Immune and defense mechanisms in representatives of Blattodea and Orthoptera: a review

Danail Takov 1*, Peter Ostoich 1, Milan Zubrik 1, Daniela Pilarska 1

1 Institute of Biodiversity and Ecosystem Research – Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, Sofia 1000, Bulgaria.
2 Forest Protection Service, National Forest Centre, Lesnicka 11, 969 23 Banská Štiavnica, Slovakia.

* Corresponding author: Danail Takov: dtakov@yahoo.com

Abstract: Among insects orders, Blattodea and Orthoptera are characteristic with their high significance to human habitation, as posing medical and agricultural problems. Representatives of Blattodea have an important role as carriers of a number of infectious diseases in humans and animals, and are directly related to human life and activities. On the other hand Orthoptera are very significant as agricultural pests that cause great damage to plants. The study of the mechanisms of immune defense and the processes related to the response against pathogenic infections in these two orders is of interest in order to more fully clarify the possibilities for management and control of their populations. This review summarizes the information on the defense mechanisms (hemocytes, antimicrobial peptides, pathogen recognition, signaling pathways, immune and antiviral responses) studied in representatives of these two orders. The list includes 30 species of cockroaches and termites and 59 orthopteran species, and focuses on species with medical significance (Periplaneta americana, Blattella germanica) and insect pests for agriculture such as Locusta migratoria and Schistocerca gregaria.

Keywords: orthopterans, cockroaches, termites, insect immunity

Introduction

Among the representatives of Blattodea, cockroaches are the most common pests in human dwellings. They are found in sewers, where they feed on waste and human feces and can spread a number of parasites and pathogens in the environment (Cotton et al. 2000, Pai et al. 2005). In addition, they contaminate food by leaving feces and bacteria that can cause food poisoning (Che Ghani et al. 1993), but can also carry bacteria, fungi and other pathogens in infected areas (Czajka et al. 2003, Kopanic 1994). Their nocturnal lifestyles and habitats make them ideal carriers of various infections (Allen 1987). For example, a study of Periplaneta americana (Linnaeus, 1758) shows that its individuals in a very high percentage carry a number of bacteria - Escherichia coli (86.7%), Proteus vulgaris (73.3%), Bacillus cereus (66.7%), Streptococcus faecalis (60%), Staphylococcus aureus (60%), Enterobacter cloacae (53.3%), Shigella spp. (33.3%), Serratia spp. (13.3%) and Staphylococcus epidermidis (6.7%) (Feizhaddad et al. 2012). In the cockroaches P. americana and Blattella germanica (Linnaeus, 1767), 25 species of bacteria have been isolated from hospital premises, of which 22 were gram-negative, and it was found that the cockroaches were more prone to carry pathogenic bacteria internally (84.3%) than on their body surface (64.1%) (Fakoorziba et al. 2010).
A number of parasites have been found on the surface or inside cockroaches, and some studies have shown that exposure to cockroach antigens may play an important role in asthma-related health problems (Montresor et al. 1998, Mott 1989). These insects, inhabiting various places and objects in people's houses (toilets, salons, kitchens and bedrooms) are potential reservoirs of a number of parasites of medical significance, transmitted through the surface of their bodies. These include mainly: cysts of amoebae (*Entamoeba hystolitica*), oocysts of coccidians (*Cryptosporidium parvum*, *Cyclospora cayetenensis*, *Isospora belli*), cysts of the protozoan *Balantidium coli*, eggs, larvae and adults of parasitic worms from the nematode group (*Ascaris lumbricoides*, *Anchylostoma duodenale*, *Enterobius vermicularis*, *Trichuris trichura*, *Strongyloides stercoralis*) (El-Sherbini & El-Sherbini 2011).

The order Orthoptera is another no less important group in terms of the occurrence of calamities in agricultural communities. Locusts can destroy in a short time vast agricultural tracts, with increased numbers and depletion of their usual food base - mainly weeds and grasses. A number of locust species (eg *Acrididae*) are serious agricultural pests, many of them polyphagous, causing great damage to crops such as sorghum, sunflower, soybeans, millet, wheat, eucalyptus, banana, corn, rice, palms, citrus fruits, sunflower, potatoes, tobacco, sugar cane, beans, etc. (Le Gall et al. 2019) Representatives such as *Calliptamus italicus* (Linnaeus, 1758), *Anacridium melanorhodon* (Walker, 1870), *Schistocerca* sp., *Docioastaurus maroccanus* (Thunberg, 1815), *Australris guttulosa* (Walker, 1870), *Nomadacris septemfasciata* (Serville, 1883), *Locusta migratoria migratoria* (Linnaeus, 1758), *Locusta migratoria migratorioides* (Reiche and Fairmaire, 1849), *Oedaleus* spp. are very important in terms of their interactions with livestock grazing practices.

Most locusts also originate from pastures; grassland ecosystems are subject to agricultural expansion, urbanization, energy development and desertification, making them among the most endangered biomes on Earth (Hoekstra et al. 2005). For some grassland ecosystems and food plantations, the Moroccan grasshopper *Docioastaurus maroccanus* (Thunberg, 1815) or the red grasshopper *Nomadacris septemfasciata* (Audinet-Serville, 1883), this increase in anthropogenic change, together with modern control practices, has led to a reduction in outbreaks (Le Gall et al. 2019).

The current article summarizes species of both orders (Blattodea and Orthoptera) and the corresponding immune responses that are known in them, which is pertinent to the elucidation of the defense mechanisms and would facilitate a number of researchers in the field of biological control of insect pests. Significant species of cockroaches, termites, locusts, and crickets have been analyzed in more details.

Studies on the defense mechanisms of significant species of Blattodea and Orthoptera

Periplaneta americana

P. americana is a species intensively studied for its immune mechanisms due to its importance as a carrier of a number of infectious diseases. Along with several other species, they are vectors of a number of pathogens (32 species of bacteria, including *Salmonella* and *Shigella* species, 15 species of fungi and molds, 7 helminths - intestinal parasites, 2 protozoa and 1 virus that are harmful to humans are carried in or on cockroaches and in their faeces (Mille & Peters 2004, Zarchi & Vatani 2009, Allotey et al. 2009, Akbari et al. 2015). Two species of cockroaches (*B. germanica* and *Eublaberus posticus*) have been studied in cultivation-based studies (Tachbele et al. 2006, Vahabi et
al. 2007). Due to their significance as pests, studies on their immunity have justifiably been intensified. In a study of cockroach hemocytes, Scharrer (1972) reported that they contained a class of unusual cytoplasmic inclusion bodies which seem to undergo striking transformations in response to specific functional demands. Also noteworthy is that the capacity for the uptake of small particles by micropinocytosis is demonstrated by the localization of horseradish peroxidase activity at the cellular surface and within cytoplasmic vesicles. The author concluded that the diversity of structural appearances reflected a division of labor, while the many transitional features of hemocyte morphology favored the concept of functional flexibility of one basic cell type rather than a strict classification into distinctly separate cellular types.

When injecting a specific bee toxin, Karp & Rheins (1980) found a secondary immune response and that this humoral response of cockroaches to soluble protein toxins was specific and had the characteristics of immunological memory. Although insects have a simpler anatomy than vertebrates, the underlying molecular genetics may be as complex. In addition, vertebrate and invertebrate animals may be subject to equally complex, though different, environmental stresses (Karp 1990).

Baines & Downer (1994) investigated the effects of 5-hydroxytryptamine, octopamine and dopamine on phagocytic activity and hemocyte nodule formation in cockroaches. Survival of cockroaches exposed to LD₃₀ Staphylococcus aureus is increased in the presence of 5-HT and octopamine, while dopamine has no effect. Antagonistic and agonistic studies of cockroach survival support in vitro results, suggesting that both octopamine and 5-HT-sensitive receptors are found in cockroach hemocytes and are involved in the recovery of cockroaches from bacterial infection. Studies of hemocoele and hemocytes in treated cockroaches have shown at least two mechanisms by which 5-HT and octopamine can increase survival are by increasing phagocytosis and nodule formation. Shaban et al. (2010) investigated the cellular and humoral immune responses of adult American cockroaches, P. americana to the Egyptian entomopathogenic nematode Steinernema sp. Nematode injection reduced the total hemocyte count by 12 hours after injection, followed by an increase to the control level at 24 hours after injection. Phenoloxidase (PO) activity in the plasma of cockroaches injected with nematodes increased significantly at 12 hours post-injection, followed by a decrease at 24 hours post-injection. Both activities were significantly higher than those found in non-injected and water-injected P. americana plasma. The results suggest that the bacterial complex Steinernema has effective immunosuppressive mechanisms, leading to septicemia and rapid death of the American cockroach. Mudoi et al. (2020) examined hemocytes in fungal infection with Beauveria bassiana, identifying changes in the dynamics of the groups of prohemocytes (PRs), plasma cells (PLs), granulocytes (GRs) and spherulocytes (SPs), their morphology. GRs, predominant hemocytes involved in cell-mediated defense, responded to infection in different ways, including the formation of fine pseudopodia-like cytoplasmic extensions that accumulate together. Duarte et al. (2020) found that various stressful conditions such as starvation and dehydration do not affect the total number of hemocytes, but there are changes in their number depending on the type. In insects without food and water, the proportion of prohemocytes increases and plasma cells decrease.
Table 1. Classification of different types of immune responses and pathways.

Classification	Specification of the immune responses
AMPs	Antimicrobial peptides: drosocin, diptericin and others
Signaling	Mechanisms, relating to immune signaling: IMD, Toll and JAK/STAT
	The IMD pathway includes the proteins: Imd, Relish, RING, BIR and others
	The Toll pathway includes: Toll, Pelle, Spätzle, Tube, Cactus, Dorsal, DIF and others
	The JAK/STAT pathway includes: JAK, STAT, DOME, Domeless, Hopscotch and others
Pathogen recognition	PGRPs (peptidoglycan recognition proteins), β-1,3-glucan recognition proteins, immunolectins, integrins
Hemocytes	Lamellocytes, proleukocytes, plasmatocytes and others
Immune responses	Phagocytosis, nodulation, melanisation, and encapsulation
Antiviral responses	RNA interference: the enzymes Argonaute, R2D2, Dicer and others

Table 2. List of cockroaches, termites and orthopterans, authors who have investigated their immunity, and studied topics (according to Table 1).

Blattodea	Studied topics (Authors)
Archimandrita tessellata	Hemocytes (Kolundžić et al. 2018)
Blaberus craniifer	Immune responses (Dularay & Lackie 1987); Hemocytes (Kolundžić et al. 2018)
B. discoidalis	Hemocytes, Signaling (Durrant et al. 1993); Signaling (Chen et al. 1995); Signaling (Chen et al. 1999)
B. giganteus	Hemocytes (Arnold & Salkeld 1967)
Blatta orientalis	Immune responses (Dularay & Lackie 1987); Hemocytes, Immune responses (Karp 1990)
Blattella germanica	Hemocytes (Chiang et al. 1988); Signaling (Zhang & Chen 2014); AMPs, Signaling (Zhou et al. 2014); Hemocytes, Immune responses (Lopez-Urbe et al. 2016); AMPs, Signaling (Harrison et al. 2018); AMPs (Silva et al. 2020); Immune responses (Ray et al. 2020); Immune responses (Pan et al. 2020)
Byrsotria fumigata	Hemocytes (Scharrer 1972)
Coptotermes formosanus	Immune responses (Hussain & Wen 2012); AMPs, Signaling (Husseneder & Simms 2014)
Diploptera punctata	Hemocytes (Arnold 1970)
Drepanotermes rubriceps	AMPs (Bulmer & Crozier 2004)
Gromphadorhina coquereliana	Hemocytes (Lubawy & Słocińska 2020)
G. portentosa	Hemocytes (Scharrer 1972); Hemocytes (Gupta 1985); Immune responses (Bronstein & Conner 1984); Hemocytes (Grebtsova & Prisny 2014)
Nasutitermes comatus	AMPs (Bulmer & Crozier 2004)
N. dixoni	AMPs (Bulmer & Crozier 2004)
N. fumigatus	AMPs (Bulmer & Crozier 2004)
N. exitiosus	AMPs (Bulmer & Crozier 2004)
N. graveolus	AMPs (Bulmer & Crozier 2004)
N. longipennis	AMPs (Bulmer & Crozier 2004)
N. magnus	AMPs (Bulmer & Crozier 2004)
N. pluvialis	AMPs (Bulmer & Crozier 2004)
N. triodae	AMPs (Bulmer & Crozier 2004)
N. walkeri	AMPs (Bulmer & Crozier 2004)
Periplaneta americana	Hemocytes (Scharrer 1972); Hemocytes, Signaling (Lackie 1979); Immune responses, AMPs (Karp & Rheins 1980); Hemocytes (Jones & Bell 1982);
Hemocytes, Immune responses (Lackie et al. 1985); Immune responses (Dularay & Lackie 1987); Hemocytes, Immune responses (Karp 1990); Signaling, Immune responses (Tunaz & Stanley 2000); Immune responses (Hartman & Karp 1989); Immune responses (Faulhaber & Karp 1992); Signaling, Immune responses (Baines et al. 1992); Signaling, Immune responses (Baines & Downer 1994); Immune responses (Brown et al. 1994); Immune responses (Gritsai et al. 2004); Immune responses (Shaban et al. 2010); Hemocytes, Immune Responses (Mudoi et al. 2020); Immune responses (Duarte et al. 2020)

Pseudacanthotermes spiniger	AMPs (Lamberty et al. 2001)
Reticulitermes chinensis	AMPs, Immune responses (Liu et al. 2015)
R. flavipes	Immune responses (Chouvenca et al. 2009; AMPs, Immune responses (Zeng et al. 2014)); AMPs (Zeng et al. 2016); AMPs, Hemocytes (Zeng et al. 2018); AMPs, Signaling (Hamilton & Bulmer 2012)
R. speratus	AMPs, Signaling (Mitaka et al. 2017)
Salganea esakii	AMPs, Immune responses (Araújo et al. 2021)
S. taiwanensis	AMPs, Immune responses (Araújo et al. 2021)
Tumulitermes pastinator	AMPs (Bulmer & Crozier 2004)

Orthoptera

Acheta domesticus	Hemocytes (Zhang & Zhang 2021)	
Aiolopus thalassinus tamulus	Hemocytes (Zhang & Zhang 2021)	
Allonemobius socius	Immune responses (Fedorka et al. 2013)	
Atractomorpha sinensis	Hemocytes (Zhang & Zhang 2021)	
Aularches miliaris	Hemocytes (Zhang & Zhang 2021)	
Bryodema gebleri	Hemocytes (Zhang & Zhang 2021)	
B. gebleri mongolicum	Hemocytes (Zhang & Zhang 2021)	
B. nigroptera	Hemocytes (Zhang & Zhang 2021)	
Bryodemella tuberculatum dilatum	Hemocytes (Zhang & Zhang 2021)	
Calliptamus abbreviatus	Hemocytes (Zhang & Zhang 2021)	
C. barbarus	Hemocytes (Zhang & Zhang 2021)	
C. italicus	Hemocytes (He et al. 2017); Hemocytes (Zhang & Zhang 2021)	
Camnula pellucida	Immune responses (Carruthers et al. 1992)	
Ceracris fasciata	Hemocytes (Zhang & Zhang 2021)	
C. nigricornis laeta	Hemocytes (Zhang & Zhang 2021)	
Chondracris rosea	Hemocytes (Zhang & Zhang 2021)	
Choroedocus violaceipes	Hemocytes (Zhang & Zhang 2021)	
Chorthippus biguttulus	Immune responses (Kurtz et al. 2002)	
Dasyhippus barbipes	Hemocytes (Zhang & Zhang 2021)	
D. peipingensis	Hemocytes (Zhang & Zhang 2021)	
Diabolocatantops pinguis	Hemocytes (Zhang & Zhang 2021)	
Decticus verrucivorus	Hemocytes (Öztürk et al. 2018)	
Dociostaurus maroccanus	Signaling (Rafiei et al. 2018)	
Eupholidoptera smyrnensis	Hemocytes (Öztürk et al. 2018)	
Gastrimargus marmoratus	Hemocytes (Zhang & Zhang 2021)	
Gesonula punctifrons	Hemocytes (Zhang & Zhang 2021)	
Gryllodes sigillatus	Immune responses (Gershman et al. 2010)	
Gryllotalpa orientalis	AMPs, Signaling (Kwon et al. 2014)	
Insect Species	Immune Responses/Signaling	References
--------------------------------	---------------------------	------------
Gryllus assimilis		(Miller et al. 1999)
G. bimaculatus	Immune responses; Immune responses	(Louis et al. 1986); (Rantala & Roff 2005); (Cho & Cho 2019)
G. campestris	Immune responses	(Jacot et al. 2005)
G. firmus	Signaling, Immune responses	(Park & Stanley 2006)
G. texensis	Immune responses; Immune responses	(Adamo et al. 2001); (Adamo 2004); (Shoemaker et al. 2006a); (Shoemaker et al. 2006b); (Adamo & Parsons 2006)
G. veletis	Immune responses	(Ferguson et al. 2016)
Glyphotmethis spp.	Hemocytes	(Öztürk et al. 2018)
Haplotrupes brunncriana	Hemocytes	(Zhang & Zhang 2021)
Hieroglyphus tonkinensis	Hemocytes	(Zhang & Zhang 2021)
Locusta migratoria	Signaling, Immune responses; AMPs; Hemocytes	(Hoffmann et al. 1970); (Hoffmann 1980); (Brehélin et al. 1975); (Brehélin et al. 1991); (Zachary & Hoffmann 1984); (Drif & Brehélin 1994); (Cherqui et al. 1998); (Söderhäll & Cerenius 1998); (Goldsworthy & Söderhäll 2002); (Simonet et al. 2002); (Ouedraogo et al. 2003); (Macours et al. 2003); (Lv et al. 2016); (Duressa & Huybrechts 2016); (Duressa 2015); (Han et al. 2017); (Huybrechts & Coltura 2018); (Yu et al. 2016); (Zheng & Xia 2012); (Jiang et al. 2020); (Zhang & Zhang 2021)
Melanoplus sanguinipes	Immune responses	(Inglis et al. 1996)
Oedaleus asiaticus	AMPs, Immune responses	(Huang et al. 2020)
O. infernalis	Hemocytes	(Zhang & Zhang 2021)
Oxya chinensis	Hemocytes	(Zhang & Zhang 2021)
Paracryptera microptera	Hemocytes	(Zhang & Zhang 2021)
Patanga japonica	Hemocytes	(Zhang & Zhang 2021)
Phlaeoba antennata	Hemocytes	(Zhang & Zhang 2021)
P. infumata	Hemocytes	(Zhang & Zhang 2021)
Poekilocerus pictus	Hemocytes	(Jain & Ahi 2016)
Pseudotmethis rubimarginis	Hemocytes	(Zhang & Zhang 2021)
Schistocerca gregaria	Pathogen recognition, Hemocytes	(Lackie 1979); (Lackie et al. 1985); (Gillespie et al. 2000); (Xia et al. 2000); (Bundey et al. 2003); (Simonet et al. 2005); (Tounou et al. 2008); (Elliot et al. 2002); (Elliot et al. 2003)
Stenocatantops splendens	Hemocytes	(Zhang & Zhang 2021)
Stethophyma grossum	Hemocytes	(Zhang & Zhang 2021)
Teleogryllus commodus	Signaling	(Stanley-Samuelson et al. 1987); (Stanley 2000)
T. oceanicus	Immune responses	(Simmons 2005)
Trilophidia annulata	Hemocytes	(Zhang & Zhang 2021)
Xenocatantops brachycerus	Hemocytes	(Zhang & Zhang 2021)
X. humilis	Hemocytes	(Zhang & Zhang 2021)
Zootermopsis nevadensis	Hemocytes	(Lopez-Uribe et al. 2016)
The German cockroach, *B. germanica*, is a global pest that invades buildings, including homes, restaurants and hospitals, often maintained in unsanitary conditions. As a carrier of diseases and a producer of allergens, this species has major health and economic impact on humans.

Factors contributing to the success of the German cockroach include its resistance to a wide range of insecticides, immunity to many pathogens and its ability, as an extremely universal omnivore, to survive on most food sources. *B. germanica* is a pest of public health worldwide that is difficult to control due to its strong reproductive capacity, adaptability and resistance to insecticides. A recently published genome shows that *B. germanica* has an extremely large number of genes encoding proteins (Harrison et al. 2018). Zhou et al. (2014) annotated and classified functionally in terms of BLAST, GO and KEGG, the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways.

López-Uribe et al. (2016) in their study concluded that social insect species have developed behavioral immune defenses that reduce the risk of disease within the group, leading to lower immunity at the individual level. They suggest that insects living in large societies may rely more on behavioral mechanisms, such as hygiene behavior, than on immune function, to reduce the risk of disease transmission in breeding sites among emerging individuals. A significant negative effect on colony size on encapsulation response in individuals was found.

In a study by Harrison et al. (2018), the functions of the 93 significantly expanded gene families were studied in order to explain the successful development of *B. germanica* as a major pest despite adverse conditions. Large extensions have been found in gene families with functions related to the detoxification of insecticides and allelochemicals, protection against pathogens, digestion, sensory perception and gene regulation. This increase may allow *B. germanica* to develop multiple mechanisms of resistance to insecticides and pathogens, and allow for a broad, flexible diet, thus explaining its success in conditions of poor hygiene and repetitive chemical control. Silva et al. (2020) examining the German cockroach found that its defense systems require it to adapt to an unhealthy environment with an abundance of pathogenic microbes, in addition to the potential control of its symbiotic systems. To deal with this situation, four families of antimicrobial genes (defensins, termicins, drosomycins, and attacins) were expanded in its genome. Remarkably, a new family of genes (blatelicins) has recently emerged following the duplication and rapid evolution of the attacin gene, which now encodes a larger proteins with a long range of glutamines and glutamic acids. Screening for AMP gene expression in available transcriptional SR projects of *B. germanica* has shown that while some AMPs are expressed during almost all development, others are limited to shorter periods. Pan et al. (2020) highlighted new directions in the control of *B. germanica*, such as suppressing the cockroach population with *Wolbachia* or paratransgens and combining fungal insecticides with synergistic agents to increase insecticidal efficacy.

Order Blattodea also includes termites. Data show that various immune processes have been identified in 17 species of their representatives, e.g. production of antimicrobial peptides, hemocyte activities, immune responses, signaling [Table 2].

Among Orthopteran species, most insect immunity studies have been performed on migratory locusts. Simonet et al. (2002) have cloned two serine protease inhibitor precursors in this species, contributing to the study of its immune signaling. Goldsworthy et
al. (2003) demonstrated pathogen recognition via β-1,3 glucans as an early step in signaling, as opposed to virtually zero recognition of lipopolysaccharide (LPS) by the locust immune system. Similar findings have been demonstrated by Zheng & Xia (2012), which showed through RNA interference (RNAi) that β-1,3 glucan recognition protein (βGRP) is essential for resistance against fungal pathogens and opportunistic infections with insect gut symbionts.

Locusta migratoria

Antifungal immunity in *L. migratoria* is supplemented by a response known as “behavioral fever” whereby insects upregulate their body temperature in order to reduce their infection by a fungus, *Metarhizium anisopliae* (Ouedraogo et al. 2003). Antimicrobial peptides (AMPs) are the typical effectors of the insect immune system. A complete AMP transcriptome analysis of *L. migratoria* is lacking; nevertheless, Lv et al. (2016) have elucidated CSαβ defensins and defensin-like peptides in this species. Huybrechts & Coltura (2018) have pinpointed a role for angiotensin-converting enzyme (ACE) and ACE-inhibitors in fine-tuning the insect immune system by producing complementary AMPs. In a large-scale study on insect hemocytes, Zhang & Zhang (2021) have described hemocyte variations in 35 locust species, including *L. migratoria*. Other Orthopteran species which are objects of insect immunity studies include, notably, the desert locust *Schistocerca gregaria* (Forsskål, 1775) and the house cricket *Acheta domesticus* (Linnaeus, 1758).

Schistocerca gregaria

The desert locust, *S. gregaria*, has been investigated to a greater depth in its role as a pest and potential target for biological control. Early on, Lackie et al. (1985) elucidated hemocyte profiles and encapsulation responses. Gillespie et al. (2000) have pinpointed the susceptibility of *S. gregaria* to fungal infection by *Metarhizium anisopliae*. While desert locusts also exhibit the protective response known as “behavioral fever”, Bundey et al. (2003) demonstrated that it’s an integral part of the insect’s immune system by showing that it can be suppressed by the corticosteroid dexamethasone. Tounou et al. (2008) demonstrated that the microsporidium *Nosema (Paranosema) locustae* Canning, 1953 is an efficient control agent for *S. gregaria* populations, limiting the number of individuals that reach adulthood and discovered mostly synergistic effects during co-infection of *S. gregaria* with *M. anisopliae*. While Simonet et al. (2005) reported the expression of pacifastin-like peptide precursors in desert locusts, surprisingly little is known about the transcriptome of *S. gregaria* under conditions of stress and infection and the effectors of its immune system. Together with an apparent lack of studies of locust immunity against viral pathogens, this represents a large gap in the current knowledge of immunity in this species. It is projected that, due to the significant role of *S. gregaria* as pest in Sub-Saharan Africa, its role in future studies of insect immunity will increase.

Acheta domesticus

The house cricket *A. domesticus* is popular among insect breeders around the world specifically due to its high nutritional value and suitability as food source for amphibian and reptilian exotic pets. Nevertheless, its prevalence as live food source has been declining recently due to its susceptibility to the Cricket Paralysis Virus (CrPV), which causes 95% mortality in infected cricket species (Plus & Scotti, 1984). Early research with crickets focused on pathogen-induced behavioural fever (Adamo 1998). Ardia et al. (2012) have found tradeoffs between induced
immune responses in *A. domesticus* and metabolic rate/antimicrobial activity. Sorrell & Killian (2020) investigated the influence of RNA interference (RNAi) of the fragile X mental retardation gene in house crickets, concluding that its deletion damages the immune system in male, but not female crickets. Reginald et al. (2021) studied the immune responses of *A. domesticus* to injections of pathogenic *Escherichia coli* K1 bacteria, elucidating signaling via prophenoloxidase (ProPO) and responses, associated with hemocyte biogenesis. Overall, *A. domesticus* has served as a model organism in some insect immunity studies, but research has been sporadic, with little systematic understanding of this species immune system, especially in response to fungal and viral pathogens.

Conclusion

Both orders of insects belong to the group of hemimetabolan insects and although they differ from a biological and ecological point of view, they are important for their role as vectors of a number of infectious diseases (Blattodea) as well as enemies with significant economic importance in the field of agriculture (Orthoptera). In this regard, the study of the defense mechanisms of these insects is important for a more in-depth study of the possibilities of control when their population density is high. The processes of innate immunity established so far (hemocytes activities, antimicrobial peptides, pathogen recognition, signaling pathways, immune and antiviral responses) are important and reveal new data and facts, which would lead to gaps in knowledge regarding the effects of various groups of pathogens on them and the registered insect physiological protective responses.

References

Abd-El Wahed SMN, Elhadidy NM. 2018. Immunity changes in *Locusta migratoria* Linnaeus (Orthoptera: Acrididae) infected by entomopathogenic nematode *Steinernema carpocapsae* (Rhabditida: Steinernematidae). *Journal of Plant Protection and Pathology*, 9(12): 877-881.

Adamo SA. 1998. The specificity of behavioral fever in the cricket *Acheta domesticus*. *Journal of Parasitology*, 84: 529–533.

Adamo SA. 1999. Evidence for adaptive changes in egg-laying in crickets exposed to bacteria and parasites. *Animal Behaviour*, 57: 117–124.

Adamo SA, Jensen M, Younger M. 2001. Changes in lifetime immunocompetence in male and female *Gryllus texensis* (formerly *G. integer*): trade-offs between immunity and reproduction. *Animal Behaviour*, 62: 417–425.

Adamo SA. 2004. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket *Gryllus texensis*. *Journal of Insect Physiology*, 50: 209–216.

Adamo SA, Parsons NM. 2006. The emergency life-history stage and immunity in the cricket, *Gryllus texensis*. *Animal Behaviour*, 72(1): 235-244.

Akbari S, Oshaghi MA, Hashemi-Aghdam SS, Hajikhani S, Oshaghi G, Shirazi MH. 2015. Aerobic bacterial community of American cockroach *Periplaneta americana*, a step toward finding suitable paratransgenesis candidates. *Journal of Arthropod-Borne Diseases*, 9(1): 35–48.

Allen BW. 1987. Excretion of viable tubercle bacilli by *Blatta orientalis* (the oriental cockroach) following ingestion of heat-fixed sputum smears: a laboratory investigation. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 81: 98-99.

Allotey J, Mpuchane S, Gashe BA, Simpanya M, Matsheka I. 2009. Trapping of *Blattella germanica* (L) populations in human dwellings in Gaborone, Botswana. *Journal
Araújo J, Moriguchi MG, Uchiyama S, Kinjo N, Matsuura Y. 2021. *Ophiocordyceps salganeicola*, a parasite of social cockroaches in Japan and insights into the evolution of other closely-related Blattodea-associated lineages. *IMA fungus*, 12(1): 3.

Ardia DR, Gantz JE, Schneider BC, Strebel S. 2012. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. *Functional Ecology*, 26: 732–739.

Arnold JW, Salkeld EH. 1967. Morphology of the haemocytes of the giant cockroach, *Blaberus giganteus*, with histochemical tests. *The Canadian Entomologist*, 99(11): 1138–1145.

Baines D, DeSantis T, Downer R. 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (*Periplaneta americana*) haemocytes. *Journal of Insect Physiology*, 38: 905–914.

Baines D, Downer RGH. 1994. Octopamine enhances phagocytosis in cockroach hemocytes: Involvement of inositol trisphosphate. *Archives of Insect Biochemistry and Physiology*, 26: 249–261.

Boigegrain RA, Mamas H, Brehelin M, Paroutaud P, Coletti-Previéro MA. 1992. Insect immunity: two proteinase inhibitors from hemolymph of *Locusta migratoria*. *Biochemical and Biophysical Research Communications*, 189(2): 790–793.

Brehelin M, Hoffmann JA, Matz G, Porte A. 1975. Encapsulation of implanted foreign bodies by hemocytes in *Locusta migratoria* and *Melolontha melolontha*. *Cell Tissue Research*, 160: 283–289.

Brehelin M, Boigegrain RA, Drif L, Coletti-Previéro MA. 1991. Purification of a protease inhibitor which controls prophenoloxidase activation in hemolymph of *Locusta migratoria* (Insecta). *Biochemical and Biophysical Research Communications*, 179: 841–846.

Bulmer MS, Crozier RH. 2004. Duplication and diversifying selection among termite antifungal peptides. *Molecular Biology and Evolution*, 21(12): 2256–2264.

Brown GE, Anderson CL, Scruggs JL. 1994. Shock-induced analgesia in the cockroach (*Periplaneta americana*). *Psychological Reports*, 74: 1051–1057.

Carruthers RI, Larkin TS, Firstencel H, Feng ZD. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper, *Schistocerca gregaria*. *Archives of Insect Biochemistry and Physiology*, 52(4), 183–192.

Bronstein SM, Conner WE. 1984. Endotoxin-induced behavioural fever in the Madagascar cockroach, *Gromphadorhina portentosa*. *Journal of Insect Physiology*, 30(4):327–330.

Che Ghani BM, Oothuman P, Hashim BB, Rusli BL. 1993. Patterns of hookworm infections in traditional Malay villages with and without JOICFP Integrated Project in Peninsular Malaysia-1989. In: Yokogawa M. (Ed). *Collected papers on the control of soil transmitted helminthiases*, Tokyo: APCO, 5, pp.14–21.

Chen C, Durrant HJ, Newton RP, Ratcliffe NA. 1995. A study of novel lectins and their involvement in the activation of the prophenoloxidase system in *Blaberus discoidalis*. *Biochemical Journal*, 310(1): 23–31.
Chen C, Rowley AF, Newton RP, Ratcliffe NA. 1999. Identification, purification and properties of a beta-1,3-glucan-specific lectin from the serum of the cockroach, *Blaberus discoidalis* which is implicated in immune defence reactions. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 122: 309–319.

Cherqui A, Duvic B, Reibel, C. Brehelin M. 1998. Cooperation of dopachrome conversion factor with phenoloxidase in the eumelanin pathway in haemolymph of *Locusta migratoria* (Insecta). *Insect Biochemistry and Molecular Biology*, 28: 839–848.

Chiang AS, Gupta AP, Han SS. 1988. Arthropod immune system: I. Comparative light and electron microscopic accounts of immunocytes and other hemocytes of *Blattella germanica* (Dictyoptera: Blattellidae). *Journal of Morphology*, 198(3): 257-267.

Cho Y, Cho S. 2019. Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, *Gryllus bimaculatus*. *Scientific Reports*, 9: 18066

Chouvenca T, Nan-Yao S, Robert A. 2009. Cellular encapsulation in the eastern subterranean termite, *Reticulitermes flavipes* (Isoptera), against infection by the entomopathogenic fungus *Metarhizium anisopliae*. *Journal of Invertebrate Pathology*, 101 (3): 234-241.

Cotton MF, Wasserman E, Pieper CH, Van Tubbergh D, Campbell G, Fang FC, Barnes J. 2000. Invasive disease due to extended spectrum beta-lactamase-producing *Klebsiella pneumoniae* in a neonatal unit: the possible role of cockroaches. *Journal of Hospital Infection*, 44: 13-17.

Czajka E, Pancer K, Kochman M, Gliniewicz A, Sawicka B, Rabczenko D, Stypulkowska-Misiurewicz H. 2003. Characteristics of bacteria isolated from body surface of German cockroaches caught in hospitals. *Przeglad Epidemiologiczny*, 57: 655-662.

Drif L, Brehélin M. 1994. Purification and characterization of an agglutinin from the hemolymph of *Locusta migratoria* (Orthoptera). *Insect Biochemistry and Molecular Biology* 24(3): 283-289.

Duarte JP, Silva CE, Ribeiro PB, Cárcamo MC. 2020. Do dietary stresses affect the immune system of *Periplaneta americana* (Blattaria: Blattidae)? *Brazilian Journal of Biology = Revista brasileira de biologia*, 80(1): 73–80.

Dularay B, Lackie AM. 1987. The effect of biotic and abiotic implants on the recognition of *Blatta orientalis* cuticular transplant by the cockroach *Periplaneta americana*. *Developmental and Comparative Immunology*, 11 (1): 69-77.

Duressa TF. 2015. Exploring cellular and molecular aspects of the immune system in *Locusta migratoria*. PhD. Thesis. 164 pp.

Duressa TF, Huybrechts R. 2016. Development of primary cell cultures using hemocytes and phagocytic tissue cells of *Locusta migratoria*: an application for locust immunity studies. *In Vitro Cellular & Developmental Biology - Animal*, 52(1): 100-106.

Durrant HJ, Ratcliffe NA, Hipkin CR, Aspan A, Soderhall K. 1993. Purification of the pro-phenol oxidase enzyme from haemocytes of the cockroach *Blaberus discoidalis*. *Biochemical Journal* 289(1): 87–91.

Elliot SL, Blanford S, Thomas MB. 2002. Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. *Proceedings of the Royal Society of London Series B-Biological Sciences*, 269: 1599–1607.

Elliot SL, Blanford S, Horton CM, Thomas MB. 2003. Fever and phenotype: transgenerational effect of disease on desert locust phase state. *Ecology Letters*, 6: 1–7.

El-Sherbini GT, El-Sherbini ET. 2011. The role of cockroaches and flies in mechanical
transmission of medical important parasites. *Journal of Entomology and Nematology*, 3(7): 98-104.

Fakoorziba MR, Eghbal F, Hassanzadeh J, Moemenbellah-Fard MD. 2010. Cockroaches (*Periplaneta americana* and *Blattella germanica*) as potential vectors of the pathogenic bacteria found in nosocomial infections. *Annals of Tropical Medicine & Parasitology*, 104 (6): 521-528.

Faulhaber LM, Karp RD. 1992. A diphasic immune response against bacteria in the American cockroach. *Immunology*, 75(2): 378–381.

Fedorka KM, Copeland EK, Winterhalter WE. 2013. Seasonality influences cuticle melanization and immune defense in a cricket: 2 support for a temperature-dependent immune investment hypothesis in insects. *The Journal of Experimental Biology*, 216: 4005-4010.

Feizhaddad MH, Kassiri H, Sepand M-R, Ghasemi F. 2012. Bacteriological survey of American cockroaches in hospitals. *Middle-East Journal of Scientific Research*, 12(7): 985-989.

Ferguson LV, Heinrichs DE, Sinclair BJ. 2016. Paradoxical acclimation responses in the thermal performance of insect immunity. *Oecologia*, 181(1): 77-85.

Gershman SN. 2008. Sex-specific differences in immunological costs of multiple mating in *Gryllus vocalis* field crickets. *Behavior Ecology*, 19: 810-815.

Gershman SN, Barnett CA, Pettinger AM, Weddle CB, Hunt J, Sakaluk SK. 2010. Give ‘till it hurts: trade-offs between immunity and male reproductive effort in the decorated cricket, *Gryllodes sigillatus*. *Journal of Evolutionary Biology*, 23(4): 829-39.

Gillespie JP, Burnett C, Charnley AK 2000. The immune response of the desert locust *Schistocerca gregaria* during mycosis of the entomopathogenic fungus, *Metarhizium anisopliae var acridum*. *Journal of Insect Physiology*, 46(4): 429–437.

Goldsworthy GJ, Opoku-Ware K, Mullen LM. 2002. Adipokinetic hormone enhances laminarin and bacterial lipopolysaccharide induced activation of the prophenoloxidase cascade in the African migratory locust, *Locusta migratoria*. *Journal of Insect Physiology*, 48(6): 601-608.

Goldsworthy G, Mullen L, Opoku-Ware K, Chandrakant S. 2003. Interactions between the endocrine and immune systems in locusts. *Physiological Entomology*, 28: 54–61.

Grebtsova EA, Prisny AA. 2014. Relationship between mitochondria-associated fluorescence and hemocyte motility in *Gromphadorhina portentosa*. *International Symposium "Biological motility: new facts and hypotheses"*. Pushchino: ITEB - RAS, 362 p.

Gritsai OB, Dubynin VA, Pilpenko VE, Petrov OP 2004. Effects of peptide and nonpeptide opioids on protective reaction of the cockroach *Periplaneta americana* in the ‘hot camera’. *Journal of Evolutionary Biochemistry and Physiology*, 40: 153–160.

Gupta AP. 1985. The identity of the so-called crescent cell in the hemolymph of the cockroach, *Gromphadorhina portentosa* (Schaum) (Dictyoptera: Blaberidae). *Cytologia*, 50(4): 739-746.

Hamilton C, Bulmer MS. 2012. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. *Developmental and Comparative Immunology*, 36(2): 372–377.

Han P, Han J, Fan J, Zhang M, Ma E, Li S, Fan R, Zhang J. 2017. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in *Locusta migratoria*. *Developmental and Comparative Immunology*, 72: 128-139.

Harrison MC, Arning N, Kremer L, Ylla G, Belles X, Bornberg-Bauer E, Huylmans AK, Jongepier E, Piulachs MD, Richards S, Schal
C. 2018. Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest. *Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution*, 330(5): 254–264.

Hartman RS, Karp RD. 1989. Short-term immunologic memory in the allograft response of the American cockroach, *Periplaneta americana*. *Transplantation*, 47(5): 920-922.

He L, Zhang YJ, Fan TS, Ji R. 2017. Study on morphology of hemocytes in *Calliptamus italicus*. *Journal of Environmental Entomology*, 39(5): 1100–1104.

Hoffmann JA, Porte A, Joly P. 1970. Physiologie des insectes. Sur la localisation d’une activité phénoloxidasique dans les coagulocytes de *Locusta migratoria* L. (Orthoptère). *Comptes Rendus de l’Académie des sciences* - Paris, 270 (Série D) 629-631.

Huang X, Lv S, Zhang Z, Chang BH. 2020. Phenotypic and transcriptomic response of the grasshopper *Oedaleus asiaticus* (Orthoptera: Acrididae) to toxic rutin. *Frontiers in Physiology*, 11: 52.

Hussain A, Wen SY. 2012. Induction of immune response among formosan subterranean termites, *Coptotermes formosanus* Shiraki (Rhinotermitidae: Isoptera). *African Journal of Microbiology Research*, 6(5):995–1000.

Husseneder C, Simms DM. 2014. Effects of caste on the expression of genes associated with septic injury and xenobiotic exposure in the Formosan subterranean termite. *PloS one*, 9(8): e105582.

Huybrechts R, Coltura L. 2018. Immune-induced angiotensin-converting enzyme assures the appearance of complementary peptides in *Locusta migratoria* for fine-tuning the innate immune response by inhibiting immune-activated phenoloxidase. *Trends in Entomology*, 14.

Inglis GD, Johnson DL, Goettel MS. 1996. Effects of temperature and thermoregulation on mycosis by *Beauveria bassiana* in grasshoppers. *Biological Control*, 7: 131–139.

Jacot A, Scheuber H, Kurtz J, Brinkhof MW. 2005. Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets *Gryllus campestris*. *Proceedings of the Royal Society B: Biological Sciences*, 272: 63–69.

Jain N, Ahi J. 2016. Haemocytes count of *Poekilocerus pictus* (Fabr.)(Orthoptera: Acrididae) during fungal infection. *International Journal of Applied Research*, 2(8): 19-24.

Jiang W, Peng Y, Ye J, Wen Y, Liu G, Xie J. 2020. Effects of the entomopathogenic fungus *Metarhizium anisopliae* on the mortality and immune response of *Locusta migratoria*. *Insects*, 11(1): 36.

Jones SE, Bell WJ. 1982. Cell-mediated immune-type response of the American cockroach. *Developmental and Comparative Immunology*, 6: 35-42.

Karp RD. 1990. Cell-mediated immunity in invertebrates. *BioScience*, 40(10): 732–737.

Karp RD, Rheins LA, 1980. Induction of specific humoral immunity to soluble proteins in the American cockroach (*Periplaneta americana*). I. Nature of the primary response. *Developmental and Comparative Immunology*, 4: 447-458.

Kolundžić E, Kovacević G, Špoljar M, Sirovina D. 2018. A comparison of hemocytes in Phasmatodea and Blattodea species. *Entomological News*, 127(5):471-477.
Kopanic RJ. 1994. Cockroches as vectors of *Salmonella*: laboratory and field trials. *Journal of Food Protection*, 57: 125-132.

Kurtz J, Klappert K, Schneider W, Reinhold K. 2002. Immune defence, dispersal and local adaptation. *Evolutionary Ecology Research*, 4: 431–439

Kwon H, Bang K, Lee M, Cho S. 2014. Molecular cloning and characterization of a lysozyme cDNA from the mole cricket *Gryllotalpa orientalis* (Orthoptera: Gryllotalpidae). *Molecular Biology Reports*, 41(9): 5745-5754.

Lackie AM. 1979. Cellular recognition of foreignness in two insect species, the American cockroach and the desert locust. *Immunology*, 36: 909-914.

Lackie AM, Tackle G, Tetley L. 1985. Haemocytic encapsulation in the locust *Schistocerca gregaria* (Orthoptera) and in the cockroach *Periplaneta americana* (Dictyoptera). *Cell Tissue Research*, 240: 343-351.

Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P. 2001. Insect immunity: Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. *The Journal of Biological Chemistry*, 276(6): 4085–4092.

Le Gall M, Overson R, Cease A. 2019. A Global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. *Frontiers in Ecology and Evolution*, https://doi.org/10.3389/fevo.2019.00263

Liu L, Li G, Sun P, Lei C, Huang Q. 2015. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. *Scientific Reports*, 5: 15106.

López-Uribe, MM, Sconiers WB, Frank SD, Dunn RR, Tarpy DR. 2016. Reduced cellular immune response in social insect lineages. *Biology Letters*, 12(3): 20150984.

Louis C, Jourdan M, Cabanac M. 1986. Behavioral fever and therapy in a rickettsia-infected Orthoptera. *American Journal of Physiology*, 250: 991–995.

Lubawy J, Słocińska M. 2020. Characterization of *Gromphadorhina coquereliana* hemolymph under cold stress. *Scientific Reports*, 10: 12076.

Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. 2016. A family of CSαβ defensins and defensin-like peptides from the migratory locust, *Locusta migratoria*, and their expression dynamics during mycosis and nosemosis. *PLoS One*, 11(8): e0161585

Macours N, Hens K, Francis C, De Loof A, Huybrechts R. 2003. Molecular evidence for the expression of angiotensin converting enzyme in hemocytes of *Locusta migratoria*: stimulation by bacterial lipopolysaccharide challenge. *Journal of Insect Physiology*, 49: 739–746.

Mille P, Peters B. 2004. Overview of the public health implications of cockroaches and their management. *NSW Public Health Bulletin*, 15(12): 208–211.

Miller JS, Howard RW, Rana RL, Tunaz H, Stanley DW. 1999. Eicosanoids mediate nodulation reactions to bacterial infections in adults of the cricket, *Gryllus assimilis*. *Journal of Insect Physiology*, 45: 75–83.

Mitaka Y, Kobayashi K, Matsuura K. 2017. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, *Reticulitermes speratus*. *PLoS One* 12(4): e0175417.

Montresor A, Crompton DWT, Hall A, Bundy DAP, Savioli L. 1998. Guidelines for the evaluation of soil-transmitted helminthiasis and schistosomiasis at community level. *WHO/CTD/SIP/98.1*, 45 pp.

Mott KE. 1989. The World Health Organization and the control of intestinal helminths. In: Yokogawa M (Ed). *Collected papers on the control of soil-transmitted helminthiasis*, Tokyo, APCO, 4: 189-200.

Mudoi A, Das P, Hazarika LK, Das K, Roy S. 2020. Variations in hemocyte profile
induced by Beauveria bassiana (Bals.) Vuill. In Periplaneta Americana (L.) (Blattodea: Ectobiidae). International Journal of Tropical Insect Science, 40: 81–91.

Mullen L, Goldsworthy G. 2003. Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens. Insect Biochemistry and Molecular Biology, 33: 661–670.

Nappi AJ, Seymour J. 1991. Hemolymph phenol oxidases in Drosophila melanogaster, Locusta migratoria, and Austropotamobius pallipes. Biochemical and Biophysical Research Communications, 180(2): 748–754.

Öztürk G, Çakici Ö, Arikan H. 2018. Morphological characterization of hemocyte types in some species belonging to Tettigoniidae and Pamphagidae (Insecta: Orthoptera). Turkish Journal of Zoology, 42: 340–345.

Park Y, Stanley D. 2006. The entomopathogenic bacterium, Xenorhabdus nematophila, impairs insect immunity by inhibition of eicosanoid biosynthesis in adult crickets, Gryllus firmus. Biological Control, 38: 247–253.

Piñera AV, Charles HM, Dinh TA, Killian KA. 2013. Maturation of the immune system of the male house cricket, Acheta domesticus. Journal of Insect Physiology, 59(8): 752–760.
resistance in the cricket Gryllus texensis. Animal Behaviour, 71, 371–380.
Silva FJ, Muñoz-Benavent M, García-Ferris C, Lattore A. 2020. Blattella germanica displays a large arsenal of antimicrobial peptide genes. Scientific Reports, 10: 21058.
Simmons LW. 2005. Bacterial immunity traded for sperm viability in male crickets. Science, 309(5743): 2031–2032.
Simonet G, Claeys I, Vanderperren H, November T, De Loof A, Vanden Broeck J. 2002. cDNA cloning of two different serine protease inhibitor precursors in the migratory locust, Locusta migratoria. Insect Molecular Biology, 11: 249–256.
Simonet G, Breugelmans B, Proost P, Claeys I, Van Damme J, De Loof A, Vanden Broeck J. 2005. Characterization of two novel pacifastin-like peptide precursor isoforms in the desert locust (Schistocerca gregaria): cDNA cloning, functional analysis and real-time RT-PCR gene expression studies. Biochemistry Journal, 388: 281–289.
Söderhäll K, Cerenius L. 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10(1): 23-28.
Sorrell MR, Killian KA. 2020. Innate immune system function following systemic RNA-interference of the Fragile X Mental Retardation 1 gene in the cricket Acheta domesticus. Journal of Insect Physiology, 126: 104097
Stanley DW. 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, NJ.
Stanley-Samuelson DW, Jurenka RA, Blomquist GJ, Loher W. 1987. Sexual transfer of prostaglandin precursor in the field cricket, Teleogryllus commodus. Physiological Entomology, 12: 347–354.
Tachbele E, Erku W, Gebre-Michael T, Ashenafi M. 2006. Cockroach-associated food borne bacterial pathogens from some hospitals and restaurants in Addis Ababa, Ethiopia: Distribution and antibiograms.

Journal of Rural and Tropical Public Health, 5: 34–41.
Tounou AK, Kooyman C, Douk-Kpindou OK, Poehling HM. 2008. Interaction between Paranoesoma locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. Journal of Invertebrate Pathology, 97(3): 203–210.
Tunaz H, Stanley DW. 2000. Eicosanoids mediate nodulation reactions to bacterial infections in adults of the American cockroach, Periplaneta americana (L.). Proceedings of the Entomological Society of Ontario, 130: 97–108.
Vahabi A, Rafinejad J, Mohammadi P, Biglarian F. 2007. Regional evaluation of bacterial contamination in hospital environment cockroaches. Iranian Journal of Environmental Health Science & Engineering, 4: 57–60.
Xia Y, Dean P, Judge AJ, Gillespie JP, Clarkson JM, Charnley AK. 2000. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. Journal of Insect Physiology, 46(9), 1249–1257.
Yu Y, Cao Y, Xia Y, Liu F. 2016. Wright- Giems staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. Journal of Invertebrate Pathology, 139: 19–24.
Zachary D, Hoffmann D. 1984. Lysozyme is stored in the granules of certain haemocyte types in Locusta. Journal of Insect Physiology, 30 (5): 405-411.
Zarchi AA, Vatani H. 2009. A survey on species and prevalence rate of bacterial agents isolated from cockroaches in three hospitals. Vector Borne Zoonotic Diseases, 9(2): 197–200.
Zeng Y, Ping HX, X-Q Yu, Suh S - J. 2014. Multiple antibacterial activities of proteinaceous compounds in crude extract from the Eastern Subterranean Termite, Reticulitermes flavipes Kollar (Blattodea:
Isoptera: Rhinotermitidae). Advances in Research, 2(8): 455-461.

Zeng Y, Hu XP, Suh S-J. 2016. Characterization of antibacterial activities of Eastern Subterranean Termite, Reticulitermes flavipes, against human pathogens. PLoS ONE, 11(9): e0162249.

Zeng Y, Hu XP, Cao G, Suhet SJ. 2018. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Scientific Reports, 8: 13251

Zhang DW, Chen J. 2014. Phenoloxidase is involved in regulating immune response to Escherichia coli in Blattella germanica (Blattodea: Blattellidae). Acta Entomologica Sinica, 57:10, 1123-1132

Zhang W, Chen J, Keyhani, NO, Jin K, Wei Q, Xia Y. 2017. Central nervous system responses of the Oriental migratory, Locusta migratoria manilensis, to fungal infection. Scientific Reports, 7: 10340.

Zhang K, Zhang X. 2021 Haemocyte variations in 35 species of grasshoppers and locusts. Science Progress, 104(4): 1–17

Zheng X, Xia Y. 2012. β-1,3-Glucan recognition protein (bGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis. Developmental and Comparative Immunology, 36: 602–609.

Zhou X, Qian K, Tong Y, Zhu JJ, Qiu X, Zeng X. 2014. De novo transcriptome of the Hemimetabolous German cockroach (Blattella germanica). PloS one, 9(9): e106932.