Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. The Journal of Limnology is, therefore, E-publishing PDF files of an early version of manuscripts that undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination and proofreading processes, which may lead to differences between this version and the final one. The final version of the manuscript will then appear on a regular issue of the journal.
E-publishing of this PDF file has been approved by the authors.

J Limnol 2021 [Online ahead of print]

To cite this Article:
Marchetto A, Boggero A, Fontaneto D, et al. Living organisms and sedimentary remains from high mountain lakes in the Alps. doi: 10.4081/jlimnol.2021.2036

J Limnol 2021;80:2036

© the Author(s), 2021
Licensee PAGEPress, Italy
Living organisms and sedimentary remains from high mountain lakes in the Alps

Aldo Marchetto1*, Angela Boggero1, Diego Fontaneto1, Andrea Lami1, André F. Lotter2, Marina M. Manca1, Julieta Massaferro3, Rosario Mosello1, Simona Musazzi1, Ulrike Nickus4, Roland Psenner5, Michela Rogora1, Sanna Sorvari Sundet6, Evzen Stuchlik7, Gabriele A. Tartari1, Hansjoerg Thies8, Monica Tolotti9

1 National Research Council, Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922 Verbania Pallanza VB, Italy
2 University of Bern, Institute of Plant Sciences, Paleocology, Altenbergrain 21, 3013 Bern, Switzerland
3 Programa de Conservación de la Biodiversidad del Parque Nacional Nahuel Huapi, Consejo Nacional de Investigaciones Científicas y Técnicas, Fagnano 244, 8400 Bariloche, Argentina
4 Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52, 6020 Innsbruck
5 Eurac Research, Drususallee 1, 39100 Bozen, Italy
6 Natural Resources Institute Finland (LUKE), Research Infrastructure Services, Latokartanonkaari 9, 00790 Helsinki, Finland
7 Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic
8 Institute of Interdisciplinary Alpine Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck
9 Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige TN, Italy

Running head: Data paper mountain lakes

Abstract

We publish a data set of environmental and biological data collected in 2000 during the ice-free period in high mountain lakes mainly located above the local timberline in the Alps, in Italy, Switzerland and Austria. Environmental data include coordinates, geographical attributes and detailed information on vegetation, bedrock and land use in lake catchments. Chemical analyses of a sample for each lake collected at the lake surface in summer 2000 are also reported. Biological data include phytoplankton, zooplankton, macroinvertebrates, benthic diatoms. Diatoms, cladoceran and chironomids remains and algal and bacterial pigments were also analysed in lake sediments.

Keywords: Alpine lakes, diatoms, phytoplankton, zooplankton, benthos, algal pigments.
INTRODUCTION

Limnology of Alpine lakes dates back to the end of the 19th century, mainly focusing on the presence and composition of benthic and plankton fauna, with a predominantly taxonomic approach in the description of biological diversity (e.g., Pero, 1893; Zschokke, 1894; Bourcart, 1906; Pesta, 1912; De Marchi, 1913).

Later on, Alpine lakes were used as experimental fields to test general ecological (e.g., Baldi, 1937; Bossone and Tonolli, 1954), analysing for example life history parameter estimates (Ravera and Tonolli, 1956), seasonal developments of plankton (Ferrari, 1967), and productivity measurements (de Bernardi et al., 1983).

Starting from the 1950’s, a number of surveys of the chemical and biological features of Alpine lakes was carried out. In a pioneering exercise of citizen science, Tonolli and Tonolli (1951) asked alpinists to send lake plankton samples collected with a common protocol and produced an account of the relationships between the biological communities and the main environmental parameters of 170 lakes. Thirty years later, a similar exercise was carried out, including also the examination of net phytoplankton and chemical analysis of lake water of about 300 lakes, 46 of them included in the previous survey (Giussani et al., 1986).

Some further surveys were carried out in the 1990s, collecting and analysing surface sediment samples in order to establish species-environment relationships to be used for inferring past lake condition from the biological remains of specific groups such as diatoms, cladocera, and chironomids found in sediment cores (e.g. Marchetto and Schmidt, 1992; Lotter et al. 1997, 1998).

In Summer 2000, within the EU-funded programme EMERGE (“European Mountain lake Ecosystems: Regionalisation, diaGnostic & socio-economic Evaluation”) aimed at assessing the status of remote mountain lake ecosystems throughout Europe, chemical, morphological and biological information was collected from a large number of high mountain lakes (72 from the Alps), including for the first time both living and sub-fossil components, using common standard protocols, mainly based on the experience of a previous EU-funded programme (“MOLAR, Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change: a programme of MOUNTain LAke Research”). The collected data refer to living organism and to remains found in surface sediment (assumed to represent the “present” condition) and at ca. 10-cm depth, assumed to refer to pre-industrial condition, to allow the identification of changes due to the long-range transport of atmospheric pollutants. The absence in the latter samples of spherical carbonaceous particles, typical of industrial combustion, was used to verify their pre-industrial deposition (Rose et al., 1999).
This large amount of environmental data was used for ecological studies (e.g., Marchetto et al., 2009) and can still be useful for long-term comparative analyses, or for developing or testing ecological methods and theories. The aim of this data paper is to gather the massive amount of data collected in 2000 within the EU-funded programme EMERGE for 72 high mountain lakes from the Alps in a formal dataset in order to make it available for its further use by other studies.

Other studies concerning a large number of high mountain lakes were published, treating sedimentary remains (Bigler et al., 2008, Kuefner at al. 2020), living macroinvertebrates (Boggero et al. 2008; Fureder et al. 2006; Boggero and Lencioni 2006), plankton (Maiolini et al., 2006, Obertegger et al. 2010, Horvath et al. 2016, Tolotti et al., 2018), and benthic diatoms (Feret et al., 2018), as well as literature reviews (e.g., Jersabek, et al. 2001, Ruffo & Stoch, 2005; Boggero, 2018, Stoch et al. 2019).

METHODS

The 72 study lakes, mainly located above the timberline, were selected to avoid anthropogenic disturbance in the catchment, for instance by sewage discharge. Their location is shown in figure 1. The major direct human impacts affecting these lakes are fish introduction, tourism and alpine pastures within the catchment. In addition, the lakes are subject to the deposition of airborne pollutants, in particular acidifying compounds (sulphur and nitrogen) (The MOLAR Water Chemistry Group, 1999), persistent organic pollutants (POPs) (e.g., Grimalt et al., 2001) and heavy metals (e.g., Hofer et al., 2001).

Geo-referenced coordinates, geographical attributes and detailed information on vegetation, bedrock and land use in lake catchments were collated for each lake.

Water samples were collected at the lake surface, on the vertical of the deepest point, and analysed for pH, conductivity, alkalinity, ammonium, total nitrogen, reactive and total phosphorus, reactive silica, major cations (calcium, magnesium, sodium, potassium) and anions (sulphate, nitrate, chloride), and dissolved organic carbon (DOC). As part of the analytical quality control within each laboratory, a check of the ionic balance was performed and a comparison between measured and calculated conductivity undertaken for all analyses.

In lakes with maximum depth 5 m or less, samples for bacteria and chlorophyll were collected with the top end of the sampler 0.5 m below lake surface. In the other lakes, samples were collected at 1.5 times the Secchi disk reading, or 0.5 m or less above the bottom if the Secchi disk reading was 1 m or less above the bottom. Samples for chlorophyll were filtered through Whatman GF/F filters, kept in cool dark and frozen as soon as possible. Chlorophyll a was measured after gentle filtration and concentration on Whatman GF/F glass fibre filters, extracted in acetone and determined
spectrophotometrically or fluorometrically (Wathne & Hansen, 1997). Bacteria were determined from formaldehyde preserved samples (final concentration 2% w/v) using 0.2 μm pore size black polycarbonate filters (Poretics or Nuclepore), DAPI stain and epifluorescence microscopy (Porter & Feig, 1980). Bacterial cells were counted and then sized by image analysis (widths and lengths measured) and their volumes calculated as cylinders with 2 hemispheres (Psenner, 1993).

Lake sampling took place during late summer or early fall according to a common sampling protocol (Fjellheim et al., 2000). Samples were taken from the littoral and sieved through a net with 250 μm mesh size, and preserved in 70% ethanol. In each lake, samples from the range of available habitats were amalgamated to one sample prior to analysis. Benthic animals were identified to species using a binocular and/or a microscope. Chironomid larvae were mounted in Hoyer’s solution on microscopic slides and identified to the lowest taxonomic level possible. Most animal groups were identified to the species level. In cases of differences in taxonomic precision between the participating institutions, the highest taxonomic level was chosen to facilitate comparison between regions (see Schnell et al., 1999).

Phytoplankton samples were collected through Ruttner or Patalas bottles, 1 m below Secchi depth or 1 m above the bottom in those lakes where the Secchi disk was still visible on the bottom. Samples were then fixed in Lugol's solution. Counting, measuring and taxonomic determination were performed in sedimentation chambers under the inverted microscope following Utermöhl (1958).

Zooplankton samples were taken by several vertical hauls in proximity to the deepest point of the lake, using a 200 μm plankton net for quantitative samples. Samples were preserved in 4% formaldehyde or in ethanol. Taxonomy mainly followed Smirnov (1974, 1996), Kiefer (1978), Margaritora (1985), Einsle (1993), and Flößner (2000) for planktonic crustaceans.

Epilithic diatom samples were collected by brushing 10-12 small stones from 3 points around the lake, less than 1-m deep. They were then fixed in Lugol's iodine solution and mounted in Naphrax. Diatoms were analysed using a microscope at 1000x magnification and identified to species level. Diatom taxonomy mainly followed Krammer & Lange-Bertalot /1986, 1988, 1991a, 1991b).

Sediment samples for cladocerans, chironomids, diatoms and pigment analyses were collected using a gravity corer and sliced in the field. The top 0.5 cm of each core was used as the surface sediment sample to represent the current condition, while a second sample at ca. 10-15 cm of depth was used as the “pre-industrial” sample.

For diatom analysis, about 10 mg of sediment was cleaned using standard techniques (Renberg, 1990) and counted under oil immersion at a magnification of 1000x. Diatom taxonomy mainly followed Krammer & Lange-Bertalot /1986, 1988, 1991a, 1991b).
The samples for pigment analysis were preserved deep-frozen until the analysis. A sub-sample of ca 2 g wet sediment was weighed and extracted overnight with ca. 10 ml of an acetone/water mixture (90:10). The extract was then centrifuged at 3000 rpm for 10 minutes in a glass centrifuge tube and used for total pigment and for specific chlorophyll and carotenoid determinations through HPLC chromatography following Lami et al. (1994).

Cladoceran sub-fossil remains were counted in ca. 3 g of wet sediment. The samples were deflocculated in warm 10% KOH for 2 hours and then digested in 10% HCl (Frey, 1986) or freeze-dried sediment was heated to boiling point in 50 mL of 10% KOH for about 30 min, being continuously mixed with a magnetic stirrer (Frey, 1958 modified according to Pražáková & Fott, 1994). Cool samples were filtered through a phosphorus-bronze sieve (mesh-size 40 µm), washed with water, and transferred into a mixture of glycerine, 70% ethanol and chlorazol black (Schmid et al., 1998). Chydorid remains were determined according to Smirnov (1974, 1996), Margaritora (1985), Frey (1986) and Floßner (2000).

At least 200 remains were counted and identified following Frey (1958, 1960) at magnifications between 100 and 200x. Several different cladoceran remains were identified, namely postabdominal claws, ephippia, head shields, postabdomens, valves, and their number were combined in order to obtain a minimum number of animals per sample following Frey (1986).

Chironomid analyses were performed following Hofmann (1986) and Warwick (1980). From each subsample (10 cm intervals), 5-15 g wet sediment was deflocculated with hot KOH (10%) for 45 minutes. The remains of each section (previously sieved through 280, 200 and 150 µm mesh size) were picked out and mounted with Canada balsam for microscopic identification.

Alternatively, chironomid head capsules were obtained by sieving the sediment through a 90 µm screen after deflocculating with hot 10% KOH for 15 min. The head capsules were hand sorted from a Bolgorov tray with forceps under the 40· magnification of a stereoscopic microscope. The capsules were then mounted in Euparal medium after dehydration with absolute ethanol. Taxa were determined mainly following Schmid (1993) and Rieradevall & Brooks (2001). Only some of the chironomids were identified to the species level; others were identified only to genus or, in a few cases, tribe or subfamily. In a few genera, only some species could be differentiated from the general genus pool.

For all biological analysis, taxonomic consistence was obtained through discussion among taxonomists in specific project workshops.
RESULTS

Data set description

This data set includes biotic and abiotic information from 72 lakes in the Alps, ordered in the following 10 sheets, gathered together into an Excel file:

1) Location and morphometry [of the lakes], described in Tab. 1;
2) Water chemistry, containing five columns: Lake ID (Tab. 1), compound name, compound code, value, unit.
3) Phytoplankton counts, containing five columns: Lake ID (see Tab. 1), Taxon code, Taxon name, division, and percent abundance;
4) Zooplankton counts, containing seven columns: Lake ID (see Tab. 1), Taxon Code, species name, authorship, AphiaID (Worms Editorial Board, 2021), group, percent abundance;
5) Epilithic diatoms, containing four columns: Lake ID (see Tab. 1), Taxon code, Taxon name, and percent abundance;
6) Littoral macroinvertebrates, containing five columns: Lake ID (see Tab. 1), Taxon code, Taxon name, order and relative abundance;
7) Sedimentary cladoceran [remains], containing seven columns: Lake ID (see Tab. 1), Depth into the sediment (in cm), Taxon code, Taxon name, AphiaID (Worms Editorial Board, 2021), Remain, Remains per gram of dry sediment;
8) Sedimentary diatoms, containing five columns: Lake ID (see Tab. 1), Depth into the sediment (in cm), Taxon code, Taxon name, and percent abundance;
9) Sedimentary chironomids, containing five columns: Lake ID (see Tab. 1), Depth into the sediment (in cm), Taxon code, Taxon name, and percent abundance;
10) Sedimentary [algal and bacterial] pigments containing six columns: Lake ID (Tab. 1), Depth into the sediment (in cm), compound name, compound code, value, unit.

Taxon names consist of the original species name, as given in 2000, and they were not updated, but in each sheet, diatom synonyms were merged, when present.

In some cases, in particular for living phytoplankton and some macroinvertebrates, identification at the species level was not possible and “sp.”, “gr.”, “indet.” were reported.

Not all organisms were collected in every lake. The number of lakes, taxa and relative abundance values included in each file are reported in Tab. 2.
Object name: Living organisms and sedimentary remains from high mountain lakes in the Alps.

Data set citation: EMERGE Alpine lakes

Format name: xlsx, Excel file

Distribution (permanent link): https://zenodo.org/record/4782254

Date of creation: 26 January 2021
Date of last revision: 26 January 2021
Date of publication: (will be added after paper acceptation)

Update policy: not updated

Language: English

License of use: the access and the use are free. Data set authors would appreciate users providing a link to the original data set, and a citation to the present paper, or to be included as co-author in a new paper.

Metadata language: English

Metadata managers: Aldo Marchetto (aldo.marchetto@cnr.it)

Project title: Living organisms and sedimentary remains from high mountain lakes in the Alps.

Database manager: Aldo Marchetto

Temporal coverage: Summer 2000

Funding grants: European Union, EMERGE Project (contract No. EVK1-CT-1999-032)

Study area: mountain lakes in the Alps with surface standing waters showing areas greater than 0.1 ha (0.001 km²), maximum depth greater than 1 m, at mean water level, placed in proximity of or above the tree line. The latter is a non-linear wavy line between the subalpine and the alpine areas, drawn based on tree-growth limiting factors (Körner 1998).

Bounding box:
- min Longitude: 7.40 - max Longitude: 12.77
- min Latitude: 45.94 - max Latitude: 47.43
- min Altitude: 1592 - max Altitude: 2796 m a.s.l.

Sampling design: One sampling activity during the ice-free period 2000

Habitat type: Natural lakes (i.e. lakes without anthropogenic infrastructures)

Biogeographical region: Alpine (EEA, 2002)

Countries: Austria, Italy and Switzerland

Quality control for geographic data: coordinates were collected by GPS during sampling and verified on topographic maps.

Taxonomic coverage: phytoplankton, zooplankton, macroinvertebrates, diatoms.
Taxon specialist: Consistency of the taxonomy in the data set was granted by taxonomic workshops during the EMERGE and MOLAR projects.

Quality control for taxonomic data: before publication of the data set, algal taxon spelling and authorship were verified using Algaebase: Listing of World’s Algae (Guiry and Guiry, 2021). The same control was performed on macroinvertebrates and zooplankton using Fauna Europea (De Jong et al., 2014) and WoRMS, the World Register of Marine Species (WoRMS Editorial Board. 2021).

CONCLUSIONS

The present dataset covers a wide variety of information from abiotic (morphological, geographic, physical, chemical) to biotic (plankton, benthos, diatoms, sedimentary remains) unique in its kind and format. Following the tradition of leaving data collected in mountain lakes to free access started by Tonolli and Tonolli (1951) and Giussani et al. (1986), we agreed to publish the EMERGE Alpine data set in the present form in order to share knowledge acquired on high altitude lakes for a better understanding of the functioning of these ecosystems under threat due to global climate change and other anthropogenic impacts.

ACKNOWLEDGMENTS

This research was partially funded by the European Union, through the EMERGE Project (contract No. EVK1-CT-1999-0032). We would like to acknowledge the following colleagues involved in field work and analysis: Michele Armiraglio, Alberto Barbieri, Maria Grazia Barbieri, Cristiana Callieri, Pierluigi Cammarano, Elzbieta Dumnicka, Renate Ettinger, Josef Franzoi, Leopold Fuereder, Joan Grimalt, Piero Guilizzoni, Beatrice Jann, Gloria Lacort, Giuseppe Morabito, Rosario Mosello, Werner Muller, Elber Huerlimann Niederberger, Arianna Orrù, Pierisa Panzani, Benjamin Pina, Alfredo Pranzo, Gunnar Raddum, Neil Rose, Oyvind Schnell, Marco Simona, Vera Straskrabova, Danilo Tait, Berta Thaler, Mauro Veronesi, Markus Zeh.

REFERENCES

Baldi E, 1937. [Ricerche biologiche sugli alti laghi della Valsesia. I: I laghetti delle Pisse]. [Article in Italian]. Monogr. Comit. Sci. CAI 1:7-38.

Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M, 2008. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat. Sci. 68:154-171.

Boggero A, 2018. Macroinvertebrates of Italian mountain lakes: a review. Redia 101:35-45.
Grimalt, Giussani, Fureder, Frey, Frey, Frey, Fl., Ferrari, Einsle U. EEA (European Environment Agency), 2000. Europe’s biodiversity – biogeographical regions and seas. EEA Report No 1/2000.

Boggero, A., Brogi, M. Origgi, I., 1983. [Dinamica di popolazione e predazione di Arctodiaptomus alpinus in due laghi alpini di alta quota: Laghi Boden, Alta Val Formazza, m. 2340 s.l.m.]. [Article in Italian]. Mem. Ist. Ital. Idrobiol. 26: 41-83.

Frey, G.D., 2016. Macroinvertebrates assemblages of high altitude lakes, inlets and outlets in the southern Alps. Archiv Hydrobiol 165:37-61.

Bossone, A., Tonolli, V., 1954. [Il problema della convivenza di Arctodiaptomus bacillifer (Koelb), Acanthodiaptomus denticornis (Wierz) e di Heterocope saliens Lill]. [Article in Italian]. Mem. Ist. Ital. Idrobiol. 8: 81-94.

Bourcart, F.E., 1906. [Les lacs alpine suisses, étude chimique et physique]. [Book in French]. George et Cie, Genève: 127 pp.

de Bernardi, R., Brogi, M., Origgi, I., 1983. [Dinamica di popolazione e predazione di Arctodiaptomus alpinus in due laghi alpini di alta quota: Laghi Boden, Alta Val Formazza, m. 2340 s.l.m.]. [Article in Italian]. Proceedings V Congress A.I.O.L. p. 407-416.

de Jong, Y., Verbeek, M., Michelsen, V., de Place, Bjørn, P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, FT., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., Güntsch, A., Stoev, P., Penev, L., 2014. Fauna Europaea - all European animal species on the web. Biodiversity Data Journal 2:e4034.

De Marchi, M., 1913. [Strebloocerus serricaudatus nel Trentino]. [Article in Italian]. Atti Soc. Ital. Sc. Nat. 51:107-216.

EEA (European Environment Agency), 2002. Europe’s biodiversity – biogeographical regions and seas. EEA Report No 1/2002.

Einsle, U., 1993. [Crustacea Copepoda Calanoida und Cyclopoida. Süßwasserfauna von Mitteleuropas. Band 8/4-1]. [Book in German]. Gustav Fischer Verlag, Stuttgart.

Ferre L., Bouchez A., Rimet F., 2017. Benthic diatom communities in high altitude lakes: a large scale study in the French Alps. Ann. Limnol. 53:411-423.

Ferrari, I., 1967. [Accrescimento individuale e ciclo stagionale della Daphnia middendorffiana di un lago alpino]. [Article in Italian]. Mem. Ist. Ital. Idrobiol. 26: 41-83.

Fjellheim, A., Raddum, G.G., Schnell, O.A., 2000. EMERGE - protocol for the sampling of contemporary invertebrates. - European Mountain lake Ecosystems: Regionalisation, diaGnostics & socio-economic Evaluation (EMERGE), protocol 06. University College London. Available from: http://www.mountain-lakes.org/emerge/www.mountain-lakes.org/emerge/methods/06.pdf

Flößner D., 2000. Die Haplopora und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.

Frey, D.G., 1958. The late-glacial cladoceran fauna of a small lake. Arch. Hydrobiol. 54: 209–275.

Frey, D.G., 1960. The ecological significance of cladoceran remains in lake sediments. Ecology 41:684–698.

Frey, D.G., 1986. Cladocera analysis, p. 677-692. In: B.E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester.

Fureder, L., Ettinger, R., Boggero, A., Thaler, B., Thies, H., 2016. Macroinvertebrate diversity in alpine lakes: Effects of altitude and catchment properties. Hydrobiologia 562:123-144.

Giussani, G., de Bernardi, R., Mosello, R., Origgi, I., Ruffoni, T., 1986. [Indagine limnologica sui laghi alpini d’alta quota]. [Book in Italian]. Doc. Ist. Ital. Idrobiol. 9:415.

Grimalt, J.O., Fernandez, P., Berdín, L., Vilanova, R.M., Catalan, J., Psenner, R., Hofer, R., Appleby, P.G., Rosseland, B.O., Lien, L., Massabuau, J.C., Battarbee, R.W., 2001. Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environ. Sci. Technol. 35:2690-2697.
Marchetto, Lami, Krammer, Kiefer, Jersabek, Guiry, 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed: 24 February 2021. Available from: https://www.algaebase.org

Hofer R, Lackner R, Kargl J, Thaler B, Tait D, Bonetti L, Vistocco R, Flaim G, 2001. Organo-chlorine and metal accumulation in fish (Phoxinus phoxinus) along a north-south transect in the Alps. Water Air Soil Poll. 125:189-200.

Hofmann W, 1986. Chironomid analysis, p. 715-717. In: B.E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester.

Horvath Z, Vad CF, Preiler C, Birtel J, Matthews B, Ptacnikova R, Ptacnik R, 2016. Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps. Inland Waters 7:3-13.

Jersabek CD, Brancelj A, Stoch F, Schabetsberger R, 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia 453:309-324.

Kiefer F, 1978. [Das Zooplankton der Binnengewässer].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

Krammer K, Lange-Bertalot H, 1986. [Bacillariophyceae. 1. Teil: Naviculaceae. Susswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer Verlag, Stuttgart.

Krammer K, Lange-Bertalot H, 1988. [Bacillariophyceae. 2. Teil: Epithemiaceae. Susswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer Verlag, Stuttgart.

Krammer K, Lange-Bertalot H, 1991a. [Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaeae. Susswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer Verlag, Stuttgart.

Krammer K, Lange-Bertalot H, 1991b. [Bacillariophyceae.4. Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. Susswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer Verlag, Stuttgart.

Kuefner W, Hofmann A, Ossyssek S, Dubois N, Geist J, Raeder U, 2020. Composition of highly diverse diatom community shifts as response to climate change: A down-core study of 23 central European mountain lakes. Ecol. Ind. 117:106590.

Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459.

Lami A, Marchetto A, Guilizzoni P, Giorgis A, Masaferro J, 1994. Paleolimnological records of carotenoids and carbonaceous particles in sediments of some lakes in Southern Alps. Hydrobiologia 273:57-64.

Lotter AF, Birks HJB, Hofmann W, Marchetto A, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolimnol. 18:395-420.

Lotter AF, Birks HJB, Hofmann W, Marchetto A, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicator for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolimnol. 19:443-463.

Maiolini B, Lencioni V, Boggero A, Thaler B, Lotter A, Rossaro B, 2016. Zoobenthic communities of inlets and outlets of high altitude Alpine lakes. Hydrobiologia 562:217-229.

Margaritora FG, 1985. [Fauna d’Italia. Cladocera].[Book in Italian]. Calderini, Bologna.

Marchetto A, Rogora M, Boggero A, Musazzi S, Lami A, Lotter AF, Tolotti M, Thies H, Psenner R, Masaferro J, Barbieri A, 2009. Response of Alpine lakes to major environmental gradients, as detected through planktonic, benthic and sedimentary assemblages. Adv. Limnol. 62:419-440.
Marchetto A, Schmidt R, 1992. A regional calibration data set to infer lakewater pH from sediment diatom assemblages in alpine lakes. Mem. Ist. Ital. Idrobiol. 51:115-126.

Obertegger U, Thaler B, Flaim G, 2010. Rotifer species richness along an altitudinal gradient in the Alps. Global Ecol. Biogeogr. 19:895-904.

Pesta O, 1912. Hochgebirgsseen und ihre Fauna. I.[Article in German]. Verh. Zool.-Bot. Ges. Wien 62:158-171.

Pero P, 1893. [Ricerche e studi sui lagli valtellinesi].[Article in Italian]. Nuova Notarisi 4: Pražáková M, Fott J, 1994. Zooplankton decline in the Černé lake (Šumava Mountains, Bohemia) as reflected in the stratification of cladoceran remains in the sediment. Hydrobiologia 274:121–126.

Porter KG, Feig YS, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943–947.

Psenner R, 1993. Determination of size and morphology of aquatic bacteria by automated image analysis. In: P. Kemp, B. Sherr, E. Sherr and J. Cole (eds.), Handbook of methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton. p. 339–345.

Ravera O, Tonolli V, 1956. Body size and number of eggs in diaptomids, as related to water renewal in mountain lakes. Limnol. Oceanogr. 1:118-122.

Remberg I, 1990. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolimnol. 4 87-90.

Rieradevall M, Brooks SJ, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J. Paleolimnol. 25:81–99.

Rose NL, Harlock S, Appleby P-G, 1999. The spatial and temporal distributions of spheroidal carbonaceous fly-ash particles (SCP) in the sediment records of European mountain lakes. Water Air Soil Poll. 113:1-32.

Ruffo S, Stoch F, 2005. [Checklist e distribuzione della fauna italiana].[Book in Italian]. Memorie del Museo Civico di Storia Naturale di Verona, Sezione Scienze della Vita 16: 309 pp.

Schnell ØA, Rieradevall M, Granados I, Hanssen O, 1999. A chironomid taxa coding system for use in ecological and palaeoecological databases. NIVA Report 3710-97, NIVA, Oslo: 32 pp.

Schmid PE, 1993. A key to the larval Chironomidae and their instars from the Austrian Danube region Streams and Rivers. Part 1: Diamesinae, Prodiamesinae and Orthocladiinae. Wasser Abwasser Supplement 3/93: 514 pp.

Smirnov NN, 1974. Chydroridae of the World. USSR Fauna, 101. Nauka, Leningrad: 531 pp.

Smirnov NN, 1996. Cladocera: The Chydrorinae and Saycininae (Chydroridae) of the World. Guides to the identification of the microinvertebrates of the Continental waters of the World. 11. SPB Academic Publishing, The Hague.

Stoch F, Vagaggini D, Margaritorea FG, 2019. Macroecological and spatial patterns in the distribution of cladocerans in Alpine lakes. Limnetica 38:119-136.

The MOLAR Water Chemistry Group, 1999. The MOLAR Project: atmospheric deposition and lake water chemistry. J. Limnol. 58:88-106.

Tolotti M, Manca M, Angeli N, Morabito G, Thaler B, Rott E, StuchlikE., 2018. Phytoplankton and zooplankton associations in a set of Alpine high altitude lakes: Geographic distribution and ecology. Hydrobiologia 562:99-122.

Tonolli V, Tonolli L, 1951. [Osservazioni sulla biologia ed ecologia di 170 popolamenti zooplantonici di laghi italiani di alta quota].[Article in Italian]. Mem. Ist. Ital. Idrobiol. 16:21-25.
Utermohl H, 1958. [Zur Vervollkommung der quantitativen Phytoplankton-methodik]. [Article in German]. Mitt. Intern. Verh. Internat. Verein. Theor. Angew. Limnol. 9:39.

Warwick WF, 1980 Palaeolimnology of the Bay of Quinte, lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. Aquatic. Sci. 206: -117.

Wathne BM, Hansen HE, 1997. MOLAR Project Manual, NIVA report no. 0-96061. NIVA, Oslo: 176 pp.

WoRMS Editorial Board, 2021. World Register of Marine Species. Accessed: 19 Apr 2021. Available from https://www.marinespecies.org

Zschokke F, 1894. [Die Tierwelt der Jurasee]. [Article in German]. Revue Suisse Zool. 2:349-376.
Tab. 1 Content of the sheet “Location and morphometric characteristics of the lakes”.

Column name	Content	unit	data type
LakeID	Lake identifier		text
LakeName	Lake name		text
Lat	Latitude N WGS84	degree	floating
Lon	Longitude E WGS84	degree	floating
Alt	Lake Altitude	m above sea level	integer
C_area	catchment area	hectares	floating
GeolMet	metamorphic rocks in catchment	percent	floating
GeolPlut	plutonic rocks in catchment	percent	floating
GeolVolc	volcanic rocks in catchment	percent	floating
GeolDet	detrital rocks in catchment	percent	floating
GeolCarb	carbonate rocks in catchment	percent	floating
Glaciers	catchment glaciated	percent	floating
GeolGlac	glacial deposits rocks in catchment	percent	floating
Bare	bare ground in catchment	percent	floating
Moorland	moorland in catchment	percent	floating
Peat	peat in catchment	percent	floating
Meadow	meadow in catchment	percent	floating
Shrubs	shrubs in catchment	percent	floating
Con_wood	coniferous woodland in catchment	percent	floating
Dec_wood	deciduous woodland in catchment	percent	floating
Rural	rural area in catchment	percent	floating
Max_Alt	Maximum catchment altitude	m above sea level	integer
Chain	Position of lake in chain	from top to bottom	integer
L_area	Lake area	hectares	integer
Depth	Maximum Lake Depth	m	floating
Lit_Rock	littoral zone that is rocky	percent	integer
Lit_sand	littoral zone that is sandy	percent	integer
Lit_Org	littoral zone that is organic	percent	integer
Inlet	Presence of an inflow stream	true=1	logical
Outlet	Presence of a lake outflow stream	true=1	logical
Seepage	Whether the lake is a seepage lake	true=1	logical
Resid	Calculated residence time	years	floating
Variable	Description	Unit	Storage Type
----------	---------------------------	--------------	--------------
Secchi	Secchi Disc Depth	m (-9999 = bottom)	floating
Bacteria	Total bacteria biomass	µg C L⁻¹	floating
ChlConc	Concentration of chl a	µg L⁻¹	floating
Fish	Fish Presence	yes/no/unknown	text
IceCover	Ice cover length	days	integer
Tab. 2. No. of data.

Data sheet	No. of lakes	No. of taxa or variables	No. of data
1. Location and morphometry	72	35	2496
2. Water chemistry	71	15	971
3. Phytoplankton counts	46	284	843
4. Zooplankton counts	52	28	235
5. Epilithic diatoms	71	68	1256
6. Littoral macroinvertebrates	58	45	508
7. Sedimentary cladocerans	68	37	1064
8. Sedimentary diatoms	70	349	2983
9. Sedimentary chironomids	20	48	248
10. Sedimentary pigments	70	64	7121
Fig. 1. Location of the sampled lakes.