HOMOCLINICALLY EXPANSIVE ACTIONS AND A GARDEN OF EDEN THEOREM FOR HARMONIC MODELS

TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, AND HANFENG LI

Abstract. Let \(\Gamma \) be a countable Abelian group and \(f \in \mathbb{Z}[\Gamma] \), where \(\mathbb{Z}[\Gamma] \) denotes the integral group ring of \(\Gamma \). Consider the Pontryagin dual \(X_f \) of the cyclic \(\mathbb{Z}[\Gamma] \)-module \(\mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f \) and suppose that \(f \) is weakly expansive (e.g., \(f \) is invertible in \(\ell^1(\Gamma) \), or, when \(\Gamma \) is not virtually \(\mathbb{Z} \) or \(\mathbb{Z}^2 \), \(f \) is well-balanced) and that \(X_f \) is connected. We prove that if \(\tau: X_f \to X_f \) is a \(\Gamma \)-equivariant continuous map, then \(\tau \) is surjective if and only if the restriction of \(\tau \) to each \(\Gamma \)-homoclinicity class is injective. We also show that this equivalence remains valid in the case when \(\Gamma = \mathbb{Z}^d \) and \(f \in \mathbb{Z}[\Gamma] = \mathbb{Z}[u_1, u_1^{-1}, \ldots, u_d, u_d^{-1}] \) is an irreducible atoral polynomial such that its zero-set \(Z(f) \) is contained in the image of the intersection of \([0, 1]^d \) and a finite union of hyperplanes in \(\mathbb{R}^d \) under the quotient map \(\mathbb{R}^d \to \mathbb{T}^d \) (e.g., when \(d \geq 2 \) such that \(Z(f) \) is finite). These two results are analogues of the classical Garden of Eden theorem of Moore and Myhill for cellular automata with finite alphabet over \(\Gamma \).

Contents

1. Introduction
2. Background material and preliminaries
 2.1. Group actions
 2.2. Convolution
 2.3. Pontryagin duality
 2.4. Algebraic dynamical systems
 2.5. Finitely presented algebraic dynamical systems
 2.6. The homoclinic group
 2.7. Connectedness of the phase space
3. Weak forms of expansivity for algebraic actions
 3.1. \(p \)-expansive algebraic actions and \(p \)-homoclinic groups
 3.2. Homoclinically expansive actions
 3.3. Principal algebraic actions associated with weakly expansive polynomials
 3.4. Expansive principal algebraic actions
 3.5. Harmonic models
4. Topological rigidity

Date: October 19, 2018.
2010 Mathematics Subject Classification. 37D20, 37C29, 54H20, 37A45, 22D32, 22D45.
Key words and phrases. Garden of Eden theorem, finitely presented algebraic action, principal algebraic action, harmonic model, Pontryagin duality, topological rigidity, Moore property, Myhill property, expansive action, homoclinic expansive action, weakly expansive polynomial.
1. Introduction

Consider a dynamical system \((X, \alpha)\), consisting of a compact metrizable space \(X\), called the phase space, equipped with a continuous action \(\alpha\) of a countable group \(\Gamma\). Let \(d\) be a metric on \(X\) that is compatible with the topology. Two points \(x, y \in X\) are said to be homoclinic if \(\lim_{\gamma \to \infty} d(\gamma x, \gamma y) = 0\), i.e., for every \(\varepsilon > 0\), there exists a finite set \(F \subset \Gamma\) such that \(d(\gamma x, \gamma y) < \varepsilon\) for all \(\gamma \in \Gamma \setminus F\). Homoclinicity is an equivalence relation on \(X\). By compactness of \(X\), this relation does not depend on the choice of the compatible metric \(d\). A map with source set \(X\) is called pre-injective (with respect to \(\alpha\)) if its restriction to each homoclinicity class is injective.

An endomorphism of the dynamical system \((X, \alpha)\) is a continuous map \(\tau: X \to X\) that is \(\Gamma\)-equivariant (i.e., \(\tau(\gamma x) = \gamma \tau(x)\) for all \(\gamma \in \Gamma\) and \(x \in X\)).

The original Garden of Eden theorem is a statement in symbolic dynamics that characterizes surjective endomorphisms of shift systems with finite alphabet. To be more specific, let us fix a compact metrizable space \(A\), called the alphabet. Given a countable group \(\Gamma\), the shift over the group \(\Gamma\) with alphabet \(A\) is the dynamical system \((A^\Gamma, \sigma)\), where \(A^\Gamma = \{x: \Gamma \to A\}\) is equipped with the product topology and \(\sigma\) is the action defined by \(\gamma x(\gamma') := x(\gamma \gamma')\) for all \(x \in A^\Gamma\) and \(\gamma, \gamma' \in \Gamma\). The Garden of Eden theorem states that, under the hypotheses that the group \(\Gamma\) is amenable and the alphabet \(A\) is finite, an endomorphism of \((A^\Gamma, \sigma)\) is surjective if and only if it is pre-injective. It was first proved for \(\Gamma = \mathbb{Z}^d\) by Moore and Myhill in the early 1960s. Actually, the implication surjective \(\implies\) pre-injective was first proved by Moore in [27] while the converse implication was established shortly after by Myhill in [29]. The Garden of Eden theorem was subsequently extended to finitely generated groups of subexponential growth by Machi and Mignosi [25] and finally to all countable amenable groups by Machi, Scarabotti, and the first author in [8].

Let us say that the dynamical system \((X, \alpha)\) has the Moore property if every surjective endomorphism of \((X, \alpha)\) is pre-injective and that it has the Myhill property if every pre-injective endomorphism of \((X, \alpha)\) is surjective. We say that the dynamical system \((X, \alpha)\) has the Moore-Myhill property, or that it satisfies the Garden of Eden theorem, if it has both the Moore and the Myhill properties.
The goal of the present paper is to establish a version of the Garden of Eden theorem for principal algebraic dynamical systems associated with weakly expansive polynomials over countable Abelian groups and with connected phase space. By an algebraic dynamical system, we mean a dynamical system of the form \((X, \alpha)\), where \(X\) is a compact metrizable Abelian group and \(\alpha\) is an action of a countable group \(\Gamma\) on \(X\) by continuous group automorphisms. Note that, in this case, the set \(\Delta(X, \alpha) = \{x \in X : x\) is homoclinic to \(0_X\}\) \(\subseteq X\), where \(0_X\) is the identity element of \(X\), is a subgroup of \(X\), called the homoclinic group, and two points \(x, y \in X\) are homoclinic if and only if \(x - y \in \Delta(X, \alpha)\), that is, they belong to the same coset of \(\Delta(X, \alpha)\) in \(X\). By Pontryagin duality, algebraic dynamical systems with acting group \(\Gamma\) are in one-to-one correspondence with countable left \(\mathbb{Z}[\Gamma]\)-modules. Here \(\mathbb{Z}[\Gamma]\) denotes the integral group ring of \(\Gamma\). This correspondence has been intensively studied in the last decades and revealed fascinating connections between commutative algebra, number theory, harmonic analysis, ergodic theory, and dynamical systems (see in particular the monograph [31] and the survey [20]).

Let \(f \in \mathbb{Z}[\Gamma]\) and consider the cyclic left \(\mathbb{Z}[\Gamma]\)-module \(M_f := \mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f\) obtained by quotienting the ring \(\mathbb{Z}[\Gamma]\) by the principal left ideal generated by \(f\). The algebraic dynamical system associated by Pontryagin duality with \(M_f\) is denoted by \((X_f, \alpha_f)\) and is called the principal algebraic dynamical system associated with \(f\).

We denote by \(C_0(\Gamma)\) the real vector space of all functions \(g : \Gamma \to \mathbb{R}\) vanishing at infinity (i.e., for every \(\varepsilon > 0\) there exists a finite subset \(\Omega \subseteq \Gamma\) such that \(|g_\gamma| \leq \varepsilon\) for all \(\gamma \in \Gamma \setminus \Omega\)). Moreover, for \(f \in \mathbb{Z}[\Gamma]\) and \(g \in C_0(\Gamma)\) we denote by \(fg \in C_0(\Gamma)\) their convolution product (see Subsection 2.2).

Definition 1.1. A polynomial \(f \in \mathbb{Z}[\Gamma]\) is said to be weakly expansive provided:

\begin{enumerate}
 \item[(we-1)] \(\forall g \in C_0(\Gamma), \ fg = 0 \Rightarrow g = 0;\)
 \item[(we-2)] \(\exists \omega \in C_0(\Gamma)\) such that \(f\omega = 1_{\Gamma}\).
\end{enumerate}

Our first result is the following.

Theorem 1.2 (Garden of Eden theorem for algebraic actions associated with weakly expansive polynomials). Let \(\Gamma\) be a countable Abelian group and \(f \in \mathbb{Z}[\Gamma]\). Suppose that \(f\) is weakly expansive and that \(X_f\) is connected. Then the dynamical system \((X_f, \alpha_f)\) has the Moore-Myhill property.

There are two main ingredients in our proof of Theorem 1.2. The first one, Corollary 4.4, is a rigidity result (a generalization of [1, Corollary 1]) for algebraic dynamical systems associated with weakly expansive polynomials and with connected phase space. We use it to prove that, under the above conditions, every endomorphism of \((X_f, \alpha_f)\) is affine with linear part of the form \(x \mapsto rx\) for some \(r \in \mathbb{Z}[\Gamma]\). The second one, Theorem 3.9 (a generalization of [19, Lemma 4.5]), asserts that, if \((X_f, \alpha_f)\) is weakly expansive, then its homoclinic group \(\Delta(X_f, \alpha_f)\), equipped with the induced action of \(\Gamma\), is dense in \(X_f\) and isomorphic, as a \(\mathbb{Z}[\Gamma]\)-module, to \(\mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f^*\), where \(f^* \in \mathbb{Z}[\Gamma]\) is defined by \((f^*)_\gamma := f_{\gamma^{-1}}\) for all \(\gamma \in \Gamma\).

Recall that a dynamical system \((X, \alpha)\) is called expansive if there exists a constant \(\varepsilon_0 > 0\) such that, for every pair of distinct points \(x, y \in X\), there exists an element \(\gamma \in \Gamma\) such
that $d(\gamma x, \gamma y) > \varepsilon_0$. Such a constant ε_0 is called an \textit{expansivity constant} for (X, α, d). The fact that (X, α) is expansive or not does not depend on the choice of the metric d. For instance, the shift system (A^Γ, σ) is expansive for every countable group Γ whenever the alphabet A is finite.

Let $f \in \mathbb{Z}[\Gamma]$ and suppose that the associated principal algebraic dynamical system (X_f, α_f) is expansive. In Corollary 3.12 we show that f is weakly expansive, and from Theorem 1.2 we thus deduce the following:

\textbf{Corollary 1.3.} Let Γ be a countable Abelian group and $f \in \mathbb{Z}[\Gamma]$. Suppose that the principal algebraic dynamical system (X_f, α_f) associated with f is expansive and that X_f is connected. Then the dynamical system (X_f, α_f) has the Moore-Myhill property. \hfill \square

This result was obtained by the first two named authors in [7] and, shortly after, as a particular case of a much more general Garden of Eden theorem for expansive actions (where Γ is amenable and no connectedness of the phase space is assumed) proved by the third author in [18].

Recall that a polynomial $f \in \mathbb{R}[\Gamma]$ is said to be \textit{well-balanced} (cf. [4, Definition 1.2]) if:

\begin{itemize}
\item[(wb-1)] $\sum_{\gamma \in \Gamma} f_\gamma = 0$,
\item[(wb-2)] $f_\gamma \leq 0$ for all $\gamma \in \Gamma \setminus \{1\}$,
\item[(wb-3)] $f_\gamma = f_{\gamma^{-1}}$ for all $\gamma \in \Gamma$ (i.e., f is self-adjoint),
\item[(wb-4)] and $\text{supp}(f) := \{\gamma \in \Gamma : f_\gamma \neq 0\}$, the support of f, generates Γ.
\end{itemize}

If $f \in \mathbb{Z}[\Gamma]$ is well-balanced, the associated dynamical system (X_f, Γ) is called a \textit{harmonic model}. For $\Gamma = \mathbb{Z}^d$ and $f = 2d - \sum_{i=1}^d (u_i + u_i^{-1}) \in \mathbb{Z}[u_1, u_1^{-1}, \ldots, u_d, u_d^{-1}] = \mathbb{Z}[\mathbb{Z}^d]$, the corresponding harmonic model shares interesting measure theoretic and entropic properties with other different models in mathematical physics, probability theory, and dynamical systems such as the Abelian sandpile model, spanning trees, and the dimer models [32, 4]. Since a well-balanced polynomial $f \in \mathbb{Z}[\Gamma]$, with Γ infinite countable not virtually \mathbb{Z} or \mathbb{Z}^2, is weakly expansive (cf. Proposition 3.11), from Theorem 1.2 we deduce:

\textbf{Corollary 1.4} (Garden of Eden theorem for harmonic models). Let Γ be an infinite countable Abelian group which is not virtually \mathbb{Z} or \mathbb{Z}^2 (e.g., $\Gamma = \mathbb{Z}^d$, with $d \geq 3$). Suppose that $f \in \mathbb{Z}[\Gamma]$ is well-balanced and that X_f is connected. Then the dynamical system (X_f, α_f) has the Moore-Myhill property. \hfill \square

Let (X, α) be an algebraic dynamical system and $1 \leq p \leq \infty$. In [10] (see also Subsection 3.1), the notion of p-homoclinic group (denoted $\Delta^p(X, \alpha) \subset X$) associated with (X, α), was introduced. We then say that a map $\tau : X \to X$ is p-pre-injective if the restriction of τ to each coset of the p-homoclinic group $\Delta^p(X, \alpha)$ is injective. Note that $\Delta^\infty(X, \alpha) = \Delta(X, \alpha)$ so that ∞-pre-injectivity is the same thing as pre-injectivity.

If $\Gamma = \mathbb{Z}^d$, then any polynomial $f \in \mathbb{R}[\Gamma]$ may be regarded, by duality, as a function on $\hat{\Gamma} = \mathbb{T}^d$. We denote by $\mathcal{Z}(f) := \{(t_1, t_2, \ldots, t_d) \in \mathbb{T}^d : f(t_1, t_2, \ldots, t_d) = 0\}$ its zero-set. Recall that an irreducible polynomial f is \textit{atoral} [22, Definition 2.1] if there is some $g \in \mathbb{Z}[\Gamma]$ such that $g \not\in \mathbb{Z}[\Gamma]f$ and $\mathcal{Z}(f) \subset \mathcal{Z}(g)$.

We are now in position to state the following:
Theorem 1.5 (A Garden of Eden theorem for irreducible atoral polynomials). Let $f \in \mathbb{Z}[\mathbb{Z}^d]$ be an irreducible atoral polynomial such that $Z(f)$ is contained in the image of the intersection of $[0, 1]^d$ and a finite union of hyperplanes in \mathbb{R}^d under the natural quotient map $\mathbb{R}^d \to \mathbb{T}^d$ (e.g., when $d \geq 2$ such that $Z(f)$ is finite). Let $\tau : X_f \to X_f$ be a Γ-equivariant continuous map. Then the following conditions are equivalent:

(a) τ is surjective,
(b) τ is pre-injective,
(c) τ is p-pre-injective for all $1 \leq p \leq \infty$,
(d) τ is 1-pre-injective.

In particular, (X_f, α_f) satisfies the Moore-Myhill property.

Our motivation for the present work originated from a sentence of Gromov [13, p. 195] suggesting that the Garden of Eden theorem could be extended to dynamical systems with a suitable hyperbolic flavor other than shifts and subshifts. A first step in that direction was made in [6], where the two first named authors proved that all Anosov diffeomorphisms on tori generate \mathbb{Z}-actions with the Moore-Myhill property, and another one in [5], where sufficient conditions for expansive actions of countable amenable groups to have the Myhill property were presented. Finally, in [18] the third named author proved the very general Garden of Eden theorem for expansive actions of amenable groups we alluded to above.

The paper is organized as follows. Section 2 introduces notation and collects background material on Pontryagin duality and algebraic dynamical systems. In particular, in Subsection 2.6 we present a characterization of the homoclinic group. In Section 3 we consider several weak forms of expansivity: first we recall from [10] the notions of p-expansivity ($1 \leq p \leq \infty$) and p-homoclinicity for general algebraic actions. Then we introduce and study the notion of homoclinically expansive action: when the algebraic dynamical system is finitely generated, homoclinic expansivity is a stronger condition than p-expansivity for $1 \leq p < \infty$ (Proposition 3.5), and a characterization is derived (Theorem 3.6). Then, we study principal algebraic actions associated with weakly expansive polynomials with an emphasis on the corresponding homoclinic group. In Subsection 3.4 we then show that polynomials yielding principal algebraic expansive actions are weakly expansive and, in Subsection 3.5, we prove that well-balanced polynomials, with not virtually \mathbb{Z} or \mathbb{Z}^2 infinite countable group, are weakly expansive as well. In Section 4 we discuss topological rigidity of algebraic dynamical systems associated with weakly expansive polynomials. The proof of Theorem 1.2 is then given in Section 5. In the following section we discuss the notion of atorality for irreducible polynomials in $\mathbb{Z}[\mathbb{Z}^d]$, we present a few examples, and give the proof of Theorem 1.5. In the last section, we collect some final remarks. In particular, we exhibit some examples showing that Theorem 1.2 becomes false if weak expansivity of $f \in \mathbb{Z}[\Gamma]$ is replaced by the weaker hypothesis that the homoclinic group $\Delta(X_f, \alpha_f)$ is dense in X_f, or that the dynamical system (X_f, α_f) is mixing. We also introduce and discuss the notions of p-pre-injectivity, p-Moore, and p-Myhill properties for algebraic actions, and prove some variations on the Garden of Eden theorem in this framework.

Acknowledgments. Hanfeng Li was partially supported by NSF and NSFC grants.
2. Background material and preliminaries

2.1. Group actions. Let Γ be a countable group. We use multiplicative notation for the group operation in Γ and denote by 1_Γ its identity element.

An action of Γ on a set X is a map $\alpha : \Gamma \times X \to X$ such that $\alpha(1_\Gamma, x) = x$ and $\alpha(\gamma_1, \alpha(\gamma_2, x)) = \alpha(\gamma_1 \gamma_2, x)$ for all $\gamma_1, \gamma_2 \in \Gamma$ and $x \in X$. In the sequel, to simplify, we shall write γx instead of $\alpha(\gamma, x)$, if there is no risk of confusion.

If α is an action of Γ on a set X, we denote by $\text{Fix}(X, \alpha)$ the set of points of X that are fixed by α, i.e., the set of points $x \in X$ such that $\gamma x = x$ for all $\gamma \in \Gamma$.

If Γ acts on two sets X and Y, a map $\tau : X \to Y$ is said to be Γ-equivariant if one has $\tau(\gamma x) = \gamma \tau(x)$ for all $\gamma \in \Gamma$ and $x \in X$.

2.2. Convolution. Let Γ be a countable group. We denote by $\ell^\infty(\Gamma)$ the vector space consisting of all formal series

$$f = \sum_{\gamma \in \Gamma} f_\gamma \gamma,$$

with coefficients $f_\gamma \in \mathbb{R}$ for all $\gamma \in \Gamma$ and

$$\|f\|_\infty := \sup_{\gamma \in \Gamma} |f_\gamma| < \infty.$$

For $1 \leq p < \infty$ we denote by $\ell^p(\Gamma)$ the vector subspace of $\ell^\infty(\Gamma)$ consisting of all $f \in \ell^\infty(\Gamma)$ such that

$$\|f\|_p := \left(\sum_{\gamma \in \Gamma} |f_\gamma|^p \right)^{\frac{1}{p}} < \infty.$$

Note that $\ell^1(\Gamma) \subset \ell^p(\Gamma) \subset \ell^q(\Gamma) \subset \ell^\infty(\Gamma)$ for all $1 < p < q < \infty$. When $f \in \ell^\infty(\Gamma)$ and $g \in \ell^1(\Gamma)$ (resp. $f \in \ell^1(\Gamma)$ and $g \in \ell^\infty(\Gamma)$) we define the convolution product $fg \in \ell^\infty(\Gamma)$ by setting

$$fg(\gamma) := \sum_{\gamma_1, \gamma_2 \in \Gamma : \gamma_1 \gamma_2 = \gamma} f_{\gamma_1} g_{\gamma_2} = \sum_{\delta \in \Gamma} f_{\gamma \delta^{-1} \gamma} g_{\delta}$$

for all $\gamma \in \Gamma$. Note that $\|fg\|_\infty \leq \|f\|_\infty \cdot \|g\|_1$ (resp. $\|fg\|_\infty \leq \|f\|_1 \cdot \|g\|_\infty$). We have the associativity rule

$$(fg)h = f(gh)$$

for all $f \in \ell^\infty(\Gamma)$, $g, h \in \ell^1(\Gamma)$ (resp. $g, h \in \ell^1(\Gamma)$, $h \in \ell^\infty(\Gamma)$).

We denote by $\mathbb{R}[\Gamma] = \{ f \in \ell^\infty(\Gamma) : f_\gamma = 0$ for all but finitely many $\gamma \in \Gamma \}$ and by $\mathbb{Z}[\Gamma] = \{ f \in \mathbb{R}[\Gamma] : f_\gamma \in \mathbb{Z}$ for all $\gamma \in \Gamma \}$ the real and, respectively, the integral group ring of Γ. Observe that the convolution product extends the group operation on $\Gamma \subset \mathbb{Z}[\Gamma] \subset \mathbb{R}[\Gamma]$.

Note also that, as a \mathbb{Z}-module, $\mathbb{Z}[\Gamma]$ is free with base Γ.

If we take $\Gamma = \mathbb{Z}^d$, then $\mathbb{Z}[\Gamma]$ is the Laurent polynomial ring $R_d := \mathbb{Z}[u_1^{\pm 1}, \ldots, u_d^{\pm 1}]$ on d commuting indeterminates u_1, \ldots, u_d.
Recall that \(C_0(\Gamma) \) denotes the vector space consisting of all functions \(f : \Gamma \to \mathbb{R} \) vanishing at infinity: we express this condition by writing \(\lim_{\gamma \to \infty} f(\gamma) = 0 \). We then have the inclusions
\[
(\gamma g)_{\eta \delta^{-1}} = g_{\gamma^{-1}(\eta \delta^{-1})} = g_{(\gamma^{-1} \eta)\delta^{-1}} = (g\delta)_{\gamma^{-1} \eta} = (\gamma (g\delta))_{\eta},
\]
for all \(g \in \ell^\infty(\Gamma) \) and \(\gamma \in \Gamma \). Observe that every set in (2.3) is \(*\)-invariant and that
\[
(fg)^* = g^* f^*
\]
for all \(f \in \ell^\infty(\Gamma) \) and \(g \in \ell^1(\Gamma) \) (resp. \(f \in \ell^1(\Gamma) \) and \(g \in \ell^\infty(\Gamma) \)).

The normed space \((\ell^1(\Gamma), \| \cdot \|_1)\) is a unital Banach \(*\)-algebra for the convolution product and the involution. The unity element of \(\ell^1(\Gamma) \) is \(\mathbf{1}_\Gamma \).

Lemma 2.1. Let \(f, g \in \mathbb{R}[\Gamma] \) and \(g \in \ell^\infty(\Gamma) \). Then \((fg)h = f(gh) \).

Proof. By linearity we can reduce to the case when \(f = \gamma \) and \(h = \delta \) with \(\gamma, \delta \in \Gamma \). For \(\eta \in \Gamma \) we have
\[
(\gamma g)_\eta = g_{\gamma^{-1}(\eta \delta^{-1})} = g_{(\gamma^{-1} \eta)\delta^{-1}} = (g\delta)_{\gamma^{-1} \eta} = (\gamma (g\delta))_\eta,
\]
where \(= * \) follows from the associative rule in \(\Gamma \).

Let now \(k, n \in \mathbb{N} \) and denote by \(\text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) := \{(a^{ij})_{1 \leq i \leq n, 1 \leq j \leq k} : a^{ij} \in \mathbb{Z}[\Gamma]\} \) the space of all \(n \)-by-\(k \) matrices with coefficients in the group ring \(\mathbb{Z}[\Gamma] \). We identify \(\mathbb{Z}[\Gamma]^k \) (resp. \(\mathbb{Z}[\Gamma]^n \)) and \(\text{Mat}_{1,k}(\mathbb{Z}[\Gamma]) \) (resp. \(\text{Mat}_{1,n}(\mathbb{Z}[\Gamma]) \)) so that if \(g = (g^1, g^2, \ldots, g^n) \in \mathbb{Z}[\Gamma]^n \) and \(A = (a^{ij})_{1 \leq i \leq n} \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \), the element \(gA \in \mathbb{Z}[\Gamma]^k \) is defined by \((gA)^j := \sum_{i=1}^n g^i a^{ij} \in \mathbb{Z}[\Gamma] \), that is,
\[
(gA)^j = \sum_{i=1}^n g^i a^{ij}_{\eta \delta^{-1}}
\]
for all \(j = 1, 2, \ldots, k \) and \(\gamma \in \Gamma \). Given \(A = (a^{ij})_{1 \leq i \leq n} \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \), we define
\[
A^* = ((a^{ji})^*)_{1 \leq i \leq k, 1 \leq j \leq n} \in \text{Mat}_{k,n}(\mathbb{Z}[\Gamma]).
\]
Note that when \(k = n = 1 \) and \(A = f \in \mathbb{Z}[\Gamma] \), then (2.7) reduces to (2.4). Also, we set
\[
\| A \|_\infty = \sup_{1 \leq i \leq n} \sup_{\gamma \in \Gamma} |a^{ij}_\gamma|
\]
and
\[
\| A \|_1 = \sum_{1 \leq i \leq n} \| a^{ij} \|_1 = \sum_{1 \leq i \leq n} \sum_{1 \leq j \leq k} |a^{ij}_\gamma|.
\]
2.3. **Pontryagin duality.** Let us briefly review some basic facts and results regarding Pontryagin duality. For more details and complete proofs, the reader is referred to [28].

Let X be an LCA group, i.e., a locally compact, Hausdorff, Abelian topological group. A continuous group morphism from X into the circle $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ is called a character of X. The set \hat{X} of all characters of X, equipped with pointwise multiplication and the topology of uniform convergence on compact sets, is also an LCA group, called the character group or Pontryagin dual of X.

The natural map $\langle \cdot, \cdot \rangle: \hat{X} \times X \to \mathbb{T}$, given by $\langle \chi, x \rangle = \chi(x)$ for all $x \in X$ and $\chi \in \hat{X}$ is bilinear and non-degenerate. Moreover, the evaluation map $\iota: X \to \hat{\hat{X}}$, defined by $\iota(x)(\chi) := \langle \chi, x \rangle$, is a topological group isomorphism from X onto its bidual $\hat{\hat{X}}$. This canonical isomorphism is used to identify X with $\hat{\hat{X}}$.

The space X is compact (resp. discrete, resp. metrizable, resp. σ-compact) if and only if \hat{X} is discrete (resp. compact, resp. σ-compact, resp. metrizable). In particular, X is compact and metrizable if and only if \hat{X} is discrete and countable. When X is compact, X is connected if and only if \hat{X} is a torsion-free group (i.e., a group with no non-trivial elements of finite order).

If X is an LCA group and Y a closed subgroup of X, then X/Y is an LCA group whose Pontryagin dual is canonically isomorphic, as a topological group, to the closed subgroup Y^\perp of \hat{X} defined by $Y^\perp := \{\chi \in \hat{X}: \langle \chi, y \rangle = 0 \text{ for all } y \in Y\}$.

Let X,Y be LCA groups and $\varphi: X \to Y$ a continuous group morphism. The map $\hat{\varphi}: \hat{Y} \to \hat{X}$, defined by $\hat{\varphi}(\chi) := \chi \circ \varphi$ for all $\chi \in \hat{Y}$ is a continuous group morphism, called the dual of φ. If we identify X and Y with their respective biduals, then $\hat{\hat{\varphi}} = \varphi$. If φ is surjective, then $\hat{\varphi}$ is injective. Conversely, if φ is injective, then $\hat{\varphi}$ has dense image (and it may happen that $\hat{\varphi}$ is not surjective; however, if φ is both injective and open, then $\hat{\varphi}$ is surjective). As a consequence, if X and Y are either both compact or both discrete, then φ is injective (resp. surjective) if and only if $\hat{\varphi}$ is surjective (resp. injective) [28, Proposition 30].

Let X be an LCA group and suppose that there is a countable group Γ acting continuously on X by group automorphisms. By linearity, this action induces a left $\mathbb{Z}[\Gamma]$-module structure on X. There is a dual action of Γ on \hat{X} by continuous group automorphisms, defined by $\gamma \chi(x) := \chi(\gamma^{-1}x)$ for all $\gamma \in \Gamma, x \in X$, and $\chi \in \hat{X}$.

Therefore there is also a left $\mathbb{Z}[\Gamma]$-module structure on \hat{X}. Note that the canonical topological group isomorphism $\iota: X \to \hat{X}$ is Γ-equivariant and hence a left $\mathbb{Z}[\Gamma]$-module isomorphism.

2.4. **Algebraic dynamical systems.** An algebraic dynamical system is a pair (X, α), where X is a compact metrizable Abelian topological group and α is an action of a countable group Γ on X by continuous group automorphisms.
As an example, if A is a compact metrizable Abelian topological group (e.g. $A = \mathbb{T}$) and Γ a countable group, then the system (A^Γ, σ), where $A^\Gamma = \{ x : \Gamma \to A \}$ is equipped with the product topology, and σ is the shift action, defined by

$$(\sigma(\gamma, x))(\gamma') := x(\gamma^{-1}\gamma')$$

for all $\gamma, \gamma' \in \Gamma$ and $x \in A^\Gamma$,

is an algebraic dynamical system.

Let (X, α) be an algebraic dynamical system with acting group Γ. As X is compact and metrizable, its Pontryagin dual \hat{X} is a discrete countable Abelian group. We have seen at the end of the previous subsection that there is a left $\mathbb{Z}[\Gamma]$-module structure on \hat{X} induced by the action of Γ on X. Conversely, if M is a countable left $\mathbb{Z}[\Gamma]$-module and we equip M with its discrete topology, then its Pontryagin dual \hat{M} is a compact metrizable Abelian group and there is, by duality, an action α_M of Γ on \hat{M} by continuous group automorphisms, so that (\hat{M}, α_M) is an algebraic dynamical system. In this way, algebraic dynamical systems with acting group Γ are in one-to-one correspondence with countable left $\mathbb{Z}[\Gamma]$-modules.

2.5. Finitely presented algebraic dynamical systems.

Let Γ be a countable group. One says that an algebraic dynamical system (X, α) with acting group Γ is finitely generated provided its Pontryagin dual \hat{X}, equipped with the dual action $\hat{\alpha}$ of Γ, is a finitely generated left $\mathbb{Z}[\Gamma]$-module.

Recall (cf. [16, Definition 4.25]) that for a unital ring R, a left R-module M is said to be finitely presented provided there exist $k \in \mathbb{N}$ and some finitely generated left R-submodule $J \leq R^k$ such that $M = R^k/J$.

Let now $k, n \in \mathbb{N}$ and $A \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma])$. Then $\mathbb{Z}[\Gamma]^n A$ is a finitely generated left $\mathbb{Z}[\Gamma]$-submodule of $\mathbb{Z}[\Gamma]^k$. We denote by $M_A := \mathbb{Z}[\Gamma]^k/\mathbb{Z}[\Gamma]^n A$ the corresponding finitely presented left $\mathbb{Z}[\Gamma]$-module.

To simplify notation, let us write X_A instead of \hat{M}_A and α_A instead of α_{MA}. The algebraic dynamical system (X_A, α_A) is called the finitely presented algebraic dynamical system associated with A.

For example, if $k = n = 1$ and $A = f \in \mathbb{Z}[\Gamma]$, then $M_f = \mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f$, where $\mathbb{Z}[\Gamma]f$ is the principal left ideal of $\mathbb{Z}[\Gamma]$ generated by f, and the algebraic dynamical system (X_f, α_f) is called the principal algebraic dynamical system associated with f.

One can regard (X_A, α_A) as a group subshift of $((\mathbb{T}^k)^\Gamma, \sigma)$, i.e., as a closed subgroup of $(\mathbb{T}^k)^\Gamma$ that is invariant under the shift action σ of Γ on $(\mathbb{T}^k)^\Gamma$, in the following way. The Pontryagin dual of $(\mathbb{T}^k)^\Gamma$ is $\mathbb{Z}[\Gamma]^k$ with pairing $\langle \cdot, \cdot \rangle : \mathbb{Z}[\Gamma]^k \times (\mathbb{T}^k)^\Gamma \to \mathbb{T}$ given by

$$\langle g, x \rangle = \sum_{j=1}^k \sum_{\eta \in \Gamma} g^j_{\eta} x_j(\eta)$$

for all $g = (g^1, g^2, \ldots, g^k) \in \mathbb{Z}[\Gamma]^k$ and $x = (x_1, x_2, \ldots, x_k) \in (\mathbb{T}^\Gamma)^k = (\mathbb{T}^k)^\Gamma$.

Therefore, writing $A = (a^{ij})_{1 \leq i \leq n \atop 1 \leq j \leq k}$ and $A^i = (a^{i1}, a^{i2}, \ldots, a^{ik}) \in \mathbb{Z}[\Gamma]^k$ for $i = 1, 2, \ldots, n$, we have

$$X_A = \mathbb{Z}[\Gamma]^k / \mathbb{Z}[\Gamma]^n A \quad = (\mathbb{Z}[\Gamma]^n A)^{\perp} \quad = \{ x \in (\mathbb{T}^k)^\Gamma : \langle g, x \rangle = 0 \text{ for all } g \in \mathbb{Z}[\Gamma]^n A \} \quad =_* \{ x \in (\mathbb{T}^k)^\Gamma : \langle \gamma A^i, x \rangle = 0 \text{ for all } \gamma \in \Gamma \text{ and } i = 1, 2, \ldots, n \} \quad = \{ x \in (\mathbb{T}^k)^\Gamma : \sum_{j=1}^k \sum_{\eta \in \Gamma} a^i_{\eta j} x_j(\gamma \eta) = 0 \text{ for all } \gamma \in \Gamma \text{ and } i = 1, 2, \ldots, n \},$$

where $=_{*}$ follows by taking $g := \gamma(0, \ldots, 0, 1, 0, \ldots, 0) A = \gamma A^i \in \mathbb{Z}[\Gamma]^k$. In other words, (2.8) becomes

$$X_A = \{ x \in (\mathbb{T}^k)^\Gamma : x A^* = 0_{(\mathbb{T}^n)^\gamma} \},$$

with the action α_A of Γ on $X_A \subset (\mathbb{T}^k)^\Gamma$ obtained by restricting to X_A the shift action σ.

In particular, if $A = f \in \mathbb{Z}[\Gamma]$, then (2.8) becomes

(2.9) $$X_f = \{ x \in \mathbb{T}^\Gamma : x f^* = 0_{\mathbb{T}^n} \}.$$

Consider the surjective map $\pi : \ell^\infty(\Gamma)^k \to (\mathbb{T}^k)^\Gamma$ defined by $\pi(g)(\gamma)^i = g^{i_\gamma} \mod 1$ for all $g = (g^1, g^2, \ldots, g^k) \in \ell^\infty(\Gamma)^k$, $\gamma \in \Gamma$, and $i = 1, 2, \ldots, k$. Denote by $\ell^\infty(\Gamma, \mathbb{Z})^k$ the set consisting of all $g \in \ell^\infty(\Gamma)^k$ such that $g^{i_\gamma} \in \mathbb{Z}$ for all $\gamma \in \Gamma$ and $i = 1, 2, \ldots, k$.

Proposition 2.2. Let Γ be a countable group. Let $x \in (\mathbb{T}^k)^\Gamma$ and $g \in \ell^\infty(\Gamma)^k$ such that $\pi(g) = x$. With the above notation, the following conditions are equivalent:

(a) $x \in X_A$;
(b) $g A^* \in \ell^\infty(\Gamma, \mathbb{Z})^n$.

Proof. This follows immediately from (2.8) and the equality $\pi(g A^*) = \pi(g) A^* = x A^*$. \qed

2.6. The homoclinic group

Let (X, α) be an algebraic dynamical system with acting group Γ. The set of points in X that are homoclinic to 0_X with respect to α is a $\mathbb{Z}[\Gamma]$-submodule $\Delta(X, \alpha) \subset X$, which is called the *homoclinic group* of (X, α) (cf. [19], [20]). Note that $x \in \Delta(X, \alpha)$ if and only if $\lim_{\gamma \to \infty} \gamma x = 0_X$. We can choose a compatible metric d on X that is translation-invariant so that

$$d(\gamma x, \gamma y) = d(\gamma x - \gamma y, 0_X) = d(\gamma(x - y), 0_X)$$

for all $x, y \in X$ and $\gamma \in \Gamma$. We deduce that x and y are homoclinic if and only if $x - y \in \Delta(X, \alpha)$.

Lemma 2.3. Let Γ be a countable group, $k \in \mathbb{N}$, and let $x \in (\mathbb{T}^k)^\Gamma$. The following conditions are equivalent.
(a) \(x \in \Delta((\mathbb{P}^k)^\Gamma, \sigma) \);
(b) \(\lim_{\gamma \to \infty} x(\gamma) = 0_{\mathbb{P}^k} \);
(c) there exists \(g \in C_0(\Gamma)^k \) such that \(x = \pi(g) \).

Proof. Suppose (a). Then \(\lim_{\gamma \to \infty} \gamma x(\gamma) = 0 \).

This shows (a) \(\iff \) (b).

Conversely, suppose (b). Let \(W \) be a neighborhood of \(0_{\mathbb{P}^k} \) in \((\mathbb{P}^k)^\Gamma \) and let us show that there exists a finite subset \(\Omega \subset \Gamma \) such that \((2.10) \gamma x(\omega) \in W \) for all \(\gamma \in \Gamma \setminus \Omega \).

By definition of the product topology, we can find a neighborhood \(V \) of \(0 \) in \(\mathbb{P}^k \) and a finite subset \(\Omega_1 \subset \Gamma \) such that \(y(\omega) \in V \) for all \(\omega \in \Omega_1 \).

On the other hand, since \(\lim_{\gamma \to \infty} x(\gamma) = 0_{\mathbb{P}^k} \), we can find a finite subset \(\Omega_2 \subset \Gamma \) such that \((2.11) x(\gamma) \in V \) for all \(\gamma \in \Gamma \setminus \Omega_2 \).

Take \(\Omega := \Omega_1 \Omega_2^{-1} \subset \Gamma \) and suppose that \(\gamma \in \Gamma \setminus \Omega \). Then for every \(\omega_1 \in \Omega_1 \), we have that \(\gamma^{-1}\omega_1 \in \Gamma \setminus \Omega_2 \) and hence

\[\gamma x(\omega_1) = x(\gamma^{-1}\omega_1) \in V \]

by (2.11). This implies that \(\gamma x \in W \). Thus (2.10) is satisfied. This proves (b) \(\iff \) (a).

The fact that (c) implies (b) is an immediate consequence of the continuity of the quotient map \(\mathbb{R}^k \to \mathbb{R}^k/\mathbb{Z}^k = \mathbb{P}^k \). Conversely, if we assume (b), then the unique \(g \in \ell^\infty(\Gamma)^k \) such that \(-1/2 \leq g_j^\gamma < 1/2 \) and \(x_j(\gamma) = g_j^\gamma \mod 1 \) for all \(\gamma \in \Gamma \) and \(j = 1, 2, \ldots, k \), clearly satisfies (c).

\[\square \]

2.7. Connectedness of the phase space.

A non-zero element \(f \in \mathbb{Z}[\Gamma] \) is called **primitive** if there is no integer \(n \geq 2 \) that divides all coefficients of \(f \). Every nonzero element \(f \in \mathbb{Z}[\Gamma] \) can be uniquely written in the form \(f = mf_0 \) with \(m \) a positive integer and \(f_0 \) primitive. The integer \(m \) is called the **content** of \(f \). For principal algebraic dynamical systems with elementary amenable acting group we have the following criterion for connectedness of the phase space. Recall (cf. for instance [9]) that the class of **elementary amenable groups** is the smallest class of groups containing all finite groups and all Abelian groups that is closed under the operations of taking subgroups, quotiens, extensions, and direct limits.

Proposition 2.4. Let \(\Gamma \) be a countable torsion-free elementary amenable group (e.g. \(\Gamma = \mathbb{Z}^d \)). Let \(f \in \mathbb{Z}[\Gamma] \) with \(f \neq 0 \). Then the following conditions are equivalent:

(a) \(X_f \) is connected;
(b) \(f \) is primitive.
Proof. (a) ⇒ (b): Suppose that f is not primitive. Then $f = mg$ for some integer $m \geq 2$ and $g \in \mathbb{Z}[\Gamma]$. By [15, Theorem 1.4] the ring $\mathbb{Q}[\Gamma]$ is a domain. If $g = hf$ for some $h \in \mathbb{Z}[\Gamma]$, then $m^{-1}f = hf$ in $\mathbb{Q}[\Gamma]$, and hence $h = m^{-1}1\Gamma$, which is a contradiction. Thus $g + \mathbb{Z}[\Gamma]f$ is a nonzero element of $\mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f$, while $m(g + \mathbb{Z}[\Gamma]f) = 0$. Therefore $g + \mathbb{Z}[\Gamma]f$ is a nonzero torsion element of M_f, and hence X_f is not connected.

(b) ⇒ (a): Suppose that f is primitive and that X_f is not connected. Then M_f has torsion, so that there exists $a \in M_f$ with finite order $n \geq 2$. Replacing a by some integral multiple of a, we may assume that n is a prime number p. Write $a = g + \mathbb{Z}[\Gamma]f$ for some $g \in \mathbb{Z}[\Gamma]$. Then $pg = hf$ for some $h \in \mathbb{Z}[\Gamma]$. Denote by ψ the natural ring morphism $\mathbb{Z}[\Gamma] \to (\mathbb{Z}/p\mathbb{Z})[\Gamma]$ obtained by reducing coefficients modulo p. Then $\psi(h)\psi(f) = 0$. By [15, Theorem 1.4], the ring $(\mathbb{Z}/p\mathbb{Z})[\Gamma]$ is a domain. Since f is primitive, $\psi(f) \neq 0$. Thus $\psi(h) = 0$, i.e. $h = pw$ for some $w \in \mathbb{Z}[\Gamma]$. Then $pg = hf = pwf$, and hence $g = wf \in \mathbb{Z}[\Gamma]$. This means that $a = 0$, which is a contradiction. \hfill \Box

3. Weak forms of expansivity for algebraic actions

In this section we present and study weak forms of expansivity for algebraic actions. This applies in particular to the harmonic models introduced in [32] (see also [4]).

3.1. p-expansive algebraic actions and p-homoclinic groups. In this section we review the notions of p-expansive algebraic actions and of p-homoclinic groups introduced by Chung and the third named author in [10, Sections 4 and 5].

Let Γ be a countable group acting by automorphisms of a compact metrizable Abelian group X. Let also $1 \leq p \leq \infty$.

For $x \in X$ and $\chi \in \hat{X}$, define the function $\Psi'_{x,\chi}$ on Γ by setting

$$\Psi'_{x,\chi}(\gamma) = e^{2\pi i \langle \gamma x, \chi \rangle} - 1,$$

for all $\gamma \in \Gamma$.

One then says that the algebraic dynamical system (X, α) is p-expansive provided there exists a finite subset $W \subset \hat{X}$ and $\varepsilon > 0$ such that 0_X is the only point $x \in X$ satisfying

$$\sum_{\chi \in W} \| \Psi'_{x,\chi} \|_p < \varepsilon.$$

The following collects the main properties of p-expansivity.

Theorem 3.1 ([10] Proposition 4.3 and Theorem 4.11]). Let (X, Γ, α) be an algebraic dynamical system. Let $1 \leq p \leq \infty$. Then the following hold:

1. If α is p-expansive, then it is q-expansive for all $1 \leq q \leq p$.
2. If α is p-expansive, then \hat{X} is a finitely generated left $\mathbb{Z}[\Gamma]$-module.
3. If α is p-expansive, then for any finite subset $W \subset \hat{X}$ generating \hat{X} as a left $\mathbb{Z}[\Gamma]$-module, there exists $\varepsilon > 0$ such that 0_X is the only point $x \in X$ satisfying (3.2).
4. α is ∞-expansive if and only if it is expansive.
(5) Let \(k, n \in \mathbb{N} \) and \(A \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \). Then \(\alpha_A \) is \(p \)-expansive if an only if the \(\mathbb{R}[\Gamma] \)-morphism \(\varphi(\Gamma)^k \to \varphi(\Gamma)^n \) sending \(g \) to \(gA^* \) is injective. Moreover, if in addition, \(\Gamma \) is amenable, then the following conditions are equivalent:

(a) the topological entropy of \((X_A, \alpha_A)\) is finite;
(b) \(\alpha_A \) is 1-expansive;
(c) \(\alpha_A \) is 2-expansive;
(d) the \(\mathbb{Z}[\Gamma] \)-morphism \(\mathbb{Z}[\Gamma]^k \to \mathbb{Z}[\Gamma]^n \) sending \(g \) to \(gA^* \) is injective;
(e) the \(\mathbb{R}[\Gamma] \)-morphism \(\mathbb{R}[\Gamma]^k \to \mathbb{R}[\Gamma]^n \) sending \(g \) to \(gA^* \) is injective.

We now recall the definitions of a \(p \)-homoclinic point and of the \(p \)-homoclinic group (cf. [10] Section 5). Let \(\Gamma \) be a countable group acting by automorphisms of the compact metrizable Abelian group \(X \) and let \(1 \leq p < \infty \). One says that a point \(x \in X \) is \(p \)-homoclinic provided that \(\Psi_{x, \Gamma} \in \ell^p(\Gamma) \) for all \(\chi \in \hat{X} \). Let then \(\Delta^p(X, \alpha) \) denote the set of all \(p \)-homoclinic points of \(X \). This is called the \(p \)-homoclinic group (cf. Theorem 3.2(2)) of the algebraic dynamical system \((X, \alpha)\). Also one sets \(\Delta^\infty(X, \alpha) := \Delta(X, \alpha) \). Note that for \(p = 1 \), the set \(\Delta^1(X, \alpha) \) was studied in [32] and [21]. Here below we collect some basic properties of the \(p \)-homoclinic groups.

Theorem 3.2 ([10] Proposition 5.2, Lemma 5.3, and Lemma 5.4). Let \(\Gamma \) be a countable group acting by automorphisms of the compact metrizable Abelian group \(X \) and let \(1 \leq p \leq \infty \). Then the following hold:

(1) One has \(\Delta^p(X, \alpha) \subset \Delta^q(X, \alpha) \) for all \(p \leq q \leq \infty \).
(2) \(\Delta^p(X, \alpha) \) is a \(\Gamma \)-invariant subgroup of \(X \).
(3) If \(\alpha \) is \(p \)-expansive, then \(\Delta^p(X, \alpha) \) is countable.
(4) If \(\mathbb{Z}[\Gamma] \) is left Noetherian and \(\alpha \) is \(p \)-expansive, then \(\Delta^p(X, \alpha) \) is a finitely generated left \(\mathbb{Z}[\Gamma] \)-module.
(5) Assume that \(p < \infty \) and let \(k, n \in \mathbb{N} \) and \(A \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \). If \(\alpha_A \) is \(p \)-expansive, then \(\Delta^p(X_A, \alpha_A) \) is isomorphic to a \(\mathbb{Z}[\Gamma] \)-submodule of \(\mathbb{Z}[\Gamma]^n / \mathbb{Z}[\Gamma]^k A^* \). If, in addition, the \(\mathbb{R}[\Gamma] \)-morphism \(\varphi(\Gamma)^k \to \varphi(\Gamma)^n \) sending \(g \) to \(gA^* \) is invertible, then \(\Delta^p(X_A, \alpha_A) \) is isomorphic to \(\mathbb{Z}[\Gamma]^n / \mathbb{Z}[\Gamma]^k A^* \).

3.2. Homoclinically expansive actions

In this section we introduce and study a new form of weak expansivity for dynamical systems.

Definition 3.3. Let \((X, \alpha)\) be a dynamical system with acting group \(\Gamma \). One says that the action is **homoclinically expansive** if there exists a constant \(\varepsilon_0 > 0 \) such that, for each pair of distinct homoclinic points \(x, y \in X \), there exists an element \(\gamma \in \Gamma \) such that \(d(\gamma x, \gamma y) > \varepsilon_0 \), where \(d \) is any compatible metric on \(X \). Such a constant \(\varepsilon_0 \) is then called a **homoclinic-expansivity constant** for \((X, \alpha, d)\).

Note that the fact that \((X, \alpha)\) is homoclinically expansive is in fact independent of the choice of the metric \(d \) by compactness of \(X \). A pseudometric \(\tilde{d} \) on \(X \) is said to be **dynamically-generating** if for all distinct \(x, y \in X \) there is \(\gamma \in \Gamma \) such that \(\tilde{d}(\gamma x, \gamma y) > 0 \) (cf. [13] Definition 9.35). Now, given a dynamically-generating continuous pseudometric.
\(\tilde{d} \) on \(X \), we can define a compatible metric \(d \) on \(X \) by setting
\[
d(x, y) = \sum_{n=0}^{\infty} \frac{1}{2^n} \tilde{d}(\gamma_n x, \gamma_n y),
\]
where \(\gamma_0 = 1, \gamma_1, \ldots \) is an enumeration of the elements of \(\Gamma \). Then
\[
\sup_{\gamma \in \Gamma} \tilde{d}(\gamma x, \gamma y) = \sup_{\gamma \in \Gamma} d(\gamma x, \gamma y) \leq 2 \sup_{\gamma \in \Gamma} \tilde{d}(\gamma x, \gamma y)
\]
for all \(x, y \in X \). Thus in Definition 3.3 we may take \(d \) to be any dynamically-generating continuous pseudometric on \(X \).

In the following, we study homoclinic expansivity for algebraic actions. Let \((X, \alpha)\) be an algebraic dynamical system with acting group \(\Gamma \).

For any \(t \in \mathbb{R} \), we set \(|t + \mathbb{Z}| := \min_{m \in \mathbb{Z}} |t + m| \). More generally, for \(k \in \mathbb{N} \) and \(t = (t_1, t_2, \ldots, t_k) \in \mathbb{R}^k \) we set
\[
(3.3) \quad |t + \mathbb{Z}^k| := \max_{1 \leq j \leq k} |t_j + \mathbb{Z}|.
\]

Given \(x \in X \) and \(\chi \in \hat{X} \), define a function \(\Psi_{x, \chi} \) on \(\Gamma \) by setting
\[
(3.4) \quad \Psi_{x, \chi}(\gamma) = |\langle \gamma x, \chi \rangle|,
\]
for all \(\gamma \in \Gamma \).

As a comparison between (3.1) and (3.4), note that there is some constant \(C > 0 \) such that
\[
C |t| \leq |e^{2\pi i t} - 1| \leq C^{-1} |t|
\]
for all \(t \in [-1/2, 1/2] \). It follows that, for all \(1 \leq p \leq \infty \),
\[
C \|\Psi_{x, \chi}\|_p \leq \|\Psi'_{x, \chi}\|_p \leq C^{-1} \|\Psi_{x, \chi}\|_p.
\]

It is easy to see that for any \(x \in X \), one has that \(x \in \Delta(X, \alpha) \) if and only if \(\Psi_{x, \chi} \in C_0(\Gamma) \) for all \(\chi \in \hat{X} \).

Proposition 3.4. Let \((X, \alpha)\) be an algebraic dynamical system with acting group \(\Gamma \). Then the following conditions are equivalent:
(a) the action \(\alpha \) is homoclinically expansive;
(b) there exist a finite subset \(W \) of \(\hat{X} \) and \(\varepsilon > 0 \) such that \(0_X \) is the only point \(x \) in \(\Delta(X, \alpha) \) satisfying
\[
(3.5) \quad \sum_{\chi \in W} \|\Psi_{x, \chi}\|_\infty < \varepsilon.
\]

Proof. Take a function \(h \in \ell^1(\hat{X}) \) such that \(h(\chi) > 0 \) for every \(\chi \in \hat{X} \). Consider the compatible metric \(\rho \) on \(X \) defined by
\[
\rho(x, y) = \sum_{\chi \in \hat{X}} h(\chi) \langle x, \chi \rangle - \langle y, \chi \rangle = \sum_{\chi \in \hat{X}} h(\chi) |\langle x - y, \chi \rangle|.
\]
Assume that (b) holds with W and ε and let us set $\varepsilon_0 := \varepsilon \min_{\chi \in W} h(\chi)/|W|$. Let (x, y) be a homoclinic pair of X with $\sup_{\gamma \in \Gamma} \rho(\gamma x, \gamma y) < \varepsilon_0$. Note that

$$\sup_{\gamma \in \Gamma} \rho(\gamma x, \gamma y) = \sup_{\gamma \in \Gamma} \sum_{\chi \in \widehat{X}} h(\chi) |\langle \gamma x - \gamma y, \chi \rangle|$$

$$= \sup_{\gamma \in \Gamma} \sum_{\chi \in \widehat{X}} h(\chi) \Psi_{x-y, \chi}(\gamma)$$

$$\geq \sup_{\gamma \in \Gamma} (\min_{\chi \in W} h(\chi)) \sum_{\chi \in W} \Psi_{x-y, \chi}(\gamma)$$

$$\geq \frac{\min_{\chi \in W} h(\chi)}{|W|} \sum_{\chi \in W} \|\Psi_{x-y, \chi}\|_{\infty}.$$

Thus $\sum_{\chi \in W} \|\Psi_{x-y, \chi}\|_{\infty} < \varepsilon$, and hence $x = y$. This shows that ε_0 is a homoclinic-expansivity constant for (X, α), and $(b) \Rightarrow (a)$ follows.

Now assume that (a) holds and let $\varepsilon_0 > 0$ be a homoclinic-expansivity constant for (X, α). Take a finite subset W of \widehat{X} such that $\sum_{\chi \in \widehat{X} \setminus W} h(\chi) < \varepsilon_0/2$ and set $\varepsilon := \varepsilon_0/(2 \max_{\chi \in W} h(\chi))$. Let $x \in \Delta(X, \alpha)$ with $\sum_{\chi \in W} \|\Psi_{x, \chi}\|_{\infty} < \varepsilon$.

Then

$$\sup_{\gamma \in \Gamma} \rho(\gamma x, \gamma 0_X) = \sup_{\gamma \in \Gamma} \sum_{\chi \in \widehat{X}} h(\chi) \Psi_{x, \chi}(\gamma)$$

$$\leq \varepsilon_0/2 + \sup_{\gamma \in \Gamma} \sum_{\chi \in W} h(\chi) \Psi_{x, \chi}(\gamma)$$

$$\leq \varepsilon_0/2 + (\max_{\chi \in W} h(\chi)) \sum_{\chi \in W} \|\Psi_{x, \chi}\|_{\infty}$$

$$< \varepsilon_0,$$

and hence $x = 0_X$. This shows that $(a) \Rightarrow (b)$. \qed

Proposition 3.5. Let (X, Γ, α) be an algebraic dynamical system. Suppose that α is homoclinically expansive and \widehat{X} is finitely generated (as a left $\mathbb{Z}[\Gamma]$-module). Then the following hold:

(1) α is p-expansive for all $1 \leq p < \infty$;

(2) for any finite subset W of \widehat{X} generating \widehat{X} as a left $\mathbb{Z}[\Gamma]$-module, there exists $\varepsilon > 0$ such that 0_X is the only point x in $\Delta(X, \alpha)$ satisfying $\sum_{\chi \in W} \|\Psi_{x, \chi}\|_{\infty} < \varepsilon$.

Proof. Note that for any $x \in X$, $\chi, \chi' \in \widehat{X}$, and $u, v \in \mathbb{Z}[\Gamma]$ we have

$$\|\Psi_{x, u\chi + v\chi'}\|_q \leq \|u\|_1 \|\Psi_{x, \chi}\|_q + \|v\|_1 \|\Psi_{x, \chi'}\|_q$$

for all $1 \leq q \leq \infty$.

(1) Since α is homoclinically expansive, by virtue of Proposition 3.4 we can find a finite subset W of \widehat{X} and $\varepsilon > 0$ satisfying (3.3). Enlarging W if necessary, we may assume that W generates \widehat{X} as a left $\mathbb{Z}[\Gamma]$-module. Let $1 \leq p < \infty$. If $x \in X$ and $\sum_{\chi \in W} \|\Psi_{x, \chi}\|_p < \varepsilon$, then...
then from (3.6) we know that \(x \in \Delta^p(X,\alpha) \subset \Delta(X,\alpha) \), and using \(\sum_{x \in W} \|\Psi_x\|_p < \varepsilon \), we conclude that \(x = 0_X \). Therefore \(\alpha \) is \(p \)-expansive.

(2) follows from Proposition 3.3 and (3.6). □

For finitely presented (e.g. principal) algebraic actions we have the following characterization of homoclinic expansivity (compare with Theorem 3.1.(5)).

Theorem 3.6. Let \(\Gamma \) be a countable group. Let \(k,n \in \mathbb{N} \) and \(A \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \). Then the following conditions are equivalent:

(a) \((X_A,\alpha_A) \) is homoclinically expansive;

(b) the linear map \(C_0(\Gamma)^k \to C_0(\Gamma)^n \) sending \(g \) to \(gA^* \) is injective.

Proof. For \(x \in X_A \) consider the function \(\Phi_x \in \ell^\infty(\Gamma) \) defined by \(\Phi_x(\gamma) := |x\gamma| \) for all \(\gamma \in \Gamma \), where \(| \cdot | \) is as in (3.3).

Assume that (b) fails. Then \(gA^* = 0 \) for some nonzero \(g \in C_0(\Gamma)^k \). As a consequence, for all \(\lambda \in \mathbb{R} \) one also has \(\lambda gA^* = 0 \) and hence \(\pi(\lambda g) \in \Delta(X_A,\alpha_A) \), by Proposition 2.2 and Lemma 2.3. Let \(W \subset \hat{X}_A \) denote the image of the canonical basis of \(\mathbb{Z}[\Gamma]^k \) under the quotient map \(\mathbb{Z}[\Gamma]^k \to \mathbb{Z}[\Gamma]^k/\mathbb{Z}[\Gamma]^n \). Note that \(W \) then generates \(\hat{X}_A \) as a left \(\mathbb{Z}[\Gamma] \)-module. When \(\lambda \to 0 \), one has \(\|\Phi_x(\lambda g)\|_\infty \to 0 \), and hence \(\sum_{x \in W} \|\Phi_x(\lambda g)\|_1 \to 0 \). Since \(g \neq 0 \), when \(|\lambda| \) is sufficiently small and nonzero, \(\pi(\lambda g) \neq 0_{X_A} \). From Proposition 3.3(2), we deduce that \((X_A,\alpha_A) \) is not homoclinically expansive. This shows (a) \(\implies \) (b).

Now assume that (b) holds so that, in particular, \(A \neq 0 \). Let \(d \) be a translation-invariant compatible metric on \(X_A \). Then there is some \(\varepsilon_0 > 0 \) such that for any \(x \in X_A \) with \(d(x,0_{X_A}) \leq \varepsilon_0 \), one has \(|x_{1_{\Gamma}}| < 1/(2\|A\|_1) \). Let \(x,y \in X_A \) be two homoclinic points with \(\max_{\gamma \in \Gamma} d(\gamma x,\gamma y) \leq \varepsilon_0 \). Then \(x - y \in \Delta(X_A,\alpha_A) \), and for any \(\gamma \in \Gamma \) we have \(d(\gamma(x-y),0_{X_A}) \leq \varepsilon_0 \), and hence \(|(x-y)_{\gamma^{-1}}| = |(\gamma(x-y))_{1_{\Gamma}}| < 1/(2\|A\|_1) \). Let \(g \) be the unique element of \(\ell^\infty(\Gamma)^k \) satisfying \(\|g\|_\infty \leq 1/(2\|A\|_1) \) and \(\pi(g) = x - y \). Since \(x - y \) is in \(\Delta(X_A,\alpha_A) \), we have \(g \in C_0(\Gamma)^k \). It follows that \(\|gA^*\|_\infty \leq \|g\|_\infty \|A\|_1 \leq 1/2 \) and, by Proposition 2.2, \(gA^* \in \ell^\infty(\Gamma,\mathbb{Z}) \). Therefore, \(gA^* = 0 \). By (b) we have \(g = 0 \), and hence \(x = y \). This shows that \(\varepsilon_0 \) is a homoclinic expansivity constant for \((X_A,\alpha_A) \), and (b) \(\implies \) (a) follows as well. □

Note that when \(n = k = 1 \) and \(A = f \in \mathbb{Z}[\Gamma] \), condition (b) in Theorem 3.6 (and therefore homoclinic expansivity of \(\alpha_f \)) is equivalent to (we-1) in Definition 1.1.

Proposition 3.7. Let \(\Gamma \) be a countable group. Let \(k,n \in \mathbb{N} \) and \(A \in \text{Mat}_{n,k}(\mathbb{Z}[\Gamma]) \) and suppose that \((X_A,\alpha_A) \) is homoclinically expansive. Then \(\Delta(X_A,\alpha_A) \) is isomorphic to a left \(\mathbb{Z}[\Gamma] \)-submodule of \(\mathbb{Z}[\Gamma]^n/\mathbb{Z}[\Gamma]^kA^* \).

Proof. For each \(x \in \Delta(X_A,\alpha_A) \), take \(\tilde{x} \in C_0(\Gamma)^k \) with \(\pi(\tilde{x}) = x \) (cf. Lemma 2.3). Then, by virtue of Proposition 2.2, \(\tilde{x}A^* \in \ell^\infty(\Gamma,\mathbb{Z})^n \cap C_0(\Gamma)^n = \mathbb{Z}[\Gamma]^n \). If we choose another \(\tilde{x}^i \in C_0(\Gamma)^k \) with \(\pi(\tilde{x}^i) = x \), then \(\tilde{x} - \tilde{x}^i \in \ell^\infty(\Gamma,\mathbb{Z})^k \cap C_0(\Gamma)^k = \mathbb{Z}[\Gamma]^k \), and hence \(\tilde{x}A^* - \tilde{x}^iA^* \in \mathbb{Z}[\Gamma]^kA^* \). Thus the map \(\varphi : \Delta(X_A,\alpha_A) \to \mathbb{Z}[\Gamma]^n/\mathbb{Z}[\Gamma]^kA^* \) sending \(x \) to \(\tilde{x}A^* + \mathbb{Z}[\Gamma]^kA^* \) is well defined. Clearly, \(\varphi \) is a left \(\mathbb{Z}[\Gamma] \)-module morphism. Let \(x \in \ker(\varphi) \). Then \(\tilde{x}A^* = gA^* \), for some \(g \in \mathbb{Z}[\Gamma]^k \). By virtue of Theorem 3.6 we have \(\tilde{x} = g \) and hence \(x = 0_{X_A} \). Thus \(\varphi \) is injective. □
Examples 3.8. Here below we describe some examples of principal algebraic actions and discuss their homoclinic expansivity.

(1) Suppose that $\gamma \in \Gamma$ has infinite order and denote by $\Gamma' \cong \mathbb{Z}$ the subgroup of Γ it generates. It follows from [23, Theorem 5.1] that for any nonzero $f \in \mathbb{C}[\Gamma']$ and any nonzero $g \in C_0(\Gamma')$, one has $fg \neq 0$. Using the right-coset decomposition of Γ, it follows that for any nonzero $f \in \mathbb{Z}[\Gamma']$ and any nonzero $g \in C_0(\Gamma')$, one has $fg \neq 0$. This shows that the associated principal algebraic action α_f is homoclinically expansive. Note that if $f := 1_{\Gamma} - \gamma \in \mathbb{Z}[\Gamma']$, then f is not invertible in $\ell^1(\Gamma)$ and hence, by [11, Theorem 3.2] (cf. Theorem 3.11 below), α_f is not expansive. (cf. [10, Example 4.6].)

(2) Let $\Gamma = \mathbb{Z}^d$ and let $f \in \mathbb{R}[\Gamma]$. Note that f may be regarded, by duality, as a function on $\hat{\Gamma} = \mathbb{T}^d$. We denote by $Z(f) \subset \mathbb{T}^d$ its zero set. It follows from [24, Theorem 2.2] that $Z(f)$ is contained in the image of the intersection of $[0,1]^d$ and a finite union of hyperplanes in \mathbb{R}^d under the natural quotient map $P: \mathbb{R}^d \to \mathbb{T}^d$ if and only if $fg \neq 0$ for all nonzero $g \in C_0(\Gamma)$. From Theorem 3.6 we thus deduce that the principal algebraic action associated with $f \in \mathbb{Z}[\Gamma]$ is homoclinically expansive if and only if $Z(f)$ is contained in the image of the intersection of $[0,1]^d$ and a finite union of hyperplanes in \mathbb{R}^d under P. This is the case, for instance, if $Z(f)$ is finite. (cf. [10, Example 4.9].)

(3) Suppose that Γ contains two elements $\gamma, \gamma' \in \Gamma$ that generate a non-Abelian free subsemigroup. Consider the polynomial $f := -3 \cdot 1_{\Gamma} - (1_{\Gamma} + \gamma - \gamma^2) \gamma' \in \mathbb{Z}[\Gamma]$. It follows from an argument similar to that in [19, Example 7.2] that the associated principal algebraic action is homoclinically expansive (though not expansive by [17, Example 3.3.1] and [11, Theorem 3.2]). (cf. [10, Example 4.10].)

(4) In [10, Example 4.7] it is shown that for $\Gamma = \mathbb{Z}^d$, $d \geq 2$, the element $h = 2d - 1 - \sum_{j=1}^d (u_j + u_j^{-1}) \in \mathbb{Z}[u_1, u_1^{-1}, \ldots, u_d, u_d^{-1}] = \mathbb{Z}[\mathbb{Z}^d]$ satisfies that, for any $\frac{2d}{d-1} < p \leq +\infty$, the corresponding principal algebraic action α_h is not p-expansive. It follows from Proposition 3.5.(1) that α_h is not homoclinically expansive either.

3.3. Principal algebraic actions associated with weakly expansive polynomials.

Theorem 3.9. Let Γ be a countable group and suppose that $f \in \mathbb{Z}[\Gamma]$ is weakly expansive. Then the following hold:

(1) The element $\omega \in C_0(\Gamma)$ satisfying (we-2) in Definition 1.1 is unique and, moreover, $\omega f = 1_{\Gamma}$.

(2) $\Delta(X_f, \alpha_f)$ is dense in X_f.

(3) $\Delta(X_f, \alpha_f)$ is isomorphic to $\mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma] f^*$ as a left $\mathbb{Z}[\Gamma]$-module.

Proof. Let $\omega, \omega' \in C_0(\Gamma)$ satisfying (we-2). Then $f\omega = 1_{\Gamma} = f\omega'$ yields $f(\omega - \omega') = 0$ and condition (we-1) in Definition 1.1 infers $\omega = \omega'$. This proves uniqueness of ω. Moreover, from Lemma 2.1 and (we-2) we deduce

$$f(\omega f) = (f\omega) f = 1_{\Gamma} f = f = f 1_{\Gamma}.$$

Thus, $f(\omega f - 1_{\Gamma}) = 0$, and, again by (we-1), we get $\omega f = 1_{\Gamma}$. This shows (1).
In order to prove (2), let now \(a \in \mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma] f \) with \(\langle a, \pi(\gamma \omega^*) \rangle = 0 \) for all \(\gamma \in \Gamma \) (where \(\pi: \ell^\infty(\Gamma) \to \mathbb{T}^\Gamma \) is as in Subsection 2.3). Write \(a = g + \mathbb{Z}[\Gamma] f \) for some \(g \in \mathbb{Z}[\Gamma] \). Then

\[
0 = \langle a, \pi(\gamma \omega^*) \rangle \\
= \sum_{\delta \in \Gamma} (\gamma \omega^*)_\delta g_\delta + \mathbb{Z} \\
= \sum_{\delta \in \Gamma} (\gamma \omega^*)_\delta (g^*)_\delta + \mathbb{Z} \\
= (\gamma \omega^* g^*)_1 + \mathbb{Z} \\
= (\omega^* g^*)_{\gamma - 1} + \mathbb{Z} \\
= (g \omega)_{\gamma} + \mathbb{Z}
\]

for all \(\gamma \in \Gamma \). Thus \(h := g \omega \) lies in \(\ell^\infty(\Gamma, \mathbb{Z}) \). Since \(\omega \in C_0(\Gamma) \) and \(g \in \mathbb{Z}[\Gamma] \), one has \(g \omega \in C_0(\Gamma) \). Therefore \(h \in \ell^\infty(\Gamma, \mathbb{Z}) \cap C_0(\Gamma) = \mathbb{Z}[\Gamma] \). Using Lemma 2.1 and (1) it follows that

\[
hf = (g \omega) f = g(\omega f) = g 1_\Gamma = g,
\]

and hence \(g = hf \in \mathbb{Z}[\Gamma] f \), which means that \(a = 0 \). By Lemma 2.3 we have \(\{ \pi(\gamma \omega^*) : \gamma \in \Gamma \} \subset \Delta(X_f, \alpha_f) \) and by Pontryagin duality we conclude that \(\Delta(X_f, \alpha_f) \) is dense in \(X_f \).

We are only left to prove (3). In the proof of Proposition 3.7 (here we take \(n = k = 1 \) and \(A = f \)) we have defined an injective left \(\mathbb{Z}[\Gamma] \)-module morphism \(\varphi: \Delta(X_f, \alpha_f) \to \mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma] f^* \) sending \(x \) to \(\hat{x} f^* + \mathbb{Z}[\Gamma] f^* \). Let us show that \(\varphi \) is surjective. Let \(h \in \mathbb{Z}[\Gamma] \). Using (we-2) and Lemma 2.1 we deduce that

\[
\varphi(h \pi(\omega^*)) = \varphi(h \omega^*) f^* + \mathbb{Z}[\Gamma] f^* = h(\omega^* f^*) + \mathbb{Z}[\Gamma] f^* \\
= h(f \omega)^* + \mathbb{Z}[\Gamma] f^* = h 1_\Gamma + \mathbb{Z}[\Gamma] f^* = h + \mathbb{Z}[\Gamma] f^*.
\]

This shows that \(\varphi \) is indeed an isomorphism. \(\square \)

It follows from the proof of Theorem 3.9 (3) and the notation therein that the cyclic \(\mathbb{Z}[\Gamma] \)-module \(\Delta(X_f, \alpha_f) \) is generated by the element \(x^\Delta := \pi(\omega^*) \in \Delta(X_f, \alpha_f) \), called the fundamental homoclinic point of \((X_f, \alpha_f) \) (cf. 19).

Let \((X, \alpha) \) be an algebraic dynamical system with an infinite acting group \(\Gamma \) and denote by \(\mu \) the Haar probability measure on \(X \). Let \(r \in \mathbb{N} \) with \(r \geq 2 \). One says that \((X, \alpha) \) is mixing of order \(r \) if, for all measurable subsets \(B_1, B_2, \ldots, B_r \subset X \), one has

\[
\mu(\gamma_1 B_1 \cap \gamma_2 B_2 \cap \cdots \cap \gamma_r B_r) \longrightarrow \mu(B_1) \mu(B_2) \cdots \mu(B_r)
\]

as \(\gamma_i^{-1} \gamma_j \to \infty \) in \(\Gamma \) for all \(1 \leq i < j \leq r \). If \((X, \alpha) \) is mixing of order \(r \) = 2, one simply says that \((X, \alpha) \) is mixing. Note that every mixing algebraic dynamical system is ergodic. If \((X, \alpha) \) is mixing of order \(r \) for all \(r \geq 2 \), one then says that \((X, \alpha) \) is mixing of all orders.

Observe that if \(A \) is a compact metrizable Abelian group and \(\Gamma \) is any infinite countable group, then the \(\Gamma \)-shift \((A^\Gamma, \sigma) \) is mixing of all orders since (3.7) is trivially satisfied when the \(B_i \)s are cylinders, for all \(r \geq 2 \).
It follows from [4, Proposition 4.6] that an algebraic dynamical system \((X, \alpha)\) admitting a dense homoclinic group is mixing of all orders. From Theorem 3.9(2) we then deduce the following:

Corollary 3.10. Let \(\Gamma\) be an infinite countable group and suppose that \(f \in \mathbb{Z}[\Gamma]\) is weakly expansive. Then the associated algebraic dynamical system \((X_f, \alpha_f)\) is mixing of all orders.

3.4. Expansive principal algebraic actions

The following result is due to Deninger and Schmidt [11, Theorem 3.2] (see also [20, Theorem 5.1]).

Theorem 3.11. Let \(\Gamma\) be a countable group and \(f \in \mathbb{Z}[\Gamma]\). Then the following conditions are equivalent:

1. The dynamical system \((X_f, \alpha_f)\) is expansive;
2. \(f\) is invertible in \(\ell^1(\Gamma)\).

For other characterizations of expansivity for algebraic dynamical systems we refer to [30, 31] (for \(\Gamma = \mathbb{Z}^d, d \in \mathbb{N}\), [20] (for \(\Gamma\) Abelian), [12] (for \((X, \alpha)\) finitely presented), [2] (for \(X\) connected and finite-dimensional), and [10, Theorem 3.1].

As observed in [20], if \(f\) is lopsided, i.e., there exists an element \(\gamma_0 \in \Gamma\) such that \(|f_{\gamma_0}| > \sum_{\gamma \neq \gamma_0} |f_{\gamma}|\), then \(f\) is invertible in \(\ell^1(\Gamma)\). On the other hand, there are \(f \in \mathbb{Z}[\Gamma]\) invertible in \(\ell^1(\Gamma)\) that are not lopsided. For instance, if we take \(\Gamma = \mathbb{Z}\), then the polynomial \(u^2 - u - 1 \in \mathbb{Z}[\Gamma] = \mathbb{Z}[u, u^{-1}]\) is not lopsided although it is invertible in \(\ell^1(\Gamma)\) (the associated principal algebraic dynamical system is conjugate to the \(\mathbb{Z}\)-system generated by Arnold’s cat map \((x_1, x_2) \mapsto (x_2, x_1 + x_2)\) on the 2-dimensional torus \(T^2\), see e.g. [31, Example 2.18.(2)]).

The following result justifies our terminology for weakly expansive polynomials.

Corollary 3.12. Let \(\Gamma\) be a countable group and \(f \in \mathbb{Z}[\Gamma]\). Suppose that the dynamical system \((X_f, \alpha_f)\) is expansive. Then \(f\) is weakly expansive.

Proof. Expansivity of \((X_f, \alpha_f)\) implies, by Theorem 3.11, that \(f\) is invertible in \(\ell^1(\Gamma)\). Then \(\omega : = f^{-1} \in \ell^1(\Gamma) \subset C_0(\Gamma)\) yields (we-2) in Definition 1.1.

Let now \(g \in C_0(\Gamma)\) and suppose that \(fg = 0\). Then, recalling (2.2), we deduce that

\[0 = \omega 0 = \omega(fg) = (\omega f)g = 1_{\Gamma}g = g,\]

and (we-1) follows as well. \(\square\)

3.5. Harmonic models

Let \(f \in \mathbb{Z}[\Gamma]\) be well-balanced. It follows from (2.3) that \(x \in \mathbb{T}^\Gamma\) belongs to \(X_f\) if and only if \(x\) satisfies the harmonicity equation (mod 1)

\[\sum_{\eta \in \Gamma} f_\eta x(\gamma \eta) = 0,\]

for all \(\gamma \in \Gamma\). This explains the terminology. Note that for \(\Gamma = \mathbb{Z}^d\), the polynomial \(f \in \mathbb{Z}[\Gamma] = \mathbb{Z}[u, u^{-1}, \ldots, u_d, u_d^{-1}]\) given by

\[f = 2d - \sum_{i=1}^{d} (u_i + u_i^{-1}),\]
is well-balanced and the corresponding harmonicity equation is the discrete analogue of the Laplace equation (cf. Eq. (4.5) in [32]).

Lemma 3.13. Let Γ be a countable infinite group and $f \in \mathbb{R}[\Gamma]$. Suppose that f is well-balanced. Then the map $g \mapsto fg$ from $C_0(\Gamma)$ to $C_0(\Gamma)$ is injective. In particular, harmonic models are homoclinically expansive.

Proof. Set

$$
\mu := 1_{\Gamma} - \frac{1}{f_{1_{\Gamma}}} f \in \mathbb{R}[\Gamma].
$$

Then μ is a probability measure on Γ which is symmetric and its support $S := \text{supp}(\mu)$ generates Γ as a semigroup, by (wb-1), (wb-3), and (wb-4), respectively.

In order to show (we-1) we apply the maximum principle. Let $g \in C_0(\Gamma)$ and suppose that $fg = 0$, equivalently, $\mu g = g$. Set $M := \max_{s \in \Gamma} |gs|$ and observe that $A := \{ \gamma \in \Gamma : |g_\gamma| = M \}$ is non-empty. Moreover, if $\gamma \in A$ one has, using the triangle inequality and the properties of μ we alluded to above,

$$
M = |g_\gamma| = |(\mu g)_\gamma| \leq \sum_{\delta \in S} \mu_{\delta^{-1}} |gs_\delta| \leq \sum_{\delta \in S} M \mu_\delta = M,
$$

forcing $|gs_\delta| = M$ for all $\delta \in S$. This shows that $SA \subset A$. A recursive argument immediately shows that $S^n A \subset A$ for all $n \in \mathbb{N}$. Since S generates Γ as a semigroup, we get that $A = \Gamma$. In other words, $|g|$ is a constant function. As $g \in C_0(\Gamma)$, we conclude that $g = 0$.

The last statement follows immediately after Theorem 3.6. \qed

In the arguments preceding Lemma 4.8 in [4] it is shown that if Γ is a countable infinite group which is not virtually \mathbb{Z} or \mathbb{Z}^2 and $f \in \mathbb{Z}[\Gamma]$ is well-balanced, then

$$
\omega := \frac{1}{f_{1_{\Gamma}}} \sum_{k=0}^{\infty} \mu^k \in C_0(\Gamma),
$$

where μ is as in (3.8), satisfies that $f\omega = 1_{\Gamma}$, so that (we-2) holds. Combining this with Lemma 3.13 we deduce:

Proposition 3.14. Let Γ be a countable infinite group that is not virtually \mathbb{Z} or \mathbb{Z}^2. Then every balanced polynomial $f \in \mathbb{Z}[\Gamma]$ is weakly expansive.

Remark 3.15. It is a well known fact in the theory of Markov chains (cf. for instance [36] Definition 1.14]) that the sum in (3.9) expressing ω is (pointwise) convergent if and only if the random walk on Γ associated with μ is transient (i.e., given any finite subset $\Omega \subset \Gamma$, there exists $t(\Omega) \in \mathbb{N}$ such that, with probability one, the position $x(t) \in \Gamma$ of the random walker on Γ at time $t \geq t(\Omega)$ satisfies that $x(t) \in \Gamma \setminus \Omega$) and it is a deep result of Varopoulos (cf. [33], [34] and [36] Theorem 3.24]) that this is the case exactly if Γ is not virtually \mathbb{Z} or \mathbb{Z}^2.
4. Topological rigidity

4.1. Affine maps. Let X and Y be two topological Abelian groups. A map $\tau: Y \to X$ is called affine if there is a continuous group morphism $\lambda: Y \to X$ and an element $t \in X$ such that $\tau(y) = \lambda(y) + t$ for all $y \in Y$. Note that λ and t are then uniquely determined by τ since they must satisfy $t = \lambda(0_Y)$ and $\lambda(y) = \tau(y) - t$ for all $y \in Y$. One says that λ and t are respectively the linear part and the translational part of the affine map τ.

The following two obvious criteria will be useful in the sequel.

Proposition 4.1. Let (X, α) be an algebraic dynamical system and let $\tau: X \to X$ be an affine map with linear part $\lambda: X \to X$. Then the following conditions are equivalent:

(a) τ is pre-injective;
(b) λ is pre-injective;
(c) $\ker(\lambda) \cap \Delta(X, \alpha) = \{0_X\}$.

Proposition 4.2. Let (X, α) be an algebraic dynamical system and let $\tau: X \to X$ be an affine map with linear part $\lambda: X \to X$ and translational part $t \in X$. Then the following conditions are equivalent:

(a) τ is Γ-equivariant;
(b) λ is Γ-equivariant and $t \in \text{Fix}(X, \alpha)$.

4.2. Topological rigidity. One says that the algebraic dynamical system (X, α) is topologically rigid if every endomorphism $\tau: X \to X$ of (X, α) is affine.

Before stating our rigidity results, let us introduce some notation. Let $L(X)$ denote the real vector space of all group homomorphisms $\hat{X} \to \mathbb{R}$ equipped with the topology of pointwise convergence. Note that Γ acts on $L(X)$ by setting $[\gamma \psi](\chi) := \psi(\gamma^{-1} \chi)$ for all $\psi \in L(X)$ and $\chi \in \hat{X}$. Moreover, the map $E: L(X) \to X$ defined by $E(\psi)(\chi) := \psi(\chi) + \mathbb{Z}$ for all $\psi \in L(X)$ and $\chi \in \hat{X}$ is a continuous (Γ-equivariant) group homomorphism.

Theorem 4.3. Let (X, α) and (Y, β) be algebraic dynamical systems with acting group Γ. Suppose that Y is connected and that the homoclinic group $\Delta(Y, \beta)$ is dense in Y. Also suppose that (X, α) is homoclinically expansive. Then every Γ-equivariant continuous map $Y \to X$ is affine.

Proof. Let $\tau: Y \to X$ be a Γ-equivariant continuous map. By Bhattacharya’s extension of van Kampen theorem [1, Theorem 1], there are a Γ-equivariant affine map $\lambda: Y \to X$ and a Γ-equivariant continuous map $\Phi: Y \to L(X)$ such that $\Phi(0_Y) = 0$ and $\tau = \lambda + E \circ \Phi$. (Note that in the statement of [1, Theorem 1], X is assumed to be connected as well; however, in its proof, this condition is never used.) Thus it suffices to show that $\Phi = 0$. Let $y \in \Delta(Y, \beta)$ and $\chi \in \hat{X}$. For any $\gamma \in \Gamma$ we have

$$[\Phi(\gamma y)](\chi) = [\gamma \Phi(y)](\chi) = [\Phi(y)](\gamma^{-1} \chi).$$
When \(\gamma \to \infty \), we have \(\Phi(\gamma y) \to \Phi(0) = 0 \), and hence \([\Phi(y)](\gamma^{-1} \chi) \to 0\). For any \(t \in \mathbb{R} \), we have
\[
\Psi_{E(t\Phi(y)),\chi}(\gamma) = |\langle \gamma E(t\Phi(y)), \chi \rangle| = |\langle E(t\Phi(y)), \gamma^{-1} \chi \rangle| \\
\leq ||[\Phi(y)](\gamma^{-1} \chi)|| = |t| \cdot ||[\Phi(y)](\gamma^{-1} \chi)||
\]
for all \(\gamma \in \Gamma \), and hence \(\Psi_{E(t\Phi(y)),\chi} \in C_0(\Gamma) \). Therefore \(E(t\Psi(y)) \in \Delta(X, \alpha) \). Since \(\alpha \) is homoclinically expansive, by Proposition 3.4 there exist a finite subset \(W \) of \(\hat{X} \) and \(\varepsilon > 0 \) such that \(0 \) is the only point \(x \) in \(\Delta(X, \alpha) \) satisfying
\[
\sum_{\chi \in W} \| \Psi_{x,\chi} \|_\infty < \varepsilon.
\]
Set \(C := \sum_{\chi \in W} \sup_{\gamma \in \Gamma} ||[\Phi(y)](\gamma^{-1} \chi)|| < \infty \). Then
\[
\sum_{\chi \in W} \| \Psi_{E(t\Phi(y)),\chi} \|_\infty \leq |t| C.
\]
Thus for all \(t \in \mathbb{R} \) with \(|t| < \varepsilon/C \) we have \(E(t\Phi(y)) = 0 \), which means that \(t\Phi(y) \) takes integer values. It follows that \(\Phi(y) = 0 \). Since \(\Delta(Y, \beta) \) is dense in \(Y \) and \(\Phi \) is continuous, we conclude that \(\Phi = 0 \) as desired.

Corollary 4.4. Let \(\Gamma \) be a countable group. Suppose that \(f \in \mathbb{Z}[\Gamma] \) satisfies that \((X_f, \alpha_f) \) is homoclinically expansive and \(\Delta(X_f, \alpha_f) \) is dense in \(X_f \) (e.g., that \(f \) is weakly expansive), and the phase space \(X_f \) is connected. Then \((X_f, \alpha_f) \) is topologically rigid.

If, in addition, \(\Gamma \) is Abelian, then for a map \(\tau: X_f \to X_f \) the following conditions are equivalent:

(a) \(\tau \) is an endomorphism of the dynamical system \((X_f, \alpha_f) \);
(b) there exist \(r \in \mathbb{Z}[\Gamma] \) and \(t \in \text{Fix}(X_f, \alpha_f) \) such that \(\tau(x) = rx + t \) for all \(x \in X_f \).

Proof. The first statement follows immediately from Theorem 1.3 after taking \(X = Y = X_f \) (if \(f \) is weakly expansive, recall Theorem 3.6 and Theorem 3.9 (2)).

Suppose now that \(\Gamma \) is Abelian and let \(\tau: X_f \to X_f \) be a map. For each \(r \in \mathbb{Z}[\Gamma] \), the self-mapping of \(X_f \) given by \(x \mapsto rx \) is \(\Gamma \)-equivariant since \(\mathbb{Z}[\Gamma] \) is commutative. Therefore, the fact that (b) implies (a) follows from Proposition 1.2.

To prove the converse, suppose that \(\tau \) is an endomorphism of the dynamical system \((X_f, \alpha_f) \). It follows from the first statement that \(\tau \) is affine. Therefore, by using Proposition 1.2 there exist a continuous \(\mathbb{Z}[\Gamma] \)-module morphism \(\lambda: X_f \to X_f \) such that \(\tau(x) = \lambda(x) + t \) for all \(x \in X_f \). As the ring \(\mathbb{Z}[\Gamma] \) is commutative and \(\hat{X}_f = \mathbb{Z}[\Gamma]/\mathbb{Z}[\Gamma]f \) is a cyclic \(\mathbb{Z}[\Gamma] \)-module, there is \(s \in \mathbb{Z}[\Gamma] \) such that \(\hat{\lambda}(\chi) = s\chi \) for all \(\chi \in \hat{X}_f \). Since \(\lambda = \hat{\lambda} \), setting \(r := s^* \in \mathbb{Z}[\Gamma] \) it follows that \(\lambda(x) = s^*x = rx \), and hence \(\tau(x) = rx + t \), for all \(x \in X_f \).
5. Proof of Theorem 1.2

Proof of Theorem 1.2. Let Γ be a countable Abelian group and let $f \in \mathbb{Z}[\Gamma]$ be a weakly expansive polynomial such that X_f is connected. Also let τ be an endomorphism of (X_f, α_f), i.e., a Γ-equivariant continuous map $\tau : X_f \rightarrow X_f$. We want to show that τ is surjective if and only if it is pre-injective.

By Corollary 4.4, there exists $r \in \mathbb{Z}[\Gamma]$ such that τ is affine with linear part $\lambda : X_f \rightarrow X_f$ given by $\lambda(x) = rx$ for all $x \in X_f$. Clearly τ is surjective if and only if λ is. As X_f is compact, we know that surjectivity of λ is equivalent to injectivity of its Pontryagin dual $\hat{\lambda} : \hat{X}_f \rightarrow \hat{X}_f$. Now we observe that $\hat{\lambda}(\chi) = r^* \chi$ for all $\chi \in \hat{X}_f$.

As Γ is Abelian, the natural mapping $\Phi : \hat{X}_f = \mathbb{Z}[\Gamma] / \mathbb{Z}[\Gamma] f \rightarrow \mathbb{Z}[\Gamma] / \mathbb{Z}[\Gamma] f^*$ defined by $\Phi(g + \mathbb{Z}[\Gamma] f) = g^* + \mathbb{Z}[\Gamma] f^*$ for all $g \in \mathbb{Z}[\Gamma]$ is a group isomorphism. Note that $\Phi(g_1(g_2 + \mathbb{Z}[\Gamma] f)) = \Phi(g_1g_2 + \mathbb{Z}[\Gamma] f) = (g_1g_2)^* + \mathbb{Z}[\Gamma] f^* = g_1^*g_2^* + \mathbb{Z}[\Gamma] f^* = g_1^* \Phi(g_2 + \mathbb{Z}[\Gamma] f)$ for all $g_1, g_2 \in \mathbb{Z}[\Gamma]$. As a consequence, denoting by $\kappa : \hat{X}_f \rightarrow \Delta(X_f, \alpha_f)$ the composition of Φ with the $\mathbb{Z}[\Gamma]$-module isomorphism $\mathbb{Z}[\Gamma] / \mathbb{Z}[\Gamma] f^* \rightarrow \Delta(X_f, \alpha_f)$ in Theorem 3.9(3), we have the commuting diagram

\[
\begin{array}{ccc}
\hat{X}_f & \xrightarrow{\chi \mapsto r^* \chi} & \hat{X}_f \\
\kappa \downarrow & & \kappa \downarrow \\
\Delta(X_f, \alpha_f) & \xrightarrow{\chi \mapsto r^* \chi} & \Delta(X_f, \alpha_f).
\end{array}
\]

We deduce that injectivity of $\hat{\lambda}$ is equivalent to injectivity of the group endomorphism μ of $\Delta(X_f, \alpha_f)$ defined by $\mu(x) := rx$ for all $x \in \Delta(X_f, \alpha_f)$. As μ is the restriction of λ to $\Delta(X_f, \alpha_f)$, we conclude that surjectivity of τ is equivalent to pre-injectivity of τ, by using Proposition 4.1. □

From the proof of Theorem 1.2 and Proposition 3.7, we immediately deduce the following:

Corollary 5.1. Let Γ be a countable Abelian group and let $f \in \mathbb{Z}[\Gamma]$. Suppose that (X_f, α_f) is homoclinically expansive, $\Delta(X_f, \alpha_f)$ is dense in X_f, and that X_f is connected. Then (X_f, α_f) has the Moore property.

6. Atoral polynomials and proof of Theorem 1.5

Lind, Schmidt, and Verbitskiy [22, Theorem 3.2] gave the following geometric-dynamical characterization of atorality for irreducible polynomials in $\mathbb{Z}[\mathbb{Z}^d]$.

Theorem 6.1. Let $\Gamma = \mathbb{Z}^d$ and suppose that $f \in \mathbb{Z}[\Gamma]$ is irreducible. Then the following conditions are equivalent:
(a) $\Delta^1(X_f, \alpha_f) \neq \{0_X\}$;
(b) $\Delta^1(X_f, \alpha_f)$ is dense in X_f;

(a) $\Delta^1(X_f, \alpha_f) \neq \{0_X\}$;
(b) $\Delta^1(X_f, \alpha_f)$ is dense in X_f;
(c) f is atoral in the sense that there is some $g \in \mathbb{Z}[\Gamma]$ such that $g \notin \mathbb{Z}[\Gamma]f$ and $Z(f) \subset Z(g)$;
(d) $\dim Z(f) \leq d - 2$.

The meaning of $\dim(\cdot)$ in Theorem 6.1(d) is explained in [22] page 1063; in particular, one has $\dim(\emptyset) := -\infty$. Also remark that, if $d = 1$, an irreducible polynomial $f \in \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[u_1, u_1^{-1}]$ is atoral if and only if $Z(f) = \emptyset$ and this, in turn, is equivalent to (X_f, α_f) being expansive (cf. [19] Lemma 2.1.(1)).

Examples 6.2. Here below, we present some examples of irreducible atoral polynomials $f \in \mathbb{Z}[\mathbb{Z}]^2$, mainly from [21] Section 3 and [22] Section 4. We can then apply Theorem 1.6 and deduce the corresponding algebraic dynamical systems (X_f, α_f) satisfy the Garden of Eden theorem.

1. Let $d = 1$ and $f(u) = u^2 - u - 1 \in \mathbb{Z}[u, u^{-1}] = \mathbb{Z}[\mathbb{Z}]$. Then f is irreducible and, since $Z(f) = \emptyset$, atoral. The associated principal algebraic dynamical system (X_f, α_f) is conjugated to the hyperbolic dynamical system $(\mathbb{T}^2, \varphi_A)$, where $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in \text{GL}(2, \mathbb{Z})$ is *Arnold’s cat* and $\varphi_A : \mathbb{T}^2 \to \mathbb{T}^2$ is the associated hyperbolic automorphism of the two-dimensional torus. Note that (X_f, α_f) is expansive so that we can deduce the Moore-Myhill property also from Corollary 1.3 (this is a particular case of the Garden of Eden theorem for Anosov diffeomorphisms on tori [5], we alluded to in the Introduction).

2. Let $d = 2$ and $f(u_1, u_2) = 2 - u_1 - u_2 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}] = \mathbb{Z}[\mathbb{Z}]^2$. Then $Z(f) = \{(1, 1)\}$, and so f is atoral. Thus, by Example 3.8.(2), (X_f, α_f) is homoclinically expansive. Also, it follows from [21] §5 and [22] Example 4.3) that there is some ω in $C_0(\mathbb{Z}^2)$ with $f\omega = \omega f = 1\Gamma$. As a consequence, f is weakly expansive (though not well-balanced). Moreover, f is also primitive, so that, by Proposition 2.4, X_f is connected. Applying Theorem 1.2 we obtain an alternative proof of the fact that (X_f, α_f) has the Moore-Myhill property.

3. Let $d = 2$, and consider the harmonic model $f(u_1, u_2) = 4 - u_1 - u_1^{-1} - u_2 - u_2^{-1} \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}] = \mathbb{Z}[\mathbb{Z}]^2$. One has $Z(f) = \{(1, 1)\}$. Thus f is atoral and (X_f, α_f) satisfies the Garden of Eden theorem, by virtue of Theorem 1.5 (Note that we cannot apply Theorem 1.2).

4. Let $d = 2$, and $f(u_1, u_2) = 1 + u_1 + u_2 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}] = \mathbb{Z}[\mathbb{Z}]^2$. Then $Z(f) = \{(\omega, \omega^2), (\omega^2, \omega)\}$, where $\omega = \exp(2\pi i/3)$. The algebraic dynamical system (X_f, α_f) is called the connected Ledrappier shift.

5. Let $d = 2$, and $f(u_1, u_2) = 2 - u_1^2 + u_2 - u_1u_2 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}] = \mathbb{Z}[\mathbb{Z}]^2$. One has $Z(f) = \{(\xi, \eta), (\xi, \eta)\}$, where ξ, η are algebraic numbers.

6. Let $d = 2$, and $f(u_1, u_2) = 2 - u_1^2 + u_2 - u_1u_2 - u_1^2u_2 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}] = \mathbb{Z}[\mathbb{Z}]^2$. Here $Z(f) = \{(1, 1), (1, \zeta), (1, \zeta^2), (\xi, \eta)\}$. Here where ζ, ξ, η are algebraic numbers.

7. Let $d = 3$ and $f(u_1, u_2, u_3) = 1 + u_1 + u_2 + u_3 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}, u_3, u_3^{-1}] = \mathbb{Z}[\mathbb{Z}]^3$. The corresponding zero-set $Z(f)$ is the union of three circles, namely, $\{(-1, s, -s) : s \in \mathbb{T}\}$, $\{(s, -1, s) : s \in \mathbb{T}\}$, and $\{(s, -s, -1) : s \in \mathbb{T}\}$. Hence, f is atoral.
Let \(d = 3 \) and \(f(u_1, u_2, u_3) = 3 + 3u_1 - 3u_1^3 + u_1^4 - u_2 - u_3 \in \mathbb{Z}[u_1, u_1^{-1}, u_2, u_2^{-1}, u_3, u_3^{-1}] = \mathbb{Z}[\mathbb{Z}^3] \). One has has \(Z(f) = \{ (\eta, \eta, \eta), (\eta, \eta, \eta) \} \), where \(\eta \) is an algebraic integer.

We are now in position to prove Theorem 1.5

Proof of Theorem 1.5. We first note that, by Example 3.8(2), \(\alpha_f \) is homoclinically expansive. Moreover, by Theorem 6.1 \(\Delta^1(X_f, \alpha_f) \) and therefore \(\Delta(X_f, \alpha_f) \) are dense in \(X_f \). Finally, if \(f \) is irreducible it is primitive and hence (cf. Proposition 2.4) \(X_f \) is connected. Thus we may apply Corollary 4.4 and deduce that \((X_f, \alpha_f) \) is topologically rigid.

(a)\(\Rightarrow \) (b) is given by Corollary 5.1

(b)\(\Rightarrow \) (c) follows from \(\Delta^p(X_f, \alpha_f) \subset \Delta(X_f, \alpha_f) \) for all \(1 \leq p \leq \infty \) (cf. Theorem 3.2 (1)).

(c)\(\Rightarrow \) (d) this is trivial.

(d)\(\Rightarrow \) (a). Let \(\tau : X_f \to X_f \) be a \(\Gamma \)-equivariant 1-pre-injective continuous map. By topological rigidity, there exists \(r \in \mathbb{Z}[\Gamma] \) and \(t \in X_f \) such that the group endomorphism \(\lambda \) of \(X_f \) defined by setting \(\lambda(x) := rx \) for all \(x \in X_f \) satisfies that \(\tau(x) = \lambda(x) + t \) for all \(x \in X_f \). Then the dual map \(\hat{\lambda} : \hat{X}_f \to \hat{X}_f \) is given by \(\hat{\lambda}(\chi) = r^*\chi \) for all \(\chi \in \hat{X}_f \). Set \(m_f = \mathbb{Z}[\Gamma] \cap (f\ell^1(\Gamma)) \), which is an ideal of \(\mathbb{Z}[\Gamma] \). For each \(g \in m_f \), one has \(g = fv_g \) for a unique \(v_g \in \ell^1(\Gamma) \). Then \(x^{(g)} := \pi(v_g) \) lies in \(\Delta^1(X_f, \alpha_f) \), where \(\pi \) is, as usual, the projection map \(\ell^\infty(\Gamma) \to \mathbb{T}^\Gamma \). The map \(h + \mathbb{Z}[\Gamma]f \to x^{(g)} \) is clearly a group isomorphism from \(m_f/\mathbb{Z}[\Gamma]f \) onto \(\Delta^1(X_f, \alpha_f) \) (cf. [22, Corollary 3.3]). Take \(g \in m_f \setminus \mathbb{Z}[\Gamma]f \).

Since \(f \) is irreducible, the group homomorphism \(h + \mathbb{Z}[\Gamma]f \to hg + \mathbb{Z}[\Gamma]f \) from \(\hat{X}_f \) to \(m_f/\mathbb{Z}[\Gamma]f \) is injective. Thus the group homomorphism \(\pi : \hat{X}_f \to \Delta^1(X_f, \alpha_f) \) defined by \(\pi(h + \mathbb{Z}[\Gamma]f) := x^{(hg)} \) is injective. We have the commutative diagram:

\[
\begin{array}{ccc}
\hat{X}_f & \xrightarrow{x \mapsto r^*x} & \hat{X}_f \\
\downarrow \pi & & \downarrow \pi \\
\Delta^1(X_f, \alpha_f) & \xrightarrow{x \mapsto rx} & \Delta^1(X_f, \alpha_f).
\end{array}
\]

Since \(\tau \) is 1-pre-injective, so is \(\lambda \), that is, \(\lambda \) is injective on \(\Delta^1(X_f, \alpha_f) \). Hence the dual map \(\hat{\lambda} \) is injective. By Pontryagin duality, this is equivalent to \(\lambda \) being surjective. It follows that \(\tau \) is surjective as well.

\[\square\]

7. **Concluding remarks**

7.1. **Surjunctivity.** A dynamical system \((X, \alpha)\) is called surjunctive if every injective endomorphism of \((X, \alpha)\) is surjective (and hence a homeomorphism). As injectivity implies pre-injectivity, we deduce from Theorem 1.2 that if \(\Gamma \) is a countable Abelian group, \(f \in \mathbb{Z}[\Gamma] \) is weakly expansive and \(X_f \) is connected, then the dynamical system \((X_f, \alpha_f)\) is surjunctive. Actually, in the case \(\Gamma = \mathbb{Z}^d \), this last result is a particular case of Theorem 1.5 in [3] which asserts that if \(\Gamma = \mathbb{Z}^d \) and \(M \) is a finitely generated \(\mathbb{Z}[\Gamma] \)-module, then \((\hat{M}, \alpha_M)\) is surjunctive.
7.2. Counterexamples for mixing algebraic dynamical systems. Recall (cf. Corollary 3.10) that if Γ is infinite and $f \in \mathbb{Z}[\Gamma]$ is weakly expansive, then the associated algebraic dynamical system (X_f, α_f) is mixing of all orders.

The examples below show that Theorem 1.2 becomes false if the hypothesis that $f \in \mathbb{Z}[\Gamma]$ is weakly expansive is replaced by the weaker hypotheses that the homoclinic group $\Delta(X_f, \alpha_f)$ is dense and that (X_f, α_f) is mixing.

Example 7.1. Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, $\Gamma = \mathbb{Z}^d$, $d \geq 1$, and consider the Γ-shift $(\mathbb{T}^\Gamma, \sigma)$ (this is (X_f, α_f) for $f = 0 \in \mathbb{Z}[\Gamma]$). Then the endomorphism τ of $(\mathbb{T}^\Gamma, \sigma)$ defined by $\tau(x)(\gamma) = 2x(\gamma)$ for all $x \in \mathbb{T}^\Gamma$ and $\gamma \in \Gamma$, is clearly surjective. However, τ is not pre-injective since the configuration $y \in \mathbb{T}^\Gamma$, defined by $y(\gamma) = 1/2 \mod 1$ if $\gamma = 1_\Gamma$ and 0 otherwise, is a non-trivial element in the homoclinic group of $(\mathbb{T}^\Gamma, \sigma)$ and satisfies $\tau(y) = \tau(0_{\mathbb{T}^\Gamma}) = 0_{\mathbb{T}^\Gamma}$. It follows that $(\mathbb{T}^\Gamma, \sigma)$ does not have the Moore property.

Example 7.2. Let $\Gamma = \mathbb{Z}$ and consider the polynomial
$$f = 1 - 2u_1 + u_1^2 - 2u_1^3 + u_1^4 \in \mathbb{Z}[u_1, u_1^{-1}] = \mathbb{Z}[\Gamma].$$

The associated algebraic dynamical system (X_f, α_f) is conjugate to the system (\mathbb{T}^4, β), where β is the action of \mathbb{Z} on \mathbb{T}^4 generated by the companion matrix of f. It is mixing since f is not divisible by a cyclotomic polynomial (cf. [31, Theorem 6.5.(2)]). On the other hand, f has four distinct roots in \mathbb{C}, two on the unit circle, one inside and one outside. As f is irreducible over \mathbb{Q}, it follows that the homoclinic group $\Delta(X_f, \alpha_f)$ is reduced to 0 (cf. [19, Example 3.4]). The trivial endomorphism of (X_f, α_f), that maps each $x \in X_f$ to 0, is pre-injective but not surjective. Consequently, (X_f, α_f) does not have the Myhill property. However, (X_f, α_f) has the Moore property since each homoclinicity class of (X_f, α_f) is reduced to a single point, so that every map with source set X_f is pre-injective. Note that $(X_f, \alpha_f) = (\mathbb{T}^4, \beta)$ is topologically rigid since every mixing toral automorphism is topologically rigid by a result of Walters [35].

7.3. p-pre-injectivity and the p-Moore and p-Myhill properties. In Subsection 3.1 we have recalled from [10] the notions and the main properties of p-expansivity and of p-homoclinic group (denoted $\Delta^p(X, \alpha)$) for an algebraic dynamical system (X, α). In the Introduction we have also defined the notion of a p-pre-injective map $\tau: X \to X$.

Note that, if τ is a group endomorphism of X, then (cf. Proposition 4.1):

$$\tau \text{ is } p\text{-pre-injective if and only if } \ker(\tau) \cap \Delta^p(X, \alpha) = \{0_X\}.$$

We shall then say that the algebraic dynamical system (X, α) has the p-Moore property if every surjective endomorphism of (X, α) is p-pre-injective and that it has the p-Myhill property if every p-pre-injective endomorphism of (X, α) is surjective. Note that the ∞-Moore property (resp. ∞-Myhill property) is nothing but the Moore property (resp. Myhill property).

It follows immediately from Theorem 3.2(1) that if $1 \leq p \leq q \leq \infty$ the every q-pre-injective map $\tau: X \to X$ is p-pre-injective, so that every algebraic dynamical system satisfying the q-Moore property (resp. the p-Myhill property) satisfies the p-Moore property (resp. the q-Myhill property).
From the proof of Theorem 1.2 and from Theorem 3.2 (5) we immediately deduce the following:

Corollary 7.3. Let Γ be a countable Abelian group and let $f \in \mathbb{Z}[\Gamma]$. Let also $1 \leq p < \infty$. Suppose that (X_f, α_f) is p-expansive and topologically rigid. Then (X_f, α_f) has the p-Moore property.

In the following result we relax the commutativity condition for the acting group Γ.

Theorem 7.4. Let (X, α) be a finitely generated algebraic dynamical system. Suppose that Γ is amenable and that (X, α) is topologically rigid and has finite entropy. Then (X, α) has the 1-Moore property.

Proof. Let $\tau : X \to X$ be a continuous Γ-equivariant surjective map. By topological rigidity, we can find a continuous group endomorphism $\lambda : X \to X$ and $t \in X$ such that $\tau(x) = \lambda(x) + t$ for all $x \in X$. Since τ is surjective (resp. injective) if and only if λ is surjective (resp. injective), it is not restrictive to suppose that $t = 0$, that is, τ is a group endomorphism of X. Then the *entropy addition formula* (cf. [17, Corollary 6.3], see also [14, Theorem 13.48]) yields (we denote by $h(\cdot)$ topological entropy)

$$h(\ker(\tau)) = h(X) - h(X/\ker(\tau)) = h(X) - h(\tau(X)) = 0,$$

since τ is surjective and X has finite entropy. For any finitely generated algebraic dynamical system (Y, β) with acting group Γ, if $\Delta^1(Y, \beta)$ is nontrivial, then $h(Y) > 0$ (cf. [10] Theorem 7.3 and Propositions 5.7 and 7.10, see also [14] Theorems 13.23 and 13.35). Since \hat{X} is a finitely generated left $\mathbb{Z}[\Gamma]$-module and $\ker(\tau)$ is a quotient $\mathbb{Z}[\Gamma]$-module of \hat{X}, $\ker(\tau)$ is also a finitely generated left $\mathbb{Z}[\Gamma]$-module. It follows that

$$\Delta^1(X, \alpha) \cap \ker(\tau) = \Delta^1(\ker(\tau), \alpha|_{\ker(\tau)}) = \{0_X\}.$$

This, together with (7.1), shows that τ is 1-pre-injective. \qed

References

[1] S. Bhattacharya, *Orbit equivalence and topological conjugacy of affine actions on compact Abelian groups*, Monatsh. Math. 129 (2000), pp. 89–96.

[2] S. Bhattacharya, *Expansiveness of algebraic actions on connected groups*, Trans. Am. Math. Soc. 356 (12) (2004), pp. 4687–4700.

[3] S. Bhattacharya, T. Ceccherini-Silberstein, and M. Coornaert, *Surjunctivity and topological rigidity of algebraic dynamical systems*, arXiv:1702.06201, to appear in Ergodic Theory and Dynamical Systems.

[4] L. Bowen and H. Li, *Harmonic models and spanning forsets of residually finite groups*, J. Funct. Anal. 263 (2012), pp. 1769–1808.

[5] T. Ceccherini-Silberstein and M. Coornaert, *Expansive actions of countable amenable groups, homoclinic pairs, and the Myhill property*, Illinois J. Math. 59 (2015), pp. 597–621.

[6] T. Ceccherini-Silberstein and M. Coornaert, *A Garden of Eden theorem for Anosov diffeomorphisms on tori*, Topology Appl. 212 (2016), pp. 49–56.

[7] T. Ceccherini-Silberstein and M. Coornaert, *A Garden of Eden theorem for principal algebraic actions*, arXiv:1706.06548.
[32] K. Schmidt and E. Verbitskiy, *Abelian sandpiles and the harmonic model*, Comm. Math. Phys. 292 (2009), pp. 721–759.

[33] N.Th. Varopoulos, *Long range estimates for Markov chains*, Bull. Sci. Math. (2) 109 (1985), pp. 225–252.

[34] N.Th. Varopoulos, L. Saloff-Coste, and Th. Coulhon, *Analysis and geometry on groups*, Cambridge Tracts in Math., vol. 100, Cambridge University Press, Cambridge, 1992.

[35] P. Walters, *Topological conjugacy of affine transformations of tori*, Trans. Amer. Math. Soc. 131 (1968), pp. 40–50.

[36] W. Woess, *Random walks on infinite graphs and groups*, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000.

Dipartimento di Ingegneria, Università del Sannio, 82100 Benevento, Italy
E-mail address: tullio.cs@sbai.uniroma1.it

Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
E-mail address: michel.coornaert@math.unistra.fr

Department of Mathematics, Chongqing University, Chongqing 401331, China

Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, USA
E-mail address: hfli@math.buffalo.edu