Strict 2-toposes

Mark Weber

Abstract. A 2-categorical generalisation of the notion of elementary topos is provided, and some of the properties of the yoneda structure [SW78] it generates are explored. Examples relevant to the globular approach to higher dimensional category theory are discussed. This paper also contains some expository material on the theory of fibrations internal to a finitely complete 2-category [Str74b] and provides a self-contained development of the necessary background material on yoneda structures.

1. Introduction

The idea of an internal category is due to Ehresmann [Ehr58]. This notion has experienced somewhat of a resurgence in recent times because of developments in higher category theory. For example in the work of Michael Batanin [Bat98b, Bat98a, Bat02, Bat03] internal category theory is the backdrop for the theory of higher operads. In the work of John Baez and his collaborators [BL04, BC04, BS05] we see internal categories as fundamental in the process of categorifying differential geometry and gauge theory with a view to applications in physics.

This paper is about doing category theory internally with a particular focus on the theory of colimits. It was motivated by the need to manipulate internal colimits more easily in order to push forward the theory of higher operads. In [Web] the results and notions of the present paper are used to bring all the operad theory of [Bat98b] to the level of generality of [Web05] so that the theory of higher symmetric operads is facilitated. This will then be used in future work on reconciling the notions of higher dimensional categories in [BD98] and [Bat98b], and in an operadic exploration of the stabilisation hypothesis [BD95].

In the 1970’s internal colimits were understood from a 2-categorical perspective in the work of Ross Street and Bob Walters [SW78]. In this paper the concept of a yoneda structure on a 2-category was discovered; inspired largely by the work of Bill Lawvere on the foundational importance of the category of categories [Law70]. Logical motivations notwithstanding, the perspective of this paper is that the point of having a yoneda structure on a 2-category K, is that one can then say what it means for an object of K to be cocomplete in such a way that the theory of cocompleteness develops in K as in ordinary category theory. The resulting theory of Street and Walters clarifies colimits in both enriched and internal category theory, and is surprisingly simple.
In this paper we focus attention on the yoneda structures that arise in internal category theory. These yoneda structures satisfy some additional properties described in definition (3.1). We recall the resulting theory of colimits that arises in this setting in section (3).

The examples of interest for us involve a 2-category \(K \) equipped with an object \(\Omega \in K \) which plays the role of an internal category of sets for \(K \). In the paradigmatic example we consider the category Set of small sets, another category SET of sets which contains the arrows of Set as an object, and CAT as the 2-category of categories internal to SET. For this example \(K \) is CAT and \(\Omega \) is Set. In higher category theory one obtains another important example by taking \(K \) to be the 2-category of globular categories and \(\Omega \) to be the globular category of higher spans of sets \([Bat98b] [Str00]\).

Yoneda structures arise from the setting alluded to in the previous paragraph because \(\Omega \) satisfies a property analogous to that enjoyed by the subobject classifier of an elementary topos. That this is so in the paradigmatic example described above is an important observation of Bill Lawvere. A 2-categorical expression of this property is provided in the work of Ross Street by the notion of a fibrational cosmos \([Str74a] [Str80a]\). The 2-toposes of this work are simply cosmoses whose underlying 2-category is cartesian closed and comes equipped with a duality involution\(^1\). This notion is isolated here because it is easier to exhibit examples of 2-toposes and to explore their properties. We exploit this to understand better some of the yoneda structures that arise. In particular, part of any yoneda structure is a presheaf construction: an assignment of an object \(\hat{A} \) for any admissible object \(A \in K \) to be regarded as the object of presheaves on \(A \). The main results of this paper describe when the yoneda structures that arise from 2-toposes have presheaves which are cocomplete.

Our basic references for background on 2-categories is \([KS74]\) and \([Str80b]\). Another important background article is \([Str74b]\) although efforts are made in this paper to keep the exposition relatively self-contained. The 2-categorical background pertinent to this work is collected in section (2), and the definition of a duality involution is provided in subsection (2.3).

In section (4) the notion of 2-topos is defined and the basic examples are presented, and in section (5) the yoneda structure arising from a 2-topos is described. Not all 2-toposes give yoneda structures with cocomplete presheaves as we see in example (6.4). Part of the axiomatics of a yoneda structure is a right ideal of arrows called admissible maps. Section (6) also provides a basic result to help characterise the admissible maps in some of our examples. Section (7) develops the results on presheaf cocompleteness. In section (8) we exhibit \(\Omega \) as a cartesian closed object of \(K \) under some hypotheses on the 2-topos \(K \) (which include the cocompleteness of \(\Omega \)). Applied to the globular category of higher spans, the results of this paper say that this globular category is the small globular colimit completion of 1, and that it is cartesian closed as a globular category.

In all the examples considered in this work \(K \) is a 2-category of categories internal to some nice category, and so one might wonder why bother with a 2-categorical abstraction? One reason for this is that the theory just comes out easier when things are expressed this way. Lax and pseudo pullbacks are very

\(^1\)Less general notions of 2-toposes were considered in \([Pen74]\) and \([Bou74]\), in which \(\Omega \) is used to classify cosieves (see example (4.3)) for a cartesian closed finitely complete 2-category \(K \).
useful things. However the main reason is that it is 2-toposes together with nice 2-monads on them which provide a conceptual basis for the theory of operads [Web], and many of these nice 2-monads do not arise from nice monads on the categories in which we internalise\(^2\). This is especially so when one wishes to study weakly symmetric higher dimensional monoidal categories.

Consistent with the notation for a yoneda structure, for a category \(C\) we denote by \(\hat{C}\) the category of presheaves on \(C\), that is the functor category \([C^{\text{op}},\text{Set}]\). When working with presheaves we adopt the standard practises of writing \(C\) for the representable \(C(\cdot, C) \in \hat{C}\) and of not differentiating between an element \(x \in X(C)\) and the corresponding map \(x : C \rightarrow X\) in \(\hat{C}\). We denote by \(\text{CAT}(\hat{C})\) the functor 2-category \([C^{\text{op}},\text{CAT}]\) which consists of functors \(C^{\text{op}} \rightarrow \text{CAT}\), natural transformations between them and modifications between those. We adopt the standard notations for the various duals of a 2-category \(K\): \(K^{\text{op}}\) is obtained from \(K\) by reversing just the 1-cells, \(K^{\text{co}}\) is obtained by reversing just the 2-cells, and \(K^{\text{coop}}\) is obtained by reversing both the 1-cells and the 2-cells.

The title of this paper is strict 2-toposes because the structure we consider on a 2-category is not invariant under biequivalence. The reason for this is that strict 2-categorical limits (especially pullbacks) play a central role in this theory. So the 2-toposes of this work are different in spirit to the higher toposes considered in homotopical algebraic geometry [TV05] which are a type of homotopy-invariant structure.

2. 2-categorical preliminaries

2.1. Finitely complete 2-categories. Recall that a 2-category \(K\) is finitely complete when it admits all limits weighted by 2-functors \(I : J \rightarrow \text{CAT}\), in the sense of CAT-enriched category theory [Kel82], such that the set of 2-cells of \(J\) and the sets of arrows of the \(I(j)\) for \(j \in J\), are all finite. This means that for such \(I\) and \(T : J \rightarrow K\) there is an object \(\text{lim}(I, T)\) of \(K\) and isomorphisms of categories

\[
K(X, \text{lim}(I, T)) \cong [J, \text{CAT}](I, K(X, T))
\]

2-natural in \(X\). From [Str76] one has the result that \(K\) is finitely complete iff it admits finite conical limits and cotensors with the ordinal 2. Slightly less efficiently \(K\) is finitely complete iff it has a terminal object, pullbacks and lax pullbacks (also known as comma objects). Thus the discussion of finitely complete 2-categories differs from the discussion of finitely complete categories only because for 2-categories there are different types of pullback: one can consider the lax pullback, pseudo pullback or pullback of a pair of arrows \(f\) and \(g\) depending on whether one is considering squares

\[
P \rightarrow A
\]

\[
\downarrow \phi \quad \downarrow g
\]

\[
B \rightarrow C
\]

in \(K\) such that \(\phi\) is a general 2-cell, invertible or an identity respectively. In addition to these variations one can also weaken the universal property and consider

\(^2\)The most basic example of this is the 2-monad on CAT whose (strict) algebras are symmetric (strict) monoidal categories.
bicategorical limits \[\text{Str80}\] but in this paper we shall only consider the stronger notion.

Recall that the lax pullback of

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\Downarrow{\lambda} & & \Downarrow{g} \\
C & \xleftarrow{\phi} & B
\end{array}
\]

in a 2-category \(\mathcal{K}\) consists of

\[
\begin{array}{ccc}
P & \xrightarrow{q} & B \\
\Downarrow{p} & & \Downarrow{g} \\
A & \xleftarrow{f} & C
\end{array}
\]

in \(\mathcal{K}\) universal in the following sense:

1. given

\[
\begin{array}{ccc}
X & \xrightarrow{h} & C \\
\Downarrow{\phi} & & \Downarrow{g} \\
A & \xleftarrow{f} & B
\end{array}
\]

there is a unique \(\delta : X \rightarrow f/g\) such that \(p\delta = h\), \(q\delta = k\) and \(\lambda\delta = \phi\).

2. for \(\delta_1\) and \(\delta_2 : X \rightarrow f/g\), given \(\alpha : \delta_1 \rightarrow \delta_2\) and \(\gamma : g\delta_1 \rightarrow g\delta_2\) such that

\[
\begin{array}{ccc}
f\delta_1 & \xrightarrow{\lambda\delta_1} & g\delta_1 \\
\Downarrow{f\alpha} & = & \Downarrow{g\beta} \\
f\delta_2 & \xrightarrow{\lambda\delta_2} & g\delta_2
\end{array}
\]

there is a unique \(\pi : \delta_1 \rightarrow \delta_2\) such that \(p\pi = \alpha\) and \(q\pi = \gamma\).

It is standard notation when fixing a choice of lax pullback to write \(f/g\) in the place of \(P\). The pseudo pullback \(f/\sim g\) in \(\mathcal{K}\) is defined in the same way except that the 2-cells \(\phi\) and \(\lambda\) in the above definition are invertible, and the pullback as \(f/\sim g\) may be defined in the same way as above except that \(\phi\) and \(\lambda\) are identities.

Example 2.1. Given functors

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\Downarrow{\lambda} & & \Downarrow{g} \\
C & \xleftarrow{\phi} & B
\end{array}
\]

one can define the category \(f/g\) as follows:

- objects are triples \((a, h : f a \rightarrow gc, c)\) where \(a \in A\), \(c \in C\), and \(h \in B\).
- an arrow \((a, h, c) \rightarrow (a', h', c')\) is a pair \((\alpha : a \rightarrow a', \gamma : c \rightarrow c')\) such that \(h'f(\alpha) = g(\gamma)h\).
- composition and identities induced from the category structures of \(A\), \(B\) and \(C\).

and one has

\[
\begin{array}{ccc}
f/g & \xrightarrow{q} & C \\
\Downarrow{p} & & \Downarrow{g} \\
A & \xleftarrow{f} & B
\end{array}
\]
where \(p(a, h, c) = a \), \(q(a, h, c) = c \) and \(\lambda_{(a, h, c)} = h \), satisfying the universal property of a lax pullback. One obtains \(f/\sim g \) as the full subcategory of \(f/g \) consisting of the \((a, h, c)\) such that \(h \) is invertible, and \(f/\sim g \) as the full subcategory of \(f/g \) consisting of the \((a, h, c)\) such that \(h \) is an identity arrow. Conversely given lax pullbacks in CAT one can define general lax pullbacks as follows. A square

\[
P \xrightarrow{q} C \\
p \downarrow \alpha \downarrow C \\
A \xrightarrow{f} B
\]

in a 2-category \(\mathcal{K} \) exhibits \(P \) as \(f/g \) iff for all \(X \in \mathcal{K} \) the functor

\[
\mathcal{K}(X, P) \to \mathcal{K}(X, f) / \mathcal{K}(X, g)
\]

induced by \(\mathcal{K}(X, \lambda) \) is an isomorphism of categories. This is called the \textit{representable} definition of lax pullbacks in \(\mathcal{K} \). Similarly, pseudo pullbacks, pullbacks and indeed all 2-categorical limits can be defined representably.

Example 2.2. Let \(\mathcal{K} \) be a 2-category and \(A \in \mathcal{K} \). It is standard to denote by \(\mathcal{K}/A \) the 2-category formed as the lax pullback of

\[
\mathcal{K} \xrightarrow{1_X} \mathcal{K} \xrightarrow{A} 1
\]

in the 2-category of 2-categories, 2-functors and 2-natural transformations. Its explicit description is similar to its categorical analogue in that the objects of \(\mathcal{K}/A \) are arrows \(f : X \to A \), and a morphism \(f_1 \to f_2 \) is an arrow \(g \) of \(\mathcal{K} \) such that \(f_2 g = f_1 \). However a 2-cell \(\gamma : g_1 \Rightarrow g_2 \) of \(\mathcal{K}/A \) is a 2-cell \(\gamma : g_1 \Rightarrow g_2 \) of \(\mathcal{K} \) such that \(f_2 \gamma \) is an identity. Recall [CJ95] that the 2-functor \(\mathcal{K}/A \to \mathcal{K} \) whose object map takes the domain of an arrow into \(A \), creates any connected limits that exist in \(\mathcal{K} \). When \(\mathcal{K} \) is finitely complete and \(f : A \to B \) in \(\mathcal{K} \), the processes of taking the pullback, pseudo pullback and lax pullback along \(f \) provide 2-functors \(\mathcal{K}/B \to \mathcal{K}/A \).

Example 2.3. Let \(\mathbb{C} \) be a category. Then a lax pullback \(f/g \) of

\[
A \xrightarrow{f} B \xrightarrow{g} C
\]

in \(\text{CAT}/\mathbb{C} \) can be specified as follows: the domain category is the full subcategory of \(f/g \) as defined in \(\text{CAT} \) as in the previous example, consisting of the \((a, h, c)\) such that \(\beta(h) \) is an identity; and the functor into \(\mathbb{C} \) sends such \((a, h, c)\) to \(\alpha(a) = \gamma(c) \) in \(\mathbb{C} \). Notice that while the domain 2-functor \(\text{CAT}/\mathbb{C} \to \text{CAT} \) preserves pullbacks, from the description of lax pullbacks in \(\text{CAT}/\mathbb{C} \) given here, it does \textit{not} preserve lax pullbacks in general.

Example 2.4. Let \(\mathcal{E} \) be a category with pullbacks. Recall the 2-category \(\text{Cat}(\mathcal{E}) \) of categories internal to \(\mathcal{E} \). For \(A \in \text{Cat}(\mathcal{E}) \) it is standard to denote by

\[
A_0 \xrightarrow{\delta} A_1 \xrightarrow{\beta} A_2
\]
the 2-truncated simplicial diagram determined by A: A_0 is the object of objects of A, A_1 the object of arrows, s the source or domain map, t the target or codomain map, i the map that provides identity arrows, A_2 the object of composable pairs in A obtained by pulling back s along t, and c the composition map. Using pullbacks alone one can construct pullbacks, pseudo pullbacks and lax pullbacks in $\text{Cat}(\mathcal{E})$. One can either do this directly, or by interpreting the explicit description of these constructions in CAT in the internal language of \mathcal{E} (see [Joh02]). A nice consequence of this is that for any pullback preserving functor $\mathcal{E}\to\mathcal{E}'$, the 2-functor $\text{Cat}(\mathcal{E})\to\text{Cat}(\mathcal{E}')$ it induces preserves pullbacks, pseudo pullbacks and lax pullbacks.

Lax pullbacks satisfy the same composition and cancellation properties as pullbacks do in ordinary category theory. That is, given

\[
\begin{array}{ccc}
X & \xrightarrow{\lambda} & A \\
\downarrow & & \downarrow \lambda \\
Y & \xrightarrow{f} & D
\end{array}
\]

\[
\begin{array}{ccc}
A & \xrightarrow{v} & B \\
\downarrow & & \downarrow g \\
C & \xrightarrow{\gamma} & D
\end{array}
\]

such that λ exhibits A as f/g, then the composite square exhibits X as fh/g iff the front square is a pullback. Similarly for pseudo pullbacks and pullbacks in any 2-category. So for example, one can use this observation to obtain all lax pullbacks from pullbacks and lax pullbacks of identity arrows. We adopt some standard notational abuses with regards to identity arrows: $f/1_A$ is written f/A, $1_A/g$ is written A/g and $1_A/1_A$ is written A/A.

Some other notation: we shall denote a terminal object of \mathcal{K} by 1 and for $A \in \mathcal{K}$ the unique map $A \to 1$ by t_A.

2.2. Fibrations

The concept of a fibration between categories is due to Grothendieck [Gro70]. Fibrations can be defined internal to any finitely complete 2-category \mathcal{K}. In fact there are two approaches: one can work 2-categorically and follow [Str74b], or one can regard \mathcal{K} as a bicategory following [Str80b]. For the case $\mathcal{K} = \text{CAT}$ the 2-categorical definition of fibration coincides with that of Grothendieck [Gra66] whereas the bicategorical definition of fibration is more general. In this paper we shall consider only the stronger notion.

Let $f : A \to B$ be a functor. A morphism $\alpha : a_1 \to a_2$ in A is f-cartesian when for all α_1 and β as shown:

\[
\begin{array}{ccc}
f a_1 & \xrightarrow{f \alpha} & f a_2 \\
\downarrow & & \downarrow f \beta \\
f a_3 & \xrightarrow{f \gamma} & f a_1
\end{array}
\]

there is a unique $\gamma : a_3 \to a_1$ such that $f \gamma = \beta$ and $\alpha \gamma = \alpha_1$. The basic facts about f-cartesian morphisms are:

1. if $a_1 \xrightarrow{\alpha_1} a_2 \xrightarrow{\alpha_2} a_3$ are in A and α_2 is f-cartesian, then α_1 is f-cartesian iff $\alpha_2 \alpha_1$ is f-cartesian.
2. isomorphisms are f-cartesian for any f.
3. if α is f-cartesian and $f \alpha$ is an isomorphism then α is an isomorphism.
A cartesian lift of the pair $(\beta : b \to fa, a)$ is an f-cartesian morphism $\alpha : a_2 \to a$ such that $f\alpha = \beta$. Grothendieck defined f to be a fibration when every $(\beta : b \to fa, a)$ has a cartesian lift.

Let \mathcal{K} be a finitely complete 2-category and $f : A \to B$ be in \mathcal{K}. A 2-cell

$$
\begin{array}{ccc}
X & \xleftarrow{a_2} & A \\
\downarrow{a} & & \downarrow{a_1} \\
\end{array}
$$

is f-cartesian when for all $g : Y \to X$ in \mathcal{K}, $ag \in \mathcal{K}(Y, A)$ is $\mathcal{K}(Y, f)$-cartesian. One then defines f to be a fibration when for all

$$
\begin{array}{ccc}
X & \xrightarrow{a} & A \\
\downarrow{b} & & \downarrow{f} \\
B & & \\
\end{array}
$$

there exists f-cartesian $\tilde{\beta} : c \Rightarrow a$ so that $fc = b$ and $f\tilde{\beta} = \beta$. The following well known result is fundamental and easy to prove.

Theorem 2.5. In any finitely complete 2-category \mathcal{K}:

1. The composite of fibrations is a fibration.
2. The pullback of a fibration along any map is a fibration.

It is natural to consider applying the cartesian lifting criterion of a fibration f to the 2-cell from a lax pullback involving f. When one does this, one is lead to theorem 2.7. Given $f : A \to B$ and $g : X \to B$ in a finitely complete 2-category \mathcal{K}, we shall denote by $i : g/\sim f \to g/f$ the map induced by the universal property of g/f and the identity cell

$$
\begin{array}{ccc}
g/\sim f & \xrightarrow{i} & A \\
\downarrow{g} & & \downarrow{f} \\
X & \xrightarrow{id} & B \\
\end{array}
$$

of a defining pullback square for $g/\sim f$.

Lemma 2.6. Let \mathcal{K} be a 2-category and $i : X \to Y$ in \mathcal{K}. Then to give $i \dashv r$ with invertible unit, it suffices to give $\varepsilon : ir \Rightarrow 1_Y$ such that $r\varepsilon$ and εi are invertible and $1_X \cong ri$.

Theorem 2.7. Let \mathcal{K} be a finitely complete 2-category and $f : A \to B$ in \mathcal{K}. Then the following statements are equivalent:

1. f is a fibration.
2. For all $g : X \to B$, the map $i : g/\sim f \to g/f$ has a right adjoint in \mathcal{K}/X with invertible unit.
3. The map $i : A \to B/f$ has a right adjoint in \mathcal{K}/B with invertible unit.
Proof. (1) \Rightarrow (2): Apply the above definition to \(\phi = \lambda \) the defining lax pullback for \(g/f \), to obtain

\[
\begin{array}{c}
\begin{array}{ccc}
g/f & \xrightarrow{q_1} & A \\
p_1 \downarrow & \searrow & \\
X & \xrightarrow{g} & B
\end{array}
& = &
\begin{array}{ccc}
g/f & \xrightarrow{q_1} & A \\
p_1 \downarrow & \searrow & \\
X & \xrightarrow{g/f} & B
\end{array}
\end{array}
\]

where \(\lambda \) is \(f \)-cartesian, and so by the universal property of \(g/f \) we obtain \(\varepsilon : i r \Rightarrow 1 \) such that \(p_1 \varepsilon = \text{id} \) and \(q_1 \varepsilon = \lambda \). By lemma (2.6) it suffices to show that \(\varepsilon i \) and \(r \varepsilon \) are invertible, and that \(r \varepsilon i \Rightarrow 1 \) in \(K/X \). Observe that \(q \varepsilon i = \lambda i \) is an \(f \)-cartesian lift of an identity cell, and thus is invertible. Since \(p \varepsilon i = \text{id} \), the 2-cell \(\varepsilon i \) is invertible by the universal property of \(g/f \). So we have \(\lambda i : q_2 r \varepsilon \Rightarrow q_2 \) and \(p_2 r \varepsilon = p_2 \), and by the above defining diagram/equation of \(\lambda \) precomposed with \(i \), together with the universal property of \(g/ \Rightarrow f \), one obtains \(\eta : r \varepsilon i \Rightarrow 1 \) such that \(p \eta = \text{id} \). Finally to see that \(r \varepsilon \) is invertible, by the universal property of \(g/ = f \), it suffices to show that \(q_2 r \varepsilon \) is invertible, since \(p_2 r \varepsilon = p_1 \varepsilon = \text{id} \). Note that \(f q_2 r \varepsilon = g p_2 r \varepsilon = g p_1 \varepsilon = \text{id} \), and so it suffices to show that \(q_2 r \varepsilon \) is \(f \)-cartesian. For this we note that

\[
\begin{array}{c}
\begin{array}{ccc}
& & q_2 r \varepsilon \\
\searrow & \lambda & \searrow \\
q_1 r \varepsilon & \xrightarrow{q_2 r \varepsilon} & q_1
\end{array}
\end{array}
\]

commutes, and that since \(\lambda = q_1 \varepsilon \) is \(f \)-cartesian, \(q_2 r \varepsilon \) is \(f \)-cartesian also.

(2) \Rightarrow (3): just take \(g = 1_B \).

(3) \Rightarrow (1): By the universal property of \(B/f \) it suffices to verify the defining property of a fibration as defined above for the case \(\beta = \lambda \), the defining lax pullback cell for \(B/f \). We have

\[
\begin{array}{c}
\begin{array}{ccc}
B/f & \xrightarrow{q} & A \\
p_1 \downarrow & \searrow & \\
A & \xrightarrow{i} & B/f & \xrightarrow{q} & A
\end{array}
\end{array}
\]

where \(\varepsilon \) is the counit for the adjunction \(i \dashv r \) in \(K/B \). Since \(\lambda i = \text{id} \) this composite evaluates to \(f q \varepsilon \), and since \(p \varepsilon = \text{id} \) this composite also evaluates to \(\lambda \) whence \(\lambda = f q \varepsilon \). Thus it suffices to show that \(q \varepsilon \) is \(f \)-cartesian. To this end let \(\delta : s \Rightarrow q \) and \(\gamma : f s \Rightarrow f r \) such that \(f \delta = f(q \varepsilon) \gamma \). Another way to express this last equation,
since $\lambda = fq\varepsilon$ and $\lambda is = id$, is that

$$
\begin{array}{ccc}
p is & \xrightarrow{\gamma} & p \\
\downarrow \lambda & & \downarrow \lambda \\
fq is & \xrightarrow{f\delta} & fq
\end{array}
$$

commutes, and so by the universal property of B/f, there is a unique $\beta : is \to 1$ such that $p\beta = \gamma$ and $q\beta = \delta$. Since ε exhibits r as a right lifting of 1 along i (see example 2.17 below), there is a unique α such that

$$
\begin{array}{ccc}
B/f & \xrightarrow{s} & A \\
\downarrow 1 & & \downarrow i \\
B/f & \xleftarrow{\beta} & A
\end{array}
=
\begin{array}{ccc}
B/f & \xrightarrow{s} & A \\
\downarrow 1 & & \downarrow i \\
B/f & \xleftarrow{\alpha} & A
\end{array}
$$

Post composing this last equation with p gives $\gamma = f\alpha$, and post composing it with q gives $\delta = (qe)\alpha$. Conversely α is clearly the unique 2-cell satisfying these equations. □

A functor $p : E \to B$ is an opfibration when the functor $p^{op} : E^{op} \to B^{op}$ is a fibration. These functors were originally called cofibrations by Grothendieck, and indeed they are fibrations in CAT^{co}, however beginning with Gray [Gra66] the term opfibration was used instead so as not to give topologists the wrong idea: it is the fibrations in CAT^{op} which are more like what a topologist would call a cofibration, and both fibrations and opfibrations with their lifting properties which correspond intuitively to topologists' fibrations. Similarly one refers to opcartesian liftings, defines opfibrations in an arbitrary 2-category K as fibrations in K^{co}, and interprets the above results in K^{co} when working with this dual notion. By the characterisation of fibrations given in theorem 2.7 and its dual one has the following immediate corollary.

Corollary 2.8. If a 2-functor between finitely complete 2-categories preserves lax pullbacks, then it preserves fibrations and opfibrations.

Example 2.9. In this example we revisit fibrations in CAT from the present general point of view and recall the Grothendieck construction for later use. To see that fibrations in CAT are indeed Grothendieck fibrations let $f : A \to B$ be a functor. To give a right adjoint to $i : A \to B/f$ over B, one must give for each pair $(\beta : b \to fa, a)$ an object $r(\beta, a)$ in A such that $fr(\beta, a) = b$, and an arrow $\varepsilon(\beta, a) : r(\beta, a) \to a$ such that $f\varepsilon_{\beta, a} = \beta$ and so that the map

$$(\text{id}, \varepsilon(\beta, a)) : (\text{id}, r(\beta, a)) \to (\beta, a)$$

in B/f has the universal property of the counit of an adjunction. This universal property amounts to $\varepsilon(\beta, a)$ being f-cartesian. Thus a right adjoint to $i : A \to B/f$ over B amounts to a choice of cartesian liftings for f. A cleavage is the standard terminology for such a choice of cartesian liftings, and a fibration together with a cleavage is known as a cloven fibration. Given a pseudo functor $X : C^{op} \to \text{CAT}$ the Grothendieck construction produces an associated cloven fibration over C. Define the category el(X) as follows:
• objects: are pairs \((x, C)\) where \(C \in \mathcal{C}\) and \(x \in X(C)\).

• an arrow \((x_1, C_1) \to (x_2, C_2)\) is a pair \((\alpha, \beta)\) where \(\beta : C_1 \to C_2\) in \(\mathcal{C}\) and \(\alpha : x_1 \to X\beta(x_2)\).

• compositions: formed in the evident way using the pseudo functor coherence cells and composition in \(\mathcal{C}\).

define the functor into \(\mathcal{C}\) to be the obvious forgetful functor, and note that this functor has an obvious cleavage. This construction provides a 2-equivalence \(\text{Fib}(\mathcal{C}) \simeq \text{Hom}(\mathcal{C}^{\text{op}}, \text{CAT})\). A useful perspective on this last fact is that the 2-functor

\[\text{el} : \text{CAT}(\mathcal{C}) \to \text{CAT} \]

factors as

\[\text{CAT}(\mathcal{C}) \longrightarrow \text{CAT}/\mathcal{C} \longrightarrow \text{CAT} \]

where the first 2-functor is monadic and the second takes the domain of a functor into \(\mathcal{C}\). The induced 2-monad on on \(\text{CAT}/\mathcal{C}\) has functor part given by taking lax pullbacks along \(1_{\mathcal{C}}\) and the 2-category of pseudo algebras for this 2-monad is 2-equivalent to \(\text{Fib}(\mathcal{C})\). The general idea of seeing fibrations as algebras of a 2-monad in this way was developed in \cite{Str74b}. Note also that this factorisation of \(\text{el}\) implies that \(\text{el}\) preserves all connected conical limits \cite{CT95}.

Example 2.10. For a category \(\mathcal{C}\) we shall now consider fibrations in \(\text{CAT}/\mathcal{C}\). In example(2.3) we described explicitly the construction of lax pullbacks in \(\text{CAT}/\mathcal{C}\). Thus one can unpack the definition of fibration in \(\text{CAT}/\mathcal{C}\) in much the same way as we did for \(\text{CAT}\) in the previous example. When one does this one finds that

\[A \xrightarrow{f} B \]
\[\alpha \downarrow \quad \simeq \quad \beta \downarrow \]
\[\mathcal{C} \]

is a fibration in \(\text{CAT}/\mathcal{C}\) iff every \((\phi : b \to fa, a)\) such that \(\beta(\phi) = \text{id}\) has a cartesian lift. In this way the idea that \(f\) be “locally” a fibration, or in other words a “fibration on the fibres of \(\beta\)”, is formalised by saying that \(f\) is a fibration in \(\text{CAT}/\mathcal{C}\). In particular notice that the condition that \(f\) be a fibration over \(\mathcal{C}\) is in general weaker than the condition that \(f\) be a fibration, although they are equivalent when \(f\) lives in \(\text{Fib}(\mathcal{C})\) \cite{B85, Her99} as we shall now recall. For such an \(f\) let \(\phi : b \to fa\).

To obtain a cartesian lift for \(\phi\) one first takes a cartesian lift \(\phi_1 : a_1 \to a\) of \(\beta(\phi)\). Since \(f\) preserves cartesian arrows \(\phi\) factors uniquely as

\[b \xrightarrow{\phi_2} fa_1 \xrightarrow{f\phi_1} fa \]

where \(\beta(\phi_2) = \text{id}\). Since \(f\) is a fibration in \(\text{CAT}/\mathcal{C}\) one can take a cartesian lift \(\phi_3\) of \(\phi_2\), and then the composite

\[a_2 \xrightarrow{\phi_3} a_1 \xrightarrow{\phi_1} a \]

is a cartesian lift for \(\phi\).

\(^3\text{Hom}(\mathcal{C}^{\text{op}}, \text{CAT})\) is the 2-category of pseudo functors \(\mathcal{C}^{\text{op}} \to \text{CAT}\), pseudo natural tranformations between them, and modifications between those and \(\text{Fib}(\mathcal{C})\) is the sub-2-category of \(\text{CAT}/\mathcal{C}\) consisting of fibrations and functors over \(\mathcal{C}\) that preserve cartesian arrows.
2.3. 2-sided discrete fibrations and duality involutions. In this subsection \mathcal{K} is a finitely complete 2-category. We shall now recall the notion of 2-sided discrete fibration of Str74b and an associated yoneda lemma, and then define a notion of duality involution for \mathcal{K}. Recall first the bicategory $\text{Span}(\mathcal{K})$:

- objects: those of \mathcal{K}.
- a morphism $A \to B$ in $\text{Span}(\mathcal{K})$ is a triple (d, E, c)

\[
\begin{array}{ccc}
A & \xrightarrow{d} & E \\
& & \xleftarrow{c} \\
& & B
\end{array}
\]

and is called a span from A to B. When the maps d and c are understood we may abuse notation a little and refer to the above span as E.

- a 2-cell between spans is a commutative diagram

\[
\begin{array}{ccc}
E & \xrightarrow{d} & c \\
\downarrow & & \downarrow \\
A & \xrightarrow{d'} & B
\end{array}
\]

Composition of 2-cells is just composition in \mathcal{K}.

- composition of 1-cells is obtained by pulling back: the composite of (d_1, E_1, c_1) and (d_2, E_2, c_2)

\[
\begin{array}{ccc}
E_1 & \xrightarrow{p} & E_2 \\
\downarrow & & \downarrow \\
A & \xrightarrow{d_2} & C
\end{array}
\]

is (d_1p, E, c_2q), and this composite may be denoted as $E_2 \circ E_1$.

Notice that the homs $\text{Span}(\mathcal{K})(A, B)$ being isomorphic to the underlying category of $\mathcal{K} / (A \times B)$ are in fact 2-categories, and that pullback-composition is 2-functorial. Given a map $f : A \to B$ in \mathcal{K}, we have spans $(1_A, A, f)$ and $(f, A, 1_A)$ which we denote by f and f^{rev} respectively. Note also that $f \dashv f^{\text{rev}}$ in $\text{Span}(\mathcal{K})$ and that for any span (d, E, c) one has $E \cong c^{\text{rev}} \circ d$.

A span (d, E, c) from A to B in CAT is a discrete fibration from A to B when it satisfies:

1. $\forall f : a \to d(e), \exists f$ in E with codomain e such that $d(f) = f$ and $c(f) = 1_{c(e)}$.
2. $\forall g : c(e) \to b, \exists g$ in E with domain e such that $d(g) = 1_d(e)$ and $c(g) = f$.
3. $\forall h : c_1 \to c_2$ in E, the composite $d(h) \circ c(h)$ is defined and equal to h.

More generally, a span (d, E, c) from A to B in \mathcal{K} is a discrete fibration from A to B when for all $X \in \mathcal{K}$

\[
\begin{array}{ccc}
\mathcal{K}(X, A) & \xrightarrow{\mathcal{K}(X,d)} & \mathcal{K}(X, E) \xrightarrow{\mathcal{K}(X,c)} \mathcal{K}(X, B)
\end{array}
\]
is a discrete fibration from \(\mathcal{K}(X, A) \) to \(\mathcal{K}(X, B) \). We define a category \(\text{DFib}(\mathcal{K})(A, B) \) whose objects are discrete fibrations from \(A \) to \(B \) in \(\mathcal{K} \), and morphisms are morphisms of the underlying spans\(^4\). In particular a map \(p : E \to B \) is a discrete fibration when the span
\[
\begin{array}{ccc}
B & \xleftarrow{p} & E \\
& & \downarrow \\
& & 1
\end{array}
\]
is a discrete fibration, and a discrete opfibration when the span
\[
\begin{array}{ccc}
1 & \xrightarrow{p} & E \\
& & \downarrow \\
& & B
\end{array}
\]
is a discrete fibration.

Theorem 2.11. In a finitely complete 2-category \(\mathcal{K} \):

1. Given a discrete fibration \(E \) from \(A \) to \(B \) and a map \(f : C \to A \), the span \(E \circ f \) is a discrete fibration from \(C \) to \(A \).
2. Given a discrete fibration \(E \) from \(A \) to \(B \) and a map \(g : D \to A \), the span \(g^{\text{ev}} \circ E \) is a discrete fibration from \(A \) to \(D \).
3. If \((d, E, c) \) is a discrete fibration from \(A \) to \(B \) then \(d \) is a fibration and \(c \) is an opfibration.
4. If \(f : A \to C \) and \(g : B \to C \), then the span from \(A \) to \(B \) obtained from the lax pullback \(f/g \) is a discrete fibration from \(A \) to \(B \).

Proof. Because of the representability of the notions involved, to prove (1), (2) and (4) it suffices to verify each statement in the case \(\mathcal{K} = \text{CAT} \), and in this case the direct verifications are straightforward. As for (3) it suffices to show that \(d \) is a fibration, because this result interpreted in \(\mathcal{K}^{\text{co}} \) says that \(c \) is an opfibration. Consider

\[
\begin{array}{ccc}
X & \xrightarrow{\phi} & E \\
\downarrow{\phi} & & \downarrow{c} \\
A & \xrightarrow{d} & B
\end{array}
\]

and take \(\varepsilon : e_1 \to e \) to be the unique 2-cell such that \(d\varepsilon = \phi \) and \(\varepsilon \varepsilon = \text{id} \). We will now show that \(\varepsilon \) is \(d \)-cartesian. Let \(z : Z \to X \), \(g : e_2 \to e z \) and \(f : p e_2 \to a z \) be such that \(pg = (\phi z) f \). We must produce \(\delta : e_2 \to e_1 z \) unique such that \(d\delta = f \) and \((\varepsilon z) \delta = g \).

Since \((d, E, c) \) is a discrete fibration we can factor \(g \) uniquely as
\[
e_2 \xrightarrow{g_1} e_3 \xrightarrow{g_2} e z
\]
where
\[
dg_1 = \text{id} \quad cg_1 = cg \quad dg_2 = dg \quad cg_2 = \text{id}
\]
and we can take \(h : e_4 \to e_1 z \) unique such that \(dh = f \) and \(ch = \text{id} \). Since \(d((\varepsilon z) h) = (\phi z) f = dg \) and \(c((\varepsilon z) h) = \text{id} \), we have \(g_2 = (\varepsilon z) h \) and so \(e_3 = e_4 \). Thus we take \(\delta \) to be the composite
\[
e_2 \xrightarrow{g_1} e_3 \xrightarrow{h} e_1 z
\]
because \(d\delta = (dh)(dg_1) = f \) and \((\varepsilon z) \delta = (\varepsilon z)hg_1 = g_2g_1 = g \). To see that \(\delta \) is unique, let \(\delta' : e_2 \to e_1 z \) be such that \(d\delta' = f \) and \((\varepsilon z) \delta' = g \). Factor \(\delta' \) uniquely as
\[
e_2 \xrightarrow{\delta_1} e_5 \xrightarrow{\delta_2} e_1 z
\]

\(^4\)A 2-cell between maps of discrete fibrations is necessarily an identity
where
\[d\delta_1 = \text{id} \quad c\delta_1 = c\delta' \quad d\delta_2 = f \quad c\delta_2 = \text{id} \]
Then \(\delta_1 \) is forced to be \(g \) since \(d\delta_1 = \text{id} = dg_1 \) and \(c\delta_1 = c\delta' = c((\varepsilon z)\delta') = cg = cg_1 \),
and \(\delta_2 \) is forced to be \(h \) since \(d\delta_2 = f = dh \) and \(c\delta_2 = \text{id} = ch \).
\[\square \]

In particular notice that by (3) discrete fibrations are fibrations and discrete opfibrations are opfibrations as one would hope.

We now recall an analogue of the yoneda lemma for 2-sided discrete fibrations.

Let \(f : A \to B \) be in \(K \) a finitely complete 2-category. Denote by \(f/B \) \(\xrightarrow{q} \to \to \downarrow \downarrow B \)
the defining lax pullback squares for \(f/B \) and \(B/f \), define \(i_f : A \to f/B \) to be the unique map such that \(p_{i_f} = 1_A \), \(q_{i_f} = f \) and \(\lambda_{i_f} = \text{id} \), and \(j_f : A \to B/f \) to be the unique map such that \(p'_{j_f} = f \), \(q'_{j_f} = 1_A \) and \(\lambda'_{j_f} = \text{id} \).

Theorem 2.12. Let \(K \) be a finitely complete 2-category and \(f : A \to B \) be in \(K \).

1. (yoneda lemma): for any span \((d_1, E_1, c_1) \) from \(X \) to \(A \) and discrete fibration \((d_2, E_2, c_2) \) from \(X \) to \(B \), a map of spans
\[f/B \circ E_1 \to E_2 \]
is determined uniquely by its composite with
\[i_f \circ \text{id} : f \circ E_1 \to f/B \circ E_1 \]

2. (coyoneda lemma): for any span \((d_1, E_1, c_1) \) from \(A \) to \(X \) and discrete fibration \((d_2, E_2, c_2) \) from \(B \) to \(X \), a map of spans
\[E_1 \circ B/f \to E_2 \]
is determined uniquely by its composite with
\[\text{id} \circ j_f : E_1 \circ f^{rev} \to E_1 \circ B/f \]

Proof. The coyoneda lemma is the yoneda lemma in \(K^{co} \), so it suffices to prove the yoneda lemma. By the representability of the notions involved it suffices to prove this result for the case \(K = \text{CAT} \). In this case the head of the span \(f/B \circ E_1 \) can be described as follows:

- objects are 4-tuples \((e, a, \beta : fa \to b, b) \) where \(e \in E_1 \) and \(c_1e = a \).
- an arrow
\[(\varepsilon, \alpha, \beta) : (e_1, a_1, \beta_1, b_1) \to (e_2, a_2, \beta_2, b_2) \]
consists of maps \(\varepsilon : e_1 \to e_2, \alpha : a_1 \to a_2 \) and \(\beta : b_1 \to b_2 \), such that \(c_1\varepsilon = \alpha \) and \(\beta\beta_1 = \beta_2f(\alpha) \).
and the left and right legs of the span send \((\varepsilon, \alpha, \beta)\) described above to \(d_1 \varepsilon\) and \(\beta\) respectively. The image of \(i_f \circ \text{id}\) is the full subcategory given by the \((e, a, \beta, b)\) such that \(\beta = \text{id}\). Let \(\phi : f/B \circ E_1 \to E_2\). For any object \((e, a, \beta, b)\) we have a map
\[(1, 1, \beta) : (e, a, \text{id}, f a) \to (e, a, \beta, b)\]
and since \(d_2 \phi(1, 1, \beta) = \text{id}\) and \(c_2 \phi(1, 1, \beta) = \beta\), \(\phi(e, a, \beta, b)\) are defined as the unique “right” lift of \((\phi(e, a, 1 f a, f a), \beta)\) since \(E_2\) is a discrete fibration. For any arrow \((\varepsilon, \alpha, \beta)\) as above, we have a commutative square
\[
\begin{array}{ccc}
\phi(e_1, a_1, \text{id}, f a_1) & \phi(e_1, a_1, \beta_1, b_1) \\
\phi(\varepsilon, \alpha, f \alpha) & & \phi(\varepsilon, \alpha, \beta) \\
\phi(e_2, a_2, \text{id}, f a_2) & \phi(e_2, a_2, \beta_2, b_2) \\
\end{array}
\]
in \(E_2\), but from the proof of theorem(2.11) we know that \(\phi(1, 1, \beta_1)\) is \(d_2\)-opcartesian and so the rest of the above square is determined uniquely by \(\phi(\varepsilon, \alpha, f \alpha)\).

The yoneda lemma of [Str74b] is theorem(2.12)(1) in the case where \(E_1\) is the identity span. We use an analogue of this more general result in the proof of theorem(8.6).

Corollary 2.13. Let

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g & & h \\
\downarrow & & \downarrow \\
C & \xleftarrow{h} & B
\end{array}
\]

be in \(\mathcal{K}\). Then composition with \(i_f\)

\[
\mathcal{K}(f/B, C)(g p, h q) \xrightarrow{(-) \circ i_f} \mathcal{K}(A, C)(g, h f)
\]

is a bijection with inverse given by pasting with \(\lambda\).

Proof. 2-cells \(g p \to h q\) are in bijection with span maps \(f/B \to g/h\) by the definition of \(g/h\). By theorem(2.12) these are in bijection with span maps \(f \to g/h\) which by the definition of \(g/h\) are in bijection with 2-cells \(g \to h f\). This composite bijection is clearly \((-) \circ i_f\). By the definition of \(i_f\) the inverse of this bijection is given by pasting with \(\lambda\).

In order to define duality involutions we shall now return to our discussion of \(\text{Span}(\mathcal{K})\). The operation

\[
\begin{array}{ccc}
B & \xleftarrow{c} & E & \xrightarrow{d} & A \\
\uparrow & & \uparrow & & \downarrow \\
A & \xrightarrow{d} & E & \xleftarrow{c} & B
\end{array}
\]

of reversing spans is part of an isomorphism of bicategories

\((-) \text{rev} : \text{Span}(\mathcal{K})^{\text{op}} \to \text{Span}(\mathcal{K})\)

which is the identity on objects and provides isomorphisms of 2-categories on the homs. Cartesian product on \(\mathcal{K}\) extends to a tensor product on \(\text{Span}(\mathcal{K})\), and this is compatible with \((-) \text{rev}\) because the operation

\[
\begin{array}{ccc}
A \times B & \xrightarrow{(p, q)} & E & \xleftarrow{r} & C \\
\uparrow & & \uparrow \quad \uparrow & & \downarrow \\
A & \xleftarrow{p} & E & \xrightarrow{(q, r)} & B \times C
\end{array}
\]
provides the object part of isomorphisms of 2-categories
\[\text{Span}(\mathcal{K})(A \times B, C) \cong \text{Span}(\mathcal{K})(A, B^\text{rev} \times C) \]
which are pseudo natural in \(A, B \) and \(C \). Notice that \((-)^\text{rev}\) does not restrict to 2-sided discrete fibrations; for instance the map \(d \) in a discrete fibration \((d, E, c)\) is a fibration although not in general an opfibration. However from theorem 2.11 (1) and using the lifting properties from the definition of 2-sided discrete fibration, one can verify that the formation of categories of 2-sided discrete fibrations provides a pseudo functor
\[\text{DFib}(\mathcal{K})(-,-) : \mathcal{K}^{\text{coop}} \times \mathcal{K}^{\text{op}} \to \text{CAT} \]
the pseudoness arising because of span composition.

Definition 2.14. Let \(\mathcal{K} \) be a finitely complete 2-category. A duality involution for \(\mathcal{K} \) consists of a 2-functor
\[(-)^\circ : \mathcal{K}^{\text{co}} \to \mathcal{K} \]
such that \((-)^\circ\circ = \text{id}\) and for all \(A, B \) and \(C \) in \(\mathcal{K} \) equivalences of categories
\[\text{DFib}(\mathcal{K})(A \times B, C) \cong \text{DFib}(\mathcal{K})(A, B^\circ \times C) \]
pseudo natural in \(A, B \) and \(C \).

Example 2.15. Let \((d, E, c)\) be a discrete fibration from \(A \) to \(B \) in \(\text{CAT} \). Then for each \(a \in A \) and \(b \in B \) one can define
\[E(a, b) = \{ e \in E : \text{de} = a \text{ and ce} = b \} \]
which is contravariant in \(a \) and covariant in \(b \) and so defines a functor \(A^{\text{op}} \times B \to \text{SET} \). On the other hand given \(P : A^{\text{op}} \times B \to \text{SET} \) one can define a discrete fibration from \(A \) to \(B \) whose domain is the category
- objects: triples \((a, e, b)\) where \(a \in A, b \in B \) and \(e \in P(a, b) \).
- a morphism \((a_1, e_1, b_1) \to (a_2, e_2, b_2)\) consists of \(\alpha : a_2 \to a_1 \) and \(\beta : b_1 \to b_2 \)
such that \(P(\alpha, \beta)(e_1) = e_2 \).
These constructions define the object maps of equivalences of categories
\[\text{DFib}(\text{CAT})(A, B) \cong [A^{\text{op}} \times B, \text{SET}] \]
which are pseudo natural in \(A \) and \(B \). Using these equivalences and the isomorphisms
\[[(A \times B)^{\text{op}} \times C, \text{SET}] \cong [A^{\text{op}} \times (B^{\text{op}} \times C), \text{SET}] \]
one can exhibit \((-)^\circ\circ\) as a duality involution for \(\text{CAT} \).

Example 2.16. Let \(\mathcal{E} \) be a category with finite limits. Define \(A^\circ \) for \(A \in \text{Cat}(\mathcal{E}) \) by interchanging the source and target maps. For \(A, B \in \text{Cat}(\mathcal{E}) \) there is a forgetful functor
\[\text{DFib}(\text{Cat}(\mathcal{E}))(A, B) \to \text{Span}(\mathcal{E})(A_0, B_0) \]
which is monadic. The relevant monad on \(\text{Span}(\mathcal{E})(A_0, B_0) \) is given by span composition \(B \circ - \circ A \) regarding \(A \) and \(B \) as monads in \(\text{Span}(\mathcal{E}) \). One can verify these facts directly in the case \(\mathcal{E} = \text{SET} \). Using the internal language of \(\mathcal{E} \) (again see [Joh02]) this verification may in fact be interpreted in \(\mathcal{E} \) to give a proof of the general result. See also [Str80a] for a derivation of these facts from the viewpoint of more general 2-sided fibrations. From this monadicity and the description of the relevant monad, the pseudoness arises because of span composition.
the isomorphisms \[\text{above} \] lift through the forgetful functors to provide equivalences of categories
\[
\text{DFib}(\text{Cat}(\mathcal{E}))(A \times B, C) \simeq \text{DFib}(\text{Cat}(\mathcal{E}))(A, B^o \times C)
\]
pseudo natural in \(A, B \) and \(C \).

2.4. Left extensions and left liftings. As we shall see later in this paper, to express the cocompleteness of an object \(A \) of a finitely complete 2-category \(K \), one requires pointwise left extensions and left liftings. We recall these notions in this subsection as well as some results about left extending along fully faithful maps and opfibrations.

A 2-cell
\[
\begin{array}{c}
A \\
\downarrow^g \\
\downarrow_f \\
C \\
\downarrow^\phi \\
\downarrow^h \\
B
\end{array}
\]

in a 2-category \(K \) exhibits \(h \) as a left extension of \(f \) along \(g \) when \(\forall k \) pasting with \(\phi \):
\[
\begin{array}{c}
A \\
\downarrow^g \\
\downarrow_f \\
\downarrow^\phi \\
\downarrow^h \\
C \\
\downarrow^\kappa
\end{array}
\]

provides a bijection between 2-cells \(h \Rightarrow k \) and 2-cells \(f \Rightarrow kg \). This left extension is preserved by \(j : C \rightarrow D \) when \(j \phi \) exhibits \(jh \) as a left extension of \(jf \) along \(g \), and is absolute when it is preserved by all arrows out of \(C \). The 2-cell \(\phi \) exhibits \(g \) as a left lifting of \(f \) along \(h \) when \(\forall k \) pasting with \(\phi \):
\[
\begin{array}{c}
A \\
\downarrow^g \\
\downarrow_f \\
\downarrow^\phi \\
\downarrow^h \\
C \\
\downarrow^\kappa
\end{array}
\]

provides a bijection between 2-cells \(g \Rightarrow k \) and 2-cells \(f \Rightarrow hk \). This left lifting is respected by \(j : D \rightarrow A \) when \(\phi j \) exhibits \(gj \) as a left lifting of \(fj \) along \(h \) and is absolute when it is respected by all arrows into \(C \). Clearly a left extension in \(K \) is a left lifting in \(K^{op} \). Applying the above definitions to the 2-category \(K^{co} \) gives the notions of right extension and right lifting. Some basic elementary facts regarding left extensions in \(K \) are:

1. If \(f \) is an isomorphism and \(\phi : y \rightarrow xf \) then \(\phi \) is a left extension along \(f \) iff \(\phi \) is an isomorphism.

2. If \(\phi \) and \(\phi' \) are left extensions along \(f \), and \(\beta \) is the unique 2-cell making
\[
\begin{array}{c}
y \\
\downarrow^\alpha \\
y' \\
\downarrow^\phi' \\
x'f \\
\downarrow^\beta f
\end{array}
\]
commute; then if α is an isomorphism so is β.

(3) If ϕ_1 is a left extension along g

```
A \xleftarrow{g} B \xrightarrow{f} C
      \downarrow \phi_1 \downarrow \phi_2
       \downarrow \phi_2 \downarrow \phi_1
     \downarrow \phi_1 \downarrow \phi_2
     D \xleftarrow{z} \xrightarrow{y} \xrightarrow{z} \xrightarrow{C}
```

then $\phi_2 : y \rightarrow x f$ is a left extension along f iff the composite is a left extension along fg.

and applying these observations to the various duals of K gives analogous statements for left liftings, right extensions and right liftings.

Example 2.17. The unit of an adjunction provides the most basic example of a left lifting and left extension, and this expresses its universal nature 2-categorically: let

```
A \xrightarrow{f} B
\downarrow \eta
\downarrow \eta
A \xleftarrow{1_A} \xrightarrow{u}
```

be a 2-cell in a 2-category K, then it is an elementary exercise to show that the following are equivalent:

1. η is the unit of an adjunction $f \dashv u$.
2. η exhibits u as a left extension of 1_A along f and this left extension is preserved by f.
3. η exhibits u as a left extension of 1_A along f and this left extension is absolute.

Applying this observation in K^{op} one obtains two further equivalent conditions for η in terms of left liftings, and considering K^{co} one obtains the corresponding conditions for the counit of an adjunction in terms of right extensions and right liftings. In these terms it is easy to see that left adjoints preserve left extensions. For suppose that

```
X \xrightarrow{h} Y
\downarrow \phi
\downarrow \phi
\downarrow \phi
\downarrow \phi
A \xrightarrow{g} \xrightarrow{k} \xrightarrow{Y}
```

exhibits k as a left extension of g along h. Then composition with η gives a bijection between 2-cells $f k \rightarrow r$ and 2-cells $k \rightarrow u r$ since η is an absolute left lifting. Since ϕ is a left extension pasting with it gives a bijection between such 2-cells and 2-cells $g \rightarrow u r h$. Pasting η gives a bijection between these and 2-cells $f g \rightarrow r h$. The composite bijection is composition with $f \phi$, and so $f \phi$ is indeed a left extension.

Example 2.18. Another basic example of absolute left liftings is provided by fully faithful maps. A map $f : A \rightarrow B$ in K is *fully faithful* when for all $X \in K$, $K(X, f)$ is a fully faithful functor. It is almost a tautology that f is fully faithful
iff the identity cell

$$
\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow f & & \downarrow f \\
B & & B
\end{array}
$$

exhibits 1_A as an absolute left lifting of f along itself.

Example 2.19. Let $f : A \to B$ be an opfibration and $g : C \to B$ in a finitely complete 2-category \mathcal{K}. In the proof of theorem 2.7 carried out in \mathcal{K}^{co} so that it applies to opfibrations, we factored the lax pullback through the pullback

$$
\begin{array}{ccc}
f/g & \xrightarrow{q_1} & X \\
p_1 & \Downarrow \phi & p_1 \\
A & \xrightarrow{f} & B
\end{array}
\quad \quad
\begin{array}{ccc}
f/g & \xrightarrow{q_1} & X \\
r & \Downarrow \psi & q_2 \\
A & \xrightarrow{f/g} & B
\end{array}
$$

to obtain the f-opcartesian 2-cell λ. Since the unique $\eta : 1 \to ir$ such that $p_1 \eta = \lambda$ and $q_1 \eta = id$ is the unit of an adjunction $r \dashv i$ by the proof of theorem 2.7, η exhibits i as an absolute left extension along r by the example 2.17. Thus λ exhibits p_2 as an absolute left extension of p_1 along r. This is the key observation for theorem 2.22 below.

As for the description of limits and colimits, the basic example is to take a functor $f : A \to B$ and then a left extension of f along $t_A : A \to 1$ is a colimit for f in B, and a right extension of f along t_A is a limit for f in B. In practise to compute a left extension of L of f along $g : A \to C$ using colimits in B, one has the famous formula

$$
L(c) = \text{colim}(f/c \xrightarrow{f} A \xrightarrow{f} B)
$$

due to Bill Lawvere. Diagrammatically we have

$$
\begin{array}{ccc}
f/c & \xrightarrow{1} & 1 \\
p & \Downarrow \lambda & c \\
A & \xrightarrow{g} & C
\end{array}
\quad \quad
\begin{array}{ccc}
f/c & \xrightarrow{L} & 1 \\
\phi & \Downarrow \phi & \phi \\
A & \xrightarrow{f} & B
\end{array}
$$

in CAT where λ is a lax pullback, ϕ exhibits L as a left extension, and Lawvere’s formula means that the composite 2-cell exhibits Lc as a left extension along fp. This basic example suggests that the left extensions that arise in mathematical practise remain left extensions when pasted with lax pullbacks in this way.
To this end a 2-cell

\[
\begin{array}{c}
A \\
\downarrow^g \\
\phi \downarrow \ \\
C \\
\downarrow^h \\
B
\end{array}
\]

in a finitely complete 2-category \(\mathcal{K}\) is defined to be a pointwise left extension when for all \(c : X \to C\), the composite

\[
\begin{array}{c}
g/c \\
\downarrow^q \\
\lambda \\
X \\
\downarrow^c \\
\end{array}
\]

exhibits \(hc\) as a left extension of \(fp\) along \(q\). Such a \(\phi\) is automatically a left extension \([\text{Str74b}]\): to see this apply the definition with \(c = 1_C\) and use lemma (2.20) below.

The remainder of this section is devoted to explaining how pointwise left extending along fully faithful maps and opfibrations is well-behaved.

We explained what it means for \(g : A \to B\) to be fully faithful in example (2.18). When \(\mathcal{K}\) has finite limits one can form \(H_g : A/A \to g/g\) as the unique map such that

\[
p_2H_g = p_1 \quad q_2H_g = q_1 \quad \lambda_2H_g = g\lambda_1
\]

where

\[
\begin{array}{ccc}
A/A & \overset{q_1}{\longrightarrow} & A \\
p_1 \downarrow & \lambda_1 & \downarrow 1_A \\
A & \overset{1_A}{\longrightarrow} & A
\end{array}
\]

\[
\begin{array}{ccc}
g/g & \overset{q_2}{\longrightarrow} & A \\
p_2 \downarrow & \lambda_2 & \downarrow g \\
A & \overset{g}{\longrightarrow} & B
\end{array}
\]

are lax pullbacks. Then \(g\) is fully faithful iff \(H_g\) is an isomorphism: this statement is easily seen as true in the case \(\mathcal{K} = \text{CAT}\) by direct inspection, and the general case follows by a representable argument.

Lemma 2.20. The bijection of corollary (2.13) sends 2-cells \(gp \to hq\) which exhibit \(h\) as a left extension along \(q\), to 2-cells which exhibit \(h\) as a left extension along \(f\).

Proof. This bijection clearly respects composition with 2-cells \(h \to h'\).

Proposition 2.21. \([\text{Str74b}]\) If

\[
\begin{array}{c}
A \\
\downarrow^g \\
\phi \downarrow \ \\
B \\
\downarrow^h \\
C
\end{array}
\]

exhibits \(h\) as a pointwise left extension of \(f\) along \(g\) and \(g\) is fully faithful, then \(\phi\) is invertible.
PROOF. Since H_g is invertible the composite

\[
\begin{array}{ccc}
A/A & \xleftarrow{H_g} & A \\
\downarrow{q_1} & \nearrow{g/g} & \nearrow{g} \\
A & \xrightarrow{\phi} & B \\
\downarrow{f} & \nearrow{\lambda} & \nearrow{h} \\
C & \xrightarrow{\lambda} & B \\
\end{array}
\]

exhibits hg as a left extension of fp_1 along q_1, and so by lemma 2.20 ϕ exhibits f as a left extension along 1_A, whence ϕ is an isomorphism.

When taking a pointwise left extension along an opfibration, lax pullbacks may be replaced by pullbacks for the sake of computation.

Theorem 2.22. [Str74b] Let K be a finitely complete 2-category and

\[
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow{\phi} & \nearrow{h} & \nearrow{p} \\
B & \xrightarrow{g} & C \\
\end{array}
\]

be in K such that g is an opfibration. Then ϕ exhibits h as a pointwise left extension of f along g iff for all $c : X \to C$ the 2-cell ϕp where

\[
\begin{array}{ccc}
P & \xrightarrow{q} & X \\
\downarrow{p} & \nearrow{\phi} & \nearrow{c} \\
A & \xrightarrow{g} & C \\
\end{array}
\]

exhibits hc as a left extension of fp along q.

Proof. For $c : X \to C$ we have

\[
\begin{array}{ccc}
g/c & \xrightarrow{q_1} & X \\
\downarrow{p_1} & \nearrow{t} & \nearrow{c} \\
A & \xrightarrow{f} & C \\
\end{array}
\]

by the factorisation of lax pullbacks described in example 2.19, where λ exhibits p as an absolute left extension of p_1 along r. Thus $f\lambda$ exhibits fp as a left extension of fp_1 along r. Thus by the elementary properties of left extensions, the composite of
φ and λ exhibits hc as a left extension along q₁ iff φp exhibits hc as a left extension along q.

The next result expresses the consequence that pointwise left extensions are “closed” under the operation of pasting with lax pullback squares, and pointwise left extensions along opfibrations are in addition closed under pasting with pullback squares.

Corollary 2.23. \[\text{Str74b}\] Let \(K\) be a finitely complete 2-category and

\[
\begin{array}{ccc}
A & \xrightarrow{g} & C \\
\downarrow & & \\
\phi & \downarrow & h \\
\downarrow & & \\
B & \xrightarrow{f} & \ \\
\end{array}
\]

\[
\begin{array}{ccc}
P & \xrightarrow{q} & X \\
\downarrow & & \\
\bar{A} & \xrightarrow{\bar{A}} & C \\
\end{array}
\]

be in \(K\). Suppose that \(\phi\) exhibits \(h\) as a pointwise left extension of \(f\) along \(g\).

1. If \(\lambda\) exhibits \(P\) as \(g/c\) then the composite of \(\lambda\) and \(\phi\) exhibits \(hc\) as a pointwise left extension along \(q\).

2. If \(\lambda\) exhibits \(P\) as the pullback of \(g\) and \(c\) and \(g\) is an opfibration, then the composite of \(\lambda\) and \(\phi\) exhibits \(hc\) as a pointwise left extension along \(q\).

Proof. In both \(1\) and \(2\) note that \(q\) is an opfibration. For \(1\): obtain \(q\) by first lax pulling back \(g\) along \(1_C\), which is the free opfibration on \(g\), and then pulling back the result along \(c\), which is an opfibration since opfibrations are pullback stable. For \(2\): \(q\) is an opfibration since opfibrations are pullback stable. Thus both results follow immediately from the previous theorem and the basic properties of pullbacks and lax pullbacks. \(\square\)

3. Yoneda Structures

There are two main sources of examples of yoneda structures: (1) internal category theory; and (2) enriched category theory. Those that arise from internal category theory are more nicely behaved. They satisfy a further axiom, axiom(3*) of \[\text{SW78}\], and the left extensions that form part of the axiomatics are all pointwise in the sense discussed above. We restrict our attention to this special case in the following definition, and later isolate a further condition – cocompleteness of presheaves.

Definition 3.1. A good yoneda structure on a finitely complete 2-category \(K\) consists of

1. A right ideal of 1-cells called admissible maps.
2. An object \(A\) of \(K\) is admissible when \(1_A\) is so.\(^6\) For each such object, an object \(\tilde{A}\) and an admissible map

\[
y_A : A \to \tilde{A}
\]

is provided.

\(^6\)Notice that if \(B\) is admissible and \(f : A \to B\), then \(f\) is admissible since the locally small maps form a right ideal and of course \(f = 1_B f\).
(3) For each $f : A \rightarrow B$ with both A and f admissible, an arrow $B(f, 1)$ and a 2-cell

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{y_A} & \searrow{\chi^f} & \downarrow{B(f, 1)} \\
\hat{A} & \nearrow & \end{array}
\]

is provided. This data must satisfy the following axioms:

1. χ^f exhibits f as an absolute left lifting of y_A through $B(f, 1)$.
2. If A and $f : A \rightarrow B$ are admissible and

\[
\begin{array}{ccc}
A & \xrightarrow{\phi} & B \\
\downarrow{y_A} & \nearrow & \downarrow{g} \\
\hat{A} & \searrow & \end{array}
\]

exhibits f as an absolute left lifting of y_A along g, then ϕ exhibits g as a pointwise left extension of y along f.

A yoneda structure in the sense of [SW78] is defined as above except: one replaces axiom 2 by an axiom which asserts only that χ^f is a left extension along f, and proposition 3.4 below is taken as an axiom. Moreover in [SW78] the hypothesis that K have finite limits is not needed.

Lemma 3.2. Let A, f, g, ϕ be given as in axiom 2. If ϕ exhibits g as a left extension of y_A along f; then this left extension is pointwise and ϕ exhibits f as an absolute left lifting of y_A along g.

Proof. Suppose that ϕ is a left extension. Then since f is admissible there is an isomorphism $B(f, 1) \cong g$ whose composite with χ^f is ϕ, whence ϕ is an absolute left lifting since χ^f is. Moreover ϕ is a pointwise left extension since χ^f is. □

Example 3.3. We shall see later in example 6.2, that CAT has the following good yoneda structure, which is the basic example. A functor $f : A \rightarrow B$ is admissible when $\forall a, b$, the homset $B(fa, b)$ is small. Admissible objects are locally small categories. For such a category A, $\hat{A} = [A^{op}, \text{Set}]$ and y_A is the yoneda embedding. For a functor $f : A \rightarrow B$ such that A and f are admissible, $B(f, 1)(b)(a) = B(fa, b)$ and $(\chi^f)_a : A(\cdot, a) \rightarrow B(f \cdot, fa)$ is given by the arrow maps of f.

Inspired by this example one should regard the 2-cell χ^f as “the arrow maps of f” and indeed the notation is selected to encourage this idea. Given $f : A \rightarrow B$ with A and f admissible and $x : X \rightarrow B$ we denote by $B(f, x)$ the composite $B(f, 1)x$. When in addition B is admissible, denote by res_x the map $\hat{A}(y_B f, 1)$. Given $z : Z \rightarrow A$ with Z admissible the following proposition justifies denoting the composite $\text{res}_z B(f, 1)$ as $B(fz, 1)$. In fact the next two results enforce these hom-set interpretations.

Proposition 3.4. [SW78]
(1) If \(A \) is admissible then
\[
\begin{array}{ccc}
A & \xrightarrow{y_A} & \mathcal{A} \\
\downarrow & & \downarrow \\
\mathcal{A} & \xrightarrow{\text{id}} & 1 \\
\end{array}
\]

exhibits 1 as a left extension of \(y_A \) along \(y_A \).

(2) Let
\[
\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
\downarrow & & \downarrow & & \downarrow \\
\mathcal{A} & \xrightarrow{\chi_f} & \mathcal{B} & \xrightarrow{\mathcal{B}(g,1)} & \\
\end{array}
\]

where \(A, B, f \) and \(g \) are admissible, then the composite

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
\downarrow & & \downarrow & & \downarrow \\
\mathcal{A} & \xrightarrow{\chi_f} & \mathcal{B} & \xrightarrow{\mathcal{B}(g,1)} & \\
\end{array}
\]

exhibits \(\text{res}_f \mathcal{B}(g,1) \) as a left extension of \(y_A \) along \(gf \).

Proof. Trivially, the identity 2-cell in (1) exhibits \(y_A \) as an absolute left lifting of \(y_A \) along \(1_\mathcal{A} \). By the composability of left liftings, the composite 2-cell in (2) exhibits \(gf \) as an absolute left lifting of \(y_A \). The result follows from axiom(1). □

Corollary 3.5. [SW78]

(1) If \(A \) is admissible then \(y_A \) is fully faithful.

(2) For \(f : A \to B \) with \(A \) and \(f \) admissible, \(f \) is fully faithful iff \(\chi^f \) is an isomorphism.

Proof. (1): The identity cell
\[
\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow & & \downarrow \\
\mathcal{A} & \xrightarrow{\text{id}} & \mathcal{A} \\
\end{array}
\]

is trivially a left extension and thus an absolute left lifting by lemma 3.2. The result follows by example 2.18.

(2) \(\Rightarrow \): by proposition 3.21.

(2) \(\Leftarrow \): Since \(\chi^f \) is an isomorphism and \(y_A \) is fully faithful, \(\chi^f \) exhibits \(1_A \) as an absolute left lifting of \(y_A \) along \(B(f, f) \). Thus in the following diagram

\[
\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow & & \downarrow \\
\mathcal{A} & \xrightarrow{\text{id}} & \mathcal{A} \\
\end{array}
\]

id exhibits \(1_A \) as an absolute left lifting along itself, and so the result follows by example 2.18. □
The notation res_f is also meant to be evocative: in the case of example 3.3 res_f corresponds to restriction along (that is, precomposition with) f^{op}. So one is immediately lead to ask when res_f has left and right adjoints. The case of the right adjoints is the easiest and we shall describe this now. The treatment of the left adjoints is provided in theorem 3.17 at the end of this section.

Definition 3.6. An object C of \mathcal{K} is **small** when both C and \hat{C} are admissible.

Given $f : A \to B$ with A small and B admissible one can form $\hat{A}(B(f, 1), 1)$ which we shall denote by ran_f. Let η be the unique 2-cell such that

\[
\begin{array}{c}
\triangleleft \hat{B} \quad \eta \\
\downarrow \quad \downarrow \\
\triangleleft \hat{A} \\
\end{array}
\]

Then η exhibits ran_f as a left extension along res_f. Now observe that the composite

\[
\begin{array}{c}
\triangleleft \hat{B} \quad \eta \\
\downarrow \quad \downarrow \\
\triangleleft \hat{A} \\
\end{array}
\]

exhibits res_fran_f as a left extension by proposition 3.4, and so the left extension η is preserved by res_f. We have proved:

Proposition 3.7. [SW78] Given $f : A \to B$ with A small and B admissible, res_f has right adjoint ran_f.

The remainder of this subsection is devoted to the discussion of internal colimits. First we shall give the abstract definitions of colimits and cocompleteness. In preparation for this consider

\[
\begin{array}{c}
\hat{C} \\
\downarrow \\
\hat{A} \\
\end{array}
\]

with C, f, g admissible, denote by χ^g_f the unique 2-cell such that

\[
\begin{array}{c}
\triangleleft \hat{B} \\
\downarrow \chi^g_f \\
\triangleleft \hat{A} \\
\end{array}
\]

and note that χ^g_f exhibits $B(gf, 1)$ as a left extension of $A(f, 1)$ along g.

Definition 3.8. [SW78] Let \mathcal{K} have a good yoneda structure.

1. Consider $i : M \to \hat{C}$ and $f : C \to A$ with M and f admissible, and C small. A **colimit of f weighted by i** consists of an admissible map $\text{col}(i, f) : M \to A$ together with

\[
\begin{array}{c}
\triangleleft M \\
\downarrow \text{col}(i, f) \\
\triangleleft A \\
\end{array}
\]

which exhibits $\text{col}(i, f)$ as an absolute left lifting of i through $A(f, 1)$.

(2) \(\text{col}(i, f) \) is preserved by an admissible map \(g : A \to B \) when the composite 2-cell

\[
\begin{array}{c}
M \xrightarrow{\text{col}(i, f)} A \xrightarrow{g} B \\
\downarrow i \quad \downarrow \eta \quad \downarrow \chi_f \\
\hat{C} \end{array}
\]

exhibits \(g(\text{col}(i, f)) \) as the absolute left lifting of \(i \) along \(B(gf, 1) \).

(3) \(A \) is small cocomplete when \(\text{col}(i, f) \) exists for all \(i : M \to \hat{C} \) and \(f : C \to A \) with \(M \) and \(f \) admissible and \(C \) small.

(4) \(g : A \to B \) is cocontinuous when for all \(i : M \to \hat{C} \) and \(f : C \to A \) such that \(\text{col}(i, f) \) exists, \(\text{col}(i, f) \) is preserved by \(g \).

At first glance the above definition may seem very abstract so we shall now reconcile it with the corresponding familiar notions. The key procedure that enables one to do this is a bijection between 2-cells \(\phi \) and \(\phi' \) so that

\[
\begin{array}{c}
A \xrightarrow{g} B \\
\downarrow y \quad \downarrow \chi_f \\
\hat{A} \xrightarrow{C(f, 1)} C
\end{array} = \begin{array}{c}
A \xrightarrow{g} B \\
\downarrow y \quad \downarrow \chi^g_f \\
\hat{A} \xrightarrow{C(f, 1)} C
\end{array}
\]

where \(A, f \) and \(g \) are assumed admissible. Equation\(^2\) does indeed establish a bijection \(\phi \mapsto \phi' \) because \(\chi^g_f \) is a left extension and \(\chi^f \) is a left lifting.

Lemma 3.9.

1. \(\phi \) exhibits \(h \) as a left extension of \(f \) along \(g \) iff \(\phi' \) exhibits \(h \) as a left lifting of \(B(gf, 1) \) along \(C(f, 1) \).
2. \(\phi \) exhibits \(h \) as a pointwise left extension of \(f \) along \(g \) iff \(\phi' \) exhibits \(h \) as an absolute left lifting of \(B(gf, 1) \) along \(C(f, 1) \).
3. \(\phi \) exhibits \(g \) as an absolute left lifting of \(f \) along \(h \) iff \(\phi' \) is an isomorphism.

Proof.

1: the result follows since the bijection \(\phi \mapsto \phi' \) respects composition with 2-cells \(h \mapsto k \).

2: For any \(b : X \to B \) we have
Now \(\phi' \) is an absolute left lifting along \(C(f,1) \) iff for all \(b \) and \(c : X \to C \), pasting with \(\phi' \) gives a bijection \(K(X,C)(bh,c) \cong K(X,\hat{A})(B(g,b),C(f,c)) \). However the composite of \(\chi' \) and \(\lambda \) is a left extension along \(C(f,1) \) so this is the same as saying that pasting with the composite 2-cell (on either side of the above equation) gives a bijection \(K(X,C)(bh,c) \cong K(X,\hat{A})(fp_A,cp_X) \) for all \(b \) and \(c \), and this is by definition the statement that \(\phi \) is a pointwise left extension.

(3): \(\phi \) is an absolute left lifting iff the composite 2-cell in equation (2) exhibits \(g \) as an absolute left lifting of \(f \) along \(C(f,h) \), which by axiom (2) and lemma (3.2) is true iff this composite exhibits \(C(f,h) \) as a left extension of \(y_A \) along \(g \), which is true iff \(\phi' \) is an isomorphism. □

Armed with this procedure we can now reconcile definition (3.8) with the usual notion of weighted colimit in terms of the hom-set notation.

Corollary 3.10. Consider \(i : M \to \hat{C} \) and \(f : C \to A \) with \(M \) and \(f \) admissible, and \(C \) small. Then the colimit of \(f \) weighted by \(i \) exists iff there is an admissible map \(\text{col}(i,f) : M \to A \) together with an isomorphism

\[
A(\text{col}(i,f),1) \cong \hat{C}(i,C(f,1)).
\]

Proof. By lemma (3.9)(3) the isomorphism is given by \(\eta' \) where \(\eta \) is the defining 2-cell of the weighted colimit. □

In the usual theory of weighted colimits one can express pointwise left extensions as weighted colimits in a canonical way. This fact is immediate in the present setting.

Corollary 3.11. Let

\[
\begin{array}{ccc}
C & \xrightarrow{g} & B \\
\downarrow{f} & \nearrow{\phi} & \downarrow{h} \\
A & &
\end{array}
\]

such that \(C \) is small and \(B, f, h \) are admissible. Then \(\phi \) exhibits \(h \) as a pointwise left extension of \(f \) along \(g \) iff the colimit of \(f \) weighted by \(B(g,1) \) exists and there is an isomorphism

\[
h \cong \text{col}(B(g,1),f).
\]

Proof. By lemma (3.9)(2), the isomorphism is given by \(\phi'' \). □

Example 3.12. Another basic fact about colimits in ordinary category theory is that every presheaf is a colimit of representables. To appreciate the general analogue of this consider \(i : M \to \hat{C} \) where \(C \) is admissible. Then by proposition (3.3) the lax pullback square

\[
\begin{array}{ccc}
y_C/i & \xrightarrow{q} & M \\
p \downarrow & \nearrow{\lambda} & \downarrow{i} \\
C & \xrightarrow{y_C} & \hat{C}
\end{array}
\]

exhibits \(i \) as a pointwise left extension. The well known case of this is for the yoneda structure of example (3.3) with \(M = 1 \) and \(C \) small.
Another feature of the theory of colimits for CAT is that weighted colimits may be replaced by the more commonly used conical ones. This too has an analogue in a good yoneda structure in corollary 3.14 below. Consider \(i : M \to \hat{C} \) and \(f : C \to A \) with \(M \) and \(f \) admissible, and \(C \) small. Since \(\lambda \) of the previous example is a left extension and \(\chi^f \) a left lifting, the equations

\[
\begin{array}{c}
y_{C/i} \xrightarrow{q} M \xrightarrow{k} A \\
p \downarrow \lambda \downarrow \eta \downarrow \chi^f \downarrow \varphi \\
C \xrightarrow{y_{C/i}} \hat{C} \xrightarrow{\varphi} A(f,1)
\end{array}
\]

and

\[
\begin{array}{c}
y_{C/i} \xrightarrow{q} M \\
p \downarrow \eta' \downarrow k \\
C \xrightarrow{y_{C/i}} \hat{C} \xrightarrow{\chi^f} A(f,1)
\end{array}
\]

determine a bijection between 2-cells \(\eta \) and 2-cells \(\eta' \).

Lemma 3.13.

1. \(\eta \) exhibits \(k \) as a left lifting of \(i \) along \(A(f,1) \) iff \(\eta' \) exhibits \(k \) as a left extension of \(fp \) along \(q \).
2. \(\eta \) exhibits \(k \) as an absolute left lifting of \(i \) along \(A(f,1) \) iff \(\eta' \) exhibits \(k \) as a pointwise left extension of \(fp \) along \(q \).

Proof.

1: the bijection \(\eta \mapsto \eta' \) clearly respects composition with 2-cells \(k \to k' \).

2: since \(q \) is an opfibration, \(\eta' \) is a pointwise left extension iff for every \(x : X \to M \) the composite

\[
\begin{array}{c}
y_{C/i} \xrightarrow{q_x} X \\
p_x \downarrow \downarrow \downarrow \downarrow \\
C \xrightarrow{y_{C/i}} \hat{C} \xrightarrow{\varphi} A(f,1)
\end{array}
\]

exhibits \(kx \) as a left extension along \(q_x \) by theorem 2.22, which is equivalent by 1 to \(\eta x \) exhibiting \(kx \) as a left lifting along \(A(f,1) \). \(\square \)

An immediate consequence of lemma 3.13 2 is:

Corollary 3.14. Let \(K \) be a finitely complete 2-category equipped with a good yoneda structure. Let

\[
i : M \to \hat{C} \quad f : C \to A
\]

be in \(K \) where \(C \) is small and \(M \) and \(f \) are admissible. Then the colimit of \(f \) weighted by \(i \) exists iff there is \(k \) admissible and

\[
\begin{array}{c}
y_{C/i} \xrightarrow{q} M \\
p \downarrow \phi \downarrow k \\
C \xrightarrow{f} A
\end{array}
\]

(\(\varphi \) and \(q \) come from a lax pullback square defining \(y_{C/i} \) such that \(\phi \) exhibits \(k \) as a pointwise left extension of \(fp \) along \(q \). When this is the case \(k \cong \text{col}(i, f) \).
From example(2.17) we know that left adjoints preserve left extensions, thus they preserve pointwise left extensions, and so by the last corollary weighted colimits (as one would hope). On the other hand let \(f : C \to X \) be such that \(C \) is small and \(f \) is admissible and cocontinuous. Define \(\eta \) as the unique 2-cell satisfying

\[
\begin{array}{cc}
C & \xrightarrow{y} & \hat{C} \\
\downarrow{y} & \searrow{id} & \nearrow{y} \\
\hat{C} & \xrightarrow{\chi fy} & X(fy,1) \\
\end{array}
\]

so \(\eta \) exhibits \(X(fy,1) \) as a left extension along \(f \). Note \(\chi fy \) and \(id \) are actually pointwise left extensions, and so are preserved by \(f \) they are expressible as weighted colimits which \(f \) preserves by hypothesis. Thus the left extension \(\eta \) is preserved by \(f \), and so by example(2.17) we have proved:

Lemma 3.15. \[SW78\] If \(f : \hat{C} \to X \) such that \(C \) is small and \(f \) is admissible and cocontinuous then \(f \) has a right adjoint \(X(fy,1) \).

Definition 3.16. A good yoneda structure is said to have cocomplete presheaves when for every small object \(A \), the object \(\hat{A} \) is cocomplete.

Theorem 3.17. Suppose \(K \) has a good yoneda structure with cocomplete presheaves.

1. If \(C \) is small then \(\hat{C} \) is the colimit completion of \(C \); in the sense that given \(X \) admissible and cocomplete, the adjunction

\[
\begin{array}{ccc}
K(C,X) & \dashv & K(\hat{C},X) \\
\end{array}
\]

given by restriction and left extension along \(y_C : C \to \hat{C} \), restricts to an equivalence of categories

\[K(C,X) \simeq \text{CoCts}(\hat{C},X) \]

where \(\text{CoCts}(\hat{C},X) \) denotes the full subcategory of \(K(\hat{C},X) \) consisting of the cocontinuous maps.

2. If \(f : A \to B \) with \(A \) small and \(B \) admissible then \(\text{res}_f \) has left adjoint \(\text{lan}_f \) defined as the left extension of \(fy_B \) along \(y_A \).

Proof. (1): The asserted adjunction exists since \(K \)'s yoneda structure has cocomplete presheaves. If \(f : \hat{C} \to X \) is cocontinuous then it preserves the left extension

\[
\begin{array}{cc}
C & \xrightarrow{y} & \hat{C} \\
\downarrow{y} & \searrow{id} & \nearrow{1} \\
\hat{C} & \xrightarrow{\chi fy} & X(fy,1) \\
\end{array}
\]

so that it is the left extension along \(y_C \) of \(fy_C \). Conversely, if \(f \) arises as a left extension along \(y_C \), then it has a right adjoint by lemma(3.17), and so is cocontinuous.

(2): Defining \(\text{lan}_f : A \to B \) in this way note that since \(y_A \) is fully faithful we have \(\text{lan}_f y_A \cong y_B f \) and so by lemma(3.17) \(\text{lan}_f \dashv \text{res}_f \). \(\Box \)
4. 2-toposes: Definition and Examples

Recall that a category E is an elementary topos when

1. it has finite limits,
2. is cartesian closed, and
3. has a subobject classifier.

Finitely complete 2-categories have been discussed at length in section 2, and the definition of cartesian closed 2-category is the obvious direct analogue of its one dimensional counterpart: for each $A \in \mathcal{K}$, $(- \times A) : \mathcal{K} \to \mathcal{K}$ has a right 2-adjoint, which we denote as $[A, -]$.

The 2-categorical generalisation of subobject classifier is based on an important idea of Bill Lawvere regarding CAT: that the category of sets is a generalised object of truth values. This idea was expressed 2-categorically in the work of Ross Street [Str74a, Str80b] as part of the notion of a fibrational cosmos. Following Street’s approach, but allowing ourselves the luxury of a cartesian closed 2-category with a duality involution, one obtains the notion of 2-topos discussed here.

First we recall ordinary subobject classifiers. Let \mathcal{E} be a locally small finitely complete category, and consider the functor $\text{Sub}_0 : \mathcal{E}^{\text{op}} \to \text{SET}$ which sends $E \in \mathcal{E}$ to the set of subobjects of E, and is given on arrows by pulling back. A subobject classifier is a representing object for Sub_0. This amounts to a monomorphism $\tau_0 : \Omega_{\Omega_0} \to \Omega_0$ in \mathcal{E} such that for all $E \in \mathcal{E}$ the function

$$\mathcal{E}(E, \Omega_0) \to \text{Sub}_0(E)$$

given by pulling back τ_0, is a bijection. Since \mathcal{E} is locally small Sub_0 actually lands in Set. Moreover it is easily verified (or see [MM91] page 33 for example) that Ω_{Ω_0} is a terminal object, so we will denote it as 1. Subobjects form not just a set but a poset, and as we shall recall below in example 4.3, τ_0 is the object part of an internal functor $\tau : 1 \to \Omega$.

The category Set as an object of CAT is analogous to Ω. To any functor $f : A \to \text{Set}$ a version of the Grothendieck construction associates to f a discrete opfibration $G(f) : e(f) \to A$. Explicitly the category $e(f)$ can be described as having objects pairs (x, a) where $a \in A$ and $x \in f(a)$, and having arrows $(x_1, a_1) \to (x_2, a_2)$ which are maps $\alpha : a_1 \to a_2$ in A such that $f(\alpha)(x_1) = x_2$; and $G(f)(x, a) = a$. Any discrete opfibration into A with small fibres arises in this way, and so we have a fully faithful functor

$$G : \text{CAT}(A, \text{Set}) \to \text{DFib}(1, A)$$

whose image consists of those discrete opfibrations with small fibres. To complete the analogy with subobject classifiers notice that G can be described more efficiently as the process of pulling back the forgetful functor $U : \text{Set}^\bullet \to \text{Set}$ from the category Set^\bullet of pointed sets and functions which preserve the base point. The forgetful
functor U is a discrete opfibration with small fibres, and we have just recalled the sense in which it is the universal such.

Let $p : E \to B$ be a discrete opfibration in a finitely complete 2-category \mathcal{K}. Then just as in the case of U above one has functors

$$G_{p,A} : \mathcal{K}(A, B) \to \text{DFib}(1, A)$$

given by pulling back p. The effect of $G_{p,A}$ on morphisms is depicted as follows: given $\phi : f \Rightarrow g$ we have

$$\xymatrix{ e(f) & E \\
| | & |
\ar[uu]^{G\phi} \ar[d]^p \\
e(g) & E \\
Gg & |
\ar[uu]_{G\phi} \ar[d]^p \\
A & B }$$

where $\overline{\phi}$ is the unique lifting of ϕ, that is, $G(g)G(\phi) = G(f)$ and $\phi G(g) = p\overline{\phi}$.

Definition 4.1. Let \mathcal{K} be a finitely complete 2-category. A discrete opfibration $\tau : \Omega \to \Omega$ in \mathcal{K} is classifying when the functors

$$G_{\tau,A} : \mathcal{K}(A, \Omega) \to \text{DFib}(1, A)$$

are fully faithful for all $A \in \mathcal{K}$.

Example 4.2. By the discussion preceding definition 4.1 $U : \text{Set} \to \text{Set}$ is a classifying discrete opfibration for CAT. There are many others. For example let λ be a regular cardinal, and in the above discussion replace Set by Set_λ, the category of sets of cardinality less than λ. Then the analogous forgetful functor $U_\lambda : \text{Set}_\lambda \to \text{Set}_\lambda$ is also a classifying discrete opfibration. In this case the image of

$$G_{U_\lambda,A} : \text{CAT}(A, \text{Set}_\lambda) \to \text{DFib}(1, A)$$

consists of the discrete opfibrations with fibres of cardinality less than λ. These examples illustrate that each classifying discrete opfibration provides a notion of smallness, and when one encodes category theory internally with the aid of a given classifying discrete opfibration as we do below, one has automatically accounted for size issues. Notice also that the case $\lambda = 2$ gives the ordinary subobject classifier for SET.

Example 4.3. Let \mathcal{E} be an elementary topos with subobject classifier denoted as $\tau_0 : 1 \to \Omega_0$. We shall now see that τ_0 is the object map of a classifying discrete opfibration $\tau : 1 \to \Omega$. For any $E \in \mathcal{E}$, $\text{Sub}_0(E)$ has a maximum 1_E, and binary meets given by pullback

$$1 \xrightarrow{1_E} \text{Sub}_0(E) \xrightarrow{\wedge} \text{Sub}_0(E) \times \text{Sub}_0(E)$$

and this structure is natural in E, and so by the yoneda lemma induces

$$1 \xrightarrow{\tau_0} \Omega_0 \xrightarrow{\wedge} \Omega_0 \times \Omega_0$$
in \mathcal{E}, satisfying the diagrams that express internally that τ_0 and \wedge are the unit and multiplication for a commutative monoid structure on Ω_0 for which every element is idempotent. The poset structure is a consequence. For subobjects S_1 and S_2 of E, one has $S_1 \leq S_2$ iff $S_1 \wedge S_2 = S_1$, and so the corresponding poset structure on Ω induced by this is expressed in \mathcal{E} by an equaliser

$$\Omega_1 \xleftarrow{\leq} \Omega_0 \times \Omega_0 \xrightarrow{\pi_1 \wedge} \Omega_0.$$

That is Ω_1 is the object of arrows of the internal category (in fact poset) Ω. From this explicit description it is immediate that:

1. an internal functor $f : X \to \Omega$ amounts to a map $f_0 : X_0 \to \Omega_0$ such that $f_0 s \leq f_0 t$, where s and t are the source and target maps for the internal category X; and
2. an internal natural transformation $\phi : f \Rightarrow g : X \to \Omega$ is unique it exists, and does so iff $f_0 \leq g_0$.

In particular $\tau : 1 \to \Omega$ is the internal functor corresponding to τ_0 by (1). For each X the functor

$$1 = \mathcal{E}(X, 1) \xrightarrow{\mathcal{E}(X, \tau)} \mathcal{E}(X, \Omega) \cong \mathrm{Sub}(X)$$

picks out the maximum element of $\mathrm{Sub}(X)$, and so is clearly a discrete opfibration. Thus τ is a discrete opfibration. We call a discrete opfibration $p : E \to X$ in $\mathrm{Cat}(\mathcal{E})$ a cosieve when p_0 is a monomorphism; the full subcategory of $\mathrm{DFib}(1, X)$ given by the cosieves into X is denoted by $\mathrm{Cosieve}(X)$. For example $\tau : 1 \to \Omega$ is a cosieve.

Since cosieves are pullback stable $G_{\tau, X}$ factors through $\mathrm{Cosieve}(X)$ and we shall now see that it provides an equivalence $\mathrm{Cat}(\mathcal{E})(X, \Omega) \simeq \mathrm{Cosieve}(X)$. Given a cosieve $p : E \to X$ define $(Fp)_0 : X_0 \to \Omega_0$ to be the unique map corresponding to the subobject p_0

Since p is a discrete opfibration, the square involving p_1, p_0 and the source maps (both denoted as s) is a pullback, and so the monomorphism p_1 is classified by $(Fp)_0 s$. Denoting by E'_1 the pullback of p_0 along t, the resulting monomorphism p'_1 is classified by $(Fp)_0 t$, p_1 factors through p'_1 (as indicated by the dotted arrow) and so $(Fp)_0 s \leq (Fp)_0 t$. Thus $(Fp)_0$ is the object map of a unique internal functor Fp. If the cosieve p factors through another cosieve q, then by construction we have $Fp \leq Fq$. By definition, $FG_{\tau, X} S = S$ for any subobject S and $G_{\tau, X} Fp \cong p$ for any cosieve p.

$$\begin{array}{cccc}
E_1 & \xrightarrow{s} & E_0 & \xrightarrow{1} \\
p_1 & \searrow & \nearrow & \\
X_1 & \xrightarrow{s} & X_0 & \xrightarrow{(Fp)_0} \Omega_0
\end{array}$$

$$\begin{array}{cccc}
E'_1 & \xrightarrow{t} & E_0 & \\
\downarrow & \nearrow & \downarrow & \\
X_1 & \xrightarrow{s} & X_0 & \xrightarrow{(Fp)_0} \Omega_0
\end{array}$$
Proposition 4.4. Let \mathcal{K} be a finitely complete 2-category, $\tau : \Omega \to \Omega$ be a classifying discrete opfibration in \mathcal{K}, and $f : A \to \Omega$. Then τ_f defined by

$$\begin{array}{ccc}
A & \xrightarrow{\tau_f} & \Omega \\
\downarrow & & \downarrow \\
A & \xrightarrow{f} & \Omega
\end{array}$$

is a classifying discrete opfibration iff f is fully faithful.

Proof. By definition there is a natural isomorphism

$$\begin{array}{ccc}
\mathcal{K}(X, A) & \xrightarrow{\mathcal{K}(X, f)} & \mathcal{K}(X, \Omega) \\
\downarrow & \cong & \downarrow \\
DFib(1, X) & \xleftarrow{G_{\tau, X}} & G_{\tau, X}
\end{array}$$

for all X, and $G_{\tau, X}$ is fully faithful. Thus $G_{\tau, X}$ is fully faithful if $\mathcal{K}(f, X)$ is. \qed

Example 4.5. Let \mathcal{E} be an elementary topos with subobject classifier denoted as $\tau_0 : 1 \to \Omega_0$. A Lawvere-Tierney topology on \mathcal{E} amounts to an idempotent monad j on Ω in $\text{Cat}(\mathcal{E})$, such that j preserves \land. As a monad in a finitely complete 2-category we can take its Eilenberg-Moore object Str_{76}, part of which is the forgetful arrow $u^j : \Omega_0^j \to \Omega$. Since j is idempotent, u^j is fully faithful and by proposition 4.4

$$\begin{array}{ccc}
\Omega_0^j & \xrightarrow{\tau_j} & 1 \\
\downarrow & & \downarrow \\
\Omega_0^j & \xrightarrow{u^j} & \Omega
\end{array}$$

τ_j is a classifying discrete opfibration, and it is easily verified that Ω_0^j is the terminal object (by the same argument that establishes $\Omega_0 = 1$ for subobject classifiers). The image of $G_{\tau_j, X}$ consists of those cosieves $p : E \to X$ such that p_0 is a monomorphism which is j-dense in the sense of topos theory. In fact $\tau_{j_0} : 1 \to \Omega_0^j$ is the subobject classifier for the topos $\text{Sh}_j(\mathcal{E})$ of sheaves for the topology j, and thus by example 4.3 τ_j is also a classifying discrete opfibration for $\text{Cat}(\text{Sh}_j(\mathcal{E}))$. This example could also have been obtained from example 4.3 via sheafification and the following theorem.

Theorem 4.6. Let

$$\begin{array}{ccc}
A & \xrightarrow{E} & B \\
\downarrow & \Downarrow{S} & \downarrow \\
& &
\end{array}$$

be a 2-adjunction, A and B be finitely complete 2-categories, and $\tau : \Omega \to \Omega$ be a classifying discrete opfibration in A. We write η and ε for the unit and counit of $E \dashv S$. If

1. E preserves pullbacks, and
(2) The naturality square

\[
\begin{array}{ccc}
ES\Omega & \xrightarrow{\varepsilon_{\Omega}} & \Omega \\
\downarrow & & \downarrow \tau \\
ES\Omega & \xrightarrow{\varepsilon_{\Omega}} & \Omega
\end{array}
\]

is a pullback

then \(S\tau\) is a classifying discrete opfibration.

Proof. Since discrete opfibrations can be defined representably, they are preserved by right 2-adjoints, and so it suffices to show that \(S\tau\) is classifying. We abuse notation and denote \(G_{S\tau, B}\) simply by \(G\), and for \(f : B \to S\Omega\) depict \(Gf\) by

\[
\begin{array}{ccc}
e(f) & \xrightarrow{} & S\Omega \\
\downarrow & & \downarrow \varepsilon_{\Omega} \\
G(f) & \xrightarrow{} & S\Omega
\end{array}
\]

as in the discussion preceding definition 4.1. Suppose that \(f, g : B \to S\Omega\) and \(\phi : e(f) \to e(g)\) such that \(G(g)\phi = G(f)\). We must show that there is a unique \(\phi' : f \to g\) such that \(G(\phi') = \phi\).

Since \(E\) preserves pullbacks, the naturality square in the above diagram is a pullback and \(\tau\) is a classifying discrete opfibration, \(E\phi\) induces a unique \(\phi_2 : \varepsilon_\Omega Ef \to \varepsilon_\Omega Eg\) such that \(G_{\tau, EB}(\phi_2) = E\phi\). By adjointness there is a unique \(\phi'\) such that \(\varepsilon_\Omega E\phi' = \phi_2\). Now we must see that \(G(\phi') = \phi\). Let \(\phi_3 : \varepsilon_\Omega, Eq \to \varepsilon_\Omega, E(p\phi)\) be the unique lifting of \(\phi_2\) through \(\tau\). By adjointness there is a unique \(\phi_4 : q \to p\phi\) such that \(E\phi_3 = \phi_4\), and by the uniqueness clause of the 2-dimensional universal property
for the naturality pullback square, the diagram

\[
\begin{array}{ccc}
Ee(f) & \downarrow E\phi & ES\Omega_* \\
\uparrow E\phi' & & \downarrow E\phi' \\
Ee(g) & \downarrow Ef & ES\Omega \\
\uparrow EGf & & \downarrow Eg \\
EB & \downarrow Ef & ES\Omega \\
\end{array}
\]

commutes, and so by adjointness

\[
\begin{array}{ccc}
Ee(f) & \downarrow e(f) & S\Omega_* \\
\uparrow \phi & \uparrow q & \downarrow \phi' \\
e(g) & \downarrow \phi' & S\Omega \\
\uparrow Gg & \uparrow Gf & \downarrow \phi \\
B & \downarrow f & S\Omega \\
\end{array}
\]

commutes also. To be more precise, paste the naturality square for \(\varepsilon\) onto the previous commuting diagram, apply \(S\) to the entire resulting diagram, and then precompose this with \(\eta_{e(f)}\); the result of all this, because of the 2-naturality of \(\eta\) and adjunction equations, is the commutative diagram just obtained. That is, \(G(f)\phi' = S(\tau)\phi_4\), and so \(\phi_4\) is the unique lifting of \(\phi'\) through \(S\tau\), so that \(G\phi' = \phi\). To see that \(\phi'\) is unique suppose that \(\psi : f \to g\) such that \(G\psi = \phi\). Then both \(\varepsilon_\Omega E\phi\) and \(\varepsilon_\Omega E\psi\) classify \(E\phi\), and so they are equal. By adjointness one obtains \(\phi' = \psi\) as required.

\[\square\]

Example 4.7. Let \(\mathbb{C}\) be a small category and consider the 2-adjunction

\[
\begin{array}{ccc}
\text{CAT} & \rightarrow & \text{CAT}(\bar{\mathbb{C}}) \\
\downarrow \perp & & \downarrow \perp \\
\text{Sp}_\mathbb{C} & & \text{Sp}_\mathbb{C}(Z) = [[\mathbb{C}/\mathbb{C}]^{\text{op}}, Z].
\end{array}
\]

We shall now see that \(\text{Sp}_\mathbb{C}\) preserves classifying discrete opfibrations. By theorem[10] it suffices to show that if \(p : A \to B\) is a discrete opfibration, then the
naturality square

\[
\begin{array}{ccc}
ESpC A & \xrightarrow{\varepsilon_A} & A \\
\downarrow & & \downarrow \varepsilon_B \\
ESpC B & \xrightarrow{p} & B \\
\end{array}
\]

is a pullback. To carry out this verification we need an explicit description of \(\varepsilon\).
For \(A \in \text{CAT}\) the category \(ESpC A\) has:

- objects: pairs \((C, a)\) where \(C \in C\) and \(a : (C/C)^{op} \to A\).
- arrows: from \((C_1, a_1) \to (C_2, a_2)\) are pairs \((f, \overline{f})\), where \(f : C_2 \to C_1\) and

\[
\begin{array}{ccc}
(C/C_1)^{op} & \xrightarrow{f^{op}} & (C/C_2)^{op} \\
\downarrow a_1 & & \downarrow a_2 \\
A & & A \\
\end{array}
\]

Then \(\varepsilon_A(C, a) = a(1_C)\) and \(\varepsilon_A(f, \overline{f})\) is \(\overline{f}_{1_C}\). To see that the above naturality square is a pullback on objects, let \(a \in A\) and \(b : (C/C)^{op} \to B\) such that \(b(1_C) = pa\). We must show that there is a unique \(\overline{a} : (C/C)^{op} \to A\) such that \(\overline{a}(1_C) = a\) and \(f\overline{a} = b\).

For \(\gamma : C' \to C\) we have \(b(t_\gamma) : pa \to b(\gamma)\) and so a unique \(\overline{a}(t_\gamma) : a \to \overline{a}(\gamma)\) such that \(p\overline{a}(t_\gamma) = b(t_\gamma)\). Functoriality and uniqueness for \(\overline{a}\) follows from the uniqueness of the liftings involved in its description. To see that the above naturality square is a pullback on arrows, let \(\alpha : a_1 \to a_2\) in \(A\) and \((\beta, \overline{\beta}) : (C_1, b_1) \to (C_2, b_2)\) in \(ESpC B\) be such that \(\overline{\beta}_{1_{C_1}} = pa\). We must show that there is a unique \(\overline{\alpha} : \overline{a}_1 \to \overline{a}_2\beta\) such that \(p\overline{a}_1 = \overline{\beta}\). For \(\gamma : C \to C_1\) the square on the left

\[
\begin{array}{ccc}
pa_1 & \xrightarrow{b_1(t_\gamma)} & b_1\gamma \\
\downarrow pa_2 & & \downarrow b_2\beta_\gamma \\
\alpha & \xrightarrow{a_1} & \overline{a}_1(\gamma) \\
\end{array}
\]

is commutative in \(B\) since it is the naturality square for \(\overline{\beta}\) at \(t_\gamma\), and \(\overline{\alpha}_\gamma\) is defined as the unique map in \(A\) such that the square on the right is commutative in \(A\) and \(p\overline{a}_1 = \overline{\beta}\). Naturality and uniqueness for \(\overline{a}\) follows from the uniqueness of the liftings involved in its description.

Example 4.8. Consider the case \(C = G\), where \(G\) is the category presented as follows: the objects of \(G\) are natural numbers, for each \(n \in \mathbb{N}\) there are generating maps

\[
n \xrightarrow{\sigma} n + 1 ,
\]

and these maps satisfy \(\sigma\sigma = \tau\tau\) and \(\tau\sigma = \sigma\sigma\). The category \(\widehat{G}\) is the category of globular sets and \(\text{CAT}(\widehat{G})\) is the 2-category of globular categories in the sense of [Bat98b]. A functor \((\widehat{G}/n)^{op} \to A\) is called an \(n\)-span in \(A\), because in the case \(n = 1\) such a functor is a span in \(A\): the category \((\widehat{G}/1)^{op}\) is the poset which as a category looks like

\[
\bullet \leftarrow \bullet \rightarrow \bullet
\]
In fact all the \mathcal{G}/n are posets. For example, the posets $(\mathcal{G}/2)^{op}$ and $(\mathcal{G}/3)^{op}$ look like

and respectively. The globular category $\text{Sp}_{\mathcal{C}}(\text{Set})$ plays a central role in [Bat98b], it is the globular category of higher spans, and in [Str00] it is seen as the globular analogue of the category of sets. In our language this last idea can be expressed as follows: by the previous example $\text{Sp}_{\mathcal{C}}(U : \text{Set} \to \text{Set})$ is a classifying discrete opfibration. Of course one may replace U by any classifying discrete opfibration in CAT (see example[4.2]) to get one in $\text{CAT}(\hat{\mathcal{G}})$ in this way.

Example 4.9. The examples described here are likely to be important in the study of the stabilisation hypothesis [BD95] in the globular setting. Consider the functor $(- + 1) : \mathcal{G} \to \mathcal{G}$ which acts as $n \mapsto n + 1$ on objects, and whose arrow map described by

$$n \overset{\sigma}{\longrightarrow} n + 1 \quad \Rightarrow \quad n + 1 \overset{\tau}{\longleftarrow} n + 2$$

Restriction and right extension along $(- + 1)$ provides an adjunction between endofunctors of $\hat{\mathcal{G}}$, and since these endofunctors are both right adjoints, they preserve pullbacks and so may be regarded as acting on category objects to provide a 2-adjunction

$$\text{CAT}(\hat{\mathcal{G}}) \xrightarrow{P} \downarrow \Sigma \xleftarrow{} \text{CAT}(\hat{\mathcal{G}}).$$

Explicitly given a globular category X:

$$\xymatrix{ X_0 & X_1 & X_2 & X_3 & \cdots \ar[l] }$$

DX is obtained by forgetting about X_0, and ΣX is

$$\xymatrix{ 1 & X_0 & X_1 & X_2 & \cdots \ar[l] }$$

The counit of this adjunction is an isomorphism, and so Σ preserves classifying discrete opfibrations by theorem[4.9]. Thus for any classifying discrete opfibration $\tau : \Omega_* \to \Omega$ in CAT, one obtains a sequence

$$\text{Sp}_{\mathcal{G}}(\tau), \Sigma\text{Sp}_{\mathcal{G}}(\tau), \Sigma^2\text{Sp}_{\mathcal{G}}(\tau), \Sigma^3\text{Sp}_{\mathcal{G}}(\tau), \ldots$$

of classifying discrete opfibrations in $\text{CAT}(\hat{\mathcal{G}})$.

Definition 4.10. A 2-topos $(\mathcal{K}, (-)^{\circ}, \tau)$ is a finitely complete cartesian closed 2-category \mathcal{K} equipped with a duality involution $(-)^{\circ}$ and a classifying discrete opfibration $\tau : \Omega_* \to \Omega$.

We obtain our examples of 2-toposes from the above examples of classifying discrete opfibrations, since in each case the underlying \(\mathcal{K} \) is of the form \(\text{Cat}(\mathcal{E}) \) for \(\mathcal{E} \) a finitely complete category, and so comes with a canonical duality involution by example (2.16).

5. Yoneda structures from 2-toposes

Let \((\mathcal{K}, (_)^\circ, \tau) \) be a 2-topos. The purpose of this section is to exhibit a good yoneda structure on \(\mathcal{K} \). This construction is due to Ross Street [Str74a, Str80a].

For \(A \) in \(\mathcal{K} \) we define \(\hat{A} = [A^\circ, \Omega] \) and so we have a 2-functor \(\hat{-} : \mathcal{K} \to \mathcal{K} \). For \(A, B \) in \(\mathcal{K} \) we denote by \(G_{A,B} \) the composite

\[
\mathcal{K}(B, \hat{A}) \cong \mathcal{K}(A^\circ \times B, \Omega) \xrightarrow{G_{\tau, A^\circ \times B}} \text{DFib}(1, A^\circ \times B) \xrightarrow{d_{1,A,B}} \text{DFib}(A, B)
\]

Clearly the \(G_{A,B} \) are fully faithful and pseudo-natural in \(A \) and \(B \). A span

\[
S : A \leftarrow E \to B
\]

is an attribute when it is isomorphic to a span in the image of \(G_{A,B} \). For \(A \in \mathcal{K} \) we denote by

\[
\epsilon_A : A \xrightarrow{\pi_A} \hat{A} \xrightarrow{u_A} \hat{A}
\]

the attribute \(G_{A,\hat{A}}(1_{\hat{A}}) \).

Lemma 5.1.

1. For any attribute \(S : A \leftarrow E \to B \) there is an arrow \(f : B \to \hat{A} \) unique up to isomorphism such that \(f^{rev} \circ \epsilon_A \cong S \).
2. Let \(\alpha : A_1 \to A_2 \), then \(G_{\alpha}^{rev} \circ \epsilon_{A_1} \cong \epsilon_{A_2} \circ \alpha \).

Proof.

1. If \(S \) is an attribute then by definition there is an \(f : B \to \hat{A} \) such that \(G_{A,B}(f) \cong S \). By pseudo-naturality of the \(G_{A,B} \) there is an isomorphism

\[
\mathcal{K}(\hat{A}, \hat{A}) \xrightarrow{G_{A,\hat{A}}} \text{DFib}(A, \hat{A})
\]

whose component at \(1_{\hat{A}} \) is an isomorphism \(G_{A,B}(f) \cong f^{rev} \circ \epsilon_A \). If \(g : B \to \hat{A} \) also satisfies \(g^{rev} \circ \epsilon_A \cong S \), then we have \(G_{A,B}(f) \cong G_{A,B}(g) \cong S \) and so \(f \cong g \) by the fully faithfulness of \(G_{A,B} \).

2. The desired isomorphism arises by 1 and the component of \(1_{\hat{A}} \) of

\[
\mathcal{K}(\hat{A}_1, \hat{A}_2) \xrightarrow{G_{A_1,\hat{A}_2}} \text{DFib}(A_2, \hat{A}_2)
\]

\[
\hat{\alpha} \circ - \cong - \circ \alpha
\]

\[
\mathcal{K}(\hat{A}_2, \hat{A}_1) \xrightarrow{G_{A_1,\hat{A}_2}} \text{DFib}(A_1, \hat{A}_2)
\]

\[\square\]
Another way to express lemma(6.1) which is worth keeping in mind is that $G_{A,B} \text{ "is" span composition with } \epsilon_A$. More precisely we have $G_{A,B} \cong (-)^{rev} \circ \epsilon_A$. Define a map $f : A \to B$ to be admissible when the span f/B is an attribute. Thus there is an arrow $B(f,1) : B \to \hat{A}$ unique up to isomorphism with the property that $f/B \cong B(f,1)^{rev} \circ \epsilon_A$. The admissible arrows form a right ideal: given $f : A \to B$ admissible and $g : C \to B$ we have the following isomorphisms of spans

$$(fg)/B \cong f/B \circ g \cong B(f,1)^{rev} \circ \epsilon_A \circ g$$

and so fg is admissible and $B(fg,1) \cong \hat{g}B(f,1)$. In particular for an admissible object A we denote $A(1,1)$ as $y_A : A \to \hat{A}$.

Proposition 5.2. If $S \in \text{Span}(A,B)$ is an attribute, A is an admissible object and $f : B \to \hat{A}$ such that $S \cong f^{rev} \circ \epsilon_A$; then $S \cong y_A/f$.

Proof. By the definition of lax pullback it suffices to prove that for any span $S' : A \xrightarrow{d} E \xrightarrow{c} B$ there is a bijection between maps $S \to S'$ of spans and 2-cells $y_Ad \to fc$, and that this bijection is natural in E. Noting that $S' \cong A \circ d^{rev}$ and $c \downarrow c^{rev}$, maps $S \to S'$ are in bijection with maps $d^{rev} \to c^{rev} \circ S$. By the coyoneda lemma (Theorem 5.2) such maps are in bijection with $A/d \to c^{rev} \circ S$ in $\text{Span}(A,B)$. Now

$$A/d \cong d^{rev} \circ A/A \cong d^{rev} \circ y_A^{rev} \circ \epsilon_A \cong (y_Ad)^{rev} \circ \epsilon_A$$

and

$$c^{rev} \circ S \cong (c)^{rev} \circ \epsilon_A \cong (f)^{rev} \circ \epsilon_A$$

so we have a bijection between span maps $S' \to S$ and span maps $(y_Ad)^{rev} \circ \epsilon_A \to (fc)^{rev} \circ \epsilon_A$. Since $G_{A,B} \cong (-)^{rev} \circ \epsilon_A$ is fully faithful, the result follows.

Thus when A is admissible, the map y_A is also admissible: by proposition 5.2 we have $\epsilon_A \cong y_A/A$ which is an attribute by definition, and so we have $\hat{A}(y_A,1) \cong 1_{\hat{A}}$.

To complete the specification of the data for a yoneda structure we must define for $f : A \to B$ with A and f admissible, a 2-cell $\chi_f : y_A \to B(f,1)f$. For such an f write φ_f for the isomorphism $B^{rev}(f,1) \circ \epsilon_A \cong f/B$. Define $h_f : A/A \to f/f$ as the unique arrow such that

\[\begin{array}{c}
\xymatrix{
A/A \ar[rr]^{h_f} \ar[d]_f & & A/A \ar[d] \\
A \ar[r]_f & B}
\end{array}\]
where the 2-cells in the above diagram are lax pullback cells. Then χ^f is defined as the unique 2-cell such that

$$
\begin{align*}
\varphi^1_A & \quad \downarrow \quad \phi^1_A \\
A/A & \quad h_f \\
B(B(f,1)b) & \quad \uparrow f/\varphi_f
\end{align*}
$$

commutes.

Theorem 5.3. [Str74a] Let A and $f : A \to B$ be admissible, and define χ^f as above.

1. χ^f exhibits f as an absolute left lifting of y_A along $B(f,1)$.
2. If

$$
\begin{align*}
A & \quad \xrightarrow{f} \quad B \\
y_A & \quad \Downarrow \quad \phi \\
A & \quad \xrightarrow{g} \quad B
\end{align*}
$$

which exhibits f as an absolute left lifting of y_A along g; then ϕ exhibits g as a pointwise left extension of y_A along f.

Proof. (1): For any span $A \xleftarrow{a} X \xrightarrow{b} B$ we must exhibit a bijection between 2-cells $y_A a \to B(f,1)b$ and 2-cells $f a \to b$ natural in X which identifies χ^f and 1_f. Applying $G_{X,A}$ gives a bijection between 2-cells $y_A a \to B(f,1)b$ and maps $A/a \to f/b$ of spans. By the coyoneda lemma such span maps are in bijection with spans maps $a^{rev} \to f/b$ and thus with 2-cells $f a \to b$ by the definition of f/b. This bijection is clearly natural in X, and tracing χ^f through these bijections clearly produces 1_f.

(2): The proof proceeds in two stages: first we show that the statement is true for $\phi = \chi^f$, and then in the general case we show that $g \cong B(f,1)$. For $b : X \to B$ we must show that pasting with

$$
\begin{align*}
f/b & \quad \xrightarrow{q} \quad X \\
p & \quad \downarrow \quad b \\
A & \quad \xrightarrow{\chi^f} \quad B(f,1)
\end{align*}
$$

gives a bijection between 2-cells $B(f,1)b \to h$ and 2-cells $y_A p \to hq$. It suffices to exhibit a bijection between such 2-cells which is natural in X and which sends $1_{B(f,1)b}$ to the above composite. Applying $G_{X,A}$ and noting that $(B(f,1)b)^{rev} \circ \epsilon_A \cong q \circ p^{rev}$ exhibits a bijection between 2-cells $B(f,1)b \to h$ and span maps $q p^{rev} \to h^{rev} \circ \epsilon_A$, and these are in bijection with span maps $p^{rev} \to q^{rev} \circ h^{rev} \circ \epsilon_A$ since $q \dashv q^{rev}$. By the coyoneda lemma and since $q^{rev} \circ h^{rev} \cong (hq)^{rev}$, these are in turn in bijection with span maps $A/p \to (hq)^{rev} \circ \epsilon_A$. Since $A/p \cong (y_A p)^{rev} \circ \epsilon_A$, $G_{A,B} \cong (-)^{rev} \circ \epsilon_A$ gives a bijection between such maps and with 2-cells $y_A p \to hq$ as required. These
correspondences are clearly natural and map \(1_{B(f,1)b} \) to the composite in \(\mathcal{H} \). For the general case it now suffices to show \(g \circ \epsilon_A \cong f/B \). It suffices to exhibit, for each span \(S : A \rightarrow^{d} E \rightarrow^{c} B \), a bijection between span maps \(S \rightarrow g \circ \epsilon_A \) and 2-cells \(fd \rightarrow c \) natural in \(E \). Composition \(\phi \) gives a bijection between 2-cells \(fd \rightarrow c \) and 2-cells \(y_A d \rightarrow gc \) since \(\phi \) is an absolute left lift. Applying \((-)^{rev} \circ \epsilon_A \) and noting that \(A/d \cong (y_A d)^{rev} \circ \epsilon_A \) gives a bijection between 2-cells \(y_A d \rightarrow gc \) and maps of spans \(A/d \rightarrow c^{rev} \circ g^{rev} \circ \epsilon_A \), which by \(c \rightarrow c^{rev} \) correspond to maps of spans \(S \rightarrow g^{rev} \circ \epsilon_A \) since \(S \cong c \circ d^{rev} \).

This last result ensures that the axioms for the intended yoneda structure are indeed satisfied. We have proved:

Corollary 5.4. Let \((K, (-)^{\circ}, \tau) \) be a 2-topos. Then
- \(\hat{A} = [A^{\circ}, \Omega] \).
- \(f : A \rightarrow B \) is admissible when \(f/B \) is an attribute.
- When \(A \) is admissible \(y_A = A(1,1) \).
- For \(f : A \rightarrow B \) such that \(A \) and \(f \) are admissible define \(\chi \circ y_A : B(f,1) \) as in \(\mathcal{H} \) above.

specifies a good yoneda structure for \(K \).

6. Characterising admissible maps

When working with an example one would usually like to characterise what the admissible maps are. The following theorem is useful for this task. Given a 2-topos with classifying discrete opfibration \(\tau \), we shall say that a map \(f : A \rightarrow B \) is \(\tau \)-admissible when it is admissible in the sense of the yoneda structure on \(K \) induced by corollary \(5.3 \). Similarly an object \(A \in K \) is \(\tau \)-small when it is small in the sense of this induced yoneda structure. We shall also say that a map \(f : A \rightarrow B \) in a 2-category factors essentially through a map \(g : C \rightarrow B \) when there is a map \(h : A \rightarrow C \) and an isomorphism \(f \cong gh \).

Theorem 6.1. Let \(K \) be a finitely complete cartesian closed 2-category with duality involution \((-)^{\circ} \). Suppose that \(\tau \) and \(\tau' \) are classifying discrete opfibrations fitting in a pullback square:

\[
\begin{array}{ccc}
\Omega & \xrightarrow{i} & \Omega' \\
\tau \downarrow & & \tau' \downarrow \\
\Omega & \xrightarrow{i} & \Omega'
\end{array}
\]

(see proposition 4.4). For \(f : A \rightarrow B \) we use the notation introduced above: \(\hat{A}, \hat{A}', \epsilon_A \) and \(\epsilon_A' \). Suppose \(f \) is \(\tau \)-admissible. We use the notation \(\hat{A}', \hat{A}', \epsilon_A' \) and \(\epsilon_A' \) for the corresponding aspects of the 2-topos \((K, (-)^{\circ}, \tau) \). If \(f : A \rightarrow B \) is a \(\tau' \)-admissible map then the following statements are equivalent:

1. The adjoint transpose \(A^{\circ} \times B \rightarrow \Omega' \) of \(B'(f,1) \) factors essentially through \(i \).
2. \(B'(f,1) \) factors essentially through \([A^{\circ}, i] \).
3. \(f \) is \(\tau \)-admissible.
Proof. $\mathbf{1} \iff \mathbf{2}$ by the naturality of \mathcal{K}’s cartesian closed structure. In the diagram

\[
\begin{array}{cccc}
\mathcal{K}([A^o, \Omega'], [A^o, \Omega']) & \xrightarrow{\mathcal{K}([A^\circ, i], i)} & \mathcal{K}([A^o, \Omega], [A^o, \Omega]) & \xrightarrow{\mathcal{K}(1, [A^\circ, i])} \\
\mathcal{K}(A^\circ \times [A^o, \Omega'], \Omega') & = & \mathcal{K}(A^\circ \times [A^o, \Omega], \Omega') & = \\
\mathcal{K}(A^\circ \times [A^o, \Omega], \Omega) & \xrightarrow{G_{\tau}} & \mathcal{K}(A^\circ \times [A^o, \Omega], \Omega) & \xrightarrow{G_{\tau}} \\
\text{DFib}(1, A^\circ \times [A^o, \Omega']) & \cong & \text{DFib}(A, [A^o, \Omega)] & \cong \\
\text{DFib}(1, A^\circ \times [A^o, \Omega]) & \cong & \text{DFib}(1, A^\circ \times [A^o, \Omega]) & \cong \\
\end{array}
\]

the top row of vertical arrows are the isomorphisms coming from \mathcal{K}’s cartesian closed structure, and the bottom row of vertical arrows are the equivalences coming from the duality involution. The top two squares commute by the naturality of the cartesian closed structure. The triangle in the middle commutes up to isomorphism by the definition of G_{τ} and G_{τ} (we saw this also in proposition $\mathbf{4.4}$). The other isomorphisms are pseudo naturality isomorphisms. Tracing $1\hat{A}$ and $1\hat{A}$ through this diagram, and recalling the definitions of ϵ_A and ϵ_A, we obtain an isomorphism of spans

\[
\epsilon_A \cong [A^\circ, i]^\text{rev} \circ \epsilon_A^\circ.
\]

Suppose that $B'(f, 1)$ factors essentially through $[A^\circ, i]$, so that there is a map $h : B \to \hat{A}$ such that $B'(f, 1) \cong [A^\circ, i]h$. Then

\[
f \circ B \cong h^\text{rev} \circ [A^\circ, i]^\text{rev} \circ \epsilon_A^\circ \cong f \circ B \cong h^\text{rev} \circ \epsilon_A
\]

whence f is τ admissible and $h \cong B(f, 1)$. Conversely if $f : A \to B$ is τ-admissible then by definition there is $B(f, 1) : B \to \hat{A}$ such that $f \circ B \cong B(f, 1)^\text{rev} \circ \epsilon_A$. Thus $[A^\circ, i]B(f, 1) \cong B'(f, 1)$ by lemma $\mathbf{5.1}$.

Example 6.2. Taking CAT with its usual duality involution, and τ to be the forgetful functor $U : \text{Set} \to \text{Set}$, corollary $\mathbf{5.4}$ produces the yoneda structure foreshadowed in example $\mathbf{3.3}$. For $A \in \text{CAT}$, \hat{A} is the following category of “pointed presheaves”:

- objects: are triples (x, F, a) where $F \in \hat{A}$, $a \in A$, and $x \in F(a)$.
- arrows: an arrow $(x_1, F_1, a_1) \to (x_2, F_2, a_2)$ is a pair (ϕ, α) where $\phi : F_1 \to F_2$ in \hat{A} and $\alpha : a_1 \to a_2$ in A such that $\phi_a(x_1) = F_2(\alpha)(x_2)$.

and

\[
\begin{array}{ccc}
A & \xleftarrow{\pi_A} & \hat{A} \\
\xrightarrow{U_A} & & \xrightarrow{U_A} \\
& \hat{A}
\end{array}
\]

are the obvious forgetful functors. We stated in example $\mathbf{3.3}$ that $f : A \to B$ is admissible iff $B(fa, b)$ is a small set for all $a \in A$ and $b \in B$. To see this is the case let CAT' be a cartesian closed 2-category of categories which contains SET as an object and CAT as a sub-2-category. In the situation of theorem $\mathbf{6.1}$ with $\mathcal{K} = \text{CAT}'$, $\Omega' = \text{SET}$, $\Omega = \text{Set}$ and $i : \text{Set} \to \text{SET}$ the inclusion, notice that any
\(f : A \to B \) in CAT is \(\tau' \)-admissible because \(\tau'(f,1) \) can be defined as the adjoint transpose of

\[
A^{\text{op}} \times B \to \text{SET}
\]

given on objects by \((a,b) \mapsto B(f(a),b)\). It is straightforward to observe directly that one has an isomorphism of spans \(f/B \cong B(\tau'(f,1)) \) and that there is a pullback square

\[
\begin{array}{ccc}
\hat{A} & \to & \hat{A}' \\
\downarrow^{U_A} & & \downarrow^{U'_A} \\
\hat{A}_{[A^{\text{op}},i]} & \to & \hat{A}'
\end{array}
\]

\(\text{in CAT}' \). Thus by theorem (6.1) \(f \) is admissible iff \(\forall a,b, B(f(a),b) \) is in Set as claimed in example (3.3). In particular \(A \in \text{CAT} \) is admissible iff its hom-sets are small. Clearly a category \(A \) equivalent to one with a small set of arrows will be small in our sense: \(A \) and \(\hat{A} \) are admissible. The converse, that \(A \) and \(\hat{A} \) admissible implies that \(A \) is equivalent to a category which has a small set of arrows, is a result of Freyd and Street [FS95].

Remark 6.3. The results of [FS95] apply also when “small” is taken to mean finite, or more generally “of cardinality less than \(\lambda \)” where \(\lambda \) is a regular cardinal. Thus throughout this work, one could replace Set by the category of sets of cardinality less than \(\lambda \).

Example 6.4. Here is an example of a 2-topos whose presheaves are not co-complete. Consider the classifying discrete opfibration obtained from \(U : \text{Set} \to \text{Set} \) by pulling it back along the inclusion of the full subcategory of Set consisting of the non-empty sets. By theorem (6.1) a category \(A \) equivalent to the resulting yoneda structure on CAT when it’s hom-sets are non-empty and small. The empty category 0 is admissible (vacuously), and so is 1 \(\cong 0 \), so that 0 is small. Thus initial objects are small colimits for this yoneda structure. However the category of non-empty sets lacks an initial object.

Example 6.5. In this example we characterise admissible maps and small objects for example (4.7) where \(K = \text{CAT}(\hat{C}) \) and \(\Omega = \text{Sp}_C(\text{Set}) \). Unpacking the definitions and the duality involution one obtains that for \(A \in \text{CAT}(\hat{C}) \) and \(C \in C \), \(\hat{A} \) is the category:

- objects: are triples \((x,F,a)\) where \(F \in \hat{A}(C) \), \(a \in AC \), and \(x \in F(a)(1_c) \).
- arrows: an arrow \((x_1,F_1,a_1) \to (x_2,F_2,a_2)\) is a pair \((\phi,\alpha)\) where \(\phi : F_1 \to F_2 \) in \(\hat{A}(C) \) and \(\alpha : a_1 \to a_2 \) in \(AC \) such that \(\phi a_1(x_1) = F_2(\alpha)(1_c)(x_2) \).

To characterise the admissible maps we use theorem (6.1) with \(K = [C^{\text{op}}, \text{CAT}'] \), \(\Omega' = \text{Sp}_C(\text{SET}) \) via a version of example (4.7) with CAT’ in place of CAT, and \(\Omega = \text{Sp}_C(\text{Set}) \). As before notice that any \(f : A \to B \) in CAT(\(\hat{C} \)) is \(\tau' \)-admissible, and that the pullback square relating \(\tau \) and \(\tau' \) can be obtained by applying Sp\(_C \) to the corresponding pullback square found in the previous example. Thus by theorem (6.1) it follows that \(f \) is admissible iff \(\forall C \in C, a \in AC, b \in BC, B(C)(fa,b) \) is a small set. Thus in particular \(A \in \text{CAT}(\hat{C}) \) is admissible iff \(\forall C, A(C) \) has small hom-sets. If for all \(C, A(C) \) is equivalent to a category with a small set of arrows,
then since C is small, A is small in the sense that A and \hat{A} are admissible. For the converse note that

$$\hat{A}(C) \cong \text{CAT}(\hat{C})(C, [A^o, \text{Sp}_C(\text{Set})]) \cong \text{CAT}(\hat{C})(C \times A^o, \text{Sp}_C(\text{Set}))$$

$$\cong \text{CAT}(\text{el}(C \times A)^{\text{op}}, \text{Set})$$

and so if $\hat{A}(C)$ is locally small for all C, then by [FS95] $\text{el}(C \times A)$ is small for all C, and this implies that $A(C)$ is small for all C.

Example 6.6. In this example we characterise the admissible maps and small objects for example (4.9) where $K = \text{CAT}(\hat{G})$ and $\Omega = \Sigma^k \text{Sp}_G(\text{Set})$. We shall now write $\tau : \Omega \to \Omega$ for the classifying discrete opfibration $\text{Sp}_G(U)$ in $\text{CAT}(\hat{G})$, where $U : \text{Set} \to \text{Set}$ is the forgetful functor. We saw that Σ preserves classifying discrete opfibrations. By the characterisation of the τ-admissible arrows and τ-small objects given in the previous example, Σ clearly preserves τ-admissible arrows and τ-small objects. Noting that Σy_1 is τ-admissible and writing i_1 for the map $\Sigma \Omega(\Sigma y_1, 1)$, we have

$$\begin{array}{ccc}
1 & \xrightarrow{\Sigma y_1} & \Sigma \Omega \\
y_1 & \xrightarrow{\Sigma y_1} & \Omega \\
\Omega & \xrightarrow{i_1} & \Omega
\end{array}$$

exhibiting i_1 as a pointwise left extension of y_1 along Σy_1, and Σy_1 as an absolute left lifting of y_1 along i_1. By proposition (5.2) there is a 2-cell

$$\begin{array}{ccc}
\Omega \cdot \tau & \xrightarrow{\lambda} & \Omega \\
1 & \xrightarrow{1} & \Omega \\
y_1 & \xrightarrow{y_1} & \Omega
\end{array}$$

which exhibits $\Omega \cdot \tau$ as y_1/Ω and since Σ is a right adjoint it preserves this lax pullback. Define λ' as follows:

$$\begin{array}{ccc}
\Sigma y_1 & \xrightarrow{\Sigma \tau} & \Sigma \Omega \\
\Sigma \Omega & \xrightarrow{\lambda'} & \Omega \\
1 & \xrightarrow{y_1} & \Omega
\end{array} = \begin{array}{ccc}
\Sigma \Omega & \xrightarrow{\Sigma \tau} & \Sigma \Omega \\
\Sigma \Omega & \xrightarrow{\Sigma \lambda} & \Sigma \Omega \\
1 & \xrightarrow{1} & \Sigma \Omega \\
y_1 & \xrightarrow{y_1} & \Sigma \Omega \\
\Omega & \xrightarrow{i_1} & \Sigma \Omega
\end{array}$$

Since $\Sigma \lambda$ is a lax pullback and $\chi_{\Sigma y_1}$ is an absolute left lifting, it follows easily that λ' exhibits $\Sigma \Omega \cdot \tau$ as y_1/i_1. By the universal property for λ, there is a unique i_1.

\[\text{Since } 1 \text{ is } \tau \text{-admissible we saw in example (5.3) that } t_{\Omega} \dashv y_1 \text{ and so } y_1 \text{ is a fully faithful right adjoint. Fully faithful right adjoints are preserved by all 2-functors and so } \Sigma y_1 \text{ is fully faithful, whence } \chi_{\Sigma y_1} \text{ is in fact invertible by proposition } (2.21).\]
may verify, by unpacking the necessary definitions, that \(i \) and \(k \) are chaotic. By the \(\Sigma \)-admissibility and the \(\omega \)-admissibility, one can characterise the \(\Sigma \), \(\tau \) factors through \(i_1 \). Further, the \(\Sigma \)-admissible maps and objects, and the \(\Sigma \)-small objects in exactly the same way. The results of this are:

1. \(f : A \to B \) is \(\Sigma^k \)-admissible if for \(n < k \) there is a unique arrow \(f a \to b \) in \(B_n \); and for \(n \geq k \) the \(A_n \) are locally small.
2. \(A \) is \(\Sigma^k \)-admissible iff for \(n < k \) the \(A_n \) are chaotic and for \(n \geq k \) the \(A_n \) are chaotic.
3. \(A \) is \(\Sigma^k \)-small iff for \(n < k \) the \(A_n \) are chaotic and for \(n \geq k \) the \(A_n \) are chaotic.

Analogously to the case \(k = 1 \) we denote the map \(\Sigma^k \Omega(\Sigma^k y_1, 1) \) by \(i_k \). The reader may verify, by unpacking the necessary definitions, that \(i_k \) has the following explicit description. For \(n \geq k \) an object of \(\Sigma^k \Omega_n \) is an \((n - k)\)-span of small sets. The effect of \(i_k \) on such an \((n - k)\)-span \(X \) is the \(n \)-span obtained by putting 1 (a terminal span of sets) on the end.

\[\begin{array}{ccc}
\Sigma \Omega & \xrightarrow{i_1} & \Omega \\
\downarrow \quad \tau & & \downarrow \tau' \\
\Sigma \Omega & \xrightarrow{i_1} & \Omega
\end{array} \]
object of Set) in the bottom k-levels and X in the top $(n - k)$-levels. For example for $k = 2$ and $n = 4$:

\[
\begin{array}{ccccccc}
X_2 & \to & X_{\sigma_1} & \to & X_{\tau_1} & \to & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
X_{\sigma_0} & \to & X_{\tau_0} & \to & X_{\tau_0} & \to & 1 \\
\end{array}
\]

and so i_k is an “internalisation” of Σ^k. In fact $\text{CAT}(\hat{G})(1, i_k)$ is exactly the endo-functor of \hat{G} given by right kan extension along $(- + 1)$ mentioned in example 4.9.

7. Cocomplete presheaves for 2-toposes

This section is devoted to explaining why for our main examples of 2-toposes, the resulting yoneda structures do indeed have cocomplete presheaves. The main result of this section, theorem 7.3, relies on there being available some dense sub-2-category of our 2-topos consisting of small objects. For our examples this sub-2-category will be given by the representables.

Lemma 7.1. Let $D \subseteq K$ be a dense inclusion and

\[
\begin{array}{ccc}
A & \xrightarrow{g} & B \\
\downarrow^{f} & \searrow^{h} & \\
C & \xrightarrow{\phi} & f \\
\end{array}
\]

be in K. If for all $D \in D$ and $a : D \to A$, ϕa exhibits ga as a left lifting of fa along h; then ϕ exhibits g as an absolute left lifting of f along h.

Proof. Let $a : X \to A$, $b : X \to B$ and $\gamma : fa \to hb$. We must exhibit unique $\gamma' : ga \to b$ such that

\[
\begin{array}{ccc}
X & \xrightarrow{a} & B \\
\downarrow^{a} & \searrow^{b} & \downarrow^{\gamma} \\
A & \xrightarrow{f} & \to & 1 \\
\end{array}
\]

(6)
For all $D \in D$ and $x : D \to X$ there is by hypothesis a unique γ'_x such that

$$\gamma'_x = \gamma x$$

and by uniqueness these γ'_x are natural in x and D: in other words

$$gax_1 \xrightarrow{\gamma'_{x_1}} bx_1$$
$$gax_1 \xrightarrow{\gamma'_{x_2}} bx_1$$

for all $\psi : x_1 \to x_2$ and $d : D' \to D$. Thus the γ'_x are in fact 2-natural in D. By the density of D there is a unique $\gamma' : ga \to b$ such that $\gamma'_x = \gamma'x$ and this γ' clearly satisfies (6). To see that γ' is unique let $\gamma'' : ga \to b$ satisfies equation (6) (with γ'' in place of γ'). Then $\gamma''x$ satisfies the appropriate analogue of equation (7) for all $D \in D$ and $x : D \to X$, whence $\gamma''x = \gamma'x$, so that by the density of D, $\gamma'' = \gamma'$. □

Lemma 7.2. Let K be a finitely complete 2-category equipped with a good yoneda structure and $D \subseteq K$ be a dense inclusion. Suppose that

$$i : M \to \hat{C} \quad f : C \to A$$

in K where C is small and M and f are admissible, and that

$$\begin{array}{ccc}
M & \xrightarrow{k} & A \\
i & \searrow & \downarrow A(f,1) \\
\hat{C} & \xleftarrow{e} & \\
\end{array}$$

The following statements are equivalent:

1. $\forall D \in D$, $\forall m : D \to M$, ηm exhibits km as a left lifting of im along $A(f,1)$.
2. $\forall D \in D$, $\forall m : D \to M$, ηm exhibits km as col(im, f).
3. η exhibits k as col(i, f).

Proof. Trivially (3)\Rightarrow(2)\Rightarrow(1) and (1)\Rightarrow(3) by lemma (7.1). □

Theorem 7.3. Let

$$\begin{array}{ccc}
A & \xrightarrow{E} & B \\
\downarrow s & & \downarrow g \\
\end{array}$$

be a 2-adjunction, A and B be finitely complete 2-categories each equipped with a good yoneda structure. Suppose

1. there is a dense inclusion $D \subseteq B$ such that all $D \in D$ are admissible,
2. for $A \xrightarrow{f} B \xrightarrow{g} C$ in A, f/g is small when A and C are small and B is admissible,
3. E preserves small and admissible objects, pullbacks and opfibrations, and
(4) \(S \) preserves admissible objects.

If \(A \in \mathcal{A} \) is admissible and cocomplete then \(SA \) is admissible and cocomplete.

Proof. Let \(A \in \mathcal{A} \) be admissible and cocomplete. Given \(i : M \to \hat{C} \) and \(f : C \to SA \) with \(C \) small and \(M \) admissible we must produce \(\eta : i \to SA(f, k) \) which exhibits \(k \) as an absolute lifting of \(i \) along \(SA(f, 1) \). By corollary \(3.14 \) such \(\eta \) are in bijection with

\[
\begin{array}{ccc}
y_C/i & \xrightarrow{q} & M \\
p \downarrow & \SWarrow{\phi} & \downarrow k \\
C & \xrightarrow{f} & SA
\end{array}
\]

exhibiting \(k \) as a pointwise left extension of \(fp \) along \(q \) where \(p \) and \(q \) come from the defining lax pullback square for \(y_C/i \). By corollaries \(3.14 \) and \(7.2 \), and theorem \(2.22 \), to say that \(\phi \) is such a pointwise left extension is to say that \(\forall D \in \mathcal{D} \) and \(m : D \to M \), \(\phi p_m \) exhibits \(km \) as a left extension of \(fpp_m \) along \(q_m \) where

\[
\begin{array}{ccc}
y_C/im & \xrightarrow{q_m} & D \\
p_m \downarrow & \downarrow m & \downarrow \\
y_C/i & \xrightarrow{q} & M
\end{array}
\]

A 2-cell \(\phi \) corresponds by \(E \dashv S \) to a 2-cell

\[
\begin{array}{ccc}
E(y_C/i) & \xrightarrow{Eq} & EM \\
E p \downarrow & \SWarrow{\phi} & \downarrow \tilde{k} \\
EC & \xrightarrow{f} & A
\end{array}
\]

called the mate of \(\phi \). Notice that \(EM \) is admissible since \(E \) preserves admissible objects. By hypothesis \(2 \) and since \(E \) preserves small objects, \(E(y_C/i) \) is small, and since \(A \) is admissible cocomplete there is a \(\phi \) exhibiting \(k \) as a pointwise left extension of \(f Ep \) along \(Eq \). To see that the corresponding \(\phi \) is a pointwise left extension note that \(\forall D \in \mathcal{D} \) and \(m : D \to M \), the mate of \(\phi p_m \) is the composite obtained by applying \(E \) to \(\phi \) and mounting this on top of \(\phi \). Since \(E \) preserves pullbacks and opfibrations this composite exhibits \(\phi Em \) as a left extension by theorem \(2.22 \), and so \(\phi p_m \) exhibits \(km \) as a left extension as required. \(\Box \)

Example 7.4. Let \(\mathbb{C} \) be a small category and consider the 2-topos structure on \(\text{CAT}(\hat{\mathbb{C}}) \) we began to analyze in example \(6.5 \), where \(\Omega = \text{Spec}(\text{Set}) \). We will now show that the resulting yoneda structure has cocomplete presheaves.

For a small object \(A \in \text{CAT}(\hat{\mathbb{C}}) \) the 2-adjunction

\[
\begin{array}{ccc}
\text{CAT}(\hat{\mathbb{C}}) & \xrightarrow{(-) \times A} & \text{CAT}(\hat{\mathbb{C}}) \\
\downarrow \text{adj} & & \downarrow \text{adj} \\
\text{[A,-]} & \downarrow \text{adj} & \text{[A,-]}
\end{array}
\]

satisfies the hypotheses of theorem \(7.3 \) where the objects of \(\mathcal{D} \) are the representables. All the hypotheses of theorem \(7.3 \) concerned with admissibility or smallness
follow easily from the characterisation of small and admissible objects given in example 6.6. In general, that is without any size hypothesis on A, $(-) \times A$ preserves pullbacks and opfibrations. To see this first note that $(-) \times A$ factors as

$$\text{CAT}(\hat{C}) \xrightarrow{t_A} \text{CAT}(\hat{C})/A \xrightarrow{\text{CJ95}} \text{CAT}(\hat{C})$$

where t_A is given by pulling back along t_A, and the second leg of the factorisation takes the domain of a map into A. Thus it preserves pullbacks. Given an opfibration $p : E \to B$, note that $p \times A$ is obtained by pulling back p along the projection $B \times A \to B$, and so $p \times A$ is an opfibration.

Thus if A is small and X is admissible and cocomplete, then $[A, X]$ is admissible and cocomplete.

In particular to see that $\text{CAT}(\hat{C})$ has cocomplete presheaves it suffices to exhibit Ω as cocomplete. We now consider the 2-adjunction

$$\text{CAT} \xleftarrow{E} \text{CAT}(\hat{C}) \xrightarrow{\text{Sp}_C}$$

discussed in example 4.7, and regard CAT as a 2-topos with classifying discrete opfibration $U : \text{Set} \to \text{Set}$. By the characterisation of admissible and small objects given in examples 6.2 and 6.5, this adjunction satisfies the conditions of theorem 7.3. Thus if $E \in \text{CAT}$ is locally small and cocomplete, then $\text{Sp}_C(E)$ is admissible and cocomplete.

In the case $C = G$ a corollary of presheaf cocompleteness and theorem 3.17 is that the globular category of higher spans of sets is the small globular colimit completion of 1.

Example 7.5. We now continue the analysis of example 6.6 and adopt the notation used there. Moreover we adopt the following terminology: an object $A \in \text{CAT}(\hat{G})$ is $\Sigma^k \tau$-cocomplete when it is cocomplete for the yoneda structure arising from the 2-topos $(\text{CAT}(\hat{G}), (-)^\circ, \Sigma^k \tau)$ by theorem 5.34. We shall now see that this yoneda structure also has cocomplete presheaves.

The hypotheses of theorem 7.3 are trivially satisfied for the 2-adjunction $D \dashv \Sigma$, where the yoneda structure for both \mathcal{A} and \mathcal{B} is that induced by τ. Thus if $A \in \text{CAT}(\hat{G})$ is τ-admissible and τ-cocomplete then so is $\Sigma^k A$ for $k \in \mathbb{N}$. In particular $\Sigma^k \Omega$ is τ-cocomplete, and so is $[A^\circ, \Sigma^k \Omega]$ when A is τ-small by the previous example. From the characterisation of smalls and admissibles given in example 6.5, τ-admissible implies $\Sigma^k \tau$-admissible and τ-cocomplete implies $\Sigma^k \tau$-cocomplete.

8. The cartesian closedness of Ω

One of the facets of 2-topos theory is that Ω, the codomain of a classifying discrete opfibration inherits quite a bit of natural structure. A full discussion of this involves describing how the theory of cartesian 2-monads interacts with 2-topos theory, and is provided in [Web]. We shall now describe how Ω is cartesian closed.

Definition 8.1. In a finitely complete 2-category \mathcal{K}, an object A is a *cartesian pseudo monoid* when the maps

$$1 \xleftarrow{A} \xrightarrow{\Delta} A \times A$$
have right adjoints. If for each \(a : 1 \to A \) the map \((- \times a)\), defined as the composite

\[
A \cong A \times 1 \xrightarrow{1_A \times a} A \times A \xrightarrow{m} A
\]

where \(\Delta \dashv m \), has a right adjoint, then \(A \) is said to be cartesian closed.

In \(\mathbf{CAT} \) a cartesian pseudo monoid is a category with finite products, and an object of \(\mathbf{CAT} \) is cartesian closed in the sense of definition 8.1 when it is a cartesian closed category in the usual sense. We now fix a 2-topos \((\mathcal{K}, (-)^\circ, \tau) \) and under some hypotheses clearly satisfied by our main examples\(^9\), exhibit \(\Omega \) as a cartesian closed object of \(\mathcal{K} \).

Proposition 8.2. If \(1 \) is admissible then \(y_1 : 1 \to \Omega \) is right adjoint to \(t_\Omega \).

Proof. Define \(\eta \) by

\[
\begin{array}{ccc}
1 & \xrightarrow{y_1} & \Omega \\
\downarrow & & \downarrow^{t_\Omega} \\
\Omega & \xrightarrow{\eta} & 1
\end{array}
\]

so that \(\eta \) exhibits \(y_1 \) as a left extension along \(t_\Omega \). Note that this left extension is preserved by \(t_\Omega \) and so \(t_\Omega \dashv y_1 \). \(\square \)

Example 8.3. We now exhibit an example of a 2-topos for which \(1 \) is not admissible. Consider the classifying discrete opfibration obtained from \(U : \mathbf{Set} \to \mathbf{Set} \) by pulling it back along the inclusion of the full subcategory of \(\mathbf{Set} \) consisting of those sets of cardinality at least 2. For the resulting yoneda structure on \(\mathbf{CAT} \), \(1 \) is not admissible since this full subcategory of \(\mathbf{Set} \) lacks a terminal object.

The following result exhibits the multiplication of a cartesian pseudo monoid structure on \(\Omega \) in 2-topos theoretic terms. A discrete fibration in \(\mathcal{K} \) has small fibres when it is an attribute. Given a discrete fibration \((d_1, E_1, c_1)\) from \(A_1 \) to \(B_1 \) and a discrete fibration \((d_2, E_2, c_2)\) from \(A_2 \) to \(B_2 \), then \((d_1 \times d_2, E_1 \times E_2, c_1 \times c_2)\) is a discrete fibration from \(A_1 \times A_2 \) to \(B_1 \times B_2 \); this is easily seen to be true in \(\mathbf{CAT} \) by direct inspection, and then in general by the representability of the notions involved. Thus in particular \(\tau \times \tau \) is a discrete opfibration.

Proposition 8.4. Suppose that \(\tau \times \tau \) has small fibres. Then a map

\[
m : \Omega \times \Omega \to \Omega
\]

which classifies \(\tau \times \tau \) is right adjoint to the diagonal map \(\Delta_\Omega \).

Proof. Note that \(\Omega_* \) may be identified with the head of the span \(y_1 / \Omega \) by proposition 7.2. For \(x, z_1, z_2 : X \to \Omega \) we must exhibit a bijection between 2-cells \(x \to m(z_1, z_2) \) and \(x \Delta_\Omega \to (z_1, z_2) \) which is natural in \(X \) and in \((z_1, z_2) \): then the 2-cell \(\eta : 1 \to m \Delta_\Omega \) corresponding to the identity exhibits \(\Delta_\Omega \) as an absolute left lifting of \(1_\Omega \) along \(m \), and so is the unit of an adjunction. Maps \(x \to m(z_1, z_2) \) are in bijection with maps of spans \(y_1 / x \to y_1 / m(z_1, z_2) \) by the universal property of \(\tau \). Now \(m(z_1, z_2) = m(z_1 \times z_2) \Delta_X \) so that \(y_1 / m(z_1, z_2) \cong \Delta_X \circ y_1 / m(z_1 \times z_2) \), and so by

\(^9\)In particular examples 4.2, 4.7, and 4.9 and the analogues of these obtained by replacing \(\mathbf{Set} \) everywhere by \(\mathbf{Set}_\lambda \) for any regular cardinal \(\lambda \).
the adjointness $\Delta_X \dashv \Delta_X^\vee$, span maps $y_1/x \to y_1/m(z_1, z_2)$ are in bijection with span maps $\Delta_X \circ y_1/x \to y_1/m(z_1 \times z_2)$. From the pullbacks

\[
\begin{array}{ccc}
X \times X & \xrightarrow{\tau \times \tau} & \Omega \times \Omega \\
\downarrow & & \downarrow \tau \\
y_1/z_1 \times y_1/z_2 & \xrightarrow{\Delta} & y_1/\Omega \times y_1/\Omega \\
\downarrow & & \downarrow \\
y_1/z_1 \times y_1/z_2 & \xrightarrow{\Delta} & y_1/\Omega
\end{array}
\]

one has $y_1/m(z_1 \times z_2) \cong y_1/z_1 \times y_1/z_2$, and so span maps $\Delta_X \circ y_1/x \to y_1/m(z_1 \times z_2)$ are in bijection with span maps $\Delta_X \circ y_1/x \to y_1/z_1 \times y_1/z_2$, which are in bijection with pairs of span maps $(y_1/x \to y_1/z_1, y_1/x \to y_1/z_2)$, and these are in bijection with pairs of 2-cells $(x \to z_1, x \to z_2)$ by the universal property of τ. Finally these pairs of 2-cells are in bijection with 2-cells $x \Delta_\Omega \to (z_1, z_2)$. It is straightforward to verify that these bijections are easily respected by composition with maps into X, and by composition with 2-cells out of (z_1, z_2). \qed

In the main examples the hypotheses of these results are easy to verify, but on the other hand, the fact that Ω is a cartesian pseudo monoid is easily verifiable without them: cartesian pseudo monoids are preserved by finite product preserving 2-functors, and our main examples are obtained from well-known examples in CAT by applying certain right 2-adjoints.

However cartesian closed objects are not preserved by right 2-adjoints\(^{10}\) and so proposition \(^{8.1}\) is useful to us because it specifies how the cartesian pseudo monoid structure of Ω is specified in 2-topos theoretic terms. We exploit this in the proof of theorem \(^{8.6}\). First we require a lemma, which is an analogue of the yoneda lemma for 2-sided discrete fibrations (theorem \(^{2.12}\)).

Lemma 8.5. Let K be a finitely complete 2-category and $f : A \to B$ be in K. Recall the definition of the map $i_f : A \to f/B$ prior to theorem \(^{2.13}\). For any span (d_1, E_1, c_1) from X to Z and discrete fibration (d_2, E_2, c_2) from $A \times X$ to $B \times Z$, composition with

\[
i_f \times \text{id} : f \times E_1 \to f/B \times E_1
\]

determines a bijection between maps of spans $f/B \times E_1 \to E_2$ and maps of spans $f \times E_1 \to E_2$.

Proof. By the representability of the notions involved it suffices to prove this result for the case $K = \text{CAT}$. In this case the head of the span $f/B \times E_1$ can be described as follows:

- objects are 4-tuples $(e, a, \beta : f a \to b, b)$ where $e \in E_1$.
- an arrow

\[
(\varepsilon, \alpha, \beta) : (e_1, a_1, \beta_1, b_1) \to (e_2, a_2, \beta_2, b_2)
\]

consists of maps $\varepsilon : e_1 \to e_2$, $\alpha : a_1 \to a_2$ and $\beta : b_1 \to b_2$, such that $\beta \beta_1 = \beta_2 f(\alpha)$.

\(^{10}\)For an example note that the functor category $[\Sigma N, \text{Set}_f]$ is not cartesian closed where ΣN is the monoid of natural numbers under addition regarded as a one object category, and Set_f is the category of finite sets. Thus the representable 2-functor $\text{CAT}(\Sigma N, -)$ doesn’t preserve cartesian closed objects.
and the left and right legs of the span send \((\varepsilon, \alpha, \beta)\) described above to \((\alpha, d_1 \varepsilon)\) and \((\beta, c_1 \varepsilon)\) respectively. The image of \(i_f \times \text{id}\) is the full subcategory given by the \((e, a, \beta, b)\) such that \(\beta = \text{id}\). Let \(\phi : f/B \times E_1 \to E_2\). For any object \((e, a, \beta, b)\) we have a map

\[(1, 1, \beta) : (e, a, \text{id}, f a) \to (e, a, \beta, b)\]

and since \(d_2 \phi(1, 1, \beta) = \text{id}\) and \(c_2 \phi(1, 1, \beta) = (\beta, \text{id})\), \(\phi(e, a, \beta, b)\) and \(\phi(1, 1, \beta)\) are defined uniquely by \((\phi(e, a, 1, f a, f a), \beta)\) since \(E_2\) is a discrete fibration. For any arrow \((\varepsilon, \alpha, \beta)\) as above, we have a commutative square

\[
\begin{array}{ccc}
\phi(e_1, a_1, \text{id}, f a_1) & \xrightarrow{\phi(1, 1, \beta_1)} & \phi(e_1, a_1, \beta_1, b_1) \\
\phi(e, a, f a) & \xrightarrow{\phi(\varepsilon, \alpha, \beta)} & \phi(e, a, \beta, b) \\
\phi(e_2, a_2, \text{id}, f a_2) & \xrightarrow{\phi(1, 1, \beta_2)} & \phi(e_2, a_2, \beta_2, b_2)
\end{array}
\]

in \(E_2\), but from the proof of theorem 2.11 we know that \(\phi(1, 1, \beta_1)\) is \(d_2\)-opcategorical and so the rest of the above square is determined uniquely by \(\phi(\varepsilon, \alpha, f a)\).

Theorem 8.6. If \(1\) is small, \(\Omega\) is cocomplete and \(\tau \times \tau\) has small fibres, then \(\Omega\) is cartesian closed.

Proof. For \(x : 1 \to \Omega\) it suffices to provide

\[
\begin{array}{ccc}
1 & \xrightarrow{y_1} & \Omega \\
\downarrow \psi & \downarrow \downarrow & \downarrow \downarrow \\
x & \xrightarrow{\times x} & -\times x
\end{array}
\]

which exhibits \(-\times x\) as a left extension of \(x\) along \(y_1\): since \(\Omega\) is cocomplete, the left extension of \(x\) along \(y_1\) exists and is left adjoint to \(\Omega(x, 1)\) by theorem 3.17. We do this by exhibiting a bijection between 2-cells \(x \to py_1\) and 2-cells \((-\times x) \to p\) which is natural in \(p\). By the universal property of \(\tau\) 2-cells \(x \to py_1\) are in bijection with span maps \(y_1/x \to y_1/py_1\). Since \(y_1/py_1 \cong y_1^{\text{rev}} \circ y_1/p\) and \(y_1^{-1} y_1^{\text{rev}}\), these span maps are in bijection with span maps \(y_1 \circ y_1/x \to y_1/p\). We have span isomorphisms

\[y_1 \circ y_1/x \cong (y_1 \times \text{id}) \circ (\text{id} \times y_1/x) \cong y_1 \times y_1/x\]

and so span maps \(y_1 \circ y_1/x \to y_1/p\) are in bijection with span maps \(y_1 \times y_1/x \to y_1/p\) which by lemma 8.5 are in bijection with span maps \(y_1/\Omega \times y_1/x \to y_1/p\). From the pullbacks

\[
\begin{array}{ccc}
y_1/\Omega \times y_1/x & \to & y_1/\Omega \times y_1/\Omega \\
\downarrow \downarrow & \downarrow \tau \times \tau & \downarrow \tau \\
\Omega \times 1 & \to & \Omega \times \Omega
\end{array}
\]

one has \(y_1/\Omega \times y_1/x \cong y_1/m(\text{id} \times x)\), and so span maps \(y_1/\Omega \times y_1/x \to y_1/p\) are in bijection with span maps \(y_1/m(\text{id} \times x) \to y_1/p\), and these are in bijection with 2-cells \((-\times x) \to p\) by the universal property of \(\tau\). It is straight forward to verify that the bijections just described are natural in \(p\).
9. Acknowledgements

This work was completed while the author was a postdoctoral fellow at the University of Ottawa and at UQAM, and I am indebted to these mathematics departments, Phil Scott and André Joyal for their support. I would also like to thank Ross Street and Susan Niefield for comments and corrections to an earlier version of this paper.

References

[Bé85] J. Bénabou, *Fibred categories and the foundation of naive category theory*, Journal of Symbolic Logic **50** (1985), 10–37.

[Bat98a] M. Batanin, *Computads for finitary monads on globular sets*, Contemporary Mathematics **230** (1998), 37–57.

[Bat98b] ———, *Monoidal globular categories as a natural environment for the theory of weak n-categories*, Advances in Mathematics **136** (1998), 39–103.

[Bat02] ———, *The Eckmann–Hilton argument, higher operands and E_n-spaces*, arXiv:math.CT/0207281, 2002.

[Bat03] ———, *The combinatorics of iterated loop spaces*, arXiv:math.CT/0301221, 2003.

[BC04] J. Baez and A. Crans, *Higher-dimensional algebra vi: Lie 2-algebras*, Theory and applications of categories **12** (2004), 492–528.

[BD95] J. Baez and J. Dolan, *Higher-dimensional algebra and topological quantum field theory*, Journal Math.Phys **36** (1995), 6073–6105.

[BD98] ———, *Higher-dimensional algebra iii: n-categories and the algebra of opetopes*, Advances in Mathematics **135** (1998), 145–206.

[BL04] J. Baez and A. Lauda, *Higher-dimensional algebra v: 2-groups*, Theory and applications of categories **12** (2004), 423–491.

[Bou74] D. Bourn, *Sur les ditopos*, C. R. Acad. Sci. Paris **279** (1974), 911–913.

[BS05] J. Baez and U. Schreiber, *Higher gauge theory*, arXiv:math.DG/0511710, 2005.

[CJ95] A. Carboni and P.T. Johnstone, *Connected limits, familial representability and Artin glueing*, Mathematical Structures in Computer Science **5** (1995), 441–459.

[Ehr58] C. Ehresmann, *Gattungen von lokalen strukturen*, Jber. Deutsch. Math. Verein **60** (1958), 49–77.

[FS95] P. Freyd and R. Street, *On the size of categories*, Theory and applications of categories 1 (1995), 174–181.

[Gal66] J.W. Gray, *Fibred and cofibred categories*, Proc. Conference on Categorical Algebra at La Jolla, Springer, 1966, pp. 21–83.

[Grö70] A. Grothendieck, *Catégories fibrées et descente*, Lecture Notes in Math. **224** (1970), 145–194.

[Her99] C. Hermida, *Some properties of fib as a fibred 2-category*, JPAA **134**(1) (1999), 83–109.

[Joh02] P.T. Johnstone, *Sketches of an elephant: A topos theory compendium*, vol. 1, Oxford logic guides, no. 43, Oxford science publications, 2002.

[Kel82] G.M. Kelly, *Basic concepts of enriched category theory*, lms lecture note series, vol. 64, Cambridge University Press, 1982.

[KS74] G.M. Kelly and R. Street, *Review of the elements of 2-categories*, Lecture Notes in Math. **420** (1974), 75–103.

[Law70] F.W. Lawvere, *Equality in hyperdoctrines and comprehension schema as an adjoint functor*, Proceedings of the American Mathematical Society Symposium on Pure Mathematics XVII, 1970, pp. 1–14.

[MM91] S. Mac Lane and I. Moerdijk, *Sheaves in geometry and logic*, Springer-Verlag, 1991.

[Pen74] J. Penon, *Sous-catégories classifiée*, C. R. Acad. Sci. Paris **278** (1974), 475–477.

[Str74a] R. Street, *Elementary cosmos*, Lecture Notes in Math. **420** (1974), 134–180.

[Str74b] ———, *Fibrations and yoneda’s lemma in a 2-category*, Lecture Notes in Math. **420** (1974), 104–133.

[Str76] ———, *Limits indexed by category-valued 2-functors*, J. Pure Appl. Algebra **8** (1976), 149–181.

[Str80a] ———, *Cosmos of internal categories*, Trans. Amer. Math. Soc. **258** (1980), 271–318.
[Str80b] ———, *Fibrations in bicategories*, Cahiers Topologie Géom. Différentielle **21** (1980), 111–160.

[Str00] ———, *The petit topos of globular sets*, J. Pure Appl. Algebra **154** (2000), 299–315.

[SW78] R. Street and R.F.C. Walters, *Yoneda structures on 2-categories*, J. Algebra **50** (1978), 350–379.

[TV05] B. Töen and G. Vezzosi, *Homotopical algebraic geometry I: Topos theory*, Advances in Mathematics **193**(2) (2005), 257–372.

[Web] M. Weber, *Operads within a monoidal pseudo algebra II*, in preparation.

[Web05] ———, *Operads within monoidal pseudo algebras*, Applied Categorical Structures **13** (2005).

E-mail address: weber@math.uqam.ca