PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM

Dana I. Casetti-Dinescu,1,2,3 Terrence M. Girard,4 Steven R. Majewski,4 A. Katherina Vivas,5 Ronald Wilhelm,6 Jeffrey L. Carlín,4 Timothy C. Beers,7 and William F. van Altena1

1 Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA
2 Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA
3 Astronomical Institute of the Romanian Academy, Str. Cătului de Argint 5, RO-75212, Bucharest 28, Romania
4 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA
5 Centro de Investigaciones de Astronomia (CIDA), Apartado Postal 264, Mèrida 5101-A, Venezuela
6 Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
7 Department of Physics and Astronomy, Center for the Study of Cosmic Evolution (CSCE), and Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824, USA

Received 2009 May 11; accepted 2009 July 6; published 2009 July 23

ABSTRACT

We present absolute proper motions in Kapteyn Selected Area (SA) 103. This field is located 7º west of the center of the Virgo Stellar Stream (VSS), and has a well-defined main sequence representing the stream. In SA 103, we identify one RR Lyrae star as a member of the VSS, according to its metallicity, radial velocity, and distance. VSS candidate turnoff and subgiant stars have proper motions consistent with that of the RR Lyrae star. The three-dimensional velocity data imply an orbit with a pericenter of ~11 kpc and an apocenter of ~90 kpc. Thus, the VSS comprises tidal debris found near the pericenter of a highly destructive orbit. Examining the six globular clusters at distances larger than 50 kpc from the Galactic center, and the proposed orbit of the VSS, we find one tentative association, NGC 2419. We speculate that NGC 2419 is possibly the nucleus of a disrupted system of which the VSS is a part.

Key words: Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure

1. INTRODUCTION

It is now recognized that numerous stellar streams inhabit the Galactic halo (e.g., Newberg et al. 2002), Belokurov et al. (2006), Grillmair (2006) based on the Sloan Digital Sky Survey (SDSS), and Vivas & Zinn (2006) based on the Quasar Equatorial Survey Team (QUEST), to name only a few. This newly discovered abundance of substructure has generated much attention, as it qualitatively fits into the framework of a A cold dark matter cosmology that envisions the formation of the Galaxy via hierarchical merging. However, the lack of available full phase-space descriptions of the substructure limits our ability to properly model and quantifiy the merging history of our Galaxy. It is certain that the formation and dynamical evolution of tidal streams and overdensities is strongly affected by the Galactic potential in addition to the characteristics of the stream’s progenitor (e.g., Johnston et al. 1999; Murali & Dubinski 1999). These effects cannot be properly modeled simply with projected positions on the sky, distances, and in some cases radial velocities (RVs). Moreover, these tidal features cannot be properly disentangled in regions of the sky where they overlap in projection. One such example is the region of the Virgo stellar Overdensity (VOD). This region, first noted by Newberg et al. (2002) and Vivas & Zinn (2003), covers a large region on the sky (∼1000′), as recently shown by Juric et al. (2008). While a rather low surface brightness feature (<32.5 mag arcsec⁻²), the VOD itself appears to have substructure seen in surface density as well as in RV space (Duffau et al. 2006—D06; Newberg et al. 2007—N07; Vivas et al. 2008—V08; Keller et al. 2008—K08; Keller et al. 2009; Prior et al. 2009—P09). The best-characterized stream in the VOD is known as the Virgo Stellar Stream (VSS; aka the 12.4 hr clump of Vivas & Zinn 2003) and is the subject of this Letter. The VOD remains a complex region, where stars from both the leading and trailing tidal tails of Sgr may be found as noted by Kundu et al. (2002), Martínez-Delgado et al. (2007), and P09.

In this Letter, we present absolute proper motions in Kapteyn Selected Area (SA) 103, located at (R.A., decl.) = (178:8, −0:6) and (l, b) = (264:6, 59:2). The center of the VSS is at (R.A., decl.) = (186°, −1°); it extends in R.A. from 175° to 200° (D06), while in decl. it has been shown to extend from 0° to −15° (P09). SA 103 is thus ~7° west of the VSS center as defined by D06. In this field, we were able to identify one RR Lyrae star as a VSS member for which the absolute proper motion is measured. This allows us to obtain a preliminary orbit for the VSS.

2. DATA AND RESULTS

SA 103 is one field of ~50 from the proper-motion survey described by Casetti-Dinescu et al. (2006, CD06). In CD06, all details concerning the reduction process and the derivation of proper motions are presented. Here, we only briefly mention the basics of this survey. Each field covers 40′ × 40′, and makes use of photographic plates taken at three different epochs. The modern epoch consists of plates taken between 1996 and 1998 with the Las Campanas du Pont 2.5 m telescope, the intermediate epoch consists of Palomar Observatory Sky Survey plates (POSS-I) taken in the early 1950s with the Oschin Schmidt 1.2 m telescope, and the old epoch consists of plates taken between 1909 and 1911 with the Mount Wilson 1.5 m telescope. The modern and old plates were measured with the Yale PDS microdensitometer. For the POSS-I plates, we have used scans done by both the Space Telescope Institute (the Digitized Sky Survey) and the US Naval Observatory. For SA 103, we have used two du Pont plates, two overlapping POSS-I fields, and one 60 inch Mt. Wilson plate. The region of SA 103 has complete SDSS DR7 (Abazajian et al. 2009)
coverage. Thus, by comparison with the DR7 data, our proper-motion catalog in SA 103 is 86% complete at $g = 20.0$, and becomes 15% complete at $g = 21.0$. The limiting magnitude for objects that have over an 80 year baseline (i.e., those that were measured on the Mt. Wilson plates) is $g \sim 20.0$, with \sim90% completeness at $g = 17.0$. For objects that are well measured (i.e., $g \leq 18$), we obtain proper-motion errors of ~ 1 mas yr$^{-1}$, as shown in CD06 and Casetti-Dinescu et al. (2008). All proper-motion units in this Letter are mas yr$^{-1}$.

We have searched the Vivas et al. catalogs to find matches with stars in our SA 103 field. We have identified one RR Lyrae star, RR 167, classified as Bailey type ab, in the Vivas et al. catalogs in our field. RR 167 ((R.A., decl.) = (178:893, $-0:600$)) is located near the center of our field and, with an average magnitude $V = 16.77$, it is a well-measured star, with the proper motion derived from 13 position measurements across 86 years. The same star is also listed in the K08 catalog. Vivas & Zinn (2006) determine a heliocentric distance of 16.9 kpc, while K08 a distance of 18.3 kpc. Both studies estimate a 7% uncertainty in the distances, therefore the distances agree within uncertainties. No RV or metallicity information is provided for RR 167 in subsequent studies that focus on the VSS. We have thus searched the SDSS DR7 data for spectroscopic observations in SA 103, and fortunately found that RR 167 had two spectra taken near minimum light (phase 0.70 and 0.75). The phases of the spectroscopic observations were calculated using the QUEST ephemeris which, for this star, was based on 30 epochs in the light curve. From these spectra, the systemic heliocentric distance of 16.9 kpc, while K08 a distance of 18.3 kpc. Both studies estimate a 7% uncertainty in the distances, therefore the distances agree within uncertainties. No RV or metallicity information is provided for RR 167 in subsequent studies that focus on the VSS. We have thus searched the SDSS DR7 data for spectroscopic observations in SA 103, and fortunately found that RR 167 had two spectra taken near minimum light (phase 0.70 and 0.75). The phases of the spectroscopic observations were calculated using the QUEST ephemeris which, for this star, was based on 30 epochs in the light curve. From these spectra, the systemic heliocentric distance of 16.9 kpc, while K08 a distance of 18.3 kpc. Both studies estimate a 7% uncertainty in the distances, therefore the distances agree within uncertainties. No RV or metallicity information is provided for RR 167 in subsequent studies that focus on the VSS.

Figure 1 shows the formal proper-motion errors as a function of g magnitude for stars in SA 103. RR 167 (filled circle) has formal errors within the range for stars at that particular magnitude. The proper-motion zero point for an inertial reference frame is determined from the measurement of background galaxies as classified by SDSS. We use 302 galaxies with measured proper motions less than 20 mas yr$^{-1}$ and that had at least four positional measurements. To determine their mean and dispersion, we apply the probability-plot method (Hamaker 1978) using the inner 80% of the proper-motion distribution. In our data, we also have four rather faint QSOs (as identified from SDSS DR5; see Schneider et al. 2007), $g = 18.8-19.5$. The galaxies and QSOs determinations agree within errors. We obtain a final zero point from the mean proper motions of the galaxies and the QSOs, weighted by their formal errors. Our final zero point is $\mu_g \cos \delta = 3.69 \pm 0.27$ mas yr$^{-1}$ and $\mu_\delta = 2.62 \pm 0.28$ mas yr$^{-1}$. Figure 2 shows absolute proper-motion diagrams (i.e., with the zero point applied such that galaxies are centered on (0,0) for stars (left panel) and galaxies (right panel), RR 167 is the filled circle. The open circles in the galaxies’ diagram are the QSOs. The absolute proper motion of RR 167 is $\mu_g \cos \delta = -4.85 \pm 0.85$ mas yr$^{-1}$ and $\mu_\delta = 0.28 \pm 0.85$ mas yr$^{-1}$. Here, the error is determined by adopting the median value for the error of a star with the magnitude of RR 167, as seen in Figure 1 (i.e., 0.8 mas yr$^{-1}$), and adding in quadrature the error in the zero-point determination. This is done to avoid underestimating the error by using the value formally obtained from the fit of positions as a function of time. Clearly, RR 167 has a high proper motion, detected at the 5.7σ level. Such a large proper motion for an object at ~ 17 kpc implies a very energetic orbit (see the following section). The proper motion corrected for the reflex solar motion is $\mu_g \cos \delta = -3.50 \pm 0.85$ mas yr$^{-1}$ and $\mu_\delta = 2.33 \pm 0.85$ mas yr$^{-1}$.

To further explore the presence of VSS debris in SA 103, we present observed color–magnitude diagrams (CMDs) and proper-motion diagrams, and compare with their Besancon model (Robin et al. 2003) equivalents. The top panels of Figure 3 show the CMDs of an area centered on SA 103, and covering

8. However, a recent revision of the QUEST velocities gives a mean velocity for the VSS of 126 km s$^{-1}$, in perfect agreement with the other works (Duffau 2008).
Figure 2. Absolute proper-motion diagrams for stars (left) and galaxies (right). The filled circle is RR 167. The open circles in the right panel show the four quasars that were measured in this area.

Figure 3. Top panels show CMDs in SA 103: all SDSS data (left), the Besancon model (middle), and SDSS data for stars with proper motions (right). The gray line in the left panel shows the fiducial sequence of globular cluster M 53. The red symbol represents RR 167, the dashed line indicates the faint limit of the proper-motion data. The rectangular box shows the CMD selection of stars for which proper motions are displayed in the bottom panels. The bottom panels show the proper-motion distributions: our data (left), our data mapped with logarithmic contours of the proper-motion density distribution (middle), and the Besancon model distribution (right) with same contours as for our data.
The next step is to identify more likely VSS candidates in our proper-motion field. In the well-measured regime (\(\sim 1 \) mas yr\(^{-1} \), \(g < 18.0 \)), we expect very few stars. Both K08 and Vivas et al. (2004) have surveyed this region, and found only one RR Lyrae star which is in keeping with our expectations from the proper-motion field. There could be several more red horizontal-branch stars, as the CMD appears to indicate, however without RV information it is difficult to confidently distinguish them from field stars. Likewise, we expect very few giants. From M 53’s DR7 CMD (within a 10’ radius from the cluster center), we obtain a ratio of about 3 red giant branch stars (approximately from the tip to the subgiant region) for each horizontal-branch star. Thus, even along the giant branch we cannot expect more than about 10 VSS stars. Lacking RV information, the giant branch VSS stars have the additional problem of being virtually impossible to distinguish from the \(\sim 60 \) field stars that inhabit the same band as the M 53 giant branch. The highest contrast between the VSS and the Galactic field where proper motions are available is the subgiant and turnoff region, which is also where proper-motion errors are the largest. Nevertheless, we have selected stars in this region to check the overall proper-motion distribution, and compare it to that predicted by the Besancon model. The stars are selected within the rectangular box highlighted in the CMDs of Figure 3. Our data include 93 stars, while the Besancon model predicts \(\sim 66 \) stars. Note that while the Besancon sample is complete, the data are not (at \(g = 20 \), completeness is 85%). The proper-motion distribution of our data is shown in the bottom left panel of Figure 3, where formal error bars are included for each star. The middle panel shows the proper-motion density contour map of our data, while the left panel shows that of the Besancon data convolved with 4 mas yr\(^{-1} \) error. Reassuringly, in the observed data, the region of peak density includes RR 167. The Besancon proper-motion distribution shows a density peak at a different location than that of RR 167; this peak is also lower than that of the observed distribution, which reflects the stellar overdensity found in this area.

3. A PRELIMINARY ORBIT DETERMINATION FOR THE VSS

The velocity components in cylindrical coordinates \((\Pi, \Theta, W)\) are calculated using the RV, distance, and proper motion listed above for RR 167. Using the Dehnen & Binney (1998) peculiar velocity of the Sun, at \(R_0 = 8 \) kpc, and \(\Theta_0 = 220 \) km s\(^{-1} \), we obtain \((\Pi, \Theta, W) = (253 \pm 65, 221 \pm 67, 142 \pm 37) \) km s\(^{-1} \). We have integrated the orbit in the Johnston et al. (1995) Galactic potential, following the procedure described in Casetti-Dinescu et al. (1999) to estimate uncertainties in the orbital parameters. We obtain an orbit with a pericentric radius of 11 \pm 1 kpc, an apocentric radius of 89.7\(^{\pm 3} \) kpc, and an eccentricity of 0.78 \pm 0.06. The orbital inclination is 58\(^{\circ} \) \pm 5\(^{\circ} \), derived as 90\(^{\circ} \) - \(\sin^{-1}(L_z/L) \), where \(L_z \) is the angular momentum along the direction perpendicular to the Galactic disk, and \(L \) is the total angular momentum. The radial orbital period is 1.25\(^{\pm 0.6} \) Gyr. These orbital elements rule out any association of the VSS with Sgr’s orbit (e.g., Casetti-Dinescu et al. 2000, 2005). In particular, examination of the three integrals of motion for the orbits of Sgr and the VSS shows that while the total orbital energy and angular momentum are not determined with sufficient precision for the VSS to safely rule out its association with Sgr, the \(L_z \) differs at the 2.2\(\sigma \) level. The current location of the RR 167 is \(\sim 17 \) kpc from the Galactic center. Thus, the orbit obtained indicates that the stars in the VSS are near pericenter. Interestingly, the smallest distance for stars in the VSS is estimated to be 12 kpc (V08). Using this distance at the sky location of RR 167, we obtain a Galactocentric distance of 14 kpc, which is in reasonable agreement with our determination for the pericentric radius of the orbit. Although the uncertainty in the apocentric radius is rather large, owing to distance and proper-motion errors, it is apparent that the orbit is very eccentric and thus rather destructive for the parent satellite. Disruption models of satellites on eccentric orbits indicate that tidal debris piles up preferentially at the turning points of an orbit (e.g., the disruption of Sgr; Law et al. 2005). Therefore, the VSS structure is consistent with a pericentric density enhancement of a disrupted satellite on a highly eccentric orbit. While the orbit is somewhat uncertain, it is a highly energetic one, with an apocenter beyond 50 kpc. We show this orbit in Figure 4, along with that of Sgr for comparison. Since there are only six globular clusters beyond a Galactocentric radius of 50 kpc, we searched for positional coincidence between the orbit of the VSS and distant clusters. There is only one cluster that can be associated with this orbit, namely NGC 2419, which is 13 kpc away from the closest point in the VSS orbit, integrated back in time for 5 Gyr. NGC 2419 is a well-known massive cluster with a low metallicity ([Fe/H] = \(-2.12\)), and a very extended BHB. As such, its properties fit the idea that massive, extended BHB clusters are the nuclei of disrupted dwarf galaxies (Lee et al. 2007). Cluster NGC 2419 \((l, b) = (180\degree 4, 25\degree 2)\) has been tentatively associated with
debris from Sgr by Newberg et al. (2003). This association is
based on the proximity of NGC 2419 to Sgr’s orbital plane, and
on the finding of an overdensity of A-type stars (assumed to be
BHB stars) at a galactocentric distance of ∼90 kpc that lie near
Sgr’s orbital plane toward the direction of NGC 2419 (Newberg
et al. 2003). Disruption models of Sgr (Law et al. 2005) show
that debris from Sgr can be found in the region and at the galac-
tocentric distance of NGC 2419, as part of the trailing tail, thus
suggesting that the cluster and the A-type star overdensity could
belong to Sgr. The low RV of NGC 2419,

\(V_{gsr} = -27 \ \text{km s}^{-1} \) (Harris 1996), indicates that the cluster is at a turning point in
its orbit (in this case the apocenter), which can be equally im-
plied by the membership to Sgr and VSS (Figure 4). Since NGC
2419 is in the Anticenter direction, only its transverse veloc-
ity can establish whether it is associated with any of these two
streams.

Financial support from NSF grants AST-0406884 and AST-
0407207 for this research is acknowledged. T.C.B. acknowl-
edges partial support from PHY 08-22648: Physics Frontier
Center/Joint Institute for Nuclear Astrophysics (JINA),
awarded by NSF. This publication makes use of SDSS data
products. Funding for the SDSS and SDSS-II has been provided
by the Alfred P. Sloan Foundation, the Participating Institutions,
the NSF, the US Department of Energy, NASA, the Japanese
Monbukagakusho, the Max Planck Society, and the Higher
Education Funding Council for England. The SDSS Web site is
http://www.sdss.org/.

Facilities: SDSS.

REFERENCES

Abazajian, K. N., et al. 2009, ApJS, 182, 543
Belokurov, V., et al. 2006, ApJ, 642, L137
Casetti-Dinescu, D. I., Carlin, J. L., Girard, T. M., Majewski, S. R., Peñarrubia,
J., & Patterson, R. J. 2008, AJ, 135, 2013
Casetti-Dinescu, D. I., Majewski, S. R., Girard, T. M., Carlin, J. L., van Altena,
W. F., Patterson, R. J., & Law, D. R. 2006, AJ, 132, 2082
Dehnen, W., & Binney, J. 1998, MNRAS, 294, 429
Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792
Dinescu, D. I., Girard, T. M., van Altena, W. F., & López, C. E. 2005, ApJ, 618,
L25
Dinescu, D. I., Majewski, S. R., Girard, T. M., & Cudworth, K. M. 2000, AJ,
120, 1892
Duffau, S. 2008, PhD thesis, Univ. de Chile
Duffau, S., Zinn, R., Vivas, A. K., Carraro, G., Méndez, R. A., Winnick, R., &
Gallart, C. 2006, ApJ, 636, L97 (D06)
Grillmair, C. 2006, ApJ, 651, L29
Hamaker, H. C. 1978, Appl. Stat., 27, 76
Harris, W. E. 1996, AJ, 112, 1487
Johnston, K. V., Spergel, D. N., & Hernquist, L. 1995, ApJ, 451, 598
Johnston, K. V., Zhao, H., Spergel, D., & Hernquist, L. 1999, ApJ, 512,
L109
Juric, M., et al. 2008, ApJ, 673, 864
Keller, S. C., Da Costa, G. S., & Prior, S. L. 2009, MNRAS, 394, 1045
Keller, S. C., Murphy, S., Prior, S., Da Costa, G., & Schmidt, B. 2008, ApJ, 678,
851 (K08)
Kundu, A., et al. 2002, ApJ, 576, L125
Law, D. R., Johnston, K. V., & Majewski, S. R. 2005, ApJ, 619, 807
Layden, A. C. 1994, AJ, 108, 1016
Lee, Y.-W., Gim, H. B., & Casetti-Dinescu, D. I. 2007, ApJ, 661, L49
Martínez-Delgado, D., Penarrubia, J., Juric, M., Alfaro, E. J., & Ivezic, Z.
2007, ApJ, 660, 1264
Murali, C., & Dubinski, J. 1999, AJ, 118, 911
Newberg, H. J., Yanny, B., Cole, N., Beers, T. C., Re Fiorentin, P., Schneider,
D. P., & Wilhelm, R. 2007, ApJ, 668, 221 (N07)
Newberg, H. J., et al. 2002, ApJ, 569, 245
Newberg, H. J., et al. 2003, ApJ, 596, L191
Prior, S., Da Costa, G. S., Keller, S. C., & Murphy, S. J. 2009, ApJ, 691, 306
(P09)
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schneider, D. P., et al. 2007, AJ, 134, 102
Vivas, A. K., Jaffé, Y. L., Zinn, R., Winnick, R., Duffau, S., & Mateu, C.
2008, AJ, 136, 1645 (V08)
Vivas, A. K., & Zinn, R. 2003, Mem. Soc. Astron. Ital., 74, 928
Vivas, A. K., & Zinn, R. 2006, AJ, 132, 714
Vivas, A. K., et al. 2004, AJ, 127, 1158