Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics

Sisi Cao†, Yaoyao Han†, Qiaofeng Li†, Yanjiang Chen, Dan Zhu†, Zhiheng Su†* and Hongwei Guo†*

† College of Pharmacy, Guangxi Medical University, Nanning, China, ‡ Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China, § School of Preclinical Medicine, Guangxi Medical University, Nanning, China, ¶ Department of Surgery, University of Melbourne, Parkville, VIC, Australia

Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underlying the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.

Keywords: litchi, cancer, multi-ingredients, multi-targets, network pharmacology

INTRODUCTION

Cancer is one of the most serious public health problems globally. In 2018, approximately 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred in the world (Bray et al., 2018). There is an urgent need for a more effective therapy. Traditional Chinese medicine (TCM) has been used for thousands of years in Asia for its good efficacy and compliance, and this also made it an important supplemental medicine in cancer treatment (Xiang et al., 2019). Comparing with the current “one drug, one target” mode, TCM has the feature of “multiple active ingredients, multiple targets” (Li and Zhang, 2013). Given that cancer is a complex disease which alters a range of cellular
and molecular processes, TCM may hold the advantage of targeting multiple cancer-related molecules simultaneously with potential synergistic effects. However, as a result of the feature of “multiple ingredients, multiple targets”, herbs can potentially interact with prescription medications like when cancer patients use plant-based regimens with chemotherapy (Yeung et al., 2018; Parvez and Rishi, 2019; Pezzani et al., 2019). Therefore, the potential risk of using TCM as complementary medicine should be considered for maximum safety and efficacy.

Litchi chinensis Sonn (Litchi), a member of Litchi, Sapindaceae family, is a subtropical evergreen plant which has been widely cultivated as an economic cultivar for its delicious taste and rich nutrition fruitage in China, Philippines, Indonesia, and Vietnam (Mitra, 2002; Menzel et al., 2005). In China, Litchi seeds were used as an analgesic agent for the alleviation of neuralgia, orchitis, testicular swelling, hernia, gastralgia, lumbago, abdominal pain, etc. (Lan and Lan, 2011). The decoctions of Chinese herbal formula containing Litchi seeds were used as indigenous remedies for urologic neoplasms including prostate cancer, bladder cancer, and renal carcinoma (Shi, 2004; Wang, 2011c). Moreover, a considerable amount of studies have shown that in addition to Litchi seeds, the extracts and ingredients from other parts (peels, pulps, and flowers) of Litchi can exert multiple pharmacological actions which have the anti-inflammatory (Das et al., 2016), anti-oxidative (Lee et al., 2016), anti-bacterial (Yang et al., 2016), anti-viral (Gangethi et al., 2010; Xu et al., 2010a), anti-liver injury, and immune-enhancing effects (Noh et al., 2011; Huang et al., 2014a; Yamanishi et al., 2014; Huang et al., 2014b; Huang et al., 2016a; Su et al., 2016; Xiao et al., 2017; Queiroz et al., 2018). Furthermore, there was accumulating evidence indicating that the extracts and compounds from Litchi exhibit anticancer effects by targeting multiple proteins and signal pathways involved in cancer cell proliferation, metastasis, angiogenesis, apoptosis, autophagy, etc. However, current studies are limited to the traditional research method of identifying “single-drug, single-target, and single-pathway”, which failed to reflect the “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In order to elucidate its multiple modes of action, network pharmacology and bioinformatics were employed in this study as a powerful approach (Zhang et al., 2019a) to systematically analyze the complicated interactions between Litchi ingredients and confirmed targets based on published research results. This study has provided a solid base for the further exploration of its anticancer effects.

METHODS

We collected the anticancer ingredients and targets of Litchi based on original published articles. In order to systematically analyze the complex relationships between these anticancer ingredients and their targets, an interaction network was constructed by network pharmacology approach. All networks maps were visualized and analyzed by Cytoscape 3.2.1 (http://www.cytoscape.org/). As shown in the ingredient-target network (Figures 1A, 2A, 3A, 4A, and 5), the oval nodes represent ingredients, the rectangle nodes represent targets and each edge linking an ingredient to a target indicates a regulator-target relationship. In Figures 1A–4A, the targets distributing in the inner orange circle (rectangle) can be modulated by multiple ingredients rather than a single ingredient. The “degree” is an important parameter for the network pharmacology approach, which represents the number of related nodes to a particular node in the network. The greater the degree of a node, the more biologically important it is. Therefore, the top ingredients and targets were screened out by the Network Analyzer in Cytoscape based on the major parameter of “degree”. To further explore the core biological processes of the top targets involved, we performed KEGG pathway enrichment analysis (http://www.kegg.jp/) and screened out the top signal pathways based on the P-value. The relationships among top targets, corresponding ingredients and signal pathways were analyzed by combining Cytoscape 3.2.1 with KEGG pathway enrichment analysis. In order to test the reliability of the top ingredient-target interactions and explore the accurate binding modes, we performed molecular docking analysis by using surflex module of Sybyl X2.0. A total score greater than 6 represents good protein-ligand binding. The crystal structures of proteins (targets) were extracted from Protein Data Bank (https://www.rcsb.org/).

RESULTS

Ingredients From Litchi

Litchi contains a variety of natural products, such as anthocyanins, flavonoids, phenolic acids, terpenes, fatty acids, sterols, lignans, coumarins, and esters. A total of 110 compounds (32 Anthocyanins, 32 Flavonoids, 9 Phenolic acids, 9 Tocotrienols, 8 Lignans, 4 Alcohols, 4 Sterols, 3 Triterpenes, 3 Fatty Acids, 2 Esters, 2 Glycosides, 1 Furfurals, 1 Coumarins) isolated from Litchi have been reported, which were summarized in Table 1 according to the parts (peels, pulps, seeds, leaves, and flowers) of Litchi, with their molecular formulae, structure category and corresponding reference (Ref). As shown in Table 1, various kinds of chemical constituents were isolated from its peels (28 compounds), pulps (12 compounds), seeds (49 compounds) leaves (28 compounds), and flowers (1 compound). Among them, we identified flavonoids and anthocyanins which were mostly found in Litchi peels, seeds, and leaves to be the main compounds.

The Multi-Targeted Anticancer Effects of Litchi Ingredients

We summarized the confirmed anticancer ingredients of Litchi by going through each original published articles and found that 19 compounds (6 Anthocyanidins, 7 Flavonoids, 3 Phenolic acids, 2 Sterols, 1 Triterpenes) might inhibit cancer development through multifunctional mechanisms including regulation of cell proliferation, apoptosis, metabolism, metastasis, angiogenesis, stemness, and immunity. The
anticancer ingredients with their corresponding effects, molecular targets, and cancer types were listed in Table 2. We then discovered that a single component could have a range of targets and different components had overlapping molecular targets, hence they formed a complicated regulatory network. In order to unravel this intricate web of interactions, we applied network pharmacology method to analyze the anticancer effects of Litchi from a perspective of system biology.

Inhibition of Cancer Cell Proliferation

Sustained proliferation is a hallmark of cancer cells, and the restoration of dysregulated signaling pathways has always been a target for cancer treatment. The extracts from Litchi peels, pulps, seeds, leaves have been shown to inhibit the proliferation of a variety of cancer cells (Huang et al., 2015a; Gong et al., 2018; Zhao et al., 2019a). The 13 anti-proliferative compounds identified from Litchi and 100 regulated targets were summarized in Table S1. The detailed analysis of the top active ingredients, corresponding targets, and signal pathways affected was shown in Figure 1.

In total, this ingredient-target network (Figure 1A) was consisted of 113 nodes (Table S1) and the mean degree of all nodes in the network was 3.080. Overall, 3 out of the 13 anticancer compounds (Figure 1A) had high degree distributions (kaempferol: degree=39, Epigallocatechin gallate (EGCG): degree=36, gallic acid: degree=22) and all of them modulated more than 20 targets, which marked their pharmacological importance. Notably, those targets have more than one regulator (Table S2). Apart from 1 target that was regulated by 10 ingredients, 4 targets were regulated by over 5 ingredients and 28 targets were regulated by 2–4 ingredients (Figure 1B). Further, the 4 top targets (MAPK1, CDKN1A, MAPK14, AKT1) were screened out from Figures 1A, B, whose degree values were more than two folds of the median degree of

![FIGURE 1](image-url)
all nodes in the network. This suggested that multiple ingredients could potentially exert synergistic anti-proliferation effects. In particular, the interactions among the above 4 top targets and Litchi ingredients (Table S3) were analyzed in Figure 1C. With the results shown in Figure 1C, we could conclude that there were 11 out of 13 ingredients that could regulate the top targets with anti-proliferative effects. It was also confirmed that the top 4 targets played an important role in the anti-proliferative process. Particularly, kaempferol, EGCG, and gallic acid could regulate all the top targets, and this conclusion was similar to that in Figure 1A where 3 ingredients mentioned above had outstanding pharmacological significance. To further clarify the anticancer mechanism of Litchi ingredients, the pathway enrichment analysis based on above 4 top targets was performed. There were 63 signaling pathways involved in the anti-proliferation effects of Litchi ingredients (Figure 1C and Table S3), and FoxO, VEGF, Prolactin, ErbB, HIF-1, Toll-like receptor, TNF, Rap1, MAPK, and PI3K-Akt signaling pathways were the top 10 pathways according to their P values (Figure 1D). All of the 4 top targets were elements of FoxO signaling pathway and 3 out of the top 4 targets were elements of other 9 top pathways. It indicated that these top 10 pathways might be the major signaling pathways that are responsible for the anti-proliferation effects of Litchi.

Induction of Cancer Cell Apoptosis and Autophagy
Apart from uncontrollable proliferation, resistance to cell death is another strategy employed by cancer cells to fuel its growth.
Cancer cells have evolved a series of strategies to inhibit cell death while Litchi ingredients have been reported to have pro-apoptosis and pro-autophagy effects (Hsu et al., 2012a; Emanuele et al., 2018). Hence, we summarized data from literature and constructed the network (Figure 2A) based on 18 ingredients from Litchi and 138 targets (Table S4) which related to cell apoptosis and autophagy. The network was consisted of 156 nodes and 283 edges altogether, representing the extensive interactions among 18 ingredients and 138 targets (Table S4).

Not surprisingly, we found that the mean degree of node was 3.679 based on the topological analysis, suggesting that it was common for ingredients to have multiple targets. By referring to the mean degree, we identified 6 top ingredients with a median degree ≥20, namely luteolin, EGCG, kaempferol, gallic acid, betulinic acid, and chlorogenic acid, with the top 2 having over 40 targets. Hence, we concluded that those top 6 ingredients were likely to be crucial components in promoting apoptosis and autophagy. Further, in order to clearly elucidate if these targets were regulated by multiple ingredients, another analysis was performed in Figure 2B, which showed that there were 3 targets regulated by over 10 ingredients, 9 targets were regulated by 5–10 ingredients and 33 targets were regulated by more than 2 ingredients (Figure 2B and Table S2). From Figures 2A, B, we next screened out the top 6 targets (BAX, BCL2, CASP3, CASP9, TP53, AKT1) based on their degrees in the ingredient-target network. As shown in Figure 2C and Table S5, all of the top 6 targets could be regulated by luteolin and EGCG, and this implied that they had multiple anticancer activities. In addition, all the 18 ingredients involving in apoptosis and autophagy interacted with the top targets, which consolidated the importance of these top targets. KEGG enrichment analysis based on these 6 top targets showed that 39 signaling pathways...
were involved in the effects of inducing cancer cell apoptosis and autophagy (Figure 2C and Table S5), while p53, Neurotrophin, Sphingolipid, PI3K-Akt, Thyroid hormone, MAPK, VEGF, HIF-1, TNF signaling pathway and Adrenergic signaling in cardiomyocytes were the top 10 pathways (Figure 2D). Four out of these top 6 targets were elements of p53, Neurotrophin, Sphingolipid, and PI3K-Akt signaling pathways, which indicates that these four signaling pathways might be the major pathways responsible for anticancer effect by inducing apoptosis and autophagy.

Inhibiting Metastasis

Metastasis is another target in cancer therapeutic development due to its lethality (Liu et al., 2017). Litchi seed extracts could attenuate migration and invasion capabilities of PC3 and DU145 cells (Guo et al., 2017). Nine anti-metastasis ingredients of Litchi and 99 corresponding targets were listed in Figure 3A. We found that the mean degree of nodes in the network was 3.296. Then we screened out 4 top ingredients, namely EGCG, gallic acid, luteolin, and PA, with a median \(\geq 20 \) degrees, which acted on 41, 29, 22, and 21 targets respectively. Therefore these 4 top ingredients identified were likely to be crucial bioactive components to inhibit metastasis. In addition, among the 99 targets, the network showed that MMP2 had the largest number of ingredient-target interactions (degree value of 8), followed by MMP9 (degree value of 7), making them likely to perform anti-metastasis functions. The remaining targets with lower degree and less than two folds of the mean degree of all nodes were also included. Then, the targets regulated by multiple ingredients were analyzed with a similar approach for more information. As shown in Figure 3B and Table S2, MMP2 and MMP9 were

![Image of Ingredient-Target Network of Litchi Sensitizing Chemotherapy and Radiotherapy](image-url)
regulated by 8 and 7 ingredients respectively, followed by another 6 targets regulated by up to 5 ingredients and 26 targets regulated by 2 to 4 ingredients. The “ingredients-top targets-pathways” network (Figure 3C and Table S7) was constructed for the purpose of confirming the significance of top 2 targets, and this network indicated that as much as 8 ingredients exerted the anti-metastasis function through modulating MMP2 and MMP9. However, the signaling pathways enriched by KEGG based on 2 top targets merely included bladder cancer, estrogen signaling pathway, leukocyte transendothelial migration, proteoglycans in cancer and pathways in cancer. Both the top 2 targets were elements of these 5 pathways (Figures 3C, D and Table S6), which indicated these 5 pathways might be the key anti-metastasis mechanism of Litchi.

Sensitizing Chemotherapy and Radiotherapy
Chemotherapy and radiotherapy are two of the most common cancer treatments. Despite their clinical efficacy in clearing cancer cells, therapeutic resistance often inevitably occurs. Another reported effect of Litchi was that it sensitized chemotherapy and radiotherapy. Here we identified 12 compounds from Litchi and 106 corresponding molecular targets responsible for this function (Table S8), with the detailed interactions of the top ingredients, targets and signal pathways shown in the Figure 4. From Figure 4A, we screened out 5 top ingredients with a median degree ≥20, including luteolin, EGCG, kaempferol, gallic acid, and betulinic acid, which linked to as much as 35, 34, 25, 22, and 21 targets respectively. Not surprisingly, the mode of “multi-ingredients, multi-targets” was confirmed again by identifying CASP3, BAX, and BCL2 as the top targets, which had the degree values of 9, 8, 6 respectively, which were more than two folds of the median degree of all nodes in the network. In addition, there were another 32 targets regulated by more than 2 ingredients (Figure 4B and Table S2), which implied that Litchi ingredients could overcome chemo- and radio-resistance through a “multi-compounds, multi-targets” mode with potential synergistic effects. The “ingredients-top targets-pathways” network (Table S9) confirmed the importance of CASP3, BAX, and BCL2 further. In Figure 4C, 10 out of 12 ingredients that were involved in sensitizing chemotherapy and radiotherapy exerted anticancer activity through regulating the 3 top targets. Moreover, KEGG enrichment analysis of top 3
TABLE 1 | Compounds Isolated from L. chinensis.

Parts	No	Ingredients	Formula	Compound yield (mg/100g)	Category	Ref
Peels		Cyanidin-3-rutinoside	C_{27}H_{31}O_{15}	1.29-19.11	Anthocyanins	(Li et al., 2012)
	2	Cyanidin-3-glucoside	C_{21}H_{21}O_{11}	0.80-1.80	Anthocyanins	(Li et al., 2012)
	3	Quercetin-3-glucoside	C_{21}H_{20}O_{12}	5.00	Anthocyanins	(Ma et al., 2014)
	4	Malvidin-3-glucoside	C_{23}H_{25}O_{12}	0.67-9.98	Anthocyanins	(Li et al., 2012)
	5	Epigallocatechin gallate (EGCG)	C_{22}H_{28}O_{11}	/	Anthocyanins	(Xie, 2017)
	6	Dehydroepicatechin A	C_{20}H_{20}O_{12}	0.50	Anthocyanins	(Ma et al., 2014)
	7	Procyanidin A2	C_{30}H_{24}O_{12}	68.30	Anthocyanins	(Sarni-Manchado et al., 2000)
	8	Proanthocyanidin A1	C_{21}H_{22}O_{12}	0.64	Anthocyanins	(Ma et al., 2014)
	9	Epicatechin-(4β–8,2β–O–7)-epicatechin	C_{21}H_{20}O_{12}	1.02	Anthocyanins	(Zhang et al., 2003)
	10	Proanthocyanidin B2	C_{20}H_{22}O_{12}	0.48	Anthocyanins	(Zhang et al., 2003)
	11	Proanthocyanidin B4	C_{20}H_{18}O_{12}	0.30	Anthocyanins	(Ma et al., 2014)
	12	Bis(8-epicatechinyl) methane	C_{21}H_{20}O_{12}	0.06	Anthocyanins	(Ma et al., 2014)
	13	8-(2-pyrrolidinone-5-yl)-epicatechin	C_{21}H_{20}O_{12}	0.16	Anthocyanins	(Ma et al., 2014)
	14	Epicatechin-8-C-(β-D-glucopyranoside	C_{21}H_{20}O_{12}	0.08	Anthocyanins	(Ma et al., 2014)
	15	Naringenin-O-(2,6-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside	C_{33}H_{40}O_{20}	0.30	Anthocyanins	(Ma et al., 2014)
	16	Epigallocatechin (EGC)	C_{17}H_{24}O_{12}	97.30	Anthocyanins	(Zhang et al., 2003)
	17	Rutin	C_{20}H_{22}O_{12}	0.44	Flavonoids	(Ma et al., 2014)
	18	Epicatechin	C_{16}H_{18}O_{12}	/	Flavonoids	(Zhou et al., 2011)
	19	(-)-Epicatechin (EC)	C_{16}H_{18}O_{12}	0.22	Flavonoids	(Ma et al., 2014)
	20	(-)-Galloic acid (GC)	C_{16}H_{20}O_{12}	22.90	Flavonoids	(Zhang et al., 2003)
	21	Epicatechin glucose	C_{16}H_{18}O_{12}	/	Flavonoids	(Zhou et al., 2011)
	22	Kaempferol	C_{16}H_{18}O_{12}	0.33	Flavonoids	(Jiang et al., 2013)
	23	Naringenin	C_{16}H_{18}O_{12}	0.30	Flavonoids	(Ma et al., 2014)
	24	Isolauriciresol	C_{30}H_{24}O_{12}	0.60	Lignans	(Jiang et al., 2013)
	25	Methyl-3,4-dihydroxybenzoate	C_{15}H_{18}O_{12}	0.40	Phenolic acids	(Jiang et al., 2013)
Pulps		2-[2-Hydroxy-5-(methoxycarbonyl)] phenoxoibenzoic acid	C_{12}H_{14}O_{6}	1.68	Phenolic acids	(Jiang et al., 2013)
	27	Stigmastanol	C_{20}H_{30}O_{12}	0.70	Sterols	(Jiang et al., 2013)
	28	Methylshikimate	C_{16}H_{20}O_{5}	25.50	Esters	(Jiang et al., 2013)
	29	Ethyl shikimate	C_{16}H_{20}O_{3}	3.75	Esters	(Jiang et al., 2013)
Seeds		Procyanidin A2	C_{21}H_{26}O_{12}	0.18	Anthocyanins	(Xu et al., 2010a)
	8	Proanthocyanidin A1	C_{21}H_{26}O_{12}	0.14	Anthocyanins	(Xu et al., 2010a)
	41	Proanthocyanidin A6	C_{21}H_{26}O_{12}	0.19	Anthocyanins	(Xu et al., 2010a)
	42	Aesculin tannin A	C_{17}H_{20}O_{18}	0.26	Anthocyanins	(Xu et al., 2010a)
	43	Litchitannin A1	C_{17}H_{20}O_{18}	0.14	Anthocyanins	(Xu et al., 2010a)
	44	Litchitannin A2	C_{17}H_{20}O_{18}	0.18	Anthocyanins	(Xu et al., 2010a)
	45	2α,3α-Epoxy-5,7,3',4'-tetrahydroxyflavan-(4β–8)-catechin	C_{23}H_{28}O_{12}	2.40	Anthocyanins	(Wang et al., 2011a)
	46	Epicatechin-(2β–O–7,4β–8)-epicatechin	C_{23}H_{28}O_{12}	0.29	Anthocyanins	(Xu et al., 2010b)
	47	2β,3β-Epoxy-5,7,3',4'-tetrahydroxyflavan-(4κ–8)-epicatechin	C_{23}H_{28}O_{12}	1.07	Anthocyanins	(Wang et al., 2011a)
	48	2α,3α-Epoxy-5,7,3',4'-tetrahydroxyflavan-(4β–8)-epicatechin	C_{23}H_{28}O_{12}	3.52	Anthocyanins	(Wang et al., 2011a)
	49	Litchiol A	C_{21}H_{20}O_{10}	0.37	Anthocyanins	(Wang et al., 2011a)

(Continued)
Parts No	Ingredients	Formula	Compound yield (mg/100g)	Category	Ref
50	Litchiol B	C_{12}H_{22}O_{9}	0.07	Anthocyanins	(Wang et al., 2011a)
51	(-)-Epicatechin-3-gallate (ECG)	C_{15}H_{14}O_{6}	27.76	Flavonoids	(Wen et al., 2014a)
52	Epicatechin-(7,8-bc)-4β-(4hydroxyphenyl)-dihydro-2(3H)-pyranone	C_{22}H_{18}O_{4}	0.09	Anthocyanins	(Xu et al., 2010b)
53	Quercetin	C_{15}H_{10}O_{7}	0.13	Flavonoids	(Xu et al., 2010a)
54	Pinocembrin-7-O-[6``-O-L-rhamnopyranosyl]-β-D-glucopyranoside	C_{31}H_{52}O_{10}	0.16		
55	(-)-Pinocembrin-7-O-neohesperidoside (Onychin)	C_{27}H_{32}O_{13}	0.69		
56	Kaempferol-7-O-neohesperidoside	C_{27}H_{30}O_{15}	0.13	Flavonoids	(Xu et al., 2010a)
57	Tamarixetin 3-O-rutinoside	C_{28}H_{32}O_{16}	0.39		
58	Kaempferol-7-O-β-D-glucopyranoside	C_{21}H_{20}O_{11}	0.07	Flavonoids	(Wang et al., 2011a)
59	Pinocembrin-7-O-glucose	C_{21}H_{22}O_{8}	0.23	Lignans	(Xu et al., 2010a)
60	(2S)-Pinocembrin-7-O-(6``-O-L-rhamnopyranosyl)-β-D-glucopyranoside	C_{27}H_{32}O_{13}	0.03	Flavonoids	(Ren et al., 2011)
61	Naringin	C_{27}H_{32}O_{14}	3.80	Flavonoids	(Jiang et al., 2013)
62	(-)-Pinocembrin 7-O-rutinoside	C_{27}H_{32}O_{13}	0.15		
63	Cinnamtannin B1	C_{45}H_{36}O_{18}	1.18	Anthocyanins	(Wen et al., 2015)
64	(-)-Epicatechin (EC)	C_{15}H_{14}O_{6}	27.76		
65	Luteolin	C_{15}H_{10}O_{7}	0.10	Flavonoids	(Wen et al., 2014a)
66	Kaempferol-3-O-β-D-glucoside	C_{21}H_{20}O_{11}	9.41	Flavonoids	(Wen et al., 2014a)
67	Pterodontriol-D-6-O-D-glucopyranoside	C_{21}H_{38}O_{18}	0.20	Flavonoids	(Wang et al., 2011a)
68	Taxifolin-4``-O-β-D-glucopyranoside	C_{27}H_{30}O_{16}	0.88	Flavonoids	(Tu et al., 2002)
69	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
70	Protopaucic acid (PA)	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
71	Scopoletin	C_{10}H_{8}O_{4}	0.07	Coumarins	(Wang et al., 2011a)
72	Butylated hydroxytoluene	C_{14}H_{22}O_{3}	3.80	Phenolic acids	(Prasad et al., 2009)
73	Gallic acid	C_{14}H_{22}O_{3}	0.20	Phenolic acids	(Prasad et al., 2009)
74	2,5-Dihydroxy-hexanoic acid	C_{6}H_{12}O_{4}	0.10	Phenolic acids	(Wang et al., 2011a)
75	Cyclolitchtocotrienol A	C_{27}H_{40}O_{4}	0.20		
76	Litchioside A	C_{17}H_{30}O_{10}	0.23	Lignans	(Xu et al., 2011)
77	Litchioside B	C_{20}H_{44}O_{10}	0.10	Lignans	(Xu et al., 2010a)
78	Pinuslongaeva A	C_{21}H_{38}O_{8}	0.09	Lignans	(Xu et al., 2010a)
79	Pinuslongaeva B	C_{21}H_{38}O_{8}	0.16	Lignans	(Xu et al., 2010a)
80	Pseudotriacetylgallate	C_{34}H_{42}O_{18}	0.20	Lignans	(Wang et al., 2011a)
81	Phlorizin	C_{14}H_{24}O_{10}	0.60	Fatty Acids	(Xu et al., 2011)
82	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Tu et al., 2002)
83	Triterpenes	C_{45}H_{36}O_{18}	1.18	Flavonoids	(Xu et al., 2010a)
84	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
85	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
86	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
87	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
88	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
89	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
90	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
91	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
92	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
93	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
94	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
95	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
96	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
97	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)
98	2,5-Dihydroxy-hexanoic acid	C_{14}H_{24}O_{5}	0.43	Phenolic acids	(Wang et al., 2011a)
99	3-Oxotrirucalla-7,24-dien-21-oic acid	C_{30}H_{46}O_{3}	0.88	Fatty Acids	(Stuart and Buist, 2004)

(Continued)
targets showed that 15 signaling pathways were involved in the chemotherapy and radiotherapy sensitization (Figure 4C and Table S9). All of the top 3 targets were elements of Amyotrophic lateral sclerosis (ALS), Colorectal cancer, Apoptosis, Hepatitis B, Tuberculosis and pathways in cancer, and 2 out of the top 3 targets were elements of p53 signaling pathway, Toxoplasmosis, Sphingolipid, and Neurotrophin signaling pathway, which indicates that the 10 pathways mentioned above might be responsible for the anticancer effect of Litchi on chemotherapy and radiotherapy sensitization (Figure 4D).

Other Anticancer Effects
Apart from the four effects exerted by Litchi ingredients for the major anticancer functions as listed above, several other targets were also found to be involved in the suppression of cancer stemness, metabolism, and angiogenesis, while also in the enhancement of immunity as listed in Table S10. However, the experiments validations on the anticancer effect of Litchi ingredients from these four aspects were very limited. Therefore, we only constructed a simple ingredient-target network map (Figure 5). The results showed that these mechanisms involved a total of 10 active ingredients, among which 5 belonged to the top ingredients from the previous screening including betulinic acid, EGCG, luteolin, gallic acid, and kaempferol, which further illustrated their importance. At the same time, we suggest that the remaining 5 ingredients (chlorogenic acid, (-)-Epicatechin-3-gallate (ECG), naringenin, cyanidin-3-glucoside, lupeol) and their detailed mechanisms need to be further explored.

DISCUSSION
Numerous studies have shown that Litchi contains a variety of anti-cancer ingredients, which act by multiple targeting. Emanuele and Ibrahim described Litchi’s nutritional value and reviewed the anti-tumor components and targets of Litchi with detailed listing but lacked a systematic analysis (Ibrahim and Mohamed, 2015; Emanuele et al., 2017). In the present study, we collected 110 compounds isolated from Litchi and found 19 components with anticancer effects based on 241 published research papers. The detailed information for each one of these compounds was listed in Tables 1 and 2 with corresponding targets. Then the network pharmacology approach was applied to explore the complicated “multi-ingredients, multi-targets, multi-pathways” anticancer mechanisms of Litchi from a system biology perspective.

We identified the top ingredients, top targets, and top signaling pathways of Litchi with anticancer effect from four major aspects including anti-proliferation, cell death promotion, inhibition of metastasis, and sensitization of chemotherapy and radiotherapy. Further, in order to identify the primary ingredients and targets acting on all four anticancer functions listed above, we performed analysis (Figure 6 and Table S11) and found EGCG and gallic acid to be the top ingredients participating in all of the four anticancer functions (Figure 6A and Table S11). Moreover, EGCG was also involved in the suppression of cancer stemness, cancer metabolism, and angiogenesis, while gallic acid was involved in attenuating angiogenesis (Table S10). These results suggest that they are likely to be the major anticancer ingredients in Litchi. Apart from that, we also found that kaempferol, luteolin, and betulinic acid were the top ingredients which carried out at least 2 of anticancer mechanisms (Figure 6A and Table S11). After selecting the primary ingredients from the overlapping parts, we found that BAX, BCL2, and CASP3 were the common targets which could induce apoptosis, autophagy, and sensitization, while AKT1 was a common target to suppress proliferation and induce apoptosis (Figure 6B and Table S11). To further study the interactions among top ingredients (EGCG and gallic acid) and top targets (BAX, BCL2, CASP3, and AKT1), a molecular docking study was carried out to elucidate their binding modes. The result indicated a high binding affinity between EGCG and 4 targets with all of their total score greater than 6. However, gallic acid showed a lower binding affinity with each of their total score less than 6, while only 2 top targets had active binding pockets for gallic acid.
Category	Ingredients	Effects	Targets	Cancer types	Ref
Anthocyanins					
(-)-Epicatechin-3-gallate (ECG)		anti-proliferation			
(-)-Epigallocatechin (EGC)		promoting apoptosis			
(-)-Epigallocatechin gallate (EGCG)		anti-proliferation			
Proanthocyanidins	B2				
Cyanidin-3-glucoside		anti-proliferation			
		attenuating angiogenesis			
		inhibiting metastasis			
Cyanidin-3-rutinoside	(+)-Catechin				
Flavonoids		promoting apoptosis			
		inhibiting metastasis			
Cao et al. Mapping Pharmacological Network of Litchi Anticancer Frontiers in Pharmacology	www.frontiersin.org April 2020	Volume 11	Article 45111		

(Continued)
TABLE 2 | Continued

Category	Ingredients	Effects	Targets	Cancer types	Ref
sensitizing radiotherapy and	CHEK2, CDKN1A, CASP3, GADD45A, DDIT3		pancreatic, lung, cancer, and glioblastoma	(Saha et al., 2010; Elbaz et al., 2014)	
chemotherapy					
Kaempferol	anti-proliferation				
	AKT1, CCNA/B1/D1/E, CDC2/25C, CDK1/2/20/45/1, CDKN1A, CHEK1/2, CMET, DNMT3B, ERBB3, ERRA, ERRG, GTF2H2, HIF1A, IF1/1R, MAP1LC3A, MAPK1/4/3, MCL1, MIR21/340, MTOR, PIK3CA/R1, PRKAA2, PTEN, SQSTM1, TP53, USF2	bladder, breast, cervical, lung, colon, gastric, and liver cancer	(Choi and Ahn, 2008; Li et al., 2009; Mylonis et al., 2010; Wang et al., 2013; Cho and Park, 2015; Huang et al., 2013; Lee et al., 2014a; Dang et al., 2015; Kim et al., 2016; Qiu et al., 2017; Drouet et al., 2018; Han et al., 2018a; Wu et al., 2018; Zhu et al., 2018; Zhang and Ma, 2019)		
attenuating angiogenesis	AKT1, ESRR, HIF1A, VEGFA		ovarian cancer	(Luo et al., 2009)	
inhibiting metastasis	AKT1, CDH1/2, CULN, MAPK2/3, MIR21, MMP2/9, MTOR, MYC, PIK3CA, PTEN, PTK2, RAC1, RHOA, SNA,3, SNA1/1, VIM		breast, oral, cervical, lung, and renal carcinoma	(Lin et al., 2013; Jo et al., 2015)	(Lee et al., 2017a; Hung et al., 2017; Zhu et al., 2018)
promoting apoptosis and	AKT1, ATG7, ATM, BAD, BAX, BCL2/1, BECN1, BID, BIK, CASP3/7/8/9, CFLIP, CYC, DDI3, EHMT2, EREG, ERN1, FAS, H2AX, JNK, LC3/III, MAP2K1/2, MAPK1/3, MTCO2, TERT, TNFRSF10A	bladder, breast, cervical, colon, colorectal, endometrial, gastric, lung, and ovarian cancer		(Nguyen et al., 2003; Li et al., 2009; Luo et al., 2011; Xie et al., 2013; Lee et al., 2014b; Kim et al., 2016; Yi et al., 2016; Kashafi et al., 2017; Zhao et al., 2017; Choi et al., 2018; Chuwa et al., 2018; Kim et al., 2018; Zhu et al., 2018; Zhang and Ma, 2019)	
autophagy					
sensitizing chemotherapy	ABC60, AKT1, BAX, BCL2/1, BIRC5, CASP3/7/8/9/10, CDKN1A, FAS, JAK1, JNK, MAPK1/14, MYC, NFKB, PARP1, PIK3CA, ROS1, STAT3, TNFRSF10A, XIAP	ovarian, lung, and colorectal cancer		(Luo et al., 2010; Kuo et al., 2015; Riahi-Chebbi et al., 2019)	
Luteolin	enhancing immunity		breast cancer	(Azevedo et al., 2015)	(Bandypadhyay et al., 2008)
attenuating angiogenesis	SLC2A1/16A1, CSF2, MAP2K1, MAPK2/3, PKC, PLC NOTCH1, VEGFA		gastric pancreatogenous, breast, lung, and colorectal cancer	(Zhang et al., 2015a)	
inhibiting metastasis	AIF, AKT1, ANO1, AURKB, BANF1, BAX, BCL2/1, BIRC5, CASP3/9, CCND1/1, CDKN1A, DEDD2, ENG, GAK, HSP90, HTERT, MAPK1/14/3, MCL1, MCL4, MIR107/1/30/21/224/301/34/3/42/570/380, MTOR, MYC, NFE2L2, NFKB, NOTCH1, PIK3CA, PTN, SNA1/2/3, STAT3, STAT1, STAT5, TEND1, TP53, VRK1	breast, colon, gastric, lung, pancreatic, and prostate cancer		(Chen et al., 2013; Huang et al., 2015b; Lin et al., 2017; Zang et al., 2017b; Yao et al., 2019)	
promoting apoptosis					
sensitizing chemotherapy	BAX, BCL2/1, CASP3/7/8/9, CCNE2, CDH2, FAS, GSTA1/2, HMOX1, JAK1, JNK, MAPK1/14, NFE2L2, NFKB, PARP1, PPARG, PRKAR2A, PTK2, PTEN, RAC1, RELA, ROS1, SLC2A2, SNA1/2, STAT1/2/3, TWIST1, TYK2, VIM	ovarian, lung, colorectal, cervical, breast, ovarian, and liver cancer		(Tu et al., 2013; Chian et al., 2014; Qu et al., 2014; Tai et al., 2014; Yang et al., 2014; Cho et al., 2015; Dia and Pangilini, 2017; Wang et al., 2018a; Liu et al., 2018)	
suppressing stemness	BM1, COND1, CD44, FZD6, IL6, MYC, OCT4, PROM1, STAT3		prostate and oral cancer	(Tu et al., 2016; Han et al., 2018b)	
Naringenin	anti-proliferation		cervical, colon, colorectal cancer, and hepatocarcinoma	(Totta et al., 2004; Song et al., 2015; Zhang et al., 2016)	

(Continued)
Category	Ingredients	Effects	Targets	Cancer types	Ref
inhibiting metastasis	AKT1, CDH1, MAPK1/4, MMP2/9, NCL, NKFB, PKCZ, PKCE, RAC1, RH0, RH0A, SCN9A, SNAL1/2, TGFβ1, TWIST1, VIM	prostate, pancreatic, colon, breast, and gastric cancer	lung and pancreatic cancer	(Liao et al., 2014; Zhang et al., 2016; Chang et al., 2017; Aktas and Akgun, 2018; Han et al., 2018c; Zhao et al., 2019b)	
promoting apoptosis	AKT1, MAP3K5, ATF3, BAX, BCL2, BIRC5, CASP3/8, JNK, MAPK1/3/14, TP53, RPS6KB1, ROS1, RPS6	breast, prostate, and ovarian cancer	lung cancer and melanoma	(Li et al., 2013; Raha et al., 2015; Yoshinaga et al., 2016; Chen et al., 2018a)	
sensitizing chemotherapy	CDKN2A, BCL2, CASP3/9, BAX, PTK2, MAPK14	bladder, prostate, renal carcinoma, and breast cancer	lung cancer and melanoma	(Li et al., 2013; Raha et al., 2015; Yoshinaga et al., 2016; Chen et al., 2018a)	
enhancing immunity	G2MB, ID2, IFNG, IRF2, SMA3/7	breast cancer	lung cancer and melanoma	(Li et al., 2013; Raha et al., 2015; Yoshinaga et al., 2016; Chen et al., 2018a)	
Naringin	AKT1, BIROC5, CDKN1A, CTNNB1, EGFR, MAPK1, MIR126, NKFB, PIK3CA, VCAN1	breast and ovarian cancer	lung, cervical, gastric, and breast cancer	(Liu et al., 2013; Raha et al., 2015; Yoshinaga et al., 2016; Chen et al., 2018a)	
promoting apoptosis	BAX, BCL2, CASP3/8/9, GSK3B, iKB, CHUK, MK2, NKFB, MAPK14, TP53, PARP1, TNF	colon and lung cancer	cervical and ovarian cancer	(Liu et al., 2013; Raha et al., 2015; Yoshinaga et al., 2016; Chen et al., 2018a)	
sensitizing chemotherapy	PGP, ABCG2	breast cancer	breast cancer	(Iriti et al., 2017)	
Gallic acid	AKT1, CCNA/B1/D1/D3/E, CDC2/25C, CDK1/2/4/6, CHEK1/2, CDKN2A/2B/1A/1B, MAPK1/8/14, PIK3CA, SKP2, BAX, BCL2, CASP3	bladder, prostate, renal carcinoma, and breast cancer	lung cancer	(Hou et al., 2017)	
phenolic acids	AKT1, CCNA/B1/D1/D3/E, CDC2/25C, CDK1/2/4/6, CHEK1/2, CDKN2A/2B/1A/1B, MAPK1/8/14, PIK3CA, SKP2, BAX, BCL2, CASP3	bladder, prostate, renal carcinoma, and breast cancer	lung cancer	(Hou et al., 2017)	
promoting apoptosis	AKT1, CCNA/B1/D1/D3/E, CDC2/25C, CDK1/2/4/6, CHEK1/2, CDKN2A/2B/1A/1B, MAPK1/8/14, PIK3CA, SKP2, BAX, BCL2, CASP3	bladder, prostate, renal carcinoma, and breast cancer	lung cancer	(Hou et al., 2017)	
attenuating angiogenesis	AKT1, CDC42, CHUK, CJun, EGFR, GRB2, IL6, MAPK3/1/2, JUN, MAPK2/3/14, MEKK3, MMP2/9, NFkB, PIK3CA, PKC, PTK2, RAC1, RAS, RELA, RH0A, RH0B, ROS1, SOS1, SRC, STAT3	oral, prostate, bladder, breast, and gastric cancer	cervical and ovarian cancer	(He et al., 2016; Sales et al., 2018)	
Protocatechuic acid (PA)	AKT1, APAF1, ATM, ATR, BAK1, BAX, BCL2/L1, BIK, BRCa1, CASP3/8/9, CKII, CYC, EREG, GSH, H2AX, JNK, MDC1, MMIT, MTOR, PARP1, PPKD,ROS1, PPS6KB1, TP53, XIAP	oral, prostate, pancreatic, cervical, lung, and esophageal cancer	oral, prostate, pancreatic, cervical, lung, and esophageal cancer	(Faried et al., 2007; Chen et al., 2009; You et al., 2010; Russell et al., 2012; Liu et al., 2012a; Lu et al., 2016; Lin and Chen, 2017)	
sensitizing chemotherapy	APAF1, BAX, BCL2, CASP3, CCNA/B, CCND1, DABLO, EGFR, HIF1A, IL6, JAK1, MTCO2, MYC, NOS2, PARP1, ROS1, SRC, STAT3, TP53, VEGFA, XIAP	lung and cervical cancer	lung and cervical cancer	(Phan et al., 2016; Wang et al., 2016a; Aboreshab and Osama, 2019)	
Betulinic acid	FGF2, JNK, MAPK3/1/4, NFkB1, PTK2, RELA	lung cancer	lung cancer	(Tsao et al., 2014)	
attenuating angiogenesis	AKT1, CDC42, CJun, CXL8, FGF2, FN1, IL6, MMP2/9, NCL, NKFB/IA, PKCα, PKCE, RAC1, RAS, RH0A/B, USP2, VEGFA	lung and ovarian cancer	lung and ovarian cancer	(Tsao et al., 2014; Xie et al., 2018)	

(Continued)
with a total score of more than 5 (Figure 7 and Table S12). We speculated that gallic acid might exert anticancer effects by indirectly interacting with the top targets. Other than identifying single ingredient and its corresponding effect or vice versa, we mapped the complex interactive network of the primary targets and ingredients from Litchi (Table S11). The results could be used to maximize the effects of Litchi ingredients by extracting only the identified functional components based on the principles of Component Formula, which is a new model to develop innovative TCM with the understanding of the effective ingredients and pharmacological mechanisms (Zhang and Wang, 2005). Notably, we have also found that some of the top pathways screened out in this study have been experimentally verified, such as PI3K-Akt, Ras and MAPK signaling pathways etc. (Lin et al., 2011; Wang et al., 2011a; Lim et al., 2017). Hence, we have collected and summarized the results from independent studies, and also investigated further into the complex network of the multiple active ingredients and targets of Litchi. This would help to guide people to further explore the potential cancer therapy values of Litchi.

TABLE 2 | Continued

Category	Ingredients	Effects	Targets	Cancer types	Ref
promoting apoptosis	AKT1, BAD, BAX, BCL2, CDH1, CASP3/9, CYC, NFKB1, CHUK, MKI67, PMAIP1, CDKN1A/1B, TP53, CTKL2, PARP1, PIK3CA, ROS1, TIMP2, XIAP	colon, gastric, colorectal, cervical, prostate, and pancreatic cancer	(Shankar et al., 2017; Zeng et al., 2019)		
sensitizing chemotherapy	BAX, BCL2, BIRC5, CASP12/3, CDK6, CTNNB1, DDIT3, EGFR, ERF2A, GSK3B, HK2, HSPA5, MAP1LC3B, MAPK1, PARP1, RB1, SQSTM1, STAT3, TIM8, VDAC1	breast and lung cancer	(Ko et al., 2018; Cai et al., 2018; Wang et al., 2019c)		
inhibiting metabolism	CAV1, IKB, LDHA/B, MYC, PK1, RELA	breast cancer	(Jiao et al., 2019; Zeng et al., 2019)		
suppressing stemness	NANOG, OCT4, PRKAA2, SOX2	pancreatic cancer	(Sun et al., 2019)		
sensitizing promoting apoptosis	AKT1, GSK3B, RELA, BAX, BCL2, SNAIL1, VIM	pancreatic cancer	(Zhang et al., 2009)		
sensitizing chemotherapy	BCL2, CLAUDIN1, MMP2/9, MTCO2, NFKB, RELA, TP53	colorectal and breast cancer	(Wang et al., 2016b; Wang et al., 2018c)		
promoting apoptosis	APAF1, BAX, BCL2, CASP3/9, EGFR, MKI67, PARP1, PCIN	cervical, head and neck, lung, and prostate cancer	(Prasad et al., 2008; Bhattacharyya et al., 2017; Min et al., 2019)		
sensitizing chemotherapy	ABCG2, MAPK1, EIF2A, CASP3	colorectal cancer	(Chen et al., 2018b)		
enhancing immunity	AKT1, BCL2, CLAUDIN1, IFNG, LAMP1, MAPK2/3, PIK3CA, PRF1	gastric cancer	(Wu et al., 2013)		
This study systematically explored the anti-cancer mechanisms of Litchi using network pharmacology methods. However, it was distinct from traditional network pharmacology research, in which, the components and targets of a natural herb were mainly predicted based on online databases, followed by experimental verification in vitro and in vivo. In contrast, in this study, experiments were not of necessity because the anti-cancer ingredients, targets, and their interactions have already been experimentally confirmed in published literature. Furthermore, we collected information from independent studies and transformed them into a systematic interaction network with further analysis of the top ingredients, top targets and possible signaling pathways. For the first time, the anti-cancer properties of Litchi were explored from a new “multi-ingredients, multi-targets, and multi-pathways” perspective. However, selecting the top ingredients and top targets by network pharmacological methods alone has limitations, such as that it could neither reflect the anticancer effect intensity of these top ingredients, nor indicate if there was a correlation between the effectiveness of the ingredients and their concentrations. Also, we could not compare the pharmacokinetic parameters which directly affect drug efficacy. Therefore, based on the results of this article, we would use these top ingredients as a “Component Formula” in a combinatory manner and to explore their anti-cancer effect with in vitro and in vivo experiments in the follow-up studies.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

HG, SC, and ZS designed this work. SC, YH, and YC drafted the manuscript. HG, YH, and DZ performed the network pharmacology analysis. QL made the figures. All authors read and approved the final version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81660681), Natural Science Foundation of Guangxi Province of China (2018GXNSFAA294080, 2020GXNSFAA259030), Guangxi First-class Discipline Project for Pharmaceutical Sciences (GXCFDP-PS-2018), Guangxi and Nanning Science and Technology Development Project of China (1598013-6, 20163151, 20155176).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.00451/full#supplementary-material

ABBREVIATIONS

See Table S13.
Jiang, G., Lin, S., Wen, L., Jiang, Y., Zhao, M., Chen, F., et al. (2013). Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chem. 136, 563–568. doi: 10.1016/j.foodchem.2012.08.089

Jiang, Z. Q., Li, M. H., Qin, Y. M., Jiang, H. Y., Zhan, X., and Wu, M. H. (2018). Luteolin Inhibits Tumorigenesis and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via Regulation of MicroRNA-34a-5p. Int. J. Mol. Sci. 19, 447. doi: 10.3390/ijms19020447

Jiao, L., Wang, S., Zheng, Y., Wang, N., Yang, B., Wang, D., et al. (2019). Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/AMPK/mTOR pathway. Biochem. Pharmacol. 161, 149–162. doi: 10.1016/j.bcp.2019.01.016

Jo, E., Park, S. J., Choi, Y. S., Jeon, W. K., and Kim, B. C. (2015). Kaempferol suppresses transforming growth factor-β1–induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia. 17, 525–537. doi: 10.1016/j.neo.2015.06.004

Kurbizc, C., Heise, D., Redmer, T., Goumans, F., Arlt, A., Lemke, J., et al. (2011). Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci. 102, 728–734. doi: 10.1111/j.1349-7006.2011.01870.x

Kang, S. U., Lee, B.-S., Lee, S.-H., Baek, S. J., Shin, Y. S., and Kim, C.-H. (2013). Expression of NSAID-activated gene-1 by EGCG in head and neck cancer: involvement of ATM-dependent p53 expression. J. Nutr. Biochem. 24, 986–995. doi: 10.1016/j.jnutbio.2012.07.003

Kang, K. A., Piao, M. J., Huyen, Y. J., Zhen, A. X., Cho, S. J., Ahn, M. J., et al. (2019). Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylation and the interaction of Nrf2 with p53 in human colon cancer cells. Exp. Mol. Med. 51, 40. doi: 10.1038/s41216-019-0238-y

Kashafi, E., Moradzadeh, M., Mohamadkhani, A., and Erfanian, S. (2017). Kaempferol increases apoptosis in human cervical cancer Hela cells via P38/AKT and telomerase pathways. Biomed. Pharmacother. 89, 573–577. doi: 10.1016/j.biopha.2017.02.061

Kim, D., Mollah, M. L., and Kim, K. (2012a). Induction of Apoptosis of SW480 Human Colon Cancer Cells by (-)-Epicatechin Isolated from Balnearia sarniensis. Anticancer Res. 32, 5353–5361.

Kim, M. J., Woo, J. S., Kwon, C. H., Kim, J. H., Kim, Y. K., and Kim, K. H. (2012b). Luteolin induces apoptotic cell death through AIF nuclear translocation mediated by activation of ERK and p38 in human breast cancer cell lines. Cell Biol. Int. 36, 339–344. doi: 10.1002/cbin.20110394

Kim, S.-H., Hwang, K.-A., and Choi, K.-C. (2016). Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem. 28, 70–82. doi: 10.1016/j.jnutbio.2015.09.027

Kim, T. W., Lee, S. Y., Won, M., Cheon, C., and Ko, S. G. (2018). Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis. 9, 875. doi: 10.1038/s41419-018-0930-1

Ko, H., So, Y., Jeon, H., Jeong, M.-H., Choi, H.-K., Ryu, S.-H., et al. (2013). TGF-β1-induced epithelial–mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett. 335, 205–213. doi: 10.1016/j.canlet.2013.02.018

Ko, J.-L., Lin, C.-H., Chen, H.-C., Hung, W.-H., Chien, P.-J., Chang, H.-Y., et al. (2018). Effects and mechanisms of betulinic acid on improving EGFR TKI-resistance of lung cancer cells. Environ. Toxicol. 33, 1153–1159. doi: 10.1002/tox.22621

Kuerbitz, C., Heise, D., Redmer, T., Goumans, F., Arlt, A., Lemke, J., et al. (2011). Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci. 102, 728–734. doi: 10.1111/j.1349-7006.2011.01870.x

Kuo, C.-L., Lai, K. C., Ma, Y. S., Weng, S. W., Lin, J. P., and Chung, J. G. (2014). Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-kB, Ras and matrix metalloproteinase-2 and -9. Oncol. Rep. 32, 355–361. doi: 10.3892/or.2014.3209

Kuo, W.-T., Tsai, Y. C., Wu, H. C., Ho, Y. J., Chen, Y. S., Yao, C. H., et al. (2015). Radiosensitization of non-small cell lung cancer by kaempferol. Oncol. Rep. 34, 2351–2356. doi: 10.3892/or.2015.4204

Lan, Y., and Lan, Y. (2011). Treatment of acute orchitis with Coix Seed. J. Tradit. Chin. Medicine. 52, 2056.
synthase (FAS). J. Food Drug. Analysis. 26, 620–627. doi: 10.1016/j.jfda.2017.06.006
Lim, Y. C., Lee, S.-H., Song, M. H., Yamaguchi, K., Yoon, J.-H., Choi, E. C., et al. (2006). Growth inhibition and apoptosis by (-)-epicatechin gallate are mediated by cyclin D1 suppression in head and neck squamous carcinoma cells. Eur. J. Cancer. 42, 3260–3266. doi: 10.1016/j.ejca.2006.07.014
Lim, W., Park, S., Bazer, F. W., and Song, G. (2017). Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/ AKT and MAPK Signaling Pathways. J. Cell Biochem. 118, 1118–1131. doi: 10.1002/jcb.25279
Lim, M. L., and Chen, S. S. (2017). Activation of Casein Kinase II by Gallic Acid Induces BIK-BAX/BAK-Mediated ER Ca++-ROS-Dependent Apoptosis of Human Oral Cancer Cells. Front. Pharmacol. 8, 761. doi: 10.3389/fphys.2017.00761
Lin, H.-H., Chen, J.-H., Chou, F.-P., and Wang, C.-J. (2011). Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/ NF-xB pathway and MMP-2 production by targeting RhoA activation. Br. J. Pharmacol. 162, 237–254. doi: 10.1111/j.1476-5381.2010.01022.x
Lin, C. W., Chen, P. N., Chen, M. K., Yang, W. E., Tang, C. H., Yang, S. F., et al. (2015). kaempferol inhibits cancer cell proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells by disruption of microRNA-27a:ZBTB10 in breast cancer. Anticancer Res. 35, 7281–7288. doi: 10.21873/ijn.25729
Lin, Y. C., Chang, J. C., Cheng, S. Y., Wang, C. M., Jhan, Y. L., Lo, I. W., et al. (2013). Kaempferol reduces matrix metalloproteinase-2 expression by down-regulation of STAT3 activation. Int. J. Clin. Exp. Pathology. 7, 2372–2381.
Lim, Y. C., Chang, J. C., Cheng, S. Y., Wang, C. M., Jhan, Y. L., Lo, I. W., et al. (2015). New Bioactive Chromanes from Litchi chinensis. J. Agric. Food Chem. 63, 2472–2478. doi: 10.1021/jf5053687
Lim, D., Kuang, G., Wan, J., Zhang, X., Li, H., Gong, X., et al. (2017). Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep. 37, 895–902. doi: 10.3892/or.2016.5311
Liu, L., Xie, B., Cao, S., Yang, E., Xu, X., and Guo, S. (2007). A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. J. Agric. Food Chem. 55, 1446–1451. doi: 10.1021/jf060598h
Liu, Z., Li, D., Yu, L., and Niu, F. (2012a). Gallic Acid as a Cancer-Selective Agent Induces Apoptotic Cell Death in Prostate Cancer Cells. Mol. Cancer. 11, 1421–1431. doi: 10.1186/1476-4287-11-1421
Luo, K. W., Wei, C., Lung, W. Y., Wei, X. Y., Cheng, B. H., Cai, Z. M., et al. (2012). EGCG inhibits bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-xB and MMP-9. J. Nutr. Biochem. 41, 56–64. doi: 10.1016/j.jnutbio.2016.12.004
Lv, Q., Luo, F., Zhao, X., Liu, Y., Hu, G., Sun, C., et al. (2015). Identification of Proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI-Q-TOF-MS and Their Antioxidant Activity. PLoS One 10, e120480. doi: 10.1371/journal.pone.0120480
Lv, Y., Ye, D., Qiu, S., Zhang, J., Shen, Z., Shen, Y., et al. (2019). MiR-182 regulates cell proliferation and apoptosis in laryngeal squamous cell carcinoma by targeting the CRBB. Biochem. Rep. 12, 1–9. doi: 10.1016/B97820191348
Ma, X., and Ning, S. (2019). Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother. Res. 33, 81–89. doi: 10.1002/ptr.6201
Ma, Q., Xie, H., Li, S., Zhang, R., Zhang, M., and Wei, X. (2014). Flavonoids from the pericarps of Litchi chinensis. J. Agric. Food Chem. 62, 1073–1078. doi: 10.1021/jf405750p
Ma, L., Peng, H., Li, K., Zhao, R., Li, Li, Yu, Y., et al. (2015). Luteolin exerts an anticancer effect on NCI-H460 human non-small cell lung cancer cells through the induction of Sirt1-mediated apoptosis. Mol. Med. Rep. 12, 4196–4202. doi: 10.3892/mmr.2015.3956
Mackenzie, G. G., and Oteiza, P. I. (2006). Modulation of transcription factor NF-kappa B in Hodgkin’s lymphoma cell lines: Effect of (-)-epicatechin. Free Radical Res. 40, 1086–1094. doi: 10.1080/1071576060883936
Malik, I., Ahmad, V. U., Anjum, S., and Basha, F. Z. (2010). A Pentacyclic Triterpene from Litchi chinensis. Nat. Prod. Commun. 5, 529–530. doi: 10.1177/1934578X1000500406
Mukherjee, S., Siddiqui, M. A., Dayal, S., Ayoub, Y. Z., and Malathi, K. (2014). Antioxidant and anti-inflammatory activities of (-)-epicatechin gallate and chlorogenic acid, exert synergistic anticancer effect against A549 lung cancer cell line. Frontiers in Pharmacology | www.frontiersin.org April 2020 | Volume 11 | Article 45119
cancer cells is mediated by activation of MEK-MAPK. J. Cell. Physiol. 197, 110–121. doi: 10.1002/jcp.10340
Ni, J., Guo, X., Wang, H., Zhou, T., and Wang, X. (2018). Differences in the Effects of EGCG on Chromosomal Stability and Cell Growth between Normal and Colon Cancer Cells. Molecules. 23, 788. doi: 10.3390/molecules23040788
Noh, J. S., Park, C. H., and Yokozawa, T. (2011). Treatment with oligonol, a low-Ni, J., Guo, X., Wang, H., Zhou, T., and Gao, Q.-p. (2013). Flavonoids from litchi (Litchi chinensis Sonn.) seeds and their inhibitory activities on α-glucosidase. Chem. Res. Chin. Univ. 29, 682–685. doi: 10.1007/s40242-013-0300-x
Raishi-Chebbi, I., Soud, S., Othman, H., Haoues, M., Karoui, H., Morel, A., et al. (2019). The Phenolic compound Kaempferol overcomes 5-fluouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep. 9, 195. doi: 10.1038/s41598-018-36808-z
Russell, L. H.J., Mazzio, E., Badisa, R. B., Zhu, Z.-p., Agharazihi, M., Oriaku, E. T., et al. (2012). Autophagy of Galluc Acid Induces ROS-dependant Death in Human Prostate Cancer LNCaP Cells. Anticancer Res. 32, 1595–1602.
Sanchez-Tena, S., Alcarraz-Vizain, G., Marin, S., Torres, J. L., and Cascante, M. (2013). Epicatechin gallate impairs colon cancer cell metabolic productivity. J. Agric. Food Chem. 61, 4310–4317. doi: 10.1021/jf3052785
Saha, A., Kuzuhara, T., Echigo, N., Suganuma, M., and Fujiki, H. (2010). New Role of (-)-Epicatechin in Enhancing the Induction of Growth Inhibition and Apoptosis in Human Lung Cancer Cells by Curcumin. Cancer Prev. Res. 3, 953–962. doi: 10.1158/2169-1401.cpr-09-0247
Sales, M. S., Roy, A., Antony, L., Banu, S. K., Jeyaraman, S., and Manikkam, R. (2018). Octyl gallate and gallic acid isolated from Terminalia bellarica regulates normal cell cycle in human breast cancer cell lines. BioMed. Pharmacother. 102, 1013–1026. doi: 10.1016/j.biopha.2018.04.182
Sarni-Manchado, P., Le Roux, E., Le Guerneve, C., Lozano, Y., and Cheynier, V. (2009). Phenolic composition of litchi fruit pericarp. J. Agric. Food Chem. 48, 5995–6002. doi: 10.1021/jf000815r
Sen, T., and Chatterjee, A. (2011). Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: involvement of integrin receptor α5β1 in the process. Eur. J. Nutr. 50, 465–478. doi: 10.1007/s00394-010-0118-z
Sen, T., and Chatterjee, A. (2010). Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MPM-9) by involvement of FAK/ERK/NF kappa B and AP-1 in the human breast cancer cell line MDA-MB-231. Anti-Cancer Drugs 21, 632–644. doi: 10.1016/j.acd.2010.08.001
Seo, Y., Ryu, K., Park, J., Jeon, D.-k., Jo, S., Lee, H. K., et al. (2017). Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One 12, e0174935. doi: 10.1371/journal.pone.0174935
Shankar, E., Zhang, A., Franco, D., and Gupta, S. (2017). Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-kB) Pathways. Mol. (Basel). 22, 264. doi: 10.3390/molecules2020264
Shi, X. (2004). Experience introduction of professor Furen Li in treating urological cancers. J. Clin. Oncol. 22, 39–47.
Shimizu, M., Deguchi, A., Hara, Y., Moriwaki, H., and Weinstein, I. B. (2005a). EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem. Biophys. Res. Commun. 334, 947–953. doi: 10.1016/j.bbrc.2005.06.152
Shimizu, M., Deguchi, A., Joe, A. K., McKay, J. F., Moriwaki, H., and Weinstei, I. B. (2005b). EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J. Exp. Ther. Oncol. 5, 69–78.
Siddique, H. R., Liao, D. I., Mishra, S. K., Schuster, T., Wang, L., Matter, B., et al. (2012). Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int. J. Cancer. 131, 1720–1731. doi: 10.1002/ijc.27409
Song, H. M., Park, G. H., Bo, H. J., Lee, J. W., Kim, M. K., Lee, J. R., et al. (2015). Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells. Biomed. Ther. 23, 339–344. doi: 10.4062/biomedther.2015.024
Song, H. M., Park, G. H., Eo, H. J., and Jeong, J. B. (2016). Naringenin-mediated ATP3 expression contributes to apoptosis in human colon cancer. Biomed. Ther. 24, 140. doi: 10.4062/biomedther.2015.109
Song, S., Su, Z., Xu, H., Niu, M., Chen, X., Min, H., et al. (2017). Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death Dis. 8, e2612. doi: 10.1038/cddis.2017.38
Stuart, L. J., and Buist, P. H. (2004). The absolute configuration of methyl dihydroxystearate: an unusual phytotaffic acid isolated from the seed oil of...
Litchi chinensis. Tetrahedron-Asymmetry. 15, 401–403. doi: 10.1016/j.tetasy.2003.12.020
Su, D., Ti, H., Zhang, R., Zhang, M., Wei, Z., Deng, Y., et al. (2014). Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in litchy pulp. Food Chem. 158, 385–391. doi: 10.1016/j.foodchem.2014.02.134
Su, D., Zhang, R., Zhang, C., Huang, F., Xiao, J., Deng, Y., et al. (2016). Phenolic-rich litchy (Litchi chinensis Sonn.) pulp extracts offer hepatoprotection against restraint stress-induced liver injury in mice by modulating mitochondrial dysfunction. Food Funct. 7, 508–515. doi: 10.1039/c6fo00975h
Sukhthankan, M., Alberti, S., and Baek, S. J. (2010). (+)-Epigallocatechin-3-gallate (EGCG) post-transcriptionally and post-translational suppresses the cell proliferative protein TRO2 in human colorectal cancer cells. Anticancer Res. 30, 2497–2503.
Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S. J., Shi, J., et al. (2010). Antioxidant activities and contents of polyphenol oxidade substrates from pericarp tissues of litchi fruit. Food Chem. 119, 753–757. doi: 10.1016/j.foodchem.2009.07.025
Sun, L., Cao, J., Chen, K., Cheng, L., Zhou, C., Yan, B., et al. (2019). Betulinic acid causes by stabilizing HIF-1 alpha. Oncol. Lett. 11, 797–7999. doi: 10.2147/OTT.S183925
Wang, Y., Dong, D., Qian, Y., Tu, X., Wang, K., Yang, X., et al. (2018b). Luteolin inhibits growth and migration in two human colorectal cancer cell lines by suppression of Wnt–β-catenin pathway. Onco Targets Ther. 11, 7997–7999. doi: 10.2147/OTT.S183925
Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S. J., Shi, J., et al. (2019a). Naringenin has a chemoprotective effect in MDA-MB-231 breast cancer cells via inhibition of caspase-3 and -9 activities. Oncol. Lett. 17, 1217–1222. doi: 10.3892/ol.2018.9704
Wang, X., Liu, J., Xie, Z., Rao, J., Xu, G., Huang, K., et al. (2019). Chlorogenic acid inhibits proliferation and induces apoptosis in A498 human kidney cancer cells via inactivating PI3K/Akt/mTOR signalling pathway. J. Pharm. Pharmacol. 71, 1100–1109. doi: 10.1111/jphp.13095
Wang, R., Wang, Y., Li, G., Wang, X., Zhang, Z., Qiao, H., et al. (2019). Paclitaxel-betulinic acid hybrid nanosuspensions for enhanced anti-breast cancer activity. Colloids Surf. B-Biointerfaces. 174, 270–279. doi: 10.1016/j.colsurfb.2018.11.029
Wang, H. (2011c). Experience introduction of professor Guizhi Sun in treating prostate cancer. J. New Chin. Med. 5, 148–149.
We, R., Mao, L., Xu, P., Zheng, X., Hackman, R. M., Mackenzie, G. G., et al. (2018). Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct. 9, 5682–5696. doi: 10.1039/c8fo01397g
Wang, R., Yang, M., Li, G., Wang, X., Zhang, Z., Qiao, H., et al. (2019a). Paclitaxel-betulinic acid hybrid nanosuspensions for enhanced anti-breast cancer activity. Colloids Surf. B-Biointerfaces. 174, 270–279. doi: 10.1016/j.colsurfb.2018.11.029
Wang, H. (2011c). Experience introduction of professor Guizhi Sun in treating prostate cancer. J. New Chin. Med. 5, 148–149.
We, R., Mao, L., Xu, P., Zheng, X., Hackman, R. M., Mackenzie, G. G., et al. (2018). Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct. 9, 5682–5696. doi: 10.1039/c8fo01397g
Wang, R., Wu, D., Jiang, Y., Prasad, K. N., Zhao, M., et al. (2014b). Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities. J. Funct. Foods. 6, 555–563. doi: 10.1016/j.jff.2013.11.022
Wen, L., He, J., Wu, D., Jiang, Y., Prasad, K. N., Zhao, M., et al. (2014b). Identification of sesquiglignans in litchi (Litchi chinensis Sonn.) leaf and their anticancer activities. J. Funct. Foods. 8, 26–34. doi: 10.1016/j.jff.2014.02.017
Wen, L., You, L., Yang, X., Yang, J., Chen, F., Jiang, Y., et al. (2015). Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity. Free Radical Biol. Med. 84, 171–184. doi: 10.1016/j.freeradbiomed.2015.03.023
Wang, X.-T., Liu, J.-Q., Lu, X.-T., Chen, F.-X., Zhou, Z.-H., Wang, T., et al. (2013). The enhanced effect of luteolin on the destruction of gastric cancer cells by NK cells. Int. Immunopharmacol. 16, 332–340. doi: 10.1016/j.intimm.2013.04.017
Wu, F., Chen, J., Fan, L.-M., Liu, K., Zhang, N., Li, S.-W., et al. (2017). Analysis of the effect of rutin on GSK-3β and TNF-α expression in lung cancer. Exp. Ther. Med. 14, 127–130. doi: 10.3892/etm.2017.4794
Wu, P., Meng, X., Zheng, H., Zeng, Q., Chen, T., Wang, W., et al. (2018). Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer. Molecules. 23, 2590. doi: 10.3390/molecules23102592
Xiang, Y., Guo, Z., Zhu, P., Chen, J., and Huang, Y. (2019). Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 8, 1958–1975. doi: 10.1002/cam4.2108
Yamagata, K., Izawa, Y., Onodera, D., and Tagami, M. (2018). Chlorogenic acid

Yi, X., Zuo, J., Tan, C., Xian, S., Luo, C., Chen, S., et al. (2016). Kaempferol, A

Frontiers in Pharmacology | www.frontiersin.org April 2020 | Volume 11 | Article 45122

Xiao, J., Zhang, R., Huang, F., Liu, L., Deng, Y., Ma, Y., et al. (2017). Lychee (Litchi

Cao et al. Mapping Pharmacological Network of Litchi Anticancer

Xiao, J., Zhang, R., Huang, F., Liu, L., Deng, Y., Ma, Y., et al. (2017). Lychee (Litchi chinensis Sonn) pericarp.

Zang, M. D., Hu, L., Fan, Z. Y., Wang, H. X., Zhu, Z. L., Cao, S., et al. (2017b). Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J. Transl. Med. 15, 52. doi:10.1186/s12967-017-1151-6

Zeng, L., Gao, J., and Zhang, R. (2012). Study on anti-tumor effect of cyanidin-3-glucoside on ovarian cancer. China J. Clin. Materia Medica. 37, 1651–1654.

Zeng, L., Zhen, Y., Chen, Y., Zou, L., Zhang, Y., Hu, F., et al. (2014). Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2–caspase-1 pathway in HeLa cervical cancer cells. Int. J. Oncol. 45, 1929–1936. doi: 10.3892/ijgo.2014.2617

Zeng, A., Hua, H., Liu, L., and Zhao, J. (2019). Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorganic Med. Chem. 27, 2546–2552. doi:10.1016/j.bmc.2019.03.033

Zhang, F., and Ma, C. (2019). Kaempferol suppresses human gastric cancer SNU-216 cell proliferation, promotes cell autophagy, but has no influence on cell apoptosis. Braz. J. Med. Biol. Res. 52, e7843. doi:10.1590/1414-431x20187843

Zhang, B.-L., and Wang, Y.-Y. (2005). Basic research on key scientiﬁc issues of Litchi chinensis fruit isolates on prostaglandin E(2) and nitric oxide production. Food Chem. 82, 485–488. doi:10.1016/j.fite.2011.01.001

Yamagata, K., Izawa, Y., Onodera, D., and Tagami, M. (2018). Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol. Cell Biochem. 441, 9–10. doi:10.1007/s11010-017-3171-1

Yamanishi, R., Yoshigai, E., Okuyama, T., Mori, M., Murase, H., Machida, T., et al. (2014). The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 9, e93818. doi:10.1371/journal.pone.0093818

Yang, M.-Y., Wang, C.-J., Chen, N.-F., Ho, W.-H., Lu, F.-J., and Tseng, T.-H. (2014). Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem. Biol. Interact. 213, 60–68. doi:10.1016/j.cbi.2014.02.002

Yang, J. F., Yang, C. H., Liang, M. T., Gao, Z. J., Wu, Y. W., and Chuang, L. Y. (2010c). Effects of Protocatechuic Acid in Human Breast, Lung, Liver, Cervix, and Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5. Oncotargets Ther. 3, 14118. doi:10.2147/ott.s195615

Zhao, L., Yu, P., Yang, T., Zhou, G., and Tang, N. (2019a). Inhibitory Effect of Litchi chinensis fruit extracts on cancer cell viability, growth and migration. Nutrients 11, 1758. doi:10.3390/nu11071758

Zhao, Z., Jin, G., Ge, Y., and Guo, Z. (2009). beta-Sitosterol Inhibits Growth and Induces Apoptosis by a Mechanism Dependent on Reduced Expression of G1/S Gating Protein in U251 MG Cells. J. Agric. Food Chem. 57, 5000–5009. doi:10.1021/acs.jafc.7b01844

Xie, F., Su, M., Qiu, W., Zhang, M., Guo, Z., Su, B., et al. (2013). Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN. Int. J. Mol. Sci. 14, 21215–21226. doi: 10.3390/ijms14112125

Xie, Z., Guo, Z., Wang, Y., Lei, J., and Yu, J. (2018). Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phytother. Res. 32, 2256–2263. doi:10.1002/ptr.6163

Xie, D. Y. (2017). Extraction process of epigallocatechin gallate from Litchi peels. Patent No CN107805235A. (Beijing: National Intellectual Property Administration. PBC).
Zhu, J., Jiang, Y., Yang, X., Wang, S., Xie, C., Li, X., et al. (2017). Wnt/J-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. *Biochem. Biophys. Res. Commun.* 482, 15–21. doi: 10.1016/j.bbrc.2016.11.038

Zhu, G., Liu, X., Li, H., Yan, Y., Hong, X., and Lin, Z. (2018). Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21. *Int. J. Immunopathol. Pharmacol.* 32, 1–12. doi: 10.1177/2058738418814341

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Cao, Han, Li, Chen, Zhu, Su and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.