Fog-Assisted Healthcare Framework for Smart Hospital Environment

Tariq Ahanger (t.ahanger@psau.edu.sa)
Prince Sattam bin Abdulaziz University College of Computer Science and Engineering

Research Article

Keywords: Fog Computing, IoT, Artificial Intelligence, Smart Health-care.

Posted Date: December 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1042542/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Fog-assisted Healthcare Framework for Smart Hospital Environment

Tariq Ahamed Ahanger*

Received: date / Accepted: date

Abstract The technological revolution brought by the Internet of Things (IoT) has mostly relied on cloud computing. However, to satisfy the demands of time-sensitive services in the medical industry, Fog Computing, a novel computational platform based on the cloud computing paradigm, has shown to be a useful tool by extending cloud resources to the network’s edge. The current paper examines the role of the fog paradigm in the domain of healthcare decision-making, focusing on its primary advantages in terms of latency, network utilization, and power consumption. A fog-computing-based health assessment framework is developed in the current paper. Moreover, based on effective performance parameters, the performance is evaluated and depicted. The results show that the presented strategy can reduce network congestion of the communication network by analyzing information at the local node. Moreover, increased security on health information can be maintained at local fog-node and enhanced data protection from unauthorized access can be acquired. Fog computing offers greater insights into the health condition of patients with enhanced accuracy, precision, reliability and stability.

1 Keywords

Fog Computing, IoT, Artificial Intelligence, Smart Healthcare.

Fig. 1 Fog Computing between IoT and Cloud Platform

2 Introduction

In the coming decade, the Internet of Things (IoT) is projected to connect millions of gadgets and intelligent things to enable the enormous potential for gathering and transmitting information smartly[13][14][15]. In recent years, cloud computing has given resources that have made it possible to utilize the IoT environment for ubiquitous computing, storing, and analysis, as well as to create a simply shared pool of resources[16][18]. Several cloud-based solutions have been presented by the researchers globally, including Cloud-based IoT, and Ubiquitous Intelligent decision-making[18][11]. To accommodate the ever-increasing volume of data, all of these systems incorporate certain advantages from the cloud platform. Furthermore, the transition to IoT can-
not be viewed as a straightforward cloud computing deployment. By offering decision-making applications to users through a dense globally dispersed IoT paradigm, the cloud conceptualization must be used\[6\][7][9]. According to cloud-based service delivery, the IoT paradigm must ensure the Everything-as-a-Service (XaaS) model, which enables applications and end-users to acquire useful data from every device in a time-sensitive manner\[8\][12]. The fog-based computational platform has recently attracted a lot of attention because of its potential to meet needs that the present cloud computing idea has yet to solve. As IoT solutions demand, the revolutionary platform of fog computing enhances the accessibility of computational resources located at the edge of the network. To offer the most suitable data flow scheduling, the proposed fog-based system’s components, followed by Section 4’s discussion of the most important benefits given by the fog layer. The suggested fog-assisted health monitoring system is detailed in Section 5 followed with a performance assessment study in Section 6. Finally, Section 7 concludes the paper with the benefits of using the fog computing method in healthcare solutions in conjunction with the cloud, as well as new study topics for future studies.

3 Literature Review

This section is focused on the state-of-the-art related works in the current domain of study. In the paper, Monteiro et al. [35] suggest a 3-tier design for individuals with Parkinson’s speech problems that are built on service orientation. The suggested design includes an integrated Intel Edison board in the intermediate tier, which acts as a data processing interface and is placed at the patient’s house. The fog node takes raw information from the body’s wearable intelligent watch, analyses it, and derives medical characteristics from the patient’s voice. Moreover, the presented framework transmits the data to the centralized repository for prolonged utility. The main purpose behind the proposed approach is to simplify the system and move data analysis to the end-user network from the cloud. An IoT-based application is presented by Gia et al. [25] to demonstrate the benefits of the fog computing idea. The authors aimed to improve the quality of medical systems’ services by focusing on patients treated both in hospitals and at home. The fog system, which uses a gateway at the edge of the network, works as a supplement to the cloud, assisting data management from medical sensors. Authors used a case study of Electrocardiogram (ECG) to illustrate the efficacy of the suggested design. Task scheduling is highlighted by Pham et al. [37] as a crucial factor in the fog-assisted technique as a means of unloading congestion off the network. To offer the most suitable data flow scheduling,
the authors use a 3-tier architecture to manage available resources situated both at the fog nodes and cloud platform. Gu et al. [26] proposed a fogging method to assess service distribution in medical systems in terms of quality of service, based on the fog-unit location in the ambiance of the patient. By spreading duties across virtual computers situated in related base stations, the suggested idea intends to aid in the unloading of traffic in the network’s core. A smart gateway is built-in Rahmani et al. [38] based on a similar concept, to improve mobility, energy expenditure, and overall delay in medical applications. To gather and assess healthcare data in real-time reliably, a fog computing node is positioned near healthcare equipment. In Cao et al. [20], a real-time analytic method for assessing falls due to encephalic vascular disease patients was proposed. As claimed by the authors, it was the first healthcare system to use the fog computing paradigm in a large-scale real-time application. For job allocation among end-devices, the described method works in conjunction with the cloud. Many people suffer from chronic heart disease, especially the elderly, and early diagnosis can help improve treatment outcomes. Azmi et al. [1] presents a remote monitoring system for health checks. The authors’ medical solution combines machine learning algorithms with a computational component to presents applications including perception and medical emergency management. An intelligent sensor is situated between IoT devices and cloud computing platforms, and it decides if data is to be forwarded to the cloud, if enhanced powerful analysis is required, or delivered to the gateway, using the same idea as the fog computing concept. Furthermore, the application of deep/machine learning techniques reduces the delay for healthcare warnings, improving patient awareness of health condition in the identification of anomalies. Masip-Bruin et al. [34] investigated the impact of a healthcare monitoring framework for patients having lung illnesses. The authors demonstrate that discovering potential anomalies through real-time monitoring aids in more effective illness management when the doctor or caregiver is promptly alerted. Masip-Bruin et al. [33] proposed a breath-support device that can adjust the oxygen amount according to the patient’s needs. The suggested system, which uses a hybrid method of the fog-cloud platform, gathers all data from healthcare

Table 1: State-of-the-Art Comparative Analysis Studies (1: Available, 0: Not Available)

Related Work	Fog	IoT	Temporal Analysis	Healthcare	Cognitive Decision	User-centered	Time-sensitive	Precision	Numerical	Stability	Reliability	Security Protocols
Montezio et al. [35]	0	1	0	0	0	0	0	0	0	0	0	0
Gia et al. [25]	0	1	1	1	0	0	0	0	0	0	0	0
Pham et al. [37]	0	1	0	1	0	0	0	0	0	0	0	0
Gu et al. [26]	0	1	0	0	0	0	0	0	0	0	0	0
Masip-Bruin et al. [34]	0	0	1	0	0	0	0	0	0	0	0	0
Alrawais et al. [4]	0	0	0	0	0	0	0	0	0	0	0	0
Borkar et al. [39]	0	1	1	0	0	0	0	0	0	0	0	0
Varghese et al. [41]	0	1	1	1	0	0	0	0	0	0	0	0
Alharbi et al. [3]	0	1	1	1	1	1	1	1	1	1	1	1
Proposed Technique	1	1	1	1	1	1	1	1	1	1	1	1
sensors via edge computational equipment, assesses information, and responds by the requirement. Even though IoT sensors provide more effective healthcare services, several issues about the security and authenticity of medical data remain unresolved. In this case, Alrawais et al. [4] propose a new approach for enhancing an authentication scheme using revoked certificates, based on the fog computing idea. A management security framework is proposed by Linthicum et al. [31] as a means to aid decisive measures for security issues with minimal or no human interaction. A novel vision of fog computing proposed by Sarkar et al. [39] for comparison with the traditional cloud architecture for delay latency and energy consumption. Furthermore, Varghese et al. [41] stated that when the idea of fog computing is used, 90% of data transmitted from the remote application to the centralized repository is decreased, and latency may be lowered by roughly 20%. This occurs as a result of the analysis module being positioned nearby to the local user where the information is created. As a result, just a portion of the data is transmitted to the cloud for processing when it is needed. The fog computing paradigm is examined by Sarkar et al. [39], where the authors highlighted the benefits of distributed computing at the network’s edge to address real-time and latency-sensitive applications. The authors contrasted the fog idea with the cloud platform for energy usage and carbon emissions in the context of IoT technology. Ahmad et al. [2] developed a model to sense medical data and facilitate the interchange of information among medical physicians and patients, based on the same scenario. In terms of using mobile operating systems to enable fog-assisted service delivery, Dantu et al. [22] proposed an effective framework for Android operating system devices as a way to show that smartphones may dependably act as edge nodes. On a contrary, owing to a diverse network, implementation is difficult. Alharbi et al. [3] suggested a technique to secure vital information from eavesdropping by encrypting and decrypting communications from IoT devices using a twofold protection approach utilizing a Virtual Private Network (VPN) server. Aside from the approaches for encrypting and decrypting communications, the proposed prototype also uses challenge-response authentication to improve data security. Although the notion of applying security techniques yields positive outcomes, the suggested fog server does not employ encryption since it is intended to be used in a hospital environment. Moreover, all crucial data is placed at the fog node and the data required for further analysis is communicated to the cloud. Safe data aggregation is demonstrated by Okay et al. [36], where the authors show how to build the fog computing secure data aggregation protocol.

Aside from the obvious benefits of reducing the quantity of data kept on the cloud, the suggested system also protects data against privacy breaches. The overall transmission and execution delay of the information accumulation technique enhances as the data quantity at the fog node and cloud increases. Comprehensively, the literature on fog computing in healthcare has useful contributions. These efforts are taken into account in this study’s suggestion for a fog-assisted health monitoring system. Moreover, Table 1 depicts the comparative analysis with the state-of-the-art related research works in the current domain.

4 Resource Shifting to Fog-node Server

This section covers some of the fog computing tier’s services, with an emphasis on healthcare solutions. A conceptual healthcare system is depicted in Figure 2, which is in charge of receiving and processing healthcare information from IoT devices connected through communication protocols including Bluetooth, and Wi-Fi. A fog server node is a processing/controlling unit with its hardware and operating system. It is in charge of receiving all data from medical and environmental IoT devices, processing it by application of data compression, and encryption. Furthermore, analysis is performed locally by data correlation with prior requests’ data. After the data from the analysis is retrieved, the fog-computing node operates automatically in the event of an anomaly. For instance, if a temperature sensor monitors a patient’s temperature is at a higher threshold, an alert signal is generated to the concerned doctor or nurse. Cloud computing is also used by the fog-computational node. The abstracted data is transmitted for prolonged cloud storage once the received data from the sensors is processed. The doctor and the patient’s family may maintain the medical records up to date in this way, allowing for further research exploration. Major components of fog server as shown in Figure 3 are detailed ahead.

1. **Local/Remote Data Repository**: The remote storing component is required for saving data from healthcare IoT devices in a remote data repository for immediate assessment. Information may be stored in a variety of forms, including kind, size, and priority, using the storage. The data can also be encrypted and compressed if necessary. Another feature of a remote data repository is that many capabilities including data filtration, assessment, and normalization are likewise repository-dependent. Moreover, if fog and cloud databases are not connected, the remote repository retains the information in a
2. **Data Filtration Unit**: It is developed to gather healthcare vitals, such as the medical symptoms of patients, and abstract the essential data. Unwanted data, such as noise and electromagnetic interference, is eliminated in the component, and the user data is recorded in a remote repository. By removing unnecessary data from the data acquired by the sensors, the filtering unit enables data minimization.

3. **Data Compression Unit**: Data compression techniques can be used in some situations to reduce the amount of bandwidth needed in the network for delivering medical data. Data compression methods come in a variety of shapes and sizes. There are two types of compression methods: lossless and lossy. When it comes to medical data, the lossless method is preferable since data loss might lead to an incorrect diagnosis. However, as medical IoT devices have restricted power consumption power, this unit is not commonly employed in cloud-based systems. As an example, it is eliminated in fog computing applications by positioning fog-node nearby to the patient. Sensors can transmit information to the fog-computational platform, which is responsible for storing, analyzing, and securing the information before delivering it to the centralized repository.

4. **Data Fusion Unit**: It is the processing unit for combining multiple types of information from the single source to acquire useful attributes from a specific user and ensure that duplicate data is supplied. Consequently, remote information assessment may be increased while bandwidth costs are decreased at the same time.

5. **Data Analysis Unit**: This component enables the medical framework to assess the raw information provided by the IoT sensors locally. As a result, the system’s overall performance can be improved since the delay latency and telecommunication congestion between the healthcare framework and centralized cloud are decreased. As an instance, in the event of a medical vulnerability, the framework will react more quickly since the data would be analyzed locally rather than being processed in the cloud. Furthermore, in a fog environment, possible connection losses and bandwidth restrictions can be avoided.

5 **Beneficial Aspects of Fog computing**

Effective resource utilization is the most important criterion in healthcare applications since resource management failure can have significant repercussions, ranging from sensor node malfunction to inaccurate illness diagnosis. The energy consumption of sensor nodes, as well as the time delay of acquired information shown at patient interfaces, have to be carefully examined. Each of these has been detailed ahead:

1. **Energy Efficiency**: Because the bulk of IoT devices/sensors have extremely short battery life, energy spending is constantly a hot issue in the literature. Even though energy is mostly utilized for data transmission, sensing and execution activities are equally important. Hu et al. [21] proposed a systematic technique for determining where a given job should be carried out. By shifting workloads from the cloud to the fog computing platform, the simulations showed that fog-based computation has an improved energy consumption effectiveness. Authors who used fog computing techniques can save up to 40% on energy consumption.

2. **Latency**: The fog paradigm has a significant benefit over cloud-assisted frameworks in that it enables a computational module to be placed closer to devices/sensors. As a result of the decreased physical distance, the overall delay can be considerably reduced[21]. Furthermore, time-sensitive service delivery that requires rapid detection and response to activities might benefit from the adoption of presented ideology, as computational-focused activities
can be shifted from sensors with minimal computing power to a capable unit that can handle the processing quicker [26]. Craciunescu et al. [21], who created a fall detection algorithm, presented an example of a time-sensitive framework utilizing an edge computing technique. According to the authors, the fog algorithm enables efficient gathering and processing of medical data by shifting data analysis to an enhanced computing unit positioned at the edge-fog layer.

3. Security Aspects: A healthcare solution’s IoT applications must all be safe. Any security compromise makes the framework vulnerable to unauthorized access, resulting in serious repercussions. Due to a large number of networked devices and a variety of IoT systems, security is one of the most explored issues in the literature. Because no healthcare system can be guaranteed to be completely secure, doctors and medical professionals must set an optimal vulnerability level for each application [32]. Some of the security threats are discussed ahead:

(a) Authentication: It is a crucial need in the IoT domain since the number of networked devices is often extremely large. Furthermore, for energy consumption, IoT devices are severely constrained inability to perform cryptographic operations. Constrained devices, on the other hand, can use a fog node to outsource resources like computational processing and storage, allowing protocols to be executed. Keeping data protected from unauthorized access is a top issue in the healthcare industry. Dsouza et al. [24] offer a policy assessment approach for ensuring information communication by health agents in a safe way over fog computing platform, which addresses the key issues of security in medical settings.

(b) Privacy: Security and privacy are 2 extremely significant problems needed by the majority of IoT applications, not just in healthcare. Even though data encryption is performed, the long-distance it travels from the user’s computer to the cloud, the more likely its information may be intercepted by hackers. As a result of its proximity to end-devices, the deployment of a fog paradigm enables strengthening the entire security framework. In light of the significance of security in the medical framework, Huang et al. [27] proposed a technique for safeguarding medical data from unauthorized access. The authors created an improved medical system based on this framework to cope with privacy breaches caused by doctors’ engagement in the healthcare procedure.

(c) Encryption: Encryption complements the fog layer in comparison to the cloud platform, and information processing by the fog computing platform is transmitted to the cloud. As a result, since healthcare information is vital data, it is recommended to be encrypted before cloud transmission. In light of this, the Aazam et al. [1] presented an additional layer of encryption in a fog computing framework for information security.

6 Proposed Fog-assisted Medical Framework

The aforementioned sections examined the key features of the fog paradigm and emphasized its important advantages in the medical industry. This section details the deployment of a fog-assisted node server for medical service delivery, as well as a comparison of the outcomes to the traditional cloud approach. A healthcare system, in general, uses several networks to link medical equipment to the cloud. Wireless networks that are employed in IoT situations include personal, local, and broad networks [30]. A wireless network formed by sensors and actuators is also another approach to link medical sensors in the healthcare industry. This architecture was created to allow devices to run on very little power, extending battery life [28]. The architecture used in the current research allows a patient to have medical vitals gathered and assessed by an intelligent fog-node server at home or in a hospital to improve life quality and avoid illnesses. The recommended design of the given medical system follows a 3-tier approach, as shown in Figure 4. All of the sensors and actuators in the first layer are connected through transmission protocol (including 3G, 4G, and Wi-Fi). There are 2 types of sensors: healthcare and environmental sensors. The healthcare devices are in charge of acquiring the user’s vital indicators, such as heart rate, body temperature, and electrocardiogram (ECG). Table 2 depicts the list of IoT sensors incorporated in the current research. The primary API for service delivery is hosted on a fog-node unit and executes on a Raspberry Pi connected to the Zero W Board, a popular platform for IoT development. This board is equipped with an embedded CPU, static and dynamic memory, and transmission unit [40]. The OS is built using Python programming language that handles all of the medical sensor demands. Its primary function is to take raw data, process it, and store the information in remote storage. The remote storage aids in the caching of data required for real-time processing as well as the storage of medical data if the internet connection is interrupted. In addition, the fog server is in charge of data accumulation. The data accumu-
Table 2 IoT device specifications

Device/ Sensors	Model	Power in watts
Fog server	Rasberry Pi Zero W	3.9
NodeMCU	ESP8266	5
Heart rate monitor	AD8232	3
Pulse	SEN-11574	3
Temperature and humidity	DHT11	0.3
Light	LDR GL5528	0.31
Data centre	Virtual machine	199
Noise	SEN-12642	0.9

...lation unit gathers all of the attributes from a single user, calculates the average measure, and sends it to the normalization unit before transferring the information for storing and visualizing in the cloud. When information is needed, the normalization module compresses it and sends it to the security module. The information is encrypted and transmitted to the cloud in JavaScript Object Notation (JSON) format.

To offer Machine-to-Machine communication, the primary application additionally supports the Message Queuing Telemetry Transport (MQTT) protocol [29]. MQTT was created to function on IoT sensors with limited resources and extensively utilized due to its ease of use and low bandwidth usage. The manner messages are exchanged is one of MQTT’s most distinguishing features. It is built on a subscription architecture, with a broker component to accept, queue, and deliver signals from healthcare devices to computation devices including fog server and/or cloud applications[5][23]. The 3rd module of the presented framework is the centralized computational framework of cloud computing. This is where the final component of the system is located. The service is transferred from the fog computational node to the cloud layer for assessment when a job demands more powerful computational capabilities. Cloud layer serves acts as a permanent storing location and offers a grant to visualizing user information via the internet on the ThingsBoard open-source IoT platform [42].

6.1 Communication Sequence

The various components stated before interact in a synchronized manner with the fog computing node in the provided paradigm. Initially, IoT data is collected indiscriminately from sensors implanted in hospitals and healthcare facilities. Based on the time-sensitive data acquisition, the parametric data is transferred to the attached Raspberry Pi (fog computing device). The fog device is equipped with an ARM Cortex-A53 quad-core CPU running at 2.1 GHz and 2GB LPDDR2 SDRAM, as well as the Raspbian Stretch operating system and Apache HTTP server 2.4.34. The data is sent over WiFi, which adheres to the IEEE 802.15.4 standard for safe and cost-effective data connection. The fog node performs real-time local computations on the acquired data and sends a warning alert signal to the doctors for medical parameters that are potentially harmful to the patient’s health. Furthermore, the fog computing node uses HTTP RESTful APIs to communicate with cloud services. It uploads input data and downloads results using the HTTP POST method. The data communication is carried out utilizing the IEEE 802.11 WiFi protocol, which is widely available and easy to implement. Table 3 shows the wireless communication protocol’s data transmission standard. Furthermore, Microsoft Network Monitor 3.4 is used to track network bandwidth usage. Amazon EC2 cloud with 1vCPU, 2GB RAM, 3GB SSD, Windows Server 2016 is utilized for cloud-based data analysis. Monitoring authorities can do 2 crucial jobs at the cloud level. For starters, regularised real-time monitoring of patient data can be done from remote locations. Software APIs built with the OS-SDK provided with the device can be used to create the visualization. The notifications can also be generated. Figure 5 depicts the complete communication sequence.

6.2 Use-case : Hospital Scenario

Fog processing enables computation, analysis, and decisive services to be performed near to the data source, which is efficient and faster than conventional techniques. A large number of medical caregivers may be required to ensure patient care on a ward at a hospital. For example, specifically for patients who insist that medical symptoms be taken regularly. If fewer number employees respond to the patients’ healthcare requirements, a faulty diagnosis may be made, leading to a worsening of the patient’s condition or even death. These experts may be assigned to more essential responsibilities by incorporating a fog-computational node to analyze and regulate the information provided by the IoT devices and healthcare sensors, allowing them to provide better service to their patients. A doctor or
other health expert can be alerted promptly if the system identifies any abnormalities. The ability to utilize information saved in the centralized computational unit for in-depth analysis and illness prevention is an advantage provided by fog computing. The fog approach improves privacy and security by collecting, processing, and analyzing all medical data locally. The only component of the healthcare data that is transmitted to the centralized platform for prolonged storing and visualizing is the patient’s medical history.

7 Experimental Simulation

7.1 Simulation Environment

2 distinct types of experimental situations were used to assess the efficacy and effectiveness of the presented fog-assisted healthcare framework. The first is the conventional approach, which uses a router to link all of the IoT actuators to the underneath cloud-based application. Secondly, the fog server is installed in the intermediate layer and uses the idea of fog computing. Figure 6 depicts a prototype of the suggested healthcare application scenario, which includes a fog-computational node as well as IoT sensors including a heart sensor, illumination device, fever sensor, and humidity preceptor that are all directly linked via wireless communication to the ESP8266. Figure 7 and Figure 8 depicts the hardware...
7.2 Network Efficiency Performance Assessment

A unique communication link is distributed across different healthcare service APIs in a distant cloud architecture, which raises the risk of network traffic congestion. Because the limited network availability is shared across all of the medical sensors, a high volume of network traffic has a direct influence on total delay. As a result, due to bandwidth constraints, a single communication may experience a longer delay. Figure 9 shows the result of dividing up the bandwidth across sensors as the number of requests increases. Different from cloud-model, in a fog environment, fog servers can be positioned closer to end devices, and due to which, the network delay can be considerably reduced. Once the
system is configured/allocated before usage, the Cloud infrastructure requires apps to be housed on powerful virtual machines. In most cases, a single virtual machine is assigned to manage all service requests from medical sensors, but in a fog environment, several fog servers can be assigned to perform a single function at the same time. However, because the virtual machines on the fog servers are less powerful in terms of processing capability, the overall energy consumption is lower than in Cloud systems.

7.3 Delay Latency

By utilizing many fog servers, the speed of the healthcare system may be enhanced due to the ability of a single application to run on multiple fog nodes. Figure 10 illustrates the advantages of using the proposed method. In this set of experiments, assuming that a heartbeat rate is sampled once every second for 24 hours with a size of 2 bytes, the network traffic of this particular message is 172.8-kilo Bytes (kB) per sensor in the first scenario, where the sensor sends the data directly to the cloud for processing. For example, if the fog computing concept is used to send the same sort of message, the fog server will be in charge of receiving all messages sent by the sensor and processing them locally. In this instance, just a tiny portion of the data is transferred to the cloud for long-term storage. The Fog Server then collects all incoming messages from the
same patient and types for 6 hours, calculates the mean value, and sends just one message to the cloud. As a result, just four messages are sent to cloud each day. After real-time processing, the fog server discards everything else. If a certain piece of data is found to be anomalous during the analysis, the fog server can activate, sending an alarm notification to the doctor or caregiver. A real-time monitoring system hosted on the Thingsboard platform exemplifies this aspect.

7.4 Network Utility

Processing data locally has many advantages, including the decrease of delay described above, as well as the reduction of bandwidth usage, which lowers total costs. Figure 11 shows the overall network use for a certain healthcare application dependent on the number of sensors used. As shown in the diagram, when sensors broadcast data to the cloud at all times, the network may get congested, depending on the available bandwidth. In fog-based applications, on the other hand, once the local data is analyzed at the edge of the network, network traffic may be significantly reduced, preventing communication obstruction and associated delays.

7.5 Classification Efficiency

The suggested model’s classification performance is defined by the estimation of 3 different performance metrics: Specificity (Spe), Precision (Pre), and Sensitivity (Sen). The classifiers include conventional Bayesian Belief Network with fog computing (BBN-f), Bayesian Belief Network with cloud computing (BBN-c) and Bayesian Belief Network with fog and cloud computing (BBN-fc), for data categorization in the fog computing environment. Furthermore, it should be highlighted that just the computing approach is changed during deployment, while the rest of the model remains same. Figure 12 shows an instance of data classification using BBN model. In addition, as shown in Table 4, the average of the results for various datasets.

1. For the data sets provided, the presented model is capable of reporting an overall precision of 94.85%. BBNc and BBN-f, on the other hand, were able to achieve precision values of 93.29% and 93.82%, respectively. As a result, in the current context, the proposed BBN-fc model is significantly more exact than other computing techniques.

2. When it comes to specificity, the provided model outperforms BBN-f (92.10%) and BBN-c with a score of 93.63%. In terms of specificity analysis, the BBN-fc model outperforms other models.

3. The importance of sensitivity analysis in achieving the efficiency of the presented model cannot be overstated. The suggested healthcare model with BBN-fc achieves a high value of 94.16%, compared to BBN-f values of 91.83% and BBN-c values of 91.04%.

The BBN-fc model outperformed state-of-the-art computing models in many simulations, indicating that it is exceptionally successful in the given circumstance.

7.6 Reliability

The reliability analysis is a crucial tool for evaluating the proposed model’s overall efficiency. To assess the improvement, the findings are compared for traditional monitoring, cloud computing, fog computing, and cloud-fog computing. As previously stated, cloud-fog based healthcare model is highly effective because it is based on state-of-the-art computing approaches. Figure 13 demonstrates that the suggested cloud-fog model may obtain an average reliability of 92.69% across a variety of datasets. In comparison, the traditional system obtained 85.09% reliability rating, cloud obtained a 89.21% dependability value, and fog computing obtained a 90.32% reliability value. As a result, the presented cloud-fog healthcare modeling’s superior trend for reliability analysis shows the effectiveness of healthcare assessment in the intelligent framework of hospitals and healthcare centers.

7.7 Stability

The system’s resistance to processing huge datasets is the topic of the stability analysis. As the size of the datasets grows, the model must be stabilised in order to manage massive IoT data. The System Precise Shift (SPS) is used to assess system stability. It is a probabilistic number used to assess the stability estimation.
Table 4 BBN Classification Efficiency; (Pre Precision, Spe Specificity, Sen Sensitivity)

Model	BBN-fc	BBN-f	BBN-c						
	Pre	Spe	Sen	Pre	Spe	Sen	Pre	Spe	Sen
4000	95.35%	93.94%	94.62%	94.82%	91.02%	92.67%	94.42%	91.14%	90.11%
8000	94.78%	93.84%	94.02%	93.72%	93.24%	93.77%	93.02%	93.69%	91.14%
12000	95.57%	93.57%	94.42%	93.82%	92.13%	94.04%	92.09%	92.45%	91.01%
16000	95.75%	93.96%	93.12%	94.62%	91.04%	92.89%	94.12%	92.67%	92.49%
20000	93.86%	94.98%	94.04%	93.82%	92.22%	91.09%	93.63%	93.25%	90.69%
24000	94.54%	94.82%	93.12%	94.21%	93.14%	91.07%	94.09%	93.09%	89.86%
28000	94.82%	95.93%	92.21%	92.23%	90.81%	90.14%	92.14%	91.89%	89.16%
32000	94.62%	92.54%	94.02%	94.12%	91.45%	90.15%	94.06%	90.89%	91.34%
36000	94.52%	92.30%	95.42%	93.44%	93.10%	90.04%	92.18%	90.42%	93.14%
40000	94.42%	93.01%	94.42%	93.22%	92.80%	92.10%	93.83%	90.14%	91.50%

Fig. 12 Bayesian Belief Network Classification

Fig. 13 Reliability Analysis

of a modelling technique. SPS values range from 0 to 1. The number 0 denotes the least stable state, whereas 1 denotes the most stable state. The total results of the provided technique are shown in Figure 14. It has been discovered that the proposed cloud-fog model can register a minimum value of 0.58 and a maximum value of 0.87, yielding an average value of 0.73. As a result, the provided model can be inferred to be extremely efficient and stable.
8 Conclusion

The novel vision of fog-node-based computation was introduced in the domain of medical care in the current article. It was thoroughly detailed, and its performance was assessed using real-world tests in comparison to a typical strategy relying only on cloud computing. The primary advantages of this method in terms of patient health parameter monitoring and control have been discussed. A thorough examination of the major resources made available by locating computational analysis and storage at the network’s edge, with an emphasis on e-Health solutions, was conducted. The authors demonstrated a complete deployment of a fog-assisted health monitoring system to aid health professionals in decision-making and illness prevention. Fog Computing, in general, provides techniques for dealing with enormous amounts of data created by the Internet of Things devices. By locating cloud resources close to the source of the produced data, healthcare solutions can benefit from shorter processing times and lower energy use. Because data is analyzed locally, the fog tier also helps to reduce data traffic in the network’s core. As a result, just a tiny quantity of data is transferred to a cloud infrastructure. Furthermore, because health records are thought to contain highly sensitive information, all confidential medical information may be stored locally, increasing data security.

A multi-tenant method is becoming a popular option to cater to many customers due to the rising number of networked IoT devices. However, in terms of service quality needs, effective resource allocation and job scheduling have not been thoroughly investigated. Furthermore, because of the variety of the fog environment, the interaction between devices tends to be more complicated. As a result, in healthcare applications, a trust management framework among these devices is important. These are some ideas for further research.

9 Conflict of Interest
The author declare no conflict of interest.

10 Availability of data and material
The datasets will be provided if needed for the review process.

11 Competing Interests
Not Applicable

12 Funding
Not Applicable

13 Acknowledgements
The Author would like to thank Dr. Usman Tariq and Prof. Muhammad Atiquizaman for their advice to improve this article.

14 Authors Information
Not Applicable

References

1. Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway based communication for cloud of things. In 2014 International Conference on Future Internet of Things and Cloud, pages 464–470. IEEE, 2014.
2. Mahmood Ahmad, Muhammad Bilal Amin, Shujaat Hussain, Byeong Ho Kang, Taechoong Cheong, and Sung-young Lee. Health fog: a novel framework for health and wellness applications. The Journal of Supercomputing, 72(10):3677–3695, 2016.
3. Salem Alharbi, Peter Rodriguez, Rajaputhri Maharaja, Prashant Iyer, Nivethitha Subaschandrabose, and Zilong Ye. Secure the internet of things with challenge response authentication in fog computing. In 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pages 1–2. IEEE, 2017.
4. Arwa Alrawais, Abdulrahman Alhothaily, Chunqiang Hu, and Xinzihe Cheng. Fog computing for the internet of things: Security and privacy issues. IEEE Internet Computing, 21(2):34–42, 2017.
5. Soma Bandyopadhyay and Abhijan Bhattacharyya. Lightweight internet protocols for web enablement of sensors using constrained gateway devices. In 2013 International Conference on Computing, Networking and Communications (ICNC), pages 334–340. IEEE, 2013.
6. Munish Bhatia. Fog computing-inspired smart home framework for predictive veterinary healthcare. Microprocessors and Microsystems, 78:103227, 2020.

7. Munish Bhatia. Game theory based framework of smart food quality assessment. Transactions on Emerging Telecommunications Technologies, 31(12):e3926, 2020.

8. Munish Bhatia, Simranpreet Kaur, and Sandeep K Sood. Iot-inspired smart toilet system for home-based urine infection prediction. ACM Transactions on Computing for Healthcare, 1(3):1–25, 2020.

9. Munish Bhatia, Simranpreet Kaur, Sandeep K Sood, and Veerawali Behal. Internet of things-inspired healthcare system for urine-based diabetes prediction. Artificial Intelligence in Medicine, 107:101913, 2020.

10. Munish Bhatia and Sapna Kumari. A novel iot-fog-cloud-based healthcare system for monitoring and preventing encephalitis. Cognitive Computation, pages 1–18, 2021.

11. Munish Bhatia and Ankush Manocha. Cognitive framework of food quality assessment in iot-inspired smart restaurants. IEEE Internet of Things Journal, 2020.

12. Munish Bhatia, Sandeep Sood, and Vaishali Sood. A novel quantum-inspired solution for high-performance energy-efficient data acquisition from iot networks. Journal of Ambient Intelligence and Humanized Computing, pages 1–20, 2020.

13. Munish Bhatia and Sandeep K Sood. A comprehensive health assessment framework to facilitate iot-assisted smart workouts: A predictive healthcare perspective. Computers in Industry, 92:50–66, 2017.

14. Munish Bhatia and Sandeep K Sood. Game theoretic decision making in iot-assisted activity monitoring of defence personnel. Multimedia Tools and Applications, 76(21):21911–21935, 2017.

15. Munish Bhatia and Sandeep K Sood. An intelligent framework for workouts in gymnasium: M-health perspective. Computers & Electrical Engineering, 65:292–309, 2018.

16. Munish Bhatia and Sandeep K Sood. Exploring temporal analytics in fog-cloud architecture for smart office healthcare. Mobile Networks and Applications, 24(4):1392–1410, 2019.

17. Munish Bhatia and Sandeep K Sood. Quantum computing-inspired network optimization for iot applications. IEEE Internet of Things Journal, 7(6):5590–5598, 2020.

18. Munish Bhatia, Sandeep K Sood, and Simranpreet Kaur. Quantum-based predictive fog scheduler for iot applications. Computers in Industry, 111:51–67, 2019.

19. Munish Bhatia, Sandeep K Sood, and Simranpreet Kaur. Quantum-based approach of load scheduling in fog computing environment for iot applications. Computing, pages 1–19, 2020.

20. Yu Cao, Songqing Chen, Peng Hou, and Donald Brown. Fast: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In 2015 IEEE international conference on networking, architecture and storage (NAS), pages 2–11. IEEE, 2015.

21. Razvan Craciunescu, Albena Mihowska, Mihail Mihaylov, Sofoklis Kyriazakos, Ramjee Prasad, and Simona Halunga. Implementation of fog computing for reliable e-health applications. In 2015 49th Asilomar Conference on Signals, Systems and Computers, pages 459–463. IEEE, 2015.

22. Karthik Dantu, Steven Y Ko, and Lukasz Ziarek. Raina: reliability and adaptability in android for fog computing. IEEE Communications Magazine, 55(4):41–45, 2017.

23. Niccolò De Caro, Walter Colitti, Kris Steenhaut, Giuseppe Mangino, and Gianluca Reali. Comparison of two lightweight protocols for smartphone-based sensing. In 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT), pages 1–6. IEEE, 2013.

24. Clinton Dsouza, Gail-Joon Ahn, and Marthony Taguinod. Policy-driven security management for fog computing: Preliminary framework and a case study. In Proceedings of the 2014 IEEE 15th international conference on information reuse and integration (IEEE IRI 2014), pages 16–23. IEEE, 2014.

25. Tuan Nguyen Gia, Minghale Jiang, Amir-Mohammad Rahmani, Tomi Westerlund, Pasi Liljeberg, and Hannu Tenhunen. Fog computing in healthcare internet of things: A case study on ecg feature extraction. In 2015 IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing, pages 356–363. IEEE, 2015.

26. Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Transactions on Emerging Topics in Computing, 5(1):108–119, 2015.

27. Haiping Huang, Tianhe Gong, Ning Ye, Ruchuan Wang, and Yi Dou. Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3):1227–1237, 2017.

28. Saeed Sedighian Kashi and Mohsen Sharifi. Connectivity weakness impacts on coordination in wireless sensor and actor networks. IEEE communications surveys & tutorials, 15(1):145–166, 2012.

29. Paridhika Koyal and Harry Perros. A comparison of iot application layer protocols through a smart parking implementation. In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), pages 331–336. IEEE, 2017.

30. Wangbong Lee, Kidong Nam, Hak-Gyun Roh, and Sang-Ha Kim. A gateway based fog computing architecture for wireless sensors and actuator networks. In 2016 18th International Conference on Advanced Communication Technology (ICACT), pages 210–213. IEEE, 2016.

31. David S Linthicum. Connecting fog and cloud computing. IEEE Cloud Computing, 4(2):18–20, 2017.

32. Henrik Madsen, Bernhard Burtschy, G Albeann, and FL Popentiu-Vladescu. Reliability in the utility computing era: Towards reliable fog computing. In 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP), pages 43–46. IEEE, 2013.

33. Xavi Masip-Bruin, Eva Marin-Tordera, Ghazal Tashakori, Admela Jukan, and Guang-Jie Ren. Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems. IEEE Wireless Communications, 23(5):120–128, 2016.

34. Xavier Masip-Bruin, Eva Marin-Tordera, Albert Alonso, and Jordi Garcia. Fog-to-cloud computing (f2c): The key technology enabler for dependable e-health services deployment. In 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net), pages 1–5. IEEE, 2016.

35. Admir Monteiro, Harishchandra Dubey, Leslie Mahler, Qing Yang, and Kunal Mankodiya. Fit: A fog computing device for speech tele-treatments. In 2016 IEEE international conference on smart computing (SMARTCOMP), pages 1–3. IEEE, 2016.
36. Feyza Yildirim Okay and Suat Ozdemir. A secure data aggregation protocol for fog computing based smart grids. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), pages 1–6. IEEE, 2018.

37. Xuan-Qui Pham and Eui-Nam Huh. Towards task scheduling in a cloud-fog computing system. In 2016 18th Asia-Pacific network operations and management symposium (APNOMS), pages 1–4. IEEE, 2016.

38. Amir M Rahmani, Tuan Nguyen Gia, Behailu Negash, Arman Anzanpour, Iman Azimi, Mingzhe Jiang, and Pasi Liljeberg. Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach. Future Generation Computer Systems, 78:641–658, 2018.

39. Subhadeep Sarkar and Sudip Misra. Theoretical modelling of fog computing: a green computing paradigm to support iot applications. Iet Networks, 5(2):23–29, 2016.

40. Eben Upton and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons, 2014.

41. Blesson Varghese, Nan Wang, Dimitrios S Nikolopoulos, and Rajkumar Buyya. Feasibility of fog computing. In Handbook of Integration of Cloud Computing, Cyber Physical Systems and Internet of Things, pages 127–146. Springer, 2020.

42. Pedro H Vilela, Joel JPC Rodrigues, Petar Scolic, Kashif Saleem, and Vasco Furtado. Performance evaluation of a fog-assisted iot solution for e-health applications. Future Generation Computer Systems, 97:379–386, 2019.