Ab initio electronic stationary states for nuclear projectiles in solids

Jessica F. K. Halliday, Marjan Famili, Nicolò Forcellini, and Emilio Artacho

1 Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave, Cambridge CB3 0HE, United Kingdom
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3 CIC NanoGUNE BRTA and DIPC, Tolosa Hritibidea 76, 20018 San Sebastian, Spain
4 Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
(Dated: November 3, 2022)

The process by which a nuclear projectile is decelerated by the electrons of the condensed matter it traverses is currently being studied by following the explicit dynamics of projectile and electrons from first principles in a simulation box with a sample of the host matter in periodic boundary conditions. The approach has been quite successful for diverse systems even in the strong-coupling regime of maximal dissipation. This technique is here revisited for periodic solids in the light of the Floquet theory of stopping, a time-periodic scattering framework characterizing the stationary dynamical solutions for a constant velocity projectile in an infinite solid. The effect of proton projectiles in diamond is studied under that light, using time-dependent density-functional theory in real time. The Floquet quasi-energy conserving stationary scattering regime, characterized by time-periodic properties such as particle density and the time derivative of energy, is obtained for a converged system size of one thousand atoms. The validity of the customary calculation of electronic stopping power from the average slope of the density-functional total energy is discussed. Quasi-energy conservation, as well as the implied fundamental approximations, are critically reviewed.

I. INTRODUCTION

The quantum dynamical processes established by a swift nucleus traversing condensed matter give rise to one of the most canonical problems in non-equilibrium quantum physics. The projectile slows down when interacting with the degrees of freedom of the condensed matter host, which effectively provide a bath for what is in effect quite a paradigmatic quantum friction problem. In addition to its fundamental interest, the problem is of applied interest in the contexts of nuclear energy [1], space radiation [2] and medical applications such as radiation poisoning and cancer radiotherapy [3].

There are different regimes mostly depending on the charge and the speed of the projectile [4,5]. For a projectile velocity $v_p \gtrsim 1$ atomic unit (1 a.u. $\approx c/137$, being c the speed of light in vacuum), the projectile energy is transferred mostly to the electrons of the host, in what is called an electronic stopping process. The dissipation of projectile kinetic energy induced by a homogeneous electron liquid (jellium) offers a very appealing model system for such friction, in some sense a fermion counterpart to the Caldeira-Leggett quantum friction paradigm [6]. This theory was initially approached in the low-velocity limit [7,9], and it proved very successful in the description of the Stokes friction regime in simple metals. It was later extended to finite velocity [10,13], or, still in the $v \rightarrow 0$ limit, to non-homogeneous metals [14].

The importance of radiation damage in various technological contexts has given rise to a demand for estimation of electronic stopping power (S_e, the energy transfer rate from the projectile to the matter electrons) for materials beyond simple metals. This need has been addressed by Lindhard's linear response formulation for decades [15-18]. It is a general approach, allowing, in principle, for any kind of host matter, and amenable to first-principles computations [19,20]. It is, however, limited by its fundamental assumption of a weak perturbation.

Such limitation was overcome with the advent of direct numerical simulations in real time, replicating the dynamical process computationally, where a projectile is placed within a large simulation box of the host matter, normally in periodic boundary conditions, and dragged across the box at a given velocity while propagating the time-dependent Schrödinger equation in discretised real time, monitoring the electronic energy, density and wave-functions. This is done both at an empirical tight-binding level [21,22] and from first-principles using time-dependent density-functional theory (TDDFT) [23-42], achieving considerable success in the calculation of electronic stopping power for problems clearly beyond previous theoretical approaches.

Although convergence with respect to technical approximations has been thoroughly explored [43], including simulation-box finite-size convergence, the direct simulation approach rests on the assumption that the stationary regime expected for an isolated constant-velocity projectile is well approximated by the seemingly stationary situation obtained in the simulations. By stationary we mean the regime in which the stopping power and deformation density (among other quantities) are time-periodic as the projectile travels along a space-periodic trajectory in the host crystal.

Such stroboscopically stationary states have been the direct object of a Floquet theory of electronic stopping [44,45], which exploits the underlying discrete translational invariance in space-time for a single constant-velocity projectile moving along a space-periodic trajectory in an infinite crystal. The time-periodic deformation density and stopping power obtained from the Floquet
modes should be reached in the long time limit (always assuming constant projectile velocity). The finite periodic simulation boxes used in the direct approach cannot aim for the long time limit, however, since after some time, the projectile re-enters the already excited box from the back, or, more generally, the effect of periodic replicas of the projectile start to affect each other’s dynamics, and the simulation is no longer describing what intended. The aim is therefore for times long enough to establish a (stroboscopically) stationary single-projectile regime, but short enough that the respective perturbations associated to the each of the periodic replicas of the projectile do not have the chance to interact.

It is not known how to determine whether such a regime is reached for any particular system and velocity. The existing studies to date heuristically assess the calculations and validate the achievement of that regime by comparing with the experimentally obtained electronic stopping power. This work aims for a better assessment and characterization of the stroboscopically stationary regime in direct simulations of bulk diamond irradiated with protons along (100), (110), and (111) high symmetry channels, with calculations reaching up to a thousand atoms. After assessing the electronic stopping power by validating the electronic stopping power, a discussion of the Floquet theory interpretation of the results is presented, and its pertinence is validated by the obtained stationarity of the relevant quantities. Several key approximations are implied in both the real-time simulations and the Floquet theory of stopping, such as classical nuclei, and a constant-velocity projectile. They are well justified in relevant physical regimes, and widely used in the community, as already discussed in previous literature. Given their relevance to the topic of this paper, a critical review of the fundamental approximations is presented in the Appendix. Finally but importantly, a justification of the customary way of obtaining \(S_e \) in real-time TDDFT simulations as the average slope of the corresponding DFT energy is presented as well in Section 111B.

II. METHOD

Electronic excitation characteristics (electronic stopping power, particle deformation density and related) for a proton traveling at constant velocity across bulk diamond are calculated using time-dependent density-functional theory [40] propagating in discretized real time [47]. The adiabatic local-density approximation (ALDA) is used for the exchange-correlation potential, by which the potential at any given time is obtained from the particle density at the time (thereby neglecting memory effects, the non-locality of its time dependence), and it is also taken in its local-density version (LDA) as parametrized by Perdew and Zunger [48]. Comparisons with other exchange-correlation functionals have been performed for other systems elsewhere (see e.g. [49]) and they are of no consequence to this study.

A proton is located at an initial position within a simulation box containing a sample of the material in periodic boundary conditions. A conventional DFT calculation is first performed to obtain the initial Kohn-Sham wavefunctions. They are then propagated in discretised time using a Crank-Nicolson integration algorithm [47], while the proton is moved at a constant velocity through the simulation box. The electronic stopping power \(S_e \) is then obtained as the average slope of the LDA energy as the projectile moves along its trajectory [23–42].

The TDDFT implementation [50] of the SIESTA code is used [51–54]. The publicly available open-source version of the program was used as in its master branch, commit 6c3c0249 of 29 January 2021, accessible in https://gitlab.com/siesta-project. All technical details and approximations (double-\(\zeta \) or DZP basis, norm-conserving pseudopotentials) are the same as used in [42] which simulated protons through graphite. The basis set moving with the atoms (in this case the projectile) imposes consideration of an evolving basis and Hilbert space [54]. The particulars are also as in Ref. [42]. The simulation box for the diamond sample is a \(5 \times 5 \times 5 \) supercell of the conventional cubic diamond cell of 8 atoms, amounting to a cubic box with 100 C atoms (plus one H projectile). The lattice parameter used was 3.567 Å.

III. RESULTS AND DISCUSSION

A. Stopping power for protons in diamond

Figures 2 and 3 show the results of the calculation of the electronic stopping power \(S_e \) for protons in diamond as a function of the projectile velocity, obtained as explained in the Method Section, essentially following Refs. [23–42]. In this work we concentrate on velocities below the Bragg peak, a velocity range already well into the non-adiabatic regime, but still sensitive to the electronic structure of the host material (Bragg peak in the sense of the maximum in the \(S_e(v) \) curve, instead of...
FIG. 2. Electronic stopping power S_e versus proton velocity in diamond and graphite. Simulation results for the [100] channelling trajectory in diamond (red squares) are compared with the experimental results of Ref. [56] for diamond (black squares) alongside a similar comparison for simulation results in graphite (parallel and perpendicular to graphitic planes, triangles and rhombi, respectively) from Ref. [42], and corresponding experimental values from the same experimental paper [56] (circles).

The conventional meaning of the maximum of S_e versus penetration; we will use the former meaning henceforth). This is apparent in Fig. 2, where the calculated S_e for diamond (red squares) is compared with the results for graphite of Ref. [42] (blue and green) and both are compared with the respective experimental results of Ref. [56] (black and purple). The anisotropy in graphite gives rise to a wide band of theoretical values, already discussed in Ref. [42]. However, they still allow to replicate the experimentally observed tendency towards larger stopping power for diamond for $v_p \sim 1$ a.u.

Furthermore, the theoretical results display a crossover of the stopping powers where $S_e^{\text{diamond}} < S_e^{\text{graphite}}$ at lower velocities. This is a result of the threshold behavior, expected and apparent for diamond due to its large band gap. This fact cannot be validated with the available experimental data, but it does seem plausible given what is known for other large-band-gap insulators [23, 57–59]. The anisotropy in S_e in diamond is less pronounced than in graphite, as shown in Fig. 3, which is again expected, in spite of the fact that the channels considered are quite different (e.g., electronic density).

Detailed linear-response analysis on the variability of S_e for different allotropes of C and different trajectories can be found in Ref. [60]. This work is about stationary states along channels, and what shown in Figs. 2 and 3 is sufficient for supporting the analysis and conclusions of this paper.

The results of Figs. 2 and 3 are obtained by performing simulations at fixed v_p, and obtaining the instantaneous stopping power from

$$S_e(t) = \partial_t E_{\text{ALDA}}(t)/v_p,$$

as displayed in Fig. 4 versus projectile position, for a particular v_p value. The $S_e(t)$ profile in the figure includes an initial interval showing a transient response to the abrupt start of the projectile, which largely disappears within the first 2 Å, except for a smaller, more persistent oscillating transient. After the initial response, the steady state is quickly established. The steady state oscillation gives a constant enough average to allow extracting the S_e values for each projectile velocity, as are displayed in Figs. 2 and 3.

The range of velocities for which calculations have been performed is the one optimizing the likelihood to obtain a good characterization of a steady state for the single-projectile problem, which is the aim of this study. For larger velocities the projectile traverses the cell in too short a time for the transient to disappear. We have gone up in velocity for our results to connect with experimental values, for validation, but not beyond (it represents a substantial computational effort). In the low velocity limit the perturbation has time enough to propagate among periodic replicas, towards saturation (see Section IIID).
B. Validity of S_e from $\partial_t E_{\text{ADFT}}$

Extracting the electronic stopping power S_e from Eq. (1) as done in the previous subsection, has been routinely done in TDDFT simulations of stopping using adiabatic forms of the exchange and correlation functional (ADFT) [23–42], since their beginning [23]. It is a sensible approach, which has been supported by agreement with experiments and by a conservation argument [61]. To our knowledge, however, it has not been more formally justified so far, which we do here.

It is indeed quite a different approach to the ones in the pre-existing literature, most prominently, the one based on scattering theory in jellium [22] and its generalisations [10,13,44]. There, S_e is given essentially by stating the energy transfer rate for each incoming state i (occupied in the lab frame) as

$$\partial_t E_i = n_i \sum_o (\epsilon_o - \epsilon_i) |S_{i\rightarrow o}|^2 v_o$$

where ϵ_i and ϵ_o are the respective single-particle energies of incoming and outgoing waves in the lab frame, $S_{i\rightarrow o}$ is the scattering amplitude for that process, v_o the outgoing group velocity, and n_i the incoming density, all now in the projectile frame. The stopping power then follows summing over all scattering processes from all the incoming occupied states to compatible unoccupied states in the lab frame divided by the projectile velocity for conversion, as $S_e \sim (\sum_i \partial_t E_i)/v_p$.

Although perfectly sound and valid for independent electrons, such an expression for S_e within a DFT framework relies on the relation between the total electronic energy and the single-particle Kohn-Sham eigenvalues. That connection is made through Janak’s theorem [62], but, as it is well known in the context of the insulator band-gap problem [63], it implies a further approximation, especially for non metals. This is elegantly shown in Ref. [19], where a correct expression is presented in the same vein using TDDFT in the frequency domain for the low-projectile-velocity limit in metals. A further many-electron term is there shown to appear for the correct stopping power expression for a given XC functional.

The S_e calculation in real-time TDDFT simulations as extracted from Eq. (1) is not limited to low-velocity projectiles or metals. Its justification can be seen as follows. TDDFT with the exact XC (and with proper account of the initial state) would give the exact evolving particle density $n(\mathbf{r}, t)$, in addition to the relevant action [10,64]. TDDFT also states that any physical property would be expressible as a functional of that density, although, a priori, the expression of that functional would not be known in general.

However, the functional for the electronic stopping power is known. It is nothing but the net force on the projectile [61,65], suitably averaged along the trajectory (and over different trajectories depending on the experimental conditions). As long as the potential V_{ext} describing the interaction between each electron and the nuclei is local, which is a pre-requisite for TDDFT (and DFT in general), the instantaneous force on the projectile due to the electrons is simply

$$\mathbf{F}_p(t) = -\int d^3 \mathbf{r} \ n(\mathbf{r}, t) \ \nabla_p V_{\text{ext}} ,$$

where V_{ext} is the single-particle external potential acting on electrons, due to nuclear attractions and other possible external fields. This expression is obtained very generally for Ehrenfest dynamics using Newton’s law for the classical evolution of the nuclei and TDDFT for the quantum evolution of electrons [60,65]. In our case, for a classical nuclear projectile of constant velocity and other classical nuclei at rest, it is easy to corroborate, given the evolution of the electronic energy

$$\partial_t E_e = \partial_t \langle \Psi | H | \Psi \rangle = \langle \Psi | \partial_t H | \Psi \rangle = \mathbf{v}_p \cdot \langle \Psi | \nabla_p H | \Psi \rangle = \mathbf{v}_p \cdot \int d^3 \mathbf{r} \ n(\mathbf{r}, t) \ \nabla_p V_{\text{ext}} = -\mathbf{v}_p \cdot \mathbf{F}_p$$

for any \mathbf{v}_p, and where we have used $|\Psi\rangle$ for the exact evolving electronic state and H for the electronic Hamiltonian, which fulfill $H|\Psi\rangle = i\hbar \partial_t |\Psi\rangle$, and the fact that the only explicit time-dependence in the electronic Hamiltonian is given by the motion of the projectile. Therefore, a trajectory average of the force in Eq. (3) gives the electronic stopping power S_e within TDDFT and the approximations described so far.

Most of the electronic stopping power evaluations in direct real-time TDDFT simulations resort to the electronic energy directly [23–42], by extracting S_e from the average slope of the electronic energy as the projectile progresses, as in Eq. (1). For the adiabatic functionals they use, the electronic energy is what given by the corresponding time-independent density functional for the
instantaneous density, in this case LDA. In that sense,
\[E_{\text{ADFT}} = E_{\text{LDA}}[n(r,t)] \]
is taken as the functional of the density for \(\langle \Psi(t)|H(t)|\Psi(t) \rangle \), using the nomenclature of Eq. (4). Firstly, it leads to the consistently correct adiabatic energy in the \(v_p \rightarrow 0 \) limit. Secondly, for any adiabatic time-dependent XC functional the XC action can be expressed as

\[A_{xc}[n(r,t)] = \int dt E_{xc}[n(r)](t) \]

and then, the quantity

\[E_{\text{tot}} = E_{\text{ADFT}} + T_N + \sum_{I,J<I} Z_I Z_J R_{IJ} \]
is shown to be conserved in Ehrenfest dynamics [66, 67, 69], where \(T_N \) stands for the nuclear kinetic energy. From Eq. (4), it can be seen that the calculation of \(S_e \) from the slope of the electronic energy and from the force as in Eq. (3) are equivalent. Therefore, a calculation of \(S_e \) based on Eq. (1) is well supported by TDDFT, and gives the correct value within the theory defined by the chosen XC, as long as it is an adiabatic functional. If the non-locality in time is considered, Eq. (1) should not be used, but rather \(S_e \) should be extracted from the average force on the projectile, Eq. (3).

C. Steady state

The Floquet theory of electronic stopping [44, 45] describes the stationary state for a single projectile at constant velocity the approximations and assumptions implied, such as a non-relativistic classical nuclear projectile and constant velocity, are critically reviewed in the Appendix, while size effects in the approach to an apparent stationary state are reviewed in [61]. It is a stroboscopically stationary state, meaning that properties that do not scale with the size of the system are invariant when looked at times separated by a time period \(\tau = a/v_p \), where \(a \) is the lattice parameter of the one-dimensional lattice along the rectilinear projectile trajectory. The particle density \(n(r,t) \), the force opposing the projectile motion \(F_p(t) \), and, therefore, the electron energy excitation rate, \(\partial_t E_e = v_p S_e \), are all stroboscopically stationary quantities, both in an exact solution and within our ALDA approach.

Since the time average of \(\partial_t E_e \) is not zero, the electronic energy itself steadily grows, and it is therefore not a stroboscopically stationary property. This is compatible with Floquet theorem since it is an infinite open system. It is analogous to a scattering problem in general, and to the stopping problem in jellium, in particular, which is time independent, with constant \(S_e \) and therefore increasing \(E_e \). There are properties relating to the Kohn-Sham single-particle states that are also stroboscopically stationary [70], but we concentrate here on energy, density and forces.

Figure 4 clearly displays the described expectation for \(\partial_t E_e \) after the transient, an oscillatory behavior for, in this case, the time derivative of the electronic energy, with the expected period (the lattice parameter along [100] is \(a = 3.567 \text{ Å} \), the projectile passing close to a C atom every \(a/4 = 0.89 \text{ Å} \), which perfectly conforms with the observed periodicity). Fig. 5 shows the repetition
of the dynamical deformation density at equivalent proton positions (and corresponding times) in the diamond crystal, for the projectile moving at \(v_p = 1 \text{ a.u.} \) along the [110] direction. The dynamical deformation density is defined as

\[
\delta n^{\text{dyn}}(r, t) = n(r, t) - n^a[r, \{R_f(t)\}]
\]

\(n(r, t) \) being the dynamical electron density, and \(n^a[r, \{R_f(t)\}] \) the corresponding adiabatic electron density, meaning the one corresponding to the electronic ground state for the nuclei at their \(R_f \) positions at time \(t \).

There are depictions in the literature of the wake of the projectile in terms of maps of the density or the deformation density (see e.g. very early sets in Refs. [21] [22] for jellium, and also for metals such as in the cover of the issue for Ref. [21] and in Refs. [36] [61] for example). A comparative wake analysis for different velocities, directions, and materials would be of interest. It is, however, beyond the scope of this work: our focus is on the stroboscopic stationarity of the density as key magnitude in first-principles calculations of these processes. The key comparison is therefore between the upper and lower panels of Fig. 6. Indeed, the deformation density pattern is very rich and intricate, and the similarity under translation is remarkable.

For a more quantitative assessment, Fig. 6 shows the same deformation density along the projectile path at different projectile positions that are crystallographically equivalent, taking the projectile position as reference for better comparison. It is shown for low (0.1 a.u.) and high (1.0 a.u.) velocity. It can be seen how the deformation tends to stabilise in the latter positions, once the projectile has approached the stationary state. It can be appreciated that the stationarity is only approximate, with small differences between the last two points, points 4 and 5 (spiky features in the lower panel relate to the real-space discretisation inherent to the SIESTA method [53]).

D. Saturation

For the single-projectile problem, the Floquet stationary solutions would be reached in the long-time limit (if at all). It should be noted, however, that in the periodically repeated projectile simulations described in Sections I and IIA in the long-time limit, a different regime is to be expected. It is also a periodic problem, but one in which, due to its effective finite size (or finite host size per projectile), Floquet modes would be expected for which the electronic energy itself (not its flux) would be periodic, and, therefore, the oscillating \(S_e(t) \) would average to zero. Physically, since projectile replicas pump energy into the host electronic system everywhere, the system should reach a saturated periodic state, as described for finite Floquet systems (see for instance [23] [24]), in which energy would be transferred back and forth between the projectile lattice and the electrons. It is not a regime of interest to the single-projectile problem, but can be rather considered as a finite-size effect, and the simulation box size is normally increased when hints of saturation appear before a meaningful description of the intended phenomena is reached. Saturation will not be characterised here, beyond illustrating its onset in Fig. 7.

The calculation of \(S_e \) and characterisation of processes of electronic stopping of projectiles by means of direct computation in a finite simulation box relies on the system reaching a regime in which the effect of other projectile replicas is still not felt by a given projectile (finding a “fresh” host as it moves). Each replica hence approximately behaves as a single projectile, and, therefore, could achieve the stationary regime predicted by the Floquet theory of stopping [44], before the effect of other projectiles is felt (e.g. by re-entering the cell, or
energy irradiation from other replicas reaching the one being followed).

The sweet spot is therefore in the interval between the end of the initial transient and the onset of saturation, as illustrated in Fig. 7. It is so far hard to foretell the duration, and even the existence, of such a regime. It will depend on the projectile velocity and kind of host, as well as the type of start (smooth vs instantaneous). So far, it is addressed as a technical system-size convergence problem (see a discussion on this in [34]), and, so far, this community has been fortunate in finding most situations amenable to feasible computation.

A more fundamental problem, however, is, once a stable oscillation is found, to ascertain whether what observed really corresponds to the actually sought Floquet stationary regime of the stopping problem. The “thermalisation” of such a system into the steady non-equilibrium regime does not appear to be a trivial problem. Some correlated systems are known not to thermalise to equilibrium while stuck in a many-body localised state [75–77]. In the strongly out of equilibrium problem presented by electronic stopping in various kinds of solids we are not aware of any way of ascertaining on reaching the relevant steady state. Helpful here would be the calculation of the Floquet stationary state directly on a TDDFT implementation of the scattering Floquet theory of stopping, analogous to what accomplished in Ref. [55] for a tight-binding Hamiltonian. That should be the focus of further work.

IV. CONCLUSIONS

Based on results for the electronic stopping power for protons in diamond, the results of such simulations are analyzed in the light of the stroboscopic stationary states predicted by the recent Floquet theory of stopping. The predicted Floquet solutions for the electronic excitation by a projectile are distinguished from the ones expected for a lattice of projectiles, the latter corresponding to the actual supercell calculations, the former to the physical process of interest.

The intermediate regime between the initial transient behavior due to the start of the projectile motion and the onset of saturation is shown to reflect the stroboscopic stationary state of the single projectile, and the stationary character is tested quantitatively. The results for S_e and particle density for protons in diamond display remarkable stroboscopic invariance of both magnitudes in that regime.

The average of $\partial_t E_e/v_p$ is shown to give the correct electronic stopping power S_e, within TDDFT, supporting the way it has been calculated in many electronic stopping studies, but only for adiabatic time-dependent exchange-correlation functionals. For density functionals beyond that approximation (contemplating the non-locality of the time dependence), the force on the projectile should be used instead.

ACKNOWLEDGMENTS

We are grateful to N. Koval and D. Muñoz-Santiburcio for their help with securing and managing the computational resources needed for this project. J. F. K. Halliday would like to acknowledge the EPSRC Centre for Doctoral Training in Computational Methods for Materials Science for funding under grant number EP/L015552/1. E. Artacho and M. Famili acknowledge funding from the Leverhulme Trust, under Research Project Grant No. RPG-2018-254, E. Artacho is grateful for funding from the EU through the ElectronStopping Grant Number 333813, within the Marie-Sklodowska-Curie CIG program, and by the Research Executive Agency under the European Union’s Horizon 2020 Research and Innovation programme (project ESC2RAD, grant agreement no. 776410). Funding from Spanish MINECO is also acknowledged, through grant FIS2015-64886-C5-1-P, and from Spanish MICIN through grant PID2019-107338RB-C61/AEI/10.13039/501100011033, as well as a María de Maeztu award to Nanogune, Grant CEX2020-001038-M funded by MCIN/AEI/ 10.13039/501100011033. Computational time from CCSD3, the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by the Engineering and Physical Sciences Research Council Tier-2 (capital Grant No. EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council. We also acknowledge the Partnership for Advanced Computing in Europe, PRACE, for awarding us access to computational resources in Joliot-Curie at GENCI@CEA, France, under EU-H2020 Grant No. 2019215186.
Appendix: Review of fundamental approximations

The technical approximations for the direct simulation of electronic stopping processes have been studied before [43]. Here we review the more fundamental ones underlying the mentioned studies and this one. As mentioned, they follow the electronic dynamics under the time dependent external potential originated by the nuclei of both the static host atoms and the mobile projectile. It is done for a finite box in periodic boundary conditions. As such it is a well defined time-dependent quantum problem for the electrons, but its relevance for the real problem relies on several basic approximations and assumptions, as follows.

1. Non-relativistic quantum mechanics

The described simulations are based on non-relativistic quantum mechanics, except for relativistic corrections possibly included in the pseudopotentials when containing high-velocity core electrons. A relativistic treatment of stopping is known to be needed in the high velocity regime, well beyond the Bragg peak [4], but the calculations discussed here are normally done for projectile velocities up to and around the Bragg peak. For light projectiles the Bragg peak is at around 2 a.u. of velocity. Considering that the velocity of an electron out of a collision with the projectile would be \(v_e \lesssim 2v_p \) (equality for a classical head-on collision with a heavy projectile), taking \(v_e = 4 \) a.u., gives a kinetic energy of \(T = 217.6 \) eV (with a relativistic correction \(\Delta T = T_{rel} - T_{nr} = 140 \) meV). That kinetic energy is smaller than the one of a 2p electron in an aluminium atom (\(\sim 270 \) eV), for which relativistic corrections are well known to be quite unnecessary for most practical purposes of electronic structure.

The assumption should be taken with care for high-charge projectiles, however. The Bragg peak goes up to and beyond \(v_p \sim 10 \) a.u., and an electron with \(v_e \sim 20 \) a.u. has a kinetic energy of \(T \sim 5.5 \) keV, (with \(\Delta T \sim 90 \) eV), comparable to much deeper core states for which relativistic corrections are known to be significant. Core states, especially of the projectile, are known to deform significantly in the stopping process, away from the free atom reference [41], implying that explicitly relativistic calculations could be needed when facing the dynamical problem including those core electrons. It should be kept in mind that in those cases, the core electrons significantly perturb from their usual atomic state, rendering many all-electron approaches, such as the augmented plane-wave (APW) [78] or the projector augmented wave (PAW) [79] methods, no suitable for the problem, which demands flexible, non-spherical treatment of the relativistic Dirac problem.

2. Classical nuclei

The approach assumes classical nuclei, which, together with the quantum electrons define Ehrenfest dynamics. It is known that beyond-Ehrenfest approaches are needed for the correct long-time thermalisation of the excess energy accumulated in the host [68, 80–82]. Essentially, the spontaneous emission of phonons is a thermalisation channel that is closed if the quantum fluctuations of nuclear motion are not included. They are much more important for the electronic energy uptake from the projectile motion in the short time scale [83, 84], which is the focus of this and similar electronic stopping studies. Simulating beyond Ehrenfest, including quantum fluctuations for the nuclear motion, is doable, although considerably more costly computationally. The most popular approaches are based on the surface hopping method and variants thereof [55, 80], but they are generally and better devised for finite systems with well separated potential energy surfaces, unlike the continuum of excitations encountered in the electronic stopping problem. More suitable would be the coupled-electron-ion dynamics approach of [80], and the many-trajectory sampling with Bohmian dynamics of [87, 88], although the computational effort is hugely increased. Recent progress in exact factorization techniques [81, 89] also offers interesting possibilities. To our knowledge, a quantitative assessment of such effects in electronic stopping is still lacking.

3. Constant projectile velocity

In most electronic stopping theory and simulation studies the projectile is taken to travel at constant velocity. It is quite a tradition in the field due to the fact, on one hand, that it is inherent to prevalent theories, both in linear response [15, 20], and in the non-linear theory based on a Galilean transformation to the constant-velocity reference frame sitting on the projectile [7, 9, 44]. On the other hand it is also handy for its applicability in radiation damage, where the velocity-dependence of the electronic stopping power is very generally used. It is of course an approximation (see a general assessment in Ref. [61]), the projectile slowing down with a net deceleration of magnitude \(a = S_c/m_p \). The maximum deceleration would happen for velocities around the Bragg peak. With \(S_c \sim 13 \) eV/Å, for example for protons in diamond, it amounts to \(a = 1.4 \cdot 10^{-4} \) a.u. Across the 33.7 Bohr simulation box in the calculations described above, within which the steady stopping regime seems to be well established, an initial velocity of 2 a.u. would diminish by \(4.7 \cdot 10^{-3} \) a.u., or 0.24 %. Similarly, trajectory deflection is negligible except for very small impact parameters. This consideration connects with the trajectory sampling problem, which has been discussed at length (see e.g. [61] and references therein), including studies with full Ehrenfest dynamics, which allow for slowing down and deflection of the projec-
tile. For the purposes of this study, however, a constant velocity along high-symmetry channels is considered, as it is a problem that is particularly suited for the intended analysis.

4. Electron exchange and correlation

The electron-electron interaction and correlation in direct electronic stopping simulations is normally considered within time-dependent density-functional theory (TDDFT) [44], which is, in principle, exact, except for the approximate exchange-correlation (XC) potentials used. So far, and to our knowledge, potentials without history dependence have been used (local in time), assuming locality in space as well (local-density approximation, LDA) or generalised gradient approximations (GGA), such as PBE [90]. History dependence is included in Ref. [19] via linear-response TDDFT in the low-velocity regime. There is quite a scope for improvement on this front, both in the space and time dependence of the XC potential, although work so far, including validation with experiments, does not point to XC errors as prominent, within the kind of simulations studied here. The approximation is discussed in some depth for the electronic stopping problem in [91, 92]. The work in Refs. [14, 19] point in the direction of time-dependent current density functional theory as a very promising route to capture the non-localities of space and time in a much more physically meaningful manner. Here we still use the adiabatic LDA approximation (ALDA) and focus on other issues.

5. Conservation

It is important to clarify here some notions on energy conservation. Starting from the obvious, the dynamics of the projectile itself is dissipative under the friction provided by the degrees of freedom of the host, while the dynamics of the whole, projectile plus host electrons and nuclei conserves the total energy. As mentioned above, the latter conservation is kept within Ehrenfest dynamics, with quantum electrons and classical nuclei. Also obviously, the constant-projectile-velocity problem is not conservative, the constraining force acting on the projectile to keep its constant velocity generating a work that increases the energy of the host.

A change of reference frame modifies the energetics. For the particular case of a jellium host, a change of reference frame was central to the jellium non-linear theory of electronic stopping [7]. It was changed from the reference in which the electron liquid is at rest (equilibrium, the laboratory frame) to the one sitting on the projectile. The Galilean boost transforms the problem of a projectile through an homogeneous electron liquid in equilibrium into that of an impurity in the homogeneous electron liquid sustaining a current equal to \(-n v e\), where \(e\) is the charge of the electron, and \(n\) is the constant particle density of the liquid. Again the system can be seen as conservative when following the dynamics of all particles, but also as dissipative inasmuch the electron scattering off the impurity transforms part of the energy associated to the current into heat.

It is important to distinguish the above discussion from what happens in each one of the single-particle scattering events, or the scattering of each of the auxiliary fermions in the Kohn-Sham problem in DFT. Still in the jellium case, each one of those processes is conservative in the projectile reference frame: a quantum particle scattering off the impurity transforms part of the energy associated to the current into heat.

When changing to the laboratory frame, however, energy is transferred on each event from the moving projectile scatterer to the scattered electron, making it non conservative. This consideration is what gives rise to the stopping power obtained as derived from Eq. (2). The same discussion is generalised beyond jellium to a constant velocity projectile moving along a periodic trajectory in a crystalline solid. The Kohn-Sham scattering events conserve Floquet quasi-energy in the projectile reference frame [14], and a Galilean boost to the laboratory frame breaks that conservation, in perfect analogy to (generalisation of) the jellium case.

[1] R. E. Nightingale, Nuclear graphite, Academic Press, London and New York (1962).
[2] M. Bagatin and S. Gerardin, Ionizing radiation effects in electronics: From memories to imagers, CRC Press, Taylor and Francis, Boca Raton (Florida, USA) (2016).
[3] W. P. Levin, H. Kooy, J. S. Loeffler and T. F. DeLaney, Proton beam therapy, British J. Cancer 93(8), 849 (2005), doi:10.1038/sj.bjc.6602754.
[4] P. Sigmund, Particle penetration and radiation effects, Springer International Publishing, Berlin (2006).
[5] P. Sigmund, Particle penetration and radiation effects volume 2, Springer International Publishing, Berlin, doi:10.1007/978-3-319-05564-0 (2014).
[6] A. O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys. Rev. Lett. 46(4), 211 (1981).
[7] P. Echenique, R. Nieminen and R. Ritchie, Density functional calculation of stopping power of an electron gas for slow ions, Solid State Commun. 37(10), 779 (1981).
[8] P. M. Echenique, R. M. Nieminen, J. C. Ashley and R. H. Ritchie, Nonlinear stopping power of an electron gas for slow ions, Phys. Rev. A 33, 897 (1986).
[41] R. Ullah, E. Artacho and A. A. Correa, *Core electrons in the electronic stopping of heavy ions*, Phys. Rev. Lett. **121**, 116401 (2018), doi:10.1103/PhysRevLett.121.116401.

[42] J. Halliday and E. Artacho, *Anisotropy of electronic stopping power in graphite*, Phys. Rev. B **100**(10), 104112 (2019).

[43] D. C. Yost, Y. Yao and Y. Kanai, *Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power*, Phys. Rev. B **96**(11), 115134 (2017).

[44] N. Forcellini and E. Artacho, *Floquet theory for the electronic stopping of projectiles in solids*, Phys. Rev. Research **2**, 033151 (2020).

[45] M. Famili, N. Forcellini and E. Artacho, *Local orbital formulation of the Floquet theory of projectile electronic stopping*, arXiv preprint arXiv:2112.09884 (2021).

[46] M. Marques, A. Rubio, E. K. Gross, K. Burke, F. Nogueira and C. A. Ullrich, *Time-dependent density functional theory*, Lecture Notes in Physics, Springer Science & Business Media (Springer, Berlin, 2006).

[47] A. Tsolakidis, D. Sánchez-Portal and R. M. Martin, *Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals*, Phys. Rev. B **66**, 235416 (2002).

[48] J. P. Perdew and A. Zunger, *Self-interaction correction to density-functional approximations for many-electron systems*, Phys. Rev. B **23**, 5048 (1981).

[49] R. Ullah, F. Corsetti, D. Sánchez-Portal and E. Artacho, *Electronic stopping power in a narrow band gap semiconductor from first principles*, Phys. Rev. B **91**, 125203 (2015).

[50] A. García, N. Papier, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerda, F. Corsetti et al., *Siesta: Recent developments and applications*, J. Phys. **152**(20), 204101 (2020).

[51] P. Ordejón, E. Artacho and J. M. Soler, *Self-consistent order-n density-functional calculations for very large systems*, Phys. Rev. B **53**(16), R10441 (1996).

[52] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García and J. M. Soler, *Linear-scaling ab-initio calculations for large and complex systems*, Phys. Status Solidi (b) **215**(1), 809 (1999).

[53] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, *The SIESTA method for ab initio order-N materials simulation*, J. Phys. Condens. Matter **14**(11), 2745 (2002).

[54] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal and J. M. Soler, *The siesta method; developments and applicability*, J. Phys. Condens. Matter **20**(6), 064208 (2008).

[55] E. Artacho and D. D. O’Regan, *Quantum mechanics in an evolving hilbert space*, Phys. Rev. B **95**, 115155 (2017).

[56] W. Käferböck, W. Rössler, V. Necas, P. Bauer, M. Peiialba, E. Zarate and A. Arnau, *Comparative study of the stopping power of graphite and diamond*, Phys. Rev. B **55**, 13275 (1997).

[57] M. Draxler, S. Chenakin, S. Markin and P. Bauer, *Apparent velocity threshold in the electronic stopping of slow hydrogen ions in lrf*, Phys. Rev. Lett. **95**(11), 113201 (2005).

[58] S. Markin, D. Primetzhofe and P. Bauer, *Vanishing electronic energy loss of very slow light ions in insulators with large band gaps*, Phys. Rev. Lett. **103**(11), 113201 (2009).

[59] D. Roth, B. Bruckner, G. Undeutsch, V. Paneta, A. Mandare, C. McGahan, M. Dosmailov, J. Juaristi, M. Alducin, J. Pedarnig et al., *Electronic stopping of slow protons in oxides: scaling properties*, Phys. Rev. Lett. **119**(16), 153401 (2017).

[60] R. García-Molina, I. Abril, C. D. Denton and S. Heredia-Avalos, *Allotropic effects on the energy loss of swift h+ and he+ ions beams through thin foils*, Nucl. Instr. Meth. B **249**(1-2), 6 (2006).

[61] A. A. Correa, *Calculating electronic stopping power in materials from first principles*, Comp. Mater. Sci. **150**, 291 (2018).

[62] J. F. Janak, *Proof that ∂E/∂n = εi in density-functional theory*, Phys. Rev. B **18**(12), 7165 (1978).

[63] L. J. Sham and M. Schlüter, *Density-functional theory of the energy gap*, Phys. Rev. Lett. **51**(20), 1888 (1983).

[64] E. Runge and E. U. Gross, *Density-functional theory for time-dependent systems*, Phys. Rev. Lett. **52**, 997 (1984).

[65] P. L. Grande, *Alternative treatment for the energy-transfer and transport cross section in dressed electron-binary collisions*, Phys. Rev. A **94**(4), 042704 (2016).

[66] U. Saalmann and R. Schmidt, *Non-adiabatic quantum molecular dynamics: formalism and case study*, Z. Phys. D, Atoms, Molecules and Clusters **38**(2), 153 (1996), doi:10.1007/s004070050077.

[67] T. Todorov, *Time-dependent tight binding*, J. Phys. Condens. Matter **13**, 10125 (2001), doi:10.1088/0953-8984/13/45/302.

[68] B. F. Curchod, U. Rothlisberger and I. Tavenerri, *Trajectory-based nonadiabatic dynamics with time-dependent density functional theory*, Chem. Phys. Chem. **14**(7), 1314 (2013).

[69] T. Kunert and R. Schmidt, *Non-adiabatic quantum molecular dynamics: General formalism and case study h 2+ in strong laser fields*, Eur. Phys. J. D **25**(1), 15 (2003).

[70] See e.g. the spectral projections presented in Ref. [25]. Scattering amplitudes can be defined for the single-particle scattering processes in the projectile reference frame and within the Floquet theory [43][55]. Matrix elements that make sense for supercell time-dependent simulations may, however, steadily increase with time due to the flux implied in scattering (see Fig. 2 in Ref. [25]).

[71] R. Ritchie, W. Brandt and P. Echenique, *Wake potential of swift ions in solids*, Phys. Rev. B **14**(11), 4808 (1976).

[72] P. Echenique, R. Ritchie and W. Brandt, *Spatial excitation patterns induced by swift ions in condensed matter*, Phys. Rev. B **20**(7), 2567 (1979).

[73] L. D’Alessio and M. Rigol, *Long-time behavior of isolated periodically driven interacting lattice systems*, Phys. Rev. X **4**(4), 041048 (2014), doi:10.1103/PhysRevX.4.041048.

[74] A. Lazarides, A. Das and R. Moessner, *Equilibrium states of generic quantum systems subject to periodic driving*, Phys. Rev. E **90**(1), 012110 (2014), doi:10.1103/PhysRevE.90.012110.

[75] D. A. Abanin, E. Altman, I. Bloch and M. Serbyn, *Colloquium: Many-body localization, thermalization, and entanglement*, Rev. Mod. Phys. **91**(2), 021001 (2019), doi:10.1103/RevModPhys.91.021001.
