Hematological Prediction Study of Peritonitis Following Laparotomy in Goats

Running Head: HEMATOLOGICAL PREDICTION OF PERITONITIS

Olawale Alimi ALIMI,1*, Waliyullahi Folorunsho ABDULWAHAB1, Sadudeen Adetayo AMID1, Salman Zubairu ABDULKADIR1, Fatai Mobolaji LAWAL1, Abdullahi ALIYU1, Shakirat Omolara ADEDIRAN1, Abdullateef Abiodun AJADI2, Mashood BOLAJI2, Hameedat Olayinka UTHMAN3, John Bayo ADEYANJU1

1Department of Veterinary Surgery and Radiology, University of Ilorin, Nigeria
2Department of Veterinary Pathology, University of Ilorin, Nigeria
3University of Ilorin Veterinary Teaching Hospital, Ilorin, Nigeria

Corresponding Author: Olawale Alimi Alimi, D.V.M.
Address: Department of Veterinary Surgery and Radiology, University of Ilorin, Nigeria

Correspondence e-mail address: alimialimi@gmail.com
ABSTRACT

Surgical trauma to the abdominal wall and peritoneum during celiotomy is expected to cause postoperative inflammation. However, complications after abdominal surgery are hardly detected in the early stage. Hematological analysis of blood has been considered beneficial in disease diagnosis and prognosis. This study aimed to evaluate the hematological parameters predicting peritonitis in goats and to determine the post-surgery day that hematology is significant. Six apparently healthy West African Dwarf goats were included in this study. After 2 weeks of acclimatization, blood samples were obtained daily for 3 days for hematological analyses, which served as the baseline data. The right flanks of the animals were aseptically prepared routinely for exploratory laparotomy. Restraint and anesthesia were achieved using xylazine and lignocaine using an inverted “L” block technique. Laparotomy was performed, and the incision was left for 20 min and then closed routinely. Blood samples were collected for hemogram 24 hr postoperatively and daily for 7 days. Based on the post-surgery hematology results, relative neutrophil (P=0.015) and lymphocyte (P=0.006) counts significantly increased and decreased on day 5 respectively. Significant differences were also observed for red blood cell count, hemoglobin concentration, and packed cell volume on days 5, 6, and 7 respectively. It could therefore be concluded that the diagnostic result for hematology post-laparotomy can be obtained on the fifth and sixth day.

KEYWORDS: goat, hematology; laparotomy; peritonitis; west african dwarf
INTRODUCTION

In ruminants, laparotomy is considered the most frequent surgical procedure [1] and is carried out for exploratory purpose in conditions when confirmatory diagnosis is dicey and when the established diagnosis is indicative of this procedure [1, 9]. The indications for laparotomy include but are not limited to abomasopexy, rumenotomy, Cesarean section, and pyloro-omentopexy [9]. Laparotomy could be performed using an appropriate anesthetic protocol using the flank abdominal, paramedian, and midventral approaches depending on the surgeon’s convenience in performing the procedure [1, 9].

One of the main causes of animal deaths is peritonitis, which is the inflammation of the peritoneal cavity [20, 33]. It is one of the complications of laparotomy as a result of injury or trauma to the peritoneal covering [17, 28, 33]. Pain and fever are the common clinical signs of peritonitis; however, sudden death also ensues as a result of shock, acid-base imbalance, and circulatory collapse in acute septic peritonitis [33]. Abdominal pain manifested as stiff gait, recumbency, or guarding of the abdomen is also observed in peritonitis [33].

Blood acts as a pathological reflector of the status of exposed animals to toxicants and other conditions [23]. Therefore, hematology is performed to diagnose several diseases and to investigate the extent of damage of several blood disorders to the body system [25, 31]. Additionally, several metabolites and other body fluid components, which play vital roles in the determination of stress as a result of pathological, dietary, biological, and environmental factors, can be assessed using serum chemistry [3, 4, 15]. Furthermore, besides establishing the diagnosis of several diseases, examining blood constituents can provide vital information on disease prognosis in animals since blood constituent is altered with a change in physiology [5, 23, 31].

West African Dwarf (WAD) goats are widely reared in most households in the tropics. Therefore, they are of economic importance considering that people rear them as means of savings, to pay debt, and as a gift. There are undocumented reports of several post-surgical deaths following procedures involving
laparotomy in ruminants, and postmortem findings revealed peritonitis without substantial antemortem clinical signs and definitive diagnosis.

Despite several reports on the use of blood parameters in the diagnosis and prognosis for several diseases [3, 4, 15, 23, 25, 31], information regarding the use of blood parameters as indicators for peritonitis in WAD goats is insufficient. We therefore hypothesized that hematological parameters can be used as indicators to predict peritonitis in WAD goats and the post-surgery day could be used to assess the significance of hematology.

MATERIALS AND METHODS

Six healthy WAD goats (4 females and 2 males) (age, 2–3 years; weight, 18–23 kg) were included in this study. These experimental animals were in apparently healthy condition but were however dewormed using ivermectin 1% (Interchemie, Venray, Holland) at 0.02 mg/kg. They were housed in a small ruminant pen at the University of Ilorin Veterinary Teaching Hospital, Ilorin, Nigeria, and fed with bean husk, wheat offal, and cassava peel while having constant access to drinking water. The animals’ blood samples were obtained through jugular venipuncture daily for 3 days after a period of 2-week acclimatization, which served as the baseline values before the surgical procedure. As a routine protocol in ruminant surgery, prior to surgery, the animals were starved with food and water for 24 hr and 12 hr respectively. A liberal area on the right flank was clipped and prepared aseptically using chlorhexidine (Purit®, Saro Lifecare Ltd., Lagos, Nigeria) and methylated spirit (La Onyz®, Samstella Nigeria Limited, Abule Oba, Nigeria). Chemical restraint was achieved using xylazine hydrochloride (XYL-M2®, VMD, Arendonk, Belgium) at 0.05 mg/kg intramuscularly, while an inverted “L” block anesthetic technique using lignocaine hydrochloride (Shreechem Pharmaceuticals, Mumbai, India) at 2 mg/kg was used when inducing local anesthesia [11]. A 15 cm long skin incision was made at the middle of the aseptically prepared flank, followed by subcutaneous and abdominal muscle incisions to expose the peritoneum as described by Baird (2013). The laparotomy was timed for 20 min during which the abdomen was
explored [14]. The laparotomy incision was closed in three layers as adopted by Alimi et al. (2018). The peritoneum and abdominal muscles and subcutaneous layer were sutured with a chromic catgut (Agary Pharmaceuticals, Jiangsu, China) using a simple continuous pattern, while the skin was sutured with nylon (Agary Pharmaceuticals, Jiangsu, China) using ford interlocking pattern. The surgical sites were dressed using povidone iodine (Wosan®, Jawa International Limited, Lagos, Nigeria). Postoperative antibiotic was not administered to any of the animals; however, piroxicam (Yanzhou Xier Kangtai Pharmaceutical, Yanzhou, China) was administered as an analgesic at 5 mg/kg intramuscularly for 3 days post-surgery [22].

Blood samples were collected from the experimental animals through jugular venipuncture 24 hr post-surgery and daily for 7 days. The blood samples were collected into ethylenediaminetetraacetic acid sample bottles (JRZ Plastilab, Beirut, Lebanon), and hematology was performed within 2 hr of blood collection. Hematological analysis was performed manually using the standard techniques described by Jain (1986) and Otitoloju et al. (2012).

The study was approved by the ethical approval committee of the Faculty of Veterinary Medicine, University of Ilorin (approval reference number: FVER/005/2018).

The data were expressed in International System of Units and analyzed statistically using one-way analysis of variance with repeated measures using the GraphPad PRISM 5® for Windows version 5.03 (2010). All values were expressed in mean ± standard error of mean (SEM), and P<0.05 was considered significant.

RESULTS

In this study, laparotomy was performed successfully, and the experimental animals recovered uneventfully from the effect of xylazine sedation. The hematological results obtained are summarized as mean ± SEM and presented in Table 1.
The surgical wounds healed without any clinical complications, and the stitches were removed on the 10th postoperative day. The hematological results were compared using the pre-surgical and post-surgical values. The relative neutrophil count significantly increased (P<0.05), while the relative lymphocyte count significantly decreased (P<0.05). Moreover, red blood cell (RBC) count, hemoglobin (Hg) concentration, and packed cell volume (PCV) significantly decreased (P<0.05). However, the absolute differential counts, mean corpuscular volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and platelet count did not differ significantly pre- and post-surgery.

DISCUSSION

Complications following abdominal surgeries are hardly detected in the early stage [2, 14]. Hematology has been used as an indicator for health status, assessing disease conditions, establishing the diagnosis and prognosis of several diseases [2-5, 13–15, 23–26, 33], and even evaluating the presence of peritonitis in Iranian goats [14]. This study therefore evaluated the hematological parameters predicting peritonitis and determined the post-surgery day that hematology was considered significant in WAD goats. The results herein obtained were therefore compared with the reported values of healthy intact animals.

Although there was no statistical significance in the number of white blood cell (WBC) count when the post-surgical values were compared to the pre-surgical values, the obtained value in this study was lower than the values reported by Opara et al. (2010) in WAD goats in South Eastern Nigeria; Akinrinmade and Akinrinade (2012) in their survey of WAD goats without rumen impaction in Ibadan, South Western Nigeria; Daramola et al. (2005) in WAD goats in the same study area; and Tambuwal et al. (2002) in Red Sokoto goats (RSGs) in North Western Nigeria.

However, the control values decreased in the range values reported for total WBC by Daramola et al. (2005) in their study to establish the normal hematological parameters of WAD in the current study area. Nevertheless, a progressive increase in the total WBC count from day 1 to day 5 post-surgery was
observed. This is indicative of a systemic response to the trauma of the peritoneum. This observation was also reported in the study of Dehgani et al. (2000).

Similar with other ruminants, in this study, lymphocyte counts were higher than neutrophil counts, a result consistent with the results of the previous studies in WAD goats [5, 13, 26] and RSGs [30]. However, in this study, neutrophil and lymphocyte counts increased and decreased from day 1 to day 7 post-surgery respectively, but became statistically significantly on day 5 when compare with the control. This result is consistent with the result of Dehgani et al.’s study (2000), who conducted similar work in Iranian goats, which is possibly attributed to the ongoing aseptic peritonitis as a result of mechanical abrasion and desiccation of the peritoneum [10, 16, 29]. Furthermore, leukocytosis, neutrophilia, and lymphocytopenia are usually observed in less severe acute peritonitis [12, 14, 18, 19, 21, 29, 33]. Considering this result, it could be presumed that marked leukocytic response is observed on day 5.

The PCV obtained for the control in this study was lower than the PCV obtained based on Daramola et al.’s study (2005) in their work to establish normal hematological parameters of WAD in the same study area and Akinrinmade and Akinrinade (2012) in WAD goats without rumen impaction. However, the PVC for the control in this study was higher than that of Tambuwal et al. (2002) and was similar to that of Azab and Abdel-Maksoud (1999) in Baladi goats.

The value obtained in the current study decreased progressively from day 2 post-surgery to the last day of observation. Compared to the control, red blood cell count, hemoglobin concentration, and packed cell volume were significantly lower on days 5, 6, and 7 respectively, a result that is not consistent with the results of the previous studies [5, 13, 26, 30]. However, RBC count and Hg concentration significantly decreased on days 1 and 6 post-surgery and days 5, 6, and 7 post-surgery respectively. Anemia is therefore constant with any inflammatory process, stress, and surgery as observed in this study and in previous studies [5, 7, 32].
Although insignificant, increasing MCV and decreasing Hg concentration revealed that anemia was macrocytic, hypochromic, and regenerative. Considering that Hg concentration and RBC count significantly decreased at day 6 onward, it could thus be inferred that response to anemia in WAD goats begins at day 6 post-hemorrhage. This finding was in contrast to the findings of Roland et al. (2014) in cattle who reported that erythrocyte regeneration begins 2 days post-hemorrhage.

In conclusion, hematology is considered a useful tool in monitoring peritonitis in WAD goats, and a significant result will be achieved on days 5 and 6, as shown in the current study.

Conflict of Interest

The authors declare no conflict of interest.
REFERENCES

1. Abubakar, A. A., Andeshi, R. A., Yakubu, A. S., Lawal, F. M. and Adamu, U. 2014. Comparative Evaluation of Midventral and Flank Laparotomy Approaches in Goat. *J. Vet. Med.* 2014: 1–6.

2. Adamu, S. S., Egwu, G. O. and Malgwi, J. T. 1991. Biochemical Changes in the Peritoneal Fluid Following Rumenotomy in Goats. *Vet. Res. Commun.* 15: 363–367.

3. Aderemi, F. A. 2004. Effects of replacement of wheat bran with cassava root sieviate supplemented or unsupplemented with enzyme on the haematology and serum biochemistry of pullet chicks. *Trop. J. Anim. Sci.* 7: 147–153.

4. Afolabi, K. D., Akinsoyinu, A. O., Olajide, R. and Akinleye, S. B. 2010. Haematological parameters of the Nigerian local grower chickens fed varying dietary levels of palm kernel cake. *Proceedings of 35th Annual Conference of Nigerian Society for Animal Production*: 247

5. Akinrinmade, J. F. and Akinrinade, A. S. 2012. Hematological and serum biochemical indices of West African dwarf goats with foreign body rumen impaction. *Nig. J. Physiol. Sci.* 27: 83–87.

6. Alimi, O. A., Buhari, S., Lawal, F. M., Abdulkadir, S. Z., Amid, S. A., Adediran, S. O., Aliyu, A. and Asifat, D. A. 2018. Rumen Impaction in a 3 1/2 – Year Old Balami Ewe: Case. *Sci. World J.* 13: 93–96.

7. Anayo, J., Athanasius, C., Emeka, P., Okwudili, C. and Ifeoma, R. 2014. Blood and Serum Biochemistry of Omentopexed West African Dwarf (WAD) Goats Following Peritoneum Sutured and Not Sutured Laparotomy. *Anim. Res. Int.* 11: 1881–1888.

8. Azab, M. E. and Abdel-Maksoud, H. A. 1999. Changes in some hematological and biochemical parameters during pre-partum and post-partum periods in female Baladi goats. *Small Rumin. Res.* 34: 77–85.

9. Baird, A. N. 2013. Bovine Gastrointestinal Surgery. pp. 212–219. *In: Turner and McIlwraith’s*
10. Bentley, A. 2015. Peritonitis. pp. 71–88. *In: Small Animal Surgical Emergencies*, First ed., (Aronson, Lillian R. eds.) John Wiley & Sons, Ltd, Chichester, UK.

11. Borer-Weir 2014. Analgesia. p. 119. *In: Veterinary Anaesthesia*, 11th ed., (Clarke, KW, Trim, CM and Hall, LW eds.) Elsevier Saunders, London.

12. Braun, U., Warislochner, S., Torgerson, P., Nuss, K. and Gerspach, C. 2018. Clinical and laboratory findings in 503 cattle with traumatic reticuloperitonitis. *BMC Vet. Res.* 14: 66.

13. Daramola, J. O., Adeloye, A. A., Fatoba, T. A. and Soladoye, A. O. 2005. Haematological and biochemical parameters of West African Dwarf goats. *Livest. Res. Rural Dev.* 17: 1–6.

14. Dehgani, S., Nazifi, S. and Barzegar, M. R. 2000. Evaluation of Cellular and Biochemical Parameters of Blood and Peritoneal Fluid Following Exploratory Laparotomy in the Goat. *J. Vet. Med. A.* 148: 143–148.

15. Doyle, D. 2006. William Hewson (1739-74)-The Father of Haematology. *Br. J. Haematol.* 133: 375–381.

16. Forster, K., Anderson, D., Yool, D. A., Wright, C. and Burrow, R. 2011. Retained surgical swabs in 13 dogs. *Vet. Rec.* 169: 337.

17. Hussain, S. A. and Uppal, S. K. 2014. Haemato-Biochemical Changes and Peritoneal Fluid Cytology in Clinical Cases of Bovine Peritonitis. *Indian J. Anim. Res.* 48: 188–193.

18. Jain, N. C. 1986. Schalm Veterinary Hematology, Lea and Febiger, Philadelphia, USA.

19. Kimeli, P., Kipyegon, A. N., Mwangi, W. E., Mogoa, E. G. M. and Karanja, D. N. 2014. Diffuse Peritonitis Associated With Ventral Hernia In An Adult Doe : Case Report. *IOSR J. Agric. Vet. Sci.*
20. Mokhber Dezfooli, M. R., Lotfollahzadeh, S., Sadeghian, S., Kojouri, G. A., Eftekhari, Z., Khadivar, F. and Bashiri, A. 2012. Blood electrolytes changes in peritonitis of cattle. *Comp Clin Pathol.* **21**: 1445–1449.

21. Nazifi, S., Dehghani, S. and Barzegar, M. R. 2000. Evaluation of cellular and biochemical parameters of blood and peritoneal fluid following enterectomy in the goat. *Small Rumin. Res.* **37**: 65–71.

22. Okafor, R. O., Remi-Adewunmi, B. D. and Fadason, S. T. 2014. Effect of Piroxicam and/or Ascorbic Acid on Postoperative Pain in Orchidectomised Goats. *J. Anim.* 2014: 1–8.

23. Olafedehan, C. O., Obun, A. M., Yusuf, M. K., Adewumi, O. O., Oladefedehan, A. O., Awofolaji, A. O. and Adeniji, A. A. 2010. Effects of residual cyanide in processed cassava peal meals on haematological and biochemical indices of growing rabbits. *Proceedings of 35th Annual Conference of Nigerian Society for Animal Production*: 212

24. Olaifa, A. K. and Opara, M. N. 2011. Haematological and biochemical parameters of West African Dwarf (WAD) bucks castrated by the Burdizzo method. *Vet. Arh.* **81**: 743–750.

25. Onyeyili, P. A., Egwu, G. O., Jibike, G. I., Pepple, D. J. and Ohaegbulam, J. O. 1992. Seasonal variation in haematological indices in the grey-breasted guinea fowl (Numida meleagris Gallata pallas). *Niger. J. Anim. Prod.* **2**: 108–110.

26. Opara, M. N., Udevi, N. and Okoli, I. C. 2010. Haematological Parameters And Blood Chemistry Of Apparently Healthy West African Dwarf (WAD) Goats In Owerri , South Eastern. *New York Sci. J.* **3**: 68–72.

27. Otitoloju, A. A., Osunkalu, V. O., Odumare, R., Obe, I. A. and Adewale, A. O. 2012. Haematological effects of radiofrequency radiation from GSM base station on four successive
generations (F1-F4) of albino mice, *Mus musculus*. *J Env. Occup Sc.* **1**: 17–22.

28. Radostits, O. M., Gay, C. C., Hinchcliff, K. and Constable, P. D. 2000. No Title. pp. 179–183, 250–255. *In: Veterinary Medicine. A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goat*, 9th ed., Saunders Elsevier, Philadelphia.

29. Roland, L., Drillich, M. and Iwersen, M. 2014. Hematology as a diagnostic tool in bovine medicine. *J. Vet. Diagnostic Invest.* **26**: 592–598.

30. Tambuwal, F. M., Agaie, B. M. and Bangana, A. 2002. Haematological and Biochemical Values of Apparently Healthy Red Sokoto Goats. *Proceeding of 27th Annual Conference Nigerian Society of Animal Production (NSAP)*, March, 17-21, 2002, FUTA, Akure, Nigeria. 50-53

31. Togun, V. A., Oseni, B. S. A., Ogundipe, J. A., Arewa, T. R., Hammed, A. A. Ajonijebu, D. C. and Mustapha, F. 2007. Effects of chronic lead administration on the haematological parameters of rabbits – a preliminary study. *Proceedings of the 41st Conferences of the Agricultural Society of Nigeria*: 341

32. Vlamink, L., Steehaut, M., Gasthuys, F., Martens, A., Desmet, P., van Brantegem, L. and de Moor, A. 2000. Omentopexy for correction of right abomasal displacement: results in 135 cows. *Vlaams Diergeneesk. Tijdschrift*. **69**: 190–196.

33. Wittek, T. 2018. Overview of Peritonitis. https://www.msdvetmanual.com/generalized-conditions/peritonitis/overview-of-peritonitis accessed on June 10, 2018.
Table 1. The hematological parameters (mean ± standard error of mean) of West African Dwarf goats before and after exploratory laparotomy (n = 6)

Parameter	Control (x10^9/L)	Postoperative days
		1
		2
		3
		4
		5
		6
		7
WBC	6.37±0.57	6.63±0.58
		7.02±0.65
		6.96±0.53
		6.13±0.64
		6.90±0.67
		6.17±0.56
		5.55±0.41
Neut	2.23±0.16	2.45±0.25
		2.60±0.26
		2.84±0.19
		2.60±0.26
		2.98±0.37
		2.43±0.27
		2.23±0.17
Lym	4.03±0.46	4.13±0.35
		4.32±0.45
		3.94±0.33
		3.42±0.41
		3.82±0.39
		3.64±0.33
		3.25±0.25
Mono	0.11±0.02	0.04±0.02
		0.09±0.03
		0.11±0.04
		0.11±0.01
		0.07±0.02
		0.09±0.02
		0.04±0.02
Eosino	0.01±0.01	0.01±0.01
		0.01±0.01
		0.03±0.02
		0.00±0.00
		0.00±0.00
		0.00±0.00
Baso	0.00±0.00	0.00±0.00
		0.00±0.00
		0.00±0.00
Neo (%)	35.5±1.93	36.67±0.95
		37.17±2.25
		41.00±1.53
		42.50±1.93
		43.00±2.13
		39.17±1.30
		40.17±0.70
Lym (%)	62.67±1.86	62.33±0.88
		61.50±2.35
		56.67±1.50
		55.67±1.94
		55.50±2.08
		59.17±1.49
		58.50±0.89
Mono (%)	1.67±0.21	0.83±0.31
		1.17±0.40
		1.50±0.43
		1.83±0.17
		1.16±0.31
		1.50±0.34
		0.83±0.31
Eosino (%)	0.17±0.17	0.17±0.17
		0.17±0.17
		0.33±0.21
		0.00±0.00
		0.00±0.00
		0.00±0.00
Baso (%)	0.00±0.00	0.00±0.00
		0.00±0.00
		0.00±0.00
RBC (x10^12/L)	4.51±0.32	4.54±0.41
		4.04±0.31
		3.93±0.28
		4.14±0.30
		3.75±0.28
		3.59±0.23
		3.80±0.19
Hg (g/dL)	8.38±0.41	8.37±0.58
		7.57±0.43
		7.38±0.56
		7.43±0.36
		6.78±0.48
		6.67±0.49
		6.90±0.44
PCV (%)	27.17±1.64	27.50±1.95
		25.00±1.83
		23.50±1.84
		24.33±1.65
		22.33±1.80
		22.17±1.62
		22.50±1.18
MCV (FL)	60.67±0.71	61.00±1.75
		61.67±0.21
		61.33±0.49
		60.83±0.65
		60.33±0.99
		60.17±1.99
		60.00±0.77
MCH	18.70±0.40	18.62±0.44
		18.82±0.40
		19.03±0.26
		18.58±0.50
		18.68±0.47
		18.08±0.62
MCHC	30.93±0.34	30.38±0.39
		30.47±0.56
		30.63±0.40
		29.80±0.64
		30.43±0.47
		30.50±0.41
		29.88±0.72
PLT (x10^9/L)	232.17±14.46	223.50±30.04
		236.50±14.66
		239.83±18.00
		246.17±21.68
		256.00±19.19
		231.83±17.71
		193.33±16.89

Means bearing different superscripts along the same row differ significantly from the control (P>0.05) along the rows. a: White blood cell count,
b: Neutrophils, c: Lymphocytes, d: Monocytes, e: Eosinophils, f: Basophils, g: Red blood cell count, h: Hemoglobin, i: Packed cell volume, j: Mean corpuscular volume, k: Mean corpuscular hemoglobin, l: Mean corpuscular hemoglobin concentration, m: Platelet