PK-PD Modeling of Individual Lesion FDG-PET Response to Predict Overall Survival in Patients With Sunitinib-treated Gastrointestinal Stromal Tumor

E Schindler1*, MA Amantea2, MO Karlsson1 and LE Friberg1

Pharmacometric models were developed to characterize the relationships between lesion-level tumor metabolic activity, as assessed by the maximum standardized uptake value (SUVmax) obtained on [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), tumor size, and overall survival (OS) in 66 patients with gastrointestinal stromal tumor (GIST) treated with intermittent sunitinib. An indirect response model in which sunitinib stimulates tumor loss best described the typically rapid decrease in SUVmax during on-treatment periods and the recovery during off-treatment periods. Substantial interindividual and interlesion variability were identified in SUVmax baseline and drug sensitivity. A parametric time-to-event model identified the relative change in SUVmax at one week for the treatment periods and the recovery during off-treatment periods. Larger changes in metabolic activity in the lesion that best responds after one week predicted longer OS. A pharmacometric modeling framework linking sunitinib exposure, longitudinal lesion-level tumor metabolic activity, tumor size, and OS was developed. The predictive ability of tumor metabolic activity and tumor size on OS was investigated. The developed model described the schedule-dependent tumor metabolic response and quantified substantial interlesion variability. Larger changes in metabolic activity in the lesion that best responds after one week predicted longer OS. Tumor metabolic activity is a promising marker for early assessing response to sunitinib. The developed modeling framework may be used to support dose and schedule selection for anti-angiogenic compounds.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? ☑ Previously developed PK-PD models identified sunitinib-induced changes in the soluble VEGFR 3, neutrophil counts, and blood pressure as predictors of OS in patients with GIST. Changes in tumor metabolic activity, occurring several weeks before changes in tumor size, may also correlate to clinical outcome in GIST treated with anti-angiogenic drugs. ☐ WHAT QUESTION DID THIS STUDY ADDRESS? ☑ A pharmacometric modeling framework linking sunitinib exposure, longitudinal lesion-level tumor metabolic activity, tumor size, and OS was developed. The predictive ability of tumor metabolic activity and tumor size on OS was investigated. ☐ WHAT THIS STUDY ADDS TO OUR CURRENT KNOWLEDGE ☑ The developed model described the schedule-dependent tumor metabolic response and quantified substantial interlesion variability. Larger changes in metabolic activity in the lesion that best responds after one week predicted longer OS. ☐ HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS ☑ Tumor metabolic activity is a promising marker for early assessing response to sunitinib. The developed modeling framework may be used to support dose and schedule selection for anti-angiogenic compounds.

Gastrointestinal stromal tumors (GISTs) are soft tissue sarcomas that respond poorly to conventional cytotoxic chemotherapies and palliative radiotherapy. The treatment of unresectable and metastatic GIST has substantially improved with the introduction of targeted agents, such as imatinib mesylate and sunitinib malate. Sunitinib is an oral, multitargeted tyrosine-kinase inhibitor approved for the treatment of imatinib-resistant or imatinib-intolerant GIST, advanced renal cell carcinomas and pancreatic neuroendocrine tumors. Sunitinib inhibits platelet-derived growth factor receptors α and β, the stem cell factor receptor (KIT), the vascular endothelial growth factor receptors (VEGFRs; VEGFR-1, VEGFR-2, and VEGFR-3), and several other tyrosine kinase receptors. Sunitinib predominantly exhibits cytostatic and antiangiogenic effects, explaining that pronounced tumor shrinkage is rare when assessed by the Response Evaluation Criteria in Solid Tumors based on the sum of longest diameters (SLD) of target lesions. Sunitinib provides, however, significant clinical benefit and prolongs survival. Therefore, anatomic size changes may be insufficient to assess biological activity of cytostatic drugs and pharmacodynamic (PD) circulating and imaging biomarkers are considered valuable adjuncts to tumor size to monitor therapeutic response.

By elucidating the relations between drug exposure, PD responses, and clinical outcomes, pharmacometric modeling helps in identifying new biomarkers of response and guiding oncology clinical trial design and therapeutic decisions. Hansson et al. developed a population pharmacokinetic (PK)-PD modeling framework for sunitinib treated patients with GIST linking drug exposure to the time-course of circulating biomarkers (vascular endothelial growth factor [VEGF], the soluble VEGF receptors sVEGFR-2 and sVEGFR-3, and soluble KIT [sKIT]), SLD, adverse effects (fatigue, hand-foot syndrome, neutropenia, and hypertension) and overall survival (OS). Sunitinib induced a schedule-dependent increase in VEGF and decrease in sVEGFR-2, sVEGFR-3, and sKIT.
PK-PD Model of Lesion-Level FDG-PET $S_{\text{U}}V_{\text{max}}$ in GIST

**Schindler et al.**

**Table 1** Summary of study design and study assessments

| Characteristics | Description |
|-----------------|-------------|
| Study design    | Open-label, multicenter, dose escalation, phase I/II study |
| Total no. of patients | 66 |
| Dosing schedule, wk on/off: | 2/1: 50 [N = 6]; 2/2: 25 [N = 6], 50 [N = 24], 75 [N = 3]; 4/2: 50 [N = 27] |
| FDG-PET assessment time, study day | 2/1: cycle 1: 0, 7, 21; cycle 2: 14; 2/2: cycle 1: 0, 7, 28; cycle 4: 28; 4/2: cycle 1: 0, 7, 42; cycle 4: 28 |
| SLD assessment time, study day | 2/1: cycle 1: 0, cycle 4, 8, 12: 14; 2/2: cycle 1: 0, cycle 2 and every other cycle: 28; 4/2: cycle 1: 0, cycle 2 and every other cycle: 28 |

FDG, fluordeoxyglucose; PET, positron emission tomography; SLD, sum of longest diameters.

**Methods**

**Patients and data**

Data from 66 adult patients with imatinib-resistant or imatinib-intolerant GIST treated with sunitinib in a phase I/II study were analyzed. Sunitinib was administered orally once daily according to dosing schedules described in **Table 1**. FDG-PET data were available from baseline and at least one postbaseline scan (**Table 1**). Whole-body PET-scanning had been performed in a fasting-state 60 minutes after FDG administration. $S_{\text{U}}V_{\text{corr}}$ for lean body mass was calculated for a maximum of six reference lesions evaluable at baseline by computed tomography or magnetic resonance imaging (MRI). $S_{\text{U}}V_{\text{max}}$ (SUV of the most active voxel in an ROI) and $S_{\text{U}}V_{\text{mean}}$ (mean SUV for all voxels in an ROI) were recorded for each lesion, and SLD and biomarkers data (VEGF, $s_{\text{VEGFR-2}}$, and $s_{\text{KIT}}$) were also collected. Lesions included in SUV and SLD calculations could differ. Written informed consent was obtained from all patients. The study was approved by the institutional review boards of the participating institutions.

**Model development**

Pharmacometric models were developed using the nonlinear mixed-effect modeling software NONMEM version 7.3. The first-order conditional estimation method with interaction and, for dropout and OS analyses, the Laplacian estimation method was used for parameter estimation. Data preprocessing and postprocessing, model diagnostics, and graphical visualization were performed using R software version 2.15.3, the R-based module Xpose version 4, the PsN toolkit version 4, and Pirana version 2.9.0.

Model discrimination was based on graphical diagnostics and comparison of the objective function value ($OFV$) between nested models. Relative standard errors (RSEs) of parameter estimates were obtained from the NONMEM Sandwich matrix for continuous data, and from the R matrix for dropout and OS models. The predictive performance of the individual lesion SUV and SLD models was assessed using visual predictive checks (VPCs), in which 95% confidence intervals derived from 500 simulated datasets were compared to the observed data. Kaplan–Meier VPCs, comparing the 95% confidence interval derived from 200 simulations to the observed OS data, were used to evaluate the performance of the OS model.

**Pharmacokinetics**

Sunitinib daily dose and daily area under the concentration-time curve ($AUC_{\text{daily}}$), calculated as daily dose/(CL/F), were investigated as drivers in the PD models. Individual empirical Bayes estimates for the apparent oral clearance (CL/F) were obtained from a published PK model. When no PK data were available ($N = 22$), CL/F typical population value corrected for gender, race, and tumor type (GIST) was used. During off-treatment periods, $AUC_{\text{daily}}$ was assumed to be zero. PK data for the equipotent metabolite SU12662 were not available.

**Individual lesion $S_{\text{U}}V_{\text{max}}$ model**

$S_{\text{U}}V_{\text{max}}$ time-course was initially explored for an exponential increase in absence of drug, as described in the growth models proposed by Claret et al. Alternatively, indirect response (IDR) models were investigated, in which the
response is assumed to be at steady state (baseline) in the absence of drug and returns to baseline when the drug washes out. The IDR model best characterized the data (lower OFV) and was therefore selected for further assessment. IDR models with inhibition of the zero-order production (R_{in}), or stimulation of the first-order loss of response (k_{out}) were evaluated to characterize the time-course of individual lesions SUV\textsubscript{max}, which typically decrease during sunitinib treatment. Linear, power, and E\textsubscript{max} drug-effect relationships were considered. An effect compartment accounted for sunitinib accumulation and long elimination half-life (T_{1/2,el}) could not be estimated and was fixed to 50 hours. Linear and nonlinear disease progression models allowing for an underlying increase in SUV\textsubscript{max} during the study were tested. Additionally, a mono-exponential time-dependent decay in drug effect was tested. Interindividual and interlesion variability were evaluated for all model parameters.

Assuming that data were collected for L lesions, j = 1, 2... L, the model parameter for theith subject (\theta_j) can be written as:

\[
\theta_j = \begin{cases} 
\theta \cdot \exp(\eta_j + \kappa_1) & \text{if lesion 1} \\
\theta \cdot \exp(\eta_j + \kappa_2) & \text{if lesion 2} \\
\vdots \\
\theta \cdot \exp(\eta_j + \kappa_L) & \text{if lesion L} 
\end{cases}
\]  

(1)

where \theta is the typical parameter value in the population. \eta_j, the random effect common to all lesions for the ith subject, is assumed to be normally distributed with mean 0 and variance \sigma_j^2. \kappa_j, the random effect specific to the jth lesion, is assumed to be normally distributed with mean 0 and variance \pi_j^2. A common variance was assumed for all lesions (\pi_1^2 = \pi_2^2 = \ldots = \pi_L^2).

Sources of residual variability on SUV\textsubscript{max} may affect all lesions assessed on the same FDG-PET scan (e.g., injected radioactivity concentration, scanner resolution) or a single lesion (e.g., ROI determination). NONMEM level-2 item was used to group together observations from lesions assessed on the same scan. These observations were allowed to have different residual error values (\varepsilon), arising from a multivariate normal distribution parameterized with a zero mean vector and a covariance matrix \Sigma. The diagonal elements of \Sigma corresponding to the variances for each \varepsilon were assumed to be the same. The off-diagonal elements of \Sigma displaying the covariances between \varepsilon were assumed to be the same, denoting the same correlation between the residual errors for all lesions assessed simultaneously. This was implemented in NONMEM through a Cholesky decomposition of the sigma matrix (see Supplementary Material).

As SUV\textsubscript{mean} and SUV\textsubscript{max} data were highly correlated (r^2 = 0.96), the SUV model was built using SUV\textsubscript{max} data, the most commonly reported SUV metrics. The best model structure was then applied to SUV\textsubscript{mean} data and parameters were re-estimated.

**Correlations between SUV\textsubscript{max} and SLD**

Individual lesion SUV\textsubscript{max} and SLD data were modeled jointly using the best structural model for individual lesion SUV\textsubscript{max} combined with a tumor growth inhibition model describing SLD. The tumor growth inhibition model included an exponential growth, a linear drug effect driven by AUC\textsubscript{daily} (through the effect compartment) that increases tumor death rate, and a mono-exponential function accounting for drug effect diminution over time to explain tumor progression or resistance appearance. Exponential interindividual variability terms were included in SLD baseline, the growth rate constant, and the drug effect. All fixed and random effects parameters in the SUV\textsubscript{max}-SLD model were estimated simultaneously. Correlations at the individual level between model parameters were investigated.

**Overall survival model**

OS data were analyzed using parametric time-to-event models. Exponential and Weibull distributions were evaluated to describe the baseline hazard (h_0(t)). Predictors were tested one by one and in combination on the hazard h(t) (Eq. 2).

\[
h(t) = h_0(t) \cdot \exp(\beta_1 x_1 + \ldots + \beta_n x_n)
\]  

(2)

where \beta_i (i = 1, \ldots, n) are coefficients representing the size of the effect of a set of predictors (x_1, \ldots, x_n).

Baseline predictors included the number of FDG-PET positive lesions, Eastern Cooperative Oncology Group functional status, baseline SLD, and the summed SUV\textsubscript{max} across lesions (\Sigma SUV\textsubscript{max}). The predictive ability of time-varying predictors including AUC\textsubscript{daily}, the model-predicted time-courses of \Sigma SUV\textsubscript{max} of SUV\textsubscript{max} of the most active (hottest) lesion, and of SLD were investigated. The product of SLD and \Sigma SUV\textsubscript{max} and the product of SLD and \Sigma SUV\textsubscript{mean} were also tested. Moreover, the model-predicted relative changes in \Sigma SUV\textsubscript{max} and SLD from baseline over time were evaluated. Dose and time-varying predictors were extrapolated assuming that patients were treated with sunitinib until the time of death or censoring according to their last dose and dosing schedule even after tumor progression, as no other treatment option was available at the time of the study and the protocol supported continuation of treatment. Additionally, the relative change in \Sigma SUV\textsubscript{max} at week one or two and the relative change in SUV\textsubscript{max} for the lesion that responded the best (RCFB\textsubscript{max}) at week one or two were tested.
### Table 2 Final individual lesion SUV\(_{\text{max}}\), SLD, dropout, and overall survival model parameter estimates

| Parameter | Typical value (RSE %) | Interindividual variability CV % (RSE %) | Interlesion variability CV % (RSE %) |
|-----------|-----------------------|----------------------------------------|-------------------------------------|
| **Individual lesion SUV\(_{\text{max}}\) model** | | | |
| SUV\(_0\) | 7.59 (5.9) | 32 (16) | 23 (16) |
| k\(_\text{in}\) (wk\(^{-1}\)) | 0.556 (29) | – | – |
| DRUG\(_{\text{SUV}}\) (mg \(^{-1}\).L.h\(^{-1}\)) | 0.946 (15) | 74 (26) | 57 (20) |
| Residual error (%) | 41.7 (20) | – | – |
| **SLD model** | | | |
| SLD\(_0\) (mm) | 263 (6.8) | 54 (9.6) | – |
| K\(_{\text{GROW}}\) (wk\(^{-1}\)) | 0.0105 (24) | 60 (38) | – |
| DRUG\(_{\text{SLD}}\) (mg \(^{-1}\).L.h\(^{-2}\)) | 0.0166 (21) | 63 (37) | – |
| k\(_\text{out}\) (wk\(^{-1}\)) | 0.0201 (45) | – | – |
| Residual error (%) | 6.68 (12) | – | – |
| Correlation DRUG\(_{\text{SUV}}\)/DRUG\(_{\text{SLD}}\) (%) | 85.1 (22) | – | – |
| **OS model** | | | |
| h\(_0\) (wk\(^{-1}\)) | 0.0191 (3.1) | | |
| \(\beta\) | 5.36 (8.5) | – | – |

\(\beta\), parameter relating the maximum relative change from baseline in individual lesion SUV\(_{\text{max}}\) at week one to the hazard; CV, coefficient of variation; DRUG\(_{\text{SLD}}\), tumor size reduction rate constant; DRUG\(_{\text{SUV}}\), slope of the linear drug effect on SUV\(_{\text{max}}\); h\(_0\), constant baseline hazard for the overall survival model; K\(_{\text{GROW}}\), tumor growth rate constant; k\(_{\text{out}}\), SUV\(_{\text{max}}\) turnover rate constant; OS, overall survival; k\(_\text{in}\), rate constant for drug effect washout; RSE, relative standard error; SLD, sum of longest diameters; SLD\(_0\), baseline sum of longest diameters; SUV\(_{\text{max}}\), maximal standardized uptake value; SUV\(_p\), estimated individual lesion SUV\(_{\text{max}}\) at baseline.

Interindividual and interlesion variability were significant to include in the baseline (SUV\(_{\text{max}, 0}\)) and the drug effect parameter (DRUG\(_{\text{SUV}}\)). For both parameters, interindividual variability was estimated to be larger than interlesion variability, although interlesion variability was of significance (32% interindividual and 23% interlesion variability for SUV\(_{\text{max}, 0}\), and 74% interindividual and 57% interlesion variability for DRUG\(_{\text{SUV}}\)).

In the individual lesion SUV\(_{\text{max}}\)-SLD joint model, parameters were estimated with acceptable precision (RSE <29% for fixed effects, <38% for random effects) except for the rate constant for vanishing drug effect on SLD, \(k\(_{\text{out}}\)\) (45%). Removal of \(k\(_{\text{out}}\)\) increased the OFV by 60 points and the function was therefore kept in the model. Parameter estimates and their uncertainty are summarized in Table 2. The drug effects on individual lesion SUV\(_{\text{max}}\) and SLD were 85% correlated at the individual level. The model predicts a typical turnover time (1/k\(_{\text{out}}\)) of SUV\(_{\text{max}}\) of 1.8 weeks, and typical decreases in SUV\(_{\text{max}}\) of 26% and 47% after one and two weeks of sunitinib treatment (50 mg q.d.), respectively.

Graphical exploration of dropout patterns showed no evidence that dropout from FDG-PET measurements was related to the magnitude of SUV\(_{\text{max}}\). Therefore, the realized study design was used for simulations to generate VPCs of individual lesion SUV\(_{\text{max}}\). For SLD simulations a previously published dropout model \(^9\) accounted for the probability of dropping out from SLD assessments. The logistic regression dropout model included as predictors the observed SLD at dropout and a >20% increase in SLD from nadir...
Time since first dose was not significant in the present study. VPCs for the best individual lesion SUV\textsubscript{max}\textendash SL model showed a good predictive performance of the joint model (Figure 1). The individual lesion SUV\textsubscript{max} model structure was successfully applied to individual lesion SUV\textsubscript{mean} data. The typical value of the drug effect parameter in SUV\textsubscript{mean} model and its interindividual and interlesion variability (0.920 mg\textsuperscript{2}1/2 C\textsubscript{1}L.h\textsuperscript{1/2}, 77\% coefficient of variation, and 57\% coefficient of variation, respectively) were of similar magnitude as for SUV\textsubscript{max}.

Joint model for individual lesion SUV\textsubscript{max} and biomarkers
A joint model for individual lesion SUV\textsubscript{max}, VEGF, sVEGFR-2, and sKIT was developed using data from 36 patients with available biomarkers data. As there was limited information on disease progression in the data, the typical value of the slope in the linear disease progression for VEGF and sKIT was fixed to the published value (0.0261 month\textsuperscript{2}1). No statistically significant correlations between parameters in the SUV\textsubscript{max} and biomarker models were identified.

Overall survival model
OS data were collected up to 102 weeks. Eleven patients (17\%) had an event. Individual lesion SUV\textsubscript{max}, SLD, and OS data were fitted simultaneously.\textsuperscript{25,26} The population SUV\textsubscript{max} and SLD parameters were estimated simultaneously with OS parameters based on all data, similar to the PPP&D approach described by Zhang et al.\textsuperscript{27} The probability of OS was best described by an exponential distribution (constant hazard). The probability of being censored was described by a time-to-event model with constant hazard. In the univariate analysis, RCFB\textsubscript{max} at one week (dOFV = −8.8) and two weeks (dOFV = −4.5) were identified as significant predictors of OS. AUC\textsubscript{daily} achieved statistical significance but resulted in model instability and the 95\% confidence interval around the estimate of the size of AUC\textsubscript{daily} effect on the hazard included zero. The model-predicted SLD time-course (dOFV = −7.8) and relative change in SLD from baseline over time (dOFV = −6.6) also resulted in a significant OFV drop; however, these drops were driven by a single individual. When RCFB\textsubscript{max, wk1} was included in the model, none of the other predictors further improved model fit. Eq. 6 describes the hazard function for the best OS model:

\[
h(t) = h_0 \cdot e^{\beta RCFB_{max, wk1}}
\]

where \(h_0\) represents the constant baseline hazard and \(\beta\) the size of the effect of RCFB\textsubscript{max, wk1} on the hazard. \(\beta\) was estimated to 5.36, corresponding to a hazard ratio (HR) of 0.16, 0.02, and 0.50 for the median (−0.34), 5th (−0.76), and 95th (−0.13) percentiles of RCFB\textsubscript{max, wk1}, respectively. Uncertainty around the HR was reasonable (95\% confidence interval = 0.12–0.22 for the median RCFB\textsubscript{max, 1wk}).

Figure 1 Visual predictive checks of the joint model for individual lesion maximum standardized uptake value (SUV\textsubscript{max}, left panels) and the sum of longest diameters (SLD; right panels) for dosing schedules 2/2 (top) and 4/2 (bottom). Median (solid line), 10th and 90th percentiles (dashed lines) of the observed data are compared to the 95\% confidence intervals (shaded areas) for the median (gray), 10th and 90th percentiles (blue) of the simulated data (based on 500 simulations). The dots represent the observed data.
In our analysis, an IDR model could characterize SUV\text{max} time-course significantly better than an exponential growth model. The latter could capture the initial decrease in SUV\text{max} but not the rapid recovery during off-treatment periods. These results contrast with findings in erlotinib-treated patients with nonsmall cell lung cancer,

\cite{28} in which the peak SUV (SUV\text{peak}, SUV within a 1 cm\textsuperscript{3}-sphere centered in the highest-uptake region) time-course assessed by FDG-PET and 3\textsuperscript{[18F]}fluoro-3-deoxy-L-thymidine (FLT)-PET was modeled. The authors used a tumor progression inhibition model to characterize the changes among baseline, week one, and week six in SUV\text{peak} for the hottest lesion up to five lesions (not necessarily the same lesion at each time-point). Erlotinib continuous daily dosing and the short study duration may explain why a tumor progression inhibition model described their data but could not appropriately characterize the SUV data in the current study. Additionally, a waning of the drug effect accounting for disease progression or resistance appearance was identified for SUV\text{peak} in nonsmall cell lung cancer, whereas it was not significant in the present analysis.

To the best of our knowledge, this is the first analysis in which the interindividual variability has been separated from the interlesion variability and from residual variability in a single estimation process. The methodology presented herein could be applied to other lesion-level tumor data, for example, individual lesion tumor diameters or volumes. Ferl \textit{et al.}\n
\cite{30} proposed a model for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers lesion-level data in patients with liver metastases from primary epithelial colorectal cancer after a single administration of bevacizumab, an anti-VEGF monoclonal antibody. The individual lesion baseline biomarker values were estimated as a function of the observed baseline and a lesion-specific residual variability magnitude.\n
\cite{31} However, the interlesion variability could not be separated from the residual unexplained variability. With our approach, the effect of potentially available covariates (e.g., lesion localization, mutation status) could be explored to explain part of the variability in response between lesions. Unfortunately, such data were not available in the present study.

When the individual lesion SUV\text{max} was modeled jointly with VEGF, sVEGFR-2, and sKIT, no significant correlations were identified between the baseline levels or the sensitivity to sunitinib for the different variables. Sunitinib inhibits several tyrosine kinase receptors involved in various molecular pathways and results in both anti-angiogenic and antitumor effects.\n
\cite{1} The absence of correlations may be due to heterogeneous levels of inhibition of these pathways within a patient. However, as circulating biomarker data were only collected in 36 patients, these results should be treated with caution.

The typical predictions (relative to baseline) derived from the individual lesion SUV\text{max}-SLD model, after treatment with 50 mg of sunitinib on 4/2 and 2/2 schedules, are depicted in \textit{Figure 4}. The model predicts a rapid and pronounced decrease in SUV\text{max} after sunitinib administration, whereas the change in SLD is predicted to be slower and of a smaller magnitude during the observation period.
Despite the sparse data and rather small population, the parametric time-to-event model reported here successfully identified predictors for OS (i.e., a more pronounced change in SUVmax for the lesion that responds the best within a patient, as predicted by our model, was associated with longer OS). An HR of 0.59 is predicted for every 10% drop in SUVmax after one week of treatment. These results are comparable to the findings in erlotinib-treated nonsmall cell lung cancer, in which the relative change from baseline in SUVpeak after one week was associated with an improved OS, with an HR of 0.84 for every 10% drop in SUVpeak.39 Altogether, these results indicate that FDG-PET can potentially serve as an early biomarker of tumor response to targeted treatments, and that early changes in SUVmax may be used as a predictor for long-term outcome (OS).

The data, as described by our model, indicate that sunitinib typically causes a rapid initial decrease in SUVmax followed by a recovery toward baseline during off-treatment periods. These findings may explain why observed FDG-PET response at week four did not correlate with clinical outcome in a study of sunitinib-treated patients with metastatic clear-cell renal cancer.32 In that study, FDG-PET scans were assessed two to five days after the last dose in cycle one (i.e., tumor metabolic activity may have already increased during the period off-treatment and variability in response may be due to different assessment time). For future studies assessing FDG-PET response to drugs with intermittent schedules, trial designs should acknowledge potential schedule dependence of tumor metabolic response.

Other treatment schedules than the approved 4/2 schedule have been investigated in GIST and other solid tumors. George et al.33 reported the results of a phase II study in imatinib-resistant patients with GIST assessing the efficacy and safety of sunitinib continuous daily dosing at a dose of 37.5 mg/day, chosen to achieve the same dose intensity over a six-week period. The continuous daily dosing schedule was associated with sustained effective drug concentrations, acceptable safety, and persistent effects on VEGF, sVEGFR-2, sVEGFR-3, and sKIT, without concentration rebounds observed during off-treatment periods. Additional treatment schedules have been proposed for metastatic renal cell carcinoma in which individualized increases in sunitinib dose or longer on-treatment periods with shorter off-treatment periods can be decided based on individual patient toxicity. However, it remains unclear.

Figure 3 Schematic representation of the modeling framework for sunitinib in gastrointestinal stromal tumor patients. Dashed arrows represent effects identified as statistically significant. Sunitinib daily area under the curve (AUCdaily) was used as a driver of the drug effect on tumor metabolic activity, assessed by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) as the maximal standardized uptake value (SUVmax). Tumor size (sum of longest diameters [SLD]) and biomarkers (the soluble stem cell factor receptor [sKIT], the soluble vascular endothelial growth factor receptor [sVEGFR-2], and the vascular endothelial growth factor [VEGF]) were positively correlated, whereas no correlations were found between SUVmax and biomarkers responses. The relative change in SUVmax from baseline after one week of treatment for the lesion that best responds to sunitinib was a significant predictor of overall survival. k0, equilibration constant for the effect compartment; KGROW, first-order growth rate constant; kout, first-order rate constant for the loss of response; λ, rate constant for the disappearance of drug effect on SLD; Rin, zero-order rate constant for the production of response.
PK-PD Model of Lesion-Level FDG-PET SUVmax in GIST

Schindler et al.

Figure 4 Typical predictions of the relative change from baseline in individual lesion maximum standardized uptake value (SUVmax) and the sum of longest diameters (SLD) during sunitinib treatment (50 mg q.d. on 2/2 and 4/2 weeks on/off schedule). The predictions were generated using the SUVmax-SLD joint model.

which dosing strategy is associated with the best clinical benefit.34 Off-treatment periods are not only associated with tumor progression but also coincide with reemergence of tumor-related symptoms (e.g., coughing in patients with lung metastases).35 Simulations using the developed modeling framework can help understand the tumor metabolic and anatomic response after different treatment schedules.

In summary, we have developed a model describing lesion-level FDG-PET data in sunitinib-treated patients with GIST followed up to 102 weeks. The SUVmax-SLD-OS joint model proposed here, together with the modeling framework proposed by Hansson et al.,9,10 including biomarkers, SUVmax, adverse effects, and OS, offer a platform for performing simulations and investigating the effect of different treatment schedules and doses on clinical benefit and risk-benefit balance. This work may therefore support therapy individualization to improve the care of patients with cancer. Additionally, the developed framework can be used for leveraging the extensive clinical data collected throughout drug development, comparing the efficacy and safety profile of candidate drugs, and helping the selection of efficacious but safe doses.

Acknowledgments. The research leading to these results has received support from the Swedish Cancer Society, Sweden, and from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115156, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013), and EFPIA companies in kind contribution. The DDMoRe project is also financially supported by contributions from Academic and SME partners.

Conflict of Interest. M.A.A. is an employee of Pfizer Ltd. M.O.K. and L.E.F. have acted as paid consultants to Pfizer Ltd. As Deputy Editor-in-Chief of CPT: Pharmacometrics & Systems Pharmacology, L.E.F. was not involved in the review or decision process for this article. E.S. declared no conflict of interest.

Author Contributions. E.S., M.A.A., M.O.K., and L.E.F. designed the research. E.S., M.A.A., M.O.K., and L.E.F. performed the research. E.S., M.A.A., M.O.K., and L.E.F. wrote the manuscript. E.S., M.A.A., M.O.K., and L.E.F. analyzed the data.

1. Rock, E.P. et al. Food and Drug Administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 12, 107–113 (2007).
2. Eisenhauer, E.A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
3. Demetri, G.D. et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin. Cancer Res. 15, 5902–5909 (2009).
4. Demetri, G.D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).
5. Contractor, K.B. & Aboagye, E.O. Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J. Nucl. Med. 59 Suppl 1, 97S–105S (2009).
6. Bender, B.C., Schindler, E. & Friberg, L.E. Population pharmacokinetic-pharmacodynamic modelling in oncology: a tool for predicting clinical response. Br. J. Clin. Pharmacol. 79, 56–71 (2015).
7. Mould, D.R., Walz, A.C., Lave, T., Gibbs, J.P. & Frame, B. Developing exposure/response models for anticancer drug treatment: special considerations. CPT Pharmacometrics Syst. Pharmacol. 4, e0016 (2015).
8. Ribba, B. et al. A review of mixed-effects models of OS, treatment growth and effects of anti-cancer drug treatment used in population analysis. CPT Pharmacometrics Syst. Pharmacol. 3, e113 (2014).
9. Hansson, E.K. et al. PKPD modeling of VEGF, sVEGFR-2, sVEGFR-3, and sKIT as predictors of tumor dynamics and overall survival following sunitinib treatment in GIST. CPT Pharmacometrics Syst. Pharmacol. 2, e84 (2013).
10. Hansson, E.K. et al. PKPD modeling of predictors for adverse effects and overall survival in sunitinib-treated patients with GIST. CPT Pharmacometrics Syst. Pharmacol. 2, e85 (2013).
11. Van den Abbeele, A.D. The lessons of GIST–PET and PET/CT: a new paradigm for imaging. Oncologist 13 (suppl. 2), 8–13 (2008).
12. Treglia, G., Mirk, P., Stefaneli, A., Rufini, V., Giordano, A. & Bonomo, L. 18F-Fluorodeoxyglucose positron emission tomography in evaluating treatment response to imatinib or other drugs in gastrointestinal stromal tumors: a systematic review. Clin. Imaging 36, 167–175 (2012).
13. Stefanelli, A., Treglia, G., Mirk, P., Muio, B. & Giordano, A. F-FDG PET imaging in the evaluation of treatment response to new chemotherapies beyond imatinib for patients with gastrointestinal stromal tumors. ISRN Gastroenterol. 2011, 824892 (2011).
14. Vanderhoek, M., Perlman, S.B. & Jeraj, R. Impact of different standardized uptake value measures on PET-based quantification of treatment response. J. Nucl. Med. 54, 1188–1194 (2013).
15. Prior, J.O. et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J. Clin. Oncol. 27, 439–445 (2009).
16. Beal, S., Sheiner, L.B., Boeckmann, A. & Bauer, R.J. NONMEM user’s guides (1989–2009) (Icon Development Solutions, Ellicott City, MD, 2009).
17. Keizer, R.J., Karlsson, M.O. & Hooker, A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PaN, and Xpose. CPT Pharmacometrics Syst. Pharmacol. 2, e50 (2013).
18. Houk, B.E., Bello, C.L., Kang, D. & Amantea, M. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin. Cancer Res. 15, 2487–2496 (2009).
19. Claret, L. et al. Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J. Clin. Oncol. 27, 4103–4108 (2009).
PK-PD Model of Lesion-Level FDG-PET SUV\textsubscript{max} in GIST

Schindler et al.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (http://www.wileyonlinelibrary.com/psp4)