Flavonoids modulate multidrug resistance through Wnt signaling in P-glycoprotein overexpressing cell lines

S. Mohana¹, M. Ganesan¹, N. Rajendra Prasad¹*, D. Ananthakrishnan² and D. Velmurugan²,³

Abstract

Background: Wnt signaling has been linked with P-glycoprotein (P-gp) overexpression and which was mainly mediated by β-catenin nuclear translocation. Flavonoids have already been reported as modulators of the Wnt/β-catenin pathway and hence they may serve as promising agents in the reversal of P-gp mediated cancer multidrug resistance (MDR).

Methods: In this study, we screened selected flavonoids against Wnt/β-catenin signaling molecules. The binding interaction of flavonoids (theaflavin, quercetin, rutin, epicatechin 3 gallate and tamarixetin) with GSK 3β was determined by molecular docking. Flavonoids on P-gp expression and the components of Wnt signaling in drug-resistant KBCH R8–5 cells were analyzed by western blotting and qRT-PCR. The MDR reversal potential of these selected flavonoids against P-gp mediated drug resistance was analyzed by cytotoxicity assay in KBCH R8–5 and MCF7/ADR cell lines. The chemosensitizing potential of flavonoids was further analyzed by observing cell cycle arrest in KBCH R8–5 cells.

Results: In this study, we observed that the components of Wnt/β-catenin pathway such as Wnt and GSK 3β were activated in multidrug resistant KBCH R8–5 cell lines. All the flavonoids selected in this study significantly decreased the expression of Wnt and GSK 3β in KBCH R8–5 cells and subsequently modulates P-gp overexpression in this drug-resistant cell line. Further, we observed that these flavonoids considerably decreased the doxorubicin resistance in KBCH R8–5 and MCF7/ADR cell lines. The MDR reversal potential of flavonoids were found to be in the order of theaflavin > quercetin > rutin > epicatechin 3 gallate > tamarixetin. Moreover, we observed that flavonoids pretreatment significantly induced the doxorubicin-mediated arrest at the phase of G2/M. Further, the combinations of doxorubicin with flavonoids significantly modulate the expression of drug response genes in KBCH R8–5 cells.

Conclusion: The present findings illustrate that the studied flavonoids significantly enhances doxorubicin-mediated cell death through modulation of P-gp expression pattern by targeting Wnt/β-catenin signaling in drug-resistant KBCH R8–5 cells.

Keywords: Wnt/β-catenin signaling, Flavonoids, Molecular docking, P-glycoprotein, Multidrug resistance, GSK 3β

* Correspondence: drprasadnr@gmail.com
1Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Multidrug resistance (MDR) is a mechanism through which several cancer subtypes exhibit resistance to anticancer drugs resulting in the chemotherapy failure [1]. This MDR phenomenon is mainly associated with overexpression of membrane-bound molecular “pumps” that dynamically efflux out structurally and functionally different anticancer drugs from the tumor cells. The P-glycoprotein (170 kDa), belongs to ATP-binding cassette transporters family (ABC), confer resistance to various chemotherapeutic drugs [2]. Thus, inhibition of its drug transport function or modulation of its expression in cancer cells will be a novel strategy to overcome cancer multidrug resistance.

Existing data illustrated that natural flavonoids possess significant modulatory effects on drug resistance in cancer [3]. Recently, we systematically screened flavonoids against P-gp drug efflux function using calcine-AM drug efflux system and further observed flavonoids such as quercetin and rutin reverse MDR several folds in KBCHR8–5 cell lines [4]. Shit et al., 1994 demonstrated modulation of P-gp overexpression at the molecular level to overcome MDR in cancer cells [5]. The activation of Wnt/β-catenin signaling molecules leads to overexpression of P-gp which contributed to clinical MDR [6]. In the canonical pathway, β-catenin is phosphorylated and activated by a set of proteins which includes GSK-3β, axin and APC. Stabilized cytoplasmic β-catenin translocates from the cytoplasm to the nucleus and activates T-cell factor (TCF) transcription factors then subsequently activates ABCB1 overexpression [7]. Therefore, downregulation of Wnt/β-catenin pathway possibly will reduce P-gp expression and induce chemosensitization in drug-resistant cells. The GSK 3β is an important factor of Wnt/β-catenin signaling and pharmacological inhibition or modulation of GSK 3β expression might reverse the MDR in drug-resistant cells.

Numerous reports illustrate that flavonoids could able to modulate the Wnt pathway thereby increases to their antitumor effect against cancer cells [8, 9]. Kitagawa et al., (2004) illustrated the reversal potential of flavonoids on the function of P-gp in KB-C2 cells using daunorubicin and thiosemicarbazide-123 [10]. Herein, we investigated the chemosensitizing efficacy of selected flavonoids like theaflavin, quercetin, epicatechin 3-gallate and tamarixetin in colchicine-selected KBCHR8–5 cell lines through targeting Wnt/GSK 3β/β-catenin pathway. To determine whether these flavonoids modulate P-gp mediated MDR, we carried out cell-based assays, transcriptome analysis and Wnt proteins expression in the presence or absence of these flavonoids in KB 3–1 and colchicine-selected KBCHR8–5 cell lines.

Methods

Molecular docking
Induced-fit docking was carried out to predict theaflavin, quercetin, rutin, epicatechin 3 gallate and tamarixetin binding interaction in the GSK 3β using Glide and prime modules [11]. Ligprep 2.3 module (Schrodinger) was used for the preparation of theaflavin, quercetin, rutin, epicatechin 3 gallate and tamarixetin. The 3D GSK 3β (PDB: 5HLN) structure was obtained from the PDB (http://www.rcsb.org). The Schrodinger’s software was used for GSK 3β preparation as per the procedure described previously [12].

Chemosensitizing effect of flavonoids by MTT assay
We have analyzed the chemosensitizing potential of flavonoids by MTT assay [13]. KB 3–1, KBCHR8–5, MCF-7 and MCF-7/ADR cells (1X10⁴ cells/ well) were initially seeded in 96 well plates and kept incubated for 24 h. Further, cells were preincubated with or without the different concentration of flavonoids (1–10 μM per well) for 48 h. Consequently, various concentrations of doxorubicin were added into the designated wells for 72 h. Then, MTT solution (4 mg/ml) was added and incubated for 4 h. Further, 100 μl of DMSO was added and the absorbance of formazan solution was measured at 570 nm using a multimode reader (Tecan, Austria).

Western blot analysis
We have done western blot analysis to find out flavonoids mediated alteration of protein expression in KBCHR8–5 cells. The KBCHR8–5 cells (5×10⁶ cells) were lysed using RIPA buffer. The protein concentration was estimated using nanodrop spectrophotometer (Thermo Scientific Inc.). Proteins were separated by 12% SDS-PAGE then blotted to nitrocellulose membrane. Then, the blotted membranes were treated with 5% BSA at for 1 h. The membranes were then kept incubated at 4°C overnight with monoclonal antibodies for P-gp (1:1000), Wnt (1:1000), GSK 3β (1:1000) (Santa Cruz, USA). Then, the membrane was incubated for 1 h with the horseradish peroxidase conjugated secondary antibodies. Then, the protein expressions were detected using chemiluminescence western blot detection kit (Biorad, USA).

qRT-PCR analysis of LRP6, FZD1, APC and axin expression
The mRNA expression of LRP 6, Frizzled (FZD) 1, adenomatous polyposis coli (APC) and axin, in KBCHR8–5 cells was analyzed using real-time PCR. cDNA was synthesized using 100 ng total RNA by RT² First strand kit. Complimentary DNA was amplified (20 µL) using SYBR green master mix and 0.5 μM of the specific primers. Real-time PCR was carried out on Eppendorf master cycler (Eppendorf, Thermocycler, USA).
Fig. 1
(a) Pymol observation of ligand binding domain (LBD) of GSK 3β with theaflavin.
(b) Ligplot representation illustrates hydrophobic and hydrogen bonding of GSK 3β with theaflavin.

Fig. 2
(a and b) Wnt, GSK 3β and β-catenin mRNA and protein expression pattern in KB3–1 and KBCH R8–5 cell lines. Protein (Western blot) and mRNA (qRT-PCR) expression status of Wnt, GSK 3β, LRP6, FZD1, APC and axin in KBCH R8–5 cells.
(c) theaflavin,
(d) quercetin,
(e) rutin,
(f) epicatechin 3 gallate (E3G) and
(g) tamarixetin.
The protein levels were quantified by LI-COR Image Studio tool. The data denote means ± SD from three experiments. The protein expressions were normalized to the β-actin expression level. Gene expression was normalized with 18S and depicts quantification of three independent experiments (means ± S.D). Symbols not sharing a common symbol vary significantly at p ≤ 0.05 (DMRT).
gene expression levels were normalized to 18S mRNA expression in each sample. The mean cyclic threshold (Ct) of each gene expression was accounted to measure the relative gene expression by employing the formula \(2^{-\Delta\Delta\text{Ct}}\).

Cell cycle analysis

After treatment with flavonoids and/or doxorubicin cells (1X10^6 cells/well) were trypsinized and washed with PBS. Then, the treated cells were fixed using cold 70% ethanol and incubated for overnight at 4°C. After a single wash with PBS, the cells were incubated using 50 pg/ml of propidium iodide and 0.1 mg/ml of RNaseA for 30 min. After that, cells were kept incubated for 30 min in dark. The DNA content in each phase of the cell cycle was then analyzed using a FACS (BD Aria III, BD Biosciences) [14].

PCR array

The total RNA was isolated using RNAeasy kit (Qiagen, India). The relative mRNA expression (RQ) pattern of 9 genes involved in drug resistance, cell cycle, apoptosis, and/or doxorubicin on MDR-linked gene expression pattern in KBCH8-5 cells. The mRNA expression levels of 9 genes involved in drug resistance and Wnt/β-catenin signaling were detected using qPCR. Clustergram was constructed using the SA Biosciences online tool using three independent experiments.
Fig. 5 Chemosensitizing effect of the selected flavonoids in drug-resistant KBCH18–5 cell lines. Concentration dependent curves of doxorubicin with or without flavonoids (1, 5 and 10 μM) in parental KB 3–1 and KBCH18–5 cell lines were constructed. The IC50 values of KBCH18–5 cell lines were equaled with parental KB 3–1 cells (Table 1). Data with error bars show the mean ± S.E.M of four experiments, each done in triplicate.
and Wnt/β-catenin pathway were investigated by PCR array by SYBR Green PCR master mix (Qiagen, qRT-PCR array) on Eppendorf realplex PCR instrument. The gene expression in fold changes was plotted as clustogram using PCR data analysis.sabiosciences.com/pcr/arrayanalysis.php.

Results and discussion
The P-glycoprotein (ABCB1/MDR1) serves as key regulators in the efflux of chemotherapeutic agents [15]. Several recent findings indicate the link between Wnt/β-catenin pathway and the ABC transporters overexpression [16, 17]. Previously, it has been reported that Wnt5A regulates ABCB1 expression pattern through the non-canonical PKA/β-catenin pathway in drug resistant cancer cells [18]. Flavonoids have been reported to inhibit ABCB1 transporters that contribute to the development of MDR [19]. In this study, we investigated the reversal of P-gp mediated MDR via targeting the Wnt/β-catenin pathway by selected dietary flavonoids which show chemosensitizing property in our preliminary studies [4]. In this study, induced-fit docking reveals that flavonoids inhibit GSK 3β directly by interacting to the ATP binding site of the protein. Among the flavonoids studied theaflavin effectively interact with Ligand Binding Domain (LBD) of GSK 3β (~ 85.58 kcal/mol) (Fig. 1; Additional file 1: Figure S1 and Table S1). The binding interaction of theaflavin against GSK 3β was compared with its cocrystal 65C. 6-(2-[6-(4-(2, 4-dichlorophenyl) -5-(4-methyl-1H-imidazole-2-yl) pyrimidin-2-yl] amino} ethyl) amino} pyridine-3-carbonitrile and VAL-135 was found to be contributed in the common hydrogen bond interactions. The ATP-competitive GSK 3β inhibitors bind with GSK 3β by hydrogen bonding to the carbonyl and amino groups of the valine-135 amino acid and also to the carbonyl oxygen of Asp133 within the hinge area of the ATP-binding pocket [20]. Shin et al. (2007) established a hydroxyl group at C7 of the benzimidazole to generate hydrogen bonds to the amino group of Val 135 and the carbonyl group of the Asp 133 residue [21]. Additionally, Coffman et al. (2011) developed several GSK-3β inhibitors and these compounds interacts within the GSK-3β ATP site. Similarly, in our study, we found flavonoids binds within the ATP site of GSK-3β particularly with the Val 135 and Asp 133 residues of the hinge region [22]. Sivaraman (2015) screened GSK 3β inhibitors against flavonoids which shows Val 135 to be the major active amino acid which is present in all the docked compounds [23]. Johnson et al., (2011) showed molecular docking of citrus flavonoids with GSK-3β and found that quercetin effectively inhibits GSK-3β activity [24]. Moreover, Iftikhar and Rashid (2014) showed a pharmacophore model of flavonoids to generate potent inhibitors for targeting Wnt signaling pathway [25]. Therefore, the present results suggest that the flavonoids could interact with GSK-3β backbone amino acids Asp133 and Val135. Our in vitro findings along with findings of other investigators trigger us to experimentally prove the role of dietary flavonoids on the role of flavonoids Wnt/GSK-3β pathway to overcome MDR in cancer.

We observed that the Wnt and GSK-3β were activated in the colchicine-selected KBCH8–5 cell lines. Activation of the Wnt signaling elements might lead to the overexpression of membrane P-gp. We found that β-catenin translocation into the nucleus in drug resistant KBCH8–5 cells. This substantiates the role of Wnt/β-catenin in ABCB1 overexpression in the KBCH8–5 cells (Fig. 2; Additional file 1: Figure S2). In the present study, flavonoids also decreased the expression of Wnt and GSK 3β in KBCH8–5 cells. Further, flavonoids treatment prevented the translocation of β-catenin to the nucleus in the drug-resistant cells. Therefore, flavonoids downregulate P-gp overexpression in KBCH8–5 cells; this was noticed in a dose-dependent manner (Fig. 2). Similarly, Park and Choi reported that binding of Tcf complexes with specific DNA binding sites has been suppressed by flavonoids through diverse mechanisms in colorectal cancer [26].

Compound	KB3–1 IC50 ± SEM (μM)	KB3–1 FRb	KBCH8–5 IC50 ± SEM (μM)	KBCH8–5 FRb
Doxorubicin	0.04 ± 0.01 [1.0]	7 ± 0.20	175.0	
+ 1 μM Theaflavine	0.03 ± 0.01 [0.8]	3 ± 0.04	75.0	
+ 5 μM Theaflavine	0.02 ± 0.01 [0.5]	0.6 ± 0.03	15.0	
+ 10 μM Theaflavine	0.02 ± 0.01 [0.5]	0.3 ± 0.02	7.5	
+ 1 μM Quercetin	0.02 ± 0.01 [0.5]	0 ± 0.05	100.0	
+ 5 μM Quercetin	0.03 ± 0.01 [0.8]	1 ± 0.01	25.0	
+ 10 μM Quercetin	0.02 ± 0.01 [0.5]	0.6 ± 0.01	15.0	
+ 1 μM Rutin	0.03 ± 0.01 [0.8]	6 ± 0.05	150.0	
+ 5 μM Rutin	0.02 ± 0.01 [0.5]	3 ± 0.01	75.0	
+ 10 μM Rutin	0.02 ± 0.01 [0.5]	0.7 ± 0.01	17.5	
+ 1 μM E3G	0.02 ± 0.01 [0.5]	5 ± 0.04	125.0	
+ 5 μM E3G	0.03 ± 0.01 [0.8]	3 ± 0.02	75.0	
+ 10 μM E3G	0.02 ± 0.01 [0.5]	1 ± 0.02	25.0	
+ 1 μM Tamarixetin	0.03 ± 0.01 [0.8]	6 ± 0.03	150.0	
+ 5 μM Tamarixetin	0.02 ± 0.01 [0.5]	4 ± 0.02	100.0	
+ 10 μM Tamarixetin	0.02 ± 0.01 [0.5]	2 ± 0.01	50.0	
Fig. 6 Chemosensitizing potential of the selected flavonoids in drug-resistant MCF-7/ADR cell lines. Concentration-dependent curves of doxorubicin with or without flavonoids (1, 5 and 10 μM) in parental MCF-7 and MCF-7/ADR cell lines were constructed. The IC\textsubscript{50} values of MCF-7/ADR cell lines were compared with parental MCF-7 cells. Data denotes the mean ± S.E.M of four experiments, each done in triplicate.
has been well established that the down-regulation of the canonical Wnt/GSK-3β/β-catenin pathway is known to downregulates the P-gp expression in various cancer subtypes [27–31]. Previously, it has been reported that quercetin binds with β-catenin thereby block binding interaction between β-catenin and TCF [32].

In this study, flavonoids prevent the translocation β-catenin, thereby downregulates P-gp expression in KBCHR8-5 cells. The phosphorylation-dependent degradation of β-catenin prevented nuclear translocation and binding to the mdr1 promoter which downregulates P-gp by temozolomide acting like a Wnt-pathway inhibitor [33]. Wnt/β-catenin acts as a potential target to overcome resistance in cholangiocarcinoma [6]. Further, the FZD1 silencing significantly downregulated cytoplasmic and nuclear β-catenin expression levels and down-regulates the expression of MDR1/P-gp, thereby restored sensitivity to chemotherapy drugs [34]. Flavonoids are reported to block different components of Wnt signaling thereby reverses MDR [35]. Previously, it was illustrated that quercetin could regulates Wnt signaling by affecting their pathway components in colon cancer cells, SW480 cells, leukemia and lymphoma cells [36]. Isoquercitrin inhibits glioblastoma proliferation through Wnt/β-catenin pathway [37]. Recently, Chen et al., (2018) showed quercetin enhances the efficacy of chemotherapeutic drugs in ABCB1, ABCC1 and ABCB2-overexpressing cells by regulating the FZD7/β-catenin signaling [38].

The Wnt/β-catenin signaling has been linked to be related to the overexpression of ABC transporters [38, 39]. The β-catenin was found to be released from the APC/axin complex which activate transcription of the mdr1 gene. We observed that overexpression of mRNA patterns of ABCB1 and Wnt/β-catenin pathway components such as LRP6 and GSK 3β in KBCHR8-5 cells (Fig. 2, additional file 1: Figure S3). Flavonoids pretreatment also augmented doxorubicin-induced apoptosis in KBCHR8-5 cell lines. Doxorubicin induce apoptotic cell death by modulating signaling elements [40]. Previous report state that flavonoids augment cell cycle arrest in distinct phases of cancer [41]. Flavonoids significantly downregulate the mRNA expression of CDK2, cyclin D1 and upregulate p53, CDKN1A, BAX in KBCHR8-5 cells (Fig. 3). The MDR1 promoter has also been affected by p53 which affects endogenous MDR1 expression [41]. In this study, we found that the studied flavonoids sensitize doxorubicin and upregulate p53 expression which subsequently induces apoptotic events in drug-resistant cells. Moreover, we observed that flavonoids pretreatment significantly augment the doxorubicin-mediated arrest at the G2/M phase of the cell cycle (Fig. 4). Flavonoids significantly enhance doxorubicin efficacy in drug-resistant KBCHR8-5 cells. Hence, we stated that downregulation of ABCB1 and subsequent modulation of doxorubicin-mediated cell cycle arrest and apoptotic signaling may be the reason for the chemosensitizing property of the studied flavonoids in P-gp overexpressing oral carcinoma cell lines. Thus, flavonoids enhanced doxorubicin efficacy through Wnt/β-catenin signaling and subsequently downregulated ABCB1 expression thereby promotes doxorubicin-induced G2/M arrest and apoptosis in multidrug-resistant KBCHR8-5 cells.

The P-gp overexpressing KBCHR8-5 cells exhibit 175-fold drug resistance to doxorubicin compared to KB 3–1 cell line (Fig. 5). We observed that flavonoids considerably decreased doxorubicin resistance in KBCHR8-5 cell line (Fig. 6). We performed cell-based cytotoxic assays in the MCF-7 and MCF-7/ADR cell lines in the presence or absence of flavonoids (Fig. 6). MCF-7/ADR cell lines exhibit 27 fold resistances to doxorubicin, when compared to the parental MCF-7 cell lines (Table 2). Flavonoids considerably decreased the doxorubicin resistance in MCF-7/ADR cells when compared to the control MCF-7 cell lines. It has been found

Compound	MCF-7 IC50 ± SEM (μM)	MCF-7/ADR IC50 ± SEM (μM)	FR²
Doxorubicin	0.32 ± 0.01 [1.0]	8.57 ± 0.23 [26.78]	
+ 1 μM Theaflavine	0.32 ± 0.02 [1.0]	5.31 ± 0.04 [16.57]	
+ 5 μM Theaflavine	0.29 ± 0.01 [0.9]	3.12 ± 0.03 [9.75]	
+ 10 μM Theaflavine	0.27 ± 0.01 [0.8]	0.8 ± 0.02 [2.5]	
+ 1 μM Quercetin	0.31 ± 0.02 [0.9]	5.9 ± 0.05 [18.43]	
+ 5 μM Quercetin	0.29 ± 0.02 [0.9]	3.41 ± 0.01 [10.65]	
+ 10 μM Quercetin	0.28 ± 0.01 [0.8]	1.1 ± 0.01 [3.43]	
+ 1 μM Rutin	0.32 ± 0.03 [1.0]	6.8 ± 0.05 [21.25]	
+ 5 μM Rutin	0.30 ± 0.01 [0.9]	4.5 ± 0.01 [14.06]	
+ 10 μM Rutin	0.28 ± 0.01 [0.8]	1.6 ± 0.01 [5.0]	
+ 1 μM E3G	0.32 ± 0.02 [1.0]	6 ± 0.04 [18.75]	
+ 5 μM E3G	0.31 ± 0.01 [0.9]	3.8 ± 0.02 [11.87]	
+ 10 μM E3G	0.29 ± 0.02 [0.8]	1 ± 0.02 [3.12]	
+ 1 μM Tamarixetin	0.32 ± 0.02 [0.8]	7.3 ± 0.03 [22.81]	
+ 5 μM Tamarixetin	0.31 ± 0.02 [0.5]	4.9 ± 0.02 [15.31]	
+ 10 μM Tamarixetin	0.30 ± 0.01 [0.5]	2.53 ± 0.01 [7.9]	
that 10 μM of flavonoids significantly reverse the P-gp-mediated MDR in KBCH R8–5 and MCF-7/ADR cells as compared to other lower concentrations. Further, the MDR reversal potential of flavonoids was in the order of theaflavin > quercetin > rutin > epicatechin 3-gallate > tamarixinetin. Therefore, the studied flavonoids prevent the nuclear translocation β-catenin through interacting with GSK 3β and different components of Wnt signaling pathway thereby downregulates P-gp overexpression in drug resistant oral carcinoma KB cells (Fig. 7).

Conclusion

Collectively, flavonoids enhanced doxorubicin efficacy through modulating Wnt/β-catenin signaling, downregulating ABCB1 overexpression and augmenting doxorubicin-induced G2/M arrest and apoptosis in multidrug-resistant KBCH R8–5 cells. Thus, flavonoids may be considered as an MDR reversal agent after confirming in vivo chemosensitizing potential in preclinical animal models.

Additional files

Additional file 1: Figure S1. A) Pymol outlook of ligand binding domain (LBD) of GSK 3β with quercetin; B) Ligplot image illustrate hydrogen and hydrophobic bonding of GSK 3β with quercetin (ii). A) Pymol outlook of the ligand binding domain (LBD) of GSK 3β with rutin. B) Ligplot view of hydrogen and hydrophobic bonding of GSK 3β with epicatechin 3 gallate. (iv). A) Pymol image show of the ligand binding domain (LBD) of GSK 3β with tamarixinetin. B) Ligplot image illustrate hydrogen and hydrophobic interactions of GSK 3β with tamarixinetin. **Figure S2.** Wnt, GSK 3β and β-catenin mRNA and protein expression levels in KB3–1 and KBCH R8–5 cell lines. Expression levels were normalized with the expression pattern of β-actin levels. Data are given as mean ± SEM of three independent experiments. Data not sharing a similar marking (a, b…) differ significantly at p < 0.05 vs. control (DMRT). **Figure S3.** Quantification of protein and RNA are depicted as graph. The densitometry values show means ± SD from three independent immunoblots. The relative density of protein expression levels were normalized to the β-actin protein expression pattern. The mRNA expression pattern was normalized with 18S and the image illustrates quantification of three independent analysis (means ± S.D). Data not showing a similar symbol differ significantly at p ≤ 0.05 (DMRT). **Table S1.** Induced-fit docking of flavonoids against GSK 3β. Docking analysis was carried out for 5 flavonoids, which show glide energy, docking score, hydrogen bond interactions. The tested flavonoids exhibit strong inter- and intramolecular interactions with drug-binding pocket of GSK 3β.

Abbreviations

ABCB1: ATP-binding cassette sub-family B member 1; APC: Adenomatous polyposis coli; BAX: BCL2-Associated X Protein; BCL-XL: B cell lymphoma-extra large; CDK2: Cyclin-dependent kinase 2; CDKN1A: Cyclin-dependent kinase inhibitor 1A; FZD: Frizzled 1; GSK 3β: Glycogen synthase kinase 3β; LBD: Ligand Binding Domain; LRP: Lipoprotein receptor-related protein; MDR1: Multidrug resistance protein 1; MTT: 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide; PBS: Phosphate buffered saline; PDB: Protein Data Bank; P-gp: P-glycoprotein; PI: Propidium iodide; qRT-PCR: Quantitative real-time polymerase chain reaction; RCSB: Research Collaboratory for Structural Bioinformatics; Wnt: Wingless-related integration site
Funding
This work was supported by a grant from the Science and Engineering Research Board, New Delhi, India (Ref. No. SB/EMEQ-504/2014). This work was also supported by the Indian Council of Medical Research, New Delhi in the form of Senior Research Fellowship to the first author S. Mohana (Ref. No. SB/EMEQ-504/2014).

Availability of data and materials
The data generated during the study are not publicly accessible because they were used in the current research program, but are accessible from the corresponding author on rational request.

Authors’ contributions
SM, MG and NRP performed the molecular biology experiments and participated in the data acquisition and analysis. SM, DV and DA carried out the molecular docking analysis. Chemosensitization experiments, Western blots and Cell cycle analysis were carried out by SM and MG. MG and NRP re-wrote and finalized the revised manuscript. NRP conceived and designed and Cell cycle analysis were carried out by SM and MG. MG and NRP re-participated in the data acquisition and analysis. SM, DV and DA carried out SM, MG and NRP performed the molecular biology experiments and

Ethics approval and consent to participate
The experiments and interpreted the data of the manuscript. All authors read

4. Mohana S, Ganesan M, Agilan B, Karthikeyan R, Srithar G, Beaulah Mary R,

3. Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM. P-glycoprotein

2. Kathawala RJ, Wang YJ, Shukla S, Zhang YK, Alqahtani S, Kaddoumi A,

1Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India. 2Biomaterials Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India. 3CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.

Reference
1. Cancer multidrug resistance. Elsevires Nat Biotechnol. 2000;18:178–20.
2. Kathawala RJ, Wang YJ, Shukla S, Wang YK, Alqahtani S, Kaddoumi A, Ambudkar SV, Shibuya K, Chen ZS. ATP-binding cassette subfamily b member 1 (ABCB1) and subfamily c member 10 (ABCC10) are not primary resistance factors for cabazitaxel. Chinese J of Can. 2015;341–6.
3. Abdulkarim MA, Al-AJAM AM, El-Dine RS, El-Halawany AM. P-glycoprotein inhibitors: their potential as drug resistance modulators. A review. J Clin Dev Res. 2015;6:45–62.
4. Masoodi S, Ganesar M, Agilan B, Karthikeyan R, Srithar G, Beaulah Mary R, Kanimozhi R, Dhinamurugan D, Rajendra Prasad N, Ambudkar SV. Chelating dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer. Mol Biol Symp. 2016;12:2458–70.
5. Shitl A, Shushanov A, Myovena E, Stavovskaya A. Frequency of metastasis in Syrian hamster tumor cells selected for low levels of typical multidrug resistance. Exp Toxicol Pathol. 1994;6257–62.
6. Shen DY, Zhang W, Zeng X, Liu CQ. Inhibition of Wnt/beta-catenin signaling downregulates P-glycoprotein and reverses multidrug resistance of cholangiocarcinoma. Cancer Sci. 2013;104:1303–8.
7. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:5–26.
8. Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21(1):1541–7.
9. Amado NG, Fonseca BF, Queiruga DM, Neto VM, Abreu JG. Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci. 2011; 89(15–16):545–54.
10. Kitagawa S, Nabe K, Kiyama S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol. 2004;56(8):1001–5.
11. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.
12. Sute S. Schrodinger. New York: LLC; 2009.
13. Singh S, Prasad NR, Chufan EE, Patel BA, Wang YJ, Chen ZS, Ambudkar SV. Heterogeneity of Wnt/beta-catenin signaling in human breast cancer cell lines. Oncogene. 2005;24:4141–51.
14. Muthusamy G, Balupillai G, Ramasamy K, Senthuramugam MG, Gunaseelan S, Mary B, Prasad NR. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur J Med Chem. 2014;70:4058–72.
15. Muthusamy G, Balupillai G, Ramasamy K, Senthuramugam MG, Gunaseelan S, Mary B, Prasad NR. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur J Med Chem. 2014;70:4058–72.
16. Huang GL, Song W, Zhou P, Fu Q, Pan CL, Chen QX, Shen DY. Oncogenic retinoic acid receptor 1a knockout reverses multidrug resistance. Cancer Res. 2018;78:194–203.
17. Jarrilolli AC, Saig FA, Close J, O’Driscoll G, Hagan J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance. Cancer Drug Resist. 2018;16:4–29.
18. Huang GL, Song W, Zhou P, Fu Q, Pan CL, Chen QX, Shen DY. Oncogenic retinoic acid receptor 1a knockout reverses multidrug resistance. Cancer Res. 2018;78:194–203.
19. Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci. 2017 Jun; 1398(1):152–67.
20. Pandey MK, DeGrado TR. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6(4):571.
21. Shin D, Lee SC, Heo YS, Lee WW, Cho YS, Kim YE, et al. Design and synthesis of 7-hydroxy-1H-benzimidazole derivatives as novel inhibitors of glycogen synthase kinase-3beta. Bioorg Med Chem Lett. 2007;17:5686–9.
22. Coffman K, Brodney M, Cook J, Lanyon L, Pandit J, Sakya S, et al. 6-amino-4-(pyrimidine-4-yl) pyridones: novel glycogen synthase kinase-3beta inhibitors. Bioorg Med Chem Lett. 2011;21:1429–33.
23. Sivaraman D, Panneerselvam P. Screening of potential glycogen synthase kinase-3beta inhibitors from herbal Lead by in silico docking technique. Int J ChemTech Res. 2015;8(6):834–42.
24. Johnson JL, Rupasinghe SG, Stefani F, Schuler MA, Gonzalez de Mejia E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3beta enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food. 2011;14(4):325–33.
25. Raman V, Bhatia R, Pande AS, Sudarsanam S. Molecular docking studies of flavonoids for their inhibition pattern against beta-catenin and pharmacophore model generation from experimentally known flavonoids to fabricate more potent inhibitors for Wnt signaling pathway. Pharmacog Mag. 2014;10(2):5264–71.
26. Park S, Choi J. Inhibition of beta-catenin/Tcf signaling by flavonoids. J Cell Biochem. 2010; 110(6):1376–85.Kim WK, bang MH, Kim ES, Kang NE, Jung KC, Cho HJ, park JH. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem. 2005;16:155–62.
27. Amado NG, Queiruga DM, Menezes FS, da Silva JF, Neto VM, Abreu JG. Isoucorisquinone isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes beta-catenin cellular localization. Anticancer Drugs. 2009;20:543–32.Flautau.
28. Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, Beckmann JS, Joseph JM, Mühlethaler-Mottet A, Gross N. The Wnt receptor FZD1 mediates chemo-resistance in neuroblastoma through activation of the Wnt / beta-catenin pathway. Oncogene. 2009; 28:2245–56.
29. Correa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E. Beta-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer. 2012;12:303.
30. Pinzón-Daza ML, Salaroglio IC, Kopecka J, Garzón R, Couraud PO, Ghigo D, Riganti C. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells. J Cereb Blood Flow Metab. 2014;34:1258–69.

31. Kim H, Seo EM, Sharma AR, Ganbold B, Park J, Sharma G, Kang YH, Song DK, Lee SS, Nam IS. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int J Oncol. 2013;43:1319–25.

32. Riganti C, Salaroglio IC, Pinzón-Daza ML, Caldera V, Campia I, Kopecka J, Mellai M, Annozavazzi L, Couraud PO, Bosia A, Ghigo D, Schiffer D. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci. 2014;71:499–516.

33. Zhang H, Zhang X, Wu Y, Li W, Su P, Cheng H, Xiang T, Gao P, Zhou G. Interference of frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/β-catenin pathway. Cancer Lett. 2012;323:106–13.

34. Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. 2017;18(3):656.

35. Kawahara T, Kawaguchi-Ihara N, Okuhashi Y, Itoh M, Nara N, Tohda S. Cyclopamine and quercetin suppress the growth of leukemia and lymphoma cells. Anticancer Res. 2009;29(11):4629–32.

36. Shan RE, Wang MX, Li RQ. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Invest. 2009;27(6):604–12.

37. Luo K, Gu Y, Liu J, Zeng G, Peng L, Huang H, Jiang M, Yang P, Li M, Yang Y, Wang Y, Peng Q, Zhu L, Zhang K. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/beta-catenin signaling. Exp Cell Res. 2016;347:105–13.

38. Zhou H, Lin C, Zhang Y, Zhang X, Zhang C, Zhang P, Xie X, Ren Z. miR506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell proliferation. 2017;50:e12341.

39. Park EJ, Kwon HK, Choi YM, Shin HJ, Choi S. Doxorubicin induces cytotoxicity through upregulation of pERK-dependent ATF3. PLoS One. 2012;7:e44990.

40. Chen H, Landen CN, Li Y, Alvarez RD, Tollefsbol TO. Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res. 2013;319:697–706.

41. Thottassery J, Zambetti GP, Arimori K, Schuetz EG, Schuetz JD. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A. 1997;94(11):5372–9.