Checklist of rodents and insectivores of the Mordovia, Russia

Alexey V. Andreychev¹, Vyacheslav A. Kuznetsov¹

¹ Department of Zoology, National Research Mordovia State University, Bolshevisitskaya Street, 68. 430005, Saransk, Russia

Corresponding author: Alexey V. Andreychev (teriomordovia@bk.ru)

Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020

http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332

Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359

Abstract

A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivorous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods.

Keywords

Insectivores, Mordovia, rodents, spatial distribution

Introduction

There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of...
rodent and insectivorous species. Lists of species have been updated for a few regions, with some species excluded and others added. The Republic of Mordovia is one of these regions, where eminent theriologists (S.I. Ognev, S.S. Turov, L.G. Morozova-Turova, I.I. Barabash-Nikiforov, L.P. Borodin, M.N. Borodina, P.L. Borodin) once worked. The inventory of the mammalian fauna of Mordovia resumed at the beginning of the 21st century as part of dissertation research and continues to this day. Over this period, not only has the species composition of the region changed but also the status of many species.

The Mordovian fauna is heterogeneous and consists of four different ecological and faunal complexes of species—taiga, coniferous and broad-leaved forests, and steppe—which are widely distributed in several natural areas (Andreychev 2020).

Here, we publish a checklist of rodent and insectivore records across the Republic of Mordovia. This checklist was based on comprehensive surveys of small mammals carried out from 2006 to 2020.

Insectivores are represented in Mordovia by 12 species belonging to three families.

Family Erinaceidae Fischer, 1814

1. Northern white-breasted hedgehog, *Erinaceus roumanicus* Barrett-Hamilton, 1900
2. West European hedgehog, *Erinaceus europaeus* Linnaeus, 1758

Family Talpidae Fischer, 1814

1. European mole, *Talpa europaea* Linnaeus, 1758
2. Russian desman, *Desmana moschata* (Linnaeus, 1758)

Family Soricidae Fischer, 1814

1. Eurasian common shrew, *Sorex araneus* Linnaeus, 1758
2. Laxmann’s shrew, *Sorex caecutiens* Laxmann, 1788
3. Least shrew, *Sorex minutissimus* Zimmermann, 1780
4. Taiga shrew, *Sorex isodon* Turov, 1924
5. Eurasian pygmy shrew, *Sorex minutus* Linnaeus, 1766
6. Eurasian water shrew, *Neomys fodiens* (Pennant, 1771)
7. Southern water shrew, *Neomys anomalus* Cabrera, 1907
8. Lesser white-toothed shrew, *Crocidura suaveolens* (Pallas, 1811)

Rodents are represented by 29 species belonging to eight families.

Family Sciuridae Fischer, 1817

1. Red squirrel, *Sciurus vulgaris* Linnaeus, 1758
2. Spotted suslik, *Spermophilus suslicus* Güldenstaedt, 1770
3. Bobak marmot, *Marmota bobak* (Müller, 1776)
Family Castoridae Hemprich, 1820

1. Eurasian beaver, *Castor fiber* Linnaeus, 1758

Family Gliridae Thomas, 1897

1. Forest dormouse, *Dryomys nitedula* (Pallas, 1779)
2. Garden dormouse, *Eliomys quercinus* (Linnaeus, 1766)
3. Fat dormouse, *Glis glis* (Linnaeus, 1766)
4. Hazel dormouse, *Muscardinus avellanarius* (Linnaeus, 1758)

Family Sminthidae Brandt, 1855

1. Northern birch mouse, *Sicista betulina* (Pallas, 1779)

Family Allactagidae Vinogradov, 1925

1. Great jerboa, *Allactaga major* (Kerr, 1792)

Family Spalacidae Gray, 1821

1. Greater mole rat, *Spalax microphthalmus* Güldenstaedt, 1770
2. Family Cricetidae Fischer, 1817
3. Bank vole, *Myodes glareolus* (Schreber, 1780)
4. Northern red-backed vole, *Myodes rutilus* (Pallas, 1779)
5. European water vole, *Arvicola amphibius* (Linnaeus, 1758)
6. Root vole, *Microtus oeconomus* (Pallas, 1776)
7. Gray dwarf hamster, *Cricetus migratorius* (Pallas, 1773)
8. Common hamster, *Cricetus cricetus* (Linnaeus, 1758)
9. Muskrat, *Ondatra zibethicus* (Linnaeus, 1766)
10. Steppe lemming, *Lagurus lagurus* Pallas, 1773
11. Common vole, *Microtus arvalis* (Pallas, 1779)
12. East European vole, *Microtus rossiaemeridionalis* Ognev, 1924
13. Field vole, *Microtus agrestis* (Linnaeus, 1761)
14. European pine vole, *Microtus subterraneus* (de Selys-Longchamps, 1836)

Family Muridae Illiger, 1811

1. Striped field mouse, *Apodemus agrarius* (Pallas, 1771)
2. Pygmy wood mouse, *Apodemus uralensis* (Pallas, 1811)
3. Yellow-necked wood mouse, *Apodemus flavicollis* (Melchior, 1834)
4. Harvest mouse, *Micromys minutus* (Pallas, 1771)
5. House mouse, *Mus musculus* Linnaeus, 1758
6. Norway rat, *Rattus norvegicus* (Berkenhout, 1769)
Genetic studies of two similar species, *Microtus arvalis* and *M. rossiaemeridionalis*, have not been conducted in the region. Approaches and criteria for differentiation of two similar species, *Erinaceus roumanicus* and *E. europaeus*, have been applied for a number of specific morphological and craniometric characteristics (Zaitsev 1984; Frost et al. 1991). First, *E. roumanicus* has a patch of white hair on its belly. And *E. europaeus* has no white hair on its belly. Differences in the skull are also apparent; in *E. roumanicus*, the premaxillary-maxillary suture has one or two inflections (in *E. europaeus* it is smooth), the length of the premaxillary-nasal suture does not exceed 9.0 mm (in *E. europaeus* >9.0 mm), and the maximum length of the nasal bones in their back part is greater than or equal to 3.0 mm (*E. europaeus* <3.0 mm) (Zaitsev 1984; Frost et al. 1991; Zaitsev et al. 2014). The color of the needles of these two species can serve as a criteria for their differences. Six species (*Eliomys quercinus*, *Cricetulus migratorius*, *Lagurus lagurus*, *Myodes rutilus*, *Microtus subterraneus*, and *Neomys anomalus*) reported from the Republic of Mordovia were not detected during our surveys. However, these species were captured by our colleagues, either long ago or even in the last year, and most of them (*E. quercinus*, *C. migratorius*, *L. lagurus*, and *M. rutilus*) were recorded in the Mordovian state nature reserve, Temnikovsky district (Borodina et al. 1970). *Microtus subterraneus* has recently been found in Mordovia (Kirillova et al. 2019). This record represents the easternmost occurrence of this species. Previously, this underground vole was recorded in neighboring regions of Mordovia, namely near the village of Zhelannoie in Ryazan region and from Zametchinsky district in Penza region. This species is rare and included in Red Data Books of several Russian regions, including the Leningrad, Tver, Penza, Moscow, Pskov reion, and Novgorod regions. The appearance of a new species for Mordovia can be explained by its expansion into new territories. This is confirmed by the new record of this species from the Smolensk region (Belyaev 2020). In addition, a species atypical of the Mordovian fauna, *Neomys anomalus*, is now known (Borodin 2013).

From an ecological perspective, mesophilous species comprise the largest group, which includes 26 species. Some xerophilous species (*M. bobak*, *Sp. suslicus*, *Al. major*, *Sp. microphthalmus*, *Cr. migratorius*, *Cr. cricetus*, *L. lagurus*, and *M. minutus*) occur only in steppe habitats. Only in the steppe areas of Mordovia are there concentrated populations of *S. microphthalmus* (Andreychev 2018, 2019) and *M. bobak* (Andreychev et al. 2015). Populations of *S. microphthalmus* in Mordavia are vulnerable, as in other parts of its range (Zagorodniuk et al. 2018). Grazing is important here for *M. bobak*, as has been shown for Ukraine (Rashevksa and Semeniuk 2015; Tokarsky 2015; Savchenko and Ronkin 2018).

Dendrophile rodents are represented by only seven species: *D. nitedula*, *G. glis*, *M. avellanarius*, *E. quercinus*, *S. vulgaris*, *A. flavicollis*, and *A. uralensis*. Of these species, the most studied in the region are *D. nitedula* (Andreychev and Boyarova 2020; Andreychev and Kiyaykina 2020), *A. flavicollis*, and *A. uralensis* (Andreychev and Kuznetsov 2012).

Thirteen species are associated with human settlements, *C. suaveolens*, *E. roumanicus*, *S. minutus*, *S. araneus*, *S. isodon*, *C. cricetus*, *M. glareolus*, *M. arvalis*, *A. agrarius*, *A. uralensis*, *A. flavicollis*, *M. musculus*, and *R. norvegicus*, and these have been repeatedly been recorded in residential areas. However, only three species, *M. musculus*, *R. norvegicus*, and *C. suaveolens*, are truly commensals.
The rodent and insectivore fauna of Mordovia is in general large, as it includes both steppe and taiga species. The largest rodent of Mordovia is *C. fiber*, which is widely distributed in the region’s water bodies (Andreychev 2017). The rodent and insectivore fauna of Mordovia is larger than in adjacent regions. However, the fauna lacks some species that exist in adjacent regions: Ulyanovsk region - *Allocricetulus eversmanni* Brandt, 1859 (Red Book 2008); Penza region - *Spermophilus major* Pallas, 1778, *Sicista strandi* (Formozov, 1931) (Il’in et al. 2006); Nizhny Novgorod region – *Rattus rattus* (Linnaeus, 1758), *Tamias sibiricus* (Laxmann, 1769), *Pteromys volans* (Linnaeus, 1758), *Myodes rufocanus* (Sundevall, 1846) (Krivonogov et al. 2008); Chuvash region – *Tamias sibiricus* (Laxmann, 1769), *Pteromys volans* (Linnaeus, 1758) (Red Book 2010); and Ryazan region - *Rattus rattus* (Linnaeus, 1758), *Pteromys volans* (Linnaeus, 1758) (Red Book 2011). Thus, seven species of rodents and insectivores present in adjacent regions are absent from the fauna of Mordovia.

Taxonomic coverage

The dataset contains more than 24,000 registrations of rodent and insectivore species from the districts of the Republic of Mordovia, including Saransk (Table 1, Appendix 1).

Taxonomic ranks

Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Eulipotyphla, Rodentia
Family: Erinaceidae, Talpidae, Soricidae, Sciuridae, Castoridae, Gliridae, Sminthidae, Allactagidae, Spalacidae, Cricetidae, Muridae
Genus: *Talpa*, Desmana, Sorex, Neomys, Crocidura, Sciurus, Spermophilus, Marmota, Castor, Dryomys, Eliomys, Glis, Muscardinus, Sicista, Allactaga, Spalax, Myodes, Arvicola, Microtus, Cricetus, Cricetus, Ondatra, Lagurus, Microtus, Apodemus, Micromys, Mus, Rattus
Species: *Erinaceus roumanicus*, *Erinaceus europaeus*, *Talpa europaea*, Desmana moschata, Sorex araneus, Sorex caecutiens, Sorex minutissimus, Sorex isodon, Sorex minutus, Neomys fodiens, Neomys anomalus, Crocidura suaveolens, Sciurus vulgaris, Spermophilus suslicus, Marmota bobak, Castor fiber, Dryomys nitedula, Eliomys quercinus, Glis glis, Muscardinus avellanarius, Sicista betulina, Allactaga major, Spalax microphthalmus, Myodes glareolus, Myodes rutilus, Arvicola amphibius, Microtus oeconomus, Cricetulus migratorius, Cricetus cricetus, Ondatra zibethicus, Lagurus lagurus, Microtus arvalis, Microtus rossiaemeridionalis, Microtus agrestis, Microtus subterraneus, Apodemus agrarius, Apodemus uralensis, Apodemus flavicollis, Micromys minutus, Mus musculus, Rattus norvegicus
Table 1. Registration points of rodents and insectivores collected in the Mordovia.

Species no.	Species	Points no. (from Appendix 1)
1	Erinaceus roumanicus	17, 25, 31, 32, 46, 63, 75, 99, 102
2	Erinaceus europaeus	34, 103
3	Talpa europaea	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
4	Desmana moschata	68, 73, 76, 81, 95, 97, 101
5	Sorex araneus	6, 8, 11, 22, 24, 28, 33, 35, 40, 45, 51, 53, 56, 63, 64, 67, 73, 77, 83, 89, 98, 102, 103
6	Sorex caecutiens	37, 71, 76, 93, 97, 102, 103
7	Sorex minutissimus	76
8	Sorex iodon	14, 37, 52, 59, 62, 66, 74, 96, 102, 103
9	Sorex minutus	10, 11, 22, 24, 26, 33, 35, 40, 45, 51, 53, 56, 58, 63, 65, 67, 73, 77, 82, 91, 98, 102, 103
10	Neomys fodiens	12, 17, 33, 40, 47, 49, 53, 55, 63, 69, 73, 76, 80, 84, 86, 97, 101, 102, 103, 105
11	Neomys anomalus	76
12	Crocidura suaveolens	40, 67, 76, 102
13	Sciurus vulgaris	17, 31, 34, 38, 44, 56, 63, 67, 73, 76, 88, 97, 100, 102
14	Spermophilus suslicus	7, 31, 23, 33
15	Marmota bobak	1, 21, 31, 32, 39, 62
16	Castor fiber	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
17	Dryomys nitedula	36, 76, 102, 103
18	Eliomys quercinus	17, 76
19	Glis glis	4, 38, 42, 76, 102
20	Maccardinus avellanarius	17, 56, 102, 103
21	Sciota betulina	76, 100, 102, 103
22	Allactaga major	31, 33, 69, 85
23	Spalax microphthalmus	11, 19
24	Myodes glareolus	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
25	Myodes rutilus	76
26	Arvicola amphibius	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
27	Microtus oeconomicus	24, 61, 70, 76, 92, 102, 103
28	Cricetulus migratorius	76
29	Cricetulus cricetus	3, 5, 9, 16, 18, 24, 33, 37, 50, 62, 98, 104
30	Ondatra zibethicus	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
31	Lagurus lagurus	31, 76
32	Microtus arvalis s.l.	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
33	Microtus agrestis	72, 76, 87, 102, 103
34	Microtus subterraneus	102
35	Apodemus agrarius	10, 11, 22, 24, 27, 33, 35, 40, 45, 51, 53, 56, 58, 63, 65, 67, 73, 77, 82, 91, 98, 102, 103
36	Apodemus arvalensis	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105
37	Apodemus flavicollis	2, 29, 30, 33, 41, 54, 56, 57, 60, 63, 73, 78, 79, 90, 97, 103
38	Micromys minutus	13, 17, 31, 43, 48, 71, 76, 102
39	Mus musculus	10, 11, 22, 24, 27, 33, 35, 40, 45, 51, 53, 56, 58, 63, 65, 67, 73, 77, 82, 91, 98, 102, 103
40	Rattus norvegicus	1, 8, 11, 17, 24, 33, 36, 40, 44, 53, 56, 63, 64, 67, 73, 76, 81, 85, 97, 98, 102, 103, 105

Spatial coverage

The dataset covers the entire Republic of Mordovia within 53°38’N to 55°11’N and 42°11’E to 46°45’E.

Temporal coverage

The data were collected from 2006 to 2020.
Method

Most of the dataset was obtained in the Republic of Mordovia during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivorous mammals conducted in the Republic of Mordovia, using trap lines and pitfall arrays using traditional methods. Small rodents were captured using small spring snap-traps (120 × 55 mm) left over night in lines of from 50 to 100 traps with a distance of 5 m between them and baited with bread and sunflower oil. We also used live traps baited with salami and apple to catch dormice. Voucher specimens are stored in the personal collection A. Andreychev, Saransk (teriomordovia@bk.ru). Data on Erinaceus roumanicus, Erinaceus europaeus, Talpa europaea, Desmana moschata, Sciurus vulgaris, Spermophilus suslicus, Marmota bobak, Castor fiber, Allactaga major, Spalax microphthalmus, Cricetus cricetus, and Ondatra zibethicus were obtained via direct observations, recording and/or detection of the traces of their activities (tracks, burrows, etc.). Latin names of species are given according to the classical nomenclature (Wilson and Reeder 2005).

Acknowledgements

We thank A. Zhalilov and G. Salmov for their valuable comments on and corrections to the manuscript.

References

Andreychev A (2017) Population density of the Eurasian beaver (Castor fiber L.) (Castoridae, Rodentia) in the Middle Volga of Russia. Forestry Studies 67(1): 109–115. https://doi.org/10.1515/fsmu-2017-0016

Andreychev AV (2018) A new methodology for studying the activity of underground mammals. Biology Bulletin 45(8): 937–943. https://doi.org/10.1134/S1062359018080022

Andreychev AV (2019) Daily and seasonal feeding activity of the greater mole-rat (Spalax microphthalmus, Rodentia, Spalacidae). Biology Bulletin 46(9): 1172–1181. https://doi.org/10.1134/S1062359019090012

Andreychev A (2020) Ecological and faunal complexes of insectivorous mammals of the Republic of Mordovia, Russia. Biodiversitas 21: 3344–3349. https://doi.org/10.13057/biodiv/d210758

Andreychev A, Boyarova E (2020) Forest dormouse (Dryomys nitedula, Rodentia, Gliridae) – a highly contagious rodent in relation to zoonotic diseases. Forestry Ideas 26(1): 262–269.

Andreychev AV, Kiyaykina OS (2020) Homing in the forest dormouse (Dryomys nitedula, Rodentia, Gliridae). Zoologicheskii Zhurnal 99(6): 698–705. https://doi.org/10.31857/S0044513420060033

Andreychev AV, Kuznetsov VA (2012) Mammals of Mordovia. Mordovia State University, Saransk, 100 pp.
Andreychev AV, Zhalilov AB, Kuznetsov VA (2015) The state of local steepe woodchuck (*Marmota bobak*) populations in the Republic of Mordovia. Zoologicheskii Zhurnal 94(6): 723–730. https://doi.org/10.7868/S0044513415060033

Belyaev DA (2020) The European pine vole, *Microtus subterraneus* Selys-longchamps 1836 (Rodentia, Cricetidae), a mammal species new to the fauna of the Smolensk region. Zoologicheskii Zhurnal 99(2): 234–238. https://doi.org/10.31857/S0044513420020051

Borodin PL (2013) Mediterranean water shrew in the Mordovian nature reserve. Proceedings of the Mordovian State Nature Reserve 11: 109–124.

Borodina MN, Borodin LP, Tereshkin IS, Shtarev YuF (1970) Mammals of the Mordovia Reserve. Proceedings of the Mordovian State Nature Reserve 5: 5–60.

Frost DR, Wozencraft WC, Hoffmann RS (1991) Phylogenetic relationships of hedgehogs and gymnures (Mammalia: Insectivora: Erinaceidae). Smithsonian Contributions to Zoology 518: 62–63. https://doi.org/10.5479/si.00810282.518

Il’in VY, Bystrakova NV, Dobrolyubov AN, Ermakov OA, Zolina NF, Kurmayeva NM, Lukyanov SB, Pavlova SV, Smirnov DG, Titov SV (2006) Synopsis of mammalian fauna of the Penza oblast. Izvestiya Penzenskogo Gosudarstvennogo Pedagogicheskogo Universiteta imeni V.G. Belinskogo 1(5): 73–89.

Kirillova NYu, Krystufek B, Kirillov AA, Ruchin AB, Grishutkin GF (2019) The first record of *Microtus subterraneus* (de Sélys-Longchamps, 1836) (Rodentia, Cricetidae) for Mordovia, Russia. Acta Biologica Siberica 5(4): 145–149. https://doi.org/10.14258/abs.v5.i4.7149

Krivonogov DM, Dmitriev AI, Zamoreva ZA, Trushkova MA, Sokolova ES, Yurochkina OG, Simagin AS, Abramova ON (2008) Mammals of the Red Book of the Nizhny Novgorod region (current state and environmental status). Rare Species of Living Organisms of the Nizhny Novgorod Region. N. Novgorod, 1: 116–123.

Red Book of the Chuvash region (2010) Red Book of the Chuvash region. Publishing house of Chuvashia, Cheboksary, 372 pp.

Red Data Book of Ryazan Region (2011) Red Data Book of Ryazan Region. Golos gubernii Publ., Ryazan, 626 pp. [In Russian]

Red Book of the Ulyanovsk region (2008) Red Book of the Ulyanovsk region. Artishok, Ulyanovsk, 508 pp.

Savchenko G, Ronkin V (2018) Grazing, abandonment and frequent mowing influence the persistence of the steppe marmot, *Marmota bobak*. Hacquetia 17(1): 25–34. https://doi.org/10.1515/hacq-2017-0009

Rashevska HV, Semeniuk SK (2015) A unique colony of the bobak marmot, *Marmota bobak* (Rodentia, Sciuridae), in steppes of the right-bank Ukraine. Vestnik Zoologii 49(4): 377–378. https://doi.org/10.1515/vzoo-2015-0042

Tokarsky V (2015) A pasture of big ungulate animals as key ecological factor influencing on the fluctuation of natural habitat of steppe herbivorous mammals. Vestnik Zoologii 49(2): 159–170. https://doi.org/10.1515/vzoo-2015-0018

Tovpinites NN, Evstafiev IL, Stakheev VV, Lisovsky AA (2020) Checklist of rodents and insectivores of the Crimean Peninsula. ZooKeys 948: 121–127. https://doi.org/10.3897/zookeys.948.51275

Zagorodniuk I, Korobchenko M, Parkhomenko V, Barkszi Z (2018) Steppe rodents at the edge of their range: a case study of *Spalax microphthalmus* in the north of Ukraine. Biosystems Diversity 26(3): 188–200. https://doi.org/10.15421/011829
Zaitsev MV (1984) Systematics and diagnostics of hedgehogs of the subgenus Erinaceus (Mammalia, Erinaceinae) of the fauna of the USSR. Zoologicheskii Zhurnal 63(5): 720–730.
Zaitsev MV, Voyta LL, Sheftel BI (2014) The mammals of Russia and adjacent territories. Lipotyphlans. Zoological Institute Russian Academy of Sciences, Saint Petersburg, 391 pp.
Wilson DE, Reeder DM (2005) Mammal Species of the World, Third Edition. Vol. 1. The Johns Hopkins University Press, Baltimore, 743 pp.

Appendix I

Points of the Republic of Mordovia in which mammals are recorded.

Points no.	District	Location	Geographic coordinates
1	Lyambirskiy	Atemar	54.0980°N, 45.2138°E
2	Kochkurovskiy	Voroševka	54.0251°N, 45.1754°E
3	Lyambirskiy	Vnukovka	54.0118°N, 45.1609°E
4	Ichalkovskiy	Novotyaglovka	53.5506°N, 45.1778°E
5	Lyambirskiy	Cheremishevo	54.1579°N, 45.0604°E
6	Romodanovskiy	Malaya Chfaroška	54.2435°N, 45.1750°E
7	Romodanovskiy	Romodanovo	54.2494°N, 45.2043°E
8	Kavtorovka	Vkurilo	54.2854°N, 45.2805°E
9	Ichalkovskiy	Levzhenskiy	54.0618°N, 45.0517°E
10	Ruzaevskiy	Popovka	54.0690°N, 45.0310°E
11	Romodanovskiy	Klyucharevo	54.0846°N, 45.0121°E
12	Ichalkovskiy	Ruzayevka	54.0246°N, 44.5609°E
13	Romodanovskiy	Bogolyubovka	54.0596°N, 44.5238°E
14	Klyucharevo	Tatarskij Shebdas	53.5851°N, 44.5444°E
15	Lyambirskiy	Saransk	54.1328°N, 45.1102°E
16	Romodanovskiy	Saransk	54.0495°N, 45.0589°E
17	Kochkurovskiy	Dobrovol’nyj	54.0807°N, 45.0506°E
18	Lyambirskiy	Pushkino	54.0815°N, 45.1151°E
19	Kochkurovskiy	Makarovka	54.1037°N, 45.1717°E
20	Romodanovskiy	Kulikovka	54.0689°N, 45.1217°E
21	Kochkurovskiy	Zharenki	54.4420°N, 46.1421°E
22	Romodanovskiy	Tarasovo	54.3578°N, 46.1334°E
23	Romodanovskiy	Rep’evka	54.2468°N, 45.4177°E
24	Kochkurovskiy	Gorbunovka	54.3030°N, 45.5188°E
25	Kochkurovskiy	Azar’evka	54.3367°N, 45.3987°E
26	Kochkurovskiy	Komsomol’skij	54.2672°N, 45.5183°E
27	Kochkurovskiy	Lyulya	54.2755°N, 45.5589°E
28	Kochkurovskiy	Večkkusy	54.4196°N, 45.3641°E
29	Kochkurovskiy	Simkino	54.1527°N, 46.1168°E
30	Kochkurovskiy	Engalychevo	54.1846°N, 46.2649°E
31	Kochkurovskiy	Nikolaevka	54.2105°N, 46.3065°E
32	Kochkurovskiy	Purkaev	54.2316°N, 46.3625°E
33	Kochkurovskiy	Novaya Pyrma	54.0017°N, 45.2922°E
34	Kochkurovskiy	Chamzinka	54.2318°N, 45.4739°E
35	Kochkurovskiy	Mediaevo	54.2593°N, 46.0009°E
36	Kochkurovskiy	Pyangelej	54.1778°N, 45.4172°E
37	Kochkurovskiy	Picheury	54.1847°N, 45.4883°E
38	Kochkurovskiy	Luhmenskij Majdan	53.4460°N, 44.1146°E
39	Kochkurovskiy	Potulovka	53.4215°N, 44.2515°E
Points no.	District	Location	Geographic coordinates
-----------	-------------------------	---------------------------	------------------------
42	Kadoshkinskiy	Adashevo	53.5712°N, 44.1884°E
43	Kovylykinskiy	Mordovskoe Kolomosovo	53.5837°N, 44.0684°E
44	Atyur'evskiy	Shustruj	54.1441°N, 43.2251°E
45		Kurkashki	54.1916°N, 43.2639°E
46	Zubovo-Polyanskiy	Achadovo	53.5385°N, 43.0009°E
47	Kovylykinskiy	Gurny	54.0067°N, 43.4337°E
48	Krasnoslobodskiy	Zhetonogovo	54.2875°N, 43.4456°E
49		Slobodskie Dubrovki	54.2483°N, 43.3468°E
50	Temnikovskiy	Bulaev	54.3331°N, 43.3354°E
51	Torbeevskiy	Salazgor'	54.0718°N, 43.0735°E
52		Drakino	54.0269°N, 43.1445°E
53	Kadoshkinskiy	Pushkino	54.0528°N, 43.2329°E
54	Kuzmaevskiy	Boldovo	53.5981°N, 44.3908°E
55	Staroshajgovskiy	Mal'keevka	54.2428°N, 44.4723°E
56		Staraya Terzimorga	54.1569°N, 43.3043°E
57	Lyambirskiy	Dal'niy	54.2883°N, 44.5892°E
58		Yazykovo	54.2680°N, 44.5864°E
59		Lopatinoy	54.1738°N, 45.0136°E
60	Ardatovskiy	Kurakin	54.5645°N, 46.0831°E
61		Staroe Ardatovskiy	54.5843°N, 46.1336°E
62	Bol'sheignatovskiy	Petrovka	54.5854°N, 45.2930°E
63		Kirzhemany	54.5850°N, 45.4432°E
64	Kovylykinskiy	Rybkino	54.1531°N, 43.4799°E
65		Kovylyaj	54.1016°N, 43.5071°E
66	Krasnoslobodskiy	Krasnaya Podgora	54.2887°N, 43.4870°E
67		Lesnog	54.2613°N, 43.5214°E
68		Zarechnoe	54.2469°N, 43.5124°E
69		Staraya Ryabka	54.2050°N, 43.5046°E
70		Samozlejka	54.1829°N, 43.4931°E
71	El'nikovskiy	Churino	54.3995°N, 43.4471°E
72		Russkie Poshaty	54.4078°N, 44.4436°E
73		Starye Pichingusin	54.3391°N, 45.5029°E
74	Temnikovskiy	Staryj Gorod	54.4175°N, 43.0609°E
75		Temnikov	54.3748°N, 43.1139°E
76		MGZ im. RG. Smidovicha	54.4286°N, 43.1423°E
77		Kozlovka	54.3816°N, 43.2114°E
78		Soznaokoy	54.4281°N, 43.1683°E
79	Ten'gushevskiy	Standrovo	54.3953°N, 42.3943°E
80		Shelubej	54.4074°N, 42.4291°E
81		Telimerk	54.4364°N, 42.4580°E
82		Feklisov	54.4289°N, 42.5073°E
83		Vedenyapino	54.4416°N, 42.5857°E
84	Atyur'evskiy	Arga	54.2034°N, 43.0912°E
85	Zubovo-Polyanskiy	Podyasofo	54.1941°N, 42.4184°E
86		Svezhen'kaya	54.0035°N, 42.2674°E
87		Izvest'	53.5609°N, 42.2746°E
88		Vysha	53.5033°N, 42.2320°E
89		Gorodishche	53.4553°N, 42.2921°E
90		Zhukovkova	53.5293°N, 43.4358°E
91		Shiringusin	53.5123°N, 42.4571°E
92		Ozernyi	54.2510°N, 42.4141°E
93		Lesnog	54.2774°N, 42.4323°E
94		Romanovka	54.1481°N, 42.4416°E
Points no.	District	Location	Geographic coordinates
-----------	---------------------------	-------------------	------------------------
95	Zubovo-Polyanskiy	Leplej	54.1883°N, 42.4890°E
96	Ten'gushevskiy	Yuzga	54.3277°N, 42.5919°E
97	Torbeevskiy	Vindrej	54.1554°N, 42.5523°E
98	Ardatovskiy	Turgenevo	54.5150°N, 46.1648°E
99		Redkodub'e	54.4743°N, 46.0990°E
100		Luni'ga	54.4864°N, 45.5652°E
101		Lun'ginskij Majdan	54.5046°N, 45.4821°E
102	Ichalkovskiy	Smol'nyj	54.4592°N, 45.3690°E
103	Bol'shebereznikovskiy	Biologicheskaya stanciya MGU	54.1014°N, 46.0988°E
104		Special'nyj	54.0262°N, 45.5324°E
105	Kochkurovskiy	Mordovskoe Davydovo	53.5856°N, 45.4535°E