Title
Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage

Permalink
https://escholarship.org/uc/item/0hw6p2xf

Journal
Plant Physiology, 187(2)

ISSN
0032-0889

Authors
Wakao, Setsuko
Niyogi, Krishna K

Publication Date
2021-10-05

DOI
10.1093/plphys/kiab355

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed
Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage

Setsuko Wakao and Krishna K. Niyogi

1 Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
3 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA

*Author for communication: swakao@berkeley.edu Senior author.
†Senior author.
S.W. and K.K.N. wrote and revised the paper.

While the maintenance of redox balance is important for all organisms, the energy balance in the chloroplast is particularly tightly linked to the overall cellular redox status in photosynthetic organisms. Excess light can cause overreduction of the photosynthetic electron transport chain, which, when unchecked, results in the generation of reactive oxygen species (ROS) that can oxidize cellular components including nucleic acids, proteins, and lipids (Li et al., 2009). A photosynthetic cell possesses multiple layers of defense against oxidative stress, such as antioxidant enzymes (Foyer and Noctor, 2005) and alternative electron transfer pathways (Alric and Johnson, 2017). At the same time, ROS can function as important signals that mediate responses to biotic and abiotic stresses (Apel and Hirt, 2004). Reversibly oxidizable small molecules and proteins can serve as ROS sinks and signals and are re-reduced by multiple mechanisms. For example, the ascorbate–glutathione (GSH) cycle is central in controlling ROS levels and regenerating/reducing oxidized cellular redox agents (Foyer and Noctor, 2011). The functions of many proteins can be regulated by the redox state of cysteine residues, such as the formation or reduction of disulfides by thioredoxins (TRX) (Buchanan, 1991) and glutaredoxins (Michelet et al., 2013b; Figure 1, B and C).

Chlamydomonas (Chlamydomonas reinhardtii) has been a model organism in which mutants can be generated to study biological processes such as photosynthesis (Levine, 1960). As described in this update review, Chlamydomonas has metabolic and molecular pathways that are analogous to those in the model plant Arabidopsis (Arabidopsis thaliana) and those that are distinct, offering a glimpse into the diversity of photosynthetic organisms. Chlamydomonas has several advantages as an experimental organism for studying redox regulation and ROS signaling. Because it is unicellular, Chlamydomonas can be grown in uniform cultures, and ROS induction and treatment are relatively easy compared to working with whole, multicellular plants. These strengths have been leveraged to generate a wealth of RNA-Seq and proteomics datasets that brings us closer to a systems-level understanding of redox regulation. This update review discusses the recent advances toward understanding cellular responses to ROS and redox perturbation in Chlamydomonas. Numerous recent studies have highlighted the importance of the ascorbate–GSH cycle in redox homeostasis in Chlamydomonas as well as ascorbate’s indirect roles in photoprotection. The relatively fewer variables in experimental conditions have facilitated cross-comparison of transcriptomic responses to
different redox-active or photosensitizing molecules that generate ROS and uncovered unique physiological responses in Chlamydomonas as compared to plants. Proteomic experiments have revealed the striking fact that the Calvin–Benson (CB) cycle is targeted by multiple post-translational modifications (PTMs), including enzymes already known to be subject to redox regulation, and what future work is needed in this area will be discussed.

ROS and photosynthesis

Photosynthetic organisms must acclimate to dynamic changes in parameters such as light, temperature, and nutrients in the natural environment in order to optimize photosynthesis. ROS are unavoidable byproducts of oxygenic photosynthesis and could overwhelm the cellular redox equilibrium, often referred to as an oxidative burst, under conditions such as biotic or abiotic stress (Figure 2). In the last two decades, ROS have been demonstrated as important signaling molecules, rather than solely deleterious oxidative compounds. ROS are diverse, with hydrogen peroxide (H$_2$O$_2$), superoxide (O$_2^-$), and singlet oxygen (1O$_2^*$) being the most discussed ROS in the context of photosynthesis. Different forms of ROS have different modes of generation, reactivities, and cellular mechanisms that deal with them (Apel and Hirt, 2004).

H$_2$O$_2$ is ubiquitous. It is produced in multiple subcellular compartments and through different processes, for example, in the peroxisome during photosynthesis (Foyer et al., 2009) and in the chloroplast by pseudocyclic electron transport, also called the water–water cycle (Asada, 1999). H$_2$O$_2$ and alkyl peroxides are detoxified into H$_2$O and alkyl alcohols, respectively, by enzymes such as ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase, and peroxiredoxin (PRX; reviewed by Smirnoff and Arnaud, 2019; Figure 1C). The role of H$_2$O$_2$ in signaling has been well established in Arabidopsis (reviewed by Dietz et al., 2016). Studies on Chlamydomonas mutants of H$_2$O$_2$-detoxifying enzymes have highlighted their importance in both protection and signaling. Catalase is one such enzyme that is transiently and reversibly inactivated upon transfer to excess light (700 μmol photons m$^{-2}$ s$^{-1}$) from darkness, allowing a sharp rise in H$_2$O$_2$ levels and a subsequent nuclear gene expression response (Shao et al., 2008; Michelet et al., 2013a). The silencing of catalase abolishes the spike in H$_2$O$_2$ and renders the strain photosensitive (Michelet et al., 2013a), indicating that the elevated H$_2$O$_2$ is not toxic but rather a necessary step to trigger an H$_2$O$_2$-dependent response for coping with further stress. The reversible inactivation of catalase occurs through a one-electron reduction and is hypothesized to occur via a single cysteine residue that may somehow sense overreduction of photosynthetic electron transport (Michelet et al., 2013a). GPX is another important H$_2$O$_2$-and alkyl peroxide-detoxifying enzyme (Fischer et al., 2009). Some GPXs occur as seleno enzymes (Se-GPX) that utilize a seleno-cysteine at their active sites, whereas others use an unmodified cysteine (nonseleno GPXs, NS-GPX). The Chlamydomonas genomes encode five GPXs, two Se-GPXs (GPX1 and GPX2), and three NS-GPXs (GPX3, GPX4, and GPX5), which is in contrast to land plants, which are considered to have lost the Se-GPXs as have yeast and some animals (Dayer et al., 2008). The two types of GPXs are presumed to accept electrons from different donors: TRX for NS-GPX and GSH for Se-GPX, exemplifying the various ways in which the redox system components can interact with each other (Figure 1C). The Chlamydomonas mutant gpx5 exhibits photooxidative stress and is unable to accumulate lipid under nitrogen depletion (Ma et al., 2020). GPX5 has been used extensively as a marker for studying ROS-specific gene expression in Chlamydomonas and will be discussed further in the ROS-specific gene expression section below.

In the chloroplast, O$_2$ at the acceptor side of photosystem (PS) I is photoreduced via flavodiiron (FLV) proteins that catalyze NADPH-dependent reduction of O$_2$ to H$_2$O (Chaux et al., 2017) or via the Mehler reaction (Mehler, 1951), which generates O$_2^-$. The O$_2^-$ produced by the Mehler reaction is converted to H$_2$O$_2$ by superoxide dismutase (SOD) and subsequently to H$_2$O by APX (Asada, 1999). FLVs are conserved in cyanobacteria, algae, and mosses but are absent in angiosperms (Yamamoto et al., 2016). FLV-dependent photoreduction of O$_2$ in Chlamydomonas is prominent during dark-to-light transitions and is critical for growth in fluctuating light (Chaux et al., 2017; Jokel et al., 2018; Saroussi et al., 2019). Detoxification of O$_2^-$ is an important protective mechanism in plants as shown by the photosensitive phenotype of a knockdown of an isofrom of SOD in Arabidopsis (Rizhsky et al., 2003), but its role in Chlamydomonas has not yet been investigated. Among the three types of SODs grouped by their metal cofactors, FeSOD has been
Particular MnSOD3 is induced by low Fe, Mn, and H2O2 and plays an important role in the metal sparing during metal-limiting conditions (Page et al., 2012).

Figure 1 Redox reactions involving ascorbate–glutathione cycle and TRX. A. The reduction–oxidation cycle of ascorbate serves as cofactor for many enzymes such as APX, a major peroxide detoxifying enzyme under light stress. The regeneration of Asc from its oxidized form utilizes the enzymes MDAR and DHAR, which are coupled to the oxidation of NADPH and glutathione, respectively. The regeneration of GSH is catalyzed by GR coupled to NADPH. Dashed arrows represent the interconversion of Asc, MDHA, DHA that occurs without enzymatic action. B, C. Light-driven reduction of ferredoxin (FDX) is transduced through FTR to TRX. (B) The TRX-redox cycle is used for reduction and oxidation of disulfides and (C) coupled to the detoxification of peroxides by enzymes such as GPX and PRX. Text in black is compounds in their reduced or oxidized forms (indicated by suffixes: red, reduced; ox, oxidized). Asc, ascorbate; MDHA, monohydroascorbate; DHA, dehydroascorbate; GSH, reduced glutathione; GSSG, glutathione disulfide; NADPH, nicotinamide adenine dinucleotide phosphate. Colored circles are enzymes with oxido-reductase activity. TRX, thioredoxin reductase; FRX, Ferredoxin; FTR, ferredoxin–thioredoxin reductase. Associated with the chloroplast, MnSOD with mitochondria and peroxisomes, and Cu/ZnSOD with the chloroplast and cytosol in plants (Alsher et al., 2002). The Chlamydomonas genome contains six SOD genes; five encoding MnSODs and one encoding FeSOD. The chloroplast of Chlamydomonas uniquely contains a MnSOD in addition to FeSOD, and in particular MnSOD3 is induced by low Fe, Mn, and H2O2 and plays an important role in the metal sparing during metal-limiting conditions (Page et al., 2012).

A chlorophyll (Chl) molecule is excited by the absorption of a photon into singlet chlorophyll (1\text{Chl}^\ast), whose major fate in photosynthesis is to transfer its excited energy to a neighboring pigment. However, when PSII reaction centers are closed such as during excess light or stress conditions, the lifetime of 1\text{Chl}^\ast increases, leading to increased yield of a longer-lived triplet form of Chl (3\text{Chl}^\ast) (reviewed by Krieger-Liszkay, 2005). 3\text{Chl}^\ast readily transfers energy to O2 resulting in the generation of singlet oxygen (1\text{O}_2^\ast); and therefore 1\text{O}_2^\ast is distinct from ROS such as H2O2 and O2~ as it is not a radical (reviewed by Krieger-Liszkay, 2005; Ziegelhoffer and Donohue, 2009). 1\text{O}_2^\ast is estimated to have a reactive radius of ~100 nm in a cell (Hatz et al., 2007) and thus is not expected to travel far from its site of generation, the reaction center of PSII, before reacting with a target. However, in contrast to this notion, its leakage into the cytosol has been observed under extreme high light intensity (3,000 \mu mol-photons s-1 m-2) in Chlamydomonas (Fischer et al., 2007).
Chlamydomonas as will be discussed below. In the thylakoid membrane is another effective $^{1}\text{O}_2^\ast$ scavenger, plastoquinol (Kruk and Trebst, 2008; Nowicka and Kruk, 2012) in addition to tocopherol (Li et al., 2012). A recent study using Arabidopsis mutants disrupted in the biosynthetic pathway of three lipophilic antioxidants, tocopherol, plastoquinone, and plastochromanol, indicates plastoquinone and tocopherol as $^{1}\text{O}_2^\ast$ scavengers and plastochromanol as that for lipid peroxides under excess light (Gruszka et al., 2008; Szymańska et al., 2014; Kumar et al., 2020). Migrating further away from PSII, the γ-subunit of the chloroplast ATP synthase is known to be heavily oxidized under $^{1}\text{O}_2^\ast$-generating conditions resulting in a decrease in its proton pumping function (Mahler et al., 2007; Buchert and Forreiter, 2010). A point mutation in the CF$_{1}$CF$_{o}$ domain in Chlamydomonas ATP synthase renders it more resistant to photooxidative stress and inactivation by H$_2$O$_2$ in vitro but the same has not been demonstrated for $^{1}\text{O}_2^\ast$ (Buchert et al., 2017).

EX1 and EX2 are required for $^{1}\text{O}_2^\ast$ signaling in Arabidopsis, and EX1 has been shown to reside in the grana margins (Wagner et al., 2004; Lee et al., 2007). An oxidation at one of the two conserved Trp residues in the DUF3506 domain is required for the determination of EX1 stability and the signaling role in response to $^{1}\text{O}_2^\ast$ (Dogra et al., 2019). The Chlamydomonas genome contains a single gene (Cre03g163500) encoding a protein with a DUF3506 domain, which does not contain the conserved Trp residues targeted for oxidation. A suppressor screen of Arabidopsis flu ex1 double mutant identified SAFE1 as a negative-regulator of $^{1}\text{O}_2^\ast$-induced cell death that is independent of the EX1 pathway (Wang et al., 2020). SAFE1 has a methyltransferase domain and is most similar to RMT2 (annotated as a Rubisco methyltransferase) in Chlamydomonas; rmt2 mutants have been identified with varying degrees of light-sensitive and acetate-requiring phenotypes (Wakao et al., 2021). β-cyclocitral and EX1 are the only two oxidized targets demonstrated to be required for signaling in response to $^{1}\text{O}_2^\ast$ in Arabidopsis. A study on RES in response to $^{1}\text{O}_2^\ast$ showed that β-cyclocitral levels do not change under ROS-promoting conditions (Roach et al., 2017), suggesting that Chlamydomonas may not utilize the same $^{1}\text{O}_2^\ast$ response pathways as Arabidopsis.

Species-specific ROS signaling

Because multiple ROS are generated simultaneously under oxidative stress, it has been a longstanding challenge for researchers to tease apart responses that are specific to the type of ROS. There are several examples of ROS-specific regulators, namely for H$_2$O$_2$ and O$_2^\cdot$-, in nonphotosynthetic organisms. The bacterial protein OxyR is oxidized by H$_2$O$_2$, forming a disulfide bridge to activate and repress target genes (Storz et al., 1990; Zheng et al., 1998). The Escherichia coli transcriptional regulator SoxR contains an Fe-S cluster that is oxidized by O$_2^\cdot$- to activate transcription of SoxS, which then upregulates the rest of the O$_2^\cdot$- regulon (reviewed by Imlay, 2015). In yeast, the formation of a disulﬁde in a bZIP transcription factor, Yap1, is required for its transcriptional regulation activity, and this oxidation is mediated by Gpx3 that is directly oxidized by H$_2$O$_2$ (Delaunay et al., 2000, 2002). In yeast, the physiological response to...
ROS and thiol redox regulation in Chlamydomonas

O$_2^-$ is distinct from that for H$_2$O$_2$, though the O$_2^-$-specific transcriptional regulator is still unknown (Flattery-O’Brien et al., 1993; Jamieson et al., 1996).

So far, transcriptional regulators that directly interact with a specific ROS have not been characterized in *Chlamydomonas*. On the other hand, *Chlamydomonas* is uniquely capable of sensing and acclimating to a low level of 1O$_2^*$, allowing cells to tolerate subsequent higher levels of 1O$_2^*$ stress (Ledford et al., 2007), similar to the microbial ROS-specific responses discussed above. The disruption of the phosphoprotein SAK1 abolishes 1O$_2^*$ acclimation in *Chlamydomonas*. The mutant *sak1* lacks the induction of the most strongly upregulated genes during acclimation to 1O$_2^*$, indicating the central role of SAK1 in this process (Wakao et al., 2014). A small zinc finger protein METHYLENE BLUE SENSITIVE is also necessary in *Chlamydomonas* and Arabidopsis for the induction of some 1O$_2^*$-responsive genes (Shao et al., 2013). A role for PHOTOSYSTEM II SUBUNIT P2 (PSBP2) in the response to 1O$_2^*$ has been identified in a mutant screen using a 1O$_2^*$-responsive reporter line (Brzezowski et al., 2012). How or whether these proteins genetically and biochemically interact is still unknown (Figure 3).

1O$_2^*$- or H$_2$O$_2$-specific gene regulation has been studied for several individual genes in *Chlamydomonas*. In an early study, GPX5 (also known as GPXH) was discovered as a gene that is strongly induced by 1O$_2^*$ and moderately by RES (Leisinger et al., 2001), while it responds weakly to H$_2$O$_2$ or O$_2^-$. As with the other *Chlamydomonas* GPXs, GPX5 belongs to the phospholipid peroxidase family that can reduce oxidized FAs from the membrane (Dayer et al., 2008). GPX5 has been shown to use TRX rather than GSH as an electron donor to reduce H$_2$O$_2$ and alkyl peroxides (Fischer et al., 2009), and its promoter region contains motifs responsible for 1O$_2^*$- and cAMP-specific response (Leisinger et al., 2001). Different isoforms of GPX are predicted to reside in different subcellular compartments as ROS scavengers. In particular, expressed sequence tags suggest that GPX5 has two alternative transcripts encoding enzymes that are differentially targeted to the chloroplast and cytosol (Dayer et al., 2008). The HSP70 promoter has been dissected into regions that allow H$_2$O$_2$ and 1O$_2^*$-specific response, indicating the two inputs can independently or synergistically upregulate this gene (Shao et al., 2007). The induction of VTC2 gene expression for ascorbate biosynthesis has been observed in response to 1O$_2^*$ (Wakao et al., 2014) and H$_2$O$_2$ separately (Urzica et al., 2012; Blaby et al., 2015), hinting at the existence of independent or overlapping signaling pathways. In a proteomic study, Barth et al. (2014) separated responses that are ROS- or light-dependent by combining low versus high light intensity and aerobiosis (O$_2$) versus anaerobiosis (N$_2$) treatments. ROS-dependent differences were extracted by comparing proteins overrepresented in O$_2$ versus N$_2$ treatment at the same light intensity. Functions enriched in this group of proteins included ascorbate synthesis or its regeneration, including VTC4 (L-galactose 1-phosphate phosphatase), VTC1 (GDP-D-mannose pyrophosphorylase), and dehydroascorbate reductase (DHAR), resembling the 1O$_2^*$- or H$_2$O$_2$-dependent induction of VTC2 gene expression. Conversely, a light-specific response was attributed to those proteins that were overrepresented in high light as compared to low light under anaerobiosis (eliminating ROS production). This group included proteins involved in the carbon-concentrating mechanism and nonphotochemical quenching (NPQ), indicating the induction of these proteins do not require ROS as an input. Some isoforms of enzymes involved in ROS metabolism such as TRX, peroxiredoxin, and glutaredoxin were found to require both light

Figure 3 ROS- and RES-induced gene expression and acclimation in *Chlamydomonas*. Treatments with H$_2$O$_2$ (pink), 1O$_2^*$ (blue), and acrolein (yellow) have been shown to induce the expression of distinct sets of genes with some overlaps, as shown by the colored circles. Pretreatment with 1O$_2^*$ induces resistance to subsequent challenge with 1O$_2^*$ (acclimation), which requires SAK1 (blue arrows). Pretreatment with acrolein induces cross-acclimation to 1O$_2^*$ (brown arrows). Acclimation to H$_2$O$_2$ or RES has not been observed (gray dashed arrows and red X’s). Pretreatment with 1O$_2^*$ does not induce cross-acclimation to RES (t-BOOH, Ledford et al., 2007). SAK1, METHYLENE BLUE SENSITIVE, and PSBP2 are required for 1O$_2^*$-responsive gene expression but whether these three components are part of the same or different pathways is unknown. SOR1 is a bZIP transcription factor required for the gene expression response to RES. A brief exposure to excess light, which presumably generates 1O$_2^*$, H$_2$O$_2$, and possibly RES, induces acclimation to 1O$_2^*$, t-BOOH, tert-butyl hydroperoxide; SAK1, SINGLET OXYGEN ACCLIMATION KNOCKEDOUT 1; MBS, METHYLENE BLUE SENSITIVE; PSBP2, PHOTOSYSTEM II SUBUNIT P2; SOR1, SINGLET OXYGEN RESISTANT 1.
and ROS as input signals, and neither was sufficient on its own (Barth et al., 2014). The ROS-dependent response described in this study may be dominated by the response to H$_2$O$_2$ due to its stability and abundance.

Orthologs of the most strongly induced 1O$_2^*$-responsive genes in *Chlamydomonas* are not among those induced by 1O$_2^*$ in Arabidopsis, suggesting that the two organisms respond to 1O$_2^*$ in distinct ways at least at the transcript level (op den Camp et al., 2003; Ramel et al., 2012b; Wakao et al., 2014). Studies of the transcriptome dynamics during 1O$_2^*$-specific signaling in Arabidopsis have used several mutants: *flu*, deregulated in the accumulation of a photosensitizer, protochlorophyllide, in the dark (Meskauskiene et al., 2001); *ex1*, a suppressor of *flu* (Wagner et al., 2004), mentioned above; and *chlorina*, a chlorophyll b-less and thus LHCII-less mutant that overproduces 1O$_2^*$ under lower light intensity as compared to the wild-type (Ramel et al., 2013). The global gene expression response to 1O$_2^*$ in plants is distinct from that for H$_2$O$_2$ and O$_2^-$ and highly complex in Arabidopsis. An integral part of the response is the induction of lipoxigenases and synthesis of jasmonic acid, a phytohormone that governs part of the 1O$_2^*$ response (op den Camp et al., 2003; Przybyla et al., 2008). In *Chlamydomonas*, 1O$_2^*$-specific transcriptome changes have been described during 1O$_2^*$ acclimation, which revealed genes encoding transporters and enzymes involved in lipid metabolism (Wakao et al., 2014). The selective upregulation of genes with transporter functions during acclimation is consistent with the set of genes overexpressed in a mutant resistant to 1O$_2^*$, singlet oxygen resistant 1 (*sor1*, discussed further below) in the absence of the exogenous 1O$_2^*$-generating photosensitizer, Rose Bengal (Fischer et al., 2012). This may imply that in *Chlamydomonas*, pumping out photosensitizers such as Rose Bengal is indeed part of the genetically programmed response against 1O$_2^*$ unlike that of Arabidopsis. The gene expression response of *Chlamydomonas* also includes GPxs and genes annotated as cyclopropane fatty acid synthases (Wakao et al., 2014). Intriguingly, these genes are induced in response to 1O$_2^*$ in an anoxicogenic photosynthetic organism. The purple nonsulfur bacterium *Rhodobacter sphaeroides* shuts down photosynthesis in the presence of 1O$_2^*$, and its 1O$_2^*$-triggered transcriptional cascade is well described (Anthony et al., 2005; Ziegelhoffer and Donohue, 2009; Nam et al., 2013). Recently a furan fatty acid modification was found as an early event during the response of *R. sphaeroides* to 1O$_2^*$ (Lemke et al., 2014, 2020). We are currently investigating whether similar fatty acid modification occurs in *Chlamydomonas* when exposed to 1O$_2^*$.

Cross-talk between ROS and other reactive species

The ability of different RES, such as those containing α,β-ununsaturated carbonyl groups, to induce signaling or gene expression has been known in plant defense responses (Améras et al., 2003; Farmer and Mueller, 2013). A *Chlamydomonas* 1O$_2^*$-resistant mutant, *sor1*, constitutively overexpresses genes that are normally induced by several RES (Fischer et al., 2012). The mutation produces a dominant form of a bZIP transcription factor that activates RES-responsive genes and increases 1O$_2^*$ tolerance, highlighting the overlap between physiological responses to 1O$_2^*$ and to RES (Fischer et al., 2012). Intriguingly, a nontoxic low dose of the RES acrolein in wild-type *Chlamydomonas* cells increases resistance to subsequent 1O$_2^*$ generated by Rose Bengal (Roach et al., 2018; Figure 3). This cross-acclimation resembles the resistance to RB-produced 1O$_2^*$ that is elicited by a brief exposure to excess light (Ledford et al., 2007; Figure 3). Not surprisingly, genes that are upregulated by 1O$_2^*$ overlap with those induced by acrolein (Roach et al., 2018).

The free radical nitric oxide (NO) and its cellular derivatives, such as nitrosogluthathione (GSNO) and peroxy nitrite (ONOO$^-$), can interact with cysteine or tyrosine residues and are collectively referred to as reactive nitrogen species (RNS) (Astier et al., 2021). NO has been described in various stress responses in *Chlamydomonas* and in other algae (reviewed by Astier et al., 2021). Strong light intensities (3,000 μmol photons m$^{-2}$ s$^{-1}$ in Chang et al., 2013; 1,600 μmol photons m$^{-2}$ s$^{-1}$ in Kuo et al., 2020b) have been associated with a simultaneous burst of NO and ROS (H$_2$O$_2$ and 1O$_2^*$) that coincides with cell death (Chang et al., 2013; Kuo et al., 2020b). The burst of NO is accompanied by a decrease in PSII electron transfer similar to what was observed in an earlier study in peas using NO inhibitors and donors (Wodala et al., 2008). The role of NO under a more physiological excess light condition remains to be examined. Plants and algae lack the animal-type NO signaling via cGMP, leaving protein nitrosylation as a main known route for regulation by RNS (Astier et al., 2021). A proteomic study of protein nitrosylation by GSNO has identified 492 S-nitrosylated proteins, including many involved in photosynthesis and other cellular processes but most notably, all CB cycle enzymes were found as nitrosylation targets (Morisse et al., 2014).

Protein disulfide redox regulation

Redox regulation of protein function is usually focused on the reactivity of cysteine sulfhydryls, especially oxidation to form intramolecular, intermolecular, and mixed disulfides (e.g. glutathionylation), although other signals such as the redox state of the plastoquinone pool (Pfannschmidt et al., 1999) are also important in photosynthetic organisms. Here, we discuss protein disulfide redox regulation in *Chlamydomonas* that is linked to PSI via the ferredoxin/TRX system (Buchanan, 2016). A method using a TRX affinity column to trap potential target proteins via the formation of an intermolecular disulfide has been applied in many organisms, including *Chlamydomonas* (Lemaire et al., 2004). The list of *Chlamydomonas* proteins possibly targeted by TRX...
has expanded recently from 55 to ~1,000 by combining this approach with mass spectrometry (Lemaire et al., 2004; Pérez-Pérez et al., 2017). The Lemaire group has compiled their redox proteome data and found that all 11 enzymes of the CB cycle are subject to glutathionylation (Zaffagnini et al., 2012), nitrosylation (Morisse et al., 2014), and Trx interaction (Pérez-Pérez et al., 2017). For some of these CB enzymes, glutathionylation has been shown to reversibly decrease the target enzyme activity under oxidative stress. Moreover, some cysteine residues on CB enzymes are shared targets of glutathionylation and nitrosylation, such as those on phosphoglycerate kinase and phosphoribulokinase (Michelet et al., 2013b). The observation of multiple redox PTMs on the same protein suggests complex layers of signaling and possible synergism or antagonism. For example, Cys178 of *Chlamydomonas* isocitrate lyase is targeted and inactivated by nitrosylation (Morisse et al., 2014) and glutathionylation (Bedhomme et al., 2009). Alternatively, glutathionylation and other PTMs occurring on the same Cys could be antagonistic, such as sulfenylolation on DHAR2 (Waszczak et al., 2014) and nitrosylation on GAPC1 (Bedhomme et al., 2012) of Arabidopsis. However, outside of the CB cycle, the majority (~70%) of proteins identified are subject to only one PTM, and among cysteines identified as redox regulated, 75% are sites of only a single modification (Pérez-Pérez et al., 2017).

Many proteins with redox-active cysteines are also phosphorylated. An earlier study had identified 4588 phosphorylation targets from *Chlamydomonas*, including two proteins already known to be subject to TRX regulation, sedoheptulose-1,7-bisphosphatase1, and phosphoribulokinase1; Wang et al., 2014). McConnell et al. (2018) directly investigated combinatorial protein phosphorylation and redox modification at cysteine residues by first capturing proteins with oxidized cysteine and then surveying their phosphorylation. A total of 1,457 proteins exhibited one or more oxidized cysteines; 720 were also phosphoproteins, and 172 of these contained cysteines that are subject to reversible oxidation and reduction (McConnell et al., 2018). The CB proteins sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, CP12, and Rubisco activase were identified as proteins that are subject to regulation by both redox and phosphorylation, consistent with multiple layers of post-translational regulation of the CB cycle. These emerging large-scale data must be validated for each target, and further investigation is required to determine whether and how each PTM affects protein activity. An exciting direction in the field of PTM-focused proteomic studies will be to gain an integrative view, by examination of multiple PTMs under physiological conditions and identification of the target sites and their impact on protein function.

Calcium is another signal that is closely associated with ROS/redox signaling. In *Chlamydomonas*, the protein calredoxin was discovered to integrate two signals, Ca\(^{2+}\) and disulfide redox on a single chloroplast protein that contains two domains, Ca\(^{2+}\)-sensing (four EF-hands) and TRX (Hochmal et al., 2016). In vitro, the calredoxin protein reduces peroxiredoxin to drive H\(_2\)O\(_2\) detoxification, and a calredoxin mutant exhibits photooxidative stress (measured by elevated malondialdehyde and increased cyclic electron flow). Calredoxin putative orthologs are limited to green algae, and it is unknown why land plants lack orthologs and whether there are proteins that serve similar functions. The high-light induction of the major protein necessary for regulation of photosynthetic light harvesting by NPQ in *Chlamydomonas*, LHCSR3, requires the Ca\(^{2+}\)-sensing protein CaS (Petroutos et al., 2011), but this response does not seem to involve calredoxin as the mutant is only modestly reduced in LHCSR3 accumulation upon excess light (Hochmal et al., 2016).

The cellular redox buffer: ascorbate–GSH cycle

To keep ROS under control, oxygenic photosynthetic organisms have invented the unique partnership of the universal redox molecules GSH and ascorbate (Asc) to maintain cellular redox homeostasis (reviewed by Gest et al., 2013). GSH and Asc are able to donate electrons to various oxidized compounds, and the perfect alignment of their redox potentials allows electrons to flow from NADPH, to GSH, and then to Asc (Foyer and Noctor, 2011). Phylogenetic analysis of the distribution of Asc biosynthetic and metabolic enzymes suggests that photosynthetic organisms decoupled Asc biosynthesis from H\(_2\)O\(_2\) generation through evolution, which was crucial to Asc becoming a central player in photoprotection (Wheeler et al., 2015). On the other hand, this highly functional redox buffer comes with the constant need for regeneration (reduction) of Asc and GSH from their oxidized forms monodehydroascorbate (MDHA), dehydroascorbate (DHA), and glutathione disulfide (GSSG; Figure 1A; reviewed by Foyer and Noctor, 2011). No mutants in land plants or *Chlamydomonas* have been isolated that are devoid of either Asc or GSH, indicating that complete loss is lethal. It has been suggested that Asc was adapted as a highly versatile antioxidant and cofactor of various enzymes in plants as the concentration of oxygen increased in the atmosphere (Gest et al., 2013). Interestingly, the number of enzymes utilizing Asc and the cellular concentration of Asc increase alongside the evolution and divergence of cyanobacteria, green algae, and land plants. This has led to speculations that Asc may not have as critical or diverse roles in algae as compared to plants (Gest et al., 2013). However, a number of recent studies on the reducing enzymes of the Asc–GSH cycle and Asc biosynthesis have suggested that this is not the case, and this work has also revealed additional functions for Asc in *Chlamydomonas*.

Chlamydomonas strains that are silenced for one of the two GSH reductase (GR) genes, which are induced during excess light, have increased photosensitivity (Lin et al., 2018). Similarly, silencing of the enzymes DHAR and MDHA reductase (MDAR) that regenerate Asc from its oxidized forms, DHA and MDHA, respectively, results in enhanced photosensitivity (Lin et al., 2016). In a pattern fitting the term "redox
buffer”, the synthesis of both GSH and Asc increases when the redox balance shifts to a largely oxidized state after transfer to higher light intensity, and it recovers several hours after transfer (Lin et al., 2016; Vidal-Meireles et al., 2017). Depletion of total GSH or Asc is observed in the strains silenced for GR, DHAR, and MDAR, after the cell experiences excess light stress (Lin et al., 2016, 2018). The overexpression of DHAR and MDAR results in the converse, with improved PSII efficiency (Fv/Fm), decreased lipid oxidation, and less cell death under excess light, indicating that enhancing Asc regeneration increases tolerance to excess light (Lin et al., 2016). Not surprisingly, the disruption of Asc biosynthesis has an analogous effect to the loss of MDAR and DHAR. The Arabidopsis mutant vtc2, disrupted in the rate-determining step in ascorbate biosynthesis, contains 10%–30% of WT ascorbate and shows chronic photooxidative stress (Conklin et al., 2000; Müller-Moule et al., 2004). Ascorbate biosynthesis in plants and green algae including Chlamydomonas shares the same enzymes and intermediates, whereas the biosynthetic pathways in other algae such as Euglena, diatoms, and rhodophytes are distinct (Wheeler et al., 2015). This is reflected in the phenotypic similarities of the specific mutants found in Arabidopsis and Chlamydomonas and may suggest that the underlying regulatory mechanisms in the two organisms are shared as well. The silencing of the VTC2 gene in Chlamydomonas similarly results in photosensitivity that is at least in part attributed to the defect in expanding the Asc pool upon stress (Vidal-Meireles et al., 2017). Multiple subcellular forms of APX have been implicated as critical enzymes in the excess light response in Arabidopsis (Karpinski et al., 1997; Awad et al., 2015; Exposito-Rodriguez et al., 2017). In Chlamydomonas, the silencing of APX4, the most strongly induced isoform upon excess light among the three Chlamydomonas genes encoding chloroplast APXs, resulted in photosensitivity (Kuo et al., 2020a). Similar to strains silenced for Asc biosynthesis or reduction, apx4 silenced lines show a highly oxidized Asc pool under excess light. These studies collectively highlight the importance of Asc and the interconnected relationship between ascorbate biosynthesis, H2O2 detoxification-coupled Asc oxidation, and Asc regeneration. Perturbation of any part of the finely tuned cycle results in the oxidation and depletion of the Asc–GSH redox buffer and ultimately causes an irreversible oxidative burst in the cell (Figure 2, red zone).

During evolution, Asc has acquired photoprotective functions beyond serving as an antioxidant (Gest et al., 2013). In plants, ascorbate is the electron donor for violaxanthin deepoxidase (VDE; Hager, 1969; Muller-Moule et al., 2002), an enzyme required for the formation of zeaxanthin, the xanthophyll pigment involved in NPQ (reviewed by Demmig-Adams, 1990). However, the Chlamydomonas vtc2 mutant with strongly decreased Asc exhibits normal de-epoxidation of violaxanthin (Vidal-Meireles et al., 2020), in contrast to the situation in the vtc2 mutant of Arabidopsis (Müller-Moule et al., 2004). Chlamydomonas lacks a plant-type VDE and instead uses an unrelated enzyme called Chlorophycean VDE (CVDE) that is annotated as aflavin adenine dinucleotide (FAD)-dependent oxidoreductase (Li et al., 2016b), and thus it does not require Asc for de-epoxidation of violaxanthin to zeaxanthin in vivo (Vidal-Meireles et al., 2020). The Chlamydomonas vtc2 mutant displays a slowly relaxing NPQ that is enhanced by H2O2 and reversed by the addition of catalase (Vidal-Meireles et al., 2020). These results are consistent with those from Arabidopsis indicating that the cause of photosensitivity in the vtc2 mutant is elevated H2O2 and other ROS, rather than disruption of the xanthophyll cycle and NPQ (Müller-Moule et al., 2004; Vidal-Meireles et al., 2017, 2020). In contrast to Chlamydomonas, many other green algae contain a plant-type VDE (Coesel et al., 2008) that likely catalyzes the Asc-dependent formation of zeaxanthin as shown in Chlorella vulgaris (Girolomoni et al., 2020).

A gene encoding a VDE-related enzyme (VDR) is broadly conserved in algae and plants (Coesel et al., 2008; Karpowicz et al., 2011; Girolomoni et al., 2020), but its biochemical function has not been elucidated. Another related enzyme of this family, VDE-like (VDL), has been found to catalyze the Asc-independent formation of cis-neoxanthin, a precursor of the major marine algal carotenoid, fucoxanthin (Dautermann et al., 2020).

Recent studies have implicated Asc in an interesting Chlamydomonas-specific function in which it inactivates PSII. Ascorbate is capable of donating electrons to PSII when PSII is inactivated, for example during heat stress and prolonged darkness in plants (Tóth et al., 2009; Podmaniczki et al., 2021). In sulfur-deprived Chlamydomonas cells, Asc levels increase 50-fold, and in the millimolar range Asc interacts with and inactivates the Mn cluster in the oxygen-evolving complex of PSII (Nagy et al., 2016). The induction of Asc biosynthesis seems to involve ‘O2’, which is generated during sulfur deprivation (Nagy et al., 2018). The inactivation of PSII facilitates the establishment of anaerobiosis, and Asc continues to donate electrons to sustain H2 production, demonstrating a function of Asc in preventing the production of O2 and ROS at unusually high cellular concentrations of Asc (Nagy et al., 2016).

Asc was found to stimulate DNA methylation in mouse embryo through the activity of ten-eleven translocation (TET) dioxygenase that oxidizes 5-methyl cytosine to 5-hydroxymethylcytosine, which then promotes global demethylation (Blaschke et al., 2013). A mutant in a TET dioxygenase-like protein in Chlamydomonas revealed a DNA modification, 5-glyceryl methylcytosine that is produced using a glyceryl moiety directly from Asc (Xue et al., 2019). The mutant genome exhibits increased DNA methylation, including the LHCSR3 locus, coinciding with the attenuation of its excess light induction at the transcript and protein level (Xue et al., 2019). The glycerylation of 5mC is speculated to lead to other epigenetic modifications that may act antagonistically against further methylation and silencing of the respective locus. These findings present examples of additional functions for which Chlamydomonas utilizes Asc to regulate photoprotection.
Summary

The unicellular alga *Chlamydomonas* has served as a powerful experimental model for studying PTM and gene expression by proteomics and transcriptomics, respectively. Naturally these large-scale data present many interesting hypotheses that can be tested individually in the future. *Chlamydomonas* has been a powerful model organism for genetic studies of photosynthesis starting with the classical acetate-requiring mutants (Levine, 1960) to the more recently described, whole-genome sequenced Acetate- Requiring Collection (Wakao et al., 2021) and the large-scale Chlamydomonas Library Project (Li et al., 2016a, 2019). The time is ripe for testing and discovering gene functions with the wide availability of mutants and the CRISPR-Cas9 genome-editing technology that has been steadily improving in *Chlamydomonas*. The abundance of omics data also allows broader examination to identify overlapping pathways versus those that are unique to specific treatment or physiological condition (comparative proteomics or transcriptomics). An integrated understanding of the individual responses (e.g. from each modification on single proteins to the effect on an entire pathway consisting of multiple enzymes targeted by multiple modifications) within a physiological condition such as excess light would be an ultimate goal. *Chlamydomonas* continues to prove its strength as a photosynthesis research model, but it is also revealing unique aspects in its ¹⁸O₂* signaling and responses, molecular functions of Asc, and calredoxin. With more green algal genomes becoming available and the advancement of computational methods in identifying orthologous genes, what we now describe as *Chlamydomonas*-specific response may serve as the starting point for understanding of more widespread responses to ROS and redox in the green lineage (see Outstanding Questions Box).

Acknowledgments

We thank Tim Jeffers, Melissa Roth, and Dhruv Patel for their helpful comments on the manuscript. K.K.N. is an investigator of the Howard Hughes Medical Institute.

Funding

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under field work proposal 449B.

Conflict of Interest statement. Authors declare no conflict of interest.

References

Alric J, Johnson X (2017) Alternative electron transport pathways in photosynthesis: a confluence of regulation. Curr Opin Plant Biol 37: 78–86

Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53: 1331–1341

Améras E, Stolz S, Vollenweider S, Reymond P, Méne-Saffrâné L, Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34: 205–216

Anthony JR, Warczak KL, Donohue TJ (2005) A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci USA 102: 6502–6507

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399

Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50: 601–639

Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Françès V, Wendehenne D (2021) Nitric oxide production and signalling in algae. J Exp Bot 72: 781–792

Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-Cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167: 1592–1603

Barth J, Bergner SV, Jaeger D, Niehues A, Schulze S, Scholz M, Fufezan C (2014) The interplay of light and oxygen in the reactive oxygen stress response of *Chlamydomonas reinhardtii* dissected by quantitative mass spectrometry. Mol Cell Proteomics 13: 969–989

Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, Zaffagnini M, Trost P (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant *Arabidopsis thaliana* is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 445: 337–347

Bedhomme M, Zaffagnini M, Marchand CH, Gao XH, Moslonka-Lefebvre M, Michelet L, Decottignies P, Lemaire SD (2009) Regulation by glutathionylation of isocitrate lyase from *Chlamydomonas reinhardtii*. J Biol Chem 284: 36282–36291

Blaby IK, Blaby-Haas CE, Pérez-Pérez ME, Schmollinger S, Fitz-Gibbon S, Lemaire SD, Merchant SS (2015) Genome-wide analysis on *Chlamydomonas reinhardtii* reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. Plant J 84: 974–988

Blasschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Yao A, et al. (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500: 222–226

OUTSTANDING QUESTIONS

- What are the physiological conditions under which the protein redox-thiol modifications occur?
- How do co-occurring post-translational modifications affect each target protein? Do the multiple modifications affect function independently, or do they have a synergistic effect? And how does that impact the overall activity of the pathway?
- What are the regulatory players in ROS signaling and gene expression for both ROS-specific and overlapping responses?
- Are some of the recently discovered functions of ascorbate in *Chlamydomonas* shared in plants and/or other green algae?
Brzezowski P, Wilson KE, Gray GR (2012) The PSBP2 protein of *Chlamydomonas reinhardtii* is required for singlet oxygen-dependent signaling. Planta 236: 1289–1303

Buchanan B (1991) Regulation of CO₂ assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9

Buchanan B (2016) The path to thioredoxin and redox regulation in chloroplasts. Annu Rev Plant Biol 67: 1–24

Buchert F, Baileeb L, Hisabori T (2017) A γ-subunit point mutation in *Chlamydomonas reinhardtii* chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. Biochim Biophys Acta 1858: 966–974

Buchert F, Forreite F (2010) Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1Cfo. FEBS Lett 584: 147–152

Chang HL, Hsu YT, Kang CY, Lee TM (2013) Nitric oxide down-regulation of carotenoid synthesis and PSI activity in relation to very high light-induced singlet oxygen production and oxidative stress in *Chlamydomonas reinhardtii*. Plant Cell Physiol 54: 1296–1315

Chaux F, Burlacot A, Medkhlfi M, Auroy P, Blangy S, Richard P, Peltier G (2017) Flavodiron proteins promote fast and transient O₂ photoreduction in *Chlamydomonas*. Plant Physiol 174: 1825–1836

Coesel S, Obornik M, Varela J, Falcicatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One 3: e2896

Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847–856

Dautermann O, Lyska D, Andersen-Ranberg J, Becker M, Fröhlich-Nwoislyk J, Gartmann H, Krämer LC, Mayr K, Pieper D, Rij LM, et al. (2020) An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci Adv 6: eaaw9183

Dayer R, Fischer BB, Eggen RIL, Lemaire SD (2008) The peroxiredoxin and glutathione peroxidase families in *Chlamydomonas reinhardtii*. Genetics 179: 41–57

Delauanay A, Isnard AD, Toledano MB (2000) H₂O₂ sensing through oxidation of the Yap1 transcription factor. EMBO J 19: 5157–5166

Delauanay A, Pfleiger D, Barrault MB, Vngh J, Toledano MB (2002) A thiol peroxidase is an H₂O₂ receptor and redox-transducer in gene activation. Cell 111: 471–481

Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. BBA - Bioenerg Rev 1020: 1–24

Dietz KJ, Turkun I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171: 1541–1550

Dogra V, Li M, Singh S, Li M, Kim C (2019) Oxidative post-translational modification of EXECUTER1 is required for singlet oxygen sensing in plastids. Nat Commun. doi: 10.1038/s41467-019-07650-6

Exposito-Rodriguez M, Laisse PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H₂O₂ transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun. doi: 10.1038/s41467-017-0074-w

Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64: 429–450

Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL (2009) Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in *Chlamydomonas reinhardtii*. Plant Mol Biol 71: 569–583

Fischer BB, Krieger-Liszkay A, Hideg É, Šnyrychová I, Wiesendanger M, Eggen RIL (2007) Role of singlet oxygen in chloroplast to nucleus retrograde signaling in *Chlamydomonas reinhardtii*. FEBS Lett 581: 5555–5560

Fischer BB, Ledford HK, Wakaio S, Huang SG, Casero D, Pellegri M, Merchant SS, Koller A, Eggen RIL, Niyyogi KK (2012) SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in *Chlamydomonas reinhardtii*. Proc Natl Acad Sci USA 109: E1302–E1311

Flattery-O’Brien J, Collinson LP, Dawes IW (1993) *Saccharomyces cerevisiae* has an inducible response to menadione which differs from that to hydrogen peroxide. J Gen Microbiol 139: 501–507

Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60: 455–484

Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875

Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155: 2–18

Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64: 33–53

Girolomoni L, Bellamol F, de la Cruz Valbuena G, Perozzi F, D’Andrea C, Cerullo G, Cazzaniga S, Ballottari M (2020) Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga *Chlorella vulgaris* modulating photoprotection. New Phyto1: 136–150

Gruzszka J, Pawlak A, Kruck J (2008) Tocochromanolists, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers-determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med 45: 920–928

Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-\rightarrow Zeaxanthin-Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89: 224–243

Hatz S, Lambert JDC, Ogilby PR (2007) Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci 6: 1106–1116

Hochmal AK, Zinzius K, Charoenwattanasatien R, Gábelein P, Mutoh R, Tanaka H, Schulze S, Liu G, Scholz M, Nordhaues A, et al. (2016) Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast. Nat Commun. doi: 10.1038/ncomms11847

Imlay JA (2015) Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol 69: 93–108

Jamieson DJ, Stephen DWS, Terriere EC (1996) Analysis of the adaptive oxidative stress response of *Candida albicans*. FEMS Microbiol Lett 138: 83–88

Jokel M, Johnson X, Peltier G, Aro EM, Allahverdiyeva Y (2018) Hunting the main player enabling *Chlamydomonas reinhardtii* growth under fluctuating light. Plant J 94: 822–835

Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in *Arabidopsis* during excess light stress. Plant Cell 9: 627–640

Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS (2011) The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 286: 21427–21439

Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56: 337–346

Krieger-Liszkay A, Fufecz F, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98: 551–564

Krieger-Liszkay A, Trebst A (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSI reaction centre. J Exp Bot 57: 1677–1684

Kruk J, Trebst A (2008) Plastoquinol as a singlet oxygen scavenger in photosystem II. Biochim Biophys Acta - Bioenerg 1777: 154–162

Planta 65: 551–564

J Exp Bot 56: 337–346

J Exp Bot 75: 1677–1684
Kumar A, Prasad A, Sediárová M, Ksas B, Havaux M, Pospíšil P (2020) Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radic Biol Med. 160: 894–907

Kuo EYH, Cai MS, Lee TM (2020a) Ascorbate peroxidase 4 plays a role in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress. Sci Rep doi: 10.1038/s41598-020-70247-z [Published on August 6, 2020]

Kuo EYH, Chang HL, Lin ST, Lee TM (2020b) High light-induced nitric oxide production induces autophagy and cell death in Chlamydomonas reinhardtii. Front Plant Sci doi: 10.3389/fpls.2020.00772 [Published on June 10, 2020]

Ledford HK, Chin BL, Niyogi KK (2007) Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6: 819–930

Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104: 10270–10275

Leisinger U, Rufenacht K, Fischer B, Pesaro M, Spengler A, Lemaire SD, Guillont B, Le Marechal P, Keryer E, Miginiac-Lemke RAS, Peterson AC, Ziegelhoffer EC, Westphall MS, Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104: 10270–10275

Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Darvasi A, Wagner D, Hideg E, Gobel C, Feussner I, Muller-Moule P, Conklin PL, Niyogi KK (2000) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977

Muller-Moule P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134: 1163–1172

Nag V, Vidal-Meleire A, Podmaniczy A, Szentihályi K, Rákáth G, Zsigmond L, Kovács L, Tóth SZ (2018) The mechanism of photosystem-II inactivation during sulphur deprivation-induced H₂ production in Chlamydomonas reinhardtii. Plant J 94: 548–561

Nag V, Vidal-Meleire A, Tengölics R, Rákáth G, Garab G, Kovács L, Tóth SZ (2016) Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H₂ production of the green alga Chlamydomonas reinhardtii. Plant Cell Environ 39: 1460–1472

Nam TW, Ziegelhoffer EC, Lemke RA, Donohue TJ (2013) Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen. MBio 4: e00541–12

Nishiyauma Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43: 11321–11330

Nowicka B, Kruk J (2012) Plastoquinol is more active than α-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim Biophys Acta - Bioenerg 1817: 389–394

Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS (2012) Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Physiol 159: 2649–2665

Pérez-Pérez ME, Mauríes A, Maes A, Tousasse NJ, Hamon M, Lemaire SD, Marchand CH (2017) The deep thioredoxome of Chlamydomonas reinhardtii: new insights into redox regulation. Mol Plant 10: 1107–1125

Petroutos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weiln S, Holtkamp M, Karst U, Kudla J, Hippler M (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23: 2950–2963

Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

Mehler AH (1951) Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch Biochem Biophys 34: 339–351

Meskauskiene R, Nater M, Goslings D, Kessler F, Op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826–12831

Michelot L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A (2013a) Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii. Plant Cell Environ 36: 1204–1213

Müller-Moule P, Conklin PL, Niyogi KK (2000) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977

Muller-Moule P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134: 1163–1172

Nagy V, Vidal-Meleire A, Podmaniczy A, Szentihályi K, Rákáth G, Zsigmond L, Kovács L, Tóth SZ (2018) The mechanism of photosystem-II inactivation during sulphur deprivation-induced H₂ production in Chlamydomonas reinhardtii. Plant J 94: 548–561

Nag V, Vidal-Meleire A, Tengölics R, Rákáth G, Garab G, Kovács L, Tóth SZ (2016) Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H₂ production of the green alga Chlamydomonas reinhardtii. Plant Cell Environ 39: 1460–1472

Nam TW, Ziegelhoffer EC, Lemke RA, Donohue TJ (2013) Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen. MBio 4: e00541–12

Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43: 11321–11330

Nowicka B, Kruk J (2012) Plastoquinol is more active than α-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim Biophys Acta - Bioenerg 1817: 389–394

Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS (2012) Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Physiol 159: 2649–2665

Pérez-Pérez ME, Mauríes A, Maes A, Tousasse NJ, Hamon M, Lemaire SD, Marchand CH (2017) The deep thioredoxome of Chlamydomonas reinhardtii: new insights into redox regulation. Mol Plant 10: 1107–1125

Petroutos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weiln S, Holtkamp M, Karst U, Kudla J, Hippler M (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23: 2950–2963

Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

ROS and thiol redox regulation in Chlamydomonas
Podmaniczki A, Nagy V, Vidal-Meireles A, Tóth D, Patai R, Kovács L, Tóth SZ (2021) Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. Physiol Plant 171: 232–245

Przybyla D, Göbel C, Imboden A, Hamberg M, Feusser I, Apel K (2008) Enzymatic, but not non-enzymatic, \(\text{O}_2 \)-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the \(\text{fu} \) mutant of \textit{Arabidopsis thaliana}. Plant J 54: 236–248

Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M (2012a) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158: 1267–1278

Ramel F, Birtic S, Gines C, Soubigou-Taconatt L, Triantaphylides C, Havaux M (2012b) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109: 5553–5558

Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A (2013) Light-induced acclimation of the \textit{Arabidopsis chlorina}1 mutant to singlet oxygen. Plant Cell 25: 1445–1462

Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278: 38921–38925

Roach T, Baur T, Stöggw W, Krieger-Liszkay A (2017) \textit{Chlamydomonas reinhardtii} responding to high light: a role for 2-propenal (acrolein). Physiol Plant 161: 75–87

Roach T, Stöggw W, Baur T, Cranmer I (2018) Distress and eustress of reactive electrophiles and relevance to light stress acclimation via stimulation of thiol/disulphide-based redox defences. Free Radic Biol Med 122: 65–73

Saroussi S, Karns DJ, Thomas DC, Blöszies C, Fiehn O, Posewitz M, Grossman AR (2019) Alternative outlets for sustaining photosynthetic electron transport during dark-to-light transitions. Proc Natl Acad Sci USA 166: 11518–11527

Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A (2008) Photosynthetic electron flow affects \(\text{H}_2\text{O}_2 \) signaling by inactivation of catalase in \textit{Chlamydomonas reinhardtii}. Planta 228: 1055–1066

Shao N, Duan GY, Bock R (2013) A mediator of singlet oxygen responses in \textit{Chlamydomonas reinhardtii} and \textit{Arabidopsis} identified by a luciferase-based genetic screen in algal cells. Plant Cell 25: 4209–4226

Shao N, Krieger-Liszkay A, Schroda M, Beck CF (2007) A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo. Plant J 50: 475–487

Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221: 1197–1214

Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative-stress-inducible genes: direct activation by oxidation. Science 248: 189–194

Szymańska R, Nowicka B, Kruk J (2014) Hydroxy-plastochronol and plastoquinone-C as singlet oxygen products during photo-oxidative stress in \textit{Arabidopsis}. Plant Cell Environ 37: 1464–1473

Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149: 1568–1578

Triantaphylides C, Krishcke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148: 960–968

Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG (2012) Impact of oxidative stress on ascorbate biosynthesis in \textit{Chlamydomonas} via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. J Biol Chem 287: 14234–14245

Vass I, Aro E-M (2007) Photoinhibition of Photosynthetic Electron Transport. In G Renger, ed, \textit{Prim Process Photosynth Part 1 Princ Appar. Royal Society of Chemistry}, Cambridge, UK, pp 393–425

Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ (2017) Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-L-galactose phosphorylase. New Phytol 214: 668–681

Wagner D, Przybyla D, Op Den Camp R, Kim C, Landgraf F, Keun PL, Würsch M, Laloi C, Nater M, Hideg E, et al. (2004) The genetic basis of singlet oxygen-induced stress response of \textit{Arabidopsis thaliana}. Science 306: 1183–1185

Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK (2014) Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in \textit{Chlamydomonas reinhardtii}. eLife doi: 10.7554/eLife.02286 [Published on May 23, 2014]

Wakao S, Shih PM, Guan K, Schackowtiz W, Ye J, Patel D, Shi RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei C, et al. (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of \textit{Chlamydomonas reinhardtii}. PLoS Genetics (in press)

Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM (2014) The global phosphoproteome of \textit{Chlamydomonas reinhardtii} reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 13: 2337–2353

Wang L, Leister D, Guan L, Zheng Y, Schneider K, Lehmann M, Apel K, Kleine T (2020) The \textit{Arabidopsis} SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci USA 117: 6918–6927

Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Mollie I, De Smet B, Vertommen D, Gevaert K, et al. (2014) Sulfenylmining in \textit{Arabidopsis thaliana}. Proc Natl Acad Sci USA 111: 11545–11550

Wheeler G, Ishikawa T, Pornaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife doi: 10.7554/eLife.06369 [Published on March 13, 2015]

Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146: 1920–1927

Xue JH, Chen GD, Hao F, Chen H, Fang Z, Chen FF, Pang B, Yang QL, Wei X, Fan QQ, et al. (2019) A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature 569: 581–585

Yamamoto H, Takahashi S, Badger M, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiron proteins in \textit{Arabidopsis}. Nat Plants 2: 16012

Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, Cassier-Chauvat C, Decottignies P, Lemaire SD (2012) Glutathionylation in the photosynthetic model organism \textit{Chlamydomonas reinhardtii}: a proteomic survey. Mol Cell Proteomics 11: M111.014142

Zheng M, Åslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718–1721

Ziegelhoffer EC, Donohue TJ (2009) Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7: 856–863