The number of singular vector tuples and uniqueness of best rank one approximation of tensors

Shmuel Friedland∗ Giorgio Ottaviani†

Abstract

In this paper we discuss the notion of singular vector tuples of a complex valued d-mode tensor of dimension $m_1 \times \ldots \times m_d$. We show that a generic tensor has a finite number of singular vector tuples, viewed as points in the corresponding Segre product. We give the formula for the number of singular vector tuples. We show similar results for tensors with partial symmetry. We give analogous results for the homogeneous pencil eigenvalue problem for cubic tensors, i.e. $m_1 = \ldots = m_d$. We show uniqueness of best approximations for almost all real tensors in the following cases: rank one approximation; rank one approximation for partially symmetric tensors (this approximation is also partially symmetric); rank-(r_1, \ldots, r_d) approximation for d-mode tensors.

2010 Mathematics Subject Classification. 14D21, 15A18, 15A69, 65D15, 65H10, 65K05.

Key words. Singular vector tuples, vector bundles, Chern classes, partially symmetric tensors, homogeneous pencil eigenvalue problem for cubic tensors, singular value decomposition, best rank one approximation, best rank-(r_1, \ldots, r_d) approximation.

1 Introduction

The object of this paper is to study two closely related topics: counting the number of singular vector tuples of complex tensor and the uniqueness of best rank one approximation of real tensors. To state our results we introduce notation that will be used in this paper. Let \mathbb{F} be either the field of real or complex numbers, denoted by \mathbb{R} and \mathbb{C} respectively, unless stated otherwise. For each $x \in \mathbb{F}^m \setminus \{0\}$ we denote by $[x] := \text{span}(x)$ the line through the origin spanned by x in \mathbb{F}^m. Then $\mathbb{P}(\mathbb{F}^m)$ is the space of all lines through the origin in \mathbb{F}^m. We say that $x \in \mathbb{F}^m, [y] \in \mathbb{P}(\mathbb{F}^m)$ are generic if there exist subvarieties $U \subseteq \mathbb{F}^m, V \subseteq \mathbb{P}(\mathbb{F}^m)$ such that $x \in \mathbb{F}^m \setminus U, [y] \in \mathbb{P}(\mathbb{F}^m) \setminus V$. A set $S \subset \mathbb{F}^m$ is called closed if it is a closed set in the Euclidean topology. We say that a property P holds almost everywhere in \mathbb{R}^n, abbreviated as a.e., if P does not hold on a measurable set $S \subset \mathbb{R}^n$ of zero Lebesgue measure. Equivalently, we say that almost all $x \in \mathbb{R}^n$ satisfy P, abbreviated as a.a.

For $d \in \mathbb{N}$ denote $[d] := \{1, \ldots, d\}$. Let $m_i \geq 2$ be an integer for $i \in [d]$. Denote $m := (m_1, \ldots, m_d)$. Let $\Pi_{\mathbb{F}}(m) := \mathbb{P}(\mathbb{F}^{m_1}) \times \ldots \times \mathbb{P}(\mathbb{F}^{m_d})$. We call $\Pi_{\mathbb{F}}(m)$ the
Set $\Pi(\mathbf{m}) := \Pi_C(\mathbf{m})$. Denote by $\mathbb{F}^m = \mathbb{F}^{m_1 \times \ldots \times m_d}$ the vector space of d-mode tensors $T = [t_{i_1, \ldots, i_d}], i_j = 1, \ldots, m_j, j = 1, \ldots, d$ over \mathbb{F}. (We assume that $d \geq 3$ unless stated otherwise.) For an integer $p \in [d]$ and for $x_{j_p} \in \mathbb{F}^{m_{j_p}}, r \in [p]$, we use the notation $\otimes_{j_r, r \in [p]} x_{j_r} := x_{j_1} \otimes \ldots \otimes x_{j_p}$. For a subset $P = \{j_1, \ldots, j_p\} \subseteq [d]$ of cardinality $p = |P|$, consider a p-mode tensor $\mathbf{X} = [x_{i_1, \ldots, i_{j_p}}] \in \otimes_{j_r, r \in [p]} \mathbb{F}^{m_{j_r}}$, where $j_1 < \ldots < j_p$. Define

$$
T \times \mathbf{X} := \sum_{i_{j_r}, r \in [p], x} t_{i_1, \ldots, i_d} x_{i_1, \ldots, i_{j_p}}
$$

to be a $(d-p)$-mode tensor obtained by contraction on the indices i_{j_1}, \ldots, i_{j_p}.

To motivate our results let us consider the classical case of matrices, i.e. $d = 2$ and $A \in \mathbb{R}^{m_1 \times m_2}$. We call a pair $(x_1, x_2) \in (\mathbb{R}^{m_1} \setminus \{0\}) \times (\mathbb{R}^{m_2} \setminus \{0\})$ a singular vector pair if

$$
Ax_2 = \lambda_1 x_1, \quad A^\top x_1 = \lambda_2 x_2,
$$

for some $\lambda_1, \lambda_2 \in \mathbb{R}$. For $x \in \mathbb{R}^m$ let $\|x\| := \sqrt{x^\top x}$ be the Euclidean norm on \mathbb{R}^m. Choosing x_1, x_2 to be of Euclidean length one we deduce that $\lambda_1 = \lambda_2$, where $|\lambda_1|$ is equal to some singular value of A. It is natural to identify all singular vector pairs of the form $(\alpha_1 x_1, \alpha_2 x_2)$, where $\alpha_1 \alpha_2 \neq 0$ as the class of singular vector pair. Thus $([x_1], [x_2]) \in \mathbb{P}(\mathbb{R}^{m_1}) \times \mathbb{P}(\mathbb{R}^{m_2})$ is called a singular vector pair of A.

For a generic A, i.e. A of the maximal rank $r = \min(m_1, m_2)$ and r distinct positive singular values, A has exactly r distinct singular vector pairs. Furthermore, under these conditions A has a unique best rank one approximation in the Frobenius norm given by the singular vector pair corresponding to the maximal singular value $\|A\|_2$.

Assume now that $m = m_1 = m_2$ and A is a real symmetric matrix. Then the singular values of A are the absolute values of the eigenvalues of A. Furthermore, if all the absolute values of the eigenvalues of A are pairwise distinct then A has a unique best rank one approximation, which is symmetric. Hence for any real symmetric matrix A there exists a best rank one approximation which is symmetric.

In this paper we derive similar results for tensors. Let $T \in \mathbb{F}^m$. We first define the notion of a singular vector tuple $(x_1, \ldots, x_d) \in (\mathbb{F}^{m_1} \setminus \{0\}) \times \ldots \times (\mathbb{F}^{m_d} \setminus \{0\})$ as

$$
T \times \otimes_{j \in [d] \setminus \{i\}} x_j = \lambda_i x_i, \quad i = 1, \ldots, d.
$$

As for matrices we identify all singular vector tuples of the form $(\alpha_1 x_1, \ldots, \alpha_d x_d)$, $\alpha_1 \ldots \alpha_d \neq 0$ as one class of singular vector tuple in $([x_1], \ldots, [x_d]) \in \Pi_{\mathbb{F}}(\mathbf{m})$. (Note that for $d = 2$ and $\mathbb{F} = \mathbb{C}$ our notion of singular vector pair differs from the classical notion of singular vectors for complex-valued matrices, see §3.)

Let $([x_1], \ldots, [x_d]) \in \Pi(\mathbf{m})$ be a singular vector tuple of $T \in \mathbb{C}^m$. This tuple corresponds to a zero (nonzero) singular value if $\prod_{i \in [d]} \lambda_i = 0$ ($\neq 0$). This tuple is called a simple singular vector tuple, (or just simple), if the corresponding global section corresponding to T has a simple zero at $([x_1], \ldots, [x_d])$, see Lemma Π. in §3.

Our first major result is:

Theorem 1 Let $T \in \mathbb{C}^m$ be generic. Then T has exactly $c(\mathbf{m})$ simple singular vector tuples which correspond to nonzero singular values. Furthermore, T does not have a zero singular value. In particular, a generic real-valued tensor $T \in \mathbb{R}^m$ has
at most $c(m)$ real singular vector tuples corresponding to nonzero singular values, and all of them are simple. The integer $c(m)$ is the coefficient of the monomial \(\prod_{i=1}^d t_i^{m_i-1} \) in the polynomial
\[
\prod_{i \in [d]} \frac{t_i^{m_i} - t_i^{m_i}}{t_i - t_i}, \quad t_i = \sum_{j \in [d] \setminus \{i\}} t_j, \ i \in [d].
\] (1.3)

At the end of \[3\] we list the first values of $c(m)$ for $d = 3$. We generalize the above results to the class of tensors with given partial symmetry.

We now consider the cubic case where $m_1 = \ldots = m_d = m$. For an integer $m \geq 2$ let $m^* := (m, \ldots, m)$. Then $T \in \mathbb{F}^{m^*}$ is called d-cube, or simply a cube tensor. For a vector $x \in \mathbb{C}^m$ let $\otimes_k x := x \otimes \ldots \otimes x$. Assume that $T, S \in \mathbb{C}^{m^d}$.

Then the homogeneous pencil eigenvalue problem is to find all vectors x and scalars λ satisfying $T \times \otimes^{d-1} x = \lambda S \times \otimes^{d-1} x$. The contraction here is with respect to the last $d - 1$ indices of T, S respectively. We assume without loss of generality that $T = [t_{i_1, \ldots, i_d}], S = [s_{i_1, \ldots, i_d}]$ are symmetric with respect to the indices i_2, \ldots, i_d. S is called nonsingular if the system $S \times \otimes^{d-1} x = 0$ implies that $x = 0$. Assume that S is nonsingular and fixed. Then T has exactly $m(d - 1)^{m-1}$ eigenvalues counted with their multiplicities. T has $m(d - 1)^{m-1}$ distinct eigenvectors in $\mathbb{P}(\mathbb{C}^m)$ for a generic T. See \[21\] for the case S is the identity tensor.

View $\mathbb{R}^{m_1 \times \ldots \times m_d}$ as an inner product space, where for two d-mode tensors $T, S \in \mathbb{R}^{m_1 \times \ldots \times m_d}$ we let $\langle T, S \rangle := T \times S$. Then the Hilbert-Schmidt norm is defined $\|T\| := \sqrt{\langle T, T \rangle}$. (Recall that for $d = 2$ (matrices) the Hilbert-Schmidt norm is called the Frobenius norm.) A best rank one approximation is a solution to the minimal problem
\[
\min_{x_i \in \mathbb{R}^{m_i}, i \in [d]} \|T - \otimes_{i \in [d]} x_i\| = \|T - \otimes_{i \in [d]} u_i\|.
\] (1.4)

$\otimes_{i \in [d]} u_i$ is called a best rank one approximation of T. Our second major result is:

Theorem 2

1. For almost all $T \in \mathbb{R}^m$ a best rank one approximation is unique.

2. Let $S^d(\mathbb{R}^m) \subset \mathbb{R}^{m^d}$ be the space of d-mode symmetric tensors. For almost all $S \in S^d(\mathbb{R}^m)$ a best rank one approximation of S is unique and symmetric. In particular, for each $S \in S^d(\mathbb{R}^m)$ there exists a best rank one approximation which is symmetric.

The last statement of part 2 of this theorem was demonstrated by the first named author in \[7\]. Actually, this result is equivalent to Banach’s theorem \[1\]. See \[23\] for another proof of Banach’s theorem. In Theorem 12 we generalize part 2 of Theorem 2 to the class of tensors with given partial symmetry.

Let $r = (r_1, \ldots, r_d)$, where $r_i \in [m_i]$ for $i \in [d]$. In the last section of this paper we study a best rank-r approximation for a real d-mode tensor \[6\]. We show that for almost all tensors a best rank-r approximation is unique.

We now describe briefly the contents of our paper. In §2 we give layman’s introduction to some basic notions of vector bundles over compact complex manifolds
and Chern classes of certain bundles over the Segre product needed for this paper. We hope that this introduction will make our paper accessible to a wider audience.

§3 discusses the first main contribution of this paper. Namely, the number of singular vector tuples of a generic complex tensor is finite and is equal to \(c(m) \). We give a closed formula for \(c(m) \), as in (1.3). §4 generalizes these results to partially symmetric tensors. In particular we reproduce the result of Cartwright and Sturmfels for symmetric tensors [3]. In §5 we discuss a homogeneous pencil eigenvalue problem. In §6 we give certain conditions on a general best approximation problem in \(\mathbb{R}^n \), which are probably well known to the experts. In §7 we give uniqueness results on best rank one approximation of partially symmetric tensors. In §8 we discuss a best rank-r approximation.

We thank J. Draisma, who pointed out the importance to distinguish between isotropic and not isotropic vectors, as we do in §3.

2 Vector bundles over compact complex manifolds

In this section we recall some basic results on complex manifolds and holomorphic tangent bundles that we use in this paper. Our object is to give the simplest possible intuitive description of basic results in algebraic geometry needed in this paper, sometimes compromising the rigor. An interested reader can consult for more details with [11] for general facts about complex manifolds and complex vector bundles, and for a simple axiomatic exposition on complex vector bundles with [15]. For Bertini-type theorem we refer to Fulton [8] and Hartshorne [12].

2.1 Complex compact manifolds

Let \(M \) be a compact complex manifold of dimension \(n \). Thus there exists a finite open cover \(\{ U_i \}, i \in [N] \) with coordinate homeomorphism \(\phi_i : U_i \to \mathbb{C}^n \) such that \(\phi_i \circ \phi_j^{-1} \) is holomorphic on \(\phi_j(U_i \cap U_j) \) for all \(i, j \).

As an example consider the \(m - 1 \) dimensional complex projective space \(\mathbb{P}(\mathbb{C}^m) \), which is the set of all complex lines in \(\mathbb{C}^m \) through the origin. Any point in \(\mathbb{P}(\mathbb{C}^m) \) is represented by a one dimensional subspace spanned by the vector \(x = (x_1, \ldots, x_m)^\top \in \mathbb{C}^m \setminus \{0\} \). The standard open cover of \(\mathbb{P}(\mathbb{C}^m) \) consists of \(m \) open covers \(U_1, \ldots, U_m \), where \(U_i \) corresponds to the lines spanned by \(x \) with \(x_i \neq 0 \). The homeomorphism \(\phi_i \) is given by \(\phi_i(x) = (\frac{x_1}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_m}{x_i})^\top \). So each \(U_i \) is homeomorphic to \(\mathbb{C}^{m-1} \).

Let \(M \) be an \(n \)-dimensional compact complex manifold as above. For \(\zeta \in U_i \), the coordinates of the vector \(\phi_i(\zeta) = z = (z_1, \ldots, z_n)^\top \) are called the local coordinates of \(\zeta \). Since \(\mathbb{C}^n \equiv \mathbb{R}^2n \), \(M \) is a real manifold of real dimension \(2n \). Let \(z_j = x_j + iy_j, \bar{z}_j = x_j - iy_j, j \in [n] \), where \(i = \sqrt{-1} \). For simplicity of notation we let \(u = (u_1, \ldots, u_{2n}) = (x_1, y_1, \ldots, x_n, y_n) \) be the real local coordinates on \(U_i \). Any function \(f : U_i \to \mathbb{C} \) in the local coordinates is viewed as \(f(u) = g(u) + ih(u) \), where \(h, g : U_i \to \mathbb{R} \). Thus \(df = \sum_{j \in [2n]} \frac{\partial f}{\partial u_j} du_j \). For a positive integer \(p \), a (differential) \(p \)-form \(\omega \) on \(U_i \) is given in the local coordinates as follows

\[
\omega = \sum_{1 \leq i_1 < \ldots < i_p \leq 2n} f_{i_1, \ldots, i_p}(u) du_{i_1} \wedge \ldots \wedge du_{i_p}.
\]
(f_{i_1,\ldots,i_p}(u) are differentiable functions in local coordinates u for $1 \leq i_1 < \ldots < i_p \leq 2n$.) Recall that the wedge product of two differential is anti commutative. i.e. $du_k \wedge du_l = -du_l \wedge du_k$. Then

$$d\omega = \sum_{1 \leq i_1 < \ldots < i_p \leq 2n} (df_{i_1,\ldots,i_p}) \wedge du_{i_1} \wedge \ldots \wedge du_{i_p}.$$

(Recall that a differential 0-form is a function.) Note that for $p > 2n$ any differential p-form is a zero form. A straightforward calculation shows that $d(d\omega) = 0$. ω is a p-form on M if its restriction to each U_i is an p-form, and the restrictions of these two forms on $U_i \cap U_j$ are obtained one from the other one by the change of coordinates $\phi_1 \circ \phi_2^{-1}$. ω is called closed if $d\omega = 0$, and $d\omega$ is called an exact form. The space of closed p-forms modulo exact p-forms is a finite dimensional vector space over \mathbb{C}, which is denoted by $H^p(M)$. Each element of $H^p(M)$ is represented by a closed p-form, and the difference between two representatives is an exact form. Since the product of two forms is also a form, it follows that the space of all closed forms modulo exact forms is a finite dimensional algebra, where the identity 1 corresponds to the constant function with value 1 on M.

2.2 Holomorphic vector bundles

A holomorphic vector bundle E on M of rank k, where k is a nonnegative integer, is a complex manifold of dimension $n + k$, which can be simply described as follows. There exists a finite open cover $\{U_i\}, i \in [N]$ of M with the properties as above satisfying the following additional conditions. At each $\zeta \in U_i$ we are given k-dimensional vector space E_{ζ}, called a fiber of E over ζ, which all can be identified with a fixed vector space V_i, having a basis $[e_{1,i}, \ldots, e_{k,i}]$. For $\zeta \in U_i \cap U_j, i \neq j$ the transition matrix from $[e_{1,i}, \ldots, e_{k,i}]$ to $[e_{1,j}, \ldots, e_{k,j}]$ is given by an $k \times k$ invertible matrix $g_{U_i,U_j}(\zeta)$. So $[e_{1,i}, \ldots, e_{k,i}] = [e_{1,j}, \ldots, e_{k,j}]g_{U_i,U_j}(\zeta)$. Each entry of $g_{U_i,U_j}(\zeta)$ is a holomorphic function in the local coordinates of U_j. We have the following relations

$$g_{U_i,U_j}(\zeta)g_{U_j,U_i}(\eta)g_{U_i,U_p}(\eta)g_{U_p,U_i}(\eta) = I_k \text{ for } \zeta \in U_i \cap U_j, \eta \in U_i \cap U_j \cap U_p.$$

(I_k is an identity matrix of order k.)

For $k = 0$, E is called a zero bundle. E is called a trivial bundle if there exists a finite open cover such that each $g_{U_i,U_j}(\zeta)$ is an identity matrix. A vector bundle F on M is called a subbundle of E if F is a submanifold of E such that F_{ζ} is a subspace of E_{ζ} for each $\zeta \in M$. Assume that F is a subbundle of E. Then $G := E/F$ is the quotient bundle of E and F, where G_{ζ} is the quotient vector space E_{ζ}/F_{ζ}. Let E_1, E_2 be two vector bundles on M. We can create the following new bundles on M: $E := E_1 \oplus E_2, F := E_1 \otimes E_2, H := \text{Hom}(E_1, E_2)$. Here $E_{\zeta} = E_{1,\zeta} \oplus E_{2,\zeta}, F_{\zeta} = E_{1,\zeta} \otimes E_{2,\zeta}$ and H_{ζ} consists of all linear transformations from $E_{1,\zeta}$ to $E_{2,\zeta}$. In particular, the vector bundle $\text{Hom}(E_1, E_2)$, where E_2 is the one dimensional trivial bundle is called the dual bundle of E_1 and is denoted by E_1^\vee. Recall that $\text{Hom}(E_1, E_2)$ is isomorphic to $E_2 \otimes E_1^\vee$. For a given vector bundle E on M we can define the bundle $F := \otimes^d E$. Here $F_{\zeta} = \otimes^d E_{\zeta}$ is a fiber of d-mode tensors.
Let M,M' be compact complex manifolds and assume that $f : M' \to M$ is holomorphic. Assume that $\pi : E \to M$ is holomorphic vector bundle. Then one can pullback E to obtain a bundle $\pi' : E' \to M'$ where $E' = f^* E$.

Given a manifold M_i with a vector bundle E_i for $i = 1,2$ we can define the bundle $F := E_1 \oplus E_2, G := E_1 \otimes E_2$ on $M := M_1 \times M_2$ by the equality

$$F_{(\zeta_1,\zeta_2)} = E_{1,\zeta_1} \oplus E_{2,\zeta_2}, G_{(\zeta_1,\zeta_2)} = E_{1,\zeta_1} \otimes E_{2,\zeta_2}.$$

A special case for F occurs when one of the factors E_i is a zero bundle, say $E_2 = 0$. Then $E_1 \otimes 0$ is the pullback of the bundle E_1 on M_1 obtained by using the projection $\pi_1 : M_1 \times M_2$ and is denoted as the bundle $\pi_1^* E_1$ on $M_1 \times M_2$. Thus $E_1 \otimes E_2$ is the bundle $\pi_1^* E_1 \oplus \pi_2^* E_2$ on $M_1 \times M_2$. Similarly $E_1 \otimes E_2$ is the bundle $\pi_1^* E_1 \oplus \pi_2^* E_2$.

We now discuss a basic example used in this paper. Consider the trivial bundle E on a compact complex manifold M. Assume that $\pi : E \to M$, the seminal work of Chern [5] associates with each $\pi : E \to M$ the Chern class $c_j(E)$ for each $j \in [\dim M]$. One can view $c_j(E)$ as an element in $H^{2j}(M)$. The Chern classes needed in this paper can be determined by the following well known rules [15].

One associate with E the Chern polynomial $C(t,E) = 1 + \sum_{j=1}^{\dim M} c_j(E) t^j$. Note that $c_j(E) = 0$ for $j > \dim M$. The total Chern class $c(E)$ is $C(1,E) = \prod_{j=1}^{\dim M} c_j(E)$. Consider the formal factorization $C(t,E) = \prod_{j=1}^{\dim M} \left(1 + \xi_j(E) t\right)$. Then the Chern character $ch(E)$ of E is defined as $\sum_{j=1}^{\dim M} c_j(E)$.

$C(t,E) = 1$ if E is a trivial bundle. The Chern polynomial of the dual bundle is given by $C(t,E^*) = C(-t,E)$. Given an exact sequence of bundles

$$0 \to E \to F \to G \to 0,$$

we have the identity

$$C(t,F) = C(t,E)C(t,G),$$

which is is equivalent to $c(F) = c(E)c(G)$.

The product formula is the identity $ch(E_1 \otimes E_2) = ch(E_1)ch(E_2)$. Let $f : M' \to M$. Then $c_j(f^*E)$, viewed as a differential form in $H^{2j}(M')$, is obtained by pullback of the differential form $c_j(E)$. In particular, for the pullback bundle $\pi_1^* E_1$ described above, we have the equality $c_j(\pi_1^*E_1) = c_j(E_1)$, when we use the local coordinates $\zeta = (\zeta_1,\zeta_2)$ on $M_1 \times M_2$.

2.3 Chern polynomials

We now return to a holomorphic vector bundle E on a compact complex manifold M. The Chern class $c_j(E)$ for each $j \in [\dim M]$. One can view $c_j(E)$ as an element in $H^{2j}(M)$. The Chern classes needed in this paper can be determined by the following well known rules [15].

One associate with E the Chern polynomial $C(t,E) = 1 + \sum_{j=1}^{\dim M} c_j(E) t^j$. Note that $c_j(E) = 0$ for $j > \dim M$. The total Chern class $c(E)$ is $C(1,E) = \prod_{j=1}^{\dim M} c_j(E)$. Consider the formal factorization $C(t,E) = \prod_{j=1}^{\dim M} \left(1 + \xi_j(E) t\right)$. Then the Chern character $ch(E)$ of E is defined as $\sum_{j=1}^{\dim M} c_j(E)$.

$C(t,E) = 1$ if E is a trivial bundle. The Chern polynomial of the dual bundle is given by $C(t,E^*) = C(-t,E)$. Given an exact sequence of bundles

$$0 \to E \to F \to G \to 0,$$

we have the identity

$$C(t,F) = C(t,E)C(t,G),$$

which is is equivalent to $c(F) = c(E)c(G)$.

The product formula is the identity $ch(E_1 \otimes E_2) = ch(E_1)ch(E_2)$. Let $f : M' \to M$. Then $c_j(f^*E)$, viewed as a differential form in $H^{2j}(M')$, is obtained by pullback of the differential form $c_j(E)$. In particular, for the pullback bundle $\pi_1^* E_1$ described above, we have the equality $c_j(\pi_1^*E_1) = c_j(E_1)$, when we use the local coordinates $\zeta = (\zeta_1,\zeta_2)$ on $M_1 \times M_2$.

6
Assume that rank \(E = \dim M = n \). Then \(c_n(E) = \nu(E)\omega \), where \(\omega \in H^{2n}(M) \) is the volume form on \(M \) such that \(\omega \) is a generator of \(H^{2n}(M, \mathbb{Z}) \). Then \(\nu(E) \) is an integer, which is called the top Chern number of \(E \).

Denote by \(s_m \) the first Chern class of \(H(m) \), which belongs to \(H^2(\mathbb{P}(\mathbb{C}^m)) \). Then \(s_m^k \) represents the differential form \(\wedge^k s_m \in H^{2k}(\mathbb{P}(\mathbb{C}^m)) \). Observe that \(s_m^m = 0 \). Moreover the algebra of all closed forms modulo the exact forms on \(\mathbb{P}(\mathbb{C}^m) \) is \(\mathbb{C}[s_m]/(s_m^m) \), i.e. all polynomials in the variable \(s_m \) modulo the relation \(s_m^m = 0 \). So \(C(t, H(m)) = 1 + s_m t \) and \(C(t, T(m)) = 1 - s_m t \). The exact sequence (2.1) and the formula (2.2) imply that

\[
1 = C(t, F(m)) = C(t, T(m))C(t, Q(m)) = (1 - s_m t)C(t, Q(m)).
\]

Therefore

\[
C(t, Q(m)) = \frac{1}{1 - s_m t} = 1 + \sum_{j=1}^{m-1} s_m^j t^j. \tag{2.3}
\]

2.4 Certain bundles on Segre product

Let \(m_1, \ldots, m_d \geq 2 \) be given integers with \(d > 1 \). Denote \(m_i = (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_d) \) for \(i \in [d] \). Consider the Segre product \(\Pi(m) := \mathbb{P}(\mathbb{C}^{m_1}) \times \ldots \times \mathbb{P}(\mathbb{C}^{m_d}) \) and \(\Pi(m_i) \) for \(i \in [d] \). Let \(\pi_i : \Pi(m) \to \mathbb{P}(\mathbb{C}^{m_i}) \) and \(\tau_i : \Pi(m) \to \Pi(m_i) \) be the projections on the \(i \)-th component and its complement respectively. Then \(\pi_i^* H(m_i), \pi_i^* Q(m_i), \pi_i^* F(m_i) \) are the pullback of the bundles \(H(m_i), Q(m_i), F(m_i) \) on \(\mathbb{P}(\mathbb{C}^{m_i}) \) to \(\Pi(m) \) respectively.

Consider the map \(\iota_m : \Pi(m) \to \mathbb{P}(\mathbb{C}^m) \) given by \(\iota_m ([x_1], \ldots, [x_d]) = \left[\otimes_{i \in [d]} [x_i] \right] \). It is straightforward to show that \(\iota \) is \(1 - 1 \). Then \(\Sigma(m) := \iota_m(\Pi(m)) \subset \mathbb{P}(\mathbb{C}^m) \) is the Segre variety. Let \(T(m) \) be tautological line bundle on \(\mathbb{P}(\mathbb{C}^m) \). The identity span(\(\otimes_{j \in [d]} [x_j] \)) = \(\otimes_{j \in [d]} \text{span}(x_j) \) implies that the line bundle \(\iota^* T(m) \) is isomorphic to \(\otimes_{j \in [d]} \pi_j^* T(m_j) \). Hence the dual bundles \(\iota^* H(m) \) and \(\otimes_{j \in [d]} \pi_j^* H(m_j) \) are isomorphic. Consider next the bundle \(\tilde{T}(m_i) \) on \(\Pi(m) \), which is

\[
\tilde{T}(m_i) := \otimes_{j \in [d] \setminus \{i\}} \pi_j^* T(m_j). \tag{2.4}
\]

Hence the dual bundle \(\tilde{T}(m_i)^\vee \) is isomorphic to \(\otimes_{j \in [d] \setminus \{i\}} \pi_j^* H(m_j) \). In particular,

\[
c_1(\tilde{T}(m_i)^\vee) = c_1(\otimes_{j \in [d] \setminus \{i\}} \pi_j^* H(m_j)). \tag{2.5}
\]

Define the following vector bundles on \(\Pi(m) \)

\[
R(i, m) = \text{Hom}(\tilde{T}(m_i), \pi_i^* Q(m_i)), \quad R(i, m)' = \text{Hom}(\tilde{T}(m), \pi_i^* F(m_i)),
\]

\[
R(m) = \oplus_{i \in [d]} R(i, m), \quad R_i(m)' := (\oplus_{j \in [d] \setminus \{i\}} R(j, m)) \oplus R(i, m)'. \tag{2.6}
\]

Observe that

\[
\text{rank } R(i, m) = \text{rank } R(i, m)' - 1 = m_i - 1,
\]

\[
\text{rank } R(m) = \text{rank } R_i(m)' - 1 = \dim \Pi(m). \tag{2.7}
\]
Since Hom$(E_1, E_2) \sim E_2 \otimes E_1^\vee$ we obtain the following relations
\[C(t, R(i, m)) = C(t, \pi_i^* Q(m_i) \otimes (\hat{T}(m))^\vee) = C(t, \pi_i^* Q(m_i) \otimes (\otimes_{j \in [d] \setminus \{i\}} \pi_j^* H(m_j))). \]
(2.8)

The formula \(2.2\) yields
\[C(t, R(m)) = \prod_{i \in [d]} C(t, R(i, m)). \]
(2.9)

Denote \(t_i = c_1(\pi_i^* H(m_i)) \). The cohomology ring \(H^*(\Pi(m)) \) is generated by \(t_1, \ldots, t_d \) with the relations \(t_i^{m_i} = 0 \), that is \(H^*(\Pi(m)) \simeq \mathbb{C}[t_1, \ldots, t_d]/(t_1^{m_1}, \ldots, t_d^{m_d}) \) and in the following we interpret \(t_i \) just as variables. Correspondingly, the \(k \)-th Chern class \(c_k(E) \) is equal to \(p_k(t_1, \ldots, t_d) \) for some homogeneous polynomial \(p_k \) of degree \(k \) for \(k = 1, \ldots, \dim \Pi(m) \). (Recall that \(c_0(E) = 1 \) and \(c_k(E) = 0 \) for \(k > \dim \Pi(m) \).)

In what follows we need to compute the top Chern class of \(R(m) \). Since rank \(R(m) = \dim \Pi(m) \), and \(\Pi(m) \) is a manifold, it follows that the top Chern class of \(R(m) \) is of the form
\[c(m) \prod_{i \in [d]} t_i^{m_i-1}, \]
(2.10)
where \(c(m) \) is an integer. So \(c(m) = \nu(R(m)) \) is the top Chern number of \(R(m) \).

Lemma 3 Let \(R(i, m) \) and \(R(m) \) be the vector bundles on the Segre product \(\Pi(m) \) given by \(2.6\). Then the total Chern classes of these vector bundles are given as follows.

\[c(R(i, m)) = \sum_{j=0}^{m_i-1} (1 + \hat{t}_i)^{m_i-1-j} t_i^j, \quad \hat{t}_i := \sum_{k \in [d] \setminus \{i\}} t_k, \]
(2.11)

\[c(R(m)) = \prod_{i \in [d]} \left(\sum_{j=0}^{m_i-1} (1 + \hat{t}_i)^{m_i-1-j} t_i^j \right). \]
(2.12)

The top Chern number of \(R(m) \), \(c(m) \), is the coefficient of the monomial \(\prod_{i \in [d]} t_i^{m_i-1} \) in the polynomial \(\prod_{i \in [d]} t_i^{m_i-1} \), (In this formula of \(c(m) \) we do not assume the identities \(t_i^{m_i} = 0 \) for \(i \in [d] \).)

Proof. Let \(\zeta_i := e^{2\pi i} \) be the primitive \(m_i \)-th root of unity. Then
\[\prod_{k=0}^{m_i-1} (1 - \zeta_i^k x) = 1 - x^{m_i}, \quad \sum_{k=0}^{m_i-1} x^k = \frac{1 - x^{m_i}}{1 - x} \]
(2.13)

The second equality of \(2.13\) and \(2.3\) yield that
\[C(t, \pi_i^* Q(m_i)) = \prod_{k \in [m_i-1]} (1 - \zeta_i^k t_i). \]
Hence $\text{ch}(\pi^*_1 Q(m_i)) = \sum_{k\in[m_i-1]} e^{-\zeta^k t_i}$. Clearly, $\text{ch}(H(m_j)) = e^{t_j}$. The product formula for Chern characters yields:

$$
\text{ch}(\otimes_j \in [d] \setminus \{i\} \pi_j H(m_j)) = e^{\sum_{j=1}^d t_j} = e^{t_i},
$$

$$
\text{ch}(\pi^*_i Q(m_i) \otimes (\otimes_j \in [d] \setminus \{i\} \pi^*_j H(m_j))) = \text{ch}(\pi^*_i Q(m_i)) \text{ch}(\otimes_{j=1}^d \pi^*_j H(m_j)) = \sum_{k\in[m_i-1]} e^{t_i - \zeta^k t_i}.
$$

Hence

$$
C(t, R(i, m)) = \prod_{k\in[m_i-1]} (1 + (\hat{t}_i - \zeta^k t_i)t) = \frac{1}{1 + (\hat{t}_i - t_i)t} \prod_{k=0}^{m_i-1} (1 + (\hat{t}_i - \zeta^k t_i)t),
$$

$$
c(R(i, m)) = C(1, R(i, m)) = \frac{1}{1 + \hat{t}_i - \hat{t}_i} \prod_{k=0}^{m_i-1} (1 + \hat{t}_i - \zeta^k t_i) = \frac{1}{1 + \hat{t}_i - \hat{t}_i}(1 + \hat{t}_i)^{m_i} (1 - x^{m_i}),
$$

where $x = \frac{t_i}{1 + t_i}$. As $t_i^{m_i} = 0$ we deduce

$$
c(R(i, m)) = \frac{(1 + \hat{t}_i)^{m_i}}{1 - t_i + \hat{t}_i} = \frac{(1 + \hat{t}_i)^{m_i-1}}{1 - x} = (1 + \hat{t}_i)^{m_i-1} \sum_{p=0}^{\infty} x^p = (1 + \hat{t}_i)^{m_i-1}\sum_{j=0}^{m_i-1-j} t_i^j.
$$

This establishes (2.11). (2.12) follows from the formula (2.2). Note that the degree of the polynomial in $t := (t_1, \ldots, t_d)$ appearing in the right-hand side of (2.11) is $m_i - 1$. The polynomial $\sum_{j=0}^{m_i-1} t_i^{m_i-1-j} t_i^j = \frac{t_i^{m_i} - t_i^{-m_i}}{t_i - t_i^{-1}}$ is the homogeneous polynomial of degree $m_i - 1$ appearing in the right-hand side of (2.11). Hence the homogeneous polynomial of degree dim $\Pi(m)$ of the right-hand side of (2.12) is $\prod_{i\in[d]} t_i^{m_i-1-j}$. Assuming the relations $t_i^{m_i} = 0, i \in [d]$ we obtain that this polynomial is $c(m) \prod_{i\in[d]} t_i^{m_i-1}$. This is equivalent to the statement that $c(m)$ is the coefficient of $\prod_{i\in[d]} t_i^{m_i-1}$ in the polynomial $\prod_{i\in[d]} t_i^{m_i-1-t_i^{m_i}}$, where we do not assume the relations $t_i^{m_i} = 0, i \in [d]$.

\[\square\]

2.5 Bertini-type theorems

Let M be a compact complex manifold and E a holomorphic bundle on M. A holomorphic section σ of E on an open set $U \subset E$ is a holomorphic map $\sigma : U \to E$, where E is viewed as a complex manifold. Specifically, let $U_i, i \in [N]$ be the finite cover of M such that the bundle E restricted to U_i is $U_i \times \mathbb{C}^k$ with the standard basis $[e_{1,i}, \ldots, e_{k,i}]$, as in (2.2). Then $\sigma(\zeta) = \sum_{j=1}^{k} \sigma_{j,i}(\zeta)e_{j,i}$ for $\zeta \in U \cap U_i$, where $\sigma_{j,i}(\zeta)$, $j \in [k]$ are analytic on $U \cap U_i$. σ is called a global section if $U = M$. Denote
by $H^0(E)$ the linear space of global sections on E. A subspace $V \subset H^0(E)$ is said to generate E if $V(\zeta)$, the values of all section in V at each $\zeta \in M$ is equal to E_ζ.

The following proposition is a generalization of the classical Bertini’s theorem in algebraic geometry, and it is a standard consequence of Generic Smoothness Theorem. For the convenience of the reader we state and give a short proof of this proposition.

Theorem 4 (“Bertini-type” theorem) Let E be a vector bundle on M. Let $V \subset H^0(E)$ be a subspace which generates E. Then

1. if rank $E > \dim M$ for the generic $\sigma \in V$ the zero locus of σ is empty.
2. if rank $E \leq \dim M$ for the generic $\sigma \in V$ the zero locus of σ is either smooth of codimension rank E or it is empty.
3. if rank $E = \dim M$ the zero locus of the generic $\sigma \in V$ consists of $\nu(E)$ simple points, where $\nu(E)$ is the top Chern number of E.

Proof. We identify the vector bundle E with its locally free sheaf of sections, see [8, B.3]. We have the projection $E \xrightarrow{\pi} M$, where the fiber $\pi^{-1}(\zeta)$ is isomorphic to the vector space E_ζ. Let $\Pi \subset E$ be the zero section. By the assumption we have a natural projection of maximal rank

$$M \times V \xrightarrow{p} E.$$

Let $Z = p^{-1}(\Pi)$, then Z is isomorphic to the variety $\{(\zeta, \sigma) \in M \times V | \sigma(\zeta) = 0\}$ and it has dimension equal to $\dim M + \dim V - \text{rank } E$. Consider the natural projection $Z \xrightarrow{q} V$, now $\forall \zeta \in V$ the fiber $q^{-1}(\sigma)$ is naturally isomorphic to the zero locus of σ. We have two cases. If q is dominant (namely the image of q is dense) then by the Generic Smoothness theorem [12, Corol. III 10.7] $q^{-1}(\sigma)$ is smooth of dimension $\dim X - \text{rank } E$ for generic σ.

If q is not dominant (and this always happens in the case rank $E > \dim M$) then $q^{-1}(\sigma)$ is empty for generic σ. This concludes the proof of the first two parts. The third part follows from [8, Example 3.2.16].

For our purposes we need the following refinement of Theorem 4.

Definition 5 Let $\pi : E \to M$ be a vector bundle on a smooth projective variety M such that rank $E \geq \dim M$. Let $V \subset H^0(E)$ be a subspace. Then V almost generates E if the following conditions hold. Either V generates E, (in this case $k = 0$) or there exists $k \geq 1$ smooth strict irreducible subvarieties Y_1, \ldots, Y_k of M satisfying the following properties. First, on each Y_j there is a vector bundle E_j. Second, after assuming $Y_0 = M$ and $E_0 = E$, the following conditions hold.

1. rank $E_j > \dim Y_j$ for each $j \geq 1$.
2. Let $\pi_j : E_j \to Y_j$, and for any $i, j \geq 0$ assume that Y_i is a subvariety of Y_j. Then E_i is a subbundle of $E_{j|Y_i}$.
3. $V(\zeta) \subset (E_j)_{\zeta}$ for $\zeta \in Y_j$.
4. Denote by $P_j \subset [k]$ the set of all $i \in [k]$ such that Y_i are strict subvarieties of Y_j. Then $V(\zeta) = (E_j)_{\zeta}$ for $\zeta \in Y_j \setminus_{i \in P_j} Y_i$.

10
Theorem 6 Let E be a vector bundle on a smooth projective variety M. Assume that $\text{rank } E \geq \dim M$. Let $V \subset H^0(E)$ be a subspace which almost generates E. Then

1. If $\text{rank } E > \dim M$ then for a generic $\sigma \in V$ the zero locus of σ is empty.
2. If $\text{rank } E = \dim M$ then the zero locus of a generic $\sigma \in V$ consists of $\nu(E)$ simple points lying outside $\bigcup_{j \in [k]} Y_j$, where $\nu(E)$ is the top Chern number of E.

Proof. Like in the proof of Theorem 4 we consider the variety

$$Z = \{(\zeta, \sigma) \in M \times V | \sigma(\zeta) = 0\}.$$

We consider the two projections

$$Z \xrightarrow{p} M \xleftarrow{q} V$$

The fiber $q^{-1}(v)$ can be identified with the zero locus of v. If $\zeta \in Y_k$, by Definition 5, the fibers $p^{-1}(\zeta)$ can be identified with a subspace of V having codimension $\text{rank } E_k$. It follows that the dimension of $p^{-1}(Y_k)$ is equal to $\dim V - \text{rank } E_k + \dim Y_k$ which, by 1 of Definition 5, is strictly smaller than $\dim V$ if $k \geq 1$. Let $Y = \bigcup_{k \geq 1} Y_k$. Then $p^{-1}(X \setminus Y) \subset Z$ is a fibration and it is smooth. Call \overline{q} the restriction of q to $p^{-1}(X \setminus Y)$. If $\text{rank } E > \dim M$ we get that \overline{q} is not dominant and the generic fiber $\overline{q}^{-1}(v)$ is empty. If $\text{rank } E = \dim M$, by Generic Smoothness Theorem applied to $\overline{q}: p^{-1}(X \setminus Y) \to V$, we get that there exists $V_0 \subset V$, with V_0 open, such that the fiber $\overline{q}^{-1}(v)$ is smooth for $v \in V_0$.

Moreover, the dimension count yields that $q(p^{-1}(Y))$ is a closed proper subset of V (note that q is a proper map). Call $V_1 = V \setminus q(p^{-1}(Y))$, again open.

It follows that for $v \in V_0 \cap V_1$ the fiber $q^{-1}(v)$ coincides with the fiber $\overline{q}^{-1}(v)$, which is smooth by the previous argument, given by finitely many simple points. The number of points is $\nu(E)$, again by [8, Example 3.2.16].

3 The number of singular vector tuples of a generic tensor

In this section we compute the number of singular vector tuples of a generic tensor $T \in \mathbb{C}^m$. In what follows we need the following two lemmas. The first one is well known and we leave its proof to the reader. Denote by $Q_m := \{x \in \mathbb{C}^m, x^\top x = 0\}$ the quadric of isotropic vectors.

Lemma 7 Let $x \in \mathbb{C}^m \setminus \{0\}$ and denote $U := \mathbb{C}^m/[x]$. For $y \in \mathbb{C}^m$ denote by $[[y]]$ the element in U induced by y. Then

1. Any linear functional $g: U \to \mathbb{C}$ is uniquely represented by $w \in \mathbb{C}^m$ such that $w^\top x = 0$ and $g([[y]]) = w^\top y$. In particular, if $x \in Q_m$ then the functional $g_x: U \to \mathbb{C}$ given by $g([[y]]) = x^\top y$ is a linear functional.
2. Suppose that \(x \not\in Q_m \) and \(a \in \mathbb{C} \) is given. Then for each \(y \in \mathbb{C}^m \) there exists a unique \(z \in \mathbb{C}^m \) such that \(\{z\} = \{y\} \) and \(x^\top z = a \).

Lemma 8 Let \(m = (m_1, \ldots, m_d) \in \mathbb{N}^d \). Assume that \(x_i \in \mathbb{F}^m \setminus \{0\}, y_i \in \mathbb{F}^m \) are given for \(i \in [d] \).

1. There exists \(T \in \mathbb{F}^m \) satisfying
 \[
 T \times \otimes_{j \in [d] \setminus \{i\}} x_j = y_i,
 \] (3.1)
 for any \(i \in [d] \) if and only if the following compatibility conditions hold.
 \[
 x_1^\top y_1 = \ldots = x_d^\top y_d.
 \] (3.2)

2. Let \(P \subset [d] \) be the set of all \(p \in [d] \) such that \(x_p \) is isotropic. Consider the following system of equation
 \[
 \{T \times \otimes_{j \in [d] \setminus \{i\}} x_j\} = \{y_i\},
 \] (3.3)
 for any \(l \in [d] \). Then there exists \(T \in \mathbb{F}^m \) satisfying \(\square \) if and only if one of the following conditions hold.
 (a) \(|P| \leq 1 \), i.e there exists at most one isotropic vector in \(\{x_1, \ldots, x_d\} \).
 (b) \(|P| = k \geq 2 \). Assume that \(P = \{i_1, \ldots, i_k\} \). Then
 \[
 x_{i_1}^\top y_{i_1} = x_{i_2}^\top y_{i_2} = \ldots = x_{i_k}^\top y_{i_k}.
 \] (3.4)

3. Fix \(i \in [d] \). Let \(P \subset [d] \setminus \{i\} \) be the set of all \(p \in [d] \setminus \{i\} \) such that \(x_p \) is isotropic. Then there exists \(T \in \mathbb{F}^m \) satisfying the condition \(\square \) and the conditions \(\square \) for all \(l \in [d] \setminus \{i\} \) if and only if one of the following conditions hold.
 (a) \(|P| = 0 \).
 (b) \(|P| = k - 1 \geq 1 \). Assume that \(P = \{i_1, \ldots, i_{k-1}\} \). Let \(i_k = i \). Then \(\square \) hold.

Proof. 1. Assume first that \(\square \) holds. Then \(T \times \otimes_{j \in [d]} x_j = x_i^\top y_i \) for \(i \in [d] \). Hence \(\square \) holds. Suppose now that \(\square \) holds. We now show that there exists \(T \in \mathbb{F}^m \) satisfying \(\square \).

Let \(U_j = [u_{pq,j}]_{p=q=1}^{m_j} \in \text{GL}(m_j, \mathbb{F}) \) for \(j \in [d] \). Let \(U := \otimes_{i \in [d]} U_i \). Then \(U \) acts on \(\mathbb{F}^m \) as a matrix acting on the corresponding vector space. That is, let \(T' = U T \) and assume that \(T = [t_{i_1, \ldots, i_d}], T' = [t'_{j_1, \ldots, j_d}] \). Then

\[
t'_{j_1, \ldots, j_d} = \sum_{i_1 \in [m_1], \ldots, i_d \in [m_d]} u_{j_1,i_1,1} \ldots u_{j_d,i_d,d} t_{i_1, \ldots, i_d}, \quad j_1 \in [m_1], \ldots, j_d \in [m_d].
\]

The conditions \(\square \) for \(T' \) become
\[
T' \times \otimes_{j \in [d] \setminus \{i\}} y'_j = y'_i, \quad i \in [d], \quad x'_i = (U_i^\top)^{-1} x_i, \quad y'_i = U_i y_i, \quad i \in [d].
\] (3.5)
Clearly, $x_i^Ty_i = (x'_i)^Ty'_i$ for $i \in [d]$. Since $x_i \neq 0$ there exists $U_i \in \text{GL}(m_i, \mathbb{F})$ such that $(U_i^T)^{-1}x_i = e_{1,i} = (1, 0, \ldots, 0)^T$ for $i \in [d]$. Hence it is enough to show that (3.1) is satisfied for some T if $x_i = e_{1,i}$ for $i \in [d]$ if $e_{1,i}^Ty_1 = \ldots = e_{d,i}^Ty_d$. Let $y_i = (y_{1,i}, \ldots, y_{m_i,i})^T$ for $i \in [d]$. Then the conditions (3.2) imply that $y_{1,1} = \ldots = y_{1,d}$. Choose a suitable $T = [t_{i_1, \ldots, i_d}]$ as follows. $t_{i_1, \ldots, i_d} = y_{i,j}$ if $i_k = 0$ for $k \neq j$, $t_{i_1, \ldots, i_d} = 0$ otherwise. Then (3.1) holds.

2. We now consider the system (3.3). This system is solvable if and only we can find $t_1, \ldots, t_d \in \mathbb{F}$ such that

$$x_1^T(y_1 + t_1x_1) = \ldots = x_d^T(y_d + t_dx_d).$$

Suppose first that $x_i \not\in Q_{m_i}$ for $i \in [d]$. Fix $a \in \mathbb{F}$. Choose $t_i = \frac{a-x_i^Ty_i}{x_i^Tx_i}$ for $i \in [d]$. Hence the system (3.3) is solvable. Suppose next that $x_j \in Q_{m_j}$. Then $x_j^T(y_j + t_jx_j) = x_j^Ty_j$. Assume that $P = \{j\}$. Let $a = x_j^Ty_j$. Choose $t_i, i \neq j$ as above to deduce that (3.6) holds. Hence (3.3) is solvable.

Assume finally that $k \geq 2$ and $P = \{i_1, \ldots, i_k\}$. (3.6) yields that if (3.3) is solvable then (3.4) holds. Suppose that (3.4) holds. Let $a = x_{i_1}^Ty_{i_1} = \ldots = x_{i_k}^Ty_{i_k}$.

For $i \not\in P$ let $t_i = \frac{a-x_i^Ty_i}{x_i^Tx_i}$ to deduce that the condition (3.6) holds. Hence (3.3) is solvable.

3. Consider the equation (3.1) and the equations (3.3) for $l \in [d] \setminus \{i\}$. Then this system is solvable iff and only if the system (3.6) is solvable for $t_i = 0$ and some $t_l \in \mathbb{F}$ for $l \in [d] \setminus \{i\}$. Let $a = x_l^Ty_{i}$. Assume that $|P| = 0$. Choose $t_l = \frac{a-x_l^Ty_{i}}{x_l^Tx_l}$ for $l \in [d] \setminus \{i\}$ as above to deduce that this system is solvable. Assume that $P = \{i_1, \ldots, i_{k-1}\}$ for $k \geq 2$. Suppose this system is solvable for some $T \in \mathbb{F}^{m}$. Then $a = x_{i_j}^Ty_j$ for each $j \in P$. Let $i_k := i$. Hence (3.6) holds. Vice versa assume that (3.6) holds. Choose $t_l = \frac{a-x_l^Ty_l}{x_l^Tx_l}$ for $l \not\in P \cup \{i\}$. Then (3.6) holds. Hence our system is solvable.

\begin{lemma}
Let $R(i, \mathbf{m})$ and $R(\mathbf{m})$ be the vector bundles over the Segre product $\Pi(\mathbf{m})$ defined in (2.6). Denote by $H^0(R(i, \mathbf{m}))$ and $H^0(R(\mathbf{m}))$ the linear space of global sections of $R(i, \mathbf{m})$ and $R(\mathbf{m})$ respectively. Then the following conditions hold.

1. For each $i \in [d]$ there exists a monomorphism $L_i : \mathbb{C}^m \to H^0(R(i, \mathbf{m}))$ such that $L_i(\mathbb{C}^m)$ generates $R(i, \mathbf{m})$ (see (2.5)).

2. $L = (L_1, \ldots, L_d)$ is a monomorphism of the direct sum of d copies of \mathbb{C}^m, (denoted as $\oplus^d \mathbb{C}^m$) to $H^0(R(\mathbf{m}))$ which generates $R(\mathbf{m})$.

3. Let $\delta : \mathbb{C}^m \to \oplus^d \mathbb{C}^m$ be the diagonal map $\delta(T) = (T, \ldots, T)$. Consider $([x_1], \ldots, [x_d]) \in \Pi(\mathbf{m})$.

(a) If at most one of x_1, \ldots, x_d is isotropic then $L \circ \delta(\mathbb{C}^m)$ (as a space of sections of $R(\mathbf{m})$) generates $R(\mathbf{m})$ at $([x_1], \ldots, [x_d])$.

(b) Let $P \subset [d]$ be the set of all $i \in [d]$ such that x_i is isotropic. Assume that $P = \{i_1, \ldots, i_k\}$ where $k \geq 2$. Let $g_{x_{i_p}}$ be the linear functional on the fiber of $\pi_{ip}Q(m_{ip})$ at $([x_1], \ldots, [x_d])$ as defined in Lemma 7 for $p = 1, \ldots, k$.

\end{lemma}
Let $U(P)$ be the subspace of all linear transformations $\tau = (\tau_1, \ldots, \tau_d) \in R(m)_{(x_1, \ldots, x_d)}$, $\tau_i \in R(i, m)_{(x_1, \ldots, x_d)}$, $i \in [d]$ satisfying

$$gx_i(\tau_i(\otimes_{j \in [d]} x_j)) = \ldots = gx_{i_k}(\tau_i(\otimes_{j \in [d] \setminus \{i_k\}} x_j)). \quad (3.7)$$

Then $L \circ \delta(T)([x_1], \ldots, [x_d]) \in U(P)$ for each $T \in \mathbb{C}^m$. Furthermore, $L \circ \delta(\mathbb{C}^m)_{([x_1], \ldots, [x_d])} = U(P)$.

Proof. For $T \in \mathbb{C}^m$ we define the section $L_i(T)(([x_1], \ldots, [x_d])) \in R(i, m)_{(x_1, \ldots, x_d)}$ as follows:

$$L_i(T)(([x_1], \ldots, [x_d]))(\otimes_{j \in [d] \setminus \{i\}} x_j) := [[T \times \otimes_{j \in [d] \setminus \{i\}} x_j]]. \quad (3.8)$$

It is straightforward to check that $L_i(T)$ is a global section of $R(i, m)$.

Assume $T \neq 0$. Then there exist $v_j \in \mathbb{C}^m$, $j \in [d]$ such that $T \times \otimes_{j \in [d]} v_j \neq 0$. Hence $x_j = v_j$ for $j \neq i$. Choose $x_i \in \mathbb{C}^m \setminus \{v_i\}$. Then $L_i(T)(([x_1], \ldots, [x_d])) \neq 0$. Hence L_i is injective.

We now show that $L_i(\mathbb{C}^m)$ generates $R(i, m)$. Let $y_i \in \mathbb{C}^m$. Choose $g_j \in \mathbb{C}^m$ such that $g_j^\top x_j = 1$ for $j \in [d]$. Set $T = (\otimes_{j \in [i-1]} g_j) \otimes y_i \otimes (\otimes_{j \in [d] \setminus \{i\}} g_j)$. Then $L_i(T)(([x_1], \ldots, [x_d])) = [[y_i]]$. This shows 1.

Define $L((T_1, \ldots, T_d))(([x_1], \ldots, [x_d])) = \oplus_{i \in [d]} L_i(T_i)((([x_1], \ldots, [x_d]))$. Then $L_i(\mathbb{C}^m) \in H^0(R(m))$. Clearly L is a monomorphism. Furthermore $L(\oplus^d \mathbb{C}^m)$ generates $\mathbb{R}(m)$. This shows 2.

The cases $3a$ and $3b$ of our Lemma follow from parts $2a$ and $2b$ of Lemma 8 respectively.

Künneth formula $[14]$ yields the equalities

$$L_i(\mathbb{C}^m) = H^0(R(i, m)), \quad i \in [d], \quad L(\oplus^d \mathbb{C}^m) = H^0(R(m)). \quad (3.9)$$

Corollary 10 Assume that $([x_1], \ldots, [x_d]) \in \Pi(m)$ is a singular d-tuple of a tensor T corresponding to a nonzero singular value. Then one of the following holds.

1. All x_i are isotropic.

2. All x_i are non isotropic.

For $T \in \mathbb{R}^m$ with a real singular vector tuple $([x_1], \ldots, [x_d]) \in \Pi_2(m)$ the condition $\prod_{i \in [d]} \lambda_i = 0$ implies that $\lambda_i = 0$ for each i. Indeed, since $x_i \in \mathbb{R}^m \setminus \{0\}$ it follows from $[1,2]$ that $\lambda_i = \frac{T \times \otimes_{j \in [d]} x_j}{x_i x_i^\top}$ for each $i \in [d]$. Thus $\lambda_k = 0$ for some $k \in [d]$ yields that $T \times \otimes_{j \in [d]} x_j = 0$. Hence each $\lambda_i = 0$.

However, this observation is not valid for complex tensors, already in the case of complex-valued matrices ($d = 2$), see an example below. It is straightforward to see that a singular value pair $([x_1], [x_2])$ of $A \in \mathbb{C}^{m_1 \times m_2}$ is given by the following conditions

$$Ax_2 = \lambda_1 x_1, \quad A^\top x_1 = \lambda_2 x_2, \quad x_i \in \mathbb{C}^{m_i} \setminus \{0\}, \lambda_i \in \mathbb{C}, \quad i = 1, 2. \quad (3.10)$$

Consider the following simple example.

$$A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}, \quad x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}. \quad (3.10)$$

Then $A^\top x_1 = x_2, Ax_2 = 0$, i.e. $\lambda_1 = 1, \lambda_2 = 0$.

14
Lemma 11 Let \(\mathcal{T} \in \mathbb{C}^m \) and consider the section \(\hat{\mathcal{T}} := L \circ \delta(\mathcal{T}) \in H^0(R(\mathbb{m})). \) We have that \(([x_1], \ldots, [x_d]) \in \Pi(\mathbb{m}) \) is a zero of \(\hat{\mathcal{T}} \) if and only if \(([x_1], \ldots, [x_d]) \) is a singular vector tuple corresponding to \(\mathcal{T} \).

Proof. Suppose first that \(\hat{\mathcal{T}}(([x_1], \ldots, [x_d])) = 0 \). Then \(L_i(\mathcal{T})(([x_1], \ldots, [x_d])) \) is a zero vector in the fiber \(R(i, \mathbb{m}) \) at \(([x_1], \ldots, [x_d]). \) Suppose first that \(\mathcal{T} \times (\otimes_{j \in [d]} \tau_j x_j) \neq 0 \). Then \(\mathcal{T} \times (\otimes_{j \in [d]} \tau_j x_j) = \lambda_i x_i \) for some \(\lambda_i \neq 0 \). Otherwise the previous equality holds with \(\lambda_i = 0 \). Hence \(([x_1], \ldots, [x_d]) \) is a singular vector tuple corresponding to \(\mathcal{T} \). Vice versa, it is straightforward to see that if \(([x_1], \ldots, [x_d]) \) is a singular vector tuple corresponding to \(\mathcal{T} \) then the section \(\hat{\mathcal{T}} \) vanishes at \(([x_1], \ldots, [x_d]) \in \Pi(\mathbb{m}). \)

We now bring the proof of Theorem 1 which was stated in §1.

Proof of Theorem 1. Let \(V = L \circ \delta(\mathbb{C}^m) \) be the subspace of sections of \(R(\mathbb{m}) \) given by tensors (embedded diagonally). We now show that \(V \) almost generates \(R(\mathbb{m}) \) as defined in Definition 5. First, rank \(R(\mathbb{m}) = \dim \Pi(\mathbb{m}) \). Second, let \(2^{[d]} \) be the set of all subsets of \([d]\) of cardinality \(k \) for each \(k \in [d] \). Let \(\alpha \in 2^{[d]} \). Define \(Y_\alpha = X_1 \times \ldots \times X_d \), where \(X_i = \mathbb{P}(Q_{m_i}) \) if \(i \in \alpha \) and \(X_i = \mathbb{P}(\mathbb{C}^{m_i}) \) otherwise. Clearly, \(Y_\alpha \) is a strict smooth subvariety of \(\Pi(\mathbb{m}) \) of codimension \(k \). Note that \(Y_\beta \subseteq Y_\alpha \) if and only if \(\alpha \subseteq \beta \). We now define the subbundle \(E_\alpha \) of \(\pi^{-1}(Y_\alpha) \). If \(\alpha \in 2^{[d]} \) then \(E_\alpha = \pi^{-1}(Y_\alpha) \). Assume now that \(\alpha \supset k \). Let \(\alpha = \{i_1, \ldots, i_k\} \). Let \(([x_1], \ldots, [x_d]) \in Y_\alpha \). So \(x_{i_l} \in Q_{m_{i_l}} \) for \(l = 1, \ldots, k \). Then the fiber \(E_\alpha \) at \(([x_1], \ldots, [x_d]) \) is the set of all vectors satisfying \((3.7) \). Note that \(\dim E_\alpha = \dim Y_\alpha + 1 \). Assume that \(\alpha \subseteq \beta \). Clearly, \(E_\beta \) is a strict subbundle of \(\pi^{-1}(Y_\beta) \). Hence the conditions 1-2 of Definition 5 hold. Lemma 9 implies the conditions 3-4 of Definition 5 hold. Theorem 6 implies that for a generic \(\mathcal{T} \in \mathbb{C}^m \) the section \(L \circ \delta(\mathcal{T}) \) has a finite number of simple zeros. Moreover, this number is equal to the top Chern number of \(R(\mathbb{m}) \). Lemma 3 yields that the top Chern number of \(R(\mathbb{m}) \) is \(c(\mathbb{m}) \).

It is left to show that a generic \(\mathcal{T} \in \mathbb{C}^m \) does not have a zero singular value. Fix \(i \in [d] \) and consider the set of all \(\mathcal{T} \in \mathbb{C}^m \) which have a singular vector tuple \(([x_1], \ldots, [x_d]) \in \Pi(\mathbb{m}) \) with \(\lambda_i = 0 \). Let \(R(i, \mathbb{m})' \) and \(R_o(\mathbb{m})' \) be defined in (2.6). Similar to the definition (3.8), we can define a monomorphism \(L'_i : \mathbb{C}^m \to H^0(R(i, \mathbb{m})') \) by the equality

\[
L'_i(\mathcal{T})(([x_1], \ldots, [x_d]))(\otimes_{j \in [d]\setminus\{i\}} x_j) := \mathcal{T} \times (\otimes_{j \in [d]\setminus\{i\}} x_j).
\]

Let \(\tilde{L}_i = (L_1, \ldots, L_{i-1}, L'_i, L_{i+1}, \ldots, L_d) : \oplus_{j \in [d]} \mathbb{C}^m \to H^0(R_i(\mathbb{m})'). \)

We claim that \(\tilde{L}_i \circ \delta(\mathbb{C}^m) \) almost generates \(R_i(\mathbb{m})' \). Clearly, \(\dim R_i(\mathbb{m})' = \dim \Pi(\mathbb{m}) + 1 \). Recall that a vector in \((\tau_1, \ldots, \tau_d) \in R_i(\mathbb{m})'([x_1], \ldots, [x_d])\) is of the form

\[
\tau_j : \tilde{\mathcal{T}}_i(m_j) \\ (j = \tilde{\mathcal{T}}(m_i) \to \pi_j^* Q(m_j) \text{ for } j \in [d] \setminus \{i\}, \quad \tau_i : \tilde{\mathcal{T}}(m_i) \to \pi_i^* \mathcal{F}(m_i). \quad (3.11)
\]

Let \(\alpha \subset [d] \setminus \{i\} \) be a nonempty set. Then \(Y_\alpha = X_1 \times \ldots \times X_d \), where \(X_j = \mathbb{P}(Q_{m_j}) \) if \(j \in \alpha \) and \(X_j = \mathbb{P}(\mathbb{C}^{m_j}) \) if \(j \notin \alpha \). (Note that \(X_i = \mathbb{P}(\mathbb{C}^{m_i}) \).) We now define the vector bundles \(\pi_\alpha : E_\alpha \to Y_\alpha \). Let \(\pi : R_o(\mathbb{m})' \to \Pi(\mathbb{m}) \). Assume that \(\alpha = \{i_1, \ldots, i_{k-1}\} \subset [d] \setminus \{i\} \) where \(k - 1 \geq 1 \). Then \(E_\alpha \) is the subbundle \(\pi^{-1}(Y_\alpha) \) defined as follows. For \(([x_1], \ldots, [x_d]) \in Y_\alpha \) it consists of all sections of the form
satisfying a variation of the condition (3.7):
\[
g_{x_i}(\tau_i (\otimes_{j\in[d]\setminus\{i\}} x_j)) = \ldots = g_{x_{i+1}}(\tau_{i+1} (\otimes_{j\in[d]\setminus\{i+1\}} x_j)) = x_i^T \tau_i(\otimes_{j\in[d]\setminus\{i\}} x_j).
\]

Note that rank \(E_0 = \text{dim} \ Y_0 + 1 \). Clearly, the conditions of 1-2 of Definition \ref{def:1} hold. Part 3 of Lemma \ref{lem:8} implies the conditions 3-4 of Definition \ref{def:5}. Theorem \ref{thm:6} yields that a generic section of \(\tilde{L}_i \circ \delta(T) \) does not have zero. Thus, \(T \) does not have a singular vector tuple satisfying (1.2) with \(\lambda_i = 0 \). Hence a generic tensor \(T \in \mathbb{C}^m \) does not have a zero singular value.

Clearly, a generic \(T \in \mathbb{R}^m \) has exactly \(c(m) \) simple complex-valued singular value tuples. Only some of those can be realized as points in \(\Pi_\mathbb{R}(m) \). \hfill \square

We first observe that Theorem \ref{thm:1} agrees with the standard theory of singular values for \(m \times n \) real matrices. Namely, a generic \(A \in \mathbb{R}^{m \times n} \) has exactly \(\min(m,n) \) nonzero singular values which are all positive and pairwise distinct. The corresponding singular vector pairs are simple.

We now point out a matrix proof of Theorem \ref{thm:1} for \(d = 2 \). Let \(O(m) \subset \mathbb{C}^{m \times m} \) be the variety of \(m \times m \) orthogonal matrices and \(D_{m,n} \subset \mathbb{C}^{m \times n} \) the linear subspace of all diagonal matrices. Consider the trilinear polynomial map \(F : O(m_1) \times D_{m_1,m_2} \times O(m_2) \to \mathbb{C}^{m_1 \times m_2} \) given by \((U_1, D, U_2) \mapsto U_1DU_2^T \). Singular value decomposition yields that any \(A \in \mathbb{R}^{m_1 \times m_2} \) is of the form \(U_1DU_2^T \), where \(U_1, U_2 \) are real orthogonal and \(D \) is a nonnegative diagonal matrix. Hence \(F(O(m_1) \times D_{m_1,m_2} \times O(m_2)) = \mathbb{R}^{m_1 \times m_2} \). Therefore the image of \(F \) is dense in \(\mathbb{C}^{m_1 \times m_2} \). Hence a generic \(A \in \mathbb{C}^{m_1 \times m_2} \) is of the form \(U_1^*DU_2 \). Furthermore, we can assume that \(D = \text{diag}(\lambda_1, \ldots, \lambda_l), l = \min(m_1,m_2) \), where the diagonal entries are nonzero and pairwise distinct. Assume that \(x_i, y_i \) are the \(i-th \) columns of \(U_1, U_2 \) respectively for \(i = 1, \ldots, l \). Then \(([x_i],[y_i])\) is a simple singular value tuple corresponding to \(\lambda_i \) for \(i = 1, \ldots, l \).

We list for the convenience of the reader a few values \(c(m_1, \ldots, m_2) \). First

\[
c_{m_1, \ldots, m_2} = \frac{1}{d!} \Pi_{j \in [d]} (\frac{t_j^2}{t_j} - t_j^2).
\]

Indeed, \(\frac{t_j^2}{t_j} - t_j^2 = \sum_{j \in [d]} t_j \). Therefore \(\Pi_{j \in [d]} \frac{t_j^2}{t_j} - t_j^2 = (\sum_{j \in [d]} t_j)^d \). Clearly, the coefficient of \(t_1 \ldots t_d \) in this polynomial is \(d! \).

Second, we list next page the first values in the case \(d = 3 \). From this table one sees that \(c(m_1, m_2, m_3) \) stabilizes for \(m_3 \geq m_1 + m_2 - 1 \), the case when equality holds is called the boundary format case in the theory of hyperdeterminants \(\{9\} \).

It is the case where a “diagonal” naturally occurs, like in the following figure:

In \(d = 2 \) case, boundary format means square.

4 Partially symmetric singular value tuples

For an integer \(m \geq 2 \) let \(m^{\times d} := (m, \ldots, m) \). Then \(T \in \mathbb{F}^{m^{\times d}} \) is called \(d \)-cube, or simply a cube tensor. Denote by \(S^d(\mathbb{F}^m) \subset \mathbb{F}^{m^{\times d}} \) the subspace of symmetric tensors. For \(T \in S^d(\mathbb{F}^m) \) it is natural to consider a singular value tuple \((1.2)\) where \(x_1 = \ldots = x_d = x \) \[16\] formula (7) with \(p = 2 \). This is equivalent to the system

\[
T \times \otimes^{d-1} x = \lambda x, \quad x \neq 0.
\]
d_1, d_2, d_3	$c(d_1, d_2, d_3)$
2, 2, 2	6
2, 2, n	8 $n \geq 3$
2, 3, 3	15
2, 3, n	18 $n \geq 4$
2, 4, 4	28
2, 4, n	32 $n \geq 5$
2, 5, 5	45
2, 5, n	50 $n \geq 6$
2, $m, m+1$	$2m^2$
3, 3, 3	37
3, 3, 4	55
3, 3, n	61 $n \geq 5$
3, 4, 4	104
3, 4, 5	138
3, 4, n	148 $n \geq 6$
3, 5, 5	225
3, 5, 6	280
3, 5, n	295 $n \geq 7$
3, $m, m+2$	$\frac{8}{3}m^3 - 2m^2 + \frac{7}{3}m$
4, 4, 4	240
4, 4, 5	380
4, 4, 6	460
4, 4, n	480 $n \geq 7$
4, 5, 5	725
4, 5, 6	1030
4, 5, 7	1185
4, 5, n	1220 $n \geq 8$
5, 5, 5	1621
5, 5, 6	2671
5, 5, 7	3461
5, 5, 8	3811
5, 5, n	3881 $n \geq 9$

Table 1: Values of $c(d_1, d_2, d_3)$
Here $\otimes^{d-1} x := x \otimes \ldots \otimes x$. Furthermore, the contraction in (4.1) is on the last $d-1$ indices. The equation (4.1) makes sense for any cube tensor $T \in \mathbb{C}^{m \times d}$ [16, 19, 22]. For $d = 2$ x is an eigenvector of the square matrix T. Hence for a d-cube tensor ($d \geq 3$) x is referred to as a nonlinear eigenvalue of T. Abusing slightly our notation we call $([x], \ldots , [x]) \in \Pi(m^{\times d})$ a symmetric singular value tuple of T. (Note that if $T \in S^d(\mathbb{C}^m)$ then $([x], \ldots , [x])$ is a proper symmetric singular value tuple of T.)

Let $s_{d-1}(T) = [t'_{i_1}, \ldots , i_d]$ be the symmetrization of a d-cube $T = [t_{i_1}, \ldots , i_d]$ with respect to the last $d-1$ indices

$$t'_{i_1, \ldots , i_d} = \frac{1}{p(i_2, \ldots , i_d)} \sum_{\{j_2, \ldots , j_d\} = \{i_2, \ldots , i_d\}} t_{i_1, j_2, \ldots , j_d}. \tag{4.2}$$

Here $p(i_2, \ldots , i_d)$ is the number of multisets $\{j_2, \ldots , j_d\}$ which are equal to $\{i_2, \ldots , i_d\}$. (Note that for $d = 2$ $s_1(T) = T$.) It is straightforward to see that

$$T \times \otimes^{d-1} y = s_{d-1}(T) \otimes^{d-1} y \text{ for all } y. \tag{4.3}$$

Hence in (4.1) we can assume that T is symmetric with respect to the last $d-1$ indices.

As for singular value tuples we view the eigenvectors of T as elements of $\mathbb{P}(\mathbb{C}^m)$. It was shown by Cartwright and Sturmfels [3] that a generic $T \in \mathbb{C}^{m \times d}$ has exactly $\frac{(d-1)m-1}{d-2}$ distinct eigenvectors. (This formula was conjectured in [19].)

The aim of this section is to consider “partially symmetric singular vectors” and their numbers for a generic tensor. This number will interpolate our formula $c(m)$ for the number of singular value tuples for a generic $T \in \mathbb{C}^m$ and the number of eigenvalues of generic $T \in \mathbb{C}^{m \times d}$ given in [3].

Let $d = \omega_1 + \ldots + \omega_p$ be a partition of d. So each ω_i is a positive integer. Let $\omega_0 = m'_0 = 0$, $\omega = (\omega_1, \ldots , \omega_p)$ and denote by $m(\omega)$ the d-tuple

$$m(\omega) = (m'_1, \ldots , m'_1, \ldots , m'_p, \ldots , m'_p) = (m_1, \ldots , m_d). \tag{4.4}$$

Denote by $S^\omega(\mathbb{F}) \subset \mathbb{F}^{m(\omega)}$ the subspace of tensors which are partially symmetric with respect to the partition ω. That is the entries of $T = [t_{i_1, \ldots , i_d}] \in S^\omega(\mathbb{F})$ are invariant, if we permute indices in the k-th group of indices $[\sum_{j=0}^{k-1} \omega_j] \setminus [\sum_{j=0}^{k-1} \omega_j]$ for $k \in [p]$. Note that $S^\omega(\mathbb{F}) = S^d(\mathbb{F}^m)$ for $p = 1$ and $S^\omega(\mathbb{F}) = \mathbb{F}^m$ for $p = d$. We call $\omega = (1, \ldots , 1)$, i.e. $p = d$, the trivial partition.
For simplicity of notation we let $S^\omega := S^\omega(\mathbb{C})$. Assume that $\mathcal{T} \in S^\omega$. Consider a singular vector tuple $([x_1],\ldots,[x_d])$ satisfying (1.2) and ω-symmetric conditions

$$x_j = z_k \text{ for } j \in \left[\sum_{i=1}^{k} \omega_i m'_i \right] \setminus \left[\sum_{i=0}^{k-1} \omega_i m'_i \right], \quad k \in [p].$$

(4.5)

We rewrite (1.2) for an ω-symmetric singular vector tuple $([x_1],\ldots,[x_d])$ as follows. Define

$$\otimes_{t \in [p]} (\otimes^m - \delta_{k} z_t) := \otimes_{j \in [d] \setminus \{1 + \sum_{i=0}^{k-1} \omega_i m'_i\}} x_j, \quad k \in [p].$$

(4.6)

Hence our equations for an ω-symmetric singular value tuple for $\mathcal{T} \in S^\omega$ is given by

$$\mathcal{T} \times \otimes_{t \in [p]} (\otimes^m - \delta_{k} z_t) = \lambda_k z_k, \quad k \in [p].$$

(4.7)

In view of the definition of $\otimes_{t \in [p]} (\otimes^m - \delta_{k} z_t)$ we agree that the contraction on the left-hand side of (4.7) is done on all indices except the index $1 + \sum_{i=0}^{k-1} \omega_i m'_i$. As for the d-cube tensor the system (4.7) makes sense for any $\mathcal{T} \in \mathbb{C}^m(\omega)$.

Let $m' := (m'_1,\ldots,m'_p)$. We call $([z_1],\ldots,[z_p]) \in \Pi(m')$ satisfying (4.7) ω-symmetric singular value tuple of $\mathcal{T} \in \mathbb{C}^m(\omega)$. We say that $([z_1],\ldots,[z_p])$ corresponds to a zero (nonzero) singular value if $\prod_{i=1}^{p} \lambda_i = 0 (\neq 0)$.

The aim of this section to generalize Theorem 1 to tensors in S^ω.

Theorem 12. Let $d \geq 3$ be an integer and assume that $\omega = (\omega_1,\ldots,\omega_p)$ is a partition of d. Let $m(\omega)$ be defined by (4.6). Denote by $S^\omega \subset \mathbb{C}^m(\omega)$ the subspace of tensors partially symmetric with respect to ω. Let $c(m',\omega)$ be the coefficient of the monomial $\prod_{i=1}^{p} t_i^{m'_i-1}$ in the polynomial

$$\prod_{i \in [p]} \frac{t_i^{m'_i} - t_i^{m'_i}}{t_i - t_i}, \quad t_i = (\omega_i - 1)t_i + \sum_{j \in [p] \setminus \{i\}} \omega_j t_j, \quad i \in [p].$$

(4.8)

A generic $\mathcal{T} \in S^\omega$ has exactly $c(m',\omega)$ simple ω-symmetric singular vector tuples which correspond to nonzero singular values. A generic $\mathcal{T} \in S^\omega$ does not have a zero singular value. In particular, a generic real-valued tensor $\mathcal{T} \in S^\omega$ has at most $c(m',\omega)$ real singular value tuples and all of them are simple.

Proof. The proof of this theorem is analogous to the proof of Theorem 1 so we point out briefly the needed modifications. Let $H(m'_i), Q(m'_i)$ and $F(m'_i)$ be the vector bundles defined in (2.4). Let π_i be the projection of $\Pi(m')$ on the component $\mathbb{P}(\mathbb{C}^m(\omega))$. Then $\pi_i^* H(m'_i), \pi_i^* Q(m'_i), \pi_i^* F(m'_i)$ are the pullbacks of the vector bundles $H(m'_i), Q(m'_i), F(m'_i)$ to $\Pi(m')$ respectively. Clearly $c(\pi_i^* H(m'_i)) = 1 + t_i$ and moreover $c(\otimes^k \pi_i^* H(m'_i)) = 1 + kt_i$, where $t_i^{m'_i} = 0$.

We next observe that we can view $\Pi(m')$ as a submanifold of $\Pi(m(\omega))$ by using the imbedding

$$\eta : \Pi(m') \to \Pi(m(\omega)), \quad \eta(([z_1],\ldots,[z_p])) = ([x_1],\ldots,[x_d]),$$

(4.9)

where we assume the relations (4.5). Let $\tilde{R}(i,m')$ and $\tilde{R}(i,m')'$ be the pullback of $R(j,m)$ and $R(j,m)'$ respectively, where $j = 1 + \sum_{k=1}^{p} \omega_k m'_k$. (See (2.6).) Then

$$\tilde{R}(i,m') := \text{Hom}(\eta^* \check{T}(m'_i), \pi_i^* Q(m'_i)), \quad \tilde{R}(i,m')' := \text{Hom}(\eta^* \check{T}(m'_i), \pi_i^* F(m'_i)),$$

$$\tilde{R}(m') := \oplus_{i \in [p]} \tilde{R}(i,m'), \quad \tilde{R}(m')' := (\oplus_{j \in [p] \setminus \{i\}} \tilde{R}(i,m')) \oplus \tilde{R}(i,m')'.$$

(4.10)
Note that
\[
\begin{align*}
\text{rank } \tilde{R}(i, \mathbf{m}') &= \text{rank } \tilde{R}(i, \mathbf{m}')' - 1 = m_i' - 1, \\
\text{rank } \tilde{R}(\mathbf{m}') &= \text{rank } \tilde{R}(\mathbf{m}')' - 1 = \dim \Pi(\mathbf{m}').
\end{align*}
\]

As in the proof of Lemma 3, we deduce that the top Chern class of \(\tilde{R}(i, \mathbf{m}')\) is given by the polynomial
\[
\sum_{j=0}^{m_i'-1} \left(\sum_{k \in [p]} (\omega_k - \delta_{ki})t_k \right)^j t_i^{m_i'-1-j}, \quad i \in [p],
\]
(4.11)
where we assume the relations \(t_i^{m_i'} = 0\) for \(i \in [p]\). Use (2.2) to deduce that the top Chern number of \(\tilde{R}(\mathbf{m}')\) is \(c(\mathbf{m}', \omega)\).

From the results of [3], in particular Lemma 9, we deduce that there exists a monomorphism \(L_i : \mathbb{C}^{m(\omega)} \to H^0(\tilde{R}(i, \mathbf{m}'))\). Furthermore \(L_i(\mathbb{C}^{m(\omega)})\) generates \(\tilde{R}(i, \mathbf{m}')\). Let \(L = (L_1, \ldots, L_p) : \oplus_{i \in [p]} \mathbb{C}^{m(\omega)} \to H^0(\tilde{R}(\mathbf{m}'))\). Then \(L(\oplus_{i \in [p]} \mathbb{C}^{m(\omega)})\) generates \(H^0(\tilde{R}(\mathbf{m}'))\). Let \(\delta : \mathbb{C}^{m(\omega)} \oplus \mathbb{C}^{m(\omega)}\) be the diagonal map. We claim that \(L \circ \delta\) almost generates \(\tilde{H}^0(\tilde{R}(\mathbf{m}'))\).

First, we consider a special case of Lemma 8 for \(T \in \mathcal{S}^\omega\). Here we assume that \(x_1, \ldots, x_d\) and \(y_1, \ldots, y_d\) satisfy the conditions induced by the equalities (4.5):
\[
\begin{align*}
x_1 &= \ldots = x_{\omega_1} = (z_1), \ldots, x_{d-\omega_p+1} = \ldots = x_d = (z_p), \\
y_1 &= \ldots = y_{\omega_1} = (w_1), \ldots, y_{d-\omega_p+1} = \ldots = y_d = (w_p).
\end{align*}
\]

Then all parts of the lemma needed to be stated in terms of \(z_1, \ldots, z_p\) and \(w_1, \ldots, w_p\).

Second, we restate Lemma 9 for \(T \in \mathcal{S}^\omega\) and \(x_1, \ldots, x_d\) and \(y_1, \ldots, y_d\) of the above form. Third, let \(Y_\alpha \subseteq \Pi(\mathbf{m}')\), where \(\alpha\) are nonempty subsets of \([p]\), be the varieties defined in the proof of Theorem 1. The proof of Theorem 1 yields that \(L \circ \delta(\mathcal{S}^\omega)\) almost generates \(\tilde{R}(\mathbf{m}')\) with respect to the varieties \(Y_\alpha\). Theorem 6 yields that a generic \(\mathcal{T} \in \mathcal{S}^\omega\) has exactly \(c(\mathbf{m}', \omega)\) simple \(\omega\)-symmetric singular vector tuples. The proof that a generic \(\mathcal{T} \in \mathcal{S}^\omega\) does not have a zero singular value is analogous to the proof given in Theorem 1.

Remark 13 In the special case \(\omega = (1, 1, \ldots, 1)\) we have \(c(\mathbf{m}', \omega) = c(\mathbf{m}')\) and Theorem 12 reduces to Theorem 1. In the case \(\omega = (d)\) we have \(c(\mathbf{m}, \omega) = \frac{(d-1)^{m-1}}{d-2}\) and Theorem 13 reduces to the results in [3]. This last reduction was performed already in [20].

Lemma 14 In the case \(\omega = (d-1, 1)\) we have
\[
c((m_1, m_2), (d-1, 1)) = \sum_{i=0}^{m_1-1} \sum_{j=0}^{m_2-1} \binom{i}{j} (d-2)^j (d-1)^{i-j}.
\]
If \(m_1 \leq m_2\) we have \(c((m_1, m_2), (d-1, 1)) = \frac{(2d-3)^{m_1-1}}{2d-4}\)
If \(m_1 = m_2 + 1\) we have \(c((m_1, m_2), (d-1, 1)) = \frac{(2d-3)^{m_1-1}}{2d-4} - (d-1)^{m_1-1}\)
We now compare our formulas for the $3 \times 3 \times 3$ partially symmetric tensors. Consider first the case $c(3, (3)) = \frac{2^3-1}{2-1} = 7$, i.e. the Cartwright-Sturmfels formula. That is, a generic symmetric $3 \times 3 \times 3$ tensor has 7 singular vector triples of the form $([x], [x], [x])$. Second, consider a generic $(2, 1)$ partially symmetric tensor. The previous lemma gives $c((3, 3), (2, 1)) = 13$. I.e. a generic partially symmetric tensor has 13 the singular vector triples of the form $([x], [x], [y])$. Third, consider a generic $3 \times 3 \times 3$ tensor. In this case our formula gives $c(3, 3, 3) = c((3, 3, 3), (1, 1, 1)) = 37$ singular vector triples of the form $[x], [y], [z]$.

Let us assume that we have a generic symmetric $3 \times 3 \times 3$ tensor. Let us estimate the total number of singular vector triples it may have, assuming that it behaves as a generic partially symmetric tensor and a nonsymmetric one. First it has 7 singular value tuples of the form $([x], [x], [x])$. Third, consider a generic $3 \times 3 \times 3$ tensor. In this case case our formula gives $c(3, 3, 3) = c((3, 3, 3), (1, 1, 1)) = 37$ singular vector triples of the form $[x], [y], [z]$. Third, consider a generic $3 \times 3 \times 3$ tensor. In this case case our formula gives $c(3, 3, 3) = c((3, 3, 3), (1, 1, 1)) = 37$ singular vector triples of the form $[x], [y], [z]$.

Let us assume that we have a generic symmetric $3 \times 3 \times 3$ tensor. Let us estimate the total number of singular vector triples it may have, assuming that it behaves as a generic partially symmetric tensor and a nonsymmetric one. First it has 7 singular value tuples of the form $([x], [x], [x])$. Second, it has $3 \cdot 6 = 18$ singular vector triples of the form $[x], [y], [z]$ where exactly two out of these three classes are the same. Third, it has 12 singular vector triples of the form $[x], [y], [z]$ where all three classes are distinct. Note also that the number 37 was computed, in a similar setting, in [18].

The above discussed situation indeed occurs for the diagonal tensor $T = [\delta_{i_1i_2}\delta_{i_2i_3}] \in \mathbb{C}^{3 \times 3 \times 3}$.

$(x_0, x_1, x_2)(y_0, y_1, y_2)(z_0, z_1, z_2)$	singular value
$(1, 0, 0)(1, 0, 0)(1, 0, 0)$	1
$(0, 1, 0)(0, 1, 0)(0, 1, 0)$	1
$(0, 0, 1)(0, 0, 1)(0, 0, 1)$	1
$(1, 1, 0)(1, 1, 0)(1, 1, 0)$	1
$(1, 0, 1)(1, 0, 1)(1, 0, 1)$	1
$(0, 1, 1)(0, 1, 1)(0, 1, 1)$	1
$(1, 1, 1)(1, 1, 1)(1, 1, 1)$	1
$(1, 1, 0)(1, -1, 0)(1, -1, 0)$	1, 3 permutations
$(1, 0, 1)(1, 0, -1)(1, 0, -1)$	1, 3 permutations
$(0, 1, 1)(0, 1, -1)(0, 1, -1)$	1, 3 permutations
$(1, 1, 1)(1, 1, -1)(1, 1, -1)$	1, 3 permutations
$(1, 1, 1)(-1, 1, 1)(-1, 1, 1)$	1, 3 permutations
$(1, 0, 0)(0, 1, 0)(0, 1, 0)$	0, 6 permutations
$(1, 1, -1)(1, -1, 1)(-1, 1, 1)$	-1, 6 permutations

Table 2: List of singular value tuples of a $3 \times 3 \times 3$ diagonal tensor.

In this list the first 7 singular vectors have equal entries and they are the one counted by the formula in [3]. The first $7 + 6 = 13$ singular vectors have the form $([x], [x], [y])$. Any singular vector of this form gives 3 singular vectors $([x], [x], [y]), ([x], [y], [x]), ([y], [x], [x])$. Note that six singular vectors have zero singular value, but this does not correspond to the generic case, indeed for a generic tensor all 37 singular vectors correspond to nonzero singular value.

In the case of $4 \times 4 \times 4$ tensors, the diagonal tensor has 156 singular vectors corresponding to nonzero singular value and infinitely many singular vectors corresponding to zero singular vectors. These infinitely many singular vectors fill exactly
A homogeneous pencil eigenvalue problem

For \(\mathbf{x} = (x_1, \ldots, x_m)^{\top} \in \mathbb{C}^m \) denote \(\mathbf{x}^{(d-1)} := (x_1^{d-1}, \ldots, x_m^{d-1})^{\top} \). Let \(\mathcal{T} \in \mathbb{C}^{m \times d} \). The eigenvalues of \(\mathcal{T} \) satisfying (4.1) are called the \(\mathbf{E} \)-eigenvalues in \([9, \text{Chapter 9}] \). Denote by \(Z(\mathbf{E}) \) the zero set of some multidimensional resultant \([9, \text{Chapter 13}] \). It can be obtained by elimination of variables. Let us denote by \(\text{res}_{m,d} \in \mathbb{C}[\mathbb{C}^{m \times d}] \) the multidimensional resultant corresponding to the system (5.3), which is a homogeneous polynomial in the entries of \(\mathcal{S} \) of degree \(\mu(m, d) = m(d-1)^{m-1} \), see formula (2.12) of \([9, \text{Chapter 9}] \). Denote by \(Z(\text{res}_{m,d}) \) the zero set of the polynomial \(\text{res}_{m,d} \). Then \(\text{res}_{m,d} \) is an irreducible polynomial such that the system (5.3) has a nonzero solution if and only if \(\text{res}_{m,d}(\mathcal{S}) = 0 \). Furthermore, for a generic point \(\mathcal{S} \in Z(\text{res}_{m,d}) \) the system (5.3) has exactly one simple solution in \(\mathbb{P}(\mathbb{C}^m) \). The eigenvalue problem (5.2) consists of two steps. First find all \(\lambda \) satisfying \(\text{res}_{m,d}(\lambda \mathcal{S} - \mathcal{T}) = 0 \). Clearly \(\text{res}_{m,d}(\lambda \mathcal{S} - \mathcal{T}) \) is a polynomial in \(\lambda \) of degree at most \(\mu(m, d) \). (It is possible that this polynomial in \(\lambda \) is a zero polynomial. This is the case where there exists a nontrivial solution to the system \(\mathcal{S} \otimes^{d-1} \mathbf{x} = \mathcal{T} \otimes^{d-1} \mathbf{x} = 0 \).) After then one needs to find the nonzero solutions of the system \((\lambda \mathcal{S} - \mathcal{T}) \otimes^{d-1} \mathbf{x} = 0 \), which are viewed as eigenvectors in \(\mathbb{P}(\mathbb{C}^m) \). Assume that \(\mathcal{S} \) is nonsingular. Then \(\text{res}_{m,d}(\lambda \mathcal{S} - \mathcal{T}) = \text{res}_{m,d}(\mathcal{S}) \lambda^{\mu(m,d)} + \) polynomial in \(\lambda \) of degree at most \(\mu(m, d) - 1 \). We show below a result known to the experts, that for generic \(\mathcal{S}, \mathcal{T} \) each eigenvalue \(\lambda \) the system \((\lambda \mathcal{S} - \mathcal{T}) \otimes^{d-1} \mathbf{x} = 0 \) has exactly one corresponding eigenvector in \(\mathbb{P}(\mathbb{C}^m) \). We outline a short proof of the following known theorem, which basically uses only the existence of the resultant for the system (5.3). For an identity tensor \(\mathcal{S} \), i.e., (5.1), see [21].

Theorem 15 Let \(\mathcal{S}, \mathcal{T} \in \mathbb{C}^{m \times d} \) and assume that \(\mathcal{S} \) is nonsingular. Then \(\text{res}_{m,d}(\lambda \mathcal{S} - \mathcal{T}) \) is a polynomial in \(\lambda \) of degree \(m(d-1)^{m-1} \). For a generic \(\mathcal{S} \) and \(\mathcal{T} \) to each eigenvalue \(\lambda \) of the pencil (5.1) corresponds one eigenvector in \(\mathbb{P}(\mathbb{C}^m) \).
Proof. Consider the space \(\mathcal{P}(\mathbb{C}^2) \times \mathcal{P}(\mathbb{C}^{m \times d} \times \mathbb{C}^{m \times d}) \times \mathcal{P}(\mathbb{C}^m) \) with the local coordinates \((u, v), (S, T), x)\). Consider the system of \(m \)-equation homogenous in
\((u, v), (S, T), x)\) given by

\[
(uS - vT) \times \otimes^{d-1} x = 0. \tag{5.4}
\]

The existence of the multidimensional resultant is equivalent to the assumption that the above variety \(V(m, d) \) is an irreducible variety of dimension \(2m^d - 1 \) in \(\mathcal{P}(\mathbb{C}^2) \times \mathcal{P}(\mathbb{C}^{m \times d} \times \mathbb{C}^{m \times d}) \times \mathcal{P}(\mathbb{C}^m) \). So it is enough to find a good point \((S_0, T_0)\) such that it has exactly \(\mu(m, d) = m(d - 1)^{m-1} \) smooth point \(((u_i, v_i), (S_0, T_0), x_i) \) in \(V(m, d) \).

We call \(T = [t_{i_1, \ldots, i_d}] \in \mathbb{C}^{m \times d} \) an almost diagonal tensor if \(t_{i_1, \ldots, i_d} = 0 \) whenever \(i_p \neq i_q \) for some \(1 \leq p < q \leq d \). An almost diagonal tensor \(T \) is represented by a matrix \(B = [b_{ij}] \in \mathbb{C}^{m \times m} \) where \(t_{i,j,\ldots,j} = b_{ij} \). Assume now that \(S_0, T_0 \) are almost diagonal tensors represented by the matrices \(A, B \) respectively. Then

\[
S_0 \times \otimes^{d-1} x = Ax^{(d-1)}, \quad T_0 \times \otimes^{d-1} x = Bx^{(d-1)}. \tag{5.5}
\]

Assume furthermore that \(A = I \) and \(B \) is a cyclic permutation matrix, i.e. \(B(x_1, \ldots, x_m)^\top = (x_2, \ldots, x_m, x_1)^\top \). Then \(B \) has \(m \) distinct eigenvalues, the \(m \)th roots of unity. \(x \) is an eigenvector of \((5.5) \) if and only if \(x^{(d-1)} \) is an eigenvector of \(B \). Fix an eigenvalue of \(B \). One can fix \(x_1 = 1 \). Then we have exactly \((d - 1)^{m-1} \) eigenvectors in \(\mathcal{P}(\mathbb{C}^m) \) corresponding to each eigenvalue \(\lambda \) of \(B \). So altogether we have \(m(d - 1)^{m-1} \) different eigenvectors. It is left to show that each point \(((u_i, v_i), (S_0, T_0), x_i)\) is a simple point of \(V(m, d) \). For that we need to show that the Jacobian of the system \((5.4) \) at each point has rank \(m \), the maximal possible rank, at \(((u_i, v_i), (S_0, T_0), x_i)\). For that we assume that \(u_i = \lambda_i, v_i = 1, x_1 = 1 \). This easily follows from the fact that each eigenvalue of \(B \) is a simple eigenvalue. Hence the projection of \(V(m, d) \) on \(\mathcal{P}(\mathbb{C}^{m \times d} \times \mathbb{C}^{m \times d}) \) is \(m(d - 1)^{m-1} \) valued.

Note that in this example each eigenvalue \(\lambda \) of \((5.5) \) is of multiplicity \((d - 1)^{m-1} \). It is left to show that when we consider the pairs \(S_0, T \) where \(T \) varies in the neighborhood of \(T_0 \) we obtain \(m(d - 1)^{m-1} \) different eigenvalues. Since the Jacobian of the system \((5.5) \) has rank \(m \) at each eigenvalue \(\lambda_i = \frac{u_i}{v_i} \) and the corresponding eigenvector \(x_i \), one has a simple variation formula for each \(\delta \lambda_i \) using the implicit function theorem. Fix \(x_1 = 1 \) and denote \(\mathbf{F}(x, \lambda, T) = (F_1, \ldots, F_m) := (\lambda S_0 - T) \times \otimes^{d-1} x \). Thus we have the system of \(m \) equations \(\mathbf{F}(x, \lambda, T) = 0 \) in \(m \) variables \(x_2, \ldots, x_m, \lambda \). We let \(T = T_0 + tT_0 \) and we want to find the first term of \(\lambda_1(t) = \lambda_i + \alpha_i t + O(t^2) \). We also assume that \(x_i(t) = x_i + ty_i + O(t^2) \), where \(y_i = (0, y_{2,i}, \ldots, y_{m,i})^\top \). Let

\[
z_i = \sum_{j \in [d-1]} \otimes^{j-1} x_i \otimes y_i \otimes \otimes^{d-1-j} x_i.
\]

The first order computations yields the equation

\[
T_1 \times \otimes^{d-1} x_i + T_0 \times z_i = \alpha_i S_0 \times \otimes^{d-1} x_i + \lambda_i S \times z_i. \tag{5.6}
\]

Let \(w = (w_1, \ldots, w_m)^\top \) be the left eigenvector of \(B \) corresponding to \(\lambda_i \), i.e. \(w^\top B = \lambda_i w^\top \) normalized by the condition \(w^\top (S_0 \times \otimes^{d-1} x_i) = (S_0 \times \otimes^{d-1} x_i) \times w = 1 \). Contracting both sides of \((5.6) \) with the vector \(w \) we obtain

\[
\alpha_i = T_1 \times (w \otimes (\otimes^{d-1} x_i)). \tag{5.7}
\]
It is straightforward to show that $\alpha_1, \ldots, \alpha_{m(d-1)^{m-1}}$ are pairwise distinct for a generic T_1.

The proof of Theorem 15 yields the following.

Corollary 16 Let $T \in \mathbb{C}^{m \times d}$ be a generic tensor. Then the homogeneous eigenvalue problem (5.1) has exactly $m(d-1)^{m-1}$ distinct eigenvectors in $\mathbb{P}(\mathbb{C}^m)$, which correspond to distinct eigenvalues.

We close this section with an heuristic argument which shows that a generic pencil $(S, T) \in \mathbb{P}(\mathbb{C}^{m \times d} \times \mathbb{C}^{m \times d})$ has $m(m, d) = m(d-1)^{m-1}$ distinct eigenvalues in $\mathbb{P}(\mathbb{C}^m)$. Let $S \in \mathbb{C}^{m \times d}$ be nonsingular Then S induces a linear map \hat{S} from the line bundle $\otimes^{d-1}T(m)$ to the trivial bundle \mathbb{C}^m over $\mathbb{P}(\mathbb{C}^m)$ by $\otimes^{d-1}x \mapsto S \times \otimes^{d-1}x$. Then we have an exact sequence of line bundles

$$0 \rightarrow \otimes^{d-1}T(m) \rightarrow \mathbb{C}^m \rightarrow Q_{m,d} \rightarrow 0$$

where $Q_{m,d} = \mathbb{C}^m/(\hat{S}(\otimes^{d-1}T(m)))$. The Chern polynomial of $Q_{m,d}$ is $1 + \sum_{\ell=1}^{m-1} (d-1)^\ell t^\ell$. A similar computation for finding the number of eigenvectors of (5.2) shows that the number of eigenvalues of (5.1) is the coefficient of t_i^{m-1} in the polynomial $\frac{\ell^m - t^m}{t_i - t_i^m}$. Here $\ell_1 = \ell_1 = (d-1)t_1$. Hence the coefficient of t_i^{m-1} is $\frac{(d-1)^m - (d-1)^m}{(d-1)-(d-1)}$. The calculus interpretation of this formula is the derivative of t^m at $t = d-1$, which gives the value of the coefficient $m(d-1)^{m-1}$.

6 On uniqueness of a best approximation

Let $\langle \cdot, \cdot \rangle, \| \cdot \|$ be the standard inner product and the corresponding Euclidean norm on \mathbb{R}^n. For a subspace $U \subseteq \mathbb{R}^n$ we denote by U^\perp the subspace of all orthogonal vectors to U in \mathbb{R}^n. Let $C \subseteq \mathbb{R}^n$ be a given nonempty closed set. (in the Euclidean topology, see §1). For each $x \in \mathbb{R}^n$ we consider the function

$$\text{dist}(x, C) := \inf \{ \|x - y\|, \ y \in C \} \ (\geq 0). \quad (6.1)$$

We first recall that this infimum is achieved for at least one point $y^* \in C$, which is called a best approximation of x. Observe that $\|x - y\| \geq \|y\| - \|x\|$. Hence, in the infimum (6.1) it is enough to restrict the values of y to the the compact set $C(x) := \{ y \in C, \|y\| \leq \|x\| + \text{dist}(x, C) \}$. Since $\|x-y\|$ is a continuous function on $C(x)$, it achieves its minimum at some point y^*, which will be sometimes denoted by $y(x)$.

The following result is probably well known and we bring its short proof for completeness.

Lemma 17 Let $C \subseteq \mathbb{R}^n$ be a given closed set. Let $U \subseteq \mathbb{R}^n$ be a subspace with $\dim U \in [n]$ and such that U is not contained in C. Let $d(x), x \in U$ be the restriction of $\text{dist}(\cdot, C)$ to U.

1. The function $\text{dist}(\cdot, C)$ is Lipschitz with constant constant 1:

$$|\text{dist}(x, C) - \text{dist}(z, C)| \leq \|x - z\| \text{ for all } x, z \in \mathbb{R}^n. \quad (6.2)$$
2. The function $d(\cdot)$ is differentiable a.e. in U.

3. Let $x \in U \setminus C$ and assume that $d(\cdot)$ is differentiable at x. Denote the differential as $\partial d(x)$, which is viewed as a linear functional on U. Let $y^* \in C$ be a best approximation to x. Then

$$\partial d(x)(u) = \langle u, \frac{1}{\text{dist}(x, C)}(x - y^*) \rangle \text{ for each } u \in U. \quad (6.3)$$

If z^* is another best approximation to x then $z^* - y^* \in U^\perp$.

Proof. Assuming that $\text{dist}(x, C) = \|x - y^*\|$ we deduce the following inequality.

$$\text{dist}(z, C) \leq \|z - y^*\| \text{ for each } z \in \mathbb{R}^n. \quad (6.4)$$

Suppose next that $\text{dist}(z, C) = \|z - y\|, y \in C$. Hence

$$-\|x - z\| \leq \|x - y^*\| - \|z - y^*\| \leq \text{dist}(x, C) - \text{dist}(z, C) \leq \|x - y\| - \|z - y\| \leq \|x - z\|.$$

This proves (6.2) and part 1. Clearly, $d(\cdot)$ is also Lipschitz on U. Rademacher's theorem yields that $d(\cdot)$ is differentiable a.e., which proves part 2. To prove part 3 we fix $u \in U$. Then

$$\text{dist}(x + tu, C) = \text{dist}(x, C) + t\partial d(x)(u) + O(t),$$

(6.4) yields the inequality

$$\text{dist}(x + tu, C) \leq \|x + tu - y^*\| = \|x - y^*\| + t\langle u, \frac{1}{\text{dist}(x, C)}(x - y^*) \rangle + O(t^2).$$

Compare this inequality with the previous equality to deduce that

$$t\partial d(x)(u) \leq t\langle u, \frac{1}{\text{dist}(x, C)}(x - y^*) \rangle$$

for all $t \in \mathbb{R}$. This implies (6.3). If z^* another best approximation to x then (6.3) yields that $z^* - y^* \in U^\perp$. \qed

Corollary 18 Let $C \subseteq \mathbb{R}^n$ be a given closed set.

1. The function $\text{dist}(x, C)$ is differentiable a.e. in \mathbb{R}^n.

2. Let $x \in \mathbb{R}^n \setminus C$ and assume that $\text{dist}(\cdot, C)$ is differentiable at x. Then x has a unique best approximation $y(x) \in C$. Furthermore

$$\partial \text{dist}(x, C)(u) = \langle u, \frac{1}{\text{dist}(x, C)}(x - y(x)) \rangle \text{ for each } u \in \mathbb{R}^n. \quad (6.5)$$

In particular, almost all $x \in \mathbb{R}^n$ have a unique best approximation $y(x) \in C$.

Proof. Choose $U = \mathbb{R}^n$, so $d(\cdot) = \text{dist}(\cdot, C)$ is differentiable a.e. by part 2 of Lemma [17]. This establishes part 1 of our lemma. Assume that y^* and z^* are best approximations of x. Then $z^* - y^* \in (\mathbb{R}^n)^\perp$ by part 3 of Lemma [17]. As $(\mathbb{R}^n)^\perp = \{0\}$ we obtain that $z^* = y^*$. Furthermore (6.5) holds. \qed
7 Best rank one approximations of \(d\)-mode tensors

On \(\mathbb{C}^m\) define an inner product and its corresponding Hilbert-Schmidt norm \(\langle T, S \rangle := T \times S, \|T\| = \sqrt{\langle T, T \rangle}\). We first present some known results of best rank one approximations of real tensors. In this section we assume that \(\mathbb{F} = \mathbb{R}\) and \(\mathcal{T} \in \mathbb{R}^m\). Let \(S^{m-1} \subset \mathbb{R}^m\) be the \(m-1\)-dimensional sphere \(\|x\| = 1\). Denote by \(S(m)\) the \(d\)-product of the spheres \(S^{m_1-1} \times \ldots \times S^{m_d-1}\). Let \((x_1, \ldots, x_d) \in S(m)\) and associate with \((x_1, \ldots, x_d)\) the \(d\) one dimensional subspaces \(U_i = \text{span}(x_i), i \in [d]\). Note that

\[
\| \otimes_{i \in [d]} x_i \| = \prod_{i \in [d]} \| x_i \| = 1.
\]

The projection \(P_{\otimes_{i \in [d]} U_i}(\mathcal{T})\) of \(\mathcal{T}\) onto the one dimensional subspace \(U := \otimes_{i \in [d]} U_i \subset \otimes_{i \in [d]} \mathbb{R}^{m_i}\), is given by

\[
f_T(x_1, \ldots, x_d) \otimes_{i \in [d]} x_i, f_T(x_1, \ldots, x_d) := \langle T, \otimes_{i \in [d]} x_i \rangle, (x_1, \ldots, x_d) \in S(m). \quad (7.1)
\]

Let \(P_{\otimes_{i \in [d]} U_i}^\perp(\mathcal{T})\) be the orthogonal projection of \(\mathcal{T}\) onto the orthogonal complement of \(\otimes_{i \in [d]} U_i\). The Pythagorean identity yields

\[
\| \mathcal{T} \|^2 = \| P_{\otimes_{i \in [d]} U_i}(\mathcal{T}) \|^2 + \| P_{\otimes_{i \in [d]} U_i}^\perp(\mathcal{T}) \|^2. \quad (7.2)
\]

With this notation, a best rank one approximation of \(\mathcal{T}\) from \(S(m)\) is given by

\[
\min_{(x_1, \ldots, x_d) \in S(m)} \min_{a \in \mathbb{R}} \| \mathcal{T} - a \otimes_{i \in [d]} x_i \|.
\]

Observing that

\[
\min_{a \in \mathbb{R}} \| \mathcal{T} - a \otimes_{i \in [d]} x_i \| = \| \mathcal{T} - P_{\otimes_{i \in [d]} U_i}(\mathcal{T}) \| = \| P_{\otimes_{i \in [d]} U_i}^\perp(\mathcal{T}) \|,
\]

it follows that a best rank one approximation is obtained by the minimization of \(\| P_{\otimes_{i \in [d]} U_i}^\perp(\mathcal{T}) \|\). In view of (7.2) we deduce that best rank one approximation is obtained by the maximization of \(\| P_{\otimes_{i \in [d]} U_i}(\mathcal{T}) \|\) and finally, using (7.1), it follows that a best rank one approximation is given by

\[
\sigma_1(\mathcal{T}) := \max_{(x_1, \ldots, x_d) \in S(m)} f_T(x_1, \ldots, x_d). \quad (7.3)
\]

As in the matrix case \(\sigma_1(\mathcal{T})\) is called in [13] the spectral norm. Furthermore it is shown in [13] that the computation of \(\sigma_1(\mathcal{T})\) in general is NP-hard for \(d > 2\).

We will make use of the following result of [16], where we present the proof for completeness.

Lemma 19 For \(\mathcal{T} \in \mathbb{R}^m\), the critical points of \(f|_{S(m)}\), defined in (7.1), are singular value tuples satisfying

\[
\mathcal{T} \times (\otimes_{j \in [d] \setminus \{i\}} x_j) = \lambda x_i \text{ for all } i \in [d], (x_1, \ldots, x_d) \in S(m). \quad (7.4)
\]

Proof. We need to find the critical points of \(\langle \mathcal{T}, \otimes_{j \in [d]} x_j \rangle\) where \((x_1, \ldots, x_d) \in S(m)\). Using Lagrange multipliers we consider the auxiliary function

\[
g(x_1, \ldots, x_d) := \langle \mathcal{T}, \otimes_{j \in [d]} x_j \rangle - \sum_{j \in [d]} \lambda_j x_j^\top x_j.
\]
The critical points of g then satisfy
\[\mathcal{T} \times (\otimes_{j \in [d]\setminus\{i\}} x_j) = \lambda_i x_i, \quad i \in [d], \]
and hence \(\langle \mathcal{T}, \otimes_{j \in [d]} x_j \rangle = \lambda_i x_i^\top x_i = \lambda_i \) for all \(i \in [d] \), which implies (7.4). \(\Box \)

Observe next that \((x_1, \ldots, x_d)\) satisfies (7.4) if and only if the vectors \((\pm x_1, \ldots, \pm x_d)\) satisfy (7.4). In particular, we could choose the signs in (7.4) and hence \(\langle T, \otimes_{j \in [d]} x_j \rangle = \lambda_i x_i^\top x_i = \lambda_i \) for all \(i \in [d] \). Note that to each nonnegative singular value there are at least 2 singular vector tuples of the form \((\pm x_1, \ldots, \pm x_d)\). So it is more natural to view the singular vector tuples \((x_1, \ldots, x_d)\) as points \(([x_1], \ldots, [x_d])\) in the real projective Segre product \(\Pi_{R}(m)\). Furthermore, the projection of \(\mathcal{T}\) on the one dimensional subspace spanned by \(\otimes_{i \in [d]} (\pm x_i)\), where \((x_1, \ldots, x_d) \in S(m)\), is equal to one vector \((\mathcal{T} \times \otimes_{i \in [d]} x_i) \otimes_{i \in [d]} x_i\).

Theorem 20 For almost all \(\mathcal{T} \in \mathbb{R}^m\) a best rank one approximation is unique.

Proof. Let \[C(m) := \{ \mathcal{T} \in \mathbb{R}^m, \mathcal{T} = \otimes_{j \in [d]} x_j, x_j \in \mathbb{R}^{m_j}, j \in [d] \}. \tag{7.5} \]
\(C(m)\) is a compact set consisting of rank one tensors and the zero tensor. Corollary 18 yields that for almost all \(\mathcal{T}\) a best rank one approximation is unique. \(\Box \)

Note that Theorem 20 implies part 1 of Theorem 2. Let \(\omega = (\omega_1, \ldots, \omega_p)\) be a partition of \(d\). For \(\mathcal{T} \in S^\omega(\mathbb{R})\) it is natural to consider a best rank one approximation to \(\mathcal{T}\) of the form \(\pm \prod_{i \in [p]} \otimes^{\omega_i} x_i\) where \(x_i \in \mathbb{R}^{m_i'}, i \in [p]\). We call such an approximation a best \(\omega\)-symmetric rank one approximation. (The factor \(\pm\) is needed only if each \(\omega_i\) is even.) As in the case \(\mathcal{T} \in \mathbb{R}^m\) a best \(\omega\)-symmetric rank one approximation of \(\mathcal{T} \in S^\omega(\mathbb{R})\) is a solution to the following maximum problem.

\[\max_{(x_1, \ldots, x_p) \in S(m')} |\mathcal{T} \times \otimes_{i \in [p]} \otimes^{\omega_i} x_i|. \tag{7.6} \]
As before, the critical points of the functions \(\pm \mathcal{T} \times \otimes_{i \in [p]} \otimes^{\omega_i} x_i\) on \(S(m')\) satisfy
\[\mathcal{T} \times \otimes_{j \in [p]} \otimes^{\omega_j - \delta_{ji}} x_j = \lambda x_i, \quad i \in [p], \quad (x_1, \ldots, x_p) \in S(m'). \tag{7.7} \]
A best \(\omega\)-symmetric rank one approximation corresponds to all \(\lambda\) for which \(|\lambda|\) has a maximal possible value. The arguments of the proof of Theorem 20 imply the following result.

Proposition 21 For almost all \(\mathcal{T} \in S^\omega(\mathbb{R})\) a best rank one \(\omega\)-symmetric approximation is unique.

Assume that \(\otimes_{j \in [d]} y_j \in \mathbb{R}^{m(\omega)}\) is a best rank one approximation to a tensor \(\mathcal{T} \in S^\omega(\mathbb{R})\). It is not obvious a priori that \(\otimes_{j \in [d]} y_j\) is \(\omega\)-symmetric. However, the following result is obvious.

\(\otimes_{j \in [d]} y_{\sigma(j)}\) is best rank one approximation of \(\mathcal{T} \in S^\omega(\mathbb{R})\) \(\tag{7.8}\)
for each permutation \(\sigma : [d] \to [d]\) which preserves \(S^\omega(\mathbb{R})\).
Lemma 22 For a.a. $\mathcal{T} \in S^m(\mathbb{R})$ there exists a unique rank one tensor $\otimes_{j \in [d]} y_j \in \mathbb{R}^{m(\omega)}$ such that all best rank one approximations of \mathcal{T} are of the form \((7.8)\).

To prove this lemma we need an auxiliary lemma.

Lemma 23 Let $\otimes_{j \in [d]} x_j, \otimes_{j \in [d]} y_j \in \mathbb{R}^{n \times d}$. Assume that

$$\langle \otimes_{j \in [d]} x_j, \otimes_{j \in [d]} y_j \rangle = \langle \otimes_{j \in [d]} y_j, \otimes_{j \in [d]} u \rangle \forall u \in \mathbb{R}^n. \quad (7.9)$$

Then there exists a permutation $\sigma : [d] \to [d]$ such that $\otimes_{j \in [d]} y_j = \otimes_{j \in [d]} x_{\sigma(j)}$.

Proof. Note that the condition \((7.9)\) is equivalent to the equality

$$\prod_{j \in [d]} u^\top x_j = \prod_{j \in [d]} u^\top y_j \forall u \in \mathbb{R}^n. \quad (7.10)$$

If $\otimes_{j \in [d]} x_j = 0$ then $\prod_{j \in [d]} u^\top y_j = 0$ for all u. Hence $y_j = 0$ for some j, so $\otimes_{j \in [d]} y_j = \otimes_{j \in [d]} x_j = 0$. So we assume that $\otimes_{j \in [d]} x_j, \otimes_{j \in [d]} y_j$ are both nonzero.

We now prove the lemma by induction. For $d = 1$ the lemma is trivial. Assume that the lemma holds for $d = k$. Let $d = k + 1$. Assume that $u \in \text{span}(x_{k+1}) \perp$. Then \((7.10)\) yields that $\prod_{j \in [d]} u^\top y_j = 0$. Hence $\text{span}(x_{k+1}) \perp \subset \bigcup_{j \in [k+1]} \text{span}(y_j) \perp$. Therefore there exists $j \in [k+1]$ such that $\text{span}(x_{k+1}) \perp = \text{span}(y_j) \perp$. So $y_j = t x_{k+1}$ for some $t \in \mathbb{R} \setminus \{0\}$. Hence there exist $z_1, \ldots, z_{d+1} \in \mathbb{R}^n$ and a permutation $\sigma' : [k+1] \to [k+1]$ such that $\otimes_{j \in [k+1]} z_{\sigma'(j)} = \otimes_{j \in [k+1]} y_j$ where $z_{k+1} = x_{k+1}$. Thus $\otimes_{j \in [k+1]} x_j$ and $\otimes_{j \in [k+1]} z_j$ satisfy \((7.10)\). Therefore $\otimes_{j \in [k]} x_j$ and $\otimes_{j \in [k]} z_j$ satisfy \((7.10)\). Use the induction hypothesis to deduce the lemma.

Proof of Lemma 22 We use part 3 of Lemma \[17\] as follows. Let $\mathbb{R}^n = \mathbb{R}^{m(\omega)}$ and assume that $C = C(\mathbf{m}(\omega))$ as defined in \((7.5)\). We let $U := S^m(\mathbb{R})$. Assume that $d(\cdot)$ is differentiable at $\mathcal{T} \in S^m(\mathbb{R}) \setminus C$. Suppose that $\otimes_{j \in [d]} y_j, \otimes_{j \in [d]} z_j$ are best rank one approximations of \mathcal{T}. So

$$\sigma_1(\mathcal{T}) = \| \otimes_{j \in [d]} y_j \| = \prod_{j \in [d]} \| y_j \| = \| \otimes_{j \in [d]} z_j \| = \prod_{j \in [d]} \| z_j \| > 0.$$

Without loss of generality we may assume that

$$\| y_j \| = \| z_j \| = \sigma_1(\mathcal{T})^{\frac{1}{2}} \forall j \in [d]. \quad (7.11)$$

Lemma \[17\] yields that

$$\langle \otimes_{i \in [p]} \otimes^{\omega_i} u_i, \otimes_{j \in [d]} y_j - \otimes_{j \in [d]} z_j \rangle = 0 \forall u_i \in \mathbb{R}^{m_i} \quad i \in [p].$$

The above equality is equivalent to

$$\prod_{i \in [p]} \prod_{j_i \in [\omega_i]} u_i^\top y_{\alpha_i, j_i} = \prod_{i \in [p]} \prod_{j_i \in [\omega_i]} u_i^\top z_{\alpha_i, j_i}, \forall u_i \in \mathbb{R}^{m_i}, i \in [p], \quad (7.12)$$

where $\omega_0 = 0$ and $\alpha_i = \sum_{k=0}^{i-1} \omega_k$ for all $i \in [p]$.

Suppose first that $p = 1$, i.e. $S^m(\mathbb{R})$ is the set of all symmetric tensors in $\mathbb{R}^{m_1 \times \omega_1}$. (Note that $d = \omega_1$,) Then Lemma 23 and \((7.12)\) yields that $\otimes_{j \in [d]} z_j = \otimes_{j \in [d]} y_{\sigma(j)}$ for some permutation $\sigma : [d] \to [d]$. This proves our lemma for $p = 1$. 28
Assume now that $p > 1$. Fix $k \in [p]$. Fix $u_i \in [p] \setminus \{k\}$. Let
\[
s_k := \prod_{i \in [p] \setminus \{k\}} \prod_{j \in [\omega_j]} u_i^T y_{\omega_{ij} + l_j}, \quad t_k := \prod_{i \in [p] \setminus \{k\}} \prod_{j \in [\omega_j]} u_i^T y_{\omega_{ij} + l_j}.
\]
Assume that $s_k \neq 0$. Then the two rank one tensors $s_k \otimes l_k \in [\omega_k] y_{\omega_{ij} + l_j}, t_k \otimes l_k \in [\omega_k] z_{\omega_{ij} + l_k} \in \mathbb{R}^{m_k \times k}$ satisfy the assumptions of Lemma 23. Hence there exists a permutation $\sigma_k : [\omega_k] \to [\omega_k]$ such that $t_k \otimes l_k \in [\omega_k] y_{\omega_{ij} + \sigma_k(l_k)}$. In view of (7.11) we deduce the equality $\otimes_{l_k \in [\omega_k]} z_{\omega_{ij} + l_k} = s_k \otimes l_k \in [\omega_k] y_{\omega_{ij} + \sigma_k(l_k)}$. Hence there exists $\omega : [d] \to [d]$ which leaves invariant each set $[\omega_{ij+1}]$ for $j \in [p-1]$ such that $\otimes_{j \in [d]} z_j = \otimes_{j \in [d]} y_{\omega(j)}$. As $\otimes_{j \in [d]} z_j$ and $\otimes_{j \in [d]} y_j$ are best rank one approximations to ω we deduce that $\otimes_{j \in [d]} z_j = \otimes_{j \in [d]} y_{\omega(j)}$. \qed

A recent result of the first author claims that each $T \in \mathbb{S}^{\omega}(\mathbb{R})$ has a best rank one approximation which is ω-symmetric [1]. For symmetric tensors this theorem is equivalent to the old theorem of Banach [1]. (See [1] Theorem 4.1 for another proof of Banach’s theorem.) We now give a refined version of [1] Theorem 1], whose proof uses of the results in [7].

Theorem 24 Each $T \in \mathbb{S}^{\omega}(\mathbb{R})$ has a best rank one approximation which is ω-symmetric. Furthermore, for almost all $T \in \mathbb{S}^{\omega}(\mathbb{R})$ a best rank one approximation is unique and ω-symmetric.

Proof. The claim that each $T \in \mathbb{S}^{\omega}(\mathbb{R})$ has a best rank one approximation which is ω-symmetric is proved in [7]. It is left to show that for a.a. $T \in \mathbb{S}^{\omega}(\mathbb{R})$ a best rank one approximation is unique and ω-symmetric. Lemma 22 claims that for a.a. $T \in \mathbb{S}^{\omega}(\mathbb{R})$ there exists a unique rank one tensor $\otimes_{j \in [d]} y_j \in \mathbb{R}^{m(\omega)}$ such that all best rank one approximations of T are of the form (7.8). The first part of the theorem yields that one of these best rank approximations $\otimes_{j \in [d]} y_j \in \mathbb{R}^{m(\omega)}$ is ω-symmetric. Hence all the tensors of the form (7.8) are equal to $\otimes_{j \in [d]} y_j \in \mathbb{R}^{m(\omega)}$. \qed

Note that part 2 of Theorem 2 follows from Theorem 24.

8 Best rank-r approximation

In the first part of this section we assume that F is any field. Let $m = (m_1, \ldots, m_d) \in \mathbb{N}^d$, $M = \prod_{i \in [d]} m_i$, $M_i = M/m_i$ and $m_i = (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_d) \in \mathbb{N}^{d-1}$ for $i \in [d]$. Assume that $T = [t_{i_1, \ldots, i_d}] \in \mathbb{F}^{m}$. Denote by $T_{i} \in \mathbb{F}^{m_i \times M_i}$ the unfolded matrix of the tensor T in the mode i. That is, let $T_{i,j} \in \mathbb{F}^{m_k}$ be the following $d - 1$ mode tensor. Its entries are $[t_{i_1, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_d}]$ for $i_p \in [m_p], p \in [d] \setminus \{k\}$. So $j \in [m_k]$. Then the row j of T_i is a tensor $T_{j,i}$ viewed as a vector in \mathbb{F}^{m_i}. Then rank$_i T$ is the rank of the matrix T_i. T_i can be seen as the matrix of the contraction map $\otimes_{j \in [d] \setminus \{i\}} (F^\vee)^{m_j} \to \mathbb{F}^{m_i}$ for $i \in [d]$. Clearly,
\begin{equation}
\text{rank}_i T \leq \min(m_i, M_i) \quad i \in [d].
\end{equation}

Carlini and Kleppe characterized the possible r_i occurring as in the following Theorem.
Theorem 25 ([2], Theorem 7) Suppose that \(r_i \in [m_i] \) for \(i \in [d] \). Then there exists \(T \in \mathbb{F}^m \) such that \(\text{rank}_i T = r_i \) for \(i \in [d] \) if and only if
\[
\begin{equation}
\sum_{j} r_j \leq \prod_{j} r_i \quad \text{for each } i \in [d].
\end{equation}
\]

We show a related argument working over any infinite field. For each \(i \) let \(f_i \) be one minor of \(T_i \) of order \(\min(m_i, M_i) \). Let \(f = \prod_{i \in [d]} f_i \), which is a nonzero polynomial in the entries of \(T = [t_{i_1, \ldots, i_d}] \). Let \(V(\mathbf{m}) \subset \mathbb{F}^m \) be the zero set of \(f \).

Theorem 26 Let \(\mathbf{m} \in \mathbb{N}^d \) and assume that \(V(\mathbf{m}) \subset \mathbb{F}^m \) is defined as above. Then for each \(T \in \mathbb{F}^m \setminus V(\mathbf{m}) \) the following equality holds.
\[
\text{rank}_i T = \min(m_i, M_i) \quad \text{for } i \in [d].
\]
In particular for \(\mathbb{F} \) being a infinite field, a generic tensor \(T \in \mathbb{F}^m \) satisfies (8.3).

Proof. Suppose first that \(m_i \leq M_i \). We claim that the \(m_i \) tensors \(\mathcal{T}_{1,i}, \ldots, \mathcal{T}_{m_i,i} \) are linearly independent. Suppose not. Then any \(m_i \times m_i \) minor of \(T_i \) is zero. This contradicts the assumption that \(\mathcal{T} \in \mathbb{F}^m \setminus V(\mathbf{m}) \). Hence \(\text{rank}_i \mathcal{T} = m_i \). Suppose that \(m_i > M_i \). Let \(\mathcal{T}_{1,i}, \ldots, \mathcal{T}_{m_i,i} \) be the \(M_i \) tensors which contribute to the minor \(f_i \). Since \(f_i(T) \neq 0 \) we deduce that \(\mathcal{T}_{k_{1,i}}, \ldots, \mathcal{T}_{k_{M_i,i}} \) are linearly independent. Hence \(\text{rank}_i \mathcal{T} = M_i \) for each \(i \in [d] \). Since \(f \) is a nonzero polynomial, for an infinite field \(\mathbb{F} \) \(V(\mathbf{m}) \) is a proper closed subset of \(\mathbb{F}^m \) in the Zariski topology. Hence (8.3) holds for a generic tensor.

Over infinite fields, Theorem 25 can be proved as a consequence of Theorem 26. Indeed, let \(\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{N}^d \) and assume that (8.2) holds. Choose a generic \(\mathcal{T}' = [t'_{i_1, \ldots, i_d}] \in \mathbb{F}^r \). So \(\text{rank}_i \mathcal{T}' = r_i, i \in [d] \). Extend \(\mathcal{T}' \) to \(\mathcal{T} = [t_{i_1, \ldots, i_d}] \in \mathbb{F}^m \) by adding zero entries. i.e. \(t_{j_1, \ldots, j_d} = t'_{j_1, \ldots, j_d} \) for \(j_i \in [r_i], i \in [d] \), and all other entries of \(\mathcal{T} \) are zero. Then \(\text{rank}_i \mathcal{T} = r_i, i \in [d] \).

In what follows we assume that \(\mathbb{F} = \mathbb{R} \). Observe that the set of tensors having \(\text{rank}-(r_1, \ldots, r_d) \) contains in the closure exactly all tensors of rank-\((a_1, \ldots, a_d) \) with \(a_i \leq r_i \). This closure is an algebraic variety, defined as the zero set of all the minors of order \(r_i + 1 \) of \(T_i \), for \(i \in [d] \). We denote it by \(C_{\mathbf{r}} \). Note that having rank \((1, \ldots, 1) \) is equivalent to have rank \(1 \).

We see that to a set \(\mathcal{T} \) it is one-tensor \(C_{\mathbf{r}} \), which is a closed set in \(\mathbb{R}^m \). The best \(\mathbf{r} \)-rank approximation of \(\mathcal{T} \) is the closest tensor in \(C_{\mathbf{r}} \) to \(\mathcal{T} \) in the Hilbert-Schmidt norm [6]. Corollary 18 yields.

Theorem 27 Let \(\mathbf{m} = (m_1, \ldots, m_d), \mathbf{r} = (r_1, \ldots, r_d) \) where \(r_i \in [m_i] \) for \(i \in [d] \) and they satisfy (8.2). Then almost all \(\mathcal{T} \in \mathbb{R}^m \) have a unique best \(\mathbf{r} \)-rank approximation.

Let \(\omega = (\omega_1, \ldots, \omega_p) \) be a partition of \(d \), \(\mathbf{m}' = (m'_1, \ldots, m'_p) \) and assume that \(\mathbf{m}(\omega) \) is defined by (4.4). Assume that \(\mathbf{r}' = (r'_1, \ldots, r'_p) \), where \(r'_i \in [m'_i] \) for \(i \in [p] \). Let \(\mathbf{r}(\omega) = (r'_{1, \ldots, 1}, \ldots, r'_{p, \ldots, p}) \).

Let \(C'_{\mathbf{r}} = C_{\mathbf{r}(\omega)} \cap S^{\omega} \). Clearly, \(C'_{\mathbf{r}} \) is a closed set, consisting of \(\omega \)-symmetric tensors in \(\mathbb{R}^m(\omega) \) having rank \(\mathbf{r}(\omega) \).

Let \(\mathcal{T} \in S^{\omega} \). Then a best \(\omega \) symmetric \(\mathbf{r}(\omega) \)-rank approximation of \(\mathcal{T} \) is the closest tensor in \(C'_{\mathbf{r}} \) to \(\mathcal{T} \). Corollary 18 yields.
Theorem 28 Let $\omega = (\omega_1, \ldots, \omega_p)$ be a partition of d. Assume that $m' = (m'_1, \ldots, m'_p)$, $r' = (r'_1, \ldots, r'_p)$, $r'_i \in [m'_i]$, $i \in [p]$ and that $m(\omega)$ satisfies (8.2). Then almost all $T \in S^\omega$ have a unique best ω-symmetric $r(\omega)$-rank approximation.

We close our paper with the following problem. Let $T \in S^\omega$. Does T have a best $r(\omega)$-rank approximation which is ω-symmetric? If the answer is yes, is a best $r(\omega)$-rank approximation unique for almost all $T \in S^\omega$? In the previous section we showed that for $r(\omega) = (1, \ldots, 1)$ the answers to these problems are yes.

References

[1] S. Banach, Über homogene Polynome in (L^2), Studia Math. 7 (1938), 36–44.
[2] E. Carlini and J. Kleppe, Ranks derived from multilinear maps, Journal of Pure and Applied Algebra, 215 (2011), 1999–2004.
[3] D. Cartwright, B. Sturmfels, The number of eigenvectors of a tensor, Linear Algebra Appl. 438 (2013), no. 2, 942-952.
[4] B. Chen, S. He, Z. Li, and S. Zhang, Maximum block improvement and polynomial optimization, SIAM J. Optimization, 22 (2012), 87–107.
[5] S. S. Chern, Characteristic classes of Hermitian Manifolds, Annals of Mathematics, 47 (1946), 85-121.
[6] L. de Lathauwer, B. de Moor and J. Vandewalle, On the best rank–1 and rank–(R_1, \ldots, R_N) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl. 21 (2000), 1324–1342.
[7] S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric, Front. Math. China 8 (2013), 19 40.
[8] W. Fulton, Intersection Theory, Springer, Berlin 1984
[9] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants Birkhäuser, Boston, 1994.
[10] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins Univ. Press, Baltimore, Md, USA, 3rd Ed., 1996.
[11] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley 1978.
[12] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, 1977, New York
[13] C.J. Hillar and L.-H. Lim. Most tensor problems are NP hard, Journal of the ACM, 2013, to appear.
[14] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der math. Wissenschaften, vol. 131, Springer, 1966.
[15] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press 1987.
[16] L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach. Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), 1 (2005), 129-132.

[17] L. Lyusternik, and L. Shnirel’man, Topological methods in variational problems and their application to the differential geometry of surfaces. (Russian) Uspehi Matem. Nauk (N.S.) 2, (1947). no. 1(17), 166–217.

[18] C. Massri, Algorithm to find a maximum of a multilinear map over a product of spheres, arXiv:1110.6217

[19] G. Ni, L. Qi, F. Wang, Y. Wang, The degree of the E-characteristic polynomial of an even order tensor, J. Math. Anal. Appl. 329(2007), n.2, 1218-1229

[20] L. Oeding, G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput. 54 (2013), 9-35.

[21] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.

[22] L. Qi: Eigenvalues and invariants of tensors, J. Math. Anal. Appl. 325 (2007) 1363–1377.

[23] X. Zhang, C. Ling, L. Qi. The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, preprint 2012