The Polysialic Acid-specific O-Acetyltransferase OatC from Neisseria meningitidis Serogroup C Evolved Apart from Other Bacterial Sialate O-Acetyltransferases

Received for publication, September 29, 2008 Published, JBC Papers in Press, November 5, 2008, DOI 10.1074/jbc.M807518200

Anne K. Bergfeld, Heike Claus, Nina K. Lorenzen, Fabian Spielmann, Ulrich Vogel, and Martina Mühlenhoff

From the Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany

Neisseria meningitidis serogroup C is a major cause of bacterial meningitis and septicaemia. This human pathogen is protected by a capsule composed of α2,9-linked polysialic acid that represents an important virulence factor. In the majority of strains, the capsular polysaccharide is modified by O-acetylation at C-7 or C-8 of the sialic acid residues. The gene encoding the capsule modifying O-acetyltransferase is part of the capsule gene complex and shares no sequence similarities with other proteins. Here, we describe the purification and biochemical characterization of recombinant OatC. The enzyme was found as a homodimer, with the first 34 amino acids forming an efficient oligomerization domain that worked even in a different protein context. Using acetyl-CoA as donor substrate, OatC transferred acetyl groups exclusively onto polysialic acid joined by α2,9-linkages and did not act on free or CMP-activated sialic acid. Motif scanning revealed a nucleophile elbow motif (GXSGXG), which is a hallmark of α/β-hydrolase fold enzymes. In a comprehensive site-directed mutagenesis study, we identified a catalytic triad composed of Ser-286, Asp-376, and His-399. Consistent with a double-displacement mechanism common to α/β-hydrolase fold enzymes, a covalent acetyl-enzyme intermediate was found. Together with secondary structure prediction highlighting an α/β-hydrolase fold topology, our data provide strong evidence that OatC belongs to the α/β-hydrolase fold family. This clearly distinguishes OatC from all other bacterial sialate O-acetyltransferases known so far because these are members of the hexapeptide repeat family, a class of acyltransferases that adopt a left-handed β-helix fold and assemble into catalytic trimers.

Neisseria meningitidis (meningococcus) is a worldwide and devastating cause of epidemic meningitis and sepsis (1, 2). Despite progress in diagnostics, vaccination, and therapy, invasive meningococcal infections remain a prevalent disease with a mortality of 10% and high morbidity among survivors (3). Meningococci are usually found as commensal bacteria of the human upper respiratory tract, and only a minority of isolates cause systemic disease (4). Common to these invasive strains is the presence of a polysaccharide capsule that serves as an important virulence factor (5–7). Based on the capsular polysaccharide (CPS) structure, meningococci were classified into 13 serogroups. However, only five serogroups (A, B, C, W-135, and Y) account for nearly all reported invasive diseases worldwide (1, 8). With the exception of serogroup A, these clinically important serogroups are decorated with polysialic acid (polySia) capsules (1, 9). Sialic acid refers to a family of nine-carbon sugars that are derived from N-acetylneuraminic acid (Neu5Ac). They are widely found as terminal sugars of glycoproteins and glycolipids on vertebrate cells but only in a limited number of pathogenic microorganisms, where they might have evolved to mimic host cell surfaces and to avoid immune attack (10, 11). The CPS of N. meningitidis serogroup B (NmB-CPS) is composed of α2,8-linked Neu5Ac, a homopolymer that is structurally identical to polySia found as a post-translational modification of the neural cell adhesion molecule NCAM (12, 13). In the case of serogroup C CPS (NmC-CPS), the sialic acid residues are joined by α2,9-linkages, whereas the CPS of serogroups W-135 (NmW-CPS) and Y (NmY-CPS) are Neu5Ac-containing heteropolymers composed of the disaccharide repeating units (→α)-α-D-Galp-(1→4)-α-Neu5Ac-(2→) and (→α)-α-D-GlcP-(1→4)-α-Neu5Ac-(2→), respectively (14, 15). Interestingly, in serogroups C, W-135, and Y, but not in serogroup B, the Neu5Ac residues can be further modified by O-acetylation. In NmC-CPS, the acetyl groups are distributed exclusively between the hydroxyl groups located at C-7 and C-8 of Neu5Ac, whereas in NmW-CPS and NmY-CPS, O-acetylation is found at C-7 and C-9 (15–17). Studies from the United Kingdom showed capsule O-acetylation for 88 and 79% of the serogroup C and Y strains, respectively, whereas only 8% of the W-135 strains displayed O-acetylated capsules (18, 19). However, the biological impact of this modification with regard to pathogenicity is still unclear. For NmC-CPS and NmY-CPS, an inverse correlation between immunogenicity and the level of O-acetylation was observed, whereas no impact on immunoge-
nicity was found for O-acetylation of NmW-CPS (20, 21). These findings suggest that for serogroup C and Y meningococci, capsule O-acetylation may play a general role in masking immunogenic epitopes and thereby enabling escape from immune surveillance. The sialate O-acetyltransferases that catalyze the capsule O-acetylation might therefore constitute a virulence or fitness factor.

O-Acetyltransferases are very common in bacteria and modify a diverse set of substrates, including carbohydrates, amino acids, and xenobiotics. They are found as cytosolic, inner membrane-associated or integral membrane proteins and include members of different protein families. In 2004, we reported the cloning of the genes encoding the capsule-specific O-acetyltransferases of serogroup C and serogroups W-135 and Y (oatC and oatWY, respectively), which was at that time the first identification of genes that encode sialic acid-specific O-acetyltransferases (22). In serogroups W-135 and Y, an identical O-acetyltransferase gene was found, which might reflect the structural similarity between NmW-CPS and NmY-CPS, two heteropolymers that differ only in the orientation of the C-4 hydroxyl group of the hexose moiety. Both oatC and oatWY were located downstream of the polySia synthesis genes siaA–D within the capsule gene complex of serogroup C and W-135/Y meningococci, respectively. Whereas no homology to any known protein in the data bases was found for OatC, analysis of the primary sequence of oatWY revealed the presence of imperfect tandem repeats of the consensus sequence (Liv)(Gaed)X4(Stav)X, the hallmark of enzymes belonging to the hexapeptide repeat family of acetyltransferases. Members of this family adopt a unique left-handed β-helix fold, and three identical subunits assemble into a catalytic trimer (23, 24).

Since 2004, several genes encoding sialate O-acetyltransferases have been identified in bacteria that contain sialic acid as a component of their CPS or lipo-oligosaccharide, such as Escherichia coli K1, Campylobacter jejuni, and type III group B streptococci (25–28). Notably, all these enzymes belong to the hexapeptide repeat family, suggesting that the specificity for sialic acid evolved exclusively within this protein family.

To investigate whether OatC is just an estranged member of the hexapeptide repeat family that lacks sequence homology or whether it is the first example of a sialate O-acetyltransferase belonging to a different protein family, we started a detailed biochemical characterization of this enzyme. Using serogroup C meningococcal spheroplast membranes as an enzyme source, Vann et al. (29) demonstrated that endogenous OatC transfers acetyl groups from acetyl-CoA to endogenous membrane-bound as well as exogenous soluble NmC-CPS. However, reports on the isolation and further characterization of the enzyme are missing. In this study, we succeeded in purifying active recombinant OatC, which was found as a homodimer. A comprehensive site-directed mutagenesis study revealed the presence of a Ser–Asp–His catalytic triad with the serine located in a nucleophile elbow motif, a characteristic feature of α/β-hydrolase fold enzymes. The identification of a covalent acetyl-enzyme intermediate gave the first insight into the catalytic mechanism of OatC. Together, our data obtained by biochemical analysis of wild-type and mutant OatC provide strong evidence that OatC is a polySia-specific O-acetyltransferase that belongs to the α/β-hydrolase fold superfamily. This result demonstrates that OatC evolved apart from all other bacterial sialate O-acetyltransferases known so far.

EXPERIMENTAL PROCEDURES

Materials— Purified de-O-acetylated CPS from *N. meningitidis* serogroup C was kindly provided by Baxter. Purified CPS from *N. meningitidis* serogroups W-135 and Y were kindly donated by Pasteur Mérieux Connaught. CPS from *E. coli* K1 was purified as described (30) and kindly provided by T. Scheper (Institut für Technische Chemie, Universität Hannover, Hannover, Germany). Monoclonal antibody (mAb) P1.2 was kindly provided by J. Suker and I. Feavers (National Institute for Biological Standards and Control, Hertfordshire, United Kingdom). pET expression vectors and *E. coli* BL21(DE3) were obtained from Novagen. CMP-Neu5Ac, Neu5Ac, colomnic acid, 5,5′-dithiobis(2-nitrobenzoic acid), acetyl-CoA, propionyl-CoA, and butyryl-CoA were purchased from Sigma.

Generation of OatC Expression Plasmids— All constructs for the expression of OatC variants were generated in the prokaryotic expression vector pET22b-ΔStrep, resulting in OatC variants with a C-terminal hexahistidine tag. pET22b-ΔStrep was generated by adapter ligation of oligonucleotides ABK42 and ABK43 into the BamHI/XbaI sites of pET22b-Strep (26), resulting in a vector that lacks the pelB leader sequence of pET22b and the Strep tag sequence of pET22b-Strep. Wild-type oatC was amplified by PCR using the primer pair MM269/MM271 and genomic DNA of *N. meningitidis* serogroup C as template. The PCR product was subcloned by the BamHI/XhoI sites into pET22b-ΔStrep. Constructs for the expression of the N-terminally truncated forms ΔN34-OatC and ΔN103-OatC were generated by PCR using the primer pairs ABK69/MM271 and ABK69/MM271, respectively. The PCR products obtained were subcloned into pET22b-ΔStrep as described above.

For expression of a hybrid protein composed of the first 34 amino acids of OatC fused to the maltose-binding protein (MBP) from *E. coli* (N34-MBP), a pET22b-based plasmid was generated in a two-step cloning approach. (i) The sequence encoding the first 34 amino acids of OatC was amplified by PCR using the primer pair MM269/AKB81 and wild-type oatC as template. The PCR product was subcloned into the BamHI/XhoI sites of pET22b-ΔStrep. Constructs for the expression of the N-terminally truncated forms ΔN34-OatC and ΔN103-OatC were generated by PCR using the primer pairs AKB67/MM271 and AKB69/MM271, respectively. The PCR products obtained were subcloned into pET22b-ΔStrep as described above.

For expression of MBP alone, the corresponding coding sequence was amplified by PCR using the primer pair ABK129/ABK128 and subcloned into the BamHI/XhoI sites of pET22b-ΔStrep. The identity of all generated constructs was confirmed by sequencing. The sequences of the indicated oligonucleotides are given in supplemental Fig. S1.

Site-directed Mutagenesis— Single amino acid substitutions were generated by PCR using the QuikChange site-directed mutagenesis kit (Stratagene) following the manufacturer’s guidelines. Wild-type oatC subcloned in pET22b-ΔStrep was used as template together with the primer pairs listed in sup-
Biochemical Characterization of OatC

Supplemental Fig. S1. BamHI/Xhol fragments of the PCR products obtained were subcloned in pET22b-ΔStrep, and the identity of the inserted PCR fragments was confirmed by sequencing.

Expression and Purification of Recombinant OatC—Freshly transformed E. coli BL21(DE3) cells were cultivated at 37 °C in 500 ml of Power Broth (AthenaES) containing 200 μg/ml carbenicillin. At A600 = 1.4, expression was induced by adding 0.1 mM isopropyl β-D-thiogalactopyranoside. Thereafter, bacteria were grown at 15 °C for 20 h, harvested, and lysed by sonication.

Recombinant proteins were isolated by immobilized metal affinity chromatography (IMAC) using 1 ml-HisTrap HP columns (GE Healthcare) equilibrated with binding buffer (50 mM Tris-HCl (pH 7.5), 300 mM NaCl, and 20 mM imidazole). After washing with 15 ml of binding buffer, proteins were eluted with a linear imidazole gradient (20–500 mM imidazole in binding buffer). Enzyme-containing fractions were pooled, concentrated by ultrafiltration, and loaded onto a Superdex 200 HR 10/30 column (GE Healthcare) equilibrated with 50 mM Tris-HCl (pH 7.5) and 100 mM NaCl.

Spectrophotometric Activity Assay—The enzymatic activity of purified OatC variants was determined in a spectrophotometric assay. The reaction was performed at 25 °C in a total volume of 100 μl containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 20% (w/v) glycerol, 2 mM 5,5′-dithiobis(2-nitrobenzoic acid), 200 μg/ml purified NmC-CPS, and 1 mM acetyl-CoA. The reaction was initiated by adding 1.7 pmol of purified enzyme and monitored continuously at 405 nm in half-area 96-well plates (Greiner) using a PowerWave 340 microtiter plate spectrophotometer (BioTek).

Radioactive Incorporation Assay—For determination of OatC activity in crude bacterial lysates, a radioactive incorporation assay was performed. OatC variants were expressed in E. coli BL21(DE3) as described above. Bacteria from 1 ml of culture medium with A600 = 1 were resuspended in 25 μl of lysis buffer (50 mM Tris-HCl (pH 8.0), 2 mM EDTA, and 100 μg/ml lysozyme), incubated for 15 min at 4 °C, and lysed by sonication. The enzyme reaction was performed at 25 °C in a total volume of 50 μl containing 20 μl of the soluble lysate fraction, 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 20 μg of NmC-CPS, and 9.25 kBq of [14C]acetyl-CoA (GE Healthcare). The reaction was stopped after 15 min by spotting 10 μl of the reaction mixture on Whatman No. 3MM paper. Free radioactivity was removed by descending paper chromatography with run-off mixture on Whatman No. 3MM paper. Radioactivity incorporated into the chromatographically immobile NmC-CPS was quantified by scintillation counting. To determine the enzymatic activity of purified wild-type OatC, the reaction was performed in a total volume of 200 μl containing the same reaction mixture as described for the spectrophotometric assay supplemented with 37 kBq of [14C]acetyl-CoA. At different time points, aliquots of the reaction mixture were analyzed as described above.

Detection of Acetyl-enzyme Intermediates—Purified enzyme (3.2 μg) was incubated in a final volume of 50 μl at 25 °C in the presence of 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, and 9.25 kBq of [14C]acetyl-CoA. After 5 min, one-half of the reaction mixture was removed. The remaining reaction mixture was supplemented with 20 μg NmC-CPS and incubated for 25 min. Enzyme reactions were stopped by adding an equal volume of loading buffer and separated by SDS-PAGE. Gels were analyzed by either phosphorimaging or combined Alcian blue/silver staining (31).

SDS-PAGE, Staining, and Immunoblotting—SDS-PAGE was performed under reducing conditions using 2.5% (w/v) β-mercaptoethanol. Silver staining, Coomassie staining, and Western blot analysis with anti-penta-His antibody (Qiagen) were performed as described previously (26).

Size-exclusion Chromatography—The quaternary structure of OatC variants was determined on a Superdex 200 HR 10/30 column. The column was equilibrated with 50 mM Tris-HCl (pH 7.5) and 100 mM NaCl and calibrated with the following molecular mass standards (Sigma): thyroglobulin (669 kDa), β-amylase (200 kDa), alcohol dehydrogenase (150 kDa), bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa), and cytchrome c (12.4 kDa). Eluted proteins were monitored by absorbance at 280 nm.

Analysis of OatC Activity in Vivo—Isogenic NmC strains carrying different oatC variants were generated by homologous recombination. The downstream region of oatC that ought to provide the right anchor for homologous recombination was amplified using the primer pair FS1/FS2. The PCR product was subcloned into the ApaI sites of pBluescript II SK(+) (Stratagene), resulting in the plasmid pFS1. Subsequently, the Sall-restricted kanamycin resistance cassette of pUC4K (GE Healthcare) was inserted into the Xhol site of pFS1, resulting in pFS2. The kanamycin cassette was inserted to later select for transformants. Finally, wild-type and mutant oatC variants with an additional sequence stretch encoding a C-terminal histididine tag were excised from the pET-based expression plasmids described above by sequential restriction. After restriction with HpaII and subsequent blunt ending with T4 DNA polymerase, the 1.5-kb fragment obtained was restricted with BamHI and inserted into the BamHI and EcoRV sites of pFS2. The resulting plasmids were transformed into N. meningitidis serogroup C wild-type strain 2120 (32) to allow homologous recombination. Correct insertion into the oatC locus was confirmed by PCR, Southern blotting, and sequence analysis. Meningococci were grown on chocolate agar, and 20 μ1 of a bacterial suspension (A600 = 0.15) was added to each well of a microtiter plate (Greiner) that had been coated with poly-d-lysine (Sigma). After drying, bacteria were fixed with 0.05% glutaraldehyde in phosphate-buffered saline. Capsule expression was analyzed by an enzyme-linked immunosorbent assay as described previously (32) using the following mAbs: mAb 924, which is specific for NmC-CPS (OAc− and OAc− forms); mAb 1125, which is directed exclusively against the O-acetylated form of NmC-CPS (OAc−); and mAb P1.2, which is directed against the surface protein PorA (33), as a loading control. N. meningitidis serogroup C strain 2948 lacking a functional oatC gene (22) was used as a negative control.

RESULTS

Purification of Active OatC—OatC was expressed in E. coli BL21(DE) with a C-terminal hexahistidine tag. The recombinant protein was isolated by IMAC and size-exclusion chromatography as described under “Experimental Procedures.” Using
Biochemical Characterization of OatC

Relative enzymatic activities of purified OatC were determined in the presence of different acceptor and donor substrates. The concentration of all acceptor substrates was normalized to equal sialic acid content (6.47 nmol sialic acid residues) and thereby to an equal number of acceptor sites. The activity obtained for NmC-CPS and acetyl-CoA was set to 100%. Values are means ± S.D. from three independent experiments.

Acceptor substrate	Relative enzymatic activity (%)
NmC-CPS	100.0 ± 2.7
Neu5Ac	0.2 ± 0.6
CMP-Neu5Ac	0.3 ± 0.2
Colominic acid	0.4 ± 0.7
K1-CPS	0.3 ± 0.6
NmW-CPS	0.0 ± 0.4
NmY-CPS	0.3 ± 0.1

Donor substrate	Relative enzymatic activity (%)
Acetyl-CoA	100.0 ± 2.4
Propionyl-CoA	21.4 ± 1.2
Butyryl-CoA	0.1 ± 0.1

Table 1: Substrate specificity of OatC

Neu5Ac (CMP-Neu5Ac), the Neu5Ac-containing heteropolymers NmW-CPS and NmY-CPS, and polySia homopolymers composed of either α2,9-linked Neu5Ac residues (NmC-CPS) or α2,8-linked Neu5Ac residues (colominic acid and K1-CPS, the partially hydrolyzed and full-length CPS of E. coli K1, respectively). As summarized in Table 1, no enzymatic activity was detected for free Neu5Ac and CMP-Neu5Ac, indicating that OatC is specific for oligo- or polySia. However, of the tested polymeric substrates, only NmC-CPS served as an acceptor, demonstrating that OatC is highly specific for α2,9-linked polySia.

The donor substrate specificity of OatC was determined by measuring the enzymatic activity for NmC-CPS in the presence of acetyl-CoA and the alternative acyl donors propionyl-CoA and butyryl-CoA. Compared with acetyl-CoA, ~20% residual enzymatic activity was detected in the presence of propionyl-CoA, whereas no activity was observed with butyryl-CoA (Table 1).

OatC Assembles into Dimers Mediated by the First 34 Amino Acids—To study the oligomerization state of OatC, the purified enzyme was analyzed by size-exclusion chromatography on a Superdex 200 column. A single peak was obtained that corresponded to a molecular mass of 105 ± 1.6 kDa (Table 2), demonstrating that OatC is a homodimer with an apparent molecular mass that is in agreement with the calculated dimeric mass of 108.6 kDa.

Using the program HTH (34) and searching the Pfam Database of protein families (35), we identified a putative helix-turn-helix motif within the first 34 amino acids and a tetra-tripeptide repeat spanning amino acids 71–104 of OatC. Because both motifs have been associated with protein-protein interactions (36–38), we asked whether the N-terminal part of OatC is involved in dimer formation. To address this question, the ΔN34-OatC and ΔN103-OatC variants, lacking the first 34 and 103 amino acids, respectively, were generated. After expression in E. coli BL21(DE3), both variants were purified to homogeneity by IMAC and size-exclusion chromatography (data not shown). Interestingly, both variants were found as monomers (Table 2), indicating that dimerization of OatC depends on the first 34 amino acids. Whereas no enzymatic activity was found

This two-step purification protocol, OatC was purified to homogeneity (Fig. 1A), yielding 24 mg of enzyme from 500 ml of bacterial culture. Silver staining revealed a single band consistent with a calculated molecular mass of 54.3 kDa, and the identity of this band was confirmed by Western blot analysis using anti-penta-His antibody (Fig. 1B). A, after expression in E. coli BL21(DE3), OatC carrying a C-terminal hexahistidine tag was isolated by IMAC on a Ni2+/His column followed by size-exclusion chromatography. Purification steps were monitored by 10% SDS-PAGE and silver staining, including aliquots of bacterial lysate (lane 1), flow-through of the IMAC column (lane 2), wash fractions (lanes 3 and 4), OatC-containing fractions eluted from the IMAC column (lanes 5–8), a pool of fractions 5–8 from the IMAC column (lane 9), and purified OatC after size-exclusion chromatography (lane 10). B, the enzymatic activity of purified OatC was determined in a spectrophotometric assay (data given as means ± S.D. of three independent experiments measured in triplicates) and a radioactive incorporation assay (data given as means ± S.D. of two independent experiments), Amax measured in the spectrophotometric assay is displayed on the left y axis, whereas the incorporated radioactivity is given as counts/min on the right y axis.

![FIGURE 1. Purification of OatC. A, after expression in E. coli BL21(DE3), OatC carrying a C-terminal hexahistidine tag was isolated by IMAC on a Ni2+/His column followed by size-exclusion chromatography. Purification steps were monitored by 10% SDS-PAGE and silver staining, including aliquots of bacterial lysate (lane 1), flow-through of the IMAC column (lane 2), wash fractions (lanes 3 and 4), OatC-containing fractions eluted from the IMAC column (lanes 5–8), a pool of fractions 5–8 from the IMAC column (lane 9), and purified OatC after size-exclusion chromatography (lane 10). B, the enzymatic activity of purified OatC was monitored in the presence of acetyl-CoA and the alternative acyl donors propionyl-CoA and butyryl-CoA. Compared with acetyl-CoA, ~20% residual enzymatic activity was detected in the presence of propionyl-CoA, whereas no activity was observed with butyryl-CoA (Table 1).](image-url)
Biochemical Characterization of OatC

TABLE 2
Quaternary structures of OatC variants

The quaternary structures of purified OatC variants, the hybrid protein N34-MBP, and MBP were determined by size-exclusion chromatography. The molecular masses of the monomeric species were calculated from the respective amino acid sequences. The oligomeric state was calculated from the values obtained by gel filtration divided by the mass calculated for the monomer. Relative enzymatic activities of OatC variants were analyzed in the spectrophotometric assay, and the activity obtained for wild-type (WT) OatC was set to 100%. Values are means ± S.D. from three independent experiments. ND, not determined.

Protein variant	Molecular mass (calculated)	Oligomeric state	Relative enzymatic activity	
	Monomer	Gel filtration	%	
WT OatC	54.3	105.0 ± 1.6	2.0	100.0 ± 2.7
ΔN103-OatC	50.2	42.8 ± 0.8	0.9	24.9 ± 1.2
ΔN34-OatC	42.0	46.0 ± 0.9	1.1	0.4 ± 0.3
N34-MBP	46.0	114.4 ± 0.8	2.5	ND
MBP	41.9	29.1 ± 1.1	0.7	ND
OatC-H267A	54.3	100.1 ± 1.2	1.9	0.1 ± 0.3
OatC-D376A	54.3	92.4 ± 1.3	1.7	0.2 ± 0.1
OatC-H399A	54.3	92.7 ± 2.3	1.7	0.1 ± 0.4
N103-OatC	42.0	46.0 ± 0.9	1.1	25.0 ± 1.2
N34-OatC	50.2	105.0 ± 1.6	2.0	42.8 ± 0.8

FIGURE 2. Identification of a catalytically important histidine. A, shown is a schematic representation of OatC with a C-terminal hexahistidine tag. The positions of all six histidine residues present in OatC are highlighted. B, the single alanine substitutions of the indicated amino acids were introduced into OatC. After expression in E. coli BL21(DE3) and affinity purification on Ni²⁺-chelating columns, wild-type (wt) and mutant forms were analyzed by 10% SDS-PAGE and Coomassie staining (upper panel) and Western blotting using anti-penta-His antibody for detection (lower panel). C, the enzymatic activities of wild-type and mutant forms were determined in a spectrophotometric assay using equimolar concentrations of each purified enzyme variant. Data represent means ± S.D. of three independent experiments measured in triplicates, and the value obtained for wild-type OatC was set to 100%.

for ΔN103-OatC, ΔN34-OatC retained 25% of the wild-type activity (Table 2). The latter finding demonstrates that dimerization is not an absolute requirement for enzymatic activity. However, deletion of the first N-terminal amino acids seems to affect protein folding and/or stability, leading to the observed drop in activity. To further evaluate the role of the N-terminal part in providing a dimerization interface, we fused the first 34 amino acids of OatC to MBP of E. coli, resulting in the hybrid protein N34-MBP. MBP is a monomeric protein, and in line with previous reports (39, 40), an oligomeric state of 0.7 was determined by gel filtration. By contrast, a quaternary state of 2.5 was found for N34-MBP, providing strong evidence that the first 34 amino acids of OatC are sufficient to mediate protein dimerization even in a different protein context.

Identification of a Catalytically Important Histidine Residue—For OatC, the identification of functionally important residues by visualizing highly conserved residues was impeded by a complete lack of sequence homology between OatC and any other protein in the data bases (22). However, because acetyltransferases of a variety of different protein families comprise catalytically important histidine residues (24, 41–44), we asked whether one of the six histidines found in the primary sequence of OatC (Fig. 2A) is involved in enzymatic activity. To address this question, single alanine substitutions were introduced, resulting in OatC variants H31A, H111A, H183A, H267A, H399A, and H456A. All proteins were expressed in E. coli BL21(DE3) with a C-terminal hexahistidine tag and were found at comparable levels in the soluble fraction. After isolation by IMAC and size-exclusion chromatography (Fig. 2B), equimolar amounts of wild-type and mutant enzymes were analyzed in the spectrophotometric assay. With the exception of OatC-H399A and OatC-H456A, all investigated variants showed enzymatic activity similar to that of the wild-type protein (Fig. 2C). Alanine substitution of the most C-terminal histidine residue (H456A) resulted in reduced activity. However, this mutant retained 70% of the wild-type level, excluding an essential role of His-456 in catalysis. By contrast, a complete loss of activity was observed for OatC-H399A, demonstrating that His-399 is critical for enzymatic activity.

OatC Contains a Nucleophile Elbow Motif—Motif scanning using the MyHits web server (45) revealed a putative nucleophile elbow motif (GXSGXG) in the primary sequence of OatC (Fig. 3A). With the consensus sequence Sm-X-Nu-X-Sm-Sm (where Sm is a small residue, Nu is a nucleophilic residue, and X is any residue), the nucleophile elbow represents a structural motif that places a nucleophile at the tip of a sharp turn to allow efficient presentation at the site of attack on the substrate. It is a typical feature of a/β-hydrolase fold enzymes, where the nucleophile (Ser, Cys, or Asp) within the motif is part of a catalytic triad composed of Nu-(Asp/Glu)-His (42, 46–50). Members of the a/β-hydrolase fold family that use serine as a nucleophile can be irreversibly inhibited by the serine-specific reagent phenylmethylsulfonyl fluoride, resulting in sulfonylation of the catalytic serine. Preincubation of purified OatC with phenylmethylsulfonyl fluoride resulted in an almost complete loss of OatC activity (Fig. 3C), indicating the presence of a catalytic serine. To determine whether Ser-286 located in the
Identification of a nucleophile elbow motif. A, shown is a schematic representation of OatC. The relative positions of the identified nucleophile elbow motif and Ser-286 are indicated. B, the single amino acid exchanges S286A, S286C, and S285A were introduced into OatC. After expression in E. coli BL21(DE3) and affinity purification on Ni²⁺ chelating columns, wild-type (wt) and mutant forms were analyzed by 10% SDS-PAGE and Coomassie staining (upper panel) and Western blotting using anti-penta-His antibody for detection (lower panel). C, the enzymatic activities of wild-type and mutant forms were determined in a spectrophotometric assay using equimolar concentrations of each purified enzyme variant. In parallel, the enzymatic activity of purified wild-type OatC was analyzed in the presence of 10 μM phenylmethylsulfonyl fluoride (+PMSF). Data represent means ± S.D. of three independent experiments measured in triplicates, and the value obtained for wild-type OatC was set to 100%.

Identification of a Ser-Asp-His Catalytic Triad—To investigate the catalytic triad, we searched for an acidic residue that would complete the triad. The common order in which the catalytic residues appear in the primary sequence of α/β-hydrolase fold enzymes is Ser-(Asp/Glu)-His (42, 46). Therefore, aspartate and glutamate residues located between Ser-286 and His-399 of OatC (Fig. 4A) were likely candidates for the missing catalytic acid. Consequently, we generated OatC variants with the single alanine substitutions E336A, E345A, D371A, D376A, and E379A that were expressed in E. coli BL21(DE3) with a C-terminal hexahistidine tag. The analysis of bacterial lysates by SDS-PAGE combined with either Coomassie staining or Western blot analysis revealed similar expression levels for all variants (Fig. 4B). To omit purification of each variant, bacterial lysates were analyzed directly for enzymatic activity. Because the spectrophotometric assay is not compatible with a high background of protein-bound sulphydryl groups as present in crude lysates, the radioactive incorporation assay was applied. With the single exception of OatC-D376A, all variants showed enzymatic activity similar to that of the wild-type enzyme. To confirm the observation that alanine substitution of Asp-376 results in a complete loss of activity, the respective OatC variant was purified to homogeneity (Fig. 4D) and was analyzed in the spectrophotometric assay. In this case, identical amounts of purified enzyme were used for wild-type OatC and OatC-D376A. However, no enzymatic activity was observed for OatC-D376A, demonstrating that Asp-376 is essential for catalysis (Fig. 4E) and completes the catalytic triad as the critical acid. It is noteworthy that all three OatC variants in which the catalytic triad was destroyed by the single alanine substitution S286A, D376A, or H399A were found as dimers (see Table 2), suggesting that the introduced mutations did not affect the overall folding of these proteins.

Capsule O-Acetylation in Serogroup C Meningococci Carrying Mutant Forms of oatC—To verify the critical role of Ser-286, Asp-376, and His-399 for OatC activity in vivo, we generated a set of isogenic NmC strains carrying different oatC variants. Wild-type oatC and mutant forms, extended by a sequence encoding a C-terminal hexahistidine tag, were inserted by homologous recombination into the oatC locus of NmC strain 2120 (32), thereby replacing the endogenous wild-type gene. OatC expression was monitored in bacterial lysates by Western blot analysis with anti-penta-His antibody. As shown in Fig. 5A, all isogenic strains expressed comparable amounts of OatC, whereas no enzyme was detected in the deletion mutant NmC ΔoatC (22), used as a negative control. The capsule O-acetylation competence of all strains was monitored in a whole-cell enzyme-linked immunosorbent assay using two capsule-specific antibodies: mAb 924, which binds to α2,9-
linked polySia irrespective of the presence or absence of O-acetylation, and mAb 1125, which recognizes exclusively the O-acetylated form of NmC-CPS (32). As shown in Fig. 5B, both antibodies gave strong signals on oatC-positive NmC wild-type strain 2120. By contrast, complete loss of the OAc-specific signal was observed for the respective null mutant NmC-oatC-H9004, although capsule expression per se was not affected as demonstrated by a strong signal obtained with mAb 924 (gray bars), which recognizes NmC-CPS irrespective of the O-acetylation status (OAc+ and OAc−). As a negative control, bovine serum albumin (BSA) was used instead of bacteria. The specificity of the primary antibodies was confirmed by the absence of antibody binding on NmC-oatC-H9004siaD, which lacks the polysialyltransferase gene (siaD) essential for capsule synthesis (NmC-ΔsiaD), and an NmC deletion mutant lacking oatC (NmC-ΔoatC), and a serogroup B strain (NmB).

FIGURE 4. Catalytic acid of OatC. A, shown is a schematic representation of OatC, highlighting the positions of the six aspartate and glutamate residues located between Ser-286 and His-399. B, the single amino acid substitutions E336A, E345A, D359A, D371A, D376A, and E379A were introduced into OatC. After expression in E. coli BL21(DE3), bacterial lysates of all variants were separated by 10% SDS-PAGE and analyzed by Western blotting using anti-penta-His antibody for detection (upper panel) and Coomassie staining (lower panel). C, the OatC activity of wild-type (wt) and mutant forms was determined in bacterial lysates using a radioactive incorporation assay. D, wild-type OatC and the variant oatC-D376A were purified by IMAC and size-exclusion chromatography. Isolated proteins were analyzed by 10% SDS-PAGE followed by Coomassie staining (upper panel) and Western blot analysis with anti-penta-His antibody (lower panel). E, the enzymatic activities of the wild-type enzyme and oatC-D376A were determined in a spectrophotometric assay using equimolar concentrations of each purified enzyme variant. Data represent means ± S.D. of three independent experiments measured in triplicates, and the value obtained for wild-type oatC was set to 100%.

FIGURE 5. Capsule O-acetylation in isogenic NmC strains with different oatC variants. A set of isogenic NmC strains carrying the indicated oatC variants was generated by homologous recombination. In all cases, genes extended by a sequence encoding a C-terminal hexahistidine tag were used. A, shown are the results from Western blot analysis of bacterial lysates stained with anti-penta-His antibody. As a negative control, an NmC strain lacking oatC was used (NmC-ΔoatC). B, the O-acetylation status of the indicated strains was investigated in a whole-cell enzyme-linked immunosorbent assay with mAb 1125 (black bars), which is specific for the O-acetylated (OAc−) form of NmC-CPS. Capsule expression was controlled with mAb 924 (gray bars), which recognizes NmC-CPS irrespective of the O-acetylation status (OAc+ and OAc−). As a negative control, bovine serum albumin (BSA) was used instead of bacteria. The specificity of the primary antibodies was controlled by using the following strains: a wild-type (wt) NmC strain carrying a functional oatC gene (NmC), an NmC deletion mutant lacking the polysialyltransferase gene (siaD), an NmC deletion mutant lacking oatC (NmC-ΔoatC), and a serogroup B strain (NmB).
of mAb 1125 binding was not due to reduced capsule expression because in all cases strong signals were obtained with mAb 924. Thus, in line with the in vitro findings, no enzymatic activity was found for OatC-H399A, OatC-S286A, and OatC-D376A in vivo. Together, these results confirm the presence of a catalytic triad composed of Ser-286, Asp-376, and His-399.

Secondary Fold Prediction—Members of the α/β-hydrolase fold family share a conserved eight-stranded mostly parallel β-sheet, flanked on both sides by helices. The presence of this fold might become evident from the arrangement of the secondary structure elements. As shown in supplemental Fig. S2, we propose a topology diagram for OatC that is based on secondary structure prediction (52). Whereas the first helix (αA) and the first three β-strands (β1–3) could not be unequivocally assigned, secondary structure elements predicted for amino acids 259–422 show the typical topology of a “canonical” α/β-fold. The positions of the catalytic residues Ser-286, Asp-376, and His-399 after strands β5, β7, and β8, respectively, also matched the commonly found location of the catalytic triad (46, 53, 54).

Catalytic Mechanism of OatC—Most α/β-hydrolase fold enzymes act via a double-displacement (ping-pong) mechanism (42, 55–58). In the case of acyltransferases belonging to the α/β-hydrolase fold family, this involves the formation of a covalent acetyl-enzyme intermediate that occurs by transfer of the acetyl group from acetyl-CoA onto the serine residue located in the nucleophile elbow (47, 58, 59). In the second half of the reaction, the acetyl group is further transferred onto the acceptor substrate.

To gain the first insight into the catalytic mechanism of OatC, we monitored the enzyme reaction for the occurrence of a stable acetyl-enzyme intermediate. Therefore, purified OatC was incubated with [14C]acetyl-CoA, and the reaction mixture was analyzed before and after addition of the acceptor substrate by SDS-PAGE followed by autoradiography (Fig. 6 A) or combined Alcian blue/silver staining as a loading control (Fig. 6 B). For wild-type OatC, a radioactively labeled protein band migrating with the expected molecular mass of 54.3 kDa was observed, indicating the appearance of an acetyl-enzyme intermediate. Upon addition of NmC-CPS, this intermediate collapsed, and radiolabeled NmC-CPS appeared (Fig. 6 A), which is consistent with the transfer of the radioactive acetyl group from the enzyme onto the acceptor substrate. By contrast, no acetyl-enzyme intermediate was detected for OatC-S286A, suggesting that the hydroxyl group of Ser-286 acts as acceptor site for the acetyl group. In the case of the site-specific variant D376A, the appearance of an acetyl-enzyme intermediate could be detected, although the amount of radiolabeled enzyme was lower than for the wild-type enzyme. However, addition of the acceptor substrate did not result in a collapse of the intermediate, and accordingly, no transfer onto NmC-CPS was detected (Fig. 6 A). This result indicates that Asp-376 is dispensable for the first half of the reaction but essential for the second half. Similar to the S286A exchange, alanine substitution of His-399 abolished the formation of an acetyl-enzyme intermediate, suggesting an important role of His-399 during transfer of the acetyl group onto the enzyme. Thus, analysis of wild-type and mutant OatC demonstrated that O-acetylation of NmC-CPS proceeds via a covalent acetyl-enzyme intermediate that involves Ser-286.

DISCUSSION

In this study, we performed the first purification and biochemical characterization of OatC, the capsule O-acetyltransferase of serogroup C meningococci. The enzyme proved to be highly specific for polySia joined by α2,9-linkages and did not act on α2,8-linked polySia or on sialic acid-containing heteropolymers such as CPS of serogroups W-135 and Y. Moreover, free Neu5Ac and CMP-Neu5Ac were not modified by OatC, indicating that in vivo O-acetylation of NmC-CPS occurs exclusively at the polymer level. Similar observations have been made for NeuO, a prophage-encoded sialate O-acetyltransferase found in E. coli K1 strains that harbor the CUS-3 phage (25). NeuO catalyzes the O-acetylation of K1-CPS, and the enzyme acts exclusively on α2,8-linked polySia with at least 14 sialic acid residues (26, 60).

Despite the functional similarity between NeuO and OatC, our data presented in this study point out that the two enzymes evolved independently and belong to structurally diverse protein families. As shown recently by homology modeling and site-directed mutagenesis studies, NeuO belongs to the hexapeptide repeat family of acyltransferases (26). Members of this protein family contain a unique triangular left-handed β-helix fold with a protruding loop that harbors the catalytic histidine residue. They assemble into catalytic trimers in which the protruding loop of one subunit embraces the left-handed
Biochemical Characterization of OatC

\(\beta\)-helix domain of the adjacent subunit, resulting in three identical active sites at the interfaces between the subunits (24, 61–63). In the case of NeuO, hexamers were found in solution, which might be dimers of trimers (26).

In contrast to NeuO, the primary sequence of OatC is devoid of hexapeptide repeats. Moreover, BLAST search analyses did not reveal significant sequence similarities between OatC and any other protein (22), impeding the identification of phylogenetic relationships. However, by combining bioinformatic approaches (motif scanning and secondary structure prediction), site-directed mutagenesis, and biochemical analyses, we have now identified several features that characterize OatC as a new member of the \(\alpha/\beta\)-hydrolase fold family of proteins. The \(\alpha/\beta\)-hydrolase fold is a versatile and widespread protein architecture that is found in enzymes with diverse functions such as proteases, lipases, esterases, dehalogenases, haloperoxidases, lyses, and epoxide hydrolases (42, 50, 64–70). The various members of this large superfamily usually lack significant amino acid sequence similarities but share a common fold that gave the family the name. The canonical \(\alpha/\beta\)-hydrolase fold is composed of an eight-stranded mainly parallel \(\beta\)-structure that arranges in a twisted \(\beta\)-sheet, flanked on both sides by helices (42, 46). The fold provides a stable scaffold for a catalytic triad consisting of a nucleophile (serine, cysteine, or aspartate), an acid (aspartate or glutamate), and a histidine, with the nucleophile located at the tip of a sharp turn, the so-called “nucleophile elbow.” However, many variations from the canonical fold have been observed mainly due to the absence of particular strands or helices and/or insertions that can range from a few amino acids to entire domains. Based on the large number of solved crystal structures, the essential features to identify the fold are the presence of at least five parallel \(\beta\)-strands, the order of the catalytic triad (nucleophile-acid-histidine), and a nucleophile elbow at the top of canonical strand B5 (54).

Although a three-dimensional structure is required to unequivocally confirm the presence of a particular fold, our data provide strong evidence that OatC adopts an \(\alpha/\beta\)-hydrolase fold. A series of single amino acid exchanges led to the identification of a catalytic triad composed of Ser-286, Asp-376, and His-399. Ser-286 was found to be part of a typical nucleophile elbow motif (GXSXGG), indicating that similar to other \(\alpha/\beta\)-hydrolase fold proteins, the nucleophile is located in a tight turn to expose the hydroxyl group of Ser-286 to nucleophilic attack of the incoming substrate. Moreover, secondary structure prediction suggested for OatC a pattern of \(\beta\)-strands and \(\alpha\)-helices that matches the topology of the canonical \(\alpha/\beta\)-hydrolase fold (42, 46, 53, 54). In the proposed topology model, the catalytic residues are located after strands B5, B7, and B8 for Ser-286, Asp-376, and His-399, respectively, which is consistent with the common positioning of the catalytic triad in \(\alpha/\beta\)-hydrolase fold enzymes.

Members of the \(\alpha/\beta\)-hydrolase fold family catalyze a variety of transformations. However, for almost all enzymes, a double-displacement (ping-pong) kinetic mechanism is described that involves a covalent substrate-enzyme intermediate with the substrate linked to the nucleophile of the catalytic triad (42, 58, 66, 71–76). In line with this, a stable acetyl-enzyme intermediate was observed for OatC that crucially depended on the presence of Ser-286. In addition, a CoA burst was observed in the absence of polySia (data not shown). This indicates that the first substrate is released before binding of the second substrate, which confirms a ping-pong mechanism. On the basis of our data obtained for wild-type OatC and mutant forms, we propose the following catalytic mechanism (Fig. 7). The carboxyl group of Asp-376 forms a salt bridge with the N-\(\varepsilon\) of His-399, allowing the N-\(\varepsilon\)2 of the imidazole ring to abstract a proton from Ser-286. Thereby, the nucleophilicity of the hydroxyl group of Ser-286 is increased, facilitating the attack of the carbonyl carbon of acetyl-CoA. The resulting tetrahedral transition state subsequently collapses to an acetyl-enzyme intermediate with the acetyl moiety covalently attached to Ser-286. During the acetylation step, the imidazole group of His-399 transfers the proton of the serine hydroxyl to the sulfhydryl leaving group, and free CoA is released. The second half-reaction is also assisted by His-399 through acid/base catalysis and starts with the abstraction of a proton from the C-7 (or C-8) hydroxyl group of the acceptor polysaccharide. This enables the nucleophilic attack of the carbonyl carbon of the acetyl group in the acetyl-enzyme intermediate, resulting in a second tetrahedral transition state. Subsequent decomposition of the tetrahedral intermediate leads to release of the second reaction product, i.e. O-acetylated NmC-CPS. In this last step, Ser-286 is returned to its protonated state, which reinitializes OatC for a new catalytic cycle.
Further studies are required to investigate whether OatC transfers acetyl groups to both the C-7 and C-8 hydroxyl groups. Using 13C NMR spectroscopy, Bhattacharjee et al. (14) detected di-O-acetylated residues (Neu5,7,8Ac$_3$) in NmC-CPS, whereas no evidence for di-O-acetylated sialic acids was found by Lemercier and Jones (17). For NmC-CPS containing only mono-O-acetylated residues, non-enzymatic migration of acetyl groups was observed. In freshly prepared CPS, O-acetylation was found predominantly at O-8, whereas after storage at room temperature, the majority of acetyl groups were shifted to O-7 (17, 77, 78). Therefore, OatC might be selective for O-8, and acetylation of O-7 might occur exclusively by non-enzymatic migration.

In agreement with the proposed critical roles of the catalytic residues of OatC, single alanine substitutions of Ser-286, Asp-376, and His-399 completely abolished OatC activity in vitro and in vivo. Replacement of either His-399 or Ser-286 already abrogated the ability to form a covalent acetyl-enzyme intermediate, which is consistent with the proposed crucial function of His-399 as a general base catalyst and the central role of Ser-286 as an attachment site for the acetyl group. In contrast to OatC-H399A and OatC-S286A, OatC-D376A was still able to form a limited amount of acetyl enzyme intermediate, indicating that Asp-376 is dispensable during the first half-reaction but essentially required for catalysis of the second half-reaction. This finding is in accordance with the less pronounced role of the catalytic acid observed in many α-β-hydrolase fold enzymes. In several cases, alanine substitution of the catalytic acid was even compatible with enzyme catalysis, and considerably high levels of activity were observed (66, 76, 79).

We conclude that OatC adopts an α-β-hydrolase fold structure with a Ser-Asp-His catalytic triad that forms the molecular basis for O-acetylation of NmC-CPS by a ping-pong mechanism. This clearly distinguishes OatC from all other bacterial sialate O-acetyltransferases known so far, which all belong to the hexapeptide repeat family: (i) NeuO, responsible for O-acetylation of the E. coli K1 capsule; (ii) OatWY, involved in O-acetylation of sialic acids within the galactose- and glucose-containing heteropolymeric polySia capsules of serogroup W-135 and Y meningococci, respectively (22); (iii) NeuD of group B streptococci, required for O-acetylation of terminal α2,3-linked sialic acids capping CPS (28); and (iv) NeuD of C. jejuni, catalyzing the O-acetylation of terminal α2,8-linked sialic acids of the lipooligosaccharide (27). Compared with α-β-hydrolase fold enzymes, members of the hexapeptide repeat family not only adopt an entirely different structural fold, the left-handed β-helix fold, but also act by a different kinetic mechanism. Although they possess a strictly conserved catalytic histidine, this residue is not part of a catalytic triad, and kinetic data obtained for this enzyme family revealed a sequential kinetic mechanism (24, 62, 80, 81).

The observed striking differences between OatC and other bacterial sialic acid-modifying O-acetyltransferases indicate that the enzymatic function of sialate O-acetylation evolved independently on two distinct structural frameworks by convergent evolution. Whereas the hexapeptide repeat family of acetyltransferases is restricted to microorganisms, α-β-hydrolase fold enzymes are present in all kingdoms of life. Interestingly, the α-β-hydrolase fold is also used as the structural basis for viral sialic acid-specific acetyl esterases, the receptor-destroying enzymes of influenza C and coronaviruses that use O-acetylated sialic acids as host receptor structures (82, 83). Thus, this fold appears to be a likely candidate for the structural framework of euarkyotic sialate O-acetyltransferases, for which the genetic and structural bases are still unknown. Attempts to clone the respective genes, e.g. by expression cloning, failed, and purification and characterization of the enzymatic activities proved to be challenging (84–88). The new insight in the evolution of sialate O-acetyltransferases obtained in bacteria may help to identify similar enzymes in eukaryotes by searching for genes encoding potential α-β-hydrolase fold proteins with unknown function.

Acknowledgments—We thank Rita Gerardy-Schahn for helpful discussions and continuous support and Astrid Oberbeck for excellent technical assistance.

REFERENCES

1. Rosenstein, N. E., Perkins, B. A., Stephens, D. S., Popovic, T., and Hughes, J. M. (2001) *N. Engl. J. Med.* 344, 1378–1388
2. Stephens, D. S. (2007) *J. Infect. Dis.* 196, (suppl.) S78–S83
3. Connolly, M., and Noah, N. (1999) *Epidemiol. Infect.* 122, 41–49
4. Yazdankhah, S. P., and Caugant, D. A. (2004) *FEMS Microbiol. Lett.* 232, 281–287
5. Spinosa, M. R., Progida, C., Tala, A., Cogli, L., Alifano, P., and Bucci, C. (2007) *Infect. Immun.* 75, 3594–3603
6. Jennings, H. J., Bhattacharjee, A. K., Bundle, D. R., Kenny, C. P., Martin, A., and Smith, I. C. (1977) *J. Biol. Chem.* 252, 5146–5153
7. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983) *J. Biol. Chem.* 258, 249–254
8. Bhattacharjee, A. K., Jennings, H. J., Kennedy, C. P., Martin, A., and Smith, I. C. (1975) *J. Biol. Chem.* 250, 1926–1932
9. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983) *Biochem. Biophys. Res. Commun.* 112, 482–487
10. Bhattacharjee, A. K., Jennings, H. J., Kennedy, C. P., Martin, A., and Smith, I. C. (1973) *J. Biol. Chem.* 250, 1926–1932
11. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983) *Biochem. Biophys. Res. Commun.* 112, 482–487
12. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983) *Biochem. Biophys. Res. Commun.* 112, 482–487
13. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983) *Biochem. Biophys. Res. Commun.* 112, 482–487
Biochemical Characterization of OatC

24. Johnson, C. M., Roderick, S. L., and Cook, P. F. (2005) Arch. Biochem. Biophys. 433, 85–95
25. Deszo, E. L., Steenbergen, S. M., Freedberg, D. L., and Virm, E. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 5564–5569
26. Bergfeld, A. K., Claus, H., Vogel, U., and Mühlenhoff, M. (2007) J. Biol. Chem. 282, 22217–22227
27. Houlston, R. S., Endtz, H. P., Yuki, N., Li, J., Jarrell, H. C., Koga, M., van Belkum, A., Karwasi, M. F., Wakarchuk, W. W., and Gilbert, M. (2006) J. Biol. Chem. 281, 11480–11486
28. Lewis, A. L., Hensler, M. E., Varki, A., and Nizet, V. (2006) J. Biol. Chem. 281, 11186–11192
29. Vogel, U., Liu, T. Y., and Robbins, J. B. (1978) J. Bacteriol. 133, 1300–1306
30. Tsai, C. M., and Frasch, C. E. (1982) Anal. Biochem. 119, 115–119
31. Blondel, A., and Bedouelle, H. (1991) J. Biol. Chem. 266, 457–461
32. Blondel, A., and Bedouelle, H. (1990) J. Biol. Chem. 265, 1050–1056
33. Poolman, J. T., Kriz-Kuzemenska, P., Ashton, F., Bibb, W., Dankert, J., Koga, M., van Belkum, A., Karwasi, M. F., Wakarchuk, W. W., and Gilbert, M. (2006) J. Biol. Chem. 281, 11480–11486
34. Dodd, I. B., and Egan, J. B. (1990) J. Biol. Chem. 265, 1050–1056
35. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Cerici, G., Forlusk, L., Edy, S. R., Sonnhammer, E. L., and Bateman, A. (2008) Nucleic Acids Res. 36, D281–D288
36. Cai, M., Zheng, R., Caffrey, M., Craigie, R., Clore, G. M., and Gronenborn, A. M. (1997) Nat. Struct. Biol. 4, 567–577
37. Hitomi, K., Oyama, T., Han, S., Arvai, A. S., and Getzoff, E. D. (2005) J. Biol. Chem. 280, 19127–19135
38. D’Andrea, L. D., and Regan, L. (2003) Trends Biochem. Sci. 28, 655–662
39. Blondel, A., and Bedouelle, H. (1990) Eur. J. Biochem. 193, 325–330
40. Blondel, A., and Bedouelle, H. (1991) Protein Eng. 4, 457–461
41. Westwood, I. M., Kawamura, A., Fullam, E., Russell, A. J., Davies, S. G., and Sim, E. (2006) Curr. Top. Med. Chem. 6, 1641–1654
42. Holmquist, M. (2000) Curr. Protein Pept. Sci. 1, 209–235
43. Jogl, G., Hsiao, Y. S., and Tong, L. (2004) Annu. Rev. Biochem. 73, 17–29
44. Kodawadke, S. C., and Marmorstein, R. (2007) Oncogene 26, 5528–5540
45. Pagni, M., Ioannidis, V., Cerutti, L., Zahn-Zabal, M., Kristiansen, A. M., and Falquet, L. (2004) Nucleic Acids Res. 32, W332–W335
46. Nardini, M., and Dijkstra, B. W. (1999) Curr. Opin. Struct. Biol. 9, 732–737
47. Wang, M., Liu, W., Wang, Y., Wei, Z., Zhang, P., Li, Y., Jiang, X., Xu, H., and Gong, W. (2007) Biochem. Biophys. Res. Commun. 363, 1050–1056
48. Milkowski, C., and Strack, D. (2004) Phytotaxonomy 65, 517–524
49. Hendle, J., Mattevi, A., Westphal, A. H., Spee, J., de Kok, A., Tepljakov, A., and Hol, W. G. (1995) Biochemistry 34, 4287–4298
50. Mirza, Y. A., Nazi, I., Iwase, M., Wright, G. D., and Berghuis, A. M. (2005) Biochemistry 44, 15768–15773
51. Claus, H., Vogel, U., Mühlenhoff, M., Gerardy-Schahn, R., and Frosch, M. (1997) Mol. Gen. Genet. 257, 28–34
52. Combet, C., Blanchet, G., Geurjon, C., and Deleage, G. (2000) Trends Biochem. Sci. 25, 147–150
53. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolov, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschuere, K. H. G., and Goldman, A. (1992) Protein Eng. 5, 197–211