Dear Sir,

We herein report a case of a COVID-19 patient with acute bacterial pericarditis. A 32-year-old man without comorbidities and cardiovascular risk factors presented with three days of fever and right-sided non-pleuritic chest pain. At 18 days prior to presentation, he had been seen for fever, sore throat and myalgia; a nasopharyngeal swab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing had returned positive.

On examination at the emergency department, he was febrile at 38.3°C, with mild epigastric and right upper abdominal quadrant tenderness. Examination of the heart and lungs was unremarkable. Laboratory investigations showed leucocytosis (white blood cell count 10.6 [4.0–9.6] × 10⁹/L), neutrophilia (neutrophil count 7.83 [1.90–6.60] × 10⁹/L), thrombocytopenia (platelet count 147 [150–360] × 10⁹/L), raised lactate dehydrogenase (978 [270–550] U/L), C-reactive protein 49.8 (0.0–5.0) mg/L, procalcitonin 2.57 (0.00–0.05) ug/L and troponin-I 110 (0–19) ng/L, which peaked at 172 ng/L five hours later. Electrocardiography was unremarkable [Figure 1a]. Chest radiography showed right lung lower zone airspace opacities [Figure 1b]. As the patient became increasingly tachycardic, he was transferred to the intensive care unit (ICU). Urgent transthoracic echocardiography (TTE) showed good ejection fraction, no regional wall motion abnormality and a 0.6-cm rim of pericardial effusion [Figure 1c]. The patient developed mild hypoxia, and arterial blood gas on 1 L/min of supplemental oxygen showed respiratory alkalosis and a PF (PaO₂/FiO₂) ratio of 268. He was treated for bacterial pneumonia. The next morning, the patient was more tachycardic despite a fluid infusion, and his right upper abdominal quadrant pain had intensified. Computed tomography of the thorax and abdomen showed a pericardial effusion and bilateral pleural effusions with no evidence of acute cholecystitis or calculi [Figure 1d].

A few hours later, he was noted to be diaphoretic, tachypnoeic at 45 breaths per minute, and tachycardic at 150 beats per minute [Figure 2a]. This necessitated endotracheal intubation and central venous line insertion in anticipation of the need for a vasopressor infusion. Another urgent TTE revealed rapid enlargement of the pericardial effusion, with a maximum inter-pericardial separation of 1.8 cm [Figure 2b] and evidence of right atrial collapse despite a plethoric inferior vena cava. Pericardiocentesis drew 100 mL of haemoserous fluid. The pericardial fluid analysis showed the following: nucleated cells 94 cells/uL, neutrophils 2%, lymphocytes 38%, lactate dehydrogenase 636 U/L and protein 48 g/L. A Gram stain of the pericardial fluid showed Gram-positive cocci, and a culture grew Staphylococcus hominis (S. hominis). Acid-fast bacilli smear and PCR tests for SARS-CoV-2, tuberculosis, enterovirus and adenovirus were negative. Cytology did not show malignant cells. Four sets of blood cultures grew Staphylococcus lugdunensis (isolated from aerobic bottle, taken from peripheral vein), mixed coagulase-negative staphylococci (CoNs) [isolated from aerobic bottle, taken from peripheral vein], Staphylococcus epidermidis (isolated from aerobic bottle, taken from right radial arterial line), Enterobacter cloacae (isolated from both bottles, taken from central line) and Staphylococcus epidermidis (isolated from anaerobic bottle, taken from central line). A HIV screen was negative. The patient was stable enough to be extubated the next day. He received one week of vancomycin and meropenem with good clinical response, followed by two weeks of intravenous cefazolin and one week of oral ciprofloxacin. The pericardial drain was removed after five days, with cumulative fluid drainage of 1,600 mL. A repeat TTE 18 days later confirmed the resolution of the pericardial effusion. We concluded that the S. hominis positive culture...
from the pericardial fluid was unlikely to be a contaminant, given the positive pericardial fluid Gram stain, compatible clinical and echocardiographic features, and response to treatment.

To our knowledge, this is the first reported case of acute bacterial pericarditis complicating SARS-CoV-2 infection in Singapore. The patient presented again during the third week following confirmation of SARS-CoV-2 infection with non-respiratory symptoms. His chest radiograph on previous admission showed no consolidation or pleural effusion. The early ICU admission and urgent bedside diagnostics prevented an impending cardiovascular collapse from cardiac tamponade. He improved rapidly within 24 hours of pericardiocentesis and antibiotics.

There are four other published cases in the literature of SARS-CoV-2-associated pericarditis manifesting within a week of respiratory symptoms. These cases had a more fulminant course with hypoxia and haemodynamic compromise; one recovered without pericardiocentesis. Microbiology results of blood and pericardial samples were negative.

Our case suggests that myocardial and pericardial involvement can manifest as a late sequela in SARS-CoV-2 infection. It is plausible that, similar to other viral infections, the myocardial and pericardial inflammation that occurred earlier was complicated by a secondary bacterial infection. One limitation is that myocarditis cannot be confirmed in the absence of cardiac magnetic resonance imaging, histopathology and consistent electrocardiography with TTE findings.

The present case also highlights the challenges of ascertaining the clinical relevance of CoNS isolation and identification. CoNS are typical opportunistic bacteria that not only colonise healthy individuals but also represent one of the major hospital pathogens with a substantial, increasing impact on human life and health. There have been case reports of pneumonia caused by CoNS. Bilateral pleural effusions were also noted in our patient. However, the pleural fluid was not sent for further evaluation, as bedside ultrasonography showed that there was minimal pleural fluid for aspiration. The patient’s polymicrobial bacteraemia may have been acquired via a vascular (line-related) source, and some of the isolates may represent colonisation rather than true bacteraemia. While it remains unclear, we hypothesise that his S. hominis pericarditis, specifically, could have arisen from a pulmonic, vascular (line-related) or cutaneous source.

In conclusion, SARS-CoV-2 associated pericarditis with superimposed bacterial infection is rare, and this case highlights the need for continued vigilance beyond the early phase of illness and to expedite the diagnostic process for optimal outcomes.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Pei Hua Lee1,2, MBChB, Hui Ling Tan3, FRCP, Yew Woon Chia4,5,6, MBBS, Li Min Ling1,2, MBBS
1National Centre for Infectious Diseases, 2Department of Infectious Diseases, 3Department of Anaesthesiology, Intensive Care and Pain Medicine, 4Department of Cardiology, Tan Tock Seng Hospital, 5Lee Kong Chian School of Medicine, Nanyang Technological University, 6Hong Loo Lin School of Medicine, National University of Singapore, Singapore
E-mail: peihua.lee@mohh.com.sg

Received: 22 Aug 2020 Accepted: 24 Nov 2020 Published: 12 Mar 2021

REFERENCES
1. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:819-24.
2. Dabbagh MF, Aurora L, DSouza P, Weinmann AJ, Bhargava P, Basir MB. Cardiac tamponade secondary to COVID-19. JACC Case Rep 2020;2:1326-30.
3. Hua A, O’Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J 2020;41:2130.
4. Cizgici AY, Agus HZ, Yildiz M. COVID-19 myopericarditis: It should be kept in mind in today’s conditions. Am J Emerg Med 2020;38:1547.e5-6.
5. Lal A, Akhtar J, Ullah A, Abraham GM. First case of pleural empyema caused by Staphylococcus simulans: Review of the literature. Case Rep Infect Dis 2018;2018:7831284.
6. Michalik M, Samet A, Podbielska-Kubera A, Savini V, Międzobrodzki J, Kosecka-Strojek M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: A review. Ann Clin Microbiol Antimicrob 2020;19:26.
7. Mastroianni A, Coronado O, Nanetti A, Manfredi R, Chiodo F. Community-acquired pneumonia due to Staphylococcus cohnii in an HIV-infected patient: Case report and review. Eur J Clin Microbiol Infect Dis 1995;14:904-8.
8. Shi MM, Monsel A, Rouby JJ, Xu YP, Zhu YG, Qu JM. Inoculation pneumonia caused by coagulase negative Staphylococcus. Front Microbiol 2019;10:2198.