The Effects of Data Quality on the Analysis of Corporate Board Interlock Networks

Javier Garcia-Bernardo
CORPNET, University of Amsterdam
garcia@uva.nl

Frank W. Takes
CORPNET, University of Amsterdam
LIACS, Leiden University
takes@uva.nl

ABSTRACT
Nowadays, social networks of ever increasing size are studied by researchers from a range of disciplines. The data underlying these networks is often automatically gathered from APIs, websites or existing databases. As a result, the quality of this data is typically not manually validated, and the resulting networks may be based on false, biased or incomplete data. In this paper, we investigate the effect of data quality issues on the analysis of large networks. We focus on the global board interlock network, in which nodes represent firms across the globe, and edges model social ties between firms – shared board members holding a position at both firms. First, we demonstrate how we can automatically assess the completeness of a large dataset of 160 million firms, in which data is missing not at random. Second, we present a novel method to increase the accuracy of the entries in our data. By comparing the expected and empirical characteristics of the resulting network topology, we develop a technique that automatically prunes and merges duplicate nodes and edges. Third, we use a case study of the board interlock network of Sweden to show how poor quality data results in incorrect network topologies, biased centrality values and abnormal influence spread under a well-known diffusion model. Finally, we demonstrate how our data quality assessment methods help restore the correct network structure, ultimately allowing us to derive meaningful and correct results from analyzing the network.

1. INTRODUCTION
Over the past few decades, the amount of digital information has been doubling roughly every two years. At the same time, there is an ongoing and prevailing desire to extract meaningful knowledge from this data. Although many knowledge discovery methods and techniques are scalable to larger volumes of data, “big data” has the significant and largely unaddressed problem of “veracity”. This refers to the fact that the explosion in the amount of available data has resulted in a situation in which researchers can no longer manually validate the quality of their data. Data quality most dominantly relates to questions of completeness (what part of the data do we have, and what part do we miss?) and accuracy (is the data that we have correct and suitable for answering our particular domain questions?). Here we set out to assess how these issues can be addressed in the context of (social) network analysis.

In this paper we focus on so-called corporate networks, in which ties represent particular relationships between corporations. Ties in corporate networks can be based on a variety of relationships between firms, including trade [3], borrowing and lending of money [4], ownership [5], or as we will analyze in this paper: shared board members. In these networks of interlocking directorates, also referred to as board interlock networks, a node represents a firm and an edge between two firms denotes that these firms share at least one board member or director. An example of a board interlock network is given in Figure [1] Board interlocks are common practice in today’s corporate world, and over the past century, social scientists have extensively studied the causes and consequences of board interlocks. See for example the excellent overview given in [6], where Mizruchi discusses how interlocks relate to collusion, monitoring (e.g., banks keeping an eye on firms they invested in), legitimacy (attracting board members with a particular reputation in a certain area that is of importance to the firm), individual career advancement and social cohesion (social ties among the upper class). Previous research has established that networks of interlocking directorates facilitate the spread of governance routines and practices, the exchange of resources, communication and the dissemination of new ideas [7, 8]. Since a significant number of directors has positions at two or more firms, the board meetings of these firms connect the majority of big businesses in the world. For instance, Davis [9] discusses how the majority of the corporate elite would rapidly be infected by a contagious disease as a result of the small world property of the network of interlocking directorates.

Corporate networks have interesting topological characteristics common to real-world networks, including a fat tailed degree distribution, the emergence of a giant component and very low pairwise distances between nodes [10]. Researchers have thus applied established social network analysis methods and techniques [10] to corporate networks. Community detection has been used to understand the geographical dimension of the structure of these networks [11, 12] and centrality measures provide insight into powerful firms and countries in the network [13].
Initially, social scientists studied only small networks of interlocking directorates, typically based on a few hundred firms and their relationships. Researchers carefully double-checked the data they manually gathered from annual reports of the companies involved. Nowadays, large databases on corporations are provided by commercial corporate information providers such as Orbis, BoardEx, ThomsonOne and Bloomberg, including information on their financial performance and board composition. The availability of these databases with millions of firms allows our board interlock networks to be automatically constructed from the available firm and board member data. Here, we focus on a dataset extracted from Orbis, a large information provider that gathers data from country registers across the world, and then makes this data available through one database (for details, see Section 2). The sheer volume of this contemporary big corporate network data (BCND, see 13) means that it is no longer possible to manually check each firm, let alone their board composition, for correctness. However, the quality of our data is diverse across countries and country registers. Indeed, the problem of data quality (completeness and accuracy) comes into play here.

The first data quality issue, completeness, is not necessarily problematic, for example when we have a dataset in which data is missing completely at random (MCAR), or when missing values are directly correlated with a known variable (MAR). We find that in our dataset information about some attributes (e.g., number of employees) is correlated with other attributes with better availability – it is MAR. However, often it is not the attributes but the companies themselves that are not present in the data, meaning data is missing not at random (MNAR). This may result in severe problems, because if non-random parts of the data are missing, we can no longer consider it a reliable sample and derive meaningful results for the system represented by the dataset as a whole. For example, if we blindly use the data provided by Orbis to compare countries, we observe that the average Mexican firm is larger than the average firm in the United States. In turns out that this is due to lower data quality in Mexico, where many small companies are not included in the data, thus increasing the average size of a company. If we want to derive meaningful and actionable insights from the board interlock network of these corporations, we need to know exactly which firms we are missing.

A second problem, accuracy, is that we have no prior indication of whether there are duplicates in our data. These duplicates can be accidental, for example as a result of entity resolution errors introduced when the data was gathered by the information providers, but they can also be the result of administrative reasons. Firms often organize themselves in multiple legal entities and parent-subsidiary constructions to facilitate the autonomy of local branches, departments or, most often, for certain legal or financial benefits. We want to disregard these types of administrative firms and their relationships from the network, such that we are able to derive meaningful and representative results from a network in which a node represents one distinct and autonomous firm, and an edge represents a true board interlock between these firms, facilitating the type of social relation between firms discussed in our short survey of board interlock research provided above.

![Figure 1: Sample of the Swedish network of interlocking directorates. Based on largest 120 firms in terms of revenue, connected through 422 interlocks. Color and size are proportional to node degree.](http://orbis.bvdinfo.com)

2. DATA

This section outlines how we collected our dataset, followed by a description of how we constructed the board interlock network that is analyzed in the experimental sections.

We started by creating a snapshot of the Orbis database

1 Orbis, Bureau van Dijk. http://orbis.bvdinfo.com
these companies. For each company we extracted its country, operating revenue, number of employees and global ultimate owner (GUO). The GUO of a company is a controlling shareholder (directly or indirectly owning at least 50% in shares) that is not owned by any other company. For each director we extracted all top executive (chief and director) affiliations in the set of firms, obtaining 65 million current positions. This dataset is the object of study in our analysis of completeness in Section 3.1.

Next, we constructed the Swedish firm-to-firm board interlock network, where only Swedish firms are considered, and companies are connected if they share one or more directors. The resulting Swedish network is composed of 260,611 companies and 1,269,560 edges. Although the network also contains many uninteresting small components of at most a handful of nodes, we focus on its giant component in which the lion share of economic activity in Sweden takes place. This connected undirected graph contains a total of 94,496 nodes and 1,050,907 edges. In Section 3.2 and Section 4, we assess the quality in terms of accuracy of this network dataset, investigating its topology and the results of applying methods such as centrality and influence spread models.

3. METHODOLOGY

The two major components of data quality, namely data completeness and accuracy, are discussed and addressed in the two subsections below, specifically in the context of corporate data and the corporate board interlock network.

3.1 Completeness

Ensuring proper data analysis results requires unbiased representative samples of a population. Unbiased representative samples are obtained when the distributions of each variable in the sample match the distributions in the real population. However, the distributions in the population are generally unknown, i.e., our dataset has data missing not at random (MNAR). In the case of our corporate data, we usually either lack information about the distribution of company sizes in a given country, or have only aggregated data – e.g., the number of small, medium and large companies available.

Here, we propose to use aggregated data on segments of the data to test the completeness of the full dataset. For instance, Figure 2 shows the coverage of our dataset by category (in terms of number of employees) as reported by the European statistics bureau. Some countries (e.g., Norway (NO), Sweden (SE), Finland (FI) and Estonia (EE)) have very complete information (all bars are close to the horizontal line). However, some countries have relatively bad data quality (e.g., Poland (PL), the Netherlands (NL) and Germany (DE)). Moreover, we see that countries with bad data quality usually have good information for large companies and small information for small companies. In order to understand the magnitude of the bias we first find the precise relationship between quality and macroeconomic measures, using countries with available aggregated data. We then use this relation to extrapolate to countries without information. In this section, we apply our method to a dataset on corporations, where aggregated information at country level is available. However, our method can be applied for all datasets where aggregated information on one or more of the individual attributes is available, given that we can estimate the underlying distribution. In Section 6, we discuss in detail the generalizability of our approach.

We start by modeling the company size (in terms of operating revenue) as a lognormal distribution. Lognormal distributions arise naturally in multiplicative processes, where the in this case revenue) growth between time \(t - 1 \) and \(t \), denoted \(R_t - R_{t-1} \), depends on the combinations of a series of factors \(F_k \) (for example, random fluctuations, type of business, population density, income of customers, etc.): \(R_t - R_{t-1} = F_k \cdot R_{t-1} \). This model is known as the Gibrat’s law. The idea here is that the size (represented by revenue) of companies varies in size according to \(F_k \). After a certain total time \(t \) (corresponding to the present time) it holds that

\[
R_t = R_0 \cdot \prod_{k=1}^{t} (1 + F_k),
\]

and

\[
\log R_t = \log R_0 + \sum_{k=1}^{t} \log (1 + F_k).
\]

When using short time scales the effect of the factors is small, and \(\log (1 + F_k) \approx F_k \):

\[
\log R_t = \log R_0 + \sum_{k=1}^{t} F_k.
\]

Assuming that \(F_k \) are independent and identically distributed (i.i.d.) we obtain that \(R_t \) is lognormally distributed (central limit theorem). Moreover, a small change in the model, namely that the number of time iterations varies for different companies, produces power-law tails, which we observe in our data, as we show at the end of this section. It is worth noting that the combinations of the factors within \(F_k \) are likely to follow normal distributions themselves. For instance, personal income follows lognormal distributions with power-law tails and population densities have long tails.

Either if \(F_k \) are i.i.d. or if they exhibit long tails, revenue distributions can be well fitted by lognormal distributions. Lognormal distributions are characterized by two parameters: scale \(\sigma \) and location \(\mu \). Importantly, the standard deviation \(s \) is proportional to the mean \(m \):

\[
\log (s) = \log (m) + \frac{1}{2} \log \left(e^{\sigma^2} - 1 \right)
\]

When the means and standard deviations of the revenue of all companies in a country are plotted against each other, the values for every country with enough data lie in a straight line (see Figure 1A), indicating that all countries share the same \(\sigma \). Since \(\sigma \) clusters around 2.0 in countries with known better quality (Figure 1B), we fixed \(\sigma = 2.0 \).

Although this approach allows us to fix the scale and find the maximum likelihood \(\mu \) parameter of the distributions, \(\mu \) would be biased by data quality. In particular, we know that rich countries have better quality and a better reporting of small companies, which lowers the \(\mu \) parameters. However, rich countries have larger companies, with increases

2EUROSTAT, http://ec.europa.eu/eurostat
the μ parameter. This confounding effect can be disentangled by using country-level aggregated data. In order to find the real μ parameter we obtained the number of companies and combined revenue for all OECD countries. All currencies were converted to USD using exchange rates on March 25th ‘16, adding India and completing missing information in Canada, Australia and the United States from their statistics bureau.

We then estimated the logarithm of the theoretical mean of the revenue distribution log (\hat{R}) by using world development indicators (WDI). Since log (\hat{R}) = $\mu + \sigma^2/2$ and $\sigma = 2.0$, estimating log (\hat{R}) is equivalent to estimating μ. In order to prevent overfitting, we fitted 1000 linear models using support vector regression on random samples containing 75% of the countries. We iteratively dropped the worst indicator until we found a core of 10 indicators. As shown in Table 1, the main indicator is GDP per capita. In fact, this indicator alone can explain 72% of the variability in OECD countries (82% if Norway is excluded). In general, larger income taxes and bureaucracy times are correlated with smaller companies, while larger productivity, GDP per capita and personal remittances paid are correlated with larger companies.

After estimating the revenue average we confirmed that it closely matches the average extracted from the OECD data ($R^2 = 0.91$). We then used this relationship between log (\hat{R}) and WDI indicators to estimate log (\hat{R}) for all countries in the world. Next, we hypothesized that companies are added to the source database in decreasing order of revenue. If this would be true, there would be a quasi-linear country-level relationship between the estimated average using WDI indicators (\hat{R}), and the product of the percentage of companies present in the dataset (R) and the average revenue in our dataset (R^{OBS}). We found that this was indeed the case ($R^2 = 0.82$), and the three variables are related as follows:

$$\log C = -1.3855 - 0.9544 \log (R^{OBS}) + 1.1120 \log (\hat{R}).$$

Thus, for any given country we can now calculate the theoretical average (and μ) using WDI indicators, and the completeness using the theoretical average and our dataset average. Finally, we estimated μ and therewith the complete-

Table 1: Predictors for the mean company revenue in a country (\hat{R}), and average coefficient of the support vector (mean effect), obtained using the Python sklearn (http://scikit-learn.org) package with a linear kernel and the default penalty parameter $C = 1$. The rightmost columns shows the percentage of simulations in which the variable was among the top 10 predictors. Only the indicators present in more than 20% of the repetitions were considered. If the variable code is preceded with ‘log’, then this variable was log-transformed.

Variable code	Variable name	Mean effect	% Models
NY.GDP:PCAP:KD.2013	GDP per capita (constant 2005 US$)	0.263048	23.2
SH.XPD.PUBL.GX.ZS.2013	Health expenditure, public (% of government expenditure)	0.220553	25.7
logAG.YLD.CREL.KG.2013	Cereal yield (kg per hectare)	0.207313	24.8
logIC.TAX.DURS.2013	Time to prepare and pay taxes (hours)	0.198041	24.0
AG.YLD.CREL.KG.2013	Cereal yield (kg per hectare)	0.198041	22.4
logTX.VAL.MRCH.R5.ZS.2013	Merchandise exports to developing economies in...	0.191862	22.8
logIC.EXP.DURS.2013	Time to export (days)	0.184246	21.4
BM.TRF.PWKR.CD.DT.2013	Personal remittances, paid (current US$)	0.174447	27.5
SP.RUR.TOTL.ZG.2013	Rural population growth (annual %)	0.174008	27.8
IC.TAX.TOTL.CP.ZS.2013	Total tax rate (% of commercial profits)	-0.169697	33.4

Figure 2: Percentage of companies present in our dataset as a function of the number of employees working at these companies: <10, 10-19, 20-49, 50-249 and >250 employees.

3OECD SSIS_BSC_ISIC4, Cat. 05.82.LESS_K
4The aggregated revenue of companies in India and Canada was estimated from the GDP of the country using the linear relationship between log GDP and log (total revenue) of the other countries ($R^2 = 0.975$).
5WorldBank WDI, http://wdi.worldbank.org

The aggregated revenue of companies in India and Canada was estimated using the Python sklearn (http://scikit-learn.org) package with a linear kernel and the default penalty parameter. This confounding effect can be disentangled by using country-level aggregated data. In order to find the real μ parameter we obtained the number of companies and combined revenue for all OECD countries. All currencies were converted to USD using exchange rates on March 25th '16, adding India and completing missing information in Canada, Australia and the United States from their statistics bureau.

We then estimated the logarithm of the theoretical mean of the revenue distribution log (\hat{R}) by using world development indicators (WDI). Since log (\hat{R}) = $\mu + \sigma^2/2$ and $\sigma = 2.0$, estimating log (\hat{R}) is equivalent to estimating μ. In order to prevent overfitting, we fitted 1000 linear models using support vector regression on random samples containing 75% of the countries. We iteratively dropped the worst indicator until we found a core of 10 indicators. As shown in Table 1, the main indicator is GDP per capita. In fact, this indicator alone can explain 72% of the variability in OECD countries (82% if Norway is excluded). In general, larger income taxes and bureaucracy times are correlated with smaller companies, while larger productivity, GDP per capita and personal remittances paid are correlated with larger companies.

After estimating the revenue average we confirmed that it closely matches the average extracted from the OECD data ($R^2 = 0.91$). We then used this relationship between log (\hat{R}) and WDI indicators to estimate log (\hat{R}) for all countries in the world. Next, we hypothesized that companies are added to the source database in decreasing order of revenue. If this would be true, there would be a quasi-linear country-level relationship between the estimated average using WDI indicators (\hat{R}), and the product of the percentage of companies present in the dataset (R) and the average revenue in our dataset (R^{OBS}). We found that this was indeed the case ($R^2 = 0.82$), and the three variables are related as follows:

$$\log C = -1.3855 - 0.9544 \log (R^{OBS}) + 1.1120 \log (\hat{R}).$$

Thus, for any given country we can now calculate the theoretical average (and μ) using WDI indicators, and the completeness using the theoretical average and our dataset average. Finally, we estimated μ and therewith the complete-
Section 1. To counter this, we propose two fixing steps: parts for administrative or financial reasons, as discussed in companies can be reported several times or split into several identifiers for firms and directors. In case of corporate data, dozens of directors and the same GUO (or having no GUO).

3.2 Accuracy
In addition to the problem of missing data, we may have duplicated data, which relates to the aspect of accuracy. Our data was gathered from different sources and then combined, a process which is error prone as a result of a lack of unique identifiers for firms and directors. In case of corporate data, companies can be reported several times or split into several parts for administrative or financial reasons, as discussed in Section 3.1. To counter this, we propose two fixing steps:

1. An a posteriori network construction step in which we merge nodes (companies) with exactly the same board of directors and the same GUO (or having no GUO).

2. An a posteriori topology-based correction step in which we merge all nodes (companies) sharing a similar board and similar position in the network. To compute the similarity of boards of two companies, we used the ratio of shared directors to total unique directors (Jaccard similarity 20). We then clustered all companies to obtain sets of firms where each pair of companies shared at least half of the boards of directors (using complete linkage clustering and a threshold for the Jaccard similarity of 0.5 to guarantee this condition). Then, we further clustered the groups based on their local position in terms of a) degree, b) average neighbor degree, c) local clustering coefficient and d) average neighbor local clustering. All nodes with a similar board and with these four properties within 80% of each other are then merged together. While other threshold values are possible, our results are robust to variations in this parameter: changing the parameter to 90% or 70% changed the final number of nodes only by 2.2% and 2.4%, respectively.

4. Results
After analyzing the completeness of our data (Section 3.1), we have chosen to use the network of Sweden to demonstrate the effect of the two accuracy fixes proposed in Section 3.2. As shown in Figure 4, Sweden (SE) has high quality across all company sizes, which will prevent confounding interactions between completeness and accuracy. We investigate the effect on network topology in Section 4.2 and finally diffusion in Section 4.3.
Figure 5: (A–C) Swedish network visualizations using the ForceAtlas2 algorithm [19] with stronger gravity to highlight clusters with high local clustering. Color indicates PageRank centrality. (A) Original network, (B) Network after Step 1, (C) Network after Step 2. (D–G) Comparison of distributions of network measures for the three networks: (D) Degree, (E) Local clustering, (F) Betweenness and (G) PageRank.

4.1 Topology
The original Swedish board interlock network has 94,496 nodes and 1,050,907 edges in the largest component (Section 2), which is reduced to 50,733 nodes and 139,173 edges after the two steps (Section 3.2). Table 2 shows the number of nodes (firms), edges (board interlocks), density, average degree \bar{deg}, graph clustering coefficient CC and average node-to-node distance d (see [10] for definitions of these common network metrics).

As expected given that we are merging clusters with high local clustering, the average degree and local clustering are reduced. Indeed, an average degree around 5 or 6 is far more realistic in board interlock networks than 22. The power of our approach is further reflected in the network visualizations. Figure 5A–C shows the original Swedish network, and the network after Steps 1 and 2 described in Section 3.2 While most of the edges in the original network were intra-corporate administrative ties, the successive steps were able to filter out such clusters and provide a representative final network topology.

	Nodes	Edges	Density	\bar{deg}	CC	d
Original	94496	1050907	0.0119%	22.2	0.93	7.78
Step 1	60904	225887	0.0061%	7.4	0.57	7.94
Step 2	50733	139173	0.0054%	5.5	0.41	8.02

Table 2: Topological properties of the Swedish board interlock network.

4.2 Centrality
A typical step in social network analysis is to find the most prominent actors in the network, which is done using centrality measures. In this example, we choose three common measures: degree centrality, in which the importance of each node is proportional to its number of connections; PageRank centrality, in which the importance depends on the sum of the PageRank of your neighbors damped by a factor; and betweenness centrality, that relates the importance of a node to the relative number of shortest paths going through the node. For an overview of work on the use of centrality measures in board interlock networks, see [13].

Figure 5D–G shows how local clustering and three centrality measures – degree, betweenness and PageRank – are affected by our data quality fixes. In general, our filtering mechanism smooths the distribution of centrality measures. While the degree distribution of the original data exhibits a fat tail (Figure 5D), with some companies linked to up to 500 other companies, this was not the case for the data after Step 1 and 2. This is largely due to the reduction of clusters with high local clustering (Figure 5E). Importantly, the distributions of betweenness and PageRank (Figure 5F–G) are only minimally disturbed, showing a reduction of the number of nodes with very high betweenness, likely due to a reduction of clusters of high degree nodes.

Next, we tested if our data quality fixes improved our ability to obtain correct and thus actionable insights from a centrality analysis. For this, we analyzed the correlation between...
the ranking of Swedish companies by number of employees and market capitalization with the ranking of companies given by degree, by PageRank and by betweenness centrality (Figure 6E). We found that each correction step increased the correlation between the ranking based on economic measures and the ranking based on network measures. This was especially the case for degree centrality (Figure 6AD), but only to a very small extent for betweenness centrality (Figure 6E). Moreover, we found that the rankings obtained by all three network measures are comparable, which indicates that central nodes have more connections (degree), link to other important firms (PageRank), and act as bridges between distant firms (betweenness). Finally, we found that the ranking given by market capitalization closely matches the ranking given by centrality (Spearman's rank correlation of 0.6 for the top 200-500 companies), showing that larger companies have also more central roles in the network.

4.3 Diffusion model

As board interlock networks are assumed to play a big role in the diffusion of information, we tested how accuracy can affect the results of a SIR (susceptible, infected, recovered) model. These models are commonly applied to model information diffusion, as for example in the case of information among investors or technology diffusion between companies [21, 22]. To illustrate the effects of data quality, we have chosen to apply a simple SIR model: starting with one randomly infected node, at each iteration of the algorithm, each infected node infects their neighbors with probability 0.5, and recovers (becoming immune) with probability 0.3. Figure 6G shows the results of running 1000 simulations.

As we can observe, the process dies off in 19%, 27% and 37% of the simulation runs for respectively the original data and the data after Steps 1 and 2. Second, the final equilibrium differs. Removing the clusters with high degree nodes slows down the spreading cascade and the percentage of nodes infected during the process, from 74% of infected nodes using the original network to 67% using the post Step 1 network and 63% using the post Step 2 network. These results are likely due to the larger number of high degree nodes in the original network, which allows for more possibilities of infection, and to the ‘reservoir’ effect of clusters – the infection quickly spreads within the clusters, infecting neighbors for a longer time until all nodes in the cluster recover.

5. CONCLUSIONS

The experiments in this paper demonstrate how insights and predictions obtained from social network analysis can be biased if the original data is of poor quality. If we want to ensure that network analysis results are correct, we must determine the quality of the underlying data and where needed correct for it. In this paper we used corporate board interlock networks to investigate the effect of data quality.

The underlying company data is collected in a distributed fashion in different countries. Since the missing information is not distributed at random, assessing the completeness of this data is challenging. To address this problem, we used aggregated data from the OECD and fitted lognormal distributions to the revenue of the companies of each country. This enables us to calculate the number of missing companies for different revenue ranges, allowing for a thorough assessment of how much data we are missing in each country.

The second problem addressed in this paper dealt with the accuracy of the data. This originates from the fact that data comes from multiple merged data sources, and from the inherent way in which companies organize themselves. In order to not overestimate the importance of for example small companies, we proposed a method to merge corporate structures and remove spurious nodes. For this, we suggest two a posteriori solutions to “correct” the network topology, where we merge together companies with similar boards of directors and similar structural positions in the network.

In our experiments, we investigated the effect of data quality by visualizing the networks to show how the original biased network becomes a “clean” network. First, we demonstrated how our correction approach fixed the overall network topology. Second, we show that the correlation between the most central nodes in the network and the nodes with higher market capitalization increases for the networks that were processed by our approach. Third, we show how a simple SIR model demonstrates that bad data quality network data produces significant distortions in the results.
6. GENERALIZABILITY & FUTURE WORK

Although we have shown the applicability of our method in board interlock networks, the principles could be used across different networks. The completeness assessment can be applied to each network in which we know the distribution of one of the variables in the dataset, and aggregated data on segments of the data is available. This makes our approach applicable to the analysis of (co-)citation networks, for example to investigate if the considered data sample is biased highly impact publications. We could use the average number of citations to fit lognormal distributions for different journals [23], and use those distributions to assess the completeness of the sample. Similarly, inter-event times in social communication (for instance emailing, tweeting or messaging) can also be well fitted by lognormal distributions [24], whose parameters may depend on the characteristics of the person. If we have a sample of the messages, we can assess its bias using the distribution of inter-event times.

Furthermore, the accuracy fixes that we introduced here can be applied when networks are compiled from multiple sources and have not been merged correctly. For instance, consider combining data on people from two different sources (e.g., LinkedIn, AngelList and CVs) based on their name. Since the affiliations in LinkedIn, AngelList and the CV are correlated, it is likely possible to use our method to identify unique people.

While our paper focuses on completeness and accuracy of nodes, future work can use similar principles to assess the completeness and accuracy of edges in the network. Finally, extensions to dynamic networks in which timestamp attributes are present, could be investigated.

Acknowledgments

This research is part of the CORPNET project [http://corpnet.uva.nl] at the University of Amsterdam. The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 638946).

References

[1] Jonathan Stuart Ward and Adam Barker. Undefined by data: a survey of big data definitions. arXiv: 1309.5821, 2013.
[2] Yair Wand and Richard Y Wang. Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 39(11):86–95, 1996.
[3] Allen Wilhite. Bilateral trade and ‘small-world’ networks. Computational Economics, 18(1):49–64, 2001.
[4] Stefano Battiston, J Doyne Farmer, Andreas Flache, Diego Garlaschelli, Andrew G Haldane, Hans Heesterbeek, Cars Hommes, Carlo Jaeger, Robert May, and Marten Scheffer. Complexity theory and financial regulation. Science, 351(6275):818–819, 2016.
[5] Stefano Battiston, Michele Catanzaro. Statistical properties of board interlock networks. The European Physical Journal B - Condensed Matter and Complex Systems, 38(2):345–352, 2004.
[6] John Scott. Social network analysis. Sage, 2012.
[7] Stefania Vitali and Stefano Battiston. The community structure of the global corporate network. PLoS ONE, 9(8):e104655, 2014.
[8] Frank W. Takes and Evelke M Heemskerk. Centrality in the global network of corporate control. Social Network Analysis and Mining, 6(1):1–18, 2016.
[9] Evelke M Heemskerk, Kevin Young, Frank W Takes, Bruce Cronin, Javier Garcia-Bernardo, Vladimir Popov, William Winecoff, Lasse Folke Henriksen, and Audrey Laurin-Lamothe. Big corporate network data: Problems, diagnostics, and fixes. SSRN: 2846761, 2016.
[10] Gueorgi Kossinets. Effects of missing data in social networks. Social networks, 28(3):247–268, 2006.
[11] Mark S Mizruchi. What do interlocks do? An analysis, critique, and assessment of research on interlocking directorates. Annual Review of Sociology, 22:271–298, 1996.
[12] Val Burrell. Interlocking directorates and political cohesion among corporate elites. American Journal of Sociology, 111(1):249–283, 2005.
[13] Gerald F Davis. Agents without principles? The spread of the poison pill through the intercorporate network. Administrative Science Quarterly, 36(4):583–613, 1991.
[14] Stefania Vitali and Stefano Battiston. The community structure of the global corporate network. PLoS ONE, 9(8):e104655, 2014.
[15] Michael Mitzenmacher. A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics, 1(2):226–251, 2003.
[16] Elliott W Montroll and Michael F Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. Journal of Statistical Physics, 32(2):209–230, 1983.
[17] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE, 9(6):e98679, 2014.
[18] David Crandall, Dan Cosley, Daniel Huttenlocher, Jon Kleinberg, and Siddharth Suri. Feedback effects between similarity and social influence in online communities. In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining, pages 160–168, 2008.
[22] Robert J Shiller and John Pound. Survey evidence on diffusion of interest and information among investors. *Journal of Economic Behavior & Organization*, 12(1): 47–66, 1989.

[23] Filippo Radicchi, Santo Fortunato, and Claudio Castellano. Universality of citation distributions: Toward an objective measure of scientific impact. *PNAS*, 105(45): 17268–17272, 2008.

[24] Christian Doerr, Norbert Blenn, and Piet Van Mieghem. Lognormal infection times of online information spread. *PloS ONE*, 8(5):e64349, 2013.