Mechanism of Pharmacological Action of Chromones in Radix Saposhnikoviae Based on Biological Significance of Secondary Metabolites

Si-Si Cao
Heilongjiang University of Chinese Medicine

Lei Shi
Heilongjiang University of Chinese Medicine

Ying Shen
Heilongjiang University of Chinese Medicine

Jing-Ming Yang
Jinzhou Medical University

Xiang-Cai Meng ({mengxiangcai000@163.com})
Heilongjiang University of Chinese Medicine

Research Article

Keywords: Saposhnikovia divaricata, activity, antipyretic, analgesic, anti-inflammatory

DOI: https://doi.org/10.21203/rs.3.rs-115050/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

According to origin of species, both animals and plants come from a common ancestor, so they all possess similar/same metabolic activities. Plants adapt to stress conditions by eliminating reactive oxygen species (ROS) partly with secondary metabolites, which are often the medicinal ingredients. With this, the mechanism of pharmacological action and biological action of secondary metabolites may be the same. Radix saposhnikoviae the root of Saposhnikovia divaricata, has antipyretic, analgesic and anti-inflammatory effects. It was analyzed that the correlation between fever, analgesia and inflammation and the activities of POD, CAT, the H$_2$O$_2$ contents in serum before and after intravenous administration for cimicifugin, an active component. For the antipyretic, the correlation coefficient between the body temperature and the H$_2$O$_2$ contents was 0.9689 in the model group and 0.5221 in the treatment group, indicating that fever was closely related to the H$_2$O$_2$. In the presence of electron donor, POD can eliminate ROS, the correlation coefficient between POD activities and H$_2$O$_2$ content before and after administration were 0.8085 and -0.5070, respectively, indicating that cimicifugin can eliminate ROS through POD. At 39.5 ℃, POD activity was about 1.47 times that of normal body temperature, and the scavenging efficiency of POD was 2.94 times that of CAT, which indicated that cimicifugin enhanced the elimination of H$_2$O$_2$ mainly through POD. For the analgesic and anti-inflammatory, the correlation coefficients of POD activity with analgesic and anti-inflammatory effects were 0.6685 and 0.4466, respectively, indicating that they were closely related to the H$_2$O$_2$. In this paper, we found the ROS is an important factor of fever, pain and inflammation, the pharmacological actions of Radix Saposhnikoviae also is elimination of ROS through the synergistic action of chromone and POD, the mechanism of pharmacological action of Chromones being the same as the biological action of secondary metabolites.

Introduction

Radix saposhnikoviae, the dried root of Saposhnikovia divaricata (Turcz.) Schischk, with antipyretic, analgesic and anti-inflammatory effects$^{[1]}$, and is the most common herbal medicine in many Asian countries.

Drought, coldness, high salinity, metal toxicity, ultraviolet radiation and pathogen invasion are common stress for plants$^{[2,3]}$. Under stress conditions, the equilibrium of fixed CO$_2$ and O$_2$ in chloroplast of plant cells is collapsed, which result in the accumulated O$_2$ being reduced to O$_2^-$, and then transformed into other Reactive oxygen species (ROS)$^{[4,5]}$, an oxygen-containing free radicals or superoxide which form free radicals easily, such as superoxide anion (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), hydroxyl radical (·OH), etc., with an extremely high activity$^{[6,7]}$. Due to strong oxidation ability of ROS, the secondary and tertiary structures of proteins (including enzymes) are usually constructed by the -S-S- groups between two non-adjacent amino acids, so ROS have the ability to regulate the activities of enzymes$^{[8,9]}$, further, regulate various metabolism. However, too much of ROS can also do damage to organic macromolecules such as enzymes, interfere with normal metabolism, and affect the normal growth of plants$^{[10]}$. Antioxidant
enzymes, exist in animals, plants, fungi cells, and other organisms[12], mainly include superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), etc.[11], responsible to eliminate excessive ROSs[13]. However, antioxidant enzymes are also protein, can be destroyed by excessive ROS [14]. It has been proved that excessive ROS under severe stress conditions can reduce the activities of SOD, CAT, and POD [15], further increase the destructive force of ROS, and result in damage to cell membrane, DNA, and protein [16], even making cells to death. Animals have the ability to avoid over-production of ROS by dodging harsh environment, the survival of individuals mainly depends on the food competition among species, not harsh environment, but plants cannot move, it is certain that more ROS are produced because of more stress[17], with this, it is difficult to eliminate too much ROS only by antioxidant enzymes, therefore, plants evolve additional secondary metabolism system to reduce production or the harm of ROS besides antioxidant enzymes [18,19,20].

Under stress conditions, plants can regulate the equilibrium of ROS by increasing the activities of secondary metabolites and antioxidant enzymes to improve adaptability to the various stress. Phenolic compounds (flavonoids, tannins, hydroxycinnamates, and lignin) are all secondary metabolites of plants, exist in almost all kinds of plants, with high antioxidant properties[21], and can scavenge ROS and inhibit lipid peroxidation[22]. Their antioxidant activities depend on the number and position of hydroxyl groups (-OH) or methoxy group (-OCH\textsubscript{3}) substituents. The -OH at C5, C6 and C7 positions on A-ring and C3', C4' and C5' positions on B ring are the main sites influencing the activity[23,24]. The activities are also significantly enhanced when hydroxyl group is introduced into B ring and double bond is introduced into C ring[25]. The high-quality product areas of Radix saposhnikoviae are semi-arid grasslands. Cimifugin, Prim-O-glucosylcimifugin and 4-O-\beta-D-glucosyl -5-O-methylvisamminol are the main secondary metabolites of \textit{Saposhnikovia divaricata}. However, chromones from \textit{Saposhnikovia divaricata} contain methoxy -substituted (-OCH\textsubscript{3}), instead of -OH, while the activity of -OCH\textsubscript{3} is far lower than -OH. In this case, only presence of POD can chromones get the best out of them. POD is a enzyme related to adversity, only under stress condition can POD exhibite higher activity. POD eliminating H\textsubscript{2}O\textsubscript{2} must have a electron donor, and chromones exactly is what POD need [26]. It has been proved that POD activity of \textit{Saposhnikovia divaricata} increased under the stress conditions[26]. The structures of chromones from Radix Saposhnikovia is shown in Figure 1.

According to origin of species, animals and plants have a common ancestor[27], so they all possess similar/same cell structure, biological enzyme, genetic material, and metabolism, et al.. But in the face of different environments, they have evolved their own strategies over hundreds of millions of years[28,29]. Plants adapt to stress conditions by eliminating excessive ROS with secondary metabolites[30,31], which are often the medicinal ingredients[32,33]. It has been proved that animals will also produce much of ROS when they are exposed to radiation, hyperbaric oxygen, cigarette smoke, air pollution, heavy metals, pesticides, pathogens and other external factors[34,35]. All kinds of diseases of animals have an inseparable relationship with ROS. For example, ROS is involved in the pathological process of cancer, diabetes, inflammation, pain, hypertension, atherosclerosis, diabetic angiopathy, and ventricular
remodeling after myocardial infarction[36,37], Radix saposhnikoviae has definite antipyretic, analgesic and anti-inflammatory effects[38,39]. The biological mechanism of the ecological action and pharmacological action of chromone of Radix saposhnikoviae may be the same.

Materials And Methods

Instruments and Reagents

UV-160A UV/VIS spectrophotometer (SHIMADZU, Japan); K3 Microplate Reader (Thermo Fisher Instruments Co., Ltd., China); BSA224S-CW Electronic analytical balance (Sartorius Scientific Instruments Co., Ltd); A11618 Electronic thermometer (Guang Dong Tonze Electric Co., Ltd); XL-90 Low temperature centrifuge (Beckman, USA); Micropipette (Thermo Fisher Instruments Co., Ltd, China); YLS-6B Intelligent hot plate instrument (Jinan Yiyan Science and Technology Development Co., Ltd, China); HH-2 Digital Display Constant Temperature Water Bath (Jiangsu Jintan ronghua Instrument Manufacturing Co., Ltd, China); KQ2200E Ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd, China); Milli-Q Integral 5 Ultra-pure water system (Merk Millipore, German); FP240h Constant temperature drying oven (Binder, German). High activity dry yeast (Product license number: SC2115042600158, Angel Yeast Co., Ltd.). Cimifugin: Batch number: S-007-150421, purchased from Chengdu Herbpurify Co., Ltd., with purity of 98% above. Protein quantitative Kit (A045-2), POD Kit (A084-1), CAT test Kit and H\textsubscript{2}O\textsubscript{2} test Kit (purchased from Nanjing Jiancheng Bioengineering Research Institute). Sodium chloride injection: Batch number: 170109D1, Harbin Medisan Pharmaceutical Co., Ltd.). Methanol, xylene, vaseline and other reagents are analytical pure.

Animals

KM mice, with weight of 18-22g, half male and half female (Animal Certificate No: SYXX (Hei) 2010001); SPF level SD rats, male, with body weight of 180-220g (license No: SCXK (Hei)2019-0006), all purchased from Safety Evaluation Center of Heilongjiang University of Traditional Chinese Medicine. All the experimental animals were fed in the laboratory for 3 days, keeping the experimental environment quiet, good ventilation, cage clean, with room temperature (22 ± 2) °C and humidity (60 ± 10)%. The experimental protocol were reviewed and approved by the Ethical Committee of Heilongjiang University of Chinese Medicine (approval number: HUCM2018-08598) and was conducted according to the principles expressed in the Declaration of Helsinki.

Antipyretic Effect of Cimifugin

Animal Screening and Modeling. The basic body temperature of SPF male SD rats was measured after 3 days of adaptive feeding. The rats whose body temperature was more than 39.0 °C or whose twice body temperature fluctuations were more than 0.5°C were eliminated. Finally, 20 SD rats were selected as qualified experimental animals for modeling.
Temperature monitoring of rats. The qualified experimental animals were divided into experimental group (15 animals) and model group (5 animals). The rats were forbidden to feed but not drink for 12 h before the experiment, and the average temperature was measured at an interval of 15 minutes for three times as the normal temperature before modeling, and the temperature was monitored at an interval of 1 hour from 0 h to 22 h after administration.

Determination of antipyretic effect of Cimifugin. The experimental groups were injected with 0.216mg/kg of Cimifugin solution by tail vein at 0 h and 6 hours, respectively. The model group was given the same volume of normal saline. 20% dry yeast suspension was injected subcutaneously into the back after the first injecting Cimifugin solution half an hour later. The antipyretic effect (Δt) of Cimifugin was calculated with change of the body temperature for 6 h and 8 h after administration.

$$\Delta T^{\circ\text{C}} = T_{8\text{h}} - T_{6\text{h}}$$

The serum of rats was collected before administrate drug (0 h) and at 8 h after administrate drug for testing POD and CAT activities.

The Relationship between Fever and H$_2$O$_2$ in Rats

Five rats of the model group were selected to measure the contents of H$_2$O$_2$ and body temperature at 0h, 8h and 22h. Hydrogen peroxide (H$_2$O$_2$) content was determined with hydrogen peroxide (H$_2$O$_2$) kit.

Determination of CAT and POD activity

CAT activity was detected by Catalase (CAT) kit. The amount of substance (1 µmol) decomposing substrate (H$_2$O$_2$) per ml of serum was used as one activity unit (U / ml). POD activity was measured by POD kit, and the amount of substance (1 µg) per mg of tissue protein (serum protein) was used as one activity unit (U / mgprot).

Determination of Optimum Temperature of POD and CAT

Blood was collected from 5 rats, and the serum was mixed equally, the activities of POD and CAT were measured at 37.0 °C, 37.5 °C, 38.0 °C, 38.5 °C, 39.0 °C, 39.5 °C, 40.0 °C, 40.5 °C, and 41.0 °C, respectively.

Analgesic Effect of Cimifugin

Screening of experimental animals and determination of average pain threshold. Before the experiment, 30 KM female mice were screened. The pain threshold was determined by hot plate method. The temperature of hot plate was set at 55 °C. Fifteen mice with pain threshold from 5s to 30s were selected as qualified experimental animals. The average pain threshold (s) was measured before the experiment.
Determination of POD activity and analgesic effect. The serum of 15 mice was collected before administration for the determination of POD activities. The pain threshold was measured 1 hour after 0.5mg/kg dosage of cimifugin solution was administrated through tail vein. Each mouse was measured for more than 30s. The average value of three times was used as the indication of the analgesic effect.

Analgesic effect (s) = average pain threshold after administration (s) - average pain threshold before administration (s).

Anti-inflammatory Effect of Cimifugin

Serum samples of 15 KM mice, half male and half female, were collected before administration for determination of POD activities. Cimicifugin was given by tail vein at the dose of 0.5mg/kg. After 30 minutes, both sides of the left ear of each mouse was coated 0.2ml xylene, and the right ear was used as control. One hour later, the mice were killed by cervical dislocation. Two ears were cut along the base line of the auricle respectively. Round ear pieces were made on the same part of the left and right ears with an 8mm diameter punch and were weighed. The weight difference between the two ear pieces of the same mouse was taken as the indication of the auricle swelling degree (mg).

Auricle swelling degree (mg)=Weight of left ear(mg)- Weight of right ear(mg)

Data Processing

Taking the activities of serum antioxidant enzymes (POD, CAT) and the contents of H$_2$O$_2$ in serum as the X-axis, and the pharmacological action as Y-axis, the correlation between the activities of serum antioxidant enzymes (POD, CAT) and H$_2$O$_2$ contents in serum and pharmacological action was analyzed by Microsoft Excel software.

Results

Relationship between fever and H2O2 in rats. The body temperature of model group reached 41.4 °C after 8 h of modeling, and then decreased, while the temperature of treatment group was 38.9°C after 8 h and then decreased. The body temperature of the treatment group was significantly lower than that of the model group, indicating that cimicifugin has antipyretic effect, as shown in Figure 2. The basal body temperature of rats was 36.5 °C, and the contents of H2O2 in was 47.97~54.49 mmol/L. After 8 hours, the body temperature reached the highest value of 39.9~41.5°C. The H2O2 contents increased to 149.95~162.53 mmol/L. After 22 hours, the body temperature dropped to 37.3~37.7 °C, and the H2O2 content returned to the normal level of 50.76~61.47mmol/L. The correlation coefficient between body temperatures and H2O2 contents in model group was 0.9689 based on above the numerical data, indicating that there was a close relationship between fever and H2O2 in rats, as shown in Figure. 3. The correlation coefficient between body temperatures and H2O2 contents in the treatment group was 0.5221, indicating that body temperature was also closely related to serum H2O2, as shown in Figure 4.

Relationship between the antipyretic and the POD, CAT. POD activities were extremely significantly...
positive correlated with the contents of H2O2 in serum, with a correlation coefficient of 0.8085. However, after administration for cimicifugin, the relationship between the them was reversed, from a significant positive correlation to a significant negative correlation, with a correlation coefficient of -0.5070, indicating that cimicifugin significantly reduced the contents of H2O2, as shown in Figure 5. The activities of POD and CAT increased with the increase of body temperature. The activity of CAT was the highest at 37.5 °C, and then decreased sharply. The correlation coefficients between CAT activity and H2O2 content in serum before and after administration were 0.3002 and 0.0361, respectively, as shown in Figure 6. The correlation coefficient between the CAT and temperature rise amplitude were 0.5470 and 0.2335 before and after administration, respectively, as shown in Figure 7 and Figure 8. But the optimum temperature of the POD and CAT are different. The optimum temperature of the POD is 39.5°C, further still maintain high activity at higher temperature, but the CAT is 37.5°C, decrease sharply as increasing temperature, indicating that CAT played an important role in eliminating H2O2 at normal temperature. While POD activity increased rapidly above 38.0 °C and 39.5 °C, with a 1.47 times higher than that of normal temperature, indicating that POD plays an important role in eliminating H2O2 under fever condition. At 37.0 °C, the elimination efficiency of POD is 2.07 times that of CAT, and at 39.5 °C, 2.94 times that of CAT, indicating that POD is the main way to eliminate H2O2 under fever condition, as shown in Figure 9.

Analgesic Effect of Cimicifugin According to the results of analgesic effect and POD activity, the linear equation of POD activity and analgesic effect in serum in rats was $y = 1.0956x + 17.769$, ($r = 0.6685$), as shown in Figure 11.

Anti Inflammatory Effect of Cimicifugin The results of serum POD activity and ear swelling degree of mice are shown in Figure 4. The linear equation between the activity of POD in serum and auricle swelling was $y = -22.655x + 37.751$ ($r = 0.4466$), as shown in Figure 12.

Discussion

Antipyretic Effect and H2O2

1. H2O2 is the essential reason of hyperthermia

ROS can be produced in various pathways, including enzymatic reaction, autoxidation of reductive molecules, and mitochondrial electron transfer chain, participate in cell growth and proliferation, development and differentiation, aging and apoptosis, as well as many physiological and pathological processes. ROS can be reciprocal transformed [40]. In the antioxidant enzyme system, the O$_2$ $^\cdot$ produced by organism firstly generates H$_2$O$_2$ through the action of SOD, and then decomposes by CAT and POD. Among many ROS, the half-life of O$_2$ $^\cdot$ is about 1 μs [41], the O$_2$ is 3μs [42,43,44], with short life span but strong activity and great destructive power. But the activity of H$_2$O$_2$ is weak, with a long life span, high content, can run over long distances, and become the main ROS regulating cell metabolism [45,46].

Fever is closely related to H$_2$O$_2$ [47]. In order to clearly show the correlation between different data in the administration group and the model group, all the correlation data have been reflected in Table 1. Figures 3 and Figures 4 show that the correlation coefficient between body temperature and H$_2$O$_2$ content in
model group is 0.9689, indicating that a large amount of \(\text{H}_2\text{O}_2 \) accumulated in various tissues of the body may be the essential reasons of fever reaction. Figure 5 shows that the correlation coefficient between POD activities and \(\text{H}_2\text{O}_2 \) contents is 0.8085 before giving the medicine to rats. This strong positive correlation is related to the characteristics of POD which is an inducible enzyme. Only when cells produce more \(\text{H}_2\text{O}_2 \) under exogenous stimulation, can POD activity be improved by feedback induction \([48,49,50]\). The mean value of serum POD activity before fever was 4.08U/mgprot, and that of serum POD after administration for 8h (i.e. 7.5h after modeling) was 4.51U/mgprot, with a increase of 10.54%, indicating that the POD activity had been activated and increased under the stimulation of \(\text{H}_2\text{O}_2 \) within 7.5h after being induced fever. That is, POD activity also increases along with the increase of \(\text{H}_2\text{O}_2 \) content. However, in the absence of electron donors, can POD eliminate \(\text{H}_2\text{O}_2 \) \([51,52]\). Without electron donor, \(\text{H}_2\text{O}_2 \) content must remains at a high level, which result in higher body temperature of rats. The rats were given cimicifugin, a electron donor was supplied, with a result of that the higher the POD activity, the lower the content of \(\text{H}_2\text{O}_2 \). The significant positive correlation was revered to a significant negative correlation \((r = -0.5070)\), as be shown in Figure 5. Figure 2 has also showed that the body temperature decreased significantly after administration, indicating that the fever effect is closely related to the content of \(\text{H}_2\text{O}_2 \).

2. POD is the main enzyme to eliminate \(\text{H}_2\text{O}_2 \) in rats

POD and CAT are the main antioxidant enzymes to eliminate \(\text{H}_2\text{O}_2 \). After administration, the correlation coefficient between the antipyretic effect of cimicifugin and POD was 0.5582, and CAT was 0.2335, shown in Figure and Figure 8, indicating that the antipyretic effect of cimicifugin was closely related to the activity of POD. Figure 9 shows that the optimum temperature of the POD is 39.5°C, further maintain high level at high temperature, but the CAT is 37.5°C, decrease sharply as increasing temperature, Fig-6 also shows that correlation between CAT and \(\text{H}_2\text{O}_2 \) was weak after fever, indicating that CAT is not the main enzyme to remove \(\text{H}_2\text{O}_2 \) at high temperature, while POD has high activity at 38 °C~42 °C, which is more than 2.5 times higher than that at normal temperature. The POD activity \((U / \text{mg prot})\) is be represented by the mass of catayltic substrate \((1 \mu\text{g})\) per milligram of tissue protein (serum protein), and the amount of substance \((1 \mu\text{mol})\) of catalyzing substrate \((\text{H}_2\text{O}_2)\) per milliliter of serum (or tissue protein) is taken as an activity unit \((U / \text{ml})\). With this, it concluded that the ratio of \(\text{H}_2\text{O}_2 \) consumption of POD and CAT of the same protein unit is about 1.47:1, \(\text{H}_2\text{O}_2 \) consumption ratio of POD and CAT of the same active unit at 37 °C is about 2.08:1, and that of POD and CAT with the same active unit at 39.5 °C is about 2.94:1, as shown in Figure 10. Under the fever condition, the consumption of \(\text{H}_2\text{O}_2 \) by the same POD is almost 3 times that of CAT. CAT is specific to \(\text{H}_2\text{O}_2 \) and can directly eliminate excessive \(\text{H}_2\text{O}_2 \), but it has poor thermal stability, and its activity is weak when the body temperature is high \([53]\). POD is a glycoprotein with strong stability, which usually shows high activity under adverse conditions \([48,49,50]\), indicating that POD is the main enzyme to eliminate \(\text{H}_2\text{O}_2 \), especially when the content of \(\text{H}_2\text{O}_2 \) is high and the body temperature is high.
Pain, Inflammation and H$_2$O$_2$

Radix Saposhnikoviae has antipyretic, analgesic and anti-inflammatory effects $^{[38-39]}$, which are interrelated and coexist.

Pain is also closely related to H$_2$O$_2$. It has been found that neuropathic pain and inflammatory pain are related to ROS $^{[53,54,55]}$. ROS in the central nervous system mainly comes from the electron transport chain in the inner membrane of mitochondria. ROS, from Endoplasmic reticulum, induced by virus, can result in neuralgia$^{[56,57]}$, and oxidative scavengers can significantly eliminate mechanical abnormal pain $^{[58]}$. Figure 11 shows that the correlation coefficient between analgesic effect and POD is 0.6685, indicating that the analgesic effect of cimicifugin is mainly achieved by eliminating H$_2$O$_2$ in the body.

Inflammation is the host's defensive immune response to foreign damage factors, and it is also closely related to ROS. When endothelial cells are injured, ROS, as a cell signal molecule, is also an inflammatory mediator $^{[59]}$. During the occurrence of lithiasis, the main components of the lithiasis can activate over-production of ROS and interact thioredoxin protein in a dose-dependent manner $^{[60,61]}$. Figure 12 shows that the correlation coefficient between anti-inflammatory effect and POD is 0.4466, indicating that the anti-inflammatory effect of cimicifugin is mainly achieved by eliminating H$_2$O$_2$ in the body.

Mechanism of Action of Cimicifugin

The main effective component of Radix Saposhnikoviae is chromone. According to the Chinese Pharmacopoeia (Volume I of 2015 Edition), the total content of cimicifugoside and 5-O-methylviadine in Radix Saposhnikoviae should not be less than 0.24%. Because of the high content of cimicifugoside and 5-O-methylviadine, it is regarded as the standard component. The absorption of cimicifugin and 5-O-methylvisamminoside are very small, which can only be detected at high-dosing $^{[62]}$, while the main component in the blood is cimicifugin $^{[63]}$. Therefore, in order to reduce the impact of intestinal absorption process, intravenous administration was used in this study. The ability of flavonoids to eliminate ROS depends on the amount and location of -OH $^{[64,65]}$. Cimicifugin lacks -OH, instead of -OCH$_3$, with much lower activity than -OH. POD present in animal and plant cells widely and is an important enzyme to eliminate H$_2$O$_2$, but it needs polyphenols and other electronic donors to play a role $^{[51,52]}$. The synergism of POD and Cimicifugin can effectively remove H$_2$O$_2$ in the cells, and exhibit antipyretic, analgesic, and anti-inflammatory effects.

The components of herbal medicine are very complex. Recent researches on drug action and mechanism mainly focused on the differential metabolites and metabolic pathways. In many cases, although there is correlation, it is not clear whether these metabolites are the upstream or downstream substances leading to the cause of disease, and it is difficult to clear whether it is causation or parallel relations. Darwin's theory of evolution is the three major discoveries of Natural Science in the 19th century, which greatly promoted the development of life science. According to this theory, the evolution of life has underwent
from inorganic small molecules, to organic small molecules, to organic macromolecules, to independent systems, to primitive life. Animals and plants should have a common ancestor and the same basic life law. The ecological function of chromone of *Saposhnikovia divaricata* is to eliminate the ROS in cells, which is also an important factor of fever, pain and inflammation. The antipyretic, analgesic and anti-inflammatory effects of Radix Saposhnikoviae also eliminate ROS through the synergistic action of chromone and POD, which indicate that the ecological and pharmacological mechanisms of chromone of Radix saposhnikoviae are the same. At present, botany and zoology are two relatively independent research fields. The research results from plant ecology and herbal medicine pharmacology learning from each other can open up new ideas for the researches of plant pharmacology.

Declarations

Acknowledgements

This work of Sisi Cao was supported by National Natural Science Foundation of China (Grant No. 81541079). The authors would like to thank Safety Evaluation Center of Heilongjiang University of Traditional Chinese Medicine for providing experiment animals.

Author Contributions

Conceived and designed the experiments: Xiang-Cai Meng, Si-Si Cao. Performed the experiments: Si-Si Cao, Ying Shen, Lei Shi, Jing-Ming Yang. Analyzed the data: Xiang-Cai Meng, Si-Si Cao. Contributed essential reagents: Lei Shi. Wrote the manuscript: Xiangcai Meng, Sisi Cao. All authors reviewed the manuscript.

Additional Information

Competing financial interest: The authors declare no competing financial interests.

References

1. Pharmacopoeia of the People's Republic of China [M]. China Pharmaceutical Science and Technology Press, State Pharmacopoeia Committee, 2015:149

2. Asada K . Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions[J]. Plant physiology, 2006, 141(2):391-396.

3. Mubarakshina M M, Ivanov B N. The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes[J]. physiologia plantarum, 2010, 140(2):103-110.

4. Triantaphylides C, Krischke M, Hoeberichts F A, et al. Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants[J]. PLANT PHYSIOLOGY, 2008, 148(2):960-968.
5. Triantaphylides C, Krischke M, Hoeberichts F A, et al. Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants[J]. PLANT PHYSIOLOGY, 2008, 148(2):960-968.

6. C.X. Santos, L.Y. Tanaka, J. Wosniak, F.R. Laurindo, Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase, Antioxid. Redox Signal. 11 (2009) 2409–2427.

7. Rychter, A. M. Antioxidants and reactive oxygen species in plants[J]. Annals of Botany, 2006, 98(5):1114-1114.

8. Hofmann B, Hecht H J, Flohé, L. Peroxiredoxins[J]. Biological Chemistry, 2002, 383(3):347-364.

9. Press C. Reactive Oxygen Species and Antioxidants in Higher Plants[J]. Crc Press, 2010.

10. Guo Qiaosheng, Wu Yougen, Lin Youfen, Zheng Huanqiang. Effect of NaCl Stress on Growth and Antioxidant Systems of Pogostemon Cablin [J]. China Journal of Chinese Materia Medica, 2009,34 (05): 530-534

11. Czarnockaa W, Stanislaw Karpińska. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses[J]. Free Radical Biology and Medicine, 2018, 122.

12. Lang Duoyong, Cui Jiajia, Zhou Da, Li Yuetong, Zhou Li, Zhang Xinhui. Effect of Drought Stress on Growth and Physiological-biochemical Characteristics of Stellaria dichotoma [J]. China Journal of Chinese Materia Medica, 2014,39 (11): 1995-1999

13. Jia X, Sun C, Li G, et al. Effects of progressive drought stress on the physiology, antioxidative enzymes and secondary metabolites of Radix Astragali[J]. Acta Physiologiae Plantarum, 2015, 37(12):262.

14. Jiang Daquan, Wang Hongyang, Kang Chuanzhi, Jiang Jingyi, Du Yongxi, Zhang Yan, Wang Sheng, Guo Lanping. Influence and Mechanism of Stress Combination on Medicinal Plants Secondary Metabolism [J]. China Journal of Chinese Materia Medica, 2020,45 (09): 2009-2016

15. Grace S C, Logan B A. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2000, 355(1402):1499-1510.

16. Arora A, Byrem T M, Nair M G, et al. Modulation of Liposomal Membrane Fluidity by Flavonoids and Isoflavonoids[J]. Archives of Biochemistry & Biophysics, 2000, 373(1):0-109.

17. Woźnicka, E., Kuźniar, A., Nowak, D., Nykiel, E., Kopacz, M., Gruszecka, J., Golec, K., 2013. Comparative study on the antibacterial activity of some flavonoids and their sulfonic derivatives. Acta Poloniae Pharmaceutica 70, 567-571.

18. Wang, X.Y., Yang, Z., Su,F. F., Li, J., Boadi E. O., Chang, Y. X., Wang, H., 2020. Study on Structure Activity Relationship of Natural Flavonoids against Thrombin by Molecular Docking Virtual Screening Combined with Activity Evaluation In Vitro. Molecules 25, 422.
19. Noshita, T., Miura, K., Ikeda, K., Ouchi, H., Matsumoto, T., Tai, A., 2018. Structure-activity relationships of flavanones, flavanone glycosides, and flavones in anti-degranulation activity in rat basophilic leukemia RBL-2H3 cells. J Nat Med 72, 551-556.

20. Jiang hua, Yang jingming, Cao ling, et al. Physical and Ecological Impacts of Chromones of Fresh Root of Saposhnikovia divaricata Exposure to High Temperature. Russian Journal of Plant Physiology, 2018, 65,(5).

21. J. William Schopf. Life's Origin[M]. University of California Press:2019.

22. Vichnevetskaia K D , Roy D N. Oxidative stress and antioxidative defense with an emphasis on plants antioxidants[J]. Environmental Reviews, 2011, 7(1):31-51.[28] Haak DC, Fukao T, Grene R, et al. Multilevel Regulation of Abiotic Stress Responses in Plants[J]. Front Plant Sci, 2017, 8:1564.

23. Hiruma Kei. Roles of Plant-Derived Secondary Metabolites during Interactions with Pathogenic and Beneficial Microbes under Conditions of Environmental Stress.[J]. Microorganisms, 2019, 7(9).

24. Wang Jianjian, Ji Lala, Deng Xiaohong, Lv Litang, Yu Lifei, Guan Ping. Effects of Light Intensity on Growth and Content of Active Components of Uncaria Rhynchophylla [J]. China Journal of Chinese Materia Medica, 2019, 44 (23): 5118-5123

25. Fan Qian, Yin Jie, Bai Ruxia, Zheng Lixia, Huang Jianguo. Effect of Different Fertilization Treatments on Growth, Secondary Metabolites, and Seed Yield and Quality of Perilla Frutescens [J]. China Journal of Chinese Materia Medica, 2019, 44 (21): 4588-4595

26. Morganti Pierfrancesco, Morganti Gianluca, Colao Claudia. Biofunctional Textiles for Aging Skin.[J]. Biomedicines, 2019, 7(3).

27. Drzeżdżon Joanna, Jacewicz Dagmara, Chmurzyński Lech. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species - Consequences for plants and humans.[J]. Environment international, 2018, 119.

28. Gubernatorova E O, Liu X, Othman A, et al. Europium-Doped Cerium Oxide Nanoparticles Limit Reactive Oxygen Species Formation and Ameliorate Intestinal Ischemia–Reperfusion Injury.[J]. Advanced Healthcare Materials, 2017, 6(14):1700176.

29. Zhou Ya-Qun, Liu Dai-Qiang, Chen Shu-Ping, Sun Jia, Zhou Xue-Rong, Rittner Heike, Mei Wei, Tian Yu-Ke, Zhang Hui-Xian, Chen Fei, Ye Da-Wei. Corrigendum to "Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain" [REDOX 14 (2017) 391-397].[J]. Redox biology, 2020, 28.

30. Bhandary B., Marahatta A., Kim H.R., Chae H.J.: An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci., 2012; 14: 434-456

31. Ullah I A , Ullahp K F , Puregmaa K , et al. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress[J]. Biomedicine & Pharmacotherapy, 2018, 106:714-723.
32. Okuyama E, Hasegawa T, Matsushita T, et al. Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata). J. CHEMICAL & PHARMACEUTICAL BULLETIN, 2001, 49(2):154-160.

33. Kong X, Liu C, Zhang C, et al. The suppressive effects of Saposhnikovia divaricata (Fangfeng) chromone extract on rheumatoid arthritis via inhibition of nuclear factor-κB and mitogen activated protein kinases activation on collagen-induced arthritis model. J. Journal of Ethnopharmacology, 2013, 148(3):842-850.

34. Janků Martina, Luhová Lenka, Petřivalský Marek. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. J. Antioxidants (Basel, Switzerland), 2019, 8(4).

35. Bonekamp N.A., Völkl A., Fahimi H.D., Schrader M.: Reactive oxygen species and peroxisomes: struggling for balance. Biofactors, 2009; 35: 346-355.

36. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Journal of Botany, 217037, 26.

37. Habtemariam Solomon. Modulation of Reactive Oxygen Species in Health and Disease. J. Antioxidants (Basel, Switzerland), 2019, 8(11).

38. Gomes Bruna R B, Firmino Marina, Jorge Jardeson S, Ferreira Maria L O, Rodovalho Thays M, Weis Simone N, Souza Gloria E P, Morais Paulo C, Sousa Marcelo V, Souza Paulo E N, Veiga-Souza Fabiane H. Increase of reactive oxygen species in different tissues during lipopolysaccharide-induced fever and antipyresis: an electron paramagnetic resonance study. J. Free radical research, 2018, 52(3).

39. Graham N, VELJOVIC-JOVANOVIC SONJA, Simon D, et al. Drought and Oxidative Load in the Leaves of C3 Plants: a Predominant Role for Photorespiration? J. Annals of Botany(7):7.

40. Fridovich, Irwin. Superoxide radical and superoxide dismutase. J. Accounts of Chemical Research, 1972, 5(10):321-326.

41. Adam-Vizi V., Chinopoulos C.: Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci., 2006; 27: 639-645.

42. Mallick N, Mohn F H. Reactive oxygen species: Response of algal cells. J. Journal of Plant Physiology, 2000, 157(2):183–193.

43. Kim D, You B, Jo E K, et al. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. J. Proceedings of the National Academy of Sciences, 2010, 107(33):14851-14856.

44. Godai K, Takahashi K, Kashiwagi Y, et al. Ryanodine Receptor to Mitochondrial Reactive Oxygen Species Pathway Plays an Important Role in Chronic Human Immunodeficiency Virus gp120 MN-Induced Neuropathic Pain in Rats. J. Anesthesia & Analgesia, 2018.

45. Xiu Gao, Hee Kee Kim, Jin Mo Chung, Kyungsoon Chung. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. J. Pain, 2007, 131(3).

46. Iida T, Yi H, Liu S, et al. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. J. Exp Neurol. 2016; 281:17–27. 12.
47. Zhou Y Q, Liu D Q, Chen S P, et al. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain [J]. Redox Biology, 2018, 14:391-397.
48. Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A., Jr. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020, 25, 762.
49. Srikanth Pendyala, Viswanathan Natarajan. Redox regulation of Nox proteins [J]. Respiratory Physiology & Neurobiology, 2010, 174(3).
50. Harper Shelby N, Leidig Patrick D, Hughes Francis M, Jin Huixia, Purves J Todd. Calcium Pyrophosphate And Monosodium Urate Activate The NLRP3 Inflamasome Within Bladder Urothelium Via Reactive Oxygen Species And TXNIP [J]. Research and reports in urology, 2019, 11.
51. Fridovich, Irwin. Superoxide radical and superoxide dismutase [J]. Accounts of Chemical Research, 1972, 5(10):321-326.
52. Adam-Vizi V., Chinopoulos C.: Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci., 2006; 27: 639-645.
53. Mallick N, Mohn F H. Reactive oxygen species: Response of algal cells [J]. Journal of Plant Physiology, 2000, 157(2):183–193.
54. Kim D, You B, Jo E K, et al. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain [J]. Proceedings of the National Academy of Sciences, 2010, 107(33):14851-14856.
55. Godai K, Takahashi K, Kashiwagi Y, et al. Ryanodine Receptor to Mitochondrial Reactive Oxygen Species Pathway Plays an Important Role in Chronic Human Immunodeficiency Virus gp120 MN-Induced Neuropathic Pain in Rats [J]. Anesthesia & Analgesia, 2018.
56. Xiu Gao, Hee Kee Kim, Jin Mo Chung, Kyungsoon Chung. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain [J]. Pain, 2007, 131(3).
57. Iida T, Yi H, Liu S, et al. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with dDC-related neuropathic pain in rats. Exp Neurol. 2016;281:17–27. 12.
58. Zhou Y Q, Liu D Q, Chen S P, et al. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain [J]. Redox Biology, 2018, 14:391-397.
59. Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A., Jr. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020, 25, 762.
60. Srikanth Pendyala, Viswanathan Natarajan. Redox regulation of Nox proteins [J]. Respiratory Physiology & Neurobiology, 2010, 174(3).
61. Harper Shelby N, Leidig Patrick D, Hughes Francis M, Jin Huixia, Purves J Todd. Calcium Pyrophosphate And Monosodium Urate Activate The NLRP3 Inflamasome Within Bladder Urothelium Via Reactive Oxygen Species And TXNIP [J]. Research and reports in urology, 2019, 11.
62. Dai JN, Chen XH, Cheng WM, et al. A sensitive liquid chromatography-mass spectrometry method for simultaneous determination of two active chromones from Saposhnikovia root in rat plasma and urine. J Chromatogr B 2008;868:135.

63. Quan L J, Zhang B, Shi W W, et al. Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network [J]. Journal of Integrative Plant Biology, 2008(01):4-20.

64. Yunyue Zhang, Simin Wu, Yinghui Qin, Jiaxin Liu, Jingwen Liu, Qingyu Wang, Fazheng Ren, Hao Zhang. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity [J]. Food Chemistry, 2018, 240.

65. Kawai Satoru, Ishikawa Yuya, Yoshizawa Yuko. Relationship Between the Structure of Methoxylated and Hydroxylated Flavones and Their Antiproliferative Activity in HL60 Cells. [J]. Anticancer Research, 2018, 38(10).

Tables

Tab. 1 Correlation Analysis of POD, CAT and antipyretic effect in rats before administration

No.	Group	Point of time	Linear Equation	Correlation	
1	Model Group	0h-8h-22h	H₂O₂-Temp.	y = 23.052x - 793.24	r = 0.9689
2	Treatment Group	Before Fever	POD-Antipyretic effect	y = -1.8291x + 4.9484	r = 0.4508
3			CAT-Antipyretic effect	y = -3.0596x + 5.6249	r = 0.5470
4		After Fever	POD-H₂O₂	y = 12.683x + 16.519	r = 0.8085
5			POD-Antipyretic effect	y = -3.5706x + 6.0101	r = 0.5582
6			CAT-Antipyretic effect	y = -0.7374x + 6.3771	r = 0.2335
7			H₂O₂-8hTemp.	y = 38.694x - 1471.6	r = 0.5221
8			POD-H₂O₂	y = -4.2087x + 71.886	r = 0.5070

Figures
Figure 1
Structure diagram of main chromones in Radix Saposhnikoviae

\[
\text{Cimifugin (R=H)} \quad \text{4'-O-\(\beta\)-D-glucosyl-5-O-methylvisamminol}
\]

\[
\text{Prim-O-glucosylcimifugin (R=GLU)} \quad \text{Glu-}\text{O-}
\]

Figure 2
Changes of fever temperature in rats

![Graph showing changes in fever temperature over time (0h to 22h)]
Figure 3

Correlation between body temperatures and H2O2 contents in model group

\[y = 23.052x - 793.24 \]

\[r = 0.9689 \]
Figure 4

Relationship between body temperatures and H2O2 contents in treatment group
Figure 5

Relationship between POD and H₂O₂
Figure 6

Relationship between CAT and H₂O₂

\[y = 3.4158x + 54.033 \]
\[r = 0.3001 \]

\[y = -0.3387x + 55.119 \]
\[r = 0.0361 \]
Figure 7

Relationship between POD and antipyretic effect
Figure 8

Relationship between CAT and antipyretic effect

Figure 9
Optimum temperature of POD and CAT in rats

Figure 10

H2O2 elimination of antioxidant enzymes at different temperatures
Figure 11

Correlation of POD and analgesic effect

Correlation of POD and swelling degree
Figure 12

Correlation of POD and ear swelling

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- MaterialsandMethods.docx