A LARGE CLASS OF NONLOCAL ELLIPTIC EQUATIONS WITH SINGULAR NONLINEARITIES

RAKESH ARORA, PHUOC-TAI NGUYEN, AND VICENȚIU D. RĂDULESCU

Abstract. In this work, we address the questions of existence, uniqueness, and boundary behavior of the positive weak-dual solution of equation $L^*_s u = F(u)$, posed in a C^2 bounded domain $\Omega \subset \mathbb{R}^N$, with appropriate homogeneous boundary or exterior Dirichlet conditions. The operator L^*_s belongs to a general class of nonlocal operators including typical fractional Laplacians such as restricted fractional Laplacian, censored fractional Laplacian and spectral fractional Laplacian. The nonlinear term $F(u)$ covers three different amalgamation of nonlinearities: a purely singular nonlinearity $F(u) = u^{-q}$ ($q > 0$), a singular nonlinearity with a source term $F(u) = u^{-q} + f(u)$, and a singular nonlinearity with an absorption term $F(u) = u^{-q} - g(u)$. Based on a delicate analysis of the Green kernel associated to L^*_s, we develop a new unifying approach that empowered us to construct a theory for equation $L^*_s u = F(u)$. In particular, we show the existence of two critical exponents q^*_s and q^{**}_s which provides a fairly complete classification of the weak-dual solutions via their boundary behavior. Various types of nonlocal operators are discussed to exemplify the wide applicability of our theory.

KEY WORDS: singular nonlinearities; nonlocal elliptic equations; Green function; weak-dual solution; sub-super solution method.

2020 Mathematics Subject Classification: 35A01, 35B33, 35B65, 35J61, 35J75, 47G20.

Contents

1. Introduction 2
2. Definitions, assumptions and examples 4
 2.1. Functional spaces 4
 2.2. Main assumptions 6
 2.3. Examples 7
3. Description of main problems and results 10
4. Preliminary results and Kato type inequalities 14
 4.1. Preliminary results 14
 4.2. Kato type inequalities 14
5. Purely singular problem 16
 5.1. Estimates on Green kernel 17
 5.2. Existence and uniqueness results 23
 5.3. Boundary behavior of weak-dual solutions 28
6. Applications: Semilinear problems involving singular nonlinearities 30
 6.1. Source term 30
 6.2. Absorption term 34
7. Appendix 36
Acknowledgments 38
1. Introduction

The development of nonlocal analysis during the last few decades has been profoundly influenced by the attempts to understand various real-world phenomena from numerous areas such as probability and statistics, finance, mathematical physics, and other scientific disciplines. A great amount of attention has been paid to several aspects of elliptic equations involving different kinds of operators varying from typical fractional Laplacians to a more general integro-differential operator. Lately, the study of elliptic equations involving a wide class of nonlocal operators determined by two-sided estimates of the associated Green kernel has come to the light (see for instance [3, 15, 16, 17, 18, 21, 42, 43] and references therein).

In this work, we focus on elliptic problems involving a large class of nonlocal operators L_s^γ in the presence of a singular nonlinearity and a source or an absorption term of the form

$$L_s^\gamma u = F(u), \quad u > 0 \text{ in } \Omega,$$

with homogeneous boundary or exterior Dirichlet condition

$$u = 0 \text{ on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},$$

where Ω is a C^2 bounded domain in $\mathbb{R}^N (N \geq 1)$, F is a nonlinear term representing three different kinds of singular nonlinearities and L_s^γ is a local or nonlocal operator. The parameters γ and s depict the interior point singularity and the boundary behavior of the Green function associated to L_s^γ (see Section 2.2 for more details).

The study of elliptic or integral equations involving singular terms started in the early sixties by the works of Fulks and Maybee [31], originating from the models of steady-state temperature distribution in an electrically conducting medium. Later on, equations with singular nonlinearities attracted the attention of many researchers. On the one hand, the study of such types of equations is a challenging mathematical problem. On the other hand, they appear in a variety of real-world models. We refer here to [31] for applications in the theory of heat conduction in electrically conducting materials, [50] in the pseudo-plastic fluids, [56] for Chandrasekhar equations in radiative transfer, and [28] in non-Newtonian fluid flows in porous media and heterogeneous catalysts.

One of the seminal breakthroughs in this area was the work of Crandall, Rabinowitz, and Tartar [27] which majorly provoked the research in the direction of the study of singular nonlinearities. Afterward, a large number of publications has been devoted to investigating a diverse spectrum of issues revolving around local/nonlocal elliptic equations involving the singular nonlinearities (see for example [28, 31, 56] and monographs [32, 40]). Let us recall some known results in the literature for both local and nonlocal elliptic equations with singular nonlinearities.

In the local case, Crandall, Rabinowitz and Tartar [27] studied the singular boundary value problem (1.1)-(1.2) with $L_s^\gamma = -\Delta$, i.e. $s = \gamma = 1$, and $F(u) = u^{-q}$ for $q > 0$. By using the classical method of sub and supersolutions on the non-singular approximating problem, they proved the existence and uniqueness results of the classical solution of our original problem. In addition, by exploiting the second-order ODE techniques and localization near the boundary, they showed the existence of a critical exponent which is equal to
1 and derived the boundary behavior of the solution. Thanks to Stuart [57], similar results on the existence of solutions were obtained using, this time, an approximation argument with respect to the boundary condition. Actually, both papers [27, 57] provide results for more general differential operators with smooth coefficients, not necessarily in divergence form, and for non-monotone nonlinearities as well. The same model of elliptic equations with purely singular nonlinearity was considered by Lazer and McKenna [47] in which they simplified the proof of the boundary behavior of classical solutions by constructing appropriate sub and super solutions. For similar works concerning the local elliptic or integral equations with a purely singular nonlinearity, we refer to [58, 28, 36, 52, 56] and for singular nonlinearity with source terms or absorption terms, we refer to [26, 57, 20, 39, 41] with no intent to furnish an exhaustive list.

Concerning the nonlocal case, there have been very few available works on singular equations in the literature, mainly dealing with the well-known fractional Laplace operator (see for instance [4, 6, 7, 8, 11, 33]). In [4], Adimurthi, Giacomo and Santra studied problem (1.1)–(1.2) with \(L^s \) being the fractional Laplace operator, namely \(L^s = (-\Delta)^s \), and \(F(u) = u^{p-q} \) with \(q > 0 \). They discussed the existence and uniqueness of the classical solution using the approximation method and comparison principle. Moreover, by employing the integral representation via the Green function and maximum principle, they showed the existence of a critical exponent which is equal to 1 and obtained the sharp boundary behavior of the weak solution. Very lately, in [8], Arora and Rădulescu studied the problem (1.1)–(1.2) with \(L^s = (-\Delta)^s + (-\Delta)^s \), and \(F(u) = u^{p-q} + \lambda f(u) \) for \(q > 0 \), \(\lambda > 0 \) and \(f \) satisfies subcritical, critical growth or exponential nonlinearities, we refer to the work [6, 11, 33]. For further issues on nonlocal singular problems, the interested reader can consult the bibliographic references in [7, 8, 49].

Recently, elliptic and parabolic equations involving a large class of operators characterized by its Green function has been studied in a series of works [3, 9, 15, 16, 17, 18, 21, 37] from the PDE point of view and in [45, 46] from the probabilistic point of view. An important contribution in this research direction is the work of Bonforte and Vázquez [10] where the concept of weak-dual solutions was introduced to investigate the existence and uniqueness of solutions of nonlinear diffusion evolution equations. Later on, Bonforte, Figalli and Vázquez [15] studied the qualitative properties of weak-dual solutions of semilinear elliptic equations (1.1)–(1.2) with \(F(u) = u^p \), \(0 < p < 1 \). More precisely, they proved that the weak-dual solution \(u \) has the following sharp boundary estimates

\[
u(x) \simeq \begin{cases}
\delta(x) \min\{\gamma, \frac{2s}{p-1}\} & \text{if } 2s + p\gamma \neq \gamma, \\
\delta(x) \ln^{\frac{1}{p-1}} \left(\frac{d_0}{d(\xi)} \right) & \text{if } 2s + p\gamma = \gamma,
\end{cases}
\]

where \(d_0 = \text{diam}(\Omega) \) and \(\delta(x) = \text{dist}(x, \mathbb{R}^N \setminus \Omega) \). Thereafter, Abatangelo, Gómez-Castro and Vázquez in [3] and Chan, Gómez-Castro and Vázquez in [21] proved some more results related to the boundary behavior of solutions and eigenvalue problems for equations involving general nonlocal operators. Very lately, Huynh and Nguyen studied the semilinear elliptic equations involving superlinear source terms \(F(u) = u^p + \mu \) (see [12]) and absorption terms \(F(u) = \mu - g(u) \) (see [13]), where \(\mu \) is a Radon measure on \(\Omega \), \(p > 1 \) and \(g : \mathbb{R} \to \mathbb{R} \).
is non-decreasing continuous function. By developing a set of unifying techniques based
on a fine analysis of the Green function, they established the existence/non-existence and
uniqueness/multiplicity and qualitative properties of weak dual solutions.

Apart from these publications, we are unaware of works on the existence and boundary
behavior of the solution of elliptic problem driven by different kinds of local or nonlocal
operators, whilst the results for equations involving singular nonlinearities seem to be com-
pletely missing. The interaction between the properties of the operator and the presence of
the singular nonlinearities may lead to disclose new types of difficulties in the analysis and
requires a novel approach.

Objectives of this paper. Motivated from the above mentioned works, we aim to set
up a general framework and to develop unifying techniques which enable us to study the
existence, uniqueness and the boundary behavior of weak-dual solution to problem (1.1)–
(1.2) for various types of operators L_{α}^s and different types of singular nonlinearities F. The
class of operators L_{α}^s under considerations is assumed to satisfy a set of mild hypothe-
ses and cover famous nonlocal operators. The elementary assumptions on L_{α}^s is described in
terms of two-sided estimates of the associated Green function and new convexity inequality.
The main results of this article are novel for various case of operators, cover and extend the
aforementioned works regarding problems with singular nonlinearities in the literature, and
complement the works of Bonforte, Figalli and Vázquez in [15], and Huynh and Nguyen in
[42, 43].

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we give
the definition of function spaces and present the main assumptions on the operator L_{α}^s. We
also give a list of examples of operators to which our theory can be applied. In Section 3,
we introduce the main problems, the notion of solutions and statement of main results. In
section 4, we recall some crucial preliminary results and prove the Kato’s inequality which
plays the role of comparison principle in our general setting. Section 5 is devoted to study
the purely singular problem \mathcal{P}_{s} (see below). First, we establish sharp estimates regard-
ing the action of the Green operator on negative powers of distance function perturbed with
logarithmic growth. This in turn enables to prove the existence of a weak-dual solution via
approximation method and Schauder fixed point theorem. As an application of our
new Kato type inequality, we show the uniqueness and boundary behavior of weak-dual
solutions. In section 6, we study the semilinear elliptic equations $\mathcal{S}_{\lambda,q}^g$ and $\mathcal{A}_{g,q}$ (see below)
involving a singular nonlinearity and a source/absorption term and prove the existence of a
weak-dual solution via sub-super solution method. In section 7, we discuss the applicability
of our results on the Laplace operator perturbed by Hardy potential.

2. Definitions, assumptions and examples

2.1. Functional spaces. Throughout the paper, the symbol c, C, c_i, C_i ($i = 1, 2, \ldots$) will
be used to denote the constants which can be calculated or estimated through the data. If
necessary, we will write $C = C(a, b, \ldots)$ to emphasize the dependence of C on a, b. We fix
some shorthand notations: for two functions f, g, we write $f \lesssim g$ if there exists a $C > 0$
such that $f \leq Cg$ and $f \asymp g$ if $f \lesssim g$ and $g \lesssim f$. We also write $a \wedge b := \min\{a, b\}$ and
$a \vee b := \max\{a, b\}$. Finally, we assume Ω is a C^2 bounded domain in \mathbb{R}^N ($N \geq 2$) and
denote $\delta(x) = \text{dist}(x, \mathbb{R}^N \setminus \Omega)$. We also denote $d_\Omega = 2\text{diam}(\Omega)$. For a Borel set $A \subset \mathbb{R}^N$, 1_A denotes the indicator function of A.
For a given non-negative function ρ and $p \in [1, \infty)$, the weighted Lebesgue space $L^p(\Omega, \rho)$ is defined as
\[
L^p(\Omega, \rho) := \left\{ f : \Omega \to \mathbb{R} \text{ Borel measurable such that } \int_{\Omega} |f|^p \rho \, dx < \infty \right\}
\]
endowed with the norm
\[
\|f\|_{L^p(\Omega, \rho)} = \left(\int_{\Omega} |f|^p \rho \, dx \right)^{\frac{1}{p}}
\]
and
\[
L^p_0(\Omega, \rho) := \{ f \in L^p(\Omega, \rho) : f = 0 \text{ on } \partial\Omega \text{ or in } \Omega^c \text{ if applicable} \}.
\]
We also denote by $\rho L^\infty(\Omega)$ the space
\[
\rho L^\infty(\Omega) := \{ f : \Omega \to \mathbb{R} \mid \text{there exists } v \in L^\infty(\Omega) \text{ such that } f = \rho v \}.
\]
For $s \in (0, 1)$, the fractional Sobolev space $H^s(\Omega)$ is defined by
\[
H^s(\Omega) := \left\{ u \in L^2(\Omega) : [u]_{s,\Omega} := \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x-y|^{N+2s}} \, dx \, dy < +\infty \right\},
\]
which is a Hilbert space equipped with the inner product
\[
\langle u, v \rangle_{H^s(\Omega)} := \int_{\Omega} uv \, dx + \int_{\Omega} \int_{\Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x-y|^{N+2s}} \, dx \, dy, \quad u, v \in H^s(\Omega).
\]
The space $H^s_0(\Omega)$ is defined as the closure of $C_c^\infty(\Omega)$ with respect to the norm
\[
\|u\|_{H^s_0(\Omega)} := \left(\int_{\Omega} \left(1 + \frac{1}{\delta^{2s}} \right) |u|^2 \, dx + \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x-y|^{N+2s}} \, dx \, dy \right)^{\frac{1}{2}}
\]
is a Banach space. Speaking roughly, the space $H^s_0(\Omega)$ is the space of functions in $H^s(\Omega)$ satisfying the Hardy’s inequality. By [12 Subsection 8.10], there holds
\[
H^s_0(\Omega) = \begin{cases}
H^s_0(\Omega) & \text{if } 0 < s < \frac{1}{2}, \\
H^s_0(\Omega) \subset H^{\frac{1}{2}}_0(\Omega) & \text{if } s = \frac{1}{2}, \\
H^0_0(\Omega) & \text{if } \frac{1}{2} < s < 1.
\end{cases}
\]
In fact, $H^s_0(\Omega)$ is the space of functions in $H^s(\mathbb{R}^N)$ supported in Ω, or equivalently, the trivial extension of functions in $H^s_0(\Omega)$ belongs to $H^s(\mathbb{R}^N)$ (see [35 Lemma 1.3.2.6]). Furthermore, $C_c^\infty(\Omega)$ is a dense subset of $H^s_0(\Omega)$. The strict inclusion $H^\frac{1}{2}_0(\Omega) \subset H^{\frac{1}{2}}_0(\Omega)$ holds since $1 \in H^{\frac{1}{2}}_0(\Omega)$ but $1 \notin H^\frac{1}{2}_0(\Omega)$.
2.2. Main assumptions. We consider a general family of linear operators \(L^s_\gamma \) indexed on two parameters depicting the interior point singularity and boundary behavior of the Green kernel. The operator \(L^s_\gamma \) includes the three most typical fractional Laplace operators, as well as the classical Laplace operator.

In the sequel, for the sake of simplicity, we write \(L \) for \(L^s_\gamma \).

Assumptions on \(L \). We impose the following assumptions on the operator \(L \).

(L1) \(L : C^\infty_c(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega) \) is a positive, symmetric operator.

Under the above assumption, we infer from the standard spectral theory that \(L \) admits a positive, self-adjoint extension \(\tilde{L} \), which is a Friedrich’s extension of \(L \). Furthermore, \(\mathbb{H}(\Omega) := \text{Dom}(\tilde{L}^2) \) is a Hilbert space equipped with the inner product
\[
(u, v) \mapsto \langle \tilde{L}^2 u, \tilde{L}^2 v \rangle_{L^2(\Omega)}, \quad u, v \in \mathbb{H}(\Omega),
\]
where the \(B \) is a bilinear form defined as
\[
B(u, v) := \langle \tilde{L}^\frac{1}{2} u, \tilde{L}^\frac{1}{2} v \rangle_{L^2(\Omega)}, \quad u, v \in \mathbb{H}(\Omega).
\]
The inner product induces the following norm on \(\mathbb{H}(\Omega) \)
\[
\sqrt{\|u\|^2_{L^2(\Omega)} + B(u, u)}, \quad u \in \mathbb{H}(\Omega).
\] (2.1)

Hereafter, without any confusion we use the same notation \(L \) to denote the extension \(\tilde{L} \).

(L2) There exists a constant \(\Lambda > 0 \) such that
\[
\|u\|^2_{L^2(\Omega)} \leq \Lambda \langle L u, u \rangle_{L^2(\Omega)}, \quad \text{for all } u \in C^\infty_c(\Omega).
\]

Under the assumption (L2) and the fact that \(C^\infty_c(\Omega) \) is dense in \(\mathbb{H}(\Omega) \), we have
\[
\|u\|^2_{L^2(\Omega)} \leq \Lambda \langle \tilde{L}^\frac{1}{2} u, \tilde{L}^\frac{1}{2} u \rangle_{L^2(\Omega)} = \Lambda B(u, u), \quad \text{for all } u \in \mathbb{H}(\Omega),
\]
which further implies the norm in (2.1) and the norm \(\|u\|_{\mathbb{H}(\Omega)} := \sqrt{B(u, u)} \) are equivalent on \(\mathbb{H}(\Omega) \). The norm \(\| \cdot \|_{\mathbb{H}(\Omega)} \) is induced by the inner product
\[
\langle u, v \rangle_{\mathbb{H}(\Omega)} := B(u, v), \quad \text{for } u, v \in \mathbb{H}(\Omega).
\] (2.2)

We additional assume that

(L3) \(\mathbb{H}(\Omega) = H^s_0(\Omega) \).

This assumption is indicated and motivated by the fact that it is fulfilled in the case of well-known fractional Laplace operators.

Next we assume that the following convexity inequality holds.

(L4) For \(u, v \in \mathbb{H}(\Omega) \cap L^\infty(\Omega) \) with \(v \geq 0 \) and smooth convex function \(p \in C^{1,1}(\mathbb{R}) \) with \(p(0) = p'(0) = 0 \), there holds
\[
\langle p(u), v \rangle_{\mathbb{H}(\Omega)} \leq \langle u, p'(u)v \rangle_{\mathbb{H}(\Omega)}.
\]

Assumptions on the inverse of \(L \). We also require the existence of the inverse operator of \(L \).

(G1) There exists an operator \(G^\Omega \) such that for every \(f \in C^\infty_c(\Omega) \), one has
\[
L[G^\Omega[f]] = f \quad \text{a.e. in } \Omega \tag{2.3}
\]
In other words, \(G^\Omega \) is a right inverse of \(L \) and for every \(f \in C^\infty_c(\Omega) \), one has \(G^\Omega[f] \in \text{Dom}(L) \subset \mathbb{H}(\Omega) \).
(G2) The operator G^Ω admits a Green kernel G^Ω, namely
\[
G^\Omega[f](x) = \int_\Omega G^\Omega(x,y)f(y) \, dy, \quad x \in \Omega,
\]
where $G^\Omega : \text{Dom}(G^\Omega) := \Omega \times \Omega \setminus \{(x,x) : x \in \Omega\} \to \mathbb{R}^+$ is Borel measurable, symmetric and satisfies the following two-sided estimate
\[
G^\Omega(x,y) \asymp \frac{1}{|x-y|^{N-2s}} \left(\frac{\delta(x)}{|x-y|} \land 1 \right)^\gamma \left(\frac{\delta(y)}{|x-y|} \land 1 \right)^\gamma, \quad x, y \in \text{Dom}(G^\Omega),
\]
with $s, \gamma \in (0,1]$ and $N > 2s$.

Finally, we require the continuity property of G^Ω

(G3) For $x \in \Omega$ and any sequence $x_n \subset \Omega$ such that $x_n \to x$ as $n \to \infty$, we have
\[
G^\Omega(x_n,y) = G^\Omega(x,y) \text{ for a.e. } x \neq y \in \Omega.
\]

2.3. Examples. At first glance, it seems that the set of assumptions in Subsection 2.2 is quite restrictive, however there are several local and nonlocal operators satisfying these assumptions, as shown below. It was proved in \cite{43} that assumptions (L1)–(L3) and (G1)–(G2) are fulfilled for the following operators. Therefore, it is sufficient to verify only (L4) and (G3).

The restricted fractional Laplacian (RFL). A famous example of nonlocal operator satisfying the set of assumptions in Subsection 2.2 is the restricted fractional Laplacian
\[
\mathbb{L} = (-\Delta)^s_{\text{RFL}} \text{ defined, for any } s \in (0,1), \text{ by}
\]
\[
(-\Delta)^s_{\text{RFL}} u(x) := a_{N,s} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x-y|^{N+2s}} \, dy, \quad x \in \Omega,
\]
restricted to the functions that vanishes outside Ω. Here the abbreviation P.V. stands for “the principal value sense”. This operator corresponds to the s-power of classical Laplace operator and has been intensively studied in the literature; see, e.g. \cite{19,54,51,1}.

We consider the following bilinear form
\[
B(u,v) := \frac{1}{2} \int_\Omega \int_\Omega J(x,y)(u(x) - u(y))(v(x) - v(y)) \, dx \, dy + \int_\Omega B(x)u(x)v(x) \, dx
\]
with
\[
J(x,y) := \frac{a_{N,s}}{|x-y|^{N+2s}} \quad \text{and} \quad B(x) := a_{N,s} \int_{\mathbb{R}^N \setminus \Omega} \frac{1}{|x-y|^{N+2s}} \, dy, \quad x, y \in \Omega, \quad x \neq y
\]
on the domain
\[
\mathcal{D}(B) := \{ u \in L^2(\Omega) : B(u,u) < +\infty \}.
\]

By \cite{14} and \cite{33} Proposition 5.1, we deduce $C^\infty_c(\Omega) \subset \mathcal{D}(B)$ and $\mathcal{D}(B)$ is a complete space with respect to the norm
\[
\|u\|_{\mathcal{D}(B)} := \left(\|u\|_{L^2(\Omega)}^2 + B(u,u) \right)^{\frac{1}{2}}.
\]
Moreover,
\[
\langle u, v \rangle_{H(\Omega)} = B(u,v) = \left\langle \tilde{L}^\frac{1}{2} u, \tilde{L}^\frac{1}{2} v \right\rangle_{L^2(\Omega)} = B(u,v) \quad \text{for all } u, v \in H(\Omega).
\]
To show that $(-\Delta)^s_{\text{RFL}}$ satisfies assumption [14], let us take a convex function $p \in C^{1,1}(\mathbb{R})$ such that $p(0) = p'(0) = 0$ and $u, v \in \mathcal{H}(\Omega) \cap L^\infty(\Omega)$ with $v \geq 0$. By Lemma [14], we obtain $p(u), p'(u)v \in \mathcal{H}(\Omega)$. The convexity of the function p implies

$$(p(a) - p(b))(A - B) \leq (a - b)(Ap'(a) - Bp'(b)) \quad \text{and} \quad p(a) \leq p'(a)a,$$

(2.6)

for every $a, b \in \mathbb{R}$ and $A, B \geq 0$. By taking $a = u(x), b = u(y), A = v(x)$ and $B = v(y)$ in (2.6), we derive

$$\langle p(u), v \rangle_{\mathcal{H}(\Omega)} = B(p(u), v) \leq B(u, p'(u)v) = \langle u, p'(u)v \rangle_{\mathcal{H}(\Omega)}.$$

Hence, (L4) holds. Finally, (G3) follows from [25, Page 467].

The spectral fractional Laplacian (SFL). The spectral fractional Laplacian is defined for $s > \frac{1}{2}$ by

$$(-\Delta)^s_{\text{SFL}}u(x) := b_{N,s} P.V. \int_\Omega \frac{u(x) - u(y)}{|x - y|^{N+2s}} \, dy, \quad x \in \Omega.$$

Stochastically speaking, the CFL generates a censored 2s-stable process restricted in Ω and killed upon hitting the boundary of Ω (for more details see [13, 22, 23]).

Assumption (L4) holds true by repeating the same arguments as in the case of RFL by considering the bilinear form B as in (2.5) with

$$J(x,y) = \frac{b_{N,s}}{|x - y|^{N+2s}} \quad \text{and} \quad B(x) = 0, \quad x, y \in \Omega, \quad x \neq y.$$

Finally, (G3) follows from [22, Theorem 1.1].

The spectral fractional Laplacian (SFL). The spectral fractional Laplacian is defined for $s \in (0, 1)$ by

$$(-\Delta)^s_{\text{SFL}}u(x) := C(N, s) P.V. \int_{\mathbb{R}^N} (u(x) - u(y)) J_s(x, y) \, dy + I_s(x)u(x), \quad x \in \Omega,$$

where

$$J_s(x,y) := \frac{s}{\Gamma(1-s)} \int_0^\infty \frac{p_\Omega(t,x,y)}{t^{1+s}} \, dt, \quad x, y \in \Omega$$

and

$$I_s(x) := \frac{s}{\Gamma(1-s)} \int_0^\infty \left(1 - \int_\Omega p_\Omega(t,x,y) \, dy\right) \frac{1}{t^{1+s}} \, dt \asymp \frac{1}{\delta(x)^{2s}}, \quad x \in \Omega.$$

Here p_Ω is the heat kernel of the Laplace operator $(-\Delta)$ in Ω. The SFL generates a subordinated killed Brownian motion (a Brownian motion killed upon hitting the boundary of Ω) and then treated as an s-stable process in $(0, \infty)$ (for more details see [14, 55]).

Assumption (L4) follows by repeating the same arguments as in the case of RFL with $J(x,y) = J_s(x, y)$ and $B(x) = I_s(x)$ in (2.5). Finally, assumption (G3) is satisfied due to the proof of Lemma 14 in [2, Page 7].

Sum of two RFLs. Let $0 < \beta < \alpha < 1$. The sum of α-RFL and β-RFL is defined as

$$\mathcal{L}_{\alpha,\beta}u(x) := (-\Delta)^\alpha_{\text{RFL}}u(x) + (-\Delta)^\beta_{\text{RFL}}u(x) = P.V. \int_{\mathbb{R}^N} J_{\alpha,\beta}(x,y)(u(x) - u(y)) \, dy,$$

where

$$J_{\alpha,\beta}(x,y) := \frac{a_{N,\alpha}}{|x - y|^{N+2\alpha}} + \frac{a_{N,\beta}}{|x - y|^{N+2\beta}}.$$

This type of operators has been studied in [24]. By proceeding as in case of RFL with minor modification, we can easily show that \([43]\) is satisfied. Finally, to show \([43]\), we use the following integral representation of the Green kernel given by continuous transition density function (or heat kernel) \(P_{\Omega}^{\alpha,\beta}\):

\[
G_{\Omega}(x, y) = \int_0^\infty p_{\Omega}^{\alpha,\beta}(t, x, y) \, dt.
\]

Let \((x, y) \in \text{Dom}(G_{\Omega})\) and assume that \(|x - y| > 2\eta > 0\). Let \(\{(x_n, y_n)\}\) be a sequence in \(\text{Dom}(G_{\Omega})\) converging to \((x, y)\). For \(n\) large enough, we have \(|x_n - y_n| > \eta\). From [24 Theorem 1], there exists a uniformly dominated integrable function \(g_{\Omega}\) satisfying

\[
p_{\Omega}^{\alpha,\beta}(t, x_n, y_n) \\
\leq C_1 \left\{ \begin{array}{ll}
1 & \text{if } t \leq T_0, \\
\frac{1}{\eta}e^{-\lambda_1 t} & \text{if } t \geq T_0,
\end{array} \right.
\]

where \(C_i = C_i(T_0, \alpha, \beta, \Omega), \ i = 1, 2, \) and \(\lambda_1\) is the smallest eigenvalue of \(L_{\alpha,\beta}\). This means that \(0 \leq p_{\Omega}^{\alpha,\beta}(\cdot, x_n, y_n) \leq g_{\Omega} \in L^1((0, \infty))\). By the continuity of the heat kernel \(p_{\Omega}^{\alpha,\beta}\) (see [24 Page 4]), we have \(p_{\Omega}^{\alpha,\beta}(t, x_n, y_n) \rightarrow p_{\Omega}^{\alpha,\beta}(t, x, y)\) as \(n \rightarrow \infty\). Therefore, by employing the Lebesgue dominated convergence theorem, we obtain

\[
\lim_{n \rightarrow \infty} G_{\Omega}(x_n, y_n) = \lim_{n \rightarrow \infty} \int_0^\infty p_{\Omega}^{\alpha,\beta}(t, x_n, y_n) \, dt = \int_0^\infty p_{\Omega}^{\alpha,\beta}(t, x, y) \, dt = G_{\Omega}(x, y).
\]

This implies the joint continuity of \(G_{\Omega}\), whence \([43]\) follows.

An interpolation of the RFL and the SFL. For \(\sigma_1, \sigma_2 \in (0, 1]\), we consider the \(\sigma_2\)-spectral decomposition of the \(\sigma_1\)-RFL in the domain \(\Omega\), namely \([-\Delta]^{\sigma_1}_{\text{RFL}} [-\Delta]^{\sigma_2}_{\text{SFL}}\). This type of interpolation operator has been recently studied in [43] by a probabilistic approach.

Let \(X\) be a rotationally invariant \(\sigma_1\)-stable process in \(\mathbb{R}^N\) and \(X^\Omega\) be the subprocess of \(X\) that is killed upon existing \(\Omega\). Then, we subordinate \(X^\Omega\) by an independent \(\sigma_2\)-stable subordinator \(Y\) to obtain a process \(Z^\Omega\), i.e. \((Z^\Omega)_{t} = (X^\Omega)_{Y_t}\). Let \((S^\Omega_t)\) be the semigroup of \(Z^\Omega\) whose infinitesimal generator can be written as

\[
L_{\sigma_1, \sigma_2} := [-\Delta]^{\sigma_1}_{\text{RFL}} [-\Delta]^{\sigma_2}_{\text{SFL}}.
\]

In particular, from (2.20) and (3.4), we have that, for \(u \in C_c^{\infty}(\Omega)\),

\[
L_{\sigma_1, \sigma_2} u(x) = \int_{\Omega} (u(x) - u(y)) J_{\sigma_1, \sigma_2}(x, y) \, dy + I_{\sigma_1, \sigma_2}(x) u(x), \quad x \in \Omega
\]

where

\[
J_{\sigma_1, \sigma_2}(x, y) := \int_0^\infty p_{\Omega}^{\sigma_1, \sigma_2}(t, x, y) \, \nu(dt), \quad x, y \in \Omega,
\]

\[
I_{\sigma_1, \sigma_2}(x) := \int_0^\infty \left(1 - \int_{\Omega} p_{\Omega}^{\sigma_1, \sigma_2}(t, x, y) \, dy \right) \, \nu(dt) \quad x \in \Omega.
\]
In the above definition,

$$\nu(dt) = \frac{\sigma_2}{\Gamma(1-\sigma_2)} t^{-\sigma_2} dt$$

is a Lévy measure of the σ_2-stable subordinator Y and p_{σ_1,σ_2} denotes the heat kernel of the σ_1-RFL in the domain Ω.

Assumption (L4) follows by repeating the arguments as in the case of RFL with $J(x,y) = J_{\sigma_1,\sigma_2}(x,y)$ and $B(x) = I_{\sigma_1,\sigma_2}(x)$ in (2.5). Finally, by employing an analogous argument as in the case of sum of two RFLs, together with the continuity of the heat kernel p_{σ_1,σ_2} [40, Page 17] and exit time estimates in [45, Page 26, (6.2) and (6.3)], we obtain the continuity of Green function in (G3).

Restricted relativistic Schrödinger operators. We consider a class of relativistic Schrödinger operators with mass $m > 0$ of the form

$$L_m^s := (-\Delta + m^2 I)^s - m^2 I,$$

restricted to the class of functions that are zero outside Ω, where $s \in (0,1)$ and I denotes the identity operator. Alternatively, by [29, (1.3) and (6.7)], the operator L_m^s can be expressed as

$$L_m^s u(x) = c_{N,s} m^{N+2s} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x-y|^{N+2s}} K_{N+2s}^\nu(m|x-y|) \, dy, \quad x \in \Omega,$$

where, for $\nu > 0$,

$$K_{\nu}(r) \asymp \frac{\Gamma(\nu)}{2} \left(\frac{r}{2} \right)^{-\nu}, \quad r > 0,$$

and Γ is the usual Gamma function. Due to the significant appearance of this operator in many research areas of mathematics and physics, it has attracted attention of numerous mathematicians; see, e.g., [53, 29, 5]. Assumption (L4) is satisfied by using a similar argument as in the case of RFL with

$$J(x,y) = c_{N,s} \frac{K_{N+2s}(m|x-y|)}{|x-y|^{N+2s}} m^{N+2s}, \quad x, y \in \Omega, \quad x \neq y$$

and

$$B(x) = c_{N,s} m^{N+2s} \int_{\mathbb{R}^N \setminus \Omega} \frac{K_{N+2s}(m|x-y|)}{|x-y|^{N+2s}}, \quad x \in \Omega,$$

in the bilinear form (2.5). Finally, the continuity of Green function in (G3) follows from [44, Theorem 4.6].

3. Description of main problems and results

In this section, we study the following nonlocal problem involving the operator L and purely singular nonlinearities of the form

$$\begin{cases}
L u = \frac{1}{u^q} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},
\end{cases} \quad (P_s)$$

where L satisfies the set of assumptions (L1)-(L4) and (G1)-(G3), and $q > 0$. The notion of weak-dual solutions is given below.
Definition 3.1. A positive function u is said to be a weak-dual solution of the problem (P_s) if
\[u \in L^1_0(\Omega, \delta^\gamma), \quad u^{-q} \in L^1(\Omega, \delta^\gamma) \] (3.1)
and
\[\int_{\Omega} u \xi \, dx = \int_{\Omega} \frac{1}{u^q} G^\Omega[\xi] \, dx \quad \forall \xi \in \delta^\gamma L^\infty(\Omega). \] (3.2)

Remark 3.2. The integrals in (3.2) are well defined. Indeed, the term on the left-hand side of (3.2) is well defined since $u \in L^1_0(\Omega, \delta^\gamma)$ and $\xi \in \delta^\gamma L^\infty(\Omega)$. For the term on the right-hand side, we deduce from [3, Theorem 3.4] that $|G^\Omega[\xi]| \leq C\delta^\gamma$ in Ω. This, together with the condition (3.1), implies
\[\int_{\Omega} \frac{1}{u^q} G^\Omega[\xi] \, dx \leq C \int_{\Omega} \frac{1}{u^q} \delta^\gamma \, dx < +\infty. \]

The value of q plays a crucial role in the analysis of problem (P_s). An interesting feature of the study of (P_s) lies at the involvement of two critical exponents q^*_s, γ and q^{**}_s, γ given by
\[q^*_s, \gamma := \frac{2s}{\gamma} - 1, \quad q^{**}_s, \gamma := \begin{cases} +\infty & \text{if } \gamma \geq 2s - 1, \\ \frac{\gamma + 1}{2s - \gamma - 1} & \text{if } \gamma < 2s - 1. \end{cases} \]

These exponents classify the weak and strong singular nonlinearities in the class of nonlocal problem (P_s). This classification is reflected via the behavior of the weak-dual solution near the boundary.

Denote
\[E := \left\{ (q, \gamma) \in \mathbb{R}^+ \times (0, 2s) : 0 < q < q^*_s, \gamma, \gamma \geq s - \frac{1}{2} \text{ or } q \in (q^*_s, \gamma, q^{**}_s, \gamma), \gamma > s - \frac{1}{2} \right\}. \]

Throughout the remaining text, we will assume that $(q, \gamma) \in E$.

Our first main result is the existence and uniqueness of the weak-dual solution to the purely singular problem (P_s).

Theorem 3.3. Assume (L1)-(L4) and (G1)-(G3) hold and $(q, \gamma) \in E$. Then there exists a unique weak-dual solution u_* of the problem (P_s).

The boundary behavior of the weak-dual solution to problem (P_s) is depicted in terms of the distance function in the following theorem.

Theorem 3.4. Let u_* be the weak-dual solution of the problem (P_s) obtained in Theorem 3.3.

I. Weakly singular nonlinearity. If $q \in (0, q^*_s, \gamma)$ then
\[u_* \in \mathcal{A}^-(\Omega) := \{ u : u \asymp \delta^\gamma \}. \]

II. Critical singular nonlinearity. If $q = q^*_s, \gamma$ then
\[u_* \in \mathcal{A}^0(\Omega) := \begin{cases} \{ u : u \asymp \delta^\gamma \ln(\frac{\delta^\gamma}{\delta}) \} & \text{if } s \leq \gamma, \\ \{ u : \delta^{\gamma - s} \leq u \leq \delta^{\gamma} \ln(\frac{\delta^\gamma}{\delta}) \} & \text{if } s - \frac{1}{2} < \gamma < s. \end{cases} \]

III. Strongly singular nonlinearity. If $q \in (q^*_s, \gamma, q^{**}_s, \gamma)$ then
\[u_* \in \mathcal{A}^+(\Omega) := \{ u : u \asymp \delta^{\frac{s}{2}} \}. \]
As we can see from the above theorem, when \(q = q^*_{s, \gamma} \) and \(s - \frac{1}{2} < \gamma < s \), we have \(u \lesssim \delta^\gamma \ln(\frac{d}{\delta}) \). It would be interesting to see if these estimates are sharp or can be improved.

Put
\[
\mathcal{A}_s(\Omega) := \begin{cases}
\mathcal{A}^-(\Omega) & \text{if } q \in (0, q^*_{s, \gamma}), \\
\mathcal{A}^0(\Omega) & \text{if } q = q^*_{s, \gamma}, \\
\mathcal{A}^+(\Omega) & \text{if } q \in (q^*_{s, \gamma}, q^{**}_{s, \gamma}).
\end{cases}
\] (3.3)

Denote
\[
\mathcal{S}_1 := \|u_*\|_{L^\infty(\Omega)} \quad \text{and} \quad \mathcal{S}_2 := \|G[1]\|_{L^\infty(\Omega)}
\]
where \(u_* \) is the unique weak-dual solution of \([\mathcal{P}_s]\).

Next, we consider the following nonlocal semilinear problem involving a singular nonlinearity and a source term
\[
\begin{cases}
Lv = \frac{1}{t^d} + \lambda f(v) & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega \text{ or in } \Omega \text{ if applicable}
\end{cases}
\] (\(S_{\lambda, q}\))

where the pair \((\lambda, f)\) satisfies the following assumptions:

(f1) \(f : (0, \infty) \to \mathbb{R}^+ \) is a bounded domain map, \(i.e. \) for any bounded set \(A \subset (0, \infty), \)
\(f(A) \) is bounded;

(f2) There exist constants \(\Lambda \) and \(C_A > 0 \) such that
\[
\lambda f(t) \leq \Lambda \quad \text{for all } t \in [0, c_1 + \Lambda c_2] \quad \text{and } \lambda \in (0, C_A)
\]
for some \(c_1 \geq \mathcal{S}_1 \) and \(c_2 \geq \mathcal{S}_2 \);

(f3) the map \(t \to \kappa t + \lambda f(t) \) is increasing in \((0, \mathcal{S}_1 + \Lambda \mathcal{S}_2)\) for some \(\kappa > 0 \).

We present below some examples of the source term satisfying conditions (f1)–(f3).

Examples.

(i) Let \(f(t) = t^r \) for \(t > 0 \) and \(0 < r < 1 \). Then, for any \(\lambda > 0 \), the pair \((\lambda, f)\) satisfies the assumptions (f1)–(f3). Indeed, for \(\Lambda > 0 \), put
\[
C_A := \frac{\Lambda}{(c_1 + c_2 \Lambda)^r}.
\]

Note that \(C_A \to +\infty \) as \(\Lambda \to +\infty \). One can choose \(\Lambda > 0 \) large enough such that
\[
\lambda f(c_1 + c_2 \Lambda) \leq \Lambda \quad \text{for } \lambda \in (0, C_A).
\]

(ii) Let \(f(t) = t^p \) for \(t > 0 \) and \(p \geq 1 \). Then there exists \(\lambda^* > 0 \) such that for all \(\lambda \in (0, \lambda^*) \) the pair \((\lambda, f)\) satisfies the assumption (f1)–(f3). Precisely, we choose
\[
\lambda^* = \frac{1}{c_2} \quad \text{if } p = 1 \quad \text{and for } \lambda^* = \frac{(p-1)^{p-1}}{c_1^{-1}c_2^p} \quad \text{if } p > 1.
\]

Weak-dual sub- and supersolutions of problem \([S_{\lambda, q}]\) are defined as follows.

Definition 3.5. A positive function \(v \) is said to be a weak-dual subsolution (resp. weak-dual supersolution) of \([S_{\lambda, q}]\) if,
\[
v \in L^1_0(\Omega, \delta^\gamma), \quad v^{-q}, f(v) \in L^1(\Omega, \delta^\gamma)
\]
and
\[\int_{\Omega} v \xi \, dx \leq (\text{resp.} \geq) \int_{\Omega} \frac{1}{v^q} G^\Omega(\xi) \, dx + \lambda \int_{\Omega} f(v) G^\Omega(\xi) \, dx, \quad \forall \, \xi \in \delta^\gamma L^\infty(\Omega), \, \xi \geq 0. \]

A function which is both weak-dual sub- and supersolution of \((S_{\lambda, q})\) is called a weak-dual solution to \((S_{\lambda, q})\).

Theorem 3.6. Assume \((L1) - (L4), (G1) - (G3)\) and \((f1) - (f3)\) hold, and \((q, \gamma) \in \mathbb{E}\). Then there exists a weak-dual solution \(v\) of \((S_{\lambda, q})\). Moreover, \(v \in A^*_\Omega\).

Next we are concerned with the following nonlocal semilinear problem involving a singular nonlinearity and an absorption term
\[
\begin{cases}
Lw + g(w) = 1 & \text{in } \Omega, \\
w > 0 & \text{in } \Omega, \\
w = 0 & \text{on } \partial\Omega \text{ or in } \Omega \text{ if applicable,}
\end{cases}
\]

where the function \(g\) satisfy the following conditions:

\(g1\) \(g : (0, \infty) \to \mathbb{R}^+\) is a bounded domain map;
\(g2\) the map \(t \to \mu t - g(t)\) is increasing in the interval \((0, \mathcal{G}_1]\) for some \(\mu > 0\);
\(g3\) \(\lim_{t \to 0^+} t^p g(t) < +\infty\) with \(p < q\).

Examples.

(i) Let \(g(t) = t^p\) for \(t > 0\) and \(p \geq 1\). Then, for any \(\mu > p \mathcal{G}_1^{-1}\), the function \(g\) satisfies the assumptions \((g1) - (g3)\).

(ii) Let \(g(t) = t^{-r}\) for \(t > 0\) and \(0 < r < q\). Then \(g\) satisfies the assumptions \((g1) - (g3)\).

The definition of weak-dual sub- and supersolutions is given below.

Definition 3.7. A positive function \(w\) is said to be a weak-dual subsolution (resp. weak-dual supersolution) of \((A_{g, q})\)

\[
\begin{align*}
\int_{\Omega} w \xi \, dx + \int_{\Omega} g(w) G^\Omega(\xi) \, dx & \leq (\text{resp.} \geq) \int_{\Omega} \frac{1}{w^q} G^\Omega(\xi) \, dx, \quad \forall \, \xi \in \delta^\gamma L^\infty(\Omega), \, \xi \geq 0.
\end{align*}
\]

A function which is both weak-dual sub- and super weak-dual solution of \((A_{g, q})\) is called a weak-dual solution to \((A_{g, q})\).

Theorem 3.8. Assume \((L1) - (L4), (G1) - (G3), (g1) - (g3)\) hold, and \((q, \gamma) \in \mathbb{E}\). Then there exists a unique weak-dual solution \(w\) of \((A_{g, q})\). Moreover, \(w \in A_\Omega\).

We end this Section with an open question. We note that the case \(q \geq q^*_s \gamma\) and \(\gamma < 2s - 1\) in not included in this paper due to the absence of boundary estimates of the solution to approximating problems. Therefore, it would be interesting to investigate this case.
4. Preliminary results and Kato type inequalities

4.1. Preliminary results. In this subsection, we recall some basic results comprised of lower Hopf type estimate, integration by parts formula and action of the Green kernel on power of the distance functions.

Lemma 4.1 (Theorem 2.6, [3]). Assume \((G1)\) and \((G2)\) hold. Then there exists \(c > 0\) such that for any \(0 \leq f \in L^1(\Omega, \delta^\gamma)\),
\[
G^\Omega[f](x) \geq c\delta(x)^\gamma \int_\Omega f(y)\delta(y)^\gamma \, dy, \quad x \in \Omega.
\]

Lemma 4.2 (Lemma 4.5, [21]). Assume \((G1)\) and \((G2)\) hold, \(f \in L^1(\Omega, \delta^\gamma)\) and \(\xi \in \delta_\gamma L^\infty(\Omega)\). Then we have
\[
\int_\Omega G^\Omega[f]\xi \, dx = \int_\Omega fG^\Omega[\xi] \, dx.
\]

Lemma 4.3 (Theorem 3.4, [3]). Assume \((G1)\) and \((G2)\) hold and \(\beta < \gamma + 1\). Then \(\delta^{-\beta} \in L^1(\Omega, \delta^\gamma)\) and
\[
G^\Omega[\delta^{-\beta}] \simeq \begin{cases} \delta^\gamma & \text{if } \gamma < 2s - \beta, \\ \delta^\gamma \ln(\frac{d_\Omega}{\delta}) & \text{if } \gamma = 2s - \beta \text{ and } 2\gamma > 2s - 1, \\ \delta^{2s - \beta} & \text{if } \gamma > 2s - \beta \text{ and } 2\gamma > 2s - 1. \end{cases}
\] (4.1)
Here \(d_\Omega = 2 \text{diam}(\Omega)\).

Lemma 4.4 (Lemma 5.2, [43]). Assume \(u, v \in H^{s_0}_0(\Omega)\) and \(h : \mathbb{R} \to \mathbb{R}\) is a Lipschitz function such that \(h(0) = 0\). Then \(h(u) \in H^{s_0}_0(\Omega)\) and \(uv \in H^{s_0}_0(\Omega)\) if \(u, v \in L^\infty(\Omega)\).

4.2. Kato type inequalities. In this subsection, we prove a Kato type inequality expressed in terms of the Green operator under assumptions \((L1)–(L4)\) and \((G1)–(G2)\), which plays the role of the comparison principle in our study of weak-dual solutions. The proof of the inequality is based on the convexity inequality \((L4)\) and ideas recently developed in [43, Lemma 5.2 and Theorem 3.2]. It is worth stressing that the following Kato type inequality seems to have a wider applicability in comparison with the inequality obtained in [43, Theorem 3.2].

Proposition 4.5. Assume \((L1)–(L4)\) and \((G1)–(G2)\) hold, \(f \in L^1(\Omega, \delta^\gamma)\) and \(u = G^\Omega[f]\). Then
\[
\int_\Omega |u|\xi \, dx \leq \int_\Omega \text{sign}(u)G^\Omega[\xi]f \, dx,
\] (4.2)
and
\[
\int_\Omega u^+\xi \, dx \leq \int_\Omega \text{sign}^+(u)G^\Omega[\xi]f \, dx,
\] (4.3)
for every \(\xi \in \delta^\gamma L^\infty(\Omega)\) such that \(G^\Omega[\xi] \geq 0\) a.e. in \(\Omega\).

Proof. The proof is based on two claims.

Claim 1: Assume \(f \in C^\infty_c(\Omega)\), \(u = G^\Omega[f]\) and \(p \in C^{1,1}(\mathbb{R})\) is a convex function such that \(p(0) = p'(0) = 0\) and \(|p'| \leq 1\). Then, for any \(\xi \in \delta^\gamma L^\infty(\Omega)\), \(G^\Omega[\xi] \geq 0\), we have
\[
\int_\Omega p(u)\xi \, dx \leq \int_\Omega fp'(u)G^\Omega[\xi] \, dx.
\] (4.4)
In order to prove (4.4), we will employ the following equality, derived from [22] Proposition 5.2, which asserts that for any \(g \in L^2(\Omega) \), \(\mathbb{G}[g] \in \mathbb{H}(\Omega) \) and

\[
\int_{\Omega} g \zeta \, dx = \langle \mathbb{G}[g], \zeta \rangle_{\mathbb{H}(\Omega)}, \quad \forall \zeta \in \mathbb{H}(\Omega).
\] (4.5)

Take \(\xi \in \delta^\gamma L^\infty(\Omega) \) with \(\mathbb{G}[\xi] \geq 0 \). Then it can be easily checked that \(\xi \in L^2(\Omega) \) and hence \(u = \mathbb{G}[f] \in \mathbb{H} \). Consequently, by Lemma 4.4 we have \(p(u) \in \mathbb{H} \). Therefore, replacing \(g \) by \(\xi \) and \(\zeta \) by \(p(u) \) in (4.5), we deduce that

\[
\int_{\Omega} p(u) \xi \, dx = \langle p(u), \mathbb{G}[\xi] \rangle_{\mathbb{H}(\Omega)}.
\] (4.6)

Next, by using [22] Propositions 4.11 and 5.2, assumption (G2) and Lemma 4.4, we have \(u = \mathbb{G}[f] \in \mathbb{H}(\Omega) \), \(p(u) \in \mathbb{H}(\Omega) \cap L^\infty(\Omega) \), and \(p'(u)\mathbb{G}[\xi] \in \mathbb{H}(\Omega) \). Now, by taking \(g = f \) and \(\zeta = p'(u)\mathbb{G}[\xi] \) in (4.5), and using (4.4), we obtain

\[
\int_{\Omega} p'(u)\mathbb{G}[\xi] \, dx = \langle \mathbb{G}[f], p'(u)\mathbb{G}[\xi] \rangle_{\mathbb{H}(\Omega)} = \langle u, p'(u)\mathbb{G}[\xi] \rangle_{\mathbb{H}(\Omega)} \geq \langle p(u), \mathbb{G}[\xi] \rangle_{\mathbb{H}(\Omega)}.
\] (4.7)

Gathering (4.6) and (4.7), we deduce that

\[
\int_{\Omega} p'(u)\mathbb{G}[\xi] \, dx \geq \langle p(u), \mathbb{G}[\xi] \rangle_{\mathbb{H}(\Omega)} = \int_{\Omega} p(u) \xi \, dx,
\]

which yields (4.4).

Claim 2: Claim 1 still holds true if \(f \in L^1(\Omega, \delta^\gamma) \).

Indeed, assume \(f \in L^1(\Omega, \delta^\gamma) \) and take \(\xi \in \delta^\gamma L^\infty(\Omega) \) with \(\mathbb{G}[\xi] \geq 0 \). Let \(\{f_n\}_{n \in \mathbb{N}} \subset C^\infty(\Omega) \) be a sequence of functions such that \(f_n \to f \) in \(L^1(\Omega, \delta^\gamma) \) and a.e. in \(\Omega \).

Put \(u_n := \mathbb{G}[f_n] \). Then by Claim 1, we have

\[
\int_{\Omega} p(u_n) \xi \, dx \leq \int_{\Omega} f_n'(u_n) \mathbb{G}[\xi] \, dx.
\] (4.8)

Recall that \(u = \mathbb{G}[f] \). Since the map \(\mathbb{G} : L^1(\Omega, \delta^\gamma) \to L^1(\Omega, \delta^\gamma) \) is continuous and \(p \in C^{1,1}(\mathbb{R}) \), \(|p'| \leq 1 \), we deduce that, up to a subsequence, \(u_n \to u \) in \(L^1(\Omega, \delta^\gamma) \) and a.e. in \(\Omega \), and \(p(u_n) \to p(u) \) in \(L^1(\Omega, \delta^\gamma) \) and a.e. in \(\Omega \). It follows that

\[
\lim_{n \to \infty} \int_{\Omega} p(u_n) \xi \, dx = \int_{\Omega} p(u) \xi \, dx.
\] (4.9)

Now, again by using \(|p'(u_n)| \leq 1 \), \(f_n p'(u_n) \to f p'(u) \) a.e. in \(\Omega \) and the generalized Lebesgue dominated convergence theorem, we obtain \(f_n p'(u_n) \to f p'(u) \) in \(L^1(\Omega, \delta^\gamma) \). Moreover, since the map \(\mathbb{G} : \delta^\gamma L^\infty(\Omega) \to \delta^\gamma L^\infty(\Omega) \) is continuous (see [21] Proposition 3.5), we have \(\mathbb{G}[\xi] \) in \(\delta^\gamma L^\infty(\Omega) \). Therefore

\[
\lim_{n \to \infty} \int_{\Omega} f_n p'(u_n) \mathbb{G}[\xi] \, dx = \int_{\Omega} f p'(u) \mathbb{G}[\xi] \, dx.
\] (4.10)

By letting \(n \to \infty \) in (4.8) and using (4.9) and (4.10), we get the required claim.
Next we will prove inequality (4.2). Consider the sequence \(\{ p_k \} \in \mathbb{N} \) given by
\[
p_k(t) := \begin{cases}
|t| - \frac{1}{2k} & \text{if } |t| \geq \frac{1}{k}, \\
\frac{k t^2}{2} & \text{if } |t| < \frac{1}{k}.
\end{cases}
\] (4.11)
Then for every \(k \in \mathbb{N} \), \(p_k \in C^{1,1}(\mathbb{R}) \) is convex, \(p_k(0) = (p_k)'(0) = 0 \) and \(|(p_k)'| \leq 1 \). Hence, employing Claim 2 with \(p = p_k \), one has
\[
\int_\Omega p_k(u) \xi \, dx \leq \int_\Omega f(p_k)'(u) G_{\Omega}[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega), G_{\Omega}[\xi] \geq 0.
\] (4.12)
Notice that \(p_k(t) \to |t| \) and \((p_k)'(t) \to \text{sign}(t) \) as \(k \to \infty \). Hence, letting \(k \to \infty \) in (4.12) and using the dominated convergence theorem, we obtain (4.2).

Finally, inequality (4.3) follows from inequality (4.2) and the integration by parts formula (see Lemma 4.2). The proof is complete. \(\square \)

Proposition 4.6. Assume \((G1)-(G2)\) hold and \(\beta < \gamma + 1 \). Then there exists a unique weak-dual solution \(\phi_\beta \in L^1_0(\Omega, \delta^\gamma) \) of the following problem
\[
\begin{cases}
L \phi = \frac{1}{\delta^\gamma} \quad & \text{in } \Omega, \\
\phi > 0 & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},
\end{cases}
\] (4.13)
in the sense that
\[
\int_\Omega \phi_\beta \xi \, dx = \int_\Omega \frac{1}{\delta^\gamma} G_{\Omega}[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\] Moreover, \(\phi_\beta \) admits the behavior as in (4.1).

Proof. Define
\[
\phi_\beta(x) := \begin{cases}
G_{\Omega}\left[\frac{1}{\delta^\gamma}\right] & \text{if } x \in \Omega, \\
0 & \text{if } x \in \partial \Omega \text{ or } \Omega^c \text{ if applicable}.
\end{cases}
\] (4.14)
Then by using Lemma 4.2 and Lemma 4.3 we obtain \(\phi_\beta \in L^1_0(\Omega, \delta^\gamma) \), \(\phi_\beta \) admits the behavior as in (4.1) and
\[
\int_\Omega \phi_\beta \xi \, dx = \int_\Omega G_{\Omega}\left[\frac{1}{\delta^\gamma}\right] \xi \, dx = \int_\Omega \frac{1}{\delta^\gamma} G_{\Omega}[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]
Moreover, \(\phi_\beta \) is the unique weak-dual solution of (4.13) due to [3, Theorem 2.5] and an approximation argument. \(\square \)

5. Purely singular problem

In this section, we focus on the purely singular problem \((P_s)\). To this purpose, first we prove some estimates of Green operator acting over singular perturbed terms and then by using the approximation method and Kato type inequality, we establish the existence, uniqueness and boundary behavior of the weak-dual solution to \((P_s)\).
5.1. Estimates on Green kernel. Let $s \in (0, 1]$ and $q > 0$. Denote
\[\beta := \frac{2sq}{q+1}, \quad \alpha := 2s - \beta = \frac{2s}{q+1}, \]
and for $\eta > 0$, put
\[\Omega_\eta := \{ x \in \Omega : \delta(x) < \eta \}. \]

Lemma 5.1. Assume \((G1)\) and \((G2)\) hold. Then, for $\epsilon, \eta \in (0, 1)$ and $\gamma > \alpha$, there exist positive constants $c_1 = c_1(\beta)$ and $c_2 = c_2(\text{diam}(\Omega), \eta, \gamma, \beta)$ such that the following estimates hold:
\[G^\Omega \left[\frac{1}{(\delta + \epsilon^\beta)^\beta} \mathbf{1}_{\Omega_\eta} \right](x) \geq c_1 \left(\frac{1}{2}(\delta(x) + \epsilon^\beta)^\alpha - \epsilon \right), \quad \forall x \in \Omega^{\frac{1}{2}}, \tag{5.3} \]
and
\[G^\Omega \left[\frac{1}{(\delta + \epsilon^\beta)^\beta} \right](x) \geq c_2(\delta(x) + \epsilon^\beta)^\alpha - \epsilon, \quad \forall x \in \Omega^{\frac{1}{2}}. \tag{5.4} \]
Here $\mathbf{1}_{\Omega_\eta}$ denotes the characteristic function of Ω_η.

Proof. First we will prove estimate \((5.3)\). Denote $\epsilon_1 = \epsilon^\frac{1}{2}$. By assumption \((G2)\), we have, for $x \in \Omega^{\frac{1}{2}}$
\[G^\Omega \left[\frac{1}{(\delta + \epsilon_1)^\beta} \mathbf{1}_{\Omega_\eta} \right](x) = \int_{\Omega_\eta} \frac{G^\Omega(x, y)}{(\delta(y) + \epsilon_1)^\beta} \, dy \geq C \int_{\Omega \cap B(x, \frac{\delta(x)}{2})} \frac{1}{(\delta(y) + \epsilon_1)^\beta} \frac{\delta(x)}{|x-y|^{N-2s}} \left(\frac{\delta(y)}{|x-y|} \wedge 1 \right)^\gamma \left(\frac{\delta(y)}{|x-y|} \wedge 1 \right)^\gamma \, dy. \tag{5.5} \]
Here we note that $\Omega \cap B(x, \frac{\delta(x)}{2}) \subset \Omega_\eta$. Now for $x \in \Omega^{\frac{1}{2}}$ and $y \in \Omega \cap B(x, \frac{\delta(x)}{2})$, we have
\[\left(\frac{\delta(x)}{|x-y|} \wedge 1 \right)^\gamma \geq 1, \quad \left(\frac{\delta(y)}{|x-y|} \wedge 1 \right)^\gamma \geq 1 \quad \text{and} \quad \frac{1}{(\delta(y) + \epsilon_1)^\beta} \geq \left(\frac{2}{3} \right)^\beta \frac{1}{(\delta(x) + \epsilon_1)^\beta}. \tag{5.6} \]
Combining \((5.5)\) and \((5.6)\), we obtain
\[G^\Omega \left[\frac{1}{(\delta + \epsilon_1)^\beta} \mathbf{1}_{\Omega_\eta} \right](x) \geq \left(\frac{2}{3} \right)^\beta \frac{C}{(\delta(x) + \epsilon_1)^\beta} \int_{\Omega \cap B(x, \frac{\delta(x)}{2})} \frac{1}{|x-y|^{N-2s}} \, dy = \frac{C \delta(x)^{2s}}{(\delta(x) + \epsilon_1)^\beta}. \tag{5.7} \]
By applying the inequality
\[(a + b)^{2s} \leq \max\{1, 2^{2s-1}\}(a^{2s} + b^{2s}), \quad a \geq 0, b \geq 0, \]
with $a = \delta(x)$ and $b = \epsilon_1$, we get
\[\delta(x)^{2s} \geq \frac{1}{\max\{1, 2^{2s-1}\}}(\delta(x) + \epsilon_1)^{2s} - \epsilon_1^{2s}. \tag{5.8} \]
Finally, by using \((5.8)\) in \((5.7)\), we obtain
\[G^\Omega \left[\frac{1}{(\delta + \epsilon_1)^\beta} \mathbf{1}_{\Omega_\eta} \right](x) = G^\Omega \left[\frac{1}{(\delta + \epsilon_1)^\beta} \mathbf{1}_{\Omega_\eta} \right](x) \geq c_1 \left(\frac{1}{2}(\delta(x) + \epsilon_1)^{2s} - \epsilon_1^{2s} \right)^\beta = c_1 \left(\frac{1}{2}(\delta(x) + \epsilon^\frac{1}{2})^{2s} - \epsilon^\frac{1}{2} \right) \tag{5.3} \].
Next we prove estimate (5.4). Let $x \in \Omega_2$. Then by using Lemma 4.3 and assumption $\gamma > \alpha$, we get
\[
G_\Omega^\Omega \left[\frac{1}{(\delta + \epsilon_1)^2} \right] (x) \geq \frac{1}{(d_\Omega + 1)^\beta} G_\Omega^{\Omega_1} (x) \geq c_2 \delta(x)^{\min\{\gamma, 2s\}} \geq c_2 (\delta(x) + \epsilon_2^{\frac{1}{\alpha}}) - \epsilon, \tag{5.9}
\]
where c_2 depends upon η, α, γ and d_Ω.

Lemma 5.2. Assume (G1) and (G2) hold and $s - \frac{1}{2} < \gamma < 2s$. Then for $\sigma \in [0, 1)$, there holds
\[
G_\Omega^{\Omega_2} \left[\frac{1}{\delta^{2s-\sigma}} \ln^{-\sigma} \left(\frac{d_\Omega}{\delta} \right) \right] (x) \asymp \delta(x)^{\gamma} \ln^{1-\sigma} \left(\frac{d_\Omega}{\delta(x)} \right), \quad \forall x \in \Omega_2, \tag{5.10}
\]
for some $\eta > 0$.

Proof. Let $\eta > 0$ small. To prove upper and lower estimates, first we split the integrals over two regions Ω_η and $\Omega \setminus \Omega_\eta$ as follows
\[
G_\Omega^{\Omega_2} \left[\frac{1}{\delta^{2s-\sigma}} \ln^{-\sigma} \left(\frac{d_\Omega}{\delta} \right) \right] (x) = \int_{\Omega_\eta} G_\Omega^{\Omega_2} (x, y) \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(y)} \right) dy + \int_{\Omega \setminus \Omega_\eta} G_\Omega^{\Omega_2} (x, y) \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(y)} \right) dy =: I_1(x) + I_2(x). \tag{5.11}
\]

Take $x \in \Omega_2$ and let $\Phi : B(x, 1) \rightarrow B(0, 1)$ be a diffeomorphism such that
\[
\Phi(\Omega \cap B(x, 1)) = B(0, 1) \cap \{ y \in \mathbb{R}^N : e_N > 0 \},
\]
\[
\Phi(y) \cdot e_N = \delta(y) \quad \text{for } y \in B(x, 1) \quad \text{and} \quad \Phi(x) = \delta(x) e_N. \tag{5.12}
\]

For the first integral $I_1(x)$, we partition the set Ω_η into the following five components
\[
\mathcal{E}_1 := B(x, \delta(x)/2), \quad \mathcal{E}_2 := \Omega_\eta \setminus B(x, 1),
\]
\[
\mathcal{E}_3 := \{ y : \delta(y) < \delta(x)/2 \} \cap B(x, 1), \quad \mathcal{E}_4 := \left\{ y : \frac{3 \delta(x)}{2} < \delta(y) < \eta \right\} \cap B(x, 1),
\]
\[
\mathcal{E}_5 := \left\{ y : \frac{\delta(x)}{2} < \delta(y) < \frac{3 \delta(x)}{2} \right\} \cap \left(B(x, 1) \setminus B(x, \frac{\delta(x)}{2}) \right).
\]

Lower estimate. For $y \in \mathcal{E}_4$, we have
\[
\left(\frac{\delta(x) \delta(y)}{|x - y|^2} \wedge 1 \right) \asymp \frac{\delta(x) \delta(y)}{|x - y|^2} \quad \text{and} \quad \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(x)} \right) \leq \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(y)} \right).
\]
Therefore
\[
I_1(x) \geq \int_{\mathcal{E}_4} G_\Omega^{\Omega_2} (x, y) \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(y)} \right) dy \geq \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(x)} \right) \int_{\mathcal{E}_4} G_\Omega^{\Omega_2} (x, y) \ln^{-\sigma} \left(\frac{d_\Omega}{\delta(y)} \right) dy. \tag{5.12}
\]
Now, by performing a change of variables via diffeomorphism Φ in (5.11) and using estimates on [3, Proof of Lemma 3.3, Page 40], we get

$$
\int_{\mathcal{O}_4} \frac{G^\Omega(x,y)}{\delta(y)^{2s-\gamma}} \, dy \gtrsim \delta(x)^{\gamma} \int \frac{\chi_{3,\eta} (y)}{\delta(y)^{2s-\gamma}} \, dz_N \, dz'.
$$

Therefore, we obtain

$$
= \delta(x)^{\gamma} \int \frac{\chi_{3,\eta} (y)}{\delta(y)^{2s-\gamma}} \, dz_N \, dz'.
$$

This implies that there exists a constant C independent of the parameter σ such that

$$
\int_{\mathcal{O}_4} \frac{G^\Omega(x,y)}{\delta(y)^{2s-\gamma}} \, dy \geq C \delta(x)^{\gamma} \ln \left(\frac{d^\Omega}{\delta(x)} \right).
$$

By combining (5.10), (5.12), and (5.13), we obtain

$$
\Omega \left[\frac{1}{\delta^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d^\Omega}{\delta} \right) \right] (x) \geq I_1(x) \geq C \delta(x)^{\gamma} \ln^{1-\sigma} \left(\frac{d^\Omega}{\delta(x)} \right).
$$

Thus, we obtain the lower bound.

Upper estimate. By partitioning the domain of integral $I_1(x)$ over $\{Q_1^5\}_{i=1}^5$, we find the upper estimates over each subdomain Q_i. Observing, for $y_1 \in Q_1$ and $y_2 \in Q_i$, we have

$$
\left(\frac{\delta(x)}{|x-y_1|^2} \wedge 1 \right) \leq 1 \quad \text{and} \quad \left(\frac{\delta(x)}{|x-y_2|^2} \wedge 1 \right) \leq \frac{\delta(x)}{|x-y_2|^2}.
$$

Now, again by using the change of variables via diffeomorphism ϕ and [3, Proof of Lemma 3.3], we get estimates in each domain.

Upper bound in Q_1. Choosing η small enough such that $0 < \eta < \frac{2\delta_1}{\exp(1)}$, for some $c \in (0,1)$, we have, for any $y \in Q_1$,

$$
\frac{1}{2} \delta(x) \leq \delta(y) \leq \frac{3}{2} \delta(x), \quad \ln^{-\sigma} \left(\frac{d^\Omega}{\delta(y)} \right) \leq c^{-\sigma} \ln^{-\sigma} \left(\frac{d^\Omega}{\delta(x)} \right) \leq c^{-1} \ln^{-\sigma} \left(\frac{d^\Omega}{\delta(x)} \right).
$$
Therefore
\[
\int_{\mathcal{O}_1} G^\Omega(x, y) \frac{d\Omega}{\delta(y)^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy \leq e^{-1} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma-2s} \int_{B(x, \delta(x)/2)} \frac{1}{|x - y|^{N-2s}} dy \\
\leq e^{-1} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma} \\
\leq C \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma},
\]
where \(C \) is independent of parameter \(\sigma \).

Upper bound in \(\mathcal{O}_2 \). We have
\[
\int_{\mathcal{O}_2} G^\Omega(x, y) \frac{d\Omega}{\delta(y)^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy \leq \ln^{-\sigma} \left(\frac{d\Omega}{\eta} \right) \delta(x)^{\gamma} \int_{\mathcal{O}_2} \frac{\delta(y)^{2\gamma-2s}}{|x - y|^{N-2s+2\gamma}} dy \\
\leq \eta^{2\gamma-2s+1} \ln^{-\sigma} \left(\frac{d\Omega}{\eta} \right) \delta(x)^{\gamma} \\
\leq C(\eta, s, \gamma) \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma},
\]
where in the second last inequality we used the fact that \(\gamma > s - \frac{1}{2} \) and \(C \) is independent of parameter \(\sigma \).

Upper bound in \(\mathcal{O}_3 \). We note that, for any \(y \in \mathcal{O}_3 \),
\[
\ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) \leq \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right).
\]

Therefore
\[
\int_{\mathcal{O}_3} G^\Omega(x, y) \frac{d\Omega}{\delta(y)^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy \leq \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma} \int_{\mathcal{O}_3} \frac{\delta(y)^{2\gamma-2s}}{|x - y|^{N-2s+2\gamma}} dy \\
\lesssim \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma} \int_{|z'| < 1} \int_0^{\delta(x)/2} \frac{z_N^{2\gamma-2s}}{|\delta(x) - z_N|^{N-2s+2\gamma} z_N^{2s+2\gamma}} dz_N dz' \\
\lesssim \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma} \int_0^{1/\delta(x)} \int_0^{h^{N-2}} \frac{t^{2\gamma-2s}}{(1 - t + h)^{N-2s+2\gamma}} dt dh \\
\lesssim \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma} \int_0^{1/\delta(x)} \frac{h^{N-2}}{(1 + h)^{N-2s+2\gamma}} dh \\
\leq C(s, \gamma, \eta, \phi) \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma}.
\]
Upper bound in \mathcal{O}_4. We have

$$
\int_{\mathcal{O}_4} G^{\Omega}(x,y) \, dy \leq \delta(x)^\gamma \int_{\mathcal{O}_4} \left(\frac{d\Omega}{\delta(y)^{2s-\gamma}} \right) \frac{\delta(y)^{2s-2s}}{|x-y|^{N-2s+2s} \ln^\sigma \left(\frac{d\Omega}{\delta(y)} \right)} \, dy
eq 0
$$

$$
\lesssim \delta(x)^\gamma \int_{\left\{ \frac{\delta(x)}{2} < \eta \right\} \cap B(0,1)} \left(|\delta(x) - w_N| + |w'| \right)^{N-2s+2s} \ln^\sigma \left(\frac{d\Omega}{w_N} \right) \, dw_N \, dw'
$$

$$
= \delta(x)^\gamma \int_{3/2}^{\eta/\delta(x)} \int_0^{1/\delta(x)} \frac{1}{h^{2s-2} (1-h)^{N-2s+2s} \ln^\sigma \left(\frac{d\Omega}{h^2 \delta h} \right)} \, dt \, dh
$$

$$
= \delta(x)^\gamma \int_{3/2}^{\eta/\delta(x)} \int_0^{1/\delta(x)} \frac{1}{(h-1)^{N-2s+2s} \ln^\sigma \left(\frac{d\Omega}{h \delta(x)} \right)} \, dt \, dh
$$

$$
= \delta(x)^\gamma \int_{3/2}^{\eta/\delta(x)} \frac{1}{h} \, dh
$$

$$
= C(d\Omega) \delta(x)^\gamma \int_{\ln(d\Omega/\eta)}^{\ln(2d\Omega/3\delta(x))} \frac{1}{t^\sigma} \, dt.
$$

This gives

$$
\int_{\mathcal{O}_4} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)^{2s-\gamma}} \right) G^{\Omega}(x,y) \, dy \leq C(s, \gamma, \eta, \phi) \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^\gamma.
$$

Upper bound in \mathcal{O}_5. Again, by choosing η small enough such that $\eta < \frac{2d\Omega}{\exp(1)}$, for some $c \in (0,1)$, we have, for $y \in \mathcal{O}_5$,

$$
\delta(y) \leq \frac{3}{2} \delta(x) \quad \text{and} \quad \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) \leq c^{-\sigma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \leq c^{-1} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right),
$$
Therefore

\[
\int_{\partial_5} \frac{G^{\Omega}(x,y)}{\delta(y)^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy \lesssim \delta(x)^{\gamma} \int_{\partial_5} \frac{\delta(y)^{2\gamma-2s}}{|x-y|^{N-2s+2\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy
\]

\[
\lesssim \delta(x)^{3\gamma-2s} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \int_{\partial_5} \frac{1}{|x-y|^{N-2s+2\gamma}} dy
\]

\[
\lesssim \delta(x)^{3\gamma-2s} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \int_{\delta(x)/2}^{1} \int_{\delta(x)/2}^{1} \frac{t^{N-2}}{(|x-y|+t)^{N-2s+2\gamma}} dt dh
\]

\[
\lesssim \delta(x)^{3\gamma-2s} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \int_{\delta(x)/2}^{1} \frac{t^{2\gamma-2s-1}}{t^{N-2s+2\gamma}} dr dt
\]

\[
\lesssim \delta(x)^{\gamma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \int_{1/2}^{1/\delta(x)} \frac{r^{2s-2\gamma-1}}{(r+1)^{N-2s+2\gamma}} dr
dr tp(x)
\]

\[
\leq C(s, \gamma, \eta, \phi) \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma}.
\]

Here in the last estimate we have used the assumption that \(\gamma > s - \frac{1}{2} \). Finally, by collecting all the estimates in \(\{\Omega_i\} \), we get the desired upper estimate. \(\square \)

Lemma 5.3. Assume \((\Theta_1),(\Theta_2)\) hold and \(s - \frac{1}{2} < \gamma < 2s \). Then for \(\sigma \in [0,1) \), there holds

\[
\mathcal{G}^{\Omega} \left[\frac{1}{\delta^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta} \right) \right] (x) \simeq \delta(x)^{\gamma} \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \quad \forall \ x \in \Omega \setminus \Omega_{\frac{3}{2}},
\]

for some \(\eta > 0 \).

Proof. Let \(\eta > 0 \) small and \(I_1(x), I_2(x) \) as in \((5.10)\).

Lower estimate. We have

\[
I_2(x) = \int_{\Omega \setminus \Omega_{\eta}} \frac{G^{\Omega}(x,y)}{\delta(y)^{2s-\gamma}} \ln^{-\sigma} \left(\frac{d\Omega}{\delta(y)} \right) dy \geq \ln^{-\sigma} \left(\frac{d\Omega}{\eta} \right) \mathcal{G}^{\Omega} \left[\frac{1}{\delta^{2s-\gamma}} \right] (x)
\]

\[
\geq C \ln^{-\sigma} \left(\frac{2d\Omega}{\eta} \right) \delta(x)^{\gamma} \geq C(\eta) \ln^{1-\sigma} \left(\frac{2d\Omega}{\eta} \right) \delta(x)^{\gamma}
\]

\[
\geq C(\eta) \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \delta(x)^{\gamma}.
\]
Upper estimate. Using the estimates from [3, Proof of Lemma 3.2, Page 37], for \(\eta \) small enough, we obtain
\[
I_1(x) + I_2(x)
\leq \ln^{-\sigma}(\frac{d\Omega}{\eta}) \delta(x)^\gamma \left(\int_{\Omega_2^\sigma} \frac{G_{\Omega}(x,y)}{\delta(y)^{2s-\gamma}} dy + \int_{\Omega_1 \setminus \Omega_2^\sigma} \frac{G_{\Omega}(x,y)}{\delta(y)^{2s-\gamma}} dy \right) + \frac{\ln^{-\sigma}(2)}{\eta^{2s-\gamma}} G_{\Omega}[1_{\Omega}](x)
\leq C(d\Omega, \eta) \ln^{-\sigma}(1 + \frac{1}{\eta^{2s-\gamma}}) \delta(x)^\gamma.
\]
This implies the desired upper bound. \(\square \)

5.2. Existence and uniqueness results.

For \(\epsilon > 0 \), consider the following approximating problem
\[
\begin{cases}
\mathbb{L}u = \frac{1}{(u_\epsilon + \epsilon)^q} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},
\end{cases}
\]
where \(q > 0 \).

Proposition 5.4. Assume \((L1) - (L3) \) and \((G1) - (G3) \) hold. Then for any \(\epsilon > 0 \), there exists a unique weak-dual solution \(u_\epsilon \in L_1^0(\Omega, \delta^\gamma) \cap L^\infty(\Omega) \) of problem \((P_\epsilon^\ell) \) in the sense that
\[
\int_{\Omega} u_\epsilon \xi \, dx = \int_{\Omega} \frac{1}{(u_\epsilon + \epsilon)^q} G_{\Omega}[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]

The solution is represented by
\[
u_\epsilon = G_{\Omega} \left[\frac{1}{(u_\epsilon + \epsilon)^q} \right] \text{ a.e. in } \Omega.
\]

Moreover, the mapping \(\epsilon \mapsto u_\epsilon \) is decreasing.

Proof. Fix \(\epsilon > 0 \). For any \(\varphi \in L^\infty(\Omega) \), in light of the continuous embedding property of the Green operator \(G_{\Omega} : L^\infty(\Omega) \rightarrow L^\infty(\Omega) \) (see [3, Theorem 2.1]) and Lemma 4.2, the function
\[
u = G_{\Omega} \left[\frac{1}{(\varphi^+ + \epsilon)^q} \right] \in L^\infty(\Omega),
\]
where \(\varphi^+ = \max\{\varphi,0\} \), is the unique positive weak-dual solution the following problem
\[
\begin{cases}
\mathbb{L}u = \frac{1}{(\varphi^+ + \epsilon)^q} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},
\end{cases}
\]
in the sense that
\[
\int_{\Omega} u \xi \, dx = \int_{\Omega} \frac{1}{(\varphi^+ + \epsilon)^q} G_{\Omega}[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]
Define the solution map $T_\varepsilon : L^\infty(\Omega) \to L^\infty(\Omega)$ as

$$T_\varepsilon(\varphi) := \frac{1}{G^\Omega \left[\frac{1}{(\varphi^+ + \varepsilon)^q} \right]}(x), \quad \varphi \in L^\infty(\Omega).$$

We will use the Schauder fixed point theorem to show that T_ε admits a fixed point which is a weak-dual solution of (5.15).

For any $\varphi \in L^\infty(\Omega)$ and $x \in \Omega$, we obtain

$$\left| G^\Omega \left[\frac{1}{(\varphi^+ + \varepsilon)^q} \right](x) \right| \leq \varepsilon^{-q}G^\Omega[1](x) \leq \varepsilon^{-q}\|G^\Omega[1]\|_{L^\infty(\Omega)} =: R_\varepsilon,$$

and thus,

$$\|T_\varepsilon(\varphi)\|_{L^\infty(\Omega)} \leq R_\varepsilon. \quad (5.17)$$

Put

$$\mathcal{D}_\varepsilon := \{ \varphi \in L^\infty(\Omega) : \|\varphi\|_{L^\infty(\Omega)} \leq R_\varepsilon \}$$

then \mathcal{D}_ε is a closed, convex subset of $L^\infty(\Omega)$. Moreover, by (5.17), $T_\varepsilon(\mathcal{D}_\varepsilon) \subset \mathcal{D}_\varepsilon$.

Claim 1: T_ε is continuous.

Indeed, let $\{\varphi_k\} \subset L^\infty(\Omega)$ such that $\varphi_k \to \varphi$ in $L^\infty(\Omega)$. Put $u_k = T_\varepsilon(\varphi_k)$ and $u = T_\varepsilon(\varphi)$. For any $x \in \Omega$, we have

$$|u_k(x) - u(x)| = \left| G^\Omega \left[\frac{1}{(\varphi_k^+ + \varepsilon)^q} \right](x) - G^\Omega \left[\frac{1}{(\varphi^+ + \varepsilon)^q} \right](x) \right|$$

$$= \int_\Omega G^\Omega(x,y) \left| \frac{1}{(\varphi_k^+ + \varepsilon)^q} - \frac{1}{(\varphi^+ + \varepsilon)^q} \right| dy$$

$$\leq \frac{q}{\varepsilon^{q+1}} \int_\Omega G^\Omega(x,y) |\varphi_k^+(y) - \varphi^+(y)| dy$$

$$\leq \frac{q}{\varepsilon^{q+1}} G^\Omega[1](x)$$

$$\leq \frac{q}{\varepsilon^{q+1}} \|G^\Omega[1]\|_{L^\infty(\Omega)} \|\varphi_k - \varphi\|_{L^\infty(\Omega)}.$$

Therefore

$$\|u_k - u\|_{L^\infty(\Omega)} \leq \frac{q}{\varepsilon^{q+1}} \|G^\Omega[1]\|_{L^\infty(\Omega)} \|\varphi_k - \varphi\|_{L^\infty(\Omega)}. \quad (5.18)$$

Consequently, since $\varphi_k \to \varphi$ in $L^\infty(\Omega)$, by letting $k \to \infty$ in (5.18), we derive that $u_k \to u$ in $L^\infty(\Omega)$. Thus T_ε is continuous.

Claim 2: $T_\varepsilon(\mathcal{D}_\varepsilon)$ is relatively compact.

Indeed, by Arzela-Ascoli theorem and (5.17), it is enough to show that the set $T_\varepsilon(\mathcal{D}_\varepsilon)$ is equicontinuous, namely for any $x \in \Omega$ and $\mu > 0$, there exists $\nu > 0$ such that if for every $y \in B(x, \nu)$ and $u \in T_\varepsilon(\mathcal{D}_\varepsilon)$ there holds

$$|u(x) - u(y)| < \mu.$$

To this end, let $x \in \Omega$ and $\mu > 0$. Using the fact that $G^\Omega[L^\infty(\Omega)] \subset C(\overline{\Omega})$ is continuous (Theorem 2.10), we get $G^\Omega[1] \in C(\overline{\Omega})$. This implies

$$\lim_{y \to z} \int_\Omega G^\Omega(y,z) dz = \int_\Omega G^\Omega(x,z) dz.$$
This, together with assumption (G3), implies that
$$\lim_{y \to x} \int_{\Omega} |G(x, z) - G(y, z)|\,dz = 0.$$ Therefore there exists $\nu > 0$ such that if $y \in B(x, \nu)$ then
$$\int_{\Omega} |G(x, z) - G(y, z)|\,dz < \mu \epsilon^q.$$
Now take $u \in T_{\epsilon}(D_{\epsilon})$, then there exists $\phi \in D_{\epsilon}$ such that $u = T_{\epsilon}(\phi)$. For $y \in B(x, \nu)$, we have
$$|u(x) - u(y)| = |G\left[\frac{1}{(u^+ + \epsilon)^q} \right](x) - G\left[\frac{1}{(u^+ + \epsilon)^q} \right](y)| \leq \frac{1}{\epsilon^q} \int_{\Omega} |G(x, z) - G(y, z)|\,dz \leq \mu.$$
Therefore $T_{\epsilon}(D_{\epsilon})$ is equicontinuous. By Arzela-Ascoli theorem, $T_{\epsilon}(D_{\epsilon})$ is relatively compact. Therefore, we have proved Claim 2.

We infer from the Schauder fixed point theorem that there exists a fixed point $u_{\epsilon} \in D_{\epsilon}$ of T_{ϵ}, namely
$$0 < u_{\epsilon} = T_{\epsilon}(u_{\epsilon}) = \mathbb{G}^\Omega \left[\frac{1}{(u_{\epsilon}^+ + \epsilon)^q} \right].$$
From Lemma 4.2, we see that u_{ϵ} is a weak-dual solution of (5.15) in the sense of (5.16).

Finally, we will show that $\epsilon \mapsto u_{\epsilon}$ is decreasing. To this end, let $\epsilon > \epsilon'$ and denote by u_{ϵ} and $u_{\epsilon'}$ the corresponding weak-dual solutions of (P_s^\epsilon). For any $\xi \in C_c^\infty(\Omega)$, $\xi \geq 0$, $\mathbb{G}^\Omega[\xi] > 0$, from Kato’s inequality (see, Lemma 4.5), we obtain
$$0 \leq \int_{\Omega} (u_\epsilon - u_{\epsilon'})^+ \xi \,dx \leq \int_{\{u_\epsilon \geq u_{\epsilon'}\}} \left(\frac{1}{(u_\epsilon^+ + \epsilon)^q} - \frac{1}{(u_{\epsilon'}^+ + \epsilon')^q} \right) \mathbb{G}^\Omega[\xi] \,dx \leq 0,$$
which implies that $(u_\epsilon - u_{\epsilon'})^+ = 0$ in Ω, whence $u_\epsilon \leq u_{\epsilon'}$ in Ω. □

Let φ_1 and λ_1 be the first eigenfunction and eigenvalue for the operator L, then by [21, Proposition 3.7] and [15, Proposition 5.3, 5.4], we have
$$\varphi_1 = \delta^\gamma \text{ and } \varphi_1(\lambda_1 \mathbb{G}^\Omega[\varphi_1]) \in \Omega \quad (5.20)$$

Theorem 5.5. Assume (L1)–(L4) and (G1)–(G3) hold and $(q, \gamma) \in \mathbb{E}$. Then there exists a unique weak-dual solution u_* of the problem (P_s^*) in the sense of definition 3.1.

Proof. Let u_1 be the weak-dual solution of (P^1_s), then u_1 can be represented as
$$u_1 = \mathbb{G}^\Omega \left[\frac{1}{(u_1 + 1)^q} \right] \in \Omega. \quad (5.21)$$
On the one hand, we see that
$$0 < u_1 \leq \mathbb{G}^\Omega[1] \quad \text{in } \Omega.$$
On the other hand, for $x \in \Omega$,
\[
\varphi_1(x) = \lambda_1 G^\Omega \varphi_1(x) = \lambda_1 G^\Omega \left[\varphi_1 \left(\frac{\|u_1\|_{L^\infty(\Omega)} + 1}{\|u_1\|_{L^\infty(\Omega)} + 1} \right) \right] (x) \\
\leq \lambda_1 \|\varphi_1\|_{L^\infty(\Omega)} \left(\frac{\|u_1\|_{L^\infty(\Omega)} + 1}{\|u_1\|_{L^\infty(\Omega)} + 1} \right)^q G^\Omega \left[\left(\frac{\|u_1\|_{L^\infty(\Omega)} + 1}{\|u_1\|_{L^\infty(\Omega)} + 1} \right)^{-q} \right] (x) \\
\leq C G^\Omega \left[\frac{1}{(u_1 + 1)^q} \right] (x) = C u_1(x),
\] where C depends on $N, s, \gamma, \Omega, \alpha, \lambda_1, \phi_1$.

For $0 < \varepsilon < 1$, let u_ε be the weak-dual solution of $\begin{array}{c} P^\varepsilon \end{array}$, then u_ε is represented as
\[
u_\varepsilon(x) = G^\Omega \left[\frac{1}{(u_\varepsilon + \varepsilon)^q} \right] (x) = \int_{\Omega} G^\Omega(x, y) \frac{dy}{(u_\varepsilon(y) + \varepsilon)^q}, \quad x \in \Omega.
\]
Combining the fact that $\varepsilon \mapsto u_\varepsilon$ is decreasing, estimate (5.20) and (5.22), we deduce that, for $\varepsilon < 1$,
\[u_\varepsilon \geq u_1 \geq G \varphi_1 \geq C \delta^\gamma \quad \text{in } \Omega, \]
where the constant C is independent of ε.

To prove the boundary upper behavior, we consider the following cases.

Case 1: $0 < q < q^{*}_{s, \gamma}$. Using estimate (5.23) and Lemma 4.3, we get
\[u_\varepsilon \leq G^\Omega \left[\frac{1}{(\delta^\gamma + \varepsilon)^q} \right] \leq G^\Omega \left[\frac{1}{\delta^\gamma q} \right] \leq \delta^\gamma \quad \text{if } q < \min \left\{ q^{*}_{s, \gamma}, 1 + \frac{1}{\gamma} \right\}. \]
Combining (5.23) and (5.24), there exist $C_1, C_2 > 0$ such that for any $0 < \varepsilon < 1$,
\[C_1 \delta^\gamma \leq u_\varepsilon \leq C_2 \delta^\gamma \quad \text{if } q < \min \left\{ q^{*}_{s, \gamma}, 1 + \frac{1}{\gamma} \right\}. \]
We note that if $\gamma \geq s - \frac{1}{2}$, then $q^{*}_{s, \gamma} \leq 1 + \frac{1}{\gamma}$, hence the condition on q becomes $q < q^{*}_{s, \gamma}$.

Case 2: $q \in (q^{*}_{s, \gamma}, q^{*}_{s, \gamma})$. Put $\varepsilon_1 = \varepsilon^{\frac{1}{\gamma}} > 0$. Let w_{ε_1} be the weak-dual solution of
\[
\begin{cases}
L w_{\varepsilon_1} = \frac{1}{(\delta + \varepsilon_1)^\beta} & \text{in } \Omega, \\
w_{\varepsilon_1} > 0 & \text{in } \Omega, \\
w_{\varepsilon_1} = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable}.
\end{cases}
\]
Using Lemma 4.3 with β and α are defined in (5.1), we obtain
\[w_{\varepsilon_1} = G^\Omega \left[\frac{1}{(\delta + \varepsilon_1)^\beta} \right] \leq G^\Omega \left[\frac{1}{\beta^\delta} \right] \leq C \delta^\alpha \quad \text{in } \Omega \quad \text{if } \gamma > \max \left\{ \alpha, s - \frac{1}{2}, \beta - 1 \right\}. \]

On the other hand for $0 < \eta < 1$, Lemma 5.1 gives
\[
\begin{aligned}
w_{\varepsilon_1}(x) &= G^\Omega \left[\frac{1}{(\delta + \varepsilon_1)^\beta} \right] (x) \\
&\geq G^\Omega \left[\frac{1}{\delta + \eta} \right] \Omega_0 \left(\frac{1}{(\delta(x) + \varepsilon_1)^\alpha - \epsilon} \right) \quad \text{if } x \in \Omega_0, \\
&\geq \min \left\{ c_1, c_2 \right\} \left(\frac{1}{2} (\delta(x) + \varepsilon_1)^\alpha - \epsilon \right), \quad x \in \Omega \quad \text{if } \gamma > \max \left\{ \alpha, s - \frac{1}{2}, \beta - 1 \right\}.
\end{aligned}
\]
Combining (5.20)-(5.27), there exist constants \(c_3, c_4 > 0\) depending upon \(\eta, \alpha, s\) (but independent of \(\epsilon_1\)) such that
\[
c_3 \left(\frac{1}{2} (\delta(x) + \epsilon_1)^\alpha - \epsilon \right) \leq w_{\epsilon_1}(x) \leq c_4 \delta(x)^\alpha, \quad x \in \Omega \quad \text{if } \gamma > \max \left\{ \alpha, s - \frac{1}{2}, \beta - 1 \right\}. \tag{5.28}
\]
Define
\[
u_c := c_\eta w_{\epsilon_1} \quad \text{with } 0 < c_\eta < \frac{C_1}{c_4 \left(\frac{\eta}{2} \right)^{\gamma - \alpha}}, \tag{5.29}
\]
where \(C_1, c_4\) are the constants defined in (5.25) and (5.28) respectively. We note that \(c_\eta\) is independent of \(\epsilon\) such that
\[
u_c \leq u_\epsilon \quad \text{in } \Omega \setminus \Omega_\eta^c
\]
and
\[
u_c + \epsilon \leq 2c_4c_\eta(\delta + \epsilon_1)^\alpha + (1 - c_4c_\eta)\epsilon \quad \text{in } \Omega.
\]
If \(2c_4c_\eta(\delta(x) + \epsilon_1)^\alpha \geq (1 - c_4c_\eta)\epsilon\) then by choosing \(\eta\) small enough such that \(c_\eta < (4c_4)^{-\frac{\eta}{\gamma + 1}}\), we have\[
(\nu_c + \epsilon)^{-q} \geq (4c_4c_\eta)^{-q} (\delta + \epsilon_1)^{-aq} > c_\eta(\delta + \epsilon_1)^{-aq} = c_\eta(\delta + \epsilon_1)^{-\beta} = L\nu_c \quad \text{in } \Omega.
\]
If \(2c_4c_\eta(\delta(x) + \epsilon_1)^\alpha \leq (1 - c_4c_\eta)\epsilon\) then again by choosing \(\eta\) small enough such that \(c_4c_\eta \leq 1\) and \(c_\eta < (2(1 - c_4c_\eta))^{-q}\), we have
\[
(\nu_c + \epsilon)^{-q} \geq (2(1 - c_4c_\eta))^{-q}\epsilon^{-q} \geq (2(1 - c_4c_\eta))^{-q}(\delta + \epsilon_1)^{-aq} > c_\eta(\delta + \epsilon_1)^{-aq} = c_\eta(\delta + \epsilon_1)^{-\beta} = L\nu_c \quad \text{in } \Omega.
\]
Combining the above cases, we obtain
\[
L\nu_c \leq \frac{1}{(\nu_c + \epsilon)^q} \quad \text{in } \Omega.
\]
Recalling that \(u_\epsilon\) is the weak-dual solution of \((T^\epsilon_\alpha)\). By applying the Kato type inequality \((1.3)\), we get \(\nu_c \leq u_\epsilon\) in \(\Omega\), namely there exist constants \(0 < c_5, c_6 < \frac{1}{2}\) (by taking \(\eta\) small enough) such that
\[
c_5(\delta + \epsilon_1)^\alpha - c_6\epsilon \leq u_\epsilon \quad \text{in } \Omega. \tag{5.30}
\]
Using the integral representation of the solution \(u_\epsilon\) and (5.26) with \(\beta = \alpha q = \frac{2aq}{q + 1}\), we obtain the upper bound as follows
\[
u_\epsilon = \mathcal{G}^\Omega \left[\frac{1}{(u_\epsilon + 1)^q} \right] \leq \mathcal{G}^\Omega \left[\frac{1}{(c_5(\delta + \epsilon_1)^\alpha + (1 - c_6)\epsilon)^q} \right] \leq \mathcal{G}^\Omega \left[\frac{1}{\delta^{aq}} \right] = \mathcal{G}^\Omega \left[\frac{1}{\delta^q} \right] \lesssim \delta^\alpha \quad \text{if } \gamma > \max \left\{ \alpha, s - \frac{1}{2}, \beta - 1 \right\}. \tag{5.31}
\]
The above condition breakdown the range of \(q\) as
\[
q \in \left(q_{s,\gamma}^*, \infty \right) \quad \text{if } 2s - 1 \leq \gamma
\]
and
\[
q \in \left(q_{s,\gamma}^*, \frac{\gamma + 1}{2s - \gamma - 1} \right) \quad \text{if } \gamma < 2s - 1.
\]
Case 3: \(q = q_{s, \gamma}^* \). In this case, by using (5.22) and Lemma 4.3, we get
\[
 u_\epsilon = G^\Omega \left[\frac{1}{u_\epsilon + \epsilon^q} \right] \leq C G^\Omega \left[\frac{1}{(s+\epsilon)^q} \right]
\]
\[
 \leq C G^\Omega \left[\frac{1}{\delta \gamma} \right] \leq C \delta \gamma \ln \left(\frac{d\Omega}{\delta} \right) \quad \text{if } q = q_{s, \gamma}^* < 1 + \frac{1}{\Gamma}.
\]
(5.32)

The above condition \(q_{s, \gamma}^* < 1 + \frac{1}{\gamma} \) follows from the assumption \(\gamma > s - \frac{1}{q} \).

Define \(u_* := \lim_{\epsilon \to 0} u_\epsilon \). Then, by using uniform boundary behavior in \(\epsilon \) and Lebesgue dominated convergence theorem, we pass to the limits in (5.14) and obtain
\[
 \int_\Omega u_* \xi \, dx = \int_\Omega \frac{1}{u_*} G^\Omega[\xi] \, dx \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]
(5.33)

Again, the uniqueness of the weak-dual solution from Kato type inequality (1.3). The proof is complete.

5.3. Boundary behavior of weak-dual solutions.

Theorem 5.6. Assume (1.1)–(1.4) and (1.1)–(1.3) hold and \((q, \gamma) \in \mathbb{E} \). Let \(u_* \) be the weak-dual solution of problem (P1) obtained in Theorem 5.3. Then \(u_* \in \mathcal{A}_\gamma(\Omega) \) where \(\mathcal{A}_\gamma(\Omega) \) is defined in (3.4).

Proof. Let \(u_* \) be the weak-dual solution of the problem (P1). Using (5.25) for \(q < q_{s, \gamma}^* \) and (5.30), (5.31) for \(q > q_{s, \gamma}^* \) and (5.22), (5.32) for \(q = q_{s, \gamma}^* \) and \(\gamma < s \), we get \(u_* \in \mathcal{A}_\gamma(\Omega) \).

Now, it remains to prove the optimal boundary behavior when \(q = q_{s, \gamma}^* \) and \(s \leq \gamma < 2s \).

Case 1: \(s < \gamma < 2s \). For \(\sigma \in (0, 1) \), define
\[
 \psi_\sigma(x) := \begin{cases}
 G^\Omega \left[\frac{1}{\delta^{2s-\gamma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta} \right)} \right] (x) & \text{if } x \in \Omega, \\
 0 & \text{if } x \in \partial \Omega \text{ or } \Omega^c \text{ if applicable}.
\end{cases}
\]
(5.34)

Since \(\frac{1}{\delta^{2s-\gamma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta} \right)} \in L^1(\Omega, \delta^\gamma) \), by using Lemma 4.2, Lemma 5.2 and Lemma 5.3, we obtain \(\psi_\sigma \in L^1(\Omega, \delta^\gamma) \),
\[
 \frac{1}{M} \delta(x)^\gamma \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right) \leq \psi_\sigma(x) \leq M \delta(x)^\gamma \ln^{1-\sigma} \left(\frac{d\Omega}{\delta(x)} \right), \quad x \in \Omega,
\]
(5.35)

where \(M \) is independent of the parameter \(\sigma \in (0, \sigma_0) \) for some \(0 < \sigma_0 < 1 \) and
\[
 \int_\Omega \psi_\sigma \xi \, dx = \int_\Omega G^\Omega \left[\frac{1}{\delta^{2s-\gamma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta} \right)} \right] \xi \, dx
\]
\[
 = \int_\Omega \delta^{2s-\gamma} \ln^{-\sigma} \left(\frac{d\Omega}{\delta} \right) G^\Omega[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]

Let \(u_* \) be the weak-dual solution of (P2). For \(\sigma = q \in (0, 1) \), define \(\tilde{\psi}_\sigma := C^{-q} \psi_\sigma \) where \(C \) is defined in (5.32). Then using the upper bound of \(u \) in (5.32), we get
\[
 \mathbb{L} \tilde{\psi}_\sigma = \frac{1}{C \delta^{2s-\gamma} \ln^q \left(\frac{d\Omega}{\delta} \right)} \leq \frac{1}{u_*^q} = \mathbb{L} u_*.
\]
(5.36)
From (5.35) and Kato’s inequality, we infer that
\[
\frac{1}{MC^q} \delta(x)^\gamma \ln^{1-q} \left(\frac{d\Omega}{\delta(x)} \right) \leq C^{-q} \psi_\sigma(x) \leq u_*(x), \quad x \in \Omega.
\] (5.37)

Define \(\psi_{\sigma_1} := M^q C^{q^2} \psi_{\sigma_1} \) for \(\sigma_1 = q(1-q) \in (0,1) \) and using \(\text{(5.37)} \) and the fact that \(q\gamma = 2s - \gamma \), we obtain
\[
\mathbb{L} u_* = \frac{1}{u_*^q} \leq \frac{M^q C^{q^2}}{\delta^{2s - \gamma} \ln^{q(1-q)} \left(\frac{d\Omega}{\delta} \right)} = \mathbb{L} \psi_{\sigma_1}.
\] (5.38)

Then by again using (5.35) and the Kato inequality, we get
\[
u_* \leq M^q C^{q^2} \psi_{\sigma_1} \leq M^{q+1} C^{q^2} \delta^\gamma \ln^{1-q+q^2} \left(\frac{d\Omega}{\delta} \right) \quad \text{in } \Omega.
\]

Now, by iterating these estimates, we get for any \(m \in \mathbb{N} \),
\[
\frac{1}{M^{1+q+q^2+\ldots+q^{2m-2}} C^{q^{2m-1}}} \delta^{q \gamma} \ln^{1-q+q^2+\ldots+q^{2m+1}} \left(\frac{d\Omega}{\delta} \right) \leq u_* \leq M^{1+q+q^2+\ldots+q^{2m-1}} C^{q^{2m}} \delta^\gamma \ln^{1-q+q^2+\ldots+q^{2m+2}} \left(\frac{d\Omega}{\delta} \right) \quad \text{in } \Omega.
\]

Passing \(m \to \infty \) and recalling that \(q = q_*^{s,\gamma} \in (0,1) \), we obtain
\[
\frac{1}{M^{2^\gamma - 2s}} \delta^{q \gamma} \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta} \right) \leq u_* \leq M^{2^\gamma - 2s} \delta^{q \gamma} \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta} \right) \quad \text{in } \Omega.
\] (5.39)

Case 2: \(\gamma = s \). In this case, \(q = q_*^{s,\gamma} = 1 \) and hence, by taking \(\sigma = \frac{1}{2} \) in (5.34), we derive that \(\psi_{\frac{1}{2}} \) satisfies
\[
\psi_{\frac{1}{2}} = \mathbb{G}^\Omega \left[\frac{1}{\delta^{q \gamma} \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta} \right)} \right] \quad \text{in } \Omega.
\] (5.40)

Next, by taking \(\sigma = \frac{1}{2} \) and using (5.35), we have
\[
\frac{1}{M} \delta(x)^\gamma \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta(x)} \right) \leq \psi_{\frac{1}{2}}(x) \leq M \delta(x)^\gamma \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta(x)} \right), \quad x \in \Omega.
\] (5.41)

Recall that
\[
u_* = \mathbb{G}^\Omega \left[\frac{1}{u_*} \right] \quad \text{in } \Omega.
\] (5.42)

Combining (5.40)–(5.42) and applying Kato type inequality (1.3) for the functions \(\frac{\psi_{\frac{1}{2}}}{\psi_{\frac{1}{2}}} - \psi_{\frac{1}{2}} \) and \(\psi_{\frac{1}{2}} - Mu_* \), successively, we obtain
\[
\frac{1}{M^2} \delta(x)^\gamma \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta(x)} \right) \leq \frac{1}{M} \psi_{\frac{1}{2}} \leq u_*(x) \leq M \psi_{\frac{1}{2}} \leq M^2 \delta(x)^\gamma \ln^{\frac{1}{2}} \left(\frac{d\Omega}{\delta(x)} \right), \quad x \in \Omega.
\]

The proof is complete. \(\square \)

Proof of Theorem 3.3 and 3.4 Combining the results in Theorem 5.5 and Theorem 5.6 we complete our proof. \(\square \)
Remark 5.7. Under the same assumption Theorem 3.3 and \(f \in \delta^\gamma L^\infty(\Omega), f \geq 0 \) and with minor changes in the proof of Lemma 4.3, Proposition 5.4, Theorem 5.5 and Theorem 5.6, we can prove the existence of a unique weak dual solution \(u \in A_*(\Omega) \) of the perturbed problem

\[
\begin{align*}
\left\{\begin{array}{ll}
Lu = \frac{1}{v^\gamma} + f & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega \text{ or in } \Omega \text{ if applicable.}
\end{array}\right.
\]
\((5.43) \)

6. Applications: Semilinear problems involving singular nonlinearities

In this section, we study the semilinear elliptic problems in the presence of singular nonlinearities and a source or absorption term via sub-super solution method.

6.1. Source term. Let \(u_* \) be the solution of \((P_s) \) and put \(v_0 = u_* \). To study the problem \((S_{\lambda,q}) \), first we prove the existence results for the following parameterized iterative scheme with parameter \(\lambda \) and \(\kappa \)

\[
\begin{align*}
\left\{\begin{array}{ll}
Lv_n + \kappa v_n = \frac{1}{v_n^\gamma} + \lambda f(v_{n-1}) + \kappa v_{n-1} & \text{in } \Omega, \\
v_n > 0 & \text{in } \Omega, \\
v_n = 0 & \text{on } \partial\Omega \text{ or in } \Omega^c \text{ if applicable,}
\end{array}\right.
\]
\((Q_n) \)

for \(n \geq 1 \), via Schauder fixed point theorem which is required in the proof of Theorem 3.6. The weak-dual solution of \((Q_n) \) is understood in the sense that

\[
\int_\Omega v_n \xi \, dx + \kappa \int_\Omega v_n G^\Omega[\xi] \, dx = \int_\Omega \left(\frac{1}{v_n^\gamma} + \lambda f(v_{n-1}) + \kappa v_{n-1} \right) G^\Omega[\xi] \, dx, \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]
\((6.1) \)

Proposition 6.1. Assume \((L_1), (L_4), (G_1), (G_3), (H) \) hold and \((q,\gamma) \in E \). Then for any \(n \in \mathbb{N} \), there exists a weak-dual solution \(v_n \in A_*(\Omega) \) of the iterative scheme \((Q_n) \).

Proof. Let \(n = 1, \epsilon > 0 \) and \(\kappa > 1 \). Let \(u_* \) be the solution of \((P_\epsilon) \). Put

\[
M_\epsilon := \frac{1}{\epsilon^\gamma} + \| \lambda f(u_*) + \kappa u_* \|_{L^\infty(\Omega)}.
\]

For any function \(v \in L^\infty(\Omega) \), put

\[
A_\epsilon(v) := \{ x \in \Omega : -\kappa M_\epsilon \| G^\Omega[1] \|_{L^\infty(\Omega)}^2 \leq v(x) \leq M_\epsilon \| G^\Omega[1] \|_{L^\infty(\Omega)} \}.
\]

For any function \(v \in L^\infty(\Omega) \), there exists a unique weak-dual solution \(\tilde{v} \) of the problem

\[
\begin{align*}
\left\{\begin{array}{ll}
L\tilde{v} + \kappa v^+ 1_{A_\epsilon(v)} = \frac{1}{(v^+ + \epsilon)^\gamma} + \lambda f(v_0) + \kappa v_0, & \text{in } \Omega, \\
\tilde{v} = 0 & \text{on } \partial\Omega \text{ or in } \Omega^c \text{ if applicable.}
\end{array}\right.
\]
\((P_\epsilon') \)

The solution \(\tilde{v} \) is represented as

\[
\tilde{v} = G^\Omega \left[\frac{1}{(v^+ + \epsilon)^\gamma} + \lambda f(v_0) + \kappa(v_0 - v^+ 1_{A_\epsilon(v)}) \right] \in L^\infty(\Omega).
\]
Now, we define the solution map $S_\varepsilon : L^\infty(\Omega) \rightarrow L^\infty(\Omega)$ as
\[
S_\varepsilon(v) := G_\Omega \left[\frac{1}{(v^+ + \varepsilon)^q} + \lambda f(v_0) + \kappa(v_0 - v^+ 1_{A_\varepsilon(v)}) \right], \quad v \in L^\infty(\Omega).
\]

On one hand, we see that
\[
S_\varepsilon(v) \leq M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)} \quad \text{for a.e. } x \in \Omega. \tag{6.2}
\]

On the other hand, we obtain
\[
S_\varepsilon(v) \geq -\kappa G_\Omega[v^+ 1_{A_\varepsilon(v)}] \geq -\kappa M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)}^2 \quad \text{for a.e. } x \in \Omega. \tag{6.3}
\]

Combining (6.2) and (6.3) implies
\[
-\kappa M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)}^2 \leq S_\varepsilon(v)(x) \leq M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)} \quad \text{for a.e. } x \in \Omega.
\]

Put
\[
\mathcal{E}_\varepsilon := \{ v \in L^\infty(\Omega) : -\kappa M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)}^2 \leq v(x) \leq M_\varepsilon \|G_\Omega[1]\|_{L^\infty(\Omega)} \text{ for a.e. } x \in \Omega \}.
\]

Then \mathcal{E}_ε is a closed, convex subset of $L^\infty(\Omega)$ and $S_\varepsilon(\mathcal{E}_\varepsilon) \subset \mathcal{E}_\varepsilon$.

Claim 1: S is continuous.

Indeed, let $\{v_k\} \subset \mathcal{E}_\varepsilon$ such that $v_k \rightarrow v$ in $L^\infty(\Omega)$. Put $\tilde{v}_k = S_\varepsilon(v_k)$ and $\tilde{v} = S_\varepsilon(v)$. Since $v_k \in \mathcal{E}_\varepsilon$, it follows that $v \in \mathcal{E}_\varepsilon$. Moreover $1_{A_\varepsilon(v_k)} = 1_{A_\varepsilon(v)} = 1$ a.e. in Ω. Then
\[
|\tilde{v}_k - \tilde{v}| \leq G_\Omega \left[\frac{1}{(v_k^+ + \varepsilon)^q} - \frac{1}{(v^+ + \varepsilon)^q} \right] + \kappa G_\Omega[v_k^+ - v^+] \leq \left(\frac{q}{\varepsilon^{q+1} + \kappa} \right) G_\Omega \|v_k^+ - v^+\| \leq \left(\frac{q}{\varepsilon^{q+1} + \kappa} \right) \|v_k - v\|_{L^\infty(\Omega)} \|G_\Omega[1]\|_{L^\infty(\Omega)}.
\]

This implies
\[
\|\tilde{v}_k - \tilde{v}\|_{L^\infty(\Omega)} \leq \left(\frac{q}{\varepsilon^{q+1} + \kappa} \right) \|v_k - v\|_{L^\infty(\Omega)} \|G_\Omega[1]\|_{L^\infty(\Omega)}.
\]

Since $v_k \rightarrow v$ in $L^\infty(\Omega)$, by letting $k \rightarrow \infty$ in the above estimate, we deduce that $\tilde{v}_k \rightarrow \tilde{v}$ in $L^\infty(\Omega)$.

Claim 2: $S_\varepsilon(\mathcal{E}_\varepsilon)$ is relatively compact. By Arzela-Ascoli theorem and $S_\varepsilon(\mathcal{E}_\varepsilon) \subset \mathcal{E}_\varepsilon$, it is enough to show that the set $S_\varepsilon(\mathcal{E}_\varepsilon)$ is equicontinuous. To this end, let $x \in \Omega$ and $\mu > 0$. Therefore, there exists $\nu > 0$ such that if $y \in B(x, \nu)$ then
\[
\int_{\Omega} |G_\Omega(x, z) - G_\Omega(y, z)| dz < \mu.
\]
Now take $\tilde{v} \in S_\varepsilon(\mathcal{E}_\varepsilon)$. For $y \in B(x, \nu)$, then there exists $v \in \mathcal{E}_\varepsilon$ such that $\tilde{v} = S_\varepsilon(v)$, we have

$$|\tilde{v}(x) - \tilde{v}(y)| = \left| G^\Omega \left[\frac{1}{(v^+ + \varepsilon)^q} + \lambda f(v_0) + \kappa(v_0 - v^+_A(v)) \right] (x) - G^\Omega \left[\frac{1}{(v^+ + \varepsilon)^q} + \lambda f(v_0) + \kappa(v_0 - v^+_A(v)) \right] (y) \right|$$

$$\leq \left(\frac{1}{\varepsilon q} + \| \lambda f(v_0) + \kappa v_0 \|_{L^\infty(\Omega)} + M_e \| G^\Omega[1] \|_{L^\infty(\Omega)} \right) \int_\Omega |G^\Omega(x, z) - G^\Omega(y, z)| \, dz$$

$$\leq \left(\frac{1}{\varepsilon q} + \| \lambda f(v_0) + \kappa v_0 \|_{L^\infty(\Omega)} + M_e \| G^\Omega[1] \|_{L^\infty(\Omega)} \right) \mu.$$
Now by choosing $M = \|\lambda f(v_0) + \kappa v_0\|_{L^\infty(\Omega)}$ and applying the Kato inequality (4.3), we obtain
\[
\int_{\Omega} (v_{\epsilon,1} - V_\epsilon)^+ \xi \, dx
\leq \int_{\{v_{\epsilon,1} \geq V_\epsilon\}} \left(\frac{1}{(v_{\epsilon,1} + \epsilon)^q} - \frac{1}{(u_\epsilon + \epsilon)^q} + \lambda f(v_0) + \kappa(v_0 - v_{\epsilon,1}) - M \right) \mathbb{G}^\Omega[\xi] \, dx \leq 0.
\]
Hence $v_{\epsilon,1} \leq V_\epsilon$ in Ω. Next, by using again Kato’s inequality, we obtain, for $\epsilon > \epsilon'$,
\[
\int_{\Omega} (v_{\epsilon,1} - v_{\epsilon',1})^+ \xi \, dx \leq \int_{\{v_{\epsilon,1} \geq v_{\epsilon',1}\}} \left[\frac{1}{(v_{\epsilon,1} + \epsilon')^q} - \frac{1}{(v_{\epsilon',1} + \epsilon')^q} - \kappa(v_{\epsilon,1} - v_{\epsilon',1}) \right] \mathbb{G}^\Omega[\xi] \, dx \leq 0.
\]
It follows that $v_{\epsilon,1} \leq v_{\epsilon',1}$. Therefore $\epsilon \mapsto v_{\epsilon,1}$ is decreasing and $0 < v_\epsilon \leq v_{\epsilon,1} \leq V_\epsilon$ in Ω for every $\epsilon > 0$. Put $v_1 := \lim_{\epsilon \to 0} v_{\epsilon,1}$. We notice that
\[
\int_{\Omega} v_{\epsilon,1} \xi \, dx = \int_{\Omega} \left[\frac{1}{(v_{\epsilon,1} + \epsilon)^q} + \lambda f(v_0) + \kappa(v_0 - v_{\epsilon,1}) \right] \mathbb{G}^\Omega[\xi] \, dx \quad \forall \xi \in \delta^7 L^\infty(\Omega).
\]
By using estimate $u_\epsilon \leq v_{\epsilon,1} \leq V_\epsilon$ in Ω, $u_\epsilon, V_\epsilon \in A_\epsilon(\Omega)$ and by letting $\epsilon \to 0$, we obtain that v_1 satisfies (Q_n) for $n = 1$ and $v_1 \in A_\epsilon(\Omega)$. The remaining proof can be done by induction. □

Now, we prove our main result on problem (S_\lambda, \eta) involving the source term $\lambda f(u)$.

Proof of Theorem 3.6 Let $u_\epsilon \in A_\epsilon(\Omega)$ be the weak-dual solution of (P) and put
\[
v^0 := u_\epsilon + U^0
\]
where $U^0 = \Lambda \mathbb{G}^\Omega[1]$ is the weak-dual solution $L^\epsilon f = \Lambda$ in Ω. By choosing Λ such that $\Lambda \geq \lambda \|f(u_\epsilon + \Lambda \mathbb{G}^\Omega[1])\|_{L^\infty(\Omega)}$ due to assumption (4.3), we deduce that u_ϵ and v^0 are sub weak-dual solution and super weak-dual solution of (S_\lambda, \eta) respectively.

For $n \geq 1$, let $v_n \in A_\epsilon(\Omega) \cap L^1(\Omega, \delta^7)$ be the weak-dual solution of the iterative scheme (Q_n). The existence of the weak-dual solution $v_n \in A_\epsilon(\Omega)$ is guaranteed by Proposition 6.1. Now, we claim that
\[
0 < u_\epsilon \leq v_n \leq v^0 \quad \text{for all } n \geq 1.
\]
Let $0 \neq \xi \in C_\infty(\Omega)$ such that $\xi \geq 0$ and $\mathbb{G}^\Omega[\xi] \geq 0$. Then using the definition of u_ϵ and Kato type inequality (4.3), we obtain
\[
0 \leq \int_{\Omega} (u_\epsilon - v_1)^+ \xi \, dx \leq \int_{\{u_\epsilon \geq v_1\}} \left(\frac{1}{u_\epsilon^q} - \frac{1}{v_1^q} - \lambda f(u_\epsilon) + \kappa(v_1 - u_\epsilon) \right) \mathbb{G}^\Omega[\xi] \, dx \leq 0.
\]
This implies $(u_\epsilon - v_1)^+ = 0$ in Ω, whence $u_\epsilon \leq v_1$ in Ω. Then by using assumption (4.3), Kato type inequality (4.3), for any $0 \neq \xi \in C_\infty(\Omega)$ and $\xi, \mathbb{G}^\Omega[\xi] \geq 0$, we obtain
\[
0 \leq \int_{\Omega} (v_1 - v^0)^+ \xi \, dx \leq \int_{\{v_1 \geq v^0\}} \left(\frac{1}{v_1^q} - \frac{1}{v^0_1} + \lambda f(u_\epsilon) - \Lambda + \kappa(u_\epsilon - v_1) \right) \mathbb{G}^\Omega[\xi] \, dx \\
\leq \int_{\{v_1 \geq v^0\}} \left(\frac{1}{v_1^q} - \frac{1}{v^0_1} + \lambda f(u_\epsilon) - f(v^0) + \kappa(u_\epsilon - v^0) + \kappa(v^0 - v_1) \right) \mathbb{G}^\Omega[\xi] \, dx \leq 0.
\]
This gives \((v_1 - v^0)^+ = 0\) in \(\Omega\), whence \(v_1 \leq v^0\) in \(\Omega\). By using the argument similar to the one leading to (6.6) and (6.7) for any \(n \in \mathbb{N}\), we obtain (6.5).

Put \(v := \lim_{n \to \infty} v_n\). By using (6.5) and letting \(n \to \infty\) in (6.1), we obtain \(v \in A_\ast(\Omega)\) and

\[
\int \Omega v \xi \, dx = \int \Omega \frac{1}{\nu^q} \xi \, dx + \lambda \int \Omega f(v)G^\Omega[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]

This means \(v\) is a weak-dual solution of (\(\mathcal{S}_{\lambda,q}\)).

6.2. Absorption term.

In this part, we focus on the semilinear elliptic problem \(A_{a,q}\) involving singular nonlinearities and absorption term. Let \(u_* \in A_\ast(\Omega)\) be the solution of (\(P_*\)) and put \(w_0 = u_*\). We start by studying the existence result of the following paramterized iterative scheme involving a positive parameter \(\mu\)

\[
\begin{cases}
\mathcal{L}w_n + \mu w_n + g(w_n-1) = \frac{1}{w_n^q} + \mu w_n-1 & \text{in } \Omega, \\
w_n > 0 & \text{in } \Omega, \\
w_n = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable},
\end{cases}
\]

for \(n \geq 1\), where weak-dual solution of (\(Q_n\)) is understood in the sense that

\[
\int \Omega w_n \xi \, dx + \int \Omega (\mu w_n + g(w_n-1)) G^\Omega[\xi] \, dx = \int \Omega \left(\frac{1}{w_n^q} + \mu w_n-1 \right) G^\Omega[\xi] \, dx, \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\]

Proposition 6.2. Assume (1.1), (1.4), (1.1)–(1.3), (1.1), (1.3) hold and \((q, \gamma) \in E\). Then, for any \(n \in \mathbb{N}\), there exists a weak dual solution \(w_n \in A_\ast(\Omega)\) of the iterative scheme (\(Q_n\)).

Proof. Let \(n = 1, \epsilon > 0\) and \(\mu > 0\). Let \(u_* \in A_\ast(\Omega)\) be the solution of (\(P_*\)) and put \(w_0 = u_*\). Denote

\[
N_\epsilon := \frac{1}{\epsilon q} + \mu \|w_0\|_{L^\infty(\Omega)}.
\]

For any given function \(w \in L^\infty(\Omega)\), set

\[
B_\epsilon(w) := \left\{ x \in \Omega : -\mu N_\epsilon \|G^\Omega[1]\|_{L^\infty(\Omega)}^2 \leq \|G^\Omega[g(w_0)]\|_{L^\infty(\Omega)} - w(x) \leq N_\epsilon \|G^\Omega[1]\|_{L^\infty(\Omega)} \right\}.
\]

Using assumption (1.1), (1.3), Lemma 1.13 and the fact that \(w_0 \in A_\ast(\Omega)\), we notice that \(g(w_0) \in L^1(\Omega, \delta^\gamma)\) and \(G^\Omega[g(w_0)] \in L^\infty(\Omega)\). Since \(G^\Omega\) maps \(L^\infty(\Omega)\) to \(L^\infty(\Omega)\) (see, \cite[Theorem 2.1]{3}), for any \(w \in L^\infty(\Omega)\) there exists a unique weak-dual solution \(\tilde{w}\) of the following problem

\[
\begin{cases}
\mathcal{L} \tilde{w} = \frac{1}{(w^+ + \epsilon)^q} - g(w_0) + \mu (w_0 - w^+ 1_{B_\epsilon(w)}) & \text{in } \Omega, \\
\tilde{w} = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable}.
\end{cases}
\]

The solution \(\tilde{w}\) is represented as

\[
\tilde{w} = G^\Omega \left[\frac{1}{(w^+ + \epsilon)^q} - g(w_0) + \mu (w_0 - w^+ 1_{B_\epsilon(w)}) \right] \in L^\infty(\Omega).
\]

Now, we define the solution map \(P_\epsilon : L^\infty(\Omega) \to L^\infty(\Omega)\) as

\[
P_\epsilon(w) := G^\Omega \left[\frac{1}{(w^+ + \epsilon)^q} - g(w_0) + \mu (w_0 - w^+ 1_{B_\epsilon(w)}) \right].
\]
Using the same arguments as in Proposition 6.1, we obtain, for any \(w \in L^\infty(\Omega) \),
\[
-\mu N_\varepsilon \| G[1] \|_{L^\infty(\Omega)}^2 - \| G[\mu(w_0)] \|_{L^\infty(\Omega)} \leq P_\varepsilon(w)(x) \leq N_\varepsilon \| G[1] \|_{L^\infty(\Omega)} \text{ for a.e. } x \in \Omega.
\]

Set
\[
\mathcal{F}_\varepsilon := \{ v \in L^\infty(\Omega) : -\mu N_\varepsilon \| G[1] \|_{L^\infty(\Omega)}^2 - \| G[\mu(w_0)] \|_{L^\infty(\Omega)} \leq v(x) \leq N_\varepsilon \| G[1] \|_{L^\infty(\Omega)} \text{ for a.e. } x \in \Omega \}.
\]

Then \(\mathcal{F}_\varepsilon \) is a closed, convex subset of \(L^\infty(\Omega) \) and \(\mathbb{P}_\varepsilon(\mathcal{F}_\varepsilon) \subset \mathcal{F}_\varepsilon \). Now, by adopting the same arguments of continuity and compactness by Schauder fixed point theorem as in proof of Proposition 6.1, there exists at least one fixed point \(w_{\varepsilon,1} \in \mathcal{F}_\varepsilon \) of the map \(\mathbb{P}_\varepsilon \) such that \(\mathbb{P}_\varepsilon(w_{\varepsilon,1}) = w_{\varepsilon,1} \). Finally, from Lemma 4.1, we obtain
\[
w_{\varepsilon,1} = G[1] \left[\frac{1}{(w_{\varepsilon,1} + \varepsilon)^q} + g(w_0) + \mu(w_0 - w_{\varepsilon,1}) \right],
\]
hence \(w_{\varepsilon,1} \) satisfies
\[
\begin{cases}
\mathbb{P}w_{\varepsilon,1} + \mu w_{\varepsilon,1} + g(w_0) = \frac{1}{(w_{\varepsilon,1} + \varepsilon)^q} + \mu w_0, & \text{in } \Omega, \\
w_{\varepsilon,1} = 0 & \text{on } \partial \Omega \text{ or in } \Omega^c \text{ if applicable}.
\end{cases}
\]

To prove the positivity and boundary behavior of the weak-dual solution \(w_{\varepsilon,1} \), we construct a positive sub weak-dual solution and super weak-dual solution of the above problem. For super weak-dual solution, define \(\overline{w} := w_0 \) such that
\[
\mathbb{P}\overline{w} + \mu \overline{w} + g(w_0) \geq \frac{1}{(\overline{w} + \varepsilon)^q} + \mu w_0 \text{ in } \Omega.
\]

For sub weak-dual solution, define \(w = kw_{\varepsilon,1} \leq kw_0 \) where \(\varepsilon_k := \varepsilon k^{-1} \), \(u_{\varepsilon,k} \) is the weak-dual solution of problem \((P_{\varepsilon,k}) \) and \(k \) is chosen small enough such that
\[
k^q(\| u_{\varepsilon,k} + \varepsilon_k \|_{L^\infty(\Omega)}^2, g(w_0) \|_{L^\infty(\Omega)} + k) \leq 1.
\]

Then
\[
\mathbb{P}w + \mu w + g(w_0) \leq \frac{k}{(w_{\varepsilon,k} + \varepsilon_k)^q} + \mu w + g(w_0) \leq \frac{k^q+1}{(w_0 + \varepsilon)^q} + \mu w_0 + \frac{1 - k^q+1}{(w_0 + \varepsilon)^q} \leq \frac{1}{(w_0 + \varepsilon)^q} + \mu w_0 \text{ in } \Omega.
\] (6.9)

Then from Kato type inequality (4.3), we obtain \(0 < w \leq w_{\varepsilon,1} \leq w_0 = \overline{w} \). Now by defining \(w_1 := \lim_{\varepsilon \to 0} w_{\varepsilon,1} \) and by using the boundary behavior of \(u_\varepsilon, w_0 \) and by passing limits \(\varepsilon \to 0 \), we obtain \(w_1 \) satisfies \((Q_n) \) for \(n = 1 \) and \(w_1 \in A_s(\Omega) \). The remaining proof can be done by induction and we omit it.

\textbf{Proof of Theorem 3.8} Let \(u_* \in A_s(\Omega) \) is the weak dual solution of \((P_1) \) which act as a super weak-dual solution of the problem \((A_{g,q}) \). Put \(w_0 = u_* \).

Now, to construct the weak-dual subsolution of the problem \((A_{g,q}) \), because of \((g_q) \) we choose a constant \(\ell > 0 \) small enough such that
\[
\ell^q(\| w_0 \|_{L^\infty(\Omega)}^q, g(\ell w_0) \|_{L^\infty(\Omega)} + \ell) \leq 1.
\]
Put $w_0 := \ell w_0$ then w_0 is a sub weak-dual solution of problem $[A_{g,q}]$ since it satisfies
\begin{equation}
L w_0 + g(w_0) = \frac{\ell w_0 + 1}{w_0} + g(\ell w_0) \leq \frac{1 - \ell w_0 + 1}{w_0} + \frac{\ell w_0 + 1}{w_0} = \frac{1}{w_0}.
\end{equation}
For $n \geq 1$, let $w_n \in A_*(\Omega) \cap L^1(\Omega, \delta^\gamma)$ be the weak-dual solution of the iterative scheme $[Q_n]$. The existence of the weak-dual solution $w_n \in A_*(\Omega)$ is guaranteed by Proposition 6.2.

We claim that
\begin{equation}
0 < w_0 \leq w_n \leq w_{n-1} \leq w_0 \quad \text{for all } n \geq 1.
\end{equation}
To this end, we choose μ large enough such that $t \to \mu t - g(t)$ is increasing in the interval $(0, \|w_0\|_{L^\infty}(\Omega))$ due to assumption $[g2]$. Now by using the definition of w_0, w_n and Kato's inequality for $0 \neq \xi \in C_c^\infty(\Omega)$ such that $\xi \geq 0$ and $G^\Omega[\xi] \geq 0$, we obtain
\begin{align}
0 &\leq \int_\Omega (w_0 - w_1)^{+}\xi \, dx \\
&\leq \int_{\{w_0 \geq w_1\}} \left(\frac{\ell w_0}{w_1} + g(\ell w_0) + (g(w_0) - g(w_0)) + \mu(w_1 - w_0) \right) G^\Omega[\xi] \, dx \\
&\leq \int_{\{w_0 \geq w_1\}} \left(\frac{1}{w_0} - \frac{1}{w_1} + (g(w_0) - g(w_0)) + \mu(w_0 - w_0) + \mu(w_1 - w_0) \right) G^\Omega[\xi] \, dx \leq 0
\end{align}
and
\begin{equation}
0 \leq \int_\Omega (w_1 - w_0)^{+}\xi \, dx \leq \int_{\{w_1 \geq w_0\}} \left(\frac{1}{w_0} - \frac{1}{w_1} - g(w_1) + \mu(w_0 - w_1) \right) G^\Omega[\xi] \, dx \leq 0.
\end{equation}
The above estimate implies $w_0 \leq w_1 \leq w_0$ in Ω. By using a similar argument, we obtain $w_0 \leq w_n \leq w_0$ in Ω.

Next put $w := \lim_{n \to \infty} w_n$. By using $[6.11]$ and by letting $n \to \infty$ in $[6.8]$, we obtain $w \in A_*(\Omega)$ and
\begin{align}
\int_\Omega w \xi \, dx + \int_\Omega g(w) G^\Omega[\xi] \, dx = \int_\Omega \frac{1}{w^q} G^\Omega[\xi] \, dx \quad \forall \xi \in \delta^\gamma L^\infty(\Omega).
\end{align}
This means that w is a solution of $[A_{g,q}]$. The proof is complete.

\section{Appendix}

In this section, we discuss the Laplace operator with Hardy potential L_μ which is strongly singular on the boundary
\begin{equation}
L_\mu := -\Delta - \frac{\mu}{\delta^2},
\end{equation}
where $\mu \in \mathbb{R}$ is a parameter and $\delta(x) = \text{dist}(x, \partial\Omega)$. This operator has been investigated extensively in the literature (see $[30, 10, 34, 35, 48]$) and acts as a special case of Schrödinger operators. The parameter μ is imposed to satisfy $\mu \in [0, C_H(\Omega))$ where $C_H(\Omega)$ is the best constant in the Hardy’s inequality given by
\begin{equation}
C_H(\Omega) := \inf_{\varphi \in H^1_0(\Omega) \setminus \{0\}} \frac{\int_\Omega |\nabla \varphi|^2 \, dx}{\int_\Omega |\varphi|^2 \, dx}.
\end{equation}
We will show that the operator L_μ satisfies assumptions mentioned in Subsection 2.2. It was showed in [42] Section 9 that assumptions (L1)–(L3) and (G1)–(G2) are fulfilled for L_μ. In particular, in this case, (G2) holds for $s = 1$ and $\gamma = \frac{1}{2} + \sqrt{\frac{1}{4} - \mu}$ and assumption (L3) becomes $\mathbb{H}(\Omega) = H^1_0(\Omega)$. We also have

$$\langle u, v \rangle_{H^1_0(\Omega)} = \int_\Omega \nabla u \cdot \nabla v \, dx - \mu \int_\Omega \frac{u(x)v(x)}{\delta(x)^2} \, dx, \quad \forall u, v \in H^1_0(\Omega). \quad (7.1)$$

Next, assumption (G3) holds true by using a similar argument as in the case of the sum of two RFLs in Subsection 2.3 together with the continuity and small and long time estimates of the heat kernel in [30, (1.2) and (1.3)].

We notice that assumption (L4) is only used in proving the Kato type inequality in Proposition 4.4. Now, in order to prove Kato type inequality and ensure that our results remains true for this operator, we replace assumption (L4) by a stronger assumption involving the singular potential as follows

\[(L4)_\mu \text{ For any } u, v \in \mathbb{H}(\Omega) \cap L^\infty(\Omega) \text{ with } v \geq 0 \text{ and any convex function } p \in C^{1,1}(\mathbb{R}) \text{ with } p(0) = p'(0) = 0, \text{ there holds} \]

$$\langle p(u), v \rangle_{\mathbb{H}(\Omega)} \leq \langle u, p'(u)v \rangle_{\mathbb{H}(\Omega)} + \mu \left(p'(u)u - p(u), \frac{v}{\delta^2} \right)_{L^2(\Omega)}.$$

We will show below that the operator L_μ satisfies assumption (L4). Take $u, v \in \mathbb{H}(\Omega) \cap L^\infty(\Omega)$ with $v \geq 0$ and a convex function $p \in C^{1,1}(\mathbb{R})$ with $p(0) = p'(0) = 0$. Then by Lemma 4.4 $p(u), p'(u)v \in H^1_0(\Omega)$. Moreover, since p is a convex function, it is twice differentiable a.e. Then, by applying (7.1) for u and $p'(u)v$, we get

$$\langle u, p'(u)v \rangle_{H^1_0(\Omega)} + \mu \left(p'(u)u - p(u), \frac{v}{\delta^2} \right)_{L^2(\Omega)} = \int_\Omega |\nabla u|^2 p''(u)v \, dx + \int_\Omega p'(u)|\nabla u|^2 \, dx - \mu \int_\Omega p(u)\frac{v}{\delta^2} \, dx \geq \int_\Omega \langle \nabla (p(u)) \cdot \nabla v \, dx - \mu \int_\Omega p(u)\frac{v}{\delta^2} \, dx = \langle p(u), v \rangle_{H^1_0(\Omega)}.$$

It means that (L4) is fulfilled.

With suitable changes in the proof of Proposition 4.5 in light of assumption (L4), we can prove the required Kato type inequality. For the sake of completeness, we give a sketch of the proof.

First assume that $f \in C^\infty_c(\Omega)$, $u = G^\Omega[f]$, $p \in C^{1,1}(\mathbb{R})$ is a convex function such that $p(0) = p'(0) = 0$ and $|p'| \leq 1$ and $\xi \in \delta L^\infty(\Omega)$ such that $G^\Omega[\xi] \geq 0$. By (4.5) and (L4), we obtain

$$\int_\Omega f p'(u)G^\Omega[\xi] \, dx = \langle G^\Omega[f], p'(u)G^\Omega[\xi] \rangle_{H^1_0(\Omega)} = \langle u, p'(u)G^\Omega[\xi] \rangle_{H^1_0(\Omega)} \geq \langle p(u), G^\Omega[\xi] \rangle_{H^1_0(\Omega)} - \mu \left(p'(u)u - p(u), \frac{G^\Omega[\xi]}{\delta^2} \right)_{L^2(\Omega)} \geq \int_\Omega p(u)\xi \, dx - \mu \int_\Omega (p'(u)u - p(u))\frac{G^\Omega[\xi]}{\delta^2} \, dx. \quad (7.2)$$
The above inequality holds for any \(f \in L^1(\Omega, \delta^t) \) by repeating the approximation arguments in Claim 2 of Proposition 4.5.

Now, consider the sequence \(\{p_k\}_{k \in \mathbb{N}} \) defined in (1.11). Then for every \(k \in \mathbb{N} \), \(p_k \in C^{1,1}(\mathbb{R}) \) is convex, \(p_k(0) = (p_k)'(0) = 0 \) and \(|(p_k)'| \leq 1 \). Hence, employing (1.12) with \(p = p_k \), we have, for any \(\xi \in \delta L^\infty(\Omega) \), \(G^{\Omega}[\xi] \geq 0 \),

\[
\int_\Omega p_k(u)\xi \, dx - \mu \int_\Omega g_k(u)\frac{G^{\Omega}[\xi]}{\delta^2} \, dx \leq \int_\Omega f(p_k)'(u)G^{\Omega}[\xi] \, dx
\]

where \(g_k(t) := p_k'(t)t - p_k(t) \). Notice that \(p_k(t) \to |t| \) and \((p_k)'(t) \to \text{sign}(t) \) as \(k \to +\infty \). Then, by using the Lebesgue dominated convergence theorem, we obtain

\[
\int_\Omega p_k(u)\xi \, dx \to \int_\Omega |u|\xi \, dx \quad \text{and} \quad \int_\Omega (p_k)'(u)G^{\Omega}[\xi]f \, dx \to \int_\Omega \text{sign}^+(u)G^{\Omega}[\xi]f \, dx.
\]

Now, in order to prove the required inequality (4.2), it is enough to claim that

\[
\int_\Omega g_k(u)\frac{G^{\Omega}[\xi]}{\delta^2} \, dx \to 0 \quad \text{as} \quad k \to \infty.
\]

Let \(\epsilon > 0 \) be given. Since \(G^{\Omega}[\xi] \in L^2(\Omega) \), there exists a \(\eta = \eta(\epsilon) > 0 \) such that

if \(A \) is a measurable subset of \(\Omega \) with \(|A| < \eta \) then \(\int_A \left(\frac{G^{\Omega}[\xi]}{\delta} \right)^2 \, dx < \epsilon \).

It is easy to observe that \(g_k(u) \in H_0^1(\Omega) \) and \(g_k'(u) \leq 1 \) for all \(k \). Let \(\epsilon_1 > 0 \). Then, by using the Hardy inequality, and taking \(\epsilon < \frac{\epsilon^2}{\|u\|_{H_0^1(\Omega)}} \) and a measurable set \(A \subset \Omega \) such that \(|A| < \eta \), we obtain

\[
\int_A g_k(u)\frac{G^{\Omega}[\xi]}{\delta^2} \, dx \leq \left\| g_k(u) \right\| \frac{G^{\Omega}[\xi]}{\delta} \left\| L^2(\Omega) \frac{\delta}{\delta} \right\| \leq \epsilon^2 \left\| g_k(u) \right\|_{H_0^1(\Omega)} \leq \epsilon^2 \|u\|_{H_0^1(\Omega)} < \epsilon_1.
\]

Hence, the sequence \(\{g_k(u)G^{\Omega}[\xi]|^{-2}\}_{k \in \mathbb{N}} \) is equi-integrable. Finally, by using the fact that \(g_k(t) \to 0 \) as \(k \to \infty \) for every \(t \in \mathbb{R} \) and employing the Vitaly convergence theorem, we get the desired result. Inequality (4.3) follows by the same argument as in the proof of Proposition 4.5.

Acknowledgments. The research of Vicențiu D. Rădulescu was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, project number PCE 137/2021, within PNCDI III. The research of Rakesh Arora and Phuoc-Tai Nguyen were supported by by Czech Science Foundation, Project GA22-17403S.

References

[1] N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5555–5607.

[2] N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 439–467.

[3] N. Abatangelo, D. Gómez-Castro and J. L. Vázquez, Singular boundary behaviour and large solutions for fractional elliptic equations (2019), arXiv:1910.00366.

[4] Adimurthi, J. Giacomoni, S. Santra, Positive solutions to a fractional equation with singular nonlinearity, J. Differential Equations 265 (2018), no. 4, 1191–1226.
[5] V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys. 57 (2016), no. 5, 051502, 18 pp.

[6] R. Arora, J. Giacomoni, D. Goel and K. Sreenadh, Positive solutions of 1-D Half-Laplacian equation with singular exponential nonlinearity, Asymptotic Analysis 118 (2020), no. 1-2, 1-34.

[7] R. Arora, J. Giacomoni and G. Warnault, Regularity results for a class of nonlinear fractional Laplacian and singular problems, Nonlinear Differ. Equ. Appl. 28, 30 (2021).

[8] R. Arora and V.D. Rădulescu, Combined effects in mixed local-nonlocal stationary problems (2021), arXiv: 2111.06701.

[9] R. Arora and P. T. Nguyen, Existence and multiplicity results for nonlocal Lane-Emden systems, Acta Mathematica Vietnamica (2022), https://doi.org/10.1007/s40306-022-00485-y.

[10] C. Bandle, V. Moroz and W. Reichel, Boundary blowup type sub-solutions to semilinear elliptic equations with Hardy potential, J. Lond. Math. Soc. 2 (2008), 503-523.

[11] B. Barrios, I. De Bonis, M. Medina and I. Peral, Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math. 13 (2015), 390–407.

[12] P. K. Bhattacharyya, Distributions: generalized functions with applications in Sobolev spaces, De Gruyter 2012.

[13] K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), 89–152.

[14] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, Potential analysis of stable processes and its extensions, Springer, Berlin, 2009.

[15] M. Bonforte, A. Figalli and J. L. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calc. Var. Partial Differential Equations 57 (2018), 34 pp.

[16] M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Comm. Partial Differential Equations 35 (2015), 5725–5767.

[17] M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv. Math. 250 (2014), 242–284.

[18] M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, Arch. Ration. Mech. Anal. 218 (2015), 317–362.

[19] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

[20] A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal. 11 (2004), 147–162.

[21] Z. Chen and P. Kim, Green function estimate for censored stable processes, Probab. Theory Related Fields 124 (2002), 595–610.

[22] Z. Q. Chen, P. Kim and R. Song, Two-sided heat kernel estimates for censored stable processes, Probab. Theory Related Fields 144 (2010), 361–399.

[23] Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel estimates for censored stable-like processes, Probab. Theory Related Fields 151 (2011), 159–215.

[24] M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst. 35 (2015), 5827–5867.

[25] S. Filippas, L. Moschini, A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains, Commun. Math. Phys. 273 (2007), 237–281.

[26] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1–19.
[32] M. Ghergu and V.D. Rădulescu, *Singular elliptic problems: bifurcation and asymptotic analysis*, Oxford University Press, 2008.

[33] J. Giacomoni, T. Mukherjee and K. Sreenadh, *Positive solutions of fractional elliptic equation with critical and singular nonlinearity*, Adv. Nonlinear Anal. 6 (2017), no. 3, 327-354.

[34] K. T. Gkikas and L. Véron, *Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials*, Nonlinear Anal. 121 (2015), 469-540.

[35] K. T. Gkikas and P.-T. Nguyen, *On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials*, Journal of Differential Equations 266 (2019), 833-875.

[36] S. M. Gomes, *On a singular nonlinear elliptic problem*, SIAM J. Math. Anal. 6 (1986), 1359-1369.

[37] D. Gómez-Castro and J. L. Vázquez, *The fractional Schrödinger equation with singular potential and measure data*, Discrete Contin. Dyn. Syst. 39 (2019), 7113-7139.

[38] P. Grisvard, *Elliptic problems in nonsmooth domains*, Society for Industrial and Applied Mathematics, 2011.

[39] Y. Haitao, *Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem*, J. Differential Equations 189 (2003), 487-512.

[40] J. Hernández and F. J. Mancebo, *Singular elliptic and parabolic equations*, Handbook of Differential Equations 3 (2006), 317-400.

[41] N. Hirano, C. Saccon and N. Shioji, *Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities*, Adv. Differential Equations 9 (2004), 197-220.

[42] P. T. Huynh and P. T. Nguyen, *Semilinear nonlocal elliptic equations with source term and measure data*, 2021, to appear in Journal d’Analyse Mathématique.

[43] P. T. Huynh and P. T. Nguyen, *Semilinear nonlocal elliptic equations with absorption term*, 2022, arXiv:2209.06502.

[44] P. Kim, Y.-R. Lee, *Generalized 3G theorem and application to relativistic stable process on non-smooth open sets*, J. Funct. Anal. 246 (2007), 113-134

[45] P. Kim, R. Song and Z. Vondraček, *On the boundary theory of subordinate killed Lévy processes*, Potential Anal. 53 (2020), 131-181.

[46] P. Kim, R. Song, and Z. Vondraček, *On potential theory of Markov processes with jump kernels decaying at the boundary*, Potential Anal. (2021), 1-64.

[47] A. C. Lazer and P. J. McKenna, *On a singular nonlinear elliptic boundary value problem*, Proc. Amer. Math. Soc. 111 (1991), 721-730.

[48] M. Marcus and P.-T. Nguyen, *Moderate solutions of semilinear elliptic equations with Hardy potential*, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017):69-88.

[49] T. Mukherjee and K. Sreenadh, *Fractional elliptic equations with critical growth and singular nonlinearities*, Electron J. Differ Equ. 54 (2016), 1-23.

[50] A. Nachman and A. Callegari, *A nonlinear singular boundary value problem in the theory of pseudoplastic fluids*, SIAM J. Appl. Math. 28 (1986), 271-281.

[51] E. D. Nezza, G. Palatucci and E. Valdinoci, *Hitchhiker’s guide to the fractional Sobolev spaces*, Bull. Sci. Math. 136 (2012), 521–573.

[52] M. del Pino, *A global estimate for the gradient in a singular elliptic boundary value problem*, Proc. Roy. Soc. Edinburgh 122A (1992), 341-352.

[53] M. Ryzhn, *Estimates of Green function for relativistic α-stable process*, Potential Anal. 17 (2003), 1-23.

[54] L. Silvestre, *Regularity of the obstacle problem for a fractional power of the Laplace operator*, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.

[55] R. Song and Z. Vondraček, *Potential theory of subordinate killed Brownian motion in a domain*, Probab. Theory Related Fields 125 (2003), 578–592.

[56] C. A. Stuart, *Existence theorems for a class of nonlinear integral equations*, Math. Z. 137 (1974), 49-66.

[57] C.A. Stuart, *Existence and approximation of solutions of nonlinear elliptic equations*, Math. Z. 147 (1976), 53-63.

[58] Z. Zhang and J.Cheng, *Existence and optimal estimates of solutions for singular nonlinear Dirichlet problem*, Nonlinear Anal. 57 (2004), 473-484.
