Molecular cross-talk between Helicobacter pylori and human gastric mucosa

Vittorio Ricci, Marco Romano, Patrice Boquet

Abstract

Helicobacter pylori (H. pylori) has co-evolved with humans to be transmitted from person to person and to colonize the stomach persistently. A well-choreographed equilibrium between the bacterial effectors and host responses permits microbial persistence and health of the host, but confers a risk for serious diseases including gastric cancer. During its long coexistence with humans, H. pylori has developed complex strategies to limit the degree and extent of gastric mucosal damage and inflammation, as well as immune effector activity. The present editorial thus aims to introduce and comment on major advances in the rapidly developing area of H. pylori/human gastric mucosa interaction (and its pathological sequelae), which is the result of millennia of co-evolution of, and thus of reciprocal knowledge between, the pathogen and its human host.

© 2011 Baishideng. All rights reserved.
logical studies have determined that the attributable risk for gastric cancer conferred by *H. pylori* is approximately 75%\(^{[8]}\). While *H. pylori* infection increases the risk of developing both types of gastric cancer (i.e. diffuse and intestinal), chronic inflammation is not a prerequisite for development of diffuse-type cancer, thus suggesting that different mechanisms underlie the ability of *H. pylori* to induce gastric malignancies. Also, it is likely that *H. pylori* influences early stages in gastric carcinogenesis, as suggested by the demonstration that eradication of the infection significantly decreases the incidence of gastric cancer only in patients without premalignant lesions at the time of diagnosis\(^{[1]}\).

Development of gastric adenocarcinoma occurs in <1% of *H. pylori*-infected subjects\(^{[8]}\). Also, incidences of gastric carcinoma in *H. pylori*-infected individuals may vary dramatically among different geographical areas\(^{[9]}\). This might be accounted for by *H. pylori* strain diversity within different geographical areas and/or within different individuals\(^{[10]}\), and further suggests that factors other than the bacterium may be involved in the carcinogenic process.

Evidence increasingly indicates that *H. pylori*-related gastric carcinogenesis is likely to be the result of a well-choreographed interaction between the pathogen and host, which is in turn, dependent on strain-specific bacterial factors, host genotypic traits and permissive environmental factors.

The present editorial thus aims to introduce and comment on major advances in the rapidly developing area of *H. pylori*/human gastric mucosa interaction (and its pathological sequelae), which is the result of millennia of co-evolution of, and thus of reciprocal knowledge between, the pathogen and its human host.

HOST FACTORS

The basic process that mediates *H. pylori*-induced damage is gastritis with its associated humoral and cell-mediated immune mechanisms. The outcome of *H. pylori* infection depends on the severity and the anatomical distribution of the gastritis induced by the bacterium. Individuals with corpus-predominant gastritis (so-called “gastric cancer phenotype”), which accounts for almost 1% of infected subjects, are more likely to develop hypochlorhydria, gastric atrophy, and eventually, gastric cancer; those with antrum-predominant gastritis (so-called “duodenal ulcer phenotype”), which accounts for up to 15% of infected subjects, have excessive acid secretion and are more likely to develop duodenal ulcer. Finally, subjects with mild, mixed antrum and corpus gastritis (so-called “benign gastritis phenotype”), which accounts for up to 85% of infected subjects, have almost normal acid secretion and, generally, no serious disease. These clinical outcomes seem to be mutually exclusive, and are largely influenced by a genetically regulated inflammatory response of the host gastric mucosa to the infection\(^{[10]}\).

A combination of polymorphisms in the host interleukin-1 (IL1) gene cluster (i.e. the IL1B gene, which encodes IL-1β, a pro-inflammatory cytokine and a powerful inhibitor of gastric secretion, and in IL1RN, which encodes IL-1ra, the naturally occurring receptor antagonist of IL-1), and in the genes that encode tumor necrosis factor (TNF-α, and IL-10, which result in elevated levels of IL-1β and TNF-α, and in low levels of IL-10 (which inhibits production of pro-inflammatory cytokines), confer a 27-fold increased risk of developing gastric cancer\(^{[11]}\). It also has recently been demonstrated that polymorphisms in the promoter of IL-8 gene, which enhance the transcriptional activity in response to IL-1β or TNF-α, are associated with increased risk of gastric cancer in patients with *H. pylori* infection\(^{[12,13]}\). This chemokine belongs to the CXC family and has potent chemoattractant for neutrophils and lymphocytes, and has effects on cell proliferation, migration and tumor angiogenesis.

H. pylori infection is first handled by receptors of the innate immune response, and it is therefore conceivable that functionally relevant polymorphisms in genes of this arm of the immune system could affect the magnitude and subsequent direction of the host’s response against the infection. In particular, toll-like receptor (TLR)4 is a member of a family of pattern recognition receptors that activate pro-inflammatory signaling pathways in response to microbes or pathogen-associated molecular patterns\(^{[14]}\). TLR4 transduces signals that promote transcription of genes that are involved in immune activation, including nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase pathways\(^{[15]}\). A functional polymorphism at position +896 in exon 4 of the TLR4 gene has been demonstrated\(^{[16]}\), which renders carriers hyporesponsive to lipopolysaccharide challenge by interrupting transport of TLR4 to the cell membrane, or impairing ligand binding or protein interactions\(^{[17]}\). The defective signaling through TLR4 leads to an exaggerated inflammatory response with severe tissue destruction that causes gastric atrophy and severe hypochlorhydria. Two independent case-control studies have demonstrated that TLR4+896G carriers have an almost eightfold increase in OR for hypochlorhydria and gastric atrophy, and a 2.5-fold increase for gastric cancer\(^{[17]}\).

It is likely that subjects with an overall pro-inflammatory genetic makeup based on a combination of markers from the adaptive and innate immune systems, respond to *H. pylori* infection by creating an environment within the stomach that is chronically inflamed and with markedly reduced acidity. These environmental conditions favor the growth of other bacteria within the gastric milieu, which leads to sustained inflammation and decreased levels of vitamin C in gastric juice. This facilitates the formation of mutagenic N-nitroso compounds and reactive oxygen species (ROS)\(^{[18,19]}\), which ultimately leads to increased oxidative/genotoxic stress. Moreover, the profound inhibition of acid secretion that is associated with these pro-inflammatory genotypes favors a shift from an antrum-predominant to corpus-predominant gastritis with the onset of gastric atrophy and intestinal metaplasia (i.e. precancerous lesions).
H. PYLORI-INDUCED CELL SIGNALING IN GASTRIC CARCINOGENESIS

The host response to H. pylori infection may contribute to gastric carcinogenesis by promotion of a chronic inflammatory response that contributes to mucosal cell damage, or by interference with the mechanisms of proliferation and/or survival that regulate epithelial cell homeostasis.\[^{2,6,10}\]

H. pylori proteins and induced responses play a major role in the increased disease risk associated with the infection, but they are not absolute determinants of gastric carcinogenesis. The chronic inflammation that develops in response to this organism greatly contributes to transformation. In this respect, bone-marrow-derived cells (BMDCs) have been demonstrated to home to and engrave the inflamed gastric mucosa of mice infected with Helicobacter felis. This phenomenon takes place within foci in which tissue injury induces excessive apoptosis and overwhims the population of endogenous tissue stem cells.\[^{31}\] Subsequently, BMDCs in the inflamed gastric environment degenerate into adenocarcinoma, thus suggesting that gastric adenocarcinoma originates from BMDCs.

It is generally accepted that H. pylori infection results in a Th1-dominant response and that gastric inflammation largely depends on Th1 cell response with increased production of IL-1β, TNF-α and IL-8, but not IL-4 and IL-10.\[^{2,6,10,18,20}\] A novel subset of effector T cells, identified by secretion of IL-17, has been defined as Th17 cells, which are distinct from Th1 and Th2 cells in their differentiation and function.\[^{25}\] TNF-α and IL-6 from activated macrophages/dendritic cells (DCs) are required for Th17 cell differentiation, whereas IL-12 and interferon-γ promote Th1 cell development, and IL-4 primes Th2 cell differentiation. Recently, it has been suggested that H. pylori infection mainly leads to a specific Th17/Th1 immune response that plays a major role in H. pylori infection, which promotes mucosal inflammation and contributes to bacterial colonization.\[^{10}\] In fact, H. pylori burden and inflammation are both reduced when IL-17 activity is blocked in vivo or IL-17^−/− mice are used.\[^{25}\] The dynamics of Th cell immune responses to H. pylori suggest that Th17 cell responses are induced earlier than Th1 cell responses, thus implying that Th17 and Th1 cells promote inflammation at different stages. It is likely that the Th17/IL-17 pathway modulates Th1 cell responses, and Th17 and Th1 cells may act synergistically to induce gastritis during H. pylori infection, by triggering the recruitment of inflammatory cells, including Th1 cells, into the gastric mucosa through the induction of chemokines. Also, the activated Th17/Th1 pathway may destroy gastric tissue by inducing matrix metalloproteinase (MMP) production, which favors subsequent pathogen dissemination and persistent infection. This might have implications also for the carcinogenic process associated with H. pylori infection. In fact, Th17 cells have been reported to contribute to gastric cancer pathogenesis.\[^{25}\]

A concomitant helminthic infection that triggers a Th2 cell response may blunt the Th17/Th1 cell responses associated with H. pylori infection, thus limiting the pathological consequences of H. pylori gastric colonization; in particular, gastric atrophy. This might partially explain why in African countries, where the prevalence of H. pylori infection acquired during childhood is close to 80%, the prevalence of gastric cancer is very low and accounts for < 2% of all malignant tumors.\[^{26}\]

Variation in the ability of H. pylori strains to trigger the production of chemokines from gastric epithelium depends on the presence of a functional type IV secretion system (TFSS), which is encoded by the ag pathogenicity island (PAI). Although the aag PAI facilitates the translocation of CagA, the effect of this bacterial protein on cytokine synthesis is controversial; the majority of reports show no effect of CagA on cytokine synthesis, thus suggesting that other effectors are involved in the epithelial cytokine and chemokine response to H. pylori infection.\[^{10,25,26}\] Indeed, it has been shown that induction of pro-inflammatory responses in epithelial cells infected by H. pylori is mediated by the host protein CARD4 (also known as Nod1), an intracellular pathogen-recognition molecule, and that the effect is dependent on the delivery of peptidoglycan to host cells by the TFSS.\[^{27}\] Consistent with involvement of CARD4 in host defense, CARD4-deficient mice are more susceptible to infection by H. pylori strains that contain the aag PAI than are wild-type mice.\[^{27}\] However, two studies have demonstrated that CagA directly induces IL-8 release from gastric mucosal cells.\[^{28,29}\]

Although H. pylori elicits innate and acquired immune responses, the host is unable to eliminate the organism from the gastric mucosa, and chronic infection is the usual outcome.\[^{20,33}\] H. pylori antigenic variation (i.e. modification of bacterial antigenic determinants due to mutation or intragenomic homologous recombination) and mimicry of host antigens (i.e. bacterial expression of antigens similar to those expressed by the host)\[^{31}\], as well as induction of apoptosis by H. pylori in DC precursor monocytes\[^{24}\] and the intracellular persistence of the bacteria in gastric epithelial progenitor cells,\[^{33}\] might be crucial for evasion of the immune response. Also, it has recently been demonstrated that H. pylori evades TLR5 innate immunity.\[^{33}\] In fact H. pylori, although being a flagellated organism, does not release flagellin, and recombinant H. pylori flagellin is much less active than Salmonella typhimurium flagellin in activating TLR5-mediated IL-8 secretion.\[^{30}\]

Although it fails to eliminate the organism, the inflammatory response induced by H. pylori increases cellular damage. Activation of the TNF receptor by TNF-α results in the induction of apoptosis and mucosal cell damage. Increased apoptosis through direct or cytotoxic-mediated activation of caspases is also contributed to by CD95/FAS and VacA. Recently, we have shown that H. pylori infection upregulated IL-21 levels in gastric epithelial cells in vitro, as well as in the gastric mucosa of H. pylori-infected humans.\[^{14}\] IL-21 overexpression is associated with increased production of MMP-2 and
MMP-9, through an NF-κB-dependent mechanism. Increased MMP-2 and MMP-9 levels might contribute to chronic gastric damage and inflammation by degrading extracellular matrix proteins and by favoring the recruitment of circulating cells into inflamed tissue.[10,34]

Other ways in which pro-apoptotic pathways are induced during *H. pylori* infection include superoxide production by infiltrating neutrophils, elevated nitric oxide production by inducible nitric oxide synthase (iNOS), which is overexpressed in infected gastric mucosa[2,6,37], and generation of ROS by bacterial secretion of γ-glutamyltripeptidase (γ-GT) in the presence of glutathione (GSH) and transferin, as a source of iron[38]. In fact, it has been shown that γ-GT is important for *H. pylori*-mediated apoptosis of AGS (a cell line derived from a human gastric adenocarcinoma) gastric epithelial cells[39]. It is also interesting to note that inflammatory stimuli that activate cytokine receptors and p38 (a stress-activated MAPK) can induce apoptosis. Conversely, activation of cytokine receptors and p38 might also inhibit apoptosis through NF-kB and c-Jun activation[40].

Inhibition or induction of apoptosis could both be relevant to *H. pylori*-related carcinogenesis. Induction of apoptosis might favor the development of atrophic gastritis and gastric gland recruitment of bone-marrow-derived precursor cells that might ultimately develop into intraepithelial cancer[18]. Inhibition of apoptosis, on the other hand, represents the loss of a physiological safeguard against perpetuating the acquisition of DNA damage that can lead to the malignant transformation of cells[2,6,41].

Proliferative response

Several signal transduction pathways are activated during the proliferative response of gastric epithelial cells to *H. pylori*-induced cell damage[25]. The compensatory hyperproliferative response of gastric epithelial cells during *H. pylori* infection might be sustained by hypergastrinemia, increased expression of epidermal growth factor (EGF)-related peptides, and activation of the EGF receptor (EGFR) signal transduction pathway in gastric epithelial cells[2,6,41,42]. In addition, translocation of CagA into gastric epithelial cells induces a growth-factor-like response through activation of the Ras-MAPK pathway[25]. Finally, it has been shown that *H. pylori* upregulates the expression of cyclooxygenase (COX)-2, the inducible isoenzyme of the enzyme that is responsible for prostaglandin production, in human gastric epithelial cells in vitro and in human gastric mucosa in vivo[2,6,41].

EGFR-related pathway is upregulated in a number of malignancies and is an important target for treatment of several neoplasms of the gastrointestinal tract. *H. pylori* has been shown to upregulate amphiregulin and HB-EGF, members of the EGFR ligands family, and to activate EGFR in MKN 28 cells[44]. Subsequently, it has been demonstrated that EGFR transactivation by *H. pylori* is mediated through metalloprotease-dependent cleavage of HB-EGF. The required metalloproteinases are likely to be members of a disintegrin and metalloproteinase (ADAM) family. In particular ADAM17 is the ideal candidate enzyme for the regulation pathway[45].

H. pylori-induced upregulation of COX-2 and EGF-related peptide expression in human gastric epithelial cells depends on the bacterial production of γ-GT[39]. Activation of phosphatidylinositol-3'-kinase (PI3K)-dependent and/or p38-dependent pathways is responsible for *H. pylori* γ-GT-induced upregulation of COX-2 and EGF-related peptide expression in gastric mucosal cells[38]. However, another study has demonstrated that upregulation of HB-EGF by *H. pylori* in human gastric epithelial cells is dependent on MAP kinase kinase activation, thus suggesting that EGF-related peptide expression might be regulated by different signal transduction pathways[51]. In keeping with this, it has been demonstrated that COX-2 expression in gastric epithelial cells is also regulated by extracellular signal-regulated kinase (ERK)/MAPK activation[43,44].

The upregulation of growth factor and COX-2 expression might increase the mitogenic activity of *H. pylori*-infected gastric mucosa, and protect cells from *H. pylori*-induced cell damage, which might therefore be regarded as early events in the development of *H. pylori*-associated gastric carcinogenesis[2,6]. Upregulation of COX-2 and iNOS expression might also contribute to the high levels of oxidative DNA damage seen during *H. pylori* infection, and this could increase the mutation rate in infected hyperproliferative gastric mucosa[2,37]. More recently, blockade of EGFR activation by HB-EGF neutralizing antibody or by abrogating ADAM17 expression, has been shown to protect gastric epithelial cells from *H. pylori*-induced apoptosis. The anti-apoptotic effect of EGFR activation seems to depend on PI3K-dependent activation of the anti-apoptotic factor Akt, increased expression of the anti-apoptotic factor Bel-2, and decreased expression of the pro-apoptotic factor Bax[45]. Because EGFR activation is linked to increased proliferation, reduced apoptosis, disruption of cell polarity and enhancement of cell migration, transactivation of EGFR by *H. pylori* might represent an attractive target for studying early events that may precede transformation. Also, the EGFR-related pathway might be regarded as a molecular target for treatment of gastric cancer[45]. However, surveys of human gastric cancer specimens for evidence of overexpression or mutations of EGFR have found both events to be rare[47].

The activation of a pathway mediated by EGFR, MAPK and COX-2 is also responsible for the induction of vascular endothelial growth factor (VEGF) expression in *H. pylori*-infected gastric epithelial cells[48]. This effect is specifically related to the VacA toxin of *H. pylori*[47], and is associated with a significant increase in blood vessel formation, suggesting that neangiogenesis might contribute to tumor growth in *H. pylori*-related gastric carcinogenesis[49]. *H. pylori* infection also promotes gastric epithelial cell invasion by inducing the production of MMP-7 through MAPK activation[50], and MMP-9 and VEGF expression through an NF-κB- and COX-2-mediated pathway[50].
Another host effector that is aberrantly activated during *H. pylori*-induced gastric carcinogenesis is β-catenin, a ubiquitously expressed molecule that regulates the expression of several genes, including c-myc, the cyclin D genes, MMP7 and PTGS2 (which encodes COX-2)\(^5\). Membrane-bound β-catenin is a component of adherens junctions that link cadherin receptors to the actin cytoskeleton. Cytoplasmic β-catenin is a downstream component of the Wnt signaling pathway. In the absence of Wnt ligand, the inhibitory complex composed of axin, adenomatous polyposis coli (APC) and glycogen synthase kinase 3β (GSK3β) induces the degradation of β-catenin, and maintains low steady-state levels of free β-catenin in the cytoplasm or nucleus. After binding of Wnt to its receptor Frizzled, Dishevelled is activated, thus preventing GSK3β from phosphorylating β-catenin. This allows β-catenin to translocate to the nucleus and activate the transcription of target genes that are involved in carcinogenesis. Increased β-catenin expression or APC mutations are present in up to 50% of gastric adenocarcinomas\(^6\). Moreover, an oncogenic *H. pylori* strain can induce nuclear translocation of β-catenin and activation of the LEF/TCF transcription factor that regulates the expression of β-catenin-responsive genes\(^7\). β-catenin activation is dependent on the translocation of CagA into host epithelial cells, which reinforces the evidence that *cagA*+ *H. pylori* strains induce stronger activation of the signal transduction pathways that regulate the proliferation, invasion and survival of gastric epithelial cells\(^8\). Recently, activation of PI3K and Akt has been shown to induce phosphorylation and inactivation of GSK3β, which permits β-catenin to accumulate in the cytosol and nucleus\(^9\). Sustained induction of PI3K/Akt signaling in response to *H. pylori* infection with subsequent β-catenin activation has been demonstrated to be due to the interaction of CagA with Met, the hepatocyte growth factor receptor, via CRPIA (for conserved repeat responsible for phosphorylation-independent activity), a conserved motif in the C-terminal region of CagA\(^10\). Also, EGFR transactivation by *H. pylori* leads to activation of PI3K/Akt signaling, which ultimately leads to β-catenin activation\(^11,12\).

H. pylori has co-evolved with humans to be transmitted from person to person and to colonize the stomach persistently. A well-choreographed equilibrium between the bacterial effectors and host responses permits microbrial persistence and health of the host, but confers a risk for serious diseases including gastric cancer. During its long coexistence with humans, *H. pylori* has evolved complex strategies to limit the degree and extent of gastric mucosal damage and inflammation, as well as of immune effector activity. Severe disease, associated with bacterial colonization, might reflect loss of this control\(^13\). In this respect, we have recently demonstrated that Hp(2-20), a cationic α-helical peptide that has been isolated from the N-terminal region of the *H. pylori* ribosomal protein, L1, by interacting with formyl peptide receptors (FPRs), stimulates migration and proliferation of gastric epithelial cells in vitro and accelerates gastric mucosal healing in vivo\(^14\). This raises the intriguing possibility that *H. pylori*, through the production of Hp(2-20) and its interaction with FPRs is also able to modulate the capacity of gastric mucosa to maintain or recover its integrity.

H. pylori Invasiveness and Interactions with Non-epithelial Cells: In Vivo Veritas

H. pylori is commonly considered an essentially extracellular, non-invasive bacterium. In an infection, 80%-90% of the bacteria freely swim into the mucus layer of the stomach, while the residual 10%-20% are in intimate contact with surface epithelial cells\(^15,16\). As a consequence, a prominent immune-inflammatory response is invariably mounted in the underlying lamina propria. An intact epithelium should form a structural barrier that prevents direct contact between the bacterium on the luminal side and reactive inflammatory cells on the stromal side. Therefore, to explain how a strong mucosal and systemic reaction may be elicited, *H. pylori*-induced functional changes in the epithelium have been considered, such as a bacterial activation of the accessory immune competence inherent in the gastric epithelium, which in turn may modulate underlying stroma cells. Among pertinent epithelial changes so far documented are de novo or increased expression of pro-inflammatory cytokines, proteases (like cathepsins E, B, L, S and D) known to be involved in antigen processing, or HLA-DR and co-stimulatory molecules like B7-1 and B7-2 that are involved in antigen presentation\(^17\). However, a few early light and electron microscopy studies have suggested the presence of *H. pylori* cells inside the gastric mucosa, either in epithelial cells and intraepithelial intercellular spaces, or in the underlying lamina propria\(^18,19\). Nevertheless, the scientific community has exhibited a widespread reluctance to accept this published evidence. By contrast, a lot of in vitro studies have been carried out to investigate epithelial cell invasion by *H. pylori*, as well as roles and molecular mechanisms of direct interactions between *H. pylori* or *H. pylori* products/virulence factors and immune cells such as T or B lymphocytes, DCs, macrophages, monocytes, and mast cells\(^20,21\). However, despite this interest, the importance of these in vitro studies has been questioned because of a lack of convincing evidence that *H. pylori* actually invades the gastric mucosa and interacts with non-epithelial cells, thus it is highly questionable whether any of these observations have clinical relevance\(^22\). In this respect, Lu et al\(^23\) have strongly stressed the fact that in vitro studies are in theory designed to allow deeply detailed molecular study of in vivo events, whereas it is easy but meaningless to generate in vitro data irrespective of whether the experiment has an in vivo correlation. Similarly, other leading investigators\(^24,25\) have underlined the problem that in vitro-derived findings and considerations may make sense in terms of cell biology, but it remains to be established how and to what extent they apply to the in vivo situation.
which is now needed to be investigated in detail and in quantitative terms. Thus, only in vivo veritas!

Indeed, recently there has been a re-emerging interest for in vivo investigations of *H. pylori/*human gastric mucosa interaction. By microscopy and molecular investigations, Semino-Mora et al.\(^5\) have demonstrated the presence of intracellular and interstitial *H. pylori* in preneoplastic as well as in neoplastic lesions of human gastric mucosa, with persistent intracellular expression of *H. pylori* virulence genes. These findings may substantially expand current concepts on the role of the bacterium in gastric carcinogenesis.

In a transmission electron microscopy study, Necchi et al.\(^7\) have unequivocally detected *H. pylori* in intraepithelial, intercellular and stromal sites of the majority of human gastric biopsies, and have shown bacteria on their luminal side (Figures 1 and 2). In keeping with in vitro demonstration that *H. pylori* can functionally disrupt tight junctions, possibly through intraepithelial delivery of CagA\(^6\), CagA has been found to accumulate over and around tight junctions of colonized gastric epithelium, as well as ultrastructural alterations of the tight junctions that cover intercellular spaces that have been penetrated by *H. pylori* cells\(^8\). These in vivo findings support the hypothesis that functional and structural alterations of the tight junctions may open the way to bacterial penetration into deep intercellular spaces, up to the underlying lamina propria. Consistent transepithelial penetration of *H. pylori* into infected gastric mucosa may help understand how the colonized mucosa invariably mounts a prominent local immune-inflammatory response, as well as a systemic immune reaction and, under special genetic conditions, even extra-gastric autoimmune pathology. In fact, direct contact (including intracellular penetration in some cases) between *H. pylori* or its remnants and immune-inflammatory stroma cells has been observed\(^9\).

The morphological and cytochemical detection of *H. pylori* (often well preserved, VacA- and CagA-storing, and apparently vital) inside intact epithelial cells of human gastric mucosa (Figure 2) has confirmed the intracellular pathogenic potential of the bacterium. This observation confirms and extends previous in vitro observations that *H. pylori* exhibits an invasion frequency similar to that of *Yersinia* and greater than that of *Shigella*\(^10\), both bona fide invasive pathogens. This is also in keeping with the expression of Nod1, a known intraepithelial pathogen-recognition molecule, by *H. pylori*-colonized epithelial cells\(^5\), as well as with the predominantly Th1 type of immune response that is elicited. In addition, confirmation of the intracellular occurrence of *H. pylori* is crucial when choosing appropriate antibiotics for bacterial eradication, as well as when monitoring their in vivo effectiveness after completion of treatment.

Of high interest is the presence of *H. pylori* in intestinal metaplasia (IM). Indeed, this finding substantially extends the possible interaction between *H. pylori* and IM in gastric carcinogenesis, from an early preneoplastic step that corresponds to epithelial progenitors\(^2\) and IM genesis, to the whole process of its progression to neoplasia. Indeed, it supports a persistent in vivo activity of several *H. pylori*-activated molecular mechanisms of gastric carcinogenesis such as CagA-mediated intracellular disruption of growth regulation\(^2,3\), inflammation-elicited NF-κB transcription factor activation\(^4\) and silencing of DNA mismatch repair genes\(^5\). The demonstration by Necchi et al.\(^7\) of *H. pylori* occurrence in dysplastic as well as in neoplastic growths, in agreement with that of Semino-Mora et al.\(^5\), further substantiates and extends the *H. pylori* contribution to gastric carcinogenesis, and may explain some beneficial effects of bacterial eradication on IM-related cancer risk, as well as on cancer recurrence\(^6\).

Another in vivo study\(^16\) has recently shown that, in human superficial-foveal gastric epithelium and its metaplastic or dysplastic foci, *H. pylori* products/virulence factors (sometimes coupled with bacterial bodies or remnants) accumulate in a discrete cytoplasmic structure that is characterized by 13-nm-thick cylindrical particles of regular punctate-linear substructure. This structure resembles the proteasome complex in size and structure, while being different from VacA-induced vacuoles, phagosomes, aggresomes or related bodies. Inside this novel cell compartment, named PaCS (for particle-rich cytoplasmic structure), co-localization of VacA, CagA,
urease and outer membrane proteins (OMPs) with NOD1 receptor, ubiquitin-activating enzyme E1, polyubiquiti-
nated proteins, proteosome components and potentially oncogenic proteins like SHP2 and ERKs has been dem-
onstrated[60]. These findings suggest that PaCS is a novel,
proteosome-enriched structure arising in ribosome-rich
cytoplasm at sites of H. pylori product accumulation. As a
site of selective concentration of bacterial virulence fac-
tors, the ubiquitin-proteosome system and interactive pro-
tains, PaCS is likely to modulate immune-inflammatory
and proliferative responses of the gastric epithelium of
potential pathological relevance; also taking the mounting
evidence for a role of the ubiquitin-proteosome system in
cancer origin or progression[61].

A hotly debated question waiting for a definitive an-
swer is whether human gastric DCs are able to send cell
processes that cross the epithelium, reach the lumen and
directly contact and engulf H. pylori, as shown to occur
for DC-mediated pathogen-sensing at the intestinal level.
The dendritic, epithelial, granulocytic or macrophagic
nature of the cell that first interacts with the bacterium
seems to be important, given the different type and cel-
lular distribution of microbial product receptors shown
by different immunocompetent cells, and the different
chemokines and interleukins that they release when ac-
tivated[27,62,71]. In fact, DCs have been found to respond
differently when interacting directly with bacteria rather
than secondarily to epithelium-bacteria contact, with
IL-12 secretion and Th1 response preferentially activated
only in the former case[72].

By ultrastructural immunocytochemistry on endo-
scopic biopsy samples, clear-cut in vitro evidence has been
provided[73] of direct DC contact with H. pylori in the
human gastric mucosa (Figure 3), which greatly extends
the relevance of previous in vitro studies carried out on
purified DCs. DCs have been shown to present in side-
superficial-foveolar epithelium of H. pylori-infected (but
not H. pylori-free) human gastric mucosa, and to send
cytoplasmic extensions to the lumen, to which bacteria
preferentially adhere (Figure 3). In addition, intraepi-
ithelial DCs are found to accumulate bacterial products
like VacA, urease and OMPs in their cytoplasm. The
importance of intraepithelial, lumen-contacting DCs lies
in the well-known crucial role of these cells as sen-
sors of pathogens, and as the first line of antibacterial
immune defense of both innate and adaptive type[74].
In fact, DCs have been shown to act as main processing
and presenting cells of internalized antigens, and major
regulators of cells involved in the mucosal inflamma-
tory response. Depending on their mode of activation,
they may secrete pro-inflammatory or anti-inflammatory
cytokines and chemokines that dictate the composition
of the cellular infiltrate, in addition to activating NK and
T cells with either Th1 or Th2 effector and T regulatory
cell responses[73]. Thus, the direct interaction of DCs with
H. pylori during active gastritis may be of key relevance.
Also worth noting is the finding of a close adherence of
DCs to surrounding epithelial cells along all or most of
their confronting membranes, with involvement of lateral
folds and formation of focal interdigitating complexes. It
has been speculated that this pattern, possibly related to
the capacity of immature DCs to produce tight and ad-
herens junction proteins, may be finalized to preserve the
barrier function of the epithelium[75].

Granulocytes have also been seen to contact and
heavily phagocytose luminal H. pylori, while macrophages
remain confined to basal epithelium, although taking up
bacteria and bacterial products[73]. The inhibitory role of
VacA on phagolysosome formation and acidification with
resulting persistence of engulfed H. pylori has been out-
lined[76]; this may well allow macrophages and DCs to re-
tain and translocate vital H. pylori to gastric lymph nodes,
from which they have been cultivated[77]. The substantial
restriction of intraepithelial DCs to active, granulocyte-
rich gastritis seems of interest, especially considering
the dominant role of granulocytes in early, first-contact
H. pylori gastritis. Although no direct morphological in-
teractions have been observed between DCs and grani-
locytes, both have shown coexistence in the same mucosa
and direct interaction with H. pylori, resulting in phagocy-
tosis and intracellular accumulation of bacterial virulence
factors[73]. DC intracellular accumulation of H. pylori viru-
ulence factors like VacA, urease or OMPs, as documented
in this paper, may also be of relevance for DC function
and integrity; either as a source of antigenic material
promoting the immune response or of cytotoxic damage.
Indeed, signs of cellular damage have been observed in
several intraepithelial DCs, including focal mitochondrial
swelling, cytoplasmic edema and vacuolation and forma-
tion of autophagic vacuoles. These findings raise the
issue of a possible impairment of DC function by accu-
mulated bacterial toxins, which may reduce the effective-
ness of the immune response and favor persistence of
bacterial infection. Thus, this complex in vivo interaction
of DCs, granulocytes and macrophages with H. pylori and
H. pylori-infected epithelium is likely to have an important
role in the origin, type specification, and outcome of the
innate and adaptive immune responses.

VacA TOXIN AND ITS FUNCTIONAL

INTERACTION WITH CagA: THE ART OF PRESSING THE BRAKE AND GAS PEDALS AT ONCE

VacA, the “vacuolating cytotoxin”, and CagA, the product of the cytotoxin-associated gene A, are virulence factors playing a pivotal role in H. pylori-induced pathogenesis. While VacA is defined as an A-B toxin (even though no enzymatic activity has been so far identified for any of its domain), CagA is usually defined as an effector protein: a bacterial protein delivered into host cells by a specialized bacterial machine so as to modulate a variety of cellular functions. Indeed, CagA is supposed to be directly inject-
ed into host cells by a TFSS. Many excellent reviews have
been recently published on these two H. pylori virulence
factors[77-80], thus, we do not intend to discuss the well-known characteristics of these proteins in detail. Here, we focus on the most recent experimental data that shed new light on their structure/activity relationships, on their internalization and trafficking in the host cells, and finally, on the apparent paradox of why \textit{H. pylori} simultaneously produces two different virulence factors counteracting the effect of each other on host cells.

Figure 3 Intraepithelial dendritic cells in Helicobacter pylori-positive human gastric biopsies with active inflammation. A (5000 ×): Luminal ending of a dendritic cell (DC) process abutting on a collection of \textit{Helicobacter pylori} (\textit{H. pylori}); enlarged in a1 (16 000 ×) to show envelopment of a bacterium by caliceal veils (right); note in a2 (28 000 ×; detail of a1), close adherence of a clubbed process (bottom left) to another bacterium showing VacA immunoreactivity of outer membrane and flagella (upper right); B (3000 ×): Intraepithelial DC with a narrow luminal process directly contacting bacteria; note close membrane adhesion to surrounding epithelial cells, focal interruption of the basal lamina (arrow), and outer membrane protein (OMP) immunoreactivity of cytoplasmic vacuoles (b1, 32 000 ×) and a multivesicular late endosome/lysosome body (b2, 22 000 ×); C (8000 ×): DC with clear cytoplasm, close adherence to surrounding epithelial cells, numerous mitochondria, sparse ribosomes and small rough endoplasmic reticulum (RER) cisternae; cytoplasmic vesicles and membranous remnants of an intracellular bacterium, enlarged in c (42 000 ×), show VacA immunoreactivity; D (2000 ×): Nucleated DC with abundant supranuclear mitochondria, no secretory granules, small tubular RER cisternae (enlarged in d1, 18 000 ×); several cytoplasmic vesicles, scattered vacuoles (v), and close adhesion to epithelial cells. On the left, two DC processes (arrows) are contacting the basal membrane (arrowheads). Several cross or longitudinal sections of partly swollen cell processes are observed in the lamina propria; the largest of which (enlarged in d2, 12 000 ×) shows ultrastructural homology with DC cytoplasm, including scattered, small RER cisternae and vesicles; the precise cells of origin of such lamina propria processes could not be assessed. BV: Blood vessel; fg: Foveolar granules; E (2000 ×): Base of foveolar epithelium showing an immature monocytoid cell (DC precursor?) with kidney-shaped nucleus, scattered ribosomes, a few juxtanuclear lysosomes, and no vesicles or granules; note a caliceal process embracing a mast cell (enlarged in e1, 15 000 ×; scroll bodies, arrow), a clubbed process adhering to \textit{H. pylori} (enlarged in e2, 55 000 ×), a lymphoid cell (Ly) crossing the epithelium basal membrane and another intercellular bacterium (arrow). Reprinted from Necchi et al[73], with permission from John Wiley.
VacA toxin

VacA has three well-confirmed cell activities, namely: cell vacuolation, apoptosis, and CD4+ T-lymphocyte activation and proliferation. This toxin was discovered as a secreted protein of H. pylori (at that time known as Campylobacter pylori) that induces a massive cytoplasmic vacuolation in vitro. About 55% of isolates of H. pylori are able to induce that cytopathic effect. VacA was shown later to form anionic channels into artificial lipid membranes, as well as cell membranes. VacA channel drives first an hyperacidification of late endocytic compartments by inducing, via the transport of anions into the lumen of these organelles, overactivity of the V-ATPase. Accumulation, by protonation, of weak bases such as ammonia (produced by H. pylori urease activity) into these compartments creates an osmotic imbalance that results in their swelling.

Deep-electron microscopy of VacA preparations has revealed that the toxin forms regular oligomers with either six- or sevenfold radial symmetry. Oligomerization of the toxin molecules creates a cavity in the center of the oligomer and mimics the structure of a pore-forming toxin (Figure 4) such as the α hemolysin of Staphylococcus aureus. In its mature state, VacA is an 88-kDa protein that can be cleaved into two subunits designated p33 (red and light blue) and p55 (light green and dark green). The cleavage between the subunit occurs in a flexible loop between residues 311 and 312. The two subunits are probably attached by non-covalent bonds between the p33 carboxy terminus and the N-p55 terminus. The amino-terminal part of p33 consists of 32 hydrophobic amino-acid stretch that is involved in the recognition of mitochondria (red) (MAS) (where the “s” toxin subtype site is located) followed by the p33 “core” subunit that forms, upon entry into the lipid membrane and oligomerization, an anionic channel (PF) (light blue). The toxin nicking site is located in the flexible loop domain. The amino-terminal part of p55 contains the cell receptor domain (about 110 amino acids) (RB; light green) followed by the p33 domain and about 110 residues of the N-terminal part of p55 (Figure 4). According to their molecular mass, the N-terminal subunit is denominated “p33”, whereas “p55” is the C-terminal one (Figure 4). The N terminus of the mature p33 toxin subunit consists of a stretch of 32 uncharged hydrophobic amino acids (found in the VacA s1 subtype). The presence of additional residues to p33 (found in the s2 subtype), ablation deletions within the hydrophobic residues, or specific point mutations of amino acids in this stretch inhibit the vacuolating activity of VacA. From these results, it has been concluded that VacA channel formation involves the N-terminal 32 amino acids of p33. Other observations have led to the hypothesis that, in addition to the p33 N-terminal part and p33 itself, a toxin domain localized in about the first 110 residues of the p55 is also required for the proper oligomerization of the toxin, for channel formation. This is supported by the fact that the minimal intracellular active domain of VacA contains the full p33 domain and about 110 residues of the N-terminal part of p55. In these experiments, the p33 toxin subunit, produced alone within cells, does not induce vacuolation.

In addition to its vacuolating activity, VacA exhibits apoptotic activity. Importantly, these studies have revealed that the p33 VacA subunit is targeted to mitochondria and only is required for apoptosis, and that a toxin mutant without vacuolating activity is non-apoptotic. Collectively, these data indicate that VacA induces, through the p33 subunit alone, apoptosis by acting on mitochondria, and most likely involves the toxin channel activity. Recently, it has been demonstrated that p33 oligomerizes without the need of p55 and forms an anionic channel with characteristics identical to that of the whole VacA molecule. Furthermore, ablation of the 32 N-terminal residues of p33 does not alter the pore-forming activity of the VacA subunit, but impairs the mitochondrial targeting activity of p33. Altogether, these new data indicate that the portion of p33 without its first 32 N-terminal residues (that we call the “core p33”) oligomerizes and contains all the channel activity of VacA. Domańska et al. have clarified the following, formerly puzzling, observations: (1) that a mutant toxin with a major deletion in the p33 N-terminal hydrophobic amino acids (VacA delta 6-27), albeit inhibiting the vacuolation process, nonetheless induces anionic channels in artificial bilayers, even though exhibiting a longer delay of formation than the wild-type toxin; and (2) that a single deletion (δ 49-57) in the p33 core domain inhibits the oligomerization of the toxin and the vacuolation. Indeed, in the light of the study of Domańska et al., these observations are well explained by the role of the p33 core without the N-terminal hydrophobic amino-acid stretch in forming the toxin channel by oligomerization. As depicted in Figure 4, the structure-activity of VacA would thus be the following: starting from the N terminus, the 32-amino-acid stretch consists of a mem-

Figure 4 Structure-function relationships in the VacA toxin. A: VacA is an 88-kDa protein that can be cleaved into two subunits designated p33 (red and light blue) and p55 (light green and dark green). The cleavage between the subunit occurs in a flexible loop between residues 311 and 312. The two subunits are probably attached by non-covalent bonds between the p33 carboxy terminus and the N-p55 terminus. The amino-terminal part of p33 consists of 32 hydrophobic amino-acid stretch that is involved in the recognition of mitochondria (red) (MAS) (where the “s” toxin subtype site is located) followed by the p33 “core” subunit that forms, upon entry into the lipid membrane and oligomerization, an anionic channel (PF) (light blue). The toxin nicking site is located in the flexible loop domain. The amino-terminal part of p55 contains the cell receptor domain (about 110 amino acids) (RB; light green) followed by the p33 domain and about 110 residues of the N-terminal part of p55 (Figure 4). According to their molecular mass, the N-terminal subunit is denominated “p33”, whereas “p55” is the C-terminal one (Figure 4). The N terminus of the mature p33 toxin subunit consists of a stretch of 32 uncharged hydrophobic amino acids (found in the VacA s1 subtype). The presence of additional residues to p33 (found in the s2 subtype), ablation deletions within the hydrophobic residues, or specific point mutations of amino acids in this stretch inhibit the vacuolating activity of VacA. From these results, it has been concluded that VacA channel formation involves the N-terminal 32 amino acids of p33. Other observations have led to the hypothesis that, in addition to the p33 N-terminal part and p33 itself, a toxin domain localized in about the first 110 residues of the p55 is also required for the proper oligomerization of the toxin, for channel formation. This is supported by the fact that the minimal intracellular active domain of VacA contains the full p33 domain and about 110 residues of the N-terminal part of p55. In these experiments, the p33 toxin subunit, produced alone within cells, does not induce vacuolation.

In addition to its vacuolating activity, VacA exhibits apoptotic activity. Importantly, these studies have revealed that the p33 VacA subunit is targeted to mitochondria and only is required for apoptosis, and that a toxin mutant without vacuolating activity is non-apoptotic. Collectively, these data indicate that VacA induces, through the p33 subunit alone, apoptosis by acting on mitochondria, and most likely involves the toxin channel activity. Recently, it has been demonstrated that p33 oligomerizes without the need of p55 and forms an anionic channel with characteristics identical to that of the whole VacA molecule. Furthermore, ablation of the 32 N-terminal residues of p33 does not alter the pore-forming activity of the VacA subunit, but impairs the mitochondrial targeting activity of p33. Altogether, these new data indicate that the portion of p33 without its first 32 N-terminal residues (that we call the “core p33”) oligomerizes and contains all the channel activity of VacA. Domańska et al. have clarified the following, formerly puzzling, observations: (1) that a mutant toxin with a major deletion in the p33 N-terminal hydrophobic amino acids (VacA delta 6-27), albeit inhibiting the vacuolation process, nonetheless induces anionic channels in artificial bilayers, even though exhibiting a longer delay of formation than the wild-type toxin; and (2) that a single deletion (δ 49-57) in the p33 core domain inhibits the oligomerization of the toxin and the vacuolation. Indeed, in the light of the study of Domańska et al., these observations are well explained by the role of the p33 core without the N-terminal hydrophobic amino-acid stretch in forming the toxin channel by oligomerization. As depicted in Figure 4, the structure-activity of VacA would thus be the following: starting from the N terminus, the 32-amino-acid stretch consists of a mem-
brane/mitochondrial targeting motif (which however does not participate in the toxin channel formation)\cite{93}. Then, the p33 channel core forms the channel activity, either in endosomal membranes or in the inner mitochondrial membrane (IMM)\cite{94}. At the end of the p33 subunit, there is the loop domain (58 residues) in which the toxin-nicking site is located (between residues 311 and 312). We speculate that a peptide motif just after the nicking site (i.e. residing in the 110 residues of the N-terminal part of p55 subunit) is implicated in the recognition of the toxin cell receptor. This is at odds with the current view that the toxin receptor domain is located in the so-called mid-region (m1/m2; i.e. residues 470-662) of p55\cite{94,95}. How to reconcile the recent data of Domatska et al\cite{95} with previous results indicating that the intracellular minimum portion of the VacA molecule active in the cytosol requires, in addition to p33, the 110 N-terminal residues of p55 for VacA oligomerization\cite{84,86,87}? Taking in account that the p33 toxin subunit oligomerizes alone and supports all the pore-forming ability of VacA\cite{84}, why does expression of this toxin subunit alone into cells not lead to cell vacuolation\cite{86,87}? We speculate that the different intracellularly expressed (by cDNA transfection) toxin domains might induce their vacuolating activities not after intracellular synthesis, but rather only after leaking out of the producing cells, followed by endocytosis via the VacA cognate receptor. This would point to the 110 residues present at the N-terminal part of p55 as containing the VacA cell receptor motif (Figure 4). This position would indeed be ideally suited to recognize a cell surface molecule close to the lipid bilayers (Figure 4). The 3D structure of the p55 VacA subunit has been recently resolved\cite{96} and shows that a large part of this toxin subunit has the classical fold of autotransporter structures of the bacterial Va secretion system (by which the toxin is transported), which is mostly implicated in the bacterial secretion of VacA. This is supported by previous experiments showing that several deletions in the p55 subunit abolish the production of VacA by the bacterium\cite{96}. Gangwer et al\cite{94} have proposed that a conserved pocket, located in the m1/m2 regions of p55, is the receptor domain of VacA, which becomes fully accessible to the cell receptor when the toxin is assembled in either a single- or double-layered oligomeric structure. However, it is well known that it is necessary to disrupt the oligomeric structure of VacA (by acidic or alkaline treatments) to render it able to bind to its cell receptor. Furthermore, the mutant toxin δ 49-57, which does not form oligomeric structures, does not require to be acid-activated to bind the VacA cell receptor\cite{97}. This demonstrates that the toxin receptor domain is probably not fully accessible in the VacA oligomeric form. More recently, González-Rivera et al\cite{94} have shown that a mixture of purified p33 and p55 does not form oligomeric structures in aqueous solvent, but only monomeric structures, whereas, upon addition of a detergent that mimicks a lipid membrane environment, there is formation of oligomeric structures. This result suggests that the hydrophobic environment induces the oligomerization, most likely by the p33-dependent formation of the channel. Importantly, it has also been shown that the p33 subunit markedly increases the cell binding of p55\cite{96}. Thus, VacA as a monomer first binds one cell receptor with low affinity, while upon oligomerization, bound to six receptors, it exhibit a very high affinity (Figure 4).

An important breakthrough, seminal for the identification of the VacA receptor, has been the finding that the toxin requires the integrity of lipid rafts and glycosphosphatidylinositol-anchored proteins (GPI-APs) for its full vacuolating activity, which suggests that VacA follows the GPI-AP pathway of endocytosis by a lipid raft-dependent, clathrin-independent pathway\cite{91}; later described in detail by Sabharanjak et al\cite{98}. The first vacuolar organelles collecting the incoming GPI-APs involve new intracellular compartments that have been named GPI-AP-enriched early endosomal compartments (GEECs), which differ from classical early endosomes\cite{99}. This endocytic pathway, which also requires the small Rho GTPase Cdc42\cite{94}, is currently named the GEEC endocytic pathway\cite{97,98}, and has been confirmed to be exploited by VacA for its internalization\cite{99,100} (Figure 5). It was later shown that the GEEC pathway requires the presence, in the cell plasma membrane, of the unsaturated lipid sphingomyelin, and that the length of the sphingomyelin acyl chain determines its endocytic intracellular trafficking\cite{101}. This prompted an investigation that has demonstrated the role of sphingomyelin as the VacA cell receptor\cite{102}. Accordingly, it has been demonstrated that the length of the sphingomyelin acyl chain also determines the VacA intracellular trafficking\cite{103}. Normal cells contain in their lipid membrane a high proportion of long acyl chain sphingomyelin (C18), and VacA bound to this lipid follows the GEEC pathway\cite{104}. In contrast, when cells are artificially enriched in short-acyl-chain sphingomyelin (C2), the toxin does not follow the GEEC pathway but is recycled back to the plasma membrane in a Cdc42-independent fashion\cite{105}. Upon VacA treatment, transformed human CD4+ T lymphocytes (Jurkat cells) block their constitutive production of IL-2\cite{106}. It is well established that, in T lymphocytes, the nuclear factor NFAT, upon processing by the calcium-activated calcineurin protease, activates the transcription of the IL-2 gene. Massive entry of calcium, through the voltage-dependent Ca2+ release-activated Ca2+ (CRAC) channels, is required to activate calcineurin. However, a VacA mutant without vacuolating activity has no effect on NFAT inhibition in Jurkat cells\cite{106}. Possibly, inhibition of NFAT by VacA is due to the electric depolarization of the lymphocytic plasma membrane, induced by the toxin anionic channel, which inhibits CRAC channels. Human primary T lymphocytes are, however, not sensitive to the deactivation of NFAT induced by VacA\cite{106}. Treatment of primary human T lymphocytes by phorbol myristate acetate, which induces their migratory activity, together with the expression of the CD18 β-integrin at their surface, restores the VacA-induced inhibition of NFAT\cite{107}. Furthermore, the direct
expression of CD18 into primary human T lymphocytes renders them able to respond to VacA[107]. It has therefore been concluded that CD18 is the receptor for VacA in immune cells[107]. This result is puzzling because, for all the different toxins studied so far, the cell binding activity always depends on a unique molecule (or a family of closely related molecules). However, a few observations do not support the role of CD18 as the sole VacA receptor in immune cells. Indeed, it has been demonstrated that, although human primary lymphocytes do not deactivate the nuclear factor NFAT, they respond perfectly to VacA by blocking their induced proliferation (i.e. blockage of their cell cycle) due to a mitochondria-induced depletion of ATP[106,108,109]. This fact clearly indicates that VacA binds and penetrates into primary lymphocytes without needing CD18 (probably using the sphingomyelin receptor). The fact that VacA, entering via sphingomyelin in primary T cells, does not inactivate NFAT can be explained by the possibility that the toxin channel is probably not recycled back (or only weakly recycled) to the plasma membrane, and therefore, is unable to block calcium cell entry through CRAC channel inhibition. We speculate that CD18 may not be a real receptor for VacA, but rather activates a signaling pathway (perhaps via the direct activation of CD18 by VacA, because association of VacA with CD18 has been reported[107]) that modifies the intracellular trafficking of the toxin. For instance, stimulation of the migratory activity of T lymphocytes by CD18 signaling might activate Cdc42 boosting of the entry of VacA[99], and increasing its recycling to the cell surface. It has recently been reported that the GEEC pathway is pivotal during cell migration[110]. Another possibility would be that CD18-driven signaling drastically changes the lipid membrane content of long-acyl-chain sphingomyelin molecules toward short ones forcing the toxin to recycle back to the plasma membrane as recently described[108].

How is VacA transferred from early endosomes to mitochondria and/or late endosomes to induce apoptosis and vacuolation? It is well known that ligands or membrane receptors taken up and routed for degradation into lysosomes are endocytosed by the clathrin-dependent pathway and targeted to the luminal vesicles of endosome-forming multivesicular bodies (MVBs) by the endosomal sorting complex required for transport (ESCRT) complex[110] (Figure 5). Propelled along microtubules, MVBs then move to lysosomes where the content of MVB internal vesicles is selectively delivered for degradation. Several lines of evidence indicate that MVBs and lysosomes are not the cell compartments that undergo vacuolation by VacA activity: (1) no internal vesicles are observed by electron microscopy in VacA-induced vacuoles and the enlarged compartment does not have the structure of lysosomes[93,111]; (2) the vacuolated compartment contains markers of both late endosomes and lysosomes[112]; and (3) disruption of microtubules does not block VacA-induced vacuolation[113]. Thus, the organelles that are vacuolated by VacA are likely post-lysosomal compartments that are required to recycle the membrane of MVBs from lysosomes. VacA is probably transferred directly to that compartment by an F-actin-dependent mechanism of endosome motility[101]. Indeed, upon entry of VacA into early endosomes via the GEEC pathway, VacA-containing early endosomes exhibit F-actin comet tails associated with their cytosolic membrane surface, and are rapidly moving in the cytosol[100]. Inhibition of these F-actin structures blocks the VacA transfer into the late endosomal compartment and vacuole genesis[100], but also VacA-induced apoptosis and the localization of toxin molecules in mitochondria[114]. These findings suggest that VacA is addressed to late endosomes and mitochondria by the same mechanism that relies on F-actin-driven vesicular motility. F-actin structures have recently been shown to take place at the level of the early endosomal
surface to induce budding of tubular structures followed by their cleavage to yield vesicles that retain F-actin tails. It is thus tempting to speculate that VacA might be first transferred from GEECs to the early endosomal limiting membrane, then into these tubular extensions, and finally into the membrane of the ensuing F-actin motile vesicles (Figure 5). These vesicles are then brought to late endosomes and/or mitochondria via stochastic fusion events by F-actin-driven vesicular motility (Figure 5). In this model, the transfer of VacA (or only of its p33 subunit) from the donor membrane to the recipient membrane (late endosomes or mitochondria) would be achieved by the membrane/mitochondrial N-terminal 32 residues of p33 that may stick out of the membrane (Figure 4). This would explain why point mutations, or deletion or modification of the length of this amino-acid stretch might modulate the vacuolating process without altering the pore-forming capacity of the toxin. Importantly, according to this model, the toxin would never be released free in the cytosol, which differs from the enzymatic subunits of canonical A-B toxin. By remaining associated with lipid membranes, out of reach of degradative processes, the VacA channel would keep its full activity for a long time, as observed several years ago.

Inside mitochondria, the p33 subunit (or the full VacA molecule) induces, probably by the rupture of IMM integrity, the release of cytochrome c (cyt c) and induction of apoptosis. However, pro-apoptotic channels must be activated or transferred into the outer membrane of mitochondria to ensure the release into the cytosol of cyt c, which, by activation of the Apaf1 complex, can then assemble the cytosolic proteins into an oligomeric protease, the caspase cascade that results in cell death. Accordingly, the pro-apoptotic channels Bax and Bak have been shown to be activated during VacA-induced apoptosis, and VacA is unable to induce apoptosis in Bax- and Bak-deficient mouse embryonic fibroblasts. It has been recently proposed that Bax and Bak might be directly recruited from the cytosol by endosomes containing functional VacA channels in their membranes, which allows their juxtaposition with mitochondria. This would be an ingenious way to combine the transfer of VacA channels to the IMM (and thereby the release of cyt c) in the mitochondrial intermembrane space and the leakage of cyt c in the cytosol.

Thus VacA is probably not really a multifunctional toxin, as previously defined. The diversity of VacA activities observed may be simply explained by the channel formed by the p33 subunit that is addressed to different cell membranes by the intracellular trafficking of the toxin, which may be different in different cell types or during cell differentiation (Figure 5).

Functional relationship between VacA and CagA

The gene encoding VacA is present in all the *H. pylori* strains, although only 55% express an active vacuolating toxin. This is due to either additions or deletions of peptide sequences in the toxin that probably impair the VacA intracellular trafficking or its binding to the cell surface, thus impairing the signaling pathway that is triggered by this receptor. Free EGFR ligands (EGF) are liberated from the cell-surface-bound molecules, which may contain the cell binding domain (to phosphorylase/serine (PS)/P). Cleavage of CagA may take place just at the beginning of the first EPIYA motif, which can be tyrosine-phosphorylated by the c-Src tyrosine kinase. The C-terminal portion of CagA, which contains all the signaling activity of the molecule, may have a different molecular mass (up to 45 kDa) due to the repetition of the EPIYA-containing domain; B: CagA produced within the bacterium is transferred in the external medium by the type IV secretion system (TFSS). Two possibilities for CagA transfer into the target epithelial cell: (a) by binding to an integrin (INT), the TFSS punches the cell membrane and injects CagA; or (b) the TFSS induces the flipping of PS on the outer cell surface. By its 100-kDa translocation (TFSS) complexes, CagA binds PS and, upon endocytosis, which is transferred into the gastric cells. In the cytosol, the CagA signaling domain can be tyrosine-phosphorylated (YP) and inhibits the c-Src kinase activity that is required to allow the transfer of VacA from glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartments (GEECs) to early endosomes (EEs). This blocks vacuolation in late endosomes (LEs) and mitochondria (M-dependent apoptosis induced by VacA. In an unphosphorylated (-YP) state, CagA activates mitogen-activated protein (MAP) extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-xB anti-apoptotic and pro-inflammatory pathways, which also counteract VacA-induced apoptosis. VacA interferes with epidermal growth factor (EGF) receptor (EGFR) activation and endocytosis, thus impairing the signaling pathway that is triggered by this receptor. Free EGFR ligands (EGF) are liberated from the cell-surface-bound molecules via cleavage triggered by Helicobacter pylori (H. pylori). TJ: Tight junction.

Figure 6 Structure of CagA and signaling cross-talk between VacA and CagA. A: CagA encompasses two fragments: the N-terminal 100 kDa fragment may contain the cell binding domain (to phosphorylated/serine (PS)/P). Cleavage of CagA may take place just at the beginning of the first EPIYA motif, which can be tyrosine-phosphorylated by the c-Src tyrosine kinase. The C-terminal portion of CagA, which contains all the signaling activity of the molecule, may have a different molecular mass (up to 45 kDa) due to the repetition of the EPIYA-containing domain; B: CagA produced within the bacterium is transferred in the external medium by the type IV secretion system (TFSS). Two possibilities for CagA transfer into the target epithelial cell: (a) by binding to an integrin (INT), the TFSS punches the cell membrane and injects CagA; or (b) the TFSS induces the flipping of PS on the outer cell surface. By its 100-kDa translocation (TFSS) complexes, CagA binds PS and, upon endocytosis, which is transferred into the gastric cells. In the cytosol, the CagA signaling domain can be tyrosine-phosphorylated (YP) and inhibits the c-Src kinase activity that is required to allow the transfer of VacA from glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartments (GEECs) to early endosomes (EEs). This blocks vacuolation in late endosomes (LEs) and mitochondria (M-dependent apoptosis induced by VacA. In an unphosphorylated (-YP) state, CagA activates mitogen-activated protein (MAP) extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-xB anti-apoptotic and pro-inflammatory pathways, which also counteract VacA-induced apoptosis. VacA interferes with epidermal growth factor (EGF) receptor (EGFR) activation and endocytosis, thus impairing the signaling pathway that is triggered by this receptor. Free EGFR ligands (EGF) are liberated from the cell-surface-bound molecules via cleavage triggered by Helicobacter pylori (H. pylori). TJ: Tight junction.
for this mechanism is that _H. pylori_ might deliver CagA at the apical pole of colonized epithelial gastric cells, whereas integrins are localized on the basolateral pole. On the other hand, it has been proposed that the TFSS does not punch the cell surface but induces the flipping out of the lipid phosphatidylycerine (PS) from the inner (where it normally resides) to the outer leafer of the target cell membrane[^22]. In this model, CagA, which is secreted constitutively by the TFSS, binds to PS through a lipid-binding peptide motif that is present in its 100-kDa N-terminal part[^21]. Following this binding step, a novel type of endocytosis (not yet better characterized nor defined) is induced that carries CagA, associated with PS, into epithelial gastric cells[^11]. If this is true, CagA should no longer be defined as an effector protein, but rather as a new type of A-B toxin that is released only in close proximity to the target cells.

Inside the cell, CagA may be tyrosine phosphorylated by the p60 c-Src kinase[^114]. Phosphorylation occurs on the 35-45-kDa C-terminal part of CagA on specific five-amino-acid motifs called EPIYA, which can be repeated several-fold and increase the size of this fragment[^26,78]. CagA can be split into two fragments by proteases[^122,123]. This generates a 100-kDa N-terminal fragment and a C-terminal 35-45-kDa one that contain all the cell signaling activity of CagA[^114]. Proteolytic cleavage of CagA does not require its tyrosine phosphorylation, and the nicking site is localized just at the onset of the first EPIYA motif (Boquet and Ricci, unpublished data). The 100-kDa N-terminal part of CagA might be involved in the cell recognition and transfer of the 35-45-kDa C-terminal part to the cytosol, as suggested by recent data[^121]. Therefore, CagA would indeed behave as a typical A-B toxin.

Two main intracellular activities of CagA are now well established. In its tyrosine phosphorylated state, CagA may act, either directly or upon association and activation of the tyrosine phosphatase SHP2[^79], to inhibit the c-Src kinase and therefore to affect many regulating proteins that depend on this enzyme, among which are those involved in the actin cytoskeleton assembly/regulation[^124]. In its non-tyrosine-phosphorylated form (or independent of the phosphorylation state), CagA activates the MAP/ERK and NF-kB pathways[^125,126], which induce cell proliferation, inhibition of apoptosis, a typical cellular elongation called “hummingbird phenotype”[^60], and inflammatory response[^95] (Figure 6).

An increasing body of evidence suggests that CagA and VacA have several opposing cellular effects. It has been shown that, while CagA activates the NFAT nuclear factor, VacA inhibits it[^128]. Then, it has been demonstrated that CagA decreases VacA-induced vacuolation, while in turn, VacA reduces CagA-induced hummingbird phenotype formation[^127]. It has also been shown that VacA can downregulate CagA effects on epithelial cells by interfering with activation and endocytosis of EGFR, thus impairing the signaling pathway triggered by this receptor, and which plays a pivotal role in cell proliferation and hummingbird phenotype formation[^128]. Taken together, these findings raise the hypothesis that VacA and CagA may downregulate the cell effects of the other, allowing _H. pylori_ interaction with epithelial cells, while avoiding excessive cell damage.

We have recently shown that CagA interferes with VacA action by two complementary mechanisms[^114]. In its tyrosine-phosphorylated state, CagA inhibits the c-Src kinase and, in doing so, blocks VacA in the GEECs and thus its delivery to early and late endosomes (inhibition of the vacuolation) or mitochondria (inhibition of apoptosis). In its unphosphorylated state, CagA stimulates the NF-kB pathway and, in doing so, induces anti-apoptotic activity (mediated possibly by the anti-apoptotic factor Bel2) that also blocks VacA-induced apoptosis. We hypothesize that, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of _H. pylori_ that are adherent to the mucosa, and thus the CagA counteracting action gives a rationale for the association of these two virulence factors in the most pathogenic _H. pylori_ strains[^114]. This would be a new, highly ingenious mechanism by which a bacterium locally protects its ecological niche against the action of one of its own virulence factors. However, while exerting a beneficial role for survival and growth of the bacterium by counteracting VacA toxin, CagA injection in the gastric epithelial cells triggers pro-inflammatory and anti-apoptotic responses that are detrimental for the human host in the long-term, because they favor the development of ulcer and cancer.

Because it simultaneously delivers to its host two independent virulence factors that antagonize each other, _H. pylori_ appears to act like a driver that presses the brake and gas pedals at once. This apparently paradoxical behavior is now emerging as an intriguing strategy to achieve the best fit between the bacterium and the hostile gastric environment that represents its ecological niche.

CONCLUSION

With regard to the pathogen, illness is often inadvertent; the result of exquisite tricks learned long ago and played on human cells to achieve the paramount goal of the microorganism: conservation of the species[^96,129]. Taken together, all the new findings described above strongly reinforce the notion that _H. pylori_ is a skilled bacterium that has been smart enough to: (1) learn about the physiology of its host; (2) keep this information in its genetic library; (3) share the gene book with other organisms; (4) be “open minded” about acquiring new knowledge and discarding obsolete information; and, of key importance; and (5) know how to communicate with its human host, realizing that killing the host would oblige it to find a new one very quickly to ensure its reproductive success[^96,129]. _H. pylori_ makes a long and hard, but also successful, journey in the human stomach, given that _H. pylori_ is widespread and has probably been part of the human biota since time immemorial[^111,96,130]. Although _H. pylori_ seeking survival may be sometimes achieved at the expense of the well-being
of the stomach and the host, human physiology and immunology have co-evolved in the presence of persistent gastric *H. pylori* colonization, and so are disrupted by its absence. As emphasized by Atherton et al., this imbalance of a long-lasting pathogen/host equilibrium, caused by progressive disappearance of *H. pylori* from some populations, may however result in an increased incidence of other diseases such as reflux esophagitis and esophageal carcinoma, as well as obesity, type 2 diabetes, and allergic disorders.

REFERENCES

1. Everhart JE. Recent developments in the epidemiology of Helicobacter pylori. *Gastroenterol Clin North Am* 2000; 29: 559-578
2. Zarrilli R, Ricci V, Romano M. Molecular response of gastric epithelial cells to Helicobacter pylori-induced cell damage. *Cell Microbiol* 1999; 1: 93-99
3. Hershényi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. *Eur Rev Med Pharmacol Sci* 2010; 14: 249-258
4. Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. *Clin Microbiol Infect* 2009; 15: 971-976
5. Correa RP, Piazuelo MB, Camargo MC. The future of gastric cancer prevention. *Gastric Cancer* 2004; 7: 9-16
6. Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. *Nat Rev Cancer* 2002; 2: 28-37
7. Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Lam SK, Wong WM, Chen JS, Zheng TT, Feng YJ, Noppakul N, Chang SH, Nurieva R, Wang YH, Lee YC, Kim HK, Blaser MJ. Helicobacter pylori infection, esophageal carcinoma, as well as obesity, type 2 diabetes, and allergic disorders.
Ricci V et al. H. pylori/human gastric mucosa interaction

37 Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, Meltzer SJ, Wilson KT. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 1999; 116: 1319-1329

38 Buselli I, Acquaviva R, Di Popolo A, Blanchard TG, Ricci V, Romano M, Zarrilli R. Helicobacter pylori p gyrA-gamma-glutamyltranspeptidase upregulates COX-2 and EGF-related peptide expression in human gastric cells. Cell Microbiol 2004; 6: 255-267

39 Shibayama K, Kamachi K, Nagaoka N, Yagi T, Nada T, Doi Y, Shibata N, Yokoyama K, Yamane K, Kato H, Inuma Y, Arakawa Y. A novel apoptosis-inducing protein from Helicobacter pylori. Mol Microbiol 2003; 47: 443-451

40 Romano M, Ricci V, Di Popolo A, Sommi P, Del Vecchio Blanco C, Bruni CB, Ventura U, Cover TL, Blaser MJ, Coffey RJ, Zarrilli R. Helicobacter pylori upregulates expression of epidermal growth factor-related peptides, but inhibits their proliferative effect in MKN 28 gastric mucosal cells. J Clin Invest 1998; 101: 1604-1613

41 Keates S, Sougoultsis S, Keates AC, Zhao D, Peek RM Jr, Shaw LM, Kelly CP, cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells. J Biol Chem 2001; 276: 48127-48134

42 Wallasch C, Crabtree JE, Bevec D, Robinson PA, Wagner H, Ullrich A. Helicobacter pylori-stimulated EGF receptor transactivation requires metalloprotease cleavage of HB-EGF. Biochem Biophys Res Commun 2002; 295: 695-701

43 Romano M, Ricci V, Memoli A, Tuccillo C, Di Popolo A, Sommi P, Acquaviva AM, Del Vecchio Blanco C, Bruni CB, Zarrilli R. Helicobacter pylori cagA regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. J Biol Chem 1998; 273: 28560-28563

44 Caputo R, Tuccillo C, Manzo BA, Zarrilli R, Tortora G, Blanco C, Candel V, Ricci V, Ciardiello F, Romano M. Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin Cancer Res 2003; 9: 2015-2021

45 Yan F, Cao H, Chaturvedi R, Krishna U, Hobbs SS, Dempsey PJ, Peek RM Jr, Cover TL, Washington MK, Wilson KT, Polk DB. Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 2000; 119: 1297-1307, e1-3

46 Romano M, Ricci V, Zarrilli R. Mechanisms of disease: Helicobacter pylori-related gastric carcinogenesis—implications for chemoprevention. Nat Clin Pract Gastroenterol Hepatol 2006; 3: 622-632

47 Mammano E, Belluco C, Sciro M, Mencarelli R, Agostini M, Michelotto M, Marchet A, Nitti D. Epidermal growth factor receptor (EGFR): mutational and protein expression analysis in gastric cancer cells. J Pathol 2001; 195: 288-298

48 Tuccillo C, Cuomo A, Rocco A, Martellini E, Staiibano S, Mascolo M, Gravina AG, Nardone G, Ricci V, Ciardiello F, Del Vecchio Blanco C, Romano M. Vascular endothelial growth factor expression and angiogenesis in H. pylori gastritis in humans. J Pathol 2005; 207: 277-284

49 Crawford HC, Krishna US, Israel DA, Mattrissian LM, Washington MK, Peek RM Jr. Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within gastric mucosa. Gastroenterology 2003; 125: 1125-1136

50 Wu CY, Wang CJ, Tseng CC, Chen HP, Wu MS, Lin JT, Inoue H, Chen GH. Helicobacter pylori promote gastric cancer cells invasion through a NF-kappaB and COX-2-mediated pathway. World J Gastroenterol 2005; 11: 3197-3203

51 Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB, Neish AS, Collier-Hyams L, Perez-Perez GI, Hatakeyama M, Whitehead R, Gaus K, O'Brien DP, Romero-Gallo J. Peep RM Jr. Activation of beta-catenin by carcino- genic Helicobacter pylori. Proc Natl Acad Sci USA 2005; 102: 10464-10465

52 Tsukashita S, Kushima R, Bamba M, Nakamura E, Mukaisho K, Sugihara H, Hattori T. Beta-catenin expression in intramucosal neoplastic lesions of the stomach. Comparative analysis of adenoma/dysplasia, adenocarcinoma and signet-ring cell carcinoma. Oncology 2003; 64: 251-258

53 Suzuki M, Mimuro H, Kiga K, Fukushima M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasaki C. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 2009; 5: 23-34

54 Polk DB, Peep RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010; 10: 403-414

55 de Paulis A, Prevete N, Rossi FW, Rivellese F, Salerno F, Delfino G, Liccandro B, Avilla E, Montuori N, Mascolo M, Staiibano S, Melillo RM, D’Argeo G, Ricci V, Romano M, Marone G. Helicobacter pylori Hp(2-20) promotes migration and proliferation of gastric epithelial cells by interacting with formyl peptide receptors in vitro and accelerates gastric mucosal healing in vivo. J Immunol 2009; 183: 5761-5769

56 Ricci V, Zarrilli R, Romano M. Voyage of Helicobacter pylori in human stomach: odyssey of a bacterium. Dig Liver Dis 2002; 34: 2-8

57 Necchi V, Caudusse MO, Tava F, Luinetti O, Ventura U, Fiocca R, Ricci V, Solcia E. Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 2007; 132: 1009-1023

58 Petersen AM, Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol 2003; 36: 117-126

59 Dubois A, Borén T. Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol 2007; 9: 1108-1116

60 Lu H, Yamaoka Y, Graham DY. Helicobacter pylori virulence factors: facts and fantasies. Curr Opin Gastroenterol 2005; 21: 653-659

61 Montecucco C, de Bernard M. Immunosuppressive and proinflammatory activities of the VacA toxin of Helicobacter pylori. J Exp Med 2003; 198: 1767-1771

62 Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133: 128-138

63 Semino-Mora C, Doi SQ, Marty A, Simko V, Carlstedt I, Dubois A. Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J Infect Dis 2003; 187: 1165-1177

64 Amieva MR, Vogelmann R, Covacci A, Tomkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003; 300: 1430-1434

65 Wilkinson SM, Ulh JR, Kline BC, Cockerill FR 3rd. Assessment of invasion frequencies of cultured HEp-2 cells by clinical isolates of Helicobacter pylori using an acidine orange assay. J Clin Pathol 1998; 51: 127-133

66 Segal ED, Cha J, Lo J, Falkow S, Tomkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 1999; 96: 14559-14564

67 Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, Akanuma M, Shiratori Y, Omata M. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 2000; 119: 97-108

68 Kim JY, Tao H, Carlone E, Leung WK, Graham DY, Sepulveda AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 2002; 123: 542-553
Ricci V et al. H. pylori/human gastric mucosa interaction

69 Necci V, Sommi P, Ricci V, Solcia E. In vivo accumulation of Helicobacter pylori products, NOD1, ubiquitinated proteins and proteasome in a novel cytoplasmic structure. PLoS One 2010; 5: e9716

70 Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23: 4776-4789

71 Uronen-Hansson H, Allen J, Osman M, Squires G, Klein N, Callard RE. Toll-like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with microtubules and the Golgi apparatus but are not detectable on the cell surface: integrity of microtubules is required for interleukin-12 production in response to internalized bacteria. Immunology 2004; 111: 173-179

72 Rimoldi M, Chiappa M, Larghi P, Vulcano M, Allavena P, Rescigno M. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 2005; 106: 2818-2826

73 Necci V, Manca R, Ricci V, Solcia E. Evidence for transepithelial dendritic cells in human H. pylori active gastritis. Helicobacter 2009; 14: 208-222

74 Palendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293: 253-256

75 Allen LA. Phagocytosis and persistence of Helicobacter pylori. Cell Microbiol 2007; 9: 817-828

76 Ito T, Kobayashi D, Uchida K, Takemura T, Nagaoka S, Kobayashi I, Yokoyama T, Ishige I, Ishige Y, Ishida N, Furukawa A, Muraoka A, Ikeda S, Sekine M, Ando N, Suzuki Y, Yamada T, Suzuki T, Eishi Y. Helicobacter pylori invades the gastric mucosa and translocates to the gastric lymph nodes. Lab Invest 2008; 88: 664-681

77 Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 2005; 3: 320-332

78 Hatakeyama Y. Saga of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 2008; 11: 30-37

79 Backert S, Tegtmeyer N, Sebald M. The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter 2010; 15: 163-176

80 Isomoto H, Moss J, Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. Tohoku J Exp Med 2010; 220: 3-14

81 Boquet P, Ricci V, Galmiche A, Gauthier NC. Gastric cell apoptosis and H. pylori: has the main function of VacA finally been identified? Trends Microbiol 2003; 11: 410-413

82 Leuk RD, Johnson PT, David BC, Kraft WG, Morgan DR. Cytotoxicity action in breast-culture filtrates of Campylobacter pylori. J Mol Microbiol 1988; 26: 93-99

83 Gouaux E. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 1997; 7: 566-573

84 Ivie SE, McClain MS, Torres VJ, Algodon HM, Lacy DB, Yang R, Blanke SR, Cover TL. Helicobacter pylori VacA subdomain required for intracellular toxin activity and assembly of functional oligomeric complexes. Infect Immun 2008; 76: 2843-2851

85 Vinion-Dubiel AD, McClain MS, Czajkowski DM, Iwamoto Y, De D, Cao P, Schraw W, Szabo G, Blanke SR, Shao Z, Cover TL. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J Biol Chem 1999; 274: 37736-37742

86 de Bernard M, Burroni D, Papini E, Rappuoli R, Telford J, Montecucco C. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect Immun 1998; 66: 6014-6016

87 Ye D, Willhite DC, Blanke SR. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. J Biol Chem 1999; 274: 9277-9282

88 Galmiche A, Rassow J, Doyle A, Cagnol S, Chambard JC, Contamin S, de Thillot V, Just I, Ricci V, Solcia E, Van Obberghen E, Boquet P. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J 2000; 19: 6361-6370

89 Cover TL, Krishna US, Israel DA, Peek RM Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 2003; 63: 951-957

90 Chiozzi V, Mazzini G, Oldani A, Sciullo A, Ventura U, Romano M, Boquet P, Ricci V. Relationship between Vac A toxin and ammonia in Helicobacter pylori-induced apoptosis in human gastric epithelial cells. J Physiol Pharmacol 2009; 60: 23-30

91 Domańska G, Motz C, Meincke M, Harsman A, Papathedorou P, Reljic B, Dian-Lothra EP, Galmiche A, Kepp O, Becker L, Günnewig K, Wagner R, Rassow J. Helicobacter pylori Vaca toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane. PLoS Pathog 2010; 6: e1000878

92 Genisetti C, Galeotti CL, Luperti P, Mercati D, Skibinski D, Barone S, Battistutta R, de Bernard M, Telford JL. A Helicobacter pylori vacuolating toxin mutant that fails to oligomerize has a dominant negative phenotype. Infect Immun 2006; 74: 1786-1794

93 Gangwer KA, Mushrush DJ, Staffl DL, Spiller B, McClain MS, Cover TL, Lacy DB. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci USA 2007; 104: 16293-16298

94 González-Rivera C, Gangwer KA, McClain MS, Eli M, Chambers MG, Ohi MD, Lacy DB, Cover TL. Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry 2010; 49: 5743-5752

95 Ricci V, Galmiche A, Doyle A, Necci V, Solcia E, Boquet P. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol Biol Cell 2010; 11: 3897-3909

96 Sabharanjak S, Sharma P, Porton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002; 2: 411-423

97 Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8: 603-612

98 Howes MT, Mayor S, Porton RG. Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 2010; 22: 519-527

99 Gauthier NC, Monzo P, Kaddai V, Doyle A, Ricci V, Boquet P. Helicobacter pylori vacuolating cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol Cell Biol 2005; 15: 4852-4866

100 Gauthier NC, Ricci V, Landraud L, Boquet P. Helicobacter pylori vacuolating toxin: a tool to study novel early endosomes. Trends Microbiol 2006; 14: 292-294

101 Gauthier NC, Monzo P, Gonzalez T, Doyle A, Oldani A, Gounon P, Ricci V, Cormont M, Boquet P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. J Cell Biol 2007; 177: 343-354

102 Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol 2010; 12: 1517-1533

103 Gupta VR, Patel HK, Kotula SK, Ballivan RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 2008; 4: e1000073

104 Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 2003; 301: 1099-1102

105 Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amechi A, D'Elisio MM, Telford JL, Baldari CT. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med 2003; 198: 1887-1897

106 Sundrud MS, Torres VJ, Unutmaz D, Cover TL. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on...
IL-2 secretion. *Proc Natl Acad Sci USA* 2004; **101**: 7727-7732

107. Sewald X, Gebert-Vogl B, Prassl S, Barwig I, Weiss E, Fabbri M, Osicka R, Schiemann M, Busch DH, Semmrich M, Holzmann B, Sebo P, Haas R. Integrin subunit CD18 is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. *Cell Host Microbe* 2008; **3**: 20-29

108. Oswald-Richter K, Torres VJ, Sundrud MS, VanCompernolle SE, Cover TL, Unutmaz D. Helicobacter pylori VacA toxin inhibits human immunodeficiency virus infection of primary human T cells. *J Virol* 2006; **80**: 11767-11775

109. Torres VJ, VanCompernolle SE, Sundrud MS, Unutmaz D, Cover TL. Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets. *J Immunol* 2007; **179**: 5433-5440

110. Luzio JP, Piper SC, Bowers K, Parkinson MD, Lehner PJ, Bright NA. ESCRT proteins and the regulation of endocytic delivery to lysosomes. *Biochem Soc Trans* 2009; **37**: 178-180

111. Sommi P, Ricci V, Fiocca R, Necchi V, Romano M, Telford JL, Solcia E, Ventura U. Persistence of Helicobacter pylori VacA toxin and vacuolating potential in cultured gastric epithelial cells. *Am J Physiol* 1998; **275**: G681-G688

112. Molinari G, Galli C, Norais N, Telford JL, Rappuoli R, Luzio JP, Montecucco C. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. *J Biol Chem* 1997; **272**: 25339-25344

113. Li Y, Wandinger-Ness A, Goldenring JR, Cover TL. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. *Mol Biol Cell* 2004; **15**: 1946-1959

114. Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O, Canonicci A, Sciullo A, Sommi P, Fabbri A, Ricci V, Boquet P. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. *J Biol Chem* 2007; **282**: 1250-1263

115. Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gauthreaux A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. *Dev Cell* 2009; **17**: 712-723

116. Yamasaki E, Wada A, Kumatari A, Nakagawa I, Funao J, Nakayama M, Hisatsune J, Kimura M, Moss J, Hirayama T. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bak and Bak, leading to cytochrome c release and cell death, independent of vacuolation. *J Biol Chem* 2006; **281**: 11250-11259

117. Calore F, Genisset C, Casellato A, Rossato M, Codolo G, Esposito MD, Scorrano L, de Bernard M. Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. *Cell Death Differ* 2010; **17**: 1707-1716

118. Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. *Curr Opin Microbiol* 2006; **9**: 207-217

119. Kwock T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S. Helicobacter exploits integrin for type IV secretion and kinase activation. *Nature* 2007; **449**: 862-866

120. Jiménez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, Rohde M, Pirch T, Jung K, Retta SE, Terradot L, Fischer W, Haas R. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. *PLoS Pathog* 2009; **5**: e1000684

121. Murata-Kamiya N, Kikuchi K, Hayashi T, Higashi H, Hatakeyama M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. *Cell Host Microbe* 2010; **7**: 399-411

122. Moese S, Selbach M, Zimmy-Arndt U, Jungblut PR, Meyer TF, Backert S. Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakdown? *Proteomics* 2001; **1**: 618-629

123. Odenbreit S, Gebert B, Püls J, Fischer W, Haas R. Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. *Cell Microbiol* 2001; **3**: 21-31

124. Selbach M, Moese S, Hurlwitz R, Hauck CR, Meyer TF, Backert S. The Helicobacter pylori CagA protein induces c-Jun-dependent phosphorylation and actin rearrangement by c-Src inactivation. *EMBO J* 2003; **22**: 515-528

125. Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, Fujita Y, Nagamatsu K, Ishijima N, Koyasu S, Haas R, Sasakawa C. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. *Cell Host Microbe* 2007; **2**: 250-263

126. Yokoyama K, Higashi H, Ishikawa S, Fujii Y, Kondo S, Kato H, Azuma T, Wada A, Hirayama T, Aburatani H, Hatakeyama M. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. *Proc Natl Acad Sci USA* 2005; **102**: 9661-9666

127. Argent RH, Thomas RJ, Letley DP, Rittig MG, Hardie KR, Atherton JC. Functional association between the Helicobacter pylori virulence factors VacA and CagA. *J Med Microbiol* 2008; **57**: 145-150

128. Tegtmeier N, Zabler D, Schmitt D, Hartig R, Brandt S, Backert S. Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. *Cell Microbiol* 2009; **11**: 488-505

129. Fasano A. Cellular microbiology: can we learn cell physiology from microorganisms? *Am J Physiol* 1999; **276**: C765-C776

130. Atherton JC, Blaser MJ. Co-adaptation of Helicobacter pylori and humans: ancient history, modern implications. *J Clin Invest* 2009; **119**: 2475-2487

S-Editor Tian L L-Editor Kerr C E-Editor Zheng XM