Research Article

Structured Rectangular Tensors and Rectangular Tensor Complementarity Problems

Qingyu Zeng, Jun He, and Yanmin Liu

School of Mathematics, Zunyi Normal College, Zunyi 563006, Guizhou, China

Correspondence should be addressed to Jun He; hejunfan1@163.com

Received 21 June 2020; Accepted 8 August 2020; Published 24 August 2020

Guest Editor: Li-Tao Zhang

Copyright © 2020 Qingyu Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, some properties of structured rectangular tensors are presented, and the relationship among these structured rectangular tensors is also given. It is shown that all the V-singular values of rectangular P-tensors are positive. Some necessary and/or sufficient conditions for a rectangular tensor to be a rectangular P-tensor are also obtained. A new subclass of rectangular tensors, which is called rectangular S-tensors, is introduced and it is proved that rectangular S-tensors can be defined by the feasible vectors of the corresponding rectangular tensor complementarity problem.

1. Introduction

Consider the following \(m \) degree homogeneous polynomial:

\[
 f(x) = \mathcal{A}x^m,
\]

where \(\mathcal{A}x^m = \sum_{\substack{i_1, \ldots, i_m = 1 \to n}} a_{i_1 \ldots i_m} x_{i_1} \cdots x_{i_m} \), and \(\mathcal{A} \in \mathbb{R}^{[m,n]} \) is an \(m \)th order \(n \)-dimensional real square tensor. When \(m \) is even, the positive definiteness of \(f(x) \) in (1) plays an important role in automatic control [1]. In order to verify the positive definiteness of \(f(x) \) in (1), Qi introduced the definitions of H-eigenvalue and Z-eigenvalue of \(\mathcal{A} \) and showed that when \(m \) is even, \(\mathcal{A} \) is positive definite (i.e., \(f(x) \) in (1) is positive definite) if and only if all H-eigenvalues or Z-eigenvalues of \(\mathcal{A} \) are positive [2–4].

One important structured tensor is called copositive tensor, which can be viewed as a generalization of copositive matrices and plays an important role in tensor complementarity problem [5] and polynomial optimization problems [6]. In [7], Qi introduced the definition of copositive tensors and obtained some necessary and sufficient conditions for a real symmetric tensor to be a copositive tensor. In [6], a general characterization of the class of polynomial optimization problems that can be formulated as a conic program over the cone of completely positive tensors is presented. Che et al. [5] showed that the tensor complementarity problem with a strictly copositive tensor has a nonempty compact solution set. Song and Qi [8] proved that a real symmetric tensor is semipositive if and only if it is copositive. A numerical algorithm for copositivity of square tensors is proposed in [9].

Another important structured tensor is called P-tensor. The P-tensors and P0-tensors are first introduced by Song and Qi [10], which can be viewed as generalizations of the P-matrices and P0-matrices [11]. The authors in [10] also showed that a symmetric tensor with even order is positive definite if and only if it is a P-tensor and a symmetric tensor with even order is positive semidefinite if and only if it is a P0-tensor. Another definition of P-tensors (P0-tensors) is presented, which includes many important structured tensors with odd order [12], and the authors also showed that the complementarity problem with a P-tensor has a nonempty compact solution set.

Consider the following \(p + q \) degree homogeneous polynomial:
where

$$f(x, y) = x^T y,$$

(2)

\[
A = \sum_{i_1 \cdots i_p=1}^{m} a_{i_1 \cdots i_p j_1 \cdots j_q} x_{i_1} \cdots x_{i_p} y_{j_1} \cdots y_{j_q},
\]

\[
A = (a_{i_1 \cdots i_p j_1 \cdots j_q}) \in \mathbb{R}^{[p,q,m,n]} \text{ is a } (p,q)\text{th order (m \times n)}-\text{dimensional real rectangular tensor.}
\]

A is called a partially symmetric rectangular tensor, if \(a_{i_1 \cdots i_p j_1 \cdots j_q} = \) invariant under any permutation of indices among \(i_1 \cdots i_p,\) and any permutation of indices among \(j_1 \cdots j_q,\) i.e.,

\[
a_{a(i_1 \cdots i_p)}(j_1 \cdots j_q) = a_{i_1 \cdots i_p j_1 \cdots j_q}, \quad \pi \in S_p, \quad \sigma \in S_q.
\]

(4)

where \(S_r\) is the permutation group of \(r\) indices. Let \(A \in \mathbb{R}^{[p,q,m,n]}\) be a partially symmetric rectangular tensor, and \(p\) and \(q\) are even. Then, \(A\) is positive definite if and only if all of its H-singular values (or V-singular values) are positive [13–19].

The definition of copositive rectangular tensors is introduced in [20], which can be viewed as a generalization of copositive square tensors, and some necessary and sufficient conditions for a real partially symmetric rectangular tensor to be a copositive rectangular tensor are also given in [20]. Based on the criteria for identifying copositive rectangular tensors, a numerical method for identifying the copositivity of a partially symmetric rectangular tensor is obtained [21].

The rest of this first part is organized as follows. In Section 2, some preliminaries are given. In Section 3, we intend to introduce two new classes of rectangular tensors which are called rectangular P-tensors and rectangular \(P_0\)-tensors. Moreover, we prove that all the V-singular values of rectangular P-tensors (rectangular \(P_0\)-tensors) are positive (nonnegative). We also discuss some properties of quantities for rectangular P-tensors, and a necessary and sufficient condition for a rectangular tensor to be a rectangular P-tensor is also obtained. In Section 4, we extend the S-tensors to rectangular S-tensors, and some properties of rectangular S-tensors are also given. In Section 5, we introduce the rectangular tensor complementarity problem (RTCP), which can be used to define the rectangular S-tensors, and the relationship among positive definite rectangular tensors, strictly copositive rectangular tensors, rectangular P-tensors, and rectangular S-tensors is also presented.

2. Notation and Preliminaries

In this section, we list some definitions related to rectangular tensors, which are needed in the subsequent analysis.

Let \(\mathbb{R}\) and \(\mathbb{C}\) be the real field and complex field, \([m] = \{1, 2, \ldots, m\}\). We use small letters \(a, b, \ldots\) for scalars, small bold letters \(x, y, \ldots\) for vectors, capital letters \(A, B, \ldots\) for matrices, and calligraphic letters \(A, \mathcal{A}, \ldots\) for tensors. The \(i\)th entry of a vector \(x\) is denoted by \(x_i\), the \((i, j)\)th entry of a matrix \(A\) is denoted by \(a_{ij}\), and the \((i_1, \ldots, i_p, j_1, \ldots, j_q)\)th entry of a rectangular tensor \(A\) is denoted by \(a_{i_1 \cdots i_p j_1 \cdots j_q}\). Let \(\mathbb{R}^n\) be the \(n\)-dimensional real Euclidean space and the set of all nonnegative vectors in \(\mathbb{R}^n\) be denoted by \(\mathbb{R}^n_+\).

Definition 1. A rectangular \(A \in \mathbb{R}^{[p,q,m,n]}\) is said to be

(a) A positive definite rectangular tensor [13, 14], iff \(A x^T y > 0\) for all \(x \in \mathbb{R}^m/\{0\}\) and \(y \in \mathbb{R}^n/\{0\}\).

(b) A copositive rectangular tensor [21], iff \(A x^T y \geq 0\) for all \(x \in \mathbb{R}^m_+\) and \(y \in \mathbb{R}^n_+\).

(c) A strictly copositive rectangular tensor [21], iff \(A x^T y > 0\) for all \(x \in \mathbb{R}^m_+/\{0\}\) and \(y \in \mathbb{R}^n_+/\{0\}\).

In order to verify the positive definiteness of a \((p,q)\)th order \((m \times n)\)-dimensional partially symmetric rectangular tensor, the definition of a singular value of rectangular tensors is introduced by Chang et al. [13].

Definition 2 (see [13]). Let \(A \in \mathbb{R}^{[p,q,m,n]}\), if there exist a number \(\lambda \in \mathbb{R}\), vectors \(x \in \mathbb{R}^m/\{0\}\) and \(y \in \mathbb{R}^n/\{0\}\) such that

\[\lambda x^{(p-1)} = A x^{p-1} y,\]

\[\lambda y^{(q-1)} = A y^{q-1} x,\]

(5)

then \(\lambda\) is called the H-singular value of \(A\) and \((x, y)\) is the left and right H-eigenvectors pair of \(A\), associated with \(\lambda\).

Some sufficient conditions for the positive definiteness of a \((p,q)\)th order \((m \times n)\)-dimensional partially symmetric rectangular tensor are given in [14], based on the following definition of the V-singular value.

Definition 3 (see [14]). Let \(A \in \mathbb{R}^{[p,q,m,n]}\), if there exist a number \(\lambda \in \mathbb{R}\), vectors \(x \in \mathbb{R}^m/\{0\}\), \(p, q \geq 2\), and \(y \in \mathbb{R}^n/\{0\}\) such that

\[\lambda x^{(p-1)} = A x^{p-1} y,\]

\[\lambda y^{(q-1)} = A y^{q-1} x,\]

(7)

then \(\lambda\) is called the V-singular value of \(A\) and \((x, y)\) is the left and right V-eigenvectors pair of \(A\), associated with \(\lambda\).

The definitions of P-tensors and \(P_0\)-tensors are listed as follows.

Definition 4 (see [10]). A tensor \(A = (a_{i_1 \cdots i_p}) \in \mathbb{R}^{[m,n]}\) is called a P-tensor if for each nonzero \(x \in \mathbb{R}^m_+\), there exists some index \(i\) such that

\[x_i^{(p-1)} (A x^{p-1})_i > 0,\]

(8)
where \(AX^{m-1} = \sum_{i=a}^{n} a_{i} x_{i} \cdots x_{n} \). A tensor \(\mathcal{A} = (a_{i,j}, a_{j,i}) \in \mathbb{R}^{mn} \) is called a \(\mathcal{P}_{0} \)-tensor if for each nonzero \(x \in \mathbb{R}^{n} \), there exists some index \(i \) such that
\[
X_i^{m-1}(\mathcal{A} X^{m-1})_i \geq 0.
\]

3. Rectangular \(\mathcal{P}_{0} \)-Tensors

We now introduce the definitions of rectangular \(\mathcal{P} \)-tensors and rectangular \(\mathcal{P}_{0} \)-tensors.

Definition 5. A rectangular tensor \(\mathcal{A} = (a_{i,j}, a_{j,i}) \in \mathbb{R}^{pqmn} \) is called a rectangular \(\mathcal{P} \)-tensor if for each \(x \in \mathbb{R}^{m} \) and \(y \in \mathbb{R}^{n} \), there exists some indices \(i \in [m], j \in [n] \) such that
\[
X_i^{p-1}(\mathcal{A} X^{p-1})^I_j \geq 0,
\]
\[
y_j^{p-1}(\mathcal{A} Y^{p-1})^{I}_j \geq 0.
\]

A rectangular tensor \(\mathcal{A} = (a_{i,j}, a_{j,i}) \in \mathbb{R}^{pqmn} \) is called a rectangular \(\mathcal{P}_{0} \)-tensor if for each \(x \in \mathbb{R}^{m} \) and \(y \in \mathbb{R}^{n} \), there exists some indices \(i \in [m], j \in [n] \) such that
\[
X_i^{p-1}(\mathcal{A} X^{p-1})^I_j \geq 0,
\]
\[
y_j^{p-1}(\mathcal{A} Y^{p-1})^{I}_j \geq 0.
\]

The following result is given to show the positivity (nonnegativity) of the V-singular values for a rectangular \(\mathcal{P} \)-tensor (\(\mathcal{P}_{0} \)-tensor).

Theorem 1. Let \(\mathcal{A} = (a_{i,j}, a_{j,i}) \in \mathbb{R}^{pqmn} \) be a rectangular \(\mathcal{P} \)-tensor (\(\mathcal{P}_{0} \)-tensor); then, all the V-singular values of \(\mathcal{A} \) are positive (nonnegative).

Proof. If \(\mathcal{A} \) is a rectangular \(\mathcal{P} \)-tensor, \(\lambda \) is a V-singular value of \(\mathcal{A} \) with eigenvectors pair \((x,y)\), then we have
\[
\mathcal{A} X^{p-1} y^\lambda = \lambda x^{p-1},
\]
\[
\mathcal{A} Y^{p-1} y^\lambda = \lambda y^{p-1},
\]
and then, there exists some indices \(i \in [m], j \in [n] \) such that
\[
x_i^{p-1}(\mathcal{A} X^{p-1})^I_j = \lambda x_i^{p-1} \geq 0,
\]
\[
y_j^{p-1}(\mathcal{A} Y^{p-1})^{I}_j = \lambda y_j^{p-1} \geq 0.
\]

By the definition of rectangular \(\mathcal{P} \)-tensors, we have \(\lambda > 0 \).

Theorem 2. Let \(\mathcal{A} = (a_{i,j}, a_{j,i}) \in \mathbb{R}^{pqmn} \) be a rectangular \(\mathcal{P} \)-tensor (\(\mathcal{P}_{0} \)-tensor). Then, every principal rectangular subtensor of \(\mathcal{A} \) is a rectangular \(\mathcal{P} \)-tensor (\(\mathcal{P}_{0} \)-tensor). In particular, all the diagonal entries of a rectangular \(\mathcal{P} \)-tensor (\(\mathcal{P}_{0} \)-tensor) are positive (nonnegative).

Proof. Let \(\mathcal{A}^{IJ} \) be a principal rectangular subtensor of \(\mathcal{A} \):
\[
x_I = (x_{i_1}, \ldots, x_{i_m})^T \in \mathbb{R}^{m},
\]
\[
y_J = (y_{j_1}, \ldots, y_{j_n})^T \in \mathbb{R}^{n},
\]
\[
x^*_I = (x^*_1, \ldots, x^*_m)^T \in \mathbb{R}^{m} \text{ with } x^*_i = x_i \text{ if } i \in I \text{ and } x^*_i = 0 \text{ if } i \notin I, \text{ and } y^*_I = (y^*_1, \ldots, y^*_n)^T \in \mathbb{R}^{n} \text{ with } y^*_j = y_j \text{ if } j \in J \text{ and } y^*_j = 0 \text{ if } j \notin J.
\]
If \(\mathcal{A} \in \mathbb{R}^{pqmn} \) is a rectangular \(\mathcal{P} \)-tensor, there exists some index \(i \in [m], j \in [n] \) such that
\[
(x^*_i)^{p-1}(\mathcal{A} (x^*_i)^{p-1} (y^*_j)^j) = x_i^{p-1}(\mathcal{A}^{IJ} x_i^p) (y_j^q) > 0,
\]
\[
y_j^{p-1}(\mathcal{A} (y_j)^{q-1} (y_j)^j) = y_j^{p-1}(\mathcal{A}^{IJ} y_j^q) (y_j) > 0,
\]
which implies that \(\mathcal{A}^{IJ} \) is a rectangular \(\mathcal{P} \)-tensor. The case for rectangular \(\mathcal{P}_{0} \)-tensors can be obtained similarly.
A sufficient and necessary condition for a rectangular tensor to be a rectangular P-tensor is given as follows. □

Theorem 3. Let $\mathcal{A} = (a_{i_1i_2\ldots i_{p-1}j_{p}\ldots j_{m}}) \in \mathbb{R}^{[p,q,m,n]}$. Then, \mathcal{A} is a rectangular P-tensor if and only if for each nonzero $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^q$, there exists positive diagonal matrices D_x, D_y such that

$$
\begin{aligned}
(x^{[p-1]})^T D_x(\mathcal{A}x^{p-1}y^q) &> 0, \\
(y^{[q-1]})^T D_y(\mathcal{A}x^p y^{q-1}) &> 0.
\end{aligned}
$$

(21)

Proof. If \mathcal{A} is a rectangular P-tensor, then there exists some index $i \in [m], j \in [n]$ such that

$$
\begin{aligned}
x^{p-1}_k(\mathcal{A}x^{p-1}y^q) &> 0, \\
y^{q-1}_j(\mathcal{A}x^p y^{q-1}) &> 0.
\end{aligned}
$$

(22)

Then, for enough small $\mu, \nu > 0$, we have

$$
\begin{aligned}
x^{p-1}_k(\mathcal{A}x^{p-1}y^q) + \mu \left(\sum_{j=1,j \neq k}^m x^{p-1}_j(\mathcal{A}x^{p-1}y^q) \right) &> 0, \\
y^{q-1}_j(\mathcal{A}x^p y^{q-1}) + \nu \left(\sum_{i=1,i \neq j}^n y^{q-1}_i(\mathcal{A}x^p y^{q-1}) \right) &> 0.
\end{aligned}
$$

(23)

Therefore, we have

$$
\begin{aligned}
(x^{[p-1]})^T D_x(\mathcal{A}x^{p-1}y^q) &> 0, \\
(y^{[q-1]})^T D_y(\mathcal{A}x^p y^{q-1}) &> 0,
\end{aligned}
$$

(24)

where $D_x = \text{diag}(d_1, d_2, \ldots, d_m) \text{ with } d_k = 1 \text{ and } d_i = \mu \text{ for } i \neq k$ and $D_y = \text{diag}(e_1, e_2, \ldots, e_n)$ with $e_i = 1 \text{ and } e_j = \nu \text{ for } j \neq i$.

On the contrary, if there exists positive diagonal matrices

$$
\begin{aligned}
D_x &= \text{diag}(d_1, d_2, \ldots, d_m), \\
D_y &= \text{diag}(e_1, e_2, \ldots, e_n),
\end{aligned}
$$

(25)

such that

$$
\begin{aligned}
(x^{[p-1]})^T D_x(\mathcal{A}x^{p-1}y^q) &> 0, \\
(y^{[q-1]})^T D_y(\mathcal{A}x^p y^{q-1}) &> 0.
\end{aligned}
$$

(26)

Since $d_i > 0$ for all $i \in [m], e_j > 0$ for all $j \in [n]$, then there exists $k \in [m]$ and $l \in [n]$ such that

$$
\begin{aligned}
x^{p-1}_k(\mathcal{A}x^{p-1}y^q) &> 0, \\
y^{q-1}_l(\mathcal{A}x^p y^{q-1}) &> 0.
\end{aligned}
$$

(27)

Let $\|x\|_{\infty} = \max\{|x_i|, i \in [n]\}$, and a quantity $\alpha(A)$ of a P-matrix A is introduced in [11]. In 2015, let

$$
\alpha(T_{\mathcal{A}}) = \min_{\|x\|_{\infty} = 1} \left\{ \max_{i \in [n]} x_i T_{\mathcal{A}}(x) \right\},
$$

(28)

$$
\alpha(F_{\mathcal{A}}) = \min_{\|x\|_{\infty} = 1} \left\{ \max_{i \in [n]} x_i F_{\mathcal{A}}(x) \right\},
$$

(29)

where

$$
T_{\mathcal{A}}(x) = \|x\|^{2-m}_{\infty} \mathcal{A}x^{m-1},
$$

$$
F_{\mathcal{A}}(x) = (\mathcal{A}x^{m-1})^{1/m-1}.
$$

Song and Qi introduced the definitions of quantities $\alpha(T_{\mathcal{A}})$ and $\alpha(F_{\mathcal{A}})$ for a P-tensor \mathcal{A} and obtained monotonicity and boundedness of such two quantities, and they also showed that a tensor \mathcal{A} is a P-tensor if and only if $\alpha(T_{\mathcal{A}})$ is positive, and a tensor \mathcal{A} with even order is a P-tensor if and only if $\alpha(F_{\mathcal{A}})$ is positive [8]. We define the following two quantities for rectangular P-tensors:

$$
\alpha_{\min}(\mathcal{A}) = \min_{\|x\|_{\infty} = 1} \left\{ \max_{i \in [n]} x_i T_{\mathcal{A}}(x) \right\},
$$

(30)

$$
\alpha_{\max}(\mathcal{A}) = \min_{\|x\|_{\infty} = 1} \left\{ \max_{i \in [n]} x_i F_{\mathcal{A}}(x) \right\}.
$$

We present some properties of quantities for rectangular P-tensors. □

Theorem 4. Let $\mathcal{A} = (a_{i_1i_2\ldots i_{p-1}j_{p}\ldots j_{m}}) \in \mathbb{R}^{[p,q,m,n]}$ be a rectangular P_0-tensor and $\mathcal{A}^{\perp L}_{r_m,r_n}$ be a principal rectangular subtensor of \mathcal{A}. Then,

(i) $\alpha_{\min}^{\perp L}_{r_m,r_n}(\mathcal{A}) \leq \alpha_{\min}(\mathcal{A})$

(ii) $\alpha_{\max}^{\perp L}_{r_m,r_n}(\mathcal{A}) \leq \alpha_{\max}(\mathcal{A})$

Proof. Let $\mathcal{A}^{\perp L}_{r_m,r_n}$ be a principal rectangular subtensor of \mathcal{A}:

$$
\begin{aligned}
x_I &= \left(x_{i_1}, \ldots, x_{i_p} \right)^T \in \mathbb{R}^{r_m}/\{0\}, \\
y_J &= \left(y_{j_1}, \ldots, y_{j_q} \right)^T \in \mathbb{R}^{r_n}/\{0\}.
\end{aligned}
$$

(31)

Let $x_I^* = (x_{i_1}^*, \ldots, x_{i_p}^*)^T \in \mathbb{R}^{r_m}$ with $x_{i_j}^* = x_{i_j}$ if $i \in I$ and $x_{i_j}^* = 0$ if $i \notin I$, and $y_J^* = (y_{j_1}^*, \ldots, y_{j_q}^*)^T \in \mathbb{R}^{r_n}$ with $y_{j_j}^* = y_{j_j}$ if $j \in J$ and $y_{j_j}^* = 0$ if $j \notin J$. Then, $\|x_I^*\|_{\infty} = \|x_I\|_{\infty}$ and $\|y_J^*\|_{\infty} = \|y_J\|_{\infty}$. Hence,
\begin{align*}
\alpha_x(\mathcal{A}) &= \min_{\|x\|_m = 1} \left\{ \max_{i \in [m]} x_i^{p-1} \left(\mathcal{A} x_i^{p-1} y^q \right) \right\} \\
&\leq \min_{\|x_i\|_m = 1} \left\{ \max_{i \in [m]} \left(x_i^{p-1} \left(\mathcal{A} x_i^{p-1} (y^q) \right) \right) \right\} \\
&= \min_{\|x_i\|_m = 1} \left\{ \max_{i \in I} \left(x_i^{p-1} \left(\mathcal{A}_{i}^J \right) x_i^{p-1} (y^q) \right) \right\} \\
&= \alpha_x \left(\mathcal{A}_{i}^J \right) \\
\alpha_y(\mathcal{A}) &= \min_{\|y\|_m = 1} \left\{ \max_{j \in [n]} \left(\mathcal{A} y^{p-1} \right) j \right\} \\
&\leq \min_{\|y\|_m = 1} \left\{ \max_{j \in [n]} \left(\mathcal{A} y^{p-1} \right) j \right\} \\
&= \alpha_y \left(\mathcal{A}_{i}^J \right) \\
&= \delta(\mathcal{A}) \\
&= \delta(\mathcal{A})_{i}^J \\
\end{align*}

(32)

Let \(\delta(\mathcal{A}) = \min \{ \lambda(\mathcal{A}_{i}^J) : I \subseteq [m], J \subseteq [n] \} \), where \(\lambda(\mathcal{A}) \) denotes the smallest of V-singular value (if any exists) of a rectangular P-tensor \(\mathcal{A} \). Then, we have the following upper bounds for \(\alpha_x(\mathcal{A}) \) and \(\alpha_y(\mathcal{A}) \). Let \(\mathcal{F}_R = (e_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \) be the rectangular identity tensor with

\[
e_{i_1, j_1, j_2, \ldots, j_q} = \begin{cases}
1, & \text{if } i = i_1, \ldots, = i_p, j_1 = \ldots, = j_q \\
0, & \text{otherwise.}
\end{cases}
\]

(33)

Theorem 5. Let \(\mathcal{A} = (a_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \) be a rectangular P-tensor. Then,

(i) \(\alpha_x(\mathcal{A}) \leq \delta(\mathcal{A}) \) \leq \(\min_{i \in [m], j \in [n]} a_{i, j, \ldots, j} \)

(ii) \(\alpha_y(\mathcal{A}) \leq \delta(\mathcal{A}) \) \leq \(\min_{j \in [n], i \in [m]} a_{i, \ldots, i, j} \)

Proof. Let \(\mathcal{A} = (a_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \) be a rectangular P-tensor, by Theorem 2, and we have

\[
a_{i, \ldots, j, \ldots, j} > 0, \quad \text{for all } i \in [m], j \in [n].
\]

(34)

Since \(\mathcal{A}_{i}^J \) is a principal rectangular subtensor of \(\mathcal{A} \), by Lemma 1, \(a_{i, j, \ldots, j} \) is a V-singular value of \(\mathcal{A}_{i}^J \), therefore,

\[
\delta(\mathcal{A}) \leq a_{i, j, \ldots, j}.
\]

(35)

Furthermore, \(\delta(\mathcal{A}) \) is a V-singular value of \(\mathcal{A}_{i}^J \), then, \(\mathcal{A}_{i}^J - \delta(\mathcal{A}) \mathcal{F}_R \) is not a rectangular P-tensor. By Theorem 2, \(\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R \) is not a rectangular P-tensor. Then, there exists vectors \(x \) and \(y \) with \(\|x\|_m = 1 \) and \(\|y\|_m = 1 \) such that

\[
\max_{i \in [m]} x_i^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) x_i^{p-1} y^q \right) \leq 0,
\]

\[
\max_{j \in [n]} y_j^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) y_i^{p-1} \right) \leq 0.
\]

(36)

Then,

\[
x_i^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) x_i^{p-1} y^q \right) \leq 0,
\]

\[
y_i^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) y_i^{p-1} \right) \leq 0,
\]

(37)

for all \(k \in [m], l \in [n] \). Then,

\[
\max_{i \in [m]} x_i^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) x_i^{p-1} y^q \right) \leq 0,
\]

\[
y_i^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) y_i^{p-1} \right) \leq 0,
\]

(38)

Similarly, we have

\[
\max_{j \in [n]} y_j^{p-1} \left((\mathcal{A} - \delta(\mathcal{A}) \mathcal{F}_R) y_i^{p-1} \right) \leq \delta(\mathcal{A}).
\]

(39)

Therefore,

\[
\alpha_x(\mathcal{A}) \leq \delta(\mathcal{A}) \leq \min_{i \in [m], j \in [n]} a_{i, j, \ldots, j}.
\]

(40)

Based on the quantities \(\alpha_x(\mathcal{A}) \) and \(\alpha_y(\mathcal{A}) \), a necessary and sufficient conditions for a rectangular tensor to be a rectangular P-tensor is given as follows.

Theorem 6. Let \(\mathcal{A} = (a_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \). Then, \(\mathcal{A} \) is a rectangular P-tensor (P_0 tensor) if and only if \(\alpha_x(\mathcal{A}) \) and \(\alpha_y(\mathcal{A}) \) are positive (nonnegative).

Proof. Let \(\mathcal{A} = (a_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \) be a rectangular P-tensor. Then, for each \(x \in \mathbb{R}^m/\{0\} \) and \(y \in \mathbb{R}^n/\{0\} \), there exists some index \(i \in [m], j \in [n] \) such that

\[
x_i^{p-1} \left((\mathcal{A} x_i^{p-1} y^q) \right) > 0,
\]

\[
y_i^{p-1} \left((\mathcal{A} y_i^{p-1} \right) > 0.
\]

(41)

Then,

\[
\alpha_x(\mathcal{A}) \leq \delta(\mathcal{A}) \leq \min_{i \in [m], j \in [n]} a_{i, j, \ldots, j}.
\]

(42)

Conversely, if \(\alpha_x(\mathcal{A}) > 0 \) and \(\alpha_y(\mathcal{A}) > 0 \), we have

\[
x_i^{p-1} \left((\mathcal{A} x_i^{p-1} y^q) \right) > 0,
\]

\[
y_i^{p-1} \left((\mathcal{A} y_i^{p-1} \right) > 0.
\]

(43)

which implies \(\mathcal{A} \) is a rectangular P-tensor. The case for rectangular P_0 tensors can be obtained similarly.

4. Rectangular S-Tensor

Definition 6. A rectangular tensor \(\mathcal{A} = (a_{i_1, j_1, j_2, \ldots, j_q}) \in \mathbb{R}^{[p \times q \times m \times n]} \) is called a rectangular S-tensor if and only if there exists \(0 < x \in \mathbb{R}^m \) and \(0 < y \in \mathbb{R}^n \) such that
\[A x^{p-1} y^q > 0, \]
\[A x^p y^{q-1} > 0. \] (44)

A rectangular tensor \(A = (a_{i_1j_1 \ldots i_nj_n}) \in \mathbb{R}^{[p \times q \times m \times n]} \) is called a rectangular \(S \)-tensor if and only if there exists \(0 \leq x \in \mathbb{R}^m/\{0\} \) and \(0 \leq y \in \mathbb{R}^n/\{0\} \) such that
\[A x^{p-1} y^q > 0, \]
\[A x^p y^{q-1} > 0. \] (45)

The conditions \(0 \leq x \in \mathbb{R}^m \) and \(0 \leq y \in \mathbb{R}^n \) in the definition of rectangular \(S \)-tensors can be relaxed to \(0 \leq x \in \mathbb{R}^m/\{0\} \) and \(0 \leq y \in \mathbb{R}^n/\{0\} \).

Theorem 7. Let \(A = (a_{i_1j_1 \ldots i_nj_n}) \in \mathbb{R}^{[p \times q \times m \times n]} \). Then, \(A \) is a rectangular \(S \)-tensor if and only if there exists \(0 \leq x \in \mathbb{R}^m/\{0\} \) and \(0 \leq y \in \mathbb{R}^n/\{0\} \) such that
\[A x^{p-1} y^q > 0, \]
\[A x^p y^{q-1} > 0. \] (46)

Proof. The necessity is obvious by the definition of rectangular \(S \)-tensors. We prove the sufficiency as follows.

If there exists \(0 \leq x \in \mathbb{R}^m/\{0\} \) and \(0 \leq y \in \mathbb{R}^n/\{0\} \) such that
\[A x^{p-1} y^q > 0, \]
\[A x^p y^{q-1} > 0, \] (47)

Let \(e_m = (1, \ldots, 1)^T \) and \(e_n = (1, \ldots, 1)^T \); for some small enough \(t > 0 \), we have
\[A (x + te_m)^{p-1} (y + te_n)^q > 0, \]
\[A (x + te_m)^p (y + te_n)^{q-1} > 0, \] (48)

which means that \(A \) is a rectangular \(S \)-tensor.

From Theorem 2, we know that every principal rectangular subtensor of a rectangular \(P \)-tensor is a rectangular \(P \)-tensor. However, such a property does not always hold for rectangular \(S \)-tensor by the following example, i.e., the principal rectangular subtensor of a rectangular \(S \)-tensor is not always a rectangular \(S \)-tensor.

\[\text{Example 1. Let } A = (a_{i_1j_1}) \in \mathbb{R}^{[2 \times 2 \times 2]}, \text{ where} \]
\[a_{111} = 1, \]
\[a_{111} = -1, \]
\[a_{222} = 1, \]
\[a_{222} = -1, \] (49)

and all other \(a_{i_1j_1} = 0 \). Then, for any \(0 \leq x \in \mathbb{R}^m/\{0\} \) and \(0 \leq y \in \mathbb{R}^n/\{0\} \), we obtain
\[A xy^2 = \begin{pmatrix} x_1y_1^2 - x_1y_1y_2 \\ x_2y_1y_2 - x_2y_2y_2 \end{pmatrix} = \begin{pmatrix} x_1(y_1 - y_2) \\ x_2(y_1 - y_2) \end{pmatrix}, \]
\[A x^2y = \begin{pmatrix} x_1^2y_1 - x_1^2y_2 \\ x_2^2y_1 - x_2^2y_2 \end{pmatrix} = \begin{pmatrix} x_1^2(y_1 - y_2) \\ x_2^2(y_1 - y_2) \end{pmatrix}. \] (50)

Then, for \(y = (2, 1)^T \) and \(x = (1, 1)^T \), we see \(A xy^2 \geq 0 \) and \(A x^2y \geq 0 \), which implies, \(A \) is a rectangular \(S \)-tensor.

Let \(A_{r_1 r_2}^{I,J} \) be a principal rectangular subtensor of \(A \) with \(I = J = \{2\} \); then, for any \(x > 0 \) and \(y > 0 \), we have
\[A_{r_1 r_2}^{I,J} x y^2 = (-1)xy^2 < 0, \]
\[A_{r_1 r_2}^{I,J} x^2y = (-1)x^2y < 0, \] (51)

which means that \(A_{r_1 r_2}^{I,J} \) is not a rectangular \(S \)-tensor.

Some necessary and/or sufficient conditions for a rectangular tensor to be a rectangular \(S \)-tensor are presented as follows.

Theorem 8. Let \(A = (a_{i_1j_1 \ldots i_nj_n}) \in \mathbb{R}^{[p \times q \times m \times n]} \) be a rectangular \(S \)-tensor. Then, there exists \(i \in [m] \) and \(j \in [n] \) such that
\[a_{i_1 \ldots i_{j-1}i_j \ldots i_n} + \sum_{n_{j_1 \ldots j_{j-1}j_j} > 0} a_{n_{j_1 \ldots j_{j-1}j_j}} > 0. \] (52)

Proof. Since \(A \) is a rectangular \(S \)-tensor, then there exists \(0 \leq x \in \mathbb{R}^m \) and \(0 \leq y \in \mathbb{R}^n \) such that
\[A x^{p-1} y^q > 0, \text{ i.e., } x \in [m]. \] (53)

Let \(x_i = \max_{j \in [m]} x_j \) and \(y_j = \max_{i \in [n]} y_i \); then, \(x_i > 0 \) and \(y_j > 0 \), and

\[\square \]
Let $\mathcal{A} = (a_{i_1j_1, i_2j_2, \ldots, i_qj_q}) \in \mathbb{R}^{[p,q,m,n]}$. If there exists a principal rectangular subtensor $\mathcal{A}_{t,s}_{i_1, \ldots, i_q, j_1, \ldots, j_q}$ of \mathcal{A}, we have

$$\mathcal{A} < \mathcal{A}_{t,s}_{i_1, \ldots, i_q, j_1, \ldots, j_q}$$

for all $i_1, \ldots, i_q \in I$, $j_1, \ldots, j_q \in J$, and $\mathcal{A}_{t,s}_{i_1, \ldots, i_q, j_1, \ldots, j_q} > 0$. Similarly, we have

$$\mathcal{A} \geq \mathcal{A}_{t,s}_{i_1, \ldots, i_q, j_1, \ldots, j_q}$$

which implies that $(\mathcal{A} \mathcal{F}^{p-1} \mathcal{Y}^q)_i > 0$, if $i \in I$, and $(\mathcal{A} \mathcal{F}^{q-1} \mathcal{Y}^p)_j > 0$, if $j \in J$.

Let $0 \leq \mathcal{x} \in \mathbb{R}^p \setminus \{0\}$ and $0 \leq \mathcal{y} \in \mathbb{R}^q \setminus \{0\}$ with

$$x_i = \bar{x}_i, \quad \text{if } i \in I,$$

$$\bar{x}_i = 0, \quad \text{if } i \notin I,$$

$$y_j = \bar{y}_j, \quad \text{if } j \in J,$$

$$\bar{y}_j = 0, \quad \text{if } j \notin J.$$

Then, for any $i \in I$ and $j \in J$, we have

$$0 < (\mathcal{A} \mathcal{F}^{p-1} \mathcal{Y}^q)_i = \sum_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}=1}^m a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} x_{i_{l_1}} \cdots x_{i_{l_p}} y_{j_{l_1}} \cdots y_{j_{l_q}}$$

$$= a_{i_1, \ldots, i_q} x_{i_1} \cdots x_{i_q} + \sum_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}=1} a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} x_{i_{l_1}} \cdots x_{i_{l_p}} y_{j_{l_1}} \cdots y_{j_{l_q}}$$

$$+ \sum_{a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} < 0} a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} x_{i_{l_1}} \cdots x_{i_{l_p}} y_{j_{l_1}} \cdots y_{j_{l_q}} \leq a_{i_1, \ldots, i_q} x_{i_1} \cdots x_{i_q}, \quad (i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}) \neq (i_1, \ldots, i_q)$$

which means

$$a_{i_1, \ldots, i_q} + \sum_{a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} < 0} a_{i_{l_1}, \ldots, i_{l_p}, j_{l_1}, \ldots, j_{l_q}} > 0.$$

(55)
\(0 < x \in \mathbb{R}^m\) and \(0 < y \in \mathbb{R}^n\), for any nonzero nonnegative diagonal matrices \(D_x\) and \(D_y\), such that
\[
\begin{align*}
x^T D_x \left(\mathcal{A} x^{p-1} y^q \right) & > 0, \\
y^T D_y \left(\mathcal{A} y^{q-1} y^p \right) & > 0.
\end{align*}
\] (61)

Proof. If \(\mathcal{A}\) is a rectangular S-tensor and \(0 < x \in \mathbb{R}^m\) and \(0 < y \in \mathbb{R}^n\), then for any \(k \in [m]\) and \(l \in [n]\) such that
\[
\begin{align*}
x_k \left(\mathcal{A} x^{p-1} y^q \right) & > 0, \\
y_l \left(\mathcal{A} y^{q-1} y^p \right) & > 0.
\end{align*}
\] (62)

Then, for any \(\mu, \nu \geq 0\), we have
\[
\begin{align*}
x_k \left(\mathcal{A} x^{p-1} y^q \right) + \mu \sum_{i+j=k} x_i \left(\mathcal{A} x^{p-1} y^q \right)_i & > 0, \\
y_l \left(\mathcal{A} y^{q-1} y^p \right) + \nu \sum_{i+j=l} y_j \left(\mathcal{A} y^{q-1} y^p \right)_j & > 0.
\end{align*}
\] (63)

Therefore, we have
\[
\begin{align*}
x^T D_x \left(\mathcal{A} x^{p-1} y^q \right) & > 0, \\
y^T D_y \left(\mathcal{A} y^{q-1} y^p \right) & > 0,
\end{align*}
\] (64)

where \(D_x = \text{diag}(d_1, d_2, \ldots, d_m)\) with \(d_k = 1\) and \(d_i = \mu\) for \(i \neq k\) and \(D_y = \text{diag}(e_1, e_2, \ldots, e_n)\) with \(e_j = 1\) and \(e_i = \nu\) for \(j \neq l\).

On the contrary, for any nonzero nonnegative diagonal matrices
\[
\begin{align*}
D_x = \text{diag}(d_1, d_2, \ldots, d_m), \\
D_y = \text{diag}(e_1, e_2, \ldots, e_n),
\end{align*}
\] (65)
such that
\[
\begin{align*}
x^T D_x \left(\mathcal{A} x^{p-1} y^q \right) & > 0, \\
y^T D_y \left(\mathcal{A} y^{q-1} y^p \right) & > 0.
\end{align*}
\] (66)

For any \(i \in [m]\) and \(j \in [n]\), let
\[
\begin{align*}
D_x = \text{diag}(d_1, d_2, \ldots, d_m) \text{ with } d_i = 1 \text{ and } d_k = 0 \text{ for } k \neq i, \\
D_y = \text{diag}(e_1, e_2, \ldots, e_n) \text{ with } e_j = 1 \text{ and } e_l = 0 \text{ for } l \neq j,
\end{align*}
\]
and we obtain
\[
\begin{align*}
x^T D_x \left(\mathcal{A} x^{p-1} y^q \right) & = x_i \left(\mathcal{A} x^{p-1} y^q \right)_i > 0, \\
y^T D_y \left(\mathcal{A} y^{q-1} y^p \right) & = y_j \left(\mathcal{A} y^{q-1} y^p \right)_j > 0.
\end{align*}
\] (67)

By the conditions \(x \in \mathbb{R}^m > 0\) and \(y \in \mathbb{R}^n > 0\), we have
\[
\begin{align*}
\mathcal{A} x^{p-1} y^q & > 0, \\
\mathcal{A} y^{q-1} y^p & > 0,
\end{align*}
\] (68)

which means that \(\mathcal{A}\) is a rectangular S-tensor. \(\square\)

5. Rectangular Tensor Complementarity Problems

Converting a bimatrix game \(F(A, A)\) to a linear complementarity problem, we have the following LCP \([22]\):
\[
\begin{align*}
u & = q_m + Ax \geq 0, \\
x^T u & = 0, \\
v & = q_n + A^T x \geq 0, \\
\nu^T v & = 0.
\end{align*}
\] (69)

In this section, we study the rectangular tensor complementarity problem (RTCP), which can be viewed as the generalization of the linear complementarity problem \((69)\) to the tensor case.

Let \(\mathcal{A} = (a_{i_1i_2\ldots i_kj_1j_2\ldots j_l}) \in \mathbb{R}^{(p,q,m,n)}\), \(q_m \in \mathbb{R}^m\) and \(q_n \in \mathbb{R}^n\). The rectangular tensor complementarity problem, denoted by RTCP \((\mathcal{A}, q_m, q_n)\), is to find vectors \(x \in \mathbb{R}^m\) and \(y \in \mathbb{R}^n\) such that
\[
\begin{align*}
q_m + \mathcal{A} x^{p-1} y^q & \geq 0, \\
x \geq 0, \\
x^T \left(q_m + \mathcal{A} x^{p-1} y^q \right) & = 0, \\
q_n + \mathcal{A} y^{q-1} y^p & \geq 0, \\
y \geq 0, \\
y^T \left(q_n + \mathcal{A} y^{q-1} y^p \right) & = 0.
\end{align*}
\] (70)

Vectors \(x\) and \(y\) are said to be feasible iff \(x\) and \(y\) satisfy the following inequalities:
\[
\begin{align*}
q_m + \mathcal{A} x^{p-1} y^q & \geq 0, \\
x \geq 0, \\
q_n + \mathcal{A} y^{q-1} y^p & \geq 0, \\
y \geq 0.
\end{align*}
\] (71)

The following equivalent definition of rectangular S-tensor can be given by means of the solution of the RTCP \((\mathcal{A}, q_m, q_n)\).

Theorem 11. Let \(\mathcal{A} = (a_{i_1i_2\ldots i_kj_1j_2\ldots j_l}) \in \mathbb{R}^{(p,q,m,n)}\). Then, \(\mathcal{A}\) is a rectangular S-tensor if and only if the RTCP \((\mathcal{A}, q_m, q_n)\) is feasible for all \(q_m \in \mathbb{R}^m\) and \(q_n \in \mathbb{R}^n\).

Proof. If \(\mathcal{A}\) is a rectangular S-tensor and \(0 < x \in \mathbb{R}^m\) and \(0 < y \in \mathbb{R}^n\), then
\[
\begin{align*}
\mathcal{A} x^{p-1} y^q & > 0, \\
\mathcal{A} y^{q-1} y^p & > 0.
\end{align*}
\] (72)

Then, for each \(q_m \in \mathbb{R}^m\) and \(q_n \in \mathbb{R}^n\), there exists some scalar \(t > 0\) such that
\[
\begin{align*}
\mathcal{A} \left(t^{(1-p)} x \right)^{p-1} y^q & = t \mathcal{A} x^{p-1} y^q \geq -q_m, \\
\mathcal{A} \left(t^{(1-p)} x \right)^{p-1} y^{q-1} & = t \mathcal{A} x^{p-1} y^{q-1} \geq -q_n,
\end{align*}
\] (73)

which means that \(t^{(1-p)} x\) and \(y\) are the feasible vectors of the RTCP \((\mathcal{A}, q_m, q_n)\).

On the contrary, if the RTCP \((\mathcal{A}, q_m, q_n)\) is feasible for all \(q_m \in \mathbb{R}^m\) and \(q_n \in \mathbb{R}^n\), assume that \(q_m < 0, q_n < 0\), and \(x\) and \(y\) are the feasible solutions of the RTCP \((\mathcal{A}, q_m, q_n)\). Then,
\[
q_m + \mathcal{A} \mathbf{x}^p \mathbf{y}^q \geq 0, \quad \mathbf{x} \geq 0, \quad \mathbf{y} \geq 0.
\]

Therefore,
\[
\begin{cases}
\mathcal{A} \mathbf{x}^p \mathbf{y}^q \geq 0, \\
\mathcal{A} \mathbf{y}^q \mathbf{y}^p \geq 0,
\end{cases}
\]

Then, \(\mathcal{A} \) is a rectangular S-tensor by Theorem 7.

In the end of this section, we propose some relationships among these structured rectangular tensors as follows. \(\square \)

Theorem 12

(a) A positive definite rectangular tensor is a rectangular P-tensor and a rectangular P-tensor is a rectangular S-tensor. The inverse implications are not true.

(b) A positive definite rectangular tensor is a strictly copositive rectangular tensor, and a rectangular S-tensor is a strictly copositive rectangular tensor. The inverse implications are not true.

Proof. If \(\mathcal{A} \) is a positive definite rectangular tensor, which means that \(\mathcal{A} \mathbf{x}^p \mathbf{y}^q > 0 \) for all \(\mathbf{x} \in \mathbb{R}^m/\{0\}, \mathbf{y} \in \mathbb{R}^q/\{0\} \), and \(p \) and \(q \) are even, then
\[
\begin{align*}
\sum_{i=1}^{m} x_i (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_i & > 0, \\
\sum_{j=1}^{n} y_j (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_j & > 0,
\end{align*}
\]

then,
\[
\begin{align*}
\sum_{i=1}^{m} x_i (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_i & > 0, \\
\sum_{j=1}^{n} y_j (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_j & > 0,
\end{align*}
\]

therefore, there exists some indices \(i_0 \in [m] \) and \(j_0 \in [n] \) such that
\[
\begin{align*}
x_{i_0} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_{i_0} & > 0, \\
y_{j_0} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_{j_0} & > 0,
\end{align*}
\]

then \(\mathcal{A} \) is a rectangular P-tensor.

If \(\mathcal{A} \) is a rectangular P-tensor, by definitions of rectangular P-tensors and rectangular S-tensors, \(\mathcal{A} \) is a rectangular S-tensor. The conclusion of (b) can be obtained similarly by the definitions of positive definite rectangular tensors, copositive rectangular tensors, and rectangular S-tensors. \(\square \)

6. Conclusions

In this paper, based on the definition of V-singular value for rectangular tensors, we extend the concept of P-tensors and P_0-tensors to rectangular P-tensors and rectangular P_0-tensors. It is shown that all the V-singular values of rectangular P-tensors are positive. Some properties of quantities for rectangular P-tensors are given, and a necessary and sufficient condition for a rectangular tensor to be a rectangular P-tensor is also obtained. The rectangular S-tensor can be viewed as a generalization of S-tensors, and an example is constructed to illustrate that the principal rectangular subtensor of a rectangular S-tensor is not always a rectangular S-tensor. Finally, we introduced the rectangular tensor complementarity problem, an equivalent definition of rectangular S-tensors is given by means of the solution of the rectangular tensor complementarity problem.

By the definition of H-singular value for rectangular tensors, another definitions of rectangular P-tensors and rectangular P_0-tensors can be given as follows.

Definition 7. A tensor \(\mathcal{A} = (a_{i,j,...,j,j}) \in \mathbb{R}^{[p,q,m,n]} \) is called a rectangular HP-tensor, if for each \(\mathbf{x} \in \mathbb{R}^m/\{0\} \), and \(\mathbf{y} \in \mathbb{R}^q/\{0\} \), there exists some indices \(i \in [m], j \in [n] \) such that
\[
\begin{align*}
x_i^{M-1} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_i & > 0, \\
y_j^{M-1} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_j & > 0,
\end{align*}
\]

A tensor \(\mathcal{A} = (a_{i,j,...,j,j}) \in \mathbb{R}^{[p,q,m,n]} \) is called a rectangular HP_0-tensor, if for each \(\mathbf{x} \in \mathbb{R}^m/\{0\} \) and \(\mathbf{y} \in \mathbb{R}^q/\{0\} \), there exists some indices \(i \in [m] \) and \(j \in [n] \) such that
\[
\begin{align*}
x_i^{M-1} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_i & \geq 0, \\
y_j^{M-1} (\mathcal{A} \mathbf{x}^p \mathbf{y}^q)_j & \geq 0,
\end{align*}
\]

Then, all the results for rectangular P-tensors and rectangular P_0-tensors can be extended to rectangular HP-tensors and rectangular HP_0-tensors except Theorem 5, since the rectangular identity tensor for the definition of H-singular value is hard to define. Similarly, we can get that a positive definite rectangular tensor is a rectangular HP-tensor and a rectangular HP-tensor is a rectangular S-tensor.

Data Availability

No additional data are available for this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by NSF of China (no. 11661084), Innovative Talent Team in Guizhou Province (Qian Ke He Pingtai Rencai[2016]5619), Project of Teaching Quality and Teaching Reform of Higher Education in Guizhou Province (Qian Jiao gaofa[2015]337), and New Academic Talents and Innovative Exploration Fostering Project (Qian Ke He Pingtai Rencai[2017]5727-21), Zun Shi Ke He HZ Zhi[2020] 27, [2020]30.
References

[1] N. Bose and P. Kamat, “Algorithm for stability test of multidimensional filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 22, no. 5, pp. 307–314, 1974.

[2] C. Li, Y. Li, and X. Kong, “New eigenvalue inclusion sets for tensors,” Numerical Linear Algebra with Applications, vol. 21, no. 1, pp. 39–50, 2014.

[3] C. Li and Y. Li, “An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors,” Linear and Multilinear Algebra, vol. 64, no. 4, pp. 587–601, 2016.

[4] L. Qi, “Eigenvalues of a real supersymmetric tensor,” Journal of Symbolic Computation, vol. 40, no. 6, pp. 1302–1324, 2005.

[5] M. Che, L. Qi, and Y. Wei, “Positive-definite tensors to nonlinear complementarity problems,” Journal of Optimization Theory and Applications, vol. 168, no. 2, pp. 475–487, 2016.

[6] J. Peña, J. C. Vera, and L. F. Zuluaga, “Completely positive reformulations for polynomial optimization,” Mathematical Programming, vol. 151, no. 2, pp. 405–431, 2014.

[7] L. Qi, “Symmetric nonnegative tensors and copositive tensors,” Linear Algebra and its Applications, vol. 439, no. 1, pp. 228–238, 2013.

[8] Y. Song and L. Qi, “Tensor complementarity problem and semi-positive tensors,” Journal of Optimization Theory and Applications, vol. 169, no. 3, pp. 1069–1078, 2016.

[9] H. Chen, Z.-H. Huang, and L. Qi, “Copositive tensor detection and its applications in physics and hypergraphs,” Computational Optimization and Applications, vol. 69, no. 1, pp. 133–158, 2018.

[10] Y. Song and L. Qi, “Properties of some classes of structured tensors,” Journal of Optimization Theory and Applications, vol. 165, no. 3, pp. 854–873, 2015.

[11] N. Xiu and J. Zhang, “A characteristic quantity of P-matrices,” Applied Mathematics Letters, vol. 15, no. 1, pp. 41–46, 2002.

[12] W. Ding, Z. Luo, and L. Qi, “P-tensors, P_0-tensors, and their applications,” Linear Algebra and Its Applications, vol. 555, pp. 336–354, 2018.

[13] K. Chang, L. Qi, and G. Zhou, “Singular values of a real rectangular tensor,” Journal of Mathematical Analysis and Applications, vol. 370, no. 1, pp. 284–294, 2010.

[14] J. He, Y. Liu, J. Xu, and G. Liu, “V-singular values of rectangular tensors and their applications,” Journal of Inequalities and Applications, vol. 2019, p. 84, 2019.

[15] Y. Yang and Q. Yang, “Singular values of nonnegative rectangular tensors,” Frontiers of Mathematics in China, vol. 6, no. 2, pp. 363–378, 2011.

[16] H. Yao, C. Zhang, L. Liu, J. Zhou, and C. Bu, “Singular value inclusion sets of rectangular tensors,” Linear Algebra and Its Applications, vol. 576, pp. 181–199, 2019.

[17] G. Zhou, L. Caccetta, and L. Qi, “Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor,” Linear Algebra and Its Applications, vol. 438, no. 2, pp. 959–968, 2013.

[18] J. Zhao and C. Li, “Singular value inclusion sets for rectangular tensors,” Linear and Multilinear Algebra, vol. 66, no. 7, pp. 1333–1350, 2018.

[19] J. Zhao, “Two new singular value inclusion sets for rectangular tensors,” Linear and Multilinear Algebra, vol. 67, no. 12, pp. 2451–2470, 2019.

[20] Y. Gu, W. Wu, and W. Wu, “Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors,” Journal of Industrial & Management Optimization, vol. 15, no. 2, pp. 775–789, 2019.

[21] C. Wang, H. Chen, Y. Wang, and G. Zhou, “On copositive identification of partially symmetric rectangular tensors,” Journal of Computational and Applied Mathematics, vol. 372, p. 112678, 2020.

[22] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, MA, USA, 1992.