Description of a new horned toad of *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China

Haijun Su¹*, Shengchao Shi²*, Yanqing Wu³, Guangrong Li⁴, Xiaogang Yao⁴, Bin Wang², Shize Li²

1 College of Forestry, Guizhou University, Guiyang 550002, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China 4 Kuankuoshui National Nature Reserve Administration, Suiyang 563300, China

Corresponding author: Shize Li (976722439@qq.com); Bin Wang (wangbin@cib.ac.cn)

Academic editor: Anthony Herrel | Received 1 July 2020 | Accepted 24 August 2020 | Published 7 October 2020

Citation: Su H, Shi S, Wu Y, Li G, Yao X, Wang B, Li S (2020) Description of a new horned toad of *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China. ZooKeys 974: 131–159. https://doi.org/10.3897/zookeys.974.56070

Abstract

A new species of the genus *Megophrys* is described from Guizhou Province, China. Molecular phylogenetic analyses supported the new species as an independent clade nested into the *Megophrys*. The new species could be distinguished from its congeners by a combination of the following characters: body size moderate (SVL 49.3–58.2 mm in males); vomerine ridges present distinctly, vomerine teeth present; tongue feebly notched behind; tympanum distinctly visible, oval; two metacarpal tubercles in hand; toes with one-third webbing and wide lateral fringes; heels overlapped when thighs are positioned at right angles to the body; tibiotarsal articulation reaching the level between tympanum and eye when leg stretched forward; an internal single subgular vocal sac present in male; in breeding male, the nuptial pads with large and sparse black nuptial spines present on the dorsal bases of the first two fingers.

Keywords

China, molecular phylogenetic analysis, morphology, new species, taxonomy

* Contributed equally as the first author.
Introduction

The toad genus *Megophrys* Kuhl & Van Hasselt, 1822 (Anura; Megophryidae) is widely distributed in eastern and central China, throughout southeastern Asia, and extending to the islands of the Sunda Shelf and the Philippines (Frost 2020). The taxonomic assignments of the taxa in this group have been debated for a long time (e.g., Tian and Hu 1983; Dubois 1987; Lathrop 1997; Rao and Yang 1997; Jiang et al. 2003; Delorme et al. 2006; Fei et al. 2009; Chen et al. 2016; Fei and Ye 2016; Deuti et al. 2017; Mahony et al. 2017; Frost 2020). Regardless, molecular phylogenetic studies indicate the group as a monophyletic group (Chen et al. 2017; Mahony et al. 2017; Li et al. 2018b; Liu et al. 2018, 2020; Wang et al. 2020), and thus some studies regarded it as a large genus, *Megophrys sensu lato* (Mahony et al. 2017; Li et al. 2018b; Liu et al. 2018, 2020; Wang et al. 2020; Frost 2020) while other studies divided the taxon into different genera and subgenera (Chen et al. 2017; Fei and Ye 2016; Liu et al. 2018).

The genus *Megophrys* currently contains 106 species, of which 50 species have been described in the last decade (Frost 2020). Many cryptic species were indicated in the genus by molecular phylogenetic frameworks (Chen et al. 2017; Liu et al. 2018). In recent years, four species were described from Guizhou Province, China: *Megophrys liboensis* Zhang, Li, Xiao, Li, Pan, Wang, Zhang & Zhou, 2017, *Megophrys leishanensis* Li, Xu, Liu, Jiang, Wei & Wang, 2018, *Megophrys jiangi* Liu, Li, Wei, Xu, Cheng, Wang & Wu, 2020, and *Megophrys chishuiensis* Xu, Li, Liu, Wei, & Wang, 2020. However, many areas have not been well investigated in this province, and it is expected that there are still cryptic species of the toads in the region.

During field surveys in the Huanglian Nature Reserve, Tongzi County, and Kuankuoshui National Nature Reserve, Suiyang County in Guizhou Province, China, we collected a number of *Megophrys* specimens. Molecular phylogenetic analyses, morphological comparisons, and bioacoustics data support it as an undescribed species.

Materials and methods

Sampling

A total of nine molecular samples were collected in this study: five adult males of the undescribed species from two localities of Guizhou Province, China, two *M. sangzhiensis* and two *M. spinata* (Table 1; Fig. 1). In the field, the toads were euthanized using isoflurane, and the specimens were fixed in 75 % ethanol. Tissue samples were taken and preserved separately in 99% ethanol prior to fixation. The specimens were deposited in Chengdu Institute of Biology, Chinese Academy of Sciences (CIB, CAS).
A new species of Megophrys

Total DNA was extracted using a standard phenol-chloroform extraction protocol (Sambrook et al. 1989). Two fragments of the mitochondrial 16S rRNA (16S) and cytochromeoxidase subunit I (COI) genes were amplified. For 16S, the primers P7 (5’-CGCCTGTATTACAAAACAT-3’) and P8 (5’-CCGGTCTGAACTCAGATCACGT-3’) were used following Simon et al. (1994), and for COI, Chmf4 (5’-TYTCWACWAAYCAYAAAGAYATCGG-3’) and Chmr4 (5’-ACYTCRGGRTGRCCRAARAATCA-3’) were used following Che et al. (2012). Gene fragments were amplified under the following conditions: an initial denaturing step at 95 °C for 4 min; 36 cycles of denaturing at 95 °C for 30 s, annealing at 52 °C (for 16S)/47 °C (for COI) for 40 s and extending at 72 °C for 70 s. Sequencing was conducted using an ABI3730 automated DNA sequencer in Shanghai DNA BioTechnologies Co., Ltd. (Shanghai, China). New sequences were deposited in GenBank (for accession numbers see Table 1).

For molecular analyses, the available sequence data for congeners of Megophrys were downloaded from GenBank (Table 1), primarily from previous studies (Chen et al. 2017; Liu et al. 2018). For phylogenetic analyses, corresponding sequences of one Leptobrachella oshanensis (Liu, 1950) and one Leptobrachium boringii (Liu, 1945) were also downloaded (Table 1), and used as outgroups according to Mahony et al. (2017). Sequences were assembled and aligned using the Clustalw module in BioEdit v.7.0.9.0
Table 1. Information for samples used in molecular phylogenetic analyses in this study.

ID	Species	Voucher number	Locality	GenBank accession number
1	Megophrys qianheimensis sp. nov.	CIBTZ201906080015	Huanglian Nature Reserve, Guizhou, China	MT651553
2	Megophrys qianheimensis sp. nov.	CIBTZ201906080017	Huanglian Nature Reserve, Guizhou, China	MT651554
3	Megophrys qianheimensis sp. nov.	CIBTZ20160715003	Huanglian Nature Reserve, Guizhou, China	MT651555
4	Megophrys qianheimensis sp. nov.	CIBKKS20180722002	Huanglian Nature Reserve, Guizhou, China	MT651556
5	Megophrys qianheimensis sp. nov.	CIBKKS20180722001	Kuanxuoshui Nature Reserve, Guizhou, China	MT651557
6	Megophrys sangzhiensis	CIBS20120602005	Badagongshan Nature Reserve, Hunan, China	MT651558
7	Megophrys sangzhiensis	CIBS20120602008	Badagongshan Nature Reserve, Hunan, China	MT651559
8	Megophrys sangzhiensis	SYSa004307	Zhangjiajie, Hunan, China	MH406798
9	Megophrys spinata	CIBLS20190801001	Leigong Shan, Guizhou, China	MT651551
10	Megophrys spinata	CIBLS20190801002	Leigong Shan, Guizhou, China	MT651552
11	Megophrys spinata	SYSa002227	Leigong Shan, Guizhou, China	MH406676
12	Megophrys tinglingensis	KZ023507	Wawu Shan, Sichuan, China	KX811852
13	Megophrys tinglingensis	SYSa005313	Wawu Shan, Sichuan, China	MH406892
14	Megophrys tinglingensis	SYSa005314	Wawu Shan, Sichuan, China	MH406893
15	Megophrys tinglingensis	KZ011944	Jiuzu Shan, Yunnan, China	KX811849
16	Megophrys palpebralepina	KZ0111603	Pu Hu Nature Reserve, Thanh Hoa, Vietnam	KX811888
17	Megophrys omemontis	KZ0225765	Emei Shan, Sichuan, China	KX811884
18	Megophrys angka	KZ040491	Kiew Mac Pae nature trail, Chiang Mai, Thailand	MN508052 –
19	Megophrys walangshanensis	KZ0404612	Huangcaoling, Yunnan, China	KX811881
20	Megophrys walangshanensis	SYSa004145	Nanke Shan, Guangdong, China	KX812108
21	Megophrys chimengi	SYSa001427	Jingtang Shan, Jiangxi, China	KJ603591
22	Megophrys ohsea	SYSa002272	Heishiding Nature Reserve, Guangdong, China	KJ579122 –
23	Megophrys semao	KRM18	Wuyishan, Fujian, China	KX856404
24	Megophrys semao	VNMN 2018.01	Lao Cai, Sa Pa, Vietnam	MH514886 –
25	Megophrys xingyi	VNMN 2018.02	Lao Cai, Sa Pa, Vietnam	MH514889 –
26	Megophrys minor	KZ011939	Qinzheng Shan, Sichuan, China	KX811896
27	Megophrys xingyi	CIBKKS20180722006	Kuanxuoshui Nature Reserve, Guizhou, China	MN107743
28	Megophrys xingyi	CIBCS20190518051	Chihui Nature Reserve, Guizhou, China	MN954070
29	Megophrys xingyi	SYSa001972	Yinping Shan, Guangdong, China	MK524098
30	Megophrys xingyi	SYSa004498	Nanke Shan, Guangdong, China	MK524108
31	Megophrys xingyi	SYSa001579	Wawu Shan, Fujian, China	KJ603576
32	Megophrys xingyi	KZ017132	Chashan Forest Farm, Jiangxi, China	KX811840
33	Megophrys xingyi	WYF00169	Lishui, Zhejiang, China	KY021418
34	Megophrys xingyi	CIBJX3190505	Xianju, Zhejiang, China	MN653753
35	Megophrys xingyi	CIB045469	Guangwu, Sichuan, China	KX811838
36	Megophrys xingyi	KZ012126	Baslong, Chongqing, China	KX811813
37	Megophrys xingyi	CIBLS2017110101	Leigong Shan, Guizhou, China	MK003510
38	Megophrys xingyi	SYSa002877	Wugongshan Scenic Area, Jiangxi, China	MK524145
39	Megophrys xingyi	SYSa002370	Suichuan, Jiangxi, China	KJ604012
40	Megophrys xingyi	SYSa002874	Yangming Shan, Hunan, China	MH406713
41	Megophrys xingyi	SYSa001959	Shimentai Nature Reserve, Guangdong, China	MK524111
42	Megophrys xingyi	SYSa002107	Jiulian Shan, Jiangxi, China	MK524099
43	Megophrys xingyi	SYSa001579	Shuanhuang Mountain, Yunnan, China	MK324130
44	Megophrys xingyi	SYSa001292	Huaping Nature Reserve, Guangxi, China	MT651559
45	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
46	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
47	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
48	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
49	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
50	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
51	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
52	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
53	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
54	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
55	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
56	Megophrys xingyi	SYSa001292	Wugongshan Scenic Area, Jiangxi, China	MT651559
ID	Species	Voucher number	Locality	GenBank accession number
-----	--------------------------	----------------	-----------------------------------	--------------------------
57	Megophrys synoria	FMNH 262778	O'Reang, Mondolkiri, Cambodia	KY022198
58	Megophrys hansi	KIZ010360	Phong Dien Nature Reserve, Thua Thien Hue, Vietnam	KX811913 KX812155
59	Megophrys microstoma	KIZ048799	Xiaoyaogou Nature Reserve, Yunnan, China	KX811914 KX812156
60	Megophrys pachyproctus	KIZ010978	Beibeng, Xizang, China	KX811908 KX812153
61	Megophrys baluensis	ZMH A13125	Gunung Kinabalu National Park, Kogopan Trail, Malaysia	KJ831310
62	Megophrys stejnegeri	KU 314303	Pasonanca Natural Park, Zambosanga, Philippines	KX811922 KX812052
63	Megophrys igyae	ZMMU NAP-05015	Palawan, Philippines	KX811919 KX812051
64	Megophrys kobayashii	UNIMAS 8148	Gunung Kinabalu National Park, Sabah, Malaysia	KJ831313
65	Megophrys nasuta	KIZ019419	Malaysia	KX811921 KX812054
66	Megophrys eduardinae	FMNH 273094	Bintulu, Sarawak, Malaysia	KX811918 KX812050
67	Megophrys aceran	KIZ025467	Khao Nan National Park, Nakhon Si Thammarat, Thailand	KX811925 KX812159
68	Megophrys diringi	UNIMAS 8943	Gunung Mulu National Park, Sarawak, Malaysia	KJ831317
69	Megophrys mawnensis	KIZ016045	Xiaoyaogou Nature Reserve, Yunnan, China	KX811780 KX812080
70	Megophrys mangshanensis	KIZ021786	Narling National Forest Park, Guangdong, China	KX811790 KX812079
71	Megophrys flavopunctata	SDBDU2009.297	East Khazi Hills dist., Meghalaya	KY022307 MH647536
72	Megophrys glandulosa	KIZ048439	Hua, Yunnan, China	KX811762 KX812075
73	Megophrys medogensis	KIZ06621	Beibeng, Xizang, China	KX811767 KX812082
74	Megophrys serina	BNHS 6061	West Kameng dist., Arunachal Pradesh, IN	KY022309 MH647528
75	Megophrys himalayana	SDBDU2009.75	East Siang dist., Arunachal Pradesh, IN	KY022351
76	Megophrys sanas	KSJ987/2SII1393		KX894679
77	Megophrys zhongi	KIZ014278	Zhangmu, Xizang, China	KX811765 KX812084
78	Megophrys katahakho	ZSA11799		KX894669
79	Megophrys major	SYSa02961	Zhushuhe, Yunnan, China	MH406728 MH406180
80	Megophrys avrocypta	BNHS 6046	West Garo Hills dist., Meghalaya	KY022306
81	Megophrys awalensis	NCMS 79599	Aural, Kampong Speu, Cambodia	KX811807
82	Megophrys para	SYSa03042	Zhushuhe, Yunnan, China	MH406737 MH406189
83	Megophrys nankiangensis	CIB ZY517	Nanjiang, Sichuan, China	KX811900
84	Megophrys wuansui	KIZ025799	Wawu Shan, Sichuan, China	KX811902 KX812062
85	Megophrys gigamica	SYSa03933	Wuliang Shan, Yunnan, China	MH406775 MH406235
86	Megophrys kaopingensis	KIZ014512	Lizining Nature Reserve, Sichuan, China	KX811904 KX812060
87	Megophrys montana	LSUMZ 81916	Sukabumi, Java, Indonesia	KX811927 KX812163
88	Megophrys lacinip	MZB:Amp:22233		KY679891
89	Megophrys fuse	KIZ046706	Huangcailing, Yunnan, China	KX811810 KX812056
90	Megophrys chuanxuanensis	CIB20050881	Hejiang, Sichuan, China	KM504261
91	Megophrys carinatus	Tissue ID: TPA20455	Dayao Shan, Guangxi, China, China	KX811811 KX812057
92	Megophrys popei	SYS a00589	Naling Nature Reserve, Guangdong, China	KM504251
93	Megophrys intermediens	ZFMK 87596	U Bo, Phong Nha-Ke Bang VN, Vietnam	HGS89590
94	Lepisosteus boreinii	Tissue ID: TPA37539	Emei Shan, Sichuan, China	KX811930 KX812164
95	Lepisosteus sphenodontus	KIZ025778	Emei Shan, Sichuan, China	KX811928 KX812166

(Hall 1999) with default settings. Alignments were checked by eye and revised manually if necessary. For phylogenetic analyses of mitochondrial DNA, the dataset concatenated with 16S and COI gene sequences. To avoid under- or over-parameterization (Lemmon and Moriarty 2004; McGuire et al. 2007), the best partition scheme and the best evolutionary model for each partition were chosen for the phylogenetic analyses using PARTITIONFINDER v. 1.1.1 (Robert et al. 2012). In this analysis, 16S gene and each codon position of COI gene were defined, and Bayesian Inference Criteria was used. As a result, the analysis suggested that the best partition scheme is 16S gene/each codon position of COI gene, and selected GTR + G + I model as the best model for each partition. Phylogenetic analyses were conducted using maximum likelihood (ML)
and Bayesian Inference (BI) methods, implemented in PhyML v. 3.0 (Guindon et al. 2010) and MrBayes v. 3.12 (Ronquist and Huelsenbeck 2003), respectively. For the ML tree, branch supports were drawn from 10,000 nonparametric bootstrap replicates. In BI, two runs each with four Markov chains were simultaneously run for 50 million generations with sampling every 1,000 generations. The first 25% trees were removed as the “burn-in” stage followed by calculations of Bayesian posterior probabilities and the 50% majority-rule consensus of the post burn-in trees sampled at stationarity.

Morphological comparisons

In total, 16 specimens including six males of the undescribed species, five males of *M. sangzhiensis*, and five males of *M. spinata* were measured (for voucher information see Table 2). The terminology and methods followed Fei et al. (2009). Measurements were taken with a dial caliper to 0.1 mm. Twenty-one morphometric characters of adult specimens were measured:

- **ED** eye diameter (distance from the anterior corner to the posterior corner of the eye);
- **FL** foot length (distance from tarsus to the tip of fourth toe);
- **HDL** head length (distance from the tip of the snout to the articulation of jaw);
- **HDW** maximum head width (greatest width between the left and right articulations of jaw);
- **HLL** hindlimb length (maximum length from the vent to the distal tip of the Toe IV);
- **IAE** distance between posterior corner of eyes;
- **IFE** distance between anterior corner of eyes;
- **IND** internasal distance (minimum distance between the inner margins of the external nares);
- **IOD** interorbital distance (minimum distance between the inner edges of the upper eyelids);
- **LAL** length of lower arm and hand (distance from the elbow to the distal end of the Finger IV);
- **LW** lower arm width (maximum width of the lower arm);
- **NED** nasal to eye distance (distance between the nasal and the anterior corner of the eye);
- **NSD** nasal to snout distance (distance between the nasal the posterior edge of the vent);
- **SVL** snout-vent length (distance from the tip of the snout to the posterior edge of the vent);
- **SL** snout length (distance from the tip of the snout to the anterior corner of the eye);
- **TFL** length of foot and tarsus (distance from the tibiotarsal articulation to the distal end of the Toe IV);
- **THL** thigh length (distance from vent to knee);
- **TL** tibia length (distance from knee to tarsus);
- **TW** maximal tibia width;
- **TYD** maximal tympanum diameter;
- **UEW** upper eyelid width (greatest width of the upper eyelid margins measured perpendicular to the anterior-posterior axis).
Table 2. Measurements of the adult specimens of *Megophrys qianbeiensis* sp. nov., *M. spinata*, and *M. sangzhiensis*. Units are given in mm. See abbreviations for the morphological characters in Materials and methods section.

| Species | Voucher number | Sex | SVL | HDL | HDW | SL | NED | NSD | IND | IOD | ED | UEW | LAL | LW | HLL | THL | TL | TW | TFL | FL | TYD | IFE | IAE |
|-------------------------------|----------------|-----|------|
| *Megophrys qianbeiensis* sp. nov. | CIBTZ20190608016 | male | 58.2 | 16.5 | 21.0 | 6.7 | 2.7 | 3.9 | 7.5 | 5.1 | 6.9 | 6.2 | 25.0 | 6.7 | 89.3 | 27.9 | 32.4 | 8.2 | 40.7 | 28.2 | 4.3 | 10.1 | 16.4 |
| *Megophrys qianbeiensis* sp. nov. | CIBTZ20190608018 | male | 55.1 | 14.9 | 20.6 | 6.9 | 3.0 | 4.0 | 7.0 | 4.2 | 6.5 | 5.1 | 25.0 | 6.5 | 93.0 | 28.4 | 30.6 | 8.7 | 44.0 | 29.1 | 3.5 | 9.0 | 16.0 |
| *Megophrys qianbeiensis* sp. nov. | CIBTZ20190608017 | male | 56.3 | 14.6 | 19.2 | 7.2 | 3.2 | 3.6 | 6.7 | 4.3 | 6.5 | 5.3 | 24.0 | 6.9 | 87.0 | 27.6 | 28.0 | 7.8 | 38.3 | 25.7 | 3.2 | 10.9 | 15.0 |
| *Megophrys qianbeiensis* sp. nov. | CIBTZ20160715003 | male | 54.1 | 17.0 | 20.8 | 6.9 | 3.4 | 3.7 | 6.3 | 4.5 | 6.9 | 6.0 | 25.4 | 5.7 | 93.7 | 27.0 | 30.8 | 7.8 | 43.7 | 29.4 | 3.5 | 10.4 | 15.8 |
| *Megophrys qianbeiensis* sp. nov. | CIBTZ20190608015 | male | 52.6 | 15.3 | 19.4 | 6.8 | 2.4 | 4.3 | 6.9 | 3.7 | 5.9 | 5.5 | 24.1 | 7.4 | 86.9 | 24.1 | 28.3 | 8.3 | 41.4 | 28.0 | 3.3 | 10.0 | 15.7 |
| *Megophrys qianbeiensis* sp. nov. | CIBKKS20180722001 | male | 49.3 | 15.5 | 18.3 | 6.8 | 3.0 | 3.5 | 5.7 | 5.3 | 5.4 | 5.5 | 20.4 | 6.6 | 76.9 | 24.5 | 25.0 | 7.0 | 34.5 | 24.5 | 3.4 | 7.8 | 14.0 |
| *M. spinata* | CIBLS20190801002 | male | 56.2 | 14.9 | 18.4 | 6.0 | 3.0 | 3.4 | 5.8 | 4.2 | 5.1 | 6.1 | 24.2 | 5.5 | 93.7 | 27.4 | 29.9 | 6.1 | 40.8 | 28.6 | 2.7 | 9.1 | 14.0 |
| *M. spinata* | CIBLS20190801004 | male | 53.5 | 14.5 | 19.1 | 7.1 | 2.8 | 4.1 | 6.0 | 5.0 | 5.7 | 5.0 | 24.1 | 5.9 | 99.0 | 29.8 | 30.4 | 8.0 | 43.1 | 28.1 | 2.8 | 9.6 | 14.4 |
| *M. spinata* | CIBLS20190801001 | male | 54.8 | 14.6 | 18.6 | 6.7 | 2.8 | 3.9 | 6.0 | 4.8 | 5.8 | 4.5 | 24.3 | 6.1 | 87.7 | 27.6 | 28.9 | 7.0 | 39.7 | 26.4 | 2.8 | 9.2 | 14.2 |
| *M. spinata* | CIBLS20190801003 | male | 51.2 | 14.3 | 18.8 | 6.6 | 2.9 | 3.6 | 6.1 | 5.2 | 6.0 | 5.1 | 25.1 | 6.5 | 93.0 | 26.1 | 29.6 | 7.7 | 41.6 | 29.6 | 2.5 | 9.1 | 14.0 |
| *M. spinata* | CIBLS20160610008 | male | 53.8 | 15.8 | 18.4 | 5.7 | 2.7 | 3.8 | 6.3 | 5.3 | 5.5 | 4.5 | 24.0 | 7.4 | 85.7 | 26.9 | 29.0 | 6.0 | 39.2 | 27.9 | 2.9 | 8.5 | 14.3 |
| *M. sangzhiensis* | CIBSZ20120620005 | male | 59.8 | 17.8 | 20.6 | 7.2 | 3.1 | 4.1 | 7.3 | 4.8 | 7.1 | 5.7 | 26.6 | 6.6 | 105.0 | 31.6 | 32.6 | 7.8 | 46.1 | 29.4 | 3.1 | 10.4 | 16.1 |
| *M. sangzhiensis* | CIBSZ20120620008 | male | 58.8 | 17.8 | 21.5 | 7.6 | 3.0 | 4.4 | 7.3 | 4.7 | 7.4 | 6.1 | 26.8 | 6.2 | 97.3 | 30.3 | 31.6 | 7.8 | 42.9 | 26.7 | 3.4 | 10.9 | 17.3 |
| *M. sangzhiensis* | CIBSZ20120620006 | male | 59.5 | 16.1 | 21.0 | 8.2 | 3.5 | 4.6 | 7.7 | 5.0 | 6.7 | 6.1 | 26.6 | 6.3 | 99.8 | 27.9 | 32.3 | 7.3 | 43.8 | 29.2 | 3.4 | 10.1 | 17.3 |
| *M. sangzhiensis* | CIBSZ2012062019 | male | 57.4 | 18.0 | 20.9 | 7.3 | 3.5 | 3.7 | 6.8 | 5.0 | 6.4 | 5.1 | 26.2 | 6.1 | 99.5 | 30.2 | 32.6 | 8.1 | 43.2 | 29.9 | 3.7 | 10.4 | 17.3 |
| *M. sangzhiensis* | CIBSZ20120620007 | male | 56.1 | 16.1 | 20.0 | 6.6 | 3.9 | 4.1 | 6.9 | 5.8 | 6.1 | 5.7 | 28.2 | 6.7 | 100.0 | 28.0 | 32.0 | 7.5 | 44.9 | 29.4 | 3.4 | 9.4 | 16.2 |
In order to reduce the impact of allometry, the correct value from the ratio of each character to SVL was calculated, and then was log-transformed for subsequent morphometric analyses. One-way analysis of variance (ANOVA) was used to test the significance of differences on morphometric characters between different species. The significance level was set at 0.05. To show the spatial distribution of different species on the morphometric characters, principal component analyses (PCA) were performed. These analyses were carried out in the R (R Development Core Team 2008). The new species was also compared with all other *Megophrys* species on morphology. Comparative data were obtained from related species as described in literature (Table 3).

Table 3. References for morphological characters for congeners of the genus *Megophrys*.

Species	Literature
M. aceras Boulenger, 1903	Boulenger 1903
M. acuta Wang, Li & Jin, 2014	Li et al. 2014
M. acuta Mahony, Teeling & Biju, 2013	Mahony et al. 2013
M. angka Wu, Sowannapoom, Poyarkov, Chen, Pwawanghanant, Xu, Jin, Murphy & Che, 2019	Wu et al. 2019
M. awasaleus Ohler, Swan & Daltry, 2002	Ohler et al. 2002
M. balensis (Boulenger, 1899)	Boulenger 1899a
M. buolongensis Ye, Fei & Xie, 2007	Ye et al. 2007
M. chinshunensis Ye & Fei, 1995	Ye and Fei 1995
M. chinlingensis Jiang, Fei & Ye, 2009	Fei et al. 2009
M. boettgeri (Boulenger, 1899)	Boulenger 1899b
M. brachykolos Inger & Romer, 1961	Inger and Romer 1961
M. carinense (Boulenger, 1889)	Boulenger 1889
M. caobangensis Nguyen, Pham, Nguyen, Luong, & Zieglet, 2020	Nguyen et al. 2020
M. catesbryi Shen, 1994	Shen. 1994
M. chenii (Wang & Liu, 2014)	Wang et al. 2014
M. chisuaensis Xu, Li, Wei & Wang, 2020	Xu et al. 2020
M. chuannanensis (Fei, Ye & Huang, 2001)	Fei et al. 2001
M. dameri Mahony, 2011	Mahony 2011
M. dawimensis Rao & Yang, 1997	Rao and Yang 1997
M. dongguanensis Wang & Wang, 2019	Wang et al. 2019b
M. dringi Inger, Stuebing & Tan, 1995	Inger et al. 1995
M. edwardinae Inger, 1989	Inger 1989
M. elfina Poyarkov, Orlov, Gogoleva, Vassilieva, Nguyen, Nguyen, Che & Mahony, 2017	Poyarkov et al. 2017
M. feminalensis Tapley, Cutajar, Mahony, Nguyen, Dau, Luong, Le, Nguyen, Nguyen, Portway, Luong & Rowley, 2018	Tapley et al. 2018
M. feae Boulenger, 1887	Boulenger 1887
M. feii Yang, Wang & Wang, 2018	Yang et al. 2018
M. flavipunctata Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. gerti (Ohler, 2003)	Ohler 2003
M. gigantica Liu, Hu & Yang, 1960	Liu et al. 1960
M. glandulosa Fei, Ye & Huang, 1990	Fei et al. 1990
M. hassi (Ohler, 2003)	Ohler 2003
M. himalayana Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. huangshanensis Tapley, Cutajar, Mahony, Nguyen, Dau, Luong, Le, Nguyen, Nguyen, Portway, Luong & Rowley, 2018	Tapley et al. 2018
M. insularis (Wang, Liu, Lyu, Zeng & Wang, 2017)	Wang et al. 2017a
M. intermedia Smith, 1921	Smith 1921
M. jiugongi Liu, Li, Wei, Xu, Cheng, Wang & Wu, 2020	Liu et al. 2020
M. jinggangensis Fei & Ye, 1983	Fei et al. 1983
M. jinggangensis (Wang, 2012)	Wang et al. 2012
M. jiulianensis Wang, Zeng, Lyu & Wang, 2019	Wang et al. 2019b
M. kalimantanensis Munir, Hamidy, Matsui, Iskandar, Sidik & Shimada, 2019	Munir et al. 2019
M. kobayashii Malkmus & Matsui, 1997	Malkmus and Matsui 1997
Species	Literature
------------------------------	-----------------------------
M. kouei Mahony, Foley, Biju & Teeling, 2017	Mahony et al. 2017
M. kuatanensis Pope, 1929	Pope 1929
M. lancep Munir, Hamidy, Farajallah & Smith, 2018	Munir et al. 2018
M. leishanensis Li, Xi, Liu, Jiang, Wei & Wang, 2018	Li et al. 2018b
M. lekaguli Stuurt, Chuanerynkm, Chan-ard & Inger, 2006	Stuart et al. 2006
M. lebenses Zhang, Li, Xiao, Li, Pan, Wang, Zhang & Zhou, 2017	Zhang et al. 2017
M. leiger Taylor, 1920	Taylor 1920
M. lini (Wang & Yang, 2014)	Wang et al. 2014
M. lismanensis (Wang, Liu & Jiang, 2017)	Wang et al. 2017b
M. longipes Boulenger, 1886	Boulenger 1886
M. major Boulenger, 1908	Boulenger 1908
M. manghanensis Fei & Ye, 1990	Fei et al. 2012
M. massonensis Bourret, 1937	Bourret 1937
M. medogensis Fei, Ye & Huang, 1983	Fei et al. 1983
M. megacephala Mahony, Sengupta, Kamei & Biju, 2011	Mahony et al. 2011
M. microstoma (Boulenger, 1903)	Boulenger 1903
M. minor Stejneger, 1926	Stejneger 1926
M. mirabilis Lyu, Wang & Zhao, 2020	Lyu et al. 2020
M. montana Kuhl & Van Hasselt, 1822	Kuhl and Van Hasselt 1822
M. monticola (Günther, 1864)	Günther 1864
M. mutumontaista Wang, Lyu & Wang, 2019	Wang et al. 2019b
M. nankiangensis Liu & Hu, 1966	Hu and Liu 1966
M. nankunensis Wang, Zeng & Wang, 2019	Wang et al. 2019b
M. nanlingensus Lyu, Wang & Wang, 2019	Wang et al. 2019b
M. nanua (Schlegel, 1858)	Schlegel 1858
M. noei Wang, Li & Zhao, 2014	Wang et al. 2014
M. ombrophila Messenger & Dahn, 2019	Messenger et al. 2019
M. omeinonous Liu, 1950	Liu 1950
M. orcepyra Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. orpedion Mahony, Teeling & Biju, 2013	Mahony et al. 2013
M. orientalis Lyu, Wang & Wang, 2020	Li et al. 2020
M. pacynuscius Huang, 1981	Huang and Fei 1981
M. palpebralEPinnos Bourret, 1957	Bourret 1957
M. parallelina Inger & Iskandar, 2005	Inger and Iskandar 2005
M. parva (Boulenger, 1893)	Boulenger 1893
M. perina Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. peripatetic Zhao, Yang, Chen, Chen & Wang, 2014	Zhao et al. 2014
M. robusta Boulenger, 1908	Boulenger 1908
M. rubritent Tapley, Cutajar, Mahony, Chung, Dau, Nguyen, Luong & Rowley, 2017	Tapley et al. 2017
M. ruchebeni Jiang, Ye & Fei, 2008	Jiang et al. 2008
M. archibiata (Mathew & Sen, 2007)	Mathew and Sen 2007
M. shapingensis Liu, 1950	Liu 1950
M. shimenxina Lyu, Liu & Wang, 2020	Lyu et al. 2020
M. shuihegenuis Tian & Sun, 1995	Tian and Sun 1995
M. shunhuanensis Wang, Deng, Liu, Wu & Liu, 2019	Wang et al. 2019a
M. spinata Liu & Hu, 1973	Hu et al. 1973
M. stegneri Taylor, 1920	Taylor 1920
M. suparia (Stuart, Sok & Neang, 2006)	Stuart et al. 2006
M. takaenii Mahony, 2011	Mahony 2011
M. tabergranulata Shen, Mo & Li, 2010	Mo et al. 2010
M. vegandis Mahony, Teeling, Biju, 2013	Mahony et al. 2013
M. wuwuuenis Fei, Jiang & Zheng, 2001	Fei et al. 2012
M. wugongensis Wang, Lyu & Wang, 2019	Wang et al. 2019b
M. wuluanghehenui Fei & Fei, 1995	Ye and Fei 1995
M. wuwuuenis Ye & Fei, 1995	Ye and Fei 1995
M. xianfuensis Wang, Wu, Peng, Shi, Lu & Wu, 2020	Wang et al. 2020
M. xiangnuensis Lyu, Zeng & Wang, 2020	Lyu et al. 2020
M. yangmingensis Lyu, Zeng & Wang, 2020	Lyu et al. 2020
M. zhangi Ye & Fei, 1992	Ye and Fei 1992
M. zufitolutinis (Mathew & Sen, 2007)	Mathew and Sen 2007
Bioacoustics analyses

The advertisement calls of the undescribed species were recorded from the holotype specimen CIBTZ20190608017 in a stream at ambient air temperature of 20.5 °C and air humidity of 87 % in the field on 8 June 2019 in Huanglian Nature Reserve, Tongzi County, Guizhou Province, China. The advertisement calls of *M. sangzhiensis* were recorded from the specimen CIBSZ2012062005 in a stream at ambient air temperature of 18.5 °C and air humidity of 85 % in the field on 20 June 2012 in Sangzhi County, Hunan Province, China. The advertisement calls of *M. spinata* were recorded from the specimen CIBLS20190801001 in a stream at ambient air temperature of 19.0 °C and air humidity of 85 % in the field on 1 August 2019 in Leishan County, Guizhou Province, China. SONY PCM-D50 digital sound recorder was used to record within 20 cm of the calling individual. The sound files in wave format were resampled at 48 kHz with sampling depth 24 bits. The sonograms and waveforms were generated by WaveSurfer software (Sjöander and Beskow 2000) from which all parameters and characters were measured. Ambient temperature was taken by a digital hygrothermograph.

Results

Phylogenetic analyses

Aligned sequence matrix of 16S+COI contains 1104 bp. ML and BI trees had almost consistent topology though relationships of some lineages were unresolved (Fig. 2). In trees, the undescribed species was clustered as an independent clade and sister to a clade in comprising of *M. sangzhiensis* and *M. spinata* (Fig. 2).

Genetic distances on COI gene with uncorrected *p*-distance model between all samples of the undescribed species were below 0.2%. The genetic distance between the undescribed species and its closest related species *M. sangzhiensis* was 4.3 % on COI gene, which was higher or at the same level with those among many pairs of congeners, for example, 3.6 % between *M. spinata* and *M. sangzhiensis*, 1.8% between *M. huangshanensis* and *M. boettgeri*, and 4.3 % between *M. maosonensis* and *M. mangshanensis* (Suppl. material 1: Table S1).

Morphological comparisons

In PCA for males, the total variation of the first two principal components was 63.2 %. In males on the two-dimensional plots of PC1 vs. PC2, the undescribed species could be distinctly separated from *M. sangzhiensis* and *M. spinata* (Fig. 3). The results of one-way ANOVA indicated that in males, the undescribed species was significantly different from *M. sangzhiensis* and *M. spinata* on many morphometric characters (all *p*-values < 0.05; Table 4). More detailed descriptions of results from morphological comparisons between the undescribed species and its congeners were presented in the following sections for describing the new species.
A new species of *Megophrys*

Figure 2. Bayesian Inference (BI) tree of the genus *Megophrys* reconstructed based on the 16S rRNA and COI gene sequences. Bayesian posterior probability resulted from BI analyses/ML bootstrap supports from Maximum Likelihood analyses were denoted beside each node. Samples 1–90 refer to Table 1.

Bioacoustics comparisons

There were many differences in sonograms and waveforms of calls between the undescribed species, *M. sangzhiensis*, and *M. spinata* (Fig. 4; Table 5). Firstly, in the note interval, the undescribed species were shorter than those of both *M. sangzhiensis* and *M. spinata*. Secondly, the dominant frequency of call in the undescribed species was lower than both of *M. sangzhiensis* and *M. spinata*. Thirdly, the amplitude of the undescribed species beginning with moderately high energy pulses, increasing slightly to a maximum by approximately mid note, and then decreasing towards the end of each note, in *M. sangzhiensis* beginning with maximum energy pulses and then decreasing towards the end of note, and in *M. spinata* beginning with lower energy pulses, then
Table 4. Morphometric comparisons between *Megophrys qianbeiensis* sp. nov., *M. sangzhiensis*, and *M. spinata*. Units given in mm. Abbreviations for the species name: MQ, *Megophrys qianbeiensis* sp. nov.; MSZ, *M. sangzhiensis*; MSP, *M. spinata*. See abbreviations for morphometric characters in Materials and methods section.

Character	*Megophrys qianbeiensis* sp. nov.	*M. sangzhiensis*	*M. spinata*	p-value from ANOVA in male	
	males (N=6)	males (N=5)	males (N=5)	MQ vs. MSZ	MQ vs. MSP
SVL	49.3–58.2 54.5 ± 3.09	56.1–59.8 58.3 ± 1.56	51.2–56.2 55.9 ± 1.84	0.029	0.851
HDL	14.6–17.0 15.6 ± 0.93	16.1–18.0 17.2 ± 0.96	14.3–15.8 14.8 ± 0.59	0.027	0.124
HDW	18.3–21.0 19.9 ± 1.08	20.0–21.5 20.8 ± 0.55	18.4–19.1 18.7 ± 0.30	0.123	0.037
SL	6.7–7.2 6.9 ± 0.17	6.6–8.2 7.4 ± 0.58	5.7–7.1 6.4 ± 0.56	0.067	0.085
TYD	3.2–4.3 3.5 ± 0.39	3.1–3.7 3.4 ± 0.21	2.5–2.9 2.7 ± 0.15	0.639	0.001
IFE	7.8–10.9 9.7 ± 1.13	9.4–10.9 10.2 ± 0.54	8.5–9.6 9.1 ± 0.39	0.340	0.348
IAE	14.0–16.4 15.5 ± 0.86	16.1–17.3 16.8 ± 0.62	14.0–14.4 14.2 ± 0.18	0.019	0.009
NED	2.4–3.4 2.9 ± 0.36	3.0–3.9 3.4 ± 0.36	2.7–3.0 2.8 ± 0.11	0.060	0.618
NSD	3.5–4.3 3.8 ± 0.29	3.7–4.6 4.2 ± 0.34	3.4–4.1 3.8 ± 0.27	0.101	0.683
IOD	5.7–7.5 6.7 ± 0.62	6.8–7.7 7.2 ± 0.54	5.8–6.3 6.0 ± 0.18	0.150	0.056
ED	3.7–5.3 4.5 ± 0.59	4.7–5.8 5.1 ± 0.45	4.2–5.3 4.9 ± 0.44	0.117	0.257
UEW	5.1–6.2 5.6 ± 0.43	5.1–6.1 5.7 ± 0.42	4.5–6.1 5.0 ± 0.65	0.484	0.126
LAL	20.4–25.4 24.0 ± 1.84	26.2–28.2 26.9 ± 0.78	24.0–25.1 24.3 ± 0.44	0.014	0.654
LW	5.7–7.4 6.6 ± 0.55	6.1–6.7 6.4 ± 0.24	5.5–7.4 6.3 ± 0.72	0.394	0.364
HLL	76.9–93.7 87.8 ± 6.07	97.3–105.0 100.3 ± 2.84	85.7–99.0 91.8 ± 5.27	0.003	0.280
THL	24.1–28.4 26.6 ± 1.82	27.9–31.6 29.6 ± 1.59	26.1–29.8 27.6 ± 1.38	0.019	0.343
TL	25.0–32.4 29.2 ± 2.63	31.6–32.6 32.2 ± 0.42	28.9–30.4 29.6 ± 0.63	0.038	0.713
TW	7.0–8.7 8.0 ± 0.58	7.3–8.1 7.7 ± 0.32	6.0–8.0 7.0 ± 0.91	0.404	0.053
TFL	34.5–44.0 40.4 ± 3.58	42.9–46.1 44.2 ± 1.32	39.2–43.1 40.9 ± 1.55	0.062	0.761
FL	24.5–29.4 27.5 ± 1.95	26.7–29.9 28.9 ± 1.28	26.4–29.6 28.1 ± 1.16	0.201	0.531

Figure 3. Plots of the first principal component (PCA1) versus the second (PCA2) for *Megophrys qianbeiensis* sp. nov., *M. sangzhiensis*, and *M. spinata* from principal component analyses.
A new species of *Megophrys*

Figure 4. Visualization of advertisement calls of *Megophrys qianbeiensis* sp. nov., *M. sangzhiensis*, and *M. spinata*. **A1** waveform showing one note of *Megophrys qianbeiensis* sp. nov. **A2** sonogram showing one note of *Megophrys qianbeiensis* sp. nov. **A3** waveform showing 25 notes of one call of *Megophrys qianbeiensis* sp. nov. **A4** sonogram showing 25 notes of one call of *Megophrys qianbeiensis* sp. nov. **B1** waveform showing one note of *M. sangzhiensis*. **B2** sonogram showing one note of *M. sangzhiensis*. **B3** waveform showing 38 notes of one call of *M. sangzhiensis*. **B4** sonogram showing 38 notes of one call of *M. sangzhiensis*. **C1** waveform showing one note of *M. spinata*. **C2** sonogram showing one note of *M. spinata*. **C3** waveform showing 20 notes of one call of *M. spinata*. **C4** sonogram showing 20 notes of one call of *M. spinata*.

Table 5. Comparisons of characteristics of advertisement calls of *Megophrys qianbeiensis* sp. nov., *M. sangzhiensis*, and *M. spinata*.

Call character	*Megophrys qianbeiensis* sp. nov.	*M. sangzhiensis*	*M. spinata*			
	Range	Mean ± SD	Range	Mean ± SD	Range	Mean ± SD
Number of notes in a call	14–26	22.5 ± 4.4	38	/	7–28	17 ± 7.92
Call duration (ms)	2832–5621	4413 ± 972	8152	/	1500–6623	3905 ± 2010
Call interval (ms)	6812–14387	10878 ± 2701	/	/	592–5770	2708 ± 1863.33
Note duration (ms)	129–211	167 ± 0.02	107–155	120.3 ± 8.73	107–123	114 ± 3.79
Note interval (ms)	34–94	57 ± 0.01	72–132	95.6 ± 13.89	113–232	147 ± 33.12
Dominant frequency (Hz)	2250–3000	2469 ± 197.47	10380–13200	11795 ± 670.58	4260–4589	4416 ± 130.04
Temperature (°C)	20.5	18.5			19.0	
increasing to the maximum by approximately one-fourth note and then decreasing to the mid note then increasing to the second highest energy pulses and then decreasing towards the end of note.

Taxonomic accounts

Megophrys qianbeiensis sp. nov.

http://zoobank.org/C6C89A51-8178-4C7B-A100-80C0D2D42AD3

Figures 4A1–C1, 5, 6A1–A6, 7; Tables 1, 2, 4, 5, Suppl. material 2: Table S2

Type material. *Holotype*. CIBTZ20190606017 (Figs 5, 6), adult male, from Huan-glian Nature Reserve, Tongzi County, Guizhou Province, China (28.498056°N, 107.046944°E, ca. 1500 m a.s.l.), collected by Shi-Ze Li 8 June 2019.

Paratype. Four adult males from the same place as holotype, and one from Kuankuoshui National Nature Reserve (28.21835°N, 107.166388°E, ca.1520 m a.s.l.) collected by Shi-Ze Li. CIBKKS20180722001 collected 22 July 2018 from Kuankuoshui National Nature Reserve and CIBTZ20160715003 collected 15 July 2016, CIBTZ20190608015, CIBTZ20190608016 and CIBTZ20190608018 collected 8 June 2019 from Kuankuoshui National Nature Reserve.

Diagnosis. *Megophrys qianbeiensis* sp. nov. is assigned to the genus *Megophrys* based on molecular phylogenetic analyses and the following generic diagnostic characters: snout shield-like; projecting beyond the lower jaw; canthus rostralis distinct; chest glands small and round, closer to the axilla than to midventral line; femoral glands on rear part of thigh; vertical pupils.

Megophrys qianbeiensis sp. nov. could be distinguished from its congeners by a combination of the following morphological characters: body size moderate (SVL 49.3–58.2 mm in males); vomerine ridges present distinctly, vomerine teeth present; tongue feebly notched behind; tympanum distinctly visible, oval; two metacarpal tubercles in hand; toes with one-third webbing and wide lateral fringes; heels overlapped when thighs are positioned at right angles to the body; tibiotarsal articulation reaching the level between tympanum and eye when leg stretched forward; an internal single subgular vocal sac present in male; in breeding male, the nuptial pads with large and sparse black nuptial spines present on the dorsal bases of the first two fingers.

Description of holotype. (Figs 5, 6). SVL 56.3 mm; head width larger than head length (HDW/HDL ratio ca. 1.3); snout obtusely pointed, protruding well beyond the margin of the lower jaw in ventral view; loreal region vertical and concave; canthus rostralis well-developed; top of head flat in dorsal view; eye large, eye diameter 44.5 % of head length; pupils vertical; nostril orientated laterally, closer to snout than eye; tympanum distinct, TYP/EYE ratio 0.49; vomerine ridges present distinctly as V-shape, vomerine teeth present; margin of tongue smooth, feebly notched behind.

Forelimbs slender, the length of lower arm and hand 42.6 % of SVL; fingers burly, relative finger lengths: II < I < V < III; tips of digits globular, without lateral fringes; subarticular tubercle distinct at the base of each finger; two metacarpal tubercles, prominent, oval-shaped, the inner one bigger than the outer one.
Hindlimbs slender, 1.54 times of SVL; heels overlapping when thighs are positioned at right angles to the body, tibiotarsal articulation reaching tympanum to eye when leg stretched forward; tibia length longer than thigh length; relative toe lengths I < II < V < III < IV; tips of toes round, slightly dilated; subarticular tubercles present on the base of each toes; toes with one-third webbing and relative wide lateral fringe; inner metatarsal tubercle oval-shaped; outer metatarsal tubercle absent.

Dorsal skin rough, with numerous granules with black spins; several large warts scattered on flanks; tubercles on the dorsum forming a weak V-shaped ridge; two discontinuous dorsolateral parallel ridges on either side of the V-shaped ridges; an inverted triangular brown speckle between two upper eyelids; several tubercles on the flanks and dorsal surface of thighs and tibias; supratympanic fold distinct.

Ventral surface smooth with numerous white granules; glands on chest indistinct; femoral glands on rear of thighs, numerous white granules on outer thighs; posterior end of the body distinctly protruding and forming an arc-shaped swelling above the anal region.

Coloration of holotype in life (Fig. 5). An inverted triangular brown speckle between the eyes; V-shaped ridges on the dorsum with brown speckle, on transverse bands on the dorsal surface of the thigh and shank; several dark brown and white vertical bars on the lower and upper lip; belly whitish grey with dark brown marbling; ventral surface of posterior limb orange with numerous granules; palms, soles and tip of digits uniform purple grey; femoral glands white.

Coloration of holotype in preservation (Fig. 6). Color of dorsal surface fades to brownness; the inverted triangular brown speckle between the eyes and V-shaped ridges on dorsum indistinct; ventral surface greyish white; creamy-white substitutes...
the purple grey on tip of digits; the posterior of ventral surface of body, inner of thigh and upper of tibia fades to creamy-white.

Variation. In CIBTZ20160715003 the dorsolateral parallel ridges are short, just a little bit above the shoulder (Fig. 7A); in CIBTZ20190608015 the X-shaped marking on back of trunk consists of a ridge with brown spots (Fig. 7B) and the posterior belly are orange with black spots on the flank belly (Fig. 7C); in CIBKKS20180722001 the belly is grey brown with some white spots (Fig. 7D).

Advertisement call. The call description is based on recordings of the holotype CIBTZ20190608017 (Fig. 4) from the shrub leaf near the streamlet, and the ambient air temperature was 20.5 °C. Each call consists of 14–26 (mean 22.5 ± 4.4, \(N = 6 \)) notes. Call duration was 2832–5621 ms (mean 4413 ± 972, \(N = 6 \)). Call interval was 6812–14387 ms (mean 10878 ± 2701, \(N = 5 \)). Each note had a duration of 129–211 ms (mean 167 ± 0.02, \(N = 135 \)) and the intervals between notes 34–94 ms (mean 57 ± 0.01, \(N = 128 \)). Amplitude modulation within note was apparent, beginning with moderately high energy pulses, increasing slightly to a maximum by approximately mid note, and then decreasing towards the end of each note. The average dominant frequency was 2469 ± 197.47 (2250–3000 Hz, \(N = 6 \)).
A new species of Megophrys

Secondary sexual characters. Adult males have a single subgular vocal sac. In breeding males, brownish red nuptial pads are present on the dorsal bases of the first two fingers with big and sparse black nuptial spines (Fig. 5A).

Comparisons. By having moderate body size (minimum SVL > 49.8 mm in males), Megophrys qianbeiensis sp. nov. differs from M. aceras, M. acuta, M. angka, M. ancras, M. baluensis, M. baolongensis, M. binchuanensis, M. binlingensis, M. boettgeri, M. brachykolos, M. caobangensis, M. cheni, M. daweimontis, M. dongguanensis, M. dringi, M. edwardinae, M. elfina, M. fansipanensis, M. feii, M. gerti, M. hansi, M. hoanglieniensis, M. huangshanensis, M. insularis, M. jiangi, M. jinggangensis, M. jiulianensis, M. kuatunensis, M. lancip, M. leishanensis, M. lini, M. lishuiensis, M. longipes, M. major, M. microstoma, M. minor, M. monticola, M. mufumontana, M. nankunensis, M. nanlingensis, M. obesa, M. ombrophila, M. oropedion, M. pachyproctus, M. palpebralispinosa, M. parallela, M. parva, M. rubrimera, M. serchhipii, M. shimentaina, M. shunhuangensis, M. tuberogranulata, M. vegrandi, M. wawuensis, M. wugongensis, M. wuliangshanensis, M. wushanensis, M. xianjuensis, M. zhangi, M. zunhebotoensis, M. xiangnanensis, and M. yangmingensis (vs. minimum SVL < 48.0 mm).
By having moderate body size (minimum SVL < 59.0 mm in males), *Megophrys qianbeiensis* sp. nov. differs from *M. auralensis*, *M. carinense*, *M. caudoprotca*, *M. chuananensis*, *M. feae*, *M. gigantica*, *M. glandulosa*, *M. himalayana*, *M. kalimantanensis*, *M. kobayashii*, *M. ligayae*, *M. mangshanensis*, *M. orientalis*, *M. periosa*, *M. platyparietus*, *M. popei*, *M. shapingensis*, and *M. shuichengensis* (vs. minimum SVL > 60.0 mm).

By having vomerine teeth, *Megophrys qianbeiensis* sp. nov. differs from *M. aceras*, *M. aucta*, *M. angka*, *M. auralensis*, *M. baolongensis*, *M. biinchuanensis*, *M. binlingensis*, *M. boettgeri*, *M. brachykolos*, *M. caobangensis*, *M. cheni*, *M. chishuiensis*, *M. dringi*, *M. feae*, *M. leishanensis*, *M. lini*, *M. lishuiensis*, *M. major*, *M. microstoma*, *M. minor*, *M. mirabilis*, *M. mufumontana*, *M. nankiangensis*, *M. obesa*, *M. ombrophila*, *M. shapingensis*, *M. shuichengensis*, *M. shunhuangensis*, *M. tuberogranulata*, *M. vegrandis*, *M. wawuensis*, *M. wugongensis*, *M. wuliangshanensis*, *M. wushanensis*, *M. xianjuensis*, *M. xiangnanensis*, and *M. yangmingensis* (vs. absent).

By the absence of horn-like tubercle at the edge of each upper eyelid, *Megophrys qianbeiensis* sp. nov. differs from *M. aceras*, *M. aucta*, *M. angka*, *M. auralensis*, *M. baolongensis*, *M. biinchuanensis*, *M. binlingensis*, *M. boettgeri*, *M. brachykolos*, *M. caobangensis*, *M. carinense*, *M. caudoprotca*, *M. cheni*, *M. chishuiensis*, *M. chuananensis*, *M. da-wei-montis*, *M. dongguanensis*, *M. dringi*, *M. edwardinae*, *M. elfina*, *M. fansipanensis*, *M. feae*, *M. feii*, *M. flavipunctata*, *M. gerti*, *M. glandulosa*, *M. hansii*, *M. himalayana*, *M. hoanglienensis*, *M. huangshanensis*, *M. insularis*, *M. intermedia*, *M. jangi*, *M. jing-dongensis*, *M. jinggangensis*, *M. jiulianensis*, *M. kalimantanensis*, *M. kouri*, *M. kua-tunensis*, *M. lancip*, *M. leishanensis*, *M. lekguli*, *M. liboensis*, *M. ligayae*, *M. lini*, *M. lishuiensis*, *M. longipes*, *M. mangshanensis*, *M. medogensis*, *M. microstoma*, *M. mirabilis*, *M. montana*, *M. mufumontana*, *M. nankunensis*, *M. nanlingensis*, *M. nasuta*, *M. obesa*, *M. ombrophila*, *M. omeimontis*, *M. oreocrypta*, *M. orientalis*, *M. palpebralespinosa*, *M. parallelala*, *M. parva*, *M. periosa*, *M. platyparietus*, *M. popei*, *M. rubrmera*, *M. shimentaina*, *M. shuichengensis*, *M. shunhuangensis*, *M. stejnegeri*, *M. synoria*, *M. vegrandis*, *M. wugongensis*, *M. xianjuensis*, *M. xiangnanensis*, and *M. yangmingensis* (vs. present).

With the tongue feebly notched behind, *Megophrys qianbeiensis* sp. nov. differs from *M. aceras*, *M. aucta*, *M. angka*, *M. auralensis*, *M. brachykolos*, *M. caobangensis*, *M. caudoprotca*, *M. dongguanensis*, *M. elfina*, *M. hansii*, *M. jangi*, *M. jinggangensis*, *M. lancip*, *M. leishanensis*, *M. lekguli*, *M. lini*, *M. lishuiensis*, *M. megacephala*, *M. mufumontana*, *M. nankunensis*, *M. obesa*, *M. ombrophila*, *M. orientalis*, *M. palpebralespinosa*, *M. parallelala*, *M. parva*, *M. shunhuangensis*, *M. takensis*, *M. wushanensis*, and *M. xianjuensis* (vs. tongue notched behind in the latter), and differs from *M. cheni*, *M. damrei*, *M. dringi*, *M. flavipunctata*, *M. gigantica*, and *M. popei* (vs. tongue noted behind).

By having lateral wide fringes on toes, *Megophrys qianbeiensis* sp. nov. differs from *M. angka*, *M. baolongensis*, *M. brachykolos*, *M. caobangensis*, *M. damrei*, *M. dawei-montis*, *M. dongguanensis*, *M. fansipanensis*, *M. feae*, *M. himalayana*, *M. hoanglienensis*, *M. huangshanensis*, *M. insularis*, *M. jangi*, *M. jiulianensis*, *M. kalimantanensis*, *M. kouri*, *M. leishanensis*, *M. lekguli*, *M. lishuiensis*, *M. major*, *M. mangshanensis*, *M. medogensis*, *M. megacephala*, *M. microstoma*, *M. minor*, *M. nankunensis*, *M. obesa*, *M. ombrophila*, *M. oreocrypta*, *M. oropedion*, *M. pachyproctus*, *M. parva*, *M. periosa*, *M. shunhuangensis*,
A new species of *Megophrys* 149

M. takensis, *M. tuberogranulata*, *M. wawuensis*, *M. wugongensis*, *M. wuliangshanensis*, and *M. xianjuensis* (vs. lacking lateral fringes on toes).

By toes with one-third webs, *Megophrys qianbeiensis* sp. nov. differs from *M. aceras*, *M. acuta*, *M. angka*, *M. aurataliensis*, *M. balaensis*, *M. baolongensis*, *M. binchuanensis*, *M. binlingensis*, *M. boettgeri*, *M. brachykolos*, *M. caobangensis*, *M. caudoprocta*, *M. cheni*, *M. chunnanensis*, *M. damrei*, *M. dauwetmonits*, *M. dongguanensis*, *M. dringi*, *M. elfina*, *M. fansipanensis*, *M. feae*, *M. feii*, *M. flavipunctata*, *M. gerti*, *M. gigantica*, *M. glandulosa*, *M. hansi*, *M. hoanglieniensis*, *M. huangshanensis*, *M. insularis*, *M. jiangi*, *M. jinggangensis*, *M. jiulianensis*, *M. kalanitans*, *M. kou*, *M. kuatunensis*, *M. lancip*, *M. letshanensis*, *M. lekaguli*, *M. liboensis*, *M. lini*, *M. lishuiensis*, *M. longipes*, *M. major*, *M. mangshanensis*, *M. medogensis*, *M. megacephala*, *M. microstoma*, *M. minor*, *M. mufumontana*, *M. nankiangensis*, *M. nankunensis*, *M. nanlingensis*, *M. obesa*, *M. ombrophila*, *M. omeimontis*, *M. operdion*, *M. pachyproctus*, *M. parva*, *M. periosa*, *M. robusta*, *M. rubrimeria*, *M. serchhipii*, *M. shunhuangensis*, *M. takensis*, *M. tuberogranulata*, *M. vegrandis*, *M. wawuensis*, *M. wugongensis*, *M. wuliangshanensis*, *M. wushanensis*, *M. xianjuensis*, and *M. zhangi* (vs. with rudimentary or without webs).

By heels overlapping when thighs are positioned at right angles to the body, *Megophrys qianbeiensis* sp. nov. differs from *M. acuta*, *M. brachykolos*, *M. dongguanensis*, *M. Huangshanensis*, *M. kuatunensis*, *M. nankunensis*, *M. obesa*, *M. ombrophila*, and *M. wugongensis* (vs. not meeting).

By the tibiotarsal articulation reaching to the level between tympanum and eye when leg stretched forward, *Megophrys qianbeiensis* sp. nov. differs from *M. dauwetmonits*, *M. glandulosa*, *M. lini*, *M. major*, *M. medogensis*, and *M. obesa* (vs. reaching the anterior corner of the eye or beyond eye or nostril and tip of snout).

By having an internal single subgular vocal sac in male, *Megophrys qianbeiensis* sp. nov. differs from *M. caudoprocta*, *M. shapingensis*, and *M. shuichengensis* (vs. vocal sac absent).

The congeners *M. carinense* and *M. jiangi* have sympatric distribution with *Megophrys qianbeiensis* sp. nov. (Fei et al. 2012). The new species can be distinguished from these species by a series of morphological characters as follows. The new species differs from *M. carinense* in the smaller body size in the new species (adult males with 49.3–58.2 mm vs. adult males with 92–123 mm in the latter), a horn-like tubercle at the edge of each upper eyelid absent (vs. prominent in the latter), the tongue feebly notched behind (vs. notched behind in the latter). The new species differs from *M. jiangi* by a larger body size (49.3–58.2 mm in males in the new species vs. 34.4–39.2 mm in the latter), a horn-like tubercle at the edge of each upper eyelid absent (vs. present in the latter), the tongue feebly notched behind (vs. notched behind in the latter), presence of wide lateral fringes on the toes (vs. lacking in the latter), and toes with one-third webbing (vs. rudimentary webbing in the latter).

Megophrys qianbeiensis sp. nov. is phylogenetically closest to *M. sangzhiensis* and *M. spinata*. The new species differs from *M. sangzhiensis* by the following characters: horn-like tubercle absent at the edge of each upper eyelid (vs. present in the latter), toes with one-third webs (vs. with rudimentary webbing in the latter), vomerine ridges present distinctly as V-shape and vomerine teeth present (vs. vomerine ridges separated and weak, vomerine teeth absent in the latter), tibiotarsal articulation reaching to the
level between tympanum and eye when leg stretched forward (vs. reaching the anterior corner of eye in the latter), spines on nuptial pads on the first two fingers larger and sparser (vs. finer and thicker in the latter), and having significantly higher ratios of HDL, LAL, HLL, TL, and IAE to SVL. On bioacoustics, the new species differs from *M. sangzhiensis* in the following characters: lower dominant frequency (2250–3000 Hz in the new species vs. 10380 – 13200 Hz in the latter), the amplitude beginning with moderately high energy pulses, increasing slightly to a maximum by approximately mid note, and then decreasing towards the end of each note (vs. beginning with maximum energy pulses and then decreasing towards the end of note in the latter).

The new species differs from *M. spinata* by the following characters: tibiotarsal articulation reaching the level between tympanum to eye when leg stretched forward (vs. reaching the anterior corner of eye in the latter), present distinctly as V-shape and vomerine teeth present (vs. vomerine ridges separated and weak, vomerine teeth absent in the latter), spines on nuptial pads on the first two fingers little weaker (vs. spines larger in the latter), and having significantly higher ratios of HDW, ED, LAL, TYD and IAE to SVL. On bioacoustics, the new species differs from *M. spinata* in the following characters: lower dominant frequency (2250–3000 Hz in the new species vs. 4260–4589 Hz in the latter), the amplitude beginning with moderately high energy pulses, increasing slightly to a maximum by approximately mid note, and then decreasing towards the end of each note (vs. beginning with lower energy pulses, then increasing to the maximum by approximately one-four note and then decreasing to the mid note then increasing to the second highest energy pulses and then decreasing towards the end of note in the latter).

Distribution and habitats. *Megophrys qianbeiensis* sp. nov. is known from Huannglian Nature Reserve, Tongzi County and Kuankuoshui National Nature Reserve, Suiyang County, Guizhou Province, China at elevations between 1400–1600 m. The individuals of the new species were frequently found on stone in the streams surrounded by evergreen broadleaved forests (Fig. 8), and three sympatric amphibian species were found, i.e., *Megophrys jiangi*, *Odorrana margaratae* (Liu, 1950), and *Zhangixalus omeimontis* (Stejneger, 1924).

![Figure 8. Habitats of Megophrys qianbeiensis sp. nov. in the type locality, Huanglian Nature Reserve, Tongzi County, Guizhou Province, China](image)

A landscape of montane forests in the type locality. B a mountain stream where toads of the new species live (insert the holotype CIBTZ20190608017 standing on the stone).
Etymology. The specific epithet *qianbeiensis* refers to northern part of Guizhou, also called “黔”, the province where the type locality of the species belongs to. We propose the common English name “Qianbei horned toad” and Chinese name “Qian Bei Jiao Chan (黔北角蟾)”.

Discussion

The new species *Megophrys qianbeiensis* sp. nov. resembles *M. spinata* and *M. sangzhienensis*, and detailed comparisons with different data are important for recognizing them. Our molecular phylogenetic data on mitochondrial DNA and morphological comparisons both separated the new species from the two closely related species. *Megophrys spinata* were reported to be distributed widely through the provinces of Sichuan, Guizhou, Hunan, Chongqing, Yunnan, and Guangxi (Fei et al. 2012), but detailed investigations with multiple data suggested that several populations of the species should contain cryptic species (including *Megophrys qianbeiensis* sp. nov. and *M. sangzhienensis*). In recent years, many new species of the genus *Megophrys* have been gradually described, of which a large part of number was found in China (Frost 2020). To date, among the 106 species of *Megophrys*, 56 species were discovered in China. Even so, many cryptic species still need to be described just in southern China (Chen et al. 2017; Liu et al. 2018).

South-western China has long been proposed as biodiversity hotspot (Myers et al. 2000). Guizhou Province is an important part of southwest China, especially with the particular environments of karst rocky desertification, and knowledge of biodiversity levels and/or patterns are still seriously lacking. Recently, a series of new amphibian species were described from this province (Zhang et al. 2017; Li et al. 2018a, b, 2019a, b; Lyu et al. 2019; Wang et al. 2019c; Luo et al. 2020; Liu et al. 2020; Wei et al. 2020; Xu et al. 2020), indicating that species diversity of amphibians in this region is highly underestimated. It is urgent for herpetologists to conduct comprehensive and in-depth surveys to explore the level of amphibian species diversity in this region under accelerating climate changes. Obviously, more work should be conducted on detecting the differentiation of the populations and further describe the cryptic species in this region.

Acknowledgements

We are grateful to the editors and reviewers for their working on the manuscript. This work was supported by National Natural Sciences Foundation of China (NSFC31960099), Key project for bio-diversity conservation, Ministry of Ecology and Environment of People’s Republic of China. (Code: 2018-02-06-M2019-49/50), Basic research project of science and technology department of Guizhou Province (Nos. [2020] 1Y083), Science and technology support project of science and technology department of Guizhou Provincial (No. [2020] 4Y029) and Guizhou Provincial Department of Education Youth Science and Technology Talents Growth Project (Nos. KY[2018]455 and KY[2018]468).
References

Boulenger GA (1886) Description of a new frog of the genus *Megalophrys*. Proceedings of the Zoological Society of London 1885: 1–850.

Boulenger GA (1887) Description of a new frog of the genus *Megalophrys*. Annali del Museo Civico di Storia Naturale di Genova Serie 2, 4: 512–513.

Boulenger GA (1889) Description of a new batrachian of the genus *Leptobrachium*, obtain by M. L. Burma. Annali del Museo Civico di Storia Naturale di Genova Serie 2, 7: 748–750.

Boulenger GA (1893) Descriptions of three new batrachians from Tonkin. Annals and Magazine of Natural History, Series 7 12: 186–188. https://doi.org/10.1080/00222930308678835

Boulenger GA (1899a) Descriptions of three new reptiles and a new batrachian from Mount Kina Balu, North Borneo. Annals and Magazine of Natural History, Series 7(4):1–453. https://doi.org/10.1080/00222939908678228

Boulenger GA (1899b) On a collection of reptiles and batrachians made by Mr. J. D. La Touche in N.W. Fokien, China. Proceedings of the Zoological Society of London 1899: 159–172.

Boulenger GA (1903) Report on the batrachians and reptiles. In: Annandale N, Robinson HC (Eds) Fasciculi Malayenses. Anthropological and Zoological Results of an Expedition to Perak and the Siamese Malay States 1901–1903 undertaken by Nelson Annandale and Herbert C. Robinson under the auspices of the University of Edinburgh and the University of Liverpool (Vol. 2), Zoology, Part 1: 131–176.

Boulenger GA (1908) A revision of the oriental pelobatid batrachians (genus *Megophrys*). Proceedings of the Zoological Society of London 78(2): 407–430. https://doi.org/10.1111/j.1096-3642.1908.tb01852.x

Bourret R (1937) Notes herpétologiques sur l’Indochine française. XIV. Les batraciens de la collection du Laboratoire des Sciences Naturelles de l’Université. Descriptions de quinze especes ou variétés nouvelles. Annexe au Bulletin Général de l’Instruction Publique Hanoi, 1937: 5–56.

Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP (2012) Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resource 12: 247–258. https://doi.org/10.1111/j.1755-0998.2011.03090.x

Chen JM, Zhou WW, Nikolay A, Poyarkov Jr, Stuart BL, Brown RM, Lathrop A, Wang YY, Yuan ZL, Jiang K, Hou M, Chen HM, Suwannapoom C, Nguyen SN, Duong TV, Papenfuss TJ, Murphy RW, Zhang YP, Che J (2017) A novel multilocus phylogenetic estimation reveals unrecognized diversity in Asia toads, genus *Megophrys* sensu lato (Anura: Megophryidae). Molecular Phylogenetics and Evolution 106: 28–43. https://doi.org/10.1016/j.ympev.2016.09.004

Delorme M, Dubois A, Grosjean S, Ohler A (2006) Une nouvelle ergotaxinomie des Megophryidae (Amphibia, Anura). Alytes 24: 6–21.

Deuti K, Grosjean S, Nicolas V, Vasudevan K, Ohler A (2017) Nomenclatural puzzle in early *Megophrys nomina* (Anura, Megophryidae) solved with description of two new species from India (Darjeeling hills and Sikkim). Alytes 34: 20–48.

Dubois A (1987) Miscellanea taxinomica batrachologica (I). Alytes 1987[1986]: 7–95.

Fei L, Hu SQ, Ye CY, Huang YZ (2009) Fauna Sinica. Amphibia (Vol. 2). Anura. Science Press, Beijing, 328–481. [In Chinese]
A new species of *Megophrys*
A new species of *Megophrys*

Lyu ZT, Zeng ZC, Wan H, Yang JH, Li YL, Pang H, Wang YY (2019b) A new species of *Amolops* (Anura: Ranidae) from China, with taxonomic comments on *A. liangshanensis* and Chinese populations of *A. marmoratus*. Zootaxa 4609: 247–268. https://doi.org/10.11646/zootaxa.4609.2.3

Lyu ZT, Li YQ, Zeng ZC, Zhao J, Liu ZL, Guo GX, Wang YY (2020) Four new species of Asian horned toads (Anura, Megophryidae, *Megophrys*) from southern China. ZooKeys 942: 105–140. https://doi.org/10.3897/zookeys.942.47983

Luo T, Xiao N, Gao K, Zhou J (2020) A new species of *Leptobrachella* (Anura, Megophryidae) from Guizhou Province, China. ZooKeys 923: 115–140. https://doi.org/10.3897/zookeys.923.47172

Mahony S (2011) Two new species of *Megophrys* Kuhl & van Hasselt (Amphibia: Megophryidae), from western Thailand and southern Cambodia. Zootaxa 2734: 23–39. https://doi.org/10.11646/zootaxa.2734.1.2

Mahony S, Sengupta S, Kamei RG, Biju S D (2011) A new low altitude species of *Megophrys* Kuhl and van Hasselt (Amphibia: Megophryidae), from Assam, Northeast India. Zootaxa 3059: 36–46. https://doi.org/10.11646/zootaxa.3059.1.2

Mahony S, Teeling EC, Biju SD (2013) Three new species of horned frogs, *Megophrys* (Amphibia: Megophryidae), from northeast India, with a resolution to the identity of *Megophrys boettgeri* populations reported from the region. Zootaxa 3722(2): 143–169. https://doi.org/10.11646/zootaxa.3722.2.2

Mahony S, Nicole MF, Biju SD, Teeling EC (2017) Evolutionary history of the Asian Horned Frogs (Megophryinae): integrative approaches to time tree dating in the absence of a fossil record. Molecular Phylogenetics and Evolution 34(3): 744–771. https://doi.org/10.1093/molbev/msw267

Mahony S, Kamei RG, Teeling EC, Biju SD (2018) Cryptic diversity within the *Megophrys major* species group (Amphibia: Megophryidae) of the Asian Horned Frogs: Phylogenetic perspectives and a taxonomic revision of South Asian taxa, with descriptions of four new species. Zootaxa 4523: 1–96. https://doi.org/10.11646/zootaxa.4523.1.1

Malkmus R, Matsui M (1997) *Megophrys kobayashii*, ein neuer pelobatider Frosch vom Mount Kinabalu. Sauria, Berlin 19: 31–37.

Mathew R, Sen N (2007) Description of two new species of *Megophrys* (Amphibia: Anura: Megophryidae) from North-east India. Cobra 1: 18–28.

McGuire JA, Witt CC, Altshuler DL, Remsen JV (2007) Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Systematic Biology 56(5): 837–856. https://doi.org/10.1080/10635150701656360

Messenger KR, Dahn HA, Liang YR, Xie P, Wang Y, Lu CH (2019) A new species of the genus *Megophrys* Günther, 1864 (Amphibia: Anura: Megophryidae) from Mount Wuyi, China. Zootaxa 4554(2): 561–583. https://doi.org/10.11646/zootaxa.4554.2.9

Mo XY, Shen YH, Li HH, Wu MS (2010) A new species of *Megophrys* (Amphibia: Anura: Megophryidae) from the northwestern Hunan Province, China. Current Zoology 56(4): 432–436. https://doi.org/10.1093/czoolo/56.4.432
Munir M, Hamidy A, Farajallah A, Smith EN (2018) A new Megophrys Kuhl and Van Hasselt (Amphibia: Megophryidae) from southwestern Sumatra, Indonesia. Zootaxa 4442: 389–412. https://doi.org/10.11646/zootaxa.4442.3.3

Munir M, Hamidy A, Matsui M, Iskandar DT, Sidik I, Shimada T (2019) A new species of Megophrys Kuhl & Van Hasselt (Amphibia: Megophryidae) from Borneo allied to M. nasuta. Zootaxa 4679: 1–24. https://doi.org/10.11646/zootaxa.4679.1.1

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501

Nguyen TQ, Pham CT, Nguyen TT, Luong AM, Ziegler T (2020) A new species of Megophrys (Amphibia: Anura: Megophryidae) from Vietnam. Zootaxa 4722: 401–422. https://doi.org/10.11646/zootaxa.4722.5.1

Ohler A, Swan SR, Daltry JC (2002) A recent survey of the amphibian fauna of the Cardamom Mountains, Southwest Cambodia with descriptions of three new species. Raffles Bulletin of Zoology, Singapore 50(2): 465–481.

Ohler A (2003) Revision of the genus Ophryophryne Boulenger, 1903 (Megophryidae) with description of two new species. Alytes 21(1): 23–44.

Pope CH (1929) Four new frogs from Fukien Province, China. American Museum Novitates 352: 1–5.

Poyarkov NA, Duong Jr TV, Orlov NL, Gogoleva SI, Vassilieva AB, Nguyen LT, Nguyen VDH, Nguyen SN, Che J, Mahony S (2017) Molecular, morphological and acoustic assessment of the genus Ophryophryne (Anura, Megophryidae) from Langbian Plateau, southern Vietnam, with description of a new species. ZooKeys 672: 49–120. https://doi.org/10.3897/zookeys.672.10624

R Development Core Team (2008) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.Rproject.org

Rao DQ, Yang DT (1997) The karyotypes of Megophryinae (Pelobatidae) with a discussion on their classification and phylogenetic relationships. Asian Herpetological Research 7: 93–102. https://doi.org/10.5962/bhl.part.18858

Robert L, Brett C, Simon YWH, Stephane G (2012) PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Phylogenetics and Evolution 29(6): 1695–1701. https://doi.org/10.1093/molbev/msc020

Ronquist FR, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 1659 pp.

Schlegel H (1858) Handleiding tot de Beoefening der Dierkunde (Vol. 2). Koninklijke Militaire Academie, Breda, 57 pp. https://doi.org/10.5962/bhl.title.11648

Shen YH (1994) A new pelobatid toad of the genus Megophrys from China (Anura: Pelobatidae). Zoological Society of China Editor. The 60th Anniversary of the Foundation of the Zoological Society of China, Nanking (China), September 1994. China Science and Technology Publishing House, Nanjing, 603–606.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved poly-
A new species of Megophrys

merase chain reaction primers. Annals of the Entomological Society of America 87(6): 651–701. https://doi.org/10.1093/aesa/87.6.651

Sjöander K, Beskow J (2000) Wavesurfer (Anura: Pelobatidae). Acoustical society of China Editor. The International Conference on Spoken Language Processing, Beijing (China), October 2000. Military Yiwen Publishing House, Beijing, 464–467.

Smith MA (1921) New or little-known reptiles and batrachians from southern Annam (Indo-China). Proceedings of the Zoological Society of London 1921: 423–440. https://doi.org/10.1111/j.1096-3642.1921.tb03271.x

Strejneger L (1926) Two new tailless amphibians from western China. Proceedings of the Biological Society of Washington 39: 53–54.

Stuart BL, Chuaynkern Y, Chan-ard T, Inger RF (2006) Three new species of frogs and a new tadpole from eastern Thailand. Fieldiana Zoology, New Series 1543: 1–10. https://doi.org/10.3158/0015-0754(2006)187[1:TNSOFA]2.0.CO;2

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: molecular evolutionary genetics analysis, version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

Tapley B, Cutajar T, Mahony S, Nguyen CT, Dau VQ, Nguyen TT, Luong HV, Rowley JYL (2017) The Vietnamese population of Megophrys kuatunensis (Amphibia: Megophryidae) represents a new species of Asian horned frog from Vietnam and southern China. Zootaxa 4344(3): 465–492. https://doi.org/10.11646/zootaxa.4344.3.3

Tapley B, Cutajar TP, Mahony S, Nguyen CT, Dau VQ, Luong AM, Le DT, Nguyen TT, Nguyen TQ, Portway C, Luong HV, Rowley JYL (2018) Two new and potentially highly threatened Megophrys Horned frogs (Amphibia: Megophryidae) from Indochina’s highest mountains. Zootaxa 4508: 301–333. https://doi.org/10.11646/zootaxa.4508.3.1

Taylor EH (1920) Philippine Amphibia. Philippine Journal of Science 16: 213–359. https://doi.org/10.5962/bhl.part.4751

Taylor EH (1962) The amphibian fauna of Thailand. University of Kansas Science Bulletin 43: 265–599. https://doi.org/10.5962/bhl.part.13347

Tian YZ, Sun A (1995) A new species of Megophrys from China (Amphibia: Pelobatidae). Journal of Liupanshui Teachers College 52(3): 11–15. [In Chinese].

Tian WS, Hu QX (1983) Taxonomic study on genus Megophrys, with descriptions of two genera. Acta Herpetologica Sinica 2: 41–48.

Wang J, Liu ZY, Lyu ZT, Wang YY (2017a) A new species of the genus Megophrys (Amphibia: Anura: Megophryidae) from an offshore island in Guangdong Province, southeastern China. Zootaxa 4324(3): 541–556. https://doi.org/10.11646/zootaxa.4324.3.8

Wang YE, Liu BQ, Jiang K, Jin W, Xu JN, Wu CH (2017b) A new species of the Horn Toad of the genus Xenophrys from Zhejiang, China (Amphibia: Megophryidae). Chinese Journal of Zoology 52: 19–29. [in Chinese with English abstract]

Wang YY, Zhang TD, Zhao J, Sung YH, Yang JH, Pang H, Zhang Z (2012) Description of a new species of the genus Megophrys Günther, 1864 (Amphibia: Anura: Megophryidae) from Mount Jinggang, China, based on molecular and morphological data. Zootaxa 3546: 53–67. https://doi.org/10.11646/zootaxa.3546.1.4

Wang YY, Zhao J, Yang JH, Zhou ZM, Chen GL, Liu Y (2014) Morphology, molecular genetics, and bioacoustics support two new sympatric Megophrys (Amphibia: Anura Megophryi-
Wang L, Deng XJ, Liu Y, Wu QQ, Liu Z (2019a) A new species of the genus *Megophrys* (Amphibia: Anura: Megophryidae) from Hunan, China. Zootaxa 4695(4): 301–330. https://doi.org/10.11646/zootaxa.4695.4.1

Wang J, Lyu ZT, Liu ZY, Liao CK, Zeng ZC, Li YL, Wang YY (2019b) Description of six new species of the subgenus *Panophrys* within the genus *Megophrys* (Anura, Megophryidae) from southeastern China based on molecular and morphological data. ZooKeys 851: 113–164. https://doi.org/10.3897/zookeys.851.29107

Wang J, Li YL, Li Y, Chen H-H, Zeng YJ, Shen JM, Wang Y-Y (2019c) Morphology, molecular genetics, and acoustics reveal two new species of the genus *Leptobrachella* from northwestern Guizhou Province, China (Anura, Megophryidae). ZooKeys 848: 119–154. https://doi.org/10.3897/zookeys.848.29181

Wang B, Wu YQ, Peng JW, Shi SC, Lu NN, Wu J (2020) A new *Megophrys* Kuhl and Van Hasselt (Amphibia: Megophryidae) from southeastern China. ZooKeys 851: 113–164. https://doi.org/10.3897/zookeys.904.47354

Wei G, Li SZ, Liu J, Cheng YL, Xu N, Wang B (2020) A new species of the Music frog *Nidirana* (Anura, Ranidae) from Guizhou Province, China. ZooKeys 904: 63–87. https://doi.org/10.3897/zookeys.904.39161

Wu YH, Suwannapoom C, Jr. Poyarkov NA, Chen JM, Pawangkhanant P, Xu K, Jin JQ, Murphy RW, Che J (2019) A new species of the genus *Xenophrys* (Anura: Megophryidae) from northern Thailand. Zoological Research 40: 564–574. https://doi.org/10.24272/j.issn.2095-8137.2019.032

Xu N, Li SZ, Liu J, Wei G, Wang B (2020) A new species of the horned toad *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China. ZooKeys 943: 119–144. https://doi.org/10.3897/zookeys.943.50343

Yang JH, Wang J, Wang YY (2018) A new species of the genus *Megophrys* (Anura: Megophryidae) from Yunnan Province, China. Zootaxa 4413: 325–338. https://doi.org/10.11646/zootaxa.4413.2.5

Ye CY, Fei L (1992) A new Pelobatid toad of the genus *Megophrys* from Xizang, China. Acta Herpetologica Sinica 1–2: 50–52. [In Chinese]

Ye CY, Fei L (1995) Taxonomic studies on the small type *Megophrys* in China including descriptions of the new species (subspecies) (Pelobatidae: genus *Megophrys*). Herpetologica Sinica 4–5: 72–81. [In Chinese]

Ye CY, Fei L, Xie F (2007) A new species of Megophryidae *Megophrys baolongensis* from China (Amphibia, Anura). Herpetologica Sinica 11: 38–41. [In Chinese]

Zhang Y, Li G, Xiao N, Li J, Pan T, Wang H, Zhang B, Zhou J (2017) A new species of the genus *Xenophrys* (Amphibia: Anura: Megophryidae) from Libo County, Guizhou, China. Asian Herpetological Research 8: 75–85. https://doi.org/10.16373/j.cnki.ahr.160041

Zhao J, Yang JH, Chen GL, Chen CQ, Wang YY (2014) Description of a new species of the genus *Brachytarsophrys* Tian and Hu, 1983 (Amphibia: Anura: Megophryidae) from Southern China based on molecular and morphological data. Asian Herpetological Research 5(3): 150–160. https://doi.org/10.3724/SPJ.1245.2014.00150
Supplementary material 1

Table S1. Uncorrected p-distances between the *Megophrys* species based on COI gene sequences
Authors: Haijun Su, Shengchao Shi, Yanqing Wu, Guangrong Li, Xiaogang Yao, Bin Wang, Shize Li
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.974.56070.suppl1

Supplementary material 2

Table S2. Diagnostic characters separating the new species described in this study from other species of *Megophrys*
Authors: Bin Wang
Data type: morphological data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.974.56070.suppl2