The optimized A constants and the corresponding mean error for the original formulas in the training dataset. The A constants were optimized so that the absolute value of the mean error was minimized. The mean errors were calculated after excluding the outliers (see main text). The mean errors in the training set were rounded to three significant figures.

Dataset	Variables	Holladay1	SRK/T	Hoffer Q	Haigis
Training dataset	ELP_F	4.00 ± 0.41	5.82 ± 0.50	5.86 ± 0.38	5.28 ± 0.36
	ELP_{BC}	4.08 ± 0.92	5.85 ± 0.83	5.97 ± 1.00	5.32 ± 0.76
	ELP_{ML}			4.67 ± 0.27	
Testing dataset	ELP_F	4.00 ± 0.39	5.83 ± 0.47	5.87 ± 0.38	5.28 ± 0.36
	ELP_{BC}	4.06 ± 0.72	5.84 ± 0.65	5.95 ± 0.80	5.31 ± 0.61
	ELP_{ML}			4.68 ± 0.26	

Table S2 The mean ± standard deviation (SD) for ELP_F, ELP_{ML}, and ELP_{BC} in the training and testing dataset when $\text{ELP}_F' = \text{ELP}_F$. The ELP_{BC} and ELP_F were calculated using the corresponding formula with the optimized A-constants therefore their values vary with different formulas. The values of ELP_{ML} only depend on the values of the preoperative biometry. The outliers were not removed when the above summary statistics were calculated. All values were rounded to two decimal places.

Methods	Holladay1	SRK/T	Hoffer Q	Haigis
Formula LR	$c_1 = 1.27$	$c_1 = 0.76$	$c_1 = 1.44$	$c_1 = 1.00$
	$c_2 = -1.01$	$c_1 = -1.67$	$c_2 = -26.65$	$c_2 = 5.88$
ML LR	$c_2 = 1.65$	$c_1 = 1.31$	$c_2 = 1.62$	$c_2 = 7.32$
	$c_3 = -3.80$	$c_1 = -0.33$	$c_3 = -1.70$	$c_3 = -0.53$
Formula & ML LR	$c_1 = 0.98$	$c_1 = 0.47$	$c_1 = 1.09$	$c_1 = 0.58$
	$c_2 = 0.61$	$c_2 = 0.79$	$c_2 = 0.65$	$c_2 = 0.68$
	$c_3 = 2.77$	$c_3 = -2.55$	$c_3 = -6.90$	$c_3 = -4.44$

Table S3 The coefficients (c_1 and c_2) and the intercept c_3 for the linear regression model established based on the training dataset. All values were rounded to two decimal places.

Dataset	Method	Holladay1	SRK/T	Hoffer Q	Haigis
Training dataset	Formula LR	4.06 ± 0.52	5.80 ± 0.38	5.90 ± 0.55	5.28 ± 0.36
	ML LR	3.92 ± 0.44	5.78 ± 0.35	5.86 ± 0.43	5.26 ± 0.33
	Formula & ML LR	3.98 ± 0.53	5.80 ± 0.40	5.89 ± 0.55	5.27 ± 0.37
Testing dataset	Formula LR	4.04 ± 0.46	5.80 ± 0.31	5.91 ± 0.53	5.28 ± 0.34
	ML LR	3.90 ± 0.39	5.79 ± 0.32	5.87 ± 0.39	5.27 ± 0.30
	Formula & ML LR	3.97 ± 0.46	5.79 ± 0.34	5.89 ± 0.49	5.28 ± 0.34

Table S4 The mean ± standard deviation (SD) for ELP_F' in the training and testing dataset. The ELP_{BC} and ELP_F were calculated using the corresponding formula with the optimized A-constants therefore their values vary with different formulas. The values of ELP_{ML} only depend on the values of the preoperative biometry. The outliers were not removed when the above summary statistics were calculated.

Methods	Holladay1	SRK/T	Hoffer Q	Haigis
Original	-0.020 ± 0.513	-0.008 ± 0.528	-0.020 ± 0.529	-0.025 ± 0.496
Formula LR	0.008 ± 0.517	-0.003 ± 0.522	-0.017 ± 0.492	-0.018 ± 0.496
ML LR	0.057 ± 0.563	0.001 ± 0.525	0.007 ± 0.589	0.001 ± 0.523
Formula & ML LR	0.009 ± 0.500	-0.008 ± 0.490	-0.016 ± 0.475	-0.014 ± 0.484
Table S5 The mean error (ME) ± standard deviation (SD) of alternative linear models in the testing set. All values were rounded to three decimal places.

Methods	Holladay1	SRK/T	Hoffer Q	Haigis
Original	0.299	0.307	0.330	0.283
Formula LR	0.305	0.310	0.293	0.283
ML LR	0.351	0.308	0.366	0.304
Formula & ML LR	0.290	0.273	0.268	0.263

Table S6 The median absolute error (MedAE) of alternative linear models in the testing set. All values were rounded to three decimal places.

Statistic	Holladay1	SRK/T	Hoffer Q	Haigis
Friedman chi-square test statistic	37.29	39.13	117.42	37.25
p-value	4.00e-08	1.63e-08	2.78e-25	4.07e-08

Table S7 The Friedman test statistic and the p-values for comparing the testing set results of different methods. All Friedman statistics were rounded to two decimal places. All p-values were rounded to three significant figures.

Formula	Methods	ML LR	Formula LR	Formula & ML LR
Haigis	Formula LR	1.7E-01	/	/
	Formula & ML LR	1.8E-11	2.6E-03	/
	Original	1.7E-01	1.0E+00	2.7E-03
Hoffer Q	Formula LR	1.5E-10	/	/
	Formula & ML LR	1.7E-26	3.6E-05	/
	Original	4.1E-05	1.5E-10	5.1E-17
Holladay1	Formula LR	1.5E-04	/	/
	Formula & ML LR	4.4E-12	3.0E-04	/
	Original	1.4E-05	1.0E+00	9.9E-03
SRK/T	Formula LR	1.0E+00	/	/
	Formula & ML LR	1.7E-12	7.0E-06	/
	Original	1.0E+00	1.0E+00	1.1E-05

Table S8 The post hoc test results of four existing formulas for comparing the testing set performance of different methods. The insignificant p-values (p ≥ 0.05) were highlighted in bold.

Method	Formulas	Short AL (AL < 22mm); n=28	Medium AL (22mm ≤ AL ≤ 26mm); n=832	Long AL (AL > 26mm); n=100
Original	Haigis	0.321 ± 0.234	0.373 ± 0.332	0.383 ± 0.315
	Hoffer Q	0.524 ± 0.295	0.396 ± 0.335	0.480 ± 0.350
	Holladay1	0.397 ± 0.224	0.364 ± 0.322	0.541 ± 0.464
	SRK/T	0.438 ± 0.236	0.386 ± 0.337	0.452 ± 0.465
Formula & ML LR	Haigis	0.330 ± 0.285 (-2.8%)	0.355 ± 0.331 (5.5%)	0.394 ± 0.319 (-2.8%)
	Hoffer Q	0.336 ± 0.264 (35.5%)	0.344 ± 0.318 (13.1%)	0.420 ± 0.338 (12.5%)
	Holladay1	0.392 ± 0.257 (1.3%)	0.356 ± 0.320 (2.2%)	0.486 ± 0.445 (10.3%)
	SRK/T	0.375 ± 0.284 (14.3%)	0.351 ± 0.324 (9.0%)	0.438 ± 0.391 (3.2%)

Table S9 The mean absolute error (MAE) ± standard deviation in the testing set for patients with short, medium, and long axial length (AL). All MAE and SD were rounded to three decimal places. For “Formula & ML LR”, the percentage reduction in MAE compared to “Original” were shown. The percentage reduction was calculated as
Calculation of ELP_{BC}

As described in the main text, the postoperative refraction was predicted using a function of ELP_F and preoperative biometry: \(\text{predicted refraction} = f_1(ELP_F, \text{biometry}) \). Here we define ELP_{BC} as follows: when $ELP_F = ELP_{BC}$, \(f_1(ELP_{BC}, \text{biometry}) - \text{true refraction} = 0 \) holds for all cases. In other words, when the ELP estimation equals ELP_{BC}, the refraction prediction error equals zero for all cases. Based on the above definition, the value of ELP_{BC} can be found by solving for the x in the equation \(f_1(x, \text{biometry}) - \text{true refraction} = 0 \), where \(\text{biometry} \) and \(\text{true refraction} \) are known. For a given case, there were always no more than two roots for the above function because of the quadratic nature of the formulas. When there were two roots, the smaller root was taken as ELP_{BC} because of two main reasons: (1) the greater root was usually >50, which was not within a physiologically meaningful range for ELP; (2) practically when the larger roots were used as ELP_{BC}, the R^2 in the training set was significantly lower than that obtained with the smaller root (data are not shown). The function \(f_1(x, \text{biometry}) - \text{true refraction} = 0 \) was solved programmatically using \texttt{scipy.optimize.fsolve} (scipy 1.2.1) in Python 3.7.3.

A-Constant Optimization

When ELP_F was not replaced with a modified value ELP_F' (Figure S1, upper part), the A-constants of the formulas were optimized in the standard way: first, compute the mean refraction prediction error when the A-constant takes different values, then, the A-constant that gives the smallest absolute mean error is the most optimal A-constant.

When $ELP_F = ELP_F'$ (Figure S1, lower part), the A-constants were optimized based on the same concept, the value of ELP_F' changes with the values of the A-constant. The pseudo-code for the A-constant optimization process is shown below. The value of ELP_{ML} does not change with the A-constant. The value of ELP_F and ELP_{BC} changes with the A-constants.

Optimizing A constant for the original formulas

A Constants	Mean Errors
$a = 1.42$	ME = 0.292
$a = 1.40$	ME = 0.091
$a = 1.35$	ME = 0.33

Formulas with their own ELP:

- $a = 1.42$
- $a = 1.40$
- $a = 1.35$

Closest to zero

So we chose $a = 1.40$

Optimizing A constant for formulas with customized ELPs

A Constants	Mean Errors
$a = 1.42$	ME = 0.292
$a = 1.40$	ME = 0.091
$a = 1.35$	ME = 0.33

Formulas with a customized ELP value:

- $ELP_F = c_1 \cdot ELP_F + c_2 \cdot ELP_{ML} + c_3$

Step 1

Compute c_1, c_2, c_3 based on the value of the A constant

Step 2

Compute ELP_F

Closest to zero

So we chose $a = 1.40$
Figure S1 The pipeline of the A-constant optimization procedure. The numbers in the figure are not real data.

Algorithm 1: A-constant optimization when $ELP_F = ELP_F'$

1. $ELP_{ML} \leftarrow$ compute ELP_{ML} using the machine learning model
2. FOR a IN A-constant search space
3. $ELP_F \leftarrow$ compute ELP_F based on the formula with a as the A constant
4. $ELP_{BC} \leftarrow$ compute ELP_{BC} based on the formula with a as the A constant
5. coefficients c_1, c_2, and $c_3 \leftarrow$ model ELP_{BC} as a linear function of ELP_{ML} and/or ELP_F.
6. $ELP_F' \leftarrow c_1 \cdot ELP_F + c_2 \cdot ELP_{ML} + c_3$
7. predicted refraction \leftarrow compute the predicted refraction based on a and ELP_F'
8. mean error \leftarrow compute the mean error based on the predicted refraction and the true refraction
9. END FOR
10. The most optimal A-constant \leftarrow the A-constant that gives the smallest absolute mean error