Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition

Pavel Izmailov\(^1\) \hspace{1cm} Alexander Novikov\(^2,3\) \hspace{1cm} Dmitry Kropotov\(^4\)

\(^1\)Cornell University
\(^2\)National Research University Higher School of Economics
\(^3\)Institute of Numerical Mathematics RAS
\(^4\)Lomonosov Moscow State University

April 10, 2018
Tensor Train Decomposition [Oseledets 2011]

- Generalizes low rank approximation

Low-Rank

\[
A_{3,4} = u_3^T v_4
\]

Tensor Train

\[
B_{2,3,1} = u_2^T v_3 w_1
\]

- Doesn’t suffer from curse of dimensionality
- Allows fast implementation of linear algebra operations
ML Applications of TT

- TensorNet: DNN compression
 - Feed Forward [Novikov et al. 2015]
 - Convolutional [Garipov et al. 2016]
 - Recurrent [Yu et al. 2018]

- Markov Random Fields [Novikov et al. 2014]

- Theoretical analysis of RNN expressive power [Khrulkov et al. 2018]

- Discrete VAE [coming soon]
ML Applications of TT

- TensorNet: DNN compression
 - Feed Forward [Novikov et al. 2015]
 - Convolutional [Garipov et al. 2016]
 - Recurrent [Yu et al. 2018]

- Markov Random Fields [Novikov et al. 2014]

- Theoretical analysis of RNN expressive power [Khrulkov et al. 2018]

- Discrete VAE [coming soon]

- TT-GP – Scalable GP framework
Gaussian Processes

Definition
Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

Posterior distribution of a one-dimensional Gaussian process
Gaussian Processes

Definition
Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

Posterior distribution of a one-dimensional Gaussian process

In Machine Learning GPs
- Allow automatic tuning of model complexity (non-parametric model)
- Provide principled uncertainty estimates
- Can discover complex non-linear patterns in data
Gaussian Processes

Definition
Gaussian process is a collection of random variables, any finite number of which have joint Gaussian distribution.

In Machine Learning GPs

- Allow automatic tuning of model complexity (non-parametric model)
- Provide principled uncertainty estimates
- Can discover complex non-linear patterns in data
- Exact inference is $O(n^3)$
Inducing Inputs

Approximate posterior distribution based on inducing inputs

- Auxiliary observations that approximate the data
- Allow fast approximate inference
Previous Methods

- Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require $O(nm^2 + m^3)$ computations, m is the number of inducing points
 - Applicable for large n (e.g. 10^6)
 - Infeasible for large $m \gg 10^3$
Previous Methods

- Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require $O(nm^2 + m^3)$ computations, m is the number of inducing points
 - Applicable for large n (e.g. 10^6)
 - Infeasible for large $m \gg 10^3$

- KISS-GP [Wilson and Nickisch 2015] leverages the structure in the covariance matrices; requires $O(n + m \log m)$ computations, $m = m_0^D$ and D is the number of features
 - Applicable for large n (e.g. 10^6) and m (e.g. 10^4)
 - Infeasible for large $D \gg 4$
Previous Methods

- Classical methods [e.g. Snelson and Ghahramani 2005, Titsias 2009, Hensman et al. 2013] require $O(nm^2 + m^3)$ computations, m is the number of inducing points
 - Applicable for large n (e.g. 10^6)
 - Infeasible for large $m \gg 10^3$

- KISS-GP [Wilson and Nickisch 2015] leverages the structure in the covariance matrices; requires $O(n + m \log m)$ computations, $m = m_0^D$ and D is the number of features
 - Applicable for large n (e.g. 10^6) and m (e.g. 10^4)
 - Infeasible for large $D \gg 4$

- *Tensor Train GP (TT-GP)* extends KISS-GP to high-dimensional problems
 - Applicable for large n (e.g. 10^6) and m (e.g. 10^8)
 - Applicable for larger D (e.g. 10)
ELBO [Hensman et al. 2013]

Evidence Lower Bound (ELBO) for GP regression:

\[
\log p(y) \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | k_i^T K_{mm}^{-1} \mu, \sigma^2) - \frac{1}{2\sigma^2} (\tilde{K}_{ii} + \text{tr}(k_i^T K_{mm}^{-1} \Sigma K_{mm}^{-1} k_i)) \right) - \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right) \rightarrow \max_{\mu, \Sigma, \theta, \sigma}
\]

where

- \(K_{mm} \in \mathbb{R}^{m \times m} \) is the covariance matrix computed at the inducing points
- \(k_i \in \mathbb{R}^m \) is the vector of covariances between the \(i \)-th training object and the inducing points
- \(\sigma^2 \) is the noise variance
- \(\mu \in \mathbb{R}^m, \Sigma \in \mathbb{R}^{m \times m} \) — variational parameters
- \(\tilde{K}_{ii} = \delta^2 - k_i^T K_{mm}^{-1} k_i \), where \(\delta^2 \) is the prior variance of the process at any point
- \(\theta \) represents kernel hyper-parameters
ELBO

Assume m is very large (e.g. 10^{10})

$$
\log p(y) \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | k_i^T K_{mm}^{-1} \mu, \sigma^2) - \frac{1}{2\sigma^2} \left(\tilde{K}_{ii} + \text{tr}(k_i^T K_{mm}^{-1} \Sigma K_{mm}^{-1} k_i) \right) \right) - \\
\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)
$$
Assume m is very large (e.g. 10^{10})

$$\log p(y) \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i|w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\tilde{K}_{ii} + \text{tr}(w_i^T \Sigma w_i)) \right)$$

$$- \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)$$

- Set inducing points on a grid
- Assume product kernel
- K_{mm} is in Kronecker product format
- $k_i \approx K_{mm} w_i$, w_i in Kronecker product format
TT-GP (Our Method)

\[
\log p(y) \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\tilde{K}_{ii} + \text{tr}(w_i^T \Sigma w_i)) \right)
\]

\[
-\frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)
\]

Restrict the format of variational parameters:
TT-GP (Our Method)

\[
\begin{align*}
\log p(y) & \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\tilde{K}_{ii} + \text{tr}(w_i^T \Sigma w_i)) \right) \\
& - \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)
\end{align*}
\]

Restrict the format of variational parameters:

- \(\Sigma \) in Kronecker product format

\[
\Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D
\]
TT-GP (Our Method)

\[
\log p(y) \geq \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\tilde{K}_{ii} + \text{tr}(w_i^T \Sigma w_i)) \right) \\
- \frac{1}{2} \left(\log \frac{|K_{mm}|}{|\Sigma|} - m + \text{tr}(K_{mm}^{-1} \Sigma) + \mu^T K_{mm}^{-1} \mu \right)
\]

Restrict the format of variational parameters:

- \(\Sigma \) in Kronecker product format
 \[
 \Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D
 \]
- \(\mu \) in TT format
 - \(\mu \) naturally reshapes to a tensor
Tensor Train format [Oseledets 2011]

Tensor μ is said to be represented in TT format if:

$$
\mu(i_1, \ldots, i_D) = G_1[i_1] \cdot G_2[i_2] \cdots G_D[i_D], \quad i_k \in \{1, \ldots, m_0\}
$$

G_k — TT-cores, r — TT-rank

- TT-format uses $\mathcal{O}(Dm_0r^2)$ memory to approximate a tensor with m_0^D elements
- Allows efficient implementation of linear algebra operations
- Generalizes Kronecker product format ($r = 1$)
TT-GP method

- Set inducing points \mathcal{Z} on a grid in the feature space.
- Σ in Kronecker product format, μ in TT format
- Maximize the ELBO wrt to
 - TT-cores of μ
 - Kronecker factors of Σ
 - kernel hyper-parameters
Properties of TT-GP

- Computational complexity

\[O(nDm^{1/D}r^2 + Dm^{1/D}r^3 + Dm^{3/D}); \]

\[m = m_0^D, \text{TT-ranks are on the scale of } r \approx 10; \]

- In the experiments we use up to \(n \approx 10^6, m \approx 10^{10} \)

- Computationally tractable for large \(D \)
 - For \(D >> 10 \) more practical to train embedding
Deep Kernel Embedding [Wilson et al. 2016]

Given base kernel \(k\), e.g. RBF

\[k(x, x') = \alpha^2 \cdot \exp(-\|x - x'\|^2 / \beta^2), \]

define deep kernel as

\[k_{\text{net}}(x, x') = k(\text{net}(x), \text{net}(x')), \]

where \(k\) is the base kernel, \(\text{net}\) is a mapping performed by a DNN.

- DNN weights → kernel hyperparameters
- Train as before
Experiments: RBF kernel

Dataset	Name	n	D	acc.	m	t (s)	acc.	m	d	t (s)
SVI-GP / KLSP-GP	Powerplant	7654	4	0.94	200	10	0.95	354	-	5
	Protein	36584	9	0.50	200	45	0.56	309	-	40
	YearPred	463K	90	0.30	1000	597	0.32	106	6	105
	Airline	6M	8	0.665*	-	-	0.694	208	-	5200
	svmguide1	3089	4	0.967	200	4	0.969	204	-	1
	EEG	11984	14	0.915	1000	18	0.908	1210	10	10
	covtype bin	465K	54	0.817	1000	320	0.852	106	6	172

- SVI-GP – [Hensman et al. 2013]
- KLSP-GP – [Hensman et al. 2015]
Experiments: Deep Kernel Embedding

Learned representation for the Digits dataset, $n = 1797$, $D = 64$
Experiments: Deep kernels

Dataset	SV-DKL	DNN	TT-GP					
	Name	n	acc.	acc.	t (s)	acc.	d	t (s)
Airline	6M	0.781	0.780	1055		0.788±0.002	2	1375
CIFAR-10	50K	—	0.915	166		0.908±0.003	9	220
MNIST	60K	—	0.993	23		0.9936±0.0004	10	64

- SV-DKL — [Wilson et al. 2016]
Discussion

TT-GP

- Uses Tensor Train decomposition and Kronecker format for variational parameters
- Scales to large n, m, D
- Naturally allows training deep kernels
Discussion

TT-GP

- Uses Tensor Train decomposition and Kronecker format for variational parameters
- Scales to large n, m, D
- Naturally allows training deep kernels
- Tends to overestimate uncertainties