Supplementary Information
Structural Evolution, Photoelectron Spectra and Vibrational Properties of Anionic GdGeₙ⁻ (n=5-18) Nanoalloy Clusters: A DFT Insight

Zhaofeng Yang, Aziz U Rehman, Zhenzhu Cao, Jucai Yang

School of Chemical Engineering, Inner Mongolia University of Technology, and Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, Peoples Republic of China

School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Peoples Republic of China

Jucai Yang E-mail: yangjc@imut.edu.cn

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022
Figure S1. Lowest energy structure and isomers of GdGe\(_n^-\) \((n=1-4)\) anionic clusters, point group, electronic state and relative energy (in eV) calculated at mPW2PLYP/aug-cc-pVTZ,def2-TZVP//mPW2PLYP/cc-pVTZ-PP,def2-TZVP level. The blue and red circles stand for germanium and gadolinium atoms, respectively.

Figure S2. Size dependences of average atomization energy (AAE) for GeGe\(_n^-\) and LuGe\(_n^-\) \((n=5-17)\) clusters. The values of LuGe\(_n^-\) clusters are taken from Ref. 11.
Figure S3. Size dependences of HOMO-LUMO energy gap (E_{gap}) for GeGe$_n^-$ and LuGe$_n^-$ ($n=5$-17) clusters. The values of LuGe$_n^-$ clusters are taken from Ref. 11.
Table S1. Total energies (a.u.) of GdGeₙ (n=5-18) clusters in octuplet and decuplet calculated by using mPW2PLYP/(aug-cc-pVTZ,def2-TZVP)//mPW2PLYP/(cc-pVTZ-PP,def2-TZPV) scheme.

Isomer	Octuplet	Decuplet	Isomer	Octuplet	Decuplet
5A1	-11148.59661	-11148.54910	11A4	-23609.02991	-23609.00713
5A2	-11148.58321	-11148.57607	12A1	-25685.78992	-25685.74058
6A1	-13225.35432	-13225.31848	12A2	-25685.78645	-25685.72747
6A2	-13225.32490	-13225.29891	12A3	-25685.77560	-25685.73268
6A3	-13225.31069	-13225.31720	12A4	-25685.77503	-25685.75326
7A1	-15302.07925	-15302.02559	13A1	-27762.53028	-27762.49715
7A2	-15302.07592	-15302.03822	13A2	-27762.52556	-27762.48418
7A3	-15302.07234	-15302.07213	13A3	-27762.52522	-27762.48141
7A4	-15302.06729	-15302.01301	13A4	-27762.51718	-27762.45367
8A1	-17378.82419	-17378.77772	14A1	-29839.27081	-29839.21985
8A2	-17378.82139	-17378.79228	14A2	-29839.26963	-29839.21702
8A3	-17378.82024	-17378.77767	14A3	-29839.25949	-29839.24956
8A4	-17378.81909	-17378.80639	14A4	-29839.24836	-29839.22125
8A5	-17378.81916	-17378.78227	15A1	-31916.02109	-31915.96955
9A1	-19455.59466	-19455.53751	15A2	-31916.01794	-31915.96750
9A2	-19455.57832	-19455.51909	15A3	-31916.00826	-31915.95910
9A3	-19455.57191	-19455.51415	15A4	-31916.00582	-31915.96282
9A4	-19455.55727	-19455.51576	16A1	-33992.78627	-33992.71106
10A1	-21532.30723	-21532.25069	16A2	-33992.76593	-33992.72447
10A2	-21532.30063	-21532.27283	16A3	-33992.72899	-33992.68894
10A3	-21532.29482	-21532.26481	17A1	-36069.50557	-36069.44537
10A4	-21532.27367	-21532.26768	17A2	-36069.47500	-36069.43183
11A1	-23609.04865	-23608.99830	18A1	-38146.23920	-38146.18444
11A2	-23609.04476	-23609.00664	18A2	-38146.23532	-38146.21333
11A3	-23609.03997	-23608.98703			
Table S2. Natural population analysis (NPA) charge (in a.u.), valence configuration, magnetic moment (μB) of 6s, 4f, 5d, 6p, and total of Gd atom, and total magnetic moment of the global minima GdGe$_n^-$ (n=5-18) compounds calculated at the mPW2PLYP level.

Compound	Charge (a.u.)	Electron Configuration	Magnetic Moment of Gd Atom	Molecule Total (μB)
GdGe$_5^-$	0.16	[core]6s$^{0.81}$f$^{0.05}$d$^{0.17}$p$^{0.32}$	0.01 6.98 0.24 0.01	7.24 7
GdGe$_6^-$	0.25	[core]6s$^{0.70}$f$^{0.00}$d$^{0.12}$p$^{0.32}$	0.00 6.98 0.24 0.00	7.22 7
GdGe$_7^-$	0.15	[core]6s$^{0.57}$f$^{0.00}$d$^{0.03}$p$^{0.25}$	0.03 6.98 0.17 0.00	7.18 7
GdGe$_8^-$	0.15	[core]6s$^{0.50}$f$^{0.00}$d$^{0.03}$p$^{0.33}$	0.01 6.98 0.25 0.01	7.25 7
GdGe$_9^-$	0.37	[core]6s$^{0.57}$f$^{0.00}$d$^{0.13}$p$^{0.26}$	0.02 6.98 0.28 0.01	7.29 7
GdGe$_{10}^-$	-0.02	[core]6s$^{0.43}$f$^{0.00}$d$^{0.09}$p$^{0.51}$	0.01 6.98 0.23 0.01	7.23 7
GdGe$_{11}^-$	0.11	[core]6s$^{0.39}$f$^{0.00}$d$^{0.15}$p$^{0.65}$	0.01 6.98 0.18 0.01	7.18 7
GdGe$_{12}^-$	-0.26	[core]6s$^{0.36}$f$^{0.00}$d$^{0.11}$p$^{0.78}$	0.00 6.98 0.17 0.01	7.16 7
GdGe$_{13}^-$	-0.04	[core]6s$^{0.46}$f$^{0.00}$d$^{0.10}$p$^{0.49}$	0.01 6.98 0.22 0.01	7.22 7
GdGe$_{14}^-$	0.25	[core]6s$^{0.37}$f$^{0.00}$d$^{0.12}$p$^{0.58}$	0.01 6.97 0.18 0.02	7.18 7
GdGe$_{15}^-$	-4.10	[core]6s$^{0.46}$f$^{0.00}$d$^{0.13}$p$^{0.77}$	0.00 6.97 0.19 0.01	7.17 7
GdGe$_{16}^-$	-4.87	[core]6s$^{0.47}$f$^{0.00}$d$^{0.30}$p$^{0.05}$	0.01 6.97 0.20 0.01	7.19 7
GdGe$_{17}^-$	-4.07	[core]6s$^{0.44}$f$^{0.00}$d$^{0.64}$p$^{1.76}$	0.00 6.97 0.20 0.01	7.18 7
GdGe$_{18}^-$	-3.17	[core]6s$^{0.38}$f$^{0.00}$d$^{0.33}$p$^{1.43}$	0.00 6.97 0.19 0.01	7.17 7