Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data

María Gabián¹, Paloma Morán¹, Ana I. Fernández², Beatriz Villanueva², Amel Chtioui², Matthew P. Kent³, Lara Covelo-Soto¹, Almudena Fernández² and María Saura²*

Abstract

Background: A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species.

Results: Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA.

Conclusions: The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.

Keywords: Atlantic salmon, GWAS, High-dense SNP chip, Regional heritability analysis, Sex determination

Background

Sexual development is a multistep process involving sex determination (SD), initiation, gonadal differentiation and maintenance. This process comprises a great diversity of strategies that can be controlled by a variety of genetic and/or environmental mechanisms [1–3].
rate between sexes; to favor the stability of mating systems or to protect wild populations through supportive breeding practices, as having control on the sex ratio may be fundamental to maintain the effective population size and therefore to avoid inbreeding depression [6].

The family Salmonidae (Salmonids) comprises fish species with a great economic and societal importance. Within them, Atlantic salmon (Salmo salar) represents one of the most important farmed fish species in the world, with a global annual production achieving 2.5 million tonnes that entails an economic value of $15.4 billion (USD) [7].

Based on available evidence, it is assumed that salmonids are male heterogametic and that sex determination is genetically controlled by the master-sex SDY gene (sexually dimorphic on the Y-chromosome), a gene from the interferon-response factor transcription family [8, 9], which is involved in the immune response of vertebrates. In many non-salmonid species, master-sex determining genes are located on differentiated sex chromosomes that have undergone reduced recombination around the areas of the determining gene, leading to heteromorphic sex chromosomes [10, 11]. However, in Atlantic salmon, as in other salmonid species, sex chromosomes are not morphologically distinguishable [12]. Despite the fact that SDY is associated to maleness in most salmonids [9], its location is not syntenically conserved among species. Although previous literature supports that in Atlantic salmon, SDY maps to chromosome Ssa02 [13, 14], in some individuals of the species it has been found mapping to different chromosomes [15–18]. These findings have been associated to a transposition ability of SDY between chromosomes [14, 19], but the underlying mechanisms for this mobility are still unclear. A recent study by Kijas et al. [17] found evidence of one single ancestral location for Atlantic salmon SDY, thus discarding the hypothesis of multiple genomic locations predating Atlantic salmon speciation. Other studies have suggested that salmonids’ genome is at an early stage of sex chromosome evolution, given its residually tetraploid state resulting from the salmonids extra whole genome duplication (WGD) [12, 14]. The phenomenon, residual tetrasomy [20, 21], explains how some telomeric regions continue recombining between homeologous chromosomes while others have rediploidized [20–22], which may facilitate the transposition of genes across the genome and delaying Y degeneration [9, 16, 18]. This delay in Y degeneration has proposed to be mediated by sex reversal events in fish [23], as a consequence of the formidable plasticity in SD mechanisms in this group. In this way, sex reversal might play an important role in the evolution of SD, facilitating the purge of deleterious mutations on the heterogametic sex chromosome through recombination. This has been proposed as a “fountain of youth” [24] that may explain the high incidence of homomorphic sex chromosomes in fish and amphibians.

The advent of next-generation sequencing technologies has facilitated the development of a high quality reference genome [25] and multiple high-density single nucleotide polymorphism (SNP) arrays [26–28] for Atlantic salmon. The advance of molecular tools has also entailed the development of new statistical approaches that open new opportunities for the investigation of complex traits in this species. In this sense, the regional heritability analysis (RHA) approach, recently proposed by Nagamine et al. [29] represents an appropriate methodology to obtain a first approximation of the role of the different chromosomes of Atlantic salmon in sex determination.

In this study, we have used a 220 K high-density SNP panel [27] to investigate the genetic regulation of sex determination in wild Spanish populations of Atlantic salmon, which inhabit the South distribution limit of the species in Europe. The combination of RHA and genome-wide association studies (GWAS) allowed us to determine which chromosomes explain the highest proportion of the genetic variance for sex as well as identify candidate regions and genes associated to sexual development in this species.

Results
Regional heritability analysis
Genomic heritability for sex in the group of individuals analysed was significant and high ($h^2 = 0.70$, SE = 0.26). Estimates of chromosomal heritability ranged from 0.00 to 0.42 and are summarised in Table 1. Only estimates from chromosomes Ssa02 ($h^2 = 0.42$, SE = 0.12) and Ssa21 ($h^2 = 0.26$, SE = 0.11) were significant at the chromosomal (suggestive) level, as revealed by Likelihood Ratio Tests (LRT) (Table 1) and 95% confidence intervals (Fig. 1). After applying the strict Bonferroni correction for multiple test (5%) level, the estimate of heritability for Ssa02 was still significant. This chromosome explained 60% of the total additive genetic variance for sex in these populations.

Genome-wide association analysis
Results derived from GWAS after pruning the SNPs for linkage disequilibrium (LD) and after applying false discovery rate (FDR) multitest correction at 5% level ($\log_{10} (P) > 3.8$), revealed 114 SNPs significantly associated with sex (Fig. 2, Table 2). Ssa02 was the chromosome where the highest number of significant SNPs were mapped (15%). Allele frequencies for the significant SNPs were in general intermediate, as expected given the balanced numbers of males and females in the data set analysed, with SNP effects ranging between -0.29 and 0.33 (Additional file 1A). The distribution of allele frequencies for significant SNPs revealed a generalized differential trend for males and females (Additional file 1B). Further information about SNP
Table 1 Whole-genome (genomic) and chromosomal heritability estimates for sex

Chromosome	\(h^2\)	SE	LRT	p-val
1	0.01	0.09	-0.09	—
2	0.42	0.12	22.56	1.02e-6
3	0.03	0.09	-0.24	—
4	0.08	0.11	0.01	0.4586
5	0.00	0.09	-0.73	—
6	0.17	0.13	0.56	0.2275
7	0.11	0.12	0.19	0.3322
8	0.10	0.09	0.00	—
9	0.12	0.12	0.21	0.3224
10	0.00	0.09	-2.15	—
11	0.12	0.11	0.22	0.3209
12	0.00	0.08	-0.91	—
13	0.04	0.09	-0.07	—
14	0.12	0.11	0.23	0.3166
15	0.12	0.10	0.93	0.1681
16	0.00	0.08	0.00	—
17	0.02	0.08	0.03	0.4292
18	0.06	0.09	0.01	0.4574
19	0.05	0.09	0.00	0.4865
20	0.00	0.08	-0.82	—
21	0.26	0.11	6.27	0.0062
22	0.12	0.10	0.38	0.2687
23	0.06	0.09	0.07	0.3934
24	0.00	0.09	0.12	0.3665
25	0.00	0.09	-0.14	—
26	0.06	0.10	0.00	—
27	0.00	0.06	-3.36	—
28	0.10	0.10	0.55	0.2302
29	0.13	0.11	1.23	0.1338

| Genomic | 0.70 | 0.26 |

Estimates of heritability \(h^2\) for sex and corresponding standard error (SE) for each of the chromosomes and for the whole genome. Likelihood ratio test (LRT) statistic derived from the comparison between the reduced and the full models, with corresponding p-values, are also indicated.

Discussion

In this study, we used two complementary approaches to improve our understanding of the genetic mechanisms responsible for sex determination in Atlantic salmon. The information obtained from a high-density SNP array was used to perform a RHA that allowed to obtain, for the first time in this species, chromosomal estimates of heritability for sex. Furthermore, this information was used to identify putative regions responsible for sex determination using GWAS. By combining both approaches, our results support that Ssa02 is the predominant sex-determining chromosome in native Spanish populations, in agreement with much of the existing literature in other Atlantic salmon populations.

Previous studies seeking to identify sex related QTLs in Atlantic salmon, based their work on linkage map regression methods using a lower number of markers and cytogenetic techniques [13, 44, 45]. These studies suggested that Ssa02 contained the SEX locus, a finding that was later confirmed by the discovery of the SDY master-sex determining gene in rainbow trout [8, 9]. Despite today is generally accepted that SDY is responsible of maleness in most salmonids, some exceptions have been described. Hence, analysing families of a commercial Tasmanian Atlantic salmon population of North American origin, Eisbrener et al. [15] mapped the SEX loci on three different chromosomal locations (Ssa02, Ssa03 and Ssa06). A recent study in the same population by Kijas et al. [17] confirmed, through whole-genome sequencing, that Atlantic salmon males
carry a single copy of the male-sex determining region containing \(\text{SDY} \). Although it was identified on chromosome Ssa02 in most of individuals, some animals presented this region on Ssa03 and Ssa06, supporting the results by Eisbrenner et al. [15]. Also through genome-wide association, the authors identified candidate regions for four additional chromosomes.

Although our GWAS pattern was more sparse than that from Kijas et al. [17], we identified the same candidate regions in five chromosomes, including Ssa02 (regions 13–17 in Additional file 1), Ssa03 (22–23), Ssa05 (30–32), Ssa06 (37–39) and Ssa12 (53). The different association patterns observed in both studies can however be explained by different technical and biological reasons. First, the 220 K SNP used in our study was designed with samples from Norwegian origin, thus SNPs segregating in both populations are expected to be different. Although the SNP content from the 50 K SNP chip used by Kijas et al. [17] largely derived from the 220 K SNP chip, it was designed for identifying segregating polymorphic loci in
the Tasmanian population, thus maximising the amount of information. Second, we pruned our data set to avoid overweighting the contribution of groups of correlated SNPs due to linkage disequilibrium that might contribute to lower accuracy [46]. For that, we imposed a strong filter based on half the maximum value for r^2 observed in this population (Additional file 4), which can affect the pattern observed. Indeed, linkage disequilibrium patterns might be considerably different in both populations, since they have different geographic origin (South European vs North American) and management (wild vs farmed), and therefore are subjected to completely different selection pressures. Our wild populations inhabit the South distribution limit of the species in Europe, where strong local adaptations are expected. Conversely, the samples from Kijas et al. [17] come from a Tasmanian breeding programme of Nova Scotia origin, that has been maintained isolated for generations, where the impact of artificial selection and genetic drift is expected to have affected the distribution of the genetic variability across the genome in a different manner than in wild populations. In addition, due to its strong homing behaviour, the Atlantic salmon is naturally substructured into genetically differentiated and reproductively isolated populations [47]. Previous studies investigating the population structure of this species have found evidence of substantial genetic differentiation between North American and European populations (with 22% of the variation attributable to continents), with a clear pattern of isolation by distance [48]. Within continents, salmon European populations are more divergent than North American ones and are differentiated in Eastern Atlantic and Baltic clusters [49–52]. Another factor that can affect the association pattern, also related with the origin of populations, is the karyotypic number. While in European populations the karyotype typically consists on 29 (diploid) chromosomes, in North America populations this is usually 28 [53]. Here, Spanish samples presented 29 chromosomes, whereas Tasmanian samples presented 27. Different population origin and karyotype may also explain the signal found in Ssa21 in the RHA. According to this result, Ssa21 may play a noticeably role in sex determination in Spanish wild

Table 2 Information on the number of significant SNPs identified in the GWAS for each chromosome

Chromosome	Length	N SNPs	Pruned (Total)	Significant
1	159.0	2700 (12,768)	9	
2	72.9	1357 (4689)	17	
3	92.5	1846 (7940)	4	
4	82.4	1435 (6302)	4	
5	80.5	1619 (6455)	5	
6	87.0	1756 (6966)	7	
7	58.8	1374 (4894)	2	
8	26.4	646 (1725)	0	
9	141.7	1821 (9762)	5	
10	116.1	1723 (8180)	5	
11	93.9	1473 (6526)	1	
12	91.9	1275 (5841)	5	
13	107.8	1435 (7335)	5	
14	93.9	1297 (6852)	4	
15	104.0	1396 (7007)	3	
16	87.8	1035 (5558)	4	
17	57.7	982 (3736)	2	
18	70.7	1128 (5401)	2	
19	83.0	1086 (5369)	7	
20	86.8	1167 (5762)	5	
21	58.0	824 (4010)	4	
22	63.4	941 (4832)	6	
23	49.9	922 (4108)	2	
24	48.7	887 (4415)	1	
25	51.5	892 (4201)	1	
26	47.9	906 (3605)	2	
27	43.9	962 (4001)	0	
28	39.6	847 (3233)	2	
29	42.5	893 (3410)	0	
Genomic	36,625 (164,883)	114		

For each chromosome, a summary of the length in Mb, number of SNPs analysed after (Pruned) and before applying the pruning filter for linkage disequilibrium (Total, in brackets), and the number of significant SNPs in the GWAS are indicated.

Table 3 Information of the candidate regions identified in the GWA analysis in chromosomes Ssa02 and Ssa21 and corresponding number of genes in *Salmo salar* annotation

Chrom	Region	Start	End	N genes
2	10	5,577,222	6,577,222	42
2	11	10,142,805	12,197,890	102
2	12	13,985,694	14,985,694	49
2	13	22,816,807	24,177,902	36
2	14	26,416,426	27,936,237	73
2	15	30,702,935	33,299,026	47
2	16	43,765,979	44,765,979	36
2	17	51,194,734	52,194,734	39
2	18	52,856,992	53,856,992	47
2	19	70,787,705	72,294,817	72
21	20	448,663	1,448,663	12
21	21	5,232,214	6,232,214	19
21	22	25,444,577	26,444,577	17
21	23	46,118,091	47,118,091	14

Region code and corresponding start and end positions (in bp) of the candidate regions identified in chromosomes Ssa02 and Ssa21 in the GWAS. The number of genes found in the *Salmo salar* annotation from Salmobase is also indicated.
populations, which is compatible with the existence of an alternative population lineage in these populations. Although incorrect anchoring of markers to chromosomes is not disposi-
tible, if that was the case, this signal should also have appeared in the work by Kijas et al. [17]. In addition, residual tetraploidy resulting from the salmonid specific WGD may have influenced the evolution of their genomes leading to genomic instability [18]. An unstable state involves massive reorganizations of the chromosomes, including inversions, duplications and deletions, and may result in different sex chromosomes in different lineages [13, 14, 16, 18, 54].

Our findings also revealed sex-related genes in our candidate regions that had been previously identified in other species of the class Actinopterygii, including important maleness related genes such as SDY and genes from the SOX family. The sexually dimorphic on the Y chromosome is the master sex-determining gene in rainbow trout (Oncorhynchus mykiss) [8], and a male-specific Y-chromosome

Chrom	N genes	Region	Start (bp)	End (bp)	Gene	Organism
2	20	10	4,378,828	4,378,974	RSPO1	Oryzias latipes
10	4,384,694	4,384,886	ESR1	Danio rerio		
10	6,070,144	6,070,307	SOX8	Esox lucius		
11	11,563,571	11,564,290	SDY	Oncorhynchus mykiss		

Number (N) of sex related genes mapped in this study for each chromosome (Chrom). For those genes located within candidate regions predefined (< 0.5 Mb from the significant SNP) or in the vicinity of candidate regions (< 2.5 Mb from the significant SNP), the specific location of the gene in the S. salar genome and the organism where the gene was identified in NCBI are also detailed.
gene in the majority of salmonids [9]. Previous studies have
determined that the expression of SDY is specific to males,
being restricted to epithelial cells of the dorsal side of the
testis and to some somatic cells adjacent to the germ cells
[9, 16]. Indeed, overexpression of SDY in transgenic females
of rainbow trout induces testicular differentiation [9]. Al-
though the role of SDY in salmonids sex determination is
still unclear, some authors have proposed that it is involved
in the up-regulation of inhibitors of CYP19A (cytochrome
P450 aromatase), preventing the accumulation of estrogens
required for female development [8, 9, 16]

Table 5 Sex-related genes previously described in Actinopterygii that matched with GWAS candidate regions identified in this study

Genes	Location	Functional group	Functional role in sex	Reference
SDY	Ssa02, 19, 20	Interferon regulatory factor	Up-regulation of inhibitors of CYP19A (cytochrome P450 aromatase), preventing the accumulation of estrogens required for female development.	[8, 9, 16]
SOX family	Ssa01–3, 5–7, 9–10, 12–17, 19, 21–23, 25–29	Transcription factors	Testis development and male fertility in mammals. Sertoli cell differentiation and seminiferous tubule formation.	[31, 32]
RSPO1	Ssa02, 5	Activator protein	Activator of ovarian determination and differentiation through the WNT/β-catenin signaling pathway.	[33, 34]
LMO7	Ssa21, 25	Protein-protein interactions	Regulation of transcription of the emerin gene, an inhibitor of the WNT/β-catenin signaling pathway through beta-catenin.	[35, 36]
ESR1	Ssa02, 6, 15	Ligand-activated transcription factor	Estrogen nuclear receptor involved in female development in vertebrates. Maintenance of development and maintenance of female status.	[37, 38]
L2AF2A	Ssa02, 14, 15, 27	Binding factor	Steroid receptor. Regulation of transcription mediated by steroid hormone receptors and alternative sex-specific splicing in vertebrates. Female sex differentiation.	[39]
GNRH-R	Ssa02, 5, 23	Binding factor	Receptor of gonadotropin-releasing hormone. Regulation of female reproduction in vertebrates.	[40, 41]
DND	Ssa17, 21	Binding factor	Germ-cell-marker gene in many vertebrates. Involved in primordial germ cell migration and survival in teleosts.	[42]
FIGLA	Ssa02, 20, 21	Transcription factor	Germ-cell-specific transcription factor associated with ovary development and differentiation in vertebrates.	[43]

For each gene, the chromosomal location in Atlantic salmon candidate regions identified in this study, the functional group to which the gene belongs to, its functional role in sex and corresponding references, are provided.

In contrast, R-spondin genes present a conserved profile of enhanced expression in female vertebrates, and they are involved in ovarian determination and differentiation through the WNT/β-catenin signaling pathway [33]. This pathway is inhibited by the emerin gene, regulated by the LMO7 gene [35, 36]. A recent study in medaka [34] demonstrated increased expression of genes of the RSPO family in the female gonad, suggesting a similar role in fish. Expression analysis in Nile tilapia, revealed that estrogen receptors mediate the development of undifferentiated XX gonads through estradiol activation [37] and in zebrafish, mutants with ESR1 disrupted exhibited all-male phenotypes [38]. Also involved in the female reproductive process, GNRH-R activates the synthesis and secretion of gonadotropins in vertebrates.
through neuroendocrine control [40]. A previous study in seabream suggested that this gene has a role in meiosis-stimulating factor in the oocyte [41]. Finally, FIGLA is highly expressed in primary oocytes and has been localized to the ooplasm in medaka fish and coho salmon [43].

Today, it is generally accepted that most salmonids share the same master sex-determining gene, which has been moved through the action of transposable elements into different ancestral autosomes during the evolution of salmonids, resulting in alternative Y sex chromosomes [9].

Indeed, the first step in the evolution of a Y chromosome is the acquisition of a sex-determining locus on one of proto-sex chromosomes and, after that, the suppression of recombination between X and Y may favor the consolidation of the position of this gene. The role of recombination suppression between the X and Y chromosomes to resolve sexual conflict has been recently addressed by Wright et al. [55]. The authors analysed whole genome and transcriptome data in the guppy, a model for sexual selection with many Y-linked colour traits. Their results were consistent with a stepwise pattern of sex chromosome formation, suggesting that different regions of chromosome divergence can form independently within species. However, it is still debated why the sex chromosomes stopped recombining and how this process spread out over most part of the chromosomes. A recent in silico study by Mackiewicz et al. [56] revealed an association between the suppression of recombination and chromosome Y degeneration with the reproductive tactic, suggesting an enhancement of this effect in polygamous populations.

High-density SNP arrays are powerful tools to dissect QTLs and can highlight functional mechanisms underlying traits. However, appropriate analysis of dense marker information requires experimental designs with large sample sizes. In this sense, an important concern of our study was the reduced sample size available. Notwithstanding, our design allowed us to obtain significant estimates of whole-genome and chromosomal heritability, that remained significant even after applying strict Bonferroni correction. Thus, although our GWAS results may be interpreted with some caution, and validation of candidate SNPs in other genetic backgrounds is needed, the combination of both approaches (i.e. RHA and GWAS) provide valuable information for understanding the genetic basis of sex determination in Atlantic salmon.

Conclusions

In summary, our results are compatible with previous studies that suggest a SD mechanism operating in Atlantic salmon where the SDY gene is the master sex determining gene, being Ssa02 the chromosome candidate for sex in this species. Interestingly, our findings regarding Ssa21 point towards an alternative population lineage in Spanish wild salmon, which inhabits the South distribution limit of the species in Europe. This study contributes to improve our understanding of an important trait in Atlantic salmon such as sex determination that has important implications both in terms of ecology and aquaculture production, and highlights the utility of the development and application of genomic tools in fish.

Methods

Samples and genotyping

A total of 203 sexually mature wild adult salmon from recreational fishery or recorded in trapping facilities (94 males and 109 females) were sampled between 2008 and 2013 from six Spanish rivers (Miño, Ulla, Eo, Sella, Urumea, Bidasoa) covering the distribution range of the species in Spain (from 41° 51′ 55.08″ N, 8° 52′ 10.99″ W to 43° 22′ 22″ N, 1° 47′ 31″ W). Since 1950, regulations have required that scale samples are collected from all salmon caught in the recreational fishery to determine fish age and growth and tissue samples (adipose fins) for DNA profiling analysis. In addition, routine sampling in trapping facilities allows for continuous monitoring and sampling of all sea returns and involves recording the length, weight and sex and taking scale samples for aging and a small portion of adipose fin with anesthesia for DNA profiling analysis.

Genomic DNA was purified from ethanol preserved adipose fins using an NZY Tissue gDNA Isolation kit (NZYtech), and quantity and purity assessed with a Nanodrop-1000 spectrophotometer. DNA samples were adjusted to a final concentration of 100 ng/µl and frozen until use. Morphological sex was confirmed by the successful amplification of the SDY intron gene (~ 200 bp) in all males and absence in all females using the primers SDY E1S1 and SDY E2AS4 [9, 57]. Samples were genotyped using an Affymetrix 220 K SNP array (ThermoScientific) for Atlantic salmon [27] according to manufacturers recommendations. Genotypes from samples showing a dish quality control (DQC) < 0.82 or call rate < 0.97 were discarded. Only those data from SNPs classified as Poly High Resolution, with a call rate > 0.97 were used in our analysis. Unmapped SNPs and those with a minor allele frequency (MAF) < 0.01 were also removed. After applying these filters, data from 164,883 SNPs and 199 individuals (92 males and 107 females) remained available for analysis.

Estimation of heritability

Genomic heritability analysis

Genomic heritability was estimated assuming a linear model of the form:
\[y = \mu + Zu + e \]
\[\text{(1)} \]

where \(y \) is the vector of phenotypic records (male, female), \(\mu \) is the population mean of the trait \(u \) and \(e \) are vectors of random animal genetic and residual effects respectively, and \(Z \) is a design matrix allocating phenotypes to animals. Animal genetic effects were assumed to be distributed as \(N(0, G \sigma_u^2) \) where \(G \) is the genomic relationship matrix (GRM) for all fish and \(\sigma_u^2 \) is the additive genetic variance.

Regional heritability analysis

Regional heritability analysis was implemented to assess the contribution of different regions (in this case chromosomes) to the total additive genetic variance following Nagamine et al. [29]. For that, the random additive genetic effects were divided in two components: regional (chromosomal) genomic and residual whole-genomic additive genetic effects. For estimating the whole-genome component, all SNPs were used to build the GRM. For estimating the chromosomal component, 29 GRMs were built for each independent chromosome. The same whole-genome GRM was used for all analyses as in Nagamine et al. [29]. To test for significant chromosomal variance, likelihood ratio tests were performed by comparing the full model (including chromosomal and whole-genome additive genetic effects), with the reduced model (including only the whole-genome additive genetic effect, as in Eq. (1)). The full model was then of the form:

\[y = \mu + Zu + Zc + e \]

where \(y \) is the vector of phenotypic records (male, female), \(\mu \) is the vector of the population mean of the trait \(u \) and \(c \) are vectors of whole-genome and chromosomal additive genetic effects, respectively, \(e \) is the vector of random residual effects, and \(Z \) is a design matrix allocating phenotypes to animals. Again, animal genetic effects were assumed to be distributed as \(N(0, G \sigma_u^2) \) where \(G \) is the genomic relationship matrix for all fish and \(\sigma_u^2 \) is the additive genetic variance (computed from the whole-genome or from each chromosome, respectively).

Genome-wide association studies

In order to avoid over-weighting the contribution of groups of correlated SNPs in the GWAS, we applied an additional filter based on linkage disequilibrium pruning. For that, we used a threshold value of 0.26, as this is the value (measured as the squared correlation coefficient, \(r^2 \)) at which linkage disequilibrium decreased half in the populations analysed (Additional file 4). Linkage disequilibrium pruning was performed using the software PLINK v1.9 [58] with the instruction `--indep-pairwise` using 0.26 as threshold, resulting in 36,625 SNPs.

GWAS was performed by regressing the standardised SNP genotypes on the trait using the following mixed model:

\[y = \mu + Xb + Zu + e \]

which is basically the same model than in Eq. (1) but including a vector of fixed effects \(b \) that contains the substitution effect of the SNP, and where \(X \) is the design matrix for the fixed effect. The inclusion of the GRM in the model prevented potential bias for population structure [59]. A false discovery rate (FDR) multitest correction threshold at 5% level was employed to identify significant associations with the software Myriads [60].

Genetic values for RHA and GWAS were in all cases estimated using a relationship matrix as:

\[a_{ij} = \frac{1}{M} \sum_{k=1}^{M} z_{ik} z_{jk}, \]

where \(a_{ij} \) is the genetic relationship between individuals \(i \) and \(j \), \(M \) is the number of markers and \(z_{ij} \) is the standardised genotype of individual \(i \) at marker \(k \), defined as \(z_{ij} = (s_{ij} - \mu_j) / \sigma_j \) with \(s_{ij} \) being the number of reference alleles at locus \(j \) of individual \(i \), \(\mu_j = 2p_j \) and \(\sigma_j = \sqrt{2p_j(1-p_j)} \). \(\mu_j \) and \(\sigma_j \) are the mean and the standard deviation of the reference allele at marker \(j \) among the individuals genotyped, defined as a function of the frequency of the reference allele \(p_j \).

All models were solved assuming a dicotomic trait distribution (male / female) using restricted maximum likelihood (REML) with the software Dissect [61].

Identification of candidate sex-related genes

The gene content within the ±0.5 Mb flanking regions from significant SNPs identified in the GWAS was interrogated to identify and characterise potential causative genes and variants using two approaches. We chose this distance because linkage disequilibrium at 0.5 Mb was still high in these populations (almost half its maximum value, Additional file 4). In a first step, we identified the genes in the Atlantic salmon genome annotation [25] that were located within candidate regions identified in this study. Secondly, we explored whether sex-associated genes previously described in *Salmo salar* [30] and other species of the Class Actinopterygii were located within (<0.5 Mb from the candidate SNP) or in the vicinity (<2.5 Mb, according to the extension of linkage disequilibrium, Additional file 4) of our candidate regions. The identification of sex-related genes in Actinopterygii was performed using the advanced search tool in NCBI database. Specific sex-determining pathway genes in Atlantic salmon were explored in the basis of the expression study by Lubieniecki et al. [30]. For the second approach, a total
of 1050 genes were identified in 70 species. We restricted the search to 74 sex-related genes after removing duplicated gene names and genes in non-nuclear locations. In order to map the location of these 74 genes in the Atlantic salmon reference genome (assembly ICSASG_v2, [25]) we used the NCBI BLAST tool (blastn). Default search options were changed to discontiguous megablast, match/mismatch scores of 1,—1 and minimum gap cost (0 existence and 2 extension). Gene locations were inspected to overlap with candidate regions previously identified in the GWAS. Results were ordered by query cover and only alignments with a query cover > 50% or in chromosomes showing significant heritability for sex detected previously in RHA were considered.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12864-019-6104-4.

Additional file 1. Information relative to SNPs significantly associated with sex identified in the GWAS

Additional file 2. Information relative to candidate regions identified in the GWAS for chromosomes Ssa02 and Ssa21 contained in the Salmo solar reference genome (assembly ICSASG_v2), indicating the corresponding chromosome match and position in Salmo solar and BLAST parameters

Additional file 4. Plot representing the decrease of linkage disequilibrium (measured as the squared correlation between alleles at different loci, r²) across physical distance in the chromosome

Additional file 5. Genotypic and phenotypic information used for the GWAS. Genotypes for the 36,625 (pruned) SNPs are coded as allele dosage (0, 1, 2) for the minor allele (A1) for each individual (first row). Phenotypic information for sex (1: male, 2: female) for each individual is also included (second row). Missing values are coded as NA

Additional file 6. Map information for the 36,625 (pruned) SNPs used for the GWAS, containing the corresponding chromosome, SNP name, physical position (in bp) and alleles (A1: minor allele, A2: major allele)

Abbreviations
BLAST: basic local alignment search tool; CYP19A: cytochrome P450 aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogenesis specific basic aromatase; DND: dead-end; DQC: dish quality control; ESR1: estrogen receptor 1; FDR: false discovery rate; FIGLA: folliculogene
9. Yano A, Nicol B, Jouanno E, Quillet E, Foster A, Guyomard R, et al. The sexually dimorphic on the Y-chromosome gene (sdfy) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl. 2013;6:486–96.

10. Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124:901–14.

11. Natri HM, Shikano T, Merila J. Progressive recombinational suppression and differentiation in recently evolved neo-sex-chromosomes. Mol Biol Evol. 2013;30:1311–44.

12. Phillips RB. Evolution of the sex chromosomes in salmonid fishes. CytoGenet Genome Res. 2013;141:177–85.

13. Woram RA, Ghiarti K, Sakamoto T, Hoyheim B, Hofm L-E, Naish K, et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res. 2003;13:272–80.

14. Davidson WS, Huang T-K, Fujiki K, von Schlabur KR, Koop BF. The sex determining loci and sex chromosomes in the family Salmonidae. Sex Dev. 2009;3:78–87.

15. Eisbrenner WD, Gotwryt NJ, Cook M, Davidson EA, Dominik S, Elliott NG, et al. Evidence for multiple sex-determining loci in Tasmanian Atlantic salmon (Salmo salar). Heredit (Edinb). 2014;113:86–92.

16. Lubieniecki KP, Lins S, Cabana EI, Li J, Lay YJ, Davidson WS. Genomic instability of the sex-determining locus in Atlantic salmon (Salmo salar). G3. 2015;22:5123–22.

17. Kijas J, McWilliams S, Naval-Sánchez M, Kube P, King H, Evans B, et al. Evolution of sex determination loci in Atlantic salmon. Sci Rep. 2018;8:5564.

18. Sutherland BW, Rico C, Audet C, Bernatchez L. Sex chromosome evolution, heterochromatin and physiological QTL in the salmonid brook char Salvelinus fontinalis. G3, genes, genomes. Genet. 2017;27:7490–62.

19. Faber-Hammond JJ, Phillips RB, Brown KH. Comparative of a shared sex-determining region (SDR) among salmonid fishes. Genome Biol Evol. 2015;7:1972–87.

20. Allendorf FW, Bassham S, Cresko WA, Seeb LW, Seeb JE. Effects of ploidy and the evolution of salmonid genomes: II. Wright is still right. J Hered. 2015;106:762–8.

21. May B, Delany ME. Meiotic models to explain classical linkage, pseudolinkage, and chromosomal pairing in tetraploid derivative salmonid genomes. J Hered. 2015;106:217–28.

22. Allendorf FW, Bassham S, Cresko WA, Limborg MT, Seeb LW, Seeb JE. Effects of ploidy and the evolution of salmonid genomes: II. Wright is still right. J Hered. 2015;106:762–8.

23. Baroiller J-F, D. 2016:242–50.

24. Perrin N. Sex reversal: a fountain of youth for sex chromosomes? Evolution.

25. Faber-Hammond JJ, Phillips RB, Brown KH. Comparative of a shared sex-determining region (SDR) among salmonid fishes. Genome Biol Evol. 2015;7:1972–87.

26. Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, et al. Identification of the sex-determining locus of Atlantic salmon (Salmo salar). G3. 2015;22:5123–22.

27. Kijas J, McWilliams S, Naval-Sánchez M, Kube P, King H, Evans B, et al. Evolution of sex determination loci in Atlantic salmon. Sci Rep. 2018;8:5564.

28. Sutherland BW, Rico C, Audet C, Bernatchez L. Sex chromosome evolution, heterochromatin and physiological QTL in the salmonid brook char Salvelinus fontinalis. G3, genes, genomes. Genet. 2017;27:7490–62.

29. Faber-Hammond JJ, Phillips RB, Brown KH. Comparative of a shared sex-determining region (SDR) among salmonid fishes. Genome Biol Evol. 2015;7:1972–87.

30. Allendorf FW, Bassham S, Cresko WA, Seeb LW, Seeb JE. Effects of ploidy and the evolution of salmonid genomes: II. Wright is still right. J Hered. 2015;106:762–8.

31. May B, Delany ME. Meiotic models to explain classical linkage, pseudolinkage, and chromosomal pairing in tetraploid derivative salmonid genomes. II: Wright is still right. J Hered. 2015;106:762–6.

32. Allendorf FW, Thorgaard GH. Tetraploidy and the evolution of salmonid fishes. Genome Res. 2003;13:272–80.

33. Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19:2588–96.

34. Zhou L, Charkraborty T, Yu X, Wu L, Liu G, Mohapatra S, et al. R-spondins are involved in the ovariian differentiation in a teleost, medaka (Oryzias latipes). BMC Dev Biol. 2012;12:36.
57. Quéméré E, Perrier C, Besnard A-L, Evanno G, Baglinière J-L, Guiguen Y, et al. An improved PCR-based method for faster sex determination in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Conserv Genet Resour. 2014;6:825–7.

58. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81.

59. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.

60. Carvajal-Rodriguez A. Myriads: p-value-based multiple testing correction. Bioinformatics. 2018;34:1043–104.

61. Canela-Xandri O, Law A, Gray A, Woolliams JA, Tenesa A. A new tool called DISSECT for analysing large genomic data sets using a big data approach. Nat Commun. 2015;6:10162.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.