Anisotropy of the semi-classical gluon field of a large nucleus at high energy

Adrian Dumitru

Department of Natural Sciences, Baruch College, CUNY,
17 Lexington Avenue, New York, NY 10010, USA

The Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Vladimir Skokov

Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA

The McLerran-Venugopalan model describes a highly boosted hadron/nucleus as a sheet of random color charges which source soft classical Weizsäcker-Williams gluon fields. We show that due to fluctuations, individual configurations are azimuthally anisotropic. We compute the first four azimuthal Fourier amplitudes of the S-matrix of a fundamental dipole in such background fields.

I. INTRODUCTION

To explain azimuthal asymmetries observed in high-energy pA collisions [1–5] Refs. [6–8] argued that individual configurations of the light-cone electric fields of the target should be anisotropic, leading to a non-trivial azimuthal distribution of a projectile parton scattered off such a target. That is, configuration by configuration, two-dimensional rotational symmetry is broken by E-field “domains” of finite size in the impact parameter plane. These, in contrast to Weiss magnetic domains separated by domain walls, arise purely due to fluctuations of the valence (large-x) random color charge sources for the soft, small-x E field.

Assuming said azimuthal anisotropy of the light-cone electric fields several features of the data could be described, at least qualitatively [7, 8]. On the other hand, a direct calculation of the anisotropic distributions, in particular for a large nucleus and small x (i.e. high energy), has so far been lacking. It is our goal here to compute scattering of a dipole off a large nucleus, and specifically, to determine its angular dependence. That is, we compute the (first four) Fourier amplitudes of the dipole S-matrix with respect to the azimuthal orientation of the dipole. We should stress that we do not address the fluctuations of \(S(r, b) \) in impact parameter space \(b \) (see Ref. [9] for a recent study) but rather its dependence on the size and orientation of the dipole vector \(r \) which is the variable conjugate to the transverse momentum of the parton in the final state.

II. THE MODEL

In the McLerran-Venugopalan model [10] the large-x valence partons are viewed as random, recoilless color charges \(\rho^a(x) \) which source the semi-classical small-x gluon fields. We first provide a brief description of how these color charge configurations are generated on a lattice; more detailed discussions can be found in the literature [11, 12].

The effective action describing color charge fluctuations is taken to be quadratic,

\[
S_{\text{eff}}[\rho^a] = \int \! d^2 x \frac{\rho^a(x^-) \rho^a(x^-, x)}{2\mu^2}
\]

(1)

with \(\mu^2 \sim g^2 A_{1/3} \) proportional to the thickness of a nucleus [10]; here \(A \) denotes the number of nucleons in the nucleus. The variance of color charge fluctuations determines the saturation scale \(Q_s^2 \sim g^4 \mu^2 \) [13]. The coarse-grained effective action (1) applies to (transverse) area elements containing a large number of large-x “valence” charges, \(\mu^2 \Delta A_{\perp} \sim Q_s^2 / g^4 \gg 1 \).

Hence, in the first step we construct a random configuration of color charges on a 2D lattice according to the distribution \(\exp(-S[\rho]) \). Their (non-Abelian) Weizsäcker-Williams fields are pure gauges; in covariant gauge,

\[
A^{\mu a}(x^-, x) = -\delta^{\mu+} \frac{g}{\sqrt{2}} \rho^a(x^-, x).
\]

(2)
This also satisfies $A^- = 0$ and thus the only non-vanishing field strength is $F^{+i} = -\partial^j A^+$. The (light-cone) electric field is

$$E^i = \int dx^- F^{+i} = -\partial^i \int dx^- A^+ \ .$$

The propagation of a fast charge in this field is described by an eikonal phase given by a light-like SU(3) Wilson line $V(x)$:

$$V(x) = \mathbb{P} \exp \left\{ ig^2 \int dx^- \frac{1}{\nabla^2} \rho^a(x, x^-) \right\},$$

where \mathbb{P} denotes path-ordering in x^-. The absolute value squared of this amplitude gives the S-matrix for scattering of this charge off the given target field configuration,

$$S_\rho(r, b) \equiv \frac{1}{N_c} \text{tr} V^\dagger(x) V(y) , \quad r \equiv x - y , \quad 2b \equiv x + y \ .$$

Thus, following the ideas leading to the MV model we assume that every particular scattering event probes one particular configuration in the target, i.e. that the S-matrix is computed with a frozen $\rho^a(x)$. The main purpose of this paper is to analyze the dependence of the S-matrix on the angular orientation of the dipole vector r, conjugate to the transverse momentum, at fixed transverse impact parameter (coordinate) b.

The S-matrix for a fundamental charge is complex (for three or more colors). Its real (imaginary) part corresponds to C-even (C-odd) exchanges [14]:

$$1 - D_\rho(r) \equiv \text{Re} S_\rho(r) = \frac{1}{2N_c} \text{tr} \left[V^\dagger(x) V(y) + V^\dagger(y) V(x) \right] ,$$

$$O_\rho(r) \equiv \text{Im} S_\rho(r) = \frac{-i}{2N_c} \text{tr} \left[V^\dagger(x) V(y) - V^\dagger(y) V(x) \right] .$$

C conjugation transforms $\rho^a(x) \to -\rho^a(x)$ and $V(x) \to V^\dagger(x)$. The dipole scattering amplitude $D_\rho(r) = D_\rho(-r)$ is even under $r \to -r$ and generates even azimuthal v_{2n} harmonics while the odderon $O_\rho(r) = -O_\rho(-r)$ generates the odd v_{2n+1} [7].

It is useful to consider the limit of small dipoles, $rQ_s \ll 1$. Then the real part of the S-matrix from Eq. (6) is

$$\text{Re} S_\rho(r) - 1 = \frac{(ig)^2}{2N_c} \text{tr} (r \cdot \mathbf{E})^2 + \mathcal{O}(r^4) \ .$$

To compute the elliptic (dipole) asymmetry, Refs. [6] [8] considered the following angular dependence of the two-point function

$$\frac{g^2}{2N_c} \left\langle \text{tr} E^i(b_1) E^j(b_2) \right\rangle = \frac{1}{4} Q_s^2 \Delta(b_1 - b_2) \left(\delta^{ij} + 2a \left(\hat{\alpha}^i \hat{\alpha}^j - \frac{1}{2} \delta^{ij} \right) \right) ,$$

where \mathbf{a} corresponds to the “event plane” orientation, and $\Delta(b_1 - b_2)$ describes the E-field correlations in the transverse impact parameter plane. It is implicit that for each configuration $\mathbf{E}(b)$ is rotated to point in a particular, fixed direction $\hat{\mathbf{a}}$ before performing the ensemble average. In fact, Eq. (9) is the MV model analogue of the gluon TMD for an unpolarized target [15] [16],

$$\delta^{ij} f_1^g(x, k^2) + \left(\hat{k}^i \hat{k}^j - \frac{1}{2} \delta^{ij} \right) h_{1+}^g(x, k^2) .$$

Thus, the amplitude A from Eq. (9), which we shall denote $A_2(r)$ below, is basically h_{1+}^g at small x. However, beyond the MV model the relation between these functions may be more involved.

The action [14] is C-even and so $\langle O_\rho(r) \rangle = 0$ while $\langle D_\rho(r) \rangle \sim r^2 Q_s^2$ (at small r) is proportional to the thickness of the nucleus, A^+. A C-odd operator

$$\frac{1}{k_3} a^{abc} \rho^a \rho^b \rho^c,$$
with $\kappa_3 \sim g^3 A^{2/3}$ could be added to the action1 which would then induce an expectation value $\sim A^{1/3}$ for the odderon \cite{17}. This is beyond the scope of the present paper, we focus here on azimuthal anisotropies due to fluctuations of the charge densities $\rho^a(x)$ and their associated electric fields $E^a(x)$.

III. IMPLEMENTATION

To generate the random configurations $\rho^a(x^-, x)$ via Monte-Carlo techniques we discretize the longitudinal and transverse coordinates. The number of sites in the longitudinal direction is taken to be $N_x = 100$ while the number of sites in either transverse direction is $N_{\perp} = 1024$. All of our results presented here have been obtained with $g^2\mu a = 0.05$, hence $g^2\mu L = 51.2$, where $a \equiv L/N_{\perp}$ denotes the transverse lattice spacing. We have determined numerically that $Q_s \approx 0.7125 g^2 \mu$ as defined from $\langle S_0 \rangle (r = \sqrt{2}/Q_s) = \exp(-1/2)$. The physical value for the lattice spacing could be determined by assigning a physical value to Q_s; instead, we choose to measure distance scales in units of $1/Q_s$ or $1/g^2\mu$ and so this step is not required.

We use periodic boundary conditions in the transverse directions and solve the Poisson equation \cite{2} by Fast Fourier Transform. The amplitude of the zero mode of $\rho^a(k)$ is set to zero before inversion which ensures color neutrality of each configuration.

We have generated about 10^4 configurations; for each of them we measured $D_\rho(r)$ and $O(r)$ at $b = 0$. Both functions were decomposed into their Fourier series to extract the amplitudes of azimuthal anisotropy:

\begin{align}
D_\rho(r) &= N(r) \left(1 + \sum_{n=1}^{\infty} A'_{2n}(r) \cos(2n\phi_r) \right), \\
O_\rho(r) &= N(r) \sum_{n=0}^{\infty} A'_{2n+1}(r) \cos((2n+1)\phi_r).
\end{align}

The function $N(r)$ is the isotropic part of the dipole S-matrix, see for example Ref. \cite{12}. Each amplitude A'_n contains a random phase $\exp(iN\psi)$ which fluctuates from configuration to configuration. This corresponds to a random global rotation of the charge distribution $\rho^a(x)$ from configuration to configuration. Azimuthal harmonics δ_n are defined from multi-particle correlation functions in such a way that they are invariant under a global shift of the azimuthal angles of all particles by the same amount. Consequently, we discard this random phase by defining $A_n = |A'_n|$. Averaging over configurations we finally obtain $\langle A_1 \rangle, \cdots, \langle A_4 \rangle$ as well as the variances of A_1 and A_2.

IV. RESULTS

Before presenting our results for the azimuthal amplitudes we show two examples for $S_\rho(r)$ in Figs. 1 and 2. Either of these corresponds to one particular (random) configuration of color charges. The real parts display predominantly a $\sim \cos(2\phi)$ angular dependence, with ϕ the angle between r and $E(b = 0)$. On the other hand, the imaginary part for the configuration shown in Fig. 1 is predominantly $\sim \cos(\phi)$ while that from Fig. 2 is mainly $\sim \cos(3\phi)$, modulo a random phase shift as mentioned above. The figures show, also, that the angular structures appear at a resolution on the order of $rg^2\mu \sim 1$; this is consistent with the requirement $\mu^2 \Delta A_\perp \gg 1$ mentioned above (which sets the regime of applicability of the effective theory) at weak coupling: $1/g^2 \gg 1$.

Figure 3 shows our results for the averaged amplitudes of the first four azimuthal harmonics. As expected, the biggest one is the quadrupole amplitude $\langle A_2 \rangle$ which reaches $\gtrsim 12\%$ at $r \lesssim 1/Q_s$. Such values are in the range of the asymmetries extracted phenomenologically \cite{7} for high-multiplicity p+Pb collisions at LHC energies. However, here we have not made any attempts to bias the configurations towards “high multiplicities”. The fact that the variance $\sqrt{\langle (\delta A_2)^2 \rangle}$ is not much smaller than $\langle A_2 \rangle$ indicates that some configurations generate much larger elliptic asymmetries than others. Also, we observe that $\langle A_2 \rangle$ is approximately constant for $r < 1/Q_s$ since up to quadratic order the real part of the S-matrix is

\begin{equation}
D(r) = \frac{g^2}{2N_c} \text{tr} (r \cdot E)^2 - \frac{1}{2} \frac{g^4}{4N_c^2} \left[\text{tr} (r \cdot E)^2 \right]^2 + \cdots
\end{equation}

1 Beyond a perturbative treatment of the cubic Casimir one would have to add the quartic Casimir, too, so that the action is bounded from below $\cite{18}$.
FIG. 1: The S-matrix in the fundamental representation as a function of the dipole vector \(\mathbf{r} = (r_x, r_y) \) at fixed impact parameter \(b = 0 \) for one particular random configuration of color charges \(\rho^a(x) \).

FIG. 2: Same as Fig. 1 for a second configuration of color charges \(\rho^a(x) \).

at small \(r \). To derive this expression one performs a gradient expansion of \(\text{Re} \ tr \ V(x)V^\dagger(y) \), assuming that the electric field is smoothly varying over scales of order \(r \). The leading term on the r.h.s., if scaled by \(1/r^2 \), is independent of \(r \). For not too large dipoles our numerical result agrees well with the behavior derived in Ref. [16]:

\[h_1^{+g}(x, r^2) \propto \frac{1}{r^2 Q_s^2} \left[1 - \exp \left(-\frac{r^2 Q_s^2}{4} \right) \right]. \tag{15} \]

Equation (15) provides a perfect fit of \(\langle A_2 \rangle \) for \(r Q_s \lesssim 3 \), as shown in Fig. 3.

The second term in Eq. (14) generates a hexadecupole asymmetry at the next to leading order in \(r^2 \). However, the numerical result for \(A_4(r) \) shown in Fig. 3 is essentially constant at small \(r \). We interpret this as due to corrections to the gradient expansion which leads to Eq. (14): a \(\sim \cos(4\phi) \) angular component appears already at \(O(r^2) \) albeit with a much smaller amplitude than the \(\sim \cos(2\phi) \) harmonic.

We now turn to the odd amplitudes \(A_1 \) and \(A_3 \). As already mentioned above, the expectation value of the odderon over a C-even ensemble such as that generated by the action [1] is of course zero. Nevertheless, each particular
Fig. 3: The averaged amplitudes $\langle A_n \rangle(r)$ vs. the dipole size r for $n = 1, \cdots, 4$. The fit for $\langle A_2 \rangle(r)$ is based on Eq. (15).

configuration of semi-classical small-x fields \cite{2} does contain a C-odd component and $iO(r)$ as defined in Eq. (7) is non-zero. This is due to fluctuations of the saturation momentum Q_s in impact parameter space \cite{19},

$$iO(r) \sim i \alpha_s r \cdot \nabla_b (1 - D(r, b)) \simeq i \alpha_s r^3 Q_s^2 \cos \phi_r \left[1 - \frac{r^2}{4} \left(\frac{Q_s^2 \cos^2 \phi_r}{3} + Q_s^2 \right) \right].$$

(16)

The expression on the r.h.s. corresponds to an expansion in powers of r; Q_c is a cutoff for the spectrum of fluctuations of $Q_s(b)$ which was otherwise assumed to be scale invariant, and B is their amplitude \cite{7}. Eq. (16) shows that for small dipoles, after we divide by the isotropic normalization factor $N(r) \sim r^2$, that we should expect $A_1 \sim r$ as well as a smaller $A_3 \sim r^3$. The lattice results appear consistent with $\langle A_1 \rangle \sim r$ at $r \ll 1/Q_s$ but so is $\langle A_3 \rangle$, albeit with a smaller slope. Future simulations on larger lattices may be able to push to smaller r, and the analytical derivation of Eq. (16) based on a simple fluctuation spectrum could perhaps be refined as well.

Just as for the elliptic asymmetry we have also computed the standard deviation of the amplitude A_1. Again, we find that $\sqrt{\langle (\delta A_1)^2 \rangle}$ is not much smaller than $\langle A_1 \rangle$, i.e. that some configurations generate much larger dipole asymmetries than others.

We have also analyzed the effect of “smearing” the impact parameter of the projectile over a region corresponding to its size \cite{20}. If the E-field anisotropy exhibits a non-zero correlation length in the impact parameter plane \cite{6–8}, specifically a correlation length that exceeds the size of the dipole, then the azimuthal moments should remain approximately the same.

Hence, we have also computed the azimuthal amplitudes A_n from “smeared” configurations:

$$\overline{D}_\rho(r, b) = \int \frac{d^2 b'}{\pi r'^2} \Theta(r - |b - b'|) D_\rho(r, b'),$$

(17)

and similarly for $i\overline{O}_\rho(r, b)$. On the r.h.s. the points $x = b' + r/2$ and $y = b' - r/2$ are now determined by r and b'. Equation (17) averages the S-matrix over an area $\pi r'^2$. The result is shown in Fig. 4 which can be compared to Fig. 3 from above. Except for a slight suppression of their magnitudes, we do not observe any substantial modification of the amplitudes $\langle A_n \rangle$.

The behavior for large dipoles is different, c.f. Fig. 5. For a fixed impact parameter the harmonic amplitudes approach a common non-zero function at large $r \gg 1/Q_s$. This is consistent with universal (angular) scale invariant fluctuations of the azimuthal dependence of the S-matrix. Indeed, if $D(r, b)$ and $O(r, b)$ are first averaged over an area $\pi r'^2$, see Eq. (17), then the resulting $\langle A_n \rangle$ are strongly suppressed. This shows that the direction of E is not correlated over distances much beyond $\sim 1/Q_s$. Also, we note that the resummed analytical result $\langle A_2 \rangle$ written in Eq. (15) does not provide a good fit for $r Q_s \gtrsim 3$. This is not unexpected since the derivation involves adhoc infrared cutoffs which need to be introduced by hand (c.f. related discussion in Ref. [12]). On the other hand, the non-perturbative lattice computation does not require IR cutoffs beyond imposing global color neutrality.
V. SUMMARY

Following the conjecture by Kovner and Lublinsky [6], we have analyzed azimuthal anisotropies of the S-matrix \(\mathcal{S}(r) \) for scattering of a dipole off a large nucleus. They arise due to fluctuations of the configuration of color charges \(\rho_a(x) \), described here within the Gaussian McLerran-Venugopalan model [10]; an alternative picture in terms of classical fluctuations of the energy-momentum tensor of a holographic shock wave has been discussed in Ref. [21].

For a projectile in the fundamental representation of color SU(3), these fluctuations generate both \(C \)-even as well as \(C \)-odd target field configurations which correspond to \(\cos(n\phi) \) moments. For small dipoles, \(r \lesssim 1/Q_s \), we find that \(\langle A_2 \rangle \) and \(\langle A_4 \rangle \) are approximately constant and that the amplitude of the elliptic harmonic is much larger than that of the quadrangular harmonic, \(\langle A_2 \rangle \gg \langle A_4 \rangle \). Odd harmonics appear at higher order in \(r \) [7, 19] and so their amplitudes decrease with decreasing \(r \). The fluctuations of both \(A_1 \) and \(A_2 \) are comparable to their mean values, indicating that some configurations exhibit much larger anisotropies than others.

For large dipoles, \(r \gtrsim 1/Q_s \), we find that all amplitudes \(\langle A_1 \rangle(r), \ldots, \langle A_4 \rangle(r) \) asymptotically approach a universal function if the S-matrix is evaluated at fixed impact parameter. This points at angular scale invariant fluctuations of the direction of \(\mathbf{E} \) over large distances. Accordingly, if the S-matrix is averaged over an area \(\pi r^2 \) the resulting \(\cos(n\phi) \)
amplitudes are strongly suppressed.

Our calculations confirm that individual small-x target field configurations do exhibit angular dependence which would play an important role in understanding azimuthal v_n harmonics in pp and pA collisions [6–8]. In particular, the amplitude of elliptic anisotropies $\langle A_2 \rangle \sim 10 – 15\%$ is on the order of the v_2 harmonic observed in p+Pb collisions at the LHC. In other words, our result supports the conjecture that the $h_1^{\perp}(x, k^2)$ gluon distribution of a nucleus at small x is significant [13, 16].

We have here considered the classical fields of a large nucleus at moderately small x within the McLerran-Venugopalan model [10]. In the future it will be important to incorporate QCD evolution effects. Mean-field evolution of the dipole has been shown to wash out initial elliptic anisotropies after several units of rapidity [6]. The effects of fluctuations in small-x evolution on the anisotropies deserves further study.

Acknowledgments

We thank B. Schenke, S. Schlichting and L. McLerran for useful discussions. A.D. gratefully acknowledges support by the DOE Office of Nuclear Physics through Grant No. DE-FG02-09ER41620 and from The City University of New York through the PSC-CUNY Research Award Program, grant 67119-0045. V.S. thanks D. Shubina for discussions and for providing a C++ library for color matrices. The numerical computations were performed at the High Performance Computing Center, Michigan State University.

[1] B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 719, 29 (2013); Phys. Rev. C 90, 054901 (2014).
[2] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 110, 182302 (2013); Phys. Lett. B 725, 60 (2013); The ATLAS collaboration, ATLAS-CONF-2014-021.
[3] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 718, 795 (2013); Phys. Lett. B 724, 213 (2013).
[4] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 111, 212301 (2013); A. Adare et al. [PHENIX Collaboration], arXiv:1404.7461 [nucl-ex].
[5] Li Yi for the STAR Collaboration, arXiv:1410.1978 [nucl-ex].
[6] A. Kovner and M. Lublinsky, Phys. Rev. D 83, 034017 (2011); Phys. Rev. D 84, 094011 (2011); Int. J. Mod. Phys. E 22, 1330001 (2013).
[7] A. Dumitru and A. V. Giannini, arXiv:1406.5781 [hep-ph] (Nucl. Phys. A, in print).
[8] A. Dumitru, L. McLerran and V. Skokov, arXiv:1410.4844 [hep-ph].
[9] S. Schlichting and B. Schenke, arXiv:1407.8458 [hep-ph].
[10] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994); Phys. Rev. D 49, 3352 (1994); Y. V. Kovchegov, Phys. Rev. D 54, 5463 (1996).
[11] A. Krasnitz and R. Venugopalan, Nucl. Phys. B 557, 237 (1999).
[12] T. Lappi, Eur. Phys. J. C 55, 285 (2008).
[13] J. Jalilian-Marian, A. Kovner, L. D. McLerran and H. Weigert, Phys. Rev. D 55, 5414 (1997).
[14] Y. Hatta, E. Iancu, K. Itakura and L. McLerran, Nucl. Phys. A 760, 172 (2005).
[15] P. J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021 (2001); S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76, 034002 (2007); F. Dominguez, J. W. Qiu, B. W. Xiao and F. Yuan, Phys. Rev. D 85, 045003 (2012).
[16] A. Metz and J. Zhou, Phys. Rev. D 84, 051503 (2011).
[17] S. Jeon and R. Venugopalan, Phys. Rev. D 70, 105012 (2004); Phys. Rev. D 71, 125003 (2005).
[18] A. Dumitru, J. Jalilian-Marian and E. Petreska, Phys. Rev. D 84, 014018 (2011); A. Dumitru and E. Petreska, Nucl. Phys. A 879, 59 (2012).
[19] Y. V. Kovchegov and M. D. Sievert, Phys. Rev. D 86, 034028 (2012) [Erratum-ibid. D 86, 079906 (2012)].
[20] B. Schenke, S. Schlichting, and R. Venugopalan: to be published, and priv. comm.
[21] J. Noronha and A. Dumitru, Phys. Rev. D 89, 094008 (2014).