Systemic and local evidence for complement involvement in chronic spontaneous urticaria

Mehran Alizadeh Aghdam1 | Mignon van den Elzen1 | Harmieke van Os-Medendorp1 | Marijke R. van Dijk2 | Edward F. Knol1,3 | André C. Knulst1 | Heike Röckmann1 | Henny G. Otten3

1Department of Dermatology/Allergology, UMC Utrecht, Utrecht, The Netherlands
2Department of Pathology, UMC Utrecht, Utrecht, The Netherlands
3Department of Immunology, UMC Utrecht, Utrecht, The Netherlands

Correspondence
Mehran Alizadeh Aghdam, Universitair Medisch Centrum Utrecht, Kamernummer G.02.121, Huispostnummer G02.124, Postbus 85500, 3508 GA Utrecht, The Netherlands. Email:

Funding information
Novartis Pharma B.V.

Abstract

Background: The pathogenesis of chronic spontaneous urticaria (CSU), including the mechanism of action of omalizumab, remain unclear. We hypothesized complement system involvement given the often fast clinical response induced by treatment, including omalizumab. Therefore, we assessed the role of various complement factors surrounding omalizumab treatment.

Methods: Thirty CSU patients (median age 42 [range 21–70]; 73 % female) with a median once daily Urticaria Activity Score over 7 days (UAS7) score at baseline of 31.5 points were enrolled. Treatment consisted of six administrations of 300 mg omalizumab every 4 weeks succeeded by a follow-up period of 12 weeks. Four punch skin biopsies were taken per patient; at baseline from lesional skin, at baseline from nonlesional skin, and after 1 and 7 days from formerly lesional skin. Complement activity, including C1q, C3, C3bc/C3, C4, C4bc/C4, C5a, and Membrane Attack Complex in peripheral blood were analyzed and complement activation in the skin was determined by the analysis of C4d deposition. Results were related to the clinical response to omalizumab.

Results: Fifteen patients showed a UAS7 score of 6 or lower (median 0) at Week 24, 15 patients did not (median 16). Lesional skin biopsies at baseline revealed complement deposition (C4d) in blood vessels in the papillary dermis of 53% (16/30) of the patients, which suggests involvement of immune complexes in the pathogenesis of urticaria. Moreover, indication of increased complement activation in CSU was substantiated by increased C5a levels in peripheral blood compared to healthy controls (p = 0.010). The clinical effect of omalizumab could not be linked to the variation of complement components.

Conclusions: Both C4d deposition in lesional skin and elevated C5a levels in peripheral blood indicate the involvement of complement activation in the pathogenesis of CSU. No correlation was found between omalizumab and activation of complement components.

Mehran Alizadeh Aghdam and Mignon van den Elzen contributed as co-first authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Clinical and Translational Allergy published by John Wiley & Sons Ltd on behalf of European Academy of Allergy and Clinical Immunology.
Chronic spontaneous urticaria manifests as a burdensome skin disease with sudden onset, sometimes severe itching and wheals, that lasts for at least 6 weeks. Prevalence is estimated to be up to 1% at any time, with disease duration ranging from 1 to 5 years or even longer in more severe cases. Omalizumab has a reported clinical response of over 50% within the first 2 days of treatment in CSU patients. Depletion of free IgE by omalizumab leads to down-regulation of the FcεRI on mast cells and basophils in patients with allergic disease. However, this downregulation alone cannot explain the fast clinical response to omalizumab. Hence, alternative mechanisms must be contributing to the rapid clinical efficacy of omalizumab.

Sera from patients with urticaria can induce degranulation of basophils, a process in which the presence of intact complement and patient IgG containing specific antibodies against IgE or the high affinity IgE receptor is essential. By binding to IgE or FcεRI on mast cells, complement via the classical pathway can be activated and lead to the generation of C5a and C5b-9. C5a can subsequently bind to the complement C5a receptor on mast cells and cause degranulation. Cutaneous mast cells express the complement C5a receptor whereas mucosal mast cells do not. Additionally, the complement system is known for its rapid response upon activation. This may explain how IgG anti-FcεRI autoantibodies in combination with complement in patients with CSU can cause fast clinical symptoms which are limited to the skin and not mucosal tissue.

It has been reported that C1q, C2, C3, C4, and C5 levels in peripheral blood are within normal limits in chronic urticaria but no data have been published regarding complement degradation/activation products in peripheral blood. The effect of omalizumab treatment on peripheral blood complement levels in CSU patients has also never been studied.

Furthermore, it is unknown whether complement activation occurs in the skin of patients with CSU. Complement activation in tissue can be evaluated by determination of C4d deposition: a well-studied marker and a characteristic feature of complement activation, which is, for instance, also included in the BANFF criteria for humoral rejection after kidney transplantation. In this study, we investigated the role of the complement system and the effects of omalizumab treatment in CSU patients using the C4d marker in skin and peripheral blood samples. Additionally, we hypothesize that the efficacy of omalizumab in CSU may in part be accompanied by reduction of complement mediated inflammation.

KEYWORDS

blood, complement, omalizumab, skin, urticaria

1 | INTRODUCTION

METHODS

2.1 | Design and population

This monocenter exploratory prospective cohort study was performed in the University Medical Center Utrecht, The Netherlands, from 2015 to 2017. Inclusion criteria were adult CSU patients with a significant disease activity defined as a once daily Urticaria Activity Score over 7 days (UAS7) ≥ 16 and a UAS7 ≥ 4 on the day of the first omalizumab administration despite treatment with antihistamines up to four times the daily dose. Exclusion criteria were based on one of the pivotal randomized controlled trials and included a clearly defined underlying etiology for chronic urticaria (e.g., chronic inducible urticaria), a history of malignancy, known hypersensitivity to omalizumab, and pregnancy. Routine administration of immunosuppressants including prednisolone and ciclosporin were discontinued with washout periods of 3 months prior to treatment with omalizumab. If prednisolone was used as rescue medication, a washout period of 2 weeks was maintained before the start of the study. After a screening period of up to 2 weeks, eligible patients started a 6-month treatment period, followed by a follow-up period of 3 months. The latter could be shortened upon patient-request if the UAS7 was projected to reach a score of 16 or higher. All patients provided written informed consent, and the study was approved by the local ethics committee (protocol number 15-167).

2.2 | Omalizumab and concomitant medication

All patients received six doses of 300 mg omalizumab every 4 weeks with follow-up starting at Week 25, 4 weeks after the last dose. Leukotriene receptor antagonists or H2 blockers for indications other than CSU were permitted to be continued during the study. Patients were allowed to use H1-antihistamines up to a maximum of four doses per day as rescue medication in addition to their concomitant medication, as well as prednisolone up to 30 mg. Due to worsening of the disease, 11 patients, of which 6 (55%) were presented as responders, restarted omalizumab treatment during follow-up. Data of subjects who restarted omalizumab during the follow-up period were removed from data analysis from that consecutive time-point. In absolute numbers, the number of patients who restarted omalizumab were: one in week 25, two in week 26, three in week 28, four in week 29, nine in week 30, and 11 in week 32.
2.3 Assessments in blood samples

Blood samples were collected at the following time-points: at baseline, after 1, 2, 6, and 24 h, after 1 and 2 weeks, and 4 weeks after the first administration of omalizumab. Subsequently, blood was collected prior to each subsequent dose. Lastly, a venipuncture was performed at the last follow-up visit. For measurement of complement activation, ethylenediaminetetraacetic acid (EDTA) plasma, serum, and gel separated serum were used. EDTA blood and gel separated serum were put on ice immediately after venipunctures. All serum samples were allowed to coagulate for 60 min. Serum and plasma were obtained by centrifugation and stored at −80°C.

2.4 Measurements complement

Complement levels of C3 and C4 were determined in serum by an immunonephelometric method on a SPA+ turbidimeter, C5b-9 membrane attack complex formation via the classical complement activation route was measured in gel separated serum using a commercially available enzyme-linked immunosorbent assay (Euro-Diagnostica) according to the manufacturer's recommendations, and C5a was determined in EDTA plasma via Luminex xMAP technology (Luminex Corporation). Additionally, C1q in serum, and C3bc and C4bc in EDTA plasma were determined as previously described.

2.5 Skin biopsies

A total of four 3 mm punch skin biopsies were taken per patient: (1) at baseline from lesional skin; (2) at baseline from nonlesional skin, and after 1 (3) and 7 days (4) from formerly lesional skin. Skin sections were formalin-fixed, paraffin-embedded, and stained by immunohistochemistry with specific antibodies allowing characterization of inflammation (HE-staining), CD3 (DAKO), CD4 (Cellmarque), CD8 (DAKO), CD20 (Roche), CD68 (Leica), CD138 (Serotec), and 2D7-antibody (Hycult). All characteristics were visually examined and judged on a 0–3 semiquantitative scale as "not elevated" (0) or a mild, moderate, or severe increase (1–3), on original magnification × 400. Complement activation in the skin was evaluated by determination of C4d deposition (polyclonal rabbit anti-C4d staining; ALPCO), and was graded from 0 (negative) to 3 (bright signal or fully surrounding blood vessel walls) (Figure 1). As previously described, the original magnification was × 400.

2.6 Clinical assessments and patient-reported outcomes

Disease activity was measured throughout the study by using the UAS7. Missing daily scores of the weekly disease activity scores after treatment was started were complemented by Last Observation Carried Forward method up to a maximum of 3 days. Missing follow-up scores were supplemented with data from each patient's clinical record following clinical visits if available. Weekly scores that could not be complemented with earlier mentioned methods were marked as missing and were not included in patient reported outcome results. Disease control was measured at baseline, 4 weeks after each administration, and at the last follow-up visit by using the urticaria control test.

Treatment response has been defined as a UAS ≤ 6 at Week 24 of treatment.

2.7 Statistical analysis

Changes in inflammatory parameters in the skin were related to changes in levels of circulating complement components, by using Spearman Rank correlation. Inflammatory characteristic after treatment were compared to baseline, and/or to the previous measurement, using Wilcoxon matched pairs signed rank tests, or paired samples T test as appropriate. C3bc and C4bc activation ratios were determined by dividing the level of circulating C3bc or C4bc by the amount of C3 or C4, respectively, and multiplying the quotient by 100 to determine the percentage, as previously described. Study population baseline scores for C5a were compared with normal values of C5a (based on results in a pool of 43 healthy volunteers) using the Mann–Whitney U test. For all statistical tests, a p-value of 0.05 or lower was considered significant.

Descriptive analyses were carried out for all clinical efficacy outcomes. For each protein, Spearman's correlations were calculated between the difference in complement level from baseline after 1 h (C5a: after 2 h) and the difference in UAS7 score from baseline after 1 week. Additionally, the change from baseline in peripheral blood complement components was related to the change from baseline in UAS7, also by using the Spearman Rank correlation or Pearson correlation if appropriate. Statistical analysis was performed using IBM SPSS Statistics version 21 or GraphPad Prism version 7.02, graphs were prepared using Microsoft Visio 2010 or GraphPad Prism version 7.02.

3 RESULTS

3.1 Population

In this study, 30 patients (median age 42 [range 21–70]; 73 % female) with a median UAS7 score at baseline of 31.5 points were enrolled. Twelve of the thirty patients (40%) reported concomitant CindU complaints while 24 of the 30 patients (80%) reported an history of angioedema attacks. The median disease duration was 2.7 years (range 0.6–29). Detailed clinical characteristics can be found elsewhere Overall, patient characteristics corresponded with the CSU population in our clinic and current literature. Fifteen patients (50%) showed a UAS7 score of 6 or lower (median 0) at Week 24 (4 weeks after the last omalizumab administration) and
3.2 | Inflammation and complement activation in lesional and nonlesional skin

Quantification of histological alteration found in skin biopsies of patients compared to healthy controls is presented in Table 1. Histological analysis demonstrated no significant differences between lesional and nonlesional biopsies at baseline or follow-up with regard to edema and cellular infiltration. Higher amounts of C4d deposition were significantly more frequently found in lesional skin compared to nonlesional skin (p = 0.033) (Table 1). In the total 60 baseline skin biopsies, there was a significant correlation between C4d deposition and eosinophils scores (Spearman’s ρ 0.358; p = 0.005).

3.3 | Complement activation in peripheral blood

Table 2 shows that in a large portion of patients, peripheral blood levels of all complement components investigated were within normal ranges throughout the study. Most investigated complement component levels in peripheral blood were within normal ranges at both baseline and throughout the study. However, as shown in Figure 2, C5a levels at baseline (median 1847.6 pg/ml) were increased compared to healthy controls (median 959.2 pg/ml; p = 0.010). No disproportion was seen for aberrant values since they were either too high or too low in an equal proportion of patients. For example, C1q levels at baseline were reduced in three patients (10%) and elevated in 8 (27%), and throughout the study 32 (8%) C1q measurements were reduced and 61 were elevated (16%). Additionally, no correlations were found between complement component levels in peripheral blood and C4d deposition in skin.

Peripheral blood complement component measurements within two hours after omalizumab injection were disregarded, since a short-term decrease of less than 10% in complement components are a known phenomenon after biological treatment.21 No differences in complement levels were found after 2 h for all other time points.
Table 1: Inflammation and complement deposition in skin

Frequency of dermal changes	Lesional baseline	Nonlesional baseline	Lesional Day 1	Lesional Day 7																
	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3
Edema																				
Superficial																				
Deep dermis																				
Perivascular infiltration																				
Superficial																				
Deep dermis																				
Interstitial infiltration																				
Superficial																				
Deep dermis																				
T-cells																				
CD3																				
CD4																				
CD8																				
B-cells																				
CD20																				
Plasma cells																				
Granulocytes																				
Neutrophils																				
Eosinophils																				
Basophils																				
Mast cells																				
Histiocytes																				
C4d deposition																				

Note: Score 0, not elevated; 1–3, mild, moderate, or severe increase compared to healthy skin. It was not possible to make a reliable assessment of all items in seven of 120 biopsies, therefore not all characteristics add up to 30 patients.

Table 2: Peripheral blood complement component levels

Protein	Normal value	Baseline measurements Reduced n (%)	Reduced Elevated n (%)	Total measurements Reduced Elevated values (%)	Reduced Elevated values (%)
C1q	81–128 IU/ml	3/30 (10)	8/30 (27)	32/352 (9)	61/352 (17)
C3	0.9–1.8 g/L	1/30 (3)	0	21/352 (6)	0
C4	0.1–0.47 g/L	1/30 (3)	0	12/352 (3)	0
C5a	<13605 pg/ml	NA	2/30 (7)	NA	9/250 (4)
MAC	69–129%	5/30 (17)	1/30 (3)	21/238 (9)	5/238 (2)

Note: Aberrant complement measurements for the number of patients (n) are shown at baseline and for all cumulative measurements for the following timepoints. Number of missing values C1q:8, C3:8, C4:8, C5a:8, MAC:5. “Reduced” and “Elevated” indicate values below lower limit of normal, or above upper limit of normal.

Abbreviation: MAC, C5b-9 membrane attack complex formation.
In this study, we investigated the role of the complement system in the both peripheral blood and skin of CSU patients. At baseline, we found complement C4d deposition in the lesional skin in 53% of the patients, and significantly higher peripheral blood C5a levels in CSU patients compared to healthy individuals, indicating complement activation in a significant percentage of CSU patients. Within the first hour after first omalizumab administration, different complement components in the peripheral blood decreased irrespective of disease activity or treatment response, indicating that omalizumab administration leads to consumption of complement components. No relation was found between complement components investigated and disease activity (UAS7) scores prior to or after treatment with omalizumab, indicating that the clinical responses induced by omalizumab are not related to short- or long-term changes in circulating levels of complement components and their degradation products.

To the best of our knowledge, it is a novel finding that C4d is involved in the pathogenesis of CSU. Complement-fixing autoantibodies and complement deposition in the skin are also frequently found in systemic lupus erythematosus (SLE), which may point to common pathomechanisms in CSU and SLE. In SLE, C4d was found not only in blood vessel walls (80% of patients) but also along the dermoeipidermal junction (100% of patients). In the subacutcutaneous lupus erythematosus, deposits of C4d were detected within epidermal keratinocytes, and in pemphigus cases, intercellular C4d was found which roughly corresponded to the location of autoantibodies. The location of C4d deposition—in the superficial dermis—is where infiltration was seen most in patients with urticaria. It is not surprising that C4d deposits were, in lower amount, also present in nonlesional skin, as the presence of C4d deposition in nonlesional skin may be indicative of previous whealing—the nonlesional skin might in fact be postlesional, since urticarial lesions tend to come and go—or it may point toward a widespread rather than local activation of the complement system. At present, it is unknown whether C4d deposition in urticaria is limited to the skin.

Furthermore, the correlation trend between C4d deposition and neutrophils scores and perivascular infiltration scores in the superficial dermis suggests granulocyte infiltration might be accompanied by local complement activation. The role of complement in CSU is further supported by the fact that baseline C5a levels in peripheral blood were elevated in CSU patients compared to healthy individuals. Since it is known that complement activation and in particular C5a can be important for basophil activation in urticaria, these results support the role of complement in pathogenesis of CSU. We observed no correlation between the presence of C4d and C5a levels. This may be explained by the fact that C4d binds covalently and remains stable in structures surrounding endothelium, thus escaping early removal from the target organ whereas C5a is cleared rapidly. In patients recovering from acute humoral rejection after kidney transplantation, C4d deposition was cleared after 21–41 days, in part due to plasma- pheresis, which is continued until circulating IgG antidonor HLA-antibody levels are sufficiently reduced. In our study, we found a much faster decrease of C4d deposition in the skin. This situation is not comparable to acute humoral rejection as remaining IgG HLA-antibodies present in the kidney tissue will influence the rate of C4d clearance, whereas omalizumab reduces IgE and not IgG levels. Since complement is mainly activated by IgG, omalizumab treatment might not have an influence on the complement system as this drug exclusively binds IgE which cannot fix complement. This suggest that, in at least a proportion of patients with CSU, the relevance of complement in the pathogenesis is minimal.

Upon omalizumab administration complement activation was found within an hour and of C5a within 2 h, after which all levels normalized within 6 h. Immediate response of the complement system has been shown before in rituximab, omalizumab, and OKT3 treatment where complement consumption could be observed already within 5 min after completion of rituximab infusion and an increase in C3bc or C4bc was observed 30 min after onset of infusion. Hence, this immediate complement activation is not
specific to omalizumab. Complement activation at baseline may be caused by autoantibodies known to be commonly present in CSU patients although it must be noted that recent studies show contemporary IgE and IgG responses to the same autoantigens. Little is known about these autoantibodies. The incidence of thyroid autoantibodies in patients with chronic urticaria is reported to range from 6.5% to 57% However, whether these antibodies predispose to autoimmune thyroiditis and hypothyroidism is not clear. Additionally, specific antinuclear antibodies have been studied, but a low frequency of positivity was reported (2.5% of women and 0.9% of men), and again, the relation to clinical symptoms remains unknown. Furthermore, as C5a normalization was not persistent throughout the study, we conclude that the early clinical responses observed after administration are not due to restoration of complement-mediated pathophysiology in CSU. The question remains how this temporary complement activation upon anti-IgE therapy can be explained. Baseline demographic characteristics were fairly similar to previous studies, and therefore we expect that our results are generalizable to the general CSU population in need of third-line treatment. Previously, Kolkhir et al. reviewed the hypothesis of Type I and Type IIb autoimmunity in the pathogenesis of CSU. The authors discuss that an IgG-anti-FcεRI/IgE-mediated activation of mast cells and basophils might be depended of complement C5a through its C5aR receptor. Furthermore, in SLE systemic formation of complexes of C1q and C3 with IgG is seen as deposition of immune complexes along the dermal-epidermal border, a phenomenon which might be reflected by C4d deposition in CSU patients.

The relatively small patient numbers and the absence of a multiple testing correction for the different complement components is a limitation of this study. Therefore, additional research in larger study populations are needed. In conclusion, both C4d deposition in lesional skin and elevated C5a levels in peripheral blood indicate the involvement of complement activation in the pathogenesis of CSU. No correlation was found between (response to) omalizumab and activation of complement, indicative of independent processes in the immunopathogenesis of CSU.

ACKNOWLEDGMENTS
This study was supported in part by Novartis B.V. The authors would like to thank Stefan Nierkens for sharing his expertise and vital contributions to the design of this study, and Constance den Hartog Jager, Rowena Melchers, Ton Peeters, Kevin van de Ven, and Gerard van Miero and colleagues from Sanquin for performing technical and laboratory analyses. They would also like to thank Ans Lebens, Ellen Kemper, Marijke Pronk, Digna de Bruin, Bregje Titulaer, and Thuy-My Le for conducting or supervising the study activities in the clinic.

CONFLICT OF INTERESTS
Mignon van den Elzen received reimbursements to attend symposia and speaker’s fees from Novartis Pharma B.V. to the institution. André C. Knulst received funds for research and healthcare innovation from Novartis Pharma B.V. to the institution and was involved in the advisory board of Novartis Pharma B.V. Heike Röckmann received speaker’s fees, and funds for research from Novartis Pharma B.V. to the institution. Henny G. Otten received funds for this research from Novartis Pharma B.V. to the institution. The other authors declare that there are no conflict of interests.

ETHICS STATEMENT
All patients provided written informed consent, including consent for publication. The study was approved by the local ethics committee (protocol number 15-167).

ORCID
Mehran Alizadeh Aghdam https://orcid.org/0000-0003-3584-9250

REFERENCES
1. Saini, SS: Chronic spontaneous urticaria: etiology and pathogenesis. Immunol Allergy Clin. 2014;34(1):33-52.
2. Metz, M, Ohanyan, T, Church, MK, Maurer, M. Omalizumab is an effective and rapidly acting therapy in difficult-to-treat chronic urticaria: a retrospective clinical analysis. J Dermatol Sci. 2014;73(1):57-62.
3. Church, MK. Does antihistamine up-dosing solve chronic spontaneous urticaria? Curr Treatment Options Allergy. 2016;3(4):416-422.
4. Alizadeh Aghdam, M, Knol, EF, van den Elzen, M, et al. Response of FcεRI-bearing leucocytes to omalizumab in chronic spontaneous urticaria. Clin Exp Allergy. 2020;50:364-371.
5. Kaplan, AP, Gimenez-Arnau, AM, Saini, SS. Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy. 2017;72(4), 519–533.
6. Kaplan, AP. Chronic urticaria: pathogenesis and treatment. J Allergy Clin Immunol. 2004;113(3):465-474.
7. Giang, J, Seelen, MAJ, van Doorn, MBA, Rissmann, R, Prens, EP, Damman, J. Complement activation in inflammatory skin diseases. Front Immunol. 2018;9:639.
8. Kaplan, A, Greaves, M. Pathogenesis of chronic urticaria. Clin Exp Allergy. 2009;39(6):777-787.
9. Berrens, L, Jankowski, E, Jankowski-Berntsen, I. Complement component profiles in urticaria, dermatitis herpetiformis, and alopecia areata. Br J Dermatol. 1976;95(2):145-152.
10. Oehling, A, Neffen, H, Subira, M-L, Sanz, M-L. Humoral and cellular immunity in chronic urticaria. Allergologia Immunopathol. 1979;7(5):351-356.
11. Khan, S, Lynch, N. Efficacy of montelukast as added therapy in patients with chronic idiopathic urticaria. Inflamm Allergy Drug Targets. 2012;11(3):235-243.
12. Racusen, LC, Solez, K, Colvin, RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999;55(2):713-723.
13. Maurer, M, Rosén, K, Hsieh, H-J, et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med. 2013;368(10):924-935.
14. Zuberbier, T, Aberer, W, Asero, R, et al. The EAACI/GA(2)LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73:1393-1414.
15. Huson, MA, Wouters, D, van Miero, G, Grobusch, MP, Zeerleeder, SS, van der Poll, T: HIV coinfection enhances complement activation during sepsis. J Infect Dis. 2015;212(3):474-483.
16. Hannon, GR, Wetter, DA, Gibson, LE. Urticular dermatitis: clinical features, diagnostic evaluation, and etiologic associations in a series of 146 patients at Mayo Clinic (2006-2012). J Am Acad Dermatol. 2014;70(2):263-268.
17. Jen, K-Y, Nguyen, TB, Vincenti, FG, Laszik, ZG. C4d/CD34 double-immunofluorescence staining of renal allograft biopsies for assessing peritubular capillary C4d positivity. *Mod Pathol*. 2012;25(3):434.

18. Młynek, A, Zalewska-Janowska, A, Martus, P, Staubach, P, Zuberbier, T, Maurer, M. How to assess disease activity in patients with chronic urticaria?. *Allergy*. 2008;63(6):777-780.

19. Weller, K, Groffik, A, Church, MK, et al. Development and validation of the urticaria control test: a patient-reported outcome instrument for assessing urticaria control. *J Allergy Clin Immunol*. 2014;133(5):1365-1372.

20. Bernstein, JA, Kavati, A, Tharp, MD, et al. Effectiveness of omalizumab in adolescent and adult patients with chronic idiopathic/spontaneous urticaria: a systematic review of ‘real-world’ evidence. *Expt Opin Biol Ther*. 2018;18(4):425-448.

21. Kolkhir, P, Church, MK, Weller, K, Metz, M, Schmetzer, O, Maurer, M. Autoimmune chronic spontaneous urticaria: what we know and what we do not know. *J Allergy Clin Immunol*. 2017;139(6):1772-1781.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Alizadeh Aghdam M, van den Elzen M, van Os-Medendorp H, et al. Systemic and local evidence for complement involvement in chronic spontaneous urticaria. *Clin Transl Allergy*. 2021;11:e12011. https://doi.org/10.1002/clt2.12011