Superfluid equation of state of dilute composite bosons

X. Leyronas and R. Combescot
Laboratoire de Physique Statistique, Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France

We present an exact theory of the BEC-BCS crossover in the BEC regime, which treats explicitly dimers as made of two fermions. We apply our framework, at zero temperature, to the calculation of the equation of state. We find that, when expanding the chemical potential in powers of the density \(n \) up to the Lee-Huang-Yang order, proportional to \(n^{3/2} \), the result is identical to the one of elementary bosons in terms of the dimer-dimer scattering length \(a_M \), the composite nature of the dimers appearing only in the next order term proportional to \(n^2 \).

PACS numbers: 03.75.Ss, 03.75.Hh, 05.30.Jp

The BEC-BCS crossover first considered by Leggett [1], and the recent experimental realization of Bose-Einstein Condensates (BEC) of molecules made of fermionic atoms [2,3,4,5] have motivated a number of theoretical works. Indeed, thanks to Feshbach resonances, it is experimentally possible, with two fermions of mass \(m \) (\(^6\)Li or \(^40\)K) in different hyperfine states (we denote them as 'spin' \(\uparrow \) and \(\downarrow \)), with scattering length \(a \), to realize weakly bound molecules, or dimers, with binding energy \(E_b = 1/ma^2 \) (we take \(h = 1 \) in the paper). In particular one may obtain a dilute condensate of molecules. A crucial quantity controlling the physics of the condensate in this regime is the dimer-dimer scattering length \(a_M \). This is however a highly non-trivial quantity to calculate, since one has to solve a four-body problem to find it. In the case of a broad resonance, one finds \(a_M = 0.6a \) by solving the Schrödinger equation [6] or resuming the diagrammatic series [7]. The study of a Bose-Einstein condensate of composite bosons, where all the theory is formulated in terms of fermions only, was started a long time ago [8,9] with steady progress. Quite recently, Pieri and Strinati [10] derived the Gross-Pitaevskii equation from the Bogoliubov-de Gennes equations. However, because of their approximate scheme, they end up with the Born approximation \(2a \) for the dimer scattering length \(a_M \) instead of the exact result.

In this paper, we present an exact fermionic theory of a BEC superfluid of composite bosons in the low density range. Our framework is completely general. Our present work is a first step toward going to higher orders, which will be clearly more complex to handle. Here we restrict ourselves to the \(T = 0 \) thermodynamics. We obtain for the expansion of the chemical potential \(\mu \) of our fermions of single spin density \(n \) in the BEC regime:

\[
\mu = -\frac{E_b}{2} + \frac{\pi a_M}{m} n \left[1 + \frac{32}{3\sqrt{\pi}} (na_M^3)^{1/2} \right] \tag{1}
\]

Except for the obvious first term (which implies \(\mu < 0 \), this is exactly the result found, for \(\mu_{\text{Bose}} = 2\mu \), by Lee, Huang and Yang (LHY) [11] for elementary bosons with density \(n \), mass \(m_B = 2m \) and scattering length \(a_B = a_M \). The identity of the mean field term is naturally somewhat expected. However, even if it is reasonable to expect in our case a correction of the LHY type, it is not at all obvious that the coefficient is the same. We will see that our derivation is quite involved and has no systematic mapping on a purely bosonic formulation. In other terms one expects the composite nature of our bosons to enter at some stage in the theory. We find indeed that this happens, but only at the level of the \(n^2 \) term in Eq.(1). Hence we prove that, for our composite bosons, the LHY term itself is unchanged with respect to elementary bosons [12].

In order to perform a low density expansion, we need a "small parameter" in our theory. The most convenient one turns out to be the anomalous self-energy \(\Delta(k) \) which, together with the anomalous (or off-diagonal) Green's function \(F(k) \), is the hallmark of the superfluid state in the diagrammatic technique [13]. We will indeed see that at low density \(\Delta(k) \) is of order \(n^{1/2} \), which could be anticipated from the standard BCS calculation [1,8].

Hence by performing an expansion in powers of \(\Delta(k) \) in Feynman diagrams, we actually perform a low density expansion. The full Green's function \(G(k) \) and self-energies are related by the completely general standard equations:

\[
G(k) = g_0(k) + F(k)\Delta(k)g_0(k) \tag{2}
\]

\[
F(k) = -G(k)\Delta(k)g_0(-k) \tag{3}
\]

where we have set \([g_0(k)]^{-1} = G_0^{-1}(k) - \Sigma(k)\), with \(\Sigma(k) \) the normal self-energy, \(G_0^{-1}(k) = \omega - k^2/2m + \mu \) and \(k \equiv \{k, \omega\} \).

We proceed in a natural way by finding the expansion of the Green's function \(G \) and \(F \) in powers of \(\Delta \) at fixed \(\mu \). The single spin density gives the "number equation":

\[
n = -\sum_k e^{i\omega k_0^+} G(k) \tag{4}
\]

with \(\sum_k = i \int \frac{d^3k}{(2\pi)^3} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \). At zeroth order in \(\Delta(k) \) the result is obviously \(n = 0 \) since, without condensate, there are no fermions at \(T = 0, \mu < 0 \). From particle conservation, the lowest order is given by the second order
where T_3, depicted in Fig.1(b), has been discussed in Ref.[7,14] and contains all the normal state diagrams describing the scattering of a single atom by a dimer (actually in the involved vacuum Green’s functions we have to shift the frequencies by the chemical potential μ). This includes in particular a term $-G_0(-k)$ which is just the Born approximation for T_3. In writing Eq.(5) we have made use of the fact that, at this order, the k dependence of $\Delta(k)$ can be neglected as will be shown below, and we have just denoted the resulting constant by Δ. The frequency integral in Eq.(3) can be calculated by closing the contour in the upper-half complex plane $\text{Im} \omega > 0$, where $G_0(k)$ is analytic. It can be proved that, except for the Born term, $T_3(k,k;k)$ is also analytic in this half-plane. Hence the only contribution in Eq.(5) comes from the Born term. However this term is the only one considered in the standard BCS theory on this BEC side. We end up with the very surprising conclusion that, at this order, all the detailed physics involved in the atom-dimer scattering is irrelevant and that the result is merely given by the standard BCS calculation, namely $n_2 = m^2 |\Delta|^2/[8\pi (2m|\mu|)^{1/2}]$. This shows that Δ is indeed of order $n^{1/2}$.

We consider now the anomalous self-energy $\Delta(k)$ in order to obtain our equivalent of the “gap equation” [12]. $\Delta(k)$ describes two atoms ($k \uparrow, -k \downarrow$) which go in the condensate. Quite generally the contributions to $\Delta(k)$ are divided in two classes, so we have $\Delta(k) = \delta_1(k) + \delta_2(k)$. The first class, the only one found in BCS theory, gathers diagrams where these two fermions first interact through the bare two-body potential, with Fourier transform $V(q)$, the second class containing all the other possibilities. In full generality the contribution of the first class, shown diagrammatically in Fig.1(a), can be written:

$$\delta_1(k) = - \sum_{k_1} V(k-k_1) F(k_1)$$

from the very definition of the full Green’s function F. Note that $\delta_1(k)$ is independent of ω and, since the potential is very short-ranged, it depends on k only for very high momenta.

In the second class, where the two incoming fermions ($k \uparrow, -k \downarrow$) do not first interact, we proceed to a Δ expansion. The first order term is already included in δ_1 and particle conservation implies that the next order contains $\Delta \Delta^* \Delta$, the rest of the diagrams being made only of any number of normal state propagators $G_0(k)$ with any number of interactions, as shown schematically in Fig.1(c). Moreover these diagrams can not contain loops of normal state propagators, since this would correspond, in time representation, to the creation of particle-hole pairs. Such processes are impossible in the normal state at $T = 0$ and $\mu < 0$, where the free particle propagator is retarded. When these constraints are taken into ac-
\[\sum_{k} G_0(k)G_0(-k)\Phi(k,-k;0,0) \] evaluated at zero energy. It is directly related \[\delta \] to the dimer dimer scattering length by \((8\pi/\alpha m^2)^2 T_1(0,0;0) = 4\pi a_M/m \). The last step in our procedure is the standard elimination of the interaction potential in favor of the scattering amplitude \[\delta \]. In our case this quantity has to be evaluated at the energy \(\mu \), because our shift in frequency. After this step, \(\delta_1(k) \) can be taken as a constant \(\delta_1 \), since all the momentum integrals are rapidly convergent. We end up with:

\[a^{-1} - \sqrt{2m|\mu|} = \frac{m^2a^2}{8} a_M |\Delta|^2 \] (9)

where we have simplified by \(\delta_1 \) and made \(\delta_1 \simeq \Delta \) in the right-hand side. When we substitute for \(|\Delta|^2 \) its lowest order expression found above in terms of \(n_2 \), we find for \(\mu \) the mean field part of Eq.(1), with the appropriate dimer scattering length \(a_M \).

The above is only the first step in our derivation. The natural continuation would be to go to next order in \(\Delta \), i.e. to order \(\Delta^2 \) in Eq.(1) and order \(\Delta^3 \) in Eq.(3). This would lead to a contribution of order \(n \) in Eq.(1). However this expansion is not regular, as it would be the case in a \(\Delta \) expansion and our procedure is equivalent to series substitution. Actually we do not proceed immediately to a \(\Delta \) expansion and our procedure is equivalent to series resummation to avoid singularities.

To proceed we have first to find in our framework the collective mode propagator, more specifically in the low energy, low momentum range. It has a normal part \(\Gamma(P) \) and an anomalous part \(\Gamma^a(P) \), which both depend only on the total energy-momentum \(P \equiv \{P, \Omega\} \). We write for them the equivalent of Eq.(2,3), i.e. the Bethe-Salpeter equations:

\[\Gamma = T_2 + T_2 \Gamma_{irr} \Gamma + T_2 \Gamma_{irr}^a \Gamma^a \] (10)

\[\Gamma^a = T_2 - \Gamma_{irr} - \Gamma^a + T_2 - \Gamma_{irr}^a \Gamma \] (11)

where we did not write explicitly the arguments which are \(P \) or \(-P \); for instance \(T_2 \) stands for \(T_2(P) \) and \(T_2 \) for \(T_2(-P) \). The normal (\(\Gamma_{irr} \)) and anomalous (\(\Gamma_{irr}^a \)) irreducible vertices are analogous to self-energies.

Then we expand these irreducible vertices in powers of \(\Delta \). Again from particle conservation the lowest order terms are second order. The result for Eq.(10) is depicted in Fig.3. The ‘normal part’ (i.e. without the \(\Delta \) factors) of the irreducible vertices involves clearly the normal state dimer-dimer scattering vertex \(T_4 \) considered above, since all ‘in’ and ‘out’ lines are dimer lines. Again, at this lowest order, \(\Delta \) can be taken as constant. In this way Eq.(10) and (11) become:

\[\Gamma = T_2 + T_2 |\Delta|^2 \tilde{T}_1 \Gamma + T_2 \Delta^2 \tilde{T}_4 \Gamma^a \] (12)

\[\Gamma^a = T_2 - |\Delta|^2 \tilde{T}_4 - \Gamma^a + T_2 - \Delta^2 \tilde{T}_4 \Gamma \] (13)

where \(\tilde{T}_1 = T_4(P/2, P/2; P/2, P/2) \), \(\tilde{T}_4 = (1/2)T_4(P,0;0) \) and \(\tilde{T}_4 = (1/2)T_4(0,P;0) \), the factor 1/2 being again topological.

![Fig. 2: Diagrammatic representation for Eq.(12) for Γ](image)

We can now solve for \(\Gamma \) and \(\Gamma^a \). In the low energy limit \(|P| \ll 1/a \) and \(|\Omega| \ll 1/ma^2 \), we find easily \(\Gamma(P) = -8\pi(\Omega+\mu_B+P^2/4m)/(m^2aD) \) and \(\Gamma^a(P) = 8\pi\mu_B/(m^2aD) \), where \(D = (P^2/4m)^2 + 2\mu_B P^2/4m - \Omega^2 \). We have set \(\mu_B \equiv |\Delta|^2 ma a_M/4 \) and evaluated the factor of \(\Delta \) to zeroth order by taking \(2|\mu| = 1/ma^2 \). The collective mode frequency is obtained by setting \(D = 0 \) and we recover as expected the Bogoliubov dispersion relation.

We now consider the additional contributions to the self-energies coming from the collective mode. For the normal self-energy we have to add the top diagram in Fig.3 which gives an additional contribution \(n_{cm} \) to our lowest order result Eq.(5):

\[n_{cm} = -\sum_{k, P} e^{i\omega_0_0_0} T_3(k, k; k + P) \Gamma(P) |G_0(k)|^2 \] (14)

Actually we should have subtracted from \(\Gamma(P) \) its zeroth and second order terms in the series expansion in
powers of Δ (this is indicated in Fig.3 by the slash in the mode propagator), since they are in principle taken into account in Eq.(5). However it is easily seen that they are zero since they contain normal state propagator loops. In Eq.(11) we can first perform the integration over the frequency variable ω of k, by closing the contour in the upper half-plane. Just as above in Eq.(4), it can be proved that the only contribution comes from the Born term of $T_3(k,k;k+P)$. Then the k integration is easily performed and we are left with $n_{cm} = (m^3/8\pi) \sum k |\mu| + P^2/4m - \Omega/1.2$. The Ω integration can be transformed over a contour which encloses all the singularities of $\Gamma(P)$ on the real negative axis. The high energy contributions to n_{cm} coming from $|\Omega| \gtrsim 1/m a^2$ (physically linked to breaking dimers) will give negligible regular terms of order Δ^4, as discussed above. On the other hand the contribution of the low frequency collective mode is easily calculated with the low energy expression of $\Gamma(P)$ given above. We find:

$$n_{cm} = \frac{1}{3\pi^2} (2m\mu_B)^{3/2}$$

where we have used the zeroth order expression $E_6/2$ for $|\mu|$. When we use for μ_B its lowest order expression in terms of n, we find that n_{cm} coincide formally with the 'depletion of the condensate', known for elementary boson superfluids.

![FIG. 3: Collective mode contributions to the self-energies](image)

We proceed now in the same way for the collective mode contributions to the anomalous self-energy. Corresponding to the diagram Fig.1, we have to add the two bottom diagrams in Fig.3. Just as in Eq.(7) we should take only irreducible diagrams into account. But handling this problem in the same way by adding the reducible contributions on both sides of the equation, we end up with Eq.(8) except, in the right-hand side, for the additional contribution $\Delta G_0(k)G_0(-k)\Phi(k,-k;0,0)\sum P \Gamma(P) + (1/2) \sum P \Gamma^a(P)$. As in Eq.(7) the factor 1/2 is topological. Then we follow the same procedure as after Eq.(8). Finally, as in the calculation of n_{cm}, we retain only in the summation over P the low energy contribution, the other ones giving higher order terms. The summation $\sum P \Gamma(P)$ has already been found in the above calculation of n_{cm}. The summation $\sum P \Gamma^a(P)$ is more involved since, as we mentioned earlier below Eq.(14), we have to subtract from $\Gamma^a(P)$ the lower order terms already taken into account in our lowest order calculation, leading to Eq.(9). In contrast with the case of $\Gamma(P)$, the term we subtract is not zero, but acts to regularize the remaining integral over momentum P, which would otherwise have a high momentum divergence [17]. We obtain finally for the slashed contribution, which takes into account this subtraction, $\sum P \Gamma^a(P) = 3 \sum P \Gamma(P) = 24\pi n_{cm}(2m|\mu|)^{1/2}/m^2$.

If we gather all the contributions, we have for the single spin density $n = n_2 + n_{cm}$ while the "gap equation" Eq.(10) is changed into the simple form:

$$a^{-1} - \sqrt{2m|\mu|} = \frac{m^2a^2}{8} a_M |\Delta|^2 + 5\pi a a_M n_{cm}$$

(16)

When $|\Delta|^2$ is eliminated between the "gap" and the "number" equations, the consistently expanded result for μ is indeed found to be Eq.(1). In conclusion we have shown how an exact purely fermionic framework can be used in the BEC regime of the BEC-BCS crossover, and we have specifically demonstrated that the Lee-Huang-Yang result for the chemical potential remains valid for the corresponding composite bosons. We are very grateful to M. Yu. Kagan for stimulating discussions at the beginning of this work.

[1] A. J. Leggett, J. Phys. (Paris), Colloq. 41, C7-19 (1980).
[2] M. Greiner, C. Regal, and D. Jin, Nature (London) 426, 537 (2003).
[3] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedel, C. Chin, J. H. Denschlag, and R. Grimm, Science 302, 2101 (2003).
[4] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).
[5] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Phys. Rev. Lett. 93, 050401 (2004).
[6] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).
[7] I.V. Brodsky, M. Yu. Kagan, A.V. Klapetsov, R. Combescot and X. Leyronas, Phys. Rev. A 73, 032724 (2006).
[8] W. N. Popov, Zh. Eksp. Teor. Fiz. 50, 1550 (1966), [Sov. Phys. JETP 23, 1034 (1966)].
[9] L. V. Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Phys. 54, 978 (1968) [Sov. Phys. JETP 27, 521 (1968)].
[10] P. Pieri and G. C. Strinati, Phys. Rev. Lett. 91, 030401 (2003) and references therein for earlier work.
[11] T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957); T. D. Lee, K. Huang and C. N. Yang, Phys. Rev. 106, 1135 (1957).
[12] Here we sketch the derivations. Details will be given in an extended version, in preparation.
[13] A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, *Methods of quantum field theory in statistical physics* (Dover, 1975).

[14] J. Levinsen, V. Gurarie, Phys. Rev. A 73, 053607 (2006).

[15] V.M. Galitskii, Sov. Phys. JETP, 7, 104(1958).

[16] See R. Combescot, M. Yu. Kagan, and S. Stringari, Phys. Rev. A 74, 042717 (2006) for a study of this mode throughout the BEC-BCS crossover, within the (approximate) dynamical BCS theory (which gives $a_M = 2a$).

[17] This subtraction removes also an (imaginary) contribution arising from $T_4(0;0;0)$, due to the fact that it has to be evaluated at the chemical potential μ which is not exactly half the bound state energy of the molecule. A similar feature is present in the approach of S. T. Beliaev, Sov. Phys. JETP 7, 289 (1958) for elementary bosons.