A model independent constraint on the temporal evolution of the speed of light

Dandan Wang,a,b Hanyu Zhang,c Jinglan Zheng,a,b Yuting Wang,a Gong-Bo Zhaoa,d,e

aNational Astronomical Observatories, Chinese Academy of Science, Beijing, 100101, P. R. China
bUniversity of Chinese Academy of Science, Beijing, 100049, P. R. China
cDepartment of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA
dSchool of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
eInstitute of Cosmology & Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX, UK

E-mail: ddwang@nao.cas.cn, hanyuz@phys.ksu.edu, jilzheng@nao.cas.cn, ytwang@nao.cas.cn, gbzhao@nao.cas.cn

Abstract. We present a new, model-independent method to reconstruct the temporal evolution of the speed of light $c(z)$ using astronomical observations. After validating our pipeline using mock datasets, we apply our method to the latest BAO and supernovae observations, and reconstruct $c(z)$ in the redshift range of $z \in [0, 1.5]$. We find no evidence of a varying speed of light, although we see some interesting features of $\Delta c(z)$, the fractional difference between $c(z)$ and c_0 (the speed of light in SI), e.g., $\Delta c(z) < 0$ and $\Delta c(z) > 0$ at $0.2 \lesssim z \lesssim 0.5$ and $0.8 \lesssim z \lesssim 1.3$, respectively, although the significance of these features is currently far below statistical importance.
1 Introduction

In this era of precision cosmology, we are fortunately equipped with high quality observational data of various kinds, which makes it possible to test fundamental laws of the Universe. Physical laws of the Universe are built with a few “constants”, including the gravitational constant G, the electron charge e, the speed of light c, and so on. Actually, assuming the constancy of these “constants” at all cosmic times and scales is a significant extrapolation of our knowledge on a rather limited temporal and spacial scales, which is subject to observational scrutiny.

Theorists including Dirac started thinking about building models for a varying G or e, well before any observational tests became feasible [1, 2]. However, the constancy of c was much more sacred [3], as it is the pillar of special relativity, built by Einstein in 1905. Making c vary is much more destructive to the structure of formalisms in modern physics, than varying other constants may do. Nevertheless, varying speed of light (VSL) may solve the cosmological constant problem and build a new framework of cosmic structure formation, as an alternative to inflation. This is sufficiently attractive for theorists to develop viable VSL theories (see [4] for a review of recent developments in VSL). On the other hand, techniques for testing VSL observationally have been developed in parallel. Recently, a new method to constrain VSL at a single redshift using baryonic acoustic oscillations (BAO) was developed [5], and has been applied to cosmological observations [6, 7].

The method developed in [5] is briefly summerised as follows. Given the relation between the angular diameter distance $D_A(z)$ and the Hubble function $H(z)$, the speed of light c at a specific redshift $z = z_M$ is just a product of $D_A(z_M)$ and $H(z_M)$, where z_M is the peak location of $D_A(z)$, i.e., $\partial D_A/\partial z|_{z=z_M} = 0$. Note that the exact value of z_M is model-dependent, and $z_M \sim 1.7$ for a flat ΛCDM model that is consistent with the Planck 2018 observations [8].

This method has advantages of being model-independent and free from degeneracy with other cosmological parameters, but it has drawbacks. First, it is difficult to determine z_M accurately, as $D_A(z)$ is rather flat around its peak. Second, for a wide range of cosmologies, z_M is as large as ~ 1.7, making it unaccessible for most current BAO observations. Even for future deep BAO surveys including Dark Energy Spectroscopic Instrument (DESI) [9], it is challenging to get decent D_A or H measurements at such high redshifts. Last but not least, this method only constrains c at one single redshift, which is far from sufficient for tests against various VSL models.
In this work, we generalise [5] to propose a new model-independent method for testing VSL at multiple redshifts. After presenting the methodology in Sec. 2, we perform validation tests using mock datasets, before applying to observational data and presenting our main result in Sec. 4. We conclude and discuss our results in Sec. 5.

2 Methodology

We start from the relation between the angular diameter distance $D_A(z)$, the Hubble function $H(z)$, and the general speed of light function $c(z)$ in a flat FRW Universe \(^1\), i.e.,

$$D_A(z) = \frac{1}{1+z} \int_0^z \frac{c(z')}{H(z')} dz'.$$

(2.1)

Differentiating both sides with respect to redshift z yields,

$$c(z) = \chi'(z)H(z),$$

(2.2)

where χ is the comoving distance so that $\chi(z) = (1+z)D_A(z)$. Our aim is to reconstruct the entire evolution history of $c(z)$, thus we parametrise the redshift-dependence of $\chi(z)$ and $H(z)$ as follows,

$$\frac{\chi(z)}{\chi_{\text{fid}}(z)} = \alpha_0 \left(1 + \alpha_1 x + \frac{1}{2} \alpha_2 x^2 + \frac{1}{6} \alpha_3 x^3\right),$$

(2.3)

$$\frac{H(z)}{H_{\text{fid}}(z)} = \beta_0 + \beta_1 x + \frac{1}{2} \beta_2 x^2 + \frac{1}{6} \beta_3 x^3.$$

(2.4)

The variable $x \equiv \chi_{\text{fid}}(z)/\chi_{\text{fid}}(z_p) - 1$ where the subscript fid denotes the fiducial cosmology used, and z_p is the pivot redshift at which we apply the Taylor expansion. In this work, the fiducial cosmology is chosen to be a flat ΛCDM model with $\Omega_{M,\text{fid}} = 0.31$.

To test against the constancy of the speed of light, we define a deviation function of c as,

$$\Delta c(z) = \frac{c(z)}{c_0} - 1,$$

(2.5)

where c_0 is the speed of light in the International System of Units (SI), i.e., $c_0 = 299,792,458$ m s\(^{-1}\).

Combining Eqs (2.2), (2.3), (2.4) and (2.5), we have,

$$\Delta c(z) = \frac{\alpha_0 \left[1 + \alpha_1 x + (2\alpha_1 + \alpha_2) x + \left(\frac{3}{2} \alpha_2 + \frac{1}{2} \alpha_3 \right) x^2\right]}{\beta_0 + \beta_1 x + \frac{1}{2} \beta_2 x^2} - 1.$$

(2.6)

Specially, at z_p where x vanishes,

$$\Delta c(z_p) = \frac{\alpha_0 (1 + \alpha_1)}{\beta_0} - 1.$$

(2.7)

Although Δc does not explicitly depend on other cosmological parameters, its measurement does implicitly rely on how well we are able to model D_A and H using Eqs (2.3), (2.4) for general cosmologies. The expansion Eq (2.3) was actually proposed by [11] for implementing the optimal

\(^{1}\)Note that in non-flat Universes, the Friedmann equations get modified by the time derivative of $c(z)$ so Eq (2.1) does not hold [10]. In this work, we consider a flat Universe for simplicity.
redshift weighting method for BAO analyses, and it was shown that expansions up to the quadratic order in x can precisely recover a wide range of cosmologies at the sub-percent level in the redshift range of $z \in [0.5, 1.5]$. Note that in [11], the speed of light was assumed to be a constant, thus $H(z)$ was derived from $\chi(z)$. In our case, as $c(z)$ is promoted to a general function of z, we have to double the number of the expansion coefficients for $H(z)$. Also, we are more ambitious on the valid redshift range for these expansions, since we plan to use all the available observations probing the background expansion of the Universe from $z = 0$ to $z = 2$. All these motivated us to use expansions to higher order to achieve the precision we need.

To validate our parametrisations for $\chi(z)$ and $H(z)$, we attempt to fit two cosmologies which sufficiently deviate from the fiducial cosmology we use for the expansion. Specifically,

- Cosmo. Model I : a flat ΛCDM model with $\Omega_M = 0.2$; (2.8)
- Cosmo. Model II : a flat wCDM model with $\Omega_M = 0.31; \ w = -0.8$. (2.9)

Both models are excluded by Planck 2018 observations, making them representative for “extreme” models that may be later sampled in the parameter space. For each model, we first choose a pivot redshift z_p, and then tune the coefficients α’s and β’s to minimise the difference between our model prediction for D_A and H computed using Eqs (2.3), (2.4), and the exact quantities calculated using models I and II. Then we compute the residual R for $D_A(z)$ and $H(z)$ respectively, i.e.,

$$R_o(z, z_p) \equiv 100 \times \left[\frac{O_{\text{model}}(z, z_p)}{O_{\text{exact}}(z, z_p)} - 1 \right] \%,$$

where O stands for D_A or H.

The computed residuals are shown in Fig. 1 for various $|z - z_p|$ values, and we find that our model with third-order expansions are sufficiently accurate for our analysis: the residuals in most cases are below 1% level, although $H(z)$ is less accurately modeled than $D_A(z)$. Larger residuals appear when $|z - z_p|$ gets larger, which is naturally expected as the accuracy of the Taylor expansion decays with the distance to the expansion point. Quantitatively, $|R| \lesssim 1\%$ for $|z - z_p| \lesssim 1$ for both models, and $|R|$ can approach 4% for H in the worst case, e.g., $|z - z_p| = 2$, but as we will explain later, this does not affect our result, if we only take the reconstructed values at z_p (so that $|z - z_p| = 0$).

Before applying our method to actual observations, there is another step missing: an actual mock test for various VSL models, which is presented in the next section.

3 Mock tests

This section is devoted to a robustness test of our pipeline, before applying to actual observations presented in the next section.

To begin with, we choose four phenomenological VSL models for $\Delta c(z)$ to cover various possible features, including a constant, a linear function, quadratic function and an oscillatory function, i.e.,

- VSL model 1: $\Delta c(z) = 0.05$;
- VSL model 2: $\Delta c(z) = 0.05z$;
- VSL model 3: $\Delta c(z) = 0.05z + 0.01z^2$;
- VSL model 4: $\Delta c(z) = 0.05 \sin(z\pi)$.

– 3 –
Figure 1. The residual R defined in Eq (2.10) as a function of $|z - z_p|$. As shown, the residuals are below the 1% level for $|z - z_p| < 1$, although $H(z)$ is less accurately modeled than $D_A(z)$. For larger $|z - z_p|$, say, $1 < |z - z_p| < 2$, R for $D_A(z)$ can still be controlled at the per cent level, while the residual for H approaches the 4% level.

These VSL models are then combined with two cosmological models, respectively, as shown in Eqs (2.8) and (2.9) to make eight toy models for the mock test (see Table 1 for the labelling of the toy models).

For each toy model, we can first generate mock $H(z)$ data points using cosmological models shown in Eqs (2.8) and (2.9), and then produce mock $D_A(z)$ datasets by combining $H(z)$ and $\Delta c(z)$ using Eq (2.1).

In practice, we produce two kinds of mock datasets, a combined BAO data sample assuming the sensitivity of the Euclid mission [12] and DESI survey [9], and a combined supernovae sample forecasted for LSST [13] and Euclid [14].

For the BAO sample, we follow [12] and [9] to produce D_A and H pairs at 15 and 18 effective redshifts for Euclid and DESI, respectively, so that our combined BAO sample consists of 33 pairs of D_A and H covering the redshift range of $z \in (0, 2.1)$. For the supernovae sample, we produce luminosity distances assuming the sensitivity of the Deep-Drilling Fields and low-redshift sample to be observed by LSST, and of the DESIRE supernovae survey of Euclid. The Deep-Drilling Fields will observe 8800 supernovae at $z \in [0.15, 0.95]$, and additional 8000 supernovae below redshift 0.35. This sample is complemented by the high-z sample to be collected by the DESIRE survey.
which will provide 1740 supernovae at \(z \in [0.75, 1.55] \).

For a given \(z_p \), these datasets can be fitted with theoretical models Eqs (2.3) and (2.4) for parameters \(\alpha \)'s and \(\beta \)'s, using a modified version of CosmoMC [15]. We could then use the resultant \(\alpha \)'s and \(\beta \)'s to reconstruct \(\Delta c(z) \) using Eq (2.6). However, this result may be subject to systematic errors in \(\Delta c(z) \) at redshifts that are far away from \(z_p \), as we have seen in Fig. 1. It is true that the residual \(|R| \) is as low as 3% in the worst case as discussed in Sec. 2, but it can be further improved.

The way out is to abandon the reconstructed \(\Delta c(z) \) at all redshifts except for \(z = z_p \), where the Taylor expansion is error free, and repeat the fitting process for every \(z_p \) (with equal space of \(\Delta z = 0.01 \) in \(z \)) running in the entire redshift range. This is computationally expensive, and the error of \(\Delta c(z) \) at different redshifts are highly correlated, but it is much more accurate.

The result of this mock test is summerised in Fig. 2. As shown, the input VSL models are reconstructed perfectly for all toy models, with negligible bias compared to the statistical error budget.

Toy model	VSL model	Cosmological model
1	VSL model 1	ΛCDM; Eq (2.8)
2	VSL model 2	ΛCDM; Eq (2.8)
3	VSL model 3	ΛCDM; Eq (2.8)
4	VSL model 4	ΛCDM; Eq (2.8)
5	VSL model 1	wCDM; Eq (2.9)
6	VSL model 2	wCDM; Eq (2.9)
7	VSL model 3	wCDM; Eq (2.9)
8	VSL model 4	wCDM; Eq (2.9)

Table 1. Toy models used for the mock test.

Figure 2. The result of the mock test for eight toy models shown in Table 1. The black solid lines and the red dots show the input and reconstructed values of \(\Delta c(z_p) \), respectively, and the error bars illustrate the 68% CL uncertainty.
4 Implication on the latest observational datasets

Now it is time to apply our pipeline for measuring $\Delta c(z)$ to actual observational data. We shall first introduce datasets we use, and then present the result.

4.1 The observational dataset

The datasets used in this analysis include,

- **The BAO measurements.** As we are interested in reconstructing the time evolution of Δc, we use the tomographic BAO measurements from the Baryonic Oscillation Spectroscopic Survey (BOSS) Data Release (DR) 12 sample, which provides measurement of D_A/r_d and Hr_d pairs at nine effective redshifts in the redshift range of $z \in [0.31, 0.64]$ [16]. To approach the high-z end, we also use the tomographic BAO measurement from the extended BOSS (eBOSS) DR14 quasar sample, which offered four additional D_A/r_d and Hr_d pairs at redshifts $z \in [0.98, 1.94]$ [17]. Note that as Eq (2.2) shows, the speed of light is a product between H and dx/dz, r_d cancels out.

- **The observational $H(z)$ data (OHD).** The OHD, as ‘cosmic chronometers’, are measured using the ages of passively evolving galaxies, and we use a compilation of 30 data points shown listed in Table 2.

- **The supernovae data.** We use the ‘joint light-curve analysis (JLA)’ sample [18], which is a re-analysis of 740 data points consisting of samples from the three year SDSS-II supernovae survey [19] and the SNLS samples presented in [20].

4.2 The final result

We apply our pipeline to the actual observational data, in the same way as we performed on the mock data, and present the result in Fig. 3. Again, this is a compilation of $\Delta c(z_p)$ for numerous z_p’s with equally spaced in z with $\Delta z = 0.01$.

As shown, the uncertainty of $\Delta c(z_p)$ gets minimised at $z \sim 0.2$, where the Universe is best probed by current supernovae and BAO experiments. The constraints on the low-z and high-z ends are looser, because of the small volume at low-z and the sparsity of galaxy distributions at high-z, which dilutes the BAO constraints. Furthermore, the current supernovae surveys can barely access the Universe at $z \gtrsim 1$.

The result is consistent with $\Delta c(z) = 0$ given the level of uncertainty, but interesting features show up at $0.2 \lesssim z \lesssim 0.5$ and $0.8 \lesssim z \lesssim 1.3$ where $\Delta c(z) < 0$ and $\Delta c(z) > 0$, respectively, which awaits further investigation using future observations.

We are interested in quantifying the signal-to-noise ratio of $\Delta c(z) \neq 0$, yet it is not straightforward because the error bars are highly correlated, but a covariance matrix is unavailable as we performed the parameter constraints at various z_p individually.

However, for a given z_p, we are able to quantify the deviation of $\Delta c(z)$ from zero with the reconstructed $\Delta c(z)$ using Eq (2.6), as the covariance for the α and β parameters is available. Before proceeding, we show the reconstructed $\Delta c(z)$ in Fig. 4 using three values of z_p at 0.05, 0.2 and 1.5, which covers a reasonable choice of z_p (0.2) and two extreme values (0.05 and 1.5). As shown, these results agree reasonably well with that shown in Fig. 3, although the result using $z_p = 1.5$ over-estimates the uncertainty (but the central value remains accurate).

We then quantify the difference between $\Delta c(z)$ and zero using the α’s and β’s derived using a specific z_p. Note that $\Delta c(z) = 0$ means that the numerator is identical to the denominator of the fraction in Eq (2.6), which translates into,
Figure 3. A reconstruction of $\Delta c(z_p)$ derived from a compilation of current observations described in Sec. 4.1. The black horizontal line shows $\Delta c(z_p) = 0$ to guide eyes.

Figure 4. The reconstructed $\Delta c(z)$ using three values of z_p, as illustrated in the legend. The shaded bands show the 68% uncertainty.
\[\Delta_0 \equiv \beta_0 - \alpha_0(1 + \alpha_1) = 0,\]
\[\Delta_1 \equiv \beta_1 - \alpha_0(2\alpha_1 + \alpha_2) = 0,\]
\[\Delta_2 \equiv \beta_2 - \alpha_0(3\alpha_2 + \alpha_3) = 0.\]

(4.1)

Given the measured \(\alpha\)'s and \(\beta\)'s and the corresponding covariance matrix, we can easily evaluate the following \(\chi^2\).

\[\chi^2_{zp} = \Delta^T C_\Delta \Delta\]

(4.2)

where \(\Delta \equiv \{\Delta_0, \Delta_1, \Delta_2\}^T\) and \(C_\Delta\) is the derived covariance matrix for vector \(\Delta\). We average over the \(\chi^2\) for all the \(z_p\)'s and compute the mean and variance, which gives,

\[\chi^2 = 3.2 \pm 1.1.\]

(4.3)

which is statistically expected for fitting a fixed value, 0, to three data points \((\Delta_i, \ i = 1, 2, 3)\). The error of \(\chi^2\) quantifies the fluctuation of the result using various \(z_p\), thus it can be viewed as systematics. So the conclusion is, the constant speed of light measured in SI is consistent with current cosmological observations.

5 Conclusion and discussions

As a competitor of inflation, viable VSL theories deserve serious investigation both theoretically and observationally. With the accumulation of high quality cosmological datasets, it is time to develop theoretical and numerical tools to put constraints on the VSL scenario.

In this work, we take a phenomenological approach to study the VSL models. We propose a new method to constrain the speed of light using observations. Compared to previous works, our method enables a reconstruction of the temporal evolution of the speed of light \(c(z)\), without dependence on cosmological models.

After validating our method and pipeline using mock datasets of BAO and supernovae, we apply our method to the latest astronomical observations including the anisotropic BAO measurements from BOSS (DR12) and eBOSS (DR14 quasar), and the JLA supernovae sample, and reconstruct \(c(z)\) in the redshift range of \(z \in [0, 1.5]\). We find no evidence of a varying speed of light, although we see some interesting features of \(\Delta c(z)\), the fractional difference between \(c(z)\) and \(c_0\) (the speed of light in SI), e.g., \(\Delta c(z) < 0\) and \(\Delta c(z) > 0\) at \(0.2 \lesssim z \lesssim 0.5\) and \(0.8 \lesssim z \lesssim 1.3\), respectively. Although the significance of these features is far below statistical importance, it is worth further investigations using future observations.

Acknowledgments

This work is supported by the National Key Basic Research and Development Program of China (No. 2018YFA0404503), National Basic Research Program of China (973 Program) (2015CB857004), by NSFC Grants 11720101004 and 11673025 and by a CAS Interdisciplinary Innovation Team Fellowship. This research used resources of the SCIAMA cluster supported by University of Portsmouth.
References

[1] P. A. M. Dirac, “The Cosmological constants,” Nature 139, 323 (1937).
[2] J. D. Bekenstein, “Fine Structure Constant: Is It Really a Constant?,” Phys. Rev. D 25, 1527 (1982).
[3] J. D. Barrow, “Is nothing sacred?,” New Sci. 163N2196, 28 (1999).
[4] J. Magueijo, “New varying speed of light theories,” Rept. Prog. Phys. 66, 2025 (2003) [astro-ph/0305457].
[5] V. Salzano, M. P. Dabrowski and R. Lazkoz, “Measuring the speed of light with Baryon Acoustic Oscillations,” Phys. Rev. Lett. 114, no. 10, 101304 (2015) [arXiv:1412.5653 [astro-ph.CO]].
[6] S. Cao, M. Biesiada, J. Jackson, X. Zheng, Y. Zhao and Z. H. Zhu, “Measuring the speed of light with ultra-compact radio quasars,” JCAP 1702, no. 02, 012 (2017) [arXiv:1609.08748 [astro-ph.CO]].
[7] R. G. Cai, Z. K. Guo and T. Yang, “Dodging the cosmic curvature to probe the constancy of the speed of light,” JCAP 1608, no. 08, 016 (2016) [arXiv:1601.05497 [astro-ph.CO]].
[8] N. Aghanim et al. [Planck Collaboration], “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
[9] A. Aghamousa et al. [DESI Collaboration], “The DESI Experiment Part I: Science, Targeting, and Survey Design,” arXiv:1611.00036 [astro-ph.IM].
[10] J. D. Barrow and J. Magueijo, “Solutions to the quasi-flatness and quasilambda problems,” Phys. Lett. B 447, 246 (1999) [astro-ph/9811073].
[11] F. Zhu, N. Padmanabhan and M. White, “Optimal Redshift Weighting For Baryon Acoustic Oscillations,” Mon. Not. Roy. Astron. Soc. 451, no. 1, 236 (2015) [arXiv:1411.1424 [astro-ph.CO]].
[12] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H. J. Seo and A. Slosar, “DESI and other dark energy experiments in the era of neutrino mass measurements,” JCAP 1405, 023 (2014) [arXiv:1308.4164 [astro-ph.CO]].
[13] P. A. Abell et al. [LSST Science and LSST Project Collaborations], “LSST Science Book, Version 2.0,” arXiv:0912.0201 [astro-ph.IM].
[14] P. Astier et al., “Extending the supernova Hubble diagram to $z \sim 1.5$ with the Euclid space mission,” Astron. Astrophys. 572, A80 (2014) [arXiv:1409.8562 [astro-ph.CO]].
[15] A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A Monte Carlo approach,” Phys. Rev. D 66, 103511 (2002) [astro-ph/0205436].
[16] G. B. Zhao et al. [BOSS Collaboration], “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space,” Mon. Not. Roy. Astron. Soc. 466, no. 1, 762 (2017) [arXiv:1607.03153 [astro-ph.CO]].
[17] G. B. Zhao et al. [eBOSS Collaboration], “The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights,” Mon. Not. Roy. Astron. Soc. 482, no. 3, 3497 (2019) [arXiv:1801.03043 [astro-ph.CO]].
[18] M. Betoule et al. [SDSS Collaboration], “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples,” Astron. Astrophys. 568, A22 (2014) [arXiv:1401.4064 [astro-ph.CO]].
[19] M. Sako et al. [SDSS Collaboration], “The Data Release of the Sloan Digital Sky Survey-II Supernova Survey,” Publ. Astron. Soc. Pac. 130, 064002 (2018) [arXiv:1401.3317 [astro-ph.CO]].
[20] A. Conley et al. [SNLS Collaboration], “Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey,” Astrophys. J. Suppl. 192, 1 (2011) [arXiv:1104.1443 [astro-ph.CO]].
A The $H(z)$ data

We summarise the OHD data used in this work in the following table.
z	$H(z)$	$\sigma_{H(z)}$	Reference
0.07	69.0	19.6	[21]
0.09	69	12	[22]
0.12	68.6	26.2	[21]
0.017	83	8	[22]
0.179	75	4	[23]
0.199	75	5	[23]
0.20	72.9	29.6	[21]
0.27	77	14	[22]
0.28	88.8	36.6	[21]
0.352	83	14	[23]
0.3802	83	13.5	[24]
0.4	95	17	[22]
0.4004	77	10.2	[24]
0.4247	87.1	11.2	[24]
0.4497	92.8	12.0	[24]
0.4783	80.9	9	[24]
0.48	97	62	[25]
0.583	104	13	[23]
0.68	92	8	[23]
0.781	105	12	[23]
0.875	125	17	[23]
0.88	90	40	[25]
0.9	117	23	[22]
1.037	154	20	[23]
1.3	168	17	[22]
1.363	160	33.6	[26]
1.43	177	18	[22]
1.53	140	14	[22]
1.75	202	40	[22]
1.965	186.5	50.4	[26]

Table 2. $H(z)$ measurements (in unit of [km s$^{-1}$ Mpc$^{-1}$]) used in this work.