10Be climate fingerprints during the Eemian in the NEEM ice core, Greenland

Anna Sturevik-Storm1, Ala Aldahan1,2, Göran Possnert3, Ann-Marie Berggren1, Raimund Muscheler4, Dorthe Dahl-Jensen5, Bo M. Vinther5 & Ilya Usoskin6

1Uppsala University, Department of Earth Sciences, Villavägen 16 B, 752 36 Uppsala, Sweden, 2Department of Geology, United Arab Emirates University, Al Ain, UAE, 3Tandem Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden, 4Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden, 5Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen K, Denmark, 6Sodankylä Geophysical Observatory (Oulu unit) and Physics Dept., 90014 University of Oulu, Finland.

Several deep Greenland ice cores have been retrieved, however, capturing the Eemian period has been problematic due to stratigraphic disturbances in the ice. The new Greenland deep ice core from the NEEM site (77.45°N, 51.06°W, 2450 m.a.s.l) recovered a relatively complete Eemian record. Here we discuss the cosmogenic 10Be isotope record from this core. The results show Eemian average 10Be concentrations about 0.7 times lower than in the Holocene which suggests a warmer climate and approximately 65–90% higher precipitation in Northern Greenland compared to today. Effects of shorter solar variations on 10Be concentration are smoothed out due to coarse time resolution, but occurrence of a solar maximum at 115.26–115.36 kyr BP is proposed. Relatively high 10Be concentrations are found in the basal ice sections of the core which may originate from the glacial-interglacial transition and relate to a geomagnetic excursion about 200 kyr BP.

Drilling in North Greenland, through the North Greenland Eemian Ice Coring project (NEEM, 2007–2012), retrieved ice from the Eemian period (depth 2210–2430 m, 115.36–128.48 kyr BP). Matching of several trace records from the NEEM core with the global δ18Oatm and CH4 in the NGRIP (North Greenland Ice core Project) and EDML (Epica Dronning Maud Land, Antarctica) cores as well as variability in N2O, δ15Natm and air content were used to establish the boundaries of the Eemian. Despite relatively good age estimation, missing climate transitions together with disturbances of the ice and obscured climate signals from ice below 2210 m hampered full interpretation of the stratigraphy. New 10Be isotope data presented here shed further light on these problems and provide in some part support to interpretations given by Dahl-Jensen et al., such as the warmer climate and the wet surface conditions during a part of the Eemian as well as the ice chronology. 10Be (half-life = 1.387 ± 0.012 × 106 years) is mainly produced in the atmosphere through spallation of oxygen and nitrogen by galactic cosmic rays (GCR) and their secondary particles, although there is a small production in the Earth’s surface as well. The radionuclide is deposited on the Earth’s surface through wet and/or dry fallout and is stored in natural archives such as ice and sediment. The production of 10Be is modulated by the variation in the strength of the geomagnetic field as well as by solar magnetic shielding. Changes in the local galactic surrounding may influence the cosmic ray flux but on much longer time scales. There are also several post-production and fallout processes (i.e. residence time in the atmosphere, scavenging rate, troposphere-stratosphere exchange, precipitation rate etc.) that can alter the final 10Be concentration found in the ice archive. There have been several attempts to model these processes and their interactions (for example). One significant process is the dilution effect by precipitation, which commonly lowers 10Be concentration due to higher snow accumulation rate. This dilution effect can be seen when comparing Greenland with Antarctic records or even within Antarctica at higher (i.e. closer to the coast) or lower precipitation rates regions (i.e. inland Antarctica). Even though dry deposition is always present, it has greater impact in regions with very low precipitation, such as inner Antarctica, where the fraction of 10Be deposited by dry deposition is higher than that for wet deposition in such areas. This criterion of decreasing 10Be concentration with increasing precipitation, which can be related to changes in climate conditions, is established here through comparison of the Eemian climate conditions with the Holocene using the NEEM ice. Climatic conditions during the Eemian were expected to be 4–8°C warmer with a higher precipitation rate than of the mean from last millennium. A possible cause of higher precipitation is missing Arctic sea ice...
cover during the summer/autumn season allowing evaporation from the Arctic Ocean and thus increasing precipitation in northern Greenland resulting in a dilution of \(^{10}\)Be concentration.

Results

Depth wise variability of \(^{10}\)Be concentration in the lowermost 320 m of the NEEM core (supplementary table S1) is shown in figure 1 where three apparent concentration parts are marked as A, B and C. The most shallow part, A, of the record (2201.65 m to 2307.25 m) indicates quite homogenous values with a low variance of 0.018 and a mean of \(1.15 \pm 0.06 \times 10^4\) atoms/g\(_{\text{ice}}\). This part of the data does not show any clear trend but two peaks, at 2230 and 2279 m, occur and are significant within 3\(\sigma\) standard deviation. These two peaks are associated with two weaker peaks at 2219 and 2302 m and will be discussed later in the text as P\(_1\) and P\(_2\) (figure 1).

Part B of the ice starts with the lowest \(^{10}\)Be concentrations found in the Eemian between 2307.25 and 2430.45 m depth (light blue-green shaded area, figure 1). A rising trend starts and continues until reaching a peak at 2428 m. Though the trend is clear, it is broken by two prominent dips at 2382 and 2402 m. Part C of the \(^{10}\)Be record, which most likely consists of ice older than the Eemian, follows after the peak at about 2428 and descends gradually to the lowest values of the whole sampled interval at around 2460 m which is followed by a peak at about 2475 m with the highest concentrations in this lowermost section of the NEEM core. A \(^{10}\)Be concentration of \(2.27 \times 10^4\) atoms/g\(_{\text{ice}}\) is measured for this peak; 3 times higher than the lowest value in the dip at around 2460 m. The last and deepest part of the core levels out until the last few samples which shows a rapid fluctuation. The lowermost 3 samples (not shown in the graph) have very low concentrations of 0.41, 0.58 and 0.53 \(\times 10^4\) atoms/g\(_{\text{ice}}\).

In order to compare our measured Greenland Eemian \(^{10}\)Be concentrations and accumulation rates with the Holocene we have compiled available data from different Greenland ice cores in table 1. The mean Holocene \(^{10}\)Be concentrations range from 0.72 to \(1.79 \times 10^4\) atoms/g\(_{\text{ice}}\) and the mean Eemian \(^{10}\)Be concentration was measured to \(1.13 \times 10^4\) atoms/g\(_{\text{ice}}\). It should however be noted that these ice cores do not cover the same periods of the Holocene nor the same geographical position; unfortunately there are not many overlapping long term Holocene \(^{10}\)Be records and we use the ones available today. The data, however, suggest higher concentrations at southern sites in Greenland.

We have illustrated the \(^{10}\)Be concentrations together with the accumulation rate in figure 2. Figure 2A shows all ice core \(^{10}\)Be concentrations and accumulation rates whilst figure 2B shows the same data but with the Renland and Milcent data removed as we are most interested in locations at the ice divide, more similar to the NEEM site. From the linear fits in figure 2A and 2B the mean Eemian \(^{10}\)Be concentration corresponds to an accumulation rate of \(0.42\) m/a and \(0.37\) m/a respectively. This accumulation rate is about 65–90% higher than of present-day NEEM accumulation rate of \(0.22\) m ice equivalent\(^{1}\) (observe that the Holocene accumulation rate of \(0.18\) m given in table 1 is from early Holocene, not modern times).

Discussion

The only Greenland ice core to be dated back into the Eemian is NGRIP and this record only extends to 123 BP. For this reason an Eemian chronology has been established by using the Antarctic EDML record, which reaches through the whole Eemian and has been linked to the NGRIP chronology. Hence, the EDML timescale has been used when converting the NEEM depth scale into chronology\(^{1}\) (supplementary table S2), however it should be noted that the ice between 108–115 kyr BP is missing. This missing ice was attributed to ice movement associated with disturbance, folding and even faulting of the ice layers\(^{1}\).

The sampled Eemian interval was divided into seven different zones (0–6; figure 1) due to disturbance and folding in the ice as well as to different properties of the ice layers\(^{1}\). The first part of the core, earlier called part A, contains ice layers from 4 different zones (0–3) that are chronologically overlapping (figure 3). A few \(^{10}\)Be samples in the most upper part A of the ice belong to zones 0 and 1, but the majority of part A contains ice from zones 2 and 3. These later zones overlap a common time period due to folding of the ice and are well identified by the \(^{10}\)Be peaks and thus suggest repeated (faulted) ice layers. In particular, two peaks (P\(_1\) and P\(_2\), figures 1 and 3, supplementary figure S1 and S2), of more or less the same concentration which also fits well with the d\(^{18}\)O concentrations, are found in zones 2 and 3. They relate to the same time period and are close to overlapping when plotted on the EDML timescale (arrows in figure 3). This can be seen as a confirmation that zones 2 and 3 have indeed been flipped and overlap one another. That the peaks are not exactly overlapping can be due to the coarse resolution in the \(^{10}\)Be record since the time span for each of the peaks represents an overlap for some hundred years (supplementary figure S2).

Part B comprises ice from zones 3–5 and the section of the ice with low \(^{10}\)Be concentration, between 2309.45 and 2353.45 m depth, is situated in the younger part of zone 3. Here the ice represents a very short time period, which has a higher resolution than the other parts of the Eemian ice. These low concentrations (figure 3) may result from (I) snow accumulation influences (i.e. increased precipitation) or (II) lower \(^{10}\)Be atmospheric production. Suggestion (I) would indicate a warmer climate with more precipitation which would be
The numbers of data, calculated points, are the ones for which both 10Be and accumulation rates were available, thus the temporal coverage vary from small series of a few samples to extensive ones covering hundreds of samples.

Table 1 | Mean 10Be concentration and accumulation rate in Greenland ice cores during periods of the Holocene; from North (Camp Century) to South (Dye 3).

Ice core	Position	Mean 10Be conc. (x 10^4 atoms/gice)	Concentration range of 10Be (x 10^4 atoms/gice)	Mean accumulation rate (m/yr)	Elevation (m.a.s.l.)	Calculated points	Time period (BP)
Camp Century	N 61° 07' W	0.72	0.65-0.79	0.39	1885	2	7 869–164
NEEM	N 51° 06' W	1.61*	0.77-2.46*	0.18	2450	59	11 195–9201
NGRIP	N 42° 32' W	1.79	0.76-3.88	0.19	2930	59	561–(43)**
Renland	N 26° 43' W	1.32	0.38-2.60	0.45	2340	57	19–(38)**
GISP2	N 38° 29' W	1.57	1.21-2.03	0.13	3203	97	328–1 1647
GRIP	N 37° 64' W	1.50	1.11-1.96***	0.24	3246	317	About 305–9229
Milcent	N 44° 55' W	1.14	0.51-2.24	0.56	2410	116	769–148
Dye 3	N 43° 50' W	1.06	0.35-2.14 (5.57)***	0.56	2480	573	526-(36)**

All above Holocene

Ice core	Position	Mean 10Be conc. (x 10^4 atoms/gice)	Concentration range of 10Be (x 10^4 atoms/gice)	Mean accumulation rate (m/yr)	Elevation (m.a.s.l.)	Calculated points	Time period (BP)
Eemian (this work)	N 51° 06' W	**1.43**	0.77-1.85	~0.37—0.42	101	114 400–128 500	

*unpublished data from the authors

**Reaching in to more modern times gives BP (Before Present, i.e. 1950) negative values. (45), (38) and (36) BP is equal to AD 1995, 1988 and 1986 respectively.

***Observe that the data is already smoothed with 11 m average 10Be concentration, actual range is greater.

****Out of 573 samples, all spans between 0.35 and 2.14 x 10^4 atoms/gice one is with higher concentration of 5.57 x 10^4 atoms/gice.

The deepest part of the core (part C or zone 6) contains the lowermost 100 m of ice and is left undated as in figure 1, starts with the most prominent dip encountered in the lowermost 100 m of ice and is left undated. The 10Be concentration and accumulation rate in Greenland ice cores during periods of the Holocene; from North (Camp Century) to South (Dye 3). The mean concentrations consist of a different number of samples and are from different time periods within the Holocene period and from different geographical positions in Greenland. The table also show elevation and number of points used in the calculation for figure 2. The number of data, calculated points, are the ones for which both 10Be and accumulation rates were available, thus the temporal coverage vary from small series of a few samples to extensive ones covering hundreds of samples.
the 320 m long 10Be record. This dip correlates with less negative 18O ice and could hence also be interpreted as a warm period with more precipitation. Even though the period seems to be warmer, it does not reach interglacial temperatures as indicated by 18O ice, even though the 10Be values reach the lowest concentration in the core. The broad 10Be peak at about 2475 m depth has the highest concentration from the bottom part of the ice core with levels as high as during glacial time. This peak is not anti-correlated with 18O ice, though the oxygen isotopes values are low, as is often seen during a glacial period, but suggesting an influence of changes in the activity either of the Sun or of the Earth’s magnetic field. Since there is evidence in the 10Be record for association of high concentration during excursions in the Earth’s magnetic field, we hypothesize that the peak might be due to a magnetic excursion such as the Iceland basin (IB) excursion around 180–190 kyr BP or the Jamaica/Pringle fall at 205–215 kyr BP. Assuming this ice to be around 200 kyr old, about 10% of the original 10Be concentration would have decayed which would put the original concentration at approximately 2.5×10^4 atoms/g ice. If the 10Be peak is from an excursion around 200 kyr, the narrow peak in 18O at 2480 m depth could be derived from the interglacial before the Eemian which occurred close to 200 kyr, clearly visible in the Vostok core for example. The 10Be concentration in the ice below this peak more or less levels out to values comparable to warmer periods even though the 18O indicates colder periods. The last few meters of measured 10Be in the NEEM ice core show high variability which may relate to mixing with bottom sediments since it is known that 10Be easily gets attached to sediments and hence ice layers with high sediment content can be enriched in 10Be.

Even though the Blake geomagnetic excursion has proven hard to date, it has been placed between 110 and 125 kyr BP. In the NEEM core, there is no sign of any excursions around this interval in the 10Be record. However, a big section of ice spanning 108–115 kyr BP on the EDML timescale is, as earlier discussed, missing. If the duration of the Blake event is less than 7 kyr, it is likely that it could have appeared in the time period where the ice is missing i.e. between 108 and 115 kyr BP.

Eemian 10Be concentrations are on average about 0.7 times lower than in the Holocene samples measured from the NEEM core. This lower concentration could be interpreted as the Eemian climate in Northern Greenland experienced about 65–90% higher precipitation.

Figure 2 | Accumulation rate plotted against mean 10Be concentrations for different periods during the Holocene. The listed accumulation rates cover the corresponding period of the 10Be concentrations within the Holocene for each measurement point, however the spanned time period can differ between the different sites. It should be noted that different standards have been used for some of the samples when calculating the concentrations, as well as different measuring procedures (filtering, no filtering of the samples etc.), which can result in an error of ±10% between the different cores. The red ring shows the mean Eemian 10Be concentration of 1.13×10^4 atoms/g ice on the correlation line and indicates annual precipitation of around 0.35 to just above 0.4 m ice equivalent at NEEM during the Eemian. It should be noted that Milcent and Renland, plot A, are situated far from the ice divide why they are removed from plot B where only sites at or close to the ice divide are included.

Figure 3 | 10Be concentrations 18O, CH$_4$ and air content on the EDML timescale. 10Be concentrations put on the EDML time scale with 18O, CH$_4$ and air content showing the dips in 10Be concentration and correlation with peaks in CH$_4$ as well as low air content. The black arrows marked P$_1$ and P$_2$ indicate peaks that could be correlated to each other in the different zones. The zones are color coded as follows, zone 0 is blue, zone 1 cyan, zone 2 green, zone 3 orange, zone 4 red and zone 5 dark red. Observe that zone 2 and 3 are reversed and overlapping when put in chronological order.
yield of >85%. Nb-powder was mixed with the BeO and the mixture was pressed into target for accelerator mass spectrometry (AMS) measurements. The Uppsala University AMS system was used for the measurement at a terminal voltage of 4.7 MV using 40 sample MC-SNICS (NEC) ion source and ion-beam current at 0.5–1 μA. Each sample was measured for three cycles for up to 20 minutes per sample. Isobaric interference from 9Be was additionally reduced one order of magnitude through use of a second stripper foil and a vertical 180° dipole magnet installed before the detector system. The concentration of ^{10}Be were calculated using the NIST SRM 4325 standard ($^{10}\text{Be}/^{9}\text{Be} = 3.03 \times 10^{-11}$, internally standardized value) at machine and statistical errors <1.5%. Although the mean average error of the samples is around 5.6%, the variability from one sample to another is related to variability in counting rates that is affected by sample current and amount of Nb-BeO mixture remaining in the cathode. Blanks were prepared following the same sample procedure and the blank values were 3×10^{-11}, which is two magnitudes smaller than the ice sample average of 3×10^{-11}.

1. Dahl-Jensen, D. et al. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).
2. Capron, E. et al. Synchronising EDML and NorthGRIP ice cores using delta O-18 of atmospheric oxygen (delta O-18(atm)) and CH4 measurements over MIS5 (80–123 kyr). Quaternary Sci. Rev. 29, 222–234; DOI:10.1016/j.quascirev.2009.07.014 (2010).
3. Korschinek, G. et al. A new value for the half-life of ^{10}Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Meth. B 268, 187–191 (2010).
4. Field, C. V., Schmidt, G. A., Koch, D. & Salyk, C. Modeling production and climate-related impacts on ^{10}Be concentration in ice cores. J. Geophys. Res.-Atmos. 111, D15107; DOI:10.1029/2005JD006410 (2006).
5. Heikilä, U. & Smith, A. Production rate and climate influences on the variability of ^{10}Be deposition simulated by ECHAM5-HAM globally, in Greenland and in Antarctica. J. Geophys. Res.-Atmos. 118, 2506–2520 (2013).
6. Raisbeck, G. M. et al. Cosmogenic ^{10}Be concentrations in Antarctic ice during the past 30,000 years, Nature 292, 825–826; DOI:10.1038/292825a0 (1981).
7. Yiou, F. et al. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. J. Geophys. Res.-Oceans 102, 26783–26794; DOI:10.1029/97JC01265 (1997).
8. Finkel, R. C. & Nishiizumi, K. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from camp Century, J. Geophys. Res.-Oceans 102, 26699–26706; DOI:10.1029/97JC01282 (1997).
9. Berggren, A. M. et al. Variability of ^{10}Be and ^{18}O in snow pits from Greenland and a surface traverse from Antarctica. Nucl. Instrum. Meth. B 294, 568–572 (2013).
10. Usoskin, I. G., Solanki, S. K. & Kovaltsov, G. A. Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301–309; DOI:10.1051/0004-6361:20077774 (2007).
11. Kovaltsov, G. A. & Usoskin, I. G. A new 3D numerical model of cosmogenic nuclide ^{10}Be-10 production in the atmosphere. Earth. Planet. Sci. Lett. 291, 182–188; DOI:10.1016/j.epsl.2010.01.011 (2010).
12. Raisbeck, G. M. et al. Evidence for two intervals of enhanced ^{10}Be deposition in Antarctic ice during the last glacial period. Nature 326, 273–277; DOI:10.1038/326273a0 (1987).
13. Aldahan, A. et al. Sixty year ^{10}Be record from Greenland and Antarctica. P. Indian AS -Earth 107, 139–147 (1998).
14. Aldahan, A. & Possnert, G. Geomagnetic and climatic variability reflected by ^{10}Be during the Quaternary and late Pliocene. Geophys. Res. Lett. 30, DOI:10.1029/2003GL018077 (2003).
15. Aldahan, A., Possnert, G., J., King, J. & Colman, S. Linking the ^{10}Be continental record of Lake Baikal to marine and ice archives of the last 50 ka: Implication for the global dust-aerosol input. Geophys. Res. Lett. 26, 2885–2888; DOI:10.1029/1999GL900469 (1999).
16. Knudsen, M. F., Henderson, G. M., Frank, M., Mac Niocaill, C. & Kubik, P. W. Implication for the global dust-aerosol input. Earth. Planet. Sc. Lett. 244, 26783–26794; DOI:10.1016/j.epsl.2007.10.051 (2008).
17. Channell, J. E. T. Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth. Planet. Sc. Lett. 244, 378–393; DOI:10.1016/j.epsl.2006.01.021 (2006).
18. Langereis, C. G., Dekkers, M. J., deLange, G. J., Paterne, M. & vanSantvoort, P. J. M. A new value for the half-life of ^{10}Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Meth. B 118, 588–599; DOI:10.1016/10.1016/j.epsl.2004.01.051 (2008).
19. Knudsen, M. F., Henderson, G. M., Frank, M., Mac Niocaill, C. & Kubik, P. W. Inverse anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the past 800 kyr. Nature 399, 249–252 (1999).
20. Gudyno, Y. & Valet, J.-P. Global changes in the intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399, 249–252 (1999).
21. Berggren, A.-M., Possnert, G. & Aldahan, A. Enhanced beam currents with co-precipitated niobium as a matrix for AMS measurements of ^{10}Be. Nucl. Instrum. Meth. B 268, 795–798; DOI:10.1016/j.nimb.2009.10.033 (2010).
22. Beer, J. et al. The Camp Century ^{10}Be record: implications for long-term variations of the geomagnetic dipole moment. Nucl. Instrum. Meth. B 5, 380–384; DOI:10.1016/0168-538x(84)90545-7 (1984).
Acknowledgments
We acknowledge financial support from the Swedish Research Council. NEEM is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC) and the USA (US NSF, Office of Polar Programs). I.U. acknowledges the financial support by the Academy of Finland to the ReSoLVE Center of Excellence (project no. 272157).

Author contributions
A.S.-S. contributed to collection (in Greenland) and chemical preparation of samples and together with A.A., G.P. and A.-M. B. designed the investigation, performed data analyses and interpretation and prepared the first draft of the paper. G.P. ran the AMS measurements. R.M., D.D.-J. and B.M.V. contributed to the drilling in Greenland and data interpretation. I.U. contributed to the interpretations regarding the solar variations. All authors were involved in the discussion and writing of the final manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Sturevik-Storm, A. et al. 10Be climate fingerprints during the Eemian in the NEEM ice core, Greenland. Sci. Rep. 4, 6408; DOI:10.1038/srep06408 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/