Resonant X-Ray Scattering on the M-Edge Spectra from Triple-k Structure Phase in U\textsubscript{0.75}Np\textsubscript{0.25}O\textsubscript{2} and UO\textsubscript{2}

Tatsuya Nagao* and Jun-ichi Igarashi1

1Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512

(Received March 23, 2022)

We derive an expression for the scattering amplitude of resonant x-ray scattering under the assumption that the Hamiltonian describing the intermediate state preserves spherical symmetry. On the basis of this expression, we demonstrate that the energy profile of the RXS spectra expected near U and Np M\textsubscript{4} edges from the triple-k antiferromagnetic ordering phase in UO\textsubscript{2} and U\textsubscript{0.75}Np\textsubscript{0.25}O\textsubscript{2} agree well with those from the experiments. We demonstrate that the spectra in the σ-σ' and σ-π' channels exhibit quadrupole and dipole natures, respectively.

KEYWORDS: resonant x-ray scattering, triple-k antiferromagnetic ordering, UO\textsubscript{2}, NpO\textsubscript{2}, U\textsubscript{0.75}Np\textsubscript{0.25}O\textsubscript{2}

1. Introduction

Resonant x-ray scattering (RXS) data obtained from actinide compound around the M\textsubscript{4,5} edges supply invaluable information of the properties of the 5\textit{f} state,1-4 since the scattering process consists of 3\textit{d} \rightarrow 5\textit{f} transition in the dipolar (E1) process. Recently, we have derived an useful expression for the scattering amplitude of RXS under the assumption that the Hamiltonian describing the intermediate state preserves the rotational invariance.5 Our theory explicitly treats the energy dependence of the scattering amplitude in contrast with the previous theory employing the fast collision approximation.6-8 This expression is particularly convenient for analyzing the energy profile of the RXS spectra from actinide M\textsubscript{4,5} edges such as NpO\textsubscript{2}, URu\textsubscript{2}Si\textsubscript{2} and so on.5,9 In this paper, we apply the result to investigate the RXS spectra near U and Np M\textsubscript{4} edges from the ordered phase in UO\textsubscript{2} and U\textsubscript{0.75}Np\textsubscript{0.25}O\textsubscript{2}.10,11 Analysis of the RXS spectra in these compounds suggested to show the complicated ordering patterns such as the triple-k type ones gives useful information complementary to that from the neutron scattering experiment.

Known actinide dioxides exhibit the cubic CaF\textsubscript{2} crystal structure ($F\textsubscript{m\textsubscript{3}}m$) at room temperature. Experiments have confirmed that both UO\textsubscript{2} and U\textsubscript{0.75}Np\textsubscript{0.25}O\textsubscript{2} behave as antiferromagnets (AFM) below T_N = 30.8 K and \approx 17 K, respectively, having transverse triple-k structure with modulation vector Q = (001).10,12,13 On the other hand, recent RXS experiments have suggested longitudinal triple-k antiferrooctupolar (AFO) ordering phase is plausible in NpO\textsubscript{2} below T_O = 25.5 K with the same modulation vector.3,14-17 In our previous work5 we have investigated the RXS spectra expected from the longitudinal type of the triple-k AFO phase in NpO\textsubscript{2} and obtained fairly good agreement with the experiments. As we shall show, two types of the energy profile of the spectra ($\alpha_0(\omega)$ and $\alpha_2(\omega)$ in Eq. (2.1)) are expected from the triple-k AFM ordering phase, while only one type of that ($\alpha_2(\omega)$) emerges from the triple-k AFO ordering phase. In this work, we concentrate on the former case paying attention to the difference between the spectra at U and Np sites, namely, between the f^2 and f^3 configurations.

2. RXS Amplitude

Since we are interested in the 5\textit{f} electron systems in which a localized picture gives reasonable description, we suppose the initial state at the site j is spanned by the states within ground multiplet J as $|0\rangle_j = \sum_{m=-J}^J c_j(m)|J,m\rangle$. An incident photon with energy $\hbar\omega$, wave vector \mathbf{k}, and polarization ϵ excites an electron in core 3\textit{d} level into the unoccupied 5\textit{f} state, then the excited electron falls into the core level emitting a scattered photon with energy $\hbar\omega$, wave vector \mathbf{k}', and polarization ϵ' in the E1 process around the actinide M\textsubscript{4,5} edges.

When the Hamiltonian describing the intermediate state of the scattering process preserves the spherical symmetry, the expression of the RXS amplitude reduces to an extremely simple form.5 This condition is justified when the crystal electric field (CEF) Hamiltonian and the inter-site interaction are negligible compared with the energy scale of the intermediate state. Then, the RXS amplitude at the site j is summarized as5

$$M_j(\epsilon',\epsilon,\omega) = \alpha_0(\omega)\epsilon' \cdot \epsilon - i\alpha_1(\omega)(\epsilon' \times \epsilon) \cdot (0|J|0) + \alpha_2(\omega)\sum_\nu P_j(\epsilon',\epsilon)|\nu\rangle\langle\nu|_\nu,$$

where quadrupole operators are represented as $z_1 = Q_{2x^2-y^2} = (\sqrt{3}/2) (J_x^2 - J_y^2)$, $z_2 = Q_{x^2-y^2} = (3J_z^2 - J(J+1))/2$, $z_3 = Q_{yx} = (\sqrt{3}/2) (J_yJ_z + J_zJ_y)$, $z_4 = Q_{xz} = (\sqrt{3}/2) (J_xJ_z + J_zJ_x)$, and $z_5 = Q_{xy} = (\sqrt{3}/2) (J_xJ_y + J_yJ_x)$. The geometrical factors are defined as $P_1(\epsilon',\epsilon) = (\sqrt{3}/2) (\epsilon'_z\epsilon_x - \epsilon'_x\epsilon_z)$, $P_2(\epsilon',\epsilon) = (2\epsilon'_z\epsilon_x - \epsilon'_x\epsilon_z)/2$, $P_3(\epsilon',\epsilon) = (\sqrt{3}/2)(\epsilon'_y\epsilon_x + \epsilon'_x\epsilon_y)$, $P_4(\epsilon',\epsilon) = (\sqrt{3}/2)(\epsilon'_z\epsilon_x + \epsilon'_x\epsilon_z)$, and $P_5(\epsilon',\epsilon) = (\sqrt{3}/2)(\epsilon'_y\epsilon_x + \epsilon'_x\epsilon_y)$. Here, we have suppressed the dependence on the site j in the right hand side of Eq. (2.1). Three independent energy profiles $\alpha_0(\omega)$, $\alpha_1(\omega)$ and $\alpha_2(\omega)$ characterize the scalar, dipole and quadrupole natures, respectively, whose explicit forms have been derived in Ref. 5.

*E-mail address: tnagao@phys.sc.iwate-u.ac.jp
3. Application to UO\(_2\) and U\(_{0.75}\)Np\(_{0.25}\)O\(_2\)

The ordering pattern at U and Np sites in UO\(_2\) and U\(_{0.75}\)Np\(_{0.25}\)O\(_2\) is believed to be the transverse triple-\(\mathbf{k}\) AFM structure (Fig. 1). The triple-\(\mathbf{k}\) structure is defined by all three members of the star of \(\mathbf{k} = (001)\) simultaneously present on each site. The order parameter vector of the transverse ordering is composed of three transverse waves with different \(\mathbf{k}\)’s. There are four sublattices 1, 2, 3 and 4 at (000), \((\frac{1}{2} \frac{1}{2} 0)\), \((\frac{1}{2} 0 \frac{1}{2})\) and \((0 \frac{1}{2} \frac{1}{2})\), respectively. Assuming this ordering pattern is realized, we investigate the energy profile and the azimuthal angle dependence of the RXS spectra at U and Np \(M_4\) edges. Since localized picture provides a good starting point, we construct the ground state of the U ion within the \(J = 4\) in the \(f^2\) configuration and Np ion within the \(J = \frac{9}{2}\) multiplet in the \(f^3\) configuration. Note that due to the strong spin-orbit interaction, these ground multiplets are slightly different from \(^3\!H_4\) and \(^4\!I_{\frac{9}{2}}\) terms, respectively, inferred from the perfect LS coupling.

First, we construct the ground state at U site. Under the influence of the CEF Hamiltonian with cubic symmetry, the ground multiplet \(J = 4\) at U site splits into one singlet \(\Gamma_1\), one doublet \(\Gamma_3\) and two triplets \(\Gamma_4\) and \(\Gamma_5\). The lowest levels are made of \(\Gamma_5\). Because the values of the CEF parameters and the expansion parameters of the \(\Gamma_5\) triplet are irrelevant to the following discussion, we relegate the actual expressions of them to the literature. By introducing the dipole operators,

\[
J_p = \begin{cases} \frac{1}{\sqrt{3}} (J_x + J_y + J_z) & \text{for } p = 111, \\ \frac{1}{\sqrt{3}} (J_x - J_y - J_z) & \text{for } p = 1\bar{1}\bar{1}, \\ \frac{1}{\sqrt{6}} (-J_x + J_y - J_z) & \text{for } p = \bar{1}1\bar{1}, \\ \frac{1}{\sqrt{6}} (-J_x - J_y + J_z) & \text{for } p = \bar{1}\bar{1}1, \end{cases}
\]

we can construct the triple-\(\mathbf{k}\) AFM ordering state within the \(\Gamma_5\) triplet by assigning one of the eigenstates of \(J_p\)’s to each sublattice. Each \(J_p\) takes eigenvalues \(\pm j_0 \equiv \pm \frac{\sqrt{3}}{2}\) and 0. Two types of the relevant transverse ordering patterns are constructed by assigning either one of the eigenstates with eigenvalues \(\pm \frac{\sqrt{3}}{2}\) of \(J_{111}, J_{333}, J_{1\bar{1}\bar{1}}\) and \(J_{\bar{1}1\bar{1}}\) to sublattices 1, 2, 3 and 4 and to 1, 4, 2 and 3, respectively (Fig. 1). For each sublattice assigned operator \(J_p\), the direction of the vector \((\langle J_x \rangle, \langle J_y \rangle, \langle J_z \rangle)\), in which the expectation values are evaluated by the eigenstate of \(J_p\), coincides with that of \(p\).

Note that each dipole operator \(J_p\) commutes with the corresponding quadrupole operator \(Q_p\), which is defined by replacing \(J_x, J_y\) and \(J_z\) in \(J_p\) with \(Q_{z\bar{x}}, Q_{\bar{z}x}\) and \(Q_{xy}\), respectively. Each \(Q_p\) could be represented as

\[
Q_p = \frac{13}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},
\]

where the basis are taken by the eigenstates of \(J_p\). It is obvious that the eigenstate of \(J_p\) induces the quadrupole moment simultaneously. The eigenstates of \(J_p\)’s with eigenvalues \(\pm j_0\) and 0 are those of \(Q_p\)’s with eigenvalues \(\frac{j_0^2}{2}\) and \(-\frac{j_0}{2}\), respectively.

Similarly, the ground multiplet \(J = \frac{9}{2}\) at Np site splits into one doublet \(\Gamma_6\) and two quartets \(\Gamma_8^{(1)}\) and \(\Gamma_8^{(2)}\) due to the CEF Hamiltonian. The lowest levels are made of \(\Gamma_8^{(2)}\). Each \(J_p\) within this subspace takes eigenvalues \(\pm j_1\) and \(\pm j_2\). Since the commutation relation \([J_p, Q_p] = 0\) also holds, the eigenstate of \(J_p\) induces the quadrupole moment simultaneously. The eigenstates of \(J_p\)’s with eigenvalues \(\pm j_1\) and \(\pm j_2\) are those of \(Q_p\)’s with eigenvalues \(-q_1\) and \(+q_1\), respectively. Details for the AFM ordering at Np site are found in Ref. 5.

Assuming the eigenstates of \(J_p\)’s with eigenvalue \(-j_0\) (or \(+j_0\)) at U site and those with \(-j_1\) (or \(+j_1\)) at Np site are realized at each sublattice, we calculate the RXS spectra with \(G = (112)\). Due to the fact that \([J_p, Q_p] = 0\), the initial state takes non-zero expectation values of dipole and quadrupole moment. This immediately leads to a possibility that both two energy profiles \(\alpha_1(\omega)\) and \(\alpha_2(\omega)\) emerge. This is one of the prominent differences when we have investigated the RXS spectra from the triple-\(\mathbf{k}\) AFO state in pure NpO\(_2\) where only \(\alpha_2(\omega)\) is allowed. For the scattering vector \(G = (h\ell\ell)\) with \(h + \ell = \text{odd}\), the interference between \(\alpha_1(\omega)\) and \(\alpha_2(\omega)\) is expected in the \(\sigma-\pi'\) (rotated) channel while only the contribution from \(\alpha_2(\omega)\) is detected owing to the geometrical factor in the \(\sigma-\sigma'\) (non-rotated) channel.

In order to evaluate the energy profiles \(\alpha_1(\omega)\) and \(\alpha_2(\omega)\), we take the intra-atomic Coulomb interaction and the spin-orbit interaction into full account in the preparation of the intermediate state. Details are described in Ref. 5. The value of \(\Gamma\), the life-time broadening width of the core hole, is taken as 2 eV (HWHM). We display the numerical results in Fig. 2. We adjusted the core hole energy such that the peak is located at the experimental position in the \(\sigma-\sigma'\) channel. The spectra agree semi-quantitatively well with the experiments. Since we find \(|\alpha_1(\omega)|^2\) is much larger than \(|\alpha_2(\omega)|^2\), for instance, \(|\alpha_1(\omega)|^2 \sim 125|\alpha_2(\omega)|^2\) at the U site and \(|\alpha_2(\omega)|^2\) at the Np site when \(\Gamma = 2\) eV, the interference effect expected in the \(\sigma-\pi'\) channel is negligible. In experimental data, the peak position in the \(\sigma-\pi'\) channel is higher than that in the \(\sigma-\sigma'\) channel about 2.0 eV at U site and 0.3 eV at Np site. Our results, 1.3 eV and 0.27 eV, respectively, capture such tendency. The difference between the spectral shape at U site and that at Np site is not prominent due to the large value of \(\Gamma = 2\) eV. When

![Fig. 1. Two types of the transverse triple-\(k\) AFM ordering patterns corresponding to a modulation vector \(Q = (001)\). Arrows mean vector \((\langle J_x \rangle, \langle J_y \rangle, \langle J_z \rangle)\) and number 1, 2, 3, and 4 specify the sublattices. Oxygen ions are omitted.](image-url)
Γ is reduced around 0.5 eV, the spectra show multi-peak structure which could distinguish those at U from Np sites when the drastic improvement of the absorption correction technique would be achieved.

Fig. 3 shows the azimuthal angle dependence of the peak intensity expected from the transverse triple-k AFM phase with $G = (112)$. The spectra are evaluated by incoherent addition of the contributions from two transverse ordering patterns. Since $\alpha_1(\omega)$ contribution dominates the whole intensity in the σ-π' channel, we plot the ψ dependence of the pure $\alpha_1(\omega)$ in this channel (Fig. 3 (b)). Experimental data in Fig. 3 (a) are those of U in UO$_2$ and those of Np in U$_{0.75}$Np$_{0.25}$O$_2$. The overall agreement between the experimental data and the theoretical curve is interpreted as one of the evidences of the realization of the triple-k structure in these materials as the experimentalists have suggested. Notice that no ψ dependence has been detected in the σ-π' channel around U and Np M_4 edges in U$_{0.75}$Np$_{0.25}$O$_2$. Our calculation, however, reveals that this channel should possess the ψ dependence although the dependence is mild around $\psi = -\pi/2 \approx 3\pi/4$ as shown in Fig. 3 (b). The detailed experimental information, in particular, around $\psi = \pi$ will clarify this discrepancy. Note that, in the E1 transition, quadrupole profile $\alpha(\omega)$ alone has contribution, if any, on the spectrum in the σ-π' channel. We have confirmed that the ψ dependence (not shown) in this channel expected from the longitudinal triple-k AFM phase is completely different from that of the observed one. Therefore, it excludes a possibility of any types of the longitudinal triple-k orderings, such as the AFM, AFQ and AFO phases.

4. Summary

We have utilized the useful expression of the RXS amplitude derived in Ref. 5 to investigate the RXS spectra at U and Np M_4 edges in UO$_2$ and U$_{0.75}$Np$_{0.25}$O$_2$, assuming the transverse triple-k AFM ordering phase is substantiated in these materials. Our analysis has shown the semi-quantitative agreement with the experimental data, meaning that the spectra in the σ-α' and σ-π' channels characterize the quadrupole ($|\alpha_2(\omega)|^2$) and dipole ($|\alpha_1(\omega)|^2$) nature, respectively, as the experimentalists had suggested. A discrepancy of the azimuthal angle dependence in the σ-π' channel between the experiments and our theory should be addressed on the future study.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

1) E. D. Isaacs et al.: Phys. Rev. Lett. 65 (1990) 3185.
2) D. Mannix et al.: Phys. Rev. B 60 (1999) 15187.
3) J. A. Paixão et al.: Phys. Rev. Lett. 89 (2002) 187202.
4) N. Bernhoeft et al.: Acta Physica Pol. B 34 (2003) 1367.
5) T. Nagao and J. Igarashi: Phys. Rev. B 72 (2005) 174421.
6) J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs: Phys. Rev. Lett. 61 (1988) 1245; ibid. 62 (1989) 2644(E).
7) J. Luo, G. T. Trammell, and J. P. Hannon: Phys. Rev. Lett. 71 (1993) 287.
8) S. W. Lovesey and E. Balcar: J. Phys.: Condens Matter 8 (1996) 10983.
9) T. Nagao and J. Igarashi: J. Phys. Soc. Jpn., 74 (2005) 765.
10) S. B. Wilkins et al.: Phys. Rev. B 70 (2004) 214402.
11) S. B. Wilkins et al.: Phys. Rev. B 73 (2006) 060406.
12) P. Burlet, J. Rossat-Mignod, S. Quezel, O. Vogt, J. C. Spirlet and J. Rebizant, J. Less-Common Met., 121 (1986) 121.
13) R. Caciuffo et al.: Phys. Rev. B 59 (1999) 13892.
14) R. Caciuffo et al.: J. Phys.: Condens. Matter 15 (2003) S2287.
15) Y. Tokunaga et al.: Phys. Rev. Lett. 94 (2005) 137209.
16) K. Kubo and T. Hotta: Phys. Rev. B 71 (2005) 144404(R).
17) A. Kiss and P. Fazekas: Phys. Rev. B 68 (2003) 174425.
18) G. Amoretti et al.: Phys. Rev. B 40 (1989) 1556.
19) As for U site in UO$_2$ in Ref. 11, unfortunately, we cannot find any description about the ψ dependence in the σ-π' channel.