Decremental Optimization of Dominating Sets Under the Reconfiguration Framework

Alexandre Blanché1 \quad Haruka Mizuta2 \quad Paul Ouvrard1 \\
Akira Suzuki2

1LaBRI, Bordeaux \quad 2Tohoku University, Sendai, Japan

June 10, 2020
Dominating sets

Definition

A dominating set is a subset of vertices whose neighborhood contains all the vertices.

Dominating set problem

- **Instance**: A graph G, an integer s
- **Question**: Does G have a dominating set of size at most s?

This problem is NP-complete.
Model: Successive additions and removals of vertices
Model: Successive additions and removals of vertices
Model: Successive additions and removals of vertices
Without a bound on the size of the dominating sets, they are all reachable through successive additions and removals:
We restrict the size of the authorized dominating sets with a bound k:

$|D| \leq k = 4$
Optimization problem

OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

- **Input**: A graph G, two integers k, s, a dominating set D_0 of size $|D_0| \leq k$.
- **Question**: Does G have a dominating set D_s of size $|D_s| \leq s$, such that $D_0 \leftrightarrow^k D_s$?
General complexity

Observation

OPT-DSR generalizes the dominating set problem.

A graph $G = (V, E)$ has a dominating set of size $\leq s$ if and only if the instance $(G, k = |V|, s, D = V)$ is a solution of OPT-DSR.

Alexander Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki
Decremental Optimization of the Dominating Set Reconfiguration
General complexity

Observation

OPT-DSR generalizes the dominating set problem.

A graph $G = (V, E)$ has a dominating set of size $\leq s$ if and only if the instance $(G, k = |V|, s, D = V)$ is a solution of OPT-DSR.

Corollary

OPT-DSR is NP-hard.
(NP ⊆ PSPACE ⊆ EXPTIME)

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph:

- is bipartite.

![Graph diagram]
General complexity

\[\text{(NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME)} \]

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]
OPT-DSR is PSPACE-complete, including when the input graph:
- is bipartite;
- is a split graph;

![Graphs]
General complexity

\[(\text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME})\]

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph:

- is bipartite;
- is a split graph;
- has bounded *pathwidth*.

Proof: By adapting a result on independent sets and the OPT-ISR problem, analogous to OPT-DSR.
General complexity

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph:
- is bipartite;
- is a split graph;
- has bounded pathwidth.

Proof: By adapting a result on independent sets and the OPT-ISR problem, analogous to OPT-DSR.
OPT-ISR deals with *independent set* reconfiguration.
Input: A graph G, $k, s \in \mathbb{N}$, an independent set I_0 with $|I_0| \geq k$.

Question: Does G have an independent set I_s with $|I_s| \geq s$ and $I_0 \leftrightarrow I_s$?
Theorem [Ito, Mizuta, Nishimura, Suzuki (2018)]
OPT-ISR is PSPACE-hard when the input graph has bounded pathwidth.
Idea of the reduction

An independent set

A vertex cover (its complement)

An equivalent dominating set

Corollary

OPT-ISR is PSPACE-hard \Rightarrow **OPT-VCR** is PSPACE-hard

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-hard.
Positive results

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in polynomial time on interval graphs.
Proof : \((G, k, s, D)\), with \(G\) an interval graph
Interval graphs

Proof:

\((G, k, s, D)\), with \(G\) an interval graph

- We build in linear time in \(|G|\) a possible representation of \(G\) as a set of intervals.
Interval graphs

Proof: \((G, k, s, D)\), with \(G\) an interval graph

- We build a **minimum dominating set** \(D_m\) of \(G\), in linear time in \(|G|\).

Lemma [Haddadan et al. (2015)]

We can reconfigure \(D\) in \(D'\), s.t. \(D_m \subseteq D'\), under the bound \(|D| + 1\), in linear time in \(|G|\).
Proof: \((G, k, s, D)\), with \(G\) an interval graph

We build a minimum dominating set \(D_m\) of \(G\), in linear time in \(|G|\).

We thus have \(D \leftrightarrow^k D' \leftrightarrow^k D_m\).

We can answer yes if \(|D_m| \leq s\) and produce the corresponding sequence in linear time in \(|G|\).
Interval graphs

Proof: We build a minimum dominating set of G.

- Ordering: by ending time
- favored neighbor of v_i := maximum neighbor of v_i in the ordering

Algorithm
Traverse the vertices in order.
If v_i is dominated, skip it.
Otherwise, add its favored neighbor to the dominating set.
Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time
- **favored neighbor** of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Interval graphs

Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time
- **favored neighbor** of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Proof: We build a minimum dominating set of G.

- Ordering: by ending time
- favored neighbor of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.
- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Interval graphs

Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time
- **Favored neighbor** of v_i := maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.
- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Interval graphs

Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time
- **favored neighbor** of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Interval graphs

Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time

- *favored neighbor* of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm

Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Proof: We build a minimum dominating set of G.

- **Ordering**: by ending time

- *favored neighbor* of v_i := maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Proof: We build a minimum dominating set of G.

- Ordering: by ending time

- favored neighbor of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm
Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
Proof: We build a minimum dominating set of G.

- Ordering: by ending time
- *favored neighbor* of $v_i :=$ maximum neighbor of v_i in the ordering

Algorithm Traverse the vertices in order.

- If v_i is dominated, skip it.
- Otherwise, add its favored neighbor to the dominating set.
A graph G is d-degenerate if it possesses a vertex v of degree $\leq d$ and $G - v$ is also d-degenerate.

A 2-degenerate graph.

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(d + s)$, i.e. in time $f(d + s) \times n^{O(1)}$ if $|G| = n$; where d is the degeneracy of the graph and s is the size of the sought solution.
A graph G is d-degenerate if it possesses a vertex v of degree $\leq d$ and $G - v$ is also d-degenerate.

A 2-degenerate graph.

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(d + s)$, i.e. in time $f(d + s) \times n^{O(1)}$ if $|G| = n$; where d is the degeneracy of the graph and s is the size of the sought solution.
A graph G is d-degenerate if it possesses a vertex v of degree $\leq d$ and $G - v$ is also d-degenerate.

![A 2-degenerate graph.](image)

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(d + s)$, i.e. in time $f(d + s) \times n^{O(1)}$ if $|G| = n$; where d is the degeneracy of the graph and s is the size of the sought solution.
A graph G is d-degenerate if it possesses a vertex v of degree $\leq d$ and $G - v$ is also d-degenerate.

A 2-degenerate graph.

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(d + s)$, i.e. in time $f(d + s) \times n^{O(1)}$ if $|G| = n$; where d is the degeneracy of the graph and s is the size of the sought solution.
A graph G is d-degenerate if it possesses a vertex v of degree $\leq d$ and $G - v$ is also d-degenerate.

A 2-degenerate graph.

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(d + s)$, i.e. in time $f(d + s) \times n^{O(1)}$ if $|G| = n$; where d is the degeneracy of the graph and s is the size of the sought solution.
Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(\tau)$, where τ is the size of a minimum vertex cover of the graph.
Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time $\text{FPT}(\tau)$, where τ is the size of a minimum vertex cover of the graph.

Proof:

- **Trivial case**: If $|D| = k$ and D is minimal, then D is frozen. We cannot remove nor add vertices, hence the instance (G, k, s, D) is positive iff $|D| \leq s$. → We can test this condition in time $O(|G|)$.

Exemple pour $k = 3$
Parameterized complexity

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time \(\text{FPT}(\tau) \), where \(\tau \) is the size of a minimum vertex cover of the graph.

Proof:

- **Trivial case**: If \(|D| = k \) and \(D \) is minimal, then \(D \) is frozen. We cannot remove nor add vertices, hence the instance \((G, k, s, D)\) is positive iff \(|D| \leq s \).
 \(\rightarrow \) We can test this condition in time \(O(|G|) \).

- If \(|D| = k \) and \(D \) is not minimal, then we can remove a vertex of \(D \) and reduce to the last case, \(|D| < k \).

From now on we assume that \(|D| < k \).

\(\rightarrow \) We can add at least 1 vertex to \(D \) without getting above \(k \).
Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ), where τ is the size of a minimum vertex cover of the graph.

- We compute τ in time FPT(τ).
- 2 possibilities:
 - Either τ > s: As d ≤ τ, we have d + s ≤ 2τ.
 → we use the FPT(d + s)-time algorithm ✓
Parameterized complexity

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ), where τ is the size of a minimum vertex cover of the graph.

- We compute τ in time FPT(τ).
- 2 possibilities:
 - Either $\tau > s$: As $d \leq \tau$, we have $d + s \leq 2\tau$. → we use the FPT($d + s$)-time algorithm ✓
 - Or $\tau \leq s$: The instance is a **positive instance** in this case. To prove it, we will reconfigure D into a dominating set D' that satisfies $|D'| \leq \tau$.

Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki

Decremental Optimization of the Dominating Set Reconfiguration
Proof

Let G be a graph.
We build a minimum vertex cover in time $\text{FPT}(\tau)$.\text{\hspace{1cm}}
Proof

Let D be an initial dominating set.
Proof

We associate to each $v \in X \setminus D$ a neighbor $t(v)$. Let $T = \{t(v) \mid v \in X \setminus D\}$.
Proof

X I

vertex cover

stable

Already dominated (∅ ∈ T)

Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki
Decremental Optimization of the Dominating Set Reconfiguration
Proof

vertex cover

stable

X

I
Proof

vertex cover
stable
Already dominated ($\not\in T$)

X

I
Proof

vertex cover

stable

Not dominated ($\notin T$)

X

I
Proof
Proof

X

vertex cover

stable

I
Proof

X

stable

vertex cover

Already dominated ($\emptyset \in T$)

I
Proof

vertex cover

stable

X

I

$\in T$

$\in T$
When \((I \cap D') \subseteq J\), we have:

\[
|I \cap D'| \leq |t^{-1}(I \cap D')| \\
\leq |X \setminus D'| \\
= \tau - |X \cap D'|
\]

Hence we have:

\[
|D'| = |I \cap D'| + |X \cap D'| \leq \tau \leq s
\]

Thus \(D'\) is a solution: the instance is positive.
Proof

When \((I \cap D') \subseteq J\), we have:

\[
|I \cap D'| \leq |t^{-1}(I \cap D')| \\
\leq |X \setminus D'| \\
= \tau - |X \cap D'|
\]

Hence we have:

\[
|D'| = |I \cap D'| + |X \cap D'| \\
\leq \tau \\
\leq s
\]

Thus \(D'\) is a solution:
the instance is positive.
Complexity of OPT-DSR

- **PSPACE-complete** (even on bipartite, split and bounded pathwidth graphs)
- Polynomial on Interval graphs
- **FPT**\((d + s)\) \((d = \text{degeneracy}, s = \text{size of the solution})\)
- **FPT**\((\tau)\) \((\tau = \text{size of a minimum vertex cover})\)
Complexity of OPT-DSR

- PSPACE-complete (even on bipartite, split and bounded pathwidth graphs)
- Polynomial on Interval graphs
- FPT($d + s$) \((d = \text{degeneracy}, s = \text{size of the solution})\)
- FPT(τ) \((\tau = \text{size of a minimum vertex cover})\)

Thanks for your attention.