Detection of *Staphylococcus aureus* and antibiotic sensitivity pattern in mastitic cases from Namakkal District

R Navaneethan¹ and S Saravanan²

Received: 15 October 2020 / Accepted: 20 February 2021 / Published online: 07 September 2021

© Indian Dairy Association (India) 2021

Abstract: Milk samples (n= 241) were collected from clinical and subclinical mastitic cows which were brought to teaching veterinary clinical complex (TVCC), Veterinary College and Research Institute (VC&RI), Namakkal, Tamil Nadu and subjected to isolation on mannitol salt agar, Gram’s staining and confirmation by polymerase chain reaction (PCR) using specific primers. The prevalence of *Staphylococcus aureus* at cow level was 61.5 and 57.4 per cent in clinical and subclinical cases, respectively, and at quarter level was 58.8 and 57.4 per cent in the clinical and subclinical cases, respectively. Antibiotic sensitivity pattern revealed a high sensitivity to enrofloxacin (100.0%) and a high resistance to methicillin (100.0%) by *S. aureus* isolates, and multidrug resistance by *S. aureus* isolates was also observed.

Keywords: Antibiotic sensitivity, Culture, Clinical and sub clinical mastitis, PCR, *S. aureus*

Abstract:

Mastitis is one among those major reasons causing substantial loss to the dairy farmers, worldwide, resulting in loss of 15.0 per cent production per cow (Radostits et al. 2000), and loss of milk yield is estimated to range from 100 to 500 kg/cow per lactation. Subclinical mastitis is more prevalent than clinical in most countries ranging from 20.0 to 83.0 per cent in cows. The annual economic loss due to mastitis in India had been estimated to be INR 7165.51 crores, of which subclinical mastitis alone accounts for INR 4151.16 crores (57.93 per cent) and clinical mastitis accounting for INR 3014.35 crores (Bardhan, 2013 and Ahmad Arif Reshi et al. 2015).

The major pathogens (in 95.0% cases) involved in mastitis are *Str. agalactiae*, *S. aureus*, *E.coli*, *Str. dysgalactiae* and *Str. uberis* (NAAS, 2013). Mastitis due to *S. aureus* is more difficult to eradicate than *Str. agalactiae*, which produces more damage by abscessation or gangrene in the ducts with poor cure rate and decreases milk production to 45 per cent per quarter and 15 per cent per infected cow.

Some of the potential contributing factors in the high incidence of mastitis are lack of awareness, delay in detection of sub-clinical mastitis, unhygienic milking practices, diverse production systems, inadequate treatment etc. Antimicrobial resistance, milk quality, animal welfare and human health related issues further demand proper policies for strategic control of mastitis (NAAS, 2013). India being a large and diversified country with different farming systems and agro climatic conditions, the prevalence of mastitic pathogen is likely to vary with places and herds. Hence, this study aimed at identifying the prevalence of *S. aureus* in milk samples collected from the clinical and subclinical mastitic cases and sensitivity of the isolates to commonly used antibiotics in Namakkal district of TamilNadu.

Milk samples (n= 241) were collected from clinical (n= 104) and subclinical (n=105) mastitic cows (Figure 1) which were brought to teaching veterinary clinical complex (TVCC), Veterinary College and Research Institute (VC&RI), Namakkal. The study didnot require the approval by ethical review committee. Legal and ethical requirements have been met with regards to the humane treatment of animals and the institutional guidelines have been followed in the collection of samples. All milk samples were subjected to isolation on the specific medium, mannitol salt agar (Hi-media, Mumbai) as isolation is considered the gold standard test and Gram’s staining. The bacteria, *Staphylococcus aureus* was identified based on the characteristic appearance of the colonies, morphology and Grams reaction (Quinn et al.1994).

All the *S. aureus* isolates from clinical and subclinical mastitic cases were subjected to the molecular technique, polymerase chain reaction (PCR) for confirmation since molecular diagnosis
is found to be the most appropriate technique for the species identification of mastitic pathogens that are difficult to detect by conventional methods (Mahmmod et al. 2013). The primers were custom synthesized (Bioserve, India) for amplification of \textit{S. aureus} as recommended by Jahan et al. (2015). The nucleotide sequence of the primers (5'-3') were: Forward-GCG ATT GAT GGT GAT ACG GTD and Reverse- AGC CAA GCC TTG ACG AAC TAAAGC. The sample DNA was extracted from the isolates of clinical and subclinical mastitic cases by using polyethylene glycol (PEG) as recommended by Chomczynski et al. (2006).

The extracted DNA was amplified using the selected primers with following reaction mixture: DNA template-5µl, Master mix (red dye)- 18µl, Forward primer-1µl (10 picomoles) and Reverse primer-1µl (10 pico moles). The cycling conditions were: Initial denaturation-95°C/300 sec, denaturation-95°C/60 sec, annealing-55°C/45 sec, extension-72°C/90 sec and final extension-72°C/10 min. The amplicons were subjected to agarose gel electrophoresis, the gel was visualized under UV transilluminator and the bands of appropriate size were identified by comparison with the 100bp ladder.

Antibiotic sensitivity pattern using the selected antibiotic discs was identified for the \textit{S. aureus} isolates (n=59) from 104 clinical mastitic cases to initiate early and specific antibiotic therapy. The discs namely enrofloxacin (10mcg), gentamicin (10mcg), ampicillin (10mcg), penicillin-G (10 units), ceftriaxone (30mcg), cefotaxime (30mcg) and methicillin (5mcg) (Hi Media, Mumbai) were used and the interpretation was made as per the procedure recommended by the Kirby-Bauer disc diffusion method (Sharma et al. 2012).

Identification of large round golden yellow colonies on mannitol salt agar (Figure 2) and grape-like clusters of gram-positive cocci on Gram stained smears was suggestive of \textit{S. aureus} (Figure 3) which is in accordance with that described by Quinn et al. (1994). The mastitic pathogen, \textit{S. aureus} was detected in 61.5 per cent of the clinical cases and 57.4 per cent of the subclinical cases, at cow level. Out of total of 241 milk samples collected from various affected quarters which included 136 and 105 milk samples from clinical and subclinical cases, respectively, the prevalence of \textit{S. aureus} was 58.8 per cent in clinical cases and 57.4 per cent in subclinical cases, at quarter level.

In this study, in clinical mastitis at cow level, the prevalence of \textit{S. aureus} is higher than that observed by Kumari and Gupta (2002), Phogat and Dahiya (2003), Chandrasekaran et al. (2014) and Lalita Sharma et al. (2015) who recorded a prevalence of 35.21, 57.0, 40.0 and 50.0 per cent, respectively in bovine clinical mastitic cases in India. In contrast, Ranjan et al. (2011) recorded a higher prevalence (75.0%) in Uttar Pradesh, India than that observed in this study. However, in all these previous studies, \textit{S. aureus} was reported to be the predominant pathogen in clinical mastitic cases. In subclinical mastitis at cow level, the high prevalence of \textit{S. aureus} (57.4%) recorded is in agreement with that (56.89%) observed by Sudhan and Sharma (2010). In contrast, Barkema et al. (2006) and Lalita Sharma et al. (2015) recorded a low prevalence of 18.9 and 17.0 per cent, respectively in bovine subclinical mastitic cases in India.

| Quarter- wise prevalence of \textit{S. aureus} in bovine milk samples |
|-------------------------|---------|---------|---------|---------|---------|---------|
| Quarters | Clinical mastitis | Subclinical mastitis | |
| | No. of samples collected | Isolates positive | % Positivity | No. of samples collected | Isolates positive | % Positivity |
| LFQ | 32 | 18 | 56.2 | 22 | 15 | 68.1 |
| RFQ | 30 | 21 | 7.0 | 19 | 9 | 47.3 |
| LHQ | 47 | 27 | 57.4 | 35 | 25 | 71.4 |
| RHQ | 27 | 14 | 51.8 | 29 | 11 | 37.9 |
| Total | 136 | 80 | 58.8 | 105 | 60 | 57.4 |

| Table 1 |

S. no	Antibiotics	\textit{S. aureus} (n=59)							
		S	% Cases	I	% Cases	R	% Cases		
1	Enrofloxacin	59	100.0	_	0.0	_	0.0		
2	Gentamicin	46	77.9	_	13	22.0	_	0.0	
3	Ampicillin	_	_	_	_	_	_		
4	Penicillin-G	21	35.5	_	27	45.7	_	11	18.6
5	Ceftriaxone	14	23.7	24	40.7	21	35.6		
6	Cefotaxime	15	25.4	28	47.5	21	35.6		
7	Methicillin	_	0.0	_	_	0.0	59	100.0	

S- Sensitive, I- Intermediate and R- Resistant
In clinical mastitis, the quarter-wise prevalence of *S. aureus* (Table 1) was higher in left hind (57.4%) than in other quarters. Whereas, in subclinical mastitis, the quarter-wise prevalence of *S. aureus* (Table 1), was found to be higher in left hind (71.4%) than in other quarters. This finding is in agreement with that of Mekibib et al. (2010) who reported a high prevalence in hind quarter. In contrast, Khanal and Pandit (2013) and Kavitha et al. (2009) reported a high prevalence in forequarters. In this study, the high prevalence of clinical and subclinical mastitis in hind quarters might presumably be associated with increased chance of hind quarters being soiled with urine and faces or by the tail leading to poor udder management.

All the *S. aureus* isolates (n=140) were confirmed by PCR using specific primers targeting Nuc genes at 279 base pairs (Figure 4), as the sensitivity of PCR also is reported to be high (Steele et al. 2015) with high correlation rates with culture (Cervinkova et al. 2013). The high prevalence of *S. aureus* in both clinical and subclinical cases is supported by Taponen and Pyorala (2009) and Awale et al. (2012) who stated that *S. aureus* had been the predominant pathogen causing clinical and subclinical mastitis in many countries including India. This could also be attributed to its ability to survive phagocytosis inside the mammary epithelial cells and leukocytes leading to chronic or subclinical form (Pyorala, 1995), ability to resist antibiotics by releasing beta-lactamase enzyme and its transmission from quarter to quarter or cow to cow while milking (Sharma et al. 2012).

Highest sensitivity by *S. aureus* isolates was observed to enrofloxacin (100.0%) followed by gentamicin, penicillin-G, ceftriaxone and ceftaxime; This finding is agreement with that of Ranjan et al. (2011), Jeyakumar et al. (2013) and Chandrasekaran et al. (2014) who also recorded the higher sensitivity by *S.aureus* to enrofloxacin (91.67, 94.44 and 79.0%, respectively), however lower than that observed in this study, in India. In contrast, Sumathi et al. (2008) and Tufani et al. (2012) recorded the highest sensitivity by *S. aureus* to gentamicin with 90.0 and 84.21 per cent, respectively which were higher than that observed in this study, followed by enrofloxacin, penicillin, amoxicillin-cloxacillin and ampicillin-cloxacillin.

In this study, the highest resistance was observed to methicillin (100.0%) by *S. aureus* isolates. In contrast, Chandrasekaran et
al. (2014) and Lalita Sharma et al. (2015) observed only a lower resistance (52.9% and 66.67 %, respectively) to methicillin than that observed in this study. Whereas, Jeyakumar et al. (2013) and Chandrasekaran et al. (2014) recorded a higher resistance to penicillin-G (100.0 and 63.5%, respectively) by S. aureus isolates in India. Multidrug resistance was observed for S. aureus in clinical mastitic cases and this finding is in agreement with that of Chandrasekaran et al. (2014).

The antibiotic resistance observed in this study could be attributed to an increased and indiscriminate usage of various antibiotics and intramammary preparations in combinations and increased presence of these drugs in the cow’s environment, which might lead to low cure rate (Pitkala et al. 2004). Methicillin resistant S. aureus in this study could be a potential threat to other cattle and farm workers (Juhasz- Kaszanyitzky et al. 2007).

Conclusion

A high prevalence of S. aureus was observed in both clinical and subclinical mastitic cases and hind quarter was found to be highly associated with the incidence of mastitis. Most of the isolates were found to be sensitive to the antibiotic enrofloxacins and all the isolates were resistant to methicillin. Periodical study is essential to identify the predominant pathogens in clinical and subclinical mastitis, development of resistant mastitic pathogens and their sensitivity to wide range of antibiotics.

Acknowledgements

The authors are thankful to the Dean, Veterinary College and Research Institute, Namakkal for providing necessary facilities to carry out the present work.

References

Ahmad Arif Reshi, Ishraq Husain, Bhat SA, Rehman MU, Rahil Razak, Bilal S, Mir MR (2015) Bovine mastitis as an evolving disease and its impact on the dairy industry. Int J Curr Res 7:48-55
Awale MM, Dudhatra GB, Avinash K, Chauhan BN, Kamani DR, Modi CM, Patel HB, Kennedy RO (2012) Bovine mastitis; a threat to economy. Open Access Scientific Reports 1: 295
Bardhan D (2013) Estimates of economic losses due to clinical mastitis in organized dairy farms. Indian J Dairy Sci 66: 168-172
Barkema HW, Schukken YH, Zadoks RN (2006) The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci 89:1877-1895
Cervinkova D, Vlkova H, Bordocova I, Makovecova J, Babak V, Lorencova A, Vrtkova I, Marosevic D, Jaglie Z (2013) Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet Med (Praha) 58: 567-575
Chandrasekaran D, Nambi AP, Thirunavukkarasan PS, Vairamuthu S, Venkatesan P, Thirumurugan KG (2014) A study on treatment of resistant mastitis in dairy cows. J Appl Nat Sci 6: 786-791.
Chomezynski P, Michal R (2006) Alkaline polyeethylene glycol based method for DNA isolation from bacteria, tissue samples and whole blood. Biotechniques 40:193-199.
Jahan M, Rahaman M, Parvej MS, Chowdhury S, Haque ME, Talukder MAK, Ahmed S (2015) Isolation and characterization of Staphylococcus aureus from raw cow milk in Bangladesh. Adv Vet Anim Res 2: 49-55
Jeykumar M, Vinothkumar G, Bashir BB, Krovvidi S (2013) Antibiogram of mastitis pathogens in the milk of cross breed cows in Namakkal district, Tamilnadu. Vet World 6: 354-356
Juhasz-Kaszanyitzky E, Janosi S, Somogyi P, Dan A, Bloosis LVG, Duijkeren EJA (2007) MRSA transmission between cows and humans. Emerging Infect Dis 13: 630-632
Kavitha L, Rajesh K, Suresh K, Satheesh K, Syama Sundar N (2009) Buffalo mastitis – risk factors. Buffalo Bull 28: 134-168
Khanal T, Pandit A (2013) Assessment of sub-clinical mastitis and its associated risk factors in dairy livestock of Lamjung, Nepal. Int J Infect Microbiol 2:49-54
Kumari PM, Gupta BJR (2002) Diagnosis and therapy of sub-clinical mastitis in post-parturient cows. Indian J Vet 79: 89
Lalita Sharma, Amit Kumar Verma, Amit Kumar, Anu Rahat, Neha, Rajesh Nigam (2015) Incidence and Pattern of Antibiotic Resistance of Staphylococcus aureus Isolated from Clinical and Subclinical Mastitis in Cattle and Buffaloes. Asian J Anim Sci 9: 100-109
MahmmodYS, Klaas IC, Katholm SS, Toft N (2013) Effect of presampling procedures on real-time PCR used for diagnosis of intramammary infections with Staphylococcus aureus in dairy cows at routine milk recordings. J Dairy Sci 96: 2226-2233
Mekibib B, Furgasa M, Abunna F, Megersa B, Regassa A (2010) Bovine mastitis prevalence, risk factors and major pathogens in dairy farms of Holeta town, central Ethiopia. Vet world 3: 397-403
NAAS (2013) Mastitis Management in Dairy Animals. Policy Paper No. 61, National Academy of Agricultural Sciences, New Delhi. P:12
Pitkala A, Haveri M, Pyorala S, Myllys V, Buzalski TH (2004) Bovine mastitis in Finland Prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 87: 2433-2441
Phogat S, Dahiya N (2003) In: proceeding of 4th Round table conference on mastitis, H.P. Palampur, India 185-191
Pyorala S, Kaartinen L, Kack H (1994) Efficacy of two therapy regimes for treatment of experimentally induced Escherichia coli mastitis in the bovine. J Dairy Sci 77: 453-461
Quinn PJ, Carter ME, Markey BK, Carter GR (1994) Clinical Veterinary Microbiology. Mosby, Yearbook Europe limited
Radostitis OM, Gay CC, Hinchkll KW, Constable PD (2007) Veterinary Medicine, 10th edition. Saunders, Philadelphia P: 2065
Ranjana R, Gupta MK, Singh KK (2011) Study of bovine mastitis in different climatic conditions in Jharkhand, India. Vet world 4: 205-208
Sharma N, Srivastava AK, Bagic G, Jeong DK, Sharma, RK (2012) A Text book of bovine mastitis. Sathish serial publishing house, Delhi
Steele NM, Williamson JH, Laven RA, Hillerton JE (2015) Using polymerase chain reaction to identify Streptococcus uberis in bovine milk. Proceeding of the New Zealand Society of Animal Production. 75:1
Sudhan NA, Sharma N (2010) Mastitis – an important production disease of dairy animals. SMVS’ Dairy year book. 15: 72-88
Sumathi BR, Veeregowda BM, Gomes R (2008) Prevalence and antibiogram profile of bacterial isolates from clinical bovine mastitis. Vet Infect Microbiol 2:49-54
Taponen S, Pyorala S, Kaartinen L, Kack H (1994) Prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 87: 2226-2233
Tufani NA, Makhdoomi DM, Hafiz A (2012) Epidemiology and therapeutic management of bovine mastitis. Indian J Anim Res 46:148-151