An experimental investigation on micro machining of fine-grained graphite

Dehong Huo · Chao Lin · Kenneth Dalgarno

Abstract Industrial applications of the micro milling process require sufficient experimental data from various micro tools. Research has been carried out on micro milling of various engineering materials in the past two decades. However, there is no report in the literature on micro milling of graphite. This paper presents an experimental investigation on micro machinability of micro milling of moulded fine-grained graphite. Full immersion slot milling was conducted using diamond-coated, TiAlN-coated and uncoated tungsten carbide micro end mills with a uniform tool diameter of 0.5 mm. The experiments were carried out on a standard industrial precision machining centre with a high-speed micro machining spindle. Design of experiments (DoE) techniques were applied to design and analysis of the machining process. Surface roughness, surface topography and burrs formation under varying machining conditions were characterized using white light interferometry, SEM and a precision surface profiler. Influence of variation of cutting parameters including cutting speeds, feedrate and axial depth of cut on surface roughness and surface damage was analysed using ANOVA method. The experimental results show that feedrate has the most significant influence on surface roughness for all types of tools, and diamond tools are not sensitive to cutting speed and depth of cut. Surface damage and burrs analysis show that the primary material removal mode is still brittle fracture or partial ductile in the experimental cutting conditions. 3D intricate micro EDM electrodes were fabricated with good dimensional accuracy and surface finishes using optimized machining conditions to demonstrate that micro milling is an ideal process for graphite machining.

Keywords Micro machining · Micro milling · Moulded fine-grained graphite · Design of experiments · ANOVA · Micro EDM electrode

1 Introduction

The need to fabricate high accuracy miniature components with dimensions ranging from a few hundred microns to a few millimetres or features ranging from a few to a few hundreds of microns has encouraged research on development of micro manufacturing processes. It is well recognized that micro manufacturing has been a key enabling technology in industrially producing useful micro products and processes [1, 2].

Micro electrical discharge machining (micro EDM) is a promising machining technology for the manufacture of micro parts and structures over a wide range of engineering materials. The strengths of micro EDM lie in its force-free material removal process, decent attainable accuracy and surface finish on the workpiece; hence, it is especially suitable for micro machining hard-to-machine materials, e.g. hardened steel, titanium alloys and electrically conductive technical ceramics, for fabrication of micro dies and moulds, and micro tools, in a small batch production.

Central to the micro EDM technology is the fabrication of micro electrodes especially 3D complex shape micro electrodes for micro die sink EDM. These micro EDM electrodes have characteristic dimensions normally in the order of tens to hundreds of microns, which will allow micro machining of features with a projection area of 1 mm² or less [3]. Among several materials available for EDM electrodes, e.g. copper, tungsten-copper, graphite, etc., graphite is versatile and most widely used for conventional EDM electrodes. Due to its excellent thermal
and electrical properties, graphite is believed to be still the first choice for electrode materials at meso/micro scale.

Currently, a number of micro manufacturing processes, such as micro milling, micro laser machining and micro waterjet machining, can be used to produce micro graphite electrodes. Micro milling is believed to be the most flexible and versatile micro machining process. It is capable of generating a wide variety of complex micro components and microstructures due to its strengths in achievable precision and surface finish in addition to its simple set-up and versatility [2], and it will be a very promising process in fabrication of 3D micro graphite electrodes.

Graphite machining has been carried out extensively in the industry at conventional scale, but unlike metal cutting, reliable and widely accepted machining conditions cannot be found in the research literatures or machining handbooks. Only few publications are available in machining graphite electrodes [4–6]. Micro milling, as a newly emerged micro machining process, has attracted lots of attentions from academia and industries in the last two decades. The research on micro milling have focused on various applications and involved many engineering materials, including metals such as aluminum [7–9], copper [9–12], titanium alloys [13, 14] and steels [15, 16]; ceramics like tungsten carbides [17, 18]; silicon [19–21]; glass [22, 23]; polymers [24, 25] and composites [26]. However, to our knowledge, there are no publications available dedicated to micro machinability of graphite material in the open literature.

With the demand for micro parts and features increasing, many cutting tools manufacturers have made commercial micro tools available in the market. These commercial micro tools are fabricated using various materials, such as high-speed steel, tungsten carbide, cubic boron nitride (cBN) and single or poly-crystal diamond, and with various coating such as TiN, TiAlN and diamond to improve wear characteristics. However, since micro milling is still at its nascent stage, currently there are no reliable and widely accepted methods or guidelines available on how to choose cutting conditions in micro milling. Different tool manufacturers would recommend very different cutting conditions for same workpiece and tool materials. For example, for micro milling graphite using 1-mm diameter diamond-coated tungsten carbide tools, the recommended axial depth of cut, \(a_p \), varies from 0.02 to 0.25 mm, i.e., the highest \(a_p \) is 12.5 times the lowest values as recommended by different manufacturers. Further, some recommended values are not obtainable in practice. For example, in order to achieve a recommended cutting speed for a small diameter end mill, a spindle speed of 100,000 rpm or more could be required, which is not commonly used in industries.

Therefore, it is much needed to conduct research on micro machinability of graphite materials to improve the process efficiency and the workpiece quality. The aim of the research is to provide information not only on optimized machining data but also the research methods for the micro manufacturing communities, especially for micro EDM industry, to gain a better understanding of micro machining processes of graphite electrodes.

In this paper, micro machinability for micro milling of fine-grained graphite was investigated experimentally. Three types of micro end mills, namely diamond-coated, TiAlN-coated and uncoated tungsten carbide end mills, were used in the machining experiments. Surface finish and burrs formation are analysed, and optimized machining parameters were obtained from the experiments with the aim of improving surface finish and productivity. Complex 3D micro die sink electrodes were fabricated using the optimal machining conditions to demonstrate the potential of micro milling in graphite electrode fabrication.

2 Moulded graphite and general issues on micro machining graphite

2.1 Moulded graphite

Moulded graphite is the most commonly used graphite material in the industrial world. It has found applications in many industrial sectors, such as aerospace, automotive, defense technology and electronics, to name a few. Typical products include EDM electrodes, carbon brushes, bearings and sliding elements, etc. Moulded graphite is a synthetic graphic product manufactured by a compaction process from a mixture of carbon filler and organic binder which is subsequently carbonized and graphitized [27]. Moulded graphite is a polycrystalline material and the crystallites are randomly oriented. At macro scale, moulded graphite has isotropic mechanical and thermal performance, and is soft and brittle. Strength of moulded graphite is determined by the bond strength between crystallites. At ambient temperature, these bonds resist plastic deformation and hence moulded graphite generally fails by brittle fracture and no yield occurs. On the other hand, the bond between atoms within the basal plane of a graphite crystal is considerably stronger than the bond between the planes with a large anisotropy ratio, which means that moulded graphite also has anisotropic behaviour at micro scale, and its mechanical and frictional properties vary in different crystalline orientations.

2.2 General issues on micro machining of graphite

Moulded graphite is generally considered as an easy-to-machine material in the light of its relatively low hardness and strength. Very little heat is generated in the cutting zone and hence less thermal distortion is presented on the workpiece; therefore, high-speed machining is possible in machining graphite materials. On the other hand, graphite is highly
abrasive due to its bond strength between individual carbon molecules, severe tool wear occurs and leads short tool life and low productivity, especially at high-speed machining [4, 5]. Tool wear is also one of the main causes of deterioration of surface finish and accuracy.

There are some issues specifically to micro machining of graphite electrodes. Graphite is a brittle material and material properties are very different from those of metals, such as hardness, microstructure and friction characteristics, which leads to different machinability and hence a different method to select tool and cutting parameters. Dimensional accuracy is important for EDM electrodes, as die sink EDM is a copy machining, and any errors on the electrode will be copied onto the workpiece. Unlike conventional machining, where some machining errors can be corrected by subsequent machining operations, for micro parts manufacture these subsequent machining operations are usually not possible or too costly to perform. Therefore, precision fabrication of electrodes directly by micro machining is the key for the success of micro EDM micro parts and features. Surface roughness is another important factor of graphite electrodes and other precision graphite components machining because a better surface finish on the electrode can lower electrode wear during EDM. Moulded graphite is a porous material, so it is difficult to obtain good surface finish as metals. Therefore, a study on how the process parameters affect the surface finish is much desirable to improve surface quality and productivity in micro milling of graphite.

3 Experimental set-up

3.1 Machine tool

Experiments for this work were carried out on a precision CNC machining centre (Hurco VM10). The use of standard CNC machine tools is to ensure that the results from the experiments are more industrial feasible. The main spindle of the CNC machining centre was locked during the experiments, and a high-speed spindle (NSK-HES810) with electric drive and ceramic bearings was mounted onto the main spindle. The high-speed spindle offers a continuous power output of 350 W and an output torque of 3 cNm over the speed range of 20,000 to 80,000 rpm. The high-speed spindle allows a reasonable higher cutting velocity even small diameter cutters are used. Ultra-precision collets were used to clamp the micro end mills and the spindle run-out was controlled within 1 μm. Although the precision machining centre offers single axis positioning accuracy of 5 μm, as it will be detailed in Section 3.4 that only single axis feeding was used in the optimization experiments, i.e., along y-axis. Therefore, the slideway positioning errors will only influence dimensional accuracy in Y direction which is not of interests in the optimization experiments, and will not influence the surface roughness and topography which are actually the focus of the research. Spindle errors are believed to have significant influence on the surface finishes. Since the main spindle of the machine tool with higher run-out was mechanical lock throughout the experiment, only the run-out and vibration of the precision high-speed spindle would influence the surface finish. This experimental set-up ensures that both the main spindle errors, e.g. vibration and run-out, and slideway inaccuracy have been eliminated or minimized. Therefore, main spindle and slideway errors on surface finishes will not be explicitly taken into account in the analysis.

3.2 Workpiece material

Moulded graphite can be considered as homogenous and isotropic materials at macro scale. However, this assumption may not hold true because of the well-known grain size effect. Commercial moulded graphite has grain sizes ranging from a few microns to tens of microns, and the grain sizes determine its material properties. Fine-grained graphite is used in the experiment, since it has high strength and hardness, lower porosity and better achievable surface roughness. Table 1 lists the workpiece material properties of the fine-grained graphite used in the experiment.

3.3 Micro end mills

Three types of micro flat end mills, namely diamond-coated tungsten carbide (DC), TiAIN-coated tungsten carbide (TiAIN) and uncoated tungsten carbide tools (WC), were used in the experiments. Three tools have a same nominal diameter of 0.5 mm. A uniform tool shank diameter of 3 mm is used for all micro tools to fit 3 mm ultra-precision spindle collet. A relative large tool diameter was selected in the experiments to avoid premature tool breakage in those aggressive cuts, and hence ensure that all tools can last without excess tool chipping and wear. Table 2 lists the geometries of micro end mills used in the experiments.

The cutting edge radius was measured on the cross-sectional SEM images by fitting a circle, as illustrated in

Table 1 Material properties of the fine grained graphite
Properties

Density (kg/m3)
Porosity (%)
Modulus of elasticity (GPa)
Compressive strength (MPa)
Hardness (Shore, °S)
Thermal expansion coefficient (10$^{-6}$/K)
Thermal conductivity (W/m K)
Average grain size (μm)

© Springer
The estimated values are 9, 4 and 3 μm for diamond coated, TiAlN coated and uncoated tools, respectively. Section 4 will discuss if tool sharpness would affect surface finish. In previous research on micro milling of metals, a critical minimum chip thickness was observed. The critical minimum chip thickness determines the transition between cutting and plowing, i.e. if the uncut chip thickness is less than a critical value, there will be no chip formation, and corresponding cutting forces and surface roughness values changes to reflect this size effects. Feedrate range in the experiments were selected to be same order as cutting edge radius in order to investigate if there exists a critical minimum chip thickness in micro machining of graphite.

3.4 Experimental procedure

The experiments in this work include full immersion slot milling. The experimental set-up is illustrated in Fig. 2. For each test, a 5-mm-long and 0.5-mm-wide micro slot was milled along Y direction. Before experiments, the top surface of the workpiece was prepared using a 12-mm end-mill. A small axial depth of cut of 5 μm at each pass was used for the surface preparation to eliminate surface damage. A machine vision system (InfiniStix™ microscope) is integrated into the machine tool providing 3 μm resolution in Z direction to assist positioning the cutter to the workpiece surface.

Dry machining was performed to avoid contamination, and ventilation system was used to control and collect powdery dust. Three controlled quantitative factors used in the experiments are cutting speed (m/min), feedrate (μm/tooth) and axial depth of cut (μm). Because there are only three controlled factors considered for each type of micro tools in the experiments, full factorial designs were implemented to capture all of the main effects and their interactions. Two levels of cutting speed and depth of cut were selected, albeit four levels of feedrate were selected. The 4×2×2 mixed level full factorial design matrix is presented in Table 3. Each set of cutting parameter was repeated once to reduce machining errors and separate effect due to interactions from measurement noise, so total of 32 slots were machined for each cutter. In order to reduce the influence of tool wear on the surface and burr formation, brand new micro tools were used for the experiments. Extra slots (exp #17, see Table 3) were milled at the end of experiments using the same cutting conditions as exp #1 (see Table 3). This validation slot was then compared with the first slot (exp #1).

3.5 Metrology issues

The average surface roughness of the bottom surface of the micro milled slots was measured using a white light interferometer (Zygo NewView 5000) along the centreline of the slots. To reduce the measurement uncertainty and assess repeatability, four measurements on different area were conducted for each slot and an average value of surface roughness (Ra) is used for analysis. An optical microscope and surface profiler (Talysurf Serial-2) were used to assess burr formation. Besides, the surface morphology was analysed on the basis of SEM micrographs. Analysis on the response–surface roughness will be presented in Section 4. Mean values of measured surface roughness, Ra, are listed in Table 3.

Table 2 Geometries of micro tools used in the experiments

Tool Type	Diamond coated	TiAlN coated	Uncoated
Nominal diameter (mm)	0.5	0.5	0.5
No. of flute	2	2	2
Helix angle (deg)	25	20	20
Flute length (mm)	1	1.5	1.5
Rake angle (deg)	−5	−2	0
Clearance angle (deg)	10	20	17
Nominal corner radius (mm)	0.05	0	0
Tool edge radius (μm)	9	4	3

Fig. 1. The estimated values are 9, 4 and 3 μm for diamond coated, TiAlN coated and uncoated tools, respectively.
4 Results and discussions

ANOVA was performed on surface roughness data to isolate the main effects of each source of variations and determine effects of interactions. Tables 4, 5 and 6 summarize the results of ANOVA on surface roughness (Ra values) for three types of micro end mills. All tabulated F values ($\alpha=0.05$) except the interaction of cutting speed and depth of cut in Tables 5 and 6 are smaller than the calculated values as shown in Tables 4, 5 and 6, which corresponds to a confidence level of 95% in evaluation of process parameters.

The ANOVA tables show that feedrate has the most significant influence on surface roughness for all three types of micro end mills, and it contributes to 85.2, 80.6 and 70.7% overall responses for diamond-coated, TiAlN-coated and uncoated micro end mills, respectively. Cutting speed also has influence on surface roughness for TiAlN-coated and uncoated tools, whereas cutting speed has almost no influence on

Table 3 Experimental matrix of micro milling of graphite and mean measured surface roughness, Ra

Exp no.	Experimental matrix—controlled factorsa	Responses
	Feedrate Cutting speed/spindle speed Depth of cut	Measured surface roughness, Rab (μm)
	f_z (μm/tooth) V_c (m/min) n (rpm) a_p (μm)	Diamond coated TiAlN coated Uncoated
1	0.5 31.4 20,000 20	0.29 0.35 0.47
2	2 31.4 20,000 20	0.4 0.48 0.75
3	5 31.4 20,000 20	0.54 0.65 0.78
4	10 31.4 20,000 20	1 1.2 1.13
5	0.5 78.5 50,000 20	0.29 0.49 0.79
6	2 78.5 50,000 20	0.52 0.61 0.9
7	5 78.5 50,000 20	0.76 0.95 0.84
8	10 78.5 50,000 20	0.87 1.45 1.31
9	0.5 31.4 20,000 60	0.3 0.4 0.47
10	2 31.4 20,000 60	0.45 0.54 0.61
11	5 31.4 20,000 60	0.66 0.62 0.69
12	10 31.4 20,000 60	0.78 1.04 1.21
13	0.5 78.5 50,000 60	0.39 0.42 0.6
14	2 78.5 50,000 60	0.48 0.45 0.7
15	5 78.5 50,000 60	0.75 0.97 1.08
16	10 78.5 50,000 60	0.82 1.05 1.09
17c	0.5 31.4 20,000 20	0.30 0.33 0.55

a Uncontrolled factors: width of cut, $a_e=0.5$ mm; cutter diameter, $D=0.5$ mm; no of flutes, $Z=2$; slot length = 5 mm

b Surface roughness values presented in the table are the arithmetic mean of measured Ra values

c Validation slot, same machining condition as exp #1
surface roughness when diamond-coated tools were used. Depth of cut has positive influence on surface roughness when TiAlN-coated and uncoated tools were used, i.e. an increase in axial depth of cut will improve surface roughness.

Both the interaction between feedrate and cutting speed and the interaction between feedrate and depth of cut have effects on the measured surface roughness, although these interaction effects are not significant as single factor main effects. Higher order interactions were not significant; therefore, it does not seem worthwhile to examine the statistical significance of these effects.

Main effects were plotted in Figs. 3, 4 and 5 to quantitatively assess the effect of each process parameters on micro machining process. Tool sharpness in terms of cutting edge radius is believed to have a positive influence on surface roughness at the order of a few microns, i.e. smaller tool edge radius is expected to result in better surface finish. However, it can be seen from Table 3 and Figs. 3, 4 and 5 that under same cutting conditions diamond-coated tools give better surface roughness, although the diamond-coated tools are the bluntest among the three types of micro tools. There is no clear difference between TiAlN-coated tools and uncoated tools in terms of achievable surface quality, indicating TiAlN-coated tools are not a good choice for micro milling of graphite if optimization of surface quality is the main concern. Within the cutting parameter range used in the experiments, minimum average surface roughness value of around 0.3 µm was measured at low feedrate of 0.5 µm/tooth and under both low and high depth of cut when using diamond-coated tools. Maximum surface roughness mean value of around 1.4 µm was measured at high feedrate of 10 µm/tooth under high depth of cut of 60 µm when using either TiAlN-coated or uncoated tools.

It is observed from Figs. 3a, 4a and 5a that an increase in feedrate from 0.5 to 10 µm/tooth for all three micro tools results in increase of surface roughness values and this tendency is very linear in the machining conditions used in the experiments. This tendency is also similar to that for micro milling of metallic materials.

When cutting speed increases from 31.4 to 78.5 m/min, there is around 20 % increase in surface roughness value for TiAlN-coated and uncoated tools, whilst only 5 % increase in surface roughness value was observed for diamond tools, as shown in Figs. 3b, 4b and 5b. This suggests that higher cutting speed hence higher machining efficiency can be achieved by using diamond-coated tools without significantly compromising surface quality.

Table 4 ANOVA for micro milling of graphite experiment using diamond-coated tools

Source of variation	Sum of squares	Degrees of freedom	Mean square	F (calculated)	F (tabulated, $\alpha=0.05$)	P value	Contribution ratio %
Feedrate (A)	2.753	3	0.918	235.765	2.80	1.02E−28	85.232
Cutting speed (B)	0.0225	1	0.0225	5.78	4.04	0.020118	0.697
Depth of Cut (C)	5.63E−05	1	5.63E−05	0.0145	4.04	0.90482	0.002
AB	0.101	3	0.0337	8.656	2.80	0.000107	3.127
AC	0.078	3	0.026	6.673	2.80	0.000741	2.415
BC	0.004	1	0.004	0.13	4.04	0.71996	0.016
ABC	0.0873	3	0.029	7.474	2.80	0.000334	2.703
Error	0.187	48	3.89E−03	235.765	5.789		
Total	3.23	63					

Table 5 ANOVA for micro milling of graphite experiment using TiAlN-coated tools

Source of variation	Sum of squares	Degrees of freedom	Mean square	F (calculated)	F (tabulated, $\alpha=0.05$)	P value	Contribution ratio %
Feedrate (A)	5.712	3	1.904	211.731	2.80	1.13E−27	80.6
Cutting speed (B)	0.304	1	0.304	33.793	4.04	4.83E−07	4.3
Depth of cut (C)	0.113	1	0.113	12.574	4.04	0.000885	1.6
AB	0.203	3	0.068	7.528	2.80	0.000316	2.9
AC	0.202	3	0.067	7.471	2.80	0.000334	2.8
BC	0.068	1	0.068	7.590	4.04	0.008268	1.0
ABC	0.057	3	0.038	2.946	2.80	0.13471	0.7
Error	0.432	48	0.009				
Total	7.086	63					
The surface roughness decreases by 10 % when depth of cut was increased from 20 to 60 μm when TiAlN-coated and uncoated tools were used as shown in Figs. 4c and 5c. This trend is different from conventional machining of graphite materials and can be explained by grain size effect. The average graphite grain size in the workpiece was measured by the manufacturer as 5 μm. When the grain size is close to or smaller than depth of cut, brittle fracture may occur within the grain, so that the material cannot be considered as homogeneous and isotropic. The grain size effect will affect the micro cutting processes, including mechanism of chip formation and surface generation [28, 29]. Local material strength within the grain is higher than the bulk value, more specific cutting energy is required to remove material, and therefore the surface finish is deteriorated. When the depth of cut increases, the material becomes more statistically homogenous and the material property tends to be similar to that of bulk materials, and therefore higher feedrate can promote good surface finish within a certain range. However, this effect has not been clearly observed when diamond-coated tools were used (Fig. 3c).

Source of variation	Sum of squares	Degrees of freedom	Mean square	F (calculated)	F (tabulated, α=0.05)	P value	Contribution ratio %
Feedrate (A)	3.133	3	1.044	120.887	2.80	2.24E-22	70.7
Cutting speed (B)	0.353	1	0.353	40.845	4.04	6.32E-08	8.0
Depth of cut (C)	0.064	1	0.064	7.351	4.04	0.009271	1.4
AB	0.105	3	0.035	4.050	2.80	0.012052	2.4
AC	0.131	3	0.044	5.056	2.80	0.004006	3.0
BC	0.011	1	0.011	1.276	4.04	0.26421	0.2
ABC	0.218	3	0.073	8.396	2.80	0.000137	4.9
Error	0.415	48	0.009				9.4
Total	4.428	63					

Table 6 ANOVA for micro milling of graphite experiment using uncoated coated tools

In micro milling of metals, the cutting edge radius and minimum chip thickness size effect is the dominant factor for material removal mechanism and chip generation physics. In previous micro milling of metallic materials, numerous researchers have investigated that this size effect and the critical minimum chip thickness was reported to be around 0.1–0.4 of cutting edge radius for various materials [10, 15, 30, 31]. Micro tools used in this work have a cutting edge radius in the range of 3–9 μm from SEM measurement results and the ratio of uncut chip thickness to cutting edge radius is in the range of 0.05 to 1; however, no explicit cutting edge radius size effects were observed in the experiments for all three types of cutters. Further examinations on surface defects show that micro cracking occurred in the bottom and side surface of the slots. Figure 6 shows typical surface damages in the form of fractured craters and residual flake chips. Different to micro milling of metals, no tools marks were observed on machined surfaces from TiAlN-coated and uncoated tools, whilst indistinct tool marks were found by close examination on surfaces machined by diamond-coated tools. Surface damages and absence of tool marks on the machined surfaces

![Fig. 3 Main effect plots for influences of single factors on surface roughness with diamond-coated micro end mills: a feedrate, fz; b cutting speed, Vc; c axial depth of cut, ap](image)
indicate that the primary cutting mode was still brittle fracture or partial ductile under the cutting conditions in the experiments. Another evidence of graphite materials being cut primarily at brittle fracture mode is that no obvious burrs were observed for all the slots machined, which is similar to conventional machining of most brittle materials.

For three types of micro tools, it is observed that there is no significant difference between first set of slots (exp #1) and validation slots (exp #17) in terms of surface roughness and micro surface morphology. Therefore, the tool wear effect is regarded negligible under this certain cutting distance in this work.

5 Examples of micro die sink EDM electrodes

Micro EDM electrodes with high aspect ratio and complex shapes were fabricated using the optimal cutting conditions obtained through this research. Figure 7 shows the SEM image of three 3D intricate micro machined electrodes. Fine-grained tungsten carbide end mills with diameter of 0.2 mm were used to machine these samples. An average surface roughness of 0.8 μm was measured on the bottom surfaces, and slot width deviations were controlled well within 10 μm based on surface profiler measurements. Good dimensional accuracy and surface roughness obtained from the experiments demonstrated that micro milling is a promising process for fabrication of 3D micro EDM electrodes.

6 Conclusions

This paper presents an experimental investigation on micro milling of moulded fine-grained graphite. Diamond-coated, TiAlN-coated and uncoated tungsten carbide micro end mills with 0.5 mm diameter were used to create full width slots. Various cutting conditions including feedrate, cutting speed
and axial depth of cut were experimentally investigated based on design of experiments techniques, and their influences on surface finish were assessed using ANOVA method. The following conclusions can be drawn from this work:

- Feedrate has the most significant influence on surface roughness for all three types of micro tools. Higher feedrate results in higher surface roughness values and
this linear tendency is similar to that of micro milling of metallic materials.

- The diamond-coated tools give better surface roughness although the diamond-coated tools have much larger tool edge radius than other two types of micro tools used in the experiments. High-speed machining with diamond-coated is more effective in improving machining productivity and achieving good surface finish.

- The surface roughness decreases when depth of cut is increased when TiAlN-coated and uncoated tools were used, and this phenomenon can be explained by grain size effect. Higher depth of cut is therefore recommended under certain machining conditions from optimizing machining productivity and surface finish point of view. Different to micro milling of ductile metallic materials, no cutting edge size effect and minimal chip thickness were observed for all three types of micro tools.

- No obvious burrs and clear tool marks were observed for all machined slots, whilst surface damages were found in the forms of fractured craters, residual flake chips and micro cracks, which indicate that the primary cutting mode is still brittle fracture or partial ductile under the cutting conditions in the experiments.

Micro EDM electrodes with high aspect ratio and complex shapes were fabricated using the optimal cutting conditions obtained through this research. The results are also useful for micro milling of other brittle materials, such as glass and silicon. Although tool wear was found negligible in the experimental conditions in this research, future efforts will be made on characterization of tool wear in micro milling of graphite.

Acknowledgments The authors are grateful for the support of Newcastle University and Visiting Scholar Foundation of the State Key Lab. of Mechanical Transmission in Chongqing University. The authors are also grateful to Mr Jamie Hodgson and Ben Walker at Newcastle University for their assistance in the work.

References

1. Ehmann KE, Bourell D, Culpepper ML, Hodgson TJ, Kurfess TR, Madou M, Rajurkar K, De Vor RE (2005) International assessment of research and development in micromanufacturing. World Technology Evaluation Center, Baltimore

2. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine-UltraMill. Part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47:867–877

3. Maradia U, Boccadore M, Stirnimann J, Beltrami I, Kuster F, Wegener K (2006) Die-sink EDM in meso-micro machining. Procedia CIRP 1:166–171

4. Schroeter RB, Kratochvil R, Gomes JO (2006) High-speed finishing milling of industrial graphite electrodes. J Mater Process Technol 179:128–132

5. Zhou L, Wang CY, Qin Z (2009) Tool wear characteristics in high-speed milling of graphite using a coated carbide micro endmill. Proc Inst Mech Eng B J Eng Manuf 223:267–277

6. Yang YK, Chuang MT, Lin SS (2009) Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J Mater Process Technol 209:4395–4400

7. Newby G, Venkatachalam S, Liang SY (2007) Empirical analysis of cutting force constants in micro-end-milling operations. J Mater Process Technol 192–193:41–47

8. Ng CK, Melkote SN, Rahman M, Senthil KA (2006) Experimental study of micro- and nano-scale cutting of aluminum 7075-T6. Int J Mach Tools Manuf 46:29–936

9. Lee K, Dornfeld DA (2002) An experimental study on burr formation in micro milling aluminium and copper. Trans N Am Manuf Res Inst 30:255–262

10. Filiz S, Conley CM, Wasserman MB, Ozdoganlar OB (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47:1088–1100

11. Huo D, Cheng K (2010) Experimental investigation on micromilling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapour deposition, and single-crystal diamond micro tools. Proc Inst Mech Eng B J Eng Manuf 224:995–1003

12. Rahman M, Kumar SA, Prakash JRS (2001) Micro milling of pure copper. J Mater Process Technol 116:39–43

13. Ozel T, Thepsonthi T, Ulutan D, Kaftanoglu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4V. Ann CIRP 60:85–88

14. Schueler GM, Engmann J, Marx T, Haberland R, Aurich JC (2010) Burr formation and surface characteristics in micro-endmilling of titanium alloys. In: Aurich JC, Dornfeld D (eds) Burrs-analysis, control and removal. Springer, Berlin, pp 129–138

15. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50:61–64

16. Bissacco G, Hansen HN, Chiffre LD (2005) Micromilling of hardened tool steel for mould making applications. J Mater Process Technol 167:201–207

17. Nakamoto K, Katahira K, Ohmori H, Yamazaki K, Aoyama T (2012) A study on the quality of micro-machined surfaces on tungsten carbide generated by PCD micro end-milling. Ann CIRP 61:567–570

18. Funac. Website: http://www.funac.co.jp/en/product/robonano/index.htm. Accessed on 25 August 2013

19. Rusanlasy, Jo Ko T, Sool Kim H (2007) Micro-end-milling of single-crystal silicon. International Journal of Machine Tools & Manufacture 47:2111–2119

20. Rusanlasy, Jo Ko T, Sool Kim H (2008) An experimental study on microcutting of silicon using a micromilling machine. International Journal of Advanced Manufacturing Technology 39:85–91

21. Arif M, Rahman M, San WK (2012) An experimental investigation into micro ball end-milling of silicon. J Manuf Process 14:52–61

22. Arif M, Rahman M, San WY, Doshi N (2011) An experimental approach to study the capability of end-milling for microcutting of glass. Int J Adv Manuf Technol 53:1063–1073

23. Foy K, Wei Z, Matsumura T, Huang Y (2009) Effect of tilt angle on cutting regime transition in glass micromilling. Int J Mach Tools Manuf 49:315–324

24. Friedrich CR, Vasile MJ (1996) Development of the micromilling process for high-aspect-ratio microstructures. J Microelectromech Syst 5:33–38
25. Ogilvie IRG, Sieben VJ, Floquet CFA, Zniijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20:1–8

26. Cho MW, Kim DW, Cho WS (2007) Analysis of micro-machining characteristics of Si3N4-hBN composites. J Eur Ceram Soc 27:1259–1265

27. Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. Noyes Publications, New Jersey

28. Cheung C, To S, Lee W (2002) Anisotropy of surface roughness in diamond turning of brittle single crystals. Mater Manuf Process 17:251–267

29. Min S, Dornfeld D, Inasaki I, Ohmori H, Lee D, Deichmueller M, Yasuda T, Niwa K (2006) Variation in machinability of single crystal materials in micromachining. Ann CIRP 55:103–106

30. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micro machining. Nanotechnology 3:6–9

31. Cheng K, Huo D (2013) Micro cutting: fundamentals and applications. Wiley, Chichester