The Judd Ofelt Spectroscopic analysis for Ho$^{3+}$ doped with SiO$_2$

Saif M. Nasrallah 1, Mohammed A. Hamza 2, Basheer Mohammed Hussein 3
1,2,3 Department of physics, College of Science, University of Baghdad, Baghdad, Iraq.
1 ss8584455@gmail.com
2 mob4691@gmail.com
3 ttbg3.2030@gmail.com

Abstract
Holmium ions Ho$^{3+}$ Doped with Silicon dioxide was synthesis with help of wet chemical process. Techniques such as UV-Visible spectroscopy and fluorescence spectroscopy were used to investigate the spectroscopic properties of of Ho$^{3+}$:SiO$_2$ sample. The Judd-Ofelt theory is used to achieve of the spectroscopic properties to prepared sample and calculates the three Judd-Ofeltt of parameters; Ω_2, Ω_4 and Ω_6. From the obtained parameters, the $A(J;J')$, τ_{rad} and $\beta_{J \rightarrow J'}$ are calculated. Depending on the suitable value of $A(J;J')$, τ_{rad} and $\beta_{J \rightarrow J'}$ it could suggests to use Ho:SiO$_2$ as Laser active medium.

Keywords: Sol- Gel; Spectroscopy; Si O$_2$; Judd-Ofelt

1- Introduction
Glasses doped with rare earth ions are still a target for many research to produced of optical materials. Sol-gel process is widely used to fabrication of optical materials. Sol-gel have several advantage such as flexible route, high homogeneity, low temperature reaction and formation of oxide particles in a liquid phase, the sol gel process become a favorite process rather than other process [1-7]. In present work, Sol Gel method is employed to prepare of SiO$_2$ doped with Holmium ions. The spectroscopic properties of prepared sample Ho:SiO$_2$ will be investigated with help of Judd–Ofelt theory.

2- Experimental
2-1 Samples Preparation
The sol–gel method is performed to prepared samples (doped and un-doped) by using
1- Tetra Ethyl Ortho Silicate (TEOS) from Aldrich 97%.
2- Ethanol EtOH 99.9% from GCC
3- hydrochloric acid (HCl, 34.5%) from BDH
4- Deionized water H$_2$O
The molar ratio for the H₂O:TEOS:HCl:EtOH are equal to about 1:1:0.1:10, for doping sample Holmium (III) nitrate hydrate (Aldrich) was used to achieved doping rate of samples with Ho³⁺ around to 5% wt. One mole of TEOS and 1 mole of EtOH are mixed and stirred at 10 min. Through stirring, 0.1 M of catalyst existed in water is added as drop wise to the solution. The molar ratio of water to TEOS is about 2. Holmium (III) is employed with the solution to prepare doped samples. It is solved in ethanol before mixing it with TEOS. Later, an aging operation is applied to the sample at 24 hour. Finally, the sample is putted in a container manufactured from plastic without covers so that to allow solvent evaporation during the drying process (the packing of sample in the container is completed at room temperature).

3- Result and discussion

Figure (1) illustrates the UV-VIS absorption spectrum of Ho³⁺ doped with SiO₂ network; the detectable peaks are obtained due to the electronic transitions between the energy levels of Ho³⁺ ions. These detectable peaks are identified to the energy level transition of 5I₈ → 3G₅ (418nm), 5I₈ → 5F₁ + 3G₆ (448nm), 5I₈ → 3K₈ (467nm), 5I₈ → 3F₃ (486nm), 5I₈ → 5F₄ + 5S₂ (540nm) and 5I₈ → 5F₅ (645nm) [8-12].

The absorption spectrum is well resolved in order to find the integrated absorption cross section \(\Gamma \) for each peak or manifold to Dy³⁺ ions. The \(\Gamma \) can be found by Eq.1[13]:

\[
\Gamma = \int_{\text{manifolds}} \alpha(\lambda) d\lambda
\]

Where \(\alpha(\lambda) \) is the absorption coefficient as a function of wavelength \(\lambda \). The values \(\Gamma \) is used to measure the line strength \(S_{\text{meas}} \) by Eq. 2 [13]:

\[
S_{\text{meas}}(J \rightarrow J') = \frac{3ch(2J + 1)}{8\pi^3 e^2 \overline{\lambda}} \rho_o \left[\frac{3}{n^2 + 2} \right]^2 \Gamma
\]

Where \(J \) and \(J' \) are the total angular momentum of the initial ground and final manifold, the value of \(J \) found from the ²⁷S⁶⁻¹L₉ designation, \(\rho_o \) is the Dy³⁺ ion concentration, \(n \) is the refractive indices of the host medium, \(\overline{\lambda} \) is mean of wavelength to absorption peak which corresponds to the \(J \rightarrow J' \) transition. The values of \(\Gamma, \overline{\lambda} \) and \(S_{\text{meas}} \) are listed in Table 1.
Figure (1): Absorption spectrum for Ho3+:SiO2 doped.

Table (1): Value of S_{meas}, Γ and $\bar{\lambda}$ for each transitions of Ho:SiO$_2$

Transitions from 5I_8	$\bar{\lambda}$ (nm)	Γ (nm cm$^{-1}$)	Line Strength $S_{m'10^{-20}}$ (cm$^{-1}$)
$^5I_8 \rightarrow ^3G_5$	418	1.053	0.977
$^5I_8 \rightarrow ^5F_{1+}^5G_6$	448	2.292	1.993
$^5I_8 \rightarrow ^5K_8$	467	0.146	0.121
$^5I_8 \rightarrow ^3F_3$	472	0.245	0.2
$^5I_8 \rightarrow ^5F_{4+}^5S_2$	486	0.642	0.512
$^5I_8 \rightarrow ^3F_5$	540	2.922	2.098
$^5I_8 \rightarrow ^3G_5$	645	2.897	1.741
According to the Judd-Oftel JO theory, the line strength between initial manifold \(J \) and terminal manifold \(J' \) could write in the form [13]:

\[
S^J_J' = \sum_{i=1}^{3} M_{ij} \Omega_i \tag{3}
\]

Where \(\Omega_i \) is the Judd-Oftel parameters which represents components of \([1 \times 3]\) matrix for Judd-Oftel parameters (include to three parameters; \(\Omega_2 \), \(\Omega_4 \) and \(\Omega_6 \)). \(M_{ij} \) is doubly reduced matrix (or square matrix elements) and represented components of \(N \times 3 \) matrix for square matrix elements \(U^{(2)} \), \(U^{(4)} \) and \(U^{(6)} \). \(N \) represents the number of transitions to fit, which depends on the number of absorption manifolds actually measured. The square matrix element does not depend on host materials [14-15].

We have used the values of the \(U^{(2)} \), \(U^{(4)} \) and \(U^{(6)} \) which calculated by Carnall et al. [15-17]. Table (2) involve the value of \(U^{(2)} \), \(U^{(4)} \) and \(U^{(6)} \) to Ho\(^{3+}\) ions for transition from ground state manifold \(^6H_{15/2} \) to some exited manifolds.

Table (2): Square matrix elements \(U^{(2)} \), \(U^{(4)} \) and \(U^{(6)} \) for Ho\(^{3+}\) ions from ground states \(^5I_8\) to upper manifold [16-17].

Transitions from \(^5I_8\)	\(U^{(2)} \)	\(U^{(4)} \)	\(U^{(6)} \)
3K6 + 3F4	0.0026	0.1263	0.0073
3L9 + 5G3	0.0185	0.0052	0.1169
3D2 + 3H6 1 5G5	0.2155	0.1969	0.1679
3K7 + 5G4	0.0058	0.0361	0.0697
3G5	0.0000	0.5338	0.0002
5F1 + 5G6	1.5201	0.8410	0.1411
3K8	0.0208	0.0334	0.1535
3F2	0.0000	0.0000	0.2041
3F3	0.0000	0.0000	0.3464
The J-O parameters values Ω_2, Ω_4 and Ω_6 are calculated and found equal to 0.112, 1.884 and 1.661 respectfully. The J-O parameters are used with help of Eq.3 to find to their corresponding lower-lying manifold states of Ho$^{3+}$ ions. The values S_{ed} are used to find the radiative transition probabilities $A(J;J')$ for each excited upper manifolds states of Ho$^{3+}$ ions, the $A(J;J')$ is given in Eq. (4) [13]:

$$A(J;J') = \frac{64 \pi^4}{3h (2J+1) \lambda^2} \left[\frac{n(n^2+2)^2}{9} \right] S_{ed} \quad -(4)$$

where J is initial manifold, J' is the final manifold. The radiative lifetime τ_{rad} is given by [13]:

$$\tau_{rad} = 1 / \sum A(J;J') \quad -(5)$$

The values for the S_{ed}, A_{rad} and $\beta_{J-J'}$ corresponding to the transition from higher-lying manifold states to lower state of HO3 are listed in table (3) , (4), (5) and (6).

Table (3) The $A(J;J')$ and $\beta_{J-J'}$ for upper state 5F4 to lower state of HO$^{3+}$ ions.

from	To	Sed	A_{rad} (sec$^{-1}$)	$\beta_{J-J'}$	τ_{rad}
5F4	5S2	0.0867	0	0	0.2998
	5F5	1.6885	13.602	0.00182	
	5I4	1.0027	38.406	0.00516	
	5I5	2.2379	247.019	0.0332	
Table (4) The $A(J;J')$ and $\beta_{J \rightarrow J'}$ for upper state $5S_2$ to lower state of HO$^{3+}$ ions.

from	To	Sed	A_{rad} (sec$^{-1}$)	$\beta_{J \rightarrow J'}$	τ_{rad}
$5S_2$	$5F_5$	0.053	0.809	0.00018	0.4824
	$5I_4$	1.0832	69.787	0.01619	
	$5I_5$	0.388	72.076	0.01672	
	$5I_6$	0.6158	291.141	0.06756	
	$5I_7$	1.4355	1574.432	0.3654	
	$5I_8$	0.7955	2300.515	0.53391	

Table (5) The $A(J;J')$ and $\beta_{J \rightarrow J'}$ for upper state $5F_5$ to lower state of HO$^{3+}$ ions.

from	To	Sed	A_{rad} (sec$^{-1}$)	$\beta_{J \rightarrow J'}$	τ_{rad}
$5F_5$	$5I_4$	0.0177	0.037	0.00002	0.5634
	$5I_5$	0.3258	5.772	0.00325	
	$5I_6$	1.0596	76.296	0.04299	
	$5I_7$	1.3444	318.964	0.17973	
	$5I_8$	1.7505	1373.603	0.774	
Table (6) The $A(J;J')$ and $\beta_J - J'$ for upper state $5I4, 5I5, 5I6$ and $5I7$ to lower state of Ho^{3+} ions.

from	To	Sed	A_{rad} (sec$^{-1}$)	$\beta_J - J'$	τ_{rad}
$5I4$	$5I5$	1.7484	5.03	0.05893	11.7144
	$5I6$	1.1564	33.846	0.39648	
	$5I7$	0.2667	38.652	0.45279	
	$5I8$	0.0127	7.835	0.09178	
$5I5$	$5I6$	1.278	4.786	0.0383	8.0033
	$5I7$	1.5195	69.689	0.55774	
	$5I8$	0.1741	50.473	0.40395	
$5I6$	$5I7$	1.8018	12.71	0.08647	6.8038
	$5I8$	1.7484	5.03	0.05893	
$5I7$	$5I8$	1.1564	33.846	0.39648	17.513

According to the results of present work (Table (3)-(6)), the $A(J;J')$ values for energy transitions $5F4 \rightarrow 5I8$, $5S2 \rightarrow 5I8$, $5F5 \rightarrow 5I8$, $5I4 \rightarrow 5I7$, $5I6 \rightarrow 5I7$, $5I7 \rightarrow 5I8$ are larger than values to others transitions. The higher value of $A(J;J')$ give an indication to the higher intensity of luminescence to these transitions than others.

4- Conclusion

The sol-gel glass of SiO2 doped with Ho3+ is successfully prepared using wet chemical synthesis technique. The radiative transition probabilities $A(J;J')$ for energy transitions $5F4 \rightarrow 5I8$, $5S2 \rightarrow 5I8$, $5F5 \rightarrow 5I8$, $5I4 \rightarrow 5I7$, $5I6 \rightarrow 5I7$, $5I7 \rightarrow 5I8$ are larger than values to others transitions, which indication to the higher intensity of luminescence to these transitions than others. The suitable spectroscopic properties of Ho3+:SiO2 doped give an indication to use Sol-Gel method to prepare Ho3+:SiO2 doped as optical active materials.

Acknowledgments
Authors would like to thank Physics Department, College of sciences, Baghdad University for all assistance in preparation and correspondences to this study.

Reference:

[1] R. Praveena, R. Vijaya, C.K. Jayasankar, Photo luminescence and energy transfer studies of Dy3+- doped fluorophosphate glasses, Spectrochim. Acta, Part A 70 (2008) 577-586. http:// www.sciencedirect. com/science/article/pii/S1386142507004659
[2] P. Nachimuthu, R. Jagannathan, V. N. Kumar, D.N. Rao, Absorption and emission spectral studies of Sm3+ and Dy3+ ions in PbO.PbF2 glasses, J. Non-Cryst. Solids 217 (1997) 215-223.https://doi.org/10. 1016/S0022-3093(97)00151-8
[3] Lakshminarayana, G. and Qiu, J. (2009) Photoluminescence of Pr3+, Sm3+, and Dy3+: SiO2- Al2O3-LiF-GdF3 Glass Ceramics and Sm3+, Dy3+: GeO2-B2O3-ZnO-LaF3 Glasses. Physica B: Condensed Matter, 404, 1169-1180. http://dx. doi.org/ 10.1016/j.physb.2008.11.083
[4] C.K. Jayasankar, E. Rukmini, Spectroscopic investigations of Dy3+ ions in borosulphate glasses Physica B 240 (1997) 273-288.
[5] C. Jeffrey Brinker, George W. Scherer “The Physics and Chemistry of Sol-Gel processing”, SOL-GEL SCIENCE Academic press, (1990).
[6] J. Livage, M. Henry and C. Sanchez, “Sol-Gel Chemistry of Transition Metal Oxides,” Progress in Solid State Chemistry, Vol. 18, No. 4, 1988, pp. 259- 342.
[7] Majida A.A., Asmaa J.K. & Anwar A. B., “Annealing Effect on the phase Transformation inSol-Gel Derived Titania Nanostructures”, Baghdad Science Journal 8 (2), 503-508, 2011.
[8] Brian M. Walsh , Norman P. Barnes and Baldassare Di Bartolo,” Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4”, JOURNAL OF APPLIED PHYSICS, Vol. 83, No. 5, 1988, pp. 2772-2787.
9- Qian Wei, Xiuzhi Li, Guojian Wang, Mingjun Song, Zujian Wang, Guofu Wang and Xifa Long," Growth and spectroscopic properties of Ho3+ doped Sr3Y2(BO3)4 crystal", Optical Materials 30 (2008) 1495–1498.
10- M. Seshadri, J.A.P. Ferencz Junior, Y.C. Ratnakaramb and L.C. Barbosa,"Spectroscopic properties of Ho3+, Tm3+ and Ho3+/Tm3+ doped tellurite glasses for fiber laser applications", Proc. of SPIE Vol. 8961 896139-2.
11- Feng Qin, Yangdong Zheng, Ying Yua, Zhemin Cheng, Pouran Sadat Tayebi, Wenwu Cao and Zhiguo Zhang, "Ultraviolet and violet upconversion luminescence in Ho3+doped Y2O3 ceramic induced by 532-nm CW laser", Journal of Alloys and Compounds 509 (2011) 1115–1118.
12- André Felipe Henriques Librantz, Stuart D. Jackson, Fabio Henrique Jagosich and Laércio Gomes, Gaël Poirier, Sidney Jose Lima Ribeiro, and Younes Messaddeq, "Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses", JOURNAL OF APPLIED PHYSICS 101, (2007) 123111 _2.
13- B. Walsh, "Judd-Olfet Theory: Principles and Practices,“ in Advances in Spectroscopy For Lasers and Sensing, pp. 403–433, Springer, NewYork, NY, USA, 2006.http://www. springer.com/gp/book/9781402047879
14- B.R. Judd; “Optical Absorption Intensities of Rare- Earth Ions”, Phys. Rev., 127(3): 750, 1962.
[15]. Olfet, “Intensities of crystal spectra of rare-earth ions,” Journal of Chemical Physics, vol. 37, no. 3, p. 511, 1962.
[16]. Carnall W.T. and Crosswhite H. M., (1977), “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3”, Technical report, Argonne National Laboratory. https://www.osti. gov/ scitech/ servlets/purl/6417825/
[17]. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. 1.,Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, Journal of Chemical Physics. 49, 1968, 4424-4442.