Measurements of the absolute branching fractions for $D^+_s \to \eta^+\nu_e$ and $D^+_s \to \eta'\nu_e$
the BEPCII collider, we measure the absolute branching fractions for the semileptonic decays $D_0^+ \rightarrow \eta e^+ \nu_e$ and $D_0^+ \rightarrow \eta' e^+ \nu_e$ to be $B(D_0^+ \rightarrow \eta e^+ \nu_e) = (2.30 \pm 0.31 \pm 0.08)\%$ and $B(D_0^+ \rightarrow \eta' e^+ \nu_e) = (0.93 \pm 0.30 \pm 0.05)\%$, respectively, and their ratio $\frac{B(D_0^+ \rightarrow \eta e^+ \nu_e)}{B(D_0^+ \rightarrow \eta' e^+ \nu_e)} = 0.40 \pm 0.14 \pm 0.02$, where the first uncertainties are statistical and the second ones are systematic. The results are in good agreement with previous measurements within uncertainties; they can be used to determine the $\eta - \eta'$ mixing angle and improve upon the D_0^+ semileptonic branching ratio precision.
I. INTRODUCTION

The semileptonic decays $D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}$ and $D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}$ are important channels for the study of heavy quark decays and light meson spectroscopy. The inclusive semileptonic decay widths of the mesons D_{0}, D^{+} and D_{s}^{+} should be equal, up to $SU(3)$ symmetry breaking and non-factorizable components. The measured inclusive semileptonic decay widths of D_{0} and D^{+} mesons are proven to be consistent with each other. However, they are larger than that of D_{s}^{+} mesons by 20% [2], more than 3σ of the experimental uncertainties. The updated Isgur-Scora-Grinstein-Wise form factor model (ISGW2) [3] predicts a difference between the D and D_{s}^{+} inclusive semileptonic rates, as the spectator quark masses m_u and m_s differ on the scale of the daughter quark mass m_s in the Cabibbo favored semileptonic transition. Up to now, the exclusive semileptonic decays of D_{0} and D^{+} mesons have been well studied experimentally [4]. Therefore, measurements of the D_{s}^{+} exclusive semileptonic decay rates will provide helpful information to understand this difference. In addition, it is well known that the states η and η' are considered as candidates for mixing with gluonic components. The exclusive semileptonic decays $D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}$ and $D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}$ probe the $s\bar{s}$ components of η and η' and thus are sensitive to the $\eta - \eta'$ mixing angle [5]. Therefore, measurements of these decay rates can constrain the physics related to the mixing with the gluonic components [6].

The CLEO Collaboration measured the ratio between the branching fractions for $D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}$ and $D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}$ to be $B(D_{s}^{+} \rightarrow \eta e^{+}\nu_{e})/B(D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}) = 0.35 \pm 0.09 \pm 0.07$, by analyzing a data sample of 3.11 fb$^{-1}$ taken at the center-of-mass energy $\sqrt{s} = 3.11$ GeV in 1995 [7], and the two individual branching fractions to be $B(D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}) = (2.48 \pm 0.29 \pm 0.13)%$ and $B(D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}) = (0.91 \pm 0.33 \pm 0.05)%$ using a data sample of 310 pb$^{-1}$ collected with the CLEO-c detector at $\sqrt{s} = 4.17$ GeV in 2009 [8]. Recently, these two branching fractions were measured to be $B(D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}) = (2.28 \pm 0.14 \pm 0.20)%$ and $B(D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}) = (0.68 \pm 0.15 \pm 0.06)%$, by using a data sample of 586 pb$^{-1}$ collected at $\sqrt{s} = 4.17$ GeV with the CLEO-c detector [9]. In this paper, we report measurements of the absolute branching fractions for $D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}$ and $D_{s}^{+} \rightarrow \eta' e^{+}\nu_{e}$ at the BESIII experiment.

II. DETECTOR AND MONTE CARLO

This analysis presented in this paper is carried out using a data sample of 482 pb$^{-1}$ [10] collected at $\sqrt{s} = 4.009$ GeV with the BESIII detector.

BESIII is a cylindrical spectrometer that is composed of a Helium-gas based main drift chamber (MDC), a plastic scintillator time-of-flight (TOF) system, a CsI (TI) electromagnetic calorimeter (EMC), a superconducting solenoid provid-
and $CL_{\pi} > CL_K$ ($CL_K > 0$ and $CL_K > CL_{\pi}$) is identified as a pion (kaon).

The K^0_S candidates are reconstructed from pairs of oppositely charged tracks. For these two tracks, the point of the closest approach to the IP must be within ± 20 cm along the beam direction. The two oppositely charged tracks are assigned as $\pi^+\pi^-$ without PID. The $\pi^+\pi^-$ invariant mass is required to satisfy $0.487 < M(\pi^+\pi^-) < 0.511$ GeV/c^2. The two tracks are constrained to originate from a common decay vertex, which is required to have a positive separation from the IP with respect to the K^0_S flight direction.

Photon candidates are reconstructed from clusters in the EMC. The energy deposited in nearby TOF counters is included to improve the reconstruction efficiency and energy resolution. Showers must have minimum energy of 25 MeV in the barrel region ($|\cos \theta| < 0.80$) or 50 MeV in the end cap region ($0.86 < |\cos \theta| < 0.92$). To suppress electronic noise and clusters unrelated to the event, the EMC cluster time is required to be within [0, 700] ns after the event start time. The angle between the photon candidates and the closest charged track is required to be greater than 10° to suppress split-off showers or bremsstrahlung generated by charged particles.

The π^0 and η candidates are reconstructed from photon pairs. We require that the $\gamma\gamma$ invariant mass satisfies $0.115 < M(\gamma\gamma) < 0.150$ GeV/c^2 for π^0 candidates, and $0.510 < M(\gamma\gamma) < 0.570$ GeV/c^2 for η candidates. To improve the mass resolution, a mass-constrained fit to the nominal mass of π^0 or η is applied to the photon pairs.

For ϕ and ρ^- candidates, the invariant mass is required to satisfy $1.005 < M(K^+K^-) < 1.040$ GeV/c^2 and $0.570 < M(\pi^0\pi^-) < 0.970$ GeV/c^2, respectively. For η' candidates, the invariant mass must satisfy $0.943 < M(\eta'_{\pi^+\pi^-}) < 0.973$ GeV/c^2 or $0.932 < M(\eta'_{\gamma\rho^-}) < 0.980$ GeV/c^2, we additionally require $0.570 < M(\pi^0\pi^-) < 0.970$ GeV/c^2 for $\eta'_{\gamma\rho^-}$ candidates to reduce contributions from combinatorial background.

The ST D^-_s meson is identified using the energy difference $\Delta E \equiv E_{ST} - E_{beam}$ and the beam energy constrained mass $M_{BC} \equiv \sqrt{E_{beam}^2 - |\vec{p}_{ST}|^2}$, where $E_{ST} = \Sigma_i E_i$ and $|\vec{p}_{ST}| = |\Sigma_i \vec{p}_i|$ are the total energy and momentum of all the final state particles of the ST system, and E_{beam} is the beam energy. In order to improve the ratio of signal to background, the ΔE is required to fall in a $(-3\sigma, 3\sigma)$ window around the peak of the ΔE distribution, where σ is the standard deviation of the ΔE distribution. For each ST mode, if more than one combination satisfies the criteria in an event, only the combination with the minimum $|\Delta E|$ is retained.

To determine the number of ST D^-_s mesons, we perform a fit to the M_{BC} spectra of the accepted combinations. In the fits, we use the MC simulated signal shape convoluted with a Gaussian function to represent the signal shape and an ARGUS function to describe the background, which is expected to be a smooth distribution in M_{BC}. The fits to the M_{BC} spectra are shown in Fig. 1. The events in the M_{BC} signal region, which is defined to be within a $(-4\sigma, 5\sigma)$ window around the peak of the M_{BC} distribution, are kept for further analysis. The numbers of the ST D^-_s mesons are obtained by integrating the D^-_s signal over the M_{BC} signal region. We estimate the efficiency of reconstructing the ST D^-_s mesons (ST efficiency $e_{ST}^{D^-_s}$) by analyzing the inclusive $D^+_sD^-_s$ MC sample. The requirements on ΔE and M_{BC}, the numbers of the ST D^-_s mesons and the ST efficiencies are summarized in Tab. 1. The total number ($N_{ST}^{D^-_s}$) of the ST D^-_s mesons is 13157 ± 240.

FIG. 1: Results of the fits to the M_{BC} distributions of the ST D^-_s modes (a) $K^+K^-\pi^-$, (b) $\phi\rho^-$, $\phi \rightarrow K^+K^-$, (c) $K^0_SK^+\pi^-\pi^-$, (d) $K^0_SK^-\pi^+\pi^-$, (e) $K^0_SK^+K^-\pi^0$, (f) $\eta\pi^-\eta \rightarrow \gamma\gamma\gamma$, (g) $\eta'\pi^-\eta' \rightarrow \eta\pi^+\pi^-$, (h) $\eta'\pi^-\eta' \rightarrow \gamma\rho^0$, (i) $\eta\rho^-\eta \rightarrow \gamma\gamma$. In each plot, the dots with error bars are from data, the red solid curve represents the total fit to the data, the blue dashed curve describes the ARGUS background, and the green dotted curve denotes the signal shape.
TABLE I: Summary of the requirements on ΔE and M_{BC}, the numbers of the ST D_s^+ (N_{ST}) in data and the ST efficiencies ($\epsilon_{D_s^+}^{ST}$) which do not include the branching fractions for daughter particles of π^0, K_S^0, η and η'. Charge conjugation is implied, and the uncertainties are statistical only.

Tag Mode	ΔE (GeV)	M_{BC} (GeV/c^2)	N_{ST}	$\epsilon_{D_s^+}^{ST}$ (%)
$K^+K^-\pi^-$	$(-0.020, 0.017)$	$(1.9635, 1.9772)$	4863	38.92 \pm 0.08
$\phi(K^+K^-)\rho^-$	$(-0.036, 0.023)$	$(1.9603, 1.9821)$	616	10.05 \pm 0.07
$K_S^0K^-\pi^-$	$(-0.018, 0.014)$	$(1.9632, 1.9778)$	601	23.17 \pm 0.16
$K_S^0K^+\pi^-$	$(-0.016, 0.012)$	$(1.9622, 1.9777)$	388	21.98 \pm 0.21
$K_S^0K^-$	$(-0.019, 0.020)$	$(1.9640, 1.9761)$	1078	44.96 \pm 0.20
$\pi^+\pi^-\pi^-$	$(-0.026, 0.022)$	$(1.9634, 1.9770)$	1525	51.83 \pm 0.14
$\eta(\gamma\gamma)\pi^-$	$(-0.052, 0.058)$	$(1.9598, 1.9824)$	840	47.58 \pm 0.24
$\eta'(\gamma\rho^0)\pi^-$	$(-0.025, 0.024)$	$(1.9604, 1.9813)$	333	23.02 \pm 0.21
$\eta(\gamma\gamma)\eta$	$(-0.041, 0.033)$	$(1.9618, 1.9790)$	1112	38.21 \pm 0.18
$\eta(\gamma\gamma)\eta'$	$(-0.058, 0.041)$	$(1.9569, 1.9855)$	1801	24.43 \pm 0.10
SUM			13157	240

IV. DOUBLE TAGGED D_s^+ EVENTS

A. Candidates for $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$

Candidates for $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$ are selected on the recoil side of the ST D_s^- and called as the double tagged (DT) event. We require that (a) there is one charged track identified as an electron, whose confidence level C_L_e is calculated by the dE/dx, TOF and EMC information for the electron hypotheses, and satisfies $C_L_e > 0.001$ and $C_L_e/(C_L_e + C_L_e + C_L_K > 0.8$; (b) the charge of the electron is opposite to the charge of the ST D_s^- meson; (c) $\eta(\eta')$ is reconstructed using the same criteria as those used in the DT D_s^- selection; (d) there is no extra charged track (and no extra π^0 for $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$) (Trkextra) except for those used in the DT event selection; (e) the maximum energy ($E_{\text{max}}^{\text{extr}}$) of the extra photons, i.e. those photons not used for reconstructing the DT event, is required to be less than 300 MeV.

Due to the undetected neutrino, we cannot fully reconstruct the decay $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$. However, we can extract information on $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$ with the missing energy and momentum in the event. To do so, we define a kinematic variable $U_{\text{miss}} = E_{\text{miss}} - |p_{\text{miss}}|$, where the missing energy E_{miss} and the missing momentum p_{miss} are calculated by the formulas $E_{\text{miss}} = E_{\text{cmx}} - \sum_j E_j$ and $p_{\text{miss}} = -\sum_j p_j$, in which j runs over all the particles used to reconstruct the ST and DT candidates, E_j and p_j are the energy and momentum of the j-th particle in the final state, and E_{cmx} is the center-of-mass energy. Since only one neutrino is missing and the neutrino mass is very close to zero, the U_{miss} distribution for signal events of $D_s^+ \rightarrow \eta(\eta')e^+\nu_e$ is expected to peak near zero.

Figure 2 shows the U_{miss} distributions of the candidates for $D_s^+ \rightarrow \eta\gamma e^+\nu_e$, $D_s^+ \rightarrow \eta'\pi^+\pi^-e^+\nu_e$, and $D_s^+ \rightarrow \eta(\gamma\rho^0)e^+\nu_e$ in data. The U_{miss} signal regions are defined as $(-0.10, 0.12)$ GeV, $(-0.10, 0.12)$ GeV and $(-0.08, 0.10)$ GeV for $D_s^+ \rightarrow \eta\gamma e^+\nu_e$, $D_s^+ \rightarrow \eta'\pi^+\pi^-e^+\nu_e$, and $D_s^+ \rightarrow \eta(\gamma\rho^0)e^+\nu_e$, respectively. Within the signal regions, we observe 63.0 ± 7.9, 4.0 ± 2.0 and 10.0 ± 3.2 events, respectively.

B. Background estimate

In the observed candidate events there are still some backgrounds, which can be separated into two kinds. The first kind is called the ‘peaking background’ (Peak Bkg), in which the ST D_s^- is reconstructed correctly and the semileptonic decay is reconstructed incorrectly. To estimate this kind of background for $D_s^+ \rightarrow \eta\gamma\nu_e$, we examine the inclusive $D_s^+D_s^-$ MC events with the signal events excluded. After all selection criteria are applied, a total of 82 events survive, which corresponds to an expectation of 2.6 ± 0.3 events for data.

The second kind is named the ‘sideband background’ (Side Bkg), in which the ST D_s^- meson is reconstructed incorrectly. This kind of background can be estimated by the events in the M_{BC} sideband region, which is defined by the M_{BC} windows of $(1.920, 1.950)$ and $(1.990, 2.000)$ GeV/c^2. The number of backgrounds in the M_{BC} sideband region is then normalized according to the background areas in signal and sideband region. For $D_s^+ \rightarrow \eta\gamma\nu_e$, 1.9 \pm 0.9 ‘Side Bkg’ events are observed. Finally, we obtain the total number of background events to be 4.5 ± 0.9 for $D_s^+ \rightarrow \eta\gamma\nu_e$.

For the decay $D_s^+ \rightarrow \eta'\gamma\nu_e$ with $\eta' \rightarrow \eta\pi^+\pi^- (\gamma\rho^0)$, the numbers of ‘Peak Bkg’ and ‘Side Bkg’ events are estimated to be $0.2 \pm 0.1 (1.2 \pm 0.2) and 0.00 \pm 0.5 (0.6 \pm 0.4)$, respectively. The total numbers of the background events are 0.2 ± 0.5 and 1.8 ± 0.4 for $\eta' \rightarrow \eta\pi^+\pi^-$ and $\gamma\rho^0$ modes, respectively.

C. Net number of signals

The numbers of observed candidate events and background events are summarized in Table II. After subtracting the num-
The number of reconstructed ST D_s^- events can be calculated from

$$N_{ST} = 2 \times N_{D_s^+ D_s^-} \times B_{ST} \times \epsilon_{D_s^-}^T,$$

where $N_{D_s^+ D_s^-}$ is the number of $D_s^+ D_s^-$ meson pairs in data, B_{ST} is the branching fraction for the D_s^- decay, $\epsilon_{D_s^-}^T$ is the ST efficiency. The number of DT events for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ can be described as

$$N_{DT} = 2 \times N_{D_s^+ D_s^-} \times B_{ST} \times B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e) \times \epsilon_{DT}^T,$$

where $B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e)$ is the branching fraction for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$, and ϵ_{DT}^T is the efficiency of simultaneously reconstructing the ST D_s^- and $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ (DT efficiency). We can determine the branching fraction for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ by

$$B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e) = \frac{N_{DT} \times \epsilon_{DT}^T}{N_{ST} \times \epsilon_{D_s^-}^T \times B_{ST} \times B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e)}.$$

where $\epsilon_{D_s^-}^T = \epsilon_{D_s^-\rightarrow\eta(\gamma' \rho^0)^e^+ \nu_e} / \epsilon_{D_s^-}$ is the efficiency of reconstructing $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ and B_{ST} denotes the branching fractions for η or η' decays [4]. The detection efficiencies are estimated using MC samples. An simulated sample of $e^+ e^- \rightarrow D_s^+ D_s^-$ with $D_s^+ D_s^-$ decaying inclusively is used to estimate the ST efficiency, and a sample in which $D_s^+ D_s^-$ decay exclusively into the ST modes accompanied by $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ is used to estimate the DT efficiency. The backgrounds associated with fake photon candidates, extra charged tracks and π^0 are correlated with the track multiplicities of the ST and signal modes. In this case, the requirements used to suppress these kinds of background events cause variations in the detection efficiencies for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ between the different ST modes shown in Table III. The detection efficiencies for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ in the different ST modes are weighted by the numbers of the ST D_s^- events; the average efficiencies are obtained to be (49.04 \pm 0.21)$\%$, (16.16 \pm 0.13)$\%$ and (24.20 \pm 0.16)$\%$ for $D_s^+ \rightarrow \eta e^+ \nu_e$, $D_s^+ \rightarrow \eta\pi^+ \pi^- e^+ \nu_e$ and $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$, respectively, as summarized in Table III.

Inserting the numbers of N_{DT}^{net}, N_{ST}^{net}, and $\epsilon_{D_s^+\rightarrow\eta(\gamma' \rho^0)^e^+ \nu_e}$ into Eq. (3), we determine the branching fractions for $D_s^+ \rightarrow \eta e^+ \nu_e$, $D_s^+ \rightarrow \eta\pi^+ \pi^- e^+ \nu_e$ and $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$ to be $B(D_s^+ \rightarrow \eta e^+ \nu_e) = (2.30 \pm 0.31)$%, $B(D_s^+ \rightarrow \eta\pi^+ \pi^- e^+ \nu_e) = (1.07 \pm 0.56)$% and $B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e) = (0.88 \pm 0.34)$%, respectively. To average the branching fraction for $D_s^+ \rightarrow \eta e^+ \nu_e$, we use a standard weighted least-squares procedure [4] and determine it to be $B(D_s^+ \rightarrow \eta e^+ \nu_e) = (0.93 \pm 0.30)$%. With the measured branching fractions, we determine the ratio to be $B(D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e) / B(D_s^+ \rightarrow \eta e^+ \nu_e) = 0.40 \pm 0.14$, where the uncertainties are statistical.

VI. SYSTEMATIC UNCERTAINTY

In the measurement of the branching fractions for $D_s^+ \rightarrow \eta(\gamma' \rho^0)^e^+ \nu_e$, many uncertainties on the ST side mostly cancel in the efficiency ratios in Eq. (3). Table IV summarizes the

![Image of a table and graphs]
To estimate the uncertainty in the η or η' reconstruction, including the uncertainty of photon detection efficiency, we analyze a control sample of $\psi(3770) \rightarrow D^0 \bar{D}^0$, where one D^0 meson is tagged by $D^0 \rightarrow K^+\pi^-$ or $D^0 \rightarrow K^+\pi^-\pi^+$, while another D^0 meson is reconstructed in the decay $D^0 \rightarrow K_S^0\eta$ or $D^0 \rightarrow K_S^0\eta'\rightarrow \pi^+\pi^-\eta$ or $\eta(\gamma\gamma)$. The differences in the η or η' reconstruction efficiencies between data and MC are estimated to be 2.3%, 2.5% and 2.8%, which are assigned as the uncertainties in the η or η' reconstruction for $D^+_s \rightarrow \eta(e^+\nu_e)$ and $D_s^+ \rightarrow \eta'(e^+\nu_e)$, respectively.

By examining the double tagged hadronic $D^*\bar{D}$ decays with a control sample of $\psi(4040) \rightarrow D^*\bar{D}$, the difference of the acceptance efficiencies with $E_{\text{extra}}^{\text{max}} < 300$ MeV between data and MC is $(-0.18 \pm 0.33)\%$. We therefore assign 0.5% as the uncertainty in the $E_{\text{extra}}^{\text{max}}$ requirement.

The uncertainty due to the extra charged track and n^0 vetoes is estimated by analyzing the fully reconstructed DT events of $\psi(3770) \rightarrow D^+\bar{D}^-$, where D^- mesons are tagged by nine hadronic decay modes: $K^+\pi^-\pi^-$, $K^+\bar{K}^-\pi^-$, $K_S^0\pi^-$, $K_S^0 K^-$, $K_S^0\pi^+\pi^-\pi^-$, $K_S^0\pi^+\pi^-\pi^-$, $K^+\pi^-\pi^-\pi^-$, $K^+\pi^-\pi^-\pi^-$, while D^+ mesons are reconstructed in the decay $D^+ \rightarrow \eta^\prime\pi^+$. The data-MC difference in the reconstruction efficiencies with and without extra charged track and n^0 veto is assigned as the corresponding systematic uncertainty, which is estimated to be 0.4% (1.4%) for $D_s^+ \rightarrow \eta(e^+\nu_e)$.

The uncertainty in the background estimate is determined by the uncertainties of branching fractions [3] for the processes $D_s^+ \rightarrow \eta\mu^+\nu_e$, $D_s^+ \rightarrow \rho^+\eta'(\eta^\prime\pi^+\pi^-)$ and $D_s^+ \rightarrow \phi\mu^+\nu_e$, which are found to be the main background contributions for $D_s^+ \rightarrow \eta(e^+\nu_e)$, $D_s^+ \rightarrow \eta'(\eta^\prime\pi^+\pi^-) e^+\nu_e$ and $D_s^+ \rightarrow \eta'(\gamma\rho^0) e^+\nu_e$ from analyzing the MC sample. The systematic uncertainties are estimated to be 0.5%, 0.7% and 0.8%, respectively.

The uncertainty in the weighted efficiency estimate is
mainly determined by the weighting factors. Considering the statistical uncertainties of the weighting factors in Table I we propagate them to the uncertainty of the weighted efficiency during the calculation. This uncertainty is estimated to be 0.1% (0.2%) for $D_s^+ \to \eta(\gamma') e^+ \nu_e$.

The uncertainty in the form factor model of D_s^+ is determined by comparing the detection efficiency to that with a simple pole model (POLE, [20]). It is estimated to be 0.6%, 2.8% and 0.9% for $D_s^+ \to \eta e^+ \nu_e$, $D_s^+ \to \eta(\eta^+\pi^-) e^+ \nu_e$ and $D_s^+ \to \eta'(\gamma^0) e^+ \nu_e$, respectively.

The uncertainties in the MC statistics for $D_s^+ \to \eta e^+ \nu_e$, $D_s^+ \to \eta(\eta^+\pi^-) e^+ \nu_e$ and $D_s^+ \to \eta'(\gamma^0) e^+ \nu_e$, which are determined by $\Delta e/\epsilon$, where e is the weighted average efficiency of reconstructing $D_s^+ \to \eta(\gamma') e^+ \nu_e$ and Δe is the statistical uncertainty, are 0.4%, 0.8% and 0.7%, respectively.

The branching fractions for $\eta \to \gamma\gamma$, $\eta' \to \eta\pi^+\pi^-$ and $\eta' \to \gamma\rho^0$ are taken from PDG [4]. Their uncertainties are 0.5%, 1.6% and 1.7%, respectively.

To estimate the uncertainty in the U_{miss} requirement, we examine the change in branching fractions when varying the U_{miss} signal region by ±10 or ±20 MeV. The maximum changes of the branching fractions are assigned as the uncertainties; they are found to be 0.3%, 0.6% and 0.3% for $D_s^+ \to \eta e^+ \nu_e$, $D_s^+ \to \eta(\eta^+\pi^-) e^+ \nu_e$ and $D_s^+ \to \eta'(\gamma^0) e^+ \nu_e$, respectively.

The total systematic uncertainties are obtained to be 3.4%, 5.7% and 5.2% for $D_s^+ \to \eta e^+ \nu_e$, $D_s^+ \to \eta(\eta^+\pi^-) e^+ \nu_e$ and $D_s^+ \to \eta'(\gamma^0) e^+ \nu_e$, respectively, by adding each of the uncertainties in quadrature.

In the measurement of $B(D_s^+ \to \eta(\eta^+\pi^-) e^+ \nu_e)$ and $B(D_s^+ \to \eta'(\gamma^0) e^+ \nu_e)$, the common systematic uncertainties are from the number of the ST D_s^+, the tracking and PID for pion, electron selection, the $E_{\text{extra}}^{\text{max}}$ requirement, extra tracks veto and the weighted efficiency estimate. The other systematic uncertainties are independent. Finally, we assign 5.5% as the total systematic uncertainty for $D_s^+ \to \eta' e^+ \nu_e$.

VII. SUMMARY

In summary, we measure the branching fractions for $D_s^+ \to \eta e^+ \nu_e$ and $D_s^+ \to \eta' e^+ \nu_e$ to be $B(D_s^+ \to \eta e^+ \nu_e) = (2.30 \pm 0.31 \pm 0.08)\%$ and $B(D_s^+ \to \eta' e^+ \nu_e) = (0.93 \pm 0.30 \pm 0.05)\%$, by analyzing the 482 pb$^{-1}$ data collected at $\sqrt{s} = 4.009$ GeV with the BESIII detector at the BEPCII collider with the double tag method, and the ratio between $B(D_s^+ \to \eta e^+ \nu_e)$ and $B(D_s^+ \to \eta' e^+ \nu_e)$ to be $0.40 \pm 0.14 \pm 0.02$, where the first uncertainty is statistical and the second is systematic.

Table IV shows a comparison of the branching fractions for $D_s^+ \to \eta e^+ \nu_e$ and $D_s^+ \to \eta' e^+ \nu_e$, as measured by the BESIII Collaboration (this work), previous measurements [7,8] and the average values from PDG [4]. The branching fractions measured in this work are in good agreement with the previous measurements within uncertainties. The ISGW2 model involves an $\eta - \eta'$ mixing angle close to -10°, which is the minimum value obtained from mass formulas [4] if a quadratic approximation is used. According to Refs. [5,6], the measured ratio is consistent with a pseudoscalar mixing angle of about -18°. Finally, the results improve upon the D_s^+ semileptonic branching ratio precision and provide more information for comprehensively understanding the D_s^+ weak decays.

VIII. ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1532257; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1532258; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of Development for Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0010504, [de-sc0012069]; U.S. National Science Foundation; University of Groningen (RuG) and the Helmoltzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

[1] M. B. Voloshin, Phys. Lett. B 515, 74 (2001).
[2] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 81, 052007 (2010).
[3] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[4] K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[5] V. V. Anisovich, D. V. Bugg, D. I. Melikhov, V. A. Nikonov, Phys. Lett. B 404, 166 (1997).
TABLE V: Comparison of the branching fractions for $D_s^+ \rightarrow \eta e^+\nu_e$ and $D_s^+ \rightarrow \eta' e^+\nu_e$ measured by BESIII Collaboration, the previous measurements [7–9] and the PDG values [4].

	BESIII	Ref. [7]	Ref. [8]	Ref. [9]	PDG [4]
$B(D_s^+ \rightarrow \eta e^+\nu_e)$ [%]	2.30 ± 0.31 ± 0.08	—	2.48 ± 0.29 ± 0.13	2.28 ± 0.14 ± 0.20	2.67 ± 0.29
$B(D_s^+ \rightarrow \eta' e^+\nu_e)$ [%]	0.93 ± 0.30 ± 0.05	—	0.91 ± 0.33 ± 0.05	0.68 ± 0.15 ± 0.06	0.99 ± 0.23
$B(D_s^+ \rightarrow \eta e^+\nu_e)$	0.40 ± 0.14 ± 0.02	0.35 ± 0.09 ± 0.07	—	—	—

[6] C. Di Donato, G. Ricciardi and I.I. Bigi, Phys. Rev. D 85, 013016 (2012).
[7] G. Brandenburg et al. (CLEO Collaboration), Phys. Rev. Lett. 75, 3804 (1995).
[8] J. Yelton et al. (CLEO Collaboration), Phys. Rev. D 80, 052007 (2009).
[9] J. Hietala, D. Cronin-Hennessy, T. Pedlar and I. Shipsey, Phys. Rev. D 92, 012009 (2015).
[10] M. Ablikim et al. (BESIII Collaboration), Chin.Phys.C 39, 093001 (2015).
[11] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
[12] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
[13] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys. Commun. 130, 260 (2000); S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001).
[14] D.J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[15] R. G. Ping et al., Chin. Phys. C 32, 599 (2008).
[16] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[17] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).
[18] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[19] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 112, 022001 (2014).
[20] D. Becirevic and A. B. Kaidalov, Phys. Lett. B 478, 417(2000).