Improved chain mean-field theory for quasi-one-dimensional quantum magnets

Synge Todo1,2 and Akira Shibasaki1*
1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan and
2CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

(Dated: December 12, 2008)

A novel mean-field approximation for quasi-one-dimensional (Q1D) quantum magnets is formulated. Our new mean-field approach is based on the Bethe-type effective-field theory, where thermal and quantum fluctuations between the nearest-neighbor chains as well as those in each chain are taken into account exactly. The self-consistent equation for the critical temperature contains the boundary-field magnetic susceptibilities of a multichain cluster, which can be evaluated accurately by some analytic or numerical methods, such as the powerful quantum Monte Carlo method. We show that the accuracy of the critical temperature of Q1D magnets as a function of the strength of interchain coupling is significantly improved, compared with the conventional chain mean-field theory. It is also demonstrated that our new approximation can predict nontrivial dependence of critical temperature on the sign (i.e., ferromagnetic or antiferromagnetic) of interchain coupling as well as on the impurity concentration in randomly diluted Q1D Heisenberg antiferromagnets.

I. INTRODUCTION

Space dimensionality plays an essential role in phase transitions and critical phenomena of quantum magnets. As the dimension is lowered, effects of thermal and quantum fluctuations generally become stronger. As a result, the quantum antiferromagnetic Heisenberg model in two dimensions, for example, does not exhibit long-range order any more except at the ground state2 although a finite-temperature phase transition occurs in its three-dimensional counterpart. Furthermore, there is no long-range order even at zero temperature in one dimension.2 Such one-dimensional magnets arose great interests as many novel phenomena characteristic to systems with strong quantum fluctuations, e.g., Tomonaga-Luttinger liquid state or Haldane gap state, have been observed theoretically as well as in the experiments.2

Real materials, however, can not be purely one dimensional but three dimensional, i.e., there always exist interactions between one-dimensional chains (interchain interactions) albeit it is much weaker, often by orders of magnitude, than the dominant interactions along the chains (intrachain interactions). Three-dimensional materials with strong spatial anisotropy are often referred to as quasi-one-dimensional (Q1D) systems. Indeed, in many Q1D materials a long-range order emerges at low temperatures, which is a direct consequence of three-dimensionality of the system. In order to explain low-energy behavior of such Q1D materials correctly, a theory which properly incorporates the effect of interchain interaction is essential.

So far, effects of weak interchain interactions in Q1D quantum magnets have been studied mainly by means of the chain mean-field approximation, where interchain spin fluctuations are ignored completely.25 Within the framework of the chain mean-field approximation, a Q1D magnet is reduced to a single chain in an effective external field. For the latter system, fortunately there exist a couple of exact solutions, otherwise one can still use powerful analytic methods, such as bosonization, as well as numerical simulations, such as exact diagonalization or density-matrix renormalization group method, which are effective especially in one dimension.

Naively, one may expect that the chain mean-field approximation becomes more and more accurate not only qualitatively but also quantitatively, as the interchain interactions become weak enough compared to those along the chain. The recent theoretical study26 as well as the sensitive Monte Carlo simulations27 on Q1D spin models, however, have revealed that this is not the case: there remains systematic error of the chain mean-field theory even in the weak interchain coupling limit. Instead, the critical temperature as a function of the interchain coupling is well described by a chain mean-field formula with a renormalized effective coordination number (or effective interchain coupling26). Especially, in the Q1D classical Ising model, it is proved that the renormalization factor is exactly given by the critical transverse field of the quantum phase transition of a two-dimensional quantum Ising model.28 This analytic result demonstrates clearly that the weak interchain coupling limit of the Q1D magnet is not the weak coupling limit, but is still the strongly correlated regime.

The renormalization of effective interplane coupling is also observed in weakly-coupled two-dimensional planes.29 For this quasi-two-dimensional (Q2D) system, a scaling theory was developed3 in which it is expected different scaling behavior depending on whether the purely two-dimensional system is in a quantum critical regime or in a renormalized classical regime. This prediction has been verified by a recent quantum Monte Carlo simulation.30

Thus it has become evident by the recent theoretical and numerical studies that we need a theory beyond the conventional chain mean-field approximation to describe the critical temperature of the Q1D magnets in the weak interchain coupling regime more accurately. Even worse, when the chain mean-field theory is applied to a system with quenched disorder, the random average in each chain is taken before the thermal average on the whole lattice. The adverse impact of interchanging the aver-
In the present paper, we propose a different type of chain mean-field theory, i.e., the chain Bethe approximation. Actually, it is well known that there are two different formulations in traditional mean-field theories for classical spin models, that is, the Weiss approximation and the Bethe approximation. In the former, the effective field is identified explicitly with the order parameter. In the latter, on the other hand, the effective field is determined implicitly so that the local order parameter coincides with each other. In the Bethe mean-field theory, therefore, spin fluctuations between nearest-neighboring sites are taken into account even in the lowest order approximation. Furthermore, as the cluster size increases, the critical temperature by the Bethe-type approximation converges to the exact value more rapidly, being free from logarithmic corrections which is observed in the Weiss-type theory. By applying the idea of the Bethe-type effective-field theory, we introduce a new chain mean-field theory for 1D quantum magnets.

The present paper is organized as follows: In Sec. 2, after a brief review of the conventional chain mean-field approximation, we formulate our Bethe-type chain mean-field theory, the chain Bethe approximation. In Sec. 3, the chain Bethe approximation is applied to the 1D Heisenberg antiferromagnets, where we show that by using our new approximation, the accuracy of the critical temperature is significantly improved, compared with the conventional chain mean-field theory. In addition, we demonstrate that the new theory can predict a lower critical temperature for the ferromagnetic interchain coupling than in the antiferromagnetic case, which is also confirmed by the QMC simulation. In Sec. 4, we apply the chain Bethe theory to a random quantum magnet, the site-diluted 1D Heisenberg antiferromagnet, where the existence of a finite critical impurity concentration, above which the long-range order does not emerge even in the zero-temperature limit, is predicted by using the chain Bethe approximation. The final section is for a summary and discussion.

II. CHAIN BETHE MEAN-FIELD THEORY

A. Conventional chain mean-field approximation

The Hamiltonian of spin-1/2 Heisenberg model on a 1D simple cubic lattice is defined by

\[H = J \sum_{i,j,k} S_{i,j,k} \cdot S_{i,j,k+1} + J' \sum_{i,j,k} S_{i,j,k} \cdot S_{i+1,j,k} + J' \sum_{i,j,k} S_{i,j,k} \cdot S_{i,j+1,k} - h \sum_{i,j,k} \phi^{i+j-1}k S_{i,j,k}^z, \]

where \(S_{i,j,k} \) is either antiferromagnetic \((J > 0)\), whereas the interchain coupling \(J' \) is either antiferromagnetic \((J' > 0)\) or ferromagnetic \((J' < 0)\). Generalization to the case with ferromagnetic interchain coupling is also straightforward. The last term in Eq. (1) represents an external magnetic field conjugate to the order parameter, where the phase factor \(\phi \) is defined as \(\phi = -\text{sign}(J') \).

In the conventional chain mean-field approximation, referred to as the \textit{chain Weiss theory} hereafter, spin fluctuations between the chains are ignored and replaced by an effective field, i.e.,

\[J'S_{i,j,k} \cdot S'_{i',j',k} \simeq J' \langle S_{i,j,k} \rangle \cdot S'_{i',j',k} + \text{const.}, \]

where \((i',j') = (i \pm 1,j)\) or \((i,j \pm 1)\). As a result, the original Hamiltonian (1) is decoupled into a set of independent chains [Fig. (1a)]. The effective chain Hamiltonian for \((i,j) = (0,0)\) is written as

\[H_c = J \sum_k S_k \cdot S_{k+1} + J' \sum_k S_k \cdot M_k - h \sum_k (-1)^k S_k^z \]

with \(S_k \equiv S_{0,0,k} \) and

\[M_k \equiv \langle S_{1,0,k} \rangle + \langle S_{-1,0,k} \rangle + \langle S_{0,1,k} \rangle + \langle S_{0,-1,k} \rangle. \]

In the low-temperature ordered phase, a finite magnetization appears spontaneously even at \(h = 0 \). We assume the magnetization is along the \(z \)-direction in the spin space, i.e., \(\langle S_{i,j,k}^z \rangle = (0,0,\phi^{i+j-1}k m(T)) \). The chain Hamiltonian (3) with \(h = 0 \) is then reduced to

\[H_c = J \sum_k S_k \cdot S_{k+1} - 4 |J'| m(T) \sum_k (-1)^k S_k^z. \]

Since the magnitude of the spontaneous magnetization does not depend on the position of the spin, the self-consistent condition

\[m(T) = m_c(T, 4 |J'| m(T)) \]
for the susceptibility:

\[m_c(T, h) \equiv \frac{1}{L} \sum_k (-1)^k \langle S_z^c \rangle_c \]

is the staggered magnetization density of genuinely one-dimensional antiferromagnetic chain of length \(L \). The average \(\langle \cdots \rangle_c \) in Eq. (7) means the expectation value of the one-dimensional chain (i.e., Eq. (3) with \(J' = 0 \)), while \(\langle \cdots \rangle \) [e.g. in Eqs. (1) and (4)] denotes the average with respect to the original (full-3D) Hamiltonian (1).

At high temperatures, on the other hand, no spontaneous magnetization appears. Under the presence of small external magnetic field, however, a finite magnetization \(\langle S_z \rangle = (0, 0, 0) \) is induced. In this case, the effective chain Hamiltonian (5) is modified as

\[H_c = J \sum_k S_k \cdot S_{k+1} - [h + 4|J'|m(T, h)] \sum_k (-1)^k S_z^c. \]

Since \(m(T, h) \ll 1 \) for \(h \ll 1 \) in the disordered phase, one can consider only the lowest order in \(h \):

\[m(T, h) \simeq [h + 4|J'|m(T, h)]\chi_c(T), \]

where \(\chi_c(T) \) is the zero-field staggered susceptibility of one-dimensional antiferromagnetic chain. Noticing that \(m(T, h) \) in the both sides can also be written as \(h\chi_c(T) \) for \(h \ll 1 \), we obtain the following mean-field expression for the susceptibility:

\[\chi(T) = \frac{\chi_c(T)}{1 - 4|J'|\chi_c(T)}. \]

In terms of the chain Weiss theory, the critical temperature is thus given by the pole of the r.h.s. of Eq. (10). For generic Q1D lattices the self-consistent equation is written as follows:

\[1 - z|J'|\chi_c(T_c) = 0, \]

where \(z \) is the coordination number of the lattice, i.e., the number of nearest-neighbor chains. Note that the self-consistent equation depends not on the sign of \(J' \), but only on its absolute magnitude. In other words, the conventional chain Weiss theory does not distinguish between the antiferromagnetic and ferromagnetic interchain interactions. This is one of the major drawbacks of the conventional chain mean-field theory. Another problem is that most of physical quantities, such as the energy, specific heat, correlation functions, etc, are the same as those of the genuine one-dimensional chain at temperatures higher than \(T_c \), since the effective field is proportional to the order parameter, which is zero at \(T > T_c \).

We will see below that these disadvantages of the chain Weiss approximation are solved in the chain Bethe mean-field theory.

B. Bethe-type mean-field theory

In the chain Weiss approximation, the effect of interchain interaction was replaced by an effective field. The effective interchain interaction is directly related with the order parameter, and interchain spin fluctuations are thus ignored completely. The approximation can be improved by taking interchain spin fluctuations into account systematically. In the chain Bethe approximation introduced in this section, the interaction between the nearest-neighbor chains are taken into account exactly, and those around the multichain cluster are treated as an effective field. In the Bethe approximation the effective field is determined so that the magnetization of the central spin and that on the cluster boundary coincide with each other. On the contrary to the Weiss theory, the order parameter is not given explicitly by the effective field, but is its implicit function.

Let us consider the chain Bethe approximation for the simple cubic lattice. In this case we prepare a cluster of five chains [Fig. 1(b)], where an effective field is applied only to the spins on the side chains (black circles). The effective Hamiltonian is written as

\[H_\Omega = J \sum_{\alpha=0}^4 \sum_k S_{\alpha,k} \cdot S_{\alpha,k+1} + J' \sum_{\alpha=1}^4 \sum_k S_{0,k} \cdot S_{\alpha,k} \]

\[- h \sum_k (-1)^k S_{z,k} - (h + h_{\text{eff}}) \sum_{\alpha=1}^4 \sum_k \phi(-1)^k S_{z,\alpha,k}, \]

where \(\alpha = 0 \) denotes the central chain \([(i, j) = (0, 0)] \) and \(\alpha = 1, \cdots, 4 \) denotes the side chains \([(i, j) = (\pm 1, 0) \) or \((0, \pm 1)] \).

\[\chi(T) = \frac{\chi_c(T)}{1 - 4|J'|\chi_c(T)}. \]
Bethe approximation is defined as the point where the tangent of each curve at $h_{\text{eff}} = 0$ intersects only at $h_{\text{eff}} = 0$, while at lower temperature (diamonds) nontrivial solutions corresponding to the symmetry-broken phases appear. The dashed lines denote the temperature (diamonds) nontrivial solutions corresponding to the symmetry-broken phases appear. The dashed lines denote the tangent of each curve at $h_{\text{eff}} = 0$. In Fig. 2, the dependence of $\Delta \Omega_{\text{eff}}$ on h_{eff} is also presented.

In the chain Bethe approximation, we impose the condition that the absolute value of the local magnetization does not depend on its position:

$$(-1)^k \langle S_{0,k} \rangle_{\Omega} = \phi (-1)^{k'} \langle S_{\alpha,k'} \rangle_{\Omega}$$

for any k, k', and $\alpha = 1, \cdots, 4$, or equivalently

$$m_{\Omega,0}(T, h, h_{\text{eff}}) = \frac{\phi}{4} \sum_{\alpha=1}^{4} m_{\Omega,\alpha}(T, h, h_{\text{eff}}),$$

where $m_{\Omega,\alpha}(T, h, h_{\text{eff}})$ is the staggered magnetization density of the α-th chain:

$$m_{\Omega,\alpha}(T, h, h_{\text{eff}}) = \frac{1}{L} \sum_{k} (-1)^k \langle S_{\alpha,k} \rangle_{\Omega}.$$

Here $\langle \cdots \rangle_{\Omega}$ denotes the expectation value of the chain Bethe cluster and L the number of spins in the chain direction.

In Fig. 2 the h_{eff} dependence of the both sides in Eq. (14) is demonstrated for $J' = 0.1J$ and $h = 0$, where the magnetization is calculated by means of the quantum Monte Carlo (QMC) method for an $L = 64$ chain Bethe cluster (see Sec. III A for simulation details). It is clearly seen that Eq. (14) has only one trivial solution, $h_{\text{eff}} = 0$, at high temperatures. On the other hand, at low temperatures two more nontrivial solutions ($h_{\text{eff}} \neq 0$) appear, which correspond to the the symmetry-broken phase.

The critical temperature in the framework of the chain Bethe approximation is defined as the point where the three solutions at low temperatures get degenerated with each other (Fig. 2). In practice, we set $\phi = 0$ in Eq. (14) and expand the both sides in terms of h_{eff}. The self-consistent equation for the critical temperature is then written as

$$\Delta \Omega(T_c) \equiv J \left[\chi_{\Omega,0}(T_c) - \frac{\phi}{4} \sum_{\alpha=1}^{4} \chi_{\Omega,\alpha}(T_c) \right] = 0$$

with the boundary-field susceptibilities

$$\chi_{\Omega,\alpha}(T) = \left. \frac{\partial m_{\Omega,\alpha}(T, h, h_{\text{eff}})}{\partial h_{\text{eff}}} \right|_{h=0, h_{\text{eff}}=0} = \frac{\beta}{L} \sum_{\alpha'=1}^{4} \sum_{k,k'} \langle S^z_{\alpha,k} S^z_{\alpha',k'} \rangle_{\Omega},$$

where $\langle A; B \rangle_{\Omega}$ denotes the canonical correlation:

$$\langle A; B \rangle_{\Omega} = \frac{1}{\beta} \frac{\int_{0}^{\beta} e^{-\tau\mathcal{H}_{\Omega}} B e^{-(\beta-\tau)\mathcal{H}_{\Omega}} d\tau}{\text{Tr} e^{-\beta\mathcal{H}_{\Omega}}}$$

of two operators A and B. In the inset of Fig. 2 we show the temperature dependence of $\Delta \Omega(T)$. As the temperature increases, $\Delta \Omega(T)$ decreases monotonically. The critical temperature, in terms of the chain Bethe approximation, is given as the zero of $\Delta \Omega(T)$. For $J'/J = 0.1$, we obtained $T_c/J = 0.19084(5)$.

III. CRITICAL TEMPERATURE OF Q1D QUANTUM HEISENBERG MODELS

A. Numerical method

In this section, we discuss the interchain coupling dependence of the critical temperature for the $S = 1/2$ Heisenberg model on a Q1D simple cubic lattice [Eq. (1)] in terms of the chain Bethe approximation. Since the boundary-field susceptibility of the chain Bethe cluster [Eq. (12)] cannot be evaluated analytically, one needs to introduce some reasonable approximation or some numerical method. In the present paper, we adopt the continuous-time loop cluster QMC algorithm, which is one of the most effective methods for simulating unfrustrated quantum spin systems [16]. It is a variant of the world-line QMC method, based on the Suzuki-Trotter path-integral expansion. The continuous-time loop algorithm, however, works directly in the imaginary-time continuum, and thus it is completely free from the time discretization error. Furthermore, the correlation between successive spin configurations on the Markov chain is greatly reduced, often by several orders of magnitude. This is manifested by the fact that clusters of spins, called loops, whose linear size corresponds directly to the length scale of relevant spin fluctuations, are flipped at once in the loop algorithm.
The boundary-field susceptibilities \(\langle \beta^2 \rangle \) are calculated by means of the improved estimator \(\hat{\beta} \). The largest system size in the chain direction is \(L = 64 \) for \(|J'|/J \geq 0.05 \). For smaller \(|J'|/J \)’s, longer systems (e.g., \(L = 512 \) for \(|J'|/J = 0.01 \)) are needed to obtain the susceptibilities in the thermodynamic limit \(L \to \infty \), since the critical temperature decreases as \(|J'|/J \) does. Periodic boundary conditions are imposed along the chains. We interpolate the QMC results at various temperatures by a polynomial, and estimate the zero of \(\Delta_0(T) \), which gives the critical temperature. (See e.g., the inset of Fig. 2.)

B. Comparison of chain Bethe theory with other methods

The accuracy of the present chain Bethe approximation is checked by comparing with the results of QMC simulations of full-3D systems, i.e., simple cubic lattice of \(L_x \times L_y \times L_z \) sites with periodic boundary conditions along all the lattice axes. For the antiferromagnetic interchain interactions, \(J'/J > 0 \), we take the full-3D QMC results from Ref. \(7 \). For \(J'/J < 0 \), the critical temperature is estimated from the crossing point of the Binder cumulant

\[
Q = \frac{\langle m^2 \rangle^2}{\langle m^4 \rangle} \tag{19}
\]

of the generalized magnetization density

\[
m = \frac{1}{L_x L_y L_z} \sum_{i,j,k} (-1)^k S^z_{i,j,k} \tag{20}
\]

for different system sizes. The largest system size we simulate is \((L_x, L_y, L_z) = (40, 40, 40) \) and \((12, 12, 264) \) for \(|J'|/J = 1 \) and 0.01, respectively. The results of finite-size scaling are summarized in Table I.

In Fig. 3, we show the \(J' \)-dependence of the critical temperature, calculated in terms of the chain Bethe approximation, both for antiferromagnetic \((J' > 0) \) and ferromagnetic \((J' < 0) \) interchain interactions, together with the full-3D QMC results. The intrachain interaction is antiferromagnetic \((J > 0) \) in either case. In Fig. 3 we also present the results of the chain Weiss approximation and the Green’s function method with Tyablikov decoupling. \(18,19 \) As for the chain Weiss theory, we use the susceptibility of genuinely one-dimensional antiferromagnetic chain calculated by the QMC method for the antiferromagnetic chain of 256 spins.

In both of antiferromagnetic and ferromagnetic interchain coupling cases, the critical temperature decreases monotonically as \(|J'|/J \) does. For \(|J'| \approx J \), it is observed that the chain Weiss theory overestimates the critical temperature greatly. This is because this approximation ignores the interchain spin fluctuations completely. On the other hand, for \(|J'| \ll J \) the Tyablikov approximation gets worse. Indeed, it predicts the critical temperature proportional to the square root of \(|J'|/J \), which does not agree with the correct asymptotic behavior, \(T_c \sim |J'|/J \) (with some logarithmic corrections). \(16,17 \) It should be noted that the chain Weiss theory and the Tyablikov approximation both give the identical critical temperature dependence regardless of the sign of the interchain coupling.

The results of the chain Bethe approximation are fairly well in the whole region (Fig. 3). The relative errors from the full-3D QMC values are about 7–10% at \(|J'|/J = 1 \), which should be compared with the conventional chain

| \(|J'|/J \) | \(J' > 0 \) | \(J' < 0 \) |
|-------|----------|----------|
| 1 | 0.94416(9) | 0.87330(2) |
| 0.5 | 0.59248(6) | 0.55419(3) |
| 0.3 | 0.4151(2) | — |
| 0.2 | 0.30202(5) | 0.28685(2) |
| 0.1 | 0.16917(2) | 0.16295(2) |
| 0.05 | 0.09129(4) | 0.08900(3) |
| 0.02 | 0.039432(7) | 0.03899(2) |
| 0.01 | 0.020763(8) | 0.02080(2) |
Weiss results (48–60%). Surprisingly, the present chain Bethe approximation predicts a lower critical temperatures for the ferromagnetic interchain coupling than the antiferromagnetic case, e.g., $T_c/J = 1.017$ and 0.958 for $J'/J = 1$ and -1, respectively. This result is seemingly counter-intuitive, since quantum fluctuations, which is expected to suppress the classical ordering, are generally much stronger in the antiferromagnetic cases. However, it is not an artifact by our approximation. Indeed, a lower critical temperature for the ferromagnetic interchain coupling is also confirmed by our full-3D QMC calculation (Table I). Thus, the chain Bethe approximation predicts not only quantitatively more accurate critical temperatures, but also its nontrivial dependence on the sign of the interchain coupling.

C. Effective interchain interaction

In order to evaluate the accuracy of the present theory for small $|J'|/J$ in a more systematic way, next we discuss the effective interchain coupling, $J_{\text{eff}}'(J')$. This quantity, firstly introduced in Ref. [1], is defined as the coupling constant which predicts the true critical temperature if it is used in the self-consistent equation instead of the original J'. For the chain Weiss approximation, J_{eff}' is explicitly obtained from Eq. (11) as

$$J_{\text{eff}}'(J') = \frac{\text{sign}(J')}{z\chi_c(T_c'(J'))},$$

where we use the full-3D QMC results for $T_c(J')$ (Table. I), which is considered to be exact within the error bar. On the other hand, for the chain Bethe approximation, we obtained J_{eff}' by solving Eq. (16) numerically. In Fig. 1 we plot the J'-dependence of the effective interchain coupling for chain Bethe approximation ($J' > 0$ and $S = 1/2$) and those of the chain Weiss approximation ($J' > 0$ and $S = 1/2$, $3/2$, and ∞). In both cases, J_{eff}'/J' converges to a finite value for $J'/J \ll 1$. The limiting value is 0.872 and 0.695 for the chain Bethe and Weiss approximations, respectively. The larger (or closer to unity) value of J_{eff}'/J' in the former supports that it is indeed a better approximation compared with the latter. Interestingly, the chain Bethe approximation has the largest J_{eff}'/J' at $J'/J = 1$, in other words, one may say that it becomes the most accurate in the isotropic limit from the viewpoint of the renormalized factor of interchain coupling.

On should note that, in the chain Bethe approximation, not only the renormalization factor J_{eff}'/J' is improved very much, but also it converges to its limiting value quite rapidly (already converged at $J'/J = 0.5$). This result suggests the critical temperature might be well described for any values of J'/J by the chain Bethe approximation using the renormalized interchain coupling constant, $0.872J'$, instead of the bare interchain coupling, J' (modified chain Bethe approximation). In Fig. 3 we also plot the result of the modified chain Bethe

![Fig. 4: J'-dependence of the renormalization factor J_{eff}'/J' for chain Bethe (filled diamonds) and chain Weiss ($S = 1/2$ open diamonds, $S = 3/2$ circles, $S = \infty$ squares) approximations. The horizontal dashed lines denote their limiting values (0.872 and 0.695, respectively) for $J'/J \to 0$.](image)

theory by open circles, which satisfactorily agrees with the true critical temperature in the whole range of $|J'|/J$. Note that in this plot we use the same renormalization factor, 0.872, both for the antiferromagnetic and ferromagnetic interchain coupling cases.

IV. SITE-DILUTED Q1D HEISENBERG ANTIFERROMAGNET

In the previous section, we see that the critical temperature of Q1D system is quantitatively improved greatly by the chain Bethe approximation. In this section, we discuss a more nontrivial example, the site-diluted Q1D Heisenberg antiferromagnet, where the chain Weiss approximation fails even qualitatively.

The Hamiltonian of the site-diluted Heisenberg antiferromagnet is defined as follows:

$$\mathcal{H} = J \sum_{i,j,k} \epsilon_{i,j,k} \epsilon_{i,j,k+1} S_{i,j,k} \cdot S_{i,j,k+1} + J' \sum_{i,j,k} \epsilon_{i,j,k} \epsilon_{i+1,j,k} S_{i,j,k} \cdot S_{i+1,j,k} + J'' \sum_{i,j,k} \epsilon_{i,j,k} \epsilon_{i+1,j,k} S_{i,j,k} \cdot S_{i+1,j,k},$$

where $\{\epsilon_{i,j,k}\}$ are the quenched dilution factors. They take either 1 (occupied) or 0 (vacant) independently with probability $(1-x)$ and x, respectively, with $x (0 \leq x \leq 1)$ being the concentration of vacancies, or nonmagnetic impurities.

The ground state of the classical site-diluted spin model is equivalent to the site-percolation problem. The system undergoes a second-order phase transition at the percolation threshold x_p, above which there exist
no infinite-size clusters. For the simple cubic lattice, the percolation threshold is determined as

\[x_p = 0.6883923(4) \] \hspace{1cm} (23)

by the most recent simulation.21 In the quantum spin cases, whether a long-range order exists or not near the percolation threshold is a nontrivial problem due to the presence of quantum fluctuations. However, it has been established by the extensive QMC simulation that the staggered magnetization persists up to the percolation threshold on the two-dimensional square lattice.12 We expect this is also the case for the present anisotropic simple cubic lattice.

In Fig. 5 we show the \(x \)-dependence of the critical temperature for \(J'/J = 0.5 \) (antiferromagnetic interchain interaction) obtained by the chain Weiss and chain Bethe approximations together with the results of the full-3D QMC simulation. The largest system size used in the full-3D QMC simulation is \((L_x, L_y, L_z) = (16, 16, 64) \). The Néel temperature is estimated from the crossing point of the Binder cumulant19 of the staggered magnetization for different system sizes. From the full-3D QMC calculations, we thus confirm that the Néel temperature remains finite at least up to \(x = 0.6 \). For larger impurity concentration, it is not very easy to estimate the critical temperature with satisfactory accuracy in the present scale of simulation. The staggered susceptibility of one-dimensional chain used in the chain Weiss approximation is also evaluated by means of the QMC method. We simulate chains with spins \(L = 128 \) and 256 for various impurity concentrations and confirm that there is no significant systematic difference in the results for those two system sizes. The Néel temperature is then estimated by solving the self-consistent equation11 numerically. Since the staggered susceptibility of one-dimensional chain diverges monotonically as the temperature decreases irrespective of impurity concentration, the self-consistent equation always has a solution (see the discussion below).

For the chain Bethe approximation, we evaluate \(\Delta \Omega(T) \) [Eq. (16)] by calculating the boundary-field susceptibilities of five-chain clusters with \(L = 32 \) and 64 by means of the QMC method. We observe any significant differences between the \(L = 32 \) and 64 results for \(0 \leq x \leq 0.6 \) in the temperature range we simulate (\(T/J \geq 0.01 \)). We find that the function \(\Delta \Omega(T) \) tends to positively or negatively diverge depending on the impurity concentration. To see the tendency at low temperatures more clearly, we plot \(T \Delta \Omega(T)/J \), instead of \(\Delta \Omega(T) \) itself, as a function of temperature in Fig. 6. At low enough temperatures the quantity tends to converge to a finite value, which gives the coefficient of Curie-like behavior of \(\Delta \Omega(T) \). It is clearly seen that for \(x < 0.57 \), the coefficient is positive, and thus the self-consistent equation (16) has a solution, while the coefficient is negative and \(\Delta \Omega(T) \) has no zero for \(x > 0.57 \).

In all the cases, the Néel temperature decreases monotonically as \(x \) increases as shown in Fig. 5. However, we emphasize that the result of the chain Weiss approximation is qualitatively different from the others for large \(x \): it predicts nonvanishing Néel temperature for any \(x < 1 \), though the others has a finite critical concentration of impurities \((x_c \simeq x_p \text{ and } x_c \simeq 0.57 \text{ for QMC and the chain Bethe approximation, respectively}) \). Since no long-range order can persist for \(x > x_p \), the result of the chain Weiss theory in this regime is unphysical at all.

Indeed, the asymptotic behavior of \(T_c \) near \(x = 1 \) can be discussed more precisely as follows: In the chain Weiss theory, the staggered susceptibility of the purely one-dimensional chain appears in the self-consistent equa-
tion (11). The percolation threshold of a single chain is unity, i.e., the chain is decoupled into a set of finite-length segments immediately by an infinitesimal impurity density. Thus the staggered susceptibility can be expressed as a weighted average of contributions from finite-length segments:

$$\chi_c(T) = \sum_{\ell=1}^\infty p_\ell \chi_\ell(T),$$

where $\chi_\ell(T)$ is the staggered susceptibility of a finite segment of length ℓ and $p_\ell \equiv (1-x)\ell x^\ell$ the average number of segment of length ℓ per site. For $(1-x) \ll 1$, only single-site clusters ($\ell = 1$) contribute to the susceptibility:

$$\chi_c(T) = (1-x) \frac{1}{4T} + O((1-x)^2).$$

By solving the self-consistent equation (11), the critical temperature is then obtained as

$$T_c = (1-x)^2 J' - \frac{1}{4} + O((1-x)^2).$$

This expression gives the exact asymptotic behavior of T_c of the chain Weiss theory in the vicinity of $x = 1$. For $J'/J = 0.5$ and $x = 0.9$, Eq. (20) gives $T_c/J = 0.05$, which agrees fairly well with the result of the chain Weiss approximation, $T_c/J = 0.043$.

A similar discussion applies also to the chain Bethe approximation. For $x \approx 1$, only single-site clusters contribute to the susceptibility. Since in the chain Bethe approximation the effective field is applied only on the side chains, a single-site cluster on the central chain does not feel the effective field, and thus the boundary-field susceptibility vanishes in the lowest order:

$$\chi_{\Omega,0} = O((1-x)^2).$$

On the other hand, the susceptibility of boundary spins is given by the same expression as in the chain Weiss approximation:

$$\chi_{\Omega,\alpha} = (1-x) \frac{1}{4T} + O((1-x)^2) \quad \text{for } \alpha = 1, \ldots, 4.$$

If these two expressions are substituted into the self-consistent equation (10), one immediately finds that it has no solution for $0 \leq x \leq 1$. If one further considers contribution from dimers (i.e., clusters consist of two sites) the boundary-field susceptibilities are calculated as

$$\chi_{\Omega,0} = (1-x)^2 \left(\frac{1}{2J'} + O((1-x)^2) \right)$$

$$\chi_{\Omega,\alpha} = (1-x) \frac{1}{4T} + (1-x)^2 \left(\frac{1}{2J'} + 2(1-x)^2 \frac{1}{J} \right) + O((1-x)^3) \quad \text{for } \alpha = 1, \ldots, 4.$$

Again the self-consistent equation has no solution for $J'/J \geq 3/4$. On the other hand, for a smaller J' ($J'/J < 3/4$), there exists a solution:

$$T_c \approx \frac{1}{2(1-x)^2} \quad (31)$$

However, this solution is unphysical, since it diverges as $x \to 1$. We infer that even how one takes higher-order contribution from large clusters into account, there exists no physical solution of the self-consistent equation. This implies that the chain Bethe approximation has a finite critical threshold $x_c < 1$, above which no long-range order appears at finite temperatures.

Before closing this section, we briefly mention the initial reduction rate of the critical temperature:

$$R = - \frac{d \log T_c(x)}{dx} \bigg|_{x=0}. \quad (32)$$

From the present QMC results, this quantity is estimated as $R = 1.61$ for $J'/J = 0.5$, which is significantly larger than that of the isotropic cubic lattice ($R = 1.22$ and 1.36 from renormalization-group and series studies, respectively). Accordingly, the critical temperature is a convex function of the impurity concentration, which is in a sharp contrast to the linear behavior observed in the isotropic cubic lattice. Such a large initial reduction rate is also observed experimentally in quasi-two-dimensional Heisenberg antiferromagnet. The enhancement in the initial reduction rate and the convexity might be attributed to the spatial anisotropy of the lattice.

V. SUMMARY

In this paper, we proposed a novel chain Bethe theory for 1D quantum magnets. In the present approximation, the self-consistent equation is written in terms of the boundary-field magnetic susceptibilities of a multi-chain cluster instead of a single chain. Not only the correlations along the chains, but also those between the nearest-neighbor chains are taken into account exactly. As a result, the accuracy of the critical temperature of the 1D Heisenberg models is improved greatly compared with the conventional chain Weiss theory. It is also demonstrated that our new approximation can predict nontrivial dependence of critical temperature on the sign of interchain coupling as well as on the impurity concentration in randomly diluted 1D Heisenberg magnets. The conventional chain Weiss approximation takes the random average in each chain before the thermal average on the whole lattice, whereas the present theory can take fluctuations due to the randomness between the neighboring chains effectively. This difference in the order of thermal and random averaging has a great impact especially in the system with strong quenched disorder.

In the present study, we restricted ourselves to the nearest-neighbor spin models on the simple cubic lattice.
This is because unbiased high-precision full-3D data, by which the accuracy of the new theory has been checked quantitatively, are available only for such unfrustrated models. It should be emphasized that, however, with the help of other numerical methods specialized to one-dimensional systems, such as the exact diagonalization and the density-matrix renormalization group method, the present chain Bethe theory itself can be applied straightforwardly to spin models with strong frustration or even to fermionic models. In such models, effects of correlations between neighboring chains are much more important, and thus the improved chain mean-field approach formulated in the present paper could be an essential tool to investigate exotic phase transitions as well as anomalous low-energy properties.

Acknowledgement

Part of the simulations in the present paper has been done by using the facility of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. The simulation code is developed based on the ALPS/looper library. One of the authors (S.T.) acknowledges support by Grant-in-Aid for Scientific Research Program (No. 18540369) from JSPS, and also by the Grand Challenge to Next-Generation Integrated Nanoscience, Development and Application of Advanced High-Performance Supercomputer Project from MEXT, Japan.