Transportability of non-target arthropod field data for the use in environmental risk assessment of genetically modified maize in Northern Mexico

J. L. Corrales Madrid | J. L. Martínez Carrillo | M. B. Osuna Martínez | H. A. Durán Pompa | J. Alonso Escobedo | F. Javier Quiñones | J. A. Garzón Tiznado | L. Castro Espinoza | F. Zavala García | A. Espinoza Banda | J. González García | C. Jiang | C. R. Brown | J. M. de la F. Martínez | O. Heredia Díaz | J. E. Whitsel | P. Asiimwe | B. M. Baltazar | A. Ahmad

1Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico | 2Instituto Tecnológico de Sonora, Dirección de Recursos Naturales, Obregón, Sonora, Mexico | 3Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo, Nuevo León, Mexico | 4Facultad de Ciencias Agrícolas y Forestales, Universidad Autónoma de Chihuahua, Delicias, Chihuahua, Mexico | 5Monsanto Company, St. Louis, MO, USA | 6Monsanto Comercial, Park Plaza torre II, Mexico D.F, Mexico

Correspondence
Aqeel Ahmad, Monsanto Company, St. Louis, MO, USA.
Email: aqeel.ahmad@monsanto.com

Abstract
In country, non-target arthropod (NTA) field evaluations are required to comply with the regulatory process for cultivation of genetically modified (GM) maize in Mexico. Two sets of field trials, Experimental Phase and Pilot Phase, were conducted to identify any potential harm of insect-protected and glyphosate-tolerant maize (MON-89034-3 × MON-88017-3 and MON-89034-3 × MON-ØØ6Ø3-6) and glyphosate-tolerant maize (MON-ØØ6Ø3-6) to local NTAs compared to conventional maize. NTA abundance data were collected at 32 sites, providing high geographic and environmental diversity within maize production areas from four ecological regions (ecoregions) in northern Mexico. The most abundant herbivorous taxa collected included field crickets, corn flea beetles, rootworm beetles, cornsilk flies, aphids, leafhoppers, plant bugs and thrips while the most abundant beneficial taxa captured were soil mites, spiders, predatory ground beetles, rove beetles, springtails (Collembola), predatory earwigs, ladybird beetles, syrphid flies, tachinid flies, minute pirate bugs, parasitic wasps and lacewings. Across the taxa analysed, no statistically significant differences in abundance were detected between GM maize and the conventional maize control for 69 of the 74 comparisons (93.2%) indicating that the single or stacked insect-protected and herbicide-tolerant GM traits generally exert no marked adverse effects on the arthropod populations compared with conventional maize. The distribution of taxa observed in this study provides evidence that irrespective of variations in overall biodiversity of a given ecoregion, important herbivore, predatory and parasitic arthropod taxa within the commercial maize agroecosystem are highly similar indicating that relevant data generated in one ecoregion can be transportable for the risk assessment of the same or similar GM crop in another ecoregion.
1 | INTRODUCTION

Biotechnology-derived (genetically modified, GM) crops are the most rapidly adopted crop technology in the last 21 years with acreage increasing more than 100-fold since it was first commercialized (James, 2016). In recent years, crop varieties with two or more GM traits have become important in global agriculture and reached about 75.4 million hectares equivalent to 41% of the 185.1 million hectares planted with GM crops worldwide in 2016 (James, 2016). Maize (Zea mays L.) is the most important staple food crop in Mexico with approximately 8 million hectares (ha) planted annually, of which 83.0% is rainfed, and 26.6% of the total area is grown with proprietary hybrid seed (Blanco et al., 2014; Turrent, Wise, & Garvey, 2012). Despite this, production constraints including drought, high weed, disease and insect pressure (Blanco et al., 2014) coupled with growing demand from an increasing population have resulted in a need to complement local maize production with imports. Mexico imports about 10 million metric tons of maize primarily from the United States each year (Turrent et al., 2012). The deficit in Mexico’s maize production has led to the need to adopt modern agricultural technologies, including biotechnology, as a means of overcoming some of the above-mentioned production challenges and ultimately increasing yields (Vargas-Parada, 2014).

Monsanto Company has developed the combined trait maize products, MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 by traditional breeding of GM parental inbred lines derived from maize transformation events: MON-89Ø34-3 (YieldGard® VT Pro), MON-88Ø17-3 (YieldGard® VT Rootworm/Roundup Ready® 2) and MON-ØØ6Ø3-6 (Roundup Ready® 2). Both combined trait maize products have provided substantial benefits to growers in North and South America by limiting yield losses from targeted lepidopteran and coleopteran insects as well as from weed pressure, while concomitantly reducing the risk to humans and the environment through reductions in insecticide use and mycotoxins in maize grain (Brookes & Barfoot, 2011).

The core regulatory data for assessing potential non-target arthropod effects of insect-protected GM crops are produced by technology developers (industry and academic scientists) according to the tiered approach of ecological risk assessment (ERA) where, in the earliest tier, a battery of key non-target arthropods (NTAs) belonging to different taxonomic orders and functional groups with both agricultural and worldwide relevance are tested at doses well above those typically expressed in the plant. If the results of the first-tier studies require refinement then subsequent tiers are used to clarify previous results under progressively more realistic situations, ultimately under field conditions if needed (Duan, Lundgren, Naranjo, & Marvier, 2010; Romeis et al., 2008; U.S. Environmental Protection Agency, 2007; Wolt et al., 2010). In the case of insecticidal proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1) expressed in MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, the tiered testing has not progressed beyond the early tiers due to the restricted activity spectrum of these proteins (Lundgren & Wiedenmann, 2002; Whitehouse, Wison, & Fitt, 2005). In addition, field studies to date have revealed that insect-protected and herbicide-tolerant traits either single event or in stacked product do not adversely affect biodiversity, populations of natural enemies and other ecologically important NTAs (Ahmad et al., 2016; Al-Deeb & Wilde, 2003; Devos, De Schrijver, De Clercq, Kiss, & Romeis, 2012; Li & Romeis, 2009, 2011; Lundgren & Wiedenmann, 2002; Naranjo, 2005a,b, 2009; Schier, 2006; Svobodova, Shu, Habustova, Romeis, & Meissle, 2017; Wolfenbarger, Naranjo, Lundgren, Bitzer, & Watrud, 2008). However, local NTA field evaluations are commonly required for cultivation approvals of GM crops in some countries often without consideration for data already available. This data may include tiered approach data, or field data from well-designed studies conducted for the ERA of the same GM crop, related traits or GM crop/trait combinations where the ecological assessment endpoints (e.g., NTA) are similar. Results from field studies obtained from multiple geographies for GM soybean (Horak et al., 2015) and GM maize (Ahmad et al., 2016; Heredia Díaz et al., 2017; Nakai, Hoshikawa, Shimono, & Ohswawa, 2015) demonstrate the utility of generating relevant data that are transportable across geographic regions for the ERA of GM crops. Leveraging existing, relevant ERA data of GM crops across countries will facilitate the efficient use of regulatory data, minimize redundancy and support conclusions with high certainty for assessing potential environmental risk from the commercial release of a GM crop.

Mexico is a “mega-diverse” country and is one of 17 nations that contain nearly 70% of global diversity of plants and animal species (Sarukhán et al., 2009). Mexican territory has been divided into ecological regions (ecoregions) as geographic units with flora, fauna and characteristic ecosystems (CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad), 2009; INEGI-CONABIO-INE (Instituto Nacional de Estadística, Geografía e Informática–Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Instituto Nacional de Ecología), 2008; Wiken, Jiménez Nava, & Griffith, 2011). The boundaries of an ecoregion are not fixed, but rather encompass an area where important ecological and evolutionary processes generally interact. In contrast, field studies to characterize GM crops are typically implemented in areas devoted to agricultural production. These agricultural areas have relatively homogeneous characteristics (e.g., climate, soils, water availability, infrastructure) and are contained within the larger, usually more heterogeneous, ecoregions. Prior to cultivation of a GM crop in Mexico, local field trials are required to assess the potential adverse effects of the GM crops on its receiving environment, relative to a non-GM control. The focus of these trials is to examine whether the GM crop has potential to

KEYWORDS

Bacillus thuringiensis, data transportability, environmental risk assessment, genetically modified crop, non-target arthropods
become a plant pest (i.e., weediness characteristics) or to have other
adverse environmental impacts (e.g., effects on non-target organ-
isms). Requirements include a stepwise field evaluation of GM crops
at multiple sites in each ecoregion, starting with small plots at the
experimental phase followed by larger plots at the pilot phase prior
to commercial plantings. Local field evaluations on non-target ar-
thropods (NTAs) reported here are used by risk assessors and reg-
ulators to determine whether cultivation of a GM crop is acceptable
in Mexico.

In this study, we summarize studies performed to evaluate the
effect of maize breeding stacks (MON-89Ø34-3 × MON-88Ø17-3
and MON-89Ø34-3 × MON-ØØ6Ø3-6) and single event (MON-
ØØ6Ø3-6) on the abundance of NTAs relative to its conventional
control in maize production areas located within four ecoregions
in Northern Mexico. We also sought to determine the similarity of
taxa across ecoregions to evaluate whether the concept of data
transportability, where results on NTA data can be leveraged across
diverse ecoregions to support ERA, is applicable.

2 | MATERIALS AND METHODS

2.1 | Site description

Thirty-two studies, 18 Experimental Phase (smaller trials) and 14
Pilot Phase (larger trials), were conducted in maize growing regions
of the Mexican states of Sinaloa, Sonora, Chihuahua, Coahuila and
Durango (Comarca Lagunera) and Tamaulipas, during the 2009-2013
crop seasons (Table 1). The selected areas represented ecoregions
level IV as defined by the National Commission for Biodiversity
(CONABIO (Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad), 2009; INEGI-CONABIO-INNE (Instituto Nacional
de Estadística, Geografía e Informática–Comisión Nacional para
el Conocimiento y Uso de la Biodiversidad–Instituto Nacional de
Ecología), 2008). The four ecoregions where trials were planted
included the following: 9.5.1.2 Tamaulipas coastal plain with xeric
shrubland or apparent barren land; 10.2.2.8 Floodplain of Yaqui,
Mayo and Fuerte rivers with xerophytic shrubland and mesquite;
10.2.4.1 Central plains of Chihuahuan Desert with xerophytic mi-
crophyllous halophytic shrubland; 14.3.1.2 Sinaloa coastal plain with
low thorn forest (Figure 1; INEGI-CONABIO-INNE (Instituto Nacional
de Estadística, Geografía e Informática–Comisión Nacional para
el Conocimiento y Uso de la Biodiversidad–Instituto Nacional de
Ecología), 2008; INEGI 2012).

2.2 | Test and control material

The test materials were GM maize hybrids MON-89Ø34-3 × MON-
88Ø17-3, MON-89Ø34-3 × MONØØ6Ø3-6 and MON-ØØ6Ø3-6,
and the control materials were corresponding conventional (non-GM)
isohybrids. Studies comparing GM hybrids and controls in the same
hybrid background minimize sources of variability and allow appro-
 priate comparisons to best assess the potential environmental risks
of introduced GM traits. Within each study, the GM maize hybrid
and the conventional maize control hybrid were in the same genetic
background. At all but one site (Chihuahua), the hybrids were in a ge-
netic background broadly adapted to the environmental conditions
of northern Mexican states; at Chihuahua, an early-maturing hybrid
background was used. GM hybrid MON-89Ø34-3 × MON-88Ø17-3
expresses three Bt proteins [Cry1A.105, Cry2Ab2 and Cry3Bb1] that
confer resistance against aboveground lepidopteran insect pests and
belowground local Diabrotica spp. (Chrysomelidae). It also expresses
the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein,
which confers tolerance to glyphosate herbicide. GM hybrid MON-
89Ø34-3 × MON-ØØ6Ø3-6 expresses two Bt proteins (Cry1A.105
and Cry2Ab2) that confer resistance against aboveground lepidop-
teron insect pests and expresses the EPSPS protein. GM hybrid
MONØØ6Ø3-6 expresses only the EPSPS protein.

2.3 | Production practices

Fields were managed according to the recommendations contained
in the technical guide developed by the National Research Institute
for Forestry, Agriculture and Livestock (INIFAP (Mendoza, Macías,
& Cortez, 2003). All experiments were conducted under irrigation
condition and were located in major corn growing areas in northern
Mexico. Planting dates were typical of the local area with some ex-
ceptions due to weather, the timing of planting approvals or other
considerations. Row spacing varied from 0.65 to 0.92 m, with a seed-
ning rate of 5 to 10 seeds per metre and seed planting depth of 2
to 9 cm, which encompass planting practices in commercial maize
production in Mexico. The main soil textures varied across locations
and included clay, silty clay, clay loam, sandy clay loam, sandy clay
loam and sandy silt (Table 1). Details of the agro-ecological characteristics
are included in Table S1.

Crop management practices included seedbed soil preparation,
fertilization, irrigation, and insect and weed control as per regional
best practices. Agronomic practices (e.g., fertilizer, irrigation, pesti-
cides) were conducted uniformly across all entries within a study in the
Experimental Phase trials to eliminate an additional source of variation
on the arthropod abundance. However, in the Pilot Phase trials, insect
and weed control practices were conducted according to each materi-
al’s phenotype, that is, the insect-protected and glyphosate-tolerant
hybrids MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 ×
MON-ØØ6Ø3-6 GM did not require conventional insecticide applica-
tions for target lepidopteran insect pests, but MON-ØØ6Ø3-6
(glyphosate-tolerant only) and the conventional hybrid required two to
four applications of conventional insecticides to control lepidopteran
pests across most sites (Data S1). Weed control was also different be-
tween the GM hybrids (all glyphosate-tolerant) and the conventional
control hybrid. Across all sites, one or two over-the-top applications
of Faena Fuerte® with Transorb®1 (540 g a.i. L-1), a glyphosate-containing
herbicide, were made on the three GM hybrids at rates of 2 to 4 L/ha.
Weed control for the conventional control was mechanical (cultivator
or manual) and/or by applications of selective herbicides.

1 Registered trademark of Monsanto Technology LLC. Equivalent to Roundup Ultra®.
TABLE 1 Collection method and number of collections from field trials evaluating non-target arthropod abundance on MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, MON-ØØ6Ø3-6, and the conventional control conducted during 2009-2013 in northern Mexico

Ecoregion	State	Study type	Year	Site	Planting date	Soil texture	Plot size (m²)	Collection method and Number of collections
10.2.2.8	Sonora	Experimental	2009	LO	30 Oct., 09	Clay	100.8/11.2 × 9/4	Pitfall(8), Sticky (8), Visual (3)
				MF	2 Nov., 09	Silty clay	100.8/11.2 × 9/4	Pitfall(6), Sticky (6), Visual (3)
				MG	31 Oct., 09	Clay	100.8/11.2 × 9/4	Pitfall(7), Sticky (7), Visual (3)
		Experimental	2011	BASO	19 Mar., 11	Clay loam	200.0/8 × 25/3	Sticky (6)
				SOCO	5 Mar., 11	Clay	288.0/9.6 × 30/3	Sticky (7)
	Pilot e	2012		SON_02	23 Oct., 12	Clay	2160.0/18 × 120/4	Pitfall(4), Sticky (5), Visual (3)
				SON_10	-	-	-/-/-/-/-	Pitfall(2), Sticky (2)
				SON_12	12 Oct., 12	Clay loam	2772.0/18.48 × 150/4	Pitfall(3), Sticky (4), Visual (1)
14.3.1.2	Sinaloa	Experimental	2009	LF	8-9 Nov., 09	Clay	105.0/10.5 × 10/4	Pitfall(7), Sticky (7), Visual (3)
				SM	9-10 Nov., 09	Clay	105.0/10.5 × 10/4	Pitfall(7), Sticky (7), Visual (3)
		Experimental	2011	SILM	16 Feb., 11	Clay	128.0/6.4 × 20/3	Sticky (7)
				SIPE	1 Mar., 11	Clay	128.0/6.4 × 20/3	Sticky (7)
	Pilot e	2012		SIVJ	25 Mar., 12	Clay	720.9/8 × 8/3	Pitfall(5), Sticky (5), Visual (3)
				SIAG	11 Feb., 12	Clay	1020.6/170/3	Pitfall(6), Sticky (6)
	Pilot e	2012		SICL	27 Jan., 12	Clay loam	990.0/18 × 55/3	Pitfall(7), Sticky (7)
				SIGU	4 Feb., 12	Clay	540.0/18 × 30/3	Pitfall(6), Sticky (6)
	Pilot e	2012-2013		SIN_72	12 Dec., 12	Clay	1641.6/27.36 × 60/3	Pitfall(7), Sticky (7)
				SIN_77	14 Jan., 13	Clay	1800.0/12 × 150/2	Pitfall(7), Sticky (7)
9.5.1.2	Tamaulipas	Experimental	2010	TAHU	2 Feb., 10	Clay	114.8/11.48 × 10/4	Pitfall(5), Sticky (5), Visual (3)
				TAVA	14 Feb., 10	Clay	114.8/11.48 × 10/4	Pitfall(5), Sticky (5), Visual (3)
		Experimental	2012	TAVH1	18 Mar., 12	Silty clay	384.0/9.6 × 40/3	Pitfall(5), Sticky (5), Visual (3)
				TAVH2	19 Mar., 12	Sandy silt	384.0/9.6 × 40/3	Pitfall(5), Sticky (5), Visual (3)
	Pilot e	2013		TAMPS_15	5 Feb., 13	Sandy clay loam	3888.0/25.92 × 150/4	Pitfall(6), Sticky (6), Visual (3)
				TAMPS_21	4 Feb., 13	Sandy loam	2592.0/25.92 × 100/4	Pitfall(6), Sticky (6), Visual (3)

(Continues)
TABLE 1 (Continued)

Ecoregion^a	State	Study type^b	Year	Site^c	Planting date	Soil texture	Plot size^d(m²)/dimensions/Number of replicates	Collection method and (Number of collections)
10.2.4.1	Chihuahua and La laguna (Coahuila and Durango)	Experimental	2011	CHIH1	7 Jul., 11	Sandy clay loam	110.4/11.04 × 10/4	Pitfall (4), Sticky (5), Visual (3)
				CHIH2	9 Jul., 11	Sandy loam	97.2/9.72 × 10/4	Pitfall (4), Sticky (5), Visual (3)
				LALA1	21 Jul., 11	Sandy clay loam	90.0/9 × 10/4	Pitfall (4), Sticky (7)
Pilot^e			2012	LALA2	23 Jul., 11	Sandy clay loam	90.0/9 × 10/4	Pitfall (4), Sticky (7)
				CHIH, 3	7 Aug., 12	Sandy loam	1152.0/14.4 × 80/3	Pitfall (5), Sticky (5), Visual (2)
				CHIH_18	2 Aug., 12	Sandy clay loam	1456.0/14.56 × 100/3	Pitfall (4), Sticky (4), Visual (2)
				LAG, 09	10 Aug., 12	Silty clay	1657.5/19.5 × 85/3	Pitfall (4), Sticky (5)
				LAG, 12	11 Aug., 12	Sandy clay loam	398.7/9 × 44.3/3	Pitfall (4), Sticky (5)

^aEcoregion as described by the National Commission for Biodiversity (CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad), 2009; INEGI-CONABIO-INE (Instituto Nacional de Estadística, Geografía e Informática–Comisión Nacional para el Conocimiento y Uso de la Biodiversidad-Instituto Nacional de Ecología), 2008). 14.3.1.2=Coastal plain of Sinaloa; 10.2.2.8=Floodplain of the rivers Yaqui, Mayo and Fuerte; 9.5.1.2=Coastal plain Tamaulipan; 10.2.4.1=Central plains of Chihuahuan Desert.

^bThe studies were defined as experimental or pilot. These are the steps required by Mexican Regulators to obtain de-regulation of a GM trait. Total experimental area sizes varied across study types and years and ranged from 0.23 ha for experimental to 5 ha in size for pilot trials.

^cSite was designated by combining the first letters of the state where the trials were conducted or the first two letters of the name of the owner of the land and the number of the trial in each particular site.

^d§ n = 3 or 4 replications for each material at each site.

^eOnly MON-ØØ6Ø3-6 and control hybrids were treated with insecticide to control Lepidopteran pests. All arthropod observations or collections (sticky trap and pitfall deployment) were separated from insecticide application by a minimum of 10 days.
2.4 Experimental design and data collection

Genetically modified maize hybrids MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6 and a corresponding conventional isohybrid control were planted in each of 32 studies (18 Experimental Phase, 14 Pilot Phase) in a randomized complete block design (RCBD) with three to four replications and up to four locations per ecoregion per year (Table 1). Individual plot sizes ranged from 100.0 m2 to 384.0 m2 (Experimental Phase) and 398.7 m2 to 4128 m2 (Pilot Phase) (Table 1). In all cases, NTA data were collected from the central area of each plot. NTA abundance was assessed on all plots from collections performed at different times at each site using yellow sticky traps (Pherocon AM, no-bait sticky traps; Great Lakes Integrated Pest Management, Vestaburg, MI), pitfall traps and/or visual counts (Table 1). NTA abundance was assessed from collections performed from two up to eight times using yellow sticky traps and pitfall traps and one up to three times based on visual counts during the growing season at each site. The yellow sticky traps (2-4 per plot) were deployed every other week starting at approximately V7-V8 growth stages through reproductive growth stage or R3-R5 in each plot. The sticky traps were placed in row at the approximate mid-point between the ground level and the top of the plant canopy. Once the main ear was visible, the sticky traps were deployed at the approximate maize ear level for the remainder of the arthropod collections. Each sticky trap was collected and taken to the laboratory for identification and enumeration of NTAs. Pitfall traps (2-3 per plot) consisted of two uncovered plastic cups, filled with soapy water and placed in the ground between two adjacent rows at approximately V4 growth stages through R3-R5 within each plot. Twenty-four to forty-eight hours later, the pitfalls traps were collected and taken to the laboratory for identification and enumeration. Visual counts for arthropod abundance were made by examining the stalk, leaf blade, leaf collar, ear tip, silk and tassel of each plant (ten random plants/plot). Visual observations were conducted during the growing season at approximately V18-VT, R1 and R2 growth stages of development. NTA abundance was assessed from collections performed up to eight times using sticky traps and pitfall traps and three times based on visual counts during the growing season at each site. The majority taxa were identified to the genus level; however, some were not identified beyond the family or order level as each of these was treated as a functional group for analysis. This focused method of taxa selection is intended to present clear results from representative taxa of recognized importance and/or taxa that are directly or indirectly exposed to the proteins expressed in GM maize.
TABLE 2 Abundance of arthropods\(^a\) (Mean/plot) associated with MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, MON-ØØ6Ø3-6, expressing Cry1A.105, Cry2Ab2, Cry3Bb1 and EPSPS, and the conventional control in field trials across ecoregions.

Order: Family: Genus	Ecoregions\(^c\)	Number of Sites	MON 89Ø34-3 × MON-88Ø17-3	Control	MON-89Ø34-3 × MON-ØØ6Ø3-6	Control	MON-ØØ6Ø3-6	Control
Ground dwelling arthropods (pitfall traps)								
Acari	CH, SIN, TAM	6	3.9 (0.5)	4.6 (0.4)	4.6 (0.8)	5.5 (0.5)	4.2 (0.3)	4.7 (0.4)
Araneae	CH, SIN, TAM, SON	15	2.2 (0.2)	2.6 (0.4)	1.8 (0.2)	2.3 (0.4)	2.3 (0.2)	2.7 (0.4)
Coleoptera								
Carabidae	CH, SIN, SON	10	2.0 (0.2)*	2.8 (0.2)	2.3 (0.2)	2.6 (0.2)	2.8 (0.2)	2.7 (0.2)
Staphylinidae	CH, SIN, TAM	11	12.1 (1.4)	10.9 (1.4)	10.1 (0.9)	11.3 (1.6)	10.5 (1.0)	11.0 (1.4)
Collembola	CH, SIN, TAM, SON	28	113.8 (7.4)	127.7 (6.6)	135.4 (13.5)	133.8 (10.1)	109.7 (8.9)	142.5 (10.3)
Dermaptera								
Forficulidae	SIN, TAM, SON	5	13.0 (1.4)	15.8 (1.3)	15.7 (0.7)	16.3 (1.5)	14.8 (2.6)	17.3 (1.5)
Orthoptera								
Gryllidae	CH, SIN	7	4.6 (0.4)	4.4 (0.2)	3.5 (0.3)	3.3 (0.2)	4.1 (0.3)	4.4 (0.2)
Canopy dwelling arthropods (sticky traps)								
Coleoptera								
Chrysomelidae								
Chaetocnema spp.	CH, SIN, TAM, SON	19	46.9 (1.9)*	51.3 (2.9)	60.8 (2.7)	60.5 (4.1)	56.8 (2.8)	55.0 (3.5)
Diabrotica spp.	CH, SIN, TAM, SON	12	4.1 (0.3)	4.1 (0.3)	4.5 (0.3)	3.9 (0.2)	4.0 (0.2)	
Coccinellidae	CH, SIN, TAM, SON	22	6.7 (0.2)	7.0 (0.3)	2.9 (0.1)	2.9 (0.2)	7.2 (0.2)	7.5 (0.3)
Diptera								
Otitidae								
Euxesta spp.	CH, SIN, TAM, SON	25	47.7 (1.8)*	56.6 (1.8)	53.1 (2.0)	61.7 (2.2)	62.6 (2.3)	61.3 (1.9)
Syrphidae	CH, TAM, SON	6	22.4 (1.4)	30.9 (2.2)	44.9 (2.6)	46.5 (2.7)	37.2 (3.2)	34.0 (2.2)
Tachinidae	CH, SIN	10	5.4 (0.3)	5.9 (0.4)	6.4 (0.6)	6.5 (0.5)	6.8 (0.5)	5.7 (0.4)
Hemiptera								
Anthocoridae								
Orius spp.	CH, SIN, TAM, SON	23	6.5 (0.3)	6.4 (0.3)	4.7 (0.2)	4.8 (0.3)	6.9 (0.3)	6.6 (0.3)
Aphididae	CH, SIN, TAM, SON	12	10.1 (0.9)	9.3 (0.8)	9.2 (1.0)	8.7 (0.9)	10.9 (0.6)	10.2 (0.8)
Cicadellidae								
Dalbulus spp.	CH, SIN, TAM, SON	24	113.8 (6.5)	124.6 (4.7)	118.4 (5.0)	106.3 (7.3)	112.9 (4.9)	101.5 (5.8)
Miridae	CH, SIN, SON	7	2.8 (0.2)	3.0 (0.2)	1.6 (0.1)	2.1 (0.2)	2.9 (0.2)	2.8 (0.2)

(Continues)
TABLE 2 (Continued)

Order: Family: Genus	Ecoregions	Number of Sites	MON 89Ø34-3 x MON-88Ø17-3 Control	MON-89Ø34-3 x MON-ØØØØ-6 Control	MON-ØØØØ-6 Control
Hymenoptera					
Parasitic wasp	CH, SIN, SON	23	13.2 (0.9)*	18.2 (1.2)	9.2 (1.0)*
Neuroptera					
Chrysopidae					
Chrysopa spp.	CH, SIN, SON	15	4.9 (0.2)	5.0 (0.2)	3.3 (0.2)
Thysanoptera					
Thripidae	CH, SIN, TAM, SON	18	278.4 (12.5)	277.9 (9.9)	143.1 (7.0)
Canopy dwelling arthropods (visual counts)					
Coleoptera					
Chrysomelidae					
Chaetocnema spp.	CH, TAM	6	12.4 (1.1)	14.2 (1.2)	14.3 (0.7)
Coccinellidae	SIN, TAM, SON	6	2.0 (0.2)	1.9 (0.2)	2.2 (0.2)
Hemiptera					
Anthocoridae					
Orius spp.	CH, SIN, SON	8	20.3 (0.8)	19.4 (1.6)	18.3 (1.4)
Cicadellidae					
Dalbulus spp.	CH, SON	8	19.0 (1.9)	18.4 (1.3)	20.7 (1.6)
Neuroptera					
Chrysopidae					
Chrysopa spp.	CH, SIN, TAM, SON	9	2.2 (0.1)	2.0 (0.2)	2.0 (0.2)

*Indicates significant difference between GM maize hybrid and its conventional isogenic control (p < .05).
Arthropods observed that were most abundant and occurred in at least two of the four ecoregions and in at least five sites across regions.
SE is standard error.
Ecoregions are as follows: CH=Chihuahua, Coahuila and Durango, ecoregion 10.2.4.1; SIN=Sinaloa, ecoregion 14.3.1.2; SON=Sonora, ecoregion 10.2.2.8; TAM=Tamaulipas, ecoregion 9.5.1.2.
2.5 | Statistical analysis

2.5.1 | Non-target arthropod abundance

The primary focus of the study was on the effects of GM maize hybrids MON-89034-3 x MON-88017-3, MON-89034-3 x MON-ØØ6Ø3-6 and MON-ØØ6Ø3-6 and a corresponding conventional control on the mean count of each arthropod taxon during the entire season in each region (Data S2). For an appropriate comparison between the GM and the control maize hybrids, the following two-part inclusion criteria were applied before fitting the statistical model to the data and making the comparisons. First, a site inclusion criterion was applied for each site where a mean count of ≥ 1 per plot across all collection times, all material, and all replicates was required for each site to be included in the analysis. Secondly, a taxa inclusion criterion was applied justifying an across-site analysis, that is, presence at ≥ 5 sites from at least two regions (Comas, Lumbierres, Pons, & Albajes, 2014). Data combinations with counts below these criteria were excluded from significance testing but summarized in Table S2.

The differential insecticide regime used between GM and control plots in Pilot studies may have impacted arthropod abundance differently. An interaction term with insecticide regime was added to the model to determine whether there were any significant effects of insecticides on abundance within a site. Only two of 93 comparisons demonstrated significant interaction. Therefore, data were combined across sites for a combined-site analysis.

The following model was used in a combined-site analysis:

\[
\begin{align*}
 y_{ijkm} &= \mu + R_i + S_{ij} + B_{ij(k)} + M_j + (RM)_{ij} + C_{m(ij)} + (SM)_{ijkl} \\
 &+ (MC)_{kn(ij)} + e_{iklm}
\end{align*}
\]

where \(y_{iklm}\) = square root of the observed arthropod count; \(\mu\) = overall mean; \(R_i\) = fixed region effect; \(S_{ij}\) = random site effect within region; \(B_{ij(k)}\) = random replicate effect within each site; \(M_j\) = fixed GM treatment effect; \((RM)_{ij}\) = fixed interaction effect of region and GM treatment; \(C_{m(ij)}\) = random collection time effect within each site; \((SM)_{ijkl}\) = random interaction effect of GM treatment and collection time; and \((MC)_{kn(ij)}\) = random residual effect. A square root transformation was applied to account for variance in the data prior to analysis to achieve approximate normality and variance homogeneity. The transformed data were analysed with a mixed linear model. SAS procedures (PROC MIXED) were used for computation of the model parameters and statistics for each taxon sampled by each of the three collection methods (Demidenko, 2004; Littell, Henry, & Ammerman, 1998; SAS Institute, 2002 – 2012). The GM treatment effect (insect protection, herbicide tolerance or a stacked combination) was tested across multiple sites. Due to differences in the number of the GM and control hybrids across sites, the analysis was conducted for each paired comparison separately, using only the GM hybrid and the corresponding control data from the available sites. In all analyses, a Type I (α) significance level of 5% was used to test the two-sided null hypothesis.

2.5.2 | Statistical power

A 50% detectable difference in the abundance of a taxonomic group was used to assess the statistical power (Blumel et al., 2000; Perry, Rothery, Clark, Heard, & Hawes, 2003). Methods similar to Duan et al. (2006) were used with additional random effect terms in model (1). Let \(x_1\) and \(x_2\) represent the observed insect count, and \(\mu_{x1}\) and \(\mu_{x2}\) represent the expected mean counts for the control and the test lines, respectively. Then detectable difference \(d_{\text{y}}\) relative to the control implies \(d_{\text{y}} = \mu_{x1} - \mu_{x2} = 0.5\mu_{x1}\) when \(\mu_{x1} > \mu_{x2}\) or \(d_{\text{y}} = -0.5\mu_{x1}\) when \(\mu_{x1} < \mu_{x2}\). If \(y\) is the square root of \(x\), the corresponding difference in \(y\), that is \(d_{\text{y}}\), can be obtained from the following equations:

\[
\begin{align*}
 d_{\text{y}} = \mu_{x1} - 0.5 \sqrt{4\mu_{x1}^2 - 2 \left(\mu_{x1}^2 + \sigma_y^2\right)} & \quad \text{for } d_{\text{y}} > 0 \\
 d_{\text{y}} = \mu_{x1} - 0.5 \sqrt{4\mu_{x1}^2 - 2 \left(\mu_{x1}^2 + \sigma_y^2\right)} & \quad \text{for } d_{\text{y}} < 0
\end{align*}
\]

where \(\mu_{x1}\) and \(\sigma_y^2\) are the control mean and the total variance of all random effects in model (1) in square root scale. The power calculation used \(d_{\text{y}} = min(d_{\text{y1}}, d_{\text{y2}})\), where min represents the minimum of the two quantities in parenthesis.

Next, a two-sample \(t\) test with a significance level of \(\alpha\) was used for a detectable difference \(d_{\text{y}}\). The calculation substituted the parameters in the power calculation with the corresponding estimates from the combined-site analysis using model (1). A customized SAS program was used for the estimation of different statistical parameters and the subsequent calculations of the power.

3 | RESULTS

The interaction of region with maize hybrids was only observed for 4.49% of the total comparisons (\(p < .05\)). This is within the nominal error rate of 5% and indicates that arthropod response to GM and non-GM hybrids was similar across regions. The “regional” differences were influenced by differences in categorization of arthropod taxa across researchers, year-to-year fluctuations of arthropod populations, as well as fluctuations in arthropod abundance that would be expected across regions. Overall, a high degree of similarity of taxa across regions was observed especially for the most abundant taxa representing the ecological functions of herbivores, predators and parasitoids in maize fields (Table 2 and Table S3).

Across all ecoregions, twenty invertebrate taxa (comprising 11 taxonomic orders and 17 families) were relevant and sufficiently abundant to evaluate the effects of GM maize on NTAs (Table 2). The ground-dwelling NTAs collected in pitfall traps primarily belonged to seven different taxa: soil mites (Acaril), spiders (Araneae), predatory ground beetles (Coleoptera: Carabidae), rove beetles (Coleoptera: Staphylinidae), springtails (Collembola), predatory earwigs (Dermaptera: Forficulidae) and field crickets (Orthoptera: Gryllidae). The foliage-dwelling NTAs collected in sticky traps and
visual counts primarily belonged to 13 different taxa: ladybird beetles (Coleoptera: Coccinellidae); corn flea beetles, *Chaetocnema* spp. (Coleoptera: Chrysomelidae); rootworm beetles, *Diabrotica* spp. (Coleoptera: Chrysomelidae); cornsilk flies, *Euxesta* spp. (Diptera: Otitidae); syrphid flies (Diptera: Syrphidae); tachinid flies (Diptera: Tachinidae); minute pirate bugs, *Orius* spp. (Hemiptera: Anthocoridae); aphids (Hemiptera: Aphididae); leafhoppers, *Dalbulus* spp. (Hemiptera: Cicadellidae); plant bugs (Hemiptera: Miridae); parasitic wasps (Hymenoptera); lacewings, *Chrysoperla* spp. (Neuroptera: Chrysopidae); thrips (Thysanoptera: Thripidae). Additionally, these taxa were widely distributed across the ecoregions, with majority of the important herbivorous, predatory and parasitic taxa occurring in at least three of the four ecoregions (Table 2 and Table S3).

The statistical power analysis conducted on these widely distributed taxa demonstrated that the majority of the taxa (19 of 20) had higher than 80% power to detect a 50% difference in arthropod abundance (Table S4). Therefore, given the scale and intensity of the sampling, any significant impacts of GM maize on populations of widely distributed taxa across ecoregions should have been detectable within this study.

Across all GM maize hybrids, no significant differences in NTA abundance were detected for 69 (93.2%) of the 74 statistical comparisons (Table 2). Of the 20 taxa individually analysed, a total of five significant differences were detected with only four taxa, consisting of two pest arthropods (*Chaetocnema* spp. and *Euxesta* spp.) and two beneficial arthropods (*Carabidae* and parasitic wasps). Fewer *Chaetocnema* spp. (*F*1.122 = 13.12, *p* = .0004) and *Euxesta* spp. (*F*1.173 = 19.07, *p* = .0004) were detected for MON-89Ø34-3 × MON-88Ø17-3 compared to the control.

Fewer *Carabidae* were observed for MON-89Ø34-3 × MON-88Ø17-3 compared with the control (*F*1.272 = 6.18, *p* = .0193). Fewer parasitic wasps were also detected for MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 compared with their respective conventional controls (*F*1.297 = 6.68, *p* = .0149 and *F*1.193 = 7.46, *p* = .0129, respectively).

4 | DISCUSSION

Each GM crop undergoes a scientifically sound ERA prior to commercialization to assess for potential ecological impact of the introduced trait(s) with the purpose of demonstrating the GM crop is "as-safe-as" non-GM comparators. To date, across commercialized GM crops and their respective inserted genes (e.g., *Bt* genes, *cp4 epsps* gene), no evidence of unacceptable risks to the environment has been documented which is aligned with extensive commercial experience with these GM crops worldwide (Pilaciniski et al., 2011; Weber et al., 2012). Despite the history of safe use, rapid adoption of GM crops in several geographies, and the fact that risk assessors and regulators have access to environmental assessment data generated on the crop and trait in other geographies, extensive local field evaluations are still required prior to making informed decisions on the cultivation approval of GM crops in Mexico.
of MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6 and MON-ØØ6Ø3-6 for cultivation.

Our results agree with prior published literature that demonstrate the absence of adverse effects on NTA independently for Cry1A.105 + Cry2Ab2 (Hendriksma, Härtel, & Steffan-Dewenter, 2011; Rosca & Cagan, 2013; Schuppener, Mühlhauser, Müller, & Rauschen, 2012; Whitehouse et al., 2005), Cry3Bb1 (Ahmad, Wilde, Whitworth, & Zolnerowich, 2006; Ahmad, Wilde, & Zhu, 2005; Al-Deeb & Wilde, 2003; Bhatti et al., 2005a, b; Comas et al., 2014; Rosca, 2004; Schier, 2006). Additionally, these studies confirm findings of no adverse effects on NTA when dual modes of insecticide action, or insecticide and herbicide-tolerant traits are combined through conventional breeding (Comas et al., 2014; Devos et al., 2012; ILSI-CERA 2014; Lundgren & Wiedenmann, 2002) and CP4 EPSPS (Comas et al., 2014; ILSI-CERA 2010; Reyes, 2005; Rosca, 2004; Schier, 2006). Additionally, these studies confirm the absence of adverse effects on NTA in the absence of a plausible hypothesis for an interaction between trait and environment that would increase adverse environmental impact, data are transportable regardless of differences in climate or production practices. The need to consider the similarity of climatic conditions or agronomic practices to enable transportability, as the conceptual framework by García-Alonso et al. (2014) proposes would only be relevant in cases of specific risk hypotheses in the environment to which the conclusions will be transported.

In summary, the results of this study indicate that the abundance of non-target arthropods was not adversely affected by the single or stacked insect-protected and herbicide-tolerant GM maize hybrids relative to conventional controls. Additionally, the similarity of key non-target taxa across ecoregions indicates that repetitive field studies across ecoregions and agricultural ecosystems are not testing novel scenarios. Therefore, the current number of field sites across different ecoregions required to evaluate potential environmental impacts of GM maize hybrids may not provide additional relevant information in an environmental risk assessment in Mexico. Several of the key non-target taxa here have also been found in other world areas where similar environmental risk assessments have been conducted, providing further justification for transportability of field non-target arthropod data on maize with these same traits from one geography (country) to another for the environmental risk assessment.

ACKNOWLEDGEMENTS

The authors are grateful to: Crescencio B. Celestino, Ricardo Quíñones, Jose Ma. Fierro, Ignacio Bañales and Horacio Galáz, Diego Ceballos Montoya and Luis Castañón Nájera, for field trial implementation; Fabián Avendaño Meza and Rubén Ramírez Olivar, for laboratory support; Javier Gándara, Giovani Medina and Cesar A. Espinosa, for their support towards enabling field trials; Eduardo Pérez Pico and Philip J. Eppard, for their support.

AUTHOR CONTRIBUTION

Conceptualization: AA, CRB, OHD, JMM, BMM. Formal analysis: CJ. Investigation: JLCM, JLMC, MBOM, HADP, JAE, FJQ, JAGT, LCE,
REFERENCES

Ahmad, A., Negri, I., Oliveira, W., Brown, C., Asiiwwe, P., Sammons, B., ... Carson, D. (2016). Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Research, 25, 1–17. https://doi.org/10.1007/s11248-015-9907-3

Ahmad, A., Wilde, G. E., Whitworth, R. J., & Zolnerowich, G. (2006). Effect of corn hybrids expressing the coleopteran-specific Cry3Bb1 protein for corn rootworm control on aboveground insect predators. Journal of Economic Entomology, 99, 1085–1095. https://doi.org/10.1093/jee/99.4.1085

Ahmad, A., Wilde, G. E., & Zhu, K. Y. (2005). Detectability of coleopteran-specific Cry3Bb1 protein in soil and its effect on non-target surface and belowground arthropods. Environmental Entomology, 34, 385–394. https://doi.org/10.1603/0046-225X-34.2.385

Albajes, R., Lumbierres, B., Pons, X., & Comas, C. (2013). Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bulletin of Entomological Research, 103, 724–733. https://doi.org/10.1017/S0007485313000473

Ai-Deeb, M. A., & Wilde, G. E. (2003). Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground non-target arthropods. Environmental Entomology, 32, 1164–1170. https://doi.org/10.1603/0046-225X-32.5.1164

Bhatti, M. A., Duan, J., Head, G., Jiang, C., Mckee, M. J., Nickson, T. E., ... Pilcher, C. D. (2005a). Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on ground dwelling invertebrates. Environmental Entomology, 34, 1325–1335. https://doi.org/10.1093/ee/34.5.1325

Bhatti, M. A., Duan, J., Head, G., Jiang, C., Mckee, M. J., Nickson, T. E., ... Pilcher, C. D. (2005b). Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliar dwelling arthropods. Environmental Entomology, 34, 1336–1345. https://doi.org/10.1093/ee/34.5.1336

Blanco, C. A., Pellegaud, G., Nava-Camberos, U., Lugo-Barrera, D., Vega-Aquino, P., Coello, J., ... Vargas-Campil, J. (2014). Maize pests in Mexico and challenges for the adoption of integrated pest management programs. Journal of Integrated Pest Management, 5(4), E1–E9. https://doi.org/10.1603/IPM14006

Blumel, S., Aldershof, S., Bakker, F. M., Baier, F., Boller, E., Brown, K., ... Vogt, H. (2000). Guidance document to detect side effects of plant protection products on predatory mites (Acari: Phytoseiidae) under field conditions: Vineyards and orchards. guidelines to evaluate side-effects of plant protection products to non-target arthropods. In M. P. Candolfi, S. Blumel, R. Forster, F. M. Bakker, C. Grimm, S. A. Hassan, U. Heimbach, M. A. Head Briggs, B. Raber, R. Schmuck, & H. Vogt (Eds.), Guidelines to evaluate side-effects of plant protection products to non-target arthropods IOBC, BART and EPPO joint initiative (pp. 145–153), Gent, Belgium: IOBC/WPRS.

Brookes, G., & Barfoot, P. (2011). The income and production effects of biotech crops globally 1996-2009. International Journal of Biotechnology, 12, 1–49. https://doi.org/10.1504/IJB.2011.042680

Chen, M., Zhao, J. Z., Collins, H. L., Earle, E. D., Cao, J., & Shelton, A. M. (2008). A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One, 3(5), e2284. https://doi.org/10.1371/journal.pone.0002284

Comas, J., Lumbierres, B., Pons, X., & Albajes, R. (2013). Ex-Ante determination of the capacity of field tests to detect effects of genetically modified corn on non-target arthropods. Journal of Economic Entomology, 106(4), 1659–1668. https://doi.org/10.1603/EC12508

Comas, C., Lumbierres, B., Pons, X., & Albajes, R. (2014). No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: A meta-analysis of 26 arthropod taxa. Transgenic Research, 23(1), 135–143. https://doi.org/10.1007/s11248-013-9737-0

Comas, J., Lumbierres, B., Pons, X., & Albajes, R. (2015). Optimizing the capacity of field trials to detect the effect of genetically modified maize on non-target organisms through longitudinal sampling. Annals of Applied Biology, 166, 183–195. https://doi.org/10.1111/aab.12164

CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad). (2009). What is a mega-diverse country? [WWW document]. Retrieved from http://www.biodiversidad.gob.mx/v_ingles/country/whatismegadiversecountry.html. Accessed 12 May 2016.

CropLife International (CLI). (2016). Performance criteria for evaluating regulatory systems that oversee approvals of biotechnology-derived or genetically modified crops. CropLife International. Retrieved from http://croplife.org/wp-content/uploads/2017/01/CLI-Performance-Criteria-for-GMO-Regulatory-Systems-FINAL.pdf?

Demidenko, E. (2004). Mixed models: Theory and application (pp. 704). Hoboken, NJ: John Wiley and Sons Inc. https://doi.org/10.1002/0471728438

Devos, Y., De Schrijver, A., De Clercq, P., Kiss, J., & Romeis, J. (2012). Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Research, 21(6), 1191–1214. https://doi.org/10.1007/s11248-012-9617-z

DOF (Diario Oficial de la Federación). (2005). Ley de Bioseguridad de Organismos Genéticamente Modificados. Mexico. [WWW document]. Retrieved from http://www.diputados.gob.mx/LeyesBiblio/pdf/LBQGM.pdf. Accessed 11 May 2016.

DOF (Diario Oficial de la Federación). (2008). Reglamento de la Ley de Bioseguridad de Organismos Genéticamente Modificados. [WWW document]. Retrieved from http://www.diputados.gob.mx/LeyesBiblio/regley/Reg_LBOGM.pdf. Accessed 11 May 2016.

Duan, J. J., Lundgren, J. G., Naranjo, S., & Marvier, M. (2010). Extrapolating non-target risk of Bt crops from laboratory to field. Biology Letter, 6, 74–77. https://doi.org/10.1098/rsbl.2009.0612

Duan, J. J., Paradise, M. S., Lundgren, J. G., Bookout, J. T., Jiang, C., & Wiedenmann, R. N. (2006). Assessing non-target impacts of Bt corn resistant to corn rootworms: Tier-1 testing with larvae of Poecilus chloritics (Coleoptera: Carabidae). Environmental Entomology, 35, 135–142. https://doi.org/10.1603/0046-225x-35.1.135

Ellsburry, M. M., Powell, J. E., Forcella, F., Woodson, W. D., Clay, S. A., & Riedell, W. E. (1998). Diversity and dominant species of ground beetle assemblages (Coleoptera: Carabidae) in crop rotation and chemical input systems for the Northern Great Plains. Annals of the Entomological Society of America, 91, 19–62.

Garcia-Alonso, M., Hendley, P., Bigler, F., Mayeregger, E., Parker, R., Rubinstein, C., ... McLean, M. A. (2014). Transportability of confined field trial data for environmental risk assessment of genetically engineered plants: A conceptual framework. Transgenic Research, 23(6), 1025–1041. https://doi.org/10.1007/s11248-014-9785-0

Goyal, G., Nuessly, G. S., Seal, R. D., Steck, G. J., Capineru, J. L., & Meagher, R. L. (2012). Examination of the pest status of corn infesting Ulidiidae (Diptera). Environmental Entomology, 41, 1131–1138. https://doi.org/10.1603/EN11265

Hendriksma, H. P., Härtsel, S., & Steffan-Dewenter, I. (2011). Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared...
honey bee larvae. *PLoS One*, 6(12), e28174. https://doi.org/10.1371/journal.pone.0028174

Heredia-Diaz, O., Aldaba-Meza, J. L., Baltazar, B. M., Bojorgez, G. B., Espinoza, L. C., Corrales Madrid, J. L., ... Zavala Garcia, F. (2017). Plant characterization of genetically modified maize hybrids MON-89034-3 × MON-88017-3, MON-89034-3 × MON-00603-6, and MON-00603-6: alternatives for maize production in Mexico. *Transgenic Research*, 26, 135–151. https://doi.org/10.1007/s11248-016-9991-z

Horak, M. J., Rosenbaum, E. W., Kendrick, D. L., Sammons, B., Phillips, S. L., Nickson, T. E., ... Perez, T. (2015). Plant characterization of Roundup Ready 2 Yield® soybean, MON 89788, for use in ecological risk assessment. *Transgenic Research*, 24, 213–225. https://doi.org/10.1007/s11248-014-9839-3

ILSI-CERA (2010). *A review of the environmental safety of the CP4 EPSPS protein*. International Life Sciences Institute, Center for Environmental Risk Assessment, Washington.

ILSI-CERA (2014). *A review of the environmental safety of the Cry3Bb1 protein*. International Life Sciences Institute, Center for Environmental Risk Assessment, Washington.

INEGI. (2012). *División política estatal 1:250000. escala: 1:250000. edición: 5*. Instituto Nacional de Estadística y Geografía (INEGI). Aguscalientes, Ags., Mexico. Accessed 8 April 2014.

INEGI-CONABIO-INE (Instituto Nacional de Estadística, Geografía e Informática–Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Instituto Nacional de Ecología). (2008). ‘*Ecoregiones Terrestres de México*. Escala 1:1000000. México. [WWW document]. Retrieved from http://www.conabio.gob.mx/informacion/metadata/gis/ecort08gw.xml?_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no. Accessed 11 May 2016.

James, C. (2016). *Global status of commercialized biotech/GM crops: 2016*. Brief 52, The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, New York.

Knecht, S., Romeis, J., Malone, L. A., Candolfi, M. P., Garcia-Alonso, M., Habuštová, O., ... Bigler, F. (2010). A faunistic database as a tool for identification and selection of potential non-target arthropod species for regulatory risk assessment of GM maize. *IOBC/WPRS Bulletin*, 52, 65–69.

Leslie, T. W., Biddinger, D. J., Mullin, C. A., & Fleischer, S. J. (2009). Carabidae population dynamics and temporal partitioning: Response to coupled neonicotinoid-transgenic technologies in maize. *Environmental Entomology*, 38, 935–943. https://doi.org/10.1603/022.038.0348

Li, Y., & Romeis, J. (2009). Bt maize expressing Cry3Bb1 does not harm the spider mite, *Tetranychus urticae*, or its ladybird beetle predator, *Stethorus punctillum*. *Biological Control*, 53, 337–344. https://doi.org/10.1016/j.biocontrol.2009.12.003

Li, Y., & Romeis, J. (2011). Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of *Adalia bipunctata* (Coleoptera: Coccinellidae): The importance of study design. *Transgenic Research*, 20, 467–479.

Littell, R. C., Henry, P. R., & Ammerman, R. B. (1998). Statistical analysis of repeated measures data using SAS procedures. *Journal of Animal Science*, 76, 1216–1231. https://doi.org/10.2527/1998.7641216x

Liu, Q., Romeis, J., Huillin, Y., Yongjun, Z., Yunhe, L., & Yufa, P. (2015). Bt rice does not disrupt the host searching behavior of the parasitoid *Cotesia chilonis*. *Nature/Scientific Reports*, 5, 15295. https://doi.org/10.1038/srep15295

Lundgren, J. G., & Wiedenmann, R. N. (2002). Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a nontarget species, *Coleomegilla maculata* DeGeer (Coleoptera: Coccinellidae). *Environmental Entomology*, 31, 1213–1218. https://doi.org/10.1603/0046-225X-31.6.1213

Marvier, M., McCreedy, C., Regetz, J., & Kareiva, P. (2007). A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. *Science*, 316, 1475–1477. https://doi.org/10.1126/science.1139208
Romeis, J., Meissle, M., Álvarez-Alfageme, F., Bigler, F., Bohan, D. A., Devos, Y., & Rauschen, S. (2014). Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Research, 23(6), 995–1013. https://doi.org/10.1007/s11248-014-9791-2

Romeis, J., Meissle, M., & Bigler, F. (2006). Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology, 24, 63–71. https://doi.org/10.1038/nbt1180

Romeis, J., Van Driesche, R. G., Barratt, B. I. P., & Bigler, F. (2009). Insect resistant transgenic crops and biological control. In J. Romeis, A. M. Shelton, & G. G. Kennedy (Eds.), Integration of insect-resistant genetically modified crops within IPM programs (pp. 87–117). New York, NY: Springer.

Rosca, I. (2004). Impact of genetically modified herbicide resistant maize on the arthropod fauna. GMOs in Integrated Production. IOBC-WPRS Bulletin, 27, 143–146.

Rosca, I., & Cagan, L. (2013). Research on syrphid fauna from different maize hybrids. Romanian Agric Research, 30, 1222–4222.

Sarukhán, J., Koleff, P., Carabias, J., Soberón, J., Dirzo, R., Llorente-Bousquets, J., ... De la Meza, J. (2009). Capital natural de Mexico. Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico.

SAS Institute. SAS software release 9.4 (TSIM0). Copyright© 2002-2012. Cary NC: SAS Institute Inc.

Schier, A. (2006). Field study on the occurrence of ground beetles and spiders in genetically modified, herbicide tolerant corn in conventional and conservation tillage systems. Journal of Plant Disease Protection, 20, 101-113.

Schuppener, M., Mühlhause, J., Müller, A. K., & Rauschen, S. (2012). Environmental risk assessment for the small tortoiseshell Aglais urticae and a stacked Bt-maize with combined resistances against Lepidoptera and Chrysomelidae in central European agrarian landscapes. Molecular Ecology, 21(18), 4646–4662. https://doi.org/10.1111/j.1365-294X.2012.05716.x

Svobodova, Z., Shu, Y., Habustova, S. O., Romeis, J., & Meissle, M. (2017). Stacked Bt maize and arthropod predators: Exposure to insecticidal cry proteins and potential hazards. Proceedings of Royal Society B, 284, https://doi.org/10.1098/rspb.2017.0440

Turrent, F. A., Wise, T. A., & Garvey, E. (2012). Factibilidad de alcanzar el potencial productivo de maíz en Mexico. Mexican rural development research reports. Reporte 24. [WWW document]. Retrieved from http://ase.tufts.edu/gdae/pubs/wp/12-03turrentmexmaizespanspan.pdf. Accessed 11 May 2016.

U.S. Environmental Protection Agency. (2007). White paper on tier-based testing for the effects of proteinaceous insecticidal plant-incorporated protectants in non-target arthropods for regulatory risk assessments. Washington, DC: United States Environmental Protection Agency.

Vargas-Parada, L. (2014). GM maize splits Mexico. Nature, 511, 16–17. https://doi.org/10.1038/511016a

Walker, G. P., Cameron, P. J., MacDonald, F. M., Madhusudhan, V. V., & Wallace, A. R. (2007). Impacts of Bacillus thuringiensis toxins on parasitoids (Hymenoptera: Braconidae) of Spodoptera littura and Helicoverpa armigera (Lepidoptera: Noctuidae). Biological Control, 40(1), 142–151. https://doi.org/10.1016/j.biocontrol.2006.09.008

Weber, N., Halpin, C., Hannah, L. C., Jez, J. M., Kough, J., & Parrott, W. (2012). Editor’s choice: Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks, Plant Physiology, 160, 1842–1853. https://doi.org/10.1104/pp.112.204271

Whitehouse, M. E. A., Wison, L. J., & Fitt, G. P. (2005). A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environmental Entomology, 34, 1224–1241. https://doi.org/10.1093/ee/34.5.1224

Wiken, E., Jiménez Nava, F., & Griffith, G. (2011). North American Terrestrial Ecoregions - Level III. Commission for Environmental Cooperation, Montreal, Canada. [WWW document]. Retrieved from ftp://ftp.epa.gov/wed/ecoregions/pubs/NA_TerrestrialEcoregionsLevel3_Final2june11_CEC.pdf.

Wolfenbarger, L. L., Naranjo, S. E., Lundgren, J. G., Bitzer, R. J., & Watrud, L. S. (2008). Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS One, 3(5), e2118. https://doi.org/10.1371/journal.pone.0002118

Wolt, J., Keese, P., Raybould, A., Fitzpatrick, J., Burachik, M., Gray, A., ... Wu, F. (2010). Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Research, 19, 425–436. https://doi.org/10.1007/s11248-009-9321-9

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Corrales Madrid JL, Martínez Carrillo JL, Osuna Martínez MB, et al. Transportability of non-target arthropod field data for the use in environmental risk assessment of genetically modified maize in Northern Mexico. J Appl Entomol. 2018;142:525–538. https://doi.org/10.1111/jen.12499