Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India
Introduction

● A seemingly simple but effective technique to improve E2E ASR systems for low-resource phonetic languages.
● E2E ASR is an attractive choice since speech is mapped directly to graphemes or subword units derived from graphemes.
● However, it is also very data-intensive and tends to underperform on low resource languages.
Introduction

● In our approach, we train two modules:
 a. an ASR system with a linguistically-motivated reduced output alphabet. For the ASR model, it is easier to learn and less data-intensive. (reduce)
 b. an FST-based reconstructor that recovers sequences in the original alphabet. (reconstruct)
● We run experiments on two Indian languages, Gujarati and Telugu.
● With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to systems that do not use any reduction.
Our Approach

1. **Devise a reduced vocabulary** that merges acoustically confusable and linguistically discriminative graphemes.

![Diagram showing relationships between Gujarati, Telugu, and IPA symbols]
Our Approach

2. Given labelled speech data, **transform transcriptions** using the reduction.
3. **Train** an **ASR system** that maps the original speech to the reduced transcriptions.

Sound wave saying ༄ slag
Our Approach

4. **Train a reconstructor** to reconstruct the original grapheme sequence from the reduced grapheme sequence.
Our Approach: FST-based Reconstructor

- **Input:** reduced-grapheme hypothesis from ASR system.
- Represent as a linear acceptor, H.
Our Approach: FST-based Reconstructor

- Compose with the Reduction FST, S.
- S is a single-state FST that takes reduced graphemes as input and produces original graphemes as output.
- For example,
Our Approach: FST-based Reconstructor

- Further compose with the **Edit Distance FST**, E.
- E is an FST that takes a grapheme sequence as input. It produces as output all grapheme sequences that satisfy the constraint that every word in the output is within an edit distance of d from each word in the input. The allowable edits are substitutions, insertions and deletions.
- Each edit incurs an additive cost λ.
- d and λ are hyperparameters.
Our Approach: FST-based Reconstructor

- Further compose with the **Dictionary FST**, L.
- We fix a vocabulary; in this case, the set of all ASR training set words.
- L simply maps a sequence of graphemes to a sequence of words (each word is internally represented as an index in the aforementioned vocabulary).
- Out-of-vocabulary words are mapped to a special `<unk>` word.
Our Approach: FST-based Reconstructor

- Further compose with the **Language Model FST**, G.
- G is an n-gram language model trained on ASR training set transcriptions.
- $H \circ S \circ E \circ L$ contains all possible reconstructions. Composing this with G rescores the reconstructions, giving higher scores to meaningful sentences.
- These operations are efficient owing to highly-optimized FST libraries.
Our Approach: FST-based Reconstructor

- Finally, obtain output O, the best reconstructed sequence, by running a shortest path FST algorithm on the composed FST $H \circ S \circ E \circ L \circ G$.
- These operations are efficient owing to highly-optimized FST libraries.
Experiments

- **2 Indian languages**: Gujarati, Telugu
- **ASR architecture**: biLSTM (without and with RNNLM)
- **2 Training Durations**: Full and 10-hr
- Gujarati 10-hr experiments on the advanced Conformer ASR architecture
Experimental Setup: BiLSTM (without RNNLM)

biLSTM Architecture for Speech Recognition

We use the [ESPNet](#) toolkit to train hybrid CTC-attention biLSTMs

Major hyperparameters:
- 4 encoder layers: 512 units for Guj, 768 units for Tel
- 1 decoder layer: 300 units for Guj, 450 units for Tel
- 0.8 CTC, 0.2 Attention

Reference:
K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury and M. Picheny, “Forget a Bit to Learn Better: Soft Forgetting for CTC-Based Automatic Speech Recognition,” in Interspeech, 2019.
Experimental Setup: FSTs

- All FSTs were implemented using the OpenFST toolkit.
- The LM FST, G, is a 4-gram LM with Kneser-Ney discounting for order 4. It is implemented using SRILM.
- Best tuned values: $d=3$, $\lambda=5$.
Results: Pre-Reconstruction ASR Experiments

Duration	Reduction	r-WER (Guj)	r-WER (Tel)		
		Dev	Test	Dev	Test
Full	identity	41.5	43.2	44.1	46.8
	ρ_1	36.5	39.6	39.3	42.8
	ρ_1-rand	41.3	42.3	44.2	47.9
10 hr	identity	60.2	68.6	64.1	71.4
	ρ_1	53.9	63.6	56.9	66.5
	ρ_1-rand	63.2	71.8	60.8	69.4

Reduced Word Error Rate (r-WER) (WERs computed between ASR hypothesis and reduced ground truth text)

Identity: Baseline with no reduction

ρ_1: Our reduction

ρ_1-rand: Randomized reduction
Results: Pre-Reconstruction ASR Experiments

Duration	Reduction	r-WER (Guj)	r-WER (Tel)		
	Dev	Test	Dev	Test	
Full	identity	41.5	43.2	44.1	46.8
	ρ_1	36.5	39.6	39.3	42.8
	ρ_1-rand	41.3	42.3	44.2	47.9
10 hr	identity	60.2	68.6	64.1	71.4
	ρ_1	53.9	63.6	56.9	66.5
	ρ_1-rand	63.2	71.8	60.8	69.4

- Lower r-WERs for ρ_1 show that reduction **simplifies** the ASR task.
- ρ_1 vs ρ_1-rand shows that a **principled reduction** is important.
Results: Post-reconstruction

d	λ	Reduction	WER (Guj)	WER (Tel)
		Baseline	Dev 41.5	Test 43.2
			Dev 44.1	Test 46.8
0	5	identity	41.8	43.4
		ρ₁	40.4	41.9
3	5	identity	37.9	37.8
		ρ₁	37.8	36.5

(a) Full training duration.

d	λ	Reduction	WER (Guj)	WER (Tel)
		Baseline	Dev 60.2	Test 68.6
			Dev 64.1	Test 71.4
0	5	identity	60.3	68.6
		ρ₁	56.2	64.9
3	5	identity	56.8	64.9
		ρ₁	53.2	61.2

(b) 10-hr training duration.

Word Error Rate (WER) for different values of d and λ

ρ₁ is our approach.
Results: FST Reconstruction

d	λ	Reduction	WER (Guj)	WER (Tel)
		Baseline	Dev 41.5	Test 43.2
0	5	identity	41.8	43.4
		ρ₁	40.4	41.9
3	5	identity	37.9	37.8
		ρ₁	37.8	36.5

(a) Full training duration.

d	λ	Reduction	WER (Guj)	WER (Tel)
		Baseline	Dev 60.2	Test 68.6
0	5	identity	60.3	68.6
		ρ₁	56.2	64.9
3	5	identity	56.8	64.9
		ρ₁	53.2	61.2

(b) 10-hr training duration.

- For $d=0$ (exact reconstruction), reduction outperforms identity and baseline.
- Increasing d improves all WERs as expected; reduction still outperforms the other two.
- Improvements are more pronounced in the low-resource 10-hr setting.
Experimental Setup: biLSTM (with RNNLM)

- 2 RNNLM layers with 1500 units
- Trained on transcriptions of full speech data
Results: With RNNLM

Duration	Reduction	WER (Guj)	WER (Tel)		
	Baseline	Dev 37.4	Test 34.0	Dev 37.9	Test 40.0
Full	identity	36.2	31.8	37.7	39.2
	ρ_1	37.1	32.2	**36.5**	**38.1**
10-hr	Baseline	56.2	63.2	56.9	63.8
	identity	55.5	62.3	56.2	62.5
	ρ_1	**52.0**	**58.2**	**51.2**	**59.1**

Word Error Rate (WER) using reconstructor with $d=3, \lambda=5$ on ASR with RNNLM rescoring
Results: With RNNLM

Duration	Reduction	WER (Guj)	WER (Tel)		
	Baseline	Dev: 37.4	Test: 34.0	Dev: 37.9	Test: 40.0
Full	identity	36.2	31.8	37.7	39.2
	ρ_1	37.1	32.2	36.5	38.1
10-hr	Baseline	56.2	63.2	56.9	63.8
	identity	55.5	62.3	56.2	62.5
	ρ_1	52.0	58.2	51.2	59.1

- Baseline with RNNLM is **better** than baseline without RNNLM
- Reduction significantly **outperforms** identity in the 10-hr setting, doesn’t do as well in the Full setting for Guj
Experimental Setup: Conformer

Conformer Architecture for Speech Recognition

We use the [ESPNet](https://espnet.github.io/) toolkit to train hybrid CTC-attention Conformers.

Major hyperparameters:
- 2 encoder layers: 350 units, 4 att heads
- 1 decoder layer: 350 units, 4 att heads
- 0.3 CTC, 0.7 Attention

Reference:
A. Gulati, J. Qin, C-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu and R. Pang, “Conformer: Convolution-augmented Transformer for Speech Recognition” in Interspeech, 2020.
Results: Conformer on Guj 10-hr

d	λ Reduction	WER (Guj)		
		Baseline	Dev	Test
0	10 identity		57.7	61.1
	ρ₁		57.9	60.4
3	10 identity		57.1	60.5
	ρ₁		57.6	59.9

Similar trends as for other experiments
Discussion

- **Choice of reduction**: We show in the paper that our reduction is superior to randomized/less compressive reductions.
- **Reduction function corrects ASR errors**: 16.29% (for Gujarati) and 16.92% (for Telugu) of identity substitutions errors corrected by the reduction.
- **Test-set perplexities**: Reduction function decreases LM perplexity. Larger drop for Telugu corresponds to larger improvements observed for Telugu.

Reduction	Test ppl (Guj)	Test ppl (Tel)
identity	115.05	768.66
ρ_1	108.13	706.32
Discussion

● Examples:

R: సపానా తీసి పాతాల చదువు చేసి యుద్ధం చేసి
 (సపా: na: te: prətə:p ja:dəve: ji:tɨ che:)
I: సప మాట తీసి పాతాల చదువు చేసి
 (సపా: maː te: prətə:p ja:dəv li:dhi che:)
ρ₁: సపానా తీసి పాతాల చదువు చేసి
 (సపా: na: te: prətə:p ja:dəve: ji:tɨ che:)

R: కెదర ముడ పూర్తి మహారాజ
 (iːtaku veɻi ba:luɖi mruti)
I: అనొక్క ముడ కొండ మహారాజ
 (inka: veɻi bo:lo mruti)
ρ₁: కెదర ముడ పూర్తి మహారాజ
 (iːtaku veɻi na ba:luɖi mruti)
Future Work

- Automatically learning a data-driven reduction mapping.
- Training more powerful sequence-to-sequence reconstruction modules
- Combine the two modules into one using a bottleneck layer and multitask learning.
- Instead of the ASR 1-best hypothesis, use the ASR decoding lattice.
Conclusion

- We propose a simple reduce-and-reconstruct technique and demonstrate its utility for two Indian languages.
- We show that as the available training data decreases, our approach yields greater benefits, making it well-suited for low-resource languages.
Short Presentation Slides
Reduce and Reconstruct:
ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi
Department of Computer Science and Engineering,
Indian Institute of Technology Bombay, India
Reduce and Reconstruct (RnR)

- Technique to boost end-to-end (E2E) ASR performance on low-resource languages:
 a. Train an E2E ASR system with a linguistically-motivated reduced output alphabet (*reduce*)
 b. Train a standalone FST-based reconstructor that recovers sequences in the original alphabet (*reconstruct*)
- Experiments on Gujarati and Telugu.
- With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to baseline systems.
Our Approach

1. **Devise a reduced vocabulary** that merges acoustically confusable and linguistically discriminative graphemes.
Our Approach

2. Given labelled speech data, **transform transcriptions** using the reduction.
3. **Train** an **ASR system** that maps the original speech to the reduced transcriptions.

Sound wave saying ભાષા
Our Approach

4. **Train a reconstructor** to reconstruct the original grapheme sequence.
Our Approach: FST-based Reconstructor

- **Input:** Represent as a linear acceptor, H.
- **Compose with a cascade of FSTs:** S, E, L, G:
 - Using the reduction, S is able to reconstruct all possible sequences.
 - L and G constrain, rank these sequences using language-model scores.
Our Approach: FST-based Reconstructor

- **Input:** reduced-grapheme hypothesis from ASR system.
- Represent as a linear acceptor, H.

\[
\text{पस}
\]
Our Approach: FST-based Reconstructor

- Compose with the **Reduction FST**, S.
- S is a single-state FST that takes reduced graphemes as input and produces original graphemes as output.
- For example,
Our Approach: FST-based Reconstructor

- Further compose with the **Edit Distance FST**, E.
- E is an FST that takes a grapheme sequence as input. It produces as output all grapheme sequences that satisfy the constraint that every word in the output is within an edit distance of \(d \) from each word in the input. The allowable edits are substitutions, insertions and deletions.
- Each edit incurs an additive cost \(\lambda \).
- \(d \) and \(\lambda \) are hyperparameters.
Our Approach: FST-based Reconstructor

- Further compose with the **Dictionary FST**, L.
- We fix a vocabulary; in this case, the set of all ASR training set words.
- L simply maps a sequence of graphemes to a sequence of words (each word is internally represented as an index in the aforementioned vocabulary).
- Out-of-vocabulary words are mapped to a special `<unk>` word.
Our Approach: FST-based Reconstructor

- Further compose with the **Language Model FST**, G.
- G is an n-gram language model trained on ASR training set transcriptions.
- $H \circ S \circ E \circ L$ contains all possible reconstructions. Composing this with G rescores the reconstructions, giving higher scores to meaningful sentences.
- These operations are efficient owing to highly-optimized FST libraries.
Our Approach: FST-based Reconstructor

- Finally, obtain output O, the best reconstructed sequence, by running a shortest path FST algorithm on the composed FST $H \circ S \circ E \circ L \circ G$.
- These operations are efficient owing to highly-optimized FST libraries.
Experiments

- **2 Indian languages**: Gujarati, Telugu
- **ASR architecture**: Bi-LSTM (without and with RNNLM)
- **2 Training Durations**: Full and 10-hr
- Gujarati 10-hr experiments on the advanced Conformer ASR architecture
| ASR Architecture | Training-set Duration | Reduction | Gujarati Test WER | Telugu Test WER |
|------------------|------------------------|----------------------------|-------------------|-----------------|
| | | none (baseline) | 43.2 | 46.8 |
| | | identity | 37.8 | 42.5 |
| | | our reduction | 36.5 | 41.2 |
| biLSTM | Full | none (baseline) | 68.6 | 71.4 |
| | | identity | 64.9 | 66.1 |
| | | our reduction | 61.2 | 63.6 |

- Reduction **outperforms** identity and baseline
- Improvements are more pronounced in the **low-resource** 10-hr setting
Results

ASR Architecture	Training-set Duration	Reduction	Gujarati Test WER
Conformer	10-hr	none (baseline)	61.1
		identity	60.4
		our reduction	59.9
Results

ASR Architecture	Training-set Duration	Reduction	Gujarati Test WER	Telugu Test WER
biLSTM	Full	none (baseline)	34.0	40.0
		identity	31.8	39.2
		our reduction	32.2	38.1
	10-hr	none (baseline)	63.2	63.8
		identity	62.3	62.5
		our reduction	58.2	59.1

- Reduction is significantly **better** in the 10-hr setting
- Reduction doesn’t do as well in the Full setting for Gujarati
Analysis

- **Choice of reduction**: We show in the paper that our reduction is superior to randomized/less compressive reductions.

- **Reduction function corrects ASR errors**: 16.29% (for Gujarati) and 16.92% (for Telugu) of identity substitution errors corrected by the reduction.

- **Test-set perplexities**: Reduction function decreases LM perplexity.

Reduction	Test ppl (Guj)	Test ppl (Tel)
identity	115.05	768.66
our reduction	108.13	706.32
Discussion

- Examples:

R: రాయి తెష్ప ప్రతాప వాడవెంది చే
 (సేప: నా: తె: ప్రేతా: ప జా: దవె: జి: టి చె:)

I: రాయ మారే తెష్ప ప్రతాప వాడవెంది చే
 (సేప: మా: తె: తె: ప్రేతా: ప జా: దవె లి: డీ చె:)

p_1: రాయి తెష్ప ప్రతాప వాడవెంది చే
 (సేప: నా: తె: ప్రేతా: ప జా: దవె: జి: టి చె:)

R: కడింగ ఉండవచే మార్య
 (ఇతకు ఉల్లి బా: లుడి మరుతి)

I: అక్ష కండి మార్య
 (ఇంక: ఉల్లి బా: లడ మరుతి)

p_1: కడింగ ఉండవచే మార్య
 (ఇటకు ఉల్లింంచ బా: లుడి మరుతి)
Conclusion and Future Work

- We propose a simple reduce-and-reconstruct (RnR) technique for E2E ASR systems and demonstrate its utility for two phonetic languages.
- As the available training data decreases, RnR yields greater benefits, making it well-suited for low-resource languages.
- Future work includes:
 - Training more powerful sequence-to-sequence reconstruction modules
 - Automatically learning a mapping from the original alphabet to the reduced alphabet