Spatial evaluation and trade-off analysis of soil functions through Bayesian networks

Dirk Vrebos¹ | Arwyn Jones² | Emanuele Lugato² | Lilian O’Sullivan³ | Rogier Schulte⁴ | Jan Staes¹ | Patrick Meire¹

¹Department of Biology, University of Antwerp, Antwerpen, Belgium
²European Commission, Joint Research Centre (JRC), Ispra, Italy
³Crops, Environment and Land Use Programme, Wexford, Ireland
⁴Wageningen University, Wageningen, The Netherlands

Correspondence
Dirk Vrebos, Department of Biology, University of Antwerp, Antwerpen, Belgium.
Email: dirk.vrebos@uantwerpen.be

Funding information
This study was conducted as part of the LANDMARK (LAND Management: Assessment, Research, Knowledge Base) project. LANDMARK has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 635201.

Abstract
There is increasing recognition that soils fulfil many functions for society. Each soil can deliver a range of functions, but some soils are more effective at some functions than others due to their intrinsic properties. In this study we mapped four different soil functions on agricultural lands across the European Union. For each soil function, indicators were developed to evaluate their performance. To calculate the indicators and assess the interdependencies between the soil functions, data from continental long-term simulation with the DayCent model were used to build crop-specific Bayesian networks. These Bayesian Networks were then used to calculate the soil functions’ performance and trade-offs between the soil functions under current conditions. For each soil function the maximum potential was estimated across the European Union and changes in trade-offs were assessed. By deriving current and potential soil function delivery from Bayesian networks a better understanding is gained of how different soil functions and their interdependencies can differ depending on soil, climate and management.

Highlights
• When increasing a soil function, how do trade-offs affect the other functions under different conditions?
• Bayesian networks evaluate trade-offs between soil functions and estimate their maximal delivery.
• Maximizing a soil function has varied effects on other functions depending on soil, climate and management.
• Differences in trade-offs make some locations more suitable for increasing a soil function then others.

KEYWORDS
Bayesian modelling, DayCent, European Union, mapping, maximization, soil function, trade-offs

1 | INTRODUCTION

In recent years, the scientific literature has devoted considerable attention to the concept of “soil ecosystem services” or “soil functions”. This interest stems from the increasing recognition that soils not only provide food and fibre but fulfil many other functions for society (Adhikari & Hartemink, 2016; Baveye, Baveye, &
Gowdy, 2016). Haygarth and Ritz (2009) propose 18 soil-based ecosystem services, which include provisioning services such as water storage, regulating services such as gas regulation and cultural services embedded in heritage or recreational demands. Although our dependence on soils and their functions for the provisioning of natural resources has long been overlooked (Gomiero, 2016), an increased environmental awareness has made the multi-functionality of soils progressively become a key feature in policymaking related to land-use planning (Schulte et al., 2014; Vrebos et al., 2017). Demands exist for a wide range of soil functions, but vary greatly between countries and regions, as determined by population, land use, farming systems and livestock densities, geo-environmental conditions and landscape configuration (Schulte et al., 2019). In most countries, agricultural land makes up large parts of the territory, making these systems important suppliers of many soil functions.

Each type of soil has a certain potential or relative capacity to provide these functions. To a large extent this capacity is determined by inherent soil properties, environment and climate conditions (Vogel et al., 2019). As a result, some soils are more effective at some functions than others (Schulte et al., 2015). The actual function delivery is defined as this multitude of physical, chemical and biological processes interacting in soils, which are affected by both climate and management (Schulte et al., 2015; Vogel et al., 2019). The different soil functions are often partially interdependent because they share some of the soil processes and characteristics. Consequently, changes in land management (crop rotation, tillage practices and soil amendments) can affect multiple attributes and processes. Management changes to increase a particular soil function can simultaneously affect other soil functions in either positive or negative ways. Because of these trade-offs, a soil can never deliver its entire potential for each soil function. Optimizing one soil function, such as primary productivity in agricultural land, will impact others, potentially reducing other vital soil functions. Understanding which soil functions can co-occur under different soil, climate and management conditions and which underlying soil processes are essential is a pertinent research topic that is being explored by many (Baveye, 2015). Understanding the associated trade-off mechanisms is crucial to obviate the unexpected and unintended consequences of policies for land-use and management. Although each soil function can be optimized to its maximal potential, trade-offs between these functions may occur, limiting the delivery of the other soil functions. For example, management aimed at maximizing primary production may inadvertently affect the “water purification” or “habitat” functions. This has led to conflicting management recommendations and policy initiatives on a European level.

Soil functions are conceptual constructs and, although they can be defined, they are generally not measurable properties. They are considered to be essential assets emerging from a multitude of complex interactions between physical, chemical and biological processes in the soil (Vogel et al., 2018). Despite an increase in soil function research, we still do not know how to directly measure most of these functions (Baveye et al., 2016). As a solution to this problem, suitable indicators, which are derived from observable soil properties, have been proposed (Rutgers et al., 2012). These indicators should be based on our understanding of how soil functions are generated through the complex interactions of soil processes and not only on pure statistical correlations (Bünemann et al., 2018; Vogel et al., 2019). In recent years, frameworks and methodologies have been developed to measure and monitor soil functions (Vogel et al., 2018). However, actual measured data, especially on large scales, for example the whole of Europe, are still missing (van Leeuwen et al., 2017). As an alternative, results from process-based models can help us to better understand relationships between the potential of these soil processes and the actual soil function delivery through management. Yet it remains difficult to synthesize the mechanisms and patterns from such detailed models. The complexity of the results is often beyond our ability to understand and control, yet it is considered to be densely packed, ordered and structured in some way that we fail to comprehend as yet (Nowotny, 2005). Complexity reduction is needed to identify the most relevant mechanisms and patterns. Machine learning, a branch of computer science dealing with designing systems that can learn from data, can facilitate such complexity reduction. More specifically, Bayesian Belief Networks are well suited to integrate complexity and incomplete knowledge, which are common in ecological systems and soils (Landuyt et al., 2013).

Bayesian networks (BNs) are a graphical representation of joint probability distributions (Pearl, 1988), where model outputs are probabilities calculated using Bayes’ theorem (Marcot & Penman, 2019). As networks, they can cope effectively with incomplete information on the relationships between variables, thus facilitating modeling when data availability is insufficient to render a deterministic approach feasible. In recent years BNs have been used in soil science for upscaling empirical observations to predict soil properties over larger areas (Bogaert & D’Or, 2002; Kaye et al., 2008) or to better understand complex interactions between management and pedo-climatic factors when evaluating soil properties (Dal Ferro, Quinn, & Morari, 2018). BNs are increasingly...
integrated with spatial datasets to map soil properties, soil functions and ecosystem services (Grafius et al., 2019; Smith et al., 2018; Van der Biest et al., 2014). By using BNs, predictions can still be made for combinations of soil properties where not all information is available, improving the mapping, while taking uncertainties regarding missing information into account. Therefore, BNs are very suitable for predicting soil function potentials and associated trade-offs with the other soil functions on larger scales.

For this study, we build on the concept of functional land management as developed by Schulte et al. (2011). This study assesses four out of five soil functions given by Schulte et al. (2011) and Bouma et al. (2012) as they are specifically adapted towards agricultural soils.

- Production of food, fibre and (bio)fuel: traditionally the soil function that provides a livelihood to farmers and associated sectors in the rural environment.
- Water purification and regulation: the ability of soils to purify (quality) and regulate (quantity) water for human consumption and maintenance of ecosystem integrity.
- Carbon sequestration and climate regulation: the ability of soils to store organic carbon for (a) partial offsetting of GHG emissions and (b) regulation of biological and physical soil processes.
- Recycling of (external) nutrients/agro-chemicals: specifically, the ability of soils to provide a sustainable receptor for external nutrients, such as those derived from landless farming systems (e.g., pig and poultry farms), as well as sewage sludge and other organic waste products.

We used machine learning to develop crop-specific BNs. To learn the network, we used data from a long-term simulation at the European Union (EU) level, in which the DayCent biogeochemical model was applied over soil sampling locations of the Land Use/Land Cover Area Frame Survey (LUCAS). The initial network was validated with expert input to retain only plausible relationships within the network. The resulting BNs are able to calculate a predicted supply of the soil functions for a suite of input combinations. Performance indicators were developed, which allow the interdependencies between the soil functions to be evaluated. These BNs were then used to map and evaluate the soil function performance on agricultural land across the EU under current conditions. For each soil function, the maximum potential was estimated across the EU and changes in trade-offs were assessed. The presented results help to better understand how different soil functions and their interdependencies can differ depending on soil, climate and management.

2 | METHODOLOGY

2.1 | DayCent dataset

DayCent, the daily time-step version of the CENTURY biogeochemical model, simulates fluxes of carbon (C) and nitrogen (N) among the atmosphere, vegetation and soil. It incorporates a wide range of sub-models, including soil water content and temperature by layer, plant production and allocation of net primary production (NPP), etc. (Parton, Hartman, Ojima, & Schimel, 1998). The Joint Research Council (JRC) applies this model at the EU scale on the LUCAS sample points (Ballabio, Panagos, & Monatanarella, 2016; Orgiazzi, Ballabio, Panagos, Jones, & Fernández-Ugalde, 2018) to estimate carbon dioxide (CO2) and nitrous oxide (N2O) emissions in agricultural soils under different scenarios (Lugato, Leip, & Jones, 2018; Lugato, Paniagua, Jones, de Vries, & Leip, 2017; Quemada, Lassaletta, Leip, Jones, & Lugato, 2020) and it is validated for these two parameters. The DayCent model was applied on a 12-year simulation period following the procedure in Lugato et al. (2017). More information on the model’s setup, validation and associated uncertainties can be found in that publication. In total, about 12,000 points classified as arable and grassland were simulated.

From this simulation only the last 4 years of the model run were used to develop the data table for the machine learning. The daily time-step output from DayCent was converted into a data table with seasonal and yearly averages and totals. This table includes a wide range of explaining variables from DayCent (Table 1). In total, 14 indicators were derived from the DayCent modelling results to describe different aspects of the four soil functions. A description of these 14 indicators can be found in Addendum A. Of these 14, six indicators were further used in the analysis (see Section 2.2). The final data table contained 67,144 data points for 15 different crops. This dataset was used to derive soil function indicators and create the crop-specific BNs.

2.2 | Soil function indicators

Generally, soil functions are estimated based on observable soil attributes, which are used as indicators (Vogel et al., 2019). The use of modelled indicators for soil functions is less common, but allows a quantitative evaluation (and assessment of trade-offs).

For each of the soil functions one indicator was selected from the 14 available soil indicators to estimate the soil function performance. Only for “water
purification and regulation” were multiple indicators used, as it was impossible to incorporate all relevant aspects of this function into one single indicator. Indicators for “water purification” and “nutrient cycling” only cover one aspect, nitrogen, of the soil function. Each indicator is developed in such a way that high values indicate a positive, high soil function performance.

- Primary productivity (PP) – primary yield (g-C·(m²·year⁻¹)). This indicator gives an estimation of the net total harvest for the different crops. The indicator thus gives an estimation of how productive the soil is under local conditions and will increase or decrease with changes in these conditions.
- Climate regulation (CR) – total CO₂-equivalent of greenhouse gas emissions (g-C·(m²·year⁻¹)). The indicator includes the combined effect of carbon sequestration or emission from the passive soil carbon pool and N₂O emissions from the soil. Out of the three soil carbon pools available in DayCent, only the passive pool is used, as this pool stores carbon for a long period of time.
- Water regulation: drought (DR) – daily drought indicator (days/year) (ratio). The drought indicator estimates the number of days per year that plants are not in a drought stress condition. Drought stress conditions are present when the ratio between actual evapotranspiration and potential evapotranspiration is less than 0.5.
- Water regulation: water logging (WL) – daily no water logging (days/year) (ratio). To estimate the impact of too wet soils, the number of days the soil is not waterlogged is calculated as the number of days per year that the deepest soil layer is not draining to the subsoil, 30 cm deep.
- Water purification (WP) – nitrogen leaching compared to nitrogen inputs (ratio). The indicator quantifies the relative portion of N that is released to the groundwater compared to the amount of nitrogen inputs provided to the soil through different pathways (fertilizer application, atmospheric deposition and biogenic N-fixation). The indicator signifies the ability of the soil to retain or remove N and prevent it from entering the groundwater layers. Absolute nitrogen load would give a value for nitrogen loss from the landscape. However, it does not give information about a particular soil relative to another. Therefore a ratio was used as it enables a relative comparison of the capacity of the soil to deliver water purification that is not confounded by the scale, wide ranges in management, or edaphic or ecological factors.
- Nutrient cycling (NC) – nutrient use efficiency (ratio). The efficiency of the soil’s nutrient cycling is given as the actual nutrient use efficiency: the relative amount of nitrogen that is harvested compared to the amount of nitrogen that is provided to the soil through different pathways. It signifies the soil’s ability to recycle the applied nitrogen into harvestable products.

Some of the soil function indicators, such as for “nutrient cycling”, combine different properties. The performance of this indicator can be influenced by changes in both harvest and nitrogen provisioning. When...
optimizing the function, it is not automatically clear which of these factors determines the changes in functioning. Therefore, additional DayCent outputs were included in the Bayesian modelling to allow for a better interpretation of the modelling results.

2.3 Bayesian network development

A Bayesian network is a probabilistic graphical model that represents a number of variables and their conditional dependencies through a directed acyclic graph. To develop the BNs, each explaining variable and soil function indicator from the data table, which was derived from the DayCent dataset, was discretized into five classes using the Jenks natural breaks classification method (Jenks, 1967). Defining class breaks was carried out by seeking to minimize each class’s average deviation from the class mean, while maximizing each class’s deviation from the means of the other groups, thereby reducing in-class variance and increasing the comparability of multiple maps.

For each crop, a BN was derived from these discretized datasets with a Bayesian search algorithm (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 1995). The number of iterations was set at 10% of the number of available DayCent data points, whereas for each iteration 2% of the DayCent data points were used. During the Bayesian search calculation, connections between explaining variables were forbidden, whereas connections between explaining variables and soil function variables were always starting from the explaining variables. The Bayesian search algorithm was allowed to search for statistical relationships between the soil function indicators, but these were reviewed by experts. Connections that were found by the Bayesian search algorithm, but could not be linked to a known physical, microbial or other functional process, were forbidden in a subsequent rebuild of the BNs. An overview of these connections is given in Addendum A.

The crop BNs were validated with a k-fold cross-validation (Stone, 1974), during which the network is tested on its ability to predict indicator values from the dataset. During this validation the available dataset is divided into K parts of equal size, the network is trained on $K-1$ parts, and tested on the last, Kth part. From the Kth part, input variables are set in the BN and the BN predictions of the soil function indicators are compared with the soil indicator predictions in the DayCent data table. The accuracy for each soil function indicator is calculated as the proportion of correct predictions. The same number of iterations (k-parts) was used during the cross-validation as during the development of the BNs. The BNs were built and validated using SMILE Academic 2.2 software (BayesFusion LLC, University of Pittsburgh, PA, USA) (Druzdzel, 1999).

2.4 Spatial analysis

In a first step, maps and spatial databases that provide relevant information for the input parameters were collected (Table 2). Most of this information was directly converted to the same units as the BN variables and a resolution with a pixel size of 1×1 km. Spatial data on crop distribution required a more advanced preprocessing. The CORINE land cover maps only provide spatial information in a coarse thematic resolution (e.g., complex cultivation patterns). On the other hand, the Spatial Homogeneous Mapping Unit database (HSMU) provides a specific number of hectares (ha) for each crop within one HSMU (Leip et al., 2008). The HSMU units can range in size from a few square metres up to several hundred square kilometres. To overcome this difference in information detail, information from both CORINE and the HSMU database were combined. For each pixel within an HSMU, which was specified in CORINE as agricultural land, a particular crop and its BN was randomly selected, while taking into account the prevalence of the different crops within that HSMU. This selection was carried out with the random.choice function in Python/NumPy (version 1.16.4). After the crop BN was selected, all other spatial information was provided to the BN.

Although the DayCent dataset incorporates a large number of sample points and associated combinations of explaining variables, not all possible combinations of soil, environment and management classes were covered by the LUCAS data points. For these combinations, the crop BNs cannot give direct estimates of the soil functions. For locations with such non-existing combinations, the missing input parameters with the least predictive power were iteratively removed until an existing combination (for the remaining parameters) was found in the BN. This predictive power of the explaining variables within each BN was derived through a strength of influence analysis in the GENIE program (BayesFusion, 2018). The BN was then able to give a prediction based on available information, but with a higher, unknown, uncertainty.

For each soil function indicator, the probabilities for each state were derived from the updated BN. This information was then translated into a single map by multiplying these probabilities with the mean value of the respective state and adding them up to one overall value for each pixel.

Maximizing the soil functions was carried out for each pixel by applying the same crop BN and most of
the spatial information from the current soil functioning mapping. Information on management practices was not applied in the BN to leave this open for the BN to search for optimal practices. For each soil function indicator an iterative procedure was applied in which the maximum soil function performance was searched for in the BN. To do so, a list with possible probability combinations was created where all combinations over the five states with a 0.1 step were compiled: (1, 0, 0, 0, 0), (0.9, 0.1, 0, 0, 0), (0.8, 0.1, 0.1, 0, 0), …; for each combination, mean soil function values were calculated = \(\sum \) (probability of a state \(\times \) mean value of a state), after which the list with combinations was sorted from highest soil function value to lowest. Each combination was tested in the BN in consecutive order, until a combination of probabilities met the following conditions.

- The BN had to be able to fit the management variables with the local soil and environmental properties and the requested soil function probabilities.

- The states used by a combination of probabilities had to be supported by at least 5% of the data points within the DayCent dataset, which had the same crop and explaining variables. This condition was used to make sure that the outcome was not based on outliers (e.g., when the information for the highest state was provided by only one data point, but supported by robust evidence).

Again for each soil function indicator, the probabilities of each state were derived from the updated BN and converted to a single value for each pixel.

2.5 Statistics

To better understand the relationships between the different soil functions on different scales (smaller environmental zones compared to the EU) the soil function maps with the mean values were randomly sampled (\(n = 200,000 \)). This dataset was tested for
normality following the Shapiro–Wilk test and where needed parameters were transformed following the formula:

\[T(x) = \text{sign}(x) \times \log(|x| + 1). \]

Pearson correlations were calculated between the different soil function indicators. As soil functions are defined by both soil and climate, spatial variation can be expected and relationships between these soil functions might differ between regions. Pearson correlations were calculated and compared at the level of the environmental regions of Europe, which were derived from climatic, geomorphological and soil data (Jongman et al., 2006; Metzger, Bunce, Jongman, Mücher, & Watkins, 2005).

To estimate the effect of soil function maximization, the same sample points were used to sample the outcome maps of the maximization calculations and the same statistical procedure was applied. All statistics were obtained using R version 3.5.1 (R Core Team, 2018).

To compare the change in supply of the different soil functions, the dataset was transformed into z-scores. In this way a comparison could be made between scenarios, indicators with different units and both positive and negative indicator values. These z-scores give the signed fractional number of standard deviations by which the value of one of the random sample points is above or below the mean value and allow us to indicate which areas have a higher or lower soil function performance compared to the mean value. To make an evaluation of the change in supply possible, z-scores for the maximization scenarios were calculated with the mean values and standard deviations of the current soil function supply.

FIGURE 1 Acyclic directed graphs (DAC) of the BN for grain maize with the probability distribution. Explaining variables (white) are grouped according to their characteristics in the upper part of the graph; soil function variables and indicators are grouped according to the soil functions in the lower part. SOC, soil organic carbon.
3 | RESULTS

3.1 | Bayesian networks

For each of the 15 crops, a unique Bayesian network was developed (Vrebos et al., 2020; https://doi.org/10.15454/YA4OSH). The number of available data points differed between crops as some occur more frequently or over larger areas. The number of selected explaining variables within one BN ranged between 11 and 18 variables. All of the 21 explaining variables, available in the data tables, were selected in at least one of the Bayesian networks. Although no connections were allowed between the explaining variables, each BN contained several connections between the soil function variables. The example of the grain maize BN is given in Figure 1. All BNs can be found in Addendum A.

K-fold cross-validation was carried out for the different BNs. Accuracy differed between soil functions and crops. Most of the values ranged between 0.5 and 0.75. Overall prediction of the climate regulation indicators performed best (Table 3). The largest differences are found for PP, where some of the BNs have low accuracy in prediction, including the wheat (0.31) and the rapeseed (0.36) BNs. Overall, the BNs give reliable predictions for the different soil functions.

3.2 | Current soil functions

Evaluation of the current supply of the soil functions demonstrates the spatial variation of each soil function throughout the EU. Figure 2 shows the detail for each of these maps for part of The Netherlands. Soil function performance varies greatly across short distances, partly due to differences in crops, but also because of soil and climate characteristics. For each soil function, there are distinct patterns. For many countries, a high primary productivity corresponds with a lower performance for the other soil functions. The direction and strength of these trade-offs does, however, vary between countries, as influenced by soil and environmental characteristics. The full maps can be found in Addendum B.

The magnitude of soil functions provided differs between croplands and grasslands. Croplands have a higher primary productivity, nutrient cycling and water purification. As they take up more nutrients, under appropriate management, they cycle and remove

Crop	n	PP	Change passive SOC	N$_2$O emissions	DR	WL	WP	NC
Barley	27,317	0.48	0.68	0.73	0.56	0.62	0.56	0.48
Silage maize	11,080	0.61	0.59	0.72	0.55	0.54	0.63	0.42
Grain maize	6,648	0.52	0.71	0.78	0.62	0.54	0.51	0.56
Intensive grasslands - hay	24,339	0.67	0.62	0.76	0.54	0.58	0.83	0.74
Intensive grasslands - grazed	24,339	0.55	0.61	0.77	0.52	0.56	0.56	0.77
Extensive grasslands - grazed	24,339	0.74	0.66	0.78	0.56	0.57	-	-
Rapeseed	10,966	0.36	0.64	0.64	0.50	0.54	0.50	0.55
Peas	1,494	0.72	0.66	0.73	0.64	0.67	0.74	0.59
Potato	2,844	0.36	0.77	0.89	0.61	0.62	0.61	0.63
Rye	2,620	0.51	0.60	0.65	0.49	0.62	0.56	0.65
Sugar beet	2,612	0.68	0.70	0.75	0.76	0.48	0.49	0.69
Sunflower	8,002	0.51	0.63	0.82	0.56	0.48	0.65	0.50
Spring wheat	520	0.56	0.76	0.79	0.67	0.63	0.66	0.61
Spring durum wheat	430	0.51	0.48	0.81	0.55	0.53	0.97	0.54
Soybean	140	0.54	0.29	0.60	0.69	0.55	0.81	0.60
Wheat	22,010	0.31	0.73	0.70	0.62	0.59	0.60	0.45
Durum wheat	3,912	0.46	0.57	0.65	0.42	0.44	0.60	0.48

Abbreviations: CR, climate regulation; DR, water regulation; Drought protection; NC, nutrient cycling; PP, primary productivity; SOC, soil organic carbon; Waterlogging protection; WP, water purification; WR, water regulation.
FIGURE 2 Detail of the different soil function maps: BE, Belgium; CR, climate regulation; DE, Germany; DR, water regulation, Drought protection; NC, nutrient cycling; NL, the Netherlands; PP, primary productivity; WL, water regulation, Waterlogging protection; WP, water purification. Legends are non-linear and based on quantiles to better illustrate the spatial variation.
nitrogen more efficiently. Grasslands have a higher climate regulation capacity and are more drought resilient.

Pearson correlations between the soil functions differ strongly (Figure 3). None of the soil function indicators is positively or negatively correlated with all other soil functions. Primary productivity is only positively related to nutrient cycling. Water purification has a positive correlation with four out of five of the other soil functions. Although the strengths of these correlations differ, all of them give an overall statistically significant result.

Although the directions of most relationships between soil functions are stable across the EU, some correlations can differ compared to the overall EU trends and between environmental zones. For example, climate regulation and water purification are negatively correlated for the Atlantic North, whereas this is not the case for the other environmental zones. In the Mediterranean North, primary productivity and nutrient cycling are negatively correlated, whereas this is not consistent with the EU trend, which is positive in most other zones (Figures 3 and 4). Although the direction of most relationships remains the same, the strength does vary. Rho values for the Atlantic Central are stronger than those found for the Mediterranean South.

3.3 | Trade-off analysis

According to the BNs, the delivery of each of the soil functions can be significantly increased by altering the management parameters; however, not all to the same extent (Figure 5). Water purification can only be increased in a limited way, whereas waterlogging regulation can increase significantly. However, maximizing exclusively one soil function, inherently affects the other soil functions.

FIGURE 3 Correlation matrix of Pearson correlations between the different soil function indicators for the entire European Union (n = 200,000). CR, climate regulation; DR, water regulation, Drought protection; NC, nutrient cycling; PP, primary productivity; WP, water purification; WR, water regulation. Waterlogging protection (relationship strength and direction provided in colour bar with Pearson r, *p-value < .05, ** = p-value < .01, *** = p-value < .001).

FIGURE 4 Correlation matrix of Pearson correlations between soil function indicators for two environmental zones: (a) Atlantic central (n = 39,394); (b) Mediterranean North (n = 6,748). CR, climate regulation; DR, water regulation, Drought protection; NC, nutrient cycling; PP, primary productivity; WP, water purification; WR, water regulation. Waterlogging protection (relationship strength and direction provided in colour bar with Pearson r, * = p-value < .05, ** = p-value < .01, *** = p-value < .001).
Targeting one of the soil functions specifically, does not only change that soil function, but also elicits a change in other soil functions owing to the relationships between them (Figure 6). When optimizing for primary productivity, the rho values between the primary productivity and the other soil functions remain almost the same. However, some of the relationships between the other soil functions do change. For example, water purification and climate regulation become negatively correlated, whereas this used to be positive under the current management. After maximizing for climate regulation, the same change between climate regulation and water purification can be found. The relationship between climate regulation and primary productivity becomes also positive.

4 | DISCUSSION

Soils are a key resource and simultaneously deliver different functions to society. Notwithstanding certain knowledge gaps, there is vast scientific research to describe individual soil processes and functions. The complexity of integrating such research to better understand soil multi-functionality, including the trade-offs and synergies
between soil functions, means that understanding how these functions vary across different scales and how they relate to each other, remains a persistent challenge. In this study, an integrated approach to capture the relationships between four key soil functions was investigated. Unlike many other studies that use field measurements, modelling results were used to develop and calculate the soil function indicators. As a result, indicator values could be calculated for a large area and indicators could be developed from data that are difficult to measure, especially in many different locations. Model results also incorporate additional levels of uncertainties, compared to measured data. Importantly, the DayCent model was developed in the first instance to simulate fluxes of carbon and nitrogen and as such, submodules regarding these fluxes are more detailed and more accurate than those that calculate for example the water dynamics and primary productivity. Therefore, outcomes for the soil function “Carbon sequestration and climate regulation” can be expected to be more reliable than those regarding “water regulation”, as reflected in the higher predictive performance of BNs (Table 3). The available submodules also limited the number of available soil function indicators. For water purification and “nutrient cycling” we could only assess the effects on nitrogen cycling, which only covers a limited part of the overall soil function.

By deriving Bayesian networks out of the datasets the most important connections between the different soil functions become apparent for each crop. These connections differ between crops. Part of this differentiation can be related to crop characteristics, such as growth season, water use, nutrient requirements, etc., but to some extent also significant statistical relationships that have no direct mechanistic relationship. Untangling both types of variation remains a challenge, but our review of the networks was able to remove most of these effects where machine learning complexity reduction techniques could not be explained by domain experts. Overall the Bayesian networks are able to give a good prediction of the different soil functions. The explaining variables used in the analysis were able to explain a large part of the observed variation in soil functioning as given by the indicators. Some of the crop Bayesian models, such as potatoes, have a lower predictive value for primary productivity. Why this occurs is not clear and could require further investigation. Potentially, data inputs, for example the temperature and rainfall variables, may not give the correct information to derive a good prediction of the growing season. To overcome this limitation in part and to better understand the observed changes in functionality, the Bayesian networks incorporated more than one indicator for each of the soil functions.

Our evaluation of the current supply of soil functions shows that there are not only significant differences within the EU between countries and ecoregions (macro-scale), but also that the spatial variation within regions can be very large. As indicated by many other studies (e.g., Klapwijk et al., 2014), we can conclude that an increased primary productivity is accompanied by a loss of performance for the other soil functions (Figure 6). In regions with the highest primary productivity, we observe a lower performance for the other soil functions. But these are regional averages and our results also show that the direction and strength of these trade-offs are non-linear as they are influenced by local soil and environmental characteristics. Although the directions of many of these trade-offs are the same for all environmental zones, the strength in the relationships between soil functions differs between environmental zone. This provides insight into the intensity of the trade-off and in turn could inform the intensity of management that might be required. There is also some variation in the direction in some of the trade-offs. To some extent, the model offers insights that may be important for targeting regional policy. Importantly, by identifying the direction of trade-offs, the methods developed here have scope to reduce future perverse policy outcomes, even if more research is needed to understand the most important driving forces in this variation. We have to acknowledge that EU-wide data on soil parameters, crops and management are rather coarse. The 1 × 1 km resolution of our maps is appropriate for EU-wide evaluations, especially because the basic data sources would not allow for greater spatial differentiation. It is also evident that soil parameters would display a high variety within a square kilometere. However, a similar approach applied at more data-rich regional scales, could be very informative in designing national schemes and rural development plans that minimize these trade-offs by taking into account the intrinsic properties of the local environment and the potential supply of soil functions.

The interdependencies between the soil functions ensure that changes in crops and management regimes to maximize one soil function, not only affect the targeted soil function, but also the other soil functions considerably. Maximizing one soil function always affects the other soil functions. The direction and magnitude of this can vary, again depending on local conditions. In many cases these changes do not affect the overall direction of the relationship between two soil functions. But under each maximization scenario at least some of these relationships change from positive to negative or the other way around. By altering management, the overall relationship between soil functions can turn around. These changes can have profound impacts on policy targets.
Management actions from one policy domain are generally designed to improve a specific soil function. But these actions will also impact other soil functions, potentially compromising other policy aims and targets from other sectors. In addition, this requires understanding the cause–effect relationships, which requires a detailed knowledge of the interaction between physical, chemical and biological processes driving these soil functions, but also the Bayesian networks behaviour itself. For example, the relationship between primary productivity and climate regulation becomes positive when the climate regulation function is maximized. But when we maximize primary productivity, there is no positive effect on climate regulation. To improve climate change regulation, reductions in N$_2$O need to be realized. This can be achieved by reducing N-fertilizer, but also by improving conditions that will promote plant growth, nutrient uptake and primary productivity, which decreases the amount of residual nitrogen for bacterial activity and associated N$_2$O emissions. Improving primary productivity is mostly achieved by increasing N-fertilization. Not all of this nitrogen is taken up by crops, making them available for bacterial activity and associated N$_2$O emissions. Understanding these cause–effect relationships is relevant to designing effective policy and management. However, the growing urgency to redress environmental degradation and manage agriculture for both production and environmental goals means that interventions must better account for the impact of a policy, so that policy aims and targets across sectors are not compromised. It is also true that there is a strong variability in the demands for each of these soil functions, previously described by Schulte et al. (2019), which must be considered in the pursuit of a more sustainable land base for Europe.

5 | CONCLUSIONS

The supply of soil functions varies regionally due to soil, environment and management, with the maximization of individual soil functions highlighting different patterns of impact for other soil functions. Overall, making changes in favour of one soil function generally induces a negative effect in many cases. In this research, we have developed a mechanism that has scope to support more integrated policy design to reduce the likelihood of trade-offs occurring.

ACKNOWLEDGEMENTS

Bayesian modelling was carried out with the SMILE engine developed by BayesFusion LCC (http://www.bayesfusion.com/). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government—department EWI.

We acknowledge the E-OBS dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service and the data providers in the ECA&D project (https://www.ecad.eu).

CONFLICT OF INTEREST

There are no potential conflicts to be reported.

AUTHOR CONTRIBUTIONS

Study concept and design: D. Vrebos, A. Jones, L. O’Sullivan, R. Schulte and J. Staes. DayCent modelling: E. Lugato and A. Jones. Analysis and interpretation of data: D. Vrebos and J. Staes. Drafting of the manuscript: D. Vrebos. Critical revision of the manuscript for important intellectual content: A. Jones, E. Lugato, L. O’Sullivan, R. Schulte, J. Staes and P. Meire. Statistical analysis: D. Vrebos.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Dirk Vrebos https://orcid.org/0000-0002-8115-0304

REFERENCES

Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services - A global review. Geoderma, 262, 101–111.
Ballabio, C., Panagos, P., & Montanarella, L. (2016). Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma, 261, 110–123.
Baveye, P. C. (2015). Grand challenges in the research on soil processes. Frontiers in Environmental Science, 3, 5.
Baveye, P. C., Baveye, J., & Gowdy, J. (2016). Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 4, 49.
BayesFusion. (2018). Genie modeler - User manual. Pittsburgh, PA: BayesFusion.
Bogaert, P., & D’Or, D. (2002). Estimating soil properties from thematic soil maps. Soil Science Society of America Journal, 66, 1492–1500.
Bouma, J., Broll, G., Crane, T. A., Dewitte, O., Gardi, C., Schulte, R. P. O., & Towers, W. (2012). Soil information in support of policy making and awareness raising. Current Opinion in Environmental Sustainability, 4, 552–558.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., ... Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125.
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
Klapwijk, C. J., van Wijk, M. T., Rosenstock, T. S., van Asten, P. J. A., Jenks, G. F. (1967). The data model concept in statistical mapping. *Soil and Tillage Research*, 179, 114–124.

Druzdzel, M. J. (1999). SMILE: Structural modeling, inference, and learning engine and GeNIe: A development environment for graphical decision-theoretic models (intelligent systems demonstration). In *Sixteenth National Conference on artificial intelligence* (AAAI-99) (pp. 902–903). Orlando, FL: AAAI Press/The MIT Press.

Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. *Sustainability*, 8, 41.

Jongman, R. H. G., Bunce, R. G. H., Műcher, C. A., & Watkins, J. W. (2005). A climatic stratification of the environment of Europe. *Global Ecology and Biogeography*, 14, 549–563.

Hiederer, R. (2013). Mapping soil properties for Europe - spatial representation of soil database attributes. In *Scientific and technical research series* (Vol. 47). Luxembourg: Publications Office of the European Union.

Kaufmann Publishers Inc.

Lugato, E., Paniagua, L., Jones, A., de Vries, W., & Leip, A. (2017). Complementing the topsoil information of the land use/land cover area frame survey (LUCAS) with modelled N2O emissions. *PLoS One*, 12, 16.

Marcot, B. G., & Penman, T. D. (2019). Advances in Bayesian network modelling: Integration of modelling technologies. *Environmental Modelling & Software*, 111, 386–393.

Dal Ferro, N., Quinn, C., & Morari, F. (2018). A Bayesian belief network framework to predict SOC dynamics of alternative management scenarios. *Soil and Tillage Research*, 184, 115–124.

Hope, D., … (2008). Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. *Biogeosciences*, 5, 73–94.

Lugato, E., Leip, A., & Jones, A. (2018). Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. *Nature Climate Change*, 8, 219–223.

Grafius, D. R., Corstanje, R., Warren, P. H., Evans, K. L., Norton, B. A., Siriwatdena, G. M., … Harris, J. A. (2019). Using GIS-linked Bayesian belief networks as a tool for modelling urban biodiversity. *Landscape and Urban Planning*, 189, 382–395.

Haygarth, P. M., & Ritz, K. (2009). The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. *Land Use Policy*, 26(Suppl. 1), S187–S197.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. *Machine Learning*, 20, 197–243.

Hiederer, R. (2013). Mapping soil properties for Europe - spatial representation of soil database attributes. In *Scientific and technical research series* (Vol. 47). Luxembourg: Publications Office of the European Union.

Jenks, G. F. (1967). The data model concept in statistical mapping. *International Yearbook of Cartography*, 7, 186–190.

Jongman, R. H. G., Bunce, R. G. H., Metzger, M. J., Műcher, C. A., Howard, D. C., & Mateus, V. L. (2006). Objectives and applications of a statistical environmental stratification of Europe. *Landscape Ecology*, 21, 409–419.

Kaye, J. P., Majumdar, A., Gries, C., Buyantuyev, A., Grimm, N. B., Hope, D., … Baker, L. (2008). Hierarchical bayesian scaling of soil properties across urban, agricultural, and desert ecosystems. *Ecological Applications*, 18, 132–145.

Klapwijk, C. J., van Wijk, M. T., Rosenstock, T. S., van Asten, P. J. A., Thornton, P. K., & Giller, K. E. (2014). Analysis of trade-offs in agricultural systems: Current status and way forward. *Current Opinion in Environmental Sustainability*, 6, 110–115.

Landuyt, D., Broekx, S., D'Hondt, R., Engelen, G., Aertsen, J., & Goethals, P. L. M. (2013). A review of Bayesian belief networks in ecosystems service modelling. *Environmental Modelling & Software*, 46, 1–11.

Leip, A., Marchi, G., Koebel, R., Kempen, M., Britz, W., & Li, C. (2008). Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. *Biogeosciences*, 5, 73–94.

Lugato, E., Leip, A., & Jones, A. (2018). Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. *Nature Climate Change*, 8, 219–223.

EEA. 2016. Corine Land Cover 2012 - version 18. (ed. European Union. European Environment Agency Copenhagen, Denmark.)

R Core Team. (2018). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

Organizations. (2018). *LEAFONN*, 1, 2–3.

Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). *DAYCENT* and its land surface submodel: Description and testing. *Global and Planetary Change*, 19, 35–48.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference (p. 552). Burlington, MA: Morgan Kaufmann Publishers Inc.

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS soil, the largest expandable soil dataset for Europe: A review. *European Journal of Soil Science*, 69, 140–153.

Panagos, P. (2006). The European soil database. *GEOconnex International*, 5, 32–33.

Opinion in Environmental Sustainability
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., ... Wind, P. (2012). The EMEP MSC-W chemical transport model: Technical description. *Atmospheric Chemistry and Physics*, 12, 7825–7865.

Smith, R. I., Barton, D. N., Dick, J., Haines-Young, R., Madsen, A. L., Rusch, G. M., ... Vikström, S. (2018). Operationalising ecosystem service assessment in Bayesian belief networks: Experiences within the OpenNESS project. *Ecosystem Services*, 29, 452–464.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. *Journal of the Royal Statistical Society*, 36, 111–147.

Van der Biest, K., D’Hondt, R., Jacobs, S., Landuyt, D., Staes, J., Goethals, P., & Meire, P. (2014). EBI: An index for delivery of ecosystem service bundles. *Ecological Indicators*, 37, 252–265.

van Leeuwen, J. P., Saby, N. P. A., Jones, A., Louwagie, G., Micheli, E., Rutgers, M., ... Creamer, R. E. (2017). Gap assessment in current soil monitoring networks across Europe for measuring soil functions. *Environmental Research Letters*, 12, 124007.

Vogel, H. J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., ... Wollschläger, U. (2018). A systemic approach for modeling soil functions. *The Soil*, 4, 83–92.

Vogel, H. J., Eberhardt, E., Franko, U., Lang, B., Liess, M., Weller, U., ... Wollschläger, U. (2019). Quantitative evaluation of soil functions: Potential and state. *Frontiers in Environmental Science*, 7, 15.

Vrebos, D., Bampa, F., Creamer, R., Gardi, C., Ghaley, B., Jones, A., ... Meire, P. (2017). The impact of policy instruments on soil multifunctionality in the European Union. *Sustainability*, 9, 407.

Vrebos, D., Schulte, R., Arwyn, J., Staes, J., O’Sullivan, L., Lugato, E., Schröder, J. & Meire, P. 2020. Bayesian networks to evaluate soil functions of agricultural land in Europe. Portail Data INRAE.

Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. *Science of the Total Environment*, 557–558, 838–850.

How to cite this article: Vrebos D, Jones A, Lugato E, et al. Spatial evaluation and trade-off analysis of soil functions through Bayesian networks. *Eur J Soil Sci*. 2021;72:1575–1589. https://doi.org/10.1111/ejss.13039