Study of Cloud Computing Business Framework by Pre-cloud recognition

N Tiwari¹, N Sharma²
¹,²IIS (Deemed-to-be University), Jaipur, India.
¹Neha.08sep@gmail.com

Abstract: The current study strongly analyzes the factors that determine the acceptance of cloud companies (SASS model), and this strategy to do their job. The research model is designed to explore factors that affect the use of computers, including host technology (TAM) models and other external such as organizational size and technical complexity. Data compiled from 200 companies are used to test the ideas. The results of this study show what important factors need to be considered and how they relate to each other. They highlight the needs of companies, especially those related to cloud operations, for those who want to use a real digital governance model. These technologies and technology-related applications that use virtual technology and operate in a distributed network that is accessible to sites and social networking sites. Developed and upgraded to cloud computing systems, cloud grid and computers.

Keywords: Cloud Computing, TAM, SASS, Cloud.

1. Introduction

Here introduce the paper, and put a nomenclature if necessary, in a box with the same font size as the rest of the paper. The paragraphs continue from here and are only separated by headings, subheadings, images and formulae. The section headings are arranged by numbers, bold and 10 pt. Here follows further instructions for authors. There are three main types of cloud: Duration of service depending on data acquisition and storage; Cloud Speaker is a platform (PASS) as a tool to help engineers improve applications and resources. Common benefits of integration include: reducing software and computer services. Complex use of cloud-based solutions [2], market-based formulas [9]; The power to change business processes [1]; Its ability to provide better data management and a stronger connection between information systems and management needs [2] and allows resources to divert key business functions due to reduced costs and IT-related operational costs [3]

In addition, there are challenges and problems in controlling access to cloud computing, such as long-term security and protection against unauthorized access [10], ignorance of service providers' privacy, and misunderstandings between system providers and clouds, technical problems and financial difficulties in some companies may require appropriate technical solutions and investment in information technology for employees, especially in small and medium enterprises [11] and infrastructure security such as
performance and quality. Process Assessment Process [9], as well as surrounding problems at levels related to the problem of their integration and customization [10].

Figure 1: Service Categories of cloud

2. Literature Review

New species. Various technological advances can be found in the literature that provides an effective framework for determining critical or variable factors that contribute to the user's acceptance of ICD and its conduct in organization [12]. The same is true of Fishbein and Ajgen [13] Theory of Recent Action (DRA). This view, adopted in many fields, explains that the method by follows a given action is related to the purpose of adhering to the stated behavior. In addition, other people's opinions about certain technologies often influence a person's intentions to use the same. Ajgen later introduced The Planned Behave Theory, adding to TRA's confidence in the management and practice and control of behavior. In addition to the adoption of the cloud system and its use, there have been many recent studies in the field of information that use TAM to demonstrate the acceptance of various technology. Many of them can incorporate other external variables into the actual TAM which is considers to attract research. Therefore, courses are most commonly used in the ERP system with companies [14], e-commerce applications, digital file systems, online banking, public gambling, and research forums [16], in many fields. At present, the structure of the TOE (Technology-System-Innovation [17] indicates that the adoption of new technologies is influenced by three factors: the organizational environment.

TOE is one of the most widely distributed structures in the ICT adoption industry [18]. It provides a comprehensive view of the acceptance of technologies and their use and predicts the impact of price options and the subsequent increase in factors affecting business, the basic structure of the TOE is unclear and some of the errors found in these three conditions are different in different studies. In addition to the adoption of the cloud system and its use, there have been many recent studies in the field of information that use TAM to demonstrate the acceptance of various technology. Many of them can
incorporate other external variables into the actual TAM which is considers to attract research. Therefore, courses are most commonly used in the ERP system with companies [14], e-commerce applications, digital file systems, online banking, public gambling, and research forums [16], in many fields. At present, the structure of the TOE (Technology-System-Innovation [17] indicates that the adoption of new technologies is influenced by three factors: the organizational environment.

TOE is one of the most widely distributed structures in the ICT adoption industry [18]. It provides a comprehensive view of the acceptance of technologies and their use and predicts the impact of price options and the subsequent increase in factors affecting business, the basic structure of the TOE is unclear and some of the errors found in these three conditions are different in different studies.

Figure 2: Danger and suitability of the cloud

3. Pre-cloud recognition.

Other ideas based on ideas and models, which focus on a specific computer area, will consider the acceptance and application of the end user's opinion. This is the position of Bhattacharjee and Park [19], who study user authorization from computer-server computing models, and Keysman and Stanowska [20], who analyzed consumer preferences in a recent survey. Finally, a recent study by Kangwar Developed an integrated model, which incorporated various experimental features and was tested using samples from 200 companies in various field in India. They suggest the power of digital content

4. ID Infrastructure Library (ITIL) Version 3 Resource Framework

The framework of ITIL V3 sets out the best practices for the management of IT services. It provides an IT management framework and focuses on improving the quality of continuous services provided [21].

- Strategic Action Plan - Provides guidance on how to design, improve and implements services
management.

- Design - This is about developing and improving information technology services.
- Transformational Transformation - This process focuses on the provision of information technology service.
- Operation Service Function - This ensures that IT services are delivered efficiently and effectively.
- Sustainable Service Development - This process focuses on improved the quality of existing service.

![Types of Cloud Deployment](image1)

**Figure 3**: Various types of Cloud Deployments

![Application of SAAS in Virtual Storage](image2)

**Figure 4**: Application of SAAS in Virtual Storage
5. High relationships B/W business models & services

Projects is a widely used sector framework, which includes project management, management and planning, especially in IT-based projects. (Government Business Office, 2009) describes the project co-ordination process [22], project design and management, and what needs to be done to implement the project. Divided into manageable categories, PRINCE2 enables better resource management. This applies to Cloud Computing, because resource management is not only about Service Quality & Service Level Agreement, but also need to be considered strategically considered [23].

In addition, many projects have helped boost the economy for decades. Most of those startups were financial providers, which helped them grow and grow their businesses [24]. There were various SMEs such as HP and Cisco, which closed other businesses and expanded to include global companies with appropriate investment, integration and acquisition and integration and integration and integration and integration of their products and services. According to Lasonic, there are four types of businesses identified [25]:

(i) public funds;
(ii) Venture Capital;
(iii) Funding agreements and lease agreements with businesses there are researchers who support Lasonic points. Maintain their businesses.

Third, EDRO (2009) evaluates EU SME-computing and SMEs based on models of sponsorship agreements and service contracts. Finally, Weininhard et al. (2009a; 2009b) proposed a well-defined business model and aligned with the "All in One Enterprises" model.open source business models and multiple case studies [26]. They have a model of similar support agreements, such as "support agreements and services" in the Lasonic definition. They also have a model that acts as a “stand alone and is used” by vendors, users, partners, vendors and participants to share and reap similar benefits on the same platform [27]. This allows the public sector to integrate and provide a platform for sharing resources [28].

Figure 5: Overview of computing area linking both computing and business Area
5.1 Clouds for business content clouds

Apart from SLA-based research, few structures or models can show the relationship between multiple manufacturers and operators [29]. Second, there is no direct way to analyze the performance of cloud trading outside the stock market. Stock market disruption is to problems of accuracy and. There are researchers who focus on differences in the business model and the reasons why the cloud business is successful (Chow, 2009; Weinhard et al., 2009a; 2009b). But this part of the business model requires additional financial charges and additional data performance to ensure durability [30].

6. Relationships within services

Trung and Duster (2010) confirmed this, showing that they can perform continuous and completed tasks such as classification, modeling and simultaneous testing. This means that the function of each research question is considered an integral part of the structure [31] Consistent with Weinhardt. Integration of business content Chang et al. (2011a) and research issues related to planning, organizational sustainability, performance management and communication. Each site is compatible with all IaaS, PaaS and all. Each key category is defined as follows [32].

7. Communication. Communication between various services and business and services

This requires employees with a background of business analysts to better understand the issues and understand the best way to communicate. In addition, there are differences between PPL and PPMN because each was intended for different purposes have strong features and conditions, and conditions, should be accessible to any type of cloud business or other cloud technology [33]. This applies to any type of project, as well as any terms, conditions, resources and submissions. Before choosing the best option, there are many tips and tricks to learn. Etro (2009) got off to a good start because user needs and problems can help determine which strategies to use [36]. A similar approach was adopted by Clems, Nimis and Sai (2008), who explain the importance of the business of the cloud and what communication requires. In all of this, Table 3 shows a list of tested methods [37].

8. Conclusion

This document describes the progress leading to the CCPF, as well as the use of cloud computing as a framework for effective work across all organizations [39]. It includes explains the various components with the CCPF works. These 4 framework show that the model is strategic and operates at the highest level of cloud performance for a top-down approach to defining needs and present a technical guide [40]. Content is influence by the business model and focuses on service delivery where revenue / profit is paramount to businesses.

References

[1] R. Rezaei, T. K. Chiew, S. P. Lee, no-Z. Shams Aliee, “A semantic integration framework for software as service programs in cloud computing environments,” Expert Systems with Applications, vol. 41, no. 13, pages 5751-5770, 2014.
[2] W. L. Shiau and P. P. Y. K. Chau, "Understanding the Behavioral Purpose of the Computer Computer Class:A Comprehensive Comparison Method," Information Management, vol. 53, pages 355-365, 2016.
[3] T. Dillon, C. Wu, noE. Chang, “Cloud computing: issues and challenges,” in Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications (AINA '10), pages 27 –33, Perth, Australia, April 2010.
[4] M. Fan, S. Kumar, and A. B. Whinston, “Short-term and long-term competition between mobile software providers and software as a service,” European Journal of Operational Research, vol. 196, no. 2, pages 661-671, 2009.
[5] N. A. Sultan, “Access to the cloud: How to manage SMEs,” International Journal of Information Management, vol. 31, no. 3, pages 272-278, 2011.
[6] M. Armbrust, A. Fox, R. Griffith et al., "The concept of cloud computing," Communications of the ACM, vol. 53, no. 4, pages 50-58, 2010.
[7] S. U. R. Malik, S. U. Khan, S. J. Ewen et al., "Performance analysis of deep cloud systems based on data management and replication: research," Distributed and Parallel Databases, vol. 34, no. 2, pages 179–215, 2016.
[8] S. Haag no-A. Eckhardt, “The adoption of the corporate cloud service: scientific analysis of literature and content,” Journal of Business Economics, vol. 84, no. 3, pages 407-440, 2014.
[9] A. Benlian, M. Koufaris, and T. Hess, "The quality of service in software-as-a-service: Improving the SaaS-Qual standard and evaluating its role in continuous use," Journal of Management Information Systems, vol. 28, no. 3, pages 85-126, 2011.
[10] R. Buyya, CS Yeoh, S. Venugopal, J. Broberg, et al. Brandic, "Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility," Future Generation Computer Systems, vol. 25, no. 6, pages 599-616, 2009.
[11] T. Oliveira, M. Thomas, and M. Espadanal, "Exploring the frameworks for cloud computing: analysis of manufacturing and service sectors," Information and Management, vol. 51, no. 5, pages 497-510, 2014.
[12] V. Ratten, "The purpose of using cloud computing is continued: Innovativeness and creative Perspectives," Journal of Business Research, vol. 69, no. 5, pages 1737-1740, 2016.
[13] UG. Garrison, S. Kim, noR. L. Wakefield, "Successful aspects of using cloud computing," Communications of the ACM, vol. 55, no. 9, pages 62-68, 2012.
[14] A. Duncan, S. Creese, and M. Goldsmith, "View all about internal computer attacks," Concurrency Computation, vol. 27, no. 12, pages 2964–2981, 2015.
[15] M. Ali, S. U. Khan, and A. V. Vasilakos, "Security in cloud computing: opportunities and challenges," Information Sciences. International Journal, vol. 305, pages 357-383, 2015.
[16] J. M. Del Alamo, R. Trapero, Y. S. Martin, J. C. Yelmo, N. Suri, "Exploring the privacy capabilities of cloud service providers," IEEE Latin America Transactions, vol. 13, no. 11, pages 3634-3641, 2015.
[17] UC. W. Autry, S. J. Grawe, P. J. Daugherty, noR. G. Richey, "The effects of the technological crisis and scope on the adoption and adoption of commercial technology," Journal of Operations Management, vol. 28, no. 6, pages 522-536, 2010.
[18] N. Phaphoom, X. Wang, S. Samuel, S. Helmer, and P. Abrahamsson, "Studies conducted on major technological barriers affecting the decision to adopt cloud services," General of Systems and Software, vol. 103, pages 167-181, 2015.
[19] A. Abdollahzadehgan, M. M. Gohary, A. R. C. Hussin, and M. Amini, “Organizational Criteria for Using Cloud Computing in SMEs," Journal of Information Systems Research and Innovation, vol. 4, no. 1, pages 67-74, 2013.
[20] T. Brandt, Y. Tian, M. Hedwig, noD. Neumann, “Autonomic management of Software as a Service systems with multiple quality service classes,” at Proceedings of the 20 European Conference on Information Systems, (ECIS’12), Barcelona, Spain, June 2012.
[21] J. Li, B. Li, T. Wo et al., "CyberGuarder: a framework for ensuring the security of green cloud computing," Future Generation Computer Systems, vol. 28, no. 2, pages 379-390, 2012.
[22] J. Spillner, G. Bombach, S. Matthischke, J. Mu¨ller, R. Tzschichholz, and A. Schill, 4th IEEE / ACM International Conference on Cloud and Utility Computing, (UCC’11), pages 1–8, Melbourne, Australia, December 2011.
[23] Q.-A. Wang, C. Wang, K. Ren, W.-J. Lou, J. Li, “Enables public auditing and computer data security capabilities,” Transaction IEEE on Parallel and Distributed Systems, vol. 22, no. 5, pages 847-859, 2011.
[24] C. Wang, S. S. Chow, Q. Wang, K. Ren, noW. Lou, "Privacy- which maintains public testing of secure cloud storage," developed by IEEE on Computers, vol. 62, no. 2, pages 362-375, 2013.
[25] UQ. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enables public auditing and data security storage for cloud computing," Transaction IEEE on Parallel and Distributed Systems, vol. 22, no. 5, pages 847-859, 2011.
[26] G. Chen, Y. Wu, J. Liu, G. Yang, and W. Zheng, "Optimization of sub-query processing in distribution data data systems," Journal of Network and Computer Applications, vol. 34, no. 4, pages 1035-102, 2011.
[27] R. L. Grossman, Y. Gu, M. Sabala, noW. Zhang, "Compute and storage clouds using wide wide area performance," Future Generation Computer Systems, ivol. 25, no. 2, pages 179-183, 2009.
[28] J. M. Abu Sharkh, A. Kanso, A. Shami, noP. O’hle’n, "Building a Cloud in the World: A Study of Cloud Simulators in a Computing Data Center," Computer Networks, vol. 108, pages 78-96, 2016.
[29] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, noD. Epema, “The performance analysis of cloud computing services for multiple computer applications,” IEEE Transaction on Parallel and Systems, vol. 22, no. 6, pages 931-945, 2011.
[30] A. Lin and N.-C. Chen, "Cloud computing as an innovation: Perception, attitude, and adoption," International Journal of Information Management, ivol. 32, no. 6, pages 533-540, 2012.
[31] G. Feuerlicht and S. Govardhan, “Impact of cloud computing: beyond a technology trend,” in Proceedings of The International Conference on Systems Integration, Oeconomica, vol. 1, page. 8, Prague, Czech Republic, 2010.
[32] G. Feuerlicht, L. Burkon, and M. Sebesta, "Cloud computing adoption: what are the issues?" System Integration, vol. 18, no. 2, pages 187-192, 2011.
[33] P. Ge’czy, N. Izumi, and H. Ko’iiti, “Cloudsourcing: cloud hosting management,” Global Journal of Business Research, vol. 6, no. 2, pages 57-70, 2012.
[34] T. Ackermann, A. Benlian, T. Widjaja, and P. Buxmann, "It has been found that IT security threats use cloud computing: thinking and scale development," in Proceedings of the International Conference on Information Systems , (ICIS '12), pages 3468-3487, Orlando, Fla, USA, December 2012.
[35] A. Benlian and T. Hess, "Software-as-a-Service Opportunities and Dangers: Findings in IT Management Research," Decision Support Systems, vol. 52, no. 1, pages 232-246, 2011.
[36] B. Martens and F. Teuteberg, “Risk and control of cloud computing services: the design of a reference model,” in Proceedings of the 17th Americas Conference on Information Systems 2011, (AMCIS'11), pages 2041-2050, Detroit, Mich, USA, August 2011.
[36] D. Yuan, Y. Yang, X. Liu, J. Chen, "The estimated low cost of stock in the middle of a cloud workflow system," Journal of Parallel and Distributed Computing, vol. 71, no. 2, pages 316-332, 2011.
[37] W. Pauley, “transparency transparency: Monitoring intensive,” IEEE Security and Privacy, ivol. 8, no. 6, pages 32-39, 2010.
[38] Y.-M. Wang, Y.-S. Wang, and Y.-F. Yang, "Understanding RFID Acquisition Decisions in the Manufacturing Industry," Technology Forecasting and Social Change, vol. 77, no. 5, pages 803-815, 2010.
[39] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Crăpku, “Home is safer than the cloud! The privacy concerns of consumer cloud storage,” in Proceedings of the 7th Symposium on Usable Privacy and Security, (SOUPS’11), Pittsburgh, Pa, USA, July 2011.
[40] S. Pearson, “Toward accountability in the cloud,” IEEE Internet Computing, p. 15, no. 4, pages 64-69, 2011.