Recent Advances in the Research and Development of Alpha-1 Proteinase Inhibitor for Therapeutic Use

Elena Karnaukhova*
Division of Hematology,
Center for Biologics Evaluation and Research
Food and Drug Administration
USA

1. Introduction

Human alpha-1-proteinase inhibitor (α1-PI) is a well-characterized multifunctional protease inhibitor, the major physiological role of which is inhibition of neutrophil elastase (NE) in the lungs. The importance of α1-PI is underlined by its deficiency which is characterized by low levels of α1-PI in the circulation. Under such conditions, lower levels of α1-PI are transported to tissues, including the fragile alveoli of the lungs. α1-PI deficiency (with levels of α1-PI in blood below 11 μM, insufficient for inhibition of proteolytic enzymes in the lungs) is a common genetic condition predisposing α1-PI-deficient individuals to the development of chronic obstructive pulmonary disease (COPD). Hereditary α1-PI deficiency is classically associated with the development of premature, ultimately fatal, panacinar emphysema. To slow down the progression of emphysema, several licensed α1-PI concentrate preparations derived from pooled human plasma are currently available for intravenous augmentation therapy for patients with congenital α1-PI deficiency and clinically evident emphysema. In addition, and as an alternative to the plasma-derived α1-PI products, multiple efforts have been made to develop recombinant versions of human α1-PI over the last three decades. This review describes the recent advances in the research and development of human α1-PI for therapeutic use and covers the following: characterization of human α1-PI; epidemiology of α1-PI deficiency and currently licensed treatment; summary of the manufacturing and recent quality improvements of the α1-PI plasma-derived products; safety and efficacy of α1-PI intravenous augmentation and alternative routes; development of recombinant versions of human α1-PI; conditions other than emphysema that are associated with α1-PI; and some other aspects related to the research and development of α1-PI for therapeutic use.

* The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy
2. Human α₁-PI and α₁-PI deficiency

2.1 Structure and function of α₁-PI

Human alpha-1-proteinase inhibitor (α₁-PI), also known as alpha-1-antitrypsin, is the most abundant inhibitor of serine proteases in plasma. It is predominantly synthesized in hepatocytes, but is also produced, to a lower extent, by alveolar macrophages, neutrophils, and some other cells (White et al., 1981; Carlson et al., 1988; Paakko et al., 1996). In healthy individuals, the concentration of α₁-PI in blood normally varies from 20 µM to 53 µM (1.04-2.76 g/L) (Brantly et al., 1988; Brantly et al., 1991) with a half-life in the circulation of about 3-5 days (Crystal, 1989; Kalsheker et al., 2002). Though α₁-PI has a wide range of inhibitory activities, its main physiological role is known to be the inhibition of polymorphonuclear leukocyte (neutrophil) elastase (NE) in the lungs (Travis, 1988). In the lower respiratory tract of healthy lungs, α₁-PI provides more than 90% of the anti-neutrophil elastase protection (Crystal, 1991; Crystal et al., 1989). Hereditary α₁-PI deficiency (with levels of α₁-PI in blood below 11 µM, insufficient for inhibition of NE) is classically associated with development of early-onset pulmonary emphysema, a hallmark of α₁-PI deficiency (Crystal et al., 1989; Snider, 1992). Smoking is known to be the biggest risk factor for developing emphysema; in smokers with α₁-PI deficiency a severe lung impairment is usually observed in their fourth decade of life.

α₁-PI is encoded by a single 12.2 kb gene (Pi) located on the long arm of chromosome 14 (Long et al., 1984; Rabin et al., 1986). Over 120 alleles of α₁-PI have been identified with approximately 35 of them being associated with α₁-PI deficiency, including Z-allele, which is the most common cause of the deficiency when inherited in a homozygous fashion. Due to a single mutation in the mobile domain (Glu342Lys), the α₁-PI Z-mutant undergoes aberrant conformational transitions that prompts the protein to aggregate. This results in retention of polymerized α₁-PI Z mutant within hepatocytes, thus inducing disease conditions in the liver and causing α₁-PI deficiency in the circulation (Ekeowa et al., 2011; Lomas, 2005; Volpert et al., 2000). The prevalence of three major α₁-PI variants (PiM, PiS, and PiZ) defines the number of carriers (PiMZ and PiMS) and individuals with deficiency phenotypes (PiZZ, PiSZ, and PiSS). The epidemiology of α₁-PI deficiency and its clinical manifestations, including lung diseases and liver diseases, has been described in detail (Ekeowa et al., 2011; Luisetti & Seersholm, 2004; Needham & Stockley, 2004; Gooptu & Lomas, 2009). Based on the α₁-PI serum concentration, a common classification to define α₁-PI deficiency includes the four major categories: (1) normal (with α₁-PI serum levels not lower than 20 µM); (2) deficient (with α₁-PI concentrations in serum lower than 20 µM); (3) dysfunctional (with normal α₁-PI level, but lost or lower inhibitory activity); and (4) null (with α₁-PI serum concentrations below the detectable level).

α₁-PI is a 52 kDa glycoprotein belonging to the serine protease inhibitor (serpin) superfamily, which in addition to α₁-PI also includes α₁-antichymotrypsin, antithrombin, plasminogen activator inhibitor, C1 esterase inhibitor, and many others (Stein & Carrell, 1995; Silverman et al., 2001). A single polypeptide chain of α₁-PI is comprised of 394 amino acid residues, including one cysteine, 2 tryptophanes, and 9 methionine residues (Carp et al., 1982; Johnson & Travis, 1979). Three N-linked glycans attached to asparagine residues 46, 83, and 247 represent ~12% of α₁-PI by molecular weight (Mega et al., 1980a,b; Carrell et al., 1981, 1982). The carbohydrate moiety is comprised of biantennary N-glycans, but also triantennary and traces of tetraantennary structures grounded on the mannose fork core and containing N-acetyl glucosamine, galactose, and terminal negatively-charged sialic...
(N-acetylneuraminic) acid (Mega et al., 1980b; Travis & Salvesen, 1983; Kolarich et al., 2006a). The glycosylation pattern is a major cause of the iso-electric focusing (IEF) pattern typical for α_1-PI with major isoforms M2, M4, M6, and also M7 and M8 due to the N-terminal truncation (Jeppsson et al., 1985; Kolarich et al., 2006a,b). Some characteristics of human α_1-PI are listed in Table 1. Like the majority of other native glycoproteins, α_1-PI is intrinsically a highly heterogeneous moiety, mainly due to variably trimmed glycosylation and an N-terminal pentapeptide that can be absent (Hercz, 1985; Krasnewich et al., 1995; Vaughan et al., 1982).

Characteristics	Description
Synonyms	alpha-1-proteinase inhibitor, alpha-1-antitrypsin
Common abbreviations	α_1-PI, alpha-1-PI, α_1-AT, alpha-1-AT, A1AT, AT
Classification	Serine proteinase inhibitor (serpin)
Substrates	Neutrophil elastase, trypsin, chymotrypsin
Molecular weight	52,000 Da (50,300 Da by mass spectrometric analysis)
Glycosylation	Three N-attached carbohydrates (12% w/w)
Polypeptide	Single polypeptide chain of 394 amino acid residues
Heterogeneity	Highly heterogeneous protein
Major isoforms	M2, M4, M6, M7 and M8
Half-life in circulation	3-5 days (for native plasma α_1-PI)
Concentration in blood	Acute-phase plasma protein, concentration normally varies from 20 μM to 53 μM (1.04-2.76 g/L)
Major biological activities	Inhibitory anti-serine proteinase activity
	Multiple non-inhibitory activities
Aggregation	α_1-PI Z mutant is naturally prone to aggregation α_1-PI S mutant aggregates to a lower degree
Physiologically important phenotypes	PiMM (normal); PiSS, PiSZ & PiZZ (deficiency phenotypes); PiZZ, PiSS & PiNull (the most abnormal)
Diagnostic α_1-PI variants (serum concentrations)	Normal (NLTa 20 μM); Deficient (lower than 20 μM); Dysfunctional (NLT 20 μM, inactive); Null (n.d.b level)
Diseases related to α_1-PI deficiency and aggregation	Pulmonary and liver diseases
	Other rare diseases (putative)c

a NLT, not lower than; bn.d., non-detectable; c See Table 3

Table 1. Characteristics of human α_1-PI

Figure 1 shows a crystal structure of α_1-PI, typical for serpins, which features 9 α-helices, 3 β-sheets (A, B, and C), and a mobile 15-residue reactive center loop (RCL) exposed for interaction with the target serine protease (Johnson & Travis, 1979; Lomas, 2005). Protease attack of the RCL results in cleavage at Met358-Ser359, formation of a covalent α_1-PI-protease complex with the amino-terminal polypeptide inserted into the A β-sheet, and an overall dramatic conformational change (Huntington et al., 2000; Ludeman et al., 2001; Stratikos & Gettins, 1999; Wilczynska et al., 1997).

Unlike the majority of proteins, α_1-PI is naturally folded in a metastable structure which is essential for its function. This is not the most thermodynamically stable form, and thus, α_1-PI is prone to a variety of conformational transitions and modifications (Lomas, 2005; Lomas.
et al., 1995). Much like other serpins, α₁-PI can intramolecularly convert into a more stable latent form, which is inactive, but the biological activity can be restored via denaturation and refolding (Lomas et al., 1995; Silverman et al., 2001).

Fig. 1. Crystal structure of α₁-PI (PDB 1HP7) in two projections. (A) Front view at the α₁-PI structure in respect to β-sheet A, and (B) Side view obtained by 90° clockwise rotation of the molecule. The images were obtained using PyMOL (the PyMOL Molecular Graphics System, Version 1.1r1, Schrödinger, LLC).

In addition to its inhibitory antiprotease function, α₁−PI exhibits a broad spectrum of non-inhibitory activities (Brantly, 2002; Janciauskiene et al., 2011; Nita et al., 2005). Because of the nine methionine residues in α₁−PI molecule, its plausible role as a putative antioxidant has been suggested (e.g., Levine et al., 1999, 2000). Due to the abundance of α₁−PI in human plasma and its conservative tertiary structure with hydrophobic cavities (Elliott et al., 2000; Lee et al., 2001; Parfrey et al., 2003), α₁−PI has the capacity to bind small hydrophobic molecules. This property has been explored mainly with respect to the peptides and small molecules that may prevent the aggregation of the α₁−PI Z mutant (Mahadeva et al., 2002; Mallya et al., 2007; Chang et al. 2009).

2.2 The α₁-PI deficiency and α₁-PI replacement therapy

There are approximately 60,000-100,000 severely deficient individuals in the United States which define α₁-PI deficiency as a rare disease. However, according to several publications, α₁-PI deficiency is widely under- and mis-diagnosed (e.g., de Serres, 2003; Bals et al., 2007). As reported by the World Health Organization (WHO, 1997), only 4% of the individuals with α₁-PI deficiency cases are identified, and only a portion of them are receiving treatment. Currently licensed treatment of the patients with α₁-PI deficiency and manifestation of pulmonary emphysema involves intravenous infusion of plasma-derived α₁-PI preparations with the recommended dose of 60 mg of active α₁-PI per kg of body weight administered once weekly. To maintain a threshold level of α₁-PI (11µM), α₁−PI-deficient patients should receive augmentation therapy for the duration of their lives, to slow the progression of emphysema. This nadir level has been determined based on α₁-PI
levels observed in the plasma of individuals who are heterozygous for Z-mutant α1-PI and who do not develop emphysema. Evaluation of the efficacy of α1-PI products used in clinical studies is based on surrogate markers: the infusion of α1-PI must elevate the circulating serum level of α1-PI above an epidemiologically established ‘protective threshold’ and the protein must be detectable in bronchoalveolar lavage fluid (Juvelakian & Stoller, 2004; Sandhaus, 2009). However, the ability of α1-PI augmentation therapy to reduce the progression of emphysema still remains to be proven. Safety and efficacy of intravenous α1-PI augmentation are considered in section 3.3.1. For other disease conditions that may possibly benefit from α1-PI therapy see section 3.3.3.

3. Research and development of α1-PI for therapeutic use

3.1 Plasma-derived α1-PI products

3.1.1 Currently approved α1-PI products

Currently there are six commercial plasma-derived α1-PI products (Table 2) licensed by the US FDA for intravenous treatment of patients with hereditary α1-PI deficiency who show evidence of emphysema. Prolastin® (registered trade name of Bayer Corporation since 1987) was the first α1-PI product to be approved. Since 2005, when Bayer Corporation was acquired by Talecris Biotherapeutics (Research Triangle Park, NC, USA; www.talecris.com), the product has been manufactured by Talecris. Aralast® (initially registered trademark of Alpha Therapeutic Corporation) was approved in 2003, and has been manufactured under the direction of Baxter Healthcare Corporation since then (Baxter, Westlake Village, CA, USA www.baxter.com). Zemaira® (registered trade name of Aventis Behring since 2003), another available product, is now manufactured by CSL Behring LLC (Kankakee, IL, USA; www.cslbehring-us.com). In 2007, the US FDA approved another of Baxter’s preparations of α1-PI concentrate - Aralast NP® - that has the same formulation as its predecessor, but differs from the earlier approved product by having a significantly lower content of C-terminal lysine-truncated α1-PI (approximately 2% vs. 67%). In 2009, the US FDA approved Prolastin C® , the updated version of the earlier Talecris product that had been on the market for more than two decades. Due to more sophisticated purification and pathogen reduction steps, including two dedicated viral inactivation steps instead of heat treatment, the specific activity of Prolastin C® (above 0.7 mg of functional α1-PI per mg of total protein) is twice higher than that of Prolastin®, which means that lower volumes and shorter transfusion time are needed. Most recently, in July 2010, the FDA approved Glassia™ (formerly Respira), a product manufactured by Kamada (Weizmann Science Park, Ness Ziona, Israel; www.kamada.com) and commercially launched by Baxter in the United States and some other countries. Glassia™ is another highly purified α1-PI (with specific activity above 0.7 mg of active α1-PI per mg of total protein) and the only α1-PI product that is available in a ready-to-use liquid form with a shelf-life stability of two years under refrigerated conditions.

α1-PI products are manufactured as part of a complex plasma fractionation scheme which was originally developed for large-scale production of albumin, but now also yields many other plasma therapeutics*. Since products are made from pooled human plasma, they may

* The US FDA product approval information is available at http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/FractionatedPlasmaProducts/default.htm
Table 2. The plasma-derived α_1-PI therapeutic products approved by the US FDA for chronic augmentation and maintenance therapy in adults with congenital α_1-PI deficiency and clinically evident emphysema

Drug product	Manufacturer	Date of licensure	Product form	Major steps of viral inactivation/removal
Prolastin®	Talecris Biotherapeutics	12/2/1987	Lyophilized powder	Depth Filtration Heat Treatment
Aralast®c	Baxter Healthcare Co.	3/21/2003	Lyophilized powder	Solvent/Detergent & Nanofiltration
Zemaira®	CSL Behring	7/8/2003	Lyophilized powder	Heat Treatment & Ultrafiltration
Aralast NP®d	Baxter Healthcare Co.	5/4/2007	Lyophilized powder	Solvent/Detergent & Nanofiltration
Prolastin C®	Talecris Biotherapeutics	10/16/2009	Lyophilized powder	Solvent/Detergent & Nanofiltration
Glassia™	Kamada	7/1/2010	Ready-to-use liquid	Solvent/Detergent & Nanofiltration

*a Based on recent publications including (Stockley, 2010; Tonelli & Brantly, 2010)

*b Reconstitution using Sterile Water for Injection is required

*c Aralast®, previously known as Respitin, contains approximately 67% of α_1-PI with the truncated C-terminal lysine (Lys394)

*d Aralast NP® contains approximately 2% of α_1-PI with truncation of C-terminal lysine residue

3.1.2 Heterogeneity of α_1-PI products

Heterogeneity of α_1-PI therapeutic preparations is a complex phenomenon. First of all, heterogeneous nature of plasma α_1-PI is an intrinsic property of the native glycoprotein (see 2.1). Second, the presence of variously processed α_1-PI forms including latent, cleaved, complexed or aggregated α_1-PI species, is barely avoidable. However, it must be kept minimal as the inactive protein species have a direct influence on the product’s specific activity. Third, α_1-PI products purified from pooled human plasma contain certain impurities of other plasma proteins, including albumin, haptoglobin, α_1-antichymotrypsin, α_1-lipoprotein, antithrombin III, C1-esterase inhibitor, etc. The human origin of these
impurities ensures their tolerability, however, the level of these plasma proteins in α1-PI concentrate may significantly increase the non-therapeutic protein load in the α1-PI preparation intended for transfusion. In addition to all that, multistep manufacturing procedures are known to induce various protein alterations, such as aggregation and chemical modifications (e.g., deamidation, cysteinylation, and C-terminal truncation). Some modifications can be observed by IEF and other techniques (Cowden et al., 2005; Kolarich et al., 2006a, 2006b) and reflected in the product specifications. Currently there are no data that would demonstrate whether these alterations affect the in vivo activity, safety, efficacy or immunogenicity of α1-PI therapeutic preparations. In general, commercial plasma-derived α1-PI products differ in terms of their purity, specific activity, modifications, and excipients (Lomas et al., 1997; Cowden et al., 2005; Stockley, 2010; Tonelli & Brantly, 2010).

3.2 Research and development of the recombinant versions of human α1-PI

3.2.1 Advances in the development of recombinant α1-PI

The plasma supply per se is a limited source and appears to be insufficient to meet anticipated clinical demand. Moreover, despite effective viral inactivation/removal steps in the manufacturing of plasma proteins (Cai et al., 2005; Hotta et al., 2010), the risk of contamination with new and unknown pathogens may still exist. Therefore, recombinant technology has been widely explored as an alternative approach for the production of human α1-PI since the pioneering works of the early 1980s (Bollen et al., 1983; Cabezon et al., 1984; Rosenberg et al., 1984). As evident from numerous reports, both from academic research and industry, the human gene for α1-PI has been expressed in virtually all available hosts (E. coli, various yeasts, fungi, insect cells, CHO cells, human neuronal cells, and produced in transgenic plants and animals). For more details on research and development of recombinant α1-PI (r-α1-PI) in different systems and advances and limitations of the recombinant approach for production of stable and biologically active α1-PI, see our comprehensive 2006 review (Karnaukhova et al., 2006). More recently, the human gene for α1-PI has been expressed in filamentous fungi (Chill et al., 2009; Karnaukhova et al., 2007), transgenic tomato plants (Agarwal et al., 2009), tobacco cell cultures (Huang et al., 2009; Nadai et al., 2009), and human neuronal cell lines (Blanchard et al., 2011). Nevertheless, no r-α1-PI is available as a licensed therapeutic treatment. In general, the essential criteria for the development of therapeutics for human use are safety, optimal clinical efficacy, and maximum cost-effectiveness. Among many efforts to develop r-α1-PI of therapeutic quality (see Karnaukhova et al., 2006), there appear to be only two examples of the r-α1-PIs for which development went far enough to get to clinical trials. The first was r-α1-PI produced in the yeasts Saccharomyces cerevisiae and manufactured by Arriva Pharmaceuticals Inc. (Arriva) for several indications. A nebulized formulation of this non-glycosylated r-α1-PI preparation has been intended for the treatment of respiratory disorders including emphysema and COPD (phase II clinical trials), and asthma (pre-clinical studies) (Brown, 2006a). Although animal studies have been considered to be successful (Pemberton et al., 2006), human trials have not been recommended (see review by Stokley, 2010). A topical gel formulation of r-α1-PI has been intended for the treatment of dermatitis and other severe dermatological disorders in phase II clinical trials (see Brown, 2006b).

The second example of the advanced development of recombinant human α1-PI is large scale production performed in transgenic dairy animals (t-α1-PI): sheep [by PPL Therapeutics (UK) in partnership with Bayer Biologicals (USA), (Dalrymple & Garner, 1998;
Wright et al., 1991]), and goats [by Genzyme Transgenics Corporation (USA), (Ziomek, 1998)]. The transgenic α1-PI recovered from sheep milk was purified to 99.9% purity. Even so, sheep native α1-PI and sheep α1-antichymotrypsin were major impurities, at 6.7-18.7 mg/L and 60.3-75.8 parts per million, respectively. Two sequential clinical studies were performed to evaluate the safety and immunogenicity of aerosolized transgenic human α1-PI. None of the subjects had an antibody response to human t-α1-PI (Tebbutt, 2000; Spencer et al., 2005); however, antibody responses were observed to sheep α1-PI and to sheep α1-antichymotrypsin (Spencer et al., 2005). Four patients withdrew from the study due to the development of dyspnea and a decline in lung function, and the later product development was terminated.

3.2.2 Pitfalls in the development of r-α1-PI for therapeutic use

The general regulatory requirements for biologicals intended for therapeutic use, including r-α1-PI, are purity, safety, and efficacy. In order to be effective, therapeutic proteins have to be stable in vivo and in vitro (Karnaukhova et al., 2006). Reviewing the work performed over the last two decades to produce stable and biologically active r-α1-PI of therapeutic quality, one can see basically two major factors that were impeding the progress: (1) impurities that could induce antibody responses and cause adverse reactions in patients, and (2) lower stability than that of plasma counterpart, mainly caused by the lack of glycosylation or non-human type of glycosylation (the latter may also induce immune responses). Although presently the first reason can be technically better solved, removal of trace amounts of non-human native proteins derived from the host, e.g., sheep α1-PI, from the human r-α1-PI to exclude further adverse reactions, requires a much higher level of purification than was possible at the time of that development. As for the second reason, indeed, glycosylation is considered to be a cause of rapid clearance of r-α1-PI from the circulation (Casolaro et al., 1987; Cantin et al., 2002a). Aberrant glycosylation (or lack of glycans) does not necessarily affect biological activity of the recombinant protein, but it is important for its stability. According to recently published data, glycosylation of α1-PI does not interfere with the serpin native state flexibility (or instability) essential for its efficient function, though it may confer resistance to degradation by proteases and thus extend its half-life in the circulation (Sarkar & Wintrode, 2011). Extensive work performed over decades for the development of viable r-α1-PI of therapeutic quality and lessons learned from these experiences truly paved the way for other protein therapeutics. It is worthwhile to mention two serpins produced in transgenic animals that were recently approved. In 2009, the US FDA approved recombinant antithrombin (ATryn®) produced in the milk of transgenic goats (Fyfe & Tait, 2009). In 2010, another serpin, recombinant human C1-esterase inhibitor (Ruconest®) produced in the milk of transgenic rabbits was granted European marketing authorization (Varga & Farkas, 2011). Both pharmaceutical proteins show a faster clearance, yet it may not be an issue depending on the intended use. For instance, Ruconest® was approved for the treatment of acute attacks of hereditary angioedema, and therefore there is no need to maintain its higher level in blood longer than its action is required. Given a shorter in vivo half-life of recombinant α1-PI, it has been considered for other administration routes and applications, such as inhalation for the treatment of emphysematous condition, and topical application for various skin diseases. However, a convincing proof of the recombinant product efficacy and safety in appropriate clinical trials is as problematic as it is for plasma-derived α1-PI; large clinical trials in the cases of rare diseases are difficult to perform because of small geographically dispersed patient populations. In addition, a limited population means a
limited market, which is less attractive for large investments. No doubt, these reasons markedly slow down the development of r-α_1-PI.

3.3 α_1-PI–based therapies

3.3.1 Safety and efficacy of intravenous α_1-PI augmentation

The intravenous augmentation of α_1-PI was shown to be safe and well tolerated over a long history of the replacement therapy. However, its impact on disease progression and mortality still remains to be convincingly proven. α_1-PI augmentation is assumed to slow down the rate of emphysema development and progression, and, thus, to improve the life quality and duration of α_1-PI deficient patients, yet the essential proof of efficacy is missing. According to Hubbard & Crystal (1990), only approximately 2-3% of infused α_1-PI actually reaches the lungs; and the effectiveness of α_1-PI replacement therapy has been evaluated mainly on the bases of biochemical (not clinical) criteria (Tonelli & Brantly, 2010). For recently approved α_1-PI products, their pharmacokinetic equivalence and comparable safety profile to Prolastin were demonstrated (e.g., Stocks et al., 2010). α_1-PI therapy is a life-long and very expensive treatment that may cost up to $150,000 (Silverman, 2009) in the United States. Whether this therapy decreases mortality also remains unknown, as there are no reliable data on mortality, as well as morbidity and survival (Gøtzsche & Johansen, 2010a).

Some observational studies support the idea that augmentation therapy may help to slow the decline in lung function (Seersholm et al., 1997; Wencker et al., 2001; Kueppers, 2011). But there are also more critical evaluations including the opinion that α_1-PI augmentation therapy cannot be recommended due to lack of evidence of clinical benefit and the cost of treatment (Gøtzsche & Johansen, 2010a, 2010b). It is currently widely admitted that the efficacy of α_1-PI augmentation therapy has never been persuasively demonstrated and must be proven in a proper clinical trial. Due to the widespread and small clusters of patients all over the country, conducting a prospective, randomized, placebo-controlled clinical trial is challenging. In addition, the development of emphysema proceeds slowly, creating the additional difficulties of monitoring lung function decline and mortality data (Hutchinson & Hughes, 1997; Schluchter et al., 2000).

3.3.2 Alternative routes of administration of α_1-PI products

Due to the inconvenience of life-time intravenous augmentation therapy and low levels of α_1-PI reaching lungs, the inhalation of aerosolized α_1-PI has been suggested as a less invasive and more efficient way to deliver large amounts of α_1-PI directly to the lungs where it is most needed (Hubbard et al., 1989; McElvaney et al., 1991; Cockett, 1999). Although strategies for aerosol therapy of α_1-PI deficiency has been proposed two decades ago (Hubbard et al., 1989; Hubbard & Crystal, 1990), there is still no α_1-PI aerosolized treatment approved. Several studies examined efficiency of the α_1-PI inhalation therapy in animals and in humans (Kropp et al., 2001; Siekmeier, 2010). It was demonstrated (Kropp et al., 2001) that significantly more α_1-PI was deposited in the lungs through the inhalational route than via intravenous infusion (14.6% vs. 2%). Although the inhalation route seems attractive, nevertheless, enabling the inhaled material to reach the lung interstitium, the most important to the emphysematous process region, is still problematic. With regards to recombinant versions of α_1-PI, it is generally assumed that products directly delivered to the lungs may not require the same degree of stability as α_1-PI given intravenously. However, as mentioned above, human studies using r-α_1-PI from transgenic sheep were associated
with adverse reactions due to impurities derived from the host (Spenser et al., 2005). Thus, higher levels of purification and more clinical studies are required.

3.3.3 Other α₁-PI applications

Currently, α₁-PI therapeutic preparations are licensed exclusively for one indication, *i.e.*, chronic augmentation and maintenance therapy in individuals with emphysema due to congenital α₁-PI deficiency. Previously unrecognized inherited disorder, α₁-PI deficiency was first described in 1963 (Laurell & Eriksson, 1963) based on the serum electrophoretic analysis that revealed five individuals deficient of α₁-fraction; three of those patients had developed emphysematous conditions. Six years later, in 1969, cirrosis associated with α₁-PI deficiency was described (Sharp et al., 1969). These findings initiated a concept of linkage between α₁-PI deficiency and pulmonary and liver diseases. As evident from the available literature, due to the multiple biological activities of α₁-PI, it has been associated with other lung diseases (first of all, cystic fibrosis) and many non-pulmonary diseases (Table 3). Some of these conditions may possibly benefit from α₁-PI augmentation therapy (see recent reviews by Blanco et al., 2011 and Janciauskiene et al., 2011).

According to Blanco et al. (2011), α₁-PI therapy has proven remarkable efficacy in small cohorts of α₁-PI-deficient patients who also suffer from fibromyalgia, systemic vasculitis, relapsing panniculitis and bronchial asthma. Although the putative benefits of α₁-PI therapy for treatment of additional rare diseases (some are listed in Table 3) requires much more clinical data than are currently available to support clinical efficacy and safety of α₁-PI treatment, in general it indicates a clear potential for additional α₁-PI supply to satisfy the anticipated clinical demand in near future. Because of controversy related to the additional clinical implications of α₁-PI deficiency, more clinical data are needed to verify whether the reported links between α₁-PI deficiency and other rare diseases are real or accidental.

As a potent anti-inflammatory agent, α₁-PI has been investigated in clinical studies for treatment of cystic fibrosis (Jones & Helm, 2009). Whereas patients with emphysematous conditions suffer from the hereditary α₁-PI deficiency and, thus, insufficient levels of the protease inhibitor in the lungs due to impaired α₁-PI synthesis in hepatocytes, patients with cystic fibrosis may have normal synthesis of α₁-PI and suffer from severe pulmonary inflammation due to high excess of NE in the lungs, leading to a progressive loss of lung function (Allen, 1996; Siekmeier, 2010). Therefore, it has been proposed that both groups of patients may benefit from α₁-PI augmentation therapy to prevent the deleterious effect of free protease (Allen, 1996; Birrer, 1995; Birrer et al, 1996) However, intravenous administration of α₁-PI did not result in a suppression of the respiratory neutrophil elastase burden (McElvaney et al, 1991). Several studies have been conducted using inhalation of an aerosolized α₁-PI in cystic fibrosis and α₁-PI deficiency (Hubbard et al., 1989; Griese et al, 2001, 2007; Martin et al, 2006; Brand et al, 2009).

Whereas several studies that investigated the efficacy of treatment with an aerosolized α₁-PI both in patients with cystic fibrosis and in those with α₁-PI deficiency came to positive conclusions regarding deposition of inhaled α₁-PI in the lungs and its anti-elastase activity (see review by Siekmeier, 2010), the conclusion from other studies was that treatment with α₁-PI did not demonstrate any clinical improvements (Martin, 2006). If further clinical studies support the safety and efficacy of an aerosolized α₁-PI, and it is approved for treatment of cystic fibrosis, the demand for therapeutic α₁-PI preparations could be significantly increased.
Table 3. Conditions other than emphysema and liver disease possibly associated with α1-PI

Disease	References
Vasculitis	Dowd et al., 1995; Esnault, 1997; Griffith et al., 1996
Panneulitis	Chowdhury et al., 2002; Gross et al., 2009; Kjus et al., 2002; Smith et al., 1987; Valverde et al., 2008
Fibromyalgia	Ablin et al., 2009; Blanco et al., 2004; Blanco et al., 2010
Asthma	Blanco et al., 2008; Blanco et al., 2011; Eden et al., 1997
Pancreatitis	Rabassa et al., 1995; Needlham & Stockley, 2004
Renal	Szönyi et al., 2006; Ting et al., 2008
Diabetes	Kalis et al., 2010; Lisowska-Myjak et al., 2006;
Cancer	Li et al., 2011; Lindor et al., 2010; Topic et al., 2011
Rheumatoid arthritis	Grimstein et al., 2010; Grimstein et al., 2011
Atherosclerosis	Stakisaitis et al., 2001; Talmud et al., 2003;
Acute anterior uveitis	Fearnley et al., 1988; Saari et al., 1986
Chronic rhinosinusitis	Kilty et al., 2008, 2010; Maune et al., 1995

3.3.4 Research toward the enhancement of α1-PI-therapies

During last decade various approaches have been considered for the enhancement of α1-PI-based therapies. For instance, to prolong a short half-life of r-α1-PI in the circulation, Cantin and co-workers hypothesized that conjugation of r-α1-PI with polyethylene glycol (PEG) at Cys232 could extend the in vivo half-life of recombinant protein in blood and lung (Cantin et al., 2002b). According to their data, the site-specific conjugation with either 20 or 40 kD PEG at Cys232 of nonglycosylated r-α1-PI (human) results in an active inhibitor with extended in vivo stability. Moreover, 72 h later after airway instillation, the PEG-r-α1-PI seemed to be significantly better than glycosylated α1-PI at protecting the lung against elastase–induced lung hemorrhage. As an example of the in vitro biochemical evaluation of the concept, α1-PI has been considered for its affinity to various small ligands and drugs for different reasons. Mainly this approach has been explored with respect to the peptides and small molecules in order to prevent the aggregation of Z mutant (e.g., Mallya et al., 2007; Chang et al. 2009). In the meantime, the protein’s potential for binding small ligands of pharmaceutical interest has been proposed as a promising approach that is directed at, and may ultimately enhance, currently existing α1-PI therapies (Karnaukhova et al., 2010). For instance, α1-PI’s affinity to retinoic acid, which is known for a wide range of physiological activities including alveolar repair and regrowth (Roche clinical studies, see Stockley, 2010; Massaro & Massaro, 1996, 1997) and tissue rejuvenation in various dermatologic diseases, has been convincingly demonstrated in biochemical experiments in vitro (Karnaukhova et al., 2010). As α1-PI augmentation therapy cannot cure, but may only slow down, the progression of emphysema, its complexation with retinoic acid could be more efficient for treatment than α1-PI alone. It is noteworthy that the interactions of α1-PI with several other physiologically active ligands (including porphyrins) may reveal additional properties of this multifunctional serpin.

4. Conclusions

Since α1-PI deficiency was first described by Carl-Bertil Laurell and Sten Eriksson (Laurell & Eriksson, 1963) as a condition that could lead to the development of severe obstructive
pulmonary disease, our knowledge about α₁-PI structure-function relationships and clinical manifestations of α₁-PI deficiency has increased tremendously. Moreover, multi-disciplinary research efforts prompted the development of α₁-PI-based augmentation therapy to maintain the inhibitor level above the protective threshold. Since 1987, several α₁-PI products derived from pooled human plasma have been approved and are currently available to slow down the progression of emphysematous conditions in α₁-PI-deficient patients. In addition, due to its multiple physiological activities, α₁-PI has been identified for its putative involvement in several other rare diseases, the treatment of which may possibly benefit from α₁-PI-based therapies. As an alternative to intravenous administration that may improve the efficacy of α₁-PI treatment, the inhalation of aerosolized α₁-PI preparations has been in clinical trials. Recombinant versions of human α₁-PI have been produced in all available hosts and in several transgenic animals. These efforts made a remarkable impact on the research realm of recombinant protein therapeutics, but did not yet bring any viable version of recombinant α₁-PI to the treatment. In regards to therapeutic preparations and their use, there are several questions to be addressed when looking to the future. Keeping in mind the long history of replacement therapy using currently approved plasma-derived α₁-PI products, it is essential that the efficacy of α₁-PI replacement therapy be clearly demonstrated in prospective, randomized, placebo-controlled trials. Will the efficacy of inhalation therapy using aerosolized α₁-PI preparations be proven to be superior to that of the intravenous route? Will the recombinant/transgenic versions of human α₁-PI be optimized to meet the requirements for protein therapeutics? Will other rare diseases currently implicated in association with α₁-PI and α₁-PI deficiency be clearly proven to benefit from α₁-PI treatment? From the standpoint of product quality, safety and efficacy, the current state of research and development of α₁-PI for therapeutic use demonstrates a symbiosis of the recent achievements and controversies, hopefully typical of our progress.

5. References

Ablin, J.N., Bar-Shira, A., Yaron, M. & Orr-Urtreger, A. (2009). Candidate-gene approach in fibromyalgia syndrome: association analysis of the genes encoding substance P receptor, dopamine transporter and alpha1-antitrypsin. Clin Exp Rheumatol, Vol. 27, No.5 Suppl 56, (September-October 2009), pp. S33-S38, ISSN 0392-856X

Agarwal, S., Jha, S., Sanjal, I. & Amla, D.V. (2009). Effect of point mutations in translation initiation context on the expression of recombinant human alpha (1)- proteinase inhibitor in transgenic tomato plants. Plant Cell Rep, Vol.28, No.12, (December 2009), pp. 1791-1798, ISSN: 0721-7714

Allen, E.D. (1996). Opportunities for the use of aerosolized α₁-antitrypsin for the treatment of cystic fibrosis. Chest, Vol.110, Suppl.6, (December 1996), pp. 256S-260S, ISSN 0012-3692

Bals, R., Koczulla, R., Kotke, V., Andress, J., et al. (2007). Identification of individuals with alpha-1-antitrypsin deficiency by a targeted screening program. Respir Med, Vol. 101, No.8, (August 2007), pp. 1708-1714, ISSN 0954-6111

Birrer, P. (1995). Proteases and antiproteases in cystic fibrosis: pathogenetic considerations and therapeutic strategies. Respiration Vol. 62, Suppl.1, pp. 25S–28S, ISSN 0025-7931
Recent Advances in the Research and Development of Alpha-1 Proteinase Inhibitor for Therapeutic Use

Birrer, P., McElvaney, N.G., Rudeberg, A., et al. (1994). Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. *Am J Respir Crit Care Med*, Vol.150, (July 1994), pp. 207-213, ISSN 1073-449X

Blanchard, V., Liu, X., Eigel, S., Kaup, M., Rieck, S., Janciauskiene, S., Sandig, V., Marx, U., Walden, P., Tauber, R. & Berger, M. (2011). N-Glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. *Biotechnol Bioeng*, Vol.108, No.9, (September 2011), pp. 2118-2128, ISSN 0006-3592

Blanco, I., Canto, H., de Serres, F.J., Bustillo, E.F. & Rodríguez, M.C. (2004). Alpha-1-antitrypsin replacement therapy efficiently controls fibromyalgia symptoms in two PI ZZ alpha-1-antitrypsin deficiency patients. *J Rheumatol*, Vol.31, No.10, (October 2004), pp. 2082-2085, ISSN 0315-162X

Blanco, I., Canto, H., Flóres, J., Camblor, C., Cárcaba, V., de Serres, F.J., Janciauskiene, S. & Bustillo, E.F. (2008). Long-term augmentation therapy with alpha-1 antitrypsin in an MZ-AAT severe persistent asthma. *Monaldi Arch Chest Dis*, Vol.69, No.4, (December 2008) pp. 178-82, ISSN 1122-0643

Blanco, I., Astudillo, A., Domínguez, F., Janciauskiene, S., Cárcaba, V., Gallo, C., Canto, H., de Serres, F.J. & Bustillo, E.F. (2010). Intravenous infusions of purified alpha 1-antitrypsin effectively controls symptoms and reverts muscle biopsy changes in an MZ-alpha-1 antitripsyn deficiency and fibromyalgia syndrome patient. *J Musculoskel Pain*, Vol.18, No.2, (June 2010), pp. 167-172, ISSN 1058-2452

Blanco, I., Lara, B. & de Serres, F. (2011). Efficacy of alpha1-antitrypsin augmentation therapy in conditions other than pulmonary emphysema. *Orphanet J Rare Dis*, Vol.6, No.14, doi:10.1186/1750-1172-6-14, (April 2011), ISSN 1750-1172

Bollen, A., Herzog, A., Cravador, A., Herion, P. et al. (1983). Cloning and expression in *E. coli* of full length DNA coding for human A1AT. DNA Vol.4, No.4, pp.255-264, ISSN 0198-0238

Brand, P., Schulte, M., Wencker, M., Herpich, C.H., Klein, G., Hanna, K. & Meyer, T. (2009). Lung deposition of inhaled α1-proteinase inhibitor in cystic fibrosis and α1-antitrypsin deficiency. *Eur Respir J*, Vol.34, (August 2009), pp. 354-360, ISSN 0903-1936

Brantly, M. (2002). α1–Antitrypsin: Not just an antiprotease: Extending the half-life of a natural anti-inflammatory molecule by conjugation with polyethylene glycol. *Am J Respir Cell Mol Biol*, Vol.27, No.6, (December 2002), 652-654, ISSN 1044-1549

Brantly, M., Nukiwa, Y. & Crystal, R.G. (1988). Molecular basis of α1-antitrypsin deficiency. *Am J Med*, Vol.84, No. 6A, (June 1988), pp. 13-31, ISSN 0002-9343

Brantly, M.L., Wintes, J.T., Vogelmeier, C.F., Hubbard R.C., et al. (1991). Use of highly purified α1-antitrypsin standard to establish ranges for the common normal and deficient α1-antitrypsin phenotypes. *Chest*, Vol.100, No.3, (September 1991), pp. 703-708, ISSN 0012-3692

Brown, W.M. (2006b). rAAt (dermatological) Arriva/ProMetric. *Curr Opin Mol Ther*, Vol.8, No.1, (February 2006), pp. 69-75, ISSN 1464-8431

Brown, W.M. (2006a). rAAt (inhaled) Arriva/Hyland Immuno. *Curr Opin Mol Ther*, Vol.8, No.1, (February 2006), pp. 76-82, ISSN 1464-8431

www.intechopen.com
Cabezon, T., De Wilde, M., Herion, P., Lorian, R. & Bollen, A. (1984). Expression of human \(\alpha_1 \)-antitrypsin cDNA in the yeast Saccharomyces cerevisiae. *Proc Natl Acad Sci USA*, Vol.81, No.21, (November 1984), pp. 6594–6598, ISSN 0027-8424

Cai, K., Gierman, T.M., Hotta, J., Stenland, C.J., Lee, D.C., Pifat, D.Y. & Petteway, Jr. S.R. (2005). Ensuring the biologic safety of plasma-derived therapeutic proteins. Detection, inactivation and removal of pathogens. *Biodrugs*, Vol.19, No.2, pp. 79-96, ISSN 1173-8804

Cantin, A., Woods, D.E., Cloutier, D., Heroux, J., Dufour, E.K. & Ledoc, R. (2002a). Leukocyte elastase inhibition therapy in cystic fibrosis: role of glycosylation on the distribution of alpha-1-proteinase inhibitor in blood versus lung. *J Aerosol Med*, Vol.15, No.2, (Summer 2002), pp. 141-148, ISSN 0894-2684

Cantin, A.M., Woods, D.E., Cloutier, D., Dufour, E.K. & Leduc, R. (2002b). Polyethylene glycol conjugation at Cys232 prolongs the half life \(\alpha_1 \) proteinase inhibitor. *Am J Respir Cell Mol Biol*, Vol.27, No.6, (December 2002), pp. 659–665, ISSN 1044-1549

Carlson, J.A., Rogers, B.B., Sifers, R.N., et al. (1988). Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. *J Clin Invest*, Vol.82, No.1 (April 1988), pp. 26–36, ISSN 0021-9738

Carp, H., Miller, F., Hoidal, J.R. & Janoff, A. (1982). Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. *Proc Natl Acad Sci USA*, Vol.79, No.6, (March 1982), pp. 2041-2045, ISSN 0027-8424

Carrell, R.W., Jeppson, J.O., Vaughan, L., Brennan, S.O., Owen, M.C. & Boswell, D.R. (1981). Human \(\alpha_1 \)-antitrypsin: carbohydrate attachment and sequence homology. *FEBS Lett*, Vol.135, No.2, (December 1981), pp. 301-303, ISSN 0014-5793

Carrell, R.W., Jeppson, J.O., Laurell, C.B., Brennan, S.O., Owen, M.C., Vaughan, L. & Boswell, D.R. (1982). Structure and variation of human \(\alpha_1 \)-antitrypsin. *Nature* (London), Vol.298, No.5872, (July 1982), pp. 329-334, ISSN 0002-8036

Casolaro, M.A., Fells, G., Wewers, M., et al. (1987). Augmentation of lung antineutrophil elastase capacity with recombinant human alpha-1-antitrypsin. *J Appl Physiol*, Vol.63, No.5, (November 1987), pp. 2015-2023, ISSN 8750-7587

Chang, Y.P., Mahadeva, R., Chang, W.S., Lin, S.C. & Chu, Y.H. (2009). Small-molecule peptides inhibit Z alpha(1)-antitrypsin polymerization. *J Cell Mol Med*, Vol.13, No.8B, (August 2009), pp. 2304-2316, ISSN 1582-1838

Chill, L., Trinh, L., Azadi, P., Ishihara, M., Sonon, R., Karnaukhova, E., Ophir, Y., Golding, B. & Shiloach, J. Production, purification, and characterization of human \(\alpha_1 \)-proteinase inhibitor from *Aspergillus niger*. *Biotechnol Bioeng*, Vol.102, No.3, (February 2009), pp. 828-844, ISSN 0006-3592

Chowdhury, M.M., Williams, E.J., Morris, J.S., Ferguson, B.J., McGregor, A.D., Hedges, A.R., Stamatakis, J.D. & Pope, F.M. (2002). Severe panniculitis caused by homozygous ZZ alpha1-antitrypsin deficiency treated successfully with human purified enzyme (Prolastin). *Br J Dermatol*, Vol.147, No.6, (December 2002), pp. 1258-1261, ISSN 0007-0963

Cockett, M.I. (1999). Technology evaluation: cystic fibrosis therapy, Genzyme. *Curr Opin Mol Ther* Vol.1, No.2, (April 1999), pp. 279-283, ISSN 1464-8431

Cowden, D.I., Fisher, G.E. & Weeks, R.L. (2005). A pilot study comparing the purity, functionality and isoform composition of alpha-1-proteinase inhibitor (human)
products. *Curr Med Research Opinion* Vol.21, No.6 (June 2005), pp. 877-883, ISSN 0300-7995

Crystal, R.G. (1989). The α1-antitrypsin gene and its deficiency states. *Trends Genet*, Vol. 5, No.12, (December 1989), pp. 411-417, ISSN 0168-9525

Crystal, R.G., Brantly, M.L., Hubbard, R.C., Curiel, D.T., States, D.J, & Holmes, M.D. (1989). The alpha 1-antitrypsin gene and its mutations. Clinical consequences and strategies for therapy. *Chest*, Vol.95, No.1, (January 1989), pp. 196-208, ISSN 0012-3692

Crystal, R.G. (1991). α1-Antitrypsin deficiency: pathogenesis and treatment. *Hospital Practice*, Vol.15, (February 1991), pp. 81-94, ISSN 8750-2836

Dalrymple, M.A. & Garner, I. (1998). Genetically modified livestock for the production of human proteins in milk. *Biotechnol Genet Eng Rev*, Vol.15, pp. 33-49, ISSN 0264-8725

de Serres, F.J. (2003). Alpha-1 Antitrypsin deficiency is not a rare disease but a disease that is rarely diagnosed. *Environ Health Perspect*, Vol.111, No.16, (December 2003), pp. 1851–1854, ISSN 0091-6765

Dowd, S.K., Rodgers, G.C. & Callen, J.P. (1995). Effective treatment with alpha 1-protease inhibitor of chronic cutaneous vasculitis associated with alpha 1-antitrypsin deficiency. *J Am Acad Dermatol*, Vol.33, No.5, Pt. 2, (November 1995), Pt. 2, pp. 913-916, ISSN 0190-9622

Eden, E., Mitchell, D., Mehlan, B. et al. (1997). Atopy, asthma, and emphysema in patients with severe alpha-1-antitrypsin deficiency. *Am J Respir Crit Care Med*, Vol.156, (July 1997), pp. 68-74, ISSN 1073-449X

Ekeowa, U.I., Marciniak, S.J. & Lomas, D.A. (2011). α(1)-antitrypsin deficiency and inflammation. *Expert Rev Clin Immunol*, Vol.7, No.2, (March 2011), pp. 243-252, ISSN 1744-666X

Elliot, P.R., Pei, X.Y., Dafforn, T.R., Lomas, D.A. (2000). Topography of a 2.0 Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. *Protein Sci*, Vol.9, No.7, (July 2000), pp. 1274–1281, ISSN 0961-8368

Esnault, V.L. (1997). ANCA-positive vasculitis and alpha 1-antitrypsin deficiency: could free ANCA antigens released by neutrophils mediate vasculitic lesions? *Nephrol Dial Transplant*, Vol.12, (February 1997), pp. 249-251, ISSN 0931-0509

Fearnley, I.R., Spalton, D.J., Ward, A.M., Slavin, B. & Muncey, F. (1988). Alpha 1- antitrypsin phenotypes in acute anterior uveitis. *Br J Ophthalmol*, Vol.72, (August 1988), pp. 636-639, ISSN 0007-1161

Fyfe, A. & Tait, R.C. (2009). Antithrombin-α for the prophylaxis of venous thrombosis in congenital antithrombin deficiency. *Expert Rev Hematol*, Vol.2, No.5, (October 2009), pp. 499-507, ISSN 1747-4086

Gooptu, B. & Lomas, D.A. (2009). Conformational pathology of the serpins: themes, variations, and therapeutic strategies. *Annu Rev Biochem*, Vol.78, (July 2009), pp. 147-76, ISSN 0066-4154

Gøtzsche, P.C. & Johansen, H.K. (2010a). Intravenous alpha-1 antitrypsin augmentation therapy for treating patients with alpha-1 antitrypsin deficiency and lung disease. *Cochrane Database of Syst Rev*, Vol. 7, (July 2010), p. CD007851, ISSN 1469-493X

Gøtzsche, P.C. & Johansen, H.K. (2010b). Intravenous alpha-1 antitrypsin augmentation therapy: systematic review. *Dan Med Bull*, Vol. 57, No.9, (September 2010), p. A4175, ISSN 0907-8916
Griese, M., Latzin, P., Kappler, M., Weckerle, K., Heinzlmaier, T., Bernhardt, T. & Hartl, D. (2007). \(\alpha_1 \)-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. *Eur Respir J*, Vol.29, (February 2007), pp. 240-250, ISSN 0903-1936.

Griese, M., von Bredow, C., Birrer, P., Schams, A. (2001). Inhalation of \(\alpha_1 \)-protease inhibitor in cystic fibrosis does not affect surfactant convertase and surface activity. *Pulm Pharmacol Ther*, Vol.14, pp. 461-467, ISSN 1094-5539.

Griffith, M.E., Lovegrove, J.U., Gaskin, G., Whitehouse, D.B. & Pusey, C.D. (1996). C-antineutrophil cytoplasmic antibody positivity in vasculitis patients is associated with the Z allele of alpha-1-antitrypsin, and the P-antineutrophil cytoplasmic antibody positivity with the S allele. *Nephrol Dial Transplant*, Vol.11, (March 1996), pp. 438-443, ISSN 0931-0509.

Grimstein, C., Choi, Y.K., Satoh, M., et al. (2010). Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. *J Gene Med*, Vol.12, No.1 (January 2010), pp. 35-44, ISSN 1099-498X.

Grimstein, C., Choi, Y.K., Wasserfall, C.H., et al. (2011). Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. *J Transl Med*, Vol.9, (February 2011), No.21, pp. 1-13, ISSN 1479-5876.

Gross, B., Grebe, M., Wencker, M., Stoller, J.K., Bjursten, L.M., Janciauskiene, S. (2009). New findings in PiZZ alpha(1)-antitrypsin deficiency-related panniculitis. Demonstration of skin polymers and high dosing requirements of intravenous augmentation therapy. *Dermatology*, Vol.218, No.4, pp. 370-375, ISSN 1018-8665.

Hercz, A. (1985). Proteolytic cleavages in \(\alpha_1 \)-antitrypsin and microheterogeneity. *Biochem Biophys Res Commun*, Vol.128, No.1, (April 1985), pp. 199-203, ISSN 0006-291X.

Hotta, J., Chao, S.F., Gall, M., Roth, N.J., Lang, J. & Lee, D. (2010). Effective and robust enveloped virus inactivation by a non-traditional solvent/detergent treatment step. *US Respiratory Disease*, Vol.6, pp. 40-46.

Huang, T.K., Plesha, MA., Falk, B.W., Dandekar, A.M. & McDonald, K.A. (2009). Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. *Biotechnol Bioeng*, (February 2009), Vol.102, No.2, pp. 508-520, ISSN 0006-3592.

Hubbard, R.C., Brantly, M.L., Sellers, S.E., et al. (1989). Anti-neutrophil-elastase defenses of the lower respiratory tract in \(\alpha_1 \)-antitrypsin deficiency directly augmented with an aerosol of al-antitrypsin. *Ann Intern Med*, Vol.111, (August 1989), pp. 206–212, ISSN 0003-4819.

Hubbard, R.C. & Crystal, R.G. (1990). Strategies for aerosol therapy of alpha1-antitrypsin deficiency by the aerosol route. *Lung*, Vol.168 (Suppl), pp. 565-578, ISSN 0341-2040.

Hutchinson, D.C. & Hughes, M.D. (1997). Alpha-1-antitrypsin replacement therapy: will its efficacy ever be proved? *Eur Respir J*, Vol.10, pp. 2191-2193, ISSN 0903-1936.

Huntington, J.A., Read, R.J. & Carrell, R.W. (2000). Structure of a serpin-protease complex shows inhibition by deformation. *Nature*, Vol.407, No.6806, (October 2000), pp. 923–926, ISSN 0028-0836.

Janciauskiene, S.M., Bals, R., Koszulla, R., Vogelmeier, C., Köhnlein, T. & Welte, T. (2011). The discovery of \(\alpha_1 \)-antitrypsin and its role in health and disease. *Respir Med*, Vol.105, (August 2011), pp. 1129-1139, ISSN 0954-6111.
Recent Advances in the Research and Development of Alpha-1 Proteinase Inhibitor for Therapeutic Use

Jeppsson, J. O., Lilja, H. & Johansson, M. (1985). Isolation and characterization of two minor fractions of alpha 1-antitrypsin by high-performance liquid chromatographic chromatofocusing. *J Chromatogr*, (June 1985), Vol.327, pp. 173-177, ISSN 0021-9673

Jones, A.M. & Helm, J.M. (2009). Emerging treatments in cystic fibrosis. *Drugs*, Vol.69, No.14, (October 2009), pp. 1903-1910, ISSN 0012-6667

Johnson, D. & Travis, J. (1979). The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. *J Biol Chem*, Vol.254, No.10, (May 1979), pp. 4022-4026, ISSN 0021-9258

Juvelekian, G.S. & Stoller, J.K. (2004). Augmentation therapy for α1-antitrypsin deficiency. *Drugs*, Vol.64, No.16, pp. 1903-1910, ISSN 0012-6667

Kalis, M., Kumar, R., Janciauskiene, S., Salehi, A. & Cilio, C.M. (2010). α1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells. *Islets*, Vol.2, No.3 (May-June 2010), pp. 185-189, ISSN 1938-2014

Kalsheker, N., Morley, S. & Morgan, K. (2002). Gene regulation of the serine proteinase inhibitors α1-antitrypsin and α1-antichymotrypsin. *Biochem Soc Trans*, Vol.30, No.2, (April 2002), pp. 93-98, ISSN 0300-5127

Karnaukhova, E. (2010). Interactions of alpha1-proteinase inhibitor with small ligands of therapeutic potential: binding with retinoic acid. *Amino Acids*, Vol.38, No.4, (April 2010), pp. 1011-1020, ISSN 0939-2199

Karnaukhova, E., Ophir, Y., Trinh, L., Dalal, N., Punt, P.J., Golding, B. & Shiloach, J. (2007). Expression of human α1-proteinase inhibitor in *Aspergillus niger*. *Microbial Cell Factories*, Vol. 6, No.34, (October 2007), pp. 1-10, ISSN 1475-2859

Karnaukhova, E., Ophir, Y. & Golding, B. (2006). Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. *Amino Acids*, Vol.30, No.4, (June 2006), pp. 317-332, ISSN 0939-4451

Kjus, T., Lützow-Holm, C., Christensen, O.B. (2002). Treatment of panniculitis associated with α1-antitrypsin deficiency with alpha-1-protease inhibitor. *Br J Dermatol*, Vol.147, No.6, pp. 1258-1261, ISSN 0007-0963

Kilty, S.J. & Desrosiers, M.Y. (2008). Chronic sinusitis and alpha1-antitrypsin deficiency: potential role for protease in rhinosinusitis? *J Otolaryngol Head Neck Surg*, Vol.37, No.6, (December 2008), pp. e179-e182, ISSN 1916-0216

Kilty, S.J., Bossé, Y., Cormier, C., Endam, L.M. & Desrosiers, M.Y. (2010). Polymorphisms in the SERPINA1 (Alpha-1-Antitrypsin) gene are associated with severe chronic rhinosinusitis unresponsive to medical therapy. *Am J Rhinol Allergy*, Vol.24, No.1, (January 2010), pp. e4-e9, ISSN 1945-8924

Kolarich, D., Weber, A., Turecek, P.L., et al. (2006a). Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. *Proteomics*, Vol.6, No.11, (June 2006), pp. 3369-3380, ISSN 1615-9853

Kolarich, D., Turecek, P.L., Weber, A., et al. (2006b). Biochemical, molecular characterization, and glycoproteomic analyses of alpha(I)-proteinase inhibitor products used for replacement therapy. *Transfusion*, Vol.46, No.11, (November 2006), pp. 1959-1977, ISSN 0041-1132

Krasnewich, D.M., Holt, G.D., Brantly, M., Skovby, F., Redwine, J. & Gahl, W.A. (1995). Abnormal synthesis of dolichol-linked oligosaccharides in carbohydrate-deficient glycoprotein syndrome. *Glycobiology*, Vol.5, No.5, (July 1995), pp. 503-510, ISSN 0959-6658
Kropp, J., Wencker, M., Hotze, A., et al. (2001). Inhalation of 123I-α_1-protease inhibitor: toward a new therapeutic concept of α_1-protease inhibitor deficiency? *J Nucl Med*, Vol.42, No.5, (May 2001), pp. 744–751, ISSN 0161-5505

Kueppers, F. (2011). The role of augmentation therapy in alpha-1 antitrypsin deficiency. *Curr Med Res Opin*, Vol.27, No.3, (March 2011), pp. 579-588, ISSN 0300-7995

Laurell, C.B. & Eriksson, S. (1963). The elecrophoreic alpha-1-globulin pattern of serum in alpha1-antitrypsin deficiency. *Scan J Clin Lab Invest*, Vol.15, pp. 132-140, ISSN 0036-5513

Lee, C., Maeng, J.S., Kocher, J.P., Lee, B. & Yu, M.H. (2001). Cavities of a1-antitrypsin that play structural and functional role. *Protein Sci*, Vol.10, No.7, (July 2001), pp. 1446–1453, ISSN 0961-8368

Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L. & Stadtman, E.R. (1999). Methionine residues may protect proteins from critical oxidative damage. *Mech Ageing Dev*, Vol.107, No.3, (March 1999), pp. 323–332, ISSN 0047-6374

Levine, R.L., Moskovitz, J. & Stadtman, E.R. (2000). Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. *IUBMB Life*, Vol.50, No.4-5, (October-November 2000), pp. 301–307, ISSN 1521-6543

Li, Y., Krowka, M.J., Qi, Y., et al. (2011). Alpha1-antitrypsin deficiency carriers, serum alpha 1-antitrypsin concentration, and non-small cell lung cancer survival. *J Thorac Oncol*, Vol.6, No.2, (February 2011), pp. 291-295, ISSN 1556-0864

Lindor, N.M., Yang, P., Evans, I., et al. (2010). Alpha-1-antitrypsin deficiency and smoking as risk factors for mismatch repair deficient colorectal cancer: a study from the colon cancer family registry. *Mol Genet Metab*, Vol.99, (February 2010), pp. 157-159, ISSN 1096-7192

Lisowska-Myjak, B., Pachecka, J., Kaczyńska, B., Miszkurka, G. & Kadziela, K. (2006). Serum protease inhibitor concentrations and total antitrypsin activity in diabetic and non-diabetic children during adolescence. *Acta Diabetol*, Vol. 43, (December 2006), pp. 88-92, ISSN 0940-5429

Lomas, D.A., Elliott, P.R., Chang, W.S.W., Wardell, M.R. & Carrell, R.W. (1995). Preparation and characterization of latent α_1-antitrypsin. *J Biol Chem*, Vol.270, No.10, (March 1995), pp. 5282–5288, ISSN 0021-9258

Lomas, D.A., Elliott, P.R., Carrell, R.W. (1997). Commercial plasma α_1-antitrypsin (Prolastin®) contains a conformationally inactive, latent component. *Eur Respir J*, Vol. 10, (March 1997), pp. 672–675, ISSN 0903-1936

Lomas, D. (2005). Molecular mousetraps, α_1-antitrypsin deficiency and the serpinopathies. *Clin Med*, Vol.5, No.3, (May-June 2005), pp. 249–57, ISSN 1470-2118

Long, G.L., Chandra, T., Woo, S.L., Davie, E.W. & Kurachi, K. (1984). Complete sequence of the cDNA for human α_1-antitrypsinand the gene for the S variant. *Biochemistry*, Vol.23, No.21, (October 1984), pp. 4828-4837, ISSN 0006-2960

Ludeman, J.P., Whisstock, J.C., Hopkins, P.C.R, Le Bonnec, B.F. & Bottomley, S.P. (2001). Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy. *Biophys J*, Vol.80, No.1, (May 2001), pp. 491-497, ISSN 0006-3495

Luisetti, M. & Seersholm, N. (2004). Alpha1-antitrypsin deficiency. 1: epidemiology of alpha1-antitrypsin deficiency. *Thorax*, Vol.59, No.2 (February 2004), pp. 164-169, ISSN 0040-6376
Mahadeva, R., Dafforn, T.R., Carrell, R.W. & Lomas, D.A. (2002). 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z alpha(1)-antitrypsin-related cirrhosis. *J Biol Chem*, Vol.277, No.9, (March 2002), pp. 6771-6774, ISSN 0021-9258

Mallya, M., Phillips, R.L., Saldanha, S.A., Gooptu, B., et al. (2007). Small molecules block the polymerization of Z a1-Antitrypsin and increase the clearance of intracellular aggregates. *J Med Chem*, Vol.50, No.22, (November 2007), pp. 5357-5363, ISSN 0022-2623

Massaro, G.D. & Massaro, D. (1996). Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. *Am J Physiol*, Vol.270, No.2 Pt1, (February 1996), pp. L305-L310, ISSN 0002-9513

Massaro, G.D. & Massaro, D. (1997). Retinoic acid treatment abrogates elastase induced pulmonary emphysema in rats. *Nat Med*, Vol.3, No.6, (June 1997), pp. 675-677, ISSN 1078-8956

Martin, S.L., Downey, D., Bilton, D., et al. on behalf of the Recombinant AAT CF Study Team (2006). Safety and efficacy of recombinant α1-antitrypsin therapy in cystic fibrosis. *Pediatr Pulmonol*, Vol.41, (February 2006), pp. 177-183, ISSN 0891-5496

Maune, S., Rath, N.F., Görögh, T. & Steinert, R. (1995). Genetic disposition to chronic polypoid sinusitis and alpha 1-proteinase inhibitor deficiency types. *HNO*, Vol.43, (September 1995), pp. 537-539, ISSN 0017-6192

McElvaney, N.G., Hubbard, R.C., Birrer, P., Chernick, M.S., Caplan, D.B., Frank, M.M. & Crystal, R.G. (1991). Aerosol α1-antitrypsin treatment for cystic fibrosis. *Lancet*, Vol. 337, (February 1991), pp. 392-395, ISSN 0140-6736

Mega, T., Lujan, E. & Yoshida, A. (1980a). Studies on the oligosaccharide chains of human α1-protease inhibitor: I. Isolation of glycopeptides. *J Biol Chem*, Vol.255, No.9, (May 1980), pp. 4053-4056, ISSN 0021-9258

Mega, T., Lujan E. & Yoshida, A. (1980b). Studies on the oligosaccharide chains of human α1-protease inhibitor: II. Structure of oligosaccharides. *J Biol Chem* Vol.255, No.9, (May 1980), pp. 4057-4061, ISSN 0021-9258

Nadai, M., Bally, J., Vitel, M., Job, C., Tissot, G., Botterman, J. & Dubald, M. (2009). High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. *Transgenic Res*, Vol.18, No.2, (April 2009), pp. 173-183, ISSN 0962-8819

Needham, M. & Stockley, R.A. (2004). Alpha 1-antitrypsin deficiency. 3: Clinical manifestations and natural history. *Thorax*, Vol. 59, No.5, (May 2004), 441-445, ISSN 0040-6376

Nita, I., Hollander, C., Westin, U. & Janciauskiene, S.M. (2005). Prolastin, a pharmaceutical preparation of purified human alpha1-antitrypsin, blocks endotoxin-mediated cytokine release. *Respir Res*, Vol.6, No.12, doi:10.1186/1465-9921-6-12; ISSN 1465-9921

Paakko, P., Kirby, M., du Bois, R.M., et al. (1996). Activated neutrophils secrete stored α1-antitrypsin. *Am J Respir Crit Care Med*, Vol.154, No. 6 Pt1, (December 1996), pp. 1829-1833, ISSN 1073-449X

Parfrey, H., Mahadeva, R., Ravenhill, N.A., et al. (2003). Targeting a surface cavity of alpha 1-antitrypsin to prevent conformational disease. *J Biol Chem*, Vol.278, No.35, (August 2003), pp. 33060-33066, ISSN 0021-9258
Pemberton, P.A., Kobayashi, D., Wilk, B.J., et al. (2006). Inhaled recombinant alpha 1-antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. *COPD*, Vol.3, No.2, (June 2006), pp. 101-108, ISSN 1541-2555

Rabassa, A.A., Schwartz, M.R. & Ertan, A. (1995). Alpha 1-antitrypsin deficiency and chronic pancreatitis. *Dig Dis Sci*, Vol.40, (September 1995), pp. 1997-2001, ISSN 0163-2116

Rabin, M., Watson, M., Kidd, V., Woo, S.L., Breg, W.R. & Ruddle, F.H. (1986). Regional location of α1-antichymotrypsin and α1-antitrypsin genes on human chromosome 14. *Somatic Cell Mol Gen*, Vol.12, No. (March 1986), pp. 209-214, ISSN 0740-7750

Rosenberg, S., Barr, P.J., Najarian, R.C. & Hallewell, R.A. (1984). Synthesis in yeast of a functional oxidation-resistant mutant of human α1-antitrypsin. *Nature*, Vol.312, No.5989, (November 1984), pp. 77-80, ISSN 0028-0836

Saari, K.M., Kaarela, K., Korpela, T., Laippala, P., Frants, R.R. & Eriksson, A.W. (1986). Alpha 1-antitrypsin in acute anterior uveitis and rheumatic diseases. *Acta Ophthalmol*, Vol.64, No.5 (October 1986), pp. 522-529, ISSN 0001-639X

Sandhaus, R.A. (2009). Augmentation therapy in alpha-1 antitrypsin deficiency. *COPD*, Vol.6, No.3, (June 2009), pp. 147-148, ISSN 1541-2555

Sarkar, A. & Wintrode, P.L. (2011). Effects of glycosylation on the stability and flexibility of a metastable protein: the human serpin α1-antitrypsin. *Int J Mass Spectrom*, Vol. 302, No.1-3, (April 2011), pp. 69-75, ISSN 1387-3806

Seersholm, N., Wencker, M., Banik, N., et al. (1997). Does alpha1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary alpha1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) alpha1-AT study group. *Eur Respir J*, Vol.10, (October 1997), pp. 2260–2263, ISSN 0903-1936

Sharp, H.L., Bridges, R.A., Krivit, W. & Freier, E.F. (1969). Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. *J Lab Clin Med*, Vol.73, (June 1969), pp. 934–939, ISSN 0022-2143

Schluchter, M.D., Stoller, J.K., Barker, A.F. et al. (2000). Feasibility of a clinical trial of augmentation therapy for α1-antitrypsin deficiency. *Am J Respir Crit Care Med*, Vol.161, No.3, (March 2000), pp.796-801, ISSN 1073-449X

Siekmiejer, R. (2010). Lung deposition of inhaled alpha-1-proteinase ingibitor (Alpha1-PI) – Problems and experience of Alpha1-PI inhalation therapy in patients with hereditary Alpha1-PI deficiency and cystic fibrosis. *Eur J Med Res*, Vol.15, Suppl. II, (November 2010), pp. 164-174, ISSN 0949-2321

Silverman, G.A., Bird, P.I., Carrell, R.W., et al., (2001). The serpins are an expanding superfamily of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. *J Biol Chem*, Vol.276, No. (September 2001), pp. 33293–33296, ISSN 0021-9258

Silverman, E.K. & Sandhaus, R.A. (2009). Alpha1-antitrypsin deficiency. *New Engl J Med*, Vol. 360, (June 2009), pp. 2749-2757, ISSN 0028-4793

Smith, K.C., Pittelkow, M.R. & Su, W.P. (1987). Panniculitis associated with severe alpha 1-antitrypsin deficiency. Treatment and review of the literature. *Arch Dermatol*, Vol.123, No.12, (December 1987), pp. 1655-1661, ISSN 0003-987X

Snider, G.L. (1992). Emphysema: the first two centuries and beyond: a historical overview, with suggestions for future research. *Am Rev Respir Dis*, Vol.146, No.5 Pt 1, (December 1992), pp. 1334-44 & No.6, pp. 1615-22, ISSN 0003-0805
Spencer, L.T., Humphries, J.E. & Brantly, M.L. (2005). Transgenic Human Alpha 1-Antitrypsin Study Group. Antibody response to aerosolized transgenic human alpha1-antitrypsin. *N Engl J Med*, Vol.352, No.19, (May 2005), pp. 2030-2031, ISSN 0028-4793

Stakisaitis, D., Basys, V. & Benetis, R. (2001). Does alpha-1-proteinase inhibitor play a protective role in coronary atherosclerosis? *Med Sci Monit*, Vol.4, No.4, (Jul-Aug, 2001), pp. 701-11, ISSN 1234-1010

Stein, P.E. & Carrell, R.W. (1995). What do dysfunctional serpins tell us about molecular mobility and disease? *Nat Struct Biol*, Vol.2, No.2, (February 1995), pp. 96-113, ISSN 1072-8368

Stockley, R.A. (2010). Emerging drugs for alpha-1-antitrypsin deficiency. *Expert Opin Emerg Drugs*, Vol.15, No.4, (December 2010), pp. 685-694, ISSN 1472-8214

Stocks, J.M., Brantly, M.L., Wang-Smith, L., et al. (2010). Pharmacokinetic comparability of Prolastin®-C to Prolastin® in alpha1-antitrypsin deficiency: a randomized study. *BMC Clin Pharmacol*, Vol.10, No.13, (September 2010), doi:10.1186/1472-6904-10-13, ISSN 1472-6904

Stratikos, E. & Gettins P.G.W. (1999). Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70Å and full insertion of the reactive centre loop into β-sheet A. *Proc Natl Acad Sci USA*, Vol.96, No.9, (April 1999), pp. 4808–4813, ISSN 0027-8424

Szönyi, L., Dobos, M., Vásárhelyi, B., et al. (2006). Prevalence of alpha1-antitrypsin phenotypes in patients with IgA nephropathy. *Clin Nephrol*, Vol.62, pp. 418-422

Talmud, P.J., Martin, S., Steiner, G., et al. (2003). Progression of atherosclerosis is associated with variation in the alpha1-antitrypsin gene. *Arterioscler Thromb Vasc Biol*, Vol.23, No.4, (April 2003), pp. 644-649, ISSN: 1524-4636

Tebbutt, S.J. (2000). Technology evaluation: transgenic alpha-1-antitrypsin (AAT), PPL therapeutics. *Curr Opin Mol Ther*, Vol.2, No.2, (April 2000), pp. 199-204, ISSN 1464-8431

Ting, S.M., Toth, T. & Caskey, F. (2008). Alpha1-antitrypsin (A1AT) deficiency presenting with IgA nephropathy and nephritic syndrome: is renal involvement caused by A1AT deposition? *Clin Nephrol*, Vol.70, (August 2008), pp. 159-162, ISSN 0301-0430

Tonelli, A.R. & Brantly, M.L. (2010). Augmentation therapy in alpha-1 antitrypsin deficiency: advances and controversies. *Ther Adv Respir Dis*, Vol.4, No.5, (October 2010), pp. 289-312, ISSN 1753-4658

Topic, A., Ljujic, M., Nikolic, A., Petrovic-Stanoivic, N., et al. (2011). Alpha-1-antitrypsin phenotypes and neutrophil elastase gene promoter polymorphisms in lung cancer. *Pathol Oncol Res*, Vol.17, No.1, (March 2011), pp. 75-80, ISSN 1219-4956

Travis, J. (1988). Structure, function, and control of neutrophil proteinases. *Am J Med*, Vol. 84, No.6A, (June 1988), pp. 37-42, ISSN 0002-9343

Travis, J. & Salvesen, G.S. (1983). Human plasma proteinase inhibitors. *Annu Rev Biochem*, Vol.52, No. (1983), pp. 655–709, ISSN 0066-4154

Valverde, R., Rosales, B., Ortiz-de Frutos, F.J., Rodriguez-Peralto, J.L., Ortiz-Romero, P.L. (2008). Alpha-1-antitrypsin deficiency panniculitis. *Dermatol Clin*, Vol.26, (October 2008), pp. 447-451, ISSN 0733-8635
Varga, L. & Farkas, H. (2011). rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency. *Expert Rev Clin Immunol*, Vol.7, No.2, (March 2011), pp. 143-153, ISSN 1744-666X

Vaughan, L., Lorrer, M.A. & Carrell, R.W. (1982). α1-Antitrypsin microheterogeneity: isolation and physiological significance of isoforms. *Biochem Biophys Acta*, Vol.701, No.3, (March 1982), pp. 339-345, ISSN 0006-3002

Volpert, D., Molleston, J.P. & Perlmutter, D.H. (2000). Alpha1-antitrypsin deficiency-associated liver disease progresses slowly in some children. *J Pediatr Gastroenterol Nutr*, Vol.31, No.3, (September 2000), pp. 258–63, ISSN 0277-2116

Wencker, M., Fuhrmann, B., Banik, N. & Konietzko, N. (2001). Longitudinal follow-up of patients with alpha1-protease inhibitor deficiency before and during IV alpha1-protease inhibitor, *Chest*, Vol.119, No.3, (March 2001), pp. 737–744, ISSN 0012-3692

White, R., Lee, D., Habicht, G.S. & Janoff, A. (1981). Secretion of alpha-1-proteinase inhibitor by cultured rat alveolar macrophages. *Am Rev Respir Dis*, Vol.123, No.4, Pt 1, (April 1981), pp. 447–449, ISSN 0003-0805

WHO (1997). World Health Organization, Human Genetics Programme. Alpha-1-antitrypsin deficiency. Report of WHO meeting held in Geneva on 18-20 March 1996, *Bull World Health Organ*, Vol.75, No.5, pp. 397-415

Wilczynska, M., Fa, M., Karolin, J., Ohlsson, P.I., Johansson, L.B. & Ny, T. (1997). Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. *Nat Struct Biol*, Vol.4, No.5, (May 1997), pp. 354–357, ISSN 1072-8368

Wright, G., Carver, A., Cottom, D., Reeves, D., Scott A., Simons, P., Wilmut, I., Gamer, J. & Colman, A. (1991). High level of expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. *Bio/Technology*, Vo.9, No.9, (September 1991), pp. 830–834, ISSN 0733-222X

Ziomek, C.A. (1998). Commercialization of proteins produced in the mammary gland. *Theriogenology*, Vol.49, No.1, (January 1998), pp. 139-144, ISSN 0093-691X
The developments in molecular medicine are transforming respiratory medicine. Leading clinicians and scientists in the world have brought their knowledge and experience in their contributions to this book. Clinicians and researchers will learn about the most recent advances in a variety of lung diseases that will better enable them to understand respiratory disorders. This treatise presents state of the art essays on airways disease, neoplastic diseases, and pediatric respiratory conditions. Additionally, aspects of immune regulation, respiratory infections, acute lung injury/ARDS, pulmonary edema, functional evaluation in respiratory disorders, and a variety of other conditions are also discussed. The book will be invaluable to clinicians who keep up with the current concepts, improve their diagnostic skills, and understand potential new therapeutic applications in lung diseases, while scientists can contemplate a plethora of new research avenues for exploration.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Elena Karnaukhova (2012). Recent Advances in the Research and Development of Alpha-1 Proteinase Inhibitor for Therapeutic Use, Lung Diseases - Selected State of the Art Reviews, Dr. Elvisegran Malcolm Iruzen (Ed.), ISBN: 978-953-51-0180-2, InTech, Available from: http://www.intechopen.com/books/lung-diseases-selected-state-of-the-art-reviews/recent-advances-in-the-research-and-development-of-alpha-1-proteinase-inhibitor-for-therapeutic-use