Research Note

Preliminary study on the prevalence of endoparasite infections and vector-borne diseases in outdoor dogs in Bulgaria

P. T. ILIEV1,*, Z. T. KIRKOVA2, A. S. TONEV3

Department of Veterinary Microbiology, Infectious and Parasitic diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria, E-mail: 1,∗petyo_todorow@abv.bg, 2z.t.kirkova@abv.bg, 3333tonev@gmail.com

Article info
Received November 22, 2019
Accepted December 26, 2019

Summary

The present work was designed to evaluate the prevalence of gastrointestinal parasites and some vector-borne pathogens in dogs in Bulgaria. A total of 172 owned dogs, keeping outside, were included in the study. Fecal samples were examined using standard flotation and sedimentation methods. Blood samples were processed by Knott’s technique, SNAP™ 4Dx Plus Test (IDEXX) and Angio Detect™ Test (IDEXX). The overall prevalence of gastrointestinal parasites was 64.5%. Eggs of hookworms (Ancylostoma sp. and Uncinaria sp.) were the most frequently detected (54.1%), followed by Trichuris vulpis (15.1%), Capillaria sp. (11.0%), Toxocara canis (6.4%), Cystoisospora sp. (4.1%), Sarcocystis sp. (2.3%), Toxascaris leonina (1.7%), Taenia sp. (1.2%) and Linguatula serrata (0.6%). In addition, hookworms were the most commonly involved in the cases of single infection (20.3%). Combinations between Capillaria sp./hookworms and T. vulpis/hookworms were the most common co-infections (4.1% and 2.9%, respectively). Blood samples revealed the presence of antibodies against Ehrlichia sp. (13.4%), Anaplasma sp. (13.4%) and Borrelia burgdorferi (1.7%). Antigens of Dirofilaria immitis and Angiostrongylus vasorum were detected in 10.5% and 0.6% of the samples tested, respectively. Microfilariae of Dirofilaria repens were found in 5.8% of the blood samples. Additionally, the prevalence of D. immitis and Ehrlichia sp. was significantly higher in adult than in young dogs (p<0.05). In contrast, the gender was not considered as a risk factor contributing to the occurrence of infections.

Keywords: prevalence; dogs; gastrointestinal parasites; Angiostrongylus vasorum; Bulgaria

Introduction

Dogs are still the most common companion animals establishing more frequent and closer contact with humans than any other pets. Furthermore, various canine parasites are involved in the epidemiology of many parasitic diseases affecting a wide range of domestic and wild herbivorous and omnivorous. Also, the canids act as reservoirs and sources of several zoonotic parasites posing a serious threat to the human health (Xhaxhiu et al., 2011). The children are generally at higher risk of acquiring infections with some parasites (e.g. Toxocara canis) than adults due to the habit of placing their fingers in the mouth after playing with dogs or after contact with contaminated soil. In contrast, human hydatid disease is mainly associated with persons, practicing hunting and sheep farming. This dangerous and life-threatening infection is caused by the larval stage of Echinococcus granulosus, a cestode, inhabiting the small intestines of various canids as final hosts (Gillespie & Bradbury, 2017). The prevalence of parasitic infections in dogs depends on several factors such as the lifestyle, deworming frequency, climate

* – corresponding author
conditions, and contacts with stray dogs or wildlife (Roussel et al., 2019). Additionally, some owners neglect the prophylaxis of their dogs resulting in contamination of environment with infective parasite stages of high tenacity. Also, the shepherd dogs often have no prophylactic therapy, and the occurrence and intensity of parasite infections, especially with tapeworms, usually results from scavenging sheep carcasses (Vasileiou et al., 2015; Rehbein et al., 2016).

Canine parasitic fauna has been a purpose of many studies conducted all around the world over the last few decades. Numerous Bulgarian investigations on the same focus have also been carried out, including different categories of dogs, originating from many regions of the country. In addition, gastrointestinal (GI) parasitism of *Trichuris vulpis* and *Capillaria* sp., hookworms (*Ancylostoma caninum, Uncinaria stenocephala*), ascarids (*T. canis, Toxascaris leonina*), cestodes (*Dipylidium caninum, Mesocosteoides lineatus, Taenia hydatigena, Taenia ovis, Taenia multiceps, Taenia pisiformis, E. granulosus*), protozoans (*Cystoisospora* sp., *Sarcocystis* sp., *Giardia* sp.) has been recorded in studies based on necropsy (Kamenov et al., 2009); combined necropsy/coproscopy (Georgieva et al., 1999; Lalkovski & Sabev, 2009) or coproscopy (Kirkova et al., 2006; Kirkova et al., 2013; Kanchev et al., 2014; Radev et al., 2016; Iliev et al., 2017). Considering the data mentioned above as well as the trend towards increase in canine population in the country focused our attention on performing this epidemiological work. We aimed both at corroborating previously published findings and providing updated information on the prevalence of GI parasites as well as some arthropod-transmitted pathogens in outdoor dogs in Bulgaria.

Materials and Methods

Animals and study areas

This study was performed from July 2016 to September 2017 on 172 owned dogs (115 males and 57 females) aged from 1 month to 12 year, reared outdoor. The animals were recruited from outskirts of Rousse (43°50'N, 25°57'E), Razgrad (43°32'N, 26°32'E), Sofia (42°41'N, 23°19'E) (Northern Bulgaria), Stara Zagora (42°25'N, 25°38'E), and Plovdiv (42°8'N, 24°44'E) (Southern Bulgaria).

Species	Southern Bulgaria (n=124)	Northern Bulgaria (n=48)	Total (n=172)	Test applied
	Positive (%)	Positive (%)	95% CIs	
D. repens	4 (3.2)	6 (12.5)	10 (5.8)	2.3 - 9.3
D. immitis	14 (11.3)	4 (8.3)	18 (10.5)	5.9 – 15.0
A. vasorum	1 (0.8)		1 (0.6)	0 – 1.7
T. vulpis	14 (11.3)	12 (25.0)	26 (15.1)	9.8 – 20.5
Capillaria sp.	10 (8.1)	9 (18.8)	19 (11.0)	6.4 – 15.7
T. canis	9 (7.3)	2 (4.2)	11 (6.4)	2.7 – 10.1
Ancylostoma/Uncinaria spp.	57 (46.0)	36 (75.0)	93 (54.1)	46.6 – 61.5
T. leonina	1 (0.8)	2 (4.2)	3 (1.7)	0 – 3.7
Taenia sp.	1 (0.8)	1 (2.1)	2 (1.2)	0 – 2.8
L. serrata	-	1 (2.1)	1 (0.6)	0 – 1.7
Cystoisospora sp.	6 (4.8)	1 (2.1)	7 (4.1)	1.1 – 7.0
Sarcocystis sp.	4 (3.2)		4 (2.3)	0.1 – 4.6
Anaplasma sp.	16 (12.9)	7 (14.6)	23 (13.4)	8.3 – 18.5
Ehrlichia sp.	22 (17.7)	1 (2.1)	23 (13.4)	8.3 – 18.5
B. burgdorferi	2 (1.6)	1 (2.1)	3 (1.7)	0 – 3.7

Table 1. Overall prevalence (%) of the pathogens in dogs (n=172)
Sampling and assaying
Fecal samples were obtained manually from ampulla recti, placed into plastic bags, stored at 4°C, and processed (within 24 hours) by following methods: direct smear for detection of motile trophozoites or cysts of protozoa; flotation technique, using 3 grams feces and saturated sodium chloride (sp. gr. 1.20), for extraction of lighter helminth eggs and coccidian oocysts or sporocysts; routine sedimentation, using 3 grams feces, for recovering heavier helminth and pentastomid eggs.

Blood samples were collected by venipuncture of v. cephalica antebrachii, from each animal, into vacutainers. After clotting the samples, the sera were stored at 4°C and assayed within 24 hours for detection of D. immitis antigens; antibodies against Anaplasma sp., Ehrlichia sp., and B. burgdorferi (SNAP® 4Dx Plus Test, IDEXX) as well as A. vasorum antigens (Angio Detect™ Test, IDEXX). Both assays were performed according to manufacturer’s instructions. Additional blood samples were collected into sterile tubes with anticoagulant (K2EDTA) and processed by Knott’s technique for detection of filariid first stage larvae. Isolated microfilariae were identified on basis of their morphometrical characteristics (Zajac & Conboy, 2012).

Statistical analysis
All data were analysed by means of MedCalc v.10.2.0.0, MedCalc Software (Belgium). The prevalence and its 95 % confidence interval (CI) were calculated for each parasitic species, including co-infections. The difference of prevalence among groups (regarding to the gender and age) was evaluated by Chi-square (χ²) test and was considered significant at P ≤ 0.05.

Ethical Approval and/or Informed Consent
Approvals for using animals in the current study were obtained from the Bulgarian Food Safety Agency (registration of the permits: №85/09.01.2014 and №138/28.06.2016). The research has been complied with all the relevant national regulations and institutional policies for the care and use of animals.

Results
The overall prevalence of GI parasites was 64.5 %. Eggs of hookworms were the most commonly observed in feces (54.1 %), followed by T. vulpis (15.1 %), Capillaria sp. (11.0 %), T. canis (6.4 %), Cystoisospora sp. (4.1 %), Sarcocystis sp. (2.3 %), T. leonina (1.7 %) and Taenia sp. (1.2 %) (Table 1). Eggs of the nasal pentastomid Linguatula serrata were also detected (0.6 %). Cases of single infection were found in 38.4 % of dogs sampled (Table 2). Mixed infections with two or more species were observed in 20.3 % and 18.0 % of dogs, respectively (Tables 3). The most frequently detected co-infections were with Capillaria sp./hookworms (4.1 %) and T. vulpis/hookworms (2.9 %).

The serum analysis identified antigens of D. immitis and A. vasorum (10.5 % and 0.6 % of the samples, respectively) and antibodies against Anaplasma sp. (13.4 %), Ehrlichia sp. (13.4 %) and B. burgdorferi (1.7 %). Dirofilaria repens microfilariae were found in 5.8 % of the dogs (Table 1).

The age was identified as a risk factor for D. immitis infection (χ²=4.358). The highest prevalence was observed in dogs above 12 months of age and no case was recognized in younger dogs. Similarly, antibodies against Ehrlichia sp. were more commonly detected in the adult animals (χ²=3.740). Statistical analysis showed no significant association between the gender and prevalence of infections.

Discussion
The findings of this study showed that more than half of the dogs (64.5 %) were infected by at least one species of GI parasite.
Table 3. Cases of mixed infections in dogs (n=172)

Combinations	Positive (%)	95% CI
Ancylostoma/Uncinaria spp. + Anaplasma sp.	2 (1.2)	0 – 2.8
Ancylostoma/Uncinaria spp. + D. immitis	5 (2.9)	0.4 – 5.4
Ancylostoma/Uncinaria spp. + Ehrlichia sp.	2 (1.2)	0 – 2.8
D. immitis + Ehrlichia sp.	1 (0.6)	0 – 1.7
Capillaria sp. + Ancylostoma/Uncinaria spp.	7 (4.1)	1.1 – 7.0
Ancylostoma/Uncinaria spp. + Cystoisospora sp.	2 (2.1)	0 – 2.8
Ancylostoma/Uncinaria spp. + Sarccocystis sp.	1 (0.6)	0 – 1.7
Cystoisospora sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
T. vulpis + Ancylostoma/Uncinaria spp.	5 (2.9)	0.4 – 5.4
D. immitis + T. vulpis	1 (0.6)	0 – 1.7
T. vulpis + Anaplasma sp.	1 (0.6)	0 – 1.7
D. repens + Ancylostoma/Uncinaria spp.	4 (2.3)	0.1 – 4.6
T. canis + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
Ancylostoma/Uncinaria spp. + T. leonina	1 (0.6)	0 – 1.7
L. serrata + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
T. vulpis + Capillaria sp. + Ehrlichia sp.	2 (1.2)	0 – 2.8
D. immitis + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
D. immitis + Ancylostoma/Uncinaria spp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
D. immitis + T. vulpis + Ancylostoma/Uncinaria spp.	2 (1.2)	0 – 2.8
Ancylostoma/Uncinaria spp. + Anaplasma sp. + Ehrlichia sp.	2 (1.2)	0 – 2.8
D. immitis + Capillaria sp. + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
Cystoisospora sp. + Ancylostoma/Uncinaria spp. + Sarccocystis sp.	1 (0.6)	0 – 1.7
D. immitis + Ancylostoma/Uncinaria spp. + Sarccocystis sp.	1 (0.6)	0 – 1.7
T. canis + Ancylostoma/Uncinaria spp. + Sarccocystis sp.	1 (0.6)	0 – 1.7
T. vulpis + Capillaria sp. + Ancylostoma/Uncinaria spp.	3 (1.7)	0 – 3.7
Capillaria sp. + Ancylostoma/Uncinaria spp. + Anaplasma sp.	1 (0.6)	0 – 1.7
D. repens + Capillaria sp. + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
T. vulpis + Ancylostoma/Uncinaria spp. + Anaplasma sp.	3 (1.7)	0 – 3.7
D. immitis + T. canis + Ancylostoma/Uncinaria spp. + Anaplasma sp.	1 (0.6)	0 – 1.7
B. burgdorferi + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
D. immitis + D. repens + Ancylostoma/Uncinaria spp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
Ancylostoma/Uncinaria spp. + Taenia sp. + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
D. repens + B. burgdorferi + Capillaria sp. + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
D. repens + T. vulpis + Capillaria sp. + Ancylostoma/Uncinaria spp.	1 (0.6)	0 – 1.7
T. vulpis + Capillaria sp. + Ancylostoma/Uncinaria spp. + Taenia sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
T. vulpis + T. canis + Ancylostoma/Uncinaria spp. + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
T. canis + Ancylostoma/Uncinaria spp. + Cystoisospora sp. + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
T. canis + Ancylostoma/Uncinaria spp. + T. leonina + Anaplasma sp. + Ehrlichia sp.	1 (0.6)	0 – 1.7
D. immitis + Capillaria sp. + Ancylostoma/Uncinaria spp. + Cystoisospora sp. + Anaplasma sp.	1 (0.6)	0 – 1.7
Numerous recent surveys performed on the Balkans have disclosed comparable results indicating the presence of GI parasitism in 67.1 % of dogs in Romania (Ursache et al., 2016), 75.4 % in Serbia (Sommier et al., 2017), between 48.1 % and 64.9 % in Croatia (Brezak et al., 2017), 26 % in Greece (Papazahariadou et al., 2007), 30.4 % in Turkey (Senlik et al., 2006) and 40.7 % in Albania (Shukullari et al., 2015). All the mentioned results were obtained by coprological examinations. According to the regional reports, between 24.8 % and 65 % of dogs in Bulgaria harbor several species of endoparasites including ascarids, hookworms, whipworms, tapeworms and coccidians (Kirkova et al., 2006; Lalkovski & Sabev, 2009; Kirkova et al., 2013; Radev et al., 2016), which seems to be in general agreement with our finding. The differences between aforementioned results are not unexpected and could be due to various factors. Those investigations include either well- or not well-cared dogs of different ages and categories (e.g. hunting, shepherd, military, pet, shelter and stray dogs) with different deworming frequency (e.g. regular or not), clinically healthy or under veterinary care (with GI disorders). Taking into consideration the above, it can be argued that the combined influence of the age and purpose of dogs, the general hygiene, and the access to regular deworming may exert a marked effect on the prevalence and species variety of GI parasites among the canine population (Shukullari et al., 2015). In addition, the strong influence of the geographic location and climate conditions is confirmed by the results of a recent study, demonstrating lower prevalence of GI parasitic infections (9.4 %) even in stray and not well-cared dogs in Germany (Becker et al., 2012).

In this study, hookworms were recognized as the most common enteric pathogens, which were found in the fecal samples of more than half of dogs (54.1 %). In similar investigation conducted in Stara Zagora (Bulgaria), the prevalence of A. caninum and U. stenocephala in stray dogs was even higher, reaching 90 % and 60 %, respectively (Georgieva et al., 1999). Other local investigations have indicated that between 6.18 % and 37.8 % of the dogs harbor hookworms (Kirkova et al., 2013; Iliev et al., 2017). Those findings were expected, taking into consideration the modes of infection transmission. Also, it should not be underestimated the zoonotic potential of hookworms. Once entered the body, the infective larvae of A. caninum may induce two serious conditions known as human gut disease (eosinophilic enteritis) and cutaneous larva migrans (CLM) or creeping eruption (Katagiri & Oliveira-Sequeira, 2008). The relationship between U. stenocephala and CLM remains unclear and still debated (Villeneuve et al., 2015).

The canine whipworm, T. vulpis, was the second most frequent GI parasite detected in this study (15.1 %). Our results are in general agreement with those of comparable surveys in dogs in Bulgaria (Kirkova et al., 2006; Lalkovski & Sabev, 2009; Kirkova et al., 2013; Radev et al., 2016; Iliev et al., 2017).

The overall number of dogs infected with T. canis and T. leonina in this study was substantially low (6.4 % and 1.7 %, respectively). As observed in similar Bulgarian investigations, the prevalence of those ascarids ranged from 6.8 % to 17.8 % for T. canis and from 0.78 % to 3.1 % for T. leonina (Kirkova et al., 2006; Kirkova et al., 2013; Kanchev et al., 2014; Iliev et al., 2017). More importantly, T. canis is better recognized as the most common causative agent of visceral and ocular larva migrans in people; both syndromes might lead to severe damages of different tissues, especially in children (Villeneuve et al., 2015).

The results of our study showed that 1.2 % of dogs are infected with Taenia sp., which is in general agreement with findings of Kirkova et al. (2006) and Iliev et al. (2017). Those authors also reported a substantially low prevalence of taeniid infections (0.8-1.16 %) in dogs in Bulgaria. Numerous studies regarding to the prevalence of aforementioned helminth species have been conducted in closer geographical regions, including Croatia (Brezak et al., 2017); Romania (Ursache et al., 2016), Serbia (Sommier et al., 2017); Greece (Papazahariadou et al., 2007); Albania (Shukullari et al., 2019) and Turkey (Senlik et al., 2006). Summarized results indicate the presence of GI parasitism ranging from 1.2 % to 41 % for hookworms, from 2.9 % to 9.6 % for T. vulpis, from 3 % to 34.8 % for T. canis, from 0.7 % to 21.8 % for T. leonina and from 0.3 % to 1.5 % for Taenia sp.

Our results showed Capillaria sp. infection, which is probably caused by the capillariid lungworm Eucoleus aerophilus. We detected eggs of such helminth in 11 % of the fecal samples. That value is very likely to be lower than real percentage because of the eggs may originate not only from adult lungworms, but also after passing through the alimentary tract following ingestion of contaminated food or after coprophagy (Shukullari et al., 2015). The prevalence of E. aerophilus ranges from 0.2 % to 2.8 % in European and Balkan countries (Traversa et al., 2010; Shukullari et al., 2015; Ursache et al., 2016; Brezak et al., 2017) and from 2 % to 6.8 % in Bulgaria (Kirkova et al., 2006; Kirkova et al., 2013). One case of nasal linguatulosis due to the pentastomid L. serrata was recorded here. The adult parasites reside in nasal cavities in dogs but the eggs pass from the respiratory system to intestines and release into the environment through feces. The total prevalence of L. serrata in dogs in Bulgaria reaches to 0.7 % (Kirkova et al., 2013). However, nymphs of this parasite (known as Pentastomum denticulatum) have been recovered from the lungs, liver and mesenteric lymph nodes in Bulgarian goats as intermediate hosts (Ivanov et al., 2012). This pentastomid is considered responsible for important zoonotic disease. Furthermore, visceral linguatulosis (pentastomosis) in Bulgaria was reported in a 9-year-old boy in Pleven (Mateva et al., 2013).

Our investigation presents the first serologically proven case of angistrongylosis due to the cardiopulmonary nematode A. vasorum. In contrast, several studies have shown such infection in canids in the European countries (Traversa et al., 2010; Elsheikha et al., 2014) and on the Balkans (Papazahariadou et al., 2007; Shukullari et al. 2015; Iliev et al., 2016).

Protozoa infections were less often identified in this study than...
Similar findings have also been published earlier (Villeneuve et al., 2016), the occurrence of CVBDs is significantly higher in dogs Cardoso (Yildirim, 2015). Other authors have reported that elder dogs, kept outdoor,. (2017). Our findings in are general agreement with those reported in closer geographical region (Croatia, Romania, Albania, Serbia, Greece), where the overall prevalence ranges from 3 % to 16.1 % for Cystoisospora sp. and from 0.3 % to 4.5 % for Sarcocystis sp. (Papazahariadou et al., 2007; Shukullari et al. 2015; Ursache et al., 2016; Brezak et al., 2017; Sommer et al., 2017).

Almost half of the dogs (44.8 %) were positive for vector-borne parasites and bacteria such as D. immitis, D. repens, Ehrlichia sp., Anaplasma sp. and B. burgdorferi. The prevalence of those pathogens usually depends on several factors, but the age of dogs is considered as an important parameter as we found for D. immitis and Ehrlichia sp. in current study. Our findings showed that 10.5 % and 5.8 % of dogs were infected with D. immitis and D. repens, respectively. According to other Bulgarian researchers, between 7.4 % and 16.2 % of clinically healthy dogs and 34.33 % of dogs with cardiopulmonary disorders and under veterinary care are infected with D. immitis (Georgieva et al., 1999; Georgieva et al., 2001; Pantchev et al., 2015; Radev et al., 2016; Iliev et al., 2017).

The prevalence of canine heartworm disease due to D. immitis is also reported on the Balkans and ranges from 0.7 % to 17.9 % in Greece, from 7.2 % to 22.01 % in Serbia, from 1 % to 27 % in Turkey and from 8 % to 16 % in Croatia (Morchon et al., 2012). Our results also showed infections with Anaplasma sp. (13.4 %), Ehrlichia sp. (13.4 %) and B. burgdorferi (1.7 %). Data of several researches regarding the overall seroprevalence of those tick-borne pathogens among canine population in Bulgaria have been previously reported, indicating occurrence of infections ranging from 21 % to 37.5 % for E. canis, from 3.5 % to 46.1 % for A. phagocytophilum (Tsachev, 2006; Tsachev et al., 2006; Tsachev et al., 2006a; Pantchev et al., 2015) and from 22.74 % to 74.5 % for B. burgdorferi (Angelov et al., 1993; Zarkov & Marinov, 2003). Those findings are much higher and are not in agreement with our results. One reason could be that the authors present data obtained from dogs originated from enzootic regions or under veterinary care. However, our results are similar with the findings published by Pantchev et al. (2015) who also found a low seroprevalence (2.4 %) of B. burgdorferi among dogs in Bulgaria. The results obtained here indicated that elder dogs (irrespective of sex) were commonly affected by D. immitis and Ehrlichia sp. Similar findings have also been published earlier (Villeneuve et al., 2011; Volgina et al., 2013; Hamel et al., 2016; Pantchev et al., 2015). Other authors have reported that elder dogs, kept outdoor, were more commonly infected by D. immitis (Yildirim et al. 2007; Cardoso et al. 2012; Mircean et al. 2012). According to Hamel et al. (2016), the occurrence of CVBDs is significantly higher in dogs over one year of age. The gender of animals included in our work was not considered as a risk factor for Ehrlichia sp. and Anaplasma sp., which coincides with findings reported from other authors (Solano-Gallego et al., 2006; Tsachev et al., 2006; Tsachev et al., 2006a; Villeneuve et al., 2011; Miro et al., 2013).

Conclusion

This study presents an overview of the prevalence of GI parasites and some vector-borne helminths and bacteria in outdoor dogs in Bulgaria as well as the first report of A. vasorum. Our findings demonstrate a wide variety of endoparasites and high prevalence rates of parasitism, suggesting environmental contamination with infective stages of parasites and presence of arthropods carrying different pathogens. Therefore, both the arthropods and infected dogs could be responsible for occurrence of several zoonotic diseases; particularly T. canis, Taenia sp. (refers to E. granulosus), B. burgdorferi and hookworms. This statement thus should increase the efforts of veterinarians and owners on performing a regular and proper prophylaxis of dogs against ecto and endoparasites resulting in lower levels of parasitism in both animals and humans.

Conflict of Interest

Authors state no conflict of interest.

References

Angelov, L., Arnaldov, D., Rakajieva, T., Kostova, E. (1993): Studies of epizootiological process with Lyme borreliosis in Bulgaria. Infectology, 5: 12 - 14
Becker, A., Rohen, M., Efe, C., Schneider, T. (2012): Prevalence of endoparasites in stray and fostered dogs and cats in Northern Germany. Parasitol. Res, 111(2): 849 - 857. DOI: 10.1007/s00436-012-2909-7
Beugnet, F., Chalvet-Monfray, K. (2013): Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp. Immunol. Microbiol. Infect. Dis., 36(6): 559 - 566. DOI: 10.1016/j.cimid.2013.07.003
Brezak, R., Bosnic, S., Jurkovic, D., Skrbn, K., Stublic, M., Beck, R. (2017): The prevalence of gastrointestinal parasites in dogs from Zagreb area. In Abstracts of 7th International Congress “Veterinary science and profession”, October 5-7, 2017. Zagreb, Croatia: Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia, 2017, pp.141
Cardoso, L., Mendao, C., Madeira de Carvalho, L. (2012): Prevalence of Dirofilaria immitis, Ehrlichia canis, Borrelia burgdorferi sensu lato, Anaplasma spp. and Leishmania infantum in apparently healthy and CVBD-suspect dogs in Portugal - a national serological study. Parasite Vectors, 5: 62. DOI: 10.1186/1756-3305-5-62
Dantas-Torres, F. (2008): Canine vector-borne diseases in Brazil. Parasite Vectors, 1(1): 25. DOI: 10.1186/1756-3305-1-25
Elshimkh, H., Holmes, S., Wright, I., Morgan, E., Lacher, D. (2014): Recent advances in the epidemiology, clinical and diagnostic fea-
acies, and control of canine cardio-pulmonary angiostrongylosis. Vet. Res., 45: 92. DOI: 10.1186/s13567-014-0092-9
GEORGIEVA, D., IVANOV, A., PRELESOV, P. (1999): Studies on the parasitic fauna in stray dogs in the Stara Zagora region. Bulg. J. Vet. Med., 2(2-3): 121 - 124
GEORGIEVA, D., KIRKOV, Z., IVANOVA, I. (2001): The study on the incidence and diagnostic of dirofirosis (heartworm disease) in carnivores. Bulg. J. Vet. Med., 4(4): 231 - 236
GILLESPIE, S., BRADBURY, R. (2017): A survey of intestinal parasites of domestic dogs in Central Queensland. Trop. Med. Infect. Dis., 2(4): 60. DOI:10.3390/trropicalmed2040060
HAMEL, D., SHUKULLARI, E., RAPTI, D., SILAGHI, C., PFISTER, K., REHBEIN, S. (2016): Parasites and vector-borne pathogens in client-owned dogs in Albania. Blood pathogens and seroprevalence of parasitic and other infectious agents. Parasitol. Res., 115(2): 489 - 499. DOI: 10.1007/s00436-015-4765-8
ILEI, M., IRIE, M., IRIE, K., HORA, F., DARABUS, G., JURCA, A., PATRAS, I., SORESCU, D. (2016): Prevalence of Angiostrongylus vasorum infestation in dogs from western Romania – preliminary results. Lucrari Stiintifice: Med. Vet. Timisoara 49(3): 78 - 81
ILEV, P., KIRKOV, Z., IVANOVA, I., PRELESOV, P., TONEV, A., KALKANOV, I. (2017): Retrospective analysis on helminthic and protozoan infections in dogs and cats in Bulgaria. Bulg. J. Vet. Med., 20(1): 389 - 393
IVANOVA, A., KIRKOV, Z., ILEV, P., UZUNOVA, K. (2012): A case of Pentastomum denticulatum infection in goats. J. Fac. Vet. Med. Istanbul Univ., 32(2): 191 - 195
KAMENOV, Y., KANCHEV, K., RADEV, V. (2009): Study on the helminth infection in canids in north-west Bulgaria. In Abstracts of Scientific Conference “Tradition and Modernity in Veterinary Medicine”, November 19-20, 2009. Sofia, Bulgaria: University of Forestry, Sofia, Bulgaria, 2009, pp.303 (In Bulgarian)
KANCHEV, K., KAMENOV, Y., SALAMITKOVA, K., RADEV, P. (2014): Helminth status of domestic dogs with gastro-enteritis from Sofia town area. In Abstracts of Scientific Conference “Tradition and Modernity in Veterinary Medicine”, November 28-30, 2014 Sofia, Bulgaria: University of Forestry, Sofia, Bulgaria, 2014, pp.168 (In Bulgarian)
KATAGIRI, S., OLIVEIRA-SEQUEIRA, T. (2008): Prevalence of dog gastrointestinal parasites and risk perception of zoonotic infection by dog owners in Sao Paulo State, Brazil. Zoonoses Public Health, 55(8-10): 406 - 413. DOI: 10.1111/j.1863-2378.2008.01163.x
KIRKOV, Z., GEORGIEVA, D., RAYCHEV, E. (2006): Study on the prevalence of trichuroid in different categories of dogs and wild carnivores. Bulg. J. Vet. Med., 9(2): 141 - 147
KIRKOV, Z., ILEV, P., SILAGHI, C., REHBEIN, S., KNAUS, M. (2013): Feecal examinations in dogs (Canis familiaris) in Bulgaria. In Abstracts of Tagung der DVG Fachgruppe “Parasitologie und Parasitäre Krankheiten”, July 8-10, 2013. Gießen, Germany: Hauptgebäude der Justus Liebig-Universität, Gießen, Germany, 2013, pp.30-31
LAKOVSKY, N., SABE, P. (2009): The prevalence of helminth and protozoan parasites in dogs in Sofia, Bulgaria. In Abstracts of International Scientific and Practical Conference NDNIVMI, May 21, 2009. Sofia, Bulgaria: The National Diagnostic Science-and-Research Veterinary Medical Institute, Sofia, Bulgaria, 2009, pp.169 (In Bulgarian)
MATEVA, S., NIKOLOVA, M., KARAVANOV, M., MARINOV, P. (2013): Rare case of human visceral linguatuliasis in Bulgaria diagnosed on biopsy specimen. J. Biomed. Clin. Res., 6(2): 131 – 134. DOI: 10.1515/jbcr-2015-0114
MIRCEAN, V., DUMITRACHE, M., GYORKE, A., PANTCHEV, N., JODIES, R., MINALCA, A., COZMA, V. (2012): Seroprevalence and geographic distribution of Dirofilaria immitis and tick-borne infections (Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Ehrlichia canis) in dogs from Romania. Vector Borne Zoonotic Dis., 12(7): 595 - 604. DOI: 10.1089/vbz.2011.0915
MIRO, G., MONTOYA, O., ROURA, X., GALVEZ, R., SAINZ, A. (2013): Seropositivity rates for agents of canine vector-borne diseases in Spain: a multicentre study. Parasite Vectors, 6: 117. DOI: 10.1186/1756-3305-6-117
MORCHON, R., CARRETON, E., GONZALEZ-MIGUEL, J., MELLADO-HERNANDEZ, I. (2012): Heartworm disease (Dirofilaria immitis) and their vectors in Europe – new distribution trends. Front. Physiol., 3: 196. DOI: 10.3389/fphys.2012.00196
PAPAYOTOVA-PENCHEVA, M., MIRCHEV, R., TRIFONOVA, A. (2016): Dirofilaria immitis infection in carnivores from Bulgaria: 2012–2013 update. Bulg. J. Vet. Med., 19(2): 153 - 162. DOI: 10.15547/bjvm.918
PANTCHEV, N., SCHNEDER, M., VRHOVEC, M., SCHAPER, R., TSACHEV, I. (2015): Current survey of Borrelia burgdorferi, Ehrlichia canis, Leishmania infantum, Babesia canis, Angiostrongylus vasorum and Dirofilaria immitis in dogs in Bulgaria. Parasitol. Res., 114(1): 117 - 130. DOI: 10.1007/s00436-015-4518-8
PAPAZAHARIADOU, M., FOUNTA, A., PAPADOPOLLOUS, E., CHLICONAKIS, S., ANTONIADOU-SOTIRIADOU, K., THEODORIDES, Y. (2007): Gastrointestinal parasites of shepherd and hunting dogs in the Serres Prefecture, Northern Greece. Vet. Parasitol., 148: 170 - 173. DOI:10.1016/j.vetpar.2007.05.013
RADEV, V., LALKOVSKI, N., ZHELAYZKOV, P., KOSTOVA, T., SABE, P., NEDCHEV, N., VASSILEVA, R. (2016): Prevalence of gastrointestinal parasities and Dirofilaria spp. in stray dogs from some regions in Bulgaria. Bulg. J. Vet. Med., 19(1): 57 - 62. DOI: 10.15547/bjvm.872
REHBEIN, S., KAULFUSS, K., VISSER, M., SOMMER, M., GRIMM, F., SILAGHI, C. (2016): Parasites of sheep herding dogs in central Germany. Berl. Münch. Tierärztl. Wochenschr., 129: 56 - 64. DOI: 10.2376/000-9366-129-56
ROUSSEL, C., DRAKE, J., ARIZA, J. (2019): French national survey of dog and cat owners on the deworming behaviour and lifestyle of pets associated with the risk of endoparasites. Parasite Vectors, 12(1): 480. DOI: 10.1186/s13071-019-3712-4
SENLIK, B., CRANK, V., KARABacak, A. (2006): Gastrointestinal nematode infections in Turkish military dogs with special reference to Toxocara canis. J. Helminthol., 80: 299 - 303. DOI: 10.2376/jh02006336
SHUKULLARI, E., HAMEL, D., RAPTI, D., PFISTER, K., VISSE, M., WINTER, R., REHBEIN, S. (2015): Parasites and vector-borne diseases in 177
client-owned dogs in Albania. Gastrointestinal and pulmonary endoparasite infections. Parasitol. Res., 114(12): 4579 - 4590. DOI: 10.1007/s00436-015-4704-8

Solano-Gallego, L., Lull, J., Osso, M., Hegarty, B., Breitschwerdt, E. (2006): A serological study of exposure to arthropod-borne pathogens in dogs from northeastern Spain. Vet Res., 37: 231 - 244. DOI: 10.1051/vetres:2005054

Sommer, M., Zdraňkovíc, N., Vasic, A., Grimm, F., Silaghi, C. (2017): Gastrointestinal parasites in shelter dogs from Belgrade, Serbia. Vet. Parasitol. Reg. Stud. Reports, 7: 54 - 57. DOI: 10.1016/j.vprsr.2017.01.001

Traversa, D., Cesare, A., Conboy, G. (2010): Canine and feline cardiopulmonary parasitic nematodes in Europe: emerging and underestimated. Parasite Vectors, 3: 62. DOI: 10.1186/1756-3305-3-62

Tsachev, I. (2006): Detection of antibodies reactive with *Ehrlichia canis* in a kennel in Bulgaria. Turk. J. Vet. Anim. Sci., 30: 425 - 426

Tsachev, I., Kontos, V., Zarkov, I., Krastev, S. (2006): Survey of antibodies reactive with *Ehrlichia canis* among dogs in South Bulgaria. Rev. Med. Vet., 157(10): 481 - 485

Tsachev, I., Papadogiannakis, E., Kontos, V., Zarkov, I., Petrov, V., Pelagic, V. (2006a): Seroprevalence of *Ehrlichia canis* infection among privately-owned dogs in northern Bulgaria. J. Hell. Vet. Med. Soc., 57(3): 212 - 216

Tsachev, I., Petrov, V., Flaming, K., Brown, C. (2008): First detected case of *Anaplasmaphagocytophilum* in a dog in Bulgaria. Rev. Med. Vet., 159(11): 562 - 564

Ursache, A., Gyorke, A., Mircean, V., Matei, I., Cozma, V. (2016): Prevalence of *Toxocara canis* and other endoparasites in client-owned dogs from Cluj county, Romania. Sci. Parasitol., 17(3-4): 101 – 107

Vasileiou, N., Fthenakis, G., Papadopoulos, E. (2015): Dissemination of parasites by animal movements in small ruminant farms. Vet. Parasitol., 213(1-2): 56-60. DOI: 10.1016/j.vetpar.2015.04.031

Villeneuve, A., Goring, J., Marcotte, L., Overvelde, S. (2011): Seroprevalence of *Borrelia burgdorferi, Anaplasmaphagocytophilum, Ehrlichia canis,* and *Dirofilaria immitis* among dogs in Canada. Can. Vet. J., 52(5): 527 - 530

Villeneuve, A., Polley, L., Jenkins, E., Schurer, J., Gilles, J., Kutz, S., Conboy, G., Benoit, D., Seewald, W., Gagne, F. (2015): Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces. Parasite Vectors, 8: 281. DOI: 10.1186/s13071-015-0870-x

Voglina, N., Romashov, B., Romashova, N., Shtanikov, A. (2013): Prevalence of borreliosis, anaplasmosis, ehrlichiosis and *Dirofilaria immitis* in dogs and vectors in Voronezh Reserve (Russia). Comp. Immunol. Microbiol. Infect. Dis., 36(6): 567 - 574. DOI: 10.1016/j.cimid.2013.08.003

Xhaxhiu, D., Kusi, I., Rapti, D., Kondi, E., Postoli, R., Rinaldi, L., Dimitrova, Z., Visser, M., Knaus, M., Rehbein, S. (2011): Principal intestinal parasites of dogs in Tirana, Albania. Parasitol. Res., 108: 341. DOI: 10.1007/s00436-010-2067-8

Yıldırım, A., Ica, A., Atalay, O., Duzlu, O., Inç, A. (2007): Prevalence and epidemiological aspects of *Dirofilaria immitis* in dogs from Kaysen Province, Turkey. Res. Vet. Sci., 82: 358 - 363. DOI: 10.1016/j.rvsc.2006.08.006

Zi, A., Conboy, G. (2012): Veterinary Clinical Parasitology. 8th Edition, Chichester, UK, Wiley-Blackwell, pp. 188 - 201

Zarkov, I., Marinov, M. (2003): The lyme disease: results of a serological study in sheep, cows and dogs in Bulgaria. Rev. Med. Vet., 154(5): 363 – 366