INTRODUCTION

Innovations in biotechnology that combine molecular biology, microfabrication and bioinformatics are moving nucleic acid technologies from futuristic possibilities into common laboratory and clinical procedures. By this, amplification of nucleic acids can be widely used in research, forensics, medicine and agriculture.[1] One of the best-known amplification methods is the polymerase chain reaction (PCR), which is a target amplification method. A PCR reaction typically utilizes two oligonucleotide primers, which are hybridized to the 5’ and 3’ borders of the target sequence and a DNA polymerase, which can extend the annealed primers by adding on deoxyribonucleoside-triphosphates (dNTPs) to generate double-stranded products [Figure 1]. By raising and lowering the temperature of the reaction mixture, the two strands of the DNA product are separated and can serve as templates for the next round of annealing and extension, and the process is repeated.[2] Although PCR has been widely used by researchers, it requires thermocycling to separate the two DNA strands. This characteristic has limited its application in the field. On the other hand, several isothermal target amplification methods have been developed in the two past decades without using a thermocycling apparatus. DNA polymerase replicates DNA with various accessory proteins. Therefore, with identification of these proteins, we are able to develop new in vitro isothermal DNA amplification methods by mimicking these in vivo mechanisms. There are several isothermal nucleic acid amplifications, such as transcription-mediated amplification or self-sustained sequence replication, nucleic acid sequence-based amplification, signal-mediated amplification of RNA technology, strand displacement amplification, rolling circle amplification, loop-mediated isothermal amplification of DNA, isothermal multiple displacement amplification, helicase-dependent amplification, single-primer isothermal amplification and circular helicase-dependent amplification. In this paper, we reviewed the nucleic acid amplification methods and their applications in molecular biology. We reviewed the best-known isothermal techniques for DNA/RNA amplification. The above information can be used for the application of valuable molecular diagnostic techniques for the detection of infectious agents in small-scale hospital laboratories in the field. With regards to the properties of isothermal DNA/RNA amplification techniques, the design and development of novel rapid molecular tests for application in field may be possible.

Key words: cHDA, HDA, IMDA, LAMP, NASBA, PCR, RCA, SDA, SMART, SPIA, TMA
technology [SMART], strand displacement amplification [SDA], rolling circle amplification [RCA], loop-mediated isothermal amplification of DNA [LAMP], isothermal multiple displacement amplification [IMDA], helicase-dependent amplification [HAD], single primer isothermal amplification [SPIA] and circular helicase-dependent amplification [cHDA]) and their applications in the field. These techniques differ in their requirements for sample volume, specimen preparation and methods of amplification and detection. There are strengths and weakness to each of the amplification systems and, therefore, there is probably no one assay best suited to all situations.[3]

TMA/NASBA

One of the isothermal amplification techniques is TMA, which is similar to NASBA.[3] These techniques utilize the function of an RNA polymerase to make RNA from a promoter engineered in the primer region and a reverse transcriptase to produce DNA from the RNA templates [Figure 2]. This RNA amplification technology has been further improved by introducing a third enzymatic activity, RnaseH, to remove the RNA from cDNA without the heat-denaturing step. Thus, the thermocycling step has been eliminated, generating an isothermal amplification method named 3SR.[4] The end products of NASBA can be detected using gel electrophoresis, fluorescence probes (real-time NASBA) and colorimetric assay (NASBA-enzyme-linked immunosorbent assay [ELISA]).[5,6] The United States Food and Drug Administration office (FDA) has approved the technique in NucliSence format (NASBA-ECL) for molecular detection of some microorganisms such as hepatitis C virus and human immunodeficiency virus-1.[7,8]

SMART

This technique is based on the formation of a three-way junction (3WJ) structure. The method relies on signal amplification and does not require thermal cycling or involve the copying of target sequences. The assay generates a signal that is highly target dependent and is appropriate for the detection of DNA or RNA targets.[9] The SMART consists of two single-stranded oligonucleotide probes corresponding to extension and template. Each probe includes one region that can hybridize to the target at adjacent positions and another, much shorter, region that hybridizes to the other probe. The two probes are annealed to each other in the presence of the specific target, forming a 3WJ [Figure 3a]. Following 3WJ formation, Bst DNA polymerase extends the short (extension) probe by copying the opposing template probe to produce a double-stranded T7 RNA polymerase promoter sequence [Figure 3b]. The formed promoter allows T7 RNA polymerase to generate multiple copies of RNA. Amplicons are therefore produced only when a specific target is present to allow 3WJ formation. Each RNA amplicon may itself be amplified by binding to a second template oligonucleotide (probe for amplification), and is extended by DNA polymerase to generate a double-stranded promoter, leading to transcription, which increases the RNA amplicons detected by an enzyme-linked oligosorbent assay (ELOSA) or in real-time format.[10,11] This process is in fact a signal amplification method, where the target sequence is not itself amplified.[12]

SDA

A second isothermal amplification system is known as SDA.[13] SDA combines the ability of a restriction endonuclease to nick the unmodified strand of its target DNA and the action of an exonuclease-deficient DNA polymerase to extend the 3′ end at the nick and displace the downstream DNA strand. The displaced strand serves as a template for an antisense reaction and vice versa, resulting in exponential amplification of the target DNA.

Figure 1: Polymerase chain reaction. This process includes 30–40 cycles of the following steps: Step 1, initial denaturation of DNA template by heat; Step 2, primer annealing to denatured targeted DNA at specific temperature; Step 3, DNA synthesis by thermostable DNA polymerase.
In the originally designed SDA, the DNA was first cleaved by a restriction enzyme in order to generate an amplifiable target fragment with defined 5' and 3'-ends, but the requirement of a restriction enzyme cleavage site limited the choice of target DNA sequences. This technique has been circumvented by using bumper primers, which flank the region to be amplified. SDA technology has been used mainly for clinical diagnosis of infectious diseases such as chlamydia and gonorrhea. One of the most attractive features of SDA is its operation at a single temperature, which circumvents the need for expensive instrumented thermal cycling. However, SDA is inefficient in amplifying long target sequences. Also, this technique can be used for isothermal amplification of RNA templates in the RT-SDA format by adding reverse transcriptase to the original process.

RCA

The RCA generates multiple copies of a sequence for use in vitro and DNA amplification adapted from in vivo rolling circle DNA amplification. In this reaction, a DNA polymerase extends a primer on a circular template, generating tandemly linked copies of the complementary sequence of the template using Φ29 DNA polymerase [Figure 5]. As a result, long DNA repeats will be formed that...
can readily be detected. Importantly, RCA needs no special instrumentation to cycle the temperature, as is required with the widely used PCR-based DNA technologies.[20,21] RCA-based approaches have recently been attracting the attention of diagnostics-oriented biotech companies and research centers for gene tests and immunoassays, single nucleotide polymorphisms (SNP) scoring and sequencing template preparation, single-cell analysis systems and gene expression studies.[21]

LAMP

LAMP is a nucleic acid amplification technique that amplifies DNA under isothermal conditions.[22] The LAMP method requires a set of four (to six) specific designed primers and a DNA polymerase with strand displacement...
activity. The amplification products are stem–loop DNA structures with several inverted repeats of the target and cauliflower-like structures with multiple loops [Figure 6]. The LAMP method is also a highly efficient amplification method that allows the synthesis of large amounts of DNA in a short time. As a result, pyrophosphate ions are produced in large amounts and form white precipitates of magnesium pyrophosphate. Judging the presence or absence of this white precipitate allows easy distinction of whether nucleic acid was amplified by the LAMP method or not.\[23\]

However, the other formats such as gel electrophoresis, real-time turbidimetry and fluorescence probes have been used for the detection of LAMP products.\[24,25\] Despite its high specificity and effectiveness, this procedure, in its primary version, also has limitations.\[26\] LAMP requires a complicated design of multiple primers, which might cause trouble for beginners. Also, the final product is a complex mixture of stem–loop cauliflower-like DNA structures of various sizes. Nagamine et al. have devised extra steps to obtain uniform, single-stranded DNA from LAMP products.\[27\] This is preferable for various hybridization techniques. The advanced method uses the thermostable TspRI restriction enzyme to digest the amplification product,\[27\] and an additional primer hybridized to the 9-nt 3′ overhang at the TspRI cleavage site to displace the single-stranded DNA by primer extension.\[28\] This technology has been widely used for the molecular detection of several microorganisms by researchers, and it can be a suitable choice for the design and development of rapid molecular tests in the field.

IMDA

This technique is based on strand displacement replication of the nucleic acid sequences by multiple primers.\[29\]

In one preferred form of the method, referred to as multiple strand displacement amplification, two sets of primers are used, a right set and a left set [Figure 7]. The primers in the right set are complementary to one strand of the nucleic acid molecule to be amplified and
the primers in the left set are complementary to the opposite strand. The 5' ends of primers in both sets are distal to the nucleic acid sequence of interest when the primers have hybridized to the nucleic acid sequence molecule to be amplified. Amplification proceeds by replication initiated at each primer, continuing through the nucleic acid sequence of interest. A key feature of this method is the displacement of intervening primers during replication by the polymerase. In another preferred form of the method, referred to as whole genome strand displacement amplification, a random set of primers is used to randomly prime a sample of genomic nucleic acid. Amplification proceeds by replication with a highly processive polymerase initiated at each primer and continuing until spontaneous termination. A key feature of this method is the displacement of the intervening primers during replication by the polymerase. In this way, multiple overlapping copies of the entire genome to be synthesized are made in a short period of time.

HDA

HDA is based on the unwinding activity of a DNA helicase. This process uses a helicase rather than heat to separate the two strands of a DNA duplex, generating single-stranded templates for the purpose of in vitro amplification of a target nucleic acid. Sequence-specific primers hybridize to the templates and are then extended by DNA polymerases to amplify the target sequence. This process repeats itself so that exponential amplification can be achieved at a single temperature [Figure 8]. This process allows multiple cycles of replication to be performed at a single incubation temperature, completely eliminating the need for the thermocycling equipment. The HDA amplicons can be detected using gel electrophoresis, real-time format and ELISA.

Figure 7: Schematic representation of the isothermal multiple displacement amplification mechanism. This is a diagram of an example of isothermal multiple strand displacement amplification. Diagramed at the top is a double-stranded nucleic acid molecule that contains a nucleic acid of interest (hatched area). Hybridized to the nucleic acid molecules are right and left sets of primers. Diagramed at the middle are the multiple strands of replicated nucleic acid being elongated from each primer. The polymerase at the end of each elongating strand displaces the elongating strand of the primer ahead of it. Diagramed at the bottom are the multiple strands of replicated nucleic acid further elongated. Also shown are the next sets of primers that hybridize to their complementary sites on the newly replicated strands. The newly replicated strands are made available for hybridization to the primers through displacement by the polymerase elongating the following strand.

Figure 8: The figure shows the helicase-dependent amplification process. Step 1: the helicase unwinds DNA duplexes. Step 2: the primers anneal to the ssDNA. Step 3: DNA polymerase extends the primers; one duplex is amplified to two duplexes. The dsDNAs are separated by helicase and this chain reaction repeats itself.
This amplification method uses a single chimeric primer for the amplification of DNA (SPIA) and RNA (Ribo-SPIA). The process needs DNA polymerase with strand displacement activity and RNaseH [Figure 9]. SPIA amplification can be used for global genomic DNA amplification and for the amplification of specific genomic sequences and synthetic oligonucleotide DNA targets. Ribo-SPIA is similarly suitable for global and target-specific RNA amplification. In addition, this process can be used for the amplification of large populations of nucleic acid species, which are limited in biological samples, as are commonly encountered in clinical research.

The cHDA is used for amplifying nucleic acids from a circular DNA template. This system combines a DNA polymerase and a helicase preparation to amplify a target sequence as well as the entire circular DNA template containing the target sequence. The technique is based on the T7 replication machinery, which includes the processive T7 helicase, an exonuclease-deficient T7 DNA polymerase (T7 sequenase) and the T7 Gp2.5 single-stranded DNA-binding protein. After the duplex DNA template is unwound by T7 helicase, specific primers anneal to the separated DNA strands and T7 sequenase extends the 3' end of each primer by a rolling circle mechanism to amplify not only a region defined by the primers but also...
continuous concatemers of the template [Figure 10]. The process can be carried out at one temperature (25°C) for the entire process. Amplification can be performed using purified plasmid DNA; crude cell lysate can amplify inserts as large as 10 kilo base pairs.

In this study, we reviewed the best known isothermal techniques for DNA/RNA amplification that offer several advantages over PCR, namely that they eliminate the need for an expensive and power-hungry thermocycler. However, these isothermal amplification methods have weaknesses that limit their use in some aspects of molecular biology [Table 1], like PCR. Some isothermal DNA amplification techniques have complicated reaction mechanisms and experimental designs. SDA uses four primers to generate initial amplicons and modified deoxynucleotides to provide strand-specific nicking. LAMP requires four to six specific primers and thus their designs are complicated for the new user. NASBA needs three different enzymatic steps (transcription/cDNA synthesis/RNA degradation)
to accomplish an isothermal RNA amplification.\[28\]

Because of its robustness and simplicity, RCA holds a pole position in DNA diagnostics among other single-temperature amplification techniques. As compared with RCA, all other isothermal methods of signal, probe or target DNA amplification, such as the transcription-based system, strand-displacement approach or loop-mediated techniques, are rather complicated and, in most cases, require prior assay optimization. The RCA-based approaches have recently been attracting attention of diagnostics-oriented biotech companies and research centers for gene tests and immunoassay, SNP scoring, sequencing, template preparation, single cell analysis and gene expression analysis.

On the other hand, some of these methods, such as had, have a simple reaction scheme, in which a target sequence can be amplified by two flanking primers, similar to PCR.\[15,33\]

One of the most important advantages of the isothermal amplification techniques is related to their tolerances to some inhibitory materials that affect the PCR efficiency. Recently, Kaneko et al. evaluated the tolerance of LAMP to a culture medium and some biological substances.\[40\] According to this study, the sensitivity of LAMP was less affected by the various components of the clinical samples than was PCR; therefore, DNA purification can be omitted. Another example is about HDA; a pathogen genomic DNA can even be detected in a human blood sample.\[15\] This demonstrates that HDA can be performed on crude samples and has the potential to be used as a diagnostic tool.

Another important advantage of the isothermal amplification techniques is that there is no need for initial heat denaturation at a high temperature followed by amplification at a lower temperature. This property has been reported in some isothermal amplification methods. For example, because there is no necessity for heat denaturation of the template DNAs, LAMP can be used more easily and rapidly in molecular medicine.\[41\] As DNA helicase can melt double-stranded target DNA at the beginning of the reaction, the entire HDA reaction can be performed at one temperature.\[15\]

CONCLUSION

We reviewed the best-known isothermal techniques for DNA/RNA amplification. The above information can be used for the application of valuable molecular diagnostic techniques for the detection of infectious agents in small-scale hospital laboratories in the field. Therefore, with regards these properties of isothermal DNA/RNA amplification techniques, the design and development of novel rapid molecular tests for application in field may be possible.

REFERENCES

1. Moore P. PCR: Replicating success. Nature 2005;435:235-8.
2. Eisenstein M. DNA cloning and amplification: Breaking the cycle. Nat Methods 2004;1:1-2.
3. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91-92.
4. Guarelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Nat Acad Sci USA 1990;87:1874-8.
5. Gill P, Ramezani A, Amiri MV, Ghaemi A, Hashempour T, Eshraghi N, et al. Enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification. Biochem Biophys Res Commun 2006;347:1151-7.
6. Polstra AM, Goudsmidt J, Cornelissen M. Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes. BMC Infect Dis 2002;2:18.
7. Guichón A, Chiparelli H, Martínez A, Rodríguez C, Trento A, Russi JC, et al. Evaluation of a new NASBA assay for the qualitative detection of hepatitis C virus based on the NucliSense Basic Kit reagents. J Clin Virol 2004;29:94-91.
8. Bremer J, Nowicki M, Becker S, Brambilla D, Cronin M, Herman S, et al. Comparison of two amplification technologies for detection and quantitation of human immunodeficiency virus type 1 RNA in the female genital tract. J Clin Microbiol 2000;38:2665-9.
9. Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res 2001;29:E54.
10. Tyagi S, Kramer FR. Molecular beacons: Probes that fluoresce upon hybridization. Nat Biotechnol 1996;14:303-8.
11. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998;16:49-53.
12. Hall MJ, Wharam SD, Weston A, Cardy DL, Wilson WH. Use of signal-mediated amplification of RNA technology (SMART) to detect marine cyanophag eDNA. Biotechniques 2002;32:604-6, 608-611.
13. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand-displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 1992;20:1691-6.
14. Walker GT. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 1992;89:392-6.
15. Van Der Pol B, Ferrero DV, Buck-Barrington L, Hook E3rd, Lenderman C, Quinn T, et al. Multicenter Evaluation of the BDProbeTec ET system for detection of chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol 2001;39:1008-16.
16. Chan EL, Brandt K, Oliens K, Antonishyn N, Horsman GB. Performance characteristics of the becton dickinson ProbeTec system for direct detection of chlamydia trachomatis and neisseria gonorrhoeae in male and female urine specimens in comparison with the roche cobas system. Arch Pathol Lab Med 2001;125:1649-52.
17. Hellyer TJ, DesJardins LE, Teixeira I, Perkins MD, Cave MD, Eisenach KD. Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRN. J Clin Microbiol 1999;37:518-23.
18. Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci USA 1995;92:4641-5.
19. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC.
Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 1998;19:225-32.
20. Cho EJ, Yang L, Levy M, Ellington AD. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 2005;23:2022-3.
21. Demidov VV. Rolling-circle amplification in DNA diagnostics: The power of simplicity. Expert Rev Mol Diagn 2002;2:542-8.
22. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000;28:e63.
23. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 2001;289:150-4.
24. Mori Y, Kita M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 2004;59:145-57.
25. Mori Y, Hirano T, Notomi T. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 2007;63.
26. Demidov VV. A new use for old stuff: DNA hairpins in DNA amplification. Trends Biotechnol 2002;20:189-90.
27. Nagamine K, Kuzuhara Y, Notomi T. Isolation of single-stranded DNA from loop-mediated isothermal amplification products. Biochem Biophys Res Commun 2002;290:1195-8.
28. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002;16:223-9.
29. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 2002;99:5261-6.
30. Detter JC, Jett JM, Lucas SM, Dalin E, Arellano AR, Wang M, et al. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 2002;80:691-8.
31. Luthra R, Mendeiros IJ. Isothermal multiple displacement amplification: A highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. J Mol Diagn 2004;6:236-42.
32. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep 2004;5:795-800.
33. An L, Tang W, Ranali TA, Kim HJ, Wyrtz J, Kong H. Characterization of a thermostable helicase and its participation in helicase-dependent amplification. J Biol Chem 2005;280:28952-8.
34. Gill P. Molecular detection of Mycobacterium tuberculosis by hDA-ELISA DIG detection system. Int J Antimicrob Agents 2007;29:570-1.
35. Gill P. Thermophilic helicase-dependent isothermal DNA amplification for molecular detection of Helicobacter pylori. Int J Antimicrob Agents 2007;29:135-6.
36. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem 2005;51:1973-81.
37. Singh R, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, et al. Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Physiol Cell Physiol 2005;288:1179-89.
38. Barker CS, Griffin C, Dolganov GM, Hanspers K, Yang JY, Erle DJ. Increased DNA microarray hybridization specificity using sscDNA targets. BMC Genomics 2005;6:57.
39. Xu Y, Kim HJ, Kays A, Rice J, Kong H. Simultaneous amplification and screening of whole plasmids using T7 bacteriophage replisome. Nucleic Acids Res 2006;34:e98.
40. Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 2007;70:499-501.
41. Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T. Loop-mediated isothermal amplification reaction using a nonadenatured template. Clin Chem 2001;47:1742-3.

How to cite this article: Karami A, Gill P, Motamedi MH, Saghafinia M. A review of the current isothermal amplification techniques: Applications, advantages and disadvantages. J Global Infect Dis 2011;3:293-302.

Source of Support: Nil. Conflict of Interest: None declared.
