First Observation of Inclusive B Decays to the Charmed Strange Baryons Ξ^0_c and Ξ^+_c

CLEO Collaboration
(January 9, 2022)

Abstract

Using data collected in the region of the $\Upsilon(4S)$ resonance with the CLEO II detector operating at the Cornell Electron Storage Ring (CESR), we present the first observation of B mesons decaying into the charmed strange baryons Ξ^0_c and Ξ^+_c. We find $79 \pm 27 \Xi^0_c$ and $125 \pm 28 \Xi^+_c$ candidates from B decays, leading to product branching fractions of $\mathcal{B}(B \rightarrow \Xi^0_c X \Xi^0 \rightarrow \Xi^- \pi^+ X \Xi^0 \rightarrow \Xi^- \pi^+ \pi^+ \pi^+) = (0.144 \pm 0.048 \pm 0.021) \times 10^{-3}$ and $\mathcal{B}(B \rightarrow \Xi^+_c X \Xi^+ \rightarrow \Xi^- \pi^+ \pi^+) = (0.453 \pm 0.096 \pm 0.085) \times 10^{-3}$.
2University of California, San Diego, La Jolla, California 92093
3University of California, Santa Barbara, California 93106
4University of Colorado, Boulder, Colorado 80309-0390
5Cornell University, Ithaca, New York 14853
6University of Florida, Gainesville, Florida 32611
7Harvard University, Cambridge, Massachusetts 02138
8University of Hawaii at Manoa, Honolulu, Hawaii 96822
9University of Illinois, Champaign-Urbana, Illinois 61801
10Carleton University, Ottawa, Ontario, Canada K1S 5B6
 and the Institute of Particle Physics, Canada
11McGill University, Montréal, Québec, Canada H3A 2T8
 and the Institute of Particle Physics, Canada
12Ithaca College, Ithaca, New York 14850
13University of Kansas, Lawrence, Kansas 66045
14University of Minnesota, Minneapolis, Minnesota 55455
15State University of New York at Albany, Albany, New York 12222
16Ohio State University, Columbus, Ohio 43210
17University of Oklahoma, Norman, Oklahoma 73019
18Purdue University, West Lafayette, Indiana 47907
19University of Rochester, Rochester, New York 14627
20Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
21Southern Methodist University, Dallas, Texas 75275
22Syracuse University, Syracuse, New York 13244
23Vanderbilt University, Nashville, Tennessee 37235
24Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
25Wayne State University, Detroit, Michigan 48202
Charmed baryon production from the decays of B mesons has been previously reported by ARGUS [1] and CLEO [2,3]. Here, we report the first observation of the charmed-strange baryons Ξ_c^0 and Ξ_c^+ from B decays [4], which have previously been observed only in direct charm production [5–10].

In e^+e^- annihilations at the $\Upsilon(4S)$ resonance (10.58 GeV), charmed baryons can be produced either from B meson decay or from hadronization of cc quarks produced in the continuum. Since the b quark couples predominantly to the c quark, B meson decays to the charmed strange baryons Ξ_c^0 (csd) and Ξ_c^+ (csu) will proceed through either spectator or exchange diagrams. Decays mediated by the coupling $b \rightarrow cW^-$ with $W^- \rightarrow \pi d$ produce final states of the form Ξ_cYN_Xh and Ξ_cYN_Xs, where Y is a hyperon (Λ, Σ, Ξ, etc.), N is a nucleon, and $X_h(X_s)$ denotes non-strange (strange) multi-body mesonic states (see Figure 1(a)). As shown in Figure 1(b), decays mediated by $b \rightarrow cW^-$ with $W^- \rightarrow cs$ can lead to states of the form $\Xi_c\Theta_c$ [11,12], where Θ_c denotes any charmed non-strange baryon. The authors of Refs. [13] and [14] predict branching ratios of $(1.0 - 1.8) \times 10^{-3}$ for those decays. The process $b \rightarrow uW^-$ with $W^- \rightarrow \pi s$ leads to final states of the form Ξ_cY, but should be highly suppressed by the small $b \rightarrow u$ coupling.

There are several theoretical calculations that attempt to derive the two-body contribution to charmed baryon production in B decays. In the diquark model [13] baryons of spin $\frac{1}{2}(\frac{3}{2})$ are modeled as bound states of quarks and scalar (vector) diquarks. The b quark decays to a scalar diquark and an antiquark; the latter combines with the light antiquark accompanying the b quark to form an antidiquark. The creation of a qq pair then leads to a baryon and antibaryon in the final state. The authors of Ref. [14] calculate decay amplitudes based on QCD sum rules, replacing both the B meson and the charmed baryon in the final state by suitable interpolating currents. There are also treatments that determine the rates for exclusive baryonic B decays in terms of three reduced matrix elements [15], on the basis of the quark diagram scheme [16], using the constituent quark model [17], and using the pole model [18]. The latter four calculations do not quote explicit predictions for branching fractions of B decay modes which yield Ξ_c baryons.

For this analysis we used 3.1 fb$^{-1}$ of data taken on the $\Upsilon(4S)$ resonance, corresponding to 3.3 million $BB\bar{B}$ events. To estimate and subtract continuum background, 1.6 fb$^{-1}$ of data were collected 60 MeV below the resonance. The data were collected with the CLEO II detector operating at the Cornell Electron Storage Ring, CESR. The CLEO II detector [19] is a general purpose solenoidal-magnet detector with excellent charged particle and shower energy detection capabilities. The detector consists of a charged particle tracking system surrounded by a scintillation counter time-of-flight system and an electromagnetic shower detector consisting of 7800 thallium-doped cesium iodide crystals. These detectors are installed within a 1.5 T superconducting solenoidal magnet. Incorporated in the return yoke of the magnet are chambers for muon detection.

Charge measurements from the drift chamber wires provide specific ionization loss (dE/dx) information. To obtain hadron identification, dE/dx and available time-of-flight (TOF) measurements are combined to define a joint $\chi^2 = \frac{1}{2}[(dE/dx)_{\text{meas}} - (dE/dx)_{\text{exp}}]^2/\sigma_{dE/dx}^2 + [\{(T)_{\text{meas}} - (T)_{\text{exp}}\}/\sigma_{\text{TOF}}]^2$, where i corresponds to the pion, kaon, and proton hypotheses. A χ^2-probability is then calculated for each hypothesis, and particle identification levels for each of the hypotheses are derived by normalizing to the sum of the three probabilities. A particle is identified with a specific hypothesis if its particle
We reconstruct $\Xi^0_+(\Xi^+_c)$ candidates through the decay chain $\Xi^0\rightarrow \Xi^-\pi^+ (\Xi^+_c \rightarrow \Xi^-\pi^+\pi^+)$, $\Xi^- \rightarrow \Lambda\pi^-$, and $\Lambda \rightarrow p\pi^-$. We study the Ξ_c momentum spectra using the scaled momentum $x_p \equiv p/(E_{\text{beam}}^2 - m_{\Xi_c}^2)^{1/2}$, where p and m_{Ξ_c} are the Ξ_c momentum and mass, respectively, and E_{beam} is the beam energy. We require $x_p < 0.5$, the kinematic limit for Ξ_c baryons produced from B decays. This requirement reduces the background from continuum $c\bar{c}$.

The Λ candidates are formed from pairs of oppositely charged tracks, assuming the higher momentum track to be a proton and the lower momentum track to be a pion. We also require the higher momentum track to be consistent with the proton hypothesis. The invariant mass of Λ candidates has to be within 5.0 MeV/c^2 (corresponding to 2.5 standard deviations) of the known Λ mass. We have not required Λ candidates to point towards the primary vertex, since Λ’s decaying from Ξ^-’s can travel as much as a few centimeters before decaying and can have appreciable impact parameters. To reduce the background from tracks coming from the interaction point, we require the radial distance of the Λ decay vertex from the beam line to be greater than 2 mm.

The Ξ^- candidates are formed by combining each Λ candidate with the remaining negatively charged tracks in the event, assuming the additional track to be a pion. The decay vertex of the Ξ^- candidate is reconstructed by intersecting the extrapolated Λ path with the negatively charged track. We require the radial distance of the Ξ^- decay vertex from the beam line to be greater than 2 mm and less than the radial distance of the Λ decay vertex. In addition, the reconstructed Ξ^- momentum vector has to point back to the interaction point. The invariant mass of the Ξ^- candidates has to be within 6.5 MeV/c^2 (corresponding to 3 standard deviations) of the known Ξ^- mass.

To reconstruct Ξ^0_c candidates, we form combinations of Ξ^- with one positively charged track, and to reconstruct Ξ^+_c candidates, we combine each Ξ^- with two positively charged tracks. These additional charged tracks are required to originate from the interaction point and to be consistent with the pion hypothesis.

To find the Ξ_c signal yields, we fit each invariant mass distribution to the sum of a Gaussian function of fixed width and a second order polynomial background, both for the Υ(4S) and the continuum data. The fixed widths for the two modes were determined using a Monte Carlo simulation of the detector, resulting in widths of 8.0 and 6.8 MeV for the Ξ^0 and the Ξ^+_c, respectively. We scale the continuum yields to account for the differences in luminosities and cross sections in the two data sets with the scale factor $(\mathcal{L}_T(4S)/\mathcal{L}_{\text{cont}})(E^2_{\text{cont}}/E^2_T(4S))$, where $\mathcal{L}_T(4S)$ and $\mathcal{L}_{\text{cont}}$ are the luminosities, and $E_T(4S)$ and E_{cont} are the beam energies on the Υ(4S) and on the continuum. Figure 2 shows the invariant mass distributions of the $\Xi^-\pi^+$ and $\Xi^-\pi^+\pi^+$ combinations from Υ(4S) and scaled continuum data. After subtracting the scaled continuum yield from the Υ(4S) yield, we observe $79 \pm 27 \Xi^0$ candidates and $125 \pm 28 \Xi^+_c$ candidates from B decays. The errors are statistical only. The fitted Ξ_c masses are consistent with the current world averages.

To measure the product branching fractions for the two decay modes, we divide both data and Monte Carlo into x_p intervals. The reconstruction efficiency in each mode is found as a function of x_p using Monte Carlo simulations. Tables II and III show the continuum subtracted raw yields $y_p(x_p)$ and efficiency-corrected yields $y_c(x_p)$. We also give the fractional decay rate in each x_p interval, $(1/N_B)(dy_c/dx_p)$, where N_B is $2N_{BB}$, for Ξ^0 and Ξ^+_c production. We find
Monte Carlo simulations of the decays B and Ξ^-, with the first error being statistical and the second being systematic. The main sources of systematic error are due to uncertainties in the reconstruction efficiencies for Λ (5%) and Ξ^- (7%), variations in the selection criteria (8-9%), uncertainties in particle identification (5%), charged particle tracking (1% per track), and the Monte Carlo predictions for the signal width (4%). These result in a total systematic uncertainty of about 14%. In addition, we assign a +12% systematic uncertainty in the $\Xi^0 - \Xi^-$ case for the possible resonant substructure $\Xi^0\pi^+$, since this would decrease the Ξ^+_c reconstruction efficiency considerably.

We can convert these product branching fractions into absolute branching ratios using the following branching fractions of $\Xi^0_c \to \Xi^-\pi^+$ and $\Xi^+_c \to \Xi^-\pi^+$, derived by CLEO [20]: $B(\Xi^0_c \to \Xi^-\pi^+) = f_{SL} f_{\Xi_c}(0.52 \pm 0.16^{+0.15}_{-0.10})\%$ and $B(\Xi^+_c \to \Xi^-\pi^+) = f_{SL} f_{\Xi_c}(2.5 \pm 0.6 \pm 0.3)\%$, where $f_{\Xi_c} \equiv B(\Xi_c \to \Xi\ell^+\nu_\ell)/B(\Xi_c \to \ell^+X) \leq 1$ (current predictions range from 0.4 to 0.9 [21,22]), and $f_{SL} \equiv (\Gamma_{SL}/\Gamma_{SL}(\Xi^0_c,\Xi^+_c,\Xi^-))$, with Γ_{SL} being the total semileptonic width. These numbers are actually slightly different from the published values, since we are now using an updated value for $\Gamma_{SL} = 0.165 \pm 0.009$ ps$^{-1}$ [23,24] (instead of the previous value of 0.138 \pm 0.006) ps$^{-1}$). In addition, we have introduced the factor f_{SL} to account for variations in the selection criteria (8-9%).

In Figure 3 we present the corresponding efficiency-corrected momentum spectra of Ξ^0_c and Ξ^+_c baryons in B decays. Superimposed on the measured spectra are the results from Monte Carlo simulations of the decays $\bar{B} \to \Xi_c \bar{\Lambda}_c(n\pi)$, $n = 0,\ldots,3$. Comparing the measured spectra with Monte Carlo predictions indicates that two-body final states such as $\Xi_c\Lambda_c$ and $\Xi_c\Sigma_c$ are suppressed while multi-body final states seem to be dominant. We are not yet sensitive to $b \to c\bar{c}s$ decays leading to final states of the form $\Xi_c\Lambda_c$ or $\Xi_c\Sigma_c$, which are predicted by the authors of Refs. [13] and [14] to have branching fractions of only $(1.0-1.8) \times 10^{-3}$ for those decays. These branching fractions are at least an order of magnitude lower than the inclusive branching fractions for $\bar{B} \to \Xi_c X$.

In summary, we have presented the first observation of B mesons decaying into the charmed strange baryons Ξ^0_c and Ξ^+_c. From an examination of the measured Ξ^0_c and Ξ^+_c momentum spectra, it is not clear which of the possible production mechanisms $b \to c\bar{c}d$ or $b \to c\bar{c}s$ is preferred or dominant, since the observed momentum spectra are consistent with both mechanisms. It seems, however, that decays involving a heavier anti-baryon or multi-body decays are favored.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Heisenberg Foundation, the Alexander von Humboldt Stiftung, Research Corporation, the Natural Sciences and Engineering Research Council of Canada, and the A.P. Sloan Foundation.
REFERENCES

[1] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 210, 263 (1988).
[2] CLEO Collaboration, G. Crawford et al., Phys. Rev. D 45, 752 (1992).
[3] CLEO Collaboration, M. Procario et al., Phys. Rev. Lett. 73, 1472 (1994).
[4] Throughout this discussion, reference to a state also implies reference to its charge conjugate state. Also, it is assumed that both decays $\bar{B} \rightarrow \Xi_c X$ and $B \rightarrow \Xi_c X$ are possible.
[5] S. Biagi et al., Phys. Lett. B 150, 230 (1985).
S. Biagi et al., Z. Phys. C28, 175, (1985).
[6] P. Coteus et al., Phys. Rev. Lett. 59, 1530 (1987).
[7] CLEO Collaboration, M. S. Alam et al., Phys. Lett. B 226, 401 (1989).
[8] CLEO Collaboration, P. Avery et al., Phys. Rev. Lett. 62, 863 (1989).
[9] ACCMOR Collaboration, S. Barlag et al., Phys. Lett. B 236, 495 (1990).
[10] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 247, 121 (1990).
[11] I. Dunietz, P.S. Cooper, A.F. Falk, and M.B. Wise, Phys. Rev. Lett. 73, 1075 (1994).
[12] CLEO Collaboration, R. Ammar et al., Phys. Rev. D 55, 13 (1997).
[13] P. Ball and H.G. Dosch, Z. Phys. 51, 445 (1991).
[14] V.L. Chernyak and I.R. Zhitnitsky, Nucl. Phys. B 345, 137 (1990).
[15] M.B. Savage and M.B. Wise, Nucl. Phys. B326, 15 (1989).
[16] Y. Kohara, Phys. Rev. D 43, 2429 (1991).
[17] J.G. Körner, Z. Phys. 43, 165 (1989).
[18] M. Jarfi et al., Phys. Rev. D 43, 1599 (1991).
[19] Y. Kubota et al., Nucl. Instr. and Meth. A320, 66 (1992).
[20] CLEO Collaboration, J.P. Alexander et al., Phys. Rev. Lett. 74, 3113 (1995), and Erratum, Phys. Rev. Lett. 75, 4155 (1995).
[21] J. Koerner, M. Kraemer and D. Pirjol, Prog. Part. Nucl. Phys. Vol. 33, pp 787-868 (1994), and references therein.
[22] CLEO Collaboration, T. Bergfield et al., Phys. Lett. B 323, 229 (1994).
[23] Particle Data Group, R.M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[24] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 374, 249 (1996).
[25] M.B. Voloshin, Phys. Lett. B 385, 369 (1996).
[26] G. Bellini, I.I. Bigi, and P.J. Dornan, “Lifetimes of Charm and Beauty Hadrons”, PRINT-97-005 (MILAN), 1996; to appear in Phys. Rep.
FIG. 1. Possible $B \to$ baryon decay mechanisms: (a) $\bar{B} \to B^{+} \Xi_{c}N \Xi_{c}$ and $\Xi_{c}YX$, (b) $\bar{B} \to \Xi_{c}B^{+}X$ and $\bar{B} \to Y \Xi_{c}X$; N stands for any non-strange non-charmed baryon, Y for any strange and non-charmed baryon, and Θ_{c} for any charmed and non-strange baryon.
FIG. 2. Invariant mass distributions of (a) $\Xi^-\pi^+$ and (b) $\Xi^-\pi^+\pi^+$ from $\Upsilon(4S)$ resonance (points) and scaled continuum (shaded histogram) data.
FIG. 3. Efficiency-corrected momentum spectra for (a) Ξ^0_c and (b) Ξ^+_c from B decays. The superimposed curves indicate the spectra derived from Monte Carlo simulation of the decays $B \to \Xi_c \Lambda_c(n\pi)$, $n = 0, ..., 3$. The Monte Carlo curves have been normalized to data, except for the two-body decays, where the normalization is arbitrary.
Δx_p	Raw yield $y_r(x_p)$	Corr. yield $y_c(x_p)$	$(1/N_B)(dy_c/dx_p)$
0.0 – 0.1	27.0 ± 6.5	358.8 ± 88.1	0.54 ± 0.13
0.1 – 0.2	33.4 ± 13.5	399.5 ± 162.3	0.60 ± 0.24
0.2 – 0.3	43.5 ± 13.6	482.8 ± 152.5	0.72 ± 0.23
0.3 – 0.4	-18.1 ± 12.2	-191.5 ± 129.5	-0.29 ± 0.19
0.4 – 0.5	-6.9 ± 13.3	-89.7 ± 174.1	-0.13 ± 0.26
0.0 – 0.5	78.9 ± 27.2	959.9 ± 323.1	

Δx_p	Raw yield $y_r(x_p)$	Corr. yield $y_c(x_p)$	$(1/N_B)(dy_c/dx_p)$
0.0 – 0.1	10.0 ± 7.0	417.1 ± 295.0	0.62 ± 0.44
0.1 – 0.2	47.0 ± 14.3	1273.5 ± 392.6	1.91 ± 0.59
0.2 – 0.3	41.8 ± 13.0	901.4 ± 285.5	1.35 ± 0.43
0.3 – 0.4	20.2 ± 13.6	344.2 ± 232.8	0.52 ± 0.35
0.4 – 0.5	6.0 ± 12.4	89.6 ± 186.0	0.13 ± 0.28
0.0 – 0.5	125.0 ± 27.6	3025.8 ± 641.5	