Evidence that faecal carriage of resistant *Escherichia coli* by 16-week-old dogs in the United Kingdom is associated with raw feeding

Oliver Mounsey\(^a,1\), Kezia Wareham\(^b,1\), Ashley Hammond\(^c\), Jacqueline Findlay\(^a\), Virginia C. Gould\(^a,b\), Katy Morley\(^b\), Tristan A. Cogan\(^b\), Katy M.E. Turner\(^b,c\), Matthew B. Avison\(^a,1,2\), Kristen K. Reyher\(^b,2\)

\(^a\) University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom

\(^b\) University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom

\(^c\) University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom

A R T I C L E I N F O

Keywords: Fluoroquinolone Zoonosis Genomics Urinary tract infection

A B S T R A C T

We report a survey (August 2017 to March 2018) and risk factor analysis of faecal carriage of antibacterial-resistant (ABR) *Escherichia coli* in 223 16-week-old dogs in the United Kingdom. Raw feeding was associated with the presence of fluoroquinolone-resistant (FQ-R) *E. coli* and those resistant to tetracycline, amoxicillin, and streptomycin, but not to cefalexin. Whole genome sequencing of 36 FQ-R *E. coli* isolates showed a wide range of sequence types (STs), with almost exclusively mutational FQ-R dominated by ST744 and ST162. Comparisons between *E. coli* isolates from puppies known to be located within a 50 × 50 km region with those isolated from human urinary tract infections (isolated in parallel in the same region) identified an ST744 FQ-R lineage that was carried by one puppy and caused one urinary tract infection. Accordingly, we conclude that raw feeding is associated with carriage of ABR *E. coli* in dogs even at 16 weeks of age and that bacteria carried by puppies are shared with humans. We therefore suggest that those who feed their dogs raw meat seriously consider the potential ABR-transmission threat their pet may become as a result and deploy appropriate hygiene practices in mitigation.

1. Introduction

Antimicrobial resistance and particularly antibacterial resistance (ABR) has many negative impacts on the health and welfare of humans and animals including increased morbidity and mortality and an increase in treatment costs [1]. ABR is linked across human populations, animal populations and the environment [2]. A key ABR pathogen of relevance is *Escherichia coli*, which is carried in the intestines of humans as well as farmed and companion animals, and causes a significant disease burden in all three, and especially in humans [3].

Several recent studies using whole genome sequencing (WGS) have concluded that sharing of ABR bacteria between farmed animals and humans is uncommon in the United Kingdom [4–8]. However, ABR bacteria found in domestic pet dogs and their owners are often indistinguishable [9–13].

There are several ways that domestic pet dogs may become colonised by ABR *E. coli* and so bring them into the home. Ingestion is an essential part of colonisation; therefore, ingestion of faeces or faecally contaminated food or water by dogs may be a key source of ABR bacteria derived from humans and farmed animals [14,15]. Research has also suggested that dogs become colonised by ABR bacteria when visiting veterinary hospitals [16,17] and that antibacterial exposure makes colonisation more likely [18]. Associations have also been found between increased carriage of ABR bacteria following coprophagia and with the feeding of raw poultry [19–21]. Of direct relevance to the present study, two UK studies have identified associations between ABR in faecal *E. coli* of adult dogs and those dogs being fed raw meat [19,21].

Up to now, there has not been any published work reporting very early life risk factors for carriage of ABR *E. coli* in domestic pet dogs. In the UK, current recommendations are for juvenile dogs to be weaned

\(^1\) Corresponding author at: School of Cellular & Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom.

\(^a\) E-mail address: bmbs@bristol.ac.uk (M.B. Avison).

\(^1\) O.M. and K.K.R. contributed equally to this work.

\(^2\) M.B.A. and K.K.R. contributed equally to this work.

https://doi.org/10.1016/j.onehlt.2022.100370

Received 14 October 2021; Received in revised form 11 December 2021; Accepted 11 January 2022

Available online 15 January 2022

2352-7714/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2.2. Ethical approvals

All dog owners were recruited between August 2017 and March 2018, and all owners gave consent. Ethical approval for this study was granted both by the Animal Welfare and Ethics Review Body (UB/17/053) and University of Bristol Health Sciences Student Research Ethics Committee (56783).

2.3. Faecal samples and processing

All dog owners were supplied with a sample collection pack comprised of a specimen bottle, gloves, biohazard bag and a freepost envelope. Faecal samples were sent by post to the University of Bristol’s Veterinary School alongside the consent form and, for locally recruited dogs, a questionnaire. Were recruited and data for 223 dogs were included in the analysis. Of 295 dog owners recruited, 14 did not return a fully completed questionnaire, so they were excluded from further analysis. To process each faecal sample, approximately 0.1–0.5 g of faeces was taken and weighed. Ten millilitres per gram of phosphate buffered saline (PBS) was added to the sample and the mixture vortexed. Next, 0.5 mL of the faecal/PBS homogenate was added to 0.5 mL of 50% v/v sterile glycerol and processed as below.

2.4. Testing for ABR bacteria

Data were collapsed into a binary “positive/negative” outcome for the homogenate derived from each faecal sample. ABR positivity was defined by the appearance (following 37°C overnight incubation) of blue/green *E. coli* colonies after spreading 20 μL of faecal homogenate (or a 10-fold dilution in PBS if inoculum effect was observed) onto Trypticase Tole X-Glucuronide (TBX) agar plates containing either 0.5 mg/L ciprofloxacin (to identify FQ-R), 16 mg/L cefalexin, 8 mg/L amoxicillin, 16 mg/L tetracycline, or 64 mg/L streptomycin. These concentrations were chosen based on relevant human clinical breakpoints as defined by the European Committee on Antimicrobial Susceptibility Testing [24]. Faecal homogenates were also plated onto non-antibiotic TBX agar and samples were only included in the study if ≥10 *E. coli* cfu/μL were detected in an undiluted faecal homogenate. Therefore, the limit of detection for ABR for all faecal homogenates included in the analysis was ≤0.5% prevalence. Of 295 dog owners recruited, 58 faecal samples were excluded based on this criterion.

2.5. Risk factor analysis

Univariable and multivariable logistic regression models were used to evaluate associations between ABR *E. coli* positivity in homogenates derived from faecal samples and risk factors identified from the survey data (Stata/IC 15.1, StataCorp LLC, College Station, TX, USA). A backward stepwise method was used. In this method the full set of possible factors was analysed, with the least significant factors removed one at a time until all remaining factors had p-values of 0.05 or less. For the risk factor analysis, questionnaire answers were collapsed into binary ‘Yes/No’ variables; questionnaire answers of ‘sometimes’, ‘often’, ‘almost always’ and ‘frequently’ were all categorised as ‘Yes’.

2.6. Isolates from human infections

WGS data for 188 FQ-R human urinary *E. coli* from a 50 × 50 km region (including the homes of the 59 locally recruited dogs collected during the same timespan as the collection of faecal samples from these puppies) has been reported previously [6].

2.7. WGS analysis of FQ-R *E. coli*

WGS of deduplicated, representative FQ-R isolates from puppies was performed by MicrobesNG (https://microbesng.uk/) on a HiSeq 2500
3.1. Risk factors for carriage of ABR E. coli in dogs at 16 weeks of age

In total, 223 16-week-old dogs were included in the analysis. For each of the 223 faecal samples provided, ABR E. coli carriage status was categorised as positive or negative for resistance to five test antibiotics: amoxicillin, cefalexin, ciprofloxacin, streptomycin or tetracycline, as set out in Materials and Methods. In a preliminary Chi-squared analysis, the only significant risk factor identified for 16-week-old dogs providing faecal samples carrying E. coli resistant at least one antibacterial was having been fed raw meat (p < 0.001; Table 1). Subsequent univariable and multivariable logistic regression analyses showed a strong association between raw feeding and carriage of E. coli resistant to any one of the five antibacterials tested as well as individually with resistance to each of the antibacterials tested except cefalexin (Table 2).

The most substantial AMR carriage risk associated raw feeding in 16-week-old dogs was carriage of FQ-R E. coli (Table 2), and fluoroquinolones are classed as critically important antibacterial drugs. This association has previously been reported in adult dogs in the UK; a study

...
based on 445 dogs found that feeding raw poultry significantly increased the risk of carrying FQ-R E. coli in faeces [21]. Findings from the present study extend these earlier studies to show that the impact of raw feeding on ABR E. coli carriage can be seen as early as 10 weeks after the first introduction of solid food.

Antibacterial therapy might be expected to select for carriage of resistant E. coli, and we cannot entirely exclude the possibility that a few study dogs received antibacterials prior to sampling. However, the very young age of these dogs, coupled with our exclusion of dogs that had been hospitalised (and the fact that fluoroquinolones and tetracycline are not indicated for treatment of young dogs in the UK, and streptomycin is not used to treat dogs of any age in the UK) make antibacterial therapy an extremely unlikely undetected risk factor in this cohort.

3.2. Molecular epidemiology of FQ-R E. coli from dogs at 16 weeks of age

From twenty-six 16-week-old dogs that produced samples carrying FQ-R E. coli, 36 unique isolates were subjected to WGS (Table 3). Plasmid-mediated quinolone resistance mechanisms (PMQR) were found in only 3/36 FQ-R isolates, and in only one ST58 isolate carrying qnrS1 and a single gyrA mutation (Table 3) was there any suggestion that a PMQR was necessary for conferring FQ-R. The other two were an ST1196 isolate carrying qnrS1 and an ST1431 isolate carrying qnrB4, but in both there were also two mutations in gyrA and one in parC, sufficient to confer FQ-R in the absence of a PMQR gene [35]. Indeed, many of the FQ-R isolates collected in this study carried identical mutations and no PMQR genes (Table 3). Of the FQ-R isolates sequenced, ST744 (11/36 isolates) dominated, with 6/36 isolates identified as ST162 (Table 3). Others have reported carriage of CTX-M or AmpC-producing third generation cephalosporin-resistant (3GC-R) E. coli in dogs, and prevalence varies from study to study [36–38]. In our study we did not select for 3GC-R E. coli directly from faecal samples, so it is not possible for us to directly compare. However, of the 36 FQ-R isolates sequenced, we identified 3GC-R mechanisms in seven isolates. Three produced CTX-M-1, one CTX-M-15, one CTX-M-65, one DHA-1 (plasmid AmpC) and one hyper-produced AmpC due to chromosomal mutation (Table 3).

3.3. Evidence of phylogenetic overlap between faecal FQ-R E. coli in puppies and those causing UTI in humans in the same geographical area

A phylogenetic analysis of all the FQ-R isolates from puppies subjected to WGS in this study was constructed (Fig. 1). There were two clusters of isolates: ST162 and ST744 with multiple gyrase and topoisomerase mutations. Notably, one FQ-R isolate was ST1193, which is an important clone currently emerging in human infections and of the most pathogenic phylogroup, B2 [39]. It was therefore interesting to test relationships between FQ-R isolates from locally recruited dogs with human urinary FQ-R isolates from people living in the same geographical area as the locally recruited dogs.

Of the seven FQ-R isolates from locally recruited puppies (Table 3), five were of STs found amongst 188 FQ-R urinary E. coli from people living in the same 50 × 50 km geographical area, isolated within six
months of collection of the isolates from puppies [8]. Of the canine isolates, one was ST10 and two each were ST744 and ST162 (Table 3). A SNP analysis based on core genome alignment of the ST744 isolates showed that one of the ST744 canine isolates was 47 SNPs different from a human urinary isolate. The closest SNP distance between a pair of ST744 human urinary E. coli in the same analysis was 931. SNP distances of <100 have previously been used to indicate potential sharing of isolates between different one-health compartments [8,40].

4. Conclusions

This study has identified raw meat feeding as a risk factor for the excretion of ABR E. coli in the faeces of 16-week-old puppies, with particularly strong impact on excretion of isolates resistant to the critically important fluoroquinolones. If owners insist on feeding raw meat to their dog, it is essential that they fully understand this practice puts their dog at risk of becoming colonised with bacteria resistant to critically important antibacterials. Notably, of 43 dogs fed raw meat, 34 of these (according to the owner survey) were fed what was described as “commercial raw food”, with the rest being fed meat not specifically marketed as dog food. Of these, 14/34 dogs fed commercial raw food were colonised with FQ-R E. coli, which is a similarly significant association (chi-square 33.9; p < 0.00001) to that seen for raw meat feeding overall (chi-square 40.2; p < 0.00001). Hence, it appears that feeding raw meat marketed as pet food is almost equally likely to result in colonisation with E. coli resistant to critically important antibacterials. E. coli is the most clinically important opportunistic human bacterial pathogen [3]. ABR E. coli infections are more difficult to treat, and result in more morbidity and higher mortality rates [3]; there is also strong evidence that domestic pet dogs transmit ABR bacteria to humans [9–12] and this study provides clear evidence of the faecal carriage within puppies of FQ-R E. coli clonally related to those that have also caused urinary infections in humans living in the same geographical region, collected within months of each other. This is suggestive of sharing between humans and dogs. Therefore, if owners feed raw meat to their dog, including that commercially marketed as pet food, practices that mitigate the risk of onward transmission of ABR E. coli – which are more likely to be carried by these dogs – to humans should be encouraged. These include strict hygiene practices when anyone (particularly those vulnerable to bacterial infection) interacts with a raw-fed dog along with scrupulous disposal of the dog’s faeces so that they cannot pose a risk to the general human population by contaminating the wider environment with ABR E. coli.

Funding

This work was funded by grant NE/N01961X/1 to M.B.A., T.A.C., K. M.T. and K.K.R. from the Antimicrobial Resistance Cross Council Initiative supported by the seven United Kingdom research councils. Dogs Trust fund the Generation Pup project.

Author contributions

Conceived the Study: K.K.R., M.B.A.
Collection of Data: K.W. O.M., J.F., K.M. supervised by T.A.C., M.B. A., K.K.R.
Cleaning and Analysis of Data: O.M. K.W. A.H., V.C.G., supervised by M.B.A., K.M.T., K.K.R.
Initial Drafting of Manuscript: K.W., O.M., K.K.R., M.B.A.
Corrected and Approved Manuscript: All Authors.

Declaration of Competing Interest

M.B.A. is married to the owner of a veterinary practice that sells various mass-manufactured dog foods amounting to a value less than 5% of total turnover. Otherwise, none of the above named authors is declaring any conflict of interest in relation to the above titled submitted manuscript.

Acknowledgements

Genome sequencing was provided by MicrobesNG (http://www.microbesng.uk). The authors thank Dogs Trust and Rachel Casey, Jane Murray, Rachel Kinsman and Michelle Lord for assisting with data collection from the Generation Pup project participants included in this study. The authors are grateful to all puppy owners who took part in this study and to Helen Avison, MRCVS, for clarification of antibacterial therapeutic indications in puppies.

References

[1] N.D. Friedman, E. Temkin, Y. Carmeli, The negative impact of antibiotic resistance, Clin. Microbiol. Infect. 22 (2016) 416–422.
[2] M. Woolhouse, M. Bard, V. van Bunnik, J. Farrar, Antimicrobial resistance in humans, livestock and the wider environment, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370 (2015) 20140085.
[3] A. Adler, D.E. Kate, D. Marchaim, The continuing plague of extended-spectrum β-lactamase-producing Enterobacteriaceae infections, Infect. Dis. Clin. N. Am. 30 (2016) 347–375.
[4] J. Findlay, O. Mounsey, W.W.Y. Lee, N. Newbould, K. Morley, H. Schubert, V.C. Gould, T.A. Cogan, K.K. Reyher, M.B. Avison, Moleculer epidemiology of Escherichia coli producing CTX-M and pAmpC β-lactamases from dairy farms identifies a dominant plasmid encoding CTX-M-32 but no evidence for transmission to humans in the same geographical region, Appl. Environ. Microbiol. 87 (2020) e01842-20.
[5] M.J. Day, I. Rodríguez, A. van Essen-Zandbergen, C. Dierikx, K. Kadlec, A. Schink, G. Wu, M.A. Chattaway, V. DoNascimento, J. Wain, R. Helmhut, B. Guerra, S. Schwarz, J. Threlfall, M.J. Woodward, N. Goldham, D. Mevius, N. Woodford, Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK, J. Antimicrob. Chemother. 71 (2016) 1178–1182.
[6] C. Ludden, K.E. Raven, D. Janmory, T. Gouliontis, B. Blane, F. Coll, M. de Goffau, P. Naydenova, C. Horner, J. Hernandez-Garcia, P. Wood, N. Hadijrin, M. Radakovic, N.M. Brown, M. Holmes, J. Parkhill, S.J. Peacock, One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock, mBio 10 (2019) e02693-18.
[7] M. Alzayn, J. Findlay, H. Schubert, O. Mounsey, V.C. Gould, K.J. Heesom, K. M. Turner, D.C. Barrett, K.K. Reyher, M.B. Avison, Characterization of AmpC-hyperproducing Escherichia coli from humans and dairy farms collected in parallel in the same geographical region, J. Antimicrob. Chemother. 75 (2020) 2471–2479.
[8] O. Mounsey, H. Schubert, J. Findlay, K. Morley, E.F. Puddy, V.C. Gould, P. North, K.K. Avison, K.E. Raven, G.M. Willard, D.C. Barrett, T.A. Cogan, K.M. Turner, A.P. MacGowan, K.K. Reyher, M.B. Avison, Limited phylogenetic overlap between fluoroquinolone-resistant Escherichia coli isolated from dairy farms and those causing bacteriuria in humans living in the same geographical region, J. Antimicrob. Chemother. 76 (2021) 3144–3150.
[9] L.J. Toombs-Ruane, J. Benschop, N.P. French, P.J. Biggs, A.C. Midwinter, J. C. Marshall, M. Chan, D. Drinkovic, A. Fayaz, M.G. Baker, J. Dovers, M.G. Roberts, S.A. Burgess, Carriage of extended-spectrum beta-lactamase-and AmpC beta-lactamase-producing Escherichia coli from humans and pets in the same households, Appl. Environ. Microbiol. 86 (2020) e01613-20.
[10] A.R. Kidley, R.T. White, S.A. Beaton, S. Saputra, M.A. Schembri, D. Gordon, J. R. Johnson, M. O’Dea, J.L. Mollinger, S. Abraham, D.J. Trot, Companion animals are sgliflower hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193, Front. Microbiol. 11 (2020) 1968.
[11] J.S. Hong, W. Song, H.M. Park, J.Y. Oh, J.C. Chae, S. Jeong, S.H. Jeong, Molecular characterization of fecal extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli from healthy companion animals and cohabiting humans in South Korea, Front. Microbiol. 11 (2020) 674.
[12] J.S. Hong, W. Song, H.M. Park, J.Y. Oh, J.C. Chae, S. Shin, S.H. Jeong, Clonal spread of extended-spectrum cephalosporin-resistant Enterobacteriaceae between companion animals and humans in South Korea, Front. Microbiol. 10 (2019) 1371.
[13] G.C. Amos, P.M. Hawkey, W.H. Gaze, E.M. Wellington, Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment, J. Antimicrob. Chemother. 69 (2014) 1795–1791.
[14] A.P.C. Leonard, L. Zhang, A.J. Balfour, R. Garside, P.M. Hawkey, A.K. Murray, O. C. Ukoumunne, W.H. Gaze, Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey), Environ. Int. 114 (2018) 326–333.
[15] M. Schmidt, S. Unterer, J.S. Suchodolski, J.B. Honneffer, B.C. Guard, J.A. Lidbury, C. Gould, T.A. Cogan, K.K. Reyher, M.B. Avison, Molecular epidemiology of Escherichia coli producing CTX-M and pAmpC β-lactamases from dairy farms identifies a dominant plasmid encoding CTX-M-32 but no evidence for transmission to humans in the same geographical region, Appl. Environ. Microbiol. 87 (2020) e01842-20.
[17] J. Ogee-Gyles, K.A. Mathews, W. Sears, J.F. Prescott, J.S. Weese, P. Boerlin, Development of antimicrobial drug resistance in rectal Escherichia coli isolates from dogs hospitalized in an intensive care unit, J. Am. Vet. Med. Assoc. 229 (2006) 694–699.

[18] V.M. Schmidt, G. Pinchbeck, K.M. McIntyre, T. Nuttall, N. McEwan, S. Dawson, N. J. Williams, Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli, J. Antimicrob. Chemother. 73 (2018) 3305–3316.

[19] A.L. Wedley, S. Dawson, T.W. Maddox, K.P. Coyne, G.L. Pinchbeck, P. Clegg, T. Nuttall, M. Kirchner, N.J. Williams, Carriage of antimicrobial resistant Escherichia coli in dogs: prevalence, associated risk factors and molecular characteristics, Vet. Microbiol. 199 (2017) 23–30.

[20] L.R. Leite-Martins, M.I. Mahú, A.L. Costa, A. Mendes, E. Lopes, D.M. Mendonça, J. J. Niza-Ribeiro, A.J. de Matos, P.M. da Costa, Prevalence of antimicrobial resistance in enteric Escherichia coli from domestic pets and assessment of associated risk markers using a generalized linear mixed model, Prev. Vet. Med. 117 (2014) 28–39.

[21] V.M. Schmidt, G.L. Pinchbeck, T. Nuttall, N. McEwan, S. Dawson, N.J. Williams, Antimicrobial resistance risk factors and characterisation of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom, Prev. Vet. Med. 119 (2015) 31–40.

[22] M.J. Day, M.C. Horzinke, R.D. Schultz, R.A. Squires, Vaccination Guidelines Group – E1 guidelines for the vaccination of dogs and cats, J. Small Anim. Pract. 57 (2016) 117–118.

[23] M.J. Day, M.C. Horzinke, R.D. Schultz, R.A. Squires, Vaccination Guidelines Group – E1 guidelines for the vaccination of dogs and cats, J. Small Anim. Pract. 57 (2016) 369–370.

[24] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data by using liquid chromatography-tandem mass spectrometry to identify mutant genotypes, Antimicrob. Agents Chemother. 62 (2018) e01814–17.

[25] T.R. Connor, N.J. Loman, S. Thompson, A. Smith, J. Southgate, R. Poplawski, M. J. Bull, E. Richardson, M. Ismail, S.E. Thompson, C. Kitchen, M. Guest, M. Bakke, S. K. Sheppard, M.J. Pallen, CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community, Microb. Genom. 2 (2016) e000086.

[26] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data by using liquid chromatography-tandem mass spectrometry to identify mutant genotypes, Antimicrob. Agents Chemother. 62 (2018) e01814–17.

[27] M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data by using liquid chromatography-tandem mass spectrometry to identify mutant genotypes, Antimicrob. Agents Chemother. 62 (2018) e01814–17.

[28] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup, M.V. Larsen, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. 67 (2012) 2640–2644.

[29] T. Wirth, D. Falush, R. Lan, F. Colles, P. Mensa, L.H. Wieler, H. Karch, P.R. Reeves, M.C. Maiden, H. Ochman, M. Achtmann, Sex and virulence in Escherichia coli: an evolutionary perspective, Mol. Microbiol. 60 (2006) 1136–1151.

[30] B. Grünig, R. Dale, A. Sjödin, B.A. Chapman, J. Rowe, C.H. Tomkins-Tinch, R. Valierr, J. Koster, Biocinda Team, Biocinda: sustainable and comprehensive software distribution for the life sciences, Nat. Methods 15 (2018) 475–476.

[31] T.R. Connor, N.J. Loman, S. Thompson, A. Smith, J. Southgate, R. Poplawski, M. J. Bull, E. Richardson, M. Ismail, S.E. Thompson, C. Kitchen, M. Guest, M. Bakke, S. K. Sheppard, M.J. Pallen, CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community, Microb. Genom. 2 (2016) e000086.

[32] A. Stamatakis, T. Ludwig, H. Meier, RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees, Bioinformatics 21 (2005) 456–463.

[33] A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics 22 (2006) 2688–2690.

[34] A. Stamatakis, T. Ludwig, H. Meier, RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees, Bioinformatics 21 (2005) 456–463.

[35] W.A.K. Wan Nur Ismah, Y. Takebayashi, J. Findlay, K.J. Heesom, J.C. Jiménez-Castellanos, J. Zhang, L. Graham, K. Bowker, O.M. Williams, A.P. MacGowan, M. A. B. Avison, Prediction of fluoroquinolone susceptibility directly from whole-genome sequence data by using liquid chromatography-tandem mass spectrometry to identify mutant genotypes, Antimicrob. Agents Chemother. 62 (2018) e01814–17.

[36] T. Wirth, D. Falush, R. Lan, F. Colles, P. Mensa, L.H. Wieler, H. Karch, P.R. Reeves, M.C. Maiden, H. Ochman, M. Achtmann, Sex and virulence in Escherichia coli: an evolutionary perspective, Mol. Microbiol. 60 (2006) 1136–1151.

[37] V. Tchesnokova, M. Radey, S. Chattopadhyay, L. Larson, J.L. Weaver, D. Kisiela, E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup, M.V. Larsen, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. 67 (2012) 2640–2644.

[38] J. Ogeezyls, K.A. Mathews, W. Sears, J.F. Prescott, J.S. Weese, P. Boerlin, Development of antimicrobial drug resistance in rectal Escherichia coli isolates from dogs hospitalized in an intensive care unit, J. Am. Vet. Med. Assoc. 229 (2006) 694–699.

[39] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup, M.V. Larsen, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. 67 (2012) 2640–2644.