The Olsenella Uli Induced Pneumonia: A Case Report

Yufen Yan
The Affiliated Hospital of Qingdao University

Hong Li
The Affiliated Hospital of Qingdao University

Shuai Li
The Affiliated Hospital of Qingdao University

Shuhui Liu
The Affiliated Hospital of Qingdao University

Nan Jia
The Affiliated Hospital of Qingdao University

Yanfei Liu
The Affiliated Hospital of Qingdao University

Qing Liu
The Affiliated Hospital of Qingdao University

Chunhua Han (✉ hanchunhua1983411@163.com)
The Affiliated Hospital of Qingdao University

Case report

Keywords: Olsenella uli, pneumonia, human infection

DOI: https://doi.org/10.21203/rs.3.rs-591076/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
The Olsenella uli induced pneumonia: A case report

Yufen Yan1,2, Hong Li3, Shuai Li1, Shuhui Liu4, Nan Jia4, Yanfei Liu4, Qing Liu4 and Chunhua Han4*

1Department of Outpatient and Emergency, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000;
2Department of Pharmacology, Qingdao University School of Pharmacy, 26 Ningde Road, Qingdao 266073;
3Department of Pathology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000;
4Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, China.

*Correspondence: hanchunhua1983411@163.com; Tel: (86-532)82919303

Keywords: Olsenella uli, pneumonia, human infection

Abstract
Olsenella uli is a Gram-positive bacterium common in the oral cavity or gastrointestinal tract. Here we reported a first case of human pneumonia caused by the Olsenella uli. The identification of Olsenella uli was based on micromorphology, sequence analysis and mass spectrometry analysis of the bacteria recovered from sputum. Ceftazidime, one of the third generation cephalosporins was used for the anti-infection treatment of the patient. CT results showed a significant improvement of the pulmonary lesion and pleural effusion and recovery from pulmonary infection after 10 days. The mechanism underlying Olsenella uli induced pneumonia is unclear, our report suggests a causative role of gingival bacteria in pathogenesis of pneumonia, and the intervention by Ceftazidime may offer a therapeutic strategy for Olsenella uli infection.
Background

Pneumonia is the most common infectious cause of mortality and morbidity worldwide. Pneumonia infection results from a complex process where the lower respiratory tract suffers the invasion of an infective microorganism. It is estimated that lower respiratory tract infection caused 2.38 million deaths and an estimated 91.8 million disability-adjusted life-years [1]. Pneumonia can be acquired in the community or acquired in the hospital environment, and can be transmitted by the aspiration of a pathogenic microorganism or by inhalation of a pathogenic microorganism. Bacteria, viruses and fungi are the common pathogenic microorganism of pneumonia and with increasing antimicrobial resistance, pneumonia induced by known bacterium is a threat to human health [2]. In recent years, new bacteria or well-known bacteria such as Rhodococcus defluvii, brucellosis which were rarely infected the lung have been reported to cause pneumonia [3, 4].

The genus Olsenella is a group of bacteria that are microaerotolerantly (moderately obligately) anaerobic [5]. At the time of writing, the genus comprises six species, Olsenella uli, Olsenella profusa, Olsenella umbonata, Olsenella scatoligenes, Olsenella timonensis and Olsenella faecalis (www.bacterio.net/olsenella.html). Olsenella uli, the type species of the genus Olsenella, was originally designated as Lactobacillus uli in 1991 [6] and moved to a new genus, Olsenella with genomic studies in 2001 [7]. Olsenella uli is regularly isolated from lesion sites in the human mouth such as gingival and subgingival sites with peridontitis [5, 7]. In 2008, Shane R Durkin et al. isolated Olsenella uli from vitrectomy specimen of an Australian man with chronic postoperative endophthalmitis [8]. Additionally, sometimes Olsenella uli could be isolated from blood of humans with local oral or gastrointestinal infections [9, 10]. However, there have not been reports about Olsenella infection in lung with either culture or gene analysis. With clinical and laboratory work, we found that Olsenella uli can infect the lung and induce pneumonia for the first time and this may provide some new ideas for interventions of Olsenella uli infection.

Case presentation

A male, 70 years old, farmer, had previous history of hypertension with blood pressure peak at 160/110 mmHg, but had no diabetes, coronary heart disease, chronic lung disease, kidney disease and liver disease. He had a 30 year history of smoking with 15 - 20 cigarettes per day and gave up smoking for 10 years. On May 31 2020, he got a cough with bloody sputum for three times a day without obvious causes, not accompanied by fever, chest pain and distress, difficulty in breathing abdominal pain and diarrhea. After anti-infection and hemostatic treatment in the local hospital, he had no bloody sputum, but got difficulty in breathing, alleviating when lying on the right side, accompanied by fever with heat peak 38.9 °C at June 8, 2020. Without improvement, he was transferred to our hospital on June 10, 2020. The computed tomography (CT) results showed a mass shadow with uneven density, including gas and liquid density shadow in the lower lobe of the right lung, the density shadow of encapsulated liquid and gas, gas-liquid level in the right chest, multiple patchy shadows in both lungs, multiple vesicular translucent shadows in both upper lungs (Fig 1). This indicated bilateral pneumonia, pyogenic necrosis in the right lower lobe of the lung,
encapsulated pyothorax in the right chest and bilateral emphysema. Routine blood test showed white blood cells 41.74×10^9/L, neutrophil count 36.99×10^9/L, neutrophil ratio 88.60%, lymphocyte count 2.14×10^9/L, lymphocyte ratio 5.10%, platelets 533×10^9/L. Abnormal test results in liver function: Alanine aminotransferase (ALT) 61.3 U/L, Aspartate aminotransferase (AST) 46.5 U/L, Cholinesterase (CHE) 1229 U/L, Total bilirubin (TB) 36.3 umol/L, Direct Bilirubin (DB) 20.2 umol/L, Lactate dehydrogenase (LDH) 404 U/L; Abnormal test results in renal function: Blood urine nitrogen (BUN) 8.71 mmol/L, Creatinine (Cr) 89.0 umol/L; Hypersensitivity C reactive protein (Hs-CRP) 175.35 mg/L. Abnormal test results in coagulation function: Prothrombin time (PT) 16.40, international normalized ratio (PT-INR) 1.40, D-dimer (DD) 1040 ng/mL; sputum anti-acid staining (−), HIV antibody (HIV-Ab) (−). The patient was diagnosed to be pneumonia with pulmonary abscess and underwent CT guided drainage and lung biopsy showed chronic inflammatory cell infiltration and focal alveolar epithelial hyperplasia in the right lung which confirmed the CT results. According to the traditional experiences, biapenem combined with piperacillin and tazobactam, was given to resist infection. At 8th day, the re-examination of chest CT plain showed that the pulmonary lesion aggravated in comparison with the previous symptoms, showing that the treatment was ineffective.

A Gram-positive bacillus was isolated from the sputum culture at 9th day. Sputum samples were inoculated on Columbia blood agar, MacConkey agar medium and chocolate agar medium containing vancomycin separately. Colonies on Columbia blood agar are small needle tip like and translucent (Fig 2) after 48 hours of incubation at 37℃ with air plus 5% CO₂. The microorganism was unable to grow on McConkey agar medium and chocolate agar medium containing vancomycin. Cells were analyzed under microscopic after gram staining, and gram-positive, blue purple cells were seen singly, in pairs, in short or long chains, but the size was not uniform (Fig 3). With Brooke mass spectrometer MALDI-TOF, the bacteria were identified as Olsenella uli with average score 2.019 ± 0.157 (Fig 4).

For further identification, two single colony on the Columbia blood agar was selected, after genomic DNA extraction, the general primers (7F and 1540R, 27F and 1492R) for 16SrDNA were used for PCR amplification. Following gel electrophoresis, purification, recovery, cloning and sequencing of gene, the sequencing results (GenBank accession numbers MZ220349 and MZ220350) were analyzed by BLAST, and the homology to the Olsenella uli sequence in the gene bank was 99%, and the NCBI number referenced was CP002106.1.

As Olsenella uli is anaerobic or microaerobic, and sensitive to the third generation cephalosporins [8], ornidazole combined with ceftazidime was used for anti-infection in the patient’s treatment. After 10 days later, chest CT showed significant improvement in the pulmonary lesion and pleural effusion. As there were no clinical symptoms, the patient discharged in the next day. With regular follow-up visit, the patient recovered well from pulmonary infection.

Discussion

In this study, we isolated Olsenella uli confirmed by mass analysis and sequence analysis from sputum of a patient with pneumonia accompanied by pulmonary abscess.
Colonies of our sputum Olsenella uli on Columbia blood agar are small needle tip-like and translucent, having some difference from Olsenella uli type strain DSM 7084T [5] which is semi-translucent or opaque after cultured on FAA and PYG after 7 days. The colonies of Olsenella uli from sputum shared more similarity to the Olsenella uli strain VPI D76D-27CT [11]. Culture process and gram staining confirmed Olsenella uli as gram-positive, blue purple cells. Similar to Olsenella uli DSM 7084T [5] and VPI D76D-27CT [11], Olsenella uli isolated from the sputum appeared singly, in pairs and in short to very long serpentine chains, and the center part of the cell may swell, but the size was not uniform. Difference in colonies and bacterium appearance of Olsenella uli may result from the different disease sites or the different culture condition, as we used Columbia agar and aerobic condition (air plus 5% CO\textsubscript{2}, 48h), which may make the Olsenella uli appear not typic.

Although there has been significant decline, anaerobic bacteria are still the most common microorganisms of lower respiratory tract [12], which resulted in the aspiration pneumonia firstly, then purulent pneumonia and finally lung abscess or complicated empyema. Anaerobic infection of pneumonia is clinically characterized by fever, cough and stink, purulent sputum and the chest CT shows changes of pneumonia and lung abscess. Olsenella uli which is anaerobic or microaerobic has not been reported to be associated with lower respiratory tract infection. In this study, we reported the first pneumonia case induced by Olsenella uli with similar clinical and laboratory characteristics to anaerobic infection of lung. This may provide new etiology in the pneumonia although further study needed.

Olsenella uli can be detected in the oral cavity or gastrointestinal tract by culture or molecular analysis [5, 7]. Interestingly, several studies have found that microorganisms colonizing the oropharynx, nasopharynx or upper gastrointestinal can be aspirated into the lung and cause aspiration pneumonia [13]. So we speculated this pneumonia case obtained the lung infection by aspirating the Olsenella uli of the oral cavity or upper gastrointestinal tract although a large number of further studies needed. There are multiple risk factors for aspiration pneumonia, such as age, dysphagia, reduced consciousness, neurologic disorders, gastroesophageal reflux disease, tube feeding, male sex, smoking, diabetes mellitus [13]. Our reporting pneumonia case has three risk factors, age, male sex and smoking, which confirmed our speculation in a degree with the clinical characteristics such as fever, cough, sputum and imaging diagnosis of pneumonia and pulmonary abscess. Because there’s no evidence of Olsenella uli in the oral cavity or gastrointestinal tract of this pneumonia patient, the source and mechanism of Olsenella uli inducing pneumonia is not sure. However, this study still provide a new etiology for pneumonia especially with complicated pulmonary abscess, and may propose some more ideas for intervention of Olsenella uli.

Ethics approval and consent to participate

The study has got the approval of Medical Ethics Committee of the Affiliated Hospital of Qingdao University (QYFY WZLL 26341).
Consent for publication

The study has got the consent of the patient for publication.

Author’s contributions

All authors were involved in study concept and design. Yufen Yan and Chunhua Han authored the initial draft of the manuscript, and all authors critically revised the manuscript and approved the final copy.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Financial disclosure

The authors have indicated they have no financial relationships relevant to this study to disclose.

Acknowledgement

The authors wish to thank the patient and her family for their participation in this study. This study was supported by grants from Youth Research Fund of Affiliated Hospital of Qingdao University (2018) to YFY.

References

[1] Troeger, C., et al., Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 2018. 18(11): p. 1191-1210.

[2] Ferri, M., et al., Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr, 2017. 57(13): p. 2857-2876.

[3] Xie, S., et al., Childhood pneumonia due to brucellosis: A case report. Medicine (Baltimore), 2019. 98(27): p. e16247.

[4] Canetti, D., et al., Rhodococcus defluvii pneumonia: first reported case in humans. AIDS, 2019. 33(14): p. 2261-2263.

[5] Kraatz, M., R.J. Wallace, and L. Svensson, Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. International Journal of Systematic and Evolutionary Microbiology, 2011. 61(4): p. 795-803.

[6] Olsen, I., et al., Lactobacillus uli sp. nov. and Lactobacillus rimae sp. nov. from the human gingival crevice and emended descriptions of lactobacillus minutus and Streptococcus parvulus. Int J Syst Bacteriol, 1991. 41(2): p. 261-6.

[7] Dewhirst, F.E., et al., Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol, 2001. 51(Pt 5): p. 1797-1804.

[8] Durkin, S.R., et al., Chronic postoperative endophthalmitis with isolation of Leuconostoc and Olsenella uli in an Indigenous man. Clin Exp Ophthalmol, 2008. 36(8): p. 801-2.
[9] Lau, S.K., et al., Anaerobic, non-spore-forming, Gram-positive bacilli bacteremia characterized by 16S rRNA gene sequencing. J Med Microbiol, 2004. 53(Pt 12): p. 1247-1253.
[10] Bahrani-Mougeot, F.K., et al., Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol, 2008. 46(6): p. 2129-32.
[11] Goker, M., et al., Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). Stand Genomic Sci, 2010. 3(1): p. 76-84.
[12] DiBardino, D.M. and R.G. Wunderink, Aspiration pneumonia: A review of modern trends. Journal of Critical Care, 2015. 30(1): p. 40-48.
[13] Rodriguez, A.E. and M.I. Restrepo, New perspectives in aspiration community acquired Pneumonia. Expert Rev Clin Pharmacol, 2019. 12(10): p. 991-1002.
Figure 1. Computed tomography (CT) results of the Olsenella uli-induced pneumonia.

Take the day when the patient transferred to our hospital as the first day, A-B, CT at the second day showed bilateral pneumonia, pyogenic necrosis in the right lower lobe of the lung, encapsulated pyothorax in the right chest and bilateral emphysema; C-D, CT at 10th day showed aggravating bilateral pneumonia and emerging bilateral pleural effusion in comparison with 2nd day; E-F, CT at 20th day showed improving bilateral pneumonia and left pleural effusion in comparison with 10th day; G-H, CT at 66th day (August 13) showed improving bilateral pneumonia and no pleural effusion in comparison with 20th day.
Figure 2. Colony morphology of Olsenella uli on Clumbia blood agar medium. Colonies of bacteria isolated from sputum culture on Columbia blood agar were small needle tip like and translucent (Fig 2) after 48 hours of incubation at 37°C with 5% CO₂.

Figure 3. Microscopic morphology of Olsenella uli. After Gram-staining, gram-positive, blue purple cells which appeared singly, in pairs, in short to long chains under microscope, and the center of some cells swelled, but the size was not uniform. Magnification ×1000
Figure 4. Results of mass spectrometry analysis for sputum culture.

With Brooke mass spectrometer, the sputum culture of the pneumonia case was defined as Olsenella uli with average score 2.019 ± 0.157.
Figures

Figure 1

"Please see the Manuscript PDF file for the complete figure caption".
Figure 2

"Please see the Manuscript PDF file for the complete figure caption".
Figure 3

"Please see the Manuscript PDF file for the complete figure caption".

等级/菌种	细菌名称	负荷	NC值
(+)	*Chromobacter* sp. ENR_0045 ENR.	1.282	13.956
(+)	*Oleoma* sp. 08 RLT	1.282	13.956
(+)	*O. thorellii F1089a_10AN USAH*	1.004	13.296
(+)	*O. thorellii F1089a_10AN USAH*	1.004	13.296
(-)	*Syntrophus weigheda BOG UTL*	1.095	13.296
(-)	*C. cloacae* CDC 15970 ATCC 17867 ATCC	1.095	13.296
(-)	*C. cloacae* CDC 15970 ATCC 2005 BOG	1.095	13.296
(-)	*P. rettgeri* 13410_1 CBE	1.044	12.902
(-)	*L. fermentum* prototro DSM 20399 DSM	1.223	12.902

Figure 4
"Please see the Manuscript PDF file for the complete figure caption".