Economics of Climate Change: Global Trends, Country Specifics and Digital Perspectives of Climate Action

Elena G. Popkova* and Xunpeng Shi

1 Moscow State Institute of International Relations, Moscow, Russia, 2 Australia-China Relations Institute, University of Technology Sydney, Sydney, NSW, Australia

Keywords: economics of climate change, global trends, COVID-19 pandemic and crisis, G7, BRICS, country specifics, digital perspectives on climate action

The Sustainable Development Goals (SDGs) are a symbol of progressiveness, humanity and unity of the modern world. Among them is SDG 13 “Climate action,” signaling the acute urgency of climate change issues. The value of the SDGs lies in the fact that they show the close connection and consistency of the social, economic and environmental spheres of economic activity. The presence of this link, officially recognized by the UN, indicates that climate change is not only an environmental problem, but also a social and economic problem, and the solution of this problem requires coordinated actions in all areas.

The economics of climate change is a field of scientific knowledge and economic practices at the intersection of economics and ecology, a special subsection of environmental economics. Typical topics in this field include carbon tax policies (including emission trading scheme), the economics of mitigation and adaptation, and more recently issues related to global environmental challenges emerged. Numerous existing literature on the economics of climate change (e.g., Popkova et al., 2021) provides a lot of evidence that climate change is changing the economic landscape. For example, unpredictable and unfavorable climates threaten agriculture and prevent food provision (Charnock and Hoskin, 2020). It is also noted that responsible and sustainable agriculture can help combat climate change (Bruce et al., 2018; de Albuquerque, 2020).

The available literature also provides extensive evidence of the strong impact of the functioning and development (growth) of the economy on climate change. For example, industrial production typically has high environmental costs, and economic decarbonization slows climate change (Aboulnaga et al., 2020). In this regard, it is necessary to harmonize the economic and environmental interests of modern economic systems and find ways to achieve these interests in a balanced way. Information pertaining to the costs and benefits of climate change and its countermeasures are key foundations of the field. Their qualification involves advanced measures such as non-market value (Cullen and Mansur, 2017) and the social cost of carbon (Nordhaus, 2019) and continuous advancement in research is needed.

METHODOLOGICAL APPROACH

There is a need for methodological pluralism in understanding the economics of climate change. To study it, we require a wide range of qualitative and quantitative (as well as qualitative-quantitative) methods, in particular multidisciplinary. The methodology of the study of the economics of climate change includes econometrics and experiments based on neoclassical economics, engineering studies, qualitative case studies, etc. Methodological pluralism is necessary for the systemic research of the economics of climate change and
the complex research of the regularities (causal connections) of its development in socio-economic and socio-environmental systems from the position of fundamental and applied science.

This is needed for a comprehensive study of the economics of climate change as a subject sphere at the joint of environmental economics, climatology, industrial and manufacturing engineering (which implies digital technologies for the monitoring and fight against climate change), environmental sociology (which studies climate-resilient communities), the economics of (responsible) entrepreneurship, regional economics (which studies climate-resilient territories), state management (of sustainable development) of economy, and other spheres of scientific knowledge.

COVID-19 AND GREEN RECOVERY

Despite the high degree of sophistication of the economics of climate change, many research gaps remain amid growing challenges. One of the challenges is the crisis in the economy and its cyclicality. In particular, the fight against climate change has been complicated by the pandemic and the COVID-19 crisis. Available papers, including Doni and Johannsdottir (2021), note that in the context of the COVID-19 pandemic and crisis in 2020-2021 the pace of implementation of SDG13 (combating climate change) has slowed down. In particular, this could be due to limited placement opportunities for ESG investments (Gao et al., 2021; Ngo et al., 2021; Tran, 2021).

The essence of this challenge is that financing for sustainable development plays an important role in making progress toward SDG13. In case of a budget deficit, typical of economic crises, there is a forced reduction in spending on improving the environmental efficiency of the economy, which slows down the fight against climate change. It is also necessary to note the social component of the challenge under consideration. Society's commitment to solving environmental problems of protecting the environment and combating climate change often fades into the background when solving pressing economic problems in times of crisis. The crisis, however, could create opportunities for integrating climate action into the much needed recovery. Therefore, the academic community needs to advance the knowledge that is required to promote green recovery (Pollitt et al., 2021) that can simultaneously deal with the two global crises.

COMPLEXITY OF CLIMATE ACTIONS

Also, attention should be paid to the increased complexity of the decarbonization of the economy due to the close relationship of various economic practices with climate change, as evidenced by the relationship between SDG13 and other SDGs. The transition to “clean” energy plays an important role in reducing carbon emissions into the atmosphere. This brings us to SDG7, which, on the one hand, assumes the absence of scarcity of energy resources, and, on the other hand, their savings, environmental safety and “cleanliness” of energy. The noted close relationship between SDG13 and SDG7 requires coordinated actions and their systemic practical implementation.

This is an incentive to conduct further research of various focus and scale on the topic of the relationship between economic cyclicality and the fight against climate change. Environmental innovation (SDG9) plays an important role in the topic of the relationship between economic cyclicality and the fight against climate change. The first successes in the field of creation and launch of carbon polygons are impressive. Carbon polygons allow collecting Big data on carbon emissions and conduct automated monitoring of the state of the climate. They can also be used by universities for scientific experiments when testing various environmental technologies in support of climate change.

Climate change also has a close relationship with several other SDGs, such as poverty (SDG1) (Hubacek et al., 2017; Soergel et al., 2021), health and well-being (SDG3) (Deschênes et al., 2009; Pecl et al., 2017; Jones, 2019; Barreca and Schaller, 2020), cities and communities (SDG11) (Kennedy et al., 2014; Lin et al., 2021). To answer this challenge, it is necessary to form a clear quantitative idea of the scale of the climate change problem and the progress achieved in its solution. Due to the complexity involved in climate change, interdisciplinary approaches and interdisciplinary collaboration are required (Yoo et al., 2021).

COUNTRY HETEROGENEITY AND DIVERSITY

Another challenge lies in the differences in the economics of climate change among countries. The entrenched generally recognized classifications of countries show serious differences between country categories, which are manifested in various areas of economic activity. Obviously, these differences are also characteristic of the economics of climate change. In the available literature, Alvarado et al. (2016), Hwang et al. (2021), Inshakova et al. (2020), and Maupin (2017) noted that the economics of climate change has distinct characteristics in developed and developing countries.

The reduction of environmental costs of the economies of developing countries deserves special attention since they demonstrate the most dynamic growth rate of the economy. Many developing countries are large energy economies, in the structure of which the extraction and export of energy resources play an important role. Solving the problems of climate change in developing countries is hindered by their reduced (compared to developed countries) investment attractiveness and lesser availability of environmental investments.

Along with this, the implementation of the expanded reproduction model actualizes the search for mechanisms to reduce the environmental costs of the growth of the world economy, in the structure of which (according to the GDP criterion) the main share belongs to developed countries. The wide spread of global value chains (Li et al., 2021; Pan et al., 2022) further complicates the climate change implications across countries. To answer the described challenge, it is advisable to conduct an in-depth and comprehensive study of the cause-and-effect relationships of combating climate change based on various
mechanisms, taking into account the characteristics of developed and
developing countries.

The heterogeneity across countries creates an additional
challenge for climate governance, in addition to the externalities.
Since countries have different circumstances, it is difficult for
them to agree on common actions. Article 6 of the Paris
Agreement that governs international cooperation (Edmonds
et al., 2019) thus was only agreed several years after the Paris
Agreements was signed. Further studies on issues related to
international climate government are still required.

TOOLKIT TO COMBAT CLIMATE CHANGE

Another challenge is related to the limited tools available
to combat climate change. Some tools (for example, the
installation of innovative treatment facilities with the tightening
of environmental standards for production, the transition
to more environmentally friendly transport, improving the
environmental safety of the disposal of production and
consumption waste) require a high amount of financial resources
and are not widely available.

Other instruments have a limited and delayed effect and
require additional measures. For example, moving away
from non-environmentally friendly gasoline transport in
favor of electric transport (ferries, cars, trolleybuses, trams)
does reduce carbon emissions, but significantly increases the
electricity demand and causes its scarcity, while this energy is
quite expensive.

The third tools need to be improved and are not prepared
for practical implementation. For example, the widespread call
to phase out unsustainable products (the consumption of which
carries carbon emissions and exacerbates the problem of climate
change) and unsustainable economic practices does not reveal the
further consequences for society. For example, not all cities are
suitable for walking, and not everyone can get to work by bike,
etc. Recommendations should be more detailed, and undesirable
practices should be a worthy alternative.

The answer to this challenge involves the search for new tools
to combat climate change. McLean and Fuller (2016), Lawrence
et al. (2017), Dwivedi et al. (2022), Gunster (2022), Popkova et al.
(2022), Skains et al. (2022) argue that the digital economy opens
up new and broader prospects for combating climate change.

Digitalization creates unprecedented prospects for combating
climate change through economic tools that definitely deserve
attention and scientific study.

CLIMATE CHANGE AND AGRICULTURE

Another challenge is related to adapting the economy to climate
change. A prime example here is agriculture, which indicates the
close linkage of SDG2 with SDG13. Food security is essential to
the sustainable development of the economy, and adverse climate
change and its very unpredictability increase uncertainty and
entrepreneurial risks in agriculture. Climate-sustainable smart
innovations for agriculture provide a highly effective response to
this challenge, and they need further scientific development.

In turn, agriculture can play a much larger role in addressing
climate change. Together with forestry, and land, agriculture
contributes to around 25% of global GHG emissions (Smith
et al., 2008). The prospects for establishing restorative nature
management are highest in the field of agriculture, which can and
should become regenerative. Rural areas are designed to become
areas attractive for rural tourism due to improved climatic
characteristics (fresher air).

Thus, the economics of climate change faces a whole range
of challenges. The efforts of modern science should be focused
on a detailed study of the international experience of the
economics of climate change. Prospects in the field of research
require taking into account the sectoral specifics of the economy
of certain regions of the world, countries and territories,
as well as attention to new opportunities that open up as
technology develops.

Additional, more detailed and in-depth (including case
studies) studies of these prospects are required. It is also advisable
to clarify the experience of developing countries and develop
applied implementations for them to unlock the potential of the
digital economy to contribute to the implementation of SDG13.
It is proposed to devote future scientific research to this.

AUTHOR CONTRIBUTIONS

EP: writing—original draft. XS: writing—review and editing.
All authors contributed to the article and approved the
submitted version.

REFERENCES

Aboulnaga, M., Amer, A., and Al-Sayed, A. (2020). Towards sustainable
development: Mega project’s strategic environmental assessment
to attain SDG 7, 9, 11, 12 and 13. Sustain. Mediterr. Constr.
2020, 101–106.
Alvarado, S. C., Guida, R., and Iervolino, P. (2016). “The use of earth observation
to address SDG 13 climate change in Mexico,” in Proceedings of the International
Astronautical Congress. IAC (Guadalajara, Mexico).
Barreca, A., and Schaller, J. (2020). The impact of high ambient temperatures
on delivery timing and gestational lengths. Nat. Clim. Change 10, 77–82.
doi: 10.1038/s41558-019-0632-4
Bruce, M. C., James, H., Janie, R., Clare, M. S.,Stephen, T., and Eva, L.W..
(2018). Urgent action to combat climate change and its impacts (SDG 13):
transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 34,
13–20. doi: 10.1016/j.cosust.2018.06.005
Charnock, R., and Hoskin, K. (2020). SDG 13 and the entwining of climate
and sustainability metagovernance: an archaeological–genealogical analysis of
goals-based climate governance. Account. Audit. Account. J. 33, 1731–1759.
doi: 10.1108/AAAJ-12-2018-3790
Cullen, J. A., and Mansur, E. T. (2017). Inferring carbon abatement costs in
electricity markets: a revealed preference approach using the shale revolution.
Am. Econ. J. Econ. Policy, 9, 106–133. doi: 10.1257/pol.20150388
de Albuquerque, M. F. C. (2020). Innovations in agriculture: the important
role of agroforestry in achieving SDG 13. World Sustain. Ser. 475–484.
doi: 10.1007/978-3-030-26759-9_27
Deschênes, O., Greenstone, M., and Guryan, J. (2009). Climate change and birth
weight. Am. Econ. Rev. 99, 211–217. doi: 10.1257/aer.99.2.211
Popkova and Shi, 2022. Economics of Climate Change: Global Trends

Doni, F., and Johannesdottir, L. (2021). COVID-19 and pandemic risk: the link to SDG 13, climate change and the finance context. *World Sustain. Ser.*, 43–60. doi: 10.1007/978-3-030-69284-1_3

Dwivedi, Y.K., Hughes, L., Kar, A.K., Baabdullah, A. M., Grover, P., Abbas, R., et al. (2022). Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. *Int. J. Inf. Manag.*, 63, 102456. doi: 10.1016/j.ijinfomgt.2021.102456

Edmonds, J., Forrister, D., Clarke, L., De Clara, S., and Munnings, C. (2019). The Economic Potential of Article 6 of the Paris Agreement and Implementation Challenges (Issue September). Available online at: https://www.ieta.org/resources/International_WG/Articles/CLPC_A6report_nocrops.pdf (accessed May 1, 2022).

Gao, Y., Li, Y., and Wang, Y. (2021). The dynamic interaction between investor attention and green security market: an empirical study based on Baidu index. *China Finance Rev. Int.*. doi: 10.1108/CFRI-06-2021-0136

Gunster, S. (2022). Connective action, digital engagement and network-building: a year in the life of a digital climate science. *Environ. Commun*. doi: 10.1080/17524032.2022.2027802

Hubacek, K., Baiocchi, G., Feng, K., and Patwardhan, A. (2017). *Jones, B. A. (2019). Infant health impacts of freshwater algal blooms: evidence from*. *Frontiers in Environmental Economics | www.frontiersin.org*

Hwang, H., An, S., Lee, E., Han, S., and Lee, C. H. (2021). Cross-societal analysis of climate change awareness and its relation to SDG 13: a knowledge synthesis from text mining. *Sustainability* 13, 5596. doi: 10.3390/su13105596

Inshakova, A. O., Goncharov, A. I., Inshakova, E. I., and Tumchuk, Y., A. (2020). Digital Technologies for Alternative Methods of Resolving Conflicts: The Prospects of Application in Russia and Other BRICS Countries. Charlotte, NC, USA, Information Age Publishing.

Jones, B. A. (2019). Infant health impacts of freshwater algal blooms: evidence from an invasive species natural experiment. *J. Environ. Econ. Manag.* 96, 36–59. doi: 10.1016/j.jeem.2019.05.002

Kennedy, C. A., Ibrahim, N., and Hoornweg, D. (2014). Low-carbon infrastructure strategies for cities. *Nat. Clim. Change*. doi: 10.1038/nclimate2160

Lawrence, S., Doody, L., Ventura, J. L., and Peracio, P. (2017). Polisidigotrophic: Citizen engagement for climate action through digital technologies. *Field Actions Sci. Rep.*, 2017, 58–65.

Li, X., Yu, Y., Shi, X., and Hu, X. (2021). Tracking the domestic carbon emission intensity of China’s construction industry: a global value Chain perspective. *Front. Environ. Sci.* 9. doi: 10.3389/fenvsci.2021.728787

Lin, B. B., Ossola, A., Alberti, M., Andersson, E., Bai, X., Dobbs, C., et al. (2021). Integrating solutions to adapt cities for climate change. *Lancet Planetary Health* 5, e479–e486.

Maupin, A. (2017). The SDG13 to combat climate change: an opportunity for Africa to become a trailblazer? *Afr. Geograph. Rev.* 36, 131–145. doi: 10.1080/19376812.2016.1171156

McLean, J. E., and Fuller, S. (2016). Action with(out) activism: understanding digital climate change action. *Int. J. Sociol. Soc. Policy* 36, 578–595. doi: 10.1108/1JSSP-12-2015-0136

Ngo, Q.-T., Tran, H. A., and Tran, H. T. T. (2021). The impact of green finance and Covid-19 on economic development: capital formation and educational expenditure of ASEAN economies. *China Finance Rev. Int.* doi: 10.1108/CFRI-05-2021-0087

Nordhaus, W. (2019). Climate change: the ultimate challenge for economics. *Am. Econ. Rev.* 109, 1991–2014.

Pan, A., Xiao, T., Dai, L., and Shi, X. (2022). Global transfer of embodied energy: From source to sink through global value chains. *Sustain. Prod. Consum.* 31, 39–51. doi: 10.1016/j.spc.2022.01.030

Pedl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science*, 355. doi: 10.1126/science.a i9214

Pollitt, H., Lewney, R., Kiss-Dobronyi, B., and Lin, X. (2021). Modelling the economic effects of COVID-19 and possible green recovery plans: a post-Keynesian approach. *Clin. Policy*, 21, 1257–1271. doi: 10.1080/14693062.2021.1965525

Popkova, E. G., De Bernardi, P., Tyyurina, Y. G., and Sergi, B. S. (2022). A theory of digital technology advancement to address the grand challenges of sustainable development. *Technol. Soc.* 68, 101831 doi: 10.1016/j.technosoc.2021.101831

Popkova, E. G., Inshakova, A. O., Bogoviz, A. V., and Lobova, S. V. (2021). Energy efficiency and pollution control through ICTs for sustainable development. *Front. Energy Res.* 9, 735551. doi: 10.3389/fengr.2021.735551

Skains, R. L., Rudd, J. A., Horry, R., and Ross, H. (2022). Playing for change: teens’ attitudes towards climate change action as expressed through interactive digital narrative play. *Front. Commun.* 6,789824. doi: 10.3389/fcomm.2021.789824

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008). Greenhouse gas mitigation in agriculture. *Philos. Trans. R. Soc. B Biol. Sci.* 363, 789–813. doi: 10.1098/rstb.2007.2184

Soergel, B., Kriegler, E., Weindl, I., Rauner, S., Dirnaichner, A., Ruhe, C., et al. (2021). A sustainable development pathway for climate action within the UN 2030 Agenda. *Nat. Clim. Change*, 11, 656–664. doi: 10.1038/s41558-021-01098-3

Tran, Q. H. (2021). The impact of green finance, economic growth and energy usage on CO2 emission in Vietnam – a multivariate time series analysis. *China Finance Rev. Int.*. doi: 10.1108/CFRI-03-2021-0049

Yoo, S., Kumagai, J., and Managi, S. (2021). Challenges and opportunities in climate economics. *Front. Clim.* 3, 56. doi: 10.3389/fclim.2021.71818

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Popkova and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.