Machine Maintenance Planning in Manufacturing Company using RCM II Methods

Salsabila Tyas Pradipta Haris1, Muhammad As’adi2 and Donny Montreano3
1,2,3Industrial Engineering, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia.

Corresponding author: salsabilatyaspradipta@gmail.com

Abstract. Production machine is a crucial thing to be taken care of in order to keep the production flow stays in the right time, therefore maintenance management is needed. PT. XYZ is a manufacturing company that produces cables. One of the machines that are used and often experiences downtime is the drawing machine. Preventive Maintenance handling interval schedule could be designed by using Reliability Centered Maintenance II method. There are several ways for the data processing, which are FMEA calculation, RCM II Diagram Decision Worksheet, TTF and TTR parameter calculation, determining the correct distribution using Least Square Curve Fitting and Goodness of Fit, MTTF and MTTR calculation, reliability comparison between the conditions before and after the Preventive Maintenance is implemented, cost savings comparison between the condition before and after the maintenance is done. This research proves that interval 3 formulation with the Pay Off for 361 hours, Dancer for 327 hours, and Double Spooler for 174 hours would enhance the reliability of Pay Off to 52%, so could it to Dancer (to 57%) and Double Spooler (75%). It also proves that by implementing Preventive Maintenance with the formulated interval and the result of RCM II Decision Worksheet indicators would produce in cost savings for the Pay Off part to 25,96%, the Dancer to 35,1%, and Double Spooler to 53,52%.

Keywords: Downtime, Maintenance, Manufacturing Company, Preventive Maintenance, Reliability Centered Maintenance II.

1. Preliminary
According to Harrison and Samson (1997) technology is a source of strength in the industrial sector in increasing productivity and supporting performance growth. Technological developments in industrial machinery have increased and encouraged industrial companies to adopt these technologies to produce quality products regardless of the investment costs that must be incurred by the company. Production machines are crucial and no less important to pay attention to so that the production process remains in the right rhythm (Komarasakti, 2008).

Carrying out engine maintenance aims to make the production operation to its full potential. Maintenance aims as an activity to maintain or maintain facilities and supporting equipment and make repairs or changes made for the purposes of the machine so that there is a state of production operations
in accordance with the plan. High engine downtime is an average problem encountered company. This condition will certainly result in an inefficient production process in the company (Bangun, 2014).

To overcome these problems, the authors conducted research using the Reliability Centered Maintenance II (RCM II) method. With this method, it can help develop scheduled preventive maintenance activities. That way, the Reliability Centered Maintenance II method is applied so that it is used to obtain an ideal maintenance time interval in the hope of a planned repair time.

2. Research Methodology
The first step taken in this study was field observation of the object, which the total lost time at each Work Station in PT. XYZ. Next step is identification of the problem. The purpose of this study was to determine the priority of critical components of the RPN value of FMEA analysis results that will be carried out further analysis using pareto diagrams and provide proposed actions and appropriate maintenance intervals on critical components based on RCM II Decision Worksheet.

2.1 Problem Identification
The problems raised in this study are the work stations with the highest lost time in January 2019 until the month of July 2019, namely the Trimming Work Station. The reason for the high lost time at the Trimming Work Station is the high lost time caused by the Hoist. So far, preventive maintenance has been carried out every 3, 6 and 12 months, but unexpected damage still often occurs. This research will propose appropriate maintenance measures and maintenance intervals on critical components of the Hoist in order to reduce obstruction of production activities due to sudden Hoist damage.

2.2. Data Collection Procedure
Data collection techniques used in this study are the study of literature, observation, and interviews. Observation is carried out by observing the workings of the Hoist at the Trimming Work Station, observing the Hoist specifications, and observing the components that cause damage to the Hoist, with guidance by employees in the Maintenance Department. Interviews were conducted with related parties in the Maintenance Department (Maintenance Engineer, Trimming Foreman, and Trimming Maintenance Technician) regarding how the Hoist works, the function of components in the Hoist and the failure modes on the components in the Hoist.

3. Data Analysis

3.1 Failure Modes and Effect Analysis (FMEA)
Below is a recapitulation of the FMEA Worksheet from 3 respondent Draw Engine technicians.

Part Off	FF	FM	FE	RPN
Plummer Block is stuck	Screw occurs friction and noises	Twisted screw	The machine is difficult to pull the cable	126
Plummer Block is stuck	The burden is more than it should be	Cable does not come out	128	
Main Gear Box	Dirty Shaft	The cable is stuck to enter the machine	Shaft changes color	72

Table 1. Recapitulation of FMEA
Part	FF	FM	FE	RPN
Crooked seals	Seals always rub against the surface of the machine	Vibrating engine	24	
Gear Box Capstan	Bearing stuck	The bearings make the winding faller due to lack of oil	Do not wind the cable	53
Capstan Roll Annealing	Traverse Shafts is broken	The path was blocked due to damaged traverse shaft affecting roll annealing parts	Reduced speed and bent cable output	9
Capstan Finish	Capstan ring position that is not correct because it shifts when merolling wire	Irregular tripping line path	102	
Capstan Finish	Engine speed is not sprayed, the output has a different diameter	Engine speed is not sprayed, the output has a different diameter	100	
Roll Annealing	The Roll Dancer Upper changes shape, warps and affects the sensor on pay off	Proximity Pay Off Sensor error	210	
Roll Annealing	The cooling system pipe leaked	The cooling pipe leaked spreads to touch other engine parts	Influenced by the process of heating the cable, elongation is not perfect	20
Dancer	The exit cable is stuck smoothly not smoothly and also makes vibrations in the middle of the engine	The engine must stop because the bearing must be repaired	150	
Double Spooler	Solenoid Valve changes color	Color changes occur due to air content and also age	Double spoolers are exposed to heat with high temperature	100
Part	FF	FM	FE	RPN
TOTAL				
TOTAL	33	96		

Part	FF	FM	FE	RPN
Traverse Roll Annealing	Camp traverses experience abrasion	Having abrasion, insulators are not running normally, excess carrier current	Influences with error traverse isolators	20
Bearing 6202 is broken	The traverse camp section is not attached and allows for bearing age that is old	The traverse camp section is not attached and allows for bearing age that is old	Friction camp traverse with the surface of the engine makes sound that can be detected quickly	60
TOTAL				89
TOTAL				

Part	FF	FM	FE	RPN
Roll Annealing	Plat belt TC-55ER-50-1825 is stuck	Loose or loose bolts on the upper bearing so that the plate stuck	Affects the double spooler which does not absorb heat	45
TOTAL				65
TOTAL				

TOTAL: 460
From the FMEA calculation, the 3 highest RPN components are taken, namely the Pay Off component with RPN 422, Dancer with RPN 460, and Double Spooler with RPN 628. From this FMEA calculation, it is continued by filling in RCM II Worksheet.

3.2. RCM II Decision Worksheet

RCM II Decision Worksheet for Pay Off part is as follows.

Table 2. Recapitulation of RCM II Decision Worksheet

Part	FF	FM	FE	RPN
Hose is leaking	The rubbing of the hose with the safety socket makes a fine hole leak	Cooler leaked about the coiler		96
Hocking wire is tilted	The burden is too heavy	Vibration occurred		180
T. Belt 1890-14-M L55 putus	There is continuous friction to rotate the ring causing the T Belt to erode and break	The ring stops rolling cables		252
Coiler	Open carrier cover	The carrier cover has the potential to open when vibrations are high and temperatures are high	The double spooler must be checked and the carrier cover reconnected	70
Coiler				628
TOTAL				

Table 2. Recapitulation of RCM II Decision Worksheet

Part	FF	FM	FE	RPN
Angled Disc Brake				16
Wire faltered to be rolled, bearing that has changed color				
Coiler doesn't move				
WATER PUMP	Annealing water pump error	Occurrence of water tightness (error)	Check or replacement of water pump	48
Heat Exchanger	Temperature straightener is too high	High temperature makes heat exchangers not optimal	Overheat causes the drawing process to be stopped and affects the pipe installation	48
TOTAL				

From the FMEA calculation, the 3 highest RPN components are taken, namely the Pay Off component with RPN 422, Dancer with RPN 460, and Double Spooler with RPN 628. From this FMEA calculation, it is continued by filling in RCM II Worksheet.
3.3. **Data Distribution**

The result of Time To Repair (TTR) for Least Square Curve Fitting are seen from the Largest Index of Fit

Part	Component	Proposed Task
	Hocking Wire	Scheduled Restoration Task
	T. Belt 1890-14-ML55	Scheduled Restoration Task

Table 3. Recapitulation of Index of Fit TTR

Part	Weib	Lognorm	Norm	Ekspo	Info
Pay Off	-0.104	0.144	0.206	-0.043	Normal
Dancer	0.171	0.165	0.161	-0.101	Weibull
Double	-0.175	0.107	0.181	-0.108	Normal
Spooler					

The result of the Time To Repair (TTR) data for Goodness of Fit use Minitab 19 software, seen from the largest P-Value and the smallest AD Value. Following is the recapitulation of Goodness of Fit.

Table 4. Recapitulation of Goodness of Fit TTR

Part	Distribution	AD	P-Value
Pay Off	Normal	0.555	0.123
Dancer	Weibull	0.452	0.25
Double Spooler	Normal	0.2	0.872

The results of the Time To Failure (TTF) data for Least Square Curve Fitting are seen from the largest Index of Fit

Table 5. Recapitulation of Index of Fit TTF

Part	Weib	Lognor	Norm	Ekspo	Info
Pay Off	-0.436	0.388	0.44	0.499	Ekspo
Dancer	-0.949	0.910	-0.022	-0.903	Lognorm
Double Spooler	-0.467	0.004	-0.021	-0.286	Lognorm

The results of the Time To Failure (TTF) data for Goodness Of Fit use Minitab 19 software, seen from the largest P-Value and the smallest AD Value. Following is the recapitulation of Goodness Of Fit.

Table 6. Recapitulation of Goodness of Fit TTF

Part	Distribution	AD	P-Value
Pay Off	Ekspo	0.323	0.682
Dancer	Lognorm	0.347	0.429
Double Spooler	Lognorm	1.6	0.005

3.4. **Mean Time To Repair (MTTR) and Mean Time To Failure (MTTF)**

Before calculating MTTR and MTTF, parameter calculation is performed with the following results:

Table 7. Recapitulation of Parameter

Part	TTR	TTF
Pay Off	$\mu = 1.529$	$\lambda = 0.001579$
Dancer	$\beta = 3.3$	$t_{med} = 366.419$
Double Spooler $\mu = 2.778$ $t_{\text{med}} = 393.21$

Next calculate MTTR and MTTF according to the existing distribution. Following is the recapitulation of MTTR and MTTF results.

Table 8. Recapitulation of MTRR and MTTF

Part	MTTR	MTTF
Pay Off	1.529 hours	633.312 hours
Dancer	1.623 hours	681.485 hours
Double Spooler	2.778 hours	831.66 hours

3.5. Maintenance Interval

Maintenance intervals and parts availability obtained from the calculation are as follows.

Table 9. Recapitulation of Maintenance and Availability Intervals

Maintenance Intervals	Availability	
Pay Off	361 hours	0.997
Dancer	327 hours	0.996
Double Spooler	174 hours	0.994

Table 10. Maintenance Intervals (a)

Component	2019		
	Jan 2019	Feb 2019	Mar 2019
Pay Off	2 10 21 22 28 7 11 13 18 27 1 6 11 20 22 28 29		
Dancer			
Double S.			

(b)

Component	2019			
	Apr 2019	May 2019	Jun 2019	Jul 2019
Pay Off	10 13 25	2 6 13 34 27 24 10 12 18 20 28 13	10 9 10	
Dancer				
Double S.				

(c)

Component	2019			
	Jul 2019	Aug 2019	Sep 2019	Oct 2019
Pay Off	18 24 20	10 7 11 16 19 27 4 5 6 16 25 29 4 15		
Dancer				
Double S.				

(d)

Component	2019			
	Oct 19	Nov 2019	Dec 2019	Jan 2020
Pay Off	16 24 4 5 6 13 22 25 27 3 12 13 14 23 3 4 110			
Dancer				
Double S.				

(e)

Component	2020			
	Jan 2020	Feb 2020	Mar 2020	Apr 2020
Pay Off	14 23 24 31 3 12 13 24 4 5 13 16 24 26 3 7 15			
Dancer				
Double S.				

(f)
3.6. Reliability
Comparison of reliability before preventive maintenance and after preventive maintenance is as follows.

Table 11. Recapitulation of Reliability

Part	R Before PM	R After PM
Pay Off	37%	52%
Dancer	33%	54%
Double Spooler	27%	75%

An increase in the reliability of parts from before doing Preventive maintenance with intervals that have been calculated by the RCM II method from before the calculation.

3.7. Comparison of the level of cost savings
The level of cost savings is needed to determine whether preventive maintenance can reduce the maintenance costs incurred by the factory before implementing preventive maintenance. The following is a comparison of costs before and after preventive maintenance.

Table 12. Recapitulation of Cost

Part	Cost Before PM (Rp/Month)	Cost After PM (Rp/Month)	Savings
Pay Off	22,072,723,7	16,302,367.12	25.96%
Dancer	23,453,945,9	15,183,295.02	35.1%
Double Spooler	40,941,843,4	18,964,709.86	53.52%

From the results that have been processed, the level of cost savings if PT. XYZ implements preventive maintenance using RCM 2 method so it can reduce costs.

4. Conclusion
Based on research and data processing that has been done, the conclusions can be drawn, namely:

- From the interval that has been obtained, namely Pay Off per 361 hours, Dancer per 327 hours, Double Spooler per 174 hours, the design of the engine maintenance schedule was made in 2 years, namely 2019 and 2020.
In the RCM II Decision worksheet, maintenance indicators are obtained so that the engine maintenance design can be carried out in accordance with the indicators on the RCM II Decision Worksheet.

There was a decrease in costs generated before preventive maintenance and after preventive maintenance on the Pay Off part was 25.96%, the Dancer part was 35.1% and the Double Spooler part was 53.52%.

References

[1] Anggono, W., Julianingsih, Linawati. 2005. Preventive Maintenance System Dengan Modularity Design Sebagai Solusi Penurunan Biaya Maintenance (Studi Kasus di Perusahaan Tepung Ikan). Teknik Industri Journal. Vol. 7 (1), p 9-10.

[2] Bangun, Irawan Harnadi, Rahman, Arif and Darmawan, Zefry. 2014. Perencanaan Pemeliharaan Mesin Produksi Dengan Menggunakan Metode RCM II Pada Mesin Blowing Om. Teknik Industri Journal, p 997- 1008. Brawijaya University, Malang.

[3] Dhamayanti, Destina Surya, Alhilman, Judi, Athari, Nurdinintya. 2016. Usulan Preventive Maintenance Dengan Menggunakan Reliability Centered Maintenance II dan Risk Based Maintenance. Rekayasa Sistem dan Industri Journal. Vol. 3, Num. 2, p.31-37. Telkom University.

[4] Gross, M. John. 2002. Fundamental of Preventive Maintenance. America : Book Division of American Management Association.

[5] Harrison, N & Samson, D. 1997. International Best Practice in the Adoption and Management of New Technology. Department Industry. Science and Tourism, Australia.

[6] Komarasakti, Dekrita. 2008. Analisis Biaya Pemeliharaan Mesin Terhadap Kualitas Produksi Pada Pt. X (Studi kasus hasil produksi tahun 2007). Computech & Bisnis Journal. Vol. 2, Num. 1, June 2008, 52-59.

[7] Laksani, C.S., Prihadyanti, D., Triyono, B., & Kardoyo, H. 2012. Model Technological Learning Guna Meningkatkan Kemampuan Teknologi dan Kinerja Inovasi Di Perusahaan Sektor Industri Manufaktur Indonesia. Pappiptek 2012 Research Report. Pappiptek - LIPI.

[8] Moubray, John. 2000. Reliability Centered Maintenance II, Second Edition. New York: Industrial Press Inc

[9] Prasetyo, Cahyo Purnomo. 2017. Evaluasi Manajemen Perawatan dengan Metode Reliability Centered Maintenance (RCM II pada Mesin Cane Cutter 1 dan 2 di Stasiun Gilingan PG Meritjan-Kediri. Ilmiah Rekayasa Journal. Vol 1 (1), p 99-107

[10] Prawirosentono, S. 2009 Manajemen Operasi (Operation Management): Analisis dan Studi Kasus. Jakarta: Bumi Aksara.

[11] Yanuar, Almira Rahma., and Purwanggono, Bambang. 2015. Usulan Program Perawatan yang Optimal Dengan Metode Reliability Centered Maintenance II (RCM II) Pada Sistem P1 Filling Point Shed I (Studi Kasus TBBM Semarang Group PT. Pertamina (Persero) Supply & Distribution Region IV Area Jawa Bagian Tengah). Semarang: UNDIP Journal.