To study the effect of integrated nutrient management on growth and yield of potato

Premchand Chaurasiya, Dr. RS Singh, Dr. RK Pathak, Raghvendra Singh and Shivanand Maurya

DOI: https://doi.org/10.22271/chemi.2020.v8.i6m.10875

Abstract

Field experiment was carried out at the Vegetable Research Farm, Acharya Narendra Deva University of Agriculture & Technology, Kumargunj, Ayodhya (U.P.) during Rabi season of 2018-19 to study the effect of integrated nutrient management on growth and yield of potato. The experiment was consist of eight treatment viz. control (100% recommended dose offertilizer), FYM @ 30 t/ha + bio – fertilizer (PSB), Poultry manure @ 5 t/ha + bio – fertilizer (PSB), Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB), FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi – compost 2.7 t/ha + bio – fertilizer (PSB), Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB), Recommended dose of nitrogen (150 kg/ha) in which 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB), Farmer practices (through organic). The experiment was laid out in Randomized complete block design with three replication. The T5 RDN (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) has resulted in higher plant height (49.14 cm), number of haulm and number of leaves (38.59 and 433.68, respectively), higher uptake of major nutrients viz., nitrogen, phosphorus and potassium (184.64, 34.85 and 185.51 kg ha\(^{-1}\), respectively) in potato tuber. Yield studies characters viz., number of tuber (grade wise) hill\(^{-1}\), Weight of tuber (gm hill\(^{-1}\)), and tuber yield (kg plot\(^{-1}\)) in 0-25g, 25-50g, 50-75g, and >75g (3.26, 2.24, 2.05, 2.04 and 23.17, 115.66, 138.93 and 184.88 and 2.50, 14.98, 18.99, 13.48) and yield of tuber (386.60 q ha\(^{-1}\)) was found T5 RDN (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB).

Keywords: Integrated, nutrient, RDN, manure.

Introduction

Potato (Solanum tuberosum L.) popularly known as “The King of Vegetables” is a native of South America and occupies the largest area under any single vegetable crop in the world. Presently, developing countries of Asia accounts for more than 46% of global output. This spectacular growth in developing countries affirms its increasing importance as a source of food for growing populations, rural employment and income generation. Potato is an important food crop at global as well as the country level. Potato is a rich source of protein, le

Corresponding Author:
Premchand Chaurasiya
Research Scholar, Agronomy, ANDUA&T, Kumargunj, Ayodhya, Uttar Pradesh, India
Application of FYM to soil have practiced for many centuries and its application to soil have increase crop yield, improved soil properties, increased soil fertility, increased soil organic matter, increased microbial activities and improved soil structure for sustainable agriculture (Ayyub et al., 2011) [3]. FYM good source of plant nutrient like major nutrient 0.5% nitrogen, 0.2% phosphorus and 0.5% of potash. Poultry manure used as an organic fertilizer, especially for soil low in nitrogen. Poultry manure contains significant amounts of N, P, K, S and other plant nutrients. Poultry manure rich of major and minor plant nutrient like 3% nitrogen, 2.63% phosphorus and 1.4% potash. Vermi-compost is a rich mixture of major and minor plant nutrients. On an average Vermi-compost contains 2% nitrogen, 1% phosphorus, 1.5% potash. Vermin -compost is a rich source of nutrients, vitamins, enzymes, antibiotics, plant growth hormones and a number of beneficial microorganisms. Using of vermin -compost is now a global movement for the second green revolution that emphasizes on composting. The use of vermin –compost has long been considered as an effective means of improving the structure and fertility of the soil (Haj et al., 2011) [6].

Material and Methods
Field experiment was carried out at the Vegetable Research Farm, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya (U. P.) during Rabi season of 2018-19 to study the effect of integrated nutrient management on growth and yield of potato. The experimental site falls under sub humid subtropical zone in indo-gangetic plains and situated at 26.47° N latitude, 82.12° E longitude and an altitude of 113 meters above mean sea level. The region receives a mean annual rainfall of about 1143 mm, out of which about 90 per cent is received from mid-June to end of September. However, occasional showers are also common during winter. The experiment was consist of eight treatment viz. control (100% recommended dose off fertilizer), FYM @ 30 t/ha + bio – fertilizer (PSB), Poultry manure @ 5 t/ha + bio – fertilizer (PSB), Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB), FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi – compost 2.7 t/ha + bio – fertilizer (PSB). Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB). Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB), Farmer practices (through organic). The experiment was laid out in Randomized complete block design with three replication.

1. Growth analysis

Emergence per cent and plant population
With an object to see the effect of different treatments on emergence the observation was recorded after 30 days planting, when the emergence was completed.

Plant height (cm)
The height of the main stem from the ground level to the apical bud (leaf apex) was measured with the meter scale at 30, 60 and 90 days after planting.

2. Yield studies

Number of 0-25g, 25-50g, 50-75g & >75g tuber (grade wise) hill⁻¹

The plants selected for number of haulm hill⁻¹ were also used for this purpose each grade of tubers were separated and counted the number of tubers hill⁻¹.

Weight of 0-25g, 25-50g, 50-75g & >75g tubers grade (g hill⁻¹)
The same tuber grades for number of tubers g hill⁻¹ was used for this purpose. Average weight of each grade of tubers was calculated on the basis of tubers weighted of five hills.

Weight of 0-25g, 25-50g, 50-75g & >75g tubers grades (kg plot⁻¹)
Each plot was harvested separated and tuber weight of 0-25g, 25-50g, 50-75g & >75g grade recorded in kg plot⁻¹.

Tuber yield (q ha⁻¹)
After harvesting, the yield of total tubers plot⁻¹ were recorded in kilograms separately and converted into q ha⁻¹.

Result and Discussion

1. Growth studies

Growth was measured in terms of emergence percentage, plant height (cm), number haulms m⁻², Fresh weight of haulm gm⁻¹ and dry weight of haulm gm⁻¹.

Emergence percentage
Maximum emergence percent (94.40 %) was recorded under T₆ recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) which was closely followed by T₅ Poultry manure @ 5 t/ha + bio – fertilizer (PSB) (93.90) and minimum (91.30 %) under T₂ FYM @ 30 t/ha + bio – fertilizer (PSB).

Plant height (cm)
The plant height at 30 DAP was observed to be in the range of 18.55 – 24.00 cm. It was observed highest (24.00 cm) in T₆ recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) followed by T₇ recommended dose of nitrogen (150 kg/ha) 67% RDN through FYM and 33% RDN through inorganic + bio – fertilizer (PSB) (22.30 cm) and lowest plant height at 30 DAP was observed in T₁ control (18.55 cm). At 60 and 90 DAP, among the treatments significantly higher plant height was observed in T₆ recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) (47.09 cm and 49.14 cm, respectively). Similar trends were observed by Anchal, et al. (2008) [1] in tomato.

Number of haulms m⁻¹
Number of haulms at 30 DAP as influenced by integrated nutrient management show significant difference. However, T₆ recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) is recorded the highest number of haulms (8.01) followed by T₇ recommended dose of nitrogen (150 kg/ha) 67% RDN through FYM and 33% RDN through inorganic + bio – fertilizer (PSB) (7.75 cm). The highest numbers of haulms m⁻¹ was observed in T₆ recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) (36.37 and 38.59 at 60 and 90 DAP, respectively). Naidu et al. (1999) [6] also indicated the same trend in okra.
Fresh weight and dry weight
In both the cases the plant treated with, T6 recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) recorded highest values for fresh weight and dry weight of haulms i.e., 383.79 and 38.45. The result confirms the findings of Khurana et al. (2003) [9]. Reported that dry weight of shoots plant\(^{-1}\) with the application of FYM @ 10 t ha\(^{-1}\) +100% RDF Raghav et al. (2008) [10].

2. Yield studies

Number of tubers (grade wise) hill\(^{-1}\)
Maximum number of tuber (grade wise) hill\(^{-1}\) in 0-25g, 25-50g, 50-75g and >75g (3.26, 2.24, 2.05 and 2.04) was recorded under T6 recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB) which was followed by T7 recommended dose of nitrogen (150 kg/ha) 67% RDN through FYM and 33% RDN through inorganic + bio – fertilizer (PSB) (3.20, 2.17, 2.01 and 1.98) The highest grade wise number of tuber plot\(^{-1}\) was found in (10 t FYM ha\(^{-1}\) with 100% RDF NPK) reported by Raghav et al. (2008) [7].

Table 1: Emergence percentage of potato and plant height as influenced by integrated nutrient management practices

Treatments	Emergence 30 DAP	Plant height (cm)
T1: Control	92.34	18.55
T2: FYM @ 30 t/ha + bio – fertilizer (PSB)	91.30	20.87
T3: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	93.90	21.59
T4: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	92.86	21.90
T5: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi – compost 2.7 t/ha + bio – fertilizer (PSB)	93.38	22.20
T6: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	94.40	24.00
T7: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB)	91.30	22.30
T8: Farmer practices (through organic)	91.82	22.19
SE\(^{±}\)	0.71	0.93
CD 5%	NS	1.88

Table 2: Number of haulm as influenced by integrated nutrient management practices in potato

Treatments	Number of haulm m\(^{-1}\)		
T1: Control	7.60	33.29	34.08
T2: FYM @ 30 t/ha + bio – fertilizer (PSB)	7.62	33.91	34.30
T3: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	7.63	33.94	34.35
T4: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	7.67	33.98	34.39
T5: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi – compost 2.7 t/ha + bio – fertilizer (PSB)	7.69	34.89	35.30
T6: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	8.01	36.37	38.59
T7: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% nitrogen through FYM + bio – fertilizer (PSB)	7.78	34.84	36.69
T8: Farmer practices (through organic)	7.75	34.54	36.62
SE\(^{±}\)	0.08	0.48	0.60
CD 5%	0.25	1.45	1.81
Table 3: Fresh weight of haulm and dry weight of haulm at successive stage of crop growth as influenced by integrated nutrient management in potato

Treatments	Fresh weight of haulm gm⁻¹	Dry weight of haulm gm⁻¹
T₁: Control	356.47	34.08
T₂: FYM @ 30 t/ha + bio – fertilizer (PSB)	359.40	34.30
T₃: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	361.30	34.35
T₄: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	362.25	34.39
T₅: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi – compost 2.7 t/ha + bio – fertilizer (PSB)	366.61	35.31
T₆: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	383.79	38.45
T₇: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB)	371.75	36.22
T₈: Farmer practices (through organic)	371.41	36.21

Table 4: Number of tuber at harvest as influenced by integrated nutrient management practices in potato

Treatments	Number of tuber (grade wise) hill⁻¹
T₁: Control	0-25g 25-50g 50-75g >75g
T₂: FYM @ 30 t/ha + bio – fertilizer (PSB)	3.04 2.09 1.90 1.89
T₃: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	3.10 2.11 1.95 1.92
T₄: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	3.11 2.12 1.96 1.96
T₅: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi– compost 2.7 t/ha + bio – fertilizer (PSB)	3.11 2.15 1.98 1.97
T₆: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	3.26 2.24 2.05 2.04
T₇: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB)	3.20 2.17 2.01 1.98
T₈: Farmer practices (through organic)	3.12 2.16 1.99 1.98

Table 5: Weight of tubers at harvest as influenced by integrated nutrient management practices in potato

Treatments	Weight of tubers grade (g hill⁻¹)
T₁: Control	0-25g 25-50g 50-75g >75g
T₂: FYM @ 30 t/ha + bio – fertilizer (PSB)	9.35 46.77 56.19 76.80
T₃: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	16.37 81.81 98.28 130.81
T₄: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	17.55 87.76 105.42 140.32
T₅: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi– compost 2.7 t/ha + bio – fertilizer (PSB)	17.92 89.58 107.58 143.26
T₆: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	23.17 115.66 138.93 184.88
T₇: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB)	19.47 97.35 116.92 155.62
T₈: Farmer practices (through organic)	18.49 92.35 111.06 147.83

Table 6: Weight of potato tuber grade (kg plot⁻¹) and tuber yield (q ha⁻¹) as influenced by integrated nutrient management practices

Treatments	Wt. tuber grade kg plot⁻¹	Tuber yield (q ha⁻¹)
T₁: Control	0-25g 25-50g 50-75g >75g	
T₂: FYM @ 30 t/ha + bio – fertilizer (PSB)	1.16 6.07 7.34 5.63 150.00	
T₃: Poultry manure @ 5 t/ha + bio – fertilizer (PSB)	1.78 10.22 12.93 8.98 262.53	
T₄: Vermi – compost @ 7.5 t/ha + bio – fertilizer (PSB)	1.86 10.93 13.80 9.75 280.50	
T₅: FYM @ 10 t/ha + poultry manure 1.7 t/ha + vermi– compost 2.7 t/ha + bio – fertilizer (PSB)	1.99 11.36 14.36 10.17 292.60	
T₆: Recommended dose of nitrogen (150 kg/ha) 67% RDN through inorganic and 33% RDN through FYM + bio – fertilizer (PSB)	2.02 11.64 14.71 10.43 298.66	
T₇: Recommended dose of nitrogen (150 kg/ha) 33% RDN through inorganic and 67% RDN through FYM + bio – fertilizer (PSB)	2.50 14.98 18.99 13.48 386.60	
T₈: Farmer practices (through organic)	2.16 12.68 16.03 11.29 324.53	

SE±: 0.07 0.31 0.37 0.29 2.70
CD 5 %: 0.22 0.93 1.11 0.86 8.20
Reference

1. Anchal D, Lenka NK, Sudhishri S, Patnaik US. Influence of integrated nutrient management on production, economics and soil properties in tomato (Lycopersicon esculentum) under on – farm condition in Eastern Ghats of Orissa. Indian J Agric Sci 2008;78(1):40-43.

2. Ayyub CM, Pervez MA, Manan Ali AA, Ashraf N, Shahld MA. Growth and yield response of potato crop to different sources of potash. International Journal for Agro-Veterinary and Medical Science 2011;5(3):283-88.

3. Barman SK, Kumar A, Kasera S, Ram B. Integrated nutrient management in potato (Solanum tuberosum) cv. Kufri Ashoka Journal of Pharmacognosy and Phytochemistry 2018;SP1:1936-1938.

4. Haj MSH, Taghi MD, Ghandeharilavijeh Z, Riazi GH. Influence of Biofertilizers on Flower Yield and Essential Oil of Chamomile (Matricaria chamomile) 2011.

5. Khurana SC, Bhutani BD, Khurana PSM. Response of three commercial potato varieties to fertilizer dose. J Indian Potato Assoc 2003;30(1-2):80-81.

6. Naidu AK, Kushwah SS, Dwivedi YC. Performance of organic manures, bio and chemical fertilizers and their combinations on microbial population of soil and growth of okra. Jawaharalal Neharu Krishi Vishwa Vidhyalaya Res J 1999;33(1-2):34-38.

7. Raghav M, Kumar T, Kamal S. Effect of organic sources on growth, yield and quality of potato. Anna Horti 2008;1(1):67-70.

8. Shekhawat GS, Naik PS. Potato in India. Central Potato Research Institute, ICAR, Shimla, India, 1999.