Evaluation of the Behavior of Cashew Genotypes against Anthracnose Disease Aggression in Agroforestry Farms in Northern Côte d'Ivoire

Brou Kouassi Guy1*, Doga Dabé2, Diarrassouba Nafan3, Oro Zokou Franck1, N’goran Yao Claude François1, Kouassi Koffi Il Nazaire4 and Dogbo Denezon Odette5

1Département Biologie Végétale, Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Université Peleforo Gon Coulibaly (UPGC). BP 1328 Korhogo, Côte d’Ivoire.
2Station de Recherche de Lataha, Programme Anacarde, Mangue et Papaye, Centre Nationale de Recherche Agronomique (CNRA), 01 BP 1740 Abidjan 01, Côte d’Ivoire.
3Département Biochimie-Génétique, Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Université Peleforo GON COULIBALY (UPGC). BP 1328 Korhogo, Côte d’Ivoire.
4Unité de Formation et de Recherche (UFR) Biosciences, Programme West African Virus Epidemiology (WAVE), Université Félix Houphouët Boigny, 01 BPV 34 Abidjan 01, ex-Directeur du Laboratoire Central de Biotechnologie, Centre Nationale de Recherche Agronomique (CNRA), 01 BP 1740 Abidjan 01, Côte d’Ivoire.
5Unité de Formation et de Recherche (UFR) des Sciences Naturelles, Laboratoire de Physiologie Végétale, Université Nangui Abrogoua, 02 BP 801Abidjan 02, Côte d’Ivoire.

Authors’ contributions

This work was carried out in collaboration among all authors. Author BKG designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors DD and DN managed the analyses of the study. Author OZF managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRC/2021/v6i30116
Editor(s):
(1) Dr. Rangasamy Anandham, Tamil Nadu Agricultural University, India.
Reviewers:
(1) Silvio Lopes Teixeira, Federal University of Viçosa, Brazil.
(2) Sammy Aquino Pereira, Instituto Nacional de Pesquisas da Amazônia (INPA), Brazil.
Complete Peer review History: http://www.sciarticle4.com/review-history/66889

Received 01 February 2021
Accepted 06 April 2021
Published 19 May 2021

ABSTRACT

As in all cashew producing areas, anthracnose causes enormous production losses in cashew agroforestry farms in Côte d’Ivoire. To overcome this problem, the use of anthracnose-resilient production plant material in cashew forest agrosystems is becoming a necessity for sustainable

*Corresponding author: E-mail: brookouassiguy@gmail.com;
development. Thus, this study was carried out with the aim of evaluating the behavior of genotypes of cashew trees cultivated in peasant agroforestry systems in the north of Côte d’Ivoire. To do this, peasant agroforestry cashew orchards were prospected, cashew trees were marked, codified and geolocated. The incidence and severity of anthracnose were then assessed on the marked and geolocated cashew leaves, twigs, inflorescences and fruits. Descriptive analysis of the incidence and severity data revealed that more than 50% of the genotypes studied were resilient to anthracnose with an incidence on nuts in the order of $0.00 \pm 5.75\%$. The ACP explained 52.96% of the total variability observed with the first two axes. The CAH made it possible to structure these genotypes into four groups. MANOVA showed that genotypes in groups 2 and 4 exhibited traits of resilience against anthracnose disease. Group 2 was characterized by a relative absence of disease in the fruits (0.00 ± 0.00) and by very severe infections in the twigs (88.19 ± 2.98). Groups 4 were differentiated by low fruit infections (1.32 ± 0.32) and low incidence on fruits (2.17 ± 1.09). These results should help promote the agroecological management of anthracnose disease, enhance and intensify agroforestry practices in Côte d’Ivoire.

Keywords: Cashew genotypes; agroecology; agroforestry; ACP; anthracnose disease.

1. INTRODUCTION

Native to northeastern Brazil [1,2] the cashew tree (*Anacardium occidentale* L.) was introduced by the Spanish and the Portuguese in the colonies of Africa and Asia [3,4,5]. Africa alone accounts for 55% of global cashew production [6]. West Africa, led by the Ivory Coast, is the newest and most dynamic production area in the world. Indeed, it provides 88% of African production [7]. In Côte d’Ivoire, the cashew tree was introduced in 1951 as a species for reforestation [8]. Thus orchards were created in the North of Côte d’Ivoire by the Technical Assistance Company for the Modernization of Agriculture in Côte d’Ivoire (SATMACI) and the Forestry Development Society (SODEFOR) in the 1960s [9]. These orchards were intended to fight against erosion and deforestation in the northern regions of Côte d’Ivoire.

Nowadays, the cashew tree has become a cash crop for this country agroforestry system as in Tanzania, Mozambique, Nigeria, Guinea Bissau and Benin [10,11,12,13]. Since 2015, Côte d’Ivoire has been the world’s leading producer and exporter of raw cashew nuts [14] with a national production of 738,000 tonnes of raw cashew nuts marketed in 2018. Despite the importance of Ivorian cashew production, the average yield of Ivorian peasant orchards remains low, in the order of 350 to 500 kg / ha [15]. This low production is mainly due to the use of plant material from all sources combined with high pest pressure [15,16]. Indeed, these orchards are faced with attacks from diseases including anthracnose [17,18]. In Tanzania, anthracnose is one of the four diseases responsible for declining cashew yields [19]. In 2000, anthracnose in Brazil caused a drop in production of around 40% [20]. Based on this observation, the use of resilient cashew genotypes for the development of agroforestry operations would be the best agroecological management approach for parasites in order to permanently curb anthracnose disease. In addition, it would help build a more resilient, less costly and environmentally friendly farming system.

To achieve this, the authors propose to evaluate, at different stages of development, the behavior of cashew genotypes developed in an agroforestry system and to structure them according to the severity and incidence of anthracnose disease.

2. MATERIAL AND METHODS

2.1 Expérimentation Site

The peasant orchards of the departments of Korhogo, Sinématiali and Boundiali were the sites of the study. These departments are all located in the north of the Ivory Coast. The climate there is Sudanese and is marked by two seasons including a short rainy season which starts from May to October and a long dry season which extends from November to April with a dry wind from November to March. The average annual rainfall varies between 1000 and 1400 mm. The vegetation consists of wooded savannah and the soils are ferralitic, moderately to strongly denatured [4].

2.2 Plant Material

The plant material used is composed of 30 genotypes of cashew trees from the peasant
orchards of the departments surveyed (Korhogo, Sinématiali and Boundiali). The cashew trees of these peasant orchards have a planting period of 10 years and have the particularity of being developed, in an agroforestry system, in cultural association with the shea tree and the mango tree (Table 1).

2.3 Méthodes

2.3.1 Orchard prospection and choice of genotypes

The prospecting was carried out in the peasant orchards of the departments of Sinématiali, Korhogo and Boundiali. It consisted in looking for genotypes all coming from high producer cashew tree (between 20 and 50 kg), having a planting period of 10 years of age and developed in an agroforestry system which associates them with the mango tree and the shea tree. These tree populations were surveyed using the traveling inventory method combined with the diagonals and medians method. Each tree or individual has been marked / colored, numbered and geo-referenced using GPS. This approach was inspired by the strategies developed by Maxted et al. [21] to conduct eco-geographic surveys and those of Diouf et al. [22] to carry out ethnobotanical surveys. During surveys, the incidence and severity of anthracnose disease on the populations of shea tree, cashew tree and mango tree were realized.

2.4 Statistical Analysis

Data were collected on each side of the North-South and East-West axes of the tagged cashew tree. These data focused on the incidence and severity of anthracnose disease in leaves, twigs, inflorescences and fruits.

2.4.1 Evaluation of the severity index (Is) of anthracnose disease

Severity was assessed every two weeks on the leaves, fruits and panicles of the ten (10) branches marked on either side of the N-S and E-W axes. The evaluation approach resulted in a visual rating scale ranging from 0 to 9 [23,24,25].

The anthracnose disease severity index was determined according to the formula of Kranz [26] cited by Dianda et al. [27] according to the following formula.

\[
Is = \sum \left(\frac{X_i \times n_i}{N \times Z} \right) \times 100
\]

Is : severity index; Xi : severity i of the disease on the organ; ni : number of organ of severity i; N : total number of the organ observed; Z : highest severity scale (9).

2.4.2 Assessment of the incidence (Ic) of anthracnose disease

The incidence was determined as the ratio of the number of sick individuals to the total number of individuals observed as a percentage. The impacts were determined according to the following formula [28,29]:

\[
Ic = \frac{\text{Number of organs attacked on the date of observation}}{\text{Total number of organs in the plot orbit}} \times 100
\]

A scale adapted to that used by Bhagwat et al. [30] for the discrimination of mango varieties infected with anthracnose allowed to qualify the level of incidence of anthracnose disease. This six-grade scale (0-5) is defined as follows: 0 (no symptoms); grade 1 (1-10%: low incidence); grade 2 (11-20%: moderate incidence); grade 3 (21-30%: medium or intermediate incidence); grade 4 (31-50%: high incidence); grade 5 (>50%: very high incidence).

This evaluation focused on ten (10) branches marked on each side of the N-S and E-W axes to be seen and carried by hand.

2.4.3 Statistical analysis of the data collected

Data entry and graphs were performed with Excel 2013 software. Statistica 7.1 software was used to perform descriptive analyzes of the data and tests of homogeneity of the means in the event of a significant difference. Multivariate tests such as principal component analysis (PCA), ascending hierarchical classification (CHA) and multiple analysis of variance (MANOVA) were carried out with Statistica 7.1 software in order to discriminate genotypes in according to their behavior towards anthracnose.
Table 1. Different cashew genotypes and the geographic location of the orchards

Genotypes	Geographic Coordinates	Genotypes	Geographic Coordinates	Genotypes	Geographic Coordinates
BKKY	N: 09°33.136' O: 06°26.243'	KTY1	N: 09°29.984' O: 05°43.309'	KBSD	N: 09°35'15'' O: 005°21'019
BBY	N: 09°27.798' O: 06°29.779'	KTY2	N: 09°30.168' O: 05°34.716'	KOMC	N: 09°36.505' O: 005°20.710'
BKA	N: 09°38.382' O: 06°21.127'	KTYY	N: 09°31.162' O: 05°38.626'	KLYN	N: 09°36.354' O: 005°20.627'
SST	N: 09°37.438' O: 06°20.229'	KKSNI	N: 09°31.674' O: 05°38.783'	KT3	N: 09°33'721' O: 005°25.396'
SYD	N: 09°24.667' O: 06°21.871'	KKSS	N: 09°17.491' O: 05°32.697'	BAK	N: 09°34'751' O: 005°25.302'
SFA	N: 09°27.935' O: 06°25.350'	KBT	N: 09°19.103' O: 05°34.223'	SSS	N: 09°34.751' O: 005°28.030'
SWSZ	N: 09°31.733' O: 006°25.921'	KSC	N: 09°23.008' O: 05°33.643'	STSL	N: 09°36.669' O: 005°22.204'
SLLC	N: 09°32.295' O: 006°30.356'	KC3	N: 09°19.033' O: 05°38.441'	SYDN	N: 09°33.345' O: 005°24.330'
SDYY	N: 09°28.861' O: 06°32.693'	KCP2	N: 09°19.643' O: 05°39.207'	STSE	N: 09°32.789' O: 005°23.864'
SDYN	N: 09°39.932' O: 06°29.327'	KCP1	N: 09°29.919' O: 05°48.486'		

Table 2. Anthracnose disease severity index following the evolution of the cashew tree

Genotype	Vegetative stage	Flowering stage	Fruiting stage
SST	(IsFe) 26,85±5,63abcd	(IsRam) 46,29±4,45bcdef	(IsFlg) 46,29±7,26abcde
STSL	59,25±6,19def	63,88±4,24ghij	50,92±11,33abcde
BKA	44,44±9,93bcdef	77,77±6,87hijk	81,48±6,19e
SSS	55,55±4,96def	81,48±6,02ijk	67,59±5,55abcde
SLYM	35,18±5,62bcdef	43,51±7,51bdef	74,07±10,31cde
SFA	29,62±5,10abced	81,48±5,80ijk	80,55±5,37e
BBY	24,07±5,67abcd	88,88±6,57jk	51,85±9,36abcde
KOMC	20,37±6,02abc	74,07±3,70fgij	40,74±6,8abcde
BAK	19,44±9,80abc	97,08±2,45k	69,44±5,8bcde
KSCK	15,74±8,29abc	89,58±6,02jk	39,81±4,16abcde
KLYN	46,29±11,53cdef	96,25±2,39k	42,59±7,81abcde
SYD	36,11±10,11bcdef	90,41±4,97jk	60,10±14,65abcde
KTYY	0,00±0,00a	94,16±4,50k	62,96±6,8abcde
KVSS	0,92±0,06a	75,00±6,08ghij	77,77±5,73de
KBSD	11,11±0,00ab	95,00±2,50k	68,51±10,40abcde
KBT	11,11±0,00ab	77,08±2,84ghij	34,25±9,55abcde
STSB	64,81±4,45f	42,59±6,7bcde	74,07±6,19cde
BKKY	21,37±1,17abc	31,48±5,30abcde	34,25±10,67abcde
KKSNI	11,11±0,00ab	55,5±4,05dghi	24,07±4,68a
SWSZ	42,59±5,80bcdef	46,29±3,41bcdef	30,55±7,82abc

Guy et al.; AJRCS, 6(3): 1-13, 2021; Article no.AJRCS.66889
Genotype	Vegetative stage (IsFe)	Flowering stage (IsInflo)	Fruiting stage (IsFr)
SDYN	42.59±8.32bcdef	35.18±10.89abcd	40.74±13.65bcde
SDYY	20.37±6.02abc	33.33±9.51abcd	0.00±0.00a
SLLC	16.66±3.79abc	27.77±4.75ab	9.20±6.52ab
SYDN	20.37±3.41abc	42.59±8.44abcde	0.00±0.00a
KCP1	40.37±9.85bcdef	63.25±5.55abcde	22.67±6.63abcd
KCP2	48.80±7.09cdef	52.75±2.98abcde	0.00±0.00a
KCP3	48.11±11.45cdef	38.21±11.02abcde	0.00±0.00a
KTY1	53.03±6.51def	43.50±12.63abcde	23.95±9.88abcd
KTY2	50.14±2.45cdef	36.94±9.34abcd	0.00±0.00a
KTY3	53.01±3.43def	23.75±7.54a	33.17±13.77bcde
Average	32.31±5.58	67.5±5.54	13.27±3.92
P-value	0.000	0.000	0.000
CV(%)	17.27	8.21	15.94

The numbers assigned the same letters in the columns are not statistically different according to Turkey’s HSD tests at the 5% level.

CV: coefficient of variability; IsFe: severity index on leaves; IsRam: severity index on twigs; IsInflo: severity index on inflorescences; IsFr: severity index on fruits.
3. RESULTS

3.1 Descriptive Profile of the Severity and Severity Index of Anthracnose Disease

The severity indices (Table 1 and Fig. 1) revealed a strong variability between the genotypes. Infections range from medium to very severe, including severe infections. Mild severe infections (ranging from 11 to 25%) were observed in four genotypes, namely SLLC, SDYY, BKKY, and KKSN.

18 genotypes presented severe infections (between 25 and 50%); these are the genotypes SYDN, SST, SWSZ, KBT, SDYN, KSCK, KCP3, BBY, SGYM, KVSS, KTY3, KTY2, KBSD, KOMC, SYD, STSL, KCP2, and STSB.

Eight genotypes have presented very severe infections (> 50%); they are: the SFA; the BKA, the KCP1, the BAK, the KTYY, the SSS, the KTY1, and the KLYN.

3.2 Descriptive Analysis of the Incidence of Anthracnose Disease

Averages were taken with incidence data at each stage of the disease. The results showed variation between genotypes (Fig. 1). All trees all exhibited mean incidences greater than 25%; thus, eighteen (18) genotypes (KBT, KSCK, KBSD, SYD, KVSS, BBY, KTYY, BAK, KKSN, SST, KTY1, BKKY, SYDN, KCP3, KCP2, SDYY, SLLC, SWSZ) presented between 25 and 50%.

The other twelve genotypes, namely; STSL, SSS, KOMC, SGYM, BKA, KLYN, SFA, KTY2, KTY3, KCP1, STSB, SDYN showed incidences of over 50%.

3.3 Principal Component Analysis (ACP) of the Incidence and Severity of Bacterial Disease

ACP was defined by the first two axes which explained 52.96% of the total variability observed (Figs. 3 and 4). The most eccentric variables of the factorial plane, and the most distant from the axes are those which expressed the strongest correlations of said axes. Axis 1, which expressed 29.49% of the total variability, was positively correlated with the severity index of anthracnose on twigs (IsRam) with the KTYY, KVSS, and BAK genotypes, and negatively correlated with the incidence of anthracnose on leaves (IcFe) with genotypes SDYN and STSB.

Axis 2, expressing 23.47% variability, was positively correlated with incidence and severity index on fruits (IcFe and IsFe) with the KLYN genotype.

![Fig.1. Histogram of anthracnose mean severity indices](image-url)
Table 3. Incidence of anthracnose disease following the course of the cashew tree

Genotype	Vegetative stage	Flowering stage	Fruiting stage	
	IcFe	IcRam	IcInflo	IcFr
SST	16,18±6,05abcde	76,25±7,46ab	86,12±3,84ghi	0,00±0,00a
STSL	22,96±3,91abcde	95,00±1,70cd	57,11±18,53bcd	25,00±9,55ab
BKA	27,87±6,92bcde	85,00±7,24bc	92,68±4,08i	0,00±0,00a
SSS	23,01±6,63abcde	90,83±4,11c	86,95±8,72ghi	0,00±0,00a
SGYM	19,89±4,79abcde	90,00±1,11c	78,12±2,12efghi	16,07±7,59ab
SFA	6,43±1,88abc	88,75±4,90bcd	86,4±5,43ghi	30,55±16,33ab
BBY	9,32±4,44abcd	94,16±2,00cd	47,55±7,90abcde	0,00±0,00a
KOMC	2,67±1,06ab	88,33±3,74bcd	60,97±8,78cdefghi	52,08±11,27b
BAK	1,84±0,85a	97,08±2,45cde	46,66±1,59abcd	20,15±10,90ab
KSCK	0,34±0,19a	89,58±8,02bcd	36,25±8,77abcde	0,00±0,00a
KLYN	31,81±11,27cde	96,25±2,39cde	33,5±10,82abcd	46,26±18,14ab
SYD	8,62±1,83abc	90,41±4,97c	33,41±9,14abc	0,00±0,00a
KTYY	1,28±1,28a	94,16±4,50cd	40,83±7,06abcd	23,33±10,54ab
KVSS	3,20±2,51ab	75,00±8,08ab	19,58±2,08abc	40,47±20,00ab
KBSD	17,30±1,64abcde	95,00±2,50cd	16,66±3,57ab	0,00±0,00a
KBT	19,23±1,98abcde	77,08±8,48abc	11,25±2,1a	0,00±0,00a
STSB	77,02±4,87g	97,08±2,45cde	90,41±6,78hi	16,36±8,38ab
BKKY	40,39±2,43ef	89,58±8,02bcd	56,66±13,71bcdefghi	0,00±0,00a
KKSN	29,91±3,17cde	96,25±2,39cde	48,75±5,46bcdefghi	0,00±0,00a
SWSZ	35,60±4,21e	90,41±4,97c	70,00±6,35defghi	0,00±0,00a
SDYN	63,67±5,21fg	94,16±4,50cd	95,83±2,71i	50,81±17,20b
SDYY	34,55±11,50de	75,00±8,08ab	84,16±6,79fgghi	0,00±0,00a
SLLC	20,42±1,87abcde	95,00±2,50cd	64,75±9,05defghi	15,25±11,25ab
SYDN	23,94±2,38ab	77,08±8,48abc	88,33±9,39ghi	0,00±0,00a
KCP1	43,15±2,27ef	76,06±9,12ab	63,41±9,14defghi	28±8,34ab
KCP2	52,14±1,57fg	95,25±2,39cd	47,85±7,05abcdefghi	0,00±0,00a
KCP3	2,87±1,08ab	70,16±5,0a	57,12±9,23bcdefghi	23,66±11,09ab
KTY1	3,9±2,51ab	78,74±7,24abc	85,63±9,39fgghi	46,69±18,20ab
KTY2	32,24±1,57de	90,41±4,97c	90,03±7,8hi	0,00±0,00a
KTY3	63,3±8,33fg	96±7,20cd	40,83±7,06abcdefghi	15,25±11,25ab
Moyenne	24,50±3,67	88±13±5,11	60,59±7,50	14,99±6,33
P-value	0,000	0,02322	P= 0,000	P= 0,000
CV%	14,97	5,79	12,38	42,24

The numbers assigned the same letters in the columns are not statistically different according to Turkey’s HSD tests at the 5% level.

CV: coefficient of variability; IcFe: impact on leaves; IcRam: incidence on twigs; IcMoy: average incidence; IcInflo: incidence on inflorescences; IcFr: impact on fruits.
Fig. 2. Histogram of anthracnose mean incidences

Fig. 3. Projection of the variables in the factorial plane
The Ascending Hierarchical Classification (CAH) made it possible to structure the genotypes studied into 4 groups (Fig. 5) according to the method of Ward (1963). Group 1 containing six genotypes includes KVSS, KTYY, BAK, KLYN, KTY1 and KOMC. Group 2 consisted of five genotypes namely KBT, KBSD, KSCK, SYD and BBY. The third group with 12 individuals comprised the genotypes KCP1, SFA, SGYM, SSS, BKA, SDYN, STSB, KCP2, KCP3, KTY3, KTY2, STSL. Group 4 contained seven genotypes including SLLC, SDYY, KKSN, SWSZ, BKKY, SYDN, SST.

4. DISCUSSION

Multiple analysis of variance (MANOVA) (Table 1) showed a significant difference between these groups (F> 4 or P <0.005). This significant difference was observed in the incidence of anthracnose on inflorescences, leaves and fruits and the level of severity indices on twigs, leaves and fruits.

Thus, group 1 was characterized by the highest incidences of disease (30.39 ± 6.72) and severe infections in the fruits (39.28 ± 10.20). Group 2 was characterized by an absence of disease in the fruits (0.00 ± 0.00) and by very severe infections in the twigs (88.19 ± 2.98). Group 3 was distinguished by higher incidences on inflorescences (73.33 ± 5.85) and relatively strong incidences on the leaves (34.28 ± 6.51). Group 4 was differentiated by low fruit infections (1.32 ± 0.32) and low incidence on fruits (2.17 ± 1.09).

The results of the descriptive analysis revealed that anthracnose disease affects all 30 genotypes observed. Just like Silué et al. [25] pointed out, the disease was diagnosed at the vegetative stage on leaves, at the flowering stage on inflorescences and at the fruiting stage on fruits. In addition to this result, which is similar to that of Silué et al. [25], the present study noted that anthracnose disease affected young, leafless twigs. Even though all genotypes have contracted anthracnose disease, there is a diversity in the level of severity and incidence depending on the genotype and stage of development of the genotype. This diversity in expression of anthracnose disease could be explained by 52.96% of the total variability observed in the analysis of the principal components of diversity. These results are similar to those of Banganingwa [31] who also highlighted differences in severity depending on the cassava cultivars used, in the face of cassava mosaic. Likewise, Mestries et al. [32] revealed differences in severity between
Table 4. Descriptive analysis of the different groups of cashew trees formed by the CAH

Variables	GI	GII	GIII	GIV	F	P-value	significance
IcINFLO	48.51±8.78ab	29.02±6.64a	73.33±5.85b	71.25±5.86b	7.94785	0.000636	oui
IcFe	12.73±5.10a	10.96±3.39a	34.28±6.51b	28.71±3.33ab	4.10453	0.016443	oui
IcRam	88.46±3.03a	89.25±3.21a	85.39±1.60a	85.65±3.50a	0.41766	0.741802	non
IcFr	30.39±6.72b	0.00±0.00a	27.01±5.33b	2.17±1.09a	8.93639	0.000331	oui
IsINFLO	60.63±6.28c	50.92±6.31b	52.95±7.53b	34.12±2.98a	2.53973	0.078354	non
IsFe	21.65±6.95a	19.62±4.75a	43.41±4.36b	22.61±3.77a	5.65316	0.004044	oui
IsRam	84.97±3.93c	88.19±2.98c	62.59±5.87b	37.03±6.41a	14.98363	0.000007	oui
IsFr	39.28±10.20c	0.00±0.00a	24.79±5.00b	1.32±0.32a	8.71107	0.000362	oui

The numbers assigned the same letters on the lines are not statistically different depending on the test HSD of Turkey at the 5% threshold

IcFe: impact on leaves; IcRam: incidence on twigs; IcMoy: average incidence; IcInflo: incidence on inflorescences; IcFr: impact on fruits; IsFe: severity index on leaves; IsRam: severity index on twigs; IsMoy: average severity index; IsInflo: severity index on inflorescences; IsFr: severity index on fruits

Fig.5. Dendrogram of genotypes
sunflower varieties with respect to phoma. Thus, the total variability at axis 1, which expressed 29.49%, was positively correlated with the severity index of anthracnose on twigs (IsRam) with the genotypes KTTY, KVSS and BAK negatively correlated with the incidence of anthracnose on leaves (IcFe) with the genotypes SDYN and STSB. In addition, axis 2, which produced 23.47% of the variability, was positively correlated with the incidence and severity index on fruits (IcFe and IsFe) with the KLYN genotype. These results clearly illustrate a strong diversity in the behavior of genotypes towards anthracnose disease and could explain the fact that cashew anthracnose is the most important disease due to its high presence in orchards. Cashew farmers in Côte d’Ivoire. These results also corroborate those of Wonni et al. [18] who reveal that anthracnose is a serious disease in all cashew producing areas. These authors noted in their study of cashew tree diseases in Burkina Faso that anthracnose is the predominant disease in orchards. This diversity of behavior is explained by the fact that each genotype has intrinsic capacities, in terms of passive and active defense mechanisms, which would allow to defend against aggression [33]. These defense mechanisms can therefore differ from one plant to another, which would lead to a variation in severity and incidence depending on the behavior of the genotypes. This result is in agreement with those of Désanlis [34]. Indeed, this author showed during his study of fungal diseases of sunflower in France that the defense mechanisms put in place during an attack could differ from one genotype to another. Thus, the incidence on inflorescences, incidence on leaves, severity index on twigs, incidence on fruits, severity index on fruits and severity index on inflorescences have were the most discriminating in the behavior of the genotypes observed. These results join those of Chetouhi, [35] and, Benhamou and Rey [36] on the differential behavior of genotypes which would be dependent on the effectiveness of the defense mechanisms that are phytoalexins and phytoanticipins brought into play by the plant. Thus, this differential screening revealed that group 1 is characterized by the highest incidences of disease (30.39 ± 6.72) and severe infections in the fruits (39.28 ± 10.20). Group 2 was characterized by a relative absence of disease in the fruits (0.00 ± 0.00) and by very severe infections in the twigs (88.19 ± 2.88). Group 3 was distinguished by higher incidences on inflorescences (73.33 ± 5.85) and relatively strong incidences on the leaves (34.28 ± 6.51). Finally, group 4 was differentiated by weak infections in fruits (1.32 ± 0.32) and by weak incidences on fruits (2.17±1.09). According to Lecompte [37], the distribution of these genotypes in these four groups is attributable to the different levels of their intrinsic resistance.

5. CONCLUSION

In short, the diagnosis of anthracnose made it possible to demonstrate a diversity of behavior of the 30 genotypes studied. The structuring of these genotypes revealed four categories of genotypes according to their behavior at the different stages of their development. Thus, this study made it possible to structure and characterize these genotypes into four groups. Group 2 genotypes (BBY, SYD, KSCK, KBSD and KBT) and group 4 genotypes (SST, SYDN, BKKY, SWSZ, SDYY and SLLC) exhibited resilience against anthracnose disease. Group 2 was characterized by a relative absence of disease in the fruits and by very severe infections in the twigs. Group 4 cashew trees showed low fruit infections and low fruit incidence. These results could promote the agroecological management of anthracnose disease, enhance and intensify agroforestry practices in cashew cultivation in Côte d’Ivoire.

ACKNOWLEDGEMENT

The authors thank the personnel of SODEFORT, the ANADER extension agents in the areas of Korhogo, Boundiali and Sinématiali as well as the peasant populations of these localities who, through their contribution, made this work possible.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Trevian MTS, Pfundstein B, Haubner GWG, Spiegelhalder B, Bartsch H, Owen RW. Caractérisation of alkyl phenols in cashew (Anacardium occidentale L.) products and assay of their antioxidan
tant capacity. Food and chemical toxicology. 2005 ; Article no. 13, 2021
2. Zoumarou WN, Bagnan MA, Akossou AY, Kanlindogbe BC. Caractérisation morphologique d’une collection de fruits
d’anacardier provenant de la commune de Parakou (Bénin). Int. J. Biol. Chem. Sci. 2016;10(6): 2413-2422. DOI: http://dx.doi.org/10.4314/ijbcs.v10i6.1
3. Lautié E, Dorniera M, De Souza Filhoc M, Reynes M. Cashew products: Characteristics, valuation routes and markets. Fruits. 2001;56(4):235-248.
4. Djaha AJB, Annicet HN, Edmond KK, Achille N, Sêvérin A. Morphological diversity of cashew accessions (Anacardium occident L.) Introduced in Ivory Coast. Rev. Ivory. Sci. Technol. 2014;23.
5. Bamba A. Bioecology and incidence of attacks by Helopeltis anacardii Miller (hemiptera: Miridae) on three (3) genotypes of cashew trees north of the Ivory Coast. Master’s thesis 2. Jean Lorougnon Guédé University. 2018; 67p.
6. N’Djolossé K, Adou A, Bello S, Malik R, Kpéra GN, Ouikoun G, Azontondé A. NPK for better cashew nut yields according to the age of the plantations in Center-Benin and North-Benin. INRAB Technical Sheet 2018; 12p.
7. Fao S. Food and agriculture data ; production of raw cashew nuts in Côte d’Ivoire. 2018: faostat.org. Consult on February 8, 2021.
8. Kouame N, Sinan AA. Socio-economic impacts of cashew cultivation in the Odienné sub-prefecture (Ivory Coast). Pêleforo Gon Coubilay University of Korhogo. European Scientific Journal. 2016;12(32):369-383;14. DOI:https://doi.org/10.19044/esj.2016.v12n32p369
9. Kouakou KC, Soro DM, Adopo AN, Djaha AAJB, Minhibo YM, Djidji AH, Moussa D, N’Guessan E BA. Rhythm of nut harvesting from potentially hight yielding cashew trees in Côte d’Ivoire. National Center of Agronomic Research (CNRA) Poster ; 2018.
10. Tandjepkon A, Lagbadhossou A, Hinvi J, Afonnon E. Cashew cultivation in Benin: Technical reference. EditionINRAB, Benin. 2003 ; 86
11. Dwomoh EA, Ackonor JB, Afun JVK. Survey of insect species associated with cashew ((Anacardium occident Linn.) And their distribution in Ghana. Afr. J. Agric.Res. 2008;3:205-214.
12. Hammed S, Arshad M, Ashraf M, Avais M, Shahid MA. Prevalence of common mastigotens and their anntibitic susceptibility in Tehsil Burewala, Pakistans. Pak. J. Agri. Sci. 2008;45(2).
13. Yabi I, Yabi BF, Dadegnon S. Diversity of plant species within cashew-based agro-forests in the municipality of Savalou in Benin. Int. J. Biol.Chem. Sci. 2013 ;7(2):696-706. DOI: http://dx.doi.org/10.4314/ijbcs.v7i2.24
14. FIRCA. The chain of progress. Information magazine for agricultural research and advice. 2018;4-10,56. Website: www.firca.ci/filière anacarde
15. Ricau P. Know and understand the international cashew market. 49 p.
16. Le Quy Kha. Importance and key factors for the success of the cashew nut sector in Vietnam. African Cashew Alliance (ACA). 2013 ;43.
17. Afouda LCA, Zinsou V, Balogoun RK, Onzo A, Ahoehuendo BC. Inventory of pathogens in cashew trees (Anacardium occident L L.) in Benin, Bulletin of Agronomic Research of Bénin. 2013 ;73:13-19.
18. Wonni I, Sereme D, Ouedraogo I, Kassankagno IA, Dao I, Ouedraogo L, Nacro S. Diseases of cashew nut plants (Anacardium Occidentale L.) in Burkina Faso. Adv Plants Agric Res. 2017;6(3):6. DOI: 10.15406 / apar.2017.06.00216.
19. Peter M, Zhongrun Z. Diseases and insect pests of cashew. National Agricultural Research Institut (NARI). Technical report, Naliendele ; Tanzania. 2014 ; ISBN:9987-446-09-4
20. Topper CP. CP. Issues and constraints related to the development of cashew nuts from five selected african countries (Côte d’Ivoire, Ghana, Guinea, Guinea Bissau and Nigeria). Rapport Réunion régionale sur le développement des exportations de noix de cajou d’Afrique. CCI/CNUCED/OMC/ CFC/CNEXE Project No. INT/W3/69” Développement des exportations des noix de cajou d’Afrique” 23-26 juillet 2002. Hôtel du Port « La Marina », Cotonou, Bénin; 2002;24.
21. Maxted N, Ford-Lloyd BV, Hawkes JG. Plant genetic conservation. The in situ approach, 1st edn. Chap-man and Hall, London, 1997.
22. Diouf M, Diop M, Lô C, Drame KA, Sene E, Ba CO, Gueye M, Faye B. Prospecting for tradional African-type leafy vegetables in Senegal. J.A.C. herbal medicine, hweya, P.B. Eyzaguire (Eds.), The Biodiversity of
29. Groth JV, Ozmon EA, Busch RH. Repeatability and relationship of measures of incidence and severity of wheat scab caused by Fusarium graminearum in inoculated nurseries. Plant disease. 1999; 83:1033-8

23. Cardoso JE, Santos AA, Rossetti AG, Vidal JC. Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathology. 2004;53:363–367. Available: https://doi.org/10.1111/j.0032-0862.2004.01007.x

25. Silue N, Abo K, Johnson F, Camara B, Kone M, Kone D. In vitro and in vivo evaluation of three synthetic fungicides and a biological fungicide on the growth and incidence of Colletotrichum gloeosporioides and pestalotia heterocornis, fungi responsible for leaf diseases of cashew trees (Anacardium occidentalis L.) in Côte d’Ivoire. African Agronomy. 2018;30(1):16.

26. Kranz J. Measuring plant disease: In: Kranz J, Rotem J. (eds), Experimental techniques in plant disease epidemiology. Springer, Berlin. 1988:35-50.

27. Dianda ZO, Wonn I, Zombré C, Traoré O, Séremé D, Boro F, Ouédraogo I, Ouédraogo SL, Sankara P. Prevalence of desiccation of the mango tree and evaluation of the frequency of fungi associated with the disease in Burkina Fasso. Journal of Applied Biosciences. 2018;126:12686-12699,13p. DOI: 10.4314/jab.v126i1.6

28. Aka RA, Kouassi KN, Agneroh TA, Awancho NA, Sangare A. Distribution of and incidence of cucumber mosaic disease (CMV) in industrial banana plantations in the South-East of Côte d’Ivoire. Science and Nature. Flight. 2009;6(2):171-183;13.

29. Zahri S, Farih A, Douira A. Status of the main leaf fungal diseases of wheat in Morocco in 2013. Journal of Applied Biosciences. 2014;77:6543-6549. Available: http://dx.doi.org/10.4314/jab.v77i1.5

30. Bhagwat RG, Mehta BP, Patil VA, Sharma H. Screening Of Cultivars/Varities Against Mango Anthracnose Caused by Colletotrichum Gloeosporioides. International Journal of Environmental & Agriculture Research. 2015;1(1):21-23.

31. Banganingwa AA. Study on the incidence and severity of the African cassava mosaic in Bunia (DRC) and its surroundings. Thesis. University of Bunia DRC. Online.com memory; 2011.

32. Mestries E, Desanlis M, Oberto JN, Debaeke P. An integrated approach to take into account the effects of variety, behavior and the environment on the incidence and severity of sunflower end-of-life diseases. Agronomic Innovations. 2015;46:75-93.

33. Jost JP, Yan-Chim JT. Plant defense strategy against diseases and pests (and some practical applications). Knowledge and knowledge: Ed. Publibook. 2016:212.

34. Desanlis M. Analysis and modeling of the effects of cultivation on two major fungal diseases of sunflower: Phoma macdolnaldii and Phomospsi helianthi. Doctoral School in Ecological, Veterinary, Agronomic and Bioengineering Sciences. UMR INRA-ENSAT, France, 1248 AGIR. 2013;198.

35. Chetouhi C. Molecular basis of the susceptibility of common wheat (Triticum aestivum) to Fusarium head blight caused by the fungus Fusarium graminearum. Blaise Pascal University. Doctoral school in life sciences, health, agronomy, environment. 2015;135.

36. Benhamou N, Rey P. Stimulators of the natural defenses of plants: a new phytosanitary strategy in a context of sustainable eco-production. I. Principles of induced resistance. Synthesis article / Review Article. Phytoprotection. 2012;92:1-23.

37. Lecompte M. Analysis of the defense mechanisms of the carrot (Daucus carota) against the pathogenic fungus Alternaria dauci, responsible for early blight or leaf blight. Thesis. Nantes Angers Le Mans University (France). 2013;220.