Proposal of a new and simple staging system of colorectal liver metastasis

Ikuo Nagashima, Tadahiro Takada, Hirokazu Nagawa, Tetsuichiro Muto, Kota Okinaga

AIM: To create a new, simple and useful staging system for colorectal liver metastasis analogous to the Tumor Node Metastasis classification system of International Union Against Cancer.

METHODS: A retrospective review was undertaken of 81 consecutive patients who underwent partial hepatectomy for colorectal liver metastases (group 1). Clinical and pathological features of both primary and metastatic liver cancers were entered into a multivariate analysis to determine independent variables helpful in accurately predicting long-term prognosis after hepatectomy. Using selected variables, we created a new staging system like TNM classification. The usefulness of the new staging system was examined in a series of 92 patients from another hospital (group 2).

RESULTS: Multivariate analysis showed that 81 patients in group 1 had significant multiple hepatic tumors with the largest tumor being more than 5 cm in diameter, resectable extrahepatic distant metastases, and independent prognostic factors for poor survival after hepatectomy. Using these three variables, we created a new staging system to classify patients with colorectal liver metastases. Finally, our new staging system classified the patients both in group 1 and in group 2.

CONCLUSION: Our new staging system of colorectal liver metastasis is simple and useful for staging patients.

INTRODUCTION

It is well accepted that hepatic resection of colorectal liver metastases is a beneficial clinical procedure in that it reportedly improves 5-year survival rates of affected patients by as high as 30%-50% following curative hepatic resection[1-14]. Although this procedure is performed worldwide by a number of liver surgeons, it is often hazardous to compare results from different studies due to the fact that there is no universally accepted classification system for staging colorectal hepatic metastatic diseases. Several recent papers have offered classification systems based on a variety of variables of colorectal liver metastasis[1,4], including the number of metastatic nodules[1,4,4-6], the size of metastases[6,6], the sites of unilateral or bilobar involvement[6,6], the extent of liver involvement (≤ 25%, and ≤ 50%)[1,3], the chronology of synchronous or metachronous disease[1,5,4], the invasion to major vessels or bile ducts[6], the presence of extrahepatic metastasis[3-4], the performance status and serum alkaline phosphatase[8].

However, it is uncertain whether these classification systems are accepted and adopted outside the confines of proposing institutions. In the present study, we aimed to create a new, simple and useful classification system for colorectal liver metastases analogous to the Tumor Node Metastasis (TNM) classification system of International Union Against Cancer (UICC).

MATERIALS AND METHODS

Patients

Group 1: Between January 1, 1981 and March 31, 1997, 83 consecutive patients underwent partial hepatectomy for colorectal liver metastases at the First Department of Surgery (presently the Department of Surgical Oncology), Tokyo University Hospital. During the post-operative period, two patients died in the hospital. One died of secondary aspiration pneumonia and the other died of severe intra-abdominal sepsis (mortality rate: 3.1%). The remaining 81 patients were followed up either until death or their last outpatient visit up to December 31, 2002. The follow-up period ranged from 4 to 197 mo with a median of 53.0 mo. The demographic characteristics and tumor-
related features, which were statistically analyzed later, are summarized in Table 1.

Group 2: Between January 1, 1989 and December 31, 2003, 95 consecutive patients underwent partial hepatectomy for colorectal liver metastases at the Second Department of Surgery, Teikyo University Hospital. During the post-operative period, three patients died in the hospital. Two died of hepatic failure due to massive hepatectomy and the other died of severe intra-abdominal sepsis (mortality rate: 3.2%). The remaining 92 patients were followed up either until death or their last outpatient visit up to December 31, 2004. The follow-up period ranged from 4 to 110 mo with a median of 39.0 mo.

Every hepatectomy was considered curative since surgeons were confident of the complete macroscopic resection of hepatic tumors at the time of surgery. Hepatectomy was performed even in the presence of extrahepatic metastases if surgeons were reasonably assured of the complete macroscopic resection of extrahepatic metastases as well. After discharge from the hospital, the patients were closely monitored either at the outpatient clinic or at the affiliated institutions. Measurement of serum carcinoembryonic antigen (CEA) levels and ultrasonography were performed during post-operative visits at least once every two months in an effort to detect early recurrence. In addition, computed tomography was performed approximately twice a year. Almost all cases of cancer recurrence were diagnosed by these investigative tests. If the diagnosis was unclear, angiography and/or needle biopsy was performed, under ultrasonic guidance in an effort to confirm or rule out recurrence of the disease.

Prognostic factors

Eleven factors that were expected to influence the long-term prognosis were evaluated for statistical significance. These factors could only be determined preoperatively or during surgery (therapeutic factors were excluded and not considered). Factors that were considered included gender, age at hepatectomy (< 60 or ≥ 60 years), chronicity of synchronous or metachronous hepatic metastases, and post-operative disease-free interval ≤ 1 year, the number of solitary or multiple metastatic nodule hepatic metastases, the maximum diameter of hepatic metastases (≤ 5 cm), unilobar or bilobar hepatic involvement, resectable extrahepatic metastasis (pulmonary metastases, localized peritoneal metastases, or hepatoduodenal lymph node metastases, each was completely resected), serum CEA levels at hepatectomy (less or higher than 10 times the upper level of normal), serosal exposure to the primary colorectal tumor, and regional lymph node metastases of the primary colorectal tumor.

Statistical analysis

Survival rates after hepatectomy were calculated using data obtained from patients by the Kaplan-Meier method. Only deaths attributable to recurrent cancer were treated as deaths due to disease. Patients who died of secondary or other causes without recurrence were treated as censored.

Prognostic variables concerned with cancer-related survival rate were entered into multivariate analysis. The Cox stepwise analysis proportional hazard regression model was used to select independent and significant prognostic variables. Stepwise variable selection was performed at a value of P < 0.20 level of significance. P < 0.05 was considered statistically significant.

RESULTS

Group 1

Significant prognostic factors: The overall 1-, 2-, 3-, and 5-year cancer-related survival rates after surgical resection in the 81 patients were 89.6%, 67.7%, 56.0%, 54.2%, and 49.6%, respectively (Figure 1A). The results of the multivariate analysis of the variables expected to influence cancer-related survival rate after surgical resection are provided in Table 1. Only variables selected by the stepwise analysis at a value of P < 0.20 level of significance, using the Cox proportional hazard regression model, are also shown in Table 2. Multiple tumors, tumor over 5 cm in diameter, and resectable extrahepatic metastases were significant and independent variables influenced cancer-related survival rate (P < 0.05). On the other hand, serosal exposure and regional lymph node metastases of the primary colorectal tumor, and recurrent hepatic metastases within one year after resection of the primary colorectal cancer including synchronous hepatic metastases, were the factors selected by stepwise analysis as the possible indication of poor prognosis, but they were not statistically significant (P > 0.05 or P < 0.20).

Classification of patients and survival: In devising our classification system, we considered three variables selected by the multivariate analysis, including the number and size of hepatic metastases (H-factor), and the presence of extrahepatic metastases (M-factor), which were resected completely. Results were shown as follows: H1: single metastasis with diameter ≤ 5 cm; H2: single metastasis with diameter > 5 cm or multiple metastases with diameter ≤ 5 cm; H3: multiple metastases with diameter > 5 cm; M0: extrahepatic metastasis (−); M1: extrahepatic metastasis (+, resectable). Staging system (A): stage I: H1 and M0; stage II: H2 and M0; stage III: H3 and M0; stage IV: H1-3 and M1; staging system (B): stage I: H1&M0; stage II: H1 and M1 or H2 and M0; stage III: H2 and M1 or H3 and M0; stage IV: H3 and M1.

Table 1 Prognostic factors entered into multivariate analysis based on proposed clinical and histopathological features

Variable	Patients (n)
Gender (male/female)	61/20
Age at hepatectomy (< 60/≥ 60)	32/49
Chronology of hepatic metastasis (synchronous/metachronous)	41/40
Disease free interval after colectomy (< 1 yr/≥ 1 yr)	56/25
Extrahepatic distant metastases (no/yes)	72/9
CEA (< 10 times of normal value/≥ 10 times of normal value)	57/24
Primary lesion	
Depth of invasion (up to subserosa/more)	57/24
Lymphnodemetastasis (no/yes)	39/42
Hepatic metastasis	
Number (single/multiple)	45/36
Maximum diameter (≤ 5 cm/ > 5 cm)	59/22
Lobe involved (unilobar/bilobar)	64/17
The survival curves of patients in group 1 based on the staging system (A) are shown in Figure 1B. They were statistically significant (P = 0.0057). However, the survival curve of patients with stage IV cancer seemed to be better than that of those with stage III cancer. The 5-year survival rates of patients with cancer in stage I (n = 26), stage II (n = 38), stage III (n = 8), and stage IV (n = 9) were 74.8%, 49.2%, 15.6%, and 25.0%, respectively. Their median survival time was 52, 18, and 10 mo, respectively, with that unsettled in stage I patients.

Staging system (B): The survival curves of patients in group 1 based on the staging system (B) are shown in Figure 2B. They were statistically significant (P = 0.0003). The 5-year survival rates of patients with cancer in stage I (n = 26), stage II (n = 43), and stage III (n = 12) were 74.8%, 49.8%, and 9.5%, respectively. Their median survival time was 52, 52, and 18 mo, respectively. By coincidence, there were no patients with stage IV disease in this group.

Group 2

The overall 1-, 2-, 3-, 4-, and 5-year cancer-related survival rates after surgical resection in the 92 patients were 82.2%, 65.2%, 51.6%, 42.5%, and 40.0%, respectively (Figure 2A). The survival curve of patients with stage IV cancer seemed to be better than that of those with stage III cancer. The 5-year survival rates of patients with cancer in stage I (n = 24), stage II (n = 44), stage III (n = 8), and stage IV (n = 15) were 75.0%, 44.5%, 0%, and 0%, respectively. Their median survival time was 46, 13.5, and 20 mo, respectively, with that unsettled in stage I patients.

Staging system (B): The survival curves of 92 patients in group 2 based on the staging system (B) are shown in Figure 2C, and findings were statistically significant (P < 0.0001). The survival curve of patients with stage IV cancer seemed to be better than that of those with stage III cancer. The 5-year survival rates of patients with cancer in stage I (n = 24), stage II (n = 48), stage III (n = 16), and stage IV (n = 3) were 75.0%, 43.0%, 0%, and 0%, respectively. Their median survival time was 41, 12, and 10 mo, respectively, with that unsettled in stage I patients.

DISCUSSION

At present, there is no universally accepted classification system for patients with colorectal liver metastasis. Our first step in this investigation was to determine the important clinical and pathological variables that significantly influence prognosis following surgical resection of colorectal liver metastases. Many studies have identified factors which are thought to represent important prognostic determinants, including age at hepatectomy[6,7], sex[23], stage of the primary tumor[24,5,7,11,15-20,22,23,28,29], extrahepatic metastases[22-28], and adjuvant chemotherapy[12,32,33]. Therapeutic factors, such as adjuvant chemotherapy[12,32,33]...

Table 2 Regression statistics for the stepwise cox proportional hazard model

Variable	Parameter	P	Hazard Ratio (95% CI)
Diameter > 5 cm	1.36675	0.0113	3.883 (1.703-8.852)
Extrahep. Met (+)	1.19463	0.0331	3.301 (1.282-8.502)
Number ≥ 2	0.85412	0.0265	2.349 (1.105-4.997)
D.F.Interval < 1 yr	0.67938	0.1602	1.971 (0.765-5.080)
n (+) of primary	0.66934	0.1352	1.312 (0.829-2.007)
≥ se (+) of primary	0.54977	0.1676	1.791 (0.794-3.774)

1Only those variables selected by the stepwise analysis, at the P-value of 0.20 level of significance, are shown. n = 81 (Tokyo Univ. 1981-1997). Age ≥ 60, gender, synchronous, bilobar invasion, CEA, P > 0.2.

Figure 1 Kaplan-Meier cancer-related survival curve after hepatic resection for patients with colorectal liver metastases in group 1. A: Staging system (A) (log-rank test, P = 0.0057); B: staging system (B); C: stage I through stage III (log-rank test, P = 0.0003).
The long-term outcome after hepatectomy. We hope that it can promote a prospective study on the efficacy of some other therapies such as adjuvant chemotherapy. Although the present study population sample is small, our staging system is simpler and more useful than any other previous classification systems. Further investigation utilizing a larger patient population is necessary.

REFERENCES

1. Gennari L, Doci R, Bozzetti F, Veronesi U. Proposal for a clinical classification of liver metastases. Tumori 1982; 68: 443-449
2. Fortner JG, Silva JS, Golbey RB, Cox EB, Maclean BJ. Multivariate analysis of a personal series of 247 consecutive patients with liver metastases from colorectal cancer. I.
Treatment by hepatic resection. Ann Surg 1984; 199: 306-316

3 Petrelli NJ, Bonnheim DC, Herrera LO, Mittelman A. A proposed classification system for liver metastasis from colorectal carcinoma. Dis Colon Rectum 1984; 27: 249-252

4 Gayowski TJ, Iwatsuki S, Madariaga JR, Selby R, Todo S, Irish W, Starzl TE. Experience in hepatic resection for metastatic colorectal cancer: analysis of clinical and pathologic risk factors. Surgery 1994; 116: 703-710; discussion 710-711

5 Ueno H, Mochizuki H, Hatsuse K, Hase K, Yamamoto T. Indicators for treatment strategies of colorectal liver metastases. Ann Surg 2000; 231: 59-66

6 Nordlinger B, Guiuet M, Vaillant JC, Balladur P, Boudjema K, Bachellier P, Jacek D. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Française de Chirurgie. Cancer 1996; 77: 1254-1262

7 Sugawara Y, Yamamoto J, Yamasaki S, Shimada K, Kosuge T, Makuuchi M, Torzilli G, Takayama T, Hölscher AH, Thorban S, Bollschweiler E, Minagawa M, Suzuki S, Konno H. Resection of hepatic metastases from colorectal carcinoma. Hepatogastroenterology 1991; 27: 743-746

8 Minagawa M, Makuuchi M, Torzilli G, Takayama T, Kawasaki S, Kosuge T, Yamamoto J, Imamura H. Extension of the frontiers of surgical indications in the treatment of liver metastases from colorectal cancer: long-term results. Ann Surg 2000; 231: 487-499

9 Nagashima I, Oka T, Hamada C, Naruse K, Osada T, Muto T. Histopathological prognostic factors influencing long-term prognosis after surgical resection for hepatic metastases from colorectal cancer. Ann J Gastroenterol 1999; 94: 739-743

10 Nakamura S, Suzuki S, Konno H. Resection of hepatic metastases of colorectal cancer: 20 years' experience. J Hepatobiliary Pancreat Surg 1999; 6: 16-22

11 Gady B, Jenkins RL, Steele GD Jr, Lewis WD, Stone MD, McDermott WV, Jessup JM, Bothe A, Lalor P, Lovett EJ, Lavin PT, Linehan DC. Surgical margin in hepatic resection for colorectal metastasis: a critical and improvable determinant of outcome. Ann Surg 1998; 227: 566-571

12 Kokudo N, Seki M, Ohta H, Azezura K, Ueno M, Sato T, Moroguchi A, Matsubara T, Tahashhi T, Nakajima T, Aiba K. Effects of systemic and regional chemotherapy after hepatic resection for colorectal metastases. Ann Surg Oncol 1998; 5: 706-712

13 Shirabe K, Takenaka K, Gion T, Fujiwara Y, Shimada M, Yanaga K, Maeda T, Kajiya K, Sugimachi K. Analysis of prognostic risk factors in hepatic resection for metastatic colorectal carcinoma with special reference to the surgical margin. Br J Surg 1997; 84: 1077-1080

14 Beckurts KT, Hilscher AH, Thorban S, Bollschweiler E, Siewert JR. Significance of lymph node involvement at the hepatic hilum in the resection of colorectal liver metastases. Br J Surg 1997; 84: 1081-1084

15 Scheele J, Stang R, Altendorf-Hofmann A, Paul M. Resection of colorectal liver metastases. World J Surg 1995; 19: 59-71

16 Sugihara K, Hojo K, Moriya Y, Yamasaki S, Kosuge T, Takayama T. Pattern of recurrence after hepatic resection for colorectal metastases. Br J Surg 1993; 80: 1032-1035

17 Yamaguchi A, Kurosaka Y, Kanno M, Yonemura Y, Izumi R, Miwa K, Miyazaki I. Analysis of hepatic recurrence of colorectal cancer after resection of liver metastases. Int Surg 1993; 78: 16-19

18 Ballantyne GH, Quin J. Surgical treatment of liver metastases in patients with colorectal cancer. Cancer 1993; 71: 4252-4266

19 Nakamura S, Yokoi Y, Suzuki S, Baba S, Muro H. Results of extensive surgery for liver metastases in colorectal carcinoma. Br J Surg 1992; 79: 35-38

20 Doci R, Gennari L, Bignami P, Montalto F, Morabito A, Bozzetti F. One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants. Br J Surg 1991; 78: 797-801

21 Lise M, Da Pian PP, Nitti D, Pilati PL. Colorectal metastases to the liver: present results and future strategies. J Surg Oncol Suppl 1991; 2: 69-73

22 Hughes KS, Simon R, Songhorabodi S, Adson MA, Istrup DM, Fortner JG, Maclean BJ, Foster JH, Daly JM, Fitzherbert D. Resection of the liver for colorectal carcinoma metastases: a multi-institutional study of patterns of recurrence. Surgery 1986; 100: 278-284

23 Steele GJ Jr, Ravikumar TS. Resection of hepatic metastases from colorectal cancer. Biologic perspective. Ann Surg 1989; 210: 127-138

24 Cady B, Stone MD, McDermott WV Jr, Jenkins RL, Bothe A Jr, Lavin PT, Lovett EJ, Steele GD Jr. Technical and biological factors in disease-free survival after hepatic resection for colorectal cancer metastases. Arch Surg 1992; 127: 561-568; discussion 568-569

25 Younes RN, Rogatko A, Brennan MF. The influence of intraoperative hypotension and perioperative blood transfusion on disease-free survival in patients with complete resection of colorectal liver metastases. Ann Surg 1991; 214: 107-113

26 Pedersen IK, Burchart F, Roikjaer O, Baden H. Resection of liver metastases from colorectal cancer. Indications and results. Dis Colon Rectum 1994; 37: 1078-1082

27 Seifert JK, Böttger TC, Weigel TF, Gönner U, Junginger C. Factors influencing liver resection for metastatic colorectal cancer. Hepatogastroenterology 2000; 47: 239-246

28 Gruenberger T, Jourdan JL, Zhao J, King J, Morris DL. Echogenicity of liver metastases is an independent prognostic factor after potentially curative treatment. Arch Surg 2000; 135: 1285-1290

29 Yamada H, Kato H, Kondo S, Okushiba S, Morikawa T, Yamada H. Mesenteric lymph nodes status influencing survival and recurrence pattern after hepatectomy for colorectal liver metastases. Hepatogastroenterology 2002; 49: 1265-1268

30 Tanaka K, Shimada H, Fujii Y, Endo I, Sekido H, Togo S, Ike H. Pre-hepatectomy prognostic staging to determine treatment strategy for colorectal cancer metastases to the liver. Langenbecks Arch 2004; 389: 371-379

31 Sasaki A, Iwashita Y, Shiibata K, Matsumoto T, Ohta M, Kitano S. Analysis of preoperative prognostic factors for long-term survival after hepatic resection of liver metastases from colorectal cancer. J Gastrointest Surg 2005; 9: 374-380

32 Curley SA, Roh MS, Chase JL, Hohn DC. Adjuvant hepatic arterial infusion chemotherapy after curative resection of colorectal liver metastases. Ann J Surg 1993; 166: 743-746; discussion 746-748

33 Fielding LP, Hittinger R, Grace RH, Fry JS. Randomised controlled trial of adjuvant chemotherapy by portal-vein perfusion after curative resection for colorectal adenocarcinoma. Lancet 1992; 340: 502-506

S-Editor Pan BR L-Editor Wang XL E-Editor Bi L