Functional and biochemical improvement following total knee arthroplasty in early postoperative period

Arzu Erden1*, Murat Emirzeoğlu1, Kübra Canlı2, Serap Özer Yaman3, Ibrahim Pekşen4, Osman Aynaci5, Süleyman Caner Karahan3

INTRODUCTION

Osteoarthritis (OA) is one of the most common chronic peripheral joint diseases. Loss of function and pain are important symptoms, and one of the main goals of treatment is to improve the quality of life1. Total knee arthroplasty (TKA) is a favorite surgical approach aimed at improving joint function and relieving pain intensity. In the United States, the incidence rate of TKA is expected to increase2, thus increasing the financial burden. Biomechanical and biochemical changes associated with TKA are being studied but not clearly explained. So, it is important to show the changes in pain intensity, lower extremity alignment, functional status, joint position sense (JPS), and cytokine levels (IL-6, TNF-α, and IL-1β) of patients who underwent TKA.

Related literature generally focused on biomechanical gains such as reducing pain and increasing functional status after TKA. However, there is very limited evidence about cytokines, and JPS in the acute phase after TKA. So, this situation requires examining cytokines (IL-6, TNF-α, and IL-1β) after TKA. The investigation of cytokine levels in terms of response to degenerative processes and surgical stress in the joint can be guided. Biomechanical deteriorations in the knee joint affect patients’ knee JPS adversely3. Although many studies show evidence that TKA improves proprioception in suitable surgical candidates, the overall effect of TKA on proprioception is controversial4. More studies are still needed on this subject in a holistic approach.

The main hypothesis of the study is to investigate whether there is a functional and biochemical effect of TKA surgery. Another hypothesis is to investigate whether the functional parameters and inflammatory cytokines in the group undergoing TKA.
TKA reach levels similar to those in the OA group 6 weeks after the operation without any indication for surgery. So, the purpose of this study was to indicate the early effects of TKA on pain intensity, knee joint valgus angle, malalignment, functional status, knee JPS, and cytokine levels in patients with late-stage knee osteoarthritis (LSKO), and to compare the early-stage knee osteoarthritis (ESKO) and LSKO in terms of these parameters.

METHODOLOGY
This study was designed as a prospective cohort study. It was completed with 51 OA patients (female/male: 37/14): 29 in the LSKO group (female/male: 24/5) and 22 in the ESKO group (female/male: 13/9). They were evaluated with complaints of knee pain by the Department of Orthopaedics and Traumatology, Farabi Hospital, Faculty of Medicine, Karadeniz Technical University. The OA severity level was determined according to the Kellgren-Lawrence classification system. Patients with grade 4 degeneration levels who had surgical indications between the ages of 45 and 75 years were included in the LSKO group (n=29), and they underwent surgery. Patients without surgical indication with lower than 3 OA severity were included in the ESKO group (n=22), and they did not undergo surgery. Patients with surgical history of the ipsilateral side, neuropathic pain, loss of sensation, and systemic, chronic, and infectious diseases were excluded from the study. First, 41 cases were evaluated for the LSKO group; 11 patients who did not come for follow-up after discharge and 1 patient who was hepatitis C virus positive were excluded.

This study was approved by the Karadeniz Technical University Scientific Research Ethics Committee (May 25, 2018; no. 2018/91). Patients were informed about the study. They read and signed the written informed consent form.

After the sociodemographic features were recorded, pain intensity, valgus angle and malalignment, functional status, JPS, and cytokine levels (IL-6, TNF-α, and IL-1β) were evaluated. Measurements were taken once from the ESKO group, and twice from the LSKO group in preoperative and postoperative 6th weeks.

Main outcome measures
Pain intensity: The pain intensity was evaluated by the visual analog scale. The patients marked their intensity of pain on rest and walking on a vertical line of 10 cm (0: no pain, 10: unbearable pain)\(^5\).

Valgus angle and malalignment assessment: They were calculated on the knee anteroposterior direct x-ray image by an experienced orthopedist. The valgus angle was calculated as the angle facing the lateral between the anatomical axis of the tibia and the anatomical axis of the femur. For malalignment measurement, vertical lines were drawn from the edges to the proximal joint face of the tibia and the distal joint face of the femur. The distance between these perpendicular lines was recorded\(^6\).

Functional status: The Western Ontario and McMaster Universities Arthritis Index (WOMAC) was used. The validity and reliability of the index in Turkish were determined by Tüzün et al.\(^7\) This 24-item index has three subdimensions: pain, stiffness, and physical function. A high score means a low level of functional status\(^7\).

JPS: In our study, the protocol developed by Hurley\(^4\) was used. The knee was passively brought to 70° at a rate of 10°/s starting from 90° of flexion. After holding it for 3 s at this angle, it was passively brought to its initial position at the same speed. Then, the patient was instructed to actively bring the knee to the targeted angle and hold this position for 5 s. The amount of deviation from the target angle was recorded. The average of their trials was calculated for the final score. The same evaluations were performed for 55° and 35° knee flexion angles, respectively.

Cytokine level: Systemic venous blood samples were taken. IL-6, TNF-α, and IL-1β cytokine levels were examined. Venous blood samples were taken to separator gel biochemistry tubes and allowed to clot for 30 min at room temperature. The clotted blood samples were centrifuged for 10 min at 3000 rpm. Serum samples obtained as a result of centrifugation were divided into tubes with micro-volume caps and stored at -80°C. All the samples in the LSKO and ESKO groups were analyzed simultaneously using kits that can measure using the enzyme-linked immunosorbent assay method.

Statistical analysis
The SPSS 21.0 (Statistical Package for Social Science, Chicago, IL, USA) package program was used for the analysis. Student’s t-test and Mann-Whitney U test were used in the preoperative and postoperative comparisons of the groups. Paired-sample t-test and Wilcoxon test were used to compare the measurements. Mean, standard deviation, and total number were calculated. The significance level was taken as p<0.05. The G*Power 3.1.9.2 program was used for sample size. When the effect size was accepted as 0.5 with 5% type 1 error and 80% power according to repeated measures differences analyses, it was calculated as 28 patients for LSKO. The current power was calculated as 82% for the results.
RESULTS
Sociodemographic features and preoperative outcome measurements were shown in Table 1.

Pain intensity, functional status, valgus angle, malalignment, and JPS deviation in 70° and IL-6 showed significant improvement in the postoperative 6th week compared to the preoperative period in the TKA group (p<0.05). There was no significant difference among TNF-α, IL-1β, and JPS deviation in 35° and 55° in preoperative and postoperative periods (p>0.05) (as can be seen in Table 2).

According to the results of the relationship between the LSKO and ESKO groups 6 weeks after TKA, TNF-α and IL-1β values were significantly higher, while pain intensity during walking and malalignment amount data were lower in the LSKO group (p<0.05). There was no significant difference in pain intensity during rest, WOMAC score, valgus

Parameters	LSKO group X±SD	ESKO group X±SD	p-value
Age (years)	67.55±6.55	54.18±8.25	<0.001*
Body weight (kg)	82.31±8.64	82.95±13.73	0.84
Body height (cm)	161.34±6.69	166.18±10.60	0.07
Body mass index (kg/m²)	31.72±3.79	30.25±5.59	0.27
Pain intensity			
During rest	4.04±2.87	2.10±1.78	0.004*
During walking	6.88±2.09	4.46±2.77	0.001*
Valgus angle	184.23±7.31	177.56±2.80	<0.001*
Malalignment	5.46±2.67	2.75±1.96	<0.001*
WOMAC score	72.72±13.13	33.64±12.44	<0.001*
Amount of joint position sense deviation			
35°	6.11±6.06	8.27±7.39	0.25
55°	6.08±4.04	5.43±3.64	0.56
70°	10.40±9.21	5.89±4.89	0.04*
Cytokine			
IL-6	203.90±73.76	139.04±90.68	0.007*
TNF-α	54.54±3.82	34.18±14.65	<0.001*
IL-1β	113.14±11.17	86.60±21.42	<0.001*

LSKO: late-stage knee osteoarthritis; ESKO: early-stage knee osteoarthritis; IL-6: interleukin 6; TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin 1 beta; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; X: mean; SD: standard deviation. *Statistically significant differences (p<0.05).

Table 2. Differences between preoperative and 6 weeks after TKA for LSKO group.

Parameters	Preoperative	Postoperative 6th week	p-value
Pain intensity			
During rest	4.07±2.87	1.26±1.35	<0.001*
During walking	6.88±2.09	2.10±1.69	<0.001*
Valgus angle	184.23±7.31	176.24±2.91	<0.001*
Malalignment	5.46±2.67	1.84±2.66	<0.001*
WOMAC score	72.72±13.13	27.92±14.24	<0.001*
Amount of joint position sense deviation			
35°	6.11±6.06	6.42±5.89	0.85
55°	6.08±4.04	5.26±4.91	0.26
70°	10.40±9.21	6.02±4.96	0.02*
Cytokine			
IL-6	203.90±73.76	161.04±30.71	0.002*
TNF-α	54.54±3.82	52.18±4.65	0.09
IL-1β	113.14±11.17	114.45±14.43	0.83

LSKO: late-stage knee osteoarthritis; ESKO: early-stage knee osteoarthritis; IL-6: interleukin 6; TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin 1 beta; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; X: mean; SD: standard deviation. *Statistically significant differences (p<0.05).
DISCUSSION

In this study, patients who underwent TKA recovered compared to those who underwent pre-surgery in terms of pain intensity, valgus angle, malalignment, functional status, JPS deviation in 70°, and IL-6. They had pain intensity level during rest, valgus angle, functional status, JPS, and IL-6 similar to the ESKO group.

Pain intensity after the TKA is affected by many physical, radiological, and biochemical factors. Patients in the LSKO group had higher preoperative pain intensity than patients in the ESKO group. This may result from higher degenerative conditions in the knee in the surgery group. In our study, it was seen that high pain intensity tends to decrease over time in the postoperative period, and the pain intensity at rest in the postoperative 6th week was lower than the individuals in the ESKO group. Similarly, Si et al. reported that pain intensity during rest increased on the first postoperative day compared to the preoperative period and decreased in the following days. Pain intensity during activity decreased after the surgery, but it did not decrease to the level at rest. This may be a natural result of patients’ efforts to exercise, and emotional conditions such as fear of movement and anxiety. More studies are still needed on this subject.

In our study, similar to the literature, increased valgus angles were corrected by surgery and brought to a similar level with individuals in the ESKO group. In addition, the malalignment was improved to a better level than the ESKO group in the postoperative 6th week.

In our study, functional status in the postoperative 6th week of the LSKO group was improved. They had a similarity to ESKO. After surgery, especially the decrease in pain intensity contributed to the improvement in walking and functional status of the patients. In another study, it was reported that the use of anti-inflammatory drugs may cause a decrease in WOMAC knee scores.

It was observed that the patients in the LSKO and ESKO groups have similar knee JPS deviation at postoperative 6th week. In LSKO, more deviation in 70° in preoperative may be due to increased stress in the joint at an advanced knee flexion degree and hence the increased pain. After TKA, these deviations became similar to those in ESKO. The knee joint is very important for proprioception due to the mechanoreceptors it contains. So, in early postoperative period, follow-up could improve functional mobility. Lowering the valgus angle to normal can have positive effects on knee proprioception. However, for these patients, loss of knee proprioception may continue for a year. Long-term studies are still needed.

In the LSKO group, IL-6 decreased to a level similar to that of ESKO at the postoperative 6th week. TNF-α and IL-1β values decreased but were not similar to the level of ESKO. The IL-6 value is the most important cytokine parameter affected by surgery in our study. Indeed, serum IL-6 level is one of the best reflecting indicators of surgical stress and is the laboratory indicator with the greatest diagnostic accuracy for periprosthetic infection. In related literature, serum IL-6 levels of individuals who have undergone

Parameters	LSKO group	ESKO group	p-value
Pain intensity			
During rest	1.26±1.35	2.10±1.78	0.06
During walking	2.10±1.69	4.46±2.77	0.001*
Valgus angle	176.2±2.91	177.5±2.80	0.14
Malalignment	1.84±2.66	2.75±1.96	0.01*
WOMAC score	27.9±14.24	33.6±12.44	0.14
Amount of joint position sense deviation			
35°	6.4±5.89	8.27±7.39	0.34
55°	5.26±4.91	5.43±3.64	0.89
70°	6.02±4.96	5.89±4.89	0.92
Cytokine			
IL-6	161.04±30.72	139.04±90.68	<0.001*
TNF-α	52.18±6.65	34.18±14.66	
IL-1β	114.46±14.43	86.60±21.42	

LSKO: late-stage knee osteoarthritis; ESKO: early-stage knee osteoarthritis; IL-6: interleukin 6; TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin-1 beta; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; X: mean; SD: standard deviation. *Statistically significant differences (p<0.05).
TKA show a significant increase in early postoperative days and are almost equal to the preoperative period in the 6th week16-21. Cytokine levels can be evaluated as a local inflammatory response or a systemic inflammatory response22. In our study, serum cytokine levels were evaluated. According to the literature, the contralateral side knees of individuals who have undergone TKA mostly have moderate or severe OA23. Therefore, the positive effects of surgery on current cytokine levels can be limited depending on the other side. More studies are still needed.

The emotional state could be effective in reducing pain and cytokine levels. The emotional states of the patients were not evaluated, which is the limitation of the study. Furthermore, there are some clinical implications. First, TKA provides biomechanical and biochemical improvements. Second, valgity angle and malalignment decrease after TKA. Third, the IL-6 value is one of the most important cytokine parameters affected by surgery. These findings will provide information to physicians, physiotherapists, and health professionals working in this field on medication and rehabilitation approaches in pre- and post-surgical pain control.

CONCLUSION
The TKA provides improvements in pain, function, valgus angle, JPS, and IL-6 in the early postoperative period. In the postoperative 6th week, patients who had TKA had similar clinical and functional results in terms of IL-6 level, pain intensity at rest and walking, WOMAC score, valgus angle, malalignment amount, and knee JPS to patients in the early stage of knee OA. These findings are also very important in determining the treatment approaches and patients’ expectations on knee osteoarthritis.

ACKNOWLEDGMENTS
The authors would like to thank the Karadeniz Technical University Scientific Research Projects Coordination Unit (TSB-2018-7671) for supporting this study.

AUTHORS’ CONTRIBUTIONS
AE, ME, OA: Conceptualization, Data curation, Formal Analysis, Writing – original draft, Writing – review & editing. KC, SÖY, IP, SCK: Conceptualization, Data curation, Formal Analysis.

REFERENCES
1. Jang S, Lee K, Ju JH. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci. 2021;22(5):2619. https://doi.org/10.3390/ijms22052619
2. Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S. Projected increase in total knee arthroplasty in the United States – an alternative projection model. Osteoarthritis Cartilage. 2017;25(11):1797-803. https://doi.org/10.1016/j.joca.2017.07.022
3. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin North Am. 2009;47(4):703-12. https://doi.org/10.1016/j.rcl.2009.03.003
4. Wodowski AJ, Swigler CW, Liu H, Nord KM, Toy PC, Mihalko WM. Proprioception and knee arthroplasty: a literature review. Orthop Clin North Am. 2016;47(2):301-9. https://doi.org/10.1016/j.ocl.2015.09.005
5. Price DD, McGrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983;17(1):45-56. https://doi.org/10.1016/0304-3959(83)90126-4
6. Çakmak M, Özkan K, Aît ektremite deformite analizî (I). Totbid dergisi. 2005[cited on jun 3, 2020];4:50-62. Available from: https://dergi.totbid.org.tr/abstract.php?lang tr & id=85
7. Tüzün EH, Eker L, Aytar A, Daşkaparan A, Bayramoğlu M. Acceptability, reliability, validity and responsiveness of the Turkish version of WOMAC osteoarthritis index. Osteoarthritis Cartilage. 2005;13(1):28-33. https://doi.org/10.1016/j.joca.2004.10.010
8. Hurley MV. Evaluation of reliability, reproducibility and validity of two methods of assessing proprioceptive acuity in the lower limb. Br J Rheumatol. 1996;35(Suppl 1):140.
9. McDowell M, Park A, Gerlinger TL. The Painful Total Knee Arthroplasty. Orthop Clin North Am. 2016;47(2):317-26. https://doi.org/10.1016/j.joca.2015.09.008
10. Bindawas SM, Venu V, Alhadeed S, Al-Otaibi AD, Binnasser AS. Knee pain and health-related quality of life among older patients with different knee osteoarthritis severity in Saudi Arabia. PLoS One. 2018;13(5):e0196150. https://doi.org/10.1371/journal.pone.0196150
11. Shi HB, Yang TM, Zeng Y, Zhou ZK, Pei FX, Lu YR, et al. Correlations between inflammatory cytokines, muscle damage markers and acute postoperative pain following primary total knee arthroplasty. BMC Musculoskelet Disord. 2017;18(1):265. https://doi.org/10.1186/s12891-017-1597-y
12. Nakajima A, Sonobe M, Akatsu Y, Aoki Y, Takahashi H, Suguro T, et al. Association between limb alignment and patient-reported outcomes after total knee arthroplasty using an implant that reproduces anatomical geometry. J Orthop Surg Res. 2018;13(1):320. https://doi.org/10.1186/s13018-018-1030-8
13. Bączkowicz D, Skiba G, Czernecki M, Majorczyk E. Gait and functional status analysis before and after total knee arthroplasty. Knee. 2018;25(5):888-96. https://doi.org/10.1016/j.knee.2018.06.004
14. Ugraś AA, Kural C, Kural A, Demirez F, Koldaş M, Cetinus E. Which is more important after total knee arthroplasty: Local inflammatory response or systemic inflammatory response? Knee. 2011;18(2):113-6. https://doi.org/10.1016/j.knee.2010.03.004
15. Galilei L, Galasso O, Falcone D, Southworth S, Greco M, Ventura V, et al. The effects of nonsteroidal anti-inflammatory drugs on clinical outcomes, synovial fluid cytokine concentration and signal transduction pathways in knee osteoarthritis. A randomized open label trial. Osteoarthritis Cartilage. 2013;21(9):1400-8. https://doi.org/10.1016/j.joca.2013.06.026
16. Choi ES, Park SJ. Clinical Evaluation of the Root Tear of the Posterior Horn of the Medial Meniscus in Total Knee Arthroplasty for Osteoarthritis. Knee Surg Relat Res. 2015;27(2):90-4. https://doi.org/10.5792/kssr.2015.27.2.90

17. Elgeidi A, Elganainy AE, Abou Elkhier N, Rakha S. Interleukin-6 and other inflammatory markers in diagnosis of periprosthetic joint infection. Int Orthop. 2014;38(12):2591-5. https://doi.org/10.1007/s00264-014-2475-y

18. Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, Steckelberg J, Osmon D. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am. 2010;92(11):2102-9. https://doi.org/10.2106/JBJS.I.01199

19. Kugisaki H, Sonohata M, Komine M, Tsunoda K, Someya S, Honke H, et al. Serum concentrations of interleukin-6 in patients following unilateral versus bilateral total knee arthroplasty. J Orthop Sci. 2009;14(4):437-42. https://doi.org/10.1007/s00776-009-1344-9

20. Chawla A, Paraoan V, Rabiu R, Clark T, Powell S, Grammatopoulos D, et al. Determining the stress biomarker profile in patients undergoing total knee replacement and the relationship with outcome at 12 months. Knee. 2019;26(6):1379-85. https://doi.org/10.1016/j.knee.2019.08.010

21. Honsawek S, Deepaisarnsakul B, Tanavalee A, Sakdinakiatkikoon M, Ngarmukos S, Preetavatanyou K, et al. Relationship of serum IL-6, C-reactive protein, erythrocyte sedimentation rate, and knee skin temperature after total knee arthroplasty: a prospective study. Int Orthop. 2011;35(1):31-5. https://doi.org/10.1007/s00264-010-0973-0

22. Shah S, Brown C, Owen J, Fisher B, Natarajan R, Kates S. Vitamin C and inflammatory cytokine levels in elective total knee arthroplasty. Nutr Health. 2020;26(2):87-91. https://doi.org/10.1177/0260106020910632

23. Metcalfe AJ, Andersson ML, Goodfellow R, Thorstensson CA. Is knee osteoarthritis a symmetrical disease? Analysis of a 12 year prospective cohort study. BMC Musculoskelet Disord. 2012;13:153. https://doi.org/10.1186/1471-2474-13-153