Introduction: Polypharmacy has become a common health problem as populations age. We aimed to determine the prevalence of chronic and cumulative polypharmacy in the geriatric population using primary healthcare services in Turkey.

Materials and Methods: The electronic prescriptions ordered by family physicians across Turkey for geriatric patients (≥65 years) in the Prescription Information System during 2018 were studied. Chronic polypharmacy criteria were proportion of patients who were given prescriptions containing ≥5 drugs four or more times during a year. Cumulative polypharmacy was defined as proportion of patients who were prescribed ≥5 drugs with different ATC4 codes in a month or in each quarter of the year.

Results: Turkey’s total population is 82 million; 7,186,204 are aged 65 and over, constituting 8.8% of the total. Of this geriatric population, 6,104,798 (85.0%) had at least one prescription in 2018. Each geriatric patient had 6.4 prescriptions, with each prescription containing an average of 2.9 drugs with different fourth-level Anatomical Therapeutic Chemical codes. Each drug was prescribed in 2.7 boxes on average. Of these prescribed patients, 14.3% received prescriptions containing ≥5 drugs four or more times during a year. The percentage of patients who received at least one prescription per month containing ≥5 drugs ranged between 16.4% and 20.7%. The most commonly prescribed drugs were acetylsalicylic acid, diclofenac, paracetamol, and pantoprazole.

Conclusion: Polypharmacy is a critical health problem among geriatric population in Turkey as in other industrialized countries. Educating physicians as well as the public is essential to overcome polypharmacy.

Keywords: Geriatrics; Polypharmacy; Epidemiology; Prescriptions.
INTRODUCTION

As multimorbidity is becoming a major issue with increasing ageing populations, multidrug use (i.e., polypharmacy) is a common health problem in the geriatric population, leading to increased drug side effects, drug–drug interactions, decreased patient adherence to treatment, and increased morbidity (1,2). Although there is no consensus on the definition of polypharmacy, it is commonly referred to as the concurrent use of multiple, unnecessary, or ineffective drugs by a patient (3). Various indicators of polypharmacy have been used in the literature (4). The number of concomitant medications taken in a day, the average number of medications prescribed in a year, and the 20-day average of the number of medications prescribed at two-week intervals have been suggested as indicators of simultaneous multidrug use (5). The proportion of patients prescribed with five or more drugs in each quarter of the year has been considered a marker of cumulative multidrug use, and the proportion of patients taking five or more drugs that are prescribed at least three or four times a year has been defined as chronic multidrug use (6,7). The simultaneous use of five or more drugs has been reported to increase side effects and drug–drug interactions and thus is considered the most common indicator of polypharmacy (8). Based on these definitions, the prevalence of polypharmacy ranges between 45% and 82% in the geriatric populations (9,10).

Similar to other developing countries, the proportion of elderly people is increasing in the Turkish population. Individuals over 65 years constitute 8.8% of the population of 82 million of Turkey in 2018 (11). However, the prevalence of polypharmacy in the elderly has not been comprehensively studied at the population level.

The primary aim of this study was to determine the prevalence of chronic and cumulative polypharmacy in patients aged 65 and over who use primary healthcare services across Turkey.

MATERIALS AND METHODS

Study design and population

This was a retrospective study in which electronic prescription data were analyzed. Prescriptions from family physicians across Turkey for patients aged 65 and over and entered into the Prescription Information System (PIS) during 2018 were studied. The PIS is a nationwide database where family physicians enter their prescription data. The PIS was developed and is still operated by the Turkish Medicines and Medical Devices Agency (TMMDA) to monitor and encourage rational drug prescription across the country (12).

The study sample was composed of all electronic prescription data entered in the PIS between January 1, 2018 and December 31, 2018 by family physicians for patients aged 65 and over. The Anatomical Therapeutic Chemical (ATC) classification system of the World Health Organization Collaborating Center for Drug Statistics Methodology was used for the drug nomenclature (13).

The electronic prescription data from the PIS were obtained as the number of patients and prescriptions and did not include individual data of any patient or physician. The study was approved by the Baskent University Medical and Health Sciences Ethics Committee (Project no: KA19/241; Date: 09.07.2019) and supported by Baskent University Research Fund. The PIS data was used with the permission and contribution of the TMMDA’s Department of Rational Drug Use (E.116688, 11.07.2019).

Outcome variables: polypharmacy indicators

The average number of prescriptions per patient, the average number of drug items, and the average number of boxes per prescription were calculated. Due to their limited systemic effects, topical dermatological agents were excluded from the analysis.

Chronic polypharmacy was defined as the
A proportion of patients prescribed four or more prescriptions over one year, each of which contained 3, 4, or ≥5 drugs per prescription with different ATC 4 codes. Since this criterion aimed to determine chronic systemic multidrug use, topical dermatological agents (ATC code D) with limited systemic effects and systemic antibiotics (ATC codes J01) generally used in the treatment of acute infections were excluded.

Cumulative polypharmacy was defined as the proportion of patients who were prescribed ≥5 drugs with different ATC 4 codes in a month or in each quarter of the year. This criterion aimed to evaluate the multiple use of systemic drugs within a certain period. Therefore, while topical dermatological agents (ATC code D) were excluded from the analysis, systemic antibiotics (ATC codes J01) with the potential to interact with the concomitant drugs were included.

The 10 most commonly prescribed drugs (excluding topical dermatological agents [ATC code D] and systemic antibiotics [[ATC codes J01]] were listed according to their ATC 4 and ATC 5 codes. The 10 most common diagnoses entered into the PIS database and the distribution of patients and prescriptions for these diagnoses were also evaluated. The International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) was used for the definition and coding of diagnoses.

Statistical analysis

The average number of prescriptions per patient was calculated by dividing the total number of prescriptions issued to number of geriatric patients in primary healthcare settings across Turkey in 2018. In other words, dividing the total number of prescriptions (denoted as y) by the number of patients (denoted as x) yields the average number of prescriptions per patient (p). This is expressed mathematically as p=y/x. The average number of drug items and the number of boxes were calculated as per prescription in a similar way. Other data were summarized as descriptive statistics (mean, standard deviation, frequency, and percentage) and were presented in tables and figures. Since the data were obtained not as individual patient data, but as an aggregate data of the number of patients, prescriptions, drug items, and boxes, etc.; significance tests could not be performed.

RESULTS

Turkey’s population aged 65 and over in 2018 was 7,186,204. Of this population, 6,104,798 (85.0%) had at least one prescription in primary healthcare settings in 2018. The percentage of prescribed patients rose with increasing age, reaching 91.4% for patients aged 85 and over (Figure 1). While the prescription rate was higher in female patients than in male patients aged 65–69 years (84.0% vs. 77.9%), this difference disappeared in older age groups (Figure 1).

Over 39 million prescriptions were issued to population over 65 in 2018, which corresponds to an average of 6.4 prescriptions per patient. Each prescription contained an average of 2.9 individual drug items, and each drug was prescribed in an average 2.7 boxes (Table 1). There was a systemic antibiotic in 7.7% of all prescriptions.

Chronic polypharmacy

The percentage of patients prescribed with four or more prescriptions over one year, each containing 3, 4, or ≥5 drugs per prescription were 15.9%, 9.9%, and 14.3%, respectively, with no gender difference (Table 2). The percentage of patients chronically prescribed multiple drugs rose with increasing patient age (Figure 2).

Cumulative polypharmacy

The percentage of patients who received at least one prescription containing ≥5 drugs in a month ranged between 16.4% and 20.7%, being slightly higher during the winter months (Table 3, Figure 3A). The percentage of patients who
Figure 1. Percentage of Turkey's population aged 65 and over having at least one prescription in primary healthcare settings in 2018.

Table 1. Basic characteristics of prescriptions for geriatric patients in primary healthcare settings across Turkey in 2018.

	Male	Female	Total*
Total population of Turkey aged 65 years and over in 2018	3,170,132	4,016,072	7,186,204
Prescribed patients	2,626,705	3,476,943	6,104,798
Prescriptions	16,676,117	22,438,776	39,117,912
Prescriptions containing antibiotics	1,324,083	1,694,810	3,019,303
Individual drug items in all prescriptions	46,672,701	66,673,332	113,353,487
Drug boxes in all prescriptions	124,830,141	175,775,687	300,622,579
Prescription per patient	6.3	6.5	6.4
Individual drug items per prescription	2.8	3.0	2.9
Drug boxes per prescription	7.5	7.8	7.7
Drug boxes per item	2.7	2.6	2.7

*Total number of patients includes individuals whose gender information has not been entered.
received at least one prescription containing ≥5 different drugs in a quarter was 28.3%, 26.4%, 24.8%, and 25.7% in the first, second, third, and fourth quarters of 2018, respectively (Table 3, Figure 3B).

Common drugs and diagnoses

Proton pump inhibitors and acetic acid derivatives constituted the most commonly prescribed group of drugs, followed by platelet aggregation inhibitors and anti-inflammatory drugs, such as anilides and propionic acid derivatives at the ATC 4 level (Table 4). At the ATC 5 level, acetylsalicylic acid, diclofenac, paracetamol, and pantoprazole were the most commonly prescribed drugs (Table 4). The most common diagnoses in the analyzed prescriptions were essential hypertension, myalgia, gastroesophageal reflux, and benign prostate hyperplasia.

DISCUSSION

Polypharmacy is a growing medical concern among the elderly population, causing critical...
problems such as increased healthcare costs, a high risk of adverse drug reactions, drug-drug interactions, medication non-adherence, reduced functional capacity, and cognitive impairment (1,2). In this prescription-based nationwide study, we determined the prevalence of chronic and cumulative polypharmacy in the geriatric population of 6,104,798 individuals using primary healthcare services in Turkey.

Similar to previous studies, the present study showed that 85% of Turkey’s population aged 65 years and over received at least one prescription drug during 2018. A survey conducted by in-home interviews in the United States of 2,206 community-dwelling adults aged 62 years and over reported that 87% were using at least one prescription medication (14). Prescriptions containing systemic antibiotics constituted 7.7% of all prescriptions.
Table 3. The patients who were cumulatively prescribed ≥5 drugs.

Timeframe	Number of prescribed patients	Patients who received at least one prescription containing ≥5 different drugs	
	n	%	
First quarter (January-March)	4,760,283	1,348,384	28.3%
January	2,761,601	570,826	20.7%
February	2,562,455	510,417	19.9%
March	2,733,532	544,401	19.9%
Second quarter (April-June)	4,806,627	1,271,332	26.4%
April	2,632,597	506,631	19.2%
May	2,785,906	543,469	19.5%
June	2,522,276	472,896	18.7%
Third quarter (July-September)	4,448,414	1,103,600	24.8%
July	2,637,344	492,563	18.7%
August	2,448,043	456,207	18.6%
September	2,022,176	331,619	16.4%
Fourth quarter (October-December)	4,533,457	1,166,790	25.7%
October	2,210,510	362,790	16.4%
November	2,640,460	503,152	19.1%
December	2,583,139	506,687	19.6%
Table 4. Considering the number of patients, 10 most commonly prescribed drugs at ATC4 and ATC5 level.

ATC4 Code	Name	Male	Female	Total*			
		n	%	n	%	n	%
A02BC	Proton pump inhibitors	1,082,459	41.2%	1,702,555	49.0%	2,785,272	45.6%
M01AB	Acetic acid derivatives and related	886,245	33.7%	1,411,783	40.6%	2,298,028	37.6%
B01AC	Platelet aggregation inhibitors	983,573	37.4%	1,094,577	31.5%	2,078,150	34.0%
N02BE	Anilides	716,621	27.3%	1,147,141	33.0%	1,863,762	30.5%
M01AE	Propionic acid derivatives	727,977	27.7%	1,093,753	31.5%	1,821,730	29.8%
M02AA	Anti-inflammatory preparations, non-steroids for topical use	623,395	23.7%	1,032,524	29.7%	1,655,923	27.1%
R05X	Other cold preparations	725,510	27.6%	879,684	25.3%	1,605,204	26.3%
C07AB	Beta blocking agents, selective	610,965	23.3%	793,974	22.8%	1,404,939	23.0%
C09DA	Angiotensin II antagonists and diuretics	410,754	15.6%	974,356	28.0%	1,385,107	22.7%
C08CA	Dihydropyridine derivatives	370,858	14.1%	632,566	18.2%	1,003,424	16.4%

ATC5 Code	Name	Male	Female	Total*			
		n	%	n	%	n	%
B01AC06	Acetylsalicylic acid	828,083	31.5%	964,593	27.7%	1,792,788	29.4%
M01AB05	Diclofenac	682,593	26.0%	1,081,009	31.1%	1,763,502	28.9%
R05X	Other cold preparations	725,510	27.6%	879,684	25.3%	1,605,194	26.3%
N02BE01	Paracetamol	494,815	18.8%	812,304	23.4%	1,307,119	21.4%
A02BC02	Pantoprazole	456,711	17.4%	708,201	20.4%	1,164,912	19.1%
C07AB02	Metoprolol	446,289	17.0%	513,983	14.8%	960,272	15.7%
A10BA02	Metformin	371,780	14.2%	589,156	16.9%	960,936	15.7%
A11DB	Vitamin B1 in combination with vitamin B6 and/or vitamin B12	362,409	13.8%	574,483	16.5%	937,007	15.3%
A02BC03	Lansoprazole	363,242	13.8%	567,072	16.3%	930,314	15.2%
M01AE17	Dexketoprofen	361,156	13.7%	561,044	16.1%	922,200	15.1%

*Total number of patients includes individuals whose gender information has not been entered.
four or more prescriptions in a year. According to
2016 data, this proportion varies between 44% and
87% among European countries (17). Although
previous local and small-size studies for Turkey
reported that higher rate of chronic polypharmacy
(18), in the present study, only 14.3% of patients
aged ≥65 years received prescriptions containing
≥5 drugs four or more times during one year. Thus,
it is noteworthy that the chronic polypharmacy
rate in Turkey is remarkably lower than European
countries. This low rate is thought to be due
to the difference between our study and the
OECD indicator in terms of patient age and the
definition of chronic polypharmacy. While our
study population consisted only of elderly patients
who used primary healthcare services, chronic
polypharmacy data in other European countries
include all people in prescribing databases that
cover patients with chronic diseases who apply
to the second- and third-level healthcare services
and potentially use many medications chronically.

In our study, the prevalence of cumulative
polypharmacy (the percentage of patients who
received five or more drugs in a prescription
in a month) ranged between 16.4% and 20.7%
during 2018. In the literature, the prevalence of
polypharmacy between 27% and 67%, depending
on the design and population of the studies.
In a National Health Survey from Spain, the
prevalence of polypharmacy (≥5 medications) and
hyperpolypharmacy (≥10) in 7,023 participants
aged 65 and over was 27.3% and 0.9%, respectively
(19). In primary care setting studies from Turkey, the
prevalence of polypharmacy ranged between 33%
and 42%, and the number of medicines used per
day was 4.3-4.7-in adults aged ≥65 years (20,21).
The accessibility to health services, female gender,
depression, and chronic diseases were reported to
be significant risk factors for polypharmacy (20). In a
registry-based cross-sectional study from Sweden,
in a cohort of 15,945 patients aged 75 years and
over, the proportion of patients who used five or
more medications at the same time was reported
to be 33.4% (22). In an Italian registry-based
study (the REPOSI register), the prevalence of
polypharmacy (five or more different medications
in a prescription) was 51.9% at hospital admission
and 67.0% at discharge among 1,332 inpatients
aged ≥65 years across 38 internal medicine wards
in Italy (23). The comparability of polypharmacy
rates between studies is limited because of the
differences between the populations and the
parameters of polypharmacy in studies.

Proton pump inhibitors, anti-inflammatory
drugs, and antiplatelets were the most often
prescribed medications. The most commonly
prescribed specific molecules were acetylsalicylic
acid, diclofenac, paracetamol, and pantoprazole.
In a survey of adults aged 62 years and over from
the United States, lipid-lowering medications
were reported to be the most commonly
prescribed agents followed by antiplatelets,
anti-inflammatory drugs, and proton pump inhibitors
(14). In another survey of 164,513 multimorbid
patients aged over 65 years from Spain, proton
pump inhibitors, lipid-lowering medications, and
antiplatelets were the most commonly prescribed
drugs in primary care settings (24). Although the
most prescribed drugs in our study were similar
to other countries, considering the most common
diagnosis, hypertension, it is remarkable that
lipid-lowering and antihypertensive drugs were
not prescribed frequently, due to the fact that
these drugs are usually prescribed in secondary
and tertiary care services rather than primary care
in Turkey.

The main limitation of the present study
was that it analyzed the drug use of the elderly
population through prescriptions. Although the
major way to access drugs in Turkey is through
prescriptions, people may freely obtain over-
the-counter medications or dietary supplements.
This study did not evaluate patients’ access to
these substances or medication adherence.
Considering the increasing use of over-the-
counter medications and herbal or dietary
supplements among older adults and critical
drug–herb and drug–supplement interactions
(14,25), non-prescription medication should also be taken into account in future polypharmacy studies. Furthermore, this study focused primarily on the number of medications in prescriptions, but not on unnecessary or inappropriate drug prescription, which is a critical component of potentially inappropriate medication use along with polypharmacy.

In conclusion, 85.0% of Turkey’s geriatric population had at least one prescription in 2018. Each patient had an average of 6.4 prescriptions, and each prescription contained 2.9 medications on average. The percentage of patients who were chronically prescribed with five or more medications was 14.3%, and those who were cumulatively on polypharmacy ranged between 16.4% and 20.7% during the year. The most commonly prescribed drugs were proton pump inhibitors, anti-inflammatory drugs, and antiplatelets. Polypharmacy is a critical health problem among the geriatric population in Turkey as in industrialized countries. Educating physicians as well as the public is essential to overcome polypharmacy.

REFERENCES
1. Coskun Benlidayi I. Polypharmacy in geriatric rheumatology. Rheumatol Int 2019;39(6):1115-6. (PMID: 30810781).
2. Bahat G, Tufan F, Akin S, Tufan A, Erten N, Karan MA: Rational drug use in the elderly. J Gerontol Geriat Res 2012;1:104. doi:10.4172/2167- 7182.1000104
3. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr 2017;17(1):230. (PMID: 29017448).
4. Pesante-Pinto JL. Clinical pharmacology and the risks of polypharmacy in the geriatric patient. Phys Med Rehabil Clin N Am 2017;28(4):739-46. (PMID: 29031340).
5. Fincke BG, Snyder K, Cantillon C, et al. Three complementary definitions of polypharmacy: methods, application and comparison of findings in a large prescription database. Pharmacoepidemiol Drug Saf 2005;14(2):121-8. (PMID: 15386712).
6. Carey IM, De Wilde S, Harris T, et al. What factors predict potentially inappropriate primary care prescribing in older people? Analysis of UK primary care patient record database. Drugs Aging 2008;25(8):693-706. (PMID: 18665661).
7. Cahir C, Fahey T, Teeling M, Teljeur C, Feely J, Bennett K. Potentially inappropriate prescribing and cost outcomes for older people: a national population study. Br J Clin Pharmacol 2010;69(5):543-52. (PMID: 20573091).
8. Grimmermann T, Himel W. Polypharmacy in primary care practices: an analysis using a large health insurance database. Pharmacoepidemiol Drug Saf 2009;18(12):1206-13. (PMID: 19795368).
9. Morin L, Johnell K, Laroche ML, Fastbom J, Wastesson JW. The epidemiology of polypharmacy in older adults: register-based prospective cohort study. Clin Epidemiol 2018;10:289-98. (PMID: 2956911)
10. Wastesson JW, Morin L, Laroche ML, Johnell K. How chronic is polypharmacy in old age? A longitudinal nationwide cohort study. J Am Geriatr Soc 2019;67(3):455-62. (PMID: 30575952).
11. Turkish Statistical Institute. Population by Years. Age Group and Sex. Census of Population—ABPRS. 2018. [Internet] Available from: http://www.turkstat.gov.tr/ UstMenu.do?metod=temelist. Accessed: 1.12.2019.
12. Aksoy M, Alkan A, Işı F. Rational drug use promotional activities of Ministry of Health. Türkiye Klinikleri J Pharmacol-Special Topics 2015;3(1):19-26.
13. WHO Collaborating Centre for Drug Statistics Methodology. Anatomical Therapeutic Chemical (ATC) classification system. [Internet] Available from: https://www.who.int/classifications/atcddd/en/. Accessed: 1.12.2019.
14. Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med 2016;176(4):473-82. (PMID: 26998708).
15. Glinz D, Leon Reyes S, Saccilotto R, et al. Quality of antibiotic prescribing of Swiss primary care physicians.
with high prescription rates: a nationwide survey. J Antimicrob Chemother 2017;72(11):3205-12. (PMID: 28961815).

16. Pouwels KB, Hopkins S, Llewellyn MJ, Walker AS, McNulty CA, Robotham JV. Duration of antibiotic treatment for common infections in English primary care: cross sectional analysis and comparison with guidelines. BMJ 2019;364:i440. (PMID: 30814052).

17. OECD Health Care Quality Framework. Health Care Quality Indicators, 2016. [Internet] Available from: https://stats.oecd.org/Index.aspx?QueryId=69051 Accessed: 1.2.2020

18. Şayir ÇT, Karaoğlu SA, Toprak DE. Evaluation of polypharmacy and complementary therapy use in patients ≥65 years, attending to Family Medicine Outpatient Clinic of Şişli Etfal Training and Research Hospital. Türk Aile Hek Derg 2014;18:35-41. doi:10.2399/tahd.14.35220

19. Gutiérrez-Valencia M, Aldaz Herce P, Lacalle-Fabo E, Contreras Escámez B, Cedeno-Veloz B, Martínez-Velilla N. Prevalence of polypharmacy and associated factors in older adults in Spain: Data from the National Health Survey 2017. Med Clin (Barc) 2019;153(4):141-50. (PMID: 30803798).

20. Ersoy S, Engin VS. Accessibility to healthcare and risk of polypharmacy on chronically ill patients. J Coll Physicians Surg Pak 2019;29(6):505-10. (PMID: 31133145).

21. Kurt M, Akdeniz M, Kavukcu E. Assessment of Comorbidity and Use of Prescription and Nonprescription Drugs in Patients Above 65 Years Attending Family Medicine Outpatient Clinics. Gerontol Geriatr Med 2019 6;5:2333721419874274. (PMID: 31523700).

22. Thorell K, Midlöv P, Fastbom J, Halling A. Use of potentially inappropriate medication and polypharmacy in older adults: a repeated cross-sectional study. BMC Geriatr 2020;20(1):73. (PMID: 32075586).

23. Mannucci PM, Nobili A, Pasina L; REPOSI Collaborators (REPOSI is the acronym of REgistro POliterapie SIM, Società Italiana di Medicina Interna). Polypharmacy in older people: lessons from 10 years of experience with the REPOSI register. Intern Emerg Med 2018;13(8):1191-200. (PMID: 30171585).

24. Guisado-Clavero M, Violán C, López-Jimenez T, et al. Medication patterns in older adults with multimorbidity: a cluster analysis of primary care patients. BMC Fam Pract 2019;20(1):82. (PMID: 31195985).

25. Gencer MZ, Arica S. Use of polypharmacy and herbal medication on quality of life in elderly patients at Okmeydani hospital’s polyclinics in Istanbul, Turkey. J Pak Med Assoc 2017 67(6):895-900. PubMed (PMID: 28585589).