163. Development of an Electronic Flagging Tool for Identifying Cardiac Device Infections: Insights from the VA CART Program

Archana Avundik, MDCM; 1 Maggie Stanislawski, PhD; 1 Payal Mehta, MD; 1 Hilary Maill, PhD; 2 Martin Schweizer, PhD; 1 P. Michael Hs, MD, PhD; 1, 2 Kalpana Gupta, MD, MPH; 1 and Westyn Branch-Elliman, MD, MMSc. 1, 2 VA Boston Healthcare System, West Roxbury, Massachusetts, 1 Internal Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, Massachusetts, 1 University of Colorado School of Public Health, Denver, Colorado, 2 Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, West Roxbury, Massachusetts, 1 Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa, 3 Seattle/Denver Center of Innovation for Veteran-Centered and Value-Driven Care, Denver, Colorado, 3 VA Boston Healthcare System, Boston, Massachusetts, 4 Boston University School of Medicine, Boston, Massachusetts, 5 Harvard Medical School, Boston, Massachusetts

Session: 46. Healthcare Epidemiology: Special Populations Thursday, October 4, 2018: 10:30 AM

Background. Surveillance is an essential aspect of infection prevention. Despite the high morbidity and mortality associated with procedure-related Cardiac Implantable Electronic Device (CIED) infections, methods for identifying them are limited. The objective of this study was to develop an algorithm with electronic flags to facilitate detection of CIED infections in a large, multi-center cohort.

Methods. A sample of patients who underwent CIED procedures entered into the VA Clinical Assessment Reporting and Tracking Electrophysiology (CART-EP) program from FY 2007 to 2015 were included in the nested case–control study. After cohort creation, data from this review process were combined with electronic variables (e.g., microbiology orders, ICD 9/10 codes) to develop a preliminary algorithm that categorized patients as high, intermediate, or low risk of CIED infection. Results. A total of 1,014 unique patients out of a cohort of 5,955 procedures underwent manual review. Among these cases, 59 CIED infections and 955 controls were identified. Electronic variables predictive of CIED infection included ICD 9/10 infection codes and microbiology orders (table). ICD 9/10 codes had excellent PPV for flagging infections but sensitivity was limited (47.5%, see figure). Adding microbiology order flags increased sensitivity but lowered specificity. Specificity in patients without either flag was outstanding (99%).

Disclosures. M. Juthani-Mehta, Iterum Therapeutics: Scientific Advisor, Consulting fee.

164. Reporting the High-resolution Structure of the Enterococcal Ribosome: A New Template for Antibiotic Discovery

Gervald Jogl, PhD; 1 Reza Khayat, PhD; 1 Eileen Murphy, BA; 2 Torsten Kleffmann, PhD; 3 Kayundra Singh, PhD; 3 Barbara Murray, MD; 3 and Kurt Krause, MD, PhD, FIDSA. 1 Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 1 Chemistry and Biochemistry, City College of New York, New York, New York, 1 Biochemistry, University of Otago, Dunedin, New Zealand, 5 Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas

Session: 47. Science Relevant to ID Thursday, October 4, 2018: 10:30 AM

Background. The ribosome is a rich target for antibiotic design and its structural secrets have been described at the atomic level over the past 2 decades. However, most bacterial ribosome structures come from nonpathogenic species of Archaea or thermophilic bacteria. To aid in the development of modern antibiotics against the enterococcus, we report the structure of the ribosome from Enterococcus faecalis at 3.5 Å resolution using cryo-electron microscopy.

Methods. E. faecalis strain OG1 was grown in liquid culture, collected and lysed using a French press. 70S ribosomes were purified using centrifugation through a sucrose cushion followed by column chromatography and sucrose gradient centrifugation. 70S particles were diluted in buffer and applied to a holey carbon grid and using an FEI vitrobot were flash-frozen in liquid ethane. Data were collected on an FEI Titan Krios operating at 300 kV acceleration voltage. The particles classified into 6 distinct structures based on their composition. Completed maps were utilized for structure modelling using Coot and were then refined using real space refinement within Phenix.

Results. High-quality maps of the 70S ribosome were obtained at up to 3.5 Å resolution in several distinct conformations. The 23S, 16S, and 5S RNA structures were almost completely built into maps with clear density. All but 2 ribosome proteins L25

Table: Electronic flags for CIED infection

Infection flag	Infection (N = 59)	No infection (N = 955)	OR	P-value
CIED infection ICD 9/10	21/39 (56.4%)	1/955 (0.10%)	340	<0.001
Surgical site infection (SSI) ICD 9/10	7/39 (11.9%)	6/955 (0.63%)	18.9	<0.001
CIED infection or SSI ICD 9/10	28/59 (47.5%)	7/955 (0.73%)	64.7	<0.001
Micro order*	53/59 (89.8%)	19/955 (20.7%)	5.4	<0.001

*Blood, wound, and unclassified cultures.