Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma

Alireza Behtash[1] Syo Kamata[2] and M. Martinez[3]
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

C. N. Cruz-Camacho[4]
Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias,
Departamento de Física, Grupo de Física Nuclear, Carrera 45 N° 26-85,
Edificio Uriel Gutiérrez, Bogotá D.C. C.P. 111321, Colombia

For the Bjorken flow we investigate the hydrodynamization of different modes of the one-particle distribution function by analyzing its relativistic kinetic equations. We calculate the constitutive relations of each mode written as a multi-parameter trans-series encoding the non-perturbative dissipative contributions quantified by the Knudsen Kn and inverse Reynolds Re^{-1} numbers. At any given order in the asymptotic expansion of each mode, the transport coefficients get effectively renormalized by summing over all non-perturbative sectors appearing in the trans-series. This gives an effective description of the transport coefficients that provides a new renormalization scheme with an associated renormalization group equation, going beyond the realms of linear response theory. As a result, the renormalized transport coefficients feature a transition to their equilibrium fixed point, which is a neat diagnostics of transient non-Newtonian behavior. As a proof of principle, we verify the predictions of the effective theory with the numerical solutions of their corresponding evolution equations. Our studies strongly suggest that the phenomenological success of fluid dynamics far from local thermal equilibrium is due to the transient rheological behavior of the fluid.

Introduction. The regime of validity and applicability of relativistic hydrodynamics is linked with the proximity of the system to a local thermal equilibrium. It has, however, been observed in proton-proton collisions [1,2] that phenomenological models based on fluid dynamics give rise to quite satisfactory results, despite the system size being so small [3,4]. Furthermore, various theoretical models [6-18] have shown that hydrodynamics is valid even when large pressure anisotropies are present.

These findings hint at the existence of a new theory for far-from-equilibrium fluid dynamics [19-21]. Although little is known of this theory, it has been identified that the onset of hydrodynamics depends on the decay of new degrees of freedom, the so-called non-hydrodynamic modes [22-35], whose nature is purely non-perturbative [18-19, 22-25, 27-35]. To this end, it is necessary to study how the nonlinear microscopic dynamics between different modes influences its macroscopic response. But a full-fledged study of non-equilibrium physics is not practically possible unless an effective truncation scheme is instead proposed. Thus, the challenge is to identify a tractable truncation scheme which captures the relevant non-equilibrium dynamics while being simple enough to perform concrete calculations. This task requires creating new computational tools and techniques, which is not otherwise achievable via the usual linear response theory.

In this Letter, we develop a new approach to studying hydrodynamization and nonlinear transport processes, which goes beyond linear response regime. Our treatment is highly nonlinear in the Knudsen and inverse Reynolds numbers, and thus, appropriate for the study of far-from-equilibrium dynamics and understanding the non-perturbative information of short-lived non-hydrodynamic modes. With the help of trans-asymptotic matching [36], we calculate the sum of short-lived transient non-hydrodynamic modes at a fixed order in the gradient expansion, and the transport coefficients thereby become dynamical quantities evolving with time toward their respective asymptotic equilibrium values obtained by linear response theory. Knowing the late-time behavior of the fluid, we backtrack the flow of transport coefficients all the way into the UV by including as many non-perturbative contributions as possible, to the transient non-hydrodynamic modes, which naturally build up the formal exponential solutions to the fluid evolution equations. This consequently provides renormalization group (RG) equations governing the RG flows of the dynamical transport coefficients, which by construction, converge to the correct values as the fluid reaches the thermal equilibrium. This simple situation is analogous to the case of non-Newtonian fluids [37], where transport coefficients such as shear viscosity, become nonlinear functions of the gradient velocity and thus, their evolution is dictated by the macroscopic deformation history of the fluid [38].

We consider an expanding conformal plasma undergoing Bjorken flow. The microscopic description of this system is governed by the relativistic Boltzmann equation within the relaxation time approximation (RTA-BE). The problem of solving the RTA-BE is transformed into determining the evolution of the moments through their nonlinear kinetic equations. The solutions of the moments can be written in terms of a multi-parameter trans-series [36], which correctly yields the information of the attracting section around the thermal equilibrium fixed point for the gas at late time, otherwise known as the “attractor”. Being able to go beyond the attracting region distinguishes the predictions of linear response theory and the physics of non-equilibrated fluid dynamics.

Kinetic model. The $ISO(2) \otimes SO(1,1) \otimes Z_2$ symmetry group of the Bjorken flow becomes explicitly manifest in the Milne coordinates $x^\mu = (\tau,x,y,\varsigma)$, with longitudinal proper time
\[\tau = \sqrt{t^2 - z^2} \] and space-time rapidity \(\xi = \tanh^{-1}(\zeta/t) \), where the metric is \(g_{\mu\nu} = \text{diag}(-1,1,1,\tau^2) \). The four-momentum of particles is decomposed like \(p^\mu = -(u \cdot p) u^\mu + \mathcal{Z} \xi p^\eta + (1 \cdot p) p^\mu \) where the fluid velocity is \(u^\mu = (1,0,0,0) \), \(l^\mu = (0,0,0,\tau^{-1}) \) and \(\mathcal{Z} = g^{\mu\nu} + u^\mu u^\nu - \tau^2 l^\mu l^\nu \). In the Milne coordinates the Bjorken flow symmetries reduce the RTA-BE to a simple relaxation type equation \(\partial_\tau f_p = -\frac{1}{\tau(\tau)} [f_p - f_{eq}] \). (1)

Here \(f_p = f(\tau, p_T, (p_z/\tau)) \), where the transverse momentum is given by \(p_T = |p_T e^{i\mu \nu} p^\nu_\eta| \) and the longitudinal momentum \(p_z \) is direction is \(p_z \). We consider \(f_{eq} = f(\tau(T(\tau))) \) where \(\tau = \sqrt{\tau^2 + (p_z/\tau)^2} \) is the energy of the particle, and \(T(\tau) \) represents the local temperature. For massless particles, the relaxation time scale is \(\tau(\tau) = \theta_0 / T(\tau) \), with \(\theta_0 = 5(\pi/4 s)^{1/4} \), and \((\pi/4 s) \) being the equilibrium value of the shear viscosity over entropy ratio.

The nonlinear relaxation process described by the Boltzmann equation can be understood in terms of the evolution of the moments of the distribution function \(\mathcal{F} \). Thus, we use the following ansatz for \(f_k \) \[f_p = f_{eq} \sum_{n=0}^{N_l} \sum_{\ell=0}^{N_l} c_{nl}(\tau) P_{2l} \left(\frac{p_x}{\tau p^\tau} \right) \mathcal{M}_n(\xi) \left(\frac{p^\tau}{T} \right), \] (2)

where \(\mathcal{M}_n(\xi) \) and \(P_{2l} \) denote the generalized Laguerre and Legendre polynomials, respectively. From this expression the moments \(c_{nl} \) are directly read as \[c_{nl}(\tau) = \frac{A_{nl}}{T^4(\tau)} \left(\frac{p^\tau}{T} \right)^2 P_{2l} \left(\frac{p_x}{\tau p^\tau} \right) \mathcal{M}_n(\xi) \left(\frac{p^\tau}{T} \right), \] (3)

where \(A_{nl} = 2\pi^2(4l+1)/(n+1)! \) and \(\cdots = \int_0^{1} f \cdots f \). The hydrodynamic equilibrium is given by \(c_{eq} = \delta_{n0} \delta_{\ell0} \). Here, we only study the low energy modes, i.e. \(n = 0 \), and thus we denote \(c_{0l} \) by \(c_l \). Furthermore, we assume that the initial values of \(c_{nl} \) are obtained from the RS distribution function ansatz \(f_0 = f_{eq} \left(\sqrt{p_x^2 + (1 + \xi_0)(p_z/\tau_0)^2} / |\mathcal{R}(\xi_0)^{-1/4} T_0| \right) \), \(\xi_0 \) measures the momentum anisotropy and \(R(\xi_0) \) is given by Eq. (7a) in \[\frac{d^\xi}{d\tau} = \lambda \mathcal{X} + \frac{1}{w} \hat{B}_D \hat{Z} - c_l \frac{3}{2w} \mathcal{Y} + \frac{3}{2w} \mathcal{Y} = 0, \] (5)

where \(\hat{B}_D = U\mathcal{B} U^{-1} = \text{diag}(b_1, \ldots, b_L) \in \mathbb{C}^L \), \(\mathcal{X} = U \mathcal{C} \), and \(\mathcal{Y} = U \mathcal{Y} \). Note that we can reproduce \(c_1 \) in \(c_l = \sum_{l=0}^{L} U^{-1} \hat{c}_l \) and \(c_l \) are the components of \(c \). This system is L-dimensional, rank 1, and level 1 vector differential equation in a neighborhood of an irregular singularity, \(w = \infty \). In the analysis of asymptotic solutions of \(\hat{c} \), two terms play a crucial role: (i) the coefficient of order \(O(w^0) \) term, i.e. the diagonal matrix of Lyapunov exponents \(\hat{A} \) determines the rates at which exponential stability is reached at equilibrium in L directions of the flow space, and (ii) the coefficient of order \(O(w^{-1}) \), i.e. the (diagonalized) mode-to-mode coupling matrix \(\hat{B}_D \) that shows how each mode \(c_l \) is coupled to the neighboring modes. Knowing these two elements paves the way to recasting the dynamical system into the form \[\frac{d^\xi}{d\tau} = \mathcal{X} + \frac{1}{w} \hat{B}_D \hat{Z} - c_l \frac{3}{2w} \mathcal{Y} + \frac{3}{2w} \mathcal{Y} = 0, \] (5)

specifically prepared for asymptotic analysis shown first in generic nonlinear rank-1 systems of ODEs in Ref. \(\mathcal{F} \). Since \(\mathcal{B} \) is not diagonal as it stands, the prepared form of the dynamical system was written in the basis of \(\mathcal{E} \) that diagonalizes it. Notice that in the RTA there is only one parameter \(\theta_0 \) and thus, the Lyapunov exponents are all identically maximal and given by \(\hat{A} = \frac{3}{2w} \hat{A} \).

In building the matrix \(\mathcal{U} \) it is appropriate to choose the eigenvectors of \(\hat{B}_D \) in such a way that \(|U_{l}^{-1} | = 1 \) for any \(\tau \). So does \(\hat{b}_{l-1} = \hat{b}_l \) for \(l = 1, \ldots, [L/2] \) where \(\cdot \) is the floor function and \(b_{l} \in \mathbb{R} \) for odd \(l \). Also important is to state that rescaling the eigenvectors immediately corresponds to changing the expansion parameters in the trans-series ansatz defined below and for the sake of consistency, we will stick to the above condition for the eigenvectors from now on. Finally, let us write down the trans-series ansatz for \(\hat{c}_l \):

\[\hat{c}_l(w) = \sum_{n \geq 0} \sum_{m \geq 0} \sigma^n \xi_m^w \sum_{\ell=0}^{L} U_{l\ell}^{(n)} r^\ell \] (6)

Here, \(\xi^n(w) = \exp(\cdot w) \) and \(\sigma \in \mathbb{C}^L \) are the product of expansion.
parameters $\prod_{l=1}^{L} \sigma_l^{b_l}$, and n_1, \ldots, n_L are non-negative integers. The dot indicates the inner product, $A \cdot B = \sum_{l=1}^{L} A_l B_l$. It is better to exploit vector expressions for the non-perturbative sector number aka trans-monomial order $n = (n_1, \ldots, n_L)$, the anomalous dimension of the pseudo-modes \tilde{c}_l, $b = (b_1, \ldots, b_L)$, and the Lyapunov exponents $S = (S_1, \ldots, S_L)$.

By substituting the ansatz (6) into the differential equation (5), one can obtain a recursive relations for the coefficients as

$$\sigma^n \xi^n \left[(n \cdot \tilde{b} + b - k) \tilde{a}^{(n)}_{k+1} + \left(\frac{3}{\tilde{S}^{b_{-1}}} - n \cdot S \right) \tilde{a}^{(n)}_{k} \right] + \frac{1}{2} \bar{\xi} \delta_{n,0} \delta_{a,0}$$

$$- \frac{\sigma^n \xi^n}{20} \sum_{l'=1}^{L} \sum_{n' \geq 0}^{n} U_{l'} \left[\sum_{k=0}^{L} \left(n' \cdot \tilde{b} + 4 - k' \right) \tilde{a}_{k+1}^{(n-n')} - n' \cdot S \sum_{k'=0}^{L} \tilde{a}_{k+1}^{(n-n')} \right] = 0,$$

where $\delta_{n,0} = \delta_{n_1,0} \cdots \delta_{n_L,0}$. With a little bit of algebra, Eq. (22) shows that the modes $c_l(w)$ go like $O(w^{-1})$, resulting in $\tilde{a}^{(0)}_{k+1} = 0$ for any l. So physically, c_1 is the slowest mode that contributes to the observables in (4). The zeroth order term in the first non-perturbative sector ($|n| = 1$) is always a constant normalizing the trans-series expansion parameters σ_l. For convenience, we choose to set $\tilde{a}_{l,0}^{(0)} = 1$ for $n_l = \tilde{b}_l / b_l$. Other trans-series coefficients can be recursively determined order by order in both k and n in (7).

In addition, at $|n| = 1$ order Eq. (7) gives $S_l = \frac{3}{\tilde{S}^{l_{-1}}}$ and $\tilde{b}_l = -b + \frac{1}{2}$. For example, at first two truncation orders $L = 1, 2$ the anomalous dimensions are given as $\tilde{b}_1 = -b_1 + \frac{1}{2}$, $\tilde{b}_{1,2} = -1 + \frac{1}{16} \left(53 \pm i \sqrt{10655} \right)$, respectively. It is notable that, physically, all c_l must be real-valued but \tilde{c}_l are in general complex, justifying the name "pseudo-modes". The reality condition for c_l is related to the choice of the initial values (expansion parameters) σ_l, which imposes the constraints $\sigma_{2L-1} = \sigma_{2L} \in \mathbb{C}$ for $l = 1, \ldots, [L/2]$, and $\sigma_{2L} \in \mathbb{R}$ if L is odd. Every flow line that evolves to the attractor of the equilibrium fixed point as $w \to \infty$, can be constructed from the set of asymptotic solutions to the dynamical system (5) for some σ_l. The allowed set of σ_l shapes the basin of attraction at any L.

Initial data and UV information. Determining the l-th expansion parameter σ_l is the most challenging task related to Eq. (6). This partly goes back to the fact that there are L equations involved in the system of ODEs of (5), whereas the exact numerical expression of (3) is always prepared by only three initial values: τ_0, T_0 and the parameter ξ_0. Among these constants, the search for ξ_0-dependence of σ_l is more difficult as the other two explicitly enter the trans-series via Écalle time w itself. In order to obtain σ_l, we use the least squares optimization to fit the trans-series of all the modes involved at order L simultaneously on the Stokes lines. One, however, needs to be aware of "Stokes phenomenon", and the UV data that eventually dictate the fate of flow lines.

First, we have to note that capturing the divergence of original asymptotic expansion $(n = 0)$ in (6) is done by initially Borel transforming the series. This yields some sort of singularity along the physically relevant Stokes line, that is, $\Im(n \cdot S w) = 0$. Then, the Borel resummation of the original asymptotic series picks up a residue or discontinuity around the Stokes line (given more explicitly by Écalle’s bridge equation (47)). Imposing the reality condition, one concludes that the overall constant appearing in the imaginary piece, aka "Stokes constant", has to cancel the imaginary part of the solution (8).

Thus, the UV points (18). These are actually the RG flows that unveil the general behavior of the modes c_l in kinetic theory and consequent renormalization of transport coefficients far from equilibrium. In the context of RTA Boltzmann theory, the RG time should appropriately be chosen as $t = \log(\rho)$ with $\rho = \tau T_0 / \theta_0$, and $\tau_0 T_0 / \theta_0$ is a UV cutoff. Then, for $L = 1$, we get the following autonomous system of equations describing the RG flows in the 3d macroscopic Bjorken phase space:

$$\frac{d\xi}{d\tau} = -\frac{1}{2} \frac{T - \frac{1}{2} T \xi}{\xi} c_1,$$

$$\frac{d\rho}{d\tau} = -\frac{8}{3} - \frac{10}{3} \frac{T c_1}{c_1} + \frac{2}{3} \xi^2 - (T/T_0) c_1 \rho,$$

$$\frac{d\rho}{d\tau} = \rho.$$

Unless $\tau_0 = T_0 = 0$ (while keeping θ_0 finite), the theory does not have a UV completion. At this limit, there are two UV fixed points: $(\rho, T, c_1)_{\text{UV}} = (0, 0, -3.03)$, an index-2 (weakly unstable) saddle point, and $(0, 0, 6.60)$ which is an index-1 (strongly unstable) saddle point shown in Fig. 1. The index represents the number of attracting directions that lie on the $T-c_1$ plane while the orthogonal direction ρ is obviously re-
FIG. 2. c_1 vs. w for $\xi_0 = 1.100$. The bare and renormalized values of c_1 are taken into account up to $O(w^{-1})$. The exact lines are given by numerically solving Eq. (5) for $L = 1$ by setting an initial value of $c_1(w_0)$ with $w_0 = 0.15$ obtained by the numerical analysis of Eq. (3) for $\xi_0 = 1.100$. For $\xi_0 = 100$, c_1 emanates from the neighborhood of the free-streaming point, and thus there is an immediate escape to the hydrodynamic equilibrium without any early-time relaxation. A local minimum (relaxation point) exists that is apparent at $w \sim 0.3$ for $\xi_0 = 1$ in this figure.

pelling. Considering the full theory $L = \infty$, the UV points move into the physical domain and become $(p, T, c)_{\text{UV}} = (0, 0, (-2.5, \{(4I - 1)(2I - 4I)\}_{I = 2}^\infty)$ and $(0, 0, (5, 4I + 1)_{I = 2}^\infty)$, of which the former gives the “free-streaming” limit ($\xi_0 \rightarrow \infty$). The latter explains a recently found solution in Ref. [43]. At this point, the longitudinal pressure is maximum $P_\lambda = \epsilon$, which in turn causes a huge amount of pressure along the z-direction due to $\xi_0 \rightarrow -1$, while there is a slowdown in the transverse direction because $P_T = 0$. For a flow emanating from the neighborhood of this point, there is a local relaxation happening at early times, an indication of more attracting directions in the UV, as is obvious from the larger index of the saddle point A (free-streaming) compared to that of the saddle point B in Fig. [1] Thus, we write down its

\begin{equation}
\frac{d}{dt} \hat{C}_{l,k} + (b_l - k) \hat{C}_{l,k} - s \hat{C}_{l,k+1} + \frac{1}{2w} \hat{C}_{l,k+1} + \frac{3}{2} \delta_{k,0} \hat{C}_{l,k} = \frac{1}{20} \sum_{l^2 - 1}^L \left[\sum_{0}^{k} C_{l,k-k} \left(b \cdot \hat{C}_{l,k} + (4 - k') \hat{C}_{l,k'} \right) - \sum_{k'}^{k-1} C_{l,k-k'} \frac{1}{2} \hat{C}_{l,k'} \right] = 0,
\end{equation}

where $C_{l,k}(\sigma^p(w)) = \sum_{n=0}^{\infty} \sigma^{p,n}(w) \hat{u}_{l,k}^{(n)} \cdot \hat{C}_{l,k} = \partial \log Z$. Notice that (7) is composed of L nonlinear PDEs for every k, and it is in general difficult to solve it analytically for $L > 1$ [49]. Nonetheless, it is exactly solvable for $L = 1$ at any order k. The exact results for $k = 0, 1$ are given by $\hat{C}_{l,0}(\sigma_1 \xi_1) = -20\xi \hat{C}_{l,1}(\sigma_1 \xi_1) = -105w^3 + 36w^2 + 5)/(W_2 + 1)$ respectively, where $W_2 = W(-\sigma_1 \xi_1/20)$ is the Lambert-W function. Fig. [2] compares the bare and renormalized c_1 for different initial conditions for $L = 1$, and the agreement between the exact numerical and trans-series solutions is overall remarkable.

We may directly extract the renormalized transport coefficients from the near-IR asymptotic expansion of non-hydrodynamic modes c_1 found in [50] all the way into near-UV region by including the exponentially small contributions coming from the nonlinearities introduced in Eq. (5) by mode-to-mode coupling terms. Here, we have to pay attention to two important characteristics of an RG flow in connection with this simple picture: (1) The cutoff $\tau_0 T_0/\theta_0$ for a fixed finite θ_0, is merely a physical bound on the near-UV theory such that, as in Fig. [1], the flows are initiated away from the T-c plane and well inside the basin of attraction of the IR fixed point. (2) The anomalous dimensions b_l and Lyapunov exponents S_l are both the IR data appearing in the trans-series of each non-hydrodynamic mode. Along an RG flow initiated at some near-UV point when $\log (w_0/\theta_0) > -\infty$ or $\log \rho > -\infty$ in the basin of attraction, these two parameters never flow with the RG time. In other words, these data are invariant under an RG transformation of energy-momentum tensor governing the dynamical system [9], which pushes forward the flow lines starting near a fixed point and flowing to another fixed point.

It is, therefore, sought to find a non-perturbative approach to determine the far-from-equilibrium transport coefficients from a rheologic interpretation of the fluid. The deformation history of the fluid is traced in the transport coefficients by considering their nonlinear functional dependence on the velocity gradient tensor, e.g. $\eta \equiv \eta(\sigma^{\nu\nu})$, which is often studied at a perturbative level in non-Newtonian fluid dynamics. This has given rise to some interesting physical phenomena known as shear thinning and thickening [37].

The second order gradient expansion of the distribution function [50,53] determines the asymptotic form of c_1 to be

\begin{equation}
c_1 = -\frac{4w}{2} W^{-1}(\eta/s) \left(\frac{2w}{2} W^{-2}(\tau_\pi(\eta/s) - (\lambda_1/s) \right) + \ldots .
\end{equation}

Thus, by comparing this result with the one obtained from the trans-series of c_1 (for $L = 1$), that is $c_1 = \sum_{l=0}^{\infty} S_{l,k}(w) w^{-k}$, we see that the first non-perturbatively corrected asymptotic term of order w^{-1} gives $\eta/s = -\frac{4}{2} F_{1,k}(w)$, where $F_k = U^{-1} \hat{C}_{l,k}$ from (7). In a similar fashion, one can obtain $T(\lambda_1/s - \tau_\pi(\eta/s) = \frac{2w}{2} W_{1,2}(w)$ from c_1. The RG flow equation of these transport coefficients can then be derived from the RG flow of moments. Considering a generic observable $O(w)$ constituting the resummed coefficients $F_1 = \{ F_{1,k} | k = \ell \geq 0 \}$, we can write down its $(L = 1, \theta_0 < \infty)$ RG flow equation explicitly as

\begin{equation}
\frac{dO(F_{1}(w))}{d\log w} = \sum_{l=0}^{\infty} \left(\hat{b}_l - \frac{3\tau_\pi}{2w} \right) \cdot \left[\hat{C}_l F_{1,k}(\xi_1) \right]_{\xi_1 = \sigma_1 \xi_1} \Delta_k(w)
\end{equation}

where $\xi_1(w) = e^{-\frac{3\tau_\pi}{2w} b_1}, F_{1,k}(w) \equiv F_{1,k}(\sigma_1 \xi_1(w))$ and $\Delta_k(w) = dO(F_{1}(w))/dF_{1,k}(w)$. As can be seen, the transport coefficients get a fully non-perturbative expression through
The shear thickening phase. We also observe that in accordance with the second law of thermodynamics, the renormalized η/s remains always positive, and its shape is identical (likewise for $T(\lambda_1/s - \tau_\eta(\eta/s))$) regardless of the initial values. There is an overall tendency to merge to the IR equilibrium faster as $\zeta_0 \rightarrow 0$, which is again in line with the argument given at the end of last section.

Conclusions. We outlined a new method of decomposing the distribution function in terms of non-hydrodynamic modes in a suitable basis, which cast the Boltzmann equation into a dynamical system for a non-equilibrium scale-invariant expanding plasma. We found the UV and IR fixed points of this system and examined its flow lines. It was shown that the exponentially small corrections tracing the nonlinear deformation history of the these flows eventually give a prescription for the renormalization of transport coefficients via trans-asymptotic matching [36]. The short-lived non-hydrodynamic modes give rise to non-Newtonian characteristics of the renormalized transport coefficients, and as a result, hydrodynamics becomes valid in far-from-equilibrium regimes where Kn and Re^{-1} are large. Therefore, we conclude that the success of hydrodynamics in high energy nuclear collisions is intrinsically related with the transient rheological behavior of the fluid.

Acknowledgments. O. Costin has our sincere gratitude for his patience, extensive discussions and kind explanations of some concepts from his seminal paper. We thank G. Dunne, A. Kemper, M. Spalinski, M. Heller, E. Calzetta, U. Heinz, J. Casalderrey-Solana, A. Murgola, C. Pinilla, T. Schäfer and M. Unsyl for useful discussions. A. B., S. K. and M. M. are supported in part by the US Department of Energy Grant No. DE-FG02-03ER41260, and M. M. is supported by the BEST (Beam Energy Scan Theory) DOE Topical Collaboration.

\[\zeta_1 \text{ By treating } \zeta_1 \text{ as an effectively independent variable from } w \text{ [36]. } F_{1,k}(\zeta_1) \text{ can be regarded as the coefficients of a power series in } w^{-1}, \text{ i.e. } c_1(\zeta_1, w) = \sum_{k=0}^{\infty} F_{1,k}(\zeta_1) w^{-k}. \text{ Hence, the piece } \zeta_1 F_{1,k} \text{ in (11) is calculated by using the Cauchy integral formula to pick out the } k \text{ th coefficient of } \zeta_1 c_1:\]

\[\hat{c}_1 F_{1,k}(\zeta_1) = \frac{1}{2\pi i} \oint_{|w|<1} dw w^{k-1} \left(\frac{\hat{b}_1 - \frac{3w}{2\pi}}{\hat{b}_1} \right)^{-1} \times \left[\sum_{k'=0}^{\infty} k' F_{1,k'}(\zeta_1) w^{-k'} + \hat{b}_1(c_1(\zeta_1, w), w) \right], \tag{12} \]

where the beta function \hat{b}_1 is defined through [5] as $\frac{dc_1}{d\log w} = \hat{b}_1(c_1, w)$. Setting $O(w) = -\frac{3}{2\pi} F_{1,1}$ and $O(w) = \frac{9}{2\pi} F_{1,2}$ renders the RG flow equation in terms of η/s and $T(\lambda_1/s - \tau_\eta(\eta/s))$, respectively. For different initial values of σ_1, Fig. 3 shows the w-dependence of η/s and $T(\lambda_1/s - \tau_\eta(\eta/s))$. As $w \rightarrow \infty$, both observables asymptotically approach to their equilibrium values at the IR fixed point. There is, however, a shear thinning effect in the UV regime due to the early-time free streaming expansion, as seen in Fig. 3 until the interactions kick in and the flow initiates its relaxation onward exponentially in the shear thickening phase. We also observe that in accordance with the second law of thermodynamics, the renormalized η/s remains always positive, and its shape is identical (likewise for $T(\lambda_1/s - \tau_\eta(\eta/s))$) regardless of the initial values. There is an overall tendency to merge to the IR equilibrium faster as $\zeta_0 \rightarrow 0$, which is again in line with the argument given at the end of last section.
I. Aniceto and M. Spaliński, Phys. Rev. Lett. 108, 201602 (2012), arXiv:1103.3452 [hep-th]
[14] M. P. Heller, R. A. Jank, and P. Witaszczyk, Phys. Rev. Lett. 108, 061901 (2012), arXiv:1103.3452 [hep-th]
[15] B. Wu and P. Romatschke, Int. J. Mod. Phys. C22, 1317 (2011)
[16] W. van der Schee, Phys. Rev. D87, 061901 (2013), arXiv:1211.2218 [hep-th]
[17] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van der Schee, Phys. Rev. Lett. 111, 181603 (2013), arXiv:1305.4919 [hep-th]
[18] A. Behtash, C. N. Cruz-Camacho, and M. Martinez, Phys. Rev. D97, 044041 (2018), arXiv:1711.01745 [hep-th]
[19] P. Romatschke, Phys. Rev. Lett. 120, 012301 (2018), arXiv:1704.08699 [hep-th]
[20] P. Romatschke and U. Romatschke, (2017), arXiv:1712.05815 [nucl-th]
[21] M. P. Heller and V. Svensson, (2018), arXiv:1802.08225 [nucl-th]
[22] F. Romatschke, Eur. Phys. J. C77, 21 (2017), arXiv:1609.02820 [nucl-th]
[23] M. P. Heller, A. Kurkela, M. Spalinski and V. Svensson, Phys. Rev. D97, 091503 (2018), arXiv:1609.04803 [nucl-th]
[24] M. Spalinski, Phys. Rev. D94, 085002 (2016), arXiv:1607.06381 [nucl-th]
[25] J. Casalderrey-Solana, N. I. Gushterov, and B. Meiring, (2017), arXiv:1712.02772 [hep-th]
[26] G. S. Denicol and J. Noronha, Phys. Rev. D97, 056021 (2018), arXiv:1711.01657 [nucl-th]
[27] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van der Schee, Phys. Rev. Lett. 111, 181603 (2013), arXiv:1305.4919 [hep-th]
[28] M. P. Heller and V. Svensson, (2018), arXiv:1802.08225 [nucl-th]
[29] P. Romatschke, (2017), arXiv:1710.03234 [hep-th]
[30] M. Strickland, J. Noronha, and G. Denicol, Phys. Rev. D97, 036020 (2018), arXiv:1709.06644 [nucl-th]
[31] G. Basar and G. V. Dunne, Phys. Rev. D92, 125011 (2015), arXiv:1509.05046 [hep-th]
[32] I. Aniceto and M. Spalinski, Phys. Rev. D93, 085008 (2016), arXiv:1511.06358 [hep-th]
[33] M. Spalinski, Phys. Lett. B776, 468 (2018), arXiv:1708.01921 [hep-th]
[34] M. Lublinsky and E. Shuryak, Phys. Rev. C76, 021901 (2007), arXiv:0704.1647 [hep-ph]
[35] G. S. Denicol and J. Noronha, (2018), arXiv:1804.04771 [nucl-th]
[36] O. Costin and R. Costin, Inventiones mathematicae 145, 425 (2001).
[37] R. Larson and R. Larson, The Structure and Rheology of Complex Fluids, Topics in Chemical Engineering (OUP USA, 1999).
[38] A perturbative formulation of relativistic fluid dynamics that goes beyond the IS formalism, has been advocated in the past by different authors [44,46], where higher-order dissipative corrections were included. Using such a perturbative resummation, some of the authors of these works [58–63, 65, 67] realized the non-Newtonian nature of the transport coefficients. Nonetheless, none of these approaches studied the non-perturbative contributions of non-hydrodynamic modes at a fixed order in the gradient expansion, which is the main message in this Letter.
[39] E. Molnar, H. Niemi, and D. H. Rischke, Phys. Rev. D93, 114025 (2016), arXiv:1602.00573 [nucl-th]
[40] G. Baym, Phys. Lett. B138, 18 (1984).
[41] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke, Phys. Rev. D83, 074019 (2011), arXiv:1102.4780 [hep-th]
[42] H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).
[43] Similar ansatz has been used in Lattice Boltzmann methods for relativistic systems [69].
[44] P. Romatschke and M. Strickland, Phys. Rev. D68, 036004 (2003), hep-th/0304092
[45] M. Martinez and M. Strickland, Nucl. Phys. A848, 183 (2010), arXiv:1007.0889 [nucl-th]
[46] O. Costin, Duke Math. J. 93, 289 (1998).
[47] D. Dorigoni, (2014), arXiv:1411.3585 [hep-th]
[48] A. Dash and A. Jaiswal, Phys. Rev. D97, 104005 (2018), arXiv:1711.07130 [gr-qc]
[49] A. Behtash et al., Work in progress.
[50] J.-P. Blaizot and L. Yan, JHEP 11, 161 (2017), arXiv:1703.10694 [nucl-th]
[51] J.-P. Blaizot and L. Yan, Phys. Lett. B780, 283 (2018), arXiv:1712.03856 [nucl-th]
[52] D. Teaney and L. Yan, Phys. Rev. C89, 014901 (2014), arXiv:1304.3753 [nucl-th]
[53] M. A. York and G. D. Moore, Phys.Rev. D79, 054011 (2009), arXiv:0811.0729 [hep-ph]
[54] R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990).
[55] I.-S. Lium, I. Müller, and T. Ruggeri, Annals of Physics 169, 191 (1986).
[56] R. Geroch and L. Lindblom, Annals of Physics 207, 394 (1991).
[57] A. Muronga, Phys. Rev. C69, 034903 (2004), arXiv:nucl-th/0309055 [nucl-th]
[58] U. W. Heinz, H. Song, and A. K. Chaudhuri, Phys. Rev. C73, 034904 (2006), arXiv:nucl-th/0510014 [nucl-th]
[59] T. Koide, G. S. Denicol, P. Mota, and T. Kodama, Phys. Rev. C75, 034909 (2007), arXiv:hep-ph/0609117 [hep-ph]
[60] T. Koide, Phys. Rev. E 75, 066103 (2007).
[61] T. Koide and T. Kodama, Phys. Rev. E 78, 051107 (2008).
[62] U. W. Heinz, (2009), arXiv:0901.4355 [nucl-th]
[63] J. Peralta-Ramos and E. Calzetta, Phys. Rev. D80, 126002 (2009), 0908.2646
[64] A. El, Z. Xu, and C. Greiner, Phys. Rev. C81, 041901 (2010), arXiv:0907.4500 [hep-ph]
[65] K. Tsumura, T. Kunihiro, and Y. Kikutani, Physica D336, 1 (2016), arXiv:1311.7059 [physics.flu-dyn]
[66] A. Jaiswal, Phys. Rev. C88, 021903 (2013), arXiv:1305.3480 [nucl-th]
[67] A. Harutyunyan, A. Sedrakian, and D. H. Rischke, (2018), arXiv:1804.08267 [nucl-th]
[68] K. Tsumura and T. Kunihiro, Eur. Phys. J. A48, 162 (2012).
[69] P. Romatschke, M. Mendoza, and S. Succi, Phys. Rev. C84, 034903 (2011), arXiv:1106.1093 [nucl-th]
SUPPLEMENTAL MATERIAL: EVOLUTION EQUATION OF THE MOMENTS c_{nl}

In this supplemental material we briefly expose the derivation of the evolution equation of the moments c_{nl} in Eq. (3). c_{nl} can be conveniently written as

$$c_{nl} (\tau) = s_{n,l} \int d^3 p A_{n,2l} (\tau) f (\tau, p_T, p_z),$$

(13)

where $s_{n,l}$ and $A_{n,2l}$ are respectively given by

$$s_{n,l} = \frac{1}{4\pi} \Gamma(n + 1) (4l + 1) / \Gamma(n + 4),$$

(14a)

$$A_{n,2l} (\tau) = \frac{1}{T^4} \frac{E_p}{\tau} L_n^{(3)} \left(\frac{E_p}{T} \right) \Phi_{2l} \left(\frac{p_z}{\tau E_p} \right).$$

(14b)

Next, by taking the time derivative of Eq. (13) one obtains

$$\dot{c}_{nl} = \int d^3 p s_{n,2l} A_{n,2l} \dot{f} + \int d^3 p s_{n,2l} \dot{A}_{n,2l} f,$$

(15)

where τ derivative is denoted by an overdot. The first term on the r.h.s. of (15) can be rewritten as

$$\int d^3 p s_{n,2l} A_{n,2l} \dot{f} = -\int d^3 p s_{n,2l} A_{n,2l} (f - f^{eq}) / \tau_r$$

$$= -\tau_r^{-1} (c_{nl} - \delta_{nl0} \delta_{l0}),$$

(16)

where use was made of $c_{nl}^{eq} = \delta_{nl0} \delta_{l0}$ together with the Boltzmann equation (1). After some algebra, the second term in Eq. (15) reads

$$\int d^3 p s_{n,2l} \dot{A}_{n,2l} f = -\tau^{-1} \left[\alpha_{nl} c_{n,l+1} + \beta_{nl} c_{nl} + \gamma_{nl} c_{n,l-1} - n (\rho_l c_{n-1,l+1} + \Psi_l c_{n-1,l} + \Phi_l c_{n-1,l-1}) \right],$$

(17)

where the coefficients $\alpha_{nl}, \beta_{nl}, \gamma_{nl}, \rho_l, \Psi_l,$ and Φ_l are

$$\alpha_{nl} = \frac{(2L+1)(n+1)}{(4L+3)(4L+5)},$$

(18a)

$$\beta_{nl} = \frac{2(2L+1)(5+2)}{(4L+3)(4L+1)},$$

(18b)

$$\gamma_{nl} = \frac{2(n+1)}{(4L+3)(4L+1)},$$

(18c)

$$\rho_l = \frac{2L+1}{(4L+3)(4L+1)},$$

(18d)

$$\Psi_l = \frac{2L+1}{3(4L+3)(4L+1)},$$

(18e)

$$\Phi_l = \frac{2L+1}{(4L+3)(4L+1)}.$$

(18f)

In Eq. (17) we employed the following properties of Laguerre and Legendre polynomials:

$$\begin{align*}
(n+1) L_{n+1} (x) &= (2n+1) x L_n (x) - n L_{n-1} (x), \\
\frac{(x^2 - 1)}{n} \frac{d}{dx} L_n (x) &= x L_n (x) - P_{n-1} (x), \\
n L_n^{(\alpha)} (x) &= (n + \alpha) L_{n-1}^{(\alpha)} (x) - x L_n^{(\alpha+1)} (x), \\
d^{k} \frac{d}{dx} L_n^{(\alpha)} (x) &= \left\{ \begin{array}{ll}
(-1)^k L_{n-k}^{(\alpha+k)} (x) & \text{if } k \leq n, \\
0 & \text{otherwise}.
\end{array} \right.
\end{align*}$$

(19a)

(19b)

(19c)

(19d)

After equating Eqs. (16) - (17) with Eq. (15), one obtains the following evolution equation:

$$\dot{c}_{nl} + \tau^{-1} \left[\alpha_{nl} c_{n,l+1} + \beta_{nl} c_{nl} + \gamma_{nl} c_{n,l-1} - n (\rho_l c_{n-1,l+1} + \Psi_l c_{n-1,l} + \Phi_l c_{n-1,l-1}) \right] + \tau_r^{-1} c_{nl} = 0,$$

(20)
where \(n \geq 0 \) and \(l > 0 \). The energy-momentum conservation law gives the evolution equation of the temperature upon using the matching condition as well as the relations in (4):

\[
\dot{e} + \frac{1}{\tau} (e + P_L) = 0 \Rightarrow T + \frac{T}{3\tau} = -\frac{T c_{01}}{30\tau}.
\]

(21)

Let us consider only the case \(n = 0 \) and choose to denote \(c_{0l} \) by \(c_l \) below. Equations (20) and (3) can be rewritten in terms of the variable \(w = \tau T(\tau) \) as

\[
\frac{d \log T}{d \log \tau} = -\frac{1}{3} \left(\frac{c_1}{10} + 1 \right),
\]

(22)

\[
\left(1 - \frac{c_1}{20}\right) \frac{dc}{dw} = -\left[\hat{\Lambda} c + \frac{1}{w} B c - \frac{c_1}{5w} c + \frac{3}{2w} \gamma \right],
\]

(23)

where \(c(w) = (c_1(w), \ldots, c_l(w))^\top \), \(\gamma = (8/3, 0, \ldots, 0)^\top \), \(\hat{\Lambda} = 3/(2\theta_0)^\frac{1}{2} \), and

\[
B = \frac{3}{2} \begin{pmatrix}
\frac{\gamma_1}{\Omega_1} & \alpha_1 \\
\frac{\gamma_2}{\Omega_2} & \alpha_2 \\
& & \ddots \ddots \\
& & & \frac{\gamma_{L-1}}{\Omega_{L-1}} & \alpha_{L-1} \\
& & & & \frac{\gamma_L}{\frac{1}{2} \Omega_L}
\end{pmatrix}
\]

(24)

with \(\Omega_l = 5l(2l+1)/[(4l+3)(4l-1)] \). After solving (23) for \(c_1 \), one gets the temperature \(T \) from (22). Finally, the transformation \(\tilde{e} = U e \) leads us to Eq. (5).