NON INJECTIVITY OF THE “HAIR” MAP

BERTRAND PATUREAU-MIRAND

ABSTRACT. Kricker constructed a knot invariant Z^{rat} valued in a space of Feynman diagrams with beads. When composed with the so called “hair” map H, it gives the Kontsevich integral of the knot. We introduce a new grading on diagrams with beads and use it to show that a non trivial element constructed from Vogel’s zero divisor in the algebra Λ is in the kernel of H. This shows that H is not injective.

INTRODUCTION

The Kontsevich integral Z is a universal rational finite type invariant for knots (see the Bar-Natan survey [1]). For a knot K, $Z(K)$ lives in the space of Chinese diagrams isomorphic to $\hat{B}(\ast)$ (see Section 1.1). Rozansky conjectured ([3]) and Kricker proved ([3]) that Z can be organized into a series of “lines” called Z^{rat}. They can be represented by finite \mathbb{Q}–linear combinations of diagrams whose edges are labelled, in an appropriate way, with rational functions. In [2], Garoufalidis and Kricker directly proved that the map Z^{rat} with values in a space of diagrams with beads is an isotopy invariant and that Z factors through Z^{rat}. For a knot K with trivial Alexander polynomial, $Z(K) = H \circ Z^{rat}(K)$ where H is the hair map (see Section 1.3). Rozansky, Garoufalidis and Kricker conjectured (see [4, Conjecture 3.18]) that H could be injective. Theorem 4 gives a counterexample to this conjecture.

1. The hair map

1.1. Classical diagrams. Let X be a finite set. A X–diagram is an isomorphism class of finite uni-tri-valent graphs K with the following data:

- At each trivalent vertex x of K, we have a cyclic ordering on the three oriented edges starting from x.
- A bijection between the set of univalent vertices of K and the set X.

We define $A(X)$ to be the quotient of the \mathbb{Q}–vector space generated by X–diagrams by the relations:

1. The (AS) relations for “antisymmetry”:

$$\begin{array}{c}
\begin{array}{c}
\text{\quad}\text{\quad}\text{\quad}
\end{array}
\end{array}
\bigcirc
\\bigcirc
\begin{array}{c}
\begin{array}{c}
\text{\quad}\text{\quad}\text{\quad}
\end{array}
\end{array}
= 0$$

2. The (IHX) relations for three diagrams which differ only in a neighborhood of an edge:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{\quad}\text{\quad}\text{\quad}
\end{array}
\end{array}
\end{array}$$

These spaces are graded. The degree of an X–diagram is given by half the total number of vertices.

Let $[n] = \{1, 2, \ldots, n\}$ and define F_n to be the subspace of $A([n])$ generated by...
connected diagrams with at least one trivalent vertex. The permutation group \(\mathcal{S}(X) \) acts on \(A(X) \). Let \(B(*) \) be the coinvariant space for this action:

\[
B(*) = \bigoplus_{n \in \mathbb{N}} A([n]) \otimes_{\mathcal{S}_n} \mathbb{Q}
\]

and let \(\hat{B}(*) \) be the completion of \(B(*) \) for the grading.

Finally let \(\Lambda \) be Vogel’s algebra generated by totally antisymmetric elements of \(F_3 \) (for the action of \(\mathcal{S}_3 \)).

We recall (see [6]) that \(\Lambda \) acts on the modules \(F_n \) and that for this action, \(F_0 \) and \(F_2 \) are free \(\Lambda \)–modules of rank one. Furthermore, the following elements are in \(\Lambda \):

\[
t = \frac{1}{2} \qquad x_n = \frac{1}{n+2}
\]

Theorem 1. (Vogel [6, Section 8 and Proposition 8.5]). The element \(t \) is a divisor of zero in \(\Lambda \).

Corollary 2. There exists an element \(r \in \Lambda \setminus \{0\} \) such that \(t \cdot r = 0 \). So one has

\[
\begin{align*}
\text{if } & \quad \begin{array}{c} \includegraphics[width=1cm]{t_diagram} \\ 3 \\ 1 \\ 2 \\ \end{array} \\
\text{then } & \quad \begin{array}{c} \includegraphics[width=1cm]{r_diagram} \\ 1 \end{array} = 0 \in F_3
\end{align*}
\]

Proof: \(F_0 \) is a free \(\Lambda \)–module of rank one generated by the diagram \(\Theta \) and the previous diagram of \(F_0 \) is \(r \cdot \Theta \neq 0 \). The diagram of \(F_3 \) of the corollary is the product \(r, \frac{1}{2}, \frac{1}{3} = 2t \cdot r = 0 \in \Lambda \).

Remark: Vogel shows that \(r \) can be chosen with degree fifteen in \(\Lambda \) (the degree in \(\Lambda \) is the degree in \(F_3 \) minus two), and in the algebra generated by the \(x_n \). This element is killed by all the weight systems coming from Lie algebras (but \(r \) is not killed by the Lie superalgebras \(D_{2,1,\alpha} \)).

1.2. **Diagrams with beads.** Diagrams with beads have been introduced by Kricker and Garoufalidis (see [3], [2]). A presentation of \(B \) which uses the first cohomology classes of diagrams is already present in [5]. Vogel explained me this point of view for diagrams with beads.

Let \(G \) be the multiplicative group \(\{b^n, n \in \mathbb{Z}\} \simeq (\mathbb{Z}, +) \) and consider its group algebra \(R = \mathbb{Q}G = \mathbb{Q}[b, b^{-1}] \). Let \(a \mapsto \sigma \) be the involution of the \(\mathbb{Q} \)–algebra \(R \) that maps \(b \) to \(b^{-1} \).

A diagram with beads in \(R \) is an \(\sigma \)–diagram with the following supplementary data: The beads form a map \(f: E \to R \) from the set of oriented edges of \(K \) such that if \(-e \) denotes the same edge than \(e \) with opposite orientation, one has \(f(-e) = \overline{f(e)} \). We will represent the beads by some arrows on the edges with label in \(R \). The value of the bead \(f \) on \(e \) is given by the product of these labels and we will not represent the beads with value 1. So with graphical notations, we have:

\[
\begin{align*}
\includegraphics[width=1cm]{f_bead} & = \includegraphics[width=1cm]{f_bead_bar} \\
\includegraphics[width=1cm]{f_bead_g_bead} & = \includegraphics[width=1cm]{f_bead_g_bead_bar}
\end{align*}
\]

The loop degree of a diagram with beads is the first Betti number of the underlying graph.

Let \(A^R(\emptyset) \) be the quotient of the \(\mathbb{Q} \)–vector space generated by diagrams with beads in \(R \) by the following relations:

1. (AS)
2. The (IHX) relations should only be considered near an edge with bead 1.
(3) PUSH:

(4) Multilinearity:

\[\alpha f(b) + \beta g(b) = \alpha f(b) + \beta g(b) \]

\[A^R(\emptyset) \] is graded by the loop degree:

\[A^R(\emptyset) = \bigoplus_{n \in \mathbb{N}} A^R_n(\emptyset) \]

We will prefer another presentation of \(A^R(\emptyset) \):

- Remark that it is enough to consider diagrams with beads in \(G \) and the multilinear relation can be viewed as a notation.
- Next remark that for a diagram with beads in \(G \), the map \(f \) define a 1–cochain \(\tilde{f} \) with values in \(\mathbb{Z} \cong G \) on the underlying simplicial set of \(K \). The elements \(\tilde{f} \) are in fact 1–cocycles because of the condition \(f(-e) = f(e) \) which implies \(\tilde{f}(-e) = -\tilde{f}(e) \).
- The “PUSH” relation at a vertex \(v \) implies that \(\tilde{f} \) is only given up to the coboundary of the 0–cochain with value 1 on \(v \) and 0 on the other vertices. Hence \(A^R(\emptyset) \) is also the \(\mathbb{Q} \)–vector space generated by the pairs \((3–\text{valent graph } D, x) \in H^1(D, \mathbb{Z}) \) quotiented by the relations (AS) and (IHX). With these notations one can describe the (IHX) relations in the following way:

Let \(K_I, K_H \) and \(K_X \) be three graphs which appear in a (IHX) relation on an edge \(e \). Let \(K_\bullet \) be the graph obtained by collapsing the edge \(e \). The maps \(p_? : K_? \rightarrow K_\bullet \) induce three cohomology isomorphisms. If \(x \in H^1(K_\bullet, \mathbb{Z}) \) then the (IHX) relation at \(e \) says that

\[(K_I, p_i^* x) = (K_H, p_H^* x) - (K_X, p_X^* x) \]

holds in \(A^R(\emptyset) \).

1.3. The hair map. The hair map \(H : A^R(\emptyset) \rightarrow \hat{B}(\ast) \) replaces beads by legs (or hair): Just replace a bead \(b^n \) by the exponential of \(n \) times a leg.

\[b^n \mapsto exp_\#(n) = +n + \frac{n^2}{2} + \cdots \]

\(H \) is well defined (see [2]).

2. Grading on diagrams with beads

Remark that for a 3–valent graph \(K \), \(H^1(K, \mathbb{Z}) \) is a free \(\mathbb{Z} \)–module. The beads \(x \in H^1(K, \mathbb{Z}) \) which occur in an (AS) or (IHX) relation are the same up to isomorphisms. We will call \(p \in \mathbb{N} \) the bead degree of \((K, x) \) if \(x \) is \(p \) times an indivisible element of \(H^1(K, \mathbb{Z}) \).

Theorem 3. The bead degree is well defined in \(A^R_n(\emptyset) \). Thus we have a grading

\[A^R_n(\emptyset) = \bigoplus_{p \in \mathbb{N}} A^R_{n,p}(\emptyset) \]

where \(A^R_{n,p}(\emptyset) \) is the subspace of \(A^R_n(\emptyset) \) generated by diagrams with bead degree \(p \). Furthermore, \(A^R_{n,0}(\emptyset) \cong A_n(\emptyset) \) and for \(p > 0 \), \(A^R_{n,p}(\emptyset) \cong A^R_{n+1}(\emptyset) \).
Proof: The second presentation we have given for $A^n(\emptyset)$ implies that this degree is well defined. Indeed, the elements in a IHX relation have the same degree because the set of indivisible elements of the cohomology is preserved by isomorphisms.

Now, the map $\psi : R \to \mathbb{Q}$ that sends b to 1 induces the isomorphism $A^n(\emptyset) \simeq A_n(\emptyset)$ and the group morphism $\phi_p : G \to G$ that sends b to b^p (or the multiplication by p in $H^1(\mathbb{Z})$) induces the isomorphism $A_{n,1}(\emptyset) \simeq A_{n,p}(\emptyset)$. These maps are isomorphisms because they have obvious inverses. □

3. A non trivial element in the kernel of H

Theorem 4. This non trivial element of $A^n(\emptyset)$ is in the kernel of H:

$$
\begin{array}{c}
\text{b-1} \\
\text{r}
\end{array}
$$

Thus H is not injective.

Proof: This element is not zero because its bead degree zero part is the opposite of the element $r.\Theta$ of Corollary 2. Then, one has

$$
\begin{array}{c}
\text{b-1} \\
\text{r}
\end{array} \mapsto H \begin{array}{c}
\text{b-1} \\
\text{r}
\end{array} + \frac{1}{2!} \begin{array}{c}
\text{b-1} \\
\text{r}
\end{array} + \frac{1}{3!} \begin{array}{c}
\text{b-1} \\
\text{r}
\end{array} + \cdots
$$

but all these diagrams are zero in $B(\ast)$ because they contain, as a sub-diagram, the element of F_3 of Corollary 2 □

Remark: The element of theorem 4 has a loop degree seventeen.

The hair map is obviously injective on the space of diagrams with bead degree zero. I don’t know if the same is true in other degrees.

References

[1] D. Bar-Natan - On the Vassiliev knot invariants, Topologie 34 n° 2 1995, 423–472.
[2] S. Garoufalidis, A. Kricker - A rational noncommutative invariant of boundary links Geom. Topol. 8 (2004), 115–204.
[3] A. Kricker - The lines of the Kontsevich integral and Rozansky’s rationality conjecture, Tokyo Institute of Technology preprint, May 2000, [arXiv:math.GT/0005284]
[4] T. Ohtsuki - Problems on Invariants of Knots and 3-Manifold Geom. Topol., 4, Invariants of knots and 3-manifolds (Kyoto, 2001), iiv, 377–572, Geom. Topol. Publ., Coventry, 2002.
[5] L. Rozansky - Une structure rationnelle sur des fonctions génératrices d’invariants de Vassiliev Summer school of the University of Grenoble preprint, July 1999.
[6] P. Vogel - Algebraic structures on modules of diagrams, J. Pure Appl. Algebra 215 (2011), no. 6, 1292–1339.

LMAM, université de Bretagne-Sud, université européenne de Bretagne, BP 573, 56017 Vannes, France
E-mail address: bertrand.patureau@univ-ubs.fr