Low-Resolution Precoding for Multi-Antenna Downlink Channels and OFDM
Andrei Nedelcu, Fabian Steiner, and Gerhard Kramer

Abstract—Downlink precoding is considered for multi-path multi-input single-output channels where the base station uses orthogonal frequency-division multiplexing and low-resolution signaling. A quantized coordinate minimization (QCM) algorithm is proposed and its performance is compared to other precoding algorithms including squared infinity-norm relaxation (SQUID), multi-antenna greedy iterative quantization (MAGIC), and maximum safety margin precoding. MAGIC and QCM achieve the highest information rates and QCM has the lowest complexity measured in the number of multiplications. The information rates are computed for pilot-aided channel estimation and data-aided channel estimation. Bit error rates for a 5G low-density parity-check code confirm the information-theoretic calculations. Simulations with imperfect channel knowledge at the transmitter show that the performance of QCM and SQUID degrades in a similar fashion as zero-forcing precoding with high resolution quantizers.

Index Terms—Massive MIMO, precoding, coarse quantization, coordinate descent, information rates.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) base stations can serve many user equipments (UEs) with high spectral efficiency and simplified signal processing [1], [2]. However, their implementation is challenging due to the cost and energy consumption of analog-to-digital and digital-to-analog converters (ADCs/DACs) and linear power amplifiers (PAs). There are several approaches to lower cost. One approach is hybrid beamforming with analog beamformers in the radio frequency (RF) chain of each antenna and where the digital baseband processing is shared among RF chains. Second, constant envelope waveforms permit using non-linear PAs. Third, all-digital approaches use low-resolution ADCs/DACs or low-resolution digitally controlled RF chains. The focus of this paper is on the all-digital approach.

A. Single-Carrier Transmission

We study the multi-antenna downlink and UEs with one antenna each, a model referred to as multi-user multi-input single-output (MU-MISO). Most works on low-cost precoding for MU-MISO consider phase-shift keying (PSK) to lower the requirements on the PAs. For instance, the early papers [3], [4] (see also [5]) use iterative coordinate-wise optimization to choose transmit symbols from a continuous PSK alphabet for flat and frequency-selective (or multipath) fading, respectively. We remark that these papers do not include an optimization parameter (called α below, see (8)) in their cost function that plays an important role at high signal-to-noise ratio (SNR), see [6], [7]. This parameter is related to linear minimum-mean square error (MMSE) precoding.

Most works consider discrete alphabet signaling. Perhaps the simplest approach, called quantized linear precoding (QLP), applies a linear precoder followed by one low-resolution quantizer per antenna [8]–[15]. Our focus is on zero forcing (ZF), and we use the acronyms LP-ZF and QLP-ZF, respectively, for unquantized ZF and the QLP version of ZF.

More sophisticated approaches use optimization tools as in [16], [17]. For example, the papers [16], [18] use convex relaxation methods; [19]–[25] apply coordinate-wise optimization; [26]–[30] develops a symbol-wise Maximum Safety Margin (MSM) precoder; [29]–[32] use a branch-and-bound (BB) algorithm; [33] uses a majorization-minimization algorithm; [34] uses integer programming; and [35], [36] use neural networks (NNs). These references are collected in Table I together with the papers listed below on orthogonal frequency-division multiplexing (OFDM). As the table shows, most papers focus on single-carrier and flat fading channels.

B. Discrete Signaling and OFDM

Our main interest is discrete-alphabet precoding for multi-path channels with OFDM as in 5G wireless systems. Precoding for OFDM is challenging because the alphabet constraint is in the time domain after the inverse discrete Fourier transform (IDFT) rather than in the frequency domain. We further focus on using information theory to derive achievable rates. For this purpose, we consider two types of channel estimation at the receivers: pilot-aided channel estimation via pilot-aided transmission (PAT) and data-aided channel estimation.

Discrete-alphabet precoding for OFDM was treated in [37] that uses QLP and low resolution DACs. A more sophisticated approach appeared in [38] that applies a squared-infinity norm Douglas-Rachford splitting (SQUID) algorithm to minimize a quadratic cost function in the frequency domain. The performance was illustrated via bit error rate (BER) simulations with convolutional codes and QPSK or 16-quadrature amplitude modulation (QAM) by using 1-3 bits of phase quantization.

The paper [39] instead proposed an algorithm called multi-antenna greedy iterative quantization (MAGIC) that builds on...
Convex Relaxation Coord.-Wise Optimization Other (MSM, BB, NN, etc.)

Modulation	Fading	QLP	Convex	Relaxation	Coord.-Wise	Optimization	Other
1 Carrier	Flat	83-15	16-18	19-25	26	27	29
OFDM	Freq.-Sel.	37	38	39-41	42	43	

TABLE 1

REFERENCES FOR QUANTIZED PRECODING.

and uses coordinate-wise optimization of a quadratic cost function in the time domain. MAGIQ may thus be considered an extended version of [4] for OFDM and discrete alphabets. Simulations showed that MAGIQ outperforms SQUI in terms of complexity and achievable rates. Another coordinate-wise optimization algorithm appeared in [40], [41] that builds on the papers [24], [25]. The algorithm is called constant envelope symbol level precoding (CESLP) and it is similar to the refinement of MAGIQ presented here. The main difference is that, as in [38], the optimization in [40], [41] uses a cost function in the frequency domain rather than the time domain. We remark that processing in the time domain has advantages that are described in Sec. II-A.

The MSM algorithm was extended to OFDM in [42]. MSM works well at low and intermediate rates but MAGIQ outperforms MSM at high rates both in terms of complexity and achievable rates. Finally, the recent paper [43] uses generalized approximate message passing (GAMP) for OFDM.

C. Contributions and Organization

The contributions of this paper are as follows.

- The analysis of MAGIQ in the workshop paper [39] is extended to larger systems and more realistic channel conditions.
- Replacing the greedy antenna selection rule of MAGIQ with a fixed (round-robin) schedule is shown to cause negligible rate loss. The new algorithm is named quantized coordinate minimization (QCM).
- The performance of QLP-ZF, SQUI, MSM, MAGIQ, and QCM are compared in terms of complexity (number of multiplications and iterations) and achievable rates.
- We develop an auxiliary channel model to compute achievable rates for pilot-aided and data-aided channel estimation. The models let one compare modulations, precoders, channels, and receivers.
- Simulations with a 5G NR low-density parity-check (LDPC) code [44] show that the computed rate and power gains accurately predict the gains of standard channel codes.
- Simulations with imperfect channel knowledge at the base station show that the achievable rates of SQUI and QCM degrade as gracefully as those of LP-ZF.

We remark that our focus is on algorithms that approximate ZF based on channel inversion, i.e., there is no attempt to optimize transmit powers across subcarriers. This approach simplifies OFDM channel estimation at the receivers because the precoder makes all subcarriers have approximately the same channel magnitude and phase. For instance, a rapid and accurate channel estimate is obtained for each OFDM symbol by averaging the channel estimates of the subcarriers, see Sec. IV-A. Of course, it is interesting to develop algorithms for other precoders and for subcarrier power allocation.

This paper is organized as follows. Sec. II introduces the baseband model and OFDM signaling. Sec. III describes the MAGIQ and QCM precoders. Sec. IV develops theory for achievable rates, presents complexity comparisons, and reviews a model for imperfect channel state information (CSI). Sec. V compares achievable rates and BERs with 5G NR LDPC codes. Sec. VI concludes the paper.

II. System Model

Fig. 1 shows a MU-MISO system with N transmit antennas and K UEs that each have a single antenna. The base station has one message per UE and each antenna has a resolution of 1 bit for the amplitude (on-off switch) and b bits for the phase per antenna. All other hardware components are ideal: linear, infinite bandwidth, no distortions except for additive white Gaussian noise (AWGN).

A. Baseband Channel Model

The discrete-time baseband channel is modeled as a finite impulse response filter between each pair of transmit and receive antennas. Let $x_n[t]$ be the symbol of transmit antenna n at time t and let $x[t] = (x_1[t] \ldots x_N[t])^T$. Similarly, let $y_k[t]$ be the received symbol of UE k at time t and let $y[t] = (y_1[t] \ldots y_K[t])^T$. The channel model is

$$y[t] = \sum_{\tau=0}^{L-1} H[\tau] x[t - \tau] + z[t]$$

(1)

where the noise $z[t] = (z_1[t] \ldots z_K[t])^T$ has circularly-symmetric, complex, Gaussian entries that are independent and have variance σ^2, i.e., we have $z \sim CN(0, \sigma^2 I)$. The $H[\tau]$, $\tau = 0, \ldots, L-1$, are $K \times N$ matrices representing the channel impulse response, i.e., we have

$$H[\tau] = \begin{bmatrix} h_{11}[\tau] & h_{12}[\tau] & \ldots & h_{1N}[\tau] \\ h_{21}[\tau] & h_{22}[\tau] & \ldots & h_{2N}[\tau] \\ \vdots & \vdots & \ddots & \vdots \\ h_{K1}[\tau] & h_{K2}[\tau] & \ldots & h_{KN}[\tau] \end{bmatrix}$$

(2)

where $h_{kn}[\tau]$ is the channel impulse response from the n-th antenna at the base station to the k-th UE. For instance, a Rayleigh fading multi-path channel with a uniform power delay profile (PDP) has $h_{kn}[\tau] \sim CN(0, 1/L)$ and these taps are independent and identically distributed (iid) for all k, n, τ.
The transmit energy clearly satisfies \(\|x[t]\|^2 \leq P \) and we define SNR \(P/\sigma^2 \). The inequality is due to the 0 symbol that permits antenna selection. Antenna selection was also used in [55] to enforce sparsity. Our intent is rather to allow antennas not to be used if they do not improve performance.

B. OFDM Signaling

Fig. 1 shows how OFDM can be combined with the precoder. Let \(T = T_F + T_c \) be the OFDM blocklength with \(T_F \) symbols for the DFT and \(T_c \) symbols for the cyclic prefix. We assume that \(T_F \geq L \) and \(T_c \geq L - 1 \). For simplicity, all \(T_F \) subcarriers carry data and we do not include the cyclic prefix overhead in our rate calculations below, i.e., the rates in bits per channel use (bpcu) are computed by normalizing by \(T_F \).

Consider the frequency-domain modulation alphabet \(\mathcal{U} \) that has a finite number of elements, e.g., QPSK has \(\mathcal{U} = \{ \hat{u} : \hat{u} = (\pm 1 \pm j)/\sqrt{2} \} \). Messages are mapped to the frequency-domain vectors \(\hat{u} = [\hat{u}_1, \ldots, \hat{u}_K]^T \) for subcarriers \(m = 0, \ldots, T_F - 1 \) that are converted to time-domain vectors \(u[t] \) by IDFTs

\[
\hat{u}_m = \frac{1}{T_F} \sum_{t=0}^{T_F-1} u[t] e^{j2\pi mt/T_F},
\]

for \(t = 0, \ldots, T_F - 1 \) and UEs \(k = 1, \ldots, K \). For the simulations below, we generated the \(\hat{u}_m \) uniformly from finite constellations such as 16-QAM or 64-QAM. We assume that \(\mathbb{E}[\hat{u}_k[m]] \) is zero for all \(k \) and \(m \). Each UE \(k \) uses a DFT to convert its time-domain symbols \(y_k[t] \) to the frequency-domain symbols

\[
\hat{y}_k[m] = \sum_{t=0}^{T_F-1} y_k[t] e^{-j2\pi mt/T_F}.
\]

C. Linear MMSE Precoding

To describe the linear MMSE precoder, consider the channel from base station antenna \(n \) to UE \(k \):

\[
h_k[n] = (h_k[n], \ldots, h_k[L-1], 0, \ldots, 0)^T \quad \text{for all subcarriers}
\]

and denote its DFT as \(\hat{h}_k = (\hat{h}_k[0], \ldots, \hat{h}_k[T_F - 1])^T \). The channel of subcarrier \(m \) is the \(K \times N \) matrix \(\hat{H}[m] \) with entries \(\hat{h}_k[m] \) for \(k = 1, \ldots, K \). The linear MMSE precoder (or Wiener filter) for subcarrier \(m \) is

\[
P[m] \hat{H}[m]^\dagger \left(P[m] \hat{H}[m] \hat{H}[m]^\dagger + \sigma^2 I \right)^{-1}
\]

where \(P[m] = \mathbb{E}[|\hat{u}_k[m]|^2] \) is the same for all \(k \), \(\hat{H}[m]^\dagger \) is the Hermitian of \(\hat{H}[m] \), and \(I \) is the \(K \times K \) identity matrix. The precoder multiplies \(\hat{u}[m] \) by \(\hat{H}[m]^\dagger \) for all subcarriers \(m \), and performs \(N \) IDFTs to compute the resulting \(x[0], \ldots, x[T_F - 1] \). We remark that ZF precoding is the same as \(\hat{H}[m]^\dagger \) but with \(\sigma^2 = 0 \), where \(\hat{H}[m]\hat{H}[m]^\dagger \) is usually invertible if \(N \) is much larger than \(K \).

III. Quantized Precoding

We wish to ensure compatibility with respect to LP-ZF. In other words, each receiver \(k \) should ideally see signals \(u_k[t] \), \(t = 0, \ldots, T-1 \), that were generated from the frequency-domain signals \(\hat{u}_k[m] \), \(m = 0, \ldots, T_F - 1 \). Let \(u[t] = (u_1[t], \ldots, u_K[t])^T \) and define the time-domain mean square error (MSE) cost function

\[
G(x[0], \ldots, x[T-1], \alpha) = \sum_{t=0}^{T-1} \mathbb{E}[x[t]] [||u[t] - \alpha y[t]||^2]
\]

\[
= \sum_{t=0}^{T-1} ||u[t] - \alpha \sum_{\tau=0}^{L-1} H[\tau] x[t-\tau]||^2 + \alpha^2 TK\sigma^2
\]

Fig. 1. Multi-user MIMO downlink with a low resolution digitally controlled analog architecture.
where \(\mathbb{E}_z[.] \) denotes expectation with respect to the noise \(z[t] \). The optimization problem is as follows:

\[
\begin{align*}
\min_{x[0], \ldots, x[T-1], \alpha} & \quad G(x[0], \ldots, x[T-1], \alpha) \\
\text{s.t.} & \quad x[t] \in \mathcal{X}^N, \ t = 0, \ldots, T - 1 \\
& \quad \alpha > 0.
\end{align*}
\]

(9)

The parameter \(\alpha \) in (8) and (9) can easily be optimized for fixed \(x[0], \ldots, x[T-1] \) and the result is (see (18), Eq. (26))

\[
\alpha = \frac{\sum_{t=0}^{T-1} \text{Re} \left(u[t] H[t] x[t-t] \right)}{\sum_{t=0}^{T-1} \| \sum_{\tau=0}^{T-1} H[\tau] x[t-\tau] \|^2 + TK\sigma^2}.
\]

(10)

For the MAGIQ and QCM algorithms below, we use alternating minimization to find the \(x[0], \ldots, x[T-1] \) and \(\alpha \). For the linear MMSE precoder, we label the \(\alpha \) as \(\alpha_{\text{QCM}} \).

Observe that we use the same \(\alpha \) for all \(K \) UEs because all UEs experience the same shadowing, i.e., all \(K \) UEs see the same average power. For UE-dependent shadowing, a more general approach would be to replace \(\alpha \) with a diagonal matrix with \(K \) parameters \(\alpha_k, k = 1, \ldots, K \), and then modify (8) appropriately.

A. MAGIQ and QCM

For multipath channels, the vector \(x[t] \) influences the channel output at times \(t, t+1, \ldots, t+L-1 \). A joint optimization over strings of length \(T \) seems difficult because of this influence and because of the finite alphabet constraint for the \(x_n[t] \). Instead, MAGIQ splits the optimization into subproblems with reduced complexity by applying coordinate-wise minimization across the antennas and iterating over the OFDM symbol.

For this purpose, consider the precoding problem for time \(t' \) starting at \(t' = 0 \) and ending at \(t' = T - 1 \). Observe that \(x[t'] \) influences at most \(L \) summands in (8), namely the summands for \(t = (t')_T, \ldots, (t' + L - 1)_T \) where \((t')_T = \min(t', T - 1) \). To compute the new cost after updating the symbol \(x_n[t'] \), one may thus compute sums of the form

\[
\sum_{t=(t')_T, \ldots, (t' + L - 1)_T} \left\| u[t] - \alpha \sum_{\tau=0}^{L-1} H[\tau] x[t-\tau] \right\|^2
\]

(11)

for \(t' = 0, \ldots, T - 1 \). In both cases, one computes a first and second sum having the old and new \(x_n[t'] \), respectively. One then takes the difference and adds the result to (8) to obtain the updated cost.

We remark that the time-domain cost function (8) is closely related to the frequency-domain cost functions in (38), (40), (41). However, the time-domain approach is more versatile as it can include acyclic phenomena such as interference from previous OFDM blocks. The time-domain approach is also slightly simpler because updating the symbol \(x_n[t'] \) in (8) or (11) requires taking the norm of at most \(L \) vectors of dimension \(K \) for each test symbol in \(X \) while the frequency-domain approach in (40), Eq. (17)) takes the norm of \(T_F \) vectors of dimension \(K \) for each test symbol. Recall that \(T_F \geq L \), and usually \(T_F \geq 10L \) to avoid losing too much efficiency with the cyclic prefix that has length \(T_c \geq L - 1 \).

Algorithm 1 MAGIQ and QCM Precoding

1. procedure PRECODE(Alg, \(H[.], u[.], \alpha[.])
2. \(x^{(0)}[.] = x[.]_{\text{init}} \)
3. \(\alpha^{(0)} = \alpha_{\text{init}} \)
4. for \(i = 1 : I \) // iterate over OFDM block
5. \(\text{for } t = 0 : T - 1 \text{ do} \)
6. \(S = \{1, \ldots, N\} \)
7. \(\text{while } S \neq \emptyset \text{ do} \)
8. \(\text{if Alg = MAGIQ then} \)
9. \((x_{n*}^{(i)}, n*) = \arg\min_{n, x}\{x[0], \ldots, x[T-1], \alpha \}
10. \) \(G(x^{(i)}[0], \ldots, x^{(i)}[T-1], x), \alpha, x^{(i-1)}\}
11. \(x^{(i+1)}[t+1] = \left\{ x^{(i-1)}[t+1], x^{(i)}[T-1] \right\}, \alpha^{(i-1)} \)
12. \(\text{else if Alg = QCM then} \)
13. \(n* = \min S // \text{round-robin schedule} \)
14. \(x_{n*}^{(i)} = \arg\min_{n, x} x[0], \ldots, x[T-1], x^{(i)}[T-1], n \]
15. \(x^{(i)}[T-1], \alpha^{(i-1)} \)
16. \(\text{end if} \)
17. \(x^{(i)}[t] = x_{n*}^{(i)} // \text{update antenna } n* \text{ at time } t \)
18. \(S \leftarrow S \backslash \{n*\} \)
19. \(\text{end while} \)
20. \(\text{end for} \)
21. \(\alpha^{(i)} = \frac{\sum_{t=0}^{T-1} \text{Re} \left(u[t] H[t] x^{(i)[t-\tau]} \right)}{\sum_{t=0}^{T-1} \| \sum_{\tau=0}^{T-1} H[\tau] x^{(i)[t-\tau]} \|^2 + TK\sigma^2} \)
22. \(\text{end for} \)
23. \(\text{return } x[.] = x^{(I)[.], \alpha = \alpha^{(I)}} \)
24. \(\text{end procedure} \)

The MAGIQ algorithm is summarized in Algorithm 1. MAGIQ steps through time in a cyclic fashion for fixed \(\alpha \). At each time \(t \), it initializes the antenna set \(S = \{1, \ldots, N\} \) and performs a greedy search for the antenna \(n \) and symbol \(x_n[t] \) that minimize (8) (one may equivalently consider sums of \(L \) norms as in (11)). The resulting antenna is removed from \(S \) and a new greedy search is performed to find the antenna in the new \(S \) and the symbol that minimizes (8) while the previous symbol assignments are held fixed. This step is repeated until \(S \) is empty. MAGIQ then moves to the next time and repeats the procedure. To determine \(\alpha \), MAGIQ applies alternating minimization with respect to \(\alpha \) and the precoder output \(\{x[t] : t = 0, \ldots, T - 1\} \). For fixed \(x[.] \), the minimization can be solved in closed form, see (10) and line 22 of Algorithm 1.

Simulations show that MAGIQ exhibits good performance and converges quickly (39). However, the greedy selection considerably increases the computational complexity. We thus replace the minimization over \(S \) in line 9 of Algorithm 1 with a round-robin schedule or a random permutation. We found that both approaches perform equally well. The new QCM algorithm performs as well as MAGIQ but with a simpler search and a small increase in the number of iterations.

Finally, one might expect that \(\alpha \) is close to the \(\alpha_{\text{QCM}} \) of the transmit Wiener filter (6), (7) since our cost function accounts for the noise power. However, Fig. 2 shows that this is true only at low SNR. The figure plots the average \(\alpha \) of the QCM algorithm, called \(\alpha_{\text{QCM}} \), against the computed \(\alpha_{\text{QCM}} \) for simulations with System A in Sec. 3. Note that \(\alpha_{\text{QCM}} \) is
IV. PERFORMANCE METRICS

A. Achievable Rates

We use generalized mutual information (GMI) to compute achievable rates \(^{16, 47}\) Ex. 5.22 which is a standard tool to compare coded systems. Consider a generic input distribution \(P(x)\) and a generic channel density \(p(y|x)\) where \(x = (x_1, \ldots, x_S)^T\) and \(y = (y_1, \ldots, y_S)^T\) each have \(S\) symbols. A lower bound to the mutual information

\[
I(X; Y) = \sum_{x,y} P(x)p(y|x) \log_2 \left(\frac{p(y|x)}{\sum_a p(a) p(y|a)} \right)
\]

is the GMI

\[
I_{q,s}(X; Y) = \sum_{x,y} P(x)p(y|x) \log_2 \left(\frac{q(y|x)^s}{\sum_a p(a) q(y|a)^s} \right)
\]

where \(q(y|x)\) is any auxiliary density and \(s \geq 0\). In other words, the choices \(q(y|x) = p(y|x)\) for all \(x, y\) and \(s = 1\) maximize the GMI. However, the idea is that \(p(y|x)\) may be unknown or difficult to compute and so one chooses a simple \(q(y|x)\). The reason why \(p(y|x)\) is difficult to compute here is because we will measure the GMI across the end-to-end channels from the \(\hat{u}_k[m]\) to the \(\hat{y}_k[m]\) and the quantized precoding introduces non-linearities in these channels. The final step in evaluating the GMI is maximizing over \(s \geq 0\). Alternatively, one might wish to simply focus on \(s = 1\), e.g., see \(^{48}\).

We study the GMI of two non-coherent systems: classic PAT and data-aided channel estimation. For both systems, we apply memoryless signaling with the product distribution

\[
P(x) = \prod_{i=1}^{S_p} 1(x_i = x_{p,i}) \cdot \prod_{i=S_p+1}^{S} P(x_i)
\]

where the \(x_{p,i}\) are pilot symbols, \(1(a = b)\) is the indicator function that takes on the value 1 if its argument is true and 0 otherwise, and \(P(x)\) is a uniform distribution. Joint data and channel estimation has \(S_p = 0\) so that we have only the second product in (14). At the receiver we use the auxiliary channel

\[
q(y|x) = \prod_{i=1}^{S} q_{x,y}(y_i | x_i)
\]

where the symbol channel \(q_{x,y}(\cdot)\) is a function of \(x\) and \(y\). Observe that \(q_{x,y}(\cdot)\) is invariant for \(S\) symbols and the channel can be considered to have memory since every symbol \(x_\ell\) or \(y_\ell\), \(\ell = 1, \ldots, S\), influences the channel for all “times” \(i = 1, \ldots, S\). The GMI rate (13) simplifies to

\[
\sum_{x,y} P(x)p(y|x) \sum_{i=S_p+1}^{S} \log_2 \left(\frac{q_{x,y}(y_i | x_i)^s}{\sum_a p(a) q_{x,y}(y_i | a)^s} \right).
\]

One may approximate (16) by applying the law of large numbers for stationary signals and channels. The idea is to independently generate \(B\) pairs of vectors

\[
x^{(b)} = (x_1^{(b)}, \ldots, x_S^{(b)})^T
\]

\[
y^{(b)} = (y_1^{(b)}, \ldots, y_S^{(b)})^T
\]

for \(b = 1, \ldots, B\), and then the following average rate will approach \(I_{q,s}(X; Y)/S\) bpcu as \(B\) grows:

\[
R_a = \frac{1}{B} \sum_{b=1}^{B} R^{(b)}_a
\]

where

\[
R^{(b)}_a = \frac{1}{S} \sum_{i=S_p+1}^{S} \log_2 \left(\frac{q_{x^{(b)},y^{(b)}}(y_i | x_i)^s}{\sum_a p(a) q_{x^{(b)},y^{(b)}}(y_i | a)^s} \right)
\]

We choose the Gaussian auxiliary density

\[
q_{x,y}(y|x) = \frac{1}{\pi \sigma_q^2} \exp \left(-\frac{|y - h \cdot x|^2}{\sigma_q^2} \right)
\]

where for PAT the receiver computes joint maximum likelihood (ML) estimates with sums of \(S_p\) terms:

\[
h = \sum_{i=1}^{S_p} y_i \cdot x_i^2
\]

\[
\sigma_q^2 = \frac{1}{S_p} \sum_{i=1}^{S_p} |y_i - h \cdot x_i|^2.
\]

For the data-aided detector we replace \(S_p\) with \(S\) in (20). Note that for the Gaussian channel (19) the parameter \(s\) multiplies \(1/\sigma_q^2\) in (16) or (13), and optimizing \(s\) turns out to be the same as choosing the best parameter \(\sigma_q^2\) when \(s = 1\).

Summarizing, we use the following steps to evaluate achievable rates. Suppose the coherence time is \(S/T:\) OFDM symbols where \(S\) is a multiple of \(T:\) \(S\) index the channel symbols by the pairs \((\ell, m)\) where \(\ell\) is the OFDM symbol and \(m\) is the subcarrier, \(1 \leq \ell \leq S/T\), \(0 \leq m \leq T - 1\). We collect the pilot index pairs in the set \(S_p\) that has cardinality \(S_p\), and we write the channel inputs and outputs of UE \(k\) for OFDM symbol \(\ell\) and subcarrier \(m\) as \(\hat{u}_k[\ell, m]\) and \(\hat{y}_k[\ell, m]\), respectively.
1) Repeat the following steps (2)-(4) B times; index the steps by \(b = 1, \ldots, B \).

2) Use Monte Carlo simulation to generate the symbols \(\hat{u}_k[\ell, m] \) and \(\hat{y}_k[\ell, m] \) for \(k = 1, \ldots, K, \ell = 1, \ldots, S/\{T_{\text{r}}, m = 0, \ldots, T - 1 \).

3) Each UE estimates its own channel \(h_k \) and \(\sigma^2_{q,k} \), i.e., the channel estimate (20) of UE is

\[
h_k = \frac{\sum_{(\ell,m)\in S_p} \hat{y}_k[\ell, m] \cdot \hat{u}_k[\ell, m]^*}{\sum_{(\ell,m)\in S_p} |\hat{u}_k[\ell, m]|^2}
\]

\[
\sigma^2_{q,k} = \frac{1}{S_p} \sum_{(\ell,m)\in S_p} |\hat{y}_k[\ell, m] - h_k \cdot \hat{u}_k[\ell, m]|^2.
\]

For the data-aided detector, in (21) we replace \(S_p \) with the set of all index pairs (\(\ell, m \)) and we replace \(S_p \) with \(S \).

4) Compute \(R_a^{(b)} \) in (18) for each UE \(k \) by averaging, i.e., the rate for UE \(k \)

\[
R_a^{(b)} = \frac{1}{S} \sum_{(\ell,m)\in S_p} \log_2 \left(\frac{q_{u_k, y_k} (\hat{y}_k[\ell, m], |\hat{u}_k[\ell, m]|)^*}{\sum_{P(a)} (\alpha)_{\hat{u}_k, y_k} (\hat{y}_k[\ell, m], |a|^2)} \right)
\]

where \(\hat{u}_k \) and \(\hat{y}_k \) are vectors collecting the \(\hat{u}_k[\ell, m] \) and \(\hat{y}_k[\ell, m] \), respectively, for all pairs (\(\ell, m \)). For the data-aided detector we set \(S_p = \emptyset \) in (22).

5) Compute \(R_h \) in (17) for each UE, i.e., the average rate of UE \(k \) is \(R_h^{(b)} = \frac{1}{B} \sum_{b=1}^B R_a^{(b)} \).

6) Compute the average UE rate \(\bar{R}_a = \frac{1}{B} \sum_{k=1}^K R_h^{(b)} \).

Our simulations showed that optimizing over \(s \geq 0 \) gives \(s \approx 1 \) if the channel parameters are chosen using (21).

B. Discussion

We make a few remarks on the lower bound. First, the receivers do not need to know \(\alpha \). Second, the rate \(R_h \) in (17) is achievable if one assumes stationarity and coding and decoding over many OFDM blocks. Third, as \(S \) grows the channel estimate of the data-aided detector becomes more accurate and the performance approaches that of a coherent receiver. Related theory for PAT and large \(S \) is developed in [47]. However, the PAT rate is generally smaller than for a data-aided detector because the PAT channel estimate is less accurate and because PAT does not use all symbols for data. We remark that blind channel estimation can approach the performance of data-aided receivers for large \(S \). Blind channel estimation algorithms can, e.g., be based on high-order statistics and iterative channel estimation and decoding. For polar codes and low-order constellations, one may use the blind algorithms proposed in [50]. We found that the PAT rates are very close (within 0.1 bpcu) of the pilot-free rates multiplied by the rate loss factor \(1 - S_p/S \) for pilot fractions as small as \(S_p/S = 10^\% \).

Depending on the system under consideration, we choose one of \(T_\text{r} = 32, 256, 396 \), one of \(T = 35, 270, 277, 286, 410 \), one of \(S = 256, 1584 \), and \(B = 200 \). For most simulations we have \(T_\text{r} = S = 256 \) and estimate the channel based on individual OFDM symbols, see Sec. [C]. For example, for \(T = 270 \) and a symbol time of 30 nsec (symbol rate 33.3 MHz) the coherence time needs to be at least (30 nsec)\(\cdot T = 8.1 \) μsec. Of course, the transmitter needs to know the channel also, e.g., via time-division duplex, which requires the coherence time to be substantially larger. The main point is that channel estimation at the receiver is not a bottleneck when using ZF based on channel inversion. Finally, for the coded simulations we chose \(T_\text{r} = 396 \) and \(S = 4T_\text{r} = 1548 \) because the LDPC code occupies four OFDM symbols.

C. Algorithmic Complexity

This section studies the algorithmic complexity in terms of the number of multiplications and iterations. The complexity of SQUID is thoroughly discussed in [38] and Table III shows the order estimates take from [38] Table I. Note the large number of iterations.

The complexity of MSM depends on the choice of optimization algorithm and [42] considers a simplex algorithm. Unfortunately, the simplex algorithm requires a large number of iterations to converge because this number is proportional to the number of variables and linear inequalities that grow with the system size \((N,K,T)\). An interior point algorithm converges more quickly but has a much higher complexity per iteration.

For MAGIQ and QCM, equation [3] shows that updating \(x[\cdot] \) requires updating \(L \) of the \(T \) terms that each require a norm calculation. The resulting terms \(\|u[\ell]\|^2 \) do not affect the maximization; terms such as \(\|a H x\|^2 \) can be pre-computed and stored with a complexity of \(NKL|X| \), and then reused as they do not change during the iterations. On the other hand, products of the form \(a u[\ell] H x \) must be computed for each of the \(L \) terms for each antenna update and at each time instance, resulting in a complexity of \(O(NKLT) \). The initialization requires \(KNT \) multiplications and one must transform the solutions to the time domain. We neglect the cost of updating \(\alpha \) because the terms needed to compute it are available as a byproduct of the iterative process over the time instances.

D. Sensitivity to Channel Uncertainty at the Transmitter

In practice, the CSI is imperfect due to noise, quantization, calibration errors, etc. We do not attempt to model these effects exactly. Instead, we adopt a standard approach based on MMSE estimation and provide the precoder with channel matrices \(\tilde{H}[\tau] \) that satisfy

\[
H[\tau] = \sqrt{1 - \varepsilon^2} \tilde{H}[\tau] + \varepsilon Z[\tau]
\]

where \(0 \leq \varepsilon \leq 1 \) and \(Z[\tau] \) is a \(K \times N \) matrix of independent, variance \(\sigma^2_h = 1/L \), complex, circularly-symmetric Gaussian entries. Note that \(\varepsilon = 0 \) corresponds to perfect CSI and \(\varepsilon = 1 \) corresponds to no CSI. The precoder treats \(\tilde{H}[\tau] \) as the true channel realization for \(\tau = 0, \ldots, L - 1 \).

V. Numerical Results

We evaluate the GMIs of four systems. The main parameters are listed in Table [III] and we provide a few more details here.

- System A: the DFT has length \(T_\text{r} = 256 \) and the channel has either \(L = 1 \) or \(L = 15 \) taps of Rayleigh fading with a
uniform PDP. The minimum cyclic prefix length for the latter case is \(T_c = 14 \) so the minimum OFDM blocklength is \(T = 270 \).

- System B: MSM is applied to PSK. However, the MSM complexity limited the simulations to smaller parameters than for System A. The channel now has \(L = 4 \) taps of Rayleigh fading with a uniform PDP. The \(T = 35 \) OFDM symbols include a DFT of length \(T_F = 32 \) and a minimum cyclic prefix length of \(T_c = 3 \).

- System C: System C is actually two systems because we compare the performance under Rayleigh fading to the performance with the Winner2 model [51] whose number \(L \) of channel taps varies randomly. For the Winner2 channel, the choice \(T_c = 30 \) suffices to ensure that \(T_c \geq L - 1 \). The Rayleigh fading model has \(L = 22 \) taps with a uniform PDP, where \(L \) was chosen as the maximum Winner2 channel length that has almost all the channel energy.

- System D: similar to System A but for a 5G NR LDPC code with code rate 8/9 and 64-QAM for an overall rate of 5.33 bpcu. The LDPC code uses the BG1 base graph of the 3GPP Specification 38.212 Release 15, including puncturing and shortening as specified in the standard. The code length is 9504 bits or 1584 symbols of 64-QAM; this corresponds to 4 frames of \(T_F = 396 \) symbols. The codewords were transmitted using at least \(T = 410 \) symbols that include a DFT of length \(T_F = 396 \) and a minimum cyclic prefix length of \(T_c = 14 \).

The average GMIs for Systems A-C were computed using \(S = 256, B = 200 \), and a data-aided detector. The coded results of System D instead have \(S = 1584 \) symbols to fit the block structure determined by the LDPC encoder. For System D we considered both PAT and a data-aided detector. For all cases, the GMI was computed by averaging over the sub-carriers, i.e., channel coding is assumed to be applied over multiple sub-carriers and OFDM symbols. The MAGIQ and QCM algorithms were both initialized with a time-domain quantized solution of the transmit matched filter (MF).

Fig. 3 and Fig. 4 show the average GMIs for System A with \(b = 2 \) and \(b = 3 \), respectively. In Fig. 3 MAGIQ performs 4 iterations for each OFDM symbol while QCM performs 6 iterations. Observe that MAGIQ and QCM are best at all SNRs and they are especially good in the interesting regime of high SNR and rates. The gap to the rates over flat fading channels (\(L = 1 \)) is small. SQUID with 64-QAM requires 100-300 iterations for \(SNR > 15 \) dB and a modified algorithm with damped updates, otherwise SQUID diverges. In addition, we show the broadcast channel capacity with uniform power allocation and Gaussian signaling as an upper bound for the considered scenario [52], [53]. Fig. 4 shows that QCM with 3 iterations operates within \(\approx 0.2 - 0.4 \) dB of MAGIQ with 5 iterations when \(b = 3 \) which shows that QCM performs almost as well as MAGIQ.

Fig. 5 compares achievable rates of QCM, SQUID and MSM for a smaller system studied in [42]. We use PSK because the MSM algorithm was designed for PSK. The figure shows that MSM outperforms SQUID and QCM at low to
intermediate SNR and rates, but QCM is best at high SNR and rates. This suggests that modifying the cost function (8) to include a safety margin will increase the QCM rate at low to intermediate SNR, and similarly modifying the MSM optimization to more closely resemble QCM will increase the MSM rate at high SNR. We tried to simulate MSM for System A but the algorithm ran into memory limitations (we used 2 AMD EPYC 7282 16-Core processors, 125GByte of system memory, and Matlab with both dual-simplex and interior-point solvers).

Consider next the Winner2 non-line-of-sight (NLOS) C2 urban model [51] that is more realistic than Rayleigh fading. The model parameters are as follows.

- Base station at the origin \((x, y) = (0, 0)\);
- 100 drops of 8 UEs placed on a disk of radius 150 m centered at \((x, y) = (0, 200)\); the locations of the UEs are iid with a uniform distribution on the disc;
- 8x10 uniform rectangular antenna array at the base station with half-wavelength dipoles at \(\lambda/2\) spacing;
- 5 MHz bandwidth at center frequency 2.53 GHz;
- No Doppler shift, shadowing and pathloss.

Fig. 4 shows the average GMIs for LP-ZF and MAGIQ. At high SNR, there is a slight decrease in the slope of the MAGIQ GMI as compared to LP-ZF. This suggests that one might need a larger \(N\) or \(b\). The performance for the Rayleigh fading model is better than for the Winner2 model but otherwise behaves similarly.

Fig. 5 shows BERs for the LDPC code with 64-QAM. Each codeword is interleaved over four OFDM symbols, all 396 subcarriers, and the six bits of each modulation symbol by using bit-interleaved coded modulation (BICM). The interleaver was chosen randomly with a uniform distribution over all permutations of length 9504. The solid curves show the performance of PAT when the fraction of pilots is \(S_p/S = 10\%\). The pilots were placed uniformly at random over the four OFDM symbols and 396 subcarriers. A good blind detector algorithm that performs joint channel and data estimation should have BERs between the solid and dotted curves.

The dashed curves in Fig. 7 show the SNRs required for the different algorithms based on Fig. 3. In particular, the rate 5.33 bpcu requires SNRs of 9 dB, 12.9 dB, 15.2 dB for LP-ZF, QCM and SQUID, respectively. SQUID is run with 300 iterations and QCM is run with 6 iterations. Each UE computes its log-likelihoods based on the parameters (20) of the auxiliary channel. The GMI predicts the coded behaviour of the system within approximately 1 dB of the code waterfall region, except for SQUID where the gap is about 2 dB. The gap seems to be caused mainly by the finite-blocklength of the LDPC code, since the smaller gap of approximately 1 dB is also observed for additive white Gaussian noise (AWGN) channels. The sizes of the gaps are different, and the reason

![Fig. 4. Average GMIs for System A with 64-QAM and \(b = 3\).](image1)

![Fig. 5. Average GMIs for System B.](image2)

![Fig. 6. Average GMIs for System C.](image3)

![Fig. 7. Average GMIs for System D.](image4)
Fig. 7. BERs for System D and a 5G NR LDPC code.

Fig. 8. Average GMI for System A and imperfect CSI at SNR = 12 dB.

channel models: one model for pilot-aided channel estimation and a second model for data-aided channel estimation. Simulations for several downlink channels, including a Winner2 NLOS urban scenario, showed that QCM achieves high information rates and is computationally efficient, flexible and robust. The performance of QCM was compared to MAGIQ and other precoding algorithms including SQUID and MSM. The QCM and MAGIQ algorithms achieve the highest information rates with the lowest complexity measured by the number of multiplications. For example, Fig. 4 shows that $b = 3$ bits of phase modulation operates within 3 dB of LP-ZF. Moreover, BER simulations for a 5G NR LDPC code show that GMI is a good predictor of the coded performance. Finally, for noisy CSI the performance degradation of QCM and SQUID is qualitatively similar to the performance degradation of LP-ZF.

VI. CONCLUSION

We studied downlink precoding for MU-MISO channels where the base station uses OFDM and low-resolution DACs. A QCM algorithm was introduced that is based on the MAGIQ algorithm in [39] (see also [19]) and which performs a coordinate-wise optimization in the time-domain. The performance was analyzed by computing the GMI for two auxiliary channel models: one model for pilot-aided channel estimation and a second model for data-aided channel estimation. Simulations for several downlink channels, including a Winner2 NLOS urban scenario, showed that QCM achieves high information rates and is computationally efficient, flexible and robust. The performance of QCM was compared to MAGIQ and other precoding algorithms including SQUID and MSM. The QCM and MAGIQ algorithms achieve the highest information rates with the lowest complexity measured by the number of multiplications. For example, Fig. 4 shows that $b = 3$ bits of phase modulation operates within 3 dB of LP-ZF. Moreover, BER simulations for a 5G NR LDPC code show that GMI is a good predictor of the coded performance. Finally, for noisy CSI the performance degradation of QCM and SQUID is qualitatively similar to the performance degradation of LP-ZF.

REFERENCES

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, Nov. 2010.

[2] H. Q. Ngo, E. Larsson, and T. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[3] S. K. Mohammed and E. G. Larsson, “Per-antenna constant envelope precoding for large multi-user MIMO systems,” IEEE Trans. Commun., vol. 61, no. 3, pp. 1059–1071, Mar. 2013.

[4] ——, “Constant-envelope multi-user precoding for frequency-selective massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 547–550, Oct. 2013.

[5] ——, “Single-user beamforming in large-scale mimo systems with per-antenna constant-envelope constraints: The doughnut channel,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 3992–4005, 2012.

[6] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in mimo communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug. 2005.

[7] E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure,” IEEE Signal Proc. Mag., vol. 31, no. 4, pp. 142–148, Jul. 2014.

[8] A. Mezghani, R. Ghiat, and J. A. Nossek, “Transmit processing with low resolution d/a-converters,” in IEEE Int. Conf. Electronics, Circuits, and Systems, 2009, pp. 683–686.

[9] A. Mezghani, R. Ghiat, and J. Nossek, “Tomlinson harashima precoding for mimo systems with low resolution d/a-converters,” in ITG/IEEE Workshop on Smart Antennas, February 2008, berlin, Germany.

[10] O. Usman, H. Jedda, A. Mezghani, and J. Nossek, “Mmse precoder for massive mimo using 1-bit quantization,” in IEEE Int. Conf. Acoustics, Speech and Signal Proc., 2016, pp. 3381–3385.

[11] A. Saxena, I. Fijalkow, and A. Swindlehurst, “Analysis of one-bit quantized precoding for the multiuser massive mimo downlink,” IEEE Trans. Signal Procress., vol. 65, no. 17, pp. 4624–4634, 2017.

[12] A. Kakakavas, J. Munir, A. Mezghani, H. Brunner, and J. A. Nossek, “Weighted sum rate maximization for multi-user mimo systems with low resolution digital to analog converters,” in Int. ITG Workshop Smart Antennas, 2016, pp. 1–8.

[13] Y. Li, C. Tao, L. Swindlehurst, A. Mezghani, and L. Liu, “Downlink achievable rate analysis in massive mimo systems with one-bit dacs,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1669–1672, 2017.

[14] L. Swindlehurst, H. Jedda, and I. Fijalkow, “Reduced dimension minimum bit psk precoding for constrained transmit signals in massive mimo,” in IEEE Int. Conf. Acoustics, Speech, Signal Proc., 2018, pp. 3584–3588.

[15] A. Saxena, A. Mezghani, and R. Heath, “Linear ce and 1-bit quantized precoding with optimized dithering,” IEEE Open J. Signal Proc., vol. 1, pp. 310–325, 2020.

[16] H. Jedda, J. Nossek, and A. Mezghani, “Minimum ber precoding in 1-bit massive mimo systems,” in IEEE Sensor Array and Muitichannel Signal Proc. Workshop, 2016, pp. 1–5.

[17] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized precoding for massive MU-MIMO,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4670–4684, Nov. 2017.
A. Nedelcu, F. Steiner, M. Staudacher, G. Kramer, W. Zirwas, R. S. Gane-san, “Optimized combination of conventional and constrained massive MIMO arrays,” in ITG Workshop Smart Antennas, Mar. 2017, pp. 1–4.

M. Shao, Q. Li, and W.-K. Ma, “One-bit massive mimo precoding via a minimum symbol-error probability design,” in IEEE Int. Conf. Acous., Speech, Signal Proc., 2018, pp. 3579–3583.

A. Li, C. Masouros, F. Liu, and A. Swindlehurst, “Massive mimo 1-bit dac transmission: A low-complexity symbol scaling approach,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7559–7575, 2018.

A. Li, C. Masouros, A. Swindlehurst, and W. Yu, “1-bit massive mimo transmission: Embracing interference with symbol-level precoding,” IEEE Communications Magazine, vol. 59, no. 5, pp. 121–127, 2021.

A. Li, F. Liu, X. Liao, Y. Shen, and C. Masouros, “Symbol-level precoding made practical for multi-level modulations via block-level rescaling,” in IEEE Int. Workshop Signal Proc. Advances Wireless Commun., 2021, pp. 71–75.

C. G. Tsinos, A. Kalantari, S. Chatzinotas, and B. Ottersten, “Symbol-level precoding with low resolution DACs for large-scale array MU-MIMO systems,” in IEEE Int. Workshop Signal Process. Advances Wireless Commun., Jun. 2018, pp. 1–5.

S. Domouchtsidis, C. G. Tsinos, S. Chatzinotas, and B. Ottersten, “Symbol-level precoding for low complexity transmitter architectures in large-scale antenna array systems,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 852–863, Feb. 2019.

H. Jedd, A. Mezghani, J. A. Nossek, and A. L. Swindlehurst, “Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling,” in 2017 IEEE Int. Workshop Signal Proc. Advances Wireless Commun. (SPAWC), Jul. 2017, pp. 1–5.

H. Jedd, A. Mezghani, A. Swindlehurst, and J. Nossek, “Quantized constant envelope precoding with psk and qam signaling,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8022–8034, 2018.

H. Jedd, A. Mezghani, J. A. Nossek, and A. Swindlehurst, “Massive mimo downlink 1-bit precoder for frequency selective channels,” in IEEE Int. Workshop on Comp. Advances in Multi-Sensor Adaptive Proc., 2017, pp. 1–5.

L. T. N. Landau and R. C. de Lamare, “Branch-and-bound precoding for multiuser MIMO systems with 1-bit quantization,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 770–773, 2017.

S. Jacobsson, W. Xu, G. Durisi, and C. Studer, “Mse-optimal 1-bit precoding for multiuser mimo via branch and bound,” in IEEE Int. Conf. Acous., Speech, Signal Proc., 2018, pp. 3589–3593.

A. Li, F. Liu, C. Masouros, Y. Li, and B. Vucetic, “Interference exploitation 1-bit massive MIMO precoding: A partial branch-and-bound solution with near-optimal performance,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3474–3489, 2020.

E. S. P. Lopes and L. T. N. Landau, “Optimal and suboptimal MMSE precoding for multiuser MIMO systems using constant envelope signals with phase quantization at the transmitter and PSK,” in Int. ITG Workshop Smart Antennas (WSA), 2020, pp. 1–6.

M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, “A framework for one-bit and constant-envelope precoding over multiuser massive mimo channels,” IEEE Trans. Sig. Proc., vol. 67, no. 20, pp. 5309–5324, 2019.

M. Sedaghat, A. Bereyhi, and R. Müller, “Least square error precoders for massive mimo with signal constraints: Fundamental limits,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 667–679, 2018.

A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and C. Studer, “Neural-network optimized 1-bit precoding for massive MU-MIMO,” in IEEE Int. Workshop Signal Proc. Advances Wireless Commun., 2019, pp. 1–5.

F. Sohrabi, H. V. Cheng, and W. Yu, “Robust symbol-level precoding via autoencoder-based deep learning,” in IEEE Int. Conf. Acous., Speech, Signal Proc., 2020, pp. 8951–8955.

S. Jacobsson, G. Durisi, M. Coldrey, and C. Studer, “Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM downlink,” IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1595–1609, Mar. 2019.

S. Jacobsson, O. Castañeda, C. Jeon, G. Durisi, and C. Studer, “Non-linear precoding for phase-quantized constant-envelope massive MU-MIMO-OFDM,” in Int. Conf. Telecommun., Jun. 2018, pp. 367–372.

A. Nefzger, F. Steinmetz, M. Staudacher, G. Kramer, W. Zirwas, R. S. Ganesan, P. Baracca, and S. Wesemann, “Quantized precoding for multi-antenna downlink channels with MAGIQ,” in Int. ITG Workshop Smart Antennas (WSA), Mar. 2018, pp. 1–8.