Thoracic Endovascular Aortic Repair With a Right Thoracotomy Approach: a Case Report

Hideki Tanioka (b.jack142760@gmail.com)
Sakai City Medical Center: Sakai Shiritsu Sogo Iryo Center
https://orcid.org/0000-0002-8892-144X

Takanori Shibukawa
Sakai City Medical Center: Sakai Shiritsu Sogo Iryo Center

Keiji Iwata
Sakai City Medical Center: Sakai Shiritsu Sogo Iryo Center

Case report

Keywords: TEVAR(thoracic endovascular aortic repair), right thoracotomy, meandering of the aorta

Posted Date: October 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-955168/v1

License: ☇ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The common femoral artery is usually the preferred access route for thoracic endovascular aortic repair (TEVAR). However, if access from the common femoral artery is challenging, other routes must be considered. We report a case of TEVAR performed by approaching the descending thoracic aorta with a right thoracotomy and using the descending thoracic aorta as an access route.

Case presentation: A 70-year-old female was diagnosed with a descending thoracic aortic aneurysm (65 mm in diameter), a thoracoabdominal aneurysm (54 mm in diameter), and an abdominal aortic aneurysm (49 mm in diameter). Since the patient had severe chronic obstructive pulmonary disease, one-stage replacement of the thoracoabdominal aortic aneurysm was contraindicated and TEVAR on the descending aorta was selected. A strong tortuous section of the aorta—from the descending aorta to the abdominal aorta—hampered endovascular access to the site from the common femoral artery. A TEVAR approach from the abdominal aorta was also considered; however, an abdominal aortic aneurysm and a transverse colon loop stoma from an earlier surgery presented challenges to this technique. We chose to access the descending thoracic aorta with a thoracotomy from the right 6th intercostal space for TEVAR, because the access route that is not affected by the meandering of the aorta is considered to be the descending aorta with a right thoracotomy. The patient's postoperative course was uneventful after the stent graft was placed. No complications were detected with postoperative contrast-enhanced computed tomography (CT).

Conclusions: Our findings suggest that TEVAR can be performed by approaching the descending aorta from a right thoracotomy, if variations of vascular anatomy interfere with the more commonly used femoral artery approach.

Background

The common femoral artery is the preferred access route for thoracic endovascular aortic repair (TEVAR). However, use of this route can sometimes be challenging, such as in cases of smaller artery diameter from the common iliac artery to the common femoral artery, poorly characterized arterial wall, or a strong tortuous aorta. In such cases, another access route for TEVAR must be used [1]. We report a case of a TEVAR performed by approaching the descending aorta with a right thoracotomy and using the descending thoracic aorta as an access route.

Case Presentation

A 70-year-old woman with high blood pressure was referred to our hospital for cardiovascular surgery after a chest radiograph revealed an enlargement of the descending aorta. Computed tomography (CT) revealed the presence of multiple aneurysms with the following locations and diameters: 1) descending thoracic aorta [65 mm], 2) thoracoabdominal aorta [54 mm], and 3) abdominal aorta [49 mm] (Figure 1). The patient was diagnosed with severe chronic obstructive pulmonary disease preoperatively, based on a
pulmonary function test that showed a forced expiratory volume of 47% per sec. Consequently, we considered the risk associated with one-stage thoracoabdominal replacement to be too high for the patient and planned instead to perform TEVAR on the descending thoracic aorta. During February 2021, while the patient was awaiting surgery, she developed an ileus due to stenosis of the sigmoid colon and required surgery for placement of a transverse colon loop stoma. The patient’s postoperative course was uneventful, and TEVAR was scheduled for March 2021. The aorta (from the descending thoracic aorta to the abdominal) was very tortuous, hampering access to the surgical site from the common femoral artery. Although we considered approaching from the abdominal aorta, this access route was difficult because the abdominal aorta also had an aneurysm, and a transverse colon loop stoma was already constructed. We considered inserting a stent graft by pulling through a guide wire or using a long sheath, but none of these options seemed feasible. The access route that was not affected by the meandering of the aorta was considered to be the descending aorta with a right thoracotomy. Therefore, we decided to approach the descending aorta with a right 6th intercostal thoracotomy as the access route and perform TEVAR (Figure 2A)

The patient was placed in the supine position with a 10° elevation of the superior right thorax for surgery under general anesthesia using separate lung ventilation. We performed a thoracotomy in the right 6th intercostal space. Mediastinal attachments between the lungs and descending aorta were separated and the descending aorta was exposed. Double purse-string sutures using felted 3-0 Ethibond were placed in the section of descending aorta to be punctured (Figure 2B). A 6 French (Fr) sheath was inserted into the descending aorta. A marker pigtail catheter was inserted into the ascending aorta; the existing wire was replaced with a stiff wire and a 24 Fr delivery sheath (DrySeal, WL Gore, Flagstaff, AZ) was inserted into the distal aortic arch. The marker pigtail catheter was then advanced into the distal aortic arch and digital subtraction angiography (DSA) was performed to determine the necessary stent-graft size and placement location. The stent-graft (Gore cTAG 37-37-15, WL Gore, Flagstaff, AZ) was deployed at the periphery of the proposed indwelling stent site. After raising the sheath again, another stent-graft (Gore cTAG 45-45-15, WL Gore, Flagstaff, AZ) was inserted and deployed at the central region of the site. The central landing zone and the stent-graft connection part were attached using a trilobe balloon catheter. We confirmed that there was no endoleak with DSA (Figure 3). The sheath was removed, and hemostasis was confirmed. A drain was placed in the right thoracic cavity and the wound was closed. The operative time was 2.5 hr. Intubation was maintained during a 2-hr postoperative recovery period. The patient was extubated immediately upon admission to the intensive care unit. The patient was discharged from the intensive care unit 1 day after the operation; further postoperative recovery was uneventful. Postoperative contrast-enhanced CT images showed no complications. The patient was discharged from the hospital on postoperative day 10.

Discussion And Conclusions

TEVAR has seen increased use as a procedure for treating descending thoracic aortic aneurysms and is the preferred procedure when anatomic requirements for its use are met [2, 3]. The common femoral artery is often selected as the access route for TEVAR. However, other access routes are required when: 1)
the vascular diameter at the bifurcation of the common iliac artery and the common femoral artery is inadequate, 2) the arterial walls are poorly characterized, 3) arteries are tortuously shaped, or 4) access to the aorta is difficult. The external iliac artery and common iliac artery are also often used as access routes [1]. Additionally, there are reports of TEVAR via the abdominal aortic approach [4], ascending aortic approach [5, 6], apex approach [7], and carotid artery approach [8]. In our patient, marked convolution of the descending thoracic aorta and abdominal aorta made TEVAR with the normal approach problematic. Marked distortion of the path of the descending thoracic aorta allowed access to it with a right thoracotomy approach; therefore, that site was used for endovascular surgical access.

To the best of our knowledge, there are no reported cases of TEVAR performed by approaching the tortuous descending thoracic aorta through a right thoracotomy. A right thoracotomy is less invasive than a descending thoracic aortic replacement or thoracoabdominal aortic replacement with a left thoracotomy. In addition, compared to the abdominal aortic approach, manipulation of the catheter was easier and operative time was shorter with the thoracic aortic approach we used, since this latter route was not affected by twisting of the aorta. The shorter operative time allowed for early extubation, despite the performance of a right thoracotomy.

In summary, our findings suggest that depending on the anatomical conditions, TEVAR can be performed by approaching the descending aorta with a right thoracotomy, if the common femoral artery approach is challenging.

Abbreviations

CT: computed tomography

DSA: digital subtraction angiography

TEVAR: thoracic endovascular aortic repair

Declarations

Ethics approval and consent to participate

The patient provided informed consent, and the study design was approved by the clinical research ethics committee of Sakai City Medical Center.

Consent for publication

The patient consents to the use of the data for publication.

Availability of data and materials

All data related to this study are stored in the electronic medical record of Sakai City Medical Center.
Competing interests
The authors declare that they have no competing interests.

Funding
There is no funding organization for this study.

Authors’ contributions
Hideki Tanioka is the corresponding author and did the work on the manuscript under the guidance of Keiji Iwata and Takanori Shibukawa.

Acknowledgements
We would like to thank the gastrointestinal surgeons in our hospital for constructing a transverse colon loop stoma.

References
1. Shults CC, Tolle F, Woo EY. Alternative access options for TEVAR. Endovasc Today. 2016;15:77-80.
2. Harky A, Kai Chan JS, Ming Wong CH, Bashir M. Open versus endovascular repair of descending thoracic aortic aneurysm disease: a systematic review and meta-analysis. Ann Vasc Surg. 2019;54:304-15.e5.
3. Gopaldas RR, Huh J, Dao TK, LeMaire SA, Chu D, Bakaeen FG, et al. Superior nationwide outcomes of endovascular versus open repair for isolated descending thoracic aortic aneurysm in 11,669 patients. J Thorac Cardiovasc Surg. 2010;140:1001-10.
4. Wada T, Kadohama T, Takagi D, Yamaura G, Tanaka F, Kiryu K, et al. Direct abdominal aortic access for thoracic endovascular aortic repair in a patient with severe aortic and arterial calcification. Ann Vasc Surg. 2021;73:509.e21-509.e24.
5. Botta L, Bruschi G, Fratto P, Margari V, Solcia M, Borgia F, et al. Direct transaortic TEVAR: an alternative option for selected patients with unsuitable peripheral access. Ann Thorac Surg. 2016;102:e117-9.
6. Anaya-Ayala JE, Cheema ZF, Davies MG, Bismuth J, Ramlawi B, Lumsden AB, et al. Hybrid thoracic endovascular aortic repair via right anterior mini thoracotomy. J Thorac Cardiovasc Surg. 2011;142:314-8.
7. Saouti N, Vos JA, van de Heuvel D, Morshuis WJ, Heijmen RH. Thoracic aorta stent grafting through transapical access. Ann Vasc Surg. 2015;29:362.e5-e9.
8. Asano S, Hayashida N, Shibata Y, Koizumi S, Ito T, Ikeuchi H, et al. A case of thoracic endovascular aortic repair using carotid access with axillary–carotid bypass for descending aortic aneurysm in a patient with aortoiliac occlusive disease. Ann Vasc Dis. 2019;12:105-8.
Figures

Figure 1

Preoperative computed tomography image Computed tomography revealed a descending thoracic aortic aneurysm (65 mm in diameter), a thoracoabdominal aneurysm (54 mm in diameter), and an abdominal aortic aneurysm (49 mm in diameter).
Figure 2

Approach to the descending aorta (Figure 2 A) We approached the descending aorta with a right 6th intercostal thoracotomy and used it as an access route to perform TEVAR. (Figure 2 B) Double purse string suture with felted 3-0 Ethibond was placed in the descending aorta to be punctured.
Figure 3

Intraoperative final contrast TEVAR was completed and no endoleak was found on confirmatory digital subtraction angiography.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 2110071751001.pdf