Stability of Metallic Structure in Compressed Solid GeH$_4$

C. Zhang1, Y. L. Li2,3, X. J. Chen4, R. Q. Zhang1, and H. Q. Lin2

1Department of Physics and Materials Science, City University of Hong Kong
2Department of Physics and Institute of Theoretical Physics, Chinese University of Hong Kong, Hong Kong, China
3Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
4Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA

(Dated: April 30, 2008)

We study the electronic and lattice dynamical properties of compressed solid germane in the pressure range up to 200 GPa with density functional theory. A stable metallic structure, Aba_2, with a base-centered orthorhombic symmetry was found to be the lowest enthalpy phase for pressure from 23 to 177 GPa, suggesting an insulator to metal phase transition around 23 GPa. The Aba_2 structure is predicted to have higher superconducting transition temperature than SiH$_4$ reported recently, thus presenting new possibilities for exploring high temperature superconductivity in this hydrogen-rich system.

PACS numbers: 62.50.-p, 71.20.-b, 74.62.Fj, 74.70.-b

As suggested by Ashcroft [1], the dense hydrides of group IVa elements (C, Si, Ge, and Sn) are promising candidates for realizing metallization of solid hydrogen because hydrogen has already been “chemically precompressed”. The metallization pressures in the group IVa hydrides are believed to be considerably lower than may be necessary for solid hydrogen. Ashcroft [1] also suggested that these hydrogen-rich alloys are likely superconductors with high transition temperatures T_c. As put by Ginzburg [2], “high-temperature and room-temperature superconductivity” and “metallic hydrogen and other exotic substances” are the two key “physical minima” at the beginning of the 21st century. Thus, exploring the possibility of metallic hydrogen and superconductivity has long been a major driving force in high-pressure condensed matter science and remains an important challenge in modern physics. Recent experimental work on SiH$_4$, using diamond-anvil cell techniques, has revealed an enhanced reflectivity with increasing pressure [3]. It was found [3] that solid SiH$_4$ becomes opaque at 27-30 GPa and exhibits Drude-like behavior at around 60 GPa, signalling the onset of pressure-induced metallization. After Chen’s experiment, Eremets et al [4] reported that SiH$_4$ exhibits superconductivity at 96 and 120 GPa [4].

Prior to the experiment of Chen [3], several theoretical studies on SiH$_4$ structure addressed the issue of whether the material is a favorable candidate of high temperature superconductor. For a metallic Pmn_2 SiH$_4$ phase, Feng et al [5] obtained a superconducting transition temperature T_c of 166 K at 202 GPa by using the electron-phonon coupling strength for lead under ambient pressure. Pickard and Needs [6] also studied the structural properties of SiH$_4$ and mentioned the possibility of superconductivity in a $C2/c$ phase. Later, Yao et al. [7] showed that the Pmn_2 structure is in reality not stable and that a new $C2/c$ structure is dynamically stable from 65 to 150 GPa. This $C2/c$ SiH$_4$ phase was predicted to exhibit superconductivity close to 50 K at 125 GPa [7]. Recently, Chen et al. [8] carried out first principles calculations on SiH$_4$ to obtain structural, electronic, and vibrational information, and they found out six energetically favorable structures in which the $Pmnn, Cmca, and C2/c$ structures have layered networks with eight-fold SiH$_4$ coordination. This layered feature favors metallization and were predicted to have T_c in the range of 20 and 80 K. To study the structural and electronic behavior of GeH$_4$, there exist very few theoretical studies and almost none experimental work was done on germane. Recent progress on SiH$_4$ make it profitable to perform high pressure studies on GeH$_4$. In early ab initio studies of GeH$_4$, Martinez et al [9] found that at around 72 GPa the metallic SnF$_4$-like structure becomes preferred. Li et al [10] followed studies of Feng et al on SiH$_4$ [5] and investigated a few possible structures. They found that T_2 and O$_3$ could be metallic under pressure. It is not known whether there exists a common structural feature that favors metallic GeH$_4$, and no study on the possible superconductivity has been attempted.

In this Letter we report a theoretical study of metallic phases and possible superconductivity in compressed solid GeH$_4$. Considering the fact that germanium has a small band gap than silicon, GeH$_4$ is expected to become metallic easier than SiH$_4$. By calculating possible structures of different crystal systems including monoclinic, orthogonol, tetragonal, hexagonal, and cubic structures, we found five energetically favorable structures in which the $C2/c, Aba_2$, and $Cmca$ structures have layered networks. This layered feature favors metallization and superconductivity. The Aba_2 phase is predicted to have considerable higher superconducting transition temperature T_c at lower pressure (<50 GPa), suggesting that GeH$_4$ is another good candidate for high-temperature superconductivity.

To study the structural and electronic behavior of GeH$_4$ over a wide range of the pressure, we used generalized gradient approximation (GGA) density functional
and projector augmented wave method as implemented in the Vienna ab initio simulation package (VASP) [11]. An energy cutoff of 540 eV was used for the plane wave basis sets, and 16×16×16 and 8×8×8 Monkhorst-Pack k-points grids were used for Brillouin zone sampling of two GeH₄ molecular cells and four GeH₄ molecular cells, respectively. When searching stable structures, we performed calculations with relaxation of cell volume, cell shape, and ionic positions. Forces on the ions were calculated through derivatives of the free energy with respect to the atomic positions, including the Harris-Foulkes like correction. Iterative relaxation of atomic positions was stopped when all forces were smaller than 0.01 eV Å⁻¹. All possible structures were optimized using conjugate gradient scheme. The lattice dynamical and superconducting properties were calculated by the Quantum-Espresso package [12] using Vanderbilt-type ultrasoft potentials with a cut-off energy of 30 Ry and 300 Ry for the wave functions and the charge density, respectively. 24×12×24 Monkhorst-Pack k-point grid with Gaussian smearing of 0.05 Ry was used for the phonon calculations. Double k-point grids were used for calculation of the electron-phonon interaction matrix element.

The phase stability of GeH₄ was systematically investigated by means of first-principles total energy calculations. Dozens of the selective structures were considered as the initial structures, which cover all the competing structures of SiH₄ in previous literatures [8]. It is worthy noting that F₁₄/a structure, a most stable phase over a wide pressure range (60-240 GPa) in SiH₄, is unstable in the whole pressure range we studied. Five low-enthalpy structures of GeH₄, i.e., Aba2, Ccca, P₂₁/c, C2/c, and Fdd₂, were found for pressure up to 200 GPa. Enthalpy differences as a function of pressure for five competing structures are plotted in Fig. 1. Three regions are clearly seen by our calculation: (i) 0–23 GPa, two monoclinic phases, Fdd₂ and P₂₁/c dominate; (ii) 23–177 GPa, it is Aba2, an orthorhombic phase; (iii) 177–200 GPa, it is monoclinic C2c. For germane, it is at about 23 GPa that an insulator to metal transformation occurs.

Near the pressure of 2 GPa, numerous structures with monoclinic tetrahedral or orthorhombic symmetry, have very close enthalpy, constituting a “mixed” phase of GeH₄ (see auxiliary material), which reflects the combined effect of exerted force and van der Waals force. Among them, two structures, one with Fdd₂ symmetry and the other one with P₂₁/c, seem to be more stable. The two structures are very close in enthalpy as shown in the inset of Fig. 1. The Fdd₂ phase is a face-centered orthorhombic structure composed of eight four-fold coordinated tetrahedra. The eight GeH₄ molecules in the unit cell are comparable and similarly ordered, so that the neighboring molecules are kept apart. With the increasing of pressure, the distance between Ge atoms decreases. Consequently, the shape of the whole cell changes and it results in the more stable P₂₁/c phase. The P₂₁/c structure consists of four isolated covalently bonded GeH₄ tetrahedra with the H atom of one molecule pointing away from the H atoms of a neighboring molecule. Due to the symmetry, the arrangement of GeH₄ tetrahedra in the Fdd₂ structure is more orderly than the P₂₁/c structure. The Ge atoms in the Fdd₂ phase form quasi-two-dimensional sheets, while the H atoms are “fastened” by the Ge atoms. This makes it transform to other layered structures more easily. The Ge-H bond lengths of these two structures are similar (1.53 Å), leading to small difference in their unit volume. Subsequently, the transformation between them is very likely to occur in this pressure region. Because of the covalently bonded GeH₄, it is not surprising that these two structures are insulating in this pressure range, and they were also found in the low-pressure SiH₄. [8] The Fdd₂ phase wins for pressure below 5 GPa, while the P₂₁/c phase takes over for pressure ranges from 5 to 23 GPa. The occurrence of mixed phases indicates that it is difficult to verify the structure of GeH₄ at very low pressure (about 3 GPa) from experiments.

Around 20 GPa, Fdd₂ and P₂₁/c are also energetically competitive, along with two new layered phases, Aba2 and Ccca. These four structures compete drastically over the pressure range from 14 to 23 GPa for low enthalpy phase. The maximum enthalpy difference between them is only 0.05 eV, indicating that solid GeH₄
undergoes a structure transition in this pressure range. Our calculations showed that the orthorhombic \textit{Fdd}2 structure transforms to other two orthorhombic structures with \textit{Aba2} and \textit{Ccca} symmetry at 14 GPa and 16 GPa, respectively. Compared with \textit{Fdd}2, the transition from monoclinic \textit{P2}1/\textit{c} phase to \textit{Aba2} and \textit{Ccca} needs more pressure. \textit{P2}1/\textit{c} transforms to \textit{Aba2} structure at 20 GPa and to \textit{Ccca} structure at 23 GPa. It is interesting to note that \textit{Ccca} structure transforms to \textit{P2}1/\textit{c} at high pressure (about 200 GPa) again.

As shown, the most stable phase found in a wide pressure range (23 to 177 GPa) is a layered base-centered orthorhombic structure of space group \textit{Aba2}. This is remarkably different from the case of \textit{SiH}4, where metallic phases (\textit{C2}/\textit{c}, \textit{Cmca}, \textit{PT}, etc.) are higher in enthalpy than insulating phases for pressure lower than 200 GPa. For the \textit{Aba2} structure there are four formula units per unit cell. Four Ge atoms hold the Wyckoff 4\textit{a} sites and 16 H atoms occupy two Wyckoff 8\textit{b} sites. The adjacent Ge layers are bridged by a pair of H atoms with Ge-H bond length from 1.935 Å (20 GPa) to 1.673 Å (175 GPa). The in-plane Ge-Ge bond length varies from 2.552 to 2.206 Å. The calculated density for the \textit{Aba2} structure at 50 GPa is 5.397 g/cm3. The most peculiar feature of this structure is the exceptionally short H-H bond length about 0.785 Å from 20 GPa to 175 GPa, nearly retaining the same. The paired hydrogen atoms occupy the Ge layers with different orientation. When pressure increases, the orientation of paired hydrogen changes.

A few words commenting on the \textit{Ccca} phase are in order. This structure has been discussed by Yao et al in their study of \textit{SiH}4. For \textit{GeH}4, we found that \textit{Ccca} phase is also a layered structure and is a good metal at the same pressure range as the \textit{Aba2} phase. The enthalpy difference in \textit{Ccca} and \textit{Aba2} is very small (0.11 eV at most) at a large pressure range, 0 to 200 GPa. The \textit{Aba2} structure is about 0.053 eV per Ge\textit{H} unit lower in enthalpy than the \textit{Ccca} structure at 20 GPa and about 0.11 eV at 177 GPa, respectively. The \textit{Ccca} structure contains four Ge\textit{H} units per unit cell. The hydrogen atoms between Ge layers connect the Ge and form 2D layers itself, which is parallel to Ge layers. Both \textit{Aba2} and \textit{Ccca} structures are good candidates for metallic phases in this pressure region.

Upon further compression, the metallic \textit{C2}/\textit{c} phase possesses the lowest enthalpy between 177 to 200 GPa. The \textit{C2}/\textit{c} structure transforms to the \textit{Ccca} structure and the \textit{Aba2} structure at 154 GPa and 177 GPa, respectively. The \textit{C2}/\textit{c} phase is also a layered structure which belongs to monoclinic crystal system. The present \textit{C2}/\textit{c} structure is constructed by the two-dimensional Ge layers bridged by H atoms, and it is different from the \textit{C2}/\textit{c} structure proposed by Pickard and Needs \cite{pickard07} when searching for the low-enthalpy structure of \textit{SiH}4. Solid \textit{SiH}4 also prefers to have this structure at high pressure \cite{pickard07}. It is instructive to observe that the obtained metallic structures with \textit{Aba2}, \textit{Ccca} and \textit{C2}/\textit{c} symmetry all have layered structures. These structures are composed of distinct 2D lay-
as an example. Electron structure presents two prominent features. One is that a strong hybridization between Ge-p electrons and H-s electron appears in valence and conduction bands from -15 to -5 eV and from 5 to 15 eV. The other one is that Ge atoms expand the coordination shell and use the 3d orbitals to bond with neighboring H atoms. This case is also observed in SiH4 at high pressure. The DOS at the Fermi level (N_F) for Abe2 at 30 GPa attains a value of 1.1 (1.14 and 1.07 at 20 and 50 GPa, respectively) states/eV/cell, exhibiting its good metallic property. Dominant contributions to the DOS near the Fermi level come from Ge-p electrons. While Ge-s, Ge-d, and H-s have minor contributions to the DOS at the Fermi level. The band structure reveals metallic character with large dispersion bands crossing the Fermi level (E_F) and a flat band in the vicinity of E_F from the \(\Gamma \) to the S point. The simultaneous occurrence of flat and steeps near the Fermi level has been suggested as favorable conditions for enhancing the electron pairing, which is essential to superconductivity.

Further, the possibility of superconductivity for Abe2 structure of GeH4 is discussed using the modified McMillan equation by Allen and Dynes. For comparison, we calculate the \(T_c \) at 30 and 50 GPa. The obtained electron-phonon coupling parameters \(\lambda \) are 1.13 at 30 GPa and 1.37 at 50 GPa, which are higher than the predicted strong coupling value of 1.0, indicating a rather strong electron-phonon coupling (EPC) in GeH4. This strong EPC is correlated to the wide valence band and strong electron-electron interaction along with interband electron transfer. Using the Coulomb pseudopotential \(\mu^* \) of 0.1, 0.15, and 0.2, the estimated \(T_c \) are 26, 21, and 16 K at 30 GPa and 34, 28, and 23 K at 50 GPa, respectively. Though the DOS at Fermi level decrease with the pressure increasing, \(T_c \) increases. This can be understood from the fact that the strengthen of EPC under pressure has advantage over the weaken of repulsion effects between electrons. All obtained \(T_c \) values in GeH4 are comparable to the \(T_c \) value recently reported in SiH4 at 96 and 120 GPa. Most important is that no superconductivity was found in Eremets et al’s experiment for SiH4 when the pressure is lower than 50 GPa.

In summary, we have investigated the structural stability of germane under pressure up to 200 GPa. The \(Fdd2 \) phase is confirmed to be a good candidate for the low-pressure insulating phase. Between 5 and 23 GPa, \(P2_1/c \) is predicted to be the stable structure of another insulating phase. For a wide range of pressure, from 23 GPa to 177 GPa, the Abe2 phase is confirmed to be the lowest in enthalpy. Calculations of band structure show that the Abe2 phase is a metal even at zero pressure. Thus the transition pressure from insulator to metal is 23 GPa for germane, much lower than the theoretical metalization pressure of 50 GPa, 60 GPa, and 70 GPa for silane. At higher pressures (above 177 GPa), germane transforms into another metallic structure with \(C2/c \) symmetry. The estimated superconducting critical temperatures for the metallic Abe2 phase are comparable to those in SiH4, making GeH4 a potential superconductor.

We are grateful to Z. X. Zhao and colleagues at the Institute of Physics, CAS, for discussions and comments. This work was supported by the HKRGC (402205); the U.S. DOE-BES (DEFG02-02ER34P5), DOE-NNSA (DEFC03-03NA0144), and NSF (DMR-0205899). X.J.C. wishes to thank CUHK Physics for its kind hospitality during the course of this work. Part of the calculations were performed in the Shanghai Supercomputer Center.

[1] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968); ibid 92, 187002 (2004).
[2] V. L. Ginzburg, Rev. Mod. Phys. 76, 981 (2004).
[3] X. J. Chen, V. V. Struzhkin, Y. Song, A. F. Goncharov, M. Ahas, Z. X. Liu, H. K. Mao, and R. J. Hemley, Proc. Natl. Acad. Sci. U.S.A. 105, 20 (2008).
[4] M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, Science 319, 1506 (2008).
[5] J. Feng, W. Grochala, T. Jaroli, R. Hoffmann, A. Bergara, and N. W. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006).
[6] C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
[7] Y. Yao, J. S. Tse, Y. Ma and K. Tanaka, Europhys. Lett. 78, 37003 (2007).
[8] X. J. Chen, J. L. Wang, V. V. Struzhkin, H. K. Mao, and H. Q. Lin, arXiv:0803.2713.
[9] M. Martinez-Canales, A. Bergara, J. Feng, W. Grochala, Journal of Physics and Chemistry of Solids 67, 2005 (2006).
[10] Z. Li, W. Yu and C. Q. Jin, Solid state Commu. 143, 353 (2007).
[11] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
[12] QUANTUM-ESPRESSO is a community project for high-quality quantum-simulation software, based on density-functional theory, and coordinated by Paolo Giannozzi. See http://www.quantum-espresso.org and http://www.pwscf.org.
[13] P. B. Allen and R. C. Dynes, Phys. Rev. 12, 905 (1975).