Comparative study of the effect of two different doses of remifentanil on bleeding control in lumbar fusion surgery: A randomized clinical trial☆

Seyedeh Hamideh Hashemiyazdi a,b, Mehrdad Masoudifar a, Zahra Rahimi c, Azim Honarmand a, Mohamad Aryafar d,*

a Department of Anesthesiology, School of Medicine, Anesthesiology and Critical Care Research Center, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
b Department of Anesthesiology, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
c Department of Anesthesiology, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
d Department of Anesthesiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

ARTICLE INFO

Keywords:
Remifentanil
Spinal fusion
Bleeding
Histamine
Lumbar fusion surgery
General anesthesia

ABSTRACT

Objectives: Spinal fusion surgery completely prevents movement or friction between the two vertebrae. Remifentanil, a selective drug agonist, suppresses and decreases the vasomotor system upon release of histamine. In this study, the efficacy of remifentanil infusion at doses of 0.1 and 0.3 μg/kg/min in the control of low blood pressure was compared.

Methods: In this randomized clinical trial, 110 candidates for selective spinal fusion surgery were entered and randomized into 2 groups. The first group received 0.1 μg/kg/min and in the second group 0.3 μg/kg/min remifentanil. The systolic and diastolic blood pressure, pulse rate, SPO2, and surgeon’s satisfaction were measured and compared between groups.

Results: the systolic blood pressure was significantly lower in patients receiving 0.3 μg of remifentanil by the time 30, 45, 60, and 90 min during the surgeries (P < 0.05). No significant difference was observed in terms of PR (P = 0.19) and SPO2 (P = 0.41) between the two groups. We also observed significantly higher duration of surgeries (P = 0.002), duration of anesthesia (P = 0.009), significantly higher bleeding volume (P < 0.001), higher fluid intake (P = 0.01) and higher transfused blood (P = 0.01) in patients that received 0.1 μg remifentanil compared to other patients.

Conclusion: Here we showed that administration of 0.3 μg/kg/min remifentanil was associated with significantly lower systolic blood pressure during the surgeries. On the other hand, patients that received 0.1 μg/kg/min remifentanil had significantly higher duration of surgeries, duration of anesthesia, significantly higher bleeding volume, higher fluid intake, and also higher transfused blood.

1. Introduction

Spinal fusion surgery is a surgical procedure that causes a permanent connection between two or more vertebrae [1]. This procedure prevents movement or friction between the vertebrae and is often performed on the lumbar spine [2]. Spinal fusion could also be performed on other spinal levels such as cervical and thoracic [3,4]. Selective fusion surgery is performed in adolescents in cases of curvature [5]. The benefit of this surgery is the limitation of fusion levels, therefore decreasing the limitation of motion [6]. Three types of surgical procedures are performed for spinal fusion, which are posterior, anterior, and posterior-anterior fusion. Indications for spinal fusion include spinal deformity due to cerebral palsy, neuromuscular disease, scoliosis, trauma, vertebral tumors [7], and mechanical injuries due to spinal instability, and some reoperations [8,9].

Bleeding is known as an important intraoperative complication during spinal fusion that interferes with the success of the operation and increases the complications during and after the operation [10]. This

☆ The study protocol was approved by the Research Committee of Isfahan University of Medical Sciences and the Ethics committee has confirmed it (Ethics code: IR.MUI.MED.REC.1399.1025, Iranian registry of clinical trials (IRCT) code: IRCT20200217046523N12).

* Corresponding author. Islamic Azad University, Tehran, Iran.
E-mail address: md.m.aryafar@gmail.com (M. Aryafar).

https://doi.org/10.1016/j.amsu.2022.104761
Received 20 July 2022; Received in revised form 12 September 2022; Accepted 19 September 2022
Available online 22 September 2022
2049-0801/© 2022 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
complication depends on various factors such as the type of anesthesia, the type of injury, the type of fusion, the skill of the surgeon, and the patient’s characteristics [11,12]. Excessive bleeding during surgery is one of the most important problems during lumbar fusion surgery [13].

By defining a reduction in blood pressure and heart rate, the goal of clearing the surgical field can be achieved [14]. Excessive bleeding during surgery, in addition to reducing the surgeon’s view of the surgical field, causes more trauma to the surrounding tissues, and the longer the period, the better the recovery period [15]. Controlled hypotension reduces bleeding from the surgical incision, thereby providing technical freedom and better vision for the surgeon in terms of operating more accurately [16,17]. In controlling hypotension, drugs such as Trimetaphan and pentolium, vascular wall muscle relaxants such as hydralazine, sodium nitroprusside, and beta-blockers including propranolol [18-20].

Remifentanil suppresses and decreases the vasomotor system upon release of histamine [21]. Compared to other narcotic drugs such as fentanyl and alfentanil, remifentanil can provide better hemodynamic stability in stressful surgical events and alter cerebral blood flow changes. On the other hand, such treatment should be performed with great care because there is a possibility of heart failure or bronchoconstriction [22]. Controlled hypotension should be used with caution to minimize the risk of damage to vital organs. Important risks of controlled hypotension include the possibility of coronary, cerebral, or renal circulatory failure [23,24]. Previous studies have shown the effectiveness of remifentanil in controlled hypotension but different dosages have been reported [25]. To date, no previous studies have compared the effects of 0.1 and 0.3 μg/kg/min dosages of remifentanil in reducing bleeding. As a result, using the optimized dosage of remifentanil has great importance, especially in patients undergoing special surgeries including selective fusion. Therefore, in this study, the efficacy of remifentanil infusion at doses of 0.1 and 0.3 μg/kg/min in the control of low blood pressure in patients undergoing dual lumbar fusion surgery was compared.

Methods and material.

This is a triple-blinded randomized clinical trial that was performed in 2020 in Al-Zahra hospital affiliated to Isfahan University of Medical Science. The current study was conducted on patients that were candidates for posterior spinal fusion surgery under general anesthesia. The study protocol was approved by the Research Committee of Isfahan University of Medical Sciences and the Ethics committee has confirmed it (Ethics code: IR. MUL.MED.REC.1399.1025, Iranian registry of clinical trials (IRCT) code: IRCT2020021704652N12).

The inclusion criteria were age between 16 and 70 years, candidates for posterior spinal fusion surgery at the level of 1 and 2, American Society of Anesthesiologists (ASA) classification equal to 1 or 2 and signing the written informed consent to participate in this study. The exclusion criteria the use of hypotensive induction anesthesia, the occurrence of unwanted hemodynamic complications due to surgical technique, having severe cardiovascular diseases and patients with the history of hypertension.

Required Sample size was calculated with using the sample size estimation formula to compare the means with considering the 95% confidence level, 80% test power, standard deviation of mean blood pressure above 140 mm Hg), tachycardia (heart rate greater than 100 beats per minute), and bradycardia (heart rate lower than 45 times per minute) during operation and recovery. In case of hypotension, 5–10 mg of ephedrine, and in case of bradycardia, atropine in the amount of 0.5 mg was injected. The volume of bleeding during the operation was calculated by the weight of gauze used and the amount of suctioned blood during the operation. Other required information such as duration of operation (from the time of surgical incision to the time of the last suture), duration of anesthesia (from the start of injection to discontinuation of anesthesia), time of extubation (from time to closure of anesthesia to the exit of the tube Chip) and the length of stay in recovery were determined and recorded in all patients. After the operations, the patients were discharged from the recovery according to the modified Aldrete criteria [28]. If morphine was needed, the dose and frequency of injections were recorded.

To remove the bias, all surgeries were performed by a single neurosurgeon. Surgeon satisfaction at the end of the operation was measured using the 5-point Likert scale. The above criterion is a 5-part criterion that divides satisfaction from 1 to 5, which included completely satisfied [5], satisfied [3], dissatisfied [1], and completely dissatisfied [2]. The occurrence of postoperative complications such as nausea and vomiting was monitored and recorded. The severity of nausea in patients was classified from zero to 3 using the Apfel criterion, which was zero as no nausea, 1: as mild nausea, 2, as moderate nausea, and 3 as severe and persistent nausea. If the patient had a complication, he was not excluded from the study.

Data analysis: The obtained data were entered into the Statistical Package for Social Sciences (SPSS) version 24. We used independent t-test and repeated measure tests to compare data between different timelines and also different groups. P-value < 0.05 was considered a significant threshold.

Unique identifying number (UIN) of your study: Researchregistry7111.

The work has been reported in line with the CONSORT criteria [29].

2. Results

A total number of 114 patients entered this study and were...
randomized into 2 groups of 57 patients. 4 patients (2 patients in each group) were excluded due to changes in the surgical plan. Data are indicated in Fig. 1. The primary analysis of demographic data showed no significant differences between the two groups regarding age, weight, and ASA classification, level of surgeries, gender, and past medical histories (P > 0.05 for all items). These data are indicated in Table 1.

Further analysis showed that the systolic blood pressure was significantly lower in patients receiving 0.3 μg of remifentanil by the time 30, 45, 60, and 90 min during the surgeries (P < 0.05) but no significant differences could be observed among patients regarding diastolic blood pressure and MAP (Table 2).

According to Table 3, no significant difference was observed in terms of PR (P = 0.19) and SPO2 (P = 0.41) between the two groups. We also evaluated further variables among groups. These data showed a significantly higher duration of surgeries (P = 0.002), duration of anesthesia (P = 0.009), significantly higher bleeding volume (P < 0.001), higher fluid intake (P = 0.01), and higher transfused blood (P = 0.01) in patients that received 0.1 μg remifentanil compared to other patients. We also showed that the surgeon’s satisfaction was significantly higher in patients that received 0.3 μg remifentanil (P = 0.001). There were also no significant differences between groups regarding other variables. These data are indicated in Table 4.

No significant differences could also be observed between the two groups regarding nausea and vomiting.

3. Discussion

A comparison of two different dosages of remifentanil in patients undergoing spinal surgeries with the possibility of massive bleeding was associated with decreased amounts of bleeding. In this study, the efficacy of remifentanil infusion at doses of 0.1 and 0.3 μg/kg/min in the control of low blood pressure in patients undergoing dual lumbar fusion surgery was compared. Here we showed that the patients that received 0.3 μg/kg/min remifentanil had significantly lower systolic blood pressure by the time of 30, 45, 60, and 90 min during the surgeries. On the other hand, patients that received 0.1 μg/kg/min remifentanil had significantly higher duration of surgeries, duration of anesthesia, significantly higher bleeding volume, higher fluid intake, and also higher transfused blood. Similar findings are reported in our study.

In a study by Hadi and colleagues in 2010, 30 candidates for spinal fusion surgery were divided into two groups and received 0.2 μg/kg/min remifentanil with or without ketamine and were evaluated for 24 h in the post-anesthesia care unit. It was reported that patients that received only remifentanil had significantly lower blood pressure and heart rate. The patients had also lower bleeding volumes which led to better hemodynamic stability [30]. Rahimzadeh and colleagues also compared the results of remifentanil and dexmedetomidine injections among patients undergoing posterior spinal fusion surgery. They evaluated 60 patients and explained that patients that received remifentanil with the dosage of 0.1 μg/kg/min had decreased blood pressure but the patients receiving dexmedetomidine had lower hemodynamic indexes at 30, 60, 120, and 360 min after extubation [31]. The findings of our study were in line with these results showing the effectiveness of remifentanil injection. An important point of the current study was that we compared two different dosages of remifentanil and the clinical outcomes of patients undergoing spine surgery. It was declared that injection of 0.25 μg/kg per minute of remifentanil was associated with a significant reduction in blood pressure and bleeding volume during the 5 h of post-anesthesia care. The study recommended that higher dosages could have better effects on patients [32]. These data are also in line with our findings.

| Table 1: Comparison of demographic data between groups. |
|-------------|---------|---------|----------|--------|
| | | Mean | Std. Deviation | p-value |
| Age | 0.1 μg | 55 | 41.56 | 14.29 | 0.23 |
| | 0.3 μg | 55 | 44.57 | 11.64 | |
| Weight | 0.1 μg | 54 | 70.77 | 9.74 | 0.06 |
| | 0.3 μg | 54 | 74.24 | 9.11 | |
| ASA | 0.1 μg | 48 | 5 | 53 | 0.07 |
| | μg | Percent | 90.6% | 9.4% | 100.0% |
| | 0.3 μg | 39 | 11 | 50 | |
| | μg | Percent | 78.0% | 22.0% | 100.0% |
| | 0.3 μg | 5 | 44 | 53 | 0.26 |
| | μg | Percent | 17.0% | 83.0% | 100.0% |
| Level of | 0.1 μg | 9 | 4 | 53 | |
| surgery | μg | Percent | 9.3% | 90.7% | 100.0% |
| | 0.3 μg | 5 | 49 | 54 | |
| Gender | 0.1 μg | 30 | 25 | 55 | 0.84 |
| | μg | Percent | 54.5% | 45.5% | 100.0% |
| | 0.3 μg | 28 | 27 | 55 | |
| | μg | Percent | 50.9% | 49.1% | 100.0% |
| past medical | 0.1 μg | 45 | 10 | 55 | 0.81 |
| histories | μg | Percent | 81.8% | 18.2% | 100.0% |
| | 0.3 μg | 43 | 12 | 55 | |
| | μg | Percent | 78.2% | 21.8% | 100.0% |

Using independent t-test and chi-square tests.

Fig. 1. Evaluation of blood pressures between groups.
Table 2
Evaluation of blood pressure changes by time and group therapy.

group	T = pre	T = 0	T = 30min	T = 45min	T = 60min	T = 90min	T = 120min	T = 150min	T = 180min	T = 210min	T = recovery 30	T = recovery 45	T = recovery 60	T = recovery 90	P1	P2	P3
SIS	Mean	138.7091	120.8364	122.4000	98.7455	100.9181	102.3922	102.4894	103.1522	117.2909	126.7455	116.6566	118.3662	0.001	0.15	0.63	
µg	Mean	141.6364	121.7273	123.1363	96.7363	111.3818	108.6182	98.8399	101.7455	105.7000	120.4545	117.8438	112.3842	0.001	0.04	0.01	
30min	90min	120.8364	122.4000	98.7455	100.9181	102.3922	102.4894	103.1522	117.2909	126.7455	116.6566	118.3662	112.3842	0.001	0.04	0.01	

Table 3
Comparison of PR and SPO2 among patients.

group	T = pre	T = 0	T = 30min	T = 45min	T = 60min	T = 90min	T = 120min	T = 150min	T = 180min	T = recovery 0	T = recovery 30	T = recovery 45	T = recovery 60	T = recovery 90	P1	P2	P3	
PR	Mean	91.1091	88.9636	81.5636	82.0991	80.6909	78.0000	79.2727	78.0592	79.0490	77.9149	81.2373	79.6111	75.2069	68.3551	69.2481	<0.001	0.19
µg	Mean	13.1144	14.5894	17.05847	11.9124	12.9356	11.73949	11.60352	12.6167	12.23630	12.75496	13.78412	12.61978	10.37641	13.22540	12.36724		
0.3 µg	Mean	95.0182	90.0727	85.4909	81.4272	80.3819	82.8545	77.2182	75.8182	77.2778	78.7800	81.4000	80.2909	80.6000	67.7421	68.2360	0.001	
SPO2	Mean	97.8900	98.7091	98.8545	99.2182	98.8909	98.8349	98.5849	98.5490	98.5102	98.4231	98.3017	97.8584	97.8721	97.8734	0.001	0.099	0.41
µg	Mean	15.47099	13.91753	12.65332	12.75837	12.27556	45.31239	12.67206	15.0294	12.80211	13.16503	14.87429	13.95639	15.79332	11.25740	11.30870		
0.3 µg	Mean	97.6000	98.5455	98.8182	99.0182	98.7636	98.7636	98.6182	98.6182	98.5268	98.3148	98.1915	98.4474	98.4526	98.4723	0.001		
P4	Mean	90.3338	1.9491	1.09021	1.17837	1.10493	1.10493	1.12655	1.16255	1.17837	2.23036	2.23255	1.87007	1.96387	1.25387			

P1 (Time), P2 (interaction), P3 (intervention) at a significant level of repeated measure test. P4 at the 5% level of independent t-test.
μg/kg/min remifentanil injections with the dosage of 0.1 μg/kg/min during spinal surgeries is associated with significant positive results compared to other patients.

Availability of data and materials
All relevant data and materials are provided in the manuscript.

Ethical approval
All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Funding
No funding was secured for this study.

Author statement
Dr. Seyyedeh Hamideh Hashemiyazdi and Dr. Mohammad Aryafar: conceptualized and designed the study, drafted the initial manuscript, and reviewed and revised the manuscript.

Dr. Mehrdad Masoudifar and Dr. Azim Honarmand: Designed the data collection instruments, collected data, carried out the initial analyses, and reviewed and revised the manuscript.

Dr. Zahra Rahimi: Coordinated and supervised data collection, and critically reviewed the manuscript for important intellectual content.

Registration of research studies
Name of the registry: IRT202002017046523N12. Unique Identifying number or registration ID: IR. MUI.MED.REC.1399.1025.

Hyperlink to the registration (must be publicly accessible): https://en.irct.ir/trial/54856.

Guarantor
Dr. Seyyedeh Hamideh Hashemiyazdi.

Consent
Not applicable.

Provenance and peer review
Not commissioned, externally peer-reviewed.

Human and animal rights
No animals were used in this research. All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2013.

Declaration of competing interest
The authors deny any conflict of interest in any terms or by any means during the study.

Table 4
Evaluation of surgical duration, anesthesia duration, recovery duration, bleeding volume and fluid intake and other variables.

	N	Mean	Std. Deviation	P-VALUE	
Surgical duration (hour)	0.1 μg	50	3.6382	.58280	0.06
	0.3 μg	51	3.8700	.67620	
Anesthesia duration (hour)	0.1 μg	55	4.5000	.75768	0.009
	0.3 μg	55	4.8473	.69975	
Extubation duration (hour)	0.1 μg	51	39.1176	12.23544	0.11
	0.3 μg	50	35.3000	12.13908	
Recovery duration (hour)	0.1 μg	51	1.3333	.43205	0.42
	0.3 μg	50	1.2700	.35297	
Bleeding volume (ml)	0.1 μg	52	536.5385	223.19327	<0.001
	0.3 μg	55	372.7273	201.11223	
Fluid intake (L)	0.1 μg	52	2.4904	1.51622	0.01
	0.3 μg	54	1.7037	1.70050	
Transfused blood (L)	0.1 μg	51	.5294	.85681	0.01
	0.3 μg	47	.1702	.43335	
Atropine (mg)	0.1 μg	7	1.2500	1.86474	0.28
	0.3 μg	12	.4429	.45408	
Ephedrine (mg)	0.1 μg	13	2.3889	3.08486	0.41
	0.3 μg	18	3.3846	3.65897	
Propofol (mg)	0.1 μg	50	301.7105	255.93569	0.72
	0.3 μg	51	337.9688	580.74182	
Remifentanil (mg)	0.1 μg	53	5.3395	2.41141	0.01
	0.3 μg	53	4.0154	1.67778	
Extra morphine (mg)	0.1 μg	25	7.0853	6.20056	0.33
Extra labetalol (mg)	0.1 μg	18	4.1667	4.91596	
	0.3 μg	6	3.37291	0.21405	
Surgeon’s satisfaction	0.1 μg	55	2.2000	.91084	0.001
	0.3 μg	54	1.4815	.77071	

Using independent t-test and chi-square tests.

Some other previous studies have also declared the effectiveness of remifentanil injections with the dosage of 0.1 μg/kg/min during spinal surgeries [33–35] and reported lower blood pressure, lower bleeding, lower surgery and recovery, and also limited fluid intake compared to other agents. In the present study, we showed that administration of 0.3 μg/kg/min is associated with better results during and after surgical operations and also with no difference in complications.

In 2008, a study was conducted by Kim and colleagues in Korea on 60 patients that were candidates for endotracheal intubation and reported that 1 μg/kg/min remifentanil followed by an infusion of 0.1 μg/kg/min is more effective than 1.5 mg/kg esmolol for inhibiting the cardiovascular responses following endotracheal intubation during the induction of general anesthesia. They also explained that higher dosages of remifentanil might have better results. However, the study evaluated these parameters from 1 to 5 min before intubation and 1–5 min after intubation [36]. We believe that administration of 0.3 μg/kg/min remifentanil could have significant clinical outcomes in other medical interventions.

Our study is the first one to provide evidence regarding two different doses of remifentanil for managing bleeding among spinal surgery patients along with intraoperative and postoperative parameters. It can also be deduced that 0.1 μg/kg/min may be less to achieve the desirable results. The limitations of the current study were restricted number of patients and also not evaluating the hemoglobin levels of patients and also the amounts of administered muscle-relaxants in patients. Therefore, we suggest that further studies on larger populations should be performed with evaluating the mentioned factors.

4. Conclusion
Here we showed that administration of 0.3 μg/kg/min remifentanil was associated with significantly lower systolic blood pressure by the time of 30, 45, 60 and 90 min during the surgeries. These data indicate the effectiveness and beneficial outcomes of 0.3 μg/kg/min remifentanil injection in patients undergoing posterior spinal fusion surgery under general anesthesia. These data show that administration of 0.3 μg/kg/min remifentanil during surgeries is associated with significant positive results compared to other patients.
References

[1] C.B. Sieberg, L.E. Simon, M.R. Edelstein, M.R. DeAngelis, M. Pielech, N. Sethna, et al., Pain prevalence and trajectories following pediatric spinal fusion surgery, J. Pain 14 (12) (2013) 1694–1702.

[2] S. Vahabi, A. Karimi, S. Beiranvand, M. Moradkhani, K. Hassanvand, Comparison of the effect of different dosages of celecoxib on reducing pain after cystocele and rectocele repair surgery, Open Anesth. J. 14 (1) (2020).

[3] P.V.L.S. Group, Risk factors associated with ischemic optic neuropathy after spinal fusion surgery, J. Am. Soc. Anesthesiol. 116 (1) (2012) 15–24.

[4] L.A. Harris, A.T.T. Dao, Trends of spinal fusion surgery in Australia: 1997 to 2006, ANZ J. Surg. 79 (11) (2009) 783–788.

[5] S. Beiranvand, S. Vahabi, Effect of local ropivacaine on hemodynamic responses in craniootomy patients, J. Invest. Surg. 31 (6) (2018) 464–468.

[6] A.N. Larson, N.D. Fletcher, C. Daniel, B.S. Richards, Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up, Spine 37 (10) (2012) 833-839.

[7] M. Malek, F. Jafarifar, A. Roohi Aminjan, H. Salehi, H. Parsa, Culture of a new medicinal leech: growth, survival and reproduction of Hirudo orientalis Utevsky and Trontelj, 2005 under laboratory conditions, J. Nat. Hist. 53 (11–12) (2019) 627–637.

[8] E. Oguz, A. Sehirlioglu, M. Altimanakas, C. Ozturk, M. Komurcu, C. Solakoglu, et al., A new classification and guide for surgical treatment of spinal tuberculosis, Int. Orthop. 32 (1) (2008) 127–133.

[9] A. Singla, J.T. Bennett, P.D. Sponseller, J.M. Pahys, B.S. Lonner, et al., Results of selective thoracic versus nonselective fusion in Lenke type 3 curves, Spine 39 (24) (2014) 2034-2041.

[10] A.D. Auerbach, E. Vittinghoff, J. Maselli, P.S. Pekow, J.Q. Young, P.K. Lindenauer, Perioperative use of selective serotonin reuptake inhibitors and risks for adverse outcomes of surgery, JAMA Intern. Med. 173 (12) (2013) 1075–1081.

[11] S.P. Roose, B.R. Rutherford, Selective serotonin reuptake inhibitors and operative bleeding risk: a review of the literature, J. Clin. Psychopharmacol. 36 (6) (2016) 704.

[12] S. Vahabi, Y. Rafieian, A. Abbas Zadeh, The effects of intrathecal esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty, J. Invest. Surg. 31 (2) (2018) 82–88.

[13] J.M. Anadio, P.F. Sturm, J.M. Forslund, S. Agarwal, A. Lane, C. Tarango, et al., A bleeding assessment tool correlates with intraoperative blood loss in children and adolescents undergoing major spinal surgery, Thromb. Res. 152 (2017) 82–86.

[14] H. Parsa, H. Saravani, F. Sameei-Rad, M. Nasiri, Z. Farahaninik, A. Rahmani, Comparing lavage of the peritoneal cavity with lidocaine, bupivacaine and normal saline to reduce the formation of abdominal adhesion bands in rats, Malays. J. Med. Sci.: MJMS 24 (3) (2017) 26.

[15] B. Lang, L. Zhang, Y. Lin, W. Zhang, F-S Li, S. Chen, Comparison of effects and safety in providing controlled hypotension during surgery between dexmedetomidine and magnesium sulphate: a meta-analysis of randomized controlled trials, PLoS One 15 (11) (2020), e0227410.

[16] S. Vahabi, A. Abasazadeh, F. Yari, N. Yousefi, Postoperative pain, nausea and vomiting among pre-and postmenopausal women undergoing cystocele and rectocele repair surgery, Korean J. Anesthesiol. 68 (6) (2015) 581.

[17] N. Farzan, P. Ghezelbash, F. Hamidi, A. Zeraatchi, Pulmonary thromboembolism with transthoracic ultrasound and computed tomography angiography, Clin. Respir. J. 15 (12) (2021) 1337–1342.

[18] R.H. Jamaliya, R. Bozorgmehr, R. Alizadeh, F. Gholami, A cross-sectional study on monitoring depth of anesthesia using brain function index among elective laparotomy patients, Int. J. Surg. Open 27 (2020) 98–102.

[19] F. Servin, V. Billard, Remifentanil and other opioids, Mod. Anesthetics (2008) 283–311.

[20] J.-H. Ryu, I.-S. Sohn, S.-H. Do, Controlled hypotension for middle ear surgery: a comparison between remifentanil and magnesium sulphate, Br. J. Anaesth. 103 (4) (2009) 490–495.

[21] M. Ghafarzadeh, A. Shakarami, F. Yari, P. Namdari, The comparison of side effects of methylprednisolone, amiodipine, and metoprolol in pregnant women with chronic hypertension, Hypertens. Pregnancy 39 (3) (2020) 314–318.

[22] A. Shariat, R. Alizadeh, V. Moradi, E. Aftabnia, A. Hakakzadeh, N.N. Ansari, et al., The impact of modified exercise and relaxation therapy on chronic lower back pain in office workers: a randomized clinical trial, J. Exerc. Rehabil. 15 (5) (2019) 703.

[23] A.H. Milby, C.H. Halpern, J.M. Schuster, Cougholigophal in Spinal Surgery 39. Essentials of Neurosurgical Anesthesia & Critical Care: Strategies for Prevention, Early Detection, and Successful Management of Perioperative Complications, 2019, p. 251.

[24] J.-E. Kim, D.-J. Choi, Clinical and radiological outcomes of unilateral biportal endoscopic decompression by 30 arthroscopy in lumbar spinal stenosis: minimum 2-year follow-up, Clin. Orthop. Surg. 10 (3) (2018) 328.

[25] B. Hadi, R. Al Ramadani, R. Daas, I. Naylor, R. Zelko, Remifentanil in combination with ketamine versus remifentanil in spinal fusion surgery—a double blind study, Int. J. Clin. Pharmacol. Therapeut. 48 (8) (2010) 504.

[26] P. Rahimzadeh, S.H.R. Faiz, M. Alimian, A.M. Erdi, Remifentanil versus dexmedetomidine for posterior spinal fusion surgery, Med. J. Islam. Repub. Iran 29 (2015) 215.

[27] M.R. Ghodrati, M.M. Homaei, K. Farazmehr, A.R. Nikzad-Jamnani, M. Soleymani-Doran, A.R. Pouranajadian, et al., Comparative induction of controlled circulation with magnesium and remifentanil in spine surgery, World J. Orthoped. 5 (1) (2014) 51.

[28] W. Hwang, J. Lee, J. Park, J. Joo, Dexmedetomidine versus remifentanil in postoperative pain control after spinal surgery: a randomized controlled study, BMC Anesthesiol. 15 (1) (2015) 1–7.

[29] J.H. Yeom, K.H. Kim, M.-S. Chon, J. Byun, S.Y. Cho, Remifentanil used as adjuvant in general anesthesia for spinal fusion does not exhibit acute opioid tolerance, Korean J. Anesthesiol. 63 (2) (2012) 105.

[30] M. Alimian, B. Zaman, M.R. Mohaghegh, A.R. Kholdebarin, A. Pourbakhshehdeh, E. Kazemtori, Comparing the Effect of Dexmedetomidine and Remifentanil on Recovery Time of Patients Undergoing Posterior Spinal Fusion Surgery, 2015.

[31] Y.H. Kim, Y.K. Ko, W.H. Cho, H.J. Pak, S.C. Son, S.H. Yoon, Comparing the effects of esmolol and remifentanil on the cardiovascular and catecholamine response to endotracheal intubation during the induction of general anesthesia, Korean J. Anesthesiol. 55 (5) (2008) 554–559.