The volume operator in covariant quantum gravity

You Ding and Carlo Rovelli

CPT¹, CNRS Case 907, Université de la Méditerranée, F-13288 Marseille, France

E-mail: rovelli@cpt.univ-mrs.fr

Received 22 April 2010
Published 29 June 2010
Online at stacks.iop.org/CQG/27/165003

Abstract
A covariant spin-foam formulation of quantum gravity has recently been developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In particular, the geometrical observable giving the area of a surface has been shown to be the same as the one in loop quantum gravity. Here we discuss the volume observable. We derive the volume operator in the covariant theory and show that it matches the one of loop quantum gravity, as does the area. We also reconsider the implementation of the constraints that define the model: we derive in a simple way the boundary Hilbert space of the theory from a suitable form of the classical constraints and show directly that all constraints vanish weakly on this space.

PACS number: 04.60.Pp

1. Introduction

The spin-foam formalism [1–6] and canonical loop quantum gravity (LQG) [7–9] can ideally be viewed as the covariant and the canonical versions, respectively, of a background-independent quantum theory of gravity [10]. This scenario is well realized in three dimensions [11], and there are recent attempts to implement it in quantum cosmology [12, 13]. An important step ahead towards the realization of this scenario in the complete four-dimensional theory has been taken with the recent introduction of two spin-foam models whose kinematics appears to match the one of LQG rather well, which we refer to as the new model [14–18] and the Freidel–Krasnov–Livine–Speziale (FKLS) model [19, 20]. The kinematics of canonical loop quantum gravity, indeed, is rather well understood; in particular, the properties of the geometrical operators, including the area and the volume operators[21–23] are well established. (For the volume operator, see also [24].) The area operator of the new spin-foam model has been derived in [16, 25] and shown to match the LQG one. Does the volume do so as well?

¹ Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affilié à la FRUMAM (FR 2291).
The volume observable in the covariant spin-foam language has not been constructed yet. The essential property of the volume operator is that it has contribution only from the nodes of a spin network state. Thus the only possible action of the volume operator is on the intertwiners. That is the reason why there is no generic well-defined volume operator in the old Barrett–Crane (BC) model[5], based on the vertex amplitude introduced by Barrett and Crane [4], where intertwiners are fixed. In fact, the absence of the volume operator in the BC theory can be traced precisely to the key problem of the BC model: the fact that intertwiner quantum numbers are fully constrained. This follows from the $SO(4)$ (more precisely spin (4)) to $SU(2)$ gauge fixing and the way certain second-class constraints are imposed, arguably incorrectly, strongly. The new model [14–17] imposes second-class simplicity constraints weakly, rather than strongly as in the BC theory. This choice frees intertwiner degrees of freedom, and the volume operator can be nontrivial. In this model, the state space where the constraints vanish weakly also turns out to match that of LQG, providing a solution to the problem of connecting the covariant $SO(4)$ spin-foam formalism with the canonical $SU(2)$ spin-network one. To complete this identification, here we construct the volume operator in the covariant spin-foam picture, and show explicitly that it matches the corresponding LQG canonical operator.

As a first step, in the next section we review the derivation of the boundary state space of the spin-foam theory. We do so for completeness and also in order to clean up and simplify previous derivations in the literature. In particular, we show explicitly and directly that all the constraints vanish in a weak sense on the physical boundary space. The form of the constraints that we write turns out to strongly simplify the study of the volume operator.

We work only in the Euclidean theory, on a fixed triangulation, and assume here that the Barbero–Immirzi parameter γ is positive. The paper is organized as follows. In section 2, we review the definition of the physical boundary Hilbert space. The volume operator is constructed and shown to match the LQG operator in section 3.

2. The boundary space

2.1. Classical theory

Following [15, 16], we start with a Regge geometry [26] on a fixed triangulation. Consider a 4D triangulation, which is formed by oriented 4-simplices, tetrahedra, triangles, segments and points. We call v, t and f respectively the 4-simplices, the tetrahedra and the triangles of the triangulation. For each simplex v, we introduce a variable $e^I_\mu(v)$: a right-handed tetrad one-form, constant over a coordinate patch covering the simplex v, with the determinant $\det(e) > 0$ positive. Here $\mu = (0, a)$ and $a = 1, 2, 3$ are spacetime indices, while $I = (0, i)$ and $i = 1, 2, 3$ are internal indices (the value 0 instead of 4 is for later convenience and does not indicate a Lorentzian metric). Without loss of generality, we can choose a linear coordinate system with the basis vectors \vec{X}_μ parallel with the four edges of v emanating from the same point, and where the (coordinate) length of the four segments is 1. Consider in particular the tetrahedron t spanned by the three vectors \vec{X}_a. With each triangle f_a (coordinate-) normal to the coordinate basis vector \vec{X}_a, we associate a bivector $^*B_a(t)$ defined by

$$^*B_a(t) = \frac{1}{2} e^I_a e^J_b e^J_b.$$

(1)

$B_f(t)$ can be seen as elements in the algebra $g = so(4)$, in the Euclidean case, and * stands for the Hodge dual in the internal indices. If we choose $B_f(t)$ as independent variables instead of
the tetrads, and \(n_I \) denotes the normal to the tetrahedron \(t \), the simplicity constraints on \(B_f(t) \), which assure that a tetrad field exists, can be stated as follows [15, 16]:

\[
C_f^I := n_I (\ast B_f(t))^{IJ} = 0.
\]

(2)

The usual quadratic diagonal

\[
C_{ff} := \ast B_f(t) \cdot B_f(t) = 0
\]

and off-diagonal

\[
C_{ff'} := \ast B_f(t) \cdot B_{f'}(t) = 0
\]

simplicity constraints can be easily shown to follow from (2). Here the dot stands for the scalar product in the \(\mathfrak{so}(4) \) algebra. In addition, we should impose the closure constraint

\[
\sum_{f \in \partial t} B_f(t) = 0.
\]

(5)

The new linear simplicity constraint (2) selects the solution of the quadratic constraints where \(B_f = \int f \ast (e \wedge e) \). This reformulation is central for the new model [14–17]. In particular, if we choose a ‘time’ gauge where \(n_I = (0, 0, 0, 1) \), the simplicity constraint (2) turns out to be

\[
\ast B_0^0(t) = 0.
\]

(6)

The classical discrete action is [16, 25]

\[
S = - \sum_{f \in \partial \Delta} \text{Tr} \left[B_f(t) U_f(t) + \frac{1}{\gamma} B_f(t) U_f(t) \right] - \sum_{f \in \partial \Delta} \text{Tr} \left[B_f(t) U_f(t, t') + \frac{1}{\gamma} B_f(t) U_f(t, t') \right],
\]

(7)

where \(U_f(t, t') \) is a group element of \(SO(4) \), giving the parallel transport across each triangle \(f \) bounding \(t \) and \(t' \), and \(U_f(t) := U_f(t, t) \) is the holonomy around the full link, starting at \(t \). We use here units where \(2\kappa = 16\pi G = 1 \) and \(\gamma \) is the Barbero–Immirzi parameter. This action, plus the simplicity and closure constraints defines a discretization of general relativity [15, 16]. From the action, we can read off the boundary variables as \(B_f(t) \in \mathfrak{so}(4) \), \(U_f(t, t') \in SO(4) \). One can also see that the variable conjugate to \(U_f(t, t') \) is

\[
J_f(t) := B_f(t) + \frac{1}{\gamma} B_f(t),
\]

(8)

inverting which gives

\[
\ast B_f(t) = \frac{\gamma^2}{1 - \gamma^2} \left(\frac{1}{\gamma} J_f(t) - \ast J_f(t) \right).
\]

(9)

Thus to each boundary triangle \(f \) in the boundary of the triangulation, we have an \(SO(4) \) group element \(U_f \) and, as a conjugate variable, an \(\mathfrak{so}(4) \) algebra element \(J_f \). It is convenient to think these variables as associated with the links of the graph formed by the one-skeleton of the cellular complex dual to the boundary triangulation. Note that these precisely define the same boundary phase space as the one of an \(SO(4) \) lattice Yang–Mills theory. As in Yang–Mills theory, the symplectic structure can be taken to be [15]

\[
\{ U_f, U_{f'} \} = 0,
\]

\[
\{ (J_f)^IJ, U_{f'} \} = \delta_{ff'} U_f \tauIJ,
\]

\[
\{ (J_f)^IJ, (J'_{f'})^{KL} \} = \delta_{ff'} \lambda_{IJ}^{KL} (J_f)^{MN},
\]

(10)

where \(\tauIJ \) and \(\lambda_{IJ}^{KL} \) are, respectively, the generators and the structure constants of \(SO(4) \).
In terms of the momentum variable J_f, the constraints (2) and (5) read respectively

$$C^i_f = n_I \left((* J_f)^{ij} - \frac{1}{\gamma} J_f^{ij} \right) = 0,$$

(11)

$$\sum_{f \in \partial t} J_f(t) = 0.$$

(12)

For the gauge-fixed version, introduce $L_j^i_f$:

$$L_j^i_f := \frac{1}{2} \epsilon_{ijkl} J_{kl}^i_f,$$

and

$$K_j^i_f := J_0^i_f,$$

which are respectively the generators of the $SO(3)$ subgroup that leaves n_I invariant and the generators of the corresponding boosts. Then the simplicity constraint (2) becomes simply

$$K_j^i_f = \gamma L_j^i_f.$$

(13)

This is the key constraint. In terms of ($K_j^i_f$, $L_j^i_f$), the closure constraint (12) turns out to be

$$\sum_{f \in \partial t} L_j^i_f = 0,$$

(14a)

and

$$\sum_{f \in \partial t} K_j^i_f = 0.$$

(14b)

If we further make the self-dual/anti-self-dual decomposition of J_f^{ij}:

$$J_f^{(\pm)i} := \frac{1}{2}(L_j^i_f \pm K_j^i_f),$$

(15)

the simplicity constraint (11) implies

$$C^i_f = (1 - \gamma) J_f^{(+)i} - (1 + \gamma) J_f^{(-)i}.$$

(16)

In terms of $J_f^{(\pm)i}$, the usual quadratic diagonal simplicity constraint (3), which follows from the new simplicity constraint (2) or (16), can be reexpressed as

$$C_{ij} = (1 - \gamma)^2 J_f^{(+)2} - (1 + \gamma)^2 J_f^{(-)2}.$$

(17)

2.2. Quantization

From the discrete boundary variables and their symplectic structure, we can construct the Hilbert space associated with a boundary or 3-slice. To do this, it is simpler to switch to the dual, 2-complex picture Δ^*. For each 3-surface Σ intersecting no vertices of Δ^*, let $\gamma_{\Sigma} := \Sigma \cap \Delta^*$. The Hilbert space associated with Σ is then

$$\mathcal{H}_\Sigma = L^2(\text{Spin}(4)|L(\gamma_{\Sigma})| \mu_{\text{Haar}}),$$

(18)

where we replace $SO(4)$ with its covering group $Spin(4) = SU(2) \times SU(2)$ and μ_{Haar} is the Haar measure on the group $Spin(4)$; $|L(\gamma_{\Sigma})|$ denotes the number of links in γ_{Σ}. Let $J_f(t)^{ij}$ denote the right-invariant vector fields, determined by the basis J_f^{ij} of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$, on the copy of $Spin(4)$ associated with the link $l = f \cap \Sigma$ determined by f, with orientation such that the node $n = t \cap \Sigma$ is the source of l.

By Peter–Weyl theorem, \mathcal{H}_Σ can be decomposed as follows:

$$\mathcal{H}_\Sigma = \bigoplus_{j} \bigotimes_{l} \{ \mathcal{H}_j^l \otimes \mathcal{H}_l \},$$

(19)

where j_l is an assignment of a $Spin(4)$ representation to each link l and \mathcal{H}_j is the carrier space of the representation j. The two Hilbert spaces associated with the link l are naturally
associated with the two nodes that bound the link \(l \) because they transform under the action of a gauge transformation at one end of the link. Regrouping the four Hilbert spaces associated with each node \(n \), the last equation can be rewritten in the form

\[
H_S = \bigoplus_j \bigotimes_n H_n. \tag{20}
\]

Here the Hilbert space associated with a node \(n \) is

\[
H_n = \bigotimes_{a=1}^4 H_{j_a}. \tag{21}
\]

where \(a = 1, 2, 3, 4 \) runs here over the four edges that join at the node \(n \) (that is, the four faces of the boundary tetrahedron), and we have identified the Hilbert space carrying a representation and its dual. We restrict our attention to a single boundary tetrahedron \(t \), and its associated Hilbert space \(H_n \), which we call simply \(H \) in the following.

The irreducible unitary representations of \(\text{Spin}(4) \) are labelled by a couple of spins \((j^+, j^-)\) and are given by the tensor product of two \(SU(2) \) irreducibles. That is, \(H := H_n \) has the structure

\[
H = \bigotimes_{a=1}^4 H_{j_a} = \bigotimes_{a=1}^4 (H_{j^+_a} \otimes H_{j^-_a}). \tag{22}
\]

The physical intertwiner state space \(K_{\text{ph}} \) is a subspace of this space, where the constraints hold in a suitable sense.

As a first step to impose the constraints, let us restrict the representations to the ones that satisfy

\[
j^+ = \frac{1 + \gamma}{1 - \gamma} j^-,
\]

which satisfies the usual quadratic diagonal simplicity constraint (17) in the classical limit, and what we need to recover is the correct classical theory in the limit. We call \(\gamma \)-simple the \(\text{Spin}(4) \) representations that satisfy this relation.

Next, the Clebsch–Gordan decomposition for the single component of \(H \) associated with a single boundary face \(f \) gives

\[
H_{j^+ \otimes j^-} = H_{j^+} \bigotimes H_{j^-} = \bigoplus_{p=|j^+-j^-|} H_p. \tag{24}
\]

Consider the highest spin term in each factor for \(\gamma < 1 \) and the lowest one for \(\gamma > 1 \); this selects the ‘extremum’ subspace \(H_{\text{ext}} \), which is

\[
\begin{align*}
H_{\text{max}}^{\text{max}} &= \bigotimes_{a=1}^4 H_{j^+_a} & \text{for } \gamma < 1; \\
H_{\text{min}}^{\text{min}} &= \bigotimes_{a=1}^4 H_{j^-_a} & \text{for } \gamma > 1. \tag{25, 26}
\end{align*}
\]

We are now going to show that in this space (with (23) holding), the simplicity constraint (16) is satisfied weakly. That is, the action of the constraints on the states in \(H_{\text{ext}} \) results in states orthogonal to \(H_{\text{ext}} \). Namely, \(\langle \Psi | \hat{C} f | \Phi \rangle = 0, \forall \Psi, \Phi \in H_{\text{ext}} \). This follows from the following
considerations. \(\forall \Psi, \Phi \in \mathcal{H}^{\text{ext}} \), consider the matrix element of the form (16) of the simplicity constraint
\[
\langle \Psi | \tilde{C}_{j}^{i} | \Phi \rangle = (1 - \gamma') \langle \Psi | \tilde{J}_{j}^{i} | \Phi \rangle - (1 + \gamma') \langle \Psi | \tilde{J}_{j}^{i} | \Phi \rangle
\]
and write the rhs of this equation in a representation where the elements of \(\mathcal{H}_{j} \) are symmetric spinors with \(2j \) indices. The generators of \(SU(2) \) are then the Pauli matrices \(\sigma_{i}^{A} \) acting on each index. For \(\gamma < 1 \),
\[
\langle \Psi | \tilde{C}_{j}^{i} | \Phi \rangle = (1 - \gamma') \Psi(A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) \sum_{p=1}^{2j_{+}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}})
\]
\[- (1 + \gamma') \Psi(A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) \sum_{p=1}^{2j_{-}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}})
\]= \frac{2(1 - \gamma') j^{+} + (1 + \gamma') j^{-}}{2} \Psi(A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) \sum_{p=1}^{2j_{+}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}})
\]= 0.
\]
The first step is obtained by the symmetry of the highest spin states, and the last follows from (23). Therefore the simplicity constraint is implemented weakly in \(\mathcal{H}^{\text{ext}} \) for \(\gamma < 1 \). For \(\gamma > 1 \), the state \(|\Psi\rangle \) in \(\mathcal{H}^{\text{ext}} \) can be expressed as \(\Phi(A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) = \epsilon_{A_{1}} B_{1} \cdots \epsilon_{A_{2j_{-}}} B_{2j_{-}} \Phi(A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) \), on which the action of \(J^{(+)\gamma} \) can be obtained as
\[
\tilde{J}_{j}^{i} (A_{1} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) = \sum_{p=1}^{2j_{+}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) + \sum_{p=1}^{2j_{-}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}})
\]
\[- = \sum_{p=1}^{2j_{+}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}) + \sum_{p=1}^{2j_{-}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}}).
\]
Hence the matrix elements of the simplicity constraint can be obtained as
\[
\langle \Psi | \tilde{C}_{j}^{i} | \Phi \rangle = 2((1 - \gamma') j^{+} + (1 + \gamma') j^{-}) \sum_{p=1}^{2j_{+}} \sigma_{i}^{A_{p}} \Phi(A_{1} \cdots \tilde{A}_{p} \cdots A_{2j_{-}} B_{1} \cdots B_{2j_{-}})
\]
The last step follows again from (23). Therefore the space \(\mathcal{H}^{\text{ext}} \) solves the simplicity constraint.

The physical intertwiner space associated with a single node \(n \) is then obtained by solving the closure constraint (2.1) weakly in the space \(\mathcal{H}^{\text{ext}} \), which turns out to be
\[
\mathcal{K}_{\text{ph}} = \text{Inv}_{\text{SU}(2)[\mathcal{H}^{\text{ext}}]}.
\]
To show that the closure constraints (2.1) hold weakly on this space, observe that the matrix elements (27) of the simplicity constraint implies
\[
\langle \Psi | K_{j}^{i} | \Phi \rangle = \gamma' \langle \Psi | L_{j}^{i} | \Phi \rangle.
\]
The lhs of (14a) is the generator of \(SU(2) \) transformations at the node and vanishes strongly on (30) by definition; the rhs of (14b) is weakly proportional to the one of (14a) by (31) and therefore vanishes. Hence the \(SU(2) \)-invariant space turns out to be \(SO(4) \)-invariant space in the weak sense. Thus \(\mathcal{K}_{\text{ph}} \) is the intertwiner space as a solution of all the constraints: all the constraints hold weakly.

The total physical boundary space \(\mathcal{H}_{\text{ph}} \) of the theory is then obtained as the span of spin-networks in \(L^{2}[\text{Spin}(4)^{L} / \text{Spin}(4)^{V}, \text{d}t_{\text{Hadamard}}] \) with \(\gamma \)-simple representations on edges and with intertwiners in the spaces \(\mathcal{K}_{\text{ph}} \) at each node.
Then we have the remarkable result that K_{ph} is naturally isomorphic to the $SU(2)$ intertwiner space, and therefore the constrained boundary space H_{ph} can be identified with the $SU(2)$ LQG state space $H_{SU(2)}$ associated with the graph which is dual to the boundary of the triangulation, namely the space of the $SU(2)$ spin networks on this graph.

Since we have not proven that the physical Hilbert space considered is the maximal space where the constraints hold weakly, one might worry that the physically correct quantization of the degrees of freedom of general relativity could need a larger space. Also, it has been pointed out that imposing second-class constraints weakly might lead to inconsistencies in some cases [27]. In the present case, however, these worries are not relevant, since the space obtained is directly related to the one of the canonical theory, which we can trust to capture the degrees of freedom of gravity correctly.

Let us now consider the geometrical operators in these two versions. Classically, the area $A(f)$ of a triangle f is given by

$$A(f) = \frac{1}{2} \left(\frac{\star B(f)}{\star B(f)} \cdot \frac{\star B(f)}{\star B(f)} \right).$$

If we fix the time gauge, we have $A_3(f) = \frac{1}{2} \left(\frac{\star B(f)}{\star B(f)} \cdot \frac{\star B(f)}{\star B(f)} \right)$. These two quantities are equal up to a constrained term. As shown in [16, 25], using the constraints, the operator related to $A_3(f)$ can be obtained as

$$A_3(f) = \kappa^2 \gamma^2 L_3(f),$$

which matches the three-dimensional area determined by LQG, including the correct Barbero–Immirzi parameter proportionality factor. Let us now turn to study the volume operator on this space H_{ph} and its relation to the $SU(2)$ volume in LQG.

3. The volume

It is easy to see from the definition of $e^a_i(v)$ given at the beginning of the previous section that the volume of the tetrahedron t is given by

$$V(t) = \frac{1}{6} \det(e(v)).$$

(32)

In terms of the variables $\star B$ defined in (1), the volume of a boundary tetrahedron t reads as

$$V(t) = \sqrt{\frac{1}{27}} e^{abc} \Tr[\star B_a \star B_b \star B_c].$$

(33)

To see this, let the gauge-fixed simplicity constraint (6) hold; then $\star B_0(t)$ vanish and the above quantity is equal to

$$V_3(t) = \sqrt{\frac{1}{27}} e^{abc} \epsilon^{ijk} B^i_a B^j_b B^k_c = \frac{1}{6} \det(e),$$

(34)

which is exactly expression (32) of the discrete volume. Note that the $SO(4)$ volume $V_{SO(4)}(t)$ is gauge invariant; hence, we can obtain equation (33) by the gauge-fixed version (34) without loss of generality. Going to the variables J, and using (9), the volume reads

$$V(t) = \sqrt{\frac{1}{27}} \left(\frac{\gamma^2}{1 - \gamma^2} \right)^3 e^{abc} \Tr \left[\left(\frac{1}{\gamma} J_a - \epsilon^a_i J_i \right) \left(\frac{1}{\gamma} J_b - \epsilon^b_i J_i \right) \left(\frac{1}{\gamma} J_c - \epsilon^c_i J_i \right) \right].$$

(35)

The volume operator $\hat{V}(t)$ of the tetrahedron t is then formally given by (35) with J^I replaced by the corresponding operators:

$$\hat{V}(t) = \sqrt{\frac{1}{27}} \left(\frac{\gamma^2}{1 - \gamma^2} \right)^3 e^{abc} \Tr \left[\left(\frac{1}{\gamma} J_a - \epsilon^a_i J_i \right) \left(\frac{1}{\gamma} J_b - \epsilon^b_i J_i \right) \left(\frac{1}{\gamma} J_c - \epsilon^c_i J_i \right) \right].$$

(36)

However, the physical volume should be defined on the physical boundary space H_{ph}, satisfying the constraints. Since the volume operator does not change the graph of the spin network sates, nor the colouring of the links, its action can be studied on the Hilbert space associated
with a single node. Consider the matrix element of the square of the volume operator between two states in the physical Hilbert space (we drop the hats):

\[\langle i | V(t)^2 | j \rangle = \frac{1}{27} \left(\frac{\gamma^2}{1 - \gamma^2} \right)^3 e^{abc} (i) \left(\frac{1}{\gamma} J_a^{ij} - J_{ij}^a \right) \left(\frac{1}{\gamma} J_b^{jk} - J_{jk}^b \right) \left(\frac{1}{\gamma} J_c^{kl} - J_{kl}^c \right) | j \rangle. \]

(37)

Writing this in terms of \(L \) and \(K \) components gives

\[\langle i | V(t)^2 | j \rangle = \frac{1}{27} \left(\frac{\gamma^2}{1 - \gamma^2} \right)^3 \times e^{abc} e^{ijk} \epsilon_{ij} \epsilon_{jk} \epsilon_{ki} (i) \left(\frac{1}{\gamma} L_a^m - K_a^m \right) \left(\frac{1}{\gamma} L_b^n - K_b^n \right) \left(\frac{1}{\gamma} L_c^p - K_c^p \right) | j \rangle. \]

(38)

Note that the intertwiner space is the subspace of the product of the space \(\mathcal{H}_a \) associated with the link \(a \), and the action of \((K_a, L_a)\) is in fact on \(\mathcal{H}_a \). Hence we can use the form (31) of the simplicity constraint to simplify equation (38), although the rhs seems a polynomial. Using the form (31) of the constraint, we can rewrite it as

\[\langle i | V(t)^2 | j \rangle = \frac{1}{27} \left(\frac{\gamma^2}{1 - \gamma^2} \right)^3 \left(\frac{1}{\gamma} - \gamma \right)^3 e^{abc} e_{ijk} (i) L_a L_b L_c | j \rangle \]

(39)

and a little algebra gives

\[\langle i | V(t)^2 | j \rangle = \frac{\gamma^3}{3} \langle i | e^{abc} e_{ijk} L_a L_b L_c | j \rangle. \]

(40)

That is,

\[V(t) = \frac{\gamma^3}{3} \sqrt{e^{abc} e_{ijk} L_a L_b L_c}. \]

(41)

Now, the operator on the rhs is precisely the LQG volume operator \(V_{\text{LQC}} \) as it acts on \(K_{\text{ph}} \) including the correct dependence on the Barbero–Immirzi parameter \(\gamma \).

Acknowledgments

We wish to thank Eugenio Bianchi for enlightening discussions and also Jonathan Engle, Simone Speziale, Franck Hellmann, Roberto Pereira and Muxin Han for helpful comments and suggestions. YD is supported by CSC scholarship no 200860480.

References

[1] Reisenberger M P 1994 World sheet formulations of gauge theories and gravity arXiv:gr-qc/9412035

[2] Iwasaki I 1996 Geometries induced by surfaces: an algorithm on the 3-dimensional simplex lattice Proceedings 7th Marcel Grossmann meeting on general relativity (Stanford 1994) ed R T Jantzen, G M Keiser and R Ruffini (River Edge, NJ: World Scientific) pp 803–4

[3] Reisenberger M P and Rovelli C 1997 Sum over surfaces’ form of loop quantum gravity Phys. Rev. D 56 3490 (arXiv:gr-qc/9612035)

[4] Baez J C 1998 Spin foam models Class. Quantum Grav. 15 1827–58 (arXiv:gr-qc/9709052)

[5] Reisenberger M P and Rovelli C 2003 Spin foams as Feynman diagrams Florence 2001, A Relativistic Spacetime Odyssey ed I Ciufolini, D Dominici and I. Lusanna (Singapore: World Scientific) pp 431–48 (arXiv:gr-qc/0002083)

[6] Baez J C 2000 An introduction to spin foam models of BF theory and quantum gravity Lecture Notes Phys. 543 25–94
Class. Quantum Grav. 27 (2010) 165003

Y Ding and C Rovelli

Reisenberger M P and Rovelli C 2001 Spacetime as a Feynman diagram: the connection formulation Class. Quantum Grav. 18 121–40
[3] Reisenberger M P 1997 A lattice worldsheet sum for 4-d Euclidean general relativity arXiv: gr-qc/9711052
[4] Barrett J W and Crane L 1998 Relativistic spin networks and quantum gravity J. Math. Phys. 39 3296–302
Barrett J W and Crane L 2000 A Lorentzian signature model for quantum general relativity Class. Quantum Grav. 17 3101–18
[5] DePietri R, Freidel L, Krasnov K and Rovelli C 2000 Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space Nucl. Phys. B 574 785–806
Perez A and Rovelli C 2001 A spin foam model without bubble divergences Nucl. Phys. B 599 255–82
Oriti D and Williams R M 2001 Gluing 4-simplices: a derivation of the Barrett–Crane spin foam model for Euclidean quantum gravity Phys. Rev. D 63 024022
[6] Oriti D 2001 Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity Rep. Prog. Phys. 64 1499–544
Perez A 2003 Spin foam models for quantum gravity Class. Quantum Grav. 20 R43
[7] Ashtekar A and Lewandowski J 2004 Background independent quantum gravity: a status report Class. Quantum Grav. 21 R53–R152
Ashtekar A 2007 An introduction to loop quantum gravity through cosmology Nuevo Cimento B 122 135
Smolin L 2004 An invitation to loop quantum gravity arXiv: hep-th/0408048
Thiemann T 2004 Introduction to Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press) (arXiv: gr-qc/0110034)
Han M, Huang W and Ma Y 2007 Fundamental structure of loop quantum gravity Int. J. Mod. Phys. D 16 1397
[8] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)
[9] Rovelli C and Smolin L 1995 Discreteness of area and volume in quantum gravity Nucl. Phys. B 442 593–619
Rovelli C and Smolin L 1995 Nucl. Phys. B 456 734 (erratum)
[10] Rovelli C 2010 A new look at loop quantum gravity arXiv: 1004.1780 [gr-qc]
[11] Noui K and Perez A 2005 Three dimensional loop quantum gravity: physical scalar product and spin foam models Class. Quantum Grav. 22 1739 (arXiv: gr-qc/0402110)
[12] Ashtekar A, Campiglia M and Henderson A 2009 Loop quantum cosmology and spin foams Phys. Lett. B 681 347–52 (arXiv:0909.4221 [gr-qc])
Ashtekar A, Campiglia M and Henderson A 2010 Casting loop quantum cosmology in the spin foam paradigm arXiv:1001.5147 [gr-qc]
[13] Battisti M V, Marciano A and Rovelli C 2009 Triangulated loop quantum cosmology: Bianchi IX and inhomogeneous perturbations arXiv:0911.2653 [gr-qc]
Rovelli C and Vidotto F 2009 On the spin foam expansion in cosmology arXiv:0911.3097 [gr-qc]
Bianchi E, Rovelli C and Vidotto F 2010 Towards Spinfoam Cosmology arXiv:1003.3483 [gr-qc]
[14] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett. 99 161301 (arXiv:0705.2388 [gr-qc])
[15] Engle J, Pereira R and Rovelli C 2008 Flipped spin foam vertex and loop gravity Nucl. Phys. B 798 251–90 (arXiv:0708.1236 [gr-qc])
[16] Engle J, Livine E, Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136–49 (arXiv:0711.0146 [gr-qc])
[17] Pereira R 2008 Lorentzian LQG vertex amplitude Class. Quantum Grav. 25 085013 (arXiv:0710.5043 [gr-qc])
Livine E and Spezzale S 2008 Consistently solving the simplicity constraints for spin foam quantum gravity Europhys. Lett. 81 50004 (arXiv:0708.1915 [gr-qc])
[18] Livine E and Spezzale S 2007 A new spin foam vertex for quantum gravity Phys. Rev. D 76 084028 (arXiv:0705.0674 [gr-qc])
Freidel L and Krasnov K 2008 A new spin foam model for 4d gravity Class. Quantum Grav. 25 125018 (arXiv:0708.1595 [gr-qc])
[19] Rovelli C and Smolin L 1995 Discreteness of area and volume in quantum gravity Nucl. Phys. B 442 593–619
Rovelli C and Smolin L 1995 Nucl. Phys. B 456 734 (erratum)
[20] Ashtekar A and Lewandowski J 1997 Quantum theory of geometry: I. Area operators Class. Quantum Grav. 14 A55–A82
Ashtekar A and Lewandowski J 1997 Quantum theory of geometry: II. Volume operators Adv. Theor. Math. Phys. 1 388–429

9
[24] Flori C and Thiemann T 2008 Semiclassical analysis of the loop quantum gravity volume operator: I. Flux coherent states arXiv:0812.1537 [gr-qc]
Flori C 2009 Semiclassical analysis of the loop quantum gravity volume operator: area coherent states arXiv:0904.1303 [gr-qc]

[25] Engle J and Pereira R 2008 Coherent states, constraint classes, and area operators in the new spin-foam models
Class. Quantum Grav. 25 105010 (arXiv:0710.5017 [gr-qc])

[26] Regge T 1961 General relativity without coordinates Nuovo Cimento 19 558–71

[27] Alexandrov S 2010 The new vertices and canonical quantization arXiv:1004.2260 [gr-qc]