Growing season leaf carbon:nitrogen dynamics in Arctic tundra vegetation from ground and Sentinel-2 observations reveal reallocation timing and upscaling potential

Westergaard-Nielsen, A.; Christiansen, C. T.; Elberling, B.

Published in: Remote Sensing of Environment

DOI: 10.1016/j.rse.2021.112512

Publication date: 2021

Document version: Publisher's PDF, also known as Version of record

Document license: CC BY

Citation for published version (APA): Westergaard-Nielsen, A., Christiansen, C. T., & Elberling, B. (2021). Growing season leaf carbon:nitrogen dynamics in Arctic tundra vegetation from ground and Sentinel-2 observations reveal reallocation timing and upscaling potential. Remote Sensing of Environment, 262, [112512]. https://doi.org/10.1016/j.rse.2021.112512
Growing season leaf carbon:nitrogen dynamics in Arctic tundra vegetation from ground and Sentinel-2 observations reveal reallocation timing and upscaling potential

A. Westergaard-Nielsena,*, C.T. Christiansena,b, B. Elberlinga

a Center for Permafrost (Cenperm), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
b Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Denmark

ARTICLE INFO
Editor: Jing M. Chen

ABSTRACT

Plant nitrogen (N) use is an essential component of the N cycle in Arctic terrestrial ecosystems, and important processes include plant N uptake and reallocation during the growing season. While the availability of N to deciduous tundra plants in part relies on their internal reallocation of N from leaves to stems and roots during autumn senescence, the species-specific importance of reallocation timing and its community-wide implications on landscape- and regional-scales remains not well known. Here, we quantified leaf N contents and C:N ratios of four widespread shrub species in West Greenland from June through October and compared plot observations to landscape scale based on a new Sentinel-2-derived index. Our Sentinel-2 index captures overall N reallocation trends well across time and space at the plot level ($R^2 = 0.81$, $p < 0.001$). Using this novel approach is therefore relevant for upscaling of current and future changes in plant C:N dynamics. Using satellite data, we estimate the leaf N mass reallocated during senescence equaled about 0.8 g N m-2 from leaves to stems and roots. We conclude that (1) in-situ data from the entire growing season is critical to quantify timing and contrasting strategies of N allocation at species level, (2) key species such as \textit{Salix glauca} are capable of halving their leaf N content during senescence, (3) Sentinel-2 (S-2) satellite data is a strong candidate for quantifying these plant functional dynamics in space and time. Our study has implications for research on competition among Arctic plants, litter decomposition and consequently carbon accumulation in tundra soils from a climate change perspective. Further, it captures plant functional dynamics during critical parts of the growing season, including autumn senescence which is generally more complex than capturing spring greenup. Lastly, our new index has important implications for remotely mapping temporal and spatial variation in substrate quality for both wild and domesticated herbivores, as it is a first step towards a tool to assess the tundra vegetation and fodder quality for cold region animal husbandry.

1. Introduction

Arctic tundra vegetation is undergoing substantial structural and functional change due to intensified climate warming in recent decades (Berner et al., 2020; Myers-Smith et al., 2020). Warming generally increases Arctic vegetation growth (Bjorkman et al., 2018a), thereby augmenting the relative importance of water and nutrient sources, primarily nitrogen (N) (Chapin et al., 2005; Shaver et al., 2006). In pristine Arctic tundra, plant available N is primarily a result of spatial reallocation, which occurs all the way from catchment scale (Skrzypek et al., 2015; Westergaard-Nielsen et al., 2020) to internal reallocation within individual plants (Evans, 2001). Processes within deciduous plants include both N uptake and transfer to branches and emerging leaves during spring as well as reallocation to stems and roots during autumn senescence. The latter process serves to store N during winter (Chapman et al., 2006), but it is not yet well quantified at the plant species level. Increased knowledge of N availability and temporal patterns in N cycling and allocation strategies in dominant tundra plant species is therefore important for understanding growth feedbacks in Arctic ecosystems resulting from a warmer climate.

The ratio between carbon (C) and N (C:N) in plant leaves is a proven tool to assess and understand plant N dynamics and resource

* Corresponding author.
E-mail address: awn@ign.ku.dk (A. Westergaard-Nielsen).

https://doi.org/10.1016/j.rse.2021.112512
Received 26 February 2021; Received in revised form 5 May 2021; Accepted 12 May 2021
Available online 20 May 2021
0034-4257/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Remote sensing approaches facilitate effective monitoring of biome-wide tundra change. Vegetation indices from satellite remote sensing (such as NDVI) associated with plant cover have been used to quantify Arctic tundra aboveground biomass (Jia et al., 2006; Raynolds et al., 2012; Westergaard-Nielsen et al., 2015; Räsänen et al., 2019), and for descriptive phenology during the Arctic growing season (Zeng et al., 2011; Karlsen et al., 2014; Park et al., 2016; Karami et al., 2017). Using satellite data, Park et al. (2016) reported an advancement in the onset of the Arctic growing season of 2.4 days per decade since 1982, oftentimes resulting from earlier snowmelt dates (Zeng et al., 2011; Westergaard-Nielsen et al., 2017; Pedersen et al., 2018). While optical satellite-based remote sensing can provide important data to indicate ecosystem changes that can be scalable to global coverage, satellite imagery alone provides limited information on how climate warming continues to shape remote Arctic plant communities. Thus, challenges remain when using remote sensing tools to quantify plant biophysical or biochemical properties, such as plant height or leaf nutrient status (Beamish et al., 2020; Myers-Smith et al., 2020). In addition, satellite imagery alone does not shed light on functional phenology, e.g. what impact does climate change have on seasonal variations in canopy nutrient status and -reallocation, specific parameters causing plant stress, or absolute photosynthesis rates. For that kind of functional detail, we need on-the-ground observations. This is an ongoing issue because in-situ validation datasets with high temporal and/or spatial sampling frequency remain rare for many Arctic regions, due to the challenging logistics associated with field campaigns in this part of the world. Nevertheless, recent plot-scale observations suggest diverging vegetation responses to climate change across the Arctic, e.g. with increased growth and primary productivity in some areas and decreased in others (Phoenix and Bjerke, 2016; Vowles and Bjork, 2019; Myers-Smith et al., 2020). These responses are highly difficult to capture with e.g. NDVI (Myers-Smith et al., 2020), emphasizing an important need for linking large-scale remote sensing methods to detailed vegetation dynamics on the ground.

Efforts have been made to link different spatial scales with focus on measuring vegetation qualities linked to their functioning, e.g. canopy N, C, and lignin. These efforts typically require either access to hyperspectral data (Martin and Aber, 1997; Smith et al., 2002; Martin et al., 2008; Hollinger et al., 2009; Knyazikhin et al., 2013) which constrains the spatiotemporal resolution and scalability, or include advanced modelling of the canopy radiative transfer system (Boegh et al., 2013; Jay et al., 2017) which rely on high-quality input datasets. However, literature reporting the performance of these methods to estimate dynamics of e.g. canopy N, C, or lignin in Arctic ecosystems is to our knowledge non-existent. This has led to an urgent need and requests for tools to better estimate functional plant changes from space (Myers-Smith et al., 2020), based on accessible satellite data with high spatiotemporal coverage, and validation with ground observations. In an Arctic context this lack of knowledge also stands in contrast to the relevance for herbivores such as reindeer (Rangifer tarandus) which rely on both plant quantity and feeding quality, and to the current trend of increased farming potential at high northern latitudes following climate warming. This pinpoints an urgent need to explore and optimize grazing and farming practices in the Arctic (King et al., 2018a, 2018b; Hannah et al., 2020).

Here, to the best of our knowledge (Beamish et al., 2020), we present the first growing season-long quantification of temporal fluctuations in Arctic tundra leaf C:N in combination with a remotely sensed scaling approach. We do this by pairing in-situ plant species-specific observations, obtained approximately weekly from June through October in Arctic Greenland, with imagery using a satellite-derived spectral index. This approach allows us to assess the empirical spatiotemporal relationship between in situ leaf C:N contents from four of the most common tundra shrub species and the integrated plant community-based spectral signal achievable from the 10–20 m spatial resolution Sentinel-2 satellites. In short, we (1) present and validate a novel methodology that is scalable from local plot to regional scales for dwarf shrub heath vegetation that is widespread across the circumpolar Arctic and (2) provide a unique quantification of plant species-specific dynamics of N, including estimates of when and how much of total above-ground leaf N mass is reallocated from leaves to stems and roots during autumn. This novel method advances our remote sensing capabilities to include assessments of temporal functional changes in tundra vegetation concerning leaf N content, timing of internal plant N-redistribution, and litter quality during senescence. Consequently, this study has implications for our understanding of climate-driven changes in Arctic tundra vegetation, regarding plant communities and C fixation as well as ecosystems with grazing, including future ambitions of human-introduced domestic grazers in the Arctic.

2. Methods

Our study was carried out from June through October 2016 in the Østerlien valley (69.25359°N, 53.51301°W), located on the southern part of Disko Island in West Greenland (Fig. 1). The in-situ study area covers approximately 0.1 km² on a gentle south-facing slope going from 60 m asl. to a few m asl towards the Disko Bay shore. The Østerlien valley lies just east of the research station Arctic Station, and the area
surrounding Østerlien has been studied systematically since 1996. Arctic
Station’s environmental monitoring programme became part of the
Greenland Ecosystem Monitoring programme in 2018 (https://g-e-m.
dk/).

2.1. Site climatology

The study area lies in a discontinuous permafrost zone (Obu et al.,
2019) with mean annual summer (June–August) and winter (Decem-
ber–February) air temperatures of $–3 \pm 1.8 ^\circ \text{C}$, $6.8 \pm 1.3 ^\circ \text{C}$, and $–12.5 \pm 3.9 ^\circ \text{C}$, respectively (1991–2017 means ± SD; Zhang et al., 2019).
From 1991 to 2017, the mean annual air temperature increased signifi-
cantly by 1.6 $^\circ \text{C}$ per decade, mainly due to a pronounced winter
warming of 3.2 $^\circ \text{C}$ per decade. A marked warming trend occurred in
1991–2005, while data for 2006–2017 show greater year-to-year vari-
ation with no significant trends in mean annual, summer, or winter air
temperatures which is in line with general temperature trends in the
region (Westergaard-Nielsen et al., 2018), see Zhang et al. (2019) for
further details. Mean annual precipitation is estimated at $\approx 400 \text{ mm}$
(Hansen et al., 2006). The soil is well-drained and poorly developed
from weathered basaltic bedrock parent material.

2.2. Site vegetation

Mesic dwarf shrub heath tundra dominates the Østerlien valley. The
vegetation consists mainly of deciduous shrubs Betula nana, Salix glauca,
and Vaccinium uliginosum, and the evergreen shrub Empetrum nigrum.
Some graminoids, such as Carex sp. and Poa sp., and various mosses and
lichens are present but to a much lesser extent than the dominant shrubs.
This dwarf shrub dominated vegetation type belongs to the Circumpolar
Arctic Vegetation Map (CAVM) subunits P1, P2, and S1, making the
study area representative of up to 25% of the ice-free circumpolar low
Arctic (CAVM subzones D and E according to Walker et al., 2005),
including substantial parts of the ice-free Greenland (Karami et al.,
2018).

2.3. Experimental setup and field sampling

In early June 2016, we established nine $1 \times 1 \text{ m}$ plots following a
distributed sampling scheme with a minimum distance of 65 m between
plots. We established each plot so that it provided representation of the
vegetation in a surrounding area of $20 \times 20 \text{ m}$ to allow subsequent
comparison with S-2 satellite data. Based on spectral (red, green, blue)
UV data at 3 cm spatial resolution, we found the $20 \times 20 \text{ m}$ area around
each plot to have a near gaussian distribution, and that the mean pixel
value from the plots was within one standard deviation of all pixel
values in the $20 \times 20 \text{ m}$ area. From this we concluded that selected plots
represented as homogeneous an area as possible. The nine plots were
dominated by different combinations of vascular plants Betula nana,
Salix glauca, Vaccinium uliginosum, and Empetrum nigrum. We visited the
plots 13 times during the 2016 growing season, with a median of eight
days between visits from June 14th through October 15th. During each
visit, we photographed the plots at nadir approximately 1.5 m above the
surface (G1X camera, Sony, Tokyo, Japan). Each image covered an area
of $\approx 3 \text{ m}^2$. In addition, we randomly sampled 10 leaves of each of the
four dominant plant species mentioned above. Leaves were collected at
random from plant individuals growing within 1 m of each plot. Note
that no leaves were collected inside plots. This approach allowed us to
sample leaves continuously throughout the growing season, minimizing
sampling stress on specific individuals, while obtaining unbiased pho-
tographs from within each plot.

We used photographs from 20th of July to estimate the percentage
cover of each of the four dominant plant species by averaging a visual
estimate of species cover from a $6 \times 6 \text{ grid}$ drawn across the photograph
(supplemental fig. S1). Photographs from the remaining dates served for
visual inspection of disturbances and phenology. The combined cover
of the four shrub species was above 88% in all plots so we standardized
cover of these four species to 100% cover, which also aided in
compensating for leaf N in other, non-sampled, plant species. The
remaining surface cover in the plots consisted of a combination exposed
bedrock, mosses, lichens, and graminoids. The site coordinates were
logged 5 times (GPSmap 62, Garmin Ltd., Kansas, USA), and the
Euclidian averages were selected as the representative coordinates to
decrease spatial uncertainty.

In addition to leaf sampling, site-level soil pore water was sampled
12 times at the Met Station (Fig. 1) during the study period for subse-
quent quantification of dissolved organic nitrogen (DON), NO$_3$ and
NH$_4$. The soil nutrient sampling procedure and analysis followed Ras-
mussen et al. (2020).

2.4. Leaf carbon and nitrogen analyses

The sampled leaves were air-dried and stored at ambient conditions
approximately one year before undergoing lab analyses at the Center
for Permafrost (Copenhagen, Denmark). In this study, we consider the
petiole as being a functional part of the stem (Pérez-Harguindeguy et al.,
2013), and therefore to have no marked influence on the remotely
sensed reflectance compared to the leaf blades. Consequently, we
carefully removed petioles from the leaves in the lab. Subsequently, we
homogenized (Retsch MM200 ball mill, Retsch Gmbh, Haa, Germany)
five leaves from each plant species at each of the 13 sampling dates,
whereafter 3–4 mg subsamples were analyzed for C and N content in an
elemental analyzer (Flash 2000, Thermo Scientific, Bremen, Germany)
coupled in continuous flow mode to an isotope mass spectrometer
(Thermo Delta V Advantage, Thermo Scientific, Bremen, Germany). We
used pure gases of CO$_2$ and N$_2$ calibrated against certified materials of
$\text{^{15}N}-\text{(NH}_4\text{)}_2\text{SO}_4$ and $\text{^{13}C}$-sucrose, as certified reference materials.
Species-specific leaf C:N ratios and N content were subsequently derived
as an average of all the analyzed leaves per species across the nine plots
per sampling time. We report all leaf data as community-weighted
means per plot, using the standardized percent cover of the four domi-
nant plant species (Table 1), or we report data as species-specific
means across all plots.

We used plant species-specific leaf mass per area (LMA) data, ob-
tained from the Tundra Trait Team database (Bjorkman et al., 2018b)
and calculated as specific leaf area (SLA) $^{-1}$ in order calculate canopy
biomass N for each of our plots and sampling times. We used circumpolar-wide medians of LMA (using means instead of medians

Fig. 1. UAV-based true color orthophoto of the study area in Østerlien valley,
Disko Island, West Greenland. The green squares depict the nine sample plots.
Meteorological data and continuous soil moisture data origins from measure-
ments by the Meteorological station (Met station; blue circle). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
yielded similar LMA values per plant species).

We used database LMA data in combination with our own plot-scale leaf N content data and vegetation cover to calculate community-weighted peak-summer canopy N mass and autumn senescence N mass as follows:

\[
\text{Canopy N} = \sum_{i \in \text{species}} \text{Cover}_{\text{species } i} \times \text{LMA}_{\text{species } i} \times \text{N}_{\text{species } i}
\]

(1)

Note that our estimation of Canopy N does not include N in above-ground stems. We did not estimate Canopy N for dates prior to July as leaves are still developing in June and our calculation used database LMA values that were collected primarily in July and August, i.e. when leaves are near to fully developed. Our estimation of Canopy N assumes that LMA remains constant during autumn senescence, which likely underestimates resorption efficiency and overestimates remaining N mass in near-senesced leaves (van Heerwaarden et al., 2003). Cover fractions of individual plant species varied between plots (Table 1), and by deriving a standardized weighing-factor for each species in each plot, we amplify the absolute importance of the present species in subsequent estimates of canopy N. The cover standardization builds on the assumption that the plots are fully covered by vegetation and that other plant species, which were not accounted for in our analyses (e.g., forbs or graminoids), have a similar N content to the shrubs investigated by us. While these relative cover estimates could add bias to our in-situ leaf analysis, we argue that these biases do not account for layered canopies (vertical variation and suboptimal and would lead to underestimation of canopy N. We therefore amplify the absolute importance of the present species in subsequent analyses but still constitute a minor part of the surface cover) is suboptimal and would lead to underestimation of canopy N. We acknowledge that our plant cover estimates based on top-down plot orthophotos likely underestimate total leaf abundance due to our limited ability to account for layered canopies (vertical variation and overlapping canopies/leaves). In Østterlien, all four sampled shrub species usually grow within multi-layered canopies, and our canopy N mass calculations do not account for N in sub-canopy leaves.

Table 1

Standardized cover fraction distribution of the sampled shrub species in nine replicate plots in Østterlien valley, Disko Island, West Greenland. Prior to standardization, the total relative cover of the four shrub species was >88% for all plots.

Plot	1	2	3	4	5	6	7	8	9
Salix glauca	0.30	0.97	0.11	0.21	0.44	0.31	0.51	0.24	0.52
Vaccinium uliginosum	0.44	0.00	0.27	0.67	0.56	0.56	0.49	0.48	0.20
Betula nana	0.08	0.03	0.32	0.07	0.00	0.13	0.00	0.21	0.16
Empetrum nigrum	0.18	0.00	0.30	0.06	0.00	0.00	0.00	0.07	0.12

2.5. Satellite imagery

Satellite data were acquired from the sun-synchronous S-2A satellite, featuring the Multi Spectral Instrument with 13 spectral bands, and a spatial resolution between 10 and 60 m (Drusch et al., 2012). Due to converging satellite paths at higher northern latitudes, the satellite revisit time can be as low as 3 days in our study region. The image data were downloaded through the Copernicus Open Access Hub, and all imagery was radiometrically and atmospherically corrected using the Sen2Cor module with a maritime atmosphere setting (Louis et al., 2016). The satellite scenes in supporting table ST1 were found to match our analyses but still constitute a minor part of the surface cover.

2.6. Data analyses

We used R v. 4.0.0 (RCore, 2016) to process data and calculate all canopy N estimates. Unless stated otherwise, we used least squares linear regression and t-tests for the correlation analyses (using Matlab 2018a, Mathworks, Natick USA).

When observing data points following an increasing or decreasing trend over time, we can estimate when in time a certain ratio of change in the data from their min to max has occurred. To quantify this timing in our satellite and in-situ datasets, we normalized the data to \([0 \rightarrow 1] \), interpolated linearly between data points, and extracted the dates when an increase or decrease (represented by the interpolation model) had reached 0.4, 0.5, and 0.6 of its change, respectively (using Matlab...
3. Results

3.1. Plot scale plant cover

We estimated cover fractions of the dominant shrub species based on camera photographs from each plot and its nearest surroundings as defined by the photograph’s coverage. S. glauca was present in all plots, while V. uliginosum and B. nana were the second most frequent plant species (Table 1).

From visual inspection of weekly photographs, the relative canopy leaf area per species did not change noticeably from July to late September. Leaf coloring shifted from green to carotenoid-dominated between the 3rd and 10th of August for plot 2, 3, and 6, and between the 10th and 24th of August for the remaining plots.

3.2. Local growing season climate, soil water chemistry, and satellite NDVI

The rapid drop in soil moisture in early July reflects the shift from early-season saturated soils, due to snowmelt and subsequent lateral runoff, to a mesic soil moisture regime in summer (Fig. 2A). Plot-scale NDVI, derived from the S-2A data, followed an expected pattern with a rapid green up in June, following snowmelt, followed by a senescing phase starting in mid-August. Visual shifts in vegetation color, based on plot photographs, appeared long before the first freezing temperatures around the 20th of September. Leaf color change followed the period of decreasing temperatures starting from late August (Fig. 2A and supplemental S2), which was also reflected as the period with significant increase in NRI1610 for all plots. This temperature drop coincides with 3 precipitation events on the 28th of August, 8th of September, and 30th September respectively, seen as local increases in soil moisture at 10 cm depth (Fig. 2A).

The summer of 2016 was largely an average summer in terms of soil moisture as well as air and soil temperatures according to Zhang et al. (2019), although spring snow cover was relatively low due to a warm early spring. This partly resulted in a drier summer than normal.

Soil water samples taken during the study period were analyzed for DON, NO3 and NH4. Throughout summer, the total mass of the organic N fraction were factors higher than inorganic N chemically bonded in NO3 and NH4 in the soil water (Fig. 2B). However, all three components followed a similar seasonal pattern with relatively high availability in early spring, followed by a significant decline (below our detection limit for both solute concentrations and total mass of NO3 and NH4) during peak growing season. DON, and to some extent NH4 increased markedly in late summer until freeze-in in early October, presumably due to leaching of litter fall. Solute concentrations are reported in supplemental fig. S3.

3.3. Seasonal dynamics in leaf C:N ratios

The analyzed leaf samples showed an expected difference in C:N through time between the deciduous and evergreen species. Specifically, E. nigrum had higher leaf C:N in the early and peak growing season than the three studied deciduous species, mainly due to lower N levels (Fig. 3A-C or supplemental fig. S4). In contrast, deciduous shrubs B. nana, S. glauca, and V. uliginosum showed a moderate increase in C:N starting already from the first sample on June 14th, and with a more distinct increase in the first half of August until the end of sampling on October 15th (Fig. 3A). For B. nana, we saw an unexpected decrease in C:N on the last sample date, however the difference falls within the standard error margin, and lab tests showed that the drop in C:N was caused by variation between the random leaves picked for analysis at this late phenological stage.

At the plot level, the shrub species cover varied according to Table 1. In general, the cover of S. glauca and V. uliginosum was most prominent across plots. The temporal change of leaf C:N at plot level is summarized in Fig. 3A. Looking at the N fraction only, S. glauca leaves contained about 7/3 of the leaf N in August compared to July, and by early September, S. glauca leaves contained 1/3 of peak summer %N. B. nana leaves reallocated leaf N slightly earlier than S. glauca as 7/3 of the highest measured leaf N remained in leaves by 12th of July and 22nd of August, respectively. For V. uliginosum, the corresponding dates were 29th of July and 5th of September, respectively. For the evergreen E. nigrum, leaf N dynamics followed a different pattern relative to the deciduous shrubs. E. nigrum leaf N content remained stable throughout summer, except for a slight decrease starting from late August (Fig. 3B).

3.4. Seasonal dynamics in canopy N mass

We calculated seasonal dynamics in canopy N mass for each shrub species (not shown) and for each plot based on in-situ leaf %N (Fig. 3B). The three deciduous shrub species showed a consequent decline in canopy N throughout the growing season, while canopy N for the evergreen E. nigrum was more stable over time, which is also reflected in measured leaf %N. When looking at community-weighted means at the plot-scale, plot canopy N varied between plots due to differences in species cover fraction. Plot 2 and 3 showed a distinct drop in mid- to late August, roughly halving their N. Plot 6 had an even earlier significant drop from early August, while the remaining plots displayed later drops, or a quite linear decline through the season (Fig. 4).
3.5. Results from analyses of satellite indices

A regression analysis between satellite-indices from plot 5 (nearest to the soil moisture point measurement) showed that the near-surface soil moisture at 10 cm (Fig. 2A) and 30 cm depth was not correlated with NDWI as defined in section 2.6, nor with NRI\textsubscript{1610}, NDVI, or the NDIIs. All tested satellite indices showed a weak correlation with soil moisture at 20 cm depth, and show thereby the potential importance of soil characteristics for the temporal variation in indices. However, we note that the correlation arise from data distributing as one period with stable satellite indices yet markedly decreasing soil moisture (July), and a subsequent period with marked change in satellite indices and stable soil moisture (August–September), suggesting a need for a dedicated experimental study setup to investigate the dynamics (supplemental fig. S5). Other soil environmental characteristics may be similarly important but are beyond the scope of this study.

We found that satellite-derived NDVI from the nine plots was significantly negatively correlated with the in-situ C:N ratios through the studied season, using one regression model per plot (Table 2). When evaluating the NRI\textsubscript{1610}, again as one regression model per plot, we found a significantly better correlation (Fisher’s Z transformation, \(p = 0.037 \)) with in-situ C:N. A regression analysis comparing in-situ C:N and absolute values of NRI\textsubscript{1610} (supplemental fig. S4) for all plots and sample times in one single model showed a significant correlation, however with visible uncertainty around the mean values of C:N and NRI\textsubscript{1610}. This uncertainty greatly diminished when comparing C:N with a normalized NRI\textsubscript{1610} dataset, yielding an 81% level of explanation (Fig. 5), and suggesting that the slope of linear fit lines varied between plots. Substituting NRI\textsubscript{1610} with absolute NDVI showed a significant relationship, as did using a min-max normalized NDVI signal, so the explanatory level of the normalized NRI\textsubscript{1610} was significantly better than NDVI (Fisher’s Z transformation, \(p = 0.04 \)). Two apparent outliers on Fig. 5B represent plot 3 and 6 showing a local earlier rise in C:N compared to the other plots (Fig. 5B). NRI\textsubscript{1610} showed the highest degree of explanation of in-situ C:N compared to the three other computed NDIIs, but the difference was not statistically significant (NDII results in supplemental table ST2).

When studying the temporal evolution of NRI\textsubscript{1610} during the growing season we observed a small increase on average for the nine vegetation plots from the beginning of the sample period until mid-August, followed by a substantial increase from mid-August, and a leveling-off in mid-September. In absolute numbers, Plot 6 and 9 had a significantly
higher initial NRI\textsubscript{1610} values in the early season than the other plots, while also reaching the highest index values in late autumn (supplementary fig. S4A–C). A min-max normalization per vegetation plot allowed for a direct comparison of the range of shift over time between plots, showing lower variation between plots (Fig. 5B).

Since the general patterns between in-situ leaf C:N and NRI\textsubscript{1610} were in good agreement, we extracted transitional dates from the temporal trends based on min-max normalized data of in-situ C:N, NRI\textsubscript{1610} as well as NDVI. When using a 50% threshold, i.e., the date at which half of the seasonal change had occurred, we saw a statistically significant linear correlation where the timing of a 50% change in NRI\textsubscript{1610} could explain 82% of the timing for 50% change in C:N. The correlation was significant at 40 and 60% seasonal change as well (Table 3), although with greater residuals (see supplemental fig. S6 for scatter plots). The NDII based on band 7 and 11 showed an equal R2 to NRI\textsubscript{1610} (R2 = 0.82) but a marginally higher mean square error of 16.06 (see supplementary table ST3 for all NDII results). There were no significant relationships with C:N transition dates when using satellite-based min-max normalized NDVI.

Using the correlation between NRI\textsubscript{1610} and leaf C:N (i.e., one regression model for all plots) we derived three maps, covering the studied heath area (Fig. 6).

4. Discussion

Plant uptake of available N and interspecific strategies for autumn N-reallocation are critical N-cycling pathways in terrestrial Arctic ecosystems. Differences in the amount and timing of internal N-reallocation will influence how distinct shrub species cope with current and future climatic changes, with implications for herbivore forage quality and availability as well as ecosystem C and nutrient cycling processes. Yet, methods to assess large-scale temporal and spatial dynamics in canopy N-contents are lacking (Beamish et al., 2020). Here, we demonstrate growing season and autumn variation in leaf C:N ratios at a relatively high level of temporal and spatial resolution, ensuring capturing of N reallocation patterns at the plant species level as well as integrated plant community effects for mixed dwarf shrub heath tundra. These findings are based on a development in remote sensing-based methods that allows us to take the first steps towards an upscaling of seasonal canopy C:N dynamics for large-scale assessments of functional plant phenology and leaf N-dynamics in Arctic tundra.

4.1. Scaling leaf carbon to nitrogen patterns from plot to satellite imagery

By including S-2 satellite data, we target the knowledge gap between in-situ measurements of N-dynamics at the small-scale leaf process-level and estimates of impacts at larger landscape spatial scales. However, linking across spatial scales raises the question of representativeness. The sampled heath type is the second-most widespread vegetation class on Disko Island, covering ~600 km2 (Karami et al., 2018). On a pan-Arctic scale, this vegetation class corresponds to prostrate-shrub tundra (as defined by Walker et al., 2005), covering up to 25% of the ice-free land area across the Arctic (Walker et al., 2005). Being able to capture plant functional dynamics in this type of dwarf shrub heath from space would therefore be substantial for our understanding of climate feedbacks related to changes in vegetation composition (Loranty et al., 2014), spatial dynamics in carbon fixation and N-cycling in vegetation (Myers-Smith et al., 2020), and the perspective of increased extensive livestock grazing at high northern latitudes (King et al., 2018a, 2018b). Using a surface classification map by Karami et al. (2018) and our estimation of total canopy N, and assuming that autumn reallocation starts from August 10th (see Fig. 5A), we find a local reallocation of \(\sim 0.8 \text{ g N m}^{-2}\) through the senescing phase before litter fall (8.7 mg N m-2 day-1). This resorption corresponds to roughly 50% of peak growing season canopy N, similar to leaf N resorption efficiencies of deciduous tundra plant species (Chapin III et al., 1980; Chapin III and Moilanen, 1991). Scaling to dwarf shrub heath on the Disko Island, this corresponds to a biological mechanism likely transferring \(\sim 480 \text{ t N}\) from leaves to stems and roots, and the remains to the soil surface to be recirculated through microbial breakdown of leaf litter.

The NRI\textsubscript{1610} showed great potential for explaining the general temporal variation of C:N across plots, and it was statistically significantly better than NDVI. NDVI did not correlate with the derived C:N transition

Table 3

Satellite index and % change	Slope	Intercept	R2	p	mse
NRI\textsubscript{1610}, 40%	1.3095	-74.792	0.49	0.0367	38.96
NRI\textsubscript{1610}, 50%	2.0593	-254.895	0.82	< 0.001	15.89
NRI\textsubscript{1610}, 60%	1.9891	-240.500	0.80	0.0012	17.64

Fig. 5. (A) Seasonal leaf C:N dynamics in 2016 as plant community weighted averages across the nine plots (n = 1 per plot). (B) Min-max normalized NRI\textsubscript{1610} through the growing season per plot. The inset is a scatterplot of in-situ C:N (x-axis) from all nine sites and the corresponding normalized NRI\textsubscript{1610} (y-axis). The gray line depicts a linear least squares regression (R2 = 0.81, p < 0.001, mse = 0.023, y = 0.019 x - 0.442), the blue lines represent the 95% confidence bounds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred. In contrast, the NRI dates at which a certain level of C:N change (presumably due to N reallocation) had occurred.
Leaf nutrient contents are generally high when leaves emerge in spring, whereas nutrient contents decrease continuously until senescence in autumn, as seen here in this study and in others (Chapin III and Moilanen, 1991). For migrating herbivores, such as geese, early snowmelt leads to earlier onset of graminoid growth, and may result in decreased leaf N content when geese arrive (Doiron et al., 2015). As it is critically important for herbivores to maximize nutritional gain during the short Arctic growing season, trophic mismatches therefore pose a severe threat for herbivore population fitness during this decade (Couturier et al., 2009). This is also an issue for animal husbandry, mainly sheep in South and West Greenland, which relies on the quality of natural vegetation during summer when animals are grazing open lands. Here, optimal forage quality and the timing of moving animals indoors is a critical parameter, which can be optimized by improved knowledge of canopy nutrient content. This is particularly relevant when assessing year to year variations before investing in infrastructure such as sprinkler systems to allow for longer seasons, increased number of animals per area, or even moving (King et al., 2018a, 2018b; Hannah et al., 2020). The methodology and results presented here show how such scaling for larger regions can be made based on on-going and free remote sensing products. We consider results presented here as the first step towards considerably improved quantifications of spatiotemporal variations in tundra canopy N content (or C:N ratios). Several critical knowledge gaps exist such as the performance in wetlands, and a decoupling with soil moisture regime, however it is a promising advancement for our efforts to manage both natural and domesticated herbivore populations now and in the future.

4.4. Implications for future sampling procedures, satellite-based studies and modelling of carbon dynamics

The marked changes in leaf C:N ratios reported here, at the plot community and individual plant species levels during the entire growing season, highlight that reported leaf C:N ratios should be related to a specific time of the growing season. Single snapshot measurements are not representative for the plants in question, not even relatively, as slightly divergent plant-specific reallocation strategies can occur. It also confirms the importance of picking leaves for litter degradation studies at the latest possible stage to avoid a bias towards too high litter N-levels, which in turn may result in overestimated breakdown rates and therefore underestimated C sequestration rates.

We propose that future studies should focus on experimental treatment plots with nutrient additions, e.g. N or P fertilizer addition studies, and possibly include greater spectral and spatial resolution image data in order to explore direct links between spectral properties and element cycling within tundra plants further. Such experimental plots need to be of sufficient size to accommodate the spectral resolution of available satellite imagery, and while this might be challenging there are certainly sites with plot sizes large enough to accommodate the needs. Moreover, it is arguably important to know the approximate cover fraction of species or similar diversity measures such as remote sensing-derived leaf area index estimations. It is also worth noting that our findings only relate to a specific vegetation class, and we see an urgent need for including contrasting climates, year to year variations, and different vegetation types to allow for calibrated scaling across even wider regions. Lastly, this study focuses on C:N ratios and future work should include and address the importance and scaling of other critical plant community levels in the integrated landscape results observed spectrally from space. The eligibility of the study is thereby as

Seasonal changes in leaf nutrient concentrations have significant consequences for herbivore food preference. Arctic tundra ecosystems are nutrient-limited and plant species differ in tolerance levels and strategies to cope with nutrient availability. Even minor changes in soil nutrient pools may alter competitive fitness of certain plant species. This can lead to plant species-specific winners and losers in a climate-change context, which may have major implications for both natural and domesticated grazers. For example, increased shrub growth may alter forage quantity and quality for caribou (Rangifer tarandus) (Zamin et al., 2017). In summer, Arctic ungulates selectively forage deciduous shrubs (Boerije, 1984; Manseau et al., 1996), such as Betula spp. and Salix spp., due to their common abundance and relatively high nutrient content compared to other shrubs (Marell et al., 2006; Skarin et al., 2008). Changes in canopy N content are particularly important as greater leaf N provides greater nutritional value for herbivores. Consequently, warming-induced shrub dominance is likely to impact wild and domesticated R. tarandus populations through changes in forage quantity and quality (Zamin et al., 2017). Here, phenological changes are also very likely to affect herbivores in the Arctic.
a tool for quantifying spatiotemporal heterogeneity in dwarf shrub heath canopy C:N ratios. Similarly important, it demonstrates the importance of season-long sampling strategies for quantifying species-specific leaf N dynamics, both to improve our process-level understanding of tundra N-cycling and to guide future sampling strategies and modelling efforts linking leaf N contents to soil C sequestration rates. We recommend further controlled experiments to establish direct links between spectral properties compatible with easily accessible satellite data and element cycling, and we encourage further calibration efforts to extrapolate the usage of this new spectral methodology for other vegetation classes and moisture regimes.

Author contribution

Bo Elberling (BE), Casper Tai Christiansen (CTC), and Andreas Westergaard-Nielsen (AWN) designed the study and layout of field work. CTC conducted in-situ leaf sampling, plot photography, and canopy N modelling. AWN was responsible for analyzing leaf and satellite/UAV data as well as climate data. All authors contributed to writing the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Danish National Research Foundation (CENPERM DNRF100), and University of Copenhagen (UCPH). We acknowledge the infrastructural support by ArcticNet (UCPH), and Greenland Ecosystem Monitoring (GEM) for climate and soil data. We are grateful for field assistance from Regin Røn and Alistair McConnell.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2021.112512.

References

Aber, J.D., Melillo, J.M., 2001. Terrestrial Ecosystems, Second edition. Brooks Cole.

Bartsch, A., Balzter, H., George, C., 2009. The influence of regional surface soil moisture on MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 35 (22).

Boertje, R.D., 1984. Seasonal diets of the Denali caribou herd, Alaska. Arctic 37 (2), 169–178.

Boertje, R.D., 1984. Seasonal diets of the Denali caribou herd, Alaska. Arctic 37 (2), 169–178.

Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, P.S., canoyn N modelling. AWN was responsible for analyzing leaf and satellite/UAV data as well as climate data. All authors contributed to writing the manuscript.

Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Thomas, H.J., Henry, G.H., Hollister, R.D., Bjørk, G.R., Bjorkman, A.D., Callaghan, T. V., et al., 2012a. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15 (2), 164–175.

Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Thomas, H.J., Henry, G.H., Hollister, R.D., Bjørk, G.R., Boulanger-Lapointe, N., Cooper, E.J., et al., 2012b. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2 (6), 453–457.

Bohl, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Bohl, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.

Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725), 57–62.
