HYPONORMAL TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES

BRIAN SIMANEK

ABSTRACT. We consider the Toeplitz operator with symbol $z^n + C|z|^s$ acting on certain weighted Bergman spaces and determine for what values of the constant C this operator is hyponormal. The condition is presented in terms of the norm of an explicit block Jacobi matrix.

Keywords: Hyponormal operator, Toeplitz Operator, Weighted Bergman Space, Block Jacobi Matrix

Mathematics Subject Classification: Primary 47B20; Secondary 47B35

1. Introduction

1.1. Weighted Bergman Spaces. Let μ be a probability measure on the interval $[0, 1]$ with $1 \in \text{supp}(\mu)$ and $\mu(\{1\}) = 0$. Using μ, define the measure ν on the open unit disk \mathbb{D} by $d\nu(re^{i\theta}) = d\mu(r) \times \frac{dr}{2\pi}$. Let $A^2_\nu(\mathbb{D})$ denote the weighted Bergman space of the unit disk defined by

$$A^2_\nu(\mathbb{D}) = \left\{ f : \int_\mathbb{D} |f(z)|^2 d\nu(z) < \infty, \ f \text{ is analytic in } \mathbb{D} \right\}$$

We equip $A^2_\nu(\mathbb{D})$ with the inner product

$$\langle f, g \rangle_\nu = \int_\mathbb{D} f(z)\overline{g(z)} \ d\nu(z).$$

Notice that the rotation invariance of the measure ν means the monomials $\{z^n\}_{n=0}^\infty$ are an orthogonal set in $L^2(\mathbb{D}, d\nu)$ and $A^2_\nu(\mathbb{D})$. It is a standard fact that $A^2_\nu(\mathbb{D})$ is a reproducing kernel Hilbert space. Let us define the set $\{\gamma_t\}_{t \in [0, \infty)}$ by

$$\gamma_t := \int_\mathbb{D} |z|^t d\nu(z) = \int_{[0,1]} x^t d\mu(x).$$

Since $1 \in \text{supp}(\mu)$, the sequence $\{\gamma_n\}_{n \in \mathbb{N}}$ decays subexponentially as $n \to \infty$, meaning for all $t > 0$ it holds that $\gamma_{m+t}/\gamma_m \to 1$ as $m \to \infty$. Since $\mu(\{1\}) = 0$, we know γ_t approaches 0 as $t \to \infty$. With this notation it is true that

$$A^2_\nu(\mathbb{D}) = \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 \gamma_{2n} < \infty \right\}$$

and the inner product becomes

$$\left\langle \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} b_n z^n \right\rangle_\nu = \sum_{n=0}^{\infty} a_n \overline{b_n} \gamma_{2n}.$$

Of particular interest is the case when

$$d\nu(z) = (\beta + 1)(1 - |z|^2)^\beta dA$$
for some \(\beta \in (-1, \infty) \), where \(dA \) is normalized area measure on \(\mathbb{D} \) (see \([8, 9, 10, 11]\)). Notice that when \(\beta = 0 \), the space \(\mathcal{A}_\nu(\mathbb{D}) \) is just the usual Bergman space of the unit disk.

A bounded operator \(T \) acting on a Hilbert space is said to be hyponormal if \([T^*, T] \geq 0 \), where \(T^* \) denotes the adjoint of \(T \). The motivation for studying such operators comes from Putnam’s inequality (see \([13, \text{Theorem 1}]\)), which says that hyponormal operators satisfy

\[
\| [T^*, T] \| \leq \frac{|\sigma(T)|_2}{\pi}
\]

where \(\sigma(T) \) is the spectrum of \(T \) and \(| \cdot |_2 \) denotes the two-dimensional area.

If \(\varphi \in L^\infty(\mathbb{D}) \), then we define the operator \(T_\varphi : \mathcal{A}_\nu^2(\mathbb{D}) \to \mathcal{A}_\nu^2(\mathbb{D}) \) with symbol \(\varphi \) by

\[
T_\varphi(f) = P_\nu(\varphi f),
\]

where \(P_\nu \) denotes the orthogonal projection to \(\mathcal{A}_\nu^2(\mathbb{D}) \) in \(L^2(\mathbb{D}, d\nu) \). There is an extensive literature aimed at characterizing those symbols \(\varphi \) for which the corresponding operator \(T_\varphi \) is hyponormal, much of which focuses on the special case of the classical Bergman space of the unit disk (see \([1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 16]\)). The specific symbol we will focus on is \(\varphi(z) = z^n + C|z|^s \), where \(n \in \mathbb{N} \), \(C \in \mathbb{C} \), and \(s \in (0, \infty) \). The case \(n = 1 \) and \(s = 2 \) in the classical Bergman space was considered in \([5]\) while a broader range of \(n \) and \(s \) was previously considered in \([16]\), where it was shown that hyponormality of \(T_\varphi \) acting on the classical Bergman space implies \(|C| \leq \frac{2}{n} \) and the converse holds if \(s \geq 2n \). Theorem \(2.1 \) below will complete that result by providing necessary and sufficient conditions on the constant \(C \) for \(T_\varphi \) acting on any \(\mathcal{A}_\nu^2(\mathbb{D}) \) to be hyponormal. As a result, we will recover the aforementioned result from \([16]\). Our condition is stated in terms of the norm of a certain self-adjoint operator that happens to be a block Jacobi matrix.

1.2. **Block Jacobi Matrices.** Block Jacobi matrices are matrices of the form

\[
\mathcal{M} = \begin{pmatrix}
B_1 & A_1 & 0 & \cdots & \cdots \\
A_1^* & B_2 & A_2 & \cdots & \cdots \\
0 & A_2^* & B_3 & A_3 & \cdots \\
& \vdots & \ddots & \ddots & \ddots
\end{pmatrix}
\]

where each \(A_m \) and \(B_m \) is a \(k \times k \) matrix for some fixed \(k \in \mathbb{N} \) with \(B_m = B_m^* \) and \(\det(A_m) \neq 0 \) for all \(m \in \mathbb{N} \). An extensive introduction to the theory and applications of these operators can be found in \([4]\), so we will only mention the facts that are directly relevant to our investigation.

In the context of our problem, a block Jacobi matrix is a bounded self-adjoint operator from \(\ell^2(\mathbb{N}_0) \) to \(\ell^2(\mathbb{N}_0) \) (where \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \)) so its spectrum is a compact subset of the real line. While the spectrum of such an operator is in general difficult to compute, one can easily verify that if \(B_m \equiv 0 \) and \(A_m \equiv I_{k \times k} \) for all \(m \in \mathbb{N} \), then the spectrum of the corresponding block Jacobi matrix is \([-2, 2]\). In particular, the norm of this operator is 2 in this case.

2. **Main Result**

With this basic knowledge of block Jacobi matrices in hand, we can now state our main result. Suppose \(\nu \) is as in Section \([1, 11]\), \(s \in (0, \infty) \), and \(n \in \mathbb{N} \) have been fixed. Define the
block Jacobi matrix $\mathcal{J}(\nu)$ by

$$\mathcal{J}(\nu)_{n+k,k} = \mathcal{J}(\nu)_{k,n+k} = \begin{cases} \frac{\gamma_{2k+2n}\gamma_{2k+s}}{\sqrt[2]{\gamma_{2k+2n}^2 + \gamma_{2k+s}}} & k = 0, \ldots, n-1 \\ \frac{\gamma_{2k+2n}\gamma_{2k+s}}{\sqrt[2]{\gamma_{2k+2n}^2 - \gamma_{2k+s}}} & k \geq n \end{cases}$$

and all other entries of $\mathcal{J}(\nu)$ are equal to 0. Note that the log-convexity of $\{\gamma_t\}_{t>0}$ (see [12, Theorem 1.3.4]) implies that the quantities under the square roots in the entries of $\mathcal{J}(\nu)$ are all non-negative. However, if we write

$$\gamma_{2k+4n}\gamma_{2k} - \gamma_{2k+2n}^2 = \int_{[0,1]^2} (x^{2k+4n}y^{2k+2n} - x^{2k+2n}y^{2k+2n})d\mu(x)d\mu(y)$$

$$= \int_{[0,1]^2} (xy)^{2k}(x^{2n} - y^{2n})d\mu(x)d\mu(y)$$

and then symmetrize to obtain

$$\gamma_{2k+4n}\gamma_{2k} - \gamma_{2k+2n}^2 = \frac{1}{2} \int_{[0,1]^2} (xy)^{2k}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y) > 0,$$

we see that the quantities under the square roots in the entries of $\mathcal{J}(\nu)$ are all strictly positive. Similar reasoning shows the numerators of those expressions are also strictly positive.

Our main result can be stated as follows.

Theorem 2.1. Suppose $C \in \mathbb{C}$, $s \in (0, \infty)$, and $n \in \mathbb{N}$. The operator $T_{z^n + C|z|^s}$ acting on $A_2^\nu(D)$ is hyponormal if and only if $|C| \leq \|\mathcal{J}(\nu)\|^{-1}$.

The above discussion verifies that $\mathcal{J}(\nu)$ is a block Jacobi matrix. Our next task is to prove the following result, which has clear implications for the application of Theorem 2.1.

Theorem 2.2. The spectrum of the operator $\mathcal{J}(\nu)$ consists of the interval $[-s/n, s/n]$ and an at most countable set of isolated points whose only accumulation points are among $\{\pm s/n\}$. In particular, the operator $\mathcal{J}(\nu)$ is bounded.

The proof will require the following elementary lemma.

Lemma 2.3. It holds that

$$\lim_{k \to \infty} \left(\int_{[0,1]^2} (xy)^k(x^{2n} - y^{2n})^2d\mu(x)d\mu(y) \right)^{1/k} = 1$$

Proof. It is clear that

$$\limsup_{k \to \infty} \left(\int_{[0,1]^2} (xy)^k(x^{2n} - y^{2n})^2d\mu(x)d\mu(y) \right)^{1/k} \leq 1$$
Also notice that if $\delta \in (0, 1)$ is fixed, then
\[
\liminf_{k \to \infty} \left(\int_{[0,1]^2} (xy)^k(x^{2n} - y^{2n})^2 d\mu(x)d\mu(y) \right)^{1/k}
\geq \liminf_{k \to \infty} \left(\int_{[1-\delta,1]^2} (xy)^k(x^{2n} - y^{2n})^2 d\mu(x)d\mu(y) \right)^{1/k}
\geq (1 - \delta)^2 \liminf_{k \to \infty} \left(\int_{[1-\delta,1]^2} (x^{2n} - y^{2n})^2 d\mu(x)d\mu(y) \right)^{1/k}
= (1 - \delta)^2
\]
Sending $\delta \to 0$ proves the lemma.

Proof of Theorem 2.2. We will show that
\[
\lim_{k \to \infty} \mathcal{J}(\nu)_{n+k,k} = \frac{s}{2n}
\]
This will show that $\mathcal{J}(\nu)$ is a compact perturbation of the block Jacobi matrix $\frac{1}{2n}(\mathcal{L}^n + \mathcal{R}^n)$, where \mathcal{L} is the left shift and \mathcal{R} is the right shift on $\ell^2(\mathbb{N}_0)$. The operator $\frac{1}{2n}(\mathcal{L}^n + \mathcal{R}^n)$ has spectrum equal to $[-s/n, s/n]$, from which the desired conclusion follows.

Recall that for any $\eta > 0$ it holds that
\[
\lim_{t \to \infty} \frac{\gamma_{t+\eta}}{\gamma_t} = 1.
\]
This implies
\[
\mathcal{J}(\nu)_{n+k,k} = (1 + o(1)) \frac{\gamma_{2k+2n+\gamma}2k - \gamma_{2k+2n}\gamma_{2k+s}}{\sqrt{\gamma_{2k+2n}\gamma_{2k-2n} - \gamma_{2k}^2}} \sqrt{\gamma_{2k+4n}\gamma_{2k} - \gamma_{2k+2n}^2}
\]
as $k \to \infty$. Now we write
\[
\gamma_{2k+2n+s} \gamma_{2k} - \gamma_{2k+2n} \gamma_{2k+s} = \int_{[0,1]^2} (x^{2k+2n+s} y^k - x^{2k+2n} y^{2k+s}) d\mu(x)d\mu(y)
= \int_{[0,1]^2} (xy)^k x^{2n} (x^s - y^s) d\mu(x)d\mu(y)
\]
Interchanging the roles of x and y and adding these expressions, we find
\[
\gamma_{2k+2n+s} \gamma_{2k} - \gamma_{2k+2n} \gamma_{2k+s} = \frac{1}{2} \int_{[0,1]^2} (xy)^k (x^{2n} - y^{2n}) (x^s - y^s) d\mu(x)d\mu(y)
\]
Using similar reasoning on the expressions in the denominator of (1), we can rewrite the leading term of (1) as
\[
\frac{\int_{[0,1]^2} (xy)^{k+2n} (x^2 - y^2)^2 d\mu(x)d\mu(y)}{\sqrt{\int_{[0,1]^2} (xy)^{k-2n} (x^{2n} - y^{2n})^2 d\mu(x)d\mu(y)} \left(\int_{[0,1]^2} (xy)^{2k} (x^{2n} - y^{2n})^2 d\mu(x)d\mu(y) \right)}
\]
We can bound (2) from above by
\[
\frac{\int_{[0,1]^2} (xy)^{2k} (x^{2n} - y^{2n}) (x^s - y^s) d\mu(x)d\mu(y)}{\int_{[0,1]^2} (xy)^{2k} (x^{2n} - y^{2n})^2 d\mu(x)d\mu(y)}
\]
and from below by
\[
\frac{\int_{[0,1]^2}(xy)^{2k}(x^{2n} - y^{2n})(x^s - y^s)d\mu(x)d\mu(y)}{\int_{[0,1]^2}(xy)^{2k-2n}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}
\] (4)

Lemma 2.3 implies that the denominators in (3) and (4) decay subexponentially as \(k \to \infty \), and hence we obtain the same asymptotic behavior as \(k \to \infty \) if we replace each integral in the numerators of (3) and (4) by the integral over \([1 - \epsilon, 1]^2\) for some \(\epsilon > 0 \).

Now, fix some \(\epsilon \in (0, 1) \) and define
\[
g(\epsilon) := \max_{1-\epsilon \leq t \leq 1} t^{s-2n} = \begin{cases}
(1-\epsilon)^{s-2n} & \text{if } s < 2n \\
1 & \text{if } s \geq 2n.
\end{cases}
\]

If \(Z > \frac{sg(\epsilon)}{2n} \), then \(Z \mu^{2n} - u^s \) is an increasing function of \(u \) on \([1 - \epsilon, 1]\). Thus, when \(Z > \frac{sg(\epsilon)}{2n} \) and \(1 \geq x \geq y \geq 1 - \epsilon \) it holds that \((x^s - y^s) < Z(x^{2n} - y^{2n})\). It follows from (3) that for such a \(Z \) we have
\[
\limsup_{k \to \infty} J(\nu)_{n+k,k} \leq \limsup_{k \to \infty} \frac{Z \int_{[1-\epsilon,1]^2}(xy)^{2k}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}{\int_{[0,1]^2}(xy)^{2k}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)} = Z,
\]
where we used the fact that the denominator of the expression in (3) decays subexponentially as \(k \to \infty \). Since \(Z > \frac{sg(\epsilon)}{2n} \) was arbitrary, we conclude that
\[
\limsup_{k \to \infty} J(\nu)_{n+k,k} \leq \frac{sg(\epsilon)}{2n}.
\]
Taking \(\epsilon \to 0 \), we obtain the desired upper bound.

By applying similar reasoning, we see that if \(h(\epsilon) := \min_{1-\epsilon \leq t \leq 1} t^{s-2n} \) and \(Z' < \frac{sh(\epsilon)}{2n} \), then
\[
\liminf_{k \to \infty} J(\nu)_{n+k,k} \geq \liminf_{k \to \infty} \frac{Z' \int_{[1-\epsilon,1]^2}(xy)^{2k}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}{\int_{[0,1]^2}(xy)^{2k}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}
\]
\[
\geq \liminf_{k \to \infty} \frac{Z'(1-\epsilon)^{4n} \int_{[1-\epsilon,1]^2}(xy)^{2k-2n}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}{\int_{[0,1]^2}(xy)^{2k-2n}(x^{2n} - y^{2n})^2d\mu(x)d\mu(y)}
\]
\[
= Z'(1-\epsilon)^{4n}.
\]
Since \(Z' < \frac{sh(\epsilon)}{2n} \) was arbitrary, we conclude that
\[
\liminf_{k \to \infty} J(\nu)_{n+k,k} \geq \frac{sh(\epsilon)(1-\epsilon)^{4n}}{2n}.
\]
Taking \(\epsilon \to 0 \), we obtain the desired lower bound. \(\square\)

As an example of Proposition 2.2, consider the case when \(\mu = 2rdr \). In this case the measure \(\nu \) is normalized area measure on \(\mathbb{D} \) and \(\gamma_n = 2(t+2)^{-1} \) so \(J(dA) \) is
\[
J(dA)_{n+k,k} = J(dA)_{k,n+k} = \begin{cases}
\frac{s\sqrt{(k+n+1)(k+2n+1)}}{2(k+1+s/2)(k+n+1+s/2)} & k = 0, \ldots, n-1 \\
\frac{s(k+1)\sqrt{(k+n+1)(k+2n+1)}}{2n(k+1+s/2)(k+n+1+s/2)} & k \geq n.
\end{cases}
\]
We see that the conclusion of Theorem 2.2 holds true for this matrix. Furthermore, one can quickly verify by hand that if \(s \geq 2n \), then each non-zero entry of \(J(dA) \) is less than.
This implies that when \(s \geq 2n \) the spectrum of \(J(dA) \) is precisely \([-s/n, s/n]\) and so Theorem 2.1 implies [16, Theorem 2].

3. Proof of Theorem 2.1

Throughout this section, let us suppose that \(n \in \mathbb{N} \), \(s \in (0, \infty) \), and \(\nu \) as in Section 1.1 are fixed. As in [5, 16], we will use the formula

\[
\langle (T + S)^*, T + S \rangle u, u \rangle = \langle Tu, Tu \rangle - \langle T^*u, T^*u \rangle + 2\text{Re} \langle Tu, Su \rangle - \langle S^*u, S^*u \rangle \tag{5}
\]

with \(T = T_{z^n} \) and \(S = T_{C[z^n]} \). The first step in our proof will be the following adaptation of [16] Lemma 1] to weighted Bergman spaces.

Lemma 3.1. If \(k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \) and \(t \in (0, \infty) \), then

\[
P_{\nu}(z^k | z^t) = \frac{\gamma_{2k+t} z^k}{\gamma_{2k}}, \quad \text{and} \quad P_{\nu}(z^{k+1} | z^t) = 0.
\]

Proof. A calculation shows that

\[
\left\langle z^q, \frac{\gamma_{2k+t}}{\gamma_{2k}} z^k \right\rangle = \left\langle z^q, z^k | z^t \right\rangle
\]

for every \(q \in \mathbb{N}_0 \), so the first claim follows from the fact that polynomials are dense in \(\mathcal{A}_\nu^2(D) \). The second claim follows from a similar calculation. \(\square \)

With Lemma 3.1 in hand, we consider \(u = \sum_{k=0}^{\infty} u_k z^k \in \mathcal{A}_\nu^2(D) \) and calculate

\[
\langle T_{z^n} u, T_{z^n} u \rangle = \sum_{k=0}^{\infty} |u_k|^2 \gamma_{2k+2n}
\]

\[
\langle T_{z^n} u, T_{z^n} u \rangle = \sum_{k=n}^{\infty} \frac{\gamma_{2k}}{\gamma_{2k-2n}} |u_k|^2
\]

\[
\text{Re}[\langle T_{z^n} u, T_{C[z^n]} u \rangle - \langle T_{z^n} u, T_{C[z^n]} u \rangle] = \sum_{k=0}^{\infty} \text{Re}[u_k \bar{u}_{k+n} C] \left(\gamma_{2k+2n+} \frac{\gamma_{2k+2n} \gamma_{2k+2n} - \gamma_{2k+2n} \gamma_{2k+2n}}{\gamma_{2k}} \right),
\]

Notice that \(\gamma_{2k+2n+} \frac{\gamma_{2k+2n} \gamma_{2k+2n} - \gamma_{2k+2n} \gamma_{2k+2n}}{\gamma_{2k}} \) is the numerator of the entry \(J(\nu)_{n+k,k} \) and hence the discussion before Theorem 2.1 implies each of these terms is strictly positive. That discussion also implies \(\gamma_{2k+2n+} \frac{\gamma_{2k+2n}}{\gamma_{2k+2n}} \) when \(k \geq n \). Thus we may reason as in [16] and conclude that \(T_{z^n+C[z^n]} \) is hyponormal if and only if

\[
|C| \leq \inf \left\{ \sum_{k=0}^{n-1} u_k^2 \gamma_{2k+2n} + \sum_{k=n}^{\infty} u_k^2 \left(\gamma_{2k+2n} - \frac{\gamma_{2k}}{\gamma_{2k-2n}} \right) \right\} \quad \text{and} \quad 2 \sum_{k=0}^{\infty} u_k u_{k+n} \left(\gamma_{2k+2n+} - \frac{\gamma_{2k+2n} \gamma_{2k+2n}}{\gamma_{2k}} \right), \tag{6}
\]
where the infimum is taken over all non-negative sequences \(\{u_k\} \) satisfying \(\sum_{k=0}^{\infty} |u_k|^2 \gamma_{2k} < \infty \) that are not the zero sequence. For convenience, we will restate the condition \(\mathcal{G} \) as

\[
\kappa := \sup \left\{ \frac{2 \sum_{k=0}^{\infty} u_k u_{k+n} \left(\frac{\gamma_{2k+2n+s} - \frac{\gamma_{2k} \gamma_{2k+s}}{\gamma_{2k}}}{\gamma_{2k}} \right)}{\sum_{k=0}^{n-1} u_k^2 \gamma_{2k+2n} + \sum_{k=n}^{\infty} u_k^2 \left(\frac{\gamma_{2k+2n} - \frac{\gamma_{2k}^2}{\gamma_{2k-2n}}}{\gamma_{2k-2n}} \right)} \right\} \leq \frac{1}{|\mathcal{C}|} \tag{7}
\]

Now we make the substitution

\[
v_j = \begin{cases} \frac{u_j \sqrt{\gamma_{2k+2n}}}{\gamma_{2k+2n}} & j \leq n - 1 \\ \frac{u_j \sqrt{\gamma_{2k+2n} - \frac{\gamma_{2k}^2}{\gamma_{2k-2n}}}}{\gamma_{2k-2n}} & j \geq n \end{cases}
\]

in (7) (we used the discussion before Theorem 2.1 here). This gives

\[
\kappa = \sup \left\{ \frac{2 \left(\sum_{k=0}^{n-1} v_k v_{k+n} \left(\frac{\gamma_{2k+2n+s} - \frac{\gamma_{2k} \gamma_{2k+s}}{\gamma_{2k}}}{\gamma_{2k}} \right) + \sum_{k=n}^{\infty} v_k v_{k+n} \left(\frac{\gamma_{2k+2n+s} - \frac{\gamma_{2k} \gamma_{2k+s}}{\gamma_{2k}}}{\gamma_{2k}} \right) \right)}{\sum_{k=0}^{\infty} v_k^2} \right\} \tag{8}
\]

and we take the supremum over all non-negative \(\{v_k\}_{k=0}^{\infty} \) that satisfy

\[
0 < \sum_{k=0}^{\infty} v_k^2 \frac{\gamma_{2k}}{\gamma_{2k+2n} - \frac{\gamma_{2k}^2}{\gamma_{2k-2n}}} < \infty.
\]

Notice that our assumptions on \(\nu \) imply

\[
\lim_{k \to \infty} \left[\frac{\gamma_{2k}}{\gamma_{2k+2n} - \frac{\gamma_{2k}^2}{\gamma_{2k-2n}}} \right] = \infty,
\]

so in particular

\[
\ell^2_\gamma(N_0) := \left\{ v_k \right\}_{k=0}^{\infty} : \sum_{k=0}^{\infty} |v_k|^2 \frac{\gamma_{2k}}{\gamma_{2k+2n} - \frac{\gamma_{2k}^2}{\gamma_{2k-2n}}} < \infty \right\} \subseteq \ell^2(N_0)
\]

and in fact \(\ell^2_\gamma(N_0) \) is dense in \(\ell^2(N_0) \) in the \(\ell^2(N_0) \)-metric because \(\ell^2(N_0) \) contains all finite sequences. Therefore, by the scale invariance of the expression in (5), we may define \(\kappa \) by taking the supremum only over those non-negative sequences \(\{v_k\}_{k=0}^{\infty} \in \ell^2_\gamma(N_0) \) such that \(\sum v_k^2 = 1 \).

Since \(\|\mathcal{J}(\nu)\| < \infty \) (by Theorem 2.2) and hence self-adjoint, we can use the well-known formula

\[
\|\mathcal{J}(\nu)\| = \sup_{\|x\|=1} \langle x, \mathcal{J}(\nu)x \rangle_{\ell^2(N_0)} \tag{9}
\]

(see [14] page 216), where the supremum is taken over all \(x \in \ell^2(N_0) \) with norm 1 in this space. By the density property we just mentioned, it suffices to take the supremum over all
$x \in \ell^2_0(N_0)$ with norm 1 in $\ell^2(N_0)$. Since all the entries of $J(\nu)$ are positive real numbers, we recognize that the right-hand side of (9) is equal to the right-hand side of (8). We conclude that $\|J(\nu)\| = \kappa$ as desired.

References

[1] P. Ahern and Z. Cuckovic, A mean value inequality with applications to Bergman space operators, Pacific J. Math. 173 (1996), no. 2, 295–305.
[2] C. Beneteau, D. Khavinson, C. Liaw, D. Seco, and B. Simanek, Zeros of optimal polynomial approximants: Jacobi matrices and Jentzsch-type theorems, Rev. Mat. Iberoam. 35 (2019), no. 2, 607–642.
[3] Z. Cuckovic and R. Curto, A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space, J. Oper. Theory 79 (2018), 287–300.
[4] D. Damanik, A. Pushnitski, and B. Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008), 1–85.
[5] M. Fleeman and C. Liaw, Hyponormal Toeplitz operators with non-harmonic symbol acting on the Bergman space, Oper. Matrices 13 (2019), no. 1, 61–83.
[6] I. S. Hwang, Hyponormal Toeplitz operators on the Bergman space, J. Korean Math. Soc. 42 (2005), no. 2, 387–403.
[7] I. S. Hwang, Hyponormality of Toeplitz operators on the Bergman space, J. Korean Math. Soc. 45 (2008), no. 4, 1027–1041.
[8] I. S. Hwang and J. Lee Hyponormal Toeplitz operators on the weighted Bergman spaces, Math. Inequal. Appl. 15 (2012), no. 2, 323–330.
[9] I. S. Hwang, J. Lee, and S. W. Park Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces, J. Inequal. Appl. (2014), 335, 8 pp.
[10] Y. Lu and C. Liu, Commutativity and hyponormality of Toeplitz operators on the weighted Bergman space, J. Korean Math. Soc. 46 (2009), no. 3, 621–642.
[11] Y. Lu and Y. Shi, Hyponormal Toeplitz operators on the weighted Bergman space, Integral Equations Operator Theory 65 (2009), no. 1, 115–129.
[12] C. Niculescu and L. E. Persson, Convex functions and their applications. A contemporary approach, Second edition. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2018.
[13] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 1970 323–330.
[14] M. Reed and B. Simon, Methods of modern mathematical physics: I, Functional analysis. Second edition. Academic Press, Inc. New York, 1980.
[15] H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Ph.D. Thesis, Purdue University, 1992.
[16] B. Simanek, Hyponormal Toeplitz operators with non-harmonic algebraic symbol, Anal. Math. Phys. 9 (2019), no. 4, 1613–1626.