On the maximum rank of a real binary form

A. Causa R. Re

Abstract

We show that a real binary form \(f \) of degree \(n \geq 3 \) has \(n \) distinct real roots if and only if for any \((\alpha, \beta) \in \mathbb{R}^2 \setminus \{0\} \) all the forms \(\alpha f_x + \beta f_y \) have \(n - 1 \) distinct real roots. This answers to a question of P. Comon and G. Ottaviani in [1], and allows to complete their argument to show that \(f \) has symmetric rank \(n \) if and only if it has \(n \) distinct real roots.

1 Introduction

This paper deals with the following problem: Given a degree \(n \) polynomial \(f \in K[x_1, \ldots, x_m] \) find the rank (or Waring rank) of \(f \), i.e. the minimum number of summands which achieve the following decomposition:

\[
f = \lambda_1 l_1^n + \cdots + \lambda_r l_r^n \quad \text{with} \quad \lambda_i \in K \text{ and } l_i \text{ linear forms}.
\]

For \(K = \mathbb{C} \) and \(f \) generic the answer has been given (see [2, 3]), nevertheless some questions remain unsolved, e.g. it’s not yet known which is the stratification of the set of complex polynomials by the rank. However one can see [4] for an answer in the binary case.

In the real case, i.e. \(K = \mathbb{R} \), the situation becomes more complicated. In contrast to the complex case which has a generic rank, in the real case the generic rank is substituted by the concept of typical rank. A rank \(k \) is said typical for a given degree \(n \) if there exists a euclidean open set in the space of real degree \(n \) polynomials such that any \(f \) in such open set has rank \(k \). We will prove the following theorem, posed as a question in [1].

Theorem 1. Let \(f(x, y) \) be a real homogeneous polynomial of degree \(n \geq 3 \) without multiple roots in \(\mathbb{C} \). Then \(f \) has all real roots if and only if for any \((0, 0) \neq (\alpha, \beta) \in \mathbb{R}^2 \) the polynomial \(\alpha f_x + \beta f_y \) has \(n - 1 \) distinct real roots.

Notice that the “only if” part of the theorem is easy. Indeed given any \((\alpha, \beta) \neq (0, 0) \) one may consider a new coordinate system \(l, m \) on the projective line, such that \(x = \alpha l + \alpha' m \), and \(y = \beta l + \beta' m \), so that \(\partial_l = \alpha \partial_x + \beta \partial_y \). Writing \(f \) as a function of \(l, m \) and de-homogenizing by setting \(m = 1 \) one sees that \(f_l \) has \(n - 1 \) distinct roots by the theorem of Rolle.

In [1] the result above has been considered in connection with the problem of determining the rank of a real binary form, that is the minimum number \(r \) such that \(f(x, y) = \lambda_1 l_1^n + \cdots + \lambda_r l_r^n \), with \(\lambda_i \in \mathbb{R} \) and \(l_i = \alpha_i x + \beta_i y \in \mathbb{R}[x, y] \).
for \(i = 1, \ldots, r \). Using the arguments already given in [1] and applying Theorem [1] one gets the following result.

Corollary 1. A real binary form \(f(x, y) \) of degree \(n \geq 3 \) without multiple roots in \(\mathbb{C} \) has rank \(n \) if and only if it has \(n \) distinct real roots.

We leave the following question open for further investigations. Partial evidence for it has been given from the results in [1], where it has given a positive answer for \(n \leq 5 \), and where the reader can find references for the existing literature on rank problems for real tensors.

Question 1. Are all the ranks \(\lfloor n/2 \rfloor + 1 \leq k \leq n \) typical for real binary forms of degree \(n \)?

2 Main Theorem

Let \(f(x, y) \) be a real homogeneous polynomial of degree \(n \geq 3 \) without multiple roots in \(\mathbb{C} \). Then \(\nabla f(x, y) \neq (0, 0) \) for any \((x, y) \neq (0, 0) \) and one can define the maps \(\tilde{\phi} : S^1 \to S^1 \) and \(\tilde{\psi} : S^1 \to S^1 \) setting, for any \((x, y) \) with \(x^2 + y^2 = 1 \), \(\tilde{\phi}(x, y) = |\nabla f|^{-1}(f_x, f_y) \) and \(\tilde{\psi}(x, y) = |\nabla f|^{-1}(xf_x + yf_y, -yf_x + xf_y) \), with \(|\nabla f| = (f_x^2 + f_y^2)^{1/2} \). Setting \((x, y) = (\cos \theta, \sin \theta)\), one can also write \(\phi \) and \(\psi \) as functions of \(\theta \).

Notation. We denote \(\partial_0 = -y\partial_x + x\partial_y \) the basis tangent vector to \(S^1 \) at the point \((x, y)\). Given any differentiable map \(\phi : S^1 \to M \) to a differentiable manifold \(M \), we denote \(\phi_* : T_0S^1 \to T_{\phi(\theta)}M \) the associated tangent map. If \(M = S^1 \), and the map \(\phi \) is defined in terms of angular coordinates by the function \(\theta_1(\theta) \), we recall that the degree, or winding number, of \(\phi \) is the number

\[
\deg \phi = \frac{1}{2\pi} \int_0^{2\pi} \theta'_1(\theta)d\theta.
\]

This is always an integer number, and for any \(z \in S^1 \) one has \(\#\phi^{-1}(z) \geq |\deg \phi| \).

The following lemmas are straightforward calculations and their proofs are omitted.

Lemma 1. Assume that \(\theta'_1(\theta) \) never vanishes. Then \(\#\phi^{-1}(z) = |\deg \phi| \) for any \(z \in S^1 \).

We assume that for any \((\alpha, \beta) \in \mathbb{R}^1(\mathbb{R})\) the polynomial \(\alpha f_x + \beta f_y \) has \(n - 1 \) distinct roots in \(\mathbb{R} \). Under this assumption, we want to show that the absolute value of the degree of \(\psi \) is \(n \). Since \(f(x, y) = 0 \) if and only if \(\psi(x, y) = (0, \pm 1) \) this implies that \(f \) has all its roots in \(\mathbb{R} \). Indeed \(\psi(-x, -y) = (-1)^n \psi(x, y) \), henceforth when \(n \) is even \(n/2 \) real roots of \(f(x, y) = 0 \) are in \(\psi^{-1}(0, 1) \) and the other \(n/2 \) roots are in \(\psi^{-1}(0, -1) \); otherwise when \(n \) is odd one gets \(\psi^{-1}(0, 1) = \psi^{-1}(0, -1) \), hence \(\psi^{-1}(0, 1) \) is the set of the \(n \) real roots of \(f(x, y) = 0 \).
Lemma 2. Let $F : S^1 \to \mathbb{R}^2$ be a differentiable function defined by $F(x,y) = (F_1(x,y), F_2(x,y)) = (a(\theta), b(\theta))$. Then $F_*(\partial_\theta) = A\partial_x + B\partial_y$ with

$$A = -yF_{1x} + xF_{1y} = a'(\theta)$$
$$B = -yF_{2x} + xF_{2y} = b'(\theta).$$

Notation. Given a map $f : S^1 \to \mathbb{R}^2$, which one can write $f(\theta) = (a(\theta), b(\theta))$, we denote with (f,f_θ) the matrix

$$\begin{pmatrix}
a(\theta) & b(\theta) \\
a'(\theta) & b'(\theta)
\end{pmatrix}.$$

Notice that the sign of the determinant of this matrix expresses if f_* is orientation-preserving at the point $f(\theta)$.

Lemma 3. Let $g : S^1 \to \mathbb{R}^2$ and $\rho : S^1 \to \mathbb{R}_+$ be differentiable functions. Then $\det(g,g_\theta) = \rho^{-2}\det(\rho g, (\rho g)_\theta)$.

Notice that if $\bar{g} : S^1 \to S^1$ is the map $\bar{g}(x,y) = |\nabla f|^{-1}(f_x, f_y)$ then one may calculate the sign of $\det(\bar{g}, \bar{g}_\theta)$ by reducing to the simpler map $\phi = (f_x, f_y) : S^1 \to \mathbb{R}^2$.

Notation. We denote by $H(f) = \det(f_{xx} f_{xy} f_{yx} f_{yy})$, the hessian of f.

Proposition 1. Let $\phi : S^1 \to \mathbb{R}^2$ be the map defined above. Then $\det(\phi, \phi_\theta) = (n-1)^{-1}H(f)$.

Proof. We have $\phi_*(\partial_\theta) = A\partial_x + B\partial_y$ with A and B determined as in Lemma 2, hence

$$\det(\phi, \phi_\theta) = \det\begin{pmatrix} f_x & f_y \\ -yf_{xx} + xf_{xy} & -yf_{yx} + xf_{yy} \end{pmatrix} = \frac{1}{n-1} \det\begin{pmatrix} xf_{xx} + yf_{xy} & xf_{yx} + yf_{yy} \\ -yf_{xx} + xf_{xy} & -yf_{yx} + xf_{yy} \end{pmatrix} = \frac{1}{n-1} \det\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \det\begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \frac{1}{n-1}H(f).$$

Proposition 2. Let $\phi : S^1 \to \mathbb{R}^2 \cong \mathbb{C}$ defined by $\phi(\theta) = a(\theta) + ib(\theta)$ and $\psi : S^1 \to \mathbb{C}$ defined by $\psi(\theta) = e^{-i\theta}\phi(\theta)$. Then $\det(\psi, \psi_\theta) = \det(\phi, \phi_\theta) - a^2 - b^2$.

Proof. We calculate $\psi'(\theta) = (a' + b + i(b' - a))e^{-i\theta}$. It follows that

$$\det(\psi, \psi_\theta) = \det\begin{pmatrix} a & b \\ a' + b & b' - a \end{pmatrix} = \det\begin{pmatrix} a & b \\ a' & b' \end{pmatrix} - a^2 - b^2.$$
Applying this result to \(g \), we find that

\[
\text{Corollary 2. In the notations above, the following statements hold.}
\]

1. \(\det(\tilde{\phi}, \tilde{\phi}_\theta) = \theta'_1(\theta) = (n - 1)^{-1}\nabla f^{-2}H(f) \).
2. \(\deg \bar{\psi} = \deg \tilde{\phi} - 1 \).

Proof. The first statement follows form Proposition 1 and Lemma 3. The second one follows from Proposition 2 and Lemma 3 since

\[
\deg \bar{\psi} = \frac{1}{2\pi} \int \det(\bar{\psi}, \bar{\psi}_\theta) = \frac{1}{2\pi} \int \det(\tilde{\phi}, \tilde{\phi}_\theta) - 1 = \deg \tilde{\phi} - 1.
\]

Now we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. Since for any \((\alpha, \beta) \in \mathbb{R}^2 \setminus \{0\}\) the polynomial \(\alpha f_x + \beta f_y \) has \(n - 1 \) distinct real roots, then the map \((f_x, f_y): \mathbb{P}^1_{\mathbb{R}} \to \mathbb{P}^1_{\mathbb{R}}\) has no ramification at any real point of \(\mathbb{P}^1_{\mathbb{R}} \). Equivalently, the jacobian of \(\phi \) which is equal to the hessian \(H(f) \) is always non-zero at the real points of \(\mathbb{P}^1_{\mathbb{R}} \). We call the map \(\phi: S^1 \to S^1 \) defined by \(\phi = |\nabla f|^{-1}(f_x, f_y) \) and we also express it as \(\theta_1 = \theta_1(\theta) \) in angular coordinates. By the observation above and Corollary 2, it follows that the derivative \(\theta'_1(\theta) \) is non vanishing at any \(\theta \in S^1 \). Hence \(\theta'_1(\theta) \) is either always positive or always negative.

Claim: \(\theta'_1(\theta) < 0 \) for any \(\theta \).

The sign of \(\theta'_1(\theta) \) is the same as the sign of \(H(f) \). Since we already know that it is constant it will be sufficient to evaluate it at a single point \((x, y) \in S^1 \).

We choose to examine the point \((1, 0)\). One observes that for any binary form

\[
g(x, y) = \binom{m}{0} a_0 x^m + \binom{m}{1} a_1 x^{m-1} y + \cdots + \binom{m}{m} a_m y^m
\]

of degree \(m \geq 3 \), the Hessian \(H(g) \) calculated at \((1, 0)\) is equal to

\[
m(m - 1) \det \begin{pmatrix} a_0 & a_1 \\ a_1 & a_2 \end{pmatrix}.
\]

Similarly the Hessian of its derivative \(g_x \) at \((1, 0)\) is given by

\[
m(m - 1)(m - 2) \det \begin{pmatrix} a_0 & a_1 \\ a_1 & a_2 \end{pmatrix}.
\]

Therefore we find that

\[
H(g)(1, 0) = (m - 2)^{-1}H(g_x)(1, 0).
\]

Applying this result to \(g = f \), we are reduced to compute the sign of \(H(f_x) \). We know that \(f_x \) has \(n - 1 \) distinct real roots, so all of its derivatives \(\partial^j_x(f_x) \) have all
their roots real and distinct, up to \(i = n - 3 \). The last of these derivatives is \(h = \partial_{x}^{n-2}f \), and its Hessian is a constant equal to \(-\Delta(h)\), hence \(H(h) < 0 \). Applying recursively the reduction step, we find that \(H(f)(1,0) = (n-2)^{-1}H(f_{x})(1,0) = ((n-2)!)^{-1}H(h) < 0 \), proving the claim.

By Corollary 2(1), Lemma 1 and applying the claim above, we get that \(\deg \overline{\phi} < 0 \) and \(\#\overline{\phi} - 1(z) = |\deg \phi| \) for any \(z \in S^{1} \), hence \(\deg \overline{\phi} = -n + 1 \). Moreover, by Corollary 2(2), we have \(\deg \overline{\psi} = \deg \overline{\phi} - 1 = -n \), hence \(\#\text{real roots}(f) \geq |\deg \overline{\psi}| = n \). This completes the proof of the Theorem.

We conclude giving a self-contained proof of the result on the rank of a real binary form mentioned in the introduction. The arguments given are all already in [1].

Proof of Corollary 7. The statement holds for \(n = 3 \), as shown in [1], Proposition 2.2. Assuming \(n > 3 \), suppose the statement holds in degree \(n - 1 \). Assume \(\text{rank}(f) = r \), so one can write \(f = \lambda_{1}l_{1}^{n} + \cdots + \lambda_{r}l_{r}^{n} \), with \(r \) minimal. Then one can consider \(l = l_{1} \) and \(m = l_{r} \), and \(g(t) = m^{-n}f \), with \(t = l/m \). One sees that \(m^{-n+1}f_{t} = g'(t) \) can be expressed as a sum of at most \(r - 1 \) \(n \)-th powers of linear forms in \(t \). If \(f \) has \(n \) distinct real roots then, by induction hypothesis \(f_{t} \) has \(n - 1 \) distinct real roots and we find \(r - 1 \geq n - 1 \), i.e. \(r \geq n \). Since the inequality \(r \leq n \) always holds, as shown in [1] Proposition 2.1, we have \(r = n \). Conversely, if the rank of \(f \) is \(n \) then take \(r = n \) and consider any derivative \(\alpha f_{x} + \beta f_{y} = f_{t} \), after defining a suitable coordinate system \(l, m \), as explained in the introduction. We can consider the polynomial \(g'(t) = m^{-n+1}f_{t} \). If it has rank \(< n - 1 \), then by indefinite integration over \(t \) one sees easily that \(f \) has rank \(< n \), contrary to the assumption. So \(\text{rank}(f_{t}) = n - 1 \) and, by induction hypothesis, it also holds that \(f_{t} \) has \(n - 1 \) distinct real roots. By the arbitrariness of \(l \) and by Theorem 1 we conclude that \(f \) has \(n \) distinct roots.

Acknowledgements The second author thanks G. Ottaviani for posing the question giving rise to this paper and for stimulating discussions.

References

[1] P. Comon and G. Ottaviani, On the typical rank of real binary forms, available at arXiv:math/0909.4865, (2009).

[2] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Alg. Geom. 4(1995), n. 2, 201–222.

[3] G. Ottaviani and C. Brambilla, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra 212(2008), 1229–1251.

[4] G. Comas and M. Seig OF, On the rank of a binary form, available at arXiv:math/0112311, (2001).
Antonio Causa
causa@dmi.unict.it
Riccardo Re
riccardo@dmi.unict.it
Università di Catania
Dipartimento di Matematica e Informatica,
Viale Andrea Doria 6
I–95125 Catania, Italy.