 8, 17, 18]. This paper presents a review of success stories in the international context and also a search for information in scientific publications to identify trends through tool VosViewer®.

Technology in Museums

New visitors to museums bring other types of challenges and demands and hope that these spaces will be increasingly creative and innovative in the creation and presentation of content that can encourage society to visit them [11]. However, although the evidence in the literature indicates that the use of new technologies increases the interest of people who visit museums through interactive systems, 3D systems, digital games and other technological means; It is pointed out that there must be a balance when using technologies of static and interactive approach to information as well as entertainment in learning in the museum. Table 1 presents a summary of different types of technological tools or instruments used in some museums of world relevance.

Table 1 shows that currently the way in which museum visits are developed has been expanded, becoming increasingly a cultural and didactic experience through non-contact visits, using technologies that revolutionize teaching/learning activities within museums, showing collections and materials in a creative way.

The objective of the implementation of new technologies in the context of museums is to meet the needs of contemporary communication, for a contemporary art produced by artists framed in these technologies and aimed at an increasingly digital audience. Ensuring a positive interaction of feedback of ideas with social and cultural changes. An important aspect in this context of analysis is that interaction between different aspects of culture is favored, for instance the possibility of real-time interaction between scientists, artists, designers and intellectuals with a wider population.
Bibliometric Mapping with VOSviewer

Two aspects of bibliometric mapping that can be distinguished are the construction of bibliometric maps and the graphical representation of such maps. VOSviewer is a program that we have developed for constructing and viewing bibliometric maps. The program offers a viewer that allows bibliometric maps to be examined in full detail. VOSviewer can display a map in various different ways, each emphasizing a different aspect of the map. It has functionality for zooming, scrolling, and searching, which

Type of tool	Museum	References	
Interactive systems, 3D Systems, Digital games, Dynamus	Sydney Museum	[19–26]	
	Centro de Arte Contemporáneo de Málaga		
	Museo de Artes de Berlín		
	Museo Arqueológico Nacional de Madrid		
	London British Museum		
	Museo de Bellas Artes Bilbao		
	Petrie Museum		
	Museo de Lisboa		
	Penang State Museum		
	Negara Museum		
Codes QR, Applications for mobile devices	Museo de Muesca de España Bernasconi de Argentina	[3–28]	
	Museo Art Nouveau y Art Deco Casa Lis de España		
	Museo de Arte Moderno de Santander España		
	Museo Irlandes de Arte Moderno (IMMA)		
Touch experience and augmented reality	UNESCO Underground gallery of Yunnan anti-Japanese victory memorial hall Tate Britain Art Gallery	[29–34]	
Artistic healing tools WeCurate	London Museum	[12, 35–38]	
Augmented micro reality	Grant Museum of Zoology	[39]	
Smart Glasses	Robotics Gallery at the MIT Museum	[16]	
Augmented reality, holographic computing	The Royal Ontario Museum Kangmeiyuanchao Zhanzheng in Chinese (KMYC) memorial hall Changsha Museum	[24, 40–45]	
Olfactory Experience	Macao Museum of Art Tate Britain Art Gallery Jason Bruges Studio United Visual Artists	[31, 46, 47]	
Gamification, Virtual Museum, Twitter, Serious Games	Sagamihara City Museum The 30th anniversary of a famous half-marathon held annually in the United Kingdom called The Run	[4, 43, 48]	
facilitates the detailed examination of a map. The viewing capabilities of VOSviewer are especially useful for maps containing at least a moderately large number of items (e.g., at least 100 items). Most computer programs that are used for bibliometric mapping do not display such maps in a satisfactory way. To construct a map, VOSviewer uses the VOS mapping technique [49], where VOS stands for visualization of similarities. VOSviewer can display maps constructed using any suitable mapping technique. Hence, the program can be employed not only for displaying maps constructed using the VOS mapping technique but also for displaying maps constructed using techniques such as multidimensional scaling. VOSviewer runs on a large number of hardware and operating system platforms and can be started directly from the internet.

2 Methodology for the Identification of Trends

The scientific production registered in Scopus® about museums and innovation has been analyzed from 677 publications for the period 1959 to 2018. The methodology aims to identify trends in the global production of the field of analysis. For this, four phases are developed that allow a systematic review of the literature.

- **Phase 1. Definition of guiding questions**: The following were considered: what is the relationship between museums and innovation? Who are the main authors and institutions in this area?
- **Phase 2. Search in specialized database**: The Scopus® database was selected and a total of 677 records were obtained for the period 1959–2018. Scopus® compiles results from other bibliographic databases and independent scientific publications.
- **Phase 3. Download of bibliographic records**: Once the records were identified, they were downloaded using the tools offered by Scopus®. For this stage, the CSV format was used that facilitates its subsequent processing using Excel® 2016.
- **Phase 4. Consolidation and analysis of information**: Tools such as dynamic tables and macros were used in Excel® 2016 to generate the input data for graphing in VOSviewer®.

3 Results

A selection of results obtained in this work is presented. In this sense, the search equation that is used in the selected database is generated from the guiding questions identified, being as follows:

\[
\text{TITLE—ABS—KEY (innovation AND museum)}
\]

The first publications identified in Scopus® that relate the terms innovation and museums date from 1959, but it is from the end of the 90’s that there is a significant and sustained growth in the number of publications on this subject. For the study period
there is the contribution of authors with more than 5 publications such as María José Garrido, Carmen Camarero Izquierdo and Derek Walker.

The number of times a scientific article is cited in other studies often represents the key indicator in assessing the impact of authors in the field of science in which they are working [49]. In this regard, it is important to highlight the work of authors such as Wolfram Bürgard of the Department of Computer Science of the University Freiburg im Breisgau, Germany with a total of 442 citations of his 1999 article that describes the software architecture of an autonomous tourist guide robot and interactive for museums [50].

In recent years, technology has evolved on a large scale. Game engines have been developed and web platforms have reached their highest levels. This is why it is decided to use this degree of maturity to contribute significantly to the mix of cultural education and education through play. In this sense, the works with greater relevance are oriented to the use of technologies such as augmented reality, virtual reality, human computer interaction and digital storage [24, 25, 44, 48].

An analysis of the output of the keywords identified in the search allows identifying clusters or groups of terms that give light on the orientation of scientific production in this field. It is possible to identify five clusters highlighted with different colors. See Fig. 1.

![Fig. 1. Display of clusters generated in the text body. (Color figure online)](image-url)
3.1 Cluster 1
Identified with the color red groups works around the creation of value in the learning process based on experiences through design thinking, encouraging creativity in the visitor [10, 35, 51–53]. Similarly, these works are related to the concept of sustainability through the use of technology in museums [54–56]. See Fig. 2.

![Fig. 2. Cluster 1 display (Color figure online)](image)

3.2 Cluster 2
Cluster 2, identify with blue color, is formed by works on the advantages that technology generates in the area of museum management and cultural heritage [51, 53, 57] and its contribution to the creation of Science Communication, cyber culture and cultural heritage [58–60]. See Fig. 3.

![Fig. 3. Cluster 2 display. (Color figure online)](image)
3.3 Clusters 3 and 4

Cluster 3, identified by the color green groups publications related to architecture for the storage and management of cultural heritage in museums [61–65]. For its part, cluster 4, identified with the color yellow, brings together works around the use of technological tools such as virtual reality, augmented reality, 3D scanning, cooperative consultation and digital archives, likewise their effect on narratives and user experience [66–69]. See Fig. 4.

3.4 Cluster 5

Finally, cluster 5 identified with the magenta color groups works that deal with aspects related to the creation of cultural identity and the role of new technology in museums, facilitating the creation of digital heritage and collaborative learning [24, 25, 30, 45, 67, 70–72]. See Fig. 5.
3.5 Identification of Trends in the Literature

To identify trends in scientific publications for the body of text analyzed, we made use of a functionality of the overlay visualization tool of the VOSviewer®, which allows to identify by color key, the most recent terms that identify themes in scientific production. A description of the elements identified as a trend in the context of museums is presented below.

- **Branding:** Museums can facilitate the construction of a unique narrative using culture, heritage, innovation, creativity, technology, etc., to create symbolic value over a particular place, city, territory or cultural event. Beyond the place, brand channels, such as the media, disseminate images and sounds, creating and publicizing the brand narrative created by culture [73–76].

- **Library Development:** Innovative personnel and financing strategies will be particularly useful for organizations facing monetary and personnel shortages and highlight collaborative management practices [74, 77].

- **Archaeology:** The use of technological resources at the service of didactic interpretation for educational purposes (APPs, QR codes, VR and AR) that allow the development of virtual archeology (virtual reconstructions and recreations, augmented reality, etc.) through mobile devices. For this, different educational innovation and research projects have been taken into account, based on the visualization, manipulation, classification or construction of virtual objects of an archaeological nature, some of them in the environment of collaborative social networks, which allow creating, pointing out, affirm, argue, search, cite and justify archaeological investigations [78–81].

- **Development and improvement of User Experience:** Creating a pleasant experience in the museum, while providing an experience of entertainment and education, is one of the motivations for the use of technological tools in museums. QR codes, VR and AR type technologies, among others, have always had the attention of industry and users. Due to the influence of science and technology, the projects of new museums and remodeling or development projects of the current ones, go through the use of such tools to improve the user experience [64, 78–81].

- **Teenagers:** Digital technologies can make it easier for museums to promote and create immersive experiences for young audiences. Especially through the use of digital narratives, location-based games and game-based learning [79, 81].

- **Cooperative Inquiry:** Cooperative research (IC) offers important opportunities for the academic world to transform the teaching process with collaborative practices at different levels of education in a variety of disciplines. In the context of museums, it is actually used to develop co-design sessions to devise the interactive experience of the museum [79, 81].

- **User Driven Innovation:** User-driven innovation can generate ideas and contribute significantly to the profitability and success of a company. Users serve as extended endogenous innovation personnel, where behavioral documentation and direct feedback allow proactive changes in products, services and processes, impacting in competitiveness [56, 79, 81, 82].
4 Conclusions

Museums, as active actors in strengthening universal culture and facing their institutional responsibility towards society, have taken on the challenges of the digital era by adopting forms of communication based on highly interactive technological mediations and incorporating innovative interfaces that allow them to remain in the imaginary as an attractive option for new generations.

The incorporation of technologies such as 3D Systems, QR Codes, Smart Glasses, Augmented Reality, and Holographic Computing, among others, have become mechanisms to provide new codes, narrative forms and mediations that strengthen the concepts of inclusion, immersion and participation, which transcend the traditional way of visiting the museum.

Without a doubt, the incorporation of new technologies in the work of museums opens up a wide range of areas of intervention that imply changes in the dynamics of interaction, in institutional processes and, above all, in the user experience.

In this order of ideas, one of the most significant aspects is the generation of knowledge, collaborative learning and the strengthening of culture based on experimentation; Other important aspects to consider are the generation of digital and multimedia content that support the conservation of cultural property and the massification of the work of the museum, overcoming geographical and temporal barriers through the use of technological convergence. Finally, the implementation of technological innovations fosters the creation of new business models based on new forms of interaction, the generation of added values and the monetization of emerging alternatives for assets accessibility.

References

1. Fagerberg, J.: Innovation: A Guide to the Literature, pp. 1–22 (2003)
2. Gómez-Charris, Y., Ovallos, D., Cortabarria, L.: Definición de un perfil que maximice la capacidad innovadora y competitiva en las organizaciones. Caso de aplicación: Sector Muebles Atlántico–Colombia. Rev. Espac. 38(04) (2017)
3. Pérez-Sanagustín, M., Parra, D., Verdugo, R., García-Galleguillos, G., Nussbaum, M.: Using QR codes to increase user engagement in museum-like spaces. Comput. Hum. Behav. 60, 73–85 (2016)
4. Clarke, R., et al.: MyRun: balancing design for reflection, recounting and openness in a museum-based participatory platform. In: British HCI 2015, pp. 212–221 (2015)
5. Correia, N., Mota, T., Nóbrega, R., Silva, L., Almeida, A.: A multi-touch tabletop for robust multimedia interaction in museums. In: Proceedings of the International Conference on Interactive Tabletops Surfaces, pp. 117–120 (2010)
6. Martella, C., Miraglia, A., Frost, J., Cattani, M., van Steen, M.: Visualizing, clustering, and predicting the behavior of museum visitors. Pervasive Mob. Comput. 38, 430–443 (2017)
7. Coelho, A., Costa, L.M.: The integration of augmented reality and the concept of sticker album collection for informal learning in museums. In: Beck, D., et al. (eds.) iLRN 2017. CCIS, vol. 725, pp. 107–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60633-0_9
8. Sanchez, E., Pierroux, P.: Gamifying the museum: teaching for games based ‘informal’ learning. In: Proceedings of the European Conference on Games-Based Learning, Janua, pp. 471–479 (2015)
9. Tian, F., Gatzidis, C., El Rhalibi, A., Tang, W., Charles, F. (eds.): Edutainment 2017. LNCS, vol. 10345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65849-0
10. Kiourt, C., Koutssoudis, A., Pavlidis, G.: DynaMus: a fully dynamic 3D virtual museum framework. J. Cult. Herit. 22, 984–991 (2016)
11. Ahmad, S., Yusof, W.Z.M., Taib, M.Z.M.: Museum learning: using research as best practice in creating future museum exhibition. Procedia - Soc. Behav. Sci. 105, 370–382 (2013)
12. Hazelden, K., Yee-King, M.: WeCurate: multiuser museum interactives for shared cultural experiences. In: CHI 2013, pp. 571–576 (2013)
13. Fillis, I., Lehman, K., Miles, M.P.: The museum of old and new art: leveraging entrepreneurial marketing to create a unique arts and vacation venture. J. Vacat. Mark. 23(1), 85–96 (2015)
14. Kreft, A.: A smartphone app for teenagers: ubiquizzous learning at the german museum of technology. In: Proceedings of the European Conference on Games-Based Learning, Janua, pp. 939–943 (2016)
15. Shih, D.-T., Lin, C.I., Tseng, C.-Y.: Combining digital archives content with serious game approach to create a gamified learning experience. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 40(5W7), 387–394 (2015)
16. Mason, M., Curie, M.: The MIT museum glassware prototype: visitor experience exploration for designing smart glasses. J. Comput. Cult. Herit. 9(3), 1–28 (2016)
17. Gendreau, A.: Museums and media: a view from Canada. Public Hist. 31(1), 35–45 (2009)
18. del Barrio, M.J., Herrero, L.C.: Evaluating the efficiency of museums using multiple outputs: evidence from a regional system of museums in Spain. Int. J. Cult. Policy 20(2), 221–238 (2014)
19. Anuar, I.M.H., Azahari, M.H., Legino, R.: Digital imagery as sustaining online repository for galleries and museum in Malaysia. Adv. Sci. Lett. 22(5–6), 1466–1468 (2016)
20. Ahmad, A.T.: PENANG museums, culture and history. Kaji. Malaysia 33, 153 (2015)
21. Parizi, R.M., Abdullah, A., Ramalingam, H.: Learning of web quality evaluation: a case study of Malaysia National Museum web site using WebQEM approach. In: Tang, S.F., Logonnathan, L. (eds.) Taylor’s 7th Teaching and Learning Conference 2014 Proceedings, pp. 593–608. Springer, Singapore (2015). https://doi.org/10.1007/978-981-287-399-6_52
22. Throsby, D.: The Economics of Cultural Policy. Cambridge University Press, Cambridge (2010)
23. Hess, M., Robson, S., Serpico, M., Amati, G., Pridden, I., Nelson, T.: Developing 3D imaging programmes-workflow and quality control. J. Comput. Cult. Herit. 9(1), 1–11 (2015)
24. Gao, X., Wang, X., Yang, B., Liu, Y.: Design of a computer-aided-design system for museum exhibition based on virtual reality. In: Wang, Y., et al. (eds.) IGTA 2017. CCIS, vol. 757, pp. 157–167. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7389-2_16
25. Beer, S.: Digital heritage museums and virtual museums. In: Proceedings of the 2015 Virtual Reality International Conference, pp. 10:1–10:4 (2015)
26. Badalotti, E., De Biasi, L., Greenaway, P.: The future museum. Procedia Comput. Sci. 7, 114–116 (2011)
27. Chivarov, N., Ivanova, V., Radev, D., Buzov, I.: Interactive presentation of the exhibits in the museums using mobile digital technologies. IFAC Proc. Vol. 46, 122–126 (2013)
28. Wolff, A., Mulholland, P., Maguire, M., O'Donovan, D.: Mobile technology to support coherent story telling across freely explored outdoor artworks. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology - ACE 2014, pp. 1–8 (2014)
29. Ciocca, G., Olivo, P., Schettini, R.: Browsing museum image collections on a multi-touch table. Inf. Syst. 37(2), 169–182 (2012)
30. McGookin, D., Tahirıgöl, K., Vaatinnen, T., Kytö, M., Monastero, B., Vasquez, J.C.: Cultural heritage ‘in-the-wild’: considering digital access to cultural heritage in everyday life. In: CEUR Workshop Proceedings, vol. 2084, pp. 63–75 (2018)
31. Vi, C.T., Ablart, D., Gatti, E., Velasco, C., Obrist, M.: Not just seeing, but also feeling art: mid-air haptic experiences integrated in a multisensory art exhibition. Int. J. Hum. Comput. Stud. 108, 1–14 (2017)
32. Lewis, M., Coles-Kemp, L.: A tactile visual library to support user experience storytelling. In: Proceedings of NordDesign 2014 Conference, NordDesign 2014, pp. 386–395 (2014)
33. Zhong, X., Wu, J., Han, X., Liu, W.: Mobile terminals haptic interface: a vibro-tactile finger device for 3D shape rendering. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10462, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65289-4_35
34. Wang, Q., Wang, K., Hu, R., Du, Y., Suo, X., Xu, P.R.: Design research on the display of revolution museum. In: Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology, EMEIT 2012, pp. 2128–2131 (2012)
35. Kerne, A., et al.: Strategies of free-form web curation: processes of creative engagement with prior work. In: C and C 2017 - Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition, pp. 380–392 (2017)
36. Biella, D., et al.: Crowdsourcing and co-curation in virtual museums: a practice-driven approach. J. Univers. Comput. Sci. 22(10), 1277–1297 (2016)
37. Poole, A.H.: The conceptual landscape of digital curation. J. Doc. 72(5), 961–986 (2016)
38. Dallas, C.: An agency-oriented approach to digital curation theory and practice. In: ICHIM 2007 - International Cultural Heritage Informatics Meeting, Proceedings (2007)
39. Antoniou, A., O’Brien, J., Bardon, T., Barnes, A., Virk, D.: Micro-augmentations: situated calibration of a novel non-tactile, peripheral museum technology. In: Proceedings of the 19th Panhellenic Conference on Informatics, pp. 229–234 (2015)
40. Pedersen, I., Gale, N., Mirza-Babaei, P.: TombSeer: illuminating the dead. In: Proceedings of the 7th Augmented Human International Conference 2016, pp. 24:1–24:4 (2016)
41. Fabola, A., et al.: A virtual museum installation for time travel. In: Beck, D., et al. (eds.) iLRN 2017. CCIS, vol. 725, pp. 255–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60633-0_21
42. Kazanis, S., Kontogianni, G., Chliverou, R., Georgopoulos, A.: Developing a virtual museum for the ancient wine trade in eastern Mediterranean. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42(2W5), 399–405 (2017)
43. Skamantzari, M., Kontogianni, G., Georgopoulos, A., Kazanis, S.: Developing a virtual museum for the Stoa of Attalos. In: 2017 9th International Conference on Virtual Worlds and Games for Serious Applications, VS-Games 2017 - Proceedings, pp. 260–263 (2017)
44. Kotani, M., Goto, K., Toyama, M.: Generating 3D virtual museum using SuperSQL. In: ACM International Conference Proceeding Series, vol. Part F1344, pp. 248–257 (2017)
45. Wang, D.: Exploring a narrative-based framework for historical exhibits combining JanusVR with photometric stereo. Neural Comput. Appl. 29(5), 1425–1432 (2017). https://doi.org/10.1007/s00521-017-3201-7
46. Lai, M.-K.: Universal scent blackbox: engaging visitors communication through creating olfactory experience at art museum. In: Proceedings of the 33rd Annual International Conference on the Design of Communication - SIGDOC 2015, pp. 1–6 (2015)

47. Tzortzi, K., Schieck, A.F.G.: Rethinking museum space: interaction between spatial layout design and digital sensory environments. In: Proceedings - 11th International Space Syntax Symposium, SSS 2017, pp. 31.1–31.15 (2017)

48. Shirai, A., Kose, Y., Minobe, K., Kimura, T.: Gamification and construction of virtual field museum by using augmented reality game ‘ingress,‘. In: Proceedings of the 2015 Virtual Reality International Conference, no. Cc, pp. 4:1–4:4 (2015)

49. Van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)

50. Roussou, M., et al.: Experiences from the use of a robotic avatar in a museum setting. In: Proceedings VAST 2001 Virtual Reality, Archeology, and Cultural Heritage, pp. 153–160 (2001)

51. van der Meij, M.G., Broerse, J.E.W., Kupper, F.: RRI & science museums; prototyping an exhibit for reflection on emerging and potentially controversial research and innovation. J. Sci. Commun. 16(4), 1–24 (2017)

52. Kratz, S., Merritt, E.: Museums and the future of education. Horiz. 19(3), 188–195 (2011)

53. Marchetti, E., Valente, A.: Diachronic perspective and interaction: new directions for innovation in historical museums. Int. J. Technol. Knowl. Soc. 8(6), 131–143 (2013)

54. Paquin, M.: Objets d’apprentissage des musées virtuels du Canada et enseignants francophones du pays: Philosophie d’enseignement et conception du domaine d’enseignement. Can. J. Educ. 36(3), 380–412 (2013)

55. Keane, L., Keane, M.: Eco literacy: an eco web greening public imagination. Des. Principles Pract. 4(4), 93–111 (2010)

56. Ernst, D., Esche, C., Erbslöh, U.: The art museum as lab to re-calibrate values towards sustainable development. J. Clean. Prod. 135, 1446–1460 (2016)

57. Black, G.: Remember the 70%: sustaining ‘core’ museum audiences. Museum Manag. Curatorsh. 31(4), 386–401 (2016)

58. Mello, J.C., Montijano, M.C., Andrade, Â.F., Luz, F.C.: Information systems, cyber culture and digitization of heritage in sergipe: museology on the web. Inf. e Soc. 22(2), 127–138 (2012)

59. de Mello, J.C., Luz, F.C.L., Montijano, M.M.C.L., de Andrade, Â.M.F.: The museology on web: information system about cultural heritage in the digital age. Perspect. em Cienc. da Inf. 20(1), 171–188 (2015)

60. Morlando, G., Guidi, G.: A virtual design museum. In: Eurographics Italian Chapter Conference 2011, pp. 47–51 (2011)

61. Anggai, S., Blekanov, I.S., Sergeev, S.L.: Index data structure, functionality and microservices in thematic virtual museums. Vestn. Sankt-Peterburgskogo Univ. Prikl. Mat. Inform. Protessesy Upr. 14(1), 31–39 (2018)

62. Kahl, T., Iurgel, I., Zimmer, F., Bakker, R., van Turnhout, K.: RheijnLand.Xperiences – a storytelling framework for cross-museum experiences. In: Nunes, N., Oakley, I., Nisi, V. (eds.) ICIDS 2017. LNCS, vol. 10690, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71027-3_1

63. Fumo, M., Naponiello, M.: Aesthetic of historical towns and innovative constructive techniques. In: Improvement of Buildings’ Structural Quality by New Technologies - Proceedings of the Final Conference of COST Action C12, pp. 393–399 (2005)
64. Vermeeren, A.P.O.S., Calvi, L.: How to get small museums involved in digital innovation: a design-inclusive research approach. In: Cultural Heritage Communities: Technologies and Challenges, Faculty of Industrial Design Engineering, TU Delft, Netherlands, pp. 114–131 (2017)
65. Ing, D.S.L.: Innovations in a technology museum. IEEE Micro 19(6), 44–52 (1999)
66. Solima, L., Della Peruta, M.R., Maggioni, V.: Managing adaptive orientation systems for museum visitors from an IoT perspective. Bus. Process Manag. J. 22(2), 285–304 (2016)
67. Gura, C., Wandl-Vogt, E., Dorn, A., Losada, A., Benito, A.: Co-designing innovation networks for cross-sectoral collaboration on the example of exploreAT! In: ACM International Conference Proceeding Series, vol. Part F132203 (2017)
68. Della Corte, V., Aria, M., Del Gaudio, G.: Smart, open, user innovation and competitive advantage: a model for museums and heritage sites. Museum Manag. Curatorsh. 32(1), 50–79 (2017)
69. Recuero Virto, N., Blasco López, M.F., San-Martín, S.: How can European museums reach sustainability? Tour. Rev. 72(3), 303–318 (2017)
70. Flores, P., Crawford, L.: Museo del Caribe en Barranquilla: la identidad regional en el espacio del simulacro*/Caribbean Museum in Barranquilla: regional identity in the space of simulacrum. Co-herencia 8(14), 183–205 (2011)
71. Belinky, I., Lanir, J., Kuflik, T.: Using handheld devices and situated displays for collaborative planning of a museum visit. In: Proceedings of the 2012 International Symposium on Pervasive Displays, pp. 19:1–19:6 (2012)
72. Zhang, P., Tian, J., Zhang, H.F., Zhang, P.B.: Application of design education for the construction of a museum: a case study of Heifei University of Technology, China. In: ACM International Conference Proceeding Series, pp. 57–61 (2018)
73. Kochergina, E.: Urban planning aspects of museum quarters as an architectural medium for creative cities. IOP Conf. Ser. Mater. Sci. Eng. 245(5), 052031 (2017)
74. Miller, A.: Innovative management strategies for building and sustaining a digital initiatives department with limited resources. Digit. Libr. Perspect. 34(2), 117–136 (2018)
75. Khan, H.-U.: Because we can: globalization and technology enabling iconic architectural excesses. Int. J. Islam. Archit. 7(1), 5–26 (2018)
76. Justice, S.C.: UNESCO global geoparks, geotourism and communication of the earth sciences: a case study in the Chablais UNESCO Global Geopark, France. Geoscience 8(5), 149 (2018)
77. Hvenegaard Rasmussen, C.: The participatory public library: the Nordic experience. New Libr. World 117(9–10), 546–556 (2016)
78. Li, P.-P., Chang, P.-L.: A study of virtual reality experience value and learning efficiency of museum-using Shihsanhang museum as an example. In: Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, pp. 1158–1161 (2017)
79. Cesário, V., Matos, S., Radeta, M., Nisi, V.: Designing interactive technologies for interpretive exhibitions: enabling teen participation through user-driven innovation. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishnan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10513, pp. 232–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67744-6_16
80. Camarero, C., Garrido, M.-J., Vicente, E.: Does it pay off for museums to foster creativity? The complementary effect of innovative visitor experiences. J. Travel Tour. Market. (2018)
81. Cesário, V., Coelho, A., Nisi, V.: Enhancing museums’ experiences through games and stories for young audiences. In: Nunes, N., Oakley, I., Nisi, V. (eds.) ICIDS 2017. LNCS, vol. 10690, pp. 351–354. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71027-3_41

82. Ovallos-Gazabon, D., et al.: Using text mining tools to define trends in territorial competitiveness indicators. In: Figueroa-Garcia, J.C., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A.D., Diaz-Gutierrez, Y. (eds.) WEA 2019. CCIS, vol. 1052, pp. 676–685. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31019-6_57