Pancreatic fistula after pancreatectomy: Evolving definitions, preventive strategies and modern management

Shailesh V Shrikhande, Melroy A D’Souza

Abstract
Pancreatic resection is the standard treatment for pancreatic malignancy and certain benign pancreatic disorders. However, pancreatic resection is technically a demanding procedure and whereas mortality after a pancreaticoduodenectomy is currently <3%-5% in experienced high-volume centers, post-operative morbidity is considerable, about 30%-50%. At present, the single most significant cause of morbidity and mortality after pancreatectomy is the development of pancreatic leakage and fistula (PF). The occurrence of a PF increases the length of hospital stay and the cost of treatment, requires additional investigations and procedures, and can result in life-threatening complications. There is no universally accepted definition of PF that would allow standardized reporting and proper comparison of outcomes between different centers. However, early recognition of a PF and prompt institution of appropriate treatment is critical to the prevention of potentially devastating consequences. The present article, reviews the evolution of post-resection pancreatic fistula as a concept, and discusses evolving definitions, the current preventive strategies and the management of this problem.

Key words: Pancreatic fistula; Pancreaticoduodenectomy; Pancreatic anastomosis; Pancreatic anastomotic failure; Complications

INTRODUCTION
Pancreatic resection is the standard treatment for pancreatic malignancy and certain benign pancreatic disorders. However, pancreatic resection is technically a demanding procedure. At diagnosis, more than 85% of pancreatic tumors are at an advanced stage. Thus, potentially curative resections are possible only in 10%-15% patients\(^1,2\). The standard surgical procedure for a lesion in the pancreatic head is pancreaticoduodenectomy (PD), while distal pancreatectomy (DP) with or without splenectomy, is performed for tumors in the body and tail.

At experienced high-volume centers, mortality after PD is currently 3%-5%. However, there is considerable post-operative morbidity, around 30%-50%\(^3,4\). At present, the single most significant cause of morbidity and mortality after PD is the development of pancreatic leak and fistula (PF), and rates of up to 20% are reported from centers specializing in pancreatic surgery\(^5,6\). The development of PF increases the length of hospital stay and the cost of treatment, necessitates the use of additional investigations and procedures, and can cause life-threatening complications.

Various strategies have been employed to decrease the incidence of PF, including pharmacologic manipulation, and modifications and refinements in the surgical technique. These have resulted in varying degrees of success. However, it is clear that early recognition of PF and prompt institution of appropriate treatment is the cornerstone in the prevention of potentially devastating consequences. The present article reviews the evolution of post-resection pancreatic fistula, and discusses the evolving definitions, and current preventive strategies and management approaches.
Clinical impact

"Transient spectrum of clinically relevant problems associated with anastomotic failures (PAF)" which includes workers sought to redefine pancreatic fistulae as "pancreatic also the result of a pancreatic anastomotic failure. These publication, Strasberg rates has been questioned by some workers. In a recent definition in allowing uniform comparisons of fistula grades, there was a negative clinical and economic im validate the ISGPF classification in 176 patients who shown in Table 1. More recently, Pratt used definitions and the new grading of the ISGPF are clinical impact on the patient's hospital course and even patient's inpatient setting

DEFINITIONS

There is no universally accepted definition of PF. While some workers have emphasized on the volume (and co colour) of the drain output, and its duration, others have stressed more on the amylase content of the drainage fluid. In a study published in 2004, Bassi et al summarized 4 definitions of PF (Table 1) and applied each definition to 242 patients who had undergone pancreatic resection. The results revealed wide variations in the incidence of PF, from 10% to 29% depending upon the definition used. Therefore, it is essential to standardize the reporting of post-PD complications, especially PF. This led to the unified definition, now known as the International Study Group on Pancreatic Fistula (ISGPF) definition. The definition was intended to standardize the reporting of postoperative PF. The essential component of an anastomotic leak was the high amylase content (> 3 times the upper normal serum value), of the drain fluid (of any measurable volume), at any time on or after the 3rd postoperative day. The ISGPF definition also graded PF (Grades A, B and C) according to the clinical impact on the patient's hospital course and eventual outcome. The various components of the previously used definitions and the new grading of the ISGPF are shown in Table 1. More recently, Pratt et al sought to validate the ISGPF classification in 176 patients who underwent PD and concluded that with increasing fistula grades, there was a negative clinical and economic impact on patients and their healthcare resources.

However the applicability and utility of the ISGPF definition in allowing uniform comparisons of fistula rates has been questioned by some workers. In a recent publication, Strasberg et al proposed that intra-abdominal collections along with hemorrhage and peritonitis are also the result of a pancreatic anastomotic failure. These workers sought to redefine pancreatic fistulae as "pancreatic anastomotic failures (PAF)" which includes the entire spectrum of clinically relevant problems associated with the loss of integrity of a pancreatico-enterostomy. They also sought to categorize fistulae that occur after DP or segmental resection and enucleation, situations which do not involve pancreatico-enterostomy, as an entity that is distinct from fistula occurring after PD. These fistulae were termed as pancreatic occlusion failure (POF). POF commonly runs a more benign course (compared to PAF), since enzyme activation does not occur in the absence of a pancreaticoenteric anastomosis. Strasberg et al also noted that the definition of PAF should only include patients in whom there is a change in the management, whereas asymptomatic fistulae with merely high drain amylase and no change in the clinical course should not be considered as an operative complication, as proposed by the ISGPF definition. They thus defined PAF and graded its severity into 7 categories in 5 grades (Table 2). They proposed the adoption of the definition of PF used by the Johns Hopkins group. These workers considered any intra-abdominal fluid collection after pancreatic surgery as PAF, if it was not found to be caused by the failure of other anastomoses performed during a PD. In addition, any hemorrhage was considered as PAF unless the pancreatico-enterostomy was shown to be intact.

With respect to intra-abdominal collections, a recent study concluded that post-operative intra-abdominal collections after PD were PF. In this study, it was observed that when the initial drain amylase levels were normal, repeat estimation of the amylase level helped uncover previously undiagnosed PF or newly developed PF, thus providing a more precise estimate of postoperative PF rate. From the preceding discussion it is evident that the definition of what constitutes a pancreatic fistula or anastomotic failure is still a matter of considerable debate. Clearly, more studies are needed before a common unifying definition of PF can be adopted.

Table 1 Different components of previously used definitions of pancreatic fistula and the new grading system used by the International Study Group for Pancreatic Fistula (ISGPF)

Grade	Definition	Impact	Clinical impact
A	Transient fistula	No clinical impact	No peri-pancreatic collections on CT scan; change in management
B	Grade B	Clinical impact	Peri-pancreatic drains in place or repositioned to drain collections; change in management is required
C	Severe clinical impact	Worrisome peri-pancreatic collections that require percutaneous drains; major change in management usually in ICU setting; possible re-surgery to salvage a difficult situation (completion pancreatectomy etc)	

PREVENTIVE STRATEGIES FOR PF

Considering the dismal outcome of a PF, much effort...
Pancreatic duct occlusion

Occlusion of the pancreatic duct can be achieved by simple suture ligation of the duct or injection of the duct with non-reabsorbable or reabsorbable glues. Simple duct ligation, advocated in the past, has been largely abandoned due to high PF rates, nearing 50%.[17,18] However, in a recent prospective randomized controlled trial (RCT) by Tran et al.[19] which compared pancreaticoduodenectomy with duct occlusion alone, there were no significant differences in the morbidity or mortality, but the incidence of diabetes mellitus was higher in patients with duct occlusion.

In a study on 51 patients, Di Carlo et al.[20] used a nonreabsorbable glue (neoprene) to occlude the pancreatic duct after PD. The authors concluded that intra-duetal injection of Neoprene after pancreaticoduodenectomy was a safer procedure compared to pancreaticojunctional anastomosis and was not associated with post surgical diabetes. In a prospective, multi-center RCT of 182 patients undergoing either PD or DP, 102 patients received pancreatic ductal occlusion with fibrin glue. Analysis showed that duct occlusion had no effect on the rate or severity of intra-abdominal complications after pancreatic resection.[21]

Table 2: Pancreatic anastomotic failure (PAF) as described by Strasberg et al.

Grade	Definition
Grade 1	Deviation from normal postoperative course without pharmacologic, endoscopic, surgical or radiologic intervention (certain drugs allowed)
Grade 2	Pharmacologic treatment needed. Includes blood transfusions and total parenteral nutrition
Grade 3 (a/b)	Surgical, endoscopic or interventional radiologic treatment needed
Grade 4 (a/b)	Life threatening complications and organ dysfunction
Grade 5	Death due to PAF

Type of pancreatic anastomosis: Pancreaticojejunostomy (PJ) versus Pancreatecogastrostomy (PG)

The safe reconstruction of pancreaticoenteric continuity is the key to preventing a PF. The risk of fistula formation depends on the consistency of the remnant pancreas, caliber of the main pancreatic duct, pancreatic vascularity and the technique of construction of the pancreatic anastomosis.[22,23] PJ and PG are the two most commonly employed techniques for the reconstruction of pancreaticoenteric continuity. PJ can be performed by the dunking method or the duct-to-mucosal anastomosis. Surgical techniques such as PG and PJ which are employed for the management of the pancreatic remnant after PD have been evaluated in only a few randomized controlled studies.[14,24,25] Earlier uncontrolled studies were in favor of PG.[26,27] Due to the close proximity of the stomach, a PG was believed to be easier to perform and less prone to ischemia as a result of the rich blood supply of the stomach. However, all the RCTs have failed to show any difference in the overall post-operative complication rate or incidence of PF. Two recent meta-analyses have shown that while non-randomized observational studies showed a superiority of PG over PJ, RCTs failed to show superiority of any one technique, thereby concluding that both PJ and PG provided equivalent results.[28,29] Thus, it can be concluded that as long as a tension-free anastomosis between well perfused tissues is performed, employing fine sutures and using the same technique, any type of pancreatic anastomosis should result in a good outcome.[30]

Stenting of the main pancreatic duct

Stenting of the pancreatic duct during pancreaticoenteric anastomosis facilitates the precise placement of mucosal sutures, diverts pancreatic juice away from the anastomotic site and decreases the risk of inadvertent pancreatic duct occlusion. In doing so, it is believed that the anastomotic integrity improves, thereby reducing the PF rate. The results of this strategy have been encouraging.[31,32] In a prospective but non-randomized trial in 85 patients, Roder et al.[31] demonstrated that stenting the pancreatic duct reduced the PF rate from 68% to 29.3%, and the median hospital stay from 29 d to 13 d. Poon et al.[33] reported that external drainage of the pancreatic duct with a stent reduced the leakage of PJ after PD. On
the other hand, some well designed studies have shown no benefit of internal stenting in preventing PF\cite{34,33}. Thus, the available evidence is conflicting and the use of stents depends on personal choice and experience of the pancreatic surgeon.

Role of magnification in pancreatic anastomosis

Since a duct to mucosa anastomosis is crucial for good outcome, a meticulous approximation assumes great importance. Operating loupes have been used by many experts to allow precise construction of a pancreatic anastomosis. Wada et al\cite{36} in a retrospective analysis highlighted the role of the operating microscope in constructing a pancreatic anastomosis. Technical errors which may occur during anastomosis include crossing of the sutures, including both sides of the pancreatic duct while passing the suture, taking unequal and inadequate amounts of pancreatic duct and jejunal mucosa, and incorrect knot placement resulting in air knots. All these events can be avoided by using magnification. The study by Traverso, reported a markedly reduced incidence of PF with the operating microscope compared to operating loupes.

OTHER SURGICAL TECHNICAL MODIFICATIONS/APPROACHES

Blood supply based technique of PJ

One of the few modifications which have demonstrated a substantial reduction in the rate of PF after PD was proposed by Strasberg et al\cite{37}. These workers put forward the concept of vascular watershed in the pancreatic neck and its role in ischemia of the cut surface of the pancreatic remnant. In their technique, the blood supply at the cut surface of the pancreas was evaluated, and if necessary, the pancreas was cut back 1.5 cm to 2.0 cm to improve the blood supply (n = 47; 38% patients). Thereafter, the anastomosis was performed meticulously under magnification. The authors concluded that a combination of optimization of blood supply to the pancreatic remnant, and a meticulous technique resulted in reduced PF rate, from previous reports of 10% to 1.6% in their series of 123 resections.

Duct-to-mucosa versus invagination anastomosis

A number of studies have demonstrated a lower rate of PF using the duct-to-mucosa technique for pancreatic anastomosis\cite{38-40}. However a prospective RCT by Bassi et al\cite{41} revealed no significant difference in the morbidity and PF rate between duct-to-mucosa anastomosis and single layer end-to-side pancreatico-jejunostomy.

Total pancreatectomy

The rationale for total pancreatectomy is that it allows a more extensive lymphadenectomy, obviates the risk of leak from the pancreatic anastomosis and decreases the chances of a positive resection margin. However, total pancreatectomy is associated with obligatory diabetes mellitus, decreased immunity because of splenectomy, and loss of pancreatic exocrine function. Most studies have reported either worse survival or no survival difference between total pancreatectomy and standard PD\cite{42-44}. Total pancreatectomy should not be performed in most cases of carcinoma of the pancreatic head, unless serial positive resection margins are obtained on frozen section examination, or the pancreas is deemed to be very soft with a very high risk of pancreatic leak, and in patients with documented family history of multi-centric disease\cite{45}.

Stapled or hand-sewn closure of the pancreatic remnant after DP

PF remains a major cause of morbidity after DP. A number of techniques have been used to reduce the incidence of PF after DP, including hand-sewn closure, staple closure, combined staple and suture closure, fibrin glue application, serosal jejunal patch and prolamine injection\cite{46}. While hand-sewn closure has stood the test of time, while staplers is gaining increasing acceptance, especially with the advent of laparoscopic DP. Knaebel et al\cite{47} performed a meta-analysis that included six studies comparing stapler versus hand-sutured closure, which showed a non-significant combined odds ratio for pancreatic fistula of 0.66 (95% confidence interval 0.35 to 1.26, P = 0.21) in favor of staple closure. However, a large retrospective study of 302 DP's, showed that stapler closure was associated with a higher rate of pancreatic fistula\cite{48}. Thus, the jury is still out and surgeons must follow their own individual experience when dealing with pancreatic remnant after DP. In hand sewn closure, the guiding principle is to make every effort to identify the pancreatic duct, close it with fine sutures and then close the entire stump with sutures.

Role of Octreotide and Somatostatin analogues in decreasing the rate of PF after pancreatic surgery

Octreotide is a synthetic analogue of somatostatin, and like somatostatin inhibits pancreatic exocrine secretion. Several prospective RCTs conducted in Europe evaluated the use of subcutaneous octreotide/somatostatin in patients undergoing elective pancreatic resection for different indications\cite{49-52}. The results show that octreotide reduced the development of pancreatic fistula and other complications. However RCTs by Sarr et al\cite{53}, Yeo et al\cite{54} and Lowy et al\cite{55}, failed to show a similar benefit in the peri-operative use of somatostatin analogues in patients undergoing pancreatic resection. Meta-analysis and systematic reviews of octreotide use have also yielded conflicting results\cite{56,57}. These findings notwithstanding, many surgeons continue to use octreotide in patients undergoing pancreatic surgery. Selective administration of octreotide in patients considered to have high risk pancreas (soft texture, small duct size, and presence of ampullary, duodenal, cystic or islet cell pathology) may be associated with a decreased incidence of PF\cite{57}.

MANAGEMENT OF PF (FIGURE 1)

Despite numerous novel strategies designed to prevent the development of postoperative PF, it is clear that in order to minimize the potentially devastating effect of PF,
it is essential that this complication is recognized as soon as it develops, and appropriate treatment measures are instituted promptly. The suspicion of PF begins whenever there is a deviation in the normal clinical course of a patient who has just undergone a major pancreatic surgery. This may mean a patient who develops unexpected upper abdominal discomfort (often associated with fever), leucocytosis, increasing tachycardia, or just feels unwell after an apparently “normal” initial post-operative recovery. Furthermore, there may be high amylase content of a drain, a persistently high drain output, altered drain colour and quality, and other complications such as severe wound infection and hemorrhage. Routine radiologic evaluation is neither necessary nor recommended for establishing a diagnosis of PF. What constitutes a PF is a matter of which definition is used, and varies from center to center. Regardless, once a diagnosis of PF is established, aggressive and appropriate conservative management is the key to successful outcome.

The management in the majority of patients is based on conservative measures. However, interventional radiological assistance is sometimes required, but repeat surgery is rarely indicated.

CONSERVATIVE MANAGEMENT

A conservative approach to the management of PF is successful in over 90% patients. This involves clinical evaluation of the patient at short intervals. If the patient does not have any fever, tachycardia, leucocytosis, severe wound infection, and the abdomen is soft (with functioning bowel), and no signs of peritonitis, it is safe to continue with conservative measures. These measures include maintenance of enteral nutrition (through an operatively placed nasojejunal tube or a feeding jejunostomy), nasogastric suction (in the presence of delayed gastric emptying secondary to PF), and appropriate antibiotic coverage. In situations where the abdomen has not “really settled”, the option of total parenteral nutrition should be considered. All along, the abdominal drains and the main wound require close attention. The effectiveness of octreotide in aiding the closure of a PF has not provided encouraging results. The interventional radiologist may play a crucial role by image-guided repositioning of operatively placed abdominal drains and insertion of percutaneous catheters to drain collections seen on CT scan. Delayed hemorrhage following PF is perhaps best managed by angiography and embolization of the bleeding vessel. This treatment is successful in stopping the bleeding in 80% patients. The prognosis of patients with post-pancreatectomy hemorrhage depends on whether or not PF is present. The decision-making should be guided by factors such as the time of onset of the bleeding, presence of PF, vascular pathology, and the
underlying disease process. The failure to successfully control hemorrhage by conservative measures like angiographic embolization may necessitate repeat surgery. Obviously, the management of complications associated with PF requires a multidisciplinary approach, involving the pancreatic surgeon, intensive care team, and interventional radiologists. Kazanjian et al. evaluated 437 patients who underwent PD. A total of 55 (12.6%) developed PF; 52 patients (94.5%) had successful conservative management with prolonged tube drainage, 4 required percutaneous drainage and only 3 patients (5.5%) had repeat surgery.

OPERATIVE MANAGEMENT

Pancreatic resection is now considered a safe procedure when performed in high volume centers. PF can be successfully managed by conservative measures, as described earlier. The indications for surgical intervention in PF include worsening clinical parameters, signs of spreading peritonitis, severe wound infection, wound dehiscence, and delayed hemorrhage. When a decision is made to reoperate a patient with PF, the following measures should be considered: abdominal lavage with repositioning of drains, control of hemorrhage, use of sutures to control a small dehiscence, disconnection of the pancreatic anastomosis, a feeding jejunostomy (if not already in place) and occasionally completion pancreatectomy. Patients with delayed hemorrhage who require repeat surgery, a thorough exploration of the resection site is required and if necessary, ligation of the arterial stumps (including occasionally the common hepatic artery) and inspection of the anastomosis by enterotomy. It is worth noting that with improvements in the results of pancreatic surgery and the success of interventional radiology in managing complications, completion pancreatectomy is seldom required, and it has even been suggested that it should no longer be considered in patients with a PF.

The approach to the management of a patient with PF is summarized in Figure 1.

REFERENCES

1 Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Buchler MW. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 2004; 91: 586-594
2 D’souza MA, Shrikhande SV. Pancreatic resectional surgery: an evidence-based perspective. J Cancer Res Ther 2008; 4: 77-83
3 Shrikhande SV, Barreto G, Shukla PJ. Pancreatic fistula after pancreaticoduodenectomy: the impact of a standardized technique of pancreaticojunostomy. Langenbecks Arch Surg 2008; 393: 87-91
4 Schmidt CM, Powell ES, Yiannoutsos CT, Howard TJ, Wiebke EA, Wiesnauer CA, Baumgardner JA, Cummings OW, Jacobson LE, Broadie TA, Canal DF, Goulet RJ Jr, Curie EA, Cardenes H, Watkins JM, Loehrle PJ, Lillemoed KD, Madura JA. Pancreaticojejunostomy: a 20-year experience in 516 patients. Arch Surg 2004; 139: 718-725; discussion 725-727
5 Bassi C, Falconi M, Salvia R, Mascetta G, Molinari E, Pederzoli P. Management of complications after pancreaticoduodenectomy in a high volume centre: results on 150 consecutive patients. Dig Surg 2001; 18: 453-457; discussion 458
6 Balcom JH 4th, Rattner DW, Warshaw AL, Chang Y, Fernandez-del Castillo C. Ten-year experience with 733 pancreatic resections: changing indications, older patients, and decreasing length of hospitalization. Arch Surg 2001; 136: 391-398
7 Buchler MW, Friess H, Wagner M, Kulli C, Wagener V, Z’Graggen K. Pancreatic fistula after pancreatic head resection. Br J Surg 2000; 87: 889-899
8 Pederzoli P, Bassi C, Falconi M, Camboni MG. Efficacy of octreotide in the prevention of complications of elective pancreatic surgery. Italian Study Group. Br J Surg 1994; 81: 265-269
9 Sarr MG. The potent somatostatin analogue vaptreotide does not decrease pancreatic-specific complications after elective pancreatectomy: a prospective, multicenter, double-blinded, randomized, placebo-controlled trial. J Am Coll Surg 2003; 196: 556-564; discussion 564-565; author reply 565
10 Bassi C, Butturini G, Molinari E, Mascetta G, Salvia R, Falconi M, Gumbs A, Pederzoli P. Pancreatic fistula rate after pancreatic resection. The importance of definitions. Dig Surg 2004; 21: 54-59
11 Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izibcki J, Neoptolemos J, Sarr M, Traverso W, Buchler M. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 2005; 138: 8-13
12 Pratt WB, Mathiel SK, Vanouren T, Huang ZS, Callery MP, Vollmer CM Jr. Clinical and economic validation of the International Study Group of Pancreatic Fistula (ISGPF) classification scheme. Ann Surg 2007; 245: 443-451
13 Strasberg SM, Linehan DC, Clavien PA, Barkun JS. Proposal for definition and severity grading of pancreatic anastomosis failure and pancreatic occlusion failure. Surgery 2007; 141: 420-426
14 Yeo CJ, Cameron JL, Maher MM, Sauter PK, Zahrak ML, Talamini MA, Lillemoed KD, Pitt HA. A prospective randomized trial of pancreaticogastrostomy versus pancreaticojejunostomy after pancreaticoduodenectomy. Ann Surg 1995; 222: 580-588; discussion 588-592
15 Barreto SG, Shukla PJ, Shrikhande SV. The gray zone between postpancreaticoduodenectomy collections and pancreatic fistula. Pancreas 2008; 37: 422-425
16 Aranha GV, Aaron JM, Shoup M, Pickleman J. Current management of pancreatic fistula after pancreaticoduodenectomy. Surgery 2006; 140: 561-568; discussion 568-569
17 Goldsmith HS, Ghosh BC, Huvos AG. Ligation versus implantation of the pancreatic duct after pancreaticoduodenectomy. Surg Gynecol Obstet 1971; 132: 87-92
18 Papachristou DN, Fortner JG. Pancreatic fistula complicating pancreatectomy for malignant disease. Br J Surg 1981; 68: 238-240
19 Tran K, Van Eijck C, Di Carlo V, Hop WC, Zerbi A, Balzano G, Jeeckel H. Occlusion of the pancreatic duct versus pancreaticojejunostomy: a prospective randomized trial. Ann Surg 2002; 236: 422-428; discussion 428
20 Di Carlo V, Chiesa R, Pontiroli AE, Carlucci M, Staudacher C, Zerbi A, Cristallo M, Braga M, Pozza G. Pancreato-duodenectomy with occlusion of the residual stump by Neoprene injection. World J Surg 1989; 13: 105-110; discussion 110-111
21 Suc B, Miska S, Fingerhut A, Fourtaniere G, Hay JM, Holmieres F, Sastre B, Fagniez PL. Temporary fibrin glue occlusion of the main pancreatic duct in the prevention of intra-abdominal complications after pancreatic resection: prospective randomized trial. Ann Surg 2003; 237: 57-65
22 Sakorafas GH, Friess H, Babiger BM, Buchler MW, Sarr MG. Problems of reconstruction during pancreateoduodenectomy. Dig Surg 2001; 18: 363-369
23 Hamaoka Y, Nishihara K, Hamasaki T, Kawabata A,
Yamamoto S, Tsurumi M, Ueno T, Suzuki T. Pancreatic juice output after pancreaticoduodenectomy in relation to pancreatic consistency, duct size, and leakage. Surgery 1996; 120: 281-287

24 Bassi C, Falconi M, Molinari E, Salvia R, Butturini G, Sartori N, Mantovani W, Pederzoli P. Reconstruction by pancreaticojejunostomy versus pancreaticogastrostomy following pancreatocutectomy: results of a comparative study. Ann Surg 2005; 242: 767-771, discussion 771-773

25 Duffas JP, Suc B, Miska S, Fourtanier G, Muscari F, Hay JM, Fingerhut A, Millat B, Radovanovic A, Fagniez PL. A controlled randomized multicenter trial of pancreaticojejunostomy or pancreaticogastrostomy after pancreatoduodenectomy. Am J Surg 2005; 189: 720-729

26 Takano S, Ito Y, Watanabe Y, Yokoyama T, Kubota N, Iwai S. Pancreaticojejunostomy versus pancreaticogastrostomy in reconstruction following pancreatoduodenectomy. Br J Surg 2000; 87: 423-427

27 Oussouitzoglou E, Bachellier P, Bigourdan JM, Weber JC, Nakano H, Jaeck D. Pancreaticogastrostomy decreased relaparotomy caused by pancreatic fistula after pancreaticoduodenectomy compared with pancreaticojejunostomy. Arch Surg 2004; 139: 327-335

28 McKay A, Mackenzie S, Sutherland FR, Bathe OF, Doig C, Dott J, Vollmer CM Jr, Dixon E. Meta-analysis of pancreaticojejunostomy versus pancreaticogastrostomy reconstruction after pancreatoduodenectomy. Br J Surg 2006; 93: 929-936

29 Wente MN, Shrikhande SV, Muller MW, Diener MK, Seiler CM, Friess H, Buchler MW. Pancreaticojejunostomy versus pancreaticogastrostomy: systematic review and meta-analysis. Ann Surg 2007; 193: 171-183

30 Shrikhande SV, Qureshi SS, Rajneesh N, Shukla PJ. Pancreatic anastomoses after pancreaticoduodenectomy: do we need further studies? World J Surg 2005; 29: 1642-1649

31 Roder JD, Stein HJ, Böttcher KA, Busch R, Heidecke CD, Siewert JR. Stented versus nonstented pancreaticojejunostomy after pancreatoduodenectomy: a prospective study. Ann Surg 1999; 229: 41-48

32 Yoshimi F, Ono H, Asato Y, Ohta T, Koizumi S, Amemiya R, Hasegawa H. Internal stenting of the hepaticojejunostomy and pancreaticojejunostomy in patients undergoing pancreatoduodenectomy to promote earlier discharge from hospital. Surg Today 1996; 26: 665-667

33 Poon RT, Fan ST, Lo CM, Ng KK, Yuen WK, Yeung C. Wong J. External drainage of pancreatic duct with a stent to reduce leakage rate of pancreaticojejunostomy after pancreatoduodenectomy: a prospective randomized trial. Ann Surg 2007; 246: 425-433; discussion 433-435

34 Imaizumi T, Harada N, Hatori T, Fukuda A, Takasaki K. Stenting is unnecessary in duct-to-mucosa pancreaticojejunostomy even in the normal pancreas. Pancreatology 2002; 2: 116-121

35 Winter JM, Cameron JL, Campbell KA, Chang DC, Riall TS, Schullick RD, Choti MA, Coleman J, Hodgin MB, Sauter PK, Sonnenday CJ, Wolfgang CL, Marohn MR, Yeo CJ. Does pancreatic duct stenting decrease the rate of pancreatic fistula following pancreaticoduodenectomy? Results of a prospective randomized trial. J Gastrointest Surg 2006; 10: 1280-1290; discussion 1290

36 Wada K, Traverso LW. Pancreatic anastomotic leak after the Whipple procedure is reduced using the surgical microscope. Surgery 2006; 139: 735-742

37 Strasberg SM, Drebien JA, Mokadam NA, Green DW, Jones KL, Ehlers JP, Linehan D. Prospective trial of a blood supply-based technique of pancreaticojejunostomy: effect on anastomotic failure in the Whipple procedure. J Am Coll Surg 2002; 194: 746-758; discussion 759-760

38 Shrikhande SV, Kleff J, Buchler MW, Friess H. Pancreatic anastomosis after pancreatoduodenectomy: How we do it. Isd J Surg 2007; 6: 224-229

39 Hosotani R, Doi R, Imamura M. Duct-to-mucosa pancreatojejunostomy reduces the risk of pancreatic leakage after pancreatoduodenectomy. World J Surg 2002; 26: 99-104

40 Murakami Y, Uemura K, Hayashidani Y, Sudo T, Hashimoto Y, Nakagawa N, Ohge H, Sueda T. No mortality after 150 consecutive pancreaticoduodenectomies with duct-to-mucosa pancreaticogastrostomy. J Surg Oncol 2008; 97: 205-209

41 Bassi C, Falconi M, Molinari E, Mantovani W, Butturini G, Gumbs AA, Salvia R, Pederzoli P. Duct-to-mucosa versus end-to-side pancreaticojejunostomy reconstruction after pancreatoduodenectomy: results of a prospective randomized trial. Surgery 2003; 134: 766-771

42 Sarr MG, Behrns KE, van Heerden JA. Total pancreatectomy. An objective analysis of its use in pancreatic cancer. Hepatogastroenterology 1993; 40: 418-421

43 Karpoff HM, Klimstra DS, Brennan MF, Conlon KC. Results of total pancreatectomy for adenocarcinoma of the pancreas. Arch Surg 2001; 136: 44-47; discussion 48

44 Ihse I, Anderson H, Andren-Sandberg. Total pancreatectomy for cancer of the pancreas: is it appropriate? World J Surg 1996; 20: 280-289; discussion 294

45 Reddy SK, Tyler DS, Pappas TN, Clary BM. Extended resection for pancreatic adenocarcinoma. Oncologist 2007; 12: 654-663

46 Ridolfini MP, Alfieri S, Gourgiotis S, Di Miceli D, Rotondi F, Quero G, Manghi R, Doglietto GB. Risk factors associated with pancreatic fistula after distal pancreatectomy, which technique of pancreatic stump closure is more beneficial? World J Gastroenterol 2007; 13: 5096-5100

47 Knebel HP, Diener MK, Wente MN, Buchler MW, Seiler CM. Systematic review and meta-analysis of technique for closure of the pancreatic remnant after distal pancreatectomy. Br J Surg 2005; 92: 539-546

48 Kleeff J, Diener MK, Z’graggen K, Hinz U, Wagner M, Bachmann J, Zehetner J, Muller MW, Friess H, Buchler MW. Distal pancreatectomy: risk factors for surgical failure in 302 consecutive cases. Ann Surg 2007; 245: 573-582

49 Buchler M, Friess H, Klimpa I, Heinmeneck P, Sulkowski U, Becker H, Schaefmayer A, Baca I, Lorenz D, Meister R. Role of octreotide in the prevention of postoperative complications following pancreatic resection. Am J Surg 1992; 163: 125-130; discussion 130-131

50 Montorsi M, Zago M, Mosca F, Capussotti L, Zotti E, Ribotta G, Fegiz G, Fissi S, Roviaro G, Perachia A. Efficacy of octreotide in the prevention of pancreatic fistula after elective pancreatic resections: a prospective, controlled, randomized clinical trial. Surgery 1995; 117: 26-31

51 Friess H, Beger HG, Sulkowski U, Becker H, Hofbauer B, Dellnner HJ, Buchler MW. Randomized controlled multicentre study of the prevention of complications by octreotide in patients undergoing surgery for chronic pancreatitis. Br J Surg 1995; 82: 1270-1273

52 Guillatt C, Chipponi J, Baulieux J, Partensky C, Saric J, Gayet B. Randomized controlled multicentre trial of somatostatin infusion after pancreaticoduodenectomy. Br J Surg 2001; 88: 1456-1462

53 Yeo CJ, Cameron JL, Lillemoe KD, Sauter PK, Coleman J, Sohn TA, Campbell KA, Choti MA. Does prophylactic octreotide decrease the rates of pancreatic fistula and other complications after pancreaticoduodenectomy? Results of a prospective randomized placebo-controlled trial. Ann Surg 2000; 232: 419-429

54 Lowy AM, Lee JE, Fisters PW, Davidson BS, Fenoglio C, Stanford P, Jimmah R, Evans DB. Prospective, randomized trial of octreotide to prevent pancreatic fistula after pancreaticoduodenectomy for malignant disease. Ann Surg 1997; 226: 632-641

55 Poon RT, Lo SH, Fong D, Fan ST, Wong J. Prevention of pancreatic anastomotic leakage after pancreatoduodenectomy. Am J Surg 2002; 183: 42-52

56 Stojadinovic A, Brooks A, Hoos A, Jaques DP, Conlon KC, Brennan MF. An evidence-based approach to the surgical management of resectable pancreatic adenocarcinoma. J Am

www.wjgnet.com
Yekebas EF, Wolfram L, Cataldegirmen G, Habermann CR, Bogoevski D, Koenig AM, Kaifi J, Schurr PG, Bubenheim M, Nolte-Ernsting C, Adam G, Izbicki JR. Postpancreatectomy hemorrhage: diagnosis and treatment: an analysis in 1669 consecutive pancreatic resections. Ann Surg 2007; 246: 269-280

van Berge Henegouwen MI, Allema JH, van Gulik TM, Verbeek PC, Obertop H, Gouma DJ. Delayed massive haemorrhage after pancreatic and biliary surgery. Br J Surg 1995; 82: 1527-1531

Makowiec F, Riediger H, Euringer W, Uhl M, Hopt UT, Adam U. Management of delayed visceral arterial bleeding after pancreatic head resection. J Gastrointest Surg 2005; 9: 1293-1299

de Castro SM, Kuhlmann KF, Busch OR, van Delden OM, Lameris JS, van Gulik TM, Obertop H, Gouma DJ. Delayed massive hemorrhage after pancreatic and biliary surgery: embolization or surgery? Ann Surg 2005; 241: 85-91

van Berge Henegouwen MI, De Wit LT, Van Gulik TM, Obertop H, Gouma DJ. Incidence, risk factors, and treatment of pancreatic leakage after pancreaticoduodenectomy: drainage versus resection of the pancreatic remnant. J Am Coll Surg 1997; 185: 18-24

S-Editor Zhong XY L-Editor Anand BS E-Editor Ma WH