Impact of COVID-19 on presentation, management, and outcomes of acute care surgery for gallbladder disease and acute appendicitis

Orly Nadell Farber, Giselle I Gomez, Ashley L Titan, Andrea T Fisher, Christopher J Puntasecca, Veronica Toro Arana, Arielle Kempinsky, Clare E Wise, Kovi E Bessoff, Mary T Hawn, James R Korndorffer Jr, Joseph D Forrester, Micaela M Esquivel

ORCID number: Orly Nadell Farber 0000-0002-0615-2641; Giselle I Gomez 0000-0001-6527-8319; Ashley L Titan 0000-0002-5461-9832; Andrea T Fisher 0000-0002-6531-2713; Christopher J Puntasecca 0000-0002-5121-2826; Veronica Toro Arana 0000-0002-8702-6769; Arielle Kempinsky 0000-0003-1938-6698; Clare E Wise 0000-0003-2610-7630; Kovi E Bessoff 0000-0002-5626-4027; Mary T Hawn 0000-0002-1549-941X; James R Korndorffer Jr 0000-0002-0508-6339; Joseph D Forrester 0000-0002-8558-6180; Micaela M Esquivel 0000-0003-1892-6533.

Author contributions: Esquivel MM, Titan AL, Hawn MT, Bessoff KE, Korndorffer JR Jr, and Forrester JD designed the study; Farber ON, Gomez GL, Fisher AT, Puntasecca CJ, Arana VT, Kempinsky A, Wise CE collected and interpreted the data; Gomez GI and Arana VT performed statistical analyses; Farber ON, Gomez GI, Titan AL, Fisher AT, Puntasecca CJ wrote the manuscript; all authors read and approved the final manuscript.

Institutional review board statement: The study was reviewed and approved by the Stanford University Institutional Review Board, No. 56347.

Abstract

BACKGROUND
The ongoing coronavirus disease 2019 (COVID-19) pandemic has significantly disrupted both elective and acute medical care. Data from the early months suggest that acute care patient populations deferred presenting to the emergency department (ED), portending more severe disease at the time of presentation. Additionally, care for this patient population trended towards initial non-operative management.

AIM
To examine the presentation, management, and outcomes of patients who developed gallbladder disease or appendicitis during the pandemic.

METHODS
A retrospective chart review of patients diagnosed with acute cholecystitis, symptomatic cholelithiasis, or appendicitis in two EDs affiliated with a single tertiary academic medical center in Northern California between March and June, 2020 and in the same months of 2019. Patients were selected through a research repository using international classification of diseases (ICD)-9 and ICD-10 codes. Across both years, 313 patients were identified with either type of gallbladder disease, while 361 patients were identified with acute appendicitis. The primary outcome was overall incidence of disease. Secondary outcomes included presentation, management, complications, and 30-d re-presentation rates. Relationships between different variables were explored using Pearson’s r correlation coefficient. Variables were compared using the Welch’s t-Test, Chi-squared tests, and Fisher’s exact test as appropriate.
Farber ON et al. COVID-19’s impact on acute care surgery

RESULTS
Patients with gallbladder disease and appendicitis both had more severe presentations in 2020. With respect to gallbladder disease, more patients in the COVID-19 cohort presented with acute cholecystitis compared to the control cohort [50% (80) vs 35% (53); \(P = 0.01 \)]. Patients also presented with more severe cholecystitis in 2020 as indicated by higher mean Tokyo Criteria Scores [mean (SD) 1.39 (0.56) vs 1.16 (0.44); \(P = 0.02 \)]. With respect to appendicitis, more patients were diagnosed with a perforated appendix at presentation in 2020 [20% (36) vs 16% (29); \(P = 0.02 \)] and a greater percentage were classified as emergent cases using the emergency severity index [63% (112) vs 13% (23); \(P < 0.001 \)]. While a greater percentage of patients were admitted to the hospital for gallbladder disease in 2020 [65% (104) vs 50% (76); \(P = 0.02 \)], no significant differences were observed in hospital admissions for patients with appendicitis. No significant differences were observed in length of hospital stay or operative rate for either group. However, for patients with appendicitis, 30-d re-presentation rates were significantly higher in 2020 [13% (23) vs 4% (8); \(P = 0.01 \)].

CONCLUSION
During the COVID-19 pandemic, patients presented with more severe gallbladder disease and appendicitis. These findings suggest that the pandemic has affected patients with acute surgical conditions.

Key Words: COVID-19; Cholecystitis; Biliary colic; Appendicitis; Acute care surgery

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The coronavirus disease 2019 (COVID-19) pandemic has impacted patients with a wide range of diseases due to stay-at-home orders and concerns surrounding the safety and feasibility of accessing care. This study demonstrates that the pandemic resulted in more severe presentations of gallbladder disease and appendicitis, which may be related to delays prior to presentation. Additionally, the pandemic influenced the management of patients with acute surgical conditions, and affected outcomes for patients with acute appendicitis. These findings can inform policy and public messaging surrounding stay-at-home orders and access to care during future COVID-19 surges.

Citation: Farber ON, Gomez GI, Titan AL, Fisher AT, Puntscecca CJ, Arana VT, Kempinsky A, Wise CE, Bessoff KE, Hawn MT, Korndorffer JR Jr, Forrester JD, Esquivel MM. Impact of COVID-19 on presentation, management, and outcomes of acute care surgery for gallbladder disease and acute appendicitis. World J Gastrointest Surg 2021; 13(8): 859-870

URL: https://www.wjgnet.com/1948-9366/full/v13/i8/859.htm

DOI: https://dx.doi.org/10.4240/wjgs.v13.i8.859

INTRODUCTION
Early-on, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic [coronavirus disease 2019 (COVID-19)] necessitated widespread shifts throughout healthcare systems in an effort to preserve hospital resources, maintain capacity, and minimize infection risk[1,2]. Consequently, surgeons have faced unique changes in their clinical practice. Beginning in March of 2020, hospitals and surgical centers around the world began postponing elective interventions and minimizing operative management of emergency general surgery conditions[3–6]. At the same time, global reports suggest that public fear in conjunction with stay-at-home orders may have discouraged patients with acute conditions from presenting for care in a timely manner, resulting in increased morbidity[7–11]. As of June 2020, an estimated 41% of United States adults reported having delayed or avoided medical consultation, 12% of which was for urgent or emergent medical needs[12].
Gallbladder disease and appendicitis are common surgical conditions diagnosed among patients presenting to the emergency department (ED). Approximately 600,000 cholecystectomies[13] and 280,000 appendectomies[14] are performed in the United States annually. Cholecystectomy is the standard of care for both symptomatic cholelithiasis[15] and acute cholecystitis[16]; however, timing of surgery (e.g., elective vs urgent) is dependent on the patient’s symptoms[15]. With persistent symptoms, the cost of delayed surgical intervention is significant as individuals with untreated cholelithiasis and cholecystitis are at risk of developing recurrent symptoms, severe pain, biliary tract obstruction, and pancreatitis[16,17]. Similarly, appendectomy is the standard of care for uncomplicated appendicitis; however, antibiotic management can be a successful treatment modality[18,19]. Untreated appendicitis can lead to recurrent disease or progress to perforation and peritonitis; therefore, excessive delays in treatment should be avoided[18].

Much remains to be determined about how COVID-19 has impacted the presentation, management, and outcomes of patients with emergency general surgery conditions. We sought to assess the effect of the pandemic on cholecystitis, cholelithiasis, and appendicitis in Santa Clara County, California in the months following the region’s initial stay-at-home order.

MATERIALS AND METHODS

Patient cohort and data collection

This retrospective study was designed to examine patients who presented to our tertiary academic medical center and an affiliate ED utilizing the Stanford Research Repository Database, an IRB-approved resource for aggregating clinical data. This study was conducted after approval by the Stanford University Institutional Review Board, No. 56347.

Patients presenting between March-June, 2019 (control cohort) and March-June, 2020 (COVID-19 cohort) with acute cholecystitis, symptomatic cholelithiasis, or appendicitis were included. Patients were identified using international classification of diseases (ICD)-9 and ICD-10 codes. Patients with incidental findings of cholelithiasis, chronic biliary colic unrelated to the chief complaint at time of presentation, biliary tract malignancy and acute biliary pancreatitis were excluded from the gallbladder cohort. Patients with appendectomy unrelated to appendicitis or malignancy were excluded from the appendicitis cohort.

Records were reviewed by medical students (O.F, G.G, A.F, C.P, A.K, C.W), a surgical trainee (A.T), and an attending surgeon (M.E.) who performed standardized abstraction on eligible patients. Demographic and clinical data were retrospectively reviewed and recorded. Additionally, hospital admission, treatment modalities (operative vs non-operative management), time to intervention, length of hospital stay, surgical findings, complication rates, and 30-d re-presentation rates were recorded. Emergency severity index (ESI), which stratifies patients in the ED into five groups ranging from 1 (most urgent) to 5 (least urgent), and the Tokyo Guidelines severity grade of cholecystitis were calculated for each patient[20,21].

Data analysis

Relationships between different variables were explored using Pearson’s r correlation coefficient. Data were presented as number (%), mean (SD), or median (IQR). Variables were compared using the Welch’s t-test, Chi-squared tests, and Fisher’s exact test as appropriate. Statistical analysis was performed using R version 1.3.1056 and STATA version 15. Statistical significance was defined as P < 0.05.

RESULTS

Study population characteristics

Seven hundred and nine patients were identified overall. Three-hundred and thirteen patients with gallbladder disease (Figure 1) were identified. Of those, 161 patients presented in 2020 [median age (IQR) 49 (35-61) years; 93 (58%) female; 58 (36%) white] while 152 patients presented in 2019 [median (IQR) 46 (33-65) years; 97 (65%) female; 58 (38%) white]. Three-hundred and sixty nine patients with acute appendicitis were identified (Figure 1), with 179 presenting in 2020 [median age (IQR) 32 (15-49); 82 (46) female; 79 (44%) white] and 182 in 2019 [median age (SD) 25 (14-47); 77 (42%) female;
96 (53%) white]. There were no significant differences between the COVID-19 and control cohorts in either disease group with respect to age, gender, race, body mass index, interpreter needs, or Charlson Comorbidity Index (Table 1).

Two patients in the gallbladder group (1%) and zero in the appendicitis group were confirmed positive for SARS-CoV-2 in 2020. One patient with symptomatic cholecystolithiasis was discharged directly from the ED with a COVID-positive test resulting after the time of discharge. The second patient was admitted to the hospital for magnetic resonance cholangiopancreatography to evaluate for possible choledocholithiasis, which was negative. The patient was found to be COVID positive on admission and was transferred to the COVID isolation unit before being discharged home to self-isolate.

Presentation

Cholecystitis and cholelithiasis: The share of patients with acute cholecystitis was greater during the COVID-19 pandemic compared to the year prior (50% vs 35%; \(P = 0.01\)), with the remaining patients presenting with biliary colic (50% vs 65%; \(P = 0.01\)). Although not statistically significant, the duration of symptoms prior to presentation was longer in the COVID-19 cohort than in the control group [mean (SD) 4.2 d (12.7) vs 2.9 d (5.8); \(P = 0.212\)]. Mean Tokyo Criteria Guidelines grade was higher in the COVID-19 cohort with acute cholecystitis compared to the control group [mean (SD) 1.39 (0.562) vs 1.17 (0.437); \(P = 0.02\)] (Table 2). Overall severity of presentation was similar between cohorts. Seven percent of patients in 2020 and 5% in 2019 were classified as emergent presentations by an ESI score of 2 (\(P = 0.60\), Table 3).

Appendicitis: More patients presenting during the COVID-19 pandemic had severe cases of appendicitis as indicated by lower (i.e. more severe) ESI [mean (SD) 2.37 (0.49) vs 2.87 (0.33); \(P < 0.001\)]. There was no significant difference in the Alvarado scores between the two cohorts (mean (SD) 6.50 (1.89) in 2020 vs 6.53 (1.82) in 2019; \(P = 0.63\), Table 4).

Management

Cholecystitis and cholelithiasis: During COVID-19, more patients with gallbladder disease were admitted to the hospital from the ED than in the year prior (65% vs 50%; \(P = 0.02\)) (Table 2). Although not statistically significant, the operative rate was overall higher in the COVID-19 cohort (52% in 2020 vs 40% in 2019; \(P = 0.06\)). However, split by disease group, a greater proportion of patients with symptomatic cholelithiasis underwent surgery (27% in 2020 vs 16% in 2019) while a smaller share of patients with
Table 1 Demographic characteristics of patients, stratified by cohort and time period

	Appendicitis	Gallbladder disease				
	March–June 2019	March–June 2020	P value	March–June 2019	March–June 2020	P value
Demographics	n (%)	n (%)		n (%)	n (%)	
	182 50	179 50	0.33	152 49	161 51	0.99
Age, median (IQR)	24.9 13.8–47.2	32.2 15.1–48.9	0.57	46.7 32.6–65.3	48.8 35.4–61.4	0.33
Gender, n (%)			0.57			0.98
Female	77 42	82 46		97 64	93 58	
Male	105 58	97 54		55 36	68 42	
Race, n (%)			0.35			0.73
White	96 53	79 44		58 32	58 32	
Black or African American	1 1	3 2		7 4	8 4	
Asian	35 19	40 22		29 16	31 17	
Other	50 27	57 32		58 32	64 36	
Interpreter needed, n (%)	25 14	24 13	> 0.99	23 13	28 16	0.68
Spanish	21 84	18 75	0.50	20 87	24 86	0.78
BMI, median (IQR)	24.2 20.2–29.8	23.1 19.9–27.5	0.13	28.8 25.8–32.5	29.5 24.5–33.9	0.73
Charlson Comorbidity score	0.35		0.22			
None: CCI score 0, n (%)	136 75	133 74		80 53	69 43	
Mild: CCI score 1-2, n (%)	31 17	24 13		33 22	46 29	
Moderate: CCI score 3-4, n (%)	12 7	14 8		21 14	26 16	
Severe: CCI ≥ 5, n (%)	3 2	8 4		14 9	19 12	

CCI: Comprehensive complication index; BMI: Body mass index.

Acute cholecystitis were operated on in 2020 (76% in 2020 vs 87% in 2019). Of those managed surgically, laparoscopic cholecystectomy rates were comparable (90% in both years), with conversion to open cholecystectomy in 1% and 3% of cases, respectively ($P = 0.8$) (Table 2). Eight percent of patients in 2020 and 7% in 2019 underwent percutaneous cholecystostomy. There was no significant difference in time from presentation to operative intervention [median (IQR) 19 (13-28) h in 2020 vs 18 (11-28) h in 2019, Table 3].

Appendicitis: Hospital admission rates (97% vs 96%; $P = 0.68$) and operative rates (87% vs 82%; $P = 0.47$) did not differ between 2020 and 2019 (Table 4). There was a positive correlation between surgical intervention and diagnosis of ruptured appendix ($P < 0.05$) (Supplementary Tables 1-3). In those managed surgically, laparoscopic appendectomy rates were similar (96% in 2020 vs 97% in 2019), and only 1% of cases in either cohort required conversion to open appendectomy. Additionally, there was a trend toward increased intraoperative drain placement in 2020 (7% vs 4%; $P = 0.07$). There was no significant difference in the time from ED presentation to operation between the two cohorts [median (IQR) 11 (6-17) h in 2020 vs 11 (6-17) h in 2019; $P = 0.38$] (Table 4).

Outcomes

Cholecystitis and cholelithiasis: Most patients with gallbladder disease who underwent surgery had a pathologic diagnosis of acute cholecystitis, including acute cholecystitis with gallbladder mucocele, acute gangrenous cholecystitis, and acute hemorrhagic cholecystitis (52% in 2020 vs 62% in 2019, Table 2). Of those with a preoperative diagnosis of acute cholecystitis, fewer patients underwent surgery in 2020 (76% vs 85%; $P = 0.12$). The number of patients with gangrenous cholecystitis did not differ between years (17% vs 10%; $P = 0.30$). Median hospital length of stay for surgically-managed patients was similar between groups [median (IQR) 2 (1-3) in 2020...
Table 2 Gallbladder disease presentation, management, and operative findings

Gallbladder disease	March–June 2019	March–June 2020	P value		
Diagnosis, n (%)			0.01		
Symptomatic cholelithiasis	99	65%	81	50%	
Acute cholecystitis	53	35%	80	50%	
Tokyo criteria, mean (STD)	1.17	0.437	1.39	0.562	0.02
Symptom duration prior to ED (d), mean (STD)	2.9	5.8	4.2	12.7	0.21
ED length of stay (h), median (IQR)	5	(3.5–7)	5	(4–7)	0.55
Disposition from ED			0.02		
Discharged, n (%)	52	34%	41	25%	
Discharged with urgent follow up, n (%)	17	11%	15	9%	
Admitted, n (%)	76	50%	104	65%	
Other, n (%)	7	5%	1	1%	
Time from presentation to OR (h), median (IQR)	18	(11–28.2)	19	(13–27.5)	0.42
Pre-op ERCP required, n (%)	22	14%	18	11%	0.40
Antibiotics during admission, n (%)	61	80%	98	94%	0.10
Underwent surgical procedure, n (%)	61	40%	83	52%	0.06
Symptomatic cholelithiasis	16	16%	22	27%	0.098
Acute cholecystitis	45	87%	61	76%	
Operations performed, n (%)			0.75		
Laparoscopic cholecystectomy	55	90%	75	90%	
Laparoscopic converted to open cholecystectomy	2	3%	1	1%	
Percutaneous cholecystostomy	4	7%	7	8%	
Post-op diagnosis, n (%)			0.23		
Acute cholecystitis only	38	62%	43	52%	
Acute cholecystitis with gallbladder mucocoele (Hydrops)	1	2%	2	3%	
Acute gangrenous cholecystitis	6	10%	14	17%	
Acute hemorrhagic cholecystitis	1	2%	0	0%	
Symptomatic cholelithiasis	6	10%	11	13%	
Chronic cholecystitis	1	2%	8	10%	
Other	7	12%	6	7%	
Choledocholithiasis present, n (%)—Biliary colic subgroup	24	16%	28	17%	0.92
Drains left in place post op, n (%)	8	13%	15	18%	0.39
Patients with additional procedures, n (%)	8	13%	7	8%	0.40
Drain placement	1	6%	0	0%	
PICC line	0	0%	1	7%	
Lysis of adhesions	0	0%	2	13%	
Intra-op cholangiogram	1	6%	1	7%	

ED: Emergency departments; ERCP: Endoscopic retrograde cholangiopancreatography; OR: Odds ratios; PICC: Peripherally inserted central catheters.

vs 3 (2-4) in 2019; P = 0.30]. Additionally, rate of discharge on antibiotics (14% in 2020
Table 3 Gallbladder disease postoperative course and complications

Gallbladder disease	March–June 2019	March–June 2020	P value
	Length of stay for surgically managed patients (d), median (IQR)		
	3 (2–4)	2 (1–3)	0.3
	Discharged on antibiotics, n (%)		
	21 14%	29 18%	0.39
	Inpatient complications, n (%)		
	10 16%	11 13%	0.62
	Sepsis		
	0 0%	4 5%	
	Transaminitis		
	1 2%	1 1%	
	Death		
	0 0%	1 1%	> 0.99
	Representation within 30 d, n (%)		
	16 11%	20 12%	0.71
	Postoperative intra-abdominal abscess		
	0 0%	1 1%	
	Cholecystitis		
	3 2%	4 2%	
	Cholelithiasis/Choledocholithiasis		
	1 1%	5 3%	

vs 18% in 2019; P = 0.4) and the rate of 30-d re-presentations to the hospital (12% in 2020 vs 11% in 2019; P = 0.71) did not differ across the years (Table 3). There was one death during admission among the COVID-19 cohort and none in the control group (P > 0.99).

Appendicitis: More patients in the COVID-19 cohort were diagnosed with perforated appendicitis at presentation compared to the year prior (20% vs 16%; P = 0.02). However, there was no significant difference in postoperative diagnosis of ruptured appendicitis between the cohorts (P = 0.68). The rate of ruptured appendicitis was higher in both cohorts when diagnosed postoperatively compared to diagnosis at the time of presentation (23% vs 20% in 2020; P < 0.01 and 23% vs 16% in 2019; P < 0.01). Of those admitted, the length of hospital stay did not differ between cohorts [median (IQR) 2 (2-3) vs 2 (2-3); P > 0.99] (Table 5).

Patients in the COVID-19 cohort were more likely to be discharged on antibiotics (29% vs 19%; P = 0.04). Antibiotic prescription upon discharge was positively correlated with the duration of symptoms prior to ED presentation (P < 0.05) (Supplementary Table 2). Additionally, the 30-d representation rate was significantly higher in 2020 than in 2019 (13% vs 4%; P = 0.01). There was no significant difference between the two cohorts with regards to complication rate or the rate of additional procedures (Tables 4 and 5).

DISCUSSION

In our study, both patients with gallbladder disease and appendicitis presented with more severe cases during the COVID-19 pandemic.

For the gallbladder cohort, more patients were diagnosed with acute cholecystitis and fewer with symptomatic cholelithiasis during the pandemic, although overall rates of gallbladder disease were unchanged between the years. These findings deviate from a recent study that did, in fact, demonstrate an increased incidence of acute calculous cholecystitis during the pandemic, which the authors attributed primarily to greater consumption of fatty foods [22]. Our finding of proportionally fewer cases of symptomatic cholelithiasis suggests that patients may not have visited the ED for less severe or intermittent symptoms. Furthermore, since untreated biliary colic can progress to cholecystitis [22], this may have also accounted for the relative rise in acute cholecystitis cases in 2020.

Patients diagnosed with cholecystitis during the pandemic had more severe disease as evidenced by higher mean Tokyo Criteria scores. Although the difference in symptom duration prior to presentation did not reach statistical significance, it is plausible that delays in presentation partially accounted for the observed severity rise, as symptom duration ≥ 72 h increases the severity score from Tokyo Criteria grade I to grade II [23].
With more patients presenting with acute cholecystitis and of a higher grade, it follows that a greater proportion of patients with gallbladder disease were admitted to the hospital in 2020—even when system-wide efforts aimed to reduce non-COVID-related hospitalizations. Our finding again deviates from a previous report that found that, in New York City, hospitalizations for biliary disease decreased during the peak months of the pandemic period.\cite{24}. Interestingly, this same study notes that after the peak, overall non-COVID-related hospitalization rates rose slightly.

Similar to the gallbladder disease cohort, although rates of presentations for appendicitis remained stable during the pandemic, a greater proportion of patients presented with more severe appendicitis cases in 2020 as demonstrated by higher ED severity scores, higher drain placement rates, and higher antibiotic rates at discharge. Furthermore, more patients in the COVID-19 appendicitis cohort were diagnosed with

Table 4 Appendicitis presentation, management, and operative findings
Appendicitis
March–June 2019
Alvarado score, mean (SD)
Ruptured appendix, n (%) at diagnosis
Ruptured appendix, n (%) post op
Symptom duration prior to ED (d), mean (SD)
ED severity score, mean (SD)
Resuscitation, n (%)
Emergent, n (%)
Non-emergent, n (%)
ED length of stay (h), median (IQR)
Disposition from ED
Discharged, n (%)
Discharged with urgent follow up, n (%)
Admitted, n (%)
Underwent surgical procedure, n (%)
Laparoscopic appendectomy
Laparoscopic converted to open appendectomy
Right hemicolectomy
Percutaneous abscess drain (IR)
Post-op diagnosis, n (%)
Ruptured appendix
Appendix not ruptured
Time from presentation to OR (h), median (IQR)
Drains left in place post op, n (%)
Patients with additional procedures, n (%)
Draining of abscess
Bowel resection
Drain placement
PICC line
NGT placement

ED: Emergency departments; OR: Odds ratios; PICC: Peripherally inserted central catheters; IR: Immunoreactive; NGT: Nasogastric tube.
Table 5 Appendicitis postoperative course and complications

	March–June 2019	March–June 2020	P value
Length of stay (d), median (IQR)	2.00 (2–3)	2.00 (2–3)	> 0.99
Discharged on antibiotics, n (%)	35 (19%)	52 (29%)	0.04
Patients with Inpatient complications, n (%)	5 (3%)	10 (6%)	0.32
Sepsis	0 (0%)	2 (18%)	
Post op ileus	3 (27%)	2 (18%)	
Abscess	3 (27%)	0 (0%)	
Representation within 30 d, n (%)	8 (4%)	23 (13%)	< 0.01

perforated appendicitis at presentation. If appendicitis is untreated, the risk of rupture has been shown to rise over the first 36 h after symptom onset[25]. Although, like in gallbladder disease, the increase in duration of appendicitis symptoms during the pandemic did not reach statistical significance in our study, the higher rate of perforation could support a delay in appendicitis care.

Our findings are consistent with a robust body of literature evidencing increased incidence of complicated appendicitis (e.g., perforation, peri-appendicular abscess, and gangrenous appendicitis) during the COVID-19 pandemic[26-28]. Prior work has found higher rates of perforated appendices in children during the pandemic, as well as longer mean duration of symptoms in those children with perforations[27]. In patients of all ages, one study noted a delay between onset of symptoms and presentation for care in both the elderly and groups at high-risk for COVID-19[28].

With regards to management, non-operative management of appendicitis increased during COVID-19, with no lower failure rates than reported in meta-analyses published prior to the pandemic[29]. In our study however, the only component of management that differed between the two appendicitis cohorts was an increase in antibiotic administration upon discharge. While outcomes also were largely consistent between the years, more patients diagnosed with appendicitis in 2020 re-presented to the ED within 30 d of discharge, suggesting that they experienced a greater number and/or greater severity of complications after their initial presentation.

Understanding such changes in presentation, management, and outcomes of various disease processes during the COVID-19 pandemic is essential for preparing for any future surges or other public health crises. Multiple studies have previously reported delays in medical care attributable to COVID-19, resulting in higher morbidity and mortality[30-33]. Stay-at-home orders and social distancing guidelines, fear of contracting coronavirus, and concerns regarding overburdening the healthcare system are just some of the factors that may have influenced patients’ delayed presentation for care and resulting clinical status[34,35]. Our finding, that patients with gallbladder disease and appendicitis also presented with disease of greater severity, adds to the body of literature raising concerns around the need to limit healthcare utilization during the pandemic, while also ensuring that patients do not avoid care at the cost of developing more advanced disease.

Limitations

Although Santa Clara County experienced the first stay-at-home order in the United States due to the COVID-19 pandemic, the academic center where this study was completed did not have a surge in coronavirus infections during the study period. Case load in the area remained relatively well-controlled, reaching 4600 total cases between the beginning of the pandemic and the end of our study period (Santa Clara County population: 1.928 million)[36]. Although elective procedures were suspended for several months, those presenting with urgent/emergent abdominal complaints were still able to access care. This study is perhaps a more sensitive measure of how fear changed patient behavior during the pandemic rather than of changes in actual healthcare capacity. Outcomes of acute care surgical procedures may be different in an area harder-hit by the pandemic and more affected by provider and healthcare capacity limitations.
CONCLUSION

We found that patients during the COVID-19 pandemic were more likely to present with more advanced gallbladder and appendicitis pathology compared to the same time period in 2019. Management of these acute surgical conditions differed during the pandemic in that, for gallbladder disease, a greater proportion of patients were admitted to the hospital, while for appendicitis, more patients received antibiotics at the time of discharge. Measures of patient outcomes did not meaningfully differ for gallbladder disease, but 30-d re-presentations were increased for patients with acute appendicitis.

It appears that the pandemic has affected patient decision-making, provider management approaches, as well as outcomes of acute care surgical conditions. As the response to the pandemic evolves on a local and national level, future research should continue to evaluate the effect of both patient behavior and guidelines for surgeons on outcomes for acute care surgical conditions. Projects such as the ongoing CholeCOVID study, which is auditing the impact of COVID-19 on patients with cholecystitis, may help guide management of this disease during future surges.

Additionally, attention is needed to strike a balance between discouraging excess healthcare utilization while also encouraging patients to seek care when necessary so as to avoid increased morbidity and mortality, and their accompanying costs to the health care system. Our study, among others, can help inform public messaging around healthcare utilization as the pandemic continues or future crises arise.

ARTICLE HIGHLIGHTS

Research background

Data from the early months of the coronavirus disease 2019 (COVID-19) pandemic suggest that acute care patient populations deferred presenting to the emergency department (ED), portending more severe disease at the time of presentation. Additionally, care for this patient population trended towards initial non-operative management.

Research motivation

The ongoing COVID-19 pandemic has significantly disrupted both elective and acute medical care. Understanding the pandemic’s impact on acute care surgery patients can help inform responses to future COVID-19 surges or other public health crises.

Research objectives

The aim of this study was to examine the presentation, management, and outcomes of patients who developed gallbladder disease or appendicitis during the pandemic.

Research methods

A retrospective chart review of patients diagnosed with acute cholecystitis, symptomatic cholelithiasis, or appendicitis in two EDs affiliated with a single tertiary academic medical center in Northern California between March and June, 2020 and in the same months of 2019.

Research results

Patients with gallbladder disease and appendicitis both had more severe presentations during the pandemic in 2020 as compared to the year prior.

Research conclusions

The pandemic has affected patients with acute surgical conditions.

Research perspectives

These findings can inform policy and public messaging surrounding stay-at-home orders and access to care during future COVID-19 surges.

REFERENCES

1. Cheeyandira A. The effects of COVID-19 pandemic on the provision of urgent surgery: a
perspective from the USA. J Surg Case Rep 2020; 2020: rja109 [PMID: 32346470 DOI: 10.1093/jscr/rja109]

2 Klein MJ, Frangos SG, Krowoski L, Tandon M, Bukar M, Parikh M, Cohen SM, Carter J, Link RN, Uppal A, Pachtur HL, Berry C. Acute Care Surgeons’ Response to the COVID-19 Pandemic: Observations and Strategies From the Epicenter of the American Crisis. Ann Surg 2020; 272: e66-e71 [PMID: 32675500 DOI: 10.1097/SLA.0000000000004028]

3 Coronavirus Disease 2019. Non-Emergent, Elective Medical Services, and Treatment Recommendations. [cited 10 February 2021]. Available from: https://www.medicaid.gov/resources-for-states/disaster-response-toolkit/coronavirus-disease-2019-covid-19/index.html

4 ASCA. State Guidance of Elective Surgeries. [cited 10 February 2021]. Available from: https://www.ascassociation.org/asca/resourcecenter/Latestnewsresourcecenter/covid-19/covid-19-state

5 American College of Surgeons. COVID-19 Guidelines for Triage of Emergency General Surgery Patients. [cited 10 February 2021]. Available from: https://www.facs.org/covid-19/clinical-guidance/elective-case/emergency-surgery

6 COVIDSurg Collaborative. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet 2020; 396: 27-38 [PMID: 32479829 DOI: 10.1016/S0140-6736(20)31855-4]

7 Cozza V, Fransvea P, La Greca A, De Paolis P, Marini P, Zago M, Sganga G; I -ACTSS-COVID19 Collaborative Study Group. 1-ACTSS-COVID-19:the Italian acute care and trauma surgery survey for COVID-19 pandemic outbreak. Updates Surg 2020, 72: 297-304 [PMID: 32583216 DOI: 10.1007/s13304-020-00832-4]

8 Cano-Valderrama O, Morales X, Ferrigni CJ, Martin-Antona E, Turrado V, Garcia A, Cuñarro-López Y, Zarain-Obrador L, Duran-Poveda M, Balreira JM, Torres AJ. Acute Care Surgery during the COVID-19 pandemic in Spain: Changes in volume, causes and complications. A multicentre retrospective cohort study. Int J Surg 2020; 80: 157-161 [PMID: 32679205 DOI: 10.1016/j.ijsu.2020.07.002]

9 Romero J, Valencia S, Guerrero A. Acute Appendicitis During Coronavirus Disease 2019 (COVID-19): Changes in Clinical Presentation and CT Findings. J Am Coll Radiol 2020; 17: 1011-1013 [PMID: 32610104 DOI: 10.1016/j.jacr.2020.06.002]

10 Callan R, Assaf N, Bevan K. Impact of the COVID-19 Pandemic on Acute General Surgical Admissions in a District General Hospital in the United Kingdom: A Retrospective Cohort Study. Surg Res Pract 2020; 2020: 2975089 [PMID: 32832591 DOI: 10.1155/2020/2975089]

11 Chew NW, Ow ZGW, Teo VXY, Heng RRY, Ng CH, Lee CH, Low AF, Chan MY, Yeo TC, Tan HC, Loh PH. The Global Impact of the COVID-19 Pandemic on STERI care: A Systematic Review and Meta-Analysis. Can J Cardiol 2021; S0828-282X(21)00179 [PMID: 33848599 DOI: 10.1016/j.cjca.2021.04.002]

12 Czeisler ME, Marynak K, Clarke KEN, Salah Z, Shakya I, Thierry JM, Ali N, McMillan H, Wiley JF, Weaver MD, Czeisler CA, Rajaratnam SMW, Howard ME. Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns - United States, June 2020. MMWR Mortal Mortal Wkly Rep 2020; 69: 1250-1257 [PMID: 32915166 DOI: 10.15585/mmwr.mm6936a4]

13 Glasgo RE, Cho M, Hutter MM, Mulvihill SJ. The spectrum and cost of complicated gallstone disease in California. Arch Surg 2000; 135: 1021-5; discussion 1025-7 [PMID: 10982504 DOI: 10.1001/archsurg.135.9.1021]

14 Livingston EH, Woodward WA, Sarosi GA, Haley RW. Disconnect between incidence of nonperforated and perforated appendicitis: implications for pathophysiology and management. Ann Surg 2007; 245: 886-892 [PMID: 17522514 DOI: 10.1097/01.sla.0000256391.05233.aa]

15 Hassler KR, Collins JT, Philip K, Jones MW. Laparoscopic Cholecystectomy. 2021 Apr 21. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan– [PMID: 28846328]

16 Ansonali L, Pisano M, Coccoclini F, Peitzman AB, Fingerhut A, Catena F, Agresta F, Allegri A, Bailey I, Balogh ZJ, Bendinelli C, Biffi W, Bonavina L, Borzellino G, Brunetti F, Burlew CC, Campanelli G, Campanile FC, Ceresoli M, Chiara O, Civil I, Coimbra R, De Simone B, Ceresoli M, Augustin G, Gori A, Boermeester M, Sartelli M, Sganga G, Pisano A, De Angelis GL, Tan E, Rizoli S, Balogh ZJ, Bendinelli C, Scalea T, Ivyurgy R, Velmahos G, Andersson R, Kluger Y, Ansaloni L, Catena F. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J Emerg Surg 2020; 15: 27 [PMID: 32295644 DOI: 10.1186/s13304-020-00306-3]
Farber ON et al. COVID-19’s impact on acute care surgery

19 Wagner M, Tubre DJ, Asensio JA. Evolution and Current Trends in the Management of Acute Appendicitis. Surg Clin North Am 2018; 98: 1005-1023 [PMID: 30243444 DOI: 10.1016/j.suc.2018.05.006]

20 Elshove-Bolk J, Mencel F, van Rijswijck BT, Simons MP, van Vugt AB. Validation of the Emergency Severity Index (ESI) in self-referred patients in a European emergency department. Emerg Med J 2007; 24: 170-174 [PMID: 17351220 DOI: 10.1136/emj.2006.038833]

21 Okamoto K, Suzuki K, Takada T, Strasberg SM, Ashburn HJ, Endo I, Iwasita Y, Hibii T, Pitt HA, Umezawa A, Asai K, Han HS, Hwang TL, Mori Y, Yoon YS, Huang WS, Belli G, Dervenis C, Yokoe M, Kiritama S, Ito T, Jagannath P, Garden DJ, Miyata M, Nakamura N, Hiruguchi A, Wakabayashi G, Cherqui D, de Santibañes E, Shiokata S, Noguchi Y, Ukai T, Higuchi R, Wada K, Honda G, Supe AN, Yoshida M, Mayumi T, Gouma DJ, Deziel DJ, Liu KH, Chen MF, Shibao K, Liu KH, Su CH, Chan ACW, Yoon DS, Choi IS, Jonas E, Chen XP, Fan ST, Ker CG, Ginnémez ME, Kitanos S, Inomata M, Hirata K, Inui K, Suntiyanam Y, Yamamoto M. Tokyo Guidelines 2018: flowchart for the management of acute cholecystitis. J Hepatobiliary Pancreat Sci 2018; 25: 55-72 [PMID: 29045062 DOI: 10.1002/jhbp.516]

22 Friedman GD. Natural history of asymptomatic and symptomatic gallstones. Am J Surg 2019; 163: 399-404 [PMID: 8480781 DOI: 10.1016/S0002-9610(05)80930-4]

23 Hirota M, Takada T, Kawarada Y, Nimura Y, Miura F, Hirata K, Mayumi T, Yoshida M, Strasberg S, Pitt H, Gadacz TR, de Santibañes E, Gouma DJ, Solomkin JS, Belghiti J, Neuhaus H, Büchler MW, Fan ST, Ker CG, Padbury RT, Liu KH, Hlivano SC, Belli G, Windsor JA, Dervenis C. Diagnostic criteria and severity assessment of acute cholecystitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg 2007; 14: 74-82 [PMID: 17252300 DOI: 10.1007/s00534-006-1159-v]

24 Bleeker S, Jones SA, Petrelli CM, Admon AJ, Weerahandi H, Francois F, Horwitz LL. Decrease in ST-Segment Elevation Cardiac Catheterization Laboratory Activations in the United States During COVID-19 Pandemic. J Am Coll Cardiol 2020; 75: 2871-2872 [PMID: 32283124 DOI: 10.1016/j.jacc.2020.04.011]

25 Peeters MC, van de Ploeg EH, Vrouwenvelder J, Prins MH, van der Graaf Y, Beex LV. Early outpatient management of acute cholecystitis in patients with COVID-19: results of a multicenter analysis in Germany. Langenbecks Arch Surg 2021; 406: 367-375 [PMID: 33504853 DOI: 10.1007/s00423-021-02909-3]

26 Fish E, Auliffe AH Jr, Rojas M, Bodian C. How time affects the risk of rupture in appendicitis. J Am Coll Surg 2006; 202: 401-406 [PMID: 16500243 DOI: 10.1016/j.jamcollsurg.2005.11.016]

27 Orthopdealus G, Santone E, Izzo F, Tirabassi M, Pérez-Caraballo AM, Corriveau N, Jabbour N. Increasing incidence of complicated appendicitis during COVID-19 pandemic. Am J Surg 2021; 221: 1056-1060 [PMID: 33012500 DOI: 10.1016/j.amjsurg.2020.09.026]

28 Us IF, Tomita SS, Ginsburg HB, Gordon A, Walker D, Kuenzler KA. Increase in Pediatric Perforated Appendicitis in the New York City Metropolitan Region at the Epicenter of the COVID-19 Outbreak. Ann Surg 2021; 273: 410-415 [PMID: 32976285 DOI: 10.1097/SLA.0000000000004426]

29 Williams AG, Oldhafer KJ, Conze S, Thasler WE, von Schallen T, Henning J, Hartung K, Neumann A, Reinsch S, Forbrig T, Lichtwark HC, Pentelis D, Brunner S, Rost W, Lock TF; CAMIN Study Group. Appendicitis during the COVID-19 lockdown: results of a multicenter analysis in Germany. Langenbecks Arch Surg 2021; 406: 375-377 [PMID: 33504853 DOI: 10.1007/s00423-021-02909-3]
