Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease

Pauli Ohukainen¹, Heikki Ruskoaho² and Jaana Rysä³,*

¹Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland; ²Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland; ³School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland

Abstract: Background: Calcific aortic valve disease is common in an aging population. It is an active atheroinflammatory process that has an initial pathophysiology and similar risk factors as atherosclerosis. However, the ultimate disease phenotypes are markedly different. While coronary heart disease results in rupture-prone plaques, calcific aortic valve disease leads to heavily calcified and ossified valves. Both are initiated by the retention of low-density lipoprotein particles in the subendothelial matrix leading to sterile inflammation. In calcific aortic valve disease, the process towards calcification and ossification is preceded by valvular thickening, which can cause the first clinical symptoms. This is attributable to the accumulation of lipids, inflammatory cells and subsequently disturbances in the valvular extracellular matrix. Fibrosis is also increased but the innermost extracellular matrix layer is simultaneously loosened. Ultimately, the pathological changes in the valve cause massive calcification and bone formation - the main reasons for the loss of valvular function and the subsequent myocardial pathology.

Conclusion: Calcification may be irreversible, and no drug treatments have been found to be effective, thus it is imperative to emphasize lifestyle prevention of the disease. Here we review the mechanisms underpinning the early stages of the disease.

Keywords: Aortic valve, aortic stenosis, calcification, atherosclerosis, inflammation, disease.

1. INTRODUCTION

Calcific Aortic Valve Disease (CAVD) is an active inflammatory disease characterized by several hallmarks of atherosclerosis. The main difference is the ultimate phenotype – CAVD does not lead to vulnerable plaques but rather, heavily calcified and ossified aortic valves. As the accumulation of calcium and bone seems to be irreversible, early prevention is of paramount importance. Due to the active nature of the disease, it seems plausible that there would be a causal chain of events leading to the final disease phenotype. It will be necessary to clarify the early stages of the disease if we are to prevent the progression. In this review, we summarize the mechanisms of early valvular thickening – the stage in which CAVD may become symptomatic.

Cellular and subcellular events of early CAVD take place in valves consisting of a three-layered extracellular matrix (ECM) (Fig. 1). Each layer has its own characteristic main structural protein [1]. The main layers are termed ventricularis, spongiosa and fibrosa with their corresponding main components being elastin, glycosaminoglycans and collagen. While these layers are rather stable, some studies in porcine models have indicated that the ultrastructural organization may change with aging [2]. The three layers also have somewhat different functional roles. In the ventricularis, elastin provides the necessary stretching ability, but it also serves as a scaffold to maintain valvular collagen in place [3, 4]. The spongiosa layer distributes hemodynamic stress across the valve leaflets, acting as a shock- and vibration-absorbing cushion [5, 6]. Finally, the fibrosa has a highly dynamic pressure-dependent circumferential collagen structure, and it is the main load-carrying layer in the valve [7].

The ECM of aortic valve cusps consists of a heterogeneous class of mesenchymal cells, called valve interstitial cells (VICs, reviewed in [8, 9]). VICs have several functions, including the maintenance of valve ECM as well as contributing to certain physical characteristics of the valve cusps, and their responses to injury. VICs and other mesenchymal cells share many similarities and display non-specific features of both smooth muscle cells and myofibroblasts. Valvular VICs seem to have a distinct surface antigen expression profile and an ability to respond to vasoactive agents and in these respects differ from the mesenchymal cells present in pericardium and skin [10]. Five different phenotypes of VICs have been postulated [11]: embryonic progenitor endothe-
Cellular Mechanisms of Valvular Thickening

2. COMPARING THE EARLY INITIATION OF ATHEROSCLEROSIS AND CAVD

In the first seminal human study investigating the early stages of CAVD, autopsy samples were histochemically characterized in order to examine the pathophysiological features associated with this disease [12]. Several hallmarks of atherosclerosis were seen already in non-stenotic yet thickened valves. The basement membrane below the endothelium was found to be disorganized and the tissue had become infiltrated by neutral lipids (mainly triglycerides, as revealed by Oil Red O staining). Thickening of the valve was found to be due to increased ECM of the fibrosa layer. These areas also contained macrophages, foam cells and T lymphocytes, whereas only scattered macrophages were found in the control valves. Small calcifications were also found in the early thickened regions.

More recently, newly formed lesions have also been found to contain apolipoproteins B (apoB), (a) and E [13]. In atherosclerosis, the attachment of apoB-containing low-density lipoprotein (LDL) particles in the intima-layer of coronary arteries is both sufficient and essential to trigger the initiation of atherosclerosis [14]. A significant discovery supporting this concept is that if the electrical interactions between apoB primary structure and proteoglycan are removed, transgenic mice become highly resistant to atherosclerosis despite significantly elevated serum LDL levels [15]. Because of their similar histologies, it is reasonable to propose that an analogous process initiates CAVD.

Retained apoB containing particles are predisposed to undergo a variety of oxidative modifications. Oxidized LDL (oxLDL) particles are strong triggers evoking an inflammatory response and the valves in the early stages of CAVD also exhibit oxLDL [16]. Certain proteoglycans such as decorin [17] and biglycan [18] colocalize with oxLDL, indicating that they can bind these particles within the valvular ECM. Recent studies have also shown that isolated LDL particles from aortic valves have larger diameters and are oxidatively modified, demonstrating that they aggregate and become modified within the valves, very likely contributing to the early inflammatory signals [19]. In conclusion, the data suggest that the early events in both atherosclerosis and CAVD are very similar (Fig. 1).

Localization of coronary plaques and the effects of hemodynamics also provide important clues to the similarities between early CAVD and atherosclerosis. Plaques are mostly located in the branching regions and arterial bends, where local shear stress is lower [20, 21]. This causes endothelial cells to express an inflammatory response which includes the induction of several vascular adhesion molecules (vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and E-Selectin), ECM breakdown, increased uptake and permeability of LDL particles, apoptosis, widening of intercellular junctions (which allows inflammatory cells to infiltrate through the endothelium), oxidative stress, increased thrombogenicity and impaired vasodilatation.

Fig. (1). A schematic cross-section depicting the anatomy and histology of a single valvular cusp with relevant shear forces (arrows). As the blood is pumped through the valve, it creates a turbulent, oscillating shear stress within the Sinus of Valsalva on the aortic side of the valve. This is different from the laminar shear that affects the ventricular side of the valve cusp. In addition, the slightly different types of Valvular Endothelial Cells (VECs) are highlighted on the figure. Inside the valve, a population of valvular interstitial cells (VICs) are shown along with the three differing layers of extracellular matrix. The fibrosa layer is located closest to the aortic surface and ventricularis in the ventricular side. The Spongiosa layer is located between these two layers.
Many of these processes remain to be explored in CAVD but several independent lines of evidence suggest that local hemodynamics also affect valvular tissue in a similar, pro-atherogenic fashion: 1) The aortic side of the valves is subject to turbulent and transiently reduced shear stress (reviewed in [22]). This is also the side where early lesions are invariably found [12]; 2) The bicuspid aortic valve (BAV) causes hemodynamically different conditions characterized by larger differences in shear stress compared to the more typical tricuspid valve (reviewed in [23]). BAV usually leads to a faster progression of CAVD and earlier clinical manifestation by about two decades [24, 25]; and 3) In tricuspid valves, the right- and left-coronary cusps are adjacent to the ostia leading to the coronary arteries. This causes these cusps to be also subjected to more laminar shear stress. The non-coronary cusp has a different hemodynamic environment and is usually affected most by early valvular thickening [26].

3. INFLAMMATION IN EARLY ATHEROSCLEROSIS AND CAVD

It has become widely recognized that in atherosclerosis, LDL retention in the arterial intima is the initiating event for plaque development. The subsequent inflammatory response is likely intended to clear the ectopic cholesterol from the arterial wall. If the macrophage-derived foam cells are successful, the initial fatty streaks are removed. However, if the exposure to pro-atherosclerotic factors persists, inflammation becomes chronic, leading to the formation of an atheroma. In addition to macrophages, other cells of the immune system, including T-cells, mast cells and B cells are also present in atherosclerotic lesions (this process has been thoroughly reviewed [27-31]).

In early CAVD, many of these cells are also encountered e.g., macrophages and foam cells [12], T lymphocytes [12, 32], mast cells [33] and B cells [34]. Macrophages are localized close to lipid depositions [16] whereas T lymphocytes are found near both lipids [16] and calcifications [32]. Mast cells are more evenly distributed throughout the valves although with a slight preference for calcific nodules [33] and finally B cells are situated close to the macrophages [34].

In addition to diverse cell types, several molecular components of an inflammatory response have also been found in CAVD. For example, the levels of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and E-selectin are upregulated in diseased valves compared to controls [35, 36]. Mechanistic studies have elucidated some of the inflammatory pathways in more detail. Increased expression of interleukin-1β has been detected in the leukocytes present in stenotic human aortic valves [37]. VICs were exposed to interleukin-1β, resulting in increased production of matrix metalloproteinases (MMPs) -1 and -2. Their presence has also been confirmed immunohistochemically in diseased valves. In addition, tumor necrosis factor-α has been detected in valvular macrophages and shown to upregulate the ex-
pression of MMPs in VICs [38]. These studies emphasize that not only is inflammation clearly present in early CAVD but that it also contributes to ECM remodeling early on in the disease spectrum.

4. ACTIVE EXTRACELLULAR MATRIX REMODELING

During the intermediate stage of CAVD, there is more pronounced valvular thickening. Histologically, this is characterized, in part by an initial disorganization and then a loosening of the spongiosa layer of valvular ECM [39]. In clinical terms, the valvular thickening contributes to the loss of function, creating an increased myocardial strain. In addition, thickening also promotes CAVD progression. ECM integrity appears to be critical for the physiological function of the VIC because its disruption causes apoptosis and upregulation of several disease-related markers, such as α-smooth muscle actin, alkaline phosphatase, and osteocalcin [40]. Paradoxically, the overall amount of collagen in the valves decreases with CAVD progression, despite upregulated type I collagen production [41]. This indicates that CAVD also possesses a significant component of active ECM degradation, which is also evident from the increased expression of MMPs. Concordant degradation and synthesis of ECM are general features of an active remodeling in developmental processes and several diseases (for a general review, see [42]). In the following chapters, these simultaneous processes are examined separately.

5. ACTIVATION OF THE LOCAL RENIN-ANGIOTENSIN-SYSTEM AND OTHER PROFIBROTIC FACTORS

The renin-angiotensin-system (RAS, or renin-angiotensin-aldosterone-system, RAAS) is known to be involved in many illnesses and systemic physiologic processes. Certain parts of RAS are found locally within many tissues which means that angiotensin II (Ang II) is also an intracrine signaling molecule (reviewed in [43-45]). ‘Local RAS’ has significant roles in fibrosis and inflammation and has therefore been extensively researched in the cardiovascular system (reviewed in [46-51]).

Components of the local RAS are expressed in healthy and diseased aortic valves. For example, cultured VICs are able to produce angiotensinogen, and angiotensin-converting enzyme (ACE) de novo [52]. ACE has also been found to physically interact with LDL particles in the plasma and with apoB proteins in CAVD, which suggests that should LDL be retained in the valve, it may also carry ACE along with it. Ang II has also been found to colocalize with apoB and ACE, which implies that the latter is enzymatically active [53]. Degranulated mast cells are also a source for Ang II in aortic valves. They can secrete chymase, which is another peptidase able to cleave Ang I into Ang II [33].

Expression of type 1 angiotensin receptor (AT1R) on VICs has also been reported [53]. This may have pathological significance as Ang II exerts its pro-fibrotic effect via AT1R. Cardiac myofibroblasts displayed upregulation of the production of LDL-binding biglycan when cultured with Ang II [54, 55], which could make it feasible to postulate that a similar response could also occur in VICs. The synthesis of type I collagen is significantly increased around calcific nodules [41]. This elevated synthesis of type I collagen and biglycan can be hypothesized to be significant contributors to the fibrotic phenotype of intermediate CAVD. Support for the clinical features of this putative Ang II-mediated valvular fibrosis emerged from a bioreactor-study, in which porcine aortic valves became significantly less flexible upon incubation in Ang II-containing media [56].

Novel components of RAS have been discovered in recent years. One of these is an ACE homologue, ACE2, which is able to cleave Ang I into a distinct nonapeptide, Ang(1-9) [57]. This is also an alternative substrate for ACE which turns Ang(1-9) into Ang(1-7) that has a specific receptor called Mas [58]. Compared to AT1R, Mas seems to have opposing downstream effects [59], much like the angiotensin type 2 receptor (AT2R) (reviewed in [60]). Together, AT2R, Mas and ang(1-7) can be considered to be part of a “compensatory arm” of RAS which counterbalances the vasoconstrictive and pro-fibrotic effects of Ang II and AT1R (reviewed in [61-63]). In calcific aortic valves, Mas and AT2R are downregulated, which is consistent with the proposal that the Ang II- and AT1R-mediated pro-fibrotic local RAS is the dominating arm in this disease [64].

Another somewhat novel RAS component is the (pro)renin receptor [65]. It binds renin and prorenin and it also mediates a pro-fibrotic response (reviewed in [66]). The study by Peltonen et al. (2011) suggested that the (pro)renin receptor is expressed in neovessels of diseased valves. However, in overall valve tissue, its mRNA was not significantly downregulated. If confirmed in subsequent studies, this would imply that while the receptor has pro-fibrotic effects in certain cells, its total contribution to CAVD may be time and location-dependent.

Many non-RAS components also promote active fibrosis. If VICs are cultured in the presence of transforming growth factor beta-1, they begin to express a pro-fibrotic phenotype [67]. Both endothelin-1, a fibrosis-inducing factor [68-70] and its receptor are upregulated in CAVD [71]. Further mechanistic studies will be required to confirm the role of transforming growth factor beta-1 and endothelin-1 in CAVD.

Downregulation of anti-fibrotic factors may be another way for fibrosis to become dominant in CAVD. C-type atrial natriuretic peptide (CNP) is one of these anti-fibrotic factors; it has been shown to inhibit fibrosis in vivo [72] as well as after experimental myocardial infarction in vivo [73]. The expressions of CNP and its receptors are downregulated in CAVD [74], but more detailed research of the contribution of CNP for CAVD development is needed.

6. EXTRACELLULAR MATRIX DEGRADATION

Loss of the collagen content and loosening of the spongiosa layer of the valvular ECM in CAVD are directly opposing processes to fibrosis. This must be mediated by specific ECM-degrading enzymes. One of the most studied is the MMPs which have various functions in cardiovascular diseases [75, 76]. In CAVD, increased expression of MMPs - 1, 2, -3 and -9 has been reported [38, 39, 77, 78]. In order to maintain their physiological functions, the activities of the
MMPs are counterbalanced by the presence of specific tissue inhibitors (tissue inhibitor of metalloproteinases, TIMPs). Although it may seem paradoxical, it appears that expressions of TIMP-1 and -2 are significantly increased in stenotic valves [38, 78, 79]. However, there seems to be a significant overproduction of MMPs with respect to the TIMPs in diseased valves [78]. This suggests that while TIMPs may be able to inhibit some level of ECM degradation, an overwhelming persistent inflammation will eventually cause tissue degradation to become prevalent. Indeed, in milder stages of the disease, TIMP expression tends to be dominant, which is also a feature seen in atherosclerosis [80].

In CAVD, MMPs may originate from VICs, since they appear to be capable of expressing MMP-2 (and TIMP-1 and -2), in primary cell culture conditions [39]. After stimulation by pro-inflammatory TNF-α, the VICs upregulate MMP-1 production while TIMP-1 expression remains unchanged, supporting the imbalance hypothesis [38]. In addition to the VICs, macrophages/monocytes are also able to express a variety of MMPs [81]. These data also strongly implicate inflammation as a causal driver of ECM degradation.

Another ECM-modulating pathway, similar to the MMP-TIMP-system, involves a family of cysteine proteases called cathepsins and their tissue inhibitors. Similar to the MMP-TIMP-system, cathepsins and their inhibitors seem to be significant contributors to many cardiovascular diseases, from atherosclerosis to aneurysms [82-84]. In CAVD, a significant upregulation has been reported in the levels of cathepsins S, K and V as well as in their inhibitor, cystatin C [85]. Cathepsin V was detected in close proximity to valvular neovessels, where it may be able to degrade the ECM to make way for new blood vessels. While more studies are needed, it appears that similar to the situation with the MMP-TIMP-system, also with cathepsins and their inhibitors, the ultimate disease phenotype is caused by their degradative properties overcoming their inhibition.

7. ROLE OF Lp(a) (LIPOPROTEIN A) IN EARLY LESION DEVELOPMENT

Epidemiological studies have highlighted that elevated serum levels of Lp(a) are a strong risk factor for CAVD [86-89]. Strong evidence for causality has been implied in a Mendelian Randomization study [90]. It has also been shown that the oxidized phospholipids carried by Lp(a) (OxPL) are associated with a faster progression of CAVD [91].

In more mechanistic experimental studies, OxPLs on Lp(a) particles have been postulated to be the drivers of pathogenesis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is enriched in Lp(a) [92] and it has the ability to hydrolyze OxPLs into lysophosphatidylcholine (LPC) which has been reported to activate mineralization in VICs [93]. Lp(a) particles also possess another enzyme, autotaxin (ATX), which hydrolyzes LPC into Lysophosphatidic Acid (LPA). LPA is also a potent promoter of calcification [94]. ATX was also found to be expressed by VICs, indicating that although serving as an important additional source, Lp(a) particles are not required for ATX-mediated calcification pathway. While macroscopically larger deposits of calcium emerge in the later stages of CAVD, it should be noted that these Lp(a)-dependent primary mechanisms are likely present already during disease initiation. This emphasizes the need for early prevention.

SUMMARY & CONCLUSION

Several early hallmarks of CAVD are very similar to those encountered in atherosclerosis; LDL retention, infiltration of inflammatory cells and subsequent ECM remodeling. Valvular thickening, which may cause many of the first clinical symptoms, is ultimately the result of an accumulation of foam cells into the valve as well as loosening of the spongiosa layer of valvular ECM. The valve’s mechanical properties are also compromised by the increased fibrosis occurring in other areas. All of these are active processes that precede much of the irreversible calcification. Lifestyle interventions should always be the first line of prevention of cardiovascular disease. In the case of CAVD, this is the only feasible approach, since no drug treatments have been found to be effective. These interventions are best targeted towards classical atherosclerotic risk factors.

LIST OF ABBREVIATIONS

Symbol	Abbreviation	Definition
Ang	Angiotensin	
apoB	Apolipoprotein B	
AT1R	Type 1 Angiotensin Receptor	
CAVD	Calcific Aortic Valve Disease	
ECM	Extracellular Matrix	
LDL	Low-density Lipoprotein	
MMP	Matrix metalloproteinase	
oxLDL	Oxidized LDL	
RAS	Renin-Angiotensin System	
TIMP	Tissue Inhibitor of Matrix Metalloproteinase	
VIC	Valve Interstitial Cell	

SOURCES OF FUNDING

P. Ohukainen acknowledges the Aarne Koskelo and Emil Aaltonen Foundations for financial support. H. Ruskola acknowledges the Academy of Finland (grant no. 266661), the Sigrid Jusélius Foundation and Finnish Foundation of Cardiovascular Research for financial support. J Rysä acknowledges the Academy of Finland (grant no. 276747) and Finnish Foundation of Cardiovascular Research for financial support.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.
REFERENCES

[1] Schoen FJ. Evolving concepts of cardiac valve dynamics: The continuum of development, functional structure, pathology, and tissue engineering. Circulation 2008; 118(18): 1864-80.

[2] Stephens EH, Saltarrelli JG, Baggett LS, et al. Differential proteoglycan and hyaluronan distribution in calcified aortic valves. Cardiovasc Pathol 2011; 20(6): 334-42.

[3] Vesely I. The role of elastin in aortic valve mechanics. J Biomech 1998; 31(2): 115-23.

[4] Scott M, Vesely I. Aortic valve cusp microstructure: The role of elastin. Ann Thorac Surg 1995; 60(2 Suppl): S391-4.

[5] Tseng H, Grande-Allen KJ. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater 2011; 7(5): 2101-8.

[6] Stella IA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng 2007; 129(5): 757-66.

[7] Sacks FM, Moye LA, Davis BR, et al. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the Cholesterol and Recurrent Events trial. Circulation 1998; 97(15): 1446-52.

[8] Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol 2003; 35(2): 113-43.

[9] Mulholland DL, Gotlieb AI. Cell biology of valvular interstitial cells. Can J Cardiol 1996; 12(3): 231-6.

[10] Taylor PM, Allen SP, Yacoub MH. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 2000; 9(1): 150-8.

[11] Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. J Am Soc Echocardiogr 2011; 55(25): 2789-2.

[12] Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32(9): 2045-51.

[13] Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005; 111(25): 3481-8.

[14] Libby P. Inflammation in atherosclerosis. Nature 2002; 420(6917): 868-74.

[15] Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010; 10(1): 36-46.

[16] Olsson M, Dalsgaard CJ, Haegerstrand A, Rosenqvist M, Ryden L, Nilsson J. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol 1994; 23(5): 1162-70.

[17] Helske S, Lindstedt KA, Laine M, et al. Induction of local angiotensin II-producing systems in stenotic aortic valves. J Am Coll Cardiol 2000; 44(9): 1859-66.

[18] Natorioka J, Marek G, Sadowski J, Undas A. Presence of B cells within aortic valves in patients with aortic stenosis: Relation to severity of the disease. J Cardiol 2016; 67(1): 80-5.

[19] Ghaissas NK, Foley JB, O'Briain DS, Crean P, Kelleher D, Walsh M. Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J Am Coll Cardiol 2000; 36(7): 2257-62.

[20] Mazzone A, Epistolato MC, De Caterina R, et al. Neangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve stenosis. J Am Coll Cardiol 2004; 43(9): 1670-6.

[21] Kaden JJ, Dempfle C-E, Grobholz R, et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 2003; 170(2): 205-11.

[22] Kaden JJ, Dempfle C-E, Grobholz R, et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol 2005; 14(2): 80-7.

[23] Fondard O, Detaint D, Lung B, et al. Extracellular matrix remodeling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 2005; 26(13): 1333-41.

[24] Rodriguez KJ, Pechura LM, Portas AM, Masters KS. Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification. BMC Cardiovasc Disord 2014; 14: 29.

[25] Eriksson HA, Satta J, Risteli J, Veijola M, Väre P, Soini Y. Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 2006; 189(1): 91-8.

[26] Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): 10.

[27] Kumar R, Thomas CM, Young QC, Chen W, Baker KM. The intraaortic renin-angiotensin system. Clin Sci (Lond) 2012; 123(5): 273-84.

[28] Re RN, Cook JL. Studies of intracellular angiotensin II. Methods Mol Biol 2015; 1234: 1-8.

[29] De Mello WC, Frohlich ED. On the local cardiac renin angiotensin system. Basic and clinical implications. Peptides 2011; 32(8): 1774-9.

[30] Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014; 2014: 689360.
Yamazaki T, Komuro I, Yazaki Y. Role of the renin-angiotensin system in cardiac hypertrophy. Am J Cardiol 1999; 83(12A): 53H-7H.

Bader M. Role of the local renin-angiotensin system in cardiac damage: A minireview focussing on transgenic animal models. J Mol Cell Cardiol 2002; 34(11): 1455-62.

Lan TH, Huang QX, Tan HM. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol 2013; 22(5): 401-7.

Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292(1): C82-97.

De Mello WC, Danser AH. Angiotensin II and the heart: On the intracrine renin-angiotensin system. Hypertension 2000; 35(6): 1183-8.

Katwa LC, Tyagi SC, Campbell SE, Lee SJ, Cecila GT, Weber KT. Valvular interstitial cells express angiotensinogen and cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 1996; 28(7): 807-21.

O'Brien KD, Shavelle DM, Caulfield MT, et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 2002; 106(17): 2224-30.

Tiede K, Stöter K, Petrik C, et al. Angiotensin II AT(1)-receptor induces biglycan in neonatal cardiac fibroblasts via autocrine release of TGFbeta in vitro. Cardiovasc Res 2003; 60(3): 538-46.

Ahmed MS, Öie E, Vinge LE, et al. Increase of myocardial biglycan in heart failure in rats—an extracellular matrix component targeted by AT(1) receptor antagonism. Cardiovasc Res 2003; 60(3): 557-68.

Myles V, Liao J, Warnock JN. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves. J Biomech Eng 2014; 136(1): 11011.

Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.

Santos RAS, Simoes e Silva AC, Marie C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.

Kostenis E, Milligan G, Christopoulos A, et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 2005; 111(14): 1806-13.

de Gasparo M, Catti RJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2002; 54(2): 313-52.

Xu P, Srimulat S, Lazzari E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 2011; 300(4): R804-17.

Lazzari E, Feng Y, Lavoie J. The two fACEs of the tissue renin-angiotensin systems: implication in cardiovascular diseases. Curr Pharm Des 2007; 13(12): 1231-45.

Mendoza A, Lazzari E. The compensatory renin-angiotensin system in the central regulation of arterial pressure: New avenues and new challenges. Ther Adv Cardiovasc Dis 2015; 9(4): 201-8.

Peltonen T, Taskinen P, Napankangas J, et al. How endothelin-1 and ETA receptor levels in human aortic valve stenosis. Eur Heart J 2009; 30(2): 242-9.

Peltonen T, Taskinen P, Soini Y, et al. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. Circulation 2007; 116(11): 1283-9.

Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res 1995; 77(5): 863-8.

Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 2006; 22(Suppl B): 25B-30B.

Edepe ME, Shirani J, Wolf P, Brown DL. Matrix metalloproteinase expression in nonhemorrhagic aortic stenosis. Cardiovasc Pathol 2000; 9(5): 281-6.

Knox JB, Suhkova GK, Whitmore AD, Libby P. Evidence for altered balance between matrix metalloproteinase-9 and their inhibitors in calcific aortic stenosis. Ann Thorac Surg 2003; 76(3): 681-8; discussion 688.

Fondard O, Detaint D, Iung B, et al. Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 2005; 26(13): 1333-41.

Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 2008; 28(12): 2108-14.

Liu J, Suhkova GK, Sun JS, Xu WH, Libby P, Shi GP. Lyosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24(8): 1359-66.

Lugens SP, Cleutjens KBJM, Daemen MJAP, Heeneman S. The profibrotic role of endothelin-1: Is the door still open for the endothelin system in calcific aortic valve disease? J Am Coll Cardiol 2007; 30(12): 1251-62.

Helske S, Syvaranta S, Lindstedt KA, et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol 2006; 26(8): 1791-8.

Gotoh T, Kuroda T, Yamasawa M, et al. Correlation between lipoprotein(a) and aortic valve sclerosis assessed by echocardiography (the JMS Cardiac Echo and Cohort Study). Am J Cardiol 1995; 76(12): 928-32.

Glader CA, Birgander LS, Söderberg S, et al. Lipoprotein(a), Chlamydia pneumoniae, leptin and tissue plasminogen activator as risk markers for valvular aortic stenosis. Eur Heart J 2003; 24(2): 198-208.

Bozbas H, Yildirir A, Atar I, et al. Effects of serum levels of novel atherosclerotic risk factors on aortic valve calcification. J Heart Valve Dis 2007; 16(4): 387-93.

Stewart BF, Siscovick D, Lind BK, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol 1997; 29(3): 630-4.

Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med 2013; 368(6): 503-12.
[91] Capoulade R, Chan KL, Yeang C, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol 2015; 66(11): 1236-46.

[92] Blencowe C, Hermetter A, Kostner GM, Deigner HP. Enhanced association of platelet-activating factor acetylhydrolase with lipoprotein (a) in comparison with low density lipoprotein. J Biol Chem 1995; 270(52): 31151-7.

[93] Mahmut A, Boulanger M-C, El Husseini D, et al. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease. J Am Coll Cardiol 2014; 63(5): 460-9.

[94] Bouchareb R, Mahmut A, Nsaibia MJ, et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation 2015; 132(8): 677-90.