Spatiotemporal distribution of caudal-type homeobox proteins during development of the hindgut and anorectum in human embryo

Xiao Bing Tang, Tao Zhang, Wei Lin Wang, Zheng Wei Yuan, Yu Zuo Bai

Background: The objectives of this study were to determine the spatiotemporal distribution of human caudal-type homeobox proteins CDX1, CDX2 and CDX4 during development of the hindgut and anorectum in the embryo and to explore the possible roles of CDX genes during morphogenesis of the hindgut and anorectum.

Methods: Embryos (89) were cut into sections serially and sagittally. From gestation weeks 4–9, CDX1, CDX2 and CDX4 proteins were detected on the caudal midline by immunohistochemical staining.

Results: During week 4, extensive immunoreactivity of CDX1, CDX2 and CDX4 was detected in the dorsal urorectal septum, urogenital sinus and hindgut. From weeks 5–7, CDX1-, CDX2- and CDX4- positive cells were detected mainly in the mesenchyme of the urorectal septum and hindgut. The levels of CDX2 and CDX4 immunoreactivity were lower compared to CDX1. During weeks 8 and 9, the anorectal epithelium stained positive for CDX1 and CDX4, and the anal epithelium was positive for CDX2.

Conclusions: The CDX proteins are constantly distributed during development of the hindgut and anorectum and exhibit overlapping distribution patterns in the cloaca/hindgut, suggesting they are important in the morphogenesis of the human hindgut and anorectum. CDX genes might be involved in development of the anorectal epithelium after the rectum has separated from the urorectal septum.
Spatiotemporal distribution of caudal-type homeobox proteins during development of the hindgut and anorectum in human embryo

Xiao Bing Tanga, Tao Zhangb, Wei Lin Wanga, Zheng Wei Yuanc, Yu Zuo Baia

aDepartment of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China

bDepartment of General Surgery, Affiliated Hospital of Hebei University, Baoding 071000, P.R. China

cThe Key Laboratory of Health Ministry for Congenital Malformation, Shenyang 110004, P.R. China

Correspondence to: Professor Yu Zuo Bai, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, P.R. China 110004.

Tel.: 0086-24-9661557111; fax: 0086-24-23892617

E-mail: baiyz@sj-hospital.org
Background: The objectives of this study were to determine the spatiotemporal distribution of human caudal-type homeobox proteins CDX1, CDX2 and CDX4 during development of the hindgut and anorectum in the embryo and to explore the possible roles of CDX genes during morphogenesis of the hindgut and anorectum.

Methods: Embryos (89) were cut into sections serially and sagittally. From gestation weeks 4 – 9, CDX1, CDX2 and CDX4 proteins were detected on the caudal midline by immunohistochemical staining.

Results: During week 4, extensive immunoreactivity of CDX1, CDX2 and CDX4 was detected in the dorsal urorectal septum, urogenital sinus and hindgut. From weeks 5 – 7, CDX1-, CDX2- and CDX4-positive cells were detected mainly in the mesenchyme of the urorectal septum and hindgut. The levels of CDX2 and CDX4 immunoreactivity were lower compared to CDX1. During weeks 8 and 9, the anorectal epithelium stained positive for CDX1 and CDX4, and the anal epithelium was positive for CDX2.

Conclusions: The CDX proteins are constantly distributed during development of the hindgut and anorectum and exhibit overlapping distribution patterns in the cloaca/hindgut, suggesting they are important in the morphogenesis of the human hindgut and anorectum. CDX genes might be involved in development of the anorectal epithelium after the rectum has separated from the urorectal septum.
Anorectal malformations (ARMs) are among the most common human congenital anomalies, occurring in approximately 1/5000 –1/1500 live births (Van der Putte 1986), with adverse influences on patient quality of life (Peña et al 1998; Bai et al 2000; Levitt et al 2005). ARMs are complex diseases and their etiology, embryology and pathogenesis remain controversial and poorly understood (Wang et al 2015). ARMs might result from mutations in a variety of genes and the expression patterns of several genes during various stages of gastrulation have helped to clarify the molecular basis of this condition (van de Ven et al 2011; Warot et al 1997; Ramalho-Santos et al 2000; Kimmel et al 2000; Seifert et al 2008; Garcia-Barceló et al 2008; Wang et al 2009; Dravis C et al 2004). Caudal-type homeobox (Cdx) genes show highly restricted expression patterns at the onset of gastrulation, suggesting their involvement in the formation of the digestive tract (McGinnis and Krumlauf 1992; Silberg et al 2000; Bonner et al 1995). Earlier studies on the spatiotemporal expression patterns of Cdx1, Cdx2 and Cdx4 in rat embryo suggested downregulation of these genes during separation of the cloaca into the rectum and urethra was related to ARM development (Zhang et al 2009; Tang et al 2014a, Tang et al 2014b). Cdx2−/− mice displayed severe hindgut abnormalities with failure of colon development and complete terminal blockage (Gao et al 2009), and Cdx2+/−;Cdx4−/− mice manifested cloacal septation and anorectal defects, including imperforate anus (van de Ven et al 2011). Together these results suggest Cdx genes are related to anorectal morphogenesis in animal models. Distribution patterns of the equivalent human CDX proteins, however, have not been investigated in relation to embryogenesis of the cloaca, hindgut and anorectum, and the involvement of these genes in human cloacal development and their effects
on human embryonic hindgut/anorectal development are unknown. This study was designed to
determine the distribution patterns of human CDX proteins and their possible roles in
hindgut/anorectal morphogenesis. We conducted a systematic study of the spatiotemporal
localization of human CDX proteins in normal embryos, with special emphasis on embryonic
stages from development weeks 4 – 9, which represent the crucial time points in human
hindgut/anorectal development.

Materials and Methods

Sample preparation

The study protocol was in accordance with the World Medical Association Declaration of
Helsinki and was approved by the China Medical University Ethics Committee (no. 200(7)
PS14). A total of 89 phenotypically normal human embryos of 4 – 9 weeks gestation were
obtained, with written informed consent, from 22 – 35 years old women with no history of
hereditary disease who were undergoing elective chemically induced/atraumatic curettage
termination of unplanned pregnancy (Table 1). Embryos were washed immediately in cold
phosphate sodium-buffered saline (PBS pH 7.4) and then fixed in 4% PBS buffered
paraformaldehyde (pH 7.4) at 4°C for 24 h. Samples were dehydrated, embedded in paraffin and
then cut sagittally into 4-μm thick sections.

Immunohistochemical staining
Endogenous peroxidase activity was blocked by incubation in 3% H2O2 at room temperature for 20 min.

Antigens were retrieved by heating the slides in 10 mmol/L sodium citrate buffer (pH 6.0) at 98°C for 10 min.

Sections were treated and incubated with primary rabbit polyclonal anti-CDX1 antibody (LSBio/LS-C180091/48877; 1:200), primary mouse monoclonal anti-CDX2 antibody (LSBio/LS-B4299/38994; 1:50) or primary rabbit polyclonal anti-CDX4 antibody (LSBio/LS-C30413/51929; 1:200) and horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology Inc., Calif., USA). Antibodies were incubated in PBS, supplemented with 10% goat serum. Sections were incubated with primary antibodies at 4°C for 16 h and then incubated with secondary antibody for 20 min at room temperature.

Immunoreactions were visualized using 3,3'P-diaminobenzidine (Sigma, Manchester, UK) as a chromogen. Sections were counterstained with hematoxylin and reviewed independently by two pathologists; the results were agreed by consensus. Negative controls were performed by either omitting the primary or secondary antibody.

The overall intensity of the immunostaining reaction was evaluated and categorized as “–” to “+”: –, negative staining (no colored stain); ±, weak positive staining (light-yellow stain); +, positive staining (yellow-brown stain).

Results

In embryos at gestation week 4, a triangular early cloaca was observed at the anterior aspect of the caudal end of the spine. Immunoreactivity specific to CDX1, CDX2 or CDX4 was detected mainly in the dorsal urorectal septum (URS), urogenital sinus (UGS) and hindgut. The ventral URS and the cloacal membrane (CM) were negative for CDX1, CDX2 and CDX4 (Figures 1).

During week 5, the cloaca was divided into the UGS ventrally and the hindgut dorsally. CDX1-, CDX2- and
CDX4-positive cells were detected mainly in the mesenchyme of the URS and hindgut. CM and UGS were negative for CDX1, CDX2 and CDX4. CDX2 and CDX4 immunoreactivity levels were lower compared to CDX1 (Figures 2).

During gestation weeks 6 and 7, the CM was very thin and elongated. The immunoreactivity levels and distributions of CDX proteins were similar to those seen during week 5 (Figures 3-4).

During gestation weeks 8 and 9, the rectum became separated completely from the UGS and CDX1-, CDX2- and CDX4-positive cells disappeared from the mesenchyme. At the same time, the anorectal epithelium was positive for CDX1 and CDX4, and CDX1 immunoreactivity decreased gradually from the proximal rectum to the anus. The anal epithelium was positive for CDX2 (Figures 5-6).

The distribution patterns of CDX protein are given in Table 2.

Discussion

This study showed human CDX1, CDX2 and CDX4 proteins were distributed from gestation weeks 4 – 9 in a spatiotemporal pattern during embryonic anorectal morphogenesis. During gestation week 4, CDX1, CDX2 and CDX4 were detected in the dorsal URS, UGS and hindgut. From weeks 5 – 7, they were distributed mainly in the mesenchyme of the URS and hindgut. After the anorectum and the UGS opened to the amniotic cavity during week 8, the distribution of CDX1, CDX2 and CDX4 in the mesenchyme decreased, and they were detected in the epithelium of the anorectum/anus. Furthermore, CDX1, CDX2 and CDX4 showed spatially specific distribution patterns in human embryos. They distributed prominently in the dorsal parts of the cloaca that developed into the anorectum, but distributed weakly or almost absent from the ventral part of the cloaca, which develops into the UGS. These results suggest CDX genes might contribute to the development of the cloaca/hindgut and anorectum in the human embryo.
The cloaca is a key feature in the normal morphogenesis of the anorectum (Zhang et al. 2011). Despite their likely complex multifactorial etiology, maldevelopment of the URS and CM is generally thought to be responsible for ARMs (Bai et al. 2004, Qi et al. 2002). The results of this study suggested CDX1, CDX2 and CDX4 were active in the URS during separation of the cloaca from gestation weeks 4–7, but their distribution level decreased after the anorectum and UGS opened to the amniotic cavity in week 8. These findings provide further evidence for the involvement of CDX genes in the maintenance and pattern formation of the URS during development of the hindgut and anorectum. Abnormal expression of CDX genes might impair development of the URS and subsequent morphogenesis of the cloaca/hindgut and could be involved in the development of human ARMs.

Cdx1, Cdx2 and Cdx4 exhibited overlapping expression patterns in the posterior embryo in animal models, and had related functions with regard to their roles in pattern formation of the paraxial mesoderm (Beck 2004; Lohnes 2003; Savory et al. 2009; van den Akker et al. 2002; van Nes et al. 2006). CDX proteins also exhibit highly overlapping distribution patterns during human cloaca/hindgut development (Figure 7); CDX1, CDX2 and CDX4 distributed in the same part of the human cloaca from gestation weeks 4–7, indicating CDX genes might have cooperative functions during development of the human hindgut and anorectum. Cross-regulatory interactions might exist among Cdx genes with regard to anorectal development. van de Ven (van de Ven et al. 2011) showed Cdx1−/− and Cdx4−/− mice did not develop anorectal defects, whereas Cdx2−/− mice did, suggesting Cdx2 has a more prominent morphogenetic role in mice compared to Cdx1 or Cdx4. However, immunoreactivity of CDX1 protein was stronger compared to CDX2 and CDX4 in the cloaca/hindgut and anorectum in this study, suggesting CDX1 might have a more prominent morphogenetic role in the human anorectum compared to CDX2 and CDX4.

CDX genes might be involved in development of the anorectal epithelium. We showed CDX
proteins distributed in the anorectal/anal epithelium during gestation weeks 8 and 9. Cdx1 and Cdx2 exhibited transcriptional specificity in the intestine (Grainger et al 2013), and Cdx2 has been shown to be crucial for the expression of signaling molecules, epithelial–mesenchymal interactions and intestinal proliferation patterns (Gao et al 2009; Grainger et al 2010). Cdx4 is a Cdx2 target gene (Savory et al 2011). The results of this study and earlier work indicate CDX genes might have a role in development of the anorectal epithelium after the rectum has separated from the UGS.

The distribution patterns of CDX proteins in humans differ markedly from those of the equivalent proteins in animal models (Figure 7). Cdx1, Cdx2, and Cdx4 are expressed in the developing hindgut endoderm of mice, whereas only Cdx1 and Cdx2 are expressed up to the late gestation and postnatal stages (Beck 2002). Our earlier studies on the spatiotemporal localization patterns of Cdx1, Cdx2 and Cdx4 proteins in rat embryo suggested Cdx1-, Cdx2- and Cdx4-positive cells were located in the cloacal/hindgut epithelium during development of the hindgut and anorectum (Zhang et al 2009, Tang et al 2014a, Tang et al 2014b) (Figure 7). In animal models, Cdx proteins are expressed in the epithelium of the cloaca/hindgut, whereas in human embryo, CDX1, CDX2 and CDX4 proteins located mainly in the peri-cloacal mesenchyme (PCM) during anorectal development (gestation weeks 4-7). Asymmetric growth and patterning of the cloacal mesoderm results in division of the cloacal cavity and formation of a genital tubercle (Wang C et al. 2011). The cloaca is a key feature in the normal morphogenesis of human anorectum (Zhang et al 2011).

Cloacal membrane (CM) and urorectal septum (URS) play a crucial role on the cloacal embryogenesis (Zhang et al 2011). These results indicated CDX genes might have a role in dorsoventral patterning of the PCM and suggest misexpression of CDX genes might contribute to maldevelopment of the PCM and subsequent impairment of human hindgut and anorectum morphogenesis.
Conclusions

In conclusion, the results of this study demonstrate CDX proteins distributed throughout the crucial period of hindgut and anorectum development in the human embryo. These proteins exhibit overlapping distribution patterns in the cloaca/hindgut, suggesting they could have a pivotal role in the morphogenesis of the cloaca, hindgut and anorectum, and might be involved in development of the anorectal epithelium. Further studies are required to investigate the role of human CDX genes in anorectal development and their potential involvement in ARMs.

References

Bai YZ, Chen H, Yuan ZW, Wang W. 2004. Normal and abnormal embryonic development of the anorectum in rats. J Pediatr Surg 39:587-590.

Bai Y, Yuan Z, Wang W, Zhao Y, Wang H, Wang W. 2000. Quality of life for children with fecal incontinence after surgically corrected anorectal malformation. J Pediatr Surg 35:462-464.

Beck F. 2002. Homeobox genes in gut development. Gut 51:450-454.

Beck F. 2004. The role of Cdx genes in the mammalian gut. Gut 53:1394-1396.

Bonner CA, Loftus SK, Wasmuth JJ. 1995. Isolation, characterization, and precise physical localization of human CDX1, a caudal-type homeobox gene. Genomics 28:206-211.
Dravis C, Yokoyama N, Chumley MJ. 2004. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 271: 272-290.

Garcia-Barceló MM, Chi-Hang Lui V, Tam P. 2008. Mutational analysis of SHH and GLI3 in anorectal malformations. Birth Defects Res A Clin Mol Teratol 82:644-648.

Gao N, White P, Kaestner KH. 2009. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 16:588-599.

Grainger S, Hryniuk A, Lohnes D. 2013. Cdx1 and Cdx2 Exhibit Transcriptional Specificity in the Intestine. PLoS One 8:e54757.

Grainger S, Savory JG, Lohnes D. 2010. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 339:155-165.

Kimmel SG, Mo R, Hui CC. 2000. New mouse models of congenital anorectal malformations. J Pediatr Surg 35: 227-230.

Levitt MA, Peña A. 2005. Outcomes from the correction of anorectal malformations. Curr Opin Pediatr 17:394-401.

Lohnes D. 2003. The Cdx1 homeodomain protein: an integrator of posterior signaling in the mouse. Bioessays 25:971-980.

McGinnis W, Krumlauf R. 1992. Homeobox genes and axial patterning. Cell 68:283-302.

Peña A, Guardino K, Tovilla JM, Levitt MA, Rodriguez G, Torres R. 1998. Bowel management for fecal incontinence in patients with anorectal malformations. J Pediatr Surg 33:133-137.

Qi BQ, Beasley SW, Frizelle FA. 2002. Clarification of the processes that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg 37:1305-1312.

Ramalho-Santos M, Melton DA, McMahon AP. 2000. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127: 2763-2772.
Savory JG, Mansfield M, St Louis C, Lohnes D. 2011. Cdx4 is a Cdx2 target gene. Mech Dev 128:41-48.

Savory JG, Pilon N, Grainger S, Sylvestre JR, Beland M, Houle M, Oh K, Lohnes D. 2009. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev Biol 330:114-122.

Seifert AW, Harfe BD, Cohn MJ. 2008. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev Biol 318:143-152.

Silberg DG, Swain GP, Suh ER, Traber PG. 2000. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology 119: 961-971.

Tang XB, Zhang T, Wang WL, Yuan ZW, Bai YZ. 2014a Temporal and spatial expression of caudal-type homeobox gene-2 during hindgut development in rat embryos with ethylenethiourea-induced anorectal malformations. Cell Tissue Res 357:83-90.

Tang XB, Zhang J, Wang WL, Yuan ZW, Bai YZ. 2014b Spatiotemporal expression of Cdx4 in the developing anorectum of rat embryos with ethylenethiourea-induced anorectal malformations. Cells Tissues Organs 199:212-220.

van de Ven C, Bialecka M, Neijts R, Young T, Rowland JE, Stringer EJ, Van Rooijen C, Meijlink F, Nóvoa A, Freund JN, Mallo M, Beck F, Deschamps J. 2011. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138:3451-3462.

van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, Meyer BI, Deschamps J. 2002. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129:2181-2193.

Van der Putte SC. 1986. Normal and abnormal development of the anorectum. J Pediatr Surg 21:434-440.
van Nes J, de Graaff W, Lebrin F, Gerhard M, Beck F, Deschamps J. 2006. The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice. Development 133:419-428.

Wang C, Gargollo P, Guo C, Tang T, Mingin G, Sun Y, Li X. 2011. Six1 and Eya1 are critical regulators of peri-cloacal mesenchymal progenitors during genitourinary tract development. Dev Biol 360:186-194.

Wang C, Li L, Cheng W. 2015. Anorectal malformation: the etiological factors. Pediatr Surg Int 31:795-804.

Wang DJ, Bai YZ, Wang WL. 2009. Expression of EphB2 in the development of anorectal malformations in fetal rats. J Pediatr Surg 44:592-599.

Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. 1997. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124: 4781-4791.

Zhang T, Bai YZ, Zhang D, Zhang SW, Wang DJ, Jia HM, Yuan ZW, Wang WL. 2009. Temporal and spatial expression of caudal-type homeobox gene-1 in the development of anorectal malformations in rat embryos. J Pediatr Surg 44:1568-1574.

Zhang T, Zhang HL, Wang DJ, Tang XB, Jia HM, Bai YZ, Yuan ZW, Wang WL. 2011. Normal development of hindgut and anorectum in human embryo. Int J Colorectal Dis 26:109-116.

Table 1 Distribution of embryos at different ages

Gestational age (weeks)	4	5	6	7	8	9	Total
Number of embryos	9	15	16	18	16	15	89

Table 2 Spatiotemporal distribution patterns of CDX proteins
Table 1: Spatiotemporal distribution of caudal-type homeobox proteins during gestation

Gestational age	Protein	CDX1	CDX2	CDX4
Hindgut				
4	+	+	+	
5–7 (epithelium)	–	–	–	
5–7 (mesenchyme)	+	±	±	±
8–9 (epithelium)	Anorectum+	Anus+	Anorectum+	
8–9 (mesenchyme)	–	–	–	
URS				
4	dURS+	dURS ±	dURS ±	±
5–7 (epithelium)	–	–	–	±
5–7 (mesenchyme)	+	±	±	±
8–9 (epithelium)	–	–	–	–
8–9 (mesenchyme)	–	–	–	–
UGS				
4	+	±	±	±
5–7 (epithelium)	–	–	–	–
5–7 (mesenchyme)	–	–	–	–
8–9 (epithelium)	–	–	–	–
8–9 (mesenchyme)	–	–	–	–

+, Positive staining; ±, weak positive staining; –, negative staining; dURS, dorsal URS.

Figure 1. Spatiotemporal distribution of caudal-type homeobox proteins during gestation week 4.

During gestation week 4, immunoreactivity specific to CDX1, CDX2 or CDX4 was detected mainly in the dorsal urorectal septum (URS), urogenital sinus (UGS) and hindgut (H). The ventral URS and the cloacal membrane (CM) were negative for CDX1, CDX2 and CDX4.

(URS urorectal septum, UGS urogenital sinus, CM cloacal membrane, H hindgut).
Figure 2. Spatiotemporal distribution of caudal-type homeobox proteins during gestation week 5.

During gestation week 5, CDX1-, CDX2- and CDX4-positive cells were detected mainly in the mesenchyme of the urorectal septum (URS) and hindgut (H). The cloacal membrane (CM) and urogenital sinus (UGS) were negative for CDX1, CDX2 and CDX4. CDX2 and CDX4 immunoreactivity levels were lower compared to CDX1.

(URS urorectal septum, UGS urogenital sinus, CM cloacal membrane, H hindgut).

Figure 3. Spatiotemporal distribution of caudal-type homeobox proteins during gestation week 6.
During gestation weeks 6, the cloacal membrane (CM) was very thin and elongated. CDX1-, CDX2- and CDX4-positive cells were detected mainly in the mesenchyme of the urorectal septum (URS) and hindgut (H). The cloacal membrane (CM) and urogenital sinus (UGS) were negative for CDX1, CDX2 and CDX4.

CDX2 and CDX4 immunoreactivity levels were lower compared to CDX1.

Yellow rectangles in a, e, i and m are shown at higher magnification in b, f, j and n, respectively. Red rectangles in b, f, j and n are shown at higher magnification in c, g, k and o, respectively. Green rectangles in c, g, k and o are shown at higher magnification in d, h, l and p, respectively.

Original magnification 40× (a, e, i and m), 100× (b, f, j and n), 200× (c, g, k and o) and 400× (d, h, l and p).

Figure 4. Spatiotemporal distribution of caudal-type homeobox proteins during gestation week 7.

During gestation weeks 7, CDX1-, CDX2- and CDX4-positive cells were detected mainly in the mesenchyme of the urorectal septum (URS) and hindgut (H). The cloacal membrane (CM) and urogenital sinus (UGS) were negative for CDX1, CDX2 and CDX4. CDX2 and CDX4 immunoreactivity levels were lower compared to CDX1.

(URS urorectal septum, UGS urogenital sinus, CM cloacal membrane, H hindgut).

Yellow rectangles in a, e, i and m are shown at higher magnification in b, f, j and n, respectively. Red rectangles in b, f, j and n are shown at higher magnification in c, g, k and o, respectively. Green rectangles in c, g, k and o are shown at higher magnification in d, h, l and p, respectively.
During gestation weeks 8, the rectum (R) became separated completely from the urogenital sinus (UGS) and CDX1-, CDX2- and CDX4-positive cells disappeared from the mesenchyme. At the same time, the anorectal epithelium was positive for CDX1 and CDX4, and CDX1 immunoreactivity decreased gradually from the proximal rectum (R) to the anus. The anal epithelium was positive for CDX2.

Yellow rectangles in a, d, g and j are shown at higher magnification in b, e, h and k, respectively. Red rectangles in b, e, h and k are shown at higher magnification in c, f, i and l, respectively.

During gestation weeks 9, the anorectal epithelium was positive for CDX1 and CDX4, and CDX1 immunoreactivity decreased gradually from the proximal rectum (R) to the anus. The anal epithelium was positive for CDX2.
positive for CDX2.

Yellow rectangles in a, d, g and j are shown at higher magnification in b, e, h and k, respectively. Red rectangles in b, e, h and k are shown at higher magnification in c, f, i and l, respectively.

Original magnification 40× (a, d, g and j), 100× (b, e, h and k) and 200× (c, f, i and l).

Figure 7. A summary schematic of Cdx proteins distribution pattern in rat and human embryo.

The distribution pattern of CDX proteins in humans differ markedly from those of the equivalent proteins in rats. In rats, Cdx1-, Cdx2- and Cdx4-positive cells were located in the cloacal/hindgut epithelium, whereas in human embryo, CDX1, CDX2 and CDX4 proteins located mainly in the peri-cloacal mesenchyme during gestation weeks 4-7 and located in anal/anorectal epithelium during gestation weeks 8-9.

(URS urorectal septum, U urogenital sinus, CM cloacal membrane, CL cloaca, H hindgut, R rectum).

(Red dots indicate distribution of Cdx1 protein. Yellow dots indicate distribution of Cdx2 protein. Green dots indicate distribution of Cdx4 protein.)