Physical measurements and patients’ perception of excess skin on arms and thighs before and after bariatric surgery

Jonas Ockell1 · Christina Biörserud1,2 · Trude Staalesen1 · Monika Fagevik Olsén2,3 · Anna Elander1

Received: 28 October 2021 / Accepted: 21 December 2021 / Published online: 13 January 2022
© The Author(s) 2022

Abstract

Background Bariatric surgery is an effective weight loss method for patients with obesity. One side effect of bariatric surgery is uncomfortable excess skin. Much remains to be learned about physical measurements and patients’ subjective perceptions of it. Here, we investigated the pre- to post-bariatric changes in patients’ perception and physical measurements of the skin on the arms and thighs, in order to find possible subgroups especially affected by post-operative excess skin and to identify predicting factors.

Methods One hundred forty-seven patients eligible for bariatric surgery completed the Sahlgrenska Excess Skin Questionnaire (SESQ) and underwent measurements of their skin before and 18 months after the procedure.

Results Although most physical measurements decreased post-operatively, many patients reported increased discomfort. We identified one subgroup particularly prone to report excess skin on the arms post-operatively: women with high discomfort from excess skin on the arms and high body mass index (BMI), pre-operatively. Ptosis of the excess skin seems to be a feasible measurement for predicting post-operative discomfort. For every centimetre of ptosis pre-operatively, patients had 1.37- and 1.31-fold higher odds of achieving a score for post-operative discomfort from excess skin on the upper arms and thighs, respectively, of ≥ 6 (on a 0–10 scale).

Conclusions We identified a subgroup especially affected by discomforting excess skin on arms and thighs after weight loss. Furthermore, we suggest a pre-operative pro-operative ptosis measuring to predict post-operative discomfort level. The result of this study further increases the knowledge of excess skin and should be useful in further improving patient education.

Level of Evidence: Level III, risk / prognostic study.

Keywords Excess skin · Body contouring surgery · Bariatric surgery · Reconstructive plastic surgery · Surplus skin

Introduction

Bariatric surgery is an effective method for reducing a patient’s body weight and subsequently improving his or her health. Consequently, it has become a common treatment for obesity worldwide [1–4]. As the number of surgeries increases, however, so does the incidence of adverse effects associated with massive weight loss post-operatively, i.e., excess skin [5–14]; studies have shown that up to 90% of post-bariatric patients experience excess skin [6, 8, 10, 15, 16]. Although most patients are satisfied with their bariatric surgery, some describe the resulting excess skin as “a suit of skin, several sizes too big”; it has been shown to cause significant discomfort, symptoms such as back pain, itching, and rashes, as well as difficulty in finding well-fitting clothes and intimacy issues [6, 10, 13, 15–18]. This may result in a low quality of life (QoL) and/or negative body image, and some patients even regret having undergone the operation [7, 19–24]. Several studies have shown that body-contouring surgery (BCS) is efficient in improving several aspects of QoL for post-bariatric surgery patients with uncomfortable excess skin, including physical functioning, psychological well-being, and social functioning [11, 13, 23, 25–31]. The most common locations for this excess skin are the abdomen, arms, thighs, buttocks, and chest/
breasts [5, 6, 8, 10, 11, 16, 17, 31–33]. Indeed, the abdomen, upper arms, and chest/breast are the areas for which most subjects have considered BCS [33].

Thus, in most studies, the abdomen is the most common area of the body reported with discomforting excess skin post-bariatric surgery. Staalesen et al. [16], however, showed that among women, excess skin was more commonly reported on the upper arms than on the abdomen, while for men, the upper arms and thighs were the third and fourth most common locations, respectively, for excess skin.

As described above, excess skin causes low self-esteem and QoL, which, for the arms and thighs, can be improved with corrective plastic surgery [34, 35].

Since only a few studies have examined the excess skin on the arms and thighs in post-bariatric patients, knowledge in this field is limited. Thus, the purpose of this study was to investigate, in detail, the amount and development of excess skin on the arms and thighs, both with different objective physical measurements and with subjective reports from the patients, and to evaluate the degree of discomfort that excess skin causes in bariatric patients before and 18 months after surgery. One aim of this study was to investigate whether any subgroup among the patients was especially prone to report discomforting excess skin after bariatric surgery, and another was to investigate the possibility of predicting high post-operative discomfort using the patients’ pre-operative physical measurements.

Methods

Patients

Two hundred patients with obesity eligible for bariatric surgery were included in the study between May 2009 and December 2012 at either Sahlgrenska University Hospital or at Carlanderska Hospital in Gothenburg, Sweden. The inclusion criteria were eligibility for bariatric surgery (i.e., body mass index (BMI) > 35 kg/m²), and the exclusion criteria were untreated mental illness, ongoing alcohol or drug abuse, ongoing pregnancy, and inability to understand and/or speak Swedish. Patients were provided with verbal and written information regarding the research project and gave their written consent prior to participation. The trial was registered at https://fou.nu/is/gsb/ansokan/49651, No: VFGOUGB-49651, and the local Ethics Committee in Gothenburg, Sweden approved the study (Dnr 723–08).

Of the 200 patients, 149 (109 women and 40 men) participated in the follow-up sessions, and 147 (73.5%) underwent measurements of their arms and thighs.

The patients were measured before and 18 months after their bariatric operations. The measurements followed a standardized protocol, where distances, ptosis, and loose and firm circumferences of the chin, breasts, abdomen, upper arms, inner thighs, and knees were measured. The protocol was developed, and its reliability was tested by Biörserud et al. in 2016 [36, 37]. Measurements of the arms and thighs were used in this study.

The patients also completed the Sahlgrenska Excess Skin Questionnaire (SESQ), in which they assessed any symptoms of excess skin (scores ranging from 1 “never” to 5 “all the time”), the perceived amount of excess skin on different parts of the body (ranging from “none” to “a large amount”), the subjective discomfort of the excess skin (visual analogue scale (VAS) score ranging from 0 “no problems” to 10 “worst possible problems”), and finally any desire for reconstructive surgery [38]. Only questions concerning the arms and thighs were included in this analysis.

Statistics

Means, standard deviations (SDs), medians, minima, and maxima are presented for continuous variables. For comparisons between two groups, the Mann–Whitney U test was used for continuous variables. For comparisons over time within groups, the Wilcoxon signed-rank test was used. To evaluate changes over time for categorical and dichotomous variables, the sign test was used.

Pearson’s correlation analysis (Tables 3, 4 and 5), Pitman’s non-parametric correlation test (Table 5), and Spearman’s correlation analysis (Fig. 2C–D) were used to assess the relationship between variables. The resulting correlation was defined as very low (rs < 0.25), low (rs = 0.26–0.49), moderate (rs = 0.5–0.69), high (rs = 0.70–0.89), or very high (rs = 0.9–1.00).

As described above, the patients assessed their discomfort from excess skin on an 11-grade VAS (0–10) in the SESQ. To predict post-operative discomfort, we dichotomized the data into two groups, one with patients with the least discomfort (< 6) and one with the patients with the highest discomfort (≥ 6). For predicting a discomfort level of ≥ 6 18 months after surgery with pre-surgical values, univariable logistic regression was used. The results of the logistic regression are presented as odds ratios (ORs), 95% confidence intervals, p values and areas under the receiver operating characteristic (ROC) curve (AUCs).

All significance tests were two-sided and conducted at the 5% significance level.

Results

Demographic data

Table 1 presents the demographic data for the patients who participated in the follow-up session. BMI (kg/m²) before and 18 months after bariatric surgery did not differ significantly between the two sexes. Regarding the difference in
BMI before and after bariatric surgery (Δ BMI), however, women lost significantly more weight in relation to their height than men (p = 0.02).

Upper arms

Objective measurements

The results of the objective measurements for the upper arms are presented in Table 2. The loose circumference decreased significantly for both women and men (−6.80 cm and −6.63 cm, respectively, p < 0.0001), but the difference between the sexes was not significant. Similar results were obtained for the change in the firm circumference (p < 0.001).

Pre- and post-operative SESQ-scores

The results of the patients’ self-assessments of the degree of excess skin and associated discomfort, reflected in their SESQ scores, are presented in Fig. 1. Post-operatively, women experienced significantly more excess skin and discomfort on the arms (p < 0.0005) than before bariatric surgery. Men reported significantly more excess skin on the arms after bariatric surgery than before (p = 0.022) but not significantly more associated discomfort (p = 0.15).

Correlations

Univariate correlations are presented in Tables 3, 4, and 5. Regarding the pre-operative variables (Table 3), moderate correlations were found between the loose and firm circumferences of the upper arms and pre-operative BMI. We found no correlations between age and any of the discomfort scores.

Post-operatively (Table 4), there were high to very high correlations between the loose and firm circumferences on the upper arms. Furthermore, there were high correlations between post-operative BMI and both the loose and firm circumferences on the upper arms.

Regarding both the pre-operative and post-operative variables (Table 5), moderate to high correlations were found between each pre-operative physical measurement and the corresponding post-operative measurement, and pre-operative and post-operative discomfort was moderately correlated. Finally, there were moderate correlations between pre-operative BMI and the post-operative circumference measurements of the upper arms.

Predicting post-operative discomfort of the upper arms

Independent predictors of high discomfort caused by excess skin on the arms 18 months after bariatric surgery included discomfort caused by excess skin on the arms before bariatric surgery (p < 0.0001), female sex (p = 0.0099), and high BMI before bariatric surgery (p = 0.0084; model $R^2 = 0.50$). Independent predictors of large ptosis of the skin on the arms 18 months after bariatric surgery were a large loose circumference (p < 0.0001) and ptosis (p < 0.0001) of the skin of the arms before bariatric surgery, female sex (p = 0.0016), and a high maximum BMI throughout the patient’s life (p = 0.032; model $R^2 = 0.53$).
The probability of a patient reporting a discomfort score of ≥6 (on a scale of 0–10) after bariatric surgery in relation to ptosis of the skin before bariatric surgery is presented in Fig. 2a. With ptosis of 12 cm before surgery, the probability of a discomfort score of ≥6 after surgery was approximately 80%. Prediction analysis indicated that for every centimetre of ptosis on the upper arms pre-operatively, there was a 1.37-fold higher odds of the patient scoring ≥6 for post-operative discomfort of excess skin on the upper arms on the SESQ (OR = 1.37 (1.14–1.65), p < 0.0008, AUC = 0.67).

Figure 2 also shows the relationship between ptosis of the skin and discomfort after surgery (c). The data reveal a moderate correlation (0.53) between ptosis on the arms and discomfort after surgery.

Table 2 Physical measurements of the skin on the arms and thighs before (B) and 18 months after (A) bariatric surgery and the difference between the two (Δ). LC = loose circumference, FC = firm circumference, P = ptosis. Displayed as the means (SD) and medians (min; max). The Wilcoxon signed-rank test was used to evaluate whether the differences before and after bariatric surgery (Δ P value) within groups were significant, and the Mann–Whitney U-test was used to evaluate whether the differences between sexes were significant.

	All (N = 148)	Women (N = 108)	Men (N = 40)	P value between sexes
Arms				
LC				
B	44.3 (5.1)	44.3 (5.4)	44.4 (4.4)	0.49
	43.5 (30; 66)	43.0 (30; 66)	44.0 (34; 57)	
A	37.6 (5.1)	37.6 (5.5)	37.8 (3.5)	0.45
	37.0 (26; 55)	37.0 (26; 55)	37.0 (30; 45)	
Δ	−6.75 (3.95)	<0.0001	−6.63 (4.11)	<0.0001
	−7 (−21; 3)		−6.5 (−21; 1)	
FC				
B	39.8 (4.7)	39.5 (4.8)	40.9 (4.2)	0.028
	39.0 (28; 63)	39.0 (28; 63)	40.0 (32; 53)	
A	32.2 (4.0)	31.6 (4.2)	33.7 (2.7)	0.0002
	32.0 (23; 48)	31.0 (23; 48)	34.0 (28; 40)	
Δ	−7.73 (4.29)	<0.0001	−7.15 (3.97)	<0.0001
	−7 (−24; 5)		−6.75 (−19; 1.5)	
P				
B	4.96 (2.28)	5.36 (2.20)	3.88 (2.17)	0.003
	5.00 (0; 12)	5.50 (0; 12)	3.75 (0; 9)	
A	4.95 (2.00)	5.44 (1.85)	3.61 (1.79)	<0.0001
	5.00 (0; 12)	5.00 (2; 12)	3.75 (0; 8)	
Δ	−0.05 (2.04)	0.50	−0.26 (2.24)	0.48
	0 (−6; 8)	0 (−3.5; 8)	0 (−6; 4)	
Thighs				
LC				
B	73.2 (8.0)	74.7 (8.0)	69.3 (6.7)	0.0002
	72.0 (47; 99)	75.0 (50; 99)	69.5 (47; 86)	
A	63.2 (6.7)	63.6 (7.1)	62.1 (5.6)	0.25
	62.0 (50; 88)	62.0 (50; 88)	62.0 (53; 77)	
Δ	−10.1 (5.3)	<0.0001	−7.3 (4.28)	<0.0001
	−10 (−25; 6)		−8 (−17; 6)	
FC				
B	68.7 (7.4)	69.7 (7.5)	65.8 (6.5)	0.0031
	68.0 (45; 94)	69.5 (47; 94)	65.0 (45; 81)	
A	58.1 (6.2)	58.0 (6.6)	58.2 (5.0)	0.67
	58.0 (46; 82)	57.0 (46; 82)	59.0 (50; 72)	
Δ	−10.6 (5.9)	<0.0001	−7.59 (4.98)	<0.0001
	−10 (−33; 5)		−8 (−17; 5)	
P				
B	4.06 (2.34)	4.66 (2.18)	2.48 (2.02)	<0.0001
	4 (0; 11)	5 (0; 11)	2.5 (0; 9)	
A	5.44 (2.03)	6.01 (1.78)	3.88 (1.86)	<0.0001
	6 (0; 12)	6 (0; 12)	4 (0; 7.5)	
Δ	1.35 (2.25)	<0.0001	1.40 (2.21)	<0.0001
	1 (−4.5; 8)		1 (−3; 7.5)	
Thighs

Objective measurements

The results of the measurements of the thighs are presented in Table 2. Both loose and firm circumferences of the thighs decreased significantly for both sexes (women, −11.1 cm and −11.8 cm, respectively (p < 0.0001), men, −7.23 cm and −7.59 cm, respectively (p < 0.0001)). Both measurements decreased more in women (p < 0.001). Ptosis of the thighs increased significantly for both women (mean 1.33 cm, p < 0.0001)
and men (mean 1.40 cm, $p < 0.0001$), with no significant difference between sexes.

Pre- and post-operative SESQ scores

The results of the patients' self-assessments of the degree of excess skin and discomfort (SESQ scores) are presented in Fig. 1. Post-operatively, women experienced significantly more excess skin on the inside of the thighs ($p < 0.002$) as well as discomfort from it ($p = 0.0051$) than before bariatric surgery. Men, however, did not report significantly more excess skin on the inner thighs ($p = 0.58$). Neither men nor women experienced more excess skin (or discomfort from such) after bariatric surgery on the outer thighs ($p = 1.00$ and 0.26, respectively).

Correlations

Univariable correlations regarding the thighs are presented in Tables 3, 4, and 5.

Correlation analysis between pre-operative variables (Table 3) showed moderate correlations between the loose and firm circumferences of the thighs and pre-operative BMI. No correlation was found between age and any of the discomfort scores.

Post-operatively (Table 4), there were high to very high correlations between the loose and firm circumferences on the thighs. Furthermore, high correlations were found between post-operative BMI and both the loose and firm circumferences of the thighs.

Correlation analysis between pre-operative and post-operative variables (Table 5) showed moderate to high correlations between each pre-operative physical...
measurement and the corresponding post-operative measurement, except for ptosis of the thighs.

Probability of a post-operative discomfort score ≥ 6

The probability of a patient reporting a discomfort score of ≥ 6 (on a scale of 0–10) from excess skin after bariatric surgery in relation to ptosis of the skin before bariatric surgery is presented in Fig. 2b. With ptosis of 10 cm, the probability of a discomfort score of ≥ 6 was approximately 70%. The prediction analysis indicated that for every centimetre of ptosis on the thighs before surgery, there was 1.31-fold higher odds of the patient scoring ≥ 6 points for discomfort of excess skin on the thighs on the SESQ after surgery (OR = 1.31 (1.10–1.55), p < 0.0025, AUC = 0.65).

Figure 2 also shows the relationship between ptosis of the skin and discomfort after surgery (d). The data reveal a low correlation (0.49) between ptosis on the thighs and discomfort (p < 0.0001).

Discussion

The aim of this study was to contribute to the knowledge of excess skin on the arms and thighs following massive weight loss. Most clinicians would likely agree that thorough pre-operative information is important to educate the patient and instil in them realistic expectations. However, in accordance with a review by Ellison et al. in 2015 [39], we believe a deeper understanding of excess skin to be important not only for health caregivers and to improve patient education but also to guide the ongoing debate on possible reimbursements for BCS.

We suggest a novel way to predict the level of post-bariatric discomfort from excess skin on the arms and thighs each patient can expect. We chose a cut-off of 6 points on a 0–10 point scale, as a discomfort of 6–10 constitutes approximately the upper half of discomfort scores. As presented in Fig. 2, ptosis of both arms and thighs seems to be a good physical measurement for pre-operatively predicting a post-operative discomfort score of 6 points or more. Furthermore, the linear relationship...
between post-operative ptosis and post-operative discomfort on both arms and thighs also suggests ptosis to be a good physical measurement for objectively evaluating patients experiencing discomfort from excess skin on the extremities.

Post-bariatric reconstructive plastic surgery on the arms and/or thighs due to excess skin is presently not included in, e.g., the Swedish public healthcare system, although the topic is debated. One major question is whether an objective cut-off level for offering surgery can be found, concerning both the ptosis and the degree of discomfort. Our results suggest that objective measurements are a plausible method to identify patients who experience the most discomfort from excess skin and that objective physical measurements may be useful tools for predicting which patients are at high risk of developing excess skin and thus experiencing a high level of discomfort post-operatively. Stepwise multiple linear regression analysis showed that women with high pre-operative BMI who already experienced discomfort from excess skin on the arms constitute an especially affected subgroup. The reason why women are more bothered by excess skin on the arms than men is unknown, but these results match those from previous studies [6, 9, 10, 16, 36, 38, 40]. In the last of these studies, the results showed that women in general report more discomfort from excess skin and report more related symptoms, especially psychosocial symptoms. Women may be more conscious of their appearance, which in turn may be the result of the larger social pressure on this group in terms of beauty ideals. If so, discomfort related to excess skin on the arms does not seem to be an exception. The effect of a high BMI before bariatric surgery on the development of discomforting excess skin has also been reported in previous studies [9, 13, 21]. It is possible that a higher pre-operative BMI causes the skin to become more stretched and subsequently results in more floppy and discomforting skin when the patient loses weight.

One reason to include detailed physical measurements in this study was to evaluate whether ptosis or the loose or firm circumference was affected differently by massive weight loss. The vast decrease in fat volume should cause the skin, muscle, and adipose tissue on the arms and thighs to retract unevenly, possibly causing the ptosis as well as the loose and firm circumference measurements to decrease unevenly. Our results, however, showed that both the loose and firm circumferences of the arms and thighs decreased significantly and fairly evenly. We also found that the ptosis remained unchanged on the arms and actually increased on the thighs. The combination of these changes in physical measurements may cause the skin to become flappier and possibly produce the perception of an increased amount of excess skin. Indeed, the female patients rated their amount of excess skin on the arms and inner thighs as significantly increased post-operatively, whereas men perceived only their excess skin on the arms to have increased. Furthermore, only women reported more discomfort from excess skin on the arms and inner thighs. This may be because women more frequently wear sleeveless clothes such as tops and dresses as well as shorter pants and skirts.

Whereas the loose circumferences of the arms were approximately the same for both men and women both before and after surgery, women had smaller firm circumferences and larger ptosis both before and after surgery. Regarding the thighs, however, women had significantly larger loose and firm circumferences before but not after surgery, while the ptosis was larger both before and after surgery. The reasons for these differences between the sexes are not clear but may be explained by different muscle and fat distributions in men and women.

Another way we contributed to improved patient information was by mapping correlations between the different pre- and post-operative measurements. We found high to very high correlations between the pre- and post-operative loose- and firm circumferences on both the arms and thighs. This, we believe, indicates that these measurements follow each other and may be interchangeable when used in clinical practice. Furthermore, the analysis revealed moderate to high correlations between each pre-operative physical measurement and the corresponding post-operative measurement (except for skin ptosis of the thighs), suggesting that the skin shrinks proportionately. Finally, the moderate correlations found between maximum BMI during life and the different post-operative circumference measurements postoperatively may suggest that the larger the volume of the body in life, the larger these measurements will remain even after weight loss. The low correlations found between pre-operative BMI and the discomfort scores post-operatively, however, suggest that a high BMI may not necessarily increase the risk of discomfort after surgery. Similarly, post-operative discomfort does not seem to be affected by patient age.

The study has some limitations. Of the 200 patients included in the study, 149 participated in the follow-up, and 147 underwent measurements of the arms and thighs both pre- and post-operatively (73.5%). We found this to be an acceptable participation rate; nevertheless, we do not know why the 53 patients were lost to follow-up, nor do we know how their measurements and questionnaire answers would have contributed to the results of the study. Furthermore, the data used in this study were collected from 2009 through 2012. We used these data because they are extensive and detailed, and we consider them to still be relevant and
reliable. Another limitation is that the SESQ has not been fully evaluated concerning its clinometric characteristics. The reliability has been evaluated and found to be good [38], while validity testing is ongoing.

Conclusions

Although most physical measurements decrease during weight loss, the patients perceive that it increases, and women especially experience discomfort from this condition. Furthermore, it is possible to pre-operatively predict which patients are most at risk of experiencing a high level of post-operative discomfort on the arms and thighs postoperatively. Finally, there are particularly susceptible subgroups among bariatric patients. Together, these new findings should be useful when informing and preparing patients pre-operatively and contribute to the ongoing debate regarding possibly including coverage for BCS of the arms and thighs after bariatric surgery in public or private health care insurance programmes.

Funding

Open access funding provided by University of Gothenburg.

Availability of data and material

Available on request.

Code availability

Not applicable.

Declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the ethics committee in Gothenburg, Sweden (Dnr: 723–08).

Consent to participate

Patients were provided with verbal and written information regarding the research project and gave their written consent prior to participation.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14):1724–1737
2. Colguitt JL, Pickett K, Loveman E, Frampton GK (2014) Surgery for weight loss in adults. Cochrane Database Syst Rev (8):CD003641. https://doi.org/10.1002/14651858.CD003641.pub4
3. Kolotkin RL, Andersen JR (2017) A systematic review of reviews: exploring the relationship between obesity, weight loss and health-related quality of life. Clin Obes 7(5):273–289
4. Sjostrom L (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med 273(3):219–234
5. Kinzl JP, Traweger C, Trefalt E, Biebl W (2003) Psychosocial consequences of weight loss following gastric banding for morbid obesity. Obes Surg 13(1):105–110
6. Biörserud C, Olbers T, Fagevik OM (2011) Patients’ experience of surplus skin after laparoscopic gastric bypass. Obes Surg 21(3):273–277
7. Klassén AF, Cano SJ, Scott A, Johnson J, Pusic AL (2012) Satisfaction and quality-of-life issues in body contouring surgery patients: a qualitative study. Obes Surg 22(10):1527–1534
8. Giordano S, Victorzon M, Koskivuo I, Suominen E (2013) Physical discomfort due to redundant skin in post-bariatric surgery patients. J Plast Reconstr Aesthet Surg 66(7):950–955
9. Biörserud C, Olbers T, Sovik TT, Mala T, Elander A, Olsen MF (2014) Experience of excess skin after gastric bypass or duodenal switch in patients with super obesity. Surg Obes Relat Dis 10(5):891–896
10. Staalesen T, Olbers T, Dahögren J, Fagevik Olsen M, Flodmark CE, Marcus C et al (2014) Development of excess skin and request for body-contouring surgery in postbariatric adolescents. Plast Reconstr Surg 134(4):627–636
11. Poulsen L, Klassén A, Rose M, Roessler KK, Juhl CB, Stoving RK et al (2017) Patient-Reported Outcomes in Weight Loss and Body Contouring Surgery: A Cross-Sectional Analysis Using the BODY-Q. Plast Reconstr Surg 140(3):491–500
12. Biörserud C, Shams K, Elander A, Fagevik Olsen M (2018) Self-image after bariatric surgery and its relationship to gender, excess skin and health-related quality of life. J Plast Surg Hand Surg 52(5):288–293. https://doi.org/10.1016/j.jps.2018.10.032
13. Elander A, Biörserud C, Staalesen T, Öckell J, Fagevik Olsén M (2019) Aspects of excess skin in obesity, after weight loss, after body contouring surgery and in a reference population. Surg Obes Relat Dis 15(2):305–311. https://doi.org/10.1016/j.soard.2018.10.032
14. Marek RJ, Steffen JK, Flum DR, Pomp A, Pories WJ, Rubin JP et al (2018) Psychosocial functioning and quality of life in patients with loose redundant skin 4 to 5 years after bariatric surgery. Surg Obes Relat Dis 14(11):1740–1747
15. Kitzinger HB, Abayev S, Pittermann A, Karle B, Bohdjalian A, Langer FB et al (2012) After massive weight loss: patients’ expectations of body contouring surgery. Obes Surg 22(4):544–548
16. Staalesen T, Fagevik Olsen M, Elander A (2013) Experience of excess skin and desire for body contouring surgery in post-bariatric patients. Obes Surg 23(10):1632–1644
17. Wagenblast AL, Laesoe L, Printzlau A (2014) Self-reported problems and wishes for plastic surgery after bariatric surgery. J Plast Surg Hand Surg 48(2):115–121
18. Ramalho S, Bastos AP, Silva C, Vaz AR, Brandão I, Machado PP et al (2015) Excessive skin and sexual function: relationship with psychological variables and weight regain in women after bariatric surgery. Obes Surg 25(7):1149–1154

Springer
19. Varns JA, Fish AF, Eagon JC (2018) Conceptualization of body image in the bariatric surgery patient. Applied nursing research : ANR 41:52–58
20. Perdue TO, Schreier A, Swanson M, Neil J, Carels R (2018) Evolving self view and body image concerns in female postoperative bariatric surgery patients. J Clin Nurs 27(21–22):4018–4027
21. Monpellier VM, Antoniou EE, Mulkens S, Janssen IMC, van der Molen ABM, Jansen ATM (2018) Body image dissatisfaction and depression in postbariatric patients is associated with less weight loss and a desire for body contouring surgery. Surg Obes Relat Dis 14(10):1507–1515. https://doi.org/10.1016/j.soard.2018.04.016
22. Ivezaj V, Grilo CM (2018) The complexity of body image following bariatric surgery: a systematic review of the literature. Obes Rev 19(8):1116–1140
23. Song P, Patel NB, Gunther S, Li CS, Liu Y, Lee CY et al (2016) Body image & quality of life: changes with gastric bypass and body contouring. Ann Plast Surg 76(Suppl 3):S216–S221
24. Alegria CA, Larsen B (2015) “That’s who I am: a fat person in a thin body”: weight loss, negative self-evaluation, and mitigating strategies following weight loss surgery. J Am Assoc Nurse Pract 27(3):137–144
25. Toma T, Harling L, Athanasiou T, Darzi A, Ashrafian H (2018) Does body contouring after bariatric weight loss enhance quality of life? A systematic review of QOL studies. Obes Surg 28(10):3333–3341
26. Gilmartin J, Bath-Hextall F, Maclean J, Stanton W, Soldin M (2016) Quality of life among adults following bariatric and body contouring surgery: a systematic review. JBI Database System Rev Implement Rep 14(11):240–270
27. Tremp M, Delko T, Kraljevic M, Zingg U, Rieger UM, Haug M et al (2015) Outcome in body-contouring surgery after massive weight loss: A prospective matched single-blind study. J Plast Reconstr Aesthet Surg 68(10):1410–1416
28. de Zwaan M, Georgiadou E, Stroh CE, Teufel M, Kohler H, Tengler M et al (2014) Body image and quality of life in patients with and without body contouring surgery following bariatric surgery: a comparison of pre- and post-surgery groups. Front Psychol 5:1310
29. Azin A, Zhou C, Jackson T, Cassin S, Sockalingam S, Hawa R (2014) Body contouring surgery after bariatric surgery: a study of cost as a barrier and impact on psychological well-being. Plast Reconstr Surg 133(6):776e-c782
30. Modarressi A, Balagne N, Huber O, Chilcott M, Pittet-Cuened B (2013) Plastic surgery after gastric bypass improves long-term quality of life. Obes Surg 23(1):24–30
31. Song AY, Rubin JP, Thomas V, Dudas JR, Marra KG, Fernstrom MH (2006) Body image and quality of life in post massive weight loss body contouring patients. Obesity (Silver Spring) 14(9):1626–1636
32. Aldaalou M, Makhdoux AM, Turki AM, Awam BA, Samargandi OA, Jamjom H (2013) Post-bariatric surgery satisfaction and body-contouring consideration after massive weight loss. N Am J Med Sci 5(4):301–305
33. Mitchell JE, Crosby RD, Ertelt TW, Marino JM, Sarwer DB, Thompson JK et al (2008) The desire for body contouring surgery after bariatric surgery. Obes Surg 18(10):1308–1312
34. Symbas JD, Losken A (2010) An outcome analysis of brachioplasty techniques following massive weight loss. Ann Plast Surg 64(5):588–591 (Epub 2010/04/01)
35. Bertheuil N, Thienot S, Chaput B, Varin A, Watier E (2015) Quality-of-Life assessment after medial thighplasty in patients following massive weight loss. Plast Reconstr Surg 135(1):67e–73e
36. Biörserud C, Olbers T, Staalesen T, Elander A, Olsen MF (2016) Understanding excess skin in postbariatric patients: objective measurements and subjective experiences. Surg Obes Relat Dis 12(7):1410–1417
37. Biörserud C, Fagevik Olsen M, Elander A, Wiklund M (2016) Objective measurements of excess skin in post bariatric patients—inter-rater reliability. J Plast Surg Hand Surg 50(2):68–73
38. Biörserud C, Nielsen C, Staalesen T, Elander A, Olbers T, Olsen MF (2013) Sahlgrenska Excess Skin Questionnaire (SESQ): a reliable questionnaire to assess the experience of excessive skin after weight loss. J Plast Surg Hand Surg 47(1):50–59
39. Ellison JM, Steffen KJ, Sarwer DB (2015) Body Contouring After Bariatric Surgery. Eur Eat Disord Rev 23(6):479–487
40. Ockell J, Elander A, Staalesen T, Olsen MF (2017) Evaluation of excess skin in Swedish adults 18-59 years of age. J Plast Surg Hand Surg 51(2):99–104. https://doi.org/10.1080/2000656X.2016.1187157

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.