Targeted Cancer Therapy: What’s New in the Field of Neuroendocrine Neoplasms?

Anna La Salvia, Paula Espinosa-Olarte, Maria Del Carmen Riesco-Martinez, Beatriz Anton-Pascual and Rocío Garcia-Carbonero

Oncology Department, Hospital Universitario 12 de Octubre, UCM, 28041 Madrid, Spain; alasalvi@ucm.es (A.L.S.); paula.espinosa@salud.madrid.org (P.E.-O.); criesco@salud.madrid.org (M.D.C.R.-M.; beatriz.anton@salud.madrid.org (B.A.-P.)
* Correspondence: rgcarbonero@salud.madrid.org; Tel.: +34-91-390-8003

Simple Summary: Neuroendocrine neoplasms are highly heterogeneous tumors in terms of primary origin, molecular landscape, clinical presentation and behavior. To date, several drugs have been approved and many ongoing trials are testing new agents or new combinations. In this work we aim to provide a comprehensive review of approved agents and promising novel drugs in clinical development for the treatment of neuroendocrine neoplasms. Our manuscript could be a useful review and guidance for neuroendocrine neoplasms-dedicated clinicians.

Abstract: Neuroendocrine tumors (NETs) are a heterogeneous family of neoplasms of increasing incidence and high prevalence due to their relatively indolent nature. Their wide anatomic distribution and their characteristic ability to secrete hormonally active substances pose unique challenges for clinical management. They are also characterized by the common expression of somatostatin receptors, a target that has been extremely useful for diagnosis and treatment (i.e., somatostatin analogues (SSAs) and peptide-receptor radionuclide therapy (PRRT)). Chemotherapy is of limited use for NETs of non-pancreatic origin, and the only approved targeted agents for advanced progressive NETs are sunitinib for those of pancreatic origin, and everolimus for lung, gastrointestinal and pancreatic primaries. Despite recent therapeutic achievements, thus, systemic treatment options remain limited. In this review we will discuss the state-of-the-art targeted therapies in the field of NETs, and also future perspectives of novel therapeutic drugs or strategies in clinical development, including recently presented results from randomized trials of yet unapproved antiangiogenic agents (i.e., pazopanib, surufatinib and axitinib), PRRT including both approved radiopharmaceuticals (177Lu-Oxodotreotide) and others in development (177Lu-Edotreotide, 177Lu-Satoreotide Tetranexitan), immunotherapy and other innovative targeted strategies (antibody-drug conjugates, bites, . . .) that shall soon improve the landscape of personalized treatment options in NET patients.

Keywords: neuroendocrine tumors; targeted therapy; personalized treatment; novel agents

1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous family of tumors that originate from the diffuse neuroendocrine system. Although traditionally considered rare tumors, their incidence has substantially increased over the last decades, reaching 6.98 new cases/100,000 inhabitants/year [1–3], and their prevalence is high due to their relatively indolent nature [1]. NENs are classified according to the World Health Organization (WHO) classification, based on tumor differentiation and proliferation rate. Approximately 80% of all NENs are well-differentiated tumors (NETs), the majority of which present a low proliferation rate (mitotic count < 20 HPFs and/or Ki-67 index < 20%) and are classified as G1 or G2 NETs. A small subset of NETs may however have a proliferation index greater than 20% (G3 NETs), and this entity has been recently recognized in the 5th
editions of the WHO Classification of Tumors of the Digestive System published in August 2019 [4]. This group biologically resembles low grade tumors, although it is associated with a more aggressive clinical behavior. NETs can be classified as functioning (~20%) or non-functioning depending on their capacity to produce hormones (i.e., insulin, glucagon, gastrin, vasoactive intestinal peptide or somatostatin), peptides and neurotransmitters (i.e., serotonin). Excessive production of these hormones or peptides may be associated with specific clinical syndromes and is a distinctive feature of NETs. Poorly differentiated neuroendocrine carcinomas (NECs) substantially differ from NETs in terms of biologic aggressiveness, response to treatments and prognosis [5,6]. NECs have always a high proliferative index (Ki-67 > 20% or G3), less frequently express somatostatin receptors, rarely produce a hormonal syndrome and have a very poor overall survival. The majority of NENs are originated in the gastroenteropancreatic (GEP) or bronchopulmonary tracts, although they may develop in any organ. This high complexity and clinical heterogeneity, including their wide anatomic distribution and their characteristic ability to secrete hormonally active substances, pose unique challenges for clinical management. The treatment strategy widely varies according to a number of factors, such as primary tumor site, histological features (tumor differentiation, proliferation rate, expression of somatostatin receptors (SSTR), clinical presentation (tumor- or hormone-related symptoms, performance status, comorbidities) and disease stage. A multidisciplinary tumor board evaluation in NET-specialized centers is thus highly encouraged in order to define an optimal personalized strategy.

Surgery is the only curative approach for NENs. However, surgical excision is not always possible as 50–60% of patients present metastatic disease at diagnosis [7,8]. In patients with locally advanced inoperable or metastatic NENs, treatment goals include tumor growth control and symptom relief. In this context, systemic therapy is the standard of care, although cytoreductive surgery and regional approaches may also be considered. Local cytoreductive/ablative therapies are most commonly used in patients with liver-dominant disease, and include radiofrequency ablation, bland embolization or chemo- or radio-embolization with Yttrium-90-labeled microspheres. Systemic treatment options have progressively increased over the last decades, and comprise biotherapy, targeted agents, chemotherapy regimens and radiopharmaceuticals. The characteristic and common expression of SSTR on NET cells surface has been extremely useful for diagnostic imaging with111In-Octreotide scintigraphy, or with the more sensitive 68Ga-based PET/CT and also for treatment (i.e., somatostatin analogues (SSAs) and peptide-receptor radionuclide therapy (PRRT)). Biotherapy with SSAs has traditionally been considered the mainstay of systemic therapy for low grade NETs, given their efficacy to control hormonal production excess and because of their proven antiproliferative activity [9,10]. An increasing body of evidence has also demonstrated the effectiveness and safety of PRRT for SSTR-positive NETs [11–13]. Beyond SSTR-targeted therapy, only two other targeted agents have been approved to date for NETs: the antiangiogenic sunitinib for those of pancreatic origin [14], and everolimus for lung, gastroenteropancreatic (GEP) NETs or NETs of unknown origin [15,16]. Chemotherapy is the standard of care for aggressive, poorly differentiated NECs, but its use in NETs is limited to those of pancreatic origin or rapidly progressive extra-pancreatic NETs who have failed other more effective therapeutic options [17,18].

In summary, despite recent therapeutic achievements, systemic treatment options remain limited and a consensus on the optimal treatment sequence in patients with advanced disease is still lacking.

In this manuscript we will review the state-of-the-art targeted therapies in the field of NENs and discuss future perspectives of novel therapeutic drugs or strategies in clinical development, including recently presented results from randomized trials of yet unapproved antiangiogenic agents (i.e., pazopanib, surufatinib and axitinib), PRRT including both approved radiopharmaceuticals (177Lu-Oxodotreotide) and others in development (177Lu-Edotetreotide, Satoreotide Tetraxetan), immunotherapy and other innovative targeted
strategies (antibody-drug conjugates) that shall soon improve the landscape of personalized treatment options in NET patients.

2. mTOR Pathway: Relevance in NETs

2.1. Rationale for Targeting the mTOR Pathway

The mammalian target of rapamycin (mTOR) is an intracellular highly conserved serine/threonine kinase that acts as the catalytic subunit of two structurally and functionally distinct multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2, that play key roles in regulating physiological anabolic and catabolic processes in response to external cues. mTOR is the most important downstream component of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway. This network regulates essential cellular functions such as cellular proliferation, metabolism and apoptosis [19–22]. The PI3K/AKT/mTOR signaling pathway plays a crucial role in controlling cancer cell-cycle and growth [23]. Mutations of mTOR signaling components provide cancer cells with a selective growth advantage with respect to normal cells [24–26]. This pathway is dysregulated in a broad variety of human tumors, including NETs [27–42]. Sequencing studies of pancreatic (P-NET) and small intestinal (SI-NET) NETs showed that 14 and 33% of cases, respectively, harbored mutations in at least one gene encoding for mTOR pathway components [43–48]. High expression of mTOR or its activated downstream targets p-RPS6KB1, p-RPS6 or p-EIF4EBP1 was associated with higher tumor proliferative capacity, a more aggressive clinical behavior and a shorter survival [49–51]. Based on this biological rationale, the anti-proliferative effect of mTOR pathway inhibition was identified as a promising therapeutic strategy in cancer and in NETs [52,53]. Rapamycin was discovered as a potent antifungal agent, but it also exhibited immunosuppressive properties, which subsequently led to its clinical development to prevent rejection of solid-organ transplantation. Rapamycin binds to the intracellular receptor, FKBP12, thus interacting with mTORC1 and preventing the downstream pathway’s activation [54]. However, rapamycin is an oral drug with low bioavailability. In addition to rapamycin, several rapamycin analogs (“rapalogues”) have been developed such as CCI779 (temsirolimus) and RAD001 (everolimus), among others. Rapalogs have a similar mechanism of action, but improved pharmacodynamic and pharmacokinetic characteristics. These compounds have demonstrated antiproliferative activity in vitro and in vivo, both in NET cell lines (BON-1) and preclinical models [55,56].

2.2. mTOR Inhibitors: Everolimus and Beyond

The efficacy and safety of mTOR inhibitors has been demonstrated in different tumors, including lymphomas, breast and renal cell carcinomas (RCC) [57,58]. A robust antitumor activity of everolimus has also been consistently demonstrated in the phase II/III RADIANT trials across a broad spectrum of NETs including those arising from the pancreas, lung and gastrointestinal tract [15,16,59–61]. The study designs and results of these trials are summarized in Table 1. The most frequent adverse events (AEs) observed with everolimus were generally of grade 1 or 2, and included stomatitis, diarrhea, fatigue, infections, rash and peripheral oedema. Most everolimus-related AEs were manageable through dose interruption and/or modification without altering the duration of treatment. Based on these results, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) approved everolimus for the treatment of unresectable or metastatic, non-functional G1-G2 NETs of GI or lung origin or NETs of pancreatic origin in adults with progressive disease. Notably, clinical trials specifically exploring everolimus in G3 NETs are currently ongoing (ClinicalTrials.gov Identifier: NCT02113800, NCT02248012).
Table 1. Randomized phase II/III trials of mTOR inhibitors in neuroendocrine tumors (NETs).

Study	Design Population	n	Drugs	ORR	p Value	PFS	HR	p Value	OS	HR	p Value
Pavel et al., 2011 RADIANT-2	Functioning NETs	420	Everolimus–Octreotide Placebo–Octreotide	3%	2%	NS	16.4 m	11.3 m	0.07	0.026	71% (18 m)
Yao et al., 2011 RADIANT-3	Pancreatic NETs	410	Everolimus Placebo	5%	2%	NS	11.0 m	4.6 m	0.34	<0.001	NR
Yao et al., 2016 RADIANT-4	Lung/Intestinal NETs (non-functioning)	302	Everolimus Placebo	2%	1%	NS	11.0 m	3.9 m	0.48	<0.001	NR
Kulke et al., 2019 COOPERATE-2	Pancreatic NETs	160	Everolimus–Pasireotide Everolimus	20%	6%	NA	16.8 m	16.6 m	0.99	NS	NR
Ferolla et al., 2017 LUNA trial	Lung or thymic NETs	124	Everolimus–Pasireotide Everolimus	2.4%	2.4%	NA	11.8 m	12.5 m	8.5 m	NA	NA
Salazar et al., 2018 NCT01628913	Pancreatic NETs	62	Dactolisib (BEZ235)	9.7%	9.7%	NS	8.2 m	10.8 m	1.53	NA	96.6% (6 m)
Kulke et al., 2010 CALGB 80701	Pancreatic NETs	150	Everolimus–Bevacizumab Everolimus	31%	12%	0.005	16.7 m	14.0 m	0.80	0.12	36.7 m

Abbreviations: PFS: progression free survival, OS: overall survival, ORR: overall response rate, CR: complete response, PR: partial response, SD: stable disease, LAR: long-acting repeatable, NS: not significant, NR: not reached, NA: not available.

2.3. Everolimus-Based Combinations

Mechanisms of innate and acquired resistance to mTOR inhibition include the activation of several compensatory signaling pathways, upstream activation of PI3K/AKT signaling, the occurrence of FKB12 or mTOR mutations, epigenetic alterations, compensatory metabolism rewiring or the stimulation of autophagy [66,67]. To try to overcome resistance, different everolimus-based combinations have been explored, particularly with SSAs and antiangiogenic agents [62,63,65,68–73]. Randomized trials do not suggest a clear benefit in terms of efficacy for these combinations (Table 1), whereas some safety concerns were raised for some of these combinations.

Currently, several trials are assessing the combination of everolimus with other treatment strategies such as PRRT, chemotherapy or other targeted agents, such as the phase I-II study testing the combination with Lu-177-DOTATATE therapy in GEP or lung NETs (ClinicalTrials.gov Identifier: NCT03629847), the phase II trial evaluating the association with LEE011 (Ribociclib) in advanced foregut NETs (ClinicalTrials.gov Identifier: NCT03070301) and the phase I-II study testing the combination with temozolomide in advanced P-NETs (ClinicalTrials.gov Identifier: NCT00576680).

2.4. Other mTOR inhibitors: Temsirolimus and Sapanisertib

Temsirolimus is an intravenous mTOR inhibitor that has been investigated in few phase II clinical trials enrolling NET patients. As a single agent it showed limited activity (objective response rate (ORR) of 5.6%) [74], but results in combination with bevacizumab were encouraging [75], with an ORR of 41%, a median progression-free survival (PFS) of 13.2 and a median overall survival (OS) of 34 months. The safety profile was manageable. Randomized trials assessing the addition of bevacizumab to everolimus or to octreotide depot, however, failed to demonstrate a clear benefit [65], and the temsirolimus–bevacizumab combination was not further developed in this setting.

Dactolisib (BEZ235) is an oral dual PI3K/mTOR inhibitor that selectively inhibits class I PI3K (p110α, -β, -δ and -γ), mTORC1 and mTORC2 by reversibly binding to the ATP-binding sites of kinases and inhibiting their catalytic activity. Notwithstanding, it did not demonstrate greater efficacy as compared to mTORC1 inhibition alone by everolimus in patients with P-NETs and was significantly more toxic [64]. Clinical development of this agent was halted.

Sapanisertib (INK128) is a second-generation ATP-competitive mTOR kinase inhibitor that potently suppresses both mTORC1 and mTORC2 [76], overcoming resistance to
everolimus induced by phosphorylation of 4EBP1 and AKT [77]. Preclinical studies have shown sapasertib has antitumor activity in everolimus-resistant P-NET patient-derived xenograft models [78]. Clinical trials are currently evaluating Sapanisertib efficacy and safety in different clinical settings, including rapalog-resistant advanced P-NETs (Clinical-Trials.gov Identifier: NCT02893930).

3. Role of Angiogenesis in NETs

3.1. Rationale for Targeting Angiogenesis

Angiogenesis is one of the hallmarks of cancer as it plays a key role in providing oxygen and nutrients for tumor cell growth and progression [79]. Targeting angiogenesis has been successfully explored as a therapeutic strategy in a wide spectrum of solid tumors, including NETs. Angiogenesis is a highly controlled process tightly regulated by a complex equilibrium of pro- and anti-angiogenic factors secreted by tumor cells and by cells of the tumor microenvironment (pericytes, mesenchymal, endothelial or immune cells). Among these, the vascular endothelial growth factor (VEGF) is particularly relevant. VEGF stimulates both the proliferation and migration of endothelial cells, enhances vascular permeability, vasodilatation and the recruitment of inflammatory cells and is essential for revascularization during tumor formation [80]. In mammals, five members of the VEGF family have been identified, VEGF-A being the most potent stimulator of angiogenesis [81]. Downstream signaling of VEGF in tumor cells is mediated by a family of receptor tyrosine kinases, including VEGFR-1,2,3 [82]. The production of VEGF is regulated by local oxygen availability through the hypoxia-inducible factor-1 (HIF-1) in a dynamic process that results in the transcription of several genes involved in proliferation, angiogenesis, survival and apoptosis [83,84].

Multiple approaches have been developed to target angiogenesis over the last decades and several antiangiogenic drugs have been approved as oncological therapies [85,86]. Notably, the rich vascularization is a typical feature of well-differentiated NETs. This characteristic is associated with the overexpression of both VEGF ligands and their receptors [87] in 60–84% of cases [88]. NETs also show a high expression of platelet-derived growth factor receptors (PDGFRs) α and β, as well as stem-cell factor receptors (c-kit). These factors have also been involved in NET development and progression. Several lines of evidence show that the dense vascular network associated with low-grade NETs are more likely to be a marker of differentiation than a marker of aggressiveness, as opposed to what is observed in other epithelial tumors. This phenomenon represents the so-called ‘neuroendocrine paradox’, meaning that vascularization is inversely related to the aggressiveness of the disease. However, other studies observed that VEGF over-expression was correlated with a worse clinical outcome in patients with well-differentiated NETs [89].

Based on this strong rationale, an increasing number of clinical trials evaluating the activity of different agents with antiangiogenic properties have been conducted in advanced NETs. The results of the most relevant phase II-III trials are summarized in Table 2.
Table 2. Randomized phase II-III trials of antiangiogenic agents in NETs.

Study	Design	Population	n	Drugs	ORR	p	PFS	HR	p	OS	HR	p		
Raymond et al., 2011	Phase 3 randomized	Pancreatic NETs	171	Sunitinib–Placebo	9.3%	0%	<0.007	11.4 m	5.5 m	0.42	<0.001	30.5 m	25.4 m	0.74 NS
Xu et al., 2020	Phase 3 randomized	Pancreatic NETs	195	Surufatinib–Placebo	NA	NA	NA	NA	NA	NA	NA	NA		
Xu et al., 2020	Phase 3 randomized	Extra-pancreatic NETs	198	Sunitinib–Placebo	10.3%	0%	NA	9.2 m	3.8 m	0.33	<0.0001	NA	NA	
Garcia-Carbonero et al., 2020	Phase 3 randomized	Extra-pancreatic NETs	256	Axitinib–Oxartotide–Placebo	17.5%	3.8%	0.0004	17.2 m	12.3 m	0.82	NA	NA		
Bergsland et al., 2019	Phase 2 randomized	Extra-pancreatic NETs	171	Pazopanib–Placebo	2.1%	0%	NA	11.6 m	8.5 m	0.53	0.0005	41.3 m	42.4 m	1.13 NS
Yao et al., 2017	Phase 3 randomized	NETs (all sites)	427	Bevacizumab–Oxartotide–Interferon-α-2b–Everolimus	13%	4%	0.008	16.6 m	15.4 m	0.93	NS	35.2 m	NR	1.16 NS
Kulke et al., 2015	Phase 2 randomized	Pancreatic NETs	150	Everolimus–Bevacizumab	31%	12%	0.005	16.7 m	14.0 m	0.80	0.12	36.7 m	35.0 m	0.72 NS

Abbreviations: CR: complete response, LAR: long-acting repeatable, NA: not available, NR: not reached, NS: not significant, PFS: progression-free survival, ORR: overall response rate, OS: overall survival, PR: partial response, SD: stable disease.

3.2. Angiogenesis Inhibitors Assessed in Phase III Randomized Trials

3.2.1. Sunitinib

Sunitinib is a multi-tyrosine kinase inhibitor (TKI) that targets VEGFR, PDGFR, stem-cell factor receptor, glial cell line-derived neurotrophic factor receptor (GDNF) and FMS-like tyrosine kinase-3 [96]. To date, this compound has been approved for the treatment of patients with advanced gastrointestinal stromal tumors (GIST), RCC and P-NETs [14,97,98].

The EMA in 2010 and the FDA in 2011 approved sunitinib for advanced progressive P-NETs based on the results of an international investigator-initiated randomized double-blind placebo-controlled phase III study that demonstrated a significant improvement in PFS (11.4 vs. 5.5 months, HR 0.42, p < 0.001) and OS (HR 0.41, p = 0.02) for sunitinib-treated patients as compared to those treated with placebo [14]. Upon study closure, 69% of placebo-treated patients crossed over to sunitinib, which likely diluted the early impact observed on OS. With five additional years of follow-up, median OS was 38.6 months for sunitinib and 29.1 months for placebo (HR: 0.73; p = 0.094) [99]. The most frequent adverse events in the sunitinib group were diarrhea, nausea, vomiting, asthenia and fatigue. An updated safety analysis of sunitinib- and placebo-treated patients from this study that continued to receive sunitinib in two open-label extension studies confirmed sunitinib was well-tolerated in the long term and the safety profile was consistent with that reported in the original pivotal Phase III study [100].

3.2.2. Surufatinib

Surufatinib is an orally bioavailable, small molecule inhibitor that targets VEGFR-1,2,3, fibroblast growth factor receptor type 1 (FGFR1) and colony-stimulating factor-1 receptor (CSF-1R) [101]. Activation of the FGFR pathway contributes to both intrinsic and acquired resistance to the VEGF blockade. Both FGF and CSF-1 signaling are involved in immune evasion through the recruitment and maintenance of myeloid-derived suppressor cells and tumor-associated macrophages to the tumor microenvironment. The inhibition of VEGFRs and FGFR1 may lead to a more potent angiogenesis blockade, that, together with the simultaneous depletion of peritumoral immunosuppressive cells, might enhance antitumor activity. A multicenter, single-arm, open-label phase Ib/II trial, including 42 P-NETs and 39 extra-pancreatic NETs, showed encouraging antitumor activity and manageable toxicity [102]. Based on these results, two phase III studies were undertaken. First, the SANET-ep study (NCT02588170) included 198 patients with extra-pancreatic NETs that were randomized 2:1 to receive surufatinib 300 mg daily (n = 129) or placebo (n = 69) [91]. The most common primary tumor site was the rectum (27% of patients), followed by...
the lung, thymus, stomach and small bowel (8%). The median PFS per investigator assessment was 9.2 months for patients treated with surufatinib, as compared to 3.8 months for patients in the placebo group (HR 0.33; \(p < 0.0001 \)). The study was terminated early as it met the predefined criteria for early discontinuation at the interim analysis. The efficacy of surufatinib was seen across all subgroups and further supported by significant improvements in secondary efficacy endpoints including ORR (10% vs. 0%, \(p = 0.0051 \)), DCR and duration of response. Efficacy was confirmed by the Blinded Independent Image Review Committee (“BIIRC”) assessment, although the magnitude of the effect on PFS seemed somewhat lower (HR 0.66, \(p = 0.037 \)). OS data was not mature, as only 21% of patients treated with surufatinib and 14% of those treated with placebo had died at the time of interim analysis. Surufatinib was generally well-tolerated. The most common treatment-related grade > 3 AEs were hypertension (36 vs. 13%) and proteinuria (19 vs. 0%).

As the SANET-ep trial, this study was terminated early as it met the pre-specified early stopping criteria at interim analysis. The median investigator-assessed PFS was 10.9 versus 3.7 months for surufatinib- and placebo-treated patients, respectively (HR 0.49, \(p = 0.0011 \)). ORR was also significantly greater in patients treated with surufatinib (19%) compared to patients treated with placebo (2%) (\(p = 0.002 \)). Overall responses and PFS by BIIRC assessment were similar to those reported by the investigators. The most common grade 3 or worse treatment-related AEs were hypertension (38 vs. 7%), proteinuria (10 vs. 2%) and hypertriglyceridaemia (7% vs. none). Treatment-related serious AEs were reported in 22 (surufatinib) vs. 7% (placebo) of patients. QoL assessments were similar in both study arms except for diarrhea domain scores, that were worse for surufatinib-treated patients. Based on these pivotal studies, that were fully conducted in Chinese populations, the National Medical Products Administration (NMPA) very recently approved surufatinib for the treatment of advanced non-pancreatic NETs and it will likely be approved soon for pancreatic primaries. A phase I US trial showed similar surufatinib pharmacokinetics in Caucasian patients, and further supportive studies are planned to be conducted in western countries to pursue FDA and EMA approval.

3.2.3. Axitinib

Axitinib is a potent second-generation TKI that selectively inhibits VEGFR-1, 2, 3 and has demonstrated activity against other vascular-dependent solid tumors such as RCC [103,104]. An open-label, phase II trial that assessed axitinib in 30 patients with extra-pancreatic NETs reported a median PFS of 26.7 months and a median OS of 45.3 months. The best objective response in this trial was partial response (PR) in 1/30 (3%) and stable disease (SD) in 21/30 patients (70%). Hypertension was developed in a high proportion of patients (90%), being of grade 3/4 in 19 patients (63%) and leading to treatment discontinuation in six (20%) [105]. A phase II/III randomized double-blind study, the AXINET trial, was conducted by the Spanish Cooperative Group of Neuroendocrine and Endocrine Tumors (GETNE) to evaluate the efficacy of axitinib in combination with octreotide long-acting repeatable (LAR) versus placebo and octreotide LAR, in 256 patients with advanced G1-G2 NETs of non-pancreatic origin (NCT01744249) [92].

The ORR was significantly greater in the axitinib arm (17.5 vs. 3.8% for axitinib-and placebo -treated patients, respectively, \(p = 0.0004 \)). The median PFS per investigator assessment was 17.2 months for the axitinib–octreotide arm versus 12.3 months for the placebo–octreotide arm, but this difference did not reach statistical significance (HR 0.816, \(p = 0.169 \)). Hypertension was reported in 50% of patients (21% of grade 3–4), Other grade 3–4 AEs more commonly observed in axitinib-treated patients were diarrhea (14 vs. 2%) and fatigue (9 vs. 3%). Independent blinded radiological assessment of PFS is currently ongoing and expected to be reported in the very near future.
3.2.4. Cabozantinib

Cabozantinib is an oral small molecule multikinase inhibitor that targets, among others, VEGFR, MET and RET. This drug was assessed in a two-cohort phase II trial that included 20 P-NETs and 41 extra-pancreatic NETs (NCT03375320) [106]. Treatment with cabozantinib was associated with objective tumor responses (ORR of 15% in both cohorts) and encouraging PFS (22 and 31 months in patients with advanced NETs of pancreatic and extra-pancreatic origin). Grade 3–4 toxicity included hypertension (13%), hypophosphatemia (11%), diarrhea (10%), lymphopenia (7%), thrombocytopenia (5%), fatigue (5%) and increased lipase or amylase (8%). A phase III double-blind randomized trial (CABINET) is currently testing cabozantinib versus placebo in advanced NETs pretreated with at least one FDA-approved drug (except somatostatin analogues) (NCT03375320). Results shall be available in the upcoming years and are awaited with great interest.

3.2.5. Bevacizumab

Bevacizumab is a humanized anti-VEGF monoclonal antibody that has shown relevant anti-tumor activity in a variety of solid neoplasms. A small randomized phase II trial suggested this drug was also active in GEP-NETs [107]. In this study, 44 patients on stable doses of somatostatin analogues were randomly assigned to receive single-agent bevacizumab or PEG interferon alfa-2b (IFN-α-2b) for up to 18 weeks. Thereafter, or at disease progression, whichever occurred first, patients were allowed to receive both drugs in combination. Patients treated with bevacizumab achieved a higher response rate (18 vs. 0%) and PFS rate at 18 weeks (95 vs. 68%), and a significant decrease in tumor blood flow assessed by functional CT scans that was not observed in INF-treated patients. Based on these encouraging results, a large phase III trial (SWOG S0518) was designed to compare octreotide LAR and bevacizumab or IFN-α-2b in 427 patients with advanced G1-2 carcinoids [94]. ORR were significantly greater for bevacizumab-treated patients, although modest in both study arms (12 vs. 4%, \(p = 0.008 \). The median PFS by central review was not significantly different among study arms (16.6 vs. 15.4 months in the bevacizumab and IFN arms, respectively, HR 0.93; \(p = 0.55 \)). The time to treatment failure was longer with bevacizumab (HR 0.72; \(p = 0.003 \)). This may have been due to differences in the toxicity profiles of study drugs. Bevacizumab’s most common side effects were hypertension and proteinuria, easily manageable, whereas over 25% of interferon-treated patients experienced grade 3–4 fatigue, which likely justified the higher proportion of patients that withdrew consent in this study arm. The authors concluded that both agents had similar antitumor activity in patients with advanced NETs, although it is unlikely that any of these agents will ever be approved in this context by regulatory agencies.

The results of single-arm studies exploring the combination of bevacizumab with mTOR inhibitors suggested a synergistic effect (ORRs of 21% for bevacizumab and everolimus, and of 41% for bevacizumab and temsirolimus) [72,108]. The randomized phase 2 CALGB 80701 trial confirmed the ORR was significantly greater for the everolimus–bevacizumab combination versus single-agent everolimus (31 vs. 12%, \(p = 0.005 \), although this only translated into a modest increase in PFS (16.7 vs. 14.0 months, \(p = 0.12 \)) [109].

3.3. Angiogenesis Inhibitors in Earlier Stages of Clinical Development

3.3.1. Sorafenib

Sorafenib is an orally administered TKI that targets the RAF/MEK signaling pathway as well as VEGFR, PDGFRs, FLT3 and c-KIT. It was approved for the treatment of advanced hepatocellular carcinoma and RCC [110,111]. Sorafenib was also tested in NETs. A Phase II trial assessed sorafenib in 93 patients with advanced P-NETs and carcinoid tumors [112]. An ORR of 10% was observed in both groups. PFS rates at 6 months were 40% for carcinoid tumors and 61% for P-NETs. Grade 3–4 toxicity occurred in 43% of patients, with skin toxicity (20%), diarrhea (7%) and fatigue (9%) being the most commonly encountered. Further clinical development in prospective randomized trials was not pursued for this drug in NETs, although the antitumor activity of this agent did not seem to be substantially
different from that reported with other targeted agents in this context. Sorafenib was also explored in combination with other drugs such as everolimus [73] or bevacizumab [113], with no clear benefit in terms of efficacy and significantly increased toxicity.

3.3.2. Pazopanib

Pazopanib is another TKI inhibiting VEGFRs, PDGFRs and c-Kit [114] that is approved for the treatment of RCC and soft tissue sarcoma [115,116]. Single-arm phase II studies have explored pazopanib in NETs of different primary sites, with ORRs of 10–22% and a median PFS of 9–14 months [117,118]. Interestingly, pazopanib also showed activity in patients pre-treated with other targeted therapies and in G3 NETs (ORR 23%) [119]. The results of a multicenter, randomized, double-blind phase II trial (A021202) comparing pazopanib to placebo in advanced extra-pancreatic NETs were presented at the ASCO Annual Meeting in 2019 [93]. This study enrolled 171 patients, 66% of them with small bowel primary tumors and 87% receiving concurrent SSA. The median PFS was 11.6 vs. 8.5 months in the pazopanib and placebo arms, respectively (HR = 0.53, \(p = 0.0005 \)), which crossed the pre-specified protocol efficacy boundary. Some degree of tumor shrinkage was achieved in 55 and 31% of pazopanib- and placebo-treated patients, respectively, although objective responses were only documented in two patients (2%) of the pazopanib arm. The OS was not significantly different among study arms (median of 41 and 42 months, HR = 1.13, \(p = 0.70 \)). Treatment-related grade 3–4 AEs occurred in 61% of patients treated with pazopanib vs. 21% of patients in the placebo arm. The most common severe side effects of pazopanib were hypertension (27%) and hypertransaminasemia (9%). QoL analysis documented that patients treated with pazopanib experienced more symptoms (diarrhea, appetite loss, dyspnea, fatigue, nausea and vomiting), but the overall QoL was similar among study arms.

3.3.3. Lenvatinib

Lenvatinib is another TKI that targets VEGFR1-3, FGFR1-4, PDGFR, c-Kit and RET [120]. This compound was recently approved for the treatment of radioiodine-refractory differentiated thyroid cancer and has been also tested in NETs. In the phase II TALENT clinical trial (GETNE1509), lenvatinib was assessed in two cohorts; the first included 55 P-NETs, and the second, 56 gastrointestinal NETs (GI-NETs) [121]. For P-NETs, the ORR by central radiology assessment was 40.4%, the highest ever reported for a TKI in this setting, with a median PFS of 15.5 months. For GI-NETs, the ORR was 16.3% and the median PFS 15.4 months. Lenvatinib was administered at a dose of 24 mg qd but dose reductions/interruptions were required in 88% of patients. The most frequent grade 3–4 AEs were hypertension (22%), fatigue (11%) and diarrhea (11%).

3.3.4. Nintedanib

Nintedanib is a potent oral inhibitor of VEGFR, PDGFR and FGFR that is approved for the treatment of idiopathic pulmonary fibrosis. An open label phase 2 study was conducted in 32 patients with extra-pancreatic NETs that were treated with nintedanib and octreotide LAR [122]. The best response was stable disease in 26 patients (81%) and one patient achieved a partial response. The median PFS and OS was 11.0 and 32.7 months, respectively. Nintedanib was well-tolerated and delayed deterioration in quality of life. Increased serotonin levels were correlated with markers of impaired antitumor immunity.

3.3.5. Aflibercept

Aflibercept is a recombinant fusion protein that consists of portions of the extracellular VEGFR-1 and -2 domains fused to the Fc portion of human immunoglobulin G1 [123]. It binds to both sides of the VEGF dimer, forming a so-called VEGF-trap, and exhibits higher affinity for VEGF-A/B but binds to all VEGF isoforms (VEGF-A, B, C and placental growth factor). Preclinical studies suggested activity of this compound in NENs [124,125]. Recently, a phase II open-label study, enrolling 21 patients with advanced P-NETs, reported
an ORR of 9.5%, a median PFS of 15 months and a median OS of 34 months [126]. The most frequent treatment-related AEs were hypertension (77% of patients), headache (68%), mucositis (45%), hoarseness (41%) and proteinuria (32%). Proteinuria led to treatment discontinuation in five patients and one patient died due to a GI hemorrhage.

4. Somatostatin Receptors and Other Unique Targets in NETs

4.1. Rationale for Targeting SST

The majority of NETs are characterized by the expression of somatostatin receptors (SSTRs) on the cell membrane, a unique feature of NETs that has been very useful for diagnosis and therapy. Five different, G-protein-coupled SSTR subtypes (SSTR 1–5) have been identified. Their natural ligand, somatostatin (SST), is a neuropeptide secreted in the GI tract and the brain that regulates multiple physiological functions, such as neurotransmission, GI motility, hormone secretion, cell proliferation and apoptosis and immune system modulation [127]. The clinical utility of native human somatostatin was limited by its short half-life, thus SSAs were developed with a prolonged plasma half-life that facilitated clinical use [128]. The results of randomized phase III trials with SSTR-targeted agents in NETs are summarized in Table 3.

Table 3. Randomized phase II-III trials of somatostatin receptors (SSTR)-targeted agents in NETs.

Study	Design Population	n	Drug	ORR	PFS	HR	p	OS	HR	p	
Rinke et al., 2009	PROMID study [9]	85	Octreotide LAR (30 mg/4 w) Placebo	2.4%	NS	14.3 m	0.34	<0.001	84.7 m	0.81	NS
Caplin et al., 2014	CLARINET study [10]	204	Lanreotide ATG (120 mg/4 w) Placebo	1.9%	NA	NR	0.47	0.001	NA	NA	NA
Wolin et al., 2015	NCT00690430 [129]	88	Pasireotide LAR (60 mg/4 w) Placebo	2.0%	NS	11.8 m	0.46	0.045	NA	NA	NA
Kulke et al., 2019	COOPERATE-2 trial [62]	160	Everolimus-Pasireotide Everolimus	20%	NA	16.8 m	0.99	NS	NNR	0.93	NS
Ferolla et al., 2017	LUNA study [63]	124	Everolimus-Pasireotide Everolimus	2.4%	NA	11.8 m	0.92	NA	NA	NA	NA
Strosberg et al., 2017	NETTER-1 trial [13]	229	PRRT-CAPTEM PRRT	67%	33%	76% (1y)	0.21	<0.001	0.4	0.04	0.004
Pavlakis et al., 2020	CONTROL NET trial [130]	27	PRRT-CAPTEM PRRT	67%	33%	76% (1y)	0.21	<0.001	0.4	0.04	0.004

Abbreviations: CR: complete response, CS: carcinoid syndrome, LAR: long-acting repeatable, m: month, mg: milligrams, NA: not available, NR: not reached, NS: not significant, ORR: overall response rate, OS: overall survival, PFS: progression free survival, PR: partial response, SD: stable disease, w: week. * early termination at interim analysis for futility (primary endpoint: symptom control).

4.2. Somatostatin Analogues (Octreotide, Lanreotide, Pasireotide)

SSAs are synthetic octapeptides, with a longer half-life than native somatostatin 14 and 28, that enable clinical use. They have a similar STR binding profile, with high SSTR2 and moderate SSTR5 affinity. SSAs are very effective drugs for hormonal syndrome control in functioning tumors [131], and also exert an antiproliferative effect by inducing cell cycle arrest and apoptosis, and through immunomodulatory effects and angiogenesis inhibition. Two randomized phase III trials demonstrated the antiproliferative effect of SSAs in the clinic. First, the PROMID study randomized 85 G1 advanced midgut NETs to receive octreotide LAR 30 mg every 4 weeks or placebo. A significant PFS improvement was reported for octreotide-treated patients (14.3 vs. 6 months, HR 0.34, p = 0.000072) [9]. Second, the CLARINET trial enrolled 204 patients with advanced non-functional GEP-NETs, with a Ki-67 index < 10% and a positive somatostatin-receptor scintigraphy [10]. PFS was significantly increased in patients treated with lanreotide as compared to placebo (median not reached vs. 18 months, HR = 0.47, p = 0.0002). Neither the PROMID nor
the CLARINET studies demonstrated a benefit in terms of OS, although this endpoint is difficult to assess in the context of a very indolent disease, with a low rate of events, a high rate of crossover from the placebo group to SSA therapy and the potential confounding effect of subsequent lines of therapy upon disease progression.

Pasireotide is a second-generation SSA with greater binding affinity to SSTR1,2,3,5 currently approved for the treatment of Cushing’s syndrome and acromegaly, refractory to other somatostatin analogues. Due to its wider binding profile, pasireotide was expected to have greater antiserotypic and antiproliferative activity than first-generation SSAs. Early studies demonstrated that it improved hormonal syndrome control in functioning NETs resistant to first-generation SSAs at conventional doses and also reported objective responses in some patients [132,133]. A phase 3 double-blind trial was then conducted in patients with digestive NETs with refractory carcinoid syndrome that were randomly assigned (1:1) to receive pasireotide LAR (60 mg) or octreotide LAR (40 mg) every 28 days [129]. The primary endpoint was symptom control based on the frequency of flushing episodes and bowel movements. The study was terminated early at the interim analysis for futility. Similar proportions of patients receiving pasireotide LAR (20.9%) or octreotide LAR (26.7%) achieved symptom control at 6 months (OR, 0.73; \(p = 0.53 \). Notably, a post hoc analysis observed a significantly longer PFS for pasireotide-treated patients than for patients treated with octreotide (11.8 vs. 6.8 months, HR 0.46, \(p = 0.045 \)). However, the COOPERATE-2 trial failed to demonstrate any PFS benefit of adding pasireotide to everolimus versus everolimus alone in patients with pancreatic NETs, whereas the combination was more toxic (grade 3–4 hyperglycemia occurred in 37 versus 11% of patients) [62].

4.3. Radiopharmaceuticals Targeting SST

4.3.1. Agonists (β and α Particle-Emitting Radionuclides) and Intra-Arterial PRRT

SSTR may also be targeted with radiolabeled SSAs such as 177Lu-DOTA-D-Phe-Tyr3-octreotate (177Lu-Oxodotreotide or 177Lu-DOTATATE) for peptide receptor radionuclide therapy (PRRT). Radiolabeled SSAs, upon binding to SSTRs on the NET cell surface, are internalized via endocytosis thereby causing selective DNA damage [134]. Patients with adequate kidney and bone marrow functions and a life expectancy greater than 3 months are suitable candidates for PRRT. In clinical practice, the approved indications are limited to G1-G2 well-differentiated metastatic NETs. NEIs with a high and homogeneous SSTR expression, a low tumor burden and a slow growth rate are probably the optimal candidates for PRRT. The objectives of treatment are tumor growth control in patients with progressive disease, as well as symptomatic control in the context of hormone-secretory syndromes or tumor-related symptoms. Furthermore, recent and encouraging evidence is arising about the potential role for PRRT in the neoadjuvant setting. In this context, 177Lu-DOTATATE was reported to convert 15 out of 57 (26.3%) unresectable primary GEP NETs into resectable ones in a small non-controlled study [135]. Further prospective and randomized studies are needed to confirm these promising data.

Some contraindications to PRRT should also be noted. These include tumors with significant sites of SSTR-negative active disease, confirmed by 18F-FDG-PET if available, and patients with a poor general condition (Karnofsky performance status < 50%), insufficient bone marrow reserve (hemoglobin < 5 mmol/L (8 g/dL); platelet count < 75 × 10⁹ /L; white blood cell count < 2 × 10⁹ /L) or severe renal (creatinine clearance < 30 mL/min), liver (total bilirubin > 3 × ULN; or both albumin < 25 g/L and prothrombin time increased > 1.5 × ULN) or cardiac (New York Heart Association grade III or IV; moderate to severe right heart valvular disease) impairment. Pregnancy and ongoing lactation are also contraindications for PRRT.

177Lu-DOTATATE is a medium-energy β-emitter with a maximum energy of 0.5 MeV, a maximum tissue penetration of 2 mm and a half-life of 6.7 days. Lutetium-177 also emits low-energy γ-rays, allowing scintigraphy and subsequent dosimetry with the same therapeutic compound, if needed. The shorter β-range of 177Lu compared to other radioisotopes such as yttrium (range of 12 mm) improves safety as it spares surrounding
healthy tissue from radiation [136]. Its relatively long half-life also provides logistic advantages as it facilitates its supply to locations far from reactors. In 2017/2018, the EMA/FDA approved 177Lu-DOTATATE for use in SSTR-positive G1-2 GEP-NETs, based on results of the phase III NETTER-1 trial [13]. This study randomized (1:1) 229 patients with midgut NET, who presented with progressive disease on standard-dose octreotide LAR (20–30 mg every 4 weeks), to receive 177Lu-DOTATATE at a dose of 7.4 GBq every 8 weeks (four intravenous infusions) plus octreotide LAR 30 mg every 4 weeks, or high doses of octreotide LAR alone (60 mg every 4 weeks). Notably, the control arm of this study was an FDA-approved off-label use of high dose octreotide. PRRT demonstrated a pronounced positive effect on PFS compared to high dose SSAs (28 vs. 8.4 months, HR 0.21, p = 0.001), with a trend towards an improved overall survival (data still immature) and a favorable toxicity profile.

Combinations of Lu-177-labeled peptides with Y-90-labeled peptides or with other agents are being actively investigated and may prove to be of additional therapeutic benefit. The rationale of combining the two isotopes is based on their different emission profile. Y-90 emits beta particles with a high maximum energy higher than Lu-177 and longer maximum particle range in tissues (10 mm). It is hypothesized that 90Y may be more adequate to treat larger tumors while 177Lu, with a shorter beta particle range and a longer half-life, may be preferable for small tumors. The combination of both isotopes may therefore be considered for patients with tumors of various sizes and non-homogeneous receptor distribution. Initial data indicate that combination treatments with the two isotopes of Y-90 and Lu-177 linked either to DOTATOC or to DOTATATE administered in sequential treatment cycles or as a cocktail infusion for several cycles are feasible and may improve treatment outcomes, although they are also more toxic [137–139]. Several clinical studies are also exploring the combination of 177Lu-DOTATATE with chemotherapy (fluoropyrimidines alone or with temozolomide) or targeted agents such as everolimus [140–142]. PRRT is also being assessed, alone or in combination with chemotherapy, in the neoadjuvant setting with some encouraging results [143]. Promising results have been reported for the combination of CAPTEM with 177Lu-DOTATATE with ORRs reported in up to 80% of P-NETs [130]. Based on these encouraging results, the Australasian Gastrointestinal Trials Group (AGITG) designed the CONTROL NET Study, a Phase II randomized (2:1) exploratory study evaluating the activity of 177Lu-Octreotate and CAPTEM in two patient cohorts [144]. The P-NET cohort (n = 27) was randomized (2:1) to receive PRRT and CAPTEM alone, and the midgut cohort (n = 45) was randomized (2:1) to receive PRRT and CAPTEM vs. PRRT alone. Recently presented preliminary results showed numerically higher ORR for the combination in both patient cohorts with no clear PFS benefit. Longer follow-up is needed to adequately assess whether the increased ORR is translated or not to a clinically meaningful PFS benefit to justify the increased toxicity observed with the combination.

Other SSTR radiolabeled agonists, such as 177Lu-Edotretide or 177Lu-DOTATOC, have shown promising activity in NETs and are currently being assessed in GEP-NETs versus everolimus in the phase III COMPETE randomized trial (NCT03049189). Additionally, PRRT with alpha particle-emitting radionuclides (i.e., Bismuth-213 or Actinium-225) is also being actively developed as alpha particles are characterized by the emission of high-energy with a short-range, thereby allowing high-precision potent targeted therapy, avoiding the irradiation of normal surrounding tissues [145]. These isotopes have extremely high cytotoxic activity at the cellular level and may overcome resistance to PRRT using beta-emitting isotopes [146,147]. An alternative strategy to improve the absorption and binding of radiopharmaceuticals to NET cells include the intra-arterial (IA) administration of these agents in patients with liver-dominant disease. Several non-controlled studies have evaluated the administration of different radiopharmaceuticals through the hepatic artery (e.g., 177Lu-DOTATATE, 90Y-DOTATOC, etc.) with promising results [148–152]. Currently, the randomized LUTIA study is comparing the tumor-absorbed dose in liver metastases after intra-arterial admin-
istration of 177Lu-DOTATATE to that achieved after conventional intravenous administration [152]. The results of this trial are awaited with great interest and may potentially lead to the development of a large phase 3 trial to investigate the long-term outcome of IA PRRT.

In general, PRRT is considered a safe treatment option. However, some short- and long-term side effects have to be beared in mind and carefully considered. Bone marrow and renal toxicity are more commonly grade 1 and 2, but they may be transient or persistent [153]. The co-infusion of amino acids during the isotope infusion was demonstrated to reduce the risk of nephrotoxicity, although it was associated with manageable nausea and vomiting [154]. Notably, 5–21% of patients who had previously received chemotherapy developed grade 3 or 4 haematological toxicity [155]. Patients with bone metastases present a higher risk of myelotoxity [156]. Finally, acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are severe long-term complications related to PRRT and were reported to occur in approximately 0.5 and 1.5% of patients, respectively, after a median of 55 and 28 months following PRRT [11,136,157]. Patients that have received prior alkylating chemotherapy are at greater risk of developing MDS/acute leukemia following PRRT [158,159].

4.3.2. Antagonists (177Lu-Satoreotide Tetraxetan, 177Lu-DOTA-LM3)

Radiolabeled SSTR2 antagonists, such as 177Lu-satoreotide tetraxetan, have shown higher tumor uptake, independent of SSTR activation, and greater tumor-to-organ ratios than agonists in preclinical models [160]. SSTR antagonists such as 68Ga-DOTA-JR11, [18F]AlF-NOTA-JR11, 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3, have demonstrated great sensitivity for the detection of NENs, potentially superior to [68Ga]Ga-DOTATATE [161–164]. A phase I study evaluated the efficacy and safety of 177Lu-satoreotide tetraxetan in 20 patients with advanced SSTR2-positive NETs [165]. Six patients received one cycle and 14 received two. The maximum activity per cycle was 7.4 GBq. However, grade 4 hematologic toxicity occurred in four of the seven (57%) patients after cycle 2. The study was suspended, and the protocol modified to limit the cumulative absorbed bone marrow dose to 1 Gy and to reduce prescribed activity for cycle 2 by 50%. The ORR was 45% (5% CR and 40% PR) and the median PFS was 21 months. Additional studies are ongoing to determine the optimal therapeutic dose and schedule [95]. Another study evaluated the safety and activity of the 177Lu labeled somatostatin receptor (SSTR) antagonist DOTA-p-C1-Phe-cyclo (D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr-NH2 (177Lu-DOTA-LM3) [166]. Fifty-one patients with metastatic NENs received PRRT with 177Lu-DOTA-LM3, with good tolerance and promising activity.

5. Immunotherapy and Antibody-Drug Conjugates

5.1. Immune Check Point Inhibitors

Several immune check-point inhibitors (ICls) have been demonstrated over the past decade to significantly improve the survival of patients with a wide spectrum of tumor types, including, among others, melanoma [167,168], renal and urothelial cancer [169], non–small cell lung cancer [170] and tumors with high microsatellite instability (MSI-h) or high tumor mutational burden (TMB-h) [171]. The immune response is tightly regulated by a fine balance between stimulating and inhibitory signals that also play a very relevant role in cancer surveillance and control. The Programmed Death-1 (PD-1) pathway is essential for maintaining peripheral T cell tolerance and is critical for attenuating autoimmunity and maintaining T cell homeostasis. However, this pathway also limits anti-tumor immunity. The PD-1 receptor is expressed on activated T cells and interacts with its ligand (PD-L1), expressed in tumor and immune cells, to down-regulate T-cell activation and promote tumor immune escape [172].

The immune landscape is highly heterogeneous in NENs. PDL-1 expression is low in G1-2 NET, whereas it is often high in G3 NENs [173,174]. Additionally, TMB is also higher in G3 NENs. Consistent with these observations, encouraging results have been
reported with ICIs in different settings of high-grade NEN such as small cell lung cancer (SCLC) [175] or Merkel cell carcinoma (MCC) [176, 177]. Indeed, several ICIs (i.e., atezolizumab or durvalumab) have been demonstrated to improve the survival of patients with extensive-stage SCLC when added to platinum-based chemotherapy and have been approved to treat SCLC in this context. In 2017, FDA approval was also granted for both the PD-L1 inhibitor avelumab and the PD-1 inhibitor pembrolizumab for the treatment of metastatic MCC [176]. Other PD-1 inhibitors such as nivolumab are also effective and are recommended for the treatment of advanced MCC in current National Comprehensive Cancer Network guidelines [177].

Many ICIs have also been tested in NENs (Table 4). Results have been rather disappointing in G1-2 NETs [178–180] with the sole exception of spartalizumab (anti-PD1 antibody) in a small cohort of lung carcinoids that reported an ORR of 20% [181]. Single-agent treatment with ICIs has also been essentially ineffective in G3 NENs [182, 183], except for toripalimab (anti-PD1 antibody), that reported an overall ORR in NENs with Ki-67 > 10% of 20% and greater for PDL1-positive tumors or tumors with high TMB (50 and 75%, respectively) [184].

More encouraging results have been reported for NEN patients treated in basket trials with dual CTLA4 and PD1 blockades (ipilimumab and nivolumab), with an ORR of 24–25%; responses were notably higher in G3 NENs and in those of lung origin [185]. However, the recently reported results from the DUNE basket trial (durvalumab and ipilimumab) conducted exclusively in GEP NENs have not confirmed these positive results [186]. Several other studies are currently testing novel treatment strategies with different combinations of ICIs, angiogenesis inhibitors or chemotherapy in GEP-NETs, lung carcinoids and extrapulmonary NECs (Table 4). The results of these trials shall help clarify the role, if any, of immunotherapy in NENs.

Table 4. Summary of relevant published trials with immune check-point inhibitors in advanced NETs and extrapulmonary neuroendocrine carcinomas (NECs).

Study	Drug	Population	n	Phase	Line	ORR	PFS (Median)	OS (Median)
KEYNOTE 028	Pembrolizumab	PDL1-positive EP-NETs	25	Ib	2 + line	12%	5.6 m	21.1 m
		PDL1-positive P-NETs	16			6.3%	4.5 m	21.0 m
KEYNOTE 158	Pembrolizumab	NETs (16% PDL1-positive)	107	II	Any line	3.7% (TMB-high (n = 5))	4.1 m	24.2 m
						13% (TMB-low (n = 80))		
NCT02939651	Pembrolizumab	G3 NENs	29	II	2 + line	3.4%	2.2 m	5.1 m
		Lung-NETs	30			20%		
		P-NETs	33			3%	NA	NA
		G1-NETs	21			0%		
		GEP NECs	40	Ib	2 + line	43% (PD-L1 ≥ 10%)	3.8 m	9.1 m
						10%	2.2 m	
						75%		
AGENEC 2019	Avelumab	G3 NENs (except SCLC)	60	II	2nd line	6.9%	4 m	7 m
NCT00374513	Atezolizumab and bevacycizumab	EP-NETs	20	II	2 + line	20%	19.6 m	NA
DART/SWOG 1609	Ipilimumab and nivolumab	G3 NENs (all)	32	II	Any line	45%	4 m	11 m
CA209-538, 2020	Ipilimumab and nivolumab	G1-2 NENs (all)	14	II	Any line	5%	NA	NA
DUNE Trial 2020	Durvalumab and tremelimumab	Lung NETs	32	II	2 + line	31%	4.8 m	14.8 m
		P-NETs	27			33%		
		GEP/unknown NECs	26			0%		
						8.0 m		
						8.1 m		

Abbreviations: EP-NETs: extrapancreatic NETs, GEP: gastroenteropancreatic, GI: gastrointestinal, LAR: long-acting repeatable, NA: not available, NET: neuroendocrine tumor, NEC: neuroendocrine carcinoma, NR: not reached, NS: not significant, ORR: objective response rate, OS: overall survival, P-NET: pancreatic NETs, PFS: progression free survival, SCLC: small cell lung cancer.
5.2. Antibody-Drug Conjugates Targeting SSTRs or DLL3

Antibody–drug conjugates (ADC) are a class of agents that consists of a mAb conjugated to a cytotoxic drug via a chemical linker. The monoclonal antibody directs the cytotoxic payload towards a target antigen expressed on the cancer cell surface, thereby reducing systemic drug exposure and therefore toxicity. This approach has shown to be effective in different types of cancers and is also being explored in NENs. Delta-like protein 3 (DLL3) is a Notch ligand that is expressed in tumor-initiating cells and > 80% of SCLC and other high grade NECs (lung, ovarian, prostate, bladder, etc.), with minimal to no expression in normal tissues [187–189]. Notch signaling regulates stem cell differentiation and self-renewal and is involved in cell–cell communication and cell-fate decisions during development. DLL3 is an atypical Notch receptor family ligand that, unlike related family members, inhibits Notch receptor activation. Delta-like protein 3 (DLL3)-targeted ADC rovalpituzumab tesirine (Rova-T) was initially tested in small cell lung cancer (SCLC) with some encouraging results, although randomized pivotal trials failed to demonstrate a survival benefit versus standard of care in pretreated patients and the development of this drug was halted [190,191]. At ESMO 2017, preliminary results of a phase I-II study of Rova-T were presented. This study planned to include several expansion cohorts of patients with different DLL3-positive high grade non-pulmonary NECs. However, this trial has not been published to date and no further data update has been presented since [192].

Another interesting target in NETs for ADC therapy is SSTRs. PEN-221 is a peptide–drug conjugate designed to target cancer cells via an SSTR2-targeting ligand conjugated to the antimicrotubular cytotoxic agent, DM1. In vitro, PEN-221 treatment of SSTR2-positive cells resulted in PEN-221 internalization and receptor-dependent inhibition of cellular proliferation. In vivo, PEN-221 exhibited rapid accumulation in SSTR2-positive SCLC xenograft tumors with quick clearance from plasma [193]. These data suggest potential for antitumor activity of PEN-221 in patients with SSTR2-positive tumors. With this rationale, a phase I/II study (NCT02936323) is currently exploring the activity of PEN-221 in SSTR2-expressing advanced cancers including NETs, pheochromocytomas and SCLC [194]. Other promising strategies at earlier stages of clinical development include bispecific antibodies or bites targeting CD3 and DLL3 or SSTR2 that will hopefully provide new therapeutic options for patients in the very near future. Other currently ongoing trials with novel targeted agents or novel combinations are summarized in Table 5.

Study	Population	Drug	Type/Phase	Line	Estimated n	Primary Endpoint
NCT03772488	High G2/low G3 GEP NETs	177Lu-DOTATATE vs. High dose Octreotide	Randomized, phase III study	Any line	222	PFS
NCT03049189	Non-functioning GI NETs, functioning or not P-NETs	177Lu-Edotreotide everolimus	Randomized, phase III study	Any line	300	PFS
NCT0437526	SSTR + NETs	177Lu-DOTATATE plus olaparib	I	Any line	18	Safety
NCT02230176	P-NETs	177Lu-DOTATATE vs. sunitinib	Randomized, phase II study	Any line	80	PFS
NCT02736448	GEP-NETs	177Lu-DOTATATE plus capcitabine followed by SSA vs. 177Lu-DOTATATE followed by SSA	Randomized, phase II study	Any line	176	PFS
NCT04194125	GEP-NETs	177Lu-DOTATATE plus CAPTEM AlphaMedix (125 IB-DOTATATE)	Not randomized, phase II study	Any line	25	PFS
NCT03466216	NETs	177Lu-DOTATATE plus lanreotide ATG	Not randomized, phase II study	Any line	50	Safety
NCT03379320	Advanced NETs	Cabozantinib vs. placebo	Randomized, phase III study	Any line	395	PFS
NCT04427797	GEP-NETs	Cabozantinib plus lanreotide ATG	Not randomized, phase II study	Any line	69	ORR, Safety
NCT03891784	NETs	Abemaciclib	Not randomized, phase II study	Any line	37	ORR
NCT03950609	NETs	Lenvatinib plus everolimus	Not randomized, phase II study	Any line	32	ORR
Table 5. Cont.

Study	Population	Drug	Type/Phase	Line	Estimated n	Primary Endpoint
NCT03600233	NETs	CVM-1118	Not randomized, phase II study	Any line	30	PFS
HORMONET study NCT03870399	Hormone receptor positive NETs	Tamoxifen	Not randomized, phase II study	Any line	22	DCR at week 24
NCT03400532	NETs	Nivolumab and ipilimumab	Any line	64		ORR
NCT03919731	NECs	Nivolumab versus nivolumab and ipilimumab	Any line	180		ORR
NCT04207463	NETs	Regorafenib with avelumab	Not randomized, phase II study	Any line	150	ORR
NCT03475953	GEP-NETs (solid tumors)	Atezolizumab and bevacizum	II	362 (solid tumors)	Safety	
NCT03074513	Rare tumors, including NETs and NECs	Cavoxyztumab plus bevacizum	Any line	164		ORR
NCT04197310	NETs, NECs	Carboplatin and bevacizum	II	35		ORR
NCT04079712	NECs	Nivolumab plus carboplatin and bevacizum	Not randomized, phase II study	Any line	144	ORR
NCT04197310 Extra-pancreatic NETs	Nivolumab plus carboplatin and bevacizum	II	Any line	35		ORR
NCT033290079 Lung and GI NETs	Pembrolizumab and leneratinib	Toripalimab and surufatinib	II	35		ORR
NCT03879607 Advanced solid tumors including NENs	Talabostat mesylate plus pembrolizumab	I	Any line	24		Safety
NCT03910660 Prostate NECs	Tidutamab (XmAb18087)	Not randomized, I/II study	Any line	40		ORR
NCT03411915	NETs	(anti-SSTR2 x anti-CD3 monoclonal antibody)	I	87		Safety
NCT03879694 Lung and P-NETs	Tidutamab (XmAb18087)	Not randomized, phase II study	Any line	10		Safety
NCT03992911 Bladder NECs	Pembrolizumab and leneratinib	Not randomized, phase II study	Any line	336		OS
NCT03582475 Prostate/bladder NECs	Carboplatin plus etoposide and cisplatin plus docetaxel	Not randomized, phase I study	Any line	30		ORR, PFS, OS
NICE-NEC GETNE T1913	NECs	Nivolumab plus carboplatin plus etoposide plus cisplatin	II	38		ORR
NCT03901378 NECs (excluding SCLC)	Pembrolizumab and platinum-epothoside	Not randomized, phase II study	I	36		PFS
NCT03728361 NECs	Temozolomide plus nivolumab	Not randomized, phase II study	Any line	53		ORR

Abbreviations: DCR: disease control rate, GEP: gastroenteropancreatic, GI: gastrointestinal, LAR: long-acting repeatable, NET: neuroendocrine tumor, NEC: neuroendocrine carcinoma, ORR: objective response rate, OS: overall survival, P-NET: pancreatic NETs, PFS: progression free survival, SSTR2: somatostatin receptor 2.

6. Future Perspectives and Conclusions

Recent advances in understanding the biology of NENs have opened new avenues for the development of new therapeutic strategies that have substantially expanded the treatment armamentarium of these patients, including SSA, PRRT, mTOR and angiogenesis inhibitors. However, available treatment options are still rather limited, and all patients eventually develop resistance to these agents. Major efforts shall be made to overcome resistance and to develop innovative strategies to improve the treatment benefit–risk ratio in these patients, including the identification of novel targets for therapy and of biomarkers that allow an improved selection of patients for personalized patient care. The optimal sequence and/or treatment combinations are other pending issues, as are strategies to increase efficacy and minimize drug toxicity to improve patient outcomes, including quality of life.
Author Contributions: Conceptualization, A.L.S. and R.G.-C.; methodology, A.L.S. and P.E.-O.; validation, M.D.C.R.-M., and R.G.-C.; formal analysis, A.L.S.; investigation, A.L.S. and B.A.-P.; data curation, A.L.S., P.E.-O. and B.A.-P.; writing—original draft preparation, A.L.S.; writing—review and editing, M.D.C.R.-M. and R.G.-C.; supervision, R.G.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: No funding was received to assist with the preparation of this manuscript. A.L.S. has no conflict of interests to declare. P.E.-O. has received honoraria or funding for continuous medical education from Ipsen, Novartis, Roche. M.D.C.R.-M. Has provided scientific advice and/or received honoraria or funding for continuous medical education from Servier, Roche, Merck, AAA, Servier, Amgen and Bayer. B.A.-P. has no conflict of interests to declare. R.G.-C. has provided scientific advice and/or received honoraria or funding for continuous medical education from AAA, Advanz Pharma, Amgen, Bayer, BMS, HMP, Ipsen, Merck, Midatech Pharma, MSD, Novartis, PharmaMar, Pfizer, Pierre Fabre, Roche, Servier and Sanofi, and has received research support from Pfizer, BMS and MSD.

References
1. Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the incidence, prevalence, and survival out-comes in patients with neuroendocrine tumours in the United States. JAMA Oncol. 2017, 3, 1335–1342. [CrossRef]
2. Garcia-Carbonero, R.; Capdevila, J.; Crespo-Herrero, G.; Díaz-Perez, J.A.; del Prado, M.M.; Orduña, V.A.; Sevilla-Garcia, I.; Villabona-Artero, C.; Berghiristain-Gomez, A.; Llanos-Muñoz, M.; et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumours (GEP-NETs): Results from the National Cancer Registry of Spain (RGETNE). Ann. Oncol. 2010, 21, 1794–1803. [CrossRef] [PubMed]
3. Yao, J.C.; Hassan, M.; Phan, A.; Dagheroy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after ‘carcinoid’: Epidemiology of and prognostic factors for neuroendocrine tumours in 35,825 cases in the United States. J. Clin. Oncol. 2006, 24, 3063–3072. [CrossRef] [PubMed]
4. Klimstra, D.S.; Kloppe, G.; La Rosa, S.; Rindi, G. Classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumours: Digestive System Tumours, 5th ed.; WHO Classification of Tumours Editorial Board, Ed.; International Agency for Research on Cancer: Lyon, France, 2019; p. 16.
5. Dasari, A.; Mehta, K.; Byers, L.A.; Sorbye, H.; Yao, J.C. Comparative study of lung and extrapulmonary poorly differentiated neuroendocrine carcinomas: A SEER database analysis of 162,982 cases. Cancer 2018, 124, 807–815. [CrossRef] [PubMed]
6. Sorbye, H.; Baudin, E.; Borbath, I.; Caplin, M.; Chen, J.; Cwikla, J.B.; Frilling, A.; Grossman, A.; Kaltsas, G.; Scarpa, A.; et al. Unmet needs in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). Neuroendocrinology 2019, 108, 54–62. [CrossRef]
7. Cho, M.Y.; Kim, J.M.; Sohn, J.H.; Kim, M.J.; Kim, K.M.; Kim, W.H.; Kim, H.; Kook, M.C.; Park, D.Y.; Lee, J.H.; et al. Current trends of the incidence and pathological diagnosis of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) in Korea 2000–2009: Multi-center study. Cancer Res. Treat. 2012, 44, 157–165. [CrossRef]
8. Bernick, P.E.; Klimstra, D.S.; Shia, J.; Minsky, B.; Saltz, L.; Shi, W.; Thaler, H.; Guillem, J.; Paty, P.; Cohen, A.M.; et al. Neuroendocrine carcinomas of the colon and rectum. Dis. Colon Rectum. 2004, 47, 163–169. [CrossRef]
9. Rink, A.; Müller, H.-H.; Schade-Brittinger, C.; Klose, K.-J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.-F.; Bläker, M.; et al. Placebo-controlled, double-blind, randomised study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID study group. J. Clin. Oncol. 2009, 27, 4656–4663. [CrossRef]
10. Caplin, M.E.; Pavel, M.; Cwikla, J.B.; Phan, A.T.; Raderer, M.; Seladljaková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [CrossRef]
11. Brabander, T.; Van Der Zwan, W.A.; Teunissen, J.J.M.; Kam, B.L.R.; Feelders, R.A.; De Herder, W.W.; Van Eijck, C.H.J.; Franssen, G.J.H.; Krenning, E.P.; Wiersinga, W.; Kwekkeboom, D.J. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0),Tyr(3)] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumours. Clin. Cancer Res. 2017, 23, 4617–4624. [CrossRef] [PubMed]
12. Hicks, R.J.; Kwekkeboom, D.J.; Krenning, E.; Bodei, L.; Grozinsky-Glasberg, S.; Arnold, R.; Borbath, I.; Cwikla, J.; Toumpanakis, C.; Kaltsas, G.; et al. Enet consensus guidelines for the standards of care in neuroendocrine neoplasia: Peptide receptor radionuclide therapy with radiolabeled somatostatin analogues. Neuroendocrinology 2017, 105, 295–309. [CrossRef] [PubMed]
13. Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 2017, 376, 125–135. [CrossRef] [PubMed]
14. Raymond, E.; Dahan, L.; Raoul, J.L.; Bang, Y.J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [CrossRef] [PubMed]
15. Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. RAD001 in advanced neuroendocrine tumors, third trial (RADIANT-3) study group. *N. Engl. J. Med.* 2011, 364, 514–523. [CrossRef]

16. Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. RAD001 in advanced neuroendocrine tumours, fourth trial (RADIANT-4) study group. Everolimus for the treatment of advanced, nonfunctional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. *Lancet* 2016, 387, 968–977.

17. Garcia-Carbonero, R.; Sorbye, H.; Baudin, E.; Raymond, E.; Wiedenmann, B.; Niederle, B.; Sedlackova, E.; Toumpanakis, C.; Anlauf, M.; Cwikla, J.B.; et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumours and neuroendocrine carcinomas. *Neuroendocrinology* 2016, 103, 186–194. [CrossRef] [PubMed]

18. Garcia-Carbonero, R.; Rinke, A.; Valle, J.W.; Fazio, N.; Caplin, M.; Gorbounova, V.; O’Connor, J.; Eriksson, B.; Sorbye, H.; Kulke, M.; et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: Systemic therapy-chemotherapy. *Neuroendocrinology* 2017, 105, 281–294. [CrossRef]

19. Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. *Front. Mol. Neurosci.* 2011, 4, 51. [CrossRef]

20. Jaeschke, A.; Dennis, P.B.; Thomas, G. mTOR: A mediator of intracellular homeostasis. *Curr. Top. Microbiol. Immunol.* 2004, 279, 283–298.

21. Yang, H.; Rudge, D.G.; Koos, J.D.; Vaidalingam, B.; Yang, H.J.; Pavletich, N.P. mTOR kinase structure, mechanism and regulation. *Nat. Cell Biol.* 2015, 17, 497–223. [CrossRef]

22. Zeng, Z.; Sarbassov, D.D.; Samudio, I.J.; Yee, K.W.L.; Munsell, M.F.; Jackson, C.E.; Giles, F.J.; Sabatini, D.M.; Andreeff, M.; Konopleva, M. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. *Blood* 2006, 109, 3509–3512. [CrossRef]

23. Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. *Cell* 2012, 149, 274–293. [CrossRef]

24. Menon, S.; Manning, B.D. Common corruption of the mTOR signaling network in human tumors. [CrossRef]

25. Yecies, J.L.; Manning, B.D. Transcriptional control of cellular metabolism by mTOR signaling: Figure 1. *Cancer Res.* 2011, 71, 2815–2820. [CrossRef] [PubMed]

26. Csibi, A.; Fendt, S.-M.; Li, C.; Poulogiannis, G.; Choo, A.Y.; Chapski, D.J.; Jeong, S.M.; Dempsey, J.M.; Parkhitko, A.; Morrison, T.; et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. *Cell* 2013, 153, 840–854. [CrossRef] [PubMed]

27. Darb-Esfahani, S.; Faggad, A.; Noske, A.; Weichert, W.; Buckendahl, A.C.; Muller, B.; Budczies, J.; Roske, A.; Dietel, M.; Denkert, C. Phospho-mTOR and phospho-4E-BP1 in endometrial adenocarcinoma: Association with stage and grade in vivo and link with response to rapamycin treatment in vitro. *J. Cancer Res. Clin. Oncol.* 2009, 135, 933–941. [CrossRef] [PubMed]

28. Boone, J.; Kate, F.J.W.T.; A’Offerhaus, G.J.; Van Diest, P.J.; Rinke, I.H.M.B.; Van Hillegersberg, R. mTOR in squamous cell carcinoma of the oesophagus: A potential target for molecular therapy? *J. Clin. Pathol.* 2008, 61, 909–913. [CrossRef] [PubMed]

29. Campbell, L.; Jansen, B.; Edwards, K.; Gumbleton, M.; Griffiths, D.F.R. Combined expression of caveolin-1 and an activated AKT/mTOR pathway predicts reduced disease-free survival in clinically confined renal cell carcinoma. *Br. J. Cancer* 2008, 98, 931–940. [CrossRef]

30. Tampellini, M.; Longo, M.; Cappia, S.; Bacillo, E.; Alabiso, I.; Volante, M.; Dogliotti, L.; Papotti, M. Co-expression of EGF receptor, TGFα and S6 kinase is significantly associated with colorectal carcinomas with distant metastases at diagnosis. *Virchows Arch.* 2007, 450, 321–328. [CrossRef] [PubMed]

31. Kremer, C.L.; Klein, R.R.; Mendelson, J.; Browne, W.; Samadzadeh, L.K.; Vanpatten, K.; Highstorm, L.; Pestano, G.A.; Nagle, R.B. Expression of mTOR signaling pathway markers in prostate cancer progression. *Prostate* 2006, 66, 1203–1212. [CrossRef]

32. Zhou, X.; Tan, M.; Hawthorne, V.S.; Klos, K.S.; Lan, K.-H.; Yang, Y.; Yang, W.; Smith, T.L.; Shi, D.; Yu, D. Activation of the Akt/Mammalian target of Rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. *Clin. Cancer Res.* 2004, 10, 6779–6788. [CrossRef] [PubMed]

33. Anagnostou, V.K.; Bepler, G.; Syrigos, K.N.; Tanoue, L.; Gettinger, S.; Homer, R.J.; Boffa, D.; Deterbeck, F.; Rimm, D.L. High expression of mammalian target of rapamycin is associated with better outcome for patients with early stage lung adenocarcinoma. *Clin. Cancer Res.* 2009, 15, 4157–4164. [CrossRef] [PubMed]

34. Noske, A.; Lindenberg, J.L.; Darb-Esfahani, S.; Weichert, W.; Buckendahl, A.C.; Roske, A.; Sehoul, J.; Dietel, M.; Denkert, C. Activation of mTOR in a subgroup of ovarian carcinomas: Correlation with p-eIF-4E and prognosis. *Oncol. Rep.* 2008, 20, 1409–1417. [CrossRef]

35. Pelloski, C.E.; Lin, E.; Zhang, L.; Yung, W.K.; Colman, H.; Liu, J.L.; Woo, S.Y.; Himberger, A.B.; Suki, D.; Prados, M.; et al. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. *Clin. Cancer Res.* 2006, 12, 3935–3941. [CrossRef] [PubMed]

36. Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.-M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumors. *Nat. Cell Biol.* 2017, 543, 65–71. [CrossRef]

37. Capdevila, J.; Salazar, R.; Halperin, I.; Abad, A.; Yao, J.C. Innovations therapy: Mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. *Cancer Metastasis Rev.* 2011, 30, 27–34. [CrossRef]
38. Cingarlini, S.; Bonomi, M.; Corbo, V.; Scarpa, A.; Tortora, G. Profiling mTOR pathway in neuroendocrine tumors. Target. Oncol. 2012, 7, 183–188. [CrossRef]

39. Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; della Peruta, M.; Piemonti, L.; Capurso, G.; Di Florio, A.; delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 2010, 28, 245–255. [CrossRef]

40. Chan, J.; Kulke, M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr. Treat. Options Oncol. 2014, 15, 365–379. [CrossRef]

41. Shida, T.; Kishimoto, T.; Furuya, M.; Nikaido, T.; Koda, K.; Takano, S.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; et al. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother. Pharmacol. 2010, 65, 889–893. [CrossRef]

42. Righi, L.; Volante, M.; Rapa, I.; Tavaglione, V.; Inzani, F.; Pelosi, G.; Papotti, M. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr. Relat. Cancer 2010, 17, 977–987. [CrossRef]

43. Jiao, Y.; Shi, C.; Edil, B.H.; De Wilde, R.F.; Klimstra, D.S.; Maitra, A.; Schulick, R.D.; Tang, L.H.; Wolfgang, C.L.; Choti, M.A.; et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011, 331, 1199–1203. [CrossRef]

44. Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Scarpa, A.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 2006, 24, 4677–4684. [CrossRef] [PubMed]

45. Yao, J.C. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pr. Res. Clin. Endocrinol. Metab. 2007, 21, 163–172. [CrossRef] [PubMed]

46. Wolin, E.M. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Brain Pathol. 2008, 18, 153–158. [CrossRef] [PubMed]

47. Karpathakis, A.; Dibra, H.; Thirlwell, C. Neuroendocrine tumours: Cracking the epigenetic code. J. Clin. Oncol. 2008, 26, 4184–4191. [CrossRef] [PubMed]

48. Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.G.; Scarpa, A.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 2010, 28, 245–255. [CrossRef] [PubMed]

49. Kasajima, A.; Pavel, M.; Darb-Esfahani, S.; Noske, A.; Stenzinger, A.; Sasano, H.; Dietel, M.; Denkert, C.; Röcken, C.; Wiedenmann, B.; et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer 2010, 18, 181–192. [CrossRef] [PubMed]

50. Raymond, E.; García-Carbonero, R.; Wiedenmann, B.; Grande, E.; Pavel, M. Systemic therapeutic strategies for GEP-NETS: What can we expect in the future? Cancer Metastasis Rev. 2013, 33, 367–372. [CrossRef] [PubMed]

51. Wolin, E.M. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Cancer Lett. 2013, 335, 1–8. [CrossRef] [PubMed]

52. Ballou, L.M.; Lin, R.Z. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 2008, 1, 27–36. [CrossRef] [PubMed]

53. Zitzmann, K.; De Toni, E.N.; Brand, S.; Göke, B.; Meinecke, J.; Spöttl, G.; Meyer, H.H.; Auernhammer, C.J. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects inhuman pancreatic neuroendocrine tumor cells. Neuroendocrinology 2007, 85, 54–60. [CrossRef]

54. Djukom, C.; Porro, L.J.; Mrazek, A.; Townsend, C.M.; Hellmich, M.R.; Chao, C. Dual inhibition of PI3K and mTOR signaling pathways decreases human pancreatic neuroendocrine tumor metastatic progression. Pancreas 2014, 43, 88–92. [CrossRef]

55. Dutt, S.; Jayakrishnan, S.; Inoue, T.; Hsu, E.M.; Parikh, A.; Marder, M.B.; Ludwig, V.; Lieber, J.; Klimo, P.; Haimovici, H.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. J. Med. 2012, 366, 520–529. [CrossRef]

56. Pantuck, A.J.; Seligson, D.B.; Klatte, T.; Yu, H.; Leppert, J.T.; Moore, L.; O’Toole, T.; Gibbons, J.; Belldegrun, A.S.; Figlin, R.A. Prognostic relevance of the mTOR pathway in renal cell carcinoma: Implications for molecular patient selection for targeted therapy. Cancer 2007, 109, 2257–2267. [CrossRef]

57. Yao, J.C.; Phan, A.T.; Chang, D.Z.; Wolff, R.A.; Hess, K.; Gupta, S.; Jacobs, C.; Mares, J.E.; Landgraf, A.N.; Rashid, A.; et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: Results of a phase II study. J. Clin. Oncol. 2008, 26, 4311–4318. [CrossRef]

58. Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovsky, J.; Lewiohn, D.; Jehl, V.; Wolin, E.M.; et al. RADIANT-2 study group. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 378, 2005–2012. [CrossRef]
61. Fazio, N.; Buzzoni, R.; Fave, G.D.; Tesselaar, M.E.; Wolin, E.; Van Cutsem, E.; Tomassetti, P.; Strosberg, J.; Voi, M.; Bubueishvili-Pacaud, L.; et al. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis. *Cancer Sci.* 2017, 109, 174–181. [CrossRef]

62. Kulke, M.H.; Ruszniewski, P.; Van Cutsem, E.; Lombard-Bohas, C.; Valle, J.W.; De Herder, W.W.; Pavel, M.; Degtyarev, E.; Brase, J.C.; Bubueishvili-Pacaud, L.; et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. *Ann. Oncol.* 2019, 30, 1846. [CrossRef] [PubMed]

63. Ferolla, P.; Brizzi, M.P.; Meyer, T.; Mансoo, W.; Mazieres, J.; Cao, C.D.; Léna, H.; Berruti, A.; Damiano, V.; Buikhuizen, W.; et al. Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): An open-label, multicentre, randomised, phase 2 trial. *Lancet Oncol.* 2017, 18, 1652–1664. [CrossRef]

64. Salazar, R.; Garcia-Carbonero, R.; Libutti, S.K.; Hendifar, A.E.; Custodio, A.; Guimbaud, R.; Lombard-Bohas, C.; Ricci, S.; Klümpen, H.J.; Capevilla, J.; et al. Phase II study of BEZ235 versus everolimus in patients with mammalian target of rapamycin inhibitor-naïve advanced pancreatic neuroendocrine tumors. *Oncoologist* 2018, 23, 766–e90. [CrossRef] [PubMed]

65. Kulke, M.H.; Niedzwiecki, D.; Foster, N.R.; Brugh, B.; Kunz, P.L.; Keenecke, H.F.; Wolin, E.M.; Veenook, A.P. Randomized phase II study of everolimus (E) versus everolimus plus bevacizumab (E+B) in patients (Pts) with locally advanced or metastatic pancreatic neuroendocrine tumors (pNET), CALGB 80701 (Alliance). *J. Clin. Oncol.* 2015, 33, 4005. [CrossRef]

66. O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. *Cancer Res.* 2006, 66, 1500–1508. [CrossRef] [PubMed]

67. Chiu, C.W.; Nozawa, H.; Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epithelial growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. *J. Clin. Oncol.* 2010, 28, 4425–4433. [CrossRef]

68. Bousquet, C.; Lasfargues, C.; Chalabi, M.; Billah, S.M.; Susini, C.; Vezzosi, D.; Caron, P.; Pyronnet, S. Clinical review: Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. *J. Clin. Endocrinol. Metab.* 2012, 97, 727–737. [CrossRef]

69. Yao, J.C.; Lombard-Bohas, C.; Baudin, E.; Kvols, L.K.; Roguier, P.; Ruszniewski, P.; Hoosen, S.; St Peter, J.; Haas, T.; Lebwohl, D.; et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: A phase II trial. *J. Clin. Oncol.* 2010, 28, 69–76. [CrossRef]

70. Capevilla, J.; Teulé, A.; Barriuso, J.; Castellano, D.; Lopez, C.; Manzano, J.L.; Alonso, V.; García-Carbonero, R.; Dotor, E.; Matos, I.; et al. Phase II study of everolimus and octreotide LAR in patients with nonfunctioning gastrointestinl neuroendocrine tumors: The GETNE1003_EVERLAR study. *Oncoologist* 2019, 24, 38–46. [CrossRef]

71. Koumarianou, A.; Pectasides, D.; Koliou, G.A.; Dionysopoulous, D.; Kolomodi, D.; Poulios, C.; Skondra, M.; Sgouros, J.; Pentheroudakis, G.; Kaltzas, G.; et al. Efficacy and safety of first-line everolimus therapy alone or in combination with octreotide in gastroenteropancreatic neuroendocrine tumors. A hellenic cooperative oncology group (HeCOG) study. *Biolog* 2020, 9, 51. [CrossRef]

72. Yao, J.C.; Phan, A.T.; Hess, K.; Fogelman, D.; Jacobs, C.; Daghohoy, C.; Leary, C.; Xie, K.; Ng, C.S. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendocrine tumors. *Pancreas* 2015, 44, 190–197. [CrossRef] [PubMed]

73. Chan, J.A.; Mayer, R.J.; Jackson, N.; Malinowski, P.; Regan, E.; Kulke, M.H. Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. *Cancer Chemother. Pharmacol.* 2013, 71, 1241–1246. [CrossRef] [PubMed]

74. Duran, I.; Kortmansky, J.; Singh, D.; Hirte, H.; Kocha, W.; Goss, G.; Le, L.; Oza, A.; Nicklee, T.; Ho, J.; et al. A Phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. *Br. J. Cancer.* 2006, 95, 1148–1154. [CrossRef]

75. Hobday, T.J.; Qin, R.; Reidy-Lagunes, D.; Moore, M.J.; Strosberg, J.; Kausbich, A.; Shah, M.; Kindler, H.L.; Lenz, H.J.; Chen, H.; et al. Multicenter phase II trial of temsirolimus and bevacizumab in pancreatic neuroendocrine tumors. *J. Clin. Oncol.* 2015, 33, 1551–1556. [CrossRef]

76. Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J.; et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. *Nat. Cell Biol.* 2012, 485, 55–61. [CrossRef] [PubMed]

77. Thoreen, C.C.; Kang, S.A.; Chang, J.W.; Liu, Q.; Zhang, J.; Gao, Y.; Reichling, L.J.; Sim, T.; Sabatini, D.M.; Gray, N.S. An ATP-competitive mammalian target of rapamycin inhibitor reveals Rapamycin-resistant functions of mTORC1. *J. Biol. Chem.* 2009, 284, 8023–8032. [CrossRef]

78. Chamberlain, C.E.; German, M.S.; Yang, K.; Wang, J.; VanBroeklin, H.; Regan, M.; Shokat, K.M.; Ducker, G.S.; Kim, G.E.; Hann, B.; et al. A patient-derived Xenograft model of pancreatic neuroendocrine tumors identifies sapanisertib as a possible new treatment for everolimus-resistant tumors. *Mol. Cancer Ther.* 2018, 17, 2702–2709. [CrossRef]

79. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. *Nat. Cell Biol.* 2000, 407, 249–257. [CrossRef]

80. Lapeyre-Prost, A.; Termé, M.; Pernot, S.; Pointet, A.-L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory activity of VEGF in cancer. *Int. Rev. Cell Mol. Biol.* 2017, 330, 295–342. [CrossRef]
81. Shibuya, M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. *J. Biochem.* 2013, 153, 13–19. [CrossRef] [PubMed]

82. Kowanetz, M.; Ferrara, N. Vascular endothelial growth factor signalling pathways: Therapeutic perspective. *Clin. Cancer Res.* 2006, 12, 5018–5022. [CrossRef] [PubMed]

83. Chung, A.S.; Lee, J.; Ferrara, N. Targeting the tumour vasculature: Insights from physiological angiogenesis. *Nat. Rev. Cancer* 2010, 10, 505–514. [CrossRef]

84. Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. *Nat. Rev. Cancer* 2013, 13, 871–882. [CrossRef] [PubMed]

85. Crawford, Y.; Ferrara, N. VEGF inhibition: Insights from preclinical and clinical studies. *Cell Tissue Res.* 2009, 335, 261–269. [CrossRef] [PubMed]

86. McNamara, D.A.; Harmey, J.H.; Walsh, T.N.; Redmond, H.P.; Boucher-Hayes, D.J. Significance of angiogenesis in cancer therapy. *Br. J. Surg.* 1998, 85, 1044–1055. [CrossRef]

87. Terris, B.; Soaazec, J.Y.; Rubbia, L.; Bregaud, L.; Pepper, M.S.; Ruszniewski, P.; Belghiti, J.; Fléjou, J.; Degott, C. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. *Histopathology* 1998, 32, 133–138. [CrossRef]

88. Gomez, D.; Malik, H.Z.; Al-Mukthar, A.; Menon, K.V.; Toogood, G.J.; Lodge, J.P.; Prasad, K.R. Hepatic resection for metastatic neuroendocrine tumours (SANET): Outcome and prognostic predictors. *HPB* 2007, 9, 345–351. [CrossRef] [PubMed]

89. Zhang, J.; Jia, Z.; Li, Q.; Wang, L.; Rashid, A.; Zhu, Z.; Evans, D.B.; Vauthey, J.N.; Xie, K.; Yao, J.C. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. *Cancer* 2007, 109, 1478–1486. [CrossRef] [PubMed]

90. Xu, J.; Shen, L.; Bai, C.; Wang, W.; Li, J.; Yu, X.; Li, Z.; Li, E.; Yuan, X.; Chi, Y.; et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): A randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Oncol.* 2020, 21, 1489–1499. [CrossRef]

91. Xu, J.; Shen, L.; Zhou, Z.; Li, J.; Bai, C.; Chi, Y.; Li, Z.; Xu, N.; Li, E.; Liu, T.; et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): A randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Oncol.* 2020, 21, 1500–1512. [CrossRef]

92. Garcia-Carbonero, R.; Benavent, M.; Fonseca, P.J.; Castellano, D.; Alonso, T.; Teule, A.; Custodio, A.; Tafuto, S.; Munoa, A.L.C.; Spada, F.; et al. A phase II/III randomized double-blind study of octreotide acetate LAR with axitinib versus octreotide acetate LAR with placebo in patients with advanced G1-G2 NETs of non-pancreatic origin (AXINET trial-GETNE-1107). *J. Clin. Oncol.* 2021, 39, 360. [CrossRef]

93. Berghland, E.K.; Mahoney, M.R.; Asmis, T.R.; Hall, N.; Kumthekar, P.; Maitland, J.; Niedzwiecki, D.; Nixon, A.B.; O’Reilly, E.M.; Schwartz, L.H.; et al. Prospective randomized phase II trial of pazopanib versus placebo in patients with progressive carcinoid tumors (CARC) (Alliance A021202). *J. Clin. Oncol.* 2019, 37, 4005. [CrossRef]

94. Yao, J.C.; Guthrie, K.A.; Moran, C.; Strosberg, J.R.; Kulke, M.H.; Chan, J.A.; LoConte, N.; McWilliams, R.R.; Wolin, E.M.; Mattar, B.; et al. Phase III prospective randomized comparison trial of depot octreotide plus interferon alfa-2b versus depot octreotide plus bevacizumab in patients with advanced carcinoid tumors: SWOG S0518. *J. Clin. Oncol.* 2017, 35, 1695–1703. [CrossRef] [PubMed]

95. Nicolas, G.; Ansquer, C.; Lenzo, N.; Grømbak, H.; Haug, A.; Navalkisoor, S.; Beauregard, J.-M.; Germann, N.; McEwan, S.; Wild, D.; et al. 1160O An international open-label study on safety and efficacy of 177Lu-satoreotide tetraxetan in somatostatin receptor positive neuroendocrine tumours (NETs): An interim analysis. *Ann. Oncol.* 2020, 31, S771. [CrossRef]

96. Carlisle, B.; Demko, N.; Freeman, G.; Degott, C. Expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. *Clin. Cancer Res.* 2007, 13, 133–138. [CrossRef] [PubMed]

97. Larkin, J.; Paine, A.; Foley, G.; Mitchell, S.; Chen, C. First-line treatment in the management of advanced renal cell carcinoma: Systematic review and network meta-analysis. *Expert Opin. Pharmacother.* 2015, 16, 1915–1927. [CrossRef]

98. Faire, S.; Niccoli, P.; Castellano, D.; Valle, J.W.; Hammel, P.; Raoul, J.-L.; Vinik, A.; Van Cutsem, E.; Bang, Y.-J.; Lee, S.-H.; et al. Sunitinib in pancreatic neuroendocrine tumours: Updated progression-free survival and final overall survival from a phase III randomized study. *Ann. Oncol.* 2017, 28, 339–343. [CrossRef]

99. Valles, J.W.; Borbath, I.; Rosbrook, B.; Fernandez, K.; Raymond, E. Sunitinib in patients with pancreatic neuroendocrine tumours: Update of safety data. *Future Oncol.* 2019, 15, 1219–1230. [CrossRef]

100. Das, M. Sunitinib in neuroendocrine tumours. *Lancet Oncol.* 2019, 20, e196. [CrossRef]

101. Xu, J.; Li, J.; Bai, C.; Xu, N.; Zhou, Z.; Li, Z.; Zhou, C.; Jia, R.; Lu, M.; Cheng, Y.; et al. Surufatinib in advanced well-differentiated neuroendocrine tumours: A multicenter, single-arm, open-label, phase Ib/II trial. *Clin. Cancer Res.* 2019, 25, 3486–3494. [CrossRef] [PubMed]

102. Hu-Lowe, D.D.; Zou, H.Y.; Grazzini, M.L.; Hallin, M.E.; Wickman, G.R.; Amundson, K.; Chen, J.H.; Rewolinski, D.A.; Yamazaki, S.; Wu, E.Y.; et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. *Clin. Cancer Res.* 2008, 14, 7727–7283. [CrossRef] [PubMed]
104. Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. *Lancet* 2011, 378, 1931–1939. [CrossRef]

105. Strosberg, J.R.; Cives, M.; Hwang, J.; Weber, T.; Nickerson, M.; Atreya, C.E.; Venook, A.; Kelley, R.K.; Valone, T.; Morse, B.; et al. A phase II study of axitinib in advanced neuroendocrine tumors. *Endocr. Relat. Cancer.* 2016, 23, 411–418. [CrossRef] [PubMed]

106. Chan, J.A.; Faris, J.E.; Murphy, J.E.; Blaszkowsky, L.S.; Kwak, E.L.; McCleary, N.J.; Fuchs, C.S.; Meyerhardt, J.A.; Ng, K.; Zhu, A.X.; et al. Phase II trial of caboazitinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET). *J. Clin. Oncol.* 2017, 35, 228. [CrossRef]

107. Yao, J.C.; Phan, A.; Hoff, P.M.; Chen, H.X.; Charnsangavej, C.; Yeung, S.C.; Hess, K.; Ng, C.; Abbruzzese, J.L.; Ajani, J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alfa-2b. *J. Clin. Oncol.* 2008, 26, 1316–1323. [CrossRef]

108. Berruti, A.; Fazio, N.; Ferrero, A.; Brizzi, M.P.; Volante, M.; Nobili, E.; Tozzi, L.; Bodei, L.; D’Avolio, A.; et al. Bevacizumab plus octreotide and metronomic capcitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: The xelovoct study. *BMC Cancer* 2014, 14, 184. [CrossRef]

109. Chan, J.A.; Stuart, K.; Earle, C.C.; Clark, J.W.; Bhargava, P.; Miksad, R.; Blaszkowsky, L.; Enzinger, P.C.; Meyerhardt, J.A.; Zheng, H.; et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. *J. Clin. Oncol.* 2012, 30, 2963–2968. [CrossRef]

110. Schlaclterman, A.; Craft, W.W., Jr.; Hilgenfeldt, E.; Mitra, A.; Cabrera, R. Current and future treatments for hepatocellular carcinoma. *World J. Gastroenterol.* 2015, 21, 8478–8481. [CrossRef]

111. Fishman, M.N.; Tomshine, J.; Fulp, W.J.; Foreman, P.K. A systematic review of the efficacy and safety experience reported for sorafenib in advanced renal cell carcinoma (RCC) in the post-approval setting. *PLoS ONE* 2015, 10, e0120877. [CrossRef]

112. Hobday, T.J.; Rubin, J.; Holen, K.; Picus, J.; Donehower, R.; Marschke, R.; Maples, W.; Lloyd, R.; Mahoney, M.; Erlichman, C.; MC044h, a phase II trial of sorafenib in advanced renal cell carcinoma (RCC) to delay disease progression. *BMC Cancer* 2014, 14, 184. [CrossRef]

113. Castellano, D.; Capdevila, J.; Sastre, J.; Alonso, P.; Llanos, M.; Garcia-Carbonero, R.; Mozó, J.L.M.; Sevilla, I.; Durán, I.; Salazar, R. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: A phase II study of Spanish Neuroendocrine Tumour Group (GETNE). *J. Clin. Oncol.* 2017, 35, 3780–3787. [CrossRef]

114. Kumar, R.; Knick, V.B.; Rudolph, S.K.; Johnson, J.H.; Crosby, R.M.; Crouthamel, M.C.; Miller, C.G.; Harrington, L.E.; Onori, J.A.; et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. *Mol. Cancer Ther.* 2007, 6, 1412–2012. [CrossRef]

115. Cella, D.; Beaumont, J.L. Pazopanib in the treatment of advanced renal cell carcinoma. *Ther. Adv. Urol.* 2015, 8, 61–69. [CrossRef] [PubMed]

116. Sleijfer, S.; Ray-Coquard, I.; Papai, Z.; Le Cesne, A.; Scarr, M.; Schöffski, P.; Collin, F.; Pandite, L.; Marreaud, S.; De Brauwer, M.; et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: A phase II study from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group (EORTC study 62043). *J. Clin. Oncol.* 2009, 27, 3126–3132. [PubMed]

117. Ahn, H.K.; Choi, J.Y.; Kim, K.M.; Kim, H.; Choi, S.H.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Lee, J.; et al. Phase II study of pazopanib monotherapy in metastatic gastroenteropancreatic neuroendocrine tumours. *Br. J. Cancer* 2013, 17, 1414–1419. [CrossRef] [PubMed]

118. Phan, A.T.; Halperin, D.M.; A Chan, J.; Fogelman, D.R.; Hess, K.; Malinowski, P.; Regan, E.; Ng, C.S.; Yao, J.C.; Kulke, M.H. Pazopanib and octreotide in advanced, well-differentiated neuroendocrine tumours: A multicentre, single-group, phase 2 study. *Lancet Oncol.* 2015, 16, 695–703. [CrossRef]

119. Grande, E.; Capdevila, J.; Castellano, D.; Teule, A.; Durán, I.; Fuster, J.; Sevilla, I.; Escudero, P.; Sastre, J.; García-Donas, J.; et al. Pazopanib in pretreated advanced neuroendocrine tumours: A phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumours (GETNE). *Ann. Oncol.* 2015, 26, 1987–1993. [CrossRef]

120. Hussein, Z.; Mizuo, H.; Hayato, S.; Namiki, M.; Shumaker, R. Clinical pharmacokinetic and pharmacodynamic profile of lenvatinib, an orally active, small-molecule, multitargeted tyrosine kinase inhibitor. *Eur. J. Drug Metab. Pharmacokinet.* 2017, 42, 903–914. [CrossRef]

121. Capdevila, J.; Fazio, N.; Lopez, C.; Teule, A.; Valle, J.W.; Tafuto, S.; Custodio, A.; Reed, N.; Raderer, M.; Grande, E.; et al. Efficacy of lenvatinib in patients with advanced pancreatic (panNETs) and gastrointestinal (giNETs) grade 1/2 (G1/G2) neuroendocrine tumours: Results of the international phase II TALENT trial (GETNE 1509). *Ann. Oncol.* 2018, 29, 467. [CrossRef]

122. Iyer, R.V.; Konda, B.; Fountzilas, C.; Mukherjee, S.; Owen, D.; Attwood, K.; Wang, C.; Ma, C.W.; Minderman, H.; Ba, S.S.; et al. Multicenter phase 2 trial of nintedanib in advanced nonpancreatic neuroendocrine tumors. *Cancer* 2020, 126, 3689–3697. [CrossRef] [PubMed]

123. Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. *Proc. Natl. Acad. Sci. USA* 2002, 99, 11393–11398. [CrossRef] [PubMed]
124. Rodriguez-Remírez, M.; Del Puerto-Nevado, L.; Fernández-Aceñero, M.J.; Cruz-Ramos, M.; García-García, L.; Solanes, S.; Moli-na-Roldán, E.; García-Foncillas, J.; Cebrián, A. Targeting galectin-1 by aflibercept strongly enhances its antitumor effect in neuroendocrine carcinomas. *Neuroendocrinology* 2020, 111, 145–156. [CrossRef]

125. Rodríguez-Remírez, M.; Del Puerto-Nevado, L.; Fernández Aceñero, M.J.; Ebrahimi-Nik, H.; Cruz-Ramos, M.; García-García, L.; Solanes, S.; Baños, N.; Molina-Roldán, E.; García-Foncillas, J.; et al. Strong antitumor activity of bevacizumab and aflibercept in neuroendocrine carcinomas. *Neuroendocrinology* 2020, 110, 50–62. [CrossRef] [PubMed]

126. Halperin, D.M.; Lee, J.J.; Ng, C.S.; Strosberg, J.R.; Estrella, J.S.; Dagohoy, C.G.; Dasari, A.; Yao, J.C. A Phase II trial of ziv-aflibercept in patients with advanced pancreatic neuroendocrine tumors. *Pancreas* 2019, 48, 381–386. [CrossRef]

127. Oberg, K.E.; Reubi, J.C.; Kwekkeboom, D.J.; Strosberg, J.R.; Kunikowska, J.; Solanes, S.; Baños, N.; Molina-Roldán, E.; García-Foncillas, J.; et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumours refractory or resistant to octreotide-LAR: Results from a phase II study. *Endocr. Relat. Cancer* 2012, 19, 657–666. [CrossRef]

128. Kvols, L.K.; Oberg, K.E.; O’Dorisio, T.M.; Mohideen, P.; de Herder, W.W.; Arnold, R.; Hu, K.; Zhang, Y.; Hughes, G.; Anthony, L.; et al. Phase II study of pasireotide long-acting release in patients with metastatic neuroendocrine tumours and carcinoid symptoms refractory to available somatostatin analogues. *Drug Des. Dev. Ther.* 2015, 9, 5075–5086. [CrossRef]

129. Capello, A.; Krenning, E.P.; Breeman, W.A.P.; Bernard, B.F.; De Jong, M. Peptide receptor radionuclide therapy in vitro using 177Lu-octreotate-capeacetabine-temozolomide radiopptide chemotherapy. *Neuroendocrinology* 2015, 103, 432–439. [CrossRef]

130. Capello, A.; Parghane, R.V.; Bhandare, M.; Chaudhari, V.; Shrikhande, S.V.; Ostwal, V.; Ramaswamy, A.; Talole, S.; Basu, S. Surgical feasibility, determinants and overall efficacy assessment of neoadjuvant PRRT with 177Lu-DOTATATE for locally advanced unresectable gastrointestinal and pancreatic neuroendocrine tumors after 177Lu-octreotate. *Cancer Biother. Radiopharm.* 2012, 27, 561–569. [CrossRef] [PubMed]

131. Alonso-Gordoa, T.; Capdevila, J.; Grande, E. GEP–NETs UPDATE: Biotherapy for neuroendocrine tumours. *Endocrinol. Metab. Clin. N. Am.* 2020, 49, 661–6511. [CrossRef] [PubMed]

132. Kvols, L.K.; Oberg, K.E.; O’Dorisio, T.M.; Mohideen, P.; de Herder, W.W.; Arnold, R.; Hu, K.; Zhang, Y.; Hughes, G.; Anthony, L.; et al. Tandem peptide receptor radionuclide therapy using 90Y/177Lu-DOTATATE for neuroendocrine tumors efficacy and side-effects-polish multicenter experience. *Int. J. Endocrinol.* 2015, 75, 98–104. [PubMed]

133. Yao, J.C.; A Chan, J.; Kundu, M.G.; Resendiz, K.H.; Hu, K.; Ravichandran, S.; Strosberg, J.R.; Wolin, E.M. Phase I dose-escalation study of long-acting pasireotide in patients with neuroendocrine tumors. *OncoTargets Ther.* 2017, 10, 3177–3186. [PubMed]

134. Claringbold, P.G.; Turner, J.H. Pancreatic neuroendocrine tumor control: Durable objective response to combination 177Lu-octreotate-capeacetabine-temozolomide radiopptide chemotherapy. *Neuroendocrinology* 2015, 103, 432–439. [CrossRef]

135. Claringbold, P.G.; Turner, J.H. Pancreatic neuroendocrine tumor control: Durable objective response to combination 177Lu-octreotate-capeacetabine-temozolomide radiopptide chemotherapy. *Neuroendocrinology* 2015, 103, 432–439. [CrossRef]

136. Zemczak, A.; Gut, P.; Pawlak, D.; Król, L.; Kos-Kudla, B.; Ruchala, M.; Kamiński, G.; Kunikowska, J. The safety and efficacy of the repeated PRRT with [90Y-DOTA]-TOC Versus [90Y-DOTA]-TOC Plus [177Lu-DOTA]–TOC in neuroendocrine cancers. *J. Clin. Oncol.* 2012, 30, 1100–1106. [CrossRef]

137. Kunikowska, J.; Król, L.; Hubalewska-Dydekcyz, A.; Mikolajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical results of radionuclide therapy of neuroendocrine tumors with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: Which is a better therapy option? *Eur. J. Nucl. Med. Mol. Imaging* 2011, 38, 1788–1797. [CrossRef]

138. Kunikowska, J.; Zemczak, A.; Kołodziej, M.; Gut, P.; Łoź, I.; Pawlak, D.; Mikolajczak, R.; Kamiński, G.; Ruchala, M.; Kos-Kudla, B.; et al. Tandem peptide receptor radionuclide therapy using 90Y/177Lu-DOTATATE for neuroendocrine tumors efficacy and side-effects-polish multicenter experience. *Eur. J. Nucl. Med. Mol. Imaging* 2020, 47, 922–933. [CrossRef]

139. Claringbold, P.G.; Price, R.A.; Turner, J.H. Phase I-II study of radiopptide177Lu-octreotate in combination with capetibatibe and temozolomide in advanced low-grade neuroendocrine tumors. *Cancer Biother. Radiopharm.* 2012, 27, 561–569. [CrossRef]

140. Claringbold, P.G.; Turner, J.H. Neuroendocrine tumor therapy with Lutetium-177-octreotate and everolimus (NETTLE): A phase I study. *Cancer Biother. Radiopharm.* 2015, 30, 261–269. [CrossRef]

141. Kamp, K.; Gumm, B.; A Feelders, R.; Kwekkeboom, D.J.; Kaltas, G.; Costa, F.P.; De Herder, W.W. Safety and efficacy of everolimus in gastrointestinal and pancreatic neuroendocrine tumors after 177Lu-octreotate. *Endocr. Relat. Cancer* 2013, 20, 825–831. [PubMed]

142. Barber, M.; Henriksen, G.; Alke, A.; Mossbrugger, I.; Quintanilla-Martinez, L.; Senekowitsch-Schmidtk, R.; Essler, M. Preclinical evaluation of the α-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. *Clin. Cancer Res.* 2008, 14, 3555–3561. [CrossRef]
147. Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F; Mier, W.; Apostolidis, C.; A Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC receptor-targeted alpha-radiouclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2106–2119. [CrossRef]

148. Pool, S.E.; Kam, B.L.; Konijnenberg, M.; Ten Hagen, T.L.; Breeman, W.A.; Krenning, E.P.; de Jong, M.; van Eijck, C.H. ([111]In-DTPA-octreotide tumor uptake in GEPNET liver metastases after intra-arterial administration: An overview of preclinical and clinical observations and implications for peptide radionuclide therapy. Cancer Biother Radiopharm. 2014, 29, 179–187. [CrossRef]

149. Limouris, G.S.; Karfis, I.; Chatzioannou, A.; Paphiti, M.I.; Lyra, M.; Gennatas, K.; Nikou, G.; Voros, D.; Pragulis, G.P.; Polydorou, A.A.; et al. Super-selective hepatic artery embolisations as inferred technique ("ARETAIEION" protocol) of [177Lu]DOTA-TATE in inoperable neuroendocrine liver metastases of gastro-entero-pancreatic (GEP) tumors. Q. J. Nucl. Med. Mol. Imaging 2012, 56, 551–558.

150. Kratochwil, C.; López-Benitez, R.; Mier, W.; Haufe, S.; Isermann, B.; Kauczor, H.-U.; Choyke, P.L.; Haberkorn, U.; Giesel, F.L. Hepatic arterial infusion enhances DOTATOC radiolabeled peptide therapy in patients with neuroendocrine liver metastases. Endocr. Relat. Cancer 2011, 18, 595–1963. [CrossRef]

151. Limouris, G.S.; Poullantzas, V.; Trompoukis, N.; Karfis, I.; Chondrogiannis, S.; Triantafyllou, N.; Gennimata, V.; Moulopoulou, L.E.; Patsouris, E.; Nikou, G.; et al. Comparison of [111]In-DTPA-[DOTA0,Tyr3]-octreotide efficacy in patients with GEP-NET treated intra-arterially for liver metastases. Clin. Nucl. Med. 2016, 41, 194–200. [CrossRef]

152. Ebbers, S.C.; Braat, A.J.A.T.; Moelker, A.; Stokkel, M.P.M.; Lam, M.G.E.H.; Barentsz, M.W. Intra-arterial versus standard intravenous administration of lutetium-177-DOTA-octreotide in patients with NET liver metastases: Study protocol for a multicenter, randomized controlled trial (LUTIA trial). Trials 2020, 21, 1–9. [CrossRef] [PubMed]

153. Severi, S.; Sansovini, M.; Ianniello, A.; Bodei, L.; Nicolini, S.; Ibrahim, T.; Di Iorio, V.; D’Errico, V.; Caroli, P.; Monti, M.; et al. Feasibility and utility of re-treatment with (177)Lu-DOTATATE in GEP-NECs relapsed after treatment with (90)Y-DOTATOC. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1955–1963. [CrossRef]

154. Rolleman, E.J.; Valkema, R.; de Jong, M.; Kooij, P.P.; Krenning, E.P. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 9–15. [CrossRef] [PubMed]

155. Yordanova, A.; Mayer, K.; Brossart, P.; Gonzalez-Carmona, M.A.; Strassburg, C.P.; Ahmadzadehfar, H. Safety of multiple repeated cycles of 177Lu-octreotide in patients with recurrent neuroendocrine tumour. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1207–1214. [CrossRef] [PubMed]

156. Lohrmann, C.; et al. Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan. J. Nucl. Med. 2006, 47, 3047–3057. [CrossRef]

157. Limouris, G.S.; Poulantzas, V.; Trompoukis, N.; Karfis, I.; Chondrogiannis, S.; Triantafyllou, N.; Gennimata, V.; Moulopoulou, L.E.; Patsouris, E.; Nikou, G.; et al. Comparison of [111]In-DTPA-[DOTA0,Tyr3]-octreotide efficacy in patients with GEP-NET treated intra-arterially for liver metastases. Clin. Nucl. Med. 2016, 41, 194–200. [CrossRef]

158. Brieau, B.; Hentic, O.; Lebtahi, R.; Palazzo, M.; Ben Reguiga, M.; Rebours, V.; Maire, F.; Hammel, P.; Ruszniewski, P.; Fenaux, P. Comparison of 68Ga-DOTA-JR11 PET/CT with dosimetric 177Lu-satoreotide tetraxetan. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2106–2119. [CrossRef] [PubMed]

159. Chantadisai, M.; Kulkarni, H.R.; Baum, R.P. Therapy-related myeloid neoplasms after peptide receptor radionuclide therapy (PRRT) in 1631 patients from our 20 years of experiences: Prognostic parameters and overall survival. Clin. Nucl. Med. 2019, 44, 6939–6947. [CrossRef] [PubMed]
166. Baum, R.P.; Zhang, J.; Schuchardt, C.; Mueller, D.; Maecke, H. First-in-human study of novel SSTR antagonist 177Lu-DOTA-LM3 for peptide receptor radionuclide therapy in patients with metastatic neuroendocrine neoplasms: Dosimetry, safety and efficacy. *J. Nucl. Med.* 2021. [CrossRef]

167. Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D.; et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. *Lancet Oncol.* 2015, 16, 908–918. [CrossRef]

168. Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma. *N. Engl. J. Med.* 2015, 372, 2521–2532. [CrossRef] [PubMed]

169. Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. *N. Engl. J. Med.* 2017, 376, 1015–1026. [CrossRef] [PubMed]

170. Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non–small-cell lung cancer. *J. Natl. Eng. Med.* 2016, 375, 1823–1833. [CrossRef]

171. Goodman, A.M.; Sokol, E.S.; Frampton, G.M.; Lippman, S.M.; Kurzrock, R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. *Cancer Immunol. Res.* 2019, 7, 1570–1573. [CrossRef] [PubMed]

172. Iwai YIshida MTanaka YOkazaki THonjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immune microenvironment. *Pancreas* 2018, 47, 1123–1129. [CrossRef] [PubMed]

173. Cassler, N.M.; Merrill, D.; Bichakjian, C.K. Merkel cell carcinoma therapeutic update. *Clin. Cancer Res.* 2020, 26, 742–747. [CrossRef]

174. Yee, S.; et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. *Clin. Cancer Res.* 2018, 26, 2290–2296. [CrossRef] [PubMed]

175. Strosberg, J.R.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.-P.; Shapira-Frommer, R.; Bergsland, E.K.; Shah, M.H.; Fakih, M.; Takahashi, S.; et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: Results from the phase II KEYNOTE-158 study. *Clin. Cancer Res.* 2020, 26, 2124–2130. [CrossRef]

176. Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Al Baghdadi, T.; et al. A phase II basket trial of dual anti–CTLA-4 and anti–PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. *Clin. Cancer Res.* 2020, 26, 2290–2296. [CrossRef] [PubMed]

177. Halperin, D.M.; Liu, S.; Dasari, A.; Fogelman, D.R.; Bhosale, P.; Mahvash, A.; Dervin, S.; Estrella, J.; Cortazar, P.; Maru, D.M.; et al. A phase II trial of atezolizumab and bevacizumab in patients with advanced, progressive neuroendocrine tumors (NETs). *J. Clin. Oncol.* 2020, 38, 619. [CrossRef]

178. Yao, J.; Strosberg, J.; Fazio, N.; Pavel, M.; Ruszniewski, P.; Bergsland, E.; Li, D.; Tafuto, S.; Raj, N.; Campana, D.; et al. Activity & safety of spartalizumab (PDR001) in patients (pts) with advanced neuroendocrine tumors (NET) of pancreatic (Pan), gastrointestinal (GI), or thoracic (T) origin, & gastroenteropancreatic neuroendocrine carcinoma (GEP NEC) who have progressed on prior treatment (Tx). *Ann. Oncol.* 2018, 29, viii67–viii68. [CrossRef]

179. Vijayvergia, N.; Dasari, A.; Deng, M.; Litwin, S.; Al-Toubah, T.; Alpaugh, R.K.; Dotan, E.; Hall, J.; Cortazar, P.; Maru, D.M.; et al. Pembrolizumab monotherapy in patients with previously treated metastatic high-grade neuroendocrine neoplasms: Joint activity of two prospective, non-randomised trials. *Br. J. Cancer* 2020, 122, 1309–1314. [CrossRef]

180. Fottner, C.; Apostolidis, L.; Ferrara, M.; Krug, S.; Michl, P.; Schad, A.; Roth, W.; Jaeger, D.; Galle, P.R.; Weber, M.M. A phase II, open-label, multicenter trial of avelumab in patients with advanced, metastatic high-grade neuroendocrine carcinomas NEC G3 (WHO 2010) progressive after first-line chemotherapy (AVENC). *J. Clin. Oncol.* 2019, 37, 4103. [CrossRef]

181. Lu, M.; Zhang, P.; Zhang, Y.; Li, Z.; Gong, J.; Li, J.; Li, J.; Li, Y.; Zhang, X.; Lu, Z.; et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: A multiple-center phase IIb trial. *Clin. Cancer Res.* 2020, 26, 2337–2345. [CrossRef] [PubMed]

182. Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors. *Lancet Oncol.* 2015, 16, 908–918. [CrossRef]

183. Capdevila, J.; Teule, A.; López, C.; García-Carbonero, R.; Benavent, M.; Custodio, A.; Cubillo, A.; Alonso, V.; Alonso Gordoa, T.; Carmona-Bayonas, A.; et al. A multi-cohort phase II study of durvalumab plus tremelimumab for the treatment of patients (pts) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic or lung origin: The DUNE trial (GETNE 1601). *Ann. Oncol.* 2020, 31, S711–S724. [CrossRef]
187. Brzozowa-Zasada, M.; Piecuch, A.; Michalski, M.; Segiet, O.; Kurek, J.; Harabin-Słowińska, M.; Wojnicz, R. Notch and its oncogenic activity in human malignancies. *Eur. Surg.* 2017, 49, 199–209. [CrossRef]

188. Morimoto, M.; Nishinakamura, R.; Saga, Y.; Kopan, R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. *Development* 2012, 139, 4365–4373. [CrossRef]

189. Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. *Sci. Transl. Med.* 2015, 7, 302ra136. [CrossRef]

190. Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A., III; Robert, F.; et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. *Lancet Oncol.* 2017, 18, 42–51. [CrossRef]

191. Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TRINITY study. *Clin. Cancer Res.* 2019, 25, 6958–6966. [CrossRef]

192. Aggarwal, R.; Mansfield, A.; Beltran, H.; Farago, A.F.; Hann, C.L.; Kaye, F.; Lewis, K.; Niu, J.; Richey, S.; Smith, D.; et al. Preliminary safety and efficacy of rovalpituzumab tesirine in patients with delta-like protein 3-expressing advanced solid tumors. *Ann. Oncol.* 2017, 28, v145. [CrossRef]

193. White, B.H.; Whalen, K.; Kriksciukaite, K.; Alargova, R.G.; Yeung, T.A.; Bazinet, P.; Brockman, A.H.; Dupont, M.; Oller, H.; Lemelin, C.-A.; et al. Discovery of an SSTR2-targeting maytansinoid conjugate (PEN-221) with potent activity in vitro and in vivo. *J. Med. Chem.* 2019, 62, 2708–2719. [CrossRef] [PubMed]

194. Lynne Johnson, M.; Meyer, T.; Halperin, D.M.; Fojo, A.T.; Cook, N.; Scott Blaszkowsky, L.; Schlechter, B.L.; Yao, J.C.; Jemiai, Y.; Kriksciukaite, K.; et al. First in human phase 1/2a study of PEN-221 somatostatin analog (SSA)-DM1 conjugate for patients (PTS) with advanced neuroendocrine tumor (NET) or small cell lung cancer (SCLC): Phase 1 results. *J. Clin. Oncol.* 2018, 36, 4097. [CrossRef]