State Evolution for Approximate Message Passing with Non-Separable Functions

Raphaël Berthier, Andrea Montanari, and Phan-Minh Nguyen

August 15, 2017

Abstract

Given a high-dimensional data matrix $A \in \mathbb{R}^{m \times n}$, Approximate Message Passing (AMP) algorithms construct sequences of vectors $u^t \in \mathbb{R}^n$, $v^t \in \mathbb{R}^m$, indexed by $t \in \{0, 1, 2, \ldots\}$ by iteratively applying A or A^T, and suitable non-linear functions, which depend on the specific application. Special instances of this approach have been developed – among other applications – for compressed sensing reconstruction, robust regression, Bayesian estimation, low-rank matrix recovery, phase retrieval, and community detection in graphs. For certain classes of random matrices A, AMP admits an asymptotically exact description in the high-dimensional limit $m, n \to \infty$, which goes under the name of state evolution.

Earlier work established state evolution for separable non-linearities (under certain regularity conditions). Nevertheless, empirical work demonstrated several important applications that require non-separable functions. In this paper we generalize state evolution to Lipschitz continuous non-separable nonlinearities, for Gaussian matrices A. Our proof makes use of Bolthausen’s conditioning technique along with several approximation arguments. In particular, we introduce a modified algorithm (called LAMP for Long AMP) which is of independent interest.

1 Introduction

Over the last few years Approximate Message Passing (AMP) algorithms have been applied to a broad range of statistical estimation problems, including compressed sensing [DMM09], robust regression [DMM09], Bayesian estimation [KRUF12], low rank matrix recovery [KKM16], phase retrieval [SR15], and community detection in graphs [DAA16]. In a fairly generic formulation, AMP takes as input a random data matrix $A \in \mathbb{R}^{m \times n}$ and generates sequences of vectors $u^t \in \mathbb{R}^n$, $v^t \in \mathbb{R}^m$, indexed by $t \in \mathbb{N}$ according to the iteration

$$u^{t+1} = A^T g_t(v^t) - d_t e_t(u^t),$$

$$v^t = A e_t(u^t) - b_t g_{t-1}(v^{t-1}).$$

Here $g_t : \mathbb{R}^m \to \mathbb{R}^m$ and $e_t : \mathbb{R}^n \to \mathbb{R}^n$ are two sequences of functions indexed by the iteration number t, that encode the specific application. The coefficients $d_t, b_t \in \mathbb{R}$ are completely fixed by

\footnote{Ecole Normale Supérieure, Paris and Université Paris-Sud, Orsay}
\footnote{Department of Electrical Engineering and Department of Statistics, Stanford University}
\footnote{Department of Electrical Engineering, Stanford University}
\footnote{More general settings have also been developed, see for instance [JM13].}
the choice of these functions. For instance, assuming $E\{A_{ij}^2\} = 1/m$, we can use
\[
d_{t}^{\text{emp}} = \frac{1}{m} \text{div} g_t(v^t), \quad b_{t}^{\text{emp}} = \frac{1}{m} \text{div} e_t(u^t).
\] (3)

(A slightly different definition, that is more convenient for proofs, will be adopted in Section 3.)

Apart from being broadly applicable, AMP algorithms admit an asymptotically exact characterization in the high-dimensional limit $m,n \to \infty$ with m/n converging to a limit, which is known as state evolution. Informally, for any t fixed, in the high-dimensional limit, u^t is approximately Gaussian with mean zero and covariance $\tau^2_t I_n$, while v^t is approximately $N(0,\sigma^2_t I_m)$. The variance parameters τ^2_t, σ^2_t can be computed via a one-dimensional recursion.

State evolution was proved in [BM11] for the recursion (1), (2) under two key assumptions
- A a Gaussian random matrix with with i.i.d. entries $(A_{ij})_{i,j} \sim N(0,1/m)$.
- The functions $g_t(\cdot), e_t(\cdot)$ are separable and Lipschitz continuous.

This paper relaxes the second assumption and establishes state evolution for functions $g_t(\cdot), e_t(\cdot)$ that are Lipschitz continuous but not necessarily separable. Our proof uses (as the original paper [BM11]) a conditioning technique initially developed by Erwin Bolthausen [Bol14] to study the TAP equations in spin glass theory. A key difficulty with non-separable denoisers is that the iterates $g_1(v^1), g_2(v^2), \ldots, g_t(v^t) \in \mathbb{R}^m$ might be collinear and lie in a subspace of dimension smaller than t, for large m. This degeneracy (or a similar problem with the $e_1(u^1), e_2(u^2), \ldots, e_t(u^t)$) would cause a naive adaptation of the proof of [BM11] to break down. In order to circumvent this problem without introducing ad hoc assumptions, we proceed in two steps:

1. We introduce a random perturbation of the functions $e_t(\cdot), g_t(\cdot)$. We prove that, with probability one with respect to this random perturbation, the new iteration satisfies the required non-degeneracy assumption.

2. We prove that both AMP and state evolution are uniformly continuous in the size of the perturbation, and hence we can let the perturbation vanish recovering state evolution for the original unperturbed problem.

Further, we obtain a streamlined proof with respect to the strategy of [BM11], by introducing a different algorithms, that we call LAMP (for Long AMP). State evolution is proved first for LAMP, and then the latter is shown to be closely approximated by the original AMP. We believe that LAMP is potentially of independent interest and will be further investigated in [MN17].

In the rest of this introduction we will briefly describe two applications of AMP with non-separable nonlinearities, and show how state evolution can be used to characterize its behavior. Both of these are examples of generalized compressed sensing, cf. Section 7. We will then review some related work in Section 2 and state our results in Section 3 (for the asymmetric iteration (1) and Section 4 (for the analogue case in which A is a random symmetric matrix)). Proofs are presented in Sections 5 and 6. In fact, we will first prove state evolution in the case in which A is a symmetric random matrix, and then reduce the asymmetric case to the symmetric one.

Finally, Section 7 applies the general theory to compressed sensing reconstruction with a variety of denoisers. In particular, we derive a bound on the convergence rate for denoisers that are projectors onto convex sets. Several technical elements are deferred to the appendices.

2We say that $f : \mathbb{R}^d \to \mathbb{R}^d$ is separable if $f(x_1, \ldots, x_d)_i = f_i(x_i)$ for some functions $f_i : \mathbb{R} \to \mathbb{R}$.
1.1 Vignette #1: Matrix compressed sensing

We want to reconstruct an unknown matrix $X_0 \in \mathbb{R}^{n_1 \times n_2}$ from linear measurements $y \in \mathbb{R}^m$, where

$$y = A(X_0).$$

(4)

Here $A: \mathbb{R}^{n_1 \times n_2} \rightarrow \mathbb{R}^m$ is a Gaussian linear operator. Concretely $y_i = \langle A_i, X_0 \rangle$ where $A_i \in \mathbb{R}^{n_1 \times n_2}$ are i.i.d. matrices with independent entries $(A_i)_{r,c} \sim \mathcal{N}(0, 1/m)$. This setting was first studied in [RFP10] and can be used as a simple model for system identification and matrix completion.

The following AMP algorithm can be used to reconstruct X_0 from observations y:

$$X^{t+1} = S(X^t + A^T r^t; \lambda_t),$$

(5)

$$r^t = y - A(X^t) + b_t r^{t-1},$$

(6)

with initialization $X^0 = 0$. After t iterations, the algorithm produces an estimate X^t, and a residual r^t. Here A^T is the adjoint of the operator A,

$$b_t = \frac{1}{m} \text{div} S(X^{t-1} + A^T r^{t-1}; \lambda_{t-1}),$$

(7)

and $S(\cdot; \lambda)$ is the singular value thresholding (SVT) operator, defined as follows. For a matrix $Y \in \mathbb{R}^{n_1 \times n_2}$, with singular value decomposition

$$Y = \sum_{i=1}^{n_1 \wedge n_2} \sigma_i u_i v_i^T,$$

(8)

the SVT operator yields

$$S(Y; \lambda) = \sum_{i=1}^{n_1 \wedge n_2} (\sigma_i - \lambda)_+ u_i v_i^T.$$

(9)

The divergence in Eq. (7) can be computed explicitly using a formula from [CSLT13, DG+14], see Appendix A.1. The sequence of parameters $(\lambda_t)_{t \geq 0}$ can be chosen to optimize the algorithm performance.

Fixed points of this AMP algorithm are minimum nuclear norm solution of the constraint $y = A(X)$. This algorithm was implemented in [Don13] and partly motivated the predictions of [DGM13]. A recent detailed study (and generalizations) can be found in [RG17], showing that its phase transition matches the one of nuclear norm minimization, predicted in [DGM13] and proved in [OTH13, ALMT14].

With a change of variables, the algorithm (5), (6) can be recast in the general form (1), (2) with one of the functions being non-separable and given by the SVT operator (the change of variables is described in Section 7).

In Figure 1 we report the results of numerical simulations using this algorithm. We generated $X_0 \in \mathbb{R}^{n_1 \times n_2}$ of rank r by letting $X_0 = UV^T$ for $U \in \mathbb{R}^{n_1 \times r}$, $V \in \mathbb{R}^{n_2 \times r}$ uniformly random.
orthogonal matrices, and computed m measurements y as per Eq. (4). We took $n_1 = n_2$, $r = 0.1\cdot n_1$, $m = 0.65 \cdot n_1 n_2$. We chose the threshold parameter λ_t to be proportional to the noise level as estimated via the residual Mon12:

$$\lambda_t = 2\sqrt{n_1} \frac{\|r^t\|_2}{\sqrt{m}}. \quad (10)$$

We plot the the normalized mean square error as a function of the iteration number (with $n = n_1 n_2$ the number of unknowns):

$$\text{NMSE}(t; n) = \frac{\|X^t - X_0\|_F^2}{\|X_0\|_F^2}. \quad (11)$$

State evolution allows to predict the value $\lim_{n \to \infty} \text{NMSE}(t; n)$. The prediction is already very accurate for $n_1 = n_2 = 170$.

1.2 Vignette #2: Compressed sensing with images

We represent an image as a two-dimensional array $x = (x_{i,j})_{i \leq n_1, j \leq n_2}$, which we identify with its vectorization $\text{vec}(x) \in \mathbb{R}^n$, $n = n_1 n_2$. In compressed sensing we acquire a small number of incoherent measurements $y \in \mathbb{R}^m$ according to

$$y = Ax + w. \quad (12)$$

where $A \in \mathbb{R}^{m \times n}$ is a known sensing matrix for which we assume the simple Gaussian model $(A_{ij})_{i \leq m, j \leq n} \sim \text{iid N}(0,1/m)$, and $w \sim \text{N}(0, \sigma_w^2 I_m)$ is noise.

A broad class of AMP reconstruction algorithms take the form

$$x^{t+1} = \eta_t (x^t + A^T r^t), \quad (13)$$

$$r^t = y - Ax^t + b_t r^{t-1}. \quad (14)$$
where $x^0 = 0, \eta_t : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^{n_1 \times n_2}$ is a sequence of image denoisers, and
\[
b_t = \frac{1}{m} \text{div} \eta_{t-1}(x^{t-1} + A^T r^{t-1}). \tag{15}
\]
The compressed sensing reconstruction algorithm in [DMM09] was a special case of this iteration with $\eta(\cdot)$ corresponding to coordinate-wise soft thresholding (in a suitable basis), hence leading to a separable AMP. Several authors studied the same algorithm with non-separable denoisers, including Hidden Markov Models [Sch10, SS12], total variation and block thresholding denoisers [DJM13], universal denoising [MZB16], restricted Boltzmann machines [TDK16]. As documented in these papers, a good choice of the denoiser yields a significant performance boost over classical compressed sensing reconstruction methods, such as ℓ_1 minimization.

Again, the iteration (14), (13) can be put in the form (1), (2) with a change of variables described in Section 7. A non-separable denoiser η_t translates into non-separable non-linearities g_t, e_t.

Here we use Non-Local Means denoising (NLM) [BCM05]. Given a noisy image z, NLM estimates pixel (i, j) as a weighted average of the pixels of z:
\[
\eta(z)_{i,j} = \frac{\sum_{(k,l)} W_{(k,l),(i,j)}(z) z_{k,l}}{\sum_{(k,l)} W_{(k,l),(i,j)}(z)}. \tag{16}
\]
The weights $W_{(k,l),(i,j)}(z)$ depend on the similarity between the patches in z centered around (k, l) and (i, j) respectively, as well as on the distance between the two pixels. In a simple instantiation, we choose a patch size $L \in \mathbb{N}_0$, a range $R > 0$, and a precision parameter $h > 0$. For a position (k, l) in the image, denote by $P_{(k,l)}(x)$ the subimage of x (or patch) centered in (k, l), of size $L \times L$. Then:
\[
W_{(k,l),(i,j)}(z) = 1_{\| (i,j) - (k,l) \| \leq R} \exp \left(- \frac{\| P_{(k,l)}(x) - P_{(i,j)}(x) \|_2^2}{L^2 h^2} \right). \tag{17}
\]
In words, NLM averages patches that are similar to each other. The recent paper [MMB16] studies this algorithm and demonstrates state-of-the-art performances. Here we carry out similar simulations to demonstrate the accuracy of the state evolution prediction. At each iteration we can choose three parameters: L_t, R_t and h_t. We fix $L_t = 7$, $R_t = 11$ and adapt h_t to the noise level. The theory developed in the next sections suggests that $\| r_t \|_2/\sqrt{m}$ is a good measure of the effective noise level after t iterations. We therefore set
\[
h_t = 0.9 \cdot \frac{\| r_t \|_2}{\sqrt{m}}, \tag{18}
\]
where the coefficient 0.9 was selected empirically.

One difficulty is to compute the divergence of NLM denoisers $\text{div} \eta_t$. Rather than computing explicitly the divergence from Eqs. (16) and (17), we use a trick suggested in [MMB16, Section V.B]. The trick is based on the formula
\[
\text{div} \eta_t(x) = \lim_{\varepsilon \to 0} \mathbb{E} \left[\left\langle Z, \frac{1}{\varepsilon} (\eta_t(x + \varepsilon Z) - \eta_t(x)) \right\rangle \right], \; \; Z \sim \mathcal{N}(0, I_n). \tag{19}
\]
Rather than taking the limit, we fix ε very small and evaluate the expectation by Monte Carlo. In high dimensions, concentration of measure helps and it is sufficient to use only one or a few samples to approximate the integral.
Figure 2: Compressed sensing reconstruction of Lena using NLM-AMP, at undersampling ratio $m/n = 0.5$: iterates $x^t + A^Tr^t$ (left column) and $x^{t+1} = \eta_t(x^t + A^Tr^t)$ (right column) for $t \in \{0, 1, 2, 3, 4\}$. (Details in the main text.)
In Figure 2, we demonstrate the algorithm performance for an image of size 170×170 (i.e. $n_1 = n_2 = 170$) with $m = 0.5 \cdot n_1 n_2$ measurements and noise level $\sigma_w = 0.034 \cdot \| x_0 \|_2 / \sqrt{170}$. For each iteration $t \in \{0, 1, 2, 3, 4\}$, we show the estimates $x^t + A^T r^t$ (left column) together with the denoised versions $x^{t+1} = \eta_t(x^t + A^T r^t)$ (right column). In Figure 3, we report the evolution of the normalized square error $\text{NMSE}(t; n) = \| x^t - x_0 \|_2^2 / \| x_0 \|_2^2$, as a function of the number of iteration. State evolution appears to track very closely the simulation results.

2 Further related work

Approximate Message Passing algorithms are motivated by ideas in spin glass theory, where they correspond to an iterative version of the celebrated TAP equations [TAP77, Bol14]. They can also be derived from graphical models ideas, by viewing them as approximations of belief propagation [KF09, Mon12]. In both of these cases, the AMP nonlinearities turn out to be related to conditional expectation with respect to certain prior distributions. The theorems proved here apply more broadly, as demonstrated by the example in Section 1.2.

The state evolution analysis of [BM11] was generalized in a number of directions over the last few years. State evolution was proven to hold for matrices A with i.i.d. subgaussian entries in [BLM+15], under the assumption that the non-linearity is a separable polynomial. The proof of [BLM+15] is based on the moment method, and hence is entirely different from the one presented here. Several generalizations of the basic iteration (1), (2) were studied in [JM13]. The framework of [JM13] allows to treat some classes of matrices with independent Gaussian but not identically distributed entries, as well as algorithms in which $u^t \in \mathbb{R}^{n \times k}$, $v^t \in \mathbb{R}^{m \times k}$ are matrices with k fixed as $m, n \to \infty$.

A generalization of AMP to right-invariant random matrices was introduced and analyzed in [MP17, RSF16], using the conditioning technique also applied here. This allows to treat classes of matrices with dependent entries and potentially large condition numbers. In the same direction, [OCW16, ÇOWF17] develops iterative algorithms analogous to (1), (2) for unitarily invariant sym-
metric matrices, and for compressed sensing. The analysis in these works is based on non-rigorous density functional methods from statistical physics.

All results discussed above are asymptotic, and characterize the limit \(m, n \to \infty \) with \(m/n \) converging to a limit. Nevertheless, the conditioning technique does rely on central-limit-theorem and concentration-of-measure arguments and, as demonstrated in [RV16], it can be sharpened to obtain non-asymptotic results.

Finally, a recent paper by Ma, Rush and Baron [MRB17] states a theorem establishing state evolution for compressed sensing reconstruction via AMP with a non-separable sliding-window denoiser. The result of [MRB17] is not directly comparable with ours, since it concerns a special class of non-separable nonlinearities, but provides non-asymptotic guarantees.

3 Main results

In this section we state our main result for the asymmetric AMP iteration of Eqs. (1), (2). A similar result for symmetric AMP will be stated in Section 4 (and proven in 5).

3.1 Definitions

For two sequences (in \(n \)) of random variables \(X_n \) and \(Y_n \), we write \(X_n \overset{P}{\to} Y_n \) when their difference converges in probability to 0, i.e. \(X_n - Y_n \overset{P}{\to} 0 \).

For \(K = (K_{s,r})_{1 \leq s,r \leq t} \) a \(t \times t \) covariance matrix, we will write \((Z^1, \ldots, Z^t) \sim N(0, K \otimes I_n) \) to mean that \(Z^1, \ldots, Z^t \) is a collection of centered, jointly Gaussian random vectors in \(\mathbb{R}^n \), with covariances \(\mathbb{E}[Z^s(Z^r)^T] = K_{s,r}I_n \) for \(1 \leq s, r \leq t \).

For \(k \in \mathbb{N}_{>0} \) and any \(n, m \in \mathbb{N}_{>0} \), a function \(\phi : \mathbb{R}^n \to \mathbb{R}^m \) is called pseudo-Lipschitz of order \(k \) if there exists a constant \(L \) such that for any \(x, y \in \mathbb{R}^n \),

\[
\frac{\|\phi(x) - \phi(y)\|_2}{\sqrt{m}} \leq L \left(1 + \left(\frac{\|x\|_2}{\sqrt{n}} \right)^{k-1} + \left(\frac{\|y\|_2}{\sqrt{n}} \right)^{k-1} \right) \frac{\|x - y\|_2}{\sqrt{n}}. \tag{20}
\]

\(L \) is then called the pseudo-Lipschitz constant of \(\phi \). Note that this definition is the same as introduced in [BMI], apart from a different scaling of the norm \(\| \cdot \|_2 \). The normalization factors are introduced to simplify the analysis that follows. For \(k = 1 \), this definition coincides with the standard definition of a Lipschitz function, for mapping between the normed spaces \((\mathbb{R}^n, \| \cdot \|_2/\sqrt{n}) \) and \((\mathbb{R}^m, \| \cdot \|_2/\sqrt{m}) \). In this case \(L \) is the Lipschitz constant of \(\phi \).

A sequence (in \(n \)) of pseudo-Lipschitz functions \(\{\phi_n\}_{n \in \mathbb{N}_{>0}} \) is called uniformly pseudo-Lipschitz of order \(k \) if, denoting by \(L_n \) the pseudo-Lipschitz constant of \(\phi_n \), we have \(L_n < \infty \) for each \(n \) and \(\limsup_{n \to \infty} L_n < \infty \). Note that the input and output dimensions of each \(\phi_n \) can depend on \(n \). We call any \(L > \limsup_{n \to \infty} L_n \) a pseudo-Lipschitz constant of the sequence.

3.2 State evolution

Fix \(\delta > 0 \) and consider a sequence \(m = m(n) \in \mathbb{N} \) such that \(m/n \to \delta \) as \(n \to \infty \). For all \(n \), we are given two sequences of (deterministic) functions \(\{e_t : \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{N}} \) and \(\{g_t : \mathbb{R}^m \to \mathbb{R}^m\}_{t \in \mathbb{N}} \), as well as a sequence of (deterministic) vectors \(u^0 = u^0(n) \in \mathbb{R}^n \), and a sequence of random rectangular matrices \(A = A(n) \in \mathbb{R}^{m \times n} \).
We next list our assumptions (we refer to Section \ref{sec:assumptions} for a summary of notations used in the paper):

\begin{itemize}
 \item[(B1)] A has entries $(A_{ij})_{i \leq m, j \leq n} \sim_{iid} \mathcal{N}(0, 1/m)$.
 \item[(B2)] For each $t \in \mathbb{N}$, the functions $e_t : \mathbb{R}^n \to \mathbb{R}^n$, $g_t : \mathbb{R}^m \to \mathbb{R}^m$ are uniformly Lipschitz (where uniformly is understood with respect to n).
 \item[(B3)] $\|u^0\|_2 / \sqrt{n}$ converges to a finite constant as $n \to \infty$.
 \item[(B4)] The following limit exists and is finite:
 \begin{equation}
 \Sigma_{0,0} \equiv \lim_{n \to \infty} \frac{1}{m} \langle e_0(u^0), e_0(u^0) \rangle.
 \end{equation}
 \item[(B5)] For any $t \in \mathbb{N}_{>0}$ and any $s \geq 0$, the following limit exists and is finite:
 \begin{equation}
 \lim_{n \to \infty} \frac{1}{m} \mathbb{E} \left[\langle e_0(u^0), e_t(Z) \rangle \right]
 \end{equation}
 where $Z \sim \mathcal{N}(0, sI_n)$.
 \item[(B6)] For any $s, t \in \mathbb{N}_{>0}$ and any $S \in \mathbb{R}^{2 \times 2}$, $S \succeq 0$, the following limits exist and are finite:
 \begin{align}
 \lim_{n \to \infty} \frac{1}{m} \mathbb{E} \left[\langle e_s(Z_1), e_t(Z_2) \rangle \right], \\
 \lim_{n \to \infty} \frac{1}{m} \mathbb{E} \left[\langle g_s(Z_3), g_t(Z_4) \rangle \right],
 \end{align}
 where $(Z_1, Z_2) \sim \mathcal{N}(0, S \otimes I_n)$ and $(Z_3, Z_4) \sim \mathcal{N}(0, S \otimes I_m)$.
\end{itemize}

The technical assumptions (B4), (B5) and (B6) allows to define two doubly infinite arrays $(\Sigma_{s,r})_{s,r \geq 0}$ and $(T_{s,r})_{s,r \geq 1}$, through the following recursion, known as \textit{state evolution}.

We set $\Sigma_{0,0}$ using Assumption (B4). For each $t \geq 0$, given $(\Sigma_{s,r})_{0 \leq s, r \leq (t-1)}$ and $(T_{s,r})_{1 \leq s, r \leq t}$, we let, for $0 \leq s \leq t$

\begin{align}
 \Sigma_{t,s} & = \lim_{n \to \infty} \frac{1}{m} \mathbb{E} \left[\langle e_s(Z^s_{\tau}), e_t(Z^t_{\tau}) \rangle \right], \\
 T_{t+1,s+1} & = \lim_{n \to \infty} \frac{1}{m} \mathbb{E} \left[\langle g_s(Z^s_{\tau}), g_t(Z^t_{\tau}) \rangle \right],
\end{align}

along with $T_{s+1,t+1} = T_{t+1,s+1}$ and $\Sigma_{s,t} = \Sigma_{t,s}$. Here expectation is with respect to $(Z^0_{\tau}, \ldots, Z^t_{\tau}) \sim \mathcal{N}(0, (\Sigma_{s,r})_{0 \leq s, r \leq t} \otimes I_m)$, $(Z^0_{\tau}, \ldots, Z^t_{\tau}) \sim \mathcal{N}(0, (T_{s,r})_{1 \leq s, r \leq t} \otimes I_n)$, and it is understood that $Z^0_{\tau} = u^0$.

We will refer to the arrays $(\Sigma_{s,r})_{s,r \geq 0}$ and $(T_{s,r})_{s,r \geq 1}$ as to the \textit{state evolution iterates} (and sometimes simply \textit{state evolution}) and denote them by $\{T_{s,t}, \Sigma_{s,t}, e_t, g_t, u^0\}$, to make explicit the nonlinearities and initialization.

State evolution characterizes the AMP iteration of Eqs. (1), (2), which we copy here for the reader’s convenience:

\begin{align}
 u^{t+1} & = A^T g_t(v^t) - d_t e_t(u^t), \\
 v^t & = Ae_t(u^t) - b_t g_{t-1}(v^{t-1}),
\end{align}
where the initial condition is given by \(u^0 \), and we let \(g_0(\cdot) = 0 \) by convention. Further we use the following expression for the memory terms (which we shall refer to as ‘Onsager terms,’ following the physics tradition):

\[
d_t = \frac{1}{m} \mathbb{E} \left[\text{div} g_t \left(Z^t_{\sigma} \right) \right], \quad b_t = \frac{1}{m} \mathbb{E} \left[\text{div} e_t \left(Z^t_{\tau} \right) \right],
\]

where \(Z^t_{\sigma} \sim \mathcal{N}(0, \Sigma_{t,t} I_m) \) and \(Z^t_{\tau} \sim \mathcal{N}(0, T_{t,t} I_n) \). We denote the asymmetric AMP iterates \((u^t, v^t)_{t \geq 0}\) by \((u^t, v^t|e_t, g_t, u^0)\).

We are now in position to state our main result.

Theorem 1. Under assumptions (B1) (B6), consider the asymmetric AMP iteration \((u^t, v^t|e_t, g_t, u^0)\) along with its state evolution \((T_{s,t}, \Sigma_{s,t}|e_t, g_t, u^0)\). Define for all \(n \),

\[
\begin{align*}
(Z^0_{\sigma}, \ldots, Z^{t-1}_{\sigma}) & \sim \mathcal{N}(0, (\Sigma_{s,r})_{0 \leq s,r \leq t-1} \otimes I_m), \\
(Z^1_{\tau}, \ldots, Z^t_{\tau}) & \sim \mathcal{N}(0, (T_{s,r})_{1 \leq s,r \leq t} \otimes I_n),
\end{align*}
\]

such that the two collections \((Z^0_{\sigma}, \ldots, Z^{t-1}_{\sigma})\) and \((Z^1_{\tau}, \ldots, Z^t_{\tau})\) are independent of each other. Assume further that \(\Sigma_{0,0}, \ldots, \Sigma_{t-1,t-1}, T_{1,1}, \ldots, T_{t,t} > 0 \).

Then for any deterministic sequence \(\phi_n : (\mathbb{R}^n \times \mathbb{R}^m)^t \times \mathbb{R}^n \to \mathbb{R} \) of uniformly pseudo-Lipschitz functions of order \(k \),

\[
\phi_n(u^0, v^0, u^1, v^1, \ldots, v^{t-1}, u^t) \overset{p}{\sim} \mathbb{E} \left[\phi_n \left(u^0, Z^0_{\sigma}, Z^1_{\tau}, \ldots, Z^{t-1}_{\sigma}, Z^t_{\tau} \right) \right].
\]

The proof of this theorem is presented in Section 6 and is obtained by reduction to the symmetric case, which is treated in the next section.

As mentioned above, we use Eq. (29) to define the coefficients \(b_t, d_t \) because this simplifies the proofs. In practice, this definition is replaced by an empirical estimate, e.g. as in Eq. (3). State evolution follows for these versions of AMP provided such estimates of \(b_t, d_t \) are consistent.

Corollary 2. Consider the modified AMP iteration whereby Eqs. (27), (28) are replaced by

\[
\begin{align*}
\hat{u}^{t+1} &= A^T g_t(\hat{v}^t) - \hat{d}_t e_t(\hat{u}^t), \\
\hat{v}^t &= A e_t(\hat{u}^t) - \hat{b}_t g_{t-1}(\hat{v}^{t-1}),
\end{align*}
\]

with the initialization \(\hat{u}^0 = u^0 \), where \(\hat{b}_t = \hat{b}_t(\hat{u}^0, \hat{v}^0, \ldots, \hat{v}^{t-1}, \hat{u}^t) \) and \(\hat{d}_t = \hat{d}_t(\hat{u}^0, \hat{v}^0, \ldots, \hat{v}^{t-1}, \hat{u}^t, \hat{v}^t) \) are two estimators of \(b_t, d_t \). Assume the same conditions as Theorem 1. If, for each \(t \), \(b_t(\cdot), d_t(\cdot) \) are such that

\[
\hat{b}_t(\hat{u}^0, \hat{v}^0, \ldots, \hat{v}^{t-1}, \hat{u}^t) \overset{p}{\sim} b_t, \quad \hat{d}_t(\hat{u}^0, \hat{v}^0, \ldots, \hat{v}^{t-1}, \hat{u}^t, \hat{v}^t) \overset{p}{\sim} d_t,
\]

then the iterates \((\hat{u}^t, \hat{v}^t)_{t \geq 0}\) satisfy state evolution, namely Eq. (32) holds with \((u^t, v^t)_{t \geq 0}\) replaced by \((\hat{u}^t, \hat{v}^t)_{t \geq 0}\).

The proof of this statement is deferred to Section 6.

Two choices of \(b_t, d_t \) that satisfy the assumptions are:
The empirical values
\[\hat{b}_t = \frac{1}{m} \text{div} e_t(\hat{u}^t), \quad \hat{d}_t = \frac{1}{m} \text{div} g_t(\hat{v}^t). \] (36)

By Theorem 1 if \(\text{div} e_t(\cdot)/m, \text{div} g_t(\cdot)/m \) are uniformly pseudo-Lipschitz, then the assumptions of Corollary 2 hold, and hence we can apply state evolution.

As an alternative,
\[\hat{b}_t = \frac{n\langle \hat{u}^t, e_t(\hat{u}^t) \rangle}{m\|\hat{u}^t\|_2^2}, \quad \hat{d}_t = \frac{\langle \hat{v}^t, g_t(\hat{v}^t) \rangle}{\|\hat{v}^t\|_2^2}. \] (37)

Consistency follows (for \(e_t(\cdot), g_t(\cdot) \) uniformly Lipschitz) from Theorem 1 and Gaussian integration by parts (in particular, Stein’s lemma; see Lemma 17).

4 Symmetric AMP

For all \(n \), we are given a (deterministic) vector \(x^0 \in \mathbb{R}^n \) and a sequence of (deterministic) functions \(\{f_t: \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{N}} \). These will be referred to as the setting \(\{x^0, f_t\} \). Given a sequence of (random) symmetric matrices \(A = A(n) \in \mathbb{R}^{n \times n} \), we consider the following symmetric AMP iteration
\[x^{t+1} = A m^t - b_t m^{t-1}, \] (38)
\[m^t = f_t(x^t), \] (39)
for \(t \in \mathbb{N} \), with initialization \(x^0 \) (and \(m^{-1} = 0 \)). Here
\[b_t = \frac{1}{n} \mathbb{E} \left[\text{div} f_t(Z^t) \right], \] (40)

where \(Z^t \sim \mathcal{N}(0, K_t I_n) \) and \(K_{t,t} \) will be defined via the state evolution recursion below (see in particular Eq. (44)). We denote this AMP recursion as \(\{x^t, m^t | f_t, x^0\} \), to make explicit the dependence on the setting.

We insist on the fact that \(A, f_t \) and \(x^0 \) depend on \(n \). However, we will drop this dependence most of the time to ease the reading.

We make the following assumptions.

(A1) \(A \) is sampled from the Gaussian orthogonal ensemble GOE\((n)\), i.e. \(A = G + G^\top \) for \(G \in \mathbb{R}^{n \times n} \) with i.i.d. entries \(G_{ij} \sim \mathcal{N}(0, 1/(2n)) \).

(A2) For each \(t \in \mathbb{N} \), \(f_t: \mathbb{R}^n \to \mathbb{R}^n \) is uniformly Lipschitz (as a sequence in \(n \)).

(A3) \(\|x^0\|_2/\sqrt{n} \) converges to a finite constant as \(n \to \infty \).

(A4) The following limit exists and is finite:
\[K_{1,1} = \lim_{n \to \infty} \frac{1}{n} \langle f_0(x^0), f_0(x^0) \rangle. \] (41)
(A5) For any \(t \in \mathbb{N}_{>0} \) and any \(s \geq 0 \), the following limit exists and is finite:
\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\left\langle f_0(x^0), f_t(Z) \right\rangle \right]
\]
where \(Z \in \mathbb{R}^n, Z \sim \mathcal{N}(0, sI_n) \).

(A6) For any \(s, t \in \mathbb{N}_{>0} \) and any \(S \in \mathbb{R}^{2 \times 2}, S \succeq 0 \), the following limit exists and is finite:
\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\left\langle f_s(Z), f_t(Z') \right\rangle \right]
\]
where \((Z, Z') \in (\mathbb{R}^n)^2, (Z, Z') \sim \mathcal{N}(0, S \otimes I_n)\).

Given assumptions (A4), (A5) and (A6) we can define a doubly infinite array \((K_{s,t})_{s,t \geq 1}\) via a state evolution recursion as follows.

The initial condition \(K_{1,1}\) is given by assumption (A4). Once \(K_{t} = (K_{s,r})_{s,r \leq t}\) is defined, let \((Z^1, \ldots, Z^t) \sim \mathcal{N}(0, K_{t,t} \otimes I_n)\) and define, for \(0 \leq s \leq t\),
\[
K_{t+1,s+1} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\left\langle f_s(Z^s), f_t(Z^t) \right\rangle \right].
\]
where it is understood that \(Z^0 = x^0\) and \(K_{s+1,t+1} = K_{t+1,s+1}\) is fixed by symmetry. We will refer to \((K_{s,t})_{s,t \geq 1}\) as to the state evolution iterates, and we will emphasize their dependence on the setting denoting them by \(\{K_{s,t}|f_t, x^0\}\). The Onsager term in Eq. (38) is defined as per Eq. (40), with \(Z^t \sim \mathcal{N}(0, K_{t,t}I_n)\), and \(K_{t,t}\) given by state evolution.

We have can now state the following state evolution characterization of symmetric AMP, which is analogous to Theorem 1.

Theorem 3. Under assumptions (A1)-(A6), consider the AMP iteration \(\{x^t, m^t|f_t, x^0\}\). Define for all \(n\),
\[
(Z^1, \ldots, Z^{t+1}) \sim \mathcal{N}(0, (K_{t,t})_{s,r \leq t+1} \otimes I_n).
\]
Assume further that \(K_{1,1}, \ldots, K_{t,t} > 0\). For any sequence of uniformly pseudo-Lipschitz functions \(\left\{\phi_n: (\mathbb{R}^n)^{t+2} \to \mathbb{R}\right\}\),
\[
\phi_n(x^0, x^1, \ldots, x^{t+1}) \xrightarrow{P} \mathbb{E} \left[\phi_n(x^0, Z^1, \ldots, Z^{t+1}) \right].
\]

The proof of this theorem is presented in Section 5. We also note that an analogue of Corollary 2 applies to this case as well, and \(b_t\) can be replaced by a consistent estimator \(\hat{b}_t\).

5 Proof of Theorem 3 (Symmetric AMP)

In this section we prove Theorem 3 using a sequence of lemmas, whose proofs are postponed to Section 5.5. We will also try to motivate the main steps. Throughout this section and the next, Assumptions (A1)-(A6) hold.
5.1 Notations

We generally denote scalars by lower case letters, e.g. a, b, c, vectors by lower case boldface, e.g. \mathbf{a}, \mathbf{b}, \mathbf{c}, and matrices by upper case boldface, e.g. \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}. We also use the upper case to emphasize that we are referring to a random variable, and—with a slight abuse of the convention—upper case boldface for random vectors.

For two random variables X and Y and a σ-algebra \mathcal{G}, we use $X \mid \mathcal{G} \overset{d}{=} Y$ to mean that for any integrable function ϕ and any \mathcal{G}-measurable bounded random variable Z, $\mathbb{E} [\phi (X) \mid Z] = \mathbb{E} [\phi (Y) \mid Z]$. In words, X is distributed as Y conditional on \mathcal{G}. If \mathcal{G} is the trivial σ-algebra, we simply write $X \overset{d}{=} Y$, i.e. X is distributed as Y.

For two vectors $x, y \in \mathbb{R}^n$, we denote their inner product by $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$, and the associated norm by $\|x\|_2$. For two matrices $X, Y \in \mathbb{R}^{m \times n}$, $\langle X, Y \rangle = \text{Tr}(X^T Y)$ is their scalar product when viewed as vectors.

We use I_n to denote the $n \times n$ identity matrix. We use $\sigma_{\text{min}}(Q)$ and $\sigma_{\text{max}}(Q) = \|Q\|_{\text{op}}$ to denote the minimum and maximum singular values of the matrix Q. For two matrices Q and P of the same number of rows, $[Q \mid P]$ denotes the matrix by concatenating Q and P horizontally. For any matrix M, we denote the orthogonal projection onto its range P_M, and we let $P_{M} = I - P_{M}$. When M is an empty matrix, $P_{M} = 0$ and $P_{M}^{\dagger} = I$. When M has full column rank, $P_{M} = M \left(M^{T} M \right)^{-1} M^{T}$.

If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a Lipschitz function, it is almost everywhere differentiable (w.r.t. the Lebesgue measure), and thus we can define almost everywhere the quantity

$$\text{div} \ f(x) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(x)$$

(47)

where $f_i(x)$ is the i-th coordinate of $f(x)$.

We say that a sequence of events that depends on n, hold with high probability (w.h.p.) if it holds with probability converging to 1 as $n \to \infty$.

We define the Wasserstein distance (of order 2) between two probability measures μ and ν as

$$W_2 (\mu, \nu) = \inf_{(X,Y)} \mathbb{E} \left[(X - Y)^2 \right]^{1/2},$$

(48)

where the infimum is taken over all couplings of μ and ν, i.e. all random variables (X,Y) such that $X \sim \mu$ and $Y \sim \nu$ marginally.

5.2 Long AMP

The main idea of the proof is to analyze a different recursion than the AMP recursion (38), (39). This new recursion satisfies the conclusion of Theorem 3 and will be a good approximation of the AMP recursion in the asymptotic $n \to \infty$. It is defined as:

$$h^{t+1} = P_{Q_{t-1}}^\perp A P_{Q_{t-1}}^\perp q^t + H_{t-1} \alpha^t,$$

(49)

$$q^t = f_t \left(h^t \right),$$

(50)

where at each step t, we have defined

$$Q_{t-1} = \left[q^0 | q^1 | \cdots | q^{t-1} \right],$$

(51)
\[\alpha^t = \left(Q_{t-1}^T Q_{t-1} \right)^{-1} Q_{t-1}^T \tilde{q}^t, \]
\[H_{t-1} = [h^1|h^2|\cdots|h^t]. \]

The initialization is \(q^0 = f_0(x^0) \) and \(h^1 = Aq^0 \). This recursion will be referred as the \textit{Long AMP} recursion, or LAMP \(\{h^t, q^t|f_t, x^0\} \).

Note that for the LAMP recursion to be well-defined, the matrices \(Q_{t-1}^T Q_{t-1} \) must be invertible, that is to say the family \(q^0, q^1, \ldots, q^{t-1} \) must be linearly independent. This has no reason to be true, since \(q^s = f_s(h^s) \) and \(f_s \) is a generic sequence of Lipschitz functions (satisfying assumptions (A4)-(A6)). For instance, if all \(f_s, s = 0, \ldots, t-1 \), have images included in a same subspace of dimension lower than \(t \), this cannot be true. This difficulty leads to some technicalities in the proof. However, we will start by studying the case where \(Q_{t-1}^T Q_{t-1} \) is invertible, with \(\sigma_{\min}(Q_{t-1})/\sqrt{n} \geq c_t > 0 \), for \(n \) large enough, where \(c_t \) is a constant independent of \(n \). More formally, we make the following assumption.

\textbf{Assumption (non-degeneracy):} \ We say that the LAMP iterates satisfy the non-degeneracy assumption if

- almost surely, for all \(t \in \mathbb{N} \) and all \(n \geq t \), \(Q_{t-1} \) has full column rank,

- for all \(t \in \mathbb{N}_{>0} \), there exists some constant \(c_t > 0 \) independent of \(n \) such that almost surely, there exists \(n_0 \) (random) such that, for \(n \geq n_0, \sigma_{\min}(Q_{t-1})/\sqrt{n} \geq c_t > 0 \).

5.3 The non-degenerate case

The LAMP recursion is of interest because it behaves well with Gaussian conditioning, so that the sequence of iterates becomes easier to study. The following lemma makes this idea explicit.

\textbf{Lemma 4.} Consider the LAMP \(\{h^t, q^t|f_t, x^0\} \), and assume it satisfies the non-degeneracy assumption. Fix \(t \in \mathbb{N}_{>0} \). Let \(\mathcal{S}_t \) be the \(\sigma \)-algebra generated by \(h^1, \ldots, h^t \) and denote \(q^t_{\perp} = P_{Q_{t-1}} q^t \) and \(q^t_{\parallel} = P_{Q_{t-1}} q^t \). Then:

\[h^{t+1}|_{\mathcal{S}_t} \overset{d}{=} P_{Q_{t-1}}^{\perp} \tilde{A} q^t_{\perp} + H_{t-1} \alpha^t \]

where \(\tilde{A} \) is an independent copy of \(A \).

Here, we decompose \(h^{t+1} \) as a sum of past iterates \(h^1, \ldots, h^t \), and of a new Gaussian vector \(P_{Q_{t-1}}^{\perp} \tilde{A} q^t_{\perp} \), whose conditional law knowing the past \(\mathcal{S}_t \) is well understood. The key property is that we have replaced \(A \) by a new matrix \(\tilde{A} \) decoupled from the past iterates. This enables us to show that the sets of points \(q^0, q^1, \ldots, q^t \) and \(h^1, h^2, \ldots, h^{t+1} \) have asymptotically the same geometry, and that the conclusion of Theorem 3 holds for LAMP. The following lemma gives a precise statement.

\textbf{Lemma 5.} Consider the LAMP \(\{h^t, q^t|f_t, x^0\} \) and suppose it satisfies the non-degeneracy assumption. Then:

(a) For all \(0 \leq s, r \leq t \),

\[\frac{1}{n} \left< h^{s+1}, h^{r+1} \right> \overset{P}{=} \frac{1}{n} \left< q^s, q^r \right>. \]
(b) For any $t \in \mathbb{N}$, for any sequence of uniformly order-k pseudo-Lipschitz functions $\{\phi_n : (\mathbb{R}^n)^{t+2} \to \mathbb{R}\}$,
\[\phi_n \left(x^0, h^1, \ldots, h^{t+1} \right) \overset{P}{\to} \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] \] (56)
where
\[(Z^1, \ldots, Z^{t+1}) \sim \mathcal{N}\left(0, (K_{s,r})_{s,r \leq t+1} \otimes I_n\right). \] (57)

Here the state evolution $\{K_{s,t} | f_t, x^0\}$ is described in Section 4.

To conclude that Theorem 3 holds in this case, we only need to show that LAMP is a good approximation of AMP.

Lemma 6. Consider the AMP $\{x^t, m^t | f_t, x^0\}$ and the LAMP $\{h^t, q^t | f_t, x^0\}$. Suppose the LAMP satisfies the non-degeneracy assumption. For any $t \in \mathbb{N}$,
\[\frac{1}{\sqrt{n}} \left\| h^{t+1} - x^{t+1} \right\|_2 \overset{P}{\to} 0 \quad \text{and} \quad \frac{1}{\sqrt{n}} \left\| q^t - m^t \right\|_2 \overset{P}{\to} 0. \] (58)

Wrapping things together, we have shown the following weaker form of Theorem 3.

Theorem 7. Assume (A1)-(A6) and that the LAMP iterates satisfy the non-degeneracy assumption. Consider the AMP $\{x^t, m^t | f_t, x^0\}$.

For any sequence of uniformly order-k pseudo-Lipschitz functions $\{\phi_n : (\mathbb{R}^n)^{t+2} \to \mathbb{R}\}$,
\[\phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) \overset{P}{\to} \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] \] (59)
where
\[(Z^1, \ldots, Z^{t+1}) \sim \mathcal{N}\left(0, (K_{s,r})_{s,r \leq t+1} \otimes I_n\right). \] (60)

5.4 The general case

To treat the case where the matrix Q_{t-1} is ill-conditioned, we add a small perturbation to the functions f_s so that the perturbed AMP behaves well. We then make sure that the perturbed AMP approximates well the original one.

A convenient way implement this program is to perturb randomly the functions. We then show that almost surely, the perturbation has the required properties (A4)-(A6). Specifically, consider
\[f_t^{\epsilon y}(\cdot) = f_t(\cdot) + \epsilon y^t \] (61)
where $\epsilon \geq 0$ and y^0, y^1, y^2, \ldots are generated as i.i.d. $\mathcal{N}(0, I_n)$, independent of the matrix A. The perturbation vectors y^0, y^1, y^2, \ldots are called collectively as y for brevity.

Lemma 8. Almost surely (w.r.t. y), the setting $\{x^0, f_t^{\epsilon y}\}$ satisfies assumptions (A4)-(A5)-(A6).

As a consequence, we can define an associated state evolution $\{K_{s,t} | f_t^{\epsilon y}, x^0\}$:
\[K_{1,1}^t = \lim_{n \to \infty} \frac{1}{n} \left\| f_0^{\epsilon y}(x^0) \right\|_2^2, \] (62)
and once $K^\epsilon = (K^\epsilon_{s,t})_{s,t \leq t}$ is defined, take $(Z^{\epsilon,1}, \ldots, Z^{\epsilon,t}) \sim N(0, K^\epsilon \otimes I_n)$ independently of y and define

\[
K^\epsilon_{1,t+1} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\langle f_0^y(x^0), f_t^y(Z^{\epsilon,t}) \rangle \right],
\]

\[
K^\epsilon_{s+1,t+1} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\langle f_s^y(Z^{\epsilon,s}), f_t^y(Z^{\epsilon,t}) \rangle \right],
\]

(63)

(64)

where the expectations are taken w.r.t. $Z^{\epsilon,1}, \ldots, Z^{\epsilon,t}$ but not y. Moreover, the resulting state evolution is almost surely equal to a constant, thus justifying that we drop the dependence on y in $K^\epsilon_{s,t}$.

Lemma 9. Denote as Q^y_{t-1} the matrix associated with the LAMP iterates $\{h^y_{t-1}, q^y_{t-1}, f^y_{t-1}, x^0\}$, according to equation (51). Assume $\epsilon > 0$. Then as soon as $n \geq t$, almost surely the matrix Q^y_{t-1} is of full column rank. Furthermore, there exists a constant $c_{t, \epsilon} > 0$ independent of n such that almost surely, there exists n_0 (random) such that for $n \geq n_0$, $\sigma_{\min}(Q^y_{t-1}) / \sqrt{n} \geq c_{t, \epsilon}$.

The last two lemmas imply that almost surely, we can apply Theorem 7 to Q^y_{t-1}, and denote as K^ϵ_{t} the matrix associated with the LAMP iterates $\{h^y_{t}, q^y_{t}, f^y_{t}, x^0\}$, according to equation (61). Assume $\epsilon > 0$. Then as soon as $n \geq t$, almost surely the matrix Q^y_{t-1} is of full column rank. Furthermore, there exists a constant $c_{t, \epsilon} > 0$ independent of n such that almost surely, there exists n_0 (random) such that for $n \geq n_0$, $\sigma_{\min}(Q^y_{t-1}) / \sqrt{n} \geq c_{t, \epsilon}$.

The proof combines three elements that follow from the previous lemmas:

1. Thanks to Lemmas 8 and 9, almost surely w.r.t. the perturbation y^0, y^1, \ldots, the assumptions of Theorem 7 are satisfied for the perturbed setting $\{x^0, f^y_{t}\}$. We get that a.s., for any sequence of uniformly pseudo-Lipschitz functions $\{\phi_n : (\mathbb{R}^n)^t \to \mathbb{R}\}$, $\phi_n(x^0, x^0, \ldots, x^y_{t}, x^0) \leq \mathbb{E} \left[\phi_n(x^0, Z^{\epsilon,1}, \ldots, Z^{\epsilon,t+1}) \right]$

2. where $Z^{\epsilon,1}, \ldots, Z^{\epsilon,t+1} \sim N(0, (K^\epsilon_{s,t})_{s,t \leq t+1} \otimes I_n)$. To obtain the desired result, we shall take the limit $\epsilon \to 0$, the technicalities of which are presented in the following two elements.
Let $Z^1, \ldots, Z^{t+1} \sim N \left(0, (K_{r,s})_{r,s \leq t+1} \otimes I_n \right)$. Since, by Lemma 11, the perturbed state evolution converges to the original one when $\epsilon \to 0$, so we can apply Lemma 10 to get

\[
\sup_{n \geq 1} \left| \mathbb{E} \left[\phi_n \left(x^0, Z^{t+1} \right) - \mathbb{E} \left[\phi_n \left(x^0, Z^{t+1} \right) \right] \right] \right| \to 0. \tag{70}
\]

Using that ϕ_n is uniformly pseudo-Lipschitz, and the triangle inequality,

\[
\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \phi_n \left(x^0, x^{y,t+1} \right) \right| \leq LC_1(k, t) \left(1 + \frac{\|x^0\|_2^{k-1}}{n(k-1)/2} + \sum_{i=1}^{t+1} \frac{\|x^{y,i} - x^i\|_2^{k-1}}{n(k-1)/2} \right) \leq C_2(k) \left(\|K_0\|_{op}^{(k-1)/2} + 1 \right). \tag{71}
\]

Finally, using the triangle inequality, w.h.p.,

\[
\frac{\|x^i\|_2^{k-1}}{n(k-1)/2} \leq C_3(k) \left(\frac{\|x^{y,i} - x^i\|_2^{k-1}}{n(k-1)/2} \right) \leq C_4(k) \left(\|K_0\|_{op}^{(k-1)/2} + 1 \right). \tag{72}
\]

Putting things together, we get w.h.p.,

\[
\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \phi_n \left(x^0, x^{y,t+1} \right) \right| \leq LC_5(k, t) \left(1 + \|K_0\|_{op}^{(k-1)/2} + \sum_{i=1}^{t+1} h_i(\epsilon)^{k-1} \right). \tag{73}
\]

As this upper bound goes to 0 as $\epsilon \to 0$, we have for any $\eta > 0$,

\[
\lim_{\epsilon \to 0} \sup_{n \to \infty} \Pr \left(\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \phi_n \left(x^0, x^{y,t+1} \right) \right| \geq \eta \right) = 0. \tag{74}
\]

Let us now combine the three elements together. Let $\eta > 0$. We have:

\[
\Pr \left(\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \mathbb{E} \left[\phi_n \left(x^0, Z^{t+1} \right) \right] \right| \geq \eta \right) \leq \Pr \left(\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \phi_n \left(x^0, x^{y,t+1} \right) \right| \geq \eta \right) \leq \frac{\eta}{3} \tag{75}
\]

\[
+ \Pr \left(\left| \phi_n \left(x^0, x^{y,t+1} \right) - \mathbb{E} \left[\phi_n \left(x^0, Z^{t+1} \right) \right] \right| \geq \eta \right) \tag{76}
\]

\[
+ \Pr \left(\left| \mathbb{E} \left[\phi_n \left(x^0, Z^{t+1} \right) \right] \right| \geq \eta \right) \tag{77}
\]

\[
\leq \frac{2 \eta}{3}. \tag{78}
\]
Because of (78) and (70), this upper bound converges to 0 as $n \to \infty$.

\[
\text{Taking } \limsup \text{ as } n \to \infty, \text{ the second term vanishes because of (69):}
\]

\[
\limsup_{n \to \infty} \Pr \left(\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] \right| \geq \eta \right)
\]

\[
\leq \limsup_{n \to \infty} \Pr \left(\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \phi_n \left(x^0, x^{y_1}, \ldots, x^{y_{t+1}} \right) \right| \geq \frac{\eta}{3} \right)
\]

\[
+ \mathbb{1} \{ \sup_{n \geq 1} \left| \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] - \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] \geq \eta/3 \}.
\]

Because of (78) and (70), this upper bound converges to 0 as $\epsilon \to 0$. We can then conclude that

\[
\left| \phi_n \left(x^0, x^1, \ldots, x^{t+1} \right) - \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^{t+1} \right) \right] \right| \xrightarrow{n \to \infty} 0.
\]

\[\square\]

5.5 Proof of the Lemmas

5.5.1 Proof of Lemma 4

The claim for $t = 0$ is immediate from that \mathcal{G}_0 is the trivial σ-algebra and $P_{Q_{t-1}} = \mathbb{I}_n$. For $t \geq 1$, let us rewrite (49) as

\[
h^{t+1} = Aq^t_{Q_{t-1}} - P_{Q_{t-1}} Aq^t_{Q_{t-1}} + H_{t-1} \alpha^t
\]

\[
= Aq^t_{Q_{t-1}} - Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} Y_{t-1}^T q^t_{Q_{t-1}} + H_{t-1} \alpha^t
\]

where $q^t_{Q_{t-1}} = P_{Q_{t-1}} q^t$, $Q_{t-1} = \left[q^0_{Q_{t-1}} | q^1_{Q_{t-1}} | \ldots | q^{t-1}_{Q_{t-1}} \right]$ and $Y_{t-1} = [y^0 | y^1 | \ldots | y^{t-1}]$ with $y^s = A^T q^t_s = Aq^t_s$. Here we use the fact that $P_{Q_{t-1}} = P_{Q_{t-1}}$. Notice that

\[
y^t = h^t,
\]

\[
y^s = h^{s+1} + \hat{Q}_{s-1} \left(\hat{Q}_{s-1}^T \hat{Q}_{s-1} \right)^{-1} Y_{s-1}^T q^t_{s-1} - H_s \alpha^s
\]

for any $s \geq 1$. Also, H_{s-1}, Q_{s-1}, and \hat{Q}_{s-1} are \mathcal{G}_t-measurable for $1 \leq s \leq t$. Then a simple induction yields that Y_{t-1} is \mathcal{G}_t-measurable. Hence to find $A|_{\mathcal{G}_t}$, conditioning on \mathcal{G}_t is equivalent to conditioning on the linear constraint $AQ_{t-1} = Y_{t-1}$. As shown in [HM13 Lemma 3] and [BM11 Lemma 10], $A|_{\mathcal{G}_t} \overset{d}{=} \mathbb{E} [A|_{\mathcal{G}_t}] + \mathcal{P}_t \left(\hat{A} \right)$, where $\hat{A} \overset{d}{=} A$ independent of \mathcal{G}_t and \mathcal{P}_t is the orthogonal projector onto the subspace \(\{ \hat{A} \in \mathbb{R}^{n \times n} | \hat{A} Q_{t-1} = 0, \hat{A} = \hat{A}^T \} \):

\[
\mathbb{E} \left[A|_{\mathcal{G}_t} \right] = A - P_{Q_{t-1}}^\perp AP_{Q_{t-1}}^\perp = A - P_{Q_{t-1}}^\perp A P_{Q_{t-1}}^\perp;
\]

\[
\mathcal{P}_t \left(\hat{A} \right) = P_{Q_{t-1}}^\perp A P_{Q_{t-1}}^\perp = P_{Q_{t-1}}^\perp \hat{A} P_{Q_{t-1}}^\perp,
\]

where we use $P_{Q_{t-1}}^\perp = P_{Q_{t-1}}^\perp$. Then from (49),

\[
h^{t+1}|_{\mathcal{G}_t} \overset{d}{=} P_{Q_{t-1}}^\perp \hat{A} P_{Q_{t-1}}^\perp q^t + H_{t-1} \alpha^t
\]

since $P_{Q_{t-1}}^\perp \mathbb{E} [A|_{\mathcal{G}_t}] P_{Q_{t-1}}^\perp = P_{Q_{t-1}}^\perp (A - P_{Q_{t-1}}^\perp A P_{Q_{t-1}}^\perp) P_{Q_{t-1}}^\perp = 0$. 18
5.5.2 Proof of Lemma 5

We prove the results by induction over \(t \in \mathbb{N} \). Let the statement for \(t \) be \(\mathcal{H}_t \).

Proof of \(\mathcal{H}_0 \). Recall that \(h^1 = Aq^0 \). Then (a) follows immediately from Lemma 19 and (b) is from Lemmas 19, 21, 23.

Proof of \(\mathcal{H}_t \). We assume \(\mathcal{H}_0, \ldots, \mathcal{H}_{t-1} \) hold and prove \(\mathcal{H}_t \). First note that \(\alpha^t \xrightarrow{\mathcal{P}} \alpha_t^{t,*} \) a constant vector in \(\mathbb{R}^t \), using \(\mathcal{H}_{t-1} \) (b), Lemma 20 and the non-degeneracy assumption.

(a) We only need to prove the claim for \(r = t \).

Consider the case \(s < t \). Since \(h^{s+1} \) and \(\langle q^s, q^t \rangle \) are \(\mathcal{G}_t \)-measurable, by Lemma 4

\[
\left(\langle h^{s+1}, h^{t+1} \rangle - \langle q^s, q^t \rangle \right) \bigg|_{\mathcal{G}_t} \overset{d}{=} \left(P_{Q_{t-1}}^T h^{s+1}, \tilde{A}q^t_{\perp} \right) + \left(H_{t-1}^T h^{s+1}, \alpha^t \right) - \langle q^s, q^t \rangle. \tag{94}
\]

Note that by \(\mathcal{H}_{t-1} \) (a), \(\frac{1}{n} \left\| H_{t-1}^T h^{s+1} - Q_{t-1}^T q^s \right\|_2 \overset{\mathcal{P}}{\rightarrow} 0 \). Hence,

\[
\frac{1}{n} \left\| H_{t-1}^T h^{s+1} - Q_{t-1}^T q^s \right\|_2 = \frac{1}{n} \left\| H_{t-1}^T h^{s+1}, \alpha^t \right\| - \langle q^s, q^t \rangle \tag{95}
\]

\[
= \frac{1}{n} \left\| H_{t-1}^T h^{s+1} - Q_{t-1}^T q^s, \alpha^t \right\| \tag{96}
\]

\[
\leq \frac{1}{n} \left\| H_{t-1}^T h^{s+1} - Q_{t-1}^T q^s \right\|_2 \left\| \alpha^t \right\|_2 \overset{\mathcal{P}}{\rightarrow} 0 \tag{97}
\]

where we use \(\alpha^t \xrightarrow{\mathcal{P}} \alpha_t^{t,*} \) (which holds by the induction hypothesis). Furthermore, since \(\tilde{A} \) is independent of \(q^t_{\perp} \) and \(P_{Q_{t-1}}^T h^{s+1} \), by Lemma 19

\[
\frac{1}{n} \left\| \left(P_{Q_{t-1}} \right)^T h^{s+1}, \tilde{A}q^t_{\perp} \right\|_2 \overset{\mathcal{P}}{\rightarrow} 0 \tag{98}
\]

since \(\frac{1}{\sqrt{n}} \left\| h^{s+1} \right\|_2 \) and \(\frac{1}{\sqrt{n}} \left\| q^t \right\|_2 \) concentrate at finite constants by \(\mathcal{H}_{t-1} \) (b) and Lemma 20 and \(\left\| P_{Q_{t-1}}^T h^{s+1} \right\|_2 \leq \left\| h^{s+1} \right\|_2 \leq \left\| q^t \right\|_2 \). It follows that \(\frac{1}{n} \left\langle h^{s+1}, h^{t+1} \right\rangle \overset{\mathcal{P}}{\sim} \frac{1}{n} \left\langle q^s, q^t \right\rangle \).

Consider the case \(s = t \). Since \(q^t \) is \(\mathcal{G}_t \)-measurable, by Lemma 4

\[
\left(\left\| h^{t+1} \right\|_2^2 - \left\| q^t \right\|_2^2 \right) \bigg|_{\mathcal{G}_t} \overset{d}{=} \left(P_{Q_{t-1}}^T \tilde{A}q^t_{\perp} \right) + 2 \left(P_{Q_{t-1}}^T \tilde{A}q^t_{\perp}, H_{t-1} \alpha^t \right) + \left\| H_{t-1} \alpha^t \right\|_2^2 - \left\| q^t \right\|_2^2 \tag{99}
\]

\[
= \left(P_{Q_{t-1}}^T \tilde{A}q^t_{\perp} \right) + 2 \left(\tilde{A}q^t_{\perp}, P_{Q_{t-1}}^T H_{t-1} \alpha^t \right) + \left\| H_{t-1} \alpha^t \right\|_2^2 - \left\| q^t \right\|_2^2 \tag{100}
\]

Again, \(\frac{1}{n} \left\langle \tilde{A}q^t_{\perp}, P_{Q_{t-1}}^T H_{t-1} \alpha^t \right\rangle \overset{\mathcal{P}}{\rightarrow} 0 \). By independence of \(\tilde{A} \) and Lemma 19 we get

\[
\frac{1}{n} \left\| P_{Q_{t-1}}^T \tilde{A}q^t_{\perp} \right\|_2^2 = \frac{1}{n} \left\| \tilde{A}q^t_{\perp} \right\|_2^2 - \frac{1}{n} \left\| P_{Q_{t-1}}^T \tilde{A}q^t_{\perp} \right\|_2^2 \overset{\mathcal{P}}{\sim} \frac{1}{n} \left\| q^t_{\perp} \right\|_2^2. \tag{101}
\]

Using \(\mathcal{H}_{t-1} \) (a) and that \(\alpha^t \xrightarrow{\mathcal{P}} \alpha_t^{t,*} \),

\[
\frac{1}{n} \left\langle \alpha^t, \left(H_{t-1}^T H_{t-1} - Q_{t-1}^T Q_{t-1} \right) \alpha^t \right\rangle \overset{\mathcal{P}}{\rightarrow} 0. \tag{102}
\]

Notice that \(\left\langle \alpha^t, Q_{t-1}^T Q_{t-1} \alpha^t \right\rangle = \left\| q^t \right\|_2^2 \). The claim is proven.
(b) First note that \(\frac{1}{n} \| h^{t+1} \|^2_2 = \frac{1}{n} \| q^t \|^2_2 \xrightarrow{P_{n \to \infty}} K_{t+1,t+1} \) by \(\mathcal{H}_{t-1} \). By Lemma 4,

\[
\phi_n \left(x^0, h^1, \ldots, h^t, h^{t+1} \right) \big|_{\mathcal{T}_t} \overset{d}{=} \phi_n \left(x^0, h^1, \ldots, h^t, \tilde{A} q_{\perp}^t - P_{Q_{t-1}} \tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right),
\]

and we denote the right-hand side by \(\phi'_n \left(\tilde{A} q_{\perp}^t - P_{Q_{t-1}} \tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right) \) for brevity. Note that \(\phi'_n \) is uniformly pseudo-Lipschitz by Lemma 21 and the induction hypothesis, whence

\[
\left| \phi'_n \left(\tilde{A} q_{\perp}^t - P_{Q_{t-1}} \tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right) - \phi'_n \left(\tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right) \right| \\
\leq L_n C(k, t) \left(1 + \left(\frac{\| x^0 \|_2}{\sqrt{n}} \right)^{k-1} + \sum_{s=1}^t \left(\frac{\| h^s \|_2}{\sqrt{n}} \right)^{k-1} \right) \left(\frac{\| \tilde{A} q_{\perp}^t \|_2}{\sqrt{n}} \right)^{k-1} \left(\frac{\| H_{t-1} \alpha^t \|_2}{\sqrt{n}} \right)^{k-1} \left(\frac{P_{Q_{t-1}} \tilde{A} q_{\perp}^t}{\sqrt{n}} \right)_2
\]

where \(C(k, t) \) is a constant depending only on \(k \) and \(t \). We have:

\[
\frac{1}{\sqrt{n}} \| H_{t-1} \alpha^t \|_2 \leq \frac{1}{\sqrt{n}} \| H_{t-1} \|_2 \| \alpha^t \|_2 \leq \frac{1}{\sqrt{n}} \| H_{t-1} \|_F \| \alpha^t \|_2 = \sqrt{\frac{1}{n} \sum_{s=1}^t \| h^s \|_2^2} \cdot \| \alpha^t \|_2
\]

which converges to a finite constant by \(\mathcal{H}_{t-1} \) (b) and that \(\alpha^t \overset{P}{\xrightarrow{n \to \infty}} \alpha^{t,*} \). We also have

\[
\frac{1}{\sqrt{n}} \| \tilde{A} q_{\perp}^t \|_2 \leq \frac{1}{\sqrt{n}} \| \tilde{A} \|_2 \| q^t \|_2,
\]

which converges to a finite constant due to \(\mathcal{H}_{t-1} \) (b) and Theorem 16. Furthermore, by independence of \(\tilde{A} \), recalling \(\text{rank}(P_{Q_{t-1}}) \leq t \), we have

\[
\frac{1}{\sqrt{n}} \| P_{Q_{t-1}} \tilde{A} q_{\perp}^t \|_2 \xrightarrow{P_{n \to \infty}} 0
\]

by Lemma 19. Therefore,

\[
\phi'_n \left(\tilde{A} q_{\perp}^t - P_{Q_{t-1}} \tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right) \overset{P}{\xrightarrow{n \to \infty}} \phi'_n \left(\tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right)
\]

\[
\overset{P}{\xrightarrow{n \to \infty}} \phi'_n \left(\tilde{A} q_{\perp}^t + H_{t-1} \alpha^{t,*} \right).
\]

Notice that \(\frac{1}{n} \| q^t \|_2^2 = \frac{1}{n} \| q^t \|_2^2 - \frac{1}{n} \| \alpha^t, Q_{t-1}^t Q_{t-1} \alpha^t \|_2 \), which converges to a constant \(a^2 \) due to \(\mathcal{H}_{t-1} \) (b) and that \(\alpha^t \overset{P}{\xrightarrow{n \to \infty}} \alpha^{t,*} \). Then by Lemma 19, there exists \(Z \sim \mathcal{N}(0, I_n) \) independent of \(\mathcal{G}_t \) such that

\[
\phi'_n \left(\tilde{A} q_{\perp}^t - P_{Q_{t-1}} \tilde{A} q_{\perp}^t + H_{t-1} \alpha^t \right) \overset{P}{\xrightarrow{n \to \infty}} \phi'_n \left(aZ + H_{t-1} \alpha^{t,*} \right)
\]

\[
\overset{P}{\xrightarrow{n \to \infty}} \mathbb{E} \left[\phi'_n \left(aZ + H_{t-1} \alpha^{t,*} \right) \right]
\]

\[
\overset{P}{\xrightarrow{n \to \infty}} \mathbb{E} \left[\phi_n \left(x^0, Z^1, \ldots, Z^t, aZ + \sum_{s=1}^t \alpha^{t,*}_s Z^s \right) \right]
\]

where we use Lemma 23 in the second step, and \(\mathcal{H}_{t-1} \) (b) and Lemma 22 in the third step. (Here with an abuse of notation, we let \(Z \) to be on the same joint space as and independent of \(Z^1, \ldots, Z^t \).) The thesis follows immediately from that

\[
\left(Z^1, \ldots, Z^t, aZ + \sum_{s=1}^t \alpha^{t,*}_s Z^s \right) \overset{d}{=} \left(Z^1, \ldots, Z^t, Z^{t+1} \right)
\]
which we now prove.

Let $\tilde{Z} = aZ + \sum_{s=1}^t \alpha_s^* Z^s$ for brevity. Observe that \tilde{Z} is Gaussian with zero mean and i.i.d. entries, $\text{Var} \left[Z \right]$ is a constant independent of n, and $\mathbb{E} \left[Z^s Z^T \right] = \gamma_s I_n$ for some constant γ_s independent of n, for $1 \leq s \leq t$. It suffices to show that $\text{Var} \left[\tilde{Z}_t \right] = K_{t+1,t+1}$ and $\gamma_s = K_{s,t+1}$.

From the above, $H_t(a)$ and $H_{t-1}(b)$, we have:

$$\text{Var} \left[\tilde{Z}_t \right] = \frac{1}{n} \mathbb{E} \left[\| Z \|^2 \right] \overset{P}{\approx} \frac{1}{n} \| h^{t+1} \|^2 \overset{P}{\approx} \frac{1}{n} \| q^t \|^2 \overset{P}{\rightarrow} K_{t+1,t+1}. \quad (111)$$

Similarly, for $s \geq 2$,

$$\gamma_s = \frac{1}{n} \mathbb{E} \left[\langle Z^s, \tilde{Z} \rangle \right] \overset{P}{\approx} \frac{1}{n} \langle h^s, h^{t+1} \rangle \overset{P}{\approx} \frac{1}{n} \langle q^{s-1}, q^t \rangle \overset{P}{\rightarrow} K_{s,t+1}, \quad (112)$$

and for $s = 1$,

$$\gamma_1 = \frac{1}{n} \mathbb{E} \left[\langle Z^1, \tilde{Z} \rangle \right] \overset{P}{\approx} \frac{1}{n} \langle h^1, h^{t+1} \rangle \overset{P}{\approx} \frac{1}{n} \langle q^0, q^t \rangle \overset{P}{\rightarrow} K_{1,t+1}. \quad (113)$$

This completes the proof.

5.5.3 Proof of Lemma 6

For the recursion (119)-(120), define the following quantity for each $t \in \mathbb{N}$,

$$h^{t+1} = Aq^t - b_t q^{t-1}, \quad b_t = \mathbb{E} \left[\frac{1}{n} \text{div} f_t \left(Z^t \right) \right], \quad (114)$$

where we take $h^1 = Aq^0$.

Lemma 13. For any $t \in \mathbb{N}$, $\frac{1}{\sqrt{n}} \| h^{t+1} - \hat{h}^{t+1} \|_2 \overset{P}{\rightarrow} 0$.

Proof. Denoting the claim as H_t, we prove it by induction. The base case H_1 is immediate since $h^1 = \hat{h}^1 = Aq^0$. Assuming H_1, \ldots, H_{t-1}, we prove H_t. Letting $B_t = \text{diag} \left(0, b_1, \ldots, b_t \right) \in \mathbb{R}^{(t+1) \times (t+1)}$ and $\hat{H}_{t-1} = \left[h^1 | \ldots | h^t \right]$, we have $\hat{H}_{t-1} = AQ_{t-1} - [0|Q_{t-2}] B_{t-1}$. Then since $P_{Q_{t-1}} q^t = Q_{t-1} \alpha^t$,

$$Aq^t = Aq^t_{\perp} + AQ_{t-1} \alpha^t = Aq^t_{\perp} + [0|Q_{t-2}] B_{t-1} \alpha^t + \hat{H}_{t-1} \alpha^t. \quad (115)$$

This yields

$$h^{t+1} - \hat{h}^{t+1} = P_{Q_{t-1}} Aq^t_{\perp} - b_t q^{t-1} + [0|Q_{t-2}] B_{t-1} \alpha^t + \left(\hat{H}_{t-1} - H_{t-1} \right) \alpha^t \quad (116)$$

$$= Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} Q_{t-1} Aq^t_{\perp} - b_t q^{t-1} + [0|Q_{t-2}] B_{t-1} \alpha^t + \left(\hat{H}_{t-1} - H_{t-1} \right) \alpha^t \quad (117)$$

$$\overset{(a)}{=} Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} \hat{H}_{t-1} q^t_{\perp} - b_t q^{t-1} + [0|Q_{t-2}] B_{t-1} \alpha^t + \left(\hat{H}_{t-1} - H_{t-1} \right) \alpha^t \quad (118)$$

$$= Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} H_{t-1} q^t_{\perp} - b_t q^{t-1} + [0|Q_{t-2}] B_{t-1} \alpha^t \quad (119)$$

$$= Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} \tilde{H}_{t-1} q^t_{\perp} - b_t q^{t-1} + [0|Q_{t-2}] B_{t-1} \alpha^t \quad (120)$$

21
\[(+ (\hat{H}_{t-1} - H_{t-1}) \alpha^t + Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} (\hat{H}_{t-1} - H_{t-1})^T q_{\perp}^t) \]

\[= \sum_{s=1}^t c_s q^{s-1} + (\hat{H}_{t-1} - H_{t-1}) \alpha^t + Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} (\hat{H}_{t-1} - H_{t-1})^T q_{\perp}^t \]

(121)

where (a) holds because \(Q_{t-1}^T A = (AQ_{t-1})^T = \hat{H}_{t-1}^T + B_{t-1} [0 Q_{t-2}]^T \) and \(Q_{t-2}^T P_{Q_{t-1}}^\perp = 0 \), and

\[c_s = \left((Q_{t-1}^T Q_{t-1})^{-1} H_{t-1}^T q_{\perp}^1 \right)_s - b_s (-\alpha_{s+1}^t)^{T \perp t} \]

(122)

By the induction hypothesis,

\[\frac{1}{\sqrt{n}} \left\| H_{t-1} - \hat{H}_{t-1} \right\|_2 \leq \frac{1}{\sqrt{n}} \left\| H_{t-1} - \hat{H}_{t-1} \right\|_F \xrightarrow{P}{n \to \infty} 0 \]

(123)

By Lemma 5, Lemma 20 and the non-degeneracy assumption, \(\alpha^t \xrightarrow{P}{n \to \infty} \alpha^{t*} \) a constant vector in \(\mathbb{R}^t \). Hence,

\[\frac{1}{\sqrt{n}} \left\| (H_{t-1} - \hat{H}_{t-1}) \alpha^t \right\|_2 \leq \frac{1}{\sqrt{n}} \left\| H_{t-1} - \hat{H}_{t-1} \right\|_F \left\| \alpha^{t*} \right\|_2 \xrightarrow{P}{n \to \infty} 0 \]

(124)

By the non-degeneracy assumption,

\[\frac{1}{\sqrt{n}} \left\| Q_{t-1} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} (H_{t-1} - H_{t-1})^T q_{\perp}^t \right\|_2 \leq \frac{1}{\sqrt{n}} \left\| H_{t-1} - H_{t-1} \right\|_F \left(\frac{1}{c_t \sqrt{n}} \right) \left\| q_{\perp}^t \right\|_2 \xrightarrow{P}{n \to \infty} 0 \]

(125)

where \(\frac{1}{\sqrt{n}} \left\| q_{\perp}^t \right\|_2 \) converges in probability to a finite constant by Lemma 5. We claim that \(\frac{1}{\sqrt{n}} \left\| q_{\perp}^t \right\|_2 \xrightarrow{P}{n \to \infty} 0 \) for \(s = 1, \ldots, t \). Then the thesis follows from this claim.

To prove the claim, denoting \(R = \frac{1}{n} \left(Q_{t-1}^T Q_{t-1} \right)^{-1} \) for brevity, we note that

\[c_s = \sum_{r=1}^t R_{s,r} \frac{1}{n} \left< h^r, q^t - \sum_{\ell=1}^t \alpha^t_{\ell} q^{\ell-1} \right> - b_s (-\alpha_{s+1}^t)^{T \perp t} \]

(126)

We now analyze \(c_s \). By Lemma 5,

\[\frac{1}{n} \left< h^r, q^0 \right> \xrightarrow{P} \mathbb{E} \left[\frac{1}{n} \left< Z^r, f_0 \left(x^0 \right) \right> \right] = 0 \]

(127)

since \(Z^r \) has zero mean. By Lemmas 5 and 17, for \(j = 2, \ldots, t - 1, \)

\[\frac{1}{n} \left< h^r, q^j \right> \xrightarrow{P} \mathbb{E} \left[\frac{1}{n} \left< Z^r, f_j \left(Z^j \right) \right> \right] \]

(128)

\[= K_{r,j} \mathbb{E} \left[\frac{1}{n} \text{div} f_j \left(Z^j \right) \right] \]

(129)

\[\xrightarrow{P} \frac{1}{n} \left< q^{r-1}, q^{j-1} \right> b_j. \]

(130)

Therefore,

\[c_s \xrightarrow{P} \left\{ \sum_{r=1}^t R_{s,r} \frac{1}{n} \left< q^{r-1}, b_r q^{t-1} - \sum_{\ell=2}^t \alpha^t_{\ell} b_{\ell-1} q^{\ell-2} \right> - b_s (-\alpha_{s+1}^t)^{T \perp t} \right\}. \]

(131)
Identifying \(\frac{1}{n} \langle q^{-1}, q^j \rangle = (R^{-1})_{r,j} \), we get

\[
c_s \overset{P}{\sim} \left\{ b_t \| l_{t-s} - \sum_{t=2}^{t} \omega^t b_{t-1} \|_{l-1=s} - b_s \left(-\omega^{t+1}_s\right) \right\}_{1, y} \tag{132}
\]

i.e. \(c_s \overset{P}{\to} 0 \). Finally, since \(\frac{1}{\sqrt{n}} \| q^{i-1} \|_2 \) converges in probability to a finite constant by Lemma 3, the claim is proven. \(\square \)

Proof of Lemma 6 Let \(\mathcal{H}_t \) be the statement \(\frac{1}{\sqrt{n}} \| q^t - m^t \|_2 \overset{P}{\to} 0 \) and \(\frac{1}{\sqrt{n}} \| h^{t+1} - x^{t+1} \|_2 \overset{P}{\to} 0 \). We prove it by induction. The base case \(\mathcal{H}_0 \) is trivial because \(q^0 = m^0 \) and \(h^1 = x^1 \).

We now assume \(\mathcal{H}_{t-1} \) is true and we show \(\mathcal{H}_t \). We have:

\[
\frac{1}{\sqrt{n}} \| q^t - m^t \|_2 = \frac{1}{\sqrt{n}} \| f_t(h^t) - f_t(x^t) \|_2 \leq L_t \frac{1}{\sqrt{n}} \| h^t - x^t \|_2 \overset{P}{\to} 0, \tag{133}
\]

using that \(f_t \) is uniformly Lipschitz and the induction hypothesis \(\mathcal{H}_{t-1} \). Further, we will prove that \(\frac{1}{\sqrt{n}} \| h^{t+1} - x^{t+1} \|_2 \overset{P}{\to} 0 \), which together with Lemma 13 yields \(\mathcal{H}_t \). We have:

\[
h^{t+1} - x^{t+1} = A(q^t - m^t) - b_t(q^{t-1} - m^{t-1}), \tag{134}
\]

thus by Theorem 16 and \(\mathcal{H}_{t-1} \),

\[
\frac{1}{\sqrt{n}} \| h^{t+1} - x^{t+1} \|_2 \leq \| A \|_{op} \frac{1}{\sqrt{n}} \| q^t - m^t \|_2 + b_t \frac{1}{\sqrt{n}} \| q^{t-1} - m^{t-1} \|_2 \overset{P}{\to} 0. \tag{135}
\]

This concludes the induction. \(\square \)

5.5.4 Proof of Lemma 8

Let us first check assumption (A6) for the perturbed setting \(\{x^0, f_t^y\} \). Consider \(s, t \geq 1 \), \(K \) a \(2 \times 2 \) covariance matrix and \((Z^s, Z^t) \in (\mathbb{R}^n)^2 \), \((Z^s, Z^t) \sim N(0, K \otimes I_n) \). Note that \(K \) is deterministic, not depending on the perturbation \(y \). We denote the expectation over \((Z^s, Z^t) \) as \(\mathbb{E}_Z \). We have:

\[
\mathbb{E}_Z \left[\frac{1}{n} \langle f_s^y(Z^s), f_t^y(Z^t) \rangle \right] = \mathbb{E}_Z \left[\frac{1}{n} \langle f_s(Z^s), f_t(Z^t) \rangle \right] + \epsilon \mathbb{E}_Z \left[\frac{1}{n} \langle f_s(Z^s), y^t \rangle \right] \tag{136}
\]

\[
+ \epsilon \mathbb{E}_Z \left[\frac{1}{n} \langle y^s, f_t(Z^t) \rangle \right] + \epsilon^2 \frac{1}{n} \langle y^s, y^t \rangle \tag{137}
\]

\[
= \mathbb{E}_Z \left[\frac{1}{n} \langle f_s(Z^s), f_t(Z^t) \rangle \right] + \epsilon \frac{1}{n} \mathbb{E}_Z [f_s(Z^s)], y^t \tag{138}
\]

\[
+ \epsilon \frac{1}{n} \langle y^s, \mathbb{E}_Z [f_t(Z^t)] \rangle + \epsilon^2 \frac{1}{n} \langle y^s, y^t \rangle. \tag{139}
\]

- The first term does not depend on the perturbation and is thus deterministic. By assumption (A6) for the setting \(\{x^0, f_t\} \), \(\mathbb{E}_Z \left[\frac{1}{n} \langle f_s(Z^s), f_t(Z^t) \rangle \right] \) converges to a (deterministic) limit.

- The second term is Gaussian, with mean zero and variance

\[
\frac{1}{n^2} \mathbb{E} [\| f_s(Z^s) \|_2^2] \leq \frac{1}{n^2} \mathbb{E} [\| f_s(Z^s) \|_2^2] \leq \frac{C}{n}, \tag{140}
\]
for C a constant large enough, using again the assumption [A6] for the setting $\{x^0, f_t\}$. Thus, $\frac{1}{n} \langle \mathbb{E}_Z [f_s(Z^s)], y^t \rangle$ is a Gaussian random variable, of standard deviation smaller than \sqrt{C}/\sqrt{n}. Then if $\eta > 0$,

$$\Pr \left(\frac{1}{n} \langle \mathbb{E}_Z [f_s(Z^s)], y^t \rangle \geq \eta \right) \leq \Pr \left(|N(0, 1)| \geq \frac{\eta \sqrt{n}}{\sqrt{C}} \right) \leq \frac{\sqrt{C}}{\eta \sqrt{n} \sqrt{2\pi}} \exp \left(-\frac{\eta^2 n}{2 C} \right)$$

(141)

which is summable. Using Borel-Cantelli’s lemma, it is then easy to show that

$$\frac{1}{n} \langle \mathbb{E}_Z [f_s(Z^s)], y^t \rangle \overset{\text{a.s.}}{\longrightarrow} 0.$$

(142)

• The treatment of the third term is the same as for the second term.

• Using the law of large numbers, we get that

$$\frac{1}{n} \langle y^s, y^t \rangle \overset{\text{a.s.}}{\longrightarrow} 1.$$

(143)

Putting things together, we get almost surely

$$\lim_{n \to \infty} \mathbb{E}_Z \left[\frac{1}{n} \langle f_s^y(Z^s), f_t^y(Z^t) \rangle \right] = \lim_{n \to \infty} \mathbb{E}_Z \left[\frac{1}{n} \langle f_s(Z^s), f_t(Z^t) \rangle \right] + \epsilon^2 1_{s=t}.$$

(144)

The proof of assumptions [A4] [A5] are very similar, here we only state the resulting expressions: almost surely,

$$\lim_{n \to \infty} \frac{1}{n} \langle f_0^y(x^0), f_t^y(x^0) \rangle = \lim_{n \to \infty} \frac{1}{n} \langle f_0(x^0), f_t(x^0) \rangle + \epsilon^2,$$

(145)

$$\lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n} \langle f_0^y(x^0), f_t^y(Z^t) \rangle \right] = \lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n} \langle f_0(x^0), f_t(Z^t) \rangle \right].$$

(146)

Using equations (144), (145), (146), it is a simple induction that the state evolution for the perturbed setting $\{x^0, f_t^y\}$ is indeed non-random almost surely.

5.5.5 Proof of Lemma 9

By definition,

$$q_{\perp}^{\epsilon y,t} = P_{Q_{t-1}} \ldots f_t(h^{\epsilon y,t}) + \epsilon P_{Q_{t-1}} y^t.$$

(147)

If we denote \mathcal{F}_t as the σ-algebra generated by $h^{\epsilon y,1}, \ldots, h^{\epsilon y,t}, y^1, \ldots, y^{t-1}$, it follows that

$$q_{\perp}^{\epsilon y,t} | \mathcal{F}_t \sim N \left(P_{Q_{t-1}} f_t(h^{\epsilon y,t}), \epsilon^2 P_{Q_{t-1}} \right).$$

(148)

When $n > t$, this conditional distribution is almost surely non-zero. Thus when $n \geq t$, the matrix Q_{t-1} has full column rank.

To lower bound the minimum singular value of Q_{t-1}, a more careful treatment is required. Using [BM11, Lemma 8], it is sufficient to check that there exists a constant c_ϵ such that almost surely, for n sufficiently large,

$$\frac{1}{n} \| q_{\perp}^{\epsilon y,t} \|^2 \geq c_\epsilon.$$

(149)
We have

\[
\Pr \left(\frac{1}{n} \| q^t \|^2 \leq c_n | F_t \right) = \Pr \left(\| N(P_{Q_{t-1}} f_t(h^{q,t}), e^2 P_{Q_{t-1}}) \|^2 \leq c_n | F_t \right)
\]

(150)

\[
\leq \Pr \left(\| N(0, e^2 P_{Q_{t-1}}) \|^2 \leq c_n | F_t \right)
\]

(151)

\[
= \Pr \left(\chi_n - t \leq \frac{c_n}{e^2} \right)
\]

(152)

\[
= \Pr \left(\frac{\chi_n - t}{n - t} \leq \frac{c_n}{e^2 \frac{n}{n - t}} \right).
\]

(153)

We can choose \(c_\epsilon \) such that \(c_\epsilon / e^2 = 1/4 \), and consider only the case \(n \geq 2t \), so that \(n/(n - t) \leq 2 \). We then get:

\[
\Pr \left(\frac{1}{n} \| q^t \|^2 \leq c_\epsilon | F_t \right) \leq \Pr \left(\frac{\chi_n - t}{n - t} \leq \frac{1}{2} \right).
\]

(154)

Using concentration of the chi-squared variable, it is easy to show that \(\Pr \left(\frac{\chi_n - t}{n - t} \leq \frac{1}{2} \right) \) is summable over \(n \). Taking expectation of the last inequality, we get

\[
\sum_n \Pr \left(\frac{1}{n} \| q^t \|^2 \leq c_\epsilon \right) < +\infty.
\]

(155)

Then Borel-Cantelli’s lemma concludes the proof.

5.5.6 Proof of Lemma 10

Define \(k \) as the order of the sequence \{\(\phi_n \)\} of uniformly pseudo-Lipschitz functions, and \(L \) as its pseudo-Lipschitz constant. Under any coupling of \(Z \) and \(\tilde{Z} \),

\[
\left| \mathbb{E} \left[\phi_n (Z) \right] - \mathbb{E} \left[\phi_n \left(\tilde{Z} \right) \right] \right| \leq L \mathbb{E} \left[1 + \left(\frac{\| Z \|_2}{\sqrt{n}} \right)^{k-1} + \left(\frac{\| \tilde{Z} \|_2}{\sqrt{n}} \right)^{k-1} \right] \left\| Z - \tilde{Z} \right\|_2
\]

(156)

\[
\leq L \mathbb{E} \left[1 + \left(\frac{\| Z \|_2}{\sqrt{n}} \right)^{k-1} + \left(\frac{\| \tilde{Z} \|_2}{\sqrt{n}} \right)^{k-1} \right]^{1/2} \frac{1}{\sqrt{n}} \mathbb{E} \left[\left\| Z - \tilde{Z} \right\|_2 \right]^{1/2}.
\]

(157)

Taking the infimum over all possible coupling of \(Z \sim N(0, K \otimes I_n) \) and \(\tilde{Z} \sim N(0, \tilde{K} \otimes I_n) \), one gets a bound involving the Wasserstein distance \(W_2 \):

\[
\left| \mathbb{E} \left[\phi_n (Z) \right] - \mathbb{E} \left[\phi_n \left(\tilde{Z} \right) \right] \right| \leq \sqrt{3L} \left(1 + \frac{\mathbb{E} \left[\| Z \|_2^{2(k-1)} \right]}{n^{k-1}} + \frac{\mathbb{E} \left[\| \tilde{Z} \|_2^{2(k-1)} \right]}{n^{k-1}} \right)^{1/2} \frac{1}{\sqrt{n}} W_2 \left(N(0, K \otimes I_n), N(0, \tilde{K} \otimes I_n) \right).
\]

(158)

(159)
We then use the two following identities for the Wasserstein distance:

\[
W_2(\mu \otimes \nu, \mu' \otimes \nu')^2 = W_2(\mu, \mu')^2 + W_2(\nu, \nu')^2, \tag{160}
\]

\[
W_2 \left(N(0, K), N \left(0, \tilde{K} \right) \right)^2 = \text{Tr} \left(K + \tilde{K} - 2 \left(K^{1/2} \tilde{K} K^{1/2} \right)^{1/2} \right). \tag{161}
\]

For a proof of the second identity, see [GSS84, Proposition 7]. It follows that

\[
W_2 \left(N(0, K \otimes I_n), N \left(0, \tilde{K} \otimes I_n \right) \right)^2 = n \text{Tr} \left(K + \tilde{K} - 2 \left(K^{1/2} \tilde{K} K^{1/2} \right)^{1/2} \right). \tag{162}
\]

Moreover, \(Z \overset{d}{=} (K^{1/2} \otimes I_n) X \) where \(X \sim N(0, I_{nt}) \). Thus:

\[
E \left[\left\| Z \right\|_2^{2(k-1)} \right] \leq \left\| K^{1/2} \otimes I_n \right\|_2^{2(k-1)} E \left[\left\| X \right\|_2^{2(k-1)} \right] = \left\| K \right\|_{op}^{k-1} \text{E} \left[\chi_{nt}^2 \right]^{k-1}. \tag{163}
\]

Using expressions for moments of chi-square variables, we get:

\[
E \left[\left(X_{n \times t}^2 \right)^{k-1} \right] = nt(nt + 2) \cdots (nt + 2(k - 2)) \leq n^{k-1}t^{k-1}(1 + 2(k - 2))^{k-1} = C(k, t)n^{k-1} \tag{164}
\]

for a constant \(C(k, t) \) that depends only on \(k \) and \(t \). Back to inequality [159],

\[
\left| E \left[\phi_n \left(Z \right) \right] - E \left[\phi_n \left(\tilde{Z} \right) \right] \right| \leq \sqrt{3} \left(1 + C(k, t) \left(\left\| K \right\|_{op}^{k-1} + \left\| \tilde{K} \right\|_{op}^{k-1} \right) \right)^{1/2} \left(\text{Tr} \left(K + \tilde{K} - 2 \left(K^{1/2} \tilde{K} K^{1/2} \right)^{1/2} \right) \right)^{1/2}. \tag{166}
\]

Notice that this bound is independent of \(n \), and converges to 0 as \(\tilde{K} \to K \).

5.5.7 Proof of Lemma 11

This lemma will be shown by induction.

Initialization. According to [145],

\[
K^\epsilon_{1,1} = K_{1,1} + \epsilon^2 \mathbf{1}_{\epsilon \to 0} K_{1,1}. \tag{167}
\]

Induction. Let \(t \) be a non-negative integer. Assume that by the induction hypothesis, for any \(r, s \leq t \), \(K^\epsilon_{r,s} \to K_{r,s} \). Then:

\[
K^\epsilon_{s+1,t+1} \overset{a.s.}{=} \lim_{n \to \infty} E \left[\frac{1}{n} \left< f^\epsilon_{s} \left(Z^{\epsilon,s} \right), f^\epsilon_{t} \left(Z^{\epsilon,t} \right) \right> \right], \tag{168}
\]

where \((Z^{\epsilon,s}, Z^{\epsilon,t}) \) is a Gaussian vector, whose covariance is determined by \(K^\epsilon_{s,s}, K^\epsilon_{t,t} \) and \(K^\epsilon_{s,t} \). Using [144], we have

\[
K^\epsilon_{s+1,t+1} \overset{a.s.}{=} \lim_{n \to \infty} E \left[\frac{1}{n} \left< f_{s} \left(Z^{\epsilon,s} \right), f_{t} \left(Z^{\epsilon,t} \right) \right> \right] + \epsilon^2 \mathbf{1}_{s=t}. \tag{169}
\]
The sequence of functions \((z^s, z^t) \mapsto \frac{1}{n} \langle f_s(z^s), f_t(z^t) \rangle\) is uniformly pseudo-Lipschitz by Lemma 20, thus Lemma 10 and the induction hypothesis jointly ensure that
\[
\lim_{\epsilon \to 0} \lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n} \langle f_s(Z^{\epsilon,n}), f_t(Z^{\epsilon,t}) \rangle \right] = \lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n} \langle f_s(Z^s), f_t(Z^t) \rangle \right] = K_{s+1,t+1},
\]
(170)
where \((Z^s, Z^t) \in (\mathbb{R}^n)^2\), \((Z^s, Z^t) \sim N(0, K \otimes I_n)\). Thus, we indeed get
\[
K_{s+1,t+1}^{(s+1,t+1)} \xrightarrow{\epsilon \to 0} K_{s+1,t+1}.
\]
(171)
To finish the induction reasoning, one can check similarly that \(K_{1,t+1}^{(1,t+1)} \xrightarrow{\epsilon \to 0} K_{1,t+1}\).

5.5.8 Proof of Lemma 12
First, it is easy to check by induction that there exist constants \(\tilde{C}_t, \tilde{C}_t'\) and \(\tilde{C}_t''\) independent of \(n\) such that for all \(\epsilon \leq 1\), w.h.p.
\[
\frac{1}{\sqrt{n}} \left\| m^{\epsilon y,t} - m^0 \right\|_2 \leq \tilde{C}_t',
\]
(172)
\[
\frac{1}{\sqrt{n}} \left\| x^{\epsilon y,t+1} \right\|_2 \leq \tilde{C}_t.
\]
(173)
Indeed, one only needs to use that the functions involved are uniformly Lipschitz and Theorem 16. Note that these inequalities hold for the original AMP iterates by taking \(\epsilon = 0\).

We now prove our lemma by induction.

Initialization. We have
\[
\frac{1}{\sqrt{n}} \left\| m^{\epsilon y,0} - m^0 \right\|_2 = \epsilon \frac{\left\| y^0 \right\|_2}{\sqrt{n}} \leq 2 \epsilon \quad \text{w.h.p.},
\]
(174)
by the law of large numbers. Thus we choose \(h_0(\epsilon) = 2 \epsilon\). Furthermore,
\[
\frac{1}{\sqrt{n}} \left\| x^{\epsilon y,1} - x^1 \right\|_2 \leq \|A\|_{op} \frac{1}{\sqrt{n}} \left\| m^{\epsilon y,0} - m^0 \right\|_2 \leq 6 \epsilon \quad \text{w.h.p.},
\]
(175)
by Theorem 16. Thus we choose \(h_0(\epsilon) = 6 \epsilon\).

Induction. We assume here that \(K_{1,1}, \ldots, K_{t,t} > 0\). By induction hypothesis, we have already defined \(h_0(\epsilon), h_0'(\epsilon), \ldots, h_{t-1}(\epsilon), h_{t-1}'(\epsilon)\). We now choose \(h_t(\epsilon)\) and \(h_t'(\epsilon)\). We have
\[
\frac{1}{\sqrt{n}} \left\| m^{\epsilon y,t} - m^t \right\|_2 \leq \frac{1}{\sqrt{n}} \left\| f_t \left(x^{\epsilon y,t} \right) - f_t \left(x^t \right) + \epsilon y^t \right\|_2
\]
(176)
\[
\leq L_t \frac{1}{\sqrt{n}} \left\| x^{\epsilon y,t} - x^t \right\|_2 + \epsilon \frac{\left\| y^t \right\|_2}{\sqrt{n}} \leq L_t h_{t-1}(\epsilon) + 2 \epsilon \quad \text{w.h.p.}
\]
(177)
using that \(f_t\) is uniformly Lipschitz with Lipschitz constant \(L_t\). Thus we choose \(h_t'(\epsilon) = L_t h_{t-1}(\epsilon) + 2 \epsilon\), which converges to zero as \(\epsilon \to 0\). Furthermore,
\[
\frac{1}{\sqrt{n}} \left\| x^{\epsilon y,t+1} - x^{t+1} \right\|_2 \leq \|A\|_{op} \frac{1}{\sqrt{n}} \left\| m^{\epsilon y,t} - m^t \right\|_2 + \frac{1}{\sqrt{n}} \left\| h_t m^{\epsilon y,t-1} - b_t m^{t-1} \right\|_2
\]
(178)
6 Proof of Theorem 1 and Corollary 2 (Asymmetric AMP)

Proof of Theorem 1. We reduce this case to the asymmetric case, as in [JM13]. Consider

\[A_s = \sqrt{\frac{\delta}{\delta + 1}} \begin{bmatrix} B & A \end{bmatrix} \]

and

\[x^0 = \begin{bmatrix} 0 \\ u^0 \end{bmatrix}. \]
where $B \sim \text{GOE}(m)$ and $\sqrt{\delta}C \sim \text{GOE}(n)$ are independent of each other and of A. It is easy to see that $A_\theta \sim \text{GOE}(N)$, where $N = m + n$. We further let $f_t : \mathbb{R}^N \to \mathbb{R}^N$ be such that

$$f_{2t+1}(x) = \sqrt{\frac{\delta + 1}{\delta}} \begin{bmatrix} g_t(x_1, \ldots, x_m) & 0 \\ 0 & e_t(x_{m+1}, \ldots, x_N) \end{bmatrix}, \quad f_{2t}(x) = \sqrt{\frac{\delta + 1}{\delta}} \begin{bmatrix} 0 \\ e_t(x_{m+1}, \ldots, x_N) \end{bmatrix}$$

for any $x \in \mathbb{R}^N$. We can define the symmetric AMP recursion $\{x^t, m^t|f_t, x^0\}$:

$$x^{t+1} = A_x m^t - b_t m^{t-1}, \quad m^t = f_t(x^t), \quad b_t = \mathbb{E} \left[\frac{1}{N} \text{div} f_t(Z^t) \right]$$

along with its state evolution $\{K_{s,t}|f_t, x^0\}$ (see section 4 for a more complete definition of these quantities). Note that assumptions [A1]–[A6] are satisfied because of [B1]–[B6].

Note that here $K_{2t,2t+1} = 0$. It is also easy to identify that

$$v^t = (x_1^{2t+1}, \ldots, x_m^{2t+1}), \quad u^t = (x_{m+1}^{2t}, \ldots, x_N^{2t}), \quad \Sigma_{s,t} = K_{2s+1,2t+1}, \quad T_{s,t} = K_{2s,2t}.$$

Applying Theorem 3 to the AMP recursion $\{x^t, m^t|f_t, x^0\}$ shows our theorem.

Proof of Corollary 2. The proof is by induction over t. Let \mathcal{H}_t be the claim that $\|u^s - \hat{u}^s\|_2 / \sqrt{n} \overset{P}{\to} 0$ for all $s \leq t$ and $\|v^s - \hat{v}^s\|_2 / \sqrt{n} \overset{P}{\to} 0$ for all $s \leq t - 1$. The initial conditions imply immediately \mathcal{H}_0.

We now prove that \mathcal{H}_t implies \mathcal{H}_{t+1}. Taking the difference of Eq. (2) and Eq. (34) and using triangular inequality, we get

$$
\|v^t - \hat{v}^t\|_2 \leq \|A\|_{op} e_t (u^t) - e_t (\hat{u}^t)\|_2 + |b_t - \hat{b}_t| \|g_{t-1}(v^{t-1})\|_2 + |\hat{b}_t| \|g_{t-1}(\hat{v}^{t-1}) - g_{t-1}(v^{t-1})\|_2 \leq C_0(\delta) L \|u^t - \hat{u}^t\|_2 + |b_t - \hat{b}_t| \|g_{t-1}(v^{t-1})\|_2 + L |\hat{b}_t| \|\hat{v}^{t-1} - v^{t-1}\|_2,
$$

where L is the maximum Lipschitz constant of e_t and g_{t-1} and the second inequality holds with high probability by the Bai-Yin law [BY88]. Next notice that, with high probability, $\|g_{t-1}(v^{t-1})\|_2 / \sqrt{n} \leq C$ for some constant C by Theorem 1 (together with Assumption [B6]) and that $|b_t| \leq |b_t - \hat{b}_t| \leq L + 1$ with high probability by Assumption (35) and the Lipschitz continuity of e_t. Hence, for a suitable constant C_1, the following holds with high probability

$$
\frac{1}{\sqrt{n}} \|v^t - \hat{v}^t\|_2 \leq C_1 \left\{ \frac{1}{\sqrt{n}} \|u^t - \hat{u}^t\|_2 + |b_t - \hat{b}_t| + \frac{1}{\sqrt{n}} \|\hat{v}^{t-1} - v^{t-1}\|_2 \right\}.
$$

We therefore have $\|v^t - \hat{v}^t\|_2 / \sqrt{n} \overset{P}{\to} 0$ by Eq. (35) and the induction hypothesis.
Taking the difference of Eq. (2) and Eq. (34), we get
\[
\|u_{t+1} - \hat{u}_{t+1}\|_2 \leq \|A\|_{\text{op}} \|g_t(u^t) - g(\hat{v}^t)\|_2 + |d_t - \hat{d}_t|\|e_t(u^t)\|_2 + |d_t|\|e_t(u^t) - e_t(\hat{u}^t)\|_2
\] (199)
\[
\leq C_0(\delta)L\|v^t - \hat{v}^t\|_2 + |d_t - \hat{d}_t|\|e_t(u^t)\|_2 + L|d_t|\|u^t - \hat{u}^t\|_2,
\] (200)
and the proof is completed by the same argument as above.

7 Application to general compressed sensing

In this section we discuss how the general theory of Section 3 applies to the problem of reconstructing an unknown signal \(\theta_0 \in \mathbb{R}^n\) from noisy linear measurements given by
\[
y = A\theta_0 + w.
\] (201)
Here, \(A \in \mathbb{R}^{m \times n}\) is the (known) sensing matrix, \(y \in \mathbb{R}^m\) is the measurement vector and \(w\) is a noise vector, independent of \(A\). We know \(y\) and \(A\), and are required to reconstruct \(\theta_0\). As before, it is understood that we are really given a sequence of problems indexed by the dimensions \(n\), with \(m(n)/n \to \delta\).

If \(m < n\), the problem becomes underdetermined. Reconstruction of \(\theta_0\) can be possible if we have some prior information. The prior knowledge can be encoded in a suitably chosen sequence of denoising function \(\eta_t : \mathbb{R}^n \to \mathbb{R}^n\), \(t \in \mathbb{N}\) [DJM13]. Given such a denoising function, we consider the following AMP algorithm:
\[
\hat{\theta}^{t+1} = \eta_t \left(\hat{\theta}^t + A^T r^t \right),
\] (202)
\[
r^t = y - A\hat{\theta}^t + \hat{b}_t r^{t-1}.
\] (203)
where the initialization is given by \(\hat{\theta}^0 = 0\) and \(\eta_{-1} (\cdot) = 0\). We assume the Onsager coefficient \(\hat{b}_t\) to be a function of \(\hat{\theta}^0, \ldots, \hat{\theta}^t\), and \(r^0, \ldots, r^{t-1}\), but we will discuss concrete choices below.

7.1 General theory

We make the following assumptions:

(C1) The sensing matrix \(A\) is Gaussian with i.i.d. entries, \((A_{ij})_{i,j \leq n} \sim \mathcal{N}(0, 1/m)\).

(C2) For each \(t\), the sequence (in \(n\)) of denoisers \(\eta_t : \mathbb{R}^n \to \mathbb{R}^n\) is uniformly Lipschitz.

(C3) \(\|\theta_0\|_2/\sqrt{n}\) converges to a constant as \(n \to \infty\).

(C4) The limit \(\sigma_w = \lim_{n \to \infty} \|w\|_2/\sqrt{m} \in [0, \infty)\) exists.

(C5) For any \(t \in \mathbb{N}\) and any \(\sigma \geq 0\), the following limit exists and is finite:
\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[(\theta_0, \eta_t(\theta_0 + Z))]
\] (204)
where \(Z \sim \mathcal{N}(0, \sigma^2 I_n)\).
(C6) For any \(s, t \in \mathbb{N} \) and any \(2 \times 2 \) covariance matrix \(\Sigma \), the following limit exists and is finite:

\[
\lim_{n \to \infty} \frac{1}{n} E \left[\langle \eta_n (\theta_0 + \mathbf{Z}), \eta_t (\theta_0 + \mathbf{Z}) \rangle \right],
\]

(205)

where \((\mathbf{Z}, \mathbf{Z}') \sim \mathcal{N}(0, \Sigma \otimes I_n) \).

The technical assumptions (C5) and (C6) ensure the existence of the limits in the following state evolution recursion:

\[
\tau_0 = \sigma_w^2 + \lim_{\delta_n \to 0} \frac{1}{\delta_n} \| \theta_0 \|_2^2,
\]

(206)

\[
\tau_{t+1} = \sigma_w^2 + \lim_{\delta_n \to 0} \frac{1}{\delta_n} E \left[\| \eta_t (\theta_0 + \tau_t \mathbf{Z}) - \theta_0 \|_2^2 \right],
\]

(207)

where \(\mathbf{Z} \sim \mathcal{N}(0, I_n) \).

State evolution predicts the asymptotic behavior of the estimates \(\hat{\theta}^1, \hat{\theta}^2, \ldots \) in terms of an iterative denoising process.

Theorem 14. Under assumptions (C1)-(C6), consider the recursion (202)-(203). Assume that \(\hat{b}_t(\theta_0, r^0, \ldots, r^{t-1}, \theta_t) \) satisfies

\[
\hat{b}_t \overset{\mathcal{P}}{\Rightarrow} b_t \equiv \frac{1}{m} E [\text{div} \eta_{t-1} (\theta_0 + \tau_{t-1} \mathbf{Z})], \quad \mathbf{Z} \sim \mathcal{N}(0, I_n).
\]

Further assume that the state evolution sequence satisfies \(\tau_s > \sigma_w \) for all \(s \leq t \). Then, for any sequences \(\phi_n : (\mathbb{R}^m)^2 \to \mathbb{R}, n \geq 1 \), and \(\psi_n : (\mathbb{R}^n)^2 \to \mathbb{R}, n \geq 1 \), of uniformly pseudo-Lipschitz functions of order \(k \)

\[
\phi_n(r^t, w) \overset{\mathcal{P}}{\Rightarrow} E[\phi_n(w + \sqrt{\tau^2_t - \sigma_w^2} \mathbf{Z}, w)],
\]

(209)

\[
\psi_n(\theta^t + A^T r^t, \theta_0) \overset{\mathcal{P}}{\Rightarrow} E[\psi_n(\theta_0 + \tau_t \mathbf{Z}', \theta_0)],
\]

(210)

where \(\mathbf{Z} \sim \mathcal{N}(0, I_m) \) and \(\mathbf{Z}' \sim \mathcal{N}(0, I_n) \).

Proof. This is a special case of the asymmetric AMP of Eqs. (1), (2), with

\[
\begin{align*}
\mathbf{u}^{t+1} &= \theta_0 - (A^T r^t + \theta_t), \\
\mathbf{v}^t &= \mathbf{w} - r^t, \\
\mathbf{e}_t(\mathbf{u}) &= \eta_{t-1}(\theta_0 - \mathbf{u}) - \theta_0, \\
\mathbf{g}_t(\mathbf{v}) &= \mathbf{v} - \mathbf{w},
\end{align*}
\]

(211)

and the initialization \(\mathbf{u}^0 = -\theta_0 \). Assumptions (B1)-(B6) are satisfied thanks to assumptions (C1), (C6). The claim follows from Theorem 1 and Corollary 2.

Remark 7.1. A special case of common interest is \(\psi_n(\mathbf{x}, \mathbf{y}) = \| \eta_t(\mathbf{x}) - \mathbf{y} \|_2^2 / n \), for which Theorem 14 yields

\[
\frac{1}{n} \| \hat{\theta}^{t+1} - \theta_0 \|_2^2 \overset{\mathcal{P}}{\Rightarrow} \frac{1}{n} E[\| \eta_t(\theta_0 + \tau_t \mathbf{Z}') - \theta_0 \|_2^2] = \delta (\tau_{t+1}^2 - \sigma_w^2).
\]

(215) (216)
Remark 7.2. Two choices of the coefficient \hat{b}_t that satisfy the assumption (208) are:

- The empirical mean

$$\hat{b}_t = \frac{1}{m} \text{div} \eta_{t-1}(\hat{\theta}^{t-1} + A^T r^{t-1}).$$

Using Theorem 14, this satisfies the assumptions by induction, provided $x \mapsto \frac{1}{m} \text{div} \eta_t(x)$ is uniformly Lipschitz for each t.

- If $x \mapsto \frac{1}{m} \text{div} \eta_t(x)$ is not uniformly Lipschitz, a smoothed version of Eq. (217) achieves the same goal, namely

$$\hat{b}_t = \frac{1}{m} \mathbb{E} \left[\text{div} \eta_{t-1}(\hat{\theta}^{t-1} + A^T r^{t-1} + \varepsilon_n Z) \right],$$

where the expectation is with respect to $Z \sim N(0, I_n)$, and ε_n is a deterministic sequence that converges to 0 sufficiently slowly. Adapting the arguments of Section 5.5.8 it is possible to show that this choice satisfies the assumption (208).

We also note that, even if $x \mapsto \frac{1}{m} \text{div} \eta_t(x)$ is not uniformly Lipschitz, the choice (217) can still satisfy the assumption (208). For instance, if $\eta_t(\cdot)$ is the soft thresholding denoiser (a case studied in [DMM09, BM11]), then $x \mapsto \frac{1}{m} \text{div} \eta_t(x)$ is discontinuous but nevertheless a standard weak convergence argument implies Eq. (208).

7.2 Denoising by convex projection

An important feature of the theory developed in the previous section is that the denoiser η_t can be fairly general, and not induced by an underlying optimization problem. Nevertheless, it is interesting to specialize the theory developed so far to cases with special additional structure.

One possible approach towards reconstruction from noisy measurements, cf. Eq. (201), assumes that θ_0 belongs to a closed convex body $K \subseteq \mathbb{R}^n$. The reconstruction method of choice solves the constrained least squares problem

$$\min_{\theta} \|y - A\theta\|_2^2,$$

subject to $\theta \in K$.

Denoting by P_K the projection onto the set K (which is a 1- Lipschitz denoiser), the corresponding AMP algorithm reads

$$\hat{\theta}^{t+1} = P_K\left(\hat{\theta}^t + A^T r^t\right),$$

$$r^t = y - A\hat{\theta}^t + \hat{b}_t r^{t-1},$$

where $\hat{\theta}^0 = 0$ and \hat{b}_t is an estimator of $b_t = (1/m)\mathbb{E} \left[\text{div} P_K(\theta_0 + \tau t Z) \right]$. In many cases of interest, such estimator is simply given by $\hat{b}_t = (1/m)\mathbb{E} \left[\text{div} P_K(\hat{\theta}^t + A^T r^t) \right]$. It is possible to show that fixed points of this iteration are stationary points of the least squares problem (219), (220).

The constraint $\theta \in K$ is effective if K accurately captures the structure of the signal θ_0. We denote by $C_K(\theta_0)$ the tangent cone of K at θ_0, i.e. the smallest convex cone containing $K - \theta_0$. This can also be defined as

$$C_K(\theta_0) = \left\{ v \in \mathbb{R}^n : \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} d(\theta_0 + \varepsilon v, K) = 0 \right\},$$

where $d(\cdot, \cdot)$ is the distance function.
with \(d(x, S) \equiv \inf \{\|x - y\|_2 : y \in S\}\) the Euclidean point-set distance. A highly structured signal \(\theta_0\) corresponds to a ‘small’ cone \(C_{\mathcal{K}}(\theta_0)\). This can be quantified via its statistical dimension \([\text{CRPW}12, \text{ALMT}14]\)

\[
\Delta(C) = \mathbb{E} \{\|P_C(Z)\|_2^2\}, \tag{224}
\]

where expectation is with respect to \(Z \sim N(0, I_n)\). It turns out that the statistical dimension also controls the convergence of AMP. As for our general theory, we will consider a sequence of problems indexed by the dimension \(n\).

Theorem 15. Consider the AMP iteration (221), (222), for a sequence of problems \((\theta_0(n), A(n), K(n), w(n))\) whereby \(A = A(n) \in \mathbb{R}^{m \times n}\) is a matrix with i.i.d. Gaussian entries \((A_{ij})_{i \leq m, j \leq n} \sim iid N(0, 1/m)\), \(K = K(n) \subseteq \mathbb{R}^n\) is a closed convex set with \(\lim_{n \to \infty} \max_{x \in K(n)} \|x\|_2/\sqrt{n} < \infty\), \(\theta_0 \in K(n)\), and \(\lim_{n \to \infty} \|w(n)\|_2/\sqrt{m} = \sigma_w\). Assume \(m/n \to \delta \in (0, \infty)\) and

\[
\lim_{n \to \infty} \frac{1}{m} \Delta(C_{K(n)}(\theta_0(n))) \leq \rho \in [0, 1). \tag{225}
\]

Then for any \(t \geq 0\), letting \(R_0 \equiv \lim_{n \to \infty} \sup_{n} \|\theta_0(n)\|_2/\sqrt{n}\), we have

\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \{\|\hat{\theta}^t - \theta_0\|_2^2\} \leq \delta R_0^2 \rho^{t+1} + \delta \sigma_w^2 \frac{\rho - \rho^{t+1}}{1 - \rho}. \tag{226}
\]

The proof of this statement is deferred to Appendix C.

This theorem establishes exponentially fast convergence (in the high-dimensional limit) in all the region \(m \geq (1 + \eta)\Delta_n\), \(\Delta_n = \Delta(C_{K(n)}(\theta_0(n)))\), i.e. whenever exact reconstruction is possible in absence of noise \([\text{ALMT}14]\). Further, the convergence rate is precisely given by the ratio of the number of necessary measurements to the number of measurements \(\Delta_n/m\). For instance, it implies that, in order to achieve accuracy \(\|\hat{\theta}^t - \theta_0\|_2/\|\theta_0\|_2 \leq \varepsilon\) in the noiseless case \(\sigma_w = 0\), it is sufficient to run the AMP iteration (221), (222) for approximately \(\log(1/\varepsilon)/\log(m/\Delta_n)\) iterations.

The first result of this type (for separable soft-thresholding denoising) was obtained in \([\text{DMM}09, \text{DMM}11]\). The only comparable result is obtained in recent work by Oymak, Recht, and Soltanolkotabi \([\text{ORS}15]\), which establishes exponential convergence of of projected gradient descent, in a non-asymptotic sense, although at a slower rate\(^4\). In particular, in the noiseless case, \(\varepsilon\) accuracy requires \((n/m) \log(1/\varepsilon)\). It would be interesting to derive a non-asymptotic version of Theorem 15 which might be possible using the approach of \([\text{RV}16]\).

Acknowledgements

This work was partially supported by grants NSF CCF-1319979, NSF DMS-1613091, NSF CCF-1714305.

\(^4\)The same paper also prove convergence at a faster rate, but this requires \(m > 2\Delta_n\), i.e. a number of measurements that is twice as large as the optimal one.
A Technical aspects of the numerical simulations

A.1 Matrix compressed sensing

Here we state the formula for computing the divergence of the singular value soft thresholding operator. Recall that for a matrix \(Y \in \mathbb{R}^{n_1 \times n_2} \), with singular value decomposition
\[
Y = \sum_{i=1}^{n_1 \wedge n_2} \sigma_i u_i v_i^T,
\]
the SVT operator with threshold \(\lambda \) yields
\[
S(Y; \lambda) = \sum_{i=1}^{n_1 \wedge n_2} (\sigma_i - \lambda)_+ u_i v_i^T.
\]
As proved in [CSLT13], the divergence for this operator can be computed using the formula
\[
\text{div} S(Y; \lambda) = \sum_{i=1}^{n_1 \wedge n_2} 1_{\{\sigma_i > \lambda\}} + |m - n| \left(1 - \frac{\lambda}{\sigma_i} \right)_+ + 2 \sum_{i \neq j, i, j=1}^{n_1 \wedge n_2} \frac{\sigma_i (\sigma_i - \lambda)_+}{\sigma_i^2 - \sigma_j^2}.
\]
This expression should be understood in a weak sense as it is not defined on the negligible set where \(Y \) has repeated singular values.

A.2 Compressed sensing with images

In our simulation, to compute the state evolution iterates
\[
\tau_0^2 = \sigma_w^2 + \lim_{n \to \infty} \frac{1}{\delta n} \|\theta_0\|_2^2,
\]
\[
\tau_{t+1}^2 = \sigma_w^2 + \lim_{n \to \infty} \frac{1}{\delta n} \mathbb{E} \left[\|\eta_t (\theta_0 + \tau_t Z) - \theta_0\|_2^2 \right],
\]
we approximated them by their non-asymptotic estimates:
\[
\hat{\tau}_0^2 = \sigma_w^2 + \frac{1}{\delta n} \|\theta_0\|_2^2,
\]
\[
\hat{\tau}_{t+1}^2 = \sigma_w^2 + \frac{1}{\delta n} \mathbb{E} \left[\|\eta_t (\theta_0 + \hat{\tau}_t Z) - \theta_0\|_2^2 \right].
\]
Here \(n = 170 \times 170 \) is the size of our image. However, we could not compute the expectation in equation (233) exactly. Thus at each iteration we used a Monte Carlo method to approximate the expectation with the mean over 10 samples. Computing each sample amounts to adding gaussian noise of variance \(\hat{\tau}_t^2 \) over the Lena image, denoising with NLM, and computing the square error. The resulting state evolution is shown in figure [3].

B Some useful tools

We remind the readers of three well-known results. The first concerns with the operator norm of \(A \in \text{GOE}(n) \); see e.g. [BYSS] for a more general statement. The second is a simple consequence of Stein’s lemma [Ste72]. The last one is the Gaussian Poincaré inequality.
Theorem 16. Consider a sequence of matrices $A \sim \text{GOE}(n)$. Then $\|A\|_{\text{op}} \to 2$ almost surely as $n \to \infty$.

Lemma 17 (Stein’s lemma [Ste72]). For any 2×2 covariance matrix K and $(Z_1, Z_2) \sim N(0, K \otimes I_n)$, and any $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ such that $\frac{\partial \varphi}{\partial z_i}$ exists almost everywhere for $1 \leq i \leq n$, if $E[(Z_1, \varphi(Z_2))]$ and $E[\text{div}\varphi(Z_2)]$ exist, then

$$E[(Z_1, \varphi(Z_2))] = K_{1,2} E[\text{div}\varphi(Z_2)] = E\left[\frac{1}{n} \langle Z_1, Z_2 \rangle\right] E[\text{div}\varphi(Z_2)].$$

Theorem 18 (Gaussian Poincaré inequality [BLM13]). Let $z \sim N(0, I_n)$ and $\varphi : \mathbb{R}^n \to \mathbb{R}$ continuous, weakly differentiable. Then for some universal constant c,

$$\text{Var} [\varphi(z)] \leq c \mathbb{E} \left[\|\nabla \varphi(z)\|^2\right].$$

We state some properties of the GOE matrices, and provide proofs for completeness.

Lemma 19. Consider a sequence of matrices $A \sim \text{GOE}(n)$ and two sequences (in n) of (non-random vectors) $u, v \in \mathbb{R}^n$ such that $\|u\|_2 = \|v\|_2 = \sqrt{n}$.

(a) $\frac{1}{n} \langle v, Au \rangle \xrightarrow{P} 0$

(b) Let $P \in \mathbb{R}^{n \times n}$ be a sequence of projection matrices such that there exists a constant t that satisfies for all n, $\text{rank}(P) \leq t$. Then $\frac{1}{n} \|PAu\|_2^2 \xrightarrow{P_{n \to \infty}} 0$.

(c) $\frac{1}{n} \|Au\|_2^2 \xrightarrow{P} 1$.

(d) Let k be any positive integer. There exists a sequence (in n) of random vectors $z \sim N(0, I_n)$ such that for any sequence $\varphi_n : \mathbb{R}^n \to \mathbb{R}$, $n \geq 1$ of uniformly pseudo-Lipschitz function of order k,

$$\varphi_n(Au) \xrightarrow{P} \varphi_n(z).$$

Proof.

(a) Recall that $A = G + G^\top$ where $G_{i,j}$ are i.i.d. $N(0, 1/(2n))$ random variables, thus

$$\frac{1}{n} \langle v, Au \rangle = \frac{1}{n} \langle v, Gu \rangle + \frac{1}{n} \langle v, G^\top u \rangle.$$

The random variable $\frac{1}{n} \langle v, Gu \rangle$ is centered Gaussian with variance

$$\frac{1}{n^2} \sum_{i,j=1}^n v_i^2 u_j^2 \frac{1}{2n} = \frac{\|u\|_2^2 \|v\|_2^2}{2n^3} = \frac{1}{2n} \to 0.$$

Thus $\frac{1}{n} \langle v, Gu \rangle$ converges in probability to 0. We can conclude as similarly, $\frac{1}{n} \langle v, G^\top u \rangle$ also converges in probability to 0.
Lemma 22. Let t be any positive integer. Consider a sequence (in n) uniformly pseudo-Lipschitz functions $\varphi_n : (\mathbb{R}^n)^t \to \mathbb{R}$ of order k. The sequence of functions $\phi_n : (\mathbb{R}^n)^t \to \mathbb{R}$ such that $\phi_n(x_1, \ldots, x_t) = \mathbb{E}[\varphi_n(x_1, \ldots, x_{t-1}, x_t + Z)]$, in which $Z \sim \mathcal{N}(0, aI_n)$ and $a \geq 0$, is also uniformly pseudo-Lipschitz of order k.

Finally, we have the following result on the Gaussian concentration for uniformly pseudo-Lipschitz functions.

We state some useful properties of uniformly pseudo-Lipschitz functions. We omit the proofs, which are easy to verify.

Lemma 20. Let k be any positive integer. Consider two sequences $f : \mathbb{R}^n \to \mathbb{R}^n$, $n \geq 1$ and $g : \mathbb{R}^n \to \mathbb{R}^n$, $n \geq 1$ of uniformly pseudo-Lipschitz functions of order k. The sequence of functions $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $n \geq 1$, such that $\varphi(x, y) = \langle f(x), g(y) \rangle$ is uniformly pseudo-Lipschitz of order $2k$.

Lemma 21. Let t, s and k be any three positive integers. Consider a sequence (in n) of $x_1, \ldots, x_s \in \mathbb{R}^n$ such that $\frac{1}{\sqrt{n}}\|x_j\| \leq c_j$ for some constant c_j independent of n, for $j = 1, \ldots, s$, and a sequence (in n) of order-k uniformly pseudo-Lipschitz functions $\varphi_n : (\mathbb{R}^n)^{t+s} \to \mathbb{R}$. The sequence of functions $\phi_n(\cdot) = \varphi_n(\cdot, x_1, \ldots, x_s)$ is also uniformly pseudo-Lipschitz of order k.
Lemma 23. Let $Z \sim N(0, I_n)$. Let k be any positive integer. For any sequence (in n) of uniformly pseudo-Lipschitz functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ of order k, $\varphi(Z) \overset{p}{\xrightarrow{\quad\quad}} \mathbb{E}[\varphi(Z)]$.

Proof. This is a straightforward application of Theorem 18. In particular, by the definition of uniformly pseudo-Lipschitz functions of order k,

$$\mathbb{E}\left[\|\nabla \varphi(Z)\|^2\right] \leq \frac{L^2}{n} \mathbb{E}\left[\left(1 + \left(\frac{1}{\sqrt{n}} \|Z\|_2\right)^{k-1}\right)^2\right] \leq \frac{2L^2}{n} \left(1 + \mathbb{E}\left[\left(\frac{1}{\sqrt{n}} \|Z\|_2\right)^{2(k-1)}\right]\right). \tag{242}$$

Since $Z \sim N(0, I_n)$, the right-hand side goes to 0 as $n \to \infty$. The claim is proven. \hfill \square

C Proof of Theorem 15

By assumption

$$R_* \equiv 2 \limsup_{n \to \infty} \max_{x \in \mathbb{K}(n)} \frac{1}{\sqrt{n}} \|x\|_2 < \infty. \tag{243}$$

Note for all $n \geq n_0$, $\|\hat{\theta}^t\|_2, \|\theta_0\|_2 \leq R_* \sqrt{n}$ for all t.

Next fix $t \geq 0$ and denote by B_t the right-hand side of Eq. (226). Assume by contradiction that $\limsup_{n \to \infty} \mathbb{E}\{\|\hat{\theta}^t(n) - \theta_0(n)\|^2\}/n = B_t + \varepsilon > B_t$. We can then find a subsequence $\{n_1(\ell)\} \ell \geq 1$ along which $\lim_{\ell \to \infty} \mathbb{E}\{\|\hat{\theta}^t(n_1(\ell)) - \theta_0(n_1(\ell))\|^2\}/n_1(\ell) = B_t + \varepsilon$. We will prove that this subsequence can be further refined to $\{n_2(\ell)\} \ell \geq 1 \subseteq \{n_1(\ell)\} \ell \geq 1$ such that $\lim_{\ell \to \infty} \mathbb{E}\{\|\hat{\theta}^t(n_2(\ell)) - \theta_0(n_2(\ell))\|^2\}/n_2(\ell) \leq B_t$, thus leading to a contradiction.

To simplify the notation we can assume, without loss of generality, that the first subsequence is not needed, i.e. $\limsup_{n \to \infty} \mathbb{E}\{\|\hat{\theta}^t(n) - \theta_0(n)\|^2\}/n = B_t + \varepsilon > B_t$. We then claim that we can find a subsequence $\{n_2(\ell)\} \ell \geq 1$ along which Assumptions [C3], [C5] and [C6] hold, with $\eta_\varepsilon(\cdot)$, $\eta_\ell(\cdot) = \mathbb{P}_{\mathbb{K}}(\cdot)$. Consider Assumption [C6]. Let the functions $F_n : S^2_+ \to \mathbb{R}$ (with S^2_+ the cone of 2×2 positive semidefinite matrices) be defined by

$$F_n(\Sigma) \equiv \frac{1}{n} \mathbb{E}\left[\langle \mathbb{P}_{\mathbb{K}}(\theta_0 + Z), \mathbb{P}_{\mathbb{K}}(\theta_0 + Z')\rangle\right], \tag{244}$$

where expectation is with respect to $(Z, Z') \sim N(0, \Sigma \otimes I_n)$.

Note that the function $(Z, Z') \mapsto \langle \mathbb{P}_{\mathbb{K}}(\theta_0 + Z), \mathbb{P}_{\mathbb{K}}(\theta_0 + Z')\rangle/n$ is uniformly pseudo-Lipschitz of order 2. Hence, using Lemma 10, we have

$$\sup_{n \geq 1} |F_n(\Sigma_1) - F_n(\Sigma_2)| \leq \xi(\Sigma_1, \Sigma_2), \tag{245}$$

for some function ξ such that $\lim_{\Sigma_1 \to \Sigma_2} \xi(\Sigma_1, \Sigma_2) = 0$. Further $\sup_{n \geq 1} |F_n(\Sigma)| \leq R^2_*$. Hence by the Arzelà-Ascoli theorem, F_n converges uniformly on any compact set $\{\Sigma : \|\Sigma\|_F \leq C\}$, thus satisfying condition [C6] along a certain subsequence $\{n_2(\ell)\} \ell \geq 1$. Assumption [C5] is established by the same argument, eventually refining the subsequence to $\{n_2(\ell)\} \ell \geq 1$. Finally, by taking a further subsequence $\{n_2(\ell)\} \ell \geq 1$, we can assume that $\|\theta_0(n_2(\ell))\|^2/\sqrt{n} \to R_0$.

37
We can therefore apply Theorem 14 (and Remark 7.1) along this subsequence, to obtain \(\|\hat{\theta}_{t+1} - \theta_0\|_2^2/n \leq \delta (\tau_{t+1}^2 - \sigma_w^2) \) and hence (since \(\|\hat{\theta}_{t+1} - \theta_0\|_2^2/n \leq R^2_0 \) is bounded uniformly)

\[
\lim_{\ell \to \infty} \frac{1}{n} \mathbb{E}\{\|\hat{\theta}_{n2(\ell)} - \theta_0(n2(\ell))\|_2^2\} = \delta (\tau_{t+1}^2 - \sigma_w^2).
\] (246)

Here \(\tau_{t+1} \) is given recursively by Eq. (207), namely

\[
\tau_{s+1}^2 = \sigma_w^2 + G(\tau_s^2),
\] (247)

\[
G(\tau^2) = \lim_{\ell \to \infty} \frac{1}{n} \mathbb{E}\left[\|P_{\mathbf{K}}(\theta_0 + \tau Z) - \theta_0\|_2^2\right],
\] (248)

where the limit exists by the existence of the limit of \(F_n(\Sigma) \) above. Now, since \(\mathcal{K} - \theta_0 \subseteq \mathcal{C}_\mathcal{K}(\theta_0) \), we have

\[
\|P_{\mathcal{K}}(\theta_0 + \tau Z) - \theta_0\|_2^2 = \left\|P_{\mathcal{C}_\mathcal{K}(\theta_0)}[P_{\mathcal{K}}(\theta_0 + \tau Z) - \theta_0] \right\|_2^2 \leq \|P_{\mathcal{C}_\mathcal{K}(\theta_0)}(\tau Z)\|_2^2.
\] (249)

Therefore

\[
G(\tau^2) \leq \limsup_{n \to \infty} \frac{1}{m} \mathbb{E}\{\|P_{\mathcal{C}_\mathcal{K}(\theta_0)}(Z)\|_2^2\} \tau^2 \leq \rho \tau^2.
\] (250)

We therefore get the recursion \(\tau_{s+1}^2 \leq \sigma_w^2 + \rho \tau_s^2 \), which can be summed to yield

\[
\tau_t^2 = R_0^2 \rho^t + \sigma_w^2 \frac{1 - \rho^t}{1 - \rho},
\] (251)

Therefore, using Eq. (246), we get

\[
\lim_{\ell \to \infty} \frac{1}{n} \mathbb{E}\{\|\hat{\theta}_{n2(\ell)} - \theta_0(n2(\ell))\|_2^2\} \leq B_t,
\] (252)

which yields the desired contradiction hence proving the theorem.

References

[ALMT14] Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp, *Living on the edge: Phase transitions in convex programs with random data*, Information and Inference: A Journal of the IMA 3 (2014), no. 3, 224–294.

[BCM05] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, *A review of image denoising algorithms, with a new one*, SIAM Journal on Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 4 (2005), no. 2, 490–530.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, *Concentration inequalities: A nonasymptotic theory of independence*, Oxford university press, 2013.

[BLM+15] Mohsen Bayati, Marc Lelarge, Andrea Montanari, et al., *Universality in polytope phase transitions and message passing algorithms*, The Annals of Applied Probability 25 (2015), no. 2, 753–822.
[BM11] Mohsen Bayati and Andrea Montanari, *The dynamics of message passing on dense graphs, with applications to compressed sensing*, IEEE Transactions on Information Theory 57 (2011), no. 2, 764–785.

[Bol14] Erwin Bolthausen, *An iterative construction of solutions of the TAP equations for the Sherrington–Kirkpatrick model*, Communications in Mathematical Physics 325 (2014), no. 1, 333–366.

[BY88] Zhi-Dong Bai and Yong-Qua Yin, *Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a wigner matrix*, The Annals of Probability 16 (1988), no. 4, 1729–1741.

[ÇOWF17] Burak Çakmak, Manfred Opper, Ole Winther, and Bernard H Fleury, *Dynamical functional theory for compressed sensing*, arXiv:1705.04284 (2017).

[CRPW12] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky, *The convex geometry of linear inverse problems*, Foundations of Computational mathematics 12 (2012), no. 6, 805–849.

[CSLT13] Emmanuel J Candès, Carlos A Sing-Long, and Joshua D Trzasko, *Unbiased risk estimates for singular value thresholding and spectral estimators*, IEEE transactions on signal processing 61 (2013), no. 19, 4643–4657.

[DAA16] Yash Deshpande, Emmanuel Abbe, and Emmanuel Abbe, *Asymptotic mutual information for the balanced binary stochastic block model*, Information and Inference: A Journal of the IMA 6 (2016), no. 2, 125–170.

[DG⁺14] David Donoho, Matan Gavish, et al., *Minimax risk of matrix denoising by singular value thresholding*, The Annals of Statistics 42 (2014), no. 6, 2413–2440.

[DGM13] David L Donoho, Matan Gavish, and Andrea Montanari, *The phase transition of matrix recovery from gaussian measurements matches the minimax mse of matrix denoising*, Proceedings of the National Academy of Sciences 110 (2013), no. 21, 8405–8410.

[DJM13] David L Donoho, Iain Johnstone, and Andrea Montanari, *Accurate prediction of phase transitions in compressed sensing via a connection to minimax denoising*, IEEE transactions on information theory 59 (2013), no. 6, 3396–3433.

[DM16] David Donoho and Andrea Montanari, *High dimensional robust m-estimation: Asymptotic variance via approximate message passing*, Probability Theory and Related Fields 166 (2016), no. 3-4, 935–969.

[DMM09] David L Donoho, Arian Maleki, and Andrea Montanari, *Message-passing algorithms for compressed sensing*, Proceedings of the National Academy of Sciences 106 (2009), no. 45, 18914–18919.

[DMM11] , *The noise-sensitivity phase transition in compressed sensing*, IEEE Transactions on Information Theory 57 (2011), no. 10, 6920–6941.

[Don13] David L Donoho, Private communication, 2013.
[GS84] Clark R. Givens and Rae Michael Shortt, *A class of wasserstein metrics for probability distributions.*, Michigan Math. J. 31 (1984), no. 2, 231–240.

[JM13] Adel Javanmard and Andrea Montanari, *State evolution for general approximate message passing algorithms, with applications to spatial coupling*, Information and Inference: A Journal of the IMA 2 (2013), no. 2, 115.

[KF09] Daphne Koller and Nir Friedman, *Probabilistic graphical models: principles and techniques*, MIT press, 2009.

[KKM+16] Yoshiyuki Kabashima, Florent Krzakala, Marc Mézard, Ayaka Sakata, and Lenka Zdeborová, *Phase transitions and sample complexity in bayes-optimal matrix factorization*, IEEE Transactions on Information Theory 62 (2016), no. 7, 4228–4265.

[KRUF12] Ulugbek Kamilov, Sundeep Rangan, Michael Unser, and Alyson K Fletcher, *Approximate message passing with consistent parameter estimation and applications to sparse learning*, Advances in Neural Information Processing Systems, 2012, pp. 2438–2446.

[MMB16] Christopher A Metzler, Arian Maleki, and Richard G Baraniuk, *From denoising to compressed sensing*, IEEE Transactions on Information Theory 62 (2016), no. 9, 5117–5144.

[MN17] Andrea Montanari and Phan-Minh Nguyen, In preparation, 2017.

[Mon12] Andrea Montanari, *Graphical models concepts in compressed sensing*, Compressed Sensing: Theory and Applications (2012), 394–438.

[MP17] Junjie Ma and Li Ping, *Orthogonal amp*, IEEE Access 5 (2017), 2020–2033.

[MRB17] Yanting Ma, Cynthia Rush, and Dror Baron, *Analysis of approximate message passing with a class of non-separable denoisers*, arXiv:1705.03126 (2017).

[MZB16] Yanting Ma, Junan Zhu, and Dror Baron, *Approximate message passing algorithm with universal denoising and gaussian mixture learning*, IEEE Transactions on Signal Processing 64 (2016), no. 21, 5611–5622.

[OCW16] Manfred Opper, Burak Cakmak, and Ole Winther, *A theory of solving tap equations for ising models with general invariant random matrices*, Journal of Physics A: Mathematical and Theoretical 49 (2016), no. 11, 114002.

[ORS15] Samet Oymak, Benjamin Recht, and Mahdi Soltanolkotabi, *Sharp time–data tradeoffs for linear inverse problems*, arXiv:1507.04793 (2015).

[OTH13] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi, *The squared-error of generalized Lasso: A precise analysis*, Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton Conference on, IEEE, 2013, pp. 1002–1009.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo, *Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization*, SIAM review 52 (2010), no. 3, 471–501.
[RG17] Elad Romanov and Matan Gavish, Near-optimal matrix recovery from random linear measurements, arXiv:1705.09958 (2017).

[RSF16] Sundeep Rangan, Philip Schniter, and Alyson Fletcher, Vector approximate message passing, arXiv:1610.03082 (2016).

[RV16] Cynthia Rush and Ramji Venkataramanan, Finite-sample analysis of approximate message passing, Information Theory (ISIT), 2016 IEEE International Symposium on, IEEE, 2016, pp. 755–759.

[Sch10] Philip Schniter, Turbo reconstruction of structured sparse signals, Information Sciences and Systems (CISS), 2010 44th Annual Conference on, IEEE, 2010, pp. 1–6.

[SR15] Philip Schniter and Sundeep Rangan, Compressive phase retrieval via generalized approximate message passing, IEEE Transactions on Signal Processing 63 (2015), no. 4, 1043–1055.

[SS12] Subhojit Som and Philip Schniter, Compressive imaging using approximate message passing and a markov-tree prior, IEEE transactions on signal processing 60 (2012), no. 7, 3439–3448.

[Ste72] Charles Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, The Regents of the University of California, 1972.

[TAP77] David J Thouless, Philip W Anderson, and Robert G Palmer, Solution of’solvable model of a spin glass’, Philosophical Magazine 35 (1977), no. 3, 593–601.

[TDK16] Eric W Tramel, Angélique Drémeau, and Florent Krzakala, Approximate message passing with restricted boltzmann machine priors, Journal of Statistical Mechanics: Theory and Experiment 2016 (2016), no. 7, 073401.