Activity of Cordycepin From *Cordyceps sinensis* Against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling

Nadire Özenver¹,², Joelle C. Boulos², and Thomas Efferth²

Abstract

Cordycepin is one of the substantial components of the parasitic fungus *Cordyceps sinensis* as well as other *Cordyceps* species. It exerts various effects such as antimetastatic, antiinflammatory, antioxidant, and neuroprotective activities. Assorted studies revealed in vitro and in vivo anticancer influence of cordycepin and put forward its potential for cancer therapy. However, the role of multidrug resistance-associated mechanisms for the antitumor effect of cordycepin has not been investigated in great detail thus far. Therefore, we searched cordycepin’s cytotoxicity with regard to well-known anticancer drug resistance mechanisms, including *ABCB1*, *ABCB5*, *ABCC1*, *ABCG2*, *EGFR*, and *TP53*, and identified putative molecular determinants related to the cellular responsiveness of cordycepin. Bioinformatic analyses of NCI microarray data and gene promoter transcription factor binding motif analyses were performed to specify the mechanisms of cordycepin towards cancer cells. COMPARE and hierarchical analyses led to the detection of the genes involved in cordycepin’s cytotoxicity and sensitivity and resistance of cell lines towards cordycepin. Tumor-type dependent response and cross-resistance profiles were further unravelled. We found transcription factors potentially involved in the common transcriptional regulation of the genes identified by COMPARE analyses. Cordycepin bypassed resistance mediated by the expression of ATP-binding cassette (ABC) transporters (P-gp, ABCB5, ABCC1 and BCRP) and mutant epidermal growth factor receptor (EGFR). The drug sensitivity profiles of several DNA Topo I and II inhibitors were significantly correlated with those of cordycepin’s activity. Among eight different tumor types, prostate cancer was the most sensitive, whereas renal carcinoma was the most resistant to cordycepin. NF-κB was discovered as a common transcription factor. The potential of cordycepin is set forth as a potential new drug lead by bioinformatic evaluations. Further experimental studies are warranted for better understanding of cordycepin’s activity against cancer.

Keywords

cordycepin, drug resistance, traditional medicine, transcriptomics, ABC transporters

Received: December 22nd, 2020; Accepted: January 19th, 2021.

Cordycepin, also known as 3’-deoxyadenosine (9-(3-deoxy-β-d-ribofuranosyl) (Figure 1(A)), is a major bioactive constituent of *Cordyceps sinensis* (syn.: *Cephalosporium sinensis*) and other *Cordyceps* species. The genus *Cordyceps* consists of parasitic fungi, which have been applied for various purposes in Asia since the late 1400s.¹,² *C. sinensis* has officially been categorized as a drug in the Chinese Pharmacopoeia since 1964.¹

As a nucleoside analog, cordycepin differs from adenosine in that it lacks a 3’-hydroxyl group, enhancing its potency.³ It interferes with various biochemical and molecular processes through inhibiting mRNA polyadenylation⁴ and regulating a number of targets assigned in numerous cellular processes. Thus, it may present diverse properties such as anticancer, antimetastatic, antiinflammatory, antioxidant, and neuroprotective activities.²,³,⁶

![Cordycepin structure](https://example.com/cordycepin.png)

Anticancer and antimetastatic activities of cordycepin have been previously demonstrated in cell lines of many tumor types in vitro.⁷,⁸ Importantly, cordycepin was proven to exert anticancer activity in diverse in vivo tumor models in mice.⁹,¹⁶

¹Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
²Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany

Corresponding Author:
Thomas Efferth, Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
Email: efferth@uni-mainz.de

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
In vivo activity of a cytotoxic compound is important in view of further consideration as a drug in the clinical setting for cancer patients. Cordycepin exerted an anticancer function through stimulating the adenosine A3 receptor followed by GSK-3β activation and cyclin D1 repression. Furthermore, cordycepin displayed an antimetastatic property through inhibiting platelet aggregation initiated by ADP liberated from cancer cells and easing invasiveness of cancer cells via suppressing matrix metalloproteinase (MMP-2, MMP-9) activities, as well as enhancing tissue inhibitor of matrix metalloproteinase (TIMP-1, TIMP-2) secretions from those cells.2,9,17-20

Multidrug resistance (MDR) is a phenomenon in which cancer cells display cross-resistance to structurally and functionally diverse drugs at the same time, and it constitutes a substantial obstacle in cancer therapy.21 Investigations about the underlying mechanisms of MDR still continue. Among the well-known mechanisms are the overexpression of transmembrane efflux pumps such as ATP-binding cassette (ABC)
transporters, for example, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), ABCB5, and mutations in tumor suppressor genes or oncogenes (eg, TP53, EGFR). Due to tumor heterogeneity, these mechanisms may also jointly function. Thus, MDR is a multifactorial process.

Novel therapeutic approaches have high priority to tackle this phenomenon. At this point, nature may present an undeniable source offering a great number of natural products with high diversity and rich potential, which may provide promising drug candidates to tackle drug resistance and re-sensitize refractory cancer cells to medications. Cordycepin may be an encouraging drug candidate for cancer treatment. Yet, it has not been affirmed whether the MDR phenotype may impact the tumor cellular responsiveness towards cordycepin.

In the present paper, we focused on its putative anticancer activity against tumor cells on the basis of gene expression and drug profiling in the NCI tumor cell line panel. For this purpose, we examined the role of well-known MDR mechanisms (ie, P-gp, ABCB5, BCRP, EGFR and p53) for the cytotoxic activity of cordycepin. Then, we assessed cordycepin’s anticancer activity (log_{10}IC_{50}) in a serial cell line panel of the National Cancer Institute (NCI, USA) by COMPARE and hierarchical cluster analyses. Furthermore, we executed motif analysis of the genes identified by COMPARE analysis to see whether these genes may be regulated by common transcription factors. Thus, the activity of cordycepin on tumor cells was unraveled based on gene expression and drug profiling.

Results and Discussion

Classical Mechanisms of Drug Resistance

We correlated the log_{10}IC_{50} values of cordycepin for the NCI cell line panel with assorted parameters such as ATP-binding cassette (ABC) efflux transporters (P-gp/ABCB1/MDR1, ABCB5, ABC1/MDR1/ABCG2/BCRP1/MXR), an oncogene (EGFR/HER1/ERBB/ERBB1), and a tumor suppressor (TP53/p53). We examined microarray-, RT-PCR- or Western blot-based mRNA expressions of these genes as well as gain of DNA at the chromosomal locus 7q21 (where the ABCB1 gene is located) and the intracellular rhodamine-123 (Rh123) accumulation rates. Rh123, a fluorescent dye and well known substrate for P-gp, can be used in order to assess the inhibitory effect of compounds on P-gp transporter. Pearson’s correlation coefficient test was performed to associate the log_{10}IC_{50} values of cordycepin with these gene expression and mutation data. Well-known anticancer drugs representing particular resistance mechanisms were considered as positive controls (Table 1). Remarkably, unlike the positive control drugs, no statistically significant outcomes of ABC transporters and the epidermal growth factor receptor (EGFR) were obtained, implying that the cellular sensitivity towards cordycepin is neither affected by the ABC transporters nor by EGFR. Thus, the cytotoxic activity of cordycepin is not hindered by these classical mechanisms of drug resistance.

Table 1. Correlation of log_{10}IC_{50} Values for Cordycepin to Drug Resistance Mechanisms (ABCB1, ABCB5, ABC1, ABCG2, EGFR, TP53) in 51 Tumor Cell Lines of the NCI Panel.

Gene expression	Cordycepin (log_{10}IC_{50}, M)	Control drug (log_{10}IC_{50}, M)
ABCB1 expression:		
7q21 (Chromosomal locus of ABCB1 gene)	R-value −0.131, P-value 0.191	Daunorubicin R-value 0.597
ABCB1 expression (microarray)	R-value −0.119, P-value 0.203	Erlotinib R-value 0.684
ABCB1 expression (RT-PCR)	R-value 0.097, P-value 0.268	Vinblastine R-value 0.579
Rhodamine 123 accumulation	R-value −0.035, P-value 0.404	Vinblastine R-value 4.19 × 10^{-6}
ABCB5 expression:		
ABCB5 expression (microarray)	R-value 0.020, P-value 0.0775	Maytansine R-value 0.454
ABCB5 expression (RT-PCR)	R-value 0.097, P-value 0.249	Pancratistatin R-value 6.67 × 10^{-4}
ABC1 expression:		
DNA gene copy number	R-value 0.072, P-value 0.308	Erlotinib R-value 0.429
ABC1 expression (microarray)	R-value 0.193, P-value 0.092	Pancratistatin R-value 0.006
ABC1 expression (RT-PCR)	R-value −0.034, P-value 0.412	Vinblastine R-value 0.346
ABCG2 expression:		
ABCG2 expression (microarray)	R-value 0.141, P-value 0.168	Erlotinib R-value 0.004
ABCG2 expression (Western blot)	R-value 0.116, P-value 0.211	Vinblastine R-value 0.299
EGFR expression:		
EGFR gene copy number	R-value 0.115, P-value 0.133	Vinblastine R-value 0.049
EGFR expression (microarray)	R-value 0.194, P-value 0.086	5-Fluourouracil R-value 7.08 × 10^{-4}
EGFR expression (RNAse protection)	R-value 0.122, P-value 0.021	5-Fluourouracil R-value 0.549
TP53 mutation:		
TP53 mutation (cDNA sequencing)	R-value *0.235, P-value 0.050	5-Fluourouracil R-value 5.49 × 10^{-4}
TP53 function (yeast functional assay)	R-value *0.235, P-value 0.050	5-Fluourouracil R-value 0.549

Significance is less than 0.05 for bold values (P < 0.05).

The impact of cordycepin on apoptosis induction, cell cycle arrest and autophagy induction has been reported in various cancer cells. Still, it is not
Table 2. Correlation of mRNA Expression Identified by COMPARE Analysis With log10IC50 Values for Cordycepin of the NCI Tumor Cell Lines.

R value	Gene symbol	Genbank accession number	Pattern ID	Gene name	Gene function
	Standard COMPARE (Resistance genes)				
0.583	TAF11	X83928	GC33309	TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor	DNA binding, protein heterodimerization activity, protein N-terminus binding, thyroid hormone receptor binding, transcription coactivator activity, transcription factor binding, vitamin D receptor binding
0.568	GRPEL1	AF070525	GC30210	GrpE-like 1, mitochondrial (E. coli)	Adenyl-nucleotide exchange factor activity, chaperone binding, protein homodimerization activity, unfolded protein binding
0.561	SIKE1	W26762	GC36276	Suppressor of IKBKE 1	Protein kinase binding, Rho GTPase binding
0.542	TAF11	X83928	GC28837	TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor	DNA binding, protein heterodimerization activity, protein N-terminus binding, thyroid hormone receptor binding, transcription coactivator activity, transcription factor binding, vitamin D receptor binding
0.524	RCOR1	D31888	GC28056	REST corepressor 1	DNA-binding transcription factor activity, DNA-binding transcription factor activity, DNA-binding transcription repressor activity, transcription corepressor activity, transcription factor binding, transcription regulatory region sequence-specific DNA binding
0.512	GOLGA8A	AB020662	GC32209	Golgin A8 family, member A	Golgi organization
0.5	NFKB	X80878	GC29556	Nuclear factor related to kB binding protein	DNA binding, protease binding
0.495	RBM6	AF069517	GC31303	RNA binding motif protein 6	DNA binding, RNA binding
0.49	MDN1	AB002299	GC27435	MDN1, midasin homolog (yeast)	ATPase activity, ATP binding, unfolded protein binding
0.49	FOXA1	U39840	GC27541	Forkhead box A1	Chromatin binding, DNA binding, DNA-binding transcription activator activity, DNA-binding transcription factor activity, protein domain specific binding, RNA polymerase II cis-regulatory region sequence-specific DNA binding, transcription factor binding, transcription regulatory region sequence-specific DNA binding
0.488	POLR1C	AF008442	GC26855	Polymerase (RNA) I polypeptide C	DNA binding, DNA-directed 5′–3′ RNA polymerase activity, protein dimerization activity
0.482	CETN3	AI056696	GC38244	Centrin, EF-hand protein	Calcium ion binding, microtubule binding
0.481	ZNF44	X16281	GC38421	Zinc finger protein 44	Metal ion binding, RNA polymerase II transcription regulatory region sequence-specific DNA binding
0.478	ADK	U50196	GC28712	Adenosine kinase	Adenosine kinase activity, ATP binding, metal ion binding, RNA binding
0.475	MRPS18B	AL050361	GC35202	Mitochondrial ribosomal protein S18B	Structural constituent of ribosome
0.472	TIMM8A	U66035	GC30306	Translocase of inner mitochondrial membrane 8 homolog A (yeast)	Metal ion binding
0.466	BCAS2	AB020623	GC37287	Breast carcinoma amplified sequence 2	mRNA splicing, RNA splicing, RNA splicing
0.466	RAB5A	M28215	GC39130	RAB5A, member RAS oncogene family	GDP binding, GTPase activity, GTP binding
0.461	ZNF239	X82125	GC39265	Zinc finger protein 239	DNA binding, DNA-binding transcription repressor activity, RNA polymerase II-specific, metal ion binding, RNA binding, RNA polymerase II cis-regulatory region sequence-specific DNA binding
0.461	RGL2	AL050259	GC30952	Ral guanine nucleotide dissociation stimulator-like 2	Ras guanyl-nucleotide exchange factor activity, Rho guanyl-nucleotide exchange factor activity

(Continued)
R value	Gene symbol	Genbank accession number	Pattern ID	Gene name	Gene function
−0.492	NT3R2	Y10148	GC36000	Neurotensin receptor 2	G protein-coupled neurotensin receptor activity, G protein-coupled receptor activity
−0.481	IFTH4MM	AF063564	GC37951	WAS protein homolog associated with actin, Golgi membranes and microtubules	Actin binding, Arp2/3 complex binding, GTP-Rho binding, microtubule binding
−0.481	ACTG1	X040998	GC37160	Actin, γ1	ATP binding, identical protein binding, profilin binding, structural constituent of cytoskeleton, structural constituent of postsynaptic actin cytoskeleton, ubiquitin protein ligase binding
−0.465	SMO	U84401	GC35948	Smoothened homolog (Drosophila)	Drug binding, G protein-coupled receptor activity, patched binding
−0.457	TEK	L06139	GC33608	TEK tyrosine kinase, endothelial	ATP binding, growth factor binding, identical protein binding, protein kinase activity, protein tyrosine kinase activity, signaling receptor activity, transmembrane receptor protein tyrosine kinase activity
−0.454	HNF1B	X58840	GC28918	HNF1 homeobox B	cis-regulatory region sequence-specific DNA binding, DNA binding, DNA-binding transcription factor activity, identical protein binding, protein-containing complex binding, protein homodimerization activity, RNA polymerase II transcription regulatory region sequence-specific DNA binding
−0.452	FAS	X63717	GC28048	Fas (TNF receptor superfamily, member 6)	Calmodulin binding, identical protein binding, kinase binding, signaling receptor activity, tumor necrosis factor-activated receptor activity
−0.45	CTS3	M90696	GC31677	Cathepsin S	Collagen binding, cysteine-type endopeptidase activity, fibronectin binding, laminin binding, proteoglycan binding
−0.442	GAPDH	U34995	GC38923	Glyceraldehyde-3-phosphate dehydrogenase	Aspartic-type endopeptidase inhibitor activity, disordered domain specific binding, glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity, identical protein binding, microtubule binding, NAD binding, NADP binding, peptidyl-cysteine S-nitrosylase activity
−0.437	BRE	AF015767	GC28461	Brain and reproductive organ-expressed (TNFRSF1A modulator)	Peroxisome targeting sequence binding, polyubiquitin modification-dependent protein binding, tumor necrosis factor receptor binding
−0.437	GRB14	L76687	GC31115	Growth factor receptor-bound protein 14	Receptor tyrosine kinase binding
−0.436	CACNA1F	AJ224874	GC38598	Calcium channel, voltage-dependent, L type, α 1F subunit	High voltage-gated calcium channel activity, metal ion binding, voltage-gated calcium channel activity
−0.435	CASQ2	D55655	GC26900	Calsequestrin 2 (cardiac muscle)	Calcium-dependent protein binding, calcium ion binding, protein homodimerization activity
−0.434	B4X	U19599	GC34068	BCL2-associated X protein	BH3 domain binding, channel activity, chaperone binding, Hsp70 protein binding, identical protein binding, lipid binding, protein homodimerization activity, protein homodimerization activity
−0.434	ARG1	M14502	GC34032	Arginase, liver	Arginase activity, identical protein binding, manganese ion binding
−0.433	COLA2	X05610	GC27056	Collagen, type IV, α 2	Extracellular matrix structural constituent, extracellular matrix structural constituent conferring tensile strength
−0.429	UGT2B11	AF016492	GC34355	UDP glucuronosyltransferase 2 family, polypeptide B11	Glucuronosyltransferase activity, UDP-glucosyltransferase activity

(Continued)
multidrug resistance-related protein (MRP1) and breast cancer have been described in humans, among which particularly P-gp, has 7 separate families (A-G) based on sequence homology, have been characterized. P-gp was discovered as the first ABC efflux transporter, accounting for the sensitivity of cells to chemotherapeutic agents. Forty-nine ABC transporters, subdivided into 7 separate families (A-G) based on sequence homology, have been described in humans, among which particularly P-gp, multidrug resistance-related protein (MRP1) and breast cancer resistance protein (BCRP) have been widely studied. As a newer ABC transporter, ABCB5 was also found to be expressed in stem-like cancer cells and other types of tumors conferring MDR, and it was shown to be related to clinical treatment response of tumors in cancer patients. Although great attempts are being made to either discover or design efficient and selective ABC transporter modulators, clinical trials have not yet been successful due to unpredictable side effects, and MDR modulators have not entered clinical routine oncology. Unfortunately, no authority-approved inhibitor of ABC transporters exists. At this point, the conception of the discovery of potential drugs from natural origin has come into prominence in the last years due to their multiple modes of action and low toxicity profiles. Our findings revealed that cordycepin may bypass MDR mediated by ABCB1-, ABCB5-, ABCC1-, as well as ABCG2-overexpressing cell lines. Moreover, cordycepin re-sensitized multidrug resistant cancer cells to chemotherapeutics via the modulation of P-gp expression.

EGFR is a member of the ErbB family of receptor tyrosine kinases with crucial functions in epithelial cell physiology. EGFR is usually either mutated or overexpressed in various tumor types. Interestingly, EGFR is also correlated with resistance to a broad spectrum of established anticancer drugs. However, the efficient targeting of EGFR to attain sufficient clinical benefit is not a straightforward matter due to the acquisition of primary or secondary resistance in tumors despite being one of the important targets in cancer therapy. Small molecules with drug resistance-bypassing capability may represent potential drug leads and hold importance for the elucidation of mechanisms of resistance to EGFR-targeted therapies. In this context, cordycepin may be a model compound, whose activity does not rely on such a classical mechanism as resistance to EGFR inhibition. Cordycepin may not only bypass resistance to established drugs, but also inhibit phosphorylation and signaling of EGFR. This may contribute to further beneficial effects such as inhibition of proliferation, induction of cell differentiation and cell death, and inhibition of metastasis.

Table 2. Continued

R value	Gene symbol	Genbank accession number	Pattern ID	Gene name	Gene function
−0.426	LGALS3BP	L13210	GC28160	Lectin, galactoside-binding, soluble, 3 binding protein	Scavenger receptor activity
−0.426	UMOD	M15881	GC27855	Uromodulin	Calcium ion binding, extracellular matrix structural constituent, IgG binding
−0.422	RNF10	D87451	GC37890	Ring finger protein 10	Metal ion binding, transcription regulatory region sequence-specific DNA binding, ubiquitin protein ligase activity

well-known yet whether or not cordycepin’s cytotoxic activity is hampered by MDR mechanisms.

ABC efflux transporters have long been studied as one of the main multi-drug resistant-associated mechanisms since P-gp was discovered as the first ABC efflux transporter accounting for the sensitivity of cells to chemotherapeutic agents. Forty-nine ABC transporters, subdivided into 7 separate families (A-G) based on sequence homology, have been described in humans, among which particularly P-gp, multidrug resistance-related protein (MRP1) and breast cancer resistance protein (BCRP) have been widely studied. As a newer ABC transporter, ABCB5 was also found to be expressed in stem-like cancer cells and other types of tumors conferring MDR, and it was shown to be related to clinical treatment response of tumors in cancer patients. Although great attempts are being made to either discover or design efficient and selective ABC transporter modulators, clinical trials have not yet been successful due to unpredictable side effects, and MDR modulators have not entered clinical routine oncology. Unfortunately, no authority-approved inhibitor of ABC transporters exists. At this point, the conception of the discovery of potential drugs from natural origin has come into prominence in the last years due to their multiple modes of action and low toxicity profiles. Our findings revealed that cordycepin may bypass MDR mediated by ABCB1-, ABCB5-, ABCC1-, as well as ABCG2-overexpressing cell lines. Moreover, cordycepin re-sensitized multidrug resistant cancer cells to chemotherapeutics via the modulation of P-gp expression.

EGFR is a member of the ErbB family of receptor tyrosine kinases with crucial functions in epithelial cell physiology. EGFR is usually either mutated or overexpressed in various tumor types. Interestingly, EGFR is also correlated with resistance to a broad spectrum of established anticancer drugs. However, the efficient targeting of EGFR to attain sufficient clinical benefit is not a straightforward matter due to the acquisition of primary or secondary resistance in tumors despite being one of the important targets in cancer therapy. Small molecules with drug resistance-bypassing capability may represent potential drug leads and hold importance for the elucidation of mechanisms of resistance to EGFR-targeted therapies. In this context, cordycepin may be a model compound, whose activity does not rely on such a classical mechanism as resistance to EGFR inhibition. Cordycepin may not only bypass resistance to established drugs, but also inhibit phosphorylation and signaling of EGFR. This may contribute to further beneficial effects such as inhibition of proliferation, induction of cell differentiation and cell death, and inhibition of metastasis.

On the other hand, the logIC50 values for cordycepin significantly correlated with all TP53 mutation parameters, suggesting that TP53 may be a related mechanism involved in cordycepin activity. TP53 is a tumor suppressor gene, in which genetic variations lead to human cancers in various ways. Importantly, TP53 is not only causatively related to carcinogenesis, but is also a factor of resistance to a variety of established anticancer drugs. Enhanced p53 expression was observed if NB-4 and U937 leukemia cells were treated with cordycepin, inducing cytochrome c release, caspase-9 activation, and apoptosis. In another study, cordycepin accounted for p53-mediated apoptosis inducing radiosensitization in ME180 and HeLa human uterine cervical cancer cells. An inhibitory effect of cordycepin on cell proliferation and migration through increased p53 and p21 expressions in endothelial cells were further reported by Lin et al., all supporting our findings.

Microarray-based mRNA expressions of these ABC transporters and EGFR correlated with RT-PCR-, Western blot- and RNase protection-based mRNA expression values, confirming the accuracy of microarray hybridizations. Likewise, yeast functional assay presenting TP53 function validated DNA sequencing of TP53 mutations.

Although the role of cordycepin on ABC transporters to treat multidrug-resistant tumors has not been investigated in much detail, there are several studies emphasizing that cordycepin can re-sensitize tumors to DNA-damaging chemotherapeutics such as cisplatin, temozolomide, doxorubicin and also radiotherapy. Still, limited number of investigations mentioned cordycepin’s effects on ABC transporters. To exemplify, a notable P-gp inhibitory property of cordycepin has been uncovered through the stimulation of P-gp ATPase activity, which may form a rationale basis for our assumptions.

Tumor-Type Dependent Response Toward Cordycepin. The NCI cell line panel is comprised of tumors from different origins including lung, colon, brain, ovary, breast, prostate, kidney, leukemia, and melanoma. We assessed the response (sensitivity or resistance) of tumor types for cordycepin. For this purpose, we generated tumor-type response profiles based on the mean
Cross-Resistance of Cordycepin to Established Anticancer Drugs

We compared the log_{10}IC_{50} values of the NCI cell lines for cordycepin with those of 86 standard drugs to obtain an insight into the possible mechanisms associated with cordycepin activity. Six out of eleven DNA Topo I and II inhibitors (54.5%) remarkably correlated with those of cordycepin ($R > 0.3$ and $P < 0.05$). Intermediate correlation rates were observed for alkylating agents (4/13 drugs = 30.7%), antimetabolites (4/15 drugs = 26.6%), antibiotics (1/4 drugs = 25%), as well as other drugs (1/5 drugs = 20%). On the other hand, no significant correlations were monitored for tyrosine kinase inhibitors, platin derivatives, mTOR inhibitors, mitotic spindle poisons, epigenetic inhibitors and antihormones (Figure 1(G)). An oncobiogram for the correlation of cordycepin to DNA topoisomerase I and II inhibitors is shown in Figure 1(D). These findings may point out that cordycepin represents various modes of action, which is a frequent characteristic behavior of many phytochemicals.

COMPARE Analyses to Predict Sensitivity and Resistance to Cordycepin

A rank index of correlation coefficients (R-values) was generated from log_{10}IC_{50} (M) values of test compounds and microarray-based mRNA expression values to obtain COMPARE rankings. $R > 0.4$ and $R < 0.4$ were considered to rank the genes. Positive correlation coefficients represent genes concerning cellular resistance, and negative correlation coefficients represent those referring to sensitivity. The top 20 genes with either positive or negative correlation coefficients are shown in Table 2, together with those regarding biological functions. We categorized genes from various functional groups that were related to the response of tumor cells toward cordycepin. Cellular cordycepin responsiveness was associated in the COMPARE analysis with genes associated with apoptosis, autophagy, DNA repair, signal transduction, and angiogenesis. Though the influences of these genes for cellular responsiveness to cordycepin are not known, we can suggest some explanations. To exemplify, $GRPEL1$, $NFRKB$, and $BCAS2$ were among the upregulated genes. A member of the Zrt/Irt-like protein family of zinc transporters, $LIIV-1$, and its downstream target $GRPEL1$ promoted cell death by simultaneous regulation of cell-death signaling and mitotic arrest. Nuclear factor related to $κB$ binding protein ($NFRKB$), a probable therapeutic target for cancer, has a role in DNA double-strand break reser- tion and repair. Breast carcinoma-amplified sequence 2 ($BCAS2$) takes part in DNA repair, cell cycle control, apoptosis and tissue homoeostasis. On the other hand, $GRB14$, $ARG1$ and BRE appeared as downregulated genes. A possible role of $GRB14$ for the proliferation of human breast and prostate cancers, as well as functions of $ARG1$ in tumor immunity, tumor proliferation and metastasis, were previously reported. BRE enhanced tumor growth in vivo.

We further performed hierarchical cluster analysis to assess whether the mRNA expression profiles of genes indicated in Table 3 could be sorted into clusters of the dendrogram depending on their specific gene expressions. Short distances between the branches of the dendrogram demonstrated the degree of close association. We used clustered image map software (CIMminer) for hierarchical clustering and heat map analysis to picture the genes mediating sensitivity or resistance of various tumors to cordycepin. The dendrogram revealed two clusters with entirely sensitive, one cluster with predominantly resistant, and one cluster of a mixed type (Figure 2). The estimation of sensitivity or resistance to cytotoxic agents by mRNA expression profiles is a major focus in precision medicine, since it may decide whether or not a tumor responds to a particular drug. Our findings show that gene expression profiling combined with COMPARE and hierarchical cluster analyses pre- sent an approach to predict the responsiveness of tumor cells to cordycepin. Principally, this approach is not only applicable to established anticancer drugs, but to any cytotoxic natural product. This enlarges the perspective that tumors resistant to standard chemotherapy may still be sensitive to cytotoxic natural products and that such products may be identified by our approach.

Analysis of Binding of Transcription Factor Gene Promoters

The question arises why such a broad diversity of functionally different genes appeared to be associated with either sensitivity or resistance to cordycepin. One possible explanation might be that these genes underly common regulatory transcriptional mechanisms. Therefore, we performed motif searches in the promoter regions of the 40 genes that have been identified by COMPARE analyses, in order to address the question whether single transcription factors might bind to specific binding motifs in the promoter regions of these, thereby implying a common transcriptional regulation. Interestingly, nuclear factor kappa B (NF-$κB$) DNA binding motifs extensively appeared

Table 3. Separation of Clusters of NCI Cell Lines Obtained by Hierarchical Cluster Analysis for Cordycepin.

Cordycepin	Sensitive	Resistant
Partition (\log_{10}IC_{50})	< -4.436 M	≥ -4.436 M
Cluster 1	5	0
Cluster 2	9	0
Cluster 3	1	14
Cluster 4	10	12

$χ^2$ test $P = 1.3 \times 10^{-5}$

The median log_{10}IC_{50} value (M) for cordycepin was used as a cut-off to separate cancer cell lines as being either “sensitive” or “resistant”.

log_{10}IC_{50} values of cordycepin for each tumor type. Prostate cancer was the most cordycepin-sensitive tumor type, whereas renal carcinoma was the most resistant one (Figure 1B).
in the promoter sequences 50 kb upstream of the genes with 87 hits and a Z score of −3.788 (Figure 3), which pointed out that NF-κB might have a substantial role in the regulation of genes involved in the cellular response to cordycepin. When the PSSM (position-specific scoring matrix) file of NF-κB motif was screened on each gene separately, binding locations were identified in all 40 genes (Table 4). This result implies that NF-κB may be a common transcription factor involved in the regulation of these genes, despite their functional diversity. This result is reasonable in light of previous investigations, pointing to the fact that cordycepin suppresses NF-κB activity.

Table 4. NF-κB Binding Locations in the Promoter Regions of the Genes Identified by COMPARE Analysis.

Gene	Chromosome	Start	End
T-AFH1	chr6	34855848	34905848
GRPE1L1	chr4	7069800	7119646
SIKE1	chr1	115323308	115372495
RCOR1	chr14	103009324	103058995
GOLGA4A	chr15	34677692	34732001
NRFRB	chr11	129762904	129815490
RBM6	chr3	49927476	49977476
MDN1	chr6	90494845	90579313
FOXA1	chr14	38063467	38114237
POLR1C	chr6	4334776	43484776
CITN3	chr5	89705603	89755565
ZNF44	chr19	12403714	12452179
ADK	chr1	47749499	47794468
MRP18B	chr6	30837708	30858485
TIMM8A	chrX	100603957	100653957
BCAS2	chr1	115124265	115172974
RABSA1	chr3	19938571	19988571
ZNF239	chr10	44063907	44119513
RGL2	chr6	33264102	33313353
NTX82	chr2	11810329	11860329
WHA4MM	chr15	83427972	83477972
ACTG1	chr17	79479901	79529693
SMO	chr7	12877802	128845990
TEK	chr9	27059146	27157819
HNF1B	chr17	36993814	36154962
EAS	chr10	90700287	90750287
CTSS	chr1	150738726	150784833
GAPDH	chr12	6593657	6644408
BAE1	chr2	28063481	28113481
GRB14	chr2	165425017	165528360
CACNA1F	chrX	49089833	49139499
CASQ2	chr1	116314126	116361249
BAX	chr19	49408116	49458116
ARG1	chr6	131844515	131894343
COL4A2	chr13	110909630	110959630
UGT2B11	chr4	70080450	70130368
LGAL3BP	chr17	76976061	77026061
UMOD	chr16	20364047	20414037
RN110	chr12	120922192	120984207

Figure 2. Heat map of cordycepin obtained from National Cancer Institute (NCI) cell line panels by cluster analysis of the mRNA expression of genes, which directly or indirectly correlated with the log10IC50 values for cordycepin. The top of the dendrogram represents the clustering of genes and the left side represents the clustering of cell lines.

Figure 3. Motif analysis of 50 kb upstream regions of the genes identified by COMPARE analysis disclosing the significant presence of NF-κB binding motif.

Conclusion
To conclude, in this paper we investigated the role of classical mechanisms for drug resistance towards cordycepin. We
disclosed the capacity of cordycepin to bypass resistance mediated by the expression of ABC transporters (P-gp, ABCB5, ABCC1, and BCRP) or mutant EGFR. Cordycepin may target refractory tumors and effectively act jointly with established chemotherapeutic agents as a potential new drug lead. By using bioinformatic approaches, we determined putative molecular determinants to cordycepin activity. Further studies are needed to interpret biological relevance and the probable implications of cordycepin in the treatment of cancer.

Materials and Methods

Bioinformatic Analyses of National Cancer Institute Microarray Data

The database of the Developmental and Therapeutics Program (DTP) of the National Cancer Institute (NCI) (https://dtp.nci.nih.gov) deposits messenger RNA (mRNA) profiles of 60 human cancer cell lines, including a series of breast cancer, colon cancer, non-small cell lung cancer, leukemia, melanoma, renal cancer, ovarian cancer cells, prostate carcinoma and tumor cells of the central nervous system. The cytotoxicity of cordycepin and standard anticancer drugs on these cell lines that had been previously tested by sulforhodamine B assay, and log10 IC50 values (M) were calculated based on the 50% inhibition concentration values measured via dose-response curves (http://dtp.cancer.gov/databases_tools/default.htm). COMPARE analysis was used to generate rank ordered lists of genes expressed in the NCI cell lines through the correlation of IC50 values for cordycepin. The methodology has been previously defined as a tool to distinguish candidate genes involved in drug resistance and sensitivity by using standard and reverse COMPARE. Pearson’s rank correlation test (WINSTAT program, Kalmia) was used to determine significance values (p-values) and ranking correlation coefficients. Subsequently, we performed hierarchical cluster analysis to group the mRNA expressions of the genes identified by COMPARE analysis. The CIMMINER program (https://discover.nci.nih.gov/cimminer/) was performed to get a dendrogram via the WARD method. A short distance between branches in the dendrogram demonstrates the degree of close association. Prior to the calculation of the median of log10 IC50 value of cordycepin as a cut-off value, we performed χ2 test to confirm the association between clustered genes and cellular response.

Gene Promoter Transcription Factor Binding Motif Analysis

We used the UCSC Genome Browser Gene Sorter (http://genome.ucsc.edu) to gain the gene promoter sequences following the analysis of results obtained from COMPARE analysis. The search was set up 50 kb upstream of the transcription start site. Browser Extensible Data (BED) files were produced to screen for the probable binding motifs for each gene and then, uploaded to the Galaxy Cistrome software. Promoter sequences were screened using the “SeqPos motif tool” executed in Galaxy Cistrome software. Subsequently, another tool called “screen motif” within Cistrome was performed to search a set of genomic locations for all occurrences of a particular motif by using PSSM file.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Thomas Efferth https://orcid.org/0000-0002-2637-1681

References

1. Chen PX, Wang S, Nie S, Marcone M. Properties of Cordyceps sinensis: a review. J Funct Foods. 2013;5(2):550-569. doi:10.1016/j.jff.2013.01.034
2. Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci. 2015;127(1):53-56. doi:10.1016/j.jphs.2014.09.001
3. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93(23):863-869. doi:10.1016/j.lfs.2013.09.030
4. Holbein S, Wengi A, Decourty L, Freimoser FM, Jacquier A, Dichtl B. Cordycepin interferes with 3’ end formation in yeast independently of its potential to terminate RNA chain elongation. RNA-4. 2009;15(5):837-849. doi:10.1261/rna.1458909
5. Yao W-L, Ko B-S, Liu T-A, et al. Cordycepin suppresses integrin/FAK signaling and epithelial-mesenchymal transition in hepatocellular carcinoma. Anticancer Agents Med Chem. 2014;14(1):29-34. doi:10.2174/18715206113139990305
6. Qin P, Li X, Yang H, Wang Z-Y, Lu D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 2019;24(12):2231. doi:10.3390/molecules24122231
7. Yoon SY, Park SJ, Park YJ. The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci. 2018;19(10):3027. doi:10.3390/ijms19103027
8. Khan MA, Tania M. Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr Med Chem. 2020;27(6):983-996. doi:10.2174/0929867325666181001105749
9. Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kumitomo M. Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol. 2004;31(2):S51-S53. doi:10.1111/j.1440-1681.2004.04108.x
10. Nakamura K, Konoha K, Yoshikawa N, et al. Effect of cordycepin (3’-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo. 2005;19(1):137-141.
11. Liu F-C, Lai M-T, Chen Y-Y, et al. Elucidating the inhibitory mechanisms of the ethanolic extract of the fruiting body of the mushroom *Antrodia cinnamomea* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

12. Zhang Y, Zhang XX, Yuan RY, et al. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrion-mediated intrinsic pathway and suppresses tumor growth in vivo. *Onco Targets Ther*. 2018;11:4479-4490. doi:10.2147/OTTT.S164670

13. Lin Y-T, Liang S-M, Wu Y-J, et al. Cordycepin suppresses proliferation and migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. *Cancers*. 2019;11(2):168. doi:10.3390/cancers11020168

14. Li X-Y, Tao H, Jin C, et al. Cordycepin inhibits endothelial cell proliferation, migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. *Cancers*. 2019;11(2):168. doi:10.3390/cancers11020168

15. Li X-Y, Tao H, Jin C, et al. Cordycepin inhibits proliferation and migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. *Cancers*. 2019;11(2):168. doi:10.3390/cancers11020168

16. Zhu H, Tan T, et al. Cordycepin inhibits vascular smooth muscle cell growth by regulating focal adhesion kinase and p53. *Cancers*. 2019;11(2):168. doi:10.3390/cancers11020168

17. Lee HH, Park C, Jeong J-W, et al. Apoptosis induction of human tongue cancer cells in vitro and has antitumor effect of *Cordyceps sinensis* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

18. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Nakanoura K, Kunitomo M. Antitumor effect of cordycepin on the proliferation and angiogenesis of human tongue cancer cells in vitro and has antitumor effect of *Cordyceps sinensis* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

19. Kubo E, Sato A, Yoshikawa N, Kagota S, Shinozuka K, Nakanoura K, Kunitomo M. Antitumor effect of cordycepin on the proliferation and angiogenesis of human tongue cancer cells in vitro and has antitumor effect of *Cordyceps sinensis* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

20. Jeong J-W, Jin C-Y, Park C, et al. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. *Int J Oncol*. 2012;40(5):1697-1704. doi:10.3892/ijo.2011.1372

21. Kubo E, Sato A, Yoshikawa N, Kagota S, Shinozuka K, Nakanoura K, Kunitomo M. Antitumor effect of cordycepin on the proliferation and angiogenesis of human tongue cancer cells in vitro and has antitumor effect of *Cordyceps sinensis* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

22. Lee HH, Park C, Jeong J-W, et al. Apoptosis induction of human tongue cancer cells in vitro and has antitumor effect of *Cordyceps sinensis* on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. *Phytomedicine*. 2013;20(10):874-882. doi:10.1016/j.phyto.2013.03.008

23. Chatterjee N, Bivona TG. Polytherapy and targeted cancer drug resistance. *Trends Cancer*. 2019;5(3):170-182. doi:10.1016/j.trecan.2019.02.003

24. Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. *Eur J Cancer*. 2001;37:9-15. doi:10.1016/S0959-8049(01)00231-3

25. Schmidt F, Efferth T. Tumor heterogeneity, single-cell sequencing, and drug resistance. *Pharmaceuticals*. 2016;9(2):33. doi:10.3390/ph9020033

26. Yan G, Saeed MEM, Foersch S, Schneider J, Roth W, Efferth T. Relationship between EGFR expression and subcellular localization with cancer development and clinical outcome. *Oncotarget*. 2019;10(20):1918-1931. doi:10.18632/oncotarget.26727

27. Boulou JC, Youssif Idris MR, Efferth T. Investigation of cancer drug resistance mechanisms by phosphoproteomics. *Pharm Res*. 2020;160:105091. doi:10.1007/j.phrs.2020.105091

28. Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukemia cells for unravelling the full complexity of multifactorial multidrug resistance. *Sci Rep*. 2016;6:36754. doi:10.1038/srep36754

29. Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Far- del O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. *Pharmaceutics*. 2016;8(2):12. doi:10.3390/pharmaceutics8020012

30. Pétriz J, García-López J. Flow cytometric analysis of P-glycoprotein function using rhodamine 123. *Leukemia*. 1997;11(7):1124-1130. doi:10.1038/sj.leu.2400659

31. An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. *Acta Pharm Sin B*. 2017;7(1):38-51. doi:10.1016/j.apsb.2016.09.002

32. Li Y, Li R, Zhu S, et al. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. *Onco Lett*. 2015;9(6):2541-2547. doi:10.3892/ol.2015.3066

33. Joo JC, Hwang JH, Jo E, et al. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of FOXO3a in human lung adenocarcinoma. *OncoTarget*. 2017;8(7):12211-12224. doi:10.18632/oncotarget.14661

34. Chen CJ, Chin JE, Ueda K, et al. Internal duplication and homology with bacterial transport proteins in the MDRI (P-glycoprotein) gene from multidrug-resistant human cells. *Cell*. 1986;47(3):381-389. doi:10.1016/0092-8674(86)90595-7

35. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. *Biochim Biophys Acta*. 1976;455(1):152-162. doi:10.1016/0006-2736(76)90160-7

36. Szakács G, Homolya L, Szécsényi J, et al. Molecular mechanisms of the ATP binding cassette (ABC) family in multidrug resistance: ABC transporters. In: Offermanns S, Rosenthal W, eds. *Encyclopedia of Molecular Pharmacology*. Springer Berlin Heidelberg: 2008:748-752.

37. Wilkens S. Structure and mechanism of ABC transporters. *Front Pharmacol*. 2015;6:14-14. doi:10.12703/P7-14

38. Thomas C, Tampé R. Structural and mechanistic principles of ABC transporters. *Ann Rev Biochem*. 2020;89(1):605-636. doi:10.1146/annurev-biochem-011520-105201

39. Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. *Cancer Lett*. 2016;370(1):153-164. doi:10.1016/j.canlet.2015.10.010

40. Tinoush B, Shirdel I, Wink M. Phytochemicals: potential lead molecules for MDR reversal. *Front Pharmacol*. 2020;11:832-832. doi:10.3389/fphar.2020.00832
41. Grimm M, Krimmel M, Polilijc J, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. *Eur J Cancer*. 2012;48(17):3186-3197. doi:10.1016/j.ejca.2012.05.027

42. Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. *Cancer Res*. 2005;65(10):4320-4333. doi:10.1158/0008-5472.CAN-04-3327

43. Cheung ST, Cheung PYF, Cheng CKC, Wong NCL, Fan ST. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. *Gastroenterology*. 2011;140(1):344-355. doi:10.1053/j.gastro.2010.07.049

44. Chong CC-N, Cheung ST, Cheung Y-S, et al. Novel biomarkers GEP/ABCB5 regulate response to adjuvant transarterial chemoembolization after curative hepatectomy for hepatocellular carcinoma. *Hepatobiliary Pancreat Dis Int*. 2018;17(6):524-530. doi:10.1016/j.hbpd.2018.10.003

45. Efferth T, Kadioglu O, Saced MEM, Seo E-J, Mbaveng AT, Özenver et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. *Cancer Res*. 2005;65(10):4320-4333. doi:10.1158/0008-5472.CAN-04-3327

46. Grimm M, Krimmel M, Polligkeit J, et al. ABCB5 expression and chemoresistance in human malignant melanoma. *Cancer Res*. 2005;65(10):4320-4333. doi:10.1158/0008-5472.CAN-04-3327

47. Teng Y-N, Chang C-S, Lee T-E, Hung C-C. Cordycepin re-sensitizes multidrug-resistant tumor cells expressing ABCB1, ABCG2, or ABCB5: a synopsis of 2 decades. *Physiochem Res*. 2020;22(2). doi:10.1007/s11101-020-09705-7

48. Stefan SM. Multi-target ABC transporter modulators: what next and where to go? *Future Med Chem*. 2019;11(18):2353-2358. doi:10.4155/fmc-2019-0185

49. Wykosky J, Fenton T, Furnari F, Cavenee WK. Therapeutic targets of p53 in leukemia cells. *Cell Cycle*. 2015;14(5):761-771. doi:10.1080/15384101.2014.1000097

50. Seong DB, Hong S, Muthusami S, Kim W-D, Yu J-R, Park W-Y. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. *Eur J Pharmacol*. 2016;771:77-83. doi:10.1016/j.ejphar.2015.12.022

51. Du Y, Yu J, Du L, Tang J, Feng W-H. Cordycepin enhances Epstein-Barr virus lytic infection and Epstein-Barr virus-positive tumor treatment efficiency by doxorubicin. *Cancer Lett*. 2016;376(2):240-248. doi:10.1016/j.canlet.2016.04.001

52. Wang Z, Wu X, Liang Y-N, et al. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in leukemia cells. *Cell Cycle*. 2015;14(5):761-771. doi:10.1080/15384101.2014.1000097

53. Liao Y, Ling J, Zhang G, et al. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in leukemia cells. *Cell Cycle*. 2015;14(5):761-771. doi:10.1080/15384101.2014.1000097

54. Grimm M, Krimmel M, Polligkeit J, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. *Eur J Cancer*. 2012;48(17):3186-3197. doi:10.1016/j.ejca.2012.05.027

55. Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. *Cancer Res*. 2005;65(10):4320-4333. doi:10.1158/0008-5472.CAN-04-3327

56. Grimm M, Krimmel M, Polligkeit J, et al. ABCB5 expression and chemoresistance in human malignant melanoma. *Cancer Res*. 2005;65(10):4320-4333. doi:10.1158/0008-5472.CAN-04-3327

57. Teng Y-N, Chang C-S, Lee T-E, Hung C-C. Cordycepin re-sensitizes multidrug-resistant tumor cells expressing ABCB1, ABCG2, or ABCB5: a synopsis of 2 decades. *Physiochem Res*. 2020;22(2). doi:10.1007/s11101-020-09705-7

58. Stefan SM. Multi-target ABC transporter modulators: what next and where to go? *Future Med Chem*. 2019;11(18):2353-2358. doi:10.4155/fmc-2019-0185

59. Wykosky J, Fenton T, Furnari F, Cavenee WK. Therapeutic targets of p53 in leukemia cells. *Cell Cycle*. 2015;14(5):761-771. doi:10.1080/15384101.2014.1000097

60. Bi Y, Li H, Yi D, et al. Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway. *Med Pharm*. 2018;435:66-79. doi:10.1016/j.canlet.2017.07.040

61. Dong J, Li Y, Xiao H, et al. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. *Toxicol Appl Pharmacol*. 2019;364:12-21. doi:10.1016/j.taap.2018.12.006

62. Wei C, Yao X, Jiang Z, et al. Cordycepin inhibits drug-resistance non-small cell lung cancer progression by activating AMPK signaling pathway. *Pharmacol Res*. 2019;144:79-89. doi:10.1016/j.phrs.2019.03.011

63. Ho S-Y, Wu W-S, Lin L-C, et al. Cordycepin enhances radiosensitivity in oral squamous carcinoma cells by inducing autophagy and apoptosis through cell cycle arrest. *Int J Mol Sci*. 2019;20(21):5366. doi:10.3390/ijms2015366

64. Oh S-S, Lee KW, Madhi H, et al. Cordycepin re-sensitizes T24R2 cisplatin-resistant human bladder cancer cells to cisplatin by inactivating Ets-1 dependent MDR1 transcription. *Int J Mol Sci*. 2020;21(5):1710. doi:10.3390/ijms21051710

65. Gao Y, Chen D-L, Zhou M, et al. Cordycepin enhances the chemosensitivity of esophageal cancer cells to cisplatin by inducing the activation of AMPK and suppressing the AKT signaling pathway. *Cell Death Dis*. 2020;11(10):866. doi:10.1038/s41419-020-03079-4

66. Efferth T, Koch E. Complex interactions between phytochemistry and where to go? *Curr Drug Targets*. 2011;12(1):122-132. doi:10.2174/138945011793591626
68. Chen P, Wang B, Mo Q, et al. The LIV-1-GRPEL1 axis adjusts cell fate during anti-mitotic agent-damaged mitosis. *EBioMedicine*. 2019;49:26-39. doi:10.1016/j.ebiom.2019.09.054

69. Nishi R, Wijnhoven P, le Sage C, et al. Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. *Nat Cell Biol*. 2014;16(10):1016-1026. doi:10.1038/ncb3028

70. Wang L-P, Chen T-Y, Kang C-K, Huang H-P, Chen S-L. BCAS2, a protein enriched in advanced prostate cancer, interacts with NBS1 to enhance DNA double-strand break repair. *Br J Cancer*. 2020;123(12):1796-1807. doi:10.1038/s41416-020-01086-y

71. Daly RJ, Sanderson GM, Janes PW, Sutherland RL. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. *J Biol Chem*. 1996;271(21):12502-12510. doi:10.1074/jbc.271.21.12502

72. You J, Chen W, Chen J, Zheng Q, Dong J, Zhu Y. The onco-genic role of ARG1 in progression and metastasis of hepatocellular carcinoma. *Biomed Res Int*. 2018;2018(13):1-10. doi:10.1155/2018/2109865

73. Chan BC-L, Li Q, Chow SK-Y, et al. BRE enhances in vivo growth of tumor cells. *Biochem Biophys Res Commun*. 2005;326(2):268-273. doi:10.1016/j.bbrc.2004.11.013

74. Yang J, Zhou Y, Shi J. Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK. *Life Sci*. 2020;251. doi:10.1016/j.lfs.2020.117645

75. Ren Z, Cui J, Huo Z, et al. Cordycepin suppresses TNF-α-induced NF-κB activation by reducing p65 transcriptional activity, inhibiting IkBα phosphorylation, and blocking IKKγ ubiquitination. *Int Immunopharmacol*. 2012;14(4):698-703. doi:10.1016/j.intimp.2012.10.008

76. Lee YR, Noh EM, Jeong EY, et al. Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappaB pathway in human dermal fibroblasts. *Exp Mol Med*. 2009;41(8):548-554. doi:10.3858/emm.2009.41.8.060

77. Kim HG, Shrestha B, Lim SY, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. *Eur J Pharmacol*. 2006;545(2-3):192-199. doi:10.1016/j.ejphar.2006.06.047

78. Paull KD, Shoemaker RH, Hodes L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and compare algorithm. *J Natl Cancer Inst*. 1989;81(14):1088-1092. doi:10.1093/jnci/81.14.1088

79. Sertel S, Tone M, Biehl MM, et al. Factors determining sensitivity and resistance of tumor cells to arsenic trioxide. *PLoS One*. 2012;7(5):e35584-e35584. doi:10.1371/journal.pone.0035584

80. Liu T, Ortiz JA, Taing L, et al. Cistrome: an integrative platform for transcriptional regulation studies. *Genome Biol*. 2011;12(8):R83. doi:10.1186/gb-2011-12-8-r83

81. Saeed MEM, Mahmoud N, Sugimoto Y, Efferth T, Abdel-Aziz H. Molecular determinants of sensitivity or resistance of cancer cells toward sanguinarine. *Front Pharmacol*. 2018;9(136). doi:10.3389/fphar.2018.00136