Supplemental material: First-principles interpretation of electron transport though single-molecule junctions using molecular dynamics of electron attached states

Dávid P. Jelenfi, Attila Tajti and Péter G. Szalay
ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Theoretical Chemistry, P. O. Box 32, H-1518, Budapest 112, Hungary

ARTICLE HISTORY
Compiled September 9, 2021

Email: tat@chem.elte.hu
Email: szalay@chem.elte.hu
1. The model system

Table 1. The structure of the single-molecule junction model built from the equilibrium structure of the BDA molecule and two gold clusters. The BDA is placed between the gold clusters so that the distance between the terminal gold and amino-nitrogen atoms is 2.38 Å, while the Au-N-C and Au-N-C-C angles are 112° and 87.5°, respectively.

Fragment	Notation	X	Y	Z
1. BDA molecule				
N	4.380	-3.122	0.000	
N	-4.380	3.122	0.000	
C	2.148	-1.642	0.000	
C	-2.148	1.642	0.000	
C	1.059	-0.800	-2.284	
C	-1.059	0.800	-2.284	
C	1.059	-0.800	2.284	
C	-1.059	0.800	2.284	
H	1.876	-1.406	-4.091	
H	-1.876	1.406	-4.091	
H	1.876	-1.406	4.091	
H	-1.876	1.406	4.091	
H	4.454	-4.259	-1.557	
H	-4.454	4.259	-1.557	
H	4.454	-4.259	1.557	
H	-4.454	4.259	1.557	
2. Right electrode				
Au	8.090	-0.580	0.000	
Au	11.874	-3.418	2.731	
Au	11.874	-3.418	-2.731	
Au	13.288	1.095	0.000	
Au	17.072	-1.743	-2.731	
Au	17.072	-1.743	2.731	
3. Left electrode				
Au	-8.090	0.580	0.000	
Au	-11.874	3.418	2.731	
Au	-11.874	3.418	-2.731	
Au	-13.288	-1.095	0.000	
Au	-17.072	1.743	-2.731	
Au	-17.072	1.743	2.731	
1.1. Natural Transition Orbitals

Figure 1.: Natural transition orbitals of the electron attached states calculated SOS-ADC(2) in the equilibrium geometry.
2. Normal modes of the BDA molecule.

\(\nu_1 \)	\(\nu_2 \)	\(\nu_3 \)
![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
\((\tau = 214.28 \text{ fs}) \)	\((\tau = 133.05 \text{ fs}) \)	\((\tau = 132.47 \text{ fs}) \)

\(\nu_4 \)	\(\nu_5 \)	\(\nu_6 \)
![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
\((\tau = 104.16 \text{ fs}) \)	\((\tau = 91.74 \text{ fs}) \)	\((\tau = 77.15 \text{ fs}) \)

\(\nu_7 \)	\(\nu_8 \)	\(\nu_9 \)
![Image](image7.png)	![Image](image8.png)	![Image](image9.png)
\((\tau = 76.95 \text{ fs}) \)	\((\tau = 70.78 \text{ fs}) \)	\((\tau = 62.43 \text{ fs}) \)

\(\nu_{10} \)	\(\nu_{11} \)	\(\nu_{12} \)
![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
\((\tau = 50.69 \text{ fs}) \)	\((\tau = 45.84 \text{ fs}) \)	\((\tau = 45.38 \text{ fs}) \)

\(\nu_{13} \)	\(\nu_{14} \)	\(\nu_{15} \)
![Image](image13.png)	![Image](image14.png)	![Image](image15.png)
\((\tau = 41.42 \text{ fs}) \)	\((\tau = 40.56 \text{ fs}) \)	\((\tau = 40.24 \text{ fs}) \)
Normal modes of the BDA molecule

ν_{16} $(\tau = 38.75 \text{ fs})$ ν_{17} $(\tau = 38.21 \text{ fs})$ ν_{18} $(\tau = 35.1 \text{ fs})$

ν_{19} $(\tau = 35.02 \text{ fs})$ ν_{20} $(\tau = 32.81 \text{ fs})$ ν_{21} $(\tau = 30.91 \text{ fs})$

ν_{22} $(\tau = 29.15 \text{ fs})$ ν_{23} $(\tau = 29.03 \text{ fs})$ ν_{24} $(\tau = 28.16 \text{ fs})$

ν_{25} $(\tau = 25.97 \text{ fs})$ ν_{26} $(\tau = 25.74 \text{ fs})$ ν_{27} $(\tau = 24.64 \text{ fs})$

ν_{28} $(\tau = 24.63 \text{ fs})$ ν_{29} $(\tau = 22.5 \text{ fs})$ ν_{30} $(\tau = 21.53 \text{ fs})$

ν_{31} $(\tau = 20.5 \text{ fs})$ ν_{32} $(\tau = 20.18 \text{ fs})$ ν_{33} $(\tau = 20.08 \text{ fs})$
2 Normal modes of the BDA molecule

\[\nu_{34} \quad \nu_{35} \quad \nu_{36} \]

\((\tau = 19.94 \text{ fs}) \quad (\tau = 10.63 \text{ fs}) \quad (\tau = 10.63 \text{ fs}) \)

\[\nu_{37} \quad \nu_{38} \quad \nu_{39} \]

\((\tau = 10.58 \text{ fs}) \quad (\tau = 10.57 \text{ fs}) \quad (\tau = 9.67 \text{ fs}) \)

\[\nu_{40} \quad \nu_{41} \quad \nu_{42} \]

\((\tau = 9.67 \text{ fs}) \quad (\tau = 9.45 \text{ fs}) \quad (\tau = 9.45 \text{ fs}) \)
3. Results with the SOS-ADC(2) method

Table 2.: Statistics on the state SOS-ADC(2) energy differences (ΔE, in eV) and hopping probabilitiesa (p, multiplied by 103) from 25 MD trajectories.

T = 1 fs	Mean (SDa	Min.	Max.
$\Delta E (El_6, Mol_1)$	0.633 (0.214	0.312	0.971
$p (El_6 \rightarrow Mol_1)$	0.05 (0.10	0.00	0.40
$\Delta E (El_5, El_6)$	0.124 (0.074	0.016	0.244
$p (El_6 \rightarrow El_5)$	0.15 (0.20	0.00	0.65
$\Delta E (El_4, El_6)$	0.213 (0.066	0.127	0.353
$p (El_6 \rightarrow El_4)$	0.00 (0.01	0.00	0.05
$\Delta E (El_3, El_6)$	0.289 (0.097	0.156	0.478
$p (El_6 \rightarrow El_3)$	0.01 (0.06	0.00	0.32

T = 50 fs	Mean (SDa	Min.	Max.
$\Delta E (El_6, Mol_1)$	0.840 (0.248	0.367	1.086
$p (El_6 \rightarrow Mol_1)$	0.03 (0.10	0.00	0.49
$\Delta E (El_5, El_6)$	0.060 (0.042	0.002	0.147
$p (El_6 \rightarrow El_5)$	0.57 (1.44	0.00	6.98
$\Delta E (El_4, El_6)$	0.109 (0.084	0.014	0.327
$p (El_6 \rightarrow El_4)$	0.19 (0.33	0.00	1.25
$\Delta E (El_3, El_6)$	0.152 (0.083	0.042	0.341
$p (El_6 \rightarrow El_3)$	0.00 (0.02	0.00	0.10

T = 100 fs	Mean (SDa	Min.	Max.
$\Delta E (El_6, Mol_1)$	1.092 (0.278	0.553	1.284
$p (El_6 \rightarrow Mol_1)$	0.00 (0.03	0.00	0.17
$\Delta E (El_5, El_6)$	0.044 (0.027	0.010	0.105
$p (El_6 \rightarrow El_5)$	1.48 (3.99	0.00	18.73
$\Delta E (El_4, El_6)$	0.114 (0.079	0.024	0.337
$p (El_6 \rightarrow El_4)$	1.58 (3.37	0.00	14.51
$\Delta E (El_3, El_6)$	0.185 (0.115	0.052	0.519
$p (El_6 \rightarrow El_3)$	1.27 (3.31	0.00	15.35

Entire trajectoryb

T = 100 fs	Mean (SDa	Min.	Max.
$\Delta E (El_6, Mol_1)$	0.880 (0.238	0.389	1.280
$p (El_6 \rightarrow Mol_1)$	0.14 (0.80	0.00	12.35
$\Delta E (El_5, El_6)$	0.062 (0.044	0.003	0.184
$p (El_6 \rightarrow El_5)$	1.74 (8.41	0.00	136.28
$\Delta E (El_4, El_6)$	0.124 (0.063	0.020	0.473
$p (El_6 \rightarrow El_4)$	0.80 (4.23	0.00	65.29
$\Delta E (El_3, El_6)$	0.179 (0.076	0.051	0.361
$p (El_6 \rightarrow El_3)$	0.47 (2.73	0.00	41.57

a Standard deviation
b Averages over all trajectories
4. The figures of selected properties along the MD trajectories.

In this section the figures of the energy gap (top panel, the equilibrium value marked with dashed line), the POS$_f$ values (middle panel, see main text for explanation) and the hopping probability (bottom panel) are shown as functions of the timestep for a pair of electron attached states in each MD trajectory.

4.1. Figures from El$_6$ and Mol$_1$ electron attached states.
4.1 Figures from \(El_6 \) and \(Mol_1 \) electron attached states

7

8

9

10

11

12

13

14
4.1 Figures from E_{6} and Mol_{1} electron attached states
4.1 Figures from El$_6$ and Mol$_1$, electron attached states

23

24

25

26

27

28

29

30
4.1 Figures from E_{6} and Mol_{1} electron attached states

31

32

33

34

35

36

37

38

Electron attached states
4.1 Figures from \(E_{\text{El}_6} \) and \(\text{Mol}_1 \) electron attached states
4.1 Figures from E_{l_6} and M_{l_1} electron attached states

47

48

49

50

51

52

53

54
4.1 Figures from El₆ and Mol₁ electron attached states

55

56

57

58

59

60

61

62
4.1 Figures from El₆ and Mol₁ electron attached states

63

64

65

66

67

68

69

70
4.2. Figures from El₆ and El₅ electron attached states.
4.2 Figures from El$_6$ and El$_5$ electron attached states
4.2 Figures from E_{l_6} and E_{l_5} electron attached states
4.2 Figures from El$_6$ and El$_5$ electron attached states
4.2 Figures from E_{L_6} and E_{L_5} electron attached states

33

34

35

36

37

38

39

40
4.2 Figures from El₆ and El₅ electron attached states

41

42

43

44

45

46

47

48
4.2 Figures from E_{l_6} and E_{l_5} electron attached states
4.2 Figures from E_{l_6} and E_{l_5} electron attached states
4.2 Figures from E_{L_6} and E_{L_5} electron attached states
4.3. Figures from El\textsubscript{6} and El\textsubscript{4} electron attached states.
4.3 Figures from El₆ and El₄ electron attached states
4.3 Figures from El₆ and El₄ electron attached states
4.3 Figures from El₆ and El₄ electron attached states
4.3 Figures from El₆ and El₄ electron attached states

[Graphs showing data from El₆ and El₄ electron attached states]
4.3 Figures from El\(_6\) and El\(_4\) electron attached states

41

42

43

44

45

46

47

48
4.3 Figures from E_{6} and E_{4} electron attached states
4.3 Figures from E_{l_6} and E_{l_4} electron attached states

57

58

59

60

61

62

63

64
4.3 Figures from \(El_6 \) and \(El_4 \) electron attached states

4.4. Figures from El\textsubscript{6} and El\textsubscript{3} electron attached states.
4.4 Figures from E_{6} and E_{3} electron attached states

9

10

11

12

13

14

15

16

36
4.4 Figures from El_0 and El_3 electron attached states
4.4 Figures from El_6 and El_3 electron attached states

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figures}
\caption{\textbf{Figures from El_6 and El_3 electron attached states}}
\end{figure}
4.4 Figures from El$_6$ and El$_3$ electron attached states
Figures from $E_{L_{6}}$ and $E_{L_{3}}$ electron attached states
Figures from El₆ and El₃ electron attached states

53

54

55

56
4.4 Figures from El$_6$ and El$_3$ electron attached states

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figures.png}
\caption{Figures from El$_6$ and El$_3$ electron attached states.}
\end{figure}
4.4 Figures from E_{l_6} and E_{l_3} electron attached states