Incidence and Antibiotic Susceptibility Profile of Pasteurella maltocida Isolates Isolated from Goats in Savar Area of Bangladesh

Snigdha Joyti Ahmed, Md. Ashraful Hasan, Mohammad Rafiqul Islam, Mohammad Mahfuz Ali Khan Shawan, Md. Forhad Uddin, Md. Nazibur Rahman and Md. Mozammel Hossain

ABSTRACT
In Bangladesh, goat farming is substantially hampered due to outbreaks of respiratory infectious diseases like pneumonia causing morbidity, mortality and economic losses in Black Bengal goats. Among the infectious agents, Pasteurella maltocida is more frequently associated with the outbreak of acute pneumonia and death of goats. Hence, the occurrence of P. maltocida in the goat population should be regularly investigated to effectively control the disease. Furthermore, antibiotic resistance/sensitivity profiling of P. maltocida also needs to be regularly updated for designing or updating of efficient treatment strategy. In this investigation, 150 nasal swab samples from goats were collected from Savar region of Bangladesh and on the basis of colony, staining and biochemical characteristics P. maltocida were isolated in 25 samples. Disc diffusion assay was used to determine the antimicrobial susceptibility of 20 isolates against 9 different antimicrobial agents. This study revealed that the rate of P. maltocida isolated from goats in Savar area was about 16.67%. The incidence of P. maltocida was higher in goats affected with acute pneumonia than apparently healthy goats. P. maltocida was fully resistant to penicillin and amoxicillin whereas showed high sensitivity towards ciprofloxacin followed by streptomycin and neomycin. This study suggests that ciprofloxacin, streptomycin and neomycin are potent anti-Pasteurella maltocida drugs.

Key words: Antibiotics, Goat, Pasteurella multocida, Pneumonia, Prevalence, Resistance.

INTRODUCTION
Goat rearing is one of the profitable sectors of livestock and it meets the increasing protein demand of gradually increasing population of Bangladesh (Husain, 1993). Black Bengal goat known as “poor man’s” cow has importance in rural economy and can be considered as a tool for poverty reduction in Bangladesh (Husain, 1993; Alam, 1993). However, goat farming is substantially hampered due to outbreaks of diseases such as pneumonia, goat pox, contagious ecthyma, enterotoxaemia, tetanus, foot and mouth disease, brucellosis, mastitis and metritis, mycotic diseases and ricketical infections (Siddiky, 2017). Respiratory infectious disease like pneumonia is characterized by anorexia, painful coughing, dyspnea, mucopurulent nasal discharge and depression (Ackermann, 2000). In Bangladesh, pneumonia causes high mortality and poor production of goats incurring a significant national economic loss. Poor managemental condition, transportation stress, overcrowding pens, sudden environmental changes, poor housing conditions, concurrent viral infection (e.g. parainfluenza-3 virus), lung parasites and other stressful conditions increase goats’ susceptibility to pneumonia (Davies et al., 1997). Pneumonia is caused by both infectious and noninfectious agents. Among the infectious agents, Pasteurella maltocida more frequently causes the outbreak of acute pneumonia and death of goats (Falade, 2002). Pasteurella multocida is commonly found in the upper respiratory tract of healthy goats (Biberstein, 1978; Mutters, 1989), which can also be present as a commensal in the nasopharynx of apparently healthy animals and as a primary or secondary pathogen in several animal species (Rhimler and Rhoades, 1989). It is one of the most common pathogens of sheep and goats throughout the world where outbreaks usually lead to high mortality and great economic loss to the ruminant industry (FAO, 1991; Gilmour, 1991). A study in Bangladesh showed that economic losses resulting from haemorrhagic septicaemia, one of the most economically important pasteurelloses was $148 million annually (Ahmed, 1996). So, the prevalence of P. multocida in the goat population should be regularly investigated to control the disease. Furthermore, antibiotic resistance/sensitivity profiling of P. multocida also needs to be regularly updated for designing or updating of effective treatment strategy. Thus, the objectives of this research project were to isolate P. multocida from apparently healthy and diseased goats in selected areas in Bangladesh and to characterize them at the cultural, cellular and biochemical level, to assess the incidence of P. multocida in goats and to determine the antibiotic sensitivity profile of the isolated P. multocida.
MATERIALS AND METHODS

Sample collection
In this study, a total of 150 nasal swab samples were collected from goats reared at Savar animal farm mainly and some of the samples were collected from the slaughter house of Savar bazar and Nabinagar bazar, Savar, Dhaka.

Isolation and identification of bacteria
In the bacteriology lab, nutrient broth was inoculated with each sample and was incubated for 24 hours at 37°C with 5% CO₂ in the cabondioxide incubator. From the nutrient broth, subcultures were introduced into nutrient agar and incubated at 37°C for overnight in the presence of 5% CO₂ in the same incubator. The colony of *P. multocida* was picked up according to Shivachandra et al. (2006) and Tabatabai (2008). The selective medium such blood agar was used to subculture the *P. multocida* colony. The identification of the organisms was performed by the tests including oxidase, catalase, indole, methyl red-Voges-Proskauer, citrate utilization, H₂S production and carbohydrate fermentation as described by Ievy et al. (2013) and Christensen et al. (2014). On the basis of colony, staining characters and biochemical tests *P. multocida* strains were isolated in 25 samples. Representative samples from each group of bacteria were stained for identification.

Antibiotics sensitivity test
Disc diffusion assay was used to determine the antimicrobial susceptibility of 20 isolates against 9 different antimicrobial agents such as: Ciprofloxacin (CIP 5 µg), Amoxycillin (AMX 30 µg), Streptomycin (S 10 µg), Kanamycin (K 30 µg), Penicillin (P 10 µg), Erythromycin (E 15 µg), Tetracycline (TE 30 µg), Gentamicin (GEN 10 µg), Neomycin (N 30 µg), following the standard methods. The samples were inoculated on Muller-Hinton agar (MHA). Disks containing the antimicrobial agents were applied within 15 minutes of inoculating the MHA plate and the plates were incubated at 37°C for 24 hours in an incubator (Royalcare England. DNP 9022A). The diameters of the zones of inhibition were measured with a ruler or calipers (NCCLS, 2003).

RESULTS AND DISCUSSION

Respiratory infections are complex syndrome and its etiology involves many different factors including stress factors, environmental factors, bacterial and viral infections. Pneumonia occurring due to bacteria or others is generally regarded as the most frequent and serious cause of morbidity, mortality and economic losses associated with respiratory diseases in Black Bengal goats (Husain et al., 1995). *P. multocida* was considered among the primary etiological agents that incriminated pneumonia in goats (FAO, 2003).

In this study, the isolates matched the expected result of the biochemical tests of *Pasteurella multocida*. The colonial morphology of the isolated isolates was smooth mucoid or rough colony round 1-2 mm in diameter, yellowish, glistening, translucent and non haemolytic. Typically, *P. multocida* is found in goats in association with other bacteria which are usually presented in large excess, so efficient isolation of *P. multocida* requires a selective medium. Consequently, we assessed the value of selective medium for *P. multocida* described by Ruoff (1999) and FAO (2003) which was used to isolate *P. multocida* from the nasal swabs of goats (Ruoff, 1999; FAO, 2003). There was no growth of the isolates on MacConkey agar (Wijewardana et al., 1986). The microscopical examination proved that it was Gram negative coccobacilli, occured singly, in pairs or less frequently in short chain. *P. multocida* showed bipolarity with Leishman’s stain (Quinn et al., 1994). Our study has shown that *P. multocida* colonized at the nasal passages of apparently healthy and clinically sick goats. These results are in agreement with Momin et al. (2011) where they isolated *P. multocida* from the pneumonic goats’ nasal swabs.

In this study, the rate of *P. multocida* isolation varies among diseased dead or slaughter goats, diseased living Cip = Ciprofloxacin, Amo = Amoxycillin, Step = Streptomycin,Ka = Kanamycin, Ery = Erythromycin, Tet = Tetracycline, Gen = Gentamycin, Neo = Neomycin, Pen G = Penicillin G.

Fig 1: Antibiotic resistance profile of *P. multocida* from Savar area samples.
Incidence and Antibiotic Susceptibility Profile of Pasteurella Maltocida Isolates Isolated from Goats in Savar Area of Bangladesh

Table 1: Incidence of *P. multocida* in different areas of Savar.

Area of sample collection	Apparently healthy	Diseased	Total			
	No. of Subject	Positive No.	% of sample	No. of Subject	Positive No.	% of sample
Savar animal farm	32	2	6.25%	38	8	21.05%
Savar slaughter house	19	1	5.26%	21	7	18.18%
Nabinagar slaughter house	17	2	11.76%	23	5	24.39%
Total	68	5	7.35%	82	20	24.39%

Table 2: Incidence of *P. multocida* in apparently healthy and disease (Slaughter or dead and living) goats.

Condition of the examined Sample	Apparently healthy	Diseased	Total			
	No. of Subject	Positive No.	% of sample	No. of Subject	Positive No.	% of sample
Slaughter or dead	28	3	10.71%	38	12	31.58%
Living	40	2	5%	44	8	18.18%
Total	68	5	7.35%	82	20	24.39%

Concerning this study, the rate of *P. multocida* isolation from the diseased goats reached 24.30% (20 out of 82; a rate of 24.39%) and the rate of *P. multocida* isolation from the healthy goats reached 7.35% (5 out of 68; a rate of 7.35%) (Table 2). From this result, we can conclude that the occurrence rate of *P. multocida* in diseased or dead goats with pneumonia is much higher than the apparently healthy goats. These results are nearly similar to that obtained by Momin et al. (2011) who recovered *P. multocida* from black Bengal goats with a rate of 20% and Rashid et al. (2013) who recovered *P. multocida* from goat lungs with a rate of 15% respectively. However, the overall prevalence of *P. multocida* in goats was 31.4% observed by Assefa et al. (2018) contrasting our result.

Antibiotics are extremely used in modern farm animal production. The use of these chemical agents should be based on an accurate diagnosis since there is an increased incidence of bacterial resistance to antibiotics in humans. This phenomenon was attributed to the use of anti-microbial drugs in food-producing animals. Also, there is a concern about possible residues in animal products (Refsdal, 2000). In this investigation, a total of 20 isolated *P. multocida* isolates were randomly selected among 25 isolates for antibiotic sensitivity tests against commonly used antibacterial agents of different groups. Antibiotic resistance profiles of the isolates were shown in Fig 1. This investigation revealed that potential sensitive antibiotics against *P. multocida* were ciprofloxacin (90%), streptomycin (75%) and neomycin (60%), whereas gentamycin (85%), tetracycline (70%), erythromycin (70%) were intermediate sensitive to *P. multocida*. Notably, Penicillin G was totally resistant for *P. multocida*. This finding is supported by the reports of Kamruzzaman et al. (2016) and Albasha and Al-Sultan (2018) who added that ciprofloxacin, azithromycin and streptomycin were the best drugs of choice against infection in case of pneumonia goats whereas Penicillin G and amoxicillin were the less effective antibiotics.

Conclusion

This study states that the incidence of *P. multocida* is higher in diseased goats (24.39%) with acute pneumonia than apparently healthy goats (7.35%) and ciprofloxacin, streptomycin and neomycin should be considered as potent anti-*P. multocida* drugs.

References

Ackermann, M.R., Brogden K.A. (2000). Response of the ruminant respiratory tract to *Mannheimia* (Pasteurella) haemolytica. Microbes and Infection. 2: 1079-1088.

Ahmed, S. (1996). Status of some bacterial diseases of animals in Bangladesh. Asian Livestock. 21: 112-114.

Alam, J. (1993). Livestock: The sector for more investment in Bangladesh. Asian Livestock. 7: 77-78.

Albasha, M.A., Al-Sultan, I.I. (2018). Seasonal isolation and identification with antibiotic susceptibility patterns of Pasteurella multocida and Mannheimia haemolytica from goats in dry and wet seasons in Kelantan, Malaysia. Indian Journal of Applied Research. 8(7): 8-11.

Assefa, G.A., Kelkay, M.Z. (2018). Goat pasteurellosis: serological analysis of circulating Pasteurella sertoyotes in Tanqua A beregelle and Kola Tembien Districts, Northern Ethiopia. BMC Research Notes. 11: 485.

Biberstein, E.L. (1978). The pasteurellosis In: Handbook of Zoonoses. CRC Press, Florida, pp: 495-516.

Cristensen, H., Nicklas, W., Bisgaard, M. (2014). Investigation of *T. alvinetum* in the family Pasteurellaceae isolated from Syrian and European hamsters and proposal of Mesocricetibacter intestinal gen. nov. sp. nov and Cricetobacter osteomyelitidis gen. nov. sp. Nov. International Journal Systematic and Evolutionary Microbiology. 64: 3636-3643.

Davies, R.L., Arkinsaw, S., Selander, R.K. (1997). Evolutionary genetics of Pasteurella haemolytica isolates recovered from cattle and sheep. Infection and Immunity. 65: 3585-3593.
Incidence and Antibiotic Susceptibility Profile of Pasteurella Maltocida Isolates Isolated from Goats in Savar Area of Bangladesh

Falade, S. (2002). Further Pasteurella isolates from the republic of Zambia. Tropical Veterinarian. 20: 130-131.

FAO (Food and Agricultural Organization of the United Nations). (1991). Asian Livestock Monthly Technical Magazine of the FAO Animal Product and Health Commission for Asia and the Pacific (APHCA). 8: 85-87.

FAO. (2003). FAO Statistics on Livestock Population of Countries in Asia Pacific Region. FAO Quarterly Bulletin of Statistics, Rome, Italy.

Gilmour N.J.L., Angus K.W., Gilmour, J.S. (1991). Disease of Sheep. Eds., Martin, W.B., I.D. Aitken, Blackwell Scientific Publications. 58(3/4): 180-185.

Husain, S.S. (1993). A study on the Productive Performance and Genetic Potential of Black Bengal Goats. Ph.D. Thesis, Bangladesh Agricultural University, Mymensingh.

Husain, S.S., Islam, A.B.M.M., Horset, P. (1995). Effect of different factors on pre-weaning survivality of Black Bengal kids. Small Ruminant Research. 18: 1-5.

Ievy, S., Khan, M.R.F., Islam, M.A., Rhaman, M.B. (2013). Isolation and Identification of P. multocida from chicken for the preparation of oil adjuvanted vaccine. Microbes and Health. 2(1): 1-4.

Kamruzzaman M., Islam, M., Hossain, M.M., Hassan, M.K., Kabir, M.H.B., Sabrin, M.S., Khan, M.S.R. (2016). Isolation, Characterization and Antibiogram Study of Pasteurella multocida Isolated from Ducks of Kishoreganj District, Bangladesh. International Journal of Animal Resources. 1(1): 69-76.

Momin, M.A., Islam, M.A., Khatun, M.M., Rahman, M.M., Islam, M.A. (2011). Characterization of bacteria associated with pneumonia in black Bengal goats. Bangladesh Journal of Veterinary Medicine. 9: 67–71.

Mutters, R., Mannheim, W., Bisgard, M. (1989). Taxonomy of the group, In: Pasteurella and Pasteurellosis edited by C. Adlam and J.M. Rutter (eds.). Academic Press, London, pp: 3-34.

NCCLS. (2003). Performance standards for antimicrobial disk susceptibility tests. Approved standard, 8th edn. NCCLS document M2-A8. NCCLS, Wayne, Pa, USA.

Quinn, P.J., Carter, M.E., Markey, K.B., Carter, G.R. (1994). Bacterial pathogens: Microscopy culture and identification. In clinical Veterinary microbiology London: Wolfe publishing, pp: 21-60.

Rashid, M.M., Ferdoush, M.J., Dipi, M., Roy, P., Rahman, M.M., Hossain, M.I., Hossain, M.M. (2013). Bacteriological and Pathological Investigation of goat lung in Mymensingh and determination of antibiotic sensivity. Bangladesh Journal of Veterinary Medicine. 11(2): 159-166.

Rhimler, R.B., Rhoades, K.R. (1989). Pasteurella multocida. In: Adlam, C.; Rutter, J.M. ed. Pasteurella and Pasteurellosis Academic Press Limited, London, pp: 37-73.

Ruoff, Whiley, Brightton. (1999). In Murray, Baron, Pfaller, Tenover and Yolken (ed.). Manual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D.C.

Shivachandra, S.B., Kumar, A.A., Gautam, R., Joseph, S., Sexena, M.K., Chaudhuri, P., Srivastava, S.K. (2006). Identification of avian toxicogenic strains of P. multocida in India by conventional PCR assays. Veterinary Journal. 172: 561-564.

Siddiky, N.A. (2017). Sustainable goat farming for livelihood improvement in South Asia. SAARC Agriculture Centre (SAC), BARC Complex, New Airport Road, Farmgate, Dhaka 1215, Bangladesh.

Tabatabai, L.B. (2008). Identification of P. multocida in CHAPS soluble outer membrane proteins. Avian Diseases. 52: 147-149.

Wijewardana, T.G., DeAlwis, M.C.L., Bastianz, H.L.G. (1986). Biochemical and Pathogenicity studies on strains of P. multocida isolated from carrier animals and outbreaks of haemorrhagic septicaemia. Sri Lanka Veterinary Journal. 34: 43-57.