Global Distribution of *Campylobacter jejuni* Penner Serotypes: A Systematic Review

Brian L. Pike*, Patricia Guerry, Frédéric Poly

Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America

Abstract

Penner serotyping has been the principal method for differentiating Campylobacter isolates since its inception. Campylobacter capsule polysaccharide (CPS), the principal serodeterminant on which Penner serotyping is based, is presently of interest as a vaccine component. To determine the required valency of an effective CPS-based vaccine, a comprehensive understanding of CPS distribution is needed. Because of the association between Penner serotype and CPS, we conducted a systematic review to estimate the frequency and distribution of Penner serotypes associated with cases of Campylobacteriosis. In total, more than 21,000 sporadic cases of *C. jejuni* cases were identified for inclusion. While regional variation exists, distribution estimates indicate that eight serotypes accounted for more than half of all sporadic diarrheal cases globally and three serotypes (HS4 complex, HS2, and HS1/44) were dominant inter-regionally as well as globally. Furthermore, a total of 17 different serotypes reached a representation of 2% or greater in at least one of the five regions sampled. While this review is an important first step in defining CPS distribution, these results make it clear that significant gaps remain in our knowledge. Eliminating these gaps will be critical to future vaccine development efforts.

Methods

Relevant published data were identified from searches of PubMed for research articles containing the keyword “Campylobacter” and the term “Penner” or “serotype”. At the same time,
First Author	Country	Total	Year	Duration	Age	Catchment Area	Serotypes Tested
Karmali [13]	Canada	285	1978	36	Children 0 to >10	Point	55
Taylor [14]	USA	46	1980	6	Mixed	Regional	NS
Skirrow [15]	England	3400	1981	132	Mixed	Country	43
McMyne [16]	Canada	153	1982	NS	NS	Regional	55
Lastovica [17]	South Africa	258	1982	6	Children <10	Point	60
Georges-Courbot [18]	CAR	94	1982	17	Children <15	Point	56
Neogi [19]	Bangladesh	102	1983	12	Mixed	Point	42
Patton [20]	USA	149	1985	NS	NS	Country	56
Jones [21]	Britain	406	1985	NS	NS	Unknown	32
Sjogren [22]	Sweden	29	1985	12	Adults >15	Point	23
Sjogren [22]	Mexico	130	1985	12	Infants 0–5	Point	23
Nishimura [23]	Japan	69	1985	NS	NS	Unknown	NS
Chatzipanagiotou [24]	Greece	31	1987	12	Children <14	Point	25
Albert [25]	Australia	108	1988	12	Mixed	Regional	66
Albert [26]	Australia	12	1988	6	Mixed	Regional	66
Sjogren [27]	Kuwait	47	1989	NS	Mixed	Point	NS
Zaman [28]	Saudi Arabia	46	1989	12	Mixed	Point	NS
Prasad [29]	India	22	1989	132	Mixed	Regional	72
Wareing [30]	England	754	1990	7	NS	Country	42
Takahashi [31]	Japan	455	1990	156	NS	Country	25
Owen [32]	UK	27	1992	12	NS	Country	45
Asrat [33]	Ethiopia	35	1992	12	Mixed	Point	33
Owen [34]	England	398	1993	12	NS	Country	47
Marshall [35]	England	70	1994	NS	NS	Point	NS
Gibson [36]	UK	27	1994	2	NS	Country	45
Nishimura [23]	China	85	1994	NS	NS	Regional	NS
Fang [37]	Taiwan	27	1994	120	Mixed	Unknown	25
Nielsen [38]	Denmark	136	1995	12	NS	Country	49
Nielsen [39]	Denmark	42	1995	11	NS	Country	47
Poly [5]	Egypt	142	1995	43	Infants 0–5	Point	47
Frost [40]	Wales	2310	1996	12	NS	Country	66
Hudson [41]	New Zealand	69	1996	7	NS	Point	NS
Strid [42]	Denmark	173	1996	NS	Mixed	Country	47
Petersen [43]	Denmark	42	1996	24	NS	Country	47
Smith [44]	Nigeria	17	1997	NS	NS	Point	64
Sopwith [45]	England	2277	1997	24	Mixed	Regional	NS
McKay [46]	Scotland	3155	1998	12	NS	Country	66
Moser [47]	Germany	201	1998	12	NS	Regional	9
Chatzipanagiotou [24]	Greece	98	1998	24	Children <14	Point	25
Poly [5]	Thailand	103	1998	72	Adults >15	Country	47
Vierikko [48]	Finland	518	1999	3	NS	Country	25
Saito [49]	Japan	158	2000	36	NS	Regional	25
Eyles [50]	New Zealand	54	2000	12	Mixed	Regional	NS
Ioannidis [51]	Greece	207	2000	36	NS	Regional	25
Gilpin [52]	New Zealand	66	2000	6	NS	Regional	NS
Nielsen [53]	Denmark	973	2001	12	NS	Regional	47
Fussing [54]	Denmark	926	2001	13	Mixed	Regional	47
Wierzb [55]	Egypt	20	2001	30	Mixed	Point	NS
Oza [56]	England	414	2002	NS	NS	Unknown	66
non-English publications, and review articles were excluded. The titles and abstracts of the identified articles were screened for relevance and evaluated independently by two of the study authors based on the availability of the article, and whether or not the article had previously unpublished, extractable data. Inclusion was limited to studies of natural sporadic Campylobacter jejuni infections in which human isolates were typed by the Penner-serotyping method. Research articles that reported data on fewer than ten isolates, data from outbreaks, or data from collections of isolates with evidence of selection bias (i.e. studies examining isolates from Guillain-Barré Syndrome patients only) were excluded. No further exclusionary restrictions were applied, such as the makeup of the study population, the length of the observation period, or the publication date. Disagreements concerning serotype assignment were resolved through discussion amongst all study authors. Serotypes were tallied within each study, and their respective proportions were calculated. Pooled proportional estimates were computed across all studies and within studies grouped by region. The proportional estimates were used to compute the relative global proportions calculated for the 35 C. jejuni serotypes outlined above. C. coli serotypes, when reported, were not included in this analysis. Discrepancies concerning serotype assignment were resolved through discussion amongst all study authors. Serotypes were tallied within each study, and their respective proportions were calculated. Pooled proportional estimates were computed across all studies and within studies grouped by region. The proportional estimates were computed using the DerSimonian & Laird random effects model [10]. Strong evidence of heterogeneity existed across the studies for most of the serotypes examined, the exception being those rarely reported in the literature (HS22, HS29, HS32, HS33, HS35, HS38, HS40, HS41, HS42, HS45, HS46, HS51, HS53, HS55, HS57, HS60, HS62, and HS66). All statistical analyses were performed using Stata Version 12 (College Station, TX).

Results

A search of the PubMed database identified 596 research articles for possible inclusion. After removing the duplicates, 488 research articles remained for consideration. A review of the titles and abstracts excluded another 410 articles from consideration based on relevance to the topic of interest, leaving 78 studies to be assessed for eligibility for inclusion. The full text of each of the 78 articles was examined in more detail, and data from 54 studies were included for the purpose of this review. Five publications reported stratified data that are included as separate studies for the purpose of this review, bringing the total number of studies to 59 (See Table 1 and Supplementary Figure S1).

In total, the studies were published between 1982 and 2011, reported data on 21,394 individual C. jejuni isolates from sporadic diarrhea cases identified; NC total number of isolates analyzed; NT year specimen collection initiated; NS when the year in which specimen collection began was not specified, publication year used; NT duration length of specimen collection period in months; NS age in years, “Mixed” indicates specimens collected from both children and adults; NT catchment size of the collection area, Point = a single collection point (e.g. single hospital or clinic); Regional = catchment indicates the size of the collection area; Mixed = a single collection point (e.g. single hospital or clinic); AGE = country from which sporadic diarrhea cases were identified; Total = total number of isolates analyzed; Year = year specimen collection initiated; Duration = length of specimen collection period in months; Age = age in years, “Mixed” indicates specimens collected from both children and adults; Catchment area = size of the collection area, Point = a single collection point (e.g. single hospital or clinic); Regional = catchment indicates the size of the collection area; Mixed = a single collection point (e.g. single hospital or clinic); **Table 1.**

First Author	Country	Total	Year	Duration	Age	Catchment Area	Serotypes Tested
Cornelius [57]	New Zealand	106	2002	2	NS	Point	NS
Gilpin [58]	New Zealand	168	2002	6	NS	Regional	43
Schonberg-Norro [59]	Finland	114	2002	3	NS	Country	25
Sonnevend [60]	UAE	41	2002	24	NS	Point	25
Nakari [61]	Finland	622	2002	48	Mixed	Country	25
Nakari [61]	Finland	785	2002	48	Mixed	Country	25
Miljkovic-Selimovic [62]	Serbia	29	2003	21	NS	Regional	NS
McTavish [63]	New Zealand	112	2006	NS	Mixed	Country	43
Islam [64]	Bangladesh	31	2006	NS	NS	Point	NS
Grozdanova [65]	Macedonia	20	2008	11	NS	Regional	25

*Country = Country from which sporadic diarrhea cases were identified; Total = total number of isolates analyzed; Year = year specimen collection initiated; Duration = length of specimen collection period in months; Age = age in years, “Mixed” indicates specimens collected from both children and adults; Catchment area = size of the collection area; Point = a single collection point (e.g. single hospital or clinic); Regional = catchment indicates the size of the collection area; Mixed = a single collection point (e.g. single hospital or clinic). **Table 1.**
cases of enteric infection collected between 1978 to 2008 from 29 different countries (Table 1). Study size and duration varied considerably. The largest and smallest studies comprised 3,400 and 12 isolates, respectively (mean = 363), while the duration of the studies analyzed ranged from 13 years to 2 months. The included studies also varied in design (i.e. sampling methodology and the size of the catchment area) as well as in their target populations (i.e. age, traveler vs. resident populations). The number of serotypes screened for in each study also differed, ranging from nine to 72 serotypes (including serotypes for C. coli) (See Table 1).

Overall, the studies predominately sampled European populations. Nearly 85% (n = 18,184) of the isolates included in this analysis were from Europe, while 1,186 were from Asia, 763 were from North America, 695 were from the Oceanic Region, and 566 were from Africa (Figure 1). No studies examining South America were identified in the literature search.

Globally, eight serotypes (HS4 complex, HS2, HS1/44, HS11, HS5/31, HS8/17, HS6/7, and HS3) accounted for 50.4% of all

Figure 1. Proportional representation of the three most dominant HS serotypes (HS4c, HS2, and HS1/44) by region. Lightly shaded areas represent the 33 (of 35) HS serotypes not indicated in color on the graph. Darkly shaded areas indicating those isolates not accounted for in the 35 HS serotypes examined were empirically derived by subtracting the sum of the percentages of the 35 serotypes from 100%. The darkly shaded area also includes non-typable isolates.

doi:10.1371/journal.pone.0067375.g001

Table 2. Global HS Serotypes with Proportional Estimates of 2% or Greater.

Global (n = 21,394)	%	lci	uci
HS4c	15.3	12.9	17.6
HS2	13.5	11.3	15.8
HS1/44	8.2	7.1	9.3
HS1	3.1	2.2	4.0
HS5/31	2.9	2.2	3.5
HS8/17	2.8	2.2	3.4
HS6/7	2.4	1.8	3.1
HS3	2.2	1.7	2.7

doi:10.1371/journal.pone.0067375.t002
isolates. The dominant serotypes were those of the HS4 complex (15.3%, CI: 12.9, 17.6), HS2 (13.5%, CI: 11.3, 15.8), and HS1/44 (8.2%, CI: 7.1, 9.3) (See Table 2). Combined, these three serotype categories accounted for nearly 40% of all isolates reported worldwide. HS4 complex, HS2, and HS1/44 were also the three serotypes with the greatest proportional representation across each of the five regions examined (Table 3 and Figure 1). Moreover, these three serotypes remained the most prevalent serotypes when the data were stratified by the economic status of the country in which the study was conducted (Tables 4).

Beyond the three most dominant serotypes, in all, 17 different serotypes reached a proportional representation of 2% or more in at least one of the five geographic regions considered (Table 5). Nine serotypes reached the 2% threshold in Africa, Asia, and Europe, accounting for 46.1%, 42%, and 58.2% of the total number of isolates in each region, respectively. Combined, these three serotype categories accounted for nearly 40% of all isolates reported worldwide. HS4 complex, HS2, and HS1/44 were also the three serotypes with the greatest proportional representation across each of the five regions examined (Table 3 and Figure 1). Moreover, these three serotypes remained the most prevalent serotypes when the data were stratified by the economic status of the country in which the study was conducted (Tables 4).

Beyond the three most dominant serotypes, in all, 17 different serotypes reached a proportional representation of 2% or more in at least one of the five geographic regions considered (Table 5). Nine serotypes reached the 2% threshold in Africa, Asia, and Europe, accounting for 46.1%, 42%, and 58.2% of the total number of isolates in each region, respectively. Combined, these three serotype categories accounted for nearly 40% of all isolates reported worldwide. HS4 complex, HS2, and HS1/44 were also the three serotypes with the greatest proportional representation across each of the five regions examined (Table 3 and Figure 1). Moreover, these three serotypes remained the most prevalent serotypes when the data were stratified by the economic status of the country in which the study was conducted (Tables 4).

Table 3. HS Serotypes with Proportional Estimates of 2% or Greater by Region.

Region	%	lci	uci
Africa (n = 566)			
HS4c	7.0	2.8	11.2
HS1/44	6.8	2.8	10.8
HS3	6.3	1.1	11.6
HS2	6.2	2.1	10.3
HS5/31	6.2	2.3	10
HS23/36	4.2	2.3	6.1
HS8/17	4.1	0.1	8.1
HS53	3.3	0.2	6.4
HS19	2.0	0.6	3.4
Asia (n = 1,186)			
HS2	11.5	6.1	17
HS4c	8.9	4.3	13.5
HS1/44	4.2	1.9	6.5
HS15	3.4	1.1	5.7
HS19	3.1	0.9	5.4
HS23/36	3.0	0.9	5.0
HS8/17	2.9	1.0	4.8
HS3	2.6	1.1	4.2
HS37	2.4	0.6	4.1
Europe (n = 18,184)			
HS4c	17.3	14.6	20
HS2	15.3	12.1	18.5
HS1/44	9.1	7.7	10.4
HS11	4.0	2.8	5.2
HS6/7	3.6	2.7	4.5
HS5/31	2.6	1.9	3.4
HS8/17	2.2	1.5	2.9
HS12	2.1	1.4	2.8
HS58	2.0	1.0	3.0
N. America (n = 763)			
HS4c	23.5	15.3	31.7
HS2	10.7	4.3	17.1
HS1/44	9.3	7.1	11.5
HS5/31	6.8	3.0	10.5
HS8/17	5.3	3.4	7.2
HS3	4.9	1.8	8.1
HS11	3.6	1.2	5.9
HS21	2.5	0.8	4.2
HS6/7	2.3	0.7	3.9
HS18	2.1	0.8	3.4
HS37	2.1	0.7	3.4
Oceania (n = 695)			
HS2	18.2	7.9	28.5
HS4c	17.4	10.7	24.0
HS1/44	10.5	6.3	14.8
HS8/17	8.8	3.5	14.1
HS23/36	4.2	2.4	5.9

Table 4. HS Serotypes with Proportional Estimates of 2% or Greater by Economic Development Status.

Status	%	lci	uci
Developed (n = 1,222)			
HS4c	17.5	15.2	19.8
HS2	16.5	13.8	19.1
HS1/44	9.0	7.8	10.1
HS11	3.5	2.4	4.5
HS6/7	2.9	2.1	3.6
HS8/17	2.8	2.1	3.4
HS5/31	2.6	2.0	3.3
HS3	2.1	1.6	2.6
Developing (n = 20,172)			
HS4c	8.2	4.8	11.5
HS1/44	5.0	2.9	7.1
HS2	5.0	2.8	7.3
HS5/31	4.3	2.3	6.3
HS3	3.7	1.7	5.7
HS8/17	3.5	1.5	5.5
HS23/36	3.3	1.5	5.1
HS15	2.9	1.1	4.6
HS53	2.9	1.0	4.8

Tables 2–4: HS serotypes with a proportional representation of 2% or greater, globally (Table 2), by Region (Table 3), and by Economic Status (Table 4). Proportional estimates (%) were computed using the DerSimonian & Laird random effects model and include the upper (uci) and lower (lci) 95% confidence intervals. Note: Isolates categorized as a cross-reactive pair HS serotype (e.g. HS1/44, HS5/31, HS6/7, HS8/17, and HS23/36) were originally reported as one of the two serotypes or as the paired serotype itself. Isolates categorized as HS4 complex (or HS4c) represent isolates reported as any combination of the following serotypes HS4/13/16/43/50/63/64/65. doi:10.1371/journal.pone.0067375.t004

PLOS ONE | www.plosone.org | 5 June 2013 | Volume 8 | Issue 6 | e67375

Isolates. The dominant serotypes were those of the HS4 complex (15.3%, CI: 12.9, 17.6), HS2 (13.5%, CI: 11.3, 15.8), and HS1/44 (8.2%, CI: 7.1, 9.3) (See Table 2). Combined, these three serotype categories accounted for nearly 40% of all isolates reported worldwide. HS4 complex, HS2, and HS1/44 were also the three serotypes with the greatest proportional representation across each of the five regions examined (Table 3 and Figure 1). Moreover, these three serotypes remained the most prevalent serotypes when the data were stratified by the economic status of the country in which the study was conducted (Tables 4).
Table 5. Comparison of HS Serotypes with Proportional Estimates by Region: Proportions that met or exceeded the 2% threshold are bolded and those that did not are indicated in italics.

	Global %	Africa %	Asia %	Europe %	N. America %	Oceania %
(n = 21,394)	(n = 566)	(n = 1,186)	(n = 18,184)	(n = 763)	(n = 695)	
HS4c	15.3	7.0	8.9	17.3	23.5	17.4
HS2	13.5	6.2	11.5	15.3	10.7	18.2
HS1/44	8.2	6.8	4.2	9.1	9.3	10.5
HS11	3.1	1.6	0.2	4.0	3.6	1.7
HS5/31	2.9	6.2	1.8	2.6	6.8	1.5
HS8/17	2.8	4.1	2.9	2.2	5.3	8.8
HS6/7	2.4	1.2	0.7	3.6	2.3	0.6
HS3	2.2	6.3	2.6	1.9	4.9	0.7
HS37	1.8	0.9	2.4	1.8	2.1	1.8
HS23/36	1.7	4.2	3.0	1.4	1.8	4.2
HS21	1.6	0.5	0.6	1.8	2.5	1.1
HS19	1.5	2.0	3.1	1.5	0.9	0.5
HS12	1.3	1.0	0.0	2.1	0.5	0.7
HS58	1.3	0.8	0.0	2.0	1.0	0.1
HS15	1.1	1.4	3.4	1.2	0.9	0.4
HS18	0.9	0.4	0.1	1.1	2.1	0.2
HS53	0.7	3.3	1.2	0.7	0.6	0.1

doi:10.1371/journal.pone.0067375.t005

Discussion

Since Penner first introduced the method [2], serotyping has been an important means of characterizing Campylobacter isolates. Here, using existing data, we estimate the distribution of C. jejuni serotypes both globally and by geographic region. Estimates were derived from 59 published studies on more than 21,000 cases of sporadic diarrhea. Based on these estimates, eight serotypes account for half of all isolates globally and three serotypes in particular (HS4 complex, HS2, and HS1/44), were consistently represented across all regions.

Although this study is the first of its kind and a significant step forward in understanding the serotype distribution of C. jejuni infections, it is not without limitations. In fact, the estimates presented here are almost certainly imprecise. Data are sparse in every region of the world. No studies reporting extractable data were identified in South America and relatively few studies reported data from Africa and Asia, regions in which enteric infections contribute significantly to morbidity and mortality. The fact that some geographic regions are underrepresented may be partially due to the exclusion of non-English publications. However, the lack of data most probably reflects an absence of surveillance in these regions. With limited data from every region of the world, save Europe, the global estimates presented are biased towards those calculated in Europe. Even in Europe, from which 85% of the isolates in this study originated, there are insufficient data to draw conclusions regarding temporal changes in serotype distribution, geographic variation, and differences across demographic groups (e.g. travelers vs. non-travelers, or children vs. adults, etc.). The estimates presented here are also based on reports of sporadic cases of diarrhea. If an association between serotype and disease severity exists, selection bias has the potential to overestimate serotypes that result in manifest symptoms. Additionally, although a modest number of publications included in this review used a commercially available kit consisting of 25 antisera (Denka Seiken, Co), most studies relied upon custom reagents generated in-house or from another laboratory. The lack of standardized reagents calls into question the comparability of results across individual studies. Similarly, studies varied from one to the next with regards to which and how many serotypes were tested. These methodological differences undoubtedly influenced the estimates calculated here. Studies that did not screen a complete panel of antisera capable of detecting every serotype risked under-reporting certain serotypes, classifying them instead as non-typable. Finally, because C. jejuni is known to be subject to phase variation, assays such as Penner serotyping that depend upon the expression of CPS have the potential to underestimate the prevalence of any given Campylobacter serotype.

If current efforts to develop a CPS-based vaccine are to succeed, robust surveillance systems are needed to address substantial gaps in knowledge surrounding the geographic distribution and temporal stability of serotypes. Future surveillance methods should also aim to reveal demographic differences in serotype distribution (e.g. age, traveler vs. resident populations) and disease/serotype associations (e.g. severity of disease, risk of developing chronic long-term health outcomes such as reactive arthritis, Guillain-Barré syndrome, or gastrointestinal disorders). Combined with investigations into the immunogenic properties of the differing CPS types, addressing these fundamental surveillance-related questions will be important in determining the composition of a future vaccine with regards to valency. Furthermore, the need for surveillance is greatest in developing regions, where diarrheal disease is most prevalent and available data are lacking. Diarrheal episodes amongst children in the developing world are believed to cause millions of deaths annually [11] and, although the estimates are derived from a relatively small number of studies, the proportion of diarrheal cases attributable to Campylobacter infection is believed to be high, ranging between 5–20% of cases.
Given this high incidence rate, the potential benefit of a future vaccine is greatest in the developing world. However, realizing this potential will require a significant surveillance effort to inform the development of a multi-valent vaccine that is well-matched to CPS types circulating in these regions. Implementation of such a surveillance program will require a commitment of time and resources that has not been seen to date. Although Penner typing was once considered the gold standard in C. jejuni serotyping, its use has been declining in recent years and, today, the technique is routinely performed by only a small number of reference laboratories in North America and Europe. The limited and declining use of Penner typing is due in part to the complexity and cost of generating polyclonal rabbit sera to the 47 C. jejuni type strains, as well as to the emergence and value of other typing schemes such as Multi Locus Sequence Typing (MLST) and the ever-decreasing cost of direct sequencing. For a surveillance system to be implemented that is sufficiently large enough to address the outstanding questions of CPS distribution and disease association, alternative methodologies for determining the CPS type of C. jejuni isolates will almost certainly need to be employed. Such alternative methodologies will need to be cost-effective, efficient with respect to time, readily transferred to most any laboratory, and have high throughput capacity. Recently, our group offered a method that meets these criteria. Sequencing has revealed that each Penner serotype is unique with regards to the genomic structure of the cassette of genes involved in the biosynthesis of the serodeterminant CPS [5]. We have designed specific PCR primers that exploit these genomic differences and reproduce the original Penner serotypes. The published system covered 14 serotypes, and has recently been extended to 47 serotypes, (Poly et al. in preparation). Standardization and distribution of this CPS typing system offers one potential alternative method for large-scale surveillance. In addition to the already noted benefits this molecular typing system might offer, such a system may also reduce or eliminate the substantial number of non-typable isolates found in previous studies, as the described PCR-based typing system it is not sensitive to CPS expression. Regardless of which method is ultimately used, informed design of a CPS-based vaccine will require a substantial investment of resources to sustain the intensive surveillance needed to move beyond the incomplete and static picture that this review is able to offer.

Supporting Information

Figure S1 Flow diagram of articles search, reviewed, and included in the systematic review. (DOCX)

Acknowledgments

The authors would like to thank Dr. Chad Porter for his expertise and guidance in statistical analysis.

Disclaimer: The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. This is a US Government work. There are no restrictions on its use. There were no financial conflicts of interests among any of the authors. This study was conducted under support of the Military Infectious Disease Research Program.

Copyright Statement: Authors (BP and PG) are employees of the U.S. Government or military service members. This work was prepared as part of official duties. Title 17 U.S.C. §105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

Author Contributions

Conceived and designed the experiments: BP PG FP. Performed the experiments: BP FP. Analyzed the data: BP FP. Wrote the paper: BP PG FP.

References

1. Guerry P, Poly F, Riddle M, Maue AC, Chen YH, et al. (2012) Campylobacter polysaccharide capsules: virulence and vaccines. Front Cell Infect Microbiol 2: 7.
2. Penner JL, Hennessy JN (1980) Passive hemagglutination technique for serotyping Campylobacter fetus subsp. jejuni on the basis of soluble heat-stable antigens. J Clin Microbiol 12: 732–737.
3. Parkhill J, Wren BW, Mungall K, Keeling JM, Churcher C, et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668.
4. Karylovan AV, Linton D, Gregson NA, Lastovica AJ, Wren BW (2000) Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35: 529–541.
5. Poly F, Serichatalegera O, Schulman M, Ju J, Cates CN, et al. (2011) Discrimination of major capsular types of Campylobacter jejuni by multiplex PCR. J Clin Microbiol 49: 1750–1757.
6. Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, et al. (2001) A phase-variable capsule is involved in virulence of Campylobacter jejuni 81–176. Mol Microbiol 40: 769–777.
7. Maue AC, Mohdak KL, Giles DK, Poly F, Ewing CP, et al. (2013) The polysaccharide capsule of Campylobacter jejuni modulates the host immune response. Infect Immun 81: 665–672.
8. Monteiro MA, Basar S, Hall ER, Chen YH, Porter CK, et al. (2009) Capsule polysaccharide conjugate vaccine against diarrheal disease caused by Campylobacter jejuni. Infect Immun 77: 1128–1136.
9. Tribble DR, Basar S, Carmelli MP, Porter C, Pierce K, et al. (2009) Campylobacter jejuni strain CG8421: a refined model for the study of Campylobacteriosis and evaluation of Campylobacter vaccines in human subjects. Clin Infect Dis 49: 1512–1519.
10. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
11. O’Ryan M, Prado V, Pickering LK (2005) A millennium update on pediatric diarrheal illness in the developing world. Semin Pediatr Infect Dis 16: 125–136.
12. Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL (2002) Human campylobacteriosis in developing countries. Emerg Infect Dis 8: 217–224.
13. Karmali MA, Penner JL, Fleming PC, Williams A, Hennessy JN (1983) The serotype and biotype distribution of clinical isolates of Campylobacter jejuni and Campylobacter coli over a three-year period. J Infect Dis 147: 243–246.
14. Taylor DN, McDermott KT, Little JR, Wells JG, Blaser MJ (1990) Campylobacter enteritis from untreated water in the Rocky Mountains. Ann Intern Med 99: 38–40.
15. Skirrow MB, Jones DM, Sutcliffe E, Benjamin J (1993) Campylobacter bacteriemia in England and Wales, 1981–91. Epidemiol Infect 110: 567–573.
16. McMyne PM, Penner JL, Mathias RG, Black WA, Hennessy JN (1982) Serotyping of Campylobacter jejuni isolated from sporadic cases and outbreaks in British Columbia. C J Clin Microbiol 16: 281–285.
17. Lastovica AJ, Le Roux E, Congi RV, Penner JL (1986) Distribution of serotypes of Campylobacter jejuni and C. coli isolated from paediatric patients. J Med Microbiol 21: 1–5.
18. Georges-Courbot MC, Baya C, Beraud AM, Meunier DM, Georges AJ (1986) Distribution and serotypes of Campylobacter jejuni and Campylobacter coli in enteric Campylobacter strains isolated from children in the Central African Republic. J Clin Microbiol 23: 592–594.
19. Neogi PK, Shahid NS (1987) Serotypes of Campylobacter jejuni isolated from patients attending a diarrhoeal disease hospital in urban Bangladesh. J Med Microbiol 24: 303–307.
20. Patton CM, Barrett TJ, Morris GK (1985) Comparison of the Penner and Lior methods for serotyping Campylobacter spp. J Clin Microbiol 22: 558–565.
21. Jones DM, Sunlifi EM, Abbott JD (1986) Serotyping of Campylobacter species by combined use of two methods. Eur J Clin Microbiol 4: 562–563.
22. Sjogren E, Ruiz-Palacios G, Kajiser B (1989) Campylobacter jejuni isolations from Mexican and Swedish patients, with repeated symptomatic and/or asymptomatic diarrhoea episodes. Epidemiol Infect 102: 47–57.
23. Nishinara M, Nukina M, Yuan JM, Shen BQ, Ma J, et al. (1996) PCR-based restriction fragment length polymorphism (RFLP) analysis and serotyping of Campylobacter jejuni isolates from diarrheic patients in China and Japan. FEMS Microbiol Lett 142: 133–138.
24. Chatzipanagiotou S, Papavasileiou E, Lakumenta A, Makri A, Nicolaou C, et al. (2003) Heat-stable antigen serotyping of Campylobacter jejuni strains isolated from hospitalized children in Athens, Greece. Eur J Epidemiol 18: 1097–1100.
44. Smith SI, Coker AO, Olukoya DK (1997) Biotyping of Campylobacter strains isolated in Lagos, Nigeria using the modified Preston biotype. Z Naturforsch C 52: 259–263.

45. Sopwith W, Ashton M, Frost JA, Toque C, O'Brien S, et al. (2003) Enhanced surveillance of campylobacteriosis in the North West of England 1997–1998. J Infect 46: 35–45.

46. McKay D, Fletcher J, Cooper P, Thomson-Carter FM (2001) Comparison of two methods for serotyping Campylobacter spp. J Clin Microbiol 39: 1917–1921.

47. Moser I, Lentsch P, Rieknevuoelker B, Schwerk P, Wiedi LH (2002) High resolution genotyping of Campylobacter jejuni strains by macrorestriction analysis with XhoI and polymerase chain reaction targeting enterobacterial repetitive intergenic consensus sequences: can we predict the zoonotic potential of strains? Epidemiol Infect 129: 435–443.

48. Vierikko A, Hanninen ML, Siitonen A, Routu P, Rautelin H (2004) Domestically acquired campylobacteriosis infections in Finland. Emerg Infect Dis 10: 127–130.

49. Saito S, Tatsuyanagi J, Harata S, Ito Y, Shimagawa K, et al. (2005) Campylobacter jejuni isolated from retail poultry meat, bovine feces and bile, and human diarrhoeal samples in Japan: comparison of serotypes and genotypes. FEMS Immunol Med Microbiol 45: 311–319.

50. Eyles RF, Brooks JH, Townsend CR, Barlow MA, Hargreaves WA, et al. (2006) Comparison of Campylobacter jejuni PFGE and Primer subtypes in human infections and in water samples from the Taieri River catchment of New Zealand. J Clin Microbiol 101: 18–25.

51. Ioanninith A, Nicolau C, Legakis NJ, Ioannidou V, Chatzinagouotos S (2006) The first database comprised of flagellin gene (flaA) types of Campylobacter jejuni human clinical isolates from Greece. Eur J Epidemiol 21: 825–829.

52. Gilpin BJ, Thorrold B, Scholes P, Longhurst RD, Devane M, et al. (2008) Comparison of Campylobacter jejuni genotypes from dairy cattle and human sources from the Matamata-Piako District of New Zealand. J Clin Microbiol 105: 1354–1360.

53. Nielsen EM, Fussing V, Engberg J, Nielsen NL, Neimann J (2006) Most Campylobacter subtypes from sporadic infections can be found in retail poultry products and food animals. Epidemiol Infect 134: 755–767.

54. Fussing V, Moller Nielsen E, Neimann J, Engberg J (2007) Systematic serotyping and ribotyping of Campylobacter spp. improves surveillance: experiences from two Danish counties. Clin Microbiol Infect 13: 633–642.

55. Wierzba TF, Abdel-Messih IA, Gharb B, Bayar S, Hendau A, et al. (2008) Campylobacter infection as a trigger for Guillain-Barré syndrome in Egypt. PLoS One 3: e3674.

56. Oza AN, Thwaites RT, Wareing DR, Bolton FJ, Frost JA (2002) Detection of heat-stable antigens of Campylobacter jejuni and C. coli by direct agglutination and riboprinting of Campylobacter spp. improves surveillance: experiences from two Danish counties. Clin Microbiol Infect 10: 502–509.

57. Cornelius AJ, Nicol C, Hudson JA (2005) Campylobacter spp. in New Zealand raw sheep liver and human campylobacteriosis cases. Int J Food Microbiol 99: 99–109.

58. Gilpin B, Cornelius A, Robson B, Boxall N, Ferguson A, et al. (2006) Application of pulsed-field gel electrophoresis to identify potential outbreaks of campylobacteriosis in New Zealand. J Clin Microbiol 44: 406–412.

59. Schoenberg-Noorl D, Sarna S, Hanninen ML, Kaitila IL, Kaskkoranta SS, et al. (2006) Strain and host characteristics of Campylobacter jejuni infections in Finland. Clin Microbiol Infect 12: 734–760.

60. Sonnevend A, Rotimi VO, Kolodziejek J, Usmani A, Nowotny N, et al. (2006) High level of ciprofloxacin resistance and its molecular background among Campylobacter jejuni strains isolated in the United Arab Emirates. J Med Microbiol 55: 1533–1538.

61. Nakai UM, Hovinen O, Kusui M, Siitonen A (2010) Population-based surveillance study of Campylobacter infections in Finland. Epidemiol Infect 138: 1712–1718.

62. Methylcovic-Selimovic B, Ng LK, Price LJ, Kocic B, Babic T (2010) Characterization of Campylobacter jejuni and Campylobacter coli strains isolated in the region of Nis, Serbia. Ser Arh Celok Lek 130: 721–725.

63. McTavish SM, Pope CE, Nicol C, Sexton K, French N, et al. (2008) Wide geographical distribution of internationally rare Campylobacter clones within New Zealand. Epidemiol Infect 136: 1249–1252.

64. Islam Z, van Bekkum A, Wagnarza JA, Coyle J, de Borre AG, et al. (2009) Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh. PLoS One 4: e7257.

65. Grezdanov A, Popovic-Provanov A, Brezovka K, Trakovska-Dokic E, Dimovski A, et al. (2011) Cross-reactive epitopes present in campylobacter jejuni serotypes isolated from enteritis patients. Prilozi 32: 113–125.