Novel Decapeptides that Bind Avidly and Deliver Radioisotope to Colon Cancer Cells

John M. Abraham¹*, Fumiaki Sato¹, Yulan Cheng¹, Bogdan Paun¹, Takatsugu Kan¹, Alexandru Olaru¹, Zhe Jin¹, Jian Yang¹, Rachana Agarwal¹, Stefan David¹, James P. Hamilton¹, Tetsuo Ito¹, Yuriko Mori¹, Stephen J. Meltzer¹,²

¹Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, ²Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America

Background. The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor- ablating material such as radioisotope, directed against a specific molecule. Methodology/Principal Findings. This report describes the discovery of nine novel decapetides which can be radioactively labeled, bind to, and deliver ³²P to colon cancer cells. The decapetides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapetide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue. Conclusions/Significance. This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas.

INTRODUCTION

Illness and death due to colorectal and esophageal cancer constitute a monumental health care challenge in the United States and throughout the world [1,2]. Current treatments include radiotherapy, surgery, and chemotherapy. There are a number of immunotherapies approved for use in the treatment of various types of cancers (e.g., Herceptin, Rituxin, Avastin, and others) [3–6]. All of these immunotherapies utilize a monoclonal antibody directed against a specific cellular molecule [7,8]. Destructive action against tumor cells is thought to involve ADCC (antibody-dependent cellular cytotoxicity), cellular lysis via the complement pathway, or the induction of apoptosis [9,10]. Avastin is a monoclonal antibody directed against VEGF (vascular endothelial growth factor) and is approved for treatment of colorectal cancer [11–13].

In addition, Non-Hodgkins lymphoma (NHL) is currently treated with two approved radioimmunotherapeutic regimens: Bexxar and Zevalin. Both utilize a monoclonal antibody directed against the B-cell marker CD20 and can deliver either ¹³¹I (Bexxar) or ⁹⁰Y (Zevalin) isotopes to target lymphoma cells [14,15]. Beta-particles (electrons) generated by these isotopes can deeply penetrate cells and damage DNA, leading to cell death. However, there are currently no radioimmunotherapies approved for the treatment of patients with colorectal cancer.

The decapetides described herein bind to and transfer isotope (³²P) to cell lines derived from several colorectal carcinomas. Under identical experimental conditions, very little (viz., less than 1% of the colon cancer cell lines’ rates) of the most efficient ³²P-labeled decapetide bind to cell lines established from a variety of other cancers or to normal colon, kidney, or esophageal cells.

RESULTS

We have identified nine decapetides, differing from one another by only a few amino acids, that when labeled with ³²P can bind to a number of colorectal carcinoma cell lines. All decapetides contain a protein kinase A substrate sequence and are designated as MAs (Modified Adjuvant). Figure 1 is a schematic representation of the production of the ³²P-labeled peptides and the experimental design of assays to measure binding of peptides to cell lines.

Figure 2 displays the number of ³²P counts per minute (cpm) remaining bound to eighteen different cell lines and blank wells after a two hour incubation with MA5, the most efficient binding decapetide (see below). The Caco-2 colon adenocarcinoma cell line retained the greatest number of radioactive counts after a two-hour incubation and subsequent washes with complete medium, the average value of triplicate wells equaling 290,639 cpm per 10,000 cells. HCT116 colon adenocarcinoma cells retained an average value of 131,998 cpm per 10,000 cells. Blank wells and nonbinding cell lines had mean values of less than 550 cpm; bars representing these values are not visible at the scale used in Figure 2. For example, HeLa S3 cervical cancer cells only retained an average of 334 cpm per 10,000, HT1080 fibrosarcoma cells retained 367 cpm, and the human embryonic kidney cell line 293H retained 429 cpm per 10,000 cells.

Seven of the eighteen cell lines demonstrated very strong retention of radioactivity when incubated with MA5 (Modified Adjuvant radioactive peptide) with five of these being colon adenocarcinoma cell lines (Caco-2, HCT15, HCT116, LoVo, HT29), one being an esophageal adenocarcinoma cell line (SEG1), and one being a Barrett’s esophagus cell line (QHTRT). In contrast, the eleven nonbinding cell lines were mostly squamous cell lines derived from carcinomas of the cervix (HeLa S3), colon (RKO), lung (1271, A549), esophagus (KYSF-70), and a fibrosarcoma.

© 2007 Abraham et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Academic Editor: Mikhail Blagosklonny, Ordway Research Institute, United States of America

Received: July 11, 2007; Accepted: September 12, 2007; Published: October 3, 2007

Competing Interests: The authors have declared that no competing interests exist.

* To whom correspondence should be addressed. E-mail: jabraham14@jhmi.edu
of cpm retained by Caco-2 (298,639) to the average of the eleven nonbinding cell lines (365) was 818:1. Caco-2 cells retained approximately 18% of the total radioactive counts present in the incubation well after two-hour incubation.

Nine MA variants were assayed for adherence to Caco-2 cells after two hours’ incubation. The relative binding level and amino acid composition of each MA variant is displayed in Figure 3A. Alteration of only one to three amino acids within the peptide resulted in retention differences as large as 70-fold, e.g., in variant MA2 vs. variant MA5.

To investigate how quickly, 32P isotope could be transferred from the peptide variants and incorporated into cellular proteins, the three most avidly binding MAs (see Figure 3A) were added to replicate wells containing Caco-2 cells, then washed away at varying time intervals and the cells and supernatant assayed. As shown in Figure 3B, substantial percentages of these 32P-labeled variant decapeptides bound to cells within only a few minutes, with large amounts of radiolabeled cellular proteins appearing at two hours after exposing cells to the labeled peptides. Notably, a parallel experiment in which conditions described in Figure 3 were duplicated, but washed cells were incubated overnight in complete medium (data not shown), still revealed similar levels of 32P-decapeptide release and retention for all nine MAs, as described for MA5 in Figure 2.

The peptide binding, washing and assay experiment described for Figure 2 was then repeated in the seven most avidly binding cell lines using MA5, except that after three washes of medium, 200 ul of complete medium was added to each well and the cells were incubated overnight at 37°C. Figure 4A shows the cpm...
Peptides Bind To Cancer Cells

Figure 3. Relative levels of binding of nine 32P-labeled decapeptide variants. (A) Nine 32P-labeled different decapeptides, varying from one another by only one to three amino acids, were incubated with Caco-2 cells for two hours, the cells washed three times, and counts remaining bound to the cells are shown as a percentage of the total amount of counts for each decapeptide used. Amino acid substitutions for each variant (relative to MA1) are underlined and bolded. (B) The variants, MA1, MA4, and MA5 were incubated with Caco-2 cells for intervals varying from five minutes to two hours, washed, the adherent cells dissolved in gel loading buffer and an aliquot run on a 10%–20% gradient polyacrylamide-SDS gel. The three lanes marked “24h” (lanes 5, 10, and 15) were incubated with the respective labeled decapeptides (MA1, MA4, MA5) for two hours, washed, and the cells incubated with complete medium for 24 hours. The cells were treated as described for the other lanes of this figure.

doi:10.1371/journal.pone.0000964.g003

The incubation of 32P-labeled decapeptide with certain cell lines resulted in large amounts of peptide being retained after a two-hour incubation, but a substantial proportion of this bound peptide was released after an overnight incubation. For example, after incubation of the labeled variant MA5 with Caco2 cells for two hours, three wash steps, and overnight incubation in medium, 88% of the originally retained 32P isotope was released. However, the 12% that was retained by cells still represented 5.8 cpm per cell, extrapolating to over 8,300 counts per cell per day. In addition, radioactivity that was still retained by cells after overnight medium incubation was permanently incorporated into a variety of cellular proteins, as demonstrated by polyacrylamide gel electrophoresis of post-exposure cellular lysates.

Among 18 cell lines assayed for their ability to bind the decapeptides, seven demonstrated very high retention of isotope after two-hour incubation. Although all seven of these lines released from 63% to 88% of this radioactivity after an overnight incubation, the amount of isotope that was retained overnight was still substantial. Of these seven cell lines, five were derived from colorectal adenocarcinomas, one from an esophageal adenocarcinoma, and one from a Barrett’s metaplasia specimen. The 11 cell lines that did not bind the radioactively labeled decapeptide MA5

DISCUSSION

This report describes the discovery of decapeptides that can be labeled with a high energy (1.7 Mev) beta emitter (32P) and can bind avidly to several different adenocarcinoma cell lines, efficiently delivering this potential tumor-ablating material to the cells. The decapeptides, termed MA for Modified Adjuvant, are protein kinase substrates. Previously, it had never been shown or suspected that this substrate, when labeled with a tumor-ablating material such as 32P, could bind to and transfer the radioisotope to a cell line after one to two hours of incubation. Moreover, we have shown for the first time that transfer of isotope from these decapeptides is restricted to cell types derived from primary colon and esophageal adenocarcinomas. For example, exposure of certain colon cancer cell lines (e.g. Caco-2) to the most avidly binding labeled peptide, MA5, for a two-hour period resulted in the transfer of a radioactive dose of over 29 counts per minute per cell after a two hour incubation, wash, and immediate determination of the retained radioactivity.
were derived from a variety of tissue origins. These included squamous cell carcinomas of the cervix, lung, breast, and a fibrosarcoma, as well as normal kidney, colon, and esophageal tissues.

The majority of approved immunotherapeutic regimens for cancer involve an antibody directed against a specific cellular molecule [16]. These agents can function by binding to the cell surface and may utilize ADCC, complement activation, or cellular apoptosis. The antibodies may also be coupled to a tumor-ablating agent, such as toxins or radioisotopes [17-21]. The addition of isotope to peptides, and their use for both diagnostic and therapeutic purposes, is an active area of biomedical research [22-25]. Our work utilizes protein kinase A substrates labeled with 32P isotope. A high-energy beta-emitting radioisotope results in an electron pathlength range of up to 5 mm, permitting substantial penetration of solid tumors. Due to a predicted “bystander” effect, one beta particle will penetrate hundreds or thousands of cells within the tumor, even those not directly binding the decapptide. Moreover, since the molecular weights of these minuscule decapptides proteins are far lower than the exclusionary molecular weight limit of the filtering kidneys, these peptides should be rapidly eliminated in the urine, leading to reduced systemic toxicity. Thus, it should be feasible for both a radioactive dose and unbound radioactivity to be eliminated easily and in a relatively short period of time. We anticipate that additional known enzyme substrates may eventually be identified as potential vehicles for the specific delivery of anti-tumor agents to cancer cells and that potential cancer therapeutic regimens employing this peptide or other similar substances might be the newest strategy for peptide binding therapy.

MATERIALS AND METHODS
Production of the 32P-labeled decapetide: Different DNA oligomers were cloned into pGEX-4T-1 (GE Healthcare) which yield various decapetides after thrombin cleavage designated MA1 through MA9 (Modified Adjuvant). The protein sequences are: MA1, GSRRASVGSA; MA2, GSRGASVGGA; MA3, GSRRGSGVSA; MA4, GSRRGSGVSA; MA5, GSRRASVSA; MA6, GSRRASVSG; MA7, GSRGGSVGSA; MA8, GSRGGSVSA; MA9, GSRGGSVSA. DH5-α bacteria con-

Figure 4. The majority of the 32P-labeled decapetide MAS-bound molecules are released from Caco-2 cells. (A) The 32P-labeled decapetide MAS was incubated for two hours with seven different cell lines, the cells were washed, and complete medium was added. Following a 24 hour incubation, the number of counts per minute released into the medium (R) as well as the number of counts remaining bound to the cells (B) were determined. Each bar shows the mean and one standard deviation of triplicates wells. (B) Time course for the release and retention of the 32P-labeled decapetide MAS. MAS was incubated for two hours with Caco-2 cells, the cells washed, and the cpm released (dashed line) as well as remaining bound (solid line) to the cells determined for time intervals post-washing. Each point shows the mean plus/minus one standard deviation of triplicate determinations. (C) Radioactive well contents described as bound (solid line) in Figure 4B were run on a 16.5% polyacrylamide-SDS gel and exposed to film. Immediately after washing (i.e., at 0 hours), the majority of the counts were visualized as 32P-peptide. Over the next 48 hours, the peptide counts diminished, with the majority of bound radioactivity incorporated into cellular proteins. (D) Aliquots of medium containing the released (dotted line) 32P-peptide MAS were assayed at time intervals after washing, as described in Figure 4B. As time progressed, more of the 32P-peptide was released, reaching a plateau by 24 hours after washing.

doi:10.1371/journal.pone.0000964.g004
taining these clones were grown overnight in LB (containing 100 μg/ml ampicillin), diluted 1/10 in LB-Amp and grown at 37°C for two hours. IPTG was added to 1 mM and the culture grown at 37°C for five hours. Ten ml of each culture were centrifuged and the cell pellet resuspended in 1 X TBS containing 100 μg/ml lysozyme. After two cycles of freeze-thaw, the lysate was centrifuged and the supernatant was mixed with 100 μl of Sepharose-Glutathione for two hours at RT. Each pellet was washed three times with 1 X TBS, and the bound recombinant fusion proteins were labeled with 32P using protein kinase A and 32P-γ-ATP according to the manufacturer’s instructions (Sigma, St. Louis, Mo.). The pellet was washed four times with 1 X PBS and the labeled decapetide was cleaved and released into the supernatant with thrombin (GE Healthcare).

Assay of the binding of 32P-labeled decapetptides to cell lines: Cell lines were grown in complete medium containing 10% bovine serum (heat inactivated). In each well of a 96-well plate, 10,000 cells from various cell lines were grown overnight in complete medium. Ten μl of the labeled-peptide in 1 X PBS and 90 μl of complete medium were added to each well and incubated at 37°C at various times of up to two hours. The peptide-medium was removed and one μl added to 100 μl gel loading buffer and counted by scintillation counting for the probe control or run on a polyacrylamide-SDS gel [Biorad]. The adherent cells were briefly and gently washed with complete medium three times and some wells were assayed immediately by adding 100 μl of gel loading buffer to each well and run on a gel or counted in a scintillation counter. Other wells had 100 μl complete medium added and incubated for a further time period. Samples were either counted in a liquid scintillation counter or run on polyacrylamide-SDS gels, exposed to x-ray film, and the film developed.

ACKNOWLEDGMENTS
We thank Dr. Yutaka Shimada (Hyogo College of Medicine, Japan) for the gift of cell line KYSE-70.

Author Contributions
Conceived and designed the experiments: JA. Performed the experiments: JA. Analyzed the data: JA FS YC BP TK AO ZJ JY RA SD JH TI YM SM. Contributed reagents/materials/analysis tools: YC BP TI SM. Wrote the paper: JA FS YC BP TK AO ZJ JY RA SD JH TI YM SM.

REFERENCES
1. Edwards BK, Brown ML, Wingo PA, Hesse HL, Ward F, et al. (2005) Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J. Natl. Cancer Inst. 97: 1407–1427.
2. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2007) Cancer Statistics, 2007. CA Cancer J. Clin. 57: 43–66.
3. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, et al. (2001) Use of Chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344: 781–792.
4. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2 positive breast cancer. N. Engl. J. Med. 353: 1673–1684.
5. Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, et al. (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without Trastuzumab as adjuvant therapy in node positive, human epidermal growth factor receptor 2-overexpressing breast cancer. J Clin. Oncol. 23: 7811–7819.
6. Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Croceuman MS, et al. (2000) Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol. 18: 3135–3143.
7. Nahta R, Esteva FJ (2007) Trastuzumab:triumphs and tribulations. Oncogene 26: 3714–3733.
8. Presta LG, Chen H, O’Connor SJ, Ghilelmo V, Meng YG, et al. (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57: 4593–4599.
9. Clynes RA, Towers TL, Presta LG, Racetch JV (2000) Inhibitory Fc receptors module in vivo cytotoxicity against tumor targets. Nat. Med. 6: 443–446.
10. Sibille S, Dutertre CA, Frydman WH, Teillaud JL (2007) RegammaR: The key to optimize therapeutic antibodies? Crit. Rev. Oncol. Hematol. 62: 26–33.
11. Rini BI, Rathmell WK (2007) Biological aspects and binding strategies of vascular endothelial growth factor in renal cell carcinoma. Clin. Cancer Res. 13: 741–746.
12. Van Cutsem E, Pater M, Siena S, Humblett V, Hendliss A, et al. (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 25: 1658–1664.
13. Cilley JC, Barf K, Benson AB, Mulcahy MF (2007) Bevacizumab in the treatment of colorectal cancer. Expert Opin. Biol. Ther. 7: 739–749.
14. Wiseman GA, White CA, Sparks RB, Ervin WD, Podoloff DA, et al. (2001) Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit. Rev. Oncol. Hematol. 39: 181–194.
15. Vose JM (2004) Bexxar: novel radioimmunotherapy for the treatment of low-grade and transformed low-grade non-Hodgkin’s lymphoma. (2004) Oncologist 9: 160–172.
16. Zafri-Lavie I, Michaeli Y, Reiter Y (2007) Novel antibodies as anticancer agents. Oncogene 26: 3714–3733.
17. Kreitman RJ (2006) Immunoxotics for targeted cancer therapy. AAPS J. 8: 532–551.
18. Kreitman RJ, Pastan I (2006) Immunoxotics in the treatment of hematologic malignancies. Curr. Drug Targets 7: 1301–1311.
19. Kreitman RJ (2003) Recombinant toxins for the treatment of cancer. Curr. Opin. Mol. Ther. 5: 44–51.
20. Roemnc OC, Kopee MJ, Postema EJ, Contens FH, Oyen WJ (2007) Radiouclide therapy of cancer with radiolabeled antibiotics. Anticancer Agents Med. Chem. 7: 335–343.
21. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotech. 23: 1137–1146.
22. Okarvi SM (2004) Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med. Res. Rev. 24: 357–397.
23. Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic Cancer Targeting Peptides. Biopolymers 66: 184–199.
24. Wangel C, Buchmann I, Eisenhut M, Haberkorn U, Mier W (2007) Peptides Bind To Cancer Cells

PLoS ONE | www.plosone.org 5 October 2007 | Issue 10 | e964

PLoS ONE | www.plosone.org 5 October 2007 | Issue 10 | e964

Peptides Bind To Cancer Cells

was removed and one μl added to 100 μl gel loading buffer and counted by scintillation counting for the probe control or run on a polyacrylamide-SDS gel [Biorad]. The adherent cells were briefly and gently washed with complete medium three times and some wells were assayed immediately by adding 100 μl of gel loading buffer to each well and run on a gel or counted in a scintillation counter. Other wells had 100 μl complete medium added and incubated for a further time period. Samples were either counted in a liquid scintillation counter or run on polyacrylamide-SDS gels, exposed to x-ray film, and the film developed.

ACKNOWLEDGMENTS
We thank Dr. Yutaka Shimada (Hyogo College of Medicine, Japan) for the gift of cell line KYSE-70.

Author Contributions
Conceived and designed the experiments: JA. Performed the experiments: JA. Analyzed the data: JA FS YC BP TK AO ZJ JY RA SD JH TI YM SM. Contributed reagents/materials/analysis tools: YC BP TI SM. Wrote the paper: JA FS YC BP TK AO ZJ JY RA SD JH TI YM SM.