The Genetic Heterogeneity of Common Variable Immunodeficiency (CVID): An Update

Vassilios Lougaris, Giacomo Tampella, Manuela Baronio, Massimiliano Vitali and Alessandro Plebani

Keywords: Genetic heterogeneity; Immunodeficiency; Common variable immunodeficiency

Abstract

B cells are generated in the bone marrow and then enter the periphery, where the maturation process takes place leading to the formation of an effective humoral immune response. Defects in this highly regulated process in the periphery have been considered to be responsible for the pathogenesis of Common Variable Immunodeficiency (CVID) for more than 6 decades. CVID is traditionally characterized by low immunoglobulin serum levels and defective antibody response in the presence of normal peripheral B cell numbers. The clinical spectrum of CVID is highly variable, including recurrent infections, autoimmune complications and increased susceptibility to cancer and lymphomas. However, only in the last decade, the genetic defects underlying this maturational B cell defect have been partially elucidated in a small percentage of affected patients. This review will focus on the current state of art regarding the known genetic alterations associated with the pathogenesis of CVID.

Introduction

B cells are generated in the bone marrow and after sequential steps of maturation, immature B cells expressing surface IgM enter the periphery [1-4]. Antigen encounter in the periphery leads to B cell maturation giving raise to memory B cells and plasma cells [5-7]. Animal models and in vitro experimental systems have allowed for a better understanding of the mechanisms that regulate this highly specific process. These achievements have been crucial for understanding the molecular basis of different forms of humoral immuno deficiencies including Common Variable Immunodeficiency (CVID) which is the object of this review.

CVID is traditionally characterized by low immunoglobulin serum levels and defective antibody response, in the presence of normal peripheral B cell numbers. The spectrum of clinical manifestations of CVID includes recurrent infections, mainly of the respiratory and gastrointestinal tract, autoimmune phenomena ranging from autoimmune thyroiditis to Systemic lupus erythematosus (SLE), gastrointestinal tract, autoimmune phenomena including autoimmunity and presented the HLA-B8-DR3-DQ2 ancestral haplotype which has been found associated with selective IgA...
The spectrum of TNFRSF13B mutations in CVID is continuously expanding. In fact, the novel compound heterozygous mutation I87N/C104R, that leads to aberrant TACI expression and abrogates APRIL binding on EBV B cells, was recently identified in two brothers with hypogamma globulinaemia and respiratory and gastrointestinal infections [17].

Further studies were undertaken in order to better define the biological significance of TNFRSF13B variants in patients affected with CVID. Salzer et al. [18] identified that at least one TNFRSF13B variant allele was present in 50 (8.9%) out of the 564 unrelated patients with antibody deficiency. Of these 50 patients, 2 (4%) carried homozygous mutations (C104R, A181E), 7 (14%) carried compound heterozygous mutations (Y79C/I87N, c.204insA/C104R, C104R/C104Y, C104R/Y164X, C104R/c.571insG, G152E/A181E), and 41 (82%) carried heterozygous mutations in the TNFRSF13B gene (C104R, A181E, D41H, Y79C, I87N, c.121delG, c.204insA, A149T, C193X, V246F). The most common alleles were C104R and A181E, found in 26 (4.6%) and 13 (2.3%) patients, respectively. Only these two alleles were observed in a homozygous state, each in 1 individual. Among 675 controls, 7 (1%) were heterozygous for A181E, and 6 (0.9%) were heterozygous for C104R. Statistical analysis showed that a mono- or biallelic TNFRSF13B allele conferred a relative risk of 3.6 for developing hypogamma globulinaemia. The association was particularly strong for C104R (relative risk of 4.2), but not for A181E.

Patients with TNFRSF13B mutations were more likely to have manifestations of autoimmunity, usually thrombocytopenia, or lymphoproliferation compared to those without mutations. In conclusion, the pathogenic role of TNFRSF13B variants is clear when they abrogate the expression of the protein on B cells, while the role of heterozygous variants is still in debate, and are most likely considered to be associated rather than causative of CVID.

As mentioned above, in several patients, mutations in CD19 have been found to be associated with adult-onset CVID [25]. Two siblings with low peripheral B cell counts were identified with a homozygous 24bp in-frame deletion (del b9-96) located in exon 2 of the TNFRSF13C gene. Both siblings had lower IgG and IgM serum levels but, unlike most CVID patients, normal IgA concentrations. They also did not mount a T-independent immune response against pneumococcal cell wall polysaccharides but only one BAAFF-R-deficient sibling developed recurrent infections and was put on replacement treatment with immunoglobulins.

The first patient with a defect in CD20 carrying a compound mutation of the non-canonical splice donor sequence of exon 5 of the CD20 gene was recently identified [26]. Antigen-independent B cell development occurred normally in the absence of CD20 expression; however, antibody formation, particularly after vaccination with T-independent antigens, was strongly impaired in the index patient. Consistent with this, T-independent anti-polysaccharide B cell responses are severely impaired in CD20-deficient mice [26].

As mentioned above, in several patients, mutations in CD19 have been found to cause CVID, demonstrating the critical role for the protein encoded by this gene in antibody responses. However, the lack of CD19 expression on B cells doesn’t necessarily result from mutations in the CD19 gene. In fact Van Zelm et al. [27] described a patient with severe nephropathy and profound hypogamma globulinaemia with decreased memory B cell numbers, impaired specific antibody responses, and absence of CD19 expression on B cells.
cells. The patient had normal CD19 alleles but carried a homozygous c.561+1G>A mutation in the CD81 gene resulting in a complete lack of CD81 expression on blood leukocytes. Retroviral transduction and glycosylation experiments on EBV-transformed B cells from the patient revealed that CD19 membrane expression critically depended on CD81. Similar to CD19-deficient patients, CD81-deficient patients had B cells that showed impaired activation upon stimulation via the B cell antigen receptor but no overt T cell subset or function defects.

CD21 is a receptor for C3d-opsonized immune complexes and enhances antigen-specific B-cell responses. The murine knock-out model for CD21 has been reported to show impaired humoral immune responses, suggesting that defects in CD21 may be involved in the pathogenesis of CVID. Along these lines, undetectable expression of CD21 was found in a 28-year-old man with recurrent infections, reduced class-switched memory B cells, and hypogamma globulinaemia. Expression of CD19, CD81 and CD35 (product of the encoded protein. PRKCD deficiency due to a R614W homozygous deleterious mutation was also reported in a single patient with autoimmunity but without hypogamma globulinaemia, underlying that LRBA defects may be involved in the pathogenesis of CVID. This is the case of Msh5, a gene encoded in the central MHC class III region, and of its obligate heterodimerization partner Msh4 that have a critical role in regulating meiotic homologous recombination. Sekine et al. [34] presented evidence that the human MSH5 alleles containing two non-synonymous polymorphisms (L85F/P786S), may be involved in the pathogenesis of CVID. Along these lines, undetectable expression of CD21 was found in a 28-year-old man with recurrent infections, reduced class-switched memory B cells, and hypogamma globulinaemia. Expression of CD19, CD81 and CD35 (product of alternative splicing from the same genetic locus encoding for CD21) was preserved. Binding of C3d-containing immune complexes and EBV-gp350 (the ligand of CD21) to B cells was severely reduced. Sequence analysis revealed a compound heterozygous deleterious mutation in the CR2 gene (encoding CD21) (c.1225+1G>C/W766X). Functional studies with anti-immunoglobulin and C3d-containing immune complexes showed a complete loss of costimulatory activity of C3d in enhancing suboptimal B-cell receptor stimulation. Vaccination responses to protein antigens were normal, but the response to pneumococcal polysaccharide vaccination was moderately impaired [28].

Gene	Chromosome	Protein	Transmission	Onset	Prevalence in CVID
ICOS	2q33.2	ICOS	Autosomal recessive	Early and late	1%
TNFRSF13B	17p11.2	TACI	Autosomal recessive/dominant	Early and late	8-10%
CD19	16p11.2	CD19	Autosomal recessive	Early and late	1%
TNFRSF13C	22q13.2	BAFF-R	Autosomal recessive	Late	<1%
MS4A1	11q12.2	CD20	Autosomal recessive	Early	<1%
CD81	11p15.5	CD81	Autosomal recessive	Early	<1%
CR2	1q32.2	CD21	Autosomal recessive	Late	<1%
PRKCD	3p21.1	PRKCD	Autosomal recessive	Early	<1%
LRBA	4q31.3	LRBA	Autosomal recessive	Early	<1%

Table 1: Summary of the genes reported to be causative of/associated with Common Variable Immunodeficiency (CVID)

All the genetic defects so far described to be associated or causative of CVID are related to receptors expressed on the cell surface. More recently, novel genetic defects affecting cytoplasmic proteins have been reported to be causative of CVID and/or autoimmune disorders. Salzer et al. [29] reported on a single patient from consanguineous family, with progressive B cell lymphopenia, hypogamma globulinaemia and severe autoimmune manifestations. Their immunological findings were characterized by disturbed B cell development, defective in vitro B cell activation, immunoglobulin secretion and proliferation, and defects in B cell autophagy. LRBA deficiency due to a homozygous deletion from exon 1 to exon 30 was recently reported in a single patient with autoimmunity but without hypogamma globulinaemia, underlying that LRBA defects may present with variable immunological phenotypes [33].

Genes involved in the DNA repair process have also been implicated in the pathogenesis of CVID. This is the case of Msh5, a gene encoded in the central MHC class III region, and of its obligate heterodimerization partner Msh4 that have a critical role in regulating meiotic homologous recombination. Sekine et al. [34] presented evidence that the human MSH5 alleles containing two non-synonymous polymorphisms (L85F/P786S), may be involved in the pathogenesis of selective IgA deficiency and common variable immune deficiency (CVID).
Conclusion

In conclusion, the scientific achievements of the last decade have shed light in the genetic mechanisms involved in the pathogenesis of CVID, have added important information on B cell biology in humans and have contributed to improve patients’ clinical management. The majority of the genetic defects so far identified refer to genes encoding for molecules acting as surface receptors (mainly for B cells), as cytoplasmic proteins involved in signalling cascades, or involved in the DNA repair process. Nonetheless, the genetic defects so far identified account only for 12-15% (Table 1) of CVID cases while the majority of affected patients do not have yet a definite genetic diagnosis.

References

1. Lougaris V, Ferrari S, Cattalini M, Sorensina A, Pilebiani A (2008) Autosomal recessive agammaglobulinemia: novel insights from mutations in Ig-beta. Curr Allergy Asthma Rep 8: 404-408.
2. Rolink AG, Massa S, Balciunaite G, Ceredig R (2006) Early lymphocyte development in bone marrow and thymus. Swiss Med Wkly 136: 679-683.
3. Espeli M, Rossi B, Mancini SJ, Roche P, Gauthier L, et al. (2006) Initiation of pre-B cell receptor signaling: common and distinctive features in human and mouse. Semin Immunol 18: 56-66.
4. Hoffmann R (2005) Gene expression patterns in human and mouse B cell development. Curr Top Microbiol Immunol 294: 19-29.
5. Zhang M, Srivastava G, Lu L (2004) The pre-B cell receptor and its function during B cell development. Cell Mol Immunol 1: 89-94.
6. Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, et al. (2007) Regulation of adca expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 27: 367-397.
7. McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG (2006) Helper T cell-regulated B cell immunity. Curr Top Microbiol Immunol 311: 59-83.
8. Cunningham-Rundles C (2012) The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program 2012: 301-305.
9. Bruton OC, Apt L, Gitlin D, Janeway CA (1952) Absence of serum gamma globulins. AMA Am J Dis Child 84: 632-636.
10. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, et al. (2003) Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4: 261-268.
11. Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W, et al. (2013) Novel mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 131: 831-838.
12. Castiglione C, Wilson SA, Garibyan L, Rachid R, Bonilla F, et al. (2005) TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 37: 829-834.
13. Salzer U, Chapel HM, Webster AD, Pan-Hammarsrom Q, Schmitt-Graeff A, et al. (2005) Mutations in TNRFS13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 37: 820-828.
14. Yan M, Wang H, Chan B, Roose-Girma M, Erickson S, et al. (2001) Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol 2: 638-643.
15. Pan-Hammarsrom Q, Salzer U, Du L, Björkander J, Cunningham Rundles C, et al. (2007) Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 39: 429-430.
16. Castiglione C, Wilson S, Garibyan L, Rachid R, Bonilla F, et al. (2007) Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 39: 430-431.
17. Lougaris V, Gallizzi R, Vitali M, Baronio M, Salpietro A, et al. (2012) A novel compound heterozygous TACI mutation in an autosomal recessive common variable immunodeficiency (CVID) family. Hum Immunol 73: 836-839.
18. Salzer U, Bacchelli C, Buckridge S, Pan-Hammarsrom Q, Jennings S, et al. (2009) Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood 113: 1967-1976.
19. Losi CG, Silini A, Fiorini C, Sorensina A, Meini A, et al. (2005) Mutational analysis of human BLYS receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J Clin Immunol 25: 496-502.
20. Pieper K, Rizzi M, Spletas M, Smulski CR, Sic H, et al. (2014) A common single nucleotide polymorphism impairs B-cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol.
21. Losi CG, Salzer U, Gatta R, Lougaris V, Cattaneo G, et al. (2006) Mutational analysis of human BLYS in patients with common variable immunodeficiency. J Clin Immunol 26: 396-399.
22. Salzer U, Neumann C, Thiel J, Woellner C, Pan-Hammarsrom Q, et al. (2008) Screening of functional and positional candidate genes in families with common variable immunodeficiency. BMC Immunol 9: 3.
23. van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJ, et al. (2006) An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 354: 1901-1912.
24. Kanegane H, Agematsu K, Futatani T, Sira MM, Saga K, et al. (2007) CD120a deficiency in a Japanese patient with CD19 deficiency. Genes Immun 8: 663-670.
25. Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, et al. (2009) B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A 106: 13945-13950.
26. Kutnjers TW, Bende RJ, Baars PA, Grummels A, Derks IA, et al. (2010) CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest 120: 214-222.
27. van Zelm MC, Smet J, Adams B, Mascart F, Schandener L, et al. (2010) CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 120: 1265-1274.
28. Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, et al. (2012) Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol 129: 810-810.
29. Salzer E, Santos-Valente E, Klaever S, Ban SA, Emminger W, et al. (2013) B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase Cγ1. Blood 121: 3112-3116.
30. Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, et al. (2013) Loss-of-function of the protein kinase Cγ1 (PKCγ1) causes a B-cell lymphoproliferative syndrome in humans. Blood 121: 3117-3125.
31. Belot A, Kasher PR, Trotter EW, Foray AP, Debaud AL, et al. (2013) Protein kinase cd deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum 65: 2161-2171.
32. Lopez-Herrera G, Tampella G, Pan-Hammarsrom Q, Herholz P, Troujillo-Vargas GM, et al. (2012) Deleterious mutations in LRBA are associated with a Syndrome of Immune deficiency and Autoimmunity. Am J Hum Genet 90: 986-1001.
33. Burns SO, Zener HL, Plagnol V, Curtis J, Mok K, et al. (2012) LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 130: 1428-1432.
34. Sekine H, Ferreira RC, Pan-Hammarsrom Q, Graham RR, Ziemba B, et al. (2007) Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A 104: 7193-7198.