SMOOTHNESS OF HILL’S POTENTIAL AND LENGTHS OF SPECTRAL GAPS

VLADIMIR MIKHAILETS, VOLODYMYR MOLYBOGA

Abstract. Let \(\{ \gamma_0(n) \}_{n \in \mathbb{N}} \) be the lengths of spectral gaps in a continuous spectrum of the Hill-Schrödinger operators

\[
S(q)u = -u'' + q(x)u, \quad x \in \mathbb{R},
\]

with 1-periodic real-valued potentials \(q \in L^2(\mathbb{T}) \). Let weight function \(\omega : [1, \infty) \to (0, \infty) \). We prove that under the condition

\[
\exists s \in [0, \infty) : \quad k^s \ll \omega(k) \ll k^{s+1}, \quad k \in \mathbb{N},
\]

the map \(\gamma : q \mapsto \{ \gamma_0(n) \}_{n \in \mathbb{N}} \) satisfies the equalities:

1) \(\gamma(H^\omega) = h^\omega_{\gamma}, \quad 11) \gamma^{-1}(h^\omega_{\gamma}) = H^\omega, \)

where the real function space

\[
H^\omega = \left\{ f = \sum_{k \in \mathbb{Z}} \hat{f}(k)e^{ik2\pi x} \in L^2(\mathbb{T}) \left| \sum_{k \in \mathbb{N}} \omega^2(k)|\hat{f}(k)|^2 < \infty, \quad \hat{f}(k) = \overline{\hat{f}(-k)}, \quad k \in \mathbb{Z} \right. \}
\]

and

\[
h^\omega = \left\{ a = \{a(k)\}_{k \in \mathbb{N}} \left| \sum_{k \in \mathbb{N}} \omega^2(k)|a(k)|^2 < \infty \right. \}, \quad h^\omega_{\gamma} = \{a = \{a(k)\}_{k \in \mathbb{N}} \in h^\omega \left| a(k) \geq 0 \right\} \}
\]

If the weight \(\omega \) is such that

\[
\exists a > 1, c > 1 : \quad c^{-1} \leq \frac{\omega(M)}{\omega(t)} \leq c \quad \forall t \geq 1, \quad \lambda \in [1, a]
\]

then the function class \(H^\omega \) is a real Hörmander space \(H^\omega_2(\mathbb{T}, \mathbb{R}) \) with the weight \(\omega(\sqrt{1 + t^2}) \).

1. Introduction

Let consider on the complex Hilbert space \(L^2(\mathbb{R}) \) the Hill-Schrödinger operators

\[
S(q)u := -u'' + q(x)u, \quad x \in \mathbb{R},
\]

with 1-periodic real-valued potentials

\[
q(x) = \sum_{k \in \mathbb{Z}} \hat{q}(k)e^{ik2\pi x} \in L^2(\mathbb{T}, \mathbb{R}), \quad \mathbb{T} := \mathbb{R}/\mathbb{Z}.
\]

Last condition means that

\[
\sum_{k \in \mathbb{Z}} |\hat{q}(k)|^2 < \infty \quad \text{and} \quad \hat{q}(k) = \overline{\hat{q}(-k)}, \quad k \in \mathbb{Z}.
\]

It is well known that the operators \(S(q) \) are lower semibounded and self-adjoint. Their spectra are absolutely continuous and have a zone structure [ReSi]. Spectra of the operators \(S(q) \) are completely defined by the location of the endpoints of spectral gaps \(\{ \lambda_0(q), \lambda_\pm(n)(q) \}_{n=1}^\infty \), which satisfy the inequalities:

\[
-\infty < \lambda_0(q) < \lambda_1^-(q) \leq \lambda_1^+(q) < \lambda_2^-(q) \leq \lambda_2^+(q) < \cdots.
\]

2010 Mathematics Subject Classification. Primary 34L40; Secondary 47A10, 47A75.
Key words and phrases. Hill-Schrödinger operators, spectral gaps, Hörmander spaces.

*The investigation is partially supported by DFFD of Ukraine under grant 28.1/017.
For even/odd numbers \(n \in \mathbb{Z}_+ \) the endpoints of spectral gaps \(\{\lambda_0(q), \lambda_n^+(q), \lambda_n^-(q)\}_{n=1}^{\infty} \) are eigenvalues of the periodic/semiperiodic problems on the interval \([0, 1] \):

\[
S_{\pm}(q)u := -u'' + q(x)u = \lambda u,
\]

\[
\text{Dom}(S_{\pm}(q)) := \left\{ u \in H^2[0, 1] \mid u^{(j)}(0) = \pm u^{(j)}(1), \ j = 0, 1 \right\}.
\]

Interiors of spectral bands (stability or tied zones)

\[B_0(q) := (\lambda_0(q), \lambda^+_n(q)), \quad B_n(q) := (\lambda^+_n(q), \lambda^-_{n+1}(q)), \quad n \in \mathbb{N}, \]

together with the collapsed gaps

\[\lambda = \lambda^+_n = \lambda^-_n, \quad n \in \mathbb{N} \]

are characterized as a locus of those real \(\lambda \in \mathbb{R} \) for which all solutions of the equation \(S(q)u = \lambda u \) are bounded. Open spectral gaps (instability or forbidden zones)

\[G_0(q) := (-\infty, \lambda_0(q)), \quad G_n(q) := (\lambda^-_{n+1}(q), \lambda^+_n(q)) \neq \emptyset, \quad n \in \mathbb{N} \]

are a locus of those real \(\lambda \in \mathbb{R} \) for which any nontrivial solution of the equation \(S(q)u = \lambda u \) is unbounded.

We study the behaviour of the lengths of spectral gaps

\[\gamma_q(n) := \lambda^+_n(q) - \lambda^-_n(q), \quad n \in \mathbb{N} \]

of the Hill-Schrödinger operators \(S(q) \) in terms of the behaviour of the Fourier coefficients \(\{\tilde{q}(n)\}_{n \in \mathbb{N}} \) of the potentials \(q \) with respect to appropriate weight spaces, that is in terms of potential regularity.

Hochstadt [Hech1, Hech2], Marchenko and Ostrovskii [MrOs], McKeans and Trubowitz [McKT] proved that the potential \(q(x) \) is an infinitely differentiable function if and only if the lengths of spectral gaps \(\{\gamma_q(n)\}_{n=1}^{\infty} \) decrease faster than arbitrary power of \(1/n \):

\[q(x) \in C^\infty(T, \mathbb{R}) \Leftrightarrow \gamma_q(n) = O(n^{-k}), \ n \to \infty \quad \forall k \in \mathbb{Z}_+. \]

Marchenko and Ostrovskii [MrOs] (see also [Mrch]) discovered that:

\[q \in H^s(T, \mathbb{R}) \Leftrightarrow \sum_{n \in \mathbb{N}} (1 + 2n)^{2s} \gamma^2_q(n), \quad s \in \mathbb{Z}_+, \]

where \(H^s(T, \mathbb{R}), \ s \in \mathbb{Z}_+, \) denotes the Sobolev space of 1-periodic real-valued functions on the circle \(T \).

To characterize regularity of potentials in the finer way we shall use the real Hörmander spaces \(H^\omega(T, \mathbb{R}) \) where \(\omega(\cdot) \) is a positive weight (see Appendix). In the case of the Sobolev spaces it is a power one.

Djakov, Mityagin [DjMt2], Pöschel [Psch] extended the Marchenko-Ostrovskii Theorem (3) to the general class of weights \(\Omega = \{\Omega(k)\}_{k \in \mathbb{N}} \) satisfying the following conditions:

i) \(\Omega(k) \nearrow \infty, \ k \in \mathbb{N}; \) (monotonicity)

\[\Omega(k + m) \leq \Omega(k)\Omega(m), \quad k, m \in \mathbb{N}; \] (submultiplicity)

\[\log \Omega(k) \underset{k \to \infty}{\sim} 0. \] (subexponentiality).

For such weights they proved that

\[q \in H^\Omega(T, \mathbb{R}) \Leftrightarrow \{\gamma_q(\cdot)\} \in h^\Omega(\mathbb{N}). \]

Here \(h^\Omega(\mathbb{N}) \) is the Hilbert space of weighted sequences generated by the weight \(\Omega(\cdot) \).

Earlier Kappeler, Mityagin [KpMt2] proved the direct implication in (4) under the only assumption of submultiplicity. In the special cases of the Abel-Sobolev weights, the Gevrey weights and the slowly increasing weights the relationship (4) was established by Kappeler, Mityagin [KpMt1] (\(\Rightarrow \)) and Djakov, Mityagin [DjMt, DjMt1] (\(\Leftarrow \)). Detailed exposition of these results is given in the survey [DjMt2]. It should be noted that Kappeler, Mityagin [KpMt1, KpMt2], Djakov, Mityagin [DjMt1, DjMt2] and Pöschel [Psch] studied also the more general case of complex-valued potentials.
2. Main result

The main purpose of this paper is to prove the following result.

Theorem 1. Let \(q \in L^2(\mathbb{T}, \mathbb{R}) \) and the weight \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) satisfy conditions:
\[
k^s \ll \omega(k) \ll k^{1+s}, \quad s \in [0, \infty).
\]

Then the map \(\gamma : q \mapsto \{\gamma_q(n)\}_{n \in \mathbb{N}} \) satisfies the equalities:

i) \(\gamma(H^\omega(\mathbb{T}, \mathbb{R})) = h^\omega_+(\mathbb{N}) \),

ii) \(\gamma^{-1}(h^\omega_+(\mathbb{N})) = H^\omega(\mathbb{T}, \mathbb{R}) \).

Corollary 1.1. Let for the weight \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) exist the order
\[
\lim_{k \to \infty} \frac{\log \omega(k)}{\log k} = s \in [0, \infty),
\]

and let for \(s = 0 \) the values of the weight \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) be separated from zero. Then
\[
q \in H^\omega(\mathbb{T}, \mathbb{R}) \iff \{\gamma_q(\cdot)\} \in h^\omega(\mathbb{N}).
\]

From Corollary 1.1 we receive the following result.

Corollary 1.2 ([MiMl]). Let the weight \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) be a regular varying sequence in the Karamata sense with the index \(s \in [0, \infty) \), and let for \(s = 0 \) its values be separated from zero. Then
\[
q \in H^\omega(\mathbb{T}, \mathbb{R}) \iff \{\gamma_q(\cdot)\} \in h^\omega(\mathbb{N}).
\]

Note that the assumption of Corollary 1.2 holds, for instance, for the weight
\[
\omega(k) = (1 + 2k)^{s \cdot (\log(1 + k))^{r_1} \cdot (\log \log(1 + k))^{r_2} \cdot \ldots} \cdot \log \log \ldots \log(1 + k)),
\]
\[
s \in (0, \infty), \quad \{r_1, \ldots, r_p\} \subset \mathbb{R}, \quad p \in \mathbb{N},
\]
see [BnGITz].

The following Example A shows that statement (4) does not cover Corollary 1.1 and moreover Theorem 1.

Example A. Let \(s \in [0, \infty) \). Set
\[
w(k) := \begin{cases} k^s \log(1 + k) & \text{if } k \in 2\mathbb{N}, \\ k^s & \text{if } k \in (2\mathbb{N} - 1). \end{cases}
\]

Then the weight \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) satisfies the conditions of Corollary 1.1. But one can prove that it is not equivalent to any monotonic weight.

Remark 1.1. Theorem 1 shows that if the sequence \(\{\gamma_q(n_k)\}_{k=1}^\infty \) decreases particularly fast on a certain subsequence \(\{n_k\}_{k=1}^\infty \subset \mathbb{N} \), then so does sequence \(\{\gamma_q(n_k)\}_{k=1}^\infty \) on the same subsequence. Inverse statement is also true.

3. Preliminaries

Here, for convenience, we define Hilbert spaces of weighted two-sided sequences and formulate the Convolution Lemma 2.

For every positive sequence \(\omega = \{\omega(k)\}_{k \in \mathbb{N}} \) there exists its unique extension on \(\mathbb{Z} \) which is a two-sided sequence satisfying the conditions:

i) \(\omega(0) = 1 \);

ii) \(\omega(-k) = \omega(k) \quad \forall k \in \mathbb{N} \);

iii) \(\omega(k) > 0 \quad \forall k \in \mathbb{Z} \).
Let $h^\omega(Z) \equiv h^\omega(Z, \mathbb{C})$ be the Hilbert space of two-sided sequences:

$$h^\omega(Z) := \left\{ a = \{a(k)\}_{k \in \mathbb{Z}} \left| \sum_{k \in \mathbb{Z}} \omega^2(k)|a(k)|^2 < \infty \right. \right\},$$

$$(a, b)_{h^\omega(Z)} := \sum_{k \in \mathbb{Z}} \omega^2(k)a(k)b(k), \quad a, b \in h^\omega(Z),$$

$$\|a\|_{h^\omega(Z)} := (a, a)^{1/2}_{h^\omega(Z)}, \quad a \in h^\omega(Z).$$

By $h^\omega(n)$ for a convenience we will denote the n-th element of a sequence $a = \{a(k)\}_{k \in \mathbb{Z}}$ in $h^\omega(Z)$.

Basic weights which we use are the power ones:

$$w_s = \{w_s(k)\}_{k \in \mathbb{Z}} : \quad w_s(k) = (1 + 2|k|)^s, \quad s \in \mathbb{R}.$$

In this case it is convenient to use shorter notations:

$$h^\omega_s(Z) \equiv h^s(Z), \quad s \in \mathbb{R}.$$

Operation of convolution for two-sided sequences

$$a = \{a(k)\}_{k \in \mathbb{Z}} \quad \text{and} \quad b = \{b(k)\}_{k \in \mathbb{Z}}$$

is formally defined as follows:

$$(a, b) \mapsto a \ast b,$$

$$(a \ast b)(k) := \sum_{j \in \mathbb{Z}} a(k - j)b(j), \quad k \in \mathbb{Z}.$$

Sufficient conditions for the convolution to exist as a continuous map are given by the following known lemma, see for example [KpMh, Mhr].

Lemma 2 (The Convolution Lemma). Let $s, r \geq 0$, and $t \leq \min(s, r)$, $t \in \mathbb{R}$. If $s + r - t > 1/2$ then the convolution $(a, b) \mapsto a \ast b$ is well defined as a continuous map acting in the spaces:

(a) $h^s(Z) \times h^r(Z) \to h^{t}(Z)$,

(b) $h^{-t}(Z) \times h^s(Z) \to h^{-r}(Z)$.

In the case $s + r - t < 1/2$ this statement fails to hold.

4. The Proofs

Basic point of our proof of Theorem 1 is sharp asymptotic formulae for the lengths of spectral gaps $\{\gamma_q(n)\}_{n \in \mathbb{N}}$ of the Hill-Schrödinger operators $S(q)$ and fundamental result of [GrTr, Theorem 1].

Lemma 3. The lengths of spectral gaps $\{\gamma_q(n)\}_{n \in \mathbb{N}}$ of the Hill-Schrödinger operators $S(q)$ with $q \in H^s(\mathbb{T}, \mathbb{R})$, $s \in [0, \infty)$, uniformly on the bounded sets of potentials q in the corresponding Sobolev spaces $H^s(\mathbb{T})$ for $n \geq n_0$, $n_0 = n_0(\|q\|_{H^r(\mathbb{T})})$, satisfy the following asymptotic formulae:

$$\gamma_q(n) = 2|\bar{q}(n)| + h^{1+s}(n).$$

Proof of Lemma 3. To prove asymptotic formulae (5) we use [KpMt2, Theorem 1.2] and the Convolution Lemma 2 (see also [KpMt2, Appendix]). Indeed, applying [KpMt2, Theorem 1.2] with $q \in H^s(\mathbb{T}, \mathbb{R})$, $s \in [0, \infty)$, we get

$$\sum_{n \in \mathbb{N}} (1 + 2n)^{2(1+s)} \left(\min_{\pm} |\gamma_q(n)| \pm 2\sqrt{(\bar{q} + \frac{q}{(n+1)^2})}\sqrt{(\bar{q} + \frac{q}{n})} \right) \leq C (\|q\|_{H^r(\mathbb{T})}),$$

where

$$\gamma_q(n) := \frac{1}{\pi^2} \sum_{j \in \mathbb{Z} \setminus \{\pm n\}} \frac{\omega(n - j)\bar{q}(n + j)}{(n - j)(n + j)}.$$
Without losing generality we assume that
\begin{equation}
\hat{q}(0) := 0.
\end{equation}

Taking into account that the potentials q are real-valued we have
\[\hat{q}(k) = \overline{q(-k)}, \quad q(k) = q(-k), \quad k \in \mathbb{Z}. \]

Then from (6) we get the estimates
\begin{equation}
\{ \gamma_n(q) - 2|\hat{q}(n) + q(n)| \}_{n \in \mathbb{N}} \in h^{1+s}(\mathbb{N}).
\end{equation}

Further, as by assumption $q \in H^s(\mathbb{T}, \mathbb{R})$, that is $\{\hat{q}(k)\}_{k \in \mathbb{Z}} \in h^s(\mathbb{Z})$, then taking into account
\begin{equation}
\left\{ \frac{\hat{q}(k)}{k} \right\}_{k \in \mathbb{Z}} \in h^{1+s}(\mathbb{Z}), \quad s \in [0, \infty).
\end{equation}

Applying the Convolution Lemma 2 we obtain
\begin{equation}
q(n) = \frac{1}{\pi^2} \sum_{j \in \mathbb{Z}} \frac{\hat{q}(n-j) \hat{q}(n+j)}{(n-j)(n+j)} = \frac{1}{\pi^2} \sum_{j \in \mathbb{Z}} \frac{\hat{q}(2n-j)}{2n-j} \frac{\hat{q}(j)}{j} = \left(\left\{ \frac{\hat{q}(k)}{k} \right\}_{k \in \mathbb{Z}} \ast \left\{ \frac{\hat{q}(k)}{k} \right\}_{k \in \mathbb{Z}} \right)(2n) \in h^{1+s}(\mathbb{N}).
\end{equation}

Finally, from (8) and (9) we get the necessary estimates (5).

The proof of Lemma 3 is complete. □

Proof of Theorem 1. Let $q \in L^2(\mathbb{T}, \mathbb{R})$ and $\omega = \{\omega(k)\}_{k \in \mathbb{N}}$ be a given weight satisfying the conditions of Theorem 1:
\begin{equation}
k^s \ll \omega(k) \ll k^{1+s}, \quad s \in [0, \infty).
\end{equation}

At first, we need to prove the statement
\begin{equation}
q \in H^s(\mathbb{T}, \mathbb{R}) \Leftrightarrow \{\gamma_q(\cdot)\} \in h^\omega(\mathbb{N}).
\end{equation}

Due to formulae (10) the continuous embeddings
\begin{align}
H^{1+s}(\mathbb{T}) & \hookrightarrow H^s(\mathbb{T}), \\
h^{1+s}(\mathbb{N}) & \hookrightarrow h^s(\mathbb{N}), \quad s \in [0, \infty),
\end{align}

are valid because
\begin{equation}
H^{1+s}(\mathbb{T}) \hookrightarrow H^{2s}(\mathbb{T}), \quad h^{1+s}(\mathbb{N}) \hookrightarrow h^{2s}(\mathbb{N}) \quad \text{if only} \quad \omega_1 \gg \omega_2.
\end{equation}

Let $q \in H^s(\mathbb{T}, \mathbb{R})$, then from (12) we get $q \in H^s(\mathbb{T}, \mathbb{R})$. Due to Lemma 3 we find that
\[\gamma_q(n) = 2|\hat{q}(n)| + h^{1+s}(n). \]

Applying (13) from the latter we derive
\[\gamma_q(n) = 2|\hat{q}(n)| + h^\omega(n). \]

And, as a consequence, we obtain that $\{\gamma_q(\cdot)\} \in h^\omega(\mathbb{N})$.

Direct implication in (11) has been proved.

Let $\{\gamma_q(\cdot)\} \in h^\omega(\mathbb{N})$. Applying (13) we get $\{\gamma_q(\cdot)\} \in h^s(\mathbb{N})$. Further, from (4) with $\Omega(k) = (1 + 2k)^s$, $s \in [0, \infty)$, we obtain $q \in H^s(\mathbb{T}, \mathbb{R})$.

We have already proved the implication
\[q \in H^s(\mathbb{T}, \mathbb{R}) \Rightarrow \gamma_q(n) = 2|\hat{q}(n)| + h^\omega(n). \]

Hence $\{\hat{q}(\cdot)\} \in h^\omega(\mathbb{N})$, i.e., $q \in H^s(\mathbb{T}, \mathbb{R})$.

Inverse implication in (11) has been proved.

Now we are ready to prove the statement of Theorem 1.

From relationship (11) we get
\begin{equation}
\gamma(H^\omega(\mathbb{T}, \mathbb{R})) \subset h^\omega_s(\mathbb{N}).
\end{equation}
To establish the equality i) of Theorem 1 it is necessary to prove the inverse inclusion in latter formula (15). So, let \(\{ \gamma(n) \}_{n \in \mathbb{N}} \) be an arbitrary sequence from the space \(h_{\omega}^{+}(\mathbb{N}) \). Then \(\{ \gamma(n) \}_{n \in \mathbb{N}} \in h_{\omega}^{+}(\mathbb{N}) \). Due to [GrTr, Theorem 1] potential \(q \in L^{2}(\mathbb{T}, \mathbb{R}) \) exists for which the sequence \(\{ \gamma(n) \}_{n \in \mathbb{N}} \in h_{\omega}^{+}(\mathbb{N}) \) is a corresponding sequence of the lengths of spectral gaps. As by assumption \(\{ \gamma(n) \}_{n \in \mathbb{N}} \in h_{\omega}^{+}(\mathbb{N}) \) due to (11) we conclude that \(q \in H^{\omega}(\mathbb{T}, \mathbb{R}) \). I.e., the inclusion

\[
gamma \left(H^{\omega}(\mathbb{T}, \mathbb{R}) \right) \supset h_{\omega}^{+}(\mathbb{N}) \tag{16}
\]

holds.

Finally, the inclusions (15) and (16) give the necessary equality i).

Now, let prove the equality ii) of Theorem 1. Let \(\{ \gamma(n) \}_{n \in \mathbb{N}} \) be an arbitrary sequence from the space \(h_{\omega}^{+}(\mathbb{N}) \). Similarly as above we prove that potential \(q \in H^{\omega}(\mathbb{T}, \mathbb{R}) \) exists for which the sequence \(\{ \gamma(n) \}_{n \in \mathbb{N}} \in h_{\omega}^{+}(\mathbb{N}) \) is a corresponding sequence of the lengths of spectral gaps. That is

\[
\gamma^{-1} \left(h_{\omega}^{+}(\mathbb{N}) \right) \subset H^{\omega}(\mathbb{T}, \mathbb{R}).
\tag{17}
\]

Inversely. Let \(q \) be an arbitrary function from the Hörmander space \(H^{\omega}(\mathbb{T}, \mathbb{R}) \). Then due to (11) we have \(\gamma_{q} = \{ \gamma_{q}(n) \}_{n \in \mathbb{N}} \in h_{\omega}^{+}(\mathbb{N}) \). I.e.,

\[
\gamma^{-1} \left(h_{\omega}^{+}(\mathbb{N}) \right) \supset H^{\omega}(\mathbb{T}, \mathbb{R}).
\tag{18}
\]

The inclusions (17) and (18) give the equality ii) of Theorem 1.

The proof of Theorem 1 is complete. \(\square \)

Appendix A. Hörmander spaces on the circle

Let \(\text{OR} \) be a class of all measurable by Borel functions \(\omega : (0, \infty) \to (0, \infty) \) for which real numbers \(a, c > 1 \) exist such that

\[
c^{-1} \leq \frac{\omega(\lambda t)}{\omega(t)} \leq c \quad \forall t \geq 1, \quad \lambda \in [1, a].
\]

The space \(H^{2}_{\omega}(\mathbb{R}^{n}) \), \(n \in \mathbb{N} \), consists of all complex-valued distributions \(u \in S'(\mathbb{R}^{n}) \) such that their Fourier transformations \(\hat{u} \) are locally integrable by Lebesgue on \(\mathbb{R}^{n} \) and \(\omega((\xi))|\hat{u}(\xi)| \in L^{2}(\mathbb{R}^{n}) \) with \(\langle \xi \rangle := (1 + \xi^{2})^{1/2} \). This space is a Hilbert space with respect to the inner product

\[
\langle u_{1}, u_{2} \rangle_{H^{2}_{\omega}(\mathbb{R}^{n})} := \int_{\mathbb{R}^{n}} \omega^{2}(\langle \xi \rangle) \bar{\hat{u}_{1}}(\xi) \hat{u}_{2}(\xi) \, d\xi.
\]

It is a particular case of the isotropic Hilbert spaces of Hörmander [Hor]. If \(\Omega \) is a domain in \(\mathbb{R}^{n} \) with smooth boundary, then the spaces \(H^{2}_{\omega}(\Omega) \) are defined in a standard way.

Let \(\Gamma \) be an infinitely smooth, closed and oriented manifold of dimension \(n \geq 1 \) with density \(dx \) given on it. Let \(\mathcal{D}'(\Gamma) \) be a topological vector space of distributions on \(\Gamma \) which is dual to \(C^{\infty}(\Gamma) \) with respect to the extension by continuity of the inner product in the space \(L^{2}(\Gamma) := L^{2}(\Gamma, dx) \).

Now, let define the Hörmander spaces on the manifold \(\Gamma \). Choose a finite atlas from the \(C^{\infty} \)-structure on \(\Gamma \) formed by the local charts \(\alpha_{j} : \mathbb{R}^{n} \leftrightarrow U_{j}, \quad j = 1, \ldots, r, \) where the open sets \(U_{j} \) form a finite covering of the manifold \(\Gamma \). Let functions \(\chi_{j} \in C^{\infty}(\Gamma), \quad j = 1, \ldots, r, \) form a partition of unity on \(\Gamma \) satisfying the condition \(\text{supp} \chi_{j} \subset U_{j} \). By definition, the linear space \(H^{2}_{\omega}(\Gamma) \) consists of all distributions \(f \in \mathcal{D}'(\Gamma) \) such that \((\chi_{j} f) \circ \alpha_{j} \in H^{2}_{\omega}(\mathbb{R}^{n}) \) for every \(j \), where \((\chi_{j} f) \circ \alpha_{j} \) is a representation of the distribution \(\chi_{j} f \) in the local chart \(\alpha_{j} \). In the space \(H^{2}_{\omega}(\Gamma) \) the inner product is defined by the formula

\[
\langle f_{1}, f_{2} \rangle_{H^{2}_{\omega}(\Gamma)} := \sum_{j=1}^{r} \langle (\chi_{j} f_{1}) \circ \alpha_{j}, (\chi_{j} f_{2}) \circ \alpha_{j} \rangle_{H^{2}_{\omega}(\mathbb{R}^{n})},
\]

and induces the norm \(\| f \|_{H^{2}_{\omega}(\Gamma)} := \langle f, f \rangle_{H^{2}_{\omega}(\Gamma)}^{1/2} \).

There exists an alternative definition of the space \(H^{2}_{\omega}(\Gamma) \) which shows that this space does not depend (up to equivalence of norms) on the choice of the local charts, the partition of unity and that it is a Hilbert space.
Let a ΨDO A of order $m > 0$ be elliptic on Γ, and let it be a positive unbounded operator on the space $L^2(\Gamma)$. For instance, we can set $A := (1 - \triangle_{\Gamma})^{1/2}$, where \triangle_{Γ} is the Beltrami-Laplace operator on the Riemannian manifold Γ. Redefine the function $\omega \in OR$ on the interval $0 < t < 1$ by the equality $\omega(t) := \omega(1)$ and introduce the norm
\begin{equation}
(\text{A.1}) \quad f \mapsto \|\omega(A^{1/m})f\|_{L^2(\Gamma)}, \quad f \in C^\infty(\Gamma).
\end{equation}

Theorem A.1. If $\omega \in OR$, then the space $H^2_\omega(\Gamma)$ coincides up to equivalence of norms with the completion of the linear space $C^\infty(\Gamma)$ by the norm (A.1).

As the operator A has a discrete spectrum, therefore the space $H^2_\omega(\Gamma)$ can be described by means of the Fourier series. Let $\{\lambda_k\}_{k \in \mathbb{N}}$ be a monotonically non-decreasing, positive sequence of all eigenvalues of the operator A, enumerated with regard to their multiplicity. Let $\{h_k\}_{k \in \mathbb{N}}$ be an orthonormal basis in the space $L^2(\Gamma)$ formed by the correspondent eigenfunctions of the operator A: $Ah_k = \lambda_k h_k$. Then for any distribution the following expansion into the Fourier series converging in the linear space $\mathcal{D}'(\Gamma)$:
\begin{equation}
(\text{A.2}) \quad f = \sum_{k=1}^{\infty} c_k(f)h_k, \quad f \in \mathcal{D}'(\Gamma), \quad c_k(f) := \langle f, h_k \rangle,
\end{equation}
holds.

Theorem A.2. The following formulae are fulfilled:
\begin{equation}
(\text{A.3}) \quad H^2_\omega(\Gamma) = \left\{ f = \sum_{k=1}^{\infty} c_k(f)h_k \in \mathcal{D}'(\Gamma) \mid \sum_{k=1}^{\infty} \omega^2(k^{1/n})|c_k(f)|^2 < \infty \right\},
\end{equation}
\begin{equation}
(\text{A.4}) \quad \|f\|_{H^2_\omega(\Gamma)}^2 = \sum_{k=1}^{\infty} \omega^2(k^{1/n})|c_k(f)|^2.
\end{equation}

Note, that for every distribution $f \in H^2_\omega(\Gamma)$ series (A.2) converges by the norm of the space $H^2_\omega(\Gamma)$. If values of the function ω are separated from zero, then $H^2_\omega(\Gamma) \subseteq L^2(\Gamma)$, and everywhere above we may change the space $\mathcal{D}'(\Gamma)$ by the space $L^2(\Gamma)$. For more details, see [MiMr1, MiMr2].

Example. Let $\Gamma = \mathbb{T}$. Then $n = 1$, and we can choose $A = (1 - d^2/dx^2)^{1/2}$, where x defines the natural parametrization on \mathbb{T}. The eigenfunctions $h_k = e^{ik2\pi x}$, $k \in \mathbb{Z}$, of the operator A form an orthonormal basis in the space $L^2(\mathbb{T})$. For $\omega \in OR$ we have
\begin{equation}
f \in H^2_\omega(\mathbb{T}) \iff f = \sum_{k \in \mathbb{Z}} \hat{f}(k)e^{ik2\pi x}, \quad \sum_{k \in \mathbb{Z}\setminus\{0\}} |\hat{f}(k)|^2 \omega^2(|k|) < \infty.
\end{equation}

In this case the function f is real-valued if and only if $\hat{f}(k) = \overline{\hat{f}(-k)}$, $k \in \mathbb{Z}$. Therefore the class H^ω coincides with the Hörmander space $H^2(\mathbb{T}, \mathbb{R})$ with the weight function $\omega(\sqrt{1 + \xi^2})$ if $\omega \in OR$. In details the class OR is described, for example, in [BuGiTg, p. 74].

References

[BuGiTg] N. Bingham, C. Goldie, J. Teugels, Regular Variation, Encyclopedia of Math. and its Appl., vol. 27, Cambridge University Press, Cambridge, etc., 1989.

[DjMt] P. Djakov, B. Mityagin, Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal. 195 (2002), 89–128.

[DjMt1] P. Djakov, B. Mityagin, Spectral triangles of Schrödinger operators with complex potentials, Selecta Math. (N.S.) 9 (2003), no. 4, 495–528.

[DjMt2] P. Djakov, B. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4, 77–182. (Russian); English Transl. in Russian Math. Surveys 61 (2006), no. 4, 663–766.

[DjMt3] P. Djakov, B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dynamics of PDE 6 (2009), no. 2, 95–165.

[GrTr] J. Garnett, E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv., 59 (1984), 258–312.
Hochstadt, Estimates of the stability intervals for Hill's equation, Proc. Amer. Math. Soc. 14 (1963), 930–932.

Hochstadt, On the determination of Hill's equation from its spectrum, Arch. Rat. Mech. Anal. 19 (1965), 353–362.

Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.

Kappeler, B. Mityagin, Gap estimates of the spectrum of Hill's equation and actions variables for KdV, Trans. AMS 351 (1999), no. 2, 619–646.

Kappeler, B. Mityagin, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator, SIAM J. Math. Anal. 33 (2001), no. 1, 113–152.

Kappeler, C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186 (2001), 62–91.

McKean, E. Trubowitz, Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226.

Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser Verlag, Basel, 1986. (Russian edition: Naukova Dumka, Kiev, 1977)

Marchenko, I. Ostrovskii, A characterization of the spectrum of Hill's operator, Matem. Sbornik 97 (1975), no. 4, 540–606. (Russian); English Transl. in Math. USSR-Sb. 26 (1975), no. 4, 493–554.

Mikhailets, V. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 15 (2009), no. 1, 31–40.

Möhr, Schrödinger Operators with Singular Potentials on the Circle: Spectral Analysis and Applications, Thesis at the University of Zürich, 2001, 134 p.

Mikhailets, A. Murach, Interpolation with a function parameter and refined scale of spaces, Methods Funct. Anal. Topology 14 (2008), no. 1, 81–100.

Mikhailets, A. Murach, On the elliptic operators on a closed compact manifold, Reports of NAS of Ukraine (2009), no. 3, 29–35. (Russian)

Pöschel, Hill's potentials in weighted Sobolev spaces and their spectral gaps, In: W. Craig (ed), Hamiltonian Systems and applications, Springer, 2008, 421–430.

Reed, B. Simon, Methods of Modern Mathematical Physics: Vols 1-4, Academic Press, New York, etc., 1972–1978, V. 4: Analysis of Operators, 1972. (Russian edition: Mir, Moscow, 1982)

Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), 321–337.

Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str., 3, Kyiv-4, Ukraine, 01601

E-mail address, Vladimir Mikhailets: mikhailets@imath.kiev.ua
E-mail address, Volodymyr Molyboga: molyboga@imath.kiev.ua