Formation of a Chloride-Conducting State
in the Maltose ATP-Binding Cassette (ABC) Transporter

Michael L. Carlson¹, Huan Bao¹‡, Franck Duong¹*

Running title: Ion conductance through MalFGK₂

¹Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C. V6T1Z3, Canada. ²Present address: Department of Neuroscience, Wisconsin Institute of Medical Research, Madison, Wisconsin, 53705, United States. *Corresponding author. Department of Biochemistry & Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. V6T1Z3, Canada. Tel: 1.604.822.5975; Fax: 1.604.822.522; Email: fduong@mail.ubc.ca

Keywords: Membrane / ATPase / Ion Channel / ABC Transporter / Alternate Access / Lipids

Abstract

ABC transporters use an alternating access mechanism to move substrates across cellular membranes. This mode of transport ensures the selective passage of molecules while preserving membrane impermeability. The crystal structures of MalFGK₂, inward- and outward-facing, show that the transporter is sealed against ions and small molecules. It has yet to be determined whether membrane impermeability is maintained when MalFGK₂ cycles between these two conformations. Through the use of a mutant that resides in intermediate conformations close to the transition state, we demonstrate that not only is chloride conductance occurring, but also to a degree large enough to compromise cell viability. Introduction of mutations in the periplasmic gate lead to the formation of a channel that is quasi-permanently open. MalFGK₂ must therefore stay away from these ion-conducting conformations in order to preserve the membrane barrier; otherwise, a few mutations that increase access to the ion-conducting states are enough to convert an ABC transporter into a channel.

Introduction

Most membrane transporters facilitate the movement of substrate molecules using an alternating access mechanism (1–5). This conserved mode of transport corresponds to a cycle of conformational changes coupled to the movement of gating elements or rigid-body structures on either side of the membrane (5–7). This movement results in the alternate exposure of the substrate-binding site to the extracellular and intracellular environments (2,6). Intermediate states, which normally occur only transiently during transport, lie between the inward- and outward-facing conformations (8,9).

The alternating access mechanism ensures that the free flow of ions and water molecules is restricted during transport (1,10). Accordingly, since only one gate is open at a given time, the transporter is switching conformations without ever producing a membrane channel (8). Space-filling models derived from the crystal structures of inward- and outward-facing transporters indicate that the gates are sufficiently tight to prevent the passage of ions and water molecules (2,7,11). However, crystal structures represent static conformations, it is therefore unknown if the dynamics of the gates, especially during conformational transitions, is coordinated enough
Ion conductance through MalFGK₂

to prevent the passage of ions and water molecules.

A recent molecular dynamics simulation on various alternating access transporters reported that water passage might be possible through short-lived intermediates states (9). It was proposed that these water-conducting states are inherent characteristic to the alternating access mechanism. Water conductance has also been reported in the family of ion co-transporter (12-14). In the ABC transporter family, with the exception of CFTR (15), there is however no such evidence. This may be due to the highly transient nature of the intermediate states, which makes detection inherently difficult (9).

In this study, we utilize the MalFGK₂ transporter to explore the gating mechanism. The substrate translocation pathway is comprised of two membrane proteins, MalF and MalG. The nucleotide-binding domain, which controls the conformation of MalFG, is composed of the homodimeric MalK subunit. Transport also requires the periplasmic binding protein MalE to traffic maltose to the transporter and to stimulate its ATPase activity (16-18). In this study, to facilitate the detection of ion conduction, we employed the mutant transporter MalF500 (19,20). This mutant hydrolyzes large amounts of ATP independent from MalE and maltose. This high ATPase activity is because the mutant rests in intermediate conformations near the transition state (20-22). Our results demonstrate that MalF500 forms an ion conducting channel which, when overproduced, is deleterious to the cell. In contrast, wild type MalFGK₂ rests in the inward-facing conformation which is impermeable to ions.

Experimental procedures

Reagents

The detergent n-dodecyl-β-D-maltoside (DDM) was purchased from Anatrace. The lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-1'-rac-glycerol (DOPG) and E. coli polar lipid extract were purchased from Avanti Polar Lipids. Superdex 200 10/300 GL, Resource 15Q, and Ni²⁺-NTA chelating Sepharose columns were obtained from GE Healthcare. All other chemicals were obtained from Sigma. Proteins MalE and MalFGK₂ were purified as previously described (23), using plasmids pBAD33-MalE, pTrc-MalFGK₂ and pBAD22-MalFGK₂. Cysteine mutations were introduced into MalF (position A394 and V442) and MalG (position V230 and T182) using plasmid pTrc-MalFGK₂ as template. Glycine mutations were introduced into MalF (V442) and MalG (V230, T228) using plasmid pBAD22-MalFGK₂. Mutations were introduced through polymerase incomplete primer extension (24) and verified by sequencing. The plasmids encoding for the SecYEG translocation channel (pBAD22-SecEYG) with deletions in the plug domain (pBAD22-SecEYGΔ61-70G) were previously described (25).

Cysteine Cross-linking

Cross-linking reactions were performed in buffer A (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10% glycerol, 5 mM MgCl₂, 0.02% DDM) for 6 min at 37°C using 5 µM MalFGK₂ and 100 µM copper-o-phenanthroline (CuPhe₃). Reactions were stopped with N-ethylmaleimide (5 mM) before analysis by 15% SDS-PAGE. The MalFGK₂ complex carrying the cysteine mutations on the periplasmic gate (MalF₃₉₄C-MalG₉₂₃₃C) was reduced with 4mM DTE and dialyzed in buffer A plus 40µM DTE before cross-linking assays.

Incorporation of proteins into proteoliposomes

Total E. coli lipids dissolved in chloroform were dried under a stream of nitrogen. The lipids were resuspended in TSG buffer (50 mM Tris-HCl, pH 7.8, 100 mM NaCl, 10% glycerol) containing 0.5% DDM. The lipids were mixed with the purified MalFGK₂ complex at protein: lipid ratio of 1:2000 in TSG buffer plus 0.1% DDM. Detergent was removed using BioBeads (one-half volume) and gentle shaking overnight at 4°C. Proteoliposomes were isolated by centrifugation (100,000 × g, 1h, 4°C) and resuspended in TSG buffer at a final concentration of 3µM MalFGK₂. For incorporation of ergosterol into proteoliposomes, a mixture of DOPC:DOPG:ergosterol (ratio 60:20:20) was dissolved in chloroform, air dried, and resuspended in S buffer (50mM HEPES pH 7.4, NaCl 150mM, 0.5% DDM) before addition of MalFGK₂. To incorporate nystatin, proteoliposomes were first
frozen in liquid N\textsubscript{2} after which they were thawed on ice in the presence of nystatin (75μg/mL) and then briefly sonicated (15 sec, three times) (26).

Spheroplast membrane permeability assays

E.coli strain KM9 (*unc-*) was transformed with pBAD-MalFGK\textsubscript{2} or pBAD-SecEYG. Cells were grown in LB medium to OD\textsubscript{600} ~0.4 before induction with 0.2% arabinose. Cells were harvested 60 min after induction (3000 x g, 10 min), washed with 1 volume of 5% sucrose buffer (20mM Tris-SO\textsubscript{4} pH 7.8) and resuspended in 1/20 cell culture volume of 18% sucrose buffer. Cells were converted to spheroplasts by addition of 0.1mg/mL lysozyme and 2 mM EDTA for 10 min on ice. Conversion to spheroplasts was considered complete when cell lysis was total and immediate upon dilution into water. To measure membrane permeability, spheroplasts were diluted 20-fold in 500 µl of buffer L (293mM KCl, 20mM Tris-SO\textsubscript{4} pH 7.8) in the presence or absence of valinomycin (5μM). Cell lysis was measured every 5 seconds at 540nm. Tips with a large diameter were employed at all time to prevent pressure-induced lysis during pipetting.

Planar Lipid Bilayer experiments

The electrical currents were recorded on a Planar Lipid Bilayer Workstation (BLM; Warner instruments) composed of a Digidata 1440 Low-noise Data Acquisition System and a BC-535 Bilayer Clamp amplifier. Unless otherwise stated, the recorded data were sampled at 1kHz. The lipid bilayers were painted across a 150 μm hole aperture using a flame smoothed glass applicator stick dipped into a mixture of DOPC:DOPG (ratio 70:30 at 15 mg/mL) in hexadecane. Lipid bilayers were considered ready for protein insertion when their capacitance reached 70-90 pFa. The chambers on the cis-side and trans-side of the bilayer were adjusted to 650 mM KCl and 150 mM KCl, respectively. The two chambers were connected to Ag/AgCl\textsubscript{2} electrodes using an agarose salt bridge (2% agarose in 1M KCl). The electrical current across the lipid bilayer was stable for at least 10 min before addition of proteoliposomes in the cis-chamber. Fusion of the proteoliposomes to the lipid bilayer was facilitated using a stirring magnet. The bilayers containing channel activity were sometimes broken but could be repainted from the cis-chamber. All bilayer measurements were performed at room temperature. Data were recorded and analyzed using the Axoclamp pClamp software suite, version 10.2.

Other methods

The ATPase activity of the maltose transporter was determined by measuring the release of inorganic phosphate using the malachite green photolorimetric method (27). Protein concentrations were determined using the Bradford assay (28).

Results

MalF500 can readily access the transition state

In the absence of nucleotide, the conformation of the maltose transporter is inward-facing (6,18). The transporter becomes outward-facing upon binding of ATP (29). Its basal ATPase activity is also stimulated by MalE and maltose. In contrast, the ATPase activity of MalF500 (bearing mutations MalF\textsubscript{N505I} and MalG\textsubscript{G338R}) is very high and independent of MalE and maltose (19,20,30). It is proposed that mutations in MalF500 destabilize the inward-facing state, thereby diminishing the energy barrier of the transition state (6). To assess the conformation of MalF500, we performed a crosslinking analysis using the cysteine pairs MalF\textsubscript{442C}-MalG\textsubscript{230C} and MalF\textsubscript{394C}-MalG\textsubscript{182C} (18,29). The cysteine pair MalF\textsubscript{442C}-MalG\textsubscript{230C} reports on the inward-facing conformation of the transporter (Fig. 1a). Without ATP, wild type MalFGK\textsubscript{2} is inward-facing and the crosslink efficiency is maximal (taken as 100%; Fig 1b; upper panel). In the presence of ATP, MalFGK\textsubscript{2} converts to outward-facing and the crosslink efficiency diminishes to ~43%. The same analysis shows that MalF500 does not depend on ATP because its conformation remains essentially unchanged. Also, the maximal crosslink efficiency is 4-fold lower than the wild type (i.e. ~20-25%). Thus, MalF500 is resting in a conformation different than inward-facing. We next employed the cysteine pair MalF\textsubscript{394C}-MalG\textsubscript{182C}, which reports on the outward-facing state of the transporter (Fig...
Ion conductance through MalFGK₂

1a). With MalFGK₂, the crosslink efficiency is low because the transporter is inward-facing (Fig 1b; lower panel). In the presence of ATP, the crosslink efficiency increases up to ~84% because the transporter becomes outward-facing. In contrast, the crosslink efficiency with MalF500 is maximal and this conformational change is independent from ATP. Together, these data show that i) MalF500 rests in a conformation away from the resting state and ii) MalF500 reaches the outward-facing conformation independent from ATP. Thus, MalF500 access spontaneously the transition state and hydrolyze larger amounts of ATP in the absence of MalE and maltose.

MalF500 is deleterious to the cell

Overproduction of MalF500 in the membrane results in a significant growth delay (Fig. 2a). This may be caused by the high basal ATPase activity of MalF500. It is also possible that the inherent conformational flexibility of MalF500 may increase membrane permeability and compromise cell viability. In an attempt to differentiate the possibilities, we introduced the mutation E159Q into the Walker A motif of MalK (30). This mutation almost fully abolishes ATP hydrolysis (Fig. 2b), yet the growth of MalF500_E159Q is still impaired compared to the wild type (Fig. 2a). We then introduced a his-six tag at the N-terminus of MalF. The his-tag decreases the ATPase activity of the wild-type complex through stabilization of the inward facing conformation (18). Addition of the his-six tag on MalF500 reduces its ATPase activity to wild type levels (Fig. 2b), yet the mutant still displays a significant growth defect. These results suggest that the conformation of MalF500, not just its high basal ATPase activity, is detrimental to the cell.

MalF500 is permeable to chloride

We employed a spheroplast lysis assay to determine whether MalF500 affects cell membrane permeability. This method has been developed to study the ion conductance of the SecYEG protein translocation channel (31). Briefly, spheroplasts were diluted into an iso-osmotic solution of KCl in the presence of the K⁺ ionophore, valinomycin. If the membrane is permeable to Cl⁻, the spheroplasts swell and eventually lyse due to the rapid influx of water. As expected, a low degree of lysis was observed in the absence of valinomycin (Fig. 3a).

In the presence of valinomycin, spheroplasts containing the MalF500 complex lysed immediately (Fig. 3b, red trace). The initial lysis rate is very high, more than 7-fold higher than spheroplasts containing wild type MalFGK₂ complex and near half of spheroplasts containing the SecYEG channel with an altered plug domain (SecEY₆₁₋₇₀G; purple trace). When the experiment is performed with the mutant MalF500_his6, the rate of lysis is diminished by ~50% (Fig. 3b, orange trace). This is consistent with the observation above that a his-six tag at the N-terminus of MalF only partially restores cell viability.

Ion channel activity of MalF500

The MalF500 complex was purified and incorporated into planar lipid bilayers in order to determine its ion conductance properties (Fig. 4a). The data show that MalF500 has a channel-like activity, and distinct single channel opening and closing events can be resolved. Quantitative analysis of the recordings (Fig. 4b and Fig. 4c) further show that (i) MalF500 creates a membrane channel that is voltage insensitive given the linear voltage-current relationship; (ii) is anion selective, with a reversal potential (~38mV) that is close to the calculated Nernst potential for chloride (~37mV); and (iii) has rapid gating kinetics, with an average dwell time for the opening state of only ~2-20mS. Such quick opening and closing kinetics suggests that the transporter is conformationally flexible. This is in contrast to wild type MalFGK₂ which, throughout the experiment, remained stably closed (Fig. 4a). Although bilayers often contained more than one channel, single channel opening events were easily identified and were used to calculate the ion conductance of MalF500. The histogram of current amplitudes and conductance magnitude were plotted as a current-voltage curve; the slope representing the single channel conductance in pS (Fig. 4c).

The periplasmic gate seals Mal500

The resting maltose transporter (i.e. inward-facing) is sealed by gating loops on the periplasmic side on the membrane (6). The amino acyl side chain MalF_v442, MalG_t228 and MalG_v230...
Ion conductance through MalFGK₂

form this interface (Fig. 5a). These residues were replaced by the short chain amino acid glycine. According to the space-filling model (Fig. 5a), such mutations produce a wide-open pore in lieu of the gate. Surprisingly, results from the cell growth (Fig. 5b), ATPase activity (Fig. 5c), and cell membrane permeability assays (Fig. 5d) reveal that MalFGK₂ GG behaves much like the wild type. The glycine residues were then introduced into MalF500 to produce the mutant MalF500 GG. In this case, we observed an immediate and strong growth defect upon protein production (Fig. 5b) together with a dramatic increase in cell membrane permeability (Fig. 5d). We note that the ATPase activity of MalF500 GG is ~ 4-fold lesser than MalF500 (Fig. 5c), suggesting that ATP consumption is not the primary reason for the higher growth defect of MalF500 GG. Apparently, the nature of the gating residues is particularly important when the transporter rests in a conformation near to the transition state.

MalF500 GG forms a quasi-permanently open membrane channel.

The mutant MalF500 GG was purified and inserted into planar lipid bilayers (Fig. 6a). In contrast to MalF500, which is equally distributed between open and closed states, MalF500 GG behaves like an open-state channel (Fig. 6b). The recordings (Fig. 6a) show that the frequency of a gating event is very slow (every ~1-2 sec, compared ~20 msec for to MalF500). This increased open pore duration is consistent with both the dramatic increase in cell membrane permeability (Fig. 5d) and the very strong effect on bacterial growth (Fig. 5b). Single channel recordings could not be captured with the MalF500 GG mutant; however, isolated closing events could be detected in bilayers containing multiple copies of the mutant (Fig. 6a). The rate of these closing events was such that only one channel out of ~ 25 was observed closing at a time.

Discussion

The two major conformational states of the maltose transporter, inward-facing and outward-facing, appear sealed against ions and water molecules (6,9,32). Yet, whether the impermeability is maintained when the transporter cycles between these two states is unknown. These intermediate conformations are structurally difficult to characterize and, in the case of MalF500, also difficult to crystallize (19). Recent computer simulations suggest that water molecules can permeate through the substrate passageway when the transporter pass through intermediate conformations; however the pore is very narrow and it is open for only a few nanoseconds (9).

Here, we have augmented access to the intermediate conformations using the mutant MalF500, which carries the mutations MalFG₁₃₃₉R and MalFG₅₅₀₅I. These mutations destabilize the inward-facing conformation, thereby decreasing the energy barrier for the transition (6,20,22). As a result, the MalF500 mutant is capable of spontaneously adopting the outward-facing conformation independently of ATP (Fig. 1). Through the use of this mutant, we show that increased access to the intermediate conformations allows for a significant degree of ion conduction (Fig. 4). The currents measured are high (10⁷ ions/sec), indicative of a movement of ions through a channel-like structure (12,33). In addition, the frequency of channel closing and opening is very fast: every few milliseconds. This rapid cycling is consistent with the decreased energy barrier between the inward- and outward-facing conformations, and with the exceptional ability of this mutant to hydrolyze a large amount of ATP. The results also show mutations in MalF500 that stabilize its conformation, and therefore diminish its basal ATP activity, also diminish ion conduction (Fig. 3). Interestingly, the conductance and spheroplast assays indicate that MalF500 is selective for Cl⁻ over K⁺, although there is no obvious structural characteristic in MalFGK₂ to explain this selectivity. Notwithstanding, our data show that MalFGK₂ must rest away from the conformations adopted by MalF500 in order to preserve the membrane barrier. This membrane barrier is particularly important in bacteria as ion gradients represent a main energy source (34). It is therefore not surprising that overproduction of MalF500, and especially MalF500 GG, results in a significant bacterial growth defect (Fig. 5b). This growth defect may reflect the energetic cost associated with the use of counter-acting pumps required to compensate for the leakage of chloride ions.
Ion conductance through MalFGK$_2$

The periplasmic gate on MalFGK$_2$ is formed at the interface of four α-helices (6). Surprisingly, we find that alteration of this interface (i.e. introduction of the mutation MalF$_{V442G}$, MalG$_{T228G}$, and MalG$_{V230G}$) does not alter the function of the gate: the mutant is viable and we do not detect increased ion conductance (Fig. 5d). This result was rather unexpected since a space-filling computer model suggests that the glycine residues leave an open pore over the transport pathway (Fig. 5a). It is therefore possible that an energetic pressure is forcing the mutated gate structure to adopt a conformation that re-creates this essential membrane seal. This phenomenon has been reported in the case of the SecYEG translocon after the deletion of the plug domain (35). In contrast, introduction of the glycine residues into MalF500 leads to a quasi-permanently open pore (Fig. 6). The residues forming the periplasmic gate are therefore critical when the transporter rests in a conformation close to the transition state.

Active transporters and ion channels function by different mechanisms (10), yet our results show that the maltose transporter can acquire a channel-like activity after just a few pertinently located mutations. In the case of CFTR, it is proposed that the stabilization of an intermediate conformation is at the origin of the conversion of this transporter into a chloride channel (36). Specifically, comparisons made with the closely related ABCA4 transporter suggest that the mutation of a salt bridge positioned far away from the gate region might have been crucial for conversion of the ancestral transporter into a channel-like state. After this initial conformational shift, the modern pore and gate regions in CFTR were acquired through additional mutations (36). Consistent with this hypothesis, our results reveal that a simple disruption to the gate region, as in the case of MalFGK$_{GGG}$, does not suffice to create an ion channel. It is rather the mutations that promote access of the transporter to intermediate conformations, like in MalF500, that are responsible for the ion channel activity.

Acknowledgments
We thank Filip Van Petegem for access to the planar bilayer workstation, and members of our laboratory for critical reading of the manuscript. This work is supported with operating grants from the CIHR. MC is a recipient of a CDMC NSERC CREATE scholarship.

Conflict of interest
The authors declare that they have no conflicts of interest with the contents of this article

Author contributions
MC, HB and FD conceived the study. MC designed, performed and analyzed the experiments. MC and FD wrote the paper. All authors analyzed the results and approved the final version of the manuscript.

References
1. Jardetzky, O. (1966) Simple allosteric model for membrane pumps. *Nature*. **211**, 969–970
2. Beek, J. ter, Guskov, A., and Slotboom, D. J. (2014) Structural diversity of ABC transporters. *J. Gen. Physiol.* **143**, 419–435
3. van der Does, C., and Tampé, R. (2004) How do ABC transporters drive transport? *Biol. Chem.* **385**, 927–933
Ion conductance through MalFGK2

4. Slotboom, D. J. (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. *Nat. Rev. Microbiol.* 12, 79–87

5. Li, J., Wen, P.-C., Moradi, M., and Tajkhorshid, E. (2015) Computational characterization of structural dynamics underlying function in active membrane transporters. *Curr. Opin. Struct. Biol.* 31, 96–105

6. Khare, D., Oldham, M. L., Orelle, C., Davidson, A. L., and Chen, J. (2009) Alternating access in maltose transporter mediated by rigid-body rotations. *Mol. Cell.* 33, 528–536

7. Krishnamurthy, H., Piscitelli, C. L., and Gouaux, E. (2009) Unlocking the molecular secrets of sodium-coupled transporters. *Nature.* 459, 347–355

8. Forrest, L. R., and Rudnick, G. (2009) The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters. *Physiology.* 24, 377–386

9. Li, J., Shaikh, S. A., Enkavi, G., Wen, P.-C., Huang, Z., and Tajkhorshid, E. (2013) Transient formation of water-conducting states in membrane transporters. *Proc. Natl. Acad. Sci.* 110, 7696–7701

10. Gadsby, D. C. (2009) Ion channels versus ion pumps: the principal difference, in principle. *Nat. Rev. Mol. Cell Biol.* 10, 344–352

11. Kaback, H. R., Dunten, R., Frillingos, S., Venkatesan, P., Kwaw, I., Zhang, W., and Ermolova, N. (2007) Site-directed alkylation and the alternating access model for LacY. *Proc. Natl. Acad. Sci. U. S. A.* 104, 491–494

12. DeFelice, L. J., and Goswami, T. (2007) Transporters as channels. *Annu. Rev. Physiol.* 69, 87–112

13. MacAulay, N., Gether, U., Klaerke, D. a., and Zeuthen, T. (2002) Passive water and urea permeability of a human Na+/glutamate cotransporter expressed in Xenopus oocytes. *J. Physiol.* 542, 817–828

14. Duquette, P., Bissonnette, P., and Lapointe, J. (2001) Local osmotic gradients drive the water flux associated with Na+/glucose cotransport. *Proc. Natl. Acad. Sci.* 98, 3796–3801

15. Chen, T.-Y., and Hwang, T.-C. (2008) CLC-0 and CFTR: chloride channels evolved from transporters. *Physiol. Rev.* 88, 351–87

16. Davidson, A. L., Dassa, E., Orelle, C., and Chen, J. (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. *Microbiol. Mol. Biol. Rev.* 72, 317–364

17. Wen, P.-C., and Tajkhorshid, E. (2011) Conformational Coupling of the Nucleotide-Binding and the Transmembrane Domains in ABC Transporters. *Biophys. J.* 101, 680–690

18. Bao, H., and Duong, F. (2014) Nucleotide-free MalK drives the transition of the maltose transporter to the inward-facing conformation. *J. Biol. Chem.* 289, 9844–9851

19. Davidson, A. L. (2002) Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. *J. Bacteriol.* 184, 1225–1233

20. Bao, H., Dalal, K., Wang, V., Rouiller, I., and Duong, F. (2013) The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity. *Biochim. Biophys. Acta.* 1828, 1723–1730

21. Davidson, A. L., Shuman, H. A., and Nikaido, H. (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. *Proc. Natl. Acad. Sci. U. S. A.* 89, 2360–2364

22. Daus, M. L., Grote, M., and Schneider, E. (2009) The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle. *J. Bacteriol.* 191,
Ion conductance through MalFGK₂

754–761

23. Bao, H., and Duong, F. (2012) Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2. *PLoS One*. 7, e34836

24. Klock, H. E., and Lesley, S. A. (2009) High Throughput Protein Expression and Purification (Doyle, S. A. ed), pp. 91–103, Methods in Molecular Biology, Humana Press, Totowa, NJ, 498, 91–103

25. Maillard, A. P., Lalani, S., Silva, F., Belin, D., and Duong, F. (2007) Deregulation of the SecYEG translocation channel upon removal of the plug domain. *J. Biol. Chem*. 282, 1281–1287

26. Woodbury, D. J., and Miller, C. (1990) Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. *Biophys. J*. 58, 833–839

27. Lanzetta, P. a., Alvarez, L. J., Reinach, P. S., and Candia, O. a. (1979) An improved assay for nanomole amounts of inorganic phosphate. *Anal. Biochem*. 100, 95–97

28. Bradford, M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. *Anal. Biochem*. 72, 248–254

29. Bao, H., and Duong, F. (2013) ATP alone triggers the outward facing conformation of the maltose ATP-binding cassette transporter. *J. Biol. Chem*. 288, 3439–3448

30. Covitz, K. M., Panagiotidis, C. H., Hor, L. I., Reyes, M., Treptow, N. A., and Shuman, H. A. (1994) Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. *EMBO J*. 13, 1752–1759

31. Park, E., and Rapoport, T. A. (2011) Preserving the membrane barrier for small molecules during bacterial protein translocation. *Nature*. 473, 239–242

32. Oldham, M. L., Khare, D., Quiocio, F. a, Davidson, A. L., and Chen, J. (2007) Crystal structure of a catalytic intermediate of the maltose transporter. *Nature*. 450, 515–521

33. Jayaram, H., Accardi, A., Wu, F., Williams, C., and Miller, C. (2008) Ion permeation through a Cl⁻ selective channel designed from a CLC Cl⁻/H⁺ exchanger. *Proc. Natl. Acad. Sci*. 105, 111940–11199

34. Maloney, Peter C. E. R., Kashket, T. Hastings, Wilson, . (1974) A Protonmotive Force Drives ATP Synthesis in Bacteria. *Proc. Natl. Acad. Sci*. 71, 3896–3900

35. Li, W., Schulman, S., Boyd, D., Erlandson, K., Beckwith, J., and Rapoport, T. a (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. *Mol. Cell*. 26, 511–521

36. Jordan, I., and Kota, K. (2008) Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. *Proc. Natl. Acad. Sci*. 105, 18865–18870
Ion conductance through MalFGK₂

Figure Legends

Figure 1. Conformation of MalF500

(a) The disulfide bond between MalFᵥ₄₄₂C and MalGᵥ₂₃₀C (stars) indicate that the transporter is inward-facing. The disulfide bond between MalFₐ₃₉₄C and MalGₜ₁₈₂C indicates that the transporter is outward-facing.

(b) The MalFGK₂ complex in proteoliposome (4.5 µM) was treated with CuPhe₃ (100 µM), with or without ATP (2 mM), followed by addition of NEM (5 mM) at the indicated time. The MalF-MalG crosslink products were detected by SDS-PAGE (15%) and Coomassie blue staining. The crosslink intensity was quantified using Image J. The crosslink efficiency of MalFGK₂ (V230C-V442C) without ATP is taken as reference point (100%) in the upper panel. The crosslink efficiency of MalF500 (T182C-A394C) with ATP is taken as reference point (100%) in the lower panel. Each crosslink experiment was repeated at least 3 times.

Figure 2. Activity of MalF500

(a) Effect of MalF500 on cell growth. E. coli BL21 was transformed with pBAD22-derived plasmids containing the MalFGK₂ complex under control of the arabinose promoter. Cell were grown in LB media to OD₆₀₀nm ~ 1.0, serial diluted and plated on LB-agar plate in the presence of 0.02% arabinose to induce expression of the MalFGK₂ complex. Plates were incubated at 37°C for 16 h.

(b) ATPase activity. Proteoliposomes (0.5 µM) and maltose (1 mM) were incubated at 37°C in the presence or absence of MalE (1 µM) as indicated. Standard deviation was obtained from three separate experiments. ND: not detected.

Figure 3. Permeability of MalF500 in spheroplast assays

E. coli KM9 (unc-) overproducing the indicated complex was converted to spheroplasts, and then diluted into an iso-osmotic solution of KCl (293 mM) in the absence (a) or presence (b) of valinomycin (15 µM). Cell lysis was monitored every 5 seconds at 540nm. The rate of lysis is determined from the linear part of the curve (i.e. first 30 sec after dilution in KCl).

Figure 4. Ion channel activity of MalF500 in planar lipid bilayers

(a) The electrical currents were recorded across a planar lipid bilayer (70% DOPC, 30% DOPG) at a holding membrane potential of +50mV. Current traces were filtered at 500Hz. The traces for the wild type MalFGK₂ were recorded after >15 fusion events using nystatin/ergosterol as a reporter system indicating protein delivery.
Ion conductance through MalFGK$_2$

(b) Histogram of current amplitudes. The number of channel events obtained at +50mV was determined using the Clampfit analysis program and the single channel search function. The currents were plotted as a function of their intensity.

(c) Current-voltage curve for MalF500. Current amplitudes (pA) were plotted according to the applied holding voltage (mV). The slope of the curve represents the channel conductance in pS. The reversal potential is -38mV as indicated by the x-intercept of the curve.

Figure 5. The periplasmic gate seals MalF500

(a) The three gating residues (red, MalF$_{V442}$, MalG$_{T228}$ and MalG$_{V230}$) forming the periplasmic gate on MalF (yellow) and MalG (pink) were mutated to glycine residues. The space filling representation was created with Pymol using the inward-facing crystal structure of MalFGK$_2$ (PDB accession code 3FH6).

(b) Growth curve of E. coli overproducing the indicated complex. Cells were grown in LB liquid media at 37°C for 150 min before induction with 0.2% arabinose.

(c) ATPase activity. Proteoliposomes containing the indicated mutant complex (0.5 µM) were incubated with maltose (1 mM) at 37°C with or without MalE (1 µM) as indicated. Standard deviation was obtained from three separate experiments.

(d) Spheroplast assays. Spheroplasts were diluted into an iso-osmotic solution of KCl in the presence or absence of valinomycin (15 µM). Cell lysis was monitored every 5 seconds at 540nm.

Figure 6. Ion channel activity of MalF500$_{GGG}$

(a) Typical electrical currents. Traces were obtained at a holding potential of -50mV.

(b) All point histogram of current amplitudes. The number of channels present in the MalF500$_{GGG}$ bilayer (\approx25 channels incorporated, -250pA) results in a higher total current amplitude than observed for MalF500 (\approx3 channels incorporated, -15pA). For MalF500$_{GGG}$ the observed channels are predominantly open, therefore concurrent closing events are rare and the all-point histogram shows only two current distributions despite the presence of multiple channels. The number of channels incorporated is determined by dividing the maximum observed current by the amplitude of one opening event as observed in the traces represented in (a).
Figure 1

a)

![Diagram of inward-facing and outward-facing conformations of MalF and MalG](image)

- **Periplasm**
- **Cytoplasm**
- **Inward-facing**
- **Outward-facing**

b)

Time (min)	Cross-link (%)	ATP	MalF-MalG	MalF	MalK
0	52	-			
5	68	-			
10	100	-			
0	56	-			
5	48	-			
10	43	-			
0	5	-			
5	21	-			
10	27	-			
0	5	+			
5	23	+			
10	15	+			

MalFGKwt	MalF500

MalFv442C-MalGv230C

Time (min)	Cross-link (%)	ATP	MalF-MalG	MalF	MalK
0	ND	-			
3	18	-			
6	29	-			
0	1	-			
3	81	+			
6	84	+			
0	6	-			
3	83	-			
6	100	+			

MalFGKwt	MalF500

MalFA394C-MalGT182C

Time (min)	Cross-link (%)	ATP	MalF-MalG	MalF	MalK
0	ND	-			
3	6	-			
6	91	-			
0	6	+			
3	83	+			
6	100	+			

MalFGKwt	MalF500
Figure 2

(a) Dilution:

- Arabinose

- MalFGK_{wt}
- MalF500
- MalF500_{H6}
- MalF500_{E159Q}

+ Arabinose

(b) ATPase (nmol/min/mg)

- MalF500
- MalFGK_{wt}
- MalF500_{E159Q}
- MalF500_{H6}
Figure 4

(a)
MalFGK_{wt}

(b)
MalF500

(c)

$g = 53.6 \pm 0.4 \text{ pS}$
Figure 5

(a) Relative turbidity

(b) Turbidity (OD600nm) over time (min) for different strains:
- MalFGK_{wt}
- MalFGK_{GGG}
- MalF500
- MalF500_{GGG}

(c) ATPase activity (nmol Pi/mg/min) for different strains:
- MalF500
- MalF500_{GGG}
- MalFGK_{GGG}
- MalFGK_{wt}

(d) Relative turbidity (OD540nm) over time (s) for different conditions:
- Valinomycin
- + Valinomycin
Figure 6

a) MalF500

-50mV
Open
Closed

4pA
100ms

MalF500

-50mV
Open
Closed

10pA
1s

b) MalF500

MalF500_{GGG}

Event distribution (%)

Event distribution (%)

I (pA)

I (pA)
