Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells

Huei-Ping Tzeng1☯, Kuo-Cheng Lan2☯, Ting-Hua Yang3☯, Min-Ni Chung1, Shing Hwa Liu1,4,5¤*

1 Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, 2 Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 3 Department of Otolaryngology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, 4 Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan, 5 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

☯ These authors contributed equally to this work.
¤ Current address: Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
* shinghwaliu@ntu.edu.tw

Abstract

Benzo[a]pyrene, a ubiquitous environmental pollutant, has been suggested to be capable of initiating and/or accelerating atherosclerosis. Accumulation of vascular smooth muscle cells (VSMCs) in vessel intima is a hallmark of atherosclerosis. Nitric oxide (NO) can suppress VSMCs proliferation and induce VSMCs apoptosis. NO plays a compensatory role in the vascular lesions to reduce proliferation and/or accelerate apoptosis of VSMCs. The aim of this study was to investigate whether benzo[a]pyrene can affect VSMCs growth and apoptosis induced by NO. Benzo[a]pyrene (1–30 μmol/L) did not affect the cell number and cell cycle distribution in VSMCs under serum deprivation condition. Sodium nitroprusside (SNP), a NO donor, decreased cell viability and induced apoptosis in VSMCs. Benzo[a]pyrene significantly suppressed SNP-induced cell viability reduction and apoptosis. VSMCs cultured in conditioned medium from cells treated with benzo[a]pyrene could also prevent SNP-induced apoptosis. Benzo[a]pyrene was capable of inducing the activation of nuclear factor (NF)–κB and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in VSMCs. Both NF–κB inhibitor and p38 MAPK inhibitor significantly reversed the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. Incubation of VSMCs with benzo[a]pyrene significantly and dose-dependently increased interleukin (IL)-6 production. A neutralizing antibody to IL-6 effectively reversed the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. Taken together, these results demonstrate for the first time that benzo[a]pyrene activates IL-6 induction and protects VSMCs from NO-induced apoptosis. These findings propose a new mechanism for the atherogenic effect of benzo[a]pyrene.
Introduction

Vascular smooth muscle cells (VSMCs) are responsible for the structural characteristics of the vessel wall, which is important in development, growth, remodeling and repair [1,2]. Many vascular diseases including hypertension, atherosclerosis, post-angioplasty restenosis, and transplant arteriosclerosis are characterized by abnormal VSMCs proliferation and migration, causing VSMCs accumulation in the intima during vascular remodeling [2,3]. Vascular structure and remodeling have been suggested to be determined in large part by a balance between cell growth and cell death by apoptosis [4].

Epidemiological and experimental studies have shown that polycyclic aromatic hydrocarbons (PAHs) are associated with the progression of cardiovascular diseases, including atherosclerosis [5,6]. Benzo[a]pyrene, a major environmental pollutant and a PAH present in tobacco smoke, has been demonstrated to possess the potential of atherogenesis in experimental models [7–10]. The most of studies defining the pathology of benzo[a]pyrene in vascular disease have majorly focused on the abnormal regulation of cell growth/proliferation. However, in addition to changes in the regulation of cell growth, the regulation of cell death by apoptosis may be another important determinant of vessel structure and lesion formation.

Nitric oxide (NO), generated from L-arginine by nitric oxide synthase (NOS), plays diverse physiological functions, such as vascular tonus regulation, neurotransmission, and cytotoxicity [11,12]. NO can exert proapoptotic or anti-apoptotic effects for various cell types [13,14]. Low concentrations of NO (pmol/L-nmol/L) seem to favor cell proliferation/anti-apoptosis and higher concentrations of NO (μmol/L-mmol/L) favor cell cycle arrest or apoptosis in cardiovascular-related cells [13]. NO donors have been shown to affect the cell cycle and suppress proliferation in the aortic VSMCs [15]. In the blood vessels, it has been reported that NO induces apoptosis in vascular endothelial cells [16] and smooth muscle cells [17]. It has also been shown that apoptosis occurs during the process of vascular remodeling and lesion formation [13,18,19]. In vivo gene transfer of endothelial NOS resulted in a marked reduction of neointimal formation after balloon injury in rats by constitutively generation of endogenous NO [20]. Furthermore, it has been shown that expression of inducible NOS (iNOS) mRNA and protein is localized not only to macrophages and foam cells but also to VSMCs in atherosclerotic lesions and neointima after balloon angioplasty [21,22]. The iNOS-dependent NO production has been found to act as a survival signal in benzo[a]pyrene-treated rat hepatic epithelial F258 cells via an AhR-regulatory pathway [23]. These observations suggested that NOS expression in the vascular lesions might represent a compensatory mechanism to reduce proliferation and/or accelerate apoptosis of VSMCs through excess generation of NO.

Interleukin-6 (IL-6) is a pleiotropic cytokine. Several studies indicated that IL-6 has critical pathophysiological roles in cardiovascular diseases, such as atherosclerosis [24, 25] and congestive heart failure [26]. Nevertheless, it has been suggested that locally secreted IL-6 is involved in the VSMCs proliferation in response to platelet-derived growth factor (PDGF) [27]. IL-6 could also participate in the 15(S)-hydroxyeicosatetraenoic acid-induced VSMCs migration and neointima formation [28]. IL-6 has also been found to decrease the endothelial NOS activity in human vascular endothelial cells [29]. Moreover, benzo[a]pyrene at a concentration of 10 μmol/L was capable of stimulating the IL-6 secretion in human sebocytes via an AhR signaling pathway [30].

In this study, we hypothesized that benzo[a]pyrene possesses antagonistic potential against NO-related VSMCs death/apoptosis. We investigated the antagonistic effect of benzo[a]pyrene on NO donor-triggered death/apoptosis in a primary rat VSMCs culture model. We also determined whether IL-6 would be a survival mediator in the anti-cell death/apoptotic effect of benzo[a]pyrene on NO donor-treated VSMCs.
Materials and methods

The protocol for animal study was approved by the Institutional Animal Care and Use Committee, National Taiwan University, College of Medicine, Taipei, Taiwan.

Primary culture of vascular smooth muscle cells

VSMCs were isolated from the thoracic aortas of male Wistar rats (150–200 g) by the method described previously [31]. Wistar rats were purchased from BioLASCO (Taipei, Taiwan). The study was conducted in accordance with the guidelines of the Animal Research Committee of National Taiwan University, College of Medicine, for the care and use of laboratory animals. Before experiments began, rats were allowed at least 1 week acclimation period at animal quarters with air conditioning and constant humidity. The light was controlled automatically at an interval of 12 h per day. The animals were allowed free access to food and water. To prepare VSMCs, the thoracic aortas were cleaned of fat and adventitia, cut into small strips, and then digested with 1 mg/mL collagenase (Sigma) and 0.125 mg/mL elastase (Sigma) at 37˚C for 60 min. Cells were cultured in DMEM containing 10% FCS at 37˚C in a humidified atmosphere of 5% CO\textsubscript{2}/95% air. Cells exhibited characteristics of VSMCs were used between the third and sixth passages.

Analysis of cell number

Cells were seeded at 2×104 cells/well into 12-well plates and allowed to attach overnight. Cells were cultured in serum-free DMEM for 48 h, and then test compounds were added to medium for another 24 h. Cells were harvested, and a 50 μL aliquot was mixed with 0.04% trypan blue and counted twice on a hemocytometer.

Cell treatment and preparation of total cell lysates

Cells seeded in 6-well plates and grown to 60% to 80% confluence were serum-deprived in DMEM containing 0.1% bovine serum albumin (BSA) for 24–48 h, and treated with or without benzo[a]pyrene, in the presence or absence of sodium nitroprusside (SNP) for indicated time intervals. Cells were then harvested by scraping in 200 μL of ice-cold extraction buffer [50 mmol/L Tris–HCl (pH 7.4), 150 mmol/L NaCl, 10 mmol/L EDTA, 0.1% NP-40, 1 mmol/L orthovanadate, 1 mmol/L PMSF, 10 mmol/L sodium fluoride, 10 μg/mL leupeptin, and 10 μg/mL aprotinin], rotated for 15 min at 4˚C, and centrifuged at 10000 × g for 20 min. The supernatant were collected, and stored at -80˚C until use.

Cell cytotoxicity assay

The cytotoxicity was determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (Sigma). Briefly, cells (1×104) were seeded into 96-well plates overnight and starved for 48 h. Then, the medium was aspirated and cells were cultured in serum-free DMEM with vehicle or various concentrations of benzo[a]pyrene solubilized in DMSO in the presence or absence of SNP for indicated time intervals. Subsequently the medium was removed and cells were incubated in medium with MTT (5 μg/mL) for 1 h at 37˚C, which was metabolized to formazan, and then dissolved in DMSO and measured in an ELISA.

Detection of subdiploid DNA population

Cells were harvested and prepared single cell suspension in PBS at 1–2 x 106 cells/mL. Aliquoted 1 mL cells in a 15 mL polypropylene, V-bottomed tube and added 3 mL cold absolute ethanol forcibly in order to prevent clumping and cell loss. Cells were fixed for at least 1 h at
Cells were washed 2 times with PBS and added 1 mL of 50 μg/mL propidium iodide (PI) staining solution to cell pellet and mixed well. Added 50 μL of RNaseA stock solution (10 mg/mL) and incubate for 30 min at room temperature. Samples were stored at 4˚C until analyzed by flow cytometry (Becton-Dickinson, San Jose, CA).

Annexin V Apoptosis Detection
The annexin V-FITC Apoptosis Detection Kit was used for flow cytometry experiment to detect apoptotic cells. VSMCs cultured in DMEM with test compounds were washed twice with cold PBS and then resuspended in 1x binding buffer at the concentration of 1 x 10⁶ cells/mL. The cell suspension was transferred to a 5-ml culture tube and mixed with 5 μL of annexin V-FITC and 10 μL of PI. The cells were gently vortexed and incubated for 15 min at room temperature in the dark. Then 400 μL of 1x binding buffer was added to each tube and analyzed by flow cytometry with the use of a FACSCalibur flow cytometer (Becton-Dickinson, San Jose, CA).

Western blot analysis
Equal amounts of proteins (30 μg per lane) were subjected to 10% SDS-PAGE, transferred to nitrocellulose membranes (Amersham). The membranes were blocked with 5% fat-free milk in PBS containing 0.1% Tween 20 (PBST) for 1 h and followed by immunoblotting with antibodies for nuclear factor (NF)-κB, IκBα, phospho-p38 mitogen-activated protein kinase (MAPK), p38 MAPK, bcl-2, C23, or α-tubulin (Santa Cruz Biochemicals). Subsequently, membranes were washed three times with PBST, incubated with secondary horseradish peroxidase (HRP)-conjugated antibodies (Santa Cruz Biochemicals), and again followed by three washes. The signals were then visualized with an enhanced chemiluminescence detection system (Amersham). Exposures were recorded on X-film (Fuji).

IL-6 and NO assays
Cells (2 x 10⁵ cells/mL) were serum-starved for 48 h and then treated with test compounds for 24 h. The medium was collected and centrifuged at 500 rpm for 1 min. The supernatant was stored at -70˚C until assay. ELISA for rat IL-6 was performed with an ELISA kit (Pierce Endogene) according to the manufacturer’s instructions. Moreover, the NO (nitrite/nitrate) levels were determined using the nitrite/nitrate colorimetric assay kit (R&D Systems).

Statistical analysis
Data are expressed as mean ± SEM of a variable number of experiments or displayed as representative observations of at least three separate experiments. Statistical significance was assessed by one way analysis of variance (ANOVA) and Dunnett’s test. The significant difference is determined when p-value is less than 0.05.

Results
Benzo[a]pyrene suppressed NO-induced death and apoptosis in VSMCs
There was no change on total cell number between control and benzo[a]pyrene (1–30 μmol/L)-treated VSMCs under serum deprivation culture condition (S1A Fig). We next observed the cell cycle distribution in VSMCs under serum-free condition, and confirmed that no change between control and benzo[a]pyrene (10 μmol/L)-treated VSMCs (S1B Fig). These results indicated that benzo[a]pyrene did not cause cell death of VSMCs in serum-free condition.
In quiescent VSMCs, NO donor SNP (1 mmol/L) time-dependently suppressed cell viability by 28.5% (12 h) and 46% (24 h), respectively (Fig 1A). Co-incubation with benzo[a]pyrene (1–10 μmol/L) for 24 h dose-dependently reversed the inhibition of cell viability induced by SNP (Fig 1B). SNP (1–30 mmol/L) effectively increased the NO release in a dose-dependent manner (Fig 1C). Moreover, we also used another NO donor- streptozotocin [32], which is a glucosamine-nitrosourea compound, to confirm the effect of benzo[a]pyrene on VSMCs viability. As shown in Fig 1D, streptozotocin (30 mmol/L) effectively decreased the VSMCs viability, which could be significantly reversed by benzo[a]pyrene (10 μmol/L). Streptozotocin (1–30 mmol/L) could increase the NO release in a dose-dependent manner (Fig 1E).

We next analyzed the subdiploid DNA population in VSMCs by flow cytometry. The subdiploid DNA content was markedly increased after SNP stimulation by 36% (Fig 2A and 2B). Benzo[a]pyrene (10 μmol/L) treatment significantly reversed SNP-increased subdiploid DNA levels (Fig 2A and 2B). The annexin V-FITC and PI staining was further used to analyze the percentage of apoptotic cells. As shown in Fig 2C and 2D, the late apoptotic cells and early apoptotic cells were increased from 0.9% to 4.1% or 4.8% to 43.3%, respectively, when cells were

Fig 1. Effect of NO donors on cell viability and NO release in the presence or absence of benzo[a]pyrene in VSMCs. (A) VSMCs were cultured in serum-free DMEM in the presence or absence of sodium nitroprusside (SNP, 1 mmol/L) for 12 or 24 h. (B) VSMCs were treated with SNP (1 mmol/L) in the presence or absence of benzo[a]pyrene (10 μmol/L) for 24 h. (C) VSMCs were treated with SNP (1–30 mmol/L) for 24 h. (D) VSMCs were treated with streptozotocin (STZ, 30 mmol/L) in the presence or absence of benzo[a]pyrene (10 μmol/L) for 24 h. (E) VSMCs were treated with streptozotocin (STZ, 1–30 mmol/L) for 24 h. Cell viability was determined by MTT assay. Cell survival was expressed as % of untreated control. The NO (nitrite/nitrate) levels were determined using the nitrite/nitrate colorimetric assay kit. All data are represented as mean ± SEM from three independent experiments. *P < 0.05 as compared with the control. #P < 0.05 as compared with SNP alone (B) or STZ alone (D).

https://doi.org/10.1371/journal.pone.0178063.g001
treated with SNP for 12 h. Total percentage of apoptotic cells was increased from 5.7% to 47.4%. Once benzo[a]pyrene (10 μmol/L) was co-incubated with SNP, total percentage of apoptotic cells shifted to 26.1% (Fig 2C and 2D). Moreover, SNP markedly decreased the protein expression of bcl-2 in VSMCs, which could be effectively reversed by benzo[a]pyrene (Fig 2E). These results indicated that benzo[a]pyrene was capable of inhibiting SNP-induced apoptosis of VSMCs.

Role of IL-6 in anti-apoptotic effect of benzo[a]pyrene

To study the signaling involved in the anti-apoptotic effect of benzo[a]pyrene, we collected conditioned media (cm) from cells treated with benzo[a]pyrene for 24 h and then added it to another cultured cells following treatment with SNP. The results showed that benzo[a]pyrene-

![Diagram](https://doi.org/10.1371/journal.pone.0178063.g002)
condition media enabled to prevent decreased cell viability (Fig 3A) and increased subdiploid DNA content (Fig 3B) in VSMCs by SNP challenge. Besides, both decreased cell viability (Fig 3A) and increased subdiploid DNA content (Fig 3B) were also attenuated during the condition in which cells treated with benzo[a]pyrene for 24 h were then washed and changed to fresh culture media containing SNP alone (w). These results indicated that some mediators might be induced and secreted to media by which benzo[a]pyrene prevented cell death in an autocrine manner. Since IL-6 has been reported to prevent apoptosis in various cell types [33,34], we next investigated if benzo[a]pyrene was able to stimulate IL-6 release. As shown in Fig 4A, benzo[a]pyrene does-dependently increased the production of IL-6 in VSMCs. We next investigated the involvement of IL-6 in anti-apoptotic effect of benzo[a]pyrene. Blockade of IL-6 with the neutralizing antibody (2 μg/mL) abolished benzo[a]pyrene-reduced subdiploid DNA content and apoptosis in SNP-treated VSMCs (Fig 4B and 4C). These results showed that IL-6 produced by VSMCs contributed to anti-apoptotic effect of benzo[a]pyrene on NO-related VSMCs apoptosis.

Involvement of NF-κB and p38 MAPK in the anti-apoptotic effect of benzo[a]pyrene

Both NF-κB and p38 MAPK signals possess the ability to regulate VSMCs proliferation [35,36] and IL-6 induction [37]. To investigate the signaling involved in the anti-apoptotic effect of benzo[a]pyrene in VSMCs, we tested whether NF-κB and p38 MAPK were involved. As shown in Fig 5A-a, the nuclear NF-κB-p65 protein expression in VSMCs was time-dependently increased by benzo[a]pyrene (10 μmol/L). The protein expression of IkBα was time-dependently decreased by benzo[a]pyrene (10 μmol/L) (Fig 5A-b). The phosphorylation of p38 MAPK in VSMCs was also time-dependently increased by benzo[a]pyrene (10 μmol/L) (Fig 5B). Moreover, both NF-κB inhibitor PDTC (10 μmol/L) and p38 MAPK inhibitor SB203589 (3 μmol/L) significantly suppressed the benzo[a]pyrene-increased IL-6 production.
in VSMCs (Fig 5C). Both PDTC (10 μmol/L) and SB203589 (3 μmol/L) could also significantly inhibit the anti-apoptotic effect (Fig 6A) and survival enhancement (Fig 6B) of benzo[a]pyrene against SNP challenge. These results implicated that benzo[a]pyrene inhibited SNP-induced VSMCs apoptosis through the activation of NF-κB and p38 MAPK signals.

Discussion

The present study provides the first characterization of the effect of benzo[a]pyrene on the regulation of apoptosis in VSMCs. Our observations also suggest that the survival signal by benzo[a]pyrene is mediated from IL-6 release because the neutralizing antibody to IL-6 inhibits benzo[a]pyrene-induced anti-apoptotic effect.

Low-concentration NO is considered to regulate the physiological functions, but high-concentration NO may contribute to the pathological effects [13]. The physiological NO levels appear to be in the range from 1 μmol/L to 10 nmol/L with the short half-life (9 to 900 min) [38]. The range of NO levels in bloods of human or mammalian has been estimated to be 3
nmol/L up to 20 μmol/L [39]. The exhaled NO concentrations in acute asthma children were significantly higher (31.3 ± 4.2 ppb (μg/L)) than in healthy children (5.4 ± 0.4 ppb (μg/L)) [40].

The serum total concentrations of NO (NO\textsubscript{3}−/NO\textsubscript{2}−) in control subjects and squamous cell carcinoma of the oral cavity patients in IV stage were about 12 and 30 μmol/L, respectively [41]. In the present study, the NO levels in culture medium of control VSMCs and SNP (1 mmol/L)-treated VSMCs were about 4.5 and 15 μmol/L, respectively. Therefore, we used a NO donor at the released NO concentrations relevant to human exposure in bloods to test its cytotoxicity to VSMCs.

Apoptosis is known to as a physiological suicide pathway to maintain the homeostasis of tissue organs. VSMCs are major constituents of the medial layer of blood vessels and are involved in the development of atherosclerotic plaque by abnormal accumulation in intimal vessels [2,3]. NO-induced VSMCs apoptosis may be an important determinant to regulate cell
number of normal arterial wall and is a feature of atherosclerosis pathology [13,18]. The complex mechanisms of NO-mediated apoptosis have been mentioned. NO donor has been shown to potentiate DNA damage and alter DNA repair in ionizing radiation-treated cells [42]. NO could also inhibit the catalytic activity of the 26S proteasome and regulate proteasomal subunit expression in VSMCs [15]. An increased susceptibility to NO-induced VSMC apoptosis has been observed in p53(-/-) cells, which could be effectively abrogated by antioxidant catalase [43]. Besides, the protein expression of anti-apoptotic protein was decreased under SNP exposure in VSMCs [44]. In the present study, we also found that SNP induced bcl-2 degradation, apoptosis, and cell death in primary rat VSMCs, which could be significantly reversed by benzo[a]pyrene. These results suggest that benzo[a]pyrene is capable of suppressing NO-induced apoptosis and cell death in VSMCs.

Atherosclerosis has been suggested to be an inflammatory disease [45,46]. A significant role of IL-6 in the pathophysiology of atherosclerosis has also been suggested [24,45]. VSMCs secrete copious IL-6 under stimulation conditions such as tumor necrosis factor (TNF)-α [47], IL-1β [48], platelet-derived thrombin [49], endothelin I [50], and lipopolysaccharide [37] that they may be involved in the pathogenesis of atherosclerosis. There are several important regulatory cis DNA elements in the promoter region of the IL-6 gene such as AP-1, CRE, NF-IL6, and NF-κB, which are conserved among species such as mice, rat and human, and regulate IL-6 gene expression in a cell-specific manner [51,52]. Recombinant interleukin-6 administration has been found to protect MIN6 β-cells from NO dependent cytokine-induced apoptosis and reduced bcl-2/bax protein ratio [53]. The pleiotropic action of IL-6 has also been found to improve the NO-induced cytotoxic CD8+ T cell dysfunction from chagasic patients [54]. IL-6 was capable of inducing bcl-2 expression to protecting cell functions in response to hyperoxia toxicity in human umbilical vein endothelial cells (HUVECs) [55]. It has been demonstrated that NO triggers cell death by regulating anti-apoptotic bcl-2 family members in mouse embryonic fibroblasts [56]. In the present study, we found that benzo[a]pyrene dose-

Fig 6. Role of NF-κB and p38 MAPK in the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. VSMCs were pretreated with SB203580 (3 μmol/L) or PDTC (10 μmol/L) followed by treatments of benzo[a]pyrene (10 μmol/L) and SNP (1 mmol/L) for 12 h. The annexin V-FITC and PI staining was analyzed by flow cytometry (A). Cell viability was determined by MTT assay (B). Data are represented as mean ± SEM from three independent experiments. *P < 0.05 as compared with the control. #P < 0.05 as compared with SNP alone. $P < 0.05 as compared with SNP+benzo[a]pyrene.

https://doi.org/10.1371/journal.pone.0178063.g006
dependently and significantly increased the IL-6 production and inhibited the reduced bcl-2 expression in SNP-treated VSMCs. IL-6 neutralizing antibody could significantly reverse the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. These findings suggest that IL-6 plays an important role in the atherogenic effect of benzo[a]pyrene.

The activation of NF-κB has been shown to play an important role in angiotensin II-dependent VSMCs proliferation [35]. Benzo[a]pyrene has been shown to induce rapid NF-κB activation via redox regulation in VSMCs [57,58]. Mehrhof et al. (2005) have suggested that NF-κB signaling may be as a regional regulator of VSMCs survival rather than a direct promoter of VSMCs proliferation [58]. Moreover, p38 MAPK signaling has also been demonstrated to be involved in the serum-induced VSMCs proliferation [36]. A p38 MAPK-dependent signaling pathway has been found to contribute to the perivascular adipose tissue-derived leptin-triggered VSMCs phenotypic switching [59]. On the other hand, transcriptional activation of cytokine genes commonly requires the induction of NF-κB [60]. It has been reported that pretreatment of human airway smooth muscle cells with p38 MAPK inhibitor SB203580 significantly inhibited the secretion of IL-6 after TNF-α stimulation [41]. TNF-α has also been found to induce p38-dependent IL-6 induction and protect cardiac myocytes from apoptosis [61]. The angiotensin II-induced IL-6 gene expression also depends on NF-κB activation in VSMCs [62]. Both NF-κB and p38 MAPK signals have also been shown to be involved in the lipopolysaccharide-induced IL-6 induction in VSMCs [37]. The intracellular signaling pathways by which benzo[a]pyrene leads to cell survival and IL-6 production in SNP-treated VSMCs are of interest. In the present study, we confirmed that benzo[a]pyrene in deed activated NF-κB to translocate to nucleus, and PDTC, an inhibitor of NF-κB activation, abolished the anti-apoptotic effect of benzo[a]pyrene. We also found that benzo[a]pyrene markedly increased the phosphorylation of p38 MAPK in VSMCs. SB203580 could also inhibit the benzo[a]pyrene-induced anti-apoptotic effect, suggesting that p38 MAPK signaling pathway is involved in the benzo[a]pyrene-induced anti-apoptotic effect. We further found that both NF-κB and p38 MAPK inhibitors significantly inhibit the benzo[a]pyrene-induced IL-6 production. The protein kinase C (PKC)-related signaling has also been shown to be involved in the IL-6 production induced by serotonin from human VSMCs [63]. However, Funakoshi et al reported that angiotensin II-induced IL-6 expression was dependent on intracellular Ca²⁺, tyrosine phosphorylation, and ERK activation, and independent of PKC and extracellular Ca²⁺ [64]. These findings suggest that regulation of IL-6 may be complex and needs more studies to understand the mechanisms by which benzo[a]pyrene induces IL-6 release. On the other hand, benzo[a]pyrene has been found to inhibit angiogenesis in HUVECs via an aryl hydrocarbon receptor (AhR)-dependent pathway [65]. The coplanar polychlorinated biphenyls (PCBs), the AhR agonists, can disrupt endothelial barrier function and promote IL-6 production in porcine endothelial cells; but PCB 153, which is not a ligand for the AhR, had no effect on endothelial function and IL-6 production [66]. Hu et al. recently showed that BaP induced IL-6 production and inhibited sebum production in human sebocytes via the activation of AhR signaling [30]. Therefore, in this study, benzo[a]pyrene induced IL-6 production in VSMCs may through an AhR signaling pathway.

Indeed, not only proliferation of VSMCs but also apoptosis is found in atherosclerotic lesions [2,18], suggesting that apoptosis may be a compensatory behavior to repair vascular injury. Dysfunction of the apoptosis process has been linked to pathogenesis of cancer and atherosclerosis [67,68]. The present study showed the ability of benzo[a]pyrene to suppress a death signal in VSMCs triggered by NO through an IL-6 signaling pathway (Fig 7). These findings propose a new mechanism for the atherogenic effect of benzo[a]pyrene. Benzo[a]pyrene may therefore not only alter VSMCs to a proliferative phenotype, but also exert an anti-apoptotic effect participating in vascular disease. It is conceivable that the ability of benzo[a]
pyrene to inhibit NO-induced cell death may play a substantial role in atherosclerotic lesion formation. Further studies are necessary to define the anti-apoptotic effect of benzo[a]pyrene on the pathogenesis of vascular lesion \textit{in vivo}.

Supporting information

S1 Fig. Effects of benzo[a]pyrene on cell number and cell cycle distribution in VSMCs. (A) VSMCs were cultured in serum-free DMEM in the presence or absence of benzo[a]pyrene (1–30 µmol/L). After 72 h, cells were collected, stained with trypan blue, and counted by
hemocytometry. Data are presented as mean ± SEM from three independent experiments. (B) VSMCs were cultured in serum-free DMEM in the presence or absence of benzo[a]pyrene (10 μmol/L) for 72 h. The DNA content was analyzed by flow cytometry. One representative experiment of three is shown.

Author Contributions

Conceptualization: SHL.
Data curation: HPT KCL THY MNC.
Formal analysis: HPT KCL THY.
Funding acquisition: SHL.
Investigation: HPT KCL THY MNC.
Methodology: HPT KCL THY.
Project administration: SHL HPT.
Resources: KCL THY.
Software: KCL THY.
Supervision: SHL.
Validation: SHL.
Visualization: HPT KCL THY.
Writing – original draft: HPT SHL.
Writing – review & editing: SHL.

References

1. Majesky MW, Schwartz SM. Smooth muscle diversity in arterial wound repair. Toxicol Pathol. 1990; 18: 554–559. PMID: 2091234
2. Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol. 2015; 593: 3013–3030. https://doi.org/10.1113/JP270033 PMID: 25952975
3. Andres V. Control of vascular smooth muscle cell growth and its implication in atherosclerosis and restenosis (review). Int J Mol Med. 1998; 2: 81–89. PMID: 9854149
4. Irani K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res. 2000; 87: 179–183. PMID: 10926866
5. Bangia KS, Symanski E, Strom SS, Bondy M. A cross-sectional analysis of polycyclic aromatic hydrocarbons and diesel particulate matter exposures and hypertension among individuals of Mexican origin. Environ Health. 2015; 14:51. https://doi.org/10.1186/s12940-015-0039-2 PMID: 26068905
6. Curls DM, Knaapen AM, Pachen DM, Gijbels MJ, Lutgens E, Snoop ML, et al. Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB J. 2005; 19: 1290–1292. https://doi.org/10.1096/fj.04-2269fje PMID: 15939734
7. Hough JL, Baird MB, Steir GT, Pacini CS, Darrow D, Wheelock C. Benzo(a)pyrene enhances atherosclerosis in White Carneau and Show Racer pigeons. Arterioscler Thromb. 1993; 13:1721–1727. PMID: 8241091
8. Oesterling E, Toborek M, Hennig B. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway. Toxicol Appl Pharmacol. 2008; 232: 309–316. https://doi.org/10.1016/j.taap.2008.07.001 PMID: 18671994
9. Ou X, Ramos KS. Proliferative responses of quail aortic smooth muscle cells to benzo[a]pyrene: implications in PAH-induced atherogenesis. Toxicology. 1992; 74: 243–258. PMID: 1519246

10. Ramos KS, Zhang Y, Sadhu DN, Chapkin RS. The induction of proliferative vascular smooth muscle cell phenotypes by benzo[a]pyrene is characterized by up-regulation of inositol phospholipid metabolism and c-Ha-ras gene expression. Arch Biochem Biophys. 1996; 332: 213–222. https://doi.org/10.1006/abbi.1996.0335 PMID: 8806728

11. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999; 84: 253–256. PMID: 10024298

12. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109–142. PMID: 1852778

13. Napoli C, Paolissio G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, et al. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013; 62: 89–95. PMID: 23665095

14. Nicotera P, Brune B, Bagetta G. Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol Sci. 1997; 18: 189–190. PMID: 9226995

15. Kapadia MR, Eng JW, Jiang Q, Stoyanovs ky DA, Kibbe MR. Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells. Nitric Oxide. 2009; 20: 279–288. https://doi.org/10.1016/j.niox.2009.02.005 PMID: 19233305

16. Ramachandran A, Moelerring DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V. Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA. 2002; 99: 6643–6648. https://doi.org/10.1073/pnas.102019899 PMID: 12011428

17. Nishio E, Fukushima K, Shiozaki M, Watanabe Y. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism. Biochem Biophys Res Commun. 1996; 221: 163–168. https://doi.org/10.1006/bbrc.1996.0563 PMID: 8606390

18. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995; 91: 2703–2711. PMID: 7758173

19. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol. 1996; 16: 19–27. PMID: 8548421

20. von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA. 1995; 92: 1137–1141. PMID: 7532305

21. Hansson GK, Geng YJ, Holm J, Hardhammar P, Wennmalm A, Jennische E. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med. 1994; 180: 733–738. PMID: 7519246

22. Yan ZQ, Yokota T, Zhang W, Hansson GK. Expression of inducible nitric oxide synthase inhibits platelet adhesion and restores blood flow in the injured artery. Circ Res. 1996; 79: 38–44. PMID: 8925566

23. Hardonnère K, Huc L, Podechard N, Fernier M, Tekpli X, Gallais I, et al. Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential. Toxicol In Vitro. 2015; 29: 1597–1608. https://doi.org/10.1016/j.tiv.2015.06.010 PMID: 26086121

24. Seino Y, Ikeda U, Ikeda M, Yamamoto K, Misawa Y, Hasegawa T, et al. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine. 1994; 6: 87–91. PMID: 8003690

25. Lee WY, Allison MA, Kim DJ, Song CH, Barrett-Connor E. Association of interleukin-6 and C-reactive protein with subclinical carotid atherosclerosis (the Rancho Bernardo Study). Am J Cardiol. 2007; 99: 99–102. https://doi.org/10.1016/j.amjcard.2006.07.070 PMID: 17196470

26. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol. 1998; 31: 391–398. PMID: 9462584

27. Loppnow H, Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest. 1990; 85: 731–738. https://doi.org/10.1172/JCI114498 PMID: 2312724

28. Chava KR, Karpurapu M, Wang D, Bhanoo M, Kundumani-Sridharan V, Zhang Q, et al. CREB-mediated IL-6 expression is required for 15(S)-hydroxyicosatetraenoic acid-induced vascular smooth muscle cell migration. Arterioscler Thromb Vasc Biol. 2009; 29: 809–815. https://doi.org/10.1161/ATVBAHA.109.185777 PMID: 19342597

29. Hung MJ, Cheng WJ, Hung MY, Wu HT, Pang JH. Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in
human vascular endothelial cells. J Hypertens. 2010; 28: 940–951. https://doi.org/10.1097/HJH.0b013e32833992ef PMID: 20375905

30. Hu T, Pan Z, Yu Q, Mo X, Song N, et al. Benzo(a)pyrene induces interleukin (IL)-6 production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ Toxicol Pharmacol. 2016; 43: 54–60. PMID: 26963242

31. Tzeng HP, Yang RS, Ueng TH, Lin-Shiau SY, Liu SH. Motorcycle exhaust particulates enhance vaso-constriction in organ culture of rat aortas and involve reactive oxygen species. Toxicol Sci. 2003; 75: 66–73. https://doi.org/10.1093/toxsci/kfg164 PMID: 12805640

32. Kwon NS, Lee SH, Choi CS, Kho T, Lee HS. Nitric oxide generation from streptozotocin. FASEB J. 1994; 8: 529–533. PMID: 8181671

33. Schwarze MM, Hawley RG. Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or inter-leukin 6-mediated up-regulation of bcl-xL. Cancer Res. 1995; 55: 2226–2232. PMID: 7757793

34. Chen RH, Chang MC, Su YH, Tsai YT, Kuo ML. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem. 1999; 274: 23013–23019. PMID: 10438468

35. Zahradka P, Werner JP, Buhay S, Litchie B, Helwer G, Thomas S. NF-κB activation is essential for angiogenesis II-dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol. 2002; 34: 1609–1621. PMID: 12505059

36. Zhao M, Liu Y, Bao M, Kato Y, Han J, Eaton JW. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Biochem Biophys. 2002; 400: 199–207. https://doi.org/10.1016/S0003-9861(02)00028-0 PMID: 12054430

37. Son YH, Jeong YT, Lee KA, Choi KH, Kim SM, Rhim BY, et al. Roles of MAPK and NF-kappaB in inter-leukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J Cardiovasc Pharmacol. 2008; 51: 71–77. https://doi.org/10.1097/JFC.0b013e31815bd23d PMID: 18295971

38. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Arch Biochem Biophys. 2001; 399: 1–15. PMID: 11240663

39. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric oxide levels in healthy and asthmatic children. Exp Lung Res. 2010; 36: 230–238. https://doi.org/10.3109/01430176.2010.480081 PMID: 20382856

40. Lau HK. Cytotoxicity of nitric oxide donors in smooth muscle cells is dependent on phenotype, and mainly due to apoptosis. Atherosclerosis. 2003; 166: 223–232. PMID: 12535734

41. Bhatt MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016; 118: 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361 PMID: 26689267

42. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014; 22: 147–151. https://doi.org/10.1097/CRD.0000000000000216 PMID: 24618929

43. Aleem AM, Ammit AJ, Panettieri RA Jr. Tumor necrosis factor receptor (TNFR) 1, but not TNFR2, mediates tumor necrosis factor-α-induced interleukin-6 and RANTES in human airway smooth muscle cells: role of p38 and p42/p44 mitogen-activated protein kinases. Mol Pharmacol. 2001; 60: 646–655. PMID: 11562425

44. Alexander MR, Murgai M, Moehle CW, Owens GK. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol Genomics. 2012; 44: 477–487. https://doi.org/10.1152/physiolgenomics.00160.2011 PMID: 22318995

45. Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Shimokawa H, et al. Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001; 21: 1759–1763. PMID: 11701462

46. Browatzki B, Schmidt J, Kubler W, Kranzhofer R. Endothelin-1 induces interleukin-6 release via activation of the transcription factor NF-κB in human vascular smooth muscle cells. Basic Res Cardiol. 2000; 95: 98–105. PMID: 10826501
51. Tanabe O, Akira S, Kamiya T, Wong GG, Hirano T, Kishimoto T. Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol. 1988; 141: 3875–3881. PMID: 3263439

52. Sato S, Sakurai T, Ogasawara J, Shirato K, Ishibashi Y, Ohishi S, et al. Direct and indirect suppression of interleukin-6 gene expression in murine macrophages by nuclear orphan receptor REV-ERBα. ScientificWorldJournal. 2014; 2014: 688584. https://doi.org/10.1155/2014/688584 PMID: 25401152

53. Park H, Ahn Y, Park CK, Chung HY, Park Y. Interleukin-6 protects MING beta cells from cytokine-induced apoptosis. Ann N Y Acad Sci. 2003; 1005: 242–249. PMID: 14679069

54. Sanmarco LM, Visconti LM, Eberhardt N, Ramello MC, Ponce NE, Spitale NB, et al. IL-6 improves the nitric oxide-induced cytotoxic CD8+ T-cell dysfunction in human chagas disease. Front Immunol. 2016; 7: 626. https://doi.org/10.3389/fimmu.2016.00626 PMID: 28066435

55. Waxman AB, Kohlputt N. IL-6 protects against hyperoxia-induced mitochondrial damage via bcl-2–induced bak interactions with mitofusions. Am J Respir Cell Mol Biol. 2009; 41: 385–396. https://doi.org/10.1165/rcmb.2008-0302OC PMID: 19168699

56. Snyder CM, Shroff EH, Liu J, Chandel NS. Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One. 2009; 4(9):e7059. https://doi.org/10.1371/journal.pone.0007059 PMID: 19761117

57. Yan Z, Subbaramaiah K, Camili T, Zhang F, Tanabe T, McCaffrey TA, et al. Benzo[a]Pyrene induces the transcription of cyclooxygenase-2 in vascular smooth muscle cells. Evidence for the involvement of extracellular signal-regulated kinase and NF-κB. J Biol Chem. 2000; 275: 4949–4955. PMID: 10671533

58. Mehroff FB, Schmidt-Ullrich R, Dietz R, Scheidereit C. Regulation of vascular smooth muscle cell proliferation: role of NF-κB revisited. Circ Res. 2005; 96: 958–964. https://doi.org/10.1161/01.RES. 0000166924.31219.49 PMID: 15831813

59. Li H, Wang YP, Zhang LN, Tian G. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats. Exp Biol Med (Maywood). 2014; 239: 954–965. https://doi.org/10.1177/ 1535370214527903 PMID: 24719379

60. Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002; 2: 725–734. https:// doi.org/10.1038/nri910 PMID: 12360211

61. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, et al. p38 MAPK and NF-κB collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem. 2000; 275: 23814–23824. https://doi.org/10.1074/jbc.M909695199 PMID: 10781614

62. Inanaga K, Ichiki T, Matsuura H, Miyazaki R, Hashimoto T, Takeda K, et al. Resveratrol attenuates angiotensin II-induced interleukin-6 expression and perivascular fibrosis. Hypertens Res. 2009; 32: 466–471. https://doi.org/10.1080/1015991080220178063 PMID: 19373235

63. Ito T, Ikeda U, Shimo M, Yamamoto K, Shimada K. Serotonin increases interleukin-6 synthesis in human vascular smooth muscle cells. Circulation. 2000; 102: 2522–2527. PMID: 11076827

64. Funakoshi Y, Ichiki T, Ito K, Takeshita A. Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension. 1999; 34: 118–125. PMID: 10406834

65. Li CH, Cheng YW, Hsu YT, Hsu YJ, Liao PL, Kang JJ. Benzo[a]pyrene inhibits angiogenic factors-induced alphavbeta3 integrin expression, neovascularogenesis, and angiogenesis in human umbilical vein endothelial cells. Toxicol Sci. 2010; 118: 544–553. https://doi.org/10.1093/toxsci/kfq279 PMID: 20876236

66. Hennig B, Meerarani P, Slim R, Toborek M, Daugherty A, Silverstone AE, et al. Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol Appl Pharmacol. 2002; 181: 174–183. PMID: 12079426

67. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998; 82: 1111–1129. PMID: 9633912

68. Xia P, Liu Y, Cheng Z. Signaling Pathways in Cardiac Myocyte Apoptosis. Biomed Res Int. 2016; 2016: 9583268. https://doi.org/10.1155/2016/9583268 PMID: 28101515