SOME RESULTS ON COMPLEX m–SUBHARMONIC CLASSES

JAWHER HBIL AND MOHAMED ZAWAY

Abstract. In this paper we study the class $E_m(\Omega)$ of m–subharmonic functions introduced by Lu in [8]. We prove that the convergence in m–capacity implies the convergence of the associated Hessian measure for functions that belong to $E_m(\Omega)$. Then we extend those results to the class $E_{m,\chi}(\Omega)$ that depends on a given increasing real function χ. A complete characterization of those classes using the Hessian measure is given as well as a subextension theorem relative to $E_{m,\chi}(\Omega)$.

1. Introduction

In complex analysis, the Monge-Ampere operator represents the objective of several studies since Bedford and Taylor [1, 2] demonstrated that the operator $(dd^c)^n$ is well defined on the set of locally bounded plurisubharmonic (psh) functions defined on an hyperconvex domain Ω of \mathbb{C}^n. This domain was extended by Cegrell [12, 13] by introducing and investigating the classes $E_0(\Omega)$, $F(\Omega)$ and $E(\Omega)$ that contain unbounded psh functions. He proved that $E(\Omega)$ is the largest domain of definition of the complex Monge-Ampere operator if we want the operator to be continuous for decreasing sequences. These works were taken up by Lu [8, 9] to define the complex Hessian operator H_m on the set of m–subharmonic functions which coincides with the set of psh functions in the case $m = n$. By giving an analogy to Cegrell’s classes, Lu studied some analogous classes denoted by $E^0_m(\Omega)$, $F_m(\Omega)$ and $E_m(\Omega)$. One of the most well-known problems in this direction is the link between the convergence in capacity Cap_m and the convergence of the complex Hessian operator. The paper is organized as follows: In section 2 we recall some preliminaries on the pluripotential theory for m–subharmonic function as well as the different energy classes which will be studied throughout the paper.

In section 3 we will be interested on giving a connection between the convergence in capacity Cap_m of a sequence of m-subharmonic functions f_j toward f, $\liminf_j f_j H_m(f_j)$ and $H_m(f)$ when the function $f \in E_m(\Omega)$. More precisely we prove the following theorem

Theorem A.

If $(f_j)_j$ is a sequence of m–subharmonic function that belong to $E_m(\Omega)$ and satisfies $f_j \to f \in E_m(\Omega)$ in Cap_m-capacity. Then

$$1\{f \geq -\infty\} H_m(f) \leq \liminf_{j \to +\infty} H_m(f_j).$$

2010 Mathematics Subject Classification: 32W20.

Key words and phrases: m–subharmonic function, Capacity, Hessian operator., Convergence in m–capacity.

1
As a consequence of Theorem A we obtain several results of convergence and especially we prove that if we modify the sufficient condition in the previous theorem, one may obtain the weak convergence of $H_m(f_j)$ to $H_m(f)$.

In Section 4, we will study the classes $E_{m,\chi}(\Omega)$ introduced by Hung [16] for a given increasing function χ. Those classes generalized the weighted pluricomplex energy classes investigated by Benelkourchi, Guedj and Zeriahi [4] and studied by [3, 5, 17]. We prove first the class $E_{m,\chi}(\Omega)$ is fully included in the Cegrell class $E_m(\Omega)$ and hence the Hessian operator $H_m(f)$ is well defined for every $f \in E_{m,\chi}(\Omega)$. Then we will be interested on giving several results of the class $E_{m,\chi}(\Omega)$ depending on some condition on the function χ. Those results generalizes well known works in [3] and [4] it suffices to take $m = n$ to recover them. The most important result that we prove in this context is the given of a complete characterization for functions that belong to $E_{m,\chi}(\Omega)$ using the class $N_m(\Omega)$. In other words we show that

$$E_{m,\chi}(\Omega) = \{ f \in N_m(\Omega) / \chi(f) \in L^1(H_m(f)) \}.$$

In the end we extend Theorem A to the class $E_{m,\chi}(\Omega)$ by proofing the following result

Theorem B.

Let $\chi : \mathbb{R}^- \to \mathbb{R}^-$ be a continuous increasing function such that $\chi(-\infty) > -\infty$ and $f, f_j \in E_m(\Omega)$ for all $j \in \mathbb{N}$. Suppose that there is a function $g \in E_m(\Omega)$ satisfying $f_j \geq g$ then:

1. If f_j converges to f in Cap_{m-1}-capacity then $\liminf_{j \to +\infty} -\chi(f_j)H_m(f_j) \geq -\chi(f)H_m(f)$.

2. If f_j converges to f in Cap_m-capacity then $-\chi(f_j)H_m(f_j)$ converges weakly to $-\chi(f)H_m(f)$.

2. Preliminaries

2.1. m-subharmonic functions.

This section is devoted to recall some basic properties of m–subharmonic functions introduced by Blocki [11]. Those functions are admissible for the complex Hessian equation. Throughout this paper we denote by $d := \partial + \bar{\partial}$, $dx := i(\bar{\partial} - \partial)$ and by $\Lambda_p(\Omega)$ the set of (p, p)–forms in Ω. The standard Kähler form defined on \mathbb{C}^n will be denoted as $\beta := dd^c|z|^2$.

Definition 2.1. [11]

Let $\zeta \in \Lambda_1(\Omega)$ and $m \in \mathbb{N}\cap[1, n]$. The form ζ is called m–positive if it satisfies

$$\zeta^j \wedge \beta^{n-j} \geq 0, \quad \forall j = 1, \cdots, m$$

at every point of Ω.

Definition 2.2. [11]

Let $\zeta \in \Lambda_p(\Omega)$ and $m \in \mathbb{N}\cap[p, n]$. The ζ is said to be m–positive on Ω if and only if the measure

$$\zeta \wedge \beta^{m-\psi_1} \wedge \cdots \wedge \psi_{m-p}$$

is positive at every point of Ω where $\psi_1, \cdots, \psi_{m-p} \in \Lambda_1(\Omega)$.
We will denote by $\Lambda_p^m(\Omega)$ the set of all $(p,p)-$forms on Ω that are $m-$positive. In 2005, Blocki [11] introduced the notion of $m-$subharmonic functions and developed an analogous pluripotential theory. This notion is given in the following definition:

Definition 2.3. Let $f : \Omega \to \mathbb{R} \cup \{-\infty\}$. The function f is called $m-$subharmonic if it satisfies the following:

1. The function f is subharmonic.
2. For all $\zeta_1, \cdots, \zeta_{m-1} \in \Lambda_1^m(\Omega)$ one has
 $$dd^c f \wedge \beta^{n-m} \wedge \zeta_1 \wedge \cdots \wedge \zeta_{m-1} \geq 0$$

We denote by $SH_m(\Omega)$ the cone of $m-$subharmonic functions defined on Ω.

Remark 2.4. In the case $m = n$ we have the following

1. The definition of $m-$positivity coincides with the classic definition of positivity given by Lelong for forms.
2. The set $SH_n(\Omega)$ coincides with the set of psh functions on Ω.

One can refer to [11], [19], [6] and [8] for more details about the properties of $m-$subharmonicity.

Example 2.5.
1. If $\zeta := i(4dz_1 \wedge d\overline{z}_1 + 4dz_2 \wedge d\overline{z}_2 - dz_3 \wedge d\overline{z}_3)$ then $\zeta \in \Lambda_1^2(\mathbb{C}^3) \setminus \Lambda_3^1(\mathbb{C}^3)$.
2. If $f(z) := -|z_1|^2 + 2|z_2|^2 + 2|z_3|$ then $f \in SH_2(\mathbb{C}^3) \setminus SH_3(\mathbb{C}^3)$. It is easy to see that $f \in SH_2$. However, the restriction of f on the line $(z_1,0,0)$ is not subharmonic so f is not a plurisubharmonic.

Following Bedford and Taylor [2], one can define, by induction a closed non-negative current when the function f is $m-$sh functions and locally bounded as follows:

$$dd^c f_1 \wedge \cdots \wedge dd^c f_k \wedge \beta^{n-m} := dd^c(f_1 dd^c f_2 \wedge \cdots \wedge dd^c f_k \wedge \beta^{n-m}),$$

where $f_1,\ldots, f_k \in SH_m(\Omega) \cap L^\infty_{loc}(\Omega)$. In particular, for a given $m-$sh function $f \in SH_m(\Omega) \cap L^\infty_{loc}(\Omega)$, we define the nonnegative Hessian measure of f as follows

$$H_m(f) = (dd^c f)^m \wedge \beta^{n-m}.$$

2.2. Cegrell classes of $m-$sh functions and $m-$capacity.

Definition 2.6.
1. A bounded domain Ω in \mathbb{C}^n is said to be $m-$hyperconvex if the following property holds for some continuous $m-$sh function $\rho : \Omega \to \mathbb{R}^-$:

 $$\{ \rho < c \} \in \Omega,$$

for every $c < 0$.

2. A set $M \subset \Omega$ is called $m-$polar if there exist $u \in SH_m(\Omega)$ such that

 $$M \subset \{ u = -\infty \}.$$

Throughout the rest of the paper, we denote by Ω a $m-$hyperconvex domain of \mathbb{C}^n. In [8] and [9], Lu introduced the following classes of $m-$sh functions to generalize Cegrell’s classes. We recall below the definitions of those classes.
Definition 2.7. We denote by:
\[\mathcal{E}^0_m(\Omega) = \{ f \in \mathcal{SH}_m(\Omega) \cap L^\infty(\Omega) : \lim_{z \to \xi} f(z) = 0 \ \forall \xi \in \partial \Omega, \int_\Omega H_m(f) < +\infty \}, \]
\[\mathcal{F}_m(\Omega) = \{ f \in \mathcal{SH}_m(\Omega) : \exists (f_j) \subset \mathcal{E}^0_m, f_j \searrow f \text{ in } \Omega \sup_j \int_\Omega H_m(f_j) < +\infty \}. \]

and
\[\mathcal{E}_m(\Omega) = \{ f \in \mathcal{SH}_m(\Omega) : \forall U \Subset \Omega, \exists f_U \in \mathcal{F}_m(\Omega); f_U = f \text{ on } U \}. \]

Definition 2.8. A function \(f \in \mathcal{SH}_m(\Omega) \) is said to be \(m \)-maximal if for every \(g \in \mathcal{SH}_m(\Omega) \) such that \(g \leq f \) outside a compact subset of \(\Omega \) then \(g \leq f \) in \(\Omega \).

The previous notion represents an essential tool in the study of the Hessian operator since Blocki \[11\] showed that every \(m \)-maximal function \(f \in \mathcal{E}_m(\Omega) \) satisfies \(H_m(f) = 0 \). Take \((\Omega_j)_j\), a sequence of strictly \(m \)-pseudoconvex subsets of \(\Omega \) such that \(\Omega_j \Subset \Omega_{j+1}, \bigcup_{j=1}^\infty \Omega_j = \Omega \) and for every \(j \) there exists a smooth strictly \(m \)-subharmonic function \(\varphi \) in a neighborhood \(V \) of \(\Omega_j \) such that \(\Omega_j := \{ z \in V/\varphi(z) < 0 \} \).

Definition 2.9. Let \(f \in \mathcal{SH}_m(\Omega) \) and \((\Omega_j)_j\) be the sequence defined above. Take \(f^j \) the function defined by:
\[f^j = \sup \{ \psi \in \mathcal{SH}_m(\Omega) : \psi|_{\Omega_j} \leq f \} \in \mathcal{SH}_m(\Omega), \]
and define \(\tilde{f} := (\lim_{j \to +\infty} f^j)^* \), called the smallest maximal \(m \)-subharmonic function majorant of \(f \).

It is clear that \(f \leq f^j \leq f^{j+1} \), so \(\lim_{j \to +\infty} f^j \) exists on \(\Omega \) except at an \(m \)-polar set, we deduce that \(\tilde{f} \in \mathcal{SH}_m(\Omega) \). Moreover, if \(f \in \mathcal{E}_m(\Omega) \) then by [9] and [11] \(\tilde{f} \in \mathcal{E}_m(\Omega) \) and it is \(m \)-maximal on \(\Omega \). We denote \(\mathcal{MSH}_m(\Omega) \) the family of \(m \)-maximal functions in \(\mathcal{SH}_m(\Omega) \).

We cite below some useful properties of \(\mathcal{MSH}_m(\Omega) \).

Proposition 2.10. \[11\] Let \(f, g \in \mathcal{E}_m(\Omega) \) and \(\alpha \in \mathbb{R}, \alpha \geq 0 \), then we have

1. \(\tilde{f} + g \geq \tilde{f} + \tilde{g} \).
2. \(\alpha \tilde{f} = \tilde{\alpha f} \).
3. If \(f \leq g \) then \(\tilde{f} \leq \tilde{g} \).
4. \(\mathcal{E}_m(\Omega) \cap \mathcal{MSH}_m(\Omega) = \{ f \in \mathcal{E}_m : \tilde{f} = f \} \).

In [20], author introduced a new Cegrell class \(\mathcal{N}_m(\Omega) := \{ f \in \mathcal{E}_m : \tilde{f} = 0 \} \).

It is easy to check that \(\mathcal{N}_m(\Omega) \) is a convex cone satisfying
\[\mathcal{E}^0_m(\Omega) \subset \mathcal{F}_m(\Omega) \subset \mathcal{N}_m(\Omega) \subset \mathcal{E}_m(\Omega). \]

Definition 2.11. Let \(\mathcal{L}_m \in \{ \mathcal{F}_m, \mathcal{N}_m, \mathcal{E}_m \} \). We define
\[\mathcal{L}^0_m(\Omega) := \{ f \in \mathcal{L}_m : H_m(f)(P) = 0, \forall P \text{ } m \text{-polar set} \}. \]

Definition 2.12. (1) Let \(E \) be a Borel subset of \(\Omega \). The \(\text{Cap}_s \)-capacity of a \(E \) with respect to \(\Omega \) is given as follows:
\[\text{Cap}_s(E) = \text{Cap}_s(E, \Omega) = \sup \left\{ \int_E H_s(f) : f \in \mathcal{SH}_m(\Omega), -1 \leq f \leq 0 \right\} \]

where \(1 \leq s \leq m \).
Proposition 3.1. \(\text{(See where)} \) For every non-negative measures \(\nu \), \(\nu = \mu + \nu \), satisfying \(\langle \mu + \nu \rangle(\Omega) < \infty \) and \(\int_{\Omega} f \, d\mu \geq \int_{\Omega} f \, d\nu \) for all \(f \in \mathcal{E}^a_m(\Omega) \), one has \(\mu(K) \geq \nu(K) \) for all complete \(m \)-polar subsets \(K \) in \(\Omega \).

Remark 2.13. For a given subset \(E \subset \Omega \), the outer \(s \)-capacity \(\text{Cap}^*_s \) of \(E \) is defined as

\[\text{Cap}^*_s(E, \Omega) := \inf \{ \text{Cap}_s(F, \Omega) ; \ E \subset F \text{ and } F \text{ is an open subset of } \Omega \} . \]

3. Convergence in \(\text{Cap}_m \)-Capacity

Proposition 3.2. \(\text{(See [6] and [7])} \)

1. For every \(f, g \in \mathcal{E}_m(\Omega) \), such that \(g \leq f \) one has

\[1_{\{f = -\infty\}} H_m(f) \leq 1_{\{g = -\infty\}} H_m(g) \]

2. If \(f \in \mathcal{E}_m(\Omega) \), and \(g \in \mathcal{E}^a_m(\Omega) \) then

\[1_{\{f + g = -\infty\}} H_m(f + g) \leq 1_{\{f = -\infty\}} H_m(f) \]

Proposition 3.3. \(\text{(1) If } f \in \mathcal{SH}^{-}_m(\Omega), g \in \mathcal{P}_m(\Omega) \text{ and } f \geq g \text{ then } f \in \mathcal{P}_m(\Omega) \).

(2) If \(f, g \in \mathcal{P}_m(\Omega) \) then \(f + g \in \mathcal{P}_m(\Omega) \).
Proof. (1) Since \(f \in \mathcal{E}_m(\Omega) \) so is \(g \). Now assume that there exists \(P_1, \ldots, P_n \) polar in \(\mathbb{C} \) such that \(1_{(g=-\infty)}H_m(g)(\Omega \setminus P_1 \times \ldots \times P_n) = 0 \). Then by proposition 3.1, we deduce that
\[
1_{(f=-\infty)}H_m(f)(\Omega \setminus P_1 \times \ldots \times P_n) = 0.
\]
It follows that \(f \in \mathcal{P}_m(\Omega) \). The proof of the first assertion is completed.

(2) Using [9], the set \(\mathcal{E}_m(\Omega) \) is a convex cone. Hence if \(f, g \in \mathcal{E}_m(\Omega) \) so is \(f + g \).

Take \(P_1, \ldots, P_n \) polar in \(\mathbb{C} \) such that \(1_{(g=-\infty)}H_m(g)(\Omega \setminus P_1 \times \ldots \times P_n) = 0 \). We have
\[
H_m(f + g) = \sum_{k=0}^{m} \binom{m}{k} (dd^c f)^k \wedge (dd^c g)^{m-k} \wedge \beta^{n-m}.
\]
If we fix \(k \in \{0, \ldots, m\} \) then by lemma 1 in [17] we obtain the following writing
\[
(dd^c f)^k \wedge (dd^c g)^{m-k} \wedge \beta^{n-m} = \mu + 1_{(f=g=-\infty)}(dd^c f)^k \wedge (dd^c g)^{m-k} \wedge \beta^{n-m}
\]
where \(\mu \) is a measure that has no mass on \(m \)-polar sets. We deduce that
\[
1_{(f+g=-\infty)}H_m(f + g) = \sum_{k=0}^{m} \binom{m}{k} 1_{(f=g=-\infty)}(dd^c f)^k \wedge (dd^c g)^{m-k} \wedge \beta^{n-m}.
\]
It follows by Lemma 5.6 in [6] that
\[
\int_{\Omega \setminus (P_1 \times \ldots \times P_n)} 1_{(f+g=-\infty)}H_m(f + g)
\]
\[
= \sum_{k=0}^{m} \binom{m}{k} \int_{\Omega \setminus (P_1 \times \ldots \times P_n)} 1_{(f=g=-\infty)}(dd^c f)^k \wedge (dd^c g)^{m-k} \wedge \beta^{n-m}
\]
\[
\leq 2^m \left(\int_{\Omega \setminus (P_1 \times \ldots \times P_n) \cap \{f=g=-\infty\}} H_m(f) \right)^{\frac{1}{m}} \cdot \left(\int_{\Omega \setminus (P_1 \times \ldots \times P_n) \cap \{f=g=-\infty\}} H_m(g) \right)^{\frac{1}{m}}
\]
\[
= 0.
\]
We conclude that \(f + g \in \mathcal{P}_m(\Omega) \). \(\square \)

The following theorem represents the first main result in this paper.

Theorem 3.4. If \(f_j \) is a sequence of \(m \)-subharmonic function that belong to \(\mathcal{E}_m(\Omega) \) and satisfies \(f_j \to f \in \mathcal{E}_m(\Omega) \) in \(\Cap_m \)-capacity. Then
\[
1_{(f_j=-\infty)}H_m(f_j) \leq \liminf_{j \to +\infty} H_m(f_j).
\]

Proof. Take \(0 \leq \varphi \in C_{0}^{0}(\Omega) \) and \(\Omega_1 \Subset \Omega \) such that \(\text{supp} f \Subset \Omega_1 \), it suffices to show that
\[
\liminf_{j \to +\infty} \int_{\Omega} \varphi H_m(f_j) \geq \int_{\Omega} 1_{(f=-\infty)} \varphi H_m(f).
\]
For each \(a > 0 \) one has that
\[
\int_{\Omega} \varphi H_m(f_j) - \int_{\Omega} 1_{(f=-\infty)} \varphi H_m(f) = A_1 + A_2 + A_3,
\]
where
\[
A_1 = \int_{\Omega} \varphi (H_m(f_j) - H_m(\max(f_j, -a))) + \int_{\Omega} 1_{(f=-\infty)} \varphi H_m(f)
\]
\[
A_2 = \int_{\Omega} \varphi (H_m(\max(f_j, -a)) - H_m(f_j))
\]
\[
A_3 = \int_{\Omega} \varphi (H_m(\max(f, -a)) - H_m(f)).
\]
Using Theorem 3.6 in [6] we obtain that
\[\int \{ f_j \leq -a \} \varphi(H_m(f_j) - H_m(\max(f_j, -a))) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \]
\[\geq - \int \{ f_j \leq -a \} \varphi H_m(\max(f_j, -a)) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \]
\[\geq - \int_{\{ f_j \leq -a \} \cap \{(f_j - f) \leq 1\}} \varphi H_m(\max(f_j, -a)) - \int_{\{ (f_j - f) > 1 \}} \varphi H_m(\max(f_j, -a)) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \]
\[\geq - \int_{\{ f < -a + 2 \} \cap \Omega} \varphi H_m(\max(f_j, -a)) - a^n \text{Cap}_m(\{ |f_j - f| > 1 \} \cap \Omega) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f). \]

If we let \(j \to +\infty \) then by Theorem 3.8 in [6] we obtain
\[\liminf_{j \to +\infty} A_1 \geq \int \Omega h_{\{ f < -a + 2 \} \cap \Omega} \varphi H_m(\max(f_j, -a)) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f). \]

It follows by Theorem 3.8 in [6] that for all \(s > 0 \) one has
\[\liminf_{a \to +\infty} \liminf_{j \to +\infty} A_1 \geq \liminf_{a \to +\infty} \liminf_{j \to +\infty} h_{\{ f < -s \} \cap \Omega} \varphi H_m(\max(f_j, -a)) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \]
\[\geq \liminf_{a \to +\infty} \liminf_{j \to +\infty} h_{\{ f < -s \} \cap \Omega} \varphi H_m(\max(f_j, -a)) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \]
\[= \int \Omega h_{\{ f < -s \} \cap \Omega} \varphi H_m(f) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f). \]

Since \(\lim_{s \to +\infty} \text{Cap}_m(\{ f < -s \} \cap \Omega) = 0 \) then there exists a subset \(A \) of \(\Omega \) with \(\text{Cap}_m(A) = 0 \) such that the function \(h_{\{ f < -s \} \cap \Omega} \) increases to 0 as \(s \to +\infty \) on \(\Omega \setminus A \). Now by a decomposition theorem in [9] we get that if \(s \to +\infty \)
\[\liminf_{a \to +\infty} \liminf_{j \to +\infty} A_1 \geq \int \Omega -1_E \varphi H_m(f) + \int \Omega 1_{\{ f = -\infty \}} \varphi H_m(f) \geq 0. \]

It follows by Theorem 3.8 in [6] that
\[\liminf_{j \to +\infty} \left(\int \Omega \varphi H_m(f_j) - \int \Omega 1_{\{ f > -\infty \}} \varphi H_m(f) \right) \]
\[\geq \liminf_{a \to +\infty} \liminf_{j \to +\infty} A_1 + \liminf_{a \to +\infty} A_3 \geq 0. \]

\[\square \]

Corollary 3.5. Let \((f_j)_j \subset \mathcal{E}_m(\Omega)\) such that \(f_j \to f \in \mathcal{E}_m(\Omega) \) in \(\text{Cap}_m \)-capacity. If \((f_j, f) \in \mathcal{Q}_m(\Omega)\) for all \(j \geq 1 \). Then
\[H_m(f) \leq \liminf_{j \to +\infty} H_m(f_j). \]
Now let \(\Omega \), by Theorem 3.4 we obtain that

\[
1_{\{f=\infty\}} H_m(f) \leq 1_{\{f_j=\infty\}} H_m(f_j) \leq H_m(f_j).
\]

The result follows using Theorem 3.4. \(\square \)

Corollary 3.6. Let \((f_j)_j \subset F_m(\Omega)\) such that \(f_j \to f \in F_m(\Omega)\) in \(C_{m}\)-capacity. If \((f_j, f) \in Q_m(\Omega)\) for all \(j \geq 1\), and

\[
\lim_{j \to +\infty} \int_{\Omega} H_m(f_j) = \int_{\Omega} H_m(f).
\]

Then \(H_m(f_j) \to H_m(f)\) weakly as \(j \to +\infty\).

Proof. Without loss of generality one can assume that \(H_m(f_j) \to \mu\) weakly as \(j \to +\infty\). Using Corollary 3.3 we obtain that \(\mu(\Omega) \leq \liminf_{j \to +\infty} \int_{\Omega} H_m(f_j) = \int_{\Omega} H_m(f)\). Hence without loss of generality one can assume that there exists a positive measure \(\mu\) such that \(H_m(f_j) \to \mu\) weakly as \(j \to +\infty\). The proof will be completed if we show that \(\mu = H_m(f)\) on \(\Omega_1\). For this take \(u \in E_m^0(\Omega_1)\), then by Stokes’ theorem we obtain that

\[
\int_{\Omega_1} -u d\mu = \lim_{j \to +\infty} \int_{\Omega_1} -u H_m(f_j) \geq \lim_{j \to +\infty} \int_{\Omega_1} -u H_m(f) = \lim_{j \to +\infty} \int_{\Omega_1} -u H_m(f_j).
\]

Moreover by Proposition 3.2 and [15] we get

\[
H_m(f)(K) \leq \mu(K). \quad (*)
\]

for all compact subsets \(K\) of \(E_1, \ldots, E_n\). We deduce that \(\mu \geq 1_{\{f=\infty\}} H_m(f)\). So by Theorem 3.4 we obtain

\[
H_m(f) \leq \mu \text{ on } \Omega_1.
\]

Now let \(\Omega_2\) be a domain satisfying \(D \subset \Omega_2 \subset \Omega_1\). By Stokes theorem we obtain that

\[
H_m(f) \leq \mu \text{ on } \Omega_1.
\]
\[\mu(\Omega_2) \leq \liminf_{j \to +\infty} \int_{\Omega_2} H_m(f_j) = \liminf_{j \to +\infty} \int_{\Omega_2} H_m(\tilde{f}_j) \leq \int_{\Omega_2} H_m(\tilde{f}) \leq \int_{\Omega_1} H_m(\tilde{f}) = \int_{\Omega_1} H_m(f). \]

It follows that
\[\mu(\Omega_1) \leq H_m(f)(\Omega_1). \tag{**} \]

Using (*) and (**) we deduce that \(\mu = H_m(f) \) on \(\Omega_1 \). \(\Box \)

The following lemma will be useful in the proof of several results in this paper.

Lemma 3.8. Fix \(f \in F_m(\Omega) \). Then for all \(s > 0 \) and \(t > 0 \), one has
\[t^m \text{Cap}_m(f < -s - t) \leq \int_{\{f < -s\}} H_m(f) \leq s^m \text{Cap}_m(f < -s). \tag{3.1} \]

Proof. Let \(t, s > 0 \) and \(K \) be a compact subset satisfying \(K \subset \{f < -s - t\} \). We have
\[\text{Cap}_m(K) = \int_{\Omega} H_m(h^*_K) = \int_{\{f < -s - t\}} H_m(h^*_K) \]
\[= \int_{\{f < -s + th_K\}} H_m(h_K) = \frac{1}{t^m} \int_{\{f < g\}} H_m(g), \]

Using Theorem 3.6 in [6] we obtain that
\[\frac{1}{t^m} \int_{\{f < g\}} H_m(g) = \frac{1}{t^m} \int_{\{f < \max(f, g)\}} H_m(\max(f, g)) \leq \]
\[\frac{1}{t^m} \int_{\{f < \max(f, g)\}} H_m(f) = \frac{1}{t^m} \int_{\{f < -s + th_K\}} H_m(f) \leq \frac{1}{t^m} \int_{\{f < -s\}} H_m(f). \]

The left hand inequality of (3.1) follows by taking the supremum over all compact sets \(K \subset \Omega \).

For the right hand inequality, we have
\[\int_{\{f \leq -s\}} H_m(f) = \int_{\Omega} H_m(f) - \int_{\{f > -s\}} H_m(f) \]
\[= \int_{\Omega} H_m(\max(f, -s)) - \int_{\{f > -s\}} H_m(\max(f, -s)) \]
\[= \int_{\{f \leq -s\}} H_m(\max(f, -s)) \leq s^m \text{Cap}_m\{f \leq -s\}. \]

The result follows. \(\Box \)

Remark 3.9. Using the previous lemma we deduce the following results

(1) \(f \in F_m(\Omega) \) if and only if \(\limsup_{s \to 0} s^m \text{Cap}_m(\{f < -s\}) < +\infty \).

(2) If \(f \in F_m(\Omega) \) then
\[\int_{\Omega} H_m(f) = \lim_{s \to 0} s^m \text{Cap}_m(\{f < -s\}) \]
and
\[\int_{\{f = -\infty\}} H_m(f) = \lim_{s \to +\infty} s^m \text{Cap}_m(\{f < -s\}). \]
(3) The function \(f \in \mathcal{F}_m^*(\Omega) \) if and only if
\[
\lim_{s \to +\infty} s^\alpha \text{Cap}_m(\{f < -s\}) = 0.
\]
Indeed it is known that if \(f \) is an \(m \)-sh function on \(\Omega \) then \(H_m(f)(P) = 0 \) for every \(m \)-polar set \(P \subset \Omega \) if and only if \(H_m(f)\{f = -\infty\} = 0 \) which follows directly from the previous assertion of this remark.

4. THE CLASS \(\mathcal{E}_{m,\chi}(\Omega) \)

Throughout this section \(\chi : \mathbb{R}^- \to \mathbb{R}^- \) will be an increasing function. In [10] Hung introduced the class \(\mathcal{E}_{m,\chi}(\Omega) \) to generalize the fundamental weighted energy classes introduced firstly by Benelkourchi, Guedj, and Zeriahi [4]. Such class is defined as follows:

Definition 4.1. We say that \(f \in \mathcal{E}_{m,\chi}(\Omega) \) if and only if there exits \((f_j)_j \subset E_0^0(\Omega) \) such that \(f_j \searrow f \) in \(\Omega \) and
\[
\sup_{j \in \mathbb{N}} \int_{\Omega} (-\chi(f_j)) H_m(f_j) < +\infty.
\]

Remark 4.2. It is clear that the class \(\mathcal{E}_{m,\chi}(\Omega) \) generalizes all analogous Cegrell classes defined by Lu in [8] and [9]. Indeed

1. \(\mathcal{E}_{m,\chi}(\Omega) = \mathcal{F}_m(\Omega) \) when \(\chi(0) \neq 0 \) and \(\chi \) is bounded.
2. \(\mathcal{E}_{m,\chi}(\Omega) = \mathcal{E}_m(\Omega) \) in the case when \(\chi(t) = -(-t)^p \);
3. \(\mathcal{E}_{m,\chi}(\Omega) = \mathcal{F}_m^0(\Omega) \) in the case when \(\chi(t) = -1 - (-t)^p \).

Note that if we take \(m = n \) in all the previous cases we recover the classic Cegrell classes defined in [12] and [13].

Note that in the case \(\chi(0) \neq 0 \) one has that \(\mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{F}_m(\Omega) \) so the Hessian operator is well defined in and is with finite total mass on \(\Omega \). So in the rest of this paper we will always consider the case \(\chi(0) = 0 \).

In the following Theorem we will prove that the Hessian operator is well defined on \(\mathcal{E}_{m,\chi}(\Omega) \). Note that this result was proved in [10] but with an extra condition \((\chi(2t) \leq a \chi(t))\). Here we omit that condition and the proof of such result is completely different.

Theorem 4.3. Assume that \(\chi \neq 0 \). Then
\[
\mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{E}_m(\Omega).
\]
So for every \(f \in \mathcal{E}_{m,\chi}(\Omega) \), \(H_m(f) \) is well defined and \(-\chi(f) \in L^1(H_m(f)) \).

Proof. Since \(\chi \neq 0 \) so there exists \(t_0 > 0 \) such that \(\chi(-t_0) < 0 \). Take \(\chi_1 \) an increasing function satisfying \(\chi'_1 = \chi''_1 = 0 \) on \([-t_0,0] \), \(\chi_1 \) is convex on \([-\infty,-t_0] \) and \(\chi_1 \geq \chi \). Let \(g \in \mathcal{SH}_m^-(\Omega) \), then
\[
\frac{d^\infty \chi_1(g) \wedge \beta^{n-m}}{\beta^{n-m}} = \chi''_1(g) dg \wedge d^\infty g \wedge \beta^{n-m} + \chi'_1(g) d^e \chi_1(g) \wedge \beta^{n-m} \geq 0.
\]
So the function \(\chi_1(g) \in \mathcal{SH}_m^-(\Omega) \). Now consider \(f \in \mathcal{E}_{m,\chi}(\Omega) \), then by definition there exists a sequence \((f_j)_j \subset E_0^0(\Omega) \) that decreases to \(f \) and satisfying
\[
\sup_{j \in \mathbb{N}} \int_{\Omega} -\chi(f_j) H_m(f_j) < \infty.
\]
By definition of the class \(\mathcal{E}_m(\Omega) \), it remains to prove that \(f \) coincides locally with a function in \(\mathcal{F}_m(\Omega) \). For this take \(G \Subset \Omega \) be a domain and consider the function
\[
f_j^G := \sup\{g \in \mathcal{SH}_m^-(\Omega); g \leq f_j \text{ on } G\}.
\]
We have \(f^G_j \in \mathcal{E}^0_{m}(\Omega) \) and \(f^G_j \searrow f \) on \(G \). Take \(\varphi \in \mathcal{E}^0_{m}(\Omega) \) such that \(\chi_1(f_1) \leq \varphi \). We obtain using integration by parts that

\[
\sup_{j \in \mathbb{N}} \int_{\Omega} -\varphi H_m(f^G_j) \leq \sup_{j \in \mathbb{N}} \int_{\Omega} -\varphi H_m(f_j) \\
\leq \sup_{j \in \mathbb{N}} \int_{\Omega} -\chi_1(f_1) H_m(f_j) \\
\leq \sup_{j \in \mathbb{N}} \int_{\Omega} -\chi_1(f_j) H_m(f_j) \\
\leq \sup_{j \in \mathbb{N}} \int_{\Omega} -\chi(f_j) H_m(f_j) < \infty.
\]

We deduce that

\[
\sup_{j \in \mathbb{N}} \int_{\Omega} H_m(f^G_j) \leq (\sup_{G} \varphi)^{-1} \sup_{j \in \mathbb{N}} \int_{\Omega} -\varphi H_m(f^G_j) < \infty.
\]

It follows that the limit \(\lim_{j \to +\infty} f^G_j \in F_m(\Omega) \) and therefore \(f \in \mathcal{E}_m(\Omega) \).

For the second assertion, we have that every \(f \in \mathcal{E}_{m,\chi}(\Omega) \) is upper semicontinuous, so the sequence of measures \(\mu_j := -\chi(f_j) H_m(f_j) \) is bounded. Take \(\mu \) a cluster point of \(\mu_j \) then \(-\chi(f) H_m(f) \leq \mu \). Hence \(\int_{\Omega} -\chi(f) H_m(f) < \infty \) and the desired result follows.

Proposition 4.4. Then the following statements are equivalent:

\[(1) \quad \chi(-\infty) = -\infty \]
\[(2) \quad \mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{E}_a^0(\Omega).\]

Proof. We will prove that (1) \(\Rightarrow \) (2). For this assume that \(\chi(-\infty) = -\infty \) and take \(f \in \mathcal{E}_{m,\chi}(\Omega) \). By definition of the class \(\mathcal{E}_{m,\chi}(\Omega) \), there exists a sequence \(\{f_j\} \subset \mathcal{E}^0_{m} \) such that \(f_j \searrow f \) and

\[
\sup_{j} \int_{\Omega} -\chi(f_j) H_m(f_j) < +\infty.
\]

Since \(\chi \) is increasing then for all \(t > 0 \)

\[
\int_{\{f_j < -t\}} H_m(f_j) \leq \int_{\{f_j < -t\}} \frac{\chi(f_j)}{\chi(-t)} H_m(f_j) \\
\leq (\chi(-t))^{-1} \sup_{j} \int_{\Omega} \chi(f_j) H_m(f_j).
\]

Since the sequence \(\{f_j < -t\} \) is increasing to \(\{f < -t\} \) then by letting \(j \to \infty \) we get

\[
\int_{\{f < -t\}} H_m(f) \leq (\chi(-t))^{-1} \sup_{j} \int_{\Omega} \chi(f_j) H_m(f_j).
\]

Now if we let \(t \to +\infty \) we deduce that

\[
\int_{\{f = -\infty\}} H_m(f) = 0.
\]

Hence, \(f \in \mathcal{E}_a^0(\Omega) \).
(2) ⇒ (1) Assume that $\chi(-\infty) > -\infty$, then $\mathcal{F}_m(\Omega) \subset \mathcal{E}_{m,\chi}(\Omega)$. But it is known that $\mathcal{F}_m(\Omega)$ is not a subset of $\mathcal{E}_{m}^a(\Omega)$. We deduce that $\mathcal{E}_{m,\chi}(\Omega) \not\subset \mathcal{E}_{m}^a(\Omega)$. □

The rest of this section will be devoted to give a connection between the class $\mathcal{E}_{m,\chi}(\Omega)$ and the Cap_{m}^{-}-capacity of sublevels $\text{Cap}_{m}(\{f < -t\})$. As a consequence we deduce a complete characterization of the class $\mathcal{E}_{m}^p(\Omega)$ introduced by Lu [8] in term of the Cap_{m}^{-}-capacity of sublevel. For this we introduce the class $\hat{\mathcal{E}}_{m,\chi}(\Omega)$ as follows:

Definition 4.5.

$$\hat{\mathcal{E}}_{m,\chi}(\Omega) := \left\{ \varphi \in \mathcal{S}H_{m}^{-}(\Omega) / \int_0^{+\infty} t^m \chi'(−t)\text{Cap}_{m}(\{\varphi < −t\})dt < +\infty \right\}.$$

The previous class coincides with the class $\hat{\mathcal{E}}_{\chi}(\Omega)$ given by Benelkourchi, Guedj, and Zeriahi [4], it suffices to take $m = n$ to recover it. In the following proposition we cite some properties of $\hat{\mathcal{E}}_{m,\chi}(\Omega)$ and we give a relationship between $\mathcal{E}_{m,\chi}(\Omega)$ and $\hat{\mathcal{E}}_{m,\chi}(\Omega)$:

Proposition 4.6.

1. The classe $\hat{\mathcal{E}}_{m,\chi}(\Omega)$ is convex.
2. For every $f \in \hat{\mathcal{E}}_{m,\chi}(\Omega)$ and $g \in \mathcal{S}H_{m}^{-}(\Omega)$, one has that $\max(f, g) \in \hat{\mathcal{E}}_{m,\chi}(\Omega)$.
3. $\mathcal{E}_{m,\chi}(\Omega) \subset \hat{\mathcal{E}}_{m,\chi}(\Omega)$.
4. If we denote by $\hat{\chi}(t)$ the function defined by $\hat{\chi}(t) := \chi(t/2)$, then $\mathcal{E}_{m,\chi}(\Omega) \subset \hat{\mathcal{E}}_{m,\chi}(\Omega)$.

Proof.

1) Let $f, g \in \hat{\mathcal{E}}_{m,\chi}(\Omega)$ and $0 \leq \alpha \leq 1$. Since we have
$$\{\alpha f + (1 - \alpha)g < -t\} \subset \{f < -t\} \cup \{g < -t\}$$
then $f + \alpha g \in \hat{\mathcal{E}}_{m,\chi}(\Omega)$. The result follows.

2) The proof of this assertion is obvious.

3) Take $f \in \hat{\mathcal{E}}_{m,\chi}(\Omega)$. It remains to construct a sequence $f_j \in \mathcal{E}_{m}^0(\Omega)$ satisfying
$$\int_\Omega -\chi(f_j) H_m(f_j) < \infty.$$
For this, we may assume without loss of generality that $f \leq 0$. If we set $f_j := \max(f, -j)$ then $f_j \in \mathcal{E}_{m}^0(\Omega)$. Using Lemma [3,8] we get that
$$\int_\Omega -\chi(f_j) H_m(f_j) = \int_0^{+\infty} \chi'(-t)H_m(f_j)(f_j < -t)dt \leq \int_0^{+\infty} \chi'(-t)t^m\text{Cap}_{m}(f < -t)dt < +\infty.$$
It follows that $f \in \mathcal{E}_{m,\chi}(\Omega)$.

4) The proof of this assertion follows directly using the same argument as in 3) and the second inequality in Lemma [3,8] for $t = s$. □

Proposition 4.7. Assume that for all $t < 0$ one has $\chi(t) < 0$, then for all $f \in \mathcal{E}_{m,\chi}(\Omega)$ one has
$$\lim_{z \to w} f(z) = 0, \quad \forall w \in \partial \Omega.$$
Proof. Since by hypothesis we have for all $t < 0$: $\chi(t) < 0$ so we can assume, without loss of generality, that the length of the set $\{t > 0; t < t_0$ and $\chi'(t) \neq 0\}$ is positive for all $t_0 > 0$. We suppose by contradiction that there is $w_0 \in \partial \Omega$ such that $\limsup f(z) = \varepsilon < 0$. Then there is a ball B_0 centered at w_0 satisfying $B_0 \cap \Omega \subset \{f < \frac{\varepsilon}{2}\}$. If we consider $(K_j)_j$ to a sequence of regular compact subsets so that for all j one has $K_j \subset K_{j+1}$ and $B_0 \cap \Omega = \bigcup K_j$. Then the extremal function $h_{K_j,\Omega}$ belongs to $\mathcal{E}^0_m(\Omega)$ and decreases to $h_{E,\Omega}$. It is easy to check that $h_{E,\Omega} \notin \mathcal{F}_m(\Omega)$. By the definition of the class $\mathcal{F}_m(\Omega)$ we obtain

$$\sup_j \text{Cap}_m(K_j) = \sup_j \int_{\Omega} H_m(f_{K_j,\Omega}) = +\infty.$$

So

$$\text{Cap}_m(B_0 \cap \Omega) = +\infty.$$

We deduce that

$$\text{Cap}_m(\{f < -s\}) = +\infty, \forall s \leq -\varepsilon/2,$$

hence

$$\int_0^{+\infty} t^m \chi'(t) \text{Cap}_m(\{f < -t\})dt = +\infty.$$

We get a contradiction with the fact that $\mathcal{E}_{m,\chi}(\Omega) \subset \hat{\mathcal{E}}_{m,\chi}(\Omega)$.

\[\square\]

Proposition 4.8. Assume that $\chi \neq 0$. If there exists a sequence $(f_k) \subset \mathcal{E}^0_m(\Omega)$ such that

$$\sup_{k \in \mathbb{N}} \int_{\Omega} -\chi(f_k) H_m(f_k) < \infty,$$

then the function $f := \lim_{k \to +\infty} f_k \neq -\infty$ and therefore $f \in \mathcal{E}_{m,\chi}(\Omega)$.

Proof. Using the hypothesis we observe that the length of the set $\{t > 0; t < t_0$ and $\chi'(t) \neq 0\}$ is positive. By lemma 3.8 we get

$$\sup_{k \in \mathbb{N}} \int_{\Omega} \chi(f_k) H_m(f_k) < \infty.$$

Then

$$\int_0^{+\infty} t^m \chi'(t) \text{Cap}_m(\{f < -t\})dt = \lim_{k \to +\infty} \int_0^{+\infty} t^m \chi'(t) \text{Cap}_m(\{f < -t\})dt$$

$$\leq \lim_{k \to +\infty} 2^m \int_0^{+\infty} \chi'(t) \int_{\{f < -t\}} H_m(f_k)dt$$

$$\leq 2^m \sup_{k \in \mathbb{N}} \int_{\Omega} \chi(f_k) H_m(f_k) < \infty.$$

Note that in the previous inequality we have used the convergence monotone theorem. We conclude that $f \neq -\infty$ and therefore $f \in \mathcal{E}_{m,\chi}(\Omega)$.

\[\square\]

Theorem 4.9. Assume that for all $t < 0$ one has $\chi(t) < 0$. Then

$$\mathcal{E}_{m,\chi}(\Omega) \subset \mathcal{N}_m(\Omega).$$

Proof. By proposition 4.8 it suffices to prove that every maximal function $f \in \mathcal{E}_{m,\chi}(\Omega)$ is identically equal to 0. Take a sequence $f_j \in \mathcal{E}^0_m(\Omega)$ as in the definition of the class $\mathcal{E}_{m,\chi}(\Omega)$. So we obtain using Lemma 3.8 that

$$\int_0^{+\infty} \chi'(\frac{-s}{2}) f^m \text{Cap}_m(\{f < -s\})ds = \lim_{j \to +\infty} \int_0^{+\infty} \chi'(\frac{-s}{2}) s^m \text{Cap}_m(\{f_j < -s\})ds$$
Proof. (1) Take a test function \(\rho \) for all \(j \in \mathbb{N} \). Let \(\rho \) exist. Assume that Theorem 4.11. guarantee that for all \(j \in \mathbb{N} \) it suffices to prove the reverse inclusion 4.9. It suffices to prove the reverse inclusion \(\{ f \in \mathcal{N}_m(\Omega) \} \subset \mathcal{E}_{m,\chi}(\Omega) \). Take \(f \in \mathcal{N}_m(\Omega) \) satisfying \(\int_\Omega -\chi(f)H_m(f) < \infty \). It suffices to construct sequence \(f_j \in \mathcal{E}_{m,\chi}(\Omega) \) that decreases to \(f \) and satisfies

\[
\sup_j \int_\Omega -\chi(f_j)H_m(f_j) < \infty.
\]

Let \(\rho \) be an exhaustion function for \(\Omega \) (\(\Omega = \{ \rho < 0 \} \)). The theorem 5.9 in [6] guarantee that for all \(j \in \mathbb{N} \), there is a function \(f_j \in \mathcal{E}_{m,\chi}(\Omega) \) satisfying \(H_m(f_j) = 1_{\{f_j > \rho\}}H_m(f) \). We have \(H_m(f_j) \leq H_m(f_{j+1}) \leq H_m(f) \), so we get that \(f_j \geq f_{j+1} \) using the comparison principle and \((f_j) \) converges to a function \(f \). It is easy to check that \(f \geq f \). Now following the proof of Theorem 4.10 we deduce the existence of a negative \(m \)-sh function \(g \) satisfying \(\int_\Omega -gH_m(f) < \infty \). If follows by Theorem 2.10 [7] that \(g = f \). Thus the monotone convergence theorem gives

\[
\int_\Omega -\chi(f_j)H_m(f_j) = \int_\Omega -\chi(f_j)1_{\{f_j > \rho\}}H_m(f) \to \int_\Omega -\chi(f)H_m(f) < \infty.
\]

Now we will extend the theorem A to the class \(\mathcal{E}_{m,\chi}(\Omega) \).

Theorem 4.11. Assume that \(\chi \) is continuous, \(\chi(-\infty) > -\infty \) and \(f, f_j \in \mathcal{E}_{m,\chi}(\Omega) \) for all \(j \in \mathbb{N} \). If there exists \(g \in \mathcal{E}_{m,\chi}(\Omega) \) satisfying \(f_j \geq g \) on \(\Omega \) then:

(1) If \(f_j \) converges to \(f \) in \(\text{Cap}_{m-1} \) capacity then \(\liminf_{j \to +\infty} -\chi(f_j)H_m(f_j) \geq -\chi(f)H_m(f) \).

(2) If \(f_j \) converges to \(f \) in \(\text{Cap}_m \) capacity then \(-\chi(f_j)H_m(f_j) \) converges weakly to \(-\chi(f)H_m(f) \).

Proof. (1) Take a test function \(\varphi \in C_{0}^{\infty}(\Omega) \) such that \(0 \leq \varphi \leq 1 \). Using [9] there exist \(\psi_k \in \mathcal{E}_{m,\chi}(\Omega) \cap C(\Omega) \) with \(\psi_k \geq f \) and \(\psi_k \nabla f \) in \(\Omega \). For a fixed integer \(k \geq 1 \)
there exists, by [14], \(j_0 \in \mathbb{N} \) such that \(f_j \geq \psi_k \) on \(\text{supp} \varphi \) for all \(j \geq j_0 \). So by Theorem 3.10 in [6], we obtain that for all \(k \geq 1 \) one has

\[
\liminf_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \geq \liminf_{j \to +\infty} \int_{\Omega} -\varphi(\psi_k)H_m(f_j) = \int_{\Omega} -\varphi(\psi_k)H_m(f).
\]

Now if we let \(k \) tends to \(+\infty \) then by the Lebesgue monotone convergence theorem, we get

\[
\liminf_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \geq \int_{\Omega} -\varphi(f)H_m(f).
\]

The result follows.

(2) Without loss of generality one can assume that \(\chi(-\infty) = -1 \). Let \(\varphi \in C^\infty_0(\Omega) \) such that \(0 \leq \varphi \leq 1 \). We claim that

\[
\limsup_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \leq \int_{\Omega} -\varphi(f)H_m(f). \quad (*)
\]

Indeed, by the quasicontinuity of \(f \) and \(g \) with respect to the capacity \(\text{Cap}_m \), we obtain that for every \(k \in \mathbb{N} \) there exist an open subset \(O_k \) of \(\Omega \) and a function \(\tilde{f}_k \in C(\Omega) \) such that \(\text{Cap}_m(O_k) \leq \frac{1}{2^k} \) and \(\tilde{f}_k = f \) on \(\Omega \setminus O_k \) and \(g \geq -\alpha_k \) on \(\text{supp}\varphi \setminus O_k \) for some \(\alpha_k > 0 \). Let \(\varepsilon > 0 \), then by Theorem 3.6 in [15] one has

\[
\int_{\Omega} -\varphi(f_j)H_m(f_j) = \int_{\Omega \setminus O_k} -\varphi(f_j)H_m(f_j) + \int_{O_k} -\varphi(f_j)H_m(f_j) \\
\leq \int_{\Omega \setminus O_k} -\varphi(f_j)H_m(f_j) + \int_{O_k} -\varphi H_m(f_j) \\
\leq \int_{\{f_j \leq f - \varepsilon\} \setminus O_k} -\varphi(f_j)H_m(f_j) \\
+ \int_{\{f_j > f - \varepsilon\} \setminus O_k} -\varphi(f_j)H_m(f_j) + \int_{O_k} -\varphi H_m(f_j) \\
\leq \int_{\{f_j \leq f - \varepsilon\} \setminus O_k} -\varphi H_m(f_j) \\
+ \int_{\Omega \setminus O_k} -\varphi(f_{\text{max}}(f_j, -\alpha_k))H_m(f_j) \\
+ \int_{O_k} -\varphi(\tilde{f}_k - \varepsilon)H_m(f_j) + \int_{\Omega} -\varphi h_{O_k, \Omega} H_m(f_j) \\
\leq \alpha_k^m \text{Cap}_m(\{f_j < f - \varepsilon\} \cap \text{supp}\varphi) \\
+ \int_{\Omega \setminus O_k} -\varphi(\tilde{f}_k - \varepsilon)H_m(f_j) + \int_{\Omega} -\varphi h_{O_k, \Omega} H_m(f_j).\]

If we let \(j \) goes to \(+\infty \), we get using theorem 3.8 [6] that

\[
\limsup_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \leq \int_{\Omega \setminus O_k} -\varphi(\tilde{f}_k - \varepsilon)H_m(f) + \int_{\Omega} -\varphi h_{O_k, \Omega} H_m(f).
\]

If we let \(\varepsilon \to 0 \), we obtain

\[
\limsup_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \leq \int_{\Omega \setminus \{f = -\infty\}} -\varphi(f)H_m(f) + \int_{\Omega} -\varphi h_{\bigcup_{l=k}^\infty O_l, \Omega} H_m(f) \quad (**)
\]
Now as \(\bigcup_{l=k}^{\infty} O_l \setminus O \) when \(k \to +\infty \) then

\[
\text{Cap}_m(O) \leq \lim_{k \to \infty} \text{Cap}_m \left(\bigcup_{l=k}^{\infty} O_l \right) \leq \lim_{k \to \infty} \sum_{l=k}^{\infty} \text{Cap}_m(O_l) \leq \lim_{k \to \infty} \frac{1}{2^{k-1}}
\]

so there exists an \(m \)-polar set \(M \) such that \(h_{\bigcup_{l=k}^{\infty} O_l, \Omega} \neq 0 \) when \(k \to +\infty \) on \(\Omega \setminus M \). So if we take \(k \to +\infty \) in (**) we obtain

\[
\limsup_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \leq \int_{\Omega \setminus \{f = -\infty\}} -\varphi(f)H_m(f) \quad + \quad \int_{M} \varphi H_m(f)
\]

\[
\leq \int_{\Omega \setminus \{f = -\infty\}} -\varphi(f)H_m(f) \quad + \quad \int_{\{f = -\infty\}} -\varphi(f)H_m(f)
\]

\[
= -\int_{\Omega} -\varphi(f)H_m(f).
\]

This proves the claim (*). Moreover since \(f_j \) converges in \(\text{Cap}_m \)-capacity so it converges in \(\text{Cap}_{m-1} \)-capacity. Using the assertion \((a)\) we obtain

\[
\liminf_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) \geq \int_{\Omega} -\varphi(f)H_m(f).
\]

If we combine the last inequality with (**) we get

\[
\lim_{j \to +\infty} \int_{\Omega} -\varphi(f_j)H_m(f_j) = \int_{\Omega} -\varphi(f)H_m(f),
\]

for every \(\varphi \in C_0^\infty(\Omega) \) with \(0 \leq \varphi \leq 1 \). Hence we get the desired result. \(\square \)

Now we will be intrusted to the problem of subextention in the class \(\mathcal{E}_{m,\chi}(\Omega) \). For \(\Omega \in \Omega \in \mathbb{C}^n \) and \(f \in \mathcal{E}_{m,\chi}(\Omega) \), we say that \(\tilde{f} \in \mathcal{E}_{m,\chi}(\tilde{\Omega}) \) is a subextension of \(f \) if \(\tilde{f} \leq f \) on \(\Omega \). In the following theorem we prove that every function \(f \in \mathcal{E}_{m,\chi}(\Omega) \) has a subextension.

Theorem 4.12. Let \(\Omega \) be a \(m \)-hyperconvex domain such that \(\Omega \in \tilde{\Omega} \in \mathbb{C}^n \). If \(\chi(t) < 0 \) for all \(t < 0 \) and \(f \in \mathcal{E}_{m,\chi}(\Omega) \) then is \(\tilde{f} \in \mathcal{E}_{m,\chi}(\tilde{\Omega}) \) satisfying

\[
\int_{\Omega} -\chi(\tilde{f})H_m(\tilde{f}) \leq \int_{\Omega} -\chi(f)H_m(f)
\]

and \(\tilde{f} \leq f \) on \(\Omega \).

Proof. Let \(f \in \mathcal{E}_{m,\chi}(\Omega) \) and \(f_k \in \mathcal{E}_{m}^0(\Omega) \) be the sequence as in the definition of the class \(\mathcal{E}_{m,\chi}(\Omega) \). We obtain using lemma 3.2 in [18] that for every \(k \in \mathbb{N} \), there exists a subextension \(\tilde{f}_k \) of \(f_k \). It follows that

\[
\int_{\tilde{\Omega}} -\chi(\tilde{f}_k)H_m(\tilde{f}_k) = \int_{\{f_k = \tilde{f}_k \} \cap \Omega} -\chi(\tilde{f}_k)H_m(\tilde{f}_k)
\]

\[
\leq \int_{\{f_k = \tilde{f}_k \} \cap \Omega} -\chi(f_k)H_m(f_k)
\]

\[
\leq \int_{\Omega} -\chi(f_k)H_m(f_k).
\]

So we obtain

\[
\sup_k \int_{\tilde{\Omega}} -\chi(\tilde{f}_k)H_m(\tilde{f}_k) \leq \int_{\Omega} -\chi(f)H_m(f) < \infty. \quad (*)
\]
Using the proposition 4.8 we get that the function \(\tilde{f} = \lim_{k \to \infty} \tilde{f}_k \neq -\infty \) and \(\tilde{f} \in E_{m,\chi}(\tilde{\Omega}) \). Then by (\(\ast \))

\[
\int_{\tilde{\Omega}} -\chi(\tilde{f}) H_m(\tilde{f}) \leq \int_{\Omega} -\chi(f) H_m(f) < \infty.
\]

It follows by the Comparison Principle that for all \(k \in \mathbb{N} \) one has \(\tilde{f}_k \leq f_k \) on \(\Omega \). If we let \(k \) goes to \(\infty \), we deduce that \(\tilde{f} \leq f \) on \(\Omega \). \(\square \)

Acknowledgments Authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant no. DSR-2021-03-03134.

References

[1] E. Bedford and B. A. Taylor, *A new capacity for plurisubharmonic functions*, Acta Math., **149** (1982), 1–40.

[2] E. Bedford and B. A. Taylor, *The Dirichlet problem for a complex Monge-Ampère operator*, Invent. Math., **37** (1976), 1–44.

[3] Benelkourchi, S.: *Weighted pluricomplex energy*, Potential Anal. **31** (2009), 1–20.

[4] Benelkourchi, S., Guedj, V., Zeriahi, A.: *Plurisubharmonic functions with weak singularities*, In: Passare, M. (ed.) Complex Analysis and Digital Geometry: Proceedings from the Kiselmanfest, Uppsala Universitet (2007) pp. 57–73.

[5] Benelkourchi, S.: *Approximation of weakly singular plurisubharmonic functions*, Internat. J. Math. **22** (2011) 937–946.

[6] Hung, V.V., Phu, N.V.: *Hessian measures on m-polar sets and applications to the complex Hessian equations*, Complex Var. Elliptic Equ. **8** (2017), 1135–1164.

[7] A. El Gasmi *The Dirichlet problem for the complex Hessian operator in the class \(N_m(\Omega, f) \)*, Mathematica Scandinavica **127** (2021), 287–316.

[8] Lu, C. H., *A variational approach to complex Hessian equations in \(C^n \)*, J. Math. Anal. Appl. **431** (2015), no. 1, 228-259.

[9] H. C. Lu, *Equations Hessiennes complexes*, Ph.D. thesis, Université Paul Sabatier, Toulouse, France (2012), http://thesesups.ups-tlse.fr/1961/

[10] L.M. Hai, P.H. Hiep, N.X. Hong, Phu, N.V.: *The Monge-Ampère type equation in the weighted pluricomplex energy class*, Int. J. Math. **25**(5), 1450042 (2014).

[11] Z. Blocki, *Weak solutions to the complex Hessian equation*, Ann. Inst. Fourier (Grenoble) **55**, 5 (2005), 1735-1756.

[12] U. Cegrell, *Pluricomplex energy*, Acta. Math. **180** (1998), 187-217. 131–147.

[13] U. Cegrell, *The general definition of the complex Monge-Ampère operator*, Ann. Inst. Fourier (Grenoble) **54** (2004), 159-179.

[14] L. Hörmander, *Notion of Convexity*, Progress in Mathematics, Birkhäuser, Boston, **127** (1994).

[15] P. H. Hiep, *Convergence in capacity*, Ann. Polon. Math. **93** (2008), 91-99.

[16] Hung, V.V.: *Local property of a class of m-subharmonic functions*, Vietnam J.Math. **44**(5)(2016), 621-630.

[17] Le Mau Hai and Trieu Van Dung, *Subextension of m–Subharmonic Functions*, Vietnam Journal of Mathematics (2020) 48:47–57.

[18] Le Mau Hai · Vu Van Quan, *Weak Solutions to the Complex m-Hessian Equation on Open Subsets of \(C^n \)*, Complex Analysis and Operator Theory **279**(2019):4007–4025.

[19] A.S. Sadullaev and B.I. Abdullaev, *Potential theory in the class of m-subharmonic functions*, Tr. Mat. Inst. Steklova **279** (2012), 166-192.

[20] Van Thien Nguyen, *Maximal m-subharmonic functions and the Cegrell class \(N_m \)*, Indagationes Mathematicae **30** (2019), 717-739.

Department of Mathematics, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.

Department of mathematics, College of science, Shaqra University, P.O. box 1040 Ad-Dwadimi 1191, Kingdom of Saudi Arabia.
Irescomath Laboratory, Gabes University, 6072 Zrig Gabes, Tunisia.

Email address: jmhbil@ju.edu.sa
Email address: m_zaway@su.edu.sa