Elevated levels of low-density lipoprotein cholesterol (LDL-C) are well established to be associated with the development of atherosclerotic cardiovascular disease (ASCVD), defined as acute coronary syndrome, a history of myocardial infarction, stable or unstable angina, coronary or other arterial revascularization, ischemic stroke, transient ischemic attack, or peripheral artery disease (all presumed to be of atherosclerotic origin).\(^1\) ASCVD is the leading cause of morbidity and mortality in individuals with diabetes mellitus.\(^2\) Individuals with diabetes mellitus and elevated levels of LDL-C are at higher absolute risk of cardiovascular disease compared with those with high LDL-C without diabetes mellitus.\(^3\) Statin therapy is recommended as the first-line lipid-lowering drug therapy for the management of dyslipidemia in individuals with diabetes mellitus (unless contraindicated) in current major US guidelines and recommendations (summarized in Table S1).\(^1,2,4,5\) However, some patients with high cardiovascular risk either do not achieve adequate LDL-C reductions on statins, or are intolerant to statins and therefore receive suboptimal statin doses or discontinue statin therapy, and thus remain at increased risk of cardiovascular events. For such patients, additional and/or alternative nonstatin lipid-lowering treatment options should be considered.\(^4,6–12\)

Several nonstatin therapies are currently available, including the cholesterol absorption inhibitors (ezetimibe), bile acid sequestrants, nicotinic acid (niacin), and fibrates.\(^4\) Previous studies with statins and ezetimibe have shown that patients with diabetes mellitus benefit from tight lipid control at least in the same way (if not more) as patients with other risk factors, as well as those without diabetes mellitus.\(^11,13\) The Cholesterol Treatment Trialists’ Collaboration meta-analysis of 14 randomized statin trials found that the cardiovascular benefits of LDL-C lowering with statin therapy were similar in those with (n=18 686) and without diabetes mellitus (n=71 370).\(^13\) In the IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) trial evaluating the addition of ezetimibe concomitant with statin therapy, which lowered LDL-C levels below previous targets to a median level of 53 mg/dL in 18 144 patients with recent acute coronary syndromes (27% of whom had diabetes mellitus),\(^11\) individuals with diabetes mellitus had significantly greater relative and absolute benefit in improved cardiovascular outcomes than those without diabetes mellitus.\(^14\) Clinical outcomes studies for niacin (AIM-HIGH [Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes] and HPS2-THRIVE [Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events]) and fenofibrate (ACCORD [Action to Control Cardiovascular Risk in Diabetes] and FIELD [Fenofibrate Intervention and Event Lowering in Diabetes]) did not demonstrate significant cardiovascular benefits in individuals with diabetes mellitus, although there was a suggestion of benefit in subgroups with very high triglyceride levels in the fenofibrate studies.\(^15–18\) Because of increased risk of adverse events (AEs) and lack of evidence of meaningful benefits as seen in cardiovascular outcomes trials,\(^15–17\) the US Food and Drug Administration (FDA) has recently rescinded its approval of the combined use of statins with niacin extended-release tablets or fenofibrate acid delayed-release capsules.\(^19\) These nonstatin therapies only produce moderate LDL-C-lowering effects and have side effects that limit their use.\(^11,15–17\)

Recently, monoclonal antibodies that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) have received considerable attention as promising nonstatin therapeutic options for the management of lipid disorders in patients with persistent cardiovascular risk, including in patients with diabetes mellitus. In this review, we discuss the results of studies investigating lipid-lowering efficacy, safety, and

REFERENCES

1. American Heart Association. (2018). *Contemporary Review: PCSK9 Inhibitors in Lipid Management of Patients With Diabetes Mellitus and High Cardiovascular Risk: A Review*. Journal of the American Heart Association. DOI: 10.1161/JAHA.118.008953.
cardiovascular outcomes in patients with diabetes mellitus and elevated LDL-C, and recently released data and forthcoming clinical trials with a focus on 2 FDA-approved monoclonal antibodies that inhibit PCSK9: alirocumab (Praluent®, Sanofi-Aventis US LLC, Bridgewater, NJ, and Regeneron Pharmaceuticals, Inc, Tarrytown, NY) and evolocumab (Repatha®, Amgen Inc, Thousand Oaks, CA).

Mechanism of Action of PCSK9 Inhibitors

The PCSK9 protein is an important regulator of circulating LDL-C levels, through its inhibitory action on recycling of the LDL receptor (LDLR). LDLR on the liver cell surface binds to LDL and the LDLR–LDL complex is then internalized, after which the LDLR is normally recycled back to the cell surface up to 150 times. Secreted PCSK9 binds to the LDLR on the surface of the hepatocyte, leading to the internalization and degradation of the LDLR in the lysosomes, and reducing the number of LDLRs on the cell surface. Inhibition of secreted PCSK9 should therefore increase the number of available LDLRs on the cell surface and increase uptake of LDL-C into the cell. PCSK9 inhibition thus offers a novel therapeutic mechanism for the lowering of LDL-C levels.

The relevance of PCSK9 to coronary heart disease was determined from human genetic studies that identified gain-of-function mutations in the PCSK9 gene associated with elevated serum LDL-C levels and premature coronary heart disease. Conversely, loss-of-function PCSK9 mutations are associated with lower serum LDL-C levels, lower lifelong exposure of vascular structures to LDL, and marked reduction of risk of coronary heart disease. Moreover, healthy subjects with severe loss of PCSK9 function have been shown to have serum LDL-C concentrations as low as 14 mg/dL without apparent adverse health effects.

In addition to the well-established role of PCSK9 in LDL metabolism, a recent study suggested that it could play a significant role in the metabolism of triglyceride-rich lipoproteins also through interaction with the LDLR. This has important implications for individuals with type 2 diabetes mellitus (T2D), and for those with type 1 diabetes mellitus (T1D) with poor glycemic control, who typically have a pattern of lipid abnormalities related to insulin resistance that is characterized by reduced hepatic clearance of triglyceride-rich lipoproteins, increased hepatic production of very-low-density lipoproteins, and enhanced intestinal production of chylomicrons. These lipid abnormalities, termed diabetic (or mixed) dyslipidemia (Figure), account for their elevated levels of non-high-density lipoprotein cholesterol, triglycerides, and small dense LDLs. Remnants of triglyceride-rich lipoproteins, which include chylomicrons and very-low-density lipoproteins, have enhanced atherogenic potential since they contain more cholesterol per particle than LDL, and have been shown to have a substantial and independent causal association with cardiovascular risk. Whereas the LDLR binds to LDLs via apolipoprotein-B100 (apoB100), LDL binds triglyceride-rich lipoprotein remnants through interactions with apolipoprotein-E (apoE), and clearance of these particles occurs along with other receptors such as LDLR-related protein 1 and Syndecan-1. The recent study showed lower levels of fasting and postprandial triglycerides, apoB48 (an indicator of remnant lipoprotein metabolism), and total apoB (a surrogate of apoB100) in individuals carrying loss-of-function PCSK9 genetic variants, supporting a role of PCSK9 in the reduction of uptake of apoE-containing remnant particles as well as LDL. Recent kinetic studies in healthy subjects showed that PCSK9 inhibitors decreased fractional production rate of LDL and intermediate-density lipoprotein, and increased fractional clearance rates of very-low-density lipoprotein, intermediate-density lipoprotein, and LDL particles, which may reflect a much higher expression of hepatic LDLRs than with statin treatment. Similarly, lipoprotein (a) levels were also decreased with PCSK9 inhibitors, which was previously not seen with statins. Thus, PCSK9 inhibitors could be especially potent in the treatment of dyslipidemia in those with diabetes mellitus.

PCSK9 Inhibitors and Their Effects in Patients With Diabetes Mellitus and High LDL-C Levels

Currently, the only FDA-approved PCSK9 inhibitors are 2 fully human monoclonal antibodies that bind extracellular PCSK9: alirocumab and evolocumab, administered via subcutaneous injections every 2 weeks (Q2W) or once monthly. Several other approaches to inhibit PCSK9 are in the early stages of clinical development, including small interfering ribonucleic acids, antisense oligonucleotides, small molecule inhibitors, and vaccines; these nonmonoclonal antibody approaches, which utilize alternative strategies to inhibit intracellular or extracellular PCSK9, could potentially provide greater convenience than use of monoclonal antibodies through oral administration, and less frequent dosing.

Both alirocumab and evolocumab received FDA approval in 2015 as adjunct therapy to diet and maximally tolerated statin therapy to treat adults with heterozygous familial hypercholesterolemia or clinical ASCVD who need greater LDL-C reduction. Evolocumab is also indicated as adjunct therapy to diet and other lipid-lowering therapies (eg, statins, ezetimibe, LDL apheresis) in patients with homozygous familial hypercholesterolemia who need additional LDL-C reduction; additionally, as of 2017, evolocumab is indicated to reduce the risk of myocardial infarction, stroke, and coronary revascularization in adults with established cardiovascular disease. Both antibodies are approved by the FDA to be administered subcutaneously Q2W or once monthly. The recommended starting dose...
for alirocumab is 75 mg Q2W, or 300 mg every 4 weeks for patients who prefer less frequent dosing; with either starting dose, the alirocumab dose can be increased to 150 mg Q2W if patients did not have sufficient LDL-C lowering within 4 to 8 weeks of initiating treatment. The FDA-approved doses for evolocumab are 140 mg Q2W or 420 mg once monthly. Currently, individuals with diabetes mellitus who have established ASCVD and need to reduce LDL-C levels can receive treatment with PCSK9 inhibitors.

Alirocumab and evolocumab, either alone or in combination with statins and/or other lipid-lowering therapies, have been shown in their respective phase 3 clinical trial programs (ODYSSEY and PROFICIO [Program to Reduce LDL-C and Cardiovascular Outcomes Following Inhibition of PCSK9 In Different Populations]) to significantly reduce LDL-C levels by up to 60% from baseline (depending on dosing regimen; Table) in patients with hypercholesterolemia, including those with familial hypercholesterolemia, moderate to very high cardiovascular risk, and statin intolerance. The inclusion/exclusion criteria and other details of each phase 3 ODYSSEY and PROFICIO trial are shown in Table S2. LDL-C reductions in the placebo-controlled phase 3 trials were consistent with those found in the FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) cardiovascular outcomes trial (Table), studying evolocumab versus placebo in 27,564 patients with clinically evident ASCVD and on a moderate-to-high-intensity statin regimen over a median follow-up duration of 2.2 years. The GLAGOV (Global Assessment of Plaque Regression With a PCSK9 Antibody as Measured by Intravascular Ultrasound) study (which included 968 statin-treated patients with angiographic coronary disease to evaluate the effect of evolocumab versus placebo on the progression of coronary atherosclerosis) also showed comparable reductions in LDL-C levels over 76 weeks of evolocumab treatment (from 93 mg/dL at baseline to...
Table. Alirocumab ODYSSEY and Evolocumab PROFICIO Phase 3 Studies Show Similar Reductions in Calculated LDL-C Levels From Baseline to Primary End Point in Individuals With vs Without DM, Pre-DM, and Metabolic Syndrome (ITT Analysis)

	LS Mean (SE), Unless Otherwise Specified	LS Mean (SE), Unless Otherwise Specified	Interaction P Value
ALIROCUMAB 150 mg Q2W vs PBO (with statin), 24 wks			
Overall	1530	780	0.8 (1.0)
DM subanalysis	545	273	0.0957
Non-DM (n=1492)	985	557	1.8 (1.3)
			−63.4
Pooled analysis of HIGH FH, LONG TERM, ALI 150 vs PBO			
Overall	1601	815	0.5 (1.0)
DM subanalysis	554	279	0.13
Non-DM (n=1583)	1047	536	−62.3 (1.5)
Pre-DM subanalysis	–	−1.4 (1.7)	−63.9
DM+ASCVD subanalysis	–	2.1 (1.6)	0.1431
		−0.1 (1.9)	−59.4
		−60.5 (−65.9 to −55.2)	
ALIROCUMAB 75/150 mg Q2W vs PBO (with statins), 24 wks			
Pool of FH I & II, ALI 75/150 vs PBO			
Overall	–	7.1 (1.7)	−55.9
DM subanalysis	–	2.4 (5.5)	−53.8
Non-DM (n=666)	−48.5 (1.3)	7.6 (1.8)	−56.1
COMBO I, ALI 75/150 vs PBO			
Overall	205	106	−2.3 (−7.6 to 3.1)
DM subanalysis	94	41	−39.6
Non-DM (n=176), estimated mean (95% CI)	−53.2 (−58.4 to −48.1)	65	−51.2
Pooled analysis of FH I & II, COMBO I, ALI 75/150 vs PBO			
Overall	693	350	4.2 (1.5)
DM subanalysis	131	70	−43.7 (4.1)
Non-DM (n=842)	562	280	−54.8 (2.0)
Pre-DM subanalysis	–	3.3 (2.4)	−55.7
NG (n=422)	−46.1 (1.6)	8.9 (2.3)	−55.0
DM+ASCVD subanalysis	92	45	−52.7 (−63.5 to −41.9)

Continued
Table. Continued

Drug	% Change From Baseline (LDL-C) to Primary End Point	Difference vs Control, LS Mean % Change From Baseline (SE or 95% CI if Published), Unless Otherwise Specified	Interaction P Value				
ALI or EVO	ALI or EVO Control (PBO or EZE)	LS Mean (SE), Unless Otherwise Specified	LS Mean (SE), Unless Otherwise Specified				
DM-INSULIN⁷⁵							
DM-insulin	T2DM (n=429)	287	−48.2 (1.6)	142	0.8 (2.2)	−49.0 (2.7)	
	T1DM (n=74)	49	−51.8 (3.7)	25	−3.9 (5.3)	−47.8 (6.5)	

ALIROCUMAB 75/150 mg Q2W vs EZE, 24 wks

COMBO II DM subanalysis, ALI 75/150 vs EZE (with statin)

Overall⁴⁵	DM subanalysis⁶⁷	Non-DM (n=495*)
All (n=707)	467[†]	239[†]
Pre-DM (n=432)	−51.7 (2.2)	−16.1 (2.6)
NG (n=244)	−45.8 (2.8)	−21.8 (3.6)

DM-ASCVD subanalysis⁶⁸ (n=283)

| DM-ASCVD | 173 | −48.7 (2.6) | 110 | −20.6 (3.3) | −28.1 (−36.6 to −18.6) | |

ALTERNATIVE, ALI 75/150 vs EZE (without statin)

Overall⁴⁸	DM-ASCVD subanalysis⁶⁹	Non-DM (n=34)				
All (n=168)	90	−54.8 (1.4)	78	−20.1 (2.4)	−34.7	
Pre-DM (n=135)	−44.0 (2.9)	−16.0 (2.7)				
NG (n=147)	−46.3 (2.7)	−13.7 (2.6)				

DM-DYSLIPIDEMIA⁷⁷

| T2DM+ mixed dyslipidemia[§] | 273[§] | −43.3[§] | 136[§] | −0.3[§] | −43.0[§] | |

EVOLOCUMAB 140 mg Q2W or 420 mg QM vs PBO

Pool of LAPLACE-2 & RUTHERFORD-2, EVO 140 or 420 vs PBO, 12 wks⁶⁶

T2DM subanalysis	210	−60 (−69 to −51)[†]	
------------------	----	---------------------	
Non-T2DM (n=1700)	1127	−66 (−70 to −62)[†]	

DESCARTES, EVO 420 vs PBO, 52 wks

Overall⁶¹	Subanalysis by glycemic status and MetS⁷³
All (n=901)	T2DM (n=120)
	IFG (n=293)
	MetS (n=289)
	No dysglycemia or MetS (n=393)

DM-INSULIN⁷⁵ DM-insulin

| T2DM (n=429) | 287 | −48.2 (1.6) | 142 | 0.8 (2.2) | −49.0 (2.7) | |
| T1DM (n=74) | 49 | −51.8 (3.7) | 25 | −3.9 (5.3) | −47.8 (6.5) | |

| ALIROCUMAB 75/150 mg Q2W vs EZE, 24 wks |

COMBO II DM subanalysis, ALI 75/150 vs EZE (with statin)

Overall⁴⁵	DM subanalysis⁶⁷	Non-DM (n=495*)
All (n=707)	467[†]	239[†]
Pre-DM (n=432)	−51.7 (2.2)	−16.1 (2.6)
NG (n=244)	−45.8 (2.8)	−21.8 (3.6)

DM-ASCVD subanalysis⁶⁸ (n=283)

| DM-ASCVD | 173 | −48.7 (2.6) | 110 | −20.6 (3.3) | −28.1 (−36.6 to −18.6) | |

ALTERNATIVE, ALI 75/150 vs EZE (without statin)

Overall⁴⁸	DM-ASCVD subanalysis⁶⁹	Non-DM (n=34)				
All (n=168)	90	−54.8 (1.4)	78	−20.1 (2.4)	−34.7	
Pre-DM (n=135)	−44.0 (2.9)	−16.0 (2.7)				
NG (n=147)	−46.3 (2.7)	−13.7 (2.6)				

DM-DYSLIPIDEMIA⁷⁷

| T2DM+ mixed dyslipidemia[§] | 273[§] | −43.3[§] | 136[§] | −0.3[§] | −43.0[§] | |

EVOLOCUMAB 140 mg Q2W or 420 mg QM vs PBO

Pool of LAPLACE-2 & RUTHERFORD-2, EVO 140 or 420 vs PBO, 12 wks⁶⁶

T2DM subanalysis	210	−60 (−69 to −51)[†]	
------------------	----	---------------------	
Non-T2DM (n=1700)	1127	−66 (−70 to −62)[†]	

DESCARTES, EVO 420 vs PBO, 52 wks

Overall⁶¹	Subanalysis by glycemic status and MetS⁷³
All (n=901)	T2DM (n=120)
	IFG (n=293)
	MetS (n=289)
	No dysglycemia or MetS (n=393)
37 mg/dL at week 76). Moreover, in a 4-year assessment of an ongoing open-label extension of the phase 2 OSLER-1 (Open-Label Study of Long-Term Evaluation against LDL Cholesterol 1) trial (the longest clinical trial exposure to date with a PCSK9 inhibitor), monthly doses of evolocumab treatment produced sustained LDL-C reductions over 4 years of follow-up without increased incidence of AEs.

Table. Continued

% Change From Baseline (LDL-C) to Primary End Point	Difference vs Control, LS Mean % Change From Baseline (SE or 95% CI if Published), Unless Otherwise Specified	Interaction P Value
ALI or EVO	Control (PBO or EZE)	
n	LS Mean (SE), Unless Otherwise Specified	
DM subanalysis		
Overall63	All (n=27 563)	
DM subanalysis71	DM (n=11 031)	
Non-DM (n=16 533)	8269	
EVOLOCUMAB 140 mg O2W or 420 mg QM vs EZE		
Pool of LAPLACE-2 (atorvastatin cohorts only) & GAUSS-2, EVO 140 or 420 vs EZE, 12 wks66		
T2DM subanalysis		
T2DM (n=187)	114	0.79
Non-T2DM (n=780)	530	
Lipid-Lowering Efficacy of PCSK9 Inhibitors in Patients With Diabetes Mellitus		

Subanalyses of the diabetes mellitus subpopulations in the alirocumab and evolocumab phase 3 trials (Table) showed significant reductions in LDL-C that were generally similar between individuals with and without diabetes mellitus. Findings were consistent in the prespecified diabetes mellitus subanalysis of FOURIER, which analyzed 11 031 patients with diabetes mellitus versus 16 533 patients without diabetes mellitus; compared with placebo, median LDL-C levels were reduced by 57% in those with diabetes mellitus and by 60% in those without diabetes mellitus. Other subanalyses of ODYSSEY and PROFICIO phase 3 trials showed that LDL-C reductions were also similar in those with and without prediabetes, impaired fasting glucose, and metabolic syndrome (Table). Similarly, a recent post-hoc subanalysis of 9 ODYSSEY phase 3 trials (24–104 weeks’ treatment duration) showed significant LDL-C reductions with alirocumab in patients with both diabetes mellitus and ASCVD (Table). Moreover, LDL-C reductions in these subpopulations with alirocumab and evolocumab were comparable to those seen in the overall phase 3 patient populations (Table).

Further information on the impact of alirocumab in patients with diabetes mellitus is available from the ODYSSEY DM-INSULIN74,75 and DM-DYSLIPIDEMIA76,77 trials, which were dedicated phase 3b and phase 4 studies, respectively, investigating alirocumab in individuals with diabetes mellitus. The placebo-controlled DM-INSULIN trial assessed the efficacy and safety of concomitant administration of 2 injectable biological agents (alirocumab and insulin) in insulin-treated individuals with hypercholesterolemia and T1D or T2D at high cardiovascular risk, on background stable maximally tolerated statin therapy with or without other lipid-lowering therapy (Table). The DM-DYSLIPIDEMIA trial assessed the efficacy and safety of alirocumab versus lipid-lowering usual care.
(ezetimibe, fenofibrate, omega-3 fatty acids, or nicotinic acid) in individuals with T2D and mixed dyslipidemia at high cardiovascular risk, on background stable maximally tolerated statin therapy without other lipid-lowering therapies; this trial was the first trial of a PCSK9 inhibitor to evaluate non-high-density lipoprotein cholesterol as a primary efficacy end point (Table).76,77 Two evolocumab phase 3 trials study individuals with T2D and hypercholesterolemia or mixed dyslipidemia (NCT02739984, NCT02662569).

Safety of PCSK9 Inhibitors in Patients With Diabetes Mellitus, and Impact On Risk of Diabetes Mellitus Development

In the overall phase 3 patient populations, pooled safety analyses of 14 alirocumab ODYSSEY trials (including 5234 patients with 8–104 weeks’ treatment duration),78 12 evolocumab PROFICIO parent trials (including 6026 patients with 6–52 weeks’ treatment duration), and the first year of 2 open-label extension trials (which included 4465 of the 6026 patients who were included in this analysis in the parent trials),79 and the FOURIER trial63 showed that the incidence of overall treatment-emergent AEs, serious treatment-emergent AEs, discontinuations because of treatment-emergent AEs, and deaths was similar with the PCSK9 inhibitors versus controls. Among alirocumab- or evolocumab-treated patients, nasopharyngitis, injection-site reactions, and upper respiratory tract infections were the most commonly occurring AEs.78,79 Generally, a higher incidence of local injection-site reactions (the majority of which were mild in nature) was seen with alirocumab/evolocumab versus controls.63,78

Consistent with the overall patient populations mentioned above,63,74 subanalyses by diabetes mellitus status demonstrated that overall alirocumab/evolocumab safety was comparable to that of control in those with and without diabetes mellitus.66,67,69,71,80 Overall safety was also comparable versus control between patients with diabetes mellitus and ASCVD,46 insulin-treated patients with diabetes mellitus in the DM-INSULIN study,75 patients with T2D and mixed dyslipidemia in the DM-DYSLIPIDEMIA study,27 individuals with prediabetes and normoglycemia,72 and those with and without dysglycemia or metabolic syndrome.73 As shown in prior studies in the overall patient population,63,74 higher rates of local injection-site reactions (also generally mild) were typically seen with alirocumab/evolocumab compared with control for patients both with and without diabetes mellitus.69,71,80 However, in those with diabetes mellitus, several analyses showed lower rates of local injection-site reactions with alirocumab/evolocumab versus control.66,67,75 Furthermore, alirocumab/evolocumab-treated individuals with diabetes mellitus showed a lower incidence of local injection-site reactions compared with alirocumab/evolocumab-treated individuals without diabetes mellitus.56,67,69,71,80

Statin therapy and recent genetic epidemiology studies of PCSK9 loss-of-function genetic variants associated with LDL-C reductions have suggested a small but statistically significant increased risk of the development of new-onset diabetes mellitus.4,81–84 However, current clinical trial data for alirocumab and evolocumab do not suggest an association between PCSK9 inhibitors and loss of glycemic control. Analyses of ODYSSEY phase 3 trials with alirocumab with duration of 78 to 104 weeks of follow-up showed no changes in fasting plasma glucose or hemoglobin A1c levels over time with alirocumab or control in patients with and without diabetes mellitus67,68,75,77,80,85 or in individuals with prediabetes or normoglycemia at baseline.72 Analyses of PROFICIO trials of 48 to 52 weeks of follow-up and the diabetes mellitus subanalysis of the FOURIER trial of 168 weeks of follow-up also did not show changes in fasting plasma glucose or hemoglobin A1c levels with evolocumab in patients with and without diabetes mellitus,71 high risk of diabetes mellitus,70 impaired fasting glucose, metabolic syndrome, or normoglycemia,73 although a small but statistically significant increase in fasting plasma glucose with evolocumab (but no change in hemoglobin A1c) at 78 weeks of treatment was found in the GLAGOV study.64 Furthermore, in contrast to the results seen in the statin and PCSK9 genetic variant studies mentioned above,4,81–84 no evidence of increased transition from normoglycemia to new-onset diabetes mellitus following alirocumab or evolocumab treatment was found in pooled analyses.70,73,85 Findings from the FOURIER trial showed no significant differences in rates of adjudicated new-onset diabetes mellitus cases between evolocumab and placebo over a median follow-up of 2.2 years.63,71 The lack of increased risk of developing new-onset diabetes mellitus on a PCSK9 inhibitor was further confirmed in the longest-running PCSK9 inhibitor trial to date (the 4-year assessment of the ongoing open-label extension of the phase 2 OSLER-1 trial), which indicated an annualized incidence of new-onset diabetes mellitus of 2.8% for the evolocumab group over up to 4 years of continued exposure (versus 4.0% for the control group).55 The lack of effect of PCSK9 inhibitors on new-onset diabetes mellitus in contrast to the increased risk of new-onset diabetes mellitus in those with PCSK9 loss-of-function genetic variants could be attributed to differences in biological effects of LDL-C lowering associated with treatment with a PCSK9 inhibitor (ie, inhibiting circulating, extracellular PCSK9) versus the lifelong exposure to decreased LDL-C levels because of PCSK9 loss-of-function genetic variants.81,83 Indeed, PCSK9 monoclonal antibodies have been shown to affect the PCSK9 extracellular pathway without altering the PCSK9 intracellular pathway, which remains poorly characterized, especially in beta cells.86
Impact of PCSK9 Inhibitors on Atherosclerosis and Cardiovascular Outcomes in Patients With Diabetes Mellitus

The cardiovascular benefits of LDL-C reductions with a PCSK9 inhibitor were first suggested by the post-hoc analyses of the phase 3 LONG TERM and OSLER trials.6662 Recently, the GLAGOV study found that the addition of evolocumab to statin therapy in patients with angiographic coronary artery disease could lead to regression of atherosclerotic plaques after 76 weeks of treatment in those patients with LDL-C reductions.63 In the subgroup analysis of GLAGOV by diabetes mellitus status, patients with diabetes mellitus had the same benefits as those without diabetes mellitus in the change in percent atheroma volume from baseline to week 78.64 Evidence of cardiovascular outcome benefits with a PCSK9 inhibitor was recently provided by the FOURIER trial, the first clinical outcomes trial to be reported for a PCSK9 inhibitor (evolocumab), which included 27 564 patients with clinically evident ASCVD and on a moderate-to-high-intensity statin regimen over a median follow-up duration of 2.2 years.63 FOURIER showed a statistically significant 15% reduction in occurrence of the primary composite end point of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization with evolocumab treatment relative to placebo (9.8% versus 11.3%; hazard ratio, 0.85; 95% confidence interval [CI], 0.79–0.92; P<0.001).63 The benefit was driven by a reduction of ischemic stroke, myocardial infarction, and revascularization. The magnitude of cardiovascular benefit of evolocumab in FOURIER (with a reduction in LDL-C from 92 to 30 mg/dL) over 2.2 years was close to the range expected based on the Cholesterol Treatment Trialists’ meta-analysis of statin trials, which reported a 22% relative risk reduction over 5 years per 1 mmol/L (39 mg/dL) LDL-C reduction.67 Improved cardiovascular outcomes were observed down to LDL-C levels as low as 8 mg/dL, with no significant associations between such very low LDL-C levels and AEs.88 Together with the GLAGOV findings, these results show that patients with ASCVD benefit from LDL-C lowering below current targets.63 As a result, the FDA indicated evolocumab to reduce the risk of myocardial infarction, stroke, and coronary revascularization in adults with established cardiovascular disease.21

Previous studies with other lipid-lowering therapies have shown that patients with diabetes mellitus benefit from tight lipid control at least in the same way as patients with other risk factors,1113 or can often benefit significantly more than those without diabetes mellitus as shown in the recent IMPROVE-IT analysis.14 The prespecified diabetes mellitus subanalysis of FOURIER (which, as previously mentioned, included 11 031 patients with diabetes mellitus versus 16 533 patients without diabetes mellitus, of whom 10 344 had prediabetes and 6189 had normoglycemia) found that evolocumab significantly reduced cardiovascular risk consistently in patients with and without diabetes mellitus at baseline71: the hazard ratios for the primary composite end point (defined as above) for patients with diabetes mellitus and without diabetes mellitus were 0.83 (95% CI , 0.75–0.93; P=0.0008) and 0.87 (95% CI , 0.79–0.96; P=0.0052), respectively (P-interaction=0.60).71 However, attributed to their elevated cardiovascular risk at baseline, patients with diabetes mellitus tended to have a greater absolute risk reduction over time with evolocumab compared with those without diabetes mellitus (2.7% [95% CI , 0.7–4.8] versus 1.6% [95% CI, 0.1–3.2] reduction in the primary end point over 3 years).71

The long-term cardiovascular outcomes trial for alirocumab (ODYSSEY OUTCOMES; NCT01663402), the primary results for which are now available (presentation by Dr Philippe Steg at the American College of Cardiology Annual Scientific Session 2018, Orlando, FL, March 10, 2018; unpublished data), enrolled 18 924 patients (≈29% of whom had diabetes mellitus) randomized 1 to 12 months after acute coronary syndrome, with a median follow-up of 2.8 years. Data on diabetes mellitus and prediabetes parameters (reported by investigators and determined by serial hemoglobin A1c and fasting plasma glucose measurements) from OUTCOMES in this high and very high-risk patient cohort are expected to be reported at a later date. Findings could provide further valuable information on the efficacy and safety of PCSK9 inhibitors in individuals with diabetes mellitus and high to very-high cardiovascular risk, which will ultimately help to guide clinical decision-making beyond statin therapy in this high-risk patient population.

Conclusion

Overall, clinical evidence shows that PCSK9 inhibitors are well tolerated and provide significant LDL-C lowering in individuals with hyperlipidemia and diabetes mellitus on top of maximally tolerated statin therapy, without loss of glycemic control or increased risk of developing diabetes mellitus in those without pre-existing diabetes mellitus, and can prevent or reduce further cardiovascular events.

Acknowledgments

Medical writing and editorial support in the preparation of this publication under the guidance of the authors was provided by Grace Shim, PhD, Prime (Knutsford, UK), according to Good Publication Practice guidelines. Employees of Sanofi and Regeneron Pharmaceuticals, Inc. were permitted to review the article and offer comments. However, the authors were responsible for all content and editorial decisions.
Sources of Funding

Medical writing and editorial support in the preparation of this publication was funded by Sanofi US (Bridgewater, NJ) and Regeneron Pharmaceuticals, Inc. (Tarrytown, NY). The authors received no honoraria related to the development of this publication.

Disclosures

Dr Handelsman has received research grants from and is a consultant and compensated speaker for Aegerion, Amgen, AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Gilead, Grifols, Intarcia, Janssen, Lexicon, Eli Lilly, Merck, Merck-Pfizer, Novo Nordisk, Regeneron Pharmaceuticals, Inc., and Sanofi. Dr Lepor has received research grant support from Regeneron Pharmaceuticals, Inc., and participated in speaker’s bureau for Amgen, Regeneron Pharmaceuticals, Inc., and Sanofi.

References

1. Stone NJ, Robinson JG, Lichtenstein AH, Bairie Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Watson PW, Eddleman KM, Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Leitch J, Maki KC, Orringer CE, Smith SC Jr. 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016;68:92–125.

2. Lepor CE, Jacobson TA, Sassen JH, Brown AS, Gotto AM, Ross JL, Underberg JA. Update on the use of PCSK9 inhibitors in adults: recommendations from an Expert Panel of the National Lipid Association. J Clin Lipidol. 2017;11:880–890.

3. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Thourp P, Darius H, Lewis BS, Ophuis TQ, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Muslinier TA, Braunwald E, Call rm IF, IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2013;372:2387–2397.

4. Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, Grunberger G, Guerin CK, Bell DS, Mechanick JI, Pessah-Pollack RP, Wyne K, Smith D, Brinton EA, Fazio S, Davidson M. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr Pract. 2017;23:1–87.

5. Cholesterol Treatment Trials Collaborators, Kearney PM, Blackwell L, Collins R, Kowall K, Simes J, Peto R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–125.

6. Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalan R, Spinari J, Park JG, White JA, Bohula E, Braunwald E, IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) Investigators. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with vs. without diabetes: results from IMPROVE-IT. J Am Coll Cardiol. 2018;137:1571–1582.

7. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desveigne-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–2267.

8. ACCORD Study Group, Ginsberg HM, Elam MB, Lovato LC, Crouse JR III, Leiter LA, Linz P, Friedman WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismaail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simon-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–1574.

9. HPS-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, Collins R, Armitage J. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2011;367:203–212.

10. Kevch A, Simes J, Baron P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasspiu P, Drury P, Kesanen YM, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ennholm C, Laakso M; Field Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–1861.

11. ACCORD Study Group, Ginsberg HM, Elam MB, Lovato LC, Crouse JR III, Leiter LA, Linz P, Friedman WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismaail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simon-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–1574.

12. Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, Grunberger G, Guerin CK, Bell DS, Mechanick JI, Pessah-Pollack RP, Wyne K, Smith D, Brinton EA, Fazio S, Davidson M. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr Pract. 2017;23:1–87.

13. Cholesterol Treatment Trials Collaborators, Kearney PM, Blackwell L, Collins R, Kowall K, Simes J, Peto R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–125.

14. Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalan R, Spinari J, Park JG, White JA, Bohula E, Braunwald E, IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) Investigators. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with vs. without diabetes: results from IMPROVE-IT. Circulation. 2018;137:1571–1582.

15. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desveigne-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–2267.

16. ACCORD Study Group, Ginsberg HM, Elam MB, Lovato LC, Crouse JR III, Leiter LA, Linz P, Friedman WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismaail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simon-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–1574.

17. HPS-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, Collins R, Armitage J. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2011;367:203–212.

18. Kevch A, Simes J, Baron P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis TM, Glasspiu P, Drury P, Kesanen YM, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ennholm C, Laakso M; Field Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–1861.

19. Food and Drug Administration. AbbVie Inc. et al.; Withdrawal of Approval of Niacin Extended-Release Tablets and Fenofibric Acid Delayed-Release Capsules. Fed Regul. 2016;81:2262–22613.

20. sanofi-aventis U.S. LLC. Highlights of PRALUENT prescribing information. Available at: http://products.sanofi.us/praluent/praluent.pdf. Accessed November 7, 2017.

21. Amgen Inc. Highlights of Repatha prescribing information. Available at: http://pi.amgen.com/~/media/amgen/repositoriesites/pd-amgen-com/repatha/re patha_pi_hcp_english.ashx. Accessed December 6, 2017.

22. Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–667.

23. Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–1036.

24. Abifadel M, Elbaz S, El Khoury P, Ghaleb Y, Chemaly M, Moussalli ML, Rabes JP, Bohula E, Braunwald E. The PCSK9: a novel target for lowering low-density lipoprotein cholesterol. J Am Coll Cardiol. 2016;68:410–422.
PCSK9i and Diabetes Mellitus Review

Handelsman and Lepor

DOI: 10.1161/JAHA.116.003421. DOI: 10.1161/doi.116.003421. Journal of the American Heart Association

45. Kastelein JJ, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, Gippe DA; ODYSSEY ALTERNATIVE Investigators. Efficacy and safety of alirocumab versus ezetimibe in statin-intolerant patients with cardiovascular risk factors: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–769.

46. Farnier M, Jones P, Severance R, Averna M, Steinherz-Thiessen E, Colhoun HM, Du Y, Hanotin C, Donahue S. Efficacy and safety of adding alirocumab to rosvastatin versus adding ezetimibe or doubling the rosvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;258:138–146.

47. Roth EM, Moriarty PM, Bergeron J, Langlet G, Marzulli G, Zhao J, Baccara-Dinet M, Tarder D; ODYSSEY CHOICE I Investigators. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 2016;254:252–262.

48. Stroes E, Guyton JR, Lepor N, Civeira F, Gaudet D, Watts GF, Baccara-Dinet M, Lecorps G, Maravelakis N; ODYSSEY CHOICE I I Investigators. Efficacy and safety of alirocumab 150 mg every 4 weeks in patients with hypercholesterolemia not on statin therapy: the ODYSSEY CHOICE II Study. J Am Heart Assoc. 2016;5:e003421. DOI: 10.1161/doi.116.003421.

49. Raal FJ, Hovingh GK, Blom D, Santos RD, Harada-Shiba M, Bruckert E, Couture P, Soran H, Watts GF, Kuritz C, Homsen N, Tang L, Kaschayrunula S, Wasserman SM, Stein EA. Long-term treatment with evolocumab added to conventional drug therapy, with or without aprepius, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the ODYSSEY Label TAUSGG study. Lancet Cardiovasc Dis. 2017;5:280–290.

50. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim J, Scott R, Wasserman SM, Bays H; Mendel Investigators. Anti-PCSK9 monotherapy for hypercholesterolaemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–2540.

51. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, Bruckert E, Cho L, Dent R, Knuol B, Xue A, Scott R, Wasserman SM, Rocco M; Investigators G. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–2548.

52. Robinson JG, Nedergaard BS, Rogers WJ, Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, Somaratne R, Legg JC, Wasserman SM, Scott R, Scott R, Wasserman SM, Stein EA; Descartes Investigators. A 52-week placebo-controlled trial of evolocumab in hyperlipidaemia. N Engl J Med. 2014;370:1809–1819.

53. Blom DJ, Hala T, Bolognese M, Lillestøl MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R; LAPLACE-2 Investigators. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolaemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–1882.

54. Blom DJ, Hala T, Bolognese M, Lillestøl MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R; LAPLACE-2 Investigators. Effect of evolocumab or ezetimibe added to moderate–or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolaemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–1882.

55. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Califf RM, Giugliano RP, Baccara-Dinet MT, O’Donnell CJ; ODYSSEY COMBO II Study Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–1509.

56. Bays HE, Leiter LA, Colhoun HM, Thompson D, Bessac L, Porfy R, Toth PP. Alirocumab treatment and achievement of non-high-density lipoprotein cholesterol and apolipoprotein B goals in patients with hypercholesterolemia: pooled results from 10 phase 3 ODYSSEY trials. J Am Heart Assoc. 2017;6:e005639. DOI: 10.1161/doi.117.005639.

57. Farnier M, Gaudet D, Valcheva V, Minini P, Miller K, Cario B. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolaemia: pooled analysis of eight ODYSSEY Phase 3 clinical program trials. Int J Cardiol. 2016;213:750–757.

58. Blom DJ, Djeojos CS, Monsalvo ML, Bridges I, Wasserman SM, Scott R, Roth E. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized placebo-controlled DES-CARTES Study. Circ Res. 2015;117:731–741.

59. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langsteg G, Raal FJ, El Shahawy O, Keren MJ, Porfy R, Chaudhuri U, Kastelein JJ; ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499.

60. Sabatine MS, Giugliano RP, Kehoe AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR; Fourier
PCSK9 and Diabetes Mellitus Review

Handelsman and Lepor

Steering Committee Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722.

64. Nichols SJ, Puri R, Anderson T, Ballantyne CM, Bays HE, Cariou B, Colhoun HM, D’Agostino RB, Kastelein JJ, Koeng W, Somarate R, Kassahun H, Yang J, Wasserman SM, Scott R, Ungi I, Pineda AL, Pocock J, Ophuis AO, Cornhill H, Bormgian M, Brennan DM, Nissen SE. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–2384.

65. Koren MJ, Sabatine MS, Giugliano RP, Langslet G, Wiviott SD, Kassahun H, Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, Koenig W, Muller-Wieland D, Leiter LA, Cariou B, Letierce A, Colhoun HM, Del Prato S, Leiter LA, Cariou B, Muller-Wieland D, Colhoun HM, Del Prato S, Tinahones FJ, Sabatine MS, Langslet G, Brennan DM, Nissen SE. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–2384.

66. Sabatier NA, Preiss D, Robinson JG, D’Agostino RB, Langslet G, Sabatine MS, Giugliano RP, Langslet G, Kassahun H, Wiviott SD, Kastellen P, Ungi I, Pocock J, Ophuis AO, Cornhill H, Bormgian M, Brennan DM, Nissen SE. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–2384.

67. Koren MJ, Sabatine MS, Giugliano RP, Langslet G, Vividiot SD, Kassahun H, Rizzo A, Ma Y, Somarate R, Raal FJ. Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolaemia: results up to 4 years from the open-label OSLER-1 extension study. JAMA Cardiol. 2017;2:598–607.

68. Leiter LA, Zamorano JL, Bujas-Bobanovic M, Leitier A, Lecorgas G, Cannon CP, Handselmann Y. Lipid-lowering efficacy and safety of alirocumab in patients with diabetes mellitus: a sub-analysis of ODYSSEY COMBO II. Diabetes Obes Metab. 2017;19:989–996.

69. Ganda OP, Plutzky J, Sanganimalath SM, Bujas-Bobanovic M, Koren A, Mandel J, Letierce A, Leiter LA. Efficacy and safety of alirocumab among individuals with diabetes mellitus and atherosclerotic cardiovascular disease in the ODYSSEY phase 3 trials. Diabetes Obes Metab. 2018. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/dom.13384. Accessed May 25, 2018.

70. Ginsberg HN, Farnier M, Robinson JG, Cannon CP, Sabatier NA, Bujas-Bobanovic M, Leitier A, Mohn CJ, Himmoh C. Efficacy and safety of alirocumab: pooled analyses of 1048 individuals with diabetes mellitus from five phase 3-controlled Phase 3 studies of at least 52 weeks duration. Circulation. 2015;132;A17070.

71. Sattar N, Toth PP, Blom DJ, Koren MJ, Soran H, Uhart M, Elliott M, Cyrille M, Somarate R, Preiss D. Effect of the proprotein convertase subtilisin/kexin type 9 inhibitor evolocumab on glycemia, body weight, and new-onset diabetes mellitus. Am J Cardiol. 2017;120:1521–1527.

72. Sabatier MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, Murphy SA, Kuder JF, Gouni-Berthold I, Lewis BS, Handelsman Y, Pineda AL, Honarpour N, Keech AC, Sever PS, Pedersen TR. Cardiovascular safety and efficacy of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk. Diabetes Obes Metab. 2017;19:911–920.

73. Leiter LA, Muller-Wieland D, Bucarras-Dinet MT, Letierce A, Samuel R, Cariou B. Efficacy and safety of alirocumab in people with prediabetes vs those with normoglycaemia at baseline: a pooled analysis of 10 phase III ODYSSEY clinical trials. Diabet Med. 2018;35:121–130.

74. Blom DJ, Koren MJ, Roth E, Monsalvo ML, Djejdos CS, Nelson P, Elliot M, Wasserman SM, Ballantyne CM, Holman RR. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes Metab. 2017;19:106–107.

75. Cariou B, Leiter LA, Muller-Wieland D, Djejdos CS, Nelson P, Elliot M, Wasserman SM, Ballantyne CM, Holman RR. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes Metab. 2017;19:106–107.

76. Cariou B, Leiter LA, Muller-Wieland D, Djejdos CS, Nelson P, Elliot M, Wasserman SM, Ballantyne CM, Holman RR. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes Metab. 2017;19:106–107.

77. Ray KK, Bujas-Bobanovic M, Domenger C, Medal J, Samuel R, Heller RR. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. 2017;19:1781–1792.

78. Muller-Wieland D, Leiter LA, Cariou B, Letierce A, Colhoun HM, Del Prato S, Henry RR, Ray KK, Bujas-Bobanovic M, Domenger C, Medal J, Samuel R, Heller RR. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. 2017;19:1781–1792.

79. Jones PH, Bays HE, Chaudhari U, Pordy R, Lorenzo C, Miller K, Robinson JG. Safety of alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118:1805–1811.

Key Words: alirocumab • cardiovascular outcomes • diabetes mellitus • evolocumab • proprotein convertase subtilisin/kexin type 9 inhibitors

DOI: 10.1161/JAHA.118.008953

Journal of the American Heart Association
Table S1. Summary of Major US Guidelines/Consensus Statements for Individuals with DM

Recommendation source	Recommendations
ADA 2017 guidelines¹	High-intensity statin therapy in addition to lifestyle therapy is recommended for:
	• Patients of all ages with DM and ASCVD
	• Patients 40–75 years of age with DM and ASCVD risk factors*
	Moderate-intensity statin therapy is recommended in patients ≥40 years of age
	without cardiovascular risk factors.
	Moderate- or high-intensity statin therapy is recommended for adults with DM who
	are <40 or >75 years of age with ASCVD risk factors*
	The addition of ezetimibe to moderate-intensity statin therapy is recommended in:
	• Patients ≥40 years of age with DM with acute coronary syndrome and LDL-C ≥50
	mg/dL (1.3 mmol/L)
	• Patients with a history of ASCVD who cannot tolerate high-dose statins.
ACC/AHA 2013 guidelines²	Primary prevention of ASCVD in individuals with DM is one of the major risk groups
	identified by the ACC/AHA Expert Panel.
	Moderate-intensity statins are recommended for the primary prevention of ASCVD in
	individuals with DM and LDL-C 70–189 mg/dL aged 40–75 years.
	High-intensity statin therapy is reasonable for adults 40–75 years of age with DM
	with a ≥7.5% estimated 10-year ASCVD risk,¹ unless contraindicated.
	In adults with DM, who are <40 or >75 years of age, or with LDL-C <70 mg/dL, the
	ACC/AHA Expert Panel indicated that it is reasonable to evaluate the potential for
	ASCVD benefits, and for adverse effects and drug–drug interactions, and to consider
	patient preferences when deciding to initiate, continue, or intensify statin therapy.
AACE/ACE consensus statement\(^3\)

Treatment targets:
- LDL-C goal of <55 mg/dL, non-HDL-C goal of <80 mg/dL, and Apo B goal of <70 mg/dL in individuals at extreme ASCVD risk, including those with T2DM and a prior ASCVD event (ie, recognized “clinical ASCVD”) or CKD Stage 3 or 4
- LDL-C goal of <70 mg/dL, non-HDL-C goal of <100 mg/dL, and Apo B goal of <80 mg/dL in individuals at very high ASCVD risk, including those with DM plus one or more additional risk factors
- LDL-C goal of <100 mg/dL, non-HDL-C goal of <130 mg/dL, and Apo B goal of <90 mg/dL in individuals at high ASCVD risk, including those with DM with no other risk factors.

NLA 2016 annual summary\(^4\)

Co-primary treatment target:
- LDL-C goal of <70 mg/dL and non-HDL-C goal of <100 mg/dL in individuals at very high ASCVD risk, including those with clinical evidence of ASCVD and/or DM plus ≥2 major ASCVD risk factors or evidence of end-organ damage (eg, retinopathy, microalbuminuria [ACR >30 mg/g], or CKD [eGFR <60 mL/min/1.73 m\(^2\)])
- LDL-C goal of <100 mg/dL and non-HDL-C goal of <130 mg/dL in individuals at high ASCVD risk, including patients with ≥3 major ASCVD risk factors; DM with 0 to 1 additional major ASCVD risk factors and no evidence of end-organ damage; CKD Stage 3B or 4; or LDL-C ≥190 mg/dL.

\(^*\)ASCVD risk factors included LDL-C ≥100 mg/dL (2.6 mmol/L), high blood pressure, smoking, CKD, albuminuria, and family history of premature ASCVD.

\(^†\)≥7.5% estimated 10-year ASCVD risk included first occurrence of nonfatal myocardial infarction, coronary heart disease death, and nonfatal and fatal stroke as used by the Risk Assessment Work Group in developing the Pooled Cohort Equations.
AACE, American Association of Clinical Endocrinologists; ACC, American College of Cardiology; ACE, American College of Endocrinology; ACR, albumin-to-creatinine ratio; ADA, American Diabetes Association; AHA, American Heart Association; Apo, apolipoprotein; ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NLA, National Lipid Association; T2, type 2.
Table S2. Summary of Phase 3 Alirocumab ODYSSEY and Evolocumab PROFICIO Studies

Study acronym, treatment duration, N	Eligibility criteria	Treatment arms	Background statin
ALIROCUMAB Phase 3 ODYSSEY trials			
1 FH I [5]	Patients with HeFH, and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥100 mg/dL (for patients with no documented ASCVD) - Patients with newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >9% at screening) were excluded	• ALI 75/150 mg Q2W	
• PBO	Stable maximally tolerated statin* for ≥4 weeks prior to screening ± other LLT		
2 FH II [5]	Patients with HeFH, and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥100 mg/dL (for patients with no documented ASCVD)	• ALI 75/150 mg Q2W	
• PBO	Stable maximally tolerated statin* for ≥4 weeks prior to screening ± other LLT		
	HIGH FH⁶	Patients with newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >9% at screening) were excluded	ALI 150 mg Q2W
---	------------------	--	----------------
	N=107	Patients with HeFH, and LDL-C ≥160 mg/dL	PBO
3		Patients with newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >9% at screening) were excluded	

	COMBO I^{7,8}	Patients with hypercholesterolemia (non-FH), and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥100 mg/dL (for patients with no documented ASCVD)	ALI 75/150 mg Q2W	Stable maximally tolerated statin* for ≥4 weeks prior to screening ± other LLT					
	N=316	Patients with newly diagnosed DM (within 3 calendar months prior to randomization)	PBO						
#	Study	Participants	Interventions	DM Exclusions					
----	-------	--------------	---------------	---------------					
5	COMBO II	Patients with hypercholesterolemia (non-FH), and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥100 mg/dL (for patients with no documented ASCVD)	• ALI 75/150 mg Q2W • EZE	Stable maximally tolerated statin* for ≥4 weeks prior to screening without other LLT					
6	LONG TERM	Patients with HeFH or non-FH, and LDL-C ≥70 mg/dL	• ALI 150 mg Q2W • PBO	Stable maximally tolerated statin* for ≥4 weeks prior to screening ± other LLT					
7	OPTIONS	Patients with HeFH or non-FH, and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥70 mg/dL	• ALI 75/150 mg Q2W • EZE	Atorvastatin 20 or 40 mg ± other LLT (except EZE as it was used as a comparator)					
OPTIONS II	8 weeks	Patients with HeFH or non-FH, and LDL-C ≥70 mg/dL (for patients with documented clinical ASCVD) or LDL-C ≥100 mg/dL (for patients with no documented ASCVD)	ALI 75/150 mg Q2W, EZE	Rosuvastatin 10 or 20 mg ± other LLT (except EZE as it was used as a comparator)					
---	---	---	---	---					
ALTERNATIVE	9 weeks	Statin-intolerant patients with HeFH or non-FH and moderate to very high CV risk, with LDL-C ≥70 mg/dL (for	ALI 75/150 mg Q2W, EZE	No statin, but other LLTs (except EZE) were allowed					
N=361	Patients with very high risk) or LDL-C ≥100 mg/dL (for patients with moderate or high risk)	Patients with newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >9% at screening) were excluded	10 weeks	MONO 70	Subjects with 10-year risk of fatal CV events of ≥1% and <5% based on SCORE, and LDL-C ≥70 and <190 mg/dL	Patients with history of CHD, HeFH, DM associated with a risk SCORE ≥5% or any additional risk factor, or newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >8.5% at screening) were excluded	ALI 75/150 mg Q2W	EZE	No statin or other LLT
11	CHOICE I	Patients with hypercholesterolemia at moderate to very high CV risk							
Patients with newly diagnosed DM (within 3 months prior to the screening visit) or poorly controlled DM (HbA1c >9% at the screening visit) were excluded	• ALI 300 mg Q4W/150 mg Q2W								
• ALI 75/150 mg Q2W									
• PBO	Maximally tolerated statin or no statin, both ± other LLT								
12	CHOICE II	Patients with hypercholesterolemia at moderate to very high CV risk, and LDL-C ≥100 and <160 mg/dL for patients on diet therapy alone							
Patients with newly diagnosed DM (within 3 calendar months prior to randomization) or poorly controlled DM (HbA1c >9% at screening) were excluded	• ALI 150 mg Q4W/150 mg Q2W								
• ALI 75/150 mg Q2W									
• PBO	No statin, but receiving fenofibrate or EZE, or diet alone								
13	OUTCOMES	Patients with recent acute coronary syndrome (within 1 year) and inadequate control of atherogenic lipoproteins (defined by at least one	• ALI 75/150 mg Q2W						
• PBO	Atorvastatin 40 or 80 mg, rosuvastatin 20 or 40 mg daily, or the maximum tolerated or advisable dose								
N=18,924 of the following: LDL-C ≥70 mg/dL, non-HDL-C ≥100 mg/dL, or Apo B ≥80 mg/dL) on specified statin therapy	No specified DM exclusion criteria	of one of these statins							
DM-INSULIN^[20, 21]									
• 24 weeks									
• N=517	Patients at high CV risk with T2DM or T1DM and LDL-C ≥70 mg/dL	ALI 75/150 mg Q2W							
• PBO	Maximally tolerated statin or no statin, both ± other LLT								
DM-DYSLIPIDEMIA^[22, 23]									
• 24 weeks									
• N=413	Patients with T2DM and mixed dyslipidemia (defined as non-HDL-C ≥100 mg/dL, and triglycerides ≥150 and <500 mg/dL) with documented ASCVD or ≥1 additional CV risk factor	ALI 75/150 mg Q2W							
• Usual care (EZE, fenofibrate, omega-3 fatty acids or nicotinic acid)	Maximally tolerated statin or no statin, without other LLT								
	EVOLOCUMAB Phase 3 PROFICIO trials								
---	---	---							
1	DESCARTES\(^{23}\)								
		Patients with LDL-C ≥75 mg/dL (1.9 mmol/L)							
		Excluded:							
		• LDL-C ≤99 mg/dL (2.6 mmol/L) with CHD or CHD risk equivalent and not receiving a statin							
		• T1DM or newly diagnosed T2DM (within 6 months of randomization or new screening FPG ≥126 mg/dL [7.0 mmol/L] or HbA1c ≥6.5%), or poorly controlled T2DM (HbA1c >8.5%)							
		Background LLT stabilized, then patients were randomized to receive EVO 420 mg Q4W OR PBO SC Q4W; 8 treatment groups:							
		• Diet alone + EVO 420 mg Q4W							
		• Diet alone + PBO SC Q4W							
		• Diet + atorvastatin 10 mg QD + EVO 420 mg Q4W							
		• Diet + atorvastatin 10 mg QD + PBO SC Q4W							
		• Diet + atorvastatin 80 mg QD + EVO 420 mg Q4W							
		• Diet + atorvastatin 80 mg QD + PBO SC Q4W							
		• Diet + atorvastatin 80 mg QD + EZE 10 mg QD + EVO 420 mg Q4W							
		• Diet + atorvastatin 80 mg QD + EZE 10 mg QD + PBO SC Q4W							
		LLT, ranging from diet alone to atorvastatin 80 mg plus EZE, was optimized to reach NCEP ATP III LDL-C treatment goals							
2	MENDEL-2\(^{22}\)								
		Patients with LDL-C ≥100 and <190 mg/dL (≥2.6 and <4.9 mmol/L)							
		Patients with DM were excluded							
		Six treatment groups:							
		• EVO 140 mg Q2W + PBO PO QD							
		• PBO SC Q2W + EZE PO QD							
		• PBO SC Q2W + PBO PO QD							
		• EVO 420 mg QM + PBO PO QD							
		• PBO SC QM + EZE PO QD							
		• PBO SC QM + PBO PO QD							
		None							
3	LAPLACE-2^{26, 27}	Patients with LDL-C ≥ 150 mg/dL (4.0 mmol/L) on no statin, ≥ 100 mg/dL (2.6 mmol/L) on nonintensive statin, or ≥ 80 mg/dL (2.1 mmol/L) on intensive statin. Patients with T1DM or newly diagnosed or poorly controlled T2DM (HbA1c $>8.5\%$) were excluded.	24 treatment groups:						
- Background atorvastatin 80 mg QD OR atorvastatin 10 mg QD, PLUS one of the following:
 - EVO 140 mg Q2W + PBO PO QD
 - PBO SC Q2W + EZE PO QD
 - PBO SC Q2W + PBO PO QD
 - EVO 420 mg QM + PBO PO QD
 - PBO SC QM + EZE PO QD
 - PBO SC QM + PBO PO QD
- OR
- Background rosuvastatin 40 mg QD OR rosuvastatin 5 mg QD OR simvastatin 40 mg QD, PLUS one of the following:
 - EVO 140 mg Q2W
 - PBO SC Q2W
 - EVO 420 mg QM
 - PBO SC QM | Five background statin regimens: atorvastatin 80 mg, atorvastatin 10 mg, rosuvastatin 40 mg, rosuvastatin 5 mg, or simvastatin 40 mg. |
| 4 | GAUSS-2^{28, 29} | Statin-intolerant patients not at LDL-C goal per NCEP ATP III risk | Four treatment groups:
- EVO 140 mg Q2W + PBO PO QD | None, or on a low-dose statin defined as a |
| Study | Duration | Sample Size | Exclusion Criteria | Treatment | Other Information |
|-------|----------|-------------|--------------------|-----------|-------------------|
| • 12 weeks
• N=307 | categories for fasting LDL-C
Patients with T1DM or newly diagnosed T2DM (within 6 months of randomization or new screening FPG ≥126 mg/dL [7.0 mmol/L] or HbA1c ≥6.5%), or poorly controlled T2DM (HbA1c >8.5%) were excluded | • EVO 420 mg QM + PBO PO QD
• PBO SC Q2W + EZE PO QD
• PBO SC QM + EZE PO QD | maximum weekly dose of ≤70 mg atorvastatin, ≤140 mg simvastatin/pravastatin/lovastatin, ≤35 mg rosvuastatin, or ≤280 mg fluvastatin |
| 5 | GAUSS-3 | 24 weeks (Phase A) + 2 weeks (washout) + 24 weeks (Phase B)
• N=491 (Phase A), N=218 (Phase B) | Statin-intolerant patients with muscle-related adverse effects, not at LDL-C goal per NCEP ATP III risk categories for fasting LDL-C
Patients with T1DM or newly diagnosed T2DM (within 6 months of randomization or new screening FPG ≥126 mg/dL [7.0 mmol/L] or HbA1c ≥6.5%), or poorly controlled T2DM (HbA1c >8.5%) were excluded | Phase A (24 weeks): atorvastatin 20 mg QD or PBO to identify patients having muscle-related symptoms only with atorvastatin but not PBO. These patients entered Phase B (24 weeks after a 2-week washout), and were randomized to EVO 420 mg QM or EZE 10 mg QD | Atorvastatin 20 mg QD |
| 6 | RUTHERFORD-2 | 12 weeks | Patients with HeFH and LDL-C ≥100 mg/dL (2.6 mmol/L) | Four treatment groups:
• EVO 140 mg Q2W
• PBO Q2W | On stable background statin with or without other approved LLT for ≥4 weeks |
| | | | |
|---|---|---|---|
| | N=329 | Patients with T1DM or newly diagnosed or poorly controlled T2DM (HbA1c >8.5%) were excluded | EVO 420 mg QM
• PBO QM |
| 7 | THOMAS-1 | Patients with LDL-C ≥85 mg/dL (2.2 mmol/L)
Patients with T1DM, or uncontrolled or recently diagnosed T2DM, were excluded | EVO 140 mg SC Q2W with autoinjector versus prefilled syringe |
| | 6 weeks | N=149 | On stable statin (with or without EZE) for ≥4 weeks before LDL-C screening |
| 8 | THOMAS-2 | Patients with LDL-C ≥85 mg/dL (2.2 mmol/L)
Patients with T1DM, or uncontrolled or recently diagnosed T2DM, were excluded | EVO 420 mg SC QM with autoinjector versus automated minidoser |
| | 12 weeks | N=164 | On stable statin (with or without EZE) for ≥4 weeks before LDL-C screening |
| 9 | GLAGOV | Patients with angiographic coronary disease, and LDL-C ≥80 mg/dL or 60–80 mg/dL with 1 major or 3 minor CV risk factors
Patients with T1DM or poorly controlled T2DM (HbA1c >9%) at | EVO 420 mg QM
• PBO QM |
| | 76 weeks | N=968 | On stable statin for ≥4 weeks before LDL-C screening |
| Study (ID) | Patients | Treatment Groups | Optimized Regimen of LLT |
|------------|----------|------------------|--------------------------|
| FOURIER [1] | Patients with ASCVD and LDL-C ≥70 mg/dL | Four treatment groups: EVO 140 mg Q2W, PBO Q2W, EVO 420 mg QM, PBO QM | Defined as preferably a high-intensity statin but must have been at least atorvastatin 20 mg daily or its equivalent, with or without EZE |
| NCT02739984 | Patients with T2DM on stable DM therapy, LDL-C or non-HDL-C levels and fasting triglycerides ≤600 mg/dL, with HbA1c <10% | EVO 420 mg QM, PBO QM | Maximally tolerated dose of statin of at least moderate intensity |
| NCT02662569 | Patients with T2DM on stable DM therapy, and fasting LDL-C ≥100 mg/dL for those on statin or ≥130 mg/dL for those not on statin | Four treatment groups: EVO 140 mg Q2W, PBO Q2W, EVO 420 mg QM, PBO QM | Atorvastatin 20 mg PO QD |

Clinicaltrials.gov identifiers: FH I, NCT01623115; FH II, NCT01709500; HIGH FH, NCT01617655; COMBO I, NCT01644175; COMBO II,
*Maximally tolerated statin dose = the highest tolerable registered dose of daily statin currently administered to the patient, i.e. rosvustatin 20 or 40 mg, atorvastatin 40 or 80 mg, or simvastatin 80 mg. Lower doses could be used, e.g. in the case of intolerance or local practice, according to the investigator's judgment.

†Moderate risk = 10-year risk of fatal CV events of ≥1% and <5% (SCORE). High risk = SCORE ≥5%, eGFR 30 to <60 mL/min/1.73 m², T1DM or T2DM without target organ damage or HeFH. Very high risk = CHD, ischemic stroke, peripheral artery disease, transient ischemic attack, abdominal aortic aneurysm, or carotid artery occlusion >50% without symptoms; carotid endarterectomy or carotid artery stent procedure; renal artery stenosis or renal artery stent procedure; or T1DM or T2DM with target organ damage.

NCEP ATP III risk category LDL-C goals: <100 mg/dL (2.6 mmol/L) for those with diagnosed CHD or risk equivalent, <130 mg/dL (3.4 mmol/L) for those without CHD or risk equivalent and ≥2 risk factors, <160 mg/dL (4.1 mmol/L) for those without CHD or risk equivalent and 1 risk factor, or <190 mg/dL (4.9 mmol/L) for those without CHD or risk equivalent and no risk factors.
ALI, alirocumab; ASCVD, atherosclerotic cardiovascular disease; CHD, coronary heart disease; CV, cardiovascular; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; EVO, evolocumab; EZE, ezetimibe; FH, familial hypercholesterolemia; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HeFH, heterozygous familial hypercholesterolemia; HoFH, homozygous familial hypercholesterolemia; LDL-C, low-density lipoprotein cholesterol; LLT, lipid-lowering therapy; NCEP ATP III, National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; PBO, placebo; PO, oral; Q2W, every two weeks; Q4W, every 4 weeks; QD, once daily; QM, monthly; SC, subcutaneous; SCORE, European Systematic Coronary Risk Evaluation; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
References

1. American Diabetes Association. Standards of Medical Care in Diabetes - 2017. *Diabetes Care*. 2017;40(Suppl 1):S1-S135.

2. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Jr., Watson K, Wilson PW, American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol*. 2014;63:2889-2934.

3. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpleby GE. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2017 Executive Summary. *Endocr Pract*. 2017;23:207-238.

4. Bays HE, Jones PH, Orringer CE, Brown WV, Jacobson TA. National Lipid Association Annual Summary of Clinical Lipidology 2016. *J Clin Lipidol*. 2016;10:S1-43.

5. Kastelein JJ, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, Blom D, Civeira F, Krempf M, Lorenzato C, Zhao J, Pordy R, Baccara-Dinet MT, Gipe DA, Geiger MJ, Farnier M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. *Eur Heart J*. 2015;36:2996-3003.

6. Ginsberg HN, Rader DJ, Raal FJ, Guyton JR, Baccara-Dinet MT, Lorenzato C, Pordy R, Stroes E. Efficacy and Safety of Alirocumab in Patients with
Heterozygous Familial Hypercholesterolemia and LDL-C of 160 mg/dl or Higher. *Cardiovasc Drugs Ther.* 2016;30:473-483.

7. Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R, Chaudhari U, Colhoun HM. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. *Am Heart J.* 2015;169:906-915.

8. Colhoun HM, Robinson JG, Farnier M, Cariou B, Blom D, Kereiakes DJ, Lorenzato C, Pordy R, Chaudhari U. Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: rationale and design of the ODYSSEY COMBO I and II trials. *BMC Cardiovasc Disord.* 2014;14:121.

9. Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, Chaudhari U, Colhoun HM, ODYSSEY COMBO II Investigators. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. *Eur Heart J.* 2015;36:1186-1194.

10. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ, ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. *N Engl J Med.* 2015;372:1489-1499.

11. Bays H, Gaudet D, Weiss R, Ruiz JL, Watts GF, Gouni-Berthold I, Robinson J, Zhao J, Hanotin C, Donahue S. Alirocumab as Add-On to Atorvastatin Versus Other Lipid Treatment Strategies: ODYSSEY OPTIONS I Randomized Trial. *J Clin Endocrinol Metab.* 2015;100:3140-3148.
12. Robinson JG, Colhoun HM, Bays HE, Jones PH, Du Y, Hanotin C, Donahue S. Efficacy and safety of alirocumab as add-on therapy in high-cardiovascular-risk patients with hypercholesterolemia not adequately controlled with atorvastatin (20 or 40 mg) or rosuvastatin (10 or 20 mg): design and rationale of the ODYSSEY OPTIONS Studies. *Clin Cardiol*. 2014;37:597-604.

13. Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, Du Y, Hanotin C, Donahue S. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: The ODYSSEY OPTIONS II randomized trial. *Atherosclerosis*. 2016;244:138-146.

14. Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, Bruckert E, Jacobson TA, Kopecky SL, Baccara-Dinet MT, Du Y, Pordy R, Gipe DA, ODYSSEY ALTERNATIVE Investigators. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. *J Clin Lipidol*. 2015;9:758-769.

15. Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, Gipe D. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. *J Clin Lipidol*. 2014;8:554-561.

16. Roth EM, Taskinen MR, Ginsberg HN, Kastelein JJ, Colhoun HM, Robinson JG, Merlet L, Pordy R, Baccara-Dinet MT. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. *Int J Cardiol*. 2014;176:55-61.

17. Roth EM, Moriarty PM, Bergeron J, Langslet G, Manvelian G, Zhao J, Baccara-Dinet MT, Rader DJ, ODYSSEY CHOICE I Investigators. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as
monotherapy or add-on to statin: ODYSSEY CHOICE I. *Atherosclerosis*. 2016;254:254-262.

18. Stroes E, Guyton JR, Lepor N, Civeira F, Gaudet D, Watts GF, Baccara-Dinet MT, Lecorps G, Manvelian G, Farnier M, ODYSSEY CHOICE I I Investigators. Efficacy and Safety of Alirocumab 150 mg Every 4 Weeks in Patients With Hypercholesterolemia Not on Statin Therapy: The ODYSSEY CHOICE II Study. *J Am Heart Assoc.* 2016;5:e003421.

19. Steg PG. The ODYSSEY OUTCOMES Trial: Topline Results Alirocumab in Patients After Acute Coronary Syndrome. *American College of Cardiology 2018, 67th Scientific Sessions*. 2018

20. Leiter LA, Cariou B, Muller-Wieland D, Colhoun HM, Del Prato S, Tinahones FJ, Ray KK, Bujas-Bobanovic M, Domenger C, Mandel J, Samuel R, Henry RR. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: The ODYSSEY DM-INSULIN randomized trial. *Diabetes Obes Metab*. 2017;19:1781-1792.

21. Cariou B, Leiter LA, Muller-Wieland D, Bigot G, Colhoun HM, Del Prato S, Henry RR, Tinahones FJ, Letierce A, Aurand L, Maroni J, Ray KK, Bujas-Bobanovic M. Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk: Rationale and design of the ODYSSEY DM-INSULIN trial. *Diabetes Metab*. 2017;43:453-459.

22. Ray KK, Leiter LA, Müller-Wieland D, Cariou B, Colhoun HM, Henry RR, Tinahones FJ, Bujas-Bobanovic M, Domenger C, Letierce A, Samuel R, Del Prato S. Alirocumab versus usual lipid-lowering care as add-on to statin therapy in individuals with type 2 diabetes and mixed dyslipidaemia: The ODYSSEY DM-DYSLIPIDEMIA randomized trial. 2017

23. Muller-Wieland D, Leiter LA, Cariou B, Letierce A, Colhoun HM, Del Prato S, Henry RR, Tinahones FJ, Aurand L, Maroni J, Ray KK, Bujas-Bobanovic M. Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering
efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed
dyslipidaemia at high cardiovascular risk. *Cardiovasc Diabetol*. 2017;16:70.

24. Blom DJ, Hala T, Bolognese M, Liljestol MJ, Toth PD, Burgess L, Ceska R,
Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtonis K, Kim JB, Scott
R, Wasserman SM, Stein EA, Descartes Investigators. A 52-week placebo-
controlled trial of evolocumab in hyperlipidemia. *N Engl J Med*.
2014;370:1809-1819.

25. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim
JB, Scott R, Wasserman SM, Bays H, Mendel Investigators. Anti-PCSK9
monotherapy for hypercholesterolemia: the MENDEL-2 randomized,
controlled phase III clinical trial of evolocumab. *J Am Coll Cardiol*.
2014;63:2531-2540.

26. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D,
Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R,
LAPLACE-2 Investigators. Effect of evolocumab or ezetimibe added to
moderate- or high-intensity statin therapy on LDL-C lowering in patients with
hypercholesterolemia: the LAPLACE-2 randomized clinical trial. *JAMA*.
2014;311:1870-1882.

27. Robinson JG, Rogers WJ, Nedergaard BS, Fialkow J, Neutel JM, Ramstad D,
Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R.
Rationale and design of LAPLACE-2: a phase 3, randomized, double-blind,
placebo- and ezetimibe-controlled trial evaluating the efficacy and safety of
evolocumab in subjects with hypercholesterolemia on background statin
therapy. *Clin Cardiol*. 2014;37:195-203.

28. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF,
Bruckert E, Cho L, Dent R, Knusel B, Xue A, Scott R, Wasserman SM, Rocco
M, Gauss Investigators. Anti-PCSK9 antibody effectively lowers cholesterol in
patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. *J Am Coll Cardiol*. 2014;63:2541-2548.

29. Cho L, Rocco M, Colquhoun D, Sullivan D, Rosenson RS, Dent R, Xue A, Scott R, Wasserman SM, Stroes E. Design and rationale of the GAUSS-2 study trial: a double-blind, ezetimibe-controlled phase 3 study of the efficacy and tolerability of evolocumab (AMG 145) in subjects with hypercholesterolemia who are intolerant of statin therapy. *Clin Cardiol*. 2014;37:131-139.

30. Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, Preiss D, Bruckert E, Ceska R, Lepor N, Ballantyne CM, Gouni-Berthold I, Elliott M, Brennan DM, Wasserman SM, Somaratne R, Scott R, Stein EA, Gauss Investigators. Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients With Muscle-Related Statin Intolerance: The GAUSS-3 Randomized Clinical Trial. *JAMA*. 2016;315:1580-1590.

31. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, Langslet G, Scott R, Olsson AG, Sullivan D, Hovingh GK, Cariou B, Gouni-Berthold I, Somaratne R, Bridges I, Scott R, Wasserman SM, Gaudet D, Rutherford Investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. *Lancet*. 2015;385:331-340.

32. Dent R, Joshi R, Stephen Djedjos C, Legg J, Elliott M, Geller M, Meyer D, Somaratne R, Recknor C, Weiss R. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. *Springerplus*. 2016;5:300.

33. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, Koenig W, Somaratne R, Kassahun H, Yang J, Wasserman SM, Scott R, Ungi I, Podolec J, Ophuis AO, Cornel JH, Borgman M, Brennan DM, Nissen SE. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated
Patients: The GLAGOV Randomized Clinical Trial. *JAMA*. 2016;316:2373-2384.

34. Puri R, Nissen SE, Somaratne R, Cho L, Kastelein JJ, Ballantyne CM, Koenig W, Anderson TJ, Yang J, Kassahun H, Wasserman SM, Scott R, Borgman M, Nicholls SJ. Impact of PCSK9 inhibition on coronary atheroma progression: Rationale and design of Global Assessment of Plaque Regression with a PCSK9 Antibody as Measured by Intravascular Ultrasound (GLAGOV). *Am Heart J*. 2016;176:83-92.

35. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, Fourier Steering Committee Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. *N Engl J Med*. 2017;376:1713-1722.

36. National Cholesterol Education Program Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. *Circulation*. 2002;106:3143-3421.