Bilirubin levels as an independent predictor of myocarditis in patients with COVID-19

Muharrem Said Cosgun*

Abstract
Background: Myocardial damage worsens the clinical course and prognosis of coronavirus disease 2019 (COVID-19) patients. High total bilirubin levels have been associated with a poor prognosis in COVID-19. This study aimed to investigate the predictive value of the total bilirubin level, a marker of heme oxygenase-1 enzyme activity, in determining myocarditis in patients with COVID-19.

Results: A total of 190 patients diagnosed with COVID-19 were enrolled in the study. The patients were divided into two groups based on their troponin positivity. The study group \((n = 95)\) consisted of patients with high troponin, and the control group \((n = 95)\) consisted of patients without high troponin levels. The D-dimer \((727 \ [572–995] \ vs. \ 591 \ [440–790], \ p = 0.001)\), C-reactive protein (CRP) \((30.0 \ [10–48] \ vs. \ 10.3 \ [5.8–15.9], \ p < 0.001)\), and total bilirubin \((9.5 \ [8.2–12.1] \ vs. \ 7.0 \ [5.3–8.0], \ p < 0.001)\) levels were significantly higher in the study group. In multivariate analysis, CRP (odds ratio [OR]: 1.103; 95% confidence interval [CI]: 1.060–1.148; \(p < 0.001\)) and total bilirubin (OR: 1.612; 95% CI: 1.330–1.954; \(p < 0.001\)) levels were independent predictors of myocarditis in COVID-19.

Conclusions: Total bilirubin levels can be used as an early predictor of myocarditis in COVID-19 and can contribute to therapy management.

Keywords: Bilirubin, Myocarditis, COVID-19, Microthrombi

Background
Human coronavirus (CoV) infections were considered to cause mild respiratory disease in the twentieth century [1]. However, this has changed in the first 20 years of the new century, with three outbreaks of CoVs causing significant mortality and morbidity [2]. The most important common feature of these outbreaks is that the infection becomes systemic and causes acute respiratory distress syndrome (ARDS) through autoimmune mechanisms [3, 4]. The third pandemic, called coronavirus disease 2019 (COVID-19) and caused by the severe acute respiratory syndrome (SARS)-CoV-2, started in late 2019 and continues at the time of this writing, with transmission rates higher than those of both previous CoV outbreaks [5, 6].

Existing cardiovascular comorbidities increase sensitivity to COVID-19. Moreover, COVID-19 can aggravate the underlying cardiovascular disease and lead to cardiac complications [5]. Although the infection is mild in most people, if the severe and critical form of the disease develops, the risk of multi-organ damage increases, including damage to the heart and death [7, 8]. Therefore, early diagnosis of multi-organ damage, especially heart injury, is essential. Healthcare professionals have naturally focused on lung injury, while other organ involvement, such as heart damage, has remained in the background. Troponin is the best indicator of myocardial injury due to COVID-19, as in all types of myocardial damage [9]. The available literature shows that myocardial damage worsens the clinical course and prognosis [10, 11]. For example, one study showed that more than half of the patients who died had an acute myocardial injury and that the extrapulmonary organ most commonly affected by COVID-19 was the heart [12].
Numerous reviews and meta-analyses have indicated that serum bilirubin levels are significantly high in patients with severe COVID-19 symptoms, such as pneumonia, ARDS, multi-organ damage, and septic shock [13–17]. Bilirubin is a marker of heme oxygenase-1 (HO-1) enzyme activity and is the end-product of heme reduction [18]. Free heme, the precursor of bilirubin, has been blamed in COVID-19 pathogenesis through its triggering of inflammatory processes, vascular permeabilization, and thrombosis [19]. However, total bilirubin levels are associated with both troponin increase and intracoronary thrombus burden in patients with acute coronary syndrome characterized by myocardial damage [20, 21].

Methods

Study population

This study was a uni-center, retrospective, descriptive, and observational study using cross-sectional data collected from the COVID-19 patients. One hundred and ninety patients whose diagnosis of COVID-19 was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) were included in the study. The patients were allocated into two groups based on their troponin positivity. The consecutive patients in the study group had chest pain and elevated troponin with normal coronary angiography (n = 95). The control group consisted of 95 consecutive patients with similar demographic and clinical characteristics but normal troponin values. The following were exclusion criteria: (1) atherosclerotic lesion(s) in coronary angiography; (2) previous coronary artery disease; (3) referral to intensive care units due to severe and critical illness; (4) asymptomatic COVID-19 disease; (5) severe liver and kidney disease; (6) known malignancy or systemic inflammatory disease; (7) presence of anemia (hemoglobin < 13 and < 12 g/dL for men and women, respectively) or a history of blood transfusions in the last 90 days; (8) a negative RT-PCR test for COVID-19.

Laboratory analysis

Electrocardiography measurements and troponin I levels were repeated at 4- to 6-h intervals in patients with chest pain. Serum bilirubin levels were analyzed with an autoanalyzer (AU2700 Plus analyzer, Beckman Coulter, Tokyo, Japan). Complete blood counts (hemoglobin, white blood cell, and platelet) and glucose, creatinine, creatine kinase myocardial band (CK-MB), D-dimer, and C-reactive protein (CRP) levels, and liver function tests (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were studied in blood samples taken during admission.

Clinical definitions

Age, gender, smoking habits, the treatment regimen for COVID-19, previous medications, and diseases were registered for both groups. The diagnoses of hypertension (HT), hyperlipidemia (HL), and diabetes mellitus (DM) were based on the previous history. The severity of COVID-19 pneumonia was defined per the guidelines of Diagnosis and Treatment of Pneumonia Caused by SARS-CoV-2- (1) mild: asymptomatic and radiologically normal patients; (2) moderate: symptomatic and patients with pneumonia on computed tomography; (3) severe: patients with fingertip oxygen saturation ≤ 93% and respiratory rate > 30/min while breathing room air; and (4) critical: patients requiring intensive care referral [22]. A level of troponin I exceeding the 99th-percentile upper reference limit was accepted as myocardial damage [11, 23].

Statistical analysis

Categorical variables were compared with the chi-square test and shown as percentages (%). For the analysis of continuous variables, their distribution was evaluated using the One-Sample Kolmogorov–Smirnov test. The t test was used if the continuous variables between the two groups were normally distributed, and the Mann–Whitney U test was used if they were not. Continuous variables were shown as mean ± standard deviation if they were normally distributed, and as median (1st–3rd quartiles) if not. Independent predictors of myocarditis were determined by multivariate logistic regression analysis and presented with 95% confidence interval (CI) and odds ratio (OR). The cut-off value of the total bilirubin level was analyzed by the receiver-operating characteristic (ROC) curve. Statistical significance value was considered as p < 0.05. All data obtained were transferred to SPSS version 22 and analyzed (IBM, SPSS Statistics, USA).

Results

The study group (n = 95; mean age 64.3 ± 9.8 years; 73.7% male) consisted of troponin positive patients, while the control group (n = 95; mean age 62.3 ± 9.3 years; 69.5% male) consisted of troponin negative patients. Table 1 shows a comparison of the baseline demographic and clinical characteristics and laboratory results. No significant difference was noted...
between groups in terms of age, gender, smoking habits, or previous history of HT, HL, and DM. Complete blood counts (hemoglobin, white blood cells, and platelets) and glucose, creatinine, AST, ALT, and CK-MB levels in the blood samples taken at the admission did not differ significantly between the groups. Previous medications, renin–angiotensin–aldosterone system blockers, calcium channel blockers, beta-blockers, statin, and antiaggregant were not meaningfully different between the groups. Antiviral, antibiotic, hydroxychloroquine, low molecular weight heparin, and corticosteroid treatment regimens for COVID-19 were similar between the groups. The D-dimer (727 [572–995] vs. 591 [440–790], \(p < 0.001 \)) and total bilirubin (9.5 [8.2–12.1] vs. 7.0 [5.3–8.0], \(p < 0.001 \)) levels were meaningfully higher in the troponin-positive patients. The distribution of total bilirubin levels in the negative and positive troponin groups is shown in Fig. 1.

Independent predictors of myocarditis were determined by multivariate logistic regression analysis. The CRP (OR: 1.103; 95% CI: 1.060–1.148; \(p < 0.001 \)) and total bilirubin (OR: 1.612; 95% CI: 1.330–1.954; \(p < 0.001 \)) levels were independent predictors of myocarditis in COVID-19 (Table 2). The ROC analysis revealed a cut-off value of total bilirubin for myocarditis of 8.48 µmol/L, with a sensitivity of 71.6% and a specificity of 77.9% (area under curve, 0.773; 95% CI, 0.704–0.841; \(p < 0.001 \); Fig. 2).

Table 1 Baseline demographic and clinical characteristics and laboratory results according to the presence of myocarditis

Variables	Troponin positive (\(n = 95 \))	Troponin negative (\(n = 95 \))	\(p \) value
Age, years	64.3 ± 9.8	62.3 ± 9.3	0.158
Gender, male, n (%)	70 (73.7)	66 (69.5)	0.52
Smoking habits, n (%)	22 (23.2)	20 (21.1)	0.727
Hypertension, n (%)	35 (36.8)	31 (32.6)	0.542
Hyperlipidemia, n (%)	23 (24.2)	21 (22.1)	0.731
Diabetes mellitus, n (%)	16 (16.8)	14 (14.7)	0.691
Hemoglobin, g/dL	13.5 ± 1.4	13.8 ± 1.1	0.122
White blood cell count, \(\times 10^{9} /L \)	5.9 ± 2.1	5.6 ± 2.1	0.157
Platelet count, \(\times 10^{9} /L \)	213 (158–235)	219 (184–262)	0.081
Glucose, mg/dL	103 (91–123)	100 (95–115)	0.465
Creatinine, mg/dL	0.82 ± 0.21	0.81 ± 0.18	0.804
Aspartate aminotransferase, U/L	30 (21–36)	29 (23–36)	0.824
Alanine aminotransferase, U/L	22 (17–29)	25 (17–41)	0.318
D-dimer, µg/L	772 (572–995)	591 (440–790)	\(p < 0.001 \)
C-reactive protein, mg/L	30.0 (10–48)	10.3 (5.8–15.9)	\(p < 0.001 \)
CK-MB*, U/L	19.2 (13.7–27.4)	17.7 (14.1–20.2)	0.077
Total bilirubin, µmol/L	9.5 (8.2–12.1)	7.0 (5.3–8.0)	\(p < 0.001 \)

*Creatine kinase myocardial band
† Renin–angiotensin–aldosterone system blockers
‡ Low-molecular-weight heparin

Bold defines statistically significant values
Discussion

The results of our study showed that the total bilirubin levels, which are an indicator of HO-1 enzyme activity, and the CRP levels were independent predictors of myocarditis in COVID-19 patients. In addition, high D-dimer levels were correlated with myocarditis.

The SARS-CoV-2 enters host cells via endocytosis mediated by angiotensin-converting enzyme 2 (ACE-2) receptors. The virus causes ARDS due to ACE-2 receptors, commonly expressed in Type 2 pneumocytes of the lungs [24]. The same mechanism frequently targets the myocytes in the heart and enterocytes in the intestines secondary to the lungs [25]. Possible mechanisms proposed to explain the pathogenesis of myocardial injury in COVID-19 have included direct damage related to viral myocarditis, a systemic hyperinflammatory response caused by a cytokine storm, a myocardial oxygen demand–supply mismatch due to hypoxemia, down-regulation of ACE-2 receptors, systemic virus-induced endothelialitis, type 1–2 myocardial infarction, and iatrogenic effects due to corticosteroid and hydroxychloroquine use [26]. Recent autopsy-based studies have also implicated microthrombi as responsible for the etiopathogenesis of myocardial injury [27, 28]. A large-scale meta-analysis supporting this information highlighted the importance of anticoagulant therapy in COVID-19 due to the relationship between D-dimer and thrombosis [29].

Bilirubin, which has endogenous anti-oxidant and anti-inflammatory effects, is the end-product of heme catabolism. The HO enzyme catalyzes the reduction in heme groups and converts heme to carbon monoxide, ferrous iron, and biliverdin. Biliverdin is then rapidly degraded to bilirubin and excreted in the urine, while the ferrous iron is inactivated by binding to ferritin [30, 31]. Heme is highly cytotoxic due to its reactive nature, but bilirubin, the final product formed after degradation by the HO enzyme, is a scavenger of reactive oxygen species [32]. Under normal conditions, bilirubin has been shown to protect against adverse cardiovascular events due to its anti-oxidant effects [33–37]. The HO enzyme has three isoforms, with HO-1 being the rate-limiting enzyme in the heme degradation pathway. The enzyme activity of HO-1 is significantly upregulated in response to acute stress. High levels of heme and HO-1 have been detected in severe and hypoxic COVID-19 patients [38]. Based on this, HO-1 pathway immunomodulation has been viewed as a potential therapeutic strategy against COVID-19 and associated complications [39]. Conversely, the other isoforms (HO-2 and HO-3) are structural and their expression is not affected by external factors such as stress [18]. We evaluated serum bilirubin levels in the present study.

Table 2 Multivariate logistic regression analysis to assess predictors of myocarditis

Variables	Odds ratio (95% CI*)	p value
CK-MB†, U/L	1.002 (0.967–1.038)	0.921
C-reactive protein, mg/L	1.103 (1.060–1.148)	<0.001
D-dimer, µg/L	1.001 (1.000–1.002)	0.108
Platelet counts, × 10^9/L	1.000 (0.995–1.005)	0.982
Total bilirubin, µmol/L	1.612 (1.330–1.954)	<0.001

*Confidence interval
† Creatine kinase myocardial band
Bold defines statistically significant values

Fig. 1 Total bilirubin levels between negative and positive troponin groups

Fig. 2 The receiver-operating characteristic (ROC) curve of total bilirubin for predicting myocarditis
were confirmed as an independent predictor of myocarditis in COVID-19. In addition, the CRP levels and total bilirubin levels are an independent predictor of HACEs based on these observations, and we determined that therefore, we did not analyze long-term events.

Included in the study. It was also a retrospective study; another limitation is the small number of patients included in the study. It was a retrospective study; therefore, we did not analyze long-term events.

Conclusions
The total bilirubin level can be used as an early predictor of myocarditis in COVID-19, as it is inexpensive to measure, easily accessible, and frequently used in daily practice. Thus, it can serve as a guide for optimal anticoagulant therapy and contribute to managing high-risk patients with COVID-19. However, its potential needs to be confirmed by further clinical studies. The new point of this study is that total bilirubin level, a marker of heme oxygenase-1 enzyme activity, can predict heart damage in patients with COVID-19.

Abbreviations
ACE-2: Angiotensin-converting enzyme 2; ALT: Alanine aminotransferase; ARDS: Acute respiratory distress syndrome; AST: Aspartate aminotransferase; CI: Confidence interval; CK-MB: Creatine kinase myocardial band; CoV: Coronavirus; COVID-19: Coronavirus disease 2019; CRP: C-reactive protein; DM: Diabetes mellitus; HL: Hyperlipidemia; HO: Heme oxygenase; HT: Hypertension; CI: Confidence interval; OR: Odds ratio; ROC: Receiver-operating characteristic; RT-PCR: Reverse transcription-polymerase chain reaction; SARS: Severe acute respiratory syndrome; STEMI: ST-segment elevation myocardial infarction; TIMI: Thrombolysis in myocardial infarction.

Acknowledgements
Not applicable.

Authors’ contributions
MSC: Conceived the idea, planned the study design, organized data acquisition, and interpretation, and performed statistical data analysis and writing.

Declarations

Competing interests
The author declares that he has no competing interests.

Consent for publication
Consent was obtained from each participant.

Ethics approval and consent to participate
The study protocol conforms to the Institutional and National Human Experimentation Committee and the Declaration of Helsinki of 1975, revised in 2008. The Erzincan Binali Yildirim University Ethics Committee approved our study (date: 07/07/2020, meeting no. 07, and protocol number: 06) and the Turkish Ministry of Health Research Board (2020-05-11T11_23_01). An obtained written informed consent form was from each participant.

Received: 23 June 2021 Accepted: 13 December 2021Published online: 20 December 2021

References
1. De Wilde AH et al (2017) Host factors in coronavirus replication. In: Tripp RA, MarkTompkins S (eds) Roles of host gene and non-coding RNA expression in virus infection. Springer, pp 1–42
2. Tort FL, Castells M, Cristina J (2020) A comprehensive analysis of genome composition and codon usage patterns of emerging coronaviruses. Virus Res 283:197976
3. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192
4. Clerkin KJ et al (2020) COVID-19 and cardiovascular disease. Circulation 141(20):1648–1655
5. Bansal M (2020) Cardiovascular disease and COVID-19. Diabetes Metab Syndr 14(3):247–250
6. Ye Z-W et al (2020) Zoonotic origins of human coronaviruses. Int J Biol Sci 16(10):1686
7. Alhazzani W, Du B (2020) Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Critical Care Med 46:1–34
8. Yang X et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8(5):475–481
9. Deng P et al (2020) The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19. Clin Chim Acta 510:186–190
10. Ferrari R, Di Pasquale G, Rapezzi C (2020) Commentary: what is the relationship between Covid-19 and cardiovascular disease? Int J Cardiol 310:167
11. Yang C et al (2021) Myocardial injury and risk factors for mortality in patients with COVID-19 pneumonia. Int J Cardiol 326:230–236
12. Shi S et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. JAMA Cardiol. 5:8072–8810
13. Bao J et al (2020) Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19. Clin Chim Acta 509:180–194
14. Danwang C et al (2020) A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res 8(1):1–13
15. Ghaframani S et al (2020) Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: a systematic review and meta-analysis. Eur J Med Res 25(1):1–10
16. Ieczovitch A et al (2020) Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review. PloS ONE 15(11):e0241955
17. Pallogiannis P, Zinellu A (2020) Bilirubin levels in patients with mild and severe Covid-19: a pooled analysis. Liver Int 40(7):1787–1788
18. Sioov RCM, Sato H, Mann GE (1999) Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res 41(2):385–394
19. Wagener F et al (2020) Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infection. Antioxidants 9(6):540
20. Oztruk M et al (2017) The role of serum bilirubin levels in predicting troponin positivity in non-ST-segment elevation acute coronary syndrome. Angiology 68(5):414–418
21. Hamur H et al (2016) Bilirubin levels and thrombus burden in patients with ST-segment elevation myocardial infarction. Angiology 67(6):565–570
22. National Health Commission (2020) Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin Med J (Engl) 133(9):1087–1095
23. Caforio AL et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(33):2636–2648
24. Zhu N et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733
25. Xu H et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):1–5
26. Ozieranski K et al (2021) Clinically suspected myocarditis in the course of severe acute respiratory syndrome novel coronavirus-2 infection: fact or fiction? J Card Fail 27(1):92–96
27. Bois MC et al (2021) COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation 143(3):230–243
28. Pellegrini D et al (2021) Microthrombi as a major cause of cardiac injury in COVID-19: a pathologic study. Circulation 143:1031–1042