Rate of convergence of random polarizations

Almut Burchard*
University of Toronto

August 23, 2011

Abstract

After \(n \) random polarizations on \(\mathbb{S}^d \), the expected symmetric difference of a Borel set from a polar cap is bounded by \(C_d n^{-1} \), where the constant \(C_d \) depends on the dimension [1]. We show here that this power law is best possible and that necessarily \(C_d \geq d \).

1 Introduction

Let \(A \) be a subset of the \(d \)-dimensional sphere \(\mathbb{S}^d \) (viewed as the unit sphere in \(\mathbb{R}^{d+1} \)), and let \(\sigma : x \mapsto \bar{x} \) be a reflection at a great circle that does not pass through the north pole. The polarization of \(A \) with respect to \(\sigma \) is defined by

\[
x \in SA \Leftrightarrow \begin{cases} x \in A \text{ or } \bar{x} \in A, & \text{if } \delta(x, O) \leq \delta(\bar{x}, O), \\ x \in A \text{ and } \bar{x} \in A, & \text{if } \delta(x, O) \geq \delta(\bar{x}, O). \end{cases}
\]

Here, \(\delta(x, y) \) denotes the geodesic distance on \(\mathbb{S}^d \) given by the angle enclosed between \(x \) and \(y \), and \(O \) denotes the north pole. Since reflections preserve the uniform probability measure \(m(\cdot) \) on the sphere, so do polarizations, and

\[
m(SA \cap SB) - m(A \cap B) = \int_{\mathbb{S}^d} I_{A\setminus B}(x)I_{B\setminus A}(\bar{x}) \, dx \geq 0. \tag{1}
\]

We parametrize the reflections on \(\mathbb{S}^d \) by \(u \in \Omega = \mathbb{S}^d/\pm, \) setting

\[
\sigma_u(x) = x - 2(u \cdot x)u,
\]

and we denote the corresponding polarization by \(S_u \). A random polarization \(S_U \) is polarization in the direction of a uniformly distributed random variable \(U \) on \(\Omega \). We consider sequences of random polarizations \(S_{U_1 \ldots U_n} = S_{U_n} \circ \cdots \circ S_{U_1} \), where the \(\{U_i\}_{i \geq 1} \) are independent. Van Schaftingen has shown that almost surely, for every Borel set \(A \) the sequence \(S_{U_1 \ldots U_n} A \) converges to the polar cap \(A^* \) of the same volume [5, Theorem 3.13]. The convergence occurs in symmetric difference if \(A \) is measurable, and in Hausdorff metric if \(A \) is compact [1 Corollary 4].

*almut@math.toronto.edu
Subject of this note is the rate of convergence. In prior work, we have shown that under a similar sequence of random polarizations on \mathbb{R}^d,

$$\mathbb{E}
\left[
m(S_{U_1...U_n}A \triangle A^*)
\right]
\leq C_d n^{-1}.
(2)$$

There, A is a Borel measurable subset of the unit ball, m is Lebesgue measure (normalized so that the unit ball has measure one), and $C_d = d 2^{d+1}$ [1, Proposition 4.1]. This rate of convergence is much slower than what is known for other symmetrizations. Klartag has proved that a sequence of $3d$ carefully chosen Steiner symmetrizations in \mathbb{R}^d followed by a random sequence where each step consists of d orthogonal Steiner symmetrizations converges faster than every polynomial. The leading constant depends only on the dimension and grows at most polynomially [4, Theorem 1.5]. Although Klartag’s result applies only to convex bodies, it raises the question whether the power law in Eq. (2) can be improved. For random polarizations, the answer is negative:

Proposition. For random polarizations of a Borel set $A \subset \mathbb{S}^d$, Eq. (2) holds with $C_d = 2^d$. The n^{-1} power law is optimal, and the sharp constant satisfies $C_d \geq d$.

The proof of the proposition has two parts. Eq. (2) and the upper bound on C_d are obtained by simply adjusting Proposition 4.1 of [1] to the sphere. For the lower bound on C_d and to prove the optimality of the power law, we analyze how spherical caps move under polarization. If A is a hemisphere, we compare the difference of $S_{U_1...U_n}A$ from A^* with with the order statistics of the uniform distribution, and relate the limiting distribution of $n \cdot m(S_{U_1...U_n}A \triangle A)$ to a Gamma distribution. We work on the sphere rather than on \mathbb{R}^d, because the additional symmetry simplifies the calculations. It will be clear from the proofs that similar bounds hold for the polarization of balls in \mathbb{R}^d. Other questions remain open: How quickly do the sharp constants grow with the dimension? What is the impact of the distribution of U? Can one speed up the convergence by adapting the sequence to A?

Acknowledgments. I wish to thank Vitali Milman for his comments on [1] that prompted this work, and Marc Fortier for patience and helpful discussions. The research was supported in part by NSERC through Discovery Grant No. 311685-10.

2 The upper bound on the sharp constant

In this section, we show that Eq. (2) holds on the sphere with $C_d = 2^d$. For a single random polarization we have by the identity (1) and Fubini’s theorem,

$$m(A \triangle A^*) - \mathbb{E}[m(S_U A \triangle A^*)] = 2 \int_{A^* \setminus A} P(\sigma_U(x) \in A \setminus A^*) \ dm(x).$$

We compute the probability under the integral as an average over the hemisphere where $u \cdot x > 0$, and change variables to $z = \sigma_u(x)$. The inverse of the map $u \mapsto z$ and its Jacobian on the tangent space of \mathbb{S}^d are given by

$$u(z; x) = \frac{x - z}{|x - z|}, \quad j(z; x) = \left(2|x - z|^{d-1}\right)^{-1},$$

and

$$2 \int_{A^* \setminus A} P(\sigma_U(x) \in A \setminus A^*) \ dm(x).$$

where $|x - z| = 2\sin \frac{\delta(x,z)}{2}$ is the Euclidean distance between x and z in \mathbb{R}^{d+1}. We obtain

$$m(A \triangle A^*) - \mathbb{E}[m(S_U A \triangle A^*)] = 2\int_{A^* \setminus A} \int_{A \setminus A^*} |x - z|^{-(d+1)} \, dm(z) \, dm(x) \geq 2^{-d}(m(A \triangle A^*))^2.$$

For a random sequence $S_{U_1 \ldots U_n}$, we take expectations again and apply Jensen’s inequality to see that

$$\mathbb{E}\left[m(S_{U_1 \ldots U_{n-1}} A \triangle A^*) - m(S_{U_1 \ldots U_n} A \triangle A^*)\right] \geq 2^{-d}\left(\mathbb{E}[m(S_{U_1 \ldots U_{n-1}} A \triangle A^*)]\right)^2.$$

It follows that $z_n = 2^{-d}\mathbb{E}[m(S_{U_1 \ldots U_n} A \triangle A^*)]$ satisfies $z_n^{-1} \geq z_{n-1}^{-1} + 1$, proving Eq. (2) with constant $C_d = 2^d$. \square

3 Random compressions

Let A be a spherical cap centered at a point a. Polarization with respect to a reflection $\sigma : x \mapsto \bar{x}$ transforms A into the spherical cap of the same volume centered at $\tau(a)$, where

$$\tau(x) = \begin{cases}
 x, & \delta(x, O) \leq \delta(\bar{x}, O), \\
 \bar{x}, & \text{otherwise}.
\end{cases}$$

We will refer to τ as the **compression** associated with σ. The compression associated with a random reflection σ_U will be denoted by τ_U. The following lemma describes the distribution of the distance of $\tau_U(x)$ from the north pole.

Lemma. If U is uniformly distributed on Ω, then for every point $x \in S^d$ with $\delta(x, O) = \xi$

$$P(\delta(\tau_U(x), O) > \beta) = I_{\xi > \beta} \left\{ 1 - \frac{1}{\pi} \int_0^\beta \left(\frac{\cos \theta - \cos \beta}{\cos \theta - \cos \xi} \right)^{(d-1)/2} \, d\theta \right\}, \quad \beta \in [0, \pi]. \quad (3)$$

Proof. By definition of the compression,

$$P(\delta(\tau_U(x), O) > \beta) = I_{\xi > \beta} P(\delta(\sigma_U(x), O) > \beta).$$

For $\xi \leq \beta$, there is nothing more to show. For $\xi > \beta$, we set $t = \cos \beta$ and calculate the spherical average as an expectation with respect to the standard normal probability measure on \mathbb{R}^{d+1}, see [2, Exercise 63 on p.80]. We use the coordinate system $u = (r \cos \theta, r \sin \theta, \bar{u}) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}$, which we rotate into a position where $x = (\cos \frac{\xi}{2}, \sin \frac{\xi}{2}, 0)$ and $O = (\cos \frac{\xi}{2}, -\sin \frac{\xi}{2}, 0)$. Then

$$(u \cdot x)(u \cdot O) = \frac{r^2}{2} (\cos 2\theta + \cos \xi),$$

and $\delta(\sigma_u(x), O) \leq \beta$ if and only if $-r^2(\cos 2\theta + \cos \xi) \geq (|\bar{u}|^2 + r^2)(t - \cos \xi)$. This results in

$$P(\delta(\tau_U(x), O) \leq \beta) = \int_{\mathbb{S}^d} I_{\delta(\sigma_u(x), O) \geq t} \, dm(u)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{\mathbb{R}^{d-1}} \int_0^\infty I_{-r^2(\cos 2\theta + t) \geq |\bar{u}|^2(t - \cos \xi)} 2re^{-r^2} \, dr \, d\gamma(\bar{u}) \, d\theta,$$
where γ is the standard normal probability measure on \mathbb{R}^{d-1}. We integrate explicitly over r and evaluate the remaining Gaussian integral by rescaling $\hat{v} = \left(1 - \frac{t - \cos \xi}{t + \cos 2\theta}\right)^{1/2} \hat{u}$.

$$P(\delta(\tau_U(x), O) \leq \beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} I_{\cos 2\theta + t < 0} \left\{ \int_{\mathbb{R}^{d-1}} \frac{e^{t - \cos \xi}}{t + \cos 2\theta} d\gamma(\hat{u}) \right\} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} I_{\cos 2\theta + t < 0} \left(\frac{-\cos 2\theta - \cos \beta}{-\cos 2\theta - \cos \xi} \right)^{(d-1)/2} d\theta.$$

The claim follows after restricting the integral to a half-period and changing variables $2\theta \to \pi - \theta$. □

For $d = 1$, the reflected point $\sigma_U(x)$ is uniformly distributed on S^1, and Eq. (3) reduces to

$$P(\delta(\tau_U(x), O) > \beta) = I_{\delta(x,O) > \beta} \left(1 - \frac{\beta}{\pi}\right), \quad \beta \in [0, \pi].$$

As d increases, $\sigma_U(x)$ concentrates in a ball of radius comparable to $d^{-1/2}$ about x, its distance from the north pole concentrates in an interval of length comparable to d^{-1} about ξ, and the integral in Eq. (3) goes to zero. For all $d \geq 1$ and $0 \leq \beta \leq \xi \leq \pi$, we have the bound

$$\frac{1}{\pi} \int_0^\beta \left(\frac{\cos \theta - \cos \beta}{\cos \theta - \cos \xi} \right)^{(d-1)/2} d\theta \leq \frac{\beta}{\pi} \left(\frac{1 - \cos \beta}{1 - \cos \xi} \right)^{(d-1)/2} = \left(1 + \mathcal{O}(\beta^2)\right) \frac{2 \sin \frac{\beta}{2}}{\pi} \left(\frac{\sin \frac{\xi}{2}}{\sin \frac{\beta}{2}} \right)^{d-1}.$$

If $\{U_i\}_{i \geq 1}$ is a sequence of independent uniformly distributed random variables in Ω, it follows that the Euclidean distance $Y_n = |\tau_{U_1 \ldots U_n}(x) - O|$ satisfies the recursion

$$P(Y_{n+1} > \eta | Y_n) \geq I_{Y_n > \eta} \left\{ 1 - \frac{\eta}{\ell} \left(\frac{\eta}{Y_n} \right)^{d-1} \right\}, \quad \eta \in [0, \ell]$$

(4)

with initial value $Y_0 = |x - O| = 2 \sin \frac{\xi}{2}$ and with $\ell = \pi - \mathcal{O}(\xi^2)$.

4 The lower bound on the sharp constant

Let A be the hemisphere centered at a point $a \neq O$, and set $\alpha = \delta(a, O)$. We claim that

$$\liminf_{n \to \infty} n \mathbb{E}[m(S_{U_1 \ldots U_n} A \triangle A^*)] \geq (1 - \mathcal{O}(\alpha^2)) d.$$

(5)

Taking $\alpha \to 0$, we see that the sharp constant satisfies $C_d \geq d$, completing the proof of the proposition.

To prove the claim, consider a sequence of random points $\{V_i\}_{i \geq 1}$ that are distributed independently and uniformly on an interval $[0, \ell]$, and let \tilde{Y}_n be the d-th lowest point among V_1, \ldots, V_{n+d}. The random variable \tilde{Y}_n is called the d-th order statistic of V_1, \ldots, V_{n+d}. The sequence $\{\tilde{Y}_n\}_{n \geq 0}$ solves Eq. (4) with equality, because conditioned on $\tilde{Y}_n = y$, the $d-1$ points among V_1, \ldots, V_{n+d} to the left of y are independent and uniformly distributed on $[0, y]$, and V_{n+d+1} is independent and uniformly distributed on $[0, \ell]$. The joint distribution of the order statistics can be written explicitly in terms of binomial random variables $B(n, p)$, see [3] Exercises 21-25 on p. 142. We have

$$P(\tilde{Y}_n > \eta | \tilde{Y}_0 = y) = I_{Y > \eta} \sum_{j+k<d} P(B(d-1, \frac{\eta}{y}) = j) \cdot P(B(n, \frac{\eta}{\ell}) = k),$$

4
where the first factor in the sum accounts for the points among \(V_1, \ldots, V_d \) that fall to the left of \(\eta \), while the second factor accounts for such points among \(V_{d+1}, \ldots, V_{n+d} \). By Stirling’s formula,

\[
P(n\bar{Y}_n > \eta \mid \bar{Y}_0 = y) \rightarrow P\left(\Gamma(d) > \frac{y}{\eta}\right) \quad (n \to \infty)
\]

for each \(y \in (0, \ell] \), where \(\Gamma(d) \) is a Gamma random variable that describes the \(d \)-th point in a Poisson process of intensity one [3, Exercise 24 (b) on p.142]. In particular, \(E[\bar{Y}_n \mid \bar{Y}_0 = y] \to \ell d \).

The center of \(S_{U_1 \ldots U_n} A \) is given by \(\tau_{U_1 \ldots U_n}(a) \). We have shown in Section 3 that \(Y_n = |\tau_{U_1 \ldots U_n}(a) - O| \) satisfies Eq. (4). Since the right hand side of this recursion increases with \(Y_n \) and the geodesic distance on the sphere exceeds the Euclidean distance,

\[
P(\delta(\tau_{U_1 \ldots U_n}(a), O) > \eta) \geq P(\bar{Y}_n > \eta \mid \bar{Y}_0 = \alpha)
\]

for all \(n \geq 0 \) with \(\ell = \pi - O(\alpha^2) \). For the mean, this implies that

\[
\liminf_{n \to \infty} n E[\delta(\tau_{U_1 \ldots U_n}(a), O)] \geq (\pi - O(\alpha^2)) d.
\]

Eq. (5) follows because the symmetric difference between two hemispheres is just the distance of their centers, expressed as a fraction of \(\pi \). □

Remark. A slightly more careful analysis of Eq. (3) shows that for \(a \neq O \),

\[
n \delta(\tau_{U_1 \ldots U_n}(a), O) \to \pi \Gamma(d) \quad (n \to \infty)
\]

in distribution, and hence

\[
\lim_{n \to \infty} n E[n(S_{U_1 \ldots U_n} A \triangle A^*)] = d \text{ for the hemisphere } A \text{ centered at } a.
\]

References

[1] Almut Burchard and Marc Fortier, *Convergence of random polarizations*, arXiv:1104.4103.

[2] Gerald B. Folland, *Real Analysis*, 2nd ed., Pure and Applied Mathematics, John Wiley & Sons, New York, 1999.

[3] Geoffrey Grimmett and David Stirzaker, *Probability and Random Processes*, 3rd ed., Oxford University Press, 2001.

[4] Bo’az Klartag, *Rate of convergence of geometric symmetrizations*, Geom. Funct. Anal. 14 (2004), no. 6, 1322–1338.

[5] Jean van Schaftingen, *Approximation of symmetrizations and symmetry of critical points*, Topol. Methods Nonlinear Anal. 28 (2006), no. 1, 61–85.