Bohr’s absolute convergence problem for \(H_p\)-Dirichlet series in Banach spaces

Daniel Carando\(^*\) Andreas Defant\(^†\) Pablo Sevilla-Peris\(^‡\)

Abstract

The Bohr-Bohnenblust-Hille Theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series \(\sum_n a_n n^{-s}\) converges uniformly but not absolutely is less than or equal to 1/2, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space \(\mathcal{H}_\infty\) equals 1/2. By a surprising fact of Bayart the same result holds true if \(\mathcal{H}_\infty\) is replaced by any Hardy space \(\mathcal{H}_p, 1 \leq p < \infty\), of Dirichlet series. For Dirichlet series with coefficients in a Banach space \(X\) the maximal width of Bohr’s strips depend on the geometry of \(X\); Defant, García, Maestre and Pérez-García proved that such maximal width equal \(1 – 1/\text{Cot}(X)\), where \(\text{Cot}(X)\) denotes the maximal cotype of \(X\). Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space \(\mathcal{H}_\infty(X)\) equals \(1 – 1/\text{Cot}(X)\). In this article we show that this result remains true if \(\mathcal{H}_\infty(X)\) is replaced by the larger class \(\mathcal{H}_p(X), 1 \leq p < \infty\).

1 Main result and its motivation

Given a Banach space \(X\), an ordinary Dirichlet series in \(X\) is a series of the form \(D = \sum_n a_n n^{-s}\), where the coefficients \(a_n\) are vectors in \(X\) and \(s\) is a complex variable. Maximal domains where such Dirichlet series converge conditionally, uniformly or absolutely are half planes \([\text{Re} > \sigma]\), where \(\sigma = \sigma_c, \sigma_u\) or \(\sigma_a\) are called the abscissa of conditional, uniform or absolute convergence, respectively. More precisely, \(\sigma_\alpha(D)\) is the infimum of all \(r \in \mathbb{R}\) such that on \([\text{Re} > r]\) we have convergence of \(D\) of the requested type \(\alpha = c, u\) or \(a\). Clearly, we have \(\sigma_c(D) \leq \sigma_u(D) \leq \sigma_a(D)\), and it can be easily shown that \(\sup \sigma_a(D) – \sigma_c(D) = 1\), where the supremum is taken over all Dirichlet series \(D\) with coefficients in \(X\). To determine the maximal width of the strip on which a Dirichlet series in \(X\) converges uniformly

\(^*\)Departamento de Matematica. Universidad de Buenos Aires. 1428 Buenos Aires and IMAS - CONICET (Argentina)

\(^†\)Institut für Mathematik. Universität Oldenburg. D-26111 Oldenburg (Germany)

\(^‡\)Instituto Universitario de Matemática Pura y Aplicada. Universitat Politècnica de València. 46022 Valencia (Spain)

The first author was partially supported by CONICET PIP 0624, PICT 2011-1456 and UBACyT 1-746. The second and third authors were supported by MICINN Project MTM2011-22417

Mathematics Subject Classification (2010): 30B50, 32A05, 46G20.

Keywords: Vector valued Dirichlet series, vector valued \(H_p\) spaces, Banach spaces.
but not absolutely, is more complicated. The main result of [8] states, with the notation given below, that

\[S(X) := \sup \sigma_a(D) - \sigma_u(D) = 1 - \frac{1}{\text{Cot}(X)}. \]

(1)

Recall that a Banach space \(X \) is of cotype \(q \), \(2 \leq q < \infty \) whenever there is a constant \(C \geq 0 \) such that for each choice of finitely many vectors \(x_1, \ldots, x_N \in X \) we have

\[\left(\sum_{k=1}^{N} \| x_k \|_X^q \right)^{1/q} \leq \frac{C}{2} \left(\int_{T^N} \left\| \sum_{k=1}^{N} x_k z_k \right\|_X^2 \, dz \right)^{1/2}, \]

(2)

where \(T := \{ z \in \mathbb{C} \mid |z| = 1 \} \) and \(T^N \) is endowed with \(N \)th product of the normalized Lebesgue measure on \(T \). We denote by \(C_r(X) \) the best of such constants \(C \). As usual we write

\[\text{Cot}(X) := \inf \left\{ 2 \leq q < \infty \mid X \text{ cotype } q \right\}, \]

and (although this infimum in general is not attained) we call it the optimal cotype of \(X \). If there is no \(2 \leq q < \infty \) for which \(X \) has cotype \(q \), then \(X \) is said to have no finite cotype, and we put \(\text{Cot}(X) = \infty \). To see an example,

\[\text{Cot}(X)(\ell_q) = \begin{cases} q & \text{for } 2 \leq q \leq \infty \\ 2 & \text{for } 1 \leq q \leq 2. \end{cases} \]

The scalar case \(X = \mathbb{C} \) in (1) was first studied by Bohr and Bohnenblust-Hille: In 1913 Bohr in [4] proved that \(S(\mathbb{C}) \leq \frac{1}{2} \), and in 1931 Bohnenblust and Hille in [3] that \(S(\mathbb{C}) \geq \frac{1}{2} \). Clearly, the equality

\[S(\mathbb{C}) = \frac{1}{2}, \]

(3)

nowadays called Bohr-Bohnenblust-Hille Theorem, fits with (1). Let us give a second formulation of (1). Define the vector space \(\mathcal{H}_\infty(X) \) of all Dirichlet series \(D = \sum_n a_n n^{-s} \) in \(X \) such that

\(\bullet \) \(\sigma_c(D) \leq 0 \),

\(\bullet \) the function \(D(s) = \sum_n a_n \frac{1}{n^s} \) on \(\text{Re } s > 0 \) is bounded.

Then \(\mathcal{H}_\infty(X) \) together with the norm

\[\| D \|_{\mathcal{H}_\infty(X)} = \sup_{\text{Re } s > 0} \left\| \sum_{n=1}^{\infty} a_n \frac{1}{n^s} \right\|_X \]

forms a Banach space. For any Dirichlet series \(D \) in \(X \) we have

\[\sigma_u(D) = \inf \left\{ \sigma \in \mathbb{R} \mid \sum_n a_n \frac{1}{n^{\sigma}} \in \mathcal{H}_\infty(X) \right\}. \]

(4)

In the scalar case \(X = \mathbb{C} \), this is (what we call) Bohr’s fundamental theorem from [5], and for Dirichlet series in arbitrary Banach spaces the proof follows similarly. Together with (4) a simply translation argument gives the following reformulation of (1):

\[S(X) = \sup_{D \in \mathcal{H}_\infty(X)} \sigma_a(D) = 1 - \frac{1}{\text{Cot}(X)}. \]

(5)
Following an ingenious idea of Bohr each Dirichlet series may be identified with a power series in infinitely many variables. More precisely, fix a Banach space X and denote by $\mathfrak P(X)$ the vector space of all formal power series $\sum c_\alpha z^\alpha$ in X and by $\mathfrak D(X)$ the vector space of all Dirichlet series $\sum_n a_n n^{-s}$ in X. Let us as usual $(p_n)_n$ be the sequence of prime numbers. Since each integer has a unique prime number decomposition $n = p_1^{a_1} \cdots p_k^{a_k}$ with $a_j \in \mathbb N_0$, $1 \leq j \leq k$, the linear mapping

$$\mathfrak B_X : \mathfrak P(X) \to \mathfrak D(X), \quad \sum_{\alpha \in \mathbb N_0^{|\mathbb N|}} c_\alpha z^\alpha \mapsto \sum_{n=1}^{\infty} a_n n^{-s}, \text{ where } a_{p^n} = c_\alpha$$

is bijective; we call $\mathfrak B_X$ the Bohr transform in X. As discovered by Bayart in [1] this (a priori very) formal identification allows to develop a theory of Hardy spaces of scalar–valued Dirichlet series.

Similarly we now define Hardy spaces of X–valued Dirichlet series. Denote by dw the normalized Lebesgue measure on the infinite dimensional polytorus $\mathbb T^\infty = \prod_{k=1}^{\infty} \mathbb T$, e.g. the countable product measure of the normalized Lebesgue measure on $\mathbb T$. For any multi index $\alpha = (\alpha_1, \ldots, \alpha_n, 0, \ldots) \in \mathbb Z^{[\mathbb N]}$ (all finite sequences in $\mathbb Z$) the αth Fourier coefficient $\hat f(\alpha)$ of $f \in L_1(\mathbb T^\infty, X)$ is given by

$$\hat f(\alpha) = \int_{\mathbb T^\infty} f(w) w^{-\alpha} dw,$$

where we as usual write w^α for the monomial $w_1^{\alpha_1} \cdots w_n^{\alpha_n}$. Then, given $1 \leq p < \infty$, the X-valued Hardy space on $\mathbb T^\infty$ is the subspace of $L_p(\mathbb T^\infty, X)$ defined as

$$H_p(\mathbb T^\infty, X) = \left\{ f \in L_p(\mathbb T^\infty, X) \mid \hat f(\alpha) = 0, \forall \alpha \in \mathbb Z^{[\mathbb N]} \setminus \mathbb N_0^{[\mathbb N]} \right\}. \quad (7)$$

Assigning to each $f \in H_p(\mathbb T^\infty, X)$ its unique formal power series $\sum \hat f(\alpha) z^\alpha$ we may consider $H_p(\mathbb T^\infty, X)$ as a subspace of $\mathfrak P(X)$. We denote the image of this subspace under the Bohr transform $\mathfrak B_X$ by

$$\mathcal{H}_p(X).$$

This vector space of all (so-called) $\mathcal{H}_p(X)$-Dirichlet series D together with the norm

$$\|D\|_{\mathcal{H}_p(X)} = \|\mathfrak B_X^{-1}(D)\|_{H_p(\mathbb T^\infty, X)}$$

forms a Banach space; in other words, through Bohr’s transform $\mathfrak B_X$ from (6) we by definition identify

$$\mathcal{H}_p(X) = H_p(\mathbb T^\infty, X), 1 \leq p < \infty.$$

For $p = \infty$ we this way of course could also define a Banach space $\mathcal{H}_\infty(X)$, and it turns out that at least in the scalar case $X = \mathbb C$ this definition then coincides with the one given above; but we remark that these two $\mathcal{H}_\infty(X)$’s are different for arbitrary X. It is important to note that by the Birkhoff-Khinchine ergodic theorem the following internal description of the $\mathcal{H}_p(X)$-norm for finite Dirichlet polynomials $D = \sum_{k=1}^{n} a_k n^{-s}$ holds:

$$\|D\|_{\mathcal{H}_p(X)} = \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} \left\| \sum_{k=1}^{n} a_k \frac{1}{n^{it}} \right\|_X^p \, dt \right)^{1/p}$$

(see e.g. Bayart [1] for the scalar case, and the vector-valued case follows exactly the same way).
Motivated by (4) we define for $D \in \mathcal{D}(X)$ and $1 \leq p < \infty$

$$\sigma_{\mathcal{H}_p(X)}(D) := \inf \left\{ \sigma \in \mathbb{R} \mid \sum_n \frac{a_n}{n^\sigma} \in \mathcal{H}_p(X) \right\},$$

and motivated by (5) we define

$$S_p(X) := \sup_{D \in \mathcal{D}(X)} \sigma_a(D) - \sigma_{\mathcal{H}_p(X)}(D) = \sup_{D \in \mathcal{H}_p(X)} \sigma_a(D)$$

(for the second equality use again a simple translation argument). A result of Bayart [1] shows that for every $1 \leq p < \infty$

$$S_p(\mathbb{C}) = \frac{1}{2}, \quad (8)$$

which according to Helson [13] is a bit surprising since $\mathcal{H}_\infty(\mathbb{C})$ is much smaller than $\mathcal{H}_p(\mathbb{C})$.

The following theorem unifies and generalizes (1), (3) as well as (8), and it is our main result.

Theorem 1.1. For every $1 \leq p \leq \infty$ and every Banach space X we have

$$S_p(X) = 1 - \frac{1}{\operatorname{Cot}(X)}.$$

The proof will be given in section 4. But before we start let us give an interesting reformulation in terms of the monomial convergence of X-valued H_p-functions on \mathbb{T}^∞.

Fix a Banach space X and $1 \leq p \leq \infty$, and define the set of monomial convergence of $H_p(\mathbb{T}^\infty, X)$:

$$\text{mon}_{H_p}(\mathbb{T}^\infty, X) = \left\{ z \in B_{c_0} \mid \sum_{\alpha} \| \hat{f}(\alpha) z^\alpha \|_X < \infty \text{ for all } f \in H_p(\mathbb{T}^\infty, X) \right\}.$$

Philosophically, this is the largest set M on which for each $f \in H_p(\mathbb{T}^\infty, X)$ the definition $g(z) = \sum_{\alpha} \hat{f}(\alpha) z^\alpha$, $z \in M$ leads to an extension of f from the distinguished boundary \mathbb{T}^∞ to its “interior” B_{c_0} (the open unit ball of the Banach space c_0 of all null sequences). For a detailed study of sets of monomial convergence in the scalar case $X = \mathbb{C}$ see [9], and in the vector-valued case [10].

We later need the following two basic properties of monomial domains (in the scalar case see [8, p.550] and [7, Lemma 4.3], and in the vector-valued case the proofs follow similar lines).

Remark 1.2.

1. Let $z \in \text{mon}_{H_p}(\mathbb{T}^\infty, X)$. Then $u = (z_{\sigma(n)})_{n} \in \text{mon}_{H_p}(\mathbb{T}^\infty, X)$ for every permutation σ of \mathbb{N}.

2. Let $z \in \text{mon}_{H_p}(\mathbb{T}^\infty, X)$ and $x = (x_n)_{n} \in \mathbb{D}^\infty$ be such that $|x_n| \leq |z_n|$ for all but finitely many n‘s. Then $x \in \text{mon}_{H_p}(\mathbb{T}^\infty, X)$.

4
Given $1 \leq p \leq \infty$ and a Banach space X, the following number measures the size of $\text{mon } \ell_p(\mathbb{T}^\infty, X)$ within the scale of ℓ_r-spaces:

$$M_p(X) = \sup \left\{ 1 \leq r \leq \infty \mid \ell_r \cap B_{c_0} \subset \text{mon } \ell_p(\mathbb{T}^\infty, X) \right\}.$$

The following result is a reformulation of Theorem 1.1 in terms of vector-valued H_p-functions on \mathbb{T}^∞ through Bohr’s transform \mathcal{B}_X. The proof is modelled along ideas from Bohr’s seminal article [4, Satz IX].

Corollary 1.3. For each Banach space X and $1 \leq p \leq \infty$ we have

$$M_p(X) = \frac{\text{Cot}(X)}{\text{Cot}(X) - 1}.$$

Proof. We are going to prove that $S_p(X) = 1/M_p(X)$, and as a consequence the conclusion follows from Theorem 1.1. We begin by showing that $S_p(X) \leq 1/M_p(X)$. Fix $q < M_p(X)$ and $r > 1/q$; then we have that $(\frac{1}{p_n})_n \in \ell_q \cap B_{c_0}$ and, by the very definition of $M_p(X)$, $\sum a \|\hat{f}(\alpha)(\frac{1}{p_n})^\alpha\|_X < \infty$ converges absolutely for every $f \in H_p(\mathbb{T}^\infty, X)$. We choose now an arbitrary Dirichlet series $D = \mathfrak{B}_X f = \sum_n a_n \frac{1}{n^r} \in \mathcal{H}_p(X)$ with $f \in H_p(\mathbb{T}^\infty, X)$.

Then

$$\sum_n \|a_n\|_X \frac{1}{n^r} = \sum_a \|a_{p^\alpha}\|_X \left(\frac{1}{p^\alpha}\right)^r = \sum_a \|\hat{f}(\alpha)\|_X \left(\frac{1}{p^\alpha}\right)^r < \infty.$$

Clearly, this implies that $S_p(X) \leq r$. Since this holds for each $r > 1/q$, we get that $S_p(X) \leq 1/q$, and since this now holds for each $q < M_p(X)$, we have $S_p(X) \leq 1/M_p(X)$. Conversely, let us take some $q > M_p(X)$; then there is $z \in \ell_q \cap B_{c_0}$ and $f \in H_{\infty}(\mathbb{T}^\infty, X)$ such that $\sum a \hat{f}(\alpha) z^\alpha$ does not converge absolutely. By Remark 1.2 we may assume that z is decreasing, and hence $(z_n n^{1/q})_n$ is bounded. We choose now $r > q$ and define $w_n = \frac{1}{p_n^{1/r}}$. By the Prime Number Theorem we know that there is a universal constant $C > 0$ such that

$$0 < \frac{z_n}{w_n} = z_n p_n^{1/r} = z_n n^{1/q} \frac{p_n^{1/r}}{\log n} \leq C z_n n^{\frac{1}{q} (1 - 1/r)}.$$

The last term tends to 0 as $n \to \infty$; hence $z_n \leq w_n$ but for a finite number of n’s. By Remark 1.2 this implies that $\sum_a \hat{f}(\alpha) w^\alpha$ does not converge absolutely. But then $D = \mathfrak{B}_X f = \sum_n a_n n^{-r} \in \mathcal{H}_p(X)$ satisfies

$$\sum_n \|a_n\|_X \frac{1}{n^{1/r}} = \sum_a \|a_{p^\alpha}\|_X \left(\frac{1}{p^{1/r}}\right)^\alpha = \sum_a \|\hat{f}(\alpha)\|_X w^\alpha = \infty.$$

This gives that $\sigma_a(D) \geq 1/r$ for every $r > q$, hence $\sigma_a(D) \geq 1/q$. Since this holds for every $q > M_p(X)$, we finally have $S_p(X) \geq 1/M_p(X)$.

We shall use standard notation and notions from Banach space theory, as presented, e.g. in [3, 4]. For everything needed on polynomials in Banach spaces see e.g. [11] and [12].
2 Relevant inequalities

The main aim here is to prove a sort of polynomial extension of the notion of cotype. Recall the definition of $C_q(X)$ from (2). Moreover, from Kahane’s inequality we know that, given $1 \leq q < \infty$, there is a (best) constant $K \geq 1$ such that for each Banach space X and each choice finitely many vectors $x_1, \ldots, x_N \in X$

$$\left(\int_{T^N} \left\| \sum_{k=1}^N x_k z_k \right\|_X^2 \, dz \right)^{1/2} \leq K \int_{T^N} \left\| \sum_{k=1}^N x_k z_k \right\|_X \, dz.$$

As usual we write $|\alpha| = \alpha_1 + \ldots + \alpha_N$ and $\alpha! = \alpha_1! \ldots \alpha_N!$ for every multi index $\alpha \in \mathbb{N}_0^N$.

Proposition 2.1. Let X be a Banach space of cotype q, $2 \leq q < \infty$, and

$$P : \mathbb{C}^N \to X, \quad P(z) = \sum_{\alpha \in \mathbb{N}_0^N, |\alpha|=m} c_\alpha z^\alpha$$

be an m-homogeneous polynomial. Let

$$T : \mathbb{C}^N \times \ldots \times \mathbb{C}^N \to X, \quad T(z^{(1)}, \ldots, z^{(m)}) = \sum_{i_1, \ldots, i_m=1}^N a_{i_1, \ldots, i_m} z_i^{(1)} \ldots z_i^{(m)}$$

be the unique m-linear symmetrization of P. Then

$$\left(\sum_{i_1, \ldots, i_m} \left\| a_{i_1, \ldots, i_m} \right\|_X^q \right)^{1/q} \leq (C_q(X) K)^m \frac{m^m}{m!} \int_{T^N} \| P(z) \|_X \, dz.$$

Before we give the proof let us note that [?, Theorem 3.2] is an m-linear result that, combined with polarization gives (with the previous notation)

$$\left(\sum_{i_1, \ldots, i_m} \left\| a_{i_1, \ldots, i_m} \right\|_X^q \right)^{1/q} \leq C_q(X) m^m \frac{m^m}{m!} \sup_{z \in D^N} \| P(z) \|.$$

Our result allows to replace (up to the constant K) the $\| \|_\infty$ norm with the smaller norm $\| \|_1$. We prepare the proof of Proposition 2.1 with three lemmas.

Lemma 2.2. Let X be a Banach space of cotype q, $2 \leq q < \infty$. Then for every m-linear form

$$T : \mathbb{C}^N \times \ldots \times \mathbb{C}^N \to X, \quad T(z^{(1)}, \ldots, z^{(m)}) = \sum_{i_1, \ldots, i_m=1}^N a_{i_1, \ldots, i_m} z_i^{(1)} \ldots z_i^{(m)}$$

we have

$$\left(\sum_{i_1, \ldots, i_m=1}^N \left\| a_{i_1, \ldots, i_m} \right\|_X^q \right)^{1/q} \leq (C_q(X) K)^m \int_{T^N} \ldots \int_{T^N} \| T(z^{(1)}, \ldots, z^{(m)}) \|_X \, dz^{(1)} \ldots dz^{(m)}.$$

Proof. We prove this result by induction on the degree m. For $m = 1$ the result is an immediate consequence of the definition of cotype q and Kahane’s inequality. Assume that
the result holds for \(m - 1 \). By the continuous Minkowski inequality we then conclude that for every choice of finitely many vectors \(a_{i_1, \ldots, i_m} \in X \) with \(1 \leq i_j \leq N, 1 \leq j \leq m \) we have

\[
\sum_{i_1, \ldots, i_m} \| a_{i_1, \ldots, i_m} \|_X^q = \sum_{i_1, \ldots, i_{m-1}} \sum_{i_m} \| a_{i_1, \ldots, i_m} \|_X^q \\
\leq C_q(X)^q K^q \left(\sum_{i_1, \ldots, i_{m-1}} \left(\int_{T \cap \mathbb{R}} \| \sum_{i_m} a_{i_1, \ldots, i_m} z_{i_m}^{(m)} \|_X^q dz^{(m)} \right)^{q/2} \right) \\
\leq C_q(X)^q K^q \left(\sum_{i_1, \ldots, i_{m-1}} \| a_{i_1, \ldots, i_m} \|_X^q \left(\int_{T \cap \mathbb{R}} dz^{(m)} \right)^{q/2} \right) \\
\leq C_q(X)^q K^q \left(\int_{T \cap \mathbb{R}} \sum_{i_1, \ldots, i_{m-1}} a_{i_1, \ldots, i_m} z_{i_1}^{(1)} \ldots, z_{i_{m-1}}^{(m-1)} \|_X dz^{(1)} \ldots dz^{(m-1)} \right)^{q/2},
\]

which is the conclusion.

The following two lemmas are needed to produce a polynomial analog of the preceding result.

Lemma 2.3. Let \(X \) be a Banach space, and \(f : \mathbb{C} \to X \) a holomorphic function. Then for \(R_1, R_2, R \geq 0 \) with \(R_1 + R_2 \leq R \) we have

\[
\int_T \int_T \| f(R_1 z_1 + R_2 z_2) \|_X dz_1 dz_2 \leq \int_T \| f(Rz) \|_X dz.
\]

Proof. By the rotation invariance of the normalized Lebesgue measure on \(T \) we get

\[
\int_T \int_T \| f(R_1 z_1 + R_2 z_2) \|_X dz_1 dz_2 = \int_T \int_T \| f(R_1 z_1 + R_2 z_2) \|_X dz_1 d z_2 \\
= \int_T \int_T \| f(z_2(R_1 z_1 + R_2) \|_X dz_1 d z_2 = \int_T \int_T \| f(z_2|R_1 z_1 + R_2|) \|_X dz_2 d z_1 \\
= \int_T \int_T \| f(z_2 r(z_1) R) \|_X dz_2 d z_1 = \int_0^{2\pi} \int_0^{2\pi} \| f(r e^{i\theta} R e^{i\phi}) \|_X \frac{dt}{2\pi} \frac{ds}{2\pi}.
\]

where \(r(z) = \frac{1}{2\pi} |R_1 z + R_2|, z \in T \). We know that for each holomorphic function \(h : \mathbb{C} \to X \) we have

\[
\int_T \| h(z) \|_X dz = \sup_{0 \leq r \leq 1} \int_0^{2\pi} \| h(re^{i\theta}) \|_X \frac{dt}{2\pi}
\]

(see e.g. Blasco and Xu [2, p. 338]). Define now \(h(z) = f(Rz) \), and note that \(0 \leq r(z) \leq 1 \) for all \(z \in T \). Then

\[
\int_T \int_T \| f(R_1 z_1 + R_2 z_2) \|_X dz_1 dz_2 = \int_0^{2\pi} \int_0^{2\pi} \| h(re^{i\theta} e^{i\phi}) \|_X \frac{dt}{2\pi} \frac{ds}{2\pi} \\
\leq \int_0^{2\pi} \int_T \| h(z) \|_X d z \frac{ds}{2\pi} = \int_T \| f(Rz) \|_X dz.
\]

This completes the proof. \(\square \)

A sort of iteration of the preceding result leads to the next
Lemma 2.4. Let X be a Banach space, and $f : \mathbb{C}^N \to X$ a holomorphic function. Then for every m

$$
\int_{T^N} \cdots \int_{T^N} \| f(z^{(1)} + \ldots + z^{(m)}) \|_X \, dz^{(1)} \ldots dz^{(m)} \leq \int_{T^N} \| f(m z) \|_X \, dz.
$$

Proof. We fix some m, and do induction with respect to N. For $N = 1$ we obtain from Lemma 2.3 that

$$
\int_{T} \cdots \int_{T} \int_{T} \int_{T} \| f(z^{(1)} + \ldots + z^{(m-2)} + z^{(m-1)} + z^{(m)}) \|_X \, dz^{(m-1)} \, dz^{(m)} \, dz^{(1)} \ldots dz^{(m-2)} = \int_{T} \cdots \int_{T} \int_{T} \int_{T} \| f(z^{(1)} + \ldots + z^{(m-2)} + 2w) \|_X \, dw \, dz^{(1)} \ldots dz^{(m-2)}
$$

$$
= \int_{T} \cdots \int_{T} \int_{T} \int_{T} \| f(z^{(1)} + \ldots + z^{(m-3)} + 3w) \|_X \, dz^{(1)} \ldots dz^{(m-3)} \, dw
$$

$$
\leq \ldots \leq \int_{T} \| f(m z) \|_X \, dz.
$$

We now assume that the conclusion holds for $N - 1$ and write each $z \in T^N$ as $z = (u, w)$, with $u \in T^{N-1}$ and $w \in T$. Then, using the case $N = 1$ in the first inequality and the inductive hypothesis in the second, we have

$$
\int_{T^N} \cdots \int_{T^N} \| f(z^{(1)} + \ldots + z^{(m)}) \|_X \, dz^{(1)} \ldots dz^{(m)}
$$

$$
= \int_{T^N} \cdots \int_{T^N} \left(\int_{T} \cdots \int_{T} \| f(u^{(1)}, w_1) + \ldots + (u^{(m)}, w_m) \|_X \, dw_1 \ldots dw_N \right) \, du^{(1)} \ldots du^{(m)}
$$

$$
\leq \int_{T^N} \cdots \int_{T^N} \left(\int_{T} \cdots \int_{T} \| f((u^{(1)}, mw) + \ldots + (u^{(m)}, mw)) \|_X \, du \right) \, du^{(1)} \ldots du^{(m)}
$$

$$
= \int_{T} \left(\int_{T} \cdots \int_{T} \| f((u^{(1)}, mw) + \ldots + (u^{(m)}, mw)) \|_X \, du \right) \, dw
$$

$$
= \int_{T^N} \| f(mz) \|_X \, dz,
$$

as desired. \square

We are now ready to give the proof of the inequality from Proposition 2.1. By the polarization formula we know that for every choice of $z^{(1)}_1, \ldots, z^{(m)}_m \in T^N$ we have

$$
T(z^{(1)}_1, \ldots, z^{(m)}_m) = \frac{1}{2^m m!} \sum_{\varepsilon_i = \pm 1} \varepsilon_i \ldots \varepsilon_m p \left(\sum_{i=1}^N \varepsilon_i z^{(i)}_i \right)
$$
(see e.g [11] or [12]). Hence we deduce from Lemma 2.4
\[
\int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \left\| T(z^{(1)}, \ldots, z^{(m)}) \right\|_X d\tilde{z}^{(1)} \cdots d\tilde{z}^{(m)} \\
\leq \frac{1}{2^m m!} \sum_{\ell_i=\pm 1} \int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \left\| \sum_{i=1}^N \varepsilon_i z^{(i)} \right\|_X d\tilde{z}^{(1)} \cdots d\tilde{z}^{(m)} \\
= \frac{1}{2^m m!} \sum_{\ell_i=\pm 1} \int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \left\| \sum_{i=1}^N z^{(i)} \right\|_X d\tilde{z}^{(1)} \cdots d\tilde{z}^{(m)} \\
= \frac{1}{m!} \int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \left\| \sum_{i=1}^N z^{(i)} \right\|_X d\tilde{z}^{(1)} \cdots d\tilde{z}^{(m)} \\
\leq \frac{1}{m!} \int_{\mathbb{T}^N} \left\| P(mz) \right\|_X d\tilde{z} = \frac{m^m}{m!} \int_{\mathbb{T}^N} \left\| P(z) \right\|_X d\tilde{z}.
\]
Then by Lemma 2.2 we obtain
\[
\left(\sum_{i_1, \ldots, i_m} \left\| a_{i_1, \ldots, i_m} \right\|_X^q \right)^{1/q} \leq \left(C_q(X) K \right)^m \int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \left\| T(z^{(1)}, \ldots, z^{(m)}) \right\|_X d\tilde{z}^{(1)} \cdots d\tilde{z}^{(m)} \\
= \left(C_q(X) K \right)^m \frac{m^m}{m!} \int_{\mathbb{T}^N} \left\| P(z) \right\|_X d\tilde{z},
\]
which completes the proof of Proposition 2.1. □

A second proposition is needed which allows to reduce the proof of our main result 1.1 to the homogeneous case. It is a vector-valued version of a result of [6, Theorem 9.2] with a similar proof (here only given for the sake of completeness).

Proposition 2.5. There is a contractive projection
\[
\Phi_m : H_p(\mathbb{T}^N, X) \to H_p(\mathbb{T}^N, X), \ f \mapsto \hat{f}_m,
\]
such for all \(f \in H_p(\mathbb{T}^N, X) \)
\[
\hat{f}(\alpha) = \hat{f}_m(\alpha) \text{ for all } \alpha \in \mathbb{N}_0^N \text{ with } |\alpha| = m.
\]

Proof. Let \(\mathcal{D}(\mathbb{C}^N, X) \subset H_p(\mathbb{T}^N, X) \) be the subspace all finite polynomials \(f = \sum_{\alpha \in \Lambda} c_{\alpha} z^{\alpha} \); here \(\Lambda \) is a finite set of multi indices in \(\mathbb{N}_0^N \) and the coefficients \(c_{\alpha} \in X \). Define the linear projection \(\Phi_m^0 \) on \(\mathcal{D}(\mathbb{C}^N, X) \) by
\[
\Phi_m^0(f)(z) = f_m(z) = \sum_{\alpha \in \Lambda, |\alpha| = m} \hat{f}(\alpha) z^{\alpha};
\]
clearly, we have (9). In order to show that \(\Phi_m^0 \) is a contraction on \(\mathcal{D}(\mathbb{C}^N, X), \| \cdot \|_p \) fix some function \(f \in \mathcal{D}(\mathbb{C}^N, X) \) and \(z \in \mathbb{T}^N \), and define
\[
f(z) : \mathbb{T} \to X, \ w \mapsto f(zw).
\]
Clearly, we have
\[
f(zw) = \sum_k f_k(z) w^k,
\]
and hence

\[f_m(z) = \int_T f(zw) w^{-m} \, dw. \]

Integration, the continuous Minkowski inequality and the rotation invariance of the normalized Lebesgue measure on \(T^N \) give

\[
\int_{T^N} \left\| f_m(z) \right\|^p_X \, dz = \int_{T^N} \left\| f(zw) w^{-m} \right\|^p_X \, dw \, dz \\
\leq \int_{T^N} \left(\int_T \left\| f(zw) \right\|^p_X \, dw \right)^p \, dz \leq \int_T \int_{T^N} \left\| f(zw) \right\|^p_X \, dz \, dw = \int_{T^N} \left\| f(z) \right\|^p_X \, dz,
\]

which proves that \(\Phi_m^0 \) is a contraction on \((\mathcal{P}(\mathbb{C}^N, X), \| \cdot \|_p) \). By Fejer’s theorem (vector-valued) we know that \(\mathcal{P}(\mathbb{C}^N, X) \) is a dense subspace of \(H_p(T^N, X) \). Hence \(\Phi_m^0 \) extends to a contractive projection \(\Phi_m \) on \(H_p(T^N, X) \). This extension \(\Phi_m \) still satisfies (9) since for each multi index \(\alpha \) the mapping \(H_p(T^N, X) \to X, f \mapsto \hat{f}(\alpha) \) is continuous.

\[\square \]

3 Proof of the main result

We are now ready to prove Theorem 1.1. Let \(1 \leq p < \infty \), and recall from (1) that

\[1 - \frac{1}{\text{Cot}(X)} = S_\infty(X) \leq S_p(X); \]

see Remark 3.1 for a direct argument. Hence it suffices to concentrate on the upper estimate in Theorem 1.1: Since we obviously have \(S_p(X) \leq S_1(X) \), we are going to prove that

\[S_1(X) \leq 1 - \frac{1}{\text{Cot}(X)}. \quad (10) \]

Suppose first that \(X \) has no finite cotype. For \(D = \sum_n a_n n^{-s} \in \mathcal{H}_1(X) \) we take \(f \in H_1(T^\infty, X) \) with \(D = \mathfrak{B}_X f \). Note that

\[|\hat{f}(\alpha)| \leq \int_{T^\infty} |f(w) w^{-\alpha}| \, dw = \| f \|_{L_1(T^\infty, X)} < \infty \]

and, by the definition of \(\mathfrak{B}_x \), the coefficients of \(D \) are also bounded by \(\| f \|_{L_1(T^\infty, X)} \). As a consequence,

\[\sum_{n=1}^{\infty} \| a_n \|_X \, \frac{1}{n^s} \leq \sum_{n=1}^{\infty} \| f \|_{L_1(T^\infty, X)} \, \frac{1}{n^s} < \infty \]

whenever \(\text{Re} \, s > 1 \). This means that \(S_1(X) \leq 1 \) and gives (10) for \(\text{Cot}(X) = \infty \).

Now if \(X \) has finite cotype, take \(q > \text{Cot}(X) \) and \(\epsilon > 0 \), and put \(s = (1 - \frac{1}{q})(1 + 2\epsilon) \).

Choose an integer \(k_0 \) such \(p_{k_0}^{\epsilon/q} > eC_q(X) K \sum_{j=1}^{\infty} \frac{1}{p_j^{1+\epsilon}} \), and define

\[\bar{p} = (p_0, \ldots, p_{k_0}, p_{k_0+1}, p_{k_0+2}, \ldots). \]
We are going to show that there is a constant \(C(q, X, \varepsilon) > 0 \) such that for every \(f \in H_1(\mathbb{T}^\infty, X) \) we have
\[
\sum_{\alpha \in \mathbb{N}_0^q} \| \hat{f}(\alpha) \|_X \frac{1}{\beta^{\varepsilon\alpha}} \leq C(q, X, \varepsilon) \| f \|_{H_1(\mathbb{T}^\infty, X)}.
\] (11)

This finishes the argument: By Remark 1.2 the sequence \(1/p^s \in \text{mon} H_1(\mathbb{T}^\infty, X) \). But in view of Bohr's transform from (6), this means that for every Dirichlet series \(D = \sum_n a_n n^{-s} = \mathcal{B}_X f \in \mathcal{H}_1(X) \) with \(f \in H_1(\mathbb{T}^\infty, X) \) we have
\[
\sum_{n=1}^\infty \| a_n \|_X \frac{1}{n^s} = \sum_{\alpha \in \mathbb{N}_0^q} \| \hat{f}(\alpha) \|_X \frac{1}{\beta^{\varepsilon\alpha}} < \infty.
\]

Therefore \(\sigma_q(D) \leq (1 - \frac{1}{q}) (1 + 2 \varepsilon) \) for each such \(D \) which, since \(\varepsilon > 0 \) was arbitrary, is what we wanted to prove.

It remains to check (11); the idea is to show first that (11) holds for all \(X \)-valued \(H_1 \)-functions which only depend on \(N \) variables: There is a constant \(C(q, X, \varepsilon) > 0 \) such that for all \(N \) and every \(f \in H_1(\mathbb{T}^N, X) \) we have
\[
\sum_{\alpha \in \mathbb{N}_0^q} \| \hat{f}(\alpha) \|_X \frac{1}{\beta^{\varepsilon\alpha}} \leq C(q, X, \varepsilon) \| f \|_{H_1(\mathbb{T}^\infty, X)}.
\] (12)

In order to understand that (12) implies (11) (and hence the conclusion), assume that (12) holds and take some \(f \in H_1(\mathbb{T}^\infty, X) \). Given an arbitrary \(N \), define
\[
f_N : \mathbb{T}^N \to X, \quad f_N(u) = \int_{\mathbb{T}^\infty} f(w, \bar{w}) d\bar{w}.
\]
Then it can be easily shown that \(f_N \in L_1(\mathbb{T}^N, X), \| f_N \|_1 \leq \| f \|_1 \), and \(\hat{f}_N(\alpha) = \hat{f}(\alpha) \) for all \(\alpha \in \mathbb{Z}^N \). If we now apply (12) to this \(f_N \), we get
\[
\sum_{\alpha \in \mathbb{N}_0^q} \| \hat{f}(\alpha) \|_X \frac{1}{\beta^{\varepsilon\alpha}} \leq C(q, X, \varepsilon) \| f \|_{H_1(\mathbb{T}^\infty, X)},
\]
which, after taking the supremum over all possible \(N \) on the left side, leads to (11).

We turn to the proof of (12), and here in a first step will show the following: For every \(N \), every \(m \)-homogeneous polynomial \(P : \mathbb{C}^N \to X \) and every \(u \in \ell_q \), we have
\[
\sum_{\alpha \in \mathbb{N}_0^q, |\alpha| = m} \| \hat{P}(\alpha) u^\alpha \|_X \leq (e C_q(X) K)^m \int_{\mathbb{T}^N} \| P(z) \|_X dz \left(\sum_{j=1}^\infty |u_j|^q \right)^{m/q}.
\] (13)

Indeed, take such a polynomial \(P(z) = \sum_{\alpha \in \mathbb{N}_0^q, |\alpha| = m} \hat{P}(\alpha) z^\alpha, \ z \in \mathbb{T}^N \), and look at its unique \(m \)-linear symmetrization
\[
T : \mathbb{C}^N \times \ldots \times \mathbb{C}^N \to X, \ T(z^{(1)}, \ldots, z^{(m)}) = \sum_{i_1, \ldots, i_m=1}^N a_{i_1, \ldots, i_m} z^{(1)}_{i_1} \ldots z^{(m)}_{i_m}.
\]
Then we know from Proposition 2.1 that
\[
\left(\sum_{i_1,\ldots,i_m} a_{i_1,\ldots,i_m} \right)^{1/q} \leq \left(eC_q(X) K \right)^m \int_{T^N} \| P(z) \|_X \, dz.
\]
Hence (13) follows by Hölder’s inequality:
\[
\sum_{\alpha \in \mathbb{N}_0^N, |\alpha| = m} \| \hat{P}(\alpha) u^\alpha \|_X = \sum_{i_1,\ldots,i_m=1}^N \| a_{i_1,\ldots,i_m} \|_X |u_{i_1} \cdots u_{i_N}|
\leq \left(eC_q(X) K \right)^m \int_{T^N} \| P(z) \|_X \, dz \left(\sum_{j=1}^\infty |u_j|^q \right)^{1/q}.
\]

We finally give the proof of (12): Take \(f \in H_1(T^N, X) \), and recall from Proposition 2.5 that for each integer \(m \) there is an \(m \)-homogeneous polynomial \(P_m : \mathbb{C}^N \to X \) such that \(\| P_m \|_{H_1(T^N, X)} \leq \| f \|_{H_1(T^N, X)} \) and \(\hat{P}_m(\alpha) = \hat{f}(\alpha) \) for all \(\alpha \in \mathbb{N}_0^N \) with \(|\alpha| = m \). Finally, from (13), the definition of \(s \), and the fact that \(\max(\{p_k, p_j \}) \leq \hat{p}_j \) for all \(j \) we conclude that
\[
\sum_{\alpha \in \mathbb{N}_0^N} \| \hat{f}(\alpha) \|_X \frac{1}{\hat{p}^{s\alpha}} = \sum_{m=1}^\infty \sum_{\alpha \in \mathbb{N}_0^N, |\alpha| = m} \| \hat{P}_m(\alpha) \|_X \frac{1}{\hat{p}^{s\alpha}}
\leq \sum_{m=1}^\infty \left(eC_q(X) K \right)^m \| P_m \|_{H_1(T^N, X)} \left(\sum_{j=1}^\infty \frac{1}{\hat{p}_j} \right)^{m/q'}
= \sum_{m=1}^\infty \left(eC_q(X) K \right)^m \| f \|_{H_1(T^N, X)} \left(\sum_{j=1}^\infty \frac{1}{\hat{p}_j^{1+\varepsilon}} \right)^{m/q'}
= \sum_{m=1}^\infty \left(eC_q(X) K \right)^m \| f \|_{H_1(T^N, X)} \left(\sum_{j=1}^\infty \frac{1}{\hat{p}_j^{1+\varepsilon}} \frac{1}{\hat{p}_j^{\varepsilon/q'}} \right)^{1/q'}
\leq \| f \|_{H_1(T^N, X)} \sum_{m=1}^\infty \left(\frac{eC_q(X) K \left(\sum_{j=1}^\infty \frac{1}{\hat{p}_j^{1+\varepsilon}}\right)^{1/q'}}{\hat{p}_k^{\varepsilon/q'}} \right)^{1/q'}.
\]

This completes the proof of Theorem 1.1. □

Remark 3.1. We end this note with a direct proof of the fact
\[1 - \frac{1}{\text{Cot}(X)} \leq S_p(X), \quad 1 \leq p < \infty \] (14)
in which we do not use the inequality
\[1 - \frac{1}{\text{Cot}(X)} \leq S_\infty(X) \] (15)
from [8] (here repeated in (1)). The proof of (15) given in [8] in a first step shows that
\[1 - \frac{1}{\Pi(X)} \leq S_\infty(X) \]
where
\[\Pi(X) = \inf \{ r \geq 2 | \text{id}_X \text{ is } (r, 1) - \text{summing} \}. \]
and then, in a second step, applies a fundamental theorem of Maurey and Pisier stating that \(\Pi(X) = \operatorname{Cot}(X) \).

The following argument for (14) is very similar to the original one from [8] but does not use the Maurey-Pisier theorem (since we here consider \(\mathcal{H}_p(X), 1 \leq p < \infty \) instead of \(\mathcal{H}_\infty(X) \)): By the proof of Corollary 1.3, inequality (14) is equivalent to

\[
M_p(X) \leq \frac{\operatorname{Cot}(X)}{\operatorname{Cot}(X) - 1}.
\]

Take \(r < M_p(X) \), so that \(\ell_r \cap B_{\ell_r} \subset \text{mon} \mathcal{H}_p(\mathbb{T}^\infty, X) \). Let \(H^1_p(\mathbb{T}^\infty, X) \) be the subspace of \(\mathcal{H}_p(\mathbb{T}^\infty, X) \) formed by all 1-homogeneous polynomials (i.e., linear operators). We can define a bilinear operator \(\ell_r \times H^1_p(\mathbb{T}^\infty, X) \to \ell_1(X) \) by \((z, f) \mapsto (z_j f(e_j))_j \) which, by a closed graph argument, is continuous. Therefore, there is a constant \(M \) such that for all \(z \in \ell_r \) and all \(f \in H^1_p(\mathbb{T}^\infty, X) \) we have

\[
\sum_j |z_j| \|f(e_j)\|_X \leq M \|z\|_{\ell_r} \|f\|_{\mathcal{H}_p(\mathbb{T}^\infty, X)}.
\]

Taking the supremum over all \(z \in B_{\ell_r} \), we obtain for all \(f \in H^1_p(\mathbb{T}^\infty, X) \)

\[
\left(\sum_j \|f(e_j)\|_X^{r'} \right)^{1/r'} \leq M \|f\|_{\mathcal{H}_p(\mathbb{T}^\infty, X)}.
\]

Now, take \(x_1, \ldots, x_N \in X \) and define \(f \in H^1_p(\mathbb{T}^\infty, X) \) by \(f(e_j) = x_j \) if \(1 \leq j \leq N \), \(f(e_j) = 0 \) if \(j > N \) and extend it by linearity. By the previous inequality and Lemma 2.5 we have

\[
\left(\sum_{j=1}^N \|x_j\|_X^{r'} \right)^{1/r'} \leq M \left(\int_{\mathbb{T}^N} \left\| \sum_{j=1}^N x_j z_j \right\|_X^{r'} dz \right)^{1/r'}.
\]

By Kahane’s inequality, \(X \) has cotype \(r' \), which means that \(r' > \operatorname{Cot}(X) \) or, equivalently, \(r < \frac{\operatorname{Cot}(X)}{\operatorname{Cot}(X) - 1} \). Since \(r < M_p(X) \) was arbitrary, we obtain (14).

References

[1] F. Bayart. Hardy spaces of Dirichlet series and their composition operators. *Monatsh. Math.*, 136(3):203–236, 2002.

[2] O. Blasco and Q. Xu. Interpolation between vector-valued Hardy spaces. *J. Funct. Anal.*, 102:331–359, 1991.

[3] H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series. *Ann. of Math. (2)*, 32(3):600–622, 1931.

[4] H. Bohr. Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichlet–schen Reihen \(\sum \frac{a_n}{n^s} \). *Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl.*, pages 441–488, 1913.

[5] H. Bohr. Über die gleichmäßige Konvergenz Dirichletscher Reihen. *J. Reine Angew. Math.*, 143:203–211, 1913.
[6] B. J. Cole and T. W. Gamelin. Representing measures and Hardy spaces for the infinite polydisk algebra. *Proc. London Math. Soc. (3)*, 53(1):112–142, 1986.

[7] A. Defant, L. Frerick, P. Sevilla Peris, and M. Maestre. Monomial series expansions of H_p-functions in infinitely many variables. *preprint*, 2013.

[8] A. Defant, D. García, M. Maestre, and D. Pérez-García. Bohr's strip for vector-valued Dirichlet series. *Math. Ann.*, 342(3):533–555, 2008.

[9] A. Defant, M. Maestre, and C. Prengel. Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. *J. Reine Angew. Math.*, 634:13–49, 2009.

[10] A. Defant and P. Sevilla Peris. Convergence of monomial series expansions of holomorphic functions in Banach spaces. *Quart. J. Math.*, 63(3):569–584, 2012.

[11] S. Dineen. *Complex analysis on infinite-dimensional spaces*. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 1999.

[12] K. Floret. Natural norms on symmetric tensor products of normed spaces. *Note Mat.*, 17:153–188 (1999), 1997.

[13] H. Helson. *Dirichlet series*. Berkeley, CA, ISBN: 0-9655211-6-8, 2005.

[14] J. Lindenstrauss and L. Tzafriri, L. *Classical Banach Spaces I and II*. Springer, 1996.

dcarando@dm.uba.ar
defant@mathematik.uni-oldenburg.de
psevilla@mat.upv.es