Dynamical properties of a 2-D non-invertible system

M. Mammeri *

Department of Mathematics, Kasdi Merbah University, Ouargla, Algeria

ARTICLE INFO

Article history:
Received 30 September 2019
Received in revised form
20 February 2020
Accepted 20 February 2020

Keywords:
Non-invertible 2-D map
Properties
Open connected subset
Quasi-periodic route to chaos

ABSTRACT

The non-invertible systems are very useful in practical applications. The study of the non-invertible systems has important value since a large number of genetics studies in biology, physics, engineering, and economic systems have been widely carried out found to exhibit a class of non-invertible systems. This short paper proposes a new simple four-term 2-D polynomial chaotic system with only one quadratic nonlinearity and describes its some interesting dynamical properties. Moreover, the stability of the fixed point and chaotic motions are investigated using analytical and numerical methods. Our 2-D polynomial system displays new chaotic attractors via the quasi-periodic route to chaos for certain values of its parameter of bifurcation.

© 2020 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license [http://creativecommons.org/licenses/by-nc-nd/4.0/].

1. Introduction

Many papers have described 2-D chaotic invertible system with a quadratic inverse and constant Jacobian (Aziz-Alaoui et al., 2001; Miller and Grassi, 2001), one of the most famous is the smooth two-dimensional Hénon system (Hénon, 1976) and studied in detail by others (Hénon, 1969; Benedicks and Carleson, 1991; Cao and Liu, 1998; Marotto, 1979). In this context, the study of the non-invertible systems has important value since, a large number of genetics researches in biology (Bi and Ruan, 2013; Galach, 2003), physics (Benerjee and Verghese, 2001), engineering (Tse, 2003), economics (Bischi and Tramontana, 2010), and applied mathematics (Mammeri, 2018) systems have been widely carried out found to exhibit a class of non-invertible quadratic systems. This short paper proposes a new simple 2-D non-invertible discrete chaotic system (2) with one bifurcation parameter, and that has only one nonlinear term (Mammeri, 2017). In section 1, a rigorous proof of the existence of some interesting properties of the system (2) on open, a detailed dynamical behavior of this system (2) is further investigated numerically in term of a single bifurcation parameter. The final section concludes the letter.

It is well known that the general form two-dimensional quadratic systems were made by Zeraoulia and Sprott (2010), where the 2-D quadratic systems are classified according to their number of nonlinearities. Also, many examples are given. And the first case of one nonlinearity is defined by:

\[
\begin{pmatrix}
 x_{n+1} \\
 y_{n+1}
\end{pmatrix} = \begin{pmatrix}
 a_0 + a_1 x_n + a_2 y_n \\
 b_0 + b_1 x_n + b_2 y_n + b_3 x_n y_n
\end{pmatrix}
\] (1)

In this paper, the new simplest two-dimensional quadratic system with only one cross-product nonlinear term \(xy\) is presented as follows:

\[
f(x_n, y_n) = \begin{pmatrix}
 x_{n+1} \\
 y_{n+1}
\end{pmatrix} = \begin{pmatrix}
 x_n - a y_n \\
 x_n - a x_n y_n
\end{pmatrix}
\] (2)

where \((x, y) \in \mathbb{R}^2\) and \(a \in \mathbb{R}_+^*\) is the bifurcation parameter. For \(a = 0\) the system (2) reduces to a two-dimensional linear system. On the other hand, the system (2) permits the construction of a new family of attractors dependent on the bifurcation parameter \(a\) and initial conditions.

2. Qualitative properties of the system

In the following section, we will prove some propositions in order to rigorously demonstrate the existence of some interesting properties of the system (2) on the largest open, connected subset. Let us define the following subset: \(\Omega = \{(x, y) \in \mathbb{R}^2; 1 - x - ay > 0\}\).

Proposition 1: The system (2) is invertible if

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} \equiv \frac{1}{(n+1)\Sigma x_k y_n - \Sigma y_k x_n - x_n} \begin{pmatrix}
 (n+1)\Sigma y_k x_n - \Sigma y_k \Sigma x_n \\
 -\Sigma y_k y_n x_n + \Sigma y_k x_n \Sigma y_n
\end{pmatrix}
\]

* Corresponding Author:
 Email Address: mammeri.mohammed@univ-ouargla.dz
 https://orcid.org/0000-0003-2960-4214

2313-626X © 2020 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license [http://creativecommons.org/licenses/by-nc-nd/4.0/]
Proof: The determinant of the Jacobi matrix of the system (2) evaluated at a point \((x, y)\) is
\[det Df(x, y) = a(–ay + 1 – x) \]
and we consider the finite number of points \((x_0, y_0), (x_1, y_1), \ldots, (x_k, y_k), \ldots, (x_n, y_n)\) of an orbit of the system (2) and let us define the following matrix,
\[
A = \begin{pmatrix}
 y_0 & 1 \\
 y_1 & 1 \\
 \vdots & \vdots \\
 y_n & 1
\end{pmatrix}, \quad Y = \begin{pmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}, \quad B = \begin{pmatrix}
 -ay_0 + 1 - x_0 \\
 -ay_1 + 1 - x_1 \\
 \vdots \\
 -ay_n + 1 - x_n
\end{pmatrix},
\]
then one has,
\[
AY - B = \begin{pmatrix}
 -ay_0 + 1 - x_0 \\
 -ay_1 + 1 - x_1 \\
 \vdots \\
 -ay_n + 1 - x_n
\end{pmatrix},
\]
we use the results available on linear algebra, then one has,
\[
‖AY - B‖^2 = \sum_{k=0}^{n} (-ay_k + 1 - x_k)^2,
\]
the system (2) is invertible if,
\[
‖AY - B‖^2 \neq 0,
\]
i.e.,
\[
Y \neq (tAA)^{-1}(tAB),
\]
where,
\[
tAA = \begin{pmatrix}
 y_0 & 1 \\
 y_1 & 1 \\
 \vdots & \vdots \\
 y_n & 1
\end{pmatrix}
\]
and
\[
(tAA)^{-1} = \frac{1}{(n+1)\Sigma y_k - \Sigma y_k^2} \begin{pmatrix}
 (n+1) & -\Sigma y_k \\
 -\Sigma y_k & \Sigma y_k^2
\end{pmatrix},
\]
and
\[
tAB = \begin{pmatrix}
 y_0 & 1 \\
 y_1 & 1 \\
 \vdots & \vdots \\
 y_n & 1
\end{pmatrix}
\]
then we have,
\[
Y \neq (tAA)^{-1}(tAB) = \frac{1}{(n+1)\Sigma y_k - \Sigma y_k^2} \begin{pmatrix}
 (n+1)\Sigma y_k x_k - \Sigma y_k \Sigma x_k \\
 -\Sigma y_k \Sigma x_k \Sigma y_k - \Sigma y_k^2 \Sigma x_k
\end{pmatrix}.
\]

Proposition 2: The open subset \(Ω\) is the largest open connected and includes \((0, 0)\).

Proof: The subset \(Ω\) is open because it’s the inverse image of the interval \((0, +∞)\) by the continuous map \(h: \mathbb{R}^2 → \mathbb{R}\) described by \(h(x, y) = 1 - x - ay\).

Proposition 3: The system (2) is of class \(C^∞\) on the subset \(Ω\).

Proof: Because the coordinates of the system (2) is polynomial.

Proposition 4: \(Df(x, y)\) is an isomorphism for \(\mathbb{R}^2\) on \(\mathbb{R}^2\) for all \((x, y) \in Ω\).

Proof: Because, for all \((x, y) \in Ω\). We have
\[
det Df(x, y) = a(1 - x - ay) > 0.
\]

Proposition 5: The system (2) is one to one on \(Ω\).

Proof: We use the following standard results: the system (2) is one to one if \(f(x_1, y_1) = f(x_2, y_2)\); it implies that \((x_1 = x_2, y_1 = y_2)\). Let \((x_1, y_1)\) and \((x_2, y_2)\) with \(1 - x_1 - ay_1 > 0\) and \(1 - x_2 - ay_2 > 0\). In our case \(f(x_1, y_1) = f(x_2, y_2)\) equivalent to \((x_1 - ay_1 = x_2 - ay_2, x_1(1 - ay_1) = x_2(1 - ay_2))\) or \((x_1 + 1 - ay_1 = x_2 + (1 - ay_2), x_1(1 - ay_1) = x_2(1 - ay_2))\) we observe that the two coordinates \((x_1, 1 - ay_1)\) and \((x_2, 1 - ay_2)\) have the same total and the same product, and it is convenient to distinguish two possibilities:

a) \(x_1 = x_2\) and \(y_1 = y_2\) in this case the map (2) is one to one on \(Ω\).
b) \(x_1 = 1 - ay_2\) and \(x_2 = 1 - ay_1\), than from the choice of \((x_1, y_1)\) we have \(1 - x_2 - ay_2 = 1 - (1 - ay_1) - (1 - x_1) = -(1 - x_1 - ay_1) < 0\) this is impossible since \(1 - x_2 - ay_2 > 0\). Finally, we conclude that the system (2) is one to one on \(Ω\).

Proposition 6: \(f(Ω) = \{(X, Y) \in \mathbb{R}^2; (1 + X)^2 - 4Y > 0\}\).

Proof: Let \((X, Y) \in \mathbb{R}^2\) we want to find the conditions that must be satisfied the coordinate \((X, Y)\) in order to exist \((x, y) \in Ω\) in which \(f(x, y) = (X, Y)\). We have \(f(x, y) = (X, Y)\) equivalent \((x - ay = X, x(1 - ay) = Y)\) or \((x + (1 - ay) = 1 + X, x(1 - ay) = Y)\). Therefore, \(x\) and \(1 - ay\) are two solutions of the following equation of the variable \(T^2 - (1 + X)T + Y = 0\) and the condition to accept this equation solutions in \(\mathbb{R}\) is \(Δ = (1 + X)^2 - 4Y > 0\). If the last inequality satisfied, then we have:

\[
\begin{align*}
x &= \frac{1 + x - √Δ}{2} \\
1 - ay &= \frac{1 + x + √Δ}{2}
\end{align*}
\]
(3)

or

\[
\begin{align*}
x &= \frac{1 + x + √Δ}{2} \\
1 - ay &= \frac{1 + x - √Δ}{2}
\end{align*}
\]
(4)

The solution (3) is suitable because of \(1 - x - ay = √Δ > 0\) but the solution (4) is not suitable because it gives \(1 - x - ay = -√Δ < 0\) and also we reject the case \(Δ = 0\). Because it leads to \(1 - x - ay = 0\). We conclude from the above discussion that:
The following section further investigates the dynamical behaviors of the chaotic system (2), including the stability of fixed point and bifurcations, Lyapunov exponents, bifurcation diagram, and Phases portraits.

3.1. Local stability conditions

The only fixed point of the system (2) is \(A(0,0) \). The Jacobi matrix of the system (2) evaluated at a point \((x, y)\) is given by:

\[
Df(x, y) = \begin{pmatrix} \frac{1}{1-ay} & -a \\ 1 & 0 \end{pmatrix}
\]

and \(det Df(x, y) = a(1-x-ay) \), at the fixed point \(A(0,0) \), the Jacobi matrix is given by:

\[
Df(0,0) = \begin{pmatrix} 1 & -a \\ 1 & 0 \end{pmatrix}
\]

The characteristic polynomial of the Jacobi matrix of the system (2) calculated at the fixed point \(A \), which takes the form: \(P_J(\lambda) = \lambda^2 - \lambda + a \), according to the criterion available in Elaydi (1996), we conclude that the fixed point \(A \) of the system (2) is asymptotically stable if and only if the following conditions hold:

\[
1 + 1 + a > 0.1 - 1 + a > 0.1 - a > 0
\]

or, equivalently,

\[
0 < a < 1
\]

For example, if we choose \(a = 0.7 \) then with this value the fixed point \(A \) is asymptotically stable, and we have the following two eigenvalues \(\lambda_1 = 0.50 - i0.67 \) and \(\lambda_2 = 0.50 + i0.67 \) thus \(|\lambda_1(1\leq a<2)| < 1 \).

On the other hand, the local stability of \(A \) is studied by evaluating the eigenvalues of the Jacobi \(J(0,0) \).

If \(\frac{1}{4} < a \) the eigenvalues of \(J(0,0) \) are \(\lambda_1 = \frac{1-\sqrt{1-4a}}{2} \) and \(\lambda_2 = \frac{1+\sqrt{1-4a}}{2} \). Then one has the following results:

(a) \(|\lambda_1| < 1 \) and \(|\lambda_2| < 1 \), if and only if \(0 < a < \frac{1}{4} \), system (2) is attracting at this fixed point.

(b) \(|\lambda_1| = |\lambda_2| = \frac{1}{4} < 1 \), if and only if \(a = \frac{1}{4} \), system (2) is not attracting at this fixed point.

(c) \(|\lambda_1| > 1 \) and \(|\lambda_2| < 1 \) (impossible because \(a > 0 \)), system (2) is not a saddle at this fixed point.

(d) \(|\lambda_1| < 1 \) and \(|\lambda_2| > 1 \) (impossible because \(a > 0 \)), system (2) is not a saddle at this fixed point.

(e) \(|\lambda_1| > 1 \) and \(|\lambda_2| > 1 \) (impossible because \(a > 0 \)), system (2) is non-repelling at this fixed point.

If \(a > \frac{1}{4} \) the eigenvalues of \(J(0,0) \) are \(\lambda_1 = \frac{1-\sqrt{1-4a}}{2} \) and \(\lambda_2 = \frac{1+\sqrt{1-4a}}{2} \). Then one has the following results:

(a) \(|\lambda_1| = |\lambda_2| < 1 \), if and only if \(\frac{1}{4} < a < 1 \), system (2) is attracting at this fixed point.

(b) \(|\lambda_1| = |\lambda_2| = 1 \), if and only if \(a = 1 \), system (2) is non-hyperbolic at this fixed point.

(c) \(|\lambda_1| = |\lambda_2| > 1 \), if and only if \(a > 1 \), system (2) is unstable at this fixed point.

(d) \(|\lambda_1| > 1 \) and \(|\lambda_2| < 1 \) (impossible because \(a > 0 \)), system (2) is not a saddle at this fixed point.

(e) \(|\lambda_1| < 1 \) and \(|\lambda_2| > 1 \) (impossible because \(a > 0 \)), system (2) is not a saddle at this fixed point.

(f) \(|\lambda_1| > 1 \) and \(|\lambda_2| > 1 \) (impossible because \(a > 0 \)), system (2) is non-repelling at this fixed point.

3.2. Numerical results

In this subsection, we will illustrate some observed chaotic attractors, the dynamical behaviors of the system (2) are investigated numerically. Fig. 1 shows the bifurcation diagram and the diagram of the variation of Lyapunov exponent of the system (2) by varying the parameter \(a \). For the range \(0.5 \leq a \leq 1.42 \). It can be observed from Fig. 1 that system (2) undergoes the following dynamical behaviors as \(a \) increases:

- For \(0.5 \leq a < 1 \), system (2) is a fixed point.
- For \(a = 1 \), the fixed point \(A \) loses stability at \(a = 1 \), and we have the following two eigenvalues \(\lambda_1 = \frac{1+i\sqrt{3}}{2} \) and \(\lambda_2 = \frac{1-i\sqrt{3}}{2} \), thus \(|\lambda_1(1\leq a<2)| = 1 \). At this value, a Hopf bifurcation occurs, and via the quasi-periodic route to chaos, chaotic behavior can be observed. Fig. 1a shows a diagram description of this scenario of chaos.
- For \(0.5 < a \leq 1.42 \), system (2) is chaotic via the quasi-periodic route to chaos, and there are several
quasi-periodic windows. If we fix the parameter a to the value $a = 1.40$ at the point, the dynamical behavior of the system (2) is chaotic, which is verified by the corresponding largest Lyapunov exponent is positive, as shown in Fig. 1b. The corresponding chaotic attractor is shown in Fig. 2d.

Also, Fig. 2a shows Quasi-periodic orbit of the system (2) $(a = 1.25)$, Fig. 2b shows Chaotic attractor of the system (2) $(a = 1.27)$, and Fig. 2c shows Chaotic attractor of the system (2) $(a = 1.28)$.

Fig. 1: Bifurcation diagram and Lyapunov exponent of the system (2)

Fig. 2: Quasi-periodic orbit and Chaotic attractor of the system (2)
c: Chaotic attractor of the system (2) \((a = 1.28)\)

d: Chaotic attractor of the system (2) \((a = 1.40)\)

Fig. 2: Quasi-periodic orbit, chaotic attractor and chaotic attractor of the system (2)

4. Conclusion

This paper is devoted to the rigorous proof of the existence of some interesting dynamical properties of the system using the standard methods available in most kinds of literature on analysis mathematics. Also, the dynamics of the system are described numerically in some detail.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

Aziz-Alaoui MA, Robert C, and Grebogi C (2001). Dynamics of a Hénon–Lozi-type map. Chaos, Solitons and Fractals, 12(12): 2323-2341. https://doi.org/10.1016/S0960-0779(00)00192-2

Benedicks M and Carleson L (1991). The dynamics of the Hénon map. Annals of Mathematics, 133(1): 73-169. https://doi.org/10.2307/2944326

Benerjee S and Verghese GC (2001). Nonlinear phenomena in power electronics, attractor, bifurcations. IEEE Press, Piscataway, USA. https://doi.org/10.1109/9780470545393

Bi P and Ruan S (2013). Bifurcations in delay differential equations and applications to tumor and immune system interaction models. SIAM Journal on Applied Dynamical Systems, 12(4): 1847-1888. https://doi.org/10.1137/120887898

Bischi GI and Tramontana F (2010). Three-dimensional discrete-time Lotka–Volterra models with an application to industrial clusters. Communications in Nonlinear Science and Numerical Simulation, 15(10): 3000-3014. https://doi.org/10.1016/j.cnsns.2009.10.021

Cao Y and Liu Z (1998). Strange attractors in the orientation-preserving Lozi map. Chaos Solitons and Fractals, 9(11): 102
1857-1864.
https://doi.org/10.1016/S0960-0779(97)00180-X

Elaydi S (1996). An introduction to difference equations. Springer, Berlin, Germany.
https://doi.org/10.1007/978-1-4757-9168-6

Galach M (2003). Dynamics of the tumor-immune system competition-the effect of time delay. International Journal of Applied Mathematics and Computer Science, 13: 395-406.

Hénon M (1969). Numerical study of quadratic area-preserving mappings. Quarterly of Applied Mathematics, 27(3): 291-312.
https://doi.org/10.1090/qam/253513

Hénon M (1976). A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50(1): 69-77.
https://doi.org/10.1007/BF01608556

Mammeri M (2017). A unified behavior of 2-D and 3-D noninvertible map. International Journal of Pure and Applied Mathematics, 114(3): 611-618.

Mammeri M (2018). A trivial dynamics in 2-D square root discrete mapping. Applied Mathematical Sciences, 12(8): 363-368.
https://doi.org/10.12988/ams.2018.8121

Marotto FR (1979). Chaotic behavior in the Hénon mapping. Communications in Mathematical Physics, 68(2): 187-194.
https://doi.org/10.1007/BF01418128

Miller DA and Grassi G (2001). A discrete generalized hyperchaotic Hénon map circuit. In the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, IEEE, Dayton, USA, 1: 328-331.
https://doi.org/10.1109/MWSCAS.2001.986179

Tse TK (2003). Complex behavior of switching power converters. CRC Press, Boca Raton, USA.
https://doi.org/10.1201/9780203494554

Zeraoulia E and Sprott JC (2010). 2-D quadratic maps and 3-D ODE systems: A rigorous approach. World Scientific, Singapore, Singapore.
https://doi.org/10.1142/7774