Healthcare resource utilization and costs among patients with heart failure with preserved, mildly reduced, and reduced ejection fraction in Spain

Carlos Escobar
University hospital La Paz

Beatriz Palacios
AstraZeneca Farmaceutica

Luis Varela
AstraZeneca Farmaceutica

Martín Gutiérrez
AstraZeneca Farmaceutica

Mai Duong
Evidera

Hungta Chen
AstraZeneca

Nahila Justo
Evidera

Javier Cid-Ruzafa
Evidera

Ignacio Hernández
atryshealth

Phillip Hunt
AstraZeneca

Juan F. Delgado (juan.delgado@salud.madrid.org)
University Hospital 12 de Octubre, CIBERCV

Research Article

Keywords: cost, heart failure, healthcare resource utilization, hospitalization, sacubitril/valsartan, SGLT2 inhibitors

Posted Date: August 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1900010/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Aims

To describe healthcare resource utilization (HCRU) of patients with heart failure with preserved (HFpEF), mildly reduced (HFmrEF), and reduced ejection fraction (HFrEF) in Spain.

Methods

Adults with ≥ 1 HF diagnosis and ≥ 1 year of continuous enrolment before the corresponding index date (1/January/2016) were identified through the BIG-PAC database. Rate per 100 person-years of all-cause and HF-related HCRU during the year after the index date were estimated using bootstrapping with replacement.

Results

21,297 patients were included, of whom 48.5% had HFrEF, 38.6% HFpEF and 4.2% HFmrEF, with the rest being of unknown EF. Mean age was 78.8 ± 11.8 years, 53.0% were men and 83.0% were in NYHA functional class II/III. At index, 67.3% of patients were taking renin angiotensin system inhibitors, 61.2% beta blockers, 23.4% aldosterone antagonists and 5.2% SGLT2 inhibitors. Rates of HF-related outpatient visits and hospitalization were 968.8 and 51.6 per 100 person-years, respectively. Overall, 31.23% of patients were hospitalized, mainly because of HF (87.88% of total hospitalizations); HF hospitalization length 21.06 ± 17.49 days (median 16; 25th, 75th percentile 9–27). HF hospitalizations were the main cost component: inpatient 73.64%, pharmacy 9.67%, outpatient 9.43%, and indirect cost 7.25%. Rates of all-cause and HF-related HCRU and healthcare cost were substantial across all HF subgroups, being higher among HFrEF compared to HFmrEF and HFpEF patients.

Conclusions

HCRU and cost associated with HF are high in Spain, HF hospitalizations being the main determinant. Medication cost represented only a small proportion of total costs, suggesting that an optimization of HF therapy may reduce HF burden.

Introduction

Heart failure (HF) affects more than 60 million people all around the world (approximately 15 million in Europe and 6 million in United States) [1, 2]. The current prevalence of HF reaches 1–2% of the adult people in developed countries, but it will increase in the following years, mainly due to the ageing of the population [1–5].

In spite of traditional HF treatments, mortality rates remain unacceptably high [1, 2, 6]. In addition, HF is the main cause of hospitalization in elderly people in Western countries and it is responsible for 1–2% of all hospitalizations [1, 2, 7]. In fact, one out of 6 patients with HF with reduced ejection fraction (HFrEF) will develop worsening HF within 18 months of initial diagnosis [8]. Consequently, it is expected that the number of HF hospitalizations will markedly increase in the future [1, 9]. Recent clinical trials have demonstrated that some drugs can positively modify the clinical course of HF, in both, HFrEF (i.e. sacubitril-valsartan and some sodium-
HF is associated with huge direct and indirect costs, largely due to HF hospitalization, representing 1–2% of total healthcare costs in Europe and United States [16–18]. As a result, it is important to ascertain the main determinants of HF costs, in order to optimize the management of HF that may allow a reduction in HF costs [7, 17].

Although some studies have analyzed the clinical profile and management of HF stratified by EF (HFrEF, HF with mildly reduced EF [HFmrEF] and HFpEF) [19–21], there are very few studies that have focused on identifying cost drivers according to HF phenotype [22–25].

This study aimed to describe healthcare resource utilization (HCRU) and direct medical costs including HF-related and all-cause outpatient visits, hospitalizations, specialist visits, and poly-pharmacy, stratified by EF subgroups, through the analysis of a nationally representative Spanish database.

Methods

Retrospective cohort study using data from BIG-PAC database in Spain. BIG-PAC is a longitudinal and de-identified database that includes healthcare data of 1.8 million patients from primary care and hospital centers, across seven Autonomous Communities in Spain. Several studies have demonstrated its representativeness of the Spanish population and its ability to accurately determine the clinical profile, treatments, healthcare resource utilization and costs in Spain [3, 4, 17]. This study was approved by the Investigation Ethics Committee of the Consorci Sanitari from Terrassa (Barcelona, Spain). No informed consent was required in this study, as secondary data were used and all information was completely anonymized and dissociated from patients’ identity.

For this study, a prevalent cohort that included adults with at least one inpatient or outpatient HF diagnosis, and at least one year of continuous enrolment before the corresponding index date (1 January 2016) was analyzed. Patients were excluded if they had less than one year of continuous enrolment before the index date, < 18 years at index date, or had chronic kidney disease stage V that required dialysis at any time before the index date.

Clinical characteristics, including demographics, HF diagnosis, cardiovascular risk factors, vascular disease, chronic kidney disease by stage [26] and other comorbidities, as well as treatments were determined at baseline. Comorbidities were based on data any time up to the index date, unless otherwise specified. The International Classification of Diseases (ICD)-9 and ICD-10 codes (https://eciemaps.mscbs.gob.es) were considered for the diagnosis of HF and comorbidities (supplementary table 1). Treatments during one year before index date were recorded from the registries for dispensing medicines, according to the Anatomical Therapeutic Chemical Classification System [27]. Data were stratified by EF subgroups, HFpEF: EF ≥ 50%; HFrEF: EF ≤ 40%; HFmrEF: EF > 40–<50%; HF with unspecified EF (HFuEF): patients without an echocardiographic result at baseline.

During the year after the index date, HF-related hospitalizations, outpatient visits, costs as well as all-cause HCRU were estimated using cost data from the Spanish National Health Service, and included: inpatient (number of hospitalizations > 24 hours, length of hospital stays, cost), outpatient (number of visits to general practitioners, the number of visits to the specialist, cost), emergency visits (number of visits to the emergency department, cost), pharmacy (total prescription cost for HF and non-HF medications), and indirect cost relating to work morbidity-
induced productivity loss. Inpatient and outpatient visits with a HF ICD-10 code (supplementary table 1), as the primary code were assumed to be HF-related HCRU.

Statistical analysis.

Baseline characteristics and treatments were summarized using descriptive statistics and stratified by EF subgroups. Qualitative variables were described by their absolute and relative frequency distributions. Measures of central tendency (mean, median), dispersion (standard deviation [SD], 25th, 75th percentile), and categories, where appropriate, were used to describe the quantitative variables. The rates of HCRU, overall and HF-related were estimated within the year after the index date, stratified by EF subgroups. The results were reported per 100 person-years. The confidence interval (CI) for HCRU was estimated using nonparametric bootstrapping method, with the number of resampling set at 1,000. Length of inpatient stays was estimated as mean (SD) and median (25th, 75th percentile). The number of prescriptions per patient was estimated as mean (SD) and median (25th, 75th percentile), and the proportion of patients with 0, 1, 2, 3, 4 or ≥ 5 prescriptions (polypharmacy) was also determined. HCRU costs, overall and HF-related were estimated as mean (SD) per patient. Results in the HFmrEF and HFpEF subgroups were compared with the HFrEF subgroup. To explore an association between continuous variables amongst EF subtypes, the two-sample t-test was used for variables normally distributed and the Mann–Whitney U test for those non-normally distributed. The chi-square test was used for categorical variables. A level of statistical significance of 0.05 was applied in all statistical tests. The CI for HCRU was estimated using nonparametric bootstrapping method (SciPy package). The data were analyzed using the statistical package SPSS v25.0 (SPSS Inc., Chicago, Illinois, USA).

Results

A total of 21,297 patients with HF were included, of whom 48.5% had HFrEF, 38.6% HFpEF and 4.2% HFmrEF, with the rest being of unknown EF (Table 1). Overall, mean age was 78.8 ± 11.8 years, 53.0% were men and 83.0% were in New York Heart Association (NYHA) functional class II or III. Comorbidities were common at index (67.5% had hypertension, 38.2% coronary artery disease, 31.8% type 2 diabetes and 30.3% chronic kidney disease). Regarding HF drugs, 67.3% of patients were taking renin angiotensin system inhibitors, 61.2% beta blockers, 23.4% aldosterone antagonists and 5.2% SGLT2i. Compared with patients with HFrEF, patients with HFmrEF were older, more commonly women, presented more frequently with hypertension, dyslipidemia and atrial fibrillation, but less frequently with diabetes, coronary artery disease, peripheral artery disease and chronic obstructive pulmonary disease. Compared to those patients with HFrEF, patients with HFmrEF were older, more commonly women, more patients were on NYHA functional class II, and presented more frequently with dyslipidemia and atrial fibrillation, but less frequently with coronary artery disease, chronic kidney disease, stroke, peripheral artery disease, chronic obstructive pulmonary disease and dementia. Regarding HF treatments, relative fewer patients with HFmrEF were taking diuretics, renin angiotensin system inhibitors, SGLT2i, digoxin and ivabradine than those patients with HFrEF. All HF drugs were more commonly taken by patients with HFrEF than by those with HFpEF. Among patients with HFpEF, the clinical profile and treatments did not differ according to EF (50 to < 60% vs ≥ 60%).
Table 1: Baseline clinical characteristics and treatments.

	HF cohort (n = 21,297; 100%)	HFrEF (n = 10,323; 48.5%)	HFmrEF (n = 903; 4.2%)	HFP EF (n = 8,225; 38.6%)	HFpEF (50 to < 60%) (n = 2,995; 14.1%)	HFpEF (60%) (n = 5,230; 24.6%)	HFuEF (n = 1,846; 8.7%)	p-value (HFmrEF vs HFrEF)	p-value (HFpEF vs HFrEF)
Biodemographic data									
Age (years) at index date	78.8 (11.8)	73.6 (9.7)	81.7 (9.9)	84.0 (11.4)	84.1 (11.3)	84.0 (11.4)	83.3 (11.9)	< 0.001	< 0.001
Mean (SD)	79.1 (71.9–87.6)	73.8 (67.5–79.8)	80.6 (75.6–89.4)	85.6 (78.2–91.9)	85.7 (78.4–91.9)	85.5 (78.2–91.9)	85.5 (78.0–91.9)	< 0.001	< 0.001
Median (25th, 75th percentile)	81.7 (9.9)	80.6 (75.6–89.4)	85.6 (78.2–91.9)	85.7 (78.4–91.9)	85.5 (78.2–91.9)	85.5 (78.0–91.9)	85.5 (78.0–91.9)	< 0.001	< 0.001
Range (min - max)	18–102.8	18–102.8	21.6–102.8	18.5–100.5	18.5–100.5	18.5–100.5	18.5–100.5	< 0.001	< 0.001
Gender, male, n (%)	11,278 (53.0)	6,782 (65.7)	440 (48.7)	3,068 (37.3)	1,102 (36.8)	1,966 (37.6)	988 (53.5)	< 0.001	< 0.001
NYHA at index date, n (%)	2,137 (10.0)	1,030 (10.0)	91 (10.1)	817 (9.9)	322 (10.8)	495 (9.5)	199 (10.8)	0.494	< 0.001
Class I	8,949 (42.0)	3,689 (35.7)	332 (36.8)	4,176 (50.8)	1,504 (50.2)	2,672 (51.1)	752 (40.7)	< 0.001	< 0.001
Class II	8,728 (41.0)	4,750 (46.0)	411 (45.5)	2,783 (33.8)	1,016 (33.9)	1,767 (33.8)	784 (42.5)	< 0.001	< 0.001
Class III	1,013 (4.8)	612 (5.9)	56 (6.2)	280 (3.4)	92 (3.1)	188 (3.6)	65 (3.5)	< 0.001	< 0.001
Class IV	470 (2.2)	242 (2.3)	169 (2.1)	61 (2.0)	108 (2.1)	46 (2.5)			
Unknown									
Cardiovascular risk factors, n (%)									
Hypertension	14,379 (67.5)	6,885 (66.7)	662 (73.3)	5,550 (67.5)	2,021 (67.5)	3,529 (67.5)	1,282 (69.5)	< 0.001	0.261
Dyslipidemia	10,457 (49.1)	4,681 (45.4)	457 (50.6)	4,384 (53.3)	1,601 (53.5)	2,783 (53.2)	935 (50.7)	0.002	< 0.001
Diabetes type 1	844 (4.0)	499 (4.8)	32 (3.5)	258 (3.1)	100 (3.3)	158 (3.0)	55 (3.0)	0.080	< 0.001

All treatments were assessed within 12 months before index. Patients on combination drugs were counted in each respective treatment class. Therefore, each treatment class included patients on monotherapy and combination therapy. Lookback period for all comorbidities was any time before index date (event date < index date), unless otherwise specified; lookback period for all prescription was 12 months prior to index date.

Abbreviations: ACE = Angiotensin-converting enzyme; ARB = angiotensin receptor II blocker; ARNI = Dual angiotensin receptor and neprilysin inhibition, COPD = Chronic obstructive pulmonary disease; HF = Heart failure; HFmrEF = Heart failure with mildly reduced ejection fraction; HFpEF = Heart Failure with preserved ejection fraction; HFrEF = Heart Failure with reduced ejection fraction; HFpEF = Heart Failure with unspecifi ed ejection fraction; NYHA = New York Heart Association; SD: standard deviation; SGLT2i = Sodium-glucose co- transporter-2 inhibitors.
	HF cohort (n = 21,297; 100%)	HFrEF (n = 10,323; 48.5%)	HFmrEF (n = 903; 4.2%)	HFpEF (≥ 50 to < 60%) (n = 2,995; 14.1%)	HFpEF (≥ 60%) (n = 5,230; 24.6%)	P-value (HFmrEF vs HFrEF)	P-value (HFpEF vs HFrEF)
Diabetes type 2	6,772 (31.8)	3,331 (32.3)	236 (26.1)	2,630 (32.0)	1,127 (37.6)	1,503 (28.7)	575 (31.2)
Vascular disease, n (%)							
Coronary artery disease	8,124 (38.2)	4,520 (43.8)	288 (31.9)	2,653 (32.3)	971 (32.4)	1,682 (32.2)	663 (35.9)
Chronic kidney disease	6,452 (30.3)	3,411 (33.0)	272 (30.1)	2,286 (27.8)	849 (28.4)	1,437 (27.5)	483 (26.2)
Stage Unknown	2,706 (12.7)	1,451 (14.1)	106 (11.7)	953 (11.6)	358 (12.0)	595 (11.4)	196 (10.6)
Stage I	179 (0.8)	86 (0.8)	6 (0.7)	73 (0.9)	26 (0.9)	47 (0.9)	14 (0.8)
Stage II	644 (3.0)	327 (3.2)	106 (11.7)	250 (3.0)	85 (2.8)	165 (3.2)	48 (2.6)
Stage III	2,225 (10.5)	1,179 (11.4)	26 (2.9)	789 (9.6)	296 (9.9)	493 (9.4)	151 (8.2)
Stage IV	524 (2.5)	281 (2.7)	9 (1.1)	153 (1.9)	63 (2.1)	90 (1.7)	64 (3.5)
Stage V	174 (1.0)	87 (1.1)	68 (0.9)	21 (0.9)	47 (0.9)	10 (0.6)	
Myocardial Infarction	3,174 (14.9)	1,645 (15.9)	103 (11.4)	1,110 (13.5)	384 (12.8)	726 (13.9)	316 (17.1)
Stroke	2,254 (10.6)	1,327 (12.9)	107 (11.9)	617 (7.5)	297 (9.9)	320 (6.1)	203 (11.0)
Peripheral arterial disease	1,074 (5.0)	616 (6.0)	24 (2.7)	337 (4.1)	146 (4.9)	191 (3.7)	97 (5.3)
Other comorbidities, n (%)							
COPD	3,319 (15.6)	1,716 (16.6)	121 (13.4)	1,202 (14.6)	441 (14.7)	761 (14.6)	280 (15.2)

All treatments were assessed within 12 months before index. Patients on combination drugs were counted in each respective treatment class. Therefore, each treatment class included patients on monotherapy and combination therapy. Lookback period for all comorbidities was any time before index date (event date < index date), unless otherwise specified; lookback period for all prescription was 12 months prior to index date.

Abbreviations: ACE = Angiotensin-converting enzyme; ARB = angiotensin receptor II blocker; ARNI = Dual angiotensin receptor and neprilysin inhibition; COPD = Chronic obstructive pulmonary disease; HF = Heart failure; HFmrEF = Heart failure with mildly reduced ejection fraction; HFpEF = Heart Failure with preserved ejection fraction; HFrEF = Heart Failure with reduced ejection fraction; HFrEF = Heart Failure with reduced ejection fraction; HFuEF = Heart Failure with unspecified ejection fraction; NYHA = New York Heart Association; SD: standard deviation; SGLT2i = Sodium-glucose co-transporter-2 inhibitors.
Condition	HF cohort (n = 21,297; 100%)	HFrEF (n = 10,323; 48.5%)	HFmrEF (n = 903; 4.2%)	HFrEF (n = 8,225; 38.6%)	HFP EF (≥ 60%) HFrEF (n = 1,846; 8.7%)	p-value (HFmrEF vs HFrEF)	p-value (HFP EF (≥ 60%) vs HFrEF)		
Atrial fibrillation	6,785 (31.9)	2,538 (24.6)	283 (31.3)	3,364 (40.9)	1,205 (40.2)	2,159 (41.3)	600 (32.5)	< 0.001	< 0.001
Anemia within 1 year before index date	6,540 (30.7)	3,266 (31.6)	255 (28.2)	2,503 (30.4)	910 (30.4)	1,593 (30.5)	516 (28.0)	0.035	0.078
Cancer before index date	2776 (13.0)	1,313 (12.72)	109 (12.1)	1,077 (13.1)	368 (12.3)	709 (13.6)	277 (15.0)	0.574	0.449
Dementia	1,058 (5.0)	568 (5.5)	45 (5.0)	360 (4.4)	168 (5.6)	192 (3.7)	85 (4.6)	0.510	< 0.001

HF drugs, n (%)

Drug	HF cohort (n = 21,297; 100%)	HFrEF (n = 10,323; 48.5%)	HFmrEF (n = 903; 4.2%)	HFrEF (n = 8,225; 38.6%)	HFP EF (≥ 60%) HFrEF (n = 1,846; 8.7%)	p-value (HFmrEF vs HFrEF)	p-value (HFP EF (≥ 60%) vs HFrEF)		
Diuretics	15,780 (74.1)	7,759 (75.2)	649 (71.9)	5,964 (72.5)	2,174 (72.6)	3,790 (72.5)	1,408 (76.3)	0.029	< 0.001
ACEi/ARB	14,335 (67.3)	7,840 (76.0)	574 (63.6)	4,806 (58.4)	1,734 (57.9)	3,072 (58.7)	1,115 (60.4)	< 0.001	< 0.001
Beta-blockers	13,043 (61.2)	6,631 (64.2)	602 (66.7)	4,693 (57.1)	1,711 (57.1)	2,982 (57.0)	1,117 (60.5)	0.143	< 0.001
Aldosterone antagonists	4,973 (23.4)	2,609 (25.3)	207 (22.9)	1,765 (21.5)	654 (21.8)	1,111 (21.2)	392 (21.2)	0.118	< 0.001
Digoxin	4,311 (20.2)	2,307 (22.4)	162 (17.9)	1,437 (17.5)	526 (17.6)	911 (17.4)	405 (21.9)	0.002	< 0.001
Ivabradine	1,502 (7.1)	873 (8.5)	38 (4.2)	449 (5.5)	181 (6.0)	268 (5.1)	142 (7.7)	< 0.001	< 0.001
SGLT2i (among diabetics)	1,115 (5.2)	704 (6.8)	34 (3.8)	267 (3.3)	89 (3.0)	178 (3.4)	110 (6.0)	< 0.001	< 0.001
Hydralazine and nitrate	19 (0.1)	7 (0.1)	1 (0.1)	11 (0.1)	5 (0.2)	6 (0.1)	0	0.643	0.152
ARNI	0	0	0	0	0	0	0	--	--

All treatments were assessed within 12 months before index. Patients on combination drugs were counted in each respective treatment class. Therefore, each treatment class included patients on monotherapy and combination therapy. Lookback period for all comorbidities was any time before index date (event date < index date), unless otherwise specified; lookback period for all prescription was 12 months prior to index date.

Abbreviations: ACE = Angiotensin-converting enzyme; ARB = angiotensin receptor II blocker; ARNI = Dual angiotensin receptor and neprilysin inhibition, COPD = Chronic obstructive pulmonary disease; HF = Heart failure; HFmrEF = Heart failure with mildly reduced ejection fraction; HFrEF = Heart Failure with preserved ejection fraction; HFrEF = Heart Failure with reduced ejection fraction; HFrEF = Heart Failure with unspecified ejection fraction; NYHA = New York Heart Association; SD: standard deviation; SGLT2i = Sodium-glucose co-transporter-2 inhibitors.
All-cause and HF-related HCRU are presented in Table 2. Overall, rates of HF-related outpatient visits and hospitalization in the study year were 968.8 (95% confidence interval [CI] 961.5-975.1) and 51.6 (95% CI 51.5–54.3) per 100 person-years, respectively. Visits to the general practitioner were 26.3 times more frequent than to the specialist. Rates of all-cause and HF-related HCRU were higher among patients with HFrEF compared to those with HFmrEF and HFpEF. HFmrEF rates were intermediate between HFrEF and HFpEF. Overall, 31.23% of patients were hospitalized, mainly because of HF (87.88% of total hospitalizations). Mean duration of HF hospitalization was 21.06 ± 17.49 days (median 16; 25th, 75th percentile 9–27) and despite the elderly nature of these patients, 7.72% had recorded sick leave due to HF (mean 23.38 ± 7.85 days). Mean number of HF-related prescriptions in the follow-up year was 16.09 ± 7.77 and the majority of patients were polymedicated. A higher proportion of hospitalizations in patients with HFrEF were related to HF in compared with patients with HFmrEF and HFpEF (34.93% vs 29.90% and 27.26%, respectively; both P < 0.001). A higher proportion of hospitalizations in patients with HFrEF were related to HF compared with patients with HFmrEF and HFpEF (90.02% vs 85.19% and 85.50%, respectively). In addition, duration of HF hospitalization was higher among patients with HFrEF compared to those with HFmrEF and HFpEF (median 20; 25th, 75th percentile 13–36 days vs 14: 25th, 75th percentile 9-21.5 and 12; 25th, 75th percentile 6–21, respectively; both P < 0.001). The number and length of medical-absenteeism spells were higher in patients with HFrEF than in those with HFmrEF and HFpEF. Among patients with HFpEF, HCRU did not differ according to EF (50 to < 60% vs ≥ 60%) (Table 3).
Table 3
Healthcare resource utilization during the index year.

	All HF patients (n = 21297)	HFrEF (n = 10323)	HFmrEF (n = 903)	P vs HFrEF	HFpEF (n = 8225)	P vs HFpEF	HFpEF (≥60%) (n = 2995)	P vs HFpEF	HFpEF (≥60%) (n = 5230)	P vs HFpEF	HFuEF (n = 1846)
Length of hospital stays (all-cause)	6652 (31.23)	3606 (34.93)	270 (29.90)	< 0.001	2242 (27.26)	< 0.001	814 (27.18)	1428 (27.30)	534 (28.93)		
Number of patients hospitalized, n (%)	19.59 (17.73)	24.93 (20.3)	16.18 (13.52)	13.51 (11.31)	13.43 (11.27)	13.56 (11.33)	10.73 (8.41)				
Mean (SD)	14 (7–25)	19 (10–35)	12 (7–19)	10 (5–18)	10 (5–18)	10 (5–19)	8 (5–15)				
Median (25th, 75th percentile)	16 (9–27)	20 (13–36)	14 (9–21.5)	12 (6–21)	12 (6–21)	12 (6–16)	9 (5–16)				
Length of hospital stays (HF-related)	5846 (27.45)	3246 (31.44)	230 (25.47)	< 0.001	1917 (23.31)	< 0.001	695 (23.21)	1222 (23.37)	453 (24.54)		
Number of patients hospitalized, n (%)	21.06 (17.49)	26.49 (19.61)	17.57 (13.38)	14.54 (11.34)	14.38 (11.23)	14.63 (11.4)	11.46 (8.33)				
Mean (SD)	16 (9–27)	20 (13–36)	14 (9–21.5)	12 (6–21)	12 (6–21)	12 (6–16)	9 (5–16)				
Median (25th, 75th percentile)	21297 (100)	10323 (100)	903 (100)	< 0.001	8225 (100)	< 0.001	2995 (100)	5230 (100)	1846 (100)		
Number of prescriptions (all-cause)	38.86 (13.29)	41.39 (13.12)	34.3 (12.17)	36.23 (12.97)	36.24 (12.95)	36.22 (13.32)	38.67 (13.32)				
Number of patients, n (%)	38 (29–47)	41 (32–50)	33 (26–42)	35 (27–45)	35 (27–45)	35 (27–45)	38 (29–48)				
Mean (SD)	38.86 (13.29)	41.39 (13.12)	34.3 (12.17)	36.23 (12.97)	36.24 (12.95)	36.22 (13.32)	38.67 (13.32)				
Median (25th, 75th percentile)	38 (29–47)	41 (32–50)	33 (26–42)	35 (27–45)	35 (27–45)	35 (27–45)	38 (29–48)				

HF: Heart failure; HFmrEF: Heart failure with mildly reduced ejection fraction; HFpEF: Heart Failure with preserved ejection fraction; HFrEF: Heart failure with reduced ejection fraction; HFuEF: Heart Failure with unspecified ejection; HRCU: Healthcare resource utilization; SD: standard deviation.
	All HF patients (n = 21297)	HFrEF (n = 10323)	HFmrEF (n = 903)	P vs HFrEF	HFPF EF (n = 8225)	P vs HFrEF	HFpEF (≤ 60%) (n = 2995)	HFpEF (≥ 60%) (n = 5230)	HFuEF (n = 1846)
Number of prescriptions	21297 (100)	10323 (100)	903 (100)	< 0.001	8225 (100)	< 0.001	2995 (100)	5230 (100)	1846 (100)
(HF-related)									
Number of patients, n (%)	16.09 (7.77)	16.74 (7.85)	13.96 (6.84)	15.47 (7.64)	15.43 (7.57)	15.5 (7.68)	16.16 (7.89)		
Mean (SD)	15 (10–21)	16 (11–22)	13 (9–18)	15 (10–20)	15 (10–20)	15 (10–20)	15 (10–21)		
Median (25th, 75th percentile)	15 (10–21)	16 (11–22)	13 (9–18)	15 (10–20)	15 (10–20)	15 (10–20)	15 (10–21)		
Work absences (number of days) (all-cause)	3178 (14.92)	2011 (19.48)	93 (10.30)	< 0.001	871 (10.59)	< 0.001	321 (10.72)	550 (10.52)	203 (10.99)
Number of patients, n (%)	17.81 (9.89)	21.74 (10.2)	11.58 (3.41)	10.79 (3.68)	10.86 (3.56)	10.75 (3.75)	11.92 (4.25)		
Mean (SD)	15 (10–26)	23 (13–30)	12 (9–14)	11 (8–14)	11 (8–14)	11 (8–14)	13 (9–15)		
Median (25th, 75th percentile)	15 (10–21)	23 (13–30)	12 (9–14)	11 (8–14)	11 (8–14)	11 (8–14)	13 (9–15)		
Work absences (number of days) (HF-related)	1644 (7.72)	1283 (12.42)	43 (4.76)	< 0.001	255 (3.10)	< 0.001	93 (3.11)	162 (3.10)	63 (3.41)
Number of patients, n (%)	23.38 (7.85)	26.82 (4.86)	12.19 (2.54)	10.51 (1.99)	10.69 (2.01)	10.41 (1.98)	13.16 (2.29)		
Mean (SD)	24 (19–30)	27 (23–31)	13 (10–14)	11 (9–12)	11 (9–12)	10 (9–12)	13 (11–15)		
Median (25th, 75th percentile)	24 (19–30)	27 (23–31)	13 (10–14)	11 (9–12)	11 (9–12)	10 (9–12)	13 (11–15)		

HF: Heart failure; HFmrEF: Heart failure with mildly reduced ejection fraction; HFpEF: Heart Failure with preserved ejection fraction; HFrEF: Heart failure with reduced ejection fraction; HFuEF: Heart Failure with unspecified ejection; HRCU: Healthcare resource utilization; SD: standard deviation.
Overall and HF-related healthcare resource costs per patient during the index year are presented in Tables 4 and 5. Overall and HF-related cost were 3193.2 ± 4457.7€ and 2518.8 ± 4323.8€ (78.88% of the total cost) per patient, respectively. Hospitalizations were the main component of healthcare resource costs: overall: inpatient 61.48%, pharmacy 18.42%, outpatient 11.67%, indirect cost 8.43%; HF-related: inpatient 73.64%, pharmacy 9.67%, outpatient 9.43%, indirect cost associated with medical absenteeism 7.25%. Overall and HF-related healthcare resource costs per patient were higher among HFrEF than HFmrEF and HFpEF patients. Among patients with HFpEF, overall and HF-related healthcare resource costs per patient did not differ according to EF (50 to < 60% vs ≥ 60%).

Discussion

Our study showed in a wide sample of subjects with HF that HCRU and costs are substantial in Spain, HF hospitalizations being the main driver of healthcare cost. By contrast, medication cost represents only a small proportion of total costs, suggesting that the best way to decrease HF-related costs is to reduce the risk of HF hospitalization through the optimization of HF therapy. HFrEF is associated with higher HCRU and direct and indirect costs and a higher proportion of the total costs are attributable to HF compared with HFmrEF and HFpEF.

In our study, around half of patients had HFrEF, 40% HFpEF and 5% HFmrEF. Although some disparities in the numbers can be found across studies, as HFpEF is markedly associated with older age, our figures were in line
with previous studies [20, 28, 29]. In fact, previous studies have shown that data obtained from the BIG-PAC database are completely up-to-date [3, 4, 17]. Notably, our study showed that there were relevant differences in the clinical profile of patients with HFrEF compared to those with HFmrEF or HFpEF, particularly related with age and the prevalence of comorbidities. Compared with HFrEF, patients with HFmrEF or HFpEF were older, more commonly women, with more atrial fibrillation, but less ischemic heart disease. These differences in the clinical profile between HF subgroups have also been observed by others [19, 20, 28–30]. As these differences may have an impact on the clinical course of patients with HF, it is important to ascertain whether HCRU and healthcare costs may vary according to the type of HF, as well. In this context, the information provided by our study may be of great significance.

With regard to HCRU, HF-related outpatient visits were very common (969 per 100 person-years). Despite that, many patients were not taking the appropriate disease-modifying treatment, as guidelines recommend [1]. More than 30% of patients did not have prescriptions for renin angiotensin system inhibitors or beta-blockers. These data suggest that although HF patients require a close follow-up, treatment is not adequately optimized. Of note, visits to the general practitioner were 26.3 times more frequent than to the specialist. In fact, it has been observed a marked increase of HF burden in primary care [31]. As a result, a better coordination between healthcare levels is necessary to improve the management of this population [32]. In this context, a higher use of telemonitoring technology and cardiology electronic consultations would be desirable [33, 34]. This is even more important during the vulnerable period after the acute event, either hospitalization, visit to the emergency department or the outpatient clinic/day hospital [35]. This period represents a real window of opportunity to improve the management of HF patients.

Our study showed that overall and HF-related cost were high (3193€ and 2519€, respectively), hospitalizations, particularly HF hospitalization being the main driver (approximately 75% of HF-related costs). Although with some differences in the numbers, previous studies have also shown that HF hospitalizations are the largest contributor to HF burden [17, 36, 37]. This is very important, as in recent years there has been an increase in HF hospitalizations [38, 39]. As a result, a greater use of disease-modifying therapies is warranted to reduce HCRU and HF-related costs [17]. Unfortunately, our study showed that these drugs are still underused in clinical practice and that there is still much room for improvement. However, considering the date our data were taking (2016), it is likely that current numbers will be higher [17].

Although HF-related costs were high in the whole HF cohort, our study showed that costs were higher among patients with HFrEF when compared to those with HFmrEF and HFpEF. Previous studies have also shown that costs are higher in HFrEF than in HFpEF [40, 41]. Although some authors have suggested that this could be related with a higher risk of rehospitalizations, and a greater use of more invasive diagnostic procedures, more devices, such as implantable cardioverter defibrillator or resynchronization therapy, or even advanced support devices in patients with HFrEF compared to those with HFpEF [42, 43], others have observed that during the long-term follow-up these differences may reduce, particularly in those patients with HFpEF, presenting with more comorbidities [23]. In any case, the costs of HF hospitalization are substantial in patients with HFpEF [44]. Interestingly, the clinical profile, therapeutic approach, HCRU and costs were similar in the whole HFpEF spectrum, regardless of EF, suggesting that this is a homogeneous population.

Polymedication was common in HF patients. This may lead to a lower medication adherence and a higher risk of drug-drug interactions [45]. As a result, those drugs that have demonstrated to modify the clinical course of HF should be considered. Unless contraindicated, guidelines recommend for patients with HFrEF the use of renin
angiotensin system inhibitors (preferably sacubitril-valsartan), beta blockers, aldosterone antagonists and SGLT2i is mandatory [1]. In addition, different studies have shown that these drugs are also beneficial from a cost-effective point of view [46–48]. With regard to HFrEF, two recent clinical trials, the EMPEROR-Preserved and the DELIVER trials have shown that empagliflozin and dapagliflozin reduce the risk of the primary outcome among this population, respectively, particularly through a reduction of HF-related hospitalizations [14, 15] and this may lead to a marked reduction of HF burden, including HCRU and HF-related costs.

Our study also showed that HCRU and HF-related costs in HFmrEF patients were high, but in-between HFrEF and HFrEF. It has been reported that patients with HFmrEF have intermediate characteristics between HFrEF and HFrEF patients [21, 28, 30]. However, it is uncertain the best approach in these patients, and more information is warranted. In this setting, clinical trials, such as the DELIVER, that has included adults with symptomatic HF and EF > 40% and elevated natriuretic peptides, will provide important information about the best management in this population [49].

Finally, indirect costs, mainly related with medical absenteeism, accounted for around 7% of total HF-related costs. Although due to the age of this patients, many of them would already be retired, as HF represents a substantial burden on the economy, productivity losses (indirect costs) should also be considered in the comprehensive management of patients with HF [49]. Remarkably, although this was not determined in our study, costs also should be analyzed from a social point of view, including the hours of dedication of the main caregiver or the professional who replaces him/her [50]. As a result, reducing the risk of HF (re-)hospitalizations, improving quality of life, as well as promoting an active working life should be considered as targets in the therapeutic approach of this population [1, 51].

Our study has some limitations. As this was an observational cohort study, using secondary data from electronic health records, only the information already collected in the electronic clinical history of patients could be recorded and, consequently some conditions may be underdiagnosed. In addition, to our knowledge, this is one of the first studies with a high number of patients assessing the HCRU and HF-related costs, with particular focus on EF subgroups in a nationally representative HF population.

In conclusion, HF is associated with high HCRU and direct and indirect healthcare costs across the whole EF spectrum. HF hospitalizations are responsible for nearly three quarters of HF-related costs, and HF medication represent less than 10% of total HF costs. Therefore, an optimization of HF therapy through a higher use of disease-modifying drugs could reduce disease and economic HF burdens. Although HF-related costs were higher among HFrEF, patients with HFmrEF and HFrEF patients represent a substantial burden, indicating that the optimization of treatment should be performed in the entire spectrum of HF, regardless of EF.

Declarations

Ethical approval and consent to participation: All methods were carried out in accordance with relevant guidelines and regulations. This study was approved by the Investigation Ethics Committee of Consorci Sanitari from Terrassa on 16th December 2019. This was a secondary data study and data were fully anonymized and dissociated from patients. Therefore, there was no need for providing informed consent in Spain.

Consent to publication (Only if applicable): not applicable.
Availability of data and material: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Competing interest: none.

Funding: This study was fully funded by AstraZeneca. The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author contribution: CE, BP, LV, MG, MD, HC, NJ, JC, IH, PH and JFD have contributed to the study design, result review and manuscript preparation and have approved the submitted version.

Acknowledgements: none.

References

1. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726.
2. Tsao CW, Aday AW, Almarzoq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-e639.
3. Escobar C, Varela L, Palacios B, et al. Clinical characteristics, management, and one-year risk of complications among patients with heart failure with and without type 2 diabetes in Spain. Rev Clin Esp (Barc). 2022;222(4):195–204.
4. Sicras-Mainar A, Sicras-Navarro A, Palacios B, Varela L, Delgado JF. Epidemiology and treatment of heart failure in Spain: the HF-PATHWAYS study. Rev Esp Cardiol (Engl Ed). 2022;75(1):31–38.
5. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–252.
6. Gerber Y, Weston SA, Redeld MM, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med. 2015;175(6):996–1004.
7. Shafie AA, Tan YP, Ng CH. Systematic review of economic burden of heart failure. Heart Fail Rev. 2018;23(1):131–145.
8. Butler J, Yang M, Manzi MA, et al. Clinical course of patients with worsening heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019;73(8):935–944.
9. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.
10. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.
11. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008.
12. Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413–1424.
13. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 2021;384(2):117–128.
14. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451–1461.

15. DELIVER. https://www.astrazeneca.com/media-centre/press-releases/2022/farxiga-hfpef-phase-iii-trial-met-primary-endpoint.html

16. Bundgaard JS, Mogensen UM, Christensen S, et al. Healthcare cost variation in patients with heart failure: a nationwide study. Public Health. 2022;207:88–93.

17. Escobar C, Varela L, Palacios B, et al. Costs and healthcare utilisation of patients with heart failure in Spain. BMC Health Serv Res. 2020(1);20:964.

18. Cowie MR, Anker SD, Cleland JG, et al. Improving care for patients with acute heart failure: before, during and after hospitalization. ESC Heart Failure. 2014;1(2):110–145.

19. Hamada T, Kubo T, Kawai K, et al. Clinical characteristics and frailty status in heart failure with preserved vs. reduced ejection fraction. ESC Heart Fail. 2022;9(3):1853–1863.

20. Rywik TM, Doryńska A, Wiśniewska A, et al. Epidemiology and clinical characteristics of hospitalized heart failure patients with a reduced, mildly reduced and preserved ejection fraction. Pol Arch Intern Med. 2022;132(5):16227.

21. de Boer AR, Vaartjes I, Gohar A, et al. Heart failure with preserved, mid-range, and reduced ejection fraction across health care settings: an observational study. ESC Heart Fail. 2022;9(1):363–372.

22. Olchanski N, Vest AR, Cohen JT, Neumann PJ, DeNofrio D. Cost comparison across heart failure patients with reduced and preserved ejection fractions: Analyses of inpatient decompensated heart failure admissions. Int J Cardiol. 2018;261:103–108.

23. Murphy TM, Waterhouse DF, James S, et al. A comparison of HFrEF vs HFpEF’s clinical workload and cost in the first year following hospitalization and enrollment in a disease management program. Int J Cardiol. 2017;232:330–335.

24. Nichols GA, Reynolds K, Kimes TM, Rosales AG, Chan WW. Comparison of Risk of Re-hospitalization, All-Cause Mortality, and Medical Care Resource Utilization in Patients With Heart Failure and Preserved Versus Reduced Ejection Fraction. Am J Cardiol. 2015;116(7):1088–1092.

25. Kaichi R, Marume K, Nakai M, et al. Relationship Between Heart Failure Hospitalization Costs and Left Ventricular Ejection Fraction in an Advanced Aging Society. Circ Rep. 2021;4(1):48–58.

26. KDIGO. Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011). 2013;3(1):19–62.

27. The Anatomical Therapeutic Chemical Classification System with Defined Daily Doses (ATC/DDD): World Health Organization. Available at: https://www.who.int/classifications/atcddd/en/. Last Accessed: July 2022.

28. Farré N, Lupon J, Roig E, et al. Clinical characteristics, one-year change in ejection fraction and long-term outcomes in patients with heart failure with mid-range ejection fraction: a multicentre prospective observational study in Catalonia (Spain). BMJ open. 2017;7(12):e018719.

29. Tan C, Dinh D, Brennan A, et al. Characteristics and Clinical Outcomes in Patients With Heart Failure With Preserved Ejection Fraction Compared to Heart Failure With Reduced Ejection Fraction: Insights From the VCOR Heart Failure Snapshot. Heart Lung Circ. 2022;31(5):623–628.

30. Savarese G, Stolfo D, Sinagra G, Lund LH. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol. 2022;19(2):100–116.
31. Gonzalez-Loyola FE, Muñoz MA, Navas E, Real J, Vinyoles E, Verdú-Rotellar JM. Burden of heart failure in primary healthcare. Aten Primaria. 2022;54(8):102413.

32. Comín-Colet J, Enjuanes C, Lupón J, Cainzos-Achirica M, Badosa N, Verdú JM. Transitions of Care Between Acute and Chronic Heart Failure: Critical Steps in the Design of a Multidisciplinary Care Model for the Prevention of Rehospitalization. Rev Esp Cardiol (Engl Ed). 2016;69(10):951–961.

33. Bauer BS, Nguyen-Phan AL, Ong MK, Ziaei B, Nguyen KL. Cardiology electronic consultations: Efficient and safe, but consultant satisfaction is equivocal. J Telemed Telecare. 2020;26(6):341–348.

34. Jiménez-Marrero S, Yun S, Cainzos-Achirica M, et al. Impact of telemedicine on the clinical outcomes and healthcare costs of patients with chronic heart failure and mid-range or preserved ejection fraction managed in a multidisciplinary chronic heart failure programme: A sub-analysis of the iCOR randomized trial. J Telemed Telecare. 2020;26(1–2):64–72.

35. Rosano GMC, Vitale C, Adamo M, Metra M. Roadmap for the management of heart failure patients during the vulnerable phase after heart failure hospitalizations: how to implement excellence in clinical practice. J Cardiovasc Med (Hagerstown). 2022;23(3):149–156.

36. Osenenko KM, Kuti E, Deighton AM, Pimple P, Szabo SM. Burden of hospitalization for heart failure in the United States: a systematic literature review. J Manag Care Spec Pharm. 2022;28(2):157–167.

37. Urbich M, Globe G, Pantri K, et al. A Systematic Review of Medical Costs Associated with Heart Failure in the USA (2014–2020). Pharmacoeconomics. 2020;38(11):1219–1236.

38. Minhas AMK, Ijaz SH, Jamal S, et al. Trends in Characteristics and Outcomes in Primary Heart Failure Hospitalizations Among Older Population in the United States, 2004 to 2018. Circ Heart Fail. 2022;15(5):e008943.

39. Jain V, Minhas AMK, Khan SU, et al. Trends in HF Hospitalizations Among Young Adults in the United States From 2004 to 2018. JACC Heart Fail. 2022;10(5):350–362.

40. Olchanski N, Vest AR, Cohen JT, DeNofrio D. Comparing inpatient costs of heart failure admissions for patients with reduced and preserved ejection fraction with or without type 2 diabetes. Cardiovasc Endocrinol Metab. 2020;9(1):17–23.

41. Olchanski N, Vest AR, Cohen JT, DeNofrio D. Two-year outcomes and cost for heart failure patients following discharge from the hospital after an acute heart failure admission. Int J Cardiol. 2020;307:109–113.

42. Afzal A, van Zyl J, Nisar T, et al. Trends in Hospital Admissions for Systolic and Diastolic Heart Failure in the United States Between 2004 and 2017. Am J Cardiol. 2022;171:99–104.

43. Álvarez-García J, Salamanca-Bautista P, Ferrero-Gregori A, et al. Prognostic Impact of Physician Specialty on the Prognosis of Outpatients With Heart Failure: Propensity Matched Analysis of the REDINSCOR and RICA Registries. Rev Esp Cardiol (Engl Ed). 2017;70(5):347–354.

44. Clark H, Rana R, Gow J, Pearson M, van der Touw T, Smart N. Hospitalisation costs associated with heart failure with preserved ejection fraction (HFpEF): a systematic review. Heart Fail Rev. 2022;27(2):559–572.

45. Sukumar S, Orkaby AR, Schwartz JB, et al. Polypharmacy in Older Heart Failure Patients: a Multidisciplinary Approach. Curr Heart Fail Rep. 2022 Jun 20. doi: 10.1007/s11897-022-00559-w. Epub ahead of print.

46. Proudfoot C, Gautam R, Cristina J, Agrawal R, Thakur L, Tolley K. Model parameters influencing the cost-effectiveness of sacubitril/valsartan in heart failure: evidence from a systematic literature review. Eur J Health Econ. 2022 Jul 5. doi: 10.1007/s10198-022-01485-3. Epub ahead of print.
47. Lin X, Lin M, Liu M, Huang W, Nie X, Chen Z, Zheng B. Cost-effectiveness of empagliflozin as a treatment for heart failure with reduced ejection fraction: an analysis from the Chinese healthcare perspective. J Thorac Dis. 2022;14(5):1588–1597.

48. Wu M, Qin S, Wang L, et al. Economic Evaluation of Dapagliflozin in the Treatment of Patients With Heart Failure: A Systematic Review. Front Pharmacol. 2022;13:860109.

49. Solomon SD, Vaduganathan M, Claggett BL, et al. Baseline Characteristics of Patients With HF With Mildly Reduced and Preserved Ejection Fraction: DELIVER Trial. JACC Heart Fail. 2022;10(3):184–197.

50. Delgado JF, Oliva J, Llano M, et al. Health care and nonhealth care costs in the treatment of patients with symptomatic chronic heart failure in Spain. Rev Esp Cardiol (Engl Ed). 2014;67(8):643–650.

51. Łyszczarz B. Indirect costs and public finance consequences of heart failure in Poland, 2012–2015. BMC Public Health. 2018;18(1):1130.

Tables

Table 2, 4 and 5 are available in the Supplementary Files section.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarytable.docx
- Table245.docx