Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

Shimaa Ghazal
University of New Hampshire, Durham, Shimaa.Ghazal@unh.edu

Rediet Oshone
University of New Hampshire, Durham

Stephen Simpson
University of New Hampshire, Durham

Krystalynne Morris
University of New Hampshire, Durham

Feseha Abebe-Akele
University of New Hampshire, Durham

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/mcbs_facpub

Recommended Citation
Ghazal, S. R. Oshone, S. Simpson, K. Morris, F. Abebe-Akele, W. K. Thomas, K. M. Khalil, and L. S. Tisa. 2016. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes. Genome Announc. 4(2):e00154-16. doi:10.1128/genomeA.00154-16.

This Article is brought to you for free and open access by the Molecular, Cellular and Biomedical Sciences at University of New Hampshire Scholars’ Repository. It has been accepted for inclusion in Molecular, Cellular and Biomedical Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars’ Repository. For more information, please contact Scholarly.Communication@unh.edu.
Draft Genome Sequence of *Photorhabdus luminescens* subsp. *laumondii* HP88, an Entomopathogenic Bacterium Isolated from Nematodes

Shimaa Ghazal,a,b Rediet Oshone,a Stephen Simpson,a Krystalynne Morris,a Feseha Abebe-Akele,a W. Kelley Thomas,a Kamal M. Khalil,b Louis S. Tisa,a

University of New Hampshire, Durham, New Hampshire, USA; Genetic Engineering & Biotechnology Division, Genetics and Cytology Department, Applied Microbial Genetics Laboratory, National Research Centre, Dokki, Cairo, Egypt

Photorhabdus luminescens subsp. *laumondii* HP88 is an entomopathogenic bacterium that forms a symbiotic association with *Heterorhabditis* nematodes. We report here a 5.27-Mbp draft genome sequence for *P. luminescens* subsp. *laumondii* HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

Received 3 February 2016 **Accepted** 5 February 2016 **Published** 17 March 2016

Citation Ghazal S, Oshone R, Simpson S, Morris K, Abebe-Akele F, Thomas WK, Khalil KM, Tisa LS. 2016. Draft genome sequence of *Photorhabdus luminescens* subsp. *laumondii* HP88, an entomopathogenic bacterium isolated from nematodes. Genome Announc 4(2):e00154-16. doi:10.1128/genomeA.00154-16.

Copyright © 2016 Ghazal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Louis S. Tisa, louis.tisa@unh.edu.

Photorhabdus species are Gram-negative motile bioluminescent bacteria that maintain two distinct lifestyles as insect pathogens and in a symbiotic relationship with the entomopathogenic *Heterorhabditis* nematodes (see references 1–7 for a review). The life cycles of *Photorhabdus* and its nematode host *Heterorhabditis* are best described as a cyclic association that begins and ends with infective juvenile (II) nematodes. A monoculture of *Photorhabdus* is maintained within the anterior region of the IJ nematode’s intestine (8, 9). The nematodes actively seek and infect insect hosts by entering through natural openings or by burrowing directly through the insect cuticle. Once inside the insect, the nematodes regurgitate the bacteria into the hemolymph (8). The bacteria release highly virulent toxins (10, 11), which result in insect death in <48 h. As the bacteria enter the stationary phase of their growth cycle, they secrete extracellular enzymes that aid in breaking down insect tissue, thereby providing nutrients for both the bacteria and nematodes. The bacteria also generate essential growth factors for the nematode growth and development. The growth and development of *Heterorhabditis* nematodes have an obligate requirement for their specific bacterial symbiont (12). The bacteria also release antibiotics to prevent secondary invaders and putrefaction of the insect carcass (13, 14). After several days of feeding, the nematodes and bacteria reassociate and leave in search of a new insect host.

Based on molecular analysis, the *Photorhabdus* genus is divided into three bacterial species: *P. luminescens*, *P. temperata*, and *P. asymbiotica* (15, 16). Our understanding of these bacteria has been greatly enhanced by the genome sequencing of strains from all three established species: *P. luminescens* TT01 (17), *P. asymbiotica* ATCC 43949 (18, 19), *P. temperata* NC19 (20), *P. temperata* Meg1 (21), *P. luminescens* BA1 (22), *P. asymbiotica* Kingcliff (23), and *P. temperata* M121 (24). Here, we present a draft genome sequence for *P. luminescens* subsp. *laumondii* HP88, which was isolated from *Heterorhabditis bacteriophora* nematodes found in Utah (25).

The draft genome of *P. luminescens* strain HP88 was generated at the Hubbard Genome Center (University of New Hampshire, Durham, NH) using Illumina technology (26) techniques. A standard Illumina shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform, which generated 7,680,248 reads (260-bp insert size) totaling 1,120.0 Mbp. The Illumina sequence data were assembled using CLC Genomics Workbench (version 8.5) and AllPaths-LG (version r41043) (27). The final draft assembly contained 287 contigs, with an N50 of 34.4 kb. The total size of the genome is 5.27 Mb, and the final assembly is based on 949 Mb of Illumina draft data, providing an average 163× coverage of the genome.

The high-quality draft genome of *P. luminescens* strain HP99 was resolved to 287 contigs consisting of 5,268,230 bp, with a G+C content of 42.4%. The assembled *P. luminescens* strain HP88 genome was annotated via the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and resulted in 4,243 candidate protein-coding genes.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LJPB00000000. The version described in this paper is version LJPB01000000.

ACKNOWLEDGMENTS

This work was supported in part by USDA NIFA grant 2009-35302-05257 to L.S.T. and by the College of Life Science and Agriculture at the University of New Hampshire-Durham. S.G. was supported by the Egyptian Cultural and Educational Bureau, Washington, DC. Sequencing was performed on an Illumina HiSeq 2500 purchased with NSF MRI grant DBI-1229361 to W.K.T.
REFERENCES

1. Boemare N, Givaudan A, Brehelin M, Laumond C. 1997. Symbiosis and pathogenicity of nematode-bacterium complexes. Symbioses 22:21–45.

2. Forst S, Dowds B, Boemare N, Stackebrandt E. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72. http://dx.doi.org/10.1146/annurev.micro.51.1.47.

3. Forst S, Nealon K. 1996. Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Res 60:21–43.

4. Goodrich-Blair H, Clarke DJ. 2007. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268. http://dx.doi.org/10.1111/j.1365-2958.2007.05671.x.

5. Clarke DJ. 2008. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 10:2159–2167. http://dx.doi.org/10.1111/j.1462-5822.2008.01209.x.

6. Waterfield NR, Ciche T, Clarke D. 2009. Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574. http://dx.doi.org/10.1146/annurev.micro.091208.073507.

7. Burrell AM, Stock SP. 2000. Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 2:31–42. http://dx.doi.org/10.1163/156854100508872.

8. Ciche TA, Ensign JC. 2003. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897. http://dx.doi.org/10.1128/AEM.69.4.1890-1897.2003.

9. Endo BY, Nickle WR. 1991. Ultrastructure of the intestinal epithelium, lumen, and associated bacteria in Heterorhabditis bacteriophora. J Helminthol Soc Wash 58:202–212.

10. Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Barrant R, French-Constant RH. 1998. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132. http://dx.doi.org/10.1126/science.280.5372.2129.

11. French-Constant RH, Bowen DJ. 2000. Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833. http://dx.doi.org/10.1007/s000180050044.

12. Thomas GM, Poinar GO. 1979. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 29:352–360. http://dx.doi.org/10.1099/00221223-29-3-352.

13. Akhurst RJ. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065. http://dx.doi.org/10.1099/00221223-128-12-3061.

14. Richardson WH, Schmidt TM, Nealon KH. 1988. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602–1605.

15. Fischar-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. 1999. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656. http://dx.doi.org/10.1099/00221223-49-4-1645.

16. Boemare N. 2002. Interactions between the partners of the entomopathogenic bacterium nematode complex, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology 4:601–603. http://dx.doi.org/10.1116/156854100260488663.

17. Duchaud E, Rusniok C, Frangeul L, Buchriesser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derelle S, Freyssinet G, Gaudriault S, Méguidé C, Lanois A, Powell K, Sigquier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F. 2003. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313. http://dx.doi.org/10.1038/nbt886.

18. Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vilisiou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, French-Constant RH. 2009. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10:302. http://dx.doi.org/10.1186/1471-2164-10-302.

19. french-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D. 2003. Photorhabdus towards a functional genomic analysis of a symbiote and pathogen. FEMS Microbiol Rev 26:433–456. http://dx.doi.org/10.1111/j.1574-6968.2003.tb00625.x.

20. Hurst S, Roweder H, Michaelis B, Bullock H, Jacobbeck R, Abebe-Akele F, Durkavaco U, Gately J, Janicki E, Tisa LS. 2015. Elucidation of the Photorhabdus temperata genome and generation of a transposon mutant library to identify motility mutants altered in pathogenesis. J Bacteriol 197:2201–2216. http://dx.doi.org/10.1128/JB.00197-15.

21. Hurst SG, IV, Ghazal S, Morris K, Abebe-Akele F, Thomas WK, Badr UM, Hussein MA, Abou-Zaied MA, Khalil KM, Tisa LS. 2014. Draft genome sequence of Photorhabdus temperata strain megl1, an entomopathogenic bacterium isolated from Heterorhabditis megidis nematode. Genome Announc 2(6):e01273-14. http://dx.doi.org/10.1128/genomeA.01273-14.

22. Ghazal S, Hurst SG, IV, Morris K, Abebe-Akele F, Thomas WK, Badr UM, Hussein MA, Abou-Zaied MA, Khalil KM, Tisa LS. 2014. Draft genome sequence of Photorhabdus luminescens strain BA1, an entomopathogenic bacterium isolated from nematodes found in Egypt. Genome Announc 2(2):e00396-14. http://dx.doi.org/10.1128/genomeA.00396-14.

23. Wilkinson P, Paszkiewicz K, Moorhouse A, Szubert JM, Beaton S, Gerrard J, Waterfield NR, French-Constant RH. 2010. New plasmids and putative virulence factors from the draft genome of an Australian clinical isolate of Photorhabdus asymbiotica. FEMS Microbiol Lett 309:136–143. http://dx.doi.org/10.1111/j.1574-6968.2010.02030.x.

24. Park GS, Khan AR, Hong SJ, Jang EK, Ullah I, Jung BK, Choi J, Yoo NK, Park KJ, Shin HJ. 2013. Draft genome sequence of entomopathogenic bacterium Photorhabdus temperata strain M1021, isolated from nematodes. Genome Announc 1(5):e00747-13. http://dx.doi.org/10.1128/genomeA.00747-13.

25. Poinar GO, Georgis R. 1990. Characterization and field application of Heterorhabditis bacteriophora strain HP88 (Heterorhabditidae: Rhabditidae). Rev Nematol 13:387–393.

26. Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433–438. http://dx.doi.org/10.1515/156854100260488663.

27. Gnerre S, MacCallum I, Przybyski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnarke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High–quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108:1513–1518. http://dx.doi.org/10.1073/pnas.1017351108.