Liang Feng¹
Dian-Jun Qi²
Qing-Fu Zhang³

¹Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China; ²Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China; ³Department of Pathology, The First Affiliated Hospital of China Medical University, College of Basic Medical Sciences of China Medical University, Shenyang, People’s Republic of China

Case report

A 55-year-old woman was initially diagnosed with “mixed hemorrhoids” at the Shenyang Proctology Hospital (Liaoning, People’s Republic of China) with complaints of intermittent blood in the stool with tenesmus for 1 month. She underwent surgical resection, and postoperative paraffin pathology confirmed anorectal melanoma. However, the patient refused radical surgery and other treatment options. After 9 months, the patient developed a local recurrence. She was admitted to the Department of Surgical Oncology of The First Affiliated Hospital of China Medical University. Colonoscopy showed a smooth mucosa with a polypoid bulge of ~1.0×0.8 cm in size, located 6 cm close to the anal verge, without any erosion, ulcer, hemorrhage, or necrosis (Figure 1). Microscopic examination showed diffusely distributed, small, and relatively uniform tumor cells with oval-shaped, deviated nuclei and deep staining (Figure 2A). The tumor cells resembled plasma cells, showing evidence of mitosis and less cytoplasm without clear pigmentation (Figure 2B). The results of the immunohistochemistry analyses performed using specific markers to confirm...
small-cell melanoma were as follows: cytokeratin (pan, −), synaptophysin (−), chromogranin A (−), CD20 (−), Pax-5 (−), CD3 (−), CDX2 (−), CD15 (−), S-100 (+; Figure 2C); vimentin (+; Figure 2D), HMB-45 (+), Melan-A (+), CD56 (+), CD138 (−), MUM1 (−), and a Ki67 index of ~60%. Thus, the tumor was confirmed as small-cell melanoma. The patient underwent abdominoperineal resection. There was no metastasis to the regional lymph nodes (zero of eleven nodes); however, a single stage IIIC nodular melanoma with the TNM classification pT4bN1bM0 was found in the drainage region of lymph nodes. The patient still refused chemotherapy and radiotherapy; however, 40 days after surgery, she received biological therapy consisting of dendritic cells combined with cytokine-induced killer cells.

A tumor was detected in the left breast via ultrasonography after 4 months of radical surgery. Breast ultrasonography showed a hypoechoic region in the outer upper quadrant of the left breast sized 1.46×1.26 cm² (Figure 3A). The mass had atypical characteristics and strip-shaped blood flow around the edges (Breast Imaging Reporting and Data System 4C; Figure 3B). The pathological examination of the specimen obtained via fine needle aspiration biopsy using a hollow needle showed morphological findings consistent with anorectal melanoma (Figure 4A). The immunohistochemistry results were as follows: cytokeratin (pan, −), vimentin (+; Figure 4B); S-100 (+), Melan-A (+; Figure 4C); HMB-45 (+; Figure 4D); CD3 (T lymphocytes, +), CD20 (B lymphocytes, +), Pax-5 (B lymphocytes, +), chromogranin A (−), synaptophysin (−), CD138 (−), ER (−), Her2 (−), P63 (−), GATA-3 (−), and a Ki67 index of ~70%, which confirmed anorectal melanoma metastatic to the breast.

Discussion
Anorectal melanoma frequently occurs near the dentate line. As the tumor is highly invasive and lymphatic vessels are abundant near the dentate line, local spread and distant metastases may occur in the early phase of the disease, with a 1.2% metastasis rate to the breast, resulting in a 5-year overall survival of <20%.3–6 In the present study, 30 cases of melanoma metastatic to the breast that were reported from 1995 to 2015, including the present case, were reviewed retrospectively.7–23 The mean patient age was 54 years, and 87.1% of the patients were women. The most common primary sites of melanoma were the skin tissues of the trunk (28.6%, eight out of 28 patients) and head and face (28.6%, eight out of 28 patients). Including the patient reported in the present study, only five patients were previously reported to have anorectal melanomas metastatic to the breast. Two of the patients died 3 months after metastasis to the breast. The average survival time after metastasis was >12.5 months.

In 1984, Lee24 showed that melanoma cells expressed estrogen receptors; however, the role of estrogen in the metastases to the breast is presently controversial. An association was previously reported between metastasis of melanoma to the breast and menopausal status. Arora and Robinson25 reported 15 patients with melanomas that metastasized to the breast, of which 93% were premenopausal. Another retrospective study involving 27 cases also reported that 70% of the patients were at the premenopausal
Anorectal melanoma metastatic to the breast

The breast tissue of older patients is more fibrous, and the relatively poor blood supply makes the environment unfavorable for metastasis in these patients. Arora and Robinson suggested a direct role for estrogen in facilitating metastatic spread.

The inhibition of antitumor immune responses in human beings is associated with metastatic melanoma. Jayaraman et al. found, in a mouse model of melanoma, that the number of Treg cells increased in the peripheral blood of mice with metastatic melanoma and that the inhibition of Treg induction could effectively prevent the proliferation of tumor cells. The interactions of tumor cells with the microenvironment and the immune system are significant in the infiltration and metastasis of melanoma. In the clinical setting (Table 1), the average time from the diagnosis of the primary tumor to its metastasis to the breast was 49.9 months. Frequently, the tumors were identified as single lesions sized 0.8–6.0 cm. Primary tumors mostly involve the outer upper quadrant, consistent with the predilection sites for breast cancer. The therapeutic principle used for the treatment of melanoma metastatic to the breast tissue does not differ from that of melanoma metastatic to other sites. The standard therapeutic approach remains surgery supplemented with radiotherapy, chemotherapy, immunotherapy, and other treatments. In the present study, the retrospective analysis showed that almost one-third of the patients received radical mastectomy after the metastasis of melanoma, whereas approximately half of them preferred radiotherapy and chemotherapy as adjuvant therapies for the treatment of metastases to the breast.

Most melanoma patients with metastases to the breast already have local spread and metastases to multiple other organs that commonly include the epithelial tissues, lungs, brain, and liver. We identified six out of 16 patients (37.5%) with metastases to other tissues and organs in addition to the breast. Metastasis to the breast is an indicator of poor prognosis. Ravdel et al. reported that the median survival time of 27 patients who had melanomas metastasized to the breast was 12.9 months. In the present study, we reviewed eight of 15 patients who died within 1 year after metastasis to the breast. The patient in the present study refused chemotherapy after metastasis to the breast. To date,
Case number	Sex	Age (years)	History	Primary surgery	Time to metastasis (months)	Other metastasis location	Site	Size (cm)	Management of breast lump	Adjuvant therapy after metastasis	Time interval between breast metastasis and death (months)	References	
1	F	55	Anorectal	RR	13	NA	Left upper outer	1.5	NP	Biotherapy	Chemotherapy	>5	This case
2	F	43	Conunctiva	LE	24	NA	Left	2	LE			4	8
3	F	78	Nasal cavity	NP	1	NF	Left upper	4	RR		NP	8	9
4	F	69	Infraorbital area	RR	204	Adrenal gland, anocella, axilla	Left lower inner and right upper outer	2.3; 1.8	RR	Chemotherapy		10	NA
5	F	58	Chest wall	RR	96	NF	Inferior to the right nipple	2.5	RR	Radiotherapy and chemotherapy		>36	11
6	F	42	Ankle	RR	48	Back, buttock, brain, and right leg Brain, lung, and abdominal lymph nodes	Left upper outer	2	LE	Radiotherapy and chemotherapy		NA	12
7	F	39	Trunk	RR	36	Left medial quadrant	1.4	LE	Radiotherapy and chemotherapy		NA	13	
8	M	62	Auricle	NA	96	Groin, abdominal wall, and arm	Left upper outer	4.5	RR	NP	NA	14	
9	M	50	Trunk	RR	2.5	NF	Left lower inner	0.8	RR	NP	>36	15	
10	F	53	Foot	NA	24	NF	Left and right	NA	NA	Chemotherapy	8	16	
11	F	70	NF	NA	8	Light upper	8	RR	NP	>42	18		
12	F	59	Anorectal	RR	4	Left upper outer	4	RR	NP	Mastectomy	NA	19	
13	F	34	Finger	LE	3	Left and right	1.5	NA	NA	NA	20		
14	F	34	Abdominal wall	NA	18	Right lower inner	1	NA	NA	NA	20		
15	F	70	Eye, axilla	NA	12	Right upper outer	2	NA	NA	NA	20		
16	F	53	Thigh	NA	72	Right upper outer	0.8	NA	NA	NA	20		
17	F	45	Arm	NA	10	Left upper outer	1	NA	NA	NA	20		
18	F	44	NF	NA	108	Right upper outer	3	NA	NA	NA	20		
19	M	56	NF	NA	12	Right lower outer	NA	NA	NA	NA	20		
20	M	71	Back	NA	12	Left	3	NA	NA	NA	20		
21	F	60	Leg	NA	178	Right upper outer	NA	LE	NA	14	21		
22	F	84	Ankle	NA	13	Right upper outer	NA	LE	NA	14	21		
23	F	48	Toe	NA	25	Right medial upper	NA	LE	NA	10	21		
24	F	68	Calf	NA	101	Right upper outer	NA	LE	NA	14	21		
25	F	47	Abdomen	NA	41	Right upper outer	NA	RR	NA	NA	21		
26	F	58	Abdomen	NA	110	Left medial lower	NA	NP	NA	2	21		
27	F	28	Temple	NA	72	Left medial lower	NA	LE	NA	NA	21		
28	F	43	Scapula	NA	55	Left medial lower	NA	LE	NA	NA	21		
29	F	40	Anorectal	RR	6	Left upper inner	1	NP	NP	<1	22		
30	F	59	Anorectal	RR	18	Right upper	3	LE	Chemotherapy	>12	23		
31	F	55	Anorectal	NP	3	Abdominal lymph nodes	Left	1.5	NP	NP	2.5	24	

Abbreviations: F, female; LE, local excision; M, male; NA, not available; NF, not found; Np, not performed; RR, radical resection.
she has been followed-up for 5 months with no considerable changes in her condition.

Conclusion
Metastasis of tumors to the breast is a very rare phenomenon. The possibility of metastasis should be considered in the patients with a history of melanoma or other malignant tumors when masses are detected in the breast tissue. The patients with metastasis to the breast often demonstrate accompanying multiple metastases to other tissues and organs; therefore, a comprehensive examination and assessment of the conditions of the patients are necessary, as it might directly influence the prognostic assessment and the establishment of effective therapeutic approaches.

Acknowledgments
This work was supported by the Natural Science Foundation of Liaoning Province, People’s Republic of China (numbers L2015598 and 201601968). The patient provided written informed consent for the publication of their data.

Disclosure
The authors report no conflicts of interest in this work.

References

1. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. *Cancer*. 1998;83(8):1664–1678.

2. Batus M, Waheed S, Ruby C, Petersen L, Bines SD, Kaufman HL. Optimal management of metastatic melanoma: current strategies and future directions. *Am J Clin Dermatol*. 2013;14(3):179–194.

3. Ishizone S, Koide N, Karasawa F, et al. Surgical treatment for anorectal malignant melanoma: report of five cases and review of 79 Japanese cases. *Int J Colorectal Dis*. 2008;23(12):1257–1262.

4. Slingsulf CL Jr, Vollmer RT, Seigler HF. Anorectal melanoma: clinical characteristics and results of surgical management in twenty-four patients. *Surgery*. 1990;107(1):1–9.

5. Brady MS, Kavolius JP, Quan SH. Anorectal melanoma: a 64-year experience at Memorial Sloan-Kettering Cancer Center. *Dis Colon Rectum*. 1995;38(2):146–151.

6. Ravedel L, Robinson WA, Lewis K, Gonzalez R. Metastatic melanoma in the breast: a report of 27 cases. *J Surg Oncol*. 2006;94(2):101–104.

7. Kharmoum S, Mohamed M, Benhammane H, et al. Conjunctival melanoma metastatic to the breast: a case report. *BMC Res Notes*. 2014;7:621.

8. Šanaka S, Sato N, Fujioka H, et al. A case of solitary breast metastasis from malignant melanoma of the nasolabial groove. *Oncol Lett*. 2012;4(5):889–892.

9. Karaman N, Doğan L, Atalay C, Özslan C. Bilateral breast metastasis as the first sign of recurrence of a cutaneous melanoma: a case report. *Ulus Cerrahi Derg*. 2013;29(3):147–149.

10. Carswell KA, Behranwala KA, Nerurkar A, Gerald PH. Breast carcinoma and malignant melanoma metastasis within a single axillary lymph node. *Int Surg Oncol*. 2006;3:32.

11. Samaraee AA, Khout H, Barakat T, Fasih T. Breast metastasis from a melanoma. *Ochsner J*. 2012;12(2):149–151.

12. Moschetta M, Telegrafo M, Lucarelli NM, et al. Metastatic breast disease from cutaneous malignant melanoma. *Int J Surg Case Rep*. 2014;5(1):34–36.

13. Kang BS, Kim SK. Malignant melanoma with metastasis to the male breast. *Indian J Dermatol Venereol Leprol*. 2014;80(6):566–568.

14. Uldag M, Citgez B, Özkaya O, Sakiz D. In-transit metastasis of the breast region from malignant melanoma of the trunk. *BMJ Case Rep*. 2009;2009:733–745.

15. Prvulović N, Dilas-Ivanović D, Nikolob N, Stojiljković B. Melanoma metastatic to the breast: a report of an unusual case. *Imag Oncol*. 2011;19:79–80.

16. Nalbant OA, Vural S, Keleş MC, Nalbant E, Kandıloglu AI. Metastatic malignant melanoma of the breast: a case report. *J Breast Health*. 2011;7(1):37–39.

17. Lee JFY, Leung KL, Lee CK, Lau WY. An unusual case of breast metastasis from an anorectal melanoma. *Eur J Surg Oncol*. 1999;25(25):441–442.

18. Ho LWC, Wong KP, Chan JMH, Chow LWC, Leung EYF, Leong L. MR appearance of metastatic melanotic melanoma in the breast. *Clin Radiol*. 2000;55(7):572–573.

19. Cangiarella J, Symmans WF, Cohen JM, Goldenberg A, Shapiro RL. Malignant melanoma metastatic to the breast. *Cancer Cytopathol*. 1998;84(3):160–162.

20. Löffeld A, Marsden JR. Management of melanoma metastasis to the breast: case series and review of the literature. *Br J Dermatol*. 2005;152(6):1206–1210.

21. Joshi AR, Bavikar RR, Khande T. Metastasis of rare tumor at an unusual site—a case report. *J Cytol Histol*. 2014;5:6.

22. Belbaraka R, Assabane A, Hachi H, Elgueddari BK, Errihani H. Breast metastases from anorectal melanoma. *J Med Cases*. 2010;29(2):168–174.

23. Özgüroğlu M, Ozaras R, Tahan V, et al. Anorectal melanoma metastatic to the breast. *J Clin Gastroenterol*. 1999;29(2):197–199.

24. Lee YN. Better prognosis of many cancers in female: a phenomenon not explained by study of steroid receptors. *J Surg Oncol*. 1984;25(4):255–262.

25. Arora R, Robinson WA. Breast metastases from malignant melanoma. *J Surg Oncol*. 1992;50(1):27–29.

26. Mukherji B, Wilhelm SA, Guha A, Ergin MT. Regulation of cellular immune response against autologous human melanoma: I. Evidence for cell-mediated suppression of in vitro cytotoxic immune response. *J Immunol*. 1986;135(6):1888–1892.

27. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. *J Exp Med*. 1995;182(1):1151–1164.

28. Jayaraman P, Alfaiaro MG, Svider PF, et al. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFβ1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity. *Clin Cancer Res*. 2014;20(24):6439–6451.

29. Janni W, Rack B, Sommer H, et al. Intra-mammary tumor location does not influence prognosis but influences the prevalence of axillary lymph-node metastases. *J Cancer Res Clin Oncol*. 2003;129(9):503–510.

30. Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional self-tolernce unmask endogenous antitumor immunity. *J Immunol*. 1998;152(6):1206–1210.

31. Nalbant OA, Vural S, Keleş MC, Nalbant E, Kandıloglu AI. Metastatic melanoma: report of five cases and review of 79 Japanese cases. *Int J Colorectal Dis*. 2008;23(12):1257–1262.

32. Amiehetti M, Perani B, Boi S. Metastases to the breast from extramammary malignancies: a report of four cases and review of literature. *Eur Radiol*. 2001;11(9):1659–1665.

33. Amiehetti M, Perani B, Boi S. Metastases to the breast from extramammary malignancies: a report of four cases and review of literature. *Eur Radiol*. 2001;11(9):1659–1665.

34. Amiehetti M, Perani B, Boi S. Metastases to the breast from extramammary malignancies: a report of four cases and review of literature. *Eur Radiol*. 2001;11(9):1659–1665.

35. Amiehetti M, Perani B, Boi S. Metastases to the breast from extramammary malignancies: a report of four cases and review of literature. *Eur Radiol*. 2001;11(9):1659–1665.
