Oxygen isotope effect on superconductivity and magnetism in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$.

R. Khasanov, A. Shengelaya, D. Di Castro, E. Morenzoni

1 Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 Physics Institute of Tbilisi State University, Chavchavadze 3, GE-0128 Tbilisi, Georgia
3 Coherentia CNR-INFM and Dipartimento di Fisica, Universita' di Roma "La Sapienza", P.le A. Moro 2, 00185 Roma, Italy
4 Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
5 Laboratory for Neutron Scattering, Paul Scherrer Institut & ETH Zurich, CH-5232 Villigen PSI, Switzerland
6 Laboratory for Developments and Methods, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
7 Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia and Montenegro

Oxygen isotope (16O/18O) effects (OIE’s) on the superconducting transition (T_c), the spin-glass ordering (T_g), and the antiferromagnetic ordering (T_N) temperatures were studied for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ as a function of Pr content ($0.0 \leq x \leq 1.0$). The OIE on T_c increases with increasing x up to $x \approx 0.55$, where superconductivity disappears. For decreasing x the OIE’s on T_N and T_g increase down to $x \approx 0.7$ where antiferromagnetic order and down to $x \approx 0.3$ where spin-glass behavior vanish, respectively. The OIE’s on T_N and T_g are found to have opposite signs as compared to the OIE on T_c. All OIE’s are suggested to arise from the isotope dependent mobility (kinetic energy) of the charge carriers.

PACS numbers: 74.72.Bk, 74.25.Dw, 76.75.+i

High-temperature cuprate superconductors (HTS’s) exhibit a rich phase diagram as a function of doping (see e.g. Fig. 2). The undoped parent compounds are characterized by a long range 3D antiferromagnetic (AFM) order which is rapidly destroyed when holes are doped into the CuO$_2$ planes. The short-range AFM correlations survive, however, well in the superconducting (SC) region of the phase diagram by forming a spin-glass (SG) state. The issues of the interplay of magnetism and superconductivity in HTS’s and the nature of doping-induced charge carriers within the antiferromagnetic CuO$_2$ planes are still controversial. Understanding these fundamental questions can help to clarify the pairing mechanism of high-temperature superconductivity.

In conventional superconductors, key experimental evidence for a phonon mediated pairing mechanism was provided by measurements of the isotope effect on the transition temperature T_c. In contrast, in HTS’s a number of unconventional oxygen-isotope (16O/18O) effects (OIE’s) on various physical quantities, including among others the transition temperature T_c, the in-plane magnetic penetration depth $\lambda_{ab}(0)$, the pseudogap temperature T^*, and the spin-glass temperature T_g, were observed which cannot be explained by standard BCS theory. For instance, it was found that the OIE’s on T_c and $\lambda_{ab}(0)$ are strongly doping dependent. In particular, close to optimal doping the OIE on T_c is almost zero, while the OIE on $\lambda_{ab}(0)$ is still substantial. With decreasing doping both OIE’s on T_c and $\lambda_{ab}(0)$ increase and, for highly underdoped materials, even exceed the value of the BCS isotope exponent $\alpha_{BCS} = 0.5$. In order to obtain a more global view of cuprate superconductors a detailed study of the isotope dependence of magnetic quantities is needed. So far, to our knowledge only little work has been reported on this subject. This includes experimental studies of the OIE on the antiferromagnetic ordering temperature (T_N) and the OIE on the spin-glass ordering temperature (T_g), as well as a theoretical investigation of the OIE on T_N and T_g. Here we report a systematic study of the OIE on T_c, T_g, and T_N in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ as a function of Pr content ($0.0 \leq x \leq 1.0$) by means of magnetization and muon-spin rotation (μSR) experiments. The OIE’s on T_c and T_N were found to be vanishingly small at $x = 0.0$ and $x = 1.0$, respectively, and increase for the intermediate x. In the range $0.3 < x < 0.6$ where superconductivity and spin-glass magnetism coexist both T_c and T_g exhibit a large OIE. The OIE’s on T_N and T_g are sign reversed compared to the OIE on T_c.

Polycrystalline samples of $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ ($0 \leq x \leq 1.0$) were prepared by standard solid state reaction. Oxygen isotope exchange was performed during heating the samples in 18O$_2$ gas. To ensure the same thermal history of the substituted (18O) and not substituted (16O) samples, both annealings (in 18O$_2$ and 16O$_2$ gas) were always performed simultaneously. The 18O content in the samples, as determined from a change of the sample weight after the isotope exchange, was found to be 80(5)% for all 18O substituted samples.

The OIE on T_c was obtained by field-cooled magnetization (M_{FC}) experiments performed with a SQUID magnetometer in a field of 1.0 mT and at temperatures between 1.75 K and 100 K. The values of T_c were defined as the temperatures where the linearly extrapolated $M_{FC}(T)$’s intersect the zero line [see Fig. 4 (a)].
FIG. 1: (a) Temperature dependences of the field–cooled magnetization M_{FC} normalized to its value at $T = 5$ K, and (b) A_n/A_0^m for 16O, 18O, and back-exchanged 18O–16O samples of $Y_{0.96}Pr_{0.4}Ba_2Cu_3O_{7-δ}$. The solid lines in (b) represent the fits of $A_n(T)$ for the 16O/18O substituted samples by means of Eq. (2). The arrows indicate T_s and T_g for the 18O substituted sample.

The OIE’s on the magnetic ordering temperatures $(T_g$ and $T_N)$ were extracted from the zero-field μSR data. No magnetism down to $T \approx 1.7$ K was detected for the 16O/18O substituted samples with $x = 0.0$ and $x = 0.2$. For $x = 0.3$ and 0.4 magnetism was identified as a fast decrease of the asymmetry at $T < 10$ K and $T < 5$ K, respectively. For $x \geq 0.45$ damped oscillations due to muon-spin precession in local magnetic fields were observed. The μSR asymmetry spectra for $x = 0.8$ and 1.0, i.e. in the deep antiferromagnetic phase, were analyzed by using the following expression:

$$A(t) = A_n \exp(-\sigma^2 t^2/2) + A_m[\omega \exp(-\lambda_1 t) \cos(\gamma_\mu B_\mu t) + (1 - \omega) \exp(-\lambda_2 t)J_0(\gamma_\mu B_\mu t)].$$

Here A_n and A_m represent the oscillating (magnetic) and nonoscillating amplitudes, respectively, ω is a weighting factor, B_μ is the mean internal magnetic field at the muon site, $\gamma_\mu = 2\pi \times 135.5342$ MHz/T is the muon gyromagnetic ratio, and J_0 is the zeroth-order Bessel function. We used the damped Bessel function J_0 together with the cosine oscillating term in order to account for the unphysically large values of the initial phase ϕ $\approx 20^\circ - 45^\circ$ which has to be introduced close to T_N in order to fit the data by using the cosine term only. For $0.45 \leq x \leq 0.7$ and for $x = 0.4$ and 0.3 the fit was simplified by taking from the second part of Eq. (1) only the damped Bessel term and the exponential damping term with $B_\mu = 0$, respectively. The magnetic ordering temperatures $(T_g$ and $T_N)$ were then determined by fitting the temperature dependence of A_n by means of the phenomenological function:

$$A_n(T)/A_0^m = (1 + \exp[(T - T_m)/\Delta T_m])^{-1}.$$

Here A_0^m is the maximum value of the asymmetry, T_m is the magnetic ordering temperature $(m = g, N)$ and ΔT_m is the width of the magnetic transition [see Fig. 1(b)].

In order to confirm the intrinsic origin of the OIE’s on T_c and T_m, back-exchange OIE experiments were carried out for the samples with $x = 0.0$ and $x = 0.4$. As shown in Fig. 1 the 16O oxygen back exchange of the 18O sample of $Y_{0.96}Pr_{0.4}Ba_2Cu_3O_{7-δ}$ results within error in almost the same $M_{FC}(T)$ [panel (a)] and $A_n(T)$ [panel (b)] as for the 16O sample. The results of the OIE’s on T_c, T_g, and T_N are summarized in Table I and shown in Fig. 2. The doping dependences of T_c, T_g, and T_N for the 16O substituted samples are in agreement with the results of Cooke et al. [15]. The second magnetic transition at $T_N \approx 17$ K (observed for $x = 0.7 \pm 1.0$) which is associated with the ordering of the Pr sublattice is not considered here.

FIG. 2: Dependence of the superconducting transition (T_c), the spin-glass ordering (T_g), and the antiferromagnetic ordering (T_N) temperatures for 16O/18O substituted $Y_{1-x}Pr_xBa_2Cu_3O_{7-δ}$ on the Pr content x. The solid lines for 16O (x) and 16O (x) and 18O (x) result from the power law fit (see text for details). The areas denoted by “AFM”, “SG”, and “SC” represent the antiferromagnetic, the spin-glass and the superconducting regions, respectively. “SG+SC” corresponds to the region where spin-glass magnetism coexist with superconductivity.

It is convenient to quantify the OIE’s on the transition temperatures T_y (y denotes c, g, or N) in terms of the isotope effect exponents defined by:

$$\alpha_{T_y} = -\frac{d\ln T_y}{d\ln M_O} = -\frac{\Delta T_y/T_y}{\Delta M_O/M_O} = -\frac{(^{18}T_y - ^{16}T_y)/^{16}T_y}{(^{18}M_O - ^{16}M_O)/^{16}M_O}.\quad(3)$$

where M_O is the mass of the oxygen isotope (16O/18O). The values of α_{T_c} and α_{T_m} are listed in Table II and shown in Fig. 3 as a function of Pr content x. For $0.0 \leq x \leq 0.5$ the values of α_{T_c} are in agreement with previous results [2]. In order to estimate α_{T_c} for $x = 0.55$, we assume for 18Tc the conservative value 18Tc = 1.7 K, yielding $\alpha_{T_c} = 7(1)$. In the
SG phase a high value of $\alpha_{T_m} = -3.8(1.2)$ for $x = 0.3$ was found, in accordance with a previous study of the SG behavior in Mn doped La$_{2-x}$Sr$_x$CuO$_4$ \cite{12}. Both α_{T_c} and α_{T_m} exhibit unusual features, i.e.: (i) α_{T_c} and $\alpha_{T_m}(m = g, N)$ depend strongly on x, being small in amplitude at ”extreme” Pr content ($x = 0.0$ for T_c and $x = 1.0$ for T_N) and strongly increase upon approaching $x = 0.55$ and $x = 0.3$, respectively (see Fig. 3). For $0.5 \leq x \leq 0.55$, α_{T_c} exceeds considerably the BCS isotope-exponent $\alpha_{BCS}^{x}=0.5$. (ii) α_{T_c} increases monotonically with increasing x, while α_{T_m} has a pronounced maximum around $x \simeq 0.7$. This maximum is a consequence of the fact that T_N depends much stronger on x than T_g (see Fig. 2). (iii) α_{T_c} and α_{T_m} have opposite sign, i.e., T_c decreases with increasing oxygen-isotope mass ($^{16}T_c > ^{18}T_c$), whereas T_g and T_N increases ($^{16}T_g < ^{18}T_g$, $^{16}T_N < ^{18}T_N$, except for $x = 1.0$). This is particular interesting in the region of the phase diagram where superconductivity (SC) and the spin-gliss (SG) magnetism coexist (see Figs. 4 and 5). (iv) The strong increase of both α_{T_c} and α_{T_m} by approaching $x = 0.55$ and $x = 0.3$, respectively (see Fig. 3) suggests that the critical concentrations where superconductivity (x_{c}^{crit}) and magnetism (x_{m}^{crit}) disappear are different for ^{16}O and ^{18}O substituted samples. An analysis of the $^{16}O/^{18}O$ data for $T_c(x)$ presented in Fig. 2 by means of the power law $T_c(x) = T_c(x = 0)[1 - (x/x_{c}^{crit})^{\delta}]^{\beta}$ yields: x_{c}^{crit} = 0.570(1), δ = 1.33(4), β = 0.72(3) and x_{m}^{crit} = 0.556(2), δ = 1.33(2), β = 0.73(3). A linear extrapolation of $^{16}T_g(x)$ and $^{18}T_g(x)$ in the region $x \simeq 0.3 \div 0.5$ to $T_g = 0$ yields: x_{c}^{crit} = 0.287(2) and x_{m}^{crit} = 0.278(2). It is interesting to note that the relative oxygen-isotope shifts of the critical concentrations x_{c}^{crit} and x_{m}^{crit}, defined by $\Delta x/x = (^{18}x - ^{16}x)/^{16}x$, are the same within experimental error: $\Delta x_{c}^{crit}/x_{c}^{crit} = -2.5(4)%$ and $\Delta x_{m}^{crit}/x_{m}^{crit} = -3.1(7)%$.

TABLE I: Summary of the OIE studies on T_c and T_m ($m = g, N$) for Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$. The meaning of the parameters is $^{16}T_c/^{18}T_c$ and $^{16}T_m/^{18}T_m$: the superconducting transition temperature and the magnetic ordering temperature for the $^{16}O/^{18}O$ substituted samples, respectively, $\alpha_{T_c} = -d \ln T_c/d \ln M_O$: the OIE exponent of T_c, $\alpha_{T_m} = -d \ln T_m/d \ln M_O$: the OIE exponent of T_m.

x	$^{16}T_c$	$^{18}T_c$	α_{T_c}	$^{16}T_m$	$^{18}T_m$	α_{T_m}
0.00	91.19(5)	90.99(4)	0.018(5)	0.00	0.00	0.00
0.20	74.07(2)	73.27(2)	0.086(3)	0.00	0.00	0.00
0.30	57.97(8)	56.79(7)	0.163(15)	1.13(11)	1.66(12)	-3.8(1.2)
0.40	44.80(2)	43.25(3)	0.277(7)	7.07(9)	7.56(9)	-0.55(31)
0.45	36.50(6)	35.12(6)	0.302(19)	15.54(13)	16.58(11)	-0.54(9)
0.50	23.12(4)	20.16(4)	1.024(21)	17.82(11)	18.46(12)	-0.29(7)
0.55	14.4(2)	< 1.7	7(1)a	21.05(18)	21.65(21)	-0.23(9)
0.58	–	–	–	22.8(2)	23.2(2)	-0.13(9)
0.65	–	–	–	32.3(4)	34.4(4)	-0.50(4)
0.70	–	–	–	100.5(1.4)	116.8(1.3)	-1.30(14)
0.80	–	–	–	210.2(4)	212.6(4)	-0.09(2)
1.00	–	–	–	283.2(7)	282.5(7)	0.02(3)

aEstimated value (see text)
bBack exchanged $^{18}O\rightarrow^{16}O$ sample
cBack exchanged $^{16}O\rightarrow^{18}O$ sample

FIG. 3: OIE exponents α_{T_c} and α_{T_m} ($m = g, N$) for $^{16}O/^{18}O$ substituted Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$ as a function of the Pr content x. The dashed line corresponds to $\alpha_{BCS}^{x}=0.5$. The meaning of the areas denoted by "AFM", "SG", "SG+SC", and "SC" are the same as in Fig. 2.

Recently, Ofer et al. \cite{16} studied a series of Ca$_2$La$_{1-x}$Ba$_{1.75-x}$La$_{0.25+x}$Cu$_3$O$_y$ HTS's with various doping levels – from undoped to highly overdoped. They concluded that all characteristic temperatures T_N, T_g, \ldots
and T_c are controlled by the in-plane magnetic exchange energy J of the undoped (parent) compound, thus inferring that the isotope effects on T_N, T_g, and T_c are driven by the isotope dependence of J. In order to get a rough estimate of the OIE on T_N we employed the method proposed by Zhao et al. [4, 11]. For the undoped antiferromagnetic parent compounds the following relation holds: $\Delta T_N/T_N \simeq \Delta J/J \cdot B/(B+1)$, where $B = 2J/T_N \simeq 10$. For $x = 1.0$ with $^{16}T_N = 283.2(7)$ and $^{18}T_N = 282.5(7)$ (see Table 1) one obtains $\Delta J/J \simeq 0.3(4)\%$, i.e., the OIE on J is zero within experimental uncertainty. Therefore, J is very unlikely the source of the observed OIE’s on T_N, T_g, and T_c.

Opposite to the above interpretation, we argue that the observed OIE’s on T_g and T_N are directly related to the different charge carrier mobilities (renormalized kinetic energy) in the 16O/18O substituted samples caused by the isotope dependence of the charge carrier mass m^\ast. As shown in Refs. [4, 5, 6, 7, 8] the charge carriers in the 18O substituted samples are heavier and, consequently, less mobile than in 16O substituted samples. The recent studies of Hücke et al. [15] clearly demonstrate that increasing the hole mobility in La$_{2-x}$Sr$_x$CuO$_4$ rapidly suppresses the antiferromagnetic ordering temperature T_N. A similar conclusion was also reached by Shengelaya et al. [12] based on the observation of a giant OIE on the spin-glass ordering temperature T_g in Mn doped La$_{2-x}$Sr$_x$CuO$_4$.

As for OIE on T_c, the observation of the onset of superconductivity at different $x^{c_{\text{crit}}}$ (see Fig. 2) implies that the number of carriers condensed into Cooper pairs are larger for 18O substituted samples than for 16O ones. Consequently, we propose that the different hole mobilities in 16O/18O substituted samples are responsible for the oxygen isotope shift of the critical concentration $x^{c_{\text{crit}}}$ and then necessarily also for the OIE on T_c. This statement is further supported by the following facts: (i) The relative isotope shifts of $x^{c_{\text{crit}}}$ and $x^{c_{\text{crit}}}^{T_m}$ are roughly the same $\Delta x^{c_{\text{crit}}}^{T_c}/x^{c_{\text{crit}}}^{T_c} \simeq \Delta x^{c_{\text{crit}}}^{T_m}/x^{c_{\text{crit}}}^{T_m}$ (see above), indicating that the OIE’s on T_c, T_g, and T_N are of similar origin. (ii) In the region where superconductivity and spin-glass magnetism coexist (see Fig. 2 and Table 1) the increase of T_g in the 18O substituted sample (decrease of the hole mobility) is associated with a corresponding decrease of T_c.

In conclusion, oxygen isotope (16O/18O) effects on the superconducting transition (T_c), the spin-glass ordering (T_g), and the antiferromagnetic ordering (T_N) temperatures were studied for a series of Y_{1-x}Pr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$ samples as a function of Pr content ($0.0 \leq x \leq 1.0$). The OIE exponent α_T increases with increasing x (decreasing doping) reaching a maximum at $x^{c_{\text{crit}}} \approx 0.55$, where superconductivity disappears. At $x = 1.0$ (undoped case) $\alpha_{T_N} \simeq 0$ within experimental uncertainty. For decreasing x (increasing doping) α_{T_m} increases, reaching a maximum at $x^{c_{\text{crit}}}^{T_m} \approx 0.3$ where spin-glass behavior vanishes.

In the range of $0.3 \leq x < 1.0$ the OIE’s on T_g and T_N are sign reversed as compared to the one on T_c. The relative isotope shift of the critical Pr concentration where superconductivity ($x^{c_{\text{crit}}}^{T_c}$) and magnetism ($x^{c_{\text{crit}}}^{T_m}$) disappear are the same $\Delta x^{c_{\text{crit}}}^{T_c}/x^{c_{\text{crit}}}^{T_c} \simeq \Delta x^{c_{\text{crit}}}^{T_m}/x^{c_{\text{crit}}}^{T_m}$, indicating that the OIE’s on T_c, T_g, and T_N are interrelated. These OIE’s are suggested to arise from the isotope dependent mobility of the charge carriers as proposed in a model where polaronic renormalization of the single particle energies are introduced [17]. The formation of polaronic charge carriers may be caused by a strong Jahn-Teller effect [19], in close analogy to doped perovskite manganites [20]. The unconventional isotope effects presented here clearly demonstrate that lattice effects play a significant role in the physics of cuprates in both the magnetic and the superconducting state.

This work was partly performed at the Swiss Muon Source (SμS), Paul Scherrer Institute (PSI, Switzerland). The authors are grateful to A. Bussmann-Holder and K. Alex Müller for many stimulating discussions, A. Amato, R. Scheurmann, and D. Herlach for providing the instrumental support during the μSR experiments. This work was supported by the Swiss National Science Foundation, by the K. Alex Müller Foundation and in part by the SCOPES grant No. IB7420-110784, the EU Project CoMePhS, and the NCCR program MaNEP.

[1] B. Batlogg et al., Phys. Rev. Lett. 59, 912 (1987).
[2] J.P. Franck et al., Phys. Rev. B 44, 5318 (1991).
[3] J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
[4] D. Zech et al., Nature (London) 371, 681 (1994).
[5] G.-M. Zhao et al., Nature (London) 385, 236 (1997).
[6] G.-M. Zhao et al., J. Phys.: Condens. Matter 10, 9055 (1998).
[7] G.-M. Zhao, H. Keller, and K. Conder, J. Phys.: Condens. Matter 13, R569 (2001).
[8] J. Hofer et al., Phys. Rev. Lett. 84, 4192 (2000).
[9] R. Khasanov et al., J. Phys.: Condens. Matter 16, S4439 (2004).
[10] R. Khasanov et al., Phys. Rev. Lett. 92, 057602 (2004);
[11] R. Khasanov et al., Phys. Rev. B 74, 064504 (2006);
[12] R. Khasanov et al., Phys. Rev. B 75, 060505 (2007).
[13] H. Keller, in Superconductivity in Complex Systems, edited by K. A. Müller and A. Bussmann-Holder (Springer, Berlin 2005) p. 143.
[14] J.L. Tallon et al., Phys. Rev. Lett. 94, 237002 (2005).
[15] A. Shengelaya et al., Phys. Rev. Lett. 83, 5142 (1999).
[16] A. Bussmann-Holder, Int. J. Mod. Phys. B 12, 3080 (1998).
[17] K. Conder, Mater. Sci. Eng. R32, 41 (2001).
[18] D.W. Cooke et al., Phys. Rev. B 41, 4801 (1990).
[19] R. Ofer et al., Phys. Rev. B 74, 220508(R) (2006).
[20] A. Bussmann-Holder and H. Keller, In: Polarons in Ad-
References

[18] M. Hücke et al., Phys. Rev. B 59, 725(R) (1999); M. Hücke, H.-H. Klauss, and B. Büchner, Phys. Rev. B 70, 220507(R) (2004).

[19] J.G. Bednorz and K.A. Müller, Z. Physik B 64, 189 (1986).

[20] G.-M. Zhao et al., Nature (London) 381, 676 (1996).