Permanent Draft Genome Sequences for *Mesorhizobium* sp. Strains LCM 4576, LCM 4577, and ORS3428, Salt-Tolerant, Nitrogen-Fixing Bacteria Isolated from Senegalese Soils

Nathalie Diagne,a,b,c Erik Swanson,c Céline Pesce,c Fatoumata Fall,b,d,g Fatou Diouf,b,d,g Niokhor Bakhoum,b,d,g Dioumacor Fall,b,d,e Mathieu Ndigue Faye,b,d Rediet Oshone,c Stephen Simpson,c Krystalynne Morris,c W. Kelley Thomas,c Lionel Moulin,f Diegane Diouf,b,d,g Louis S. Tisa

Centre National de Recherches Agronomiques, Institut Sénégalais de Recherches Agricoles (CNRA/ISRA), Bambey, Sénégal; Centre de Recherche de Bel Air, Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar-Bel Air, Sénégal; University of New Hampshire, Durham, New Hampshire, USA; Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Route des Hydrocarbures, Dakar, Sénégal; Centre National de Recherches Forestières, Institut Sénégalais de Recherches Agricoles (CNRA/ISRA), Route des Pères Maristes, Dakar, Sénégal; IRD, Cirad, Université Montpellier, IPME, Montpellier, France; Département de Biologie Végétale, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal

ABSTRACT The genus *Mesorhizobium* contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three *Mesorhizobium* strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively.
TABLE 1 Genome statistics

Mesorhizobium strain	No. of reads	N50 contig size (kb)	Assembly size (Mb)	No. of contigs	Sequencing depth (×)	No. of CDSs^a	G+C content (%)	Accession no.
LCM 4576	19,900,494	236	7.24	89	509.8	6,665	63.54	MDDT000000000
LCM 4577	8,750,732	305.7	7.02	56	220.3	6,464	63.74	MDDU000000000
ORS3428	16,898,886	144.6	6.55	191	477.7	5,145	63.12	MDFL000000000

^aCDSs, coding sequences.

limited to 200 mM. Because of these properties, these strains could potentially be used in association with leguminous plants for the reforestation of saline lands. The genomes of *Mesorhizobium* sp. strains LCM 4576, LCM 4577, and ORS3428 were sequenced to provide information on their physiology and ecology and to identify molecular markers that are involved in its tolerance to salinity. Comparative genomics of the highly salt-tolerant strain LCM 4577 with the two moderately salt-tolerant strains LCM 4576 and ORS3428 may provide insight on the molecular mechanisms involved in their tolerance to salinity.

Sequencing of the draft genomes of *Mesorhizobium* sp. strains LCM 4577, LCM 4576, and ORS3428 was performed at the Hubbard Center for Genome Studies (University of New Hampshire, Durham, NH) using Illumina technology (11). A standard Illumina shotgun library was constructed and sequenced using the Illumina HiSeq 2500 platform with paired-end reads (2 × 250 bp), which generated 8,750,732 to 19,900,494 reads (Table 1). The Illumina sequence data were trimmed by Trimmomatic version 0.32 (12) and assembled using Spades version 3.5 (13) and ALLPaths-LG version r52488 (14). Data on the final draft assemblies for *Mesorhizobium* sp. strains LCM 4576, LCM 4577, and ORS3428 are presented in Table 1. The final assembled genomes of *Mesorhizobium* sp. strains LCM 4576, LCM 4577, and ORS3428 were 7,241,525, 7,019,804, and 6,552,800 bp, respectively, with an average G+C content of 64% (Table 1). These genomes were annotated via the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and resulted in 6,665, 6,464, and 5,145 candidate protein-encoding genes, respectively.

Accession number(s). The draft genome sequences have been deposited in GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is a scientific contribution 2752. This work was supported by the USDA National Institute of Food and Agriculture Hatch 022821 (L.S.T.), USDA Foreign Agricultural Services Borlaug Fellowship Program BF-CR-16-004 (N.D.), and the College of Life Science and Agriculture at the University of New Hampshire (Durham, NH).

Sequencing was performed on an Illumina HiSeq 2500 instrument purchased with NSF MRI grant DBI-1229361 (to W.K.T.).

REFERENCES

1. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleeyt-Marel JC, Gillis M. 1997. Transfer of *Rhizobium loti*, *Rhizobium huakui*, *Rhizobium ciceri*, *Rhizobium mediterraneum*, and *Rhizobium tianshanense* to *Mesorhizobium* gen. nov. Int J Syst Bacteriol 47:895–898. https://doi.org/10.1099/00207713-47-3-895.

2. Berrada H, Benbrahim KF. 2014. Taxonomy of the rhizobia: current perspectives. British Microbiol Res J 4:616 – 639.

3. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH. 2011. *Mesorhizobium* cantharum sp. nov., isolated from *Alhagi sparsifolia*. Int J Syst Evol Microbiol 61:574 –579. https://doi.org/10.1099/ijs.0.022947-0.

4. Laranjo M, Alexandre A, Oliveira S. 2014. Legume growth-promoting rhizobia: an overview on the *Mesorhizobium* genus. Microbiol Res 169:2–17. https://doi.org/10.1016/j.micres.2013.09.012.

5. Laranjo M, Oliveira S. 2011. Tolerance of *Mesorhizobium* type strains to different environmental stresses. Antonie Van Leeuwenhoek 99:651–662. https://doi.org/10.1007/s10482-010-9539-9.

6. Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk B-E, Wojciechowski MF, Lavin M. 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. S Afr J Bot 89:58–75. https://doi.org/10.1016/j.sajb.2013.05.001.

7. Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, De Lajudie P, Neyra M. 2007. Genetic diversity of *Acacia seyal* del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566. https://doi.org/10.1007/s00248-007-9243-0.

8. Diouf F, Drouin F, Klonowska A, Le Queré A, Bakhoum N, Fall D, Neyra M, PARRINELLO H, DIOUF M, NDIOYE I, MOULIN L. 2015. Genetic and genomic diversity studies of *Acacia* symbionts in Senegal reveal new species of *Mesorhizobium* with a putative geographical pattern. PLoS One 10:e0117667. https://doi.org/10.1371/journal.pone.0117667.

9. Fall F. 2016. Impact de *Sporobolus robustus* Kunth sur la microflore symbiotique et l’établissement de légumineuses à usages multiples dans des sols salés du Delta du Sine–Saloum au Sénégal. PhD dissertation. Université Cheikh Anta Diop de Dakar, Dakar, Senegal.
10. Fall D, Diouf D, Ourahmi M, Faye A, Abdelmounen H, Neyra M, Sylla SN, Missbah El Idrissi M. 2008. Phenotypic and genotypic characteristics of Acacia senegal (L.) Willd. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Lett Appl Microbiol 47:85–97. https://doi.org/10.1111/j.1472-765X.2008.02389.x.

11. Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433–438. https://doi.org/10.1517/14622416.5.4.433.

12. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

13. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanskauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA. 2013. Assembling single-cell genomes and minigenomes from chimeric MDA products. J Comput Biol 20:714–737. https://doi.org/10.1089/cmb.2013.0084.

14. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnarke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518. https://doi.org/10.1073/pnas.1017351108.