The entanglement cost under operations preserving the positivity of partial transpose

K. Audenaert, M.B. Plenio, and J. Eisert

QOLS, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, SW7 2BW, UK

(Dated: October 25, 2018)

We study the entanglement cost under quantum operations preserving the positivity of the partial transpose (PPT-operations). We demonstrate that this cost is directly related to the logarithmic negativity, thereby providing the operational interpretation for this easily computable entanglement measure. As examples we discuss general Werner states and arbitrary bi-partite Gaussian states. Equipped with this result we then prove that for the anti-symmetric Werner state PPT-cost and PPT-entanglement of distillation coincide giving the first example of a truly mixed state for which entanglement manipulation is asymptotically reversible.

PACS numbers: 03.67.Hk

The study of quantum entanglement is closely intertwined with the study of those quantum operations that can be locally implemented in quantum systems consisting of more than one subsystem. If one also allows for the classical transmission of outcomes of local measurements, then one arrives at the set of local quantum operations with classical communication (LQCC). This set of quantum operations reflects on the one hand the typical physical restrictions imposed by the setup of many basic applications of quantum information theory [1]. On the other hand, the very notion of entanglement is intimately related to this set of operations. For example, one calls a quantum state entangled if it can not be prepared using LQCC, in contrast to so-called separable states.

The study of entanglement manipulation is concerned with the transformation from one entangled state to another by means of LQCC. Not very surprisingly, one finds that for any finite number of identically prepared quantum systems such manipulation of entanglement under LQCC is generally irreversible, both for pure and mixed states. In fact, the pure state-case can be most easily assessed, as powerful necessary and sufficient criteria for the interconvertibility of entangled states have been found [6]. In the asymptotic limit of infinitely many identical copies of a pure state, in contrast, pure bi-partite entanglement can be interconverted reversibly [3]. This statement can also be cast in the language of entanglement measures. These are functions of a quantum state that cannot increase under a given set of operations (e.g. LQCC). Entanglement measures are useful mathematical and conceptual tools and several such measures have been suggested, most notably the entanglement of formation [8], the distillable entanglement [4, 5] and the relative entropy of entanglement [6, 7, 8]. The distillable entanglement is, essentially, defined as the asymptotic number of pure maximally entangled states that can be extracted via LQCC from a set of identically prepared quantum systems. Analogously, the entanglement cost is defined as the asymptotic number of pure maximally entangled state that are required to create a given, possibly mixed state. The asymptotic reversibility of pure state entanglement is then equivalent to the statement that the entanglement cost and the entanglement of distillation are in fact equal for pure states. Then a single number, the von Neumann entropy of a subsystem, uniquely quantifies the degree of entanglement. For mixed states, however, this asymptotic reversibility under LQCC operations is lost again. Examples have been found for which the entanglement cost and the entanglement of distillation are provably different [8, 10].

The study of general asymptotic entanglement manipulation – while formally being at the roots of a theory of entanglement – is complicated by the fact that the characterization of LQCC themselves is far from being well-understood. However, there is a closely related set of operations that can be much more easily characterized, namely that of PPT-preserving operations (PPT-operations in brief). These operations are defined as those that map any state which has positive partial transpose into another state with positive partial transpose. PPT-operations are more powerful than LQCC operations as they allow, for example, the creation of any bound entangled state from a product state and ensure the distillability of any NPT-state, i.e. any state that cannot be created by PPT-operations [1]. As a consequence, the set of states decomposes into two subsets, the PPT-states (non-distillable) and the states that are distillable under PPT-operations. This provides a significant simplification of the entanglement structure under PPT-operations as compared to that under LQCC operations where at least three classes of states, disentangled, bound entangled and distillable are known. Indeed, the results presented in the following point towards the possibility that the structure of entanglement under PPT-operations is even simpler, namely that PPT-entanglement cost and PPT-distillable entanglement may be equal or, in other words, that entanglement may be asymptotically reversible under PPT-operations.

We start by summarizing the main results of this paper. Firstly, we prove that the PPT-entanglement cost for the exact preparation of a large class of quantum states under PPT-operations is given by the logarithmic negativity [13], thus providing an operational meaning to the logarithmic negativity. Secondly, we employ this result to show that the PPT-entanglement cost of the anti-symmetric Werner state in any dimension is given by the logarithmic negativity thereby demonstrating that the PPT-cost is equal to the PPT-entanglement of distillation for this state. This is the first example of a truly mixed state for which the entanglement manipulations have been proven to be asymptotically reversible. We end this work with a discussion of the implications that
this result has, including the possibility of the reversibility of PPT-entanglement manipulations for all states.

Before we state and formally prove our results we introduce a few basic concepts, including the definitions of the PPT-entanglement of distillation and the PPT-entanglement cost. We introduce the notation (following Rains [12]) where the PPT-distillable entanglement cost. The linear map \(\Phi(K) \) denotes a trace preserving completely positive map and \(\Phi(K) \) is the density operator corresponding to the maximally entangled state vector in \(K \) dimensions, i.e. \(\Phi(K) = |\psi^+\rangle\langle\psi^+| \) with \(|\psi^+\rangle = \sum_{i=1}^K |i_i\rangle/\sqrt{K} \). The PPT-distillable entanglement is defined as

\[
D_{\text{ppt}}(\rho) = \sup\{ r : \lim_{n \to \infty} \sup_{\Psi} \text{tr}[\rho^{\otimes n}\Phi(2^{rn})] = 1 \}.
\]

For the PPT-entanglement cost of a quantum state \(\rho \) we study two definitions that correspond to different requirements in the preparation of the state \(\rho \). The standard definition of the PPT-entanglement cost \(C_{\text{ppt}} \) requires that the quality of the approximation of the state \(\rho^{\otimes n} \) by \(\text{tr}(\Phi(K^n)) \) becomes progressively better and converges in the asymptotic limit under the trace norm, or, formally

\[
C_{\text{ppt}}(\rho) = \inf\{ r : \lim_{n \to \infty} \text{inf}_{\Psi} \text{tr}[\rho^{\otimes n} - \Psi(2^{rn})] = 0 \}.
\]

However, for a more restrictive definition one requires the exact preparation of any finite number of copies of the state and not just the asymptotically exact preparation. This quantity, \(E_{\text{ppt}} \), which will generally be larger than \(C_{\text{ppt}} \), reads formally as

\[
E_{\text{ppt}}(\rho) = \lim_{n \to \infty} \inf\{ r_n : \text{inf}_{\Psi} \text{tr}[\rho^{\otimes n} - \Psi(2^{rn})] = 0 \}.
\]

This quantity will later be related to the logarithmic negativity, which was defined in [13] as

\[
LN(\rho) = \log_2 \text{tr}[\rho^\Gamma],
\]

where \(\rho^\Gamma \) stands for the partial transpose of the density operator \(\rho \). While the negativity \(\text{tr}[\rho^\Gamma] \) is an entanglement monotone (including convexity) [13 [12], the logarithmic negativity is a monotone only under non-selective PPT-preserving operations. Apart from the partial transposition of a density operator another important quantity for the following will be the so-called bi-negativity \(|\rho^\Gamma|_2 \) [8]. While its physical interpretation is not yet properly understood, it plays a significant role in the following theorems and has proven to be a useful concept in investigations of entanglement manipulations [8]. After these basic definitions we are now in a position to present and prove the first theorem concerning the PPT-entanglement cost.

Theorem: The PPT-entanglement cost \(E_{\text{ppt}}(\rho) \) for the exact preparation of the state \(\rho \) satisfies

\[
\log_2 \text{tr}[\rho^\Gamma] \leq E_{\text{ppt}}(\rho) \leq \log_2 Z(\rho)
\]

where

\[
Z(\rho) = \text{tr}[\rho^\Gamma] + \dim(\rho) \max(0, -\lambda_{\text{min}}(|\rho^\Gamma|)).
\]

Proof: The lower bound follows directly from the monotonicity of the logarithmic negativity under non-selective trace-preserving completely positive maps. We wish to find a PPT-map \(\Psi \) that maps the maximally entangled state \(\Phi(K_n) \) of \(K_n \) dimensions to the target state \(\rho^{\otimes n} \) for any value of \(n \), i.e. \(\Psi(\Phi(K_n)) = \rho^{\otimes n} \) for all \(n \). Then we have, for any \(n \),

\[
\log_2 \text{tr}[|\rho^\Gamma|^{\otimes n}] = \log_2 \text{tr}[(\Psi(\Phi(K_n)))^\Gamma] \leq \log_2 \text{tr}[\Phi(K_n)^\Gamma] = \log_2 K_n
\]

so that

\[
\log_2 \text{tr}[|\rho^\Gamma|] \leq \lim_{n \to \infty} \frac{1}{n} \log_2 K_n = E_{\text{ppt}}(\rho).
\]

Now we proceed to prove the upper bound on the entanglement cost. The linear map \(\Psi \) realising the transformation \(\Phi(K_n) \mapsto \rho^{\otimes n} \) must be completely positive and trace preserving (CPTP), and PPT (which means that \(\Gamma \circ \Psi \circ \Gamma \) is positive as well). By proposing a map that satisfies these criteria we directly find an upper bound to the PPT entanglement cost. Consider thereto maps of the form

\[
\Psi(A) = aF + bG,
\]

where \(a + b = 1 \) and \(a, b \geq 0 \). The requirements on \(\Psi \) are that it must be CPTP and PPT and must convert \(\Phi(K_n) \) into the state \(\rho^{\otimes n} \). Thus \(F = \rho^{\otimes n} \) and \(G \) must be a state. From the PPTness requirement, \(\Gamma \circ \Psi \circ \Gamma \geq 0 \), it follows that

\[
\forall A \geq 0 : \text{tr}(A\Phi(K_n)^\Gamma)F^\Gamma + \text{tr}(A(\mathbb{1} - \Phi(K_n)^\Gamma))G^\Gamma \geq 0,
\]

where have made use of the self-duality of the partial transpose, \(\text{tr}(X^TY) = \text{tr}(XY^T) \). Expressing the partial transpose of \(\Phi(K_n) \) in terms of the projectors on the symmetric and antisymmetric subspaces \(S \) and \(A \), respectively,

\[
\Phi(K_n)^\Gamma = (S - A)/K_n, \quad 1 - \Phi(K_n)^\Gamma = (1 + 1/K_n)A + (1 - 1/K_n)S,
\]

the PPTness condition becomes

\[
\forall A \geq 0 : \text{tr}(AA)(-F^\Gamma + (K_n + 1)G^\Gamma) + \text{tr}(AS)(F^\Gamma + (K_n - 1)G^\Gamma) \geq 0.
\]

Since \(A \) and \(S \) are mutually orthogonal projectors and sum to the identity, this condition simplifies to the operator inequality

\[
-(K_n - 1)G^\Gamma \leq F^\Gamma \leq (K_n + 1)G^\Gamma.
\]

As a direct consequence, it follows that \(G \) must be a PPT state, \(G^\Gamma \geq 0 \), which was of course to be expected.
For PPT states, the PPT entanglement cost is obviously zero, so that the optimal \(K_n = 1 \). Therefore, we restrict ourselves in the following to states \(F = \rho^{\otimes n} \) that are not PPT; hence \(E_{\text{ppt}} > 0 \) and \(K_n > 1 \). Obviously, \((1/n) \log K_n \) is a non-increasing function of \(n \), tending to \(E_{\text{ppt}} > 0 \) in the limit. Hence, for every \(n \), \(K_n \geq \exp(nE_{\text{ppt}}) > 1 \). This implies that, for every non-PPT state \(\rho \), there is a number \(N \) such that \(\forall n > N : K_n > 1 \). For sufficiently large \(n \), therefore, the PPTness condition on the map \(\Psi \) can be approximated to arbitrary precision by the condition \(-K_n G^T \leq F^T \leq K_n G^T \).

We now propose to use the following state \(G \), which incorporates a correction term to ensure positivity of the covariance matrix of \(\rho \):

\[
G = \frac{(|\rho^T|^\Gamma + \alpha \mathbb{1})^{\otimes n}}{Z^n},
\]

\[
\alpha = \max(0, -\lambda_{\min}(|\rho^T|^\Gamma)),
\]

\[
Z = \text{tr}(\rho^T) + \alpha \dim(\rho).
\]

It is now easily seen that the PPTness condition for the map \(\Psi \) will be satisfied for the choice \(K_n = Z^n \) (if \(\alpha \) is larger than zero, a somewhat smaller value of \(K_n \) is possible but we will not consider this possibility). Hence, we get the upper bound for the PPT entanglement cost:

\[
E_{\text{ppt}}(\rho) \leq \log_2 Z(\rho).
\]

In general, the lower and the upper bound in the theorem will not coincide unless the bi-negativity is positive, i.e. if \(|\rho^T|^\Gamma \geq 0 \). However, the vast majority of quantum states have this property, as numerical investigations indicate. Important examples for which the bi-negativity is positive include the set of Werner states in \(d \times d \)-dimensional systems, and all Gaussian bi-partite states in infinite-dimensional systems with canonical degrees of freedom. This will be proven in the subsequent two Lemmas.

Lemma 1: Let \(\rho \) be a Gaussian state defined on a bi-partite system with a finite number of canonical degrees of freedom. Then the bi-negativity satisfies \(|\rho^T|^\Gamma \geq 0 \).

Proof: Let \(\Gamma \) be the covariance matrix of \(\rho \) and \(P := \text{diag}(1, \ldots, 1, -1, \ldots, -1) \) be the matrix corresponding to mirror reflection in one part of the bi-partite system, i.e., partial transposition on the level of states. Then, the normal mode decomposition (the Williamson normal form) of the covariance matrix of \(\rho^T \) can be written as

\[
S\Gamma P S^T =: \text{diag}(x_1, x_1, \ldots, x_n, x_n),
\]

with \(x_i \geq 0 \) for all \(i = 1, \ldots, n \), where \(S \in Sp(2n, \mathbb{R}) \) is an appropriate symplectic matrix. Therefore, the problem of taking the absolute value has been reduced to an effective single-mode problem. Going to the Fock state basis it is then straightforward to see that the covariance matrix of \(|\rho^T|^\Gamma \) is given by

\[
S^{-1} (S\Gamma P S^T + P) (S^T)^{-1},
\]

where \(p := \text{diag}(p_1, p_1, \ldots, p_n, p_n) \) is a positive diagonal matrix with entries

\[
p_i = \begin{cases} 0, & \text{if } x_i \geq 1, \\ 1/x_i - x_i, & \text{if } x_i < 1. \end{cases}
\]

The state \(\rho \) has a positive bi-negativity, i.e., \(\rho_{bi} := (|\rho^T|^\Gamma)^T \geq 0 \), if the covariance matrix \(\Gamma_{bi} \) associated with \(\rho_{bi} \) satisfies the Heisenberg uncertainty principle \(\Gamma_{bi} + i\Sigma \geq 0 \) where \(\Sigma \) is the symplectic matrix. Hence, \(\rho_{bi} \) is positive iff

\[
PS^{-1} (S\Gamma P S^T + p) (S^T)^{-1} P + i\Sigma \geq 0.
\]

But as for the covariance matrix \(\Gamma \) of the original state \(\rho \) we have \(\Gamma + i\Sigma \geq 0 \), and because \(PS^{-1} p (S^T)^{-1} P \geq 0 \) this is indeed the case.

Lemma 2: For any Werner state \(\rho \) in a \(d \times d \)-dimensional system the bi-negativity satisfies \(|\rho^T|^\Gamma \geq 0 \).

Proof: Any Werner state for a bi-partite state of two \(d \)-dimensional subsystems can be written as

\[
\rho = \frac{p(\mathbb{1} - F)}{d(d-1)} + \frac{(1-p)(\mathbb{1} + F)}{d(d+1)}
\]

\[
= q\mathbb{1} + r|\Phi(d)\rangle\langle\Phi(d)|^\Gamma,
\]

with

\[
q = \frac{p}{d(d-1)} + \frac{1-p}{d(d+1)}, \quad r = \frac{1-p}{d+1} - \frac{p}{d-1},
\]

and \(F \) being the flip operator. Then we find

\[
\rho^F = q(\mathbb{1} - |\Phi(d)\rangle\langle\Phi(d)|) + (q + r)|\Phi(d)\rangle\langle\Phi(d)|
\]

and

\[
|\rho^F|^\Gamma = q(\mathbb{1} - \frac{F}{d}) + \frac{|q + r|}{d} F.
\]

The eigenvalues of \(F \) are \(\pm 1 \) and therefore the eigenvalues of \(|\rho^F|^\Gamma \) are easily checked to be non-negative.

As a consequence, for Werner states, Gaussian states and for any other states for which \(|\rho^T|^\Gamma \geq 0 \), such as pure states, we have proven that the entanglement cost for the exact preparation of the quantum state \(\rho \) using PPT-operations is given by the logarithmic negativity. This provides the, previously unknown, operational interpretation of the logarithmic negativity for these states. Note that the cost \(E_{\text{ppt}} \) may generally coincide with the logarithmic negativity even for states whose bi-negativity is negative, but we were unable to prove or disprove this possibility. Furthermore, note also the surprising fact that the PPT-cost for exact preparation is a concave function on Werner states (see also Fig 1). This implies, rather counter-intuitively, that mixing, i.e. the loss of information, may increase the PPT-cost for exact preparation. We proceed by using the Theorem together with Lemma 2 to provide a result on the PPT-entanglement cost for the anti-symmetric Werner state.
Lemma 3: The PPT-entanglement cost C_{ppt} for the anti-
symmetric Werner state $\rho = \sigma_a$ is given by $LN(\rho)$ and
coincides with its PPT-distillable entanglement $D_{\text{ppt}}(\rho)$.

Proof: From Lemma 2 we know that the bi-negativity of
σ_a is positive. As a consequence from the Theorem we con-
clude that $E_{\text{ppt}}(\rho) = LN(\rho)$. This provides an upper bound
on the entanglement cost for asymptotically exact preparation
of the states, i.e., $LN(\rho) = E_{\text{ppt}}(\rho) \geq C_{\text{ppt}}(\rho)$. On the
other hand a lower bound is given by the PPT-distillable en-
tanglement of σ_a, which has been computed in [11] and which
equals the logarithmic negativity as well. Therefore we have
$LN(\rho) = E_{\text{ppt}}(\rho) \geq C_{\text{ppt}}(\rho) \geq D_{\text{ppt}}(\rho) = LN(\rho)$ and all
the quantities coincide.

This Lemma is remarkable, as it shows that asymptotic en-
tanglement transformations can be reversible even for truly
mixed states, as long as one considers the class of PPT-
operations. The result of Lemma 3 may still be a coinci-
dence as it refers to an extreme point of a set of states (here
the set of $U \otimes U$ symmetric states, i.e., the Werner states)
but further evidence from numerical studies suggest that PPT-
tanglement cost and PPT-distillable entanglement converge
towards each other on Werner states. This collection of evi-
dence makes it plausible to ask the question as to whether the
entanglement cost under PPT-operations coincides with the
PPT-entanglement of distillation or, in other words, whether
asymptotic entanglement transformations are reversible under
PPT-operations. If the answer to this question would be af-
firmative this would simplify the theory of quantum entangle-
ment considerably. This would furthermore indicate that
the theory of mixed state entanglement takes its most elegant form
in the framework of PPT-operations. This and the other results
in this work reveal that PPT-operations are a most useful con-
cept for the study of quantum entanglement, meriting further investigations into their properties.

This work was supported by EPSRC, the European Union
EQUIP project, the ESF Programme on 'Quantum Information
Theory and Quantum Computing' and by a Feodor-Lynen
grant of the Alexander-von-Humboldt Foundation. We thank
P. Horodecki, S. Virmani, K.G.H. Vollbrecht and R.F. Werner
for discussions.

\[M.B. \text{ Plenio and V. Vedral, Cont. Phys. } 39, \text{ 431 (1998); R.F.}
\text{ Werner, Quantum information – an introduction to basic theo-
rrealistic concepts and experiments, Springer Tracts in Modern
Physics (Springer, Heidelberg, 2001).} \]
\[H.-K. \text{ Lo and S. Popescu, Lanl e-print quant-ph/9707038; M.A.}
\text{ Nielsen, Phys. Rev. Lett. 83, 436 (1999); G. Vidal, Phys. Rev.
Lett. 83, 1046 (1999); D. Jonathan and M.B. Plenio, Phys. Rev.
Lett. 83, 1455 (1999); D. Jonathan and M.B. Plenio, Phys. Rev.
Lett. 83, 3566 (1999); L. Hardy, Phys. Rev. A 60, 1912 (1999).} \]
\[C.H. \text{ Bennett, H. Bernstein, S. Popescu, and B. Schumacher,
Phys. Rev. A 53, 2986 (1996).} \]
\[C.H. \text{ Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Woot-
ters, Phys. Rev. A 53, 3824 (1996).} \]
\[E. \text{ Rains, Phys. Rev. A 60, 173 (1999); ibid 60, 179 (1999).} \]
\[V. \text{ Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys.
Rev. Lett. 78, 2275 (1997); V. Vedral, and M.B. Plenio, Phys.
Rev. A 57, 1619 (1998); V. Vedral, M.B. Plenio, K.A. Jacobs,
and P.L. Knight, Phys. Rev. A 56, 4452 (1997); M.B. Plenio, S.
Virmani, and P. Papadopoulos, J. Phys. A 33, 1903 (2000); M.B.
Plenio and V. Vedral, J. Phys. A 34, 6997 (2001).} \]
\[K. \text{ Audenaert, J. Eisert, E. Jané, M.B. Plenio, S. Virmani, and B.
De Moor, Phys. Rev. Lett. 87, 217902 (2001).} \]
\[K. \text{ Audenaert, B. De Moor, K.G.H. Vollbrecht and R.F. Werner,
Phys. Rev A (2002).} \]
\[G. \text{ Vidal and J.I. Cirac, Phys. Rev. Lett. 86, 5803 (2002).} \]
\[M. \text{ Horodecki, A. Sen, and U. Sen, Lanl e-print quant-
ph/0207031.} \]
\[T. \text{ Eggeling, K.G.H. Vollbrecht, R.F. Werner and M.M. Wolf,
Phys. Rev. Lett. 87, 257902 (2001).} \]
\[E. \text{ Rains, IEEE T. Inform. Theory 47, 2921 (2001).} \]
\[G. \text{ Vidal and R.F. Werner, Phys. Rev. A 65, 032314 (2002).} \]
\[J. \text{ Eisert, PhD thesis, University of Potsdam (2001).} \]
\[The \text{ entries of the covariance matrix } \Gamma \text{ are given by } \Gamma_{jk} =\]
$2\text{tr}(\rho(O_j - \langle O_j \rangle_\rho)(O_k - \langle O_k \rangle_\rho)) - \Sigma_{jk}$, for $j, k = 1, ..., 2n$, $\text{where } (O_1, ..., O_{2n}) = (X_1, P_1, ..., X_n, P_n)$ is the vector
$\text{collecting the canonical coordinates of this system with } n \text{ degrees of freedom, and } \Sigma \text{ is the symplectic matrix incorporating}
\text{the canonical commutation relations. We follow the conventions in Refs. [16].} \]
\[J. \text{ Eisert, S. Scheel, and M.B. Plenio, Phys. Rev. Lett. 89 (2002);}
\text{ J. Eisert and M.B. Plenio, Phys. Rev. Lett. 89 (2002).} \]