THE CONCISE GUIDE TO PHARMACOLOGY 2013/14: OVERVIEW

Stephen P.H. Alexander*1, Helen E. Benson2, Elena Faccenda2, Adam J. Pawson2, Joanna L. Sharman2, John C. McGrath1, William A. Catterall6, Michael Spedding4, John A. Peters5, Anthony J. Harmar2 and CGTP Collaborators

*Author for correspondence; steve.alexander@guidetopharmacology.org
1School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
2The University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
3School of Life Science, University of Glasgow, Glasgow G12 8QQ, UK
4Spedding Research Solutions SARL, Le Vésinet 78110, France
5Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
6Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195-7280, USA

Abstract

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.

It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

Table of contents

1449 OVERVIEW
1454 Adiponectin receptors
1455 Fatty acid binding proteins
1457 Sigma receptors
1459 G PROTEIN-COUPLED RECEPTORS
1462 Orphan GPCRs
1471 5-Hydroxytryptamine receptors
1474 Acetylcholine receptors (muscarinic)
1476 Adenosine receptors
1478 Adhesion Class GPCRs
1480 Adrenoceptors
1484 Angiotensin receptors
1485 Apelin receptor
1486 Bile acid receptor
1487 Bombesin receptors
1488 Bradykinin receptors
1489 Calcitonin receptors
1491 Calcium-sensing receptors
1492 Cannabinoid receptors
1494 Chemerin receptor
1495 Chemoattractant receptors
1500 Cholecystokinin receptors
1501 Complement peptide receptors
1502 Corticotropin-releasing factor receptors
1503 Dopamine receptors
1505 Endothelin receptors
1506 Estrogen (G protein-coupled) receptor
1507 Formylpeptide receptors
1508 Free fatty acid receptors
1510 Frizzled Class GPCRs
1511 GABA receptors
1513 Galanin receptors
1514 Ghrer receptors
1515 Glucagon receptor family
1517 Glycoprotein hormone receptors
1518 Gonadotrophin-releasing hormone receptors
1519 GPR18, GPR55 and GPR119
1520 Histamine receptors

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Page Dimensions: 594.0x783.0
[Image 538x645 to 581x688]
1521 Hydroxycarboxylic acid receptors
1522 Kisspeptin receptors
1523 Leukotriene, lipoxin and oxoecosanoid receptors
1525 Lysophospholipid (LPA) receptors
1526 Lysophospholipid (SIP) receptors
1527 Melanin-concentrating hormone receptors
1528 Melatonin receptors
1529 Metabolotropic glutamate receptors
1530 Motilin receptor
1531 Motilin receptor
1532 Neurotensin receptors
1533 Neurotensin receptors
1539 Opioid receptors
1541 Orexin receptors
1542 Oxoglutamate receptor
1543 P2Y receptors
1545 Parathyroid hormone receptors
1546 Peptide PS18 receptor
1547 Platelet-activating factor receptor
1548 Prokineticin receptors
1549 Prolactin-releasing peptide receptor
1550 Prostanoid receptors
1552 Proteinase-activated receptors
1553 Relaxin family peptide receptors
1555 Somatostatin receptors
1556 Succinate receptor
1557 Tachykinin receptors
1558 Thyrotropin-releasing hormone receptors
1559 Trace amine receptor
1560 Urotensin receptor
1561 Vasopressin and oxytocin receptors
1562 VIP and PACAP receptors
1582 LIGAND-GATED ION CHANNELS
1584 S-HT2 receptors
1586 GABA receptors
1590 Glycine receptors
1592 Ionotropic glutamate receptors
1597 Nicotinic acetylcholine receptors
1601 P2X receptors
1603 ZAC
1607 ION CHANNELS
1609 Acid-sensing (proton-gated) ion channels (ASICs)
1611 Aquaporins
1612 CatSper and Two-Pore channels
1613 Chloride channels
1620 Connexins and Pannexins
1621 Cyclic nucleotide-regulated channels
1623 Epithelial sodium channels (ENaC)
1625 IP receptor
1626 Potassium channels
1630 Ryanodine receptor
1632 Sodium leak channel, non-selective
1633 Transient receptor potential channels
1643 Voltage-gated calcium channels
1645 Voltage-gated proton channel
1646 Voltage-gated sodium channels
1652 NUCLEAR HORMONE RECEPTORS
1654 1A. Thyroid Hormone Receptors
1655 1B. Retinoid acid receptors
1656 1C. Peroxisome proliferator-activated receptors
1657 1D. Rev-Erb receptors
1658 1F. Retinoic acid-related orphans
1659 1H. Liver X receptor-like receptors
1660 1I. Vitamin D receptor-like receptors
1661 2A. Hepatocyte nuclear factor-4 receptors
1662 2B. Retinoid X receptors
1663 2C. Testicular receptors
1664 2E. Tailless-like receptors
1665 2F. COUP-TF-like receptors
1666 3B. Estrogen-related receptors
1667 4A. Nerve growth factor IB-like receptors
1668 5A. Fushitataru F1-like receptors
1669 6A. Germ cell nuclear factor receptors
1670 8R. DAX-like receptors
1671 Steroid hormone receptors
1676 CATALYTIC RECEPTORS
1678 Cytokine receptor family
1684 GDNF receptor family
1685 Integrins
1688 Natriuretic peptide receptor family
1689 Pattern Recognition receptors
1692 Receptor serine/threonine kinase (RSTK) family
1695 Receptor tyrosine kinases
1702 Receptor tyrosine phosphatases (RTP)
1703 Tumour necrosis factor (TNF) receptor family
1706 TRANSPORTERS
1708 ATP-binding cassette transporter family
1712 F-type and V-type ATPases
1714 P-type ATPases
1717 SLC1 family of amino acid transporters
1719 SLC2 family of hexose and sugar alcohol transporters
1721 SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)
1723 SLC4 family of bicarbonate transporters
1724 SLC5 family of sodium-dependent glucose transporters
1728 SLC6 neurotransmitter transporter family
1732 SLC8 family of sodium/calcium exchangers
1733 SLC9 family of sodium/hydrogen exchangers
1730 SLC10 family of sodium-bile acid co-transporters
1736 SLC11 family of proton-coupled metal ion transporters
1737 SLC12 family of cation-coupled chloride transporters
1739 SLC13 family of sodium-dependent sulphonate/carboxylate transporters
1740 SLC14 family of facilitative urea transporters
1741 SLC15 family of peptide transporters
1742 SLC16 family of monocarboxylate transporters
1744 SLC17 phosphate and organic anion transporter family
1746 SLC18 family of vesicular amine transporters
1748 SLC19 family of vitamin transporters
1749 SLC20 family of sodium-dependent phosphate transporters
1750 SLC22 family of organic cation and anion transporters
1753 SLC23 family of ascorbic acid transporters
1754 SLC24 family of sodium/potassium/calcium exchangers
1755 SLC25 family of mitochondrial transporters
1760 SLC26 family of anion exchangers
1762 SLC27 family of fatty acid transporters
1763 SLC28 and SLC29 families of nucleoside transporters
1765 SLC30 zinc transporter family
1766 SLC31 family of copper transporters
1767 SLC32 vesicular inhibitory amino acid transporter
1768 SLC33 acetylCoA transporter
1769 SLC34 family of sodium phosphate co-transporters
1770 SLC35 family of nucleotide sugar transporters
1772 SLC36 family of proton-coupled amino acid transporters
1773 SLC37 family of phosphosugar/phosphate exchangers
1774 SLC38 family of sodium-dependent neutral amino acid transporters
1776 SLC39 family of metal ion transporters
1777 SLC40 iron transporter
1778 SLC41 family of divalent cation transporters
1779 SLC42 family of Rhesus glycoprotein ammonium transporters
1780 SLC43 family of large neutral amino acid transporters
1781 SLC44 choline transporter-like family
1782 SLC45 family of putative sugar transporters
1783 SLC46 family of folate transporters
An Introduction to the Concise Guide to PHARMACOLOGY 2013/14

The great proliferation of drug targets in recent years has driven the need to provide a logically-organised synopsis of the nomenclature and pharmacology of these targets. This is the underlying reason for this Guide to PHARMACOLOGY 2013/14, distributed with the British Journal of Pharmacology, and produced in association with NC-IUPHAR, the Nomenclature Committees of the International Union of Basic and Clinical Pharmacology. Our intent is to produce an authoritative but user-friendly publication, which allows a rapid overview of the key properties of a wide range of established or potential pharmacological targets. The aim is to provide information succinctly, so that a newcomer to a particular target group can identify the main elements ‘at a glance’. It is not our goal to produce all-inclusive reviews of the targets presented; references to these are included in the Further Reading sections of the entries or, for many targets, the website www.guidetopharmacology.org provides access to more extensive information. The Guide to PHARMACOLOGY 2013/14 presents each entry, typically a circumscribed target class family on, wherever possible, a single page, so as to allow easy access and rapid oversight.

The list of targets present is, in many cases, a comprehensive reflection of the known targets within the particular group. Our philosophy has been to present data on human proteins wherever possible, both in terms of structural information and pharmacology. To this end, the HGNC gene nomenclature and UniProt unique ID are indicated to allow rapid access through free online databases for further information. In a few cases, where structural or pharmacological information is not available for human targets, we have used data from other species, as indicated. A priority in constructing these tables was to present agents which represent the most selective and which are available by donation or from commercial sources, now or in the near future.

The Guide is divided into seven further sections, which comprise pharmacological targets of similar structure/function. These are G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. In this overview are listed protein targets of pharmacological interest, which are not G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors, transporters or enzymes. In comparison with the Fifth Edition of the Guide to Receptors & Channels [1], we have added a number of new records, expanding the total to include over 2000 protein targets, primarily from increasing the content on transporters and enzymes.

The Editors of the Guide have compiled the individual records, taking advice from many Collaborators (listed on page 1452). Where appropriate, an indication is given of the status of the nomenclature, as proposed by NC-IUPHAR, published in Pharmacological Reviews. Where this guidance is lacking, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus, which attempts to fit in within the general guidelines from NC-IUPHAR [2]. Tabulated data provide ready comparison of selective agents and probes (radioligands and PET ligands, where available) within a family of targets and additional commentary highlights whether species differences or ligand metabolism are potential confounding factors. We recommend that any citations to information in the Concise Guide are presented in the following format:

Alexander SPH et al. (2013). The Concise Guide to PHARMACOLOGY 2013/14. Br J Pharmacol 170: 1449–1867.

Acknowledgements

We are extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.
Acknowledgement of Collaborators

We are extremely grateful to the long list of collaborators who assisted in the construction of the Concise Guide to PHARMACOLOGY 2013/14 and to the website www.guidetopharmacology.org, as well as to the Guides to Receptors and Channels.

N ABUL-HASN, New York, USA
CM ANDERSON, Berkeley, USA
CMH ANDERSON, Newcastle, UK
MS AIRAKSINEN, Helsinki, Finland
M ARITA, Boston, USA
E ARTHOFER, Stockholm, Sweden
EL BARKER, West Lafayette, USA
C BARRATT, Dundee, UK
NM BARNES, Birmingham, UK
R BATHGATE, Melbourne, Australia
PM BEART, Melbourne, Australia
D BELELI, Dundee, UK
AJ BENNETT, Nottingham, UK
NBM BIRDSELL, London, UK
D BOISON, Portland, USA
TI BONNER, Bethesda, USA
L BRAILSFORD, Nottingham, UK
S BROER, Canberra, Australia
P BROWN, Manchester, UK
G CALÓ', Ferrara, Italy
WG CARTER, Nottingham, UK
WA CATTERALL, Seattle, USA
SLF CHAN, Nottingham, UK
MV CHAO, New York, USA
N CHIANG, Boston, USA
A CHRISTOPOLOUS, Parkville, Australia
JJ CHUN, La Jolla, USA
J CIDŁOWSKI, Bethesda, USA
DF CLAPHAM, Boston, USA
S COCKCROFT, London, UK
MA CONNOR, Sydney, Australia
BA COX, Bethesda, USA
HM COX, London, UK
A CUTHBERT, Cambridge, UK
FM DAUTZENBERG, Allschwil, Switzerland
AP DAVENPORT, Cambridge, UK
PA DAWSON, Winston-Salem, USA
G DENT, Keele, UK
JP DIJKSTHERHUIS, Stockholm, Sweden
CT DOLLERY, Stevenage, UK
AC DOLPHIN, London, UK
M DONOWITZ, Baltimore, USA
ML DUBOCOVICH, Buffalo, USA
L EIDEN, Bethesda, USA
K EIDNE, Nedlands, Australia
BA EVANS, Melbourne, Australia
D FABBRO, Basel, Switzerland
C FAHLKE, Hannover, Germany
R FARNDALE, Cambridge, UK
GA FITZGERALD, Philadelphia, USA
TM FONG, Jersey City, USA
CJ FOWLER, Umea, Sweden
JR FRY, Nottingham, UK
CD FUNK, Kingston, Canada
AH FUTERMAN, Tel Aviv, Israel
V GANAPATHY, Augusta, USA
B GASNIER, Paris, France
MA GERSHENGORN, Bethesda, USA
A GOLDIN, Irvine, USA
ID GOLDMAN, New York, USA
AL GUNDLACH, Melbourne, Australia
HAGENBUCHE, Kansas, USA
TG HALES, Dundee, UK
JR HAMMOND, London, Canada
M HAMON, Paris, France
JG HANCOX, Bristol, UK
RL HAUGER, San Diego, USA
DL HAY, Auckland, New Zealand
AJ HOBBS, London, UK
MD HOLLENBERG, Calgary, Canada
ND HOLLIDAY, Nottingham, UK
D HOYE, Basel, Switzerland
NA HYNES, Basel, Switzerland
K-I INUI, Kyoto, Japan
S ISHI, Tokyo, Japan
KA JACOBSON, Bethesda, USA
GE JARVIS, Cambridge, UK
MF JARVIS, Chicago, USA
R JENSEN, Washington DC, USA
CE JONES, Horsham, UK
RL JONES, Glasgow, UK
K KAIBUCHI, Nagoya, Japan
Y KANAI, Osaka, Japan
C KENNEDY, Glasgow, UK
ID KERR, Nottingham, UK
A KHAN, Chicago, USA
MJ KLIENZ, Cambridge, UK
JP KUKKONEN, Helsinki, Finland
JL LAPOINTE, Montreal, Canada
R LEURS, Amsterdam, The Netherlands
E LINGUEGLIA, Valbonne, France
J LIPPAT, Leeds, UK
SJ LOLAIT, Bristol, UK
SCR LUMMIS, Cambridge, UK
JW LYNCH, Brisbane, Australia
D MACJAN, Norwich, UK
J MAGUIRE, Cambridge, UK
IL MARSHALL, Birmingham, UK
JM MAY, Nashville, USA
CA MCARDLE, Bristol, UK
JC MCGARTH, Glasgow, UK
MC MICHEL, Amsterdam, The Netherlands
NS MILLAR, London, UK
L MILLER, Scottsdale, USA
V MITOLO, Bari, Italy
PN MONK, Sheffield, UK
PK MOORE, Singapore
AJ MOORHOUSE, Sydney, Australia
B MOUILLAC, Montpellier, France
PM MURPHY, Bethesda, USA
RR NEUBIG, Ann Arbor, USA
J NEUMAIER, Seattle, USA
B NIESLER, Heidelberg, Germany
A OBAIDAT, Kansas, USA
S OFFERMANNS, Bad Nauheim, Germany
E OHLSTEIN, Philadelphia, USA
MA PANARO, Bari, Italy
S PARSONS, Santa Barbara, USA
RG PERTWEE, Aberdeen, UK
J PETERSSEN, Stockholm, Sweden
J-P PIN, Montpellier, France
DR POYNER, Birmingham, UK
S PRIGENT, Leicester, UK
ER PROSSNITZ, Port St Lucie, USA
JQ PETERSON, Lexington, USA
SA WALDMAN, Philadelphia, USA
NM BARNES, Birmingham, UK
D MACEWAN, Melbourne, Australia
JL TRAYNOR, Ann Arbor, USA
SB TRAY, Port St Lucie, USA
AP DAVENPORT, Cambridge, UK
JL TRAYNOR, Ann Arbor, USA
SB TRAY, Port St Lucie, USA
R DUNITZ, Cambridge, UK
JL TRAYNOR, Ann Arbor, USA
SB TRAY, Port St Lucie, USA
R DUNITZ, Cambridge, UK
R ROBERTS, Nottingham, UK
R ROSKOSKI, New Orleans, USA
RA ROSS, Toronto, Canada
M ROTH, Kansas, USA
G RUDNICK, New Haven, USA
RM RYAN, Sydney, Australia
SI SAID, Stony Brook, USA
L SCHILD, Lausanne, Switzerland
G SCHULTE, Stockholm, Sweden
S SCHULZ, Philadelphia, USA
CN SHERAN, Boston, USA
PM SEXTON, Melbourne, Australia
JH SIEGEL, Los Angeles, USA
G SINGH, Cambridge, UK
S SITAPESAN, Bristol, UK
TG SMART, London, UK
DM SMITH, London, Australia
TN SOGA, Ibaraki, Japan
A STAHLE, Berkeley, USA
G STEWART, Dublin, Ireland
LA STODDART, Nottingham, UK
AJ SUMMERS, Parkville, Australia
B THORENS, Lausanne, Switzerland
DT THWAITES, Newcastle, UK
I TOLL, Port St Lucie, USA
S TRAPP, Crewe, UK
JR TRAYNOR, Ann Arbor, USA
TB UDIN, Bethesda, USA
R VANDENBERG, Sydney, Australia
C VILLALON, Mexico, Mexico
M VORE, Lexington, USA
SA WALDMAN, Philadelphia, USA
ME WARD, Manchester, UK
GB WILLARS, Leicester, UK
JW WOONNACOTT, Bath, UK
E WRIGHT, Los Angeles, USA
RD YE, Shanghai, China
A YONEZAWA, Kyoto, Japan
A YONEZAWA, Kyoto, Japan
M ZIMMERMANN, Frankfurt, Germany
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology (2013) 170, 1449-1458

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Conflict of interest

The authors state that there are no conflicts of interest to disclose.

List of records presented

1454 Adiponectin receptors
1455 Fatty acid binding proteins
1457 Sigma receptors
Adiponectin receptors

Overview: Adiponectin receptors (provisional nomenclature, ENSFM0000000270960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as ADIPOQ: adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein; Q15848) originally cloned from adipocytes [4]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [6]. Signalling through these receptors appears to avoid G proteins. Adiponectin receptors appear rather to stimulate protein phosphorylation via AMP-activated protein kinase and MAP kinase pathways [6], possibly through the protein partner APPL1 (adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1, Q9UKG1 [5]). The adiponectin receptors are a class of proteins (along with membrane progestin receptors), which contain seven sequences of aliphatic amino acids reminiscent of GPCRs, but which are structurally and functionally distinct from that class of receptor.

Nomenclature	Adipo1 receptor	Adipo2 receptor
HGNC, UniProt	ADIPOR1, Q96A54	ADIPOR2, Q86V24
Rank order of potency	globular adiponectin > adiponectin	globular adiponectin = adiponectin

Comments: T-Cadherin (CDH13, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [3].

Further reading

Buechler C, Wanninger J, Neumeier M. (2010) Adiponectin receptor binding proteins—recent advances in elucidating adiponectin signalling pathways. FEBS Lett 584: 4280–4286. [PMID:20875820]
Dalamaga M, Diakopoulos KN, Mantzoros CS. (2012) The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33: 547–594. [PMID:22547160]
Goldstein BJ, Scalia RG, Ma XL. (2009) Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med 6: 27–35. [PMID:19029992]
Juhl C, Beck-Sickinger AG. (2012) Molecular tools to characterize adiponectin activity. Vitam Horm 90: 31–56. [PMID:23017711]
Shetty S, Kusminski CM, Scherer PE. (2009) Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci 30: 234–239. [PMID:19359049]
Sun Y, Xun K, Wang C, Zhao H, Bi H, Chen X, Wang Y. (2009) Adiponectin, an unlocking adipocytokine. Cardiovasc Ther 27: 59–75. [PMID:19207481]
Thundyil J, Farolovski D, Sobey CG, Arumugam TV. (2012) Adiponectin receptor signalling in the brain. Br J Pharmacol 165: 313–327. [PMID:21718299]
Fatty acid binding proteins

Overview: Fatty acid-binding proteins are low molecular weight (100–130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g. in plasma) or transport these agents; to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [16]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.

Table: Fatty Acid Binding Proteins (FABPs)

Preferred abbreviation	Nomenclature	HGNC, UniProt	Comment
FABP1	fatty acid binding protein 1, liver	FABP1, P07148	stearic acid, oleic acid > palmitic acid, linoleic acid > arachidonic acid, α-linolenic acid [13]
FABP2	fatty acid binding protein 2, intestinal	FABP2, P12104	stearic acid > palmitic acid, oleic acid > linoleic acid > arachidonic acid, α-linolenic acid [13]
FABP3	fatty acid binding protein 3, muscle and heart (mammary-derived growth inhibitor)	FABP3, P05413	stearic acid, oleic acid, palmitic acid > linoleic acid, α-linolenic acid, arachidonic acid [13]
FABP4	fatty acid binding protein 4, adipocyte	FABP4, P15090	oleic acid, palmitic acid, stearic acid, linoleic acid > α-linolenic acid, arachidonic acid [13]
FABP5	fatty acid binding protein 5 (psoriasis-associated)	FABP5, Q01469	–

Table: Fatty Acid Binding Proteins (other)

Preferred abbreviation	Nomenclature	HGNC, UniProt	Comment
FABP6	fatty acid binding protein 6, ileal	FABP6, P51161	–
FABP7	fatty acid binding protein 7, brain	FABP7, O15540	A broader substrate specificity than other FABPs, binding two fatty acids per protein [18]
FABP8	peripheral myelin protein 2	PMP2, P02689	Crystal structure of the human FABP8 [17]
FABP9	fatty acid binding protein 9, testis	FABP9, Q0Z758	–
FABP12	fatty acid binding protein 12	FABP12, A6NFH5	–

Table: Retinol Binding Proteins (RBPs)

Preferred abbreviation	Nomenclature	HGNC, UniProt	Comment
RBP1	retinol binding protein 1, cellular	RBP1, P09455	–
RBP2	retinol binding protein 2, cellular	RBP2, P50120	stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [13]
RBP3	retinol binding protein 3, interstitial	RBP3, P10745	–
RBP4	retinol binding protein 4, plasma	RBP4, P02753	–
RBP5	retinol binding protein 5, cellular	RBP5, P82980	–

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Table 53

Preferred abbreviation	RBP7	RLBP1	CRABP1	CRABP2
Nomenclature	retinol binding protein 7, cellular	retinaldehyde binding protein 1	cellular retinoic acid binding protein 1	cellular retinoic acid binding protein 2
HGNC, UniProt	RBP7, Q96R05	RLBP1, P12271	CRABP1, P29762	CRABP2, P29373
Rank order of potency	–	11-cis-retinal, 11-cis-retinol > 9-cis-retinal, 13-cis-retinal, 13-cis-retinol, all-trans-retinal, retinol [8]	all-trans-retinoic acid > 9-cis-retinoic acid stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [14]	–

Comments: Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC₅₀ ~ 8.8) compared to FABP3 or FABP5 (pIC₅₀ < 6.6 [9,17]). HTS01037 is reported to interfere with FABP4 action [10]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further reading

Chmurzynska A. (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. *J Appl Genet* 47: 39–48. [PMID:16424607]

Furuhashi M, Hotamisligil GS. (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. *Nat Rev Drug Discov* 7: 489–503. [PMID:18511927]

Kralisch S, Fasshauer M. (2013) Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease?. *Diabetologia* 56: 10–21. [PMID:23052058]

Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK et al. (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. *Lipids* 43: 1–17. [PMID:17882463]

Storch J, Thumser AE. (2010) Tissue-specific functions in the fatty acid-binding protein family. *J Biol Chem* 285: 32679–32683. [PMID:20716527]

Yamamoto T, Yamamoto A, Watanabe M, Matsu T, Yamazaki N, Kataoka M, Terada T, Shinohara Y. (2009) Classification of FABP isoforms and tissues based on quantitative evaluation of transcript levels of these isoforms in various rat tissues. *Biotechnol Lett* 31: 1695–1701. [PMID:19565192]
Sigma receptors

Overview: Although termed ‘receptors’, the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites, which appear to be intracellular.

Nomenclature	σ1 (sigma non-opioid intracellular receptor 1)	σ2
HGNC, UniProt	SIGMAR1, Q99720	–
Selective agonists	(+)-SK&F10047, (RS)-PPCC (pK 8.8) [25], PRE-084 (pIC\textsubscript{50} 7.4) [26]	PB-28 (pK 8.3) [21]
Selective antagonists	NE-100 (pIC\textsubscript{50} 8.4) [24], BD-1047 (pIC\textsubscript{50} 7.4) [23]	(R5)-SM21 (pIC\textsubscript{50} 7.2) [22]
Radioligands (K\textsubscript{d})	[3H]-pentazocine (Agonist)	[3H]-di-o-tolyguanidine (Agonist)

Comments: (-)-pentazocine also shows activity at opioid receptors. There is no molecular correlate of the sigma2 receptor.

Further reading

de Medina P, Paillasse MR, Ségala G, Khallouki F, Brilouet S, Dalenc F, Courbon F, Record M, Poirot M, Silvente-Poirot S. (2011) Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEB5 ligands. *Chem Phys Lipids* 164: 432–437. [PMID:21641337]

Dubrovsky B. (2006) Neurosteroids, neuroactive steroids, and symptoms of affective disorders. *Pharmacol Biochem Behav* 84: 644–655. [PMID:16962651]

Guitart X, Codony X, Monroy X. (2004) Sigma receptors: biology and therapeutic potential. *Psychopharmacology (Berl)* 174: 301–319. [PMID:15197533]

Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ. (2003) Sigma receptors: potential medications development target for anti-cocaine agents. *Eur J Pharmacol* 469: 1–12. [PMID:12782179]
References

1. Alexander SPH et al. (2011) Br J Pharmacol 164: S1–S324. PM:22040146
2. Vanhoutte PM et al. (1996) Pharmacol Rev 48: 1–2. PM:8685244
3. Hug C et al. (2004) Proc Natl Acad Sci U S A 101: 10308–10313. [PMID:15210937]
4. Maeda K et al. (1996) Biochem Biophys Res Commun 221: 286–289. [PMID:8619847]
5. Mao X et al. (2006) Nat Cell Biol 8: 516–523. [PMID:16622416]
6. Yamauchi T et al. (2003) Nature 423: 762–769. [PMID:12802337]
7. Balendiran GK et al. (2000) J Biol Chem 275: 27045–27054. [PMID:10854433]
8. Crabb JW et al. (1998) Protein Sci 7: 746–757. [PMID:9541407]
9. Furuhashi M et al. (2007) Nature 447: 959–965. [PMID:17554340]
10. Hertzel AV et al. (2009) J Med Chem 52: 6024–6031. [PMID:19754198]
11. Hohoff C et al. (1999) Biochemistry 38: 12229–12239. [PMID:10493790]
12. Majava V et al. (2010) PLoS ONE 5: e10300. [PMID:20421974]
13. Richieri GV et al. (1994) J Biol Chem 269: 23918–23930. [PMID:7929039]
14. Richieri GV et al. (2000) Biochemistry 39: 7197–7204. [PMID:10852718]
15. Sacchettini JC et al. (1989) J Mol Biol 208: 327–339. [PMID:2671390]
16. Schroeder F et al. (2008) Lipids 43: 1–17. [PMID:17882463]
17. Sulsky R et al. (2007) Bioorg Med Chem Lett 17: 3511–3515. [PMID:17502136]
18. Young AC et al. (1994) Structure 2: 523–534. [PMID:7922029]
20. Zwicker BL, Agellon LB. (2013) Int J Biochem Cell Biol 45: 1389–1398. [PMID:23603607]
21. Berardi F et al. (1996) J Med Chem 39: 176–182. [PMID:8568804]
22. Mach RH et al. (1999) Life Sci 64: PL131–PL137. [PMID:10096443]
23. Matsumoto RR et al. (1995) Eur J Pharmacol 280: 301–310. [PMID:8566098]
24. Okuyama S et al. (1993) Life Sci 53: PL285–PL290. [PMID:7901723]
25. Prezzavento O et al. (2007) J Med Chem 50: 951–961. [PMID:17328523]
26. Su TP, et al. (1991) J Pharmacol Exp Ther 259: 543–550. [PMID:16589302]
