A note on the zeros of generalized Hurwitz zeta functions

Giamila Zaghloul

Dipartimento di Matematica
Università degli Studi di Genova
via Dodecaneso 35, 16146 Genova

Abstract

Given a function \(f(n) \) periodic of period \(q \geq 1 \) and an irrational number \(0 < \alpha \leq 1 \), Chatterjee and Gun (cf. [4]) proved that the series \(F(s, f, \alpha) = \sum_{n=0}^{\infty} \frac{f(n)}{(n+\alpha)^s} \) has infinitely many zeros for \(\sigma > 1 \) when \(\alpha \) is transcendental and \(F(s, f, \alpha) \) has a pole at \(s = 1 \), or when \(\alpha \) is algebraic irrational and \(c = \frac{\max f(n)}{\min f(n)} < 1.15 \). In this note, we prove that the result holds in full generality.

1 Introduction

Let \(0 < \alpha \leq 1 \) be a real number, the Hurwitz zeta function is defined as

\[
\zeta(s, \alpha) = \sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s},
\]

for \(s = \sigma + it \in \mathbb{C} \) with \(\sigma > 1 \). It is known that it admits a meromorphic continuation to \(\mathbb{C} \) with a simple pole at \(s = 1 \). In their paper [5], Davenport and Heilbronn proved that if \(\alpha \notin \{1, \frac{1}{2}\} \) is either rational or transcendental, then \(\zeta(s, \alpha) \) has infinitely many zeros for \(\sigma > 1 \). The same result when \(\alpha \) is algebraic irrational was proved by Cassels in [3].

Let now \(f(n) \) be a periodic function of period \(q \geq 1 \). For \(\sigma > 1 \), we define the generalized Hurwitz zeta function as

\[
F(s, f, \alpha) = \sum_{n=0}^{\infty} \frac{f(n)}{(n+\alpha)^s}.
\]

As for \(\zeta(s, \alpha) \), \(F(s, f, \alpha) \) is absolutely convergent for \(\sigma > 1 \) and it admits a meromorphic continuation to the whole complex plane (see e.g. [4]).

In [4], Chatterjee and Gun assume that \(f(n) \) is positive valued and prove that \(F(s, f, \alpha) \) has infinitely many zeros in the half-plane \(\sigma > 1 \) if \(\alpha \) is transcendental and \(F(s, f, \alpha) \) has a pole at \(s = 1 \), or if \(\alpha \) is algebraic irrational and

\[
c := \frac{\max f(n)}{\min f(n)} < 1.15.
\]

In this note we show that these assumptions can be removed, proving the result in full generality, also including the case of \(\alpha \) rational, which can be easily deduced from [6].

Theorem 1. Let \(f(n) \) be a non-identically zero periodic function with period \(q \geq 1 \) and let \(0 < \alpha \leq 1 \) be a real number. If \(\alpha \notin \{1, \frac{1}{2}\} \), or if \(\alpha \in \{1, \frac{1}{2}\} \) and \(F(s, f, \alpha) \) is not of the form \(P(s) L(s, \chi) \), where \(P(s) \) is a Dirichlet polynomial and \(L(s, \chi) \) is the \(L \)-function associated to a Dirichlet character \(\chi \), then \(F(s, f, \alpha) \) has infinitely many zeros with \(\sigma > 1 \).

Observe that if \(\alpha = 1 \), \(F(s, f, 1) \) reduces to a Dirichlet series with periodic coefficients. By the result of Saias and Weingartner [6, Corollary], we know that it does not vanish in the half-plane \(\sigma > 1 \) if and only if it is the product of a Dirichlet polynomial and a Dirichlet \(L \)-function.
Remark 1. Examples of functions $f(n)$ giving rise to non-vanishing series in the right half-plane are $f(n) = \chi(n + 1)$, where χ is a Dirichlet character mod q, or $f(n) = (-1)^n$.

If $0 < \alpha < 1$ is rational, $F(s, f, \alpha)$ can be written as a linear combination of Dirichlet L-function,

$$F(s, f, \alpha) = \sum_{\chi \in \mathcal{C}} P_\chi(s)L(s, \chi),$$

where \mathcal{C} is a set of primitive characters and $P_\chi(s)$ is a Dirichlet polynomial. Again by [4], expression \ref{eq:2} does not vanish in the half-plane $\sigma > 1$ if and only if the sum reduces to a single term. Let now $\alpha = \frac{a}{b} \in \mathbb{Q}$, with $(a, b) = 1$, $1 < a < b$. Then,

$$F(s, f, a/b) = b^s \sum_{n=0}^{\infty} \frac{f(n)}{(bn + a)^s} = b^s \sum_{m \equiv a \pmod{b}} \frac{g(m)}{m^s},$$

where $g(m)$ is periodic of period bq. We prove the following lemma.

Lemma 1. Let $\alpha = \frac{a}{b}$, with $(a, b) = 1$, $1 \leq a < b$. If $\frac{a}{b} \neq \frac{1}{r}$, then $F(s, f, \frac{a}{b})$ is not of the form $P(s)L(s, \chi)$, where P is a Dirichlet polynomial and $L(s, \chi)$ is the Dirichlet L-function associated to the character χ.

Proof. Consider a Dirichlet polynomial $P(s) = \sum_{n \in \mathcal{N}} \frac{a(n)}{n^s}$, where \mathcal{N} is a non-empty finite set of positive integers, and let χ be a Dirichlet character mod k. Then,

$$P(s)L(s, \chi) = \sum_m \frac{b(m)}{m^s}, \quad \text{where} \quad b(m) = \sum_{n \in \mathcal{N}} a(n)\chi\left(\frac{m}{n}\right),$$

and the coefficients $b(m)$ are periodic of period $k \prod_{n \in \mathcal{N}} n$. Assume that there exist two coprime integers $h < r$, such that $b(m) \neq 0$ only if $m \equiv h \pmod{r}$. Let $n_1 := \min \mathcal{N}$, then $b(n_1) = a(n_1) \neq 0$ and so $n_1 \equiv h \pmod{r}$. On the other hand, $b(-n_1) = \chi(-1)a(n_1) \neq 0$, then $-n_1 \equiv h \pmod{r}$. It follows that $2h \equiv 0 \pmod{r}$, which implies $r = 2$. Thus, we conclude that expression \ref{eq:3} can be of the form $P(s)L(s, \chi)$ only if $\alpha = \frac{1}{2}$. \hfill \Box

Observe that if $\alpha = \frac{1}{2}$, the sum \ref{eq:2} reduces to a single term for instance if $g(m) = c\chi(m)$, where χ is a Dirichlet character mod $2q$ and c is a non-zero constant (i.e. $f(n) = c\chi(2n + 1)$). In this case, $F(s, f, \frac{1}{2}) = c^{2s}L(s, \chi) \neq 0$ in $\sigma > 1$.

If α is transcendental, the argument of Davenport and Heilbronn (cf. [5]) for the Hurwitz zeta function applies also to $F(s, f, \alpha)$. Indeed, we have

$$\sum_{n=0}^{\infty} \frac{|f(n)|}{(n + \alpha)^\sigma} \to +\infty \quad \text{as} \quad \sigma \to 1^+.$$ \hfill \ref{eq:4}

Then, the assumption on the existence of the pole can be avoided and one can proceed as in [5] or [4]. Thus, we focus on the case of α algebraic irrational. The proof of the theorem in this case is based on a modification of Cassels’ original lemma (see [3]). A suitable decomposition over the residue classes allows us to remove the assumption \ref{eq:1}.

2 Proof of the theorem

As observed, we can assume that α is algebraic irrational. Let $K = \mathbb{Q}(\alpha)$ and let O_K be its ring of integers. Denote by \mathfrak{a} the denominator ideal of α, i.e. $\mathfrak{a} = \{ r \in O_K \mid r \cdot (\alpha) \subseteq O_K \}$, where (α) is the principal fractional ideal generated by α. Then for any integer $n \geq 0$, $(n + \alpha)\mathfrak{a}$ is an integral ideal. The following result holds.
Lemma 2. Let $0 < \alpha < 1$ be an algebraic irrational number and let $K = \mathbb{Q}(\alpha)$. Given a positive integer q, fix $b \in \{0, \ldots, q-1\}$. There exists an integer $N_0 > 10^6q$, depending on α and q, satisfying the following property:

for any integer $N > N_0$ put $M = \lfloor 10^{-6}N \rfloor$, then at least $0.51\frac{M}{q}$ of the integers $n \equiv b \pmod{q}$, $N < n \leq N + M$ are such that $(n + \alpha)a$ is divisible by a prime ideal p_n for which

$$p_n \mid \prod_{m \leq N + M, m \neq n} (m + \alpha)a.$$

In the following sections, we first show how to complete the proof of Theorem 1 assuming the above lemma and then we give a proof of the lemma itself.

2.1 Proof of the main result

We rearrange Cassels’ argument with some suitable small modifications. As in [3], or directly by Bohr’s theory (see [1, Theorem 8.16]), it suffices to show that for any $0 < \delta < 1$ there exist a σ, with $1 < \sigma < 1 + \delta$, and a completely multiplicative function $\varphi(n) := \varphi((n + \alpha)a)$ of absolute value 1, such that

$$\sum_{n=0}^{\infty} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} = 0.$$

Notice that it is enough to define $\varphi(p)$, with $|\varphi(p)| = 1$, on the prime ideals p dividing $(n + \alpha)a$.

Let $0 < \delta < 1$, $N_1 = \max(N_0, 10^2q)$ and consider σ such that $1 < \sigma < 1 + \delta$ and

$$\sum_{n=0}^{N_1} \frac{|f(n)|}{(n + \alpha)^\sigma} < \frac{1}{100} \sum_{n=N_1+1}^{\infty} \frac{|f(n)|}{(n + \alpha)^\sigma}. \quad (5)$$

Observe that such a σ exists by [3]. Now, for $p \mid a$ or $p \mid (n + \alpha)a$ with $n \leq N_1$ we choose $\varphi(p) = 1$.

Proceeding by induction, for $j \geq 1$, we put $M_j = \lfloor 10^{-6}N_j \rfloor$ and $N_{j+1} = N_j + M_j$. Suppose we have defined $\varphi(p)$ for any $p \mid (n + \alpha)a$ with $n \leq N_j$ in such a way that

$$\left| \sum_{n=0}^{N_j} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} \right| < \frac{1}{100} \sum_{n=N_{j+1}}^{\infty} \frac{|f(n)|}{(n + \alpha)^\sigma}. \quad (6)$$

We want to define $\varphi(p)$ for any prime ideal

$$p \mid \prod_{n \leq N_{j+1}} (n + \alpha)a \quad (7)$$

in such a way that (6) holds for $j + 1$ in place of j. For any $b \in \{0, \ldots, q-1\}$, we divide the integers $N_j < n \leq N_{j+1}$, with $n \equiv b \pmod{q}$ into two sets $\mathfrak{A}(b)$ and $\mathfrak{B}(b)$ according to whether a prime ideal p_n as in Lemma 2 exists or not for $N = N_j$ and $M = M_j$. We can easily notice that $|\mathfrak{A}(b)| \geq 5$, since

$$|\mathfrak{A}(b)| \geq \frac{54}{100} \cdot \frac{M_j}{q} = \frac{54}{100} \cdot \frac{10^{-6}N_j}{q},$$

and $N_j \geq 10^6q$. We have then divided the integers $N_j < n \leq N_{j+1}$ into the disjoint sets $\mathfrak{A} = \bigcup_{n=0}^{q-1} \mathfrak{A}(b)$ and $\mathfrak{B} = \bigcup_{n=0}^{q-1} \mathfrak{B}(b)$. As in Cassels’, given a prime ideal as in (7), we distinguish three cases:

1. $p \mid \prod_{n \leq N_j} (n + \alpha)a$: in this case $\varphi(p)$ is fixed by the inductive hypothesis.
2. $p = p_n$ for some $n \in \mathfrak{A}$
3. the remaining p with property (7). In this case, we fix arbitrarily $\varphi(p) = 1$.
In particular, \(\varphi(n) \) is defined for any \(n \in \mathcal{B} \), whereas if \(n \in \mathcal{A} \), we have that \(\varphi(n) = c_n \varphi(p_n) \), with \(c_n \) fixed of modulus 1. Now assume \(n \in \mathcal{A} \) and \(n \equiv b \mod {q} \) with \(b \in \{ 0, \ldots, q - 1 \} \). Since \(f(n) \) is periodic of period \(q \) and \(|\mathcal{A}(b)| \geq 5 \), by Bohr’s results on addition of convex curves (cf. [2]), for an appropriate choice of \(\varphi(p_n) \) for all \(n \in \mathcal{A}(b) \), we have that

\[
\sum_{n \in \mathcal{A}(b)} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} = \sum_{n \in \mathcal{A}(b)} \frac{f(n)c_n\varphi(p_n)}{(n + \alpha)^\sigma} = f(b) \sum_{n \in \mathcal{A}(b)} \frac{c_n\varphi(p_n)}{(n + \alpha)^\sigma}
\]
takes any given value \(z \) satisfying

\[
|z| \leq S_{3,b} := |f(b)| \sum_{n \in \mathcal{A}(b)} \frac{1}{(n + \alpha)^\sigma}.
\]

Let now

\[
\Lambda(b) := f(b) \left(\sum_{n \leq N_j} \frac{\varphi(n)}{(n + \alpha)^\sigma} + \sum_{n > N_j} \frac{\varphi(n)}{(n + \alpha)^\sigma} \right),
\]

and define \(\varphi(p_n) \) for \(n \in \mathcal{A}(b) \) so that

\[
\sum_{n \in \mathcal{A}(b)} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} = \begin{cases} -\Lambda(b) & \text{if } \left| \Lambda(b) \right| \leq S_{3,b} \\ -S_{3,b} & \text{if } \left| \Lambda(b) \right| > S_{3,b} \end{cases}
\]

With this choice, it is easy to verify that

\[
\left| \sum_{n \leq N_{j+1}} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} \right| \leq \max(0, \left| \Lambda(b) \right| - S_{3,b}). \tag{8}
\]

We introduce the notation

\[
S_{1,b} = \sum_{n=0}^{N_j} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma}, \quad S_{4,b} = |f(b)| \sum_{n > N_{j+1}} \frac{1}{(n + \alpha)^\sigma}, \quad S_{2,b} = |f(b)| \sum_{n \in \mathcal{A}(b)} \frac{1}{(n + \alpha)^\sigma}.
\]

Now, recalling that \(\mathcal{B}(b) \) contains at most \(0.46 \frac{M}{q} \) elements and \(\mathcal{A}(b) \) at least \(0.54 \frac{M}{q} \), we have

\[
S_{3,b} \geq \frac{54}{46} \frac{(N_j + \alpha)^\sigma}{(N_{j+1} + \alpha)^\sigma} > \frac{101}{99}.
\]

Thus, we deduce

\[
S_{3,b} - S_{2,b} > \frac{1}{100} (S_{3,b} + S_{2,b}). \tag{9}
\]

Now, by the equations (9), (8) and (9) we get

\[
\left| \sum_{n=0}^{N_{j+1}} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} \right| < \frac{1}{100} S_{4,b} = \frac{1}{100} \sum_{n > N_{j+1}} \frac{|f(n)|}{(n + \alpha)^\sigma}.
\]

Summing over the classes modulo \(q \), we finally get that

\[
\left| \sum_{n=0}^{N_{j+1}} \frac{f(n)\varphi(n)}{(n + \alpha)^\sigma} \right| < \frac{1}{100} \sum_{b=0}^{q-1} S_{4,b} < \frac{1}{100} \sum_{n > N_{j+1}} \frac{|f(n)|}{(n + \alpha)^\sigma}.
\]

So, equation (4) also holds for \(j + 1 \) in place of \(j \), as desired. By induction, it then holds for all \(j \geq 1 \). Since \(F(s, f, \alpha) \) is absolutely convergent for \(\sigma > 1 \), the right-hand side goes to zeros as \(j \to +\infty \). It then follows that \(\sum_{n=0}^{\infty} \frac{|f(n)|}{(n + \alpha)^\sigma} = 0 \) and the proof is complete, since by almost periodicity and Rouché’s theorem we can conclude the existence of infinitely many zeros for \(F(s, f, \alpha) \) with \(\sigma > 1 \).
2.2 Proof of Lemma 2

Let \(\mathfrak{P} \) be the set of the prime ideals \(\mathfrak{p} \) of \(O_K \) defined as in Cassels’, with the added condition that \((p, q) = 1\), where \(p := \text{Norm}(\mathfrak{p}) \). Then, for any integer \(n \) we write

\[
(n + \alpha)\mathfrak{a} = b \prod_{\mathfrak{p}} p^{u(p)},
\]

(10)

where \(u(p) \) is an integer and \(b \) contains all the prime factors of \((n + \alpha)\mathfrak{a}\) which are not in \(\mathfrak{P} \).

Consider now an integer \(N > 10^6 q \) and let \(M = \lfloor 10^{-6} N \rfloor \). We define \(\mathfrak{G} = \mathfrak{G}(N, q, b) \) as the set of the integers \(N < n \leq N + M \), \(n \equiv b \pmod{q} \) such that, for all the primes \(\mathfrak{p} \in \mathfrak{P} \) in the factorization \(\text{(10)} \) one has \(p^{u(p)} < M \). Let \(S = S(N, q, b) = |\mathfrak{G}| \). We want an upper bound for \(S \).

For any prime \(\mathfrak{p} \in \mathfrak{P} \) and any integer \(v \), let \(\phi(p^v, n) \) and \(\sigma(n) \) be defined as in [3]. Thus, the same argument gives, as \(N \to \infty \),

\[
\sum_{n \in \mathfrak{G}} \sigma(n) \geq (2 + o(1)) S \log M.
\]

Moreover, by the definition of \(\mathfrak{P} \), if \(\mathfrak{p}^v \mid (n_1 + \alpha)\mathfrak{a} \) and \(\mathfrak{p}^v \mid (n_2 + \alpha)\mathfrak{a} \) for some integer \(v \) then

\[
n_1 \equiv n_2 \pmod{p^v}.
\]

(12)

Since we assumed \((p, q) = 1\), by the Chinese remainder theorem \(n_1 \equiv n_2 \pmod{p^v q} \). As in [3], we get

\[
\sum_{n \in \mathfrak{G}} \phi(p^v, n) \leq \sum_{N < n \leq N + M \atop n \equiv b \pmod{q}} \phi(p^v, n) \leq \left(\frac{M}{p^v q} + 1 \right) \log p,
\]

(13)

and, assuming \(p_1 \neq p_2 \),

\[
\sum_{n \in \mathfrak{G}} \phi(p_1^v, n) \phi(p_2^v, n) \leq \sum_{N < n \leq N + M \atop n \equiv b \pmod{q}} \phi(p_1^v, n) \phi(p_2^v, n) \leq \log p_1 \log p_2 \left(\frac{M}{p_1 p_2 q} + 1 \right).
\]

(14)

Writing \(\sigma(n) = \sigma_1(n) + \sigma_2(n) + \sigma_3(n) \), with the same notation of [3], using the prime ideal theorem, partial summation and equations \(\text{(13), (14)} \), we get

\[
\sum_{n \in \mathfrak{G}} \sigma_2(n) \leq \left(\frac{1}{2} + o(1) \right) \frac{M}{q} \log M,
\]

\[
\sum_{n \in \mathfrak{G}} (\sigma_3(n))^2 \leq \left(\frac{3}{8} + o(1) \right) \frac{M}{q} \log^2 M,
\]

and

\[
\sum_{n \in \mathfrak{G}} \sigma_1(n) = O(M) = o(M \log M).
\]

We define \(\rho := \frac{qS}{M} \) and the proof now proceeds exactly as in Cassels’. The better numerical result simply follows by a more precise choice of \(\rho \) in expression \(\text{(37)} \) of [3].

Acknowledgments

I would like to thank my PhD supervisors, Alberto Perelli and Sandro Bettin, for their valuable suggestions.

References

[1] T. M. Apostol, Modular functions and Dirichlet series in Number Theory, 2nd ed., Springer-Verlag, 1990.
[2] H. Bohr, *Om Addition af uendelig mange konvekse Kurver*, Dansk Videnskab. Selsk. Forh. 4 (1913), 325–366.

[3] J.W.S. Cassels, *Footnote to a note of Davenport and Heilbronn*, J. London Math. Soc. 36 (1961), 177-184.

[4] T. Chatterjee, S. Gun, *On the zeros of generalized Hurwitz zeta functions*, J. Number Theory, 145 (2014), 352-361.

[5] H. Davenport, H. Heilbronn, *On the zeros of certain Dirichlet series I, II*, Journal London Math. Soc. 11 (1936), 181-185, 3017-312.

[6] E. Saias, A. Weingartner, *Zeros of Dirichlet series with periodic coefficients*, Acta Arithmetica 140 (2009), 335-344.