Some Comments to Geosite Assessment, Visitors, and Geotourism Sustainability

L'ubomír Štrba *, Branislav Kršák and Csaba Sidor

Department of Geo and Mining Tourism, BERG Faculty, Technical University of Kosice, 042 00 Kosice, Slovakia; branislav.krskak@tuke.sk (B.K.), csaba.sidor@tuke.sk (C.S.)

* Correspondence: lubomir.strba@tuke.sk; Tel.: +421-55-602-2442

Received: 28 June 2018; Accepted: 21 July 2018; Published: 24 July 2018

Abstract: Geotourism as a globally growing phenomenon is based on several principles where sustainability plays a key role. The value of an individual site of visitors’ interest (geosite, geomorphosite, or site of geological heritage—a primary point of interest in geotourism) may be expressed via specific assessment methods. However, recent geosite assessment methods are primarily focused on various aspects of geoheritage (e.g., location, scientific value, representativeness, etc.) and very low attention is paid to the majority of geotourism participants—people for whom the various geotourism products are introduced and offered. The geotourism development itself would not be possible without interest of tourists (visitors) in such places. Without the knowledge of relevant visitor data incorporated within the assessment, as discussed in this paper, such values, representing the result of the geosite assessment process, cannot be effectively utilized to help future geosite development and management activities related to overall (geo)tourism progress.

Keywords: geosite; visitor data; assessment; sustainability; geotourism

1. Introduction

In the last three decades, various geosite assessment or evaluation models have been introduced by authors all around the world, as summarized by, for example, Kubalíková [1], Różycka and Migón [2], Suzuki and Takagi [3], or Štrba et al. [4]. In general, geosite assessment methods can be divided into two major groups: (1) qualitative assessment models, and (2) quantitative assessment models.

As summarized by Štrba et al. [4], both of the abovementioned approaches give useful information on the value of specific geosites. However, results of quantitative assessments are more applicable for further management and planning of development related to assessed geosite. On the other hand, it should be mentioned that geosite assessments, in most cases, are strongly scientifically based. So, the application of the assessment results within tourism products development is very limited or absolutely impossible.

This article aims at providing a different view of geosite assessment by considering one of the most important requirements of not only natural-based tourism but any tourism form—visitors. Focusing on visitor preferences and/or motivations [5,6] to visit specific geosites may significantly affect the success and sustainability of various natural-based tourism forms, recently primarily represented by geotourism and ecotourism.

2. Materials and Methods

A geosite (Figure 1) can be described as a unique natural phenomenon representing one or several specific features related to geological and/or geomorphological processes. It is often understood as geo(morpho)logical heritage, or simply geoheritage. The term ‘geosite’ has been discussed by various authors and professionals especially in the field of geology, geography, and geomorphology.
Recently, the clearest and most precise explanation (definition) of the term geosite has been given by Reynard [7], saying that:

“Geosites are portions of the geosphere that present a particular importance for the comprehension of Earth history. More precisely, geosites are defined as geological or geomorphological objects that have acquired a scientific (e.g., sedimentological stratotype, relict moraine representative of a glacier extension), cultural/historical (e.g., religious or mystical value), aesthetic (e.g., some mountainous or coastal landscapes) and/or social/economic (e.g., aesthetic landscapes as tourist destinations) value due to human perception or exploitation.” [7] (p. 440)

Various assessment models were primarily defined to set the value of geosites or geomorphosites and addressed to professionals in the field of geology, geomorphology, geoheritage protection, and conservation. Following text brings brief overview of various geosite assessment methods, introduced, mentioned, and/or used in various geosite related publications, including methods proposed by Bruschi et al. [8], Fassoulas et al. [9], Pereira et al. [10], Pralong [11], Reynard et al. [12], Serrano and González [13], Štrba and Rybár [14], Vujčić et al. [15], and Zouros [16].

Bruschi et al. [8] introduced an assessment method based on three groups of criteria: intrinsic quality (scientific value), the potential for use (economic value), and potential threats and protection needs. These three groups include 21 assessment criteria. Similarly, Fassoulas et al. [9] proposed an assessment model based on statistical methods. As mentioned by Štrba et al. [4] (p. 498), “this method can be considered as the most objective but in terms of practical use, it is relatively complicated to use this method on a large number of sites in general due to the fact that it is necessary to ask several independent experts dealing with the problems. In some regions, it can comprise a problem from personal as well as from professional point of view”. However, a large number of criteria used within an assessment method may give a very complex view on the value of assessed objects what can be used, with more or less limitation, for various purposes, including the development of nature-based forms of tourism and/or destination management [17].

An assessment method of Pereira et al. [10] is based on a very detailed procedure comprising of scientific values, added values, geomorphological value, values of use, protection value, and management value all of which contribute towards providing a very complex evaluation score.

Pralong [11] proposed, in regard to determining tourist value, to take into account four major features of each site: scenic, scientific, cultural, and economic value. These four major categories include several criteria that should be considered within the assessment procedure.

A method of Reynard et al. [12] includes two major criteria categories: (1) scientific value, taking into account integrity, representativeness, rareness, and paleogeographical value, and (2) additional value.

Serrano and Gonzalez [13] introduced a methodology originally proposed for geomorphosite assessment. However, taking into account assessment categories included within this method, it can be effectively used for the assessment of any geosite. This method covers three major perspectives or different value groups: (1) scientific values including seven criteria; (2) cultural or added values including five criteria; and (3) use and management values including nine criteria. The final result gives a three-way and relatively complex score of the site that can be very useful, especially for scientific and managerial purposes.

Štrba and Rybár [14] introduced a revised version of an assessment originally defined by Rybár [18]. This assessment method includes ten categories covering various features of the assessed site. Besides the total value of the site, authors propose four additional values: scientific, educational, economic, and added value. Additionally, authors [14] suggest expressing the value of geosites via percentages to make the assessment results more “public-friendly”. However, considering the “public-friendly” issue, some values (e.g., added value) may be a bit confusing or hard to understand, especially for the general public or people uneducated in the field of geosciences.
Vujičić et al. [15] have chosen an alternative approach. Their geosite assessment model (GAM) is based on a previously defined assessment method. As such, it has adopted many assessment criteria grouped within five general categories: scientific value, aesthetic value, protection, functionality, and tourist value. The result of this assessment is in the form of two numbers (“coordinates”) specifying the position of an assessed location within an assessment graph. The graph is divided into nine fields. Each field has specific recommendations for further action. However, these recommendations are quite brief and should be explained in more detail for wider use of this method.

Zouros [16] has introduced a five-criteria assessment method. Each criterion, including (1) geology and landscape (consisting of three sub-criteria: territory, geoconservation, natural and cultural heritage); (2) management structure; (3) interpretation and environmental education; (4) geotourism; and (5) sustainable regional and economic development, has different weight and covers several indicators, ultimately resulting in a relatively complex assessment value represented by one number. However, this method was primarily designed to assign a value to a geosite located in a geopark.

A summarization and comparison of the assessment categories that are used within the abovementioned assessment methods are given in Table 1. Some authors [1,4] assume that there are some assessment categories or criteria used within almost each quantitative assessment method. They include: safety rarity, representatives, integrity, accessibility, ecological value, and economic value. Comparison results of assessment methods categories or criteria (Table 1) are in accordance with these findings.

Table 1. Comparison of criteria used within various geosite assessment methods.

Criterion	Bruschi et al. [8]	Fassoulas et al. [9]	Pereira et al. [10]	Pralong [11]	Reynard et al. [12]	Serrano and Gonzalez [13]	Štrba and Rybarská [14]	Vujičić et al. [15]	Zouros [16]
recognizability/level of importance	x	x	x	x	x	x	x	x	x
rarity/uniqueness	x	x	x	x	x	x	x	x	x
representativeness	x	x	x	x	x	x	x	x	x
geosite knowledge/information availability	x	x	x	x	x	x	x	x	x
level of interpretation/educational level	x	x	x	x	x	x	x	x	x
viewpoints/study conditions	x	x	x	x	x	x	x	x	x
surface/geo-diversity	x	x	x	x	x	x	x	x	x
surrounding landscape and nature	x	x	x	x	x	x	x	x	x
environmental fitting of sites	x	x	x	x	x	x	x	x	x
ecological value	x	x	x	x	x	x	x	x	x
current condition/integrity/current state	x	x	x	x	x	x	x	x	x
protection level	x	x	x	x	x	x	x	x	x
vulnerability/fragility	x	x	x	x	x	x	x	x	x
suitable number of visitors	x	x	x	x	x	x	x	x	x
accessibility	x	x	x	x	x	x	x	x	x
additional natural values	x	x	x	x	x	x	x	x	x
additional anthropogenic/cultural values	x	x	x	x	x	x	x	x	x
road infrastructure	x	x	x	x	x	x	x	x	x
additional functional values	x	x	x	x	x	x	x	x	x
promotion	x	x	x	x	x	x	x	x	x
organized visits	x	x	x	x	x	x	x	x	x
vicinity of visitors center	x	x	x	x	x	x	x	x	x
interpretive panels	x	x	x	x	x	x	x	x	x
numbers of visitors	x	x	x	x	x	x	x	x	x
economic potential/value	x	x	x	x	x	x	x	x	x
Geotourism, similar to other nature-based tourism forms (e.g., ecotourism), is a globally growing phenomenon [20]. This concept is mostly developed in geoparks. However, many important geosites (e.g., Herľany geyser in Slovakia, Belogradchik rocks in Bulgaria, Scarisoara Ice Cave in Romania, Cerknica lake in Slovenia) are located outside operated or planned geopark areas.

Moreover, when discussing geosite assessment and potential tourism development, a specific tourism form where these methods can be used should be defined. In our case, geotourism plays a primary role. Geotourism, similar to other nature-based tourism forms (e.g., ecotourism), is a globally growing phenomenon [20]. This concept is mostly developed in geoparks. However, many important geosites (e.g., Herľany geyser in Slovakia, Belogradchik rocks in Bulgaria, Scarisoara Ice Cave in Romania, Cerknica lake in Slovenia) are located outside operated or planned geopark areas.

Geotourism itself, as a tourism form, has been discussed by many authors for several years and is still a subject of discussion, as there are two major forms of understandings regarding the nature of

Figure 1. Examples of geosites: (a) Strunjan Cliffs (Slovenia); (b) Silická ľadnica (Silica Ice Cave) (Slovakia); (c) Kazár Tuff Hills (Hungary); (d) Cerknica lake (Slovenia).

3. Results and Discussion

The selection of an individual geosite assessment method is just one part of the problem. Qualitative assessment methods result in some kind of text describing the value of a geosite. This kind of text is barely usable by local tourism stakeholders or managers in the process of developing natural-based forms of tourism (e.g., geotourism). Qualitative geosite assessment methods result in an individual score or a set of numbers/scores. However, what does the number say? For example, a selected geosite assessment method gives a result of the geosite final score: 6.3, meaning national significance of the locality. What does the number say to tourism manager, stakeholder, geosite visitor, etc.? Of course, it gives very important information on the locality but from scientific and to tourism potential points of view.

Doktor et al. [19] discuss geosite assessment criteria with special emphasis on various recipients divided by the authors into the following three groups: tourists (casual tourist, witting tourist, hobbyist), educators (school/academic teacher, guide, organizer), and investors (owner, manager). Assessment criteria are covered by four major geosite values: visual, cognitive, functional, and investment. Even though the authors consider the various importance of assessment criteria based on the assessment recipient, specific criteria prioritizing is not supported by any research results, especially when considering the first recipient group—tourists who often have specific requirements and expectations.

Moreover, when discussing geosite assessment and potential tourism development, a specific tourism form where these methods can be used should be defined. In our case, geotourism plays a primary role. Geotourism, similar to other nature-based tourism forms (e.g., ecotourism), is a globally growing phenomenon [20]. This concept is mostly developed in geoparks. However, many important geosites (e.g., Herľany geyser in Slovakia, Belogradchik rocks in Bulgaria, Scarisoara Ice Cave in Romania, Cerknica lake in Slovenia) are located outside operated or planned geopark areas.
geotourism. The first approach is based on the geological character (e.g., Hose [21,22] or Newsome and Dowling [23]) and the second focuses on the geography of the area (e.g., see [24]). The Arouca Declaration [25] tries to combine both approaches into one definition. However, according to Hose [26], this definition is more fitting for ecotourism than geotourism.

Beyond the nature of geotourism and its understanding, it is a nature-based tourism form (including special geotourism forms, for example, urban geotourism [27,28], which is practiced in urban areas but focused on phenomena of natural origin like, for example, stones of historical buildings [28], etc.). Moreover, like any other tourism form, it strongly depends on the visitors and their interest to partake in geotourism, or nature-based tourism, experiences. However, there is a very limited number of publications presenting research results focused on geotourism participants. From development and sustainability points of view, this is a very crucial point. When combining recreation and environmental protection (such as within geotourism or ecotourism), data on tourists should play a key role to ensure sustainability of such products.

According to Dowling [20], in regard to discussions of geotourism principles, this tourism form is: (1) geologically based; (2) sustainable; (3) locally beneficial; (4) geologically informative; and (5) brings tourist satisfaction. Here, at least two principles require data on tourists or potential visitors to ensure success and sustainability.

As presented in Table 2, there are various aspects affecting geosite visits and potential visitors’ geotourism experiences [5,6,28,29]. Such data represent very useful sources of information on potential geotourists that should be implemented within future recommendations towards effective geotourism development.

Criteria Affecting Geosite Visit	Motivation to Visit Geosite	Factors Perceived during Geosite Visit
visual attractiveness of locality	to explore new places	I enjoy where I am and what I am doing
access	to rest and relax	Spending time with family and/or friends
tour/visit safety	to escape from daily routine	Possibility to learn something new
uniqueness/rarity	physical and mental regeneration	Visit of geosite is based on my interest in such types of locations
information availability	to gain knowledge	
tour/visit difficulty		
time-limited visit		
tour/visit length		
possibility to gain knowledge		
number of tourists		

Recently, the most effective tool to collect, sort, analyze, and use visitors’ data for decision-making, future planning, and management within tourism is represented by smart destination systems or platforms (e.g., Fuchs et al. [31], Kršák et al. [32], Štrba et al. [33]). The implementation of data on the value of natural phenomena located in a specific destination based on data collected from visitors may significantly contribute to an overall picture of the place and help in the process of decision-making related to tourism development and future planning, as proposed by Štrba et al. [17].

Therefore, a geosite assessment method based on visitors’ data should be developed to contribute not only to geotourism but also to the effective development of various natural-based forms of tourism. In this field, Hassan et al. [34] can be considered as pioneers, defining a tourism demand-based method of geosites assessment consisting of nine main indicators that help to identify, assign, and set the priority of assessed locations. The indicators include: distance from the geosite, accessibility of the geosite, climate conditions, types of rock formations, geological history, topography, safety, geological and
geomorphological forms, and tourist’s infrastructure. However, as the survey performed within the study of Hassan et al. [34] includes 92 samples (20 professors and 72 students), it has very low global representativeness. Moreover, as this method is based on prioritization, it cannot be used to assess individual locations/places. As such, deep research in this field is strongly required. Additionally, based on the research results of Štrba [6], it is clear that potential geosite visitors would prefer geosite assessments based on visitors’ data when available.

4. Conclusions

Geosites, as a form of natural heritage, represent inseparable parts of any tourist destination that significantly contribute to the overall attractiveness of specific areas in any part of the world. Knowledge of a geosite’s value, the final goal of geosite assessment, may help in the development of various nature-based forms of tourism in which geosites are included. However, recent geosite assessment methods focus primarily on the scientific character of the geosites and not on their tourist potential. In this regard, a question arises: “Do we need geosite assessment for practical geotourism development?”. Recent geosite assessment methods are primarily focused on various aspects of geoheritage (e.g., location, value, representativeness, etc.) and very low attention is paid to the majority of geotourism participants—people for whom the various geotourism products are introduced and offered. The assessment itself is a very useful tool. However, general public criteria affecting geosite visits differ from criteria used within most of the methods [6]. Therefore, without the knowledge of relevant visitor data incorporated within the assessment, as discussed in this paper, such values, representing the result of the geosite assessment process, cannot be effectively utilized to help future geosite development and management activities related to overall (geo)tourism progress. Moreover, ignoring expectations of (potential) visitors may result, in both the short- and long-term period, in the loss of the original attractiveness of an area and the wasting of its potential.

Author Contributions: Each author (L.S., B.K., C.S.) has equally contributed to this publication.

Funding: This work was supported by the Slovak Research and Development Agency under contract no. APVV-14-0797

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Kubalíková, L. Geomorphosite assessment for geotourism purposes. Czech J. Tour. 2013, 2, 80–104. [CrossRef]
2. Różycka, M.; Migoń, P. Visitors’ background as a factor in geosite evaluation. The case of Cenozoic volcanic sites in the Pogórze Kaczawskie region, SW Poland. Geotourism (Geoturystyka) 2014, 38–39, 3–18. [CrossRef]
3. Suzuki, D.A.; Takagi, H. Evaluation of geosite for sustainable planning and management in geotourism. Geoheritage 2018, 10, 123–135. [CrossRef]
4. Štrba, L.; Rybár, P.; Baláž, B.; Molokáč, M.; Hvizdák, L.; Kršák, B.; Lukáč, M.; Muchová, L.; Tometzová, D.; Ferenčíková, D. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [CrossRef]
5. Štrba, L.; Kršák, B.; Sidor, C. Motivation of general public (geo)tourists to visit geosites: A case study from Slovakia. In Proceedings of the GEOTOUR 2016—International Conference on Geotourism, Mining Tourism, Sustainable Development, and Environmental Protection, Florence, Italy, 18–20 October 2016; Ugolini, F., Marchi, V., Trampeiti, S., Pearlmutter, D., Raschi, A., Eds.; IBIMET-CNR: Florence, Italy, 2016; pp. 206–209.

6. Štrba, L. Analysis of criteria affecting geosite visits by general public: A case of Slovak (geo)tourists. Geoheritage 2018, 1–10. [CrossRef]

7. Reynard, E. Geosite. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Routledge: London, UK, 2014; Volume 1.

8. Bruschi, V.M.; Cendrero, A.; Albertos, J.A.C. A statistical approach to the validation and optimization of geotourism assessment procedures. Geoheritage 2011, 3, 131–149. [CrossRef]

9. Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulos, G. Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage 2012, 4, 177–193. [CrossRef]

10. Pereira, P.; Pereira, D.I.; Alves, M.I.C. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [CrossRef]

11. Pralong, J.P. A method for assessing the tourist potential and use of geomorphological sites. Géomorphol. Relief Process. Environ. 2005, 3, 189–196. [CrossRef]

12. Reynard, E.; Fontana, G.; Kozliki, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [CrossRef]

13. Serrano, E.; González, J. Assessment of geomorphosites in natural protected areas: The Picos de Europa National Park (Spain). Geomorphol. Relief Process. Environ. 2005, 3, 197–208. [CrossRef]

14. Štrba, L.; Rybár, P. Revision of “Assessment of attractiveness (value) of geotouristic objects”. Acta Geoturistica 2015, 1, 30–40.

15. Vujčić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (GAM) and its application on Fruška Gora Mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–377. [CrossRef]

16. Zouros, N. Geomorphosite assessment and management in protected areas of Greece. The case of the Lesvos Island—Coastal geomorphosites. Geogr. Helv. 2007, 62, 169–180. [CrossRef]

17. Štrba, L.; Kršák, B.; Sidor, C. Implementation possibilities of quantitative assessment model used for natural-based tourism forms into destination business intelligence system: Theoretical review. Econ. Bus. Manag. 2017, 15, 49–58.

18. Rybár, P. Assessment of attractiveness (value) of geotouristic objects. Acta Geoturistica 2010, 1, 13–21.

19. Doktor, M.; Miškiewicz, K.; Welc, E.W.; Mayer, W. Criteria of geotourism valorization specified for various recipients. Geotourism (Geoturystyka) 2015, 42–43, 25–38. [CrossRef]

20. Dowling, R.K. Geotourism’s global growth. Geoheritage 2011, 3, 1–13. [CrossRef]

21. Hose, T.A. Selling the story of Britain’s Stone. Environ. Interpretr. 1995, 10, 16–17.

22. Hose, T.A. 3G’s for modern geotourism. Geoheritage 2012, 4, 7–24. [CrossRef]

23. Newsome, D.; Dowling, R.K. Setting an agenda for geotourism. In Geotourism: The Tourism of Geology and Landscape; Newsome, D., Dowling, R.K., Eds.; Good Fellow Publishers: Oxford, UK, 2010. 42–43, 25–38. [CrossRef]

24. Geoheritage Principles. Available online: http://www.nationalgeographic.com/travel/geotourism/geotourism-principles/ (accessed on 10 May 2018).

25. Arouca Declaration. Available online: https://www.dropbox.com/s/q41gbd0cp2nt73o/Declaration_Arouca_75BEN%5D.pdf?dl=0 (accessed on 9 May 2018).

26. Hose, T.A. Three centuries (1670–1970) of appreciating physical landscapes. In Appreciating Physical Landscapes: Three Hundred Years of Geotourism; Hose, T.A., Ed.; The Geological Society: London, UK, 2016.

27. Rodrigues, M.L.; Machado, C.R.; Freire, E. Geotourism routes in urban areas: A preliminary approach to the Lisbon geoheritage survey. Geof. Tour. Geosites 2011, 8, 281–294.

28. Del Lama, E.A.; de La Corte Bacci, D.; Martins, L.; da Glória Motta Garcia, M.; Dehira, L.K. Urban geotourism and the old centre of São Paulo City, Brazil. Geoheritage 2015, 7, 147–164. [CrossRef]

29. Csorvási, N. Motivation for participating in Geotours. In Proceedings of the GEOTOUR 2016—International Conference on Geotourism, Mining Tourism, Sustainable Development, and Environmental Protection, Florence, Italy, 18–20 October 2016; Ugolini, F., Marchi, V., Trampeiti, S., Pearlmutter, D., Raschi, A., Eds.; IBIMET-CNR: Florence, Italy, 2016; pp. 200–205.
30. Štrba, L.; Kršáková, B.; Sidor, C. Factors perceived by tourists during geosite visits: A case study from Slovakia. In Proceedings of the Book—IX International Tourism Congress (ITC’17), Peniche, Portugal, 29–30 November 2017; IPLeiria: Peniche, Portugal, 2017; pp. 569–578.

31. Fuchs, M.; Abadzhiev, A.; Svensson, B.; Hopken, W.; Lexhagen, M. A knowledge destination framework for tourism sustainability: A business intelligence application from Sweden. *Tourism* 2013, 61, 121–148.

32. Kršáková, B.; Sidor, C.; Štrba, L.; Molokáč, M.; Hvizdák, L.; Blišťan, P.; Kol’veková, G.; Liptáková, E.; Delina, R.; Mesároš, P. Maximizing the potential of mining tourism through knowledge infrastructures. *Acta Montan. Slov.* 2015, 20, 319–325.

33. Štrba, L.; Kršáková, B.; Sidor, C.; Blišťan, P. Destinations business information systems for smart destinations: The case study of Kosice County. *Int. J. Bus. Manag. Stud.* 2016, 5, 177–180.

34. Hassan, S.S.; Kowalczyk, A.; Einafshar, A. A tourism demand based method of geosites assessments on geotourism prioritization modeling: The case of Razavi Khorasan Province. *J. Hosp. Manag. Tour.* 2012, 3, 82–94. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).