REVIEW
Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved]

Ivar Noordstra, Anna Akhmanova

Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands

Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.

Open Peer Review
Referee Status: ✔ ✔

Invited Referees
1
2

version 1
published
12 Apr 2017

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty. In order to make these reviews as comprehensive and accessible as possible, peer review takes place before publication; the referees are listed below, but their reports are not formally published.

1 Hiroyuki Ohkura, The University of Edinburgh UK, Ricardo Nunes Bastos, The University of Edinburgh UK
2 Torsten Wittmann, University of California San Francisco USA

Discuss this article
Comments (0)
Corresponding author: Anna Akhmanova (a.akhmanova@uu.nl)

How to cite this article: Noordstra I and Akhmanova A. Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):469 (doi: 10.12688/f1000research.10729.1)

Copyright: © 2017 Noordstra I and Akhmanova A. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: This work was supported by the Netherlands Organization for Scientific Research ALW Open program (grant 822.02.002) and ERC Synergy (grant 609622).

Competing interests: The authors declare that they have no competing interests.

First published: 12 Apr 2017, 6(F1000 Faculty Rev):469 (doi: 10.12688/f1000research.10729.1)
Introduction

Exocytosis is a secretory trafficking process during which molecules are processed and transported to the cell surface, where they can be either released into the extracellular space or inserted into the plasma membrane. Secretory transport occurs in multiple steps: after budding from the Golgi, exocytotic vesicles travel along cytoskeletal filaments toward the cell periphery, come into contact with tethering factors that can restrain them, and subsequently dock and fuse with the plasma membrane with the aid of soluble NSF attachment protein receptors (SNAREs). Secretion can occur constitutively, to maintain cell homeostasis and provide components of extracellular matrix and cell adhesion structures (constitutive exocytosis). Alternatively, release of specific cargos in many types of differentiated cells can be tightly controlled in both space and time by a variety of signaling pathways (regulated exocytosis). Regulated exocytosis plays an important role in multiple processes, including synaptic neurotransmission, endocrine and paracrine signaling, or the release of hydrolytic enzymes by intestinal cells and leukocytes (for review, see 1,2).

Vesicular transport is facilitated by the cytoskeleton, and in mammalian cells the major tracks for vesicle transport are microtubules, dynamic hollow tube-like structures with an outer diameter of 25 nm and lengths in the order of tens of microns. Microtubules have intrinsic polarity, with fast growing plus ends and slowly growing minus ends. Vesicles are transported along microtubules by two types of motors: kinesins, which are mostly plus-end-directed, and cytoplasmic dynein, which moves to microtubule minus ends.

In order to function optimally, cells rely heavily on a precisely controlled delivery of cargo. To do so, they take advantage of protein complexes that specifically connect membrane trafficking and cytoskeletal organization at the cell cortex. Tethering of microtubule tips, the end points of vesicle transport, to the sites of vesicle fusion can provide efficient routes for secretion. In many types of mammalian cells, microtubule minus ends are clustered at the internally positioned microtubule-organizing centers, the centrosome and the Golgi apparatus (for review, see 3–5), and the secretory trafficking mainly takes place in the direction of microtubule plus ends. It should be noted that in polarized epithelia and in neurons, microtubule minus ends can also be positioned in the vicinity of cell cortex and serve as sites of vesicle delivery. Since the mechanisms responsible for cortical microtubule minus-end tethering are only beginning to be understood 6–11, their connections to exocytosis still need to be unraveled.

In contrast, the factors responsible for coordinating the organization of microtubule plus ends and secretion have received much attention. For example, in different types of migrating cells, secretory traffic is preferentially directed toward the leading cell edge 12,13. Such polarization of exocytosis can help to establish and maintain cell asymmetry and provide molecules needed for membrane protrusion. An important function of exocytosis is formation and modification of cell adhesions to extracellular matrix or other cells. In particular, it is well established that microtubule plus ends can be specifically linked to the vicinity of focal adhesions (FAs) to promote their remodeling and thus facilitate efficient cell movement (for review, see 14,15).

Complexes responsible for coordinating microtubule plus-end organization and exocytosis consist of molecules localized to microtubule plus ends and cortical proteins, which can participate, often through additional factors, in vesicle tethering and docking. At the cortex, these complexes typically comprise different scaffolds associated with the actin cytoskeleton or directly with the plasma membrane. On microtubules, the major players are microtubule plus-end tracking proteins (+TIPs), a heterogeneous class of proteins distinguished by their specific accumulation at the growing microtubule plus ends (for review, see 16,17). Here, we provide an overview of the mammalian +TIPs involved in cortical microtubule tethering, their associated cortical attachment complexes, and their roles in exocytosis.

+TIPS involved in cortical microtubule capture

Prominent factors that can autonomously recognize growing microtubule ends are the members of end binding (EB) protein family 18–20. EBs recruit to microtubule tips a plethora of different binding partners, which fall into two major classes: proteins containing globular cytoskeleton-associated protein-glycine-rich (CAP-Gly) domains and proteins with a short linear motif Ser-any amino acid-Ile-Pro (SxIP) embedded in unstructured positively charged regions (for review, see 17). Mammalian +TIPs well known for their involvement in cortical microtubule capture are the CAP-Gly-containing cytoplasmic linker protein of 170 kDa (CLIP-170), p150Glued, the large subunit of the dynein co-factor dynactin, the SxIP proteins CLIP-associating proteins CLASP1/2 and the tumor suppressor adenomatous polyposis coli (APC).

CLIP-170, the first +TIP to be reported 21,22, was proposed to be involved in tethering microtubules to the cell cortex via IQGAP1 23, a cortical scaffold protein with interesting roles in exocytosis which we will discuss below (Figure 1). In fibroblasts, IQGAP1 recruits CLIP-170-decorated microtubule plus ends to actin filaments at the leading edge during migration 23. Interestingly, subsequent biochemical studies showed that IQGAP1 appears to act as a cortical hub for multiple +TIPs: for example, it can interact with APC, which is found in the same protein complex as CLIP-170 24 (Figure 1). Upon the depletion of APC, the leading edge localization of IQGAP1 as well as CLIP170 was perturbed and directional migration was affected, suggesting that APC, CLIP170, and IQGAP act in a tripartite complex that mediates cortical anchoring of microtubules during cell movement 24. Immunoprecipitation experiments from fibroblasts also revealed an interaction between IQGAP1 and CLASP2, which was implicated in polarized cell movement 25 (Figure 1). Furthermore, a complex of IQGAP1 with SKAP, an SxIP protein originally identified as a +TIP linking kinetochores to spindle microtubules 26,27, was shown to orchestrate directional migration by coupling dynamic microtubule plus ends to cortical regions in breast cancer cells 28 (Figure 1). It should be noted that the evidence for the function of IQGAP1 as a cortical hub for different +TIPs strongly relies on protein interaction data and would profit from additional mechanistic cell biological analyses.

APC, which was shown to directly bind to EB1 29, has been implicated in multiple additional cortical microtubule stabilization pathways. In vivo, it localizes to actin-rich cortical protrusions where it directly interacts with actin filaments through its...
C-terminal basic domain30,31. On the basis of \textit{in vitro} experiments, APC was also suggested to play a role in actin nucleation31. Furthermore, APC was shown to stabilize microtubules at the cortex in migrating fibroblasts by acting together with the actin-nucleating factor of the formin family, mDia32. In migrating astrocytes, APC directly interacts with the cortical scaffold protein Dlg133, thereby directly linking microtubules to the cortex. The latter interaction is regulated by the kinase GSK3\(\beta\), which in turn can be phosphorylated by a Par6-PKC\(\zeta\) complex33.

CLASP1 and CLASP2 form another family of major microtubule regulators that accumulate at the microtubule plus ends at the front of migrating cells. The asymmetric CLASP distribution is mediated by their spatially controlled phosphorylation through GSK3\(\beta\), which reduces their affinity for microtubule plus ends35,34,35. CLASPs are recruited to the cell cortex by directly interacting with the phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-binding protein LL5\(\beta\)36 (Figure 2). LL5\(\beta\) is part of a large protein assembly tightly linked to FAs, which controls FA turnover (see below). Another SxIP-containing +TIP shown to participate in organizing microtubules in the vicinity of FAs is the APC-binding protein AMER2/FAM123, which is directly linked to the plasma membrane by a phospholipid-binding domain37–39 (Figure 1).

Also, the dynein-dynactin complex represents an important player in microtubule capture at the cortex. In contrast to other +TIPs, which promote lateral microtubule attachments to the cortical sites, cytoplasmic dynein can form end-on attachments and exert forces to position the whole microtubule network in both interphase and mitosis40 (for review, see 41,42). Though mostly studied during cell division, when secretion is downregulated, cortical dynein was also shown to play a role in microtubule tethering to the plasma membrane in neurons, where it acts together with the neural cell adhesion molecule, and may have a role in stabilization of synapses43.

Finally, spectraplakins, a group of very large proteins, have been shown to be involved in cortical microtubule stabilization.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Schematic overview of IQGAP and associated protein functions in cortical microtubule capturing and exocytosis. Through its different domains, IQGAP interacts with a subset of microtubule plus-end tracking proteins (+TIPs) (orange) and cortical proteins (blue), thereby facilitating the microtubule capture at sites with high exocytotic activity. At the same time, IQGAP controls multiple components involved in secretion, including exocytotic vesicle-specific Rab GTPases (yellow), the exocyst complex (purple), and actin (red lines). Single-headed arrow, protein interaction with regulatory function; double-headed arrow, protein interaction facilitating recruitment; bar-headed line, negative regulation; dotted arrow, movement in direction of arrow.}
\end{figure}
Spectraplakins have the ability to directly link microtubules and actin filaments and are involved in a wide range of cellular processes. Despite the presence of only two mammalian genes, a variety of spectraplakin isoforms have been found. This results from the existence of alternative tissue-specific promoters and multiple splice variants (for review, see 44). Among them, actin crosslinking factor 7 (ACF7), also known as microtubule actin crosslinking factor 1 (MACF1), has been studied most extensively. Owing to the intrinsic properties of a C-terminal microtubule-binding domain and the presence of an SxIP domain, it can interact with microtubules and specifically accumulate at their ends. At the same time, the N-terminal calponin homology domains mediate the binding to sites rich in actin, such as the cell cortex36. Depletion of ACF7 was associated with the impaired microtubule growth along F-actin fibers toward FAs, and this significantly affected FA turnover and cell migration37. Cortical recruitment of ACF7 has been connected to the presence of membrane-bound APC, which in turn is regulated by GSK3β, indicating the interplay of multiple pathways in recruiting microtubules to FAs. Recently, ACF7 was also shown to be a key player in linking microtubule minus ends to the apical membrane of polarized epithelial layers through calmodulin-regulated spectrin-associated protein 3 (CAMSPAP3)5,10. Interestingly the ACF7-CAMSAP3 interaction was also associated with FA targeting and cell migration7.

Among the numerous links between microtubules and the cell cortex, two broad groups of protein assemblies with clear connections to secretion have emerged—IQGAP-containing complexes and the CLASP- and LL5-containing cortical microtubule stabilization complexes—and these will be discussed in more detail below.

Coordination of cytoskeletal cortical interactions and secretion by IQGAP1

As mentioned above, IQGAP1 interacts with multiple +TIPs, thereby facilitating the capture of microtubules at specific cortical cell regions. At the same time, IQGAP1 plays a role at different steps of the secretory pathway, ranging from actin remodeling to the control of specific membrane trafficking regulators, such as Rab GTPases or the exocyst complex. This functional diversity is based on the presence of multiple domains, including a calponin homology domain, IQGAP-specific repeats, a calmodulin-binding motif, a RasGAP-related domain, and a RasGAP C-terminus, which can mediate binding to a surprisingly broad set of proteins.

IQGAP1 is linked to the cortex via S100P and the plasma membrane- and actin-binding protein ezrin38,49 (Figure 1). S100 proteins bind to Ca2+ and the interaction between S100P and IQGAP1 is strictly Ca2+-dependent9. Also, ezrin has been shown to bind to Ca2+-bound S100P and IQGAP1, but since ezrin and IQGAP1 do interact in the absence of Ca2+, this interaction appeared to be S100P-independent9. Both S100P and ezrin co-localize with IQGAP1 in the cortical cell regions, and ezrin depletion reduced the cortical localization of IQGAP140,41. Interestingly, ezrin also interacts with the APC-binding protein Dlg140, but it is not known whether APC, Dlg1, IQGAP1, and ezrin can function in the same complex.

IQGAPs are best known as important regulators of actin dynamics. In turn, the actin cytoskeleton plays a major role in regulating all steps of exocytosis. Multiple studies show that the actin network acts as a physical barrier that is removed during exocytosis, allowing vesicles to dock and fuse with the plasma membrane (for review, see 51,52). Many lines of research also indicate the role of actin in directing vesicles to the fusion sites, regulating the fusion pores and providing the driving force to complete fusion53-55. Undoubtedly, actin regulation is essential for properly functioning exocytotic machinery.

IQGAP1 was initially identified as a target for the Rho GTPases CDC42 and Rac156,57, two factors involved in actin organization. Despite the name, IQGAP1 displays no GAP activity to the Rho GTPases58-60. In fact, it is well established that IQGAP1 inhibits the GTPase activity of CDC42 and Rac1 to stabilize their GTP-bound form58,61. Accumulated evidence points in the direction of CDC42 being an important regulator of post-Golgi traffic in an actin-dependent manner58,62. Interestingly, the CDC42-IQGAP interaction was directly linked to exocytosis in gastric parietal...
cells, epithelial cells that are located in the gastric glands of the stomach. In these cells, IQGAP1 and its homologue IQGAP2 are expressed and localized differentially65,68. In contrast to IQGAP1, which localizes to the basolateral regions of the cells, IQGAP2 specifically localizes to the apical plasma membrane, where it interacts with CDC42. This interaction was shown to be essential for polarized secretion69. Biochemical evidence demonstrated that IQGAP1 can be phosphorylated by the kinase PKC\varepsilon at its C-terminus, thereby relieving an autoinhibited fold, enhancing the binding of IQGAP1 to active CDC4270, and leading to attenuation of exocytosis69. PKC\varepsilon has also been implicated in exocytosis by playing an essential role in the disassembly of actin filaments following docking and tethering of the vesicles66–70. Since different stages of exocytosis require different actin organizations, these data suggest a dynamic interplay between PKC\varepsilon, CDC42, and IQGAP in regulating actin dynamics.

In addition to interacting with indirect actin modifiers like the Rho GTPases, IQGAP1 also binds to a set of proteins that directly organize the actin cytoskeleton, such as the actin-related protein (Arp) 2/3 complex and formins. IQGAP1 can stimulate Arp2/3-dependent actin polymerization through direct as well as indirect interactions via the activation of neural Wiskott-Aldrich syndrome protein (N-WASP)71,72. Also, mDia1, an actin-nucleating protein of the formin family, which was implicated in microtubule regulation through APC and other pathways73–75, was identified as a binding partner for IQGAP1. IQGAP1 specifically interacts with the Rho-activated form of mDia1 which results in the recruitment of the protein and actin assembly at sites with high exocytotic activity, like the leading edge of migrating cells76,77.

Next to Rho GTPases, Rab GTPases also belong to the key regulators of membrane trafficking and exocytosis. Interestingly, Rab27A, a small GTPase that regulates exocytosis of insulin-containing vesicles in pancreatic \(\beta\) cells78, has been shown to form a complex with IQGAP179. Remarkably, not only exocytosis but also endocytosis of insulin secretory membranes, a process essential to maintain a constant cell volume and to allow the reuse of exocytotic machinery, strongly depends on complex formation between Rab27A and IQGAP1. Depletion of IQGAP1 prevented glucose-induced redistribution of Rab27A from the cytosol to the plasma membrane79. These data suggest that IQGAP1 participates in both endocytosis and exocytosis upon glucose stimulation in \(\beta\) cells. Whether these functions relate in some way to the interactions of IQGAP1 with microtubule-binding proteins is currently unclear, especially as, strikingly, microtubules in \(\beta\) cells restrict, rather than promote, the availability of insulin granules for secretion79.

IQGAP1 has been shown to associate with the Exo70, Sec3, and Sec8 subunits of the exocyst complex80,81 (Figure 1), an evolutionarily conserved octameric protein complex, which mediates the tethering of exocytotic vesicles prior to fusion and which is implicated in a wide variety of cellular processes (for review, see 81). The IQGAP1-exocyst interactions are controlled by CDC42 and RhoA82,83. Interestingly, depletion of IQGAP1 strongly affected insulin secretion from pancreatic \(\beta\) cells84 and secretion of matrix metalloproteinases85, two unrelated cellular processes which both strongly rely on exocytosis and the exocyst complex82,87. However, it cannot be excluded that these phenotypes are caused by other functions of IQGAP1 in exocytosis as described above.

Taken together, the existing data suggest that IQGAP1 is an excellent candidate for playing the role of a central hub coordinating cytoskeletal organization and membrane trafficking. However, more detailed biochemical and cell biological studies will be needed to understand the exact mechanisms underlying its activity and unravel which of the numerous proposed interactions and functions of IQGAP1 are compatible and cooperative and which ones are mutually exclusive.

CLASP- and LL5-associated complexes in microtubule organization and secretion

As mentioned above, CLASPs are among the key players responsible for cortical microtubule targeting. Through the direct interaction with LL5\(\beta\) and its homologue LL5\(\alpha\), they associate with a large protein assembly, which here will be termed cortical microtubule stabilizing complex (CMSC)86–89 (Figure 2). As discussed below, this complex has been shown to be a regulator of FA turnover and is tightly clustered at the rims of FAs, although it does not spatially overlap with them84–86. LL5s are PIP3-binding proteins, and their membrane recruitment as well as the localization of the whole CMSC can be influenced by PI3 kinase activity86–88. Recently, Prickle1, a protein known for its role in planar cell polarity, was shown to participate in the LL5\(\beta\)-dependent accumulation of CLASPs in close proximity to FAs at retracting cell edges, thus controlling FA disassembly and cell motility90.

CMSC contains several scaffolding proteins, including the SAM domain containing proteins liprin-\(\alpha\) and -\(\beta\), a coiled coil adaptor ELKS (also known as ERC1, for ELKS/RAB6-interacting/CAST family member 1), and the ankyrin repeat protein KANK1. Liprin-\(\alpha\) and -\(\beta\) were initially identified as interacting partners of the protein tyrosine phosphatase LAR91, a transmembrane protein that is involved in axon guidance (for review, see 92) and in the maintenance of excitatory synapses in hippocampal neurons93. However, it is unknown whether LAR homologues are present and have a functional role in CMSCs. Liprin-\(\alpha\) directly interacts with ELKS91. Both ELKS and the members of the liprin-\(\alpha\) family are major components of the cytomatrix at the active zone (CAZ), the principal site of Ca2+-dependent exocytosis of neurotransmitters at neuronal synapses; these proteins thus have complex roles in neurotransmission across different animal species (for review, see 95–97). Importantly, CMSC and CAZ have many non-overlapping components; for example, CAZ does not contain either LL5 or KANK homologues and does not appear to be directly connected to microtubules. In addition to coordinating the trafficking of neurotransmitter-containing vesicles at the CAZ, liprin-\(\alpha\) was shown to be a key component of the molecular machinery underlying the internalization of fibronectin and recycling of fibronectin-bound \(\alpha\)5\(\beta\)1-integrin to basolateral membranes in endothelial cells, a process essential for defining and maintaining cell polarity98.

CMSCs are linked to FAs by KANK1, which directly interacts with talin, the core FA protein99 (Figure 2). KANK1 also binds to
liprin-β1, and the inhibition of either the liprin-β1-KANK1 or the KANK1-talin binding disrupts the CMSC localization around FAs and cortical microtubule capture around FAs87. How a direct interaction between an FA component and a CMSC component can lead to their non-overlapping localization next to each other is currently a mystery. KANK2, a KANK1 homologue, also localizes as a tight “belt” around FAs and interacts with talin90. Interestingly, it suppresses mechanical force transmission across activated integrins by interfering with F-actin binding90. The fact that talin might interact with KANK1 and actin in a mutually exclusive manner could explain why KANKs localize to the periphery of FAs and not to their actin-associated core. It is possible that KANK1 bound to the FA periphery acts as a “seed” for CMSC assembly through multivalent interactions between its scaffolding components81 (for review, see 100). In addition to coupling the CMSCs to FAs, KANK1 recruits to the cortex the kinesin-4 family member KIF21A. This plus-end-directed motor protein strongly inhibits both microtubule growth and catastrophes at the cell cortex, thus cooperating with CLASPs in promoting cortical microtubule stability85.

ELKS is a ubiquitously expressed adaptor, which can be recruited to the plasma membrane by both LL5s and liprin-α13–14. The effect of ELKS depletion on the microtubule organization is relatively mild because ELKS does not bind to microtubules and is not essential for the cortical localization of LL5 or CLASPs but rather plays a scaffolding role by concentrating cortical clusters of LL5 and CLASPs at the cell periphery36. However, ELKS has been shown to be a central player in constitutive exocytosis101. It directly interacts with all isoforms of the small GTPase Rab6 (Rab6A, Rab6A', and Rab6B)36, an abundantly expressed Rab GTPase that strongly decorates the Golgi apparatus and cytoplasmic vesicles102–104. Although these vesicles were originally believed to be responsible for COPI-independent transport to the Golgi105,106, detailed imaging studies demonstrated that in fact they predominantly fuse with the plasma membrane and thus represent carriers of constitutive secretion104.

Rab6A-positive vesicles immobilize and fuse at the cortical FA-associated sites containing LL5\textsubscript{β}, and ELKS depletion causes strong accumulation of Rab6A-positive vesicles at the cell periphery because although their exit from the Golgi and microtubule-based transport are not perturbed, their docking and fusion are inhibited101. The underlying mechanism is not entirely clear. Similar to CAZ components, ELKS-containing complexes might promote the interaction between SNAres located on the vesicles and the plasma membrane; however, it is currently unclear whether there is a direct connection between SNAres and ELKS. Furthermore, in addition to the direct binding to ELKS, Rab6 also controls the recruitment to exocytotic vesicles of another Rab GTPase, Rab8A. Rab8A is a well-known player in exocytosis106–111. Interestingly, Rab8A interacts with ELKS-positive cortical sites through the binding partner of ELKS, MICAL3112, a multidomain oxidative enzyme which can promote disassembly of actin filaments and potentially remodel other protein complexes and also act as a scaffold113,114 (for review, see 115).

In migrating cells, CMSCs are strongly clustered around the FAs at the leading cell edge and promote their disassembly86–88. Microtubules anchored by CLASPs in the vicinity of FAs serve as tracks for transport of exocytotic Rab6-positive vesicles. Secretory trafficking delivers to the cell surface membrane type 1 metallopro-"nase (MT1-MMP), which can degrade the extracellular matrix around FAs, resulting in integrin detachment, loss of tension, and FA turnover116. These observations help to explain why liprin-α1, liprin-β1, LL5β, and ELKS promote invasive behavior and internalization of integrins in breast cancer cells86,88,117–119. Importantly, MT1-MMP delivery and integrin recycling also strongly depend on endosomal trafficking, which requires microtubules (for review, see 120,121). How exactly endosomal trafficking connects to CMSC components deserves further investigation. Finally, it should be noted that in three-dimensional matrix invasion assays, the major function of cortical microtubule stabilization by CLASPs and possibly also their partners might be not only to direct vesicle traffic but also to mechanically support long protrusions that mesenchymal cells extend in three dimensions to penetrate between the matrix fibers122.

LL5β and ELKS were also shown to concentrate at podosomes, actin-rich dynamic structures which can remodel the extracellular matrix122; and CLASPs, together with a plus-end-directed kinesin-3 KIF1C, were shown to regulate podosome formation123. Interestingly, podosome-like structures (“synaptic podosomes”) are also formed at neuromuscular junctions (NMs) undergoing remodeling during postnatal stages of development, and LL5β, which strongly localizes to regions of high density of acetylcholine receptors at the NMJ, has been implicated in this process124–127. At the NMJ, the complexes of LL5β and CLASPs were shown to capture microtubule plus ends and in this way create a route for the delivery of vesicles containing acetylcholine receptors to the postsynaptic membrane125–127. It is currently unknown whether ELKS participates in the regulation of the fusion of acetylcholine receptor-containing carriers with the plasma membrane, but this possibility seems quite likely, given the involvement of ELKS in secretion and the observation that ELKS is present at the NMJ128. Taken together, these data show that CMSCs or complexes related to them in composition regulate both microtubule organization and secretion in different types of undifferentiated as well as differentiated cells.

Conclusions and future directions

Microtubules play an essential role in exocytosis by serving as tracks for motor proteins that transport secretory carriers. The best studied mammalian cell models so far include migrating mesenchymal cells, in which a surprisingly diverse set of molecules is responsible for attaching and stabilizing microtubules to cortical sites close to the leading cell edge. An important unresolved question is whether the different complexes described so far, such as CMSCs and IQGAP-linked cortical assemblies, represent cooperating or redundant pathways or whether in vivo they act in the same or different cell and tissue settings. Addressing this question will require systematic analysis of all major players using the same cellular models and also exploring their expression and interactions in tissues. Relevant in this respect is the analysis of tissue-specific isoforms of the investigated proteins. For example, whereas IQGAP1 was extensively studied, much less is known about its homologues IQGAP2, which is enriched in the liver and stomach, and IQGAP3, which is mainly found in brain and lung tissue131. Their domain composition is highly similar to that of IQGAP1 and given their
specific expression in tissues with high exocytic activity, they are interesting candidates for having profound but undiscovered roles in exocytosis.

Another interesting set of questions concerns the involvement of the discussed complexes in regulated secretion. There are strong data showing that many of the factors described above are important for regulated exocytosis. For example, ELKS and liprin-α are well-known players in neurotransmitter release in neurons and also are required for exocytotic release of inflammatory mediators by mast cells upon induction of allergic responses. ELKS was also found to coincide with the docking and fusion sites of insulin in a pancreatic β-cell line; consistent with this observation, ELKS clusters show significant overlap with the clusters of the SNARE syntaxin 1, and ELKS depletion strongly affected insulin exocytosis. However, as indicated above, the connections between CMSC components and SNAREs require further elucidation. Furthermore, microtubule plus ends do not appear to be directly connected to the sites of exocytosis in neurons or β cells.

It is possible that microtubules are linked to secretory sites when relatively rapid transport of newly synthesized proteins from the Golgi apparatus is functionally important. Direct microtubule-based delivery might not be essential when an excess of secretory cargo is available or when extensive local recycling of secreted molecules takes place, as is the case in neurons. In some cell types, such as pancreatic β cells, microtubules may even be used to sequester rather than deliver secretory cargo. Investigating the diversity of the mechanisms responsible for vesicle delivery and fusion represents an exciting subject for future research.

Competing interests
The authors declare that they have no competing interests.

Grant information
This work was supported by the Netherlands Organization for Scientific Research ALW Open program (grant 822.02.002) and ERC Synergy (grant 609822).

References

1. Burgess TL, Kelly RB: Constitutive and regulated secretion of proteins. *Annu Rev Cell Biol. 1997; 3: 243–93.*

2. Wu L, Hamid E, Shin W, et al.: Exocytosis and endocytosis: modes, functions, and coupling mechanisms. *Annu Rev Physiol. 2014; 76: 301–31.*

3. Akhmanova A, Hoogenraad CC: Microtubule minus-end-targeting proteins. *Curr Biol. 2015; 25(4): R162–71.*

4. Zhu X, Kaverina I: Golgi as an MTOC: making microtubules for its own good. *Histochim Cell Biol. 2013; 140(3): 361–7.*

5. Conduit PT, Wainman A, Raff JW: Centrosome function and assembly in animal cells. *Nat Rev Mol Cell Biol. 2015; 16(10): 611–24.*

6. Toga M, Kobayashi S, Kawasaki M, et al.: CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. *Proc Natl Acad Sci U S A. 2016; 113(2): 332–7.*

7. Khanal I, Elbediyw A, Diaz de la Loza Mdel C, et al.: Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. *J Cell Sci. 2016; 129(13): 2651–9.*

8. Nashchekin D, Fernandes AR, St Johnston D: Patronin/Shot Cortical Foci assemble the Noncentrosomal Microtubule Array that specifies the Drosophila Anterior-Posterior Axis. *Dev Cell. 2016; 38(1): 61–72.*

9. Ning W, Yu Y, Xu H, et al.: The CAMSAP3-ACF7 Complex Couples Noncentrosomal Microtubules with Actin Filaments to Coordinate Their Dynamics. *Dev Cell. 2016; 39(1): 61–74.*

10. Noordstra I, Liu G, Nijenhuis W, et al.: Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. *J Cell Sci. 2016; 129(20): 4278–88.*

11. Moss DK, Bellett G, Carter JM, et al.: Ninethin is released from the centrosome and moves bi-directionally along microtubules. *J Cell Sci. 2007; 120(17): 3064–74.*

12. Schmoranzer J, Kretzger G, Simon SM: Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. *J Cell Sci. 2003; 116(22): 4513–9.*

13. Tomme D, Keller P, White J, et al.: Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. *J Cell Sci. 1999; 112(Pt 1): 21–33.*

14. Small JV, Kaverina I: Microtubules meet substrate adhesions to arrange cell polarity. *Curr Opin Cell Biol. 2003; 15(1): 40–7.*

15. Stehens S, Wiltmann T: Targeting and transport: how microtubules control focal adhesion dynamics. *J Cell Biol. 2012; 198(4): 481–9.*

16. Schuyler SC, Pellman D: Microtubule "plus-end-tracking proteins": The end is just the beginning. *Cell. 2001; 105(4): 421–4.*

17. Akhmanova A, Steinmetz MO: Control of microtubule organization and dynamics: two ends in the limelight. *Nat Rev Mol Cell Biol. 2015; 16(12): 711–26.*

18. Baeling P, Laan L, Schek H, et al.: Reconstitution of a microtubule plus-end tracking system in vitro. *Nature. 2007; 450(7172): 1100–5.*

19. Komarova Y, De Groot CO, Grigoriev I, et al.: Mammalian end binding proteins control persistent microtubule growth. *J Cell Biol. 2009; 184(5): 691–706.*

20. Maurer SP, Foumili FJ, Bohner G, et al.: EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. *Cell. 2012; 149(2): 371–82.*

21. Pierre P, Schel J, Rickard JE, et al.: CLIP-170 links endocytic vesicles to microtubules. *Cell. 1992; 70(6): 887–900.*

22. Perez F, Diamantopoulos GS, Stalder R, et al.: CLIP-170 highlights growing microtubule ends in vivo. *Cell. 1999; 96(4): 517–27.*

23. Fukata M, Watanabe T, Noritake J, et al.: Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. *Cell. 2002; 109(7): 873–85.*

24. Watanabe T, Wang S, Noritake J, et al.: Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. *Dev
46. Zaoui K, Bensekkdi K, Dassu P, et al.: ErbB2 receptor controls microtubule capture by recruiting ACtf to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A. 2010; 107(43): 18517–22.
Published Abstract | Publisher Full Text | Free Full Text

47. Bell A, Nazmi AR, Klotscher M, et al.: S100P is a novel interaction partner and regulator of IQGAP1. J Biol Chem. 2011; 286(9): 7237–38.
Published Abstract | Publisher Full Text | Free Full Text

48. Nalmalvar RC, Heil A, Gerke V: Ezrin interacts with the scaffold protein IQGAP1 and affects its cortical localization. Biochim Biophys Acta. 2015; 1853: 2086–94.
Published Abstract | Publisher Full Text | Free Full Text

26. Fang L, Seki A, Fang G: SKAP associates with kinetochores and promotes the metaphase-to-anaphase transition. Cell Cycle. 2009; 8(7): 2819–27.
Published Abstract | Publisher Full Text

25. Watanabe T, Noritake J, Kakeno M, et al.: Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J Biol Chem. 2012; 287(47): 39380–90.
Published Abstract | Publisher Full Text | Free Full Text

24. Kodama A, Karakesisoglou I, Wong E, et al.: ACF7 regulates cytoskeletal-focal adhesion tasks for actin. J Cell Biol. 2003; 161(3): 343–54.
Published Abstract | Publisher Full Text | Free Full Text

23. Eitzen G: Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta. 2003; 1612(3–4): 176–81.
Published Abstract | Publisher Full Text | Free Full Text

22. McCallum SJ, Wu WJ, Cerione RA: Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem. 1996; 271(36): 21732–7.
Published Abstract | Publisher Full Text | Free Full Text

21. Hart MJ, Callow MG, Souza B, et al.: IQGAP1, a calmodulin-binding protein, interacts with a RasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 1996; 15(12): 2997–3005.
Published Abstract | Publisher Full Text | Free Full Text

20. Noritake J, Fukata M, Kobayashi K, et al.: Cortical dynein controls microtubule plus-end to the cell cortex through a complex with LL5beta. J Cell Biol. 2001; 152(6): 895–901.
Published Abstract | Publisher Full Text | Free Full Text

19. Cao D, Su Z, Wang W, et al.: Signaling Scaffold Protein IQGAP1 Interacts with Microtubule Plus-end Tracking Protein SKAP and Links Dynamic Microtubule Plus-end to Steer Cell Migration. J Biol Chem. 2015; 290(39): 23765–80.
Published Abstract | Publisher Full Text | Free Full Text

18. Kodama A, Kozuka K: Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain stability and cell migration. J Cell Sci. 2009; 122(Pt 1): 343–54.
Published Abstract | Publisher Full Text | Free Full Text

17. Kuromiya S, Arai M, Su Z, et al.: Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem. 1996; 271(38): 23637–43.
Published Abstract | Publisher Full Text | Free Full Text

16. Basheer AM, Futlerton AT, Hart MJ, et al.: IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol. 1997; 137(1): 1555–66.
Published Abstract | Publisher Full Text | Free Full Text

15. Brit S, Li S, Lyman CW, et al.: The Ras GTase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol. 1996; 16(9): 4869–78.
Published Abstract | Publisher Full Text | Free Full Text

14. McCallum SJ, Wu WJ, Cerione RA: Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem. 1996; 271(36): 21732–7.
Published Abstract | Publisher Full Text | Free Full Text

13. Liang Y, Cao D, Su Z, et al.: Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem. 2007; 282(17): 12661–8.
Published Abstract | Publisher Full Text | Free Full Text

12. Sorsl I, Jansen KA, et al.: Identification of IQGAP as a putative activator of Rac1 in cytokinesis. J Cell Biol. 2002; 157(4): 787–97.
Published Abstract | Publisher Full Text | Free Full Text

11. Yang S, Schaller MD, et al.: A Proteome-wide screen for direct regulators of Rac-mediated cytokinesis. J Cell Biol. 2006; 170(6): 1189–201.
Published Abstract | Publisher Full Text | Free Full Text

10. Li Q, Guo Y, et al.: Regulation of microtubule dynamics and migration and has ATPase activity. Cell. 2008; 135(1): 137–48.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

9. Su X, Kodama A, Fuchs E: ACtf regulates cytoskeletal-focal adhesion dynamics and migration and has an ATPase activity. Cell. 2008; 135(1): 137–48.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

8. Cueto VM, Casteleiro M, et al.: Facilogenital dysplasia protein (FGD1) regulates export of cargo proteins from the Golgi complex via Cdc42 activation. Mol Biol Cell. 2009; 20(3): 1413–27.
Published Abstract | Publisher Full Text | Free Full Text

7. Salvanetza SB, Deborde S, Schreiner R, et al.: LIN1 kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell. 2009; 20(1): 438–51.
Published Abstract | Publisher Full Text | Free Full Text

6. Egorov MV, Capestrano M, Vorontsova OA, et al.: Facilogenital dysplasia protein (FGD1) regulates export of cargo proteins from the Golgi complex via Cdc42 activation. Mol Biol Cell. 2009; 20(3): 1413–27.
Published Abstract | Publisher Full Text | Free Full Text

5. Zhou R, Guo Z, Watson C, et al.: Polarized distribution of IQGAP proteins in gastric parietal cells and their roles in regulated epithelial cell secretion. Mol Biol Cell. 2003; 14(3): 1097–108.
Published Abstract | Publisher Full Text | Free Full Text

4. Chew CS, Okamoto CT, Chen X, et al.: IQGAPs are differentially expressed and regulated in polarized gastric epithelial cells. Am J Physiol Gastrout Tract Physiol. 2005; 288(2): G367–87.
Published Abstract | Publisher Full Text | Free Full Text

3. Grohmova N, Schlaepfer DD, Hess D, et al.: Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator. J Biol Chem. 2004; 279(47): 48945–504.
Published Abstract | Publisher Full Text | Free Full Text

2. Ritteney EN, Daniel S, Hsu S, et al.: A dual role for IQGAP1 in regulating exocytosis. J Cell Sci. 2008; 121(Pt 13): 391–403.
Published Abstract | Publisher Full Text | Free Full Text

1. Xue R, Zhao Y, Su L, et al.: PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. PLoS Arch. 2009; 458(6): 1137–48.
Published Abstract | Publisher Full Text | Free Full Text
71. Tsuboi T, Ravier MA, Xie H, et al.: IQGAP1 stimulates actin assembly through the N-WASP-Arp2/3 pathway. J Biol Chem. 2007; 282(1): 426–35. Published Abstract | Publisher Full Text

72. Bartolini F, Ramalingam N, Gundersen GG: The Rab27a/granuphilin complex regulates the retrograde transport pathway in live cells. J Cell Biol. 2008; 181(5): 8999–9005. Published Abstract | Publisher Full Text

73. Yi Z, Yokota H, Torii S, et al.: p115RhoGEF regulates the redistribution of Golgi proteins into the endoplasmic reticulum. J Biol Chem. 2007; 282(4): 4343–4. Published Abstract | Publisher Full Text

74. Martin-Urdiroz M, Deeks MJ, Horton CG, et al.: The Rab27a/.granuphilin complex in migrating cells. J Cell Biol. 2008; 181(5): 8999–9005. Published Abstract | Publisher Full Text

75. Serra-Pages C, Kedersha NL, Fazilka L, et al.: The LAR transmembrane tyrosine phosphatase and a coiled-coil LAR-interactive protein co-localize at focal adhesions. EMBO J. 1995; 14(12): 2827–38. Published Abstract | Full Text

76. Barros KG, van der Vark D, et al.: Rac1 recruits protein tyrosine phosphatases in nervous system development. Physiol Rev. 2003; 83(1): 1–24. Published Abstract | Publisher Full Text

77. Koj, Na M, Kim S, et al.: Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J Biol Chem. 2003; 278(43): 42377–85. Published Abstract | Publisher Full Text

78. Spangler SA, Hoogenraad CC: Liprin-alpha proteins: scaffold molecules for synapse maturation. Biochem Soc Trans. 2007; 35(Pt 5): 1278–82. Published Abstract | Publisher Full Text

79. Sun Z, Tseng HY, Tan S, et al.: Kank2 activates tubulin, reduces force transduction across integrins and induces central adhesion formation. J Cell Biol. 2016; 189(9): 941–53. Published Abstract | Publisher Full Text

80. Monier S, Jollivet F, Janoueix-Leroux I, et al.: Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic. 2002; 3(4): 289–97. Published Abstract | Publisher Full Text

81. Del Nery E, Misery-Lenki S, Fulgeiress T, et al.: Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic. 2006; 7(4): 394–407. Published Abstract | Publisher Full Text

82. Martínez O, Schmidt A, Salamero J, et al.: The small GTP-binding protein Rab functions in intra-Golgi transport. J Cell Biol. 1994; 127(6 Pt 1): 1575–88. Published Abstract | Publisher Full Text

83. Giord A, Storme B, Simpson JC, et al.: Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1997; 94(5): 1828–33. Published Abstract | Publisher Full Text

84. Martin-Urdiroz M, Deeks MJ, Horton CG, et al.: The Exocyst Complex in Health and Disease. Front Cell Dev Biol. 2016; 4: 24. Published Abstract | Publisher Full Text

85. Micalis, T, Loecke S, et al.: MICAL1 recruits p115RhoGEF to the Golgi apparatus to regulate the translocation of Rab11. J Cell Biol. 2007; 177(2): 193–200. Published Abstract | Publisher Full Text

86. Bi, J, Yue P, et al.: The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invasiveness. J Biol Chem. 2009; 284(20): 3763–71. Published Abstract | Publisher Full Text

87. Horta A, Kawakatsu T, Nakatani T, et al.: Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LLSalpha/beta. J Cell Biol. 2010; 189(5): 901–17. Published Abstract | Publisher Full Text

88. Martin-Urdiroz M, Deeks MJ, Horton CG, et al.: The Exocyst Complex in Health and Disease. Front Cell Dev Biol. 2016; 4: 24. Published Abstract | Publisher Full Text

89. Lim BC, Matsumoto S, Yamamoto H, et al.: Prickle1 promotes focal adhesion disassembly in cooperation with the CLASP-LL5 β complex in migrating cells. J Cell Sci. 2012; 125(16): 3115–29. Published Abstract | Publisher Full Text
KIF1C translocates to the cell periphery in a CLASP-dependent manner. J Cell Sci. 2014; 127(Pt 24): 5179–88.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

125. Kishi M, Kummer TT, Egen SJ, et al.: LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. J Cell Biol. 2005; 169(2): 355–66.

PubMed Abstract | Publisher Full Text | Free Full Text

126. Proszynski TJ, Gingras J, Valdez G, et al.: Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A. 2009; 106(43): 18373–8.

PubMed Abstract | Publisher Full Text | Free Full Text

127. Basu S, Sladecek S, Martinez de la Peña y Valenzuela I, et al.: CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5beta and actin for focal delivery of acetylcholine receptor vesicles. Mol Biol Cell. 2015; 26(6): 938–51.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

128. Basu S, Sladecek S, Pemble H, et al.: Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. J Biol Chem. 2014; 289(4): 30867–77.

PubMed Abstract | Publisher Full Text | Free Full Text

129. Schmidt N, Basu S, Sladecek S, et al.: Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. J Cell Biol. 2015; 198(3): 421–37.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

130. Tokoro T, Higa S, Deguchi-Tawarada M, et al.: Localization of the active zone proteins CAST, ELKS, and Piccolo at neuromuscular junctions. Neuroreport. 2007; 18(4): 313–6.

PubMed Abstract | Publisher Full Text | Free Full Text

131. Wang S, Watanabe T, Noritake J, et al.: IOGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J Cell Sci. 2007; 120(Pt 4): 567–77.

PubMed Abstract | Publisher Full Text

132. Nomura H, Ohtsuka T, Tadokoro S, et al.: ELKS, an active zone protein, in exocytotic release from RBL-2H3 cells. Cell Immunol. 2009; 258(2): 204–11.

PubMed Abstract | Publisher Full Text

133. Ohara-Imazumi M, Ohtsuka T, Matsushima S, et al.: ELKS, a protein structurally related to the active zone-associated protein CAST, is expressed in pancreatic beta cells and functions in insulin exocytosis: interaction of ELKS with exocytotic machinery analyzed by total internal reflection fluorescence microscopy. Mol Biol Cell. 2005; 16(7): 3289–300.

PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Torsten Wittmann, Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
 Competing Interests: No competing interests were disclosed.
1 Hiroyuki Ohkura, , Ricardo Nunes Bastos Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
 Competing Interests: No competing interests were disclosed.