A search for ejecta nebulae around Wolf–Rayet stars using the SHS Hα survey

D. J. Stock* and M. J. Barlow

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT

ABSTRACT

Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf–Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5–6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.

Key words: circumstellar matter – stars: evolution – stars: massive – stars: Wolf–Rayet.

1 INTRODUCTION

Since the suggestion that some Wolf–Rayet (WR) stars could be creating nebulae via mass loss (Johnson & Hogg 1965), efforts to detect more examples have been ongoing. The first attempt to morphologically categorize nebulae presumed to have been created by the influence of WR stars was performed by Chu (1981), who devised three broad categories for possible nebulae: W, R and E. W-type nebulae are those which are assumed to be ‘wind-blown bubbles’. These objects were inferred to have been created when material ejected from the star interacted with the surrounding interstellar medium (ISM). R-type nebulae were postulated to be those in which the strong radiation field from the host star excites the surrounding ISM. These are only visible when the surrounding ISM is of sufficient density to produce detectable emission.

Our interest lies with the E-type nebulae, which were defined to be those which were likely to contain processed ejecta from the progenitor star. These were suggested by Chu to have been formed by a violent mass-loss episode recently in the star’s history, which may not have been isotropic or homogeneous. The nebulous mass can therefore be very clumped and irregular. The lifetime of E-type nebulae should be much lower than for the other two types, since as the ejected mass expands as it moves away from the star, its surface brightness should diminish very quickly. It should be noted that actual WR nebulae can (and do) display any combination of the above traits. Chu (1991) modified the scheme to refine the definition of E-type nebulae, splitting the category into stellar ejecta nebulae and bubble/ejecta (W/E) nebulae. The former covered pure E-type nebulae as defined above, and the latter were introduced to cover the case of ejecta shells having merged with the swept up shell.

The Chu (1981, 1991) criteria were used for the southern Galactic plane surveys of Marston, Chu & Garcia-Segura (1994a), Marston et al. (1994b) and Marston (1997) but not for the northern survey of Miller & Chu (1993) which described the probability of a ‘ring’ nebula being present. The survey of the environs of all Magellanic Cloud WR nebulae by Dopita et al. (1994) also ignored the Chu categorization system and commented only on the presence of a ring or whether the star was in a superbubble.

In this work, we shall consider only morphological information in our classifications of new nebulae and will not delve into the physical details of their formation and evolution. Theory and models of the formation of nebulae around massive stars were presented by Chu (1991, 2003).

Recent publicly available Hα surveys (Drew et al. 2005; Parker et al. 2005) allow the re-inspection of the environs of all known WR stars with a view of identifying new E-type nebulosities which can provide constraints on the nucleosynthetic effects of WR stars.
Table 1. Nebulae spectroscopically confirmed to contain nucleosynthetic products.

WR	Spectral type	Nebular name	Classification	Reference	Enrichment	Reference
6	WN4	S308	W	Chu (1991)	N and He enriched	Esteban et al. (1992)
7	WN4	NGC 2359	W	Chu (1991)	Enriched He knots	Esteban et al. (1990)
16	WN8h	Anon	W/E	Marston (1997)	Enriched N throughout	Marston et al. (1999)
40	WN8h	RCW 58	W/E	Chu (1991)	N and He enriched	Kwitter (1984)
75	WN6	RCW 104	W/E	Chu (1991)	Enriched He	Esteban et al. (1991)
102	WO2	G 2.4+1.4	W	Chu (1991)	N enrichment	Esteban et al. (1991)
124	WN8h	M1–67	E	Chu (1991)	N overabundance	Esteban et al. (1991)
136	WN6h	NGC 6888	W/E	Chu (1991)	Strong N, He enrichment	Esteban & Vilchez (1992), Moore et al. (2000)

*aCatalogue numbers from van der Hucht (2001).
*bSpectral types from van der Hucht (2001).
*cUsing the (Chu 1991) scheme.

2 MORPHOLOGIES OF SPECTROSCOPICALLY CONFIRMED WR EJECTA NEBULAE

The W, R and E categories of Chu (1981, 1991) were tested over the following decades as spectroscopic data for the different subtypes of WR nebulae began to appear. A summary of spectroscopically detected abundance enhancements is shown in Table 1.

For the two nebulae which Chu (1981) regarded as E type (M1–67 and RCW 58) the nebulosities were found to be enriched relative to the ISM in nitrogen and helium but depleted in oxygen (Kwitter 1984; Esteban et al. 1991). The anonymous nebula surrounding WR 16 was also shown to comprise material with a very similar abundance pattern to those of M1–67 and RCW 58 (Marston et al. 1999). The detection of processed material in these nebulae was a major success for the categorization scheme, as this showed that it is possible to infer likely patterns in the chemical composition of a WR nebula by studying its morphology.

However, material displaying the same patterns of enrichment was also detected in NGC 6888 – a nebula Chu had initially been classified as W type (Esteban & Vilchez 1992; Moore, Hester & Scowen 2000). This clearly showed that the lines between the initial Chu classes can be blurred; indeed NGC 6888 (see Fig. 1, top right) appears to be a mixture of different kinds of nebulosity. The edge looks like a wind-blown shell, whilst there is evidence of flocculent nebulosity in the central regions, suggesting ejected material. NGC 6888 was later re-classified as W/E nebulae by Chu (1991).

Garnett, Chu & Dopita (1993) noted that the nebulosity around BAT99-16 in the LMC displays the same abundance pattern as RCW 58, M1–67, WR 16 and NGC 6888.

The results of Esteban et al. (1990, 1991) also suggested another class of WR nebula, those containing helium overabundances without any enrichment in heavier elements. Two nebulae, NGC 2359 (Esteban et al. 1990) and G 2.4+1.4 (Esteban et al. 1991), which present this abundance pattern display striking similarities, but appear to have been created in different ways. G 2.4+1.4 was initially classified as a supernova remnant (SNR) (Dopita et al. 1990), but Chu (1991) categorized it as W type. G 2.4+1.4 was later found to have a mass of 4200 M⊙ (Gosachinskij & Lozinskaya 2002) which implies that the nebulosity is primarily swept up, agreeing with the Chu (1991) categorization. NGC 2359 is a very clear example of a wind-blown bubble. The ionized mass of NGC 2359 has been estimated to be of around 70 M⊙ and the mass of the whole complex over 1000 M⊙ (Cappa et al. 1999), which clearly precludes a pure ejecta origin. However, both nebulae display helium enrichment – showing again that the lines between Chu’s classes can be blurred.

The above spectroscopic results lead to the conclusion that the morphological criteria for ejecta nebulae presented by Chu (1981) may be too stringent, a problem addressed by the introduction of the W/E class (Chu 1991). Wind-blown bubbles can also contain ejecta in their filamentary nebulosities (e.g. NGC 6888).

The above spectroscopic information suggests the following, revised criteria: ejecta nebula candidates must have either a highly flocculent structure, as in Chu’s scheme or, alternatively, possess flocculent structure within their wind-blown shells, similar to that shown by NGC 2359, NGC 6888 and NGC 3199.

Radiatively excited nebulae (R type) are more difficult to classify under this scheme as they tend to possess highly irregular morphologies which are dependent not on stellar outflows but on the density distribution of material in the local ISM.

3 EXPECTED WOLF–RAYET NEBULAR SIZE SCALES

The angular scales over which WR Nebulae have previously been detected span more than an order of magnitude, with the smallest being of the order of arcsec in diameter (BAT99-2, LMC; Dopita et al. 1994) and the largest were claimed to have an angular radius of a degree or more e.g. θ Muscae (Guillermo Gimenez de Castro & Niemela 1998). However, the nebulosity surrounding θ Muscae has been shown not to be related to the star (Stupar, Parker & Filipovic 2010a).

An upper limit on the angular radius of a nebula composed of ejecta from the WR or immediate pre-WR phase is given by θ = \(\frac{1.4 \times V_{\text{exp}}}{D} \) where \(V_{\text{exp}} \) is the expansion velocity of the nebula, \(D \) is the distance to the nebula and \(\tau_{\text{exp}} \) is the time spent in the WR phase \(\sim 3 \times 10^5 \) yr (Crowther 2007). We have chosen this upper bound as a representative figure for the largest wind-blown nebulae, as it is suspected that ejecta can expand much faster in the evacuated volume within a wind-blown bubble, allowing ejecta nebulae to possibly take on much larger sizes. \(V_{\text{exp}} \) is a typical expansion velocity of a WR nebula: \(\sim 25–50 \) km s\(^{-1}\) (Chu et al. 1982; Chu 1983), we assume this figure is typical for expanding shells around galactic WR stars.

For a WR star at 1 kpc this predicts a maximum angular diameter of \(\sim 45 \) arcmin. We can also estimate the distance threshold below which 30 arcmin extractions from the Southern Hα Survey (SHS) could be insufficient to encompass a WR nebula. Rearranging for distance and using \(\theta = 0.5 \), this yields a distance of \(\sim 1.5 \) kpc.
Figure 1. Morphologies of WR ejecta nebulae spectroscopically confirmed to have a chemically processed component. Clockwise from top left: SHS imagery of NGC 2359 (WR 7, WN4); IPHAS montage of NGC 6888 (WR 136, WN6h), kindly supplied by Nick Wright, IfA Harvard; IPHAS image of M1–67 (WR 124, WN8h); SHS imagery of RCW 58 (WR 40, WN8h). North is up and east to the left in all images.

4 SHS Hα IMAGERY

The AAO/UKST SHS took place during the early 2000s and covered the entire southern Galactic plane (Parker et al. 2005). The survey was one of the last examples of the use of photographic imaging in astronomy and demonstrates neatly the advantages and disadvantages of this approach. The survey was performed using the 1.2-m UK Schmidt Telescope (UKST) at the Anglo-Australian Observatory (AAO), on 5 deg2 photographic plates using 3 h exposures. Each plate was subsequently transported to the Royal Observatory Edinburgh (ROE) and digitized using the SuperCOSMOS plate scanning machine at a resolution of 0.67 arcsec pixel$^{-1}$. The data were then montaged and made publicly available via the internet.

The advantages of photographic plates are twofold; first a large amount of data can be captured on each 25 deg2 exposure, with comparatively little effort needed to extract images. Secondly, the photographic emulsion was tuned such that the exposures were sensitive to very faint structure. The obvious disadvantage of utilizing these data is the difficulty of flux calibration, since photographic emulsion is not a linear detector and intensity calibration can be very troublesome.

The SHS also covered the Magellanic Clouds and while these data were digitized by the SuperCOSMOS project, they were never made publicly available. They were kindly made available to us by the Wide-Field Astronomy Unit (WFAU) at the ROE-IfA (ROE – Institute for Astronomy).

The SuperCOSMOS interface to the SHS imagery allows extractions of up to 900 arcmin2; in order to inspect WR nebulae larger than this, the ‘Montage’ package, produced by NASA’s Infrared Processing and Analysis Center (IPAC), was utilized to combine SHS extractions.
Northern Galactic plane WR stars were examined using IPHAS survey data (Drew et al. 2005). However, as no disagreement was found between IPHAS imagery and the survey of Miller & Chu (1993), no further discussion will be presented.

5 RESULTS AND COMPARISONS WITH PREVIOUS WORK

5.1 Results

Each southern star in the sixth catalogue of Galactic WR Stars (van der Hucht 2001) and its annex (van der Hucht 2006) was inspected visually using SHS imaging data as described above. The results are summarized in Table 3. Each WR star in the LMC catalogue of Brey sacher, Azzopardi & Testor (1999) (hereafter BAT99) was also visually inspected and resolvable nebulae categorized in the same way. SMC WR stars were also investigated but none appeared to possess resolvable ejecta nebula. In addition, the positions of several WR ring nebulae that were discovered by Wachter et al. (2010) at mid-infrared wavelengths were inspected – yielding one-candidate ejecta nebula.

For the LMC, it is difficult to identify WR nebulae whose absolute sizes are as small as some Galactic WR nebulae such as M1–67, since their angular sizes would have been smaller than the overexposed point spread function (PSF) of the host star in SHS imagery. Conversely, if we place the largest LMC WR nebula: Anon (HD 32402) at 1 kpc, it would have an angular size of 1:5 which would not have been discernable to our survey. However, very few (<10) WR stars are closer than 1 kpc. This effect means that we cannot see details on the same scales as their galactic counterparts; we can only determine likely candidates for further study.

5.2 Comparison with previous work

A comparison of our results with those presented by Chu (1991) and by Marston (1997) is presented in Table 2. The survey of Marston (1997) listed 22 southern Galactic WR ejecta nebulae, as opposed to the 10 that we find in the SHS imagery of the same region. There are several reasons for this disparity. We omitted WR stars that were in clusters or were heavily embedded within H II regions; this accounts for eight of the Marston (1997) sample which are classified as having an E component (WR 6, 11, 18, 38, 42, 68, 85 and 98) which will not be discussed in Section 5.3.

Secondly, imagery used by Marston (1997) was obtained using the Curtis Schmidt 0.6-m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile, with a resolution of 1.94 arcsec per pixel compared to the SHS resolution of 0.66 arcsec per pixel. A direct comparison of SHS and Marston et al. (1994b) images of the clear nebulosity around WR 16 is shown in Fig. 2.

5.3 Notes on individual objects

WR 8 – HD 62910

In the SHS imagery of the region around WR 8 (Fig. 3), one can clearly discern nebulosity that appears to be associated with the star. It is aligned along radial ‘spokes’ with an especially prominent example to the south-west. These spokes define a circular structure approximately 5 arcmin in diameter, internal to which there are several prominent clumps of nebulosity.

The spectral type of the host star is listed by van der Hucht (2001) as WN7/WC4. Its spectrum places WR 8 neatly between those of WN and WC stars (Crowther, Smith & Willis 1995). This was initially interpreted as a sign of binarity – a system comprising both WC and WN stars – however Crowther et al. (1995) showed that the wind properties were the same for both the N and C components – implying a single-star origin.

The presence of an ejecta nebula around such an unusual host star – a star possibly seen during the transition from the WN to the WC phase – is especially interesting since the composition of the nebula could be helpful towards understanding the evolutionary state of the star.

WR 30 – HD 94305

WR 30 was listed as possessing a ring nebula by Marston (1997). The SHS imagery shows some filamentary structures around the star, some of which take the form of arcs roughly centred on the star, shown in Fig. 4. The structure shown appears to be related to the star; however there is no morphological evidence in the form of flocculence within the arcs to indicate that this nebulosity contains ejecta.

WR 31 – HD 94546

The nebula around this object, shown in Fig. 5, was classified by Marston et al. (1994b) as an R-type ring nebula, with a diameter of 6.7 arcmin and was later upgraded to ejecta (E) type by Marston (1997). One can perhaps see faint traces of what appears to be an

Table 2. WR nebular classifications.
Cat. no.

WR 6
WR 7
WR 8
WR 11
WR 16
WR 18
WR 30
WR 31
WR 38
WR 40
WR 42
WR 42d
WR 52
WR 54
WR 57
WR 60
WR 68
WR 71
WR 75
WR 85
WR 91
WR 94
WR 98
WR 101
WR 102
WR 116
WR 124
WR 131
WR 134
WR 136

*From van der Hucht (2001), except WR 8 from Crowther et al. (1995).

bUses the categories of Chu (1991).
Wolf–Rayet ejecta nebulae

Figure 2. WR 16 (WN8h). The image from Marston et al. (1994b) (reproduced by permission of the AAS) is shown on the left; the image from the SHS is shown on the right. The main orb of nebulosity around WR 16 can be clearly seen in the SHS image while it is less prominent in the left-hand image. In the SHS image a second and possibly a third concentric ring section can also be discerned. In these images, north is up and east is to the left.

Figure 3. The SHS Hα image of the field around HD 62910 (WR 8, WCE+) shows newly revealed nebulosity. North is up, and east is to the left.

Figure 4. SHS image subtraction (Hα – Short Red) of the field around WR 30 (WC6+O). The filamentary structures were listed as a ring nebula of W/E type by Marston (1997). North is up and east is to the left.

arc to the east of the star, but this is inconclusive and there is no other evidence for structure on the scales indicated by Marston or that this could be an E-type WR nebula.

WR 52 – HD 115473

The nebulosity around this object, shown in Fig. 6, was identified by Marston et al. (1994a) as a possible ring nebula with a radius of 60 arcmin. Later, it was classified as an R-type nebula by Marston (1997) because of diffuse [O III] emission. The region which Marston identified as being one half of a ring is shown in the SHS imagery but does not appear to exhibit any ring-like structures. Although WR 52 appears to be embedded in diffuse Hα emission, there appears to be no evidence for an ejecta nebula.

WR 54

This object, shown in Fig. 7, was noted as a possible faint ring nebula of radius 20 arcmin by Marston et al. (1994a). Subsequently,
Figure 5. SHS image subtraction (Hα – Short Red) of the field around WR 31 (WN4+O7). The very faint, indistinct arc of emission to the west was suggested to be part of a ring by Marston et al. (1994b) and Marston (1997). North is up, and east is to the left.

Figure 6. SHS image of the region around WR 52 (WC5). The faint diffuse emission has been suggested to be part of a ring; however this is not supported by the SHS imagery. North is up, and east is to the left.

Figure 7. SHS image of the region around WR 54 (WN4). The filamentary nebulosity surrounding the star has been proposed to possibly be part of a ring. North is up, and east is to the left.

Figure 8. SHS image of the region around WR 57 (WC7). The filament running east–west in this image was suggested by Marston (1997) to be a possible ring section. North is up, and east is to the left.

WR 57 was suggested to have a possible ejecta nebula of radius 8 arcmin by Marston (1997). The SHS image (Fig. 8) shows a filament running EW across the image, with no obvious evidence of a connection with WR 57.

WR 57

WR 60 was claimed to have a ‘90 per cent complete’ ring nebula with a radius of 9 arcmin by Marston et al. (1994b) and later tentatively ascribed E-type status by Marston (1997). The SHS image, shown in Fig. 9, confirms the detection of a possible ring section to the NE of WR 60. However, there is no evidence of the star being further...
Wolf–Rayet ejecta nebulae

Figure 9. SHS image subtraction (Hα – Short Red) of the field around WR 60 (WC8). This provides confirmation of the ring section previously detected by Marston et al. (1994b). North is up, and east is to the left.

encircled beyond this, suggesting that this nebulosity is merely a diffuse filament.

Stupar, Parker & Filipovic (2010b) show that the arc of nebulosity possesses spectral features similar to those associated with SNRs and propose a new designation for this nebula as an SNR – G310.5 + 0.8.

WR 71

The SHS image, shown in Fig. 10, confirms the tenuous nebula around WR 71 first noted by Marston et al. (1994b) and later classified as an E-type nebula by Marston (1997). It appears similar to RCW 58 and anon (WR 8), in that it has highly clumped nebulosity to the south, although much fainter than either of the above. The SHS-subtracted (Hα-R) image (Fig. 10) also shows some arcs to the west while improving on the detail of the flocculent structure to the south. The progenitor is a runaway star and as such is significantly out of the plane (z = 1190 pc) suggesting that this object may have unique kinematics due to the low ISM density at this z-distance. For further discussion of this object see Section 6.3.

WR 91

For the region around WR 91, shown in Fig. 11, the nebulosity was classified as W/E by Marston (1997). The structure, however, is not centred on WR 91 in the manner that would be expected of a nebulosity created by a stellar wind. Instead, the associated diffuse nebulosity appears to be radiatively excited.

WR 94

The nebulosity around WR 94, shown in Fig. 12, appears to be radiatively excited by the star. It displays no signs of clumpiness or flocculence, and hence we are unable to confirm this as an ejecta nebula of radius 11 arcmin as suggested by Marston (1997).

WR 101

The strangely shaped nebula near WR 101, shown in Fig. 13, was detected and classified as a W/E-type nebula by Marston et al. (1994b). Upon inspection of the SHS imagery, it is clear that there is a main clump to the south-east of the star that is reminiscent of other ejecta-type nebulae; however it is unusual in that it appears to be so highly asymmetric, resembling the northern clump in the Bubble Nebula (NGC 7635) around the Of-type star BD+602522. The arcs of nebulosity to the north and east are possibly associated with the star. Cappa, Goss & Pineault (2002) showed that the ionized mass of the nebulosity is of the order of 200 M⊙ for a distance of 3.2 kpc, too high to be pure ejecta. Thus, this is likely a swept up ISM nebula with at best some processed component.

A48: Wachter et al. (2010) – 50

This object, discovered by Abell (1966), appears to have two very distinct complete rings (Fig. 14). The possible implications of nebular detections with multiple rings are discussed in Section 6.1. The Wachter et al. (2010) ring seen at 8 and 24 µm is coincident with the optical ring which appears in the R band as well as Hα.

The SHS image lacks the resolution to determine whether the rings have any flocculent structure and as such it is difficult to classify this nebulosity beyond the default classification of W type. The Spitzer 8-µm image of A48 presented by Wachter et al. (2010) appears to have higher resolution and show more structure in the inner ring. This implies that the inner ring is likely to be composed of ejected stellar material. If this is the case then the classification will be W/E.

BAT99-11 – HD 32402

The nebulosity around BAT99-11 (Fig. 15) appears ovoid in the same manner as NGC 6888, a bright shock with clear internal structure. If a bona fide WR nebula, it is the largest with the main bubble having a radius of almost 13 pc and distinct arcs at still greater distances. In the SHS imagery, it is impossible to make out the internal structure beyond several filaments confined to the interior of the main shock. We classify this object as a W/E-type nebula based on the internal structure and obvious crescent ring section created by wind interactions.

BAT99-15 – HD 268847

BAT99-15 (Fig. 16) has two clear nebulous arcs to the south. These arcs reside in a region of diffuse Hα emission suggesting that they are the interaction between stellar wind and this diffuse material. Given the faintness of this object however, it is impossible to clearly rule in or out any E-type contribution to this W-type nebulosity.

BAT99-16 – HD 33133

The crescent nebulosity to the north and west of BAT99-16 (Fig. 17) is deceptively small; the arc of radius 8.8 pc is actually larger than for NGC 6888 which has a radius of 3.0 pc. As with BAT99-15 we cannot see any internal structure, so it is impossible to ascertain whether the classification should be W or W/E.
Figure 10. SHS image of the field around WR 71 (WN6) (Hα-red subtraction). The tenuous flocculent nebulosity to the south strongly suggests stellar ejecta, as noted by Marston et al. (1994b).

BAT99-65

The oval ring nebula around BAT99-65 (Fig. 18) suggests a W-type origin. Again, we cannot reliably ascribe any further classification to this object.

6 DISCUSSION

In Table 3, we summarize the properties of each nebula detected in our MC and LMC survey along with the implied physical extent. The fractions of WR nebulae in the Milky Way (MW) or LMC with
either WN or WC central stars are presented in Table 4 along with the fractions for the complete WR population.

6.1 Multiple rings?

Several WR stars have been suggested to have multiple rings, e.g. two by Marston (1995); however WR 16 represents the clearest example of a multiple ringed object as both concentric rings are clearly visible in Hα (Fig. 2). The inner ring is undisputably created by stellar outflows, as has been confirmed spectroscopically (Marston et al. 1999) – the outer ring though could be swept up material. If the outer ring contains some component, however small, of processed material, the relative compositions and kinematics of the structures could provide useful constraints on the evolution of the star.

6.2 Central star properties

The most prominent WR ejecta nebulae are associated with WNh stars, namely WR 16, 40, 124 and 136. These nebulae have all been confirmed to contain nucleosynthetic products. WNh stars still have some hydrogen left in their atmospheres, i.e. the loss of the H-dominated envelope is not complete (Crowther 2007). The
fact that there are bright, N and/or He-enriched nebulae around such objects is consistent with the material formerly having made up part of their envelopes. That the shells of matter around these stars are broadly circular indicates that the beginning of the WR phase for these objects may have been dominated by an extreme mass loss event which created the nebulae.

In Section 5.3, we commented on the unusual spectral type of WR 8, (WN7/WC4); (Crowther et al. 1995). This transition star’s nebulosity is strongly reminiscent of RCW 58 – a confirmed ejecta nebula. Assuming that it is an ejecta nebula, the nebula around WR 8 may provide an opportunity to spectroscopically probe matter ejected prior to or during this transition phase.

6.3 Binarity

From Table 3, a curious fact emerges: only two out of the 19 WR Ejecta nebula central stars listed here are binaries. In Table 5, we summarize the binary fractions for the WR populations in the MW and LMC along with the fraction that we have identified as ejecta nebulae for each case. The binarity classifications of van der Hucht (2001) and BAT99 were adopted for the Galactic and LMC populations, respectively. It is striking that the fraction of binary WR stars having ejecta nebulae is so low.

If the fraction of WR stars with ejecta nebulae was the same for binaries as single WR stars we would expect \(\sim 10 \) per cent of WR binary stars to possess ejecta nebulae – which translates to around six expected in the MW compared to one observed (WR 71). In the LMC, there is one binary WR star with what appears to be an ejecta-type nebula, whereas we might expect nearly four LMC binary WR stars to possess ejecta nebulae.
It has long been speculated that there are two methods of creating WR stars, mass transfer between binary partners and mass loss of an isolated star (e.g. Smith 1968). A possible reason for the relative absence of ejecta nebulae around binary WR stars is that mass transfer on to a companion inhibits the mechanism that produces ejecta nebulae around single WR stars.

The nebulosity surrounding WR 71 (see Fig. 10) is an exception to the previous discussion. The progenitor star is of spectral type WN6+? (van der Hucht 2001). Isserstedt, Moffat & Niemela (1983) suggested that the binary partner is a low mass-evolved stellar remnant, either a neutron star or a black hole and that the supernova which created the collapsed object likely occurred when the system was in the disc of the MW. The loss of mass which occurred then left the binary companion (which we now see as WR 71) travelling along whichever velocity vector it possessed at the moment of the supernova. The large elevation of WR 71 above the Galactic plane (\(z = -1185\) pc) suggests that a significant component of this velocity was in the \(z\)-direction. The nebulosity is physically much larger than counterparts in the plane because the density of the ISM at this elevation is much lower, implying that all the circumstellar material is ejecta, as there is so little ISM to be swept up.

It is odd, considering the previously noted anti-correlation of ejecta nebulae and binary WR systems, that such clear ejecta nebulae should surround such a star. However, the explanation may lie in the very low mass of the unseen binary companion (\(\sim 3 M_\odot\); Isserstedt et al. 1983), since normally WR binary companions are O stars of \(\sim 30 M_\odot\) (van der Hucht 2001; tables 18–19). A low-mass binary companion may not influence the later creation of an ejecta nebula to the same degree as a less evolved high-mass companion. This echoes the work of Nichols & Fesen (1994), who discussed different scenarios for massive binary star evolution. If the WR 71 nebulosity originated in this way, then the material that comprises the nebula would be expected to have the same enrichment pattern as other WR nebulae. If, on the other hand, the nebulosity is the product of more

Table 3. WR stars with ejecta nebulae.

| Nebular name | Stellar catalogue number\(^a\) | Name | Spectral type\(^a\) | Angular radius (arcmin) | Distance\(^b\) (kpc) | Radius (pc) | \(|z|^b\) (pc) |
|-------------|--------------------------------|------|---------------------|-------------------------|------------------|------------|-----------|
| Milky Way | | | | | | | |
| NGC 2359 | WR 7 | HD 56925 | WN4 | 2.2 | 3.7 | 2.3 | 8 |
| Anon | WR 8 | HD 62910 | WN7/WC4 | 1.9 | 3.5 | 1.9 | 230 |
| Anon | WR 16 | HD 86161 | WN8h | 3.7 | 2.4 | 2.5 | 110 |
| NGC 3199 | WR 18 | HD 89358 | WN4 | 4.8 | 2.2 | 3.1 | 37 |
| RCW 58 | WR 40 | HD 96548 | WN8h | 3.3 | 2.3 | 2.2 | 190 |
| Anon | WR 68 | Anon | WC7 | 6.6 | 3.3 | 6.3 | 110 |
| Anon | WR 71 | HD 143414 | WN6+? | 4.5 | 9.0 | 12 | 1200 |
| RCW 104 | WR 75 | HD 147419 | WN6 | 9.3 | 2.2 | 5.9 | 56 |
| Anon | WR 91 | Anon | WN7 | 3.7 | 7.2 | 7.7 | 130 |
| G 2.4+1.4 | WR 102 | Anon | WO2 | 3.1 | 5.6 | 5.0 | 140 |
| Anon | WR 116 | Anon | WN8h | 3.3 | 2.5 | 2.4 | 14 |
| M1–67 | WR 124 | Merrill’s Star | WN8h | 0.7 | 3.4 | 0.70 | 190 |
| NGC 6888 | WR 136 | HD 192163 | WN6h | 8.2 | 1.3 | 3.0 | 53 |
| A48\(^c\) | | | WN6 | 0.3 | | | |
| LMC candidates | | | | | | | |
| Anon | BAT99-11 | HD 32402 | WC4 | 0.88 | 50 | 12.8 |
| Anon | BAT99-15 | HD 268847 | WN4b | 0.66 | 50 | 9.6 |
| Anon | BAT99-16 | HD 33133 | WN8h | 0.26 | 50 | 3.8 |
| Anon | BAT99-65 | Anon | WN4 | 0.23 | 50 | 3.4 |

\(^a\)From van der Hucht (2001) (Galactic).
\(^b\)Galactic distances from van der Hucht (2001), LMC distance Macri et al. (2006).
\(^c\)Wachter et al. (2010) – 50.

Table 4. Results of survey.

	WN	WC	(WN/WC & WO)	WR
Milky Way\(^a\)				
WR stars with ejecta nebula	10	1	2	13
Total WR stars	127	87	13	227
Ratio	0.08	0.01	0.15	0.06
LMC\(^b\)				
WR stars with candidate	3	1	0	4
Ejecta nebulae	108	24	2	134
Ratio	0.03	0.04	0.00	0.03

\(^a\)Not including WR stars discovered by Wachter et al. (2010) as they were found by examining central stars of detected IR ring nebulae.
\(^b\)Counting all O3If*/WN6-A stars as isolated WN type.

Table 5. WR nebulae with binary central stars.

	Isolated WR	Binary WR	All WR
Milky Way\(^a\)			
Ejecta nebulae	12	1	13
All WR stars	141	86	227
Ratio	0.09	0.01	0.06
LMC\(^b\)			
Candidate ejecta nebulae	4	0	4
All WR stars	102	32	134
Ratio	0.04	0.00	0.03

\(^a\)Not including WR stars discovered by Wachter et al. (2010).
\(^b\)Counting all O3If*/WN6-A stars as isolated WN type.

\(\odot\)2010 The Authors. Journal compilation \(\odot\)2010 RAS, MNRAS 409, 1429–1440
complex binary interaction and mass transfer, then its composition would be more difficult to predict.

This suggests that over the history of a binary system with two close stars of high initial mass the more massive partner will not create an ejecta nebula – all the mass will be accreted by the partner – while the initially lower mass star can create an ejecta nebula as its mass loss is not as influenced by its low-mass post-SN companion.

7 SUMMARY

The morphological classification scheme of Chu (1981, 1991) has been discussed and compared with spectroscopically derived abundances of WR nebulae and a modified set of criteria for ejecta nebulae around WR stars derived.

Using SHS Hα survey data, we have examined the environs of 409, C 2010 RAS, MNRAS 2010 The Authors. Journal compilation

ACKNOWLEDGMENTS

The LMC section of this work would not have been possible without the contribution of Mike Read from the WFAU at the University of Edinburgh and his efforts to ‘rescue’ the Magellanic Clouds portion of the SHS.

We would also like to thank Dr A. P. Marston for his comments on an early draft of this paper.

Thanks also to the RAS library for providing physical access to copies of ApJS and allowing the author to scan relevant plates from Marston et al. (1994b) at higher quality than those provided in the online versions.

This research made use of Montage, funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. Montage is maintained by the NASA/IPAC Infrared Science Archive.

DJS is supported fully by an STFC postgraduate studentship.

REFERENCES

Abell G. O., 1966, ApJ, 144, 259
Breysacher J., Azzopardi M., Testor G., 1999, A&AS, 137, 117 (BAT99)
Cappa C. E., Goss W. M., Niemela V. S., Ostrov P. G., 1999, AJ, 118, 948
Cappa C. E., Goss W. M., Pineault S., 2002, AJ, 123, 3348
Chu Y. H., 1981, ApJ, 249, 195
Chu Y. H., 1983, ApJ, 269, 202
Chu Y. H., 1991, in van der Hucht K. A., Hidayat B., eds, Proc. IAU Symp. Vol. 143, Wolf–Rayet Stars and Interrelations with Other Massive Stars in Galaxies. Kluwer, Dordrecht, p. 349
Chu Y., 2003, in van der Hucht K., Herrero A., Esteban C., eds, Proc. IAU Symp. Vol. 212, A Massive Star Odyssey: From Main Sequence to Supernova. Astron. Soc. Pac., San Francisco, p. 585
Chu Y. H., Troland T. H., Gull T. R., Treffers R. R., Kwitter K. B., 1982, ApJ, 254, 362
Crowther P. A., 2007, ARA&A, 45, 177
Crowther P. A., Smith L. J., Willis A. J., 1995, A&A, 304, 269
Dopita M. A., McGregor P. J., Rawlings S. J., Lozinskaya T. A., 1990, ApJ, 351, 563
Dopita M. A., Bell J. F., Chu Y. H., Lozinskaya T. A., 1994, ApJS, 93, 455
Drew J. E. et al., 2005, MNRAS, 362, 753
Esteban C., Vilchez J. M., 1992, ApJ, 390, 536
Esteban C., Vilchez J. M., Manchado A., Edmonds M. G., 1990, A&A, 227, 515
Esteban C., Vilchez J. M., Manchado A., Smith L. J., 1991, A&A, 244, 205
Esteban C., Vilchez J. M., Smith L. J., Clegg R. E. S., 1992, A&A, 259, 629
Garnett D. R., Chu Y. H., Dopita M. A., 1993, Rev. Mex. Astron. Astrofís., 27, 141
Gosachinskij I. V., Lozinskaya T. A., 2002, Astron. Lett., 28, 701
Guillermo Gimenez de Castro C., Niemela V. S., 1998, MNRAS, 297, 1060
Isserstedt J., Moffat A. F. J., Niemela V. S., 1983, A&A, 126, 183
Johnson H. M., Hogg D. E., 1965, ApJ, 142, 1033
Kwitter K. B., 1984, ApJ, 287, 840
Macri L. M., Stanek K. Z., Bersier D., Greenhill L. J., Reid M. J., 2006, ApJ, 652, 1133
Marston A. P., 1995, AJ, 109, 1839
Marston A. P., 1997, ApJ, 475, 188
Marston A. P., Chu Y. H., Garcia-Segura G., 1994a, ApJS, 93, 229
Marston A. P., Yocum D. R., Garcia-Segura G., Chu Y. H., 1994b, ApJS, 95, 151
Marston A. P., Welzlmeiller J., Bransford M. A., Black J. H., Bergman P., 1999, ApJ, 518, 769
Miller G. J., Chu Y. H., 1993, ApJS, 85, 137
Moore B. D., Hester J. J., Scowen P. A., 2000, AJ, 119, 2991
Nichols J. S., Fesen R. A., 1994, A&A, 291, 283
Parker Q. A. et al., 2005, MNRAS, 362, 689
Smith L. F., 1968, in Gebbie K. B., Thomas R. N., eds, Wolf–Rayet Stars. National Bureau of Standards, Washington DC, p. 23
Supar M., Parker Q. A., Filipovic M. D., 2010b, MNRAS, 401, 1760
Supar M., Parker Q. A., Filipovic M. D., 2010b, preprint (arXiv:1002.3426)
van der Hucht K. A., 2001, New Astron. Rev., 45, 135
van der Hucht K. A., 2006, A&A, 458, 453
Wachter S., Mauerhan J. C., Van Dyk S. D., Hoard D. W., Kafka S., Morris P. W., 2010, AJ, 139, 2330

This paper has been typeset from a TeX file prepared by the author.

© 2010 The Authors. Journal compilation © 2010 RAS, MNRAS 409, 1429–1440