PyToxo: a Python tool for calculating penetrance tables of high-order epistasis models

Borja González-Seoane1, Christian Ponte-Fernández2*, Jorge González-Domínguez2 and María J. Martín2

Abstract

Background: Epistasis is the interaction between different genes when expressing a certain phenotype. If epistasis involves more than two loci it is called high-order epistasis. High-order epistasis is an area under active research because it could be the cause of many complex traits. The most common way to specify an epistasis interaction is through a penetrance table.

Results: This paper presents PyToxo, a Python tool for generating penetrance tables from any-order epistasis models. Unlike other tools available in the bibliography, PyToxo is able to work with high-order models and realistic penetrance and heritability values, achieving high-precision results in a short time. In addition, PyToxo is distributed as open-source software and includes several interfaces to ease its use.

Conclusions: PyToxo provides the scientific community with a useful tool to evaluate algorithms and methods that can detect high-order epistasis to continue advancing in the discovery of the causes behind complex diseases.

Keywords: Simulation, Epistasis model, Gene interaction, Penetrance, Prevalence, Heritability, Python, SymPy

Background

Genome-Wide Association Studies (GWAS) analyse genetic markers to find associations between genetic variations and diseases. The genetic markers commonly used in GWAS are the Single Nucleotide Polymorphisms (SNP). A SNP identifies a specific position (locus) in the genome where at least 1% of the population has a genomic variation.

Traditional GWAS focused on analysing the differences between the genotype frequencies from individual SNPs of case and control samples. However, epistasis interactions need to be considered to find a relation between genotypes and phenotypes in many traits [1].

Epistasis is the interaction of genetic variation at two or more loci to produce a phenotype that is not explained by the additive combination of effects of the individual loci. If epistasis involves more than two loci, it is called high-order epistasis.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
High-order epistasis is behind complex diseases such as Alzheimer’s [2] or breast cancer [3].

The most common way to describe an epistasis relationship is through a penetrance table. A penetrance table captures the probability of expressing the phenotype to study given a particular allele combination. Table 1 shows an example of a penetrance table that considers the effects of two biallelic SNPs.

In the literature, there are simulators, such as EpiSIM [4], that allow obtaining a penetrance table for a previously established prevalence ($P(D)$) and heritability ($h^2$). These penetrance tables are obtained through the solution of the following system of equations:

$$
P(D) = \sum_i P(D|g_i)P(g_i)$$

$$
h^2 = \frac{\sum_i (P(D|g_i) - P(D))^2 P(g_i)}{P(D)(1 - P(D))}$$

where $P(D|g_i) = f_i(x, y)$ is the proportion of individuals showing trait $D$ when having the genotype $g_i$, $P(g_i)$ is the population frequency of the genotype $g_i$ and $f_i(x, y)$ is the function of two variables that defines the epistasis model. Table 2 shows an example of this function for the second-order Marchini et al. [5] additive model.

However, as not all combinations of heritability and prevalence are possible, the system often is incompatible. Additionally, equations become more and more complex as the interaction order increases, which also makes it difficult to find a solution in a reasonable time. Thus, for example, the EpiSIM simulator can only work, in practice, with second-order models and low prevalence and heritability values [6].

To overcome these limitations, in a previous work we introduced Toxo [6], a MATLAB library for calculating penetrance tables of epistasis models with no limitation on the interaction order. To simplify the equation system shown in Eq. 1, instead of finding a specific combination of heritability and prevalence, the Toxo library maximizes one of the two parameters when the other is fixed. The system to solve for a given value of prevalence is shown in Eq. 2:
Equation 3 shows the system for a fixed heritability:

\[
\sum_i (P(D|g_i)P(g_i)) = P(D) \\
\max(P(D|g_i)) = 1
\] (2)

Now, the likelihood of formulating an incompatible system is significantly reduced, since most of the models achieve individually all prevalences and heritabilities values at some point. Moreover, Toxo can calculate penetrance tables with prevalence and heritability values much higher than those observed in the state of the art. That is, Toxo provides researchers with a library that is able to generate more realistic penetrance tables.

Although Toxo solves several of the shortcomings of state-of-the-art simulators, it also has its own limitations. First, MATLAB is a commercial software and the user will need a license to run Toxo. In addition, Toxo is a library and thus, it requires certain programming knowledge to use it. It also presents limitations in the accuracy of the results, motivated by the compromise between computing time and precision that users are forced to make in MATLAB when selecting the number of decimals to operate with variable-precision arithmetic.

To solve all these limitations, in this work we present PyToxo, a Python tool to calculate penetrance tables for high-order epistasis models. PyToxo is distributed as open-source software and it does not need any commercial license since Python is open-source itself. In addition, as we will see in the results section, PyToxo improves Toxo in terms of the complexity of the epistasis models that it can handle, the accuracy in the obtained penetrance table and the execution time needed. Finally, regarding the ease of use, PyToxo includes a programmatic interface, in the form of a library, to be easily used in other Python programs; a Command-Line Interface (CLI) for advanced users, or to be able to execute the program in batch processing mode; and a Graphical User Interface (GUI) specially oriented for users unfamiliar with command-line runtime environments.

Implementation

PyToxo is implemented in Python. Currently, Python is one of the most widely used programming languages [7, 8] thanks to its simple and high-level syntax, and the large number of available libraries. In fact, it is one of the most frequently used options in the interdisciplinary field of bioinformatics, as evidenced by the Biopython project [9].

PyToxo uses multiple Python libraries in its implementation. The most important is SymPy [10, 11], a symbolic math library used to solve the equation systems presented in Eqs. 2 and 3, and to represent the numerical data. Additionally, PyToxo also uses mpmath [12] to tweak the precision of the floating-point arithmetic in SymPy, and Pillow, PySimpleGUI [13], Termcolor [14] and Colorama [15] to implement the different user interfaces.
Method

PyToxo takes as input an epistasis model, a heritability (or prevalence) value and the Minor Allele Frequencies (MAFs) associated to each of the considered locus, and generates as output a penetrance table maximizing the prevalence (or heritability). Figure 1 shows an overview of the flow of the program. $f_i(x, y)$ is the function of two variables that defines the epistasis model, timeout is the maximum time that the solver can spend trying to resolve the system, and check is a boolean variable that enables checking the correctness of the provided solution.

The first step consists of computing, from the MAFs, the population frequency associated to each of the genotype combinations, $P(g_i)$. Assuming linkage equilibrium between the two locus, and under the Hardy-Weinberg principle, $P(g_i)$ can be calculated as the product of the probabilities of each allele [16].

Then, the equation system to be solved is built using Eq. 2 for a fixed prevalence or Eq. 3 for a fixed heritability, and taking into account that $P(D|g_i) = f_i(x, y)$. The simplify() method of the SymPy library is used to simplify the mathematical expression of the system. It uses heuristics to determine the simplest result.

Next, the function solve() [17], from the SymPy library, is used to solve the resulting nonlinear system and obtain the values of $x$ and $y$. It internally uses the mpmath library to control the accumulated error that is considered tolerable. In the case of PyToxo, especially when working with large models, it is possible to relax this accumulative error to try to converge to a solution of the system. Thus, when using the solve() function, an initial attempt is made to solve the system of equations without altering any configuration and, only if it is not possible, the accumulative error is increased and tried again.

Note that the solver could not converge for some configurations. Thus, to avoid deadlocks, a maximum time to achieve a solution is introduced through the timeout argument. If the user sets it to false, no maximum time will be established; if an integer is introduced, it will be interpreted as the maximum time, in seconds; and if it is set to true, the maximum time will be assumed heuristically taking into account the order of the model: $\text{timeout} = 60(\text{order} + 1)^2$.

Once a solution to the system of equations has been found, PyToxo can verify the precision of this solution if instructed to do so through the check variable. To do so, the error of the solution is computed as the deviation obtained when substituting the values of $x$ and $y$ calculated in the previous step into Eq. 2, if the prevalence is fixed, or into Eq. 3, when the fixed parameter is the heritability. PyToxo uses a heuristic function to calculate, based on the order, the tolerable error: $E_{\text{tol}}(\text{order}) = \min(10^{\text{order}} E_0, E_{\text{max}})$. In this function, $E_0$ represents the base error which scales with the order of the model and is set to $10^{-16}$, and $E_{\text{max}}$ is the maximum allowed error and is set to $10^{-8}$. If the obtained error is greater than the tolerable error, the solution is considered invalid and a warning is generated. Thus, the solutions provided by PyToxo will have a guaranteed maximum deviation of $10^{-8}$. In any case, PyToxo rarely shows deviations greater than $10^{-16}$, as we will see in “Results and discussion” section.

At last, once the values of $x$ and $y$ have been established, they can be directly used in the penetrance expressions $f_i(x, y)$ to obtain the target penetrance table. The generated table can be printed on the screen or saved to a file. For both cases, the supported
formats are a Comma-Separated Values (CSV) file and the format used by the GAM-ETES [18] simulator. With the latter, the tables obtained by PyToxo can be passed directly to it in order to simulate population data that shows the epistasis interaction
Table 3  Input parameters of PyToxo

| Parameter | Description | Compulsory | Default value |
|-----------|-------------|------------|--------------|
| \(P(D)\) (or \(h^2\)) | Established prevalence (or heritability) | Yes | – |
| MAFs | Minor allele frequencies of each locus | Yes | – |
| \(f(x,y)\) | Function of two variables that defines the epistasis model | Yes | – |
| check | Boolean variable that enables checking the correctness of the solution | No | True |
| Timeout | Maximum time to achieve a solution | No | True* |

*Time is computed based on the order of the model

| import pytoxo |
| # Introduction of the parameters |
| model\_csv = "models/additive\_2.csv"  # Path of the CSV file |
| maf = [0.33, 0.33] |
| prev = 0.8 |

| # Creation of the model from the CSV file |
| model = pytoxo.Model(filename=model\_csv) |

| # Generation of the penetrance table |
| table\_pen = model.find\_max\_heritability\_table(mafs=maf, p=prev) |

| # Printing of the table in the GAMETES format |
| table\_pen.print\_table(format=\"gametes\") |

Fig. 2  Use of PyToxo as a library in a Python program

described by the penetrance table provided. As a summary, Table 3 shows a description of the parameters used by PyToxo together with their default values.

Interfaces

In addition to offer an API for developers (see Fig. 2 for an example of use), Pytoxo includes two user interfaces: a CLI for advanced users or to be able to run the program in batch processing; and a GUI, especially oriented for users unfamiliar with command-line execution environments.

Command-Line Interface (CLI)

For the implementation of the CLI, the Argparse library [19] was used. This library is included in the Python serial distribution and constitutes the official recommendation of the Python developers to build command-line interfaces. It facilitates the creation of CLIs, generating help messages, and ensuring the correct use of the parameters by the end user.

The CLI allows calculating penetrance tables in both the GAMETES format and CSV. It accepts as input a CSV file containing the epistasis model to be used during the process, as well as the specification of the rest of the numerical parameters: MAFs, and prevalence or heritability, depending on which parameter is maximized. For instance,
the next command would calculate a penetrance table for the fourth order Marchini et al. [5] multiplicative model, using a prevalence of 0.6 and MAFs of 0.2, 0.3, 0.3 and 0.4. Heritability is maximized and the output penetrance table is generated in GAMETES format:

```
pytoxo_cli multiplicative_4.csv --max_her 0.6 0.2 0.3 0.3 0.4 --gametes
```

**Graphical User Interface (GUI)**

The PyToxo GUI is built on Tk. Tk is a library of basic elements to build graphical user interfaces. In Python, Tk is accessed from the Tkinter [20] binding, and is considered a standard for graphical interfaces in Python. Tk has been ported to work on most variants of Linux, Apple Mac OS, and Microsoft Windows. Both Tk and Tkinter are included in most modern Python distributions for the above platforms. This is not the case for some Linux distributions, where an additional package must be installed. However, PyToxo itself detects this lack when trying to launch the interface and suggests to the user to install the required package. Thus, the graphical interface of PyToxo is not only highly compatible but also highly distributable, not needing any requirements outside of Python.

Although PyToxo’s graphical interface engine is Tk, PyToxo does not use it directly through Tkinter but uses a third library, PySimpleGUI, which simplifies the development of the interface. In addition, PySimpleGUI would allow changing the underlying Tk engine to another, such as Qt [21], with hardly any adjustments to the code, so the interface is also enhanced in terms of portability.

Figure 3 shows the initial screen of the GUI. The interface is very easy to use because it dynamically adapts to the workflow of the application. For example, we cannot use the “Calculate table” button until all the parameters have been filled in, and we cannot fill in the MAFs until we have loaded a model. The file menu is used to select the CSV file with the model.

**Results and discussion**

This section evaluates Pytoxo in terms of coverage, accuracy and execution time, comparing it to Toxo.

**Coverage**

In this first subsection we will address the coverage of PyToxo, that is, the models and configurations that it is able to solve.

To evaluate PyToxo we select the widely used threshold, additive and multiplicative models introduced by Marchini et al. in [5] and generalized up to order 8. As for the rest of parameters, we considered a representative range of values: [0.1, 0.5] for the MAFs associated with each locus, and [0.1, 0.9] for both the heritability and prevalence. In total, we based our coverage experiments on 1890 different configurations, with half maximizing prevalence and half maximizing heritability. The results can be summarized as:

- PyToxo manages to solve all the configurations that Toxo solves except one.
• PyToxo manages to solve 201 configurations that Toxo is not able to solve.
• PyToxo is able to solve threshold and additive models up to, at least, order 8.
• PyToxo is able to solve multiplicative models up to order 5.

Tables 4 and 5 present a sample of particular configurations that PyToxo manages to solve, while Toxo ends up with corrupt tables. The results of all the performed experiments are available in the reports directory of the test.solubility package of the PyToxo repository (https://github.com/bglezseoane/pytoxo).

The limits of the tool appear with the multiplicative model, which is the most complex. Up to order 5, PyToxo performs well, but from that point on, most of the configurations are unsolvable.

**Accuracy**
The accuracy of PyToxo depends on the order of the model. The error is calculated as the deviation between the obtained values of prevalence (or heritability) and the
required ones. The higher the order, the greater the error, because the system of equations to be solved becomes more complex.

Table 6 shows the error of Toxo and PyToxo for the threshold, additive and multiplicative models and orders between two and eight. For each model and order, we have considered MAFs values of 0.1 and 0.4, and heritabilities of 0.1 and 0.8 for each MAF. Results with more MAFs, heritabilities and prevalences values have been added as Additional file 1. The configurations not shown in the table correspond to combinations where either Toxo or PyToxo did not achieve valid solutions. PyToxo obtains a lower (or equal) error than Toxo in 39 out of the 50 cases shown in the table. Additionally, the average error in PyToxo is $5.74 \times 10^{-17}$ versus $1.78 \times 10^{-4}$ in Toxo, and
Table 6: Accuracy and execution time (in seconds) of Toxo and PyToxo for threshold, additive and multiplicative models with orders between 2 and 8 and different values of MAFs and heritability ($h^2$)

| Model        | Order | MAF    | $h^2$  | PyToxo error | Toxo error | Best | PyToxo Time | Toxo Time | Speedup |
|--------------|-------|--------|--------|--------------|------------|------|-------------|-----------|--------|
| Threshold    | 2     | 0.1    | $2.78 \times 10^{-17}$ | $2.45 \times 10^{-8}$ | PyToxo: 0.20 | 0.55 | 2.70        |
| Threshold    | 2     | 0.1    | 0      | 0            | Same: 0.18 | 0.23 | 1.22        |
| Threshold    | 2     | 0.4    | $1.11 \times 10^{-16}$ | 0            | Toxo: 0.14 | 0.24 | 1.70        |
| Threshold    | 2     | 0.4    | $1.11 \times 10^{-16}$ | 0            | Toxo: 0.14 | 0.22 | 1.57        |
| Threshold    | 3     | 0.1    | $1.39 \times 10^{-17}$ | $1.70 \times 10^{-7}$ | PyToxo: 0.39 | 0.31 | 0.79        |
| Threshold    | 3     | 0.1    | 0      | 3.44 $\times 10^{-9}$ | PyToxo: 0.37 | 0.71 | 1.91        |
| Threshold    | 3     | 0.4    | 0      | 0            | Same: 0.31 | 0.30 | 0.98        |
| Threshold    | 3     | 0.4    | $1.11 \times 10^{-16}$ | 0            | Toxo: 0.32 | 0.29 | 0.92        |
| Threshold    | 4     | 0.1    | 0      | 7.41 $\times 10^{-7}$ | PyToxo: 0.81 | 0.52 | 0.65        |
| Threshold    | 4     | 0.1    | 0      | 1.60 $\times 10^{-8}$ | PyToxo: 0.80 | 0.92 | 1.15        |
| Threshold    | 4     | 0.4    | $2.78 \times 10^{-17}$ | 0            | Toxo: 0.67 | 0.52 | 0.77        |
| Threshold    | 4     | 0.4    | 0      | 0            | Same: 0.67 | 0.53 | 0.77        |
| Threshold    | 5     | 0.1    | 0      | $1.41 \times 10^{-6}$ | PyToxo: 1.95 | 1.99 | 1.02        |
| Threshold    | 5     | 0.1    | $1.11 \times 10^{-16}$ | 5.71 $\times 10^{-8}$ | PyToxo: 2.04 | 2.34 | 1.15        |
| Threshold    | 5     | 0.4    | $1.39 \times 10^{-17}$ | 0            | Toxo: 2.39 | 1.98 | 0.83        |
| Threshold    | 5     | 0.4    | $1.11 \times 10^{-16}$ | 4.17 $\times 10^{-9}$ | PyToxo: 2.43 | 1.94 | 0.80        |
| Threshold    | 6     | 0.1    | $1.39 \times 10^{-17}$ | $1.95 \times 10^{-5}$ | PyToxo: 4.70 | 4.31 | 0.92        |
| Threshold    | 6     | 0.1    | $2.22 \times 10^{-16}$ | 5.43 $\times 10^{-8}$ | PyToxo: 4.68 | 4.26 | 0.91        |
| Threshold    | 6     | 0.4    | $1.39 \times 10^{-17}$ | 0            | Toxo: 6.64 | 4.29 | 0.65        |
| Threshold    | 6     | 0.4    | $2.22 \times 10^{-16}$ | 5.05 $\times 10^{-9}$ | PyToxo: 6.59 | 4.70 | 0.71        |
| Threshold    | 7     | 0.1    | $1.39 \times 10^{-17}$ | $3.81 \times 10^{-5}$ | PyToxo: 11.69 | 18.27 | 1.56        |
| Threshold    | 7     | 0.1    | $1.11 \times 10^{-16}$ | $1.58 \times 10^{-8}$ | PyToxo: 11.62 | 18.68 | 1.61        |
| Threshold    | 7     | 0.4    | $4.16 \times 10^{-17}$ | 0            | Toxo: 18.50 | 18.33 | 0.99        |
| Threshold    | 7     | 0.4    | $2.22 \times 10^{-16}$ | 0            | Toxo: 18.49 | 18.70 | 1.01        |
| Threshold    | 8     | 0.1    | $2.78 \times 10^{-17}$ | $2.42 \times 10^{-4}$ | PyToxo: 28.72 | 39.03 | 1.35        |
| Threshold    | 8     | 0.1    | $1.11 \times 10^{-16}$ | $1.29 \times 10^{-6}$ | PyToxo: 28.70 | 39.23 | 1.37        |
| Threshold    | 8     | 0.4    | $1.39 \times 10^{-17}$ | $3.51 \times 10^{-8}$ | PyToxo: 52.58 | 38.91 | 0.74        |
| Threshold    | 8     | 0.4    | $1.11 \times 10^{-16}$ | 0            | Toxo: 52.69 | 38.88 | 0.74        |
| Additive     | 3     | 0.1    | $1.39 \times 10^{-17}$ | $1.05 \times 10^{-6}$ | PyToxo: 2.13 | 3.04 | 1.43        |
| Additive     | 3     | 0.1    | $2.22 \times 10^{-16}$ | $3.26 \times 10^{-5}$ | PyToxo: 1.90 | 1.67 | 0.88        |
| Additive     | 3     | 0.4    | $9.71 \times 10^{-17}$ | 0            | Toxo: 1.81 | 1.53 | 0.85        |
| Additive     | 3     | 0.4    | $1.11 \times 10^{-16}$ | $1.62 \times 10^{-7}$ | PyToxo: 1.76 | 1.62 | 0.92        |
| Additive     | 4     | 0.1    | $2.78 \times 10^{-17}$ | $5.54 \times 10^{-4}$ | PyToxo: 3.04 | 8.72 | 2.87        |
| Additive     | 4     | 0.4    | $1.39 \times 10^{-17}$ | 0            | Toxo: 3.16 | 4.94 | 1.56        |
| Additive     | 4     | 0.4    | 0      | 0            | PyToxo: 3.20 | 4.72 | 1.47        |
| Additive     | 5     | 0.4    | $1.39 \times 10^{-17}$ | $2.66 \times 10^{-8}$ | PyToxo: 6.14 | 8.80 | 1.43        |
| Additive     | 6     | 0.4    | $1.39 \times 10^{-17}$ | $6.37 \times 10^{-7}$ | PyToxo: 13.19 | 22.60 | 1.71        |
| Additive     | 7     | 0.4    | 0      | $4.69 \times 10^{-7}$ | PyToxo: 25.86 | 51.82 | 2.00        |
| Multiplicative| 2   | 0.1    | 0      | $4.16 \times 10^{-6}$ | PyToxo: 0.67 | 2.84 | 4.25        |
| Multiplicative| 2   | 0.1    | 0      | $1.20 \times 10^{-7}$ | PyToxo: 0.69 | 1.01 | 1.47        |
| Multiplicative| 2   | 0.4    | 0      | Same: 0.71 | 1.01 | 1.43        |
| Multiplicative| 2   | 0.4    | 0      | $4.88 \times 10^{-9}$ | PyToxo: 0.64 | 1.00 | 1.56        |
| Multiplicative| 3   | 0.1    | $1.25 \times 10^{-16}$ | $7.51 \times 10^{-4}$ | PyToxo: 1.62 | 5.88 | 3.62        |
| Multiplicative| 3   | 0.1    | $3.59 \times 10^{-6}$ | PyToxo: 1.62 | 3.95 | 2.44        |
| Multiplicative| 3   | 0.4    | $4.16 \times 10^{-17}$ | $1.63 \times 10^{-7}$ | PyToxo: 1.66 | 2.96 | 1.78        |
in the few cases where Toxo obtains better accuracy results, the error introduced by PyToxo is also negligible (in the order of $10^{-16}$ or $10^{-17}$).

With all of this in mind, we can conclude that PyToxo significantly improves the accuracy of the solutions.

### Execution time

This section compares the execution times of Toxo and PyToxo for the same configurations as the previous section. Results with more MAF, heritability and prevalence values are available as Additional file 1. All the tests were executed on an Intel Core i5-9600K with 6 cores at 3.7 GHz, 16 GB of RAM DDR4, and Operating System Mac OS Big Sur 11.2.1. The MATLAB version used to execute Toxo has been the R2020b. Table 6 shows the execution times using Toxo and PyToxo and the speedup obtained with PyToxo.

The time needed by PyToxo to calculate a penetrance table grows with the order of the model to use. However, for the models tested, PyToxo is very fast, taking in all cases less than a minute.

With respect to Toxo, PyToxo obtains an average speedup of 1.90. However, if we focus on the most complex and time-consuming models, such as the fourth-order multiplicative models, the speedup of PyToxo over Toxo increases above 10.

In view of the results obtained, PyToxo would become the tool of choice for obtaining penetrance tables, regardless of the epistatic model and input parameters considered.

### Conclusions

The best way to test new algorithms or methods to detect high-order epistasis is through simulated data since they provide a controlled environment where the embedded epistatic interactions are known in advance.

Although it is very common for simulators to use penetrance tables to describe epistasis interactions, most of them do not allow the user to generate them directly, or present limitations for high-order interactions and/or realistic prevalence and heritability values.

PyToxo is a Python tool to calculate penetrance tables for high-order epistasis models. It improves state-of-the-art tools in four different aspects: first, in terms of coverage, PyToxo is able to generate penetrance tables of complex epistasis models with realistic heritability and prevalence values; second, in terms of accuracy, its average error is in the order of magnitude of $10^{-17}$, while the maximum error will never exceed the order of $10^{-8}$; third, in terms of speed, PyToxo is very fast, it is able to compute a penetrance table in less than one minute, even for order 8 epistasis models; fourth, in terms of ease of use, PyToxo can be used as a library, through a CLI or through a GUI. This last option
will be especially useful for those users not experts in programming or command-line execution environments. PyToxo is cross-platform and it was successfully tested on Linux Ubuntu 20, Microsoft Windows 10 and MacOS Big Sur. In addition, PyToxo is available through the official Python PyPI repository (https://pypi.org/project/pytoxo/) and it can be easily installed with a single command: `pip install pytoxo`.

PyToxo is available to the whole scientific community as open-source software. The source code of PyToxo, detailed users guides, and all the models and code examples used in this paper are available in the Github repository: https://github.com/bglezseoane/pytoxo.

### Availability and requirements

**Project name:** PyToxo  
**Project home page:** https://github.com/bglezseoane/pytoxo  
**Operating system(s):** Platform independent  
**Programming language:** Python  
**Other requirements:** None  
**License:** GPLv3  
**Any restrictions to use by non-academics:** None

### Abbreviations

CLI: Command-Line Interface; CSV: Comma-Separated Values; GUI: Graphical User Interface; GWAS: Genome-Wide Association Study; MAF: Minor Allele Frequency; SNP: Single Nucleotide Polymorphism.

### Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12859-022-04645-7.

#### Additional file 1.

Excel document containing additional runtime and precision results from a more extensive examination.

### Acknowledgements

Not applicable.

### Authors’ contributions

BG developed the software. CP, JG and MM supervised the project. All authors read and approved the final manuscript.

### Funding

This study and publication costs were funded by the Ministry of Science and Innovation of Spain (grant PID2019-104184RB-I00/AEI/10.13039/501100011033) and by Xunta de Galicia and FEDER funds of the EU (CTIC-Centro de Investigación de Galicia accreditation, grant ED431G 2019/01, Consolidation Program of Competitive Reference Groups, grant ED431C 2021/30). CP was funded by the Ministry of Education of Spain (grant FPU16/01333). The funders did not play any role in the design of the study, the collection, analysis, and interpretation of data, or in writing of the manuscript.

### Availability of data and materials

The source code of PyToxo, instructions of use, all the models and code examples used in this paper, as well as the results of all the tests executed are available in the Github repository: https://github.com/bglezseoane/pytoxo.

### Declarations

#### Ethics approval and consent to participate

Not applicable.

#### Consent for publication

Not applicable.

#### Competing interests

The authors declare that they have no competing interests.
Author details
1 Facultad de Informática, Universidade da Coruña, 15071 A Coruña, Spain. 2 CITIC, Computer Architecture Group, Facultad de Informática, Universidade da Coruña, 15071 A Coruña, Spain.

Received: 9 November 2021   Accepted: 22 March 2022
Published online: 02 April 2022

References
1. Taylor MB, Ehrenreich IM. Higher-order genetic interactions and their contribution to complex traits. Trends Genet. 2015;31(1):34–40.
2. Sun J, Song F, Wang J, Han G, Bai Z, Xie B, et al. Hidden risk genes with high-order intragenic epistasis in Alzheimer’s disease. J Alzheimer’s Dis. 2014;41(4):1039–56.
3. Ritchie MD, Hahn LW, Rooid N, Bailey LR, Dupont WD, Parl FF, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69(1):138–47.
4. Shang J, Zhang J, Lei X, Zhao W, Dong Y. EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis. Genes Genomics. 2013;35(3):305–16.
5. Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet. 2005;37(4):413–7.
6. Ponte-Fernández C, González-Domínguez J, Carvajal-Rodríguez A, Martín MJ. Toxo: a library for calculating penetrance tables of high-order epistasis models. BMC Bioinform. 2020;21(1):1–9.
7. Cass S. The top programming languages: our latest rankings put Python on top again—[Careers]. IEEE Spectr. 2020;57(8):22.
8. Pierre Carbonnelle. PYPL Popularity of Programming Language. https://pypl.github.io.
9. Chapman B, Chang J. Biopython: Python tools for computational biology. SIGBIO Newsl. 2000;20(2):15–9.
10. SymPy Development Team. SymPy. https://www.sympy.org/en/index.html.
11. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing in Python. PeerJ Comput Sci. 2017;3:e103.
12. Johansson F, et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.2.1); 2013. http://mpmath.org/.
13. PySimpleGUI. PySimpleGUI en GitHub. https://github.com/PySimpleGUI/PySimpleGUI.
14. Lepa K. termcolor en PyPI. https://pypi.org/project/termcolor/.
15. Hartley J. Colorama en GitHub. https://github.com/tartley/colorama.
16. Neuman RJ, Rice JP, Chakravarti A. Two-locus models of disease. Genet Epidemiol. 1992;9(5):347–65.
17. SymPy Development Team. SymPy 1.9 documentation: Solvers. 2021. https://docs.sympy.org/latest/modules/solvers/solvers.html.
18. Python Software Foundation. Parser for command-line options, arguments and sub-commands. https://docs.python.org/3/library/argparse.html.
19. Python Software Foundation. Graphical User Interfaces with Tk. https://docs.python.org/3/library/tk.html.
20. Qt Project. Qt. https://www.qt.io/product.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.