Characterization of flavonoid glycosides from rapeseed bee pollen using a combination of chromatography, spectrometry and nuclear magnetic resonance with a step-wise separation strategy

Yi Liabc, Yitao Qid, Joan Rithoe, Yongxin Zhangf, Xiaowei Zhengg, Jinhui Zhouabc1* and Liping Sunah1*

aInstitute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P.R. China; bBee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100093, P.R. China; cLaboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, P.R. China; dTexas Heart Institute, St Luke’s Episcopal Hospital, Houston, TX 77030, USA; eDepartment of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; fInstitute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10070, P.R. China; gHenan Enginerring Laboratory of Antibody Medicine, Medical School of Henan University, Kaifeng 475001, P.R. China; hKey Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, P.R. China

(Received 11 November 2015; final version received 14 April 2015)

To identify the structures of flavonoid glycosides in bee pollen collected from rapeseed plants (\textit{Brassica napus} L.), we utilised an approach that combined liquid chromatography–diode array detector–electrospray ionization–mass spectrometry (LC–DAD–ESI–MS) and nuclear magnetic resonance (NMR) technology with a step-wise separation strategy. We identified four constituents of high purity in rape bee pollen samples: (1) quercetin-3-\textit{O}\textendash\textbeta\textendash\textD-glucosyl-(2\rightarrow1)-\textbeta\textendash\textD-glucoside, (2) kaempferol-3, 4\textprime\textbeta\textendash\textD-glucoside, (3) 5, 7, 4\textprime\textbeta\textendash\textD-trihydroxy-3\textprime\textbeta\textendash\textD-methoxyflavone-3-\textbeta\textendash\textD-sophoroside and (4) kaempferol-3-\textbeta\textendash\textD-glucosyl-(2\rightarrow1)-\textbeta\textendash\textD-glucoside. This study will also provide useful reference standards for qualification and quantification of four flavonoid glycosides in natural products.

Keywords: bee pollen; step-wise separation strategy; semi-preparative HPLC; LC–DAD–ESI–MS; NMR; flavonoid glycosides

1. Introduction

The bee pollen of the important crop rapeseed consists of pollen mixed with plant nectars and bee secretions (Eraslan et al. \textit{2009}). Bee pollen has long been a popular dietary supplement
(Nicolson & Human 2013) and additive used in the cosmetics, food and medicine industry. Rape bee pollen is used widely in traditional Chinese medicine to prevent atherosclerosis and treat prostatic hyperplasia (Murakami et al. 2008). Flavonoids and their glycosides found in bee pollen are a large group of secondary plant metabolites that have a wide range of biological effects, including anti-oxidant, anti-inflammatory, anti-allergen, anti-ulcer, antibiotic and anti-carcinogenic properties. There is a therefore growing interest in the isolation and identification of the flavonoid constituents of rape bee pollen, in order to lay the foundation for study of their biological activities. Some of them have been isolated from rape bee pollen and other plants and identified via MS, NMR spectroscopic analysis and chemical evidence (Serra Bonvehí et al. 2001; Cho et al. 2004; Guo 2009; Maruyama et al. 2010; Hao et al. 2012). LC–DAD–MS and NMR have proven to be powerful methods for the identification of flavonoid structure by providing molecular weight and fragmentation information (DeStefano & Kirkland 1975; Stahl 2003; Negri et al. 2013; Xie et al. 2011, 2013).

The purpose of this work was to develop a convenient and efficient method for the reliable separation and identification of flavonoid glycosides compounds from rape pollen. Firstly, flavonoid glycoside compounds were successively isolated from rape pollen using octadecylsilyl (ODS) chromatography and semi-preparative high-performance liquid chromatography (semi-prep HPLC). Secondly, the purities and chemical structures of the isolated compounds were elucidated by DAD, LC–ESI–MS and NMR. Flavonoid glycosides were identified by comparing their HPLC retention times, ultra-violet (UV) absorption and MS fragmentation characteristics. Further, 1H and 13C NMR was utilised to support the HPLC–DAD–ESI–MS identification, in order to discover new flavonoid glycosides whose reference standards were not commercially available, or that were previously unknown to occur in rape pollen.

2. Results and discussion

2.1. Extraction and isolation of flavonoid glycosides from rape bee pollen

The overall fractionation procedure that we used is presented in Figure S1. It has also been reported that the maximum extraction efficiency of phenolic acids from rape bee pollen was obtained using ultrasonic-assisted extraction with 80% ethanol as the extraction solvent (Yang et al. 2010). Three fractions (B$_1$, B$_2$ and B$_3$) from A$_2$ were obtained under the isocratic elution condition (14% aqueous acetonitrile). Then four fractions (C$_1$, C$_2$, C$_3$ and C$_4$) from B$_2$ were obtained at retention times between 27 and 43 min (Figure S2). The individual UV absorption maxima of fractions C$_1$ to C$_4$ were 255, 265, 270 and 265 nm, and all of the spectra had a slight shoulder peak at 339–353 nm (Figure S3). Moreover, flavonoids exhibit maximum absorbance in the vicinity of 280 and 360 nm in the UV region. That confirmed that fractions C$_1$ to C$_4$ were flavonoid compounds, results that are consistent with those reported in the literature (Zhou et al. 2014).

2.2. Elucidation of flavonoid glycoside structures

2.2.1. Fraction C$_1$

Based on Figure S4(A), we concluded that fraction C$_1$ contained two hexose bases and a quercetin group. From the 1H and 13C-NMR spectrum (Figure S5(A) and (B)), the presence of these structural elements enabled us to conclude that fraction C$_1$ is a flavonoid glycoside, defined as quercetin-3-O-β-D-glucosyl-(2→1)-β-glucoside. Its structural formula C$_1$ is shown in Figure S6(A).

2.2.2. Fraction C$_2$

Based on Figure S4(B), we concluded that fraction C$_2$ contained two hexose bases and a kaempferol moiety. From the 1H and 13C-NMR spectrum (Figure S7(A) and (B)), these
structural elements indicated that fraction C_2 is a flavonoid glycoside, defined as kaempferol-3, 4'-di-O-β-d-glucoside. Its structural formula is shown in Figure S6(B).

2.2.3. Fraction C_3
Based on Figure S4(C), we concluded that fraction C_3 contained two hexose bases and an isorhamnetin moiety. From the ^1H and ^13C-NMR spectrum (Figure S8 (A) and (B)), these structural elements indicated that fraction C_3 is a flavonoid glycoside, defined as 5, 7, 4'-trihydroxy-3'-methoxyflavone-3-O-β-d-sophoroside. Its structural formula is shown in Figure S6 (C).

2.2.4. Fraction C_4
Based on Figure S4(D), we concluded that fraction C_4 contained two hexose bases and a kaempferol moiety. From the ^1H and ^13C-NMR spectrum (Figure S9 (A) and (B)), these structural elements showed that fraction C_4 is a flavonoid glycoside, defined as kaempferol-3-O-β-d-glucosyl-(2→l)-β-d-glucoside. Its structural formula is shown in Figure S6 (D).

2.2.5. Hepatoprotective activity assay
The hepatoprotective activities of the isolated compounds against CCl_4-induced human L02 cells were determined according to previously reported methods (Zhou et al. 2013). IC_{50} is defined as the concentration of target analytes that reduces cellular activities by 50% in comparison with untreated control cultures. Quercetin-3-O-β-d-glucosyl-(2→l)-β-glucoside showed the hepatoprotective effect with IC_{50} value of 132.64 ± 4.1 μM, whereas three other compounds have no such activity.

3. Conclusions
In conclusion, we isolated and identified four flavonoid glycosides including quercetin-3-O-β-d-glucosyl-(2→l)-β-glucoside, kaempferol-3, 4'-di-O-β-d-glucoside, 5, 7, 4'-trihydroxy-3'-methoxyflavone-3-O-β-d-sophoroside, and kaempferol-3-O-β-d-glucosyl-(2→l)-β-d-glucoside in bee pollen.

Supplementary material
Experimental details relating to this paper are available online, alongside Tables S1–S4 and Figures S1–S9.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This project was financially supported by the National Natural Science Foundation of China [grant number 31201859], National Project of Risk Assessment for Quality and Safety of Special Agro-products National Key Project for Agro-product Quality & Safety Risk Assessment, PRC (GJFP2015010) and The Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2015-IAR).

Note
1. Jinhui Zhou and Liping Sun contributed equally to this work.
References

Cho MJ, Howard LR, Prior RL, Clark JR. 2004. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric. 84:1771–1782. doi:10.1002/jsfa.1885.

DeStefano J, Kirkland J. 1975. Preparative high-performance liquid chromatography. Anal Chem. 47:1193A–1204A. doi:10.1021/ac60363a750.

Eraslan G, Kanbur M, Silici S, Cem Liman B, Altunordulu Ş, Soyer Sarica Z. 2009. Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotox Environ Safe. 72:931–937. doi:10.1016/j.ecoenv.2008.06.008.

Guo JL. 2009. Isolation and Identification Four New Compounds from Bee-collected Rape Pollen [dissertation]. Inner Mongolia: Inner Mongolia Agricultural University.

Hao Q, Yao Y, Li XL, Li RT, Li HZ. 2012. Three new dihydrokaempferol acetylated glycosides from Smilax china L. Nat Prod Res Dev. 24:861–865.

Maruyama H, Sakamoto T, Araki Y, Hara H. 2010. Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complement Altern Med. 10:30. doi:10.1186/1472-6882-10-30.

Murakami M, Tsukada O, Okihara K, Hashimoto K, Yamada H, Yamaguchi H. 2008. Beneficial effect of honeybee-collected pollen lump extract on benign prostatic Hyperplasia (bph)-A double-blind, placebo-controlled clinical trial-. Food Sci Technol Res. 14:306–310. doi:10.3136/fstr.14.306.

Negri G, Santi D, Tabach R. 2013. Flavonol glycosides found in hydroethanolic extracts from Tilia cordata, a species utilized as anxiolytics. Rev Bras Plantas Med. 15:217–224. doi:10.1590/S1516-05722013000200008.

Nicolson S, Human H. 2013. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, asteraceae). Apidologie. 44:144–152. doi:10.1007/s13592-012-0166-5.

Serra Bonvehi J, Soliva Torrentó M, Centelles Lorente E. 2001. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem. 49:1848–1853.

Stahl M. 2003. Peak purity analysis in HPLC and CE using diode-array technology. Waldbronn: Agilent Technologies.

Xie W, Qin X, Teraoka I, Gross RA. 2011. Cooperative effect in ion pairing of oligolysine with heptafluorobutyric acid in reversed-phase chromatography. J Chromatogr A. 1218:7765–7770. doi:10.1016/j.chroma.2011.08.002.

Xie W, Qin X, Teraoka I, Gross RA. 2013. Comparison of retention behavior of oligolysine and oligoarginine in ion-pairing chromatography using heptafluorobutyric acid. Anal Bioanal Chem. 405:9739–9746. doi:10.1007/s00216-013-7397-9.

Yang Jl, Sun LP, Xu X, Zhu Q. 2010. Hydrolyzed rape bee pollen ethanol extract: qualitative and quantitative analysis of flavonol and antioxidant activity evaluation. Food Sci. 31:79–82.

Zhou JH, Qi YT, Diao QY, Wu LM, Du X, Li Y, Sun LP. 2013. Cytotoxicity of melittin and apamin in human hepatic L02 and HepG2 cells in vitro. Toxin Rev. 32:60–67. doi:10.3109/15569543.2013.852108.

Zhou JH, Yao LH, Li Y, Chen LZ, Wu LM, Zhao J. 2014. Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis. Food Chem. 145:941–949. doi:10.1016/j.foodchem.2013.08.117.