BCS-BEC Crossover of a Quasi-two-dimensional Fermi Gas: the Significance of Dressed Molecules

Wei Zhang, G.-D. Lin, and L.-M. Duan
FOCUS center and MCTP, Department of Physics, University of Michigan, Ann Arbor, MI 48109
(Dated: August 6, 2008)

We study the crossover of a quasi-two-dimensional Fermi gas trapped in the radial plane from the Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-Einstein condensation (BEC) regime by crossing a wide Feshbach resonance. We consider two effective two-dimensional Hamiltonians within the mean-field level, and calculate the zero temperature cloud size and number density distribution. For model 1 Hamiltonian with renormalized atom-atom interaction, we observe a constant cloud size for arbitrary detunings. For model 2 Hamiltonian with renormalized interactions between atoms and dressed molecules, the cloud size decreases from BCS to BEC side, which is consistent with the picture of BCS-BEC crossover. This qualitative discrepancy between the two models indicates that the inclusion of dressed molecules is essential for a mean-field description of quasi-two-dimensional Fermi systems, especially on the BEC side of the Feshbach resonance.

PACS numbers: 03.75.Ss, 05.30.Fk, 34.50.-s

I. INTRODUCTION

The interest on low-dimensional Fermi systems has been recently reinvoked by the experimental developments of cooling and trapping atoms in optical lattices [1, 2, 3] and on atom chips [4]. With the aid of tuning an external magnetic field through a Feshbach resonance, these techniques provide a fascinating possibility of creating quasi-low-dimensional Fermi systems with a controllable fermion-fermion interaction. In particular, the interaction between fermions can be tuned from a Bardeen-Cooper-Schrieffer (BCS) limit to a Bose-Einstein condensation (BEC) limit, such that the BCS-BEC crossover can be studied in quasi low dimensions. The BCS-BEC crossover has been extensively studied in three-dimensional (3D) Fermi systems, where a single-channel model [5] and a two-channel model [6] are both applied to give a consistent description around a wide Feshbach resonance. This agreement between single- and two-channel models is rooted from the fact that the closed-channel (Feshbach molecule) population is negligible near a wide resonance, so it will not cause any significant difference by taking the molecules into account (as in the two-channel model) or completely neglecting them (as in the single-channel model). The BCS-BEC crossover of a uniform two-dimensional (2D) Fermi system has also been considered in connection with high-T_c superconductors [7], where an effective 2D Hamiltonian with renormalized fermion-fermion interaction is employed.

In this paper, we study the BCS-BEC crossover in a quasi-2D Fermi gas, first using an effective 2D Hamiltonian with renormalized atom-atom interaction (model 1) [8, 9], and then a more general model with renormalized interaction between atoms and dressed molecules (model 2) [10]. The dressed molecules mainly come from popula-

The quasi-2D geometry can be realized by arranging a one-dimensional (1D) optical lattice along the axial (z) direction and a weak harmonic trapping potential in the radial (x-y) plane, such that fermions are strongly confined along the z direction and form a series of quasi-2D pancake-shaped clouds [8]. Each such pancake-shaped cloud can be considered as a quasi-2D Fermi gas when the axial confinement is strong enough to turn off intercloud tunneling. The strong anisotropy of trapping potentials introduces two different orders of energy scales, with one characterized by $\hbar \omega_z$ and the other by $\hbar \omega_{\perp}$, where ω_z (ω_{\perp}) are the trapping frequencies in the axial (radial) directions. The separation of these two energy scales ($\omega_z \gg \omega_{\perp}$) allows us to first deal with the axial degrees of freedom and derive an effective 2D Hamiltonian, and leave the radial degrees of freedom for later treatment.
II. MODEL 1 WITH RENORMALIZED ATOM-ATOM INTERACTION

The effective 2D Hamiltonian for model 1 is obtained by assuming that the renormalized atom-atom interaction can be characterized with an effective 2D scattering length, with the latter derived from the exact two-body scattering physics [8–10]. Thus, for a wide Feshbach resonance where the Feshbahmolecule population is negligible, we can write down an effective Hamiltonian only in terms of 2D fermionic operators \(a_{\mathbf{k}, \sigma} \) and \(a_{\mathbf{k}, \sigma}^\dagger \), with (pseudo) spin \(\sigma \) and transverse momentum \(\mathbf{k} = (k_x, k_y) \). The model 1 Hamiltonian thus takes the form [7, 8, 9]

\[
H_1 = \sum_{\mathbf{k}, \sigma} (\varepsilon_k - \mu) a_{\mathbf{k}, \sigma}^\dagger a_{\mathbf{k}, \sigma} + \frac{V_{\text{eff}}}{L^2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{q}} a_{\mathbf{k}, \sigma}^\dagger a_{\mathbf{k} + \mathbf{q}, \sigma}^\dagger a_{\mathbf{k}', \sigma} a_{\mathbf{k}', \sigma}^\dagger, \tag{1}
\]

where \(\varepsilon_k = \hbar^2 k^2 / (2m) \) is the 2D dispersion relation of fermions with mass \(m \), \(\mu \) is the chemical potential, and \(L^2 \) is the quantization area. The bare parameter \(V_{\text{eff}} \) is connected with the physical one \(V_{\text{pp}} \) through the 2D renormalization relation \([V_{\text{eff}}]^{-1} = [V_{\text{pp}}]^{-1} - L^{-2} \sum_k (2\varepsilon_k + \hbar \omega_z)^{-1} \) (\(\omega_z \) is from the zero-point energy), and \(V_{\text{eff}} = V_{\text{pp}}(a_s, a_z) \) depends on the 3D scattering length \(a_s \) and the characteristic length scale for axial motion \(a_z \equiv \sqrt{\hbar/(m \omega_z)} \) with the expression given in Ref. [8, 9, 10]. Notice that the chemical potential \(\mu \) can be a function of the radial coordinate \(r = (x, y) \) under LDA. In the following discussion, we choose \(\hbar \omega_z \) as the energy unit so that \(\mu, V_{\text{eff}}, \) and \(\varepsilon_k = a_s^2 k^2 / 2 \) become dimensionless.

By introducing a BCS order parameter (also dimensionless in unit of \(\hbar \omega_z \)) \(\Delta \equiv (V_{\text{eff}} / L^2) \sum_{\mathbf{k}} (a_{\mathbf{k}, \uparrow} a_{\mathbf{k}, \downarrow}) \), we get the zero temperature thermodynamic potential dependence on \(a_s \) and \(a_z \). Thus, by substituting this expression into Eq. (1), we get a closed form for the number equation,

\[
n = \frac{1}{\pi a_z^2} \left(\frac{F(a_s, a_z)}{2} + \mu \right). \tag{5}
\]

Now we take into account the harmonic trapping potential \(U(r) = (\omega_z / \omega_\perp)^2 r^2 / (2a_z^2) \) in the radial plane by writing down the position dependent chemical potential \(\mu(r) = \mu_0 - U(r) \), where \(\mu_0 \) is the chemical potential at the trap center. It can be easily shown that the spacial density profile is now a parabola, \(n(r) = (\omega_z / \omega_\perp)^2 (R_{\text{TF}}^2 - r^2) / (2\pi a_z^2) \), with the Thomas-Fermi cloud size \(R_{\text{TF}} = \sqrt{2\mu_0 a_z / (\omega_z / \omega_\perp)} \). By assigning the condition that the total number of particles in the trap is fixed by \(N = \int n(r) d^2 r \), the cloud size takes the constant value \(R_{\text{TF}} = R_{\text{BCS}} \equiv \sqrt{\omega_z/\omega_\perp} (N)^{1/3} a_z \), which is independent on the 3D scattering length \(a_s \). In fact, as one varies the scattering length \(a_s \), the chemical potential at the trap center \(\mu_0 \) is adjusted accordingly such that the identical density profile is maintained.

This result of a constant cloud size is obviously inconsistent with the picture of a BCS-BEC crossover in quasi two dimensions. In fact, in a typical experiment with \(a_z \sim \mu m \) much greater than the interatomic interaction potential \(R_c \sim \mu m \), the scattering of atoms in this quasi-2D geometry is still 3D in nature. In particular, fermions will form tightly bound pairs on the BEC side of the Feshbach resonance as they do in 3D. Thus, in the BEC limit when fermion pair size \(a_{\text{pair}} \ll a_z \) and binding energy \(|E_b| \gg \hbar \omega_z \), the system essentially behaves like a weakly interacting gas of point-like bosons, for which one would expect a vanishing small cloud size in the loosely confined radial plane [8, 11].

The MF result of a finite cloud size in the BEC limit from model 1 indicates a finite interaction strength between paired fermions, no matter how small they are in size. This statement can be extracted directly from the number equation (5), which can be written in the form

\[
\mu = n a_z^2 - F(a_s, a_z) / 2.
\]

In the BEC limit, the second term on the right-hand side denotes one half of the binding energy, while the first term indicates a finite interaction energy per fermion pair since it is proportional to the number density. As a comparison, the actual equation of state for fermion pairs one should expect must take the form as for a quasi-2D Bose gas in the weakly interacting limit [8]

\[
\mu_B \approx 3na_s a_z, \tag{6}
\]

in which case the quasi-2D gas is treated as a 3D condensate with the ground state harmonic oscillator wave function in the z-direction.

The interaction strength between paired fermions can also be derived by writing down a Bose representation for this system, where the fermionic degrees of freedom are integrated out in the BEC limit [12]. This Bose representation leads to a two-dimensional effective Hamiltonian
for bosonic field $\phi(r)$,

$$H_{\text{eff}} = \int dr \left[\phi^\dagger(r) \left(-\frac{\hbar^2}{4m} \nabla^2 + 2U(r) \right) \phi(r) - \frac{g_2}{2} |\phi(r)|^4 \right],$$ \(\text{(7)}\)

where the quartic term characterizes the bosonic interaction. Within the stationary phase approximation, the interaction strength g_2 is calculated by the leading diagram of a four-fermion process with four external boson lines and four internal fermion propagators, leading to \[14\]

$$g_2 = 2 \sum_{\mathbf{p}, \omega} \Lambda_0^\dagger(\mathbf{p}) G_0^\dagger(\mathbf{p}, \omega) G_0^\dagger(-\mathbf{p}, -\omega).$$ \(\text{(8)}\)

Here, $\Lambda_0 = (-p^2/m + |E_b|) \chi_0(\mathbf{p})$ is the boson-fermion vertex, $\chi_0(\mathbf{p})$ is the Fourier transform of the relative wave function $\chi_0(\mathbf{r})$ of two colliding fermions in the s-wave channel, and $G_0(\mathbf{p}, \omega) = (i\omega - p^2/2m - |E_b|/2)^{-1}$ is the free propagator for fermions. After summing over momentum \mathbf{p} and Matsubara frequency ω, we can directly show that g_2 indeed takes a constant value, being independent of the binding energy $|E_b|$ of paired fermions and hence the 3D scattering parameter a_s. Thus, we conclude that the MF theory based on model 1 fails to recover the picture of a weakly interacting Bose gas of paired fermions in the BEC limit, and can not be directly applied to describe the BCS-BEC crossover in quasi two dimensions.

III. MODEL 2 WITH INCLUSION OF DRESSED MOLECULES

Having shown the problem associated with model 1, next we consider model 2 by taking into account the axially excited states via inclusion of dressed molecules. As derived in Ref. \[10\], the effective 2D Hamiltonian takes the form (also in unit of $\hbar \omega_z$),

$$H_2 = \sum_{\mathbf{k}, \sigma} (\epsilon_{\mathbf{k}} - \mu) a_{\mathbf{k}, \sigma}^\dagger a_{\mathbf{k}, \sigma} + \sum_{\mathbf{q}} \left(\frac{\epsilon_{\mathbf{q}}}{2} + \lambda_b - 2\mu \right) d_{\mathbf{q}}^\dagger d_{\mathbf{q}} + \frac{\alpha_b}{L} \sum_{\mathbf{k}, \mathbf{q}} a_{\mathbf{k}, \mathbf{q}}^\dagger a_{\mathbf{k}+\mathbf{q}, \mathbf{q}} + h.c. \right) + \frac{V_b}{L^2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{q}} a_{\mathbf{k}, \mathbf{q}}^\dagger a_{\mathbf{k}-\mathbf{q}, \mathbf{q}} a_{\mathbf{k}', \mathbf{q}}^\dagger a_{\mathbf{k}', \mathbf{q}}^\dagger,$$ \(\text{(9)}\)

where $d_{\mathbf{q}}^\dagger (d_{\mathbf{q}})$ denotes the creation (annihilation) operator for dressed molecules with radial momentum \mathbf{q}, and λ_b, α_b, and V_b are the 2D effective bare detuning, atom-molecule coupling rate, and background interaction, respectively. These parameters can be related to the corresponding 3D parameters by matching the two-body physics \[10\]. By introducing the order parameter $\Delta = \alpha_b (d_0) / L + (V_b / L^2) \sum_{\mathbf{k}} (a_{\mathbf{k}, \mathbf{q}} + a_{\mathbf{k}, \mathbf{q}}^\dagger)$, we obtain the mean-field gap and number equations,

$$\frac{1}{V_{2p}^2(2\mu)} = \ln \left(-\mu + \sqrt{\mu^2 + \Delta^2} \right),$$ \(\text{(10)}\)

$$n = \frac{\mu}{2\pi a_s^2} \frac{\sqrt{\mu^2 + \Delta^2}}{\Delta^2} \frac{\partial V_{2p}^2(x)}{\partial x} \bigg|_{x=2\mu},$$ \(\text{(11)}\)

where the inverse of effective interaction is connected with the 3D physical parameters through \[10\]

$$V_{2p}^2(x) = \ln \left(\frac{V_b + \alpha_b^2}{x - \lambda_b} \right) + \frac{1}{L^2} \sum_{\mathbf{k}} \frac{1}{2\epsilon_k + \hbar \omega_z} \left[\left(U_p + \frac{g_{2p}^2}{x - \gamma_p} \right)^{-1} - S_p(x) + \sigma_p(x) \right].$$ \(\text{(12)}\)

Here, $U_p = 4\pi a_{bg}/a_s$, $g_{2p}^2 = \mu_{co} W U_p / (\hbar \omega_z)$, and $\gamma_p = \mu_{co} (B - B_0) / (\hbar \omega_z)$ are 3D dimensionless physical parameters, where a_{bg} is the background scattering length, μ_{co} is the difference in magnetic moments between the two channels, W is the resonance width, and B_0 is the resonance point. The functions in Eq. \[12\] take the form

$$S_p(x) = -\frac{1}{4\sqrt{2\pi}} \int_0^\infty ds \left(\frac{\Gamma(s - x/2)}{\Gamma(s + 1/2 - x/2)} - \frac{1}{\sqrt{s}} \right),$$ \(\text{(13)}\)

$$\sigma_p(x) = \ln \left| \frac{x}{4\pi x/2} \right|,$$ \(\text{(14)}\)

where $\Gamma(x)$ is the gamma function.

Using this model 2 Hamiltonian, we first consider a uniform quasi-2D Fermi gas with a fixed number density n, where the inhomogeneity in the radial plane is neglected. In this case, the gap and number equations \[10\] and \[11\] need to be solved self-consistently for a given magnetic field. A typical set of results for both 6Li and 40K are shown in Fig. \[1\], indicating a smooth crossover from the BCS (right) to the BEC (left) regimes. Here, results obtained from model 2 (black) are compared with those from model 1 (gray). In this figure and the following calculation, we use the parameters $a_{bg} = -145 a_0$, $W = 300 G$, $\mu_{co} = 2 \mu_B$ for 6Li, and $a_{bg} = 174 a_0$, $W = 7.8 G$, $\mu_{co} = 1.68 \mu_B$ for 40K, where a_0 and μ_B are Bohr radius and Bohr magneton, respectively.

There are two major points that need to be emphasized in Fig. \[1\]. First, when plotted as functions of the inverse of 3D scattering length a_s/a_s, the results for 6Li (solid) and 40K (dashed) are very close, manifesting the near resonance universal behavior. Second, the results from model 1 and model 2 are significantly different, especially on the BEC side of the resonance. In particular, the dressed-molecule fraction in model 2 is already sizable (~ 0.16) at unitarity, and becomes dominant on the BEC side of the resonance (see Fig. \[1\]). This result provides another signature of inadequacy of model 1, where the dressed-molecule population is always assumed to be negligible.
Next, we impose a radial harmonic trap $U(r)$ and calculate the Thomas-Fermi cloud size for a fixed number of particles in the trap $N = \int 2\pi n(r)rdr$, as shown in Fig. 2. The most important feature of Fig. 2 is that the cloud size given by model 2 (solid) is no longer a constant as predicted by model 1 (dashed). On the contrary, by crossing the Feshbach resonance, the cloud size decreases from the limiting value R_{BCS}, which is squeezed further in model 2 as the dressed-molecule fraction increases to a sizable value. The bottom panel shows the case at unitarity. As compared with model 1, notice that the cloud is squeezed in model 2 and the dressed-molecule fraction becomes significant. Notice that the results of model 2 successfully describe the BCS-BEC crossover, in clear contrast to the outcome of model 1.

IV. CONCLUSION

In summary, we have considered in this paper the BCS-BEC crossover of a quasi-2D Fermi gas across a wide Feshbach resonance. We analyze two effective Hamiltonians and compare predictions of zero temperature cloud size and number density distribution in the radial plane of tolerance on the number of atoms.

In Fig. 2 we show the number density and the dressed-molecule fraction distribution along the radial direction for various values of a_*/a_s. A typical case in the BCS regime is shown in the top panel of Fig. 3, where the dressed-molecule fraction is vanishingly small, and model 1 and model 2 predict similar cloud sizes and number density distributions. The middle panel shows the case at unitarity. As compared with model 1, notice that the cloud is squeezed in model 2 and the dressed-molecule fraction increases to a sizable value. The bottom panel shows a typical case in the BEC regime, where the cloud is squeezed further in model 2 as the dressed-molecule fraction becomes significant. Notice that the results of model 2 successfully describe the BCS-BEC crossover, in clear contrast to the outcome of model 1.
middle panels to the case of a bottom panels to the case of parameters are $\omega_N = 10^4$ lines) and dressed-molecule fraction (the dashed lines) distribution along the radial direction of a quasi-2D Fermi gas of 6Li, obtained from model 2 (a-c) and model 1 (d-f). The top panels correspond to the case of $a_s/a_s = -1$ (BCS side), the middle panels to the case of $a_s/a_s = 0$ (unitarity), and the bottom panels to the case of $a_s/a_s = 1$ (BEC side). The parameters are $\omega_s = 2\pi \times 62$ kHz, $\omega_\perp = 2\pi \times 20$ Hz, and $N = 10^4$.

FIG. 3: (Color online) The in-trap number density (the solid lines) and dressed-molecule fraction (the dashed lines) distribution along the radial direction of a quasi-2D Fermi gas of 6Li, obtained from model 2 (a-c) and model 1 (d-f). The top panels correspond to the case of $a_s/a_s = -1$ (BCS side), the middle panels to the case of $a_s/a_s = 0$ (unitarity), and the bottom panels to the case of $a_s/a_s = 1$ (BEC side). The parameters are $\omega_s = 2\pi \times 62$ kHz, $\omega_\perp = 2\pi \times 20$ Hz, and $N = 10^4$.

within a mean-field approach and local density approximation. Using model 1 with renormalized atom-atom interaction, we show that the cloud size remains a constant value through the entire BCS-BEC crossover region, which is inconsistent with the picture of a weakly interacting Bose gas of fermion pairs in the BEC limit. On the other hand, model 2 with renormalized interaction between atoms and dressed molecules predicts the correct trend of cloud size variation. Based on this qualitative comparison, it is likely that the inclusion of dressed molecules is essential to describe the BCS-BEC crossover in quasi low dimensions.

Acknowledgments

We thank Yinmei Liu for many helpful discussions, and J. P. Kestner for discussion and thoroughly reading of the manuscript. This work is supported under the MURI program and under ARO Award W911NF0710576 with funds from the DARPA OLE Program.

[1] H. Moritz, T. Stöferle, K. Günter, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 94, 210401 (2005); T. Stöferle, H. Moritz, K. Günter, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 96, 030401 (2006).
[2] J. K. Chin et al., Nature 443, 961 (2006); B. Paredes, et al., Nature 429, 277 (2004); T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004);
[3] S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005); Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, Nature 441, 1118 (2006);
[4] J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007), and references therein.
[5] A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, edited by by A. Pekalski and R. Przystawa, (Springer-Verlag, Berlin, 1980); P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985); C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).
[6] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Phys. Rev. Lett. 87, 120406 (2001); Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002).
[7] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. B 41, 327 (1990); M. Marini, F. Pistolesi, and G. C. Strinati, Eur. Phys. J. B 1, 151 (1998).
[8] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000);
[9] T. Bergeman, M. G. Moore, and M. Olshanii, ibid. 91, 163201 (2003); S. S. Botelho, C. A. R. Sá de Melo, ibid. 96, 040404 (2006).
[10] J. P. Kestner and L.-M. Duan, Phys. Rev. A 76, 063610 (2007).
[11] L.-M. Duan, Phys. Rev. Lett. 95, 243202 (2005); Europhys. Lett. 81, 20001 (2008).
[12] J. P. Kestner and L.-M. Duan, Phys. Rev. A 74, 053606 (2006).
[13] A. Posazhennikova, Rev. Mod. Phys. 78, 1111 (2006), and references therein.
[14] I. V. Tokatly, Phys. Rev. A 70, 043601 (2004).