STABILITY OF THE PARABOLIC POINCARÉ BUNDLE

SURATNO BASU, INDRANIL BISWAS, AND KRISHANU DAN

Abstract. Given a compact Riemann surface X and a moduli space $M_\alpha(\Lambda)$ of parabolic stable bundles on it of fixed determinant of complete parabolic flags, we prove that the Poincaré parabolic bundle on $X \times M_\alpha(\Lambda)$ is parabolic stable with respect to a natural polarization on $X \times M_\alpha(\Lambda)$.

1. Introduction

Let X be a smooth irreducible complex projective curve of genus g, with $g \geq 2$. Fix an integer $r \geq 2$ and a line bundle L over X of degree d such that r and d are coprime. Let $M_{r,L}$ denote the moduli space of isomorphism classes of stable bundles of rank r with $\wedge^r E \cong L$. A vector bundle V over $X \times M_{r,L}$ is called a Poincaré bundle if its restriction $V|_{X \times \{E\}}$ is isomorphic to E for all closed points $[E] \in M_{r,L}$. It is known that a Poincaré bundle exists; moreover, any two of them differ by tensoring with a line bundle pulled back from $M_{r,L}$. Balaji, Brambila-Paz and Newstead proved in [1] that any such Poincaré bundle is stable with respect to any ample divisor in $X \times M_{r,L}$. Recently, Biswas, Gomez and Hoffman studied in [3] the similar question for the moduli space of principal G-bundles.

In this short note we consider certain moduli spaces of stable parabolic bundles on X. Let us fix a finite set D of n closed points in X. We denote by $M_\alpha(\Lambda)$ the moduli space of stable parabolic bundles of rank r on X with fixed determinant Λ having full flags at each points of D and rational parabolic weights $\alpha = \{\alpha^j_i\}, 1 \leq j \leq r$ and $1 \leq i \leq n$. In this case it is known that there exists a vector bundle \mathcal{U}_α over $X \times M_\alpha(\Lambda)$ which has a natural parabolic structure over the divisor $D \times M_\alpha(\Lambda)$, and moreover, its restriction to each closed points $[E_\alpha]$ is isomorphic to E_α as parabolic bundle [2]. Any two such bundles differ by tensoring with a line bundle pulled back from $M_\alpha(\Lambda)$. We call such bundles Poincaré parabolic bundles. So, it is natural to ask whether this bundles are parabolic (slope) stable.

We prove the following:

Theorem 1.1. Let \mathcal{U} be a Poincaré parabolic bundle over $X \times M_\alpha(\Lambda)$. Then \mathcal{U} is a parabolic (slope) stable bundle with respect to a natural ample divisor.

We adopt the strategy of proof in [1] in the given context.

2010 Mathematics Subject Classification. 14H60, 14D20.

Key words and phrases. Parabolic bundle, Poincaré bundle, stability, moduli space.
2. Preliminaries

Let X be an irreducible smooth complex projective curve of genus $g \geq 2$. Fix n distinct points x_1, \cdots , x_n on X, and denote the divisor $x_1 + \cdots + x_n$ on X by D. Let E be a holomorphic vector bundle on X of rank r.

A quasi-parabolic structure over E is a strictly decreasing filtration of linear subspaces

$$E_{x_i} = F_i^1 \supset F_i^2 \supset \cdots \supset F_i^{k_i} \supset F_i^{k_i+1} = 0$$

for every $x_i \in D$. We set

$$r^i_j := \dim F^j_i - \dim F^{j+1}_i.$$

The integer k_i is called the length of the flag and the sequence $(r^i_1, r^i_2, \cdots , r^i_{k_i})$ is called the type of the flag at x_i. A parabolic structure on E over the divisor D is a quasi-parabolic structure as above together with a sequence of real numbers

$$0 \leq \alpha^i_1 < \alpha^i_2 < \cdots < \alpha^i_{k_i} < 1.$$

The parabolic degree of E is defined to be

$$\text{par-deg}(E) := \deg(E) + \sum_{x_i \in D} \sum_{j=1}^{k_i} \alpha^i_j r^i_j$$

and the parabolic slope of E is

$$\text{par-}\mu(E) := \frac{\text{par-deg}(E)}{r}.$$

(See [10].)

For any subbundle $F \subseteq E$, there exists an induced parabolic structure on F whose quasi-parabolic filtration over x_i is given by the distinct subspaces in

$$F_{x_i} = F^1_i \cap F_{x_i} \supset F^2_i \cap F_{x_i} \supset \cdots \supset F^{k_i}_i \cap F_{x_i} \supset 0,$$

where $k_0 := \max\{j \in \{1, \cdots , k_i\} \mid F^j_i \cap F_{x_i} \neq 0\}$; the parabolic weight of $F^j_i \cap F_{x_i}$ is the maximum of all α^i_j such that $F^j_i \cap F_{x_i} = F^j_i \cap F_{x_i}$.

A parabolic vector bundle E with parabolic structure over D is said to be stable (respectively, semistable) if for every subbundle $0 \neq F \subsetneq E$ equipped with the induced parabolic structure, we have

$$\text{par-}\mu(F) < \text{par-}\mu(E) \quad (\text{respectively}, \text{par-}\mu(F) \leq \text{par-}\mu(E)).$$

2.1. Poincaré parabolic bundle. Fix integers $r > 1$ and d and for each $i = 1, 2, \cdots , n$ a sequence of positive integers $\{r^i_j\}_{j=1}^{k_i}$ such that $\sum_{j=1}^{k_i} r^i_j = r$ for each i. Then the coarse moduli space $M_X(d, r, \{\alpha^i_j\}, \{r^i_j\})$ of semistable parabolic vector bundles of rank r, degree d, flag types $\{r^i_j\}$ and parabolic weights $\{\alpha^i_j\}_{j=1}^{k_i}$ at $x_i \in D$, $1 \leq i \leq n$, is a normal projective variety [10]. The open subvariety $M_X(d, r, \{\alpha^i_j\}, \{r^i_j\})^s$ of it consisting of stable parabolic bundles is smooth.

For a scheme S, let $\pi_X : X \times S \to X$ and $\pi_S : X \times S \to S$ be the natural projections. For a vector bundle U over $X \times S$, and $s \in S$, set $U_s := U|_{X \times \{s\}}$. Given a flag type $m_i = (r_1, \cdots , r_{k_i})$, $1 \leq i \leq n$, with $\sum_{j=1}^{k_i} r_j = r$, define F_{m_i} to be the variety of
flags of type m_i. Furthermore, for a vector bundle $U \to S$ of rank r, let $\mathcal{F}_{m_i}(U) \to S$ be the bundle of flags of type m_i.

For each $x_i \in D$ we fix the flag type $m_i = (r_1^i, r_2^i, \ldots, r_k^i)$. A family of quasi-parabolic vector bundles parametrized by a scheme S is defined to be a vector bundle U over $X \times S$ together with sections $\phi_{x_i} : S \to \mathcal{F}_{m_i}(U|_{x_i \times S})$, $1 \leq i \leq n$. Note that the section ϕ_{x_i} corresponds to a flag of subbundles of $U|_{x_i \times S}$ with flag type m_i for each i. A family of parabolic bundles is given by associating weights $\{\alpha_j^i\}$ to each flag of subbundles over $x_i \times S$, $x_i \in D$. We denote the family of parabolic bundles by $U_* = (U, \phi, \alpha)$ and by $U_{s,*}$ the parabolic bundle (U_s, ϕ_s, α) above $s \in S$.

It is known that if the elements of the set $\{d, r_j^i | 1 \leq i \leq n, 1 \leq j \leq k_i\}$ have greatest common divisor equal to one then $M^*_\alpha := M_X(d, r, \{\alpha_j^i\}, \{r_j^i\})^s$ is a fine moduli space, meaning there exists a family $\mathcal{U}_\alpha := (U, \phi, \alpha)$ parametrized by M^*_α with the property that $\mathcal{U}_{\alpha,s}$ is a stable parabolic bundle isomorphic to E_s for all $[E_s] = e \in M^*_\alpha$ [5, Proposition 3.2], [2]. Moreover, if the parabolic weights $\{\alpha_j^i\}$ are chosen to be generic, i.e., the notions of stability and semi-stability coincide, then the moduli space $M_X(d, r, \{\alpha_j^i\}, \{r_j^i\})$ is a smooth, irreducible, projective variety. We denote this variety by M_α.

Now assume that the weights are generic, α_j^i are rational numbers and $r_j^i = 1$, so we are choosing full flags at each points of D. Note that this is the generic case. There is a well defined determinant morphism $\det : M_\alpha \to J^d(X)$, where $J^d(X)$ denotes the component of the Picard group of X consisting of line bundles of degree d. For $\Lambda \in J^d(X)$, denote the fiber $\det^{-1}(\Lambda)$ by $M_\alpha(\Lambda)$, and the restriction of the vector bundle \mathcal{U} to $X \times M_\alpha(\Lambda)$ by (with a mild abuse of notation) \mathcal{U}. From the earlier discussions it is clear that the vector bundle \mathcal{U} over $X \times M_\alpha(\Lambda)$ gets a natural parabolic structure over the smooth divisor $D \times M_\alpha(\Lambda)$.

2.2. Strongly Parabolic Higgs Fields. In this subsection we will briefly recall some properties of strongly parabolic Higgs fields and the Hitchin map; for details see [7, Sections 2,3]. As before, we assume that the weights are generic and full flags at each points of D.

Let K_X denotes the holomorphic cotangent bundle of X.

A parabolic Higgs field on a parabolic vector bundle E_* is a homomorphism
\[
\Phi : E \to E \otimes K \otimes \mathcal{O}_X(D) = E \otimes K(D)
\]
such that

1. $\text{trace}(\Phi) = 0$, and
2. Φ is a strongly parabolic homomorphism, meaning for each $x_i \in D$ we have $\Phi(F_i^j) \subset F_i^{j+1} \otimes (K(D)|_{x_i})$.

The pair (E_*, Φ) is called a parabolic Higgs bundle.

A parabolic Higgs bundle (E_*, Φ) is called stable (respectively, semistable) if for all proper non-zero Φ-invariant sub-bundles F of E, we have $\text{par-}\mu(F) < \text{par-}\mu(E)$ (respectively, $\text{par-}\mu(F) \leq \text{par-}\mu(E)$). The cotangent space at $[E] \in M_\alpha(\Lambda)$ can be identified with $H^0(X, \mathcal{SParEnd}_0(E) \otimes K_X(D))$ where $\mathcal{SParEnd}_0(E)$ is the sheaf of strongly parabolic traceless endomorphisms. Then the coefficients of the characteristic polynomial of $\phi \in H^0(X, \mathcal{SParEnd}_0(E) \otimes K_X(D))$ lie in $W := \bigoplus_{j=2}^{r} H^0(X, K_X^j((j-1)D))$.
Let \(N_\alpha(\Lambda) \) be the moduli space of isomorphism classes of strongly parabolic stable Higgs bundles with parabolic structures over \(D \) and weights \(\{\alpha_j^i\}_{j=1}^r \) at \(x_i \in D, 1 \leq i \leq n \), with fixed determinant \(\Lambda \). The total space \(T^*M_\alpha(\Lambda) \) of the cotangent bundle is an open subvariety of the moduli space \(N_\alpha(\Lambda) \). The map
\[
\begin{array}{c}
h : N_\alpha(\Lambda) \rightarrow W,
\end{array}
\]
\[
(\epsilon, \phi) \mapsto (\text{trace}(\wedge^2 \phi), \cdots, \text{trace}(\wedge^n \phi))
\]
is proper and surjective; it is called the Hitchin map. If \(s \in W \) such that the corresponding spectral curve \(X_s \) is smooth, then the fiber \(h^{-1}(s) \) is identified with the Prym variety
\[
\text{Prym}_\delta(X_s) = \{L \in J_\delta(X_s) | \text{det}(\pi_*L) \simeq \Lambda\}
\]
associated to \(X_s \), where \(\delta := d - \text{deg}(\pi_*(\mathcal{O}_{X_s})) \).

A parabolic bundle on \(X \) is called **very stable** if there is no non-trivial strongly parabolic Higgs field on it. It is known that, if the genus \(g(X) \geq 2 \), a very stable parabolic bundle is stable. There exist very stable parabolic bundles in any moduli space. In fact the subset of very stable parabolic bundles is a dense open set in \(M_\alpha(\Lambda) \). This follows from the fact the dimension of the nilpotent cone \(h^{-1}(0) \) is same as the dimension of the moduli space \(M_\alpha(\Lambda) \) [6, Corollary 3.10]. Let
\[
S' \subset S := T^*M_\alpha(\Lambda) \cap h^{-1}(0)
\]
be the open subset consisting of all \((\epsilon, \phi) \in S \) such that \(\phi \) is nonzero. The image of \(S' \) in \(M_\alpha(\Lambda) \) under the forgetful map \((\epsilon, \phi) \mapsto \epsilon \) will be denoted by \(B \). Note that \(B \) is the non-very stable locus in \(M_\alpha(\Lambda) \). On the other hand, there is a free action of \(\mathbb{C}^* \) on \(S' \); namely the action of any \(c \in \mathbb{C}^* \) sends any \((\epsilon, \phi) \) to \((\epsilon, c \cdot \phi) \). Hence we have
\[
\dim M_\alpha(\Lambda) = \dim S = \dim S' > \dim B.
\]
This implies that the complement \(M_\alpha(\Lambda) \setminus B \) is nonempty.

2.3. Determinant bundle.
Let \(T \) be a variety. For any coherent sheaf \(\mathcal{E} \) on \(X \times T \), flat over \(T \), let \(\det R\pi_T \mathcal{E} \) denote determinant line bundle defined as:
\[
\{\det R\pi_T \mathcal{E}\}_t := \{\det H^0(X, \mathcal{E}_t)\}^{-1} \otimes \{\det H^1(X, \mathcal{E}_t)\}
\]
for \(t \in T \) ([4], [11], [12]).

Let \(x \in X \) be a fixed closed point of \(X \). We fix rational numbers \(0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_r < 1 \) and a positive integer \(k \) such that \(\beta_j := k \cdot \alpha_j \) is an integer for each \(j = 1, \ldots, r \). Set
\[
d_j := \beta_j + 1 - \beta_j, 1 \leq j \leq r,
\]
with the assumption that \(\beta_r + 1 = 1 \). Let \(\mathcal{V}_x^\alpha = (\mathcal{V}_x^\alpha, \alpha = \{\alpha_j\}_{j=1}^r, \phi) \) be a family of rank \(r \) stable parabolic bundles over \(X \) with parabolic divisor \(\{x\} \) parametrized by a variety \(T \) and
\[
\mathcal{V}_x^\alpha|_{x \times T} = \mathcal{F}_{1,x} \supset \mathcal{F}_{2,x} \supset \cdots \supset \mathcal{F}_{r,x} \supset \mathcal{F}_{r+1,x} = (0)
\]
be the full flag of subbundles over \(x \times T \) determined by the section \(\phi \). Set \(L_j := \frac{F_{j+1,x}}{F_{j+1,x}} \). Let \(\Psi : T \rightarrow M_\alpha(\Lambda) \) be the morphism induced by this family. Define a line bundle
\[
\theta_T := (\det R\pi_T \mathcal{V}_x^\alpha)^k \otimes (\mathcal{V}_x^\alpha)^l \otimes \otimes_{j=1}^{d_j} L_j^{d_j}
\]
where \(l \) is a positive integer determined by [12, Equation (*), page 6]. Then there exists a unique (up to algebraic equivalence) ample line bundle \(\Theta_{M_\alpha} \) over \(M_\alpha(\Lambda) \) such that \(\Psi^* \Theta_{M_\alpha} = \theta_T \) [4, [12, Theorem 1.2].
3. PARABOLIC STABILITY OF THE PARABOLIC POINCARÉ BUNDLE

In this section we continue with the notation of the previous section.

Let X be a smooth projective irreducible complex curve of genus $g \geq 2$, $x_1, \ldots, x_n \in X$ distinct points and $D = x_1 + \cdots + x_n$. Let Y be a smooth projective irreducible complex variety.

For each point $x_i \in \text{Supp}(D)$ fix real numbers $0 \leq \alpha_i^1 < \alpha_i^2 < \cdots < \alpha_i^k_i < 1$ and $m_i = (r_i^1, \ldots, r_i^k_i)$, where each r_i^j is a positive integer. Let U be a rank r vector bundle over $X \times Y$ with parabolic structure over the smooth divisor $D \times Y$, of flag types m_i and weights $\{\alpha_i^j\}, 1 \leq i \leq n, 1 \leq j \leq k_i$. Fix ample divisors θ_X on X and θ_Y on Y. Then for any integers $a, b > 0$, the class $a\theta_X + b\theta_Y$ is ample on $X \times Y$. Let $\Theta := a\theta_X + b\theta_Y$ for some fix integers $a, b > 0$.

Lemma 3.1. Suppose that for a general point $x \in X$, the vector bundle $U_x = U|_{\{x\} \times Y}$ is semi-stable with respect to θ_Y over Y, and for a general point $y \in Y$ the parabolic vector bundle $U_y = U|_{X \times \{y\}}$ over X with parabolic divisor D is semi-stable with respect to θ_X. Then the parabolic vector bundle U with parabolic divisor $D \times Y$ is parabolic semi-stable with respect to Θ. Moreover, if U_x is stable or U_y is parabolic stable, then U is also parabolic stable.

Proof. The proof essentially follows from the proof of [1, Lemma 2.2]. Let us indicate the modification needed in this case. Let $F \subset U$ be a torsionfree subsheaf. Then it has an induced parabolic structure. To compute the parabolic degrees of U and F, one needs to compute the degree of certain vector bundles supported on the smooth divisor $D \times Y$. But this is same as computing the degree of certain subsheaves of U and F, which can be done as in [1, Lemma 2.2].

For the rest of this section we assume that the parabolic weights are rational, generic and full flags at each points of $\text{Supp}(D)$.

Set $s = (s_2, \ldots, s_r) \in W$, and let $\pi : X_s \to X$ be the associated spectral cover. Then for $z \in X$, the fiber $\pi^{-1}(z)$ is given by the points $y \in K_X(D)|_z$ which satisfy the polynomial

$$y^r + s_2(z) \cdot y^{r-2} + \cdots + s_r(z) = 0.$$

Let us denote this polynomial by f. The morphism π is unramified over z if and only if the resultant $R(f, f')$ of f and its derivative f' are nonzero. Since all s_j vanish over D, the ramification locus of π contains D.

Lemma 3.2. Let X be a smooth, irreducible, projective curve of genus $g \geq 2$ and $z \notin \text{Supp}(D)$. There exists a smooth, projective spectral curve Y and finite morphism $\pi : Y \to X$ of degree r which is unramified over z.

Proof. Since the linear system $|K_X((j-1)D)|$ is base point free outside D and $z \notin \text{Supp}(D)$, there exists $(s_2, \cdots, s_r) \in W$ such that

$$R(f, f')(s_2(z), \cdots, s_r(z)) \neq 0.$$

Clearly this is an open condition in W. Thus there exists a non-empty open subset V of W such that for each $s \in V$, the corresponding spectral cover $X_s \to X$ is unramified.
over z. Now, since the genus $g \geq 2$, by [7, Lemma 3.1] the set of points in W where the corresponding spectral curve is smooth is an dense open subset of W. Thus we can always choose a spectral curve which is smooth and unramified over z. \hfill \Box

Lemma 3.3. Let $X_s \longrightarrow X$ be a spectral curve. Let P^δ be the associated Prym variety, where $\delta := d - \deg(\pi_*(\mathcal{O}_{X_s}))$. Then there is a dominant rational map $f : P^\delta \longrightarrow M_\alpha(\Lambda).

Proof. Let h' be the restriction of h to the the total space of the cotangent bundle $T^*M_\alpha(\Lambda)$. Then for any very stable parabolic bundle $E \in M_\alpha(\Lambda)$, the restriction

$$h'_E : T^*_E M_\alpha(\Lambda) \longrightarrow W$$

of h' is surjective (for a proof see [8, Lemma 1.4]). Thus, for any $s \in W$, we have $h'^{-1}(s) \cap T^*_E M_\alpha(\Lambda)$ is nonempty for every very stable parabolic bundle $E \in M_\alpha(\Lambda)$. Consequently, for all $s \in W$, the image of the map $h'^{-1}(s) \longrightarrow M_\alpha(\Lambda)$ contains the dense open set U of all very stable parabolic bundles. Thus the morphism $h'^{-1}(s) \longrightarrow M_\alpha(\Lambda)$ is dominant. Since $h'^{-1}(s) \subseteq h^{-1}(s) \simeq P^\delta$ is an open set, we have a dominant rational map $f : P^\delta \longrightarrow M_\alpha(\Lambda)$. \hfill \Box

Now we discuss the ‘parabolic stability’ of U with respect to a ‘naturally’ defined ample divisor on $X \times M_\alpha(\Lambda)$. For the simplicity of the exposition we assume that $D = x$ (for an arbitrary reduced divisor the same arguments will hold).

Theorem 3.4. Let $z \notin \text{Supp}(D)$. Then U_z is semi-stable with respect the ample divisor Θ_{M_α}.

Proof. By Lemma 3.2 we get a spectral cover $\pi : Y \longrightarrow X$ which is unramified over z. Let $\pi^{-1}(z) = \{y_1, \ldots, y_r\}$, with y_i being distinct points in Y.

Let $\pi \times 1 : Y \times P^\delta \longrightarrow X \times P^\delta$ denotes the product morphism. Let \mathcal{L} denote the restriction of a Poincaré line bundle on $Y \times J^\delta(Y)$ to $Y \times P^\delta$. Then the direct image $(\pi \times 1)_*\mathcal{L}$ is a rank r vector bundle and the $O_{X \times P^\delta}$-algebra structure on $(\pi \times 1)_*\mathcal{L}$ defines a section

$$\Phi \in H^0(X \times P^\delta, \text{End}((\pi \times 1)_*\mathcal{L}) \otimes p_X^*K_X(D)).$$

This Φ induces a parabolic structure on $(\pi \times 1)_*\mathcal{L}$ over $x \times P^\delta$. Thus we have a family of parabolic bundles parametrized by P^δ. Clearly, the rational map $f : P^\delta \longrightarrow M_\alpha(\Lambda)$ is induced by the above family. Let T^δ be the open set where f is defined. Then $\text{Codim}(P^\delta \setminus T^\delta) \geq 2$.

Let $\mathcal{E} := ((\pi \times 1)_*\mathcal{L})|_{X \times T^\delta}$. Since $M_\alpha(\Lambda)$ is a fine moduli space we have

$$(1 \times f)^*U \simeq \mathcal{E} \otimes p_{T^\delta}^*(L_0)$$

for some line bundle L_0 on T^δ. Thus

$$f^*U_z \simeq \bigoplus_{i=1}^r L_{y_i} \otimes L_0$$

on T^δ. Since $\text{Codim}(P^\delta \setminus T^\delta) \geq 2$ and P^δ is smooth, the line bundles L_{y_i} and L_0 uniquely extend over P^δ. The line bundles L_{y_i} are already defined over P^δ. Let L_0' be the unique extension of L_0 over P^δ. Since L_{y_i} are algebraically equivalent, it follows that $\bigoplus_{i=1}^r L_{y_i} \otimes L_0'$ is semistable with respect to any ample line bundle on P^δ. Thus if we can find an ample line bundle H over P^δ such that $H|_{T^\delta} \simeq f^*(\Theta_{M_\alpha}^n)$ for some positive integer n, then by [1,
Lemma 2.1], \mathcal{U} is semistable with respect to $\Theta^n_{M_\alpha}$. Hence it is semistable with respect Θ_{M_α}.

We have,

$$f^* \Theta_{M_\alpha} = \Theta^\delta = (\det R\pi T^\delta \mathcal{E})^k \otimes \det(\mathcal{E}_x)^l \otimes \otimes_{j=1}^r L_j^{d_j}.$$

By [9, Theorem 4.3] we get that

$$(\det R\pi T^\delta \mathcal{E})^k = m \Theta^{p^\delta}_{|T^\delta}$$

for some positive integer m, where Θ^{p^δ} is the restriction of the canonical theta divisor on $J^\delta(Y)$ to P^δ. Let M be the unique extension of $\det(\mathcal{E}_x)^l \otimes \otimes_{j=1}^r L_j^{d_j}$. Set $H := m \Theta^{p^\delta} \otimes M$. Then for some positive integer q, H^q is ample on P^δ. Thus $f^* \Theta_{M_\alpha}^\delta$ is a restriction of an ample line bundle H on P^δ.

As a corollary of Theorem 3.4 and Lemma 3.1 we obtain the main result:

Theorem 3.5. The parabolic bundle \mathcal{U} over $X \times M_\alpha(\Lambda)$ is parabolic stable with respect to any integral ample divisor of the form $aD_X + b\Theta_{M_\alpha}$, where D_X is an ample divisor on X and $a, b > 0$.

Acknowledgements

The third-named author is supported by NBHM Post-doctoral Fellowship, DAE (Government of India). The second-named author is supported by a J. C. Bose Fellowship.

References

[1] V. Balaji, L. Brambila-Paz, and P. E. Newstead, Stability of the Poincaré bundle, *Math. Nach.* 188 (1997), 5–15.

[2] I. Biswas and A. Dey, Brauer group of a moduli space of parabolic vector bundles over a curve, *Jour. K-Theory* 8 (2011), 437–449.

[3] I. Biswas, T. L. Gómez, and N. Hoffmann, Stability of the Poincaré bundle, *arXiv preprint arXiv:1701.04649*, 2017.

[4] I. Biswas and N. Raghavendra, Determinants of parabolic bundles on Riemann surfaces, *Proc. Indian Acad. Sci. (Math. Sci.)* 103, (1993), 41–71.

[5] H. U. Boden and K. Yokogawa, Rationality of moduli spaces of parabolic bundles, *Jour. London Math. Soc.* 59 (1999), 461–478.

[6] O. García-Prada, P. B. Gothen, and V. Muñoz, Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, *Mem. Amer. Math. Soc.* 187 (2007), 879.

[7] T. L. Gomez and M. Logares, A Torelli theorem for the moduli space of parabolic higgs bundles, *Adv. Geom.* 11 (2011), 429–444.

[8] A. Kouvidakis and T. Pantaz, The automorphism group of the moduli space of semi stable vector bundles, *Math. Ann.* 302 (1995), 225–268.

[9] Y. Li, Spectral curves, theta divisors and picard bundles, *Int. Jour. Math.* 2 (1991), 525–550.

[10] V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, *Math. Ann.* 248 (1980), 205–239.

[11] M. S. Narasimhan and T. R. Ramadas, Factorisation of generalised theta functions. I, *Invent. Math.* 114 (1993), 565–623.

[12] X. Sun, Degeneration of moduli spaces and generalized theta functions, *Jour. Alg. Geom.* 9 (2000), 459–527.
Institute of Mathematical Sciences, HBNI, CIT Campus, Tharamani, Chennai 600113, India

E-mail address: suratnob@imsc.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 4000005, India

E-mail address: indranil@math.tifr.res.in

Chennai Mathematical Institute, H1 Sipcot IT Park, Siruseri, Kelambakkam - 603103, India.

E-mail address: krishanud@cmi.ac.in