Enhancing Classifier Accuracy in Ayurvedic Medicinal Plants using WO-DNN

Margesh Keskar, Dhananjay Maktedar

Abstract: Identification of right medicinal plants that goes in to the formation of a medicine is significant in ayurvedic medicinal industry. This paper focuses around the automatic identification proof of therapeutic plants that are regularly utilized in Ayurveda. The fundamental highlights required to distinguish a medicinal plant is its leaf shape, color and texture. In this paper, we propose efficient accurate classifier for ayurvedic medical plant identification (EAC-AMP) utilizing by hybrid optimal machine learning techniques. In EAC-AMP, image corners detect first and top, bottom leaf edges are computed by the improved edge detection algorithm. After preprocessing, the segmentation can achieve using spider optimization neural network (SONN), which segments leaf regions from an image. The time and frequency domain features are computed by the symbolic accurate approximation (SAX); other features shape features, color features and tooth features are computed by the two-dimensional binary phase encoding (2DBPE). Finally, a whale optimization with deep neural network (DNN) classifier is used to characterize the type of plants. Accuracy in identification of any ayurvedic plant leaf is achieved by understanding and extracting the plant features. The main objective of the proposed EAC-AMP approach is to increase the accuracy of classifier. MATLAB experimental analysis showed better results such as accuracy, sensitivity and specificity.

Keywords: EAC-AMP, Spider Optimization Neural Network, Symbolic Accurate Approximation, 2DBPE, Whale Optimization with DNN.

I. INTRODUCTION

The world bears an enormous number of plant species, an impressive parcel of which have helpful characteristics [33]; others are close to end, and still others that are risky to man. Notwithstanding the way that plants are a fundamental resource for individuals, yet they structure the base of all developed lifestyles [1]. To use and guarantee plant species, it is fundamental

To study and gathering plants viably. Perceiving dark plants depends much on the normal learning of a master botanist. The best procedure to perceive plants successfully and viably is a manual-set up together method based as for morphological characteristics [2]. In this manner an extensive part of the methodology drew in with mastering these plant species dependent on data collection and aptitudes of individuals. Regardless, this method of manual affirmation is as often as possible troublesome and dreary [3].

Therefore, various masters have driven concentrates to help the modified course of action of plants subject to their physical traits. Structures became so far use changing number of dares to automate the technique of modified request, anyway the methodology are exceptionally near. Fundamentally, these methods incorporate setting up the leaves accumulated, undertaking some pre-getting ready to recognize their specific qualities, plan of the leaves, populating the database, planning for affirmation in conclusion evaluating the results. Disregarding the way that, leaves are most typically used for plant conspicuous verification, the stem, blossoms, petals, seeds and even the whole plant can be used in an electronic strategy. A mechanized plant recognizing evidence structure can be used by non-home-grown pros to quickly perceive plant species effectively [4]. Classification of plants has a wide use expected in agriculture and medicine, and is especially basic to the science arranged characteristics investigate [5-7]. Leaf picture Classification strategy is the most favored decision when contrasted with strategies like Cell science or Molecule Biology techniques for leaf plant order. Prior specialists have endeavored to recognize the plant dependent on picture shading histogram, edge highlights and its surface data. Research has been as of now to characterize the plants as trees, bushes and herbs utilizing neural systems [8]. A lady endeavor has been advanced by simply considering the leaf subtleties. Leaf recognizable proof [9] structures an imperative part in plant arrangement. Plants can be consistently gathered dependent on various pieces of plants. There are three dimensional articles that extend multifaceted nature. The plant order, perceiving its individual leaf picture is a basic and simpler way. Each leaf picture is grouped through various related procedures. An information base is made utilizing test pictures of a wide range of leaves. Each leaf picture is connected to the relating plant subtleties [10].

There are several techniques were proposed on past decades. By Using of two-dimensional shape features, the leaves of plants are arranging also the help of k-nearest neighbor (k-NN) algorithm and Hierarchical Graph Neuron (DHGN) techniques. There are some modules are utilized leaf identification, they are Matching Measures (MM) and Euclidean Distance (ED) also the unique criteria’s are measured by Leaf Discrimination Efficiency (hLD) techniques and Young-Leaf-Detection Efficiency (hYLD) A multi-class SVM (K-SVM) [13] gives an approach to assess the fluctuation of the classes. The classifier really comprises of a lot of 1vs1 SVMs settling on a choice for any pair of classes, and the last grouping depends on various such twofold votes gotten by each class. A programmed methodology planned for perceiving vegetable species is utilized to disposes of all leaf shape, size, shading or surface data, since the intrigue is centered only in recognizing contrasts in the leaf vein morphology [14].
A phenotypic grouping framework [15] of mulberry in Taiwan reliant on vegetative qualities and chilling essentials using numerical arranged assessment. There is good leaf length with better connection of leaf width is important factors for shown the leaf thickness [16]. A dark sounding programmed recognizable proof framework is the Anastrephafraeterculus gathering, which is of high financial significance in Brazil [17]. By using of mass spectrometry also with help of two-dimensional electrophoresis the leaf proteins are separated from fake modules after contaminated and immunized to 72 h[18].An intelligent picture based plant distinguishing proof framework [19] is synchronized with that developing information and enables any client to inquiry or enhances the framework with new perceptions. By the using of Modified Particle Swarm Optimization (MPSOCT) [20], the arrangement tree actuated also it was developed by quantitative structure–action relationship (QSAR) mainly, by the help of antimicrobial specialists against Candida albicans (CA) the various grouping models are arranged.

Organization of this Paper The second section presents about recent works related to leaf identification. Third section explains about problem methodology of previous work and system model of our proposed system. The fourth section describes briefly about classifiers and algorithms. The result and conclusion are describing on the final section.

II. RELATED WORKS

Benhajrhouma et al. [21] have presented for applying to the leaf order issue, the new seven invariants are proposed, which are proposed for multi-part shapes, they have limit-based anisotropy measure and territory based simple shapes. Remaining new six invariants able to make simple calculation of interpretation also geometric understanding of shape segments. Simple clear calculation of interpretation, and scaling invariants, revolution able to this technique. Similar to new invariants depends upon region-based are strong into mellow distortions with commotion. All deductions are made in a ceaseless space. This makes the strategies material in all discretization plots straightforwardly.

Lopez et al. [22] have acquainted a technique with identify compound leaves utilizing concentric circles to investigate the outside of the leaf to include the progressions of shading in double pictures, at that point, the progressions are broke down to distinguish compound leaves. The effectiveness of the Radial Basis Function neural system is additionally improved for locale developing strategy utilized seed focuses and gathering them having comparable traits that help in highlight extraction process. The technique predicts accurately over 96% of the leaves in the Flavia informational index. At that point, it is tried with certain pictures of leaves accessible on the Internet, with 100% of rightness.

Chouhan et al. [23] have presented, the natural leaves illness are determined with in grouping of plants by the using of Bacterial Foraging Optimization Based Radial Basis Function(BRBFNN). The arrangement of leaves based on their sickness with their speed and precision of the system done by using radial basis function neural network (RBFFN) and further speed and precision of areas are analysis by Bacterial Foraging Optimization (BFO). The district developing calculation builds the productivity of the system via looking and gathering of seed focuses having basic traits for highlight extraction process.

Zhang et al. [24] have proposed two improved profound convolutional neural systems model to recognizing nine kinds of maize leaves. GoogleLeNet and Cifar10 utilized accomplish high recognizable proof precision, 98.9% and 98.8%, individually. It is conceivable to improve acknowledgment precision by expanding the assorted variety of pooling activities, the sensible expansion of a Relu limit and dropout errands, and including various changes of the model parameters. Exactly when the train test set is 80-20, the course of action figuring’s used to obtain a varying assortment of test conditions with solid power.

Grinblat et al. [25] have proposed profound the plant leaf vein designs based differentiate done by Convolutional Neural System (CNN). The red bean, soybean, white bean are different vegetable plants. CNN maintains a strategic distance from the utilization of carefully assembled highlight extractors as it is standard in best in class pipeline. An assignment explicit module in a cutting-edge preparing pipeline is joined with a profound convolutional arrange. An improved precision utilizing a standard profound learning model suggests that it isn’t important to handcraft a particular element extraction strategy for this undertaking. This profound learning approach essentially improves the precision of the alluded pipeline.

Roshchina et al. [26] have proposed an There are various pieces of restorative species are investigated by fluorescence also differentiate by luminescence microscopy, for example, smaller scale spectrofluorimetry and confocal microscopy. Alkaloids chelerythrine have presented in species secretary cells and sanguinarine. The fluoresced in green yellow color is occurred in sanguinarine until the second species improved. The second species improved in anthraquinones which is changed orange-red colour for multi-parts tests, there are Achillea millefolium species and Calendula officinalis also Artemisia absinthium species the unearthly impedance seems to occur in light of the fact, fluoresced on their organs with phenols also terpenoids. In this multi-part test the species changed over a blue-green color or else blue color.

Goncalves et al. [27] have proposed, the combining content-based image retrieval (CBIR) technique is suitable for diagram basing design, which is known as Semantic Interactive Image Retrieval (SIIR). It bolsters master recognizable proof undertakings, for example, to differentiate the angiosperm groups in plants is one of the scholar’s jobs. After all, frame work the data taken away from various substances, cosmology, client cooperation, sources and client endeavors required are radically decreased. The details about angiosperm species and plants attributes and nature structures are represented in space cosmology. Plants visual recovery data and semantic data are presented in tale diagram depended methods. The plant species are differentiated with their properties-based classification is represented in bipartite trait diagram and
discriminative trait diagram. In this framework refreshes likeness data among pictures dependent on the client's answer, in this manner improving the recovery adequacy and lessening the client's endeavors required for ID assignments.

Chaki et al. [28] have proposed, the plant leaf pictures taken before that plant leaves attributes are identified; they have enormous components like particular vein, structured shapes, green shades. sometimes the components are leaves not suitable for heterogeneous groups. The A various leveled engineering configuration is utilized various segments are combined for an all the more dominant and solid order of the visual information. By the using of visual discriminators, the databases are segmented into obvious parts. The shape features of leaves is separated by different parts by using of Feature depends Shape Selection Template (FSST).

Esmaili et al. [29] have proposed shut circle framework distinguishing proof under unadulterated criticism just as its potential in a modern setting. The recognizability condition for straight plants yields significant down to earth bits of knowledge for a shut circle framework distinguishing proof framework. It is natural that recognizability is improved as there are increasingly: set-point changes, or info or yield immersion. The progression reaction models are utilized to unravel a limited skyline ideal control issue which is commonly detailed as a quadratic program with direct requirements. The professional ought to comprehend that distinguishing proof outcomes are bound to be precise within the sight of set-point changes and discontinuous info/yield immersion.

Volochanskyi et al. [30] have proposed distinctive excitation wavelengths used to figure the fitting test conditions for the recognition and distinguishing proof of therapeutically noteworthy. The Surface-Enhanced Raman Scattering (SERS) spectroscopy is a method able to do low identification restricts in the investigation of modest quantities analyses. The alkaloids were estimated by SERS spectra with fixed range and using electrochemically arranged SERS gold and silver dynamic substances with scaled platinum substrates. Leaf surface are improved by Hypothetical computations with ordinary Raman spectroscopy. Unmistakable range is favored because of higher proficiency of light dispersing than if there should be an occurrence of close infra radiation.

III. PROBLEM METHODOLOGY AND SYSTEM MODEL

A. Problem Methodology

Liu et al. [31] have proposed, The plants are classified and focused by the using of Convolution Recurrent Neural Networks (C-RNNs). Leaf pictures are segmented and extracts by the using of convolutional Neural Networks (CNN) also that all pictures combined with multiple features by the Recurrent Neural Network(RNN).Each models are take too much time for prepare start from finish the one to three species leaf pictures. For the example, the Gated Recurrent Unit (GRU) and MobileNet are good exchange the order exactness also flavia dataset computationals. The recognizable proof of restorative plants by normal keys is difficult, and as a result of the usage of express regular terms confusing for non-pros. This makes a hard to beat obstruction for students excited about picking up species data. Today, there is an extending energy for modernizing the system of species recognizing evidence. From [21]-[31], the current plant species identification methodologies are practically inconceivable for the overall population and testing notwithstanding for experts that manage herbal issues every day, for example, preservationists, ranchers, foresters, and scene designers. Notwithstanding for botanists themselves species identification is frequently a troublesome assignment. In addition, most ayurvedic therapeutic plants identification strategies have proposed dependent on features of leaf surface and structure of leaf are identify some plants.

B. System Model

Our proposed system model is, accurate plant classifier method was givens in Fig.1 Here the input leaf top, bottom edges are first detected, then the edges are smoothing and computing also Calculate the edge points, padding including preprocessing are done by using of edge detection algorithm. The digitalized images are obtained from leaf region, by the use of Spider Optimization Neural Network (SONN). The time and frequency domains of images can be calculated by using of Symbolic Accurate Approximation (SAX) technique and shape, color and tooth features of image can calculate by using of Two-Dimensional Binary Phase Encoding (2DBPE) technique. After calculate the main features of leaf images, Finally the leaves are classified by using of whale optimization with deep neural network (DNN).
IV. PROPOSED EAC-AMP SCHEME

A. Leaf Structure Detection using IED Algorithm

For keeping low error rate, by using of filtering technique, data values protecting methods and easily understandable algorithm is Improved Edge Detection (IED) algorithm. In this algorithm, the variety of pictures are keeping lower error rate and expelling different reactions for close edge technique following the mentioned function, The Canny Edge Detector is pursuing.

Step 1: Findand every pixel of an image, by using of this main horizontal \(G_x \) factor and vertical \(G_y \). At every point convolve with 3x3 gradient template \(G_x \) and \(G_y \) respectively.

\[
G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{(1)}
\]

\[
G_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \quad \text{(2)}
\]

Step 2: After calculate above two factors, the direction factor and magnitude factor are computed as,

\[
M[u, v] = \sqrt{P[u, v]^2 + Q[u, v]^2} \quad \text{(3)}
\]

\[
\theta[u, v] = \tan^{-1}(Q[u, v] / P[u, v]) \quad \text{(4)}
\]

Step 3: We use cannon-maximal value suppression method, for calculate candidate edge points.

- Maintaining the large gradient thinning edges, which is not an area of edge of picture and thick edges.

- For getting single pixel wide, we can merge the thin broad ridges.

- For compute the line of gradient values which not top estimated of ridge, and find the nearest maximum suppressing every value.

- Compressing the 4 parts likewise \([0, 45, 90,135]\) angle of gradient.

- Verifying the every magnitude factor \(M[u,v] \) at 3*3 region.

- For middle values should not greater than the 2 gradient values, we should set the 0 initial values.

- Avoiding false edge problems or noise problems, we suppressing all magnitude values for get best texture.

Step 4: By using of double thresholding method, we can calculate candidate edge center points and this method is reduce the false edge and noise problems. Here U is transformed in to 0 values. Compressed picture is associated in double thresholding method.

Technique 1: Double Thresholding for Edge Detection

1. Upper Threshold = U1 and Lower Threshold = U2
2. Edge > U1: Strong Edge Point
3. U2 < Edge < U1: Weak Edge Point
4. Edge < U2: Delete

Step 5: Thresholding has been utilized to build up an association between the strong edges and the weak edges.

Process of Edge Detection Algorithm
Every step 4, otherwise, go step 4.

Step 3 If the 8-neighbour area of points is not marked, then we calculate and \(\text{Ang}_t < T \) suppose \(\text{Ang}_t < T \) and go step 4.

Step 4 Mark all the points of \(t_p \) and center points \(N(i,j) \). These points suppose meet the \(\text{Ang}_t < T \), we should connect all the edges.

Step 5 In this step, we mark the edge points as candidate points, till no points are marked and find the 8-neighbour area \(t_p \). If marking is not satisfied, do step 3.

Step 6 Find the new edge points, also scan the picture, if the edge point is not be marked.

And choosing the best spider and female spider. Depends upon their vibrations. This algorithm is said 70% populace of female spiders. Dominant males’ spiders and non-dominant male spiders are types of male spiders. Male spider, control of weight is more noteworthy comparing with the other male spiders. Which are prevailing male spiders. The female spiders able to rebuff various spiders. Spider weights is utilizing the following eqn(5).

\[
\text{Weight}[s] = (\text{fitness}(s) - \text{fitness (bad spider)}) \times (\text{fitness(best spider)} - \text{fitness(bad spider)}) \quad (5)
\]

In SSON, every spider is described by single leaf. The leaf regions are segmented by each digital image. The process of SSON using in segmentation of leaf regions is following equations.

A. Initiation: For each spider are empty in initialization. so, we can initialize every single spider randomly by using of following equation.

\[
\text{Spider}[s,D] = \text{lower bound}(D) + \text{random}(0,1) \times (\text{upper bound}(D) - \text{lower bound}(D)) \quad (6)
\]

Here spider \([s, D]\) is \(D^{th}\) dimension of the centroid of spider S.

B. Assignment of leaf regions: Every leaf region are considered as closest centroid present in spider. A single spider populace and activity is represented as single leaf region. Here the single leaf region is not considered different types of spiders. The fitness of spider is calculated from centroid point.

C. Next positions of spiders

1) Next positions of female spiders:

Based on following direction of female spider, an irregular output is produced. On the off chance that it is not as much as Threshold probability TP, a fascination activity is actualized and the situation of female spider is refreshed by equation (7). Generally, a repulsion activity is actualized and direction of female spider is refreshed by condition (8). Give all-inclusive best spider a chance to be spider g and spider s to be spider l.

\[
\text{Spider}[s,D] = \text{Spider}[s,D] + \alpha \times A + \beta \times B + \gamma \times (\delta - 0.5) \quad (7)
\]

\[
\text{Spider}[s,D] = \text{Spider}[s,D] - \alpha \times A + \beta \times B + \gamma \times (\delta - 0.5) \quad (8)
\]

Here the random number from \([0,1]\) are represented \(\alpha, \beta, \gamma\) and \(\delta\)

\[
A = (\text{Spider}[s,D] - \text{Spider}[g,D]) \times \text{Weight}[g] \times e^{-\text{distance}(s,g)^2}
\]

and

\[
B = (\text{Spider}[s,D] - \text{Spider}[1,D]) \times \text{Weight}[1] \times e^{-\text{distance}(s,1)^2}
\]

By using of eqn(9), we can calculate further position of dominant male. Let us consider F is female spider of dominant male spider s

\[
\text{Spider}[s,D] = \text{Spider}[s,D] + \alpha \times C + \gamma \times (\delta - 0.5) \quad (9)
\]

Where,

\[
C = (\text{Spider}[s,D] - \text{Spider}[F,D]) \times \text{Weight}[F] \times e^{-\text{distance}(s,F)^2}
\]

By using of eqn(10) we can calculate further position of next non dominant male spider. Let us consider W is weighted mean of male population.
Spider[s,D] = spider[s,D] + α * W \hspace{1cm} (10)

D. Mating operation:
For create next spider, there are every dominant male mates and females inside predefined scope of mating and new spider discovered utilizing method of roulette wheel. In the event that best weight spider is superior to noticeably terrible spider, at that point most noticeably terrible spider may be supplanted by group of spiders. The scope of mating represented M is determined utilizing condition (7)

\[M = d + E \hspace{1cm} (11) \]

Here, \(d \) is Total of differences of lower and upper bound of every dimension, and \(E = 2 * \text{number of dimensions of dataset} \).

E. Algorithm for Spider Optimization Neural Network

Step	Description
Step 1	Load every spider with their irregular centroids
Step 2	Load Iteration along 1
Step 3	While (Iteration <=MAX_ITERATIONS)
	- Accredit every leaf image to closest centroids
	- Calculate the weight and fitness values of each spider
	- Change the next positions of male’s spiders and female spider
	- Let on every dominant male spider to cohabit along female spider
	- If the new spider fitness is best the bad spider in population then
	- Substitute bad spider along new spider
	- Increment iteration by 1
Step 4	Arrange the spiders based upon their greater order of fitness
Step 5	Retire best spiders K, which are associates generate the all segmented leaf regions who’s in dataset

F. Symbolic Accurate Approximation

Periodic signals can be inspected from two points of view, or areas. These two areas are the time domain and the frequency domain. For Periodic signals, time and frequency are the converse of one another. In particular, an occasional sign can be evaluated by its period which is to what extent it takes for the sign to rehash itself or by its frequency which is how frequently the sign rehashes itself in a given time.

\[p = 1/\text{Frequency} \] \hspace{1cm} (12)
\[F = 1/\text{Period} \] \hspace{1cm} (13)

After all, Period (P) and Frequency (F) are inverses of one another, time domain analysis and frequency domain analysis are, as it were, conversely related too.

\[\text{Time Domain:} \hspace{1cm} \text{The time space alludes to a portrayal of the signal concerning time. The essential tool for analyzing signals in the time domain is called an oscilloscope. An oscilloscope (’or ‘scope) shows a two-dimensional diagram of a signal’s size in the y-axis, and time in the x-axis. While the fundamental utilization of a degree is to decide the magnitude of the signal as time is transforming, it can likewise be utilized to in a roundabout way measure the frequency of a signal if that signal is occasional. To do this, just design the extension to appear in any event one time of the sign, at that point measure the time of that period. The frequency of the signal is then } \]
\[F = 1/\text{Signal Period} \hspace{1cm} (14) \]

\[\text{Frequency Domain:} \hspace{1cm} \text{While doing estimation of the signal’s frequency, at that point it to be analyzed with the signal of frequency domain. While some oscilloscopes can be utilized for analyzing a (periodic) signal in the frequency domain (they need unique usefulness), a better device for doing this is known as a spectrum analyzer. A spectrum analyzer shows a two-dimensional chart of a signal’s capacity in the y-axis, and the signal’s frequency in the x-axis. Such a diagram is known as the recurrence range of a signal since it indicates how solid a sign is at all frequencies. The least difficult case of a signal in the frequency space, is the flawlessly occasional signal the sine wave. The recurrence range of a 100 Hz sine wave comprises of just a single frequency recurrence (100 Hz). This arrangement comprises of a sinusoid at a frequency equivalent to the redundacy pace of the waveform (i.e., the frequency of the waveform or 1/Waveform, this is known as the essential frequency in addition to a progression of sinusoids at frequencies which are whole number products of the principal recurrence. These sinusoids are called harmonics. The principal recurrence is the main consonant. The subsequent symphonious is a sine wave multiple times the recurrence of the key recurrence, the third consonant is a sine wave multiple times the recurrence of the fundamental.} \]

\[\text{F. Two-Dimensional Binary Phase Encoding} \]

In this area, the binarization of the encoded picture is considered. There are a few purposes behind binarizing the encoded picture. The optical execution of binary pictures is a lot simpler than the usage of complex pictures. The scrambled picture S(x) is communicated in following ways, they are real and imaginary parts.

\[\psi(y) = \psi_R(y) + j\psi_I(y) \hspace{1cm} (15) \]

where \(\psi_R(y) \) is the real part of \(\psi(y) \), and \(\psi_I(y) \) is the imaginary part of \(\psi_I(y) \); and second, in polar form, that is,

\[\psi(y) = \psi_A(y) + j\psi_P(y) \hspace{1cm} (16) \]

Where \(\psi_P(y) \) and \(\psi_A(y) \) are defined as above equation reciprocally. Here, Let us consider two binarization methods, \(\psi(y) \)
represents the binarized version of \(S(x) \). Initially we first examined, real part and imaginary part of binarization of we consider binarization of the real part and the imaginary part of the encrusted image to generate a complex image \(\Psi(y) \) with binary real and binary imaginary parts:

\[
\Psi(y) = \Psi_R(y) + j \Psi_I(y) \tag{17}
\]

Where,

\[
\Psi_R(y) = \begin{cases}
1 & \text{if } \text{Re } \Psi(y) > \text{Median[Re } \Psi(y)] \\
-1 & \text{if } \text{Re } \Psi(y) < \text{Median[Re } \Psi(y)]
\end{cases}
\]

and

\[
\Psi_I(y) = \begin{cases}
1 & \text{if } \text{Im } \Psi(y) > \text{Median[Im } \Psi(y)] \\
-1 & \text{if } \text{Im } \Psi(y) < \text{Median[Im } \Psi(y)]
\end{cases}
\]

For calculate Spatial averaging the median \(\{ \cdot \} \) operator is used in eqn.15 and eqn.16. function \(\Psi(y) \) function is described in Eq. 14 is referred to as reconstruct complex image. Then, we represented following function for binarization of the encrusted image depends on the phase information.

\[
\Psi'(y) = \begin{cases}
1 & \text{if } \text{Re } \Psi(y) \geq 0, \\
-1 & \text{if } \text{Re } \Psi(y) < 0
\end{cases} \tag{17}
\]

Further, we can utilize encoded picture’s binary phase date in unscrambling process. The decoded picture from the binary phase-only data of the scrambled picture. Subsequently, the recuperated pictures got utilizing the binarized phase data of the encoded picture are low quality comparing with the unscrambled pictures taken away recreated picture. In any case, this technique utilizes less data and is simpler to execute.

G. Leaf Identification using Whale Optimization with DNN

Whale Optimization with Deep Neural Network (WO-DNN) is Roused-nature populace depends heuristic algorithms that is mirrors the general conduct of whales are associated as clever groups pursued by its one of a kind capacities to chase their prey. Exquisite animals just as predators named whale has been considered as greatest well evolved creatures known to man. Spindle cells of whales help them to be a keen animal. They consider secure, commentator and interface because of Spindle cells. Be that as it may, among all highlights, the most interesting one is their chasing method. School of little angles contiguous the outside of the sea is spooky by humpback whales. To achieve the chasing system eccentric air pockets along a circle have been shaped. At first it has been pictured from surface yet now they have been distinguished utilizing label sensors. In such manner, bubbles like "upward spirals" and "double-loops" have been watched. A short time later, coral circlet, heave tail and catch circlet have been shaped to chase the prey in an ideal manner.

This algorithm is one of the type of swarm based algorithm; It has high efficiency compare with the other heuristic algorithms. So, we apply this algorithm in our work and another optimization algorithm with Deep Neural Network (DNN) which is connected, to get exact plant picture characterization. In this procedure the wellness capacity considered guarantees the best wellness bends which help to get exact plant picture classifier for ayurvedic medicinal plant identification.

Fitness Function

Fitness function of WOA is having three important elements: Homogeneity factor \((H_c) \) which have 3*3 filter outputs are comparing with neighbors (N) and inside pixel \((I_p) \). Another factor is Uniformity. Which is notify the measures of all curves edge curve and same intensity values. The third factor is average gradient magnitude. All these three factors are clarified further beneath.

Homogeneity factor \((H_c) \): This factor is using in this algorithm, following process, homogeneity operator is used for this operation which is 3*3 filter’s outputs are compared with neighbors(N) and inside pixel \((I_p) \), Which are 8-neighboring pixels (N).

\[
H_c = \frac{1}{L_c} \sum_{p_i \in C} H_{c_i} \tag{18}
\]

Uniformity factor \((U_g) \): Degree of intensity is determined among the pixels of curve. Typically, pixels of curve values are comparable intensity values. The total number of absolute curve pixels utilize for finding the similitude.

\[
U_g = \frac{1}{L_c} \sum_{i=1}^{L_c-1} |I_{p_{i+1}} - I_{p_i}| \tag{19}
\]

Homogeneity and uniformity factor is essential factor of curve consideration. The pixels curve amount is rest of perspective and it’s taken by Average Gradient Magnitude \((G_c) \)

\[
G_c = \frac{1}{L_c} \sum_{i=1}^{L_c} G_{i} \tag{20}
\]

The process of Whale Optimization with Deep Neural Network using plant classification shown in below flowchart of Fig 3.

Here \(G_i \) denotes gradient magnitude of \(i^{th} \) pixel. Final fitness function of whale optimization is following equation (21)

\[
\tilde{f}_c = \begin{cases}
(H_c,w_i + G_c,w_i - U_g,w_i)L_c & \text{if } G_c \geq \text{threshold} \\
-\infty & \text{otherwise}
\end{cases} \tag{21}
\]

Where \(w_i, w_i \) and \(w_3 \) are the represents homogeneity factors of weights \((H_c) \) and uniformity factor \((U_g) \) , average gradient magnitude \((G_c) \). The process of Whale
Optimization with Deep Neural Network using plant classification shown in below flowchart.

V. RESULT AND DISCUSSION

In this framework, the data set contains an aggregate of 928 ayurvedic plant leaf images. We utilized 743 example ayurvedic pictures for training and 185 for testing. The determination of images into testing and training sets was performed aimlessly. Every class contains pictures of 10 particular leaves gathered from various plants. This training and testing depend on the preprocessing, division and classifier to portray the ayurvedic plant leaf name. This is in harmoniousness to tending to the requirement for a dependable and helpful approach to recognize a plant dependent on its leaf picture. It is made promptly accessible in order to take into account the requirement for a quick framework that empowers the client to arrange his very own ayurvedic plant leaf pictures without the requirement for an taxonomic foundation. It identifies venation notwithstanding leaf shape to separate between leaf pictures that nearly have a similar shape yet vary in venation. This blend of highlights alongside whale streamlining profound neural system classifier gives an exactness of 99.8%. Table.5 demonstrates a case of ayurvedic plant leaf pictures and anticipated name.

A. Confusion Matrix

A confusion matrix is a table shown as table 3, that is regularly used to portray the exhibition of a grouping model (or "classifier") on a lot of test information for which the genuine qualities are known. The disarray lattice itself is generally easy to see, yet the related phrasing can be befuddling.

TP	FP
998	2
FN	TN
0	0

Table.3 Confusion Matrix

Table.4 shows the comparison results of previous state algorithms like Long-short term memory (LSTM), simple Recurrent Neural Network (RNN), Gated recurrent unit (GRU) and EAC-AMP of our proposed technique. When compare to existing state-of-art techniques, our proposed model got better accuracy. And it also gives comparison of proposed work with previous techniques using neural network methods like ResNet50, Xception, Inception V3, MobileNet and proposed model and fig 6 represents a comparison graph of previous model and proposed model.

\varnothing	Ayurvedic Leaf	Predicted Leaf Name
1	American holly	
2	American Honeysuckle	
3	Black Cherry	
4	Bully tree	
5	Eastern cottonwood	
6	Eastern Redbud	
7	Neem	
8	Nerium oleander	

Table 4 Comparison with previous technique and proposed model

Before extraction process, the image is changed over grayscale mode. Separating the picture of every administrator and links at least pair of histograms with each other process is done by fusion operator. The characterization aftereffects of every ayurvedic plant leaf highlight consolidate utilizing different systems, for example, edge detection algorithm, preprocessing, segmentation using spider optimization neural network, symbolic accurate approximation to discover time and recurrence highlight of leaf picture and Whale optimization with deep neural network classifier to foresee the given info medicinal plant leaf shown in table 5.

B. Performance Metrics

The proposed effective accurate classifier for ayurvedic plant leaf using hybrid optimal machine learning technique is determined based on performance metrics like accuracy. The accuracy of the proposed framework is grouped dependent on whale optimization deep neural network.

Techniques	This Work
LSTM	23
GRU	25
Simple RNN	31

Table 5 demonstrates a case of ayurvedic plant leaf pictures and anticipated name.

The overall accuracy was calculated as,

$$\text{Accuracy} = \frac{Tp + Tn}{Tp + Tn + Fp + Fn}$$ \hspace{1cm} (22)
From above equation (22), Tn is represented True negative rate and Tp is represented is True positive rate, Fp, Fn are false positive and false negative rate.

Fig. 3 demonstrates the classification results of accuracy in medical plant leaf identification. From the input ayurvedic leaf image, the preprocessing and segmentation process were done and go to classifier. Here, we utilized whale optimization with deep neural network to recognize the type of given medical leaf name with higher accuracy rate. The experimental analysis and colour feature output forms are obtained from input image. The proposed system is gives better accuracy of texture feature. Yet, it is not be equivalent for every case. At the point when compare with existing algorithm, our proposed model given better results shown in Fig 4 as comparison graph.

VI. CONCLUSION

In this work, we have proposed, EAC-AMP method, based accurate classifier for ayurvedic medical plant identification using hybrid optimal machine learning techniques. By the use of improved edge detection algorithm, we detect and compute the image corners of leaf edges. The spider optimization neural networks (SONN) were used to segmentation process. Then, we compute time and frequency domain features, by the help of symbolic accurate approximation (SAX) technique also we compute the color features and tooth features by the help of two dimensional binary phase encoding (2DBPE).

By the use of whale optimization with deep neural network (DNN) classifier, we can characterized the type of plants with higher efficiency and accuracy. The simulation results of MATLAB show that the output of our proposed EAC-AMP technique is best, comparing with the existing leaf classifier techniques. The proposed frame work very useful to people can easily determine medical plant and conserve, utilize of medical plants.
Acknowledgement

This Research was supported by Visvesvaraya Technological University, Jnana Sangama, Belagavi 590018 for Grant of financial assistance.

REFERENCES

1. Nazarenko, D.V., Kharyuk, P.V., Osledeets, I.V., Rodin, I.A. and Shipgan, O.A., 2016. Machine learning for LC–MS medicinal plants identification. Chemometrics and Intelligent Laboratory Systems, 156, pp.174-180.

2. Tapak, P. and Haba, M., 2016. Laboratory model of thermal plant identification and control. IFAC-PapersOnLine, 49(6), pp.28-33.

3. Kiani, E., Al Shabatad, M. and Sadikoglu, F., 2017. Child perception-based plant species identification. Procedia computer science, 120, pp.357-364.

4. Ghazi, M.M., Yankoglu, B. and Atpoula, E., 2017. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing, 235, pp.228-235.

5. Saidi, M.N., Ladouce, N., Hadibi, R., Gima-Pettenati, J., Drira, N. and Gargouri-Bouzid, R., 2010. Identification and characterization of differentially expressed ESTs in date palm leaves affected by brittle leaf disease. Plant science, 179(4), pp.325-332.

6. Rumpf, T., Mahlein, A.K., Steiner, U., Oerke, E.C., Dehne, H.W. and Plänzer, L., 2015. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 120(1), pp.91-99.

7. Rizos, D., Feltrin, G. and MotaVali, M., 2011. Structural identification of a prototype pre-stressable leaf-spring based adaptive tuned mass damper: Nonlinear characterization and classification. Mechanical Systems and Signal Processing, 25(1), pp.209-221.

8. Da, X., Yu, K., Shen, S., Zhang, Y., Wu, J. and Yi, H., 2012. Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck]. Plant Physiology and Biochemistry, 56, pp.97-103.

9. Cope, J.S., Corney, D., Clark, I.Y., Remagnino, P. and Wilkin, P., 2012. Plant species identification using digital morphometrics: A review. Expert Systems with Applications, 39(8), pp.7562-7573.

10. Diago, M.P., Fernandes, A.M., Millian, B., Tardaguila, J. and Melo-Pinto, P., 2013. Identification of grapevine varieties using leaf spectroscopy and partial least squares. Computers and electronics in agriculture, 99, pp.7-13.

11. Amin, A.H.M. and Khan, A.L., 2013. One-shot classification of 2-D leaf shapes using distributed hierarchical graph neuron (DHGN) scheme with k-NN classifier. Procedia Computer Science, 24, pp.84-93.

12. Larbi, P.A., Elsani, R., Saliyani, M., Maja, J.M., Mishra, A. and Neto, J.C., 2013. Multispectral-based leaf detection system for spot sprayer application to control citrus psyllids. Biosystems engineering, 116(4), pp.509-517.

13. Cerutti, G., Tougue, L., Coquin, D. and Vacavant, A., 2014. Leaf margins as sequences: A structural approach to leaf identification. Pattern Recognition Letters, 49, pp.177-184.

14. Larese, M.G., Namias, R., Craviotto, R.M., Arango, M.R., Gallo, C. and Granitto, P.M., 2014. Automatic classification of legumes using leaf vein image features. Pattern Recognition, 47(1), pp.158-168.

15. Chang, L.Y., Li, K.T., Yang, W.J., Chang, J.C. and Chang, M.W., 2014. Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Scientia Horticulturae, 176, pp.208-217.

16. Liu, T.G., Zhou, X.Q., Chen, D.G., Li, L.J., Li, J.C. and Chen, Y.D., 2014. Natural variation of leaf thickness and its association to yield traits in indica rice. Journal of integrative agriculture, 13(2), pp.316-325.

17. Faria, F.A., Perre, P., Zueche, R.A., Jorge, I.R., Lewinsohn, T.M., Rocha, A. and Torres, R.D.S., 2014. Automatic identification of fruit flies (Diptera: Tephritidae). Journal of Visual Communication and Image Representation, 25(7), pp.1516-1527.

18. Zhang, X.L., Si, B.W., Fan, C.M., Li, H.J. and Wang, X.M., 2014. Proteomics identification of differentially expressed leaf proteins in response to Setosphaeria turcica infection in resistant maize. Journal of Integrative Agriculture, 13(4), pp.789-796.

19. Joly, A., Goéau, H., Bonnet, P., Bakié, V., Barbe, J., Selmi, S., Yahiaouë, I., Carré, J., Mouyyess, E., Molino, J.F. and Boujemaa, N., 2014. Interactive plant identification based on social image data. Ecological Informatics, 23, pp.22-34.

20. Xing, J.J., Liu, Y.F., Li, Y.Q., Gong, H. and Zhou, Y.P., 2014. QSAR classification model for diverse series of antimicrobial agents using classification tree configured by modified particle swarm optimization. Chemometrics and Intelligent Laboratory Systems, 137, pp.82-90.

21. Riouma, M.B.H., Zuni, J. and Younis, M.C., 2017. Moment invariants for multi-component shapes with applications to leaf classification. Computers and electronics in agriculture, 142, pp.326-337.

22. Chau, A.L., Hernandez, R.R., Mora, V.T., Canales, J.C., Mazahua, L.R. and Lamont, F.G., 2017. Detection of Compound Leaves for Plant Identification. IEEE Latin America Transactions, 15(11), pp.2185-2190.

23. Chouhan, S.S., Kaul, A., Singh, U.P. and Jain, S., 2018. Bacterial foraging optimization based Radial Basis Function Neural Network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards Plant Pathology. IEEE Access, 6, pp.8852-8863.

24. Zhang, X., Qiao, Y., Meng, F., Fan, C. and Zhang, M., 2018. Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks. IEEE Access.

25. Girnblat, G.L., Uzal, L.C., Larese, M.G. and Granitto, P.M., 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, pp.418-424.

26. Roshchina, V.V., Kuchin, A.V. and Yashin, V.A., 2017. Application of Autofluorescence for Analysis of Medicinal Plants. International Journal of Spectroscopy, 2017.

27. Goncalves, F.M.F., Guilherme, I.R. and Pedronette, D.C.G., 2018. Semantic guided interactive image retrieval for plant identification. Expert Systems with Applications, 91, pp.12-26.

28. Chahi, J., Parekh, R. and Bhattacharya, S., 2018. Plant leaf classification using multiple descriptors: A hierarchical approach. Journal of King Saud University-Computer and Information Sciences, 2018.

29. Esmaeil, A., Li, J., Xie, J. and Ioom, J.D., 2018. Closed-loop identification for plants under model predictive control. Control Engineering Practice, 72, pp.206-218.

30. Volochanskyi, O., Svecova, M. and Prokopev, V., 2019. Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, pp.143-149.

31. Liu, X., Xu, F., Sun, Y., Zhang, H. and Chen, Z., 2018. Convolutional Recurrent Neural Networks for Observation-Centered Plant Identification. Journal of Electrical and Computer Engineering, 2018.

32. T Ravichandran , A V Reddy,B Janet "An Effective Implementation of Social Spider Optimization for Text Documents clustering using single cluster approach "Second International Conference ICICCT2018

33. Adams Begue , Venitha Kowlessur, Upasana Singh Fawzi Mahomoodalay Sameerchand Padaruth "Automatic Reorganization of Medicinal Plants using Machine Learning Technique "International Journals of Advanced computer Science and applications,2017

AUTHORS PROFILE

Margesh received B.E degree in CSE from Guru Nanak Dev Engineering College, Bidar Karnataka, and M.Tech from Poojya Dodappa Appa College of Engineering, Gulbarga Karnataka pursing Ph.D from VTU Belagavi. Presently working as Assistant Professor CSE Department GnDEC Bidar Karnataka.

Dr.Dhananjay Makedar received B.E. from REC Bhalki Karnataka M.Tech from Sri Jaya Chan Rajendra College of Engineering Mysore Karnataka and completed Ph.D from JNTU Hyderabad in the year 2015.Presently working as a Professor and Head of Computer Science and Engineering Guru Nanak Dev Engineering College, Bidar Karnataka, 22 years of academic Experience and supervising Ph.D Students under VTU University Belagavi. Interested in Research on Image Processing and Pattern Reorganization and Published Publications in various Journals.

Enhancing Classifier Accuracy in Ayurvedic Medicinal Plants using WO-DNN

Retrieval Number: A2001109119/2019©BEIESP
DOI: 10.35940/ijet.A2001.109119
Published By: Blue Eyes Intelligence Engineering & Sciences Publication
6714