Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

Daniel Freeman, Jonathan Bradley, Angus Antley, Emilie Bourke, Natalie DeWeever, Nicole Evans, Emma Černis, Bryony Sheaves, Felicity Waite, Graham Dunn, Mel Slater and David M. Clark

Background
Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. The use of virtual reality could facilitate new learning.

Aims
To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure).

Method
Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments.

Results
In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, $P=0.024$, Cohen’s $d=1.3$) and real-world distress (reduction 19.6%, $P=0.020$, Cohen’s $d=0.8$).

Conclusion
Cognitive therapy using virtual reality could prove highly effective in treating delusions.

Declaration of interest
None.

Copyright and usage
© The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence.

Individuals with persecutory delusions erroneously believe that others are trying to cause them physical, psychological or social harm. Our psychological conceptualisation is that at the heart of persecutory delusions are unfounded threat beliefs. One reason for the persistence of the threat beliefs is a failure to obtain and process disconfirmatory evidence as a result of the use of safety-seeking behaviours. The concept of safety-seeking behaviours was developed in cognitive accounts of anxiety. Individuals who consider themselves threatened carry out actions designed to prevent the feared catastrophe from occurring. When the judgement of a threat is unrealistic the use of safety-seeking behaviours has important consequences: individuals believe that the threat was averted by the use of the safety-seeking behaviour (for example ‘I was safe because I didn’t go out’) rather than conclude that the original idea was inaccurate. A number of experimental studies have evaluated safety behaviours as a maintenance factor in anxiety disorders, finding that testing out the fear cognitions by dropping safety behaviours (a key technique of cognitive therapy) leads to greater reductions in the threat beliefs than exposure methods alone. In this report we conduct such a test for the first time in patients with persecutory delusions.

Almost all patients with persecutory delusions report using safety-seeking behaviours. The most common type of safety behaviour is avoidance. For example, patients often try to minimise the number of times that they go outside the home, particularly avoiding being in enclosed public places with other people. More subtle, but equally important, within-situation behaviours occur when in the places of perceived threat. For example, patients take steps to decrease their visibility, enhance their vigilance and look out for escape routes. The target for successful treatment is for patients to relearn that they are safe and hence diminish their delusional conviction and related distress. Therefore, patients need to test out the persecutory threat beliefs by entering the feared situations and not using safety-seeking behaviours. However, many patients with persecutory delusions find it too difficult to enter their feared situations because of the intolerable anxiety generated. When they are admitted to psychiatric hospital, their opportunities for such learning are often even more restricted.

The solution we have been developing is to use virtual reality. An immersive virtual reality system creates a surrounding three-dimensional computer-generated world in which a person can physically move and interact with objects and virtual people (avatars). Virtual reality elicits responses in individuals similar to those that would occur in the real situation. A remarkable example is how graded exposure in virtual reality for anxiety disorders is as efficacious as exposure in the real world. Virtual social environments could provide a means for patients with severe paranoia to make the first steps towards entering their feared situations, before taking the learning into the real world. Our study was designed to test the hypothesis that persecutory delusions are threat beliefs maintained by safety behaviours, and to establish the potential therapeutic use of virtual reality for delusions. The methodology was drawn from studies of safety behaviours in anxiety disorders, but with virtual reality used to present the feared situations. The study was a short-term test of the use of virtual reality and was not designed as a clinical trial. It was predicted that testing the threat predictions of the delusions when not using safety behaviours (virtual reality cognitive therapy), compared with exposure alone (virtual reality exposure), would lead to gradually lower levels of paranoia and distress being
experienced during the periods in virtual reality; an overall reduction in the degree of conviction with which the persecutory delusions were held; and lower distress in a real social situation.

Method

Participants

Thirty patients with persecutory delusions were recruited from adult mental health services in Oxford Health NHS Foundation Trust. Inclusion criteria were: a current persecutory delusion as defined by Freeman & Garety14 (an unconfounded belief that harm is occurring, or is going to occur, to him or her and that the persecutor has the intention to cause harm); the delusion held with at least 50% conviction; a case-note diagnosis of non-affective psychosis; reporting feeling threatened when around other people and using within-situation safety behaviours. Exclusion criteria were: a primary diagnosis of alcohol or substance dependency; organic syndrome or intellectual disability (also known as learning disability in UK health services); photosensitive epilepsy; and a command of spoken English inadequate for engaging in the study. Examples of the content of the persecutory delusions included: ‘People are trying to cause me physical, mental, and emotional harm’; ‘When I go out the devil and others persecute me’; ‘People know what I’m thinking and want to kill me’; ‘People see me as an easy target and do things to belittle me’; ‘When I go out people are making derogatory comments in order to upset me’; ‘Someone intends to kill me’.

Design

The study had a between-groups design. It had approval from a research ethics committee and was registered on the UKCRN Portfolio database (UKCRN ID 12951). The principal testing for each patient took place in one day, beginning and ending at the patient’s home (or hospital ward in two instances). Before randomisation, conviction in the persecutory delusion was rated and then the patient completed a 5 min behaviour test in which they entered a real-life social environment that they wanted to be less fearful in (for example walking to the local shop). Patients were then brought to the virtual reality laboratory and at this stage randomised to either virtual reality cognitive therapy (threat belief tests in virtual reality with the dropping of safety behaviours, the threat belief testing group) or virtual reality exposure with keeping of safety behaviours (the exposure group). Randomisation was carried out using an online generator (www.randomization.com). There were seven brief periods in virtual reality, with ratings of conviction in the delusion and related distress completed before and after each immersion.

The virtual reality exposure instructions read aloud were:

‘The best way to deal with a fear is to go into the situation. And learn that you are safer than you think. However, this is easier said than done, since going into these situations makes us anxious and that feels bad. Therefore we are going to make it easier for you. By gradually getting used to people in a computer world. First, you’ll have a look at the computer world without any computer characters in it. A chance to try it out. After that we’ll introduce a small number of people. And gradually build it up each time you try the virtual reality. You’ll go in seven times, each lasting about five minutes. It’ll give you a great chance to learn that you are safer than you feared. It works a bit like getting into cold water; when you first get in it feels uncomfortable, but after a while you get used to it, as long as you stay in. Please do use any strategies such as [add person’s safety behaviours] that give you the confidence to remain in the situation.’

The virtual reality cognitive therapy instructions were the same, except the last line was replaced with:

‘But truly to learn you are safe you need to let your defences down. Find out that it isn’t your defences that are keeping you safe but simply that you would be okay anyway. This can be very freeing. As you mentioned, when you are around other people you [add person’s safety behaviours] and you believe that this keeps you safe.

However, you need to learn what happens if you don’t [add person’s safety behaviours]. This is the way to find out you are truly safe. Indeed this is a great chance to try everything you can to find out you are safe. So instead of [add person’s safety behaviour] you could try something quite different, almost the opposite, like [add alternative strategy]. This will make you much more confident that nothing bad is going to happen. It is a chance to discover your confidence around other people.’

After the completion of virtual reality the patient returned home, the behaviour test was repeated, and, finally, the persecutory delusion re-rated. The typical testing times were about 20 min to complete the questionnaires and behavioural test at home, about 60–90 min in the virtual reality laboratory, and then 20 min to complete the repeat behavioural test and final assessments. The periods of time in virtual reality were usually conducted one after the other but occasionally patients wanted short breaks between the environments. The length of the whole testing session depended upon the journey time by taxi between a patient’s home and the virtual reality laboratory. Testing throughout the day was carried out by a clinical psychologist (J.B. or D.F.) who explained the experimental conditions and a research worker (E.B., N.D., N.E. or E.C.) who conducted the assessments.

Assessments

A few days before the testing, participants completed the Positive and Negative Syndrome Scale – positive subscale (PANSS),15 the Psychotic Symptoms Rating Scale – Delusions (PSYRATS),16 the Safety Behaviours Questionnaire – Persecutory Beliefs,8 the Beck Anxiety Inventory17 and the Beck Depression Inventory.18 During the testing day the key variables (conviction and distress) were assessed using visual analogue rating scales. Each line was 100 mm long, and where the patient marked each line was recorded as a number between 0 and 100. At the beginning and end of the testing day, participants were asked to rate how strongly they believed their persecutory belief on a 0% (do not believe at all) to 100% (absolutely certain) scale. Before going into the real-world situation or into a virtual reality scenario, participants rated ‘At this moment, how convinced are you that your worries are true?’ on a 0 (not convinced at all) to 10 (absolutely certain) scale and ‘How distressed do you feel about your worries?’ on a 0 (not distressed at all) to 10 (extremely distressed) scale. These scales were explicitly linked to the persecutory concerns, and were then repeated after the real-world situation or virtual reality. An additional question was also completed, ‘How distressed did you feel going outside?’ or ‘How distressed did you feel in the virtual reality scenario?’, rated on a 0 (not distressed) to 10 (extremely distressed) scale.

A credibility rating for the two randomisation conditions was also introduced for the last 11 participants. After being given the virtual reality cognitive therapy or virtual reality exposure instructions, patients were asked to rate the question ‘How much do you believe that this will help to reduce your fears about others?’ on a 0 (not convinced at all) to 100 (absolutely certain) visual analogue scale.

Virtual reality

Participants could walk around the laboratory room immersed in the virtual world via a head-mounted display (HMD) linked to a computer and tracking system. Full details of our laboratory equipment and the virtual reality scenarios are provided in the online supplement DS1 and Fig DS1 and DS2. There were two virtual reality environments: an underground train ride and a lift. Each had gradations of difficulty based on the number of avatars placed around where the participant could walk (see Fig, DS2). The underground scenarios progressed from no avatars being present to 22 being in the carriage. The lift scenarios progressed...
from two avatars being in the lift to there being six. Movement data were recorded for the underground scenarios (since there was much greater opportunity for walking compared with the confined lift space).

Analysis

The main outcome predictions – concerning the effect of allocation to randomisation condition on delusional conviction at the beginning and end of testing and the distress in the real-world situation – were tested using analysis of covariance, controlling for initial score. These analyses were carried out using SPSS Version 20.0. All hypothesis testing was two-tailed. There were no missing data. Effect sizes were calculated using Cohen’s d, taking the estimated coefficient of allocation from the ANCOVA divided by the pooled baseline standard deviation.

For the visual analogue ratings from the virtual reality social environments, random-effects models (to allow for correlation between measures repeated over time) looking at the effect of allocation, environment (virtual reality level) and the allocation × environment interaction, were carried out using Stata version 13.1. We tested whether there was an effect of allocation on pre-virtual reality scores, post-virtual reality scores, pre- to post-change (i.e. pre- minus post-), and the mean of the pre- and post-virtual reality scores. Although there is redundancy in this analysis strategy, we chose this sequence of analyses in order to clearly illustrate the patterns of learning indicated by the data. So, the analysis of the pre-virtual reality scores illustrates the effect of allocation condition that is carried forward from one virtual reality level to subsequent levels (we would not expect to see an allocation effect for the first virtual reality social environment (VR1) but would hope to see growing allocation effects from the second). Analysis of post-virtual reality data shows the allocation intervention effects on the combined within- and between-level differences. The analysis of the pre- minus post-virtual reality change scores looks at the effect of the allocation conditions on within-session learning. The analysis of the pre-/post-virtual reality means illustrates the effect of allocation that is common to both pre- and post-virtual reality measures.

The target sample size was 30 patients with persecutory delusions. We were expecting large effect size reductions in delusional conviction, with an approximate halving in the threat belief testing group and relative constancy in the exposure group. If, for example, the initial visual analogue scale score for conviction before going into virtual reality was 50 (s.d. = 20) then a simple t-test of final between-group scores, with a 0.05 two-sided significance level, would have over 90% power to detect such a large effect size ($d = 1.25$) reduction in the threat belief testing group. For comparison, the between-participants clinical anxiety disorders studies have tested 9 patients with panic disorder in each condition and 15 people with social anxiety in each condition.

Table 1

Variable	Threat belief testing group ($n = 15$)	Exposure group ($n = 15$)
Age, years: mean (s.d.)	42.1 (13.4)	40.6 (14.4)
Men/women, n	10/5	6/9
Ethnicity, n	14	15
Employment status, n	13	14
Part-time employed	1	0
Full-time employed	0	0
Volunteer	0	0
Retired	1	1
Student	0	0
Clinical diagnosis, n	10	10
Schizophrenia	1	2
Schizoaffective disorder	2	1
Delusional disorder	0	2
Psychosis NOS	3	2
PSYRATS – delusions score, mean (s.d.)	17.7 (2.6)	16.9 (2.8)
PANSS – positive score, mean (s.d.)	17.5 (2.6)	17.4 (3.2)
Experiencing hallucinations (PANSS hallucination score ≥ 3), n	8	7
Safety Behaviour Questionnaire score, mean (s.d.)	42.3 (11.7)	36.9 (14.6)
Depression (BDI), n	1	4
None (0–13)	1	1
Mild (14–19)	1	1
Moderate (20–28)	4	3
Severe (29–63)	9	7
Anxiety (BAI), n	0	1
None (0–7)	0	1
Mild (8–15)	1	1
Moderate (16–25)	5	4
Severe (26–63)	9	9

Table 2 provides a summary of the movement data and ratings of paranoia conviction and distress during the virtual reality testing. The full results of the random-effects models are provided in online supplement DS2. For total movement in virtual reality, it can be seen that the two groups moved similarly in the empty carriage, but that the threat belief testing group began to move more in the social environments, consistent with the instructions of dropping safety behaviours and exploring the environment fully. This was confirmed in a random-effects model, with no significant difference in movement between the two groups in the empty carriage (coefficient 0.9, s.e. = 3.7, $P = 0.804$), but an additional 10.5 metres movement in the final virtual reality underground level by the threat belief testing group compared with the exposure group (s.e. = 3.0, $P < 0.001$).

Ratings in virtual reality

Table 2 provides a summary of the movement data and ratings of paranoia conviction and distress during the virtual reality testing. The full results of the random-effects models are provided in online supplement DS2. For total movement in virtual reality, it can be seen that the two groups moved similarly in the empty carriage, but that the threat belief testing group began to move more in the social environments, consistent with the instructions of dropping safety behaviours and exploring the environment fully. This was confirmed in a random-effects model, with no significant difference in movement between the two groups in the empty carriage (coefficient 0.9, s.e. = 3.7, $P = 0.804$), but an additional 10.5 metres movement in the final virtual reality underground level by the threat belief testing group compared with the exposure group (s.e. = 3.0, $P < 0.001$).

For ratings of conviction in paranoia, a gradual reduction across the scenarios for the threat belief testing group can be seen, whereas the conviction scores remain stable in the exposure group. There was no group difference in conviction prior to the first virtual reality social environment (coefficient -0.1, s.e. $= 9.4$, higher credibility mean score of 53.8 (s.d. = 19.6, $n = 5$) in the exposure group.

Results

Basic demographic and clinical information for the participants is summarised in Table 1. Typical of studies of adult patients with current psychotic experiences, the average age is approximately 40 years old, there is a greater number of men than women, the most common clinical diagnosis was schizophrenia, hallucinations were occurring in half of the group, the overwhelming majority were unemployed, and rates of depression and anxiety were high. The randomisation condition credibility ratings were broadly comparable in the two groups, with a mean score of 43.8 (s.d. = 20.8, $n = 6$) in the threat belief testing group and a slightly
but significant reductions in pre-virtual reality conviction ratings for the threat belief testing group compared with the exposure group, with the successive times in virtual reality, so that there was an additional 12.9% point reduction (coefficient 7.6, s.e. = 9.3, P = 0.582), but significant allocation level interactions, so that the added reduction in conviction for the threat belief testing group relative to the exposure group by the final level is 17.9% points (s.e. = 5.0, P < 0.001).

A very similar pattern can be seen for the distress associated with the paranoia: a gradual reduction in the threat belief testing group and relative stability in the exposure group. The results for the random-effects models mirror those seen above (see online supplement DS2). Taking the mean of the pre- and post-paranoia distress scores, there is an initial very small non-significant decrease in paranoia distress in the threat belief testing group compared with the exposure group (coefficient − 0.8, s.e. = 8.7, P = 0.926), but significant time × level interactions, so that by the last virtual reality scenario there is an added reduction in distress of 17.6 points in the threat belief testing group compared with the exposure group (s.e. = 5.3, P < 0.001).

Table 2

Variable	Mean (s.d.)	
Threat belief testing group (n = 15)	Exposure group (n = 15)	
Total movement (m) in:		
Empty train	17.4 (6.9)	17.1 (7.4)
VR1	23.5 (7.7)	19.0 (8.3)
VR2	36.1 (12.7)	24.1 (9.7)
VR3	37.0 (13.4)	25.5 (12.2)
Conviction before:		
VR1	65.6 (27.9)	65.7 (24.8)
VR2	57.2 (29.6)	70.7 (21.4)
VR3	56.2 (27.0)	74.7 (19.9)
VR4	55.5 (26.8)	72.0 (22.2)
VR5	50.7 (29.2)	71.3 (22.1)
VR6	47.3 (28.3)	70.9 (22.9)
Conviction after:		
VR1	55.8 (28.5)	67.9 (21.9)
VR2	56.5 (28.3)	71.7 (24.4)
VR3	50.7 (29.8)	75.2 (17.4)
VR4	47.7 (29.1)	67.0 (24.4)
VR5	46.9 (28.0)	67.5 (24.3)
VR6	45.2 (27.4)	70.9 (24.6)
Delusion distress before:		
VR1	61.6 (30.1)	59.6 (19.7)
VR2	53.5 (48.3)	61.3 (22.7)
VR3	48.3 (29.0)	67.2 (20.2)
VR4	49.8 (26.0)	66.3 (19.4)
VR5	45.7 (25.6)	59.1 (22.4)
VR6	40.9 (25.5)	57.7 (23.1)
Delusion distress after:		
VR1	53.8 (25.8)	60.0 (18.5)
VR2	52.0 (26.3)	71.7 (18.9)
VR3	45.7 (28.8)	68.1 (17.6)
VR4	45.5 (27.4)	65.1 (19.6)
VR5	45.1 (25.3)	54.6 (24.1)
VR6	40.1 (27.4)	60.4 (22.8)
Distress of:		
Empty train	33.1 (29.1)	35.5 (24.4)
VR1	41.8 (29.2)	40.3 (26.2)
VR2	49.1 (25.6)	61.1 (33.8)
VR3	37.9 (29.5)	59.3 (30.9)
VR4	36.1 (29.3)	33.1 (26.7)
VR5	39.4 (25.0)	40.1 (31.2)
VR6	39.9 (27.9)	42.0 (32.9)

VR1-6, virtual reality scenario level 1-6.

The pre–post change in conviction (common to all six virtual reality scenarios) is on average 3.9% points greater in the threat belief testing group compared with the exposure group. The absence of an allocation × level interaction for the pre–post change scores indicates that the pre- and post-measurements are changing in parallel. A mixed model using the mean of the pre- and post-virtual reality scores shows a small but not significant reduction in conviction for the threat belief testing group compared with exposure after the first virtual reality social environment (coefficient − 5.1, s.e. = 9.3, P = 0.582) but significant allocation × level interactions, so that the added decrease in paranoia distress in the threat belief testing group compared with the exposure group (coefficient − 8.8, s.e. = 8.7, P = 0.926), but significant time × level interactions, so that by the last virtual reality scenario there is an added reduction in distress of 17.6 points in the threat belief testing group compared with the exposure group (s.e. = 5.3, P < 0.001).

Ratings of the delusion

The conviction level in the delusion for the threat belief testing group reduced from 79.8% (s.d. = 16.4, n = 15) at the beginning of the testing session to 46.5% (s.d. = 29.2, n = 15) at the end. For the exposure group, the conviction level in the delusion was 78.5% (s.d. = 17.1, n = 15) at the beginning of the testing session and 67.6% (s.d. = 25.5, n = 15) at the end. Assessed by ANCOVA, compared with exposure, virtual reality cognitive therapy (threat testing with the dropping of safety behaviours) led to a reduction in conviction in the delusion of 22.0% (s.e. = 9.2), 95% CI 3.2–40.9%, F(2,27) = 5.75, P = 0.024, d = 1.3.

Ratings in the behaviour test

Ratings for the real-world behaviour test are displayed in Table 3. It can be seen that the scores for the first real-world test are comparable across the two groups. At the repeat, it can be seen that the threat belief testing group found the real-world task less distressing than the exposure group. Compared with virtual reality exposure, and controlling for the level of distress caused by the real-world situation the first time of entering, virtual reality cognitive therapy led to a reduction in distress in the real-world situation of 19.6% (s.e. = 7.9), 95% CI 3.4–35.7, F(2,27) = 6.15, P = 0.020, d = 0.8.

Discussion

Main findings

In this study it has been shown that virtual reality can be used to present computerised versions of commonly feared situations to patients with persecutory delusions; that new learning can then take place; and, importantly, that the learning transfers into the real world. The best learning was shown to occur when the persecutory beliefs were more fully put to the test by discouraging the use of safety behaviours, which are a central maintenance factor proposed in cognitive models of clinical disorders. With this type of cognitive treatment approach, patients learned that they...
were safer than they had feared. This is good evidence that persecutory delusions are unfounded threats maintained by safety-seeking behaviours. Paranoid thinking with brief virtual reality cognitive therapy not only reduced across the periods in virtual reality but transferred to a rating of the overall delusion and the experience of an important real-life social situation. The improvement found was over and above that of using exposure, which itself is a credible treatment technique for unfounded fears. Thus, the \textit{in toto} therapeutic effect of virtual reality cognitive therapy, especially if the treatment is lengthened, may be even greater when compared with a placebo intervention.

\section*{Implications}

A key task in the treatment of clinical paranoia is to help patients learn that the environment is now safe for them,\footnote{Daniel Freeman, PhD, DClinPsy, Jonathan Bradley, DClinPsy, Department of Psychiatry, University of Oxford, Oxford, UK; Angus Antley, PhD, Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, UK; Emilie Bourke, SCM, Natalie DeWeever, BSc, Nicole Evans, BSc, Emma Cernis, MSc, Bryony Sheaves, DClinPsy, Felicity Waite, DClinPsy, Department of Psychiatry, University of Oxford, Oxford, UK; Graham Dunn, PhD, Centre for Biostatistics, Institute of Population Health, University of Manchester, Manchester, UK; Med Slater, DSc, Department of Computer Science, University College London, London, UK and Institució Catalana de Recerca i Estudis Avançats (ICREA), University of Barcelona, Spain; David M. Clark, DPhil, Department of Experimental Psychology, University of Oxford, Oxford, UK}

\begin{table}[h]
\centering
\begin{tabular}{|l|cc|cc|}
\hline
\textbf{Variable} & \multicolumn{2}{c|}{\textbf{Threat belief testing group} (n = 15)} & \multicolumn{2}{c|}{\textbf{Exposure group} (n = 15)} \\
\hline
Before going outside the first time & Conviction & 78.2 (20.7) & 77.1 (17.2) \\
& Delusion distress & 71.9 (22.7) & 62.8 (14.9) \\
\hline
After going outside the first time & Conviction & 78.3 (21.8) & 80.2 (15.6) \\
& Delusion distress & 76.9 (24.0) & 68.8 (19.6) \\
& Distress when outside & 66.9 (29.4) & 42.1 (17.1) \\
\hline
Before going outside the second time & Conviction & 48.7 (28.0) & 69.3 (23.1) \\
& Delusion distress & 43.9 (24.6) & 59.3 (21.6) \\
\hline
After going outside the second time & Conviction & 42.3 (27.2) & 64.2 (20.8) \\
& Delusion distress & 39.6 (23.3) & 53.1 (25.2) \\
& Distress when outside & 31.6 (24.2) & 49.3 (22.0) \\
\hline
\end{tabular}
\caption{Ratings for the real-life situation}
\end{table}

\section*{References}

\begin{enumerate}
\item Freeman D, Garety PA, Kuipers E, Fowler D, Bebbington PE. A cognitive model of persecutory delusions. \textit{Br J Clin Psychol} 2002; \textbf{41}: 331–47.
\item Salkovskis PM. The importance of behaviour in the maintenance of anxiety and panic: a cognitive account. \textit{Behav Psychother} 1991; \textbf{19}: 6–19.
\end{enumerate}
Wells A, Clark DM, Salkovskis P, Ludgate J, Hackmann A, Gelder M. Social phobia: the role of in-situation safety behaviours in maintaining anxiety and negative beliefs. *Behav Ther* 1995; 26: 153–61.

Salkovskis PM, Clark DM, Hackmann A, Wells A, Gelder MG. An experimental investigation of the role of safety-seeking behaviours in the maintenance of panic disorder with agoraphobia. *Behav Res Ther* 1999; 37: 559–74.

Sloan T, Telch M. The effects of safety-seeking behaviour and guided threat reappraisal on fear reduction during exposure: an experimental investigation. *Behav Res Ther*, 2002; 40: 235–51.

Kim E-J. The effect of the decreased safety behaviors on anxiety and negative thoughts in social phobics. *Anxiety Disord* 2005; 19: 69–86.

McManus F, Sacadura C, Clark DM. Why social anxiety persists: an experimental investigation of the role of safety behaviours as a maintaining factor. *J Behav Ther Exp Psychiatry* 2008; 39: 147–61.

Freeman D, Garety PA, Kuipers E. Persecutory delusions: developing the understanding of belief maintenance and emotional distress. *Psychol Med* 2001; 31: 1293–306.

Freeman D, Garety P, Kuipers E. Acting on persecutory delusions: the importance of safety seeking. *Behav Res Ther* 2007; 45: 89–99.

Freeman D. Studying and treating schizophrenia using virtual reality (VR): a new paradigm. *Schizophr Bull* 2008; 34: 605–10.

Sanchez-Vives M, Slater M. From presence to consciousness through virtual reality. *Nat Rev Neurosci* 2005; 6: 332–9.

Slater M, Rowia A, Southern R, Swapp D, Zhang J, Campbell C, et al. Bystander responses to a violent incident in an immersive virtual environment. *PloS One* 2013; 8: e52766.

Powers M, Emmelkamp P. Virtual reality therapy for anxiety disorders. *J Anxiety Disorder* 2008; 22: 561–9.

Freeman D, Garety PA. Comments on the content of persecutory delusions: does the definition need clarification? *Br J Clin Psychol* 2000; 39: 407–14.

Kay SR. *Positive and Negative Syndromes in Schizophrenia*. Brunner, 1991.

Haddock G, McCarron J, Tarrier N, Faragher EB. Scales to measure dimensions of hallucinations and delusions: the psychotic symptom rating scales (PSYRATS). *Psychol Med* 29; 1999; 879–89.

Beck AT, Epstein N, Brown G, Steer R. An inventory for measuring clinical anxiety: psychometric properties. *J Consult Clin Psychol* 1988; 56: 893–7.

Beck AT, Steer RA, Brown GK. *BDI-II Manual*. The Psychological Corporation, 1996.

Elashoff JD. *nQuery Advisor 4.0 User’s Guide*. Dixon Associates, 2000.

Freeman, D. Persecutory delusions: a cognitive perspective on understanding and treatment. *Lancet Psychiatry*, in press.

Clark D, Ehlers A, Hackmann A, McManus F, Fennell M, Grey N, et al. Cognitive therapy versus exposure and applied relaxation in social phobia. *J Consult Clin Psychol* 2006; 74: 568–78.
Online Supplement DS1: The VR laboratory

VR equipment

Our lab uses an nVisor SX111 HMD (see online Fig DS1). It combines a 102 degree horizontal field of view and 64 degree vertical field of view with very high resolution: 1280x1024. A stereo image is presented using a screen for each eye that is updated at 60hz. We use a 12 Intersense SoniStrip ceiling and an Intersense IS-900 SimTracker system that combines an inertial and time of flight audio sensor to specify the viewer’s position and orientation with six degrees of freedom. The resolution of the IS900 is within 0.75 millimetres. The update rate is 180hz, and the latency is 4 milliseconds. The computer running the application was custom built for the lab and includes a core i7 processor, and a NVIDIA GeForce GTX 780 ti graphics card with 3072mb of memory. This machine has 16GB of RAM and an Asus Maximus VII Ranger motherboard. The tracking pc is a Dell T5500 workstation with a core i7 processor and 4gb RAM. Audio is rendered using the Realtek audio controller provided by the ASUS Maximus VII Ranger motherboard.

The VR scenarios

The train model was rendered using the XVR application platform.22 The avatars were responsive in gaze as to whether the participant was in their field of view and if the head orientation of the participant was directed at a particular avatar. There were four different train scenarios. First, participants experienced a train ride with no avatars in the carriage, in order to get used to the basic experience and procedures. In scenario level one, there were three male and three female avatars placed in the distal regions of the carriage. In scenario level two, there were 11 male and 12 female avatars along the length of the carriage. Here a number of the avatars were standing in the same area of the carriage as the participant. In scenario level three, there were 11 males and 11 females in the train carriage, but this time the avatars were arranged so that there were a greater number of people in the area where a participant could walk. A soundtrack of a tube journey, including low-level conversation appropriate to the version, was played. For each of the 60 frames per second refreshes of the NVIS SX111, the position was read from the IS-900 and written to an output data file for the train scenario, which was used to calculate the total movement of each participant.

The lift was rendered using the Unity3D application platform. The model consisted of a virtual lift lobby with six adjoining lift doors, and one lift. The lighting was baked into the model using the built-in light probes feature in Unity. This allowed the avatars to have real-time dynamic shadows. Facial animations were also used. The avatars in the study were again responsive with regard to gaze. Each avatar had a basic idle motion from which they would, at random, perform some habitual movement such as scratching their head or shifting their feet. The sound of a lift played during each version. Each lift scenario consisted of the same journey from the ground floor lobby up to the third floor of the building with stops at the first and
second floors along the way. Participants were asked to note the time on the clock in the lobby of the top floor. In scenario level four, there were two male avatars in the lift. In scenario level five, there were three male avatars and one female avatar. In scenario level six, there were five male avatars and one female avatar in the lift.

Additional reference
22 Tecchia F, Carrozzino, M., Bacinelli, S., Rossi, F., Vercelli, D., Marino, G., Gasparello, P., & Bergamasco, M. (2010) A Flexible Framework for Wide-Spectrum VR Development. Presence: Teleoperators and Virtual Environments, 19, 302-312.

Figure DS1 A picture of a person wearing the head mounted display in the VR lab.
Figure DS2 Still images of the seven virtual reality (VR) situations and a photograph of a person wearing the head mounted display in the VR lab.
Image 22x347 to 216x502	Image 229x348 to 421x502	Image 439x350 to 630x502	Image 643x349 to 834x502
Empty train (lasting 2 mins 24 secs)	Train level VR1 (lasting 3 mins 41 secs)	Train level VR2 (lasting 5 mins 41 secs)	Train level VR3 (lasting 5 mins 22 secs)
![Image](21x518)	![Image](227x518)	![Image](438x299)	![Image](642x299)
Lift level VR4 (lasting 3 mins 40 secs)	Lift level VR5 (lasting 3 mins 40 secs)	Lift level VR6 (lasting 3 mins 40 secs)	The VR lab
![Image](21x299)	![Image](227x299)	![Image](438x299)	![Image](642x299)
Online supplement DS2 Random-effects models for the ratings from VR

VR Conviction – Mixed Models

Data Structure
The ‘long’ form in Stata. 6 records per participant.

Id	Condition	time	Conv-PRE	Conv_POST	Conv_CHA	Conv_MEAN
1	0	1	35	60	-25	47.5
1	0	2	.	.	etc.	
1	0	3		.		
1	0	4	.	.		
1	0	5	.	.		
1	0	6	.	.		
30	1	1		.	.	
30	1	2	.	.	.	
30	1	3	.	.	.	
30	1	4	.	.	.	
30	1	5	.	.	.	
30	1	6	.	.	.	

*Time is equivalent to VR level

Analysis method
Each participant provides six pairs of pre/post VR measurements of conviction. We wish to determine the effect of the intervention/treatment on these measures, looking at pre-VR conviction, post-VR conviction, the pre-post VR change, and the average of the two.
1. Analysis of pre-VR scores. Random effects model (to allow for correlation between measures repeated over time) looking at the effect of treatment, time (VR level), and the treatment by time (VR level) interaction.

2. Same analysis of post-VR scores.

3. If the parameter estimates look very similar then it suggests that pre- and post-VR measures are changing in parallel (the treatment effect is the same in both). An analysis of the pre-post differences will make this explicit (there will be no need for a treatment by time interaction).

4. The random effects/repeated measures model for the mean of the pre- and post-VR scores will produce estimates of treatment and treatment-by time interaction effects that are assumed to be the same for both the pre- and the post-VR measures.
1. PRE-VR

```
.xi: xtreg Conv_PRE i.Condition*i.time, re
```

| Conv_PRE | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|---------|-----------|--------|---------|---------------------|
| _ICondition_1 | -0.0678493 | 9.426603 | -0.01 | 0.994 | -18.54365 | 18.40795 |
| _It ime_2 | 5.066667 | 3.957237 | 1.28 | 0.200 | -2.689375 | 12.82271 |
| _Itime_3 | 9 | 3.957237 | 2.27 | 0.023 | 1.243958 | 16.75604 |
| _Itime_4 | 6.333333 | 3.957237 | 1.60 | 0.110 | -1.422708 | 14.08938 |
| _Itime_5 | 5.6 | 3.957237 | 1.42 | 0.157 | -2.156042 | 13.35604 |
| _Itime_6 | 2.609966 | 4.040572 | 0.65 | 0.518 | -5.30941 | 10.52934 |
| _IConXtim_1_2 | -13.46548 | 5.655612 | 2.38 | 0.017 | -24.55028 | -2.380688 |
| _IConXtim_1_3 | -18.39882 | 5.655612 | 3.25 | 0.001 | -29.48361 | -7.314021 |
| _IConXtim_1_4 | -16.39882 | 5.655612 | 2.90 | 0.004 | -27.48361 | -5.314021 |
| _IConXtim_1_5 | -20.46548 | 5.655612 | 3.62 | 0.000 | -31.55028 | -9.380688 |
| _IConXtim_1_6 | -20.87545 | 5.714232 | 3.65 | 0.000 | -32.07514 | -9.675761 |
| _cons | 65.66667 | 6.64057 | 9.89 | 0.000 | 52.65139 | 78.68194 |

sigma_u	23.422286	
sigma_e	10.883	
rho	.82244072	(fraction of variance due to u_i)

No difference in PRE for VR1

Fairly large effects for VR2 etc.
2. POST-VR

```
.xi: xtreg Conv_POST i.Condition*i.time, re
```

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] | |
|------------------|---------|-----------|----------|------|----------------------|------------------|
| ICondition_1 | -12.0667| 9.517797 | -1.27 | 0.205 | -30.72121 | 6.587873 |
| _Itime_2 | 3.8 | 4.402635 | 0.86 | 0.388 | -4.829005 | 12.42901 |
| _Itime_3 | 7.333333| 4.402635 | 1.67 | 0.096 | -1.295672 | 15.96234 |
| _Itime_4 | -8.66667| 4.402635 | -0.20 | 0.844 | -9.495672 | 7.762338 |
| _Itime_5 | 2.378101| 4.495192 | 0.53 | 0.597 | -6.432313 | 11.18852 |
| _Itime_6 | 2.378101| 4.495192 | 0.53 | 0.597 | -6.432313 | 11.18852 |
| IConXtim_1_2 | -3.06667| 6.226265 | -0.49 | 0.622 | -15.26992 | 9.136589 |
| _IConXtim_1_3 | -12.4 | 6.226265 | -1.99 | 0.046 | -24.60326 | -1.96744 |
| _IConXtim_1_4 | -7.2 | 6.226265 | -1.16 | 0.248 | -19.40326 | 5.003256 |
| _IConXtim_1_5 | -8.46667| 6.226265 | -1.36 | 0.174 | -20.66992 | 3.736589 |
| _IConXtim_1_6 | -12.9781| 6.292054 | -2.06 | 0.039 | -25.3103 | -.6459027 |
| _cons | 67.86667| 6.730099 | 10.08 | 0.000 | 54.67591 | 81.05742 |
| sigma_u | 23.16746| | | | | |
| sigma_e | 12.087458| | | | | |
| rho | .78603026| | | | | (fraction of variance due to u_i) |

Fairly large, but not significant effect, for VR1

Effects increasing for VR2 etc.
3. PRE-POST CHANGE

```stata
.xi: xtreg Conv_CHA i.Condition*i.time, re
```

| Conv_CHA | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|-------|-------|----------------------|
| _ICondition_1 | 9.70 | 4.49592 | 2.16 | 0.031 | 0.8881579 to 18.51184 | Effect of treatment for VR1 |
| _Itime_2 | 1.26667 | 4.417725 | 0.29 | 0.774 | -7.391914 to 9.925248 |
| _Itime_3 | 1.66667 | 4.417725 | 0.38 | 0.706 | -6.991914 to 10.32525 |
| _Itime_4 | 7.2 | 4.417725 | 1.63 | 0.103 | -1.458581 to 15.85858 |
| _Itime_5 | 6 | 4.417725 | 1.36 | 0.174 | -2.658581 to 14.65858 |
| _Itime_6 | 0.84286 | 4.49592 | 0.19 | 0.851 | -7.968985 to 9.654699 |

Interactions small and nothing like significant. Therefore, drop them from the model:
The pre-post change (common to all six VR sessions) is on average 3.9 points higher in the treatment group. The average pre-post change in the controls is about 0.6 (the estimate of _cons).
4. PRE-POST MEAN

.xi: xtreg Conv_MEAN i.Condition*i.time, re

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|-------|-----|----------------------|
| ICondition 1 | -5.105179 | 9.265294 | -0.55 | 0.582 | -23.26482, 13.05446 |
| _Itime_2 | 4.433333 | 3.481869 | 1.27 | 0.203 | -2.391004, 11.25767 |
| _Itime_3 | 8.166667 | 3.481869 | 2.35 | 0.019 | 1.34233, 14.991 |
| _Itime_4 | 2.733333 | 3.481869 | 0.79 | 0.432 | -4.091004, 9.55767 |
| _Itime_5 | 2.600000 | 3.481869 | 0.75 | 0.455 | -4.224337, 9.424337 |
| _Itime_6 | 2.48176 | 3.555307 | 0.70 | 0.485 | -4.486513, 9.450034 |
| IConXtim_1_2 | -9.228155 | 4.976305 | -1.85 | 0.064 | -18.98153, 0.525246 |
| IConXtim_1_3 | -16.36149 | 4.976305 | -3.29 | 0.001 | -26.11487, -6.608109 |
| IConXtim_1_4 | -12.76149 | 4.976305 | -2.56 | 0.010 | -22.51487, -3.008109 |
| IConXtim_1_5 | -15.42815 | 4.976305 | -3.10 | 0.002 | -25.18153, -5.674775 |
| IConXtim_1_6 | -17.87658 | 5.027963 | -3.56 | 0.000 | -27.73121, -8.021955 |
| _cons | 66.76667 | 6.531802 | 10.22 | 0.000 | 53.96457, 79.56876 |

sigma_u | 23.548393
sigma_e | 9.5830083
rho | .8579214 (fraction of variance due to u_i)

Parameter estimates mid-way between those for analysis of pre- and that of post-VR measures.
VR Paranoia Distress – Mixed models

Separate analyses of Dist_PRE, Dist_POST, Dist_CHA and Dist_MEAN

Interpretation almost exactly the same as for conviction.

Assume no treatment (condition) effect on Dist_PRE for VR1.
But there is one for Dist_POST for VR1.

Treatment effects then increase with train session, dip when move to lift but then level off.

```
.ml: xtregr Dist_PRE i.Condition*i.time, re
```

| Condition | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|--------|-----------|-------|-----|----------------------|
| | | | | | |
| _ICondition_1 | 2.337388 | 9.08133 | 0.26 | 0.797 | -15.46169 20.13647 |
| _ICondition_2 | -1.666667 | 4.357886 | 0.38 | 0.702 | -6.874632 10.20797 |
| _ICondition_3 | 7.6 | 4.357886 | 1.74 | 0.081 | -.9412987 16.1413 |
| _ICondition_4 | 6.666667 | 4.357886 | 1.53 | 0.126 | -1.874632 15.20797 |
| _ICondition_5 | -.5333333 | 4.357886 | -0.12 | 0.903 | -9.074632 8.007965 |
| _ICondition_6 | -2.753145 | 4.49418 | -0.62 | 0.536 | -11.47384 5.967555 |
| _IConditionXtime_1_2 | -10.13739 | 6.228041 | -1.63 | 0.104 | -22.34412 2.069347 |
| _IConditionXtime_1_3 | -21.27072 | 6.228041 | -3.42 | 0.001 | -33.47746 -9.063987 |
| _IConditionXtime_1_4 | -18.80406 | 6.228041 | -3.02 | 0.003 | -31.01079 -6.59732 |
| _IConditionXtime_1_5 | -15.67072 | 6.228041 | -2.52 | 0.012 | -27.87746 -3.463987 |
| _IConditionXtime_1_6 | -18.31758 | 6.292428 | -2.91 | 0.004 | -30.65051 -5.984646 |
| _Cons_ | 59.6 | 6.390008 | 9.33 | 0.000 | 47.07582 72.12418 |

sigma_u | 21.785169
sigma_e | 11.992113
rho | .76744863 (fraction of variance due to u_i)

Effect on Dist_PRE is presumably effect of treatment during session before (but obviously not for VR1).
Effects of treatment at six time points:

VR1 +2.34
VR2 +2.34 – 10.14
VR3 +2.34 – 21.27
VR4 +2.34 – 18.80
VR5 +2.34 – 15.67
VR6 +2.34 – 18.32

. xi: xtreg Dist_POST i.Condition*i.time, re

| Dist_POST | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|---------|-----------|-------|-----|--------------------------------|
| _ICondition_1 | -6.2 | 8.778841 | -0.71 | 0.480 | -23.40621 | 11.00621 | Right direct; not signif |
| _Itime_2 | 11.73333| 4.445444 | 2.64 | 0.008 | 3.020424 | 20.44624 |
| _Itime_3 | 8.066667| 4.445444 | 1.81 | 0.070 | -0.646247 | 16.77958 |
| _Itime_4 | -3.86667| 4.445444 | -0.87 | 0.384 | -12.57958 | 4.846243 |
| _Itime_5 | -5.4 | 4.445444 | -1.21 | 0.224 | -14.11291 | 3.312909 |
| _Itime_6 | 0.902548| 4.538701 | 0.20 | 0.842 | -7.993142 | 9.798238 |
| _IConXtim_1_2 | -13.53333| 6.286807 | -2.15 | 0.031 | -25.85525 | -1.211419 |
| _IConXtim_1_3 | -16.13333| 6.286807 | -2.57 | 0.010 | -28.45525 | -3.811419 |
| _IConXtim_1_4 | -4.46667 | 6.286807 | -0.71 | 0.477 | -16.78858 | 7.855248 |
| _IConXtim_1_5 | -3.26667 | 6.286807 | -0.52 | 0.603 | -15.58858 | 9.055248 |
| _IConXtim_1_6 | -14.63588| 6.353092 | -2.30 | 0.021 | -27.08771 | -2.184051 |
| _cons | 60 | 6.207578 | 9.67 | 0.000 | 47.83337 | 72.16663 |

sigma_u | 20.785943 |
sigma_e | 12.206313 |
rho | .74357765 | (fraction of variance due to u_i) |

Effects of treatment at six time points:

VR1 -6.20
VR2 -6.20 – 13.53
VR3 -6.20 – 16.13
VR4 -6.20 - 4.47
VR5 -6.20 - 3.27
VR6 -6.20 - 14.64

\textit{. xi: xtreg Dist_CHA i.Condition_i.time, re}

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|---------|-----------|-------|------|---------------------|
| ICondition_1 | 6.114286| 4.947088 | 1.24 | 0.216| -3.581828 |
| ICondition_2 | -10.06667| 4.861045 | -2.07 | 0.038| -19.59414 |
| ICondition_3 | -4.666667| 4.861045 | -0.10 | 0.924| -9.99414 |
| ICondition_4 | 10.53333 | 4.861045 | 2.17 | 0.030| 1.00586 |
| ICondition_5 | 4.866667 | 4.861045 | 1.00 | 0.317| -4.660806 |
| _IConXtim_1_2 | 5.819048 | 6.935664 | 0.84 | 0.401| -7.774604 |
| _IConXtim_1_3 | -2.714286| 6.935664 | -0.39 | 0.696| -16.30794 |
| _IConXtim_1_4 | -11.91429| 6.935664 | -1.72 | 0.086| -25.50794 |
| _IConXtim_1_5 | -9.980952| 6.935664 | -1.44 | 0.150| -23.5746 |
| _IConXtim_1_6 | -2.6 | 6.996239 | -0.37 | 0.710| -16.31238 |
| _cons | -4 | 3.437278 | -0.12 | 0.907| -7.136941 |

\textit{sigma_u} | 0
\textit{sigma_e} | 13.063888
\textit{rho} | 0 (fraction of variance due to u_i)
. xi: xtreg Dist_CHA i.Condition i.time, re

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|--------------|-------|-------|----------------------|
| ICondition_1 | 2.522868 | 2.019266 | 1.25 | 0.212 | -1.434821 - 6.480558 |
| _Itime_2 | -7.095222 | 3.507335 | -2.02 | 0.043 | -13.96947 - 2.209714 |
| _Itime_3 | -1.761889 | 3.507335 | -0.50 | 0.615 | -8.636139 5.112362 |
| _Itime_4 | 4.638111 | 3.507335 | 1.32 | 0.186 | -2.236139 11.51236 |
| _Itime_5 | -0.061888 | 3.507335 | -0.02 | 0.986 | -6.936139 6.812362 |
| _Itime_6 | -3.535271 | 3.537444 | -1.00 | 0.318 | -10.46854 3.397992 |
| _cons | 1.333788 | 2.684139 | 0.50 | 0.619 | -3.927028 6.594604 |

sigma_u | 0
sigma_e | 13.272137
rho | 0 (fraction of variance due to u_i)

. xi: xtreg Dist_MEAN i.Condition*i.time, re

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|--------------|-------|-------|----------------------|
| ICondition_1 | -0.8057598 | 8.657936 | -0.09 | 0.926 | -17.775 16.16348 |
| _Itime_2 | 6.7 | 3.649211 | 1.84 | 0.066 | -4.523226 13.85232 |
| _Itime_3 | 7.833333 | 3.649211 | 2.15 | 0.032 | .6810107 14.98566 |
| _Itime_4 | 1.4 | 3.649211 | 0.38 | 0.701 | -5.752323 8.552323 |
| _Itime_5 | -2.96667 | 3.649211 | -0.81 | 0.416 | -10.11899 4.185656 |
| _Itime_6 | -0.9266026| 3.726055 | -0.25 | 0.804 | -8.229536 6.376331 |
| _IConXtim_1_2 | -12.96091 | 5.215384 | -2.49 | 0.013 | -23.18287 -2.738942 |
| _IConXtim_1_3 | -19.82757 | 5.215384 | -3.80 | 0.000 | -30.04954 -9.605609 |
| _IConXtim_1_4 | -12.76091 | 5.215384 | -2.45 | 0.014 | -22.98287 -2.538942 |
| _IConXtim_1_5 | -10.59424 | 5.215384 | -2.03 | 0.042 | -20.8162 -3722757 |
| _IConXtim_1_6 | -17.60097 | 5.269437 | -3.34 | 0.001 | -27.92888 -7.273063 |
| _cons | 59.8 | 6.098898 | 9.81 | 0.000 | 47.84638 71.75362 |

sigma_u | 21.52938
sigma_e | 10.052959
rho | 0.8209946 (fraction of variance due to u_i)
VR Movement Data – mixed model

.xi: xtreg Movement_Tube_ i.Condition*i.scenario, re
i.Condition _ICondition_0-1 (naturally coded; _ICondition_0 omitted)
i.scenario _Iscenario_1-4 (naturally coded; _Iscenario_1 omitted)
i.Con~n*i.sce~o _IConXsce_#_# (coded as above)

Random-effects GLS regression

Number of obs = 118
Number of groups = 30

Wald chi2(7) = 146.27
Prob > chi2 = 0.0000

corr(u_i, X) = 0 (assumed)

------------- Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------- ------- -------- ------ --------
ICondition_1 .9203343 3.714714 0.25 0.804 -6.36037 8.201039
Isce~nario_2 1.887826 2.082327 0.91 0.365 -2.193461 5.969112
Isce~nario_3 7.490201 2.129695 3.52 0.000 3.316076 11.66433
Isce~nario_4 8.456326 2.082327 4.06 0.000 4.375039 12.53761
IConXsce_1_2 3.623821 2.978538 1.22 0.224 -2.214006 9.461648
IConXsce_1_3 10.6088 3.011843 3.52 0.000 4.705695 16.5119
IConXsce_1_4 10.51481 2.978538 3.53 0.000 4.676988 16.35264
_cons 17.0805 2.607641 6.55 0.000 11.96962 22.19138

sigma_u = 8.3351179
sigma_e = 5.7026051
rho = .68116028 (fraction of variance due to u_i)

Interaction becomes highly statistically-significant for scenarios 3 & 4 (i.e. VR2 and VR3).
Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

Daniel Freeman, Jonathan Bradley, Angus Antley, Emilie Bourke, Natalie DeWeever, Nicole Evans, Emma Cernis, Bryony Sheaves, Felicity Waite, Graham Dunn, Mel Slater and David M. Clark

BJP published online May 5, 2016 Access the most recent version at DOI: 10.1192/bjp.bp.115.176438

Supplementary Material

Supplementary material can be found at: http://bjp.rcpsych.org/content/suppl/2016/04/11/bjp.bp.115.176438.DC1

References

This article cites 0 articles, 0 of which you can access for free at: http://bjp.rcpsych.org/content/early/2016/04/07/bjp.bp.115.176438#BIBL

Reprints/permissions

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

P<P

Published online 2016-05-05T00:05:13-07:00 in advance of the print journal.

You can respond to this article at /letters/submit/bjprcpsych;bjp.bp.115.176438v1

Downloaded from http://bjp.rcpsych.org/ on October 17, 2017

Published by The Royal College of Psychiatrists

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to The British Journal of Psychiatry go to: http://bjp.rcpsych.org/site/subscriptions/