Introduction

Over the years, dynamic comprehensive evaluation has been of great importance in the comprehensive evaluation theory. Compared with the static comprehensive evaluation, dynamic comprehensive evaluation, which studies on the performances of evaluated objects in a certain time period, faces with more complicated situations [1]. Due to its advantages, dynamic comprehensive evaluation has become increasingly attractive for applications such as economic and management [2]. Furthermore, dynamic comprehensive evaluation is a complex process in which a variety of information needs to be processed. So how to make full use of the information during the dynamic evaluation process has become the worth studying area at present. In the specialized literature there is a considerable amount of research on the methods or applications of the dynamic comprehensive evaluation. The early studies focused on dealing with the real closure of an order field [3,4]. And then the evaluation process has improved through different ways, such as considering value fluctuation [5], object gain [6] or background [7], scattering degree [8,9], as well as programming [10]. At the same time, how to calculate the index or time weight more accurately has become central to optimize the dynamic comprehensive evaluation [11–13]. Moreover, the trend of methods developing toward multiplicity has also promoted the application of dynamic comprehensive evaluation research. How to make full use of the subjective and objective information has become one of the noteworthy content. In this paper, a dynamic comprehensive evaluation method with subjective and objective information is proposed. We use the combination weighting method to determine the index weight. Analysis hierarchy process method is applied to dispose the subjective information, and criteria importance through intercriteria correlation method is used to handle the objective information. And for the time weight determination, we consider both time distance and information size to embody the principle of esteeming the present over the past. And then the linear weighted average model is constructed to make the evaluation process more practicable. Finally, an example is presented to illustrate the effectiveness of this method. Overall, the results suggest that the proposed method is reasonable and effective.

Problem description

Let M be a set which contains m indicators including u_1,u_2,\ldots,u_m. The set N is a set which has n evaluation objects v_1,v_2,\ldots,v_n. The index weight set is $W_u=[w_{u_1},w_{u_2},\ldots,w_{u_m}]$, and...
$w_{ui} \geq 0$ with $\sum_{i=1}^{m} w_{ui} = 1$. The set T is on behalf of the evaluation period from t_1, t_2 to t_p, and the time weight set is $W_T = [w_{t_1}, w_{t_2}, \ldots, w_{t_p}]$ with $w_{t_k} \geq 0$ and $\sum_{k=1}^{p} w_{t_k} = 1$. Under the index u_1, u_2, \ldots, u_m, the evaluation research about objects v_1, v_2, \ldots, v_n during time period T forms a dynamic comprehensive evaluation problem.

\[x_{ij}^{tk} \] stands for the observed value of object $v_j (j=1, 2, \ldots, n)$ under indicator $u_i (i=1, 2, \ldots, m)$ at time $t_k (k=1, 2, \ldots, p)$. The data unification and dimensionless should be stated in the first place [20–23], because there may be distinct in type, unit or order of magnitudes among the indicators. After the data preprocessing, we assume that x_{ij}^{tk} presents the standard data used in this study.

Weight determination

Part 1, the initial weight determination: with AHP method

The analytic hierarchy structure is constructed. The index set M is decomposed into different subsets including certain indicators. And its subordinate relations are confirmed according to the relationship between indicators.

2. The evaluation index comparison judgment matrix \(C_r = (C_g)_{r \times r} \) is confirmed.

\[
C_r = \begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1r} \\
C_{21} & C_{22} & \cdots & C_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & \cdots & C_{rr}
\end{bmatrix}, \quad i, j = 1, 2, \cdots, r \tag{1}
\]

where C_g is the important value after comparing u_i with u_j, and $C_g = 0, C_{ij} = \frac{1}{9} (i \neq j)$ with $C_{ii} = 1$.

3. Single hierarchy sorting and consistency check are affirmed. The characteristic roots of judgment matrix C_r are calculated. After normalizing the characteristic roots, the weights of each indicator in the same evaluation level can be concluded. And then the random consistency ratio CR is confirmed.

\[
CR = \frac{CI}{RI} \tag{2}
\]

$\frac{CI}{RI} = \frac{1}{r-1} \sum_{i=1}^{r} \lambda_i - r$, $r = 1, 2, \cdots, m$. RI is the average random consistency index. If $CR < 0.10$, the sorting has satisfactory consistency.

4. The initial weight, which reflects the subjective information, is determined. The weight of every indicator is calculated at all levels; then the initial weight w_{ui} of indicator u_i is determined.

And $w_{ui} \geq 0$, with $\sum_{i=1}^{m} w_{ui} = 1$.

Part 2, the secondary weight determination: with CRITIC method

CRITIC method, which proposed by Diakoulaki in 1995 [28], reflects the relative importance by applying the comparative and conflict information among the indicators. So CRITIC method is chosen to dispose the objective information that refers to the observed value of evaluation object under the index. And its procedures are as follows:

1. The conflicts between u_i and u_j at time t_k are quantized.

\[
c_{ij}^{tk} = \sum_{l=1}^{m} \left(1 - r_{ijl}^{tk} \right) \tag{3}
\]

where r_{ijl}^{tk} is the correlation coefficient between u_i and u_j at t_k.

2. The information quantity of u_i at time t_k is confirmed.

\[
In_{ij}^{tk} = \sigma_{ui}^{2} \sum_{l=1}^{m} \left(1 - r_{ijl}^{tk} \right) \tag{4}
\]

where σ_{ui}^{2} is the standard deviation of u_i at t_k.

3. The weight of u_i at time t_k is calculated.

\[
w_{ui}^{tk} = \frac{In_{ij}^{tk}}{\sum_{l=1}^{m} In_{ij}^{tk}} \tag{5}
\]

4. The secondary weight is determined. The average index weight of u_i in time phase T is

\[
\bar{w}_{ui}^{m} = \frac{\sum_{k=1}^{p} w_{ui}^{tk}}{p} \tag{6}
\]

where $\bar{w}_{ui}^{m} \geq 0$, and $\sum_{i=1}^{m} \bar{w}_{ui}^{m} = 1$.

Part 3, the index weight determination: with combination weighting method

In this process, we combine the weights, which are confirmed by both AHP and CRITIC methods, to determine the index weight.

Definition 1. The index weight which contains both subjective and objective information is

\[
w_{ui} = \frac{w_{ui}^{s} \bar{w}_{ui}^{o}}{\sum_{i=1}^{m} w_{ui}^{s} \bar{w}_{ui}^{o}} \tag{7}
\]

where $w_{ui}^{s} \geq 0$, and $\sum_{i=1}^{m} w_{ui}^{s} = 1$.

The index weight w_{ui} on the one hand contains the subjective preference of evaluators, and on the other hand reflects the objective information of each indicator. If w_{ui} is close to 0, indicator u_i is less significant, while if w_{ui} is close to 1, the importance of u_i is larger. Above all, the index weight w_{ui} realizes effectively about the combination of both subjective and objective information.
Time weight determination

We deem that the time weight $t_k (t_k \in T)$ significantly associates with two factors: time distance and information size. The former one means that new information has greater importance than the old one, and the latter one implies that the larger the information size of each indicator at time t_k, the more important t_k is.

Definition 2. We define that the weight of time t_k is

$$w_{t_k} = \frac{w_{t_k} W'}{\sum_{k=1}^{p} w_{t_k} W'}$$

(8)

where $w_{t_k} \geq 0$, and $\sum_{i=1}^{p} w_{t_k} = 1$.

In formula (8)

$$w'_{t_k} = \frac{t_k}{\sum_{k=1}^{p} t_k}$$

(9)

$$w''_{t_k} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^o t_k}{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^o t_k}$$

(10)

where $w'_{t_k} \geq 0$, and $\sum_{k=1}^{p} w'_{t_k} = 1$, with $w''_{t_k} \geq 0$, and $\sum_{k=1}^{p} w''_{t_k} = 1$.

The time weight reflects both the time distance and index information. If w_{t_k} is close to 0, time t_k becomes less crucial; while if w_{t_k} is close to 1, the importance of t_k is greater. In a word the time weight embodies the principle of esteeming the present over the past and reflects the importance of information.

Table 1. The results of index weight.

Index	Subjective weight	Objective weight	Combination weight
Number of pollution and destruction accidents	0.12	0.28	0.21
SO₂ per unit area	0.18	0.10	0.11
The ratio of COD emissions and environmental capacity	0.30	0.22	0.41
Population density	0.20	0.10	0.12
Economic density	0.14	0.10	0.08
The ratio of nature reserve	0.06	0.21	0.08

doi:10.1371/journal.pone.0083323.t001

Table 2. The dynamic comprehensive evaluation results.

Provinces	Evaluation values	No.	Risk type
Beijing	4.52	4	IV
Tianjin	4.69	2	IV
Hebei	3.98	7	III
Shanxi	3.71	9	III
Inner Mongolia	2.33	22	II
Liaoning	4.15	6	IV
Jilin	2.69	20	II
Heilongjiang	2.50	21	II
Shanghai	5.10	1	IV
Jiangsu	4.43	5	IV
Zhejiang	3.62	10	III
Anhui	3.12	14	III
Fujian	2.12	27	II
Jiangxi	2.30	23	II
Shandong	4.54	3	IV
Henan	3.82	8	III
Hubei	3.14	13	III
Hunan	2.94	17	II
Guangdong	3.46	11	III
Guangxi	3.00	16	III
Hainan	2.07	28	II
Chongqing	2.84	19	II
Sichuan	2.14	24	II
Guizhou	2.12	25	II
Yunnan	1.82	28	I
Tibet	0.61	31	I
Shaanxi	3.11	15	III
Gansu	2.93	18	II
Chinghai	0.71	30	I
Ningxia	3.30	12	III
Sichang	1.17	29	I

Type IV refers to high risk, type III refers to a less high risk, type II refers to a less low risk, and type I refers to low risk.
doi:10.1371/journal.pone.0083323.t002

Model

The linear weighted average model

To make the evaluation process more practicable, we construct the dynamic comprehensive evaluation model by introducing the optimal ordinal method.

For $\forall u_i \in M$, we set

$$s^{k}_{ij} = \begin{cases}
1 & x_{ij}^o t_k > \frac{x_{ij}^o}{x_{ij}^o} t_k \\
0.5 & x_{ij}^o t_k = \frac{x_{ij}^o}{x_{ij}^o} t_k \\
0 & x_{ij}^o t_k < \frac{x_{ij}^o}{x_{ij}^o} t_k
\end{cases}$$

(11)

where $x_{ij}^o t_k$ is the standardized data of object v_i under indicator u_i at time t_k, and $i = 1, 2, \cdots, m$, $j = 1, 2, \cdots, n$, with $j \neq j'$ [29].

Definition 3. The optimal ordinal of v_i at time t_k by comparing with the other $n-1$ evaluation objects is...
Table 3. The dynamic comprehensive evaluation results in ref. [15].

Risk type	Provinces
High risk	Tianjin, Shanghai, Beijing
Medium risk	Hebei, Jiangsu, Shandong, Ningxia, Zhejiang, Henan, Shanxi, Liaoning, Guangdong, Chungking, Guangxi, Hunan
Low risk	Anhui, Hunan, Guizhou, Shaanxi, Fujian, Jiangxi, Sichuan, Gansu, Yunnan, Jilin, Hainan, Heilongjiang, Inner Mongolia, Tibet, Chinghai, Sinkiang

The provinces in each risk type are ordered from large to small according to their evaluation values. doi:10.1371/journal.pone.0083323.t003

\[
S_{yk} = \sum_{f=1, j \neq f}^{n} \frac{S_{yk}'w_{uf}}{w_{uf}}
\]

(12)

Definition 4. The total optimal ordinal of \(v_j \) at time \(t_k \) by comparing with other \(n-1 \) evaluation objects is

\[
S_{yk} = \sum_{f=1}^{m} \frac{S_{yk}'w_{uf}}{w_{uf}}
\]

(13)

The linear weighted average model is

\[
S_{ij} = \frac{\sum_{k=1}^{p} \frac{S_{yk}w_{lk}}{w_{lk}}}{T_p - T_l + 1}
\]

(14)

From the formula (14), we know that \(S_{ij} \) is the comprehensive evaluation value which is determined by the linear weighted average model. Whether \(v_j \) plays well or not in the time phase \(T \) is known clearly by comparing \(S_{ij} \) with other objects.

Example analysis

We evaluate the regional environmental risk in China from 2003 to 2007 by using the same evaluation index, information, data pretreatment method and so on in ref. [15]. And furthermore, we compare the evaluation results with the ones in ref. [15] to illustrate the effectiveness of the above method. The original data is collected in China Statistical Yearbook (2004–2008) and China Environmental Yearbook (2004–2008). The specific calculation processes are as follows:

(1) The same extremum method in ref. [15] is adopted to standardize the initial data;
(2) The index weight is determined. For the subjective information, we apply the same one which was calculated by AHP method in ref. [15]. The objective information is computed by formulae (3)–(6) of CRITIC method. The combination of subjective and objective weights is determined finally by using the formula (7);
(3) The time weight of each evaluation year is confirmed by utilizing formulae (8)–(10). \(W_{2003-2007} = [0.17, 0.21, 0.20, 0.20, 0.21] \);
(4) The comprehensive evaluation values are calculated. We apply the formulae (11)–(14) to calculate the comprehensive evaluation value, and finally sort the evaluation objects.

(5) Compared the evaluation results with the ones in ref. [15].

Table 1 shows that there are many differences between subjective and objective weights. Subjective weight has on behalf of the evaluators, and objective weight reflects the data information of index. From table 1, it is observed that the combination of subjective and objective weights effectively states the significance of index.

Table 2 displays the dynamic comprehensive evaluation results in this study. Basing on the evaluation values, it is concluded the rank ordering of environmental risk of each provinces; then 31 provinces in China are divided into four risk types. Shanghai, Tianjin, Shandong, Beijing, Jiangsu and Liaoning fall into the category of type IV which has the high environment risk. The evaluation values of 10 provinces between 3.00 and 4.00, and they have a high risk. And 11 provinces including Hunan, Gansu, Chungking and so forth are a form of type II which means a less high risk. Yunnan, Sinkiang, Chinghai and Tibet, whose evaluation values are much lower than others’, are classified as type I which refers to the low risk.

Table 3 exhibits the dynamic comprehensive evaluation results in ref. [15]. Contracted with the evaluation results in ref. [15], the environment risk classification of 31 provinces in China has different degrees of variation in our study. Further analysis of the results, we suggest that the division of environment risk is much more detailed than the one in ref. [15]. Beijing had the high risk and in the third place in ref. [15], while the order is higher than the one in this research. In our study, the rank of Beijing is much more coincided with the actual environment improvement condition from 2003 to 2007. In addition, Jiangsu, Shandong and Liaoning developed rapidly and the environment destructions had increased and so they should be in a high risk at that period. For Yunnan, Sinkiang, Chinghai and Tibet, the damages of the environment were low and they were in the low risk level. While for the other 12 provinces in low risk type in ref. [15], the environment had been destroyed much more than the remaining four provinces’ - Yunnan, Sinkiang, Chinghai and Tibet. So it is not reasonable to put the remaining 12 provinces in the low risk type in ref. [15].

The data provide evidence that the results of this study are more in line with reality than the ones in ref. [15]. The reason why the evaluation results are more elaboration is because both subjective and objective information, which embody in the index and time weights, are applied. Consequently, we consider that the above method makes up for the information insufficient in ref. [15], and to some extent it is more reasonable and effective.

Conclusions and future work

In this paper, we propose a dynamic comprehensive evaluation method with subjective and objective information. The combination weighting method (AHP and CRITIC methods), which
applies much more data information, has improved the accuracy of index weight. The time weight has reflected the principle of esteeming the present over the past by considering both time distance and information size in each time point. We construct the dynamic comprehensive evaluation model by introducing the optimal ordinal method. And the advantage of corresponding to reality of the proposed method has known clearly after compared with the results in ref. [15]. In all, we argue that the dynamic comprehensive evaluation method with subjective and objective information may have an effective and reasonable evaluation results. However, there are still some limitations in this research. Possible future research topics can be stating nonlinear programing method into the dynamic comprehensive evaluation process.

References

1. Guo Y (2007) The theory, method and application of comprehensive evaluation. Beijing: Science Press Ltd.
2. Guo Y (2012) Comprehensive Evaluation Theory, Method and Extensions. Beijing: Science Press Ltd.
3. Duru D, Gonzalez-Vega L (1996) Dynamic evaluation and real closure. Mathematics and computers in Simulation 12: 551–560.
4. Grammatikoulos V, Kousettos A, Tsigilis N, Theodorakis Y (2004) Applying Dynamic evaluation approach in education. Studies in Educational Evaluation 30: 255–263.
5. Guo Y, Hu L, Wang Z (2011) Method of dynamic comprehensive evaluation based on three stage difference driving features. Journal of Systems Engineering 26: 546–550.
6. Ma Z, Guo Y, Zhang F, Pan Y (2009) Method of dynamic comprehensive evaluation based on gain level inspiring. Journal of Systems Engineering 24: 243–247.
7. Guo S, Li W, Guo Y (2012) A Dynamic Comprehensive Evaluation Method Reflecting Resource Background Difference. Journal of Northeastern University (Natural Science) 33: 296–299.
8. Guo Y, Pan J, Cao Z (2001) Dynamic Comprehensive Evaluation Method Supported by Multi-Dimensional Time Series. Journal of Northeastern University (Natural Science) 22: 465–467.
9. Guo Y (2002) New theory and method of dynamic comprehensive evaluation. Journal of Management Sciences in China 3: 49–54.
10. Oroz MC, Delado JJ (2004) Evaluation of the comprehension of the dynamic modeling in UML. Information and Software Technology 46: 35–53.
11. Guo Y (1995) Doubly Weighting Method for Dynamic Synthetical Evaluation. Journal of Northeastern University (Natural Science) 16: 347–350.
12. Guo Y, Tang H, Qiu D (2010) Dynamic comprehensive evaluation method and its application based on minimal variability. Systems Engineering and Electronics 32: 1225–1228.
13. Huang W, Yao S, Guo Y (2011) Dynamic Comprehensive Evaluation Model of Incomplete Index Preference Information and its Application. Journal of Northeastern University (Natural Science) 32: 891–894.
14. Zhou J, Liu F (2008) The Dynamic Comprehensive Evaluation of Regional Economic Development in China. Journal of Xi’an Jiaotong University (Social Sciences) 28: 9–15.

Acknowledgments

We are very grateful to the following people for help in collecting data: Yuelong Tian, Hao Wu, Qingyuan Xue, Yan Zhang, Zhanglong Yao and Yan Wang. We also thank Alejandro Raul Hernandez Montoya, Diva Gallo, Jennifer Cao, Susan Winn and two anonymous reviewers for their comments which helped to improve the manuscript.

Author Contributions

Conceived and designed the experiments: DL XZ. Performed the experiments: DL. Analyzed the data: DL. Contributed reagents/materials/analysis tools: DL XZ. Wrote the paper: DL.