Glass formation and properties of glasses based on Ga$_2$S$_3$–Sb$_2$S$_3$ systems incorporated with CsX (X = Cl, Br, I) and AgCl

Tomoyo ASHIDA1, Arifumi OKADA2, Takashi WAKASUGI2 and Kohei KADONO2,7

1Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
2Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan

Glass formation was investigated for the Ga$_2$S$_3$–Sb$_2$S$_3$–CsX (X = Cl, Br, I) and Ga$_2$S$_3$–Sb$_2$S$_3$–AgCl systems. Glasses were obtained for the compositional regions that contain the parts of the lines from the eutectic point of the Ga$_2$S$_3$–Sb$_2$S$_3$ system (20GaS$_3$/80SbS$_3$) to the midpoint of the GaS$_3$/CsX system (50GaS$_3$/50CsX), extending to both sides of the lines. The glass transition temperatures were in the range of 210 to 280°C and tended to decrease with increases of the Sb$_2$S$_3$ and CsX contents. Some glasses in these systems had a temperature difference between crystallization and a glass transition of more than 200 K. The infrared transmission limits were located at approximately 14 μm, and the transmission range covered the atmospheric windows. These facts indicate that the glasses are suitable for use as optical materials in infrared optics. Furthermore, the absorption edges at the short wavelength side were blue-shifted, reaching the visible region with the incorporation of CsX. However, glasses in some compositional domains showed inhomogeneous structures in their matrices. Particularly, a unique morphology was observed in the inhomogeneous CsCl-incorporated glasses, in which many voids of several micrometers in size were formed. The crystallization behaviors at the borders of the glass forming regions are discussed.

Key-words : Sulphide glass, Infrared transmitting materials, Chalcogenide glass, Glass formation, Non-oxide glass, Chalcohalide glass

1. Introduction

Because of the increasing priority of the social security and safety, infrared surveillance systems have received increased attention in recent years. These systems typically use wavelength ranges of 3–5 and 8–13 μm, called “atmospheric windows”. The range of 8–13 μm is particularly important in the mid-infrared region because black body radiation of body temperature, at approximately 310 K, is at maximal intensity over this range. Since crystal materials, such as germanium and zinc selenide, have a superior transparency covering the infrared regions, these crystals have mainly been used for infrared optics, such as lenses and windows, to date. However, they suffer from low cost-performance and are not mass-produced because of the high cost of their raw materials and poor formability. As a substitute for these crystals, infrared transmitting glass materials have become increasingly important in recent years because of their good mold-formability. The high productivity of the mold-shaping process is expected to contribute to the cost performance of infrared optics and devices, resulting in a further expansion of their market.

Chalcogenide-based glasses have excellent transmission in the infrared region and have been the most promising candidates for applications in infrared optics, including optical fibers, for a long time. Among them, selenide-based glasses, such as Ge–Se and Ge–As–Se glasses, have been well-developed for commercial applications. These systems have a high glass-forming ability and formability, and are transparent until 16 μm, covering the atmospheric windows. Glass formation for systems based on telluride have been explored extensively in the literature. However, there are still only a few systems based on telluride that have enough glass-forming ability and stability against crystallization. On the other hand, there are some sulfide systems that have a good glass-forming ability and mold-formability, and also exhibit high chemical durability. Among them, the Ge–Sb–S system has been studied, as it produces As and Se-free glasses. The drawback of glasses based on this system, however, is that the transmission range cannot sufficiently cover the atmospheric windows because of the impurity absorption assigned to the Ge–O vibration located at approximately 13 μm. Theoretically, the absorption could be eliminated by thorough purification of the raw materials including the removal of surface oxides. In the case of the sulfide glass, furthermore, since the Ge–O absorption might be located on the tail of
the intrinsic absorption of the glass, the effect on the optical window is more serious. Another sulfide system, a glass-forming system based on Ga–S, has been studied. Particularly, Ga–La–S glasses and their derivatives were extensively studied as host media for rare-earth ions.

Recently, new glass-forming systems based on Ga2S3–Sb2S3–A (A = CsCl, SnS) have been reported. The infrared absorption edges of these glasses are located at approximately 14 μm, shifted to the long wavelength side by 1.5 to 2 μm, compared to the Ge–Sb–S based glasses. The transmission ranges of these glasses cover the atmospheric windows. Some glasses in these systems have high thermal stability and are expected to have high mold-formability despite the lack of Ge, Se, and As. Furthermore, glass formation and optical properties of the glasses including optical nonlinearity based on Ga2S3–Sb2S3–CsCl and CsI systems have been reported recently.

Such halide-incorporated sulfide glass is one of the chalcohalide glass systems, which have been recognized as a new family of non-oxide glasses. Some advantages are achieved by the incorporation of halides into chalcogenide systems. First, the glass-forming regions are expected to expand, leading to the discovery of new glass-forming systems with superior properties. Second, the tunable composition ranges can be expanded for various properties, such as the thermal expansion coefficient and refractive index and dispersion, because the properties of the glasses vary drastically with the incorporation of halides into chalcogenide systems. Therefore, there is more flexibility for choosing materials and designing optics. In addition, it is often observed that the absorption edges at the short wavelength side are blue-shifted and reach the visible region. Thus, chalcohalide glasses can be applied as visible to infrared transmitting materials, and multispectral imaging systems with a simpler optics design can be constructed.

In this paper, we extensively explored glass formation based on new glass systems containing CsX (X = Cl, Br, I) and AgCl. The thermal and optical properties of the obtained glasses were systematically investigated and compared with the type of halide. We also studied the behaviors of the induced inhomogeneity observed for some compositional regions in cesium halide-incorporated glasses.

2. Experimental procedures

Glass formation was examined for the compositions in which CsX (X = Cl, Br, and I) or AgCl were substituted for Ga2S3 or Sb2S3 in the pseudo-two-component Ga2S3–Sb2S3 glass system. The glasses were prepared with the conventional melting-cooling method for chalcogenide glasses. Reagent grade Ga (7N), Sb (5N), S (5N), CsX (3N) (X = Cl, Br or I), and AgCl (3N) were used as the starting materials. Sulfur was purified by distillation under vacuum at 120–140°C to remove water impurities. The halides were dried under vacuum at 120–130°C before use. These raw materials were weighed into a silica glass tube with an 8-mm inner diameter to obtain a sample that weighed 4 g with the appropriate composition in a glove box filled with Ar gas. The silica tube was then sealed in a vacuum using an H2–O2 flame burner. The sealed silica tube was heated to 950°C for more than 70 h in a rocking furnace and then quenched in air. Glass formation was examined by naked-eye observation and with X-ray diffraction (XRD) (Rigaku, RINT2500) measurements. The glass transition (Tg) and crystallization temperatures (Tc) were measured by differential thermal analyses (DTA) (Shimadzu, DTG-60) with a heating rate of 10 K/min. The obtained glasses were annealed for 8 h near their Tg’s to remove the strain. The glasses were cut into an adequate size, and both sides were optically polished to 1.18 or 1.50 ± 0.05 mm in thickness. The densities were measured by Archimedes’ method, using kerosene as the immersion liquid. The refractive indices of the glasses at 1544 nm were measured by the prism coupling method (Metronic Model2010). For some glasses, the indices at 633 and 980 nm were also measured. The transmission spectra were acquired with a visible-near infrared spectrometer (Hitachi, U-3000) and fourier transform infrared spectrometer (JEOL, JIP-WINSPEC50). Observations with optical and laser (KEYENCE, VK-X200) microscopes were performed to investigate the inhomogeneity of the glasses for some compositions.

3. Results

3.1 Glass formation based on the Ga2S3–Sb2S3–CsX (X = Cl, Br, I) and Ga2S3–Sb2S3–AgCl systems

Figure 1 shows glass formation for pseudo-three-component systems based on Ga2S3–Sb2S3–CsX (X = Cl, Br, I). The melts of the compositions marked with circles were vitrified. However, the samples quenched from the melts marked with closed and open triangles were opaque and did not have a glassy appearance or a smooth and lustrous surface by naked eye observation. However, as shown in Fig. 2, 20GaS2/3·60SbS3/2·20CsCl (hereafter, this composition is referred to as 20-60-20CsCl), 20-70-10CsCl, and 10-80-10CsCl showed typical halo patterns in the XRD without any diffraction lines. Furthermore, the glass transitions were found in DTA measurements, indicating that they were in a glassy state [see Fig. S7(c) in the Supplemental Materials]. Therefore, we determined that the melts marked with the triangles were vitrified. The opaque and non-glassy appearances are due to the microscopic inhomogeneity of these samples, as described in detail in section 3.3. The difference between the closed and open triangles is also described in section 3.3. Melts of the compositions marked with small letters were partly or completely devitrified after quenching; the small letters represent the precipitated crystals, as shown in Fig. 1. The compositions marked with [3] and [4] are described below in detail. The XRD patterns for the various as-quenched samples are presented in Figs. S1 to S4 in the Supplemental Materials.

For the pseudo-two-component Ga3S5–Sb2S3 system, glasses were obtained in the range from 10 to 30 mol % of...
GaS$_{3/2}$. This range is consistent with that reported in the literature.17,19 Glasses were obtained for compositions in which Sb$_2$S$_3$ is a predominant component because the eutectic point is located at 80 mol % of Sb$_2$S$_3$. In the pseudo-three-component Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl system, glasses were obtained for compositions in which CsCl is incorporated until approximately 40 mol %.

It has also been reported that glasses have been obtained in the pseudo-two-component Ga$_2$S$_3$–CsCl system, although the glass-forming range is narrow, with an approximate range from 55 to 70 mol % of CsCl.$^{34–37}$ In our experiment, the melt of 60GaS$_{3/2}$–40CsCl (60-0-40CsCl), marked with [h], was almost vitrified with only a weak diffraction line and the as-quenched samples of [e] were transparent, though the precipitation of CsX crystallites were observed. The XRD patterns of these samples are presented in Figs. S1 to S4 in the Supplemental Materials.

Table 1 shows the glass transition and crystallization temperatures, density, and refractive index at 1544 nm for some of the glasses, including glasses incorporated with AgCl instead of CsX. All the data, including the glass transition temperature, density, and refractive index, are presented in Figs. S6(a) to S6(c) in the Supplemental Materials. Some typical DTA curves are shown in Fig. S7 in the Supplemental Materials. In Table 2, the glass transition and dilatometric softening temperatures as well as thermal expansion coefficient measured by a dilatometer (Shimadzu, TMA-60) are listed for the four glass compositions. It is worth noting that the glass-forming region contains the line connecting the eutectic point of the Ga$_2$S$_3$–Sb$_2$S$_3$ system (20GaS$_{3/2}$–80Sb$_{3/2}$S$_3$) to the midpoint of the GaS$_{3/2}$–CsX system (50GaS$_{3/2}$–50CsX) and extends to both sides. For the CsBr and CsI systems, glasses were obtained in similar compositional regions to that of the CsCl system, although the amount of incorporated CsX was limited to less than approximately 30 mol %. For the samples, 30-40-30CsX (X = Br, I) marked with [e] in Fig. 1, weak diffraction lines were observed in the XRD patterns, indicating that cesium halide crystallites were precipitated, even though the samples were still transparent from the visible to infrared regions. The XRD patterns and transmission spectra for the 30-40-30CsX (X = Br, I) samples are presented in Figs. S3, S4, and S5 in the Supplemental Materials.
cable for infrared optics. The densities decreased with the CsX content and increased in the order of CsCl, CsBr, and CsI compared to glasses with the same composition but different halides. The refractive indices also decreased with the CsX contents and were higher in the order of CsCl, CsBr, and CsI. For the 30-50-20CsX (X = Cl, Br, I) glasses, the indices were also measured at 980 and 633 nm, and the fitting parameters for Cauchy’s equation are presented in Table 2. The fitting parameters show that the dispersion for this wavelength range decreased in the order of CsI, CsCl, and CsBr. This order is consistent with the position of the absorption edge at the short wavelength side as shown in the next section.

3.2 Optical transmission

Figure 3 shows the transmission spectra in the visible to infrared regions for the pseudo-two-component GaS3/2-SbS3/2 glasses and the 20GeS2·80SbS3/2 glass for comparison; 10·90 means 10GaS3/2·90SbS3/2.

Table 1. Glass transition (Tg) and crystallization (Tc) temperatures, thermal stability (ΔT = Tc - Tg), density, and refractive index of GaS3/2-SbS3/2-A (A = CsCl, CsBr, CsI, and AgCl) glasses

MX	Composition	Tg (°C)	Tc (°C)	ΔT (K)	Density (g/cm³)	Refractive index at 1544 nm (b)
CsCl	30 70 10	259	358	99	3.98	2.67
	30 60 10	235	349	114	3.94	
	30 50 20	248	462	214	3.66	2.23
	30 40 30	233	473	240	3.55	2.06
CsBr	30 60 10	247	411	164	3.86	2.42
	30 50 20	239	451	212	3.78	2.23
CsI	30 60 10	247	353	106	3.93	2.45
	30 50 20	234	391	157	3.89	2.29
AgCl	30 60 10	213	337	124	4.23	2.70

a) The experimental error is less than ±0.02 g/cm³. b) The experimental error is less than ±0.01. c) The glass is opaque at 1544 nm because of the induced inhomogeneity.

Table 2. Glass transition (Tdg) and softening (Tds) temperatures, expansion coefficient (α) measured using dilatometry, and refractive indices at 633, 980, and 1544 nm

X	Composition	Tdg (°C)	Tds (°C)	α (10⁻⁶K⁻¹)	Refractive indices	A⁻¹)	B⁴	C⁻¹)	633 (10⁻¹)	980 (10⁻⁶)	1544 (10⁻⁹)
Cl	20 80 261	282	14.8	2.73	2.37 2.26 2.23 2.21 4.24 7.95						
Br	30 50 20 256	287	24.5	2.36 2.26 2.23 2.21 4.11 7.51							
I	30 50 20 237	272	22.8	2.43 2.32 2.29 2.26 4.69 9.29							

a) Parameters of Cauchy’s equation; n = A + (B/λ²) + (C/λ⁴).
for the GeS$_2$–Sb$_2$S$_3$ glass at the long wavelength side.39,40 On the other hand, the transmission limits for the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses are determined by the Ga–O stretching vibration. This is consistent with the limits for the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses shifting slightly to the longer wavelength side with the decrease in the Ga$_2$S$_3$ content. The sharp peaks at 3.04 and 4.06 μm are assigned to the impurity O–H and S–H, respectively. The transmission limits for the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses were located at approximately 13 to 14 μm, which were shifted by 1.5 to 2 μm compared with those of the GeS$_2$–Sb$_2$S$_3$ glasses because the glasses are free of the Ge–O impurity. Concerning the short wavelength side, as shown in Fig. 3, the absorption edges of the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses were blue-shifted with the decrease in the Sb$_2$S$_3$ content. The absorption edges of the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses tended to be located at a longer wavelength compared with that of the GeS$_2$–Sb$_2$S$_3$ glass.

Figure 4 shows the transmission spectra in the visible region for the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl glasses with various compositions containing 20 to 30 mol% of CsCl. Compared with the absorption edges of the glasses without CsCl, as seen in Fig. 3, they were blue-shifted by the incorporation of CsCl into the Ga$_2$S$_3$–Sb$_2$S$_3$ glass. In the comparison of Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl glasses with the same CsCl content, the glasses with lower contents of Sb$_2$S$_3$ had a shorter wavelength absorption edge. This was the same tendency observed for the pseudo-two-component Ga$_2$S$_3$–Sb$_2$S$_3$ glasses, as seen in Fig. 3.

In Fig. 5, the transmission spectra in the visible to infrared regions for the 30-50-20CsX glasses are shown in comparison to that of the 30-60-10AgCl glass to observe the dependence on the type of halide. The transmission limits at the long wavelength side were almost identical, regardless of the halide. Thus, the absorption due to Ga–O stretching is not strongly affected by the type of halide. For the short wavelength side, the absorption edge was located at the shortest wavelength side for the CsBr-incorporated glass. The transmission spectra for the 30-40-30CsBr and 30-40-30CsI glasses contained a small amount of CsBr or CsI crystals, as indicated by the XRD patterns (see Fig. S3 and S4) and as mentioned in the previous section. However, the glasses were still transparent, even in the visible region, and the absorption edges were located at the shorter wavelength in the order of CsI, CsCl, and CsBr. Since the 30-50-20AgCl glass composition could not obtained, the spectrum of the 30-60-10AgCl glass is shown in Fig. 5 for comparison. The transmission limit at the long wavelength side was the same with those of the CsX-incorporated glasses, although the absorption edge at the short wavelength side did not blue-shift like those of the CsX-incorporated glasses. The relatively broad band peaking at 9.51 μm, which are often observed in the spectra for glasses containing halides, is assigned to an impurity oxide although it has been yet vague. It is considered that, as a possible assignment, the band originates from an impurity Si–O.31

The transmission ranges of the Ga$_2$S$_3$–Sb$_2$S$_3$–CsX glasses cover the atmospheric windows, while those of the Ge–S-based glasses hardly cover them due to the Ge–O impurity absorption, as seen in Fig. 3. This fact is of importance for the Ga$_2$S$_3$–Sb$_2$S$_3$–CsX glass to be practically applied as an infrared transmitting material.

Fig. 4. Transmission spectra in the visible region for the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl glasses; 30-50-20CsCl means 30GaS$_3$/2·50SbS$_3$/2·20CsCl.

Fig. 5. Transmission spectra in the visible to infrared regions for the Ga$_2$S$_3$–Sb$_2$S$_3$–CsX and Ga$_2$S$_3$–Sb$_2$S$_3$–AgCl glasses.
3.3 Inhomogeneity or phase separation in the pseudo-three-component glasses

As mentioned in Fig. 1, the glasses marked with closed and open triangles were opaque and did not have a glassy appearance even though they showed the typical halo patterns in the XRD, as shown in Fig. 2, and Figs. S3 and S4 in the Supplemental Materials. Figure 6(a) shows the transmission spectra of these glasses based on the CsCl-incorporated system, 20-60-20CsCl, 20-70-10CsCl, 10-80-10CsCl glasses, with those of the 10-80-10CsBr and 10-80-10CsI glasses for comparison. The spectrum of the 10-80-10CsCl glass was very different from those of the 10-80-10CsX (X = Br, I) glasses, though their compositions are similar and only differ in the type of halide. Furthermore, for the spectra of the CsCl-incorporated glasses, the absorption edge shifted to the longer wavelength side and the transmittance in the infrared region decreased with increasing Sb$_2$S$_3$. The 20-60-20CsCl and 20-70-10CsCl glasses were transparent in the range of 2–14 and 6–14 μm, respectively, while the 10-80-10CsCl glass was barely transparent in the entire infrared region.

The spectra of the 40-40-20CsBr and 40-40-20CsI glasses marked with open triangles of the CsBr- and CsI-incorporated systems were also different from that of the 40-40-20CsCl glass, as shown in Fig. 6(b); the transmittance of the former glasses decreased gradually with wavelength shortening from 12 μm, while that of the latter glass remained transparent from 600 nm to 14 μm.

These decreases in transmittance in the short wavelength side are attributed to the scattering caused by the induced inhomogeneity in the glass matrices. Thus, we performed a microscopic observation of these glasses. Figure 7 shows pictures of the (a) 20-70-10CsCl, (b) 10-80-10CsCl, and (c) 5-85-10CsCl glasses observed by laser microscopy. The observations were conducted for the freshly broken surfaces. In Fig. 7(a), a number of dots that were 0.2–0.4 μm in size were distributed throughout the glass matrix. The images presented in Figs. 7(b) and 7(c) show several voids of 0.8–1.2 and 1.4–2.0 μm diameters, respectively, in the glass matrices. The voids look like trails, as observed in Fig. 7(c). Figures 7(d)–7(f) show the depth profiles along the lines illustrated in Figs. 7(a)–7(c).
respectively. These profiles indicate that the dots or voids seen in the pictures are holes with (d) 0.4 \(\mu \)m to (e) (f) 0.6 \(\mu \)m depths. More specifically, the bottoms of the holes shown in Fig. 7(e) and 7(f) are slightly swollen by approximately 0.1 to 0.2 \(\mu \)m. Additionally, small red particles were also observed in the holes under an optical microscope.

Figure 8 shows optical microscope images obtained in the transmission mode for the 40-40-20CsX (X = Br, I) glasses, in which some particles of approximately 10 \(\mu \)m in diameter were observed instead of the voids seen in the 10-80-10CsCl and 5-85-10CsCl glasses. Since the heat-treated 40-40-20CsBr glasses showed the diffraction lines of \(\gamma \)-Ga\(_2\)S\(_3\) crystals, as mentioned in the next section, the particles are probably the glassy phases with a high content of Ga\(_2\)S\(_3\) separated from the matrix.

3.4 Crystallization

Figure 1 shows the crystal phases precipitated from the melts of compositions that are located outside of the glass-forming region. For the pseudo-two-component Ga\(_2\)S\(_3\)–Sb\(_2\)S\(_3\) system, both \(\alpha \)-Ga\(_2\)S\(_3\) and Sb\(_2\)S\(_3\) crystals, or only \(\alpha \)-Ga\(_2\)S\(_3\), were precipitated from the melts depending on their compositions. This is consistent with the fact that no complex salts between Ga\(_2\)S\(_3\) and Sb\(_2\)S\(_3\) have been reported in the phase diagram.\(^{17}\) From the melts of the compositions on the line of SbS\(_{3/2}\) and CsCl, both Sb\(_2\)S\(_3\) and CsCl crystals were precipitated. On the other hand, it is worth noting that only \(\gamma \)-Ga\(_2\)S\(_3\) was precipitated from melts that were composed of the Ga\(_2\)S\(_3\) side for the glass-forming regions while only CsX was precipitated from the melts of the CsX side. Furthermore, with heat treatments at temperatures of \(T_g + 40 \) K for 6 h for the 40-40-20CsX (X = Br, I) glasses, only the \(\gamma \)-Ga\(_2\)S\(_3\) crystal was precipitated in the 40-40-20CsBr glass; no crystallite phases were precipitated in the 40-40-20CsI glass. Interestingly, the Ga\(_2\)S\(_3\) crystals precipitated in the three-component system, including CsX, were always of the \(\gamma \)-type, which essentially has the cubic zinc blende structure, while those precipitated in the two-component Ga\(_2\)S\(_3\)–Sb\(_2\)S\(_3\) system were the \(\alpha \)-type, with the hexagonal wurtzite structure. One of the possible reasons for this phenomenon is that the \(\gamma \)-Ga\(_2\)S\(_3\) crystals were precipitated on CsX nuclei that had cubic structures in the three-component system.

Precipitation of the Sb\(_2\)S\(_3\) crystal was not observed from melts that were not vitrified, whereas crystal was precipitated by heat treatment of glasses that had a high content of Sb\(_2\)S\(_3\), such as the 10-80-10CsX (X = Cl, Br, I) glasses, as seen in Fig. S8 in the Supplemental Materials. Noticeably, the CsCl-incorporated glasses in this compositional region showed an inhomogeneous structure with voids, as previously mentioned.

4. Discussion

4.1 Glass formation

Glasses based on the pseudo-three-component Ga\(_2\)S\(_3\)–Sb\(_2\)S\(_3\)–CsCX systems were obtained in the compositional regions containing the parts of the lines from the eutectic point of the Ga\(_2\)S\(_3\)–Sb\(_2\)S\(_3\) system (20Ga\(_{3/2}\)S\(_{1/2}\)–80SbS\(_{3/2}\)) to the midpoint of the Ga\(_{3/2}\)–CsX system (50Ga\(_{3/2}\)–50CsX) and extending to both sides of the lines. It is interesting that these regions are similar to those of the Ga\(_2\)S\(_3\)–GeS\(_2\)–CsCl system, in which glasses are obtained...
in the domain that includes the line from the GeS$_2$ corner to the midpoint of the GaS$_{3/2}$–CsCl line (50GaS$_{3/2}$/50CsCl). In the two-component Ga$_2$S$_3$–CsCl system, it has been reported that glasses are obtained around the composition 50GaS$_{3/2}$/50CsCl (or 33Ga$_2$S$_3$/67CsCl) and that the glass network principally consists of GaS$_4$ tetrahedra that share the sulfide ions. On the other hand, the network of the Ga$_2$S$_3$–Sb$_2$S$_3$ glasses consists of GaS$_4$ tetrahedra and Sb$_3$ tripyramids that share sulfide ions. Although sulfide ions usually have a two-fold coordination in sulfide-based glasses, such as GeS$_2$ and As$_2$S$_3$ glasses, some of the sulfide ions in the Ga$_2$S$_3$–Sb$_2$S$_3$ glass network are expected to be three-fold and are likely to have a four-fold coordination to balance the charge of the trivalent Ga$^{3+}$ cations. In fact, Ga$_2$S$_3$ crystals essentially have zinc blende or wurtzite structures, in which both Ga$^{3+}$ and S$^{2-}$ ions are coordinated by two cations and, as a result, increases the fraction of sulde ions. Even if the three sulfide ions of a GaS$_4$X tetrahedron are coordinated by two cations, the formal charge of the GaS$_4$X tetrahedron is -1, which can be compensated by a counter ion, Cs$^+$. This means that the introduction of CsX decreases the fraction of sulfide ions coordinated by more than two cations and, as a result, increases the flexibility of the glass network and glass formability.

4.2 Additivity of density and refractive index

The density and refractive index of glasses are often estimated by summing the contributions from the individual components; the contribution allocated to each component is independent of the compositions of the glasses. This is known as an additivity concept. It has been reported that additivity holds for the density and refractive index of the stoichiometric sulfide glass system based on Ga$_2$S$_3$–GeS$_2$–Sb$_2$S$_3$. To confirm the additivity for these properties in the Ga$_2$S$_3$–Sb$_2$S$_3$–CsX systems, Eqs. (1) and (2) are used:

\[\frac{n^2 - 1}{n^2 + 2} V_M = R_M \]

\[= x_{GaS_{3/2}} \mu_{GaS_{3/2}} + x_{SbS_{3/2}} \mu_{SbS_{3/2}} + x_{CsX} \mu_{CsX} \] (1)

\[\rho = \frac{x_{GaS_{3/2}} \rho_{GaS_{3/2}} + x_{SbS_{3/2}} \rho_{SbS_{3/2}} + x_{CsX} \rho_{CsX}}{M} \] (2)

where d and n are the density and refractive index, respectively; V_M, V, and R_M are the molar weight, molar volume, and molar refractivity of the glass, respectively. V_M is written as the mole fraction x and partial molar volume v of each component as Eq. (1). Equation (2) represents the Lorentz-Lorenz relationship for refractivity, and R_M is assumed to be the sum of the molecular or ionic refractivity ρ of each component or ion. Additivity means that the partial molar volume and molecular refractivity are assumed to be independent of the composition. We estimated these values by the least squares fit using Eqs. (1) and (2) to the experimental data presented in Figs. S9(a) and S9(b) for the molar volume and molecular refractivity, respectively, in the Supplemental Materials. The results are summarized in Table 3 together with the result for the Ga$_2$S$_3$–GeS$_2$–Sb$_2$S$_3$ glass system. The root mean squares of the molar volume and molar refractivity were small. The maximal deviations between the measured and calculated data for the density were 0.02, 0.03, and 0.04 g/cm3 in the CsCl, CsBr, and CsI-incorporated systems, respectively, and were 0.02, 0.02, and 0.03 for the refractive index. Therefore, the additivities for both the density or molar volumes and refractive index or molar refractive index hold for these glass systems. This suggests that the structural units composing the glass networks and nearest neighbor coordination environments of ions are not drastically varied with the compositions. The v and ρ of Ga$_2$S$_{3/2}$ and Sb$_3$S$_{3/2}$ were almost identical regardless of the type of halide. Furthermore, the values of the Ga$_2$S$_3$–GeS$_2$–Sb$_2$S$_3$ glass system are similar to those of the CsX-incorporated systems, as shown in Table 3. This means that the contribution to the density and refractive index from each component is not changed very much in the different glass systems, at least those consisting of stoichiometric compounds.

4.3 Absorption edge at the short wavelength side

Here, we discuss the compositional dependence of the absorption edge at the short wavelength side, which is determined by the band gap energy. In the pseudo-two-component system, Ga$_2$S$_3$–Sb$_2$S$_3$, it is believed that the lone pair orbitals of S$^{2-}$ (3p) and Sb$^{3+}$ (5s) contribute to
the top of the valence band, and the latter is probably more
important in determining the highest energy level of
the valence band. On the other hand, the lowest level of
the conduction band is determined by the antibonding orbitals
of the bonds between the cations and S^2–, and/or the
5p vacant orbitals of Sb^{3+}. Therefore, the decrease in the
Sb_2S_3 content leads to a decrease in the energy of the
valence band and increase in the energy of the conduction
band, resulting in a blue shift of the absorption edge.

The introduction of halides into the Ga$_2$S$_3$–Sb$_2$S$_3$ glass
shifted the absorption edges to the shorter wavelength
direction. The incorporated halides play the role of a glass
modifier and terminate the glass network, as mentioned in
section 4.1. As a result, the continuous band structures
become discrete, leading to a widened band gap. In addition,
the difference in the electronegativity of sulfur and halogen,
particularly, chlorine and bromine, should be
considered. The incorporated halide ions bound to Sb^{3+}
attract electrons more strongly from Sb^{3+} than sulfide
because of the larger electronegativity of the halogen. This
leads to a lowering of the energy of the valence bands.

However, concerning the absorption edges of the CsCl-
and CsBr-incorporated glasses, this is opposite to the pre-
prediction from the electronegativity. The reason for this dif-
fERENCE is clear. Similar examples have been reported for
the Ge$_2$–Sb$_2$–CsX33 and Ga$_2$S$_3$–GeS$_2$–CsX45 glasses,
which were explained by the differences in the ionic diam-
eters and the energy levels of the valence electrons of Cl^-,
Br$^-$, and S^2–. For the present glasses, however, the effect
of the inhomogeneity for CsCl-incorporated glasses should
also be considered. As mentioned previously and in the
next section, CsCl-incorporated glasses show a unique
inhomogeneous structure for specific compositions, which
makes the glasses opaque. Therefore, the absorption edge
of the 30-50-20CsCl glass might have shifted to the longer
wavelength from the intrinsic edge due to the scattering
induced by the nano-scale inhomogeneity in the glass.

4.4 Inhomogeneity in the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl
glass

One of the characteristic features for the Ga$_2$S$_3$–Sb$_2$S$_3$–
CsX glass systems is that the microscopic inhomogeneity
is induced in the as-prepared glasses in specific composi-
tional regions. Particularly, a number of voids of approxi-
ately 1 μm in diameter were observed in the glasses
based on the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl system. Two significant
points should be noted regarding this phenomenon; the
voids were formed only in the CsCl-incorporated glasses
at the compositional region containing a high content of
Sb$_2$S$_3$, and the voids are spherical in shape and contain
deposits.

The formation mechanism of these voids is still unclear.
Considering the spherical shape of the voids, however, we
deduce that they originated from bubbles formed by vola-
tile species in the melts, and the volatile species become
the deposits during the cooling process. From the glass
compositions in which the voids were observed, Sb$_2$S$_3$ and
chloride ions play an important role in the mechanism. In

fact, the size of the voids increased with the content of
Sb$_2$S$_3$, as shown in Fig. 7. Furthermore, as an additional
experiment, we prepared a sample with the composition,
10Ga$_{3/2}$–80Sb$_{3/2}$–10CsCl + 17Sb (10-80-10CsCl +
17Sb), containing an excess amount of Sb compared to
the 10-80-10CsCl glass. The XRD pattern of the prepared
sample showed a halo and diffraction lines assigned to the
metal Sb. The characteristics of the sample are that several
voids of 10–200 μm in diameter were observed in the
matrix and the bottoms of the voids swelled, as shown in
the photo and depth profile in Figs. S10(a) and S10(b),
respectively. The structure of the voids is similar to those
shown in Figs. 7(e) and 7(f), although the sizes are differ-
ent. The additional experiment showed that the excess
amount of Sb accelerates the formation of voids. On the
other hand, as mentioned in section 3.4, the Sb$_2$S$_3$
Receive the deposition during the cooling process. From the

glass network, as mentioned in
section 4.1. As a result, the continuous band structures
become discrete, leading to a widened band gap. In addition,
the difference in the electronegativity of sulfur and halogen,
particularly, chlorine and bromine, should be
considered. The incorporated halide ions bound to Sb^{3+}
attract electrons more strongly from Sb^{3+} than sulfide
because of the larger electronegativity of the halogen. This
leads to a lowering of the energy of the valence bands.

However, concerning the absorption edges of the CsCl-
and CsBr-incorporated glasses, this is opposite to the pre-
prediction from the electronegativity. The reason for this dif-
fERENCE is clear. Similar examples have been reported for
the Ge$_2$–Sb$_2$–CsX33 and Ga$_2$S$_3$–GeS$_2$–CsX45 glasses,
which were explained by the differences in the ionic diam-
eters and the energy levels of the valence electrons of Cl^-,
Br$^-$, and S^2–. For the present glasses, however, the effect
of the inhomogeneity for CsCl-incorporated glasses should
also be considered. As mentioned previously and in the
next section, CsCl-incorporated glasses show a unique
inhomogeneous structure for specific compositions, which
makes the glasses opaque. Therefore, the absorption edge
of the 30-50-20CsCl glass might have shifted to the longer
wavelength from the intrinsic edge due to the scattering
induced by the nano-scale inhomogeneity in the glass.

4.4 Inhomogeneity in the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl
glass

One of the characteristic features for the Ga$_2$S$_3$–Sb$_2$S$_3$–
CsX glass systems is that the microscopic inhomogeneity
is induced in the as-prepared glasses in specific composi-
tional regions. Particularly, a number of voids of approxi-
ately 1 μm in diameter were observed in the glasses
based on the Ga$_2$S$_3$–Sb$_2$S$_3$–CsCl system. Two significant
points should be noted regarding this phenomenon; the
voids were formed only in the CsCl-incorporated glasses
at the compositional region containing a high content of
Sb$_2$S$_3$, and the voids are spherical in shape and contain
deposits.

The formation mechanism of these voids is still unclear.
Considering the spherical shape of the voids, however, we
deduce that they originated from bubbles formed by vola-
tile species in the melts, and the volatile species become
the deposits during the cooling process. From the glass
compositions in which the voids were observed, Sb$_2$S$_3$ and
chloride ions play an important role in the mechanism. In

fact, the size of the voids increased with the content of
Sb$_2$S$_3$, as shown in Fig. 7. Furthermore, as an additional
experiment, we prepared a sample with the composition,
10Ga$_{3/2}$–80Sb$_{3/2}$–10CsCl + 17Sb (10-80-10CsCl +
17Sb), containing an excess amount of Sb compared to
the 10-80-10CsCl glass. The XRD pattern of the prepared
sample showed a halo and diffraction lines assigned to the
metal Sb. The characteristics of the sample are that several
voids of 10–200 μm in diameter were observed in the
matrix and the bottoms of the voids swelled, as shown in
the photo and depth profile in Figs. S10(a) and S10(b),
respectively. The structure of the voids is similar to those
shown in Figs. 7(e) and 7(f), although the sizes are differ-
ent. The additional experiment showed that the excess
amount of Sb accelerates the formation of voids. On the
other hand, as mentioned in section 3.4, the Sb$_2$S$_3$

Acknowledgements This work was supported by JSPS
KAKENHI Grant No. 25410239. The authors are grateful
to Mr. Shigeru Yamamoto, the Research Scientist in our
laboratory, for the valuable discussion and comments on this
manuscript.
References

1) B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plièdel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley and J. H. Simmons, J. Non-Cryst. Solids, 345&346, 276–283 (2004).
2) X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Plièdel and J. Lucas, Chem.-Eur. J., 14, 432–442 (2008).
3) M. A. Popescu, Chapter 1 in Non-Crystalline Chalcogenides, Dordrecht, The Netherlands, Kluwer Academic Publishers (2001) pp. 4–102.
4) J. Nishii and T. Yamashita, Chalcogenide glass-based fibers, In J. S. Sanghera and I. D. Aggarwal, eds. Chapter 4 in Infrared Fiber Optics Boca Raton, FL, CRC Press (1998) pp. 143–184.
5) X. H. Zhang, Y. Guimond and Y. Bellec, J. Non-Cryst. Solids, 326&327, 519–523 (2003).
6) B. Bureau, C. Boussard-Plièdel, P. Lucas, X. Zhang and J. Lucas, Molecules, 14, 4337–4350 (2009).
7) T. Katsuyama and H. Matsumura, Appl. Phys. Lett., 49, 22–23 (1986).
8) X. H. Zhang, G. Fonteneau and J. Lucas, J. Non-Cryst. Solids, 104, 38–44 (1988).
9) T. Katsuyama and H. Matsumura, J. Appl. Phys., 75, 2743–2748 (1994).
10) A. A. Wilhelms, C. Boussard-Plièdel, Q. Coulombier, J. Lucas, B. Bureau and P. Lucas, Adv. Mater., 19, 3796–3800 (2007).
11) Z. Yang and P. Lucas, J. Am. Ceram. Soc., 92, 2920–2923 (2009).
12) Z. Yang, Q. Gulbiten, P. Lucas, T. Luo and S. Jiang, J. Am. Ceram. Soc., 94, 1761–1765 (2001).
13) S. Cui, R. Chahal, C. Boussard-Plièdel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas and B. Bureau, Molecules, 18, 5373–5388 (2013).
14) M. Ichikawa, T. Wakasugi and K. Kadono, J Non-Cryst. Solids, 356, 2235–2240 (2010).
15) K. Tani, T. Suetsugu, N. Kaga, M. Tanigawa, T. Morihara, Y. Matsumura, K. Shihohara, T. Einita and K. Kadono, U.S. Patent 8, 603, 928 B2 (2013).
16) A.-M. Leforeu-Louzach, M. Guittard and J. Flahaut, Mater. Res. Bull., 11, 1489–1496 (1976).
17) S. Barmier, M. Guittard, C. Julien and A. Chilouet, Mater. Res. Bull., 28, 399–405 (1993).
18) A. A. Othman, H. H. Amer, M. A. Osman and A. Dahshan, J. Non-Cryst. Solids, 351, 130–135 (2005).
19) A. Yang, M. Zhang, L. Lei, Y. Wang, B. Zhang, Z. Yang and D. Tang, J. Am. Ceram. Soc., 99, 12–15 (2016).
20) T. Ashida, T. Wakasugi, A. Okada and K. Kadono, Chem. Lett., 45, 63–65 (2016).
21) J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang and Z. Yang, J. Am. Ceram. Soc., 100, 5107–5112 (2017).
22) M. Zhang, Z. Yang, H. Zhao, A. Yang, L. Li and H. Tao, J. Alloy. Compd., 722, 166–172 (2017).
23) S. S. Flashen, A. D. Pearson and W. R. Northover, J. Appl. Phys., 31, 219–220 (1960).
24) J. S. Sanghera, J. H. Heo and J. D. Mackenzie, J. Non-Cryst. Solids, 103, 155–178 (1988).
25) J. Heo and J. D. Makenzie, J. Non-Cryst. Solids, 111, 29–35 (1989).
26) H. L. Ma, X. H. Zhang and J. Lucas, J. Non-Cryst. Solids, 135, 49–54 (1991).
27) G. Fuxi, J. Non-Cryst. Solids, 140, 184–193 (1992).
28) V. Q. Nguyen, J. Am. Ceram. Soc., 83, 855–859 (2000).
29) Z. Yang, L. Luo and W. Chen, J. Am. Ceram. Soc., 89, 2327–2329 (2006).
30) L. Calvez, H. L. Ma, J. Lucas and X. H. Zhang, Adv. Mater., 19, 129–132 (2007).
31) Y. Ledemi, M. E. Amraouri and Y. Messaddeq, Opt. Mater. Express, 4, 1725–1739 (2014).
32) A. Bréhaut, L. Calvez, P. Adam, J. Rollin, M. Cathelin, B. Fan, O. Merdrignac-Conanec, T. Pain and X. H. Zhang, J. Non-Cryst. Solids, 431, 25–30 (2016).
33) K. Kuroda, K. Okumura, R. Fujiiwara, T. Wakasugi and K. Kadono, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 58, 21–27 (2017).
34) M. Le Toullec, P. S. Christensen and J. Lucas, Mater. Res. Bull., 22, 1517–1523 (1987).
35) Yu. S. Tver’yanovich, E. G. Nedoshovenko, V. V. Aleksandrov, E. Y. Turkina, A. S. Tver’yanovich and I. A. Sokolov, Glass Phys. Chem., 22, 9–14 (1996).
36) Yu. S. Tver’yanovich, V. V. Aleksandrov, I. V. Murin and E. G. Nedoshovenko, J. Non-Cryst. Solids, 286&287, 237–241 (1999).
37) Yu. S. Tver’yanovich, M. Vlèek and A. Tverjanovich, J. Non-Cryst. Solids, 333, 85–89 (2004).
38) S. Danto, P. Houizot, C. Boussard-Plièdel, X.-H. Zhang, F. Smektala and J. Lucas, Adv. Funct. Mater., 16, 1847–1852 (2006).
39) M. Vlèek, L. Tichy, J. Klikorka and A. Třiska, J. Mater. Sci., 22, 2119–2123 (1987).
40) J. Nishii, T. Yamashita and T. Yamagishi, J. Mater. Sci., 24, 4293–4297 (1989).
41) T. Haizheng, X. Xiuqian, J. Chengbin, Y. Hui and M. Shun, Solid St. Commun., 133, 327–332 (2005).
42) F. Hindle, M. Miloshova, E. Bychkov, C. J. Bennmore and A. C. Hannon, J. Non-Cryst. Solids, 354, 134–137 (2008).
43) Y. Ledemi, B. Bureau, L. Calvez, M. Le Floch, M. Rozé, C. Lin, X. H. Zhang, M. Allix, G. Matzen and Y. Messaddeq, J. Phys. Chem. B, 113, 14574–14580 (2009).
44) A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford, Oxford University Press (1984) pp. 762–767.
45) L. S. Griscom, J.-L. Adam and K. Binnemans, J. Non-Cryst. Solids, 256&257, 383–389 (1999).