A further generalization of random self-decomposability

S. Satheesha,*, E. Sandhyab,**

aNEELOLPALAM, S. N. Park Road, Trichur-680 004, India.
bDepartment of Statistics, Prajyoti Niketan College, Padukkad, Trichur-680 301, India.

Abstract

The notion of random self-decomposability is generalized further. The notion is then extended to non-negative integer-valued distributions.

Keywords: self-decomposability, random self-decomposability, random infinite divisibility, geometric infinite divisibility, Harris infinite divisibility, geometric distribution, Harris distribution, Laplace transform, characteristic function.

1. Introduction

Recently the notion of random self-decomposability (RSD) has been introduced by Kozubowski and Podgórski \cite{4} generalizing SD. They showed that if a CF is RSD then it is both SD and geometrically infinitely divisible (GID). Satheesh and Sandhya \cite{9} generalized this notion to Harris-RSD (HRSD) and showed that if a CF is HRSD then it is both SD and Harris-ID (HID). With this nomenclature RSD is geometric-RSD (GRSD). Here we explore further generalizations of HRSD viz. NRSD and \(\varphi \)RSD, motivated by the elegant Proposition 2.3 in Kozubowski and Podgórski \cite{4}.

*Corresponding author e-mail: ssatheesh1963@yahoo.co.in
**e-mail: esandhya@hotmail.com
We need the notion of \mathcal{N}-infinitely divisible (\mathcal{NID}) laws here. Let φ be a Laplace transform (LT) that is also a standard solution to the Poincare equation, $\varphi(t) = P(\varphi(\theta t)), \theta \in \Theta$ where P is a probability generating function (PGF) (see Gnedenko and Korolev, [3], p.140).

Definition 1.1. Let φ be a standard solution to the Poincare equation and N_θ a positive integer-valued random variable (r.v.) having finite mean with PGF $P_\theta(s) = \varphi(\frac{1}{\theta} \varphi^{-1}(s)), \theta \in \Theta \subseteq (0, 1)$. A characteristic function (CF) $f(t)$ is \mathcal{NID} if for each $\theta \in \Theta$ there exists a CF $f_\theta(t)$ that is independent of N_θ such that $f(t) = P_\theta(f_\theta(t))$, for all $t \in \mathbb{R}$.

Theorem 1.1. (Gnedenko and Korolev, 1996, Theorem 4.6.3 on p.147) Let φ be a standard solution to the Poincare equation. A CF $f(t)$ is \mathcal{NID} iff it admits the representation $f(t) = \varphi(- \log h(t))$ where $h(t)$ is a CF that is ID. $f(t)$ is \mathcal{N} stable if $h(t)$ is stable (p.151, [3]).

In the next section we describe \mathcal{N}_{RSD} laws and its discrete analogue in Section 3. In Section 4 we describe φRSD laws and its discrete analogue.

2. \mathcal{N}_{RSD} distributions

Definition 2.1. A CF $f(t)$ is \mathcal{N}_{RSD} if for each $c \in (0, 1]$ and each $\theta \in [0, 1)$

$$f_{c,\theta}(t) = f_c(t).f_\theta(ct) \quad (1)$$

is a CF, where $f_c(t)$ and $f_\theta(t)$ are given by

$$f_c(t) = \frac{f(t)}{f(ct)} \quad (2)$$

$$f_\theta(t) = \varphi(\theta \varphi^{-1}(f(t))) \quad (3)$$

φ being a standard solution to the Poincare equation.
We now notice that the discussion leading to conceiving and proving Proposition 2.3 in Kozubowski and Podgórski [4] holds in this generalization as well. When \(c = 1\) equation (1) becomes

\[
f_{1,\theta}(t) = f_\theta(t) = \varphi\{\theta\varphi^{-1}(f(t))\}
\]

(4)

Or

\[
f(t) = \varphi\{\frac{1}{\theta}\varphi^{-1}(f_\theta(t))\}
\]

(5)

for each \(\theta \in [0, 1)\). That is \(f(t)\) is \(\mathcal{NID}\) and hence has no real zeroes. On the other hand since \(\varphi(0) = 1\), when \(\theta = 0\) equation (1) implies

\[
f_{c,\theta}(t) = f_c(t) = \frac{f(t)}{f(ct)}
\]

(6)

is a CF for each \(c \in (0, 1]\). That is \(f(t)\) is \(SD\).

Conversely, if \(f(t)\) is \(SD\) then for each \(c \in (0, 1]\) the function \(f_c(t)\) in (2) is a genuine CF and similarly if \(f(t)\) is \(\mathcal{NID}\) then for each \(\theta \in [0, 1)\) the function \(f_\theta(t)\) in (5) also is a genuine CF. Consequently (1) is a well defined CF.

Remark 2.1 It may be noted that for the CF \(f(t)\) to be \(SD\) we only require that (a result due to Biggins and Shanbhag see Fosum [2]) (2) holds for all \(c\) in some left neighbourhood of 1. Thus we may simplify the requirement here as: A CF \(f(t)\) is \(\mathcal{NRSID}\) if for each \(c \in (a, 1]\), and each \(\theta \in [0, 1)\) (1) holds, where \(0 < a < 1\).

Remark 2.2 In fact we may have apparently still weaker requirement in describing CFs that are \(\mathcal{NRSID}\) as follows. A CF \(f(t)\) is \(\mathcal{NRSID}\) if for each \(c \in (a, 1]\), and each \(\theta \in (0, 1)\) (1) holds, where \(0 < a < 1\). Now letting \(c \uparrow 1\) we have \(f(t)\) is \(\mathcal{NID}\). On the other hand letting \(\theta \downarrow 0\) we have \(f(t)\) is \(SD\) since \(\lim_{\theta \downarrow 0} f_\theta(t) = 1\), see e.g Gnedenko and Korolev [3], page 149.
Example 2.1 For the LT $\varphi(s) = (1+s)^{-\alpha}$, $\alpha > 0$, $\varphi(\varphi^{-1}(s)/p)$ is a PGF of a non-degenerate distribution only if $\alpha = \frac{1}{k}$, $k \geq 1$ integer, see Example 1 in Bunge [1] or Corollary 4.5 in Satheesh et al. [6]. This PGF is that of Harris distribution (Satheesh et al. [7]) and the corresponding $\mathcal{N}RS\mathcal{D}$ distribution is $HR\mathcal{D}$. When $k = 1$ above, we have $GR\mathcal{D}$ ($R\mathcal{D}$ distributions of Kozubowski and Podgórski [4]).

Example 2.2 Invoking Theorem 1.1 when $\varphi(s)$ is SD and $\log h(t) = -\lambda |t|^\alpha$ we have, for each $c \in (a, 1]$ $f(t) = \varphi(|t|^\alpha) = \varphi(c|t|^\alpha).\varphi_c(|t|^\alpha).$ (7)

That is $f(t)$ is both SD and \mathcal{N}-strictly stable. Thus we have a good collection of CFs that are both SD and HID and thus $HR\mathcal{D}$. Kozubowski and Podgórski [4] present examples of a variety of CFs $h(t)$ that are stable.

3. Discrete analogue of $\mathcal{N}RS\mathcal{D}$ distributions

Steutel and van Harn [10] had described discrete SD (DSD) distributions. Satheesh and Sandhya [9] have described $DHR\mathcal{D}$, discrete analogue of $HR\mathcal{D}$ distributions. We now introduce discrete $\mathcal{N}RS\mathcal{D}$ ($DNRS\mathcal{D}$) distributions.

Definition 3.1. (Satheesh et al. [7]) Let φ be a standard solution to the Poincare equation and N_θ a positive integer-valued r.v. having finite mean with PGF $P_\theta(s) = \varphi(\frac{1}{\theta}\varphi^{-1}(s))$, $\theta \in \Theta \subseteq (0, 1)$. A PGF $P(s)$ is $DNID$ if for each $\theta \in \Theta$ there exists a PGF $Q_\theta(s)$ that is independent of N_θ such that $P(s) = P_\theta(Q_\theta(s))$, for all $|s| \leq 1$.
Theorem 3.1. (Satheesh et al. [7]) Let \(\varphi \) be a standard solution to the Poincare equation. A PGF \(P(s) \) is DNID iff it admits the representation \(P(s) = \varphi(-\log R(s)) \) where \(R(s) \) is a PGF that is DID.

Definition 3.2. A PGF \(P(s) \) is DNRSD if for each \(c \in (0, 1] \) and each \(\theta \in [0, 1) \)

\[
P_{c,\theta}(s) = P_c(s)Q_\theta(1 - c + cs)
\]

is a PGF, where \(P_c(s) \) and \(Q_\theta(s) \) are given by

\[
P_c(s) = \frac{P(s)}{P(1 - c + cs)}
\]
\[
Q_\theta(s) = \varphi\{\theta\varphi^{-1}(P(s))\},
\]

\(\varphi \) being a standard solution to the Poincare equation.

We may now proceed as in Section 2 describing the relation between DSD, DNID and DNRSD distributions. Further, remarks similar to Remarks 2.1 and 2.2 are relevant here also and Examples on the lines of Example 2.1 nad 2.2 can also be discussed.

4. \(\varphi \)RSD distributions

A further generalization of NRSD distributions is possible invoking the notion of \(\varphi \)ID law that generalizes \(\mathcal{N} \)ID laws, see Satheesh [5] and Satheesh et al. [7, 8] for its discrete analogue. We first describe the discrete case.

Definition 4.1. (Satheesh et al. [7]) Let \(\varphi \) be a LT. A PGF \(P(s) \) is D\(\varphi \)ID if there exists a sequence \(\{\theta_n\} \downarrow 0 \) as \(n \to \infty \) and a sequence of PGFs \(Q_n(s) \) such that

\[
P(s) = \lim_{n \to \infty} \varphi\left(1 - \frac{Q_n(s)}{\theta_n}\right).
\]
Theorem 4.1. (Satheesh et al. [8]) Let \(\{Q_\theta(s), \theta \in \Theta\} \) be a family of PGFs and \(\varphi \) a LT. Then
\[
\lim_{\theta \downarrow 0} \varphi\left(\frac{1 - Q_\theta(s)}{\theta}\right)
\]
exists and is \(D\varphi ID \) iff there exists a PGF \(R(s) \) that is DID such that
\[
\lim_{\theta \downarrow 0} \frac{1 - Q_\theta(s)}{\theta} = -\log R(s)
\]

Definition 4.2. A PGF \(P(s) \) is \(D\varphi RSD \) if for each \(c \in (a,1) \) and each \(\theta \in (0,b), 0 < a, b < 1 \)
\[
P_{c,\theta}(s) = P_c(s).Q_\theta(1 - c + cs)
\]
is a PGF, where \(P_c(s) \) and \(Q_\theta(s) \) are given by
\[
P_c(s) = \frac{P(s)}{P(1 - c + cs)}
\]
\[
Q_\theta(s) = 1 - \theta \varphi^{-1}(P(s)).
\]

The restriction of \(\alpha = \frac{1}{k}, k \geq 1 \) integer in Example 2.1 is not in this notion. We may now proceed as in Section 3 describing the relation between \(DSD, D\varphi ID \) and \(D\varphi RSD \) distributions. This has been possible since
\[
\lim_{\theta \downarrow 0} Q_\theta(t) = 1.
\]
The case of \(\varphi RSD \) follows on similar lines.

References

[1] Bunge, J (1996), Composition semi-groups and random stability, \textit{Ann. Probab.}, \textbf{24}, 1476–1489.

[2] Fosum, E B (1995), A characterization of discrete self-decomposable distributions in terms of survival distributions and the self-decomposability of discrete logarithmic distribution, \textit{Sankhya}, \textbf{57}, 317–341.
[3] Gnedenko, B V and Korolev, V Yu. (1996), Random Summation, limit Theorems and Applications, CRC Press, Boca Raton.

[4] Kozubowski, T J and Podgórski, K (2010), Random self-decomposability and autoregressive processes, *Statis. Probab. Lett.*, doi:10.1016/j.spl.2010.06.014.

[5] Satheesh, S (2004), Another look at random infinite divisibility, *Statist. Meth.*, 6, 123–144.

[6] Satheesh, S; Nair, N U and Sandhya, E (2002), stability of random sums, *Stoch. Model. Appl.*, 5, 17–26.

[7] Satheesh, S; Sandhya, E and Lovely, A T (2010a), Limit distributions of random sums of \mathbb{Z}_+-valued random variables, *Commu. Statist.-Theor. Meth.*, 39, 1979–1984.

[8] Satheesh, S; Sandhya, E and Lovely, A T (2010b), Random infinite divisibility on \mathbb{Z}_+ and generalized INAR models, *ProbStat Forum*, 3, 108–117.

[9] Satheesh, S and Sandhya, E (2010), A generalization of random self-decomposability, *submitted*, http://arxiv.org/abs/1009.5141v1.

[10] Steutel, F W and van Harn, K (1979), Discrete analogues of selfdecomposability and stability, *Ann. Probab.*, 7, 893–899.