First draft genome for the sand-hopper *Trinorchestia longiramus*

Ajit Kumar Patra\(^1\), Oksung Chung\(^2\), Ji Yong Yoo\(^3\), Min Seop Kim\(^3\), Moon Geun Yoon\(^3\), Jeong-Hyeon Choi\(^3\) & Youngik Yang\(^3\)✉

Crustacean amphipods are important trophic links between primary producers and higher consumers. Although most amphipods occur in or around aquatic environments, the family Talitridae is the only family found in terrestrial and semi-terrestrial habitats. The sand-hopper *Trinorchestia longiramus* is a talitrid species often found in the sandy beaches of South Korea. In this study, we present the first draft genome assembly and annotation of this species. We generated ~380.3 Gb of sequencing data assembled in a 0.89 Gb draft genome. Annotation analysis estimated 26,080 protein-coding genes, with 89.9% genome completeness. Comparison with other amphipods showed that *T. longiramus* has 327 unique orthologous gene clusters, many of which are expanded gene families responsible for cellular transport of toxic substances, homeostatic processes, and ionic and osmotic stress tolerance. This first talitrid genome will be useful for further understanding the mechanisms of adaptation in terrestrial environments, the effects of heavy metal toxicity, as well as for studies of comparative genomic variation across amphipods.

Background & Summary

Amphipoda is an order of malacostracan crustaceans, composed of more than 228 families with over 10,200 species\(^7\). Most members of Amphipoda are found in aquatic environments, with both freshwater and marine species that occur in diverse habitats\(^8\). However, only a few amphipods in the family Talitridae are found in terrestrial regions close to the water, and others are “semi-terrestrial,” with both littoral and terrestrial representatives\(^7\).

Talitrids are one of the prevailing macrofaunal groups in coastal regions that live along the interface between the water and land. The coastal talitrids, also known as “sand-hoppers,” are considered key species for energy flow to higher trophic levels\(^8\). They play a crucial role in food web dynamics by feeding on algal-biomass\(^8\) and detritus along sandy beaches. They then become the source of food for many invertebrates, fish, and birds\(^8\). Unfortunately, anthropogenic activity contributes to various types of pollutants in the coastal ecosystem, which impacts the survival of talitrids\(^10\)–\(^12\) and other macrofauna\(^13\)–\(^15\). For this reason, many talitrids are used as model organisms for studies of metal toxicity\(^10\)–\(^12\). In addition, previous work on talitrids examined levels of genetic variation\(^16\),\(^17\), behavioral adaptations\(^18\), osmoregulation\(^19\), and orientation studies\(^20\). Most of these studies were carried out along the North Sea and the Mediterranean Sea regions.

Despite such biological and ecological significance, no genome studies have been performed on any talitrid species, and only three genomes have been studied among the entire amphipod order. These included (1) *Eulimnogammarus verrucosus* (Family: Eulimnogammaridae)\(^21\), a freshwater amphipod from Baikal Lake; (2) *Hyalella azteca* (Family: Hyalellidae)\(^22\), another freshwater amphipod that lives by burrowing in the sediments; and (3) *Parhyale hawaiensis* (Family: Hyalidae)\(^23\). *Trinorchestia longiramus* Jo, 1988\(^24\) is in the family Talitridae and is highly abundant in sandy beaches of South Korea\(^24\)–\(^26\) and Japan\(^27\). Because of its widespread range, simplicity to rear in the laboratory, and relatively small genome size, *T. longiramus* can be a useful model organism for developmental biology, ecology, evolution, and studies of metal bioaccumulation.

In this study, we present the first draft genome of *T. longiramus* using high-throughput sequencing. We isolated genomic DNA from whole tissues, constructed two paired-end (PE) and four mate pair (MP) libraries, which were then sequenced with the Illumina HiSeq. 2500 platform. The estimated genome size of *T. longiramus* is ~1.116 Gb. The draft genome was assembled into 30,897 scaffolds (N50 = 120.57 kb), with a total size of 0.89 Gb, which corresponds to approximately 79.43% of the estimated genome size. Structural annotation of the genome yielded 26,080 genes. BUSCO analysis revealed gene space completeness of 89.9%. Of the total genes predicted, 14,959 genes were functionally annotated with InterProScan\(^28\). The lineage containing *T. longiramus* reveals gene

\(^1\)Ewha Womans University, Seoul, 03760, South Korea. \(^2\)Clinomics Inc., Ulsan, 44919, South Korea. \(^3\)National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea. \(^\text{✉}\)e-mail: yiy@mabik.re.kr
expansion of particular gene families, including those related to response to stress, homeostatic process, trans-
membrane transport, and signal transduction. A phylogenetic analysis with related amphipod and arthropod
species suggests that T. longiramus diverged from the H. azteca during the Late Cenozoic era. This first talitrid
genome will be useful for further understanding the mechanisms of adaptation in terrestrial environments, the
effects of heavy metal toxicity, as well as for studies of comparative genomic variation across amphipods.

Methods

Sample collection and extraction of DNA and RNA. T. longiramus samples were collected from the
coast (37°41′29″N, 129°2′2.7″E) of South Korea. They were captured by hand from exposed and sheltered sandy
beaches. Samples were preserved immediately in 95% ethanol for genome sequencing and stored in liquid nitro-
gen for RNA extraction.

DNA was extracted from a pool of seven individuals using a conventional phenol-chloroform protocol29. The
purified DNA was resuspended in Tris-EDTA (TE) buffer (TE; 10 mM Tris–HCl, 1 mM EDTA, pH 7.5). For RNA
isolation, several frozen whole bodies were mortar-pulverized in liquid nitrogen. The purified RNA was extracted
in lysis buffer, containing 35 mM EDTA, 0.7 M LiCl, 7.0% SDS, and 200 mM Tris–Cl (pH 9.0), following the pro-
tocol by Woo et al.30. The purified RNA was eluted in DEPC-treated water and stored at
−20 °C.

Short and long DNA fragment library construction. Two PE libraries were prepared with insert size
350 bp using the TruSeq DNA Sample Prep kit (Illumina). In addition, four MP libraries were prepared with
insert sizes 3, 5, 8, and 10 kb using the Nextera Mate Pair Sample Preparation kit (Illumina). All libraries were
sequenced on an Illumina HiSeq. 2500 instrument, with 251 bp reads for the PE libraries and 101 bp reads for the
MP libraries. We generated a total of 592,854,944 (149 Gbp) PE reads and 2,291,660,676 (231 Gbp) MP reads
(Table 1).

RNA short fragment and PacBio iso-seq sequencing. For short fragment sequencing, a PE library was prepared with the Truseq mRNA Prep kit (Illumina). In addition, four MP libraries were prepared with insert sizes 3, 5, 8, and 10 kb using the Nextera Mate Pair Sample Preparation kit (Illumina). All libraries were sequenced on an Illumina Hiseq. 2500 instrument, with 251 bp reads for the PE libraries and 101 bp reads for the MP libraries. We generated a total of 122,859,466 (149 Gbp) PE reads and 2,291,660,676 (231 Gbp) MP reads (Table 1).

k-mer distribution and genome size estimation. Prior to estimating the genomic size, we processed
raw reads as follows. We discarded low-quality (<Q20) PE reads and those that contained the Truseq index and
universal adapters. We then merged the high-quality PE reads using FLASH31, with default options to avoid dou-
ble counting of overlapping reads. The estimated genome size of T. longiramus was ~1.116 Gb based on a k-mer
distribution (K = 17) analysis run with JELLYFISH32. The main peak exists at k-mer depth 42, which was used for
genome size estimation (Fig. 1).

Genome assembly. Assembly, adapters, low-quality reads, and uncalled bases were trimmed from PE and
MP raw reads using Platanus_trim and Plantanus_internal_trim, respectively. Initial assembly was performed with
Platanus33 based on automatically optimized multiple k-mer values. We executed individual commands

Library type	Insert Size (bp)	Read Length (bp)	Raw bases (Gb)	Raw reads	SRA accessions
DNA					
Paired-end (PE)	350 251	37.616	149,863,175	149,863,175	SRR9098167
	350 251	37.616	149,863,175	149,863,175	SRR9098167
	350 251	36.788	146,564,297	146,564,297	SRR9098168
	350 251	36.788	146,564,297	146,564,297	SRR9098168
Mate-pair (MP)	3 K 101	28.942	286,552,798	286,552,798	SRR9098169
	3 K 101	28.942	286,552,798	286,552,798	SRR9098169
	5 K 101	29.710	294,156,030	294,156,030	SRR9098170
	5 K 101	29.710	294,156,030	294,156,030	SRR9098170
	8 K 101	27.904	276,279,897	276,279,897	SRR9098171
	8 K 101	27.904	276,279,897	276,279,897	SRR9098171
	10 K 101	29.173	288,841,613	288,841,613	SRR9098172
	10 K 101	29.173	288,841,613	288,841,613	SRR9098172
Total			148.808	592,854,944	
RNA					
PE	140 101	6.204	61,429,733	61,429,733	SRR9112990
Total			12.408	122,859,466	

Table 1. Sequence libraries and data yield from Illumina DNA and RNA sequencing.
“assemble,” “scaffold,” and “gap_close” in the Platanus assembler suite, successively. For the “assemble” stage, we assigned the maximum memory usages as 2,048 G, but all the other stages were executed with default options. Scaffolds larger than 1,000 bp in length scaffolded using trimmed PE and MP reads in SSPACE (Fig. 2). Finally, we filtered out two bacterial sequences with more than 500 BLASTN bit scores of 90% alignment coverage identified in MEGAN. We re-confirmed using BLASTX with a non-redundant database in DIAMOND. Table 3 shows the assembly statistics for Platanus, SSPACE, and the final assembly.

Table 2. Sequencing libraries and data yields from PacBio RNA sequencing.

Repeat annotation. To annotate repetitive elements, we first identified tandem repeats using the Tandem Repeats Finder. Transposable elements (TEs) were identified by combining de novo (RepeatModeler) and homology-based approaches (Repbase, RepeatMasker, and RMBlast). TEs accounted for 20.35% of the genome, with tandem repeats accounting for the largest portion (6.18%) (Table 4).
Gene prediction and annotation. The protein-coding genes were predicted by combining \textit{ab initio} and homology-based gene prediction methods (Fig. 2). For the \textit{ab initio} gene prediction, BRAKER41 predicted 67,698 genes, which incorporated outputs from GeneMark-ET42 and AUGUSTUS43. GeneMark-ET predicts genes with unsupervised training, whereas AUGUSTUS predicts genes with supervised training based on intron and protein hints. We generated two hint files from an Illumina RNA-seq and PacBio ISO-seq. Tophat44 was used to align RNA-seq reads to the repeat-masked genome assembly. We proceeded with Iso-seq to obtain the protein sequences, as described in Minoche \textit{et al.}45: (1) run LSC46 to correct errors for full-length transcripts, (2) align the corrected transcripts to the genome using GMAP47, and (3) generate gene models from aligned sequences and extract the protein sequence from the generated gene model using Transdecoder48. We obtained 1,573 protein sequences, which were used to generate protein hints for AUGUSTUS by running Exonerate49. To remove incomplete gene sequences from genes predicted by BRAKER, we filtered out the predicted coding sequences (CDSs) using the following two criteria: 1) CDSs that contained premature stop codons and (2) CDSs that were not supported by hints. Finally, a total of 23,985 protein-coding genes were estimated by \textit{ab initio} prediction (Table 5).

For the homology gene predictions, we searched the assembly of \textit{T. longiramus} against \textit{Daphnia pulex}, \textit{Drosophila melanogaster}, \textit{Folsomia candida}, \textit{H. azteca}, \textit{Lepeophtheirus salmonis}, \textit{Parasteatoda tepidariorum}, \textit{P. hawaiensis}, and \textit{arthropoda} in orthoDB using TBLASTN50 with an E-value cutoff of 1E-5. Matching sequences were clustered using GenBlastA51, and only best-matched regions were retained. Then, gene models were predicted using Exonerate49. Predicted gene sequences that did not meet the above criteria were discarded. As a result, a total of 9,913 genes were predicted by a homology-based approach (Table 5).

Finally, we combined the two outputs by placing homology predictions to \textit{ab initio} prediction only when there is no conflict. As a result, 26,080 protein-coding genes were predicted for the \textit{T. longiramus} draft genome (Table 5). Gene Ontology for the predicted genes were annotated using InterProScan with various databases65, including Hamap53, Pfam54, PIRSF55, PRINTS56, ProDom57, PROSITE58, SUPERFAMILY59, and TIGRFAM60 (Gene Ontology annotation of \textit{T. longiramus})61.

Scaffolds	1,025,695	30,899	30,897
Total Length	1,022,723,337	886,386,416	886,359,443
Maximum length	1,019,543	1,680,077	1,680,077
N50	74,013	120,570	120,570
Gap	16,045,147	73,899,800	73,869,646

Table 3. Statistics of the \textit{T. longiramus} genome assembly.

	Total (bp)	% of genome
DNA	45,354,677	5.12
LINE	23,869,606	2.70
LTR	11,269,516	1.27
Low_complexity	1,202,626	0.14
SINE	163,811	0.02
Satellite	308,670	0.03
Simple_repeat	10,854,020	1.22
TandemRepeat	54,776,419	6.18
Unknown	48,880,228	5.31
Unspecified	327,465	0.04
Total	180,352,209	20.35

Table 4. Statistics of repetitive elements.

	Number	Average transcript length (bp)	Average CDS length (bp)	Average intron length (bp)
De novo	23,985	8,060.4	242.1	1,616.3
Homology	9,913	7,836.5	200.3	1,744.8
Merged	26,080	7,720.7	242.9	1,744.8

Table 5. Statistics of predicted protein-coding genes.

Scaffolds	1,022,727,337	886,386,416	886,359,443
Total Length	828,517,177	886,386,416	886,359,443
Maximum length	1,019,543	1,680,077	1,680,077
N50	74,013	120,570	120,570
Gap	16,045,251	73,899,800	73,869,646
Data Records
All DNA and RNA raw reads have been deposited in the NCBI SRA (Table 1) under the SRA study accession SRP19901862. The whole genome shotgun sequencing project was deposited in GenBank under accession VCRD0100000063. In addition, the assembled genome was submitted to NCBI Assembly and is available with accession no. GCA_006783055.164. Gene Ontology annotation table has been deposited to Figshare61 https://doi.org/10.6084/m9.figshare.8217854.

Technical Validation
DNA and RNA sample quality. DNA quality was assessed using Nanodrop, 1% agarose gels, Qubit fluorometer, and the Qubit HS DNA assay reagents. The RNA integrity was assessed using Nanodrop and an Agilent 2100 Bioanalyzer electrophoresis system (Agilent, Santa Clara, CA, USA).

Illumina libraries. Ready-to-sequence Illumina libraries were quantified by qPCR using the SYBR Green PCR Master Mix (Applied Biosystems), and library profiles were evaluated with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Genome assembly and gene prediction quality assessment. The length statistics of the genome assembly were assessed by QUAST65. The total assembly length is 0.89 Gb, which corresponds to 79.43% of the estimated genome size. The final scaffold N50 is 120.57 kb (Table 3). Genome completeness was evaluated using BUSCO66, with Arthropoda conserved genes databases. The genome assembly, after removing bacteria sequences from SSPACE, revealed a complete BUSCO value of 88.3%. However, in predicted genes, BUSCO completeness was higher (89.9%) (Table 6).

Comparison with other arthropod genomes. We performed an extensive comparison of orthologous genes among 12 arthropod genomes (Trinorchestia longiramus, Daphnia pulex, Drosophila melanogaster, Folsomia candida, H. azteca, Lepeopheitheirus salmonis, Parasteatoda tepidariorum, P. hawaiensis, Oithona nana, Eulimnadia texana, Strigamia maritima, and Tigriopus kingsejongensis) using OrthoMCL67.

After orthologous gene clustering, 490 single-copy protein sequences were aligned using MUSCLE68. Low alignment quality regions were filtered using trimAI69. A phylogenetic tree was constructed using RAxML70, with the PROTGAMMAJTT model (100 bootstrap replicates). Divergence time was calculated using MEGA71 with the Jones–Taylor–Thornton model and the previously determined topology (Fig. 3a). Calibration times of Parasteatoda–Drosophila divergence (601 MYA) and Strigamia–Drosophila divergence (583 MYA) were taken

Table 6. BUSCO assessment of genome assembly and gene prediction.

Genome assembly	# Scaffolds	BUSCO (Arthropoda)
Platanus	63,362	C:86.0%[S:84.3%,D:1.7%],E:6.3%,M:7.7%,n:1066
SSPACE	30,899	C:88.3%[S:86.8%,D:1.5%],E:4.3%,M:7.2%,n:1066
Final	30,897	C:88.3%[S:86.8%,D:1.5%],E:4.3%,M:7.2%,n:1066

Gene prediction	# Genes	BUSCO (Arthropoda)
Final	26,080	C:89.9%[S:85.3%,D:4.6%],E:6.6%,M:3.5%,n:1066

Fig. 3 Comparison of orthologous genes. (a) Gene family expansion and contraction in arthropod species. Numbers designate the gene families that have expanded (green) and contracted (red) after the split from the common ancestor. Divergence time is scaled in millions of years. (b) A Venn diagram of unique and shared orthologous gene clusters in *T. longiramus*, *P. hawaiensis*, and *H. azteca*.
from the TimeTree database. We found that *T. longiramus* diverged from *H. azteca* during the Early Cenozoic era, approximately 55 million years ago.

A gene expansion and contraction analysis was conducted using the CAFE program with the estimated phylogenetic information. A total of 122 gene families have expanded, and 388 gene families were contracted in *T. longiramus*. Fisher’s exact test (p-value ≤ 0.05) was used to identify functionally enriched categories among expanded genes relative to the “genome background,” as annotated by Pfam (Supplementary Table 1). We observed that gene families associated with transferring glycosyl and acyl groups, ATPase activity, response to stress, homeostatic process, and transmembrane transport have expanded. Among transmembrane transport activities, we found that sodium/hydrogen exchanger genes were responsible for a wide range of cellular functions, such as cation movement, homeostasis, regulation of pH, and tolerating ionic and osmotic stress.

A Venn diagram of orthologous gene clusters was drawn on the basis of the protein sequences from *T. longiramus* (26,080 proteins) and two amphipods: *H. azteca* (17,509 proteins) and *P. hawaiensis* (28,617 proteins) (Fig. 3b). *T. longiramus* has 327 unique orthologous gene clusters found among these three genomes. Among these unique gene clusters, the top three gene clusters are DNA- and RNA-mediated transposition, iron ion binding, and DNA metabolic process. Several unique genes also were found in expanded gene families mentioned above (Supplementary Table 1).

Table 7. A list of software and parameters used for genome analysis.

Software	Version	Parameters/Commands
FLASH	1.2.11	default
JELLYFISH	2.2.6	-C -m 17
Platanus trim	1.0.7	platanus_trim (for PE reads), platanus_internal_trim (for MP reads)
Platanus	1.2.4	step-1: assemble -m 2048, step-2: scaffold, step-3: gap_close
SSPACE Standard	3.0	default
DIAMOND	0.9.24	default
MEGAN	6.15.2	default
QUST	4.5	default
BUSCO	3.0.2	-1 arthropoda_sdb9
RepeatMasker	4.0.7	-e ncbi -pa 4
RepeatModeler	1.0.10	-engine ncbi -pa 4
LSC	2.0	default
GMAP	2018-07-04	: B 5
derive-gene-models-from-PacBio.pl	default	
TransDecoder	3.0.1	step-1: TransDecoder.LongOrfs, step-2: TransDecoder.Predict
Tophat	2.1.1	--microexon-search--mate-std-dev 26 --mate-inner-dist 38 --min-intron-length 30 --min-coverage-intron 30 --min-segment-intron 30
GenBlastA	1.0.4	-p T --e 1e-5 --g T --f F --a 0.5 --d 100000 --r 100 --c 0.01 --s 100
Exonerate	2.2.0	--model protein2genome --percent 30 --showvulgar no --showalignment yes --showquerygff no --showtargetgff yes --targetchunksize 1 --targetchunktotal 100
BRAKER	2.0	--species = T.longiramus -- AUGUSTUS_CONFIG_PATH = augustus/config -- AUGUSTUS_BIN_PATH = augustus/bin -- AUGUSTUS_SCRIPTS_PATH = augustus/scripts -- GENEMARK_PATH = gm.et/genes_petap -- bam = tophat/accepted_hits.bam --prot_seq = PacBio-derived.gene-models.transdecoder.pep.fasta --alternatives-from-evidence = true -- prg = exonerate
InterPros can	5.16–55.0	-appl HAMAP,ProDom,PRINTS,Pfam,TIGRFAM,SUPERFAMILY,ProSitePatterns,ProSiteProfiles,goterms,iprlookup
OrthoMCL	2.0.9	-11.5
MUSCLE	3.8.31	default
ETE	3.3.1	trimal -gappyout
RAXML	8.2.10	-m PROTGAMMATTT
MEGA	7.00	megacc
CAFE	4.0	default

Usage Notes

All analyses were conducted on Linux systems, and optimal parameters are given in the Code availability section.

Code availability

The software versions, settings, and parameters are described in Table 7. If not mentioned otherwise, the command line at each step was executed using default settings.

Received: 17 July 2019; Accepted: 18 February 2020; Published online: 09 March 2020
47. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
48. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494 (2013).
49. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
50. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
51. She, R., Chu, J. S.-C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).
52. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
53. Lima, T. et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProt/Swiss-Prot. Nucleic Acids Res. 37, D471–D478 (2008).
54. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2011).
55. Nikolskaya, A. N., Arighi, C. N., Huang, H., Barker, W. C. & Wu, C. H. PIRSF family classification system for protein functional and evolutionary analysis. Evol. Bioinform. 2, 117693430600200033 (2006).
56. Atwood, T. K. et al. PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res. 28, 225–227 (2000).
57. Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33, D212–D215 (2005).
58. Sigrist, C. J. et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38, D161–D166 (2009).
59. Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C. & Gough, J. The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 32, 233–239 (2004).
60. Haas, B. J. et al. TIGEFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2012).
61. Patra, A. K. et al. First draft genome for the sand-hopper Trinorchestia longiramus. figshare, https://doi.org/10.6084/m9.figshare.8217854.v5 (2020).
62. NBCI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRP199918 (2019).
63. Patra, A. K. et al. Trinorchestia longiramus isolate TLONG-mixed, whole genome shotgun sequencing project. GenBank, https://identifiers.org/ncbi/insdc:VCRD00000000 (2020).
64. NCBI Assembly, https://identifiers.org/ncbi/insdc:gca:GCA_006783055.1 (2019).
65. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
66. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
67. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
68. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
69. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973, https://doi.org/10.1093/bioinformatics/btp348 (2009).
70. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
71. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
72. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).
73. Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE S. Mol. Biol. Evol. 30, 1987–1997, https://doi.org/10.1093/molbev/msx100 (2013).
74. Francia, M. E. et al. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion. Exp. Cell Res. 317, 1382–1396 (2011).
75. Dermauw, W. & Van Leeuwen, T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45, 89–110 (2014).
76. Radulović, Z., Porter, L. M., Kim, T. K. & Mulenga, A. Comparative bioinformatics, temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides.Ticks Tick Borne Dis. 5, 287–298 (2014).
