Covid-19: using simulation and technology-enhanced learning to negotiate and adapt to the ongoing challenges in UK healthcare education

Martyn Wyres 1, Natasha Taylor 1

INTRODUCTION

Covid-19 has changed the way we live, move and connect in the UK and this includes education settings. There are only four reasons that the government advises people to currently leave home.1 These are:

1. Shopping for essential food or medicine.
2. Exercise or walking a pet but only with members of one’s own household.
3. Medical appointments or as a carer for a vulnerable person.
4. Travel to and from work, if unable to work from home.

At all times people must follow social distancing rules when outside the home, so must remain at least 2 m apart, except when with those in the same household.1 This presents a unique challenge generally, but especially in healthcare educational institutions and settings across the country. This is particularly true for universities that provide healthcare-related courses, who traditionally gather learners together in face-to-face settings to practise skills and simulation learning.2 This current crisis, therefore, presents three main challenges:

1. How do we continue to provide a positive learning experience and sense of community for learners, when they are unable to leave their homes?
2. How do we support teaching staff to continue supporting learners in these challenging times, when they may not have the experience or knowledge to teach wholly online?
3. How do we ensure minimal disruption to both teacher and learner mental health and well-being and promote resilience?

In an educational institution where face-to-face teaching is the standard form of education, the current global health emergency also impacts in ways not seen in non-healthcare courses. Most healthcare-related courses are staffed by current or former clinicians, due to the need for appropriate professional registration.3 This may cause significant conflict of interests. Some teaching staff may feel torn between returning to the healthcare system to reinforce a system that is experiencing pressures never before experienced.4 However, this is juxtaposed with these same staff needing to remain in their educational role to support the development of much needed healthcare learners that will become the future workforce. This has been already identified as both a risk and an opportunity in the wider healthcare simulation and technology-enhanced learning arena by our colleagues in China.5

There are also pressures and dilemmas for learners to ponder, as many are keen to support their colleagues on the healthcare front line, as demonstrated by the use of the temporary register created by the Health and Care Professions Council6 and the Nursing and Midwifery Council.7 Learners earlier in their educational journey are finding their courses interrupted or significantly altered as all material is now delivered online.8 This has led to increased focus placed on the use of online and technology-enhanced learning, in other words technology within education and simulation, within an online platform.

UNIQUE CHALLENGES IN SIMULATION

Replicating or creating clinical situations and existing competency-based skills is common within healthcare education.9 Learners are accessing specialist simulation settings such as mock wards, patient houses and intensive care surroundings. With the current restrictions in place this is no longer feasible. This therefore presents challenges in the use of simulated activity in teaching and assessment across a range of health and care courses.

The advancement and increased use of 360° field-of-view cameras in education and training offer one possible solution, creating virtual settings or scenes that can prompt or guide learning.10 These can use existing footage or clinical or simulation spaces to create material, while following social distancing restrictions and using key workers. It has been suggested that virtual or online simulation can be as effective as face-to-face role-play for learners’ perception of tasks, as well as having the added benefit of being able to repeat the task or experience.11 This would suggest that users are engaging with the material and having a meaningful learning experience. Of course, simulation does not have to involve expensive technology or specialist technologists; it can also take the form of written or video case studies. These have been shown to be suitable for learning, depending on the type of task and level of ability.12 With learners currently located in geographically disparate locations, in a number of different time zones, engaging them in one place at one time in the current crisis is unrealistic. Simulation activity can allow a resource to be created and viewed at a time suitable to the individual. Several free and open-access websites and suitable clinician and educator-proof software can be used to allow discussion to take place.

SIM SHARE

In light of these unique challenges, a website was written, built and published to allow healthcare staff to better support learners across the sector. This site, called SIM Share (simulation share) http://covunisim.coventry.domains/simshare/, is a basic WordPress framework, providing an open-access platform for learner development. The resources on this site include embedded videos, links to videos on sharing sites, online learning courses, documents, webinars, websites, podcasts and links to other online resources. Two clinicians, with no specialist information technology input or support required, curate the site. The aim of SIM Share is to gather and place materials to facilitate the transition from mostly face-to-face learning to wholly online learning.

The website was launched at 13:30 on Tuesday, 31 March 2020, and this editorial was written on 15 April 2020; therefore, the total number of days that data have been collected for is n=14. In these 2 weeks, the site has been accessed n=6343. The website was shared initially within the university school, then regionally, then nationally. The link has been published on the social media platform Twitter (@CovUniSim); it also is part of the Association for Simulated

Faculty of Health and Life Sciences, Coventry University, Coventry, UK

Correspondence to Martyn Wyres, Coventry University, Coventry CV1 5RW, UK; ac4949@coventry.ac.uk
Practice in Healthcare’s national upskill project repository. This resource is part of a global effort to provide online simulation material at a time when it is being used by an audience on a larger scale. This can be seen in a wealth of shared resources originating in Europe and the USA especially.

In the n=14 days since the site was launched, Table 1 outlines the number of visits to each health and subheading topic. The themes were identified based on the subject matter of the resources gathered.

Table 1 Total number of visits to individual pages on SIM Share site from 31 March 2020 to 15 April 2020

Name of page	Total visits to page
Heading Online learning	291
Subheading How to use online learning	120
360° pictures	95
Links to tips and software	76
Heading Covid-19	699
Subheading Critical/intensive care	115
Hand hygiene	117
PPE	207
Heading Skills	698
Subheading Airway and breathing*	129
Ventilators**	31
Drugs and fluids	135
General	275
Heading Help and support	n/a***
Sim sites and apps	135
Kids Zone	65
Mental health and well-being	128

***Airway and breathing and ventilators pages were previously combined

**Help and support pages were not previously combined under this heading.

elFH, e-Learning for Healthcare; n/a, not applicable; NHS, National Health Service; PPE, personal protective equipment.

CONCLUSION

These early figures suggest common themes in retrieve information from the SIM Share website and the need for clear, easy-to-access support. This is equally important for either staff potentially returning to practice or staff advising and educating learners volunteering or undertaking a clinical placement. To support staff to continue to provide an enriching educational experience to learners, SIM Share is created intentionally to engage the viewer while not overcomplicating the material. It focuses on the educational message, the psychology behind the pedagogical tools and, perhaps most important, to keep Covid-19 learning accessible to all.

Collaboration between academic staff, learning technologists, all forms of non-teaching staff and healthcare clinicians has allowed a resource to grow from an idea with potential. This idea has become a resource that is directly influencing those in a position to educate the future and current healthcare workforce and implement meaningful clinical interventions themselves. With the current demands on the healthcare system, staff are potentially being redeployed to areas they do not feel competent working in. SIM Share allows an easily accessible training when and where needed. However, this site is only as effective and current as the resources on it and this editorial closes with a plea for help. Please keep sending resources to the site, your support matters.

Twitter Natasha Taylor @CovUniSim

Acknowledgements The authors acknowledge the contribution of all individuals, universities and organisations that provided—and continue to provide—content for SIM Share.

Contributors All work was completed by the authors. The manuscript has been read and approved by all named authors. All authors have contributed to the writing, revision and approval of the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Wyres M, Taylor N. BMJ Simul Technol Enhanc Learn 2020;6:317–319.

Received 18 April 2020
Accepted 24 April 2020

BMJ Simul Technol Enhanc Learn 2020;6:317–319. doi:10.1136/bmjstel-2020-000642

ORCID iDs
Martyn Wyres http://orcid.org/0000-0002-6727-5995
Natasha Taylor http://orcid.org/0000-0001-8274-6487

REFERENCES

1 UK Government. Full guidance on staying at home and away from others. Available: https://www.gov.uk/government/publications/full-guidance-on-staying-at-home-and-away-from-others

2 Health and Care Professions Council. Standards of education and training, 2017. Available: https://www.hcpc-uk.org/globalassets/resources/standards/standards-of-education-and-training.pdf

3 Morris J. Current issues of accountability in physiotherapy and higher education: implications for physiotherapy educators. Physiotherapy 2002;88:354–63.
4 Willan J, King AJ, Jeffery K, et al. Challenges for NHS hospitals during covid-19 epidemic. BMJ 2020;368:m1117.
5 Li L, Lin M, Wang X, et al. Preparing and responding to 2019 novel coronavirus with simulation and technology-enhanced learning for healthcare professionals: challenges and opportunities in China. BMJ Simul Technol Enhanc Learn 2020;bmjstel-2020-000609.
6 Health and Care Professions Council. Temporary register. Available: https://www.hcpc-uk.org/covid-19/temporary-register/
7 Nursing and Midwifery Council. Temporary registration. Available: https://www.nmc.org.uk/news/coronavirus/temporary-registration/
8 Crawford J, Butler-Henderson K, Rudolph J, et al. COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. JALTE2020:3.
9 Dagnone JD, Hall AK, Sebok-Syer S, et al. Competency-based simulation assessment of resuscitation skills in emergency medicine postgraduate trainees - a Canadian multi-centred study. Can Med Educ J 2016;7:e57–67.
10 Eiris R, Jain A, Gheisari M, et al. Safety immersive storytelling using narrated 360-degree panoramas: a fall hazard training within the electrical trade context. Saf Sci 2020;127:104703.
11 Sapkaroski D, Mundy M, Dimmock MR. Virtual reality versus conventional clinical role-play for radiographic positioning training: a students’ perception study. Radio 2020;26:57–62.
12 Munshi F, Lababidi H, Alyousef S. Low- versus high-fidelity simulations in teaching and assessing clinical skills. J Taibah Univ Sci 2015;10:12–15.
13 Association for Simulated Practice in Healthcare. National upskill. Available: https://aspih.org.uk/national-upskill/
14 Society for Simulation in Healthcare. COVID-19 updates: helpful links and information. Available: https://www.ssih.org/COVID-19-Updates/-Helpful-Links-and-Information
15 SimGHOSTS. COVID-19 resources, retrieved from. Available: https://www.simghosts.org/sim/COVID-19_Resources.asp