Critical power of collapsing vortices

Gadi Fibich† and Nir Gavish‡

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

We calculate the critical power for collapse of linearly-polarized phase vortices, and show that this expression is more accurate than previous results. Unlike the non-vortex case, deviations from radial symmetry do not increase the critical power for collapse, but rather lead to disintegration into collapsing non-vortex filaments. The cases of circular, radial and azimuthal polarizations are also considered.

The nonlinear optical process of self-focusing sets an upper limit on the amount of laser power that can be propagated through a medium with an intensity dependent refractive index (i.e., \(n = n_0 + n_2I \), where \(n_0 \) is the linear refractive index, \(n_2 \) is the nonlinear refractive index, and \(I \) is the intensity). For powers above this threshold the beam will undergo collapse, with the peak intensity becoming sufficiently high that damage to the material can occur. Ultimately, collapse will be arrested by some physical mechanism, such as plasma formation, normal dispersion or damping.

Let us briefly review the situation in the non-vortex case. The critical power is given by \(\lambda^2/4\pi n_0 n_2 \rho_{cr} \), where \(\rho_{cr} \) is the non-dimensional critical power for collapse in the dimensionless NLS

\[
i\psi(z,x,y) + \Delta \psi - |\psi|^2 \psi = 0, \quad \psi(0,x,y) = \psi_0(x,y).
\]

In the NLS model, there is no mechanism for arrest of collapse, hence collapse is defined as the maximal amplitude becoming infinite. Weinstein \[2\] proved that the lower bound for the critical power is equal to \(\rho_{cr} = \int |R|^2 r dr \approx 1.86 \), i.e., the power of the Townes profile, which is the ground state solution of

\[
R'' + \frac{1}{r} R' - R + R^3 = 0, \quad R'(0) = 0, \quad R(\infty) = 0.
\]

While the Townesian input beams \(\psi_0 = \lambda R(\lambda r) \), where \(\lambda > 0 \), can collapse with exactly the input power \(\rho_{cr} \), all other input profiles require power strictly above \(\rho_{cr} \) for collapse \[3\,4\]. In practice, however, the critical power of peak-type (i.e., non-ring-type) radially-symmetric input beams is only a few percents above \(\rho_{cr} \) \[1\,5\]. For example, the critical power of Gaussian and super-Gaussian (\(\psi_0 = e^{-r^4} \)) input beams is \(\approx 2\% \) and \(\approx 8\% \) above \(\rho_{cr} \), respectively.

We now consider the critical power of vortex input beams. In \[2\], Kruglov et al. derived an expression for the critical power of vortex beams, and showed that it increases with the winding number (or topological charge) \(m \). In this study, we show that this expression is inaccurate, and derive the correct expression for the critical power. Unlike the vortex-free case, deviations from radial-symmetry do not increase the critical power, but rather lead to disintegration into collapsing non-vortex filaments.

We first consider radially-symmetric vortex input beams of the form \(\psi_0 = A_0(r)e^{im\theta} \). In this case, the solution remains a vortex with winding number \(m \), i.e., it is of the form \(\psi(z,r,\theta) = A(z,r)e^{im\theta} \) \[7\]. Following a similar derivation to \[2\], it can be rigorously shown that the lower bound for the critical power of radially-symmetric vortex input beams \(\psi_0 = A_0(r)e^{im\theta} \) is

\[
\rho_{cr}(m) = \int |R_m|^2 r dr,
\]

where \(R_m \) is the ground state solution of

\[
R_m''(r) + \frac{1}{r} R_m' - \left(1 + \frac{m^2}{r^2} \right) R_m + R_m^3 = 0, \quad R_m'(0) = 0, \quad R_m(\infty) = 0.
\]

The values of \(\rho_{cr}(m) \) for \(m = 1, \cdots, 6 \) are listed in Table I. Using the approximation \[8\]

\[
R_m(r) \approx \sqrt{3}\text{sech}\left(\frac{r - \sqrt{2m}}{\sqrt{2/3}} \right),
\]

\[†\] fibich@tau.ac.il \[\url{www.math.tau.ac.il/~fibich}\]

\[‡\] nirgvsh@tau.ac.il \[\url{www.tau.ac.il/~nirgvsh}\]
FIG. 1: (color online) Critical power $p_{cr}(m) = \int_0^\infty R_m^2 r dr \times (\times)$, the approximation $4\sqrt{3} m$ (dashed line), numerical estimate of the critical power as a function of m (data taken from [6]), the critical power for collapse of Laguerre-Gaussians (dash-dotted line) and the analytic estimate $I_{cr}^{(m)}$ (solid line).

we can derive the analytic approximation $p_{cr}(m) \approx 4\sqrt{3} m$. Figure 1 shows that $p_{cr}(m)$ is well approximated by $4\sqrt{3} m$, and that the approximation improves as m increases.

We now consider the critical power of various vortex input profiles, and ask under what condition the critical power is close to the lower bound $p_{cr}(m)$. As in the vortex-free case, the only input profiles that can collapse with input power exactly equal to $p_{cr}(m)$ are $\psi_0 = \lambda R_m(\lambda r)e^{im\theta}$. We first calculate the critical power of the Laguerre-Gaussians profiles

$$\psi_{0LG}^L = cr^m e^{-r^2} e^{im\theta},$$

which are the vortex modes of the linear Schrödinger equation. To do that, we solve the NLS with the initial condition ψ_{0LG}^L and gradually increase c until, at c_{th}, the solution collapses. In this case, the critical power is close to $p_{cr}(m)$ for $m = 1$ but as m increases, the excess power above $p_{cr}(m)$ needed for collapse increases, see Table II. Similarly, for the sech input profile

$$\psi_{0sech}^L = cr^2 \text{sech}(r - 5)e^{im\theta},$$

the critical power is close to $p_{cr}(m)$ only for $m = 2, 3, 4$, see Table II.

To better understand these results, let us consider vortex profile of the form $\psi_0 = cf(r)e^{im\theta}$, where

$$f(r) = Q(\rho), \quad \rho = \frac{r - r_{max}}{L},$$

and $Q(\rho)$ attains its maximum at $\rho = 0$. This ring profile is characterized by the ring width L and radius r_{max}. As in the vortex-free case, the closer f is to a member of the one-parameter family $\lambda R_m(\lambda r)$, the smaller the excess power above $p_{cr}(m)$ needed for collapse. By (2), the family $\lambda R_m(\lambda r)$ is characterized by

$$\text{radius/width} = \sqrt{3m}.$$ (3)

Therefore, $f(r)$ has to satisfy (3) to “leading order” to be close to $\lambda R_m(\lambda r)$.

The Laguerre-Gaussian modes ψ_0^{LG} are characterized by radius/width $= \sqrt{m/2}$. This ratio is close to (3) only for $m \approx 1$, explaining why the critical power of Laguerre-Gaussian modes is close to $p_{cr}(m)$ only for $m = 1$. Similarly,
TABLE II: Excess power above \(p_{\text{cr}}(m) \) needed for collapse.

\(m \)	\(\psi_{0}^{LG} \)	\(\psi_{0}^{scch} \)	\(\psi_{0}^{m-sech} \)
1	0.65%	20%	0.13%
2	0.80%	4.5%	0.91%
3	7%	1.9%	0.71%
4	11%	2.9%	0.32%
5	14%	9%	0.17%
6	19%	14%	0.34%

the sech profile \(\psi_{0}^{scch} \) is characterized by radius/width = 5. Since the radius/width of \(\lambda R_{m}(\lambda r) \) is equal to \(\sqrt{3}m \), this ratio is close to 5 for \(m = \frac{5}{\sqrt{3}} \approx 2.88 \), see equation (4). This explains why the threshold power of the sech profile \(\psi_{0}^{scch} \) is closest to \(p_{\text{cr}}(m) \) for \(m = 3 \). As a final confirmation of this observation, we “fix” the sech profile \(\psi_{0}^{scch} \) so that “it behaves like a \(\lambda R_{m}(\lambda r) \) profile”, i.e., that it satisfies \(\psi_{0}^{scch} \) to leading order, as follows:

\[
\psi_{0}^{m-sech} = \sqrt{2} \left(\frac{r}{\sqrt{3}m} \right)^{2} \text{sech} \left(r - \sqrt{3}m \right) e^{im\theta}.
\]

Indeed, the threshold power of the “modified” sech profile \(\psi_{0}^{m-sech} \) is less than 1% above the critical power for \(m = 1, \cdots, 6 \), see Table II.

In [6], Kruglov et al. estimated the critical power for vortex collapse to be equal to

\[
I_{c}^{(m)}(m) = \frac{2^{2m+1}m!(m+1)!}{(2m)!}. \tag{5}
\]

In [6], they also estimated the critical power numerically for \(m = 1, 2, 3 \) and 4. These numerical results agree with our analytic calculation of \(p_{\text{cr}}(m) \), but not with their own estimate \(I_{c}^{(m)} \), see Figure [1]. To understand why this is the case, we note that the derivation of \(I_{c}^{(m)} \) was based on the assumption that the collapsing vortex has a self-similar Laguerre-Gaussian profile. As noted before, the Laguerre-Gaussian modes are not a good approximation of the one-parameter family \(\lambda R_{m}(\lambda r) \), and as \(m \) increases this approximation becomes less and less accurate. In addition, the assumption that the solution undergoes an aberrationless (adiabatic) self-similar collapse is known to lead to over-estimates of the critical power [6]. Indeed, even for Laguerre-Gaussian input beams, the critical power is closer to \(p_{\text{cr}}(m) \) than to \(I_{c}^{(m)} \), see Figure [1].

Most studies on optical vortices considered stationary vortices. Recently, there has been a growing interest in the dynamics of collapsing vortices. Berge et al. showed that for vortices with input power \(P \approx I_{c}^{(m)} \), symmetry breaking noise causes the vortex ring to break into \(2m+1 \) filaments [3]. Vuong et al. generalized this result for vortices with power larger above \(I_{c}^{(m)} \) [10]. We now show that these azimuthal instabilities can occur even for vortices with dimensionless power less than \(I_{c}^{(m)} \) and even less than the lower bound \(p_{\text{cr}}(m) \). To do that, we solve the NLS with the slightly elliptic Laguerre-Gaussian input profile

\[
\psi_{0} = \psi_{0}^{LG} \sqrt{x^{2} + 1.05 \cdot y^{2}}, \tag{6}
\]

with \(m = 2 \) and with input power equal to \(\frac{3}{4}p_{\text{cr}}(m = 2) \). Although the power of this vortex beam is below \(p_{\text{cr}}(m) \), it breaks into two filaments which subsequently undergo collapse, see Figure [2]. This effect of symmetry-breaking is very different from the case of peak-type non-vortex solutions, where deviations from radial symmetry increase the critical power for collapse [6]. This is because peak-type solutions collapse with the modulated Townes profile, (i.e., \(\psi \sim \frac{1}{L(z)} R \left(\frac{r}{L(z)} \right) \) where \(L \to 0 \) at the singularity) which is stable under azimuthal perturbations, as was demonstrated experimentally and numerically in [11], and analytically in [12]. In contrast, vortices collapse with a ring profile, which breaks into a ring of filaments under azimuthal perturbations [10]. Since these filaments do not collapse at the phase singularity point \(r = 0 \), each filament can collapse with the Townes profile, hence with the critical power \(p_{\text{cr}} = p_{\text{cr}}(m = 0) < p_{\text{cr}}(m) \) [12]. Note, that these filaments continue to rotate around \(r = 0 \), so that total helicity is preserved.
Our results are also relevant for beams which are not linearly polarized. Let ψ_{\pm} be the amplitudes of the circular components $\hat{e}_{\pm} = (\hat{x} \pm i\hat{y})/\sqrt{2}$. The equation for each circular component is

$$i \frac{\partial \psi_{\pm}}{\partial z} + \Delta \psi_{\pm} + \frac{2}{3} \left[|\psi_{\pm}|^2 + 2 |\psi_{\mp}|^2 \right] \psi_{\pm} = 0.$$

In the case of a pure circular polarization (CP) state ($\psi_- \equiv 0$), this equation reduces to

$$i \frac{\partial \psi_+}{\partial z} + \Delta \psi_+ + \frac{2}{3} |\psi_+|^2 \psi_+ = 0. \quad (7)$$

Since the Kerr effect is smaller by a factor $2/3$ compared to the NLS (1) for a linear polarization state, the critical power for collapse is larger by a factor of $3/2$ \[15\]. In particular, the lower bound for the critical power of a CP vortex beam $\psi_+ = e^{im\theta} A_0(r)$ is given by

$$p_{cr}^{CP}(m) = \frac{3}{2} p_{cr}(m) \approx 6\sqrt{3}m.$$

Similarly, consider the cases of radial polarization (RP)

$$\psi^{RP} = A(r,t)[e^{i\theta} \hat{e}_- + e^{-i\theta} \hat{e}_+] ,$$

and azimuthal polarization (AP)

$$\psi^{AP} = iA(r,t)[e^{i\theta} \hat{e}_- - e^{-i\theta} \hat{e}_+] .$$

Since $|\psi_+| = |\psi_-| = |A|$, the equation for each component is

$$i \frac{\partial \psi_{\pm}}{\partial z} + \Delta \psi_{\pm} + 2 |\psi_{\pm}|^2 \psi_{\pm} = 0.$$
The Kerr effect is larger by a factor of 2, hence the critical power for collapse for each component is smaller by a factor of $\frac{1}{2}$, i.e., $p_{cr}(\psi_\pm) = \frac{1}{2}p_{cr}(m = 1)$. In addition, the power of ψ^{AP} and ψ^{RP} is the sum of the power of ψ_+ and of ψ_-. Hence,

$$p_{cr}^{RP} = p_{cr}^{AP} = p_{cr}(\psi_+) + p_{cr}(\psi_-) = p_{cr}(m = 1) \approx 4.12p_{cr},$$

in agreement with recent numerical simulations [16].

In summary, we showed that the critical power for collapse of radially-symmetric vortex beams is typically a few percent above $P_{cr}(m) = \frac{\lambda^2}{4\pi n_0^2} p_{cr}(m)$ where $p_{cr}(m) = \int_0^\infty R_m^2 r dr \approx 4\sqrt{3}m$. Deviations from radial-symmetry do not increase the critical power, but rather lead to disintegration into collapsing non-vortex filaments.

We thank Amiel Ishaaya for useful discussions. This research was partially supported by Grant No. 2006-262 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The research of Nir Gavish was also partially supported by the Israel Ministry of Science Culture and Sports.

[1] G. Fibich and A. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides”, Opt. Lett. 25, 335-337 (2000).
[2] M. Weinstein, “Nonlinear Schrödinger Equations and Sharp Interpolation Estimates”, Comm. Math. Phys. 87, 567-576 (1983).
[3] F. Merle, “On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass”, Comm. Pure Appl. Math. 45 203-254, 1992.
[4] F. Merle, “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power”, Duke Math. J., 69, 427–454, 1993.
[5] G. Fibich and B. Ilan, “Self focusing of elliptic beams: An example of the failure of the aberrationless approximation”, JOSA B, 1749–1758 (2000).
[6] V. Kruglov and Y. Logvin and V.M. Volkov, “The theory of spiral laser beams in nonlinear media”, J. Modern Optics 39, 2277–2291 (1992).
[7] G. Fibich and N. Gavish, “Theory of singular vortex solutions of the nonlinear Schrödinger equation”, submitted.
[8] T. Mizumachi, “Instability of vortex solitons for 2D focusing NLS”, Advances in Differential Equations 12, 241–264 (2007).
[9] A. Vincotte and L. Berge, “Femtosecond Optical Vortices in Air”, PRL.95, 193901 (2005).
[10] L. Vuong et al., “Collapse of Optical Vortices”, Phys. Rev. Lett. 96, 133901 (2006).
[11] K.D. Moll, A.L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: Observation of the Townes profile”, Phys. Rev. Lett. 90, art. 203902 (2003).
[12] F. Merle and P. Raphael, “Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation”, Geom. Funct. Anal., 13, 591-642, 2003.
[13] This dynamics is similar to the case of non-vortex ring-type beams which, under azimuthal perturbations, breakup into filaments, each of which collapse with the Townes profile [14].
[14] T. Grow et al., “Collapse dynamics of super-Gaussian Beams”, Optics Express, 14,5468–5475 (2006).
[15] This follows from the fact that if ψ is a solution of the NLS [11] than $\psi_+ = \sqrt{2/3}\psi$ is a solution of [11].
[16] A. A. Ishaaya, L. T. Vuong, T. D. Grow, and A. L. Gaeta, “Self-focusing dynamics of polarization vortices in Kerr media”, Opt. Lett. accepted (2007).