Characterization of the proposed 4α cluster state candidate in 16O

K.C.W. Li,1,2 R. Neveling,2 P. Adsley,1,2 P. Papka,1,2 F.D. Smit,2 J.W. Brümmer,1 C. Aa. Diget,3 M. Freer,4 M.N. Harakeh,5 Tz. Kokalova,4 F. Nemulodi,2 L. Pellegrini,5,6 B. Rebeiro,7 J.A. Swartz∗,8 S. Triambak,7 J.J. van Zyl,1 and C. Wheldon4

1Department of Physics, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
2iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa
3Department of Physics, University of York, York, United Kingdom
4School of Physics and Astronomy, University of Birmingham, Edgbaston Birmingham, B15 2TT, United Kingdom
5University of Groningen, KVI Center for Advanced Radiation Technology, 9700 AB Groningen, The Netherlands
6University of the Witwatersrand, Johannesburg Wits 2050, South Africa
7Department of Physics, University of the Western Cape, Bellville ZA-7535, South Africa
8KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium

(Dated: October 31, 2016)

The 16O(α,α') reaction was studied at $\theta_{\text{lab}} = 0^\circ$ at an incident energy of $E_{\text{lab}} = 200$ MeV using the K600 magnetic spectrometer at iThemba LABS. Proton and α-decay from the natural parity states were observed in a large-acceptance silicon-strip detector array at backward angles. The coincident charged particle measurements were used to characterize the decay channels of the 0^+_6 state in 16O located at $E_x = 15.097(5)$ MeV. This state is identified by several theoretical cluster calculations to be a good candidate for the 4α cluster state. The results of this work suggest the presence of a previously unidentified resonance at $E_x \approx 15$ MeV that does not exhibit a 0^+ character. This unresolved resonance may have contaminated previous observations of the 0^+_6 state.

Light nuclei are expected to exhibit cluster-like properties in excited states with a low density structure. Such states should exist particularly at excitation energies near the separation energies to these clusters, as described by the Ikeda diagram. The Hoyle state, the 0^+_2 state at $E_x = 7.654$ MeV in 12C, is considered the archetype of a state that exhibits α-particle structure, with one option being a 3α gas-like structure similar to a Bose-Einstein condensate consisting of three α-particles all occupying the lowest 0$^-$ state.

It is expected that equivalent Hoyle-like states should also exist in heavier α-conjugate nuclei such as 16O and 20Ne. Indeed a potential candidate in 16O has been identified. Funaki et al. solved a four-body equation of motion based on the Orthogonality Condition Model (OCM) that succeeded in reproducing the observed 0^+ spectrum in 16O up to the 0$^+_6$ state. It was suggested that the 4α condensation state could be assigned to the 0$^+_6$ state at $E_x = 15.097(5)$ MeV (see Table I). The 0$^+_6$ state obtained from the calculation is 2 MeV above the four α-particle breakup threshold ($S_{\alpha\alpha} = 14.437$ MeV) and has a large radius of 5 fm, indicating a dilute density structure. Ohkubo and Hibabayashi showed in a study of $\alpha+^{12}$C elastic and inelastic scattering that the moment of inertia of the 0$^+_6$ state is drastically reduced, which suggests that it is a good candidate for the 4α cluster condensate state. Calculations performed with the Tohsaki-Horiuchi-Schuck-Röpke (THSR) α-cluster wave function also support this notion with an estimated total width of 34 keV for the 0^+_6 state, much smaller than the experimentally determined value of 166(30) keV.

Recent unsuccessful attempts to measure particle decay widths of the 0^+_6 state in 16O highlighted the need for an experiment that combines α-particle decay measurements with a high energy resolution experimental setup and a reaction capable of preferentially populating 0^+ states. In contrast to transfer reaction measurements, inelastic α-particle scattering at zero degrees has the advantage that it predominantly excites low-spin natural parity states. A measurement of the 16O(α,α') reaction at zero degrees, coupled with coincident observations of the 16O decay products, was performed at the iThemba Laboratory for Accelerator-Based Sciences (iThemba LABS) in South Africa. A 200-MeV dispersion-matched α-particle beam was provided by the separated sector cyclotron. The α-particles which were inelastically scattered off a natLi$_2$CO$_3$ tar-

Reference	Year	E_R [MeV]	Width [keV]	Reaction
NPA 180 282	1972	15.17(5)	190(30)	12C(α,α')
NPA 294 161	1978	15.10(5)	327(100)	15N(p,α), 15N(p,p')
NPA 305 63	1978	15.103(5)	-	14N(3He,p)
PRC 25 729	1982	15.066(11)	166(30)	12C(α,α'), 15N(p,α)
NNDC	2016	15.097(5)	166(30)	-
This work	2016	15.076(7)	162(4)	16O(α,α')

TABLE I. Literature values for the 0^+_6 state in 16O.

* Present institution: Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
FIG. 1. (Color online) (a): The background subtracted inclusive excitation spectrum from the Li$_2$CO$_3$ target, with fitted R-Matrix Voigt lineshapes which are superimposed upon the background of fitted lithium resonances (filled in orange). (b): The excitation energy region of interest highlighting the 0^+_6 resonance (blue line) and the neighbouring $J^\pi = 2^+$ resonance (green line). (c): The raw (i), background subtracted (ii) and instrumental background inclusive excitation spectra (iii) from the Li$_2$CO$_3$ target. Spectrum (iv) is the background subtracted inclusive excitation spectrum from the 12C target, normalised to spectrum (b) through the 9.641(5) MeV resonance in 12C. The linear fit of spectrum (c), used for background subtraction, is drawn in red. (d): The coincident matrix of silicon energy versus the excitation energy of the recoil nucleus for decay particles detected within the angular range: $156^\circ < \theta_{lab} < 163^\circ$ (two strips within the array). The α_0, α_1 and p_0–3 decay lines from 16O are indicated. The proton punchthrough structure from the p_0 decay is labelled $p_{p,t}$. The lithium breakup and the 7p_0 decay line from 12C are indicated. A display color threshold of >1 is imposed.

get were momentum-analyzed at zero degrees with the K600 magnetic spectrometer [11]. The energy resolution obtained was 85(1) keV FWHM, determined from the 12.049(9) MeV resonance in 16O. The error on the calculated excitation energy was $\delta E_x < 9$ keV. The 510-\(\mu\)g/cm2-thick natLi$_2$CO$_3$ target was prepared on a 50-\(\mu\)g/cm2-thick 12C backing. The total Li content was approximately 50-\(\mu\)g/cm2 [12]. The solid-angle acceptance of the spectrometer (3.83 msr) was defined by a circular collimator with an opening angle $\pm2^\circ$. A comprehensive description of the experimental and analysis techniques is reported elsewhere [13].

The inclusive excitation energy spectra are displayed in Figure 1 panels (a), (b) and (c). In order to extract the excitation energy spectrum for the 16O(α, α') reaction, the instrumental background must be taken into account and the contributions from the carbon and lithium present in the target must be identified. The flat and featureless instrumental background, indicated as spectrum (iii) in Figure 1 (c), is typical for measurements at zero degrees. It results from small-angle elastic scattering off the target foil that is followed by re-scattering off any exposed part inside the spectrometer [11]. In order to subtract this background contribution, the spectrometer was operated in focus mode where the quadrupole at the entrance to the spectrometer was used to vertically focus reaction products to a narrow horizontal band on the focal plane. The background spectrum was generated by using the sections of the focal plane above and below the focused vertical band. A linear fit was employed to approximate the background and was subtracted from the raw spectrum (i) to produce spectrum (ii). The back-
ground subtracted focal plane spectrum from the 12C target (iv) was normalised to spectrum (ii) through the 9.641(5) MeV resonance in 12C. The smooth contribution observed from 12C in the excitation energy region of interest ($E_x \approx 15$ MeV), combined with the broad resonances of 7Li and 6Li indicated by the orange band in Figure 1(a) and (b), ensure that the distinctly observed resonances can be assigned to 16O. At $E_x \approx 15$ MeV, the decay modes from 16O are not affected by the lithium breakup indicated on Figure 1(d).

The decay products were observed with the Coincidence Array for K600 Experiments (CAKE) [13], consisting of four TIARA HYBALL MMM-400 double sided silicon strip detectors (DSSSDs). Each of the 400 μm thick wedge-shaped DSSSDs consists of 16 rings and 8 sectors, and were positioned at backward angles with the rings covering the polar-angle range of $114^\circ < \theta_{lab} < 166^\circ$, resulting in a solid-angle coverage of 21% of 4π. For each focal-plane event, all signals from CAKE within a time window of 6 μs were digitized, yielding both K600 inclusive as well as K600 + CAKE coincidence events. A beam pulse selector at the entrance of the cyclotron (which accepted 1 in 5 pulses) was employed to ensure a sufficient pulse selector at the entrance radius given R_{acc} of natural parity states through the 16O(16O,12C) reaction. By gating on events detected in particular rings in the angular correlations was achieved by fixing the resonance acceptance of the ejectile α. To account for the velocity of the recoil nucleus. Considering the 16O(α, α') reaction with an incident energy of $E_\alpha = 200$ MeV and a recoil excitation energy of $E_x = 15.0$ MeV, the angular acceptance of the ejectile α-particle corresponds to recoil nuclei (16O) with minimum and maximum kinetic energies of 80 keV ($\theta_{lab} = 0^\circ$) and 140 keV ($\theta_{lab} = 40^\circ$) respectively. To account for the velocity of the recoil nuclei, the calculated correlations are then relativistically corrected.

A single-channel R-Matrix fit was implemented across the entire range of the focal plane considering possible resonances from all four target nuclei: 16O, 12C, 7Li and 6Li. The Voigt lineshapes within the fit were assigned the experimental energy resolution of 85(1) keV. For all fitted resonances, the decay parameters of each lineshape were chosen to correspond to the decay channel with the lowest orbital angular momentum. For each resonance with unknown branching ratios, the lineshape was prescribed the decay channel parameters corresponding to the most strongly observed decay mode of the resonance (from this work). The fitted resonance energy, E_R, of each known resonance was constrained to within 3σ about its literature value (excluding the resonances at $E_x \approx 15$ MeV). An upper limit on the width, known as the Wigner limit [14], was imposed on each decay channel. The extracted total width of each resonance, $\Gamma(E)$, is evaluated at the associated resonance energy E_R (see Equation 2). In the inclusive spectrum displayed on Figure 1(a) and (b), a prominent resonance was observed at $E_x = 15.076(7)$ MeV with an associated width of 162(4) keV. This is in good agreement with previous measurements of the 15O resonance, as displayed in Table I. In contrast, the observed width of 101(3) keV for the neighbouring $J^\pi = 2^+$ resonance at $E_R = 14.926(2)$ MeV does not agree well with the corresponding literature value of 54(5) keV. By fitting the focal plane spectra gated on the α_0, p_0 and α_1 decay modes, the resonance energies and widths from the resonances around $E_x \approx 15$ MeV were extracted, as displayed in Table II.

By gating on events detected in particular rings in the CAKE array, angular correlations of decay can be extracted in the laboratory reference frame, as shown in Figure 3. Self-consistency of the R-matrix fits for the angular correlations was achieved by fixing the resonance energies and widths to the values extracted from the total fit of the relevant decay mode. In order to calculate the theoretical angular correlations of decay in the laboratory frame, the differential cross sections for the population of natural parity states through the 16O(α, α') reaction were calculated in the distorted-wave Born approximation with the code CHUCK3 [17]. Both the m-state population ratios and the angular correlations of subsequent particle decay from the recoil nucleus were then calculated with ANGCOR [18] in the inertial reference frame of the recoil nucleus. Considering the 16O(α, α') reaction with an incident energy of $E_\alpha = 200$ MeV and a recoil excitation energy of $E_x = 15.0$ MeV, the angular acceptance of the ejectile α-particle corresponds to recoil nuclei (16O) with minimum and maximum kinetic energies of 80 keV ($\theta_{lab} = 0^\circ$) and 140 keV ($\theta_{lab} = 40^\circ$) respectively. To account for the velocity of the recoil nuclei, the calculated correlations are then relativistically corrected.

In the focal plane detector system, the experimentally observed lineshape of a resonance takes the form of a convolution between a Gaussian and the aforementioned R-matrix Lorentzian lineshape, approximated by a Voigt lineshape [15] with an R-matrix energy-dependent width, $\Gamma(E)$.

The detection of coincident charged decay particles with the CAKE enables the characterization of resonances through the measurement of branching ratios and angular correlations of various decay modes. The associated decay lines of the 16O nucleus are displayed in Figure 1(d): α-decay and proton decay to the ground state of the residual nucleus are designated α_0 and p_0 respectively, whilst α-decay to the first excited state is designated α_1. By gating upon a particular decay line and projecting onto excitation energy, the resonance lineshape corresponding to a particular decay mode can be observed in isolation. The excitation energy spectra around $E_x \approx 15$ MeV corresponding to the α_0, p_0 and α_1 decay modes are displayed in Figure 2 on panels (b), (c) and (d) respectively.

Resonances in the energy range of interest exhibit an R-matrix Lorentzian lineshape:

$$N(E) \propto \frac{\Gamma(E)}{(E - E_R)^2 + (\Gamma(E)/2)^2},$$

(1)

where E_R is the resonance energy (location parameter) and the total width, $\Gamma(E)$, is a sum of the energy-dependent partial widths. For the i^{th} decay channel, the partial width is given by

$$\Gamma_i(E) = 2\gamma_i^2 P_i(E),$$

(2)

where γ_i is the reduced width and $P_i(E)$ is the associated penetrability, corresponding to the orbital angular momentum of decay l and the chosen external radius given by $R = 1.2 \times (A_1^{1/3} + A_2^{1/3})$. Given the inherent resolution of the focal plane detector system, the experimentally
The emitted resonances are not well fitted to the data. The two best fitting resonances with non-zero spin, which may be observed because of the presence of a previously unidentified resonance. The calculated angular correlations of the 0^+_α decay from $J^\pi = 0^+$, 1^-, 2^+, 3^-, 4^+, 5^- resonances at this resonance energy do not fit well to the data. The two best fitting 0^+_α angular correlations correspond to a $J^\pi = 0^+$ and a $J^\pi = 1^-$ resonance, yielding $\chi^2_{\text{red}} = 13.54$ and $\chi^2_{\text{red}} = 16.65$ respectively. Given the possibility of two distinct but unresolved resonances, all possible pairs of the calculated correlations were incoherently summed and fitted to the data (with the relative contributions being free parameters). These calculations do not yield satisfactory reproduction of the data: the best fit corresponds to the incoherently summed 0^+_α-decay distributions from a $J^\pi = 1^-$ and a $J^\pi = 5^-$ resonance, yielding $\chi^2_{\text{red}} = 7.67$. It is possible that the angular correlations of these inherently overlapping resonances may interfere. The anisotropy remains a clear identifier of a resonance with non-zero spin. To ensure that the anisotropy is not a consequence of the analysis, the angular correlations of decay from the most prominently observed resonances are also analyzed. The 0^+_α angular distribution of the $J^\pi = 0^+$ resonance at $E_x = 12.049(9)\text{ MeV}$, shown in Figure 3(b), exhibits isotropy and the corresponding calculation fits the data with a reduced chi-squared of $\chi^2_{\text{red}} = 1.01$, indicating that the experimental setup is well understood. Similarly for the 0^+_α angular distribution of the $J^\pi = 2^+$ resonance at $E_x = 11.520(9)\text{ MeV}$ displayed in Figure 3(a), the theoretical fit is reasonable and yields $\chi^2_{\text{red}} = 1.42$.

The angular distribution of the 1^+_α decay mode observed at $15.046(8)\text{ MeV}$ is observed to be isotropic, as displayed on Figure 3(d). Whilst only a $J^\pi = 0^+$ or 2^+ resonance can exhibit purely isotropic 1^+_α decay, inherently anisotropic decays from resonances of other spin-parities may experimentally appear isotropic given their multiple possible l-values of decay. It is therefore assumed that this 1^+_α decay mode originates from the $J^\pi = 0^+_6$ resonance. The fit to the calculated 1^+_α $J^\pi = 0^+$ angular distribution yields $\chi^2_{\text{red}} = 0.15$, which could indicate either an overestimation of the data errors, or that the dominant error is a systematic scaling factor. This, however, does not affect the conclusions of the paper. The angular distribution of the p_0 decay mode observed at $15.046(8)\text{ MeV}$ is displayed on Figure 3(c). The proton-

![Figure 2](image-url)

TABLE II. Extracted single channel R-matrix fit parameters from the inclusive and coincidence spectra. †The 0^+_α decay channel was not observable within this work due to electronic thresholds of the CAKE array. †The branching ratios are calculated under the assumption that the associated resonance is of 0^+ spin and parity.
decay from a 2^+ resonance to the $1/2^-$ ground state of 15N corresponds to orbital angular momenta of decay of either $l = 1h$ or $3h$, corresponding to calculated correlations which fit with $\chi^2_{\text{red}} = 1.25$ and 4.57 respectively.

Additional evidence towards a previously unidentified resonance is given by the extracted resonance energies from the fitted lineshapes for the α_0 and α_1 decay modes. The resonance energies corresponding to various decay modes from a resonance can provide insight into the spin and parity, particularly when only a single l-value of decay is possible. For a $J^\pi = 0^+$ resonance in 16O, an α-particle emitted either through the α_0 or α_1 decay carries exactly $l = 0h$ or $2h$ units of angular momentum respectively. If the α_0 and α_1 decay modes observed at $E_x \approx 15$ MeV are from the same $J^\pi = 0^+$ resonance in 16O, both the greater centre-of-mass energy and the lack of a centrifugal potential barrier for α_0 decay suggest that extracted resonance energy of the α_0 decay lineshape should be lower than that of the α_1 decay. From this work, the α_0 decay mode observed at $E_x = 15.090(7)$ MeV is 44(3) keV higher in excitation energy than that of the α_1 decay mode. It is therefore incompatible for the α_0 and α_1 decay modes to both originate from a single $J^\pi = 0^+$ resonance. In principle, this shift in resonance energies could be explained by the existence of either a single $J^\pi = 2^+$ or $J^\pi = 3^-$ resonance: the minimal orbital angular momenta for α_0 and α_1 decay are $l = 2h$ or $0h$ respectively for a $J^\pi = 2^+$ resonance and $l = 3h$ or $1h$ respectively for a $J^\pi = 3^-$ resonance. Assuming the m-state population ratios calculated with a direct single-step reaction mechanism are correct, the calculated angular correlations of α_0 decay from both a $J^\pi = 2^+$ and a $J^\pi = 3^-$ resonance do not agree well with the data displayed in Figure 3(e).

Finally, we note that the presence of a previously unidentified resonance at $E_x \approx 15$ MeV could explain why the extracted total width of the unresolved $J^\pi = 2^+$ resonance at $E_x = 14.930(8)$ MeV, extracted from the inclusive data to be 101(3) keV, is inconsistent with the p_0-extracted width and literature value of 40(1) keV and 54(5) keV respectively. The observation of a smooth and featureless instrumental background spectrum (iii) in Figure 3(c) ensures that this disparity of widths is not caused by experimental artefacts. Similarly, the inclusive excitation energy spectrum from the 12C target, displayed as spectrum (iv) in Figure 3(c), shows that the 12C contribution at $E_x \approx 15$ MeV is negligible. Given the α-separation energies for 6Li and 7Li of $E_{\text{sep}} = 1.47$ and 2.47 MeV respectively, the contributions of the lithium resonances to the focal plane spectra collectively form a slowly-varying continuum, shown as the orange-filled lineshape in Figure 3(a) and (b). Furthermore, the presence of a contaminant nucleus which decays through charged-particle emission would be kinematically identified within the coincident matrix of silicon energy versus excitation energy, displayed in Figure 3(d).

Itoh et al. studied the 16O(α, α') reaction at $\theta_{\text{lab}} = 0^\circ$ and $\theta_{\text{lab}} = 4^\circ$, with an incident en-

![FIG. 3. (Color online) Angular correlations of charged particle decays from 16O in the laboratory frame relative to the beam axis: (a) α_0 decay from the 11.521(9) MeV $J^\pi = 2^+$ resonance, (b) α_0 decay from the 12.049(8) MeV $J^\pi = 0^+$ resonance, (c) p_0 decay from the 14.929(8) MeV $J^\pi = 2^+$ resonance, (d) α_1 decay observed at 15.046(8) MeV, (e) α_0 decay observed at 15.090(7) MeV. *The α_0 decays from $J^\pi = 0^+$ and 2^+ resonances, corresponding to $l = 0h$ and $2h$ respectively, exhibit the same angular correlations. Data points affected by the electronic thresholds of the CAKE array are omitted.](image-url)
ergy of $E_{lab} = 386$ MeV \cite{19}. A multipole decomposition was performed on the differential cross section of the resonance within the excitation energy interval: 15.00 MeV < E_x < 15.25 MeV. Whilst the decomposition indicated the presence of a 0^+ resonance, the differential cross section is qualitatively different to that of the 0^+ resonance observed at 12.00 MeV < E_x < 12.25 MeV. This is reflected by the larger fitted contribution of $L \geq 1$ angular momentum transfer reactions. Their work is therefore consistent with the existence of a previously unresolved resonance at $E_x \approx 15$ MeV which does not exhibit a 0^+ nature.

By studying the 16O(α, α') reaction at $\theta_{lab} = 0^\circ$ with an incident energy of $E_{lab} = 200$ MeV, low spin states in 16O were strongly excited. The angular correlations observed with the CAKE suggest the existence of a previously unresolved resonance at $E_x \approx 15$ MeV with non-zero spin. This is supported by the shift in resonance energies between the α_0 and α_1 decay modes (see Figure \ref{fig:2}). The existence of a previously unresolved resonance may explain the disparity between the theoretical and experimentally observed widths of 34 keV and $160(30)$ keV respectively.

This work was supported by the South Africa National Research Foundation, and in particular, through NEP grant 86052. RN acknowledges financial support from the NRF through grant number 85509.

\begin{thebibliography}{18}
\bibitem{1} K. Ikeda, H. Horiuchi, and S. Saito, Progress of Theoretical Physics Supplement 68, 1 (1980), http://ptps.oxfordjournals.org/content/68/1.full.pdf.
\bibitem{2} P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada, J. Phys.: Conf. Ser. 413 (2013).
\bibitem{3} J. A. Maruhn, M. Kimura, S. Schramm, P.-G. Reinhard, H. Horiuchi, and A. Tohsaki, Phys. Rev. C 74, 044311 (2006).
\bibitem{4} Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008).
\bibitem{5} S. Ohkubo and Y. Hirabayashi, Physics Letters B 684, 127 (2010).
\bibitem{6} Y. Funaki, T. Yamada, A. Tohsaki, H. Horiuchi, G. Röpke, and P. Schuck, Phys. Rev. C 82, 024312 (2010).
\bibitem{7} Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, and T. Yamada, Phys. Rev. C 80, 064326 (2009).
\bibitem{8} D. Tilley, H. Weller, and C. Cheves, Nucl. Phys. A 564, 1 (1993).
\bibitem{9} P. J. Haigh, M. Freer, N. I. Ashwood, T. Bloxham, N. Curtis, H. G. Bohlen, T. Dorsch, T. Kokalova, C. Wheldon, W. N. Cato, N. P. Patterson, and J. S. Thomas, J. Phys. G: Nucl. Part. Phys. 37, 035103 (2010).
\bibitem{10} C. Wheldon, N. I. Ashwood, M. Barr, N. Curtis, M. Freer, T. Kokalova, J. D. Malcolm, S. J. Spencer, V. A. Ziman, T. Faestermann, R. Krücken, H.-F. Wirth, R. Hertenberger, R. Lutter, and A. Bergmaier, Phys. Rev. C 83, 064324 (2011).
\bibitem{11} R. Neveling, H. Fujita, F. D. Smit, T. Adachi, G. P. A. Berg, E. Z. Buthelezi, J. Carter, J. L. Conradie, M. Couder, R. W. Fearick, S. V. Förg, D. T. Fourie, Y. Fujita, J. Görrres, K. Hatanaka, M. Jingo, A. M. Krumbholz, C. O. Kureba, J. P. Mira, S. H. T. Murray, P. von Neumann-Cosel, S. O’Brien, P. Papka, I. Poltoratska, A. Richter, E. Siders-Haddad, J. A. Swartz, A. Tamii, I. T. Usman, and J. J. van Zyl, Nucl. Instrum. Methods Phys. Res. A 654, 29 (2011).
\bibitem{12} P. Papka, N. Y. Kheswa, M. Msimanga, C. Pineda-Vargas, and N. S. Soič, J. Radioanal. Nucl. Chem. 305, 713 (2015).
\bibitem{13} K.C.W. Li, Masters Thesis, Stellenbosch University and iThemba LABS, http://hdl.handle.net/10019.1/97982 (2015).
\bibitem{14} P. Adsley et al., (2016), arXiv:1610.08053 [physics.ins-det].
\bibitem{15} R. Wells, J. Quant. Spec. Rad. Trans. 62, 29 (1999).
\bibitem{16} E. P. Wigner, Phys. Rev. 98, 145 (1955).
\bibitem{17} J.R. Comfort and M.N. Harakeh, Program CHUCK3, (1979). Modified version of CHUCK by P.D. Kunz, University of Colorado, unpublished.
\bibitem{18} M. N. Harakeh and L. W. Put, ANGCOR - An angular correlation program, Internal Report KVI-76 (1979).
\bibitem{19} M. Itoh, H. Akimune, M. Fujiwara, U. Garg, H. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakamishi, Y. Nakatsugawa, B. K. Nayak, H. Sakaguchi, S. Terasima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, J. Phys.: Conf. Ser. 569, 012009 (2014).
\end{thebibliography}