ENUMERATING THE DERANGEMENTS OF AN \(n \)-CUBE VIA MÖBIUS INVERSION

COLIN G.BAILEY AND JOSEPH S.OLIVEIRA

ABSTRACT. In \(\mathcal{L} \), the semilattice of faces of an \(n \)-cube, we count the number of automorphisms of \(\mathcal{L} \) that fix a given subalgebra – either pointwise or as a subalgebra. By using Möbius inversion we get a formula for the number of derangements on the \(n \)-cube in terms of the Möbius function on the lattice of MR-subalgebras. We compute this Möbius function.

1. Introduction

We are interested in derangements of the \(n \)-cube, ie the automorphisms that fix only the codimension zero face of the cube. Our approach is to consider the face-semilattice of the \(n \)-cube – \(\mathcal{L}_n \) – and use the fact that this semilattice is a Metropolis-Rota implication algebra (MR-algebra), and the automorphism group of this algebra has a well-known structure. Since any automorphism that fixes a set \(X \) of edges of the \(n \)-cube must also fix the entire MR-subalgebra of \(\mathcal{L}_n \) generated by \(X \), we restrict our study to MR-subalgebras of \(\mathcal{L} \).

We begin by fixing a subalgebra \(A \) and consider the ways that \(A \) might be fixed.

\textbf{Definition 1.1.} Let \(A \) be a sub-MR-algebra of \(\mathcal{L} \). Let \(\phi \) be an automorphism of \(\mathcal{L} \).
\begin{itemize}
 \item[(a)] \(\phi \) freezes \(A \) iff \(\phi \upharpoonright A = \text{id} \upharpoonright A \).
 \item[(b)] \(\phi \) fixes \(A \) iff \(\phi[A] = A \).
\end{itemize}

This leads us to the following definition of two subgroups associated with \(A \).

\textbf{Definition 1.2.} Let \(A \) be a sub-MR-algebra of \(\mathcal{L} \).
\begin{itemize}
 \item[(a)] Fr(\(A \)) = \{\(\phi \mid \phi \) freezes \(A \)\};
 \item[(b)] Stab(\(A \)) = \{\(\phi \mid \phi \) fixes \(A \)\}.
\end{itemize}

It is easy to see that both Fr(\(A \)) and Stab(\(A \)) are subgroups of Aut(\(\mathcal{L} \)). We want to count the size of each of these groups. We also want to determine the number of automorphisms that freeze \(A \) only. This we will do by Möbius inversion, as if

\[f(A) = |\text{Fr}(A)| \]
\[s(A) = |\{\phi \in \text{Aut}(\mathcal{L}) \mid \phi \upharpoonright A = \text{id}_A \text{ and } \forall B > A \phi \upharpoonright B \neq \text{id}_B\}| \]
\[g(A) = |\text{Stab}(A)| \]

then we see that

\[f(A) = \sum_{A \subseteq B} s(B) \]
so that, by Möbius inversion, we have

\[s(A) = \sum_{A \subseteq B} \mu(A, B) f(B) \]

where \(\mu \) is the Möbius function on the partial order of MR-subalgebras of \(\mathcal{L} \). As a special case we get \(s(\{1\}) \) is the number of derangements on \(\mathcal{L} \).

So we will compute the functions \(f \) and \(g \) and the Möbius function on the partial order of MR-subalgebras of \(\mathcal{L} \). To evaluate \(f \) and \(g \) we compute orbits.

There is a study of derangements of \(n \)-cubes by Chen & Stanley in [7]. That study concentrates on properties of signed permutations (which are the automorphisms of \(\mathcal{L} \)) and obtains an alternative counting of the derangements.

We begin by giving some basic background on cubic and MR implication algebras. The reader is referred to [1] or [8] for a more thorough introduction to cubic and MR-algebras.

1.1. Background Material.

1.1.1. Cubic and MR-algebras. We will give a brief introduction to the basic properties of cubic and MR-algebras. A cubic algebra is an upper semilattice \(\mathcal{L} \) with a binary operator \(\Delta \) on \(\mathcal{L} \) – \(\Delta(x, y) \) corresponding to reflection of \(y \) through the centre of \(x \) – satisfying the following axioms:

a. if \(x \leq y \) then \(\Delta(y, x) \lor x = y \);

b. if \(x \leq y \leq z \) then \(\Delta(z, \Delta(y, x)) = \Delta(\Delta(z, y), \Delta(z, x)) \);

c. if \(x \leq y \) then \(\Delta(y, \Delta(y, x)) = x \);

d. if \(x \leq y \leq z \) then \(\Delta(z, x) \leq \Delta(z, y) \);

Let \(xy = \Delta(1, \Delta(x \lor y, y)) \lor y \) for any \(x, y \) in \(\mathcal{L} \). Then:

e. \((xy)y = x \lor y \);

f. \(x(yz) = y(xz) \);

In fact the face poset of an \(n \)-cube, \(\mathcal{L}_n \), is also an MR-algebra. We recall the pertinent details.

Definition 1.3. An MR-algebra is a cubic algebra satisfying the MR-axiom:

if \(a, b < x \) then

\[\Delta(x, a) \lor b < x \text{ iff } a \land b \text{ does not exist.} \]

Definition 1.4. Let \(\mathcal{L} \) be a cubic algebra. Then for any \(x, y \in \mathcal{L} \) we define the (partial) operation \(^\wedge\) (caret) by:

\[x ^\wedge y = x \land \Delta(x \lor y, y) \]

whenever this meet exists.

Lemma 1.5. If \(\mathcal{L} \) is a cubic algebra then \(\mathcal{L} \) is an MR-algebra iff the caret operation is total.

Proof. See [2] lemma 10 and theorem 12. \(\square \)

Definition 1.6. Let \(\mathcal{L} \) be a cubic algebra and \(a, b \in \mathcal{L} \). Then

\[a \preceq b \text{ iff } \Delta(a \lor b, a) \leq b \]

\[a \simeq b \text{ iff } \Delta(a \lor b, a) = b. \]

Lemma 1.7. Let \(\mathcal{L}, a, b \) be as in the definition. Then

\[a \preceq b \text{ iff } b = (b \lor a) \land (b \lor \Delta(1, a)). \]

Proof. See [1] lemmas 2.7 and 2.12. \(\square \)
Lemma 1.8. Let \(\mathcal{L} \) be a cubic algebra and \(a \in \mathcal{L} \). If \(b, c \geq a \) then
\[
b \leq c \iff b \leq c.
\]

Proof. If \(b \leq \Delta(b \lor c) \) then we have \(a \leq c \) and \(a \leq b \leq \Delta(b \lor c) \) and so \(b \lor c = a \lor \Delta(b \lor c, a) \leq c \lor c = c \).

There are a number of representations of MR-algebras. For finite ones the principal three are as the face lattice of an \(n \)-cube; as the poset by signed subsets of \(\{1, \ldots, n\} \); and as the poset of closed intervals of \(\rho([1, \ldots, n]) \). We will consider the latter two briefly.

1.2. Signed Sets.

Definition 1.9. Let \(X \) be a set.

(a) A signed subset of \(X \) is a pair \((A_1, A_2) \) where \(A_1 \subseteq X \) and \(A_1 \cap A_2 = \emptyset \).

(b) \(S(X) \) is the collection of all signed subsets of \(X \) ordered by reverse pointwise inclusion.

\(S(X) \) is an MR-algebra and if \(\mathcal{L} \) is any finite MR-algebra with \(\text{CoAt}(\mathcal{L}) \) its set of coatoms and \(C \subset \text{CoAt}(\mathcal{L}) \) is such that \(C \cup \{\Delta(1, c) \mid c \in C\} = \text{CoAt}(\mathcal{L}) \) and \(C \cup \{\Delta(1, c) \mid c \in C\} = \emptyset \) then there is a canonical isomorphism of \(\mathcal{L} \) with \(S(C) \) – see [8] for more details.

As one application of this construction we have a simple homomorphism extension result for finite MR-algebras.

Proposition 1.10. Let \(\mathcal{L} \) be a finite MR-algebra. Let \(\phi: \text{CoAt}(\mathcal{L}) \to \text{CoAt}(\mathcal{L}) \) be a \(\Delta(1, \bullet) \)-preserving bijection. Then there is a canonical extension of \(\phi \) to an automorphism of \(\mathcal{L} \).

Proof. Let \(a \) be an atom of \(\mathcal{L} \) and let \(C \) be the coatoms over \(a \). Then \(C \cup \Delta(1, C) = \text{CoAt}(\mathcal{L}) \) and \(C \cup \Delta(1, C) = \emptyset \). Likewise \(\phi[C] \) has the same properties since \(\phi \) preserves \(\Delta(1, \bullet) \). From [6] this implies \(\land \phi[C] \) exists and is an atom \(a' \) of \(\mathcal{L} \). Now \([a, 1] \) and \([a', 1] \) are isomorphic as Boolean algebras by an extension of \(\phi \upharpoonright C \) and so we get an extension of this mapping to an automorphism of \(\mathcal{L} \). This extends \(\phi \) also as it has to preserve \(\Delta(1, \bullet) \).

An alternative way to view this proof is via the isomorphism sequence
\[
\mathcal{L} \to S(C) \xrightarrow{\phi} S(\phi[C]) \to \mathcal{L}
\]
where \(S(\phi)((A, B)) = (\phi[A], \phi[B]) \).

1.3. Implication Algebras. Let \(I \) be an implication algebra (ie an upwards closed subset of a Boolean algebra). We define
\[
S(I) = \{ \langle a, b \rangle \mid a, b \in I, a \lor b = 1 \text{ and } a \land b \text{ exists in } I \}
\]
ordered by
\[
\langle a, b \rangle \leq \langle c, d \rangle \text{ iff } a \leq c \text{ and } b \leq d.
\]
This is a partial order that is an upper semi-lattice with join defined by
\[
\langle a, b \rangle \lor \langle c, d \rangle = \langle a \lor c, b \lor d \rangle
\]
and a maximum element \(1 = (1, 1) \).

We can also define a \(\Delta \) function by
\[
\text{if } \langle c, d \rangle \leq \langle a, b \rangle \text{ then } \Delta((a, b), (c, d)) = \langle a \land (b \rightarrow d), b \land (a \rightarrow c) \rangle.
\]

More properties of this construction are described in [2].
1.4. The Problem. In [2, 4, 9] the automorphism group of \mathcal{L} was investigated. In this paper we wish to consider automorphisms that fix an MR-subalgebra of \mathcal{L}.

As described in the introduction we have the two groups Fr(A) and Fix(A) (= stab(A), the stabilizer of A) and to find the size of each of these groups we consider the orbit of A.

2. Orbits

We will consider the natural group action of Aut(\mathcal{L}) on subalgebras. First we want to examine an invariant (the type) of an MR-subalgebra.

Definition 2.1. Let A be an MR-subalgebra of \mathcal{L}.

CoAt$_n$ is the set of coatoms of \mathcal{L}, CoAt(A) is the set of coatoms of A.

For each $a \in$ CoAt(A) we let $\mathcal{C}_a = \{c \in$ CoAt$_n \mid a \leq c\}$ and $\Gamma_A = \{\mathcal{C}_a \mid a \in$ CoAt(A)$\}$.

We notice that $a \in$ CoAt(A) implies $\Delta a \in$ CoAt(A) and $\mathcal{C}_{\Delta a} = \Delta \mathcal{C}_a$. Thus for each $1 \leq i \leq n$ there are an even number of \mathcal{C}_a’s of size i. Let t_i be such that $2t_i = ||a \in$ CoAt(A)$||\mathcal{C}_a|| = i||$.

Definition 2.2. The type of an MR-subalgebra A of \mathcal{L} is the sequence $tp(A) = (t_i \mid 1 \leq i \leq n)$.

The action we are considering is the evaluation action of Aut(\mathcal{L}) on the partial order of MR-subalgebras of \mathcal{L}. Thus we know that

$$|\text{Stab}(A)| = |\text{Aut}(\mathcal{L})| / |\text{Orb}(A)| = 2^n!/|\text{Orb}(A)|$$

and we therefore want to compute the size of the orbits.

Lemma 2.3. If A and B are two MR-subalgebras on \mathcal{L} in the same orbit, then $tp(A) = tp(B)$.

Proof. This is clear. \qed

Lemma 2.4. Let c_1 and c_2 be two coatoms of \mathcal{L} and ϕ: $\{\leftarrow, c_1\} \rightarrow \{\leftarrow, c_2\}$ be an isomorphism. Then ϕ extends to an automorphism of \mathcal{L}.

Proof. The coatoms of $\{\leftarrow, c_1\}$ are of the form $c \land c_1$ where $c \neq c_1$ and $c \neq \Delta(1, c_1)$ – see [8]. Furthermore $c \neq d$ implies $c \land c_1 \neq d \land c_1$. So we define the extension by defining what happens on the coatoms:

$$\phi'(c) = c' \text{ where } \phi(c \land c_1) = c' \land c_2$$

$$\phi'(c_1) = c_2$$

$$\phi'\Delta(1, c_1)) = \Delta(1, c_2).$$

From [6] we know that $\Delta(c_1, c_1 \land c) = c_1 \land \Delta(1, c)$ and so $\phi'(\Delta(1, c)) = \Delta(1, \phi'(c))$.

From this we extend ϕ' to an automorphism of \mathcal{L} as usual. \qed

Lemma 2.5. Let v_1 and v_2 be two elements of \mathcal{L} of the same co-rank. Then there is an automorphism of \mathcal{L} taking v_1 to v_2.

Proof. We proceed by induction on co-rank. Suppose that v_1 and v_2 are coatoms. There are two cases.

Case 1: $v_1 = \Delta(1, v_2)$ – in this case just take $\Delta(1, \bullet)$ as the automorphism.

Case 2: $v_1 \neq \Delta(1, v_2)$ – then $v_1 \land v_2$ exists and so we have a Boolean algebra $[v, 1]$, where v is any vertex below $v_1 \land v_2$. As v_1 and v_2 are coatoms of $[v, 1]$ there is a Boolean automorphism of $[v, 1]$ taking v_1 to v_2. As usual this extends to an automorphism of \mathcal{L}.
Now let $c_1 \geq v_1$ be two coatoms and let ϕ be an automorphism of \mathcal{L} that takes c_1 to c_2. In \mathcal{L} the co-rank of v_2 equals the co-rank of $\phi(v_1)$ and is one less than the co-rank of v_1 in \mathcal{L}. By induction, there is an automorphism ψ of \mathcal{L} that takes $\phi(v_1)$ to v_2. By lemma 2.4 this extends to an automorphism ψ' of \mathcal{L}. Then we have $\psi'(\phi(v_1)) = v_2$ as desired.

Theorem 2.6. Suppose that A and B are two MR-subalgebras on \mathcal{L} with $tp(A) = tp(B)$. Then there is an automorphism of \mathcal{L} that takes A to B.

Proof. Let $tp(A) = \langle t_i \mid 1 \leq i \leq n \rangle$. Let $r = \sum_{i=1}^{n} i t_i$. This must be the corank of a vertex in A or B. Let $k = \sum_{i=1}^{n} t_i$ – this is the dimension of A (ie $A \cong \mathcal{L}_k$).

First we find $v_1 \in A$ and $v_2 \in B$ having co-rank r, and find an automorphism of \mathcal{L} that takes v_1 to v_2.

Now the A-atoms over v_1 go to an antichain in $[v_2, 1]$ that induces a partition of the \mathcal{L}-covers of v_2. Likewise the B-atoms of $[v_2, 1]$ induce a partition of the \mathcal{L}-covers of v_2. Since $tp(A) = tp(B)$ these partitions are similar and so there is a permutation of the \mathcal{L}-covers of v_2 taking the first antichain to the second. This induces a Boolean automorphism ψ of $[v_2, 1]$.

Now, let $a_1 \leq v_1$ be an \mathcal{L}-vertex and $a_2 = \phi(a_1) \leq v_2$. Then the automorphism ψ can be extended to a Boolean automorphism ψ' of $[a_2, 1]$ and to an automorphism $\tilde{\psi}'$ of \mathcal{L}. Then we have $\tilde{\psi}'(\phi(A)) = B$.

From the lemma we need only count the number of ways we get the same type. Suppose that $tp(B) = tp(A)$ and d is a vertex of B. We can think of a set of atoms of a subalgebra of $[d, 1]$ as a partition of the \mathcal{L}-covers of d. If co-rk(d) = r then rk($d, 1$) = r so these correspond to partitions of r. At(A) gives one such partition Π and we need to count the number of similar partitions.

We also need to recall that each MR-subalgebra of rank k has 2^k vertices and so the size of the orbit is

$$\frac{|\{d \in \mathcal{L} \mid \text{co-rk}(d) = r\}|}{2^k} \times \text{the number of partitions of } r \text{ similar to } \Pi.$$

The number $|\{d \in \mathcal{L} \mid \text{co-rk}(d) = r\}|$ is known to be

$$|\{d \in \mathcal{L} \mid \text{co-rk}(d) = r\}| = 2^r \binom{n}{r}$$

– see [5] for example. The number of partitions of r similar to Π is well known to be

$$\prod_{i=1}^{n} (i!)^{y_i} t_i !.$$

Thus the size of the orbit is

$$2^r \binom{n}{r} \prod_{i=1}^{n} (i!)^{y_i} t_i !.$$

From this we infer that

$$|\text{Stab}(A)| = \frac{2^r n! \prod_{i=1}^{n} (i!)^{y_i} t_i !}{2^{-k} \frac{n^r}{(n-r)!}} = 2^{n+k-r}(n-r)! \prod_{i=1}^{n} (i!)^{y_i} t_i !.$$

There are two ways to compute the size of Fr(A) – one directly and another by noticing that we have a group homomorphism

$$\rho : \varphi \mapsto \varphi \uparrow A$$

from Stab(A) to Aut(A) with kernel Fr(A), and so we can compute the image of this homomorphism.
We will do both as each gives a viewpoint on automorphisms that we find interesting.

We can partition CoAt(A) into the sets $\Gamma_i = \{a \mid \text{co-rk}(a) = i\}$. We notice that $|\Gamma_i| = 2t_i$ and $a \in \Gamma_i$ implies $\Delta a \notin \Gamma_i$.

Lemma 2.7. Let $\psi \in \text{Aut}(A)$. Then $\psi \in \text{Im}(\rho)$ iff $\psi[\Gamma_i] = \Gamma_i$ for all i.

Proof. Let $\psi = \rho(\Psi)$ for some $\Psi \in \text{Stab}(A)$. The Ψ preserves co-rank and takes A to A, so it must take Γ_i into itself. As it is one-one on Γ_i it is also onto.

For the converse, suppose that $\psi \in \text{Aut}(A)$ is such that $\psi[\Gamma_i] = \Gamma_i$ for all i.

Let $N_i \subseteq \Gamma_i$ be maximal Δ-independent.

We claim that \mathcal{C}_{N_i} (ie the set of coatoms above some element of N_i) is also Δ-independent in \mathcal{C}_{Γ_i}. Indeed, if $c \in \mathcal{C}_{N_i}$, there is some $a \in N_i$ and $\Delta c \geq b \in N_i$ then $c \in \mathcal{C}_a \cap \mathcal{C}_{ab}$. As $\Delta b \in N_i$ and $a \neq \Delta b$ implies $\mathcal{C}_a \cap \mathcal{C}_{ab} = \emptyset$ we must have $a = \Delta b$ — contradicting the assumption that N_i is Δ-independent.

Let $N_i' = \psi[N_i] \subseteq \Gamma_i$. This is also Δ-independent and so is $\mathcal{C}_{N_i'}$.

\mathcal{C}_{N_i} is the disjoint union of the set $\{\mathcal{C}_a \mid a \in N_i\}$ and we know that $|\mathcal{C}_a| = |\psi[\mathcal{C}_a]| = i$ so we can find a bijection from \mathcal{C}_{N_i} to $\mathcal{C}_{N_i'}$ that takes \mathcal{C}_a to $\mathcal{C}_{\psi(a)}$.

Finally we can patch these bijections to get a bijection between the disjoint union of the set $\{\mathcal{C}_{N_i} \mid 1 \leq i \leq n\}$ and the disjoint union of the set $\{\mathcal{C}_{N_i'} \mid 1 \leq i \leq n\}$. This is now a bijection between two maximal Δ-independent subsets of CoAt(\mathcal{L}) and so extends to an automorphism of \mathcal{L}.

We note that it takes $a \in \Gamma_i$ to $\psi(a)$ and so it restricts to ψ.

Lemma 2.8. Let P be a partition of CoAt$_\mathcal{L}$ such that for all $X \in P$ $\Delta[X] = X$. Let $\text{Aut}_P = \{\varphi \in \text{Aut}(\mathcal{L},_0) \mid \forall X \in P \varphi[X] = X\}$. Then

$$\text{Aut}_P \cong \prod_{X \in P} \text{Aut}(\mathcal{L},_{X/2}).$$

Proof. We first observe that if $\Delta[X] = X$ for some set of coatoms X of \mathcal{L}, then $A_X = \{x \in \mathcal{L} \mid \text{the coatoms above } x \text{ are all in } X\}$ is an MR-subalgebra isomorphic to $\mathcal{L},_{X/2}$ — by taking $X' \subseteq X$ so that $X' \cap \Delta[X'] = \emptyset$ and $X' \cup \Delta[X'] = X$ and the mapping $x \mapsto (\{z \in X' \mid x \leq z\}, \{z \in \Delta[X'] \mid x \leq z\})$ is a cubic isomorphism to the algebra of signed subsets of X', ie $\mathcal{L},_{X/2}$.

Thus, if $\varphi \in \text{Aut}_P$ then $\varphi' | A_X$ is a cubic automorphism of A_X.

This mapping is onto — as if $\langle \varphi_X | X \in P \rangle \in \prod_{X \in P} \text{Aut}(A_X)$, then we consider the mapping defined on CoAt$_\mathcal{L}$ by

$$x \mapsto \varphi_X(x) \text{ if } x \in X.$$

This is a Δ-preserving mapping of the coatoms and so lifts to an automorphism of \mathcal{L}, which restricts to φ_X on each A_X.

From these two lemmas we see that if $P = \{\Gamma_i \mid 1 \leq i \leq n\}$ is the partition of CoAt(A) described above, then

$$|\text{Im}(\rho)| = |\text{Aut}_P| = \prod_i |\text{Aut}(\mathcal{L},_i)| = \prod_i 2^i t_i ! = 2^k \prod_i t_i !.$$

Thus we have

$$|\text{Fr}(A)| = \frac{2^{n+k-r}(n-r)! \prod_{i=1}^n (i)! t_i !}{2^k \prod_i t_i !} = 2^{n-r}(n-r)! \prod_{i=1}^n (i)! t_i !.$$

Here is another way to see this result — consider the sets \mathcal{C}_a as a varies over CoAt(A), and $D = \text{CoAt}_\mathcal{L} \setminus \bigcup_a \mathcal{C}_a$. Notice that $\Delta[D] = D$, and $\Delta[\mathcal{C}_a] = \mathcal{C}_{\Delta a}$ for all a.

Then \(\varphi \) freezes \(A \) iff \(\varphi[C_a] = C_a \) for all \(a \in \text{CoAt}(A) \). This of course, implies \(\varphi \uparrow D \) is a \(\Delta \)-preserving mapping from \(D \) to itself.

Also we must have \(\varphi \uparrow C_{\text{co}} = \Delta(\varphi \uparrow C_a) \Delta \) – as \(\varphi \) preserves \(\Delta \).

Hence, if \(M \) is a maximal \(\Delta \)-independent set of coatoms of \(A \) then \(\varphi \) is completely determined by its action on \(C_a \) for \(a \in M \) and its action on \(D \). \(\varphi \) can be any permutation of \(C_a \) (for \(a \in M \)) and (as above) any \(\Delta \)-preserving bijection of \(D \) – of which there are \(2^{n-r}(n-r)! \) such mappings. Hence there are

\[
2^{n-r}(n-r)! \prod_i (i!)^{t_i}
\]

such \(\varphi \) – as computed above.

3. The Möbius function on Implication lattices

As the first step in computing the Möbius function on the poset of MR-subalgebras we will look at implication sublattices of a Boolean algebra. The MR-subalgebra computation will then be reduced to this case.

Let \(B \) be a finite Boolean algebra. We will assume that \(B \cong \mathcal{P}(n) \).

Definition 3.1. An implication subalgebra of \(B \) is a subset closed under \(\rightarrow \).

An implication sublattice of \(B \) is a subset closed under \(\rightarrow \) and \(\land \).

In [3] we found that this function is given by the formula

\[
\mu(A, B) = (-1)^{n-k}(n-k)! \prod_{i=1}^{n} (-1)^{i-1}(i-1)!^{t_i}
\]

(1)

\[
= (-1)^{n-d}(n-k)! \prod_{i=1}^{n} [(i-1)!]^t_i
\]

as \(\sum_{i=1}^{n} (i-1)t_i = k - d \), and

(3) \(\mu(\{1\}, B) = n! \).

4. The Möbius function on MR-subalgebras

The way we will compute the Möbius function on the poset of MR-subalgebras is similar to that of the last section.

We begin by showing how \(\mu(M, N) \) can always be determined by knowing \(\mu(\{1\}, L_k) \) for all \(k \).

Then we represent the poset in terms of implication sublattices of \([0, 1]\) together with some extra information. Then we define a closure operator on this new representation and finally reduce the problem to the poset of implication sublattices of \([0, 1]\).

Let \(A \) and \(B \) be two MR-subalgebras of \(L \). As \(B \) is already an MR-algebra and \(B \) so is the face lattice of a (possibly) smaller cube, we may assume that \(B = L \). We consider a reduction showing that we may also assume that \(A = \{1\} \).

Fix an atom \(0 \) of \(L \) below some \(A \)-atom \(a_A \). Let \(A \subseteq C \subseteq L \) be any intermediate subalgebra. Then \(C \) is determined by knowing \(C \cap [a_A, 1] \) and \(C \cap \leftarrow, a_A \). This shows us that

\[
[A, L] \cong [B \upharpoonright A \cap [a_A, 1] \subseteq B \subseteq [a_A, 1] \text{ is a Boolean algebra}] \\
\times [C \mid C \text{ is an MR-subalgebra of } \leftarrow, a_A].
\]
4.1. **Locator Pairs.** We consider MR-subalgebras in \([1, \mathcal{L}]\) using implication sublattices of \([0, 1]\). In this section we develop a way of describing subalgebras that leads to a clearer picture of the partial order.

Definition 4.1. A locator-pair is a pair of \((c, B)\) where \(B\) is an implication sublattice of \([0, 1]\) and \(c \geq \text{min} B\).

Locator pairs will be used to facilitate counting.

Lemma 4.2. Locator pairs correspond to subalgebras of \(\mathcal{L}\).

Proof. Let \(A\) be any subalgebra, let \(a_4\) be a vertex of \(A\). Let \(A_4 = \beta_0[A]\) and \(c = 0 \lor a_4\). Then \((c, A_4)\) is a locator-pair. We can recover \(A\) from this locator-pair by noting that if \(a_4 = \text{min} A\), then \(a = \Delta(c, a_4)\) is a vertex of \(A\) and we can move \(A_4\) to a \(g\)-filter of \(A\) using the mapping

\[
x \mapsto (x \lor a) \land (\Delta(1, x) \lor a)
\]

(as usual), and as this is a \(g\)-filter for \(A\) we can recover \(A\). \(\square\)

The implication sublattice \(A_4\) is uniquely determined by \(A\), but the other element is not – as we can choose many \(A\)-vertices.

Definition 4.3. Let \(A\) be an MR-subalgebra of \(\mathcal{L}\). A locator-pair \((c, B)\) that determines \(A\) is said to locate \(A\).

By an abuse of notation we will often write this as \((c, B) = A\).

Definition 4.4. Let \((c_1, B_1)\) and \((c_2, B_2)\) be two locator-pairs. Let \(A_i\) be the corresponding MR-subalgebra of \(\mathcal{L}\). Then

\[
(c_1, B_1) \leq (c_2, B_2) \text{ iff } A_1 \subseteq A_2 \\
(c_1, B_1) \cong (c_2, B_2) \text{ iff } A_1 = A_2.
\]

It is easy to see that \(\cong\) is an equivalence relation. We want to characterize \(\leq\) on locator-pairs more carefully.

Definition 4.5. Let \(c, d\) be in \(\mathcal{L}\). Then \(c +_a d\) is the Boolean sum of \(c \lor a\) and \(d \lor a\) in \([a, 1]\).

Note that in a Boolean algebra we have \(c +_a d = (c + d) \lor a\). Hence in a cubic algebra or implication algebra, if \(a_1 \leq a_2\) then \(c +_{a_1} d = (c +_{a_1} d) \lor a_2\).

We need the following technical lemma

Lemma 4.6. Let \(c_1\) and \(c_2\) be two elements of \(\mathcal{L}\) such that \(c_1 \land c_2\) exists. Let \(a \leq c_1 \land c_2\). Then

(a) if \(a \leq b \leq c_1\) then

\[
\Delta(c_1, b) \lor \Delta(c_2, a) = \Delta(c_1, b) \lor \Delta(c_2 \lor b, b);
\]

(b) if \(a \leq x\) then

\[
\Delta(x \lor c_1 \lor c_2, \Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x)) = c_1 +_a c_2.
\]

Proof. Without loss of generality we may work in an interval algebra and take \(a = [0, 0]\). Then we have \(c_i = [0, c_i], b = [0, b]\) and \(x = [0, x]\).
(a)
\[
\Delta(c_1, b) \lor \Delta(c_2, a) = \Delta([0, c_1], [0, b]) \lor \Delta([0, c_2], [0, 0]) \\
= [c_1 \land \overline{b}, c_1] \lor [c_2, c_2] \\
= [c_1 \land c_2 \land \overline{b}, c_1 \lor c_2].
\]
\[
\Delta(c_1, b) \lor \Delta(c_2 \lor b, b) = \Delta([0, c_1], [0, b]) \lor \Delta([0, c_2 \lor b], [0, b]) \\
= [c_1 \land \overline{b}, c_1] \lor [c_2 \land \overline{b}, c_2 \lor b] \\
= [c_1 \land c_2 \land \overline{b}, c_1 \lor c_2 \lor b] \\
as \ c_1 \geq b.
\]

(b)
\[
\Delta(x \lor c_1, x) = \Delta([0, x \lor c_1], [0, x]) \\
= [c_1 \land \overline{x}, c_1 \lor x] \\
\Delta(x \lor c_1 \lor c_2, x \lor c_1, x \lor c_2) \\
\Delta(x \lor c_2, x) = \Delta([0, x \lor c_1 \lor c_2], [c_1 \land \overline{x}, c_1 \lor x] \lor [c_2 \land \overline{x}, c_2 \lor x]) \\
= \Delta([0, x \lor c_1 \lor c_2], [c_1 \land c_2 \land \overline{x}, c_1 \lor c_2 \lor x]) \\
\Delta([0, x \lor c_1 \lor c_2], (x \lor c_1) \land (x \lor c_2)) \\
= 0, x \lor (c_1 + c_2) \\
\Delta([0, x \lor c_1 \lor c_2], (x \lor c_1) \lor (x \lor c_2)) \\
\Delta([0, x \lor c_1 \lor c_2], (x \lor c_1) \lor (x \lor c_2)) \\
= [0, c_1 + c_2].
\]

\[\Box\]

Theorem 4.7. Let \(\langle c_1, B_1 \rangle\) locate \(A_1\) and \(\langle c_2, B_2 \rangle\) locate \(A_2\). Then
\(A_1 \subseteq A_2\) iff \(B_1 \subseteq B_2\) and \(c_1 \lor c_2 \in B_2\)

where \(a_i = \min B_i\).

Proof. Suppose that \(A_1 \subseteq A_2\). Then \(B_i\) is obtained from \(A_i\) as the image of the mapping \(x \mapsto \Delta(x \lor 0, x)\) and so clearly \(B_1 \subseteq B_2\).

The locator \(c_i\) has the property that \(\Delta(c_i, a_i)\) is an atom of \(A_i\). As \(A_1 \subseteq A_2\) this implies \(\Delta(c_1, a_1) \lor \Delta(c_2, a_2) \in A_2\). Hence \(\Delta(\Delta(c_1, a_1) \lor \Delta(c_2, a_2) \lor a_2, \Delta(c_1, a_1) \lor \Delta(c_2, a_2)) \in B_2\). Now
\[
\Delta(c_1, a_1) \lor \Delta(c_2, a_2) \lor a_2 = \Delta(c_1, a_1) \lor c_2 \\
as \Delta(c_2, a_2) \lor a_2 = c_2 \\
\geq \Delta(c_1, a_2) \lor c_2 \\
= c_1 \lor c_2
\]

As
\[
\Delta(c_1, a_1) \lor c_2 \leq c_1 \lor c_2
\]
we have
\[\Delta(c_1, a_1) \lor \Delta(c_2, a_2) \lor a_2 = c_1 \lor c_2. \]
\[\Delta(c_1, a_1) \lor \Delta(c_2, a_2) = \Delta(c_1, a_1) \lor \Delta(c_2 \lor a_1, a_1) \]
by lemma \[4.6\] (a).

Therefore
\[\Delta(\Delta(c_1, a_1) \lor \Delta(c_2, a_2) \lor a_2), \]
\[\Delta(\Delta(c_1, a_1) \lor \Delta(c_2, a_2)) = \Delta(c_1 \lor c_2 \lor a_1, \Delta(c_1, a_1) \lor \Delta(c_2 \lor a_1, a_1)) \]
\[= c_1 \lor c_2 \]
by lemma \[4.6\] (b).

Now let us suppose that \(B_1 \subseteq B_2\) and \(c_1 +_{a_1} c_2 \in B_2\). It suffices to show that if \(x \in B_1\) then \(\Delta(x \lor \Delta(c_1, a_1), x) \in A_2\) – as the set of such elements forms a set that generates \(A_1\).

First we note that \(x \geq a_1\) so that \(x \lor \Delta(c_1, a_1) = x \lor c_1\). Also we know \(x \in B_2\) so that
\[\Delta(x \lor c_2, x) = \Delta(x \lor \Delta(c_2, a_2), x) \in A_2\]
and furthermore \(\Delta(\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x), \Delta(x \lor c_2, x)) = \Delta(x \lor c_1, x)\). Thus it suffices to show that \(\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x) \in A_2\).

For this it is sufficient to show that the preimage over \(a_2\) is in \(B_2\) – i.e. \(\Delta(\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x) \lor a_2, \Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x)) \in B_2\).

\[\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x) \lor a_2 = x \lor c_1 \lor c_2 \]
so that
\[\Delta(\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x) \lor a_2), \]
\[\Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x)) = \Delta(x \lor c_1 \lor c_2, \Delta(x \lor c_1, x) \lor \Delta(x \lor c_2, x)) \]
\[= c_1 \lor c_2 \]
by lemma \[4.6\]
\[= (c_1 +_{a_1} c_2) \lor x \]
\[\in B_2 \]
as \(c_1 +_{a_1} c_2 \in B_2\) and \(x \in B_1 \subseteq B_2\).

\[\square \]

4.2. A closure operator. We will finally compute the Möbius function we want through an appeal to the following theorem about closure operators – see [10] Proposition 2.1.19.

Theorem 4.8. Let \(X\) be a locally finite partial order and \(x \mapsto \overline{x}\) be a closure operator on \(X\). Let \(\overline{X}\) be the suborder of all closed elements of \(X\) and \(y, z\) be in \(X\). Then
\[\sum_{\overline{y} = \overline{z}} \mu(y, x) = \begin{cases} \mu_{\overline{X}}(y, z) & \text{if } y \in \overline{X} \\ 0 & \text{otherwise.} \end{cases} \]

Proof. See [10].

There is several closure operators of interest that naturally apply to locator-pairs by modifying the second component. We will consider only one of them.

If \(\langle c, B \rangle\) is a locator-pair we define \(B^*\) to be the subalgebra of \([\min B, 1]\) generated by \(\{c\} \cup B\). Then we have \(\langle c, B^* \rangle = \langle c, B \rangle\).

Lemma 4.9. \(\langle c, B \rangle \mapsto \langle c, B^* \rangle\) is a closure operator on locator-pairs.
Proof. Since $B^* = B$ we trivially have $\langle c, B \rangle = \langle c, B \rangle$.
\[\langle c, B \rangle \leq \langle c, \overline{B} \rangle \text{ as } B \subseteq B^* \text{ and } c +_B c = b \in B^*. \]
If $\langle \alpha, B_1 \rangle \leq \langle \alpha, B_2 \rangle$ then $B_1 \subseteq B_2$ and so $B_1 \leq B_2$. Also $c_1, c_2 \in B_2^*$ and therefore $c_1 = (c_1 +_B c_2) +_B c_2$ is in B_2^*. Hence $B_1^* \subseteq B_2^*$. (The $b = \min B_i$.
\[\square \]

Lemma 4.10. $\langle c, B \rangle$ is closed iff $\langle c, B \rangle \approx \langle \min B, B \rangle$.

Proof. Let $b = \min B$.

It is clear that $\langle c, B \rangle$ is closed iff $c \in B$. Also, if $\langle c, B \rangle \approx \langle c', B \rangle$ and $c' \in B$ then $c \in B$ -- since $c = (c +_B c') +_B c'$. Therefore $\langle c, B \rangle \approx \langle b, B \rangle$ implies $c \in B$ and so $\langle c, B \rangle$ is closed.

Conversely, if $c \in B$ then $c +_B b = c \in B$ and so $\langle c, B \rangle \approx \langle b, B \rangle$.

This lemma tells us that the poset of closed pairs is the same as the poset of implication sublattices of $[0, 1]$ -- that we have considered elsewhere [7BO: ImpMob].

We also note that $\langle 1, \{1\} \rangle$ is closed and locates $\{1\}$, and $\langle 0, \{0, 1\} \rangle$ is closed and locates \mathcal{L}_n.

5. Getting the Möbius Function

We need to count the subalgebras whose closure is \mathcal{L} rather carefully.

We see that $\langle c, B \rangle \approx \mathcal{L}$ iff $\min B = 0$ and $B^* = [0, 1]$. Thus B is actually a Boolean subalgebra of $[0, 1]$. Let a_1, \ldots, a_m be the atoms of B. The atoms of B^* are the non-zero elements of
\[\{a_i \land c \mid 1 \leq i \leq m\} \cup \{a_i \land \neg c \mid 1 \leq i \leq m\}. \]
As these must be the atoms of $[0, 1]$ we see that every atom of B must be either a $[0, 1]$-atom or the join of two such atoms.

Let k be the number of B-atoms that are also $[0, 1]$-atoms and $\ell = m - k$. Then we have $k + 2\ell = n$ and the pair (c, B) is determined by the arrangement of $[0, 1]$-atoms (S, P) where
\[\begin{align*}
S &= \{a \mid a \text{ is a } B\text{-atom}\} \\
P &= \{(a, b) \mid a \neq b \text{ and } a \lor b \text{ is a } B\text{-atom}\}.
\end{align*} \]

The number $k + \ell$ is the dimension of B and the next lemma shows that this naturally determines a partition of the locators we are interested in. We also note that $k + \ell = m$ and $k + 2\ell = n$ if $k = 2m - n$ and $\ell = n - m$, so the pair is determined by the dimension of B -- as n is fixed. As we need $k, \ell \geq 0$ this also implies $n \geq m \geq \lceil \frac{k}{2} \rceil$.

Lemma 5.1. The intervals $\mathbb{I}_1 = \langle 1, \{1\} \rangle, \langle c_1, B_1 \rangle$ and $\mathbb{I}_2 = \langle 1, \{1\} \rangle, \langle c_2, B_2 \rangle$ are order-isomorphic iff B_1 and B_2 are isomorphic.

Proof. Suppose that $\mathbb{I}_1 \approx \mathbb{I}_2$. Let A_i be the MR-subalgebra located by $\langle c_i, B_i \rangle$. Let a_i be an A_i-vertex and let $j > s_1 > \cdots > s_k = a_i$ be a maximal chain in $A_i \cap [a_i, 1]$. Then we have a maximal chain of subalgebras of A_i induced by the intervals $[s_j, 1] \cap A_i$ -- this is a maximal chain as the A_i-rank goes up by one as j increases by one.

From this we see that the rank of A_1 is equal to that of A_2. As the rank of B_i equals that of A_i we have $B_1 \approx B_2$.

Conversely, if $B_1 \approx B_2$ then we have $A_1 \approx \mathcal{I}(B_1) \approx \mathcal{I}(B_2) \approx A_2$ from which the result is clear. \[\square \]

Now we need to count the number of MR-algebras with locator of a particular dimension.

Lemma 5.2. There are $2^n - m S(n, m)$ MR-subalgebras of \mathcal{L} with dimension m and locator a subalgebra of $[0, 1]$.
Remark 5.1. $S(n, m)$ is a Stirling number of the second kind, counting the number of partitions of a set of size n into m pieces.

Proof. There are $S(n, m)$ Boolean subalgebras of $[0, 1]$ of dimension m – since each subalgebra corresponds to a partition of the atoms of $[0, 1]$ into m pieces.

Given such a subalgebra, we see that $(c, B) \sim (c', B)$ iff $c + c' \in B$ iff c and c' are in the same coset in $[0, 1]$ relative to B. Thus the number of cosets of B equals the number of MR-subalgebras located by B, i.e., 2^{n-m}.

Hence there are $2^{n-m}S(n, m)$ such MR-subalgebras. □

Now we are able to compute the Möbius function. First a small lemma.

Lemma 5.3. Let M be the partial order of MR-subalgebras of \mathcal{L}. Then \overline{M} is isomorphic to the partial order of implication sublattices of $[0, 1]$.

Proof. We know that $(c, B) = (c, B)$ iff $(c, B) \sim (\text{min } B, B)$. Thus the mapping that takes a closed element to the second component of a locator pair is an order isomorphism. □

Corollary 5.4.

$$\mu_M(\{1\}, \mathcal{L}) = n!.$$

Proof. Noting that $\{1\}$ is closed we can apply the lemma and equation (3). □

Using this result and theorem 4.8 we see that

$$\sum_{(c, B) = \mathcal{L}} \mu(\{1\}, (c, B)) = n!$$

and so

$$\mu(\{1\}, \mathcal{L}_n) = n! - \sum_{(c, B) = \mathcal{L}_{n=1}} \mu(\{1\}, (c, B))$$

$$= n! - \sum_{m=\lceil \frac{n}{2} \rceil}^{n-1} \sum_{\dim B = m} \mu(\{1\}, (c, B))$$

$$= n! - \sum_{m=\lceil \frac{n}{2} \rceil}^{n-1} 2^{n-m}S(n, m)\mu(\{1\}, \mathcal{L}_m).$$

Now let $a_n = \mu(\{1\}, \mathcal{L}_n)$ so we can rewrite this as

$$\frac{a_n}{2^n n!} = \frac{1}{2^n} - \sum_{m=\lceil \frac{n}{2} \rceil}^{n-1} (m!S(n, m)) \frac{a_m}{2^m m!}$$

or as

$$\sum_{m=\lceil \frac{n}{2} \rceil}^{n} S(n, m) \frac{a_m}{2^m} = n!.$$
REFERENCES

[1] C. G. Bailey and J. S. Oliveira, An Axiomatization for Cubic Algebras, Mathematical Essays in Honor of Gian-Carlo Rota (B. E. Sagan and R. P. Stanley, eds.), Birkhäuser, 1998., pp. 305–334.
[2] ______, Cube-like structures generated by filters, Algebra Universalis 49 (2003), 129–158.
[3] ______, The Möbius Function on Implication sublattices of a Boolean algebra, in preparation, available at arXiv:0902.0623v1[math.CO]
[4] ______, Automorphisms of Cubic Algebras, in preparation.
[5] M. K. Bennett, The face lattice of an n-dimensional cube, Algebra Universalis 14 (1982), 82–86.
[6] W. Y. C. Chen and J. S. Oliveira, Implication Algebras and the Metropolis-Rota Axioms for Cubic Lattices, J.Algebra 171 (1993), 383–396.
[7] W. Y. C. Chen and R. P. Stanley, Derangements on the n-cube, Discrete Math. 115 (1993), 65–75.
[8] N. Metropolis and G.-C. Rota, Combinatorial Structure of the faces of the n-Cube, SIAM J.Appl.Math. 35 (1978), 689–694.
[9] J. S. Oliveira, The Theory of Cubic Lattices, Ph.D. Thesis, MIT, 1992.
[10] E. Spiegel and C. J. O’Donnell, Incidence Algebras, Marcel Dekker Inc., 1997.

SCHOOL OF MATHEMATICS, STATISTICS & OPERATIONS RESEARCH, VICTORIA UNIVERSITY OF WELLINGTON, PO BOX 600, WELLINGTON, NEW ZEALAND
E-mail address: Colin.Bailey@vuw.ac.nz

PACIFIC NORTHWEST NATIONAL LABORATORIES, RICHLAND, U.S.A.
E-mail address: Joseph.Oliveira@pnl.gov