Validation of two-dimensional model by the example of a supersonic inlet-isolator

R K Seleznev 1,2,3

1 Dukhov Research Institute of Automatics (VNIIA), Suschevskaya Street 22, Moscow 127055, Russia
2 Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
3 Ishlinsky Institute for Problems in Mechanics RAS, Vernadsky Street 101(1), Moscow, 119526, Russia
rkseleznev@gmail.com

Abstract. In the paper two-dimensional model for hypersonic flow are described. Comparing the result of calculation with wall pressure data, obtained in the inlet-isolator model mounted to the floor of a Mach 5 wind tunnel at the University of Texas, presented in this article. The present results show that two-dimensional simulations are able to predict the shock wave structures in a scramjet inlet/isolator.

1. Introduction

The inlet is an essential element of the ramjet and scramjet, and their design greatly affects the overall performance of the engine. Therefore, at the initial stage of creating a gas-dynamic code for describing processes in ramjet and scramjet it is very important to correctly describe the inlet and the shock-wave structure in it. Inlets are with external compression, mixed compression and internal compression [1], but they have the same function in common. In the inlet, due to the appearance of the shock-wave structure, the incoming air is compressed and the Mach number decreases to the desired value at the entrance to the engine. The isolator is also an essential part of the ramjet and scramjet. The isolator is a constant cross-section passage in order to prevent choking. There are many experiments with inlets [2][3][4–6]. In this paper we consider the model of inlet-isolator mounted to the floor of a Mach 5 wind tunnel at the University of Texas [4,6,7]. In this experiment, it is important to consider the thickness of the boundary layer at the inlet. In this paper, numerical experiments are carried out that take into account the thickness of the boundary layer, as well as experiments with a uniform flow at the inlet. The results of the calculation are compared with the results obtained by other authors [8–10], as well as with the results of the experiment.

2. Description of University of Texas inlet-isolator experimental setup

Wagner [4,6–8] conducted a series of experiments on the study of shock-wave structure in the supersonic inlet-isolator mounted to the floor of a Mach 5 wind tunnel (figure 1). The experimental setup consists of an input ramp with an inclination angle of 6°, and a constant-section isolator (figure 2). At the end of the isolator a special flap is installed, raising it can lead to nonstationary formation with subsequent choking of the flow. With the flap is completely lowered, a small part of it protrudes from the bottom wall of the chamber, as shown in figure 2. However, in this paper, as in the
works of other authors[9−13], it is considered that the floor is completely smooth. The following incoming air flow parameters were used:

- Incoming flow pressure: $P = 0.0538$ atm;
- Incoming flow temperature: $T = 57.4$ K;
- Incoming flow Much Number: $M = 4.9$;
- Incoming flow gas mixture: Air.

3. Two-dimensional computational fluid dynamic model
For two-dimensional calculations we used the NERAT-2D computer code [13]. NERAT-2D realizes the time-relaxation method. At each time step the following groups of governing equations were integrated successively: the Navier–Stokes and continuity equations, the equations of mass conservation of chemical species, the equation of energy conservation. These equations are formulated in the following form:

$$\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div} (\rho \mathbf{V}) &= 0, \\
\frac{\partial \rho \mathbf{u}}{\partial t} + \text{div} (\rho \mathbf{u} \mathbf{V}) &= -\frac{\partial \rho}{\partial x} - \frac{2}{3} \frac{\partial}{\partial x} (\mu \text{div} \mathbf{V}) + \frac{1}{r} \frac{\partial}{\partial r} \left[r \mu \left(\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{u}}{\partial r} \right) \right] + 2 \frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{u}}{\partial x} \right), \\
\frac{\partial \rho \mathbf{V}}{\partial t} + \text{div} (\rho \mathbf{V} \mathbf{V}) &= -\frac{\partial \rho}{\partial x} - \frac{2}{3} \frac{\partial}{\partial r} (\mu \text{div} \mathbf{V}) + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{u}}{\partial r} \right) \right] + 2 \frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{u}}{\partial x} \right) + 2 \frac{\partial}{\partial r} \left(\mu \frac{\partial \mathbf{u}}{\partial r} \right) + 2 \mu \frac{\partial}{\partial r} \left(\frac{\mathbf{V}}{r} \right), \\
\frac{\partial \rho_{i}}{\partial t} + \text{div} \rho_{i} \mathbf{V} &= -\text{div} \mathbf{J}_{i} + \dot{w}_{i}, \quad i = 1, 2, \ldots, N_{s},
\end{align*}$$

Figure 1. Schematic of the model of the inlet/isolator model mounted on the wind tunnel floor [4].

Figure 2. Inlet/isolator model mounted on the wind tunnel floor [4].
\[\rho c_p \frac{\partial T}{\partial t} + \rho c_p \mathbf{V} \text{grad}T = \text{div} \left(\lambda \text{grad}T \right) + \frac{\partial p}{\partial t} + \mathbf{V} \text{grad} p + \]
\[+ \Phi_\mu \left[2 \left(\frac{\partial \mathbf{V}}{\partial r} \right)^2 + 2 \left(\frac{\partial \mathbf{V}}{\partial x} \right)^2 + \left(\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{V}}{\partial r} \right)^2 - \frac{2}{3} \left(\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{V}}{\partial r} + \frac{\mathbf{V}}{r} \right)^2 \right] \]
\[\text{is the dissipative function; } \mu, \lambda \text{ are the viscosity and heat conductivity coefficients, } c_p \text{ is the specific heat capacity of gas mixture; } c_p = \sum_i Y_i c_{p,i}; \ Y_i \text{ is the mass fraction of species } i; \ h_i \text{ are the specific heat capacity at constant pressure and specific enthalpy of species } i; \ \dot{w}_i \text{ is the reaction rate for species } i; \ D_i \text{ is the effective diffusion coefficient of species } i; \ \rho_i, \mathbf{J}_i \text{ are the density and mass diffusion flux for species } i; \ \mathbf{J}_i = -\rho D_i \text{grad} Y_i; \ N_i \text{ is the number of species. The calculations use a structured mesh of 500x100 dimensions, if not stated other. Chemical reactions are neglected.} \]

4. Results

At the initial stage of calculations, at the entrance to the inlet a uniform flow is set. Figure 3 shows the results of calculated pressure distribution within the experimental setup on structured mesh of 1000 x1000.

Figure 4 shows the results of calculated pressure distribution on the bottom wall obtained in this work with the results by Lutsky [9] and Zhukov [8].

Figure 4. Comparison of calculated pressure distribution on the bottom wall obtained in this work (black line) and the results obtained by Lutsky [9] (red tangles) and Zhukov [8] (green squares).
It can be seen that the flow pattern is described qualitatively. However, in the experiment, the input flow was uneven with a thick boundary layer. The incoming boundary layer profiles were extracted from a method, based on well-known formulas for the boundary layer on a thick plate together with a modification from the work [9,14]. However, it should be noted that in the case of using this model without using the turbulence model, a vortex zone appears before the first shock wave, which changes the flow in the channel. As the results show [10–13,15], the use of the turbulence model avoids the appearance of a vortex. In this work, it was decided to artificially increase the viscosity of a factor of 1000 in the region ahead of the shock wave, as shown in figure 5. This led to the fact that the vortex disappeared. Figure 6 shows a comparison of the pressure distribution on the lower chamber wall obtained in this work (black line) with the experimental results [4,6] (green squares), and the results obtained by Lutsky [9] (red squares)and Koo[10,15] (blue delta). The pressure amplitude obtained in my calculations is just below the amplitude obtained by other authors. However, it should be noted that the position of the shock wave peaks is consistent, which allows us to conclude that the results are qualitatively identical.

![Viscosity distribution](image)

Figure 5. Viscosity distribution within the experimental setup.

5. Conclusion
Comparison of the pressure distribution calculated by two-dimensional model, the results obtained by other authors and pressure distribution in the inlet-isolator model mounted to the floor of a Mach 5 wind tunnel at the University of Texas is presented. The present results show that two-dimensional simulations are able to predict the shock wave structures in a scramjet inlet/isolator. This work presents a continuation of our efforts on the verification and validation of numerical methods and computational codes for calculation of various hypersonic vehicles and energetic devices [16–23]. The results obtained in this study in the study of the shock wave structure in a supersonic air inlet can be used later to study the effect of a surface discharge on a hypersonic flow as it was numerically studied in [24,25].
Acknowledgments
The presented study was supported by the Russian Science Foundation project № 16-11-10275.

Pressure, erg/cm³

![Graph image]

Figure 6. Comparison of calculated pressure distribution on the bottom wall obtained in this work (black line) with the experimental results [4,6] (green squares), and the results obtained by Lutsky [9] (red squares) and Koo[10,15] (blue delta).

References
[1] Heiser W, Pratt D, Daley D and Mehta U 1994 *Hypersonic Airbreathing Propulsion* vol 26 (Washington, DC: American Institute of Aeronautics and Astronautics, Inc.)
[2] Xing F, Zhang S and Yao Y 2012 Numerical Simulation of Shock-Induced-Combustion in Three-Dimensional HyShot Scramjet Model 50th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo. 1–12
[3] Boon S and Hillier R 2006 Hypersonic Inlet Flow Analysis at Mach 5, 6 and 7 44th AIAA Aerospace Sciences Meeting and Exhibit (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–13
[4] Wagner J L 2009 Experimental Studies of Unstart Dynamics in Inlet / Isolator Configurations in a Mach 5 Flow
[5] Gamba M, Miller V, Mungal M G and Hanson R 2011 Ignition and Flame Structure in a Compact Inlet/Scramjet Combustor Model 17th AIAA Int. Sp. Planes Hypersonic Syst. Technol. Conf.
[6] Wagner J L, Yuceil K B, Valdivia A, Clemens N T and Dolling D S 2009 Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow *AIAA J.* 47 1528–42
[7] Wagner J L, Yuceil K B and Clemens N T 2010 Velocimetry Measurements of Unstart of an Inlet-Isolator Model in Mach 5 Flow *AIAA J.* 48 1875–88
[8] Zhukov V T, Manukovskii K V., Novikova N D, Rykov Y G and Feodoritova O B 2015 *Numerical simulation of the pseudo-shock region formation in the channel*
[9] Borisov V E, Kudryashov I Y and Lutsky A E 2016 Numerical simulation of the pseudo-shock
region formation in the channel *Keldysh Inst. Prepr.* **2898** 1–24

[10] Koo H 2010 Large-Eddy Simulations of Scramjet Engines *Dr. Diss.*

[11] Jang I, Pečnik R and Moin D P 2010 A numerical study of the unstart event in an inlet/isolator model *Cent. Turbul. Res. Annu. Res. Briefs* 93–103

[12] Boles J, Edwards J, Choi J-I and Baurle R 2009 Simulations of High-Speed Internal Flows Using LES/RANS Models *47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo.* 1–22

[13] Surzhikov S, Selezniov R, Tretjakov P and Zabaykin V 2014 Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air *50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference* (Reston, Virginia: American Institute of Aeronautics and Astronautics) p 25

[14] Xu S and Martin M P 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers *Phys. Fluids* **16** 2623–39

[15] Koo H and Raman V 2012 Large-Eddy Simulation of a Supersonic Inlet-Isolator *AIAA J.* **50** 1596–613

[16] Selezniov R and Surzhikov S 2016 A Quasi-One-Dimensional Analysis of Hydrogen-Fueled Scramjet Combustors *52nd AIAA/SAE/ASEE Joint Propulsion Conference* (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–27

[17] Selezniov R K 2017 Comparison of two-dimensional and quasi-one-dimensional scramjet models by the example of VAG experiment *J. Phys. Conf. Ser.* **815** 12007

[18] Kotov M A, Ruleva L B, Solodovnikov S I and Surzhikov S T 2017 Experimental and numerical study of supersonic flow over two blunted wedges *J. Phys. Conf. Ser.* **815** 12025

[19] Shang J and Surzhikov S 2013 Radiative Heat Exchange in a Hydrogen-Fueled Scramjet Combustion Chambers *51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition* (Reston, Virginia: American Institute of Aeronautics and Astronautics)

[20] Shang J and Surzhikov S 2013 Numerical Prediction of Convective and Radiative Heating of Scramjet Combustion Chamber with Hydrocarbon Fuels *51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition* (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–16

[21] Polezhaev Y V. and Selezniov R K 2014 Numerical study of the processes of resonance emergence in the experimental set-up of a pulse detonation engine *High Temp.* **52** 225–9

[22] Selezniov R and Surzhikov S 2015 Quasi-One-Dimensional and Two-Dimensional Numerical Simulation of Scramjet Combustors *51st AIAA/SAE/ASEE Joint Propulsion Conference* (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 28

[23] Selezniov R and Surzhikov S 2013 Generalized Newton Method For Solving Differential Equations of Chemical Kinetics *44th AIAA Thermophysics Conference* (Reston, Virginia: American Institute of Aeronautics and Astronautics) pp 1–17

[24] Surzhikov S T 2017 Surface electromagnetic actuator in rarefied hypersonic flow *J. Phys. Conf. Ser.* **815** 12005

[25] Shang J S, Kimmel R L, Menart J A and Surzhikov S T 2008 Hypersonic Flow Control Using Surface Plasma Actuator *J. Propuls. Power* **24** 923–34