Research article

Flow cytometry analysis of the effect of allopurinol and the dinitroaniline compound (Chloralin) on the viability and proliferation of Leishmania infantum promastigotes

Sarah W. Kamau*1, Rafael Nunez*2,3 and Felix Grimm1

Address: 1Institute of Parasitology, University of Zurich, 2Institute of Virology, University of Zurich, Winterthurerstr. 266a, 8057 Zürich, Switzerland, and 3Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 98, New York, NY 10021 USA

E-mail: Sarah W. Kamau* - skamau@vetparas.unizh.ch; Rafael Nunez* - nunezr@mskcc.org; Felix Grimm - fgrim@vetparas.unizh.ch

*Corresponding authors

Abstract

Background: Leishmaniasis is a major parasitic disease in the tropical regions. However, *Leishmania infantum* has recently emerged as a very important cause of opportunistic infections for individuals positive for human immunodeficiency virus (HIV). However, there is a lack of in vitro tests for assessing the effect of anti-parasitic drugs on the viability and proliferation of *Leishmania infantum*. The aim of this study is to assess the efficacy of anti-parasitic drugs like allopurinol and Chloralin on the viability and proliferation of *L. infantum* promastigotes by utilizing two complementary flow cytometric approaches after exposure of the promastigotes to various concentrations of the drugs.

Results: The density of the cultures in the presence and absence of allopurinol was determined by haemocytometer enumeration. The two flow cytometric approaches used to monitor the drug effect were: (i) a quantitative method to measure cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and (ii) evaluation of cell viability by dual-staining with the membrane-permeable nuclear stain, SBRY-14 and propidium iodide. It was found that concentrations of allopurinol above 50 µg/ml yielded a clear decrease in the proliferation rate of the promastigotes. However, the viability results showed that about 46.8% of the promastigotes incubated in the presence of 800 µg/ml of allopurinol were still alive after 96 hours. In sharp contrast, more than 90% of promastigotes treated with Chloralin 10 µM (2.7 µg/ml) were dead after 48 hours of treatment. These flow cytometric findings suggest that allopurinol has a leishmaniostatic effect while the dinitroaniline compound (Chloralin) has a leishmaniocidal effect against promastigotes.

Conclusions: The flow cytometric data on proliferation and viability were consistent with results obtained from haemocytometer counts and allowed us to develop a model for assessing in vitro the effects of medicaments like allopurinol and chloralin on *L. infantum* promastigotes on a cellular level.

Introduction

Leishmaniasis is a major parasitic disease. The yearly prevalence is estimated at 12 million people world wide, and 200-350 million people in the tropical and subtropi-
cal regions are at risk. In the Mediterranean region, leishmaniasis caused by Leishmania infantum has emerged as an important source of opportunistic infections for individuals infected with the human immunodeficiency virus (HIV) [1,2,3,4,5]. Dogs and wild canids are significant reservoirs and are primarily responsible for the persistence of the disease in this region [6,7]. The seroprevalence of canine leishmaniasis in the Mediterranean region ranges between 10 to 37% [6,7]. Even in non-tropical countries like the United States, the leishmaniasis in dogs has been found, with new cases being reported not only in the traditional endemic areas of Oklahoma, Texas and Ohio but also in non-endemic eastern coastal states like Maryland [8,9]. Pentavalent antimonial agents (SbV) in the form of sodium stibogluconate (Pentostam®) or N-methyl-D-glucamine antimoniate (Glucantime®) are still widely used as the drugs of choice against leishmaniasis, despite all the deleterious side effects like cardiac and renal toxicity, the difficulty of administration and high costs. Other drugs utilized include amphotericin B, pentamidine and allopurinol. However, these drugs do not have such a favorable therapeutic index as the antimonials, and they require a long-term therapeutic procedure that often induces toxic side effects. Miltefosine is another potential alternative drug whose efficacy is presently being evaluated [10,11,12,13].

The therapeutic potential of allopurinol for the treatment of canine leishmaniasis alone or in combination with antimonials has been recently published [14,15,16]. However, despite of initial clinical successes, relapses have been documented, and parasite clearance was not achieved in dogs treated solely with allopurinol. Therefore, the development of better and less toxic therapeutic agents is urgently needed. The absence of an alternative chemotherapeutic approach to the treatment of Leishmania infection requires urgent attention. The discovery of the antiproteozal effects of tubulin inhibitory compounds like the benzimidazoles (albendazole) and the dinitroanilines, have been examined for their leishmaniacidal effects. Although the antiproteozal effects of the dinitroanilines have received some attention, a more detailed examination of the range of effects of this group of compounds has not been undertaken. Chloralin, like its dinitroaniline parent (trifluralin), targets tubulin. Dinitroanilines are good lead compounds for antiparasitic drugs because they have already been shown to lack activity against mammalian cells and are inexpensive to produce [17,18,19,20,21,22].

Since the present sensitivity assays for antileishmanial drugs have unsatisfactory features, the development of sensitivity assays for in vitro screening of compounds with potential antileishmanial effects (leishmaniocidal)) which have the characteristics of low price, allow high throughput rates, and that yield fast, reliable and reproducible results are urgently required. The currently available assays have several shortcomings, which include the features of being extensively elaborate and very expensive. Since promastigotes are the simplest stage form of Leishmania to cultivate in vitro and therefore used often in drug susceptibility assays [23,24,25,26], we used promastigotes to determine the effect of allopurinol and two other medicaments like chloralin and cycloheximide on this parasite form. Using [3H]-thymidine incorporation assay, Chloralin isomer had showed high efficacy on these promastigotes in an earlier study [18].

The traditional approaches of cell counting and measurement of thymidine incorporation were utilized in the present study, as well as two newly developed flow cytometric methods for assessing cell proliferation and viability. The stable intra-cytoplasmic dye, 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) was used as a quantitative method to measure cell division. CFSE allowed the identification of cell progeny and tracking and analysis of the division history of individual cells that had undergone multiple rounds of division [27]. CFSE attaches to parasite cells by forming stable conjugates with aliphatic amines [28]. Upon subsequent growth, fluorescence per cell is halved per division, providing an ideal tool for monitoring cell proliferation [29]. To determine the viability of promastigotes, the membrane-permeable nuclear stain, SYBR-14, was used in combination with propidium iodide (PI), a positively charged nucleic acid dye unable to cross the intact plasma membranes of living cells [29,30,31,32].

Results

Growth kinetics

The growth kinetics for a period of 7 days is showed in Figure 1. The log phase of the untreated control promastigotes lasted until day 2. Thereafter the parasites gradually entered the stationery phase. The maximum cell concentration of 1.1×10^8/ml was achieved after 72 hours.

Promastigotes treated with 4 and 10 µg/ml of allopurinol, respectively, had a similar 72 hours log phase but reached a maximum cell density comparable to that of the control promastigotes after 4 or 5 days. Allopurinol concentrations higher than 50 µg/ml produced a marked decrease of the proliferation (Figure 1).

Promastigote proliferation determined by CFSE staining

The proliferation of the promastigotes in the presence and absence of allopurinol was determined by CFSE staining. The results from each treatment were grouped and the histogram overlaid in order to show the decrease
in CFSE fluorescence intensity in subsequent days (Figure 2). Eight panels of overlaid histograms show the CFSE fluorescence for control (panel 1) and allopurinol treated promastigotes (panels 2-8). For each treatment, a series of discrete peaks exhibiting progressive decrease of CFSE fluorescence at different time intervals was an indication for on-going cell divisions.

The fluorescence patterns observed in promastigotes treated with 4 and 10 μg/ml allopurinol (panels 2 and 3, respectively) were similar to that of the control promastigotes (panel 1). However, the fluorescence decrease was clearly decelerated by allopurinol concentrations above 50 μg/ml (panels 4-8).

A distinct decrease in the fluorescence intensity in promastigotes treated with 400 and 800 μg/ml allopurinol was observed after 24 hours only, thereafter fluorescence intensities remained almost stable (panel 7 and 8, respectively), suggestive of an almost completely arrested cell proliferation.

Cell divisions and generation times

Each daughter cell inherits approximately half of the CFSE label, hence allowing monitoring and quantification of cell divisions as indicated in Figure 3. The untreated control promastigotes proliferated at a constant rate for the first 48 hours (generation time about 8 hours) and reached a peak cell density at 72 hours. Allopurinol concentrations above 10 μg/ml caused a marked decrease in cell division rates and subsequently increased generation times (e.g. 12 to 15 hours and 20 to 30 hours in presence of 50 μg/ml or 400 μg/ml allopurinol, respectively). During the 96 hours period of observation,
the control cells divided 7 times, whereas 6 cell divisions were observed in promastigotes exposed to 50 \(\mu \)g/ml allopurinol and only 3 rounds of divisions were detected when cells were exposed to a drug concentration of 400 \(\mu \)g/ml (Figure 3).

Promastigote viability

The viability of promastigotes exposed to different concentrations of allopurinol was determined by SYBR-14 and PI dual staining and the results are given as two-parameter density-plots (Figure 4). Table 1 gives the proportions (%) of the promastigotes stained mainly with either PI, SYBR-14 or both (intermediate PI and SYBR-14) after 48 and 96 hours, respectively. After 96 hours only 46.8% of the promastigotes exposed to 800 \(\mu \)g/ml of allopurinol were still alive, whereas 97.1% of the control promastigotes were alive. There was no significant difference in the proportion of dead or live promastigotes between the control and the 4 or 10 \(\mu \)g/ml allopurinol treated cells. However, allopurinol concentrations above 50 \(\mu \)g/ml led to a clear increase in the proportion of PI stained dead cells (Figure 4 and Table 1) after a 96 hours exposure to the drug. This finding was also observed for the dual stained promastigotes. Consequently, allopurinol treatment led to a clearly decreased proportion of SYBR-14 stained (live) promastigotes.

After establishing this flow cytometric model for assessing promastigote susceptibility to allopurinol, it was hypothesized that other antileishmanial drugs could be assessed by this approach and will yield similar results. Thus, it was examined the effect of 10 \(\mu \)M chloralin on the viability of L. infantum promastigotes after 48 hours of exposure. It was found that 91.85% of the promastig-
otes were dead and stained with PI while only 7.36% of
the promastigotes remained alive and stained with
SYBR-14. In contrast, only 0.41% of the untreated pro-
mastigotes were dead and stained with PI while 98.61%
Treatment of promastigotes with 100 µg/ml of cyclohex-
amide yielded some mortality but it was not to the same
magnitude as with 10 µM of chloralin. (Data not shown)

Discussion
The effect of allopurinol on L. infantum (p-229, MCAN/
ES/89/IPZ229/1/89, zymodeme MON1) promastigotes
was determined by cell counting and flow cytometric
approaches. Allopurinol treatment of promastigotes led to
a gradual inhibition of cell proliferation with increasing
drug concentrations.

Figure 3
Number of cell divisions of CFSE stained p-229 promastigotes, unexposed control (closed squares), and
exposed to 4 (closed rhombuses), 10 (closed triangles), 50 (crosses) 100 (stars), 200 (open circles), 400 (open
triangles) and 800 µg/ml allopurinol (open squares).

Of note, the increasing of the dose to 100 µM only yielded a similar pat-
ttern but with higher promastigote mortality (91.77%)
(Table 2 and Figure 5).
The rapid and precise determination of proliferation
rates and generation times by CSFE staining is beneficial
for the analysis of the effects of antileishmanial com-
pounds. The CFSE results on the growth kinetics were
consistent with those determined by cell counting. Until
now, uptake of [³H]-thymidine or other radiolabeled
compounds have been one of the most common methods
for determining cell division, or more specifically, deter-
mination of DNA replication. However, these approach-
es can only give an indication of the overall activity of cell
populations and does not give any information on the
Two-parameter density plots of PI and SYBR-14 stained p-229 promastigotes after 48 hours (left panels) and 96 hours (right panels). Untreated controls (panels 1 and 2), parasites exposed to 4 (panels 3 and 4), 50 (panels 5 and 6), 200 (panels 7 and 8) and 800 µg/ml allopurinol (panels 9 and 10).
proliferative activity of individual cells [33,34,35]. Additionally, \(^{3}\text{H}\)-thymidine is only taken up and/or incorporated by cells, which are replicating at the time the culture is pulsed, which underestimates proliferation if the majority of divisions occur at an early phase of the culture [27]. Furthermore, an earlier study indicated that the CFSE method was a more reliable and appropriate method to determine promastigote proliferation, since the \(^{3}\text{H}\)-thymidine incorporation assay seemed to measure the overall \(^{3}\text{H}\)-thymidine uptake by the cells rather than the actual cell proliferation [30]. The combination of SYBR-14 and PI has been used extensively in sperm viability studies [32]. In our study, SYBR-14 stained the nuclei of live promastigotes brilliant green, while PI stained the nuclei of dead promastigotes red. Flow cytometry was effective in quantifying the three fluorescent populations: PI, SYBR-14, and dual-stained promastigotes. Both dyes label DNA, thus avoiding the ambiguity of stains targeting separate cellular organelles [32]. This staining method was advantageous in being rapid (30 min), and the cells did not require extra processing prior to the staining. This study demonstrates that SYBR-14, when used in combination with PI, was effective for simultaneously visualizing both the living and dead populations of Leishmania promastigotes before and after treatment with allopurinol or other drugs.

The distinct increase of dead (PI-stained) and dying (PI- and SYBR-14-stained) promastigotes after exposure to allopurinol concentrations higher than 50 \(\mu\text{g/ml}\) generally indicated an allopurinol susceptibility of these cells. The PI and SYBR-14 staining results were consistent with the CFSE and the cell counting results where marked effects of allopurinol were also observed at drug concentrations higher than 50 \(\mu\text{g/ml}\). Furthermore, the presence of more than 45% living promastigotes after exposure to 800 \(\mu\text{g/ml}\) of allopurinol for 96 hours, could partly explain the lack of complete inhibition of \(^{3}\text{H}\)-thymidine uptake observed in an earlier study [30]. The various analyses in our study clearly indicated that allopurinol had a partial and not an absolute antileishmanial effect, even at high doses on p229 L. infantum promastigotes. Clinical studies done by Cavaliero et al. [14] showed that allopurinol treatment of L. infantum infect-

Allopurinol	48 hours	96 hours				
Concentration (\(\mu\text{g/ml}\))	PI	SYBR-14	PI	SYBR-14		
0	0.15	0.09	99.28	1.63	0.78	97.12
4	0.27	0.30	99.16	0.69	0.39	98.76
10	0.66	0.27	98.74	0.60	0.33	98.88
50	0.84	0.33	97.93	4.99	1.24	92.26
100	1.19	0.32	96.92	5.25	1.07	91.19
200	2.09	0.42	95.72	7.25	1.49	85.29
400	3.39	0.76	93.50	19.72	3.59	69.56
800	4.74	0.76	92.33	38.85	5.79	46.80

Chloralin	48 hours		
Concentration (\(\mu\text{M/ml}\))	PI	SYBR-14	
0	0.41	0.97	97.58
10	91.85	0.79	7.36
100	91.77	2.10	6.12
ed dogs led to clinical cure of the disease, but not to a complete elimination of the parasites, and relapses of the disease were observed in the dogs when treatment was discontinued. Danerolle and Bourdoiseau [16] reported that allopurinol only inhibits the growth of leishmania in vitro and thus acts only as a leishmanistatic rather than a leishmanicidal drug. Although it might be tempting to explain the clinical observations by the in vitro data observed in our study, more detailed work is required to establish this assumed relationship.

In sharp contrast with the likely leishmanistatic effect of the allopurinol, the high efficacy of the treatment with 10 µM-chloralin on the viability of L. infantum promastigotes after 48 hours of exposure (the treatment yield more than 90% lethality on the promastigote) was consistent with earlier results, suggesting that this compound has a significant leishmanicidal effect [17,18].

The CFSE assay and the viability assay with SYBR-14 and PI allow direct and repeated measures on the same cell population resulting in a dynamic picture of the response Leishmania to various concentrations of allopurinol without killing the cells, or having to use radiolabeled isotopes. The assessment of proliferation capacity, viability and cellular changes by flow cytometry proved to be a promising way of evaluating the susceptibility of Leishmania promastigotes to diverse antileishmanial compounds [30]. These assays are relatively new tools in parasitology and pharmacology and have proved to be interesting methods of evaluating susceptibility or resistance of live Leishmania parasites to allopurinol or any other antileishmanial compounds on a cellular level.

Figure 5

Two-parameter density plots of PI and SYBR-14 stained p-229 promastigotes after 48 hours. Untreated controls (panel A), parasites exposed to 10 (panel B) and 100 µM Chloralin (panel C).
Material and Methods

Parasites and drug
Promastigote forms of L. infantum (p-229, MCAN/ES/89/IPZ229/1/89, zymodeme MON 1) were maintained at 27°C in 25 cm² tissue culture flasks (T25 - Corning) in 5 ml of a liquid medium (pH 7.4) supplemented with 10% heat inactivated calf serum [31,36]. Allopurinol and cycloheximide (Sigma) was added from a 10 mg/ml stock solution dissolved in 0.1 N NaOH and distilled water respectively. Dr. A Armson kindly provided the Chloralin (Murdock University, Australia), and it was dissolved in dimethylsulphoxide (DMSO) (Promastigote (logarithmic growth phase) were washed in 5 ml fresh medium in T25 culture flasks in the presence of 10% inactivated calf serum. Assessment of growth by cell counting (Neubauer Chamber) was determined at 24 hours intervals for 8 days. The values obtained were used to determine the relative growth rate and the results were expressed as the mean values of at least three experiments.

Growth kinetics
1 x 10⁶/ml log phase promastigotes were inoculated into 5 ml fresh medium in T25 culture flasks in the presence of 0, 4, 10, 50, 100, 200, 400 and 800 µg/ml of allopurinol. Assessment of growth by cell counting (Neubauer Chamber) was determined at 24 hours intervals for 8 days. The values obtained were used to determine the relative growth rate and the results were expressed as the mean values of at least three experiments.

Flow cytometric analysis
The green fluorescence of CFSE and SYBR-14 and the red fluorescence of PI were excited at 488 nm (FACS Calibur, Becton Dickinson, Heidelberg, Germany). At least ten thousand cells were analyzed per sample and each staining experiment was repeated four times. Data analysis was performed on fluorescence intensities that excluded cell autofluorescence and cell debris. CELLQuest software was used for fluorescence determination and data analysis while WinMDI was used to generate the 3 dimensional histogram overlays.

Acknowledgements
The work was partly supported by Foundation Research 3R, Switzerland (grant No.53/96) and by the Swiss National Science Foundation (grant 31-45920). We express our gratitude to Drs. U Muller-Dobles and M. Hurrado for their contributions to the initial studies. Also we thank D. Domingo (Memorial Sloan-Kettering Cancer Center) for her review of the manuscript.

References
1. World Health Organization. Leishmania-HIV co-infection. Epidemiological analysis of 692 retrospective cases. Weekly Epidemiological Records. 1997, 72:49-54
2. Dedet JP, Lambert M, Pratlong F. Leishmaniasis and human immunodeficiency virus infections. Presse Med. 1995, 24(22):1036-40
3. Montalban C, Calleja JL, Erice A, Laguna F, Clotet B, Podzamczer D, Cobo J, Maiolias J, Yebra M, Gallego A: Visceral leishmaniasis in patients infected with human immunodeficiency virus. Cooperative Group for the Study of Leishmaniasis in AIDs. J Infect. 1990, 21(3):261-70
4. Alvar J, Canavate C, Gutierrez-Solar B, Jimenez M, Laguna F, Lopez-Velez R, Molina R, Moreno J: Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbial Rev. 1997, 10(2):298-319
5. Moreno J, Canavate C, Chamizo C, Laguna F, Alvar J: HIV - Leishmania infantum coinfection: humoral and cellular immune responses to the parasite after chemotherapy. Trans R Soc Trop Med Hyg. 2000, 94(3):328-32
6. Baneth G, Dank G, Keren-Kornblatt E, Sekeles E, Adini I, Eisenberger CL, Schnir LF, King R, Jaffe CL: Emergence of visceral leishmaniasis in central Israel. Am J Trop Med Hyg. 1998, 59(5):722-5
7. Ben Ismail R, Gradoni L, Gramiccia M, Bettini S, Ben Rachid MS, Garraoui A: Epidemic cutaneous leishmaniasis in Tunisia: biochemical characterization of parasites. Trans R Soc Trop Med Hyg. 1986, 80(4):669-70
8. Sellon RK, Menard MM, Meuten DJ, Lengerich EJ, Steurer FJ, Breitschwerdt EB: Endemic visceral leishmaniasis in a dog from Texas. J Vet Intern Med. 1993, 7(1):16-9
9. Edelstone SM: Visceral leishmaniasis in a dog from Maryland. J Am Vet Med Assoc. 2000, 217(1):169-168
10. Ouelfette M, Legare D, Papadopoulou B: Microbial multidrug-resistance ABC transporters. Trends Microbial. 1994, 2(10):407-11
11. Herwaldt BL: Miltefosine - the long-awaited therapy for visceral leishmaniasis? N Engl J Med. 1999, 341(24):1840-1
12. Jha TK, Sundar S, Thakur CP, Bachmann P, Karbwang J, Fischer C, Voss A, Berman J: Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med. 1999, 341(24):1795-800
tion in BALB/c mice. Antimicrob Agents Chemother. 1998, 42(3):654-8

14. Cavalero T, Arnold P, Mathis A, Glass T, Hofmann-Lehmann R, Depaizas P. Clinical, serologic, and parasitologic follow-up after long-term allopurinol therapy of dogs naturally infected with Leishmania infantum. J Vet Intern Med. 1999, 13(4):330-4

15. Liste F, Gascon M: Allopurinol in the treatment of canine visceral leishmaniasis. Vet Rec. 1995, 137(1):23-4

16. Denerolle P, Bourdouexeau G. Combination allopurinol and anti-monly treatment versus anti-Glycolytic and allopurinol alone in the treatment of canine leishmaniasis (96 cases). J Vet Intern Med. 1999, 13(5):413-5

17. ARMSON A, KAMAU SW, GRIMM F, REYNOLDS JD, MACDONALD LM, THOMPSON RC: A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum. Acta Trop. 1999, 73(3):303-11

18. Callahan HL, Kelley C, Pereira T, Grogl M: Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob Agents Chemother. 1996, 40(4):947-52

19. KATyar SK, EDlin TD: Beta-tubulin genes of Trichomonas vaginalis. Mol Biochem Parasitol. 1994, 64(1):33-42

20. CHO JP, THOMPSON RC, REYNOLDS JD, SEVILLE P. Albendazole: a more effective anti-Glycolytic agent in vitro than metronidazole or tinidazole. Trans R Soc Trop Med Hyg. 1990, 84(3):375-9

21. CHAN MM, GROGL M, CHEN CC, Bienen EJ, FONG D: Herbicides to curb human parasitic infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc Natl Acad Sci U S A. 1993, 90(12):5657-61

22. CHAN MM, GROGL M, CALLAHAN H, FONG D: Efficacy of the herbicide trifluralin against four P-glycoprotein-expressing strains of Leishmania. Antimicrob Agents Chemother. 1995, 39(7):1609-11

23. CARRIO J, DE COLMENARES M, RIERA C, GALLEGU M, ARBOUX M, PORTUS M: Leishmania infantum: stage-specific activity of pentavalent antimony related with the assay conditions. Exp Parasitol. 2000, 95(3):209-14

24. CALLAHAN HL, PORTAL AC, DEVEREUX R, GROGL M: An axenic amastigote system for drug screening. Antimicrob Agents Chemother. 1997, 41(4):818-22

25. SERENO D, CAVALEYRA M, ZEMZOUKI M, MAQUAIRE S, OUAISSI A, LEMESRE JL: Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother. 1998, 42(12):3097-102

26. SERENO D, HOLZMULLER P, LEMESRE JL: Efficacy of second line drugs on antimony-resistant amastigotes of Leishmania infantum. Acta Trop. 2000, 74(1):25-31.

27. LYONS AB, PARISH CR: Determination of lymphocyte division by flow cytometry. J Immunol Methods. 1994, 171(1):131-7

28. HAUGLAND RP: Handbook of Fluorescent Probes and Research Chemicals. Eugene: Molecular Probes Inc. 1992.

29. HUETTEN JE, NEBE von-CARON G, BOS AP, TER Steeg PF: Flow cytometric analysis of Lactobacillus plantarum to monitor lag times, cell division and injury. Lett Appl Microbiol. 1997, 25(4):295-9

30. KAMAU SW, HURSTAD M, MULLER-DOLBIES IUU, GRIMM F, NUNEZ R: Flow cytometric assessment of allopurinol susceptibility in Leishmania infantum promastigote. Cytometry. 2000, 40(4):353-60

31. NUNEZ R., KAMAU S., GRIMM F: Flow Cytometric assessment of drug susceptibility in Leishmania infantum Promastigote. Unit 11.4 in Robinson JD, Dorzynkiewicz Z, Dean P, Orfao A, Robini-vitch P, Tanke H, Wheelless L. eds. Current protocols in Cytometry. New York: John Wiley & Sons, Inc. 2001, Supplement 16:Unit 11.14-

32. Garner DL, Johnson LA, Yue ST, Roeh BL, Haugland RP: Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J Androl. 1994, 15(6):620-9

33. MARR JJ, BERENS RL: Pyrazolopyrimidine metabolism in the pathogenic trypanosomatidae. Mol Biochem Parasitol. 1983, 7(4):339-56

34. MARR JJ: Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med. 1991, 118(2):111-9

35. FRAYHA GJ, SMITH JD, GÖBERT JG, SAVEL J: The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen Pharmacol. 1997, 28(2):273-99

36. GRIMM F, BRUN R, JENNI L: Promastigote infectivity in Leishmania infantum. Parasitol Res. 1991, 77(3):185-91