d-Wave Pairing Correlation in the Two-Dimensional t – J Model

C.T. Shih¹, Y.C. Chen², H. Q. Lin³, and T.K. Lee⁴

¹National Center for High-Performance Computing, Hsinchu, Taiwan
²Dept. of Physics, Tunghai Univ., Taichung, Taiwan
³Dept. of Physics, Chinese Univ. of Hong Kong, Hong Kong
⁴Inst. of Physics, Academia Sinica, Nankang, Taipei, Taiwan

(6) Jun 10, 2021

The pair-pair correlation function of the two-dimensional t – J model is studied by using the power-Lanczos method and an assumption of monotonic behavior. In comparison with the results of the ideal Fermi gas, we conclude that the 2D t – J model does not have long range d-wave superconducting correlation in the interesting parameter range of J/t ≤ 0.5. Implications of this result will also be discussed.

PACS number: 74.20.-z, 71.27.+a, 74.25.Dw

It is believed that the two-dimensional (2D) t – J model is a reasonable starting point to understand the physical properties of the high temperature superconducting (HTSC) cuprates [3]. One of the critical issues is whether the model has enough ingredients to quantitatively explain the high Tc. Here we shall report a numerical study to address this issue.

The 2D t – J model on a square lattice is:

\[H = -t \sum_{\langle i,j \rangle} (c^\dagger_{i\sigma} c_{j\sigma} + h.c.) + J \sum_{\langle i,j \rangle} (S_i \cdot S_j - \frac{1}{4} n_i n_j), \]

where \(c^\dagger_{i\sigma} = c^\dagger_{i\sigma} (1 - n_i-\sigma) \), and \(\langle i,j \rangle \) denotes the nearest neighbors i and j. Using the experimental results of HTSC, we expect the physical interesting value of J/t to be about 0.4 and that superconductivity should occur for electron density \(n_c \) greater than 0.7.

The first indication about the superconductivity of the t – J model is to determine if the two holes would form a bound state by the exact diagonalization study on small lattices [4]. However, the attractive potential among doped holes is not a sufficient condition for superconductivity. The long-range pair-pair correlation should be a better indicator. The pair-pair correlation function is defined as:

\[P_s \text{ or } a(R) = \frac{1}{N_s} \sum_i \langle \Delta_i | \Delta_{i+R} \rangle \]

where \(\Delta_i = c^\dagger_{i+\uparrow} c^\dagger_{i-\downarrow} + c^\dagger_{i-\uparrow} c^\dagger_{i+\downarrow} + c^\dagger_{i+\downarrow} c^\dagger_{i-\uparrow} \). + and –代表 s and d_{x^2-y^2} pairing states respectively. \(N_s \) is the number of sites.

While et al. [5] studied the one-band Hubbard model and suggested that at low temperatures the pair-field susceptibility \(\chi_d = \sum_R P_d(R) \) is enhanced in the d_{x^2-y^2} channel and small for others. Other convincing results are from variational Monte Carlo studies [6]. Although it did not provide quantitative values for Tc, the magnitude of pair-pair correlation varies with the hole density in a similar way as Tc of HTSC. The prediction of the dominance of d-wave pairing, instead of s-wave, in the t – J model is also quite encouraging.

However, these results are not quite consistent with a recent report by Zhang et al. They studied the 2D one-band [7] and three-band Hubbard model [8] by using the constrained path Monte Carlo (CPMC) method. They concluded that for J/t > 4 the long-range pair-pair correlation vanishes. It becomes quite important to have a careful numerical study of the pairing correlation in the 2D t – J model for larger lattices. In this paper we show that it is likely that there is no long-range d_{x^2-y^2} pair-pair correlation at all for the two-dimensional t – J model in the physical parameter range (J/t ≤ 0.5).

In the variational level, the optimal state of the 2D t – J model for a range of parameters is the d_{x^2-y^2} RVB trial wave function:

\[|RVB\rangle = \frac{1}{N_s} \prod_k (\tilde{\phi}_k + \tilde{\phi}_k^* \tilde{c}^\dagger_{k\sigma} \tilde{c}^\dagger_{k\sigma}) | 0 \rangle \]

with \(\tilde{\phi}_k / \tilde{\phi}_k = \Delta_k / (\epsilon_k + \sqrt{\epsilon_k^2 + \Delta_k^2}) \), \(\Delta_k = (\cos k_x - \cos k_y) \) and \(\epsilon_k = 2(\cos k_x + \cos k_y) - \mu \). \(\Delta \) is the d-wave superconducting order parameter and \(\mu \) is the chemical potential. The operator \(\tilde{\phi}_k \) enforces the constraint of no double occupancy. We take t = 1 in this paper. This wave function with the form of a projected BCS wave function is known to be superconducting [9].

It is well known that the variational calculation usually overestimates the effect of superconductivity of the true ground state. For the t – J model the energy is dominated by the nearest neighbor interaction. Hence it naturally leads to large \(\Delta \) in the variational calculation. Heeb and Rice [10] suggested that to examine the true pairing correlation, it might not be a good idea to use the lowest variational energy as a criterion in selecting the parameters of the trial function. They modified the function Eq.5 with parameters that they believe can separate the short- and long-range parts of the correlations. They found the critical \(J_c \simeq 0.44 \) for the onset of superconducting long-range order for \(n_{c} = 42/50 \). Here we modify their idea with a more systematic approach and provide with more rigorous analysis.
One of the ways to eliminate the bias induced by the trial wave function is to project the trial function onto the true ground state of the system. Recently we have shown that the ground state energy and many other properties might be obtained accurately by using a particular ground state projection method, the power-Lanczos method, which is a hybrid of the power method and the variational Lanczos method. In the power method it can be easily shown that if a trial wave function \(|\Psi\rangle\) is not orthogonal to the ground state, \((W - H)^m |\Psi\rangle\) is proportional to the ground state wave function as the power \(m\) approaches infinity. \(W\) is an appropriately chosen constant to make the ground state energy the largest eigenvalue of the \(W - H\) matrix. However in practice, due to the Fermion sign problem the power cannot be too large. A better way is to improve the trial function \(|\Psi\rangle\) by using the first order Lanczos method, i.e., to use \(|PL1\rangle = (1 + C_1H)|\Psi\rangle\) and then apply the power of \(W - H\). \(C_1\) is a new variational parameter. The results described below are either calculated by \(|\Psi\rangle\), denoted by PL0-V, or by \((W - H)^m|PL1\rangle\) as PL1-Pm. \(m = 0\) is the variational result, PL1-V, of the \(|PL1\rangle\) state.

This is demonstrated in Fig.1.

The electronic density is \(P_{\text{avg}}\), of the long-range part \((R > 3)\) of \(P_{d}(R)\) is plotted as a function of powers in Fig.1 for \(\Delta = 0.64\) which gives the lowest variational energy. The electronic density is \(n_e = 42/50\) and \(J = 0.7\). The value of \(P_{d}\) is suppressed substantially from the VMC or PL0-V result when the power is increased. Clearly the optimized trial function has grossly overestimated the strength of the long range pair-pair correlation. As noted above, this is due to the choice of a large \(\Delta\) to optimize the short-range pairing.

Although the result in Fig.1 is not yet converged, we could see that the long-range pair correlation changes monotonically as the wave function approaches the ground state. A more clear demonstration of this monotonic behavior is shown in Fig.2.

\[P_{d}^{\text{avg}}\] is plotted as a function of powers in Fig.2 for three different values of \(\Delta\): open circles are for \(\Delta = 0.18\), full circles for 0.22 and triangles for 0.26. \(P_{d}^{\text{avg}}\) remains almost unchanged for \(\Delta = 0.22\). For \(\Delta\) larger than 0.22, the pair correlation always decreases with power. And the opposite is true for \(\Delta\) smaller than 0.22. Since \(P_{d}^{\text{avg}}\) for \(\Delta = 0.22\) hardly changes as the state gets closer and closer to the ground state, it is natural to assume that this is the ground state result. Moreover, if this is a good criterion to determine the ground state value, then we really only need to calculate PL0-V, PL1-V and PL1-P2. There is no need to go to larger powers and the minus sign problem is avoided. The same result would be obtained if we examine \(P_{d}(R)\) for the largest \(R\) instead of using \(P_{d}^{\text{avg}}\).

In addition to \(\Delta\), \(\mu\) is also a variational parameter in the RVB wave function. Just like \(\Delta\) which is not the real superconducting order parameter, \(\mu\) is not the real chemical potential as in the simple mean field equations. In the discussion in the previous paragraph, \(\mu\) is chosen to be consistent with the Fermi surface of the ideal fermi gas. For example, \(\mu = -0.4\) for \(n_e = 42/50\). If \(P_{d}^{\text{avg}}\) is the true ground state value, then just like \(\Delta\) no matter what initial values of \(\mu\) we use for the trial wave function, the converged result would remain the same. In other words, different sets of \((\Delta, \mu)\) will converge to the same final \(P_{d}^{\text{avg}}\). This important consistency check has been verified. For example, for \(n_e = 42/50\), we obtain \(P_{d}^{\text{avg}} = 0.0245(4)\) for \(\Delta_{j=1} = 0.4\) and \(\mu = -0.4\); \(P_{d}^{\text{avg}} = 0.0238(4)\) for \(\Delta_{j=1} = 0.34\) and \(\mu = -0.6\); and
$P_{d}^{avg} = 0.0238(3)$ for $\Delta J = 1 = 0.24$ and $\mu = -0.8$.

So far by using the ground state projection method, we have shown that the long-range pair correlation P_{d}^{avg} approaches the ground-state value monotonically. This basic assumption is used to choose parameters to best represent the ground-state value of P_{d}^{avg} instead of determining variational parameters according to the lowest energy criterion. Unfortunately there are no exact calculations for the 2D $t-J$ model with large lattices to test our assumption. However, the method could be tested in the study of the pairing correlation for the 2D attractive and repulsive Hubbard models.

![FIG. 3. Pairing correlation as a function of U for $n_e = 4/64$. Full circles are results evaluated from the energy-optimizing trial wave functions, open squares for exact results and open triangles are results based on our method.](image)

It is known that the 2D attractive Hubbard model has long-range s-wave pairing correlation. The on-site pairing correlation, $\Delta_i = c_{i\uparrow} c_{i\downarrow}$, for several U is shown in Fig.3. We consider the electron density at $4/64$ which is solved exactly. The figure shows that the energy-optimizing trial wave functions (full circles) always overestimate the pairing correlation in comparison with the exact results (open squares). And the results obtained by our power-Lanczos method (open triangles) are in much better agreement.

We have examined the long-range d-wave pairing correlation for the 2D repulsive Hubbard model. Our result agrees with Zhang et al \[6\] that the long-range pairing correlation is vanishingly small. The success for the attractive and repulsive Hubbard models further support our method. The method allows us to calculate the ground state P_{d}^{avg} for large lattices. In Fig.4, P_{d}^{avg} is plotted a function of electron density for 82 and 122 sites with $J = 0.5$. The PL0-V and PL1-V results for the trial wave functions with Δ_{opt} optimizing the variational energies are also shown in the insets of Fig.4 for 82 sites. It is clear that $P_{d, opt}^{avg}$ is substantially reduced by PL1. And the variational values are an order of magnitude greater than the ground state values.

![FIG. 4. P_{d}^{avg} for $J/t = 0.5$ and ideal fermi gas for 82 and 122 sites. The PL0 and PL1 results of energy-optimizing Δ_{opt} for 82 sites are shown in the insets.](image)

Further, the $P_{d, opt}^{avg}$ for $J = 0.5$ can be compared with that of the ideal fermi gas (IFG). The error bars denote the range of values for different degenerate states of the IFG. The nonzero P_{d}^{avg} is obviously a finite size effect. Since P_{d}^{avg} for $J = 0.5$ are smaller than that of the IFG we can easily conclude that there is no long range d-wave pairing correlation for $J = 0.5$.

![FIG. 5. P_{d}^{avg} for 82 sites for different density and J.](image)

In Fig.5 we show P_{d}^{avg} for different densities and J for 82 sites. The dotted line is the result of the IFG. It can be seen that P_{d}^{avg} is larger than the IFG values only for $J \geq 0.6$, which is considerably larger than the physical value of $J = 0.3$ or 0.4. The large values observed for $J \leq 0.6$ could be due to the phase separation \[9\]. For $J \geq 0.6$ not only P_{d}^{avg} seems to be too small to give large T_c for the HTSC materials, the maximum P_{d}^{avg} are at hole density $x_h = 1 - x_e \sim 10\%$. This disagrees with experiments which have optimal doping at $x_h \sim 15\% - 20\%$. For $J \geq 0.6$, the values of x_h are very close to the critical hole densities of phase separation \[9\]. It is possible that for large J the P_{d}^{avg} measured actually indicates electron clustering near phase separation rather
than superconductivity.

Our result that there is no long range d-wave pairing correlation for \(J \leq 0.5 \) is actually consistent with the exact numerical results for the two-hole binding energy. It is known that binding two holes is a necessary condition for the occurrence of superconductivity. In Fig. 5 the binding energy of two holes for various \(J \) is plotted as a function of the inverse of \(N_c \), which is the cluster size. The results of 32 sites are obtained by Leung \[1\] and 26 sites by Poilblanc \[12\]. It shows that two holes do not bind together unless \(J > 0.8 \). Due to the different cluster shapes, the data are not quite on a straight line. However, even taking into account the deviation, the result is still consistent with the absence of hole binding for \(J \leq 0.5 \).

\[
\begin{align*}
\text{FIG. 6. Two-hole binding energies as a function of the inverse of cluster size for different } J.
\end{align*}
\]

In summary, based on a simple observation that the long range d-wave pairing correlation changes monotonically when the state approaches the ground state, we assume that the ground state value can be determined by choosing parameters that do not optimize the variational energy but keeps correlation value unchanged when we project the wave function onto the ground state. As a consistency check we show that different sets of values of parameters, \(\Delta \) and \(\mu \), produce same correlation value. This method has also been successfully tested for the 2D attractive and repulsive Hubbard models. The result that the long range d-wave pairing correlation is nonzero only for \(J > 0.6 \) is consistent with the finite size analysis of exact results for small clusters. It is also consistent with the result obtained in a completely different analysis that the phase separation boundary occurs only for \(J \geq 0.6 \).

Since there are a number of evidences that the 2D t-J model is a fairly good model for HTSC, the negative result with respect to the d-wave pairing correlation reported above is quite disturbing. There are several possibilities to explain this discrepancy.

The first thing one can point to is the possible contribution of next-nearest neighbor hopping and next-next-nearest neighbor hopping, \(t' \) and \(t'' \) respectively, to the density of states. By choosing appropriate \(t' \) and \(t'' \), the density of states may have van Hove singularities at hole density around 15\%. This might greatly enhance superconductivity. Contrary to this belief we found that the superconductivity is not enhanced by adding \(t' \) term even though we have tuned the parameters to have the Fermi surface passing through the van Hove singularity at 15\% hole density. Details will be reported elsewhere \[3\].

Another possibility is that due to other interactions such as electron-phonon the effective \(J/t \) might be larger than 0.6. However in this case, it is more likely we will have phase separation. The doping dependence of \(T_c \) is also inconsistent with experiments. The interlayer tunneling model proposed by Anderson et al \[14\] certainly expects the absence of pairing in our pure 2D model. More exotic possibility might be that the true ground state symmetry is not d-wave but a time-reversal-broken order parameter \[15\].

We would like to thank P.W. Leung for giving us his data prior to publication. This work is partially supported by the National Science Council of Republic of China, Grant Nos. NSC 86-2811-M-007-001R & 87-2112-M-001-016 & 86-2112-M-029-001; and the Research Grants Council (RGC) of the Hong Kong Government under account Nos. 216089. & 44M6003(CUHK). Part of computations were performed at the National Center for High-Performance Computing in Taiwan. We are grateful for their support. TK thanks Physics Department at CUHK for their hospitality.

\[\text{References:}\]

1. P. W. Anderson, Science 235, 1196 (1987).
2. F. C. Zhang, and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
3. D. Poilblanc et al., Phys. Rev. B 49, 12318 (1994).
4. S. R. White et al., Phys. Rev. B 39, 839 (1989).
5. C. Gros, Phys. Rev. B 38, 931 (1988).
6. Shiwei Zhang et al., Phys. Rev. Lett. 78, 4486 (1997).
7. Shiwei Zhang et al., cond-mat/971125 (1997).
8. Y. C. Chen and T. K. Lee, Phys. Rev. B 51, 6723 (1995).
9. C.T. Shih et al., Phys. Rev. B 57, 627 (1998).
10. E. S. Heeb and T. M. Rice, Europhys. Lett. 27, 673 (1994).
11. P.W. Leung, private communication.
12. D. Poilblanc, Phys. Rev. B 48, 3368 (1993).
13. C.T. Shih, Y. C. Chen, and T. K. Lee, not published.
14. S. Chakravarty et al., Science 261, 337 (1993); P. W. Anderson, Science 268, 1154 (1995).
15. K. Krishana et al. Science 277, 83 (1997).
16. R. Laughlin, cond-mat/9709004 (1997).