Extracellular vesicle-derived DNA for performing EGFR genotyping of NSCLC patients

Jae Young Hur 1,2, Hee Joung Kim 1,3, Jong Sik Lee 1, Chang-Min Choi 4,5, Jae Cheol Lee 6, Min Kyo Jung 6, Chan Gi Pack 6 and Kye Young Lee 1,3*

Abstract
Tumor cells shed an abundance of extracellular vesicles (EVs) to body fluids containing bioactive molecules including DNA, RNA, and protein. Investigations in the field of tumor-derived EVs open a new horizon in understanding cancer biology and its potential as cancer biomarkers as well as platforms for personalized medicine. This study demonstrates that successfully isolated EVs from plasma and bronchoalveolar lavage fluid (BALF) of non-small cell lung cancer (NSCLC) patients contain DNA that can be used for EGFR genotyping through liquid biopsy. In both plasma and BALF samples, liquid biopsy results using EV DNA show higher accordance with conventional tissue biopsy compared to the liquid biopsy of cfDNA. Especially, liquid biopsy with BALF EV DNA is tissue-specific and extremely sensitive compared to using cfDNA. Furthermore, use of BALF EV DNA also demonstrates higher efficiency in comparison to tissue rebiopsy for detecting p.T790M mutation in the patients who developed resistance to EGFR-TKIs. These finding demonstrate possibility of liquid biopsy using EV DNA potentially replacing the current diagnostic methods for more accurate, cheaper, and faster results.

Keywords: Liquid biopsy, Bronchoalveolar lavage fluid, Extracellular vesicles, EGFR mutant DNA, Non-small cell lung cancer

Main text
Lung cancer results in the largest number of cancer-related deaths worldwide and non-small-cell lung cancer (NSCLC) accounts for more than 85% of all lung cancer cases [1]. Most patients are diagnosed at an advanced stage due to lack of efficient diagnostic approaches and asymptomatic characteristic of the disease leading to a poor prognosis [1, 2]. Recent development of target specific drugs such as epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have slightly improved survival rate, but easy and fast diagnostic assessment of mutation status is important for timely treatment of patients. At present, majority of EGFR genotyping is done through tissue biopsy while liquid biopsies using cell-free DNA (cfDNA) are used as supplement tests [3, 4]. The conventional tumor biopsy to assess mutation status can be problematic depending on the location and size of the tumor. Liquid biopsy, a noninvasive way to detect circulating tumor DNA (ctDNA) in the blood, are proposed as an alternative way to detect, evaluate and monitor tumor-drug relation [3, 5]. The integration of liquid biopsy into cancer treatment depends on the precision of detecting ctDNA in blood samples, but plasma cfDNA only contains roughly 1% of ctDNA [6]. Therefore, even with high specificity reported in using ctDNA, varied sensitivity is a problem. For example, some studied reported relatively high sensitivities ranging from 66% to 78%, while other studies resulted low sensitivities ranging from 28.8% to 46%. [7–10].

The main reason for this high variability of sensitivity ctDNA lies on the unstable nature of cfDNA in the samples [7]. In contrast, DNA inside extracellular vesicle (EV) shed by tumor cells is well protected by dual lipid membranous coating and thus has inherent stability [5, 11, 12]. Along with abundant new discoveries in various
tumor-derived EVs and EV-derived DNA (EV DNA), they have great potential as cancer biomarkers as well as platforms for personalized medicine [12–14]. For example, Thakur BK, et al. have demonstrated that the majority of DNA associated with tumor exosomes is double-stranded in various cancer cell-lines and highlight the translational value of exosomal DNA for its potential usefulness as a circulating biomarker for cancer detection [12].

**Visualization and characterization of EVs isolated from the BALF and plasma NSCLC patients**

Previous studies report that measurements of EV size varies according to the methods of the isolation and measurement, but EVs from human body fluids (plasma, urine) are generally found to be in 20–300 nm range [15–17]. This study identified the size of BALF EVs to be from 20 to 250 nm (Fig. 1a and Additional file 1: Figure S1) and the size of plasma EV to be smaller ranging from 5 to 15 nm (Fig. 1b and Additional file 1: Figure S2). Visualization of purified EV fraction showed round shape and heterogeneous in size, averaging in 106 nm (SD ± 34 nm) BALF EVs (Fig. 1c and Additional file 1: Figure S3). Image obtained from EM of plasma EVs showed other substances in the background, which are probably proteins, low-density lipoproteins (LDL), and high-density lipoproteins (HDL) that exist in plasma (Fig. 1d).

Results of immuno-electron microscopy (immune-EM) identified the presence of dsDNA in the intraluminal portion of EVs covered by a multilayered or single-layered membrane (Fig. 1e and Additional file 1: Figure S4). NanoDrop analysis showed that both EV DNA and cfDNA obtained from BALF had similar concentration and purity (Additional file 1: Table S2). Bioanalyzer analysis of dsDNA length showed that the size of both EV DNA and ctDNA are > 3 kb, but abundance of dsDNAs that are longer than 3 kb is greater in EV DNA compared to ctDNA (Fig. 1f; Additional file 1: Table S3 and Figure S5). We compared the sensitivity of *EGFR* mutation testing between BALF EV DNA and cfDNA by performing PCR. Results showed higher sensitivity of *EGFR* mutation testing when using EV DNA compared to using cfDNA. For example, a threshold cycle (Ct) value of EV DNA was 32, whereas that of cfDNA could not be determined (Fig. 1g and Additional file 1: Table S4).

**Liquid biopsy using BALF EV DNA for EGFR mutation testing is sendant with tissue genotyping**

Although, the standard for non-invasive cancer diagnostics is detection of biomarkers circulating in blood, it remains a challenge due to abundant non-cellular contents. Our approach to overcome this problem is to analyze more immediate biofluids such as bronchoalveolar lavage fluid (BALF) of NSCLC patients. Proximal biofluids display component specificity and in some cases, they are in direct contact with the site of the disease. Bronchoalveolar washing is not an entirely non-invasive procedure, but often ordered in individuals with and suspected of lung cancer during bronchoscopy.

Higher quantity and quality of EV DNA compared to BALF cfDNA suggested a potential for clinical application of EV DNA for liquid biopsy. Best way to test the specificity and sensitivity of liquid biopsy done with BALF EV DNA is comparing the results with conventional tissue biopsy. Therefore, we tested 23 BALF samples from NSCLC patients with proven *EGFR* genotyping from tissue biopsy (9 *EGFR* wild type and 14 *EGFR*-mutated). *EGFR* genotyping using BALF EV DNA showed 100% accordance with tissue typing, while detection sensitivity using ctDNA only yielded 71.4% (Table 1). Test results of BALF samples were significantly higher compared to the result of plasma samples in both ctDNA and EV DNA, demonstrating that proximal biofluids better represents tumor status. In addition, as we have seen with the plasma sample, EV DNA resulted in higher specificity and sensitivity. Specifically, Kappa coefficient for *EGFR*
genotyping by using tumor tissue sample and BALF EV DNA was 1.0 ($p < 0.01$), which was higher than that for EGFR genotyping by using tissue sample and BALF ctDNA (kappa = 0.705). Our results of liquid biopsy using BALF EV DNA was compatible enough with tissue genotyping that it can replace tissue biopsy when obtaining tissue sample is difficult. Additionally, liquid biopsy could significantly reduce turn-around time, which usually takes two or three weeks for EGFR genotyping using tissue biopsy.

**Genotyping using BALF EV DNA is highly promising for p.T790 M detection for acquired resistance patients**

Unfortunately, most patients prescribed with TKI after identification of mutations such as Exon 19 deletion and
p.L858R acquire resistance to the drug after prolonged treatment. Hence, precise and swift identification of secondary mutations, p.T790 M, that represent acquired resistance is important for planning future treatment. We extended liquid biopsy using BALF to the patients who developed acquired resistance to EGFR-TKIs and need rebiopsy to further test specificity and sensitivity. Nine patients who developed resistance to TKIs were examined for the p.T790 M mutation by performing conventional tissue rebiopsy and liquid biopsy with BALF samples. Of these nine patients, suitable cancer cells to perform tissue rebiopsy were obtained from only six patients, while adequate tissues were unobtainable from three patients. Two patients out of six patients were identified to have the p.T790 M mutation from tissue rebiopsy (Fig. 2a and Additional file 1: Table S6).

When we performed liquid biopsy of BALF cfDNA three patients were identified to have p.T790 M mutation including two patients who yielded positive results from the tissue rebiopsy as well as one patient who were not identified by the tissue rebiopsy (Fig. 2a and Additional file 1: Table S6). Sensitivity of liquid biopsy increases even further when tested with BALF EV DNA with total of five patients identified to have p.T790 M mutation including two patients who yielded positive results from the tissue rebiopsy as well as three patients who were not identified by the tissue rebiopsy. Three additionally identified patients consists of two patients who could not provide adequate tissue sample for performing tissue rebiopsy and one patient who yielded negative result for p.T790 M mutation from tissue rebiopsy (Fig. 2a and Additional file 1: Table S6). Furthermore, two newly identified patients showed partial response to subsequent osimertinib treatment (Additional file 1: Table S6). We demonstrated for the first time that EVs isolated from BALF of NSCLC patients carry genomic dsDNA and specific mutant EGFR DNA inside the double layered membranous vesicles (Fig. 2b). Clinical usefulness of genotyping using BALF EV DNA was more prominent in the matter of detecting p.T790 M mutation for the prescription of the 3rd generation EGFR-TKIs such as osimertinib [19]. Although the present study did not include a large sample size, preliminary findings of this study suggest that liquid biopsy of BALF EV DNA can overcome limitations associated with tissue rebiopsy, which is widely performed for detecting p.T790 M mutation.

### Table 1 Comparison of the EGFR mutation status between tumor tissue and BALF in EGFR-TKIs naïve patients

| EGFR genotype | Tissue | BALF (n = 23) |   |
|---------------|--------|--------------|---|
|               |        | EV DNA       | cfDNA |
|               |        | Mutant type  | Wild type | Mutant type | Wild type |
| Mutant type   | 14 (60.9%) | 14 (60.9%) | 0 | 10 (43.5%) | 0 |
| Wild type     | 9 (39.1%)  | 0 (39.1%)   | 9 (39.1%) | 4 (17.4%) | 9 (39.1%) |
| Sensitivity(%) | 100.0% (85.7–100) | 71.4% (51.0–85.7) |
| Specificity (%) | 100.0% (85.7–100) | 100.0% (85.7–100) |

Abbreviations: CI Confidence interval

---

**Fig. 2** Detection of EGFR mutation by using BALF EV DNA. **a.** Comparison of EGFR genotyping results performed using tumor tissue, BALF cfDNA, and BALF EV DNA. The top lane indicates EGFR mutation status in the primary tumor tissue of each patient. The second lane shows the result of biopsy of tumor tissues obtained from patients with acquired resistance to EGFR-TKIs. The third and fourth lanes show EGFR mutation status determined by performing liquid biopsy of BALF cfDNA and EV DNA, respectively. Rates of p.T790 M mutation detection by performing tissue rebiopsy and liquid biopsy of BALF cfDNA and BALF EV DNA are shown on the right side of each lane. Abbreviations; E19 del: exon 19 deletion, WT: wild type. **b.** Diagram showing the contents of an EV. Tumor-derived EVs contain RNA; DNA, including mutant DNA; and proteins.
Conclusions
Our results show that EGFR mutation detection in NSCLC patients is possible through EGFR genotyping of EVs present in plasma and BALF. Liquid biopsy of BALF EV DNA is non-invasive, simple and faster testing method that is also high in accuracy and even surpass detection sensitivity compared to tissue biopsy. Sensitivity is shown to be especially high in acquired resistance patients. This study revealed a novel liquid biopsy method of using EV DNA for EGFR genotyping. It has demonstrated potential to serve as a diagnostic and prognostic method in NSCLC patients.

Additional file

Additional file 1: Materials and methods. Table S1. Patient demographics and clinical characteristics. Table S2. Concentration and purity (260/280) of BALF EV DNA and BALF cfDNA. Table S3. Concentration of DNA larger than 1kb in EV DNA and cfDNA. Table S4. Ct value of EV DNA and cfDNA samples and their differences. Table S5. Comparison of the EGFR mutation status between tumor tissue and plasma in EGFR-TKIs naïve patients. Table S6. Clinical characteristics of patients who developed acquired resistance to 1st or 2nd generation EGFR-TKIs and underwent rebiopsy. Figure S1. Sizes of purified BALF EVs. Figure S2. Sizes of purified plasma EVs. Figure S3. EM image of BALF EVs. Figure S4. Immuno-EM images show detection of dsDNA in BALF EVs. Red arrows indicate gold particles. Figure S5. Gel-like images show the size and amount of EV DNA and cfDNA determined using the bioanalyzer. (DOCX 900 kb)

Acknowledgments
We thank the Electron Microscopy core facility at the ConvergRence mEdicine research cenTer (CREDIT), Asan Medical Center for support and instrumentation.

Funding
This research was conducted with the support from AstraZeneca Korea Ltd. (ISISSRE0511).

Availability of data and materials
Please contact the corresponding author for all data requests.

Authors’ contributions
Interpreted data, wrote manuscript and acted as corresponding author: KYL; performed experiments and analysis of all samples, interpreted experimental data and wrote manuscript: JYH; interpreted clinical data and wrote manuscript: MKJ; produced statistical data and additional file tables: JCL; helped to collect clinical samples and evaluate the manuscript: CMC, JCL; helped to obtain high-resolution electron microscopic images: MIKJ, OKP. All authors read and approved the final manuscript.

Ethics approval and consent to participate
All human samples are collected under Institutional Review Committee (IRB).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Lung Cancer Center, Konkuk University Medical Center, Seoul, Republic of Korea. 2Department of Pathology, Konkuk University Medical Center, Seoul, Republic of Korea. 3Department of Pulmonary Medicine, Konkuk University School of Medicine, 120-1 Hwayang-dong, Gwangjin-gu, Seoul 05030, Republic of Korea. 4Department of Pulmonary and Critical Care Medicine, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea. 5Department of Oncology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea. 6Department of Convergence Medicine, University of Ulsan, College of Medicine & Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.

Received: 8 December 2017 Accepted: 23 January 2018

References
1. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377:849–61.
2. Huang WL, Chen YL, Yang SC, Ho CL, Wei F, Wong DT, Su WC, Lin CC. Liquid biopsy genotyping in lung cancer: ready for clinical utility? Oncotarget. 2017;8:18590–608.
3. Molina-Vila MA. Liquid biopsy in lung cancer: present and future. Transl Lung Cancer Res. 2016;5:452–4.
4. Kohler C, Rudpour R, Barekati Z, Azadollahi R, Bitzer I, Wight E, Burki N, Desch C, Holzgreve W, Zhong XY. Levels of plasma circulating cell-free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105.
5. Kahler C, Mele SA, Papatopoulo A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–75.
6. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.
7. Dax LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.
8. Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, Walker J, Dearden S, Webster A, Milenkova T, McCormack R, Gfeitlinin treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9:1345–53.
9. Karachalou N, Mayo-de las Casas C, Queralt C, de Asquere I, Melloni B, Cardenal F, Garcia-Gomez R, Mussati B, Sanchez JM, Porta R, et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol. 2015;1:149–57.
10. Takahama T, Sakai K, Takeda M, Azuma K, Hida T, Hirabayashi M, Oguri T, Tanaka H, Ebi N, Sawa T, et al. Detection of the T790M mutation of EGFR in plasma of advanced non-small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors (West Japan oncology group 8014LTR study). Oncotarget. 2016;7:58492–9.
11. Allenson K, Castillo J, San Lucas FA, Scoel G, Kim DJ, Bernard V, Davis G, Kumar T, Katz M, Overman MJ, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early stage pancreatic cancer patients. Ann Oncol. 2017;28:741–7.
12. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.
13. Li W, Li C, Zhou T, Liu X, Liu X, Li C, Chen D. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16:145.
14. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakfield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.
15. Baranayi T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, Nagy G, Mager I, Wood MJ, El Andaloussi S, et al. Isolation of Exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 2015;10:e0145686.

Page 5 of 6

Hur et al. Molecular Cancer (2018) 17:15
16. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.
17. Royo F, Zuniga-Garcia P, Sanchez-Mosquera P, Egia A, Perez A, Loizaga A, Arceo R, Lacasa I, Rabade A, Amieta E, et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles. 2016;5:29497.
18. Sodar BW, Kittel A, Paloczi K, Vukman KV, Osteikoetxea X, Szabo-Taylor K, Nemeth A, Sperlagh B, Baranyai T, Giricz Z, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:24316.
19. Greig SL. Osimertinib: first global approval. Drugs. 2016;76:263–73.