3-Isobutyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab, Abderrazzak El Moutaouakil Ala Allah, Abdulsalam Alsubari, Joel T. Mague and Youssef Ramli

*Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, †Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and ‡Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

The imidazolidine ring in the title molecule, C₁₉H₂₀N₂O₂, is slightly ‘ruffled’. In the crystal, a layer structure is generated by N—H···O and C—H···O hydrogen bonds plus C—H···π(ring) interactions.

Structure description

Imidazolidin-2,4-dione, also known as hydantoin, is an important nucleus found in numerous natural products and in several clinically important medicines. One of the best known examples of such a derivative is phenytoine, 5,5-diphenylimidazolidine-2,4-dione, a drug widely prescribed as an anticonvulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974; Havera & Strycker, 1976; Khodair et al., 1997; Thenmozhiyal et al., 2004).

Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a,b; Akrad et al. 2017; Guerrab et al. 2019, 2020a,b, 2021, 2022), the title compound (Fig. 1) was prepared and its crystal structure is reported here.

The two phenyl rings (C₄–C₉ and C₁₀–C₁₅) are disposed on either side of the five-membered ring and make dihedral angles of 68.42 (3) and 73.04 (3)°, respectively, with the mean plane of the latter ring. The five-membered ring is slightly ‘ruffled’ with deviations from the mean plane ranging from 0.206 (5) Å (N₂) to 0.218 (5) Å (C₃) (r.m.s. deviation = 0.0155 Å). The isobutyl group is rotated well out of the mean plane of the five-membered ring, as indicated by the C₂—N₁—C₁₆—C₁₇ torsion angle of 72.64 (10)°. In the crystal, inversion dimers are formed by pairs of N₂—H₂—O₂ hydrogen bonds (Table 1) with the dimers connected by C₈—H₈—O₁ hydrogen bonds, forming chains of molecules extending parallel to (101) (Fig. 2 and Table 2). The chains...
are connected into layers parallel to the \(ac\) plane by \(C7-H7\ldots Cg1\) interactions (Table 1 and Fig. 3).

Synthesis and crystallization

To a solution of 5,5-diphenylimidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of isobutyl bromide (246.88 mL, 1.98 mmol) in absolute dimethylformamide (DMF, 15 ml) was added and the resulting solution heated under reflux for 3 h in the presence of 1.1 equivalents of \(K_2CO_3\) (301.31 mg, 2.18 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless prism-like crystals (Guerrab et al., 2018).

Refinement

Crystal data, data collection and structure refinement details are presented in Table 2. A small amount of residual density, well removed from the main molecule and which could not be satisfactorily modelled by a plausible solvent molecule disordered across a centre of symmetry was removed with *PLATON SQUEEZE* (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AS; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, YR; crystal-structure determination and validation, JTM.

Table 1

Hydrogen-bond geometry (Å, °).

D—H⋯A	D—H	H⋯A	D⋯A	D—H⋯A
N2—H2—O2i	0.91 (1)	1.95 (1)	2.8512 (9)	174 (1)
C7—H7—Cg1ii	0.95	2.99	3.9308 (13)	170
C8—H8—O1iii	0.95	2.46	3.4069 (13)	172

Symmetry codes: (i) \(-x, 1-y, -z)\; (ii) \(x, 1-y, z\); (iii) \(-x+2, -y+1, -z+2\).

Figure 1

The title molecule with the labelling scheme and 50% probability ellipsoids.

Figure 2

A portion of one layer viewed along the \(b\)-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. C—H⋯π(ring) interactions are depicted by green dashed lines and non-interacting hydrogen atoms are omitted for clarity.

Figure 3

Packing viewed along the \(c\)-axis direction with intermolecular interactions depicted as in Fig. 2 and non-interacting hydrogen atoms omitted for clarity.
Table 2
Experimental details.

Crystal data	Chemical formula	C_{19}H_{20}N_{2}O_{2}
M_0		308.37
Crystal system, space group	Triclinic, P\(\overline{1}\)	
Temperature (K)		150
a, b, c (Å)	8.9747 (7), 9.7306 (7), 11.8780 (8)	
\(\alpha, \beta, \gamma\) (°)	104.676 (3), 96.334 (3), 112.243 (3)	
V (Å\(^3\))	903.81 (12)	
Z	2	
Radiation type	Mo Ka	
\(\mu\) (mm\(^{-1}\))	0.07	
Crystal size (mm)	0.46 × 0.41 × 0.13	

Data collection

Diffractometer	Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction	Numerical (SADABS; Krause et al., 2015)
\(T_{\text{min}}, T_{\text{max}}\)	0.93, 0.99
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	42215, 6214, 5222
\(R_{\text{int}}\)	0.040
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.755

Refinement

\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)	0.044, 0.128, 1.05
No. of reflections	6214
No. of parameters	213
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))	0.41, −0.19

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

References

Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). *IUCrData*, 2, x170033.

Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.

Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.

Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouabab, R., Alaoui, K., Ibrahim, I. & Ramli, Y. (2022). *J. Biomol. Struct. Dyn.*. https://doi.org/10.1080/07391102.2022.2069865

Guerrab, W., Chung, I. T. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). *J. Mol. Struct.* 1197, 369–376.

Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahim, I. A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). *IUCrData*, 3, x180057.

Guerrab, W., Mague, J. T. & Ramli, Y. (2020a). *Z. Kristallogr. New Cryst. Struct.* 235, 1425–1427.

Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). *IUCrData*, 2, x170098.

Guerrab, W., Chung, I. T. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2020b). *IUCrData*, 2, x171041.

Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Sheldrick, G. M. (2015a). *Acta Cryst.* A71, 3–8.

Sheldrick, G. M. (2015b). *Acta Cryst.* C71, 3–8.

Spek, A. L. (2015). *Acta Cryst.* C71, 9–18.

Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). *J. Med. Chem.* 47, 1527–1535.

Weichert, B. L. (1974). Czech Patent 151,744–747.
full crystallographic data

IUCrData (2022). 7, x220598 [https://doi.org/10.1107/S2414314622005983]

3-Isobutyl-5,5-diphenylimidazolidine-2,4-dione

Walid Guerrab, Abderrazzak El Moutaouakil Ala Allah, Abdulsalam Alsubari, Joel T. Mague and Youssef Ramli

3-Isobutyl-5,5-diphenylimidazolidine-2,4-dione

Crystal data

\[
C_{19}H_{20}N_2O_2
\]

\[M_r = 308.37\]

Triclinic, \(P\bar{T}\)

\[a = 8.9747\ (7) \text{ Å} \]

\[b = 9.7306\ (7) \text{ Å} \]

\[c = 11.8780\ (8) \text{ Å} \]

\[\alpha = 104.676\ (3)° \]

\[\beta = 96.334\ (3)° \]

\[\gamma = 112.243\ (3)° \]

\[V = 903.81\ (12) \text{ Å}^3 \]

\[Z = 2\]

\[F(000) = 328\]

\[D_x = 1.133 \text{ Mg m}^{-3}\]

Mo \(Ka\) radiation, \(\lambda = 0.71073\ \text{ Å}\)

Cell parameters from 9909 reflections

\[\theta = 2.5–31.9°\]

\[\mu = 0.07\ \text{ mm}^{-1}\]

\[T = 150 \text{ K}\]

Thick plate, colourless

\[0.46 \times 0.41 \times 0.13 \text{ mm}\]

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 7.3910 pixels mm\(^{-1}\)

\(\phi\) and \(\omega\) scans

Absorption correction: numerical

\((SADABS;\text{ Krause et al., 2015})\)

\[T_{\text{min}} = 0.93, T_{\text{max}} = 0.99\]

42215 measured reflections

6214 independent reflections

5222 reflections with \(I > 2\sigma(I)\)

\[R_{\text{int}} = 0.040\]

\[\theta_{\text{max}} = 32.5°, \theta_{\text{min}} = 2.5°\]

\(h = -13\rightarrow13\)

\(k = -14\rightarrow14\)

\(l = -17\rightarrow17\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\[R[F^2 > 2\sigma(F^2)] = 0.044\]

\[wR(F^2) = 0.128\]

\[S = 1.05\]

6214 reflections

213 parameters

1 restraint

Primary atom site location: dual

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\[w = 1/[\sigma(F_c^2) + (0.0689P)^2 + 0.1685P]\]

where \(P = (F_c^2 + 2F_s^2)/3\)

\[(\Delta\sigma)_{\text{max}} = 0.001\]

\[\Delta\rho_{\text{max}} = 0.41\ \text{ e Å}^{-3}\]

\[\Delta\rho_{\text{min}} = -0.19\ \text{ e Å}^{-3}\]
Special details

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. H-atom attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. A small amount of residual density, well-removed from the main molecule and which could not be satisfactorily modeled by a plausible solvent molecule disordered across a center of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x	y	z	Uiso/*/U_{eq}
O1	0.74629 (9)	0.64608 (8)	0.94977 (5)	0.02535 (14)
O2	0.51349 (8)	0.68712 (7)	0.60449 (5)	0.02359 (14)
N1	0.63385 (9)	0.70411 (8)	0.79418 (6)	0.01786 (13)
N2	0.62040 (9)	0.51465 (8)	0.63706 (6)	0.01972 (14)
H2	0.5822 (15)	0.4472 (13)	0.5613 (8)	0.030*
C1	0.68961 (10)	0.48254 (9)	0.73985 (7)	0.01730 (14)
C2	0.69602 (10)	0.61866 (9)	0.84376 (7)	0.01818 (15)
C3	0.58232 (10)	0.63811 (9)	0.66914 (7)	0.01764 (15)
C4	0.86580 (10)	0.49751 (9)	0.74187 (7)	0.01831 (15)
C5	0.95614 (12)	0.56243 (11)	0.66554 (8)	0.02490 (17)
H5	0.908433	0.59866	0.610614	0.030*
C6	1.11659 (13)	0.57417 (12)	0.66981 (9)	0.0306 (2)
H6	1.177780	0.617680	0.617333	0.037*
C7	1.18692 (12)	0.52243 (12)	0.75054 (10)	0.0305 (2)
H7	1.295578	0.529077	0.752362	0.037*
C8	1.09899 (11)	0.46090 (11)	0.82877 (9)	0.02727 (18)
H8	1.148247	0.427406	0.885034	0.033*
C9	0.93872 (11)	0.44843 (10)	0.82459 (8)	0.02205 (16)
H9	0.878635	0.406433	0.878110	0.026*
C10	0.57204 (10)	0.32284 (9)	0.74399 (7)	0.01842 (15)
H10	0.45908 (11)	0.30670 (10)	0.81674 (8)	0.02336 (17)
H11	0.459215	0.397322	0.870843	0.028*
C12	0.34570 (12)	0.15808 (12)	0.81053 (9)	0.02819 (19)
H12	0.268623	0.147944	0.860092	0.034*
C13	0.34519 (12)	0.02510 (11)	0.73224 (9)	0.02882 (19)
H13	0.267373	−0.075954	0.727691	0.035*
C14	0.45904 (13)	0.04021 (11)	0.66037 (9)	0.02807 (19)
H14	0.459695	−0.050708	0.607264	0.034*
Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
O1	0.0371 (4)	0.0246 (3)	0.0156 (3)	0.0173 (3)	0.0006 (2)	0.0042 (2)
O2	0.0304 (3)	0.0223 (3)	0.0201 (3)	0.0158 (2)	−0.0010 (2)	0.0056 (2)
N1	0.0219 (3)	0.0160 (3)	0.0157 (3)	0.0104 (2)	0.0007 (2)	0.0029 (2)
N2	0.0279 (3)	0.0191 (3)	0.0142 (3)	0.0143 (3)	0.0004 (2)	0.0036 (2)
C1	0.0225 (3)	0.0167 (3)	0.0143 (3)	0.0110 (3)	0.0017 (3)	0.0046 (2)
C2	0.0218 (3)	0.0165 (3)	0.0170 (3)	0.0099 (3)	0.0027 (3)	0.0046 (3)
C3	0.0195 (3)	0.0165 (3)	0.0165 (3)	0.0083 (3)	0.0016 (3)	0.0045 (3)
C4	0.0213 (3)	0.0159 (3)	0.0178 (3)	0.0095 (3)	0.0019 (3)	0.0041 (3)
C5	0.0286 (4)	0.0262 (4)	0.0242 (4)	0.0135 (3)	0.0073 (3)	0.0115 (3)
C6	0.0283 (4)	0.0324 (5)	0.0332 (5)	0.0124 (4)	0.0119 (4)	0.0128 (4)
C7	0.0218 (4)	0.0295 (4)	0.0395 (5)	0.0114 (3)	0.0058 (4)	0.0097 (4)
C8	0.0235 (4)	0.0257 (4)	0.0329 (4)	0.0117 (3)	0.0001 (3)	0.0106 (3)
C9	0.0231 (4)	0.0214 (4)	0.0227 (4)	0.0102 (3)	0.0022 (3)	0.0087 (3)
C10	0.0213 (3)	0.0174 (3)	0.0176 (3)	0.0104 (3)	0.0015 (3)	0.0050 (3)
C11	0.0256 (4)	0.0228 (4)	0.0246 (4)	0.0133 (3)	0.0069 (3)	0.0071 (3)
C12	0.0261 (4)	0.0289 (4)	0.0311 (4)	0.0109 (3)	0.0088 (3)	0.0122 (4)
C13	0.0293 (4)	0.0214 (4)	0.0303 (4)	0.0058 (3)	0.0018 (3)	0.0094 (3)
C14	0.0344 (5)	0.0177 (4)	0.0270 (4)	0.0099 (3)	0.0018 (3)	0.0029 (3)
C15	0.0287 (4)	0.0190 (4)	0.0212 (4)	0.0112 (3)	0.0048 (3)	0.0030 (3)
C16	0.0211 (3)	0.0162 (3)	0.0212 (3)	0.0103 (3)	0.0024 (3)	0.0025 (3)
C17	0.0223 (4)	0.0167 (3)	0.0269 (4)	0.0078 (3)	−0.0009 (3)	0.0030 (3)
C18	0.0423 (5)	0.0190 (4)	0.0335 (5)	0.0128 (4)	0.0026 (4)	−0.0001 (3)
C19	0.0294 (5)	0.0288 (5)	0.0462 (6)	0.0090 (4)	0.0126 (4)	0.0132 (4)

Geometric parameters (Å, °)

Bond	Length (Å)	Bond Angle (°)			
O1—C2	1.2139 (10)				
O2—C3	1.2259 (9)				
N1—C2	1.3698 (10)				
C10—C15	1.3980 (11)				
C11—C12	1.3956 (13)				
C11—H11	0.9500				
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
----------	------------	----------	------------	----------	------------
N1—C3	1.4045 (10)	C12—C13	1.3870 (14)	N1—C3	1.4045 (10)
N1—C16	1.4598 (10)	C12—H12	0.9500	N1—C16	1.4598 (10)
N2—C3	1.3465 (10)	C13—C14	1.3916 (15)	N2—C3	1.3465 (10)
N2—C1	1.4652 (10)	C13—H13	0.9500	N2—C1	1.4652 (10)
N2—H2	0.906 (8)	C14—C15	1.3913 (13)	N2—H2	0.906 (8)
C1—C4	1.5289 (11)	C14—H14	0.9500	C1—C4	1.5289 (11)
C1—C10	1.5295 (11)	C15—H15	0.9500	C1—C10	1.5295 (11)
C1—C2	1.5425 (11)	C16—C17	1.5273 (12)	C1—C2	1.5425 (11)
C4—C5	1.3939 (12)	C16—H16A	0.9900	C4—C5	1.3939 (12)
C4—C9	1.3979 (11)	C16—H16B	0.9900	C4—C9	1.3979 (11)
C5—C6	1.3948 (13)	C17—C19	1.5250 (14)	C5—C6	1.3948 (13)
C5—H5	0.9500	C17—C18	1.5282 (13)	C5—H5	0.9500
C6—C7	1.3868 (14)	C17—H17	1.0000	C6—C7	1.3868 (14)
C6—H6	0.9500	C18—H18A	0.9800	C6—H6	0.9500
C7—C8	1.3895 (15)	C18—H18B	0.9800	C7—C8	1.3895 (15)
C7—H7	0.9500	C18—H18C	0.9800	C7—H7	0.9500
C8—C9	1.3911 (12)	C19—H19A	0.9800	C8—C9	1.3911 (12)
C8—H8	0.9500	C19—H19B	0.9800	C8—H8	0.9500
C9—H9	0.9500	C19—H19C	0.9800	C9—H9	0.9500
C10—C11	1.3930 (12)	C19—C11	1.3930 (12)	C10—C11	1.3930 (12)

Angle		Angle		Angle	
C2—N1—C3	111.47 (6)	C10—C11—C12	120.34 (8)	C2—N1—C3	111.47 (6)
C2—N1—C16	124.21 (7)	C10—C11—H11	119.8	C2—N1—C16	124.21 (7)
C3—N1—C16	124.29 (6)	C12—C11—H11	119.8	C3—N1—C16	124.29 (6)
C3—N2—C1	112.87 (6)	C13—C12—C11	120.22 (9)	C3—N2—C1	112.87 (6)
C3—N2—H2	120.9 (8)	C13—C12—H12	119.9	C3—N2—H2	120.9 (8)
C1—N2—H2	124.6 (8)	C11—C12—H12	119.9	C1—N2—H2	124.6 (8)
N2—C1—C4	112.60 (7)	C12—C13—C14	119.79 (9)	N2—C1—C4	112.60 (7)
N2—C1—C10	109.66 (6)	C12—C13—H13	120.1	N2—C1—C10	109.66 (6)
C4—C1—C10	112.73 (6)	C14—C13—C13	120.1	C4—C1—C10	112.73 (6)
N2—C1—C2	100.71 (6)	C15—C14—C13	120.09 (9)	N2—C1—C2	100.71 (6)
C4—C1—C2	108.58 (6)	C15—C14—H14	120.0	C4—C1—C2	108.58 (6)
C10—C1—C2	111.97 (6)	C13—C14—H14	120.0	C10—C1—C2	111.97 (6)
O1—C2—N1	125.93 (7)	C14—C15—C10	120.44 (8)	O1—C2—N1	125.93 (7)
O1—C2—C1	126.97 (7)	C14—C15—H15	119.8	O1—C2—C1	126.97 (7)
N1—C2—C1	107.10 (6)	C10—C15—H15	119.8	N1—C2—C1	107.10 (6)
O2—C3—N2	128.11 (7)	N1—C16—C17	112.91 (7)	O2—C3—N2	128.11 (7)
O2—C3—N1	124.19 (7)	N1—C16—H16A	109.0	O2—C3—N1	124.19 (7)
O2—C3—C1	107.69 (6)	C17—C16—H16A	109.0	O2—C3—C1	107.69 (6)
C5—C4—C9	119.56 (8)	N1—C16—H16B	109.0	C5—C4—C9	119.56 (8)
C5—C4—C1	121.55 (7)	C17—C16—H16B	109.0	C5—C4—C1	121.55 (7)
C9—C4—C1	118.87 (7)	H16A—C16—H16B	107.8	C9—C4—C1	118.87 (7)
C4—C5—C6	119.99 (8)	C19—C17—C16	111.65 (8)	C4—C5—C6	119.99 (8)
C4—C5—H5	120.0	C19—C17—C18	111.13 (8)	C4—C5—H5	120.0
C6—C5—H5	120.0	C16—C17—C18	108.81 (8)	C6—C5—H5	120.0
C7—C6—C5	120.10 (9)	C19—C17—H17	108.4	C7—C6—C5	120.10 (9)
C7—C6—H6	120.0	C16—C17—H17	108.4	C7—C6—H6	120.0
C5—C6—H6	120.0	C18—C17—H17	108.4	C5—C6—H6	120.0
Bond	Angle 1 (°)	Angle 2 (°)	Angle 3 (°)	Angle 4 (°)	
------	------------	------------	------------	------------	
C6—C7—C8	120.22 (9)	119.9	120.1	120.21 (8)	
C6—C7—H7	119.9	119.9	119.9	119.9	
C8—C7—H7	119.9	119.9	119.9	119.9	
C7—C8—H8	120.1	120.1	120.21 (8)	120.21 (8)	
C9—C8—H8	119.9	119.9	119.9	119.9	
C8—C9—C4	119.9	119.9	119.9	119.9	
C8—C9—H9	119.9	119.9	119.9	119.9	
C4—C9—C10	119.12 (8)	119.12 (8)	119.12 (8)	119.12 (8)	
C11—C10—C15	122.52 (7)	122.52 (7)	122.52 (7)	122.52 (7)	
C15—C10—C1	118.25 (7)	118.25 (7)	118.25 (7)	118.25 (7)	

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the five-membered ring.

Bond	D—H···A	D—H	H···A	D···A	D—H···A
N2—H2···O2'	0.91 (1)	1.95 (1)	2.8512 (9)	174 (1)	

Hydrogen bonding geometry (Å, °)
	d	r	D (Å)	θ (°)
C7—H7⋯Cg1				
(i)	0.95	2.99	3.9308 (13)	170
C8—H8⋯O1				
 (ii) | 0.95 | 2.46 | 3.4069 (13) | 172 |

Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x, y, z; (iii) x + 2, y + 1, z + 2.