Abelian Zero Modes in Odd Dimensions

Gerald V. Dunne
Department of Physics, University of Connecticut, Storrs, CT 06269

Hyunsoo Min
Department of Physics, University of Seoul, Seoul 130-743, Korea

We show that the Loss-Yau zero modes of the 3d abelian Dirac operator may be interpreted in a simple manner in terms of a stereographic projection from a 4d Dirac operator with a constant field strength of definite helicity. This is an alternative to the conventional viewpoint involving Hopf maps from S^3 to S^2. Furthermore, our construction generalizes in a straightforward way to any odd dimension. The number of zero modes is related to the Chern-Simons number in a nonlinear manner.

The behavior of quantized charged fermions in ultra-strong magnetic fields has applications in atomic physics [1], particle and condensed matter physics [2], and astrophysics [3]. Key properties determining stability are the existence of zero modes for the 3 dimensional Dirac operator, and the associated magnetic helicity. In studying the stability of atoms in magnetic fields, Loss and Yau [1] found the surprising result that the abelian Dirac operator in 3 dimensions, $D_3 \equiv i\gamma_\mu (\partial/\partial x^\mu - iA_\mu)$, can have exact zero modes

$$i\gamma_\mu \left(\frac{\partial}{\partial x^\mu} - iA_\mu \right) \psi^{(0)} = 0 \quad (1)$$

for smooth, localized magnetic fields $\vec{B} = \vec{\nabla} \times \vec{A}$. In even dimensions there is a well-known relation between zero modes and the topology of gauge fields [4], but in odd dimensions, where the relevant index theorem is due to Callias [5], the situation is somewhat different, as the index is determined by the topology of the coupling to a Higgs field. In this Brief Report we present a simple new interpretation of the Loss-Yau zero-mode-supporting abelian gauge fields, and show that this construction generalizes to all odd dimensions.

Loss and Yau’s simplest example [1] is the gauge field

$$\vec{A}_{LY} = \frac{3}{1 + \vec{x}^2} \hat{N}, \quad \hat{N} = \frac{1}{1 + \vec{x}^2} \left(\begin{array}{c} 2x_1x_3 - 2x_2 \\ 2x_2x_3 + 2x_1 \\ 1 - x_1^2 - x_2^2 + x_3^2 \end{array} \right), \quad \vec{B}_{LY} = \frac{12}{(1 + \vec{x}^2)^2} \hat{N}, \quad (2)$$

for which the zero mode is

$$\psi_{LY}^{(0)} = \frac{4}{(1 + \vec{x}^2)^{3/2}} (1 + i\gamma_\mu x_\mu) \left(\begin{array}{c} 1 \\ 0 \end{array} \right). \quad (3)$$

For this field, the Chern-Simons number, or magnetic helicity, is

$$N_{LY}^{CS} = \frac{1}{16\pi^2} \int d^3x \vec{A} \cdot \vec{B} = \frac{9}{16} . \quad (4)$$

The associated magnetic field is plotted in Figure 1 showing the localized but non-trivial structure of the field. This basic example may be extended [1,6] to fields with multiple zero modes:

$$\vec{A}_{LY} = \frac{(2k + 3)}{1 + \vec{x}^2} \hat{N}, \quad \vec{B}_{LY} = \frac{4(2k + 3)}{(1 + \vec{x}^2)^2} \hat{N}, \quad N_{LY}^{CS} = \frac{(2k + 3)^2}{16} . \quad (5)$$

Here $k \geq 0$ is an integer, and this field has $(k+1)$ zero modes that can be expressed in terms of 3d spherical harmonics [1,6].

These fields have since been discussed in terms of Hopf maps [6,7], which are maps $\chi: S^3 \rightarrow S^2$ such that the magnetic field is

$$\vec{B}_H = \frac{2}{i} \frac{\vec{\nabla}_\chi \times \vec{\nabla}\bar{\chi}}{(1 + \chi\bar{\chi})^2} . \quad (6)$$

*Electronic address: dunne@phys.uconn.edu
†Electronic address: hsmin@dirac.uos.ac.kr
FIG. 1: Plot of the magnetic field vector \vec{B}_{LY} in (2). Note that the magnitude is highly localized around the origin, while the direction winds in a non-trivial manner.

Such a Hopf map can also be viewed as a map $\chi : \mathbb{R}^3 \to \mathbb{R}^2$, and the simplest example

$$\chi = \frac{(x_1 + ix_2)}{2x_3 - i(1 - x^2)} ; \quad \vec{B}_H = \frac{16}{(1 + x^2)^2} \hat{N} = \frac{4}{3} \vec{B}_{LY} ; \quad \mathcal{N}_H^{CS} = 1$$

(7)

gives a magnetic field proportional to the Loss-Yau field in (2). Geometrically, \vec{B}_H is tangent to the closed curves in \mathbb{R}^3 given by $\chi =$ constant. Erdős and Solovej [7] gave an elegant interpretation of these zero-mode-supporting gauge fields in terms of pull-backs (to \mathbb{R}^3) of 2 dimensional magnetic fields, and the 3 dimensional zero modes were related to the Aharonov-Casher zero modes in 2 dimensions [8]. Further results have been found in [6, 9], and these gauge fields have also been understood in terms of projections of non-abelian fields [10].

However, a number of questions remain. The fundamental mismatch of the coefficient [the factor $4/3$ in (7)] does not have an elegant interpretation in the Hopf map language. In one picture, one introduces an additional "background" field with a correcting coefficient [6]; and in another picture [7], one includes a magnetic monopole of a particular strength at the centre of the S^2 to adjust the strength of the area form.

In this short note we present another characterization of these 3d abelian zero-mode-supporting gauge fields, in terms of four dimensional gauge fields of fixed helicity. This construction is extremely simple, and furthermore it generalizes naturally to other odd dimensions.

Our basic example [the analogue of (2)] is expressed for arbitrary odd dimension by a stereographic projection from $\mathbb{R}^{2n} \supset S^{2n-1} \to \mathbb{R}^{2n-1}$. We define coordinates $x_\mu (\mu = 1, 2, \ldots, 2n - 1)$ on \mathbb{R}^{2n-1}, and coordinates $y_a (a = 1, \ldots, 2n)$ on \mathbb{R}^{2n}. Consider a 2n-dimensional gauge field corresponding to a constant field strength, and such that the field has fixed helicity:

$$A_a = -\frac{F}{2} (y_2, -y_1, y_4, -y_3, \ldots, y_{2n-2}, -y_{2n-3}, -y_{2n}, y_{2n-1})$$

$$\equiv -\frac{F}{2} J_{ab} y_b$$

(8)

where the antisymmetric matrix $J = \text{diag}(i\sigma_2, \ldots, i\sigma_2, -i\sigma_2)$. [The sign-flip in the last diagonal entry is a parity convention chosen to agree with the choice of Loss-Yau.] This gauge field is in Fock-Schwinger gauge: $y_a A_a = 0$. Now restrict to S^{2n-1} by imposing the condition $y^2 = 1$, and stereographically project from S^{2n-1} to \mathbb{R}^{2n-1} via:

$$y_\mu = \frac{2x_\mu}{1 + x^2} , \quad y_{2n} = \frac{1 - x^2}{1 + x^2} .$$

(9)
The projected $(2n - 1)$-dimensional gauge field A_μ is

$$A_\mu = \frac{\partial y_a}{\partial x_\mu} A_a$$ \hspace{1cm} (10)

One finds by a simple computation

$$A_i = 2\mathcal{F}\left(-\frac{J_{ij}x_j + x_i x_{2n-1}}{1 + x^2} \right), \quad i = 1, 2 \ldots 2n - 2$$

$$A_{2n-1} = \mathcal{F}\left(\frac{1 - x^2 + 2x^2_{2n-1}}{1 + x^2} \right)$$ \hspace{1cm} (11)

When $n = 2$ (i.e., a 3 dimensional gauge field A_μ) this reproduces precisely the form of the original Loss-Yau gauge field [1] in [2], although the coefficient \mathcal{F} is not yet determined.

The coefficient \mathcal{F} is fixed by an explicit construction of the zero mode, directly from the zero mode equation (11). Straightforward Dirac algebra manipulations [1, 14] show that the gauge field in (1) can be expressed in terms of the zero mode $\psi(0)$

$$\psi(0) = \frac{1}{1 + x^2} (1, \ldots, 1, 0, \ldots, 0)^T$$ \hspace{1cm} (13)

Then the resulting gauge field constructed from (12) in $(2n - 1)$ dimensions is

$$A_i = 2(2n - 1) \left(-\frac{J_{ij}x_j + x_i x_{2n-1}}{1 + x^2} \right), \quad i = 1, 2 \ldots 2n - 2$$

$$A_{2n-1} = (2n - 1) \left(1 - x^2 + 2x^2_{2n-1} \right)$$ \hspace{1cm} (14)

which is precisely the same as (11), but now the overall coefficient has been fixed to be $\mathcal{F} = 2n - 1$. When $n = 2$ (corresponding to 3 dimensions) this reproduces the original Loss-Yau gauge field in [2]. Note that the zero mode is normalizable in all odd dimensions $d = 2n - 1 \geq 3$.

The degeneracy of the abelian zero modes can be deduced by group theoretic arguments for spinors in arbitrary dimensions. Define $2^{n-1} \times 2^{n-1}$ Dirac matrices γ_μ ($\mu = 1, \ldots, (2n - 1)$) for \mathbb{R}^{2n-1}, and $2^n \times 2^n$ Dirac matrices Γ_a ($a = 1, \ldots, 2n$) for \mathbb{R}^{2n}. These can be related as

$$\Gamma_\mu = \begin{pmatrix} 0 & i\gamma_\mu \\ -i\gamma_\mu & 0 \end{pmatrix}; \quad \Gamma_{2n} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \Gamma_{2n+1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$ \hspace{1cm} (16)

Then the spin matrices in \mathbb{R}^{2n} may be block-decomposed as

$$\Sigma_{ab} \equiv \frac{1}{4i} [\Gamma_a, \Gamma_b] = \Sigma^+_{ab} - \Sigma^-_{ab}$$ \hspace{1cm} (17)

where $\Sigma^\pm_{\mu\nu} = \sigma_{\mu\nu} \equiv \frac{1}{4i} [\gamma_\mu, \gamma_\nu]$; and $\Sigma^\pm_{\mu,2n} = \pm i \gamma_\mu$. We also define the $2n$ dimensional angular momentum generators

$$L_{ab} \equiv -i \left(y_a \frac{\partial }{\partial y_b} - y_b \frac{\partial }{\partial y_a} \right)$$ \hspace{1cm} (18)

Then a canonical result of stereographic projection of the free Dirac equation from S^{2n-1} (defined by $y_a y_a = 1$) to \mathbb{R}^{2n-1} is that

$$\left(\frac{1 + x^2}{2} \right)^{2n-1} i \gamma_\mu \frac{\partial }{\partial x_\mu} = \left(\frac{1 + x^2}{2} \right)^{n-3/2} V \left[\Sigma^+_{ab} L_{ab} + \left(n - \frac{1}{2} \right) 1 \right] \left(\frac{1 + x^2}{2} \right)^{n-3/2}$$ \hspace{1cm} (19)
where $V \equiv \frac{1}{\sqrt{2}} (1 + i \gamma_\mu x_\mu)$.

Now we observe that for the $2n$ dimensional gauge field A_μ defined in [11] and the $(2n-1)$-dimensional gauge field A_μ defined in [15], this projection property of the free Dirac equation is maintained once the gauge field is included:

$$
\left(\frac{1 + \vec{x}^2}{2} \right)^{2n-1} \gamma_\mu \left(\frac{\partial}{\partial x_\mu} - i A_\mu \right) = \left(\frac{1 + \vec{x}^2}{2} \right)^{n-3/2} \nabla^T \left[\Sigma^+_{ab} \mathcal{L}_{ab} + \left(n - \frac{1}{2} \right) \right] V \left(\frac{1 + \vec{x}^2}{2} \right)^{n-3/2}
$$

(20)

where $\mathcal{L}_{ab} \equiv L_{ab} + \left(y^a A_b - y^b A_a \right)$. Thus, the zero-mode equation on \mathbb{R}^{2n-1} can be lifted to a zero-mode equation on S^{2n-1}, where the solutions can be written in terms of the spinor spherical harmonics in \mathbb{R}^{2n}.

To illustrate this explicitly we consider the $n = 2$ case. The 4-dimensional gauge field may be written as $A_\mu = -\bar{\mathcal{F}}/2\eta^a_{ab} y^b$, where η^a_{ab} is the 3rd isospin component of the standard 4-dim. 't Hooft tensor [12, 13]. The 4-component spinor zero mode $\psi_{(0)}$ in \mathbb{R}^4 may be written in terms of a 2-component spinor u of definite (we choose positive) helicity:

$$
\psi_{(0)} = \begin{pmatrix} u \\ 0 \end{pmatrix}
$$

(21)

Then using (20) the zero mode equation (11) becomes an algebraic equation

$$
\left[\Sigma^+_{ab} \mathcal{L}_{ab} + 3/2 \right] u = \left(4 \vec{S} \cdot \vec{L} + 3/2 - \frac{\mathcal{F}}{2} \sigma_3 \right) u = 0
$$

(22)

where $u = ((1 + \vec{x}^2)/2)^{l/2} V \phi$, and where \vec{S} and \vec{L} are angular momentum operators, of spin 1/2 and $l (= \text{half integer})$, respectively. We define the total angular momentum $\vec{J} = \vec{S} + \vec{L}$, and use the spinor spherical harmonics [16]

$$
u^{(\pm)} = \frac{1}{\sqrt{2l + 1}} \begin{pmatrix} \pm \sqrt{l + 1/2 \pm M} Y^k_{m,M-1/2} \\ \sqrt{l + 1/2 \mp M} Y^k_{m,M+1/2} \end{pmatrix}
$$

(23)

with $j = l \pm 1/2$, $-j \leq M \leq j$, and $-l \leq m \leq l$. Then

$$
4 \vec{S} \cdot \vec{L} \nu^{(\pm)} = \begin{cases} 2l & \text{if } \mathcal{F} = 4l + 3 \\ -2l - 2 & \text{if } \mathcal{F} = 4l + 3 \\ \end{cases}
$$

(24)

Thus a zero mode can only occur when $j = M = l + 1/2$ and

$$
2l + 3/2 - \frac{\mathcal{F}}{2} = 0 \quad \rightarrow \quad \mathcal{F} = 4l + 3
$$

(25)

for arbitrary value of $-l \leq m \leq l$. In this case $\nu^{(\pm)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} Y^l_{m,l}$. Recalling that $l = k/2$ is a half-integer, we arrive at the general Loss-Yau case [3]. Furthermore, the degeneracy is simply given by $2l + 1 = k + 1$, as found by Loss-Yau in [1]. This construction makes it clear why the zero mode degeneracy factor is linear in the integer k, while the Chern-Simons number is quadratic in k. An analogous construction is clearly possible in higher dimensions using generalized spinor spherical harmonics, but we do not present the details here.

To conclude, we have given a simple new interpretation of the Loss-Yau abelian zero-mode-supporting gauge fields in three dimensions, and have extended the construction to obtain new zero-mode-supporting abelian gauge fields in other odd dimensions. An interesting outstanding problem is the possibility of including an interaction with a scalar field, which might shed light on the possible relation of these fields to the Callias index theorem [2].

GD thanks the US DOE for support through grant DE-FG02-92ER40716, and HM thanks the UConn Research Foundation and the USU Seoul Research Foundation for grants.

[1] M. Loss and H-T. Yau, "Stability of Coulomb Systems with Magnetic Fields", Comm. Math. Phys. 104, 283 (1986).
[2] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, “Dynamical chiral symmetry breaking by a magnetic field in QED,” Phys. Rev. D 52, 4747 (1995) [arXiv:hep-ph/9501304].

[3] G. B. Field and S. M. Carroll, “Cosmological magnetic fields from primordial helicity,” Phys. Rev. D 62, 103008 (2000) [arXiv:astro-ph/9811206].

[4] S. B. Trieman, R. Jackiw, B. Zumino and E. Witten (Eds.), Current Algebras and Anomalies (Princeton Univ. Press, 1985).

[5] C. Callias, “Index Theorems On Open Spaces,” Commun. Math. Phys. 62, 213 (1978).

[6] C. Adam, B. Muratori and C. Nash, “Zero modes of the Dirac operator and the Seiberg-Witten equations in three dimensions,” Phys. Rev. D 60, 125001 (1999) [arXiv:hep-th/9903040]; “Degeneracy of zero modes of the Dirac operator in three dimensions,” Phys. Lett. B 485, 314 (2000) [arXiv:hep-th/9910139]; “Multiple zero modes of the Dirac operator in three dimensions,” Phys. Rev. D 62, 085026 (2000) [arXiv:hep-th/0001164].

[7] L. Erdős and J. P. Solovej, “The kernel of Dirac operators on S^3 and R^3,” Rev. Math. Phys. 13, 1247 (2001). [arXiv:math-ph/0001036].

[8] Y. Aharonov and A. Casher, “The Ground State Of A Spin 1/2 Charged Particle In A Two-Dimensional Magnetic Field,” Phys. Rev. A 19, 2461 (1979).

[9] D. M. Elton, “New examples of zero modes”, J. Phys. A 33, 7297 (2000), “The Local Structure of Zero Mode Producing Magnetic Potentials”, Comm. Math. Phys. 229, 121 (2002).

[10] R. Jackiw and S. Y. Pi, “Creation and evolution of magnetic helicity,” Phys. Rev. D 61, 105015 (2000) [arXiv:hep-th/9911072].

[11] S. L. Adler, “Massless Electrodynamics On The Five-Dimensional Unit Hypersphere: An Amplitude - Integral Formulation,” Phys. Rev. D 8, 2400 (1973) [Erratum-ibid. D 15, 1803 (1977)].

[12] R. Jackiw and C. Rebbi, “Conformal properties of a Yang-Mills pseudoparticle,” Phys. Rev. D 14, 517 (1976), “Spinor analysis of Yang-Mills theory,” Phys. Rev. D 16, 1052 (1977).

[13] E. B. Bogomolny and Yu. A. Kubyshin, “Asymptotical Estimates For Graphs With A Fixed Number Of Fermionic Loops In Quantum Electrodynamics. The Extremal Configurations With The Symmetry Group O(2) X O(3),” Sov. J. Nucl. Phys. 35, 114 (1982) [Yad. Fiz. 35, 202 (1982)].

[14] H. S. Booth, G. Legg and P. D. Jarvis, “Algebraic solution for the vector potential in the Dirac equation,” J. Phys. A 34, 5667 (2001) [arXiv:hep-th/0104216].

[15] G. ’t Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle,” Phys. Rev. D 14, 3432 (1976) [Erratum-ibid. D 18, 2199 (1978)].

[16] A. Pais, “Spherical spinors in a Euclidean 4-space”, Proc. Nat. Acad. Sci. 40, 835 (1954).

[17] Such gauge field projections have been studied extensively for projections to R^4 [11, 12, 13]; here we consider analogous projections to odd dimensional spaces.