Construction of full-length infectious cDNA clones of two Korean isolates of turnip mosaic virus breaking resistance in *Brassica napus*

Zheng-Xing Song¹ · Eun-Young Seo² · Wen-Xing Hu² · Jong-Hyeon Jeong² · Jae Sun Moon³ · Kang-Hee Kim¹ · Won-Seob Eom¹ · In-Sook Cho⁴ ⋆ · John Hammond⁵ ⋆ · Hyoun-Sub Lim¹,² ⋆

Received: 11 August 2021 / Accepted: 23 December 2021 / Published online: 8 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract

In this work, two new turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (*Brassica napus*) were isolated from a *B. napus* sample that showed typical TuMV-like symptoms and was collected in the city of Gimcheon, South Korea, in 2020. The complete genome sequence was determined and an infectious clone was made for each isolate. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones, which used 35S and T7 promoters to drive expression, induced systemic symptoms in *Nicotiana benthamiana* and *B. napus*. To our knowledge, this is the first report of TuMV infecting *B. napus* in South Korea.

Brassica napus (canola or oilseed rape), belonging to the genus *Brassica* of the family Brassicaceae, is extensively used to produce vegetable oil, biodiesel, and livestock feed around the world [1]. Turnip mosaic virus (TuMV) is one of the three principal viruses that are very harmful to brassica crops, causing severe economic losses and threatening brassicaceous vegetables worldwide [2–4]. Symptoms caused by TuMV in *Brassica* crops include systemic vein clearing, mosaic, necrosis, and plant stunting [3], depending on the virus isolate, the host plant, and environmental conditions. The spread of TuMV has caused significant economic losses in many regions, especially in Europe, Asia, and North America [5–8]. Examples of the damage it has caused include a loss of 30% in *B. napus* yield in Canada [9], seed yield losses of up to 70% in *B. napus* in the UK [10], and a 50% decrease in *B. oleracea* var. *capitata* (cabbage) head production in Kenya [11]. In 2014, a nationwide survey conducted in radish fields in South Korea showed that 47 of 108 samples with virus-like symptoms were infected with TuMV and that the incidence of TuMV was higher than that of cucumber mosaic virus and radish mosaic virus [12]. In addition, TuMV infection was also found in some Chinese cabbage fields in South Korea in 2015 [13]. The epidemic of TuMV in South Korea may adversely affect the quality of some vegetables that are common hosts of TuMV.

Turnip mosaic virus is a member of the genus *Potyvirus* in the family *Potyviridae*. Its genome is a single-stranded, positive-sense RNA molecule of about 9830 nucleotides.

Handling Editor: Stephen John Wylie.

Zheng-Xing Song, Eun-Young Seo and Wen-Xing Hu contributed equally to this study.

※ In-Sook Cho
tuat@korea.kr

※ John Hammond
john.hammond@usda.gov

※ Hyoun-Sub Lim
hyounlim@cnu.ac.kr

¹ Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

² Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

³ Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

⁴ National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea

⁵ United States Department of Agriculture-Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705, USA
(nt) that is covalently linked to a genome-linked viral protein (VPg) attached at its 5′ end [2]. The large open reading frame (ORF) is translated into a polyprotein, which is cleaved into 10 mature proteins. An additional coding region, PIPO, is embedded within the P3 region as a result of polymerase slippage and a resulting change of reading frame [14]. The world population of TuMV has probably been more thoroughly sampled and sequenced than that of other potyviruses [15, 16]. Four major groups have been identified based on their host type. Isolates from host type [(B)] occasionally infect Brassica plants (usually latently), but not Raphanus plants, and isolates from host type [B] infect most Brassica species systemically with mosaic symptoms but do not infect Raphanus plants. Isolates from host type [B(R)] cause systemic mosaics in most Brassica species and occasionally infect Raphanus plants latently, while isolates from host type [BR] are able to infect both Brassica and Raphanus plants [17].

In recent years, an increasing number of studies have led to the discovery of new TuMV isolates in China, South Korea, and Japan, which reflects the prevalence of TuMV in East Asia [18–20]. TuMV is transmitted by aphids in a non-persistent stylet-borne manner. At least 89 aphid species have been reported to be able to transmit TuMV, including the well-known Myzus persicae and Brevicoryne brassicae [2]. Recently, the incidence of insect-transmitted viruses has increased in China, South Korea, and Japan [21–23]. Climate change, leading to a rise in temperature, may be one of the reasons for the increase in viral diseases. A suitable environment facilitates the reproduction of insects, which also accelerates the transmission of some viral diseases.

In the present study, the complete genome sequences of two TuMV isolates originating from canola in South Korea were determined, and their genetic relationships were clarified by phylogenetic analysis. Moreover, a full-length infectious cDNA clone of each isolate was constructed to study the biological properties of these isolates. To the best of our knowledge, this is the first report of TuMV infecting B. napus in South Korea.

![Symptoms induced by full-length infectious clones of TuMV in Nicotiana benthamiana at 5 dpi and 14 dpi. Both Canola-12 and Canola-14 caused severe leaf curling and growth stunting symptoms.](image1)

![Symptoms on the original sample and sap-inoculated Brassica napus plants. (A) Symptoms on the original sample. (B, C) Symptoms induced by Canola-12 and Canola-14 on B. napus about one month after sap inoculation. (D) A healthy plant.](image2)
A single canola sample showing obvious mosaic symptoms was collected in the city of Gimcheon, South Korea, in 2020. In order to detect viruses, total RNA was extracted from the sample using TRIzol® Reagent (Life Technologies, Carlsbad, CA, USA) and stored at -70 °C, and cDNA was subsequently produced using a LeGene Express 1st Strand cDNA Synthesis System and an oligo dT primer (LeGene Biosciences, San Diego, CA, USA). Virus detection was performed by PCR, using TuMV-CP primers (Supplementary Table S1), and gel electrophoresis results showed that the sample was positive for TuMV. In order to construct full-length cDNA clones, PCR products amplified using a TuMV-specific 5’ primer (with a SalI restriction site and a T7 promoter) and a 3’ primer (with an XmaI restriction site and an oligo T(30) sequence) (Supplementary Table S1) were digested with SalI and XmaI and subsequently cloned into the binary vector pJY, which had been digested with the same enzymes [24, 25]. The infectivity of these full-length clones was evaluated by agroinfiltration of Nicotiana benthamiana plants [20], followed by incubation in a growth chamber at 22-25 °C (16/8h, light/dark cycle).

Two infectious clones, named Canola-12 and Canola-14, were obtained. Slight curling of the top leaves was observed at 5 days post-inoculation (dpi). At 10 dpi, the inoculated plants showed leaf malformation and obvious growth stunting when compared to healthy control plants. Both isolates were able to infect N. benthamiana and induced similar symptoms (Fig. 1). In addition, the leaves of plants inoculated by each infectious clone were collected to prepare an inoculum for subsequent sap inoculation. Briefly, the leaves were ground into powder in liquid nitrogen, suspended in 1x PBS buffer, and mechanically inoculated onto leaves of canola [20]. About 30 days later, mosaic symptoms appeared on the newly developed leaves of B. napus plants inoculated with isolate Canola-12 or Canola-14 (Fig. 2), which is consistent with the symptoms we observed in the original sample. All of the infections were confirmed by RT-PCR as above (data not shown), and the experiment was repeated twice.

The sequences of these two infectious clones were determined using vector-specific primers and sequential TuMV-specific primers designed from the initially obtained sequences (Supplementary Table S1) and assembled using DNAMAN (Version 5.2.10). Each genome was found to be composed of 9833 nt, excluding the poly(A) tail, and is predicted to encode a polyprotein of 3164 aa. There are only three nucleotide differences between their genomes (nt 526, 1508, and 4067), resulting in a single amino acid difference at aa 132 in P1 (E in Canola-12; G in Canola-14). A phylogenetic tree was constructed by the maximum-likelihood method with 1000 bootstrap replicates in MEGA (version 7.0), based on the polyprotein-encoding sequences of TuMV isolates from NCBI, including 25 isolates previously identified in South Korea [19, 20, 25], with Japanese yam mosaic virus (JYMV) used as the outgroup. Unlike strains that were characterized previously in South Korea, which mostly belonged to the Basal-BR group, these two isolates collected from B. napus were grouped in the World-B clade. The isolates Canola-12 (MW556022) and Canola-14 (MW556023), shared 99.97% nucleotide sequence identity and clustered together in a subgroup that also included two strains collected in China, and one strain from the UK (UK1) infecting B. napus [26], with 100% bootstrap support (Fig. 3). Isolates UK1 and JPN 1 have been used to construct infectious clones, and UK1, which is able to infect B. napus, showed a close relationship to our isolates in the World-B group, while JPN 1, a radish-infecting isolate, fell into a relatively distant branch within the Asian-BR group [27], while another Japanese isolate, KWB779J, fell into the Basal-BR group (Fig. 3). The Korean canola isolates were distinct from isolates 12.1 and 12.5, which recently emerged in Australia as new isolates breaking TuMV resistance in B. napus [28], showing that TuMV has been constantly evolving to overcome host resistance.

Recently, researchers have shown that TuMV, which probably originated in European wild orchids, likely spread from west to east across Eurasia around the 17th century CE [15, 16, 29]. Previous studies on TuMV have revealed the prevalence of Basal-BR isolates of TuMV in South Korea [19, 20], whereas the isolates reported here belonged to the World-B group and showed a close relationship to two Chinese isolates and one European isolate (Fig. 3). A genomic analysis of TuMV has indicated that the United Kingdom played an important role in the spread of the virus in Europe, while northeast China was a center for the spread of World-B3 subgroup isolates in Asia [16], which could be an explanation for the emergence of World-B isolates in South Korea. The high genetic variability, wide host range and mode of transmission of TuMV make this virus hard to control by traditional methods such as chemicals. Therefore, breeding of resistant host cultivars is a more effective and environmentally friendly strategy [4]. Additionally, identification of more resistance genes is also necessary, although resistance-breaking isolates sometimes may appear [28, 30–32].
Basal-BR group

Asian-BR group

World-B group

Basal-B group

Iranian group

Orchis group
Korean isolates of turnip mosaic virus

Fig. 3 Phylogenetic tree constructed by the maximum-likelihood method with 1000 bootstrap replicates, based on the polyprotein-encoding sequences of TuMV isolates from the NCBI database, including 25 isolates identified previously in South Korea [19, 20, 25]. The new canola isolates are indicated by arrows to the right of the isolate/accession number/country label.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00705-022-05381-2.

Acknowledgements This study was financially supported by the research fund of Chungnam National University in 2020.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants performed by any of the authors.

References

1. Kim IR, Lim HS, Choi W et al (2020) Monitoring living modified canola using an efficient multiplex PCR assay in natural environments in South Korea. Appl Sci 10(21):7721

2. Walsh JA, Jenner CE (2002) *Turnip mosaic virus* and the quest for durable resistance. Mol Plant Pathol 3(5):289–300

3. Nyalugwe EP, Barbett MJ, Jones RAC (2014) Preliminary studies on resistance phenotypes to *Turnip mosaic virus* in Brassica napus and *B. carinata* from different continents and effects of temperature on their expression. Eur J Plant Pathol 139(4):687–706

4. Li G, Lv H, Zhang S et al (2019) TuMV management for brassica crops through host resistance: retrospect and prospects. Plant Pathol 68(6):1035–1044

5. Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110(3):661–681

6. Walkley DGA, Pink DAC (1988) Reactions of white cabbage (*Brassica oleracea var. capitata*) to four different strains of turnip mosaic virus. Ann Appl Biol 112(2):273–284

7. Walsh JA, Rusholme RL, Hughes SL et al (2002) Different classes of resistance to *Turnip mosaic virus* in Brassica rapa. Eur J Plant Pathol 108(1):15–20

8. Zhu F, Sun Y, Wang Y et al (2016) Molecular characterization of the complete genome of three basal-BR isolates of *Turnip mosaic virus* infecting *Raphanus sativus* in China. Int J Mol Sci 17(6):888

9. Shattuck VL, Stobbs LW (1987) Evaluation of Rutabaga cultivars for turnip mosaic virus resistance and the inheritance of resistance. HortScience 22(5):935–937

10. Hardwick NV, Davies JML, Wright DM (1994) The incidence of three virus diseases of winter oilseed rape in England and Wales in the 1991/92 and 1992/93 growing seasons. Plant Pathol 43(6):1045–1049

11. Spence NJ, Phiri NA, Hughes SL et al (2007) Economic impact of *Turnip mosaic virus*, *Cauliflower mosaic virus* and *Beet mosaic virus* in three Kenyan vegetables. Plant Pathol 56(2):317–323

12. Chung J, Han JY, Kim J et al (2015) Survey of viruses present in radish fields in 2014. Res Plant Dis 21(3):235–242

13. Chung J, Han J, Kim J et al (2016) Nationwide survey of *Turnip mosaic virus* and selection of cabbage lines with resistance against major TuMV isolates. Korean J Agric Sci 4:567–574

14. Chung BYW, Miller WA, Atkins JF et al (2008) An overlapping essential gene in the *Potyviridae*. Proc Natl Acad Sci USA 105(15):5897–5902

15. Nguyen HD, Tomitaka Y, Ho SYW et al (2013) Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS One 8(2):e55336

16. Kawakubo S, Gao F, Li S et al (2021) Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proc Natl Acad Sci USA 118(12):e2021221118

17. Tomimura K, Špak J, Katis N et al (2004) Comparisons of the genetic structure of populations of *Turnip mosaic virus* in West and East Eurasia. Virology 330(2):408–423

18. Hu WX, See EO, Cho IS et al (2019) Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in *Nicotiana benthamiana* and radish. Arch Virol 164(6):1683–1689

19. Hu WX, Kim BJ, Kwak Y et al (2019) Five newly collected turnip mosaic virus (TuMV) isolates from Jeju island, Korea are closely related to previously reported Korean TuMV isolates but show distinctive symptom development. Plant Pathol 35(4):381–387

20. Gong J, Ju HK, Kim IH et al (2019) Sequence variations among 17 new radish isolates of *Turnip mosaic virus* showing differential pathogenicity and infectivity in *Nicotiana benthamiana, Brassica rapa*, and *Raphanus sativus*. Phytopathology 109(5):904–912

21. Liu Y, Khine MO, Zhang P et al (2020) Incidence and distribution of insect-transmitted cereal viruses in wheat in China from 2007 to 2019. Plant Dis 104(5):1407–1414

22. Tsuda S, Sano T (2014) Threats to Japanese agriculture from newly emerged plant viruses and viroids. J Gen Plant Pathol 80:2–14

23. Kim J, Yang JW, Kwak HR et al (2017) Virus incidence of sweet potato in Korea from 2011 to 2014. Plant Pathol J 33(5):467–477

24. Park CH, Ju HK, Han JY et al (2017) Complete nucleotide sequences and construction of full-length infectious cDNA clones of cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters. Virus Genes 52(4):592–596

25. Jenner CE, Tomimura K, Ohshima K et al (2002) Mutations in the *Turnip mosaic virus* (TuMV) strain that breaks TuMV resistances in *Brassica napus*. Plant Dis 105(15):5897–5902

26. Jenner CE, Walsh JA (1996) Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathol 45(5):848–856

27. López-González S, Aragonés V, Darós JA et al (2017) An infectious cDNA clone of a radish-infecting *Turnip mosaic virus strain*. Eur J Plant Pathol 148(1):207–211

28. Guerret MGL, Nyalugwe EP, Maina S et al (2017) Biological and molecular properties of a Turnip mosaic virus (TuMV) strain that breaks TuMV resistances in *Brassica napus*. Plant Dis 101(5):674–683

29. Ohshima K, Yamaguchi Y, Hirota R et al (2002) Molecular evolution of *Turnip mosaic virus*: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83(6):1511–1521

30. Jenner CE, Tomimura K, Ohshima K et al (2002) Mutations in *Turnip mosaic virus* P3 and cylindrical inclusion proteins are separately required to overcome two *Brassica napus* resistance genes. Virology 300(1):50–59
31. Hughes SL, Green SK, Lydiate DJ et al (2002) Resistance to Turnip mosaic virus in *Brassica rapa* and *B. napus* and the analysis of genetic inheritance in selected lines. Plant Pathol 51(5):567–573

32. Palukaitis P, Kim S (2021) Resistance to turnip mosaic virus in the family *Brassicaceae*. Plant Pathol J 37(1):1–23

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.