Takotsubo syndrome (TS) is an acute cardiac condition originally described in 1990 in a book chapter [1] and in 1991 in a Japanese journal article [2]. Of note, several publications before 1990 reported patients who very likely had TS [3], however, without using the name Takotsubo. Most TS patients suffer from rather acute chest pain and dyspnea, and about two thirds of patients have experienced a preceding trigger, which may be either an emotional event such as anger or grief or a physical incident such as trauma, surgery, or infection, or both [4]. Since 50% of patients have ST-segment elevation on the ECG and cardiac biomarkers are usually elevated to a relevant extent, many TS cases are diagnosed by cardiac catheterization originally performed for suspected myocardial infarction [5]. TS is characterized by transient wall motion abnormalities with hypo- or more often akinesia of midventricular and apical segments of the left ventricle (LV) as well as hypercontractile basal segments. However, atypical forms exist involving only midventricular, basal, or focal parts of the LV, constituting about 25% of cases. Left ventricular ejection fraction (LVEF) is often severely reduced, and LV end-diastolic pressure (LVEDP) markedly elevated, both of which reflect acute impairment of systolic and diastolic LV function [4, 6]. A hallmark of TS is an often rapid recovery of wall motion abnormalities within days to weeks, which needs to be demonstrated by imaging in order to finally diagnose the disease, unless the patient dies beforehand [7]. Taken together, TS represents a prototypical acute heart failure syndrome, although the initial clinical presentation mimics that of an acute coronary syndrome.

While TS remained largely unnoticed for approximately 10 years after the initial description, the condition has gained enormous attention over the past years (Fig. 1). TS is still considered to be underdiagnosed, with an underestimated risk and incompletely understood pathogenesis [8]. Importantly, numerous misunderstandings have emerged in the context of TS. This is in part due to a lack of knowledge resulting in unproven assumptions, and in part due to some erroneous messages from early reports. However, there is also a phenomenon of “ghost messages,” which are repeatedly re-featured in reviews, letters, and sometimes also original studies, despite already convincing evidence from the existing literature. In addition, owing to the relatively low incidence of the condition, a large number of single case reports was published massively outnumbering original studies (Fig. 1). This was very likely associated with a reporting bias, as predominantly “clear” cases were published that were in line with early reports. Overall, a misconception of the
disease has evolved: TS is still widely considered a benign, transient, “self-healing” disease with an emotional trigger and “clean” coronary arteries, but without relevant complications. In clinical routine one can even hear opinions such as, “I suspected my patient was suffering from acute myocardial infarction, but after all it was only Takotsubo,” reflecting a significant underestimation. Already the title of the first official description (“Takotsubo-type cardiomyopathy due to multivessel spasm”)[1] contained the term “cardiomyopathy,” suggesting a rather chronic condition, for which no robust evidence exists. In contrast, TS is not a benign disease[9], is not uniformly preceded by an emotional trigger[4], and does not require “clean” coronary arteries (see below). Based on the available evidence on TS, the present review focuses on pitfalls, misinterpretations, and knowledge gaps considered important during diagnosis and management of the disease.

Nomenclature

Most newly described entities or therapies undergo a change in their name or abbreviation. Indeed, TS has been ascribed numerous different names, especially in early years. While the initial description used the term “Takotsubo-type cardiomyopathy”[1], many of the following publications used “Takotsubo cardiomyopathy,” “left ventricular apical ballooning syndrome,” “broken heart syndrome,” or “stress cardiomyopathy” instead, among others (Table 1). However, these names either suggest that only the left ventricle is affected, or that the heart is always “broken” (emotional trigger), or that TS is a cardiomyopathy, all of which are not generally true. In 2011, an analysis of published reports uncovered that already at that time, 75 individual names had been used for the same condition[10]. These names were accompanied by an equally confusing number of abbreviations. Accordingly, a substantial debate on the nomenclature emerged[10–16], which was also related to different diagnostic criteria (see below). In recent times, most scientists and TS experts agree to use the term “Takotsubo syndrome,” abbreviated either as “TS” or “TTS.” The word “Takotsubo” is a metaphor for the apical type of TS, where the shape of the LV during systole resembles a pot (Jap. tsubo) used to trap octopods (Jap. tako) in Japan. Even though it is not intuitive to use it for atypical TS types, the metaphor takotsubo prevents confusion and appreciates the pioneering work of Japanese researchers[10]. While some reports used a hyphenated version (“Tako-tsubo”), the nonhyphenated version is much more frequently used: Until 2 January 2020, Medline contained 616 publications with “Tako-tsubo” as a title word and 3062 publications with “Takotsubo” in the title.

Documentation of recovery of TS-related wall motion abnormalities, i.e., normalization of systolic LV function in most patients, is required to diagnose TS across all types of diagnostic criteria (see below). Indeed, the often fast recovery of systolic LV function is a hallmark of TS and frequently astonishes treating physicians who had just encountered severe systolic dysfunction in their patients. This led to the assumption that TS is a “transient” disease and contributed to the misconception that the associated risk would be very low. Although there is new evidence that a TS episode results in subtle myocardial damage (see below), the term “cardiomyopathy” seems inappropriate[12] since to date there is no proof that relevant myocardial damage occurs. In contrast, the term “syndrome” better describes a condition that is incompletely understood, is probably not only a cardiac disease, and occurs in different settings. To date, it still remains unclear whether TS is a cardiac or extracardiac disease. The substantial incidence of TS in patients with extracardiac conditions such as pheochromocytoma, acute cerebral pathologies, and administration of sympathomimetic drugs suggests that TS could be an end-organ epiphenomenon of an extracardiac disorder. Thus, overall it seems most meaningful to generally use the term “Takotsubo syndrome” for all typical and atypical TS forms.

Spasm, catecholamines, gender, and the brain

Initially, TS had been associated with macrovascular coronary spasm, as already reported in the first description of the disease[1, 2]. Several authors described either spontaneous or provoked spasm in TS patients[17]. However, wall motion abnormalities in TS are usually not congruent with the perfusion territory of an epicardial coronary artery, and therefore it appears rather unlikely that spasm in larger arteries is the cause of TS. This, however, does not exclude that spasm in smaller vessels, i.e., in arterioles, would be a key step during the development of TS.

In 2005, a pioneering study found higher levels of circulating catecholamines in TS patients as compared with age- and gender-matched patients with ST-segment elevation myocardial infarction (STEMI;[18]), suggesting that TS might be induced by a catecholaminergic surge. Although the sample size in that study was rather small, it gave the initial spark for research and recognition of the disease, which lasts until today (Fig. 1). However, subsequent studies had conflicting results[19–21], leaving the question of whether or not TS is essen-

Table 1	Takotsubo synonyms
Synonym (abbreviation)	**Takotsubo synonyms**
Ampulla cardiomyopathy	Stress-induced cardiomyopathy (SCM)
Apical ballooning syndrome (ABS)	Stress cardiomyopathy (SCM)
Left ventricular apical ballooning syndrome (LVABS)	Takotsubo-like cardiomyopathy
Transient apical ballooning syndrome	Takotsubo syndrome (TS, TTS)
Transient cardiac ballooning	Stress-induced cardiomyopathy (SCM)
Transient left ventricular apical ballooning (TVLAVB)	
tially associated with increased levels of circulating catecholamines largely unanswered. Thus, the debate on circulating catecholamine levels is ongoing [22]. Still, local myocardial catecholamine effects may be essential for stunning irrespective of circulating catecholamine levels. Many case reports have been published describing TS onset early or immediately after catecholamine administration [23]. However, compared with the high number of patients receiving catecholamines worldwide, the incidence of TS is still inadequately low, rendering catecholamine administration a trigger rather than a causative step. It is tempting to assume that coronary arteriolar spasm mediated by catecholamines induces TS. Importantly, spasm may also be a symptom demonstrating the catecholamine surge, i.e., rather be an epiphenomenon. The Mayo Clinic Diagnostic Criteria excluded pheochromocytoma as a cause [16]. In turn, this model, and there are many published reports of patients who had two, three, or even more episodes with different TS forms over time (see below), practically excluding that the proposed model is the primary explanation for the cardiac TS phenotype. Overall, albeit there is a "typical" association, from a mechanistic point of view catecholamines and sympathomimetic substances can neither be considered essential nor sufficient for TS development, and the debate is ongoing.

TS has also been proposed to be a special form of acute coronary syndrome (ACS). Troponin levels are elevated in virtually all TS patients, although levels are usually inappropriately low compared with the often severe systolic dysfunction of the LV. TS is characterized by the absence of substantial late gadolinium enhancement on cardiac magnetic resonance imaging (MRI, see below), which is an essential difference to ACS [27]. Therefore, ischemic myocardial necrosis does not explain wall motion abnormalities in TS. Of note, myocardial dysfunction may also be caused by ischemia without occurrence of necrosis, as ischemia is generally able to result in severe stunning of the heart [28]. Nuclear tests support this hypothesis, as perfusion is moderately reduced but metabolism strongly impaired in stunned myocardial segments in TS [29].

Occasionally, TS has been reported to occur in close relatives or siblings [30, 31]. Although TS is supposed to be nonhereditary, it is very likely that a genetic basis...
for susceptibility to triggers and sympathetic surroundings exists [32]. This preexisting vulnerability would further explain, at least in part, the recurrence of TS. The anecdotally described concurrent onset of TS in close relatives illustrates that there must be some biological background that in conjunction with an external trigger finally results in development of TS. Genetic studies have already identified promising loci, copy number variations, and polymorphisms in TS patients [33–39]; however, these results require further confirmation and exploration before allowing for mechanistic conclusions.

Another key toward understanding the pathogenesis of TS might be hidden in the striking gender preponderance: 90% of patients are women, and of those 80% are postmenopausal. This led to the hypothesis that estrogen is a relative protective hormone, and that its decline may predispose individuals to TS development. In rats, estrogen supplementation attenuates the cardiac phenotype of immobilization stress [40, 41], and estrogen levels in patients with subarachnoid hemorrhage and LV dysfunction are lower than in those with normal systolic LV function [42]. Estradiol protects cardiomyocytes from isoproterenol-induced ROS-production and action potential duration prolongation [43]. In a recent study, women with TS and women matched for age and gender with STEMI had comparable levels of several sex hormones [44]. However, this study lacked a healthy control group. Furthermore, it is questionable whether measurement of circulating sex hormones at a single timepoint during the acute phase of the disease sufficiently reflects the complex sex hormone network. An earlier study found lower estradiol levels in TS patients than in STEMI patients or healthy controls [45]—acutely as well as at 6 years’ follow-up. Interestingly, glucose metabolism in the adult heart has strong sex preferences [46], which points toward cellular metabolism as an important sex-dependent factor during TS pathogenesis. Overall there remains much room for further research in order to understand the gender differences in TS.

TS is not rare in patients with acute neurological conditions, and in turn the prevalence of neurological disease in TS is higher than expected by random chance. In total, 50% of patients with TS suffer from an acute or chronic neurological or psychiatric disease [4], which suggests that the brain may be a critical component during pathogenesis. A recent study showed characteristic activity of brain regions in functional MRI [47], which may be the basis for future research to identify specific changes of regional brain function potentially inducing myocardial stunning. As outlined above, a “humoral” hypothesis postulates that circulating catecholamines, sex hormones, and others finally induce or trigger TS. Interestingly, reports of TS in patients after heart transplantation are extremely rare [48–50], supporting the notion that an anatomical brain–heart axis may usually be required for development of TS. Overall, there is much room for innovative studies on the interaction of brain and heart in TS.
Main topic

From the beginning, TS has been associated with the absence of coexisting coronary artery disease (CAD). In the first version of the Mayo Clinic Diagnostic Criteria, the presence of CAD with relevant stenoses was a rule-out criterion for the diagnosis of TS. Since apical TS was the only known form of TS at that time, the presence of CAD especially in the left anterior descending artery (LAD) often resulted in diagnosing an ACS instead. Magnetic resonance imaging (MRI) was not routinely available, hence there was no reliable measure to distinguish between ACS and TS. The recent consensus diagnostic criteria for TS allow for diagnosing TS in the presence of CAD (please see below). In contrast to the initial view that TS and obstructive CAD are contradictory, available data suggest that CAD is not rare in TS patients ([Table 3; [57–62]]. However, published studies on CAD and TS are rather small, especially the investigated cohorts of patients with TS and coexisting obstructive CAD. Moreover, these studies reported only few details on the nature of CAD, and therefore further studies are urgently needed. Coronary imaging studies, using either intravascular ultrasound or optical coherence tomography, again demonstrated that CAD might be present, but conflicting findings regarding coronary culprit lesions do not allow for definitive conclusions [58, 63–65]. Furthermore, ACS and TS can coexist [66–72], thus making the correct diagnosis may sometimes be challenging, at least without cardiac MRI (see below).

A retrospective angiographic study of 109 TS patients found that tortuosity of coronary arteries and a “wrap-around” LAD are significantly more prevalent in TS patients than in age- and gender-matched control patients [73]. The study has limitations since patients with TS and coexisting CAD were not included and the control group had no CAD. Nevertheless, it might be worth studying whether anatomical variants and morphological characteristics of coronary arteries play a role in TS, either in the pathogenesis or as a disease modifier.

Study	Year	Origin	TS patients	Normal coronary arteries	Nonobstructive CAD	Obstructive CAD
Hahs et al. [19]	2007	Germany	4	–	–	4 (100%)
Winchester et al. [20]	2008	USA	31	12 (38.7%)	10 (32.3%)	9 (29.0%)
Kurisu et al. [21]	2009	Japan	97	Not reported	Not reported	10 (10.3%)
Hoyt et al. [22]	2010	USA	97	16 (16.5%)	81 (83.5%)	13 (13.4%)
Hahs et al. [23]	2010	Germany	10	5 (50.0%)	2 (20.0%)	3 (33.3%)
Pawlowski et al. [24]	2010	Poland	14	–	14 (100%)	–
Delgado et al. [25]	2011	USA	11	–	11 (100%)	–
Parodi et al. [26]	2013	Italy	450	315 (70.0%)	92 (20.4%)	43 (9.6%)
Bill et al. [27]	2017	Germany	114	Not reported	Not reported	22 (19.3%)

References to the tables are provided as electronic supplementary material.

CAD coronary artery disease, **TS** Takotsubo syndrome

Age and trigger

Initially TS was mainly reported in postmenopausal women. Indeed, most patients with TS are female. In large registries the mean age is approximately 68 years, with 90% being women. However, over time many cases of TS were reported in men, and also in very young ever, over time many cases of TS were reported in men, and also in very young...
A very characteristic angiographic finding in TS is coronary slow-flow, especially in the LAD in patients with apical TS [74]. This might be attributed to microvascular dysfunction [75, 76], and its extent potentially correlates with adverse prognosis [77].

How to diagnose Takotsubo syndrome

Since 2003, several diagnostic criteria have been proposed (Table 4). Of these, the most widely used criteria have been the revised version of the Mayo Clinic Diagnostic Criteria, which were published in 2008 [25]. With different criteria considerable confusion and debate emerged, especially whether patients with CAD, pheochromocytoma, without triggers, and without ECG changes should be classified as having TS [78–80]. The InterTAK diagnostic criteria (7; Table 5) are the most recent criteria, were agreed upon by most international leading TS investigators, and are largely congruent with the criteria published by the Taskforce on TS of the Heart Failure Association of the European Society of Cardiology [81]. The InterTAK Criteria further represent a modified and more precise version of the revised Mayo Clinic Diagnostic Criteria [25].

In clinical practice, it is often easy to diagnose TS, e.g., when a 70-year-old female patient with chest pain and ST-segment elevation undergoes coronary angiography, with angiographic absence of CAD and a typical apical balloonsing pattern of the LV with basal hypercontraction. If wall motion abnormalities recover, TS can be finally diagnosed. However, frequently TS is suspected in patients with CAD or secondary to another severe comorbidity. Furthermore, it may at times be difficult to distinguish TS from myocarditis, ACS, or myocardial infarction with nonobstructive coronary atherosclerosis (MINOCA). Therefore, a pathway of meaningful clinical and technical investigation is required beyond diagnostic criteria, in order to make the correct diagnosis. Here, we propose a diagnostic pathway (Fig. 2), which covers the most important differential diagnoses to TS. Echocardiography is a cornerstone during diagnostic assessment, for which TS-specific aspects and recommendations have been published [82].

Echocardiographic examination should include assessment of LVEF, longitudinal strain, and wall motion abnormalities, in order to determine the TS type and the extent of LV dysfunction. Especially the focal type, which typically involves antero- or posterolateral segments of the LV, easily escapes echocardiographic standard views. Furthermore, echocardiography should screen for potential complications of TS, such as LV outflow tract obstruction (LVOTO), mitral regurgitation, and LV thrombus (Table 6).

Coronary angiography should be performed according to current ACS guidelines [83, 84]. Patients with TS usually present acutely with symptoms of ACS, and approximately 50% of patients have ST-segment elevation on ECG. In addition, patients admitted to hospitals for noncardiac reasons, who develop TS during hospitalization, are often identified by

Table 4 Takotsubo syndrome diagnostic criteria

Year	Publication	Criteria
2003	Abe et al. [28]	Abe criteria
2004	Bybee et al. [29]	Mayo Clinic Diagnostic Criteria
2007	Kawai et al. [30]	Japanese diagnosis guidelines
2008	Prasad et al. [31]	Mayo Clinic Diagnostic Criteria, revised
2011	Omerovic et al. [32]	Gothenburg criteria
2012	Wittstein et al. [33]	Johns Hopkins criteria
2013	Redfors et al. [34]	Gothenburg criteria, revised
2014	Parodi et al. [35]	Takotsubo-Italian Network Proposal
2014	Madias et al. [36]	Madias criteria
2014	Redfors et al. [37]	Gothenburg criteria, proposed new criteria
2016	Lyon et al. [38]	ESC Heart Failure Association Taskforce Criteria
2018	Ghadri et al. [39]	InterTAK Criteria

References to the tables are provided as electronic supplementary material

ESC European Society of Cardiology

Table 5 2018 InterTAK Diagnostic Criteria for Takotsubo Syndrome

1. Transient LV dysfunction* (hypokinesia, akinesia, or dyskinesia) presenting as apical, mid-ventricular, basal, or focal ballooning. RV involvement can be present. Transitions between types can exist. Wall motion abnormalities usually extend beyond the perfusion territory of a single epicardial coronary artery, but exceptions can exist (focal TS)
2. Emotional and/or physical triggers may precede onset of TS (not mandatory)
3. (Acute) neurologic disorders or pheochromocytoma may serve as triggers for TS
4. New ECG abnormalities (ST-segment elevation, ST-segment depression, T-wave inversion, and QTc prolongation). Rare cases without any ECG changes exist
5. Moderate elevation of troponin and creatine kinase and commonly significant elevation of BNP
6. Presence of CAD does not preclude diagnosing TS
7. Patients have no evidence of infectious myocarditis
8. Postmenopausal women are predominantly affected

InterTAK Criteria shortened and adapted from the International Expert Consensus Document on Takotsubo Syndrome (Part I) [77]

References to the tables are provided as electronic supplementary material

CAD coronary artery disease, LV left ventricular, RV right ventricular, TS takotsubo syndrome
*Documentation of recovery of wall motion abnormalities is required for diagnosing TS, however wall motion abnormalities may remain for a prolonged period of time. Death before documentation of recovery is an important exception, in this case TS may be diagnosed also without documentation of recovery
*Cardiac magnetic resonance imaging is recommended to exclude infectious myocarditis and confirm diagnosis of TS
Main topic

Diagnostic Management for Suspected Takotsubo Syndrome and/or Acute Coronary Syndrome

Signs or symptoms of heart failure and shock or by arrhythmia or cardiac arrest. Nearly all patients finally diagnosed with TS have a significant rise in troponin levels, and coronary angiography would therefore be indicated according to current ACS guidelines. Thus, there are good reasons for invasive angiography in adult patients suspected of suffering from TS, even if coronary computed tomography is sometimes recommended in patients with suspected TS. Today, many interventional cardiologists do not routinely perform ventriculography in patients with suspected ACS. Of note, there are no robust data demonstrating that ventriculography is unsafe, unless performed in predictably dangerous scenarios such as LV thrombus, very high LVEDP, infective aortic valve endocarditis, or severe renal failure. In contrast, ventriculography offers a unique chance to investigate LV wall motion and its relation to coronary anatomy and pathology [85]. Furthermore, in clinical practice there might be a delay between admission and echocardiography, and TS wall motion abnormalities may have already partly recovered after 2–3 days [86]. Thus, operators who continue to employ ventriculography (unless contraindicated) might see more cases of TS in patients with signs and symptoms of ACS, and are further able to measure end-diastolic LV pressure and a potential LV outflow tract gradient early.

In many patients with suspected TS, differential diagnoses such as ACS or myocarditis cannot be finally ruled out by echocardiography and coronary angiography findings. This is the case in patients where wall motion abnormalities are rather congruent with the perfusion territory of a diseased coronary artery, or in patients where wall motion is abnormal in posterolateral segments, where myocarditis frequently manifests. In these cases, cardiac MRI adds essential information for making the correct diagnosis [87], as all the aforementioned major cardiac conditions are associated with distinct findings in cardiac MRI [27, 88–90]. Although not routinely used in all cardiac intervention centers, the availability and use of cardiac MRI will strongly increase over the next few years, and thereby contribute to enhancing accuracy and to avoiding misdiagnosis of cardiac conditions.

Most importantly, recovery of TS-related wall motion abnormalities is essentially required to finally diagnose TS, and especially in patients without early recovery, cardiac MRI should be considered.

Incidence

TS is probably still an underdiagnosed condition. An estimated 1–3% of patients presenting to hospitals with ACS symptoms are finally diagnosed with TS. However, with dedicated imaging early after admission the number of diagnosed TS cases is probably higher, since in some patients recovery of wall motion abnormalities may occur before echocardiography.
is performed. Therefore, it is very important to search for wall motion abnormalities especially in patients presenting as ACS but without coronary culprit lesions (Fig. 2), with the intention not to miss underlying TS. However, TS may also concur in patients with a major leading cardiovascular condition such as myocardial infarction or pulmonary embolism [66–68, 70, 91, 92]. Thus, careful imaging is required also in presumably “clear” cases. Furthermore, TS might be an explanation for some unexplained cases of sudden death [93], but it is likely difficult to make a postmortem diagnosis [94].

Since the onset of TS is frequently associated with preceding stress from various sources, it appears reasonable that critically ill patients develop TS as a secondary disease. Indeed, the incidence of TS in critical care units in observational studies is substantial and higher than expected [95–98]. Therefore, TS should be suspected in patients with unexplained heart failure, hypotension, shock, arrhythmia, or troponin elevation, and dedicated echocardiography should be performed. In the acute phase differential diagnosis should also take into account myocarditis and MINOCA (Fig. 2), both of which are likely underdiagnosed, too, and may require MRI or endomyocardial biopsy for making a definitive diagnosis.

Types of TS

The “classic” and most frequent TS type is LV apical ballooning, which is characterized by midventricular and apical stunning, accompanied by basal hypercontraction (Fig. 3). Sometimes a tiny strictly apical portion of the LV is hypercontractile in apical TS, which has been referred to as the apical “nipple” sign [99]. Observing an apical nipple sign is helpful if TS needs to be distinguished from suspected transient LAD occlusion, since a positive nipple sign makes the latter very unlikely, if the LAD perfuses the hypercontractile nipple. There is no clear agreement on how to distinguish apical TS with an apical nipple sign from midventricular TS, if the nipple sign comprises a larger apical area.

Nonapical TS types have been described, which account for an estimated 25–30% of cases and may be more frequently diagnosed in the future since awareness of atypical TS types is increasing. The midventricular TS type is characterized by midventricular stunning with basal and apical hypercontraction [100–103], and is likely more frequent than currently assumed [104]. The basal type appears like a counterpart to the apical type, with basal stunning and midventricular and apical hypercontraction [105, 106]. The focal type occurs with focal stunning, most frequently in anterolateral or posterolateral segments [107, 108], and is often found with the most preserved LVEF and lowest complication rate of all types [104]. According to data from the InterTAK Registry, the TS type is not associated with clinical outcomes after adjusting for confounders [109]. However, there is a trend toward a worse prognosis with apical and basal and a better outcome with focal TS, respectively. There has been some confusion about the terms “inverse” and “reverse” TS, with the former describing basal and the latter describing midventricular TS. These terms should be avoided, as they are not unequivocal. Instead, basal and midventricular TS are the preferred designations. Basal TS is a common type in patients with subarachnoid hemorrhage, pheochromocytoma, and catecholamine administration. Therefore, such deleterious triggers should be ruled out once basal TS is diagnosed. Many cases of midventricular TS were published in the context of acute pulmonary triggers. Interestingly, in the literature nearly all children had an apical TS type ([Table 2]), the reason for which remains unknown. Recently, a fifth variant of TS was proposed, which is characterized by midventricular hypercontraction and basal and apical stunning [110]. However, confirmation of this phenotype by other cases and additional cardiac imaging is needed.

Right ventricular (RV) involvement is present in about 15% of cases [82], and isolated RV TS has been reported [111–113]. In clinical practice, the RV is unfortunately still somewhat neglected and RV dysfunction is underestimated. RV failure carries a profound risk for patients with heart failure, also in TS [114]. In the context of TS, RV failure is understudied and frequently overlooked. It is especially unknown whether all TS types have the same frequency of RV involvement, and whether RV involvement mirrors the types of LV involvement. Generally, once TS is suspected in a patient, the echocardiographic examination should also investigate the RV in particular ([Table 6]).

In-hospital complications

Early reports suggested that TS is a transient disease with a very favorable prog-
Systolic function, semiquantitative

Table 6: Echocardiography in Takotsubo syndrome

Parameters and potential pathological findings
LV Systolic function, semiquantitative assessment
LVEF (%) Wall motion abnormalities, TS type
LV thrombus Global longitudinal strain
E/e' (estimate of diastolic function) LVOTO (mean gradient, mmHg)
RV Systolic function, semiquantitative assessment
RV involvement Mitral regurgitation
SAM phenomenon of the anterior mitral leaflet
Coronary flow in the distal LAD*
Ventricular septal rupture
Ventricular wall rupture
Pericardial effusion Pleural effusion

Adapted from a more detailed description of echo-findings and parameters[10].

References to the tables are provided as electronic supplementary material.

LAD: left anterior descending coronary artery, LV: left ventricle, LVEF: LV ejection fraction, LVOTO: LV outflow tract obstruction, RV: right ventricle, SAM: Systolic anterior movement, TS: Takotsubo syndrome.

*Presence of flow in the distal LAD on echocardiography is not a sufficient substitute of coronary angiography, but is of interest in patients without ST-segment elevations and apical ballooning.

nosis. Indeed, some patients are admitted with severe chest pain and have rather severe LV dysfunction, but see a rapid recovery of LV function without arrhythmia, shock, or other complications. This is frequently the case in older female patients with emotional triggers, but only reflects a smaller part of the large spectrum of TS. In fact, the in-hospital phase is characterized by severe and frequent complications, which has been demonstrated by many groups from different continents[4, 9, 115, 116]. Beyond subgroups defined by age, trigger, TS type etc., a classification of primary and secondary TS has been proposed [81, 117], to account for differences in management and prognosis. Of note, patients admitted with ACS symptoms and finally diagnosed with TS (primary TS) have a better outcome than patients admitted for other reasons, in whom TS occurs later during hospitalization (often secondary TS; [118]). Thus, awareness should not only be directed at diagnosing TS in patients with ACS symptoms, but also in patients hospitalized for other reasons, who later develop signs or symptoms of TS such as chest pain, heart failure, shock, arrhythmia, ECG signs of ischemia, or syncope. In addition, in-hospital monitoring should not be omitted in both primary and secondary TS, as the incidence of acute complications is comparable to those with acute myocardial infarction [119]. If a patient with signs and symptoms of ACS undergoes coronary angiography and is diagnosed with apical TS instead, discharge on the next day (because “it is only TS”) is very likely too early and carries significant risk. The incidence of shock, resuscitation, and death is comparable to that in age- and gender-matched patients with ACS [4]. Selected patients might be candidates for a wearable defibrillator until recovery of LV wall motion abnormalities [120–122].

Cardiogenic shock occurs in around 10% of patients with TS. However, in comparison to shock from myocardial infarction or myocarditis, some specific characteristics are present: Given the special role of catecholamines during pathogenesis, catecholamines and especially inotropes should be strictly avoided. Thus, mechanical circulatory support (MCS) may be considered earlier than in other conditions. There are no prospective studies on the use of MCS in TS patients with shock. Based on clinical experience with MCS devices in cardiogenic shock from other causes and integrating pathophysiological considerations, a proposal for heart failure and MCS management in TS patients is provided in Fig. 4. This proposal emphasizes to identify developing shock early, with the intention to prevent full development of the shock spiral.

Recurrence and long-term risk

The first report on recurrence of TS was published in 2006 in Japanese [123]. In this report, the patient initially had mid-ventricular TS, and subsequent recurrences were midventricular and biventricular apical TS. Later on, several cases with varying types in men and women across all ages were published (Table 7; [124]). One report hypothesized that recurring TS manifests in a different myocardial region than the first episode, i.e., that TS would protect against recurrence in the same region [125]. However, many reports of recurrence in the same region (Table 7) strongly oppose this hypothesis. On the other hand, numerous reports with different TS types in the same patient (Table 7) render the beta-receptor concept of TS development rather unlikely, at least as the only responsible step in pathogenesis. Overall, there is recurrence with all TS types across all ages in men and women, with a mean recurrence rate in adults of around 1.5–2% per year [124]. As extrapolated from case reports, patients with pulmonary triggers from chronic lung disease, with diarrhea or electrolyte disorders, and with drug or substance abuse tend to have a higher chance of recurrence.

Beyond recurrence, TS also carries a long-term mortality risk [126–128]. This is probably mainly due to noncardiac causes, and it remains incompletely understood whether long-term risk is due to TS or whether TS occurs in patients already at higher risk due to other causes.

Recently, it was reported that myocardial and systemic inflammation is present in the acute phase of TS and that subtle changes may persist in the heart, in part questioning the concept of transient myocardial dysfunction and recovery [129–133]. It is indeed not surprising that a cardiac condition that is characterized by severe stunning and significant troponin release evokes an inflammatory response, and that long-term sequelae such as diastolic dysfunction and microscopic fibrosis persist in the myocardium. Although the recent findings are of major importance for a better understanding of the disease, it remains unknown whether they translate into clinical outcomes.
Takotsubo Syndrome Heart Failure / Shock Management

General recommendations
- Avoid inotropes such as epinephrine or dobutamine. Early MCS may be considered instead.
- Intravascular balloon pumps are potentially harmful, as they may facilitate or aggravate LVOTO.
- Nitroglycerin and other vasodilators should be used with caution, and be avoided in the presence of LVOTO.
- SCAI Stage B-E: Use a pulmonary artery catheter. Wean inotropes. Focus on volume management.
- Severe aortic regurgitation: VA-ECMO and Impella contraindicated. Consider off-label Impella or surgery.

SCAI Shock Stages

Stage	Description
A	At Risk: Neither hypotension nor tachycardia, no hypoperfusion, normal lactate
B	Beginning: (Relative) Hypotension, tachycardia, without hypoperfusion, normal lactate and CI
C	Classic: Hypoperfusion, lactate ↑, CI < 2.2 L/min/m², requires inotropes or MCS, without deterioration
D	Deteriorating: Hypoperfusion, with deterioration but NOT refractory shock
E	Extremis: Hypoperfusion, deterioration, refractory shock, ECPR

Indications for adding ECMO (ECPELLA):
- Pulmonary congestion
- LV distension, severe MR

Indications for adding VA-ECMO (ECPELLA):
- Persistent respiratory failure
- Persistent refractory shock

VA-ECMO
- (ECPELLA contraindicated with LV thrombus)

LV or BiV Impella
- Persistent respiratory failure
- Persistent refractory shock

Conservative
- Closely re-evaluate:
 - AHF symptoms?
 - Echo: LVOTO? MR?
 - Heart rate, blood pressure
 - CPO, PAPI, PCWP

Fig. 4 Takotsubo syndrome heart failure and shock management algorithm. SCAI shock stages adapted from Baran et al. [136] and Jentzer et al. [137]. AHF Acute heart failure, BiV biventricular, CI cardiac index, CPO cardiac power output, ECPELLA VA-ECMO combined with Impella, ECPR extracorporeal cardiopulmonary resuscitation, LV left ventricle, LVEDP left ventricular end-diastolic pressure, LVOTO left ventricular outflow tract obstruction, MCS mechanical circulatory support, MR mitral regurgitation, PAPI pulmonary artery pulsatility index, PCWP pulmonary capillary wedge pressure, SCAI Society for Cardiovascular Angiography and Interventions, TS takotsubo syndrome, VA-ECMO veno-arterial extracorporeal membrane oxygenation
| Study | Year | Sex, age at 1st episode | Number of recurrences | First episode | Gap | Second episode | Gap | Third episode | Gap | Fourth episode |
|-----------------------|------|-------------------------|-----------------------|---------------|--------------|---------------|--------------|---------------|--------------|--------------|----------------|
| Sharath Babu et al. | 2019 | Female, 59 years | 1 | Apical | 8 months | Apical | - | - | - | - |
| Napp et al. | 2015 | Female, 63 years | 1 | Apical | 2 years | Apical | - | - | - | - |
| Srivastava et al. | 2016 | Male, 14 years | 1 | Apical | 6 months | Apical | - | - | - | - |
| Eitel et al. | 2014 | Female, 96 years | 1 | Apical | 2 years | Midventricular| - | - | - | - |
| Xu et al. | 2014 | Female, 52 years | 1 | Apical | 11 years | Midventricular| - | - | - | - |
| Rashed et al. | 2019 | Female, 43 years | 1 | Apical | 8 months | Basal | - | - | - | - |
| Kato et al. | 2014 | Female, 65 years | 1 | Midventricular| 3 years | Midventricular| - | - | - | - |
| Wever-Pinzon et al. | 2011 | Female, 82 years | 1 | Midventricular| 4 months | Apical | - | - | - | - |
| Blessing et al. | 2007 | Male, 70 years | 1 | Basal | 3 months | Apical | - | - | - | - |
| Binaghi et al. | 2018 | Female, 67 years | 1 | Basal | ≤2 weeks | Apical | - | - | - | - |
| Piranavan et al. | 2019 | Female, 66 years | 1 | Focal | 3 years | Midventricular| - | - | - | - |
| Chandorkar et al. | 2014 | Male, 28 years | 1 | RV (apical) | 5 months | RV (apical) | - | - | - | - |
| Joe et al. | 2013 | Female, 83 years | 1 | RV (apical) | 1 week | Apical | - | - | - | - |
| Luo et al. | 2019 | Male, 52 years | 1 | Biventricular (apical)| 2 months| Biventricular (apical)| - | - | - | - |
| Cattaneo et al. | 2015 | Male, 66 years | 2 | Apical | 1 year | Apical | 2 years | Apical | - | - |
| Sager et al. | 2011 | Female, 66 years | 2 | Midventricular| 9 months | Midventricular| 3 years | Midventricular| - | - |
| Shimizu et al. | 2006 | Male, 60 years | 2 | Midventricular| 2 years | Midventricular| 3 months | Biventricular (apical)| - | - |
| Mugnai et al. | 2015 | Female, 64 years | 2 | Apical | 8 months | Basal | 4 years | Basal | - | - |
| Rodriguez et al. | 2014 | Female, 56 years | 2 | Type not reported| Gap not reported| Apical | 2 months | Basal | - | - |
| Ghadri et al. | 2012 | Female, 65 years | 2 | Midventricular| 8 years | Apical | 1 year | Focal | - | - |
| Opolski et al. | 2016 | Female, 62 years | 3 | Apical | 10 years | Apical | 3 years | Apical | 2 years | Apical |
| Kaushik et al. | 2011 | Female, 56 years | 5 | Six episodes of TS over 4 years, with at least one apical and one basal type, suspected to be triggered by cannabis abuse | 6 years | Six episodes of TS over 33 years, with at least two apical types and one focal type | - | - | - | - |
| Chandy and Dawson | 2019 | Female, 48 years | 5 | Six episodes of TS over 33 years, with at least two apical types and one focal type | 6 years | Six episodes of TS over 33 years, with at least two apical types and one focal type | - | - | - | - |

All publications in this table reported recovery of systolic ventricular function between episodes of recurrence.
References to the tables are provided as electronic supplementary material.
TS takotsubo syndrome

*At the time of the second episode
Long-term therapy

TS was initially described as a “stress cardiomyopathy” with an emotional trigger in early years. As outlined above, there is indeed a strong and somehow specific association between the beta-adrenergic system and TS. Interestingly, in an ex vivo model with induced pluripotent stem cell-derived cardiomyocytes from TS patients, there was increased beta-adrenergic activity and response to catecholamines [134], further confirming this association. All this strongly suggests that beta-blockers should be beneficial in TS patients. However, in the InterTAK Registry, 30% of all patients and 60% of patients with recurrent TS were on beta-blockers before TS onset. Most of these were β1-specific. This demonstrates that beta-blockers are not generally sufficient to prevent TS or TS recurrence [4, 124]. In a post hoc analysis of discharge medication, mortality was comparable between TS patients with and without beta-blockers at discharge [4], although this analysis had significant limitations. However, it remains unknown whether a TS episode carries a reduced risk of complications, heart failure, and death in patients on beta-blockers than in patients without. Perhaps the mere blockade of the receptor is not as important as modification of downstream signaling. In summary, although there are many associations, there are no data demonstrating that beta-blocker prescription is of any specific benefit in TS patients. Therefore, beta-blockers should not be given routinely after recovery, unless there is another indication for their use or a study demonstrates a benefit and thereby justifies treatment.

Conclusion

Takotsubo syndrome (TS) occurs in a variety of phenotypes across all ages and genders, and is associated with substantial risk during the acute phase. Mechanical circulatory support is an emerging strategy for patients with TS and shock, in order to avoid catecholamines and inotropes in particular. Prospective studies are needed in this context, as well as for medical treatment of TS with the intention to prevent recurrence.

Corresponding address

L. Christian Napp, MD
Department of Cardiology and Angiology, Hannover Medical School
Carl-Neuberg-Str. 1, 30625 Hannover, Germany
napp.christian@mh-hannover.de

Compliance with ethical guidelines

Conflict of interest. L. C. Napp: Related to the present work: None. Unrelated to the present work: Modest honoraria for consultancy, proctoring, lectures and travel support from Abiomed, modest honoraria for consultancy, lectures and travel support and research funding from Cytosorbents, modest honoraria for consultancy and travel support from Bayer, modest lecture honoraria from Abbott, AstraZeneca, Boehringer Ingelheim, Lilly, Medtronic, Merit Medical, Pfizer, Servier, and Volcano. J. Baurersachs: Related to the present work: None. Unrelated to the present work: Honoraria for lectures and/or consulting: Novartis, BMS, Pfizer, Vifor, Bayer, Servier, Orion, CVRx, MSD, Boehringer Ingelheim, AstraZeneca, Abiomed, Abbott, Medtronic; Research support: Zoll, CVRx, Bayer, Vifor, Abiomed, Medtronic.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sato H, Tateishi H, Uchida T et al (1990) Takotsubo-type cardiomyopathy due to multivesSEL spasms. In: Kodama K, Haze K, Hori M (eds) Clinical aspect of myocardial injury: from ischemia to heart failure. Kagakuryouuronsha Publishing, Tokyo, pp 56–64
2. Dote K, Sato H, Tateishi H et al (1991) Myocardial stunning due to simultaneous multivesSEL coronary spasms: a review of 5 cases. J Cardiol 21(2):203–214
3. Y-Hassan S, Yamashita K (2013) History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies.

Int J Cardiol 166(3):736–737. https://doi.org/10.1016/j.ijcard.2012.09.183
4. Templin C, Ghadri JR, Diekmann J et al (2015) Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med 373(10):929–938. https://doi.org/10.1056/NEJMoa1406761
5. Napp LC, Ghadri JR, BauerSachs J, Templin C (2015) Acute coronary syndrome or Takotsubo cardiomyopathy: the suspect may not always be the culprit. Int J Cardiol 187:116–119. https://doi.org/10.1016/j.ijcard.2015.03.055
6. Medeiros K, O’Connor MJ, Baicu CF et al (2014) Systolic and diastolic mechanics in stress cardiomyopathy. Circulation 129(16):1659–1667. https://doi.org/10.1161/CIRCULATIONAHA.113.022781
7. Ghadri JR, Wittstein IS, Prasad A et al (2018) International expert consensus document on Takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 39(22):2032–2046. https://doi.org/10.1093/eurheartj/ehy076
8. Templin C, Napp LC, Ghadri JR (2016) Takotsubo syndrome: underdiagnosed, underestimated, but understood? J Am Coll Cardiol 67(26):1937–1940. https://doi.org/10.1016/j.jacc.2016.03.006
9. Sharkey SW, Pink VR, Lesser JR et al (2015) Clinical profile of patients with high-risk Tako-Tsubo cardiomyopathy. Am J Cardiol 116(5):765–772. https://doi.org/10.1016/j.amjcard.2015.05.054
10. Sharkey SW, Lesser JR, Maron MS, Maron BJ (2011) Why not just call it tako-tsubo cardiomyopathy: a discussion of nomenclature. J Am Coll Cardiol 57(13):1496–1497. https://doi.org/10.1016/j.jacc.2010.11.029
11. Parodi G (2007) Transient left ventricular apical ballooning—the need for a common terminology. Int J Cardiol 116(3):403. https://doi.org/10.1016/j.ijcard.2006.04.072
12. Pelliccia F, Sinagra G, Elliott PE et al (2018) Takotsubo is not a cardiomyopathy. Int J Cardiol 254:250–253. https://doi.org/10.1016/j.ijcard.2017.12.009
13. Movahed MR (2010) Transient cardiac ballooning is not best nomenclature for Takotsubo cardiomyopathy as it does not capture all variants of this syndrome. Stress cardiomyopathy is a much better term for this syndrome. Clin Cardiol 33(4):241–242. https://doi.org/10.1002/clc.20742 (author reply 242)
14. de Gregorio C, Ando S, Giro T (2009) Stress-related left ventricular dysfunction: a common terminology for both Takotsubo-like and neurogenic stress syndromes? J Cardiovasc Med 10(2):204–205. https://doi.org/10.2459/JCM.0b013e32831da953
15. Pawlowski T, Gill R (2008) Transient left apical ballooning syndrome—the need for a common terminology? A reply. Int J Cardiol 131(1):138–139. https://doi.org/10.1016/j.ijcard.2007.06.009 (author reply 140)
16. Barriales-Villa R, Hevia S, Santamarta-Liebana E, Moris C (2008) Pheochromocytoma-related cardiomyopathy or stress cardiomyopathy secondary to pheochromocytoma: is new terminology needed? Rev Esp Cardiol 61(4):432–433
17. Patel SM, Lerman A, Lennon RJ, Prasad A (2013) Impaired coronary microvascular reactivity in women with apical ballooning syndrome (Takotsubo/stress cardiomyopathy). Eur Heart J Acute Cardiovasc Care 2(2):147–152. https://doi.org/10.1007/s13104-013-0181-0
18. Wittstein IS, Thiemann DR, Lima JA et al (2015) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 372(6):539–548. https://doi.org/10.1056/NEJMoa1403446
20. Behnmes M, Bauman S, Borgmire M, Haghi D (2013) Biventricular takotsubo cardiomyopathy in a heart transplant recipient. Circulation 128(5):e62–e63. https://doi.org/10.1161/CIRCULATIONAHA.113.001519

21. Chinali M, Formigari R, Gutter G (2018) Takotsubo cardiomyopathy in a young adult with transplanted heart: what happened to denervation?ESC Heart Fail 5(1):197–200. https://doi.org/10.1002/ehf2.12242

22. Izhaki Ben ZO, Ben-Avraham B, Hamdan A et al (2019) A rare case of Takotsubo syndrome in a patient 5 months after heart transplantation. Heart Fail. https://doi.org/10.1002/hjcl.212575

23. Hernandez LE (2014) Takotsubo cardiomyopathy: how much do we know of this syndrome in children and young adults? Cardiol Young 24(4):580–592. https://doi.org/10.1016/S1047-1135(14)30008-0

24. Curis S, Inoue I, Kawagoe T et al (2009) Prevalence of incidental coronary artery disease in patients with takotsubo cardiomyopathy. Jpn Circ J 73(10):933–939. https://doi.org/10.1253/circj.73.933

25. Parodi G, Citro R, Bellandi B, Del Pace S, Rigo F, Amij M (2010) Left circumflex artery disease in patients with takotsubo cardiomyopathy. J Am Coll Cardiol 55(8):832–839. https://doi.org/10.1016/j.jacc.2009.08.057

26. Parodi G, Citro R, Bellandi B, Del Pace S, Rigo F (2010) Observations on left circumflex artery disease in takotsubo cardiomyopathy. J Cardiol 55(4):333–341. https://doi.org/10.1016/j.jacc.2009.08.057

27. Compare A, Bigi R, Orrego PS et al (2013) Type D personality is associated with the development of stress cardiomyopathy following emotional triggers. PLoS One 8(6):e64235. https://doi.org/10.1371/journal.pone.0064235

28. Haghhi D, Roehm S, Hamm K et al (2010) Takotsubo cardiomyopathy is not due to plaque rupture: an intravascular ultrasound study. Clin Cardiol 33(5):307–310. https://doi.org/10.1002/clic.20747

29. Hoyt J, Lerman A, Lennon RJ et al (2010) Left anterior descending artery length and coronary atherosclerosis in apical ballooning syndrome (Takotsubo/stress induced cardiomyopathy). Int J Cardiol 145(1):112–115. https://doi.org/10.1016/j.ijcard.2009.06.018

30. Kurisu S, Inoue I, Kawagoe T et al (2009) Prevalence of incidental coronary artery disease in takotsubo cardiomyopathy. Coron Artery Dis 20(3):214–218. https://doi.org/10.1097/MCA.0b013e3282929926

31. Parodi G, Citro R, Bellandi B, Del Pace S, Rigo F (2010) Clinical characteristics, sex hormones, and long-term follow-up in Swiss postmenopausal women presenting with Takotsubo cardiomyopathy. Clin Cardiol 33(5):340–347. https://doi.org/10.1002/clc.21966

32. Sakai E, Okada S, Nogami M, Kumon Y (2013) The human female heart incorporates glucose substrate utilization more efficiently than the male heart. Int J Cardiol 168(3):2518–2521. https://doi.org/10.1016/j.ijcard.2013.03.016

33. Templein C, Hanggi J, Klein C et al (2019) Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J 40(15):1183–1187. https://doi.org/10.1093/eurheartj/ehz068

34. Behnmes M, Bauman S, Borgmire M, Haghi D (2013) Biventricular takotsubo cardiomyopathy in a heart transplant recipient. Circulation 128(5):e62–e63. https://doi.org/10.1161/CIRCULATIONAHA.113.001519

35. Chinali M, Formigari R, Gutter G (2018) Takotsubo cardiomyopathy in a young adult with transplanted heart: what happened to denervation?ESC Heart Fail 5(1):197–200. https://doi.org/10.1002/ehf2.12242

36. Izhaki Ben ZO, Ben-Avraham B, Hamdan A et al (2019) A rare case of Takotsubo syndrome in a patient 5 months after heart transplantation. Heart Fail. https://doi.org/10.1002/hjcl.212575

37. Hernandez LE (2014) Takotsubo cardiomyopathy: how much do we know of this syndrome in children and young adults? Cardiol Young 24(4):580–592. https://doi.org/10.1016/S1047-1135(14)30008-0

38. Curis S, Inoue I, Kawagoe T et al (2009) Prevalence of incidental coronary artery disease in patients with takotsubo cardiomyopathy. Jpn Circ J 73(10):933–939. https://doi.org/10.1253/circj.73.933

39. Parodi G, Citro R, Bellandi B, Del Pace S, Rigo F, Amij M (2010) Left circumflex artery disease in patients with takotsubo cardiomyopathy. J Am Coll Cardiol 55(8):832–839. https://doi.org/10.1016/j.jacc.2009.08.057

40. Hoyt J, Lerman A, Lennon RJ et al (2010) Left anterior descending artery length and coronary atherosclerosis in apical ballooning syndrome (Takotsubo/stress induced cardiomyopathy). Int J Cardiol 145(1):112–115. https://doi.org/10.1016/j.ijcard.2009.06.018

41. Kurisu S, Inoue I, Kawagoe T et al (2009) Prevalence of incidental coronary artery disease in takotsubo cardiomyopathy. Coron Artery Dis 20(3):214–218. https://doi.org/10.1097/MCA.0b013e3282929926

42. Parodi G, Citro R, Bellandi B, Del Pace S, Rigo F, Amij M (2010) Left anterior descending artery length and coronary atherosclerosis in apical ballooning syndrome (Takotsubo/stress induced cardiomyopathy). Int J Cardiol 145(1):112–115. https://doi.org/10.1016/j.ijcard.2009.06.018

43. Winchester DE, Ragosta M, Taylor AM (2008) Concordance of angiographic coronary artery disease in patients with apical ballooning
syndrome (tako-tsubo cardiomyopathy). Catheter Cardiovasc Interv 72(5):612–616. https://doi.org/10.1002/ccd.21738
63. Delgado GA, Truesdell AG, Kirchner RM et al (2011) An angiographic and intravascular ultrasound study of the left anterior descending coronary artery in takotsubo cardiomyopathy. Am J Cardiol 108(6):888–891. https://doi.org/10.1016/j. jaccard.2011.05.012
64. Etel I, Stermaier T, Graf T et al (2016) Optical coherence tomography to evaluate plaque burden and morphology in patients with Takotsubo syndrome. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004474
65. Pawlowski T, Mintz GS, Kulatiw K, Gil RJ (2010) Virtual histology intravascular ultrasonic evaluation of the left anterior descending coronary artery in patients with transient left ventricular ballooning syndrome. J Cardiof Pol 68(10):1093–1098
66. Abeeu G, Rocha S, Bettencourt N et al (2016) An unusual trigger causing Takotsubo Syndrome. Int J Cardiol 223:118–120. https://doi.org/10.1016/j.ijcard.2016.08.162
67. Angulo-Llanos R, Sanz-Ruiz R, Solis J, Fernandez-Aviles F (2013) Acute myocardial infarction: an uncommon complication of takotsubo cardiomyopathy. Catheter Cardiovasc Interv 82(6):909–913. https://doi.org/10.1002.cdi4.28486
68. Mele M, Martimucci M, Maggi A et al (2015) Cardioembolic acute myocardial infarction associated with apical ballooning: considering possibilities. Int J Cardiol 195:025–17. https://doi.org/10.1016/j.ijcard.2015.01.025
69. Sharkey SW, Kalra A, Henry TD et al (2019) Silent left ventricular apical ballooning and Takotsubo cardiomyopathy in an Australian intensive care unit. Eur Heart Fail. https://doi.org/10.1002/euhf.12517
70. Toni C, Iannaccone F, Saito M et al (2016) Tako-tsubo cardiomyopathy in hemodynamically unstable patients admitted to the intensive care unit—a retrospective study. Acta Anaesthesiol Scand 61(8):914–924. https://doi.org/10.1111/aas.12940
71. Park JH, Kang SJ, Song JK et al (2005) Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest 128(1):296–302. https://doi.org/10.1378/chest.128.1.296
72. Assomull RG, Lyne JC, Keenan N et al (2007) Apical ballooning or Tako-Tsubo Syndrome. Eur Heart J 28(17):2047–2053. https://doi.org/10.1093/eurheartj/ehm205
73. Redfors B, Ramunddal T, Shao Y, Omerovic E (2014) Takotsubo triggered by acute myocardial infarction; fact but overlooked syndrome? J Geriatr Cardiol 11(2):171–173. https://doi.org/10.9069/jiscn.2014.02.001
74. Haghii D, Papavassiliu T, Flucher S et al (2016) Variant form of the acute apical ballooning syndrome (takotsubo cardiomyopathy): observations on a novel entity. Heart 92(3):392–394. https://doi.org/10.1136/heartjnl-2015-308461
75. Robles P, Monedero I, Rubio A, Botas J (2015) The apical nipple sign: a useful tool for discriminating between anterior infarction and transient left ventricular ballooning syndrome. Eur Heart J Acute Cardiovasc Care 3(4):189–196. https://doi.org/10.1002/eacc.12539
76. Desmet W, Bennett J, Ferdinande B et al (2014) Takotsubo syndrome in tandem: an interplay of pathologies needing our vigilance. Heart Lung 43(2):169–174. https://doi.org/10.1016/j.hrtlng.2014.05.060
77. Herzer RJ, Asah J, Reuss CS et al (2016) Transient midventricular ballooning syndrome: a new variant. J Am Coll Cardiol 68(3):579–583. https://doi.org/10.1016/j.jacc.2016.05.015
Main topic

tion 72(3):342–343. https://doi.org/10.1016/j. resuscitation.2006.07.008

106. Cacciotti L, Canamastra GS, Musaro S et al (2010) Stress cardiomyopathy: transient basal ballooning. J Cardiovasc Med 11(10):764–767. https://doi.org/10.1093/jcim/cqz170

107. Phanthawimol W, Ito H, Fukuyama O (2009) A case with transient anterolateral wall ballooning syndrome; new variant form of Takotsubo cardiomyopathy? Hawaii Med J 68(10):249–252

108. Rognoni A, Bertolazzi M, Maccio S et al (2009) Persistent long-term structural, functional, and metabolic changes after stress-induced (Takotsubo) cardiomyopathy. Circulation 120(10):1039–1048. https://doi.org/10.1161/CIRCULATIONAHA.110.971310

109. Nunez-Gil I, Almendro-Delia M, Andres M et al (2016) Secondary forms of Takotsubo cardiomyopathy: a whole different prognosis. Eur Heart J 37(12):925–936. https://doi.org/10.1093/eurheartj/ehw367

110. Almendro-Delia M, Nunez-Gil IJ, Lobo M et al (2016) Unusual case of left ventricular ballooning involving the inferior wall: a case report. Cases J 2(1):140. https://doi.org/10.1186/1757-1626-2-140

111. Kagiyama N, Okura H, Kume T et al (2015) Isolated right ventricular ballooning syndrome: a new variant of transient cardiomyopathy. Eur Heart J 32(14):1821. https://doi.org/10.1093/euheartj/ehr079

112. Santoro F, Nunez GIJ, Stiermaier T et al (2019) Catecholamine-dependent beta-adrenergic signaling in a pluripotent stem cell model of Takotsubo cardiomyopathy. JACC Basic Transl Sci 3(6):766–778. https://doi.org/10.1016/j.jacbts.2018.08.006

113. Schwarz K, Ahearn T, Srinivasan J et al (2017) Alterations in cardiac deformation, timing of contraction and relaxation, and early myocardial fibrosis accompany the apparent recovery of acute stress-induced (Takotsubo) Cardiomyopathy: an end to the concept of transience. J Am Soc Echocardiogr 30(8):745–755. https://doi.org/10.1016/j.echo.2017.03.016

114. Isogai T, Yasunaga H, Matsui H et al (2014) Out-of-hospital versus in-hospital Takotsubo cardiomyopathy: analysis of 3719 patients in the diagnosis procedure combination database in Japan. Int J Cardiol 176(2):413–417. https://doi.org/10.1016/j.ijcard.2013.03.016

115. Nunez-Gil IJ, Almendro-Delia M, Andres M, Srinivasan J et al (2017) Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol 71(12):2171–2182. https://doi.org/10.1016/j.jacc.2017.06.061

116. Sumida H, Morihisa K, Katahira K et al (2017) Connected effects and metabolic changes after stress-induced (Takotsubo) cardiomyopathy. JACC Basic Transl Sci 2(1):140. https://doi.org/10.1016/j.jchf.2018.11.012

117. Nunez-Gil IJ, Almendro-Delia M, Andres M et al (2016) Secondary forms of Takotsubo cardiomyopathy: analysis of 3719 patients in the diagnosis procedure combination database in Japan. Int J Cardiol 176(2):413–417. https://doi.org/10.1016/j.ijcard.2013.03.016

118. Rognoni A, Bertolazzi M, Maccio S et al (2009) Persistent long-term structural, functional, and metabolic changes after stress-induced (Takotsubo) cardiomyopathy. Circulation 120(10):1039–1048. https://doi.org/10.1161/CIRCULATIONAHA.110.971310

119. Jentzer JC, van Diepen S, Barness GW et al (2019) Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol 74(17):2117–2128. https://doi.org/10.1016/j.jacc.2019.07.077

120. Kato K, Di Vece D, Cammann VL et al (2014) Secondary forms of Takotsubo cardiomyopathy score for risk stratification for in-hospital complications in patients with Takotsubo syndrome. JACC Basic Transl Sci 2(1):140. https://doi.org/10.1016/j.jchf.2018.11.012

121. Kato K, Di Vece D, Cammann VL et al (2014) Secondary forms of Takotsubo cardiomyopathy score for risk stratification for in-hospital complications in patients with Takotsubo syndrome. JACC Basic Transl Sci 2(1):140. https://doi.org/10.1016/j.jchf.2018.11.012

122. Almendro-Delia M, Nunez-Gil IJ, Lobo M et al (2018) Short- and long-term prognostic relevance of cardiogenic shock in Takotsubo syndrome: results from the RETAKO registry. JACC Heart Fail 7(11):929–936. https://doi.org/10.1016/j.jchf.2018.05.015

123. Scally C, Abbas H, Ahearn T et al (2019) Myocardial and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation 139(13):1581–1592. https://doi.org/10.1161/CIRCULATIONAHA.118.037975

124. Baran DA, Grines CL, Bailey S et al (2019) SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 94(1):29–37. https://doi.org/10.1002/ccd.28329

125. Xu B, Williams PD, Brown M, Macisaa A (2014) Takotsubo cardiomyopathy: does recurrence tend to occur in a previously unaffected ventricular wall region? Circulation 129(7):e339–e340. https://doi.org/10.1161/CIRCULATIONAHA.113.007015

126. Scally C, Abbas H, Ahearn T et al (2019) Myocardial and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation 139(13):1581–1592. https://doi.org/10.1161/CIRCULATIONAHA.118.037975

127. Scally C, Abbas H, Ahearn T et al (2019) Myocardial and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation 139(13):1581–1592. https://doi.org/10.1161/CIRCULATIONAHA.118.037975

128. Pellecchia F, Passeri V, Patti G et al (2019) Long-term prognosis and outcome predictors in Takotsubo syndrome: a systematic review and meta-regression study. JACC Heart Fail 7(2):143–154. https://doi.org/10.1016/j.jchf.2018.10.009

129. Almendro-Delia M, Nunez-Gil IJ, Aguilera T et al (2019) Altersations in cardiac deformation, timing of contraction and relaxation, and early myocardial fibrosis accompany the apparent recovery of acute stress-induced (Takotsubo) Cardiomyopathy: an end to the concept of transience. J Am Soc Echocardiogr 30(8):745–755. https://doi.org/10.1016/j.echo.2017.03.016

130. Almendro-Delia M, Nunez-Gil IJ, Aguilera T et al (2019) Altersations in cardiac deformation, timing of contraction and relaxation, and early myocardial fibrosis accompany the apparent recovery of acute stress-induced (Takotsubo) Cardiomyopathy: an end to the concept of transience. J Am Soc Echocardiogr 30(8):745–755. https://doi.org/10.1016/j.echo.2017.03.016