INTRODUCTION

Vascularized bone and soft tissue free flaps are widely used for complex facial reconstructions. In contrast, periosteal free flaps are much less commonly used and little is known about their potential use and donor site morbidity. The periosteum is unique in that it contains the necessary stem cells and growth factors for osteogenesis and could be applied in a variety of bespoke applications, including osteoradionecrosis, medication-induced osteonecrosis of the jaw, and as a vascularized carrier for bone constructs fabricated ex vivo.

Periosteal flaps with vascular pedicle can be divided into three types according to their blood supply: periosteum supplied (i) by the attached muscle; (ii) by the attached fascia; and (iii) directly from the vascular pedicle. The aim of this study was to scope potential periosteal free flap sites in terms of their dimensions, tissue and pedicle characteristics, and predicted donor site morbidity in a cadaveric model.

METHODS

This study involved an anatomical dissection of two adult cadavers from the University of Wollongong anatomy laboratory (New South Wales, Australia, December 2020) following human research ethics committee approval (2020/ETH02026). The licensed anatomist provided authorization in accordance with the human research ethics committee–approved body donation program (NSA70/02). Cadavers were embalmed in a formaldehyde solution (Genelyn New Form).

A standard surgical approach was used to excise the periosteum and associated surrounding tissue (pedicle, muscle, fascia) from two cadavers by two reconstructive surgeons. Standard surgical instruments and loupe magnification were used to replicate operating conditions. The vessels harvested as pedicle to the periosteal flaps were lateral skull (superficial temporal artery/vein); lateral chest
RESULTS

The periosteum from the skull, chest wall, sternum, scapula, iliac crest, femur, and humerus were retrieved from two cadavers. Table 1 reports the general anthropometric measures. All other data are reported in Table 2. Figures 1 and 2 are photographic examples of the periosteum of the right skull (female - in situ [Fig. 1] and alone [Fig. 2]). (See figure 1, Supplemental Digital Content 1, which displays periosteum from the scapula [female - in situ]. http://links.lww.com/PRSGO/B791.) (See figure 2, Supplemental Digital Content 2, which displays periosteum from the scapula [female - alone]. http://links.lww.com/PRSGO/B792.) (See Video 1 [online], which displays periosteum from the right skull [female - vascular]). (See Video 2 [online], which displays the periosteum from the scapula [female - vascular]).

The largest periosteum harvested was from the scapula (15 cm × 10 cm) and chest wall (16 cm × 12 cm). Most samples had the ability to be fenestrated and ranged in thickness from 1 mm to 7 mm.

The vascular anatomy of the periosteum from the skull, scapula, and iliac crest was clearly demonstrated by the food dye. Most periosteal samples had an artery and a vein, ranging from 2 to 7 cm in length and from 1 to 4 mm in diameter. The longest pedicle harvested was from the chest wall (6 cm) and femur (7 cm). Supine position was possible for all flaps except the scapula. The chest wall, scapula, and femur had chimeric options in contrast to the skull, humerus, sternum, and iliac crest.

Sensory loss was presumed to be the only morbidity for the skull. Obtaining periosteum from the chest wall and scapula may impact serratus anterior and teres/infraspinatus muscles respectively, leading to scapular winging and reduced shoulder function. Obtaining periosteum from the femur is likely to affect knee extension due to extensive dissection of vastus intermedius. Sternal periosteum retrieval would likely affect respiratory mechanics due to rib resection to access the internal mammary vessels. The periosteum from the iliac crest required the external oblique and internal oblique muscles to be split, which may increase the risk of abdominal wall herniation. The periosteum from the humerus requires mobilizing the radial nerve, possibly affecting wrist and finger extensions.

DISCUSSION

This study investigated periosteal free flap sites in terms of their dimensions, tissue and pedicle characteristics, and predicted donor site morbidity in a cadaveric model. The most promising periosteal flaps were from the skull and scapula (infraspinatus) due to the size harvested and the least predicted morbidity.

The periosteal flap can be harvested as a periosteal only flap or as a composite or chimeric flap. The access to the periosteum of interest is technically the same as when harvesting the overlying soft tissue as a free flap. We could secure a viable vascular supply to the periosteum by following the principle of identification of perforators and then following the associated proximal branches.

The benefits of utilizing musculoperiosteal components include those resulting from its geometric and biological attributes. Its geometric and conformational adaptability allows for a multitude of defect demands. The periosteum and muscle provide a highly vascularized surface combined with connective tissue progenitor cells.

Takeaways
Question: To scope potential periosteal free flap sites in terms of their dimensions, tissue and pedicle characteristics, and predicted donor site morbidity in a cadaveric model.
Findings: Cadaveric periosteal specimens with a vascular pedicle were harvested using standard surgical approaches. The periosteum harvested from the skull and scapula were the most promising.
Meaning: Periosteum represents a resource of osteogenetic potential for use in free tissue transfer and reconstruction. This study outlines the properties of vascularized periosteal donor sites. Periosteum from the skull and scapula were more favorable due to their size and presumed limited donor site morbidity.

Table 1. Anthropometric Measures (cm)

	Height (Supine)	Head Circumference	Waist Circumference	Shoulder Width	Leg Length	Arm Length	Chest Circumference	Hip Circumference	Age (y)
Women	152	56.5	81	32.5	81.5	68	89	87.5	78
Men	186	60.5	95	39.9	91	85	105.5	102	65
The applications for the use of free tissue transfer with such a combination might include the reconstruction of both soft tissue and skeletal defects. Additionally, periosteum has been used to generate customized bone constructs with the potential to reconstruct segmental mandibular defects using the in vivo bioreactor concept.

There are some limitations to this study. It was not possible to raise periosteal only flaps due to the nature of embalmed tissue. For this reason, we harvested some myofascial components with the periosteal flap to assess the previously stated parameters. Use of fresh cadavers may reveal different periosteal samples, and donor-site morbidity was based on assumptions. Although we only had composite flaps, we successfully demonstrated the flow of dye from the pedicle to the peripheral periosteal extent.

Table 2. Periosteum Measures (Grouped Results)

Periosteum	Periosteum Thickness (Mean, mm)	Periosteum Size (Mean, Length × Width, cm)	Scar Length (Mean, cm)	ADL Deficit	Pain	Impact on Muscle Strength*	Vascularized	Diameter of Pedicle (Range, mm)	Length of Pedicle (Range, cm)
Skull	1.7	11.5 × 10.2	24 long; 15 each end	Sensory loss	Mild	Yes (serratus anterior)	Yes	Arteries = 2	2–4
								Veins = 1.5–2.5	
Chest wall	2.5	14 × 12	28	Mild	Yes	(intercostal)	Possible	Arteries = 2	4–6
								Veins = 2	
Sternum	3	14 × 2.5	25 long; 6 each end	Major	Major	Yes (intertcostal)	NA	Vein = 3	5
Scapula	1.2	13.7 × 9.3	21	Mild	Mild	Yes (infraspinatus)	Yes	Arteries = 2–4	3–5.5
								Veins = 2–4	
Iliac crest	4.3	7.7 × 5.3	25	Mild	Moderate	Yes (external and internal oblique)	Yes	Arteries = 2–3	2–5
								Veins = 1–4	
Femur	4	18 × 4.4	38	Major	Mild	Yes (patella tendon, vastus intermedius)	Yes	Veins = 2–4	6–7
								Veins = 1–4	
Humerus	3	8.5 × 2.5	20.5	Mild	Mild	Possible (brachioradialis)	Unable	Veins = 2.5	4

* Predicted.
ADL, activities of daily living; NA, not applicable.

Fig. 1. Periosteum right skull (female)—in situ.
CONCLUSIONS

Periosteum represents a resource of osteogenesis potential for use in free tissue transfer and reconstruction. This study outlines the properties of vascularized periosteal donor sites. Periosteum from the skull and scapula were more favorable due to their size and presumed limited donor site morbidity.

Lyndel Hewitt, PhD
Research Central, Wollongong Hospital
Crown St, Wollongong
NSW, Australia 2500
E-mail: lyndel.hewitt@health.nsw.gov.au

ACKNOWLEDGMENT

The authors thank the University of Wollongong anatomy laboratory staff for their assistance and time given to this study.

REFERENCES

1. Smithers FAE, Cheng K, Jayaram R, et al. Maxillofacial reconstruction using in-house virtual surgical planning. ANZ J Surg 2018;88:907–912.
2. Burgess M, Leung M, Chellapah A, et al. Osteointegrated implants into a variety of composite free flaps: a comparative analysis. Head Neck 2017;39:443–447.
3. Ayoub N, Ghasemi A, Rana M, et al. Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 2014;15:114.
4. Swanson E, Boyd JB, Manktelow RT. The radial forearm flap: reconstructive applications and donor-site defects in 35 consecutive patients. Plast Reconstr Surg 1990;85:258–266.
5. Li N, Song J, Zhu G, et al. Periosteum tissue engineering—a review. Biomater Sci 2016;4:1554–1561.
6. Bettoli J, Olivetto M, Duist J, et al. Treatment of mandibular osteoradionecrosis by periosteal free flaps. Br J Oral Maxillofac Surg 2019;57:550–556.
7. Lemound J, Muecke T, Zeller AN, et al. Nasolabial flap improves healing in medication-related osteonecrosis of the jaw. J Oral Maxillofac Surg 2018;76:887–885.
8. Yu A. Bone and periosteal flap transplantation. In: Pei G, ed. Microsurgical Orthopedics. Dordrecht, the Netherlands: Springer Netherlands; 2019:185–210.
9. Duchamps de Lagensete O, Julien A, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 2018;9:773.
10. Tatara AM, Kretlow JD, Spicer PP, et al. Autologously generated tissue-engineered bone flaps for reconstruction of large mandibular defects in an ovine model. Tissue Eng Part A 2015;21:1520–1528.
11. Tatara AM, Shah SR, Demian N, et al. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomater 2016;45:72–84.
12. Tatara AM, Koons GL, Watson E, et al. Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proc Natl Acad Sci U S A 2019;116:6954–6963.