KK-fibrations arising from Rieffel deformations

Amandip Sangha

Abstract

The bundle map \(\pi_h : \Gamma((A_t J)_{t \in [0,1]}) \to A_{hJ} \), for every \(h \in [0,1] \), of the continuous field \((A_t)_{t \in [0,1]}\) associated to the Rieffel deformation \(A_J \) of a C*-algebra \(A \) is shown to be a KK-equivalence by using a 2-cocycle twisting approach and RKK-fibrations.

Contents

1 Introduction 1
2 Twisting by a 2-cocycle 2
3 Bundle structure and RKK-fibration 4
4 The continuous field of the Rieffel deformation 8
5 Comments 11
 5.1 Theta deformation . 11
 5.2 Invariance of the index . 14

1 Introduction

In [15] M. A. Rieffel introduced a C*-algebraic framework for deformation quantization whereby a C*-algebra \(A \) equipped with an action of \(\mathbb{R}^n \) by automorphisms and further supplied with a skew-symmetric \(J \in M_n(\mathbb{R}) \), produces a C*-algebra \(A_J \) with multiplication \(\times_J \), often referred to as the Rieffel deformation of the original algebra. Several other well-known examples of C*-algebras can be shown to arise in this way. The K-theory of the deformed algebra was studied in [16], revealing that the deformed algebra \(A_J \) and the original algebra \(A \) have the same K-groups.

There, the key technique was to show that \(A_J \) was strongly Morita equivalent to a certain crossed product of (a stabilization and suspension of) \(A \) by \(\mathbb{R}^n \), followed by an application of the Connes-Thom result in K-theory, stability and Morita invariance of the K-functor.

Some operator algebraic approaches to deformation quantization use various notions of “twists”, utilizing an action (e.g. of a group) combined with a distinguished element satisfying some cocyclicity-condition (e.g. a group 2-cocycle) as ingredients towards deforming a given algebra equipped with said action. One such procedure is explored by Kasprzak in [7] where a locally compact abelian group \(G \) acts on a C*-algebra \(A \). Given a 2-cocycle \(\psi \) on the dual group \(\hat{G} \), there is a method for obtaining a deformed algebra \(A^\psi \). This procedure encompasses in particular Rieffel deformation as the case \(G = \mathbb{R}^n \) with a certain choice of 2-cocycle on \(\mathbb{R}^n \). Concerning K-theory, there is an isomorphism \(A^\psi \times G \cong A \times G \) of crossed products which, for the case
$G = \mathbb{R}^n$, when combined with the Connes-Thom result yields an identification of the K-groups of the deformed and undeformed algebras respectively.

The present paper discusses the continuous field over $[0,1]$ of the Rieffel deformation and shows that the evaluation map is a KK-equivalence. Namely, for a C*-algebra A with an action of \mathbb{R}^n and given a skew-symmetric matrix J, taking $t \in [0,1]$ and using tJ as the skew-symmetric matrix gives the Rieffel deformation A_{tJ}. This will constitute a continuous field $(A_{tJ})_{t \in [0,1]}$ as was already explored in the original monograph [15]. We show that the evaluation map of the bundle algebra $\pi_h : \Gamma((A_{tJ})_{t \in [0,1]}) \to A_{hJ}$, for each $h \in [0,1]$, is a KK-equivalence. To accomplish this we shall employ the deformation approach of Kasprzak and consider a deformed bundle algebra B^ψ which will be a $C([0,1])$-algebra equipped with a fibrewise action. As such, RKK-theory naturally enters and we show that B^ψ is an RKK-fibration in the sense of [4] by appealing to the fibrewise action and the Connes-Thom result in RKK-theory. The important consequence of being an RKK-fibration here, is that the evaluation map of the $C([0,1])$-algebra becomes a KK-equivalence. Finally, the deformed bundle algebra B^ψ will be shown to be $C([0,1])$-linearly *-isomorphic to the bundle algebra $\Gamma((A_{tJ})_{t \in [0,1]})$ of the continuous field of the Rieffel deformation, thus yielding the promised result.

We now give a more specific outline of the paper. Section 2 explains the approach to deformation taken in [7], where one starts with the action of a locally compact abelian group G with a 2-cocycle ψ on the Pontryagin dual \hat{G}. A certain subalgebra $A^\psi \subseteq M(A \rtimes G)$ is obtained as the Landstad algebra of the G-product $(A \rtimes G, \lambda, \tilde{\alpha})$. After presenting the basic preliminaries and some of the needed results, we specialize to $G = \mathbb{R}^n$ with our specific 2-cocycle ψ_J. Section 3 discusses the relevant bundle and collects a few needed ingredients from [4] on RKK-fibrations and their relation to KK-equivalences, and then proceeds to establish that the aforementioned bundle is an RKK-fibration. Section 4 recalls the main notions of Rieffel deformation, the associated continuous field and the relation to the 2-cocycle deformation. The main result regarding the evaluation map of the bundle algebra of the continuous field is then achieved as a consequence of the RKK-fibration laid forth in the preceding section. In section 5 we comment on the special case called theta deformation, in which the action is not by \mathbb{R}^n but \mathbb{T}^n. There, a different bundle algebra is plausible. Namely, taking a fix-point algebra description of the deformed algebra, we use a strong Morita equivalence to a certain crossed product algebra by the integers and work with an integer crossed product bundle algebra. One is able to show that the related bundle evaluation map has a KK-contractible kernel by applying the Pimsner-Voiculescu six-term exact sequence, so the KK-equivalence follows. Finally we describe the invariance of the index pairing which we understand as a KK-product between elements of the K-group with (in particular) the Fredholm module coming from a spectral triple.

2 Twisting by a 2-cocycle

We recall the approach to deformation as in [7]. The idea is based on twisting a dual C*-dynamical system by a 2-cocycle of the dual group. First we recollect some preliminaries on C*-dynamical systems and G-products (cf. [13] §7.8).

Definition 2.1. Let G be a locally compact abelian group and \hat{G} its Pontryagin dual group. Let B be a C*-algebra with a strict-continuous unitary-valued homomorphism $\lambda : G \to M(B)$, and let $\hat{\rho}$ be a strongly continuous action $\hat{\rho} : \hat{G} \to Aut(B)$ satisfying

$$\hat{\rho}_\chi(\lambda_\gamma) = \chi(\gamma)\lambda_\gamma$$

for all $\chi \in \hat{G}$ and $\gamma \in G$. The triple $(B, \lambda, \hat{\rho})$ is called a G-product. One also simply refers to B as a G-product when the rest is implicitly understood.
Given a G-product $(B, \lambda, \tilde{\rho})$, one may extend the given unitary representation λ to the \ast-homomorphism $\lambda : C^*(G) \to M(B)$. Using the Fourier transform to identify $C^*(G) \cong C_0(\hat{G})$ we write $\lambda : C_0(\hat{G}) \to M(B)$. This map is injective and we often omit λ from the notation.

Definition 2.2. Let $(B, \lambda, \tilde{\rho})$ be a G-product and let $x \in M(B)$. The element x satisfies the Landstad conditions if:

(i) $\hat{\rho}_\chi(x) = x$ for all $\chi \in \hat{G}$,
(ii) the map $G \ni \gamma \mapsto \lambda_\gamma x \lambda_\gamma^* \in M(B)$ is norm continuous,
(iii) $fxg \in B$ for all $f, g \in C_0(\hat{G})$.

The set of elements satisfying the Landstad conditions turns out to be a subalgebra in $M(B)$. We shall refer to this subalgebra as the Landstad algebra of the G-product.

The foremost example of a G-product is produced by the crossed product construction. Indeed, given an abelian C^*-dynamical system (B, G, α), the triple $(B \rtimes_\alpha G, \lambda, \tilde{\rho})$ is a G-product whose Landstad algebra is precisely B. The following result states that any G-product arises in this way.

Theorem 2.3. [13 Theorem 7.8.8] A C^*-algebra B is a G-product $(B, \lambda, \tilde{\rho})$ if and only if there exists a C^*-dynamical system (C, G, β) for which $B \cong C \rtimes_\beta G$. The C^*-dynamical system is unique up to covariant isomorphism, the C^*-algebra C is just the associated Landstad algebra and $\beta = \text{Ad} \lambda$.

Recall that a 2-cocycle ψ on the abelian group \hat{G} is a continuous function

$$\psi : \hat{G} \times \hat{G} \to \mathbb{T}$$

satisfying

(i) $\psi(e, \chi) = \psi(\chi, e) = 1$ for all $\chi \in \hat{G}$,
(ii) $\psi(\chi_1, \chi_2 + \chi_3) = \psi(\chi_1 + \chi_2, \chi_3) = \psi(\chi_1, \chi_2)$ for all $\chi_1, \chi_2, \chi_3 \in \hat{G}$.

Given an element $\chi \in \hat{G}$, define the function $\psi_\chi \in C_b(\hat{G})$ by

$$\psi_\chi(\hat{\sigma}) = \psi(\chi, \hat{\sigma})$$

for $\hat{\sigma} \in \hat{G}$.

Observing that $C_\beta(\hat{G}) = M(C_0(\hat{G}))$, use the obvious extension $\lambda : C_b(\hat{G}) \to M(B)$ and obtain unitaries

$$U_\chi = \lambda(\psi_\chi) \in M(B).$$

The 2-cocycle condition for ψ implies the following commutation rule for these unitaries

$$U_{\chi_1 + \chi_2} = \tilde{\psi}(\chi_1, \chi_2) U_{\chi_1} \hat{\rho}_{\chi_1}(U_{\chi_2}).$$

Lemma 2.4. [4 Theorem 3.1] Let $(B, \lambda, \tilde{\rho})$ be a G-product and ψ a 2-cocycle on \hat{G}. Use the unitaries of (2.4) to define the strongly continuous action $\tilde{\rho}^{\psi} : \hat{G} \to \text{Aut}(B)$,

$$\tilde{\rho}^{\psi}_\chi(b) = U_\chi^* \hat{\rho}_\chi(b) U_\chi$$

for $\chi \in \hat{G}$ and $b \in B$. Then $(B, \lambda, \tilde{\rho}^{\psi})$ is a G-product.
Definition 2.5 (Kasprzak deformation). Let A be a separable C*-algebra with strongly continuous action $\alpha : G \to Aut(A)$ of the locally compact abelian group G, and ψ a 2-cocycle on G. The G-product $(A \rtimes_\alpha G, \lambda, \tilde{\alpha})$ gives rise to the G-product $(A \rtimes_\alpha G, \lambda, \tilde{\alpha}^\psi)$ by Lemma 2.4. The deformed algebra A^ψ is by definition the Landstad algebra of the G-product $(A \rtimes_\alpha G, \lambda, \tilde{\alpha}^\psi)$.

An interesting result is obtained by considering the original action on the deformed algebra. Denote by $\alpha^\psi : G \to Aut(A^\psi)$ the action $\alpha^\psi_\beta(x) = \lambda_\beta x \lambda_\beta^*$, if we consider the crossed product of the C*-dynamical system (A^ψ, G, α^ψ) we get

Lemma 2.6. $A^\psi \rtimes_\alpha^\psi G \cong A \rtimes_\alpha G$.

Proof. The proof is a literal application of Theorem 2.3. Indeed, let $B = A \rtimes_\alpha G$ and consider the G-product $(B, \lambda, \tilde{\alpha}^\psi) = (A \rtimes_\alpha G, \lambda, \tilde{\alpha}^\psi)$. The Landstad algebra of this G-product is what we have called A^ψ by definition, which is the algebra $C = A^\psi$ referred to in Theorem 2.3. Furthermore $\alpha^\psi = Ad \lambda$, which is the action β in that theorem. In other words the C*-dynamical system is $(C, G, \beta) = (A^\psi, G, \alpha^\psi)$ and the theorem yields the isomorphism $B \cong C \rtimes_\beta G$, in our case $A \rtimes_\alpha G \cong A^\psi \rtimes_\alpha^\psi G$ as claimed.

Following [13] and [10], we may further describe the *-isomorphism $A^\psi \rtimes_\alpha^\psi G \to A \rtimes_\alpha G$ as mapping $y \otimes g \mapsto y \lambda_\beta g$, for $y \in A^\psi$ and $g \in C_c(G)$. \hfill \Box

Let our separable C*-algebra A be equipped with a strongly continuous action $\sigma : \mathbb{R}^n \to Aut(A)$, and let $J \in M_n(\mathbb{R})$ be a skew-symmetric matrix. On \mathbb{R}^n we consider the symmetric bicharacter

$$e : \mathbb{R}^n \times \mathbb{R}^n \to T$$

$$e(u, v) = e^{2\pi i u \cdot v}$$

which gives the group isomorphism $\mathbb{R}^n \cong \hat{\mathbb{R}^n}$ by $u \mapsto e_1^u$ where $e_1^u(v) = e(u, v)$. We use the 2-cocycle $\psi_J : \mathbb{R}^n \times \mathbb{R}^n \to T$,

$$\psi_J(e_1^u, e_1^v) = e_1^u(Jv)v = e(u, Jv) = e^{2\pi i u \cdot Jv}.$$ \hfill (2.2)

By Lemma 2.4 the \mathbb{R}^n-product $(A \rtimes_\sigma \mathbb{R}^n, \lambda, \hat{\sigma})$ combined with the 2-cocycle ψ_J gives the \mathbb{R}^n-product $(A \rtimes_\sigma \mathbb{R}^n, \lambda, \hat{\sigma}^{\psi_J})$, and the deformed algebra A^{ψ_J} is the corresponding Landstad algebra.

3 Bundle structure and RKK-fibration

Let X be a locally compact Hausdorff space. A C*-algebra B is called a $C_0(X)$-algebra (cf. [6, 1.5]) if there is a non-degenerate *-homomorphism $\Phi_B : C_0(X) \to ZM(B)$. One also writes $fb = \Phi_B(f)b$, for $f \in C_0(X)$ and $b \in B$. For each $x \in X$, let $I_x = \{f \in C_0(X) : f(x) = 0\}$ be the ideal of functions vanishing at x, then $I_x B \subseteq B$ is an ideal and the quotient $B_x = B/(I_x B)$ is called the fiber over x. The quotient map $q_x : B \to B_x$ is also referred to as evaluation at x.

Recall that we are considering a strongly continuous action $\sigma : \mathbb{R}^n \to Aut(A)$ on a separable C*-algebra A, and a real skew-symmetric matrix J. Let $B = C([0,1]) \otimes A = C([0,1], A)$ be equipped with the obvious $C([0,1])$-algebra structure $\Phi_B : C([0,1]) \to ZM(B)$, $\Phi_B(f)(g \otimes a) = fg \otimes a$. Define the action $\beta : \mathbb{R}^n \to Aut(B)$

$$\beta_x(y)(s) = \sigma_{\sqrt{x}}(y(s)),$$ \hfill (3.1)

for $x \in \mathbb{R}^n$, $y \in B$, $s \in [0,1]$. Let $\psi = \psi_J$ be the 2-cocycle from (2.2). Then the 2-cocycle deformation B^ψ is by definition the Landstad algebra of the \mathbb{R}^n-product $(B \rtimes_\beta \mathbb{R}^n, \lambda, \hat{\beta}^\psi)$. Recall the action $\beta^\psi := \beta^\psi : \mathbb{R}^n \to Aut(B^\psi)$ from the remark preceding Lemma 2.6.
Lemma 3.1. The deformed algebra B^ψ is a $C([0,1])$-algebra and the action $\beta^\psi : \mathbb{R}^n \to Aut(B^\psi)$ is fiberwise. There is a $C([0,1])$-linear *-isomorphism

$$B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n \to B \rtimes_{\beta} \mathbb{R}^n.$$

Proof. Clearly the action β on B is $C([0,1])$-linear, i.e. for every $x \in \mathbb{R}^n$, $\beta_x(\Phi_B(f)y) = \Phi_B(f)\beta_x(y)$ for every $f \in C([0,1])$ and $y \in B$. This entails that $\Phi_{B \rtimes_{\beta} \mathbb{R}^n} : C([0,1]) \to ZM(B \rtimes_{\beta} \mathbb{R}^n)$ given by $(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)y) = \Phi_B(f)(y)$ gives a $C([0,1])$-algebra structure on $B \rtimes_{\beta} \mathbb{R}^n$.

Concerning the dual action $\hat{\beta} : \mathbb{R}^n \to Aut(B \rtimes_{\beta} \mathbb{R}^n)$, for each $w \in \mathbb{R}^n$ the canonically extended automorphism $\hat{\beta}_w : M(B \rtimes_{\beta} \mathbb{R}^n) \to M(B \rtimes_{\beta} \mathbb{R}^n)$ satisfies $\hat{\beta}_w(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)) = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)$ for every $f \in C([0,1])$. It then follows that for any $y \in M(B \rtimes_{\beta} \mathbb{R}^n)$,

$$\hat{\beta}_w^\psi(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)) = U_w^* \hat{\beta}_w(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f))U_w = U_w^* \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)U_w = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f),$$

i.e. $\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(C([0,1])) \subseteq M(B \rtimes_{\beta} \mathbb{R}^n)\hat{\beta}^\psi = B^\psi$. Combined with the fact that $\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(C([0,1])) \subseteq ZM(B \rtimes_{\beta} \mathbb{R}^n)$, this entails that we may define $\Phi_{B^\psi} = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}$ to obtain a $C([0,1])$-algebra structure on B^ψ.

The action $\beta^\psi : \mathbb{R}^n \to Aut(B^\psi)$ is $\beta^\psi(y) = \lambda_x y \lambda_x^*$, for $y \in B^\psi$, and so

$$\beta^\psi_x(\Phi_{B^\psi}(f)) = \beta_x^\psi(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)y) = \lambda_x(\Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)y) \lambda_x^* = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)\lambda_x y \lambda_x^* = \Phi_{B^\psi}(f)\lambda_x y \lambda_x^*,$$

i.e. the action β^ψ is fiberwise and hence naturally makes the crossed product $B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n$ a $C([0,1])$-algebra where $\Phi_{B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n} : C([0,1]) \to ZM(B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n)$ is given by the composition of Φ_{B^ψ} with the inclusion $M(B^\psi) \subseteq M(B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n)$. By Lemma 2.4

$$B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n \cong B \rtimes_{\beta} \mathbb{R}^n,$$ \hspace{1cm} (3.2)

and we claim this *-isomorphism to be $C([0,1])$-linear. Indeed, denote this *-isomorphism $S : B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n \to B \rtimes_{\beta} \mathbb{R}^n$, which by Lemma 2.4 can be described as $S(y \otimes g) = y \lambda_y$ for $y \in B^\psi$ and $g \in C_c(\mathbb{R}^n)$, and it follows that

$$S(\Phi_{B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n}(f)(y \otimes g)) = S(\Phi_{B^\psi}(f)y \otimes g) = \Phi_{B^\psi}(f)y \lambda_y = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)y \lambda_y = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)y \lambda_y = \Phi_{B \rtimes_{\beta} \mathbb{R}^n}(f)S(y \otimes g)$$

for any $f \in C([0,1])$, i.e. $S \circ \Phi_{B^\psi \rtimes_{\beta^\psi} \mathbb{R}^n} = \Phi_{B \rtimes_{\beta} \mathbb{R}^n} \circ S$. \hfill \Box

Let $f : Y \to X$ be a continuous map between locally compact spaces. The pullback construction gives a $C_0(X)$-algebra structure on $C_0(Y)$, since $f^* : C_0(X) \to C_0(Y)$ and $C_b(Y) = ZM(C_0(Y))$, we let $\Phi_{C_0(Y)} : C_0(X) \to ZM(C_0(Y))$, $\Phi_{C_0(Y)}(k) = f^*(k)$ be the pointwise multiplication operator by the pullback

$$\Phi_{C_0(Y)}(k)h = f^*(k)h$$

for $k \in C_0(X)$, $h \in C_0(Y)$.

Given a $C_0(X)$-algebra B, a locally compact space Y and $f : Y \to X$ a continuous map, the pullback $f^*(B)$ of B along f is the $C_0(Y)$-algebra

$$f^*(B) = C_0(Y) \otimes_{C_0(X)} B.$$

(3.3)

The balanced tensor product in \otimes is by definition the quotient of $C_0(Y) \otimes B$ by the ideal generated by

$$\{ \Phi_{C_0(Y)}(k) g \otimes b - g \otimes \Phi_B(k) b \mid g \in C_0(Y), b \in B, k \in C_0(X) \}.$$

The $C_0(Y)$-algebra structure on $f^*(B)$ is pointwise multiplication on the left, $\Phi_{f^*(B)} : C_0(Y) \to ZM(f^*(B))$, $\Phi_{f^*(B)}(h)(g \otimes b) = hg \otimes b$, for $h, g \in C_0(Y)$ and $b \in B$. Note that the fiber $f^*(B)_y$ over $y \in Y$ is $B_{f(y)}$. Indeed, as in the balanced tensor product one has $I_y C_0(Y) \otimes_{C_0(X)} B = C_0(Y) \otimes_{C_0(X)} I_{f(y)} B$, then

$$f^*(B)_y = C_0(Y) \otimes_{C_0(X)} B/I_y C_0(Y) \otimes_{C_0(X)} B$$

$$= C_0(Y) \otimes_{C_0(X)} B/C_0(Y) \otimes_{C_0(X)} I_{f(y)} B$$

$$= B/I_{f(y)} B = B_{f(y)}.$$

Recall that given two graded, separable C*-algebras A and B, the group $KK(A, B)$ is the set of Kasparov A-B-modules (also called Kasparov cycles) modulo an appropriate equivalence relation (e.g. homotopy equivalence). Briefly, a Kasparov is a countably generated right Hilbert E-module. Namely, for two C-algebras B and C where

$$\{ \Phi_{C_0(Y)}(k) g \otimes b - g \otimes \Phi_B(k) b \mid g \in C_0(Y), b \in B, k \in C_0(X) \}.$$

The balanced tensor product in \otimes is by definition the quotient of $C_0(Y) \otimes B$ by the ideal generated by

$$\{ \Phi_{C_0(Y)}(k) g \otimes b - g \otimes \Phi_B(k) b \mid g \in C_0(Y), b \in B, k \in C_0(X) \}.$$

The $C_0(Y)$-algebra structure on $f^*(B)$ is pointwise multiplication on the left, $\Phi_{f^*(B)} : C_0(Y) \to ZM(f^*(B))$, $\Phi_{f^*(B)}(h)(g \otimes b) = hg \otimes b$, for $h, g \in C_0(Y)$ and $b \in B$. Note that the fiber $f^*(B)_y$ over $y \in Y$ is $B_{f(y)}$. Indeed, as in the balanced tensor product one has $I_y C_0(Y) \otimes_{C_0(X)} B = C_0(Y) \otimes_{C_0(X)} I_{f(y)} B$, then

$$f^*(B)_y = C_0(Y) \otimes_{C_0(X)} B/I_y C_0(Y) \otimes_{C_0(X)} B$$

$$= C_0(Y) \otimes_{C_0(X)} B/C_0(Y) \otimes_{C_0(X)} I_{f(y)} B$$

$$= B/I_{f(y)} B = B_{f(y)}.$$

The KK-product is a bilinear map

$$KK(A, D) \times KK(D, B) \to KK(A, B)$$

$$(x, y) \mapsto xy$$

where A, B and D are separable (and D is σ-unital) C*-algebras. There is a multiplicatively neutral element $1_D = [(D, 1_0, 0)] \in KK(D, D)$ such that for any $x \in KK(A, D)$ and $y \in KK(D, B)$ one has $x1_D = x$ and $1_D y = y$.

An element $x \in KK(A, B)$ is called a KK-equivalence if it is invertible with respect to the KK-product, i.e. if there exists an element $y \in KK(B, A)$ such that $xy = 1_A \in KK(A, A)$ and $yx = 1_B \in KK(B, B)$.

Given a graded $*$-homomorphism $\phi : A \to B$, then $(B, \phi, 0)$ is the naturally associated Kasparov A-B-module. We say ϕ is a KK-equivalence if the corresponding element $[(B, \phi, 0)] \in KK(A, B)$ is a KK-equivalence.

Regarding $C_0(X)$-algebras there is a further refinement of the KK-groups called RKK-groups (\mathbb{R}). Namely, for two $C_0(X)$-algebras A and B, the group $RKK(X; A, B)$ consists of Kasparov A-B-modules (E, ϕ, F) as before, only with the additional requirement

$$(fa) \cdot e \cdot b = a \cdot e \cdot (fb)$$

(3.4)

for any $f \in C_0(X)$, $a \in A$, $b \in B$ and $e \in E$.

The notions $RKK(X; \cdot, \cdot)$-product and $RKK(X; \cdot, \cdot)$-equivalence are similar to those of the KK-counterpart.

We let $\Delta^p \subseteq \mathbb{R}^{p+1}$ denote the standard p-simplex.

Definition 3.2. A $C_0(X)$-algebra B is called a KK-fibration if for every positive integer p, every continuous map $f : \Delta^p \to X$ and every element $v \in \Delta^p$ the evaluation $q_v : f^*(B) \to B_{f(v)}$ is a KK-equivalence.
Definition 3.3. A $C_0(X)$-algebra B is called an RKK-fibration if for every positive integer p, every continuous map $f : \Delta^p \to X$ and every element $v \in \Delta^p$, $f^*(B)$ is RKK$(\Delta^p; \cdot, \cdot)$-equivalent to $C(\Delta^p, B_{f(v)})$.

Remark 3.4. Given a C*-algebra A, the canonical $C_0(X)$-algebra $B = C_0(X) \otimes A$ is an RKK-fibration. Indeed, given $f : \Delta^p \to X$ and $v \in \Delta^p$, the pullback

$$f^*(B) = C(\Delta^p) \otimes C_0(X) \otimes A$$

is $C(\Delta^p)$-linearly *-isomorphic to $C(\Delta^p, B_{f(v)}) = C(\Delta^p) \otimes B_{f(v)} = C(\Delta^p) \otimes A$ by the map

$$h \otimes g \otimes a \mapsto \Phi_{C(\Delta^p)}(g)h \otimes a = f^*(g)h \otimes a,$$

where $h \in C(\Delta^p)$, $g \in C_0(X)$ and $a \in A$. This implies the required RKK$(\Delta^p; \cdot, \cdot)$-equivalence.

Note also that the property of being an RKK-fibration is preserved under RKK-equivalence. The following observation ([4, Remark 1.4]) will be useful.

Lemma 3.5. An RKK-fibration is a KK-fibration.

Proof. Suppose B is an RKK-fibration, let $f : \Delta^p \to X$ and $v \in \Delta^p$. Concisely put, we get the following commutative diagram in the KK category in which all arrows but the right vertical arrow are already known to be isomorphisms

$$\begin{array}{ccc}
C(\Delta^p, B_{f(v)}) & \xrightarrow{r} & f^*(B) \\
\downarrow{ev_v} & & \downarrow{q_v} \\
B_{f(v)} & \xrightarrow{r(v)} & B_{f(v)}
\end{array}$$

so it follows that the right vertical arrow q_v must be an isomorphism as well.

In details, by assumption there exists an invertible element

$$r \in RKK(\Delta^p; C(\Delta^p, B_{f(v)}), f^*(B)).$$

Here $C(\Delta^p, B_{f(v)}) = C(\Delta^p) \otimes B_{f(v)}$ is the canonical $C(\Delta^p)$-algebra with constant fiber $B_{f(v)}$ over each point of Δ^p, its bundle projection map being just the evaluation $ev_v : C(\Delta^p, B_{f(v)}) \to B_{f(v)}$, $ev_v(f \otimes b) = f(w) b$, for any $w \in \Delta^p$, and it gives in particular the KK-equivalence $[ev_v] \in KK(C(\Delta^p, B_{f(v)}), B_{f(v)})$. Recall also that $f^*(B)$ has fiber $B_{f(v)}$ over the point $v \in \Delta^p$, denote this bundle projection map q_v. From the invertible element $r \in RKK(\Delta^p; C(\Delta^p, B_{f(v)}), f^*(B))$ we get an invertible element $r(v) \in KK(B_{f(v)}, B_{f(v)})$ which implements the KK-equivalence between the fibers. It follows from

$$[q_v] \cdot r = r(v)[ev_v]$$

that $[q_v] = r(v)[ev_v]r^{-1}$ is a KK-equivalence.

Recall the Connes-Thom isomorphism in K-theory $K_i(A \rtimes_\alpha \mathbb{R}) \cong K_{i-1}(A)$, $i = 0, 1$, where $\alpha \in Aut(A)$ is a continuous action. The analogous result in KK-theory establishes the existence of an invertible element $t_\alpha \in KK^1(A, A \rtimes_\alpha \mathbb{R}) = KK(SA, A \rtimes_\alpha \mathbb{R})$, the Thom element. In other words, A and $A \rtimes_\alpha \mathbb{R}$ are KK-equivalent with dimension shift 1. The case of an \mathbb{R}^n-action is handled by repeated application of the above, yielding a KK-equivalence with total dimension shift $n (mod 2)$. In dealing with $C_0(X)$-algebras we shall make use of the following RKK-version of the Connes-Thom isomorphism (see [6 §4])
Theorem 3.6. \cite{3} \textbf{Theorem 3.5} Let A be a $C_0(X)$-algebra and $\alpha : R^n \rightarrow Aut(A)$ a fibrewise action. There exists an invertible element
\[t_\alpha \in RKK^n(X; A, A \rtimes_\alpha R^n). \]
Hence A and $A \rtimes_\alpha R^n$ are RKK-equivalent with dimension shift $n \mod 2$.

Theorem 3.7. B^ψ is an RKK-fibration.

\textbf{Proof.} It follows from Theorem 3.6 that B^ψ is $RKK([0,1]; \cdot, \cdot)$-equivalent, with dimension shift $n \mod 2$, to $B^\psi \rtimes_\beta R^n$. By the isomorphism \cite{5} the latter algebra is $RKK([0,1]; \cdot, \cdot)$-equivalent to $B \rtimes_\beta R^n$, which by Theorem 3.6 again is $RKK([0,1]; \cdot, \cdot)$-equivalent, with another dimension shift $n \mod 2$, to $B = C([0,1]) \otimes A$. The total dimension shift thus far is $2n \mod 2 = 0$, i.e. the net effect being no dimension shift, so B^ψ is plainly $RKK([0,1]; \cdot, \cdot)$-equivalent to B. Finally, the algebra $B = C([0,1]) \otimes A$ is clearly an RKK-fibration (Remark 3.4), thus proving the claim. \end{proof}

It follows from Theorem 3.6 and Lemma 3.6 that B^ψ is a KK-fibration. Taking the identity function of the 1-simplex, $f : \Delta^1 = [0,1] \rightarrow [0,1]$, $f(s) = s$, we conclude that the evaluation map $q_s : B^\psi \rightarrow (B^\psi)_s$ is a KK-equivalence. Although maybe not completely transparent thus far, it will be made clear in section 3 that $B^\psi \cong \Gamma((A_t)_{t \in [0,1]})$ is the bundle algebra of the continuous field over $[0,1]$ of the Rieffel deformation and $(B^\psi)_s \cong A_{t,s}$ is the fiber over the point $s \in [0,1]$.

4 \textbf{The continuous field of the Rieffel deformation}

We briefly recall some of the basic facts from \cite{15} concerning Rieffel deformation. Let $\sigma : R^n \rightarrow Aut(A)$ be a strongly continuous action on a separable C*-algebra A, and $J \in M_n(R)$ a skew-symmetric matrix. Let τ be the translation action on the Frechet space $C_b(R^n, A)$ and let $C_\sigma(R^n, A)$ be the largest subspace on which τ is strongly continuous. Denote by $B^A = B^A(R^n) \subseteq C_\sigma(R^n, A)$ the subalgebra of smooth elements for the action τ. For any $F \in B^A(R^n \times R^n)$ the integral
\[
\iint F(u, v)e^{2\pi i u \cdot v} \, du \, dv
\]
exists, as shown in \cite{15} Chapter 1] by considerations of oscillatory integrals. For $f, g \in B^A(R^n)$, the function $(u, v) \mapsto \tau_J(u)(f)(x)\tau_J(v)(g)(x)$ is an element of $B^A(R^n \times R^n)$ for each $x \in R^n$, hence the following integral is well defined
\[
(f \times_J g)(x) = \iint \tau_J(u)(f)(x)\tau_J(v)(g)(x)e^{2\pi i (u \cdot v)}, \tag{4.1}
\]
and it turns out \times_J defines an associative product on $B^A(R^n)$, and we denote by $B^A_J = (B^A(R^n), \times_J)$ this algebra structure. Let $S^A \subseteq B^A$ be the subspace of A-valued Schwartz functions. This is naturally a right Hilbert A-module for the A-valued inner product $(f, g)_A = \int f(x)^* g(x)$. Considering the product \times_J, it turns out S^A_J is an ideal in B^A_J, this still being compatible with the Hilbert C*-module structure. In this way S^A_J carries a representation $L = L^J$ of B^A_J by adjointable operators
\[
L : B^A_J \rightarrow \mathcal{L}(S^A_J)
\]
\[
L_J(\xi) = f \times_J \xi, \quad f \in B^A_J, \xi \in S^A_J.
\]
Let $A^\infty \subseteq A$ denote the dense $*$-subalgebra of smooth elements for the action σ. For $a, b \in A^\infty$, the function $(u, v) \mapsto \sigma_{Ju} \sigma_{Jv}(b)$ is an element of $B^A(\mathbb{R}^n \times \mathbb{R}^n)$ and we may define

$$a \times_J b = \int \sigma_{Ju}(a) \sigma_{Jv}(b) e^{2\pi i u \cdot v} \, du \, dv.$$

The homomorphism $A \rightarrow C_0(\mathbb{R}^n, A)$, $a \mapsto \tilde{a}$, $\tilde{a}(x) = \sigma_x(a)$, is equivariant for the respective actions σ and τ, thus maps $A^\infty \rightarrow B^A$. Moreover, $a \times_J b = \tilde{a} \times_J \tilde{b}$, i.e. this is a homomorphism for the products \times_J. Thus A^∞ is represented on S^A_1, and we define a new norm $|| \cdot ||_J$ on A^∞, $||a||_J = ||L_\tilde{a}||$.

Definition 4.1 (Rieffel deformation). Equip A^∞ with the product \times_J and the norm $|| \cdot ||_J$. This completion is denoted A_J and is called the deformation of A along σ by J, or in short the Rieffel deformation of A.

Below we list some of the properties of the Rieffel deformation.

Lemma 4.2 (Properties of the Rieffel deformation). Let A be a separable C^*-algebra, $\sigma : \mathbb{R}^n \rightarrow \text{Aut}(A)$ a strongly continuous action and $J \in M_n(\mathbb{R})$ such that $J^t = -J$.

(i) \times_J is associative and the involution $*$ for A is also an involution for A_J, which thus becomes a C^*-algebra
(ii) $a \times_J b = ab$ for $J = 0$
(iii) For every fixed point $a \in A^\sigma$, $a \times_J b = ab$ and $b \times_J a = ba$ for every $b \in A$
(iv) $(A_J)_K = A_{J+K}$ for any skew-symmetric $K \in M_n(\mathbb{R})$
(v) The action σ is also an action on A_J, $\sigma : \mathbb{R}^n \rightarrow \text{Aut}(A_J)$. Moreover $(A_J)^\infty = (A^\infty)_J$
(vi) The dense subalgebra $(A^\infty)_J \subseteq A_J$ is stable under holomorphic functional calculus
(vii) Given a σ-invariant ideal $I \subseteq A$, the equivariant short exact sequence

$$0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$$

implies a short exact sequence

$$0 \rightarrow I_J \rightarrow A_J \rightarrow (A/I)_J \rightarrow 0$$

(viii) For any $T \in M_n(\mathbb{R})$, define a new action σ^T by $\sigma^T_x(a) = \sigma_{Tx}(a)$, for $x \in \mathbb{R}^n$, $a \in A$. Performing the deformation procedure for the action σ^T and skew-symmetric matrix J, denote by \times^T_J the deformed product so obtained. Then

$$\times^T_J = \times_{TJT^t}.$$

The equivalence between the Rieffel deformation A_J and the 2-cocycle deformation A^{ψ_J} is given by the $*$-isomorphism of the following lemma. Recall that one considers the \mathbb{R}^n-product $(A \ltimes_\sigma \mathbb{R}^n, \lambda, \tilde{\psi}_J)$, the 2-cocycle ψ_J in (2.2) and $A^{\psi_J} \subseteq M(A \ltimes_\sigma \mathbb{R}^n)$ is the subalgebra satisfying the Landstad conditions.

Lemma 4.3. There is a $*$-isomorphism

$$T : A^{\psi_J} \rightarrow A_J.$$
Proof. We refer the reader to [5] for details, and give only the form of the *-isomorphism here. Let \(y \in C_c(\mathbb{R}^n, A) \subseteq A \rtimes \mathbb{R}^n \subseteq M(A \rtimes \mathbb{R}^n) \), and suppose \(y \in A^\psi_J \), which means that \(\tilde{\sigma}_y^J(x) = y \) for all \(x \in \mathbb{R}^n \). The isomorphism \(T \) is described on such elements by

\[
T(y) = \int_{\mathbb{R}^n} y(v) \, dv.
\]

We consider \(B = C([0,1]) \otimes A \) with the action \(\beta \) as in (3.1). Note that \(\beta_x(y)(s) = \sigma_x^1(y(s)) \) (see Lemma 4.2 (i)). For every \(x \in \mathbb{R}^n \), let \(\overline{b}_x \in \text{Aut}(M(B)) \) denote the canonical extension of \(\beta_x \) to the multiplier algebra, namely for \(L \in M(B) \), \(\overline{b}_x(L)(b) = \beta_x(L(\beta_x^{-1}(b))) \), for \(b \in B \). A quick calculation reveals that for every \(f \in C([0,1]) \), \(\overline{b}_x(\Phi_B(f)) = \Phi_B(f) \), i.e. \(\Phi_B(C([0,1])) \subseteq M(B)^\mathbb{R} \). It is also clear that \(\Phi_B(C([0,1])) \subseteq M(B)^\mathbb{R} \). From the inclusion \(B \subseteq M(B) \) as a \(\beta \)-invariant ideal we get \(B_J \subseteq M(B)_J \) by Lemma 4.2 (vii), and working inside \(M(B)_J \) get from Lemma 4.2 (iii)

\[
\Phi_B(f) \times_J y = \Phi_B(f)y = y\Phi_B(f) = y \times_J \Phi_B(f)
\]

for \(y \in B^\infty \) and \(f \in C([0,1]) \), as \(\Phi_B(f) \in M(B)^\mathbb{R} \). This yields a \(C([0,1]) \)-algebra structure on \(B_J \), denoted \(\Phi_{B_J} : C([0,1]) \rightarrow ZM(B_J) \) given by \(\Phi_{B_J}(f)y = \Phi_B(f) \times_J y = \Phi_B(f)y \). As such, \(B_J \) is an essential \(C([0,1]) \)-module, i.e. \(C([0,1])B_J = B_J \).

Theorem 4.4. \((A_tJ)_{t \in [0,1]} \) is a continuous field of \(C^* \)-algebras, where we take as the algebra of sections \(\Gamma((A_tJ)_{t \in [0,1]}) \) to be the algebra \(B_J \).

Proof. For each \(s \in [0,1] \) let \(K^s = I_s \otimes A \) be the ideal consisting of elements of \(B = C([0,1], A) \) which vanish at the point \(s \). Clearly, \(B/K^s = A \). The short exact sequence

\[
0 \longrightarrow K^s \longrightarrow B \longrightarrow A \longrightarrow 0
\]

is equivariant for \(\beta \) acting on \(K^s \) and \(\sigma_1^\mathbb{R} \) acting on \(A \), so by Lemma 4.2 (vii) (cf. also Theorem 7.7 of [15]) we get a short exact sequence

\[
0 \longrightarrow K^s_J \longrightarrow B_J \longrightarrow A^\mathbb{R}_{\mathbb{R}_1} \longrightarrow 0
\]

The fiber \((B_J)_s \) over \(s \in [0,1] \) of the \(C([0,1]) \)-algebra \(B_J \) is by definition the quotient \((B_J)_s = B_J/(I_sB_J) \). It is shown in [15] that \(K^s_J = I_sB_J \), consequently \((B_J)_s = B_J/(I_sB_J) = B_J/K^s_J = A^\mathbb{R}_{\mathbb{R}_1} \). Moreover, from Lemma 4.2 (viii) it follows that \(A^\mathbb{R}_{\mathbb{R}_1} = A_{\mathbb{R}_1} = A_{\mathbb{R}_1} \), thus the bundle projection is \(\pi_s : B_J \rightarrow A_{\mathbb{R}_1} \). Theorem 8.3 of [15] (see also Proposition 1.2 of [14]) establishes the continuity of the field \((A_tJ)_{t \in [0,1]} \), for which \(B_J \) is a maximal algebra of cross sections, henceforth denoted \(\Gamma((A_tJ)_{t \in [0,1]}) \).

Considering the *-isomorphism of Lemma 4.3 at the level of bundles, we get

Lemma 4.5. The *-isomorphism

\[
T : B^\psi \longrightarrow B_J
\]

is \(C([0,1]) \)-equivariant, i.e. \(T \circ \Phi_B^\psi = \Phi_{B_J} \circ T \).

Proof. Let \(b \in C_c(\mathbb{R}^n, B^\infty) \subseteq B \rtimes \beta \mathbb{R}^n \subseteq M(B \rtimes \beta \mathbb{R}^n) \) be an element such that \(\tilde{\sigma}_y^J(b) = b \) for all \(x \in \mathbb{R}^n \), i.e. \(b \) is an element of \(B^\psi \). The *-isomorphism is described on such elements by

\[
T(b) = \int_{\mathbb{R}^n} b(v) \, dv.
\]
Furthermore
\[T(\Phi_B^\sigma(f)b) = \int_{\mathbb{R}^n} (\Phi_B^\sigma(f)b)(v) \, dv = \int_{\mathbb{R}^n} (\Phi_B \circ (\Phi_{\xi,J})(\Phi_B^\sigma(f)b))(v) \, dv \]
\[= \int_{\mathbb{R}^n} \Phi_B(f)(b(v)) \, dv = \Phi_B(f) \int_{\mathbb{R}^n} b(v) \, dv, \]
and since \(\Phi_{B,J} = \Phi_B \) as in (4.2), the claim follows. \(\square \)

Theorem 4.6. Let \(h \in [0,1] \). The evaluation map
\[\pi_h : \Gamma((A_{i,J})_{i \in [0,1]}) \rightarrow A_{h,J} \]
is a KK-equivalence.

Proof. As \(\Gamma((A_{i,J})_{i \in [0,1]}) = B_J \) is \(C([0,1]) \)-linearly \(*\)-isomorphic to \(B^\psi \), and \(B^\psi \) is an RKK-fibration (Theorem 3.7), thus \(\Gamma((A_{i,J})_{i \in [0,1]}) \) is an RKK-fibration and hence a KK-fibration (Lemma 3.5). So for any \(f : \Delta^p \rightarrow [0,1] \) and \(v \in \Delta^p \), the quotient map \(q_v : f^* (\Gamma((A_{i,J}))) \rightarrow A_{f(v),J} \) is a KK-equivalence. We take the identity function of the 1-simplex, namely \(f : \Delta^1 = [0,1] \rightarrow [0,1] \), \(f(s) = s \). Then \(f^* (\Gamma((A_{i,J}))) = \Gamma((A_{i,J})) \), \(q_h = \pi_h \) and
\[\pi_h : \Gamma((A_{i,J})) \rightarrow A_{h,J} \]
is a KK-equivalence, for every \(h \in [0,1] \). \(\square \)

5 Comments

5.1 Theta deformation

Here we discuss a special case of Rieffel deformation, namely *theta deformation* and one possible variation to the above approach to KK-equivalence by bundle methods. Theta deformation concerns a separable C*-algebra \(A \) on which there is a strongly continuous action of the \(n \)-torus, \(\sigma : \mathbb{T}^n \rightarrow \text{Aut}(A) \), with a given skew-symmetric matrix \(\theta \in M_n(\mathbb{R}) \). This is just a special case of Rieffel deformation in which the \(n \)-torus is regarded as the quotient \(\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n \), and one obtains the deformed algebra \(A_{\theta} \). An alternative and perhaps more direct picture can be given by following [1]. First define \(C(\mathbb{T}^n_\theta) \) to be the unital C*-algebra generated by unitaries \(u_1, \ldots, u_n \) with relations
\[u_j u_k = e^{2\pi i \theta_{jk}} u_k u_j, \quad \text{for } j, k = 1, \ldots, n. \]
(Note that this is just the Rieffel deformation \(C(\mathbb{T}^n)_{\theta} \) of the commutative C*-algebra \(C(\mathbb{T}^n) \) with respect to the translation action of the \(n \)-torus; the notation \(C(\mathbb{T}^n) \) is suggestive of the terminology of "noncommutative manifolds" as in [1]). On \(C(\mathbb{T}^n_\theta) \) there is the action \(\tau : \mathbb{T}^n \rightarrow \text{Aut}(C(\mathbb{T}^n_\theta)) \), \(\tau_s(u_j) = e^{2\pi i s_j} u_j \), for \(s \in \mathbb{T}^n \). By considering the diagonal action \(\sigma \circ \tau^{-1} : \mathbb{T}^n \rightarrow \text{Aut}(A \otimes C(\mathbb{T}^n_\theta)) \) one defines the theta deformed algebra
\[A_{\theta} = (A \otimes C(\mathbb{T}^n_\theta))^{\sigma \circ \tau^{-1}} \tag{5.1} \]
as the fixed-point C*-subalgebra for this diagonal action.

We shall define a continuous C*-bundle over \([0,1]\) whose fiber over \(t \in [0,1] \) will not be \(A_{\theta} \) per se, but will be strongly Morita equivalent to it. The benefit of this particular bundle will be that the evaluation map will easily be seen to yield a KK-equivalence element, and the remaining KK-equivalence is then given by the strong Morita equivalence. First we record the result we need regarding the strong Morita equivalence.
Lemma 5.1. \(A_\theta \sim_M A \rtimes_{\sigma} \mathbb{T}^n \rtimes_{\gamma_1} \mathbb{Z} \times \cdots \times_{\gamma_n} \mathbb{Z} \).

Proof. By results of [12] we get the strong Morita equivalence
\[
(A \otimes C(T^0))^{\sigma \otimes \tau^{-1}} \sim_M (A \otimes C(T^0)) \rtimes_{\sigma \otimes \tau^{-1}} \mathbb{T}^n.
\]
The latter crossed product algebra is *-isomorphic to the crossed product in the statement of the lemma, which we now define. Let \(\gamma_1 \in Aut(A \rtimes_{\sigma} \mathbb{T}^n) \) be \(\gamma_1(g)(s) = e^{2\pi is}g(s) \) for \(g \in A \rtimes_{\gamma_1} \mathbb{T}^n \) and let \(u_1 \) be the implementing unitary. Proceed inductively to define actions \(\gamma_2, \ldots, \gamma_n \) with implementing unitaries \(u_2, \ldots, u_n \) so that
\[
(5.2) \quad \gamma_j(u_k) = e^{2\pi i\theta_j,k}u_k, \quad j < k,
\]
so the covariance relation \(\gamma_j(u_k) = u_j u_k^* e^{2\pi i\theta_j,k} u_k \) means precisely \(u_j u_k = e^{2\pi i\theta_j,k} u_k u_j \).

The *-isomorphism \((A \otimes C(T^0)) \rtimes_{\sigma \otimes \tau^{-1}} \mathbb{T}^n \to A \rtimes_{\gamma_1} \mathbb{T}^n \rtimes_{\gamma_2} \mathbb{Z} \times \cdots \times_{\gamma_n} \mathbb{Z} \) can be explicitly described on the dense *-subalgebra \(A \otimes C(T^0) \otimes C(\mathbb{T}^n) \) as \(a \otimes u_j \otimes h \mapsto u_j(ah) \) where one understands \(ah \in A \otimes C(\mathbb{T}^n) \subseteq A \rtimes_{\gamma_1} \mathbb{T}^n \).

Let \(B = C([0,1]) \otimes A \rtimes_{\gamma_1} \mathbb{T}^n = C([0,1], A \rtimes_{\sigma} \mathbb{T}^n) \). We may decompose \(\sigma \) into its coordinate actions \(\sigma_1, \ldots, \sigma_n \) where \(\sigma_j(z) = \sigma_1^{(j, \ldots, j, 0, \ldots, 0)} \) for \(z \in \mathbb{T} \). For \(j, k = 1, \ldots, n \) let \(h_{j,k} \in C([0,1]) \) be the function
\[
h_{j,k}(t) = e^{2\pi i\theta_j,k}.
\]
Define \(\alpha_1 \in Aut(B) \) by
\[
\alpha_1(f \otimes g) = f \otimes \hat{\sigma}_1(g), \quad f \in C([0,1]), g \in A \rtimes_{\gamma_1} \mathbb{T}^n
\]
and let \(v_1 \) be the unitary implementing \(\alpha_1 \) in \(B \rtimes_{\alpha_1} \mathbb{Z} \). Define \(\alpha_2 \in Aut(B \rtimes_{\alpha_1} \mathbb{Z}) \) by
\[
\alpha_2((f \otimes g)v_1^m) = (h_{1,2} f \otimes \hat{\sigma}_{2}^m(g))v_1^m, \quad m \in \mathbb{Z}.
\]
Proceeding inductively we thus obtain actions \(\alpha_1, \ldots, \alpha_n \) with respective implementing unitaries \(v_1, \ldots, v_n \),
\[
\alpha_k((f \otimes g)v_j^m) = v_k((f \otimes g)v_j^m)^* v_k = (h_{j,k} f \otimes \hat{\sigma}_{k}^m(g))v_j^m.
\]
Let \(\pi_1 : C([0,1]) \otimes A \rtimes_{\gamma_1} \mathbb{T}^n \to A \rtimes_{\gamma_1} \mathbb{T}^n \) be the evaluation map, \(\pi_1(f \otimes g) = f(t)g \). For each \(t \in [0,1] \), starting with \(A \rtimes_{\gamma_1} \mathbb{T}^n \) inductively define actions \(\gamma_1^t, \ldots, \gamma_n^t \) as in \((5.2) \) with respective unitaries \(u_1, \ldots, u_n \) such that
\[
\gamma_j^t(u_k) = e^{2\pi i\theta_j,k}u_k.
\]
Note that the actions \(\gamma_j \) of \((5.2) \) are just \(\gamma_j = \gamma_j^1 \) with \(t = 1 \). Furthermore, \(\pi_t \circ \alpha_1 = \gamma_1^t \circ \pi_t \), i.e. \(\pi_1 \) is a \(\mathbb{Z} \)-equivariant *-homomorphism between the \(\mathbb{C}^* \)-dynamical systems and so passes to a *-homomorphism between the crossed products
\[
\pi_t : (C([0,1]) \otimes A \rtimes_{\gamma_1} \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \to A \rtimes_{\gamma_1^t} \mathbb{T}^n \rtimes_{\gamma_1^t} \mathbb{Z}, \quad \quad (5.3)
\]
which is a continuous \(\mathbb{C}^* \)-bundle. Iterating this, one has \(\pi_t \circ \alpha_j = \gamma_j^t \circ \pi_t \) for each \(j = 1, \ldots, n \), where \(\pi_t \) is understood on the appropriate crossed product. Thus we get a continuous \(\mathbb{C}^* \)-bundle
\[
\pi_t : C([0,1], A \rtimes_{\gamma_1} \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \times \cdots \times_{\alpha_n} \mathbb{Z} \to A \rtimes_{\gamma_1^t} \mathbb{T}^n \rtimes_{\gamma_1^t} \mathbb{Z} \times \cdots \times_{\gamma_n^t} \mathbb{Z}, \quad \quad (5.4)
\]
For each \(t \in [0, 1] \) let \(I_t = \{ f \in C([0, 1]) \mid f(t) = 0 \} \) be the ideal of functions vanishing at the point \(t \). The ideal \(I_t \otimes A \rtimes_\sigma \mathbb{T}^n \subseteq C([0, 1]) \otimes A \rtimes_\sigma \mathbb{T}^n \) is \(\alpha_1 \)-invariant, so it follows that the kernel of the \(*\)-homomorphism \(\pi_t \) in (5.3) is
\[
ker \pi_t = (I_t \otimes A \rtimes_\sigma \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z}.
\]
By iteration, it follows that the kernel of the \(*\)-homomorphism \(\pi_t \) in (5.4) is
\[
k\ker \pi_t = (I_t \otimes A \rtimes_\sigma \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \rtimes \cdots \rtimes_{\alpha_n} \mathbb{Z}.
\]
Using a homeomorphism of \([0, 1]\) to itself, mapping \(t \) to 1, there is a \(*\)-isomorphism \(I_t \cong C_0([0, 1]) \). This means \(I_t \otimes A \rtimes_\sigma \mathbb{T}^n \cong C_0([0, 1]) \otimes A \rtimes_\sigma \mathbb{T}^n = Cone(A \rtimes_\sigma \mathbb{T}^n) \), hence
\[
k\ker \pi_t = Cone(A \rtimes_\sigma \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \rtimes \cdots \rtimes_{\alpha_n} \mathbb{Z}.
\]
(5.5)

We recall a few general facts which we will appeal to shortly, in particular contractibility of cones and the Pimsner-Voiculescu six-term exact sequence. First, a \(C^* \)-algebra \(B \) is called KK-contractible if \(KK(B, B) = 0 \). This also implies \(KK(B, D) = 0 = KK(D, B) \) for any other \(C^* \)-algebra \(D \).

Suppose there is an action \(\beta \in Aut(B) \). The Pimsner-Voiculescu six-term exact sequence in KK-theory is
\[
\begin{array}{cccccc}
KK(D, B) & \overset{1-\beta_*}{\longrightarrow} & KK(D, B) & \longrightarrow & KK(D, B \rtimes_\beta \mathbb{Z}) \\
\uparrow & & \downarrow & & \\
KK^1(D, B \rtimes_\beta \mathbb{Z}) & \leftarrow & KK^1(D, B) & \leftarrow & KK^1(D, B)
\end{array}
\]
Observe that if \(B \) is KK-contractible, then the six-term exact sequence reads
\[
\begin{array}{cccccc}
0 & \overset{1-\beta_*}{\longrightarrow} & 0 & \longrightarrow & KK(D, B \rtimes_\beta \mathbb{Z}) \\
\uparrow & & \downarrow & & \\
KK^1(D, B \rtimes_\beta \mathbb{Z}) & \leftarrow & 0 & \leftarrow & 0
\end{array}
\]
and using in particular \(D = B \rtimes_\beta \mathbb{Z} \) we deduce \(KK(B \rtimes_\beta \mathbb{Z}, B \rtimes_\beta \mathbb{Z}) = 0 \), i.e. \(B \rtimes_\beta \mathbb{Z} \) is KK-contractible.

Given any separable \(C^* \)-algebra \(D \), its cone \(Cone(D) = C_0([0, 1]) \otimes D \) is KK-contractible.

Theorem 5.2. For every \(t \in [0, 1] \) the bundle map
\[
\pi_t : C([0, 1], A \rtimes_\sigma \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \times \cdots \rtimes_{\alpha_n} \mathbb{Z} \rightarrow A \rtimes_\sigma \mathbb{T}^n \rtimes_{\gamma_1} \mathbb{Z} \times \cdots \rtimes_{\gamma_n} \mathbb{Z}
\]
gives a KK-equivalence.

Proof. From (5.5) \(ker \pi_t = Cone(A \rtimes_\sigma \mathbb{T}^n) \rtimes_{\alpha_1} \mathbb{Z} \times \cdots \rtimes_{\alpha_n} \mathbb{Z} \). Then the KK-contractibility of \(Cone(A \rtimes_\sigma \mathbb{T}^n) \) combined with a repeated Pimsner-Voiculescu six-term sequence argument as above establishes that \(ker \pi_t \) is KK-contractible. This implies that \(\pi_t \) gives a KK-equivalence element.
5.2 Invariance of the index

The index pairing is the pairing between K-theory and K-homology

\[K_0(A) \times K^0(A) \longrightarrow \mathbb{Z} \]

\[([e], [(\mathcal{H}, F)]) = \text{index } (e(F^+ \otimes 1_k)e : e\mathcal{H}^k \longrightarrow e\mathcal{H}^k), \]

(5.6)

for a projection \(e \in M_k(A) \) and Fredholm module \((\mathcal{H}, F)\) for \(A \). This pairing is nothing but the KK-product

\[KK(\mathbb{C}, A) \times KK(A, \mathbb{C}) \longrightarrow KK(\mathbb{C}, \mathbb{C}) \]

(5.7)

after the identifications \(K_0(A) = KK(\mathbb{C}, A), K^0(A) = KK(A, \mathbb{C}) \) and \(KK(\mathbb{C}, \mathbb{C}) = \mathbb{Z} \).

See also [17] for a discussion of theta deformation and the invariance of the index, and moreover a calculation of the Chern character map for the deformation.

Given an even spectral triple \((A, \mathcal{H}, D)\) there is the associated Fredholm module \((\mathcal{H}, F)\) with \(F = D|D|^{-1} \).

Our separable C*-algebra \(A \) is assumed equipped with an action \(\sigma : \mathbb{T}^n \longrightarrow \text{Aut}(A) \), and let \(\mathcal{A} \subseteq A \) be the dense *-subalgebra of smooth elements for the action. Suppose \((A, \mathcal{H}, D)\) is a spectral triple, with a *-representation \(\varphi : A \longrightarrow B(\mathcal{H}) \). Assume the action to be unitarily implemented by \(U : \mathbb{T}^n \longrightarrow B(\mathcal{H}), \varphi(\sigma_s(a)) = U_s^*\varphi(a)U_s \), and that \(U_sD = DU_s \) for each \(s \in \mathbb{T}^n \).

Theta deformation is an isospectral deformation, meaning that the same data \((\mathcal{H}, D)\) which describes a noncommutative geometry for \(A \), is also taken to serve a noncommutative geometry for \(A_\theta \). In order to study these aspects, it is useful to work with the following picture of the deformation. Any element \(a \in A \) decomposes into a norm convergent series \(a = \sum r \in 2^n a_r \) where each \(a_r \in \mathcal{A} \) satisfies \(\sigma_s(a_r) = e^{-2\pi ir \cdot s}a_r \), for \(s \in \mathbb{T}^n \). Given two elements \(a, b \in \mathcal{A} \) with decompositions \(a = \sum a_r \) and \(b = \sum b_p \), the product \(\times_\theta \) takes the form

\[a_r \times_\theta b_p = e^{2\pi ir \cdot \theta p}a_r b_p \]

(5.8)

between two component elements \(a_r \) and \(b_p \). The product \(a \times_\theta b \) is then the linear extension of the componentwise product (5.8). The *-algebra \(\mathcal{A}_\theta \) is just \(\mathcal{A} \) equipped with this product. The correspondence with the definition in (5.1) is just

\[a_r \mapsto a_r \otimes u_1^{r_1} \cdots u_n^{r_n} \in (A \otimes C(\mathbb{T}^n_\theta))^{\sigma \otimes r^{-1}}. \]

We have a representation \(\varphi_\theta \) of \(\mathcal{A}_\theta \) on the same Hilbert space, \(\varphi_\theta : \mathcal{A}_\theta \longrightarrow B(\mathcal{H}) \), by

\[\varphi_\theta(a) = \sum_r \varphi(a_r)U_{q(\theta r)}, \]

\(A_\theta \) is then the norm closure and \((\mathcal{A}_\theta, \mathcal{H}, D_\theta)\) is the deformed spectral triple, where \(D_\theta = D \).

For the even spectral triple \((A, \mathcal{H}, D)\) we shall denote by \([D] = [(\mathcal{H}, \varphi, F)] \in K^0(A)\) the corresponding element of K-homology. Likewise we denote by \([D_\theta] = [(\mathcal{H}, \varphi_\theta, F)] \in K^0(A_\theta)\) the element associated to the spectral triple \((\mathcal{A}_\theta, \mathcal{H}, D_\theta)\).

Corollary 5.3. The KK-equivalence of Theorem 4.6 induces an isomorphism \(K^0(A) \cong K^0(A_\theta) \) mapping \([D] \mapsto [D_\theta]\).

Proof. Let \(\Gamma = \Gamma((A_\theta)_{\theta \in [0,1]}). \) From the bundle maps \(\pi_0 : \Gamma \longrightarrow A \) and \(\pi_1 : \Gamma \longrightarrow A_\theta \) we get by Theorem 4.6 the KK-equivalence elements \([\pi_0] \in KK(\Gamma, A)\) and \([\pi_1] \in KK(\Gamma, A_\theta)\). The relevant
mappings between KK-groups is described by the KK-products

\[
\begin{array}{c}
\xymatrix{
KK(\Gamma, C) \\
KK(A, C) \ar[r]_{\pi_0} \ar[rru]_{\pi_1} & & KK(A_\theta, C) \\
[p_0] & & [p_1]\n}
\end{array}
\]

where \([p_0] = [(A, \pi_0, 0)] \in KK(A, C)\) and \([p_1] = [(A_\theta, \pi_1, 0)] \in KK(\Gamma, A_\theta)\) are the KK-cycle descriptions.

The element \([D] = [(\mathcal{H}, \phi, F)] \in KK(A, C)\) is the element canonically associated to the given spectral triple \((A, \mathcal{H}, D)\) as explained above, and upon taking the KK-product we get

\[
[p_0] \cdot [D] = [(\mathcal{H}, \phi \circ \pi_0, F)] \in KK(\Gamma, C).
\] (5.9)

Likewise \([D_\theta] = [(\mathcal{H}, \phi_\theta, F)] \in KK(A_\theta, C)\) is the element associated to the deformed spectral triple \((A_\theta, \mathcal{H}, D_\theta)\), and the KK-product is then

\[
[p_1] \cdot [D_\theta] = [(\mathcal{H}, \phi \circ \pi_1, F)] \in KK(\Gamma, C).\] (5.10)

It will be enough to establish the equality \([p_0] \cdot [D] = [p_1] \cdot [D_\theta]\) in \(KK(\Gamma, C)\). This follows from homotopy of KK-cycles. Indeed, let \((E, \phi, F) \in KK(\Gamma, I C)\) be the element where \(E = C([0, 1], \mathcal{H}), \phi : \Gamma \to L_I C(E), (\phi(s)\xi)(t) = s(t)\xi(t)\), and \(I C = C([0, 1]) \otimes C = C([0, 1])\). Let \(e_{v_0}\) and \(e_{v_1}\) denote the respective evaluation morphisms \(E \to \mathcal{H}\). It is easy to check (using details explained in [2]) that \((E, \phi, F)\) provides a homotopy between the KK-cycles (5.9) and (5.10), i.e. isomorphisms of the KK-cycles with the pushouts of \(e_{v_0}\) and \(e_{v_1}\) respectively,

\[
(E_{v_0}, \phi_{e_{v_0}}, F_{e_{v_0}}) \cong [(\mathcal{H}, \phi \circ \pi_0, F)] \quad \text{and} \quad (E_{v_1}, \phi_{e_{v_1}}, F_{e_{v_1}}) \cong [(\mathcal{H}, \phi \circ \pi_1, F)].
\]

The KK-equivalence of Theorem 4.6 implies the isomorphisms

\[
K_0(A) = KK(C, A) \to KK(C, A_\theta) = K_0(A_\theta), \quad [e] \mapsto [e] \cdot [p_0]^{-1} \cdot [p_1],
\]

and

\[
K^0(A) = KK(A, C) \to KK(A_\theta, C) = K^0(A_\theta), \quad [(\mathcal{H}, F)] \mapsto [p_1]^{-1} \cdot [p_0] \cdot [(\mathcal{H}, F)],
\]

and regarding the index pairing (5.6) or equivalently the KK-product (5.7), we get

\[
\begin{array}{c}
K_0(A) \times K^0(A) \xrightarrow{\text{index}} \mathbb{Z} \\
\downarrow \quad \downarrow \\
K_0(A_\theta) \times K^0(A_\theta) \xrightarrow{\text{index}} \mathbb{Z}
\end{array}
\]

where \([e] \cdot [(\mathcal{H}, F)]\) is the top index pairing and

\[
[e] \cdot [p_0]^{-1} \cdot [p_1] \cdot [p_1]^{-1} \cdot [p_0] \cdot [(\mathcal{H}, F)] = [e] \cdot [(\mathcal{H}, F)]
\]

is the bottom index pairing after having followed the isomorphisms induced by the KK-equivalences.
References

[1] A. Connes, M. Dubois-Violette. *Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples*, arXiv:math/0107070v5 [math.QA], 2002.

[2] A. Connes, G. Landi. *Noncommutative Manifolds the Instanton Algebra and Isospectral Deformations*, arXiv:math/0011194v3 [math.QA], 2001.

[3] S. Echterhoff, R. Nest, H. Oyono-Oyono. *Principal noncommutative torus bundles*, arXiv:0810.0111v1 [math.KT], 2008.

[4] S. Echterhoff, R. Nest, H. Oyono-Oyono. *Fibrations with noncommutative fibers*, arXiv:0810.0118v1 [math.KT], 2008.

[5] K. C. Hannabuss, V. Mathai, *Noncommutative principal torus bundles via parametrised strict deformation quantization*, arXiv:0911.1886v2 [math-ph], 2010.

[6] G. G. Kasparov. *Equivariant KK-theory and the Novikov conjecture*, Invent. math 91, p147-201 (1988)

[7] P. Kasprzak, *Rieffel deformation via crossed products*, arXiv:math/0606333v15 [math.OA], 2010.

[8] E. Kirchberg, S. Wassermann. *Operations on continuous bundles of C*-algebras*, Math. Ann. 303(1995), p.677-697

[9] G. Landi. *Examples of noncommutative instantons*, arXiv:math/0603426v2 [math.QA], 2007.

[10] M. B. Landstad. *Duality theory for covariant systems*, Trans. Amer. Math. Soc. 248 (1979), no. 2, 223-267

[11] G. Nagy, *Deformation quantization and K-theory*, Contemporary Mathematics Volume 214 (1998), p.111-134

[12] C. K. Ng. *Morita equivalences between fixed point algebras and crossed products*, Math. Proc. Cambridge Philos. Soc. 125 (1999), p.43-52

[13] G. K. Pedersen. *C*-algebras and their automorphism groups*, Academic Press, 1979.

[14] M. A. Rieffel. *Continuous fields of C*-algebras coming from group coecycles and actions*, Math. Ann. 283, 631-643 (1989)

[15] M. A. Rieffel. *Deformation quantization for actions of \(\mathbb{R}^d \)*, Mem. Am. Math. Soc. 506 (1993)

[16] M. A. Rieffel. *K-groups of C*-algebras deformed by actions of \(\mathbb{R}^d \)*, Journal of functional analysis 116 (1993), p.199-214

[17] M. Yamashita. *Connes-Landi Deformation of Spectral Triples*, arXiv:1006.4420v1 [math.OA], (2010)

Amandip Sangha
Department of Mathematics,
University of Oslo,
PO Box 1053 Blindern,
N-0316 Oslo, Norway.
amandip.s.s.sangha@gmail.com