Optimal control of plant disease model with roguing, replanting, curative, and preventive treatment

N Anggriani, R Amelia, N Istifadah and D Arumi
Universitas Padjadjaran, Jl. Raya Jatinangor Km. 21 Jatinangor 45363 Indonesia

E-mail: nursanti.anggriani@unpad.ac.id

Abstract. In this paper, we determine the optimal control of plant disease model with roguing, replanting, curative, and preventive treatment using the Maximum Pontryagin principle. Numerical simulation results show that the procedure can reduce the population of infected plants. Therefore, controlling by roguing, replanting, curative, and preventive treatment is highly recommended to increase the number of susceptible, removed, and protected plants.

1. Introduction
Crop cultivation is a promising business opportunity, but it is not uncommon for farmers to experience losses. This loss is caused by attacking pathogens, such as fungi, oomycetes (water fungi), bacteria, viruses, viroid (plant pathogens), and nematodes that cause plants to become infected (growth and development of these plants are not optimal) [1]. Researchers have carried out many studies about plant diseases, such as the analysis of epidemic models [2] and the spread of disease [3].

There are several ways commonly used to overcome the problem of disease in plants, one of which is roguing and replanting. Development of mathematical models about roguing and replanting has been carried out such as a structured population model for dynamics of SIR type epidemics by considering the total number of infections and the number of post-infectious infections in a tree [4], sensitivity analysis of two explicit spatial simulation models [5], and models of plant viral diseases with periodic and bloody rogue environments [6]. Several studies have explored mathematical models of roguing and replanting, such as creating analytic models of plant virus disease dynamics [7], determining the dynamics of infectious disease control strategies in plants in gardens [4], discrete models for plant diseases [8], plant disease models using the fractional method [9] and uses a system of ordinary differential equations to simulate the effects of roguing in controlling plant diseases [10].

In addition to roguing and replanting, controlling and repairing can also be done, by giving insecticides. The dynamical models of roguing plant diseases and replanting with curative, preventive, and curative and preventive treatment have been carried out by previous researchers [11-14].

Although providing preventive or curative insecticides can reduce protected plants, increase the number of plants removed and vulnerable plants. However, given excessive insecticide will increase costs. Therefore, it is necessary to find the optimal control of insecticides to use to reduce the plants promoted. Some researchers have researched optimal control, such as modelling to control fungicide applications [15], controlling plant diseases with cost-effectiveness [16], using pesticides to use biological control, and using technology [17], and optimizing plant disease control [17].

Also, mathematical models can provide useful recommendations for managing the spread of Huanglongbing [18], showing optimal control of preventive maintenance [19], as well as controlling the...
use of botanical fungicides to reduce infected host populations [20, 21]. The use of an optimal control model can be used to determine the application of *Verticillium lecanii* (*V. lecanii*) to reduce the intensity of the spread of the yellow virus [22]. Besides, optimal control can also help the success of eradicating the disease [23] and investigating the effects of using roguing and insecticides to maximize healthy plants that are harvested [24].

From previous research ideas [11-14], this study will discuss optimal control of the application of insecticides by considering costs. We assume that providing curative treatment in the form of insecticides on infected plants, preventive treatment in the form of insecticides on latent and infected plants, or curative and preventive treatment in the form of insecticides on susceptible plants, can increase susceptible and removed plants and reduce plants that are infected.

2. Optimal Control Model

Optimal control carried out in this study includes roguing and replanting plant disease models, by providing curative treatment (Model 1), preventive treatment (Model 2) [14], as well as curative and preventive treatment (Model 3) [12] using the principle of Maximum Pontryagin [25]. Where the Susceptible plants denote $S(t)$, $E(t)$ is the Latent compartment, the Infected compartment denotes $I(t)$, the Post Infectious/Removed compartment denote $R(t)$ and $P(t)$ is the Protected Plants compartment.

Dynamic model of plant diseases by roguing and replanting with the help of supervision is curative treatment by giving insecticides to infected plants to minimize the population of infected plants by considering the costs. Following are the objective functions of the optimal control model 1:

\[
J(u) = \int_{t_0}^{t_1} \left(A I(t) + C_c u_c^2(t) \right) dt
\]

where A is the weight of the plant in the infected compartment, C_c is the cost weight for u_c, while u_c is the curative treatment control. Where is the status variable $x(t) = [S(t) \quad E(t) \quad I(t) \quad R(t)]^T$ and the constraints are:

\[
\frac{dS}{dt} = r(K - N) - \mu S - k_s \frac{I}{K}
\]

\[
\frac{dE}{dt} = k_s \frac{I}{K} - (\mu + k_2 + \alpha_1)E
\]

\[
\frac{dI}{dt} = k_2 E - (\mu + k_3 + \alpha_2 + \eta)I - pu_c I
\]

\[
\frac{dR}{dt} = k_3 I - (\mu + \alpha_3)R + pu_c I
\]

with boundary conditions

$t_0 < t < t_1$, $0 \leq u_c(t) \leq 1$, $S(0) = S_0 \geq 0, E(0) = E_0 \geq 0, I(0) = I_0 \geq 0, R(0) = R_0 \geq 0$, by using Pontryagin’s Maximum Principle we get $u_c = \frac{(\lambda_3 - \lambda_1)pI}{2c_c}$, so $u_c = \min \left\{ 0, \max \left(\frac{(\lambda_3 - \lambda_0)pI}{2c_c}, 1 \right) \right\}$.

Dynamic models of plant diseases by sweeping and replanting with preventive maintenance controls by applying insecticides on susceptible plants to minimize the population of infected plants by considering the costs. The following objective functions are optimal control of model 2:

\[
J(u) = \int_{t_0}^{t_1} \left(A I(t) + C_p u_p^2(t) \right) dt
\]

where A is the weight of the plant in the infected compartment, C_p is the cost weight for u_p, while u_p is the preventive treatment control.

Where is the status variable $x(t) = [S(t) \quad P(t) \quad E(t) \quad I(t) \quad R(t)]^T$ and the constraints are:

\[
\frac{dS}{dt} = r(K - N) - \mu S - k_s \frac{I}{K} - \beta u_p S + \delta P
\]

\[
\frac{dP}{dt} = \beta u_p S - \delta P - \mu P
\]
\[
\begin{align*}
\frac{dE}{dt} &= k_1 S \frac{l}{K} - (\mu + k_2 + \alpha_1) E \\
\frac{dl}{dt} &= k_2 E - (\mu + k_3 + \alpha_2 + \eta) l \\
\frac{dR}{dt} &= k_3 l - (\mu + \alpha_3) R \\
\end{align*}
\]

with boundary conditions
\[t_0 < t < t_1, 0 \leq u_p(t) \leq 1, S(0) = S_0 \geq 0, P(0) = P_0 \geq 0, E(0) = E_0 \geq 0, I(0) = I_0 \geq 0, R(0) = R_0 \geq 0,\]

by using Pontryagin’s Principle we get \[u_p = \frac{(\lambda_1 - \lambda_2) \beta S}{2c_p} \] so \[u_p = \min \left\{ 0, \max \left(\frac{(\lambda_3 - \lambda_4) p l}{2c_p}, 1 \right) \right\}.\]

Dynamic models of plant diseases by roguing and replanting with curative and prevention treatments in the form of insecticides on susceptible and infected plants that aim to minimize the number of infected plant populations at the lowest cost. The following objective functions are optimal control of model 3:

\[J(u) = \int_{t_0}^{t_1} \left(A I(t) + C_c u_c^2(t) + C_p u_p^2(t) \right) dt \]

where \(A \) is the weight of the number of plants in the infected compartment, \(C_c \) and \(C_p \), respectively the cost weights for \(u_c \) and \(u_p \). Whereas \(u_c \) is curative treatment control and \(u_p \) is preventive treatment control. Where is the status variable \(x(t) = \begin{bmatrix} S(t) \\ P(t) \\ E(t) \\ I(t) \\ R(t) \end{bmatrix} \) and the constraints are:

\[
\begin{align*}
\frac{dS}{dt} &= r(K - N) - \mu S - k_2 S \frac{l}{K} - \beta u_p S + \delta P \\
\frac{dP}{dt} &= \beta u_p S - \delta P - \mu P \\
\frac{dE}{dt} &= k_1 S \frac{l}{K} - (\mu + k_2 + \alpha_1) E \\
\frac{dl}{dt} &= k_2 E - (\mu + k_3 + \alpha_2 + \eta) l - pu_c l \\
\frac{dR}{dt} &= k_3 l - (\mu + \alpha_3) R + pu_c l \\
\end{align*}
\]

with boundary conditions
\[t_0 < t < t_1, 0 \leq u_c(t) \leq 1, 0 \leq u_p(t) \leq 1, S(0) = S_0 \geq 0, P(0) = P_0 \geq 0, E(0) = E_0 \geq 0, I(0) = I_0 \geq 0, R(0) = R_0 \geq 0, \]

by using Pontryagin’s Principle we get: \[u_c = \frac{(\lambda_1 - \lambda_2) \beta S}{2c_c} \] and \[u_p = \min \left\{ 0, \max \left(\frac{(\lambda_3 - \lambda_4) p l}{2c_p}, 1 \right) \right\}).\]

3. Numerical Simulation

To illustrate the dynamics of infected plant populations, we provide numerical examples with control and without control with parameters and initial values as in Table 1 [14]. Figure 1 shows that with the control that is curative treatment control, with weight values \(A = 1 \) and \(C_c = 1 \), the number of infected plants decreases more than those without control \((u_c = 0) \). Changes in weight values will affect the optimal control of the model.
Figure 1. Differences with and without control of infected plants in model 1

Figure 2 shows that with controls that are preventive maintenance controls, with weight values $A = 1$ and $C_p = 1$ and the number of plants infected with or without control ($u_p = 0$) does not change. Thus, the control effect does not exist.

Figure 2. Difference with and without control of infected plants in model 2

Figure 3 shows that with preventive maintenance control and preventive maintenance control, with weight values $A = 1$, $C_c = 1$, and $C_p = 1$, the number of infected plants decreased more than those without control (values $u_c = 0$ and $u_p = 0$). However, the comparison is not very significant.
Figure 3. Difference with and without control of infected plants in model 3

Previous research [12, 14] discuss the dynamical system model and analyze the effect of the treatment on plant disease transmission dynamics. From [12, 14] we developed optimal control model. The result shows that roguing and replanting and controlling efforts, namely providing curative and preventive treatment in the form of insecticides on susceptible plants and infected plants, is better done to control the spread of plant diseases (Figure 1-3).

4. Conclusion
In this paper, we develop optimal control models of plant diseases through roguing and replanting by providing curative treatment (model 1), preventive treatment (model 2), and preventive and curative treatment (model 3) using Pontryagin’s Maximum Principle. The purpose of control is to minimize the number of infected plant populations by making effective treatments. Optimal control simulation results show that the number of plants infected with control is lower than those without control. As a result, the number of susceptible plants removed and protected increases if given control in the form of insecticides. For model 2, the graph shows that the number of infected plants, both with and without control, shows the same results. It means that infected plants do not change for preventive treatment. So that effective treatment is to provide curative treatment or both treatments are carried out.

5. Acknowledgments
The work was supported by Kementrian Riset dan Teknologi/Badan Riset dan Inovasi Nasional 2020, with contract number 1827/UN6.3.1/LT/2020 through Penelitian Dasar Unggulan Perguruan Tinggi.

6. References
[1] Agrios G N 2005 Plant Pathology (California: Academic Pres).
[2] Cai L and Xuezhi 2010 Analysis of a Simple Vector-Host Epidemic Model with Direct Transmission Discrete Dynamics in Nature and Society.
[3] Murwayi A, Onyango T and Owour B 2017 Mathematical Analysis of Plant Disease Dispersion Model that Incorporates wind Strength and Insect Vector at Equilibrium British Journal of Mathematics & Computer Science 22 1.
[4] Van den Bosh F and de Roos A 1996 The dynamics of infectious diseases in orchards with roguing and replanting as control strategy J Math Biol 35 129.
[5] Sisterson M S and Stenger D C 2013 Roguing with Replacement in Perennial Crops: Conditions for Successful Disease Management Analytical and Theoretical Plant Pathology 103 117.
[6] Gao S, Xia L and Xie D 2015 A Plant Virus Disease Model with Periodic Environment and Pulse Roguing Plant Virus Disease Model 136 357.
[7] Chan M S and Jeger M 1994 An analytical model of plant virus disease dynamics with roguing and replanting Journal of Applied Ecology 31 413.

[8] Luo Y, Gao S, Xie D and Dai Y 2015 A discrete plant disease model with roguing and replanting Advances in Difference Equations 12 1.

[9] Rida S 2016 Mathematical Model of Vector-Borne Plant Disease with Memory on the Host and the vector rog. Fract. Differ. Appl. 2 277.

[10] Blas N and David G 2017 Dynamical roguing model for controlling the spread of tungro virus via Nephotettix Viurescens in a rice field Journal of Physics: Conference Series 893 012018.

[11] Anggriani N, Istifadah N, Hanifah M and Supriatna A K 2016 A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis IOP Conf. Series: Earth and Environmental Science 31.

[12] Anggriani N, Ndii M, Arumi D, Istifadah N and Supriatna A 2018 Mathematical Model for Plant Disease Dynamics with Curative and Preventive Treatments The 6th International Conference on Science & Engineering in Mathematics, Chemistry and Physics AIP Conf. Proc.

[13] Anggriani N, Ndii M, Istifadah N and Supriatna A 2018 Disease Dynamics with Curative and Preventive Treatments in a Two-Stage Plant Disease Model The 6th International Conference on Science & Engineering in Mathematics, Chemistry and Physics AIP Conf.

[14] Anggriani N, Arumi D, Hertini E, Istifadah N and Supriatna A K 2017 Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment Proceedings of 4th International Conference on Research, Implementation, and Education of Mathematics and Science.

[15] Castle M D and Giligan C A 2012 An Epidemiological Framework for Modelling Fungicide Dynamics and Control Plas One 1.

[16] Cunniffe N J, Laranjeira F, Neri F, DeSimone R and Gilligan C 2014 Cost-Effective Control of Plant Disease When Epidemiological Knowledge Is Incomplete: Modelling Bahia Bark Scaling of Citrus PLOS Computational Biology 10 1.

[17] Khokhar M and Gupta R 2014 Integrated Disease Management Popular Kheti 2 87.

[18] Cunniffe N, Stutt R, DeSimone R and Gottwald T 2015 Optimising and Communicating Options for the Control of Invasive Plant Disease When There Is Epidemiological Uncertainty PLOS Computational Biology 1.

[19] Taylor R, Mordecai E, Gilligan C, Rohr J and Johnson L 2016 Mathematical models are a powerful method to understand and control the spread of Huanglongbing PeerJ 1.

[20] Anggriani N, Mardiyah M, Istifadah N and Supriatna A K 2018 Optimal control issues in plant disease with host demographic factor and botanical fungicides IOP Conference Series: Materials Science and Engineering 1.

[21] Amelia R, Mardiyah M, Nahar J, Anggriani N and Supriatna A 2019 Optimal control for the use of botanical fungicides in the spread of plant diseases IOP Conf. Series: Journal of Physics: Conf. Series 1315 012054.

[22] Amelia R, Anggriani N and Supriatna A 2019 Optimal control for the use of botanical fungicides in the spread of plant diseases WSEAS Transactions on Mathematics 351.

[23] Zhao T and Smith? R 2019 Global dynamical analysis of plant-disease models with nonlinear impulsive cultural control strategy Mathematical Biosciences and Engineering 16 7022.

[24] Bokil V, Allen L, Jeger M and Lenhart S 2019 Optimal control of a vectored plant disease model for a crop with continuous replanting Journal of Biological Dynamics 13 325.

[25] Lenhart S and Workman J 2007 Optimal Control Applied to Biological Models CRC Press, Taylor & Francis Group.