Centrally Essential Group Algebras

V.T. Markov
Lomonosov Moscow State University
e-mail: vtmarkov@yandex.ru

A.A. Tuganbaev
National Research University “MPEI”
Lomonosov Moscow State University
e-mail: tuganbaev@gmail.com

Abstract. A ring R with center C is said to be centrally essential if the module RC is an essential extension of the module CC. In the paper, we study groups whose group algebras over fields are centrally essential rings. We focus on the centrally essential modular group algebras of finite groups over fields of nonzero characteristic.

V.T. Markov is supported by the Russian Foundation for Basic Research, project 17-01-00895-A. A.A. Tuganbaev is supported by Russian Scientific Foundation, project 16-11-10013.

Key words: centrally essential ring, group ring, FC-group.

1. Introduction

All considered rings are associative unital rings. A ring R with center C is said to be centrally essential if the module RC is an essential extension of the module CC. Any commutative ring is a trivial example of a centrally essential ring. However, there also exist noncommutative centrally essential rings; in particular, there are noncommutative centrally essential group rings of finite groups. For example, let $F = GF(2)$ be the field of order 2 and $G = Q_8$ the quaternion group, i.e., G is the group with two generators a, b and defining relations $a^4 = 1$, $a^2 = b^2$ and $aba^{-1} = b^{-1}$; see [3, Section 4.4]. Then the group algebra FG is a noncommutative centrally essential ring consisting of 256 elements (this follows from Theorem 1.1 below).

The main result of the paper is Theorem 1.1.

Theorem 1.1. Let F be a field of characteristic $p > 0$.

1. If G is an arbitrary finite group, then the group algebra FG is a centrally essential ring if and only if $G = P \times H$, where P is the unique Sylow p-subgroup of the group G, the group H is commutative, and the ring FP is centrally essential.

2. If G is a finite p-group and the nilpotence class of G does not exceed 2, then the group algebra FG is a centrally essential ring.

3. There exists a group G of order p^5 such that the group algebra FG is not a centrally essential ring.

\[\text{It is well known that every finite } p\text{-group is nilpotent, e.g., see [3, Theorem 10.3.4].}\]
Remark 1.2. In connection to Theorem 1.1, we note that for an arbitrary field F of zero characteristic and every group G, the group algebra FG is a centrally essential ring if and only if the algebra FG is commutative; see Proposition 3.2 in Section 3. Therefore, when studying centrally essential group algebras over fields, only the case of fields of positive characteristic is interesting.

The proof of Theorem 1.1 is given in the next section. We give some necessary notions.

For an arbitrary finite subset S of the group G and any ring A, we denote by Σ_S the element $\sum_{x \in S} x$ of the group ring AG.

We use the following notation. Let R be a ring and G a group. The center of the ring R is denoted by $C(R)$. For any two elements a, b of the ring R, we set $[a, b] = ab - ba$. Following [3], we set $(x, y) = x^{-1}y^{-1}xy$ for any two elements x, y of the group G; additive commutators and multiplicative commutators are designated differently, since the elements of the group are also considered as elements of the group ring. For any element g of the group G, we denote by g^G the class of conjugate elements which contains g. For a group G, the upper central series of G is the chain of subgroups $\{e\} = Z_0(G) \subseteq Z_1(G) \subseteq \ldots$, where $Z_i(G)/Z_{i-1}(G)$ is the center of the group $G/Z_{i-1}(G)$, $i \geq 1$. We denote by $NC(G)$ the nilpotence class of the group G, i.e., the least positive integer n with $Z_n(G) = G$ (if it exists).

Lemma 2.1. Let A be a ring and G a group. If the group ring $R = AG$ is centrally essential, then A also is a centrally essential ring and the group G is an FC-group, i.e., all the classes of conjugate elements in G are finite.

Proof. Let $0 \neq a \in A$ and $0 \neq ca \in C(R)$. We have $c = \sum_{g \in G} c_g g$. It follows from the relations $0 = [c, b] = \sum_{g \in G} [c_g, b] g$ for any $b \in A$ that $c_g \in C(A)$ for all $g \in G$. Similarly, we have $ac_g \in C(A)$ for any $g \in G$. Since there exists at least one element $g \in G$ with $ac_g \neq 0$, we obtain our assertion about the ring A.

Now let $g \in G$. It is well known (e.g., see [7, Lemma 4.1.1]) that $C(AG)$ is a free $C(A)$-module with basis $\{\Sigma_K \mid K$ is a finite the class of of conjugate elements in the group $G\}$. Therefore, if $0 \neq cg = d$, where $c, d \in Z(AG)$, then we can compare the coefficients of g in the left part and the right part of the relation $cg = d$ and obtain that there exist finite classes of conjugate elements K_1, K_2 such that $gx = y$ for some $x \in K_1, y \in K_2$. For any $h \in G$, we have that $hgh^{-1} = (hxh^{-1})^{-1}hyh^{-1}$ and the number of the right parts
of this relation does not exceed $|K_1| \cdot |K_2|$; consequently, the class of elements, which are conjugate to g, is finite.

Lemma 2.2. Let A be a ring and G a commutative monoid. If A is a centrally essential ring, then the monoid ring AG is centrally essential.

Proof. Let $0 \neq r = \sum_{g \in G} r_g g \in R$. We use the induction on the number $k = k(r)$ of the coefficients r_g which are not contained in the center of the ring A. If $k(r) = 0$, i.e., $r_g \in C(A)$ for all $g \in G$, then it is nothing to prove. Otherwise, we take an element $h \in G$ with $r_h \notin C(A)$. There exists an element $c \in C(A)$ with $0 \neq crh \in C(A)$. Then it is clear that $0 \neq cr = \sum_{g \in G} cr_g g$ and $k(cr) < k(r)$. By the induction hypothesis, there exists an element $d \in C(R)$ with $0 \neq dcr \in C(R)$. Since $dc \in C(R)$, the proof is finished. □

Lemma 2.3 [6]. In any centrally essential ring R, the following quasi-identity system

\[
\forall n \in \mathbb{N}, x_1, \ldots, x_n, y_1, \ldots, y_n, r \in R, \quad \left\{ \begin{array}{l}
x_1y_1 + \ldots + x_ny_n = 1 \\
x_1ry_1 + \ldots + x_nry_n = 0
\end{array} \right. \Rightarrow r = 0.
\]

is true. In particular, all idempotents of the centrally essential ring R are central.

Proof. We assume that R is a centrally essential ring such that the relations from the above quasi-identity system hold, but $r \neq 0$. Then there exist two elements $c, d \in C(R)$ with $cr = d \neq 0$. Consequently,

\[
d = d(x_1y_1 + \ldots + x_ny_n) = x_1dy_1 + \ldots + x_ndy_n = c(x_1ry_1 + \ldots + x_nry_n) = 0.
\]

This is a contradiction.

The second assertion follows from the first assertion: let $e^2 = e \in R$. Then $e \cdot e + (1 - e) \cdot (1 - e) = 1$, and for any $x \in R$, we have $e(ex - xe)e + (1 - e)(ex - xe)(1 - e) = 0$, whence $ex - xe = 0$. □

Lemma 2.4. Let G be a group, F be a field of characteristic $p > 0$, and let q be a prime integer which is not equal to p. If the ring FG is centrally essential, then every q-subgroup in G is a normal commutative subgroup.

Proof. First, let H be a finite q-subgroup of the group G. Then $|H| = n = q^k$ is a nonzero element of the field F and the element $e_H = \frac{1}{n} \sum_{h \in H} h$ is an idempotent of the ring FG. By Lemma 2.3, e_H is a central idempotent. Consequently, $ge_Hg^{-1} = \frac{1}{n} \sum_{h \in H} ghg^{-1} = \frac{1}{n} \sum_{h \in H} h$ for any $g \in G$. By comparing the coefficients in the both parts of the last relation, we see that $ghg^{-1} \in H$, i.e., the subgroup H is normal.
Let F_0 be a prime subfield of the field F. We consider the finite ring F_0H. By Maschke’s theorem, it is isomorphic to some finite direct product of matrix rings over division rings; in addition, any finite division ring is a field by Wedderburn’s theorem. We assume that the group H is not commutative. Then one of the summands of the ring F_0H is the matrix ring of order $k > 1$ over some field; this is impossible, since such a matrix ring contains a non-central idempotent.

Now let H be an arbitrary q-subgroup in G. We take any element $h \in H$ and an arbitrary element $g \in G$. Since h generates the cyclic q-subgroup $H_0 = \langle h \rangle$, we have that $ghg^{-1} \in H_0 \subseteq H$ for any $g \in G$, i.e., the subgroup H is normal.

If $x, y \in H$, then the subgroup $H_1 = \langle x, y \rangle$ is finite by Lemma 2.1(1) and the following Dicman’s lemma:

if x_1, \ldots, x_n are elements of finite order in an arbitrary group G and each of the elements x_1, \ldots, x_n has only finitely many conjugate elements, then there exists a finite normal subgroup N of the group G containing x_1, \ldots, x_n (see [1] or [5, Lemma C, Appendixes]).

By the above, we have $xy = yx$. □

In the case of finite groups, we have a more strong assertion which reduces the study centrally essential group algebras of a finite group to the study centrally essential group algebras of finite p-groups.

Proposition 2.5. Let $|G| = n < \infty$ and F a field of characteristic $p > 0$. Then the following conditions are equivalent.

1) FG is a centrally essential ring.

2) $G = P \times H$, where P is the unique Sylow p-subgroup of the group G, the group H is commutative, and the ring FP is centrally essential.

Proof. Let the ring FG be centrally essential. By Lemma 2.4, every Sylow q-subgroup for $q \neq p$ is normal in G and it is commutative; consequently, the product H of all such subgroups is a commutative normal subgroup. Let $m = |H|$. We note that $(m, p) = 1$; therefore m is an invertible element of the field F.

We prove that the Sylow p-subgroup P of the group G is normal in G.

We consider the following linear mapping $f : R \to R$:

$$f(r) = \frac{1}{m} \sum_{h \in H} hrh^{-1}.$$

It is obvious that $f(1) = 1$ and $f(yry^{-1}) = f(r)$ for any $y \in H$, since the left part and the right part of the relation contain the same summands. Now we assume that $xy \neq yx$ for some $x \in P$ and $y \in H$. We set $r = x - yxy^{-1}$. It is directly verified that $r \neq 0$, but $f(r) = f(x) - f(yxy^{-1}) = 0$; this contradicts to Lemma 2.3. Thus, the
elements \(P \) and \(H \) commute, \(G = PH \) and \(P \cap H = \{1\} \); consequently, \(G = P \times H \). By considering \(FG \) as the group ring \((FP)H\), we obtain from Lemma 2.1(1) that \(FP \) is a centrally essential ring.

The converse assertion directly follows from Lemma 2.1(2) and the isomorphism \(FG \cong (FP)H \).

Proposition 2.6. Let \(G \) be a finite \(p \)-group and \(F \) a field of characteristic \(p \). If \(NC(G) \leq 2 \), then the group ring \(FG \) is centrally essential.

Proof. We recall that for any subgroup \(N \) of the group \(G \), we denote by \(\omega H \) the right ideal of the ring \(FG \) generated by the set \(\{1 - h | h \in H\} \), we also recall that this right ideal is a two-sided ideal if and only if the subgroup \(H \) is normal. It is well known (e.g., see cite[Lemma 3.1.6]Passman) that the ideal \(\omega G \) is nilpotent in the considered case.

Let \(0 \neq x \in FG \). We consider all possible products \(x(1 - z) \), where \(z \in Z \). If at least one of them (say, \(x_1 = x(1 - z_1) \)) is non-zero, we consider products \(x_1(1 - z) \) and so on. This process terminates at some step, i.e., there exists an integer \(k \geq 0 \) such that \(x_k \neq 0 \), but \(x_k \omega Z = 0 \) (we assume that \(x_0 = x \)). Then \(x_k \in FG \Sigma_Z \) (see [7 Lemma 3.1.2]). We note that \(FG \Sigma_Z \subseteq C(FG) \). Indeed, if \(g, h \in G \), then

\[
[g, h \Sigma_Z] = [g, h] \Sigma_Z = gh(1 - h^{-1}g^{-1}hg) \Sigma_Z = 0,
\]

since \(h^{-1}g^{-1}hg \in G' \subseteq Z \). Thus, by setting \(c = (1 - z_1) \ldots (1 - z_k) \) (or \(c = 1 \) for \(k = 0 \)), we obtain \(c \in C(FG) \) and \(xc = x_k \in C(FG) \setminus \{0\} \), which is required. \(\square \)

Lemma 2.7. Let \(F \) be a field of characteristic \(p \) and let \(G \) be a finite \(p \)-group satisfying the following condition \((*)\):

- for any non-central element \(g \in G \) there exists a non-trivial subgroup \(H \) of the center of the group \(G \) with \(gH \subseteq g^2 \).

If \(NC(G) > 2 \), then the ring \(R = FG \) is not centrally essential.

Proof. Let \(Z = Z_1(G) \) be the center of the group \(G \), \(K = g^2 \) be the class of conjugate elements of the group \(G \), \(|K| > 1 \), and let \(H \) be the subgroup from \((*)\). Then \(K = \bigcup_{x \in K} Hx \), since \(a^{-1}Hga = Ha^{-1}ga \) for any \(a \in G \). Consequently, \(\Sigma_K = \sum_{i=1}^t \Sigma_{Hx_i} \) for some \(x_1, \ldots, x_t \in K \).

Now we note that \((\Sigma_Z)h = \Sigma_Z \) for any \(h \in H \); therefore, \(\Sigma_Z \Sigma_H = |H| \Sigma_Z = 0 \). This implies that \(\Sigma_Z \Sigma_K = 0 \).

Further, if \(NC(G) > 2 \), then there exists an element \(g \in G \setminus Z_2(G) \). This means that there exists an element \(a \in G \) with \((g, a) \notin Z \). We consider the element \(x = g \Sigma_Z \neq 0 \). We have

\[
[a, x] = [a, g \Sigma_Z] = (ag - ga) \Sigma_Z = ag(1 - (g, a)) \Sigma_Z \neq 0,
\]

since \(1 - (g, a) \notin \omega Z \). Consequently, \(x \notin C = C(R) \). An arbitrary element \(c \in C \) can be represented as \(c = c_0 + c_1 \), where \(c_0 \in FZ \), \(c_1 = \sum_{i=0}^s \alpha_i \Sigma_{K_i} \), \(K_1, \ldots, K_s \) are the classes of conjugate elements of
Lemma 2.7. For any element a and the automorphism φ, it is a contradiction.

Lemma 2.8. We consider the cases p^2 such that the group algebra FG is not a centrally essential ring.

Proof. We construct groups which satisfy the conditions of Lemma 2.8. We consider the cases $p = 2$ and $p \neq 2$ separately.

Let $p = 2$. We consider the direct product N of the quaternion group $Q_8 = \{\pm 1, \pm i, \pm k\}$ and the cyclic group $\langle a \rangle$ of order 2 with generator a and the automorphism α of the group N defined on generators by the relations $\alpha(i) = j, \alpha(j) = i, \alpha(a) = (-1)a$. We set $\Gamma = \langle \alpha \rangle$. We have the semidirect product $G = N \rtimes \Gamma$ whose elements are considered as products $x\gamma$, where $x \in N$ and $\gamma \in \langle \alpha \rangle$, and the operation is defined by the relation $x\gamma x'\gamma' = x\gamma(x')\gamma'$. The elements of the form $x1$ are naturally identified with elements $x \in N$ and the elements of the form 1γ are identified with the elements $\gamma \in \Gamma$. It is directly verified that $Z_1(G) = \langle -1 \rangle, Z_2(G) = \langle k, a \rangle = C_G(Z_2(G))$.

Now we assume that $p > 2$. We consider the semidirect product $N = A \rtimes G$ of the elementary Abelian group A of order p^3 with generators a, b, c and the group $\Gamma = \langle \gamma \rangle$, where γ is the automorphism of the group A defined on generators by the relations

$$
\gamma(a) = a, \gamma(b) = b, \gamma(c) = bc.
$$

It is directly verified that $|N| = p^4$ and any element of the group N can be uniquely represented in the form of the product $a^k b^l c^m \gamma^r$, where $k, l, m, r \in \{0, \ldots, p-1\}$. We prove that the mapping $\beta : \{a, b, c, \gamma\} \rightarrow N$, defined by the relations

$$
\beta(a) = a, \beta(b) = b, \beta(c) = ac, \beta(\gamma) = abc\gamma,
$$

Proof. Let $K = g^G$ and $|K| > 1$, i.e., $g \notin Z_1(G)$. If $g \in Z_2(G)$, then for any element $a \in G$, we have $(g, a) \in Z_1(G)$; in addition, $(g, a) \neq 1$ for some element $a \in G$. We set $z = (g, a)$. Then $ga = agz$ and $a^{-1}ga = gz \in K$. Therefore, $g\langle z \rangle \subseteq K$.

Now let $g \notin Z_2(G)$. Then there exists an element $a \in Z_2(G)$ such that $z = (g, a) \neq 1$. But $z \in Z_1(G)$ and $ga = agz$, whence we obtain $g\langle z \rangle \subseteq K$. □
can be extended to an automorphism $\hat{\beta}$ of the group N. Indeed, for any $k, l, m, r \in \mathbb{Z}$, we set
\[
\hat{\beta} (a^k b^l c^m \gamma^r) = a^k b^l a^m c^m a^r b^r (c\gamma)^r = a^{k+m+rl+\frac{r(r+1)}{2}} c^{m+r} \gamma^r.
\]
This definition is correct, since $p \left| \frac{r(r+1)}{2} \right.$ if $p \nmid r$. It is directly verified that for any $k, l, m, r, k', l', m', r' \in \{0, \ldots, p-1\}$ the relations
\[
a^{k}b^{l}c^{m}\gamma^{r} : a^{k'}b^{l'}c^{m'}\gamma^{r'} = a^{k+k'+l+l'+rm'+m'}c^{m+m'}\gamma^{r+r'},
\]
hold. Consequently,
\[
\hat{\beta} (a^k b^l c^m \gamma^r) \cdot \hat{\beta} (a^{k'} b^{l'} c^{m'} \gamma^{r'}) = a^{k+k'+m+m'+r+r'} b^{l+l'+rm'+m'} + \frac{(r+r')(r+r'+1)}{2} c^{m+m'+r+r'} \gamma^{r+r'}.
\]
On the other hand,
\[
\hat{\beta} (a^k b^l c^m \gamma^r) \cdot \hat{\beta} (a^{k'} b^{l'} c^{m'} \gamma^{r'}) = (a^{k+m+rl+\frac{r(r+1)}{2}} c^{m+r} \gamma^r) \cdot (a^{k'+m'+r'l'+\frac{r'(r'+1)}{2}} c^{m'+r'} \gamma^{r'}) = a^{k+m+r+k'+m'+r'l'+\frac{r'(r'+1)}{2} + r(r'+r') + r(r'+r')} c^{m+m'+r+r'} \gamma^{r+r'}.
\]
It remains to note that we have the following identity
\[
l + \frac{r(r+1)}{2} + l' + \frac{r'(r'+1)}{2} + r(m'+r') = l+l'+rm'+r'r' + \frac{r^2 + r + r'^2 + r'}{2} = l+l'+rm' + \frac{(r+r')(r+r'+1)}{2} = l+l'+rm' + \frac{(r+r')(r+r'+1)}{2}.
\]
Now we set $G = N \rtimes \langle \beta \rangle$. It is directly verified that $Z_1(G) = \langle a, b \rangle$ and $Z_2(G) = \langle a, b, c \rangle = C_G(Z_2(G))$. \hfill \Box

Remark 2.10. Theorem 1.1 follows from Proposition 2.5, Proposition 2.6 and Proposition 2.9.

3. Additional Remarks

Remark 3.1. In connection to Theorem 1.1(3), we note that a group ring of a finite p-group of nilpotence class 3 can be centrally essential and may also not be centrally essential. More precisely, we used the computer algebra system GAP [2] to verify that for any group of order 16 which is of nilpotence class 3, its group algebra over the field GF (2) is centrally essential.

Remark 3.2. The following semiprimeness criterion of a group ring is well known: the ring AG is semiprime if and only if the ring A is...
semiprime and the orders of finite normal subgroups of the group G
are not zero-divisors in A; e.g., see Proposition 8 in [5, Appendix]).

Proposition 3.3. [6, Theorem 2(2), Proposition 4.1] Any centrally
essential semiprime ring R is commutative.

Proof. We verify that for any $r \in R$, the ideal
$$r^{-1}C = \{c \in C : rc \in C\}$$
is dense in C. Indeed, let $d \in C$ and $dr^{-1}C = 0$. If $dr = 0$, then
$d \in r^{-1}C$ and $d^2 = 0$, whence $d = 0$. Otherwise, since R is a centrally
essential ring, there exists an element $z \in C$ with $zdr \in C \setminus \{0\}$. Then
$zd \in r^{-1}C$ and $(zd)^2 = 0$, whence $zd = 0$; this contradicts to the
choice of z. The condition “$r(r^{-1}C) \neq 0$ for any $r \in R \setminus \{0\}$”
is equivalent to the property that the ring R is centrally essential. Therefore, R
is a right ring of quotients of the ring C in the sense of [5, §4.3]; consequently, R
can be embedded in the complete ring of quotients of the ring C which is commutative.

Proposition 3.4. Let A be a semiprime ring such that its additive
group is torsion-free and let G be an arbitrary group. The ring AG
is a centrally essential if and only if the ring A and the group G
are commutative.

Proposition 3.4 follows from Remark 3.2 and Proposition 3.3.

Remark 3.5. A. Yu. Ol’shanskii informed the authors of another
series of groups satisfying the conditions of Lemma 2.8. Namely, let p
be a prime integer and let G be the free 3-generated group of the variety
defined by the identities $x^p = 1$ and $(x_1, x_2, x_3, x_4) = 1$. Then G/G'
is an elementary Abelian p-group; therefore G' is the Frattini subgroup
of the group G. If $g \not\in G'$, then can be included gG' in system of free
generators of the group G/G'; consequently, g can be included in a
system consisting of three generators of the group G. Since the group
G is finite, this generator system is free. Therefore, if $g \in C_G(G')$, then G
satisfy the identity $(x_1, x_2, x_3) = 1$; this is impossible, since
the group G can be mapped onto the group of upper unitriangular
matrices of order 4 which does not satisfy this identity. Therefore,
$Z_2(G) \supseteq G' \supseteq C_G(G') \supseteq C_G(Z_2(G))$.

References

[1] Ditsman A.P. On p-groups (Russian) // Doklady AN USSR. – 1937. – Vol. 15.
– P. 71–76.
[2] GAP – Groups, Algorithms, and Programming, Version 4.8.8/ The
GAP Group. // (https://www.gap-system.org), – 2017.
[3] Hall M. The Theory of Groups.– Macmillan, New York, 1959.
[4] I. Herstein. Noncommutative Rings. – Mathematical Association of America,
2005.
[5] J. Lambek. Lectures on Rings and Modules. – AMS Chelsea Publishing, 2009.
[6] Markov V.T., Tuganbaev A.A. Rings which are essential over their centers // arXiv:1712.02133 [math.RA].
[7] Passman D. S. The algebraic structure of group rings. – John Wiley and Sons, N.-Y. et al., 1977.