Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast *Saccharomyces cerevisiae* var. *boulardii*

Benjamin Offei,1,2,3 Paul Vandecruys,1,2,3 Stijn De Graeve,1,2 María R. Foulquié-Moreno,1,2 and Johan M. Thevelein1,2

1Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium; 2Center for Microbiology, VIB, B-3001 Leuven-Heverlee, Flanders, Belgium

The yeast *Saccharomyces boulardii* has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast *Saccharomyces cerevisiae*, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in *S. boulardii* puzzling. We now show that *S. boulardii* produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with *S. boulardii* and *S. cerevisiae* parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of *SDH1* and *WHI2* as the causative alleles. Both genes contain a SNP unique to *S. boulardii* (*sdhF37Y* and *whi2S587*), and are fully responsible for its high acetic acid production. *S. boulardii* strains show different levels of acetic acid production, depending on the copy number of the *whi2S587* allele. Our results offer the first molecular explanation as to why *S. boulardii* could exert probiotic action as opposed to *S. cerevisiae*. They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in *S. boulardii* and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to *S. boulardii* in its ecological niche and for its application as a probiotic.

[Supplemental material is available for this article.]

Some microorganisms have found beneficial applications as probiotics in humans (Macfarlane and Cummings 2002; Senok et al. 2009; Butel 2014; Szajewska 2016), animal husbandry (Chaucheyras-Durand and Durand 2010; Hou et al. 2015), and aquaculture (Verschuere et al. 2000; Balcazar et al. 2006). Probiotics are live microorganisms that confer a health benefit to the host. They consist mainly of bacterial strains and also one specific yeast strain *Saccharomyces cerevisiae* var. *boulardii* (*S. boulardii*) (Elmer et al. 1996; Guandalini 2011). Clinical evidence abounds for the beneficial applications of probiotics in the treatment of multiple gastrointestinal disorders (Guandalini 2008, 2011; McFarland 2009). This is also true for the yeast *S. boulardii* (McFarland 2010; Girardin and Seidman 2011; Curró et al. 2017). It is the only yeast strain that is prescribed as a probiotic against gastrointestinal diseases and is commercially available from pharmacies worldwide. Studies in animal models and clinical trials in patients have shown its effectiveness against many gut-related diseases, including Crohn’s disease (McFarland 2010), ulcerative colitis (Guslandi et al. 2003), antibiotic-associated diarrhea (McFarland et al. 1995; Duman et al. 2005; Kotowska et al. 2005), gut inflammatory manifestations in HIV patients (Villar-Garcia et al. 2015), and recurrent *Clostridium difficile* infections (McFarland et al. 1994; McFarland 2009). *S. boulardii* is also known to ameliorate diarrhea as a result of gastrointestinal infections by bacterial enteropathogens (Czerucka et al. 2007). Certain strains of *S. cerevisiae* also appear to have probiotic capacity (Martins et al. 2007; Zanello et al. 2011a, b), but protection against enteric bacterial pathogens has not been reported. Their phylogenetic relationship with *S. boulardii* is not known.

The origin of *S. boulardii* can be traced back to southeast Asia, where it was first isolated from lychee and mangosteen fruits in 1920 by Henry Boulard (McFarland 2010). Although previously considered a different species, modern molecular phylogenetic methods suggest that it is a variety of the baker’s yeast, *Saccharomyces cerevisiae* (McCullough et al. 1998; Mitterdorfer et al. 2002; van der Aa Kühle and Jespersen 2003; Edwards-Ingram et al. 2004; Posteraro et al. 2005; MacKenzie et al. 2008). More recent whole-genome sequence analysis has revealed that *S. boulardii* shares a highly similar genome sequence with *S. cerevisiae* (Khatri et al. 2013, 2017). In spite of this, *S. boulardii* exhibits several distinct metabolic and physiological characteristics. It shows much better tolerance to acidic conditions akin to that of the gastric milieu (Fietto et al. 2004; Edwards-Ingram et al. 2007; Cascio et al. 2013), possesses enhanced ability for pseudohyphal switching (Edwards-Ingram et al. 2007), and thrives better at 37°C (Fietto et al. 2004). It has remained unclear as to how far these distinct properties are important for its probiotic potency. Multiple mechanisms have been proposed for the probiotic action of *S. boulardii*. These include modulation of cytokine
Acetic acid production by probiotic *S. boulardii*

production (Dalmasso et al. 2006; Mnym et al. 2008), stimulation of immunoglobulin A production against *C. difficile* toxin A (Qamar et al. 2001), and degradation of the toxin and host toxin receptors by a secreted protease (Pothislakis et al. 1993; Castagliuolo et al. 1996). *S. boulardii* may preserve enterocyte barrier integrity by stimulating tight junction protein secretion and may exclude bacterial pathogens from interaction with intestinal epithelial cells by directly binding to the pathogens (Gedek 1999; Martens et al. 2010; Tiago et al. 2012).

Secretion of antimicrobial compounds in the form of peptides (bacteriocins), hydrogen peroxide, or organic acids features prominently among the generally accepted action mechanisms of bacterial probiotics (Cursino et al. 2006; Hutt et al. 2006; Pridmore et al. 2008; Girardin and Seidman 2011; Ciorba 2012; Dobson et al. 2012; O'Shea et al. 2012; Tejeria-Sarriñena et al. 2012; Patel and DuPont 2015; Lopes et al. 2017). Direct inhibitory action on bacterial growth or antimicrobial compound secretion by *S. boulardii* has never been reported.

As opposed to most *S. cerevisiae* strains, *S. boulardii* lacks the ability to sporulate, which has severely hampered genetic analysis of its specific attributes, especially those that may be responsible for its probiotic potency (McCullough et al. 1998; van der Aa Kühle and Jespersen 2003; Edwards-Ingram et al. 2007). As a result, the genetic differences between *S. boulardii* and *S. cerevisiae* that might explain the superior probiotic potency of the former have remained completely unknown. On the other hand, genetic linkage studies, such as pooled-segregant whole-genome sequence analysis, combined with reciprocal hemizygosity analysis (RHA) and allele exchange for identifying causative alleles and SNPs, have proven very effective in dissecting the polygenic basis of commercially important traits in different *S. cerevisiae* strains (Liti and Louis 2012; Swinnen et al. 2012).

The aim of this study was to elucidate the genetic basis of the unusually high acetic acid levels we found to be produced by *S. boulardii*, to evaluate their antibacterial potency as a possible explanation for the probiotic action of *S. boulardii*, and to assess whether this genetic basis could serve as a specific genetic signature for distinguishing *S. boulardii* and *S. cerevisiae*.

Results

Classification of *S. boulardii* and *S. cerevisiae* strains using amplified fragment length polymorphisms (AFLPs) and whole-genome sequence analysis

S. boulardii strains obtained from various sources (Supplemental Table S1) were characterized alongside 23 *S. cerevisiae* strains, one *S. mikatae*, and one *S. paradoxus* strain, using amplified fragment length polymorphisms (AFLPs) and whole-genome sequence analysis. All *S. boulardii* strains formed a single cluster of highly related strains (Supplemental Fig. S1). Furthermore, this cluster of *S. boulardii* strains was embedded within a larger *S. cerevisiae* cluster that was only distantly related to the two other *Saccharomyces* species. These results confirmed the identity of the *S. boulardii* strains used in this study and reaffirmed that *S. boulardii* and *S. cerevisiae* are so closely related that they likely belong to a single species.

Evaluation of *S. boulardii* for antimicrobial activity in comparison with *S. cerevisiae*

We next assessed the potential for antimicrobial activity of the *S. boulardii* strains in comparison with different *S. cerevisiae* strains by the agar-well diffusion assay using *Escherichia coli* MG1655 as an indicator strain. The yeast strains were propagated in yeast extract peptone dextrose (YPD) medium with 2% glucose at 37°C for 48 h, and cell-free culture supernatant was used for the assay. Out of 12 *S. boulardii* and 11 *S. cerevisiae* cell-free culture supernatants tested, those obtained from *S. boulardii* strains Sh.P and Sh.A produced a clear inhibition zone, while a third strain, 7136, caused mild inhibition (Fig. 1A). Except for these three strains, no clear inhibition was observed under these culture conditions with 2% glucose for any of the other *S. boulardii* as well as *S. cerevisiae* strains initially used in this study (Fig. 1A,B).

Identification of the antimicrobial agent secreted by *S. boulardii*

To identify the biochemical nature of the antimicrobial action of *S. boulardii*, the cell-free culture supernatant from the Sh.P strain was further analyzed. This led to identification of acetic acid as the causative agent (see Supplemental Material), amounting to a concentration of 6 g/L acetic acid in the Sh.P culture supernatant as determined by HPLC (Fig. 1C). Acetic acid was virtually absent in the supernatant from *S. cerevisiae* Ethanol Red (ER) (Fig. 1D). The antibacterial effect on *E. coli* could be mimicked by adding acetic acid (6 g/L, pH 4.2) (Supplemental Fig. S2). The culture supernatant of S288c, as observed previously (Fig. 1B), yielded no zone of inhibition (Supplemental Fig. S2).

Detailed assessment of acetic acid secretion in other *S. boulardii* strains

Next, we performed time-course measurements of acetic acid production during aerobic growth at 37°C in cultures of all *S. boulardii* and some *S. cerevisiae* strains, with 12-h intervals over 72 h. All *S. boulardii* strains produced acetic acid to some extent, while it was negligible for *S. cerevisiae* strains (Fig. 1E). An increase in acetic acid occurred during the first 24–36 h of growth, with similar titers of 2.9 ± 0.25 g/L after 24 h. Subsequently, the Sh.P and Sh.A strains continued to accumulate acetic acid up to about 48 h, reaching a maximum of 5.30 g/L for Sh.P and 5.10 g/L for Sh.A, which remained constant up to 72 h. The other *S. boulardii* strains started to consume acetic acid, resulting in a lower and transient accumulation profile (Fig. 1E). Apparently, Sh.P and Sh.A are unable to consume again the acetic acid produced, explaining their much higher acetic acid production and much higher activity in the antibacterial assay, with Sh.P being the most potent for both properties.

Assessment of selected *S. boulardii* strains for growth capacity on acetate

Since Sh.P and Sh.A appeared unable to consume acetic acid, we assessed growth capacity on YP-acetate medium by spot assays of *S. boulardii* Sh.B, Sh.A, ENT, and Sh.L. All *S. boulardii* strains grew on acetate at 30°C, but Sh.P and Sh.A were unable to grow on acetate at 37°C (Fig. 1F). This showed that the very high acetic acid accumulation capacity of these two strains is a temperature-dependent property only manifested at the human body temperature.

Effect of acetic acid accumulation on *S. boulardii* cell proliferation and cell viability

Next, we have analyzed the effect of acetic acid accumulation on *S. boulardii* cell proliferation and viability. Three *S. boulardii* strains (Sh.P, Sh.L, and Enterol) were propagated alongside one *S. cerevisiae* strain (ER) at 37°C, and samples of the cultures were withdrawn at
12-h intervals. Acetic acid concentration, pH of the culture medium, biomass increment (measured by OD600), and cell viability were determined at each time-point (Supplemental Fig. S3). The levels of acetic acid produced by these strains confirmed the previous results. Also, the accumulation of acetic acid by the Sb.P strain closely correlated with the quasi-linear decrease in medium pH over 72 h from about 6 to 4.2. In contrast, medium pH for the remaining strains declined over 72 h only by about 1 pH unit, which is normally observed for yeast cultures grown into stationary phase. Biomass and cell viability measurements indicated that
the high acetic acid accumulation of Sb.P inhibited its own proliferation and accelerated cell death. When 2 g/L acetic acid had been accumulated, Sb.P remained metabolically active since it continued acetic acid production but did not proliferate further. Cell death was observed at an acetic acid concentration of 5–6 g/L (Supplemental Fig. S3A,D), which resulted for Sb.P in an unusually low final cell viability of only 20%. On the other hand, the strains Sb.L, Enterol, and ER displayed typical growth curves for yeast, entering stationary phase after 36 h (Supplemental Fig. S3C) and maintaining near 100% cell viability (Supplemental Fig. S3D).

Obtaining a mating-competent, haploid S. boulardii derivative with high acetic acid production

Because it showed the strongest acetic acid production and antibacterial activity, the S. boulardii Sb.P strain was selected for dissecting the genetic basis of this putative probiotic trait. To circumvent the inability of S. boulardii to sporulate, we generated an Sb.P MATα/a strain and an S. cerevisiae ER MATα/a strain. First, both copies of the HO gene were deleted in S. boulardii Sb.P, which is homothallic, to avoid autodidiplidization of the final segregant. We then performed plasmid-born galactose-dependent HO expression in the Sb.P hoαΔ strain to obtain Sb.P MATα/a and also in the diploid S. cerevisiae ER strain to obtain ER MATα/a. The two diploid strain were crossed to obtain a tetraploid hybrid strain, SBERT8, which proved to be sporulation-competent. Among 145 segregants of SBERT8, we identified SBER3C, a diploid MATα/a strain with a similar very high acetic acid production at 37°C as Sb.P. SBER3C was then sporulated and its haploid segregants scored for acetic acid production. The whole breeding strategy is summarized in Figure 2A. The haploid segregant, SBERH6 (Fig. 2B), showed highest acetic acid production (7 g/L, comparable to that of Sb.P (Fig. 2C), and was also able to grow on acetate at 30°C but not at 37°C (Fig. 1F). The other segregants of SBER3C produced variable levels of acetic acid, suggesting a polygenic basis of the phenotype (illustrated in Supplemental Fig. S4).

Elucidation of the genetic basis of high acetic acid production using QTL mapping

The very high acetic acid-producing haploid segregant selected, SBERH6 (MATα/a), was used as the superior parent in a cross with an inferior parent, the prototrophic laboratory strain, S288c (MATα/a). The hybrid diploid SBERH6/S288c showed negligible acetic acid production, like S288c (Fig. 2E, F), indicating involvement of at least one essential recessive mutation. SBERH6/S288c showed good sporulation but moderate spore viability (±50%). Acetic acid production of S49 segregants of SBERH6/S288c showed a tendency toward bimodal distribution. However, a sizeable proportion of the segregants was located in between the two extreme tails of the distribution, displaying intermediate acetic acid production (Fig. 2D). Out of S49 segregants, 32 exhibited very high acetic acid production and were included in the superior pool (Fig. 2F). The same number of segregants producing negligible acetic acid as parent S288c was included in the inferior pool (Fig. 2E).

Equal quantities of cell biomass from the segregants in each pool were combined and subjected to genomic DNA extraction, obtaining 65.8 and 72.0 µg of DNA for the superior and inferior pools, respectively. The superior parent SBERH6 yielded 88.0 µg genomic DNA. Genomic DNA of both pools and superior parent was sequenced using Illumina HiSeq 2000 technology (BGI). The sequence reads were mapped to the S288c reference sequence, and variants were identified and filtered using the next-generation sequencing experience platform (NGSEP) (Duitama et al. 2014) and CLC genomic workbench (CLC Bio-Qiagen). The genomic DNA from the superior pool yielded 6,329,693 paired reads, which resulted in 97.19% overall alignment with the S288c sequence, while 6,328,957 paired reads from the genomic DNA of the inferior pool achieved 96.2% alignment. Single nucleotide variant (SNV) frequencies deviating upward from 50% in the superior pool, when compared with a hypothetical SNP frequency of 50% representing random segregation, indicated linkage to the high acetic acid phenotype. Plotting the SNV frequency (y-axis) versus the SNP chromosomal position (x-axis) revealed two major QTLs linked to the genome of superior parent strain SBERH6: QTL1 in Chromosome XI (NC_001143.9.g: 31118–321737) and QTL2 in Chromosome XV (Fig. 3). There were no complementary QTLs deviating downward from 50% and linked to the inferior parent strain S288c upon mapping with the inferior segregant pool, again providing evidence for a polygenic phenotype (Fig. 3). There was one significant QTL in the inferior pool linked to the genome of the superior parent and located at the left side of QTL1, but because of its location close to the telomere, reliability was uncertain. We concentrated further analysis on identification of the causative gene(s) within QTL1 and QTL2.

Analysis of QTL by bulk reciprocal hemizygosity analysis (bRHA)

QTL1 had a length of 200,619 bp. We divided QTL1 into eight gene blocks for bulk reciprocal hemizygosity analysis (bRHA) (Fig. 4A). Each block was deleted in a reciprocal manner in Chromosome XI of the SBERH6/S288c diploid. Allele-specific PCR was used to determine whether a block of superior or inferior parent genes was deleted. Comparison of acetic acid production in the reciprocally deleted strains revealed that block 6 harbored causative genetic element(s) (Fig. 4B). This block was 25,573 bp in size and flanked by the chromosomal positions NC_001143.9.g: 156173 and 181746. The bRHA strain with block 6 from the superior parent (SBERH6/S288c block6Δ) exhibited high acetic acid production (5.65 ± 0.18 g/L), similar to SBERH6 (Fig. 4B). In contrast, the bRHA strain with block 6 from the inferior parent (SBERH6 block6Δ/S288c) produced negligible acetic acid (0.67 ± 0.06 g/L). Results for the three other blocks were negative (Fig. 4B). However, time-course determination of acetic acid production in the two bRHA strains of SBERH6/S288c revealed that block 6 only partially accounted for this phenotype. The SBERH6/S288c block6Δ strain showed a similar trend for acetic acid production as the superior parent SBERH6 up to 36 h of incubation but started to decline slightly afterward, while acetic acid production of SBERH6 continued to increase substantially (Fig. 4C).

Identification of the causative allele within QTL1 on Chromosome XI

Sixteen open reading frames were present in block 6 (Fig. 4A), of which APE2, SDH1, AVT3, LTV1, SDH3, and TGL1 harbored at least one missense mutation or, in the case of APE2, a frameshift mutation. These genes were prioritized as candidate genes for RHA. Pairs of hemizygous diploid SBERH6/S288c strains for each gene were constructed and tested for acetic acid production. The SBERH6/S288c sdh1Δ strain displayed a much higher acetic acid production (yielding 2.28 ± 0.75 g/L) than SBERH6 sdh1A/S288c, which only produced 0.66 ± 0.05 g/L (Fig. 4D). The hemizygous strains for the other five genes did not show any significant difference in acetic acid production (Fig. 4D). A time-course experiment...
Figure 2. Origin of the superior haploid parent strain SBERH6 and phenotyping of its progenitors and segregants after crossing with the inferior haploid parent strain S288c. (A) Breeding scheme used to obtain the superior haploid strain SBERH6. (B) Determination of SBERH6 ploidy by comparison with diploid and haploid S288c strains. (C) Acetic acid production level of SBERH6 and its progenitor strains. Sb.Pwt and ERwt are wild-type Sb.P and ER strains, respectively. Sb.Paa and ERaa are derivatives of Sb.P and ER with homozygous MAT loci. SBERT8 is a tetraploid hybrid derived from Sb.Paa and ERaa, while SBER3C is a diploid segregant of SBERT8. SBERH6 is a segregant from SBER3C. Bars show mean values of two independent experiments, while error bars show standard deviation. Data were analyzed by one-way ANOVA (Dunnet correction for multiple comparisons). Significant differences for acetic acid accumulation in comparison with Sb.Pwt are indicated with asterisks, (***) $P < 0.0001$, (ns) nonsignificant. (D) Distribution curve of acetic acid production in segregants of the SBERH6/S288c hybrid diploid strain. (E,F) Acetic acid production of segregants selected for the inferior pool (left panel), superior pool (right panel), and control strains SBERH6, S288c, and SBERH6/S288c. Values are means from two independent experiments, while error bars represent standard deviation. Data were analyzed by one-way ANOVA (Dunnet correction for multiple comparisons). Significantly different values for acetic acid accumulation in comparison with SBERH6 are indicated with asterisks, (***) $P < 0.0001$, (ns) nonsignificant.
Figure 3. QTL mapping for very high acetic acid accumulation capacity with SNPs as genetic markers. Dot plots of SNP variant frequency from the superior pool (red) and the inferior pool (black) versus chromosomal position. Red and black lines on the dot plots represent smoothed data from the superior and inferior pools, respectively. The red line in the middle graph indicates deviation from the confidence interval. P-values (blue line) ≤ 0.05 for the difference between the smoothed lines of superior (blue line) or inferior (green line) pools at a particular locus versus 50% random segregation indicate statistically significant linkage to the genome of the superior (SBERH6) or inferior (S288c) parent at that locus. Two major QTLs (QTL1 and QTL2) with strong linkage to the genome of the superior parent are present in the first half of Chromosome XI and the first half of Chromosome XV, respectively.
for acetic acid production showed that SBERH6/S288c sdh1Δ behaved similarly to SBERH6/S288c block6Δ, consistent with SDH1 being the only causative allele in block 6 (Fig. 4C,E). The maximum acetic acid production level of 6.15 ± 1.04 g/L reached after 36 h by SBERH6/S288c sdh1Δ was similar to that of the superior parent strain SBERH6 (Fig. 4E), while the SBERH6 sdh1Δ/S288c strain displayed a similar, very low level of acetic acid production (0.84 ± 0.02 g/L) (Fig. 4E) as observed for the SBERH6 block6Δ/S288c strain (Fig. 4C).

Sequence analysis of SDH1 for identification of candidate causative nucleotide polymorphism(s)

Two point mutations were found in the open reading frame of SDH1 from SBERH6, which is derived from the S. boulardii Sb.P strain, being c.604C > T; [950T > A] and resulting in two amino acid substitutions: p.H202Y;[F317Y]. Hence, we have named this allele sdh1H202Y,F317Y. Subsequent sequence analysis revealed that the same point mutations and amino acid substitutions were also present in SDH1 in the other 11 strains of S. boulardii (Fig. 5A). To investigate whether these SDH1 mutations were also present in S. cerevisiae strains and in other S. boulardii strains, we have screened all published genome sequences of the two yeasts for their presence. Besides the 12 S. boulardii strains from this study, publicly available whole-genome sequencing data from 992 unique strains (Strope et al. 2015; Peter et al. 2018) were mapped against the S288c reference sequence. This included 24 strains with high similarity to S. boulardii, clustered together in “subclade 3” by Peter et al. (2018). Positions with <85% of the reads indicating a single base were considered heterozygous and were assigned a degenerate base call in the reference mapped assemblies. Figure 5B shows the alignment for 18 of the S. cerevisiae strains as an example. This analysis showed that c.604C > T in SDH1, changing histidine202 to tyrosine202, is also present in some S. cerevisiae strains. However, c.950T > A, changing phenylalanine317 to tyrosine317 in Sdh1, was present in all 12 S. boulardii strains and in all 24 strains categorized as belonging to the S. boulardii subclade by Peter et al. (2018). Of the 968 additional S. cerevisiae strains analyzed, this mutation was identified only in the strain most closely related to
Acetic acid production by probiotic *S. boulardii*

To confirm *SDH1* as causative for high acetic acid production, allele exchange was performed in SBERH6 and S288c. When *sdh1*^{H202Y,F317Y} in SBERH6 was replaced by its counterpart from S288c, resulting in SBERH6 *SDH1*^{Y202H,Y317F}, the high acetic acid phenotype was abolished (Fig. 5D), while it was restored by reintegration of the original *sdh1*^{H202Y,F317Y} (Supplemental Fig. S5). To identify the causative SNP within *SDH1*, hybrid alleles, *sdh1*^{Y202H} (with only 604T>C) and *SDH1*^{Y317F} (with only 950A>T), were introduced in SBERH6. SBERH6 *SDH1*^{Y317F} lacked acetic acid production, similar to SBERH6 *SDH1*^{Y202H,Y317F}, while SBERH6 *sdh1*^{Y202H,F317Y} showed similar accumulation as SBERH6 (Fig. 5D). This indicated that the c. 950T>A mutation, which results in the change of phenylalanine³¹⁷ to tyrosine³¹⁷, is the only causative SNP in *sdh1* of SBERH6. Conspicuously, this is the unique *sdh1* SNP found in all *S. boulardii* strains and in none of the surveyed *S. cerevisiae* strains. Given that SBERH6 was derived from a tetraploid hybrid between Sb.P and ER (Fig. 2A), SBERH6 likely harbored a mosaic genome, with regions from Sb.P and from ER. To confirm the causative character of the superior *SDH1* allele also in the original Sb.P strain, its two *SDH1* copies were replaced by the inferior allele from S288c. This eliminated high acetic acid production (Fig. 5E), and it was re-established by reintegration of the original superior *SDH1* allele (Supplemental Fig. S5). This effect was comparable to that observed upon allele exchange in SBERH6 (Fig. 5D). Deletion of *SDH1* in Sb.P did not affect high acetic acid accumulation (Fig. 5E), suggesting that its superior allele *sdh1*^{H202Y,F317Y} may be a loss-of-function allele.

Identification of the causative allele in QTL2 on Chromosome XV

To identify in QTL2 on Chromosome XV the causative allele for high acetic acid accumulation, we performed bRHA with a new hybrid strain that was obtained by crossing SBERH6 with S288c *sdh1*^{H202Y,F317Y}. The resulting SBERH6/S288c *sdh1*^{H202Y,F317Y} strain has two copies of the superior *sdh1*^{H202Y,F317Y} allele, which is required for high acetic acid accumulation because the allele is recessive. To narrow down the region with the highest linkage in QTL2, we first performed...
fine-mapping using allele-specific PCR. The variant frequency and corresponding P-value were calculated after scoring selected SNP markers in individual segregants from both pools (Supplemental Fig. S6). This confirmed strong linkage in the center of QTL2 to the genome of superior parent SBERH6. To perform bRHA, the region from chromosomal position NC_001147.9:278057 to NC_001147.9:433375 was divided into nine blocks, after which each block was deleted in a reciprocal manner in Chromosome XV of SBERH6/S288c sdh1H202Y,F317Y (Fig. 6A). Allele-specific PCR was used to determine whether the deleted block was from the superior or inferior parent, and the strains with reciprocal deletion were compared for acetic acid accumulation. Only for block 8, a clear difference between the two hemizygous strains was observed (Fig. 6B). SBERH6 block8Δ/S288c sdh1H202Y,F317Y showed low, transient acetic acid accumulation comparable to that of SBERH6/S288c sdh1H202Y,F317Y, while SBERH6/S288c sdh1H202Y,F317Y block8Δ showed high, permanent acetic acid accumulation comparable to that of SBERH6 (Fig. 6B). Block 8 (NC_001147.9:g. 394837 to NC_001147.9:g. 433375) contained 10 genes: AKR2, YOR034C-A, SHE4, PEP12, CYC2, HIR2, CKB2, GLO4, CUE5, and WHI2. Since WHI2 contained several nonsynonymous SNPs, is known to regulate STRE (STress Response Element)-mediated gene expression (Kaida et al. 2002), and was previously implicated in acetic acid tolerance (Chen et al. 2016), it was investigated individually by RHA, while the remaining genes were combined in one block, block 8.1. Acetic acid accumulation in the two RHA strains for WHI2 showed a comparable difference to that observed for the whole block 8, consistent with the superior allele being derived from superior parent SBERH6 and the inferior allele from inferior parent S288c sdh1H202Y,F317Y (Fig. 6B). For the RHA strains of block 8.1, no difference in acetic acid accumulation was observed (Supplemental Fig. S7).

Identification of a unique S. boulardii SNP in the superior WHI2 allele

The open reading frame of WHI2 from strain SBERH6 contained 12 SNPs, of which six were nonsynonymous (Table 1). Eleven of these SNPs also occur in WHI2 in some of the 992 S. cerevisiae
Acetic acid production by probiotic *S. boulardii*

Table 1. Occurrence of SNPs in WHI2 for S288c, SBERH6, and 12 S. boulardii strains

Nucleic acid position	S288c	SBERH6	Sb.P	Sb.A	7136	UL	259	7135	Sb.L	SAN	7103	FLO	ENT	LSB
4*	G	A	A	A	A	A	A	A	A	A	A	A	A	A
156	C	T	T	T	T	T	T	T	T	T	T	T	T	T
157	A	G	G	G	G	G	G	G	G	G	G	G	G	G
250	A	G	G	G	G	G	G	G	G	G	G	G	G	G
381	A	G	G	G	G	G	G	G	G	G	G	G	G	G
414	A	G	G	G	G	G	G	G	G	G	G	G	G	G
552	C	T	T	T	T	T	T	T	T	T	T	T	T	T
710	C	A	A	A	A	A	A	A	A	A	A	A	A	A
804	C	T	T	T	T	T	T	T	T	T	T	T	T	T
860	C	G	G	G	C/G	C/G	C/G	C/G	C/G	C/G	C/G	C/G	C/G	C/G
1031	C	A	A	A	A	A	A	A	A	A	A	A	A	A
1305	C	T	T	T	T	T	T	T	T	T	T	T	T	T

Nucleic acid position is indicated relative to the start of the ORF. Positions of the nonsynonymous SNPs are indicated with asterisks.

strains (Strope et al. 2015; Peter et al. 2018) surveyed. One single SNP, the nonsense mutation c.860C > G, which generates a premature stop codon (S287∗), did not occur in any of the *S. cerevisiae* strains but was present in 11 of the 12 *S. boulardii* strains used in our study (all except strain LSB; see also below in the section on “Heterozygosygy status”) and also in all 24 strains categorized as belonging to the *S. boulardii* subclade by Peter et al. (2018). As an example, we show an alignment of the WHI2 sequence from 45 *S. cerevisiae* strains, revealing that 11 of the SNPs also occur at least one of them (Supplemental Table S2). Sb.P and Sb.A were homozygous for this SNP (S287∗), while all other *S. boulardii* strains were heterozygous, except for strain CIT among the isolates analyzed by Peter et al. (2018), which was homozygous (see also below in the section on “Heterozygosygy status”), and one strain, LSB, lacked the SNP altogether, keeping the 860C nucleotide of *S. cerevisiae* (Table 1). Hence, we identified a new unique SNP that is present in nearly all *S. boulardii* strains and occurs in one or two copies, possibly causally linked to low or high acetic acid accumulation capacity, respectively.

Identification of the unique *S. boulardii* SNP as the causative SNP in the superior WHI2 allele

When the mutant WHI2 allele in SBERH6 was replaced by the wild-type WHI2 allele from S288c, WHI2Sc, a transient accumulation of acetic acid was observed with a maximum after 36 h as opposed to continuous accumulation of high levels of acetic acid in Sb.P. To evaluate this possibility, a modified WHI2 allele, WHI2FL (WHI2Sc287∗), was introduced into SBERH6. This allele contained all SNPs present in the promoter, ORF, and terminator of WHI2 from SBERH6, except the nonsense mutation c.860C > G. The SBERH6 WHI2FL strain showed transient acetic acid accumulation like SBERH6 WHI2Sc (Fig. 6C), while reintroduction of the original WHI2SBERH6 mutant allele restored continuous acetic acid accumulation (Supplemental Fig. S5). This indicated that the c.860C > G mutation was indeed the causative SNP in the WHI2 allele of SBERH6.

Importance of the whi2287∗ copy number for high acetic acid accumulation and assimilation

We confirmed that the copy number of whi2287∗ was responsible for continuous accumulation of high levels of acetic acid in Sb.P, by exchanging the two copies of whi2287∗ with its counterpart from S288c, generating Sb.P WHI2Sc/WHI2Sc. This caused the high acetic acid accumulation profile of Sb.P to change into the lower and transient acetic acid accumulation profile of the other *S. boulardii* strains, while reintegration of the original mutant whi2287∗ allele restored the phenotype (Fig. 6D). The Sb.P WHI2Sc/WHI2Sc strain also grew at 37°C on YP-acetate (1%) plates (Fig. 6E). At a lower acetate concentration (0.5%), the growth defect at 37°C caused by whi2287∗ was only partial (Fig. 6E).

Next, we investigated whether the very high acetic acid accumulation phenotype of Sb.P could be transferred to other *S. boulardii* strains with lower and transient acetic acid production by modification of the WHI2 allele. For that purpose, the WHI2 gene was deleted in a reciprocal manner in *S. boulardii* strain 259, either eliminating the superior WHI2 allele (encoding truncated Whi2) or the inferior WHI2FL allele (encoding full-length Whi2). The strain in which only the superior whi2287∗ allele was deleted, 259 WHI2FL/whi2-T, maintained its lower and transient acetic acid accumulation, whereas the strain in which the inferior WHI2FL allele had been deleted, 259 whi2FL/whi2-T, gained very high acetic acid accumulation (Fig. 7A). Comparable results were obtained with another *S. boulardii* strain with lower and transient acetic acid production, 7103 (Fig. 7B). In both strains, 259 and 7103, deletion of the whi2287∗ allele caused a further reduction in acetic acid production, indicating that the truncated whi2287∗ gene product may retain some activity.

We also constructed strains that were homozygous for the WHI2FL allele encoding full-length Whi2, 7103 WHI2FL/WHI2FL, or for the superior whi2287∗ allele encoding truncated Whi2, 7103 whi2-T/whi2-T. Strain 7103 whi2-T/whi2-T showed the same very high acetic acid accumulation as Sb.P. On the other hand, strain 7103 WHI2FL/WHI2FL maintained the lower and transient acetic acid accumulation of strain 7103 (Fig. 7C). These results show that exchange of the superior whi2287∗ allele for the inferior WHI2FL allele in an *S. boulardii* strain with lower and transient acetic acid production, resulting in a strain with two whi2287∗ alleles, is enough to convert it into a strain with very high acetic acid accumulation.
Higher sugar levels lead to very high acetic acid accumulation in all *S. boulardii* strains but not in most *S. cerevisiae* strains.

To screen for antibacterial activity in a larger set of *S. cerevisiae* strains, we first optimized the assay so that we could detect antibacterial activity in the *S. boulardii* strains with lower, transient acetic acid accumulation. Increasing the glucose level from 2% to 4% resulted in similarly high antibacterial activity (Supplemental Fig. S8A) and acetic acid accumulation (Supplemental Fig. S8C–E) were not observed in the 304 *S. cerevisiae* strains tested for both properties, although a minority of *S. cerevisiae* strains also produced intermediate and some even higher acetic acid levels approaching those produced by the *S. boulardii* strains (Supplemental Fig. S8E). As the only exception, one mutant haploid *S. cerevisiae* lab strain, derived from M5, produced an equal level of acetic acid as *S. boulardii*.

Phylogenetic analysis based on whole-genome sequence analysis of all *S. boulardii* strains in comparison with whole-genome-sequenced *S. cerevisiae* strains

We have made a neighbor-joining tree based on whole-genome SNP analysis after mapping of Illumina whole-genome sequencing data, using BioNumerics 7.6 (Applied Maths) of 352 yeast strains belonging to Clade 1.Wine/European, as well as 12 *S. boulardii* strains, according to Peter et al. (2018) (Supplemental Fig. S9). The 12 *S. boulardii* strains clearly cluster together with the Subclade 3 strains, including known *S. boulardii* strains. Strain ARL is the *S. cerevisiae* strain most closely related to all *S. boulardii* strains.

Heterozygosity status of the WHI2 chromosomal region in all *S. boulardii* strains

We have made an analysis of the heterozygosity status of 28 SNP positions in a region of Chromosome XV at the WHI2 locus (Supplemental Fig. S10). Strains Sh.P and Sh.A have loss of heterozygosity in an extended region resulting in homozygosity for the *whi2*Δ allele, whereas strain CIT is only homozygous for the *whi2*Δ allele and not for the rest of the region. Strains LS9 and ARL have loss of heterozygosity at this position resulting in homozygosity for the WHI2 wild-type allele. The Enterol strain is representative for all 31 other *S. boulardii* strains analyzed, showing heterozygosity in the entire region.

Transfer of the high acetic acid accumulation capacity to *S. cerevisiae* S288c by introduction of the *SDH1* and WHI2 superior alleles

To determine whether *S. boulardii* *sdh1*Δ and *whi2*Δ were sufficient to transfer, at least to some extent, the high acetic acid accumulation phenotype to *S. cerevisiae*, we integrated the two alleles separately as well as together in S288c. While separate introduction did not affect very low acetic acid production in S288c, combined introduction resulted in acetic acid accumulation up to nearly half (2.98 ± 0.8) of the level in SBERH6 (6.98 ± 0.07) (Fig. 7D). The absence of full establishment of very high acetic acid production may indicate that the *S. boulardii* Sh.P and Sh.A strains still contain one or more additional mutations required for this phenotype or that the laboratory strain S288c contains compromising mutations not present in Sh.P and Sh.A. In spite of this, the result further supports that very high acetic acid production in *S. boulardii* Sh.P and Sh.A is a polygenic trait, requiring the simultaneous presence of at least two genetic polymorphisms.
Discussion

S. boulardii is a worldwide commercialized probiotic yeast with well-established efficacy in clinical trials (Kotowska et al. 2005; McFarland 2006, 2010; Villar-García et al. 2015). It has remained unclear why and how the yeast *S. boulardii* would exert a specific probiotic effect as opposed to *S. cerevisiae*, which is so closely related in genome sequence that the two are now considered a single species. On the other hand, there are apparently no solid comparative studies on the probiotic potency of *S. cerevisiae* versus *S. boulardii* in clinical trials. Hence, it has remained unclear whether *S. boulardii* might possess unique traits compared to *S. cerevisiae* that are important for its presumed superior probiotic potency. There have been cases of commercial probiotic preparations lacking purity or containing different organisms than anticipated (Fasoli et al. 2003; Theunissen et al. 2005; Huys et al. 2006). Also, some of the strains in our collection (Sh.A, Sh.L, and Sh.P) were from unknown origin (van der Aa Kühle et al. 2005). Hence, we determined the identity of all *S. boulardii* strains in our collection using AFLP (MacKenzie et al. 2008) and whole-genome sequence analysis (Supplemental Table S1). This showed that the 12 *S. boulardii* strains were very closely related, forming a single cluster in the phylogenetic tree (Supplemental Fig. S1). They were much more closely related to all *S. cerevisiae* strains than to *S. mikatae* and *S. paradoxus*, providing further evidence that *S. boulardii* is conspecific with *S. cerevisiae* (van der Aa Kühle and Jespersen 2003; Fietto et al. 2004).

Antimicrobial action via antimicrobial peptide or organic acid secretion is regarded as a key probiotic property (Boirivant and Strober 2007; Vanderpool et al. 2008; Ciota 2012). *S. boulardii* has been reported to secrete medium chain fatty acids, mainly capric acid, with bioactivity against *Candida albicans* hyphae and biofilm formation (Krasowska et al. 2009; Murzyn et al. 2010). However, to the best of our knowledge, the secretion of diffusible antimicrobial agents by *S. boulardii* against bacterial pathogens has never been described. All the *S. boulardii* strains tested secreted an antimicrobial agent with an inhibitory effect on *E. coli* MG1655, an enteric bacterial pathogen. We identified it as acetic acid, which explained the strong medium acidification to pH 4.2 at 37°C. Low pH is a crucial factor for short-chain organic acids to act as antimicrobial agents since the proportion of the protonated, uncharged form strongly increases at pH values below the pKa. The uncharged form easily diffuses into cells, causing aberrant intracellular acidification (Salmond et al. 1984; Lambert and Stratford 1999; Takahashi et al. 1999). The capacity of Sh.P for medium acidification by secretion of high acetic acid levels at 37°C suggests that it may compromise metabolic activity and proliferation of enteric pathogens in local microenvironments at the brush border in the gut. Although higher temperature is known to enhance acetic acid production by *S. cerevisiae* (Woo et al. 2014), the production of such high quantities of acetic acid (about 6 g/L) as observed in our study for *S. boulardii* has never been reported for *S. cerevisiae*. Acetic acid accumulation by Sh.P was so high that it caused inhibition of its own growth and loss of cell viability (Supplemental Fig. S3A,D). The cell-free supernatant from the other *S. boulardii* strains that did not show sustained production of acetic acid over time were not inhibitory to the *E. coli* indicator strain under the conditions with YPD and 2% glucose initially used. The same was observed for the cell-free supernatant from *S. cerevisiae* strains. Hence, the strong antimicrobial activity of the cell-free culture supernatant of Sh.P can be attributed to the high level of acetic acid and the low pH. Subsequent work showed that, in the presence of a higher glucose level, all *S. boulardii* strains produce very high levels of acetic acid resulting in very high probiotic potency. This unique property of vigorous acetic acid production may at least in part explain the effectiveness of *S. boulardii* as a probiotic in the gut and also its uniqueness as the only variety selected for commercial use as a probiotic among all strains now considered to belong to the species *S. cerevisiae*.

The secretion of acetic acid by *S. boulardii* in the gut may have other advantages to the host. Acetate stimulates the expansion and build-up of T regulatory cells, facilitates goblet cell proliferation and up-regulates genes related to mucus secretion, inhibits the proinflammatory cytokine CXCL8, and serves as a substrate for the production of butyrate by gut microbiota (Engvick and Versalovic 2017). A possible counterargument against its presumed benefit could be that production of acetic acid by *S. boulardii* is largely restricted to aerobic conditions (Supplemental Fig. S11), at least under our assay conditions. However, noninvasive measurement of oxygen tension along the gastrointestinal tract revealed a marked oxygen gradient from the proximal to the distal gastrointestinal tract (He et al. 1999), as well as the existence of a radial gradient with high O2 levels close to the epithelial surface and very low O2 levels in the center of the gut lumen (Albenberg et al. 2014). This suggests that microorganisms colonizing the intestinal epithelium at the brush border have similar oxygen availability as the cells of the epithelium. Moreover, oxygen availability levels in the gastrointestinal tract are known to increase significantly under conditions compromising the normal gut microbiota, such as antibiotic treatment (Rivera-Chávez et al. 2016, 2017; Vacca 2017) and enteropathogenic infections (Rivera-Chávez et al. 2017). This suggests that enteric disorders for which the efficacy of *S. boulardii* is well established, such as antibiotic-associated diarrhea (McFarland et al. 1995; Duman et al. 2005), *C. difficile* infections (McFarland et al. 1994), and acute adult diarrhea (McFarland 2010), may provide an appropriate aerobic environment for maximal acetic acid secretion by *S. boulardii*.

The time-course measurement showed that acetic acid production by the Sh.P strain was not compromised by growth limitation. Upon growth arrest at 12 h, apparently due to inhibition by the accumulated acetic acid, the acetic acid production continued unabated (Supplemental Fig. S3A,C). It only ceased at 48 h, probably due to declining cell viability (Supplemental Fig. S3A,D). Acetic acid production in the absence of growth is significant since a probiotic must be effective at its site of action (Schrezenmeir and de Vrese 2001; Hill et al. 2014) and a permissive environment for cell proliferation may not always be available in the gut.

In the initial test, only the Sh.P and Sh.A strains showed in vitro antimicrobial activity. Subsequent work, however, showed that all *S. boulardii* strains produce acetic acid but that the other strains are able to consume it, as opposed to Sh.P and Sh.A. As a result, Sh.P and Sh.A accumulated much more acetic acid than the other strains, which explains their much greater antimicrobial potency. Analysis of the growth capacity on acetate of the Sh.P and Sh.A strains, as well as Sh.P derivative SBERH6, revealed that they were unable to grow on acetate specifically at 37°C as opposed to the other *S. boulardii* strains that grew on acetate both at 30°C and 37°C. Hence, the presence of two copies of the *whi2* allele appears to cause a temperature-sensitive acetate utilization defect resulting in the continuous, very high acetic acid accumulation, a property possibly highly relevant for probiotic potency that is only manifested at regular body temperature.

The sporulation defect of *S. boulardii* has been a major obstacle for any genetic analysis. In the present work, we have
circumvented this problem by deleting first the two copies of the

\(H0\) gene in \(S.\ \text{boulardii}\) to make it heterothallic, we then made it

homozygous for mating type and crossed this strain with an

\(S.\ \text{cerevisiae}\) strain made homozygous for the complementary mat-

ing type, so as to obtain a hybrid heterothallic strain. This strain

was able to sporulate, enabling us to generate a mating-competent

haploid hybrid strain, SBERH6, displaying the same high acetic

acid accumulation capacity as Sb.P. This innovative strategy pro-

vides an efficient means by which haploid strains with a specific

trait of interest can be obtained from sporulation-defective diploid

or polyploid \(S.\ \text{cerevisiae}\) strains. It enables subsequent genetic

analysis of the trait of interest on the condition that the haploid

strain can be mated with an unrelated strain to obtain a sporula-

tion-competent diploid strain. This was the case for SBERH6, so

that we could then apply the polygenic analysis platform based

on pooled-segregant whole-genome sequence analysis. This has

now been successfully used to elucidate the polygenic basis of

many traits in \(S.\ \text{cerevisiae}\) (Liti and Louis 2012; Swinnen et al.

2012; Hubmann et al. 2013; Pais et al. 2013; Yang et al. 2013;

Meijnen et al. 2016; Trindade de Carvalho et al. 2017). The 549

segregants we obtained from the hybrid diploid SBERH6/S288c

showed a distribution of acetic acid production resembling a bimo-

dal distribution, although a significant number of segregants

showed an intermediate phenotype. This distribution is consistent

with a low number of causative genes involved. Subsequent work

showed that the presence of two copies of \(sdh1^{H1202Y,F117V}\) in all

\(S.\ \text{boulardii}\) strains is essential for significant acetic acid production,

much higher than that observed in \(S.\ \text{cerevisiae}\), while the presence of

\(whi2^{2587∗}\) in one or two copies determines the difference be-

tween transient and moderate versus continuous and high acetic

acid accumulation. Hence, the interplay between the \(SDH1\) and

\(WHI2\) alleles appears to be responsible for the overall shape of

the segregant distribution curve and the divergence between dif-

ferent \(S.\ \text{boulardii}\) strains. Very high acetic acid accumulation ca-

pacity is thus a polygenic trait caused by two major genetic

elements, and the slight variation observed in the segregants is

likely due to an unknown number of minor genetic elements.

\(SDH1\) encodes the flavoprotein subunit of the succinate dehy-

drogenase complex, which functions in the tricarboxylic acid

(TCA) cycle and mitochondrial respiratory chain by coupling suc-

cinic acid oxidation to the transfer of electrons to ubiquinone

(Chapman et al. 1992; Kim et al. 2012). Deletion of \(SDH1\) or other

genes encoding subunits of the succinate dehydrogenase complex

is known to cause higher acetic acid production in \(S.\ \text{cerevisiae}\)

(Romano and Kolter 2005; Sztet et al. 2010; Yoshiida and

Yokoyama 2012). Acetic acid was secreted by the BY4741 \(sdh1\)

strain at 30°C, yielding 60 mM (3.6 g/L) after 72 h (Romano and

Kolter 2005; Sztet et al. 2010; Yoshiida and Yokoyama 2012). In

our work, Sb.P did not show any acetic acid overproduction at

30°C, but yielded about 6 g/L at 37°C after 72 h. Hence, the

\(sdh1^{H1202Y,F117V}\) allele, which is essential for high acetic acid pro-

duction at 37°C, could actually be a temperature-sensitive allele

causing malfunctioning of the succinate dehydrogenase complex

at 37°C.

The link between defective succinate dehydrogenase and

high acetic acid production could arise in different ways. The

Sdh defect can compromise oxidation of succinic acid to fumaric

acid, causing shortage of oxaloacetic acid and thus reduced initia-

tion of the TCA cycle. This can result in accumulation of acetyl-

CoA and, through further conversion by the mitochondrial ace-

ty-CoA hydrolase (Buu et al. 2003), lead to production of acetic

acid. Alternatively, pyruvate could accumulate because of the com-

promised TCA cycle, leading to higher levels of cytosolic acetalde-

hyde and, through conversion by aldehyde dehydrogenase, to

higher levels of acetic acid.

\(WHI2\) encodes a protein with phosphatase activator activity

that forms a complex with the plasma membrane Pst1 phospha-

tase and is localized at the cell periphery. It is involved in multiple

processes, including cell cycle regulation, cell proliferation, the

general stress response, endocytosis, organization of the actin cyto-

skeleton, and amino acid sensing (Saul and Sudbery 1985;

Radcliffe et al. 1997; Chen et al. 2018; Teng and Hardwick 2019).

Whi2 is required for full activation of STRE-mediated gene expres-

sion via dephosphorylation of the transcription factor Msn2

(Kaida et al. 2002), which is important for proper degradation of

misfolded proteins (Comyn et al. 2017). Overexpression of Whi2

was shown to improve acetic acid resistance, while its absence

reduces it (Chen et al. 2016). Although the \(whi2_A\) strain shows mul-

tiple other defects, a connection with acetic acid production is not

straightforward. On the other hand, since the causative \(whi2^{2587∗}\)

allele contains a premature stop codon, its effect may be similar

to that of \(WHI2\) deletion. Hence, the increased acetic acid sensitiv-

ity of Sb.P and Sb.A, having two copies of \(whi2^{2587∗}\), may explain

their inability to consume the high acetic acid levels accumulated

as opposed to the other \(S.\ \text{boulardii}\) strains with only one \(whi2^{2587∗}\)

allele. A crucial observation in this respect was that the strains with

two copies of \(whi2^{2587∗}\) were able to grow on lower levels of acetic

acid at 37°C (Fig. 6E), showing that they were not deficient in ace-

tic acid assimilation per se. They were only deficient in consuming

high levels of acetic acid at 37°C, possibly due to their reduced ace-

tic acid tolerance. The \(whi2^{2587∗}\) allele may therefore act indirectly

through acetic acid inhibition of its consumption, resulting in a

higher final level of acetic acid accumulation. This explanation

would also imply that none of the two causative mutations has

to be a temperature-sensitive mutation. Instead, the yeast may sim-

ply be more sensitive to acetic acid at high temperature because

of the \(whi2^{2587∗}\) mutation. The higher acetic acid sensitivity of Sb.P

and Sb.A may also contribute to their early growth arrest, allowing

more carbon to be channelled into acetic acid production instead

of biomass formation. Secondary missense mutations have been

reported in the \(WHI2\) locus of strains from the yeast deletion col-

lection (Mendl et al. 2011; van Leeuwen et al. 2016; Comyn

et al. 2017). Deletion of \(STE20,\ UCA1,\ APM2,\ OTU2,\ GCC20,\

SET2,\ URA1,\ and\ SGN1\) is associated with an elevated frequency of

nonsense mutations in \(WHI2\) (Teng et al. 2013). We could not

find any obvious deleterious or nonsense SNPs in these genes in

\(S.\ \text{boulardii}\) Sb.P, but this does not exclude that a missense SNP

within one of these genes has driven the emergence of the

c.860C>G SNP in \(WHI2\).

Identification of the causative SNPs in \(SDH1\) and \(WHI2\) re-

vealed one SNP in each, c.[950T>A] translating into p.[F117V]

and c.860C>G translating into p.S287Fer, respectively, that

were unique for \(S.\ \text{boulardii}\) and absent in virtually all sequenced

\(S.\ \text{cerevisiae}\) strains. Hence, our work has identified the first genetic

signature for \(S.\ \text{boulardii}\), which is so closely related in genome se-

quence to \(S.\ \text{cerevisiae}\) that the two are considered to belong to the

same species. This unique genetic signature provides for the first

time an easy way to identify new \(S.\ \text{boulardii}\) strains isolated from

nature. All \(S.\ \text{boulardii}\) strains currently available are probably de-

rived from the original strain(s) isolated by Boulard. Moreover,

the unique polymorphisms in \(S.\ \text{boulardii}\) are responsible for a con-

spicuous physiological difference—high acetic acid production—

that, because of its antimicrobial potency, may have conferred

an advantage to \(S.\ \text{boulardii}\) in certain aerobic ecological niches.
Because of its much higher toxicity compared to ethanol, acetic acid production would be advantageous in environments with lower sugar concentrations in which only low, nontoxic ethanol levels can be accumulated. It may also have been the reason why *S. boulardii* has been selected and successfully employed worldwide as a probiotic. If the acetic acid production capacity is important for its probiotic potency, our work opens up potential for selection, breeding, or engineering of *S. boulardii* strains with further improved probiotic potency or even for transfer of this trait of antimicrobial potency to *S. cerevisiae* strains.

Introduction of the superior sdh1*H202Y,F317Y* and wht2*5287* alleles in S288c, however, only resulted in about 50% of the very high acetic acid accumulation observed in Sb.P and Sb.A (Fig. 7D). This can be attributed to the polygenic nature of the trait and thus to the requirement of additional causative genes present in minor QTLs. One possibility is that minor QTLs harbor redundant causative genes, of which one is required to function cooperatively with the causative *SDH1* allele from Sb.P. Another possibility is that one of the major QTLs, QTL1 or QTL2, harbors another minor causative allele. Combinations of these two possibilities are also possible. Since laboratory yeast strains like S288c harbor multiple debilitating mutations, which are absent in natural and industrial *S. cerevisiae* strains, one of these might compromise maximal acetic acid production capacity and therefore needs to be complemented by the corresponding wild-type gene from *S. boulardii*.

In conclusion, we have discovered a novel, specific trait of the yeast *S. boulardii*, high acetic acid production, that may be of high relevance for its probiotic potency. We have elucidated the polygenic basis of this property and explained the quantitative difference in acetic acid production between *S. boulardii* strains. This novel trait is due to two specific point mutations which are unique to *S. boulardii* and provide the first specific genetic signature for *S. boulardii* versus *S. cerevisiae*. Our work provides a possible explanation for the selection of *S. boulardii* as the only probiotic yeast as opposed to the very closely related, likely conspecific *S. cerevisiae* strains.

Methods

The strains used in this work are listed in Supplemental Table S1. Media and culture conditions, general molecular biology methods, random spore isolation, and DNA preparation for amplified fragment length polymorphisms (AFLPs) determination are detailed in Supplemental Methods.

Yeast culture conditions for antimicrobial and acetic acid production assays

Overnight yeast precultures were adjusted to an OD600 of 0.2 in 50 ml YPD (with 2% glucose) in a 300-ml Erlenmeyer flask. Flasks were incubated by shaking at 200 rpm and 37°C in a shaking incubator for 48 h. To obtain cell-free culture supernatants, aliquots of yeast cultures were withdrawn from the flasks and centrifuged at maximum speed (14,000 rpm) for 5 min. The supernatants were used for agar-well diffusion assays or subjected to HPLC for determination of acetic acid concentrations. For time-course measurements, samples were withdrawn from the cultures every 12 h for further analysis.

Agar-well diffusion assays

For the agar-well diffusion assays, 25 ml molten soft Mueller Hinton agar (7.5 g bacto agar/L Mueller Hinton broth) were inoculated with 5 × 10⁴ cells/mL *E. coli* indicator strain. This was followed by addition of the bacterial growth indicator, iodonitrotetrazolium chloride (in 50% methanol), to a final concentration of 0.2 mg/ml and brief vortexing. A square petri dish containing 80 ml solidified Muller Hinton agar was then overlaid with the molten top agar. The top agar was allowed to solidify, after which nine wells (in 3 × 3 format) were punched into both agar layers using a 12-mm sterile cork borer. The resulting agar discs were carefully removed from each well with a pair of sterile tongs and discarded. Each well was then filled with ~700 µl of yeast culture supernatant. All agar-well plates were incubated at 37°C for 12–18 h.

Growth assays by spot dilution series for assessment of acetate utilization capacity

The strains were propagated in 3 ml YPD broth at 30°C for 1 d. A dilution of each culture was prepared in sterile Milli-Q water to an OD600 of 0.5. A 5-µl 10× dilution series (10⁰–10⁻⁵) of each strain was spotted on YPD as well as on yeast extract peptone +1% potassium acetate (YPAc; pH 5). Both YPD and YPAc plates were incubated at 30°C and 37°C.

HPLC determination of acetic acid, yeast ploidy determination, and yeast viability determination

Deletion of the HO endonuclease gene and mating type switch

The two copies of the *HO* endonuclease gene in Sb.P were deleted and the heterothallic Sb.P and ER strains mating type switched to strains homozygous for mating type as detailed in Supplemental Methods.

DNA isolation, Illumina sequencing, SNP calling, and QTL mapping

High molecular weight DNA was isolated for sequencing as detailed in Supplemental Methods. The isolated DNA was submitted to Illumina HiSeq 2000 technology (BGI) with libraries of 500 bp and paired-end reads of 101 bp. The short-read sequences were mapped against the S288c reference sequence, and all variants (SNPs and small indels) were identified and quality filtered using NGSEP (Duitama et al. 2014). In parallel, CLC genomic workbench (CLC Bio-Qiagen) was used to map the reads in order to allow easy comparison of read mappings to the annotated genome of S288c.

Bulk reciprocal hemizygosity analysis of QTL1

QTL1 (NC_001143.9: g.31118231737) was defined as the segment of DNA on Chromosome XI where the difference between the average SNV of the superior pool and the average of 50% for random segregation assumed statistical significance (*P*-value ≤ 0.05). QTL1 was split into eight blocks of genes (~25 kbp for each block). Blocks 3, 4, 5, and 6 were deleted separately in a reciprocal manner in the hybrid diploid (SBERH6/S288c). Each deletion was achieved using a split geneticin resistance marker (KanMX4) knockout cassette. The cassette was constructed by adaptor-mediated fusion of PCR-amplified left and right flanking sequences (between 400 and 700 bp) for each block, with the left and right fragments of a KanMX4 marker, respectively. The hybrid diploid (SBERH6/S288c) was subsequently transformed with the two fragments of the KanMX4 marker specifically constructed for each block.
Reciprocal hemizygosity analysis of individual genes in QTL1
For RHA of the individual genes in QTL1, the exact ORF of the left and right flanking sequences and the prioritized genes in QTL1 (APE2, SDH1, AVT3, LTV1, SDH3, and TGL1) were deleted with KanMX4. The methodology used for cassette construction and transformation of the strains is the same as described above for bRNA. The nonessential genes APE2, SDH1, AVT3, LTV1, and TGL1 were deleted in the haploid backgrounds of SBERH6 and S288c. Successful transformants were assessed for correct integration of the cassette at each locus by PCR. S288c transformants with the right integration at each locus were subsequently crossed with SBERH6 and vice versa to obtain reciprocal hemizygous strains for each gene. The only essential gene, SDH3, was deleted in the hybrid diploid (SBERH6/S288c) background. Successful transformants harboring an SDH3 deletion in one parental chromosome were genotyped using allele-specific PCR.

Reciprocal hemizygosity analysis of QTL2
For RHA of QTL2, the entire block (bRHA) or the exact ORF was deleted with NatMX4 in the diploid SBERH6/S288c hybrid strain. The marker was amplified from plasmid pTOPO-G1-NatMX4-G1 with primers containing 50-bp tails, homologous to the regions flanking the targeted locus, as described by Baudin et al. (1993). Correct integration of the marker was confirmed by PCR and the remaining, nondeleted allele was identified by allele-specific PCR.

Genotyping by allele-specific PCR and site-directed genetic modification using the CRISPR/Cas9 technology were performed as described in Supplemental Methods.

Data access
All sequence data have been submitted to NCBI’s BioProject database (https://www.ncbi.nlm.nih.gov/bioproject) under accession number PRJNA542592.

Competing interest statement
VIB and KU Leuven have submitted a patent application (Sept. 15, 2017; EP 17191252.0) on commercial use of the results.

Acknowledgments
We thank Teun Boekhout, Bart Theleen, and Raquel Quintilla Mateo (Westerdijk Fungal Biodiversity Institute, Utrecht) for help with initial characterization of the S. boulardii strains, Arne Claes for help with screening of the segregants, Lene Jespersen for her kind supply of S. boulardii strains, Gianni Liti for kind provision of the ARL and CIT strains, Renata Wick for technical support, and Nico Vangoethem for help with preparation of the figures. This work was supported by an SBO grant (IWT 90043) from IWT-Flanders and the EC 7th Framework program (CORNUCOPIA project) to J.M.T. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions: J.M.T. and M.R.F.-M. conceived the project; B.O. and P.V. performed the experiments; B.O., P.V., M.R.F.-M., S.D.G., and J.M.T. analyzed the data; and B.O., M.R.F.-M., and J.M.T. wrote the manuscript.

References
Albenberg L, Espisova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis J.D, Li H, et al. 2014. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. *Gastroenterology* 147: 1055–1063.e8. doi:10.1053/j.gastro.2014.07.020
Balcara JL, de Blas I, Ruiz-Zarruuela I, Cunningham D, Vendrell D, Muzquiz JI. 2006. The role of probiotics in aquaculture. *Vet Microbiol* 114: 173–186. doi:10.1016/j.vetmic.2006.01.009
Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in *Saccharomyces cerevisiae*. *Nucleic Acids Res* 21: 3329–3330. doi:10.1093/nar/21.14.3329
Boitani M, Strober W. 2007. The mechanism of action of probiotics. *Curr Opin Gastroenterol* 23: 679–692. doi:10.1097/MOG.0b013e32820efcc
Butel MJ. 2014. Probiotics, gut microbiota and health. *Med Mal Infect* 44: 1–8. doi:10.1016/j.medmal.2013.10.002
Bui EM, Cai CC, Yu VC, Lee EO. 2008. Reciprocal characterization and localization of acetyl-CoA hydrolase, Ach1p, in *Saccharomyces cerevisiae*. *J Biol Chem* 278: 17203–17209. doi:10.1074/jbc.M212568200
Casado V, Gittings D, Merloni K, Hurton M, Laprade A, D’Aoustrio N. 2013. S-Adenosyl-L-methionine protects the probiotic yeast, *Saccharomyces boulardii*, from acid-induced cell death. * BMC Microbiol* 13: 35. doi:10.1186/1471-2180-13-35
Castalguido I, LaMont JT, Nikolasson ST, Pothoulakis C. 1996. *Saccharomyces boulardii* protease inhibits *Clostridium difficile* toxin A effects in the rat ileum. *Infect Immun* 64: 2525–2532.
Chapman KB, Solomon SD, Boede J. 1992. *SDH1*, the gene encoding the sucinate dehydrogenase flavoprotein subunit from *Saccharomyces cerevisiae*. *Gene* 118: 151–156. doi:10.1016/0378-1119(92)80260-V
Chauveyras-Durand F, Durand H. 2010. Probiotics in animal nutrition and health. *Benef Microbes* 1: 3–9. doi:10.3920/BM2008.1002
Chen Y, Stablrya L, Weh N. 2016. Improved acetic acid resistance in *Saccharomyces cerevisiae* by overexpression of the WHI2 gene identified through inverse metabolic engineering. *Appl Environ Microbiol* 82: 2156–2166. doi:10.1128/AEM.03718-15
Chen X, Wang G, Zhang Y, Dayhoff-Branmigan M, Diny NL, Zhao M, He G, Jing CN, Metz KA, Stolp ZD, et al. 2018. Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. *PLoS Genet* 14: e1007592. doi:10.1371/journal.pgen.1007592
Clorba MA. 2012. A gastroenterologist’s guide to probiotics. *Clin Gastroenterol Hepatol* 10: 960–968. doi:10.1016/j.cgh.2012.03.024
Commis V, SA, Filbotte S, Mayor T. 2017. Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in *Saccharomyces cerevisiae*. *Sci Rep* 7: 4183. doi:10.1038/s41598-017-04525-8
Curro D, Ianiro G, Pecere S, Bibo B, Cammarota G. 2017. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders. *Br J Pharmacol* 174: 1426–1449. doi:10.1111/bph.13632
Cursino L, Smajs D, Smarda J, Nardi RM, Nicoli JR, Chartone-Souza E, Peres AM, Shurtleff A. 2007. *Saccharomyces cerevisiae WHI2* gene identified from IWT-Flanders and the EC 7th Framework program (CORNUCOPIA project) to J.M.T. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions: J.M.T. and M.R.F.-M. conceived the project; B.O. and P.V. performed the experiments; B.O., P.V., M.R.F.-M., S.D.G., and J.M.T. analyzed the data; and B.O., M.R.F.-M., and J.M.T. wrote the manuscript.

Offei et al.

1492 Genome Research
www.genome.org
Acetic acid production by probiotic \textit{S. boulardii}
Teng X, Dayhoff-Branigan M, Cheng WC, Gilbert CE, Sing CN, Dinny NL, Wheelan SJ, Dunham MJ, Boeke JD, Pineda FJ, et al. 2013. Genome-wide consequences of deleting any single gene. *Mol Cell* **52**: 485–494. doi: 10.1016/j.molcel.2013.09.026

Theunissen J, Britz T, Torriani S, Withthuhn RC. 2005. Identification of probiotic microorganisms in South African products using PCR-based DGGE analysis. *Int J Food Microbiol* **98**: 11–21. doi: 10.1016/j.ijfoodmicro.2004.05.004

Tiago FC, Martins FS, Souza EL, Pimenta PF, Araujo HR, Castro IM, Brandao RL, Nicoll JR. 2012. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by *Saccharomyces* probiotics. *J Med Microbiol* **61**: 1194–1207. doi: 10.1099/jmm.0.042283-0

Trindade de Carvalho B, Holt S, Souffriau B, Lopes Brandao R, Fouliquè-Moreno MR, Thevelein JM. 2017. Identification of novel alleles conferring superior production of rose flavor phenyl ethanol acetate using polygenic analysis in yeast. *MBio* **8*. doi: 10.1128/mbio.01173-17

Vacc l. 2017. Microbiome: the microbiota maintains oxygen balance in the gut. *Nat Rev Microbiol* **15**: 574–575. doi: 10.1038/nrmicro.2017.112

van der Aa Kühle A, Jespersen L. 2005. The taxonomic position of *Saccharomyces boulardii* as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1-5.8S rDNA-TS2 region and the mitochondrial cytochrome-oxidase II gene. *Syst Appl Microbiol* **26**: 564–571. doi: 10.1016/j.syapm.2004.10.039

van der Leuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwitz J, Ušaj MM, Pechalner M, Takam M, Ušaj M, et al. 2016. Exploring genetic suppression interactions on a global scale. *Science* **354**: aag0839. doi: 10.1126/science.aag0839

Vanderpool C, Yang F, Pokh DB. 2008. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. *Inflamm Bowel Dis* **14**: 1585–1596. doi: 10.1002/ibd.20525

Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. *Microbiol Mol Biol Rev* **64**: 655–671. doi: 10.1128/MMBR.64.4.655-671.2000

Villar-García J, Hernández JJ, Güert-Fernández R, González A, Lerma E, Guelar A, Sanz D, Soler I, Montero M, Horcajada JP, et al. 2015. Effect of probiotics (*Saccharomyces boulardii*) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial. *J Acquir Immun Defic Syndr* **68**: 256–263. doi: 10.1097/QAI.0000000000000468

Woo JM, Yang KM, Kim SU, Blank LM, Park JB. 2014. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by *Saccharomyces cerevisiae* under fermenting conditions. *Appl Microbiol Biotechnol* **98**: 6805–6809. doi: 10.1007/s00253-014-5691-x

Yang Y, Fouquié-Henro MR, Clement I, Erdel E, Tanghe A, Schaerlaeckens K, Dumortier E, Thevelein JM. 2015. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. *PLoS Genet* **9**: e1003693. doi: 10.1371/journal.pgen.1003693

Yoshida S, Yokoyama A. 2012. Identification and characterization of genes related to the production of organic acids in yeast. *J Biosci Bioeng* **113**: 556–561. doi: 10.1016/j.jbiosc.2011.12.017

Zanello G, Berri M, Dumont J, Sizaret PY, D’Inca R, Salmon H, Meurers F. 2011a. *Saccharomyces cerevisiae* modulates immune gene expression and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. *PLoS One* **6**: e18573. doi: 10.1371/journal.pone.0018573

Zanello G, Meurers F, Berri M, Chevalleyre C, Mello S, Auslair E, Salmon H. 2011b. *Saccharomyces cerevisiae* decreases inflammatory responses induced by F4 enterotoxigenic *Escherichia coli* in porcine intestinal epithelial cells. *Vet Immunol Immunopathol* **141**: 133–138. doi: 10.1016/j.vetimm.2011.01.018

Received Accepted August 17, 2018; accepted in revised form June 20, 2019.