A Wideband Antenna with Defected Patch Structure Applicable for Wireless Communication

Bappaditya Roy1*, Ankan Bhattacharya1, S. K. Chowdhury2 and A. K. Bhattacharjee1

1Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur - 713209, West Bengal, India; bappaditya13@gmail.com
2Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata - 700032, India.

Abstract

With defected patch structure a wideband monopole antenna presented in this paper. In this article a slot geometry is applied in design of the patch structure. Iterative patch structures are considered to obtain optimized results. The antenna is simulated and designed by CST Microwave Studio SuiteTM. The proposed one applicable for WLAN (5.2/5.8GHz) and WiMax bands (3.5/5.5 GHz). The antenna exhibits gain of 2.7dB, 3.7dB and 4.0dB at frequencies 3.5GHz, 5.2GHz and 5.8Ghz respectively. The operating bandwidth of antenna exhibits a wide bandwidth of 3.5GHz to 7.5GHz.

Keywords: Antenna, Iterative, Monopole, Slot Geometry, Wideband.

1. Introduction

Iterative structures are being applied in modern world in patch antennas to gain large bandwidth and several other advantageous features. There is a huge demand for wideband patch antennas in wireless communication11,12. In this paper a wideband monopole antenna with iterative patch structure applicable for various WLAN and WiMAX applications is presented. Several slot geometries like square, rectangular, triangular, trapezoidal, circular, elliptical etc. in combination with either a rectangular, fork like or circular tuning stub, optimized for wide-band operation, is found in literature4-8. In this paper a novel geometry of iterative square structures has been chosen for achieving UWB operation. The different iterative patches are designed in CST Microwave Studio SuiteTM environment. The finalized monopole is proposed to be applicable in the WLAN bands (5.2/5.8 GHz) and WiMAX bands (3.5/5.5 GHz). The antenna exhibits a gain of 2.7 dB, 3.7 dB, 3.9 dB and 4.0 dB at frequencies 3.5 GHz, 5.2 GHz, 5.5 GHz and 5.8 GHz respectively. The antenna exhibits a wide bandwidth of 3.5 GHz to 7.5 GHz respectively.

2. Antenna Design

Iterative patch structure is employed in the design of the proposed monopole. Figure 1 shows the iterative patch structures. The first iteration (Figure 1a) is a square patch whose length of each side is equal to ‘a’. The second iteration (Figure 1b) is a patch where four square shaped structures are added at the four corners of the previous one. The length of each side of a small square structure is one half of ‘a’.

\[a' = \frac{1}{2} a \]

The third and final iteration is shown in Figure 1c.

Figure 1. (a) 1st iteration (b) 2nd iteration (c) 3rd iteration.

The Proposed Monopole antenna is shown in Figure 2. The finalized patch consists of a square slot in the middle.
and four small square slots at the four corners. The length of each side of the centre slot s' is $\frac{5}{2}$ times of a small one whose length of each side is equal to s.

$$s' = \frac{5}{2} s$$ \hspace{1cm} (2)

The ground plane and the patch are composed of copper (annealed) material and the substrate material utilized is Teflon (PTFE) having a dielectric constant of 2.1. The various dimensions of the patch are given in Table 1.

Table 1. Parameter dimensions

Parameter	Dimension (mm)
S1	3.75
S2	1.50
S3	4.25
S4	6.25
S5	2.75
S6	1.25
Fl	14.5
Fw	2.60
Gl	9.50
Gw	18.0

3. Results and Discussion

The iterative behavior of the patch is studied with the help of comparison plots. Figure 3 shows a comparison plot of the three different iterations. A maximum bandwidth has been obtained in the 3rd iteration shown in red.

Figure 3. Iterative plots of return loss.

Figure 4 shows the S_{11} vs. Frequency plot of the antenna for some common substrates available in the market. The properties of the substrate are given in Table 2. It is observed that the return loss increased when a substrate of a higher dielectric constant is used e.g. Roger RT6006 having a dielectric constant of 6.15 with a reduction in -10db bandwidth. A maximum bandwidth of 4 GHz (3.5 – 7.5 GHz) is obtained when Teflon having a dielectric constant of 2.1 is used as the substrate.

Table 2. Substrate properties

Substrate	Dielectric constant
FR-4	4.3
G-10	4.8
Teflon	2.1
Roger RT6006	6.15
Figure 5 shows the comparison plot of the patch structure with slot and without slot. It has been observed that the desired bandwidth has been obtained by the addition of square slots in the patch. A slight decrease in return loss is observed at a frequency of around 7 GHz.

The half feed length \(f' \) is varied from 1.1 mm to 1.5 mm. A feed length of \(f' = 2f = 2 \times 1.3 = 2.6 \) mm has been chosen to obtain maximum bandwidth.

![Figure 5. Effect of square slots in patch.](image1)

Figure 6 shows the \(S_{11} \) vs Frequency plot of the patch for different feed lengths. Here \(f \) is half feed length and \(f' \) is the total feed length.

\[
f' = 2f
\]

(3)

![Figure 6. Variation of Feed length (for Teflon substrate).](image2)

Figure 7 shows the variation of \(S_{11} \) parameter (Return Loss) vs. Frequency of the proposed patch. An extended bandwidth of 4 GHz (3.5 GHz to 7.5 GHz) has been observed from the Figure.

Figure 8 shows the VSWR vs. Frequency plot of the proposed structure. It has been observed that the VSWR is less than 2 throughout the entire bandwidth.

![Figure 7. Return Loss vs. Frequency.](image3)

![Figure 8. VSWR vs. Frequency.](image4)
Figure 9. Gain vs. Frequency.

Figure 9 shows the Gain vs. Frequency plot of the monopole antenna. It has been increasing from 2.7 dB to 4.0 dB throughout the frequency band from 3.5 GHz to 7.5 GHz.

4. Conclusion

The proposed monopole satisfies all the requirements of an UWB antenna in perspective of Return Loss, VSWR and Gain which is verified from respective simulation results. It is well applicable for all microwave frequency applications from 3.5 GHz to 7.5 GHz particularly the WLAN and WiMAX communication purposes.

5. Acknowledgement

We, the corresponding authors, Ankan Bhattacharya and Bappaditya Roy would like to express our sincere gratitude to Prof. (Dr.) Anup Kumar Bhattacharjee of National Institute of Technology, Durgapur for his constant motivation, support and guidance throughout this research work without which it would not have been possible for us to reach the goal.

6. References

1. Choi W, Jung J, Chung K, Choi J. Compact wide-band printed monopole antenna with frequency band-stop characteristic. IEEE Antennas and Propagation Society International Symposium. 2005; 3A:606–9.

2. Natarajamani S, Behera SK, Patra SK. A triple band-notched planar monopole antenna for UWB applications. Microwave and optical technology letters. 2012 Feb; 54(2).

3. Akbari M, Koohestani M, Gholabadi CH, Nourinia J. A new compact planar UWB monopole antenna. International Journal of RF and Microwave Computer- Aided Engineering. 2011; 21(2):2794–6.

4. Jan JY, Hsiang CY. Wideband coplanar waveguide-fed slot antenna for DCS, PCS, 3 G and Bluetooth bands. Electronic Letter. 2006 Nov; 42(24):1377–8.

5. Chiou JY, Sze JY, Wong KL. A broadband coplaner waveguide-fed strip loaded square slot antenna. IEEE Transaction Antennas Propagation. 2003 Apr; 51(4):719–21.

6. Chen HD. Broadband coplanar wave guide-fed square slot antennas with a widened tuning stub. IEEE Transaction Antennas Propagation. 2003 Aug; 51(4):1982–6.

7. Qu SW, Ruan C, Wang BZ. Bandwidth enhancement of wide-slot antenna fed by CPW and microstrip line. IEEE Antennas Wireless Propagation Letters. 2006; 5:15–7.

8. Wang CJ, Lee JJ. A pattern-frequency-dependent wide-bandslot antenna. IEEE Antennas Wireless Propagation Letter. 2006; 5:65–8.

9. Anguera J, Puente C, Borja C, Soler J. Fractal-shapedantennas: A review, Wiley Encyclopedia of RF and Microwave engineering. Editor Chang K. Wiley: New York; 2005; 2:1620–35.

10. Gianvittorio J. Fractal antennas: Design, characterization and applications. Ph.D. Dissertation, Department of Electrical Engineering. Los Angeles: University of California; 2000.
11. Lin YC, Hung KJ. Compact UWB rectangular aperture antenna and band notched design. IEEE Transaction Antennas Propagation. 2006 Nov; 54(11):3075–81.

12. Angelopoulos ES, Anastopoulos AZ, Kaklamani DI, Alexandridis AA, Lazarakis F, Dangakis K. Circular and elliptical CPW-Fed slot and microstrip-fed antennas for UWB. IEEE Antennas Wireless Propagation Letter. 2006; 5: 294–7.

13. Choi ST, Hamaguchi K, Kohno R. A Novel Microstrip-fed ultrawideband triangular monopole antenna with wide stubs Microwave and Optical Technology Letters. 2009; 51(1):239–42. doi:10.1002/mop.23989.

14. Li P, Liang J, Chen X. Study of printed elliptical/circular slotantennas for ultrawide-band applications. IEEE Transaction Antennas Propagations. 2006 Jun; 54(6):1670–5.