ON GENERALIZED POWERS-STØRMER’S INEQUALITY

DINH TRUNG HOA, HIROYUKI OSAKAA, AND HO MINH TOAN

Abstract. A generalization of Powers-Størmer’s inequality for operator monotone functions on \([0, +\infty)\) and for positive linear functional on general \(C^*\)-algebras will be proved. It also will be shown that the generalized Powers-Størmer inequality characterizes the tracial functionals on \(C^*\)-algebras.

1. Introduction

Powers-Størmer’s inequality (see, for example, \cite{12}) asserts that for \(s \in [0, 1]\) the following inequality
\begin{equation}
2 \text{Tr}(A^s B^{1-s}) \geq \text{Tr}(A + B - |A - B|)
\end{equation}
holds for any pair of positive matrices \(A, B\). This is a key inequality to prove the upper bound of Chernoff bound, in quantum hypothesis testing theory \cite{1}. This inequality was first proven in \cite{1}, using an integral representation of the function \(t^s\). After that, M. Ozawa gave a much simpler proof for the same inequality, using fact that for \(s \in [0, 1]\) function \(f(t) = t^s\) \((t \in [0, +\infty))\) is an operator monotone. Recently, Y. Ogata in \cite{10} extended this inequality to standard von Neumann algebras. The motivation of this paper is that if the function \(f(t) = t^s\) is replaced by another operator monotone function (this class is intensively studied, see \cite{7} \cite{11}), then \(\text{Tr}(A + B - |A - B|)\) may get smaller upper bound that is used in quantum hypothesis testing. Based on M. Ozawa’s proof we formulate Powers-Størmer’s inequality for an arbitrary operator monotone function on \([0, +\infty)\) in the context of general \(C^*\)-algebras.

Finally, we will show that the Powers-Størmer’s inequality characterizes the trace property for a normal linear positive functional on a von Neumann algebras and for a linear positive functional on a \(C^*\)-algebra.

Recall that a positive linear functional \(\varphi\) on a von Neumann algebra \(\mathcal{M}\) is said to be normal if \(\varphi(\sup A_i) = \sup \varphi(A_i)\) for every bounded increasing net \(A_i\) of positive elements in \(\mathcal{M}\). A linear functional \(\varphi\) on a \(C^*\)-algebra \(\mathcal{A}\) is said to be tracial if \(\varphi(AB) = \varphi(BA)\) for all \(A, B \in \mathcal{A}\).

AResearch partially supported by the JSPS grant for Scientific Research No. 20540220.

Date: 29, Mar., 2012.

2000 Mathematics Subject Classification. 46L30, 15A45.

Key words and phrases. Powers-Størmer’s inequality, trace, positive functional, \(C^*\)-algebras.
For all other notions used in the paper, we refer the reader to the monograph [8].

This article has been completed when the first author visited Ritsumeikan University in February, 2012. He is very grateful to all staffs in the department of Mathematical Sciences for their warm hospitality during his stay there. The second author would like to thank Professor Jun Tomiyama for his stimulating discussion on matrix monotone functions through e-mail.

2. Main results

Let \(n \in \mathbb{N} \) and \(M_n \) be the algebra of \(n \times n \) matrices. Let \(I \) be an interval in \(\mathbb{R} \) and \(f : I \to \mathbb{R} \) be a continuous function. We call a function \(f \) matrix monotone of order \(n \) or \(n \)-monotone in short whenever the inequality

\[
A \leq B \implies f(A) \leq f(B)
\]

for an arbitrary selfadjoint matrices \(A, B \in M_n \) such that \(A \leq B \) and all eigenvalues of \(A \) and \(B \) are contained in \(I \).

Let \(H \) be a separable infinite dimensional Hilbert space and \(B(H) \) be the set of all bounded linear operators on \(H \). We call a function \(f \) operator monotone whenever the inequality

\[
A \leq B \implies f(A) \leq f(B)
\]

for an arbitrary selfadjoint matrices \(A, B \in B(H) \) such that \(A \leq B \) and all eigenvalues of \(A \) and \(B \) are contained in \(I \).

We denote the spaces of operator monotone functions by \(P_\infty(I) \). The spaces for \(n \)-monotone functions are written as \(P_n(I) \). We have then

\[
P_1(I) \supseteq \cdots \supseteq P_{n-1}(I) \supseteq P_n(I) \supseteq P_{n+1}(I) \supseteq \cdots \supseteq P_\infty(I).
\]

Here we note that \(\bigcap_{n=1}^\infty P_n(I) = P_\infty(I) \) and each inclusion is proper [7][11].

The following result is well-known. For example see the proof in [5] Theorem 2.5].

Lemma 2.1. Let \(f \) be a strictly positive, continuous function on \([0, \infty)\). If the function \(f \) is \(2n \)-monotone, then for any positive semidefinite \(A \) and a contraction \(C \) in \(M_n \) we have

\[
C^* f(A) C \leq f(C^* A C).
\]

Lemma 2.2. Let \(f \) be a continuous function on \((0, \infty)\) such that \(0 \notin f((0, \infty)) \). Then, \(f \) is \(n \)-monotone if and only if the function \(-\frac{1}{f'(t)} \) is \(n \)-monotone.
Proof. For any \(t_1, t_2, \cdots, t_n \in (0, \infty) \) we have

\[
\frac{1}{f(t_i)} - \frac{1}{f(t_j)} = \frac{f(t_i) - f(t_j)}{f(t_i)f(t_j)}
\]

\[
= -\frac{1}{f(t_i)f(t_j)} \frac{f(t_i) - f(t_j)}{t_i - t_j}.
\]

Since \(f \) is \(n \)-monotone, the matrix \(\frac{f(t_i) - f(t_j)}{t_i - t_j} \) is positive semidefinite by \([9]\), hence, we have

\[
\left[-\frac{1}{f(t_i)} - \frac{1}{f(t_j)} \right] = -\left[\frac{1}{f(t_i)f(t_j)} \frac{f(t_i) - f(t_j)}{t_i - t_j} \right]
\]

\[
= -\left[\frac{1}{f(t_i)f(t_j)} \frac{f(t_i) - f(t_j)}{t_i - t_j} \right] \circ \left[\frac{1}{f(t_i)f(t_j)} \frac{f(t_i) - f(t_j)}{t_i - t_j} \right]
\]

\[
\geq 0,
\]

where \(\circ \) means the Hadamard product.

Therefore, the function \(-\frac{1}{f(t)}\) is \(n \)-monotone by \([9]\).

Conversely, if \(-\frac{1}{f}\) is \(n \)-monotone, we have

\[
\left[\frac{f(t_i) - f(t_j)}{t_i - t_j} \right] = \left[f(t_i)f(t_j) \right] \circ \left[-\frac{1}{f(t_i)} - \frac{1}{f(t_j)} \right]
\]

\[
\geq 0,
\]

hence \(f \) is \(n \)-monotone. \(\square \)

Proposition 2.1. Let \(f \) be a strictly positive, continuous function on \([0, \infty)\). If \(f \) is \(2n \)-monotone, the function \(g(t) = \frac{1}{f(t)} \) is \(n \)-monotone on \([0, \infty)\).

Proof. Let \(A, B \) be positive matrices in \(M_n \) such that \(0 < A \leq B \).

Let \(C = B^{-\frac{1}{2}}A^\frac{1}{2} \). Then \(\|C\| \leq 1 \). Since \(f \) is \(2n \)-monotone, \(-f\) satisfies the Jensen type inequality from Lemma 2.1 that is,

\[
-f(A) = -f(C^*BC) \leq -C^*f(B)C
\]

\[
-f(A) \leq -A^\frac{1}{2}B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}}A^\frac{1}{2}
\]

\[
-A^{-\frac{1}{2}}f(A)A^{-\frac{1}{2}} \leq -B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}}
\]

\[
-A^{-1}f(A) \leq -B^{-1}f(B)
\]
Hence, the function \(-\frac{f(t)}{t} \) is \(n \)-monotone. Therefore, from Lemma 2.2 we conclude that

\[
-\frac{1}{f(t)} = \frac{t}{f(t)}
\]

is \(n \)-monotone. \(\square \)

Remark 1. The condition of \(2n \)-monotonicity of \(f \) is needed to guarantee the \(n \)-monotonicity of \(g \). Indeed, it is well-known that \(t^3 \) is monotone, but not \(2 \)-monotone. In this case the function \(g(t) = \frac{t}{t^3} = \frac{1}{t^2} \) is obviously not \(1 \)-monotone.

Proposition 2.2. Let \(h: [0, \infty) \to [0, \infty) \) be a Borel function such that \(h \) is a continuous, \(n \)-monotone on \((0, \infty) \), and \(h(0) = 0 \). Then for any \(A, B \in M_n^+ \) with \(A \leq B \) we have

\[
h(A) \leq h(B).
\]

Proof. Let \(B = \sum s \mu_s q_s \) be a spectral decomposition. Set \(1 - q \) as a projection on \(\text{Ker}(B) \). Then \(B = Bq = qB = \sum s' \mu_s' q_s' \) and \(q = \sum s' q_s' \).

Similarly, let \(A = \sum \lambda p \) be a spectral projection and \((1 - p) \) be a projection on \(\text{Ker}(A) \). Since \(A \leq B \), \(p \leq q \) and \(A = \sum v \lambda p_v \) and \(p = \sum v' p_v \). Note that since \(h(0) = 0 \), by the function calculus we have

\[
h(A) = \sum_v h(\lambda_v) p_v \quad \text{and} \quad h(B) = \sum_{s'} h(\mu_{s'}) q_{s'}.
\]

For any \(\varepsilon > 0 \) since

\[
0 < \sum v' \lambda_v p_v + \varepsilon 1 \leq \sum s' \mu_{s'} q_{s'} + \varepsilon 1
\]

and \(h \) is \(n \)-monotone on \((0, \infty) \), we have

\[
h(\sum v' (\lambda_v + \varepsilon) p_v + \varepsilon (1 - p)) \leq h(\sum_{s'} (\mu_{s'} + \varepsilon) q_{s'} + \varepsilon (1 - q)).
\]

Since

\[
\sum v' h(\lambda_v + \varepsilon) p_v + h(\varepsilon)(1 - p) = h(\sum v' (\lambda_v + \varepsilon) p_v + \varepsilon (1 - p)) \leq h(\sum_{s'} (\mu_{s'} + \varepsilon) q_{s'} + \varepsilon (1 - q)) = \sum_{s'} h(\mu_{s'} + \varepsilon) q_{s'} + h(\varepsilon)(1 - q)
\]

and } p \leq q, \text{ it follows that} \sum_{t'} h(\lambda_t + \varepsilon)p_t \leq \sum_{t'} h(\lambda_t + \varepsilon)p_t + h(\varepsilon)q(1 - p)q
\leq \sum_{s'} h(\mu_{s'} + \varepsilon)q_{s'}.

Therefore, since } h \text{ is continuous on } (0, \infty), \text{ as } \varepsilon \to 0 \text{ we have}

\begin{align*}
h(A) &= \sum_{t'} h(\lambda_{t'}) p_{t'}
&\leq \sum_{s'} h(\mu_{s'}) q_{s'}
&= h(B).
\end{align*}

\hfill \square

Corollary 2.1. Let } f \text{ be a } 2n\text{-monotone, continuous function on } [0, \infty) \text{ such that } f((0, \infty)) \subset (0, \infty), \text{ and let } g \text{ be a Borel function on } [0, \infty) \text{ defined by } g(t) = \begin{cases} \frac{t}{1+t} & (t \in (0, \infty)) \\
0 & (t = 0) \end{cases}. \text{ Then for any pair of positive matrices } A, B \in M_n \text{ with } A \preceq B, \text{ } g(A) \preceq g(B).

Proof. Since } f \text{ is } 2n\text{-monotone, continuous function on } [0, \infty) \text{ such that } f((0, \infty)) \subset (0, \infty), \text{ from Proposition 2.1 } g \text{ is } n\text{-monotone on } (0, \infty).

Hence, since } g \text{ is a Borel function on } [0, \infty) \text{ with } g(0) = 0, \text{ from Proposition 2.2 it follows that } g(A) \leq (B). \hfill \square

Theorem 2.1. Let } Tr \text{ be a canonical trace on } M_n \text{ and } f \text{ be a } 2n\text{-monotone function on } [0, \infty) \text{ such that } f((0, \infty)) \subset (0, \infty). \text{ Then for any pair of positive matrices } A, B \in M_n

\begin{align*}
(2) \quad Tr(A) + Tr(B) - Tr(|A - B|) &\leq 2 Tr(f(A)^{1/2} g(B) f(A)^{1/2}),
\end{align*}

where } g(t) = \begin{cases} \frac{t}{1+t} & (t \in (0, \infty)) \\
0 & (t = 0) \end{cases}.

Proof. Let } A, B \text{ be any positive matrices in } M_n.

For operator } (A - B) \text{ let us denote by } P = (A - B)^+ \text{ and } Q = (A - B)^- \text{ its positive and negative part, respectively. Then we have}

\begin{align*}
(3) \quad A - B &= P - Q \quad \text{and} \quad |A - B| = P + Q,
\end{align*}

from that it follows that

\begin{align*}
(4) \quad A + Q &= B + P.
\end{align*}
On account of (1) the inequality (2) is equivalent to the following
\[\text{Tr}(A) - \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}) \leq \text{Tr}(P). \]
Since \(B + P \geq B \geq 0 \) and \(B + P = A + Q \geq A \geq 0 \), we have \(g(A) \leq g(B + P) \) by Corollary 2.1 and
\[\text{Tr}(A) - \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}) \leq \text{Tr}(P). \]
Hence, we have the conclusion.

\[\square \]

Remark 2.

(i) When given positive matrices \(A, B \) in \(M_n \) satisfies the condition \(A \leq B \), the inequality (2) becomes
\[\text{Tr}(A) \leq \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}). \]

(ii) As pointed in Proposition 2.1, \(2 \)-monotonicity of \(f \) is needed to guarantee the inequality (2). Indeed, let \(f(t) = t^3 \) and \(n = 1 \). Then, for any \(a, b \in (0, \infty) \), the inequality (2) would imply
\[a \leq f(a)^{1/2}g(b)f(a)^{1/2}, \]
that is,
\[\frac{a}{f(a)} \leq \frac{b}{f(b)}. \]
Since \(\frac{1}{f(t)} \) is, however, not 1-monotone, the latter inequality is impossible.

As an application we get Powers-Størmer’s inequality.

Corollary 2.2. (Theorem 1) Let \(A \) and \(B \) be positive matrices, then for all \(s \in [0,1] \)
\[\text{Tr}(A + B - |A - B|) \leq \text{Tr}(A^sB^{1-s}). \]
Proof. Let \(f(t) = t^s \) (\(s \in [0, 1] \)). Then \(f \) is operator monotone with \(f(0, \infty) \subset (0, \infty) \) and \(g(t) = t^{1-s} \). Hence, we have the conclusion from Theorem 2.1. \(\square \)

Since any \(C^* \)-algebra can be realized as a closed selfadjoint \(*\)-algebra of \(B(H) \) for some Hilbert space \(H \). We can generalize Theorem 2.1 in the framework of \(C^* \)-algebras.

Theorem 2.2. Let \(\tau \) be a tracial functional on a \(C^* \)-algebra \(\mathcal{A} \), \(f \) be a strictly positive, operator monotone function on \([0, \infty)\). Then for any pair of positive elements \(A, B \in \mathcal{A} \)

\[
\tau(A) + \tau(B) - \tau(|A - B|) \leq 2\tau(f(A)^{1/2}g(B)f(A)^{1/2}),
\]

where \(g(t) = tf(t)^{-1} \).

Proof. Since the function \(\frac{1}{f(0)} \) is operator monotone on \((0, \infty)\) by [5, Corollary 6], we can get the conclusion through the same steps in the proof of Theorem 2.1. \(\square \)

Remark 3. For matrices \(A, B \in M_n^+ \) let us denote

\[
Q(A, B) = \min_{s \in [0, 1]} \text{Tr}(A^{(1-s)/2}B^sA^{(1-s)/2})
\]

and

\[
Q_{F_{2n}}(A, B) = \inf_{f \in F_{2n}} \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}),
\]

where \(F_{2n} \) is the set of all \(2n \)-monotone functions on \([0, +\infty)\) satisfy condition of the Theorem 2.1 and \(g(t) = tf(t)^{-1} \) \((t \in [0, +\infty))\). Note that the function \(f(t) = t^s \) \((t \in [0, +\infty))\) satisfies the conditions of Theorem 2.1. Since the class of \(2n \)-monotone functions is large enough [11], we know that \(Q_{F_{2n}}(A, B) \leq Q(A, B) \). Hence, we hope on finding another \(2n \)-monotone function \(f \) on \([0, +\infty)\) such that

\[
\text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}) < Q(A, B).
\]

If we can find such a function, then we can refine the quantum Chernoff bound used in quantum hypothesis testing [1].

3. Characterizations of the trace property

In this section the generalized Powers-Størmer inequality in the previous section implies the trace property for a positive linear functional on operator algebras.

Lemma 3.1. Let \(\varphi \) be a positive linear functional on \(M_n \) and \(f \) be a continuous function on \([0, \infty)\) such that \(f(0) = 0 \) and \(f((0, \infty)) \subset (0, \infty) \). If the following inequality

\[
\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{1/2}g(B)f(A)^{1/2})
\]

...
holds true for all \(A, B \in M_n^+ \), then \(\varphi \) should be a positive scalar multiple of the canonical trace \(\text{Tr} \) on \(M_n \), where \(g(t) = \begin{cases} \frac{1}{t} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases} \).

Proof. As is well known, every positive linear functional \(\varphi \) on \(M_n \) can be represented in the form \(\varphi(\cdot) = \text{Tr}(S_{\varphi}\cdot) \) for some \(S_{\varphi} \in M_n^+ \). It is easily seen that without loss of generality we can assume that \(S_{\varphi} = \text{diag}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), and we have to prove that \(\alpha_i = \alpha_j \) for all \(i, j = 1, \ldots, n \). Clearly, it is sufficient to prove that \(\alpha_1 = \alpha_2 \). By assumption, the inequality (9) holds true, in particular, for any positive matrices \(X = [x_{ij}]_{i,j=1}^n, Y = [y_{ij}]_{i,j=1}^n \) from \(M_n^+ \) such that \(0 = x_{ij} = y_{ij} \) if \(3 \leq i \leq n \) or \(3 \leq j \leq n \). Thus, it suffices to consider the case \(n = 2 \).

Assume that \(S_{\varphi} = \text{diag}(d, 1) \) \((d \in [0, 1])\) and \(\varphi(D) = \text{Tr}(S_{\varphi}D), \forall D \in M_2 \). We show that \(d = 1 \). For arbitrary positive numbers \(\lambda, \mu \) such that \(\lambda < \mu \) we consider the following matrices

\[
A = \begin{pmatrix} \frac{\lambda}{\sqrt{\lambda\mu}} & \sqrt{\frac{\lambda\mu}{\lambda}} \\ \sqrt{\frac{\lambda\mu}{\mu}} & \frac{\mu}{\sqrt{\lambda\mu}} \end{pmatrix}
\]

and

\[
B = \begin{pmatrix} \frac{\lambda}{\sqrt{\lambda\mu}} & -\sqrt{\frac{\lambda\mu}{\mu}} \\ -\sqrt{\frac{\lambda\mu}{\lambda}} & \frac{\mu}{\sqrt{\lambda\mu}} \end{pmatrix}.
\]

It is clear that these are positive scalar multiple of projections of rank one. In addition,

\[
f(A)^\frac{1}{2}g(B)f(A)^\frac{1}{2} = \left(\frac{\mu - \lambda}{\mu + \lambda} \right)^2 A.
\]

We have

\[
2\varphi(f(A)^\frac{1}{2}g(B)f(A)^\frac{1}{2}) = 2 \left(\frac{\mu - \lambda}{\mu + \lambda} \right)^2 \text{Tr}(S_{\varphi}A)
\]

\[
= 2 \left(\frac{\mu - \lambda}{\mu + \lambda} \right)^2 (d\lambda + \mu).
\]

By direct calculation,

\[
|A - B| = \begin{pmatrix} 2\sqrt{\lambda\mu} & 0 \\ 0 & 2\sqrt{\lambda\mu} \end{pmatrix}.
\]

Consequently,

\[
\varphi(A + B) - \varphi(|A - B|) = d(2\lambda - 2\sqrt{\lambda\mu}) + 2\mu - 2\sqrt{\lambda\mu}.
\]

Then the inequality (9) becomes

\[
\left(\frac{\mu - \lambda}{\mu + \lambda} \right)^2 (d\lambda + \mu) \geq d(\lambda - \sqrt{\lambda\mu}) + \mu - \sqrt{\lambda\mu}.
\]

Dividing two side by \(\sqrt{\lambda}(\sqrt{\mu} - \sqrt{\lambda}) \), we get

\[
d + \frac{(\sqrt{\mu} - \sqrt{\lambda})(\sqrt{\mu} + \sqrt{\lambda})^2}{\sqrt{\lambda}^2(\mu + \lambda)^2}(d\lambda + \mu) \geq \sqrt{\frac{\mu}{\lambda}}.
\]
Tending λ to μ from the left we obtain

$$d \geq 1.$$

Since $d \in [0, 1]$, $d = 1$. This means that φ is a positive scalar multiple of the canonical trace Tr on M_n. □

Remark 4. Let φ be a positive linear functional on M_n and $s \in [0,1]$. From Lemma 3.1 it is clear that if the following inequality

$$\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(A^{\frac{1}{2-s}}B^{\frac{1}{1-s}}A^{\frac{1}{2-s}})$$

holds true for any $A, B \in M_n^+$, then φ is a tracial. In particular, when $s = 0$ the following inequality characterizes the trace property

$$\varphi(B) - \varphi(A) \leq \varphi(|A - B|) \quad (A, B \in M_n^+).$$

Corollary 3.1 ([14]). Let φ be a positive linear functional on M_n and the following inequality

$$\varphi(|A + B|) \leq \varphi(|A|) + \varphi(|B|)$$

holds true for any self-adjoint matrices $A, B \in M_n$. Then φ is a tracial.

Proof. From the assumption, we have

$$\varphi(|B - A|) \geq \varphi(|B|) - \varphi(|A|)$$

for any pair of self-adjoint matrices $A, B \in M_n$. Moreover, for any pair of positive matrices $A, B \in M_n$ we have

$$\varphi(|B - A|) \geq \varphi(B) - \varphi(A).$$

On account of Remark [4] it follows that φ should be a tracial. □

Corollary 3.2 ([4]). Let φ be a positive linear functional on M_n and the following inequality

$$|\varphi(A)| \leq \varphi(|A|)$$

holds true for any self-adjoint matrix $A \in M_n$. Then φ is a tracial.

Proof. Let $A, B \in M_n$ be arbitrary positive matrices. Then $C = B - A$ is a self-adjoint matrix. Since $A, B \geq 0$, the values $\varphi(A)$ and $\varphi(B)$ are real. From the assumption, we have

$$\varphi(B) - \varphi(A) \leq |\varphi(B) - \varphi(A)| = |\varphi(B - A)| \leq \varphi(|B - A|).$$

On account of Remark [4] it follows that φ should be a tracial. □

By analogy with a number of other similar cases (see [4] or [14]), the proof for the trace property of a positive normal functional satisfying the inequality (9) on a von Neumann algebra can be reduced to the case of the algebra M_2 of all matrices of order 2×2. But for self-contained we will give a sketch of its proof.
Theorem 3.1. Let ϕ be a positive normal linear functional on a von Neumann algebra \mathcal{M} and f be a continuous function on $[0, \infty)$ such that $f(0) = 0$ and $f((0, \infty)) \subset (0, \infty)$. If the following inequality
\begin{equation}
\phi(A) + \phi(B) - \phi(|A - B|) \leq 2\phi(f(A)^{1/2}g(B)f(A)^{1/2})
\end{equation}
holds true for any pair $A, B \in \mathcal{M}^+$, then ϕ is a trace, where $g(t) = \begin{cases} \frac{1}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$.

Proof. Let P_1, P_2 be a pair of nonzero mutually orthogonal equivalent projections in \mathcal{M}, that means $P_1 = V^*V$ and $P_2 = VV^*$ for some nonzero partial isometry $V \in \mathcal{M}$. Consider the $*$-algebra \mathcal{N} in $(P_1 + P_2)\mathcal{M}(P_1 + P_2)$ generated by the partial isometry V. Then \mathcal{N} is isomorphic to \mathcal{M}_2 and inequality (14) still holds true for the operators in \mathcal{N} and for the restriction of the functional ϕ to \mathcal{N}. According to Lemma 3.1 this restriction is a tracial functional on \mathcal{N}, and hence $\phi(P_1) = \phi(P_2)$. By [5, Vol2, Proposition 8.1.1] it follows that ϕ is a trace. \qed

Corollary 3.3. Let ϕ be a positive linear functional on a C^*-algebra \mathcal{A} and f be a continuous function on $[0, \infty)$ such that $f(0) = 0$ and $f((0, \infty)) \subset (0, \infty)$. If the following inequality
\begin{equation}
\phi(A) + \phi(B) - \phi(|A - B|) \leq 2\phi(f(A)^{1/2}g(B)f(A)^{1/2})
\end{equation}
holds true for any pair $A, B \in \mathcal{A}^+$, then ϕ is a tracial functional, where $g(t) = \begin{cases} \frac{1}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$.

Proof. Let π be the universal representation of C^*-algebra \mathcal{A} and $\mathcal{M} = \pi(\mathcal{A})''$. Let $\hat{\phi}$ be the positive normal functional on \mathcal{M} such that $\hat{\phi}(\pi(A)) = \phi(A)$ for $A \in \mathcal{A}$. By the Kaplansky density theorem, for any pair $\hat{A}, \hat{B} \in \mathcal{M}^+$ there exist bounded nets $\{A_\alpha\}$ and $\{B_\alpha\}$ in \mathcal{A}^+ such that $\pi(A_\alpha) \to \hat{A}$ and $\pi(B_\alpha) \to \hat{B}$ in the strong operator topology. Using (15) and the continuity of the corresponding operations in the strong operator topology, we have
\[\hat{\phi}(\hat{A}) + \hat{\phi}(\hat{B}) - \hat{\phi}(|\hat{A} - \hat{B}|) \leq 2\hat{\phi}(f(\hat{A})^{1/2}g(\hat{B})f(\hat{A})^{1/2}). \]

By Theorem 3.1 $\hat{\phi}$ is a tracial functional \mathcal{M}, and hence ϕ is a tracial functional on \mathcal{A}. \qed

Remark 5. Let \mathcal{A} be a von Neumann algebra and ϕ be a positive linear functional on \mathcal{A}. The set $P(\mathcal{A})$ of all orthogonal projections from \mathcal{A} is enough as a testing space for some inequality to characterize the trace property of ϕ (see [3]). But, in the case of the inequality (14) the set $P(\mathcal{A})$ is not enough as a testing set.
Indeed, let p, q be arbitrary orthogonal projections from a von Neumann algebra \mathcal{M}. Since $q \geq p \wedge q$ it follows that $pqp \geq p(p \wedge q)p = p \wedge q$. So $pqp \geq p \wedge q$ holds for any pair of projections. From that it follows

$$\varphi(p + q - |p - q|) = 2\varphi(p \wedge q) \leq 2\varphi(pqp) = 2\varphi\left(f(p)^{\frac{1}{2}}g(q)f(p)^{\frac{1}{2}}\right)$$

whenever φ is an arbitrary positive linear functional on \mathcal{M}.

References

[1] K.M.R.Audenaert, J.Calsamiglia, L.I.Masanes, R.Munoz-Tapia, A.Acin, E.Bagan, F.Verstraete, The Quantum Chernoff Bound, Phys. Rev. Lett. 98 (2007) 16050.

[2] R.Bhatia, Matrix analysis, Graduate texts in mathematics, Springer New York, 1997.

[3] A.M.Bikchentaev, Commutation of projections and characterization of traces on von Neumann algebras, Siberian Math. J., 51 (2010) 971-977. [Translation from Sibirskii Matematicheskii Zhurnal, 51 (2010) 1228-1236]

[4] L.T.Gardner, An inequality characterizes the trace, Canad. J. Math. 31 (1979) 1322-1328.

[5] F.Hansen, G.K.Pedersen, Jensen’s inequality for operator and Löwner’s theorem, Math. Ann., 258 (1982) 229-241.

[6] F.Hansen, Some operator monotone functions, Linear Algebra and its Applications, 430 (2009) 795-99.

[7] F.Hansen, G.Ji, J.Tomiyama, Gaps between classes of matrix monotone functions, Bull. London Math. Soc. 36 (2004) 53-58.

[8] R.V.Kadison, J.R.Ringrose, Fundamentals of the Theory of Operator Algebras, Vols I, II, Academic Press., 1983, 1986.

[9] K.Loewner, Über monotone Matrixfunktionen, Math. Z. 38 (1934) 177-216.

[10] Y.Ogata, A Generalization of Powers-Størmer Inequality, Letters in Mathematical Physics, 97:3 (2011) 339-346.

[11] H.Osaka, S.Silvestrov, J.Tomiyama, Monotone operator functions, gaps and power moment problem, Math. Scand. 100:1 (2007) 161-183.

[12] R.T.Powers, E.Størmer, Free States of the Canonical Anticommutation Relations, Commun. math. Phys., 16 (1970) 1-33.

[13] A.I.Stoliarov, O.E.Tikhonov, A.N.Sherstnev, Characterization of normal traces on von Neumann algebras by inequalities for the modulus, Mathematical Notes, 72:3 (2002) 411-416. [Translation from Mat. Zametki., 72:3 (2002) 448-454.]

[14] O.E.Tikhonov, Subadditivity inequalities in von Neumann algebras and characterization of tracial functional, Positivity. 9 (2005) 259-264.

Research Center for Sciences and Technology, Duy Tan University, 182 Nguyen Van Linh, Danang, Vietnam

E-mail address: dinhtrunghoa@duytan.edu.vn

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

E-mail address: osaka@se.ritsumei.ac.jp

Mathematical Institute, 18 Hoang Quoc Viet, Hanoi, Vietnam

E-mail address: hmtoan@math.ac.vn