The Production Of Biodiesel From A Traditional Coconut Oil Using NaOH/γ-Al2O3 Heterogeneous Catalyst

Rismawati Rasyid¹, Zakir Sabara¹, Ainun Pratiwi H¹, Rasdin Juradin¹, Rahmania Malik²
¹Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia Jl Urip Sumoharjo KM 5 Makassar Indonesia 90231
²Department of Industrial Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia Jl Urip Sumoharjo KM 5 Makassar Indonesia 90231
Email : Rismawati.rasyid@umi.ac.id

Abstract : Biodiesel is an alternative energy fuel a substitute for diesel oil produced from vegetable oil or animal fat which has the advantage of being easy to use, because they are biodegradable, not toxic and sulfur free. This research aims to do a process of producing biodiesel using base catalysts (NaOH/γ-Al2O3) for a transesterification process with the variation of catalyst concentration (1%; 2%; 3%; 4% and 5%) and the time (60; 120; 180; 240 and 300). The production of biodiesel from coconut oil is making by the ratio of oil mass: ethanol = 1:2. Research of methodology started with the analysis of the material, the process of making the NaOH/γ-Al2O3 catalysts and transesterifications for biodiesel production. The product was analyzed by viscosity, density, and GC-MC to identify the fatty acid methyl esters composing the biodiesel. In conclusion, the best conversion of biodiesel from coconut oil using NaOH catalyst is 3% concentration with a 180 minutes reaction time.

Keywords : Biodiesel; Coconut oil; NaOH/γ-Al2O3; Transesterification

1. Introduction

Energy is a primary human need. This is an important key in economic sectors such as food, industry, transportation, agriculture, and power generation. Fuel and energy crisis and the concern of the society for the depleting world’s non-renewable energy resources led to a renewed interest in the quest for alternative fuels. Biodiesel is a liquid fuel similar to petroleum diesel in combustion properties, but essentially free of sulfur, making it a cleaner burning fuel than petroleum diesel. Biodiesel is derived from renewable energy sources, such as vegetable oils and animal fats. It has similar physical and chemical properties with petro-diesel fuel. However, biodiesel properties can sometimes be superior than that of petro-diesel fuel because the former has higher flash point, ultra-low sulfur concentration, better lubricating efficiency, and better cetane number.

Both, non-saturated fatty acids contents of vegetable oils, such as: coconut oil, palm, soybean, rape-seed, woody oils and the like, can be converted into fuels. Coconut oil as other vegetable oils are compounds consisting of various kinds of triglyceride fatty acids and about 90% are saturated fatty acid compounds. Coconut oil is rich in fatty acids are chain (C8-C12), especially lauric acid and myristic acid. Coconut oil as a raw material has advantages than other vegetable oils, it contains medium chain fatty acids about 70% making it possible to obtain other fuels such as kerosene or jet fuel. Coconut has industrial and domestic uses of its different parts. The oil and milk extracts from coconut are commonly used in cooking and frying. The oil is widely used in making soaps and cosmetics. In order to diversify the use of the oil on one hand and finds its suitability as alternative for diesel engine on the other hand, it is therefore characterized, which is the main aim of this research work.
The conventional catalysts for transesterification reaction are homogeneous acids (such as H₂SO₄) and homogeneous strong bases (such as alkali metal hydroxides and alkoxides). However, basic catalysts are generally corrosive to equipment and also react with free fatty acid to form unwanted soap as by-products that require expensive separation. Homogeneous acid catalysts are difficult to recycle and operate at high temperatures, and also give rise to serious environmental and corrosion problems. Enzymes or lipases are naturally occurring substances. They have excellent catalytic activity and stability in non-aqueous media, which facilitate the esterification and transesterification process during biodiesel production. Enzyme-based transesterification is carried out at moderate temperatures with high yields, but this method cannot be used in industry today due to high enzyme costs, and the problems related to its deactivation caused by feed impurities. Therefore, to overcome all these problems including cost, people are working on the development of economically viable as well as ecofriendly solid catalysts for biodiesel industries.

As mentioned above, the disadvantages of homogeneous base-catalyst transesterification are high energy-consumption, costly separation of the catalyst from the reaction mixture and the purification of crude BDF. Therefore, to reduce the cost of the purification process, heterogeneous solid catalysts such as metal oxides, γ-alumina, hydrotalcites, and zeolites, have been used recently, because these catalysts can be easily separated from the reaction mixture, and can be reused. Most of these catalysts are alkali or alkaline oxides supported on materials with a large surface area. Similar to homogeneous catalyst, solid base-catalysts are more active than solid acid-catalysts.

The catalyst support used γ-Al₂O₃. Gamma alumina (γ-Al₂O₃) is used as a catalyst support because it has a large surface area (150-300 m² / g) also has an amphoteric acid and base active side with different strengths depending on the method of making it. In addition, γ-Al₂O₃ has the main function of providing a surface area for the active component which aims to extend the contact between the active nucleus and the reactants without reducing the active phase activity of the active phase.

In this study, transesterification was used to produce biodiesel. The conventional method, process where all the vegetables oil, solvent and catalyst are mixed in one phase to get a higher yield of methyl ester. In this process, alcohol reacts as a reagent for transesterification.

2. Material and Method

Vegetable oils used are coconut oil traditionally produced. The ethanol used is technical ethanol (96%) was purchased from a local chemical supplier (Makassar). NaOH, p.a MERCK, (in purity: 99 %) and Alumina, p.a MERCK, (in purity: 99 %) was obtained from a local chemical supplier.

2.1. Preparation of Catalyst

Preparation of the catalyst was prepared by making 10% NaOH solution with aquadest. 5 ml of solution is poured into 5 gr of γ-Al₂O₃ acting as a catalyst support. The mixture is stirred for 30 minutes. The solid was dried overnight in the oven at 100°C and calcined in air at 550°C for 3 hours.

2.2. Transesterification and Reaction

Coconut oil is fed into the reactor and a mixture of ethanol and NaOH/γ-Al₂O₃ is added. The mass ratio of oil to ethanol is 1: 2 and the basic catalysts used for the reaction are 1%, 2%, 3%, 4%, and 5%. The coconut oil of seventy-five milliliters (with 0.913 gr / ml) is fed to the reactor and mixed with 150 milliliters of ethanol. The solution was reacted in a 1000 ml reaction flask with a reflux set. The reaction starts at a temperature of 60°C. The process is repeated for 60, 120, 180, 240 and 300 minutes. After completion, the product is stored in a channel separator for 24 hours to separate ethyl ester, glycerol, and catalyst. The product is dried at 110°C for 1 hour.
3. Result

3.1. Characterization of Coconut Oil

Table 1. Fatty Acid Profile Of Feed Stock

No	Name of fatty acid	Composition (wt.%)
1	Caprylic acid	0.27
2	Capric acid	3.91
3	Lauric acid	41.21
4	Myristic acid	23.90
5	Palmitic acid	16.50
6	Stearic acid	3.14
7	Oleic acid	9.47
8	Linoleic acid	1.61

3.2. Effect of Catalyst Concentration toward Viscosity, Density, and Conversion of Biodiesel

![Figure 1](image1.png) Effect of catalyst concentration toward viscosity

![Figure 2](image2.png) Effect of catalyst concentration toward density

![Figure 3](image3.png) Effect of catalyst concentration toward conversion
3.3. Effect of Reaction Time toward Viscosity, Density, and Conversion of Biodiesel

Figure 4. Effect of reaction time toward viscosity

Figure 5. Effect of reaction time toward density

Figure 6. Effect of reaction time toward conversion

4. Discussion

4.1. Coconut Oil

Table 1 describes the types and compositions of fatty acid characterized by gas chromatography. The highest contents were 41.2% lauric acid and 23.9% myristic acid, which were suitable to previous studies.
4.2. Viscosity

Fig. 1 describes the higher of catalyst concentration used will result in lower kinematic viscosity and Fig. 4 describes that all variables of reaction time in the standard range. Indonesian National Standard (SNI 04-7182-2012) [9] the kinematic viscosity of biodiesel at 40°C is 2.3-6.0 mm²/s (cst). Based on the experiment, only samples with 1% catalyst concentration not meet the SNI standard. Higher viscosity of biodiesel in other combinations is influenced by unreacted triglyceride content with methanol, fatty acid composition of methyl ester compound, and intermediate compounds such as monoglyceride and diglyceride having high polarity and high molecular weight.

4.3. Density

Indonesian National Standard (SNI 04-7182-2012) [9] biodiesel density at 40°C is 0.85-0.89 gr / ml. Fig. 2 shows the concentration of 3% catalysts in the range and Fig. 5 shows all variables in range.

4.4. Conversion

Literature [6] mentions that when the number of catalysts is increased the number of collapsed molecules will increase and the reaction rate will increase. The best catalyst concentration of 3% with 90% conversion will be used in research with variable reaction time (Fig. 3) and Fig. 6 shows an increase of biodiesel conversion at 180 minutes with 90% conversion. The product was analyzed by GC-MS and the result 97% contain methyl esters.

5. Acknowledgment

This study was funded by Kementerian Riset, Teknologi dan Pendidikan Tinggi Indonesia. The authors wish to acknowledge the invaluable amenities provided by universitas muslim Indonesia and all the people who participated as referer in this research for submission to the journal.

6. References

[1] Asri, N. P. et al. “Non catalytic transesterification of vegetables oil to biodiesel in sub-and supercritical methanol: A kinetics study”, Bulletin of Chemical Reaction Engineering and Catalysis, 7(3), pp. 215–223. doi: 10.9767/bcrec.7.3.4060.215-223, 2013.

[2] Badan Standar Nasional, “BSN Biodiesel.” Energi dan Sumber Daya Mineral, Jakarta, p. 1, 2012.

[3] G. A. N. Rohman, F. Fatmawati, and M. Mahfud, “Pembuatan Biodiesel dari Minyak Kelapa Menggunakan Microwave : Penggunaan Katalis KOH dengan Konsentrasi Rendah,” J. Tek. ITS, vol. 5, no. 2, pp. 225–227, 2015.

[4] L. T. Thanh, K. Okitsu, L. Van Boi, and Y. Maeda, “Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review,” J. Catal., vol. 2, no. 2, pp. 191–222, 2012.

[5] M. A. Hossain, S. M. Chowdhury, Y. Rekhu, K. S. Faraz, and M. U. Islam, “Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine,” Int. J. Environ., vol. 6, no. 8, pp. 524–528, 2012.

[6] Munajjin, H. Husin, and Marwan, “Studi Pembuatan Biodiesel Sebagai Energi Bersih Dari Minyak Nyamplung (Callophyllum Inophylum) Menggunakan Katalis KOH/Al2O3,” J. RONA Lingkung. HIDUP (Journal Environ.), vol. 6, no. 2, pp. 12–17, 2016.

[7] Musa, N., Teran, G. & Yaman, S., 2016. Characterization of Coconut Oil and Its Biodiesel. Journal of Scientific Research and Reports, 9(6), pp.1–6. Available at: http://sciedomain.org/abstract/12574.
[8] N. K. Julianti, T. K. Wardani, I. Gunardi, and A. Roesyadi, “Pembuatan Biodiesel dari Minyak Kelapa Sawit RBD dengan Menggunakan Katalis Berpromotor Ganda Berpenyangga γ-Alumina (CaO/MgO/γ-Al2O3) dalam Reaktor Fluidized Bed,” *J. Tek. Pomits*, vol. 3, no. 2, pp. 143–148, 2014.

[9] R. Rismawati, P. Andrianto, M. Mahfud, A. Roesyadi, “Hydrocracking of Calophyllum inophyllum oil with Non-sulfide CoMo Catalyst” *Bulletin of Chemical Reaction Engineering & Catalysis* 10 (1): hal 61-69, 2015.

[10] Savitri, A. S. Nugraha, and I. Aziz, “Pembuatan Katalis Asam (Ni/γ-Al2O3) dan Katalis Basa (Mg/γ-Al2O3) untuk Aplikasi Pembuatan Biodiesel dari Bahan Baku Minyak Jelantah,” *J. Penelit. dan Pengemb. Ilmu Kim.*, vol. 2, no. 1, pp. 1–10, 2016.

[11] Suryanto, S. Suprapto, M. Mahfud, “Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst,” *Bulletin of Chemical Reaction Engineering & Catalysis* 10 (2): hal 162-168, 2015.

[12] S. Basumatary, “Transesterification with heterogeneous catalyst in production of biodiesel: A Review,” *J. Chem. Pharm. Res.*, vol. 5, no. 1, pp. 1–7, 2013.

[13] S. G. Chopade, K. S. Kulkarni, A. D. Kulkarni, And N. S. Topare, “Solid Heterogeneous Catalysts For Production Of Biodiesel From Trans-Esterification Of Triglycerides With Methanol : A Review,” *Acta Chim. Pharm.*, vol. 2, no. 1, pp. 8–14, 2012.

[14] S. Sulaiman, A. R. A. Aziz, and M. K. Arouaa, “Reactive extraction of solid coconut waste to produce biodiesel Sarina,” *J. Taiwan Inst. Chem. Eng.*, vol. 44, no. 2, pp. 232–237, 2013.

[15] Widiyanti, R.A., “Utilization of Coconut Into a VCO (Virgin Coconut Oil) as Antibiotics in an Effort to Support The Health Of Indonesian Healthy Vision 2015”, *Prosiding Seminar Nasional Pendidikan Biologi 2015*, pp.577–584, 2015.