A Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation

Karsten Jedamzik\textsuperscript{1*}, Andrey Saveliev\textsuperscript{2†}

\textsuperscript{1}Université de Montpellier II, Laboratoire Univers et Particules de Montpellier, UMR5299-CNRS, 34095 Montpellier, France
\textsuperscript{2}Immanuel Kant Baltic Federal University, Institute of Physics, Mathematics and Information Technology, 236041 Kaliningrad, Russia

Primordial Magnetic Fields (PMFs), being present before the epoch of cosmic recombination, induce small-scale baryonic density fluctuations. These inhomogeneities lead to an inhomogeneous recombination process which alters the peaks and heights of the large-scale anisotropies of the Cosmic Microwave Background (CMB) radiation. Utilizing numerical compressible MHD calculations, and a Monte Carlo Markov Chain analysis, which compares calculated CMB anisotropies with those observed by the WMAP and Planck satellites, we derive limits on the magnitude of putative PMFs. We find that the total remaining present day field, integrated over all scales, cannot exceed 47 pG for scale-invariant PMFs and 8.9 pG for PMFs with a violet Batchelor spectrum at 95% confidence level. These limits are more than one order of magnitude more stringent than any prior stated limits on PMFs from the CMB which have not accounted for this effect.

The early Universe may well have been magnetized. There is a plethora of proposed magnetogenesis scenarios typically acting well before the epoch of cosmological recombination. These fall into roughly two broad classes: (i) generation of magnetic fields during phase transitions, leading to very blue or violet spectra and (ii) generation of magnetic fields during inflation leading to approximately scale-invariant spectra (cf. Ref. [1] for a review). Even though none of these scenarios is more compelling than others, if only one of them leads to a present day void magnetic fields of \( \sim 0.005 \) nG \[90\], the origin of cluster magnetic fields of \( \sim \mu G \) strength would be explained immediately \[24\]. This is irrespective of the correlation length of such fields as long as it is on astrophysical scales, i.e. in the kpc to Mpc range. An alternative for the origin of cluster magnetic fields is the amplification of astrophysical seed magnetic fields by dynamo action. In any case, independent of the origin of cluster magnetic fields, the question of a potential primordial cosmic magnetization is interesting in its own right.

In fact, fairly recent observations of TeV blazars \[5–7\] may be best understood if an essentially cosmic volume filling magnetic field with an astrophysical correlation length exists. TeV gamma-rays emitted by these blazars are expected to pair-produce \( e^\pm \) on the extragalactic infrared background \[8\], with the resulting \( e^\pm \) subsequently inverse Compton scattering on the Cosmic Microwave Background radiation (CMB hereafter) to produce secondary GeV gamma-rays. This well-predicted flux of GeV photons is, however, not observed in at least three TeV blazars \[5\]. A straightforward explanation is that the \( e^\pm \) pairs were deflected out of the light cone due to magnetic fields, though other more exotic explanations exist \[9\–12\]. It is by far not clear whether galactic outflows could “contaminate” the Universe with magnetic fields in an essentially volume filling way.

Given these questions, it is therefore not surprising that many authors have searched for indirect observational signatures of Primordial Magnetic Fields (PMFs hereafter). Big Bang Nucleosynthesis, unfortunately, cannot constrain PMFs only to be smaller than \( \sim \mu G \) by using their contribution to the cosmic expansion rate. With the advent of precise observations of CMB anisotropies via balloon and satellite observations such as those by WMAP and Planck, a multitude of stringent limits on PMFs present around recombination, has been placed. These are summarized in Table I which shows the obtained limits on scale-invariant PMFs. The effects considered, one-by-one, are \( \mu \)- and \( y \)-distortion of the Planck spectrum by the dissipation of magnetic energy into the plasma \[13–16\], anisotropic cosmic expansion \[17\], CMB temperature anisotropies on high multipoles \( l \) due to Alven and slow magnetosonic waves \[18–19\], CMB temperature anisotropies due to heating of the plasma shortly after recombination and the increased optical depth \[15\–17\], creation of additional CMB polarization anisotropies due to Faraday rotation, vector or tensor perturbations (i.e. gravitational waves) by PMFs \[20–22\], non-Gaussianity of the CMB induced by PMFs either in the bispectrum \[37\–43\] or the trispectrum \[64\–66\] as well as effects on reionization \[40\–60\]. Generally such constraints are in the nanogauss regime and therefore still far from the 0.005 nG quoted above and even further from the derived lower limits from TeV blazars. An exception to this rule is the limit of 0.05 nG \[65\] from the tri-spectrum, which, however, is model-dependent since it relies on the existence of an additional magnetic-field-induced inflationary

*E-mail: karsten.jedamzik@umontpellier.fr
†E-mail: andrey.saveliev@desy.de
curvature mode [70].

The situation is even more bleak for blue and violet spectra, where the magnetic energy resides on small scales, i.e. its correlation length is small. Limits from $\mu$- and $y$- distortions are in the 30 nG regime [13–16], however a limit from the dissipation of magnetic fields after recombination may reach down to values around the sub-nanogauss regime, though detailed calculations show that it is by far not as stringent as the limit we will place here [73]. Placing CMB constraints on PMFs with blue and violet spectra is more difficult than placing them on scale-invariant ones, as small-scale physics is not directly visible in the CMB at multipoles $l \sim 1000$, but rather indirectly. They also rely much more on a solid understanding of the considerable evolution of PMFs on small scales. In particular, the dissipation rates of PMFs before and after recombination have to be known, among other. However, extensive study of decaying magnetohydrodynamics in the expanding Universe in the presence of fluid viscous terms in the linear regime [71, 72], by full MHD simulations [4, 74], as well as by semi-analytic methods [75, 77] have led to a consistent picture.

It is explicitly noted here that whenever we state numerical values for magnetic fields, we refer to the total remaining field integrated over all length scales, in contrast to giving the magnetic field on a particular scale such as 1 Mpc, which is common practice.

One particular realization coming from PMF evolution studies is that shortly before recombination the part of the spectrum of PMFs which undergoes non-trivial dynamical evolution is well below the photon mean free path at the epoch of recombination. This has the important implication that the effective speed of sound entering the MHD equations is the baryonic and not the radiative one, leading to compressible MHD and the likely creation of $\delta\rho/\rho \sim 1$ baryonic inhomogeneities on $\sim 1$ kpc scales for sub-nanogauss fields. In Ref. [78, 79] it was proposed that the recombination process in such an inhomogeneous environment is altered and would lead to modified CMB anisotropies, as the evolution equation for the electron fraction $x_e$ is intrinsically non-linear. In particular, it was found that inhomogeneous recombination leads to an earlier recombination, but also an enhanced Silk damping. Though the potential limits were claimed to be strong, this study is widely ignored in the literature, probably since the effect had only been estimated back-of-the-envelope for the MHD evolution and no substantial CMB data analysis had been performed. In this letter we complete the study of Ref. [78, 79], confirming their claims by full MHD simulation and MCMC of the WMAP [80] and Planck [81] CMB data, thereby being able to place the most stringent upper bounds on PMFs to date.

Before showing our results let us shortly summarize the back-of-the-envelope calculation of Ref. [78, 79]. Imagine a stochastic magnetic field and negligible velocities $v$ initially. The evolution of velocities and densities are given by the Euler and continuity equations

$$\frac{dv}{dt} + (v \cdot \nabla) v + c_s^2 \nabla \rho \rho = -\alpha v - \frac{1}{4\pi \rho} B \times (\nabla \times B)$$

$$\frac{dp}{dt} + \nabla (\rho v) = 0,$$  (2)

where $\alpha \sim 1/\gamma$ (cf. [4]) is the photon drag term, and $c_s$ is the baryonic sound speed. Before recombination the fluid is in an overdamped, highly viscous state with the source of viscosity given by free-streaming photons. In this case, only the terms on the RHS of Eq. (1) are important. Very quickly ($\Delta t \sim 1/\alpha$) terminal velocities $v \sim c_s^2/(\alpha L)$ are reached, with $c_s^2 = B \sqrt{\gamma/\rho}$ being the Alfvén velocity of the baryon plasma. For a stochastic field the generated fluid flows are necessarily both rotational (i.e. $\nabla \times v \neq 0$) and compressible (i.e. $\nabla \cdot v \neq 0$). The compressibility component leads to the creation of density fluctuations. Using Eq. (2) one finds $\delta \rho/\rho(t) \sim vt/L \sim c_s^2 t/(\alpha L^2)$. These density fluctuations become larger with time until either pressure forces become important in counteracting further compression or the source magnetic stress term decays. The former happens when the last term on the LHS of Eq. (1), $(c_s^2/L) \delta \rho/\rho$, is of the order of the magnetic force term $c_A^2/L$. That is, density fluctuations may not become larger than $\delta \rho/\rho \lesssim (c_A/c_s)^2$. The magnetic fields sourcing density fluctuations decay when the eddy turnover rate in the viscous regime $v/L \approx c_s^2/\alpha L^2$ equals the Hubble rate $H \sim 1/t$. This has been confirmed by direct numerical simulations [4], a linear analysis [71], and a particular non-linear estimate [72]. Putting all this together, we expect

$$\frac{\delta \rho}{\rho} \sim \min \left[ 1, \left( \frac{c_A}{c_s} \right)^2 \right]$$  (3)

for the density fluctuations generated by magnetic fields before recombination. It was further found by analytical estimates based on the results of Ref. [4] that the total magnetic field strength undergoes a drop from $B_{br}$ to $B_{ar}$ (where “br” denotes the value before and “ar” the value

| TABLE I: Constraints on Scale-Invariant magnetic Fields |
|---------------------------------|-----------------|
| Principal Effect                | Upper Limit     |
| spectral distortions            | 30-40 nG        |
| anisotropic expansion           | 3.4 nG          |
| CMB temp. anisotropies:         |                 |
| - due to magnetic modes         | 1.2 - 6.4 nG    |
| - due to plasma heating         | 0.63-3 nG       |
| CMB polarization                | 1.2 nG          |
| non-Gaussianity bispectrum      | 2.9 nG          |
| non-Gaussianity trispectrum     | 0.7 nG          |
| non-Gaussianity trispectrum with inflationary curvature mode | 0.05 nG |
| reionization                    | 0.36 nG         |
The evoluation of the magnetic field $B$ (left) and the baryon clumping factor $b$ (right) as functions of the scale factor $a$ with $a = 1$ at recombination. The solid line represents the case of a scale-invariant ($n = 0$), the dashed line that of a Batchelor spectrum ($n = 5$) for the magnetic field.

after recombination) of $B_{br}/B_{at} \approx (\alpha_{rec}/H_{rec})^{n/(2n+4)}$ due to dissipation during and somewhat after recombination, where $\alpha_{rec}/H_{rec} \approx 170$ and $H_{rec}$ is the Hubble constant at recombination. Here $n$ is the spectral index of the PMF, with $n = 0$ corresponding to the scale-invariant case.

We now present our results of the numerical three-dimensional MHD simulations. To the best of our knowledge these simulations are the first ones which treat compressible MHD in the early Universe, as required by the problem. The simulations were performed via a novel method of the use of kinetic consistent schemes which had recently also been successfully applied to astrophysical problems. Cosmic expansion was included by working with a set of rescaled physical variables. Recombination was modeled by a sudden drop in the electron fraction, and the concomitant large decrease of $\alpha$. A comoving box size of $(10 \text{kpc})^3$ including an initially homogeneous baryon fluid and a stochastic, but statistically homogeneous and isotropic magnetic field was used. The magnetic field property was described by its Fourier spectrum, i.e. $\langle |B(k)|^2 \rangle \propto k^{n-3}$, and its total initial magnetic energy $VB(a_0)^2 = \int dV B(x,a_0)^2$, with $V$ being the total volume and $a_0$ the cosmic scale factor at the beginning of the simulation. For recombination at redshift $z = 1090$ we find $c_s = 6.33 \text{ km/s}$ for the isothermal sound speed of fully ionized hydrogen and singly ionized helium with a helium mass fraction $Y_p \approx 0.245$, and $c_A = 4.34 \text{ km/s} [B_0/(0.03 \text{nG})]$ for the Alfvén velocity.

In the left panel of Fig. 1 the evolution of the total magnetic energy density is shown. Here two initial conditions have been assumed: (i) a violet Batchelor spectrum with $n = 5$ and $B(a_0) = 52.5 \text{ pG}$, where $n = 5$ is the strong theoretical expectation for magnetogenesis during phase transitions; (ii) a scale-invariant spectrum of $n = 0$ and the same $B(a_0)$, modeling inflationary produced PMFs. During and after recombination at scale factor $a = 1$ the violet spectral PMF undergoes significant further damping of a factor 5.3 up to the present epoch. This is in good agreement with the above mentioned theoretical expectation of 6.26. The scale-invariant field also receives some damping of the total magnetic energy density during and after recombination. However, the exact amount is dependent on the resolution. Though the small-scale dissipative cutoff of the field indeed increases by a factor $\sqrt{\alpha_{rec}/H_{rec}} \approx 13$ across recombination, if fields are excited all the way to Fourier mode $k \rightarrow 0$, the energy density would stay essentially the same. This damping factor is therefore not taken into consideration when formulating limits.

The right panel of Fig. 1 shows the evolution of the baryonic density fluctuation "clumping factor" $b$, i.e. $b = (\delta \rho/\rho_{[\text{r.m.s.}]}^2 = (1/V) \int dV (\rho(x) - \bar{\rho})^2/\bar{\rho}^2$. It is seen that in both scenarios (i) and (ii) the initially homogeneous baryon fluid acquires density fluctuations of considerable magnitude before recombination due to magnetic compression. For the assumed 50 pG fields this baryon clumpiness exists on the characteristic scale of $c_A/\sqrt{(\alpha H)^{1/2}_{\text{rec}}} \sim 0.5 \text{kpc}$ before recombination. The small-scale baryon inhomogeneities is then very quickly reduced during recombination, though it remains with some lower amplitude up to the present epoch. The decay of inhomogeneities during recombination is due to the
almost instantaneous disappearance of the drag $\alpha \ll H$, as electrons recombine into hydrogen, making the fluid enter a fully turbulent MHD evolution.

From arguments given above it is expected that the maximum clumping before recombination scales as $b \propto (c_A/c_s)^4$ for $c_A < c_s$ and is constant $c_A > c_s$. In Fig. 2 the maximum clumping factor $b_{\text{max}}$ is shown as a function of $(c_A/c_s)$ and confirms the fourth power scaling up to ratios of $(c_A/c_s) \sim 0.3$ and a slow turnover for larger ratios.

We have performed an extensive Markov Chain Monte Carlo (MCMC) simulation to compare the predicted anisotropies of the CMB with the ones observed by Planck [81] and WMAP [80], in a cosmic model described by six standard cosmic parameters, but also including small-scale inhomogeneities such as those produced by PMFs. The sole effect of such small-scale inhomogeneities on multipoles $l \sim 10^6$ was assumed to be the change in the recombination history. Our analysis was performed by using the publicly available CAMB code [88] and the CosmoMC generator [89]. Fig. 3 shows the observed a posteriori probability for such baryonic clumping with clumping factor $b$ to present a good fit to the data when marginalizing over all six other standard parameters. It is seen that $b$ is limited to $b < 0.119$ at 95% confidence level. Unfortunately there is no evidence for baryonic clumping, or indirectly for the existence of PMFs, such that $b = 0$ gives the best fit.

These results in conjunction with the results shown in the other figures may be used to determine a precise limit on PMFs from inhomogeneous recombination. Note that the PMF scenarios which are shown in Fig. 4 produce a maximum clumping of $b = 0.15$ and are therefore excluded somewhat beyond the 95% confidence level. The

95% confidence level excluded PMFs are given by

$$B < 47 \, \text{pG} \quad \text{scale -- invariant spectra } n = 0,$$

$$B < 8.9 \, \text{pG} \quad \text{Batchelor spectrum } n = 5.$$ 

It is stressed once more here that the quoted limits are on the total magnetic field, integrated over all scales.

In summary, we have confirmed in detail the suggestion made in Ref. [78, 79] that small-scale, comparatively weak primordial magnetic fields may create substantial small-scale baryon density fluctuations which cause the Universe to recombine inhomogeneously. This inhomogeneous recombination in turn may alter the large-scale Cosmic Microwave Background temperature anisotropies to an observable degree. By full numerical compressible MHD simulations, numerical calculations of the resultant CMB anisotropies and Monte Carlo Markov Chain analysis of the Planck and WMAP data we have been able to place the, to date, most stringent limits on the total surviving primordial magnetic field. These limits are about 1-2 orders of magnitude more stringent for inflationary produced fields, and 2-3 orders of magnitude for "causally" produced fields, than a host of other stated CMB constraints on Primordial Magnetic Fields. It is noteworthy that the derived limit for violet spectra is close to the required value for Primordial Magnetic Fields to explain the origin of cluster magnetic fields.

Acknowledgments The work of A.S. was supported by the Russian Science Foundation under grant no. 17-71-10040, carried out at the Immanuel Kant Baltic Federal...
University. We are grateful to Kerstin Kunze and Levon Pogosian for valuable discussions.

[1] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013).
[2] R. Banerjee and K. Jedamzik, Phys. Rev. Lett. 91, 251301 (2003), [Erratum: PRL 93, 179901(2004)].
[3] K. Dolag, M. Bartelmann, and H. Lesch, Astron. Astrophys. 387, 386 (1999).
[4] R. Banerjee and K. Jedamzik, Phys. Rev. D 70, 123003 (2004).
[5] A. Neronov and I. Vovk, Science 328, 73 (2010).
[6] F. Tavecchio et al., Mon. Not. Roy. Astron. Soc. 406, L70 (2010).
[7] K. Takahashi et al., Astrophys. J. 771, L42 (2013).
[8] R. Plaga, Nature 374, 430 (1995).
[9] A. E. Broderick, P. Chang, and C. Pfrommer, Astrophys. J. 752, 22 (2012).
[10] R. Schlickeiser, D. Ibscher, and M. Supsar, Astrophys. J. 758, 102 (2012).
[11] R. Schlickeiser, S. Krakau, and M. Supsar, Astrophys. J. 777, 49 (2013).
[12] A. Saveliev, C. Evoli, and G. Sigl, arXiv 1311.6752 (2013).
[13] K. Jedamzik, V. Katalinic, and A. V. Olinto, Phys. Rev. Lett. 85, 700 (2000).
[14] A. Zizzo and C. Burigana, New Astron. 11, 1 (2005).
[15] K. E. Kunze and E. Komatsu, J. Cosm. Astropart. Phys. 1401, 009 (2014).
[16] S. Saga, H. Tashiro, and S. Yokoyama, Mon. Not. Roy. Astron. Soc. 474, L52-L55 (2018).
[17] J. D. Barrow, P. G. Ferreira, and J. Silk, Phys. Rev. Lett. 76, 3610 (1997).
[18] K. Subramanian and J. D. Barrow, Phys. Rev. Lett. 81, 3575 (1998).
[19] K. Subramanian and J. D. Barrow, Mon. Not. Roy. Astron. Soc. 335, L57 (2002).
[20] A. Mack, T. Kahniashtvili, and A. Kosowsky, Phys. Rev. D 65, 123004 (2002).
[21] A. Lewis, Phys. Rev. D 70, 043518 (2004).
[22] T. Kahniashtvili and B. Ratra, Phys. Rev. D 71, 103006 (2005).
[23] G. Chen et al., Astrophys. J. 611, 655 (2004).
[24] A. Lewis, Phys. Rev. D 70, 043011 (2004).
[25] H. Tashiro, N. Sugiyama, and R. Banerjee, Phys. Rev. D 73, 023002 (2006).
[26] D. Yamazaki et al., Astrophys. J. 646, 719 (2006).
[27] M. Giovannini, Class. Quant. Grav. 23, 4991 (2006).
[28] T. Kahniashtvili and B. Ratra, Phys. Rev. D 75, 023002 (2007).
[29] M. Giovannini and K. E. Kunze, Phys. Rev. D 77, 063003 (2008).
[30] D. G. Yamazaki et al., Phys. Rev. D 81, 023008 (2010).
[31] D. Paoletti and F. Finelli, Phys. Rev. D 83, 123533 (2011).
[32] J. R. Shaw and A. Lewis, Phys. Rev. D 86, 043510 (2012).
[33] K. E. Kunze, Phys. Rev. D 83, 023006 (2011).
[34] C. Caprini, PoS TEXAS2010, 222 (2010).
[35] D. Paoletti and F. Finelli, Phys. Lett. B 726, 45 (2013).
[36] M. Ballardini, F. Finelli, and D. Paoletti, J. Cosm. Astropart. Phys. 1510, 031 (2015).
[37] P. A. R. Ade et al., Astron. Astrophys. 594, A19 (2016).
[38] D. R. Sutton, C. Feng, and C. L. Reichardt, Astrophys. J. 846, 164 (2017).
[39] A. Zucca, Y. Li, and L. Pogosian, Phys. Rev. D 95, 063506 (2017).
[40] S. K. Sethi and K. Subramanian, Mon. Not. Roy. Astron. Soc. 356, 778 (2005).
[41] K. E. Kunze and E. Komatsu, J. Cosm. Astropart. Phys. 1506, 027 (2015).
[42] J. Ganc and M. S. Sloth, J. Cosm. Astropart. Phys. 1408, 018 (2014).
[43] J. Chluba et al., Mon. Not. Roy. Astron. Soc. 451, 2244 (2015).
[44] R. Durrer, P. G. Ferreira, and T. Kahniashtvili, Phys. Rev. D 61, 043001 (2000).
[45] T. R. Seshadri and K. Subramanian, Phys. Rev. Lett. 87, 101301 (2001).
[46] K. Subramanian, T. R. Seshadri, and J. Barrow, Mon. Not. Roy. Astron. Soc. 344, L31 (2003).
[47] S. Mollerach, D. Harari, and S. Matarrese, Phys. Rev. D 69, 063002 (2004).
[48] C. Sooccala, D. Harari, and S. Mollerach, Phys. Rev. D 70, 063003 (2004).
[49] A. Kosowsky et al., Phys. Rev. D71, 043006 (2005).
[50] L. Pogosian, T. Vachaspati, and A. Yadav, Can. J. Phys. 91, 451 (2013).
[51] T. Kahniashtvili et al., Phys. Rev. D 90, 083004 (2014).
[52] L. Pogosian and A. Zucca, arXiv 1801.08936 (2018).
[53] POLARBEAR Collaboration, P. A. R. Ade, Phys. Rev. D 92, 123509 (2015).
[54] I. Brown and R. Crittenden, Phys. Rev. D 72, 063002 (2005).
[55] T. R. Seshadri and K. Subramanian, Phys. Rev. Lett. 103, 081303 (2009).
[56] C. Caprini et al., J. Cosm. Astropart. Phys. 0906, 021 (2009).
[57] R.-G. Cai, B. Hu, and H.-B. Zhang, J. Cosm. Astropart. Phys. 1008, 025 (2010).
[58] P. Trivedi, K. Subramanian, and T. R. Seshadri, Phys. Rev. D 82, 123006 (2010).
[59] I. A. Brown, Astrophys. J. 733, 83 (2011).
[60] M. Shiraishi et al., Phys. Rev. D 82, 123102 (2010), [Erratum: PRD 83, 029901(2011)].
[61] M. Shiraishi et al., Phys. Rev. D 83, 123003 (2011).
[62] M. Shiraishi and T. Sekiguchi, Phys. Rev. D 90, 103002 (2014).
[63] H. J. Hortúa and L. Castañeda, J. Cosm. Astropart. Phys. 1706, 020 (2017).
[64] P. Trivedi, T. R. Seshadri, and K. Subramanian, Phys. Rev. Lett. 108, 231301 (2012).
[65] P. Trivedi, K. Subramanian, and T. R. Seshadri, Phys. Rev. D 89, 043523 (2014).
[66] T. R. Seshadri and K. Subramanian, Phys. Rev. D 72, 023004 (2005).
[67] D. R. G. Schleicher and F. Miniati, Mon. Not. Roy. Astron. Soc. 418, 143 (2011).
[68] E. O. Vasiliev and S. K. Sethi, Astrophys. J. 786, 142
(2014).
[69] K. L. Pandey et al., Mon. Not. Roy. Astron. Soc. 451, 1692 (2015).
[70] C. Bonvin, C. Caprini, and R. Durrer, Phys. Rev. D 88, 083515 (2013).
[71] K. Jedamzik, V. Katalinic, and A. V. Olinto, Phys. Rev. D 57, 3264 (1998).
[72] K. Subramanian and J. D. Barrow, Phys. Rev. D 58, 083502 (1998).
[73] K. Kunze, private communication
[74] M. Christensson, M. Hindmarsh, and A. Brandenburg, Phys. Rev. E 64, 056405 (2001).
[75] K. Jedamzik and G. Sigl, Phys. Rev. D 83, 103005 (2011).
[76] A. Saveliev, K. Jedamzik, and G. Sigl, Phys. Rev. D 86, 103010 (2012).
[77] A. Saveliev, K. Jedamzik, and G. Sigl, Phys. Rev. D 87, 123001 (2013).
[78] K. Jedamzik and T. Abel, arXiv 1108.2517 (2011).
[79] K. Jedamzik and T. Abel, J. Cosm. Astropart. Phys. 1310, 050 (2013).

[80] C. L. Bennett et al., Astrophys. J. Suppl. 208, 20 (2013).
[81] P. A. R. Ade et al., Astron. Astrophys. 571, A1 (2014).
[82] B. Chetverushkin, N. D’Ascenzo, and V. Saveliev, Dokl. Math. 90, 495 (2014).
[83] B. Chetverushkin et al., Rus. J. Num. Anal. Math. Mod. 30, 27 (2015).
[84] B. N. Chetverushkin et al., Appl. Math. Lett. 72, 75 (2017).
[85] N. D’Ascenzo, V. I. Saveliev, and B. N. Chetverushkin, Comp. Math. Math. Phys. 55, 1290 (2015).
[86] B. N. Chetverushkin et al., Dokl. Math. 95, 68 (2017).
[87] R. Durrer and C. Caprini, J. Cosm. Astropart. Phys. 0311, 010 (2003).
[88] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538, 473 (2000).
[89] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[90] In this paper, all magnetic field strength and length scales are quoted with their comoving values, i.e. they would have at the present epoch after cosmic expansion.