Does phantom energy produce black hole?

F. Rahaman*, A. Ghosh* and M. Kalam**

Abstract

We have found an exact solution of spherically symmetrical Einstein equations describing a black hole with a special type phantom energy source. It is surprising to note that our solution is analogous to Reissner-Nordström black hole.

Recent astrophysical observations have confirmed that the Universe at present is expanding with an acceleration. It is proposed that this unexpected cosmological behavior is caused by a hypothetical dark energy with a positive energy density and a negative pressure. The matter with the property, energy density $\rho > 0$ but pressure $p < 0$ has been denoted 'phantom energy'. Several authors have recently discussed accelerating phase of the Universe by using phantom energy as source [1-8]. Since traversable Wormholes require so called exotic matter with a negative pressure $p < 0$, some authors have recently investigated the physical properties and characteristic of traversable Wormholes by taking phantom energy as source [9-13]. In this article, we present a black hole solution with special type phantom energy as a source. By choosing the parameters adequately, the solution coincides with Reissner-Nordström black hole solution. Before discussing this surprising result, we proceed to show the solution.

We look for static spherically symmetric solution with the line element

$$ds^2 = -e^{2f(r)}dt^2 + \frac{1}{[1 - \frac{b(r)}{r}]}dr^2 + r^2d\Omega^2$$

(1)
Because of spherical symmetry the only non zero components of stress energy tensor are \(T_{0}^{0} = -\rho(r) \), \(T_{1}^{1} = p(r) \) and \(T_{2}^{2} = T_{3}^{3} = p_{tr}(r) \) where \(\rho \) is the energy density, \(p \) is the radial pressure and \(p_{tr} \) is the transverse pressure. Using the Einstein field equations \(G_{\mu\nu} = 8\pi T_{\mu\nu} \), in orthonormal reference frame (with \(c = G = 1 \)), we obtain the following stress energy scenario,

\[
\rho(r) = \frac{b'}{8\pi r^2} \tag{2}
\]

\[
p(r) = \frac{1}{8\pi} \left[-\frac{b}{r^3} + 2\frac{f'}{r}(1 - \frac{b}{r})\right] \tag{3}
\]

\[
p_{tr}(r) = \frac{1}{8\pi} (1 - \frac{b}{r})[f'' - \frac{(b'r - b)}{2r(r - b)}f' + f'^2 + \frac{f'}{r} - \frac{(b'r - b)}{2r^2(r - b)}] \tag{4}
\]

Using the conservation of stress energy tensor \(T^{\mu\nu}_{\nu} = 0 \), we can obtain the following equation

\[
p' + f'\rho + (f' + \frac{2}{r})p - \frac{2}{r}p_{tr} = 0 \tag{5}
\]

From now on, we assume that our source is characterized by the special type phantom energy with equation of state that contains a radial pressure

\[
p = -\rho \tag{6}
\]

we suppose also that pressures are isotropic and

\[
p_{tr} = \rho \tag{7}
\]

Since only two equations of the system (2) - (4) are independent, it is convenient to represent them as follows:

\[
b' = 8\pi r^2 \rho(r) \tag{8}
\]

\[
f' = \frac{(8\pi r^3 + b)}{2r(r - b)} \tag{9}
\]

One can find the solution of \(\rho \) from (5) by using (6) and (7) as

\[
\rho(r) = \frac{\rho_0}{r^4} \tag{10}
\]

where \(\rho_0 \) is an integration constant.
Plugging (10) in (8) and (9), one can get the following solutions of b and f as

$$b = A - \frac{8\pi \rho_0}{r} \quad (11)$$

$$2f = \ln f_0 \left[\frac{r^2 - Ar + 8\pi \rho_0}{r^2} \right] \quad (12)$$

where f_0 and A are integration constants.

Rescaling the time coordinate appropriately, the line element becomes,

$$ds^2 = -[1 - \frac{A}{r} + \frac{8\pi \rho_0}{r^2}] dt^2 + \frac{1}{[1 - \frac{A}{r} + \frac{8\pi \rho_0}{r^2}]} dr^2 + r^2 d\Omega^2_2 \quad (13)$$

The structure of this solution is similar to the Reissner-Nordström black hole solution.

In the absence of the source i.e. when ρ_0 is zero, then the metric (13) becomes Schwarzschild metric and comparing with Schwarzschild metric, the constant A can be chosen to be $2M$, M is the mass of the black hole.

Properties of the solution:

For $A > \sqrt{32\pi \rho_0}$, there are two zeros of $1 - \frac{A}{r} + \frac{8\pi \rho_0}{r^2}$ at $r = r_\pm$ where

$$r_\pm = \frac{A \pm \sqrt{A^2 - 32\pi \rho_0}}{2}$$

which correspond to two horizons.

The Kretschmann scalar

$$K = R_{abcd} R^{abcd} = \frac{4}{r^6} [(A - 32\pi \rho_0)^2 + (A - 16\pi \rho_0)^2 + (A - 8\pi \rho_0)^2]$$

is finite at r_\pm and is divergent at $r = 0$, indicating that r_+ and r_- are regular horizons and the singularity locates at $r = 0$.

For $A = \sqrt{32\pi \rho_0}$, the black hole has only one event horizon located at $r = \frac{A}{2}$. Thus two horizons r_+ and r_- match to form a regular event horizon while $r = 0$ is still a singularity.

We also see that if $A < \sqrt{32\pi \rho_0}$, the solution does not describe a black hole at all, but, rather a naked singularity.
Now we find entropy S and Hawking temperature T_H of the black hole following Hawking’s remarkable discovery - the laws of black hole thermodynamics [14].

$$S = \frac{1}{4} (\text{area}) = \frac{\pi}{4} [A + \sqrt{(A^2 - 32\pi\rho_0)}]^2$$

$$T_H = \frac{1}{4\pi \sqrt{-gt_{rr}}} \frac{d}{dr} (-gt_{tt})|_{\text{horizon}} = \frac{1}{\pi} \left[\frac{\sqrt{(A^2 - 32\pi\rho_0)}}{A + \sqrt{(A^2 - 32\pi\rho_0)}} \right]^2$$

In the limiting case i.e. when $A = \sqrt{32\pi\rho_0}$, the black hole exhibits a non zero entropy $S_0 = \frac{\pi A}{4}$, at zero temperature. One may consider it as a result of a dual symmetric that generates degenerate ground states of black hole.

In conclusion, we give a black hole solution by taking special type phantom energy as source. The structure and thermodynamic properties of this black hole is similar to Reissner-Nordström black hole. Three possible questions could there be to our model.

[1] Is any spherically charged distribution of matter has the same notion of special type phantom energy and obeys equation of state : $p = -\rho, p_{tr} = \rho$?

[2] It is argued that apart from the null energy condition violation, phantom energy possesses a strange property namely, phantom energy mediates a long range repulsive force [8]. So, how it is possible to a source (distribution of matter) which produces repulsive force to form a black hole ?

[3] Comparing the metric (13) with Reissner-Nordström black hole metric, one can find $8\pi\rho_0 = e^2$ i.e. $\rho = \frac{e^2}{8\pi r^4}$ [where e is the charge of the matter and ρ is the matter density of the phantom energy source]. So, is it possible to relate gravity with electromagnetic field?

The answer of these questions is under current consideration and we hope to report this elsewhere.
Acknowledgements

F.R is thankful to Jadavpur University and DST, Government of India for providing financial support under Potential Excellence and Young Scientist scheme.

References

[1] R. Cai and A Wang arXiv: hep-th / 0411025
[2] M. Carmeli arXiv: astro-ph / 0111259
[3] M. Turner arXiv: astro-ph / 0108103
[4] R. Caldwell, M. Kamionkoski and N. Weinberg arXiv: astro-ph / 0302506
[5] A. Melchiorai, L. Mersini, C. Odman and M. Trodden arXiv: astro-ph / 0211522
[6] S. Caroll, M. Hoffman and M. Todden arXiv: astro-ph / 0301273
[7] R. Caldwell arXiv: astro-ph / 9908168
[8] E. Majerotto, D. Sapone and L. Amendola arXiv: astro-ph /0410543
[9] F. Lobo arXiv: gr-qc / 0502099
[10] S. Sushkov arXiv: gr-qc / 0502084
[11] F. Lobo arXiv: gr-qc / 0506001
[12] O. Zaslavskii arXiv: gr-qc / 0508057
[13] F. Rahaman, M. Kalam, M. Sarker and K. Gayen, Phys.Lett.B 633, 161(2006) (e-Print Archive: gr-qc/0512075)
[14] G. Cheng, W. Lin and R. Hsu J. Math. Phys.35, 1839 (1994)