Yes We Care! - Certification for Machine Learning Methods through the Care Label Framework

Katharina Morik · Helena Kotthaus · Lukas Heppe · Danny Heinrich · Raphael Fischer · Sascha Mücke · Andreas Pauly · Matthias Jakobs · Nico Piatkowski

May 21st, 2021

Abstract Machine learning applications have become ubiquitous. Their applications from machine embedded control in production over process optimization in diverse areas (e.g., traffic, finance, sciences) to direct user interactions like advertising and recommendations. This has led to an increased effort of making machine learning trustworthy. Explainable and fair AI have already matured. They address knowledgeable users and application engineers. However, there are users that want to deploy a learned model in a similar way as their washing machine. These stakeholders do not want to spend time understanding the model. Instead, they want to rely on guaranteed properties. What are the relevant properties? How can they be expressed to stakeholders without presupposing machine learning knowledge? How can they be guaranteed for a certain implementation of a model? These questions move far beyond the current state-of-the-art and we want to address them here. We propose a unified framework that certifies learning methods via care labels. They are easy to understand and draw inspiration from well-known certificates like textile labels or property cards of electronic devices. Our framework considers both, the machine learning theory and a given implementation. We test the implementation’s compliance with theoretical properties and bounds. In this paper, we illustrate care labels by a prototype implementation of a certification suite for a selection of probabilistic graphical models.
1 Introduction

Machine learning (ML) has become the driving force pushing diverse computational services like search engines, robotics, traffic forecasting, natural language processing, and medical diagnosis, to only mention a few. This has led to a more diverse group of people affected by ML.

Placing the human in the center of ML investigates the needs of the user and the interaction between developer and user. Many approaches refer – possibly indirectly – to a pairing of a developer and a deployer, interacting for a certain application. Typical examples are from ML in sciences, where the physicist, physician, biologist, drug developer interacts with the ML expert to establish a reliable data analysis process that leads to scientific insights. In the long run, others may benefit from this without ever accessing the ML process. Patients, for instance, take for granted that the diagnosis methods or drugs are approved by a valid procedure.

Other applications involve several parties. A vendor company, its online shop, the company that optimizes the click rate, a recommendation engine, and the customers buying the products are all playing their part in modern sales ecosystems. Modern financial business processes, like money laundry detection, involve a network of stakeholders who need to know the reliability of the ML classifications. In the gig economy, the platform company provides the freelancers and vendors with their scheduling and accounting system that most likely deploys machine learning for optimization. Companies apply diverse ML methods, and some have employees who know ML well. For them, to inspect a learned model is important and explainable AI is serving them. In contrast, the customers and freelancers are affected by the process but do not face the ML system directly nor do they interact with its developers. They rely on tech companies to have done their job in a trustworthy manner.

In an even broader context, societies establish regulations that protect individual rights, e.g., regarding privacy of data and fair business processes. Moreover, the goals of sustainability and the fight against climate change demand regulations on energy consumption of ML processes. Now the regulating agencies need valid information about ML processes.

We see the diversity of stakeholders who need valid information in order to accept or not accept a certain ML process. Some of them know the ML theory and are experienced in evaluating models. Some of them will interpret the models directly if they are nicely visualized. Some of them will find the time for an interactive inspection of models. All these needs have raised considerable attention in the AI community and attractive methods have been put forward. However, methods that inform users who do not want to spend time in learning about ML method are missing. This is the type of user we want to address. We think that due to the increasing number of applications and the diversity of application areas, this user type will become more and more important.

We consider this user type a customer of ML who wants the product to fulfill some requirements. Whether a method meets the demand is partially given by the theory that states its properties. Finding and understanding
these statements that are scattered across decades of scientific publications requires years of studies. Of course, our 'customers' who do not want to invest time into considering a particular model will have even less interest in visiting courses. Hence, the theoretical insights need to be communicated easily without simplifying matters. It is this view that has led to the concept of care labels (Morik et al., 2021), which we adopt here. This concept moves beyond individual man-machine interaction towards a public declaration of a method’s properties. It allows for specific regulations, for instance, regarding energy consumption.

The design of ML care labels requires defining the set of relevant properties. Robustness in the sense that small changes to the data lead only to small changes in the model is a property that is studied intensively. Runtime and memory bounds are straightforward. Communication needs are important for applications in the area of the Internet of Things. Energy consumption is important, since some state-of-the-art ML pipelines such as the NLP model “BERT” have an average power consumption of 12kW with training alone, consuming 1 MWh (as much as a single-person household consumes in eight months), which can potentially have a high impact on our environment (Strubell et al., 2020).

Energy consumption is important, since some state-of-the-art ML pipelines such as the NLP model “BERT” have an average power consumption of 12kW with training alone, consuming 1 MWh (as much as a single-person household consumes in eight months), which can potentially have a high impact on our environment (Strubell et al., 2020).

Classes of ML methods, like exponential families, cover a range of algorithms for training and inference. Consider the choice of an algorithm for performing inference on probabilistic graphical models, which leads to totally different theoretical properties and runtimes, determining the CO₂ footprint. The marginal probabilities are often under- or overestimated by using the approximative loopy belief propagation (LBP) algorithm instead of the exact junction tree (JT) algorithm. Therefore, an inexperienced user might tend to prefer the exact JT algorithm without being aware of the resulting runtime and CO₂ impact, caused by high asymptotic runtime complexity, if this property were not indicated by the care label. In general, different ML methods may need different categories, and even the same category may need different criteria to be tested. Hence, if we take a more detailed look at the overall ML field, there is not one single set of categories with test criteria for all. Instead, an expert database should store the specific instances of the categories for ML methods.

Moreover, considering static characteristics of a method does not suffice. Worst-case asymptotic time and memory bounds are given by theory, but can vary by orders of magnitude across compute platforms, even if they implement the same abstract method. A convolutional neural network (CNN), for example, may be trained on a GPU and CPU, or on a microcontroller (e.g., Arduino or field programmable gate array (FPGA)). The former is much more resource-heavy, consuming energy at an order of magnitude around 10^2 W compared to only 10^-1 to 1 W. The latter, on the other hand, may be severely constrained with respect to the number of layers, or input data types: An FPGA may work best using only integer arithmetic, or the Arduino may only have 256 kB of

1 Based on the average power consumption per capita in Europe: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_and_heat_statistics
RAM, which limits the model’s number of parameters. In general, the same method can be implemented on different hardware architectures and particular implementations might vary. Hence, the more dynamic features of ML execution environments must be covered by the labels, as well.

For each property, ranges of values need to be defined that will then be expressed by symbols similar to those on the paper slips found in clothes and textiles. Since we want to validate the properties, we need criteria which classify a certain instance of a method into the appropriate value range. Where static properties may be listed based on theoretical results, the dynamic properties of a particular implementation on particular hardware demand tests on specific data sets. Overall, for the set of properties with their value ranges, a certification process needs to be implemented.

In this work, we propose a novel means of communication between ML scientists and stakeholders that goes beyond logical, visual or natural language descriptions of single models. We instead aim at providing a framework for certifying ML methods in general, as schematically displayed in Figure 1. Our contribution comprises the following points:

1. We present an easy-to-understand *care label design*, serving as a single graphical certificate for ML methods and their implementations.
2. We devise a *rating system*, drawing from an *expert knowledge database* created, maintained and continually expanded by the research community.
3. We introduce *categories* under which we bundle *criteria*, which represent important properties of ML methods. They are stored in the expert knowledge base.
4. We suggest to certify a given implementation against its underlying theory with the help of *reliability and performance bound checks* on *profiling data sets*, and reporting resource consumption.

Method Theory

Expert Knowledge Database

Profiling Data Sets

Implementation

Certification Suite

Certification Result

![Diagram](image-url)

Fig. 1 Proposed framework for certifying machine learning methods with *care labels*. They capture aspects of the underlying theory (stored in an expert knowledge database) and their relevance for the practical implementation (based on profiling data sets)
5. We define badges that are awarded to ML methods that fulfill certain noteworthy criteria.

6. We present a concept for a Certification Suite that accesses the expert knowledge database and certifies a method together with its implementation.

We start by giving an overview of good standards that have already been achieved for ML certification, and identifying their shortcomings. Next up, we introduce our novel care label concept and its constituting parts in section 3. In section 4 we put our concept into practice for Markov random fields (MRFs), a class of probabilistic graphical models with a wide range of applications. MRFs constitute a powerful probabilistic tool with a rich theoretical background, serving to illuminate all aspects of our care label concept. We conclude our work with a summary of our investigations, and outline future work in section 5.

2 Related Work

The importance of trustworthy AI methods is increasing, especially because decision-making takes data-based models more and more into account (Lepri et al., 2018; Bellotti and Edwards, 2001; Floridi et al., 2018; Houben et al., 2021). In their comprehensive book, Dignum (2019) addresses AI’s ethical implications of interest to researchers, technologists, and policymakers. Another recent book brings together many perspectives of AI for humanity and justifies the urgency of reflecting on AI with respect to reliability, accountability, societal impact, and juridical regulations (Braunschweig and Ghallab, 2021). (Brundage et al., 2020) and (Langer et al., 2021) summarized many important aspects of developing trustworthy learning systems. Their reports emphasize that institutional mechanisms (e.g., auditing, red team exercises, etc.), software mechanisms (e.g., audit trails, interpretability, etc.) and hardware mechanisms (assessing secure hardware, high precision compute management, etc.) are required for obtaining trusted systems, and that the diversity of stakeholders needs to be taken into account. Where privacy-preserving data mining (e.g., Atzori et al. (2008)) on the side of data analysis methods and the European General Data Protection Regulation (GDPR) on the side of political regulation successfully went together towards citizen’s rights, a similar strategy for ML models and regulations in concert is missing.

2.1 Inherent trustworthiness

From its beginning, the machine learning community aimed at offering users understandable machine learning processes and results. Interpretability guided the development of methods, their combination and transformation enabling users to inspect a learned model (Rüping, 2006). Recently, Chen et al. (2018) investigated interpretability of probabilistic models. Inductive logic programming (ILP) assumed that relational logic, and description logic in particular, is easily understandable (Muggleton 1991, Morik and Kietz 1991). Particular
methods for interactive inspection and structuring of learned knowledge and
given data offered a workbench for cooperative modeling of an expert with the
ILP system Morik (1989). This close man-machine interaction in building a
model creates common understanding of system developers and users. However,
it does not scale to larger groups of affected stakeholders.

Decision trees were promoted as inherently understandable. However, feature
selection and very deep trees quickly outgrow human intuition, and subtleties
are only recognized by experts. For instance, the weights of redundant features
are not appropriately computed in decision trees, whereas in support vector
machines, they are (Mierswa and Wurst 2005). Statistics, even if expressed
in natural language, is not easy to understand correctly, as has been shown
empirically (Wintle et al. 2019).

2.2 Explainable AI

Explainable AI aims at offering an easy understanding of complex models for
inspection by stakeholders. They investigate particular tasks, e.g., recommender
systems (Nunes and Jannach 2017), or particular ML families, e.g. Deep Neural
Networks (Huang et al. 2020, Samek et al. 2019), or survey the needs of diverse
stakeholders (Langer et al. 2021). Agnostic explanation routines are to explain
a variety of learned models (Ribeiro et al. 2018, Guidotti et al. 2018). Given
the large amount of research in this field, it has become a necessity in its own
right to describe explanation methods along a proposed schema (Sokol and
Flach 2018). For model inspection by a domain expert or application developer,
these methods are of significant importance.

2.3 Description of methods and models

Modern machine learning toolboxes like RapidMiner, KNIME, or OpenML
(Mierswa et al. 2006, Rijn et al. 2013) are oriented towards knowledgeable
users of ML or application developers. They and others (Falkner et al. 2018,
Brazdil et al. 2003) use meta-data which offer a descriptive taxonomy of
machine learning. In this sense, the ML processes are carefully described and
documented. The user may click on any operator to receive its description and
requirements. RapidMiner, in addition, recognizes problems of ML pipelines
and recommends or automatically performs fixes. It enhances understandability
by structuring ML pipelines and offering processes in terms of application
classes.

Moving beyond the direct interaction between system and application
developer aims at accountable descriptions of models. The approaches for
FactSheets from IBM (Arnold et al. 2019) and Model cards from Google
(Mitchell et al. 2019) are closely related to our approach. They give impetus
to document particular models for specific use cases in the form of natural
language and tabular descriptions, and even suggest to include them with ML
publications.
In a recent user study, most interviewees found the idea of model-specific FactSheets helpful in understanding the methodology behind the model creation process (Hind et al., 2020). Another line of work aims at automatically tracking and visualizing the training process, including computed metrics as well as model architecture (Schelter et al., 2017; Vartak et al., 2016). The approaches mentioned so far also do not consider resource usage (e.g., power consumption), even though it is crucial information for users (Henderson et al., 2020) and allows for discussing the environmental ethical impact of ML methods. Often, there is a trade-off between two important properties, such as higher runtime in exchange for lower energy consumption, which might influence the customer’s decision on which model to choose. As an example, FPGAs offer unique performance and energy-saving advantages, but the software engineering part is challenging (Omondi and Rajapakse, 2006; Teubner et al., 2013). The challenges faced when deploying machine learning on diverse hardware in different application contexts (Hazelwood et al., 2018) even gave rise to a new conference, bridging the gap between machine learning and systems researchers (Ratner et al., 2019). The current increase in awareness regarding CO₂ emissions foregrounds these properties even more for users who want to design ML systems responsibly. Indeed, the amount of CO₂ emitted during training and deployment of state-of-the-art machine learning models has increased drastically in recent years (Strubell et al., 2020; Schwartz et al., 2019). To give more insight into this issue, Schwartz et al. (2019) urge researchers to provide a price tag for model training alongside the results, intending to increase visibility and making machine learning efficiency a more prominent point of evaluation. In Henderson et al. (2020), the authors provide a framework to measure energy consumption of ML models. However, they only measure specific model implementations, mostly disregarding theoretical properties and guarantees. We argue that a proper framework also needs to consider known theory, ideally stored as a database.

While these approaches are an important and necessary call for participation in the endeavour of describing learned models, we argue that natural language descriptions and empirical results alone are not enough to enhance trust in the model. They do not account for whether or not the theoretical properties of the model are fulfilled in the specific implementation at hand. This was stunningly shown by (Dacrema et al., 2019), where baseline heuristics were able to beat top-tier methods, and many results could not be reproduced at all. This brings the issue of certification and testing to the foreground (Cremers et al., 2019). Brundage et al. (2020) argue that descriptions must be verifiable claims. (Kwiatkowska et al., 2011) investigate verification of probabilistic real-time systems.

A summary of related work is shown in Table 1 highlighting which aspects of ML certification the authors cover, and where they fall short. What we find missing in the current state-of-the-art is a unifying concept to certify ML methods and their implementation on diverse hardware in terms of adherence to known theoretical properties and resulting resource demands. We argue that a method’s properties need to be classified independently from a specific use case or data set. Additionally, this information needs to be accessible for
Certify trained model | ✓ | ✓ | x | ✓ | ✓
Test compliance with theory | x | x | x | x | ✓
Consider different hardware | x | x | ✓ | ✓ | ✓
Comprehensible for non-experts | ✓ | ✓ | ✓ | x | ✓

Table 1: Our proposed care label approach in comparison to other methods trying to certify certain aspects of the machine learning process. To the best of our knowledge, our approach is unique in combining practical measurements (like energy consumption) with checks of theoretical properties on different computing architectures. Brackets denote proposed methods that are not put into practice.

non-experts, thus complicated theory has to be concealed through appropriate levels of abstraction. This is where our proposed care labels come into play, offering a comprehensive and easy to interpret overview of methodological properties, both theoretical and given the particular implementation at hand.

3 Machine learning care labels

We now introduce our care label concept for certifying ML methods, addressing all aforementioned issues. With “method”, we refer to a combination of “components” for performing a specific machine learning task, such as training or applying a model. Most components are customizable, resulting in wildly varying properties. We later show this in practice for different probabilistic inference algorithms. Implementation and choice of hardware add yet another layer of complexity. Our care labels produce relief by hiding all underlying complexity behind a user-friendly façade. In the following sections, we discuss the details of our concept, following the structure of our contribution list from section 1.
3.1 Care label design

Evidently, our proposed care labels need to take manifold theoretical and practical insights about ML methods into account, and compile them into a single short comprehensive document, similar to an index card. Our design is shown in Figure 2 and consists of two segments: The upper-left segment contains information about the method’s theoretical properties, while the bottom-right segment also considers the given execution environment. As methods can be implemented in various ways and on various compute architectures, we designed this segment to “attach” to its theory. This is analogous to different brands of refrigerators: While the abstract task stays the same (keeping food and beverages cool), manufacturers use different components and circuits, and their specifics (e.g., lowest possible temperature, noise level, energy consumption) vary. In the same way, different ML implementations perform the same abstract task, but have their specific strengths and weaknesses.

Both segments contain a name and short description in their upper left corner. The theoretical segment displays the method’s rating for five important categories on the right, represented as colored hexagons. The ratings for each category are drawn from an expert knowledge database (see subsection 3.2 and subsection 3.3 respectively). By restricting the care label to simple color-based ratings, we allow for a high-level assessment without the need for deeper understanding of the underlying theory. On the left, white hexagonal fields provide space for badges, which we describe in subsection 3.5.

The segment contains three checkbox fields on the right that connect to three theoretical categories, indicating whether the theoretical properties are verified for the implementation. For a refrigerator, this could be a test whether the temperature reliably stays below the point where bacteria grow quickly. For
ML methods, we can check if theoretical bounds about result quality, runtime or memory consumption hold.

Additionally, three white hexagonal fields with colored symbols at the bottom show measurement results for runtime, memory, and energy consumption (for more details see subsection 3.4). In short, our design accomplishes the following:

– Provides general information about the ML method at a glance
– Shows simple ratings for important categories, trading complexity and detail for simplicity and user-friendliness
– Clearly highlights the interplay of theory and implementation by showing whether the implementation fulfills all theoretical properties
– Is understandable for users without scientific background, allowing for easy comparison between ML methods
– Highlights noteworthy properties that stakeholders may need for their particular application

3.2 Expert knowledge database for method ratings

The theory behind machine learning methods is manifold, with different model classes having their own intricacies that can only be fully understood by experts. Consequently, they are required to assess important properties, identify to what extent a method exhibits them, and convey that knowledge to less informed users.

We propose to assemble a database with criteria that describe theoretical properties of ML methods, independent of their implementation. By bundling criteria into few concise categories, we allow for easier comparability between methods. We further propose to assign a rating to each category, consisting of four levels A – D, each represented by a color from a gradient ranging from green (A, best rating) to red (D, worst rating). This is inspired by similar certification concepts, e.g., the EU energy labelling framework (of European Union, 2017), which rates energy efficiency of electronic devices, or Nutri-Score for nutrient content in food (Julia et al., 2018). The ratings represent an expert assessment of how strongly the method at hand fulfills the respective criteria, as listed in Table 2.

As mentioned before, customizable components of a method can lead to quite different properties: While a basic model class may fulfill most criteria...
Table 2: Rating scale assigned to categories, depending on expert assessment, aided by proportion of fulfilled criteria

Letter	Symbol	Name
A	A	Method strongly and reliably exhibits the category’s properties; all or most applicable criteria are met
B	B	Method has many positive properties falling into this category; the majority of applicable criteria are met
C	C	Method has few positive properties falling into this category, or has many positive properties but significant drawbacks; less than half of applicable criteria are met
D	D	Method does not match the category’s requirements at all, or significant drawbacks outweigh a few positive properties; no or very few applicable criteria are met

and consequently be rated A, a specific component may override the rating to B, e.g., due to much slower asymptotic runtime, or simplifying assumptions resulting in weaker theoretical guarantees. To address this issue, we propose a “building block” approach, by storing separate ratings for methods and their components in the database and combining them for a user-specified method. Where ratings for certain categories are not affected by configuring the component, we allow neutral ratings. Generally, ratings should be combined pessimistically, i.e. good ratings get overridden by worse ratings, this is depicted in Figure 3. This complexity is hidden from users, as they only receive a single label.

3.3 Categories and criteria

In an attempt to untangle all aspects that ML users should consider when choosing a method and implementation, we propose a set of categories that summarize desirable properties.

For each category, we compile a list of yes-no type criteria: A high number of fulfilled criteria supports a method’s aptitude w.r.t. the category, resulting in a higher rating. In this section we give only a few examples of criteria for each category, hoping that through practical insights and input from fellow researchers the list will grow.

While the categories we propose are designed to be more or less universal across model families, the constituting criteria may not apply to certain types of models or algorithms, e.g., because they belong to completely different paradigms. A solution to this problem would be to differentiate between model families, such as generative and discriminative models, providing alternative criteria for each separately.

We want to point out that we purposefully do not include categories or criteria concerning quality metrics like accuracy or convergence speed. These
are highly dependent on specific input data and give no reliable impression of how well a method performs in an arbitrary, unknown use case. Giving simple ratings for these criteria would strongly contradict the “no free lunch” theorem – the fact that no single method performs universally well on all problems \cite{Wolpert1997}. We do however propose to investigate selected performance properties of method implementations, as described in subsection 3.3.

Expressivity

- Example criterion: *The method provides at least one human-interpretable measure of uncertainty along with its output*

We call a model *expressive* if it produces a variety of useful outputs for different input formats. This simple definition implies multiple properties: On the one hand, an expressive model should be able to handle arbitrarily complex functions, e.g., a classifier splitting every labeled data set, or a generative model approximating any probability distribution. On the other hand, highly expressive models provide additional outputs (e.g. measures of uncertainty or justification) to make them more interpretable. For users with certain safety-critical application contexts, such information may even be a strict requirement.

Usability

- Example criterion: *The model is free of hyperparameters*

This category is concerned with the method’s ease of use for end users. A main aspect is the number and complexity of hyperparameters: A hyperparameter-free method can be directly applied to a problem, while a method with many parameters needs fine-tuning to produce good results, which requires considerable effort and experience. Even more experience is required for choosing parameter values that are difficult to interpret: Choosing k for a k-Means Clustering is conceptually much easier than choosing the weight decay in stochastic gradient descent. The difficulty of choosing optimal hyperparameters can be alleviated by theoretical knowledge of optimal parameter settings. We consider a method to be more easily usable if there are algorithms or formulas for deriving good or even optimal parameter values for given inputs.

Reliability

- Example criterion: *The method produces theoretically exact results*

We require reliable models to be firmly grounded in theory, i.e. when there is evidence of mathematical error bounds, and if there are insights about the model’s fairness or bias. As an example, uncertainty given by neuron activations in ANNs alone was found to not necessarily be a reliable measure \cite{Guo2017}. Such models are highly untrustworthy when they are used in safety-critical fields such as autonomous driving. Contrary, MRFs were proven to
recover the correct marginal probabilities with increasing number of data points, given the underlying independence structure (Piatkowski 2019). It is important to comprehensible visualize these fundamental differences.

Importantly, if there are theoretical bounds for the method at hand, they should also be verifiable by software tests, which we call bound checks. The particular tests need to be defined separately for all methods eligible for certification – we discuss details in subsection 3.4.

Theoretical time and memory consumption

Example criterion: The method’s runtime scales (at worst) quadratically with the input dimensionality, i.e. in $O(n^2)$

Runtime and memory usage are factors of utmost importance for stakeholders, especially when facing resource constraints. ML theory provides insights on (worst-case) time and memory consumption of algorithms in the form of big O notation. Based on this theoretical tool, we propose a ranking of asymptotic time and memory complexity classes, with the rank being displayed in the care label’s theory segment. In cases where big O notation depends on different factors (e.g., number of features or data points), we propose to classify the method according to the factor with the highest complexity class.

Energy is another important factor to consider when deploying ML, but it results directly from runtime, memory consumption and hardware. As such, theory does not provide any additional information here.

3.4 Certifying the implementation

So far we only considered static theoretical properties of ML methods, and how corresponding information can be summarized via simple care label ratings. However, looking at theory alone is not enough, as practically rolled out ML can diverge from it. Consider runtime as a practical example: In theory, an algorithm may be very efficient, but its implementation may still be very slow, due to slow periphery or inefficient code. Many popular ML implementations even suffer from severe bugs (Thung et al. 2012; Islam et al. 2019), let alone aligning with respective theoretical properties. We therefore propose to also certify the implementation’s compliance with its underlying theory via test procedures that we call bound checks, which either investigate the dynamic aspects of reliability or performance.

The former intend to verify method-specific theoretical guarantees for reliability (cf. subsection 3.3), as provided by the expert knowledge database. We propose to check those guarantees programmatically via software tests. This requires synthetic data with known properties, which is fed into the implementation. Its output is then checked against the known expected results.

Our performance checks investigate runtime and memory usage in the given execution environment. We here draw from the previously introduced asymptotic complexity classes, that the implementation is expected to comply
with. We check this compliance by running experiments on synthetic data with varying input sizes. Measuring the corresponding runtime and memory usage in a software profiling fashion (cf. subsubsection 4.2.2) allows for checking whether the theoretical complexity holds. Checkmark symbols on the right hand segment of our care label denote whether the implementation satisfies the reliability and performance checks.

Information about the available hardware allows to also assess the energy consumption, and thus, carbon footprint. As motivated earlier, this is of high interest for aspects of environmental ethics \cite{Henderson2020}. By drawing inspiration from electronic household devices and informing about energy consumption, our care label rewards energy-efficient implementations and ultra-low-power devices such as FPGAs and ASICs, even if they are limited in expressivity or have a higher runtime. For providing specific information, we assess the practical runtime (in seconds) and memory demand (in megabytes), along with energy consumption (in Watt-seconds) for a medium-sized data set. Those measurements are displayed in the implementation segment. For comprehensibility we also display them as colored badges, based on their position on a scale for different orders of magnitudes.

3.5 Badges for noteworthy criteria

We argue that there are certain properties, which are particularly noteworthy, because they are rare among comparable methods and have great impact on the method’s overall rating. Examples of such noteworthy properties include uncertainty measures, whether the method can be tested for robustness, and whether the model can be used with streaming data. In order to highlight these properties, we introduce badges in form of pictograms that get printed on the care labels. Some examples of badges, along with short explanations, are given in Figure 4.
3.6 Certification suite concept

We propose to develop a certification suite software that enables a less informed user to enquire comprehensible information on ML methods and their implementations, in the form of care labels. Most importantly, it allows to configure a specific method from its available constituting components. For the chosen configuration, the software queries the ranking information, asymptotic performance bounds, and reliability bounds from the knowledge database, and combines them into the theoretical label segment. After configuring the method’s backend implementation according to the user input, the suite then profiles and runs bound checks. We also propose to implement an interactive, high-level interface, that hides all complicated ML logic from users who are not very experienced in the field of ML. In terms of our work we have already implemented a simple prototype, see subsubsection 4.2.2 for more information.

4 Applying the care label concept to graphical models

We now implement our concept for selected members of the probabilistic graphical model (PGM) family. Having a long history in statistics and computer science, theoretical properties of graphical models have been studied rigorously in literature (Koller and Friedman 2009). Thus, they are well-suited to demonstrate our care label concept as a means to aid the user in their decision making process. Firstly, we briefly discuss the theoretical background of Markov random fields (MRFs), a specific subtype of probabilistic graphical models (PGMs). Secondly, we present the care label generation procedure for two different MRF variants (subsection 4.2). We discuss the static, theoretical properties and corresponding rating, as stored in the expert knowledge database, determining the theory segment of our label (subsubsection 4.2.1). In addition, we present results of our testing procedures, which certify a given MRF implementation against the underlying theory, both in terms of reliability and resource demand, while also assessing the energy consumption of the execution environment at hand (subsubsection 4.2.2).

4.1 Background on Markov random fields

MRFs belong to the family of PGMs and are used in many different applications like satellite image gap filling (Fischer et al. 2020), medical diagnosis (Schmidt 2017), and security-critical systems (Lin et al. 2018). Moreover, MRFs can be used for constrained learning scenarios, like distributed environments (Heppe et al. 2020) or platforms under strict resource requirements (Piatkowski et al. 2016). We now shortly discuss the underlying theory of MRFs, as it provides guarantees and static properties that determine their care label ratings.

MRFs combine aspects from graph and probability theory in order to model complex probability distributions \(P(X) \) over some \(d \)-dimensional random vector
\(\mathbf{X} = (\mathbf{X}_1, \ldots, \mathbf{X}_d)^\top \) efficiently. Conditional independences between elements of \(\mathbf{X} \) are exploited and modeled through a graph \(G = (V, E) \), where each vertex \(v \in G \) is associated with one random variable of \(\mathbf{X} \). If two vertices \(i \) and \(j \) are not connected by an edge, \(\mathbf{X}_i \) and \(\mathbf{X}_j \) are conditionally independent given the remaining variables. In this work we focus on discrete MRFs, allowing for an intuitive parametrization, therefore each element \(\mathbf{X}_i \) can take values in its discrete finite state space \(\mathcal{X}_i \). By introducing the so-called potential functions \(\psi_C : \mathcal{X}_C \to \mathbb{R}_+ \) for each of the cliques in \(G \), mapping variable assignments to positive values, the joint density factorizes according to Hammersley and Clifford (1971) as follows:

\[
P(\mathbf{X} = \mathbf{x}) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \psi_C(\mathbf{x}_C),
\]

\((1) \)

where \(Z \), which is called partition function, acts as normalization,

\[
Z = \sum_{\mathbf{x} \in \mathcal{X}} \prod_{C \in \mathcal{C}(G)} \psi_C(\mathbf{x}_C).
\]

\((2) \)

The potential functions \(\psi \) are parametrized by weights, which allows to define a loss function. By minimizing it during the training process the model adapts to a given data set. Typically, the weights are learned via maximum-likelihood-estimation with first order optimization methods.

Having access to the joint density clears the path for many further ML tasks, such as generating data via Gibbs sampling, answering marginal \(\mathbb{P}(X_i = x_i | X_j = x_j) \) probability queries, or providing maximum a-posteriori (MAP) estimates. However, solving such tasks requires probabilistic inference. Algorithms for such computations can be divided into two variants, namely exact and approximate algorithms (see upper part of Figure 5). On the one hand, the junction tree (JT) algorithm (Wainwright and Jordan, 2008) is a well-known method to perform exact inference on arbitrary graph structures, while having a very slow asymptotic runtime. On the other hand, the loopy belief propagation (LBP) algorithm (Kim and Pearl, 1983) performs approximate inference, sacrificing theoretical guarantees for considerably faster performance. Further approximation algorithms include the variational (Wainwright et al., 2003) and sampling-based approaches (Andrieu et al., 2003). Keep in mind that exact probabilistic inference is a \#P-complete task (Piatkowski, 2018).

4.2 Deriving care labels for Markov random fields

We generate care labels for different MRFs, based on combinations of chosen components. In the context of MRFs, there are three major configurable components: an optimizer, a loss function, and an inference algorithm. We restrict ourselves to investigating gradient descent optimization with a likelihood loss function, using either the LBP or the JT algorithm for performing inference. These combinations are depicted in Figure 5 along with their corresponding final care labels.

Fig. 5 Overview of configurable components for MRFs. Each instanced model requires choosing the loss, an optimizer and an inference algorithm. For our experiments we chose likelihood as loss function, gradient descent for optimization, and evaluated two different inference algorithms. The respectively instantiated care labels are shown below, with resulting theoretical and practical ratings.

4.2.1 Expert knowledge-based ratings

MRFs already exhibit certain static properties and receive corresponding ratings for our categories. The ratings in the theoretical segment of the care label are stored in the expert knowledge database (cf. subsection 3.2) and were agreed upon by 10 experts using a majority vote. In case of a tie, we decided in favor of the method. As combining the individual components can greatly influence the rating, we also have to identify their individual ratings. Combining the component ratings should be based on a fixed set of rules. Here, we stick to the already proposed way of taking the infimum overall ratings.
Component	Choice	Expressivity	Usability	Reliability	Runtime	Memory
ML Method	Markov Random Field	A	A	A		
Loss	Likelihood					
Optimizer	Gradient Descent					
Inference	Loopy Belief Propagation					
	Junction Tree					
Care Labels	MRF + LBP	A	A	B		
	MRF + JT	A	A	A		

Table 3: Ratings for individual components based on theoretical properties and expert knowledge rated from A to D alongside the final combined ratings for two concrete configurations. Categories for which the criteria do not apply are shown in gray and are treated neutral towards the final rating. The final ratings are typically derived from the worst-case of all rated components, but may depend on additional expert knowledge instead (cf. Figure 3). We display the respective ratings for the MRF components and variants in Table 3 and now explain their expert-knowledge-based justification and corresponding implications for the user, following the columns from left to right.

Expressivity Looking at Table 3 it stands out that the general ML method choice is the only component affecting the expressivity rating. We reason that the expressive power of MRFs is determined only by its inherent properties, while the customizable components are neutral. MRFs are very expressive, because they can perform all generative model tasks: they can be queried for conditional or joint probabilities and they allow to sample data from the distribution. In addition, their probability output is a natural uncertainty measure. Therefore, we argue that MRFs should be rated A.

Usability In terms of usability, MRFs receive the grade B, since the independence graph is usually unknown for real-world use cases, and thus has to be defined manually. For this, the user must either incorporate expert knowledge or use procedures for structure estimation (Yang et al., 2014). The loss function does not impact the usability and is rated neutral. Gradient descent only requires choosing a step size, which is well-documented with reasonable defaults, therefore we rate it A. The LBP inference requires careful tuning of the stopping criterion by specifying the convergence threshold or number of iterations. However, more iterations do not necessarily improve performance, which makes the choice quite unintuitive, resulting in a C rating for usability. JT inference does not require additional hyperparameter tuning, which yields
an A rating. The usability rating shows the user that LBP makes MRFs a bit harder to use.

Reliability When provided with an exact inference algorithm and a convex optimization problem, MRFs are guaranteed to recover the correct distribution, with the error being bounded by the number of training instances (Bradley and Guestrin [2012]). This bound, which we call distribution recovery check, can be verified through software, resulting in an A rating. Since the likelihood as a loss function exhibits strong statistical guarantees, like consistency, unbiasedness and efficiency, we also award it with A. Given a density, which is convex w.r.t. parameters, a gradient descent optimizer is able to recover the global optimum, resulting in an A rating. This is also verifiable for the dynamic properties of a specific implementation via software, the so-called convergence check. However, all this reliability is only given if the chosen inference algorithm provides exact results for the gradient update. We reflect this restriction by assigning D and A ratings to LBP and JT respectively, as the former does not even provide a bound on the approximation error\footnote{Under certain, special conditions LBP may have guarantees, but this is generally not the case [Ihler et al. 2005].}.

Runtime and Memory The theoretical runtime and memory complexity classes depend mostly on the chosen inference algorithm component, while the MRFs type’s general runtime is unspecified. Their memory demand for parametrization depends on the data complexity in two ways: It grows linearly with the number of features and quadratically with the number of discrete states, resulting in a B rating. Due to only requiring a plain mathematical function evaluation, the likelihood loss acts neutrally on both categories. The gradient descent optimizer itself is resource efficient, assuming we are given the gradients of our loss function. Both memory and runtime complexity scale linearly with the model dimension, resulting in an A rating for both categories.

The resource requirements of our inference algorithms are shown in Table 4 [Piatkowski 2018]. We rated the runtime of JT inference with D due to scaling exponentially with the junction tree’s width\footnote{The junction tree [Huang and Darwiche 1996] is an auxiliary graph which needs to be derived in order to run the complete inference algorithm.} w. Memory receives the same rating, because the underlying data structures also grow exponentially.

	Junction Tree	LBP				
Time Complexity	$O(\mathcal{X}^2_{\text{max}})$	$O((E	\mathcal{X}^2_{\text{max}}\mathcal{N}_{\text{max}})$		
Memory Complexity	$\sum_{C \in C(JT)} \Pi_{i \in C} \mathcal{X}_i$	$2 \cdot \sum_{(s,t) \in E}	\mathcal{X}_s	+	\mathcal{X}_t	$
Exact	Yes [Lauritzen and Spiegelhalter 1988]	Heuristic [Murphy et al. 1999]				

Table 4: Guarantees and resource consumption of different inference algorithms
20 Katharina Morik et al.

with tree width. Thus, users might find JT inference feasible for sparse independence structures, while for dense graphs its runtime and memory demand may exceed available resources. LBP on the other hand works efficiently on general graphs and even provides exact solutions for trees and polytrees. It is rated B due to scaling quadratically in number of states of the largest state space X_{max}, and linearly in the number of edges $|E|$ in the graph, the number of iterations I and the size of the largest neighborhood N_{max} in G. The memory consumption for LBP is rated A as we only have to store intermediate results, whose memory demands scale linearly in the number of states per clique. Choosing between JT and LBP inference, the user can trade exactness and strong guarantees for better runtime and memory. This is illustrated in Figure 7, showing runtime and memory consumption for MRFs with increasing number of vertices.

4.2.2 Testing the implementation

To test the dynamic properties of specific MRF implementations and derive the care label’s implementation segments, we implemented a certification suite, as described in subsection 3.6. It draws the theory-based static bounds and ratings from the expert knowledge database, performs reliability bound checks, investigates the implementation’s behavior in terms of runtime, memory and energy consumption, and outputs the complete care label.

Experimental setup In order to run our bound checks (cf. subsection 3.4) we generated synthetic data sets by defining specific distributions and sampling from them. Having access to both the sampled data and their underlying distribution parameters allows for assessing whether reliability checks pass. As graph structure we chose a grid graph, with binary state space and increasing grid size from 2×2 up to 15×15. This resulted in data sets of different sizes, which have been utilized to perform the resource bound checks.

For running the MRFs logic, we utilized the `pxpy` library, which implements JT and LBP.

Our certification suite measures runtime, memory demand and CPU energy consumption via established tools, similar to Henderson et al. (2020). All experiments were performed on a workstation equipped with an Intel(R) Xeon(R) W-2155 CPU, 64 GB RAM and Ubuntu 20.04.1 LTS as operating system.

Reliability bound checks To verify the reliability of the implementation against the static characteristics described in subsection 4.2.1 which are especially important for safety-critical applications, we perform two exemplary bound checks: The distribution recovery check (Hoeffding, 1963) and the likelihood convergence check. The first check is performed by comparing the true marginal

4 https://pypi.org/project/pxpy/
5 https://github.com/giampaolo/psutil
6 https://github.com/wkatsak/py-rapl
Fig. 6 Deviations of LBP marginals compared to the true marginals computed
with the exact JT algorithm over five runs. We used a random Erdos-Renyi-
Graph with 20 nodes and an edge probability of 0.25. Each dot represents a
single marginal probability, with all marginals ideally being located on the
diagonal (LBP marginal equal to JT marginal).

To this end, we run an optimization procedure with the true structure and our
samples, checking convergence based on the gradient norm. If the norm falls
below a given threshold, the check passes. The investigated JT implementation
was able to pass both checks. Recall that LBP inference is not exact as depicted
in Figure 6 and received a D for reliability. Even though the LBP algorithm
does not exhibit theoretical guarantees, it was able to pass the reliability tests
for some data sets. Still, it failed for most, therefore the implementation did
not receive the reliability checkmark.

Runtime and memory bound checks Next, we evaluate whether the performance
in the given execution environment complies with the identified complexity
classes. We depict the measured resource consumption for both JT and LBP
configurations in Figure 7. As expected, it shows that both memory usage and
runtime increase with the number of vertices for JT. For our automatic checks,
we fit different linear regression models with the resource measurements (i.e.
one model for linear, quadratic, cubic, etc. complexity). We also cross-validated
this assessment by subdividing the measurements into several independent
sets, and fitting the regression for each group. In our experiments, those
results corresponded to the identified theoretical complexity of the tested MRF
configurations, thus all methods receive memory and runtime checkmarks.
Resource consumption testing For specific resource measurements, we chose a medium-sized data set stemming from a grid-structured graph with 14×14 vertices and binary state space. The results are displayed in Table 5. They confirm that the JT configuration requires much more runtime and energy than LBP. The hardware platform was internally measured to consume an average of $20 \to 43$ Watt per experiment. To obtain the complete energy consumption, we multiplied the power with runtime. The badge colors in the implementation part of the care labels are directly derived from those measurements.

Measurements	JT	LBP
Runtime	9.86 s	599.84 µs
Memory	157.28 MB	76.99 MB
Energy	416.88 W s	20.63 mW s

Table 5: Comparison of the two methods on a data set with a grid independence structure sized 14×14. The experiments were repeated ten times with a standard deviation of $\sigma < 0.5$.

Our experimental findings show the usefulness of our care label concept, compacting the extensive theory of PGMs, while still providing useful information that is otherwise not accessible for users.

5 Conclusion

With state-of-the-art systems, ML user requirements can differ vastly. Certain users might know the theory and have an intuitive understanding of proper-
ties and guarantees. Often, however, users struggle trying to understand the intricacies of different methods.

There are approaches that discuss how trust in ML can be increased, but they often fail to connect theory and practice, or are too abstract and inaccessible. We address these issues via our care labels to inform a broad range of users and ML customers. Our labels identify important theoretical properties that are highly relevant for safety-critical or resource-constrained use cases. We test implementations against theory by performing bound checks for reliability and measuring resource consumption. All this information is neatly displayed in our care label design, which is easy-to-understand for both experts and customers without a scientific background.

We demonstrated that our concept is practical for a broad class of probabilistic ML models. The resulting labels allow users to assess implications of using MRF variants with different components. The extensive amount of theory behind PGMs remains invisible to the user.

To extend our concept, it needs to be implemented for a wider range of methods. MRFs are a good starting point due to extensive theoretical foundations and high customizability. By applying our concept to more methods, we will identify aspects that can be improved.

For our experimental evaluation, we implemented a verification suite, expert knowledge database, and care label design (cf. Figure 1). They allow generating care labels for MRFs. Subsequent to this work, we intend to refine and finally publish it for ML practitioners. We invite fellow researchers to test our concept and reproduce results, so we can extend it for more use cases.

We are aware that our proposed concept leaves some room for interpretation – indeed this is intended. In order to make care labels a useful certificate, we argue that refining the details is a task for the community instead of a closed team of researchers. More criteria and badges will be introduced, and rules for combining the components’ ratings will be extended.

We contributed a first draft that requires feedback by more field experts to really make care labels an acknowledged certificate. The developers of new methods know their respective properties best and have a sound understanding of how implementations can be tested. We explicitly call the research community to action: Join us in the endeavour of making methods and applications more responsible and trustworthy, by building a bridge between researchers and users of ML.

Acknowledgements. This research has been funded by the Federal Ministry of Education and Research of Germany as part of the competence center for machine learning ML2R (01IS18038A/B). Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) - project number 124020371 - within the Collaborative Research Center SFB 876 "Providing Information by Resource-Constrained Analysis", DFG project number 124020371, SFB project C3.
References

Andrieu C, de Freitas N, Doucet A, Jordan MI (2003) An introduction to mcmc for machine learning. Machine Learning 50(1):5–43, URL https://doi.org/10.1023/A:1020281327116

Arnold M, Bellamy RKE, Hind M, Houde S, Mehta S, Mojsilovic A, Nair R, Ramamurthy KN, Reimer D, Olteanu A, Piorkowski D, Tsay J, Varshney KR (2019) Factsheets: Increasing trust in ai services through supplier’s declarations of conformity. IBM J Res Dev URL https://doi.org/10.1147/JRD.2019.2942288

Atzori M, Bonchi F, Giannotti F, Pedreschi D (2008) Anonymity preserving pattern discovery. The International Journal on Very Large Data Bases 17(4):703–727

Bellotti V, Edwards K (2001) Intelligibility and accountability: Human considerations in context-aware systems. Human-Computer Interaction 16(2-4):193–212

Bradley JK, Guestrin C (2012) Sample complexity of composite likelihood. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012, pp 136–160, URL http://proceedings.mlr.press/v22/bradley12.html

Braunschweig B, Ghallab M (2021) Reflections on Artificial Intelligence for Humanity. Lecture Notes in Artificial Intelligence, Springer International Publishing, URL https://www.springer.com/de/book/9783030691271

Brazdil P, Soares C, da Costa JP (2003) Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 50(3):251–277

Brundage M, Avin S, Wang J, Belfield H, Krueger G, Hadfield G, Khlaaf H, Yang J, Toner H, Fong R, Maharaj T, Koh PW, Hooker S, Leung J, Trask A, Bluemke E, Lebensold J, O’Keefe C, Koren M, Ryffel T, Rubinovitz J, Besiroglu T, Carugati F, Clark J, Eckersley P, de Haas S, Johnson M, Laurie B, Ingerman A, Krawczuk I, Askell A, Cammarota R, Lohn A, Krueger D, Stix C, Henderson P, Graham L, Frunkl C, Martin B, Seger E, Zilberman N, hEigeartaigh S Ó, Kroeger F, Sastry G, Kagan R, Weller A, Tse B, Barnes E, Dafoe A, Scharre P, Herbert-Voss A, Rasser M, Sadhani S, Flynn C, Gilbert TK, Dyer L, Khan S, Bengio Y, Anderljung M (2020) Toward trustworthy ai development: Mechanisms for supporting verifiable claims

Chen JJ, von der Brueggen G, Shi J, Ueter N (2018) Dependency graph approach for multiprocessor real-time synchronization. In: Real-Time Systems Symposium (RTSS), accepted for publication at RTSS 2018 (12th ? 14th Dec 2018)

Cremers A, Englander A, Gabriel M, Hecker D, Mock M, Poretschkin M, Rosenzweig J, Rostalski F, Sicking J, Volmer J, Voosholz J, Voss A, Wrobel S (2019) Trustworthy use of artificial intelligence – priorities from a philosophical, ethical, legal, and technological viewpoint as a basis for certification of artificial intelligence. Fraunhofer Institute for Intelligent Analysis
Dacrema MF, Cremonesi P, Jannach D (2019) Are we really making much progress? a worrying analysis of recent neural recommendation approaches. In: Procs. 13th ACM Conference on Recommender Systems - RecSys’19, ACM Press, URL http://dx.doi.org/10.1145/3298689.3347068

Dignum V (2019) Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer

of European Union C (2017) Regulation (eu) 2017/1369 of the european parliament and of the council of 4 july 2017 setting a framework for energy labelling and repealing directive 2010/30/eu. URL https://eur-lex.europa.eu/eli/reg/2017/1369/

Falkner S, Klein A, Hutter F (2018) BOHB: robust and efficient hyperparameter optimization at scale. In: Procs. of the 35th ICML, pp 1436–1445, URL http://proceedings.mlr.press/v80/falkner18a.html

Fischer R, Piatkowski N, Pelletier C, Webb G, Petitjean F, Morik K (2020) No cloud on the horizon: Probabilistic gap filling in satellite image series. In: Webb G, Cao L, Zhang Z, Tseng VS, Williams G, Vlachos M (eds) Proceedings of the IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), The Institute of Electrical and Electronics Engineers, Inc. (IEEE), Environmental and Geo-spatial Data Analytics, pp 546–555, URL https://ieeexplore.ieee.org/document/9260084

Floridi L, Cowls J, Beltrametti M, Chatila R, Chazerand P, Dignum V, Luetge C, Madelin R, Pagallo U, Rossi F (2018) AI4people?an ethical framework for a good ai society: Opportunities, risks, principles, and recommendations. Minds and Machines 28(4):689–707, URL https://link.springer.com/article/10.1007/s11023-018-9482-5

Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Surv 51(5), URL https://doi.org/10.1145/3236009

Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine Learning, PMLR, International Convention Centre, Sydney, Australia, Proceedings of Machine Learning Research, vol 70, pp 1321–1330, URL http://proceedings.mlr.press/v70/guo17a.html

Hammersley JM, Clifford P (1971) Markov fields on finite graphs and lattices

Hazelwood K, Bird S, Brooks D, Chintala S, Diril U, Dzhulgakov D, Fawzy M, Jia B, Jia Y, Kalro A, Law J, Lee K, Lu J, Noordhuis P, Smelyanskiy M, Xiong L, Wang X (2018) Applied machine learning at facebook: A datacenter infrastructure perspective. In: 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp 620–629

Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J (2020) Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research 21(248):1–43, URL http://jmlr.org/papers/v21/20-312.html
Heppe L, Kamp M, Adilova L, Piatkowski N, Heinrich D, Morik K (2020) Resource-constrained on-device learning by dynamic averaging. In: Koprinska I, Kamp M, Appice A, Loglisci C, Antonie L, Zimmermann A, Guidotti R, Özgökçê Ö, Ribeiro RP, Gavaldà R, Gama J, Adilova L, Krishnamurthy Y, Ferreira PM, Malerba D, Medeiros I, Ceci M, Manco G, Masciarei E, Ras ZW, Christen P, Ntoutsi E, Schubert E, Zimek A, Monreale A, Biecek P, Rinzivillo S, Kille B, Lommatzsch A, Guilla JA (eds) ECML PKDD 2020 Workshops, Springer International Publishing, Cham, pp 129–144

Hind M, Houde S, Martino J, Mojsilovic A, Piorkowski D, Richards J, Varshney KR (2020) Experiences with improving the transparency of ai models and services. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA, CHI EA ’20, p 1?8, URL https://doi.org/10.1145/3334480.3383051

Hoeffding W (1963) Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301):13–30

Houben S, Abrecht S, Akila M, Bär A, Brockherde F, Feifel P, Fingscheidt T, Gannamaneni SS, Ghobadi SE, Hammann A, Haselhoff A, Hauser F, Heinzemmann C, Hoffmann M, Kapoor N, Kappel F, Klingner M, Kronenberger J, Küppers F, Löhdefink J, Mlynarski M, Mock M, Mualla F, Pavliitskaya S, Poretschkin M, Pohl A, Ravi-Kumar V, Rosenzweig J, Rottmann M, Rüping S, Sämann T, Schneider JD, Schulz E, Schwalbe G, Sicking J, Srivastava T, Varghese S, Weber M, Wirkert S, Wirtz T, Woehrle M (2021) Inspect, understand, overcome: A survey of practical methods for ai safety. Technical Report, URL https://www.ki-absicherung-projekt.de/fileadmin/KI_Absicherung/Downloads/KI-A_20201221_Houben_et_al_-_Inspect__Understand__Overcome.pdf

Huang C, Darwiche A (1996) Inference in belief networks: A procedural guide. Int J Approx Reason 15(3):225–263, DOI 10.1016/S0888-613X(96)00069-2, URL https://doi.org/10.1016/S0888-613X(96)00069-2

Huang X, Groening D, Ruan W, Sharp J, Su Y, Thamo M Emese ad Wu, Yi Y (2020) A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. arXiv:1812.08342v5. URL https://arxiv.org/pdf/1812.08342.pdf

Ihler AT, Fischer III JW, Willksy AS (2005) Loopy belief propagation: Convergence and effects of message errors. J Mach Learn Res 6:905–936

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 510–520

Julia C, Etüê F, Hercberg S, et al. (2018) Front-of-pack nutri-score labelling in france: an evidence-based policy. Lancet Public Health 3(4):e164

Kim JH, Pearl J (1983) A computational model for causal and diagnostic reasoning in inference systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’83, p 190?193
Koller D, Friedman N (2009) Probabilistic Graphical Models - Principles and Techniques. MIT Press
Kwiatkowska M, Norman G, Parker D (2011) Prism 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan G, Qadeer S (eds) Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 585–591
Langer M, Oster D, Küstner L, Speith T, Baum K, Hermanns H, Schmidt E, Seising A (2021) What do we want from explainable artificial intelligence (xai)? a stakeholder perspective on xai and a conceptual model guiding interdisciplinary xai research. Artificial Intelligence URL http://dx.doi.org/10.1016/j.artint.2021.103473
Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 50(2):157–224
Lepri B, Oliver N, Letouze E, Pentland A, Vinck P (2018) Fair, transparent, and accountable algorithmic decision-making processes. Philosophy and Technology 31(4):611–627
Lin Q, Adepu S, Verwer S, Mathur A (2018) Tabor: A graphical model-based approach for anomaly detection in industrial control systems. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp 525–536
Mierswa I, Wurst M (2005) Efficient feature construction by meta learning – guiding the search in meta hypothesis space. In: Proc. of the International Conference on Machine Learning, Workshop on Meta Learning
Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE: Rapid Prototyping for Complex Data Mining Tasks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), ACM, ACM Press, New York, USA, pp 935–940, URL http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, Spitzer E, Raji ID, Gebru T (2019) Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019, Association for Computing Machinery, New York, NY, USA, pp 220–229, URL https://doi.org/10.1145/3287560.3287596
Morik K (1989) Sloppy Modeling, Springer Verlag, Berlin, New York, pp 107–134
Morik K, Kietz JU (1991) Constructive induction of background knowledge. Procs of the IJCAI-Workshop on Evaluating and Changing Representations in Machine Learning
Morik K, Chatila R, Dignum V, Fisher M, Giannotti F, Russell S, Yeung K (2021) Trustworthy AI, Springer International Publishing, chap 2, pp 18–45, URL https://www.springer.com/de/book/9783030691271
Muggleton S (1991) Inductive logic programming. New Generation Computing 8(4):295–318
Murphy KP, Weiss Y, Jordan MI (1999) Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 467–475

Nunes I, Jannach D (2017) A systematic review and taxonomy of explanations in decision support and recommender systems. User Modeling and User-Adapted Interaction 27(3-5):393–444

Omondi A, Rajapakse J (2006) FPGA implementations of neural networks. Springer

Piatkowski N (2018) Exponential families on resource-constrained systems. PhD thesis, TU Dortmund University, Dortmund, URL https://eldorado.tu-dortmund.de/handle/2003/36877

Piatkowski N (2019) Distributed generative modelling with sub-linear communication overhead. In: Kamp M, Paurat D, Krishnamurthy Y (eds) Decentralized Machine Learning at the Edge, Springer, URL https://dmle.iais.fraunhofer.de/papers/piatkowski2019distributed.pdf

Piatkowski N, Lee S, Morik K (2016) Integer undirected graphical models for resource-constrained systems. Neurocomputing 173(1):9–23. URL http://www.sciencedirect.com/science/article/pii/S0925231215010449

Ratner A, Alistarh D, Alonso G, Andersen DG, Bailis P, Bird S, Carlini N, Catanzaro B, Chayes J, Chung E, Dally B, Dean J, Dhillon IS, Dimakis A, Dubey P, Elkan C, Fursin G, Ganger GR, Getoor L, Gibbons PB, Gibson GA, Gonzalez JE, Gottschlich J, Han S, Hazelwood K, Huang F, Jaggi M, Jamieson K, Jordan MI, Joshi G, Khalaf R, Knight J, Kone?ny J, Kraska T, Kumar A, Kyrillidis A, Lakshmiratan A, Li J, Madden S, McMahan HB, Mei?er E, Mitliagkas I, Monga R, Murray D, Oluokitun K, Papailiopoulos D, Pekhimenko G, Rekatsinas T, Rostamizadeh A, Ré C, Sa CD, Sedghi H, Sen S, Smith V, Snola A, Song D, Sparks E, Stoica I, Sze V, Udell M, Vanschoren J, Venkataraman S, Vinayak R, Weimer M, Wilson AG, Xing E, Zaharia M, Zhang C, Talwalkar A (2019) Mlsys: The new frontier of machine learning systems

Ribeiro MT, Singh S, Guestrin C (2016) "why should i trust you?": Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’16, pp 1135–1144, URL http://doi.acm.org/10.1145/2939672.2939778

Rijn JNV, Bischl B, Torgo L, Gao B, Umaashankar V, Fischer S, Winter P, Wiswedel B, Berthold MR, Vanschoren J (2013) OpenML: A collaborative science platform. In: Blockeel H, Kersting K, Nijssen S, Železný F (eds) Machine Learning and Knowledge Discovery in Databases, no. 8190 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp 645–649

Rüping S (2006) Learning interpretable models. PhD thesis, University Dortmund, URL https://eldorado.uni-dortmund.de/handle/2003/23008

Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR (eds) (2019) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science, Springer International Publishing
Schelter S, Böse JH, Kirschnick J, Klein T, Seufert S (2017) Automatically tracking metadata and provenance of machine learning experiments. In: Machine Learning Systems Workshop at NIPS 2017

Schmidt M (2017) Datenzusammenfassungen auf datenströmen. Master’s thesis, TU Dortmund University

Schwartz R, Dodge J, Smith NA, Etzioni O (2019) Green ai. arXiv preprint arXiv:190710597

Sokol K, Flach P (2018) Conversational explanations of machine learning predictions through class-contrastive counterfactual statements. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp 5785–5786

Strubell E, Ganesh A, McCallum A (2020) Energy and policy considerations for modern deep learning research. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020, AAAI Press, pp 13693–13696, URL https://www.aaai.org/ojs/index.php/AAAI/article/view/7123

Teubner J, Woods L, Nie C (2013) XLynx—an FPGA-based XML filter for hybrid XQuery processing. ACM Transactions on Database Systems (TODS) 38(4):23, URL http://dx.doi.org/10.1145/2536800

Thung F, Wang S, Lo D, Jiang L (2012) An empirical study of bugs in machine learning systems. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering, IEEE, pp 271–280

Vartak M, Subramanyam H, Lee WE, Viswanathan S, Husnoo S, Madden S, Zaharia M (2016) Modeldb: A system for machine learning model management. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, Association for Computing Machinery, New York, NY, USA, HILDA ’16, URL https://doi.org/10.1145/2939502.2939516

Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1(1–2):1–305, URL http://dx.doi.org/10.1561/2200000001

Wainwright MJ, Jaakkola TS, Willsky AS (2003) Tree-reweighted belief propagation algorithms and approximate ml estimation by pseudo-moment matching. In: International Conference on Artificial Intelligence and Statistics

Wintle B, Fraser H, Wills B, Nicholson A, Fidler F (2019) Verbal probabilities: very likely to be somewhat more confusing than numbers. PLoS ONE 14(4)

Wolpert D, Macready W (1997) No free lunch theorems for optimisation. IEEE Trans on Evolutionary Computation 1:67 – 82

Yang E, Lozano AC, Ravikumar P (2014) Elementary estimators for graphical models. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp 2159–2167, URL http://papers.nips.cc/paper/5318-elementary-estimators-for-graphical-models