The wave functions in the presence of constraints - Persistent Current in Coupled Rings

David Schmeltzer

Physics Department, City College of the City
University of New York New York, New York 10031

Abstract

We present a new method for computing the wave function in the presence of constraints. As an explicit example we compute the wave function for the many electrons problem in coupled metallic rings in the presence of external magnetic fluxes. For equal fluxes and an even number of electrons the constraints enforce a wave function with a vanishing total momentum and a large persistent current and magnetization in contrast to the odd number of electrons where at finite temperatures the current is suppressed. We propose that the even-odd property can be verified by measuring the magnetization as a function of a varying gate voltage coupled to the rings. By reversing the flux in one of the ring the current and magnetization vanish in both rings; this can be used as a non-local control device.
The electronic wave function in quantum nanosystems at low temperatures is sensitive to interactions and topology such as the genus number \(g \) [1,2] (the number of holes on a closed surface). As a result, the wave function has to satisfy certain constraints, which generate conserved currents [3,4]. The implementation of the constraints is a non-trivial task in Quantum Mechanics [4]. The root of the difficulty is that for a given constraint the hermitian conjugate constraint operator might not be a constraint, therefore a reduction of the phase space is not possible [4]. This problem is solved by including non-physical ghost fields [4]. In Classical Mechanics second class constraints [4] are solved by replacing the Poisson brackets by the Dirac bracket and quantization is performed according to the Dirac correspondence principle [4,5] with the unpleasant feature that the quantum representation for the operators might not always be possible. Here we will solve the constraints without the need to introduce non-physical operators.

As a model problem we will consider the Aharonov-Bohm geometry [6-11] for the case that the genus is \(g = 2 \). This corresponds to a double ring structure perfectly glued at one point to form a character “8” structure (see Fig. 1). Such a structure gives rise to an interesting Quantum Mechanical problem [12]. Gluing the two rings at the common point \(x = 0 \) gives rise to a constraint problem, which was solved numerically using the Dirac brackets [4,12].

In Sec. II we present the proposed method for computing the wave function with constraints. We will work with a folded geometry, therefore the problem will be equivalent to a two-component spinor on a single ring. The constraint is such that at the common point \(x = 0, L \) the annihilation operators are identified as a single operator \([C_1(x) - C_2(x)]|_{x=0,L} = 0\).

Using the Dirac method [3] we compute the Noether currents [4] which allow us to identify the constraint currents. In the presence of external fluxes the constraints are translated into a set of equations for the wave function. The constraints induce correlations between the different components of the wave function. For non-interacting electrons the wave function for \(N \) electrons is given by the Slater determinant of the single particle states, but the current is the same if we sum over the single electronic states. For the present problem we must work with the many-body wave function of the two rings (which is not a simple product of the two rings).
In Sec. III we discuss the constraint method with the scattering theory and show that the strong coupling limit between the rings corresponds to the constraint problem considered in Sec. I. In Sec. IV we use the constraint method to compute the many-body wave function for two rings in the presence of constraints. We find that the many particle wave function built from the single particle wave function which obeys the constraints is different from the many-body wave function which obeys the constraints. We show that the constraints impose additional relations between the amplitudes of the many-body wave function. In Sec. V we present the modification needed in order to include the physical geometry of the rings, e.g. finite thickness. As a concrete example we choose two narrow cylinders which are in contact on the line \(x = 0\). Section VI is devoted to discussions.

I. THE CONSTRAINT METHOD FOR TWO RINGS

We consider two rings threaded by a magnetic flux \(\Phi_\alpha\), where \(\alpha = 1, 2\) represent the index for each ring \(\varphi_\alpha = 2\pi(e\Phi_\alpha/hc) = 2\pi \Phi_\alpha/\Phi_0 \equiv 2\pi \hat{\varphi}_\alpha\). The rings have a common point at \(y = 0\) (Fig. 1). The first ring is restricted to the region \(0 \leq y \leq L\) with the single particle creation and annihilation operator obeying periodic boundary conditions \(C(y + L) = C(y)\) and \(C^\dagger(y + L) = C^\dagger(y)\). The second ring is restricted to \(-L \leq y \leq 0\) with similar boundary conditions \(C(y - L) = C(y)\) and \(C^\dagger(y - L) = C^\dagger(y)\). We introduce two sets of operators: for the first ring \(0 \leq y \leq L\), \(C_1(x) = C(x) = C(y)\), and \(C^\dagger_1(x) = C^\dagger(x) = C^\dagger(y)\) and for the second ring \(-L \leq y \leq 0\), \(C_2(x) = C(-x) = C(y)\), \(C^\dagger_2(x) = C^\dagger(-x) = C^\dagger(y)\). Due to the folding, two equal fluxes \(\hat{\varphi}_1 = \hat{\varphi}_2 \equiv \hat{\varphi}\) will be described by two opposite fluxes.

\[
H = \int_0^L dx \left[\frac{\hbar^2}{2m} C^\dagger_1(x) \left(-i\partial_x - \frac{2\pi}{L} \hat{\varphi}_1 \right)^2 C_1(x) + \frac{\hbar^2}{2m} C^\dagger_2(x) \left(i\partial_x - \frac{2\pi}{L} \hat{\varphi}_2 \right)^2 C_2(x) \right].
\]

The Continuity Constraint

The Hamiltonian given in Eq. 1 will be investigated under the condition that the annihilation operators at the contact point must be identified as one operator. This is implemented with the help of the constraint operator:

\[
\eta \equiv [C_1(x) - C_2(x)]|_{x=0,L}; \quad \eta|\chi, N > = 0
\]
Following Dirac [3], the constraints and the time derivative of the constraints must be satisfied at any time. We must have $\eta|\chi, N > = 0$ and $\frac{d}{dt}\eta|\chi, N > = 0$.

The Eigenvalue Constraint

In order to satisfy the constraint at any time we need to show that $\frac{d}{dt}\eta|\chi, N > = 0$. This new equation is determined by the time evolution of the constraint operator η. Following Dirac [3] we introduce a Lagrange multiplier λ and replace the Hamiltonian H by the total Hamiltonian $\tilde{H} = H + \lambda \eta^\dagger \eta$, where η is the constraint and λ is the Lagrange multiplier. Using the Heisenberg equation of motion we obtain:

$$\frac{d}{dt}\eta|\chi, N > = \frac{1}{ih}[\eta, H]|\chi, N > = \frac{1}{ih}(\{\eta, H\} + \lambda \eta)|\chi, N > = \frac{1}{ih}\{\eta, H\}|\chi, N > = 0.$$

In obtaining this result we have used the relations: $[\eta, \lambda \eta^\dagger \eta]|\chi, N > = \lambda \eta|\chi, N >$. Using the constraint condition $\eta|\chi, N > = 0$ we find that the condition $\frac{d}{dt}\eta|\chi, N > = 0$ generates a new constraint operator which we identify as the *eigenvalue* constraint operator E given by $[\eta, H] = \frac{\hbar^2}{2m}E$:

$$E \equiv \left[\left(-i\frac{\partial}{\partial x} - \frac{2\pi}{L}\hat{\varphi}_1 \right)^2 C_1(x) - \left(-i\frac{\partial}{\partial x} + \frac{2\pi}{L}\hat{\varphi}_2 \right)^2 C_2(x) \right]_{x=0,L}; \quad E|\chi, N > = 0. \quad (3)$$

The Current Constraint

The current constraint is obtained from the Noether current. We perform an infinitesimal gauge transformation $\tilde{C}^\dagger(x)|0 > = e^{ix(x)}C^\dagger(x)$. Due to the folding this transformation translates into: $\tilde{C}^\dagger_1(x)|0 > = e^{ix(x)}C^\dagger_1(x)|0 >$ and $\tilde{C}^\dagger_2(x)|0 > = e^{ix(-x)}C^\dagger_2(x)|0 >$. The state $|\chi, N >$ must be invariant under a periodic gauge transformation $\epsilon(x) = \epsilon(x + L)$. As a result of the transformation the Hamiltonian $\tilde{h} = \frac{\hbar^2}{2m}[\delta_{\alpha,1}(-i\partial_x - \frac{2\pi}{L}\hat{\varphi}_1)^2 + \delta_{\alpha,2}(-i\partial_x + \frac{2\pi}{L}\hat{\varphi}_2)^2]$ is replaced by $\tilde{h} = \frac{\hbar^2}{2m}[\delta_{\alpha,1}(-i\partial_x - \frac{2\pi}{L}\hat{\varphi}_1 + \partial_x(\epsilon(x)))^2 + \delta_{\alpha,2}(-i\partial_x + \frac{2\pi}{L}\hat{\varphi}_2 + \partial_x(\epsilon(-x)))^2]$. The constraint is invariant under the gauge transformation $\eta^\dagger(x)\eta(x) = \tilde{\eta}^\dagger(x)\tilde{\eta}(x)$. The constraint operator η is replaced by the transformed one $\tilde{\eta} \equiv [e^{-i\epsilon(x)}\eta(x)]|x=0,L \equiv [e^{-i\epsilon(x)}\tilde{C}^\dagger_1(x) - e^{-i\epsilon(-x)}\tilde{C}^\dagger_2(x)]|x=0,L$, $\tilde{\eta}|\chi, N > = 0$. $[\epsilon(x)$ is an arbitrary periodic function in L, which is continuous at $x = 0$ and has a continuous derivative $\partial_x(\epsilon(x)) \neq 0$ at $x = 0$. For example, any function with the Fourier expansion $\epsilon(x) = \sum_{r=1}^{\infty} \hat{\epsilon}_r sin(\frac{2\pi}{L}r x)$ and Fourier components $\sum_{r=1}^{\infty} \hat{\epsilon}_r \neq 0$ obeys this condition.] The transformed constraint $\tilde{\eta}|\chi, N > = 0$ must hold at any time, therefore we have the equation: $\frac{d}{dt}\tilde{\eta}|\chi, N > = 0$. Applying the Heisenberg equation of motion for the transformed Hamiltonian \tilde{h} and keeping only first order terms in $\partial_x(\epsilon(x))$ that obey
\[\partial_x (\epsilon(x))|_{x=0} \neq 0 \] gives us:

\[
i \hbar \frac{d}{dt} \tilde{n}|\chi, N > = \frac{\hbar^2}{2m} \int_0^L dx [\tilde{\eta}, \tilde{C}_1^\dagger(x)(-i\partial_x - \frac{2\pi}{L} \hat{\phi}_1 + \partial_x (\epsilon(x)))^2 \tilde{C}_1(x) + \tilde{C}_2^\dagger(x)(-i\partial_x + \frac{2\pi}{L} \hat{\phi}_2 + \partial_x (\epsilon(x)))^2 \tilde{C}_2(x)]|\chi, N > = 0. \tag{4}\]

Using the energy constraint \(E|\chi, N > = 0 \) we identify the current continuity constraint \(\beta \):

\[
\beta = \left[\left(-i\partial_x - \frac{2\pi}{L} \hat{\phi}_1 \right) C_1(x) + \left(-i\partial_x + \frac{2\pi}{L} \hat{\phi}_2 \right) C_2(x) \right]|_{x=0,L} ; \beta|\chi, N > = 0. \tag{5}\]

To conclude the eigenstate \(|\chi, N >\) for \(N \) particles in two rings must satisfy the following equations:

\[
H|\chi, N >= E(N)|\chi, N > ; \eta|\chi, N > = 0 ; E|\chi, N >= 0 ; \beta|\chi, N >= 0 \tag{6}\]

The eigenfunctions will be given in terms of the amplitude wave functions: For example the single particle state is given by:

\[
|\chi, N = 1 >= \int_0^L dx [f_1(x)C_1^\dagger(x) + f_2(x)C_2^\dagger(x)]|0 > .
\]

Similarly the two particle state is given by:

\[
|\chi, N = 2 >= \int_0^L dx \int_0^L dy [f_{1,1}(x,y)C_1^\dagger(x)C_1^\dagger(y) + f_{1,2}(x,y)C_1^\dagger(x)C_2^\dagger(y) + f_{2,1}(x,y)C_2^\dagger(x)C_1^\dagger(y) + f_{2,2}(x,y)C_2^\dagger(x)C_2^\dagger(y)]|0 > . \tag{7}\]

The amplitudes \(f_1(x), f_2(x) \) and \(f_{1,1}(x,y), f_{1,2}(x,y), f_{2,1}(x,y), f_{2,2}(x,y) \) are determined by the condition given in Eq. (8).

The Current Operator

The \(N \) particle wave function \(< x_N, ... x_1 | \chi, N >\) must obey periodic boundary conditions:

\(< 0|C_{\alpha_1}(x_1)C_{\alpha_2}(x_2)...C_{\alpha_N}(x_N)|\chi, N > = \frac{< 0|C_{\alpha_1}(x_1)C_{\alpha_2}(x_2)...C_{\alpha_N}(x_N)|\chi, N >}{< N, \chi | \chi, N >}\)

where \(\alpha_i \) takes two values \(\alpha_i = 1 \) or \(\alpha_i = 2 \).

Once the eigenfunction \(|\chi, N >\) is known we can use the current operators \(\hat{J}_1(x) \) and \(\hat{J}_2(x) \) in the second quantized form to compute the current in each ring:

\[
\hat{J}_1(x) = \frac{\hbar}{i2m} [C_1^\dagger(x)(\partial_x - \frac{2\pi}{L} \hat{\phi}_1)C_1(x) - ((\partial_x - \frac{2\pi}{L} \hat{\phi}_1)C_1^\dagger(x))C_1(x) ; J_1(x) = \frac{< N, \chi | \hat{J}_1(x) | \chi, N >}{< N, \chi | \chi, N >}.
\]

\[
\hat{J}_2(x) = \frac{\hbar}{i2m} [C_2^\dagger(x)(\partial_x + \frac{2\pi}{L} \hat{\phi}_2)C_2(x) - ((\partial_x + \frac{2\pi}{L} \hat{\phi}_2)C_2^\dagger(x))C_2(x) ; J_2(x) = \frac{< N, \chi | \hat{J}_2(x) | \chi, N >}{< N, \chi | \chi, N >}.
\]
II. THE EMERGING CONSTRAINT CONDITIONS FROM THE TIGHT BINDING FORMULATION

The Hamiltonian in Eq. (1) must be supplemented by the coupling term between the rings. The most general form for the coupling is given by:

\[H_{\text{coupling}} = \int_0^L dx \delta(x) [-U_\perp(C_1^\dagger(x)C_2(x) + C_2^\dagger(x)C_1(x)) + U_\parallel(C_1^\dagger(x)C_1(x) + C_2^\dagger(x)C_2(x))] \]

\[= \int_0^L dx \delta(x) [U_\perp(C_1^\dagger(x) - C_2^\dagger(x))(C_1(x) - C_2(x)) + (U_\parallel - U_\perp)(C_1^\dagger(x)C_1(x) + C_2^\dagger(x)C_2(x))] \]

We introduce the notation \(U_\perp = tU \) and \(U_\parallel = sU \) where \(s \) and \(t \) are parameters. Using the spinor representation \(\hat{C}(x) = [C_1(x), C_2(x)]^T \) we can rewrite the coupling Hamiltonian in terms of the Pauli matrix \(\sigma_1 \) and the identity matrix \(I \):

\[H_{\text{coupling}} = \int_0^L dx \delta(x) U \Psi^+(x) [(sI - t\sigma_1)] \Psi(x). \]

This problem belongs to the class of delta function potential considered in Quantum Mechanics.

A-The wave function for a single particle, \(N=1 \)

\[|\chi, N = 1 >= \int_0^L dx [f_1(x)C_1^\dagger(x) + f_2(x)C_2^\dagger(x)]|0 >, \]

\[(H + H_{\text{coupling}})|\chi, N = 1 >= E(1)|\chi, N = 1 >. \]

As a result we obtain the Schrödinger equation in terms of the two amplitudes \(f_1(x), f_2(x) \).

The Hamiltonian in Eq. (1) together with \(H_{\text{coupling}} \) can be solved using the method for delta function potentials. We integrate the single particle Shrödinger equation around \(x = 0, L \) and obtain the discontinuity derivative of the spinor \(\Psi(x) = [f_1(x), f_2(x)]^T \) which obeys

\[\frac{d\Psi(x)}{dx} \bigg|_{x=\epsilon} = \frac{d\Psi(x)}{dx} \bigg|_{x=L-\epsilon}. \]

\[\left[(-i\partial_x - \frac{4\pi}{L} \hat{\varphi}_1) f_1(x) \right]_{x=L-\epsilon}^{x=\epsilon} = \frac{-2im}{\hbar^2} U_\frac{1}{2} \left[(sf_1(\epsilon) - tf_2(\epsilon)) + (sf_1(L-\epsilon) - tf_2(L-\epsilon)) \right], \]

\[\left[(-i\partial_x + \frac{4\pi}{L} \hat{\varphi}_2) f_2(x) \right]_{x=L-\epsilon}^{x=\epsilon} = \frac{-2im}{\hbar^2} U_\frac{1}{2} \left[(sf_2(\epsilon) - tf_1(\epsilon)) + (sf_2(L-\epsilon) - tf_1(L-\epsilon)) \right]. \]

This set of equations gives us the boundary conditions for the present problem. Indeed these equations are determined by the discontinuity function \(U[sf_2(0) - tf_1(0)] \). For this case the solution follows from the method of the delta function potential–see Griffiths Quantum Mechanics section, 2.5 page 73.
B-The wave function for two particles, $N=2$

In order to compute the wave function for N particles we have to compute the boundary conditions for the amplitudes of the wave function. We will consider the case of two particles which can be generalized to many particles.

$$|\chi, N = 2 > = \int_0^L dx_1 \int_0^L dx_2 [f_{1,1}(x_1, x_2)C_1^t(x_1)C_1^t(x_2) + f_{1,2}(x_1, x_2)C_1^t(x_1)C_2^t(x_2) + f_{2,2}(x_1, x_2)C_2^t(x_1)C_2^t(x_2)]|0 >.$$

Using the eigenvalue equation: $(H + H_{coupling})|\chi, N = 2 > = E(2)|\chi, N = 2 >$ we integrate the two particle Shrödinger equation around $x_1 = 0, L$ and obtain the discontinuity derivative for the three amplitudes $f_{1,1}(x_1, x_2)$, $f_{2,2}(x_1, x_2)$, $f_{1,2}(x_1, x_2)$

$$[(i\partial_{x_1} - \frac{4\pi i}{L}\hat{\sigma}_1)f_{1,1}(x_1, x_2)|_{x_1=L-\epsilon} = -\frac{i2m}{\hbar}U\frac{1}{2}(s(f_{1,1}(x_1 = \epsilon, x_2) + f_{1,1}(x_1 = L - \epsilon, x_2))),$$

$$[(i\partial_{x_1} - \frac{4\pi i}{L}\hat{\sigma}_1)f_{2,2}(x_1, x_2)|_{x_1=L-\epsilon} = -\frac{i2m}{\hbar}U\frac{1}{2}(-t(f_{2,2}(x_1 = \epsilon, x_2) + f_{2,2}(x_1 = L - \epsilon, x_2))),$$

$$[(i\partial_{x_1} - \frac{4\pi i}{L}\hat{\sigma}_1)f_{1,2}(x, x_2)|_{x_1=L-\epsilon} = -\frac{i2m}{\hbar}U\frac{1}{2}[(s-t)(f_{1,2}(x_1 = \epsilon, x_2) + f_{1,2}(x_1 = L - \epsilon, x_2))].$$

Similar equations are obtained by exchanging x_1 with x_2. This set of equations determines the two particle wave function $<x_1, x_2|\chi, N = 2 >$. This procedure is rather involved but can be generalized to the N particles case.

C-The strong coupling limit $U \to \infty$

Next we investigate the strong coupling limit and show that the problem can be simplified to a constraint problem. We consider the case $s = t = 1$ for which we have the scattering matrix S given by:

$$S = T \exp^{-i\frac{U}{\hbar}\int_{-\infty}^{\infty} dr [(C_1^t(x=0,\tau)-C_2^t(x=0,\tau))(C_1(x=0,\tau)-C_2(x=0,\tau))].$$

For $U \to \infty$ the scattering matrix S obeys:

$$\lim_{U \to \infty} T e^{-i\frac{U}{\hbar}\int_{-\infty}^{\infty} dr [(C_1^t(x=0,\tau)-C_2^t(x=0,\tau))(C_1(x=0,\tau)-C_2(x=0,\tau))]|\chi, N > \to (C_1(x = 0, \tau) - C_2(x = 0, \tau))|\chi, N > = 0.$$

As a result the field $(C_1(x = 0, \tau) - C_2(x = 0, \tau))$ is enforced to satisfy $C_1(x = 0, \tau) - C_2(x = 0, \tau) = 0$ which is equivalent to the constraint condition:

$$\eta|\chi, N > \equiv [C_1(x) - C_2(x)]|_{x=0,L}|\chi, N > = 0.$$
III. COMPUTATION OF THE WAVE FUNCTION FOR EQUAL FLUXES

For the strong coupling limit we will use the constraints given by the equation 6. When the fluxes are the same for both rings the constraint operator β is simplified to a new constraint $\gamma = i\beta(\hat{\phi}_1 = \hat{\phi}_2)$:

$$\gamma = [\partial_x C_1(x) + \partial_x C_2(x)]|_{x=0,L} ; \quad \gamma|\chi, N >= 0.$$

(10)

The N particles wave function for equal fluxes must satisfy the following conditions :

$$H|\chi, N >= E(N)|\chi, N > ; \quad \eta|\chi, N >= 0 ; \quad E|\chi, N >= 0 ; \quad \gamma|\chi, N >= 0.$$

(11)

A-The single particle case

The single particle case corresponds to one electron in two rings. The state for one particle is given by:

$$|\chi, N = 1 > = \int_0^L dx [f_1(x)C_1^i(x) + f_2(x)C_2^i(x)]|0 >.$$

The two-component spinor amplitudes $f_1(x)$ and $f_2(x)$ represent the wave function. Using the Hamiltonian given in Eq. (1) we can write down the eigenvalue equation $H|\chi, N = 1 >= E(1)|\chi, N = 1 >$. A standard calculation shows this equation is equivalent to two eigenvalue equations for the amplitudes $f_1(x)$ and $f_2(x)$.

$$\frac{\hbar^2}{2m} \left(-i\partial_x - \frac{2\pi}{L} \hat{\phi} \right)^2 f_1(x) = E(1)f_1(x) ; \quad \frac{\hbar^2}{2m} \left(-i\partial_x - \frac{2\pi}{L} \hat{\phi} \right)^2 f_2(x) = E(1)f_2(x).$$

(12)

The constraint operators given in Eq. (8) generate the followings boundary conditions at $x = 0$:

$$f_1(x = 0) = f_2(x = 0) ; \quad [\partial_x f_1(x) + \partial_x f_2(x)]|_{x=0} = 0.$$

(13)

The first equation is equivalent to the continuity of the wave function at $x = 0$ and the second equation describes the continuity of the derivative of the wave function (once we fold back the space) at $x = 0$. From the eigenvalue equation given in Eq. (9) we find:

$$E(n; N = 1) = \frac{\hbar^2}{2m}(\frac{2\pi}{L})^2 (n - \hat{\phi})^2$$

for the ring one and

$$E(-n; N = 1) = \frac{\hbar^2}{2m}(\frac{2\pi}{L})^2 (n - \hat{\phi})^2$$

for the second ring. Due to the folding of the space around $x=0$, the eigenvalue with the quantum number n in ring one and Quantum number $-n$ in the second ring are equal. This result holds for the quantum numbers, $n = 0, \pm 1, \pm 2, \ldots$. The single particle state $|n, N = 1 >$ for $\hat{\phi} \neq \frac{1}{2}$ is given by:

$$|n; N = 1 > = \frac{1}{\sqrt{2L}} \int_0^L dx [e^{i\frac{2\pi}{L}nx} C_1^i(x) + e^{-i\frac{2\pi}{L}nx} C_2^i(x)]|0 >.$$

(14)
To understand this result we fold back the ring such that \(x \rightarrow -x \). This means that if the particle in the first ring \((x < 0)\) has the momentum \(\frac{2\pi}{L} n \) it will be perfectly transmitted to the second ring with the same momentum and the same amplitude. If we remove the point \(x = 0 \) and create a ring of a double length \(2L \), the current will be the same as in one ring with the same flux. Indeed, the only difference being the doubling of the size. As a result, we will have half of the current in a single ring. (If we rescale the length, we find the same current as in one ring [11].) It is important to remark that the states \(|n; N = 1, +>\) and \(|-n; N = 1, >\) correspond to two different eigenvalues. Therefore, for a given eigenvalue we can not have a linear combination of waves \(e^{i\frac{2\pi}{L} nx} \) and \(e^{-i\frac{2\pi}{L} nx} \) in the same ring. The wave \(e^{i\frac{2\pi}{L} nx} \) in ring one will be transmitted into the second ring without any reflection, the form of the transmitted wave will be \(e^{-i\frac{2\pi}{L} nx} \) (in the unfolded coordinates the form of the wave will be \(e^{i\frac{2\pi}{L} ny} \) in the second ring for \(y < 0 \)). In Fig. 1 we show the current flow for two rings with equal fluxes in the unfolded geometry. The current vanishes if we have the opposite flux in the two rings, as depicted in Fig. 2.

The case \(\hat{\phi} = \frac{1}{2} \) deserves special consideration. The eigenvalue operator \(E \) has two pairs of momentum with the same eigenvalue: The first pair \(n_1 = n \) in the first ring and \(n_2 = -n \) for the second ring and the second pair \(n'_1 = -n + 2\hat{\phi} \) (ring one) and \(n'_2 = n - 2\hat{\phi} \) (ring two). As a result we obtain two degenerate eigenstates \(|n; N = 1, +>\) and \(|n; N = 1, ->\) given by:

\[
|n; N = 1, +> = \frac{1}{\sqrt{2L}} \int_0^L dx [e^{i\frac{2\pi}{L} nx} C_1^+(x) + e^{-i\frac{2\pi}{L} nx} C_2^+(x)]|0> ;
\]

\[
|n; N = 1, -> = \frac{1}{\sqrt{2L}} \int_0^L dx [e^{-i\frac{2\pi}{L} (n-2\hat{\phi})x} C_1^+(x) + e^{i\frac{2\pi}{L} (n-2\hat{\phi})x} C_2^+(x)]|0> .
\]

As a result the current for the state \(|n; N = 1, ->\) will be opposite to the current for the state \(|n; N = 1, +>\). Since the two eigenstates \(|n; N = 1, +>\) and \(|n; N = 1, ->\) are degenerate, the single particle state will be given by two linear combinations of the eigenstates \(|n; N = 1, +>\) and \(|n; N = 1, ->\): \(|\chi(n), \hat{\phi} = \frac{1}{2}; N = 1 >\) \(= \alpha_+|n; N = 1, +> \pm \alpha_-|n; N = 1, +> \) with the condition \(|\alpha_+|^2 + |\alpha_-|^2 = 1 \). For the special values \(|\alpha_+|^2 = |\alpha_-|^2 \) the current will vanish.

B-The Two particles state

We will construct the two particles state and will show that due to the constraints not all the antisymmetric combination of the single particles states which obey the constraints
are allowed. Imposing the constraints on the two particles state imposes further restrictions. The two particles eigenstate is determined by the three components \(f_{11}(x_1, x_2)\), \(f_{12}(x_1, x_2)\) and \(f_{22}(x_1, x_2)\) that obey the eigenvalue equations:

\[
\frac{\hbar^2}{2m}[(-i\partial_{x_1} - \frac{2\pi}{L}\hat{\phi})^2 + (-i\partial_{x_2} - \frac{2\pi}{L}\hat{\phi})^2]f_{11}(x_1, x_2) = E(2)f_{11}(x_1, x_2),
\]

\[
\frac{\hbar^2}{2m}[(-i\partial_{x_1} - \frac{2\pi}{L}\hat{\phi})^2 + (i\partial_{x_2} - \frac{2\pi}{L}\hat{\phi})^2]f_{12}(x_1, x_2) = E(2)f_{12}(x_1, x_2),
\]

\[
\frac{\hbar^2}{2m}[(i\partial_{x_1} - \frac{2\pi}{L}\hat{\phi})^2 + (i\partial_{x_2} - \frac{2\pi}{L}\hat{\phi})^2]f_{22}(x_1, x_2) = E(2)f_{22}(x_1, x_2).
\]

The amplitudes \(f_{11}(x_1, x_2)\), \(f_{12}(x_1, x_2)\) and \(f_{22}(x_1, x_2)\) are constructed from the single particle states which are represented in terms of the complex coordinate \(Z(x) = e^{i\frac{2\pi}{L}x}\) and \(Z^*(x) = e^{-i\frac{2\pi}{L}x}\). We introduce the **antisymmetry operator** \(\hat{A}\), which acts both on the space coordinates and the ring index matrices \(A_{11}\) (two particles on ring one), \(A_{12}\) (one particle on ring one and the second on ring two), and \(A_{22}\) (two particles on ring two). When the operator \(\hat{A}\) acts on a two particle wave function it gives:

\[
\hat{A}[A_{12}(Z(x_1))^n(Z(x_2))^m] \equiv [A_{12}Z(x_1))^m(Z(x_2))^n - A_{21}Z(x_2))^n(Z(x_1))^m] \quad \text{and} \quad \hat{A}[A_{ii}(Z(x_1))^n(Z(x_2))^m] \equiv [A_{ii}Z(x_1))^m(Z(x_2))^n - A_{ii}Z(x_2))^n(Z(x_2))^m]\]

for \(i = 1, 2\).

From the eigenvalue constraint \(E|n, m; N = 2 \geq 0\) we obtain the condition for the eigenvalues. The only possible solution for these equations are states with \(m = -n\) which give eigenvalues \(E(2) = E(n, -n; N = 2) = \frac{\hbar^2}{2m}((2\pi/L)^2[(n - \hat{\phi})^2 + (-n - \hat{\phi})^2], n = 0, \pm 1, \pm 2...\)

For amplitude \(f_{11}(x_1, x_2)\) we consider only the single particle states with \(n\) and \(-n\) which have the eigenvalue \(E(2) = \frac{\hbar^2}{2m}((2\pi)^2[(n - \hat{\phi})^2 + (-n - \hat{\phi})^2]\). We construct the antisymmetric amplitudes will be given by:

\[
f_{11}(x_1, x_2) = A_{11}[(Z(x_1))^n(Z(x_2))^n - (Z(x_2))^n(Z(x_1))^n].
\]

Similarly, for two electrons on the second ring \(f_{22}(x_1, x_2)\) we have:

\[
f_{22}(x_1, x_2) = B_{11}[(Z(x_1))^n(Z(x_2))^n - (Z(x_2))^n(Z(x_1))^n].
\]

The amplitude for one electron on ring one and the second electron on ring two is given by \(f_{12}(x_1, x_2)\). This corresponds to two pairs of states \(n\), \(n\) and \(-n\), \(-n\). The eigenvalue for the pair \(n\), \(n\) is equal to \(E(2) = \frac{\hbar^2}{2m}((2\pi/L)^2[(n - \hat{\phi})^2 + (-n - \hat{\phi})^2]\). For \(-n\), \(-n\) we have the same eigenvalue. The amplitude \(f_{12}(x_1, x_2)\) is given by the linear combination of the two pairs. Using the **antisymmetry operator** \(\hat{A}\) we obtain the amplitude \(f_{12}(x_1, x_2)\) for the two pairs:
\[f_{12}(x_1, x_2) = \tilde{\mathcal{A}}[A_{12}(Z(x_1))^n(Z(x_2))^n] + \tilde{\mathcal{A}}[B_{12}(Z(x_1))^{-n}(Z(x_2))^{-n}] \]
\[= [A_{12}(Z(x_1))^n(Z(x_2))^n - A_{21}(Z(x_2))^n(Z(x_1))^n] + \\
[B_{12}(Z(x_1))^{-n}(Z(x_2))^{-n} - B_{21}(Z(x_2))^{-n}(Z(x_1))^{-n}]. \]

Using constraints given in Eq. (8) for the two particles state \(|n,m; N = 2|\): \(\eta|n,m; N = 2 >\), \(E|n,m; N = 2 >= 0\) and \(\gamma|n,m; N = 2 >= 0\), and we obtain the following boundary conditions:

\[2f_{11}(x_1,0) = f_{1,2}(x_1,0); \quad [2\partial_{x_2}f_{11}(x_1,x_2) + \partial_{x_2}f_{12}(x_1,x_2)]_{x_2=0} = 0, \]
\[2f_{2,2}(x_1,0) = f_{1,2}(0,x_1); \quad [2\partial_{x_2}f_{22}(x_2,x_1) + \partial_{x_2}f_{12}(x_1,x_2)]_{x_2=0} = 0. \]

From these equations we find that the amplitudes obey the relations: \(A_{12} = -A_{21} = 2A_{11}; A_{11} = A_{22}\) and \(B_{21} = -B_{12} = 2A_{22}\). We introduce the antisymmetric spinor notation \(\epsilon_{1,2} \equiv \frac{A_{12}}{2}\), which obeys the relations: \(\epsilon_{1,2} = -\epsilon_{2,1}\) and \((\epsilon_{1,2})^\dagger \cdot \epsilon_{1,2} = 1\) (the upper index 1,1 means that we have one electron in each ring, the bottom index 1,2 or 2,1 represents the order . \(\epsilon_{1,2}\) the first electron is ring one and the second electron is on ring two and \(\epsilon_{2,1}\) represents the first electron on ring two and second electron on ring one.) The normalized two particle state is given by:

\[|n,-n; N = 2 > = \\
\int_0^L dx_1 \int_0^L dx_2 [f_{11}(x_1,x_2)C_1^\dagger(x_1)C_2^\dagger(x_2) + f_{12}(x_1,x_2)C_1^\dagger(x_1)C_2^\dagger(x_2) + f_{22}(x_1,x_2)C_1^\dagger(x_1)C_2^\dagger(x_2)] |0 > \\
= \int_0^L dx_1 \int_0^L dx_2 \frac{1}{4L} [((Z(x_1)))^n(Z^*(x_2))^n - (Z(x_2))^n(Z^*(x_1))^n]C_1^\dagger(x_1)C_2^\dagger(x_2) \\
+ 2\epsilon_{1,2}[Z(x_1)]^n(Z(x_2))^n - (Z^*(x_2))^n(Z^*(x_1))^n]C_1^\dagger(x_1)C_2^\dagger(x_2) \\
+ [(Z^*(x_1))^n(Z(x_2))^n - (Z^*(x_2))^n(Z^*(x_1))^n]C_2^\dagger(x_1)C_1^\dagger(x_2)] |0 >. \quad (16) \]

The off-diagonal spinor component \(f_{12}(x_1,x_2) \propto 4i\sin\left(\frac{2\pi}{L}n((x_1 + x_2))\right)\) is symmetric in space and resembles the BCS pairing wave function (once we identify the ring index with the spin) in contrast to the diagonal elements \(f_{11}(x_1,x_2)\) and \(f_{22}(x_1,x_2)\), which are antisymmetric in space. The two particles state, which obeys the constraints are different from the two particles state constructed from the single particles, which obey the constraints. Using the single particle states \(|n; N = 1 >\) and \(|m; N = 1 >\) [which obey Eq. (11)] we construct an
antisymmetric tensor product \(|n, m; N = 2 >_{\text{valid}}|n; N = 1 > |m; N = 1 > -|m; N = 1 > |n; N = 1 >\). This state is not a solution which obeys the constraints for the two particles state. The only possibility is to have an antisymmetric tensor product of two states with vanishing total momentum \(|n, -n; N = 2 >= |n; N = 1 > - |n; N = 1 > - |n; N = 1 > |n; N = 1 >\). (The ground state for the two particles \((\frac{\hat{\phi}}{2} < \frac{\pi}{2})\) is given by the eigenstate \(|1, -1; N = 2 >\).) This structure persists for an even numbers of electrons \(N = 2M\) and gives rise to a robust state absent for the single ring.

C-The three particles state

The wave-function for three particles can only be found for special configurations \(|m, n, -n; N = 3 > m \neq n\) and \(m \neq -n\). The ground state will be given by the state \(|0, 1, -1; N = 3 >\). The three particles state is determined by the four amplitudes \(f_{111}(x, x, x), f_{112}(x, x, x), f_{122}(x, x, x)\) and \(f_{212}(x, x, x)\), which obey the eigenvalue equation:

\[
\frac{\hbar^2}{2m} \left[\left(-i\partial_{x_1} - \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_2} - \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_3} - \frac{2\pi}{L}\phi\right)^2\right] f_{111}(x_1, x_2, x_3) = E(3) f_{111}(x_1, x_2, x_3),
\]

\[
\frac{\hbar^2}{2m} \left[\left(-i\partial_{x_1} - \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_2} - \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_3} + \frac{2\pi}{L}\phi\right)^2\right] f_{112}(x_1, x_2, x_3) = E(3) f_{112}(x_1, x_2, x_3),
\]

\[
\frac{\hbar^2}{2m} \left[\left(-i\partial_{x_1} + \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_2} + \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_3} + \frac{2\pi}{L}\phi\right)^2\right] f_{122}(x_1, x_2, x_3) = E(3) f_{122}(x_1, x_2, x_3),
\]

\[
\frac{\hbar^2}{2m} \left[\left(-i\partial_{x_1} + \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_2} + \frac{2\pi}{L}\phi\right)^2 + \left(-i\partial_{x_3} - \frac{2\pi}{L}\phi\right)^2\right] f_{212}(x_1, x_2, x_3) = E(3) f_{212}(x_1, x_2, x_3).
\]

Using Eq. (8) we obtain the following relations for the spinor components:

\[
3 f_{111}(x_1, x_2, 0) = f_{112}(x_1, x_2, 0) ; \left[3 \partial_{x_3} f_{111}(x_3, x_1, x_2) + \partial_{x_3} f_{112}(x_2, x_1, x_3)\right]_{x_3=0} = 0,
\]

\[
3 f_{222}(0, x_1, x_2) = f_{122}(0, x_1, x_2) ; \left[3 \partial_{x_3} f_{222}(x_3, x_1, x_2) + \partial_{x_3} f_{122}(x_2, x_1, x_3)\right]_{x_3=0} = 0,
\]

\[
2 f_{121}(x_1, x_2, 0) = f_{122}(x_2, x_1, 0) ; \left[3 \partial_{x_3} f_{121}(x_1, x_2, x_3) + \partial_{x_3} f_{122}(x_1, x_2, x_3)\right]_{x_3=0} = 0.
\]

The solution of the constraint equations fixes the eigenvalue and the state. The ground state eigenvalue is given by \(E_g(0, 1, -1; N = 3) = \frac{\hbar^2}{2m} (\frac{2\pi}{L})^2 ((\hat{\phi})^2 + (1 - \hat{\phi})^2 + (-1 - \hat{\phi})^2)\) and the three particles ground state is:

\[
|0, 1, -1; N = 3 > = \int_0^L dx_1 \int_0^L dx_2 \int_0^L dx_3 [\Phi_{0,1,-1}(x_1, x_2, x_3) C_1^1(x_2) C_1^1(x_3) + 3 \sum_{i=x_1,x_2,x_3}^2 \hat{P}_{i,x_3} (\Phi_{0,1}(x_1, x_2) Z(x_3) - \Phi_{0,-1}(x_1, x_2) Z^*(x_3)) + \Phi_{0,1,-1}(x_1, x_2, x_3) | C_1^1(x_1) C_2^1(x_2) C_2^1(x_3) + 3 \sum_{i=x_1,x_2,x_3}^2 \hat{P}_{i,x_1} (\Phi_{0,1}(x_2, x_3) Z(x_1) - \Phi_{0,-1}(x_2, x_3) Z^*(x_1)) + \Phi_{0,1,-1}(x_1, x_2, x_3) | C_1^1(x_1) C_1^1(y) C_2^1(x_3) + \Phi_{0,1,-1}(x_1, x_2, x_3) C_2^1(x_1) C_1^1(x_2) C_2^1(x_3) | 0 >.
\]
This state is expressed in terms of the Slater determinants for two and three particles \(\Phi_{0,\pm 1}(x_1, x_2), \Phi_{0,1,-1}(x_1, x_2, x_3). \) \(\hat{P}_{i,x_3} \) is the coordinates interchange operator defined by:
\[
\hat{P}_{i,x_3} F(x_1, x_2; x_3) = \delta_{i,x_3} F(x_1, x_2; x_3) + \delta_{i,x_1} F(x_3, y_2; x_1) + \delta_{i,x_2} F(x_1, x_3; x_2).
\]
The three particles states can be rewritten as an antisymmetric tensor product of the three single particles states, which obey Eq. (11):
\[
|0,1,-1; N = 3 > = \sum_P (-1)^P |0_{P(1)}; N = 1 > |1_{P(2)}; N = 1 > | - 1_{P(3)}; N = 1 >.
\]

D-The four particles state

The wave function for four particles has the structure \(|n, -n, m, -m; N = 4 >\) with \(n \neq m \). The ground state is given by: \(|1, -1, 2, -2; N = 4 >\) with the eigenvalue \(E_g(1, -1, 2, -2; N = 4) \). From Eq. (8) we find: \(H|1, -1, 2, -2; N = 4 > = E(4)|1, -1, 2, -2; N = 4 >, \eta|1, -1, 2, -2; N = 4 > = 0, \) \(E|1, -1, 2, -2; N = 4 > = 0 \) and \(\gamma|1, -1, 2, -2; N = 4 > = 0 \) we obtain a set of equations for the spinor components \(f_{1111}(x_1, x_2, x_3, x_4), f_{1112}(x_1, x_2, x_3, x_4), f_{1122}(x_1, x_2, x_3, x_4), \) \(f_{1222}(x_1, x_2, x_3, x_4), \) and \(f_{2222}(x_1, x_2, x_3, x_4)\):
\[
4f_{1111}(x_1, x_2, x_3, 0) = f_{1112}(x_1, x_2, x_3, 0);
\]
\[
[4\partial_{x_4} f_{1111}(x_1, x_2, x_3, x_4) + \partial_{x_4} f_{1112}(x_1, x_2, x_3, x_4)]_{x_4 = 0} = 0,
\]
\[
4f_{2222}(x_1, x_2, x_3, 0) = -f_{1222}(0, x_1, x_2, x_3);
\]
\[
[4\partial_{x_4} f_{2222}(x_1, x_2, x_3, x_4) - \partial_{x_4} f_{1222}(x_1, x_2, x_3, x_4)]_{x_4 = 0} = 0,
\]
\[
3f_{1112}(x_1, x_2, 0, x_4) = -2f_{1122}(x_1, x_2, x_3, 0);
\]
\[
[3\partial_{x_4} f_{1112}(x_1, x_2, x_3, x_4) - 2\partial_{x_4} f_{1122}(x_1, x_2, x_3, x_4)]_{x_4 = 0} = 0,
\]
\[
3f_{1222}(x_1, x_2, x_3, 0) = -2f_{1221}(x_1, x_2, x_3, 0);
\]
\[
[3\partial_{x_4} f_{1222}(x_1, x_2, x_3, x_4) + 2\partial_{x_4} f_{1221}(x_1, x_2, x_3, x_4)]_{x_4 = 0} = 0.
\]
The eigenvalue and the eigenfunction are:
\[E_g(1, -1, 2, -2; N = 4) = \frac{k^2}{2m}(\frac{2\pi}{L})^2[(1 - \phi)^2 + (-1 - \phi)^2 + (2 - \phi)^2 + (-2 - \phi)^2],\]
\[
\|1, -1, 2, -2; N = 4 >= \\
\int_0^L dx_1 \int_0^L dx_2 \int_0^L dx_3 \int_0^L dx_4 [\Phi(1, -1, 2, -2)(x_1, x_2, x_3, x_4)C_1^*(x_1)C_2^*(x_2)C_3^*(x_3)C_4^*(x_4) \\
+ 4\epsilon_{1,1,1,2}^3 \sum_{i=x_1,x_2,x_3} \hat{P}_{i,x_4}[\Phi_{2,1,-1}(x_1, x_2, x_3)(Z(x_4))^2 - \Phi_{-2,1,-1}(x_1, x_2, x_3)(Z^*(x_3))^2 \\
+ \Phi_{1,2,-2}(x_1, x_2, x_3)Z(x_4) - \Phi_{-1,2,-2}(x_1, x_2, x_3)Z^*(x_4)]C_1^*(x_1)C_1^*(x_2)C_1^*(x_3)C_2^*(x_4) \\
+ 6\epsilon_{1,1,2,2}^2 \sum_{i=x_1,x_2,x_3} \hat{P}_{i,x_3} + \sum_{i=x_1,x_2,x_4} \hat{P}_{i,x_4}][\Phi_{1,-1}(x_1, x_2)\Phi_{2,-2}(x_3, x_4) \\
+ \Phi_{1,2}(x_1, x_2)\Phi_{-1,-2}(x_3, x_4)]C_1^*(x_1)C_2^*(x_2)C_3^*(x_3)C_4^*(x_4) \\
+ 4\epsilon_{1,2,2,2}^3 \sum_{i=x_1,x_2,x_3} \hat{P}_{i,x_1}[\Phi_{2,1,-1}(x_2, x_3, x_4)(Z(x_1))^2 - \Phi_{-2,1,-1}(x_2, x_3, x_4)(Z^*(x_1))^2 \\
+ \Phi_{1,2,-2}(x_2, x_3, x_4)Z(x_1) - \Phi_{-1,2,-2}(x_2, x_3, x_4)Z^*(x_1)]C_1^*(x_1)C_2^*(x_2)C_2^*(x_3)C_2^*(x_4) \\
+ \Phi_{1,-1,-2,2}(x_1, x_2, x_3, x_4)C_1^*(x_1)C_2^*(x_2)C_3^*(x_3)C_3^*(x_4)]0 > \\
\equiv \sum_P (-1)^P|1_{P(1)}; N = 1 > | - 1_{P(2)}; N = 1 > | 2_{P(3)}; N = 1 > | - 2_{P(4)}; N = 1 > . \quad (18)
\]

Where \(\Phi_{1,-1,2,-2}(x_1, x_2, x_3, x_4)\), \(\Phi_{\pm 2,1,-1}(x_1, x_2, x_3)\) and \(\Phi_{n,m}(x_1, x_2)\) are the Slater determinant for 2, 3 and 4 particles. Here \(\epsilon_{1,1,1,2}^3\) and \(\epsilon_{1,1,2,2}^2\) are the antisymmetric tensors for the ring index.

E- The 2M particles state

The 2M particles state is built from the single particles states \(n_1, .. n_k, .. n_M\) given by Eq. (11) with vanishing total momentum:

\[
|n_1, -n_2, .. n_{2k-1}, -n_{2k}, .. n_{2M-1}, -n_{2M}; N = 2M >= \\
\sum_P (-1)^P|n_{P(1)}; N = 1 > | - n_{P(2)}; N = 1 > | n_{P(2M-1)}; N = 1 > | - n_{P(2M)}; N = 1 > . \quad (19)
\]

The ground state and the ground state energy: \(|1, -1, .. M, -M; N = 2M >\) = \(\sum_P (-1)^P|1_{P(1)}; N = 1 > | - 1_{P(2)}; N = 1 > | 2_{P(3)}; N = 1 > | - 2_{P(4)}; N = 1 > \ldots \mid k_{P(2k-1)}, N = 1 > | - k_{P(2k)}; N = 1 > \ldots \mid M_{P(2M-1)}; N = 1 > | - M_{P(2M)}; N = 1 > ; \)

\[E_g(1, -1, .., k, -k, .., M, -M) = \frac{k^2}{2m}(\frac{2\pi}{L})^2 \sum_{k=1}^M [(k - \phi)^2 + (-k - \phi)^2].\]

F- The Current for equal fluxes
The current for equal fluxes with 1, 2, 3, 4 and \(2M \) particles is the same in both rings:

\[
J_{1}^{N=1} = \frac{< N = 1; n | \hat{J}_1(x) | n; N = 1 >}{< N = 1; n | n; N = 1 >} = \left[\frac{\hbar 2\pi}{m L} \right] \frac{\phi - n}{2L} ; n = 0, \pm 1, \pm 2. \\
J_{1}^{N=1}(\phi = \frac{1}{2}) = \frac{< N = 1; \phi = \frac{1}{2}; \chi(n)| \hat{J}_1(x) | \chi(n), \phi = \frac{1}{2}; N = 1 >}{< N = 1; \phi = \frac{1}{2}; \chi(n)| \chi(n), \phi = \frac{1}{2}; N = 1 >} = \left[\frac{\hbar 2\pi}{m L} \right] |\alpha_+|^2 - |\alpha_-|^2 \left[\frac{\phi - n}{2L} \right], \\
J_{1}^{N=2} = \frac{< N = 2; -1, 1 | \hat{J}_1(x) | 1, -1; N = 2 >}{< N = 2; -1, 1 | -1, 1; N = 2 >} = \left[\frac{\hbar 2\pi}{m L} \right] \frac{2\phi}{2L} , \\
J_{1}^{N=3} = \frac{< N = 3; -1, 1, 0 | \hat{J}_1(x) | 0, 1, -1; N = 3 >}{< N = 3; -1, 1, 0 | 0, 1, -1; N = 3 >} = \left[\frac{\hbar 2\pi}{m L} \right] \frac{3\phi}{2L} , \\
J_{1}^{N=4} = \frac{< N = 4; -2, 2, -1, 1 | \hat{J}_1(x) | 1, -2, 2, -1; N = 4 >}{< N = 4; -2, 2, -1, 1 | -1, 2, -2; N = 4 >} = \left[\frac{\hbar 2\pi}{m L} \right] \frac{4\phi}{2L} , \\
J_{1}^{N=2M} = \frac{< N = 2M; -M, M, \ldots, 1, -1, 1, -1, \ldots, -M, M | \hat{J}_1(x) | 1, -1, \ldots, M, -M; N = 2M >_g}{< N = 2M; -M, M, \ldots, 1, -1, 1, -1, \ldots, -M, -M; N = 2M >_g} = \left[\frac{\hbar 2\pi}{m L} \right] \frac{2M \phi}{2L}.
\]

(20)

The magnetization \(M^{(N)} \) is given by the current area product: \(M^{(N)} = 2J_{1}^{N} \frac{L^2}{m} \). For an even number of electrons we find that the current in a single ring is twice the current in a double ring \(J_{\text{single-ring}}^{N=2M} = 2J_{1}^{N=2M} \). The factor of \(\frac{1}{2} \) is a result of the two component spinor state renormalization. At finite temperatures the two rings excited states have the form: \(| 1, -1, \ldots, M + p, -(M + p); N = 2M >_e \) where \(p \) are integers. This state carries the same current as the ground state \(| 1, -1, \ldots, M, -M; N = 2M >_g \). Therefore, we conclude that for an even (fixed) number of electrons the current will be the same at any temperature! (When the total number of electrons fluctuates, \(N \rightarrow N \pm 2 \) thermal effects will decrease the current.) The situation for the odd number of electrons is different. Even for the two states \(| 1, -1, \ldots, M, -M, n = (M + p); N = 2M + 1 > \) and \(| 1, -1, \ldots, M, -M, n = -(M + p); N = 2M + 1 > \) we have different eigenvalues and at finite temperatures these states carry a different current. Therefore, the total current carried by all the states will be reduced like we have for a single ring where the unrestricted structure of the wave function allows any configuration of momenta, which generate an antisymmetric wave function in space: \(f^{(\text{single-ring})}(x_1, x_2, \ldots x_{N=2M}) = \Phi_{n_1, n_2, \ldots, n_{2M}}(x_1, x_2, \ldots x_{N=2M}). \) To probe this even-odd structure we propose to attach a gate voltage to the rings. As a result, the magnetization will vary with the varying gate voltage.
IV. THE WAVE FUNCTION FOR OPPOSITE FLUXES

For this case the constraint operator γ is modified to: $\gamma = [(-i \partial_x - \frac{2\pi}{L} \hat{\varphi}) (C_1(x) + C_2(x))]_{x=0,L}$. For the single particle case we find the following boundary conditions:

\[f_1(x = 0) = f_2(x = 0) ; -i[\partial_x f_1(x) + \partial_x f_2(x)]|_{x=0,L} = \frac{2\pi}{L} \hat{\varphi} [f_1(x) + f_2(x)]|_{x=0,L}. \]

We find that for this case the wave function must vanish. Only for integer values of flux $n = integer = \hat{\varphi}$ we have finite solutions $f_1(x) = f_2(x) = e^{i\frac{2\pi n}{L} x}$ with a vanishing persistent current. This result is in agreement with the fact that at the common point between the rings the fluxes must satisfy $\hat{\varphi}_2 = \hat{\varphi}_1 + n$. Therefore, the boundary condition can be satisfied for this case only if the wave function vanishes at the common point. We mention that for two separated rings threatened by opposite fluxes the magnetization will be zero only at the symmetry points. This result allows to control the current in one ring by reversing the flux in the second ring.

V. TWO COUPLED CYLINDERS

In order to build a theory which can be compared with the experiment we have to consider effects of interactions and effects of finite width geometry [13]. For realistic considerations the point contact between two rings is replaced by two narrow cylinders of height $d \ll L$ which are in contact at the point $(x = 0, 0 \leq z \leq d)$. The gluing condition is implemented by two narrow cylinders of height replacing the constraints in Eq. (6) by $\eta(z, x = 0)|\chi, N >= 0$ and $\gamma(z, x = 0)|\chi, N >= 0$. In the absence of disorder we obtain for each transversal channel $r = 1, 2..r_{max}$ one dimensional constraints: $\eta_r(x = 0)|\chi, N >= 0; \gamma_r(x = 0)|\chi, N >= 0.$

Therefore, the current in the channel r is the same as the result given in Eq. (17). For N electrons the current will be determined by the partition of N electrons in the different channels: $N = N_1 + N_2 + ..N_r ... + N_{r_{max}}$

In the absence of disorder the current in cylinder one, at $T=0$ will be given by:

\[J_N^1 = \left[\frac{\hbar}{m L} \right] \left[\frac{2(N_1 + N_2 + ..N_r ... + N_{r_{max}}) \hat{\varphi}}{2L} \right] \equiv \left[\frac{\hbar}{m L} \right] \left[\frac{2N \hat{\varphi}}{2L} \right]. \]
VI. CONCLUSION

To conclude, a new method for applying constraints has been presented. This method has been used to compute the wave function for coupled rings. For an even number of electrons, only states with total vanishing momentum are allowed giving rise to a large persistent current and magnetization. For odd number of electrons at finite temperature the current and the magnetization are suppressed. We propose to confirm this even-odd effect by attaching the two rings to a varying gate voltage. Reversing the flux in one ring will cause the current to vanish in both rings. We construct the many article ground state which obey the constraints and show that not all the many particle states which are build from single particle states which obey the constraints are allowed.

1. K. Sasaki, Y. Kewazoe, and R. Saito, Physics Letters A 321, 369-375 (2005).
2. H. Aoki, J. Phys. C. 18, 1885-1890 (1981).
3. Paul A. M. Dirac, “Lectures on Quantum Mechanics,” Belfer Graduate School of Science, Yeshiva University, New York, 1964.
4. M. Henneaux and Claudio Teitelboim "Quantization of Gauge Systems", Princeton University Press (1992).
5. Y. Avishai and M. Luck, J. Phys. A: Math. Theory 42, 175301 (2009).
6. S. Itoh and S. Ihara Phys. Rev. B. 48, 8323 (1993).
7. H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber, and K.A. Moler. Cond-Mat/08104
8. Y. Aharonov and D.Bohm, Phys. Rev. 115, 485 (1959).
9. N. Byers and C.N. Yang, Phys. Rev. Lett. 7, 46 (1961).
10. M.Buttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).
11. L.P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990).
12. D. Schmeltzer, J. Phys. Condens. Matter 20, 335205 (2008).
13. M.Grochol et al. Phys.Rev.B 74, 115416 (2006)