REVIEW

----Statins in the perioperative period [version 1; peer review: 3 approved]

Reza Mohebi, Robert Rosenson

Department of Medicine (Cardiology), Icahn school of Medicine at Mount Sinai, New York, 10029, USA

Abstract

In this review, we discuss clinical evidence-based data regarding the potential benefit of statin therapy in the perioperative period of non-cardiac surgery. Results from meta-analyses of prospective observational studies have provided conflicting evidence. Moreover, comparison among studies is complicated by varying data sources, outcome definitions, types of surgery, and preoperative versus perioperative statin therapy. However, results of two recent large prospective cohort studies showed that statin use on the day of or the day after non-cardiac surgery (or both) is associated with lower 30-day all-cause mortality and reduction in a variety of postoperative complications, predominantly cardiac, compared with non-use during this period. There is a paucity of data from randomized controlled trials assessing the benefit of statin therapy in non-cardiac surgery. No randomized controlled trials have shown that initiating a statin in statin-naïve patients may reduce the risk of cardiovascular complications in non-cardiac surgeries. One randomized clinical trial demonstrated that the use of a preoperative statin in patients with stable coronary heart disease treated with long-term statin therapy had a significant reduction in the incidence of myocardial necrosis and major adverse cardiovascular events after non-cardiac surgery. In conclusion, it is important that all health-care professionals involved in the care of the surgical patient emphasize the need to resume statin therapy, particularly in patients with established atherosclerotic cardiovascular disease. However, initiating a statin in statin-naïve patients undergoing non-cardiac surgery needs more evidence-based data.

Keywords

Statin, perioperative risk, mortality, risk reduction

Open Peer Review

Reviewer Status

Invited Reviewers

1 2 3

version 1 published

20 May 2019

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty. In order to make these reviews as comprehensive and accessible as possible, peer review takes place before publication; the reviewers are listed below, but their reports are not formally published.

1 Michael Irwin, University of Hong Kong, Pokfulam, Hong Kong

2 Daniel Fintel, Northwestern University Hospital, Chicago, USA

3 Mandep Sidhu, Albany Medical Center, Albany, USA

Any comments on the article can be found at the end of the article.
Introduction

Many patients undergoing surgery take medicines used to prevent atherothrombotic cardiovascular events. The health-care impact of temporary discontinuation of cardiovascular preventive therapies on perioperative and postoperative complications is an important concern for physicians involved in preoperative cardiovascular risk assessment. Cardiovascular complications, including myocardial infarction, acute congestive heart failure, atrial fibrillation, fatal ventricular arhythmia, and cardiac death, were found in up to 5% of patients undergoing in-hospital non-cardiac surgery. Of these complications, perioperative myocardial infarction is the most common, occurring in 16% of patients with cardiac complication. Large prospective cohort studies have shown that the incidence of primary myocardial injury following non-cardiac surgery (MINS) ranges between 8 and 19% and that myocardial infarction accounts for about 40% of myocardial injury. In this respect, cardiovascular risk assessment and optimization of medical therapy play important roles for risk reduction of adverse complications of non-cardiac surgeries.

Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) have been used since the mid-1980s. The use of statins in adults in the US has increased substantially in the last decade. Tens of millions of individuals have received statins as therapy for the primary and secondary prevention of coronary atherosclerotic events by lowering of lipid levels. Furthermore, use of statins offers beneficial effects beyond those afforded by reducing low-density lipoprotein cholesterol (LDL-C) levels. It is postulated that the pleiotropic effects of statins, which can change endothelial function, decrease inflammation, and alter membrane receptors/ion channels, may also have beneficial effects in individuals undergoing non-cardiac surgeries. In this review, we discuss evidence-based data concerning the continued use of statins in the perioperative period.

Discussion

There is a paucity of data from randomized clinical trials assessing the benefit of statin therapy in non-cardiac surgery (Table 1). In the Lowering the Risk of Operative Complications Using Atorvastatin Loading Dose (LOAD) randomized trial, reported by Berwanger et al., 648 statin-naïve patients who were at risk for a major vascular complication and scheduled for non-cardiac surgery were randomly assigned to a loading dose of atorvastatin or placebo (80 mg anytime within 18 hours before surgery) followed by a maintenance dose of 40 mg (or placebo), started at least 12 hours after surgery, and then 40 mg (or placebo) daily for 7 days. A composite of all-cause mortality, non-fatal MINS, and stroke at 30 days was the primary outcome. In contrast to prior observational cohort studies, the LOAD trial did not show any risk reduction in major cardiovascular complications after a short-term perioperative course of statins in statin-naïve patients undergoing non-cardiac surgery. Also, the results of the Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography IV (DECREASE-IV) randomized controlled trial demonstrated that patients who had an intermediate cardiovascular disease risk—which was defined by an estimated risk of perioperative cardiac death and myocardial infarction of 1 to 6% by using clinical data and type of surgery—and who were randomly assigned to fluvastatin experienced a lower incidence of the end point than those randomly assigned to fluvastatin-control therapy (3.2% versus 4.9% events; hazard ratio 0.65, 95% confidence interval [CI] 0.35–1.10), but statistical significance was not reached (P = 0.17). Moreover, in regard to the effect of statins in non-cardiac vascular surgeries, a Cochrane review pooled the results

Table 1. Descriptive baseline characteristics and findings of studies.

Study	Year	Number of patients	Patient population	Type of surgery	Follow-up duration	Statin effect on adverse outcome
Clinical trials						
LOAD trial	2016	648	High-risk statin-naïve patients	Non-cardiac surgery	30 days	No risk reduction
Xia et al.	2015	550	Stable coronary artery disease on long-term statin	Non-cardiac	6 months	Risk reduction
DECREASE-IV	2009	1066	Patients at intermediate cardiac risk	Non-cardiac	34 days	No reduction
Meta-analysis						
Hindler et al.	2006	223,010 (15 studies)	General patients	General surgery including cardiac	-	Risk reduction
Antoniou et al.	2015	22,681 (24 studies)	General patients	Vascular surgery	-	Risk reduction
Observational cohort						
London et al.	2017	180,478	General patients	Non-cardiac surgery	30 days	Risk reduction
VISION cohort	2016	15,487	General patients	Non-cardiac surgery	30 days	Risk reduction

DECREASE-IV, Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography IV; LOAD, Lowering the Risk of Operative Complications Using Atorvastatin Loading Dose; VISION, Vascular Events in Noncardiac Surgery Patients Cohort Evaluation.
from three vascular surgery trials including 178 participants and found no difference in decreasing the risk of mortality and myocardial infarction at 30 days with statins.

In contrast to these two studies, a single-center, double-blind, placebo-controlled trial in China showed that, in patients with stable coronary heart disease on long-term statin therapy, preoperative rosuvastatin therapy decreases the incidence of myocardial necrosis and major adverse cardiovascular events after non-cardiac surgery. Moreover, a prospective study showed that discontinuation of statins in patients with a previous myocardial infarction is associated with higher rates of recurrent myocardial infarctions and more hospitalizations for cardiovascular events than patients highly adherent to statin therapy.

Results from a meta-analysis of prospective observational studies provided conflicting evidence. A comparison of studies is complicated by varying outcome definitions, types of surgery, and preoperative versus perioperative statin use. A prospective cohort study analyzed 15,478 patients from the Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) trial who were at least 45 years old and had non-cardiac surgery; in the matched population of 2845 patients (18.4%) who received a statin and 4492 (29.0%) controls, preoperative statin use was associated with a lower risk of the primary outcome, a composite of all-cause mortality, MINS, or stroke at 30 days (relative risk 0.83, 95% CI 0.73–0.95). Statins were also associated with a significantly lower risk of the individual components of all-cause mortality, cardiovascular mortality, and MINS, but there were no statistically significant differences in the risk of myocardial infarction or stroke. Recently, London et al., in a retrospective observational cohort, analyzed a large database of 180,000 veterans who were undergoing elective or emergent non-cardiac surgery and who were admitted within 7 days of surgery and underwent 30-day postoperative follow-up.

The analysis results indicate that statin use on the day of or the day after non-cardiac surgery (or both) was associated with lower 30-day all-cause mortality and reduction in many postoperative complications, including cardiac complications, compared without receiving statin during this period. Moreover, sub-analyses demonstrated that patients younger than 75 years, those receiving intensive statin therapy, patients with ischemic heart disease or diabetes, and those undergoing high-risk surgery may have a larger risk reduction with perioperative statin treatment. Discontinuation of perioperative statin treatment may increase the risk of adverse outcomes.

Conclusions
A protective effect of statin therapy in patients undergoing non-cardiac surgeries has been reported in many prospective observational studies. However, data from randomized controlled trials showing the effect of a perioperative course of statins for non-cardiac surgery are inconsistent. Of the three trials published in the field, two (LOAD and DECREASE-IV) failed to show a protective effect of statin therapy in the perioperative period. The third trial showed a protective effect of statin therapy only in those who had stable coronary heart disease and received statins over a long period of time. In conclusion, as a quality measure, it is important that all health-care professionals involved in the care of the surgical patient emphasize the need to resume statin therapy, particularly in patients with established atherosclerotic cardiovascular disease. However, initiating statin therapy in statin-naive patients undergoing non-cardiac surgery needs further randomized controlled trials.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References

1. Weiser TG, Regenbogen SE, Thompson KD, et al.: An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008; 372(9633): 139–44. Published Abstract | Publisher Full Text

2. Smailowitz NR, Berger JS: Perioperative Management to Reduce Cardiovascular Events. Circulation. 2016; 133(11): 1125–30. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

3. Kristensen SD, Knudt J, Saraste A, et al.: 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur Heart J. 2014; 35(38): 2383–431. Published Abstract | Publisher Full Text

4. Puelacher C, Lurati Buse G, Seeberger D, et al.: Perioperative Myocardial Injury After Noncardiac Surgery: Incidence, Mortality, and Characterization. Circulation 2018; 137(10): 1221–1232. Published Abstract | Publisher Full Text | F1000 Recommendation

5. George R, Menon VP, Edadathadi F, et al.: Myocardial injury after noncardiac surgery-incidence and predictors from a prospective observational cohort study at an Indian tertiary care centre. Medicine (Baltimore). 2018; 97(19): e12602. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

6. Livhits M, Ko CY, Leonardi MJ, et al.: Risk of surgery following recent myocardial infarction. Ann Surg. 2011; 253(5): 857–64. Published Abstract | Publisher Full Text

7. Ashton CM: The incidence of perioperative myocardial infarction in men undergoing noncardiac surgery. Ann Intern Med. 1993; 118(7): 504–10. Published Abstract | Publisher Full Text

8. Kim BS, Kim TH, Oh JH, et al.: Association between perioperative high sensitive troponin I levels and cardiovascular events after hip fracture surgery in the elderly. J Geriatr Cardiol. 2018; 15(3): 215–221. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

9. Salami JA, Warraich H, Valero-Elizondo J, et al.: National Trends in Statin Use and Expenditures in the US Adult Population From 2002 to 2013: Insights From the Medical Expenditure Panel Survey. JAMA Cardiol. 2017; 2(1): 56–60. Published Abstract | Publisher Full Text

10. Taylor F, Huffman MD, Macedo AF, et al.: Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013; (1): CD004816. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Beckman JA, Creager MA: The nonlipid effects of statins on endothelial function. Trends Cardiovasc Med. 2006; 16(5): 156–62. Published Abstract | Publisher Full Text

12. Shiroshita-Takeshita A, Schram G, Lavoie J, et al.: Effect of simvastatin and
antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation. 2004; 110(16): 2313–9.

13. Lahera V, Goicoechea M, de Vinuesa SG, et al.: Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Curr Med Chem. 2007; 14(2): 243–8.

14. Altun I, Oz F, Arkaya SC, et al.: Effect of statins on endothelial function in patients with acute coronary syndrome: a prospective study using adhesion molecules and flow-mediated dilatation. J Clin Med Res. 2014; 6(3): 354–61.

15. Berwanger O, de Barros E Silva PG, Barbosa RR, et al.: Atorvastatin for high-risk statin-naïve patients undergoing noncardiac surgery: The Lowering the Risk of Operative Complications Using Atorvastatin Loading Dose (LOAD) randomized trial. Am Heart J. 2017; 184: 88–96.

16. Dunkelgrun M, Boersma E, Schouten O, et al.: Bisoprolol and fluvastatin for the reduction of perioperative cardiac mortality and myocardial infarction in intermediate-risk patients undergoing noncardiovascular surgery: a randomized controlled trial (DECREASE-IV). Ann Surg. 2009; 249(6): 921–6.

17. Xia J, Qu Y, Yin C, et al.: Preoperative rosuvastatin protects patients with coronary artery disease undergoing noncardiac surgery. Cardiology. 2015; 131(1): 30–7.

18. Hinder K, Shaw AD, Samuels J, et al.: Improved postoperative outcomes associated with preoperative statin therapy. Anesthesiology. 2006; 105(6): 1260–72; quiz 1289–90.
Open Peer Review

Current Peer Review Status: ☑️ ☑️ ☑️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the reviewers provide input before publication and only the final, revised version is published. The reviewers who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The reviewers who approved this article are:

Version 1

1. **Mandeep Sidhu**
 - Division of Cardiology, Department of Medicine, Albany Medical Center, Albany, NY, USA
 - **Competing Interests:** No competing interests were disclosed.

2. **Daniel Fintel**
 - Division of Cardiology, Northwestern University Hospital, Chicago, IL, USA
 - **Competing Interests:** No competing interests were disclosed.

3. **Michael Irwin**
 - Department of Anesthesiology, University of Hong Kong, Pokfulam, K424, Hong Kong
 - **Competing Interests:** No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com