Potential role of NADPH oxidase in pathogenesis of pancreatitis

Wei-Li Cao, Xiao-Hui Xiang, Kai Chen, Wei Xu, Shi-Hai Xia

Cao WL, Xiang XH, Chen K, Xu W, Xia SH. Potential role of NADPH oxidase in pathogenesis of pancreatitis. World J Gastrointest Pathophysiol 2014; 5(3): 169-177 Available from: URL: http://www.wjgnet.com/2150-5330/full/v5/i3/169.htm DOI: http://dx.doi.org/10.4291/wjgp.v5.i3.169

INTRODUCTION

Studies have demonstrated that reactive oxygen species (ROS) are involved in the pathogenesis of pancreatitis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), a transmembrane flavoprotein enzyme, uses NADPH as an electron donor to catalyze the univalent reduction of oxygen, resulting in the production of superoxide free radical, which might be a source of oxidant damage to cellular structures.
dants in injured pancreas\cite{1}. NOX is mainly distributed in the phagocytic cell membrane with cytochrome C and flavin adenine dinucleotide groups, which can produce ROS, scavenging pathogenic microorganisms such as bacteria\cite{2}. ROS, being generated by NOX, also participate in intracellular signaling processes in the pancreas. Recently, research on NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells (PSCs) in pancreatitis patients\cite{2}. The function of NOX, which is involved in the pathogenesis of inflammation in pancreatic acinar cells and PSCs, has become the hotspot of research. Nonphagocytic NOX derived ROS function as a messenger molecule to participate in the modulation of cell differentiation, proliferation and apoptosis in the pancreas. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis.

**STRUCTURE, LOCATION AND FUNCTION OF NOX IN THE PANCREAS**

NOX is a multicomponent enzyme consisting of five different subunits, including the subunits p22\textsuperscript{phox} and gp-91\textsuperscript{phox} (also known as NOX2) located in the membrane, together with the cytosolic subunits p40\textsuperscript{phox}, p47\textsuperscript{phox} and p67\textsuperscript{phox}. The participation of Rac would elicit full oxidase activity\cite{3-9}. Relative to gp91\textsuperscript{phox} (the catalytic subunit of NOX), p22\textsuperscript{phox}, p47\textsuperscript{phox}, p40\textsuperscript{phox} and p67\textsuperscript{phox} are regulatory subunits. Gp91\textsuperscript{phox} in different types of cells has other six homologues, termed NOX1, NOX3, NOX4, NOX5, DUOX1 and DUOX2, which constitute the NOX family proteins\cite{6-8}. NOX is an enzyme which was initially discovered in phagocytes\cite{3,4}. NOX in neutrophils is composed of constitutive subunits (p22\textsuperscript{phox} and gp-91\textsuperscript{phox}) positioned in membrane and regulatory subunits (p47\textsuperscript{phox} and p67\textsuperscript{phox}, and possibly p40\textsuperscript{phox}) stationed in the cytosol\cite{9}. In recent years, NOX has been discovered in several nonphagocytic cells such as fibroblasts\cite{10}, vascular smooth muscle cells\cite{11,12} and hepatic stellate cells\cite{13,14}. More recently, it has been found that NOX was present in pancreatic β cells\cite{15,16}, pancreatic acinar cells\cite{17,18} and PSCs\cite{19,20}. The main intrinsic components of NOX comprising the NOX2 isoform are present in human pancreatic islets\cite{21}. Cytosolic subunits p47\textsuperscript{phox} and p67\textsuperscript{phox} as well as membrane-bound p22\textsuperscript{phox} and NOX1 are constitutively expressed in pancreatic acinar AR42J cells\cite{10,22,23}. The key subunits of NOX including p22\textsuperscript{phox}, p47\textsuperscript{phox}, NOX activator 1 (a homologue of p67\textsuperscript{phox}), NOX1, NOX4, and NOX2 (gp91\textsuperscript{phox}) are expressed in PSCs\cite{24,25}. The activation of non-phagocytic NOX is similar to that in neutrophils\cite{26}. Upon activation of p47 translocates to the membrane and then recruits p67 to interact with the p22 subunit, thus facilitating NADPH-dependent formation of superoxide (O\textsuperscript{2-}), which increases the production of secondary ROS such as hydrogen peroxide (H:\textsubscript{2}O\textsubscript{2}). Non-phagocytic NOX derived ROS function as a messenger molecule to participate in the modulation of cell differentiation, proliferation and apoptosis\cite{6-8}. NOX protein family can be activated quickly under pathophysiological conditions, leading to high production of ROS, which contributes to oxidative stress and a wide range of diseases.

**ACTIVATION AND INHIBITION FACTORS OF NOX IN THE PATHOGENESIS OF PANCREATITIS**

**Cholecystokinin analogues**

Cerulein, an analogue of cholecystokinin (CCK), can stimulate the pancreatic exocrine secretion by binding CCK receptors, causing the autolysis of pancreatic acinar cell\cite{27}. There are two kinds of CCK receptor subtypes, CCK\(_{A}\) and CCK\(_{B}\) receptors. CCK\(_{A}\) receptors regulate pancreatic digestive enzymes, satiety and feeding behavior, while CCK\(_{B}\) receptors enhance the level of gastric acid, as well as gastrin which has anti-apoptotic effects on pancreatic cells\cite{28}. Experimental pancreatitis induced with high dosages of cerulein, similar to human edematous pancreatitis, is characterized by cytoplasmic vacuolization, formation of edema and acinar cell death as well as elevation in serum levels of digestive enzymes caused by unconventional secretion of digestive enzymes\cite{29}. ROS are involved in the activation of oxidant-sensitive nuclear transcription factor (NF-κB), expression of cytokine, apoptosis and further occurrence of pancreatitis\cite{30,31}. P47\textsuperscript{phox}, p67\textsuperscript{phox}, NOX1 and p22\textsuperscript{phox} in pancreatic AR42J cells could produce ROS after cerulein stimulation\cite{22}. Intrapancreatic trypsin is not only activated by high-dose cerulein, but also regulated by neutrophils via NADPH oxidase\cite{28}. The mechanism for the activation of NF-κB and expression of cytokines in pancreatic acinar cells stimulated by cerulein may be summarized as the following steps. Cerulein binds to the CCK receptor, a G-protein-coupled receptor, to activate phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP\(_3\)), triggering transient Ca\textsuperscript{2+} release from the endoplasmic reticulum in pancreatic acinar cells. NOX activated by Ca\textsuperscript{2+} produces ROS to activate IkB kinase and then to phosphorylate IkB. Phosphorylated IkB can be ubiquitinated and degraded in a proteasome dependent manner to eliminate the inhibition of NF-κB, a p65/p50 heterodimer in the cytosol. NF-κB then translocates to the nucleus to mediate the expression of cytokines which are involved in the pathogenesis of pancreatitis (Figures 1 and 2)\cite{32}.

**Renin-angiotensin system**

The Renin-angiotensin system (RAS) is generally considered to regulate blood pressure and body fluid homeostasis\cite{29}. The pancreatic RAS activation that is related to the production of ROS might contribute to oxidative stress and tissue injury\cite{30,31}. Angiotensin II, an active mediator of RAS, is transformed from angiotensin I by the angiotensin-converting enzyme (ACE)\cite{32}. The effect of angiotensin II is regulated by its receptors, including...
angiotensin II type 1 receptor (ATR) and angiotensin II type 2 receptor (AT2R). Many reports indicate that interaction of angiotensin II with AT1R promotes superoxide anion production through NOX system [30,31,33,34]. Inhibition of the AT1R, but not AT2R, may play a significant role in decreasing the severity of acute pancreatitis. Mechanism of NOX activation by AT1R and AT2R might contribute to different effects of AT1R and AT2R inhibitors on pancreatic injury induced by cerulein. Activation of pancreatic NOX was associated with oxidative stress which can be indicated by the level of protein oxidation in rats stimulated with cerulein [36]. However, further investigations about the potential application of RAS inhibitors including AT1R in treating acute pancreatitis are needed in the future (Figure 2).

**Ethanol and platelet derived growth factor**

Alcohol abuse has long been recognized as the most common factor leading to chronic pancreatitis [38]. Activated stellate cells are viewed as vital regulators of chronic alcoholic pancreatitis or fibrosis. Hu et al. [34] investigated the mechanisms of action of alcohol on PSCs to determine the correlation of NOX system and alcohol with the proliferation of PSCs. The results demonstrated that NOX activity was predominantly located in the cell membrane fraction (95%) compared to the cytosolic fraction (5%) of the stellate cells. Platelet derived growth factor (PDGF) could increase NOX activity in a dose- and time-dependent manner. PSC proliferation caused by alcohol is mediated by the activation of PDGF induced NADPH oxidase system. However, ethanol did not show a significant effect on stellate cell DNA synthesis, which provides a new perspective for the mechanism of fibrosis stimulated with alcohol (Figure 2) [20].

**Vasoactive intestinal peptide**

Previous reports found that vasoactive intestinal peptide (VIP) could decrease the production of cytokines to alleviate experimental acute pancreatitis [37]. VIP could decrease the level of ROS significantly and increase cell viability in acini cells in a dose dependent manner. NOX1 and NOX2 markedly increased following treatment with H2O2 in pancreatic acini. Besides, H2O2 can stimulate the activation of NOX. The production of ROS was affected by VIP via NADPH oxidase and the cAMP/PKA pathway because decreased NOX activity by administration of VIP could be abolished by PKA inhibitor H89. Oxidative stress and tissue injury in acini can be decreased by VIP through NOX inhibition (Figure 2) [38].

**NOX SIGNAL TRANSDUCTION IN THE PATHOGENESIS OF PANCREATITIS**

NOX protein family can be activated quickly under pathophysiological conditions, leading to high produc-
tion of ROS, which contributes to oxidative stress and a wide range of diseases. Furthermore, ROS can act as an intracellular second messenger or chemoattractant to enhance the level of cytokines, resulting in the aggravation of pancreatitis[38]. Studies indicate that pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α mediate the local or systemic manifestations of acute pancreatitis. IL-1β and TNF-α released from activated pancreatic macrophages respond to local tissue damage. Locally, these cytokines may aggravate the severity of acute pancreatitis. Systemically, IL-6 can increase the capillary permeability and accelerate the leukocyte adherence, leading to multiple organ failure (Figure 2)[27].

**NF-κB and Janus kinase/signal transducers and activators of transcription**

NF-κB, a member of the Rel family of transcription factors, can regulate the activation of cellular stress-related genes or early response genes such as growth factors, cytokines, adhesion molecules, and acute-phase proteins[39,40]. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway was relevant to the immune response mediated by numerous cytokines and non-immune response mediated by hormones and growth factors. The JAK/STAT pathway activated by the family of cytokine receptors regulate a variety of biological processes, such as immune response, cell survival, differentiation, proliferation and oncogenesis[41]. Recently, reports indicated that cerulein could activate the JAK2/STAT3 pathway through NOX in pancreatic acinar cells[27].

NOX may be the source of ROS in pancreatic acinar cells during pancreatitis. ROS can induce expression of cytokines, apoptosis, NF-κB and JAK/STAT pathway activation, thus regulating the inflammation and apoptosis in pancreatic acinar cells. Consequently, NOX, NF-κB and JAK2/STAT3 may be involved in the pathogenesis of acute pancreatitis[25]. Inflammation and apoptosis in pancreatic acinar cells during pancreatitis may be alleviated by inhibition of NOX, NF-κB and JAK/STAT through suppression of inflammatory cytokines, apoptosis and caspase-3 activity. Ju et al[23] found that NOX inhibition suppresses STAT3-DNA binding, JAK2/STAT3 activation and TGF-β1 level in AR42J cells stimulated by cerulein. Therefore, ROS may activate NF-κB to induce cytokine production in pancreatic acinar cells through activation of NOX during pancreatitis[21]. NOX, NF-κB and JAK/STAT may be potential targets for treatment of acute pancreatitis.

**Mitogen activated protein kinase and tyrosine protein kinase**

Recently, studies found that mitogen activated protein kinase (MAPK) and tyrosine protein kinase (TPK) might be involved in NOX signal transduction pathway. ROS induced by the family of NOX can cause protein phosphorylation and cell apoptosis directly or indirectly.
In the direct way, ROS mediate the activation of the MAPK pathway and TPK pathway to promote protein phosphorylation in pancreatic acinar cells. ROS activate the signal transduction pathway which consists of different MAPK family members probably owing to the activation of the upstream ERK1/2 kinase pathway. ROS stimulate TPK signaling pathway through increasing the TPK activity, thereby promoting protein tyrosine phosphorylation and affecting signal transduction to regulate cell proliferation, differentiation, metabolism and apoptosis. Inhibition of NOX or ROS significantly reduced the p38MAPK signaling cascade. Activation of the MAPK signaling pathway including SAPK/JNK, ERK1/2 and p38 by ROS induce cell apoptosis. The activation of the MAPK pathway is mainly dependent on the inhibition of tyrosine phosphatase by ROS.

In the indirect way, ROS reduce phosphatase activity, decrease protein dephosphorylation, and thus indirectly increase protein phosphorylation. ROS injure DNA, lipid and protein, thus indirectly inducing apoptosis. In some cases, NOX family can also inhibit cell apoptosis through ROS, which activate the pathway of NF-κB and Akt/ASK1, thereby reducing cell apoptosis.

NOX ACTIVATION IN DIFFERENT PANCREATIC CELLS INVOLVED IN THE PATHOGENESIS OF PANCREATITIS

Phagocytes

In support of the involvement of oxygen free radicals in acute pancreatitis, studies have addressed the possibility that the severity of pancreatitis can be reduced by inhibiting the activity of oxygen-derived free radicals. ROS could have different origins, and the role of the NOX system in neutrophils but not pancreatic acinar tissue is originally considered essential. The phagocytic NOX is a multicomponent enzyme complex that is composed of membranous and cytosolic proteins in the resting cell. During activation, approximately 10% of cytosolic proteins including p47^phox and p67^phox are phosphorylated and translocate to the cell membrane to form active catalytic complexes with p22^phox and gp91^phox, resulting in the generation of ROS. Intrapancreatic trypsin activation and acinar cell trypsin-activation peptide (TAP) labeling induced by high dose cerulein were significantly decreased in neutrophil depleted rats. NOX deficient mice displayed attenuation of the cerulein-induced trypsin activation, while myeloperoxidase (MPO) deficient mice did not. Neutrophils have been considered to be implicated in pathologic activation of digestive enzymes by infiltrating the pancreas in acute pancreatitis, which is mediated by products of NOX.

Evidence suggests that inflammatory cell infiltration is an early and vital event in acute pancreatitis, which will lead to local and systemic complications. Many of the pathological failures of acute pancreatitis may be a consequence of the overstimulation of leukocytes. The argument put forward was that once pancreatitis has been initiated, chemoattractants for polymorphonuclear leukocytes, macrophages and platelets are released, possibly via the action of oxygen derived free radicals. The chemoattractants induce leukocytes and macrophages to adhere to the endothelium of the postcapillary venules and to migrate into the interstitial spaces. Stimulus-secretion coupling causes synthesis of a range of enzymes including elastase, cathepsins, phospholipase A2, phospholipase C, platelet-activating factor (PAF) and MPO. When the quantity of material to be digested is excessive, phagocytosis may become so vigorous that the contents of leukocyte and macrophage granules are spilled outside the cell where they increase the severity of inflammation. As a result, large amounts of oxygen-derived free radicals are produced and may exceed the capacity of superoxide dismutase (SOD) and catalase to inactivate them.

Pancreatic acinar cells

ROS and apoptosis can be observed in pancreatic acinar cells in cerulein induced pancreatitis. NADPH oxidase has been considered to be the major source of ROS in pancreatitis. Cerulein induced the expression of apoptosis-inducing factor (AIF). AIF is located in the mitochondrial membrane of pancreatic acinar cells. During apoptosis, AIF translocates from mitochondria to the cytoplasm and then enters into the nucleus, resulting in nuclear DNA aggregation and breakage to induce apoptosis of pancreatic acinar cells. Antisense oligonucleotides (AS ODN) transfection or Ca^{2+} chelator treatment decreased the expression of AIF induced by cerulein in AR42J cells. These results suggested that intracellular Ca^{2+} increase and NOX activation might be the upstream events of AIF expression, which result in cerulein induced apoptosis of AR42J cells.

The activation of NOX was inhibited and the production of ROS was decreased when cerulein-stimulated pancreatic acinar cells were treated with Ca^{2+} chelator, which indicates that Ca^{2+} activate NOX and ROS. Transfection with AS ODN for NOX subunits p22^phox and p47^phox can inhibit the ROS generation, illustrating that NOX mediates the production of ROS. The apoptotic indices including apoptotic genes bax and p53, DNA fragmentation, caspase 3 activity, TUNEL staining and cell viability were inhibited by treatment with Ca^{2+} chelator or AS ODN transfection, indicating that NOX regulates ROS-induced apoptosis in a Ca^{2+} dependent manner in pancreatic acinar cells. Diphenyleneiodonium (DPI), an inhibitor of NOX, reduces the AIF expression and caspase-3 activation, and thus inhibits apoptosis of AR42J cells. During the stimulation with cerulein, the increase of NOX accelerates the formation of ROS in cells and mitochondria, thus further inducing the apoptosis of acinar cells. ROS generated by pancreatic acinar cells stimulate with bile acids or cerulein can...
induce apoptosis and, at the same time, induce pancreatitis. Research indicates that JAK2/STAT3 activation and increases of MAPks and TGF-β1 induced by administration of cerulein were inhibited by AS ODN transfection in AR42J cells, which shows that NOX can activate JAK2/STAT3, MAPks and TGF-β1. NOX may regulate the production of cytokines by activating NF-κB in AR42J cells stimulated with cerulein. Rehmipide, an antidiabetic agent, can scavenge ROS and decrease the level of superoxide. Transfection with AS ODN for NOX subunits or administration of DPI or rehmipide inhibited cerulein induced NF-κB activation and IL-6 expression. Cerulein also could produce large amounts of ROS to activate NF-κB and thus stimulate the expression of cytokines in freshly isolated pancreatic acinar cells without inflammation.

Numerous studies have shown that increases of ROS and peroxidation products are accompanied with endogenous antioxidant depletion in the early stage of pancreatitis. Many preclinical antioxidant treatments, including genetic manipulation, significantly reduce pancreatic injury and inflammation. However, randomized clinical trials of antioxidants have produced conflicting results, and treatment of pancreatitis with antioxidants has even been discontinued because of adverse events. Moreover, several studies indicated that NOX was only present in neutrophils but not in pancreatic acinar cells.

**PSCs**

PSCs are the major fibrogenic cells in chronic injury of the pancreas, which encircle the acinus. PSCs account for approximately 4% of the total pancreatic cells. PSCs are quiescent in normal pancreas and can be identified by the character of vitamin A containing lipid droplets in the cytoplasm. When chronic pancreatitis happens, PSCs are activated and transformed into myofibroblast-like cells. As a result, intracellular lipid droplets disappear and α-smooth muscle actin (α-SMA) and extracellular components such as fibronectin and collagen increase. Besides, PSCs may be involved in the pathogenesis of acute pancreatitis. Therefore, suppression of PSC activation is a potential target to treat pancreatic inflammation and fibrosis.

Studies showed that p22phox, p47phox, NOX1, gp91phox (NOX2), and NOX4 were expressed in rat quiescent and culture-activated PSCs as well as human activated PSCs, while p67phox and NOX3 were not detected. NOX activator 1 was present in human PSCs, while NOX organizer 1 was not detected. NOX can activate PSCs, which can be verified by DPI inhibition experiments. Studies showed that DPI could inhibit the activation of PSCs, that is, to inhibit proliferation, chemokine production, α-SMA and collagen expression. Platelet-derived growth factor BB (PDGF-BB) promoted proliferation of rat PSCs, which was inhibited by DPI in a dose-dependent manner, showing that NOX underlies the PDGF-induced PSC proliferation. DPI decreased the chemokine production, which indicates that NOX also regulates the production of chemokines. DPI decreased the levels of α-SMA and collagen, once again, proving that NOX activates PSCs. DPI also inhibited interleukin 1β (IL-1β) and PDGF induced activation of MAPks in PSCs, and this evidence indicates that NOX mediates the activation of MAPks induced by IL-1β and PDGF in PSCs.

**FUTURE RESEARCH ON THE PATHOGENESIS OF PANCREATITIS IN NOX**

Accumulated evidence suggested that ROS induced by NOX play a significant role in pancreatitis. The activation of ROS mediates the activation of many cytokines. ROS can induce cell apoptosis through direct and indirect pathways. ROS induced by bile acids and cerulein can promote apoptosis of pancreatic acinar cells. NOX is usually induced by cerulein, inflammatory factors, cytokines and growth factors as well as other stimuli in pancreatic acinar cells and PSCs. NOX can generate ROS, which in turn increase cytokines levels downstream to initiate the next activation cycle. The positive feedback of activation process might be one of the causes of pancreatitis. Although many scholars have made a great deal of research about the pathogenic mechanisms of NOX in the inflammation of pancreatic acinar cells and stellate cells, the relative importance of different pathogenic mechanisms of NOX in the pathogenesis of pancreatitis, the relationship between various pathogenic mechanisms of NOX, the specific pathways involved in each mechanism of NOX in pancreatitis, and the feasibility of NOX targeted therapy applied to pancreatitis are all needed to be studied in the future.

**REFERENCES**

1. Leung PS, Chan YC. Role of oxidative stress in pancreatic inflammation. *Antioxid Redox Signal* 2009; 11: 135-165 [PMID: 18837654 DOI: 10.1089/ars.2008.1209]
2. Brown DI, Griendling KK. Nox proteins in signal transduction. *Free Radic Biol Med* 2009; 47: 1239-1253 [PMID: 19628035 DOI: 10.1016/j.freeradbiomed.2009.07.023]
3. Lambeth JD. NOX enzymes and the biology of reactive oxygen. *Nat Rev Immunol* 2004; 4: 181-189 [PMID: 15039555 DOI: 10.1038/nri1312]
4. Babor BM. NADPH oxidase: an update. *Blood* 1999; 93: 1464-1476 [PMID: 10029572]
5. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. *Physiol Rev* 2007; 87: 245-313 [PMID: 17237347 DOI: 10.1152/physrev.00044.2005]
6. Babor BM. The respiratory burst oxidase. *Curr Opin Hematol* 1995; 2: 55-60 [PMID: 9571972 DOI: 10.1097/00018496-199502000-00008]
7. Lambeth JD, Cheng G, Arnold RS, Edens WA. Novel homologs of gp91phox. *Trends Biochem Sci* 2000; 25: 459-461 [PMID: 11050424 DOI: 10.1016/S0968-0004(00)01658-3]
8. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. *Gene* 2001; 269: 131-140 [PMID: 11576945 DOI: 10.1016/S0378-1119(01)00449-8]
Pongnimiprasert N, El-Benna J, Foglietti MJ, Gougerot-Pocidalo MA, Bernard M, Braut-Boucher F. Potential role of the “NADPH oxidases” (NOX/DUOX) family in cystic fibrosis. Adv Exp Biol Clin (Paris) 2008; 66: 621-629 [PMID: 18901660 DOI: 10.1684/abc.2008.0282]

10 Meier B, Cross AR, Hancock JT, Kaup FJ, Jones OT. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem J 1991; 275 (Pt 1): 241-245 [PMID: 1850240]

11 Griending KK, Sorensch D, Ushio-Fukai M, NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2008; 96: 494-501 [PMID: 17024049 DOI: 10.1161/01.RES.86.5.494]

12 Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, Qian T, Schoonhoven R, Hagedorn CH, Lemasters JJ, Brenner DA. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003; 112: 1383-1394 [PMID: 14597764 DOI: 10.1172/JCI18212]

13 Mohammed AM, Syeda K, Hadden T, Kowluru A. Upregulation of phagocyte-like NADPH oxidase in pancreatic islets. Ann N Y Acad Sci 2011; 1229: 99-102 [PMID: 21793844 DOI: 10.1111/j.1749-6632.2011.06004.x]

14 Rebeato E, Mares-Guia TR, Graciano MF, Labriola L, Britto LR, Garay-Malpartida HM, Curi R, Sogayar MC, Carpinelli AR. Expression of NADPH oxidase in human pancreatic islets. Life Sci 2012; 91: 244-249 [PMID: 22820165 DOI: 10.1016/j.lfs.2012.07.004]

15 Criddle DN, Gillies S, Baumgartner-Wilson HK, Jaffar M, Chinje EC, Passmore S, Chovan M, Barrow S, Gerasimenko OV, Tepikin AV, Sutton B, Petersen OH. Madin-deInduced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 2006; 281: 40485-40492 [PMID: 17088248 DOI: 10.1074/jbc.M607704200]

16 Yu JH, Kim KH, Kim DG, Kim H. Diphenyleneiodonium suppresses apoptosis in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2007; 39: 2063-2075 [PMID: 17635947 DOI: 10.1016/j.biocel.2007.05.021]

17 Kim H. Inhibitory mechanism of lycopene on cytokine expression in experimental pancreatitis. Ann N Y Acad Sci 2011; 1229: 99-102 [PMID: 21793844 DOI: 10.1111/j.1749-6632.2011.06007.x]

18 Hu R, Wang YL, Edderkaoui M, Luque A, Apve MV, Pandol SJ. Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells. Pancreatology 2007; 7: 332-340 [PMID: 17627998]

19 Yu JH, Lim JW, Kim H, Kim KH. NADPH oxidase mediates interleukin-6 expression in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2005; 37: 1458-1469 [PMID: 15833277 DOI: 10.1016/j.biocell.2005.02.004]

20 Yu JH, Lim JW, Kim KH, Morio T, Kim H. NADPH oxidase and apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. Free Radic Biol Med 2005; 39: 590-602 [PMID: 16085178]

21 Ju KD, Lim JW, Kim KH, Kim H. Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis. Inflamm Res 2011; 60: 791-800 [PMID: 21509626]

22 Yu JH, Seo JY, Kim KH, Kim H. Differentially expressed proteins in cerulein-stimulated pancreatic acinar cells: implication for acute pancreatitis. Int J Biochem Cell Biol 2008; 40: 503-516 [PMID: 18024178 DOI: 10.1016/j.biocel.2007.09.001]

23 Noble F, Wakk SA, Crawford JN, Breddin JW, Seroogy KB, Hamon M, Roques BP. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 1999; 51: 745-781 [PMID: 10581329]

24 Lecher MM, Adler G. Experimental animal models of acute pancreatitis. Int J Pancreatol 1994; 15: 159-170 [PMID: 7930767]

25 Kim H. Cerulein pancreatitis: oxidative stress, inflammation, and apoptosis. Gut Liver 2008; 2: 74-80 [PMID: 20485614 DOI: 10.5009/gnl.2008.2.2.74]

26 Fukovskaya AS, Vaquero E, Zaninovic V, Gorelick FS, Lussis AJ, Brennan ML, Holland S, Pandol SJ. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 2002; 122: 974-984 [PMID: 11910590]

27 Oparil S, Haber E. The renin-angiotensin system (first of two parts). N Engl J Med 1974; 291: 389-401 [PMID: 4367917 DOI: 10.1056/NEJM197408222910805]

28 Sakurai T, Kudo M, Fukuta N, Nakatani T, Kimura M, Park AM, Munakata H. Involvement of angiotensin II and reactive oxygen species in pancreatic fibrosis. Pancreatology 2011; 11 Suppl 2: 7-13 [PMID: 21464581 DOI: 10.1159/000325478]

29 Chan YC, Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther 2007; 323: 10-18 [PMID: 17616560 DOI: 10.1124/jpet.107.124891]

30 Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45: 205-251 [PMID: 8372104]

31 Dijkstra-Oei LT, Stroes ES, Koomans HA, Rabelink TJ. Acute simultaneous stimulation of nitric oxide and oxygen radicals by angiotensin II in humans in vivo. J Cardiovasc Pharmacol 1999; 33: 420-424 [PMID: 10069678 DOI: 10.1097/00004449-199903000-00012]

32 Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002; 40: 511-515 [PMID: 12364355 DOI: 10.1161/01.HYP.0000023001.23722.98]

33 Tsang SW, Ip SP, Leung PS. Prophylactic and therapeutic treatments with AT 1 and AT 2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int J Biochem Cell Biol 2004; 36: 330-339 [PMID: 14643897]

34 Western EF, Sonnenwale C, Pazzarii G, Amann RW, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993; 328: 1433-1437 [PMID: 8479461 DOI: 10.1056/NEJM199302243281301]

35 Kojima M, Ito T, Oono T, Hisano T, Igarashi H, Arita Y, Kawabe K, Coy DH, Jensen RT, Nawata H. VIP attenuation of the severity of experimental pancreatitis is due to VPAC1 receptor-mediated inhibition of cytokine production. Pancreas 2005; 30: 62-70 [PMID: 15632701]

36 Fujimori N, Oono T, Igarashi H, Ito T, Nakamura T, Uchida M, Coy DH, Jensen RT, Takayangi R. Vasocactive intestinal peptide reduces oxidative stress in pancreatic acinar cells through the inhibition of NADPH oxidase. Peptides 2011; 32: 2067-2076 [PMID: 21924308 DOI: 10.1016/j.peptides.2011.08.027]

37 Wulczyn FG, Krappmann D, Scheidereit C. The NF-kappa B/Rel and I kappa B gene families: mediators of immune response and inflammation. J Med (Berl) 1996; 74: 749-769
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for surintrs? Front Physiol 2013; 4: 324 [PMID: 24265619 DOI: 10.3389/fphys.2013.00324]

Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649-661 [PMID: 15766528 DOI: 10.1016/j.cell.2004.12.041]

Goldstein BJ. Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 2005; 54: 311-321 [PMID: 15677487 DOI: 10.2337/diabetes.54.2.311]

Otamiri T, Sjödahl R. Oxygen radicals: their role in selected gastrointestinal disorders. Dig Dis 1991; 9: 133-141 [PMID: 1868620]

Vonlaufen A, Apte MV, Imhof BA, Frossard JL. The role of inflammatory and parenchymal cells in acute pancreatitis. J Pathol 2007; 213: 239-248 [PMID: 17893879]

Tsujii N, Watanabe N, Okamoto T, Nishi Y. Specific interaction of pancreatic elastase and leucocytes to produce oxygen radicals and its implication in pancreatitis. Gut 1994; 35: 1659-1664 [PMID: 7828993]

Dabrowski A, Konturek SJ, Konturek JW, Gabryelewicz A. Role of oxidative stress in the pathogenesis of caerulein-induced acute pancreatitis. Eur J Pharmacol 1999; 377: 1-11 [PMID: 10448919]

Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, San- doval D, Gukovsky S, Pandol SJ. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 1997; 100: 1853-1862 [PMID: 9312187 DOI: 10.1172/JCI19714]

Kimura K, Shimosegawa T, Sasano H, Abe R, Satoh A, Masamune A, Koizumi M, Nagura H, Toyota T. Endogenous glucocorticoids decrease the acinar cell sensitivity to apoptosis during cerulein pancreatitis in rats. Acta Pathol Microbiol Immunol Scand A 1995; 103: 311-321 [PMID: 7896165 DOI: 10.1016/0969-8052(94)00110-6]

Ogino K, Hohara T, Ishiyama H, Yamazaki K, Kobayashi H, Iizumi Y, Oka S. Antilucre mechanism of action of rebamipide, a novel antilucre compound, on diethyldithiocarbamate-induced antral gastric ulcers in rats. Eur J Pharmacol 2012; 9: 212-9 [PMID: 1313372 DOI: 10.1016/j.ejphar.2013.07.055-C]

Yu JH, Lim JW, Namkung W, Kim H, Kim KH. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells. Lab Invest 2002; 82: 1359-1368 [PMID: 12379770]

Vaira L, Roelofs HM, van-Schaik A, Wanten GJ, Jansen JB, Peters WH, Drenth JP. Assessment of oxidative stress in chronic pancreatitis patients. World J Gastroenterol 2003; 9: 2266-2269 [PMID: 14562390]

Verlaan M, Roelofs HM, van-Schaik A, Wanten GJ, Jansen JB, Peters WH, Drenth JP. Assessment of oxidative stress in chronic pancreatitis patients. World J Gastroenterol 2006; 12: 5705-5710 [PMID: 17070126]

Yoo BM, Oh TY, Kim YB, Yeo M, Lee JS, Surh YJ, Ahn BO, Kim WH, Sohn S, Kim KH, Halm KB. Novel antioxidant ameliorates the fibrosis and inflammation of caerulein-induced chronic pancreatitis in a mouse model. Pancreatology 2005; 5: 165-176 [PMID: 15849847 DOI: 10.1111/j.1124-8460.2004.1000310.x]

Bhardwaj P, Garg PK, Maulik SK, Saraya A, Tandon RK, Acharya SK. A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 2009; 136: 149-159.e2 [PMID: 19852082 DOI: 10.1053/j.gastro.2008.09.028]

Siriwardena AK, Mason JM, Balachandra S, Bagul A, Gal- loway S, Formela L, Hardman JG, Jamdar S. Randomised, double blind, placebo controlled trial of intravenous anti- oxidant (n-acetylcysteine, selenium, vitamin C) therapy in patients with acute pancreatitis. Lancet 1997; 349: 1286-1288 [PMID: 9076341 DOI: 10.1016/S0140-6736(97)06296-6]
Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 2007; 117: 50-59 [PMID: 17200706]

Apte MV, Phillips PA, Fahmy RG, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, Pirola RC, Naidoo D, Wilson JS. Does alcohol directly stimulate pancreatic fibrogenesis? Studies with rat pancreatic stellate cells. Gastroenterology 2000; 118: 780-794 [PMID: 10734030 DOI: 10.1016/S0016-5085(00)70148-X]

Cao WL et al. NADPH oxidase and pancreatitis

P- Reviewer: Coelho AMM  S- Editor: Wen LL
L- Editor: Wang TQ  E- Editor: Lu YJ
