Tigrinya Neural Machine Translation with Transfer Learning for Humanitarian Response

Alp Öktem, Mirko Plitt & Grace Tang
Translators without Borders
30 Main Street STE 500
Danbury, CT 06810, USA
{alp,mirko,grace}@translatorswithoutborders.org

ABSTRACT

We report our experiments in building a domain-specific Tigrinya-to-English neural machine translation system. We use transfer learning from other Ge’ez script languages and report an improvement of 1.3 BLEU points over a classic neural baseline. We publish our development pipeline as an open-source library and also provide a demonstration application.

1 INTRODUCTION

Tigrinya (also spelled Tigrigna) is an Ethiopian language spoken by around 7.9 million people in Eritrea and Ethiopia. It is neither supported by any commercial machine translation (MT) provider, nor has any publicly available models. Refugees who speak Tigrinya face language and communication barriers when arriving in Europe. An MT system could improve access to information and enable two-way communication so refugees have a voice and can share their needs.

The complex morphological structure of Tigrinya makes it especially challenging for statistical MT (Tedla & Yamamoto, 2016; Teferra Abate et al., 2018). Neural MT, on the other hand, can overcome these problems with methods like subword segmentation (Sennrich et al., 2016) and lead to more accurate models (Kalchbrenner & Blunsom, 2013; Bahdanau et al., 2015). Known to be a data-hungry technology, it is now possible to train neural-based MT for Tigrinya thanks to recently released public datasets (Agić & Vulić, 2019; Teferra Abate et al., 2018). An advantage of neural MT is the availability of techniques like cross-lingual transfer learning (Zoph et al., 2016) and multilingual training (Dong et al., 2015) which help leverage data from other languages and are especially suitable in low-resource scenarios (Neubig & Hu, 2018).

In this paper, we explain the development of a Tigrinya-to-English neural MT model using publicly available datasets in Ge’ez-scripted languages. Our models are further adapted to the humanitarian domain to improve the translation capabilities of Translators without Borders (TWB), a non-profit organization offering language and translation support for humanitarian and development agencies, and other non-profit organizations.

2 EXPERIMENTS

2.1 DATA

We gathered an internal dataset from sentences in TWB’s translation memories. This dataset is both used for in-domain training and for testing. Two hundred sentences of varying lengths were selected randomly as a test set. This and other sources of public parallel corpora used in this work are listed in Table I.

2.2 EXPERIMENTAL SETUP

The transfer-learning-based training process consists of three stages. First, we train the model on a shuffled mix of all datasets totaling up to 1.45 million sentences. Second, we fine-tune the model
Table 1: Parallel corpora used in this work. Dataset names marked with an asterisk are available through OPUS repository [Tiedemann, 2012; Christodoulopoulos & Steedman, 2015]. Ethiopian languages corpus [Teferra Abate et al., 2018] is also openly available online.

	JW300*	Ethiopian corpus	Bible-uedin*	Global Voices*	GNOME*	Tanzil*	TWB	TOTAL
Amharic	722K	66K	61K	1.6K	57K	94K	-	1M
Ge’ez	-	11K	-	-	-	-	-	11K
Tigrinya	400K	36K	-	-	-	2.5K	439K	439K

Table 2: Automatic evaluation results for baseline approach and at each stages of our training pipeline.

	BLEU	ChrF	Meteor
Baseline	22.28	46.51	26.1
Multilingual	15.84	40.99	23.32
Tigrinya	17.8	42.92	24.61
In-domain	**23.6**	**49.59**	**27.04**

on Tigrinya using only the Tigrinya portion of the mix (438,000 sentences). In the third phase, we fine-tune on the training partition of our in-house data (2,300 sentences). As a baseline, we skip the first multilingual training step and use only Tigrinya data. The model is later fine-tuned to in-domain data in the same way.

OpenNMT-py toolkit [Klein et al., 2018] is used for training the models. The model consists of an 8-head Transformer [Vaswani et al., 2017] with 6-layer hidden units of 512 unit size. A token-batch size of 4096, 2048 and 10 was selected for multilingual, unilingual and in-domain training respectively. As for the optimizer, Adam [Kingma & Ba, 2014] was chosen with 4000 warm-up steps. Trainings were performed until no further improvement was recorded in development set perplexity in the last 5 validations. This resulted in 73,500, 85,000 and 85,240 steps for each stage.

Byte-pair encoding (BPE) models were trained separately for Latin script and Ge’ez script using 6,000 steps. English sentences were lowercased and tokenized beforehand using Moses tokenizer [Koehn et al., 2007]. Ge’ez-scripted sentences were tokenized using a punctuation separation script [2].

2.3 RESULTS

We report our test set scores at each stage together with the baseline using various commonly used automatic evaluation metrics in Table 2. Results show an agreement between all evaluation measures on the boost obtained from multilingual pre-training. Accuracy increases of +1.3, +3.1 and +0.9 points are recorded using BLEU [Papineni et al., 2002], ChrF [Popovic, 2015] and Meteor [Lavie & Agarwal, 2007] metrics respectively.

3 CONCLUSION

With this work, we have demonstrated the utility of cross-lingual transfer learning on building a Tigrinya-to-English MT system. As a result of this work, a demonstration application was launched as the first neural Tigrinya-to-English translator [3]. As for future work, we will develop English-to-Tigrinya models and evaluate the usability of the bidirectional system in a humanitarian setting using feedback from native speakers.

1. http://github.com/AAUThematic4LT/Parallel-Corpora-for-Ethiopian-Languages
2. http://github.com/translatorswb/mt-tools
3. http://gamayun.translatorswb.org/tigrinya

2
ACKNOWLEDGMENTS

This work was done partially in collaboration with the Masakhane initiative. Special thanks to Musie Meressa Berhe for helping revise our dataset.

REFERENCES

Željko Agić and Ivan Vulić. JW300: A wide-coverage parallel corpus for low-resource languages. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3204–3210, Florence, Italy, July 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Christos Christodouloupolous and Mark Steedman. A massively parallel corpus: the bible in 100 languages. Language Resources and Evaluation, 49(2):375–395, Jun 2015.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for multiple language translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1723–1732, Beijing, China, July 2015.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700–1709, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart, and Alexander Rush. OpenNMT: Neural machine translation toolkit. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Papers), pp. 177–184, Boston, MA, March 2018.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp. 177–180, Prague, Czech Republic, June 2007.

Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In Proceedings of the Second Workshop on Statistical Machine Translation, StatMT 07, pp. 228231, USA, 2007.

Graham Neubig and Junjie Hu. Rapid adaptation of neural machine translation to new languages. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 875–880, Brussels, Belgium, October–November 2018.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.

Maja Popović. chrF: Character n-gram F-score for automatic MT evaluation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pp. 392–395, Lisbon, Portugal, September 2015.

http://www.masakhane.io/
Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016.

Yemane Tedla and Kazuhide Yamamoto. The effect of shallow segmentation on english-tigrinya statistical machine translation. 2016 International Conference on Asian Language Processing (IALP), pp. 79–82, 2016.

Solomon Teferra Abate, Michael Melese, Martha Yifiru Tachbelie, Million Meshesha, Solomon Atinafu, Wondwosen Mulugeta, Yaregal Assabie, Hafte Ahera, Binyam Ephrem, Tewodros Abebe, Wondimagegnhie Tsegaye, Amanulla Lemma, Tsegaye Andargie, and Seifedin Shifaw. Parallel corpora for bi-directional statistical machine translation for seven Ethiopian language pairs. In Proceedings of the First Workshop on Linguistic Resources for Natural Language Processing, pp. 83–90, Santa Fe, New Mexico, USA, August 2018.

Jrg Tiedemann. Parallel data, tools and interfaces in opus. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, May 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1568–1575, Austin, Texas, November 2016.