Data Article

Species composition and plant traits of south Atlantic European coastal dunes and other comparative data

Marta Torca*, Juan Antonio Campos, Mercedes Herrera

Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, PO Box 644, 48080 Bilbao, Spain

A R T I C L E I N F O

Article history:
Received 19 November 2018
Received in revised form 2 December 2018
Accepted 3 December 2018
Available online 7 December 2018

A B S T R A C T

The data reported in this article relates to the research article entitled “Changes in plant diversity patterns along dune zonation in south Atlantic European coasts” (Torca et al., 2019) [1]. Data about traits of species from coastal dunes, a synoptic table and PERMANOVA comparisons are given. The information detailed in the methodology section can be used as a guide to perform analyses on taxonomic, functional and phylogenetic diversity.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Biology
More specific subject area	Botany, floristic studies
Type of data	Tables, excel file, word file
How data was acquired	Field measures and databases. Visual identification and cover estimation of plant species.
Data format	Raw and analyzed

Abbreviations: CWM, community weighted mean; MPD, mean pairwise distance; MNTD, mean nearest taxon distance; NRI, net relatedness index; NTI, nearest taxon index

* Corresponding author.
E-mail address: marta.torca@ehu.eus (M. Torca).

DOI of original article: https://doi.org/10.1016/j.ecss.2018.11.016

Abbreviations: CWM, community weighted mean; MPD, mean pairwise distance; MNTD, mean nearest taxon distance; NRI, net relatedness index; NTI, nearest taxon index

* Corresponding author.
E-mail address: marta.torca@ehu.eus (M. Torca).

https://doi.org/10.1016/j.dib.2018.12.005

2352–2409© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Experimental factors
Collected plant species were pressed before identification or measurement in the laboratory.

Experimental features
10 m × 10 m temporary plots in coastal dunes, where plant species composition and cover was estimated. 12 sites. A total of 244 plots.

Data source location
Coasts of north Spain and south west France

Data accessibility
Data are included in this article.

Related research article
M. Torca, J.A. Campos, M. Herrera; 2019
Changes in plant diversity patterns along dune zonation in south Atlantic European coasts. (http://dx.doi.org/10.1016/j.ecss.2018.11.016) [1]

Value of the data

- The presented data allows keeping track of the coastal dune species composition in the southwestern part of Atlantic Europe.
- The raw data of traits allows the performance of further analyses for functional diversity in coastal dunes.
- The methodology section summarizes common indices for taxonomic, functional and phylogenetic diversity and can be used as a guide.

1. Data

Raw data of ten traits for 110 species from coastal dunes of southwest Atlantic Europe is provided in Table S1 of the Supplementary material. Information for traits from Table S1 was extracted from the following online databases of traits and floras:

- Biolflor [2].
- Claves ilustradas de la flora del País Vasco y territorios limítrofes [3].
- Flora Iberica [4].
- Kew Garden [5].
- LEDA [6].
- Seed Dispersal [7].
- Try [8].

Table 1
PERMANOVA results for community assemblage at scales of plot, location and sector for each dune habitat. df = degrees of freedom, MS = mean squares, ns = no significant. VC = Variance Component. * p < 0.05, ** p < 0.01, *** p < 0.001.

Habitat	df	MS	Pseudo-F	VC	
Embryo					
Sector = Se	3	5901.8	0.960	ns	0.0
Local = Lo(Se)	8	6128.9	3.910	***	562.9
Plot = Pl(Lo(Se))	36	1565.7	2.230	***	431.7
Residual	48	702.2			702.2
Total	95				
Mobile					
Sector = Se	3	12,958.0	2.230	**	297.9
Local = Lo(Se)	8	5808.9	3.791	***	534.6
Plot = Pl(Lo(Se))	36	1532.3	2.069	***	395.8
Residual	48	740.7			740.7
Total	95				
Fixed					
Sector = Se	3	42,095.0	3.690	***	1279.1
Local = Lo(Se)	8	11,396.0	6.240	***	1196.1
Plot = Pl(Lo(Se))	36	1827.1	3.380	***	643.7
Residual	48	539.8			539.8
Total	95				
Table 2

PERMANOVA results for Taxonomic Diversity (Shannon Index and Species richness), Phylogenetic Diversity (NRI and NTI) and Functional Diversity (RaoQ and CWM). df = degrees of freedom, MS = mean squares, ns = no significant. VC = Variance Component. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Taxonomic Diversity	df	Shannon	Pseudo-F	VC	Richness	MS	Pseudo-F	VC
Embryo								
Sector = Se	3	0.252	0.169	ns	0.000	12.372	0.486	ns
Location = Lo(Se)	8	1.49	5.150	***	0.100	25.469	3.818	**
Plot = Pl(Lo(Se))	36	0.290	16.078	ns	0.055	6.670	1.699	*
Residual	48	0.180	0.180		0.180	3.927	3.927	
Total	95							
Mobile								
Sector = Se	3	1.301	2.100	ns	0.028	21.361	0.616	ns
Location = Lo(Se)	8	0.619	2.469	*	0.046	34.688	4.078	**
Plot = Pl(Lo(Se))	36	0.251	1.641	ns	0.049	8.507	2.490	**
Residual	48	0.153	0.153		0.153	3.417	3.417	
Total	95							
Fixed								
Sector = Se	3	1.254	4.102	ns	0.038	99.038	2.820	ns
Location = Lo(Se)	8	0.306	0.988	ns	0.000	35.115	3.518	**
Plot = Pl(Lo(Se))	36	0.309	2.818	***	0.027	9.983	2.183	**
Residual	48	0.110	0.184		0.184	4.573	4.573	
Total	95							

Phylogenetic Diversity	df	NRI	Pseudo-F	VC	NTI	Pseudo-F	VC	
Embryo								
Sector = Se	3	0.540	0.901	ns	0.000	2.532	1.255	ns
Location = Lo(Se)	8	0.599	1.911	ns	0.034	2.018	3.590	**
Plot = Pl(Lo(Se))	36	0.313	2.776	**	0.100	0.562	2.520	**
Residual	48	0.113	0.113		0.113	0.223	0.223	
Total	95							
Mobile								
Sector = Se	3	0.180	0.443	ns	0.000	0.985	0.656	ns
Location = Lo(Se)	8	0.406	2.056	ns	0.018	1.501	1.645	ns
Plot = Pl(Lo(Se))	36	0.198	1.246	ns	0.020	0.912	1.847	*
Residual	48	0.159	0.159		0.159	0.494	0.494	
Total	95							
Fixed								
Sector = Se	3	2.506	2.413	ns	0.061	0.527	0.473	ns
Location = Lo(Se)	8	1.038	1.456	ns	0.041	1.113	1.313	ns
Plot = Pl(Lo(Se))	36	0.713	2.892	**	0.233	0.848	2.184	**
Residual	48	0.247	0.247		0.247	0.388	0.388	
Total	95							

Functional Diversity	df	RaoQ	Pseudo-F	VC	CWM	Pseudo-F	VC	
Embryo								
Sector = Se	3	0.008	0.060	ns	0.000	874.5	0.675	ns
Location = Lo(Se)	8	0.133	5.387	***	0.009	1295.1	4.909	***
Plot = Pl(Lo(Se))	36	0.025	1.703	*	0.005	263.8	2.771	***
Residual	48	0.014	0.014		0.014	95.2	95.2	
Total	95							
Mobile								
Sector = Se	3	0.101	2.289	ns	0.002	2674.4	0.687	ns
Location = Lo(Se)	8	0.044	2.428	*	0.003	3891.8	4.946	***
Plot = Pl(Lo(Se))	36	0.018	1.360	ns	0.002	786.9	1.142	ns
Residual	48	0.013	0.013		0.013	689.2	689.2	
Total	95							
Fixed								
Sector = Se	3	0.033	1.381	ns	0.000	11932.0	2.511	ns
Location = Lo(Se)	8	0.024	1.393	ns	0.001	4752.6	6.232	***
Plot = Pl(Lo(Se))	36	0.017	2.858	***	0.006	762.5	0.990	ns
Residual	48	0.006	0.006		0.006	770.1	766.9	
Table S2 of the Supplementary material provides a synoptic representation of the IndVal values. Finally, in Tables 1 and 2 a PERMANOVA analysis of species composition, taxonomic, functional and phylogenetic diversity is reported.

2. Experimental design, materials and methods

2.1. Study area

The research was conducted along the Atlantic coasts of north Spain and southwest of France. The Cantabrian coast lies in E-W direction with a dominant north face [9]. Galicia and Cantabria show high sedimentary deposition, while in Asturias cliffs are abundant [10]. In Galicia and Cantabria estuaries open and there sand dune fields occur in numerous localities [9]. In the south of France cliffs are less common and a continuous dune field is present. Along the western areas temperate hyper-oceanic submediterranean conditions predominate, while in the eastern areas a temperate oceanic bioclimate is dominant [11]. Climatic characterization of the studied locations is shown in Table 3.

2.2. Diversity indices

For taxonomic diversity Shannon index was calculated

\[H = - \sum_{i=1}^{n} p_i \ln p_i \]

where \(p_i \) is the relative abundance of species i.

For phylogenetic diversity, NRI (Net Relatedness Index) and NTI (Nearest Taxon Index) were calculated:

\[NRI = -1 \left(\frac{MPD_{obs} - MPD_{rand}}{sd\ MPD_{rand}} \right) \]
\[NTI = -1 \left(\frac{MNTD_{obs} - MNTD_{rand}}{sd\ MNTD_{rand}} \right) \]

where MPD stands for Mean Pairwise Distance both observed (obs) and random (rand). The difference between the observed and random value is divided by the standard deviation of the random distribution. NTI is the same except that the MNTD (Mean Nearest Taxon Distance) is applied. Both NRI and NTI can be calculated using species presence-absence data but, in this study, weighed abundance was measured.

Regarding the phylogenetic tree used for distances, the reference tree selected was Phylomatic tree R20120829 for plants. As one species, Cynodon dactylon was not included, it was manually added. Then, polytomies were randomly resolved, as trees containing polytomies have less resolution and statistical power [13]. Finally, branch length was estimated using BLADJ (Branch Length Adjustment).

Table 3

Station	Sector	Long	Lat	Ele	T	Pp	lc	los1	los2	los3	los4	It	Im1
Noia	GP	8°53’W	42°47’N	104	13.8	1833	11.4	1.24	1.88	2.42	3.34	334	4.71
Padrón	GP	8°38’W	42°44’N	58	14.8	1692	11.8	1.24	1.88	2.42	3.34	334	4.71
La Coruña	GA	8°22’W	43°23’N	57	13.7	963	8.6	1.83	2.08	2.14	2.52	332	3.69
Porto do Baqueiro	GA	7°41’W	43°47’N	80	13.1	2080	8.6	2.36	3.08	4.21	5.66	317	2.41
Comillas	CB	3°17’W	43°23’N	24	13.5	1242	10.1	2.49	3.99	4.06	4.52	309	2.32
Oriñón	CB	3°19’W	43°24’N	63	13.9	1400	10.7	2.87	3.30	3.94	4.39	320	1.99
Hondarribia	AL	1°47’W	43°21’N	8	14.1	1720	12	4.34	5.08	5.16	5.9	310	1.35
Bordeaux	AL	0°42’W	44°49’N	49	12.8	1539	15.3	2.38	2.43	2.27	2.99	234	2.49
and an age file according to Wikström et al. [14] in Phylocom [15]. Having few dated nodes, the resulting phylogenetic distance can be considered as a marked improvement over using only the number of intervening nodes as phylogenetic distance [16].

For functional diversity, CWM (Community Weighted Mean) was used. It is a metric of functional composition and it was proposed by Garnier et al. [17] to calculate the average of trait values weighted by the relative abundances of each species [18]. It is a good indicator of the expected functional value of a trait in a random community sample [19], and can also be used to understand how environmental gradients select trait composition at local communities [20].

\[
\text{CWM} = - \sum_{i=1}^{S} p_i x_i
\]

where \(p_i \) is the relative abundance of species \(i (i = 1, 2, ..., S) \), and \(x_i \) is the trait value for species \(i \).

Another functional index used was RaoQ based on Rao [21] quadratic diversity and proposed by Pavoine and Dolédec [22] and Leps et al. [23]. RaoQ is considered the expected dissimilarity between two individuals of a given species assemblage selected at random with replacement [18].

\[
Q = - \sum_{i=1}^{S} d_{ij} p_i p_j
\]

where \(d_{ij} \) is the dissimilarity (i.e., not necessarily a metric distance) between species \(i \) and \(j \) and \(p_i \) and \(p_j \) the relative abundance of species \(i \) and \(j \) respectively. CWM and RaoQ are complementary as CWM quantifies the weighted mean of a given functional trait within a given species assemblage, while the RaoQ is a measure of trait dispersion or divergence sensu Villéger et al. [24] (see [18]).

2.3. Sampling and data analysis

Plant community composition was assessed by visual identification and cover estimation of species in the plots. Details are provided in [1]. Permutational multivariate analyses of variance (PERMANOVA) [25] was performed using PERMANOVA+ for Primer software [26]. Synoptic table based on IndVal values was filled with the multipatt function of the indicspecies [27] package of R [28].

Acknowledgments

The study was supported by the project IT936-16 of the Basque Government and Marta Torca’s Ph. D. fellowship. We would like to thank the University of the Basque Country (UPV/EHU). Thanks to Dirección General de Montes y Conservación de la Naturaleza de Cantabria and Xunta de Galicia for the permissions to work in studied ecosystems. Thanks to Kristina Arranz, Daniel García-Magro, Alejandro Gómez and Aixa Vizuete for their help with the sampling in the field.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.12.005.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.12.005.
[26] K. Clarke, R. Gorley, *PRIMER v6: User Manual/Tutorial*, PRIMER-E, Plymouth (2006) 192.

[27] M.D. Cáceres, P. Legendre, Associations between species and groups of sites: indices and statistical inference, Ecology 90 (2009) 3566–3574. https://doi.org/10.1890/08-1823.1.

[28] R Core Team, *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna, Austria, 2015 (https://www.R-project.org/).