Construction of \mathcal{PT}–asymmetric non-Hermitian Hamiltonians with \mathcal{CPT} symmetry

Emanuela Caliceti
Dipartimento di Matematica dell’Università and Istituto Nazionale di Fisica Nucleare, I-40127 Bologna, Italy
e-mail: caliceti@dm.unibo.it

Francesco Cannata
Dipartimento di Fisica dell’Università and Istituto Nazionale di Fisica Nucleare, I-40126 Bologna, Italy
e-mail: cannata@bo.infn.it

Miloslav Znojil
Ústav jaderné fyziky AV ČR, 250 68 Řež, Czech Republic
e-mail: znojil@ujf.cas.cz

and

Alberto Ventura
Ente Nuove Tecnologie, Energia e Ambiente, and Istituto Nazionale di Fisica Nucleare, I-40126 Bologna, Italy
e-mail: ventura@bologna.enea.it
Abstract

Within CPT—symmetric quantum mechanics the most elementary differential form of the “charge operator” \mathcal{C} is assumed. A closed-form integrability of the related coupled differential self-consistency conditions and a natural embedding of the Hamiltonians in a supersymmetric scheme is achieved. For a particular choice of the interactions the rigorous mathematical consistency of the construction is scrutinized suggesting that quantum systems with non-self-adjoint Hamiltonians may admit probabilistic interpretation even in presence of a manifest breakdown of both \mathcal{T} symmetry (i.e., Hermiticity) and \mathcal{PT} symmetry.

PACS 02.30.Tb 03.65Ca 03.65.Db 03.65.Ge
1 Introduction

The popularity of anharmonic-oscillator models, such as

\[H^{(\text{AHO})}(f, g) = -\frac{d^2}{dx^2} + x^2 + f x^3 + g x^4 \]

seems to reflect a fortunate combination of physical appeal (the potential is safely confining at \(g > 0 \)) and computational tractability. In this letter, we intend to join the effort of studying these models in a non-self-adjoint regime [1]. While the construction of the solutions becomes fairly easy in perturbative framework [2,3], a certain paradox arises because the perturbative power series (near \(f = 0 \))

\[E^{(\text{AHO})}(f, g) = \sum_{k=0}^{\infty} f^k E_k^{(\text{AHO})}(0, g) \]

should represent the energies for all the complex couplings which lie in a sufficiently small circle of convergence. A deeper analysis [4,5] revealed that the energies \(E_n^{(\text{AHO})}(f, g) \) should be considered as the infinite sets of the values of a single analytic function of the couplings on different Riemann sheets.

The latter idea has steadily stimulated interest in the manifestly non-Hermitian anharmonic oscillators [6–8]. Finally, a real boom of interest in similar models arose after the seminal letter [9] by Bender and Boettcher, who argued that the reality of the spectra should be related to the symmetries of the Hamiltonians. Indeed, once we re-write Hermiticity, \(H = H^\dagger \), in the form of an involutive time-reversal symmetry, \(\mathcal{T} [10] \),

\[\mathcal{T} H = H \mathcal{T} , \quad (1) \]

it is quite natural to replace eq. (1) with the constraint

\[\mathcal{PT} H = H \mathcal{PT} \quad (2) \]
where \mathcal{P} denotes parity. Eq. (2) is valid for Hamiltonians that are invariant under \mathcal{PT}, but not necessarily under \mathcal{P} and \mathcal{T} separately.

The expected reality of the energies $E_{n}^{(AHO)}(i\lambda, g)$, with real λ and g, has been supported, in some cases, by rigorous proofs [11,12]. A further weakening of the standard Hermiticity is possible once we replace \mathcal{P} in Eq. (2) by any other Hermitian operator $\mathcal{F} = \mathcal{F}^\dagger$ [13]. One thus has the new condition [14]

$$\mathcal{F}\mathcal{T}H = H\mathcal{F}^\dagger \iff \mathcal{F}H^\dagger = H\mathcal{F},$$

(3)

which, for $\mathcal{F} = 1$, becomes Hermiticity and for $\mathcal{F} = \mathcal{P}$ becomes \mathcal{PT} symmetry. Equation (3) implies that if H has an eigenvalue E, then E^*, apart from normalization problems, is also an eigenvalue unless $\mathcal{F}\psi^* = 0$, so eigenvalues are either real, or enter in complex conjugate pairs [15].

One could, generically, construct many operators \mathcal{F} which would be, via eq. (3), compatible with a given Hamiltonian H. Among all the possible choices of these (metric) operators, a privileged position is occupied by the positive bounded Hermitian ones, because the corresponding Hamiltonians admit probabilistic interpretation [16].

2 CPT–symmetric models

2.1 Factorized \mathcal{F}

One may demand a factorization of the operator $\mathcal{F} = \mathcal{F}^\dagger$ into a product, say, $\mathcal{F} \equiv \mathcal{C}\mathcal{P}$ where, conventionally, \mathcal{C} can be called a “charge conjugation” operator [1,17]. In principle, this would constitute a \mathcal{CPT}-symmetric quantum mechanics, with an obvious ambition of being a zero-dimensional \mathcal{CPT}-symmetric field theory.

For our purposes, however, the involutory property $\mathcal{C}^2 = 1$ of the charge, or
of the so called quasi-parity [18], in some exactly solvable one-dimensional examples

\[H = -\frac{d^2}{dx^2} + V(x), \quad x \in \mathbb{R} \]

(4)

is by far not necessary. Our interest will naturally be focused on the possibility that any system in \(\mathcal{CPT}\)-symmetric quantum mechanics may violate both the \(\mathcal{PT}\) and \(\mathcal{T}\) symmetries.

We proceed constructively and, for the sake of definiteness, we select the class of operators

\[\mathcal{C} = \frac{d}{dx} + w(x) \]

in conjunction with the above Hamiltonians (4).

In our specific Ansatz for \(\mathcal{C}\), in order to enforce Hermiticity of \(\mathcal{F}\), keeping in mind that \(\mathcal{P} = \mathcal{P}^\dagger\) and \(\mathcal{P}^2 = 1\), we have to postulate definite spatial symmetry properties of the complex function \(w(x) = \sigma(x) + i \alpha(x)\) with

\[\Re w(x) = \sigma(x) = \sigma(-x), \quad \Im w(x) = \alpha(x) = -\alpha(-x), \quad x \in \mathbb{R} \]

(5)

2.2 Compatibility conditions and their integrability

Our Hamiltonian, \(H\), is assumed compatible with the \(\mathcal{CPT}\) symmetry condition, i.e. Eq. (3) with \(\mathcal{F} = \mathcal{CP}\). A verification of this condition will be the core of our present construction. It necessitates a decomposition of our Hamiltonian in the sum

\[H = -\frac{d^2}{dx^2} + \Sigma(x) + K(x) + i S(x) + i D(x), \]

(6)

where the separate components of the complex potential \(V(x)\) may be chosen to exhibit definite parities,

\[\Sigma(x) = \Sigma(-x), \quad K(x) = -K(-x), \quad S(x) = S(-x), \quad D(x) = -D(-x). \]
This simplifies the form of H^\dagger and our main compatibility constraint (3). In principle, it should be a linear differential operator of the third order but once we re-write it in the form of a product, $[HC - C(PH^\dagger P)]P$, we immediately see that the coefficients of the third and of the second derivative are identically zero. A condition of the vanishing of the coefficient of the first derivative remains nontrivial and relates the potentials K and S to the choice of C,

$$K(x) = \frac{d}{dx} \sigma(x), \quad S(x) = \frac{d}{dx} \alpha(x).$$ \tag{7}

In this way we are left with the condition which connects the two complex functions $V(x)$ and $w(x)$. Its separation into real and imaginary part proves encouragingly simple

$$\begin{aligned}
\frac{d}{dx} \Sigma(x) &= 2 \sigma(x) \frac{d}{dx} \sigma(x) - 2 \alpha(x) \frac{d}{dx} \alpha(x), \\
\frac{d}{dx} D(x) &= 2 \sigma(x) \frac{d}{dx} \alpha(x) + 2 \alpha(x) \frac{d}{dx} \sigma(x),
\end{aligned}$$ \tag{8}

luckily admitting an entirely elementary integration, with just a single real integration constant, ω

$$\Sigma(x) = \sigma^2(x) - \alpha^2(x) + \omega, \quad D(x) = 2 \sigma(x) \alpha(x),$$ \tag{9}

This means that we may contemplate a family of anharmonic-oscillator examples with $\sigma(x) = \sigma_n(x) = \mu_n x^{2n}$ and $\alpha(x) = \alpha_n(x) = \nu_n x^{2n-1}$ for illustration, with real μ_n, ν_n and with any choice of the index $n = 1, 2, \ldots$.
3 Discussion

3.1 Supersymmetric picture

One can rewrite equations (9) supersymmetrically [19]. It is not difficult to check that H of eq. (6) with $\omega = 0$ satisfies

$$H = \mathcal{F}\mathcal{F}^*, \quad H^\dagger = \mathcal{F}^*\mathcal{F},$$

where \mathcal{F}^* is the complex conjugate of \mathcal{F}. We introduce the super-charges

$$Q \equiv \begin{pmatrix} 0 & \mathcal{F} \\ 0 & 0 \end{pmatrix}, \quad \tilde{Q} \equiv \begin{pmatrix} 0 & 0 \\ \mathcal{F}^* & 0 \end{pmatrix}. \quad (11)$$

It is easy to check that $Q \neq \tilde{Q}^\dagger$, insofar as $\mathcal{F}^\dagger \neq \mathcal{F}^*$, $Q^2 = \tilde{Q}^\dagger = 0$, and $[Q, H] = [\tilde{Q}, H] = 0$. The super-Hamiltonian reads

$$\mathcal{H} \equiv \{Q, \tilde{Q}\} = \begin{pmatrix} \mathcal{F}\mathcal{F}^* & 0 \\ 0 & \mathcal{F}^*\mathcal{F} \end{pmatrix}. \quad (12)$$

It is worth noting that in a way characteristic for non-Hermitian supersymmetric examples [20] the operator \mathcal{H} is not necessarily positive.

3.2 The problem of invertibility

Whenever our operator \mathcal{F} is unbounded [16], it may still be invertible and the inverse operator may be bounded. If \mathcal{F}^{-1} exists, one can derive algebraically the following relation

$$H^\dagger\mathcal{F}^{-1} = \mathcal{F}^{-1}H.$$
Supersymmetrically, one can define new conserved charges

\[
Q^{-1} = \begin{pmatrix} 0 & 0 \\ \mathcal{F}^{-1} & 0 \end{pmatrix}, \quad \tilde{Q}^{-1} = \begin{pmatrix} 0 & \mathcal{F}^{*-1} \\ 0 & 0 \end{pmatrix}.
\]

(14)

such that

\[
[Q^{-1}, H] = [ilde{Q}^{-1}, H] = 0,
\]

(15)

with \(Q^{-1} \) being not the standard inverse operator, but satisfying

\[
\{Q, Q^{-1}\} = \mathcal{I}, \quad \{\tilde{Q}, \tilde{Q}^{-1}\} = \mathcal{I},
\]

(16)

with \(\mathcal{I} \) the identity operator, in analogy with the anticommutation relations of fermion creators and annihilators.

Let us now examine in more detail the case \(n = 1 \), with \(\sigma(x) = \mu_1 x^2 \), where \(\mu_1 \neq 0 \), and \(\alpha(x) = \nu_1 x \). \(\mathcal{F} \) is not bounded and not positive; however, it is invertible in \(L^2(\mathbb{R}) \) and Eq. (13) holds. In fact, as an operator in \(L^2(\mathbb{R}) \),

\[
\mathcal{C} = \frac{d}{dx} + \mu_1 x^2 + i\nu_1 x
\]

is unitarily equivalent to

\[
\mathcal{C}_1 = \frac{d}{dx} + \mu_1 x^2 + \nu_1^2/(4\mu_1),
\]

via the translation \(x \rightarrow x - i\nu_1/(2\mu_1) \). In turn, \(\mathcal{C}_1 \) is unitarily equivalent to

\[
\mathcal{C}_2 = -\mu_1 d^2/dx^2 + ix + \nu_1^2/(4\mu_1),
\]

via the Fourier transformation. As is well known [21], \(\mathcal{C}_2 \) has empty spectrum and is thus invertible; as a consequence, \(\mathcal{C} \) is invertible, too; the same holds for \(\mathcal{F} = \mathcal{C}\mathcal{P} \) (see also Ref. [22]), which is therefore invertible in \(L^2(\mathbb{R}) \) with bounded inverse, \(\mathcal{F}^{-1} \), defined on the whole \(L^2(\mathbb{R}) \).

3.3 The problem of positivity

While \(\mathcal{F}^{-1} \) for \(n = 1 \) is a bounded Hermitian operator acting on \(L^2(\mathbb{R}) \) [22], the positivity requirement presents problems, in general; however, evaluation of matrix elements of Eq. (13) between eigenstates of the Hermitian operator
\mathcal{F}^{-1} yields

\[
\langle j \mid H^\dagger \mathcal{F}^{-1} \mid k \rangle = \langle j \mid \mathcal{F}^{-1} H \mid k \rangle, \tag{17}
\]
\[
\lambda_k \langle j \mid H^\dagger_1 \mid k \rangle = \lambda_j \langle j \mid H_1 \mid k \rangle, \tag{18}
\]

where H_1 reads

\[
H_1 = -\frac{d^2}{dx^2} + \mu_1^2 x^4 - \nu_1^2 x^2 + 2\mu_1 x + i\nu_1 + 2i\mu_1\nu_1 x^3 \tag{19}
\]
\[
\equiv H_R + i\nu_1 + 2i\mu_1\nu_1 x^3 = H_R + i\nu_1 V_I. \]

We can rewrite Eq. (18) as

\[
\lambda_k \left(H_R^{jk} - i\nu_1 V_I^{jk} \right) = \lambda_j \left(H_R^{jk} + i\nu_1 V_I^{jk} \right), \tag{20}
\]

where $H_R^{jk} = A + iB$ and $V_I^{jk} = C + iD$ are complex numbers. Thus, by equating real and imaginary parts of both sides of Eq. (20), one gets

\[
\frac{\lambda_k}{\lambda_j} = \frac{A^2 - \nu_1^2 D^2}{(A + \nu_1 D)^2} = \frac{B^2 - \nu_1 C^2}{(B - \nu_1 C)^2}, \tag{21}
\]

and, if $\lambda_k/\lambda_j < 0$, one can argue that the H_R^{jk}’s are strongly suppressed for small values of ν_1. This may lead to a practical decoupling of the two sectors of positive and negative eigenvalues, thus supporting \mathcal{F}^{-1} as a metric operator candidate, since, physically, it is not so important that \mathcal{F}^{-1} is positive, but it is crucial that the Hamiltonian connects only weakly the sectors of positive and negative eigenvalues.

Coming now to the properties of Hamiltonian (19), one can separate the \mathcal{PT}-symmetric and antisymmetric parts as

\[
H_1 = H_1^{\mathcal{PT}} + 2\mu_1 x + i\nu_1, \tag{22}
\]

where

\[
H_1^{\mathcal{PT}} = -\frac{d^2}{dx^2} + \mu_1^2 x^4 - \nu_1^2 x^2 + 2i\mu_1\nu_1 x^3. \tag{23}
\]
H_T^{PT} is well controlled from a mathematical point of view, so that our proposal opens a way to study some additional Hamiltonians enriching the class of the recent popular non-Hermitian versions by addition of the non-\mathcal{PT}-symmetric Stark-like term. It is worthwhile to point out that, performing a shift $x \rightarrow x - i\nu_1/(2\mu_1)$, one can show that Hamiltonian (22) has real spectrum [23].

In general, for all $\mu, \nu \in \mathbb{R}$, let $H(\mu, \nu)$ denote the Schrödinger operator in $L^2(\mathbb{R})$ defined by

$$H(\mu, \nu) = -\frac{d^2}{dx^2} + \mu^2 x^4 + 2i\mu\nu x^3 - \nu^2 x^2 + 2\mu x \quad (24)$$

on the domain $D = H^2(\mathbb{R}) \cap L_4^2(\mathbb{R})$. Then $H(\mu, \nu)$ is a closed operator with compact resolvents and, therefore, discrete spectrum. In fact, the operator $-\frac{d^2}{dx^2} + \mu^2 x^4$ enjoys such properties (see [24]), which extend to the analytic family

$$H_g(\mu, \nu) = -\frac{d^2}{dx^2} + \mu^2 x^4 + g(2i\mu\nu x^3 - \nu^2 x^2 + 2\mu x) \quad (25)$$

for $g \in \mathbb{C}$ and in particular to the original operator $H(\mu, \nu)$ for $g = 1$ (for more details on the theory of analytic families of operators see [3] or [5]).

If we now introduce a further perturbation parameter $\gamma \in \mathbb{C}$ only in the linear term:

$$H_\gamma(\mu, \nu) = -\frac{d^2}{dx^2} + \mu^2 x^4 + 2i\mu\nu x^3 - \nu^2 x^2 + 2\mu\gamma x, \quad (26)$$

then $H_{\gamma=0}(\mu, \nu)$ is \mathcal{PT}-symmetric with real spectrum [12], while for finite non-zero values of γ the spectrum is complex [23].

The spectral analysis for the complete operator $H_\gamma(\mu, \nu)$ for $\gamma \in \mathbb{R}$ can be performed in the framework of perturbation theory around $\gamma = 0$. More precisely, referring to results in Ref. [25], it is possible to prove that for fixed μ and ν there exists $\delta > 0$ such that the eigenvalues of $H_\gamma(\mu, \nu)$ are real and represent a sequence of analytic functions $E_\gamma(\gamma)$ for $\gamma \in \mathbb{R}$. For such values of γ
each eigenvalue $E_n(\gamma)$ is the sum of the corresponding Rayleigh-Schrödinger perturbation expansion around the eigenvalue $E_n(0)$ of $H_0(\mu, \nu)$.

Yet to be explored is the usefulness of second and higher order derivatives in the ansatz for the C operator, with the possibility of non-linear algebraic structures [23,26].

Acknowledgements

The authors wish to thank Prof. S. Graffi and Prof. B. Bagchi for useful discussions and for reading the manuscript. M. Z. appreciates the hospitality of Dipartimento di Matematica, Università di Bologna where this work has been initiated. Partially, his participation was also supported by GA AS CR, grant Nr. 104 8302 and by AS CR project AV0Z1048901.

References

[1] Cf., e.g., C. M. Bender, D. C. Brody and H. F. Jones, Phys. Rev. Lett. 89 (2002) 270401, and references therein.

[2] S. Flügge, *Practical Quantum Mechanics* (Springer, Berlin, 1971).

[3] T. Kato, *Perturbation Theory for linear Operators*, 2nd edn (Springer, Berlin, 1976).

[4] F. J. Dyson, Phys. Rev. 85 (1952) 631;
C. M. Bender and T. T. Wu, Phys. Rev. Lett. 21 (1968) 406;
A. V. Turbiner and A. G. Ushveridze, J. Math. Phys. 29 (1988) 2053, with further references.

[5] M. Reed and B. Simon *Methods of Modern Mathematical Physics*, vol. IV (Academic Press, New York, 1978).

[6] E. Caliceti, S. Graffi and M. Maioli, Commun. Math. Phys. 75 (1980) 51.
[7] G. Alvarez, J. Phys. A: Math. Gen. 27 (1995) 4589.

[8] V. Buslaev and V. Grecchi, J. Phys. A: Math. Gen. 26 (1993) 5541.

[9] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 4243.

[10] A. Mostafazadeh, *A Critique of PT-Symmetric Quantum Mechanics* (arXiv: quant-ph/0310164, unpublished);

 A. Mostafazadeh, *Comment on Complex Extension of Quantum Mechanics* (arXiv: quant-ph/0407070, unpublished);

 C. M. Bender, D. C. Brody and H. F. Jones, Phys. Rev. Lett. 92 (2004) 119902.

[11] P. Dorey, C. Dunning and R. Tateo, J. Phys. A: Math. Gen. 34 (2001) 5679.

[12] K. C. Shin, Comm. Math. Phys. 229 (2002) 543;

 K. C. Shin, *Eigenvalues of PT-Symmetric Oscillators with Polynomial Potentials* (arXiv: math.SP/0407018, unpublished).

[13] P. A. M. Dirac, Proc. Roy. Soc. London A 180 (1942) 1;

 E. P. Wigner, J. Math. Phys. 1 (1960) 409.

[14] A. Mostafazadeh, J. Math. Phys. 43 (2002) 205 and Czech. J. Phys. 53 (2003) 1079.

[15] A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814 and 3944;

 G. Lévai, F. Cannata and A. Ventura, Phys. Lett. A 300 (2002) 271 and J. Phys. A: Math. Gen. 35 (2002) 5041.

[16] F. G. Scholtz, H. B. Geyer and F. J. W. Hahne, Ann. Phys. (NY) 213 (1992) 74;

 R. Kretschmer and L. Szymanowski, Phys. Lett. A 325 (2004) 112.

[17] C. M. Bender, P. N. Meisinger and and Q. Wang, J. Phys. A: Math. Gen. 36 (2003) 1973;

 Z. Ahmed, Phys. Lett. A 310 (2003) 39;

 Z. Ahmed, J. Phys. A: Math. Gen. 36 (2003) 9711.

[18] F. M. Fernández, R. Guardiola, J. Ros and M. Znojil, J. Phys. A: Math. Gen. 31 (1998) 10105;
M. Znojil, Phys. Lett. A 259 (1999) 220 and arXiv: math-ph/0104012, unpublished.

[19] A. Andrianov, F. Cannata, J. P. Dedonder and M. V. Ioffe, Int. J. Mod. Phys. A 14 (1999) 2675;
F. Cannata, G. Junker and J. Trost, Phys. Lett. A 246 (1998) 219;
M. Znojil, F. Cannata, B. Bagchi and R. Roychoudhury, Phys. Lett. B 483 (2000) 284.

[20] P. Dorey, C. Dunning and R. Tateo, J. Phys. A: Math. Gen. 34 (2001) L291;
M. Znojil, J. Phys. A: Math. Gen. 35 (2002) 2341.

[21] I. W. Herbst, Commun. Math. Phys. 64 (1979) 279.

[22] E. Caliceti and S. Graffi, J. Phys. A: Math. Gen. 37 (2004) 2239.

[23] B. Bagchi, A. Banerjee, E. Caliceti, F. Cannata, C. Quesne, A. Ventura and M. Znojil, in preparation.

[24] B. Simon, Ann. Phys. (N. Y.) 58 (1970) 76.

[25] E. Caliceti, S. Graffi and J. Sjöstrand, Spectra of PT-Symmetric Operators and Perturbation Theory (arXiv: math-ph/0407052).

[26] F. Cannata, G. Junker and J. Trost, in Particles, Fields and Gravitation, edited by J. Rembieliński, AIP Conference Proceedings 453 (1998) 209 and arXiv: quant-ph/9806080;
A. A. Andrianov and F. Cannata, J. Phys. A: Math. Gen. 37 (2004) 10297.