ON THE STABLE RANK OF ALGEBRAS OF OPERATOR FIELDS OVER AN N-CUBE

PING WONG NG AND TAKAHIRO SUDO

Abstract. Let \(A \) be a unital maximal full algebra of operator fields with base space \([0, 1]^k\) and fibre algebras \(\{A_t\}_{t \in [0, 1]^k} \). We show that the stable rank of \(A \) is bounded above by the quantity \(\sup_{t \in [0, 1]^k} sr(C([0, 1]^k) \otimes A_t) \). Here the symbol “sr” means stable rank. Using the above estimate, we compute the stable ranks of the \(C^* \)-algebras of the (possibly higher rank) discrete Heisenberg groups.

1. Introduction

Rieffel [12] introduced the notion of stable rank for \(C^* \)-algebras as the noncommutative version of complex dimension of ordinary topological spaces. It turns out that the stable rank of a unital \(C^* \)-algebra is the same as its Bass stable rank (see [7]). The purpose of this paper is to study stable rank for continuous field \(C^* \)-algebras. Our main result is

Theorem 1.1. Let \(A \) be a unital maximal full algebra of operator fields with base space \([0, 1]^k\) and fibre algebras \(\{A_t\}_{t \in [0, 1]^k} \). Then the stable rank of \(A \) satisfies the following inequality:

\[
 sr(A) \leq \sup_{t \in [0, 1]^k} sr(C([0, 1]^k) \otimes A_t).
\]

One of the key ingredients of the proof of the above result is Nistor’s notion of absolute connected stable rank (see [10]). Recall that for a unital \(C^* \)-algebra \(A \), the absolute connected stable rank of \(A \) is numerically the same as the stable rank of the tensor product \(C[0, 1] \otimes A \).

As an application of our theorem, we will compute the stable ranks of the universal \(C^* \)-algebras of the (possibly higher rank) discrete Heisenberg groups. Recall that for a positive integer \(n \), the discrete Heisenberg group of rank \(2n + 1 \) is the group of all \(2n + 1 \) by \(2n + 1 \) upper triangular matrices with integer entries, with ones on the diagonal, and zero entries on all but the first row, last column and the diagonal. The rank \(2n + 1 \) discrete Heisenberg group is naturally a lattice subgroup of the \(2n + 1 \)-dimensional Heisenberg Lie group.

The stable ranks of the universal \(C^* \)-algebras of various type I Lie groups have been extensively studied (see [13], [15], [16]). In particular, we point out that for a simply connected nilpotent Lie group \(G \), the stable rank of the universal \(C^* \)-algebra \(C^*(G) \) of \(G \) has been computed by Sudo and Takai (see [15]). Roughly speaking, they showed that the stable rank of \(C^*(G) \) is controlled by the ordinary topological dimension of the space of one-dimensional representations of \(G \).

Recently, the stable ranks of a class of non-type I solvable Lie groups (which include the Mautner group) have also been computed (see [14]).

Our computations for the discrete Heisenberg groups constitute a class of interesting nontrivial examples of the stable rank of the universal \(C^* \)-algebra of a non-type I discrete group.

In a later paper, we will apply the techniques developed in this paper to compute the stable ranks of arbitrary finitely generated, torsion-free two-step nilpotent groups.

A general reference for stable rank of \(C^* \)-algebras is [12]. General references for algebras of operator fields are [5], [8] and [17].

In what follows, for a \(C^* \)-algebra \(A \), the notation “sr(\(A \))” will always mean the stable rank of \(A \). If, in addition, \(A \) is unital and \(N \) is a positive integer, then \(L_{QN}(A) \) is the set of \(N \)-tuples \((a_1, a_2, ..., a_N)\) in \(A^N \) such that \(\sum_{i=1}^{N} (a_i)^* a_i \) is an invertible element in \(A \).

Date: November 4, 2018.
Mathematics subject classification: 47L99.
2. Main results

Lemma 2.1. Let \mathcal{A} be a unital maximal full algebra of operator fields with base space $[0, 1]$ and fibre algebras $\{\mathcal{A}_t\}_{t \in \mathcal{F}}$. Then the stable rank of \mathcal{A} satisfies the inequality

$$sr(\mathcal{A}) \leq \sup_{t \in [0, 1]} sr(C[0, 1] \otimes \mathcal{A}_t).$$

Proof. In this proof, we will always let “\mathcal{F}” denote the continuity structure for the continuous field decomposition of \mathcal{A} in the hypothesis.

Suppose that $M = \sup_{t \in [0, 1]} sr(C[0, 1] \otimes \mathcal{A}_t)$ is a finite number. Let an M-tuple $(a_1, a_2, \ldots, a_M) \in \mathcal{A}_M$ and a positive real number $\epsilon > 0$ be given. Since $[0, 1]$ is compact, let I_1, I_2, \ldots, I_N be a finite set of open intervals which cover $[0, 1]$ and for each $i = 1, 2, \ldots, N$, let $(f_{i,1}, f_{i,2}, \ldots, f_{i,M})$ be an M-tuple in \mathcal{A}_M^M such that

1. $\sum_{j=1}^M f_{i,j}(t)^* f_{i,j}(t)$ is an invertible element of \mathcal{A}_i for $t \in I_i$. Here the operator field $t \mapsto f_{i,j}(t)$ for $t \in [0, 1]$, is the representation of $f_{i,j}$ as a continuous operator field in \mathcal{A}. And
2. $\|f_{i,j} - a_j\| < \epsilon$, for all i, j.

We can choose such intervals I_i and such elements $f_{i,j}$, since our hypothesis implies that the stable rank of each fibre \mathcal{A}_i is less than or equal to M, and by the existence and continuity of operator fields in a full algebra of operator fields (see the definition of full algebra of operator fields in [5], [8] or [17]). Also, one needs to use the fact that any element of a unital C^*-algebra that is sufficiently close to the unit is invertible. Finally, to make $f_{i,j}$ uniformly within ϵ of a_j (for all i, j), one needs the maximality of the algebra of operator fields \mathcal{A} (see [8] Proposition 1 and [17] Theorem 1.1).

For simplicity, we will assume that there are only two intervals $(I_1$ and $I_2)$ and only two M-tuples (f_1, f_2, \ldots, f_M) and (f_2, f_2, \ldots, f_M)). We may additionally assume that neither interval is contained in the closure of the other, and that their intersection is a continuum. Our goal is to “connect” the two M-tuples over the intersection $\overline{I_1 \cap I_2}$ to get an element of $LGM(\mathcal{A})$ which approximates (a_1, a_2, \ldots, a_M) within ϵ. The proof for more than two intervals is an iteration of this procedure (after appropriate contraction, removal or addition of intervals...).

Our procedure for “connecting” the two M-tuples over $\overline{I_1 \cap I_2}$ will involve constructing a sequence of strictly increasing points $\{t_n\}_{n=1}^\infty$ in $I_1 \cap I_2$, and constructing sequences of operator fields $\{a_j^n\}_{n=1}^\infty$ $(j = 1, 2, \ldots, M)$ satisfying:

1. a_j^n is a continuous operator field in $\mathcal{A}(n)$, for all j, n. Here $\mathcal{A}(n)$ is the unital maximal full algebra of operator fields gotten by restricting \mathcal{A} to the interval $[t_n, t_{n+1}]$. (In particular, the continuity structure for $\mathcal{A}(n)$ is gotten by taking the restriction to $[t_n, t_{n+1}]$ of all the fields in \mathcal{F}).
2. a_j^n is within ϵ of the restriction of a_j to $[t_n, t_{n+1}]$, for all j, n.
3. $a_j^n(t_1) = f_{1,j}(t_1)$ and $a_j^{n+1}(t_{n+1}) = a_j^n(t_{n+1})$, for all j, n.
4. a_j^{n+1} is within $\epsilon/2^n$ of the restriction of $f_{2,j}$ to $[t_{n+1}, t_{n+2}]$, for all j, n. And
5. $(a_{1,j}^n, a_{2,j}^n, \ldots, a_{M,j}^n)$ is in $LGM(\mathcal{A}(n))$ or equivalently, $\sum_{j=1}^M a_j^n(t)^* a_j^n(t)$ is an invertible element of \mathcal{A}_i for all $t \in [t_n, t_{n+1}]$, for all n (the proof of equivalence is a small spectral theory argument which uses the fact that $[t_n, t_{n+1}]$ is compact).

Henceforth, we will let "(*)" denote conditions (1) - (5).

By [10] Lemma 2.4 and our hypothesis for M, we have that $LGM(\mathcal{A}_t) \cap \{(b_1, b_2, \ldots, b_M) \in \mathcal{A}_M^M : \|a_i(t) - b_i\| < \epsilon \forall i\}$ is a nonempty connected open set for all $t \in [0, 1]$. Hence, fixing $t_1 \in I_1 \cap I_2$, there are continuous paths $\gamma_j : [0, 1] \to LGM(\mathcal{A}_{t_1})$, $j = 1, 2, \ldots, M$, such that a) $\gamma_j(0) = f_{1,j}(t_1)$ and $\gamma_j(1) = f_{2,j}(t_1)$ for all j and b) $\gamma_j(s)$ is within ϵ of $a_j(t_1)$ for all $s \in [0, 1]$ and for all j.

Note that since $[0, 1]$ is compact, $(\gamma_1, \gamma_2, \ldots, \gamma_M)$ is in $LGM([0, 1] \otimes \mathcal{A}_{t_1})$. Now consider the unital maximal full algebra of operator fields $\tilde{\mathcal{A}}$, which has base space $[0, 1]$ and fibre algebras $\{C[0, 1] \otimes \mathcal{A}_t\}_{t \in [0, 1]}$. The continuity structure $\tilde{\mathcal{F}}$ for $\tilde{\mathcal{A}}$ consists of all operator fields of the form $t \mapsto \sum_{i=1}^N f_i \otimes c_i(t)$, $t \in [0, 1]$. Here the f_is are in $C[0, 1]$, the c_is are continuous operator fields in $\tilde{\mathcal{A}}$ (with respect to the continuity structure $\tilde{\mathcal{F}}$), and N is a nonnegative integer. Now since \mathcal{A} is a full algebra of operator fields, the second variable of $\gamma_j(., t)$ ranges over the base space of $\tilde{\mathcal{A}}$, and for $t \in [0, 1]$, $\gamma_j(., t)$ is an element of the fibre algebra $C[0, 1] \otimes \mathcal{A}_t$ of \mathcal{A}.

One can show that the operator field $t \mapsto \gamma_j(1, t)$ is a continuous operator field in \mathcal{A} (with continuity structure $\tilde{\mathcal{F}}$) for $j = 1, \ldots, M$. Also, one may view the field $t \mapsto a_j(t)$ as an operator field in $\tilde{\mathcal{A}}$ in the natural
way for $j = 1, \ldots, M$. From these and the fact that (as elements of $C[0,1] \otimes \mathcal{A}_1$) $\gamma_j(., t_1)$ is within ϵ of $a_j(t_1)$, we find an open neighbourhood V of t_1 with $V \subset I_1 \cap I_2$ such that for all $t \in V$, a) as elements of $C[0,1] \otimes \mathcal{A}_1$, $\gamma_j(., t)$ is within ϵ of $a_j(t)$, $j = 1, 2, \ldots, M$, and b) $\gamma_j(1, t)$ is within $\epsilon/2$ of $f_{2,j}(t)$. Furthermore, by continuity and since elements in a unital C^*-algebra which are sufficiently close to the unit are invertible, we may assume that V is sufficiently small so that for all $t \in V$, $\sum_{j=1}^M \gamma_j(., t) \gamma_j(., t)$ is an invertible element of $C[0,1] \otimes \mathcal{A}_1$.

One can see that for any continuous function $g : [0,1] \to [0,1]$, the operator field $t \mapsto \gamma_j(g(t), t)$ is a continuous field in \mathcal{A}, for $j = 1, 2, \ldots, M$. Hence, we can pick $t_2 \in V$ such that $t_1 < t_2$; and we can let $\alpha_j(t) = df \gamma_j((t - t_1)/(t_2 - t_1))$ for all $t \in [t_1, t_2]$, $j = 1, 2, \ldots, M$. This will give us the first members of the sequences in (*).

Now we can repeat almost exactly the same argument as before, replacing t_1 by the point t_2 and replacing $f_{1,j}(t_1)$ by $\alpha_j(t_2)$. Hence, by the induction hypothesis, for each $j = 1, 2, \ldots, M$, the fibre algebra α_j^2, $j = 1, 2, \ldots, M$, which will be the next members of the sequences in (*). We need only note two minor modifications that are needed in the argument: a) firstly, one has to use the fact that for all t, the set

$$Lg_M(\mathcal{A}_1) \cap \{(b_1, b_2, \ldots, b_M) \in \mathcal{A}_1^M : \|a_j(t) - b_j\| < \epsilon \text{ and } \|f_{2,j}(t) - b_j\| < \epsilon/2, \text{ for all } j\}$$

is a connected open set (see [10] Lemma 2.4), and b) when choosing the corresponding neighbourhood about t_2, one must make it sufficiently small so that the corresponding quantities which result will also be sufficiently small in order to fulfill condition (4) in (*).

Repeating this process ad infinitum (making the appropriate modifications at each step), we get a sequence of points $\{t_n\}_{n=1}^\infty$ and sequences of continuous operator fields $\{\alpha_n^j\}_{n=1}^\infty$, $j = 1, 2, \ldots, M$, which fulfill the conditions in (*). Now let $t = lim_{n \to \infty} t_n$. For $j = 1, 2, \ldots, M$, let a_j be the continuous operator field in \mathcal{A} defined by

1. $a_j(t) = f_{1,j}(t)$ for $t \in [0, t_1]$,
2. $a_j(t) = \alpha_n^j(t)$ for $t \in [t_n, t_{n+1}]$, and
3. $a_j(t) = f_{2,j}(t)$ for all $t \in [t, 1]$.

Then $(\alpha_1, \alpha_2, \ldots, \alpha_M) \in Lg_M(\mathcal{A})$, and for all $j = 1, 2, \ldots, M$, α_j approximates a_j within ϵ.

\[\square \]

Proof of Theorem 1.1. We proceed by induction. The base case $k = 1$ has already been dealt with in Lemma 2.1. We now do the induction step, supposing that $k \geq 2$. By [8] Theorem 4, let $\pi : Prim(\mathcal{A}) \to [0,1]^k$ be the continuous open surjection corresponding to the continuous field decomposition of \mathcal{A} in the hypothesis (Here $Prim(\mathcal{A})$ is the primitive ideal space of \mathcal{A}).

Since $k \geq 2$, the map $p : [0,1]^k \to [0,1]^{k-1}$, given by projecting onto the first $k-1$ coordinates, is a continuous open surjection. Hence, the composition $p \circ \pi : Prim(\mathcal{A}) \to [0,1]^{k-1}$ is a continuous open surjection. Hence by [8] Theorem 4, we can realize \mathcal{A} as a unital maximal full algebra of operator fields with base space $[0,1]^{k-1}$ and fibre algebras, say, $\{\mathcal{B}_r\}_{r \in [0,1]^{k-1}}$. Hence by the induction hypothesis, $sr(\mathcal{A}) \leq sup_{r \in [0,1]^{k-1}}sr(C([0,1]^{k-1}) \otimes \mathcal{B}_r)$.

But for each s, the fibre algebra \mathcal{B}_s can be realized as a maximal full algebra of operator fields with base space $p^{-1}(s) = \{s\} \times [0,1]$ and fibre algebras $\{\mathcal{A}_r\}_{r \in \{s\} \times [0,1]}$ (By [8] Theorem 4, \mathcal{B}_s is isomorphic to \mathcal{A}/I where $I = \cap (p \circ \pi)^{-1}(s)$). Using this fact, one can construct the natural continuous open surjection of $Prim(\mathcal{B}_s)$ onto $\{s\} \times [0,1]$, $s \in [0,1]^{k-1}$. Let us suppose that this continuous field decomposition of \mathcal{B}_s is given by a continuity structure \mathcal{G}. Then $C([0,1]^{k-1}) \otimes \mathcal{B}_s$ can be realized as a unital maximal full algebra of operator fields with base space $[0,1]$ and fibre algebras $\{C([0,1]^{k-1}) \otimes \mathcal{A}_r\}_{r \in \{s\} \times [0,1]}$. Here the continuity structure consists of operator fields of the form $r \mapsto \sum_{i=1}^N f_i \otimes b_i(r)$, for $r \in \{s\} \times [0,1]$. Here the f_is are in $C([0,1]^{k-1})$, the b_is are continuous fields in \mathcal{B}_s (with respect to the continuity structure \mathcal{G}) and N is a nonnegative integer.

Hence by the induction hypothesis, for each s, we have that $sr(C([0,1]^{k-1}) \otimes \mathcal{B}_s) \leq sup_{r \in \{s\} \times [0,1]}sr(C([0,1]^{k-1}) \otimes \mathcal{A}_r)$. It follows, then, that $sr(\mathcal{A}) \leq sup_{s \in [0,1]^k}sr(C([0,1]^k) \otimes \mathcal{A}_s)$.

We note that the statements of Lemma 2.1 and Theorem 1.1 would still be true if the unit interval $[0,1]$ was replaced by the circle S^1 (and if the k-cube $[0,1]^k$ was replaced by the k-torus T^k). The proofs would be exactly the same. In other words, we have that
Corollary 2.2. Let A be a unital maximal full algebra of operator fields with base space the k-torus \mathbb{T}^k and fibre algebras $\{A_t\}_{t \in \mathbb{T}^k}$. Then the stable rank of A satisfies

$$sr(A) \leq \sup_{t \in \mathbb{T}^k} sr(C([0,1]^k) \otimes A_t).$$

Theorem 2.3. Let H^Z_{2n+1} be the discrete Heisenberg group of rank $2n+1$. Let $C^*(H^Z_{2n+1})$ be the universal C^*-algebra of H^Z_{2n+1}. Then $sr(C^*(H^Z_{2n+1})) = n + 1$.

Proof. By [12] Proposition 1.7 and Theorem 4.3, and the fact that $C^*(T^{2n})$ is a quotient of $C^*(H^Z_{2n+1})$, the stable rank of $C^*(H^Z_{2n+1})$ is greater than or equal to $n + 1$. By [1] and [9] Theorem 3.4, $C^*(H^Z_{2n+1})$ can be realized as a unital maximal full algebra of operator fields with base space the 1-torus T and fibre algebras, say, $\{A_t\}_{t \in \mathbb{T}}$. Hence, by the Corollary 2.2, the stable rank of $C^*(H^Z_{2n+1})$ satisfies $sr(C^*(H^Z_{2n+1})) \leq \sup_{t \in \mathbb{T}} sr(C([0,1] \otimes A_t)$.

Now by [1] and [9] Theorem 3.4, each fibre algebra A_t can be realized as a unital maximal full algebra of operator fields with base space a torus with dimension less than or equal to $2n$ (the zero-dimensional torus being a point) and fibre algebras, say, $\{B^t_s\}_{s \in \mathbb{T}^l_t}$, where \mathbb{T}^l_t is the base in the continuous field decomposition of A_t ($l \leq 2n$). Moreover, for each $t \in \mathbb{T}$ and for each $s \in \mathbb{T}^l_t$, B^t_s is isomorphic to either a full matrix algebra $M_n(C)$ or $M_n(C) \otimes (\mathbb{O}^n \otimes A_t)$, where $\mathbb{O}^n \otimes A_t$ is the n times tensor product of a fixed irrational rotation algebra A_t with irrational rotation θ. Now by [4] each irrational rotation algebra can be decomposed as an inductive limit of building blocks of the form $M_n(C(T)) \oplus M_n(C(T))$ (the integers m and n get arbitrarily large as we move along building blocks in the inductive limit). Hence, since $C([0,1] \otimes A_t$ can be realized as a maximal full algebra of operator fields with base space \mathbb{T}^l_t and fibre algebras $\{C[0,1] \otimes B^t_s\}_{s \in \mathbb{T}^l_t}$, it follows, by Corollary 2.2, [12] Proposition 1.7 and Theorems 5.1 and 6.1, that $sr(C([0,1] \otimes A_t) \leq n + 1$, for all t. Hence, $sr(C^*(H^Z_{2n+1})) = n + 1$.

\[\square \]

References

1 J. Anderson and W. Paschke, ‘The rotation algebra’, Houston J. Math., 15, (1989), 1 - 26.
2 L. Baggett and J. Packer, ‘The primitive ideal space of two-step nilpotent group C^*-algebras’, J. Funct. Anal., 124, (1994), 389-426.
3 K. R. Davidson, C^*-algebras by example, Fields Institute Monographs, 6.
4 G. A. Elliott and D. E. Evans, ‘The structure of the irrational rotation C^*-algebra’, Ann. of Math. (2), 138, no. 3, (1993), 477-501.
5 J. M. G. Fell, ‘The structure of algebras of operator fields’, Acta Math., 106, (1961), 233-280.
6 N. E. Hassan, ‘Rangs Stables de certaines extensions’, J. London Math. Soc., (2), 52, (1995), 605-624.
7 R. Herman, L. N. Vasergstein, ‘The stable rank of C^*-algebras’, Invent. Math., 77, (1984), 553-555.
8 R-Y Lee, ‘On C^*-algebras of operator fields’, Indiana U. Math. Journal, 25, no. 4, (1976), 303-314.
9 S. T. Lee and J. Packer, ‘Twisted group C^*-algebras for two-step nilpotent and generalized discrete Heisenberg group’, J. Operator Theory, 34, no. 1, (1995), 91-124.
10 V. Nistor, ‘Stable range for the tensor products of extensions of K by $C(X)$’, J. Operator Th., 16, (1986), 387-396.
11 J. Packer and I. Raeburn, ‘On the structure of twisted group C^*-algebras’, Trans. AMS, 334, no. 2, (1992), 685-718.
12 M. A. Rieffel, ‘Dimension and stable rank in the K-theory of C^*-algebras’, Proc. London Math. Soc., (3), 46, (1983), 301-333.
13 T. Sudo, ‘Dimension theory of group C^*-algebras of connected Lie groups of type Γ’, J. Math. Soc. Japan, 52, no. 3, (2000), 583-590.
14 T. Sudo, ‘Structure of group C^*-algebras of Lie semi-direct products $\mathbb{C} \times \mathbb{R}$’, J. Operator Theory, 46, (2001), 25-38.
15 T. Sudo and H. Takai, ‘Stable rank of the C^*-algebras of nilpotent Lie groups’, Internat. J. Math., 6, no. 3, (1995), 439-446.
16 T. Sudo and H. Takai, ‘Stable rank of the C^*-algebras of solvable Lie groups of type Γ’, J. Operator Theory, 38, no. 1, (1997), 67-86.
17 J. Tomiyama, ‘Topological representation of C^*-algebras’, Tohoku Math. J., (2), 14, (1962), 187-204.
Department of Mathematics, University of Toronto, 100 St. George St., Room 4072, Toronto, Ontario, M5S 3G3, Canada
E-mail address: png@math.toronto.edu

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa, 903-0213, Japan
E-mail address: sudo@math.u-ryukyu.ac.jp