Adaptive Dynamic Surface Control for a Class of Dead-Zone Nonlinear Systems via Output Feedback

YE LIU, YAQIAN ZHANG, LULU LIU, HONGQIN LI, AND HAISHAN LIU
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 200336, China
Corresponding author: Ye Liu (liuye_buaa@126.com)
This work was supported by the National Natural Science Foundation of China under Grant 61703269, Grant 61703270, and Grant 61803254.

ABSTRACT The paper aims to address output feedback problem for a class of nonlinear systems subjected to unknown dead-zone. High-gain K-filters is firstly designed such that unavailable states of system can be reconstructed. Then, with the help of dynamic surface control (DSC) method, an adaptive output feedback controller design is established, which can alleviate undesired influence of the dead-zone and guarantee the semi-global stability of the system. Furthermore, the \mathcal{L}_∞ performance of tracking error is achieved by means of initialization technique. Ultimately, numerical and practical examples clarify the efficiency of the proposed solution.

INDEX TERMS Dynamic surface control, adaptive control, high-gain observer, dead-zone, nonlinear systems.

I. INTRODUCTION
Motivated by the widely application of the industrial motion control systems such as electric servo system and hydraulic servo system, dead-zone characteristic existed in a large number of actuators of the industrial control systems has been extensively discussed.

The pioneering work on control for nonlinear systems subjected to dead-zone could be dated back to [1], where adaptive dead-zone inverse compensation proposal was presented for a linear system with known bound of dead-zone parameters. The proposal ensured global stability and asymptotical tracking for a full state available system. Similarly, adaptive dead-zone inverse was constructed in [2], then linear model reference controller was presented. More recently, the research has been extended to strict-feedback nonlinear systems. In [3] smooth dead-zone inverse was delivered in order that control performance of adaptive backstepping design can be improved.

It is quite difficult to construct the exactly inverse of various dead-zone models from another point of view. Thus robust adaptive thought has been extensively applied to mitigate dead-zone. Instead of constructing dead-zone inverse, separating thought is accepted based on the dead-zone characteristic: one is linear part and the other is “disturbance-like” part with unknown bound. In [4], a robust adaptive dynamic surface control (DSC) was provided in order to address the influence from unknown non-symmetric dead-zone in a MIMO nonlinear systems, and initialization technique was offered so as to obtain the \mathcal{L}_∞ performance. When only input and output signals are available, [5] investigated an output feedback modified DSC based on tracking differentiator for a dead-zone nonlinear system. Both steady state and transient performance are achieved under assumption that all control functions are positive as well as bounded. Furthermore, with the aid of the fuzzy logic systems and neural networks techniques, lots of semi-global adaptive robust strategies were published for nonlinear systems disturbed by unknown dead-zone [6]–[9]. Other control schemes concerning the dead-zone can be refer to [6]–[9] and the references cited therein.

Based on the aforementioned results with respect to the dead-zone, we note that most existing control methods require the measurement of all the system states. Thus adaptive output feedback control is still challenging for nonlinear systems with dead-zone. Moreover, [10] proposed an adaptive output feedback control strategy for system subjected to dead-zone input, but the transient performance...
could not be guaranteed, which may lead to some undesired behaviors, such as bursting. While in [11], although the transient performance is achieved, a complex dynamic surface design has to be needed due to tracking error transformation. Until now, the difficulties of output feedback control on system subjected to the dead-zone are both states observer construction and relatively simple control strategy in order that the undesirable catastrophic caused by dead-zone can be counteracted and closed-loop stability is obtained. Especially, steady state and transient performance could be guaranteed.

This paper devotes attention to propose an adaptive DSC control via output feedback for uncertain nonlinear systems preceded by dead-zone input. The motivation for the scheme is the high-precision control for some mechanical plans subjected to dead-zone. The study makes these contributions:

- Unlike the common K-filters employed in existing output feedback approach [11], unmeasurable states are reconstructed by high-gain K-filters, which pave the way for improvement of transient performance without tracking error transformation.
- An initialization technique is incorporated into the DSC for purpose of guaranteeing the L_∞ tracking performance. That is, just by adjusting the value of some design parameters, steady state error as well as maximum overshoot of tracking error could be made arbitrarily small.

The structure of the paper: Section II: Problem statement and some preliminary knowledge are described. Section III: An adaptive output feedback DSC design procedure by means of high-gain K-filters is presented. Section IV: Stability and L_∞ tracking performance analysis are given. Section V: Two examples are provided to demonstrate effectiveness of this design.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, uncertain nonlinear SISO system is considered:

$$\dot{x} = Ax + f_0(y) + \sum_{i=1}^{r} \theta f_i(y) + bG(y)u + d(t),$$

$$y = e_1^T x,$$

(1)

where

$$A = \begin{bmatrix} 0 & : & I_{n-1} & : & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \end{bmatrix}, \quad f_i(y) = \begin{bmatrix} f_{i,1}(y) \\ \vdots \\ f_{i,n}(y) \end{bmatrix}, \quad 0 \leq i \leq r,$$

$$G(y) = \begin{bmatrix} 0_{(\rho-1) \times 1} \\ g_m(y) \\ \vdots \\ g_0(y) \end{bmatrix}, \quad d(t) = \begin{bmatrix} d_1(t) \\ \vdots \\ d_n(t) \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

(2)

where $x := [x_1, x_2, \ldots, x_n]^T \in \mathbb{R}^n$ and $y \in \mathbb{R}$ are state vector and output signal, respectively; $\theta_i, \ i = 1, \ldots, r$ and b are unknown parameters; the nonlinear smooth functions $f_{i,j}(y), \ i = 1, \ldots, r, \ j = 1, \ldots, n,$ and $g_i(y), \ i = 0, \ldots, m,$ $(g_m(y) \neq 0)$ are known; $\rho (\geq 1) = n-m$ stands for the system relative order, and $n, \ m$ are known constants; $d \in \mathbb{R}^n$ is the external disturbance; u is unknown dead-zone’s output formulated as [12], [13]

$$u(t) = D(v(t)) = mv(t) + h(t)$$

(3)

with

$$h(t) = \begin{cases} -mh_r, & v(t) \geq h_r, \\ -mv(t), & -h_l < v(t) < h_r, \\ mh_l, & v(t) \leq -h_l. \end{cases}$$

(4)

where m, h_r, h_l are unknown bounded positive constants, and $h(t) \in [\bar{h}, \bar{h} = \max \{mh_l, mh_r\}$. (5)

Invoking (1) and (3) yields

$$\dot{x} = Ax + f_0(y) + \sum_{i=1}^{r} \theta f_i(y) + bG(y)u + d(t),$$

$$y = e_1^T x,$$

(6)

with $b_m = bm$.

The control objective: besides the boundedness of all signals of the closed-loop system, the tracking performance can be guaranteed under the proposed adaptive DSC control scheme.

Assumption 1: Disturbances $d_i(t), \ i = 1, \ldots, n$ satisfy

$$|d_i(t)| \leq \bar{d}_i$$

(7)

with $\bar{d}_i (\geq 0)$ being unknown constants.

Assumption 2: The sign of b is assumed to be positive for simplicity.

Assumption 3: The reference trajectory y_d is smooth with $y_d(0)$ at designer’s disposal, and there exists a known compact set such that $[y_d, \dot{y}_d, \ddot{y}_d]^T$ belongs to it for all $t \geq 0$.

Assumption 4: The system

$$\dot{x}_i = x_{i+1} + f_{0,i}(y) + \sum_{j=1}^{\rho} \theta f_{j,i}(y) + \frac{g_{n-i}(y)}{g_{n-\rho}} y_0 - \frac{g_{n-i}(y)}{g_{n-\rho}} x_{\rho+1}, \quad \rho + 1 \leq i \leq n,$$

(8)

are bounded-input to bounded-output (BIBO) stable, where $y_0, y, x_2, x_3, \ldots, x_{\rho}$ are inputs and $x_{\rho+1}$ is output.

Remark 1: In contrast to the most related work [14]–[17], system (1) takes $g_i(y)$ into account and the term $bG(y)h(t)$ caused by dead-zone cannot be directly seen as the bounded disturbance, which will increase the difficulty of our control design.
III. HIGH-GAIN OBSERVER BASED ADAPTIVE DSC DESIGN

A. HIGH-GAIN K-FILTER OBSERVER

Firstly, design a proper vector $k = [k_1, k_2, \ldots, k_n]^T$ to make

$$A_0 = A - k e_1^T = \begin{bmatrix} -k_1 & 1 \\ -k_2 & \ddots \\ \vdots & \ddots & 1 \\ -k_n & \cdots & 0 \end{bmatrix}$$

(9)

become Hurwitz matrix. Now, (6) can be rewritten as:

$$\dot{x} = A_0 x + ky + f_0(y) + \sum_{i=1}^{r} \theta_i f_i(y) + b_m G(y) v$$

$$+ \gamma G(y) h(t) + d(t),$$

$$y = e_1^T x.$$

(10)

Owing to the only available output signal, the high-gain K-filter observer should be designed to compensate effect of dead-zone as well as to reconstruct unavailable states:

$$\dot{\xi} = qA_0 \xi + \Psi^{-1} G(y) v,$$

(11)

$$\dot{\omega} = qA_0 \omega + qky + \Psi^{-1} f_0(y),$$

(12)

$$\dot{\xi}_i = qA_0 \xi_i + \Psi^{-1} f_i(y), \quad 1 \leq i \leq r,$$

(13)

where $\Psi = \text{diag} \{1, q, \ldots, q^{r-1}\}$ and $q(\geq 1)$ is observer gain chosen as a positive parameter. Then estimation of states is given as

$$\hat{x} = \Psi \omega + \sum_{i=1}^{r} \theta_i \Psi \xi_i + b_m \Psi \xi.$$

(14)

To proceed, the estimation error is

$$\epsilon := x - \hat{x}.$$

(15)

By means of (10)-(13), and (14), one can conclude

$$\dot{\epsilon} = A_0 \epsilon - q \Psi k e_1 + b G(y) h(t) + d(t),$$

(16)

where ϵ_1 is the first entry of ϵ.

Lemma 1: Let

$$V_\epsilon := \epsilon^T P \epsilon,$$

(17)

where a symmetric matrix $P = (\Psi^{-1})^T \tilde{P} \Psi^{-1}$, and $\tilde{P} = \tilde{P}^T > 0$, and \tilde{P} satisfies the equation

$$A_0^T \tilde{P} + \tilde{P} A_0 = -2 I.$$

(18)

with I being the unit matrix. Then the following inequality holds

$$\dot{V}_\epsilon \leq -\varsigma \epsilon V_\epsilon + D_\epsilon + q^{1-2\rho} \vartheta \varrho \varphi(y), \quad q \geq 1$$

(19)

with nonnegative smooth function $\varrho(y)$, and

$$\varsigma \epsilon := \frac{q}{\lambda_{\text{max}}(\tilde{P})},$$

(20)

$$D_\epsilon := q \left(\frac{\| \tilde{P} \| d_{\text{max}}}{q^\rho} \right)^2,$$

(21)

$$\vartheta := \left(\frac{\| \tilde{P} \| b \bar{h}}{q^\rho} \right)^2,$$

(22)

where $\lambda_{\text{max}}(\bullet)$ denotes the largest eigenvalue of \bullet, $\| d \|_{\text{max}}$ presents the maximum value of $\| d(t) \|$.

Proof: We can get the relationship $\epsilon^T P \epsilon = \tilde{\epsilon}^T \tilde{P} \tilde{\epsilon}$ by using the coordinate transformation $\hat{\epsilon} = \Psi^{-1} \epsilon$. And $\tilde{\epsilon}$ could result in

$$\dot{\tilde{\epsilon}} = qA_0 \tilde{\epsilon} + \Psi^{-1} (b G(y) h(t) + d(t)).$$

(23)

Since A_0 is Hurwitz, (18) holds for positive definite matrix \tilde{P}. Define

$$V_\tilde{\epsilon} := \tilde{\epsilon}^T \tilde{P} \tilde{\epsilon},$$

(24)

and time derivative of $V_\tilde{\epsilon}$ along (23) is

$$\dot{V}_\tilde{\epsilon} = -2 q \tilde{\epsilon}^T \tilde{\epsilon} + 2 \tilde{\epsilon}^T \tilde{P} \psi^{-1} (b G(y) h(t) + d(t))$$

$$\leq -2 q \| \tilde{\epsilon} \|^2 + \frac{2}{q^{\rho-1}} \left(\| \tilde{P} \| b \bar{h} \| G(y) \| + \| \tilde{P} \| d_{\text{max}} \right).$$

(25)

Meanwhile, there is a nonnegative smooth function $\varrho(y)$ such that

$$\| G(y) \| ^2 \leq \varrho(y).$$

(26)

Together with Young’s inequality and (5), one have

$$\dot{V}_\epsilon \leq -\varsigma \epsilon \| \epsilon \|^2 + q \left(\frac{\| \tilde{P} \| d_{\text{max}}}{q^\rho} \right)^2 + \left(\frac{\| \tilde{P} \| b \bar{h}}{q^\rho} \right)^2 \| \varrho(y) \|$$

$$\leq -\varsigma \epsilon V_\epsilon + D_\epsilon + q^{1-2\rho} \vartheta \varrho \varphi(y).$$

(27)

Hence we arrive at (19). This completes the proof.

B. ADAPTIVE DSC DESIGN

On the basis of above observer, the adaptive DSC design can be proceed smoothly.

Step 1. The first surface error is

$$S_1 = y - y_d.$$

(28)

Then

$$\dot{S}_1 = qo_2 + \sum_{i=1}^{r} \gamma \left(q \xi_{i2} + f_1(y) \right) + b_m q \xi_2 + f_0,1 \right)$$

$$+ d_1(t) - \dot{y}_d + \epsilon_2$$

$$= qo_2 + \Theta^T \sigma + b_m q \xi_2 + f_0,1 \right) + d_1(t)$$

$$- \dot{y}_d + \epsilon_2,$$

(29)

with vectors

$$\Theta = [b_m, \theta_1, \ldots, \theta_r]^T,$$

$$\sigma = [0, q \xi_{1,2} + f_1,1(y), \ldots, q \xi_{r,2} + f_r,1(y)]^T,$$

(30)

where $o_2, \xi_{i,j}, \xi_j, \epsilon_j$ denote the jth entry of vector $\omega, \xi_i, \xi, \epsilon$, respectively.

The first virtual control law is

$$\hat{\xi}_2 = \hat{\psi}_2 \epsilon = \frac{\hat{\psi}}{q} \left[-c_1 S_1 - qo_2 - f_0,1 + \epsilon_2 \right] - \hat{\psi} S_1.$$

(31)
with positive design parameter c_1. In the above, \hat{p} denotes estimation of $p (= b_m^{-1})$, and $\hat{\vartheta}$ denotes estimation of ϑ, $\vartheta := \max \{ \vartheta_e, \vartheta_\Theta \}$. ϑ_e is defined in (22), $\vartheta_\Theta := \| \varTheta \|^2$, and $\psi = \frac{\mu}{2} \| \varTheta \|^2 + q^1 \vartheta^1 \hat{\vartheta} (y)$, $\hat{\vartheta} (y)$ is constructed as

\[
\hat{\vartheta} (y) = \frac{2}{\xi^2} + q (y)
\]

with ξ being a small positive constant. Subsequently, the update laws are given by

\[
\hat{\vartheta} = \gamma_\vartheta \psi S_1 - \gamma_\vartheta \eta_\vartheta \hat{\vartheta},
\]

\[
\hat{p} = -\gamma_p q \xi_2 \xi_1 - \gamma_p \eta_p \hat{p},
\]

with adaptive gains γ_ϑ, γ_p and positive design parameters η_ϑ, η_p.

Let ξ_2 pass through filter with constant τ_2:

\[
\tau_2 \xi_2 + z_2 = \xi_2, \quad z_2 (0) = \xi_2 (0).
\]

Step i. ($2 \leq i \leq \rho - 1$) The i-th surface error is

\[
S_i = \xi_i - z_i.
\]

Then

\[
\dot{S}_i = -q k_i \xi_i + q \xi_{i+1} - \xi_i.
\]

The virtual control $\tilde{\xi}_{i+1}$ is

\[
\tilde{\xi}_{i+1} = \frac{1}{q} (-c_i S_i + q k_i \xi_i + \xi_i),
\]

with positive design parameter c_i.

Let $\tilde{\xi}_{i+1}$ pass through filters with constant τ_{i+1}:

\[
\tau_{i+1} \tilde{\xi}_{i+1} + z_{i+1} = \tilde{\xi}_{i+1}, \quad z_{i+1} (0) = \tilde{\xi}_{i+1} (0).
\]

Step ρ. The ρ-th surface error is

\[
S_\rho = \xi_\rho - z_\rho,
\]

then

\[
\dot{S}_\rho = -q k_\rho \xi_\rho + q \xi_{\rho+1} + q^{1-\rho} g_m (y) v - \tilde{\xi}_\rho.
\]

Finally, the actual control v is

\[
v = \frac{1}{q^{1-\rho} g_m (y)} (-c_\rho S_\rho + q k_\rho \xi_\rho - q \xi_{\rho+1} + \xi_\rho),
\]

with positive design parameter c_ρ.

Remark 2: As shown in (33), the estimated parameter $\hat{\vartheta}$ is a scalar instead of a vector with $n + r + 1 - \rho$ parameters, which not only can greatly reduce the computational burden, but also make the controller easy to implement. Moreover, the adaptive laws with dimension one are only used at first step.

IV. STABILITY AND L_∞ TRACKING PERFORMANCE ANALYSIS

Define

\[
y_i = z_i - \tilde{\xi}_i, \quad 2 \leq i \leq \rho.
\]

Same as that in previous DSC methods [4], [18]–[20], from (11)-(13), (28)-(42), there are continuous nonnegative functions $B_{i+1}, i = 1, \ldots, \rho - 1$ such that the following inequations hold:

\[
\begin{align*}
\|y_2 + \frac{y_2}{\tau_2}\| & \leq B_2 \left(S_1, S_2, y_2, \hat{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tau_2, \tilde{y}_d, \tilde{y}_d \right), \\
\|y_{i+1} + \frac{y_{i+1}}{\tau_{i+1}}\| & \leq B_{i+1} \left(S_1, \ldots, S_{i+1}, y_2, \ldots, y_{i+1}, \hat{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tau_{i+1}, \tilde{y}_d, \tilde{y}_d \right),
\end{align*}
\]

where $\tilde{\vartheta} := \vartheta - \hat{\vartheta}$, $\tilde{\vartheta} := \vartheta - \hat{\vartheta}$.

We can define Lyapunov function as:

\[
V = \sum_{i=1}^{\rho} V_i
\]

with

\[
V_1 = \frac{1}{2} S_1^2 + \frac{1}{2} S_2^2 + \frac{1}{2\gamma_\vartheta} \tilde{\vartheta}^2 + \frac{b_m \eta_\vartheta}{2\gamma_p} \tilde{\vartheta}^2 + V_e,
\]

\[
V_2 = \frac{1}{2} S_2^2 + \frac{1}{2\gamma_p} \tilde{\vartheta}^2, \quad 2 \leq i \leq \rho - 1,
\]

\[
V_\rho = \frac{1}{2} S_\rho^2.
\]

Theorem 1: Consider the system (1) with dead-zone input (3), high-gain K-filters (11)-(13), intermediate controllers (31) and (38), first-order filters (35), (39), update laws and actual control provided by (33), (34) and (42), respectively. Suppose assumptions 1-4 hold. Then for any given positive constants C_1, C_2, if the initial condition of (46) satisfy $V (0) \leq C_2$ and $\gamma_\vartheta \tilde{\vartheta}^2 + \gamma_p \tilde{\vartheta}^2 \leq C_1$, there are parameters q, $c_i (i = 1, \ldots, \rho)$, $r_i (i = 2, \ldots, \rho)$, γ_ϑ, γ_p, γ_ϑ, γ_p such that all signals are semi-global bounded. Furthermore, steady state error can be made arbitrarily small. Specifically, tracking error satisfies

\[
\lim_{t \to \infty} |S_1| \leq \lim_{t \to \infty} \sqrt{2V} \leq \sqrt{\frac{Q}{r_e}},
\]

where r_e is a positive constant,

\[
Q = \left(\frac{t}{2} (\rho - 1) + \eta_\vartheta \tilde{\vartheta}^2 + \frac{b_m \eta_\vartheta}{2\gamma_p} \tilde{\vartheta}^2 + \frac{1}{2\mu} \right. \\
\left. + \frac{1}{2} \| d_i \|^2 + \tilde{\vartheta} + D_e \right).
\]

Positive constants t, μ and $\tilde{\vartheta}$ will be presented later.

Proof: Define the compact sets

\[
\Omega_1 = \left\{ (y_d, \tilde{y}_d, \tilde{y}_d) : y_d^2 + \tilde{y}_d^2 + \tilde{y}_d^2 \leq C_1 \right\},
\]

\[
\Omega_2 = \left\{ (S_1, \ldots, S_\rho, y_2, \ldots, y_\rho, \hat{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tilde{\vartheta}, \tau_2, \tilde{y}_d, \tilde{y}_d) : \sum_{i=1}^{\rho} S_i^2 + \sum_{i=1}^{\rho-1} y_{i+1}^2 \\
+ \frac{1}{\gamma_\vartheta} \tilde{\vartheta}^2 + \frac{b_m \eta_\vartheta}{2\gamma_p} \tilde{\vartheta}^2 + 2 \epsilon^T P e \leq 2C_2 \right\}.
\]
It is easy to have compact set $\Omega_1 \times \Omega_2$. In the compact set $\Omega_1 \times \Omega_2$, there exist M_{i+1}, the maximum value of B_{i+1} in (44), (45). Furthermore, from (44), (45) and the Young’s inequality, we get

$$y_{i+1} \hat{y}_{i+1} \leq -\frac{\gamma_{T,i+1}^2}{\tau_{i+1}} + M_{i+1} |y_{i+1}|,$$

$$M_{i+1} |y_{i+1}| \leq \frac{M_{i+1}Y_{i+1}^2}{2t} + \frac{t}{2}, \quad 1 \leq i \leq \rho - 1,$$ \hspace{1cm} (53)

where i is arbitrary number. Considering Young’s inequality and $\varepsilon = \psi^{-1}\varepsilon$ in Lemma 1, we have

$$S_1S_2 \leq \frac{\gamma^2}{2} + \frac{1}{2}\gamma^2, \quad S_1\gamma \leq \frac{1}{2}\gamma^2 + \frac{1}{2}\gamma,$$

$$S_1\varepsilon \leq \frac{\gamma^2}{2} + \frac{1}{2\lambda_{\min}(P)} \varepsilon,$$

$$S_1d_1(t) \leq \frac{1}{2}\gamma^2 + \frac{1}{2}\|d_1\|^2,$$

$$S_1(\theta^T \sigma \varepsilon) \leq \frac{\mu S_1^2 \theta_1 \sigma_1}{2\lambda_{\min}(P)} + \frac{1}{\mu},$$

$$\eta_0 \ddot{\theta} \dot{\theta} \leq \frac{\eta_0 \gamma^2}{2} - \frac{\eta_0 \gamma^2}{2},$$

$$b_m \eta_p \ddot{\rho} \ddot{\rho} \leq \frac{b_m \eta_p \gamma^2}{2} - \frac{b_m \eta_p \gamma^2}{2}.$$

\hspace{1cm} (54)

Using (19), (29)-(34), (53), (54), then

$$\dot{V}_1 = S_1 \dot{S}_1 + \gamma \dot{y}_2 \dot{y} - \frac{\gamma^2}{\gamma} \ddot{\theta} - \frac{b_m \eta_p \gamma^2}{2} + \dot{V}_1 \leq S_1 (c_1 - q b_m) (S_2 + \gamma^2) + \frac{\gamma^2}{2} + \frac{1}{2}\|d_1\|^2$$

$$+ \frac{q^2}{2} \gamma^2 + \frac{1}{2\lambda_{\min}(P)} \varepsilon + \frac{q}{\lambda_{\max}(P)} \varepsilon$$

$$+ \gamma^4 q \ddot{\theta} \dot{\theta} (\hat{\theta} (y) - \ddot{\theta} (y) \gamma (y)) S_1^2 + \eta_0 \ddot{\theta} \dot{\theta} + b_m \eta_p \ddot{\rho} \ddot{\rho}$$

$$- \frac{\gamma^2}{\tau^2} \gamma + \frac{M_{i+1}^2 S_1^2}{2t} + \frac{t}{2} + D \varepsilon$$

$$\leq - \left(c_1 - q b_m - \frac{q^2}{2} - \frac{1}{2} \right) \gamma^2$$

$$- \left(\frac{q}{\tau^2} - \frac{q b_m}{2} - \frac{M_{i+1}^2}{2t} \right) \gamma^2$$

$$- \left(\frac{q}{\lambda_{\max}(P)} - \frac{1}{2\lambda_{\min}(P)} \right) \varepsilon$$

$$+ \frac{q b_m}{2} S_2^2 + \gamma^4 q \ddot{\theta} \dot{\theta} (\hat{\theta} (y) - \ddot{\theta} (y) \gamma (y) S_1^2$$

$$+ \frac{\eta_0 \gamma^2}{2} \ddot{\theta} \dot{\theta} + b_m \eta_p \gamma^2$$

$$+ \frac{M_{i+1}^2 Y_{i+1}^2}{2t} + \frac{t}{2} + D \varepsilon.$$

\hspace{1cm} (55)

Similarly, the time derivatives of (48), (49) are

$$\dot{V}_1 \leq -c_1 S_1^2 + q (S_{i+1} + y_{i+1}) S_i + \frac{y_{i+1}^2}{\tau_{i+1}}$$

$$+ \frac{M_{i+1}^2 Y_{i+1}^2}{2t} + \frac{t}{2} \leq -c_1 S_1^2 - \frac{1}{\tau_{i+1}} \left(\frac{M_{i+1}^2}{2t} - \frac{q}{2} \right) y_{i+1}^2$$

$$+ \frac{q}{2} S_{i+1}^2 + \frac{t}{2}, \quad 2 \leq i \leq \rho - 1.$$

\hspace{1cm} (56)

and

$$\dot{V}_1 = -c \rho S_1^2 = -\left(c \rho - \frac{q}{2} \right) S_1^2$$

\hspace{1cm} (57)

Substituting (55), (56), (57) into the time derivatives of (46), we have

$$\dot{V} \leq - \left(c_1 - q b_m - \frac{q^2}{2} - \frac{1}{2} \right) \gamma^2$$

$$- \left(\frac{c}{\tau^2} - \frac{q b_m}{2} - \frac{M_{i+1}^2}{2t} \right) \gamma^2$$

$$- \sum_{i=3}^{\rho-1} \left(\frac{q}{\tau_{i+1}} - \frac{M_{i+1}^2}{2t} - \frac{q b_m}{2} \right) \gamma^2$$

$$+ \frac{q}{\lambda_{\max}(P)} - \frac{1}{2\lambda_{\min}(P)} \varepsilon$$

$$- \frac{\eta_0 \gamma^2}{2} \ddot{\theta} \dot{\theta} + \frac{b_m \eta_p \gamma^2}{2} \ddot{\rho} \ddot{\rho}$$

$$+ \frac{1}{\mu} \ddot{\theta} \dot{\theta} + \frac{1}{\mu} \ddot{\theta} \dot{\theta}$$

$$\leq \frac{1}{\mu} \ddot{\theta} \dot{\theta} + \frac{1}{\mu} \ddot{\theta} \dot{\theta}$$

\hspace{1cm} (58)

To ensure the desired objective, the following inequalities for the corresponding design parameters should be held:

$$q \geq 2 \lambda_{\max}(P) \gamma \lambda_{\max}(P),$$

$$c_1 \geq q b_m + \frac{q^2}{2} + \frac{1}{2} + \gamma e,$$

$$c_2 \geq q b_m + \frac{q^2}{2} + \gamma e,$$

$$c_i \geq 3 \gamma^2 + \gamma e, \quad 3 \leq i \leq \rho - 1,$$

$$c_{\rho} \geq \frac{q}{2} + \gamma e,$$

$$\frac{1}{\tau_{i+1}} \geq \frac{q b_m}{2} + \frac{M_{i+1}^2}{2t} + \gamma e,$$

$$\frac{1}{\tau_{i+1}} \geq \frac{q b_m}{2} + \frac{M_{i+1}^2}{2t} + \gamma e, \quad 2 \leq i \leq \rho - 1,$$

$$\eta_0 \geq 2 \gamma e \frac{b_m \eta_p \gamma^2}{2},$$

$$\eta_p \geq 2 \gamma e \frac{b_m \eta_p \gamma^2}{2}.$$
Moreover, from (32), rewrite \(\vartheta q^{1-2p} (\vartheta (y) - \tilde{\vartheta} (y) S_{\vartheta}^{2}) \) as \(\vartheta q^{1-2p} Q (y) \left(1 - \frac{2}{1 + \epsilon S_{\vartheta}^{2}} \right) \). Obviously, if \(S_{\vartheta} > \sqrt{\delta} \), then \(\vartheta q^{1-2p} (\vartheta (y) - \tilde{\vartheta} (y) S_{\vartheta}^{2}) < 0 \), while on the other hand, if \(S_{\vartheta} \leq \sqrt{\delta} \), the term \(\vartheta q^{1-2p} (\vartheta (y) - \tilde{\vartheta} (y) S_{\vartheta}^{2}) \) has an upper bound, which we denote as \(\bar{\vartheta} \).

Viewing (55)-(59), the time derivative of (46) satisfies

\[
\dot{V} \leq -2r_{\varepsilon} V + Q
\]

with \(Q \) defined by (51). Let \(r_{\varepsilon} \) satisfy

\[
r_{\varepsilon} \geq \frac{Q}{2C_{2}}.
\]

Then if \(V = C_{2} \), we have \(\dot{V} \leq 0 \). Hence, given \(V (0) \leq C_{2} \), one can obtain that \(V (t) \leq C_{2}, \ t \geq 0 \). Further, according to (60), we obtain

\[
V (t) \leq e^{-2r_{\varepsilon} t} V (0) + \frac{Q}{2r_{\varepsilon}} \left(1 - e^{-2r_{\varepsilon} t} \right), \ t \geq 0.
\]

Hence,

\[
\lim_{t \to \infty} V (t) \leq \frac{Q}{2r_{\varepsilon}}, \quad (63)
\]

and

\[
\lim_{t \to \infty} |S_{1}| \leq \lim_{t \to \infty} \sqrt{2V} \leq \sqrt{\frac{Q}{r_{\varepsilon}}}, \quad (64)
\]

from which we note steady state error could be made arbitrarily small under sufficiently large \(r_{\varepsilon} \).

From the above analysis, \(V \) is proven to be bounded, and then \(S_{1}, \ldots, S_{p}, \ y_{1}, \ldots, y_{p}, \ \tilde{\vartheta}, \ \tilde{\rho}, \) and \(\varepsilon \) are bounded. Moreover, \(y_{j} \) is bounded due to Assumption 3, which implies \(y \) is bounded. What is more, the nonlinear smooth functions \(f_{i,j} (y), g_{i} (y), \vartheta (y) \) and \(\tilde{\vartheta} (y) \) are bounded, and then \(p_{1}, \xi_{i} \) and \(\psi_{i} \) are bounded. Note that

\[
x = \Psi_{0} + \sum_{i=1}^{r} \theta_{i} \Psi_{i} + b_{m} \Psi_{\xi} + d (t) + \varepsilon,
\]

and Assumption 1, which implies that \(\xi_{1} \) is bounded. Viewing (31) and (35), we have \(z_{2} \) is bounded. Then it can be checked from (36) that \(\xi_{2} \) is bounded. Similarly, we obtain that \(z_{3}, \ldots, z_{p}, \xi_{3}, \ldots, \xi_{p} \) are bounded due to (36)-(40). From (65), we can know that \(x_{2}, \ldots, x_{p} \) are bounded. With Assumption 4, \(x_{p+1} \) is bounded. Furthermore, \(\xi_{p+1} \) is bounded. Then, according to (42), we can get bounded \(\nu \). Also, from (11), we can get bounded \(\xi \). Hence, we have shown that uniformly ultimate boundedness is guaranteed for all signals in the system.

Until now, we only discussed steady state tracking performance. Transient state performance also should be considered. What follows is a conclusion aims to solve the problem.

Theorem 2: Consider the system discussed in Theorem 1. Select initial values of high-gain K-filters (11)-(13), update law (33), (34) to be zero and let \(\omega_{1} (0) = y (0), \ y_{d} (0) = y (0) \). Then \(V (t) \) can satisfy

\[
V (t) \leq \frac{Q}{2r_{\varepsilon}} + \frac{\lambda_{\varepsilon} (\bar{P})}{q^{2}} \| \varepsilon (0) \|^{2},
\]

and \(L_{\infty} \) tracking performance satisfies

\[
\| S_{1} \|_{\infty} \leq \sqrt{\frac{Q}{r_{\varepsilon}} + \frac{Q^{2}}{q^{2}} \lambda_{\varepsilon} (\bar{P}) \| \varepsilon (0) \|^{2}}.
\]

Proof: Let \(y_{d} (0) = y (0), \) and by (28),

\[
S_{1} (0) = y (0) - y_{d} (0) = 0.
\]

We set the initial conditions of (33), (34) to ensure \(\dot{\vartheta} (0) = 0, \ \dot{\rho} (0) = 0 \). From (31), \(\tilde{\xi}_{2} (0) = 0 \). Hence, \(\tilde{z}_{2} (0) = 0 \). \(\tilde{z}_{2} (0) = 0 \) are achieved by considering (35). Similarly, in light of (36)-(40), we can deduce

\[
S_{1} (0) = 0, \quad 2 \leq i \leq \rho.
\]

Moreover, together with (35)-(39) and (43), we have

\[
y_{i+1} (0) = 0, \quad 1 \leq i \leq \rho - 1.
\]

Noting (46) and (59), and from (69) and (70), we can get

\[
V (0) = \frac{1}{2y_{\varrho}} \vartheta^{2} + \frac{b_{m} y_{\varrho}^{2}}{2y_{\rho}} + V_{\varepsilon} (0)
\]

\[
\leq \frac{1}{2r_{\varepsilon}} \left(\frac{\eta_{\vartheta}}{2} \vartheta^{2} + \frac{b_{m} \eta_{\rho} y_{\rho}^{2}}{2} \right) + V_{\varepsilon} (0)
\]

\[
\leq \frac{Q}{2r_{\varepsilon}} + V_{\varepsilon} (0).
\]

Now, substituting (71) into (62) yields

\[
V (t) \leq \frac{Q}{2r_{\varepsilon}} + \epsilon T (0) Pe (0) e^{-2r_{\varepsilon} t}
\]

\[
\leq \frac{Q}{2r_{\varepsilon}} + \epsilon T (0) Pe (0)
\]

\[
\leq \frac{Q}{2r_{\varepsilon}} + \lambda_{\varepsilon} (\bar{P}) \| \varepsilon (0) \|^{2}.
\]

The initial conditions of the K-filters imply that \(\xi_{i} (0) = 0 (1 \leq i \leq r), \ \xi (0) = 0 \). We can deduce that \(\dot{\xi}_{1} (0) = \omega_{1} (0) \). Considering \(\varepsilon = x - \dot{x} \) and \(\omega_{1} (0) = y_{1} (0) \), it can be obtained that \(\varepsilon_{1} (0) = 0 \). Then for \(q \geq 1 \), we have

\[
\| \varepsilon_{1} (0) \| \leq \frac{1}{q} \| \varepsilon (0) \|.
\]

Thus, we get the upper bound of \(V (t) \) as follows

\[
V (t) \leq \frac{Q}{2r_{\varepsilon}} + \lambda_{\varepsilon} (\bar{P}) \| \varepsilon (0) \|^{2},
\]

which implies that \(L_{\infty} \) tracking performance

\[
\| S_{1} \|_{\infty} \leq \sqrt{2V} \leq \sqrt{\frac{Q}{r_{\varepsilon}} + \frac{Q^{2}}{q^{2}} \lambda_{\varepsilon} (\bar{P}) \| \varepsilon (0) \|^{2}}.
\]

Therefore, by tuning the design parameters in (59), we can make the \(L_{\infty} \) performance of tracking error,
namedly $\|S_1\|_\infty$, converge to arbitrarily small region of the
equilibrium for all initial condition.

Remark 3: From (75), the high gain q of the high gain
K-filters is crucial to guarantee the transient tracking
performance. And the common K-filters only ensure the steady state
tracking performance, cannot obtain the transient tracking
performance.

Remark 4: In the proposed controller, design parameters
$q, c_i, i = 1, \ldots, \rho, \tau_{i+1}, i = 1, \ldots, \rho - 1, \eta_0, \eta_p$, and
adaptive gains γ_0, γ_p should be adjusted for a good transient
tracking performance, then tracking error in (50) and (67) can
be reduced. Since there are no explicit guideline to quantify
the relationship of these parameters, some suggestions are
given for obtaining good tracking performance.

- By (50), increasing the value of r_e can reduce the track-
ing error. Further, in view of (59), increasing the values of
$q, c_i, i = 1, \cdots, \rho, \eta_0, \eta_p$ and adaptive gains γ_0, γ_p
and decreasing the values $\tau_{i+1}, i = 1, \ldots, \rho - 1$ is
able to make r_e larger. However, the increase of η_0, η_p
will cause the increase of Q in (51). Based on the above
observation, we can fix η_0, η_p first and Q is independent
of r_e. By this means, r_e can be arbitrarily increased
without increasing Q and the maximum overshoot of
tracking error is arbitrarily small.

- Theoretically, we can arbitrarily increase $q, c_i, i = 1, \cdots, \rho$,
γ_0, γ_p, and reduce $\tau_{i+1}, i = 1, \cdots, \rho - 1$ to increase r_e
and make the tracking error arbitrarily small. From (11)-(13), (30)-(35)
and (39)-(42), however, the tuning process may result in large amplitude of control
signal. There is no effective method to relieve these
phenomena, which would be an interesting problem in the
future.

V. SIMULATION EXAMPLES

Two examples are provided to verify effectiveness of developed
design.

Example 1: Consider the system with external disturbance:

$$\begin{align*}
\dot{x}_1 &= x_2 + y + y^2 + 0.1 \cos t, \quad x_1(0) = 0.1, \\
\dot{x}_2 &= 0.5y + (1 + y^2) + u + 0.3 \sin t, \quad x_2(0) = 0, \\
y &= x_1,
\end{align*}$$

(76)

which implies $n = \rho = 2, \ r = 1$,

$$\begin{align*}
f_0(y) &= \begin{bmatrix} y \\ 0.5y \end{bmatrix}, \\
f_1(y) &= \begin{bmatrix} y^2 \\ 1 + y^2 \end{bmatrix}, \\
G(y) &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \\
d(t) &= \begin{bmatrix} 0.1 \cos t \\ 0.3 \sin t \end{bmatrix},
\end{align*}$$

(77)

and dead-zone parameters are $m = 2, \ h_1 = 0.5, \ h_r = 0.3$. The reference trajectory is $y_d(= \sin (2t) + \cos (t)), \ y_d(0) = 0.1$. According to (11)-(13), the high-gain K-filters characterized by

$$\begin{align*}
\dot{\xi} &= qA_0\xi + \Psi^{-1}G(y)v, \quad \xi(0) = 0, \\
\dot{\omega} &= qA_0\omega + qky + \Psi^{-1}f_0(y), \quad \omega(0) = 0, \\
\dot{\xi}_1 &= qA_0\xi_1 + \Psi^{-1}f_1(y), \quad \xi_1(0) = 0,
\end{align*}$$

(78) (79) (80)

with $q = 4$, and

$$\begin{align*}
k &= \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \ A_0 &= \begin{bmatrix} -2 & 1 \\ -2 & 0 \end{bmatrix}, \ \Psi^{-1} &= \begin{bmatrix} 1 & 0 \\ 0 & 1/4 \end{bmatrix}.
\end{align*}$$

(81)

The design parameters are $c_1 = 120, c_2 = 10, \ \eta_0 = 0.00005, \ \eta_p = 0.00001, \ \tau_2 = 0.01, \ \delta = 0.1, \ \mu = 1, \ \varrho(y) = 1.6y^2$ and the adaptive gains $\gamma_0 = 80, \ \gamma_p = 30$. The simulation results in Figs. 1-3 demonstrate our developed
scheme. Fig. 1 and Fig. 2 depict the tracking performance and tracking error. Fig. 3 illustrate control signal v. Then we
increase the values of \(q, c_1, c_2 \) to 10, 200, 100 respectively and decrease the value of \(\tau_2 \) to 0.005. The simulation results for tracking error is given by Fig. 4. It is clear that \(L_\infty \) tracking performance can be guaranteed by the control scheme with initialization and the correctness of the Theorem 2 is verified. Moreover, in contrast to the common K-filters in [11], the high gain K-filters exhibit better tracking performance in Fig. 5.

Example 2: Consider single-link robot motion dynamic model [21]:

\[
M \ddot{q}_\theta + 0.5 m_0 g l \sin (q_\theta) = \tau_q + \eta_0 (t), \quad y = q_\theta, \quad (82)
\]

some detailed description of the model can be referred to [21]. \(\eta_0 (t) \) is the unknown time-varying disturbance. Then let \(x_1 = q_\theta, \ x_2 = \dot{q}_\theta \) and (82) can be rewritten as:

\[
\begin{align*}
\dot{x}_1 &= x_2, \quad x_1 (0) = 0.1, \\
\dot{x}_2 &= -\frac{m_0 g l}{2M} \sin (x_1) + \frac{1}{M} u + \eta_M, \quad x_2 (0) = 0, \\
y &= x_1,
\end{align*}
\]

which implies \(\eta_M = \frac{\eta_0 (t)}{M} \), and

\[
\begin{align*}
\hat{f}_0 (y) &= \begin{bmatrix} 0 \\ 0 \end{bmatrix}, & \hat{f}_1 (y) &= \begin{bmatrix} 0 \\ -\sin (y) \end{bmatrix}, \\
G (y) &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}, & d (t) &= \begin{bmatrix} 0 \\ \sin (0.5t) + 0.2 \cos (t) \end{bmatrix}.
\end{align*}
\]

\(M = 0.5 \text{ kg/m}^2, \ g = 9.8 \text{ m/s}^2, \ m_0 = 1.0 \text{ kg}, \ l = 1.0 \text{ m}. \)

The parameters of dead-zone, the reference trajectory and the high-gain K-filters parameters are the same as those of example 1. And design parameters are set as \(c_1 = 200, \ c_2 = 1, \ \eta_\theta = 0.00005, \ \eta_p = 0.00001, \ \tau_2 = 0.005, \ \delta = 0.1, \ \mu = 1, \ q (y) = 1.6y^2 \). The adaptive gains \(\gamma_0 = 80, \ \gamma_p = 30 \). Figs. 6-8 show the validity of the developed scheme and satisfactory control performance is obtained.
VI. CONCLUSION
An adaptive DSC strategy with high-gain K-filters is proposed to cancel undesirable influence from input dead-zone in this paper. Also, it can be shown that design complexity of controller is greatly reduced due to the first order filters and simplified adaptive update laws. Moreover, the explicit function of L_∞ norm of tracking performance is given. However, our control design only can guarantee stability of closed-loop system in the sense of semi-global stability, and thus more attention should be paid on this problem in the further research.

REFERENCES
[1] D. A. Recker, P. V. Kokotovic, D. Rhode, and J. Winkelman, “Adaptive nonlinear control of systems containing a deadzone,” in Proc. 30th IEEE Conf. Decis. Control, Dec. 1991, pp. 2111–2115.
[2] G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown dead-zones,” in Proc. Amer. Conr. Control, Jun. 1992, pp. 2710–2714.
[3] W. Deng, J. Yao, and D. Ma, “Robust adaptive asymptotic tracking control of a class of nonlinear systems with unknown input dead-zone,” J. Franklin Ins., vol. 352, no. 12, pp. 5686–5707, 2015.
[4] C. Wang and Y. Lin, “Robust adaptive dynamic surface control for a class of MIMO nonlinear systems with unknown non-symmetric dead-zone: Robust adaptive DSC for MIMO nonlinear systems,” Asian J. Control, vol. 16, no. 2, pp. 478–488, Mar. 2014.
[5] G. Sun, X. Ren, Q. Chen, and D. Li, “A modified dynamic surface approach for control of nonlinear systems with unknown input dead-zone,” Int. J. Robust Nonlinear Control, vol. 25, no. 8, pp. 1145–1167, May 2015.
[6] Z. Yang and H. Zhang, “A fuzzy adaptive tracking control for a class of uncertain strict-feedback nonlinear systems with dead-zone input,” Neurocomputing, vol. 272, pp. 130–135, Jan. 2018.
[7] J. Yu, P. Shi, W. Dong, and C. Lin, “Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 46–55, Feb. 2018.
[8] S. Tong and Y. Li, “Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs,” IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 134–146, Feb. 2013.
[9] H. Li, L. Bai, L. Wang, Q. Zhou, and H. Wang, “Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2048–2059, Aug. 2017.
[10] H. J. Ma and G. H. Yang, “Brief paper: Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input,” Automatica, vol. 46, no. 2, pp. 413–420, 2010.
[11] X. Xia and T. Zhang, “Adaptive reduced-order K-filters based DSC of uncertain systems with input unmodeled dynamics and dead-zone,” in Proc. 35th Chin. Control Conf. (CCC), Jul. 2016, pp. 463–468.
[12] L. Liu, W. Jiang, and X. C. Dong, “Nonlinear adaptive control for dynamic and dead-zone uncertainties in robotic systems,” Int. J. Control Autom. Syst., no. 4, pp. 1–8, Apr. 2017.
[13] L. Li, S. Zhao, W. He, and R. Lu, “Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone,” Automatika, vol. 100. vol. 100, pp. 99–107, Feb. 2019.
[14] Y.-J. Liu and W. Wang, “Adaptive output feedback control of uncertain nonlinear systems based on dynamic surface control technique,” Int. J. Robust Nonlinear Control, vol. 22, no. 9, pp. 945–958, Jun. 2012.
[15] X. Zhang and Y. Lin, “An adaptive output feedback dynamic surface control for a class of nonlinear systems with unknown backlash-like hysteresis,” Asian J. Control, vol. 15, no. 2, pp. 489–500, Mar. 2013.
[16] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Adaptive outputfeedback control of a class of nonlinear systems,” in Proc. 30th IEEE Conf. Decis. Control, vol. 2, Dec. 1991, pp. 1082–1087.
[17] M. Krstić, P. V. Kokotović, and I. Kanellakopoulos, “Transient-performance improvement with a new class of adaptive controllers,” Syst. Control Lett., vol. 21, no. 6, pp. 451–461, Dec. 1993.
[18] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 45, no. 10, pp. 1893–1899, Oct. 2000.

[19] Y. Gao, S. Tong, and Y. Li, “Fuzzy adaptive output feedback DSC design for SISO nonlinear stochastic systems with unknown control directions and dead-zones,” Neurocomputing, vol. 167, pp. 187–194, Nov. 2015.
[20] X. Zhang, Z. Li, C.-Y. Su, and Y. Lin, “Robust adaptive output-feedback control for a class of nonlinear systems with hysteresis compensation controller,” Int. J. Adapt. Control Signal Process., vol. 31, no. 11, pp. 1636–1654, Nov. 2017.

[21] J. Wang, T. Chai, and Y. Zhang, “State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems,” Inf. Sci., vol. 180, no. 24, pp. 5029–5040, Dec. 2010.

HAISHAN LI received the master’s degree from Harbin Institute of Technology, Heilongjiang, China, in 2005. She is currently a Lecturer with Shanghai University of Engineering Science University. Her research interest includes servo system control for PMSM and ac variable frequency speed regulating.

YE LIU received the Ph.D. degree from Beijing University of Aeronautics and Astronautics, Beijing, China, in 2016. She is currently a Lecturer with Shanghai University of Engineering Science University. Her research interests include robust and adaptive control, and nonlinear systems.

LULU LIU received the master’s degree from Shanghai University of Engineering Science, Shanghai, China, in 2020. Her research interests include nonlinear systems and adaptive control.

HAISHAN LI received the Ph.D. degree from Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China, in 2002. She is currently an Associate Professor with Shanghai University of Engineering Science University. Her research interest includes digital information processing and control.

YAOQIAN ZHANG is currently pursuing the M.S. degree with Shanghai University of Engineering Science, Shanghai, China. Her current research interests include nonlinear systems and adaptive control.

HONGQIN LI received the Ph.D. degree from Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China, in 2002. She is currently an Associate Professor with Shanghai University of Engineering Science University. Her research interest includes adaptive control and intelligent control.