Light Chain Replacement: A New Model for Antibody Gene Rearrangement
By Eline Luning Prak and Martin Weigert

From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Summary
A functional B cell antigen receptor is thought to regulate antibody gene rearrangement either by stopping further rearrangement (exclusion) or by promoting additional rearrangement (editing). We have developed a new model to study the regulation of antibody gene rearrangement. In this model, we used gene targeting to replace the Jk region with a functional Vk-Jk light chain gene. Two different strains of mice were created; one, Vk4R, has a Vk4-Jk4 rearrangement followed by a downstream Jk5 segment, while the other, Vk8R, has a Vk8-Jk5 light chain. Here, we analyze the influence of these functional light chains on light chain rearrangement. We show that some Vk4R and Vk8R B cells only have the VkR light chain rearrangement, whereas others undergo additional rearrangements. Additional rearrangement can occur not only at the other \(\kappa \) allele or isotype (\(\lambda \)), but also at the targeted locus in both Vk4R and Vk8R. Rearrangement to the downstream Jk5 segment is observed in Vk4R, as is deletion of the targeted locus in both Vk4R and Vk8R. The VkR models illustrate that a productively rearranged light chain can either terminate further rearrangement or allow further rearrangement. We attribute the latter to editing of autoantibodies and to corrections of dysfunctional receptors.

Allelic and isotypic exclusion lead to the expression of only one kind of antigen receptor per B cell. Exclusion is ensured by mechanisms that shut off antibody gene rearrangement (H/L-STOP), an idea based on the finding that at least 50% of plasmacytoma lines and approximately two thirds of murine splenic B cells have only one productively rearranged kappa locus, \(\kappa^+ \), whereas the other kappa locus in these cells is unrearranged, \(\kappa^- \) (1). This \(\kappa^+ / \kappa^- \) genotype is not expected if rearrangements were to continue indefinitely. Exclusion is thought to be governed by the products of productively rearranged heavy (H) and light (L) chain genes. This hypothesis was tested in transgenic mice; it was demonstrated that a functional, transgene-encoded \(\kappa \) L chain and H chain (contributed by endogenous rearrangement) prevented additional antibody gene rearrangements (2).

The products of a productive H and L chain rearrangement may not always shut down further rearrangement. Ongoing \(\kappa \) rearrangement has been inferred from the nature of circular excision products. These episomes, generated by deletional \(\kappa \) recombination (3), sometimes contain Vk-Jk rearrangements, including rearrangements with productive junctions (4). Evidence consistent with ongoing rearrangement has also been obtained in autoantibody transgenic animals (5–7). It has been proposed that ongoing rearrangements allow autoreactive B cells to edit their receptors, thereby escaping tolerance induction (5–7).

Editing defines a genetic precursor–product relationship, for example that a preexisting Vk-Jk rearrangement has been displaced by the rearrangement of an upstream Vk gene to a downstream Jk gene. So far, a direct demonstration of such a relationship is lacking. It cannot be established in the analysis of circular excision products because the cellular source of these products is not known. Even in studies analyzing multiple rearrangements in individual cell lines (6, 8, 9), the timing of the rearrangements cannot be ascertained. For example, an upstream Vk-Jk rearrangement may have occurred after the rearrangement to the downstream Jk segment. Light chain transgenes are not appropriate for this study because they lack the necessary upstream and downstream recombination signals. Moreover, transgenes are problematic because they differ from normal loci in copy number (usually greater than one) and downstream sequences. For example, truncation of downstream sequences influences the degree to which a given transgene excludes endogenous rearrangements (10).

Here we describe a new mouse model which, unlike the \(\kappa \) transgenics, recreates a functional rearranged \(\kappa \) locus. By homologous recombination, we have replaced the unrearranged Jk region with a rearranged Vk-Jk gene (see Fig. 1). This L chain replacement (VkR) has a single, rearranged L chain gene in the proper genomic context. The VkR model thereby simulates the genotype of a normal B cell with a functional Vk-Jk L chain gene on one allele (\(\kappa^+ / \kappa^- \)). We have used these animals to reexamine how a productively rearranged L chain gene influences L chain rearrangement.

Materials and Methods
Cloning of Targeting Vectors. Replacement-type targeting vectors (11) were assembled from genomic BALB/c \(\kappa \) DNA (12); pPGK-
Neo (13), pMC101-tk (the thymidine kinase gene [tk]) was only used in the Vk8RTV (14), and Vk4-Jk (7) or Vk8-Jk (15) DNA as follows: a 1.6-kb genomic EcoR1 fragment located upstream of the BALB/c Jk region was subcloned into pBlueScript (Stratagene, La Jolla, CA). The unique EcoRV site in I.6R1 was converted to a Xho1 site by linker ligation (unphosphorylated Xho1 linkers from New England Biolabs, Beverly, MA). The pPGK-Neo gene was excised from its plasmid as a Xho1 fragment and inserted into the engineered Xho1 site in I.6R1, in the reverse transcriptional orientation. Digestion of the resultant 3.2R1 insert with EcoR1 yields a 2.8-kb EcoR1 fragment was blunted with T4 polymerase (New England Biolabs) and inserted as follows: a 1.6-kb genomic EcoK1 fragment located upstream of the VK8 and the VK4 genomic clones in the proper orientation (see Fig. 1). To insert the tk gene in the Vk8 replacement targeting vector, tk was liberated from its plasmid by double digestion with SalI and Xho1 and band purified from low melting temperature agarose. The tk SalI-Xho1 fragment was introduced into the unique SalI site of the Vk8R targeting construct, recreating the unique SalI site in the final product.

Generation of Targeted ES Cell Lines. Targeting vectors were linearized outside of the region of homology by SalI digestion and transfected by electroporation into E14.1 (16) and C57Bl6-JI (17) ES cells. ES cell colonies were expanded on primary embryonic fibroblasts in the presence of 200 µg/ml G418 (active drug, Gibco BRL, Gaithersburg, MD) or 200 µg/ml G418 and 2 µM of freshly prepared gancyclovir (Cytovene; Syntex Laboratories, Palo Alto, CA). Boiled cell lysates were prepared from neomycin-resistant or double-resistant (neomycin and gancyclovir) ES cell colonies and were screened for homologous recombination events by PCR, using primers situated in the neomycin resistance gene (5'-GGCTCTATGGCTTCTGAGG-3') and in the k locus upstream of the 5' end of the targeting vector (5'-TGCTCTTGTGGAGGTGAAG-3'). Reactions consisted of 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 50 mM KCl, 0.1 mg/ml gelatin, 0.31 µM of each dNTP, 0.8 µM of each primer, and a proteinase K lysate from 50-100 ES cells. Amplifications were carried out as follows: 2 min at 94°C (primary denaturation) followed by 45 cycles of 94°C for 30 s, 65°C for 30 s, 72°C for 1 min, and a final extension step at 72°C for 10 min.

Southern Blotting. Genomic DNA was purified from ES cell lines and tail samples as described previously (9, 15) and digested overnight with PstI. Digested DNA was run on 0.8% agarose gels in Tris/acetate/EDTA buffer and transferred to Zeta Probe nylon membranes (Bio Rad Laboratories, Richmond, CA) in 0.4 N NaOH (18). The filter was probed with PCK6, a 0.8-kb genomic fragment upstream of the Jk region (3).

Hybridomas. B cell hybridomas were prepared from the spleen fragments of hemisplenectomized 3-6-wk-old mice with the following k genotypes: Vk4R/wt (two animals) and Vk8R/wt (one animal). To prepare the hybridomas, splenocytes were stimulated in vitro with 20 µg/ml Escherichia coli LPS (Sigma Chemical Co., St. Louis, MO) for 2-3 d before fusion with Sp2/0-Ag14 (19). Hybridomas were selected using asasere-hypoantibody (Sigma Chemical Co.). Supernatants were tested for µk and µl antibody production as described previously (9).

PCR Assays on Hybridoma DNA. Genomic DNA was prepared from hybridomas grown to high density in 24-well plates as described previously (9). For PCR, 100-150 ng genomic DNA was used per reaction. For the Jk typing PCR assays, Vs (20) or L3-L7 (21) forward Vx primers were used with Jk2 (22), Jk4 (9), or Jk5 (22) reverse-Jk primers. Primer positions are shown in Fig. 2a. Reaction conditions and cycling programs are described by Luning Prak et al. (9). PCR assays that specifically amplify Vx4 or Vx8 have been described, (7 and 15, respectively). An assay using the Vx4-specific Vk primer (7) and the Jk3 reverse primer (22) used the same reaction mixture and cycling program as the Jk PCR (described in reference 9). PCR assays used to identify Ix1, Ix2, and Ix4 rearrangements were performed as before (9).

Results

Homologous Recombination of Vx-Jk and the Jk Locus. The Vx4-Jk4 and Vx8-Jk5 genes were cloned from antibody-secreting hybridomas (7, 15) and introduced into replacement-type targeting vectors (Fig. 1b). Targeting vectors were linearized outside of the homology region and transfected into E14.1 (16) and C57Bl6-III (17) ES cell lines. Neomycin-resistant ES cell colonies were screened for homologous recombination events by PCR, using primers situated in the neomycin resistance gene and in the k locus, upstream of the 5' boundary of the targeting vector (Fig. 1). The frequency of homologous recombinants obtained after selection in neomycin was ~1/100 for both L chain replacement constructs.

Production of ES Cell Chimeras and Germline Transmission of VxR. Targeted ES cells were injected into blastocysts to produce chimeras. ES cell-derived B cells from these chimeras were studied to verify that the Vk4 and Vk8R constructs were functional. Chimeric animals were identified by coat color, and the presence of the replaced locus was confirmed by PCR analysis of tail DNA using Vx4- or Vx8-specific PCR assays (primers 4R and 8R, in Fig. 2a, data not shown). Spleenocytes from PCR-positive chimeras were used to make hybridomas. Hybridoma DNA samples were screened by PCR for Vk4 or Vk8 genes (data not shown). RNA from Vx4- and Vx8-positive clones was amplified by reverse transcriptase PCR (RT-PCR), using Vx4 or Vx8 sequence-specific Vx primers for reverse transcription and amplification and a reverse primer in Cx for amplification (23). The presence of an appropriately sized RT-PCR product for both Vk4R and Vk8R indicated that both replaced L chain genes were transcribed (data not shown). Vk4R- and Vk8R-positive clones secreted µk antibodies, confirming that the replaced L chain was functional (data not shown). Moreover, the average amount and range of secreted µk in examples that produce exclusively Vk4R or Vk8R (class 1 see below, n = 8) are the same as the examples that may express endogenous k chains (classes 2 and 3, n = 8). Furthermore, evidence that the expression level of the replaced allele is normal comes from the phenotype of bone marrow B cells of VkxR mice. For this analysis, we used the progeny of VkxR mice crossed to k-deficient mice (9). VxR/k-deficient heterozygous mice can only express k chains from the VkxR allele and, in the case of Vx8R/k-deficient mice, even secondary Vkk rearrangements are precluded. The IgM density at the pre-B/immature B stages (B220 + CD43- (S7)-HSA-+) of Vx8R/k-deficient mice is indistinguishable from that of k-deficient hemizygous littermates and wild-
Figure 1. Targeted replacement of the Jk region with functional V\kappa-Jk genes. Shown are the germline k locus (a), replacement targeting vectors for V\kappa4-Jk4 and V\kappa8-Jk5 (b), and the resultant V\kappa4 replaced (V\kappa4R) or V\kappa8 replaced (V\kappa8R) k loci (c). Dashed lines denote the borders of homology between the targeting vector and the germline locus. Arrowheads indicate the positions of PCR primers used to screen neomycin-resistant embryonic stem (ES) cell colonies for homologous recombination events. The upstream k DNA probe, PKP6 (3), is denoted by a cross-hatched bar. PKP6 was used in Southern analysis (d) to confirm the genotype of targeted ES cells. Shown are genomic DNA samples from untransfected ES cells (lane 1) and V\kappa8R ES cells (lane 2) and tail DNA samples from the offspring of germline chimeras (lanes 3-6, offspring of a V\kappa4R chimera; lanes 7-10, offspring of a V\kappa8R chimera). PstI digestion yields a 7.0-kb fragment in the wild-type germline k locus (a) and a 4.75-kb fragment in the V\kappa4 or V\kappa8 L chain replaced locus.

Analysis of L Chain Genotypes in V\kappaR Hybridomas. To study the effect of V\kappa4R and V\kappa8R on the rearrangement of other L chain genes, LPS hybridomas were prepared from k hemizygous V\kappa4R/k and V\kappa8R/k mice. The rearrangement status of k and \lambda genes in individual IgM-secreting lines was tested using a series of PCR assays. First, each clone was tested for the presence of V\kappa4R or V\kappa8R DNA by PCR. Next, additional k rearrangements on the targeted allele and on the wild-type k allele (when they occurred) were identified using a series of PCR amplifications with forward V\kappa primers and reverse Jk primers (primer positions are shown in Fig. 2 a). The size of the amplification product in these assays is diagnostic of the Jk segment used in the rearrangement (Fig. 2 b-d). For example, using Vs and Jk5 primers (Fig. 2 b), rearrangement to Jk1 gives a 1.6-kb product, whereas Jk2 rearrangements are 1.2 kb, Jk4 are 600 bp, and Jk5 are 270 bp. Because Jk1 rearrangements are not always discernible by V\kappa + Jk5 PCR, Vs and Jk2 primers were used to verify Jk1 rearrangements (Fig. 2 c). The L5 + Jk5 PCR (Fig. 2 d) was used to type Jk2 rearrangements on the untargeted k allele. (The Vs + Jk5 PCR cannot be used for this purpose because the Jk2 rearrangement of the fusion partner is amplified in all of the hybridomas).

The pattern of Jk segment usage revealed by these assays will in nearly all cases reveal the rearrangement status at each k allele, yielding a k genotype for each hybridoma (k genotypes are shown in Fig. 2 a and all observed genotypes are

type mice (Luning Prak, E., R. R. Hardy, and M. Weigert, manuscript in preparation).

Germline transmission was achieved in a C57Bl6 (ES cell)/ICR chimera for V\kappa4R and in an E14.1 (ES cell)/C57Bl6 chimera for V\kappa8R. Offspring in which the replaced k locus was present were identified by V\kappa4- or V\kappa8-specific PCR assays of tail DNA (data not shown). Transmission of V\kappaR was confirmed by Southern analysis (Fig. 1 d). PstI digestion of genomic DNA yields a 7.0-kb fragment in the wild-type germline k locus and a 4.75-kb fragment in the V\kappa4 or V\kappa8 L chain replaced locus.
Figure 2. (a) κ locus genotypes and the positions of PCR primers. κ0 (germline configuration), Sp2/0 (the hybridoma fusion partner harbors a nonproductive Vκ-Jκ2 rearrangement), 8R (Vκ8 replacement), 4R (Vκ4 replacement), 4R inv (rearrangement of a Vκ gene to Jκ5, inverting Vκ4R), and 4R del (rearrangement of a Vκ gene to Jκ5, deleting Vκ4R). The forward Vκ primers are Vs (Schlissel degenerate Vκ primer, binds 80–90% of Vκ genes, reference 20), L5 (Huse Vκ primer, binds 50–60% of Vκ genes; reference 21 and Luning Prak, E., and M. Weigert, unpublished observations), 8R (Vκ8R specific, reference 15), and 4R (Vκ4R specific, reference 7). Not shown are additional Vκ primers (L3, L4, L6, and L7, see reference 21) used to confirm the R/0 genotype. The reverse Jκ primers are 5 (Jκ5, reference 22), 2 (Jκ2, reference 22), 4R (specific for Vκ4R junction, reference 7), and 8R (spans the VκSR CDR3-Jκ5 junction, reference 15). Gene targeting primers (gtf and gtr) are described in Fig. 1. Not drawn to scale. (b) Jκ typing with Vs + Jκ5 PCR primers. The size of the amplified product corresponds to the Jκ segment used in the rearrangement (see Materials and Methods). Rearrangement to Jκ1 gives a 1.6-kb product, whereas Jκ2 products are 1.2 kb, Jκ4 products are 600 bp, and Jκ5 products are 270 bp. The Jκ2 rearrangement in the fusion partner is amplified in all of the hybridomas. Lane 1, pGEM molecular weight standards; lane 2, water control; lane 3, Sp2/0 DNA; and lanes 4–14, genomic DNA samples from Vκ4R hybridomas. (c) Typing Jκ1 rearrangements with Vs and Jκ2 primers. Because Jκ1 rearrangements are not always discernable by Vκ + Jκ5 PCR (see Fig. 2 b), Vs and Jκ2 primers were used to verify Jκ1 rearrangements. Lane 1, pGEM molecular weight standards; lane 2, water control; lanes 3–10, Vκ4R hybridoma DNA samples (these do not correspond to the Vκ4R samples shown in Fig. 2, b or c). Sizes of amplicons are 1.78 kb (Jκ1), 1.38 kb (Jκ2), 780 bp (Jκ4), and 450 bp (Jκ5).

listed and defined in Table 1). For example, Vκ4R hybridomas with Jκ2-, Jκ4-, and Jκ5-sized bands (Fig. 2 b, lanes 4, 10, and 13) have a Jκ2 band from the fusion partner, a rearrangement to Jκ4 on one allele, and a rearrangement to Jκ5 on the other. These three clones type positive for Vκ4R in the Vκ4-specific PCR assay (data not shown). As the primers for the Vκ4 assay amplify Vκ4-Jκ4 DNA (see Fig. 2 a), it is not certain that Vκ4R is still in proximity to Jκ3 and Cκ3; the genotype of these clones is therefore either R/5 (having Vκ4R on one allele and a rearrangement to Jκ5 on the other) or 4R inv/4 (inverting Vκ4R by rearrangement to Jκ5 on the targeted allele and rearranging to Jκ4 on the other κ allele). To distinguish R/5 from 4R inv/4 genotypes, amplifications were carried out with 4R and Jκ5 primers (not shown). In all 18 Vκ4R clones with Jκ4 and Jκ5 rearrangements, the genotype was R/5 (Table 1).

Classes of Light Chain Gene Rearrangements. Four classes of L chain genotypes were observed. The first class expresses only the VκR L chain (R) and has no additional κ rearrangements (R/0, Table 1). The R/0 genotype corresponds to the κ+ κ0 genotype of a normal B cell. The 10 Vκ4R clones (one of the 11 Vκ4R R/0 clones is excluded because it has...
Table 1. \(\kappa\) Rearrangements in \(\kappa\)4R and \(\kappa\)8R B Cells

\(\kappa\)k genotype	\(\kappa\)4R-1	\(\kappa\)4R-2	\(\kappa\)4-total	\(\kappa\)8R
R/0	4	7	11 (19)	16 (42)
4Rdel/0	6	0	6 (10)	NA
4Rdel/2	1	0	1 (2)	NA
4Rdel/4	0	2	2 (3)	NA
del/0	0	0	0 (1)	(3)
del/1	0	2	2 (3)	0
del/2	0	1	1 (2)	0
del/4	1	0	1 (2)	0
del/5	0	0	0 (1)	(3)
Subtotal	9	5	14 (24)	2 (6)
R/1	5	3	8 (14)	9 (24)
R/2	3	4	7 (12)	5 (13)
R/4	*	*	*	4 (10)
R/5	9	9	18 (31)	2 (5)
Subtotal	17	16	33 (57)	20 (52)
Total	30	28	58 (100)	38 (100)

The numbers of \(\kappa\)4R and \(\kappa\)8R hybridomas with a particular \(\kappa\)k genotype are listed. Results are also expressed as percentages (given in parentheses) of the total number of hybridomas in the combined \(\kappa\)4R panels or in the \(\kappa\)8R panel. Two hybridoma panels from different hemizygous \(\kappa\)4R mice (\(\kappa\)4R-1 and \(\kappa\)4R-2) and one hybridoma panel from an hemizygous \(\kappa\)8R mouse are shown. The genotypes refer to the \(\kappa\)k segment used at each \(\kappa\) allele. The replaced \(\kappa\) locus is to the left of the slash and expresses a \(\kappa\) antibody, but the \(\kappa\) gene is not amplified by any of the \(\kappa\) primers (Vs, LS, L3, L4, L6, and L7). Sequence analysis of \(\kappa\)4-JK4 in an R/0 hybridoma reveals no mutations (data not shown). As-}

Discussion

We interpret the four genotype classes as follows. The first class, R/0, is found in multiple clones in both \(\kappa\)4R and \(\kappa\)8R hybridomas. The presence of several clones with this genotype indicates that the \(\kappa\) chain replacement constructs are expressible as normal \(\kappa\) chains and are capable of inhibiting
Table 2. \(\textbf{V\kappa R} \ \text{Hybridomas with Lambda Rearrangements}\)

Source	Productive L chain	\(\kappa\) genotype	Lambda genotype	Source L chain Jr genotype XI/X2/XX
\(\text{V\kappa R}-1\)	\(\kappa\)	4R\(^{140}/0\)	-/0/0	XI/X2/XX
\(\text{V\kappa R}-1\)	\(\lambda\)	4R\(^{140}/0\)	0/0+	XI/X2/XX
\(\text{V\kappa R}-1\)	\(\kappa\)	R/0	-/0/0	XI/X2/XX
\(\text{V\kappa R}-1\)	\(\lambda\)	R/5	\pm / \pm /0	XI/X2/XX

Individual clones having \(\lambda\) DNA rearrangements are shown. The animal source of the clone corresponds to the panels shown in Table 1; 58 \(\text{V\kappa R}\) hybridomas and 51 \(\text{V\lambda R}\) hybridomas were screened for \(\text{IgM} \ \kappa\) and \(\text{IgM} \ \lambda\) expression by solid-phase enzyme-linked immunosorbent assay (described in ref. 9). Of the 58 \(\text{IgM}\) secreting \(\text{V\kappa R}\) hybridomas shown in Table 1, 56 produced only \(\kappa\) L chains, while two expressed only \(\lambda\) L chains. All 51 \(\text{V\lambda R}\) hybridomas (of which the 38 shown in Table 1 were chosen at random) secreted only \(\kappa\) L chains. Shown are the \(\kappa\) L chain genotypes (see Table 1 for nomenclature) and the \(\lambda\) genotypes (+, productive; −, nonproductive; \pm, rearranged could be productive or nonproductive); and 0, germline [unrearranged]. \(\lambda\) rearrangements were typed by \(\lambda 1, \lambda 2,\) and \(\lambda X\)-specific PCR assays (see Materials and Methods).

Further \(\kappa\) rearrangement. These results reaffrm the H/L-STOP model, recapitulating the observations in earlier studies of \(\kappa\) transgenics (2). Similarly, the low frequency of \(\lambda\) hybridomas in \(\text{V\kappa R}\) points to a role for the replaced L chain in shutting off \(\lambda\) rearrangement (Table 2). In the absence of an H/L-STOP signal, the \(\text{V\kappa R}\) genotype would resemble that of a hemizygous \(\kappa\)-deficient B cell (kdel/wt). In kdel/wt, \(\sim 10\%\) of B cells produce \(\lambda\) L chains (16, 29, and Luning Prak, E., and M. Weigert, unpublished observations). Therefore, even among \(\text{V\kappa R}\) B cells, the frequency of \(\lambda\)-expressing clones, 3%, is lower than would be expected if the replaced allele exerted no effect on further rearrangement.

Not predicted by the H/L-STOP model is the majority of cells that are found in the second and third genotype classes. These cells represent a complete departure from the H/L-STOP model and indicate that the H/L-STOP signal is often delayed or never activated. Class 2 \(\text{V\kappa R}\) cells provide the first direct demonstration of secondary rearrangement at a productively rearranged locus within individual B cells. The \(\text{V\kappa R}\) model also establishes that, given downstream RS sequences, a productively rearranged \(\kappa\) locus can serve as a substrate for locus deletion.

An outcome of secondary rearrangement at a productively rearranged locus is revision of the antigen receptor. This process of receptor editing may allow autoreactive cells to escape clonal elimination (5-7). Receptor editing has been inferred from the increased frequencies of distal Jk rearrangements in autoantibody transgenics (6, 9, 30). Whereas most splenic B cells in normal animals have rearrangements to Jk1 or to Jk2 (31, 32), splenic B cells from mice with an anti-DNA-H chain transgene (3H9) exhibit a skewing toward Jk5 rearrangement (6). Secondary rearrangements to Jk5 were also demonstrated in 3H9 transgenics that were hemizygous for \(\kappa\) L chain deficiency (H\(^{+}/\kappa^{1d}/\kappa^{0}\)), but again, the precursor-product relationship remained unverified (9).

Receptor editing has also been described in anti-MHC class 1 transgenics (5). Anti-H-2K\(^{L}\) B cells are deleted in mice expressing the H-2K\(^{L}\) or K\(^{b}\) allele (5, 33). However, autoreactive B cells are present in the bone marrow, where they express elevated levels of recombinase gene products and actively rearrange \(\lambda\) (5). Edited B cells in the periphery have lost the anti-H-2K\(^{L}\) specificity, suggesting that the editing process results not only in \(\lambda\) rearrangement, but also in the deletion of \(\kappa\) (reference 5; and Nemazee, D., personal communication). Editing by successive \(\kappa\) rearrangements or by \(\kappa\) deletion is illustrated in class 2 \(\text{V\kappa R} \ \text{B cells}\). Here, for the first time, the precursor-product relationship is known because all cells start out with a productive \(\text{V\kappa-Jk}\) rearrangement. Editing disables \(\text{V\kappa R}\) and replaces it with a new L chain.

Ongoing L chain rearrangement in \(\text{V\kappa R} \ \text{B cells}\) also yields the third class of B cells which have a \(\kappa^{+}/\kappa^{0}\) or \(\kappa^{+}/\kappa^{-}\) genotype. Regardless of which genotype occurs in class-3 cells, the H/L-STOP signal appears to have been switched off or modified. The H/L-STOP signal could be canceled if the \(\text{V\kappa R}\) L chain and the H chain gave rise to an autoreactive receptor. However, in contrast to class 2 cells, editing in class 3 cells does not disable the autoreactive L chain. For a \(\kappa^{+}/\kappa^{0}\) cell to escape deletion, it has been proposed that the nonautoreactive L chain successfully completes against the autoreactive L chain for pairing with the H chain (7). Alternatively, the H/L-STOP signal may be modified because the \(\text{V\kappa R}\) L chain pairs poorly with the H chain (7). According to this model, poor pairing between H and L chains results in the production of too few receptors to effect an H/L-STOP signal. Therefore, rearrangement continues until an adequate level of H/L pairs is reached or until a new L chain that can efficiently generate the H/L-STOP signal is formed. Here, the quality of an H/L pair, rather than its specificity for self or nonself antigens, is what drives further gene rearrangement. Such a corrective process may be mechanistically distinct from receptor editing.

The preponderance of class 2 and class 3 genotypes is surprising, given that these classes are not as common in splenic B cells from normal animals (1). This difference may result from a failure to recruit R/0 cells into the peripheral B cell pool in \(\text{V\kappa R}\) mice. Protective selection of B cells may favor classes 2 and 3, because these cells comprise a more diverse set of antigen receptors than do R/0 cells. In contrast, the \(\kappa^{+}/\kappa^{0}\) genotype in normal animals does not impart a substantially different diversity than the other genotypes. A second possibility is that the prevalence of class 2 and class 3 cells is the consequence of having a functional L chain rearrangement present at the inception of \(\kappa\) rearrangement. For example, prematurely rearranged L chain may confer transcriptional competence (and perhaps availability to recombinase) to the locus. If L chain rearrangements initially proceed in the absence of an H/L-STOP signal, then rearrangements during this early period would take place without regard for the functional status of \(\text{V\kappa R}\). Eventually the H/L-STOP signal is activated and further L chain rearrangements (such as the later rearrangements to \(\lambda\) in class 4 cells) are inhibited.
Yet, it seems improbable that all class 2 and class 3 cells represent the outcome of “uncensored” rearrangement or the failure to positively select R/0 cells because the frequency of R/0 cells is different in Vk4R (19%) andVk8R (42%). Also, neither explanation can account for the frequent distal Jk rearrangements in Vk4R class 3 cells (Table 1). Rather, mice (34), and here Vk appears often to be edited by genetic replacement or the operational equivalent, phenotypic replacement by L chain competition (7). Consistent with editing of Vk4 are frequent among autoantibodies from autoimmune animals, indicating that multiple rearrangements took place on the untargeted allele (data not shown). Vk8, on the other hand, is unmutated and is used in the response of normal mice to influenza (35). Most Vκ8R class 3 cells have proximal Jk rearrangements on the untargeted κ allele (see Table 1).

The VκR models illustrate two vital aspects of the immune system. Mechanisms such as H/L-STOP have evolved to fix important specificities. However, these mechanisms appear to be reversible, reflecting the dynamic nature of the immune response. Somatic mutation during clonal expansion (and in the same sense, embellishment of the inherited antibody repertoire by junctional diversity) is an ongoing source of diversity (36, 37). Such variety inevitably includes dysfunctional antibodies such as autoantibodies or nonfunctional antibodies. In these cases, H/L-STOP is reversed or modified, allowing revision of deleterious or nonfunctional mutants.

We thank T. Comfort, K. Ruch, S. Wu, J. B. Dashoff, and D. Ni for technical assistance; M. Radic, J. McCarrick, Q. Chen, D. Gay, M. Shlomchik, S. Tilghman, and S. Takeda for discussions and advice; K. Karjalainen, G. Kohler, and B. Knowles for hosting Luning Prak in their laboratories during gene targeting experiments; and M. Shannon for help with the figures.

Support for this work was provided by National Institutes of Health grant GM-20964 and the Sheryl N. Hirsch Award from the Lupus Foundation of Philadelphia to M. Weigert. E. Luning Prak is a trainee of the Medical Scientist Training Program at the University of Pennsylvania (5-T32GM077170).

Address correspondence to Dr. Martin Weigert, Department of Molecular Biology, Princeton University, Princeton, NJ 08544.

Received for publication 11 January 1995 and in revised form 23 March 1995.

References
1. Coleclough, C., R.P. Perry, K. Karjalainen, and M. Weigert. 1981. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature (Lond.). 290:372–378.
2. Ritchie, K.A., R.L. Brinster, and U. Storb. 1984. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in κ transgenic mice. Nature (Lond.). 312:517–520.
3. Shapiro, M., and M. Weigert. 1987. How immunoglobulin Vκ genes rearrange. J. Immunol. 139:3834–3839.
4. Harada, K., and H. Yamagishi. 1991. Lack of feedback inhibition of Vκ gene rearrangement by productively rearranged alleles. J. Exp. Med. 173:409–415.
5. Tiegs, S.L., D.M. Russell, and D. Nemazee. 1993. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177:1099–1020.
6. Radic, M.Z., J. Erikson, S. Litwin, and M. Weigert. 1993. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 177:1165–1173.
7. Gay, D., T. Saunders, S. Camper, and M. Weigert. 1993. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177:999–1008.
8. Feddersen, R.M., and B.G. Van Ness. 1985. Double recombination of a single κ-chain allele: implications for the mechanism of rearrangement. Proc. Natl. Acad. Sci. USA. 82:4793–4797.
9. Luning Prak, E., M. Trounstine, D. Huszar, and M. Weigert. 1994. Light chain editing in κ deficient animals: a potential mechanism of B cell tolerance. J. Exp. Med. 180:1805–1815.
10. Sharpe, M.J., C. Millstein, J.M. Jarvis, and M.S. Neuberger. 1991. Somatic hypermutation of immunoglobulin κ may depend on sequences 3′ of Cκ and occurs on passenger transgenes. EMBO (Eur. Mol. Biol. Organ.) J. 10:2139–2145.
11. Hasty, P., J. Rivera-Perez, C. Chang, and A. Bradley. 1991. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol. 11:4509–4517.
12. Van Ness, B.G., M.G. Weigert, C.C. Coleclough, E.L. Matther, D.E. Kelley, and R.P. Perry. 1991. Transcription of the unarranged mouse Cκ locus: sequence of the initiation region and comparison of activity with a rearranged Vκ-Cκ gene. Cell. 27:593–602.
13. Sottano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 64:693–702.
14. Mansour, S.L., K.R. Thomas, and M.R. Capechi. 1988. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to nonselectable genes. Nature (Lond.). 336:348–352.
15. Carmack, C.E., S.A. Camper, J.J. Mackle, W.U. Gerhard, and M. Weigert. 1991. Influence of a Vκ8 L chain transgene on
endogenous rearrangements and the immune response to the HA(SB) determinant of influenza virus. J. Immunol. 147: 2024–2033.

16. Zou, Y.-R., S. Takeda, and K. Rajewsky. 1993. Gene targeting in the Igk locus: efficient generation of k chain expressing B cells, independent of gene rearrangement in Igk. EMBO (Eur. Mol. Biol. Organ.) J. 12:811–820.

17. Ledermann, B., and K. Burki. 1991. Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell Res. 197:254–258.

18. Reed, K.C., and D.A. Mann. 1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13:7207–7221.

19. Kohler, G. 1980. Immunoglobulin chain loss in hybridoma lines. Proc. Natl. Acad. Sci. USA. 77:2197–2199.

20. Schlissel, M.S., and D. Baltimore. 1989. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germine kappa gene transcription. Cell. 58:1001–1007.

21. Huse, W.D., L. Sastry, S.A. Iverson, A.S. Kang, M. Alting-Mess, D.R. Burton, S.J. Benkovic, and R.A. Lerner. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science (Wash. DC). 246:1275–1281.

22. Ramsden, D.A., C.J. Paige, and G.E. Wu. 1994. k light chain rearrangement in mouse fetal liver. J. Immunol. 153:1150–1160.

23. Caton, A.J., S.E. Stark, J. Kavaler, L.M. Staudt, D. Schwartz, and W. Gerhard. 1991. Many variable region genes are utilized in the antibody response of BALB/c mice to the influenza virus A/PR/8/34 hemagglutinin. J. Immunol. 147:1675–1686.

24. Kalled, S., and P.H. Brodeur. 1991. Utilization of Vk families and Vk exons. Implications for the available B cell repertoire. J. Immunol. 147:3194–3200.

25. Hieter, P.A., S.J. Korsmeyer, T.A. Waldmann, and P. Leder. 1981. Human immunoglobulin k light chain genes are deleted or rearranged in k-producing B cells. Nature (Lond.). 290:368–372.

26. Durdik, J., M.W. Moore, and E. Selsing. 1984. Novel k light chain gene rearrangements in mouse lambda light chain producing B lymphocytes. Nature (Lond.). 307:749–752.

27. Siminovitch, K.A., A. Bakhshi, P. Goldman, and S.J. Korsmeyer. 1985. A uniform deleting element mediates the loss of k genes in human B cells. Nature (Lond.). 316:260–262.

28. Lewis, S., A. Gifford, and D. Baltimore. 1984. Joining of Vk to Ik gene segments in a retroviral vector introduced into lymphoid cells. Nature (Lond.). 308:425–428.

29. Chen, J., M. Trounstine, C. Kurahara, F. Young, C.-C. Kuo, Y. Xu, J.F. Loung, F.W. Alt, and D. Huszar. 1993. B cell development in mice that lack one or both immunoglobulin k light chain genes. EMBO (Eur. Mol. Biol. Organ.) J. 12:821–830.

30. Chen, C., M.Z. Radic, J. Erikson, S.A. Camper, S. Litwin, R.R. Hardy, and M. Weigert. 1994. Deletion and editing of B cells that express antibodies to DNA. J. Immunol. 152:1970–1982.

31. Wood, D.L., and C. Coleclough. 1984. Different joining region J elements of the murine k immunoglobulin light chain locus are used at markedly different frequencies. Proc. Natl. Acad. Sci. USA. 81:4756–4760.

32. Nishi, M., T. Kataoka, and T. Honjo. 1985. Preferential rearrangement of the immunoglobulin k chain joining region Jk1 and Jk2 segments in mouse spleen DNA. Proc. Natl. Acad. Sci. USA. 82:6399–6403.

33. Russell, D.M., Z. Dembic, G. Morahan, J.F.A.P. Miller, K. Burki, and D. Nemeaze. 1991. Peripheral deletion of self-reactive B cells. Nature (Lond.). 354:308–311.

34. Shlomchik, M.J., A.H. Aucoin, D.S. Pisetsky, and M. Weigert. 1987. Structure and function of anti-DNA antibodies derived from a single autoimmune mouse. Proc. Natl. Acad. Sci. USA. 84:9150–9154.

35. Clarke, S., L.M. Staudt, J. Kavaler, D. Schwartz, W.U. Gerhard, and M. Weigert. 1990. V region gene usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J. Immunol. 144:2795–2801.

36. Weigert, M., I.M. Cesari, S.J. Yonkovich, and M. Cohn. 1970. Variability in lambda light chain sequences of mouse antibody. Nature (Lond.). 228:1045–1047.

37. McKean, D., K. Huppi, M. Bell, L. Staudt, W. Gerhard, and M. Weigert. 1984. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA. 81:3180–3184.