Shifted termination assay (STA) fragment analysis to detect BRAF V600 mutations in papillary thyroid carcinomas

So Young Kang¹,⁵, Soomin Ahn¹, Sun-Mi Lee², Ji Yun Jeong³, Ji-Youn Sung⁴, Young Lyun Oh* and Kyoung-Mee Kim*¹

Abstract

Background: BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation.

Methods: A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD).

Results: BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes.

Conclusions: STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples.

Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749

Keywords: BRAF, Mutation, Termination assay, Sequencing, Thyroid, Papillary carcinoma

Introduction

BRAF is a serine/threonine kinase that functions as a part of the RAS/RAF/MEK/ERK/MAPK pathway, which is involved in the transduction of mitogenic signals from the cell membrane to the nucleus. A single hotspot mutation at nucleotide 1799 of BRAF gene has been identified as the most common genetic event in papillary thyroid carcinoma (PTC) with a prevalence of 29–83% [1]. Recently, systematic review and meta-analyses on PTC showed that BRAF mutation is significantly associated with recurrence, lymph node metastasis, extrathyroidal extension and advanced tumor stages [2-4]. So far, detection of this mutation has been achieved by co-amplification at lower denaturation temperature (COLD)-PCR, allele-specific polymerase chain reaction (AS-PCR), high-resolution melting curve (HRM) analysis, SNaPshot Assay, pyrosequencing and direct sequencing. Each technique has advantages and limitations with regard to cost, availability, and enrichment efficiency.

* Correspondence: bijou@skku.edu; kkkmks@skku.edu
1Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710, Korea
Full list of author information is available at the end of the article

© 2013 Kang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Direct sequencing is widely accepted as the standard for the determination of mutations in formalin-fixed, paraffin-embedded (FFPE) tissue samples although this technique is time consuming, expensive [5,6] and the sensitivity is relatively low [7,8]. A key limitation of PCR-based methods in the detection of Braf mutations is the inability to selectively amplify low percentages of variant alleles from a wild-type allele background [9]. In this study, we first applied shifted termination assay (STA) fragment analysis to detect the common hot-spot Braf mutation in 159 PTCs and compared the results to those of direct sequencing using DNAs from FFPE tissue samples consisting of 53 tumors less than 0.5 cm in size.

Materials and methods

Patients and tumor samples
One hundred and fifty nine PTCs were randomly retrieved from the surgical pathology files of Samsung Medical Center, Seoul, Korea between 2010 and 2011. The study was approved by the Institutional Review Board of the Samsung Medical Center (IRB #2009-09-010). The informed consent was obtained from the patient for genetic test and research. A pathologist (Ahn S) performed additional review of each case to confirm diagnosis and select the tumors. The patients included 27 men (17%) and 132 women (83%) with a mean age of 48 years (range, 17–76 years). The mean tumor size was 0.76 cm (range, 0.1–6.5 cm).

DNA extraction and Braf mutant cell line
Genomic DNA was extracted from two 4 μm thick sections of FFPE tumor blocks under microscopy as previously described [10] using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Ger.). The concentration and purity of the extracted DNA were determined by a ND-1000 spectrophotometer (NanoDrop Technologies, Inc. Wilmington, DE, USA). The extracted DNA was stocked at 4°C until use.

DNAs from SNU-790 cell lines were used as positive control and normal human genomic DNAs (Roche Applied Science, Penzberg, Ger.) were used as negative control. Serial dilutions of the positive cell line with normal human genomic DNAs to create final tumor DNA concentrations with 100%, 50%, 25%, 12.5%, 5% and 1% were used to compare the analytical limit of detection (LOD).

Shifted Termination Assay (STA) fragment analysis
Applied Biosystems’ Braf mutation analysis reagents assays were used for detection of three different Braf variants (V600E, V600A, and V600G) (Applied Biosystems, CA, USA). The manufacturer’s protocol was followed for the amplification of DNA, clean-up of PCR products, and primer extension reactions. After primer extension, capillary electrophoresis and fragment analysis were performed. PCR reactions were performed in 30 μL volumes using template DNA, Braf PCR primers, and DNA amplification master mix. PCR was performed using a C1000 (Bio-Rad, CA, USA) and PCR cycling conditions were a 5 minute hold at 94°C, followed by 35 cycles of 94°C for 30 seconds, 52°C for 45 seconds, 72°C for 45 seconds, and 72°C for 5 minutes. After PCR, labeled PCR tubes were cleaned up, and 2 μL of the labeled products were mixed with 9.5 μL of HiDi-formamide and 0.5 μL of Genescan SD-130 size standard. The products were separated using a 40 minute run on an ABI Prism 3130 DNA sequencer with POP7 matrix and injection 14 seconds injection time. GeneMapper software, version 4.1 (Applied Biosystems) was used for analysis of the data.

Polymerase chain reaction (PCR) and direct sequencing
The mutational analyses of Braf exon 15 were performed by direct sequencing of PCR products amplified from genomic DNA, as previously described [10]. PCR was performed in a 20 μL volume containing 100 ng of template DNA, 10x PCR buffer; 0.25 mM dNTPs, 10 pmol primers, and 1.25 U Taq DNA polymerases (iNtRON, Korea). Bi-directional sequencing was performed using the BigDye Terminator v1.1 kit (Applied Biosystems) on an ABI 3130 genetic analyzer (Applied Biosystems). Sequencher version 4.10.1 (Gene Codes Corporation, Ann Arbor, MI, USA) was used along with manual chromatogram reviews. The results were considered mutation-positive if a mutation was detected in both the forward and reverse DNA strands.

Statistical analysis
Statistical analyses were performed using SPSS statistical software version 19.0 (SPSS, Inc., Chicago, IL, USA). The level of agreement between genotyping findings by different methods was determined with kappa (κ) statistics. Genotyping results were considered concordant in cases of sequence agreement between assays and discordant in cases where no genotype similarity was observed. A p value of <0.05 was considered statistically significant.

Results
In STA fragment analysis, Braf mutation was detected in 119 (74.8%) PTCs and all mutations were V600E. After serial dilutions of Braf mutant cell line, LOD of STA fragment analysis was 6%. By direct sequencing, Braf V600E mutations were found in 118 (74.2%) cases and LOD was 12.5%. The correlation between STA-fragment analysis and direct sequencing was strong (p < 0.00001) and a high level of agreement was
observed [κ, 0.98; 95% CI, (0.98 to 0.99)] (Table 1). Only one case showed discrepant result; a \textit{BRAF} mutation detected by STA fragment analysis was not detected by direct sequencing. Pathologic review of this discrepant case showed extrathyroidal extension and lymph node metastasis in spite of its small size (0.6 cm) (Figure 1).

The clinicopathological characteristics of patients with \textit{BRAF} V600E mutation detected by direct sequencing are described in Table 2. In PTCs with pT3/T4 stages, \textit{BRAF} mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, \textit{BRAF} mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, \textit{BRAF} mutation was more common in PTCs with extrathyroidal invasion than PTCs without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). However, \textit{BRAF} mutation was not significantly associated with patients’ age, tumor size and lymph node metastasis (p > 0.05).

To estimate time and costs for each method, we estimated them from the preparative step to the final interpretation of results. As 3130 ABI sequencer in our laboratory is a 16-channel model, we calculated the sample size at 16. STA fragment analysis required 4 hours and 50 minutes while direct sequencing took 7 hours and 30 minutes. To run 16 samples, STA fragment analysis costs 34$ and direct sequencing requires 25$.

Discussion

In PTCs, \textit{BRAF} mutation is an important prognostic marker. To detect \textit{BRAF} mutation, direct sequencing has been widely accepted as the gold standard. However, this technique requires rather expensive equipment, can be laborious and time consuming. To be applicable in many clinical laboratories with limited equipments, diverse testing methods are required to detect \textit{BRAF} mutations. For this purpose, we first tested STA fragment analysis to detect \textit{BRAF} V600 mutation in 159 PTCs obtained from FFPE tissue samples and found that STA fragment analysis is as sensitive as direct sequencing and can be easily applicable with lower costs and less running time. Moreover, \textit{BRAF} mutation was associated with extrathyroidal extension and advanced tumor stage in PTCs.

\textit{BRAF} is the strongest activator in the downstream of MAP kinase signaling. In PTCs, the prevalence of \textit{BRAF} mutation has been variable among different studies and its association with clinicopathological features was controversial. Recently, systematic review and meta-analyses

Table 1 Comparisons of assay performance of direct sequencing versus STA fragment analysis and DPO-PCR
STA fragment analysis

![Figure 1](https://www.example.com/figure1.png)

Figure 1 A papillary thyroid carcinoma with discrepant \textit{BRAF} mutation results in STA fragment analysis and direct sequencing. **(A)** Pathology showing extrathyroidal extension. **(B)** \textit{BRAF} mutation detected by STA fragment analysis. **(C)** Sequencing result showing wild-type for \textit{BRAF} mutation.
Table 2 Clinicopathologic characteristics in 159 patients with papillary thyroid carcinoma

Characteristic	BRAF V600E mutation	P value	
	Positive	Negative	
Age (y), Mean ± SD	47.70 ± 10.69	48.29 ± 11.62	0.602
Gender			
Male	21	6	0.422
Female	97	35	
Tumor size (cm), Mean ± SD			0.506
<0.5	42	11	
0.5-1	55	20	
>1	21	10	
T classification			0.007
T1/T2	56	29	
T3/T4	62	12	
Lymph node metastasis			0.565
Yes	43	15	
No	75	26	
Extrathyroidal extension			0.001
Yes	72	13	
No	46	28	

Table 3 Summary of literature reviews on BRAF mutation analyses in recent publications

Journal (references)	Year	Organ	Tissue	No. of cases	Methods
Present study	2012	Thyroid	FFPE and cell line	159	STA fragment analysis, direct sequencing
J Mod Diagn [19]	2012	Lung and colon	FFPE and cell line	152	HRM-sequencing and HRM-SNaPshot
PLOS One [20]	2011	Brain	FFPE	97	SNaPshot
Eur J Endocrinol [21]	2011	Thyroid	fresh tissues	90	Real-time PCR
PLOS One [8]	2011	Lung	Cytology and FFPE	447 and 42	Real-time PCR
J Mod Diagn [22]	2011	Colon	FFPE	42	Multiplex SNaPshot
Clin Chim Acta [9]	2011	Skin	FFPE	45	COLD-PCR
J Mod Diagn [14]	2011	Colon	FFPE	125	Real-time PCR
Hum Pathol [4]	2010	Thyroid	FFPE	76	RFLP
Genes Chromosomes Cancer	2010	Skin	FFPE	116	conventional PCR
are small, STA fragment analysis is a sensitive method to detect V600 BRAF mutation and needs shorter running time and lower costs compared to direct sequencing. In clinical laboratories performing MSI analyses by fluorescent PCR-based method using an ABI PRISM® 3100, STA fragment analysis can be used as an easily applicable, rapid and cost effective method to detect BRAF V600E mutations in FFPE clinical samples.

Abbreviations

DPO-PCR: Dual-priming oligonucleotide-PCR.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SYK, KM Kim and YL Oh designed the study and wrote the manuscript. SYK, SA, SML, JY1, JYS, YL Oh and KMK acquired data. SYK and KMK managed the statistical analysis. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by grant from the Korea Healthcare Technology R&D project, Ministry for Health & Welfare Affairs, Republic of Korea (A101130) and a grant from Samsung Biomedical Research Institute.

Authors

1Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea. 2Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA. 3Department of Pathology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea. 4Department of Pathology, KyungHee University Medical Center, KyungHee University School of Medicine, Seoul, Korea. 5Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

Received: 7 February 2013 Accepted: 11 June 2013

Published: 24 July 2013

References

1. Trovisco V, Vieira De Castro I, Soares P, Maximo V, Silva P, Magalhaes J, Abrosimov A, Gulu XM, Sobrino-Simoes M. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 2004, 202:247–251.

2. Chakraborty A, Narkar A, Mukhopadhyaya R, Kane S, D'Cruz A, Rajan MG: BRAF V600E mutation in papillary thyroid carcinoma: significant association with node metastases and extra thyroidal invasion. Endocr Pathol 2012, 23:83–93.

3. Tufano RR, Teixeira GV, Bishop J, Carson KA, Xing M: BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012, 91:274–286.

4. Smith RA, Salajegheh A, Weinstein S, Nassiri M, Lam AK: Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Hum Pathol 2011, 42:500–508.

5. Didelot A, Le Corre D, Luscan A, Cesars A, Pallier K, Emile JF, Laurent-Puig P, Bion H: Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples. Exp Mol Pathol 2012, 92:77–280.

6. Farina Saracreta A, Moerland E, De Bruyne H, De Gaaf H, Vrancken T, Van Lijnschoten G, Van den Brule AJ: SNPShot and StripAssay as valuable alternatives to direct sequencing for KRAS mutation detection in colon cancer routine diagnostics. J Mol Diagn 2011, 13:199–205.

7. Kotoula V, Charalambous E, Eijsmans B, Malouzi A, Vrettou E, Fountzilas G, Karkavelas G: Targeted KRAS mutation assessment on patient tumor histologic material in real time diagnostics. PLoS One 2009, 4:e7746.

8. Querings S, Altmuller J, Ansen S, Zander T, Seidel D, Gabler F, Peifer M, Markert E, Sternhomb K, Timmernann B, Baal B, Kloze S, Emestus K, Schefler M, Engel-Riedel W, Strobelin E, Bambilla E, Wolf J, Nurnberg P, Thomas RK: Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One 2011, 6:e19001.

9. Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F, Pratesi N, Massi D, De Giorgi V, Pazzaghi M, Orlando C: BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta 2011, 412:901–905.

10. Kim KM, Lee EJ, Ha S, Kang SY, Jang KT, Park CK, Kim JY, Kim YH, Chang DK, Ozde RD: Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea. Am J Surg Pathol 2011, 35:1274–1286.

11. Gonzalez-Yebra B, Peralta R, Gonzalez AL, Ayala-Garcia MA, De Zarathe ME, Salcedo M: Genetic alterations in a primary medullary thyroid carcinoma and its lymph node metastasis in a patient with 15 years follow-up. Diagn Pathol 2012, 7:63.

12. Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL, Kim JW, Chung JH: Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab 2012, 97:2299–2306.

13. Stadelmeyer E, Heitze E, Wolf P, Dandachi A: COLD-HRM PCR versus conventional HRM PCR to detect the BRAF V600E mutation: A real improvement? J Mol Diagn 2011, 13:239–244.

14. Lang AH, Drew W, Geller-Bromberg S, Stark N, Winder T, Geiger K, Muenklein A: Optimized allele-specific real-time PCR assays for the detection of common KRAS and BRAF. J Mol Diagn 2011, 13:23–28.

15. U J, Wang L, Mamah H, Kulke MH, Berbeco R, Makrigiorgos G: Replacing PCR with COLD-PCR enriches variant DNA sequences and refines the sensitivity of genetic testing. Nat Med 2008, 14:579–584.

16. Venna S, Geaves WO, Ravandi F, Reddy N, Bueno-Ramos CE, O’Brien S, Thomas DA, Kantarjian H, Medeiros LJ, Luthra R, Patel KP: Rapid detection and quantitation of BRAF mutations in hairy cell leukemia using a sensitive pyrosequencing assay. J Mol Diagn 2011, 13:153–156.

17. Shen S, Qin D: Pyrosequencing data analysis software: a useful tool for KRAS and BRAF mutation analysis. Diagn Pathol 2012, 7:56.

18. Heideman DA, Lukin I, Doeleman M, Smit EF, Verheul HM, Heijen GA, Snijders PJ, Thunnissen E, Zwarthoff EC: KRAS and BRAF Mutation Analysis in Routine Molecular Diagnostics: Comparison of Three Testing Methods on Formalin-Fixed, Paraffin-Embedded Tumor-Derived DNA. J Mol Diagn 2012, 14:247–255.

19. Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, Batchelor TT, Ligon KL, Iafrate AJ, Ligon AH, Louis DN, Santagata S: A multiplex SNaPshot assay as a rapid method for detecting KRAS and BRAF mutations in advanced colorectal cancers. J Mol Diagn 2011, 13:485–492.

20. Conway C, Beswick S, Elliott F, Chang YM, Randles-Moor J, Harland M, Attlee P, Marden J, Sandini JS, Boron A, Knowles MA, Bishop DT, Newton-Johan JA: Deletion at chromosome arm 9p in relation to BRAF/NRAS mutation and prognostic significance for primary melanoma. Genes Chromosomes Cancer 2010, 49:425–438.