EVALUATION OF THE CONVOLUTION SUMS \(W_{1,42}(n), W_{2,21}(n), \ W_{3,14}(n) \) AND \(W_{6,7}(n) \)

BÜLENT KÖKLÜCE

Abstract. In this paper, we use a modular form approach to evaluate the convolution sums
\[
W_{1,42}(n) = \sum_{l+42m=n} \sigma(l)\sigma(m), \quad W_{2,21}(n) = \sum_{2l+21m=n} \sigma(l)\sigma(m), \quad W_{3,14}(n) = \sum_{3l+14m=n} \sigma(l)\sigma(m) \quad \text{and} \quad W_{6,7}(n) = \sum_{6l+7m=n} \sigma(l)\sigma(m)
\]
for all positive integers \(n \), and then use their evaluations to determine the number of representation of a positive integer \(n \) by the quadratic form
\[
x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2 + 14(x_2^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2).
\]

Mathematics Subject Classification (2000): 11E25, 11E20, 11F11, 11F20, 11F27

1. Introduction

Let \(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \) and \(\mathbb{C} \) denote the set of positive integers, integers, rational numbers and complex numbers respectively and let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). For \(k \in \mathbb{N} \) and \(n \in \mathbb{Q} \) we set

\[
\sigma_k(n) = \begin{cases}
\sum_{d|n} d^k, & \text{if } n \in \mathbb{N}, \\
0, & \text{if } n \in \mathbb{Q}, n \notin \mathbb{N}.
\end{cases}
\]

We write \(\sigma(n) \) for \(\sigma_1(n) \). Suppose that \(r, s \in \mathbb{N} \) with \(r \leq s \). We define the convolution sum \(W_{r,s}(n) \) as follows:

\[
W_{r,s}(n) := \sum_{(l,m) \in \mathbb{N}_0^2, rl+sm=n} \sigma(l)\sigma(m).
\]

The evaluation of convolution sums \(W_{r,s}(n) \) for some levels \(rs \) have been done. See Table \[1\] for a list of known convolution sums. In the present paper, we completed the evaluation of the convolution sums \(W_{r,s}(n) \) for \((r,s) = (1,42), (2,21), (3,14) \) and \((6,7) \) by using a modular form approach. We also evaluated the results for \((1,14), (2,7), (1,7) \) which were firstly given in \[2\] and see that they are consistent.

Key words and phrases. Convolution sums, eta quotients, Eisenstein series, modular forms, cusp forms, quadratic forms, representation numbers.

1
Table 1. A list of previously known convolution sums.

Level rs	Authors	References
1	M. Besge & J.W.L. Glaisher & S. Ramanujan	[9][14][28]
2, 3, 4	J. G. Huard & Z. M. Ou & B. K. Spearman & K. S. Williams	[15]
5, 7	M. Lemire & K. S. Williams & S. Cooper & P. C. Toh	[13][21]
6	Ş. Alaca & K. S. Williams	[8]
8, 9	K. S. Williams	[32][33]
10, 11, 13, 14	E. Royer	[29]
12, 16, 18, 24	A. Alaca & Ş. Alaca & K. S. Williams	[1][8][9]
15	B. Ramakrishnan & B. Sabu	[27]
10, 20	S. Cooper & D. Ye	[12]
23	H. H. Chan & S. Cooper	[10]
25	E. X. W. Xia & X. L. Tian & O. X. M. Yao	[34]
27, 32, 48, 54	Ş. Alaca & Y. Kesicioğlu	[6][7]
36	D. Ye	[35]
14, 26, 28, 30	A. Alaca & Ş. Alaca & E. Ntienjem	[2][23]
22, 44, 52	E. Ntienjem	[25]
27, 40, 55	B. Kendirli	[17]
33, 40, 56	E. Ntienjem	[26]
48, 64	E. Ntienjem	[24]
17, 34, 68	B. Köklüce	[20]

For $l \in \mathbb{N}$ and $n \in \mathbb{N}_0$ we let $N_l(n)$ denote the representation number of n by the form $x_1^2 + x_1x_2 + x_2^2 + x_3x_4 + x_4^2 + l(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2)$, that is

$$N_l(n) := \text{card}\left\{(x_1, \ldots, x_8) \in \mathbb{Z}^8 : n = x_1^2 + x_1x_2 + x_2^2 + x_3x_4 + x_4^2 + l(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2)\right\}. \quad (1.2)$$

Explicit formulae for $N_l(n)$ are obtained before for $l \leq 12$ and for $l = 16$ and 18. See for example, [1][8][22][23][27][32]. The author of this article also found many such representation number formulae for the direct sum of quadratic forms of this type, see for example, [18][19]. In this article, we use the convolutions sums $W_{3,14}(n)$ and $W_{1,42}(n)$ obtained here with the convolution sum $W_{1,14}(n)$ to find explicit formula for $N_{14}(n)$.

The rest of this paper is organized as follows. In Section 2, we give some preliminary results related to the eta products and modular forms. In Section 3, we give
EVALUATION OF THE CONVOLUTION SUMS \(W_{1,42}(n), W_{2,21}(n), W_{3,14}(n) \) AND \(W_{6,7}(n) \)

In Section 4, we give a formula for \(N_{14}(n) \) and then prove it.

2. Preliminary Results

For \(N \in \mathbb{N} \) and \(k \in \mathbb{Z} \) we write \(M_k(\Gamma_0(N)) \) to denote the space of modular forms of weight \(k \) (with trivial multiplier system) for the modular subgroup \(\Gamma_0(N) \) defined by

\[
\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 (\text{mod} \ N) \right\}.
\]

(2.1)

It is known (see, for example [30, p.83]) that

\[
M_k(\Gamma_0(N)) = E_k(\Gamma_0(N)) \oplus S_k(\Gamma_0(N))
\]

(2.2)

where \(E_k(\Gamma_0(N)) \) and \(S_k(\Gamma_0(N)) \) are the corresponding subspaces of Eisenstein forms and cusp forms of weight \(k \) for the modular subgroup \(\Gamma_0(N) \).

The Dedekind eta function \(\eta(z) \) is the holomorphic function defined on the upper half plane \(\mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) by the product formula

\[
\eta(z) = e^{\pi iz/12} \prod_{n=1}^{\infty} (1 - e^{2\pi inz}).
\]

(2.3)

Through the remainder of the paper we take \(q = q(z) := e^{2\pi iz} \) with \(z \in \mathbb{H} \) and so by (2.3) we have

\[
\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).
\]

(2.4)

An eta quotient is defined to be a finite product of the form

\[
f(z) = \prod_{\delta} \eta^{r_\delta}(\delta z),
\]

(2.5)

where \(\delta \) runs through a finite set of positive integers and the exponents \(r_\delta \) are nonzero integers. By taking \(N \) to be the least common multiple of \(\delta \)'s we can write the eta quotient (2.5) as

\[
f(z) = \prod_{\delta \mid N} \eta^{r_\delta}(\delta z)
\]

(2.6)

where some of the exponents \(r_\delta \) may be zero. When all of the exponents \(r_\delta \) are nonnegative, \(f(z) \) is said to be an eta product. Now we define the following 20 eta quotients

\[
C_1(q) = \frac{\eta^5(z)\eta^5(7z)}{\eta(2z)\eta(14z)}.
\]

(2.7)
\[C_2(q) = \eta^2(z)\eta^2(2z)\eta^2(7z)\eta^2(14z), \quad (2.8) \]

\[C_3(q) = \frac{\eta^6(z)\eta^6(14z)}{\eta^2(2z)\eta^2(7z)}, \quad (2.9) \]

\[C_4(q) = \frac{\eta^6(2z)\eta^6(7z)}{\eta^2(z)\eta^2(14z)}, \quad (2.10) \]

\[C_5(q) = \eta^2(z)\eta^2(2z)\eta^2(3z)\eta^2(6z), \quad (2.11) \]

\[C_6(q) = \eta(2z)\eta^3(3z)\eta(7z)\eta^3(42z), \quad (2.12) \]

\[C_7(q) = \eta(z)\eta^3(6z)\eta(14z)\eta^3(21z), \quad (2.13) \]

\[C_8(q) = \eta^2(7z)\eta^2(14z)\eta^2(21z)\eta^2(42z), \quad (2.14) \]

\[C_9(q) = \eta(3z)\eta(6z)\eta^3(7z)\eta^3(14z), \quad (2.15) \]

\[C_{10}(q) = \eta^2(2z)\eta^2(6z)\eta^2(7z)\eta^2(21z), \quad (2.16) \]

\[C_{11}(q) = \eta(z)\eta(2z)\eta^3(21z)\eta^3(42z), \quad (2.17) \]

\[C_{12}(q) = \eta^3(z)\eta(6z)\eta^3(14z)\eta(21z), \quad (2.18) \]

\[C_{13}(q) = \eta^3(z)\eta^3(2z)\eta(21z)\eta(42z), \quad (2.19) \]

\[C_{14}(q) = \frac{\eta^2(2z)\eta^2(14z)\eta^6(21z)}{\eta^2(7z)}, \quad (2.20) \]

\[C_{15}(q) = \frac{\eta^6(2z)\eta^2(3z)\eta^2(21z)}{\eta^4(6z)}, \quad (2.21) \]

\[C_{16}(q) = \frac{\eta^5(2z)\eta^5(21z)}{\eta(z)\eta(42z)}, \quad (2.22) \]

\[C_{17}(q) = \frac{\eta^6(6z)\eta^6(21z)}{\eta^2(3z)\eta^2(42z)}, \quad (2.23) \]

\[C_{18}(q) = \frac{\eta^3(6z)\eta(7z)\eta(14z)\eta^4(21z)}{\eta(3z)}, \quad (2.24) \]

\[C_{19}(q) = \eta^2(3z)\eta^2(6z)\eta^2(21z)\eta^2(42z), \quad (2.25) \]
EVALUATION OF THE CONVOLUTION SUMS $W_{1,42}(n)$, $W_{2,21}(n)$, $W_{3,14}(n)$ AND $W_{6,7}(n)$

\[C_{20}(q) = \frac{\eta^4(3z)\eta^4(14z)\eta^2(21z)\eta^2(42z)}{\eta^2(6z)\eta^2(7z)}, \quad (2.26) \]

and the integers $c_k(n)$ $(n \in \mathbb{N})$ for $1 \leq k \leq 20$ by

\[C_k(q) = \sum_{n=1}^{\infty} c_k(n)q^n. \quad (2.27) \]

The Eisenstein series $L(q)$ and $M(q)$ are defined by

\[L(q) = E_2(q) = 1 - 24 \sum_{n=1}^{\infty} \sigma(n)q^n, \quad (2.28) \]

and

\[M(q) = E_4(q) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n. \quad (2.29) \]

We use the following theorem to determine if a given eta product is in $M_k(\Gamma_0(N))$, see [16, Theorem 5.7, p.99]. Note that the eta quotients given in (2.7)-(2.10) are the same first four eta quotients which are used in [2].

Theorem 1. Let N be a positive integer and let $f(z) = \prod_{1 \leq \delta \mid N} \eta^{r_\delta}(\delta z)$ be an eta quotient which satisfies the following conditions:

(i) \(\sum_{1 \leq \delta \mid N} r_\delta \equiv 0 \pmod{24}, \)

(ii) \(\sum_{1 \leq \delta \mid N} \frac{N}{\delta} r_\delta \equiv 0 \pmod{24}, \)

(iii) \(\prod_{1 \leq \delta \mid N} \delta^{r_\delta} \) is the square of a rational number,

(iv) for each $d \mid N$, \(\sum_{1 \leq \delta \mid N} \frac{\gcd(d, \delta)^2 r_\delta}{\delta} \geq 0, \)

(v) the weight $k = \frac{1}{2} \sum_{1 \leq \delta \mid N} r_\delta$ is an even integer.

Then $f(z)$ is in $M_k(\Gamma_0(N))$. In addition to the above conditions if all the inequalities in (iv) hold strictly then $f(z)$ is in $S_k(\Gamma_0(N))$.

Note that the cusp forms $C_k(q)$ $(1 \leq k \leq 20)$ defined in (2.7)-(2.26) are constructed in a way that they satisfy the conditions of Theorem 1 from (i) to (v).

Theorem 2. (a) \{\(C_k(q)\) $(1 \leq k \leq 20)$\} is a basis for $S_4(\Gamma_0(42))$.

(b) $E_4(q^t)$ $(t = 1, 2, 3, 6, 7, 14, 21, 42)$ constitute a basis for $E_4(\Gamma_0(42))$.

(c) \{\(C_k(q)\)(1 \leq k \leq 20)\} together with $E_4(q^t)$ $(t = 1, 2, 3, 6, 7, 14, 21, 42)$ constitute a basis for $M_4(\Gamma_0(42))$.

Proof. (a) It follows from (2.7)-(2.26), (2.4)-(2.6) and Theorem 1 that $C_k(q)(1 \leq k \leq 20)$ are in $S_4(\Gamma_0(42))$. By [16, Theorem 3.8, p.50], the dimension of $S_4(\Gamma_0(42))$ is 20. We use the Maple software to show that there is no linear relationship among $C_k(q)(1 \leq k \leq 20)$. Thus $C_k(q)(1 \leq k \leq 20)$ form a basis of $S_4(\Gamma_0(42))$.

(b) It can be shown by using the dimension formula for the Eisenstein space (see for example [16, Theorem 3.8, p.50]) that the dimension of $E_4(\Gamma_0(42))$ is 8. Thus it follows from [30, Theorem 5.9, p.88] that $E_4(q^t)$ ($t = 1, 2, 3, 6, 7, 14, 21, 42$) constitute a basis of $E_4(\Gamma_0(42))$.

(c) It follows from parts (a), (b) and (2.2) that the dimension of $M_4(\Gamma_0(42))$ is 28, and therefore $E_4(q^t)$ ($t = 1, 2, 3, 6, 7, 14, 21, 42$) together with $C_k(q)$ ($1 \leq k \leq 20$) constitute a basis for the space $M_4(\Gamma_0(42))$. □

The following theorem is given in [16, Proposition 2.12, p 23].

Theorem 3. Let N be a positive integer. Then

$$M = [SL_2(\mathbb{Z}) : \Gamma_0(N)] = N \prod_{p|N} (1 + \frac{1}{p}).$$

We use Theorem 3 with Sturm’s bound theorem (see [16, Theorem 3.13, p.53] or [31]) to see if two modular forms in the same space are equal. We can restate the Sturm’s theorem for our case as follows.

Theorem 4. Let $\Gamma_0 \in SL_2(\mathbb{Z})$ be a congruence subgroup of index M and let $f \in M_4(\Gamma_0(N))$ be a modular form. If

$$v_\infty(f) > \frac{M}{3} = S(N)$$

then f is identically zero. Thus, if $f_1(z)$ and $f_2(z)$ are two modular forms in $M_4(\Gamma_0(N))$ with Fourier series expansions $f_1(z) = \sum_{n=1}^{\infty} a_n q^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n q^n$ such that $a_n = b_n$ for all $n \leq S(N)$ then $f(z) = g(z)$. By Theorem 4, it is clear that the Sturm bound for $M_4(\Gamma_0(42))$ is $S(42) = 32$. (2.30)
Theorem 5. We have,

\[
(L(q) - 42L(q^{42}))^2 = 604 \frac{M(q)}{625} - 84 \frac{M(q^2)}{625} - 189 \frac{M(q^3)}{625} - 756 \frac{M(q^6)}{625} - 1029 \frac{M(q^7)}{625} - 4116 \frac{M(q^{14})}{625} - 9261 \frac{M(q^{21})}{625} + \frac{1065456}{625}M(q^{42}) + \frac{6912}{5}C_1(q) + \frac{24624}{25}C_2(q) + \frac{1728}{5}C_4(q) + \frac{1008}{125}C_5(q) - \frac{296352}{5}C_6(q) + \frac{534084}{25}C_7(q) - \frac{2067408}{125}C_8(q) - \frac{34272}{5}C_9(q) + \frac{2346624}{25}C_{10}(q) - \frac{3284064}{5}C_{11}(q) + \frac{1024128}{25}C_{12}(q) + \frac{124992}{5}C_{13}(q) + \frac{653184}{5}C_{14}(q) + \frac{48384}{5}C_{15}(q) + \frac{520128}{5}C_{16}(q) + \frac{217728}{5}C_{18}(q) + \frac{27216}{25}C_{19}(q) + \frac{36288}{5}C_{20}(q)
\]

\[
(2L(q^2) - 21L(q^{21}))^2 = -21 \frac{M(q)}{625} + \frac{2416}{625}M(q^2) - \frac{189}{625}M(q^3) - \frac{756}{625}M(q^6) - 1029 \frac{M(q^7)}{625} - \frac{4116}{625}M(q^{14}) + \frac{26364}{625}M(q^{21}) - \frac{37044}{625}M(q^{42}) + \frac{3456}{5}C_1(q) + \frac{24624}{25}C_2(q) + 1728C_3(q) - \frac{3456}{5}C_4(q) + \frac{1008}{125}C_5(q) - 78624C_6(q) + \frac{4251744}{25}C_7(q) + \frac{4282992}{125}C_8(q) - \frac{82656}{5}C_9(q) + \frac{2346624}{25}C_{10}(q) - \frac{2292192}{5}C_{11}(q) + \frac{983808}{25}C_{12}(q) - \frac{133056}{5}C_{13}(q) + \frac{870912}{5}C_{14}(q) + \frac{24192}{5}C_{15}(q) - \frac{471744}{5}C_{16}(q) - \frac{72576}{5}C_{18}(q) + \frac{27216}{25}C_{19}(q) + \frac{108864}{5}C_{20}(q)
\]
\[(3L(q^3) - 14L(q^{14}))^2 = -\frac{21}{625} M(q) - \frac{84}{625} M(q^2) + \frac{5436}{625} M(q^3) - \frac{756}{625} M(q^6) \]
\[\quad - \frac{1029}{625} M(q^7) + \frac{118384}{625} M(q^{14}) - \frac{9261}{625} M(q^{21}) \]
\[\quad - \frac{6912}{625} M(q^{42}) - \frac{14}{5} C_1(q) + \frac{3024}{25} C_2(q) \]
\[\quad + \frac{6912}{5} C_4(q) + \frac{1008}{125} C_5(q) + \frac{223776}{5} C_6(q) \]
\[\quad - \frac{5062176}{125} C_7(q) + \frac{2166192}{125} C_8(q) + \frac{34272}{5} C_9(q) \]
\[\quad - \frac{2491776}{25} C_{10}(q) + \frac{3284064}{5} C_{11}(q) \]
\[\quad - \frac{1052352}{25} C_{12}(q) + \frac{124992}{5} C_{13}(q) - \frac{653184}{5} C_{14}(q) \]
\[\quad - \frac{48384}{5} C_{15}(q) + \frac{520128}{5} C_{16}(q) + 15552C_{17}(q) \]
\[\quad - \frac{217728}{5} C_{18}(q) + \frac{221616}{25} C_{19}(q) - \frac{36288}{5} C_{20}(q) \]

\[(6L(q^6) - 7L(q^7))^2 = \frac{21}{625} M(q) - \frac{84}{625} M(q^2) - \frac{189}{625} M(q^3) + \frac{21744}{625} M(q^6) \]
\[\quad + \frac{29396}{625} M(q^7) - \frac{4116}{625} M(q^{14}) - \frac{9261}{625} M(q^{21}) \]
\[\quad - \frac{37044}{625} M(q^{42}) - \frac{3456}{5} C_1(q) + \frac{175824}{25} C_2(q) \]
\[\quad - \frac{1728C_3(q)}{5} - \frac{5184}{125} C_4(q) + \frac{217008}{125} C_5(q) \]
\[\quad + \frac{320544}{5} C_6(q) - \frac{5960736}{125} C_7(q) + \frac{6399792}{125} C_8(q) \]
\[\quad + \frac{82656}{25} C_9(q) - \frac{763776}{25} C_{10}(q) + \frac{2992192}{5} C_{11}(q) \]
\[\quad - \frac{1674432}{25} C_{12}(q) + \frac{133056}{5} C_{13}(q) - \frac{870912}{5} C_{14}(q) \]
\[\quad - \frac{24192}{5} C_{15}(q) + \frac{471744}{5} C_{16}(q) - 15552C_{17}(q) \]
\[\quad + \frac{72576}{5} C_{18}(q) + \frac{1776816}{25} C_{19}(q) - \frac{108864}{5} C_{20}(q) \]

Proof. We only prove the case for \((L(q) - 42L(q^{42}))^2\) as the rest can be proven in a similar way. By [30, Theorem 5.8] we have \(L(q) - 42L(q^{42}) \in M_2(\Gamma_0(42))\), and so
Thus, appealing to Theorem 1(c), we can express \((L(q) - 42L(q^{42}))^2\) as a linear combination of \(E_t(q^t)\) \((t = 1, 2, 3, 6, 7, 14, 21, 42)\) and \(C_k(q)(1 \leq k \leq 20)\). So, there exist coefficients \(x_t\) \((t \in \mathbb{N}, t \mid 42)\) and \(y_k\) \((k = 1, \ldots, 20)\) such that

\[
(L(q) - 42L(q^{42}))^2 = \sum_{t \in \mathbb{N}, t \mid 42} x_t E_t(q^t) + \sum_{k=1}^{20} y_k C_k(q).
\]

(3.1)

Appealing to (2.30) and equating the coefficients of \(q^n\) for \(1 \leq n \leq 32\) on both sides of (3.1) we obtain required result. The following theorem can be given as the result of Theorem 5, equations (2.27) and (2.29).

\[\square\]

Theorem 6.

\[
(L(q) - 42L(q^{42}))^2 = 1681 + \sum_{n=1}^{\infty} \left(\frac{28992}{125} \sigma_3(n) - \frac{4032}{125} \sigma_3\left(\frac{n}{2}\right) - \frac{9072}{125} \sigma_3\left(\frac{n}{3}\right) \right) \\
- \frac{36288}{125} \sigma_3\left(\frac{n}{6}\right) - \frac{49392}{125} \sigma_3\left(\frac{n}{7}\right) - \frac{197568}{125} \sigma_3\left(\frac{n}{14}\right) \\
- \frac{44528}{125} \sigma_3\left(\frac{n}{21}\right) + \frac{51141888}{125} \sigma_3\left(\frac{n}{42}\right) + \frac{6912}{5} c_1(n) \\
+ \frac{24624}{25} c_2(n) + \frac{1728}{5} c_4(n) + \frac{1008}{125} c_5(n) - \frac{296352}{5} c_6(n) \\
+ \frac{5340384}{25} c_7(n) - \frac{2067408}{125} c_8(n) - \frac{34272}{5} c_9(n) \\
+ \frac{2346624}{25} c_{10}(n) - \frac{3284064}{5} c_{11}(n) + \frac{1024128}{25} c_{12}(n) \\
- \frac{124992}{5} c_{13}(n) + \frac{653184}{5} c_{14}(n) + \frac{48384}{5} c_{15}(n) \\
- \frac{520128}{5} c_{16}(n) + \frac{217728}{5} c_{18}(n) + \frac{27216}{25} c_{19}(n) \\
+ \frac{36288}{5} c_{20}(n)q^n
\]
\[
\begin{align*}
(2L(q^2) - 21L(q^{21}))^2 &= 361 + \sum_{n=1}^{\infty} \left(-\frac{1008}{125} \sigma_3(n) + \frac{115968}{125} \sigma_3\left(\frac{n}{2}\right) - \frac{9072}{125} \sigma_3\left(\frac{n}{3}\right) \\
&- \frac{36288}{125} \sigma_3\left(\frac{n}{6}\right) - \frac{49392}{125} \sigma_3\left(\frac{n}{7}\right) - \frac{197568}{125} \sigma_3\left(\frac{n}{14}\right) \\
&+ \frac{12785472}{125} \sigma_3\left(\frac{n}{21}\right) - \frac{1778112}{125} \sigma_3\left(\frac{n}{42}\right) + \frac{3456}{5} c_1(n) \\
&+ \frac{24624}{25} c_2(n) + 1728c_3(n) - \frac{3456}{5} c_4(n) + \frac{1008}{125} c_5(n) \\
&- \frac{78624c_6(n)}{25} + \frac{4251744}{25} c_7(n) + \frac{4282992}{125} c_8(n) \\
&- \frac{82656}{5} c_9(n) + \frac{2346624}{25} c_{10}(n) - \frac{2292192}{5} c_{11}(n) \\
&+ \frac{98308}{25} c_{12}(n) - \frac{133056}{5} c_{13}(n) + \frac{870912}{5} c_{14}(n) \\
&+ \frac{24192}{5} c_{15}(n) - \frac{471744}{5} c_{16}(n) - \frac{72576}{5} c_{18}(n) \\
&+ \frac{27216}{25} c_{19}(n) + \frac{108864}{5} c_{20}(n) q^n
\end{align*}
\]

\[
\begin{align*}
(3L(q^3) - 14L(q^{14}))^2 &= 121 + \sum_{n=1}^{\infty} \left(-\frac{1008}{125} \sigma_3(n) - \frac{4032}{125} \sigma_3\left(\frac{n}{2}\right) + \frac{269928}{125} \sigma_3\left(\frac{n}{3}\right) \\
&- \frac{36288}{125} \sigma_3\left(\frac{n}{6}\right) - \frac{49392}{125} \sigma_3\left(\frac{n}{7}\right) + \frac{5682432}{125} \sigma_3\left(\frac{n}{14}\right) \\
&- \frac{44528}{125} \sigma_3\left(\frac{n}{21}\right) - \frac{1778112}{125} \sigma_3\left(\frac{n}{42}\right) - \frac{6912}{5} c_1(n) \\
&+ \frac{3024}{25} c_2(n) + \frac{6912}{5} c_4(n) + \frac{1008}{125} c_5(n) \\
&+ \frac{223776}{25} c_6(n) - \frac{5062176}{25} c_7(n) + \frac{2166192}{125} c_8(n) \\
&+ \frac{34272}{5} c_9(n) - \frac{2491776}{25} c_{10}(n) + \frac{3284064}{5} c_{11}(n) \\
&- \frac{1052352}{25} c_{12}(n) + \frac{124992}{5} c_{13}(n) - \frac{653184}{5} c_{14}(n) \\
&- \frac{48384}{5} c_{15}(n) + \frac{520128}{5} c_{16}(n) + 15552c_{17}(n) \\
&- \frac{217728}{25} c_{18}(n) + \frac{221616}{5} c_{19}(n) - \frac{36288}{5} c_{20}(n) q^n
\end{align*}
\]
EVALUATION OF THE CONVOLUTION SUMS $W_{1,42}(n)$, $W_{2,21}(n)$, $W_{3,14}(n)$ AND $W_{6,7}(n)$

\[
(6Lq^6 - 7Lq^7)^2 = 1 + \sum_{n=1}^{\infty} \left(-\frac{1008}{125}\sigma_3(n) - \frac{4032}{125}\sigma_3\left(\frac{n}{2}\right) - \frac{9072}{125}\sigma_3\left(\frac{n}{3}\right) \\
+ \frac{1043712}{125}\sigma_3\left(\frac{n}{6}\right) + \frac{1420608}{125}\sigma_3\left(\frac{n}{7}\right) - \frac{197568}{125}\sigma_3\left(\frac{n}{14}\right) \\
- \frac{444528}{125}\sigma_3\left(\frac{n}{21}\right) - \frac{1778112}{125}\sigma_3\left(\frac{n}{42}\right) - \frac{3456}{5}c_1(n) \\
+ \frac{175824}{25}c_2(n) - 1728c_3 - \frac{5184}{5}c_4 + \frac{217008}{125}c_5 \\
+ \frac{320544}{5}c_6(n) - \frac{5960736}{25}c_7(n) + \frac{6399792}{125}c_8(n) \\
+ \frac{82656}{5}c_9(n) - \frac{763776}{25}c_{10}(n) + \frac{2292192}{5}c_{11}(n) \\
- \frac{1674432}{25}c_{12}(n) + \frac{133056}{5}c_{13}(n) - \frac{870912}{5}c_{14}(n) \\
- \frac{24192}{5}c_{15}(n) + \frac{471744}{5}c_{16}(n) - 15552c_{17}(n) \\
+ \frac{72576}{5}c_{18}(n) + \frac{1776816}{25}c_{19}(n) - \frac{108864}{5}c_{20}(n)q^n \right) q^n
\]

Theorem 7. Let $n \in \mathbb{N}$. Then

\[
W_{1,42}(n) = \frac{1}{6000}\sigma_3(n) + \frac{1}{1500}\sigma_3\left(\frac{n}{2}\right) + \frac{3}{2000}\sigma_3\left(\frac{n}{3}\right) + \frac{3}{500}\sigma_3\left(\frac{n}{6}\right) \\
+ \frac{49}{6000}\sigma_3\left(\frac{n}{7}\right) + \frac{49}{1500}\sigma_3\left(\frac{n}{14}\right) + \frac{147}{2000}\sigma_3\left(\frac{n}{21}\right) \\
+ \frac{147}{500}\sigma_3\left(\frac{n}{42}\right) + \left(\frac{1}{24} - \frac{n}{168} \right)\sigma(n) + \left(\frac{1}{24} - \frac{n}{4} \right)\sigma\left(\frac{n}{42}\right) \\
- \frac{1}{35}c_1(n) - \frac{57}{2800}c_2(n) - \frac{1}{140}c_4(n) - \frac{1}{600}c_5(n) \\
+ \frac{49}{40}c_6(n) - \frac{883}{200}c_7(n) + \frac{695}{600}c_8(n) + \frac{17}{120}c_9(n) - \frac{97}{50}c_{10}(n) \\
+ \frac{543}{40}c_{11}(n) - \frac{127}{150}c_{12}(n) + \frac{31}{60}c_{13}(n) - \frac{27}{10}c_{14}(n) - \frac{1}{5}c_{15}(n) \\
+ \frac{43}{20}c_{16}(n) - \frac{9}{10}c_{18}(n) - \frac{9}{400}c_{19}(n) - \frac{3}{20}c_{20}(n)
\]
\[W_{2,21}(n) = \frac{1}{6000}\sigma_3(n) + \frac{1}{1500}\sigma_3\left(\frac{n}{2}\right) + \frac{3}{2000}\sigma_3\left(\frac{n}{3}\right) + \frac{3}{500}\sigma_3\left(\frac{n}{6}\right) \] (3.3)

\[+ \frac{49}{6000}\sigma_3\left(\frac{n}{7}\right) + \frac{49}{1500}\sigma_3\left(\frac{n}{14}\right) + \frac{147}{2000}\sigma_3\left(\frac{n}{21}\right) \]

\[+ \frac{1}{70}c_1(n) - \frac{57}{2800}c_2(n) - \frac{1}{28}c_3(n) + \frac{1}{70}c_4(n) - \frac{1}{6000}c_5(n) \]

\[+ \frac{13}{8}c_6(n) - \frac{703}{2000}c_7(n) - \frac{4249}{6000}c_8(n) + \frac{41}{120}c_9(n) - \frac{97}{50}c_{10}(n) \]

\[+ \frac{379}{40}c_{11}(n) - \frac{61}{75}c_{12}(n) + \frac{11}{20}c_{13}(n) - \frac{18}{5}c_{14}(n) - \frac{1}{10}c_{15}(n) \]

\[+ \frac{39}{20}c_{16}(n) + \frac{3}{10}c_{18}(n) - \frac{9}{400}c_{19}(n) - \frac{9}{20}c_{20}(n) \]

\[W_{3,14}(n) = \frac{1}{6000}\sigma_3(n) + \frac{1}{1500}\sigma_3\left(\frac{n}{2}\right) + \frac{3}{2000}\sigma_3\left(\frac{n}{3}\right) + \frac{3}{500}\sigma_3\left(\frac{n}{6}\right) \] (3.4)

\[+ \frac{49}{6000}\sigma_3\left(\frac{n}{7}\right) + \frac{49}{1500}\sigma_3\left(\frac{n}{14}\right) + \frac{147}{2000}\sigma_3\left(\frac{n}{21}\right) \]

\[+ \frac{1}{35}c_1(n) - \frac{1}{400}c_2(n) - \frac{1}{35}c_4(n) - \frac{1}{6000}c_5(n) - \frac{37}{40}c_6(n) \]

\[+ \frac{837}{2000}c_7(n) - \frac{2149}{6000}c_8(n) - \frac{17}{120}c_9(n) + \frac{103}{50}c_{10}(n) \]

\[- \frac{543}{40}c_{11}(n) + \frac{87}{100}c_{12}(n) - \frac{31}{60}c_{13}(n) + \frac{27}{10}c_{14}(n) + \frac{1}{5}c_{15}(n) \]

\[- \frac{43}{20}c_{16}(n) - \frac{9}{28}c_{17}(n) + \frac{9}{10}c_{18}(n) - \frac{513}{2800}c_{19}(n) + \frac{3}{20}c_{20}(n) \]
EVALUATION OF THE CONVOLUTION SUMS \(W_{1,42}(n), W_{2,21}(n), W_{3,14}(n) \) AND \(W_{6,7}(n) \)

\[
W_{6,7}(n) = \frac{1}{6000} \sigma_3(n) + \frac{1}{1500} \sigma_3\left(\frac{n}{2}\right) + \frac{3}{2000} \sigma_3\left(\frac{n}{3}\right) + \frac{3}{500} \sigma_3\left(\frac{n}{6}\right) \tag{3.5}
\]
\[
+ \frac{49}{6000} \sigma_3\left(\frac{n}{7}\right) + \frac{49}{1500} \sigma_3\left(\frac{n}{14}\right) + \frac{147}{2000} \sigma_3\left(\frac{n}{21}\right) + \frac{147}{500} \sigma_3\left(\frac{n}{42}\right)
\]
\[
+ \frac{1}{24} \left(1 - \frac{n}{28}\right) \sigma\left(\frac{n}{6}\right) + \frac{1}{24} \left(1 - \frac{n}{24}\right) \sigma\left(\frac{n}{7}\right)
\]
\[
+ \frac{53}{1400} c_7(n) - \frac{6349}{6000} c_8(n) - \frac{41}{120} c_9(n)
\]
\[
+ \frac{1}{70} c_1(n) - \frac{407}{2800} c_2(n) + \frac{1}{28} c_3(n) + \frac{3}{140} c_4(n) - \frac{1507}{42000} c_5(n)
\]
\[
+ \frac{53}{40} c_6(n) + \frac{379}{350} c_{10}(n) - \frac{969}{700} c_{12}(n) - \frac{11}{20} c_{13}(n)
\]
\[
+ \frac{18}{5} c_{14}(n) + \frac{1}{10} c_{15}(n) - \frac{39}{20} c_{16}(n) + \frac{9}{28} c_{17}(n) - \frac{3}{10} c_{18}(n)
\]
\[
+ \frac{221}{350} c_{10}(n) + \frac{9}{20} c_{20}(n)
\]

Proof. We prove the formula for only \(W_{1,42}(n) \) as the rest can be proven similarly. Glaisher [14] has proved the following identity

\[
L^2(q) = 1 + \sum_{n=1}^{\infty} \left(240 \sigma_3(n) - 288n\sigma(n)\right) q^n. \tag{3.6}
\]

Replacing \(q \) by \(q^{42} \) in (3.6) we have

\[
L^2(q^{42}) = 1 + \sum_{n=1}^{\infty} \left(240 \sigma_3\left(\frac{n}{42}\right) - \frac{48}{7} n\sigma\left(\frac{n}{42}\right)\right) q^n. \tag{3.7}
\]

By (2.28) we have

\[
L(q)L(q^{42}) = \left(1 - 24 \sum_{n=1}^{\infty} \sigma (n) q^n\right) \left(1 - 24 \sum_{n=1}^{\infty} \sigma (n) q^{42n}\right)
\]
\[
= 1 - 24 \sum_{n=1}^{\infty} \sigma (n) q^n - 24 \sum_{n=1}^{\infty} \sigma\left(\frac{n}{42}\right) q^n
\]
\[
+ 576 \sum_{n=1}^{\infty} W_{1,42}(n) q^n \tag{3.8}
\]
From (3.6)–(3.8) we obtain

\[
(L(q) - 42L(q^{42}))^2 = L^2(q) - 84L(q)L(q^{42}) + 1764L^2(q^{42}) = 1681 + \sum_{n=1}^{\infty} (240\sigma_3(n) + 423360\sigma_3(n^{42})) + 48384\left(\frac{1}{24} - \frac{n}{168}\right)\sigma(n) + 48384\left(\frac{1}{24} - \frac{n}{4}\right)\sigma\left(\frac{n}{42}\right) - 48384W_{1,42}(n)q^n
\]

Equating the coefficients of \(q^n\) on the right hand sides of first part of Theorem 6 and (3.9) we obtain

\[
\frac{28992}{125}\sigma_3(n) - \frac{4032}{125}\sigma_3\left(\frac{n}{2}\right) - \frac{9072}{125}\sigma_3\left(\frac{n}{3}\right) - \frac{36288}{125}\sigma_3\left(\frac{n}{6}\right) - \frac{49392}{125}\sigma_3\left(\frac{n}{7}\right) - \frac{197568}{125}\sigma_3\left(\frac{n}{14}\right) - \frac{444528}{125}\sigma_3\left(\frac{n}{21}\right) + \frac{51141888}{125}\sigma_3\left(\frac{n}{42}\right) + \frac{6912}{5}c_1(n) + \frac{24624}{25}c_2(n) + \frac{1728}{5}c_4(n) + \frac{1008}{125}c_5(n) - \frac{296352}{25}c_6(n) + \frac{5340384}{125}c_7(n) - \frac{2067408}{125}c_8(n) - \frac{34272}{5}c_9(n) + \frac{2346624}{25}c_{10}(n) - \frac{3284064}{125}c_{11}(n) + \frac{1024128}{25}c_{12}(n) - \frac{124992}{5}c_{13}(n) + \frac{653184}{25}c_{14}(n) + \frac{48384}{5}c_{15}(n) - \frac{520128}{5}c_{16}(n) + \frac{217728}{5}c_{18}(n) + \frac{27216}{25}c_{19}(n) + \frac{36288}{5}c_{20}(n) = 240\sigma_3(n) + 423360\sigma_3\left(\frac{n}{42}\right) + 48384\left(\frac{1}{24} - \frac{n}{168}\right)\sigma(n) + 48384\left(\frac{1}{24} - \frac{n}{4}\right)\sigma\left(\frac{n}{42}\right) - 48384W_{1,42}(n). \]

Solving this equation for \(W_{1,42}(n)\) we obtain the asserted formula. \(\square\)
EVALUATION OF THE CONVOLUTION SUMS $W_{1,42}(n)$, $W_{2,21}(n)$, $W_{3,14}(n)$ AND $W_{6,7}(n)$

4. THE REPRESENTATION NUMBER FORMULA FOR

\[x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3 x_4 + x_4^2 + 14(x_5^2 + x_5 x_6 + x_6^2 + x_7^2 + x_7 x_8 + x_8^2) \]

Theorem 8. Let $n \in \mathbb{N}$, then

\[
N_{14}(n) = \frac{12}{125} \sigma_3(n) + \frac{48}{125} \sigma_3\left(\frac{n}{2}\right) + \frac{108}{125} \sigma_3\left(\frac{n}{3}\right) + \frac{432}{125} \sigma_3\left(\frac{n}{6}\right) + \frac{588}{125} \sigma_3\left(\frac{n}{7}\right) + \frac{2352}{125} \sigma_3\left(\frac{n}{14}\right) + \frac{5292}{125} \sigma_3\left(\frac{n}{21}\right) + \frac{21168}{125} \sigma_3\left(\frac{n}{42}\right) + \frac{288}{25} c_2(n) - \frac{6}{25} c_3(n) + \frac{294}{25} c_4(n) + \frac{2592}{175} c_2\left(\frac{n}{3}\right) - \frac{54}{25} c_3\left(\frac{n}{3}\right) - \frac{5778}{175} c_4\left(\frac{n}{3}\right) + \frac{18}{175} c_5(n) - \frac{648}{25} c_6(n) + \frac{2484}{125} c_7(n) + \frac{882}{125} c_8(n) - \frac{1296}{25} c_{10}(n) - \frac{252}{25} c_{12}(n) + \frac{972}{7} c_{17}(n) + \frac{15552}{175} c_{19}(n) \]

Proof. For $l \in \mathbb{N}_0$ we set,

\[
r(l) = \text{card} \left\{ (x_1, \ldots, x_4) \in \mathbb{Z}^4 : l = x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3 x_4 + x_4^2 \right\} , \tag{4.2} \]

It is known (see for example [15, Theorem 13]) that

\[
r(l) = 12\sigma(l) - 36\sigma\left(\frac{l}{3}\right), \quad l \in \mathbb{N} \tag{4.3} \]

It is clear from (1.2), (4.2) and (4.3) that

\[
N_{14}(n) = \sum_{l, m \in \mathbb{N}} r(l)r(m)
\]

\[
= r(n)r(0) + r(0)r\left(\frac{n}{14}\right) + \sum_{l, m \in \mathbb{N}} r(l)m = n
\]

\[
= 12\sigma(n) - 36\sigma\left(\frac{n}{3}\right) + 12\sigma\left(\frac{n}{14}\right) - 36\sigma\left(\frac{n}{42}\right)
\]

\[
+ \sum_{l, m \in \mathbb{N}} (12\sigma(l) - 36\sigma\left(\frac{l}{3}\right))(12\sigma(m) - 36\sigma\left(\frac{m}{3}\right))
\]

\[
= 12\sigma(n) - 36\sigma\left(\frac{n}{3}\right) + 12\sigma\left(\frac{n}{14}\right) - 36\sigma\left(\frac{n}{42}\right) + 144\sigma(l)\sigma(m) - 432\sigma\left(\frac{l}{3}\right)\sigma\left(\frac{m}{3}\right)
\]

\[
= 12\sigma(n) - 36\sigma\left(\frac{n}{3}\right) + 12\sigma\left(\frac{n}{14}\right) - 36\sigma\left(\frac{n}{42}\right) + 144W_{1,14}(n)
\]

\[
- 432W_{3,14}(n) - 432W_{1,42}(n) + 1296W_{1,14}\left(\frac{n}{3}\right)
\]

Formulae for \(W_{3,14}(n)\) and \(W_{1,42}(n)\) are obtained in this article. \(W_{1,14}(n)\) was evaluated in [2]. We also check that it can be given as

\[
W_{1,14}(n) = \frac{1}{600}\sigma_3(n) + \frac{1}{150}\sigma_3\left(\frac{n}{2}\right) + \frac{49}{600}\sigma_3\left(\frac{n}{7}\right) + \frac{49}{150}\sigma_3\left(\frac{n}{14}\right)
\]

\[
+ \left(\frac{1}{24} - \frac{n}{56}\right)\sigma(n) + \left(\frac{1}{24} - \frac{n}{4}\right)\sigma\left(\frac{n}{14}\right) + \frac{2}{175}c_2(n)
\]

\[
- \frac{1}{600}c_3(n) - \frac{107}{4200}c_4(n).
\]

Using (3.2), (3.4) and (4.4) we obtained the desired formula. \(\square\)

For simplicity, taking \(u(n)\) as follows

\[
u(n) = 1680c_2(n) + 2160c_2\left(\frac{n}{3}\right) - 35c_3(n) - 315c_3\left(\frac{n}{3}\right) + 1715c_4(n)
\]

\[
- 4815c_4\left(\frac{n}{3}\right) + 21c_5(n) - 18900c_6(n) + 14490c_7(n) + 1029c_8(n)
\]

\[
- 7560c_{10}(n) - 1470c_{12} + 20250c_{17}(n) + 12960c_{19}(n)
\]
EVALUATION OF THE CONVOLUTION SUMS $W_{1,42}(n)$, $W_{2,21}(n)$, $W_{3,14}(n)$ AND $W_{6,7}(n)$

we may write

$$N_{14}(n) = \frac{12}{125}\sigma_3(n) + \frac{48}{125}\sigma_3\left(\frac{n}{2}\right) + \frac{108}{125}\sigma_3\left(\frac{n}{3}\right) + \frac{432}{125}\sigma_3\left(\frac{n}{6}\right) + \frac{588}{125}\sigma_3\left(\frac{n}{7}\right) + \frac{2352}{125}\sigma_3\left(\frac{n}{14}\right) + \frac{5292}{125}\sigma_3\left(\frac{n}{21}\right) + \frac{21168}{125}\sigma_3\left(\frac{n}{42}\right) + \frac{6875}{875}u(n).$$

(4.5)

We checked our result for some values of n by using Pari GP. Denoting the right hand side of (4.5) by $S_{14}(n)$ we give the first ten values of $N_{14}(n)$ and $S_{14}(n)$ in Table 2 to illustrate the equations.

n	$N_{14}(n)$	$\sigma_3(n)$	$u(n)$	$S_{14}(n)$
1	12	1	1736	12
2	36	9	5068	36
3	12	28	1232	12
4	84	73	10724	84
5	72	126	8736	72
6	36	252	−1484	36
7	96	344	8498	96
8	180	585	13972	180
9	12	757	−12376	12
10	216	1134	8568	216

5. Acknowledgement

This material is based upon work supported by the Simons Foundation Institute Grant Award ID 507536 while the author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI.

References

[1] A. Alaca, S. Alaca, and K. S. Williams, Evaluation of the convolution sums $\sum_{l+12m=n}\sigma(l)\sigma(m)$ and $\sum_{3l+4m=n}\sigma(l)\sigma(m)$, Adv. Theoretical Appl. Math. 1, 1(2006) 27-48.

[2] A. Alaca, S. Alaca, and E. Ntienjem, The convolution sums $\sum_{a_l+bm=n}\sigma(l)\sigma(m)$ for $(a,b) = (1,28), (4,7), (1,14), (2,7), (1,7)$, Kyungpook Math J., 59(2019), 377-389.

[3] A. Alaca, S. Alaca, and K. S. Williams, Evaluation of the convolution sums $\sum_{l+24m=n}\sigma(l)\sigma(m)$ and $\sum_{3l+8m=n}\sigma(l)\sigma(m)$, Math. J. Okayama Univ. 49 (2007) 93-111.
[4] A. Alaca, Ş. Alaca, and K. S. Williams, Evaluation of the convolution sums
\[\sum_{l+18m=n} \sigma(l)\sigma(m) \]
and
\[\sum_{2l+9m=n} \sigma(l)\sigma(m), \] Int. Math. Forum, 2 (2007) 45-68.

[5] A. Alaca, Ş. Alaca and K. S. Williams, The convolution sum
\[\sum_{m<\frac{n}{16}} \sigma(m)\sigma(n-16m), \]
Canad. Math. Bull. 51 (2008), No.1, 3-14.

[6] Ş. Alaca and Y. Kesicioğlu, Evaluation of the convolution sums
\[\sum_{l+27m=n} \sigma(l)\sigma(m) \]
and
\[\sum_{l+32m=n} \sigma(l)\sigma(m) \]
Int. J. Number Theory DOI: 10.1142/S1793042116500019.

[7] Ş. Alaca and Y. Kesicioğlu, Evaluation of the convolution sum
\[\sum_{al+bm=n} \sigma(l)\sigma(m) \]
for \((a, b) = (1, 48), (3, 16), (1, 54), (2, 27), \) Funct. Approx. Comment. Math. 61 (2017), 27-45.

[8] Ş. Alaca, and K. S. Williams, Evaluation of the convolution sums
\[\sum_{l+6m=n} \sigma(l)\sigma(m) \]
and
\[\sum_{2l+3m=n} \sigma(l)\sigma(m) \]
Journal of Number Theory, 124 (2007), 491–510.

[9] M. Besge, Extrait d’une lettre de M. Besge à M. Liouville, J. Math. Pure Appl. 7 (1862) 256.

[10] H. H. Chan and S. Cooper, Powers of theta functions, Pac. J. Math., 235 (2008),1-14.

[11] N. Cheng and K. S. Williams, Evaluation of some convolutions sums involving the sum of
divisor functions, Yokohama Math. J. 52 (2005), 39-57.

[12] S. Cooper, D. Ye, Evaluation of the convolution sums
\[\sum_{l+20m=n} \sigma(l)\sigma(m), \sum_{4l+5m=n} \sigma(l)\sigma(m) \]
and
\[\sum_{2l+5m=n} \sigma(l)\sigma(m), \] Int. J. Number Theory 10 (2014), No.6, 1385-1394.

[13] S. Cooper, P. C. Toh, Quintic and Septic Eisenstein series, Ramanujan J., 19 (2009), 163-181.

[14] J. W. L. Glaisher, On the square of the series in which the coefficients are the sum of the
divisors of the exponents, Messenger Math., 14(1862), 156- 163.

[15] J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, (2002), “Elementary Theory
for the Millenium II, edited by M.A. Bennet, B. C. Berndt, N. Boston, H. G. Diamond, A.
J. H. Hildebrand, and W. Philipp, A. K. Peters, Natick, Massachusetts, pp. 229–274.

[16] L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction (Imperial
College Press, London, 2008).

[17] B. Kendirli, Evaluation of some convolution sums by quasimodular forms, Eur. J. Pure Appl.
Math., 8(1) (2015) 81-110.

[18] B. Köklüce, Representation numbers of certain octonary quadratic forms, Int. J. Number
Theory, 9(5) (2013) 1125-1139.

[19] B. Köklüce, Representation numbers of two octonary quadratic forms, Int. J. Number Theory,
9(7) (2013) 1641-1648.

[20] B. Köklüce, Evaluation of the convolution sums
\[\sum_{l+17m=n} \sigma(l)\sigma(m), \sum_{2l+17m=n} \sigma(l)\sigma(m), \]
\[\sum_{3l+17m=n} \sigma(l)\sigma(m), \sum_{4l+17m=n} \sigma(l)\sigma(m) \]
and
\[\sum_{6l+17m=n} \sigma(l)\sigma(m) \] and \[\sum_{6l+68m=n} \sigma(l)\sigma(m) \]
accepted by Ramanujan Journal, June 2022.

[21] M. Lemire and K. S. Williams, Evaluation of two convolution sums involving the sum of
divisor function, Bull. Austral. Math. Soc. 73 (2006), 107-115.

[22] G. A. Lomadze, Representation of numbers by sums of the quadratic forms \(x_1^2 + x_1x_2 + x_2^2 \),
Acta Arith. 54 (1989), 9-36.
EVALUATION OF THE CONVOLUTION SUMS $W_{1,42}(n)$, $W_{2,21}(n)$, $W_{3,14}(n)$ AND $W_{6,7}(n)$

[23] E. Ntienjem, Evaluation of the convolution sums $\sum_{\alpha l+\beta m=n} \sigma(l)\sigma(m)$, where (α, β) is in \{(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (2, 15), (3, 10), (5, 6)\}, Master’s thesis, School of Mathematics and Statistics, Carleton University, 2015.

[24] E. Ntienjem, Evaluation of the convolution sum involving the sum of divisors function for Levels 48 and 64. Integers 17(2017b).

[25] E. Ntienjem, Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52, Open Mathematics, 15 (2017), 446–458.

[26] E. Ntienjem, Elementary Evaluation of convolution sums involving the divisor function for a class of levels, North-Western European Journal of Mathematics (2019), 101-165.

[27] B. Ramakrishnan and B. Sahu, Evaluation of the convolution sums $\sum_{l+15m=n} \sigma(l)\sigma(m)$ and $\sum_{3l+5m=n} \sigma(l)\sigma(m)$ and an application, Int. J. Number Theory 9 (2013), No.3, 799-809.

[28] S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc., 22 (1916), 159-184.

[29] E. Royer, Evaluating convolution sums of divisor function by quasimodular forms, Int. J. Number Theory, 3 (2007), 231-261.

[30] W. Stein, Modular Forms: A computational Approach, Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2007).

[31] J. Sturm, On the congruence of modular forms, in Number Theory (New York, 1984-1985), Lecture Notes in Math., Vol.1240(Springer, Berlin), pp275-280, 1987.

[32] K. S. Williams, The convolution sum $\sum_{m<n} \sigma(m)\sigma(n-9m)$, Int. J. Number Theory 2 (2005), 193-205.

[33] K. S. Williams, The convolution sum $\sum_{m<n} \sigma(m)\sigma(n-8m)$, Pacific J. Math, 228 (2006) 387–396.

[34] E. X. W. Xia, X. L. Tian and O. X. M. Yao, Evaluation of the convolution sum $\sum_{l+23m=n} \sigma(l)\sigma(m)$, Int. J. Number Theory 10 (2014), No.6, 1421-1430.

[35] D. Ye, Evaluation of the convolution sums $\sum_{l+36m=n} \sigma(l)\sigma(m)$ and $\sum_{l+9m=n} \sigma(l)\sigma(m)$, Int. J. Number Theory 11 (2015), No.01, 171-183.