A single-center prospective cohort study on post-splenectomy sepsis and its prevention

Siegbert Rieg1,2, Lena Bechet1, Kai Naujoks2, Julia Hromek2, Berit Lange1,2, Marc-Fabian Juzek-Küpper1***, Katarina Stete1, Matthias C. Müller1, Insa Jost1***, Winfried V. Kern1, Christian Theilacker1,2,****

1 Division of Infectious Diseases, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

2 Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

* Present address: Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany

** Present address: Division of Infection Control and Infectious Diseases, University Aachen, RWTH, Aachen, Germany

*** Present address: Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Germany

**** Present address: Pfizer Pharma GmbH, Linkstrasse 10, Berlin, Germany

Corresponding author
Christian Theilacker, MD
Abteilung für Infektiologie, Klinik für Medizin II
Hugstetter Strasse 55
79104 Freiburg
Germany

Email christian.theilacker@gmail.com

Alternate corresponding author
Siegbert Rieg, MD
Abteilung für Infektiologie, Klinik für Medizin II
Hugstetter Strasse 55
79104 Freiburg
Germany

Email siegbert.rieg@uniklinik-freiburg.de

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Background

This study evaluated the impact of a dedicated outpatient service on vaccination uptake after splenectomy and on the incidence of post-splenectomy sepsis.

Methods

From 2009 to 2016 at the University Hospital Freiburg (Germany), asplenic patients were referred to a dedicated outpatient service, provided with comprehensive preventive care including vaccinations, and enrolled in a prospective cohort study. The impact of the service on vaccination uptake and the occurrence of severe sepsis/septic shock was compared between patients who had splenectomy (or were asplenic) within 3 months of study entry ("early study entry") and those that had splenectomy (or were asplenic) more than 3 months before study entry ("delayed study entry").

Results

A total of 459 asplenic patients were enrolled and 426 patients were followed prospectively over a median period of 2.9 years. Pneumococcal vaccine uptake within 3 months of splenectomy or first diagnosis of asplenia was 27% vs 71% among delayed study entry and early study entry patients, respectively (p<0.001). Forty-four episodes of severe sepsis or septic shock occurred in study patients: 22 after study entry and 22 before study entry. *S. pneumoniae* was more frequent among sepsis episodes that occurred before study entry (8/22) than after study entry (1/22 episodes). For episodes occurring after study entry, only a higher Charlson comorbidity index score was significantly associated with severe sepsis/septic shock post splenectomy.
Conclusions

With dedicated outpatient care, high uptake of pneumococcal vaccination post-splenectomy was achieved. Sepsis episodes were largely of non-pneumococcal etiology in patients who had received dedicated post-splenectomy care.

Key words: asplenia, post-splenectomy sepsis, vaccination
Summary of Article

The introduction of a dedicated outpatient care service at a German tertiary care medical center led to a substantial improvement in vaccination coverage after splenectomy. During the 2.9 year follow-up, pneumococcal sepsis was rare in this setting.
Introduction

Asplenia and splenic dysfunction are associated with an immunodeficiency that predisposes patients to a life-threatening sepsis syndrome called either post-splenectomy sepsis or overwhelming post-splenectomy infection (OPSI) [1]. In Germany, approximately 8,000 splenectomies are performed annually [2]. In the United Kingdom, prevalence of asplenia in the adult population has been documented at 0.4% - 0.6% [3]. Earlier systematic reviews have reported > 50% of OPSI cases to be caused by *Streptococcus pneumoniae* [4]. However, most of these studies predate the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13), which in most countries, including Germany, now is recommended for this risk group, in conjunction with the 23-valent pneumococcal polysaccharide vaccine (PPV-23) [5]. Recent data on the epidemiology of infections in patients with functional and anatomic asplenia are rare. The data that do exist largely come from retrospective cohort studies [6, 7] that have relied on hospital discharge codes — an approach that may cause bias due to variability in coding quality [8]. To our knowledge, no study performed to date prospectively has analyzed the epidemiology of severe infection and sepsis after splenectomy, while also engaging in active, patient-level follow-up.

Despite guidelines recommending vaccination against *S. pneumoniae*, *N. meningitidis*, and *Haemophilus influenzae* B for patients with anatomic or functional asplenia, vaccination rates for these infections remain unsatisfactory [9-11]. To improve the quality of preventive care for splenectomized patients, in 2009 the University Medical Center Freiburg established a dedicated outpatient service. All patients diagnosed with splenectomy/asplenia were referred to an outpatient clinic that focused on providing
counseling both to prevent post-splenectomy infection and to recommend and deliver preventive measures.

The goals of the present study were to assess the impact of a dedicated care program on the uptake of vaccinations recommended for splenectomized patients and the impact of this intervention on the incidence, as well as clinical and microbiological features, of severe infections and sepsis post splenectomy.
Methods

Study design, setting and participants

This monocentric, prospective cohort study was conducted at the University Medical Center Freiburg, a tertiary care institution with 1,600 hospital beds that serves the southwest region of the German state of Baden-Württemberg.

Between January 2009 and December 2016, all surgical intensive care units at the University Medical Center Freiburg kept screening logs of patients that had undergone abdominal surgery for splenectomy and provided study staff with the screening logs on a bi-weekly basis. All eligible patients received a written invitation to an outpatient service dedicated to delivering comprehensive infection prevention post-splenectomy. These patients were considered as “early study entry”. Also eligible for the study were patients referred to the outpatient clinic between 2009 and 2016 for splenectomies that had been performed more than three months prior to referral either in the study center or in surrounding regional hospitals. These patients were designated as “delayed study entry”. Patients with an underlying disease considered to be rapidly fatal (i.e., a life expectancy < three months) were deemed ineligible for the study. During their outpatient clinic visits, patients received counseling from a physician and supporting nurse regarding the risk of infection after splenectomy, and they were given alert cards, along with an educational kit describing available preventive measures. Stand-by antibiotics routinely were prescribed to splenectomized or asplenic patients with the following exceptions: 1) patients with immunocompromising conditions other than asplenia, and 2) patients with a previous post-splenectomy sepsis. These two patient groups received a permanent antibiotic prophylaxis as recommended by German guidelines [12]. During the baseline visit, missing vaccine doses were delivered according to national recommendations [5, 12].
were still hospitalized 14 days post-splenectomy, then the visit to the outpatient service was scheduled prior to hospital discharge.

During the study period, the vaccination guidelines of the German Standing Committee for Vaccination Recommendations (STIKO) regarding pneumococcal and meningococcal vaccinations in asplenic patients changed substantially. The changes included: a switch to sequential pneumococcal vaccination with the 13-valent pneumococcal conjugate vaccine, followed by the 23-valent pneumococcal polysaccharide vaccine; a switch to the tetravalent meningococcal conjugate vaccine; and the inclusion of meningococcus type B vaccination. In its most recent guidelines update, STIKO recommended that pneumococcal vaccine-naïve adults receive a single dose of the 13-valent pneumococcal conjugate vaccine (PCV13), followed by a dose of the 23-valent pneumococcal polysaccharide vaccine (PPV23) six to twelve months later. Revaccination with PPV23 was recommended every six years. In addition, two doses of a four-valent meningococcal conjugate vaccine given two months apart were recommended. The four-component MenB vaccine (4CMenB, Bexsero®) was recommended as a single dose, depending upon the physician’s choice. A single *Haemophilus influenzae* type B vaccination for vaccine-naïve individuals was also recommended [5, 12]. In patients receiving immunosuppressive medication or chemotherapy, vaccination was given in accordance with physician judgment and current guidelines [12]. Follow-up visits were either scheduled in the outpatient clinic or at the primary care provider, depending upon the patient’s preference. Further follow-up was done by phone interview at three months, 12 months, and then again at the end of the study. If a patient could not be contacted directly, then we contacted the patient’s legal representative or primary care physician in order to obtain information for the follow-up visit.
The study was approved by the ethics committee of the University Medical Center Freiburg and is registered in the German Clinical Trials Register (identifier DRKS00004332). Informed written consent was obtained from all participants prior to study entry.

Variables collected

During the baseline study visit, demographic variables, comorbid illness and Charlson comorbidity index [13] were documented. In addition, vaccination status for pneumococcal vaccines, meningococcal vaccines, and the H. influenzae B conjugate vaccine was assessed by reviewing written vaccination records. Post-splenectomy infections leading to hospital admission were assessed retrospectively via structured patient interviews, as well as via review of medical records (University Medical Center Freiburg) and discharge records (other hospitals). In order to confirm asplenia, blood films were obtained from all patients and examined by microscopy for the presence of Howell-Jolly inclusion bodies.

During the follow-up patient interviews, information concerning the type, severity and timing of infections, immunosuppressive medication or chemotherapy, and vaccination status was obtained. All reported hospitalizations relating to infection were validated using medical discharge records and were reviewed for plausibility by two experienced infectious disease specialists (S.R. and C.T.).

Definitions

Early study entry was defined as study inclusion and receipt of dedicated post-splenectomy care within three months after splenectomy or incident diagnosis of asplenia. Delayed study entry, on the other hand, was defined as study inclusion later than three months after splenectomy. Severe infections in asplenic patients were defined as ones that required hospitalization for more than 48 hours. Severe sepsis or septic shock were defined by the criteria published by Levy et al. [14]. Splenectomy was defined as the surgical removal of the spleen. Functional hyposplenia and asplenia were defined as loss of splenic function due to
underlying comorbidity, radiation therapy, or splenic embolization leading to the presence of erythrocyte Howell-Jolly inclusions bodies [1]. For patients with functional hyposplenia or asplenia, we considered the date of splenectomy to be the date of first documentation of the hyposplenia diagnosis; for congenital asplenia, we used the date of birth. Therapeutic splenectomies, splenectomies for malignant disease, splenomegaly and benign procedures were considered elective, whereas splenectomies for splenic trauma, infection, pancreatitis and accidental splenic laceration during abdominal surgery were considered non-elective. Unless specifically mentioned in the text, the term “splenectomy” also includes functional asplenia/hyposplenia. Ongoing or recent chemotherapy was defined as antineoplastic chemotherapy within the last three months before the baseline study visit.

Because of the multiple changes in vaccine recommendations during the study period, vaccine exposure for pneumococcal vaccines was defined as the receipt of at least one dose of the 23-valent pneumococcal polysaccharide vaccine (PPV23) or the 13-valent pneumococcal conjugate vaccine (PCV13). For meningococcal vaccines, we defined vaccine exposure as the receipt of at least one dose of the quadrivalent meningococcal polysaccharide vaccine (MPSV4), a monovalent or quadrivalent meningococcal conjugate vaccine (MenC or MenACWY), or a meningococcal serogroup B vaccine (MenB).

Statistical analysis

We calculated the proportion of patients vaccinated against pneumococci, meningococci and *H. influenzae* by using a denominator of all patients with a baseline study visit. For the calculation of vaccination uptake during follow-up, the denominator was all patients with follow-up visits available. We described crude incidence rates of infections leading to hospitalization and severe sepsis/septic shock during prospective follow-up per 1,000 patient years of observation (PYO) with 95% confidence intervals.

A Cox regression model was used to assess the influence of demographic variables, comorbidity and pneumococcal vaccination on the time before the first sepsis episode following study entry. We adjusted the model for age, gender, time after splenectomy (at study entry), splenectomy indication, receipt of
immunosuppression/chemotherapy and pneumococcal vaccination exposure. As a sensitivity analysis, a Cox regression model was performed for the combined outcomes of severe sepsis/septic shock due to *S. pneumoniae* and severe sepsis/septic shock of unknown microbial etiology. Time of follow-up since splenectomy was left-censored for patients who entered the cohort post-splenectomy. Statistical analyses were performed using the SAS software package (SAS Institute, Cary, NC). All tests were two-sided and P values < 0.05 were considered statistically significant.
Results

Study population and baseline characteristics

Between January 2009 and August 2016, a total of 459 patients were enrolled in the study (Figure 1). Of these, 268 were enrolled in the study within three months after splenectomy (“early study entry”). In 191 patients, the interval between splenectomy and study enrollment was longer (“delayed study entry”). The baseline characteristics of the study population are shown in Table 1. The most frequent indications for splenectomy were solid or hematological malignancies (39% of the cases), followed by splenic trauma, therapeutic splenectomy and benign abdominal tumors (Table 1). Two percent of patients were included in the cohort for functional hyposplenia or asplenia.

The most common comorbid conditions were diabetes mellitus, coronary artery disease and chronic renal disease. Fifty-four percent of patients had a Charlson Comorbidity Index of two or higher and 97 (21%) received therapeutic immunosuppression or antineoplastic chemotherapy during the baseline visit. In addition to asplenia, 12% of patients had chronic medical conditions predisposing them to pneumococcal disease as defined by Germany’s Standing Committee for Vaccination (STIKO), and 46% had immunocompromising conditions considered by STIKO to be high risk for pneumococcal infection (Table 1).

Patients with a delayed entry to the study cohort differed from patients with early entry with respect to their underlying risk status, median time since splenectomy, Charlson comorbidity index and indication for splenectomy (Table 1).

Vaccination status for vaccines indicated for asplenic patients

Vaccination status was assessed at baseline and during follow-up (Table 2). Among the 268 patients with early study entry, 71% received at least one single dose of a
pneumococcal vaccine, 52% received a meningococcal vaccine, and 69% received a vaccine against *H. influenzae* type B within 3 months after splenectomy (Table 2).

By contrast, patients with delayed study entry – ones who therefore did not receive dedicated preventive care directly following splenectomy – had significantly lower early coverage for pneumococcal vaccination (27%), meningococcal vaccination (17%) and HiB vaccination (18%) (Table 2 and Figure 2).

A total of 298 (64%) splenectomies were considered elective. Of those patients, 52 (17%) were vaccinated at least 14 days before surgery. Among the patients that entered in the study early after splenectomy, 39 patients (15%) received antineoplastic chemotherapy within three months prior to the study baseline visit and therefore had a relative contraindication to vaccination. During the follow-up period, vaccination uptake increased, reaching a cumulative pneumococcal vaccine uptake of 90% (Figure 2).

Incidence of severe infections and sepsis

Among the 426 patients with a minimum prospective follow-up time of three months, the median duration of follow-up was 2.9 years (interquartile range [IQR] 1.3 to 4.7 years, range three months to 7.7 years). Of these 426 patients, 100 developed 164 infections leading to hospitalization over a follow-up of 1,445 PYO. This resulted in an incidence rate of 113 infection-related admissions per 1,000 PYO. Of the infections leading to hospital admission, 142 infections in 81 patients did not meet the criteria for severe sepsis/septic shock, whereas 19 patients developed 22 episodes of severe sepsis/septic shock, (incidence rate 13 per 1,000 PYO, 95% CI 8 - 20).

The median time from splenectomy to first episode of severe sepsis was 3.1 years (IQR 1.1 to 4.6, range of 0.2 to 17.0). Of the 19 first episodes of severe sepsis/septic shock, two occurred during the three months following operation. In the 191 patients with delayed
study entry, 22 episodes of severe sepsis or septic shock occurred prior to study inclusion. Information on these sepsis episodes was collected retrospectively. For these sepsis episodes, the median time from splenectomy to the infection was 4.0 years (IQR 1 to 13 years, range 0.8 to 29 years). Since the degree of underascertainment for the retrospectively documented sepsis episodes was unknown, we did not calculate incidence rates.

Clinical and microbiological features of infections after splenectomy

During prospective follow-up, the most frequent foci of severe sepsis/septic shock were the lower respiratory tract and urinary tract (Table 3). By contrast, primary bacteremia accounted for 32% of episodes for severe sepsis in patients before study entry (Table 3).

In 43% of patients with severe sepsis/septic shock during prospective follow-up, a causative pathogen was reported. The most common pathogens were *Escherichia coli* and *Klebsiella spp.* *S. pneumoniae* accounted for just one sepsis episode (Table 3). The patient with this case of pneumococcal sepsis had been vaccinated with PPV23 14 months earlier. In episodes of severe sepsis or septic shock occurring prior to study entry, *S. pneumoniae* accounted for eight (36%) episodes. Of the eight patients with pneumococcal sepsis, one had received PPV23 prior to sepsis, while the remaining seven patients were unvaccinated.

Risk factors for severe sepsis/septic shock after splenectomy

Risk factors for severe sepsis/septic shock of any cause that occurred during prospective follow-up were analyzed using a Cox proportional hazards model (Table 4). Of the variables included in the model, only a Charlson Comorbidity index of 2 - 3 or more than 3 was independently associated with the outcome (hazard ratio [HR] 4.2 and 5.8, respectively). When severe sepsis/septic shock due to *S. pneumoniae* or sepsis of
unknown etiology was used as outcome, similar results were obtained (Supplemental Table 1).

Mortality after splenectomy

During the follow-up period, a total of 90 (20%) study participants died after a median time of 1.5 years (IQR 0.9 to 3.1, range 0.2 to 6.5 years). After a review of medical records, the cause of death was classified as infection-related in nine patients (10%); in 53 patients (59%), death was deemed to be related to underlying comorbid illness. Other causes of death or an unknown cause of death accounted for the remaining 28 deaths (32%).
Discussion

This is the first prospective cohort study of patients with anatomical or functional asplenia to include individual, patient-level follow-up. In the context of a dedicated outpatient service, a high cumulative uptake for pneumococcal, meningococcal and HiB vaccination could be achieved. As compared to patients with a delayed study entry, pneumococcal vaccine uptake within three months following splenectomy was almost three times higher in patients who had entered the study soon after splenectomy. Over a median prospective follow-up of 2.9 years, we observed a high incidence rate of severe sepsis/septic shock. During the retrospective observation period before study entry, 36% of episodes of post-splenectomy sepsis were caused by *S. pneumoniae*, while only one episode of pneumococcal sepsis was documented in splenectomized patients after study entry (yielding an estimated incidence of pneumococcal sepsis of <1 per 1,000 patient years after study entry).

In the context of splenectomy surveillance linked to referral to an outpatient service, a cumulative uptake of 90% for pneumococcal vaccination was achieved in our study population. Among patients who had undergone dedicated care immediately following surgery, the proportion who received early pneumococcal vaccination within three months of splenectomy was 71%. By contrast, for patients who entered the study late after splenectomy, pneumococcal vaccine coverage was only 27% for the respective time period. Dedicated post-splenectomy care also improved early uptake for meningococcal and HiB vaccination. Coverage for pneumococcal vaccination in our cohort compares favorably to overall pneumococcal vaccination rates of only 5% within two years after first documentation of a high-risk condition in German adults [15]. Lau assessed the efficacy of quality improvement interventions for increasing the rates of influenza and pneumococcal
vaccinations among community-dwelling adults in a systematic review and meta-analysis [16]. In their analysis, team change, patient outreach, and clinician reminders were effective in improving pneumococcal vaccination uptake. Our study, which used a combination of these interventions, confirms the findings by Lau. Significant improvement in vaccination coverage among asplenic patients also has been reported for the use of automated referral letters to vaccination clinics and computer-aided vaccination alerts [17, 18].

During prospective follow-up, we observed high incidence rates both for infections leading to hospitalization and for severe sepsis and septic shock. Other cohort studies of splenectomized patients reported a lower incidence of hospitalization for infection and/or severe sepsis/septic shock, but these were based on either passive surveillance or retrospective analysis [6, 19, 20]. Active, patient-level follow-up likely minimized underascertainment in our study. The inclusion of post-operative periods with its healthcare-associated infections in the study’s follow-up time may have further contributed to the higher incidence rate. As with other studies, all-cause mortality after splenectomy in our cohort was high [7], but only 10% of deaths were considered infection-related.

For sepsis episodes that occurred after study entry, the etiology of microbiologically confirmed cases largely resembled the pathogen pattern of the general sepsis population. By contrast, 36% (8/22) of post-splenectomy sepsis episodes that occurred in patients prior to study entry were due to pneumococci. Of note, seven of eight patients with pneumococcal sepsis in this group had not received a pneumococcal vaccine. Similarly high proportions of pneumococcal post-splenectomy sepsis were reported in the Australian registry (32%), in a prospective OPSI cohort study from Germany (59%), and in a retrospective cohort from Minnesota, USA (47%) [2, 7, 19]. In a retrospective, population-
based cohort study in Denmark, by contrast, bacteremia episodes caused by pneumococcus were rare [20]. The substantial differences in sepsis etiology in our cohort before and after study entry are remarkable but in part may be explained by various sources of bias, such as differential case ascertainment, patient recall bias or study inclusion bias.

Recent evidence for the protective role of pneumococcal vaccination comes from the Australian splenectomy register and the retrospective Olmstead County splenectomy cohort (USA) [7, 21]. In the present study, only comorbidity had a measurable impact on the risk of severe sepsis/septic shock — not the receipt of a pneumococcal vaccine. However, our analysis was limited by several factors. Vaccine protection for both pneumococcal vaccines licensed for the use in adults is imperfect and requires large sample sizes to demonstrate effectiveness [22-24]. Also, our study was likely underpowered for the purpose of demonstrating the impact of pneumococcal vaccination on severe sepsis or septic shock. However, even after all limitations of comparisons between prospective and retrospective data are considered, the substantially lower proportion of pneumococcal sepsis in patients who had undergone systematic pneumococcal vaccination by our dedicated outpatient clinic remains intriguing.

Our study’s strengths include its prospective design with active, patient-level follow-up. Vaccination status and infection diagnosis were validated by reviewing hospital documentation and discharge records. Plausibility checks by trained infectious disease specialists are likely to have led to fewer misclassifications than in studies that use only health claims data [25]. Limitations of our study include the relatively small cohort size as compared to retrospective cohorts, the significant proportion of patients lost to follow-up, and the relatively short follow-up period. Loss to follow-up may have led to either
overestimation or underestimation of true vaccination rates. As with other cohort studies, reliance on standard-of-care diagnostics likely has led to an under-diagnosis of pneumococcal sepsis [26]. Furthermore, a significant proportion of subjects were at risk prior to study entry, and some episodes of severe sepsis/septic shock occurred before the patients’ entry into the cohort — factors that impact the comparability of these retrospectively captured episodes. We therefore reported infection incidence only for the period of prospective follow up. Because of the different durations of the retrospective and prospective observation periods, absolute numbers of sepsis episodes were not directly comparable. Furthermore, we did not collect information on the number of patients who were eligible for the study but declined study participation. In addition, because this was a single-center study, we were unable to exclude center effects that may have impacted the study, including patient mix, hospital admission policies for infections and standard-of-care microbiological diagnostics.

In summary, our study demonstrates that post splenectomy, patients are at high risk for severe sepsis/septic shock. However, hospital-based surveillance of splenectomies, combined with referrals to dedicated outpatient services, can improve the implementation of infection prevention measures, including vaccination uptake — which makes pneumococcal sepsis a rare complication.
Acknowledgments
We would like to thank Sigrun Temme and Heike Spitznagel for their excellent study support.

Funding
This study was supported in part by the Federal Ministry of Education and Research (BMBF 01 EO 0803).

Authors contributions: SR supervised the data acquisition and its validation, and contributed to the interpretation of the data and to the writing of the manuscript; LB, KN, JH, MFJK, KS; MCM, and IJ contributed to the data acquisition; BL contributed to the data acquisition and performed the statistical analysis; WVK contributed to the data interpretation, and to the writing of the manuscript. CT conceived the study, contributed to the data acquisition, its validation, the statistical analysis and wrote the manuscript.
References

1. Di Sabatino A, Casetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet 2011; 378(9785): 86-97.
2. Theilacker C, Ludewig K, Serr A, et al. Overwhelming Postsplenectomy Infection: A Prospective Multicenter Cohort Study. Clin Infect Dis 2016; 62(7): 871-8.
3. van Hoek AJ, Andrews N, Waight PA, et al. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect 2012; 65(1): 17-24.
4. Bisharat N, Omari H, Lavi I, Raz R. Risk of infection and death among post-splenectomy patients. J Infect 2001; 43(3): 182-6.
5. Ständige Impfkommission (STIKO) am Robert-Koch-Institut. Impfungen bei Asplenie (Entfernung der Milz oder Ausfall der Organfunktion). Available at: https://www.rki.de/SharedDocs/FAQ/Impfen/AllgFr_Gruenderkrankungen/FAQ01.html. Accessed November 17, 2019.
6. Kyaw MH, Holmes EM, Toolis F, et al. Evaluation of severe infection and survival after splenectomy. Am J Med 2006; 119(3): 276 e1-7.
7. Henriquez DP, Laursen CB, Jensen TG, Hallas J, Pedersen C, Lassen AT. Incidence rate of community-acquired sepsis among hospitalized acute medical patients—a population-based survey. Crit Care Med 2015; 43(1): 13-21.
8. Coignard-Biehler H, Lanternier F, Hot A, et al. Adherence to preventive measures after splenectomy in the hospital setting and in the community. J Infect Public Health 2011; 4(4): 187-94.
9. Theidel U, Kuhlmann A, Braem A. Pneumococcal vaccination rates in adults in Germany: an analysis of statutory health insurance data on more than 850,000 individuals. Dtsch Arztebl Int 2013; 110(44): 743-50.
10. Meerveld-Eggink A, de Weerdt O, Rijkers GT, van Velzen-Blad H, Biesma DH. Vaccination coverage and awareness of infectious risks in patients with an absent or dysfunctional spleen in the Netherlands. Vaccine 2008; 26(52): 6975-9.
11. Engelhardt M, Eber S, Germing U, Heimpel H, Kern WV, Schmugge M. Prävention von Infektionen und Thrombosen nach Splenektomie oder funktioneller Asplenie. Available at: https://www.onkopedia.com/de/onkopedia/guidelines/praevention-von-infektionen-und-thrombosen-nach-splenektomie-oder-funktioneller-asplenie/@@guideline/html/index.html. Accessed November 17, 2019.
12. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40(5): 373-83.
13. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29(4): 530-8.
14. Schmedt N, Schiffrn-Rohe J, Sprenger R, Walker J, von Eiff C, Hackl D. Pneumococcal vaccination rates in immunocompromised patients-A cohort study based on claims data from more than 200,000 patients in Germany. PLoS One 2019; 14(8): e0220848.
15. Lau D, Hu J, Majumdar SR, Storie DA, Rees SE, Johnson JA. Interventions to improve influenza and pneumococcal vaccination rates among community-dwelling adults: a systematic review and meta-analysis. Ann Fam Med 2012; 10(6): 538-46.
17. Mitchell AP, Boggan JC, Lau K, Simel DL. Splenectomy as a Destination: Improving Quality of Care Among Asplenic Veterans Through a Travel Clinic. Am J Med 2017; 130(7): 856-61.
18. Jump RL, Banks R, Wilson B, et al. A Virtual Clinic Improves Pneumococcal Vaccination for Asplenic Veterans at High Risk for Pneumococcal Disease. Open Forum Infect Dis 2015; 2(4): ofv165.
19. Chong J, Jones P, Spelman D, Leder K, Cheng AC. Overwhelming post-splenectomy sepsis in patients with asplenia and hyposplenia: a retrospective cohort study. Epidemiol Infect 2017; 145(2): 397-400.
20. Thomsen RW, Schoonen WM, Farkas DK, et al. Risk for hospital contact with infection in patients with splenectomy: a population-based cohort study. Ann Intern Med 2009; 151(8): 546-55.
21. Arnott A, Jones P, Franklin LJ, Spelman D, Leder K, Cheng AC. A registry for patients with asplenia/hyposplenism reduces the risk of infections with encapsulated organisms. Clin Infect Dis 2018.
22. Suzuki M, Dhoubhadel BG, Ishifuji T, et al. Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged 65 years or older: a multicentre, prospective, test-negative design study. Lancet Infect Dis 2017; 17(3): 313-21.
23. McLaughlin JM, Jiang Q, Isturiz RE, et al. Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine Against Hospitalization for Community-Acquired Pneumonia in Older US Adults: A Test-Negative Design. Clin Infect Dis 2018; 67(10): 1498-506.
24. Pilishvili T, Bennett NM. Pneumococcal disease prevention among adults: Strategies for the use of pneumococcal vaccines. Vaccine 2015; 33 Suppl 4: D60-5.
25. Henriksen DP, Nielsen SL, Laursen CB, Hallas J, Pedersen C, Lassen AT. How well do discharge diagnoses identify hospitalised patients with community-acquired infections?--a validation study. PLoS One 2014; 9(3): e92891.
26. Werno AM, Murdoch DR. Medical microbiology: laboratory diagnosis of invasive pneumococcal disease. Clin Infect Dis 2008; 46(6): 926-32.
Tables

Table 1 Baseline characteristics of study patients

Characteristic	All patients (n=459)	Early study entry (n=268)	Delayed study entry (n=191)	P value\(^1\)			
n (%)	n (%)	n (%)	n (%)				
Age group (years)				0.086			
< 15	5 (1)	2 (1)	3 (2)				
15-29	42 (9)	22 (8)	20 (10)				
30-59	211 (46)	113 (42)	98 (51)				
≥ 60	201 (44)	130 (49)	71 (37)				
Male gender				0.112			
	246 (54)	152 (57)	94 (49)				
Underlying risk factors for pneumococcal disease\(^2\)				0.019			
No additional risk	193 (42)	98 (37)	95 (50)				
At risk	57 (12)	36 (13)	21 (11)				
High risk	209 (46)	134 (50)	75 (39)				
Charlson comorbidity index (median)				0.002			
< 2	211 (46)	105 (39)	106 (55)				
2 - 3	135 (29)	86 (32)	49 (26)				
> 3	113 (25)	77 (29)	36 (19)				
Immunosuppressive and/or antineoplastic therapy							
Reason for asplenia	Median time from splenectomy to study entry (days)						
-------------------------------------	---						
	64	---	37	---	1407	---	<0.001
Underlying malignancy	187	(41)	126	(47)	61	(32)	<0.001
Trauma	99	(22)	52	(19)	47	(25)	
Therapeutic splenectomy	63	(14)	27	(10)	36	(19)	
Benign abdominal process	48	(10)	35	(13)	13	(7)	
Functional hyposplenia or asplenia	10	(2)	0	(0)	10	(5)	
Other	36	(8)	20	(7)	16	(8)	
Unknown	16	(3)	8	(3)	8	(4)	

1 Early versus delayed study entry, chi square test or Fisher’s exact test, as appropriate

2 Risk factors other than splenectomy/asplenia according to the German Standing Committee for Immunization (STIKO) [5]. At-risk factors according to STIKO include chronic diseases of the cardiovascular system or respiratory tract; metabolic diseases (e.g. diabetes mellitus treated with oral medication or insulin) or neurological diseases (e.g. cerebral palsy or seizure disorders). High risk conditions according to STIKO include congenital or acquired immunodeficiencies or immunosuppression, such as T-cell deficiency or defective T-cell function, B-cell or antibody deficiency, deficiency or dysfunction of myeloid cells, complement and properdin deficiencies, neoplastic diseases, HIV infection, after bone marrow transplantation, immunosuppressive therapy, immunodeficiency in the context of chronic kidney failure, nephrotic syndrome or chronic liver insufficiency.
Table 2 Vaccination within three months post-splenectomy in patients with early and delayed study entry.

Vaccine	Early study entry (n=268)	Delayed study entry (n=191)	p value¹
Pneumococcal vaccination²	189 (71%)	51 (27%)	< 0.0001
Meningococcal vaccination³	139 (52%)	32 (17%)	< 0.0001
HiB conjugate vaccine	186 (69%)	34 (18%)	< 0.0001
Fully vaccinated⁵	119 (44%)	17 (9%)	< 0.0001

¹ Fisher exact test

² defined as vaccinated with at least one dose of a pneumococcal vaccine licensed in adults (i.e. 23-valent pneumococcal polysaccharide vaccine or 13-valent pneumococcal conjugate vaccine)

³ defined as vaccinated with at least one dose of meningococcal vaccine (i.e. quadrivalent meningococcal polysaccharide vaccine, monovalent or quadrivalent meningococcal conjugate vaccine, or meningococcal serogroup B vaccine).

⁴ Delayed study entry was defined as entry > 3 months post-splenectomy; early study entry was defined as entry ≤ 3 months after splenectomy (including the period before splenectomy).

⁵ vaccinated against pneumococcal and meningococcal disease as well as *H. influenzae* type B infection
Table 3: Episodes of infections requiring hospitalization after splenectomy, with data stratified by patients that met the criteria for severe sepsis or septic shock.

Characteristics	Infection Episodes After Study Entry	Infection episodes Before study Entry						
	Total (n=164)	No severe sepsis/septic shock (n=142)	Severe Sepsis/septic shock (n=22)					
	n	%	n	%	N	%	n	%
Site of infection								
Lower respiratory tract	33	20%	26	18%	7	32%	4	18%
Central nervous system	0	0%	0	0%	0	0%	3	14%
Intra-abdominal	26	16%	22	15%	4	18%	2	9%
Bones and soft tissue	19	12%	18	13%	1	5%	1	5%
Surgical wound infection	9	6%	9	6%	0	0%	0	0%
Urinary tract infection	14	9%	9	6%	5	23%	0	0%
Primary bacteremia	11	7%	10	7%	1	5%	7	32%
Central line infection	10	6%	9	6%	1	5%	1	5%
Other	31	19%	31	22%	0	0%	4	18%
unknown	19	12%	16	11%	3	14%	0	0%
Pathogen isolated								
Staphylococcus aureus	14	9%	13	9%	1	5%	0	0%
Pathogen	Cases	Percentage	Cases	Percentage	Cases	Percentage	Cases	Percentage
--------------------------------	-------	------------	-------	------------	-------	------------	-------	------------
Coagulase-negative staphylococci	5	3%	5	4%	0	0%	0	0%
Streptococcus pneumoniae	1	1%	0	0%	1	5%	8	36%
Other gram-positives	9	6%	9	6%	0	0%	1	5%
Escherichia coli	16	10%	7	5%	9	41%	1	5%
Klebsiella spp.	5	3%	3	2%	2	9%	0	0%
Other Gram-negatives	4	2%	4	3%	0	0%	1	5%
Anaerobes	1	1%	1	1%	0	0%	0	0%
Polymicrobial infection	7	4%	7	5%	0	0%	0	0%
Fungal infection	3	2%	3	2%	0	0%	1	5%
Viral infection	7	4%	7	5%	0	0%	0	0%
No pathogen detected	99	56%	83	58%	9	41%	10	45%
Table 4 Risk factors for prospectively captured first episodes of severe sepsis/septic shock of any cause in asplenic patients.

Variable	PYO	Episodes of sepsis/septic shock	Multivariate hazard ratio (95% Confidence interval)	p-value \(^2\)
Sex				
Male	810	13	Reference	0.29
Female	647	6	0.59 (0.21-1.59)	
Age				
<60	897	8	Reference	0.65
>60	560	11	1.26 (0.47-3.39)	
Charlson score at baseline visit				
<2	762	4	Reference	0.04
2-3	395	8	4.14 (1.09-15.74)	
>3	300	7	5.79 (1.39-24.02)	
Indication for splenectomy				
Trauma	284	2	Reference	0.22
Solid tumor	418	5	0.38 (0.06-2.43)	
other	755	12	1.01 (0.20-5.10)	
Time since splenectomy at baseline visit				
≤ 12 months	932	14	Reference	0.48
> 12 months	514	5	0.68 (0.21-2.23)	
Pneumococcal vaccination prior to sepsis				
Not vaccinated	137	3	Reference	0.60
≥ 1 vaccine dose	1320	16	0.61 (0.16-2.27)	
Immunosuppression incl. chemotherapy at baseline visit				
No	1157	14	Reference	0.39
Any	300	5	1.72 (0.65-4.54)	

\(^1\) Cox regression. N of subjects 426 events 19. time at risk 1445 patient years.

\(^2\) Likelihood ratio test
Figure captions

Figure 1 Overview of the Study Flow. Data on the number of patients eligible for the study, but who declined to participate were not collected.

Figure 2 Cumulative vaccine coverage in patients with splenectomy for pneumococcal, meningococcal and Haemophilus influenzae Type B (HiB) vaccination. Patients who entered the study more than three months after splenectomy were considered “delayed study entry” (n=191), whereas patients who entered the study within three months of splenectomy were considered “early study entry” (n=268). Pneumococcal vaccination status was defined as the receipt of least one dose of the 23-valent pneumococcal polysaccharide vaccine (PPV23) or the 13-valent pneumococcal conjugate vaccine (PCV13) for pneumococcal vaccination. Meningococcal vaccination status was defined by the receipt of at least one dose of the quadrivalent meningocooccal polysaccharide vaccine (MPSV4), a mono- or quadrivalent meningococcal conjugate vaccine (MenC or MenACWY), or a meningococcal serogroup B vaccines (MenB) for meningococcal vaccination.
Figure 1

Baseline visit
Total of 459 patients
• 268 patients < 3 months since splenectomy
• 59 patients 3 – 12 months since splenectomy
• 132 patients > 12 months since splenectomy

Follow up visit 1 (3 months after baseline)
426 patients
• 10 patients censored
• 1 patients died
• 14 patients lost to follow-up
• 8 patients retracted study consent

Follow up visit 2 (12 months after baseline)
385 patients
• 40 patients died
• 1 patients lost to follow-up

End of study visit (variable time point)
291 patients
• 58 patients censored
• 23 patients died
• 10 patients lost to follow-up
• 3 patients retracted study consent
