A *-autonomous Category of Banach Spaces – Corrected

BRIAN DAY

April 24, 2009

Abstract

We describe a \mathbb{C}-linear additive *-autonomous category of Banach spaces. Please note that a correction has been appended to the original version 1 which is maintained here for reference. Also, a proposed example of a *-autonomous category of topological \mathbb{C}-linear spaces has been added to version 2.

1 Introduction

First, we describe an elementary *-autonomous monoidal category:

$$\text{Ban}(\mathbb{N}) \subset \text{Ban}$$

where Ban is the usual symmetric monoidal closed category of complex Banach spaces and linear contractions, and $\text{Ban}(\mathbb{N})$ is the replete full subcategory of Ban determined by the Hilbert spaces $\ell_2(X)$ for $X \in \{0, 1, 2, \ldots, \mathbb{N}\}$. We also consider the additive aspects of the corresponding \mathbb{C}-linearisations:

$$\mathbb{C}\text{Ban}(\mathbb{N}) \subset \mathbb{C}\text{Ban}$$

The resulting \mathbb{C}-linear and additive *-autonomous category $\mathbb{C}\text{Ban}(\mathbb{N})$ is analogous to the “completion” of any (symmetric) compact closed category to a *-autonomous monoidal category by adding both an object-at-zero and an object-at-infinity. In this case, the object-at-zero is $\ell_2(0)$, while the object-at-infinity is $\ell_2(\mathbb{N})$. Another example is the multiplicative group of positive real numbers with both 0 and ∞ adjoined, which similarly forms a *-autonomous category (with $r \otimes \infty = \infty$ for $r \neq 0$ and $0 \otimes \infty = 0$).

This article probably contains nothing that is essentially new.

*Department of Mathematics, Macquarie University, NSW 2109, Australia.
2 The \(*\)-autonomous Category \(\text{CBan}(\mathbb{N})\)

First we note that a norm-decreasing linear map:

\[
\bigoplus^n C \to B \quad \text{(n finite)}
\]

corresponds to a set \(\{b_1, b_2, \ldots, b_n\}\) of \(n\) points in \(B\) such that:

\[
||b_1 + b_2 + \cdots + b_n||^2 \leq n
\]

Then we deduce that the canonical map:

\[
\bigoplus^n C \to [B, \bigoplus^n B]
\]

is norm-decreasing and so gives a map:

\[
\left(\bigoplus^n C\right) \otimes B \to \bigoplus^n B
\]

for all Banach spaces \(B\).

In particular, taking \(B = \bigoplus^m C\), we obtain:

\[
\mathbb{C}^n \otimes \mathbb{C}^m \to \mathbb{C}^{n \times m}
\]

if we write \(\mathbb{C}^n = \bigoplus^n \mathbb{C}\), etc.

We also obtain a natural transformation \(\alpha_B:\)

\[
\text{Ban}(\mathbb{C}^n, [\mathbb{C}^m, B]) \xrightarrow{\alpha_B} \text{Ban}(\mathbb{C}^{n \times m}, B)
\]

\[
\text{Bil}(\mathbb{C}^n \times \mathbb{C}^m, B)
\]

which is thus a monomorphism. So, by the Yoneda lemma, and the natural isomorphism:

\[
\text{Ban}(\mathbb{C}^n \otimes \mathbb{C}^m, B) \cong \text{Ban}(\mathbb{C}^n, [\mathbb{C}^m, B])
\]

we have an epimorphism:

\[
\mathbb{C}^{n \times m} \to \mathbb{C}^n \otimes \mathbb{C}^m
\]

in \(\text{Ban}\). But \(\mathbb{C}^n \otimes \mathbb{C}^m\) is a topological completion of the algebraic tensor product of \(\mathbb{C}^n\) and \(\mathbb{C}^m\). Hence we have:

Proposition 1. \(\mathbb{C}^n \otimes \mathbb{C}^m \to \odot \mathbb{C}^{n \times m}\) in \(\text{Ban}\)

Proposition 2. We also have \(\text{colim}_{n \in X} \bigoplus^n \mathbb{C} \cong \ell_2(X) = \bigoplus X \mathbb{C}\) in \(\text{Ban}\) for all sets \(X\).
The proof is straightforward.

Corollary 1. We have $\ell_2(X) \otimes \ell_2(Y) \cong \ell_2(X \times Y)$ in Ban for all $X, Y \in \{0, 1, 2, \ldots, N\}$

The proof follows from Propositions 1 and 2, and the preservation of colimits by \otimes in Ban.

Each object in $\text{Ban}(\mathbb{N})$ is reflexive as a Banach space, so we get:

Proposition 3. The monoidal replete full subcategory

$$\text{Ban}(\mathbb{N}) \subset \text{Ban}$$

is a $*$-autonomous monoidal category.

Proof:

$$\text{Ban}(\mathbb{N})(A \otimes B, C) = \text{Ban}(A \otimes B, C)$$

$$\cong \text{Ban}(B \otimes A, [[C, C], C])$$

$$\cong \text{Ban}(B, [A, [[C, C], C]])$$

$$\cong \text{Ban}(B, [[C, C], [A, C]])$$

$$\cong \text{Ban}(B \otimes [C, C], [A, C])$$

$$= \text{Ban}(\mathbb{N})(B \otimes C^*, A^*)$$

where A^* denotes $[A, C]$, etc., so there is a natural isomorphism:

$$\text{Ban}(\mathbb{N})(A \otimes B, C) \cong \text{Ban}(\mathbb{N})(A, (B \otimes C^*)^*)$$

Now consider the \mathbb{C}-linearisations

$$\mathbb{C}\text{Ban}(\mathbb{N}) \subset \mathbb{C}\text{Ban}$$

where $\mathbb{C}\text{Ban}(\mathbb{N})$ is automatically $*$-autonomous from Proposition 3. First, note that the (finite) direct sum $A \oplus B$ of two Banach spaces A and B (which is the \mathbb{C}-vector space product $A \times B$ with the norm $\|a, b\| = \sqrt{||a||^2 + ||b||^2}$) becomes a biproduct in $\mathbb{C}\text{Ban}$. This is fairly immediate from the fact that we have bijective contraction maps

$$A + B \rightarrow A \oplus B \quad A \oplus B \rightarrow A \times B$$

in Ban, where the coproduct $A + B$ in Ban is the \mathbb{C}-vector space product $A \times B$ with the norm

$$\|a, b\| = ||a|| + ||b||$$

while the product $A \times B$ in Ban is the \mathbb{C}-vector space product $A \times B$ with the norm

$$\|(a, b)\| = \max (||a||, ||b||)$$
Then the canonical diagram:

\[
\begin{align*}
\text{cBan}(A, B \oplus C) & \xrightarrow{i} \text{cBan}(A, B) \oplus \text{cBan}(A, C) \\
\text{cBan}(A, B \times C) & \cong \text{cBan}(A, B) \otimes \text{cBan}(A, C)
\end{align*}
\]

commutes in \text{Vect}_C, so \(i\) is in injection, and is also a retraction, hence, it is an isomorphism. Similarly, the diagram

\[
\begin{align*}
\text{cBan}(A \oplus B, C) & \xrightarrow{j} \text{cBan}(A, C) \oplus \text{cBan}(B, C) \\
\text{cBan}(A + B, C) & \cong \text{cBan}(A, C) \otimes \text{cBan}(B, C)
\end{align*}
\]

commutes in \text{Vect}_C, so then \(j\) also is an isomorphism. Thus:

Proposition 4. The \(\mathbb{C}\)-linear category \(\text{cBan}(\mathbb{N})\) is additive and \(*\)-autonomous.

Finally, we note that the braid groupoid \(\mathbb{B}\) generates a convolution category

\[
[\mathbb{B}, \text{cBan}(\mathbb{N})]_{f.s.}
\]

consisting of the functors

\[
F : \mathbb{B} \longrightarrow \text{cBan}(\mathbb{N})
\]

of finite support, and the natural transformations between them. Here the (lax) tensor product is given by:

\[
F \ast G(l) = \bigoplus_{m,n} \mathbb{B}(m+n, l) \cdot (F(m) \otimes G(n))
\]

where \(\mathbb{B}(m, n) \cdot B\) is defined to be the countable direct sum

\[
\bigoplus_{\mathbb{B}(m, n)} B
\]

in \(\text{Ban}\) for each Banach space \(B\). This yields a lax monoidal functor category (with lax unit \(\mathbb{B}(0, -) \cdot \mathbb{C}\)). The functor category

\[
[\mathbb{B}, \text{cBan}(\mathbb{N})]_{f.s.}
\]

also has on it the pointwise tensor product

\[
F \otimes G(l) = F(l) \otimes G(l)
\]

which is \(\mathbb{C}\)-linear, additive, and \(*\)-autonomous.
Correction

The canonical contraction map

$$l_2(X) \otimes l_2(Y) \rightarrow l_2(X \times Y)$$

in Proposition 1 and Corollary 1 is not in general an isomorphism in Ban (as pointed out by Dr. Yemon Choi) which negates the overall purpose of the article.

One “alternative”, that seems not too significant or useful, is to consider the compact-closed category fdhilb of finite-dimensional Hilbert spaces, and adjoin an abstract terminal object called “$l_2(\mathbb{N})$”. One then obtains a symmetric monoidal *-autonomous category extending the structure of fdhilb on defining also:

$$l_2(X) \otimes l_2(\mathbb{N}) = l_2(\mathbb{N})$$ for $X \neq 0$

$$l_2(0) \otimes l_2(\mathbb{N}) = l_2(0)$$

with $l_2(0)^* = l_2(\mathbb{N})$ and $l_2(\mathbb{N})^* = l_2(0)$ instead of $l_2(0)^* = l_2(0)$.

3 A *-autonomous category of \mathbb{C}-linear spaces

We shall somewhat overstate the main result we need:

Proposition 5. If ΠB_x is a topological product of complex Banach spaces and V is a \mathbb{C}-subspace (subspace topology) of ΠB_x, then any continuous \mathbb{C}-linear map from V to \mathbb{C} extends to ΠB_x.

The proof follows from that of Kaplan\[4\] Theorem 1, together with the Hahn-Banach Theorem. We need the special case $B_x = \mathbb{C}$ for all $x \in X$.

Let $\text{Vect}(\mathbb{C})$ denote the monoidal closed category of topological \mathbb{C}-linear spaces and continuous \mathbb{C}-linear maps, with the pointwise internal-hom $(-, -)$ and tensor product. Let $\mathcal{P}(\mathbb{C})$ denote the full reflective subcategory of $\text{Vect}(\mathbb{C})$ determined by the \mathbb{C}-subspaces of powers of \mathbb{C}. Then $\mathcal{P}(\mathbb{C})$ is complete and closed under exponentiation in $\text{Vect}(\mathbb{C})$, hence is monoidal closed by \[2\], and in fact has all small colimits since $\text{Vect}(\mathbb{C})$ does.

Lemma 1. The canonical map $V \rightarrow (((V, \mathbb{C}), \mathbb{C})$ is a surjection for all $V \in \text{Vect}(\mathbb{C})$.

Proof. Consider the following diagram, which is natural in V:

$$\begin{array}{cccc}
\text{hom}(\mathbb{C}, V) \cdot (\mathbb{C}, \mathbb{C}) & \stackrel{h_V}{\longrightarrow} & V \\
\downarrow^{f_V} & & \downarrow^{\text{can}} \\
(\mathbb{C}^{\text{hom}(\mathbb{C}, V)}, \mathbb{C}) & \stackrel{g_V}{\longrightarrow} & ((V, \mathbb{C}), \mathbb{C})
\end{array}$$
which is easily seen to commute by applying the Yoneda lemma to \(V \in \text{Vect}(\mathbb{C}) \), where “\(_{\cdot}\)” denotes copower in \(\text{Vect}(\mathbb{C}) \). Then \(g_V \) is a surjection by Proposition 5, and \(f_V \) is a surjection because any continuous \(\mathbb{C} \)-linear map \(\text{C}^{\text{hom}(\mathbb{C}, V)} \rightarrow \mathbb{C} \) factors (uniquely) through projection onto some finite power \(\mathbb{C}^n \) where \(n \subset \text{hom}(\mathbb{C}, V) \). So \(V \rightarrow ((V, \mathbb{C}), \mathbb{C}) \) is a surjection.

Now the objects of \(\mathcal{P}(\mathbb{C}) \) are precisely the subspaces \(V \leq (W, \mathbb{C}) \) for some \(W \in \text{Vect}(\mathbb{C}) \), so, since

\[
\begin{array}{ccc}
V & \xrightarrow{\text{can}} & ((V, \mathbb{C}), \mathbb{C}) \\
\downarrow & & \downarrow \\
(W, \mathbb{C})
\end{array}
\]

commutes for such a \(V \), we get \(V \cong ((V, \mathbb{C}), \mathbb{C}) \) by lemma 1. Hence, from the proof of Proposition 3, we get:

Proposition 6. \(\mathcal{P}(\mathbb{C}) \) is a \(\mathbb{C} \)-linear \(^*\)-autonomous category.

References

[1] Barr, M., “\(^*\)-Autonomous categories”, *Lecture Notes in Mathematics* 752, Springer-Verlag (1979).

[2] Day, B.J. “A reflection theorem for closed categories”, J. Pure Appl. Alg. 2 (1972), 1-11.

[3] Eilenberg, S., and Kelly, G.M., “Closed categories”, *Proc. Conf. on Cat. Alg., La Jolla 1965*, Springer-Verlag (1966), 421-562.

[4] Kaplan, S., “Extensions of the Pontrjagin duality, II: Direct and inverse sequences”, Duke Math. J. 17 (1950), 419-435.