Research article

Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein

Umar Faruq Chowdhury a, Abdullah Al Saba b, Abu Sufian Sufi b, Akib Mahmud Khan c, Ishrat Sharmin a, Aziza Sultana a, Md Ohedul Islam b, *

a Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
b Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
c Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA

ARTICLE INFO

Keywords:
Waddlia chondrophila
Subtractive proteomics
KEGG
Drugbank
Modelling
Molecular docking

ABSTRACT

Waddlia chondrophila is an emerging pathogen that has been implicated in numerous unpropitious pregnancy events in humans and ruminants. Taking into account its association with abortigenic events, possible modes of transmission, and future risk, immediate clinical measures are required to prevent widespread damage caused by this organism and hence this study. Here, a subtractive proteomics approach was employed to identify druggable proteins of W. chondrophila. Considering the essential genes, antibiotic resistance proteins, and virulence factors, 676 unique important proteins were initially identified for this bacterium. Afterward, NCBI BLASTp performed against human proteome identified 223 proteins that were further pushed into KEGG Automatic Annotation Server (KAAS) for automatic annotation. Using the information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 14 Waddlia specific metabolic pathways were identified with respect to humans. Analyzing the data from KAAS and KEGG databases, forty-eight metabolic pathway-dependent, and seventy metabolic pathway independent proteins were identified. Standalone BLAST search against DrugBank FDA approved drug targets revealed eight proteins that are finally considered druggable proteins. Prediction of three-dimensional structures was done for the eight proteins through homology modeling and the Ramachandran plot model showed six models as a valid prediction. Finally, virtual screening against MurB protein was performed using FDA approved drugs to employ the drug repositioning strategy. Three drugs showed promising docking results that can be used for therapeutic purposes against W. chondrophila following the clinical validation of the study.

1. Introduction

Emerging Infectious Diseases (EID) and Re-Emerging Infectious Diseases can be a great threat to microbiological public health and can have a large impact on socio-economical aspects [1]. An emerging pathogen can be characterized as the causative agent of an infectious disease whose frequency is expanding following its appearance either in the current host or in another host population because of long-term changes in its fundamental epidemiology [1]. Environmental changes, natural disasters, large population size are some of the key factors that have a significant contribution to the emergence and spread of infectious diseases [2, 3, 4, 5].

Waddlia chondrophila, a member of the Chlamydiales order, is an emerging pathogen that has gained attention over the years for showing implications in human and ruminant diseases [6, 7]. According to genomic and growth studies, it shows many similarities with some other well-characterized zoonotic chlamydial abortifacients (pathogen cause abortion), such as Chlamydia abortus [8]. Association between W. chondrophila and adverse pregnancy outcomes on women who had experienced sporadic or recurrent miscarriage has been repeatedly observed [9, 10, 11, 12, 13]. Viability and mitochondrial membrane potential of human spermatozoa were reduced when challenged and infected with W. chondrophila [14]. Studies also showed a high seroprevalence of W. chondrophila in men of infertile couples although the...
organism was seemed to be absent in semen which suggested a possible hypothesis that the negative effect on male infertility may be observed only during an ongoing infection [15]. The organism was shown to replicate in several human cell lines including fibroblasts, A549 pneumocytes, peripheral blood mononuclear cells, and in Ishikawa endometrial cells [16, 17, 18]. A recent study showed genital infection in the murine model, demonstrating a systemic burden of bacteria that spreads to various organs e.g. vagina, spleen, and lumbar lymph nodes [19]. The infancy of the organism is not only limited to the diseases of reproductive systems as other studies implicated its role in respiratory infections [20, 21]. A possible mode of transmission zoonotic exposure [11, 22] which is unsurprising as the bacteria has also been implicated in its role in bovine abortion [16, 23]. Although it has been reported that W. chondrophila was susceptible to generic drugs e.g. doxycycline & azithromycin and resistant to β-lactams & fluoroquinolones in cell cultures [24], no official drug is present for this organism to this date. Unfortunately, it is common for pathogens to acquire resistance against antibiotics [25]. Taking into account the possibility of antibiotic resistance over time and considering the damage caused by the organism, rapid actions are required to develop a therapeutic strategy at an early stage to combat this pathogen.

Subtractive proteomics analysis is a well- devised approach used to detect novel drug targets in the pathogen [26, 27]. In recent years, subtractive proteomics is efficiently used to discover species-specific vaccine candidates and in determining potential drug targets against various pathogenic bacteria [28, 29, 30]. To bypass the cross-reactions of drugs and specifically targeting a pathogenic entity subtractive proteomics has been seen to be especially helpful [29]. Further using this data, in-silico, in-vitro and in-vivo experiments can be employed to discover novel information on the organism. Conventional approaches to drug exploration and advancements are strenuous, sluggish, and expensive [31]. To reduce these drawbacks, in-silico methods can be employed as an alternative approach thereby facilitating numerous discoveries [28, 29, 30, 32, 33, 34, 35]. These methods are dynamic, rapid, and cost-effective than traditional drug discovery and development methods [31]. In-silico drug discovery methods exploit ‘omics’ data (i.e. genomics, proteomics, and metabolomics) and have been efficiently used for determining appropriate therapeutic drug targets in diverse infectious microorganisms such as bacteria and fungi. Drug repositioning, a strategy for discovering unprecedented uses for approved or investigational drugs that are not within the scope of the original medical indication [36], can also potentially lower the time-frame and monetary investment for drug development and most importantly reduce the chances of failure [37]. An example of drug repositioning is Zidovudine, the first anti-HIV drug approved by the Food and Drug Administration (FDA), which was originally intended to use for cancer treatment [37].

The current study combined and implemented the state of the art techniques – subtractive proteomics, molecular docking, and drug repositioning and, in turn, identified druggable proteins of W. chondrophila along with prospective repositioned drug against one of the druggable protein candidates namely UDP-N-acetylenol pyruvyl glucosamine. We hope that the findings of this study will pave the way for further research and can provide sufficient foundations for designing a specific therapeutic regime against this pernicious pathogen.

2. Method

2.1. Identification of druggable proteins

The whole proteome (excluding plasmid proteins) of W. chondrophila was retrieved from UNIPROT (proteome id: UP000010505). To remove the paralogous sequences, the proteins were subjected to CD-HIT server [38] (=http://weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/mde x.cgi?cmd=cd-hit) to identify proteins with 60% sequence identity cut-off using the global sequence identity algorithm and keeping the rest of the parameters as default. The server curated a protein subset (PSet1) that contained non-duplicate sequences under the aforementioned constraints.

Important bacterial sequences were retrieved from different databases such as The Database of Essential Genes [39] (DEG) (http://tubic.tju.edu.cn/deg/), The Virulence Factor Database [40] (VFDB) (http://www.mgc.ac.cn/VFs/download.html), and The Antibiotic Resistance Gene-ANNOtation [41] (ARG-ANNOT) database (AA V6 July 2019) (https://www.medterranne-infection.com/acces-ressources/bas e-de-donnees/arg-annot-2/). PSet1 proteins were subjected to standalone BLAST [42] (v 2.6.0+) against the obtained protein sequences from DEG, ARG-ANNOT, VFDB with a cut-off of e-value < 1e-4 and bit score >100 to determine the important proteins. The matched results against DEG, ARG-ANNOT, VFDB protein contained some overlap. Taking an entry once, the results collectively constructed a new protein set (PSet2) which contained all the unique entries.

NCBI BLASTp [43] (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE EProteins) was performed against the human proteome (taxid: 9606) with an e-value of 1e-10 using the PSet2. A new protein set (PSet3) was developed subtracting the BLAST matches with human proteins from PSet2. Afterward, PSet3 was provided to KEGG Automatic Annotation Server (KAAS) [44, 45] (https://www.genome.jp/kegg/kaas/) to perform functional annotation of proteins against the manually curated KEGG GENES of W. chondrophila using bi-directional best hit algorithm. The results generated from the server contained KEGG Orthology (KO) assignments as well as automatically generated KEGG pathway assignments (by assigning proteins to pathways with preset K-ids). Information regarding metabolic pathways of W. chondrophila and Homo sapiens were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the K-ids given in the database pathogen-specific pathways were identified. Thereafter, proteins unique to each pathogen-specific pathway were identified using KO-ids (assigned by KAAS) which collectively constructed a metabolic pathway-dependent protein subset (PSet-PD). Also, by comparing the K-ids of metabolic pathways of W. chondrophila from KEGG database against the KEGG BRITE results obtained from KAAS, metabolic pathway-independent proteins (PSet-PI) were identified manually.

To evaluate the druggability of the proteins (PSet-PD & PSet-PI), a standalone BLAST search was done against FDA-approved drug targets obtained from the DrugBank [46] (https://www.drugbank.ca/) database (as of 2020-07-02) with a cut-off of e-value < 0.005 and bit >100. An important thing to note is that there is no pre-established rule on how to set the BLAST cutoff criteria. Rather a general rule of thumb was followed where cut-offs were always kept in moderate range as a too stringent or too relaxed cutoff will generate higher false negative or false positive results respectively, a strategy seemed to be employed by other research groups as well [28, 29].

2.2. Subcellular localization & structure prediction of the druggable proteins

Subcellular localization using PSORTb [47] (https://www.psort.org/g/psortb/) and CELLO [48, 49] (http://cello.life.nctu.edu.tw/), Molecular weight using Compute pI/Mw tool [50] (https://web.expasy.org/compute_pi/), 3D structures using SWISS-MODEL [51] (https://swissmodel.expasy.org/) were determined for druggable proteins. Quality control for modeled structures was done with the aid of GMQE & QMEAN scores of SWISS-MODEL as well as the Ramachandran plots generated from PROCHECK server [52] (https://services.nbi.m欺负.edu.cn/PROCHECK/).

2.3. Virtual screening against MurB and identification of repositionable drugs

The structure of UDP-N-acetylenol pyruvyl glucosamine reductase (MurB) was based on the template PDB ID: 4PYT [53] (https://www.rcsb.org/structure/4PYT). The modeled protein was minimized in the GROMOS96 force field of Swiss PDB Viewer [54] (v4.1.0). The Auto Dock Tools [55] (ADT; v1.5.6) was used to generated a grid box (56 Å *
50 Å - 50 Å) with the center of 23.625, 50.019, 83.002 for X, Y, Z axes respectively. The ligand-docking site was guided by the bound flavin-adenine dinucleotide (FAD) in the crystal structure of the template. The FAD was extracted and docked to MurB to serve as the control for the virtual screening. The FDA approved drugs were fetched from BindingDB [56] (https://www.bindingdb.org/bind/ByFDDrugs.jsp). 1279 drug molecules were selected for the virtual screening. They were minimized in the MMFF94 force field for 2000 steps with the convergence value of 1e-7 using the Open Babel Software [57] (v3.0.0). Molecular docking was performed using AutoDock Vina [58] (v1.1.2). The visualization of docking results was done in Discovery Studio (v20.1.0). The entire workflow in the methodology was provided as an illustration (Figure 1).

3. Results

3.1. Subtractive proteomics identified 8 druggable proteins

The proteome of W. chondrophila contained 1899 proteins. PSet1 was generated by removing 77 paralogous duplicate sequences using the CD-HIT [38] server. BLAST against databases of DEG [39], ARG-ANNOT [41], and VFD [40] showed 653, 32, and 130 matches respectively totaling out 676 unique hits (PSet2) (see Table 1). NCBI BLAST [43] search against the human proteome revealed 453 hits, which were excluded from further analysis, constituting PSet3 with 223 proteins. Comparing the metabolic pathways (KEGG database) of W. chondrophila and Homo sapiens, 22 pathways were found to be the Waddlia specific (Supplementary Table 1). KAAS [45] annotation assigned 65 pathways to the proteins provided to the server. Using bacteria-specific pathway data (Supplementary Table 1) from KEGG database, 14 were found unique to the bacteria among the 65 assigned pathways by KAAS annotation. Using the assigned K-ids of pathways and KO-ids of proteins, forty-eight proteins (PSet-PD) were selected (Table 1, Supplementary Table 2) for further analysis that were absent in multiple pathways among the 14. Waddlia specific pathways. Also, KEGG BRITE data (from KAAS server) contained 61 K-ids assignments to 70 proteins (PSet-PI), which were metabolic pathway independent (Table 1, Supplementary Table 3). These proteins were additionally kept for further analysis.

Search against the DrugBank [46] database using PSet-PD and PSet-PI showed eight matches (Table 2). The resultant druggable proteins were as follows - Riboflavin synthase, alpha subunit (D6YV4), Putative cytochrome d ubiquinol oxidase subunit 2 (D6YVJ2), Chorismate synthase (D6YW42), Glycerol-3-phosphate dehydrogenase [NAD(P)] (D6YST7), Putative D-alanyl-D-alanine carboxypeptidase (D6YS223), UDP-N-acetylenol pyruvoyl glucosamine reductase (D6YVJ9), DNA topoisomerase (D6YVX0), Putative multidrug resistance protein MdtC (D6YSV9). Among the eight proteins, DNA topoisomerase and Putative multidrug resistance protein MdtC were metabolic pathways independent and the rest were metabolic pathways dependent. DrugBank database targets and their corresponding drugs were also provided along with the matched Waddlia proteins (Tables 1 and 2).

3.2. Analysis of 3D structure and subcellular localization of the druggable proteins

Additional information for the eight druggable proteins PSORTb [47], CELLO [48, 49], and Compute pI/Mw tool [51] summarized and provided (Supplementary Table 4). Employing homology modeling, the 3D structures of the eight proteins were constituted on SWISS-MODEL. GMQ and QMEAN4 values of SWISS-MODEL [51] were considered to develop the model and Ramachandran plot from PROCHECK [52] results were taken into consideration for the validation of the predicted models (Figure 2; Supplementary Table 5). Models with below 90% of residues under acceptable regions were excluded from the further studies.

3.3. Virtual screening identified 3 repositionable drugs against MurB

Virtual screening against UDP-N-acetylenol pyruvoyl glucosamine reductase (MurB; UNIPROT: D6YVJ9), showed various compound which showed higher affinity than the control FAD (-9.5 kcal/mol). Bupivacaine hydrochloride (L1; CHEMBL3288678; -12.0 kcal/mol), Nilotinib hydrochloride monohydrate (L2; CHEMBL255863; -11.5 kcal/mol), Regorafenib (L3; CHEMBL1946170; -11.4 kcal/mol) are the top three ligands which were finally selected for a more comprehensive analysis. The resulting interactions of these ligands and corresponding graphical representations were provided (Figures 3 and 4; Supplementary Table 6).

The control molecule (FAD) interacted with LYS56, SER94, SER96, ARG104, SER209, GLY115, THR18, ARG97, PRO117, ALA100 residues of the protein. L1 showed interactions with GLY129, ILE116, ALA210, GLY211, MET126, ARG104 residues which were finally selected for a more comprehensive analysis. The resulting interactions of these ligands and corresponding graphical representations were provided (Figures 3 and 4; Supplementary Table 6).

The control molecule (FAD) interacted with LYS56, SER94, SER96, ARG104, SER209, GLY115, THR18, ARG97, PRO117, ALA100 residues of the protein. L1 showed interactions with GLY129, ILE116, ALA210, GLY211, MET126, ARG104 residues which were finally selected for a more comprehensive analysis. The resulting interactions of these ligands and corresponding graphical representations were provided (Figures 3 and 4; Supplementary Table 6).

The control molecule (FAD) interacted with LYS56, SER94, SER96, ARG104, SER209, GLY115, THR18, ARG97, PRO117, ALA100 residues of the protein. L1 showed interactions with GLY129, ILE116, ALA210, GLY211, MET126, ARG104 residues which were finally selected for a more comprehensive analysis. The resulting interactions of these ligands and corresponding graphical representations were provided (Figures 3 and 4; Supplementary Table 6).
value of -1.20 kcal/mol. L2 showed binding energy of -1.15 kcal/mol taking the next to the top position. It formed hydrogen bond with residue ALA128, GLY129, GLN203, GLY122, ARG199 and halogen bond with ALA128, GLY129, ARG164. L2 also showed hydrophobic interactions with ALA128, PHE248, MET126, ILE116, PRO117, and ARG199 residues of MurB protein. L3 engaged in non-covalent interactions with SER58, ALA128, GLY129, ARG164. L2 also showed hydrophobic interactions with ALA128, GLY129, GLN203, GLY122, ARG199 and halogen bond with ALA128, GLY129, GLN203, GLY122, ARG199 residues of MurB protein. L3 engaged in non-covalent interactions with SER58, ASN59. ARG199, GLY122, GLY115, GLY129, GLN203, PRO204, ARG164, PHE248, ALA123, ILE116, ALA128, PRO117, MET126 residues. The ligand had a binding affinity of -11.4 kcal/mol. PRO117 is present in all the interaction complexes constituting a hydrophobic Pi-Alkyl with the ligands.

4. Discussion

W. chondrophila is an emerging pathogen associated with both human and bovine disease [6, 7]. An study conducted by Baud et al. on 69 women with sporadic miscarriages, 200 with recurrent miscarriages and 169 control women with uneventful pregnancies, comprising a total of 438 women, the seroprevalence of anti-Waddlia IgG for women with sporadic miscarriages, recurrent miscarriages and control women 31.9%, 33%, and 7% respectively [11]. Overtime other studies documented the association of this bacteria in unpropitious pregnancy events [9, 10, 12, 13]. Due to the absence of commercially available standardized methods for the detection W. chondrophila in patients, the actual epidemiology is still not available. The possible modes of transmission can be zoonotic exposure, ingestion of contaminated meat or milk [11]. The water networks were also proposed to as the presence of W. chondrophila was detected in well water samples [59]. Considering the mode of transmissions mass order abortions can be possibility with women working in the farm and dairy industry being at the highest risk. The a priori clinical preparations are necessary in order to fight off such pathogens an attempt to which is the overarching goal of the current study.

In the study, the chromosomal proteins were first retrieved from UNIPROT. As it can abandoned by the organism under selection pressure, the utility of plasmid proteins for the purpose of this study was questionable and therefore excluded beforehand. Generally, a large protein dataset contains sequences that are highly similar (paralogous), and removing them reduces the volume of search space thereby saving time and computational resources. CD-HIT was used to remove the 77 duplicate sequences within the proteome that had >60% similar or related structure and function with other proteins in the proteome. This reduced the redundancy of the data constructing the protein subset PSet1.

To identify the important proteins of W. chondrophila, the aid of various databases was taken. The Database of Essential Genes (DEG) contains experimentally identified protein sequences that are indispensable for the organism. The Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) contains database consists of a single file covering nucleotide/protein sequences in FASTA format from all antibiotic classes. This is used to identify extant and putative new antibiotic resistance (AR) genes in bacterial genomes. The virulence factor database (VFDB) is a combined and extensive online resource for curating information about virulence factors of bacterial pathogens. Virulence factors are molecular entities that ameliorate bacterial colonization, immunosuppression, immunoevasion, etc. within the host, thereby facilitating the process of disease. Standalone BLAST searches against these databases helped to construct the PSet2 protein dataset containing 676 important proteins of the bacteria.

Even though PSet2 is important to bacteria, not all of them can be used as a drug target as some of the protein can potentially be associated with the metabolic pathway of the host. Targeting those proteins may eventually cause host toxicity & cross-reactions. KEGG Automatic

SL	Protein Name	UNIPROT ID	DrugBank ID	DrugName	E-value	Bit Score
1	Riboflavin synthase, alpha subunit	D0YD7	P0AFU8	Riboflavin	1.12E-60	186
2	Putative cytochrome dubiquin oxidase subunit 2	D0YJ2	A0A045IQS9	Flavin adenine dinucleotide	3.22E-48	160
3	Chorismate synthase	D0YW2	P56122	NADH, Metformin	9.54E-27	105
4	Glycerol-3-phosphate dehydrogenase (NADP+)	D0YS7T	P21695	Carbenicillin, Cefuroxim, Carinadilcin, Cefmetazole, Ertapenem, Ceftriaxamid, Cefoperazone, Cefotixin, Cefazoxime	1.24E-29	116
5	Putative D-alanyl-glycerol dehydrogenase	D0YS23	P08506	Flavin adenine dinucleotide	3.22E-48	160
6	UDP-N-acetylenol pyruvyl glucosamine reductase	D0YVJ9	P61432	Cefuroxim, Novobiocin	3.63E-36	142

U.F. Chowdhury et al. Heliyon 7 (2021) e07320
Figure 2. 3D structure (SWISS-MODEL) and corresponding Ramachandran plot (PROCHECK) for A. Putative multidrug resistance protein MdtC (D6YSV9), B. Putative D-alanyl-D-alanine carboxypeptidase (D6YSZ3), C. Putative cytochrome d ubiquinol oxidase subunit 2 (D6YVJ2), D. DNA topoisomerase III (D6YVX0), E. UDP-N-acetylenol pyruvoyl glucosamine reductase (D6YVJ9), F. Glycerol-3-phosphate dehydrogenase [NAD(P)+] (D6YST7), G. Chorismate synthase (D6YWA2), and H. Riboflavin synthase, alpha subunit (D6YVD7).
Annotation Server or KAAS annotations were used to circumvent this issue. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database resource for understanding high-level functionalities of biological systems with the aid of molecular-level information like high throughput sequencing or other experimental datasets. Metabolic pathway information of *W. chondrophila* and its host *Homo sapiens* are enlisted in the KEGG database with their respective K-ids. The pathways were retrieved from the database and compared manually to identify pathogen-specific pathways. Afterward, KO-ids were used to identify proteins that are present in only one pathway. This resulted in the PSet-PD dataset with 48 protein entries. KAAS annotation also gives information about KEGG BRITE, which is a collection of hierarchical classification systems encapsulating functional hierarchies of various biological objects. This contains additional information on proteins that are not metabolic pathway-dependent yet they perform key roles in biological systems. Using this information 70 metabolic pathway-independent proteins (PSet-PI) were identified through manual search. Considering both the pathway dependent and independent proteins allow for addressing a broader range of targets within the microorganism hence enhancing the chances of identifying substantial druggable candidates.

Sequence similarity with a previously known drug target would facilitate the drug searching process immensely, aiding the rational drug discovery & repurposing/repositioning process. Therefore, PSet-PI & PSet-PD proteins were subjected to the standalone BLAST search against the DrugBank database. The DrugBank (https://www.drugbank.ca/) is a comprehensive online database, which accommodates a massive amount of data on drugs and drug targets. High similarity with FDA approved drug targets present in the database allows for a much safer and more specific therapeutic regime. Only eight proteins matched the cut-off criteria strictly (Table 2). Riboflavin synthase, alpha subunit (D6YVD7), Putative cytochrome d ubiquinol oxidase subunit 2 (D6YVJ2), Chorismate synthase (D6YWA2), Glycerol-3-phosphate dehydrogenase [NAD(P)+] (D6YST7), Putative D-alanyl-D-alanine carboxypeptidase (D6YS23), UDP-N-acetylenol pyruvoyl glucosamine reductase (D6YV9J) were metabolic pathway-dependent and DNA topoisomerase (D6YVX0) & Putative multidrug resistance protein MdtC (D6YSV9) were metabolic pathway-dependent and DNA topoisomerase (D6YVX0) & Putative multidrug resistance protein MdtC (D6YSV9) were metabolic pathway-dependent.

Figure 3. Image of UDP-N-acetylenol pyruvoyl glucosamine reductase docked with flavin-adenine dinucleotide (Red) and A. Bupivacaine hydrochloride (Blue), B. Nilotinib hydrochloride monohydrate (Blue), and C. Regorafenib (Blue).

Figure 4. 2D interaction plots for UDP-N-acetylenol pyruvoyl glucosamine reductase docked with A. Flavin-adenine dinucleotide, B. Bupivacaine hydrochloride, C. Nilotinib hydrochloride monohydrate, and D. Regorafenib.
nucleotide as co-factor for function [63]. Glycerol-3-phosphate dehydro-
synthesis. PBPs are sensitive to proteins (PBPs) which are generally involved in peptidoglycan bio-
D-alanyl-D-alanine carboxypeptidases are members of penicillin-binding
enzyme has an absolute prerequisite of reduced
form [61]. Cytochrome d ubiquinol oxidase participates in the reactions of
the respiratory chain in many human-pathogenic bacteria. It is not
structurally associated with mitochondrial cytochrome c oxidases and
found exclusively on prokaryotes [62]. Biosynthesis of various aromatic
compounds depends on the shikimate pathway which are responsible for
electron transport, signaling, communication etc. Chorismate synthase is
the seventh enzyme of the shikimate pathway which catalyzes the syn-
thesis of chorismate from 5-enolpyruvylshikimate 3-phosphate. The
enzyme has an absolute prerequisite of reduced flavin adenine mono-
nucleotide as co-factor for function [63]. Glycerol-3-phosphate dehydro-
genase breaks down glycerol-3-phosphate and produces energy [64].
D-alanyl-D-alanine carboxypeptidases are members of penicillin-binding
proteins (PBPs) which are generally involved in peptidoglycan bio-
synthesis. PBPs are sensitive to β-lactam antibiotics and constitute a
family of acyltransferases with a unified evolutionary origin [65]. DNA
topoisomerases are involved in controlling the topology of the DNA in the
cellular environment. They exert their enzymatic prowess by causing
transient single/double strand breakage in DNA which stabilizes
DNA-protein covalent binding [66]. Multidrug resistant proteins belongs to
the major facilitator superfamily [67, 68] which confers antibiotic
resistance to bacteria upon overexpression [69]. These proteins also pro-
vide protection against a myriad environmental toxins through active
extrusion of the pernicious compounds [70]. Finally, UDP-N-acetylenol
pyruvyl glucosamine reductase (MurB) is the product of murB gene which catalyzes the terminal steps of the formation of
UDP-N-acetylmuramic acid in the peptidoglycan biosynthesis pathway
[71].

The experimental structures of the eight selected proteins were absent in UNIPROT. Hence, the three-dimensional structures of the eight pro-
teins were modeled using SWISS-MODEL, which is a fully automated
service that uses homology-modeling to predict reliable protein models.
For each protein, a template search was done followed by model con-
struction. Predicted models that possessed the highest GMQE & QMEAN
were taken for further analysis (Supplementary Table 5). To validate the
reliability of the predicted models, Ramachandran plots were generated
for all the models using the PROCHECK server. Two models were not
found reliable as they did not have the minimum 90% residues inside the
acceptable region (Supplementary Table 5). Subsequently, the study was
g geared towards identifying drug molecules that can effectively inhibit the
critical proteins of W. chondrophila. Even though from a functional
perspective all six protein candidates were prominent drug targets, the
rest of the study only focused on MurB for the following reasons – Due to
its involvement in peptidoglycan biosynthesis, MurB a prominent target
against bacteria especially against its cell wall, and various researches
had taken place on this protein to discover the inhibition strategy [72, 73,
74, 75]. Although putative D-alanyl-D-alanine carboxypeptidase was
related to peptidoglycan biosynthesis pathway, the unsuccessful predic-
tion of the structure led to exclusion of the protein from virtual docking
study. Also, 4PYT was the only template structure that contained conserved,
and the crystal structure which was eventually used to guide the ligand-binding site for virtual screening.

To implement the drug repositioning strategy, the FDA approved
drugs obtained from BindingDB [56] were used in virtual screening.
Using FDA-approved drugs has several advantages over using a random
pool of drugs. For example, FDA approved drugs already have known
indications and contraindications, which facilitates the administration
process. For a large chunk of these drugs, their interaction network is
known which also helps in using the drug field trials. This can allow for a
more precise target search thereby accelerating the overall novel target
discovery workflow. As FAD is co-factor of MurB, it served as the control
in the study for molecular docking. Virtual screening using the FDA
approved drug candidates identified various drugs that have a higher
binding affinity than its co-factor FAD. Bupivacaine hydrochloride (L1),
nicotinamide adenine monohydrate (L2), and Regorafenib (L3) were
the top three identified ligands with binding affinity -12.0 kcal/mol,
-11.5 kcal/mol, and -11.4 kcal/mol respectively. L1 is a local anesthetic
[76] that causes absence of pain sensation in a specific location of the
body. It can be cardiotoxic [77], and able to shows dose dependent
cytotoxicity [78] and arrhythmia [79]. L2 is a potent selective inhibitor
of the BCR-ABL tyrosine kinase [80] used in the treatment of chronic
myeloid leukemia that is resistant to imatinib. Some of side effects
associate with L2 includes cardiotoxicity [81], elevated lipase and/or
amylase levels, pancreatitis, hyperglycemia [82] etc. L3 is a dihydropyridine
multikinase inhibitor acting on VEGFR1-3, c-KIT, TIE-2, PDGFR-β,
PGR-1, RET, RAF-1, BRAF, and p38 MAP kinase [83]. L3 can cause
cardiotoxicity [84], rash, alopecia, desquamation, fatigue, mucositis,
hypertension, diarrhea, thyroid dysfunction [85]. L2 & L3 are used as
anticancer agents that generally have higher adverse effects [81, 82, 85].
On the other hand, L1 has a favorable potency to toxicity ratio [86].
Therefore, we propose that primarily L1, followed by L2 and L3 as
repositionable drugs for the MurB protein. Also, the structure of L1, L2
and L3 can be taken as a scaffold and newer drugs can be developed
which has lower toxicity but higher inhibitory property.

In conclusion, an extensive computational approach had been taken
in this study to narrow down the most 8 druggable proteins of
W. chondrophila appropriate and three inhibitory compounds were pro-
posed for one of those druggable proteins, MurB, using drug reposi-
tioning and virtual screening. Finally, further experimental validations
are necessary to establish these findings and use proposed drugs and drug
targets for clinical purposes.

Declarations

Author contribution statement

Umar Faruq Chowdhury: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data;
Contributed reagents, materials, analysis tools or data; Wrote the paper.

Abdullah Al Saba: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Abu Suffian Sufi: Performed the experiments; Analyzed and inter-
preted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Akhil Ahmad Khan, Ishrat Sharmin, Aziza Sultana, Md Obedul Islam: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supplementary material/referenced in
article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2021.e07320.
[63] P. Macheroux, J. Schmid, N. Amrhein, A. Schaller, A unique reaction in a common pathway: mechanism and function of chorismate synthase in the shikimate pathway, Planta 207 (1999) 325–334.

[64] S. Hayashi, J.P. Koch, E.C. Lin, Active transport of L-alpha-glycerophosphate in Escherichia Coli, J. Biol. Chem. 239 (1964) 3098–3105.

[65] B. Rioseras, P. Yagu, M.T. López-García, N. González-Quinónez, E. Binda, F. Marinelli, A. Manteca, Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptococcus coelicolor, Sci. Rep. 6 (2016) 1–15.

[66] A. Maxwell, N.G. Bush, K. Evans-Roberts, DNA Topoisomerases, EcoSal Plus 6 (2015).

[67] J.T. Paulsen, M.H. Brown, R.A. Skurray, Proton-dependent multidrug eflux systems, Microbiol. Mol. Biol. Rev. 60 (1996).

[68] H. Okusu, D. Ma, H. Nikaido, AcrAB eflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants, J. Bacteriol. 178 (1996) 306–308.

[69] N. Baranova, F. Marinelli, A. Manteca, Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor, Sci. Rep. 6 (2016) 1–15.

[70] S. Nirwan, V. Chahal, R. Kakkar, Structure-based virtual screening, free energy of binding and molecular dynamics simulations to propose novel inhibitors of Mtb-MurB oxidoreductase enzyme, J. Biomol. Struct. Dyn. (2020).

[71] G.M. Amera, R.J. Khan, A. Pathak, R.K. Jha, M. Jain, J. Muthukumaran, A.K. Singh, G.M. Amera, R.J. Khan, A. Pathak, R.K. Jha, M. Jain, J. Muthukumaran, A.K. Singh, Young, W.E. Harte, H.T. Ho, P.F. Misco, J.G. Robertson, D. Stock, Y. Sun, A.W. Walsh, 4-Thiazolidinones, Novel inhibitors of the bacterial enzyme MurB, Bioorg. Med. Chem. Lett 10 (2000) 715–717.

[72] J.L. Laskin, W.P. Wallace, B. DeLeo, Use of bupivacaine hydrochloride in oral surgery-a clinical study, J. Oral Surg. 35 (1977) 25–29.

[73] J.E. de La Coussaye, J.J. Edeljam, J. Brugada, A. Sassine, [Cardiotoxicity of local anesthetics], Cah. Anesthesiol. 41 (1993) 589–598.

[74] T. Boran, A. Yilmaz, A.M. Ozturk, M.A. Ergun, S. Menevse, K. Kaya, Bupivacaine and levobupivacaine induce apoptosis in rat chondrocyte cell cultures at ultra-low doses, Eur. J. Orthop. Surg. Traumatol. 24 (2014) 291–296.

[75] A. Hamzagi, M.R. de Rezende, R. Mattar, J.E. Vieira, J.O.C. Adler, Estudio Comparativo entre la Bupivacaina (575-8432) y la Ropivacaina para Evaluar la Seguridad Cardiovascular en el Bloqueo del Plexo Braquial, Brazilian J. Anesthesiol. (Edicion En Esp.) 63 (2013) 322–326.

[76] H.M. Kantarjian, F.J. Giles, K.N. Bhatta, J. Pinilla-Ibarz, R.A. Larson, N. Gattermann, O.G. Ottmann, A. Hochhaus, J.P. Radich, G. Saglio, T.P. Hughes, G. Martinelli, D.W. Kim, Y. Shou, N.J. Gallagher, R. Blakesley, M. Baccarani, J. Cortes, P.D. Le Coutre, Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results, Blood 117 (2011) 1141–1145.

[77] K.R. Doherty, R.L. Wappel, D.R. Talbert, P.B. Trusk, D.M. Moran, J.W. Kramer, A.M. Brown, S.A. Shell, S. Bacus, Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiacmyocytes, Toxicol. Appl. Pharmacol. 272 (2013) 245–255.

[78] A. Quintás-Cardama, H. Kantarjian, J. Cortes, Nilotinib-associated vascular events, Clin. Lymphoma, Myeloma & Leukemia 12 (2012) 337–340.

[79] A.W. Walsh, 4-Thiazolidinones, Novel inhibitors of the bacterial enzyme MurB, Bioorg. Med. Chem. Lett 10 (2000) 715–717.

[80] D. Stromberg, B. Schultheis, Regorafenib for cancer, Expert Opin. Invest. Drugs 21 (2012) 879–889.

[81] T. Boran, A.G. Akyildiz, A.T. Iannuzzi, B. Alpertunga, Extended regorafenib treatment can be linked with mitochondrial damage leading to cardiotoxicity, Toxicol. Lett. 336 (2021) 39–49.

[82] O. Abdel-Rahman, M. Fouad, Risk of cardiovascular toxicities in patients with solid tumors treated with sunitinib, axitinib, cediranib or regorafenib: an updated systematic review and comparative meta-analysis, Crit. Rev. Oncol. Hematol. 92 (2014) 194–207.

[83] C.R. Babst, B.N. Gilling, Bupivacaine: a review, Anesth. Prog. 25 (1978) 87–91.