Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates

Jesse Bruijnesteijn¹ · Natasja G. de Groot¹ · Nel Otting¹ · Giuseppe Maccari²,³ · Lisbeth A. Guethlein⁴ · James Robinson³,⁵ · Steven G. E. Marsh³,⁵ · Lutz Walter⁶ · David H. O’Connor⁷ · John A. Hammond⁷ · Peter Parham⁴ · Ronald E. Bontrop¹,⁸

Received: 4 October 2019 / Accepted: 4 October 2019 / Published online: 29 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The Killer-cell Immunoglobulin-like Receptors (KIR) are encoded by a diverse group of genes, which are characterized by allelic polymorphism, gene duplications, and recombinations, which may generate recombinant entities. The number of reported macaque KIR sequences is steadily increasing, and these data illustrate a gene system that may match or exceed the complexity of the human KIR cluster. This report lists the names of quality controlled and annotated KIR genes/alleles with all the relevant references for two different macaque species: rhesus and cynomolgus macaques. Numerous recombinant KIR genes in these species necessitate a revision of some of the earlier-published nomenclature guidelines. In addition, this report summarizes the latest information on the Immuno Polymorphism Database (IPD)-NHKIR Database, which contains annotated KIR sequences from four non-human primate species.

Keywords Killer-cell immunoglobulin-like receptors · Nomenclature · Macaque species · Rhesus · Cynomolgus · Recombinants

Introduction
Over the last two decades, the number of human Killer-cell Immunoglobulin-like Receptor (KIR) sequences and haplotypes has increased substantially. These data shed light on a plastic gene cluster of higher primates that is characterized by allelic polymorphism and variable gene content, and that involves complex recombinations and high levels of alternative splicing (Trowsdale et al. 2001; Hsu et al. 2002; Parham 2004; Hammond et al. 2016; Bruijnesteijn et al. 2018a, b; Bruijnesteijn et al. 2018a, b). The system of nomenclature for human KIR genes (Marsh et al. 2003) accounts for the number of domains (2D or 3D), as well as for the activating (S) or inhibitory (L) signalling potential of the intracellular
Following the D, whereas "KIR" genes are differentiated by numbers. For example, KIR3DL1*001 defines the first allele of a gene encoding a receptor that has three extracellular domains and a long cytoplasmic tail. For non-human primate species (NHP) such as macaques, chimpanzees, and orangutans, the human KIR nomenclature rules have been applied, and when these have not been sufficient, species-specific adaptations have been added to the guidelines for the nomenclature (Robinson et al. 2018).

Among the human KIR characterized, only a few intragenic recombinations have been reported (Roe et al. 2017; Bruijnesteijn et al. 2018a, b), although the number of such recombinant KIR could be underestimated, because family studies have not been a focus of the work, and might be missed by studies that mainly involved unrelated individuals. A recent study of the KIR gene transcriptome in families of rhesus (Macaca mulatta, Mamu) and cynomolgus (Macaca fascicularis, Mafa) macaques has identified numerous intragenic recombinant KIR (Bruijnesteijn et al., unpublished data). In this report on KIR nomenclature, we build on the previously reported human and NHP guidelines (Robinson et al. 2018) to focus on macaques, because in these species the number of genes/alleles reported has significantly increased.

General nomenclature guidelines for macaque KIR genes

The naming of macaque KIR genes follows the general principles that have been previously described (Marsh et al. 2003; Robinson et al. 2018). In brief, the first digit following the KIR abbreviation gives the number of immunoglobulin-like domains (denoted as “D”). In macaques, genes that encode KIR1D, KIR2D, and KIR3D structures are found (Hershberger et al. 2001). Either a long or short cytoplasmic tail, which are characteristic of inhibitory and activating receptors, respectively, is specified with an “L” or an “S” following the D, whereas “P” denotes a pseudogene. Genes considered to be novel but that lack sufficient confirmation—at the genomic DNA level—to define a gene or lineage, are denoted by a “W” for “Workshop”, which follows the designation of the cytoplasmic tail. Different KIR genes are distinguished by sequential two-digit numbering. Non-synonymous KIR alleles are distinguished by three-digit numbers that are separated from the gene digits by an asterisk. Synonymous polymorphisms in the coding sequence of a KIR gene are distinguished by a second set of two digits, which is separated from the non-synonymous three-digit number by a colon (e.g., Mamu-KIR3DL01*012:02). A third set of digits, separated from the synonymous two-digit number by a colon, define substitutions in the introns. Optional suffixes indicating the expression status of alleles can be provided, and these include indicators of no expression, referred to as “Null” alleles (“N”), low cell surface expression (“L”), soluble and secreted gene products (“S”), and cytoplasmic expression (“C”). The “A” suffix is used when there is doubt as to whether a protein is expressed, whereas “Q” indicates alleles for which the expression is “Questionable” based on the study of previously reported mutations that do affect the level of expression.

KIR genes in the various species of macaque

More than 20 species of macaque have been distinguished (Anandam et al. 2013). At present, characterization of the KIR genes has concentrated on rhesus and cynomolgus macaques (Khakoo et al. 2000; Grendell et al. 2001; Hershberger et al. 2001; Rajalingam et al. 2001; Guethlein et al. 2002; Andersen et al. 2004; Sambrook et al. 2005; Guethlein et al. 2007; Bimber et al. 2008; Blokhuis et al. 2009a, b; Blokhuis et al. 2009a, b; Bostik et al. 2009; Abi-Rached et al. 2010; Blokhuis et al. 2010; Chaichompoo et al. 2010; Kruse et al. 2010; Colantonio et al. 2011; Hellmann et al. 2011; Moreland et al. 2011; Bimber and Evans 2015; Prall et al. 2017). Up to now, knowledge regarding the organization of KIR genes in macaque is sparse, with only two genomic assemblies of the macaque KIR region available (Sambrook et al. 2005; Graves 2019). Consequently, KIR genes that are highly similar based on phylogenetic clustering and sequence homology are considered to define a single gene or locus that is common to both species of macaque, and are therefore designated as orthologs and given matching gene names: for example, Mamu-KIR3DL01 and Mafa-KIR3DL01. In contrast, species-specific KIR genes are given different numbers in the order in which they are distinguished. To give an example, KIR3DLW13 has only been detected in cynomolgus macaques (Mafa-KIR3DLW13). At the allele level, sequences are numbered in sequence according to the order in which they were defined. This procedure was applied independently to the different macaque species, without taking shared KIR alleles into account. In total, 58 and 59 rhesus and cynomolgus macaque KIR genes have been defined, and these represent 576 and 334 KIR alleles, respectively (Tables 1 and 2).

These guidelines for naming KIR sequences will be applied to other macaque species, but will be distinguished by the use of species-specific prefixes (Table 3).

Nomenclature for recombinant macaque KIR genes

Study of rhesus and cynomolgus macaque KIR from different geographical origins has identified many recombinant KIR that are composed of segments derived from two or more different KIR genes, which were confirmed by independent PCRs or segregation analysis. According to the previous
Table 1 List of rhesus macaque KIR genes, their previous names, and the number of reported alleles per gene

KIR gene	Previous designations	Number of reported alleles
Mamu-KIR1D	KIR1D	12
Mamu-KIR2DL04	2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4	49
Mamu-KIR3DL20	KIR3DL20, KIR3DL20_variant_2, KIR3DL06, KIR2DL5	64
Mamu-KIR3DL01	2DL426NK, 3DL4, KIR3DL, KIR3DL-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	63
Mamu-KIR3DL02	KIR3DL-like_3, KIR3DL2, KIR3DL21, KIR3DL21-like1	16
Mamu-KIR3DL03	KIR3DL-4, KIR3DL-5, KIR3DL-like1-BNB, KIR3DL21	15
Mamu-KIR3DL04	KIR3DL11	4
Mamu-KIR3DL05	3DL7b-3DL40, KIR3DL, KIR3DL-3, KIR3DL16, KIR3DL7, KIR3DL7-like2, KIR3DL07	33
Mamu-KIR3DL06	KIR3DL6	8
Mamu-KIR3DL07	2DL420, KIR3DL, KIR3DL18, KIR3DL7, KIR3DL7-like1, KIR3DL7-like3, KIR3DL03	67
Mamu-KIR3DL08	KIR3DL, KIR3DL-like_2, KIR3DL17, KIR3DL8, KIR3DL8, Mamu-KIR3DL04, Mamu-KIR3DL4	27
Mamu-KIR3DL10	3DL10-2DL501, 3DL3NK, KIR3DL, KIR3DL10, KIR3DL9, Mamu-KIR3DL05	6
Mamu-KIR3DL11	KIR3DL, KIR3DL-1, KIR3DL-6, KIR3DL-7, KIR3DL11	19
Mamu-KIR3DL12	Newly identified in Chinese rhesus macaques	2
Mamu-KIR3DL14	Newly identified in Indian and Chinese rhesus macaques	3
Mamu-KIR3DL17	Newly identified in Burmese and Chinese rhesus macaques	3
Mamu-KIR3DL18	Newly identified in Burmese rhesus macaques	2
Mamu-KIR3DL25	Newly identified in Burmese rhesus macaques	1
Mamu-KIR3DL31	Renamed Mamu-KIR3DL02 fusion alleles	4
Mamu-KIR3DL32	Renamed Mamu-KIR3DL02 fusion alleles, Mamu-KIR3DL10A/3DL02	2
Mamu-KIR3DL33	Renamed Mamu-KIR3DL02 fusion allele, Mamu-KIR3DL10B/3DL02	1
Mamu-KIR3DL34	Renamed Mamu-KIR3DL03 fusion alleles	9
Mamu-KIR3DL35	Renamed Mamu-KIR3DL03 fusion allele	1
Mamu-KIR3DL36	Renamed Mamu-KIR3DL05 fusion alleles	3
Mamu-KIR3DL37	Renamed Mamu-KIR3DL05 alleles	2
Mamu-KIR3DL38	Renamed Mamu-KIR3DL07 fusion allele	1
Mamu-KIR3DL39	Renamed Mamu-KIR3DL07 fusion allele	1
Mamu-KIR3DL40	Renamed Mamu-KIR3DL07 fusion allele	1
Mamu-KIR3DL41	Renamed Mamu-KIR3DL07 fusion allele	1
Mamu-KIR3DL42	Renamed Mamu-KIR3DL07 fusion allele	1
Mamu-KIR3DL43	Renamed Mamu-KIR3DL08 fusion alleles	3
Mamu-KIR3DL44	Renamed Mamu-KIR3DL08 fusion allele	1
Mamu-KIR3DL45	Renamed Mamu-KIR3DL10 fusion alleles	7
Mamu-KIR3DL46	Renamed Mamu-KIR3DS04 fusion allele	1
Mamu-KIR3DS01	KIR3DH-7, KIR3DH1, KIR3DH5, Mamu-KIR3DS01-JHB-HEFGH	10
Mamu-KIR3DS02	3DH2, 3DH42, KIR3DH-like_5, KIR3DH-like_6, KIR3DH10, KIR3DH12, KIR3DH13, KIR3DH14, KIR3DH15, KIR3DH16, KIR3DH2	32
Mamu-KIR3DS03	KIR3DH3, KIR3DH8, KIR3DH9	6
Mamu-KIR3DS04	KIR3DH-1, KIR3DH4, KIR3DH6	11
Mamu-KIR3DS05	KIR3DH1, KIR3DM-1, KIR3DM1, KIR3DM6, KIR Partial_Sequence_1	10
Mamu-KIR3DS06	KIR3DH-4, KIR3DH-like8, KIR3DH-like_7, KIR3DH18	22
Mamu-KIR3DS07	KIR3DH-5, KIR3DH7, Mamu-KIR3DS07-JHB-HO	5
Mamu-KIR3DS08	KIR3DH-2, KIR3DH-3, KIR3DH-4, KIR3DH-5, KIR3DH-like_1, KIR3DH-like_2, KIR3DH-like_3, KIR3DH-like_4, KIR3DH21	7
Mamu-KIR3DS09	KIR3DH-8, KIR3DH20, KIR3DH5, KIR3DH5-like1, mmKIR3DH1	8
Mamu-KIR3DS10	Newly identified in Burmese rhesus macaques	1
Mamu-KIR3DS16	Newly identified in Burmese rhesus macaques	1
nomenclature guidelines (Robinson et al. 2018), the recombinant rhesus macaque KIR were named after alleles of the gene that contributed the longest gene segment. From experience we have learned that this criterion can result in confusing allele names. For example, *Mamu-KIR3DS04* *011* (acc. nr. LR694568) comprises the first 5 exons of *Mamu-KIR3DS04*, joined to exons encoding the transmembrane region and cytoplasmic tail that are similar to those of *Mamu-KIR3DL07*. Because the activating gene parent makes the larger contribution, this recombinant was originally named as an allele of *Mamu-KIR3DS04*, although the cytoplasmic tail derived from *Mamu-KIR3DL07* predicts that the receptor has an inhibitory signalling function. To prevent confusion, such hybrid KIR genes have been renamed, and are indicated by the workshop status (Table 4). In the future, newly discovered recombinant sequences will be assigned sequential gene (workshop) numbers. Previous designations of renamed alleles and genes will be retained and marked as deleted.

An exception is made for recombinant KIR genes in the centromeric region and that involve the macaque framework gene *KIR3DL20*. The physical location of these recombinant genes has been established (Sambrook et al. 2005), which contrasts with those of the recombinant lineage II KIR genes. Recombinant sequences derived from the centromeric region are still assigned as *KIR3DL20* alleles, but are shown to be “Recombinant” with a novel suffix “R” subsequent to the allele designation. For example, *Mamu-KIR3DL20* *030R* (acc. nr. LR694489) and *Mamu-KIR3DL20* *044R* (acc. nr. LR694507) are recombinants that consist of the first seven exons of *Mamu-KIR3DL20*, and of the intracellular domains of *Mamu-KIR2DL04* and *Mamu-KIR1D*, respectively.

Most recombinant KIR genes of cynomolgus macaques have been assigned novel workshop numbers (Bruijnesteijn et al., unpublished data). Three additional KIR sequence groups have been renamed based on their recombinant nature (Table 5).

Renaming other macaque KIR genes

Several rhesus and cynomolgus macaque KIR sequences that were not obvious recombinants have been renamed based on sequence comparison and phylogenetic analysis (Tables 4 and 5). For example, 13 *Mamu-KIR3DSW08* alleles are readily distinguished from the other KIR3DSW08 alleles, and have been renamed as alleles of *Mamu-KIR3DSW39* (Table 4).

We should stress that *Mamu-KIR3DL07* and *Mamu-KIR3DL11* alleles group phylogenetically into three and two clusters, respectively, and that some KIR haplotypes contain several copies of these genes (Blokhuys et al. 2010; Bruijnesteijn et al. 2018a, b). Although an argument can be made for giving these paralogous genes unique gene names, sequence comparison has yet to indicate distinctive functions, and for this reason these genes have not been renamed.

The IPD-NHKIR Database

Knowledge regarding the KIR repertoire in various NHP species has increased steadily over the past decade, escalating the need

KIR gene	Previous designations	Number of reported alleles
Mamu-KIR3DSW18	Newly identified in Burmese rhesus macaques	1
Mamu-KIR3DSW20	Newly identified in Burmese rhesus macaques	1
Mamu-KIR3DSW21	Newly identified in Burmese and Chinese rhesus macaques	4
Mamu-KIR3DSW32	Newly identified in Chinese rhesus macaques	1
Mamu-KIR3DSW34	Newly identified in Burmese rhesus macaques	1
Mamu-KIR3DSW35	Renamed *Mamu-KIR3DS02* fusion alleles	2
Mamu-KIR3DSW36	Renamed *Mamu-KIR3DS04* allele	1
Mamu-KIR3DSW37	Renamed *Mamu-KIR3DS04* allele	1
Mamu-KIR3DSW38	Renamed *Mamu-KIR3DS06* fusion allele	1
Mamu-KIR3DSW39	Renamed *Mamu-KIR3DSW08* alleles	13
Mamu-KIR3DSW40	Renamed *Mamu-KIR3DSW09* fusion allele	1
Mamu-KIR3DSW41	Renamed *Mamu-KIR3DSW09* fusion alleles	2
Mamu-KIRDX1	*KIR3DL0*	1
Total		576
Table 2 List of cynomolgus macaque KIR genes, their previous names, and the number of reported alleles per gene

KIR gene	Previous designations	Number of reported alleles
Mafa-KIR1D	KIR1D	35
Mafa-KIR2DL04	KIR2DL04	41
Mafa-KIR3DL20	—	36
Mafa-KIR3DL01	KIR3DL1	17
Mafa-KIR3DLW03	—	4
Mafa-KIR3DL05	—	5
Mafa-KIR3DL06	—	1
Mafa-KIR3DL07	—	21
Mafa-KIR3DL11	—	18
Mafa-KIR3DLW12	Alleles of Mafa-KIR3DL2, Mafa-KIR2DL02	15
Mafa-KIR3DLW13	Alleles of Mafa-KIR3DL11 Alleles of Mafa-KIR3DL11	10
Mafa-KIR3DLW14	Alleles of Mafa-KIR3DL11	8
Mafa-KIR3DLW15	Alleles of Mafa-KIR3DL07	4
Mafa-KIR3DLW16	Alleles of Mafa-KIR3DL07	4
Mafa-KIR3DLW17	—	3
Mafa-KIR3DLW18	—	1
Mafa-KIR3DLW19	Alleles of Mafa-KIR3DL21 (EU419080.11)	2
Mafa-KIR3DLW21	—	1
Mafa-KIR3DLW22	—	1
Mafa-KIR3DLW23	—	1
Mafa-KIR3DLW24	Alleles of Mafa-KIR3DL21 (EU419100.1)	1
Mafa-KIR3DLW25	Alleles of Mafa-KIR3DL2	4
Mafa-KIR3DLW26	Alleles of Mafa-KIR3DL02	1
Mafa-KIR3DLW27	—	1
Mafa-KIR3DLW28	Mafa-KIR3DL07a	1
Mafa-KIR3DL29	—	1
Mafa-KIR3DL30	—	1
Mafa-KIR3DLW47	Mafa-KIR3DL05*001	1
Mafa-KIR3DLW48	Alleles of Mafa-KIR3DL05	2
Mafa-KIR3DS02	—	2
Mafa-KIR3DS04	—	1
Mafa-KIR3DS06	—	3
Mafa-KIR3DSW07	—	3
Mafa-KIR3DSW08	—	3
Mafa-KIR3DSW09	Mafa-KIR3DSW11*004	1
Mafa-KIR3DSW10	Alleles of Mafa-KIR3DS	5
Mafa-KIR3DSW11	—	5
Mafa-KIR3DSW12	Alleles of Mafa-KIR3DS	11
Mafa-KIR3DSW13	Alleles of Mafa-KIR3DS	2
Mafa-KIR3DSW14	—	2
Mafa-KIR3DSW15	—	9
Mafa-KIR3DSW16	—	3
Mafa-KIR3DSW17	Alleles of Mafa-KIR3DS, Mafa-KIR3DH	4
Mafa-KIR3DSW18	—	2
Mafa-KIR3DSW19	—	2
Mafa-KIR3DSW20	Alleles of Mafa-KIR3DS	4
Mafa-KIR3DSW21	Alleles of Mafa-KIR3DS	7
Mafa-KIR3DSW22	Mafa-KIR3DL07b	3
Mafa-KIR3DSW23	—	1
for a centralized database with annotated sequences and a standard nomenclature. In July 2018, the IPD-NHKIR Database (https://www.ebi.ac.uk/ipd/nhkir/) was launched, and is now part of the Immuno Polymorphism Database (IPD) platform (https://www.ebi.ac.uk/ipd/) (Maccari et al. 2017). The database provides a centralized repository for non-human KIR (NHKIR) sequences, and currently archives data for four different NHP species as well as for cattle. The NHP species represented in the database are chimpanzee (Pan troglodytes, Patr), Sumatran orangutan (Pongo abelii, Poab), Bornean orangutan (Pongo pygmaeus, Popy), and rhesus monkey (Macaca mulatta, Mamu). For these four species, 266 annotated alleles representing various KIR genes are archived (Table 6), and comprise data submitted or published by several different research groups (Khakoo et al. 2000; Grendell et al. 2001; Hershberger et al. 2001; Rajalingam et al. 2001; Guethlein et al. 2002; Andersen et al. 2004; Sambrook et al. 2005; Guethlein et al. 2007; Blokhuis et al. 2009a, b; Bostik et al. 2009; Abi-Rached et al. 2010; Blokhuis et al. 2010; Chaichompoo et al. 2010; Kruse et al. 2010; Colantonio et al. 2011; Hellmann et al. 2011; Moreland et al. 2011). The KIR genes identified in cynomolgus macaques (Bimber et al. 2008; Prall et al. 2017) (Bruijnesteijn et al., unpublished data) have now been named, meaning that the KIR data from a fifth non-human primate species should soon be available. The current version of the IPD-NHKIR Database can host genomic sequences, and contains a multiple sequence alignment tool (Maccari et al. 2017). This tool allows for single gene alignments (nucleotide or protein) as well as inter- and intra-species gene alignments from all groups within the IPD-NHKIR Database. For each allele, a nomenclature table is accessible with additional information (for example: previous designations, GenBank/ENA/DDBJ accession number, and publications).

The curators of the IPD-NHKIR Database are responsible for assembling, categorizing, and providing official designations for newly identified alleles. For the NHP part of the IPD-NHKIR Database, the research group of Prof. Dr. R.E. Bontrop (Rijswijk, The Netherlands) is responsible for curation of the KIR sequences of macaque species, and for these species currently only full-length sequences are accepted for annotation, whereas curation for all other non-human primate species is the responsibility of Dr. L. A. Guethlein and Prof. Dr. P. Parham (Stanford, USA). Sequences/alleles can be submitted using the online submission tool, which is available from the IPD-NHKIR Database homepage (https://www.ebi.ac.uk/ipd/nhkir/). Submitted sequences must meet the criteria described above and have a GenBank/ENA/DDBJ accession number. In addition to newly identified KIR sequences, we urge and encourage all scientists working in the field of non-human primate KIR to submit all the sequences determined in their cohorts that are identical to published KIR alleles. This latter approach will provide an additional and valuable quality control tool for the database of archived KIR sequences. Although at present, only one KIR sequence at a time can be submitted, we are currently developing a bulk submission tool. The IPD-NHKIR Database provides a data release twice a year, which updates the website with all novel NHP KIR sequences that have become public, and relates them to the previously deposited sequences.

Table 3 Official names of macaque species. The abbreviation of the scientific name is used as suffix for the KIR designation

Species name	Scientific name	KIR designation
Stump-tailed macaque	Macaca arctoides	Maar
Crab-eating macaque*	Macaca fascicularis	Mafa
Japanese macaque	Macaca fuscata	Mafu
Rhesus macaque	Macaca mulatta	Mumu
Southern pig-tailed macaque	Macaca nemestrina	Mane
Lion-tailed macaque	Macaca silenus	Masi
Milne-Edwards’s macaque	Macaca thibetana	Math

*Other common names of this species are long-tailed and cynomolgus macaque
Previous designation	New designation	Recombination segments					
Gene	Allele	Gene	Allele	Segment 1	Segment 2	Accession number	Reference
Mamu-KIR3DL02	Mamu-KIR3DL02*005	Mamu-KIR3DLW31	Mamu-KIR3DLW31*001	Mamu-KIR3DL02	Mamu-KIR3DL02	EU419054	Moreland et al., BMC Genomics 2001
Mamu-KIR3DL02	Mamu-KIR3DL02*006	Mamu-KIR3DLW31	Mamu-KIR3DLW31*002	Mamu-KIR3DL02	Mamu-KIR3DL02	EU688989	Moreland et al., BMC Genomics 2001
Mamu-KIR3DL02	Mamu-KIR3DL02*010	Mamu-KIR3DLW31	Mamu-KIR3DLW31*003	Mamu-KIR3DL02	Mamu-KIR3DL02	LS997661	D. O’Connor 24-10-2017
Mamu-KIR3DL02	Mamu-KIR3DL02*011	Mamu-KIR3DLW31	Mamu-KIR3DLW31*004	Mamu-KIR3DL02	Mamu-KIR3DL02	LS997662	D. O’Connor 24-10-2017
Mamu-KIR3DL02	Mamu-KIR3DL02*016	Mamu-KIR3DLW32	Mamu-KIR3DLW32*001	Mamu-KIR3DL10	Mamu-KIR3DL02	LR94230	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL10A/3DL02	Mamu-KIR3DLW32	Mamu-KIR3DLW32*002	Mamu-KIR3DL10	Mamu-KIR3DL02	LT907840	Bruijnesteijn et al., Journal of Immunology 2018	
Mamu-KIR3DL10B/3DL02	Mamu-KIR3DLW33	Mamu-KIR3DLW33*001	Mamu-KIR3DL05	Mamu-KIR3DL02	LT907841	Bruijnesteijn et al., Journal of Immunology 2018	
Mamu-KIR3DLW03	Mamu-KIR3DLW03*001	Mamu-KIR3DLW34	Mamu-KIR3DLW34*001	Mamu-KIR3DLW03	Mamu-KIR3DLW03	EU419051	Moreland et al., BMC Genomics 2001
Mamu-KIR3DLW03	Mamu-KIR3DLW03*003	Mamu-KIR3DLW34	Mamu-KIR3DLW34*002	Mamu-KIR3DLW03	Mamu-KIR3DLW03	EU419031	Moreland et al., BMC Genomics 2001
Mamu-KIR3DLW03	Mamu-KIR3DLW03*004	Mamu-KIR3DLW34	Mamu-KIR3DLW34*003	Mamu-KIR3DLW03	Mamu-KIR3DLW03	FN424253	Kruse et al., Immunogenetics 2010
Mamu-KIR3DLW03	Mamu-KIR3DLW03*005	Mamu-KIR3DLW34	Mamu-KIR3DLW34*004	Mamu-KIR3DLW03	Mamu-KIR3DLW03	FN424256	Kruse et al., Immunogenetics 2010
Mamu-KIR3DLW03	Mamu-KIR3DLW03*009	Mamu-KIR3DLW34	Mamu-KIR3DLW34*005	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LS997651	Bruijnesteijn et al., unpublished data
Mamu-KIR3DLW03	Mamu-KIR3DLW03*014	Mamu-KIR3DLW34	Mamu-KIR3DLW34*006	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LR694237	Bruijnesteijn et al., unpublished data
Mamu-KIR3DLW03	Mamu-KIR3DLW03*016	Mamu-KIR3DLW34	Mamu-KIR3DLW34*007	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LR694239	Bruijnesteijn et al., unpublished data
Mamu-KIR3DLW03	Mamu-KIR3DLW03*017	Mamu-KIR3DLW34	Mamu-KIR3DLW34*008	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LR694240	Bruijnesteijn et al., unpublished data
Mamu-KIR3DLW03	Mamu-KIR3DLW03*018	Mamu-KIR3DLW34	Mamu-KIR3DLW34*009	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LR694241	Bruijnesteijn et al., unpublished data
Mamu-KIR3DLW03	Mamu-KIR3DLW03*023	Mamu-KIR3DLW35	Mamu-KIR3DLW35*001	Mamu-KIR3DLW03	Mamu-KIR3DLW03	LR694248	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL05	Mamu-KIR3DL05*001	Mamu-KIR3DLW36	Mamu-KIR3DLW36*001	Mamu-KIR3DL05	Mamu-KIR3DL05	EU419045	Moreland et al., BMC Genomics 2001
Mamu-KIR3DL05	Mamu-KIR3DL05*011	Mamu-KIR3DLW36	Mamu-KIR3DLW36*002	Mamu-KIR3DL05	Mamu-KIR3DL05	FJS2121	Bosik et al., J Immunology 2009
Mamu-KIR3DL05	Mamu-KIR3DL05*017	Mamu-KIR3DLW36	Mamu-KIR3DLW36*003	Mamu-KIR3DL05	Mamu-KIR3DL05	LS997639	D. O’Connor 24-10-2017
Mamu-KIR3DL05	Mamu-KIR3DL05*003	Mamu-KIR3DLW37	Mamu-KIR3DLW37*001	Mamu-KIR3DL05	Mamu-KIR3DL05	EU419069	Moreland et al., BMC Genomics 2001
Mamu-KIR3DL05	Mamu-KIR3DL05*009	Mamu-KIR3DLW37	Mamu-KIR3DLW37*002	Mamu-KIR3DL05	Mamu-KIR3DL05	GU113210	Blokhuis et al., Immunogenetics 2010
Mamu-KIR3DL07	Mamu-KIR3DL07*042	Mamu-KIR3DLW38	Mamu-KIR3DLW38*001	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694456	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL07	Mamu-KIR3DL07*045	Mamu-KIR3DLW39	Mamu-KIR3DLW39*001	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694459	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL07	Mamu-KIR3DL07*056	Mamu-KIR3DLW40	Mamu-KIR3DLW40*001	Mamu-KIR3DL05	Mamu-KIR3DL07	LR694470	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL07	Mamu-KIR3DL07*064	Mamu-KIR3DLW41	Mamu-KIR3DLW41*001	Mamu-KIR3DL05	Mamu-KIR3DL07	LR694479	Bruijnesteijn et al., unpublished data
Mamu-KIR3DL07*065	Mamu-KIR3DLW42	Mamu-KIR3DLW42*001	Unknown donor	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DL08	Mamu-KIR3DLW43	Mamu-KIR3DLW43*001	Mamu-KIR3DL02	Mamu-KIR3DL08	LT907838 Bruijnesteijn et al., Journal of Immunology 2018		
Mamu-KIR3DL08*019Mamu-KIR3DL02/3DL08	Mamu-KIR3DLW43*002	Unknown donor	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL08*020	Mamu-KIR3DLW43*003	Mamu-KIR3DL02/3DL08A	Mamu-KIR3DL02/3DL08B	Mamu-KIR3DL08	LR694519 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DL10	Mamu-KIR3DLW45	Mamu-KIR3DLW45*001	Mamu-KIR3DL05	Mamu-KIR3DL10	LT907839 Bruijnesteijn et al., Journal of Immunology 2018		
Mamu-KIR3DL10*001	Mamu-KIR3DLW45*002	Mamu-KIR3DL05	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL10*003	Mamu-KIR3DLW45*003	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL10*004	Mamu-KIR3DLW45*004	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL10*005:01	Mamu-KIR3DLW45*004:01	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL10*005:02	Mamu-KIR3DLW45*004:02	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL10*006	Mamu-KIR3DLW45*005	Mamu-KIR3DL07	Mamu-KIR3DL07	LR694480 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DL20	Mamu-KIR3DL20*030	Mamu-KIR3DL20	Mamu-KIR3DL20	Mamu-KIR3DL04	LR694489 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DL20*044	Mamu-KIR3DL20*044R	Mamu-KIR3DL20	Mamu-KIR3DL04	LR694489 Bruijnesteijn et al., unpublished data			
Mamu-KIR3DS02	Mamu-KIR3DSW35	Mamu-KIR3DSW35*001	Mamu-KIR3DS02	Mamu-KIR3DS09	JN613291 Hellmann et al., PLoS Pathogen 2011		
Mamu-KIR3DS02*029	Mamu-KIR3DSW35*002	Mamu-KIR3DS02	Mamu-KIR3DS09	JN613291 Hellmann et al., PLoS Pathogen 2011			
Mamu-KIR3DS04	Mamu-KIR3DSW36	Mamu-KIR3DSW36*001	Mamu-KIR3DS04	Mamu-KIR3DS07	LR694564 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS04*008	Mamu-KIR3DSW36	Mamu-KIR3DSW36*001	Mamu-KIR3DS04	Mamu-KIR3DS07	LR694564 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS04*011	Mamu-KIR3DSW46	Mamu-KIR3DSW46*001	Mamu-KIR3DS04	Mamu-KIR3DS07	LR694564 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS04*012	Mamu-KIR3DSW37	Mamu-KIR3DSW37*001	Mamu-KIR3DS04	Mamu-KIR3DS07	LR694564 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS06	Mamu-KIR3DSW38	Mamu-KIR3DSW38*001	Mamu-KIR3DS06	Mamu-KIR3DS06	LR694573 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS06*019	Mamu-KIR3DSW38	Mamu-KIR3DSW38*001	Mamu-KIR3DS06	Mamu-KIR3DS06	LR694573 Bruijnesteijn et al., unpublished data		
Mamu-KIR3DS08	Mamu-KIR3DSW39	Mamu-KIR3DSW39*001	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*005	Mamu-KIR3DSW39	Mamu-KIR3DSW39*001	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*006	Mamu-KIR3DSW39*002	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*007	Mamu-KIR3DSW39*003	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*008	Mamu-KIR3DSW39*004	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*010:01	Mamu-KIR3DSW39*005:01	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*010:02	Mamu-KIR3DSW39*005:02	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Mamu-KIR3DS08*012	Mamu-KIR3DSW39*006	Mamu-KIR3DS08	Mamu-KIR3DS08	Mamu-KIR3DS08	EU702467 Blokhuis et al., Mol Immunology 2009		
Table 4 (continued)

Mamu-KIR3DSW08*015	Mamu-KIR3DSW39*007	–	–	LR694578	Chaichompoo et al., Cell. Immunol 2010
Mamu-KIR3DSW08*016	Mamu-KIR3DSW39*008	–	–	LR694579	
Mamu-KIR3DSW08*017	Mamu-KIR3DSW39*009	–	–	LR694580	
Mamu-KIR3DSW08*018:01	Mamu-KIR3DSW39*010:01	–	–	LR694581	
Mamu-KIR3DSW08*018:02	Mamu-KIR3DSW39*010:02	–	–	LR694582	
Mamu-KIR3DSW08*014	Mamu-KIR3DSW39*011	–	–	LR694577	
Mamu-KIR3DSW09*004	Mamu-KIR3DSW40 mamu-KIR3DSW40*001	Mamu-KIR3DSW09 Unknown donor EU702466, G-U112273			
Mamu-KIR3DSW09*005	Mamu-KIR3DSW41 Mamu-KIR3DSW41*001	Mamu-KIR3DSW08 Unknown donor FN424249			
Mamu-KIR3DSW09*011	Mamu-KIR3DSW41*002 Mamu-KIR3DSW08	Unknown donor LR694585			

Table 5 Renamed genes and alleles in cynomolgus macaques. The previous names are indicated, and the different gene segments are listed for sequences that are the result of fusion events

Previous designation	New designation	Recombination segments	Accession number	Reference		
Gene	Allele	Gene	Allele	Segment 1	Segment 2	
Mafa-KIR3DL05	Mafa-KIR3DL05*001	Mafa-KIR3DL05*001	Unknown donor	Mafa-KIR3DL05	LR655425	
Mafa-KIR3DL05	Mafa-KIR3DL05*002	Mafa-KIR3DL05*002	Mafa-KIR3DL01	Mafa-KIR3DL05	LR655426	
Mafa-KIR3DL05	Mafa-KIR3DL05*003	Mafa-KIR3DL05*003	–	–	LR655427	
Mafa-KIR3DSW08	Mafa-KIR3DSW08*001	Mafa-KIR3DSW08*001	–	–	LR655521	
Mafa-KIR3DSW08	Mafa-KIR3DSW08*002	Mafa-KIR3DSW08*002	–	–	LR655522	
Mafa-KIR3DSW08	Mafa-KIR3DSW08*003	Mafa-KIR3DSW08*003	–	–	LR655523	
Mafa-KIR3DSW11	Mafa-KIR3DSW11*001	Mafa-KIR3DSW11*001	–	–	LR655531	
Mafa-KIR3DSW09	Mafa-KIR3DSW09*001	Mafa-KIR3DSW09*001	–	–	LR655531	
Table 6 Overview of the number of alleles and genes represented in the non-human primate part of the IPD-NHK (August 2019). The species included are chimpanzee (Patr), Sumatran orangutan (Poab), Bornean orangutan (Popy), and rhesus macaque (Mamu).

Gene name	Species	Patr	Poab	Popy	Mamu
KIR1D					2
KIR2DL4/KIR2DL04*		3			24
KIR2DL5		5		1	
KIR2DL6		3			
KIR2DL7		1			
KIR2DL8		3			
KIR2DL9		3			
KIR2DL10		1			
KIR2DL11		1			
KIR2DL12		1			
KIR2DS4		2			
KIR2DS10		1	1		
KIR2DS13		1	1		
KIR2DS14		2			
KIR3DL1/KIR3DL01		6	9	3	28
KIR3DL02		4			9
KIR3DL3		4		1	
KIR3DL4/KIR3DL04		3			4
KIR3DL5/KIR3DL05		3			12
KIR3DL06		2			
KIR3DL07		13			
KIR3DL08		12			
KIR3DL10		12			
KIR3DL11		8			
KIR3DL12		7			
KIR3DL20		15			
KIR3DLW03		5			
KIR3DLX1		1		1	
KIR3DS1/KIR3DS01		1		4	
KIR3DS2/KIR3DS02		2		15	
KIR3DS03		4			
KIR3DS04		6		4	
KIR3DS05		4			
KIR3DS6/KIR3DS06		1		7	
KIR3DSW07		2			
KIR3DSW08		12			
KIR3DSW09		6			
KIRDP		1			

KIR2DL4 present in Patr, Poab, and Popy, and KIR2DL04 present in Mamu represent orthologous genes. In the other cases where two gene names are indicated in the table, these do not represent orthologs, and the first mentioned gene in a row can be observed in Patr, Poab, or Popy, and the other in the Mamu.

Acknowledgements The authors would like to thank D. Devine for editing the manuscript.

Funding information This study was supported in part by NIH/NIAID contract number HHSN272201600007C. GM and JAH are supported by funding from the UKRI-BBSRC awards BB/M011488/1, BBS/E/I/00001710, BBS/E/I/00007030, and BBS/E/I/00007038.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P (2010) Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet 6:e1001192

Anandam MV, Bennett EL, Davenport TRB, Davies NJ, Detwiler K, Engelhardt A, Eudey AA, Gadsby E et al (2013) Species accounts of Cercopithecidae, vol 3, pp 628–753

Andersen H, Rossio JL, Coalter V, Poore B, Martin MP, Carrington M, Lifson JD (2004) Characterization of rhesus macaque natural killer activity against a rhesus-derived target cell line at the single-cell level. Cell Immunol 231:85–95

Bimber BN, Evans DT (2015) The killer-cell immunoglobulin-like receptors of macaques. Immunological reviews 267:246–258

Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O’Connor DH (2008) Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. J Immunol 181:6301–6308

Blokhuis JH, Doxiadis GG, Bontrop RE (2009a) A splice site mutation converts an inhibitory killer cell Ig-like receptor into an activating one. Mol Immunol 46:640–648

Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE (2009b) Evidence for balancing selection acting on KIR2DL4 genotypes in rhesus macaques of Indian origin. Immunogenetics 61:503–512

Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE (2010) The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics 62:295–306

Bostik P, Kobkitjaroen J, Tang W, Villinger F, Pereira LE, Little DM, Stephenson ST, Bouzyk M et al (2009) Decreased NK cell frequency and function is associated with increased risk of KIR3DL allele polymorphism in simian immunodeficiency virus-infected rhesus macaques with high viral loads. J Immunol 182:3638–3649

Bruijnestijn J, van der Wiel MKH, Swensen WT, Otting N, de Vries Rouweler A, Elferink D, Doxiadis GG, Claas FHJ et al (2018a) Human and rhesus macaque KIR haplotypes defined by their transcriptomes. J Immunol 200:1692–1701

Bruijnestijn J, van der Wiel MKH, de Groot N, Otting N, de Vries Rouweler AJM, Lardy NM, de Groot NG, Bontrop RE (2018b) Extensive alternative splicing of KIR transcripts. Front Immunol 9:2846

Chaichompoo P, Bostik P, Stephenson S, Udumputturuk S, Kobkitjaroen J, Pattanapanyasat K, Ansari AA, Parham P et al (2010) Multiple KIR gene polymorphisms are associated with plasma viral loads in SIV-infected rhesus macaques. Cell Immunol 263:176–187

Colantonio AD, Bimber BN, Neidermyer WJ Jr, Reeves RK, Alter G, Alfald M, Johnson RP, Carrington M et al (2011) KIR
polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLoS Pathog 7:e1001316. https://www.ncbi.nlm.nih.gov/nuccore/CM014354

Graves T, Eichler E.E. and Wilson R.K. (2019) Macaca mulatta isolate AG07107 chromosome 19, whole genome shotgun sequence. Published by NCBI. https://www.ncbi.nlm.nih.gov/nuccore/CM014354. Accessed 21 November 2019.

Grendell RL, Hughes AL, Golos TG (2001) Cloning of rhesus monkey killer-cell Ig-like receptors (KIRs) from early pregnancy decidua. Tissue Antigens 58:329–334

Guethlein LA, Flodin LR, Adams EJ, Parham P (2002) NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J Immunol 169:220–229

Guethlein LA, Older Aguilar AM, Abi-Rached L, Parham P (2007) Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J Immunol 179:491–504

Hammond JA, Carrington M, Khakoo SI (2016) A vision of KIR variation at super resolution. Immunology 148:249–252

Hellmann I, Lim SY, Gelman RS, Letvin NL (2011) Association of activating KIR copy number variation of NK cells with containment of SIV replication in rhesus monkeys. PLoS Pathog 7:e1002436

Hershberger KL, Shyam R, Miura A, Letvin NL (2001, 166) Diversity of the killer cell Ig-like receptors of rhesus monkeys. J Immunol:4380–4390

Hsu KC, Chida S, Geraghty DE, Dupont B (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunological reviews 190:40–52

Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin L, Muir DG, Canavez F, Cooper SL et al (2000) Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12:687–698

Kruse PH, Rosner C, Walter L (2010) Characterization of rhesus macaque KIR genotypes and haplotypes. Immunogenetics 62:281–293

Maccari G, Robinson J, Ballingall K, Guethlein LA, Grimholt U, Kaufman J, Ho CS, de Groot NG et al (2017) IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Res 45:D860–D864

Marsh SG, Parham P, Dupont B, Geraghty DE, Trowsdale J, Middleton D, Vilches C, Carrington M et al (2003) Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Immunogenetics 55:220–226

Moreland AJ, Guethlein LA, Reeves RK, Broman KW, Johnson RP, Parham P, O’Connor DH, Bimber BN (2011) Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics 12:295

Parham P (2004) Killer cell immunoglobulin-like receptor diversity: balancing signals in the natural killer cell response. Immunol Lett 92:11–13

Prall TM, Graham ME, Karl JA, Wiseman RW, Ericsen AJ, Raveendran M, Alan Harris R, Muzny DM et al (2017) Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques. Immunogenetics 69:325–339

Rajalingam R, Hong M, Adams EJ, Shum BP, Guethlein LA, Parham P (2001) Short KIR haplotypes in pygmy chimpanzee (Bonobo) resemble the conserved framework of diverse human KIR haplotypes. J Exp Med 193:135–146

Robinson J, Guethlein LA, Maccari G, Blokhuis J, Bimber BN, de Groot NG, Sanderson ND, Abi-Rached L et al (2018) Nomenclature for the KIR of non-human species. Immunogenetics 70:571–583

Roe D, Vierra-Green C, Pyo CW, Eng K, Hall R, Kuan G, Spellman S, Ranade S et al (2017) Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes and immunity 18:127–134

Sambrook JG, Bashirova A, Palmer S, Sims S, Trowsdale J, Abi-Rached L, Parham P, Carrington M et al (2005) Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res 15:25–35

Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ (2001) The genomic context of natural killer receptor extended gene families. Immunological reviews 181:20–38

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.