Investigation of Band Alignment for Hybrid 2D-MoS$_2$/3D-β-Ga$_2$O$_3$ Heterojunctions with Nitridation

Ya-Wei Huan1, Ke Xu2, Wen-Jun Liu1*, Hao Zhang2, Dmitriy Anatolyevich Golosov3, Chang-Tai Xia4, Hong-Yu Yu5, Xiao-Han Wu1, Qing-Qing Sun1 and Shi-Jin Ding1

Abstract

Hybrid heterojunctions based on two-dimensional (2D) and conventional three-dimensional (3D) materials provide a promising way toward nanoelectronic devices with engineered features. In this work, we investigated the band alignment of a mixed-dimensional heterojunction composed of transferred MoS$_2$ on β-Ga$_2$O$_3$(2−01) with and without nitridation. The conduction and valence band offsets for unnitrided 2D-MoS$_2$/3D-β-Ga$_2$O$_3$ heterojunction were determined to be respectively 0.43 ± 0.1 and 2.87 ± 0.1 eV. For the nitrided heterojunction, the conduction and valence band offsets were deduced to 0.68 ± 0.1 and 2.62 ± 0.1 eV, respectively. The modified band alignment could result from the dipole formed by charge transfer across the heterojunction interface. The effect of nitridation on the band alignments between group III oxides and transition metal dichalcogenides will supply feasible technical routes for designing their heterojunction-based electronic and optoelectronic devices.

Keywords: Nitridation treatment, Band alignment, Few-layer MoS$_2$, β-Ga$_2$O$_3$

Background

Beta-gallium oxide (β-Ga$_2$O$_3$) has attracted considerable interests due to its superior material properties [1, 2]. With ultra-wide bandgap (4.6–4.9 eV), the theoretical breakdown electric field (E_C) is estimated to be around 8 MV/cm [3, 4]. Combined with its high relative dielectric constant (ε) and electron mobility (μ), the Baliga’s figure of merit ($\varepsilon\mu E_C^2$) is triple that of GaN or SiC, reducing the conduction loss significantly [1]. In addition, the availability of large bulk single crystals synthesized via melt-growth and epitaxial techniques delivers significant advantages for industrial applications [5, 6]. By far, β-Ga$_2$O$_3$ has been well demonstrated in a wide range of electronic applications, including light-emitting diodes, gas sensors, photodetectors, as well as field-effect transistors [7–10]. Very recently, hybrid heterojunctions, i.e., the integration of two-dimensional (2D) materials with three-dimensional (3D) materials, are of particular interest due to the complementary properties of their material systems [11].

To date, diverse 2D layered materials have been stacked on wide bandgap semiconductors to construct hybrid heterojunctions for novel applications with varying functionalities, such as MoS$_2$/GaN, WSe$_2$/GaN, MoS$_2$/SiC, and so on [12–15]. Structurally, the MoS$_2$ crystal is composed of a Mo atomic layer sandwiched between two sulfur layers, forming a two-dimensional hexagonal trilayer which is bonded to its neighboring layers by weak van der Waals forces [16, 17]. Unlike graphene with a zero bandgap, the thickness-dependent modulation of bandgaps motivated the exploration of MoS$_2$ in optical and electrical devices [18, 19]. Based on the physics of MoS$_2$, the density of states of few-layer MoS$_2$ is three orders of magnitude higher than that of single-layer (SL) MoS$_2$, leading to high drive currents in the ballistic limit. In this context, few-layer MoS$_2$ may deliver significant advantages for transistor applications than SL MoS$_2$ [18]. Thus, the integration of MoS$_2$ with β-Ga$_2$O$_3$ is of great interest for combining respective merits of both the established 2D and 3D materials. And the optical and electrical properties for hybrid heterojunctions are...
inherently dominated by the interfacial energy band alignment. Consequently, it is quite desirable to have tunable band alignments for improving the performance of heterojunction based devices. In this work, we investigated the band alignment of 2D-MoS$_2$/3D-β-Ga$_2$O$_3$ heterojunctions with and without nitridation treatment via X-ray photoelectron spectroscopy (XPS) characterizations and first principles calculations.

Methods

The SiO$_2$/Si substrate was ultrasonicated with acetone and visopropanol for each 10 min, respectively, followed by rinsing in deionized water and drying with N$_2$. Few-layer MoS$_2$ films were grown on the SiO$_2$/Si substrate by chemical vapor deposition (CVD) using precursors of MoO$_3$ (0.08 mg, 99%, Alfa Aesar) and S powder (1 g, 99%) [20, 21]. The MoO$_3$ and S powder were placed into two separate crucibles with a SiO$_2$/Si substrate in the quartz tube, as shown in Fig. 1a. During the growth process, the quartz tube was held at 800 °C for MoS$_2$ film growth within 5 min. Figure 1b displays the optical microscopic image of uniform MoS$_2$ film on SiO$_2$/Si substrate. After the growth of MoS$_2$ film, it would be transferred to β-Ga$_2$O$_3$ (Tamura Corporation, Japan) substrate via PMMA-assisted method, [22] as sketched in Fig. 1c. During the transfer process, PMMA was first spin-coated on as-grown MoS$_2$ film as a supporting layer, and then the samples were immersed in KOH solution for etching away the SiO$_2$ layer. Subsequently, the PMMA layer with MoS$_2$ film would float on the solution, after which the sample would be rinsed in deionized water for 1 min to remove the residual K$^+$ and Na$^+$.
further transferred onto β-Ga_2O_3 substrate. Lastly, the top PMMA layer would be removed away with acetone. For the nitrided MoS_2/β-Ga_2O_3 heterojunction, the nitridation has been implemented on the β-Ga_2O_3 surface with 50s N_2 plasma treatment at a pressure of 3 Pa prior to the MoS_2 transfer. The RF power and N_2 flow rate were 100 W and 80 sccm, respectively. As a result, four samples were prepared for XPS measurements: (1) uncoated β-Ga_2O_3 substrate (bulk β-Ga_2O_3), (2) few-layer MoS_2 film on SiO_2/Si substrate (few-layer MoS_2), (3) transferred MoS_2 film on β-Ga_2O_3 substrate, (4) transferred MoS_2 film on nitrided β-Ga_2O_3 substrate.

Results and Discussions

Raman spectroscopy was employed to investigate the quality of few-layer MoS_2 film as well as to check relevant layer numbers. The Raman spectra of MoS_2 film before and after transfer are presented in Fig. 2, which was characterized by RENISHAW inVia Raman spectroscopy. Two characteristic Raman modes could be observed around 381.91 cm\(^{-1}\) and 405.84 cm\(^{-1}\), corresponding to the in-plane (\(E_{1g}^{2}\)) mode and out-of-plane (\(A_{1g}\)) mode, respectively [23, 24]. Compared with as-grown MoS_2 film, there is almost no Raman shift in \(E_{1g}^{2}\) and \(A_{1g}\) modes after transfer process, indicative of undamaged MoS_2 after transfer process. The peak at 412.99 cm\(^{-1}\) after transfer process stems from the β-Ga_2O_3 substrate, in consistent with previous reports [25]. The frequency difference between \(E_{1g}^{2}\) and \(A_{1g}\) mode was deduced to be about 23.93 cm\(^{-1}\), designating four layers of few-layer MoS_2 film [26]. Further, as shown in the inset of Fig. 2, the thickness of MoS_2 film was verified to be 3 nm approximately (around four layers) by high-resolution transmission electron microscope (HRTEM), which is in good agreement with our Raman spectra. It can be seen from Fig. 3a that a high intensity peak of N 1s was detected from the nitride β-Ga_2O_3 substrate, suggesting the presence of nitrogen. Figure 3b shows the SIMS profiles of MoS_2/β-Ga_2O_3 heterojunction with nitridation, where the signals of main components represented by Mo, N, and Ga are plotted against depth. It is observed that the N peak is located at the MoS_2/β-Ga_2O_3 interface, and the N spreading into β-Ga_2O_3 substrate could be contributed by the N injection into the underlying layer during plasma treatment or primary beam bombardments. The higher Ga profile in the MoS_2 layer than β-Ga_2O_3 substrate probably stems from the different ion yield in the different material matrix [27]. Moreover, the tail of Mo in β-Ga_2O_3 could be ascribed to the diffusion or depth resolution problem, which is caused by primary beam bombardment [28].

To obtain the band alignments of MoS_2/β-Ga_2O_3 heterojunctions, XPS measurements with a step of 0.05 eV were carried out on VG ESCALAB 220i-XL system with a monochromatic Al Kα X-ray source (hv = 1486.6 eV). The constant pass energy was set at 20 eV. Additionally, the standard C 1s (284.8 eV) was used for binding energy (BE) calibration [29]. To evaluate the valence band offset (VBO) at the MoS_2/β-Ga_2O_3 interface, Mo 3d and Ga 3d core levels

Fig. 2 Raman spectra of as-grown MoS_2 on SiO_2/Si substrate and transferred MoS_2 on β-Ga_2O_3 substrate, respectively. The inset shows cross-section transmission electron microscopy (TEM) image of fabricated MoS_2/β-Ga_2O_3 heterojunction.
(CLs) were used for few-layer MoS₂ and β-Ga₂O₃ samples, respectively. Figure 4a shows the XPS narrow scan of Mo 3d and valence band maximum (VBM) for MoS₂ was calculated to be 228.59 ± 0.1 eV. As shown in Fig. 4b, the BE of Ga 3d CL and VBM from few-layer β-Ga₂O₃ were deduced to be 20.25 ± 0.05 and 3.23 ± 0.05 eV, respectively. The corresponding BED was determined to be 17.02 ± 0.1 eV, which is well consistent with that reported by Sun et al. [31].

Figure 4cd depict the measured XPS spectra of Mo 3d and Ga 3d CLs for few-layer MoS₂/β-Ga₂O₃ heterojunctions with/without nitridation. It is noted that the Mo 3d CL shifted from 228.95 ± 0.05 eV for the unnitrided heterojunction toward 229.60 ± 0.05 eV for the nitrided heterojunction while Ga 3d CL shifted from 20.25 ± 0.05 to 20.65 ± 0.05 eV. Based on Kraut’s method [32], the valence band offset (VBO, ΔEᵥ) of few-layer MoS₂/β-Ga₂O₃ heterojunctions was calculated according to the following equation,

\[
\Delta E_V = (E_{\text{MoS}_2\text{Mo}3d_{5/2}} - E_{\text{VBM}}) - (E_{\text{Ga}_{3}O_{3} Ga3d} - E_{\text{VBM}}) - \Delta E_{CL} \tag{1}
\]

where \(E_{\text{MoS}_2\text{Mo}3d_{5/2}}\) and \(E_{\text{MoS}_2\text{VBM}}\) are binding energies of Mo 3d CL and VBM from MoS₂, \(E_{\text{Ga}_{3}O_{3} Ga3d}\) and \(E_{\text{Ga}_{3}O_{3} VBM}\) are binding energies of Ga 3d CL and VBM from β-Ga₂O₃. \(\Delta E_{CL} = (E_{\text{MoS}_2\text{Mo}3d_{5/2}} - E_{\text{Ga}_{3}O_{3} Ga3d})\) is the binding energy difference between Mo 3d CL and Ga 3d CLs for MoS₂/β-Ga₂O₃ heterojunctions. Hence, the \(\Delta E_V\) of MoS₂ on β-Ga₂O₃ substrate with and without N₂ plasma treatment was calculated to be 2.62±0.1 and 2.87 ± 0.1 eV, respectively.

Figure 4d shows the O 1 s CL energy loss spectra of β-Ga₂O₃ substrates with and without nitridation. It is noted that the bandgap keeps unchanged after nitridation treatment with a value of 4.70 ± 0.1 eV. Thus, the conduction band offset can be extracted as follows,

\[
\Delta E_C = E_{\text{Ga}_{3}O_{3} g} - E_{\text{MoS}_2 g} - \Delta E_V \tag{2}
\]

where \(E_{\text{Ga}_{3}O_{3} g}\) and \(E_{\text{MoS}_2 g}\) are the bandgaps of β-Ga₂O₃ and few-layer MoS₂, respectively. The bandgap of 1.4 ± 0.1 eV for few-layer MoS₂ was used in this work. According to Eq. (2), the \(\Delta E_C\) between MoS₂ and β-Ga₂O₃ with and without nitridation were deduced to be 0.68 ± 0.1 and 0.43 ± 0.1 eV, respectively. The calculated band diagrams for heterojunctions without/with nitridation are shown in Fig. 5(a) and 5(b), respectively.

Next, the electronic structures of nitrided and unni-trided heterojunctions were further examined through the Vienna ab initio simulation package (VASP) based on density functional theory (DFT) [33–35]. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) parameterization was adopted for exchange-correlation function [36, 37]. We used the DFT-D3 dispersion corrections approach to describe the long-distance van der Waals (vdW) interactions [38–40]. The projector augmented wave (PAW) pseudopotential method was used to describe the core-valence interaction with a kinetic energy cutoff of 650 eV for plane wave expansion. We employ a \(4 \times 4 \times 1\) G-centered k-mesh for structural relaxation of the unit cell, with the smallest spacing between k-points of 0.04 Å⁻¹, which is precise enough by the convergence test with respect to the number of k points. The convergence thresholds are set to \(10^{-4}\) eV for energy differences of the system and \(10^{-2}\) eV Å⁻¹ for Hellman-Feynman force. In order to eliminate artificial interactions between two adjacent atomic layers, the thickness of the vacuum layer is set to...
The eigenvalues of the heterojunctions are further verified by the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional calculations, which improve the precision of eigenvalues via reducing the localization and delocalization errors of PBE and Hartree-Fock (HF) functionals [41]. The mixing ratio is 25% for the short-range HF exchange. The screening parameter is 0.2 Å⁻¹. The MoS₂/β-Ga₂O₃ heterojunctions were constructed as shown in Fig. 6a. The universal binding energy relation (UBER) method, which provides a
simple universal form for the relationship between binding energy and atomic separation, [42] was applied to determine the energetically stable structure before electronic structure calculation. Various interlayer distances were considered and the surface adhesion energy W_{ad} for the heterojunctions are shown below,

$$W_{ad} = \frac{E_{Ga_2O_3} + E_{MoS_2} - E_{Ga_2O_3/ MoS_2}}{A}$$

where A is the interface area, $E_{Ga_2O_3}$, E_{MoS_2}, and $E_{Ga_2O_3/ MoS_2}$ are the total energies of β-Ga_2O_3, monolayer MoS$_2$ and the MoS$_2$/\$beta$-Ga_2O_3 heterojunction, respectively. Once the W_{ad} reaches a maximum, the optimal interlayer distance will be obtained. After structure optimizations, a nitrogen atom is substitutionally doped in the original MoS$_2$/\$beta$-Ga_2O_3 heterojunction, as shown in Fig. 6b. The concentration of nitrogen in DFT calculation is around 4.17%, which is close to that (3.61%) in experiments. The electronic structures for both nitrided and unnitrided MoS$_2$/\$beta$-Ga_2O_3 heterojunctions were calculated as illustrated in Fig. 6c and d. It was seen that mid-gap states were introduced, which may enhance the charge transfer across the MoS$_2$/\$beta$-Ga_2O_3 interface, and the resulting interface dipole contributed to the measured binding energy.

Fig. 5 Band diagrams of MoS$_2$/\$beta$-Ga_2O_3 heterojunction a without and b with surface nitridation.

Fig. 6 Atomic structure and charge-density distributions of β-Ga_2O_3-MoS$_2$ stacked heterostructures a without and b with nitrogen dopants in a 4 x 4 x 1 supercell from a side view. Ga (O) atoms are in red (gray) and Mo (S) atoms in blue (orange). Band structures of MoS$_2$/\$beta$-Ga_2O_3 heterostructures c without and d with nitrogen dopants.
energy shift. Furthermore, the calculated conduction band offsets $\Delta E_C (\Delta E_C = E_{CB}^{MoS_2} - E_{CB}^{Ga_2O_3})$ for undoped- and doped-β-Ga$_2$O$_3$/MoS$_2$ heterojunctions are 0.82 and 1.0 eV respectively, showing the same trend with the experimental results. We have also calculated the eigenvalues of $E_{CB}^{MoS_2}$ and $E_{CB}^{Ga_2O_3}$ using the HSE06 method to further confirm the above conclusion, and find that the corrected ΔE_C are 0.87 and 1.08 eV for undoped- and doped-β-Ga$_2$O$_3$/MoS$_2$ heterojunctions respectively.

Conclusions

In conclusion, respective MoS$_2$ film has been transferred onto unnitrided and nitride β-Ga$_2$O$_3$ for constructing MoS$_2$/β-Ga$_2$O$_3$ heterojunctions. Raman spectroscopy was used to investigate the quality of transferred MoS$_2$ film, and SIMS study was performed to probe the elemental depth profiles of the MoS$_2$/β-Ga$_2$O$_3$ heterojunction with nitridation. The VBOs were determined to be 2.62 ± 0.1 eV for nitrided MoS$_2$/β-Ga$_2$O$_3$ heterojunction and 2.87 ± 0.1 eV for unnitrided heterojunction by XPS, respectively. The resultant CBOS were deduced to be 0.68 ± 0.1 and 0.43 ± 0.1 eV, which was in the same trends with the DFT calculations. These findings demonstrated that the band offsets can be modified via surface nitridation process. This study offers glorious perspectives on the implementation of designed electronic devices based on 2D/3D vertical heterojunctions.

Abbreviations

β-Ga$_2$O$_3$: Beta-gallium oxide; SL: Single-layer; MoS$_2$: Molybdenum disulfide; XPS: X-ray photoelectron spectroscopy; CBO: Conduction band offset; VBO: Valence band offset; CVD: Chemical vapor deposition; PMMA: Poly(methyl methacrylate); HRTETM: High-resolution transmission electron microscope; SIMS: Secondary ion mass spectrometry; BE: Binding energy; BDD: Binding energy difference; CL: Core level; VBM: Valence band maximum; VASP: Vienna ab initio simulation package; DFT: Density functional theory; GGA: Generalized gradient approximation; PBE: Perdew-Burke-Emzerhof; PAF: Projector augmented wave; UBER: Universal binding energy relation

Acknowledgements

The authors would like to acknowledge the financial support partially by the Key-Area Research and Development Program of GuangDong Province (Grant No. 2019B010102901), National Natural Science Foundation of China (Grant No. 61774041), National Key Technologies Research and Development Program of China (Grant No. 2017YFB0405600), and Shanghai Science and Technology Innovation Program (Grant No.1952071150).

Authors’ Contributions

WHY performed the experiments. KX performed the theoretical calculations. WHY and KX contributed equally to this work. WJL and HZ modified the manuscript. DAI, CXT, HY, X-W, QQ, and JSD helped review and discuss the manuscript. All authors read and approved the final manuscript.

Availability of Data and Materials

The datasets supporting the conclusions of this manuscript are included within the manuscript.

Competing Interests

The authors declare that they have no competing interests.

Author details

1State Key Laboratory of ASC and System, School of Microelectronics, Fudan University, Shanghai 200433, China. 2Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China. 3Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. 4Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Received: 14 July 2019 Accepted: 10 October 2019

Published online: 02 December 2019

References

1. Higashiwaki M, Jessen GH (2018) Guest Editorial: The dawn of gallium oxide microelectronics. Appl Phys Lett 112(6):064041
2. Pearton SJ, Yang JH, Cary P, Ren F, Kim J, Tadjer MA, Mastro M (2018) A review of Ga$_2$O$_3$ materials, processing, and devices. Appl Phys Rev 5:11301
3. Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Pearton SJ (2017) Perspective—opportunities and future directions for Ga$_2$O$_3$. ECS J. Solid State Sci. Technol. 6(5):S36–S59
4. Ma N, Tanen N, Verma A, Guo Z, Luo T, Xing H, Jena D (2016) Intrinsinc electron mobility limits in β-Ga$_2$O$_3$. Appl Phys Lett 109(21):212101
5. Baldini M, Galakza Z, Wagner G (2017) Recent progress in the growth of β-Ga$_2$O$_3$ for power electronics applications. Mat Sci Semicon Proc 78:132–146
6. Higashiwaki M, Kuramata A, Murakami H, Kumagai Y (2017) State-of-the-art technologies of gallium oxide (Ga$_2$O$_3$) power devices. J Phys D: Appl Phys 50(33):333002
7. Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Kookutu A, Kuramata A, Masui T, Yamashishi S (2016) Recent progress in Ga$_2$O$_3$ power devices. Semiconductor Sci Technol 31(3):3401
8. Kan S, Takemoto S, Kaneo K, Takahashi I, Sugiromoto M, Shinohe T, Fujita S (2016) Electrical properties of α-Ga$_2$O$_3$-Ga$_2$O$_3$ pn heterojunction diode and band alignment of the heterostructure. Appl Phys Lett 105(20):203504
9. Pilladulaguda R, Gopalakrishnan N (2018) Gas sensing performance of Ga0O0H and β-Ga$_2$O$_3$ synthesized by hydrothermal method: a comparison. Mater Res Express 6(2):25027
10. Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A (2018) β-Ga$_2$O$_3$-based metal–oxide–semiconductor photodiodes with HfO$_2$ as oxide. Appl Phys Express 11(11):112202
11. Jariwala D, Marks TJ, Hersam MC (2017) Mixed-dimensional van der Waals heterostructures. Nat Mater 16(2):170–181
12. Henck B, Ben Aziza Z, Zill O, Pierucci D, Naylor CH, Silly MG, Gogneau N, Oehler F, Collin S, Brault J, Sirotti F, Bertran FO, Le Fèvre P, Bercaud S, Johnson ATC, Lhuillier E, Rault JE, Ouerghi A, Ouergili A (2017) Interface dipole and band bending in the hybrid p-n heterojunction MoS$_2$/Ga$_2$O$_3$. Phys Rev B 95(11):115132
13. Krishnamoorthy S, Lee EW, Lee CH, Zhang Y, Mcclucho WD, Johnson JM, Hwang J, Wu Y, Rajan S (2016) High current density 2D/3D MoS$_2$/GaN Esaki tunnel diodes. Appl Phys Lett 109(18):185305
14. Tangi M, Mishra P, Tseng C, Ng TK, Hedhili MN, Allen MS, Wei N, Li L, Ooi BS (2017) Band alignment at GaN/single-layer WSe$_2$ interface. ACS Appl Mater Inter 9(10):9101–9117
15. Lee EW, Ma L, Nath DN, Lee CH, Aherati A, Wu Y, Rajan S (2014) Growth and electrical characterisation of two-dimensional layered Mo$_x$SiC$_{1-x}$ heterojunctions. Appl Phys Lett 105(20):203504
16. Eda G, Fujita T, Yamaguchi H, Voity D, Chen M, Chhowalla M (2012) Coherent atomic and electronic heterostructures of single-layer MoS$_2$. ACS Nano 6(8):7311–7312
17. Conley HJ, Wang B, Ziegler JL, Haglund RF Jr., Pantelides ST, Botolin Ki (2013) Bandgap engineering of strained monolayer and bilayer MoS$_2$. Nano Lett 13(8):3626–3630
18. Banerjee R, Zhang Q (2014) Few-layer MoS$_2$: a promising layered semiconductor. ACS Nano 8(5):4074–4099
19. Ramakrishna Matte H, Gomathi A, Mannaa AK, Dutt D, Rati SK, Rao C (2010) MoS$_2$: and WS$_2$: analogues of graphene. Angewandte Chemie International Edition 49(24):4052–4062
20. Zobel A, Boson A, Wilson PM, Muratov DS, Kuznetsov DV, Sinitskii A (2016) Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS$_2$ crystals. J Mater Chem C 4(7):11081–11087
21. Wong SL, Liu H, Chi D (2016) Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog Cryst Growth Ch 62(3):9–28
22. Ma D, Ji Q, Chen K, Yin J, Lin Y, Zhang Y, Liu M, Feng Q, Song X (2015) A universal etching-free transfer of MoS₂ films for applications in photodetectors. Nano Res 8(1):3662–3672
23. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS₂. ACS Nano 4(5):2695–2700
24. Li H, Zhang Q, Yap CCR, Feng Q, Song X (2015) A universal etching-free transfer of MoS₂ films for applications in photodetectors. Nano Res 8(11):3662–3672
25. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS₂. Acs Nano 4(5):2695–2700
26. Li H, Zhang Q, Yap CCR, Feng Q, Song X (2015) A universal etching-free transfer of MoS₂ films for applications in photodetectors. Nano Res 8(11):3662–3672
27. Deline VR, Katz W, Evans CA Jr, Williams P (1978) Mechanism of the SIMS matrix effect. Appl Phys Lett 33(9):832–835
28. Liu X, He J, Liu Q, Tang D, Jia F, Wen J, Lu Y, Wu Y, Zhu D, Liu W, Cao P, Han S, Pan J, He Z, Ang K (2015) Band alignment of Si/SiO₂/multilayer MoS₂ interface determined by x-ray photoelectron spectroscopy: Effect of CHF₃ treatment. Appl Phys Lett 107(10):101601
29. Ebel MF, Ebel H (1974) About the charging effect in X-ray photoelectron spectrometry. J Electron Spectrosc Relat Phenomena 3(2):169–180
30. Chambers SA, Droubay T, Kaspar TC, Gutowski M (2004) Experimental determination of valence band maxima for SrTiO₃, TiO₂, and SrO and the associated valence band offsets with Si (001). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22(4):2205–2215
31. Sun H, Castanedo CGT, Liu K, Li KH, Guo W, Lin R, Liu X, Li J, Li X (2017) Valence and conduction band offsets of β-Ga₂O₃/AlN heterojunction. Appl Phys Lett 111(16):162105
32. Kraut EA (1980) Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett 44(24):1620–1623
33. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29(13):2044–2078
34. Bai S, Tang C, Zhao Q, Xu L, Zhao Z, Zhang X (2018) The sensing mechanism of N-doped SWCNTs toward SF₆ decomposition products: a first-principle study. Appl Surf Sci 440:846–852
35. Liu D, Gui Y, Ji C, Tang C, Zhou Q, Li J, Zhang X (2019) Adsorption of SF₆ decomposition components over Pd (111): a density functional theory study. Appl Surf Sci 465:172–179
36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865
37. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799
38. Wang Y, Gui Y, Ji C, Tang C, Zhou Q, Li J, Zhang X (2018) Adsorption of SF₆ decomposition components on Pt₃TiO₃ (101) surface: A DFT study. Appl Surf Sci 459:242–248
39. Wei H, Gui Y, Kang J, Wang W, Tang C (2018) A DFT study on the adsorption of H₂S and SO₂ on Ni doped MoS₂ monolayer. Nanomaterials-Basel 8(10):646
40. Xu K, Xu Y, Zhang H, Peng B, Soukoulis CM (2018) Role of anderson rule in determining electronic, optical and transport properties of transition-metal dichalcogenides heterostructure. Phys Chem Chem Phys 20(48)
41. Jochen H, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121(3):1187–1192
42. Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47(9):675