Introduction

Biomedical engineering is the convergence and application of engineering principles to human biology or medicine in order to develop technologies to improve patient care. The discipline embraces applications from physiology, human biology, molecular imaging to the re-construction of tissues and organs. Technically, although biomedical engineers are not medical practitioners, they could be regarded as indirect practitioners, since the protocols, processes, and technologies they develop co-determine medical practice. Even though biomedical engineering is sometimes equivocated to biological engineering, the former is narrower in scope. Biological engineering generally deals with the engineering of biological functions and systems, and includes not only biomedical engineering but also tissue engineering, food engineering and biotechnology. Ethical issues in biomedical engineering are currently studied in the fields of bioethics, medical ethics and engineering ethics. While biomedical engineers differ from other engineers, they are similar to medical practitioners, in that they aim to improve healthcare. Biomedical engineers, like other engineers, are involved in research and development of new medical technology, but not engage in the diagnosis and treatment of patients. The ethical responsibilities of biomedical engineers thus combine those of engineers and medical professionals, by adhering to standards in medical and bioethics. Besides other inherent issues within their practice, biomedical engineers have an arduous responsibility of anticipating the consequences of their technological designs for medical practice, by ensuring that the designs support ethical principles for medical practice. Such principles include non-maleficence (doing not harm), beneficence (benefiting patients), informed consent (consent to treatment based on a proper understanding of the facts), patient prerogative (the right to choose or refuse treatment), confidentiality (of medical information), and dignity (dignified treatment of patients).

This review examines the most commonly researched areas of biomedical engineering which have attracted, arguably, the most ethics-related discussions.

Genetic, Germline, Cellular and Tissue Engineering

These highly technical fields involve attempts at solving biomedical problems at the microscopic level. Genetic engineering specifically aims to alter the genetic material in cells. Most research goes into somatic cell therapy (and not the sperm or egg cells) in order to replace abnormal genes with functional ones. Quite a number of genetically-engineered products are being clinically tested to treat diabetes, cancer, and other neuro-degenerative disorders. The narrative that somatic cell gene therapy to treat serious diseases is ethical, is due to compelling evidence from empirical research. Germline engineering, is slightly less studied in therapeutic studies, and even more controversial. It basically involves a technique where genes in eggs, sperm or embryos are modified. Ethically, this has become controversial because of the danger of precipitating inheritable genomic modifications that could easily be passed on to future generations. In the long term, such side effects are currently unpredictable, but there are huge concerns that this type of engineering violates the rights of the unborn and amounts to “playing God”. Another controversial subject under germline engineering is the possibility of enhancing human traits such as perception, intelligence or strength. Such genetic “enhancements” will continue to be controversial as far as human ethics, beliefs and practices are concerned. Cellular engineering attempts to understand the cause and course of diseases at the cellular level in order to intervene by using devices that either inhibit or stimulate cellular processes. The objective is to prevent or treat disease. The field attempts to control cell function through mechanical, chemical, or genetic engineering of cells. Tissue engineering aims to improve the functions of tissues or whole organs by means of biological replacements. One objective of tissue engineering is to create artificial organs for organ transplants. Major controversies involve the use of human embryonic tissue. The use of stem and germ cells from embryonic tissue is controversial because the harvested cells from the embryos which are deemed potential humans, are destroyed in the process. The destruction of human embryos is seen by society as unethical, and therefore to have a medical practice that involves it renders it very controversial. Other ethical issues in tissue engineering concern the question of patenting the tissues, and whether human donors could profit from their use. The protection of the donor’s privacy is another contentious issue. Tissues of donors are stored in biobanks or repositories of either public or private organizations,
Biomaterials, Prostheses, and Implants

One interesting area in biomedical engineering is the development of prosthetic devices and implants using biomaterials. In the field of biomaterials, non-biological materials in the form of prostheses or implants are used to interface with biological systems to replace, treat, or support functions of the body. The development and use of implants and prostheses in the form of artificial limbs and hips, pacemakers, and retinal implants have helped in restoring function in people with disabilities and function impairments.

The idea of functional improvement in humans could involve different scenarios. One arguably, the most debated falls within the category of germline engineering where genes in the reproductive cells (eggs, sperm) or some very early embryos are modified. The controversy with this practice stems from the fact that these modifications are passed down to future generations with deleterious consequences. Ethicists have also argued that this practice allows the decision maker to “play God” which violates the rights of future generations. More controversies arise from tissue engineering where cells are harvested from human embryonic tissues which are killed in the process. Scientists are worried the quest for human embryonic tissues for this purpose would promote large-scale cultivation of human embryos. The use of Prostheses and implants technology which has enabled patients to receive artificial limbs and organs in the field of rehabilitation engineering also poses ethical questions about human identity and dignity because it involves the replacement or addition of artificial structures to human biology. The use of prostheses and implants, particularly ones that have functioning parts, cyborgs (part human, part machine) raises the poignant question; can the resulting person still be called fully human? Can the artificial part cause a loss of identity? Should certain organs not be replaced by artificial systems?

Ethicists main concern has to do with the reality that people are becoming part human and part machine, forcing biologists and biomedical engineers to reconsider the definition of being human. Science disciplines like biomedical engineering, biomechanics, neuro-prosthetics, brain-computer interfaces, and rehabilitation engineering forces us to re-evaluate our impact on the world around us [1,2].

Neural Engineering

This new field combines engineering techniques and neuroscience in order to manipulate the peripheral or central nervous systems through the direct interaction between the nervous system and artificial devices. The primary goal is to restore and augment human functions. In neuroprosthetics, an impaired nervous function can be replaced or improved by neural prostheses. In brain-computer interfaces, computing devices are hooked to the brain to enable better signal exchanges. Neural engineering also involves the use of brain implants to enhance electrical stimulation of the nervous tissues. All these processes which involve device and human interfaces have raised troubling ethical questions regarding the dignity of humans, since artificial neural devices may affect personal identity by making the brain partially artificial, which could ultimately turn humans into cyborgs. There is also the tendency for individual autonomy to be undermined as neural devices could be used to control human behaviour. All these concerns then beg the question: can humans still be held morally responsible for their behaviour when their brains are no longer under their control? The possibility of neuro-alteration also raises a critical question which has been a subject of intense debate: should neural engineering be employed to develop artificial human devices that have superior perception, cognition, and positive attitudes [3-5]?

Conclusion

Unfortunately, there is really no clear-cut solution to handle the ethics and controversies of biomedical engineering in the very near future. It is needless to say, very important to constantly educate ourselves as biomedical engineers about the potential consequences of paying lip service to the growing ethical concerns in this field. One school of thought that has been advanced to prevent future complications in the field is a proposal for a code of ethics that seeks to keep confidential all patient’s records, publishing accurate research results, and by insulating the technology free from outside influence [6,7].

References

1. Brey P (2009) Biomedical Engineering Ethics. Berg-Olsen J, Pedersen S, HendricksK (Eds.), A Companion to Philosophy of Technology. Blackwell.
2. Mark G (2014) The Bioethics Niche. The bioethics niche.
3. Fielder J (2007) Biomedical Engineering Ethics. Morgan & Claypool.
4. Varelo D (2007) Biomedical Ethics for Engineers: Ethics and Decision Making in Biomedical and Biosystem Engineering. Academic Press, Massachusetts, USA.
5. Biomedical Engineering Society Code of Ethics.
6. Frederik P (2015) Cultural SF and Movie Learnings.
7. Taylor DA, Caplan AL, Macchiaram P (2014) Ethics of bioengineering organs and tissues. Expert Opinion on Biological Therapy 14(7): 879-882.