Type 1 Diabetic Populations Have an Increased Prevalence of Parietal Cell Antibody
A Systematic Review and Meta-Analysis

Xi-Feng Pan, MD, Jian-Qiu Gu, PhD, and Zhong-Yan Shan, PhD

Abstract: The presence of parietal cell antibody (PCA) in serum is a biomarker of autoimmune gastritis. PCA directly recognizes the $\mathrm{H^+}/\mathrm{K}^+$ ATPase expressed in parietal cells, which is responsible for the active transport of hydrogen ions in exchange for potassium ions to increase the acidity of gastric secretions. Type 1 diabetes mellitus (T1DM) mainly results from pancreatic β-cell destruction due to cell-type specific autoimmunity. Considering autoimmune factors may be the common characteristics of both PCA positivity and T1DM, it is likely that both disorders may coexist within the same patient. The main objective of this meta-analysis is to provide a reliable evaluation to clarify the association between PCA positivity and T1DM by combining the raw data from all of the relevant studies.

Literature databases, including the Medline, Embase, and Web of Science, were systematically queried for studies investigating the association between PCA positivity and T1DM and were published from January 1980 to December 2014. A total of 3,584 T1DM cases and 2,650 non-T1DM controls were included in this meta-analysis, which showed that PCA positivity was more prevalent in patients with T1DM than healthy controls. Publication bias testing found no significant biases and sensitivity analysis demonstrated that our statistics were relatively stable and credible.

Our findings suggested that T1DM was associated with an increased risk of PCA positivity compared to control populations.

Methods

Databases and Search Strategies

The Medline, Embase, and Web of Science databases were systematically searched for studies published in English from January 1980 to December 2014. Queries included the keywords “gastric parietal cell antibody” or “parietal cell antibody,” or “PCA” or “GPCA,” in combination with the terms “type 1 diabetes mellitus,” “T1DM,” “insulin dependent diabetes mellitus,” or “IDDM.” The search results were filtered, and only population-based studies were retained. The title, abstract, and main text of the retrieved reports were checked manually to ensure they fulfilled the inclusion criteria. The literature search was performed by 2 investigators independently, followed by a comparison of the selected studies and discussion of any inconsistencies.

The literature search yielded 589 reports of potential interest, which were then narrowed to 179 studies that might contain data of interest after reading the abstracts. These 179 publications were then read in full to determine whether they met the inclusion criteria for the meta-analysis. Ultimately, 18 reports were found suitable for further analysis.
Inclusion Criteria
The studies included in the meta-analysis met all of the following conditions: analyzed the relationship between PCA positivity and T1DM; had a case–control design where the case and control groups were randomly and continuously included during a definite period; provided sufficient data on T1DM and non-T1DM control populations to allow for the calculation of an odds ratio (OR), 95% confidence interval (CI), and P value; controlled for population ethnicity and age; the case population consisted of patients with typical T1DM, other than latent autoimmune diabetes in adults; the control population consisted of nondiabetic subjects free from other diseases that might influence PCA prevalence; and excluded pregnant women from the analysis (to avoid any artifacts resulting from the immunosuppressive effects of parturiency).

Data Extraction
The following information was extracted from each included report: first author, year of publication, ethnicity of the study population, case and control population sizes, and PCA positivity rate among case and control populations.

Bias Risk Assessment of Included Studies
The quality of the selected studies was assessed by 2 investigators using the Newcastle–Ottawa Scale (NOS), which has been recommended by the Cochrane Collaboration as a tool of bias risk assessment for observational studies. Each of the included studies was assessed using a star rating system in the following 3 areas: selection of the study population, comparability between the case and control populations, and determination of exposure factors for the case and control populations. A star was allocated to the study when it met one of the criterions for each area. The compatibility rating was the only exception, for which a maximum of 2 stars could be allocated to each study. The NOS score ranged from 0 to 9 stars. Since the meta-analysis focused solely on the association between PCA and T1DM, the item “no history of disease” was set to “no history of T1DM” for the purposes of our study. Only studies deemed acceptable in terms of “selection,” “comparability,” and “exposure” by the NOS were included in the meta-analysis.

Statistical Analysis
The association between PCA positivity and T1DM was evaluated by calculating the OR and 95% CI. Statistical significance of the calculated OR was examined by Z test, and P values less than 0.05 were considered statistically significant. Furthermore, Q tests were performed to examine heterogeneity between the included studies and used to determine whether a random-effects model or fixed-effects model was selected to
calculate the OR. In Q tests, $P < 0.1$ or $I^2 > 50\%$ indicated a great interstudy heterogeneity and subsequent use of a random-effects model in the OR calculation. Studies with Q test scores of $P > 0.1$ or $I^2 < 50\%$ were assessed using the fixed-effects model. In addition, Begg test was used to assess publication bias of the selected studies. All of the statistical analyses were performed using Stata Version 12.0 software (Stata Corporation, College Station, TX).

RESULTS

Characteristics of Included Studies

Eighteen case–control studies met the inclusion criteria and were included in the meta-analysis, all of which assessed the association between PCA positivity and T1DM by measuring the positive rate of PCA in T1DM and control populations. The process of study selection is illustrated in Figure 1. The

TABLE 1. General Characteristics of the Studies Included in This Meta-Analysis

Study	Country	Continent	T1DM Cases (n/N)	Non-T1DM Controls (n/N)	Quality Score
Neufeld et al, 1980⁸	USA	American	44/504	2/147	★★★★★
Delespesse et al, 1980⁹	Belgium	European	21/56	6/134	★★★★★
Srikanta et al, 1981¹⁰	India	Asian	14/110	12/123	★★★★★
Bright et al, 1982¹¹	USA	American	14/198	2/117	★★★★★
Riley et al, 1982¹²	USA	American	62/771	13/600	★★★★★
Menser et al, 1983¹³	Australia	Oceanian	20/227	0/200	★★★★★
Betterle et al, 1984¹⁴	Italy	European	12/239	4/250	★★★★★
Hägglof et al, 1986¹⁵	Sweden	European	2/30	0/30	★★★★★
Lorini et al, 1986¹⁶	Italy	European	19/55	10/75	★★★★★
Odugbesan et al, 1988¹⁷	UK	European	3/36	2/41	★★★★★
Landin-Olsson et al, 1989¹⁸	Sweden	European	12/389	1/321	★★★★★
Abdullah et al, 1990¹⁹	Saudi Arabia	Asian	8/86	2/45	★★★★★
Magzoub et al, 1994²⁰	UK	European	6/96	0/86	★★★★★
De Block et al, 2001²¹	Belgium	European	48/272	5/100	★★★★★
Jaeger et al, 2001²²	Germany	European	11/197	5/150	★★★★★
Erten et al, 2007²³	Turkey	Asian	6/73	2/55	★★★★★
Fröhlich-Reiterer et al, 2011²⁴	Austria	European	9/170	2/101	★★★★★
Pinto et al, 2013²⁵	Brazil	American	10/75	0/75	★★★★★

n = number of people with positive antibodies, N = total number of people with T1DM disease or Non-T1DM controls, T1DM = type 1 diabetes mellitus.

FIGURE 2. Forest plots comparing PCA-positive rates between T1DM and non-T1DM control populations. The rhombus represents the OR and 95% CI obtained for the combined calculation.
resulting meta-analysis included a total of 3,584 T1DM patients and 2,650 non-T1DM controls. The associated characteristics of the 18 studies are summarized in Table 1.

Results of the Meta-Analysis

Results regarding the association between PCA positivity and T1DM were obtained by a combined analysis of the raw data from the 18 included studies. A comparison of the PCA positivity rates between T1DM and control populations showed an increased prevalence in T1DM populations than in control populations (OR = 4.11, 95% CI = 3.12–5.42). Forest plots comparing PCA-positive rates between the T1DM and control populations are shown in Figure 2.

Subgroup analyses for Asian, American, European, and Oceanian populations revealed that the PCA-positive rate among T1DM populations was higher than that of control populations in the American, European, and Oceanian subgroups (OR = 4.90, 95% CI = 2.94–8.18; OR = 4.22, 95% CI = 2.84–6.27; OR = 39.62, 95% CI = 2.38–659.42, respectively), whereas no such trend was found in the Asian subgroup (OR = 1.64, 95% CI = 0.85–3.16). The results are presented in Table 2.

Sensitivity Analysis

To assess whether any individual study had a disproportionate influence on the results of the overall meta-analysis, ORs were calculated after the successive exclusion of each study. All ORs from this analysis fell within the 95% CI of the overall meta-analysis, indicating that no individual study imparted a strong influence on the results of the overall meta-analysis (Fig. 3). This finding suggested that our statistical results further demonstrated the stability and reliability. The meta-analysis performed in the present study using 18 independent case–control studies showed that rate of PCA positivity was significantly higher in T1DM populations when compared with that of control populations. Geographical subgroup analysis also revealed that this finding was consistent among American, European, and Oceanian subgroups, while this trend was not found in Asian populations. Despite the heterogeneity between the included studies, sensitivity analysis indicated that none of the individual studies had a disproportionate influence on the OR value of the overall meta-analysis. Additionally, the stratified analysis according to different geographical factors showed no significant differences. Together, these statistical results further demonstrated the stability and reliability of the conclusions drawn from this meta-analysis.

Publication Bias

To investigate whether a potential publication bias existed in the included studies, Begg testing was performed on a generated funnel plot. The relative symmetry of the point distribution in funnel plot indicated that no significant publication bias was present (Fig. 4). Similarly, the results of Begg test provided no evidence for any publication bias in the meta-analysis (Pr > |z| = 0.363).

TABLE 2. Meta-analysis of the association between T1DM and prevalence of parietal cell antibody (PCA)

Continent	Eligible Studies	OR (95% CI)	P-Value	Heterogeneity Test	Effect Model
Asian	3	1.64 (0.85–3.16)	0.140	P-H = 0.761, I² = 0.0%	Fixed
American	4	4.90 (2.94–8.18)	0.000	P-H = 0.586, I² = 0.0%	Fixed
European	10	4.22 (2.84–6.27)	0.000	P-H = 0.318, I² = 13.5%	Fixed
Oceanian	1	39.62 (2.38–659.42)	0.010	—	Fixed
Total	18	4.11 (3.12–5.42)	0.000	P-H = 0.148, I² = 26.2%	Fixed

CI = confidence interval, OR = odds ratio, PCA = parietal cell antibody, T1DM = type 1 diabetes mellitus.

DISCUSSION

PCA is a biomarker of autoimmune gastritis and requires a serum titer greater than the upper limit of the normal reference range for diagnosis. T1DM primarily occurs as a result of autoimmune-mediated pancreatic β-cell destruction. Individuals suffering from an autoimmune disease are generally thought to be at higher risk for other forms of chronic immunity. Moreover, since autoimmune factors are a common feature of both PCA positivity and T1DM, these 2 clinical findings are likely to co-occur in some patients. The potential association between PCA positivity and T1DM deserves special attention because it may help to develop prophylactic and therapeutic strategies.

Although the existence of an association between PCA positivity and T1DM has been evaluated in previous studies, inconsistent conclusions were drawn. In addition, the relatively small sample sizes used in these reports limits their strength and reliability. The meta-analysis performed in the present study using 18 independent case–control studies showed that rate of PCA positivity was significantly higher in T1DM populations when compared with that of control populations. Geographical subgroup analysis also revealed that this finding was consistent among American, European, and Oceanian subgroups, while this trend was not found in Asian populations. Despite the heterogeneity between the included studies, sensitivity analysis indicated that none of the individual studies had a disproportionate influence on the OR value of the overall meta-analysis. Additionally, the stratified analysis according to different geographical factors showed no significant differences. Together, these statistical results further demonstrated the stability and reliability of the conclusions drawn from this meta-analysis.
Although this study is statistically sound, a few limitations need to be noted. First, a number of relevant studies were not included in the meta-analysis owing to the incompleteness of their original data or publication restrictions. Second, the meta-analysis only focuses the association between T1DM and PCA due to a lack of consistent criteria for gastric function evaluation between different countries. Third, in the subgroup analysis, the number of studies examining Oceanian population was relatively small; thus, there was not enough statistical power to evaluate the level of association in this group to the desired accuracy. Additionally, no data were available from African populations. Fourth, given that the included studies differed in their authors, geographical location, and time, the variability of the assays used in each study may have some influence on the overall conclusion. Lastly, the results of the meta-analysis were derived from uncorrected raw data, and a more accurate analysis should be performed if permitted by the data. For example, the meta-analysis could be repeated and control for any influence attributed to population age, environmental factors, and/or lifestyle. Given these limitations, the conclusions of this study should be interpreted with caution.

In conclusion, this meta-analysis indicates that PCA positivity is more prevalent in T1DM populations than non-T1DM control counterparts, which supports that T1DM may increase the risk of PCA positivity.

ACKNOWLEDGMENTS

This study would not have been possible without the participation of the T1DM patients and non-T1DM controls. The authors thank all of these individuals.

REFERENCES

1. Toh BH, Kyaw T, Taylor R, et al. Parietal cell antibody identified by ELISA is superior to immunofluorescence, rises with age and is associated with intrinsic factor antibody. Autoimmunity. 2012;45:527–532.
2. Bergman MP, Vandenbroucke-Grauls CM, Appelmelk BJ, et al. The story so far: Helicobacter pylori and gastric autoimmunity. Int Rev Immunol. 2005;24:63–91.
3. Whittingham S, Mackay IR. Autoimmune gastritis: historical antecedents, outstanding discoveries, and unresolved problems. Int Rev Immunol. 2005;24:1–29.
4. Arslan D, Merdin A, Tural D, et al. The effect of autoimmunity on the development time of microvascular complications in patients with type 1 diabetes mellitus. Med Sci Monit. 2014;20:1176–1179.
5. Di Gialleonardo V, de Vries EF, Di Girolamo M, et al. Imaging of β-cell mass and insulin in insulin-dependent (Type 1) diabetes mellitus. Endocr Rev. 2012;33:892–919.
6. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [Accessed April 15, 2015].
7. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. Available at http://www.cochrane-handbook.org. [Accessed April 15, 2015].
8. Neufeld M, Maclaren NK, Riley WJ, et al. Islet cell and other organ-specific antibodies in U.S. Caucasians and Blacks with insulin-dependent diabetes mellitus. Diabetes. 1980;29:589–592.
9. Delespesse G, Gausset P, Sarfati M, et al. Circulating immune complexes in old people and in diabetics: correlation with autoantibodies. Clin Exp Immunol. 1980;40:96–102.
10. Srikantha S, Malaviya AN, Mehra NK, et al. Autoimmunity in type I (insulin-dependent) diabetes mellitus in North India. J Clin Immunol. 1981;1:169–173.
11. Bright GM, Blizard RM, Kaiser DL, et al. Organ-specific autoantibodies in children with common endocrine diseases. J Pediatr. 1982;100:8–14.
12. Riley WJ, Toskes PP, Maclaren NK, et al. Predictive value of gastric parietal cell autoantibodies as a marker for gastric and hematologic abnormalities associated with insulin-dependent diabetes. Diabetes. 1982;31:1051–1055.
13. Menser MA, Hudson JR. Pancreatic islet and other autoantibodies in juvenile and adult onset diabetics in Australia. Pathology. 1983;15:309–313.
14. Betterle C, Zanette F, Pedini B, et al. Clinical and subclinical organ-specific autoimmune manifestations in type I (insulin-dependent) diabetic patients and their first-degree relatives. Diabetologia. 1984;26:431–436.
15. Hägglof B, Rabinovitch A, Mackay P, et al. Islet cell and other organ-specific autoantibodies in healthy first-degree relatives to insulin-dependent. Acta Paediatr Scand. 1986;75:611–618.
16. Lorini R, Larizza D, Livieri C, et al. Auto-immunity in children with diabetes mellitus and in their relatives. Eur J Pediatr. 1986;145:182–184.
17. Odugeesan O, Fletcher JA, Sanders A, et al. Autoantibodies in Indian-Asians with insulin-dependent diabetes in the UK. Postgrad Med J. 1988;64:357–360.
18. Landin-Olsson M, Karlsson A, Dahlquist G, et al. Islet cell and other organ-specific autoantibodies in all children developing type I (insulin-dependent) diabetes mellitus in Sweden during one year and in matched control children. Diabetologia. 1989;32:387–395.
19. Abdullah MA, Salman H, Bahakum H, et al. Antithyroid and other organ-specific antibodies in Saudi Arab diabetic and normal children. Diabet Med. 1990;7:50–52.
20. Magzoub MM, Abdel-Hameed AA, Bottazzo GF. Prevalence of islet cell and thyrogastric autoantibodies in Sudanese patients with type I diabetes. Diabetes. 1994;43:1185–1192.
21. De Block CE, De Leeuw IH, Decochez K, et al. The presence of thyrogastric antibodies in first degree relatives of type I diabetic patients is associated with age and proband antibody status. J Clin Endocrinol Metab. 2001;86:4358–4363.
22. Jaeger C, Hatzigeliak E, Petzold R, et al. Comparative analysis of organ-specific autoantibodies and celiac disease-associated antibodies.
in type 1 diabetic patients, their first-degree relatives, and healthy control subjects. *Diabetes Care.* 2001;24:27–32.

23. Erten G, Guroğlu AO, Deniz G, et al. Organ specific autoantibodies in preclinical and early clinical type 1 diabetes in Turkey. *Ups J Med Sci.* 2007;112:231–243.

24. Fröhlich-Reiterer EE, Huber J, Katz H, et al. Do children and adolescents with type 1 diabetes mellitus have a higher frequency of parietal cell antibodies than healthy controls? *J Pediatr Gastroenterol Nutr.* 2011;52:558–562.

25. Pinto AL, Dantas JR, Araujo D, et al. Anti-parietal cell antibodies and pernicious anemia in patients with type 1 diabetes mellitus and multiethnic background. *Diabetes Res Clin Pract.* 2013;102:e41–e43.

26. Cabrera de León A, Almeida González D, Almeida AA, et al. Factors associated with parietal cell autoantibodies in the general population. *Immunol Lett.* 2012;147:63–66.

27. Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. *Int Immunopharmacol.* 2014;22:182–191.

28. Parameswaran A, Attwood K, Sato R, et al. Identification of a new disease cluster of pemphigus vulgaris with autoimmune thyroid disease, rheumatoid arthritis and type 1 diabetes. *Br J Dermatol.* 2015;172:729–738.