Identification of specific metabolites in culture supernatant of *Mycobacterium tuberculosis* using metabolomics: exploration of potential biomarkers

Susanna KP Lau1,2,3,4, Ching-Wan Lam5, Shirly OT Curreem4, Kim-Chung Lee4, Candy CY Lau4, Wang-Ngai Chow4, Antonio HY Ngan4, Kelvin KW To1,2,3,4, Jasper FW Chan1,2,3,4, Ivan FN Hung1,2,3,4, Wing-Cheong Yam4, Kwok-Yung Yuen1,2,3,4 and Patrick CY Woo1,2,3,4

Although previous studies have reported the use of metabolomics for *Mycobacterium* species differentiation, little is known about the potential of extracellular metabolites of *Mycobacterium tuberculosis* (MTB) as specific biomarkers. Using an optimized ultrahigh performance liquid chromatography–electrospray ionization–quadruple time of flight–mass spectrometry (UHPLC–ESI–Q–TOF–MS) platform, we characterized the extracellular metabolomes of culture supernatant of nine MTB strains and nine non-tuberculous *Mycobacterium* (NTM) strains (four *M. avium* complex, one *M. bovis* Bacillus Calmette–Guérin (BCG), one *M. chelonae*, one *M. fortuitum* and two *M. kansasii*). Principal component analysis readily distinguished the metabolomes between MTB and NTM. Using multivariate and univariate analysis, 24 metabolites with significantly higher levels in MTB were identified. While seven metabolites were identified by tandem mass spectrometry (MS/MS), the other 17 metabolites were unidentified by MS/MS against database matching, suggesting that they may be potentially novel compounds. One metabolite was identified as dexpanthenol, the alcohol analog of pantothenic acid (vitamin B5), which was not known to be produced by bacteria previously. Four metabolites were identified as 1-tuberculosinyladenosine (1-TbAd), a product of the virulence-associated enzyme Rv3378c, and three previously undisclosed derivatives of 1-TbAd. Two derivatives differ from 1-TbAd by the ribose group of the nucleoside while the other likely differs by the base. The remaining two metabolites were identified as a tetrapeptide, Val-His-Glu-His, and a monoacylglycerophosphoglycerol, derivatives of 1-TbAd. Two derivatives differ from 1-TbAd by the ribose group of the nucleoside while the other likely differs by the base.

Emerging Microbes and Infections (2015) 4, e6; doi:10.1038/emi.2015.6; published online 28 January 2015

**Keywords:** biomarkers; diagnosis; metabolomics; *Mycobacterium tuberculosis*; specific
as the gold standard, and is often limited by the presence of PCR inhibitors in clinical specimens.\textsuperscript{10,11} Therefore, the availability of alternative techniques for improved diagnosis of tuberculosis is eagerly awaited, and such techniques should be able to differentiate between MTB and NTM infections which necessitate different treatment regimens.

Metabolomics is an up-spring research platform for systematic studies of the small-molecular metabolite profiles of a cell, tissue or organism, which are the end products of cellular processes. Using statistical analyses, the metabolic profiles from different cells or systems can be compared, which can be used to differentiate between different biological systems and identify potential metabolite markers specific to these systems. This technique has been applied to characterize various diseases or pathogens including MTB.\textsuperscript{12–18} Using this approach, metabolomic data obtained from urine samples have also been used to distinguish healthy subjects from patients with infections such as pneumococcal disease and urinary tract infections.\textsuperscript{19–21} However, previous metabolomics studies on MTB isolates were mainly focused on detection from culture and species/strain identification by analyses of intracellular metabolites.\textsuperscript{13,14,22} Little is known about the potential of extracellular metabolites of MTB as specific biomarkers. For example, metabolomics studies have been performed to identify various Mycobacterium species, compare hyper- and hypo-virulent strains and study carbon utilization of MTB strains.\textsuperscript{13,14,23} Although a few studies using samples from infected patients or animals have revealed potential signature metabolites, they are not yet confirmed to be useful routine diagnostic purposes.\textsuperscript{24–26} Since MTB is able to produce volatile organic compounds and stearic acid which can be detected in the urine and sputum of infected patients respectively,\textsuperscript{24,27} we hypothesize that there are potentially novel extracellular metabolites that are specifically produced by MTB that may be detected in body fluids for non-invasive diagnosis of tuberculosis. To search for potential biomarkers for diagnosis of tuberculosis, we attempted to characterize the metabolomes of culture supernatants of MTB and NTM species, using ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time of flight–mass spectrometry (UHPLC–ESI–Q–TOF–MS). Multi- and univariate statistical analyses of the metabolome data were used to identify specific metabolites that are found only in the culture supernatants of MTB but not NTM species.

MATERIAL AND METHODS

Mycobacterial strains and culture

Nine MTB and nine NTM (four M. avium complex strains, one M. bovis Bacillus Calmette–Guérin (BCG) strain, one M. chelonae strain, one M. fortuitum strain and two M. kansasii strains) strains were included in this study (Supplementary Table S1). All clinical isolates were identified by standard conventional methods.\textsuperscript{28} Each Mycobacterium strain was grown on Lowenstein–Jensen solid medium for 3–4 weeks with continuous aeration. Colonies were scraped from the Lowenstein–Jensen slants and incubated in 30 mL Middlebrook 7H9 medium supplemented with 0.2% (v/v) glycerol and 10% oleic acid–albumin–dextrose–catalase (Becton–Dickinson, Sparks, MD, USA) without Tween-80 in filtered screw-cap bottles at 37°C. The voltages of the Fragmentor, Skimmer 1 and OctopoleRFPeak were 135 V, 65 V and 750 V, respectively. The scan range was adjusted to 80–1700 m/z at the acquisition rate of 2 spectra/s. MS/MS acquisition was operated in the same parameter as in MS acquisition. Collision Energy was used at 10, 20 or 40 eV for fragmentation of the targeted compounds.

Data processing and statistical data analysis

All mass spectral data were acquired using Agilent MassHunter Qualitative Analysis software (version B.05.00; Agilent Technologies). To optimize feature detection and discovery, two software packages: Mass Hunter Qualitative Analysis and open-source software XCMS (version 1.38.0) operating in R, which adopted different peak detection and alignment algorithms, were used.\textsuperscript{30} For Mass Hunter Qualitative Analysis software,
PCA and PLS-DA modeling

To compare the metabolomes between MTB and NTM strains, both multi- and univariate analyses were performed. For multivariate analysis, PCA showed that 50.1% of the total variance in the data was represented by the first two principal components (Figure 1A). The 2D-PCA score plot revealed that the MTB strains were closely related to each other and could be distinguished from the NTM strains based on the first two principal components, with the MTB strains clearly separated from NTM strains along principal component 1, which represented 40.3% of the variance. In view of the significant separation achieved using PCA, supervised analysis PLS-DA (Figure 1B) was subsequently performed to maximize the separation and identify additional metabolites to those identified using PCA. In the PLS-DA score plot, the separation between different *Mycobacterium* species is more prominent. Potential metabolites were selected based on the VIP score (>1). Hierarchical clustering analysis was performed based on the degree of similarity of metabolite abundance profiles to show the global overview of all culture supernatant metabolites detected (Figure 2). Metabolites with similar abundance patterns were positioned closer together. The heat map and dendrogram indicated the close clustering of the MTB strains and their separation from the NTM strains. To further confirm the specificity and significance of potential metabolites identified from PCA and PLS-DA, univariate analysis of each metabolite was performed using one-way ANOVA and Student’s t-test. A total of 24 potential metabolites contributing most to the variation between MTB and NTM with significantly higher level in MTB strains were selected for further identification (Table 1).

Identification of potential biomarkers specific to *M. tuberculosis*

The 24 metabolites were identified by MS/MS fragmentation and their predicted molecular formulae are shown in Table 1. All metabolites except *m/z* 206.1388 were only found in MTB but not NTM strains. Seven (*m/z* 206.1388, *m/z* 483.2759, *m/z* 521.2498, *m/z* 524.3598, *m/z* 530.3698, *m/z* 540.3572 and *m/z* 582.3642) of the 24 metabolites were identified by MS/MS, while the other 17 metabolites represent potentially novel metabolites with no match against known compounds or databases (Table 1 and Figure 3).

The metabolite *m/z* 206.1388 was identified as dexamphenol (metabolite NO 1 in Table 1) with molecular formula C_{16}H_{18}NO_{4} by database searches in METLIN and Massbank, and confirmed by MS/MS using commercially available authentic chemical standard of dexamphenol (Figure 4). Although it was found in MTB strains with significantly higher level, low levels of *m/z* 206.1388 (at approximately 10- to 100-fold lower levels) were also detected in *M. avium* complex, *M. bovis* BCG, *M. chelonae*, *M. fortuitum* and *M. kansasi* (Figure 3).

One metabolite *m/z* 521.2498 was identified as a tetrapeptide, Val-His-His (metabolite NO 17 in Table 1) with molecular formula C_{20}H_{32}N_{4}O_{7} in METLIN. Some bacteria may produce short peptides as pheromones, which are involved in quorum-sensing. However, the significance of this short peptide from MTB culture supernatants remains to be determined.

Four metabolites, *m/z* 524.3598, *m/z* 530.3698, *m/z* 540.3572 and *m/z* 582.3642 (metabolite NOs 18, 19, 20 and 21 in Table 1), were identified as 1-tubercolosinyladenosine (1-TbAd) or its derivatives by MS/MS. The metabolite *m/z* 540.3572 was identified as 1-TbAd with molecular formula C_{16}H_{46}N_{4}O_{4}. MS/MS fragmentation showed

**RESULTS**

**Visual inspection of total ion chromatograms**

We characterized and compared the metabolomes of culture supernatants from nine MTB and nine NTM strains. The total ion chromatograms from the nine MTB strains shared considerable similarity, whereas significant differences were observed in the chromatograms obtained from different NTM species. Representative examples of chromatograms obtained from each species are shown in Supplementary Figure S1.
Figure 1  (A) PCA score plot and (B) PLS-DA score plot generated using MetaboAnalyst based on culture supernatant in positive mode. PLS-DA models were validated using $R^2$ and $Q^2$ based on LOOCV. Five-component model was selected as optimized model with $R^2 = 0.99$ and $Q^2 = 0.99$. The significance of the model was demonstrated by permutation test with 2000 testing iterations using separation distance and $P$ value <0.001 was obtained. LOOCV, leave one out cross-validation; MAC, *M. avium* complex; MBCG, *M. bovis* BCG; MCHE, *M. chelonae*; MFOR, *M. fortuitum*; MKAN, *M. kansasii*.

Figure 2  Hierarchical clustering analysis generated using MetaboAnalyst based on culture supernatant in positive mode. Each bar represented a metabolite colored by its abundance intensities on normalized scale from blue (decreased level) to red (increased level). The dendrogram on the left was constructed based on the metabolite abundance profiles. MAC, *M. avium* complex; MBCG, *M. bovis* BCG; MCHE, *M. chelonae*; MFOR, *M. fortuitum*; MKAN, *M. kansasii*.
| Metabolite ID | Retention time (min) | MS/MS fragment masses | VIP score | Molecular formula | Putative identity |
|---------------|---------------------|------------------------|-----------|-------------------|------------------|
| 1             | 2.30                | 58.0667, 76.0768, 118.0666, 170.1251, 188.1311 | <0.001 | C12H26NO6 | No match |
| 2             | 11.30               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 3             | 12.00               | 29.0986, 29.0988, 30.1086 | <0.001 | C12H24NO6 | No match |
| 4             | 6.00                | 39.0141, 39.0143, 40.1243 | <0.001 | C12H24NO6 | No match |
| 5             | 16.49               | 101.0610, 129.0768, 218.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 6             | 20.60               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 7             | 7.68                | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 8             | 9.49                | 101.0610, 129.0768, 218.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 9             | 5.00                | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 10            | 10.30               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 11            | 14.27               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 12            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 13            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 14            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 15            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 16            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 17            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 18            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 19            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 20            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 21            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 22            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 23            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |
| 24            | 17.40               | 148.0574, 166.0675, 208.0978, 244.0972, 272.0939 | <0.001 | C12H24NO6 | No match |

Abbreviation: PG, phosphatidylglycerol.

* P-value from ANOVA analysis.

** VIP score based on PLS-DA. VIP score > 1 is considered to be statistically significant.

*** Confirmed by MS/MS fragmentation pattern matching with commercially available authentic chemical standard.

**** Detected in both positive and negative mode.
major peaks at m/z 136.0616, m/z 268.1041, m/z 273.2575 and m/z 408.3127, compatible with MS/MS profiles of 1-TbAb (Figure 5A). The metabolite m/z 524.3598 also possessed major peaks at m/z 136.0615, m/z 273.2571 and m/z 408.3128. However, instead of m/z 268.1041 (C_{10}H_{14}N_{5}O_{4}), a peak at m/z 252.1088 (C_{10}H_{14}N_{5}O_{3}) was detected, suggesting that m/z 524.3598 is likely a metabolite of 1-TbAd, 1-tuberculosinyl-2'-deoxyadenosine, which is predicted to have a hydrogen atom in place of the hydroxyl group in C2'.

Another metabolite m/z 582.3642 also possessed major peaks at m/z 136.0609, m/z 273.2569 and m/z 408.3115. However, instead of m/z 268.1041 (C_{10}H_{14}N_{5}O_{4}), a peak at m/z 310.1141 (C_{12}H_{20}N_{5}O_{3}) was detected, suggesting that m/z 582.3642 is also a metabolite of 1-TbAd, 1-tuberculosinyl-2'-deoxyadenosine, which is predicted to have an acetyl-group replacing the hydrogen atom of a hydroxyl group in C2'-position of the ribose (Figure 5C). Another tuberculosinyl-derivative was found to have molecular cation at m/z 530.3698 with molecular formula C_{29}H_{48}N_{5}O_{4}. Its corresponding MS/MS spectrum contains fragments at m/z 273.2610 referring to the polyunsaturated C20 hydrocarbon (C_{20}H_{33}^{+}), m/z 398.2908 representing to the peak (C_{22}H_{48}N_{5}^{+}) after loss of ribose from the derivative, m/z 258.1219 corresponding to the peak (C_{19}H_{32}N_{5}O_{4}^{+}) after loss of the polyunsaturated C20 hydrocarbon and m/z 126.0787 (C_{6}H_{3}N_{3}^{+}) referring to the base replacing the adenine (Figure 5D).

Another metabolite m/z 483.2759 was identified as a monoacylglycerophosphoglycerol, PG (16:0/0:0) or 1-hexadecanoyl-sn-glycero-3-phospho-(1'-sn-glycerol) (metabolite NO 24 in Table 1), with molecular formula C_{22}H_{44}O_{5}P in METLIN (Figure 5E). PG (16:0/0:0) has been reported in the lipidomic database, MtH LipidDB, of MTB, being found in the mycobacterial cell extracts. PG, a subclass of glycerophospholipid, is found in bacterial membranes where PG is utilized as a precursor for cardiolipin synthesis. It is possible that this metabolite, PG (16:0/0:0), is a unique component in the cell membrane of MTB not found in other mycobacteria. However, it remains to be determined whether PG (16:0/0:0) may be involved in virulence or other functions in MTB.

**DISCUSSION**

Using metabolomics approach, we identified specific metabolites in culture supernatant of MTB. As these extracellular metabolites are either secreted or released from cell wall components of MTB, they may be present in the circulating blood or other body fluids of infected patients, and hence may represent potential biomarkers for non-invasive diagnosis of tuberculosis. The exclusion of metabolites...
The presence of high levels of dexpanthenol in the culture supernatant of MTB strains is intriguing. Dexpanthenol is the alcohol analog of pantothene (also called vitamin B5) which is used for the synthesis of Coenzyme A, an important cofactor in central metabolism. While the biosynthetic pathway of pantothene is present in MTB, the much higher levels of dexpanthenol produced by MTB strains than NTM strains may suggest a possible role in survival benefit through inhibition of other bacteria. Further studies using $^{13}$C carbon source in the media may help confirm dexapanthenol and other metabolites are true metabolic product of MTB and to examine the function and biosynthetic pathway.

Apart from 1-TbAd, we also identified three previously undescribed derivatives of 1-TbAd in the culture supernatant of MTB. 1-TbAd is a recently identified amphiphilic diterpene-linked adenosine found in the lipid extracts of culture supernatant of MTB but absent in those of NTM strains, thus present in NTM species was important, since these NTM species can also cause disseminated infections mimicking tuberculosis in immunocompromised hosts, which are also difficult to diagnose. In this study, 24 metabolites with significantly higher levels in MTB were identified. Many of the metabolites were unidentified by MS/MS against database matching, suggesting that these are potential novel compounds. This is not unexpected, since metabolomics for the study of microbes including mycobacteria is still an emerging field and the number of known metabolites from MTB is very limited. Further studies on the chemical structure and biosynthetic pathway of these potential novel metabolites would help understand their biological function in MTB. As the present results were based on in vitro data obtained from cultures using Middlebrook 7H9 medium only, the significance of these metabolites in different growth phases and in vivo and in vitro environments should also be explored. More importantly, metabolomics studies on clinical samples from patients with tuberculosis are warranted to explore for the presence of these MTB-specific extracellular metabolites and their potential role as diagnostic biomarkers.

The presence of high levels of dexpanthenol in bacteria has not been reported previously. Nevertheless, it has been demonstrated that dexpanthenol can act as a substrate for pantothene kinase in MTB to produce 4'-phosphopantethenol which can inhibit the activity of 4'-phosphopantothenoylcysteine synthase and 4'-phosphopantethenoylcysteine decarboxylase and eventually affect the biosynthesis of Coenzyme A. Moreover, dexpanthenol has been reported to exhibit antimicrobial activity against some bacteria and protozoa, especially those that are auxotrophic for pantethenate.

The higher levels of dexpanthenol produced by MTB strains than NTM strains may suggest a possible role in survival benefit through inhibition of other bacteria. Further studies using $^{13}$C carbon source in the media may help confirm dexapanthenol and other metabolites are true metabolic product of MTB and to examine the function and biosynthesis pathway.

Figure 4 (A) Extracted ion chromatogram and (B) MS/MS mass spectra of dexpanthenol standard and $^{t}206.1388$ in MTB sample. MS/MS fragmentations have been performed at 10, 20 and 40 eV. CID, collision-induced dissociation; CE, collision energy.
Figure 5  MS/MS mass spectra and predicted structures of (A) m/z 540.3572, (B) m/z 524.3598, (C) m/z 582.3642, (D) m/z 530.3698 and (E) m/z 483.2759 in MTB samples. MS/MS fragmentations performed at 20 eV were shown. The hydrogen group replacing the hydroxyl-group in the ribose of m/z 524.3598, and the acetyl-group replacing the hydroxyl-group in the ribose of m/z 582.3642 may be present in C2 or C3 position. The base of m/z 530.3698 is undetermined.
supporting 1-TbAd as a potential virulence factor in MTB. Three derivatives of 1-TbAd, 1-tuberculosinyl2'-deoxyadenosine, 1-tuberculosinyl-O-acetyladenosine and another novel derivative with undetermined base, with approximately 10- to 100-fold lower levels than 1-TbAd, were also identified in the culture supernatant of MTB, 1-tuberculosinyldeoxyadenosine and 1-tuberculosinyl-O-acetyladenosine, are derivatives of 1-TbAd, 1-tuberculosinyl-2'-deoxyadenosine and 2'-O-acetyl adenosine to 1-tuberculosinyl-O-acetyladenosine (Figure 6A). The two derivatives, 1-tuberculosinyl2'-deoxyadenosine and 1-tuberculosinyl-O-acetyladenosine, are either degradation products of 1-TdAd (Figure 6A) or synthesized by Rv3378c similar to the previously proposed biosynthetic pathway for of 1-TdAd (Figures 6B and 6C). 1-tuberculosinyl2'-deoxyadenosine and 2'-O-acetyl adenosine to 1-tuberculosinyl-O-acetyladenosine (Figure 6C). The base structure remains to be ascertained. The two derivatives, 1-tuberculosinyl2'-deoxyadenosine and 1-tuberculosinyl-O-acetyladenosine, are either degradation products of 1-TdAd (Figure 6A) or synthesized by Rv3378c similar to the previously proposed biosynthetic pathway for of 1-TdAd (Figures 6B and 6C). Therefore, it may also potentially catalyze the conversion of tuberculosinyl pyrophosphate and deoxyadenosine to 1-tuberculosinyl 2'-deoxyadenosine (Figure 6B), and similarly, the conversion of tuberculosinyl pyrophosphate and 2'-O-acetyl adenosine to 1-tuberculosinyl-O-acetyladenosine (Figure 6C). While it is unclear if 2'-O-acetyl adenosine exists as a metabolite in MTB, deoxyadenosine, a derivative of adenosine, presents in all living organisms. As the present results were obtained from MS/MS analysis only, further studies using nuclear magnetic resonance may help elucidate the exact structures and biosynthetic pathways of these metabolites and the molecular mechanisms of virulence of 1-TbAd and/or its derivatives in MTB.

Metabolomics is an uprising tool in microbiology and infectious disease research, providing a revolutionary method to study both the pathogen itself and the host response to the infection. For tuberculosis, the technique has been used to identify various Mycobacterium species and carbon utilization of MTB, and characterize metabolites of hyper-virulent strains. These findings may help better understand the biology and virulence factors of MTB. On the other hand, metabolomics applied on direct patient samples may reveal metabolites generated during infection of the host, which can provide insights on the diagnosis, pathogenesis
and host–pathogen interactions. For mycobacteria, it has been shown that volatile organic compounds in the urine samples from tuberculous patients can be distinguished from those from healthy subjects. Therefore, a study using nuclear magnetic resonance spectroscopy-based metabolomics showed that sera of tuberculous patients can be distinguished from those of healthy controls. Therefore, metabolomics approach may help identify potential biomarkers for diagnosis of tuberculosis. In another study using serum metabolomics approach on leprosy patients, higher levels of polyunsaturated fatty acids were found among patients having higher bacterial indices, which may provide clues on the biological pathways involved in the immunomodulation of leprosy. With the increasing applications of metabolomics technology on both microbial and clinical samples from patients with appropriate controls, we expect to witness a gross expansion of our knowledge on microbial metabolites, including the discovery of novel metabolites and potential biomarkers for diagnosis of infections such as tuberculosis.

ACKNOWLEDGEMENTS

This work is partly supported by the Hong Kong Special Administrative Region Research Fund for the Control of Infectious Diseases (Commissioned Study HK-09-01-10) of the Health, Welfare and Food Bureau; University Development Fund and Strategic Research Fund, The University of Hong Kong; and donation from Ms Eunice Lam on emerging infectious disease research.