A universal infant rotavirus vaccine program in two delivery models: Effectiveness and adverse events following immunization

Carolyn Sanford1, Joanne M Langley2,*, Scott A Halperin2, Mitchell Zelman1, and Maritime Universal Rotavirus Vaccination Program (MURVP)

1Department of Health and Wellness; Charlottetown, Prince Edward Island; 2Canadian Center for Vaccinology and the Department of Pediatrics; Dalhousie University; IWK Health Center; Halifax, Nova Scotia

Keywords: Clinical Trials registration, NCT01273077, immunization programs, public health practice, Rotavirus vaccines

Introduction

The introduction of universal infant rotavirus vaccine programs in the US, Australia, Europe, and over 10 South American countries has resulted in dramatic reductions in rotavirus-associated diarrhea and dehydration leading to hospitalization, medical visits and, especially in lower income settings, death.1 In 2009 the World Health Organization recommended the inclusion of rotavirus vaccine in the national immunization programs of all countries.2

In Canada rotavirus illness is associated with an average of 11 hospitalizations per 1,000 children less than 5 y of age/year and causes the majority of childhood gastroenteritis resulting in hospitalization.3,4 Rotavirus vaccines became available in Canada in 2006 (RotaTeq®) and 2007 (RotarixTM).5 The National Advisory Committee on Immunization recommended routine immunization of Canadian children in 2010,3 as did the Canadian Immunization Committee in 2014.6

In this study, initiated in 2010 before any province had initiated a routine rotavirus vaccine program, we sought to determine if a universal infant rotavirus vaccine program implemented in 2 provinces would be associated with reductions in the burden of rotavirus as measured by hospitalization in children under 12 months of age. Further, we sought to evaluate the effectiveness of 2 different program delivery models (public health nurse-administered or physician office-administered), in comparison to a non-intervention control jurisdiction where no vaccine was provided.

Results

Vaccine coverage

Vaccine coverage in year one was 93.4% for one dose and 91.2% for 2 doses in Site 1; and in year 2 it was 93.1% and 90.3% for dose one and 2 respectively. In Site 2, vaccine coverage in year one was 33.1% for dose one and 33.6% for 2 doses; and in year 2 it was 38.3% and 33% for dose one and 2 respectively. Details of vaccine uptake over time for each dose are reported elsewhere.7
Rotavirus-associated hospitalizations

Rotavirus admissions in children less than 12 months of age per 100,000 children in that age group decreased in Site 1, with no further cases after November 2012 (Table 1, Fig. 1). In children 12 months to less than 2 y of age there were no rotavirus admissions in 2012 or 2013 (Table 2). All children < 12 months of age would have had an opportunity to be fully immunized by February 2012 and children < 2 y of age by February 2013; vaccine coverage was over 90%. In contrast, no appreciable difference in rotavirus admissions in infants under 12 months or those 12 to 24 months was observed in the jurisdiction without a program, or in the jurisdiction with a family physician delivered program. These data suggest that a rotavirus vaccine program with high population coverage is effective. The government of Site 1 subsequently continued a universal rotavirus vaccine program for infants after the project ended, based on the effect of the program on childhood rotavirus illness.8

In Site 2, the jurisdiction with a universal program provided by family physicians, no detectable change in rotavirus admissions occurred. It is important to consider other reasons than poor vaccine coverage (< 40%) in this site for the absence of a change in rotavirus hospitalizations. Rotavirus vaccine effectiveness is lower in a low income setting compared with a high income setting,1,9 ranging for example from 85 to 88% effectiveness in the US and Australia to 51–76% in Asia, Africa and South America.1 This would not explain the unchanged epidemiology of rotavirus hospitalizations in the study site with the coverage of ~40% however, as these jurisdictions have comparable socioeconomic status and universal access to health care. Differences in circulating rotavirus strain antigens compared to vaccine antigens could theoretically reduce vaccine effectiveness. However, in a Canadian study stool samples from pediatric hospitals were tested for G (VP7) and P (VP4) genotypes, and all were well matched to Rotarix™ and Rotateq™ vaccines.10

Adverse events following immunization

The frequency of intussusception did not increase after introduction of the rotavirus vaccine program. Among the 13 cases identified in Site 2 and 3 none had received rotavirus vaccine. No change in the incidence of all-cause diarrhea was observed (data not shown).

Discussion

In this controlled study comparing 2 methods of implementing a universal infant rotavirus vaccine program, the jurisdiction with high vaccine uptake in a public health nurse-delivered program had an elimination of rotavirus admissions in children less than 2 y of age beginning in the second year of the program, which was sustained for an additional 17 months of observation. By contrast, no appreciable difference in rotavirus admissions in infants under 12 months or those 12 to 24 months was observed in the jurisdiction without a program, or in the jurisdiction with a family physician delivered program. These data suggest that a rotavirus vaccine program with high population coverage is effective. The government of Site 1 subsequently continued a universal rotavirus vaccine program for infants after the project ended, based on the effect of the program on childhood rotavirus illness.8

In Site 2, the jurisdiction with a universal program provided by family physicians, no detectable change in rotavirus admissions occurred. It is important to consider other reasons than poor vaccine coverage (< 40%) in this site for the absence of a change in rotavirus hospitalizations. Rotavirus vaccine effectiveness is lower in a low income setting compared with a high income setting,1,9 ranging for example from 85 to 88% effectiveness in the US and Australia to 51–76% in Asia, Africa and South America.1 This would not explain the unchanged epidemiology of rotavirus hospitalizations in the study site with the coverage of ~40% however, as these jurisdictions have comparable socioeconomic status and universal access to health care. Differences in circulating rotavirus strain antigens compared to vaccine antigens could theoretically reduce vaccine effectiveness. However, in a Canadian study stool samples from pediatric hospitals were tested for G (VP7) and P (VP4) genotypes, and all were well matched to Rotarix™ and Rotateq™ vaccines.10

Table 1. Rotavirus admissions in infants < 12 months of age/100,000 population by year and by study site.

Site/Year	2008	2009	2010	2011	2012	2013*
Site 1	405.4	344.8	142.2	628.5	0.0	0.0
Site 2	183.7	419.2	139.2	139.4	140.0	116.1
Site 3	113.8	115.1	0.0	468.1	125.9	150.6

*January – May 2013 inclusive.

The universal rotavirus vaccine program in Sites 1 and 2 began in December 2010. Vaccine coverage in Site 1 in Study year one (2011) was 93.4% for one dose and 91.2% for 2 doses; and in year 2 (2012) it was 93.1% and 90.3% for dose one and 2 respectively. In Site 2, vaccine coverage in year one was 33.1% for dose one and 33.6% for 2 doses; and in year 2 it was 38.3% and 33% for dose one and 2 respectively.

Figure 1. Rotavirus admissions in children < 12 months of age/1000 population/month January 2008—May 2013.
The most likely reason that no appreciable reduction in rotavirus admissions occurred at Site 2 is that an insufficient percentage of vaccine-eligible children were immunized in order to observe direct protection in children less than 12 months of age, or indirect protection (herd immunity) in children 12 months to less than 2 y of age. In a previous assessment of immunization coverage in the province where Site 2 is situated, the overall immunization completeness rate was 49% at 12 months, 40% at 18 months and 58% at 24 months of age.11 It is thus not unexpected that the coverage rate for rotavirus vaccines was under 40% in this effectiveness study. As a federal country, vaccines in Canada are delivered by provinces, so immunization schedules and immunization delivery programs vary.12 There is little study of the role of program delivery in the success of vaccine programs.

Routine vaccination of infants in the US with pentavalent rotavirus vaccine (RV5) began in February 2006, and by January 2008 vaccine coverage was 57% among children less than one year of age13 and 80% in infants up to 2 y of age in 2008–2009. In 2006–2007 the total number of rotavirus hospitalizations did not change, but in 2007–2008 the season was delayed in onset and the peak number of the total number of rotavirus hospitalizations did not change, but in 2008–2009 it was 93.1% and 90.3% for dose one and 2 respectively. In Site 2, vaccine coverage in year one was 33.1% for dose one and 33.6% for 2 doses; and in year 2 it was 38.3% and 33% for dose one and 2 respectively.

Table 2. Rotavirus admission in children one year of age to < 2 y of age/100,000 population by year and study site.

Site/Year	2008	2009	2010	2011	2012	2013*
Site 1	790.2	675.7	69.0	1564.7	0.0	0.0
Site 2	312.1	321.5	46.6	69.6	69.7	55.7
Site 3	57.4	113.8	0.0	229.6	0.0	466.6

*January – May 2013 inclusive.

The universal rotavirus vaccine program in Sites 1 and 2 began in December 2010. Vaccine coverage in Site 1 in Study year one (2011) was 93.4% for one dose and 91.2% for 2 doses; and in year 2(2012) it was 93.1% and 90.3% for dose one and 2 respectively. In Site 2, vaccine coverage in year one was 33.1% for dose one and 33.6% for 2 doses; and in year 2 it was 38.3% and 33% for dose one and 2 respectively.

Materials and Methods

This was a controlled clinical study comparing implementation of universal infant rotavirus vaccine programs in 2 health jurisdictions, with a non-intervention comparator setting. The vaccine program implementation method (nurse-delivered vaccines in public health immunization clinics versus vaccines delivered by family physicians in their offices) was determined by the pre-existing public health immunization program in each jurisdiction, and was unblinded. A detailed description of the implementation process, educational interventions and key informant interviews in each setting is reported.7,21 The trial is registered at Clinicaltrials.gov (NCT01273077).

Study setting

The three study sites were the entire province of Prince Edward Island which comprises one health system (Site 1), one health district in the province of Nova Scotia (Halifax Regional Municipality and the western part of Hants County) (Site 2), and the city of Saint John, which is in the province of New Brunswick (Site 3). Site 2 and 3 were chosen as they were the most populous of the multiple health districts in their provinces. The study sites are in the geographically adjacent Maritime Provinces of Canada and all include an urban setting and semi-urban and rural areas. Site 1 has a population of 140,20422 and an annual live birth cohort of 1400.8 Childhood immunizations are primarily provided by public health nurses in immunization clinics. Site 2 has a population of 390, 32822 and a birth cohort of 4209 (Atlee Perinatal Database, IWK Health Center, Halifax, NS personal communication). Preschool vaccinations are provided in physician offices. In both settings publically funded vaccines are routinely purchased by the provincial government Departments of Health and distributed to vaccine providers. At the time of the initiation of this study rotavirus vaccine was not funded by any provincial government in Canada. For the purposes of this study vaccine was provided for the 2 y study period to the Departments of Health for Sites 1 and 2, without cost. At Site 2 physicians request the requisite number of vaccines they need based on the number of children in their practice. Site 3 has a population of 70,06322 and a birth cohort of 1757.
Participants and vaccine

Infants born on or after October 1, 2010, until September 30, 2012, were eligible to receive rotavirus vaccine (Rotarix™, GlaxoSmithKline Biologicals Inc.), along with their routinely scheduled infant immunizations at 2 and 4 months of age.23

After the study period the province of Site 1 began funding of a universal infant rotavirus vaccine program, but the province of Site 2 did not. Any unused vaccine in doctors’ offices in Site 2 after the study could still be used.

The protocol was approved by Research Ethics Boards at all participating sites prior to study initiation. If information was not available in the health record, parents were not approached for consent to request additional data. Cases for which clinical data was not accessible were excluded.

Study procedures

The method for vaccine program delivery in Sites 1 and 2 followed the usual procedures for implementing a new infant immunization program in those jurisdictions.7 In Site 1, infant vaccine programs were delivered by public health nurses in immunization clinics. Referrals of all live born infants are sent from acute care hospitals to Public Health Nursing for follow-up home visits post-partum, at which time the reminder to schedule immunizations occurs. Infants received the rotavirus vaccine along with other routinely scheduled vaccines at 2 and 4 months of age: diphtheria (D), acellular pertussis (aP), tetanus (T), inactivated polio (P), and Haemophilus influenzae type B (Hib) (Pediacel®), Sanofi Pasteur Ltd.) vaccine, hepatitis B (Engerix®-B, GlaxoSmithKline Biologicals, Inc. or Recombivax HB®, Merck Canada Inc.) and pneumococcal conjugate vaccine (Prevnar®13, Pfizer Canada Inc.). Administration was recorded in an electronic provincial childhood immunization registry.

In Site 2, infant vaccines were delivered by family doctors along with vaccine given at the 2 and 4 month visits: (Quadracel®-Act-Hib®, Sanofi Pasteur and pneumococcal conjugate vaccine Prevnar®13, Pfizer Canada Inc.) A paper or electronic document (Reciprocal Notification Form) was completed by the physician and a copy returned by email, mail or fax to public health.

At Site 3, rotavirus vaccine was not provided by the study to any immunizers.

Outcome measures

The primary objective was to evaluate the effectiveness of these universal infant rotavirus vaccine programs, based on the frequency of hospital admissions for children less than one year of age with laboratory-confirmed rotavirus illness. Secondary objectives were to evaluate the frequency of rotavirus admissions in children 12 months to 2 y of age and the frequency of the serious adverse events (SAEs) intussusception and all-cause diarrhea in children less than 12 months of age. Other objectives of the Maritime Universal Rotavirus Vaccination Program (MURVP), reported elsewhere, were to assess the program implementation processes and coverage in Sites 1 and 2 and to describe the knowledge, attitudes and behaviors of health care providers and parents regarding rotavirus vaccine.

The number of live births during the study was obtained from the Vital Statistics office in each jurisdiction. Ascertainment of children hospitalized for rotavirus gastroenteritis (primary effectiveness outcome), and the SAEs was conducted for the 2 y period prior to implementation of the vaccine program and for the subsequent 2.5 y (1 October 2010–30 May 2013). At Site 2 prospective collection of rotavirus hospitalization data began in 2005, using the pediatric hospital-based national active surveillance system IMPACT (Immunization Monitoring Program ACTive),24 and continued during and after study initiation. In Sites 1 and 3 retrospective data was collected on rotavirus hospitalizations and SAEs from 2008–2010 by laboratory and health record review using the IMPACT case definitions and prospectively from 2010 onwards. Unfortunately, there is no system for recording vaccines that are prescribed by a physician and paid for by the patient in Site 3 (or any of the sites). The following International Classification of Disease 10th Modification (ICD10) codes were used for initial identification of rotavirus cases and of all-cause diarrhea from medical records: viral and other intestinal infections (A08), diarrhea and gastroenteritis of infectious origin (A09), non-infectious gastroenteritis (K52.9), R11 (nausea and vomiting) and R15 (fetal incontinence).

For the primary objective, the case definition of rotavirus gastroenteritis hospitalization required that the child be less than one year of age, an inpatient at the study site hospital, with laboratory confirmed rotavirus infection by enzyme immunoassay, polymerase chain reaction (PCR) or other molecular tests, or an electron microscopic diagnosis in a stool specimen taken within 14 d after the onset of gastrointestinal symptoms (diarrhea with or without vomiting). The admission could be a direct admission, a transfer from another hospital for management of the infection, or the child could have acquired the infection during a hospital stay for another illness (i.e., hospital-acquired infection). Cases identified by autopsy must have had gastrointestinal symptoms before death. For the analysis of children under 2 y of age with rotavirus the case definition was the same except the child was 12 months to less than 24 months of age. The study did not intervene in diagnostic testing practice.

Adverse event surveillance was conducted for intussusception and/or severe diarrhea following vaccine receipt. The case identification of intussusception was based on searches of hospital records for the ICD10 codes: K56.1 (idiopathic), K91.3 (due to surgery), K38.8 (intussusception of the appendix), or the corresponding ICD-9 codes (560.0 and 543.9) and could have occurred in a hospital admission, emergency department visit or diagnostic radiology visit.

Intussusception cases that met Level 1 Brighton definition25 were included. Children with intussusception which was a direct complication of a surgical procedure (such as J-tube insertion) were excluded. Any case of diarrhea in a child less than 12 months of age that required hospitalization was considered severe diarrhea.

Statistical considerations and data analysis

The frequency of events was estimated using point estimates and exact binomial confidence intervals for the proportion of the target population (birth cohort eligible for vaccination)
undergoing hospitalization due to rotavirus. Rates and proportions were summarized using binomial point estimates and confidence intervals. Continuous variables were summarized using point estimates of the mean, and associated intervals.

Vaccine coverage for each dose was defined as eligible children who received the vaccine as a percentage of the cumulative population in the birth cohort at that age.

No formal sample size calculation was performed for this surveillance study as the entire population in each jurisdiction was included.

Disclosure of Potential Conflicts of Interest

Drs. Halperin, Langley, and McNeil have served as consultants on ad hoc advisory boards organized by GlaxoSmithKline who provided funding for this study. Dr. Langley holds the Canadian Institutes of Health Research - GlaxoSmithKline Chair in Pediatric Vaccinology.

Acknowledgments

The authors thank Jennifer Kalil, Christine Wang, Donna McKinnon-Cameron, Li Li, Carol-Lynn Raithby, Noella Wheelan, Deanne Burnett, Katherine Gaudreau, Shirley Urquhart, Heather Morrison, Lamont Sweet, Marc Nicholson, PEI Public Health Nursing and District 9 family physicians for their contributions to this study.

Funding

The study was funded by an investigator-initiated grant from GlaxoSmithKline, Canada. The funder played no role in study design, implementation, analysis or preparation of manuscripts.

Note

MURPV Authors: Beth A. Halperin (Dalhousie University), Scott A. Halperin (Dalhousie University), Joanne M. Langley (Dalhousie University), Donna MacDougall (Saint Francis Xavier University), Donna MacKinnon-Cameron (Dalhousie University), Shelly A. McNeil (Dalhousie University), Anne Nearty (PEI Department of Health and Wellness), Pam Publicover-Brouwer (Dalhousie University), Carol Lynn Raithby (Capital Health, NS), Corinne Rowswell (PEI Department of Health and Wellness), Carolyn Sanford (PEI Department of Health and Wellness), Caryll Tawse (Capital Health, NS), Gaynor Watson-Creed (Capital Health, NS), Noella Wheelan (Capital Health, NS), Mitchell Zelman (PEI Department of Health and Wellness).

References

1. Tate JE, Patel MM, Steele AD, Gentsch JR, Payne DC, Cortese MM, Nakagomi O, Cunillie NA, Jiang B, Neuzil KM, et al. Global impact of rotavirus vaccines. Expert Rev Vaccines 2010; 9(4):395-407; PMID:20370550; http://dx.doi.org/10.1586/erv.10.17
2. Strategic Advisory Group of Vaccine Experts. World Health Organization. Meeting of the immunization Strategic Advisory Group of Experts, April 2009 – conclusions and recommendations. Wkly Epidemiol Rec. 2009;84(22):220-36.
3. National Advisory Committee on Immunization. Updated statement of the use of rotavirus vaccines. Can Commun Dis Rep. 2010;36(ACS-4):1-36.
4. Buigues RP, Duval B, Rochette L, Boulianne N, Douville-Fraud M, Dery P, De Serres G. Hospitalizations for diarrhea in Quebec children from 1985 to 1998: Estimates of rotavirus-associated diarrhea. J Infect Dis 2002; 134(4):239-44; PMID:12189396
5. National Advisory Committee on Immunization. Statement on the recommended use of pentavalent human-bovine reassortant rotavirus vaccine. Can Commun Dis Rep. 2008;34(ACS-13):33.
6. Canadian Immunization Committee. Recommendations for Rotavirus Immunization Programs Ottawa, ON: Public Health Agency of Canada; 2014 [cited 2014 01 March]. 24 January 2014: Available from: http://publications.gc.ca/collections/collection_2014/aspc-phac/H92-40-908-2014-eng.pdf.
7. Zelman M, Sanford C, Nearby A, Halperin BA, MacDougall D, Rowswell C, Langley JM, Halperin SA; Maritime Universal Rotavirus Vaccination Program (MURVP). Implementation of a universal rotavirus vaccination program: Comparison of two delivery systems. BMC Public Health 2014; 14(1):908; PMID:25182067; http://dx.doi.org/10.1186/1471-2458-14-908
8. Department of Health and Wellness. Prince Edward Island Reproductive Care Program Perinatal Database Report 2011 Charlottetown, PEI: Government of Prince Edward Island; 2013 [28 April 2014]. Available from: http://www.gov.pe.ca/photos/original/dhw_rpp2011.pdf.
9. Patel MM, Parashar UD, Sattisham M, Richardson V. The rotavirus experience in Mexico: Discovery to control. Clin Infect Dis 2013; 56(4):548-51; PMID:23271788; http://dx.doi.org/10.1093/cid/cio399
10. McDermott A, Le Saux N, Grudeski E, Berifter BA, Mangiai K, Halperin SA, Macdonald L, Dery P, Ember J, Vaudry W, et al. Molecular characterization of rotavirus isolates from select Canadian pediatric hospitals. BMC infectious diseases 2012; 12:306; PMID:22315184; http://dx.doi.org/10.1186/1471-2334-12-306
11. Dummer TJ, Cui Y, Strang R, Parker L. Immunization completeness of children under two years of age in Nova Scotia, Canada. Can J Public Health 2012; 103 (5):e363-7; PMID:23067176
12. Ismail SJ, Langley IM, Harris TM, Warsawsky BF, Desai S, Farheng-Mehr M. Canada’s National Advisory Committee on Immunization (NACI): Evidence-based decision-making on vaccines and immunization. Vaccine 2010; 28 Suppl 1:AS8-65; PMID:20412999; http://dx.doi.org/10.1016/j.vaccine.2010.02.035
13. Cortese MM, Tate JE, Simonsen L, Edelman L, Parashar UD. Reduction in gastroenteritis in United States children and correlation with early rotavirus vaccine uptake from national medical claims databases. Pediatr Infect Dis J 2010; 29(6):489-94; PMID:20354464
14. Centers for Disease Control and Prevention (CDC). Delayed onset and diminished magnitude of rotavirus activity—United States, November 2007–May 2008. MMWR Morbidity and mortality weekly report. 2008;57(25):697-700.
15. Rha B, Tate JE, Payne DC, Cortese MM, Lopez BA, Curns AT, Parashar UD. Effectiveness and impact of rotavirus vaccines in the United States—2006–2012. Expert Rev Vaccines 2014; 13(3):365-76; PMID:24349267; http://dx.doi.org/10.1586/14767058.2014.877846
16. Pitera V, Vihoud C, Lopez BA, Parashar UD, Grenfell B. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface 2011; 8:1584-93; PMID:21508015; http://dx.doi.org/10.1098/rsif.2011.0062
17. World Health Organization Global Advisory Committee on Vaccine Safety. J Wkly Epidemiol Rec 2007; 82-252-9; PMID:17642098
18. Bines J, Bentzi-Enchiil A, Steele D. Post-marketing surveillance of rotavirus vaccine safety. In: Biologicals Va, editor. Geneva: World Health Organization; 2008.
19. U.S. Food and Drug Administration. Update: Information on Rotarix - Labeling Revision Pertaining to Intussusception. In: Biologics VBA. editor. Washington, D.C.: U.S. Department of Health and Human Services; 201
20. Brandt CD, Kim HW, Rodriguez WJ, Arroho JO, Jel- fies BC, Stallings EP, Lewis C, Miles AJ, Chanock RM, Kapuskian AZ, et al. Pediatric viral gastroenteritis during eight years of study. J Clin Microbiol 1998; 18 (1):71-8; PMID:6309901
21. Zelman M, Sanford C, Nearby A, Halperin BA, MacDougall D, Rowswell C, et al. Implementation of a universal rotavirus vaccination program: comparison of two delivery systems. TBD. TBD.
22. Statistics Canada. Census Profile 2011. Ottawa, ON: Government of Canada; 2014 [updated 2011 January]. Available from: http://www12.statcan.gc.ca/census-recensement/index-eng.cfm.
23. GlaxoSmithKline Inc. Product Monograph Rotarix Mississauga, ON: GlaxoSmithKline Inc; 2014 [cited 2014 1 January]. Available from: http://www.gsk.ca/english/docs-pdf/product-monographs/Rotarix.pdf.
24. Le Saux N, Berifter BA, Halperin SA, Vaudry W, Scheifele DW, Canadian Immunization Monitoring Program A. Substantial morbidity for hospitalized children with community-acquired rotavirus infections: 2005-2007 IMPACT surveillance in Canadian hospitals. Pediatr Infect Dis J 2010; 29 (9):879-82; PMID:20467353; http://dx.doi.org/10.1097/INF.0b013e3181e20f94
25. Bines JE, Kohl KS, Forster J, Zanardi LR, Davis RL, Hansen J, Murphy TM, Music S, Niu M, Varricchio F, et al. Acute intussusception in infants and children as an adverse event following immunization: Case definition and guidelines of data collection, analysis, and presentation. Vaccine 2004; 22(5):569-74; PMID:14741146; http://dx.doi.org/10.1016/j.vaccine.2003.09.016