Regulation of Physical Microglia–Neuron Interactions by Fractalkine Signaling after Status Epilepticus

Ukpong B. Eyo, Jiyun Peng, Madhuvika Murugan, Mingshu Mo, Almin Lalani, Ping Xie, Pingyi Xu, David J. Margolis, and Long-Jun Wu

DOI: http://dx.doi.org/10.1523/ENEURO.0209-16.2016

1Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, 2Department of Neurology, Mayo Clinic, Rochester, MN 55905, 3Department of Neurology, First Affiliated Hospital of Guangzhou Medical University Guangdong, 510120, China

Abstract

Microglia, the resident immune cells of the brain, perform elaborate surveillance in which they physically interact with neuronal elements. A novel form of microglia–neuron interaction named microglial process convergence (MPC) toward neuronal axons and dendrites has recently been described. However, the molecular regulators and pathological relevance of MPC have not been explored. Here, using high-resolution two-photon imaging in vivo and ex vivo, we observed a dramatic increase in MPCs after kainic acid– or pilocarpine-induced experimental seizures that was reconstituted after glutamate treatment in slices from mice. Interestingly, a deficiency of the fractalkine receptor (CX3CR1) decreased MPCs, whereas fractalkine (CX3CL1) treatment increased MPCs, suggesting that fractalkine signaling is a critical regulator of these microglia–neuron interactions. Furthermore, we found that interleukin-1β was necessary and sufficient to trigger CX3CR1-dependent MPCs. Finally, we show that a deficiency in fractalkine signaling corresponds with increased seizure phenotypes. Together, our results identify the neuroglial CX3CL1–CX3CR1 communication axis as a modulator of potentially neuroprotective microglia–neuron physical interactions during conditions of neuronal hyperactivity.

Key words: epilepsy; fractalkine; glutamate; interleukin-1β; microglia; seizure

Significance Statement

Microglia, the immune cells of the brain, are exquisitely sensitive to disturbances in brain homeostasis and are critical for proper neuronal function. Seizures are a common disorder of the brain. However, the dynamics of microglial interactions with neurons after such conditions are not known. Using high-resolution real-time imaging in living mouse brain tissues, we have discovered an interesting phenomenon wherein brain microglia physically interact with neurons after hyperactive conditions. Specifically, we have elucidated relevant mechanisms and molecular signaling cascades governing these interactions. In addition, our findings suggest neuroprotective roles for microglial interaction with neurons. Together, our results suggest that enhancing microglial function during seizures may serve beneficial therapeutic functions.

Introduction

Epilepsy is a significant health concern affecting 50–65 million people globally (Thurman et al., 2011) and is comorbid with stroke and traumatic brain injury (Temkin, 2009; Ravizza et al., 2011). Seizures in epilepsy are mainly due to abnormal hypersynchrony of neuronal activities...

Received July 17, 2016; accepted December 20, 2016; First published December 29, 2016.

Authors report no conflict of interest.
(Fisher et al., 2005), which could be caused by an imbalance of excitatory and inhibitory neurotransmission (Dalby and Mody, 2001; Sharma et al., 2007). However, therapeutic antiepileptic strategies targeting neuronal mechanisms have proved insufficient in a significant number of patients (Kwan and Brodie, 2006). Therefore, there is a need to develop novel alternative and complementary strategies for seizure treatment.

Recently, a role for neuroinflammation has become increasingly appreciated in the pathological progression of epilepsy (Devinsky et al., 2013; Vezzani et al., 2013; Eyo et al., 2016). Microglia are the predominant source of inflammation in the brain and are now recognized to play significant roles in brain homeostasis (Hanisch and Kettenmann, 2007; Ransohoff and Perry, 2009). Particularly, microglia make transient physical interactions with neuronal elements and, in doing so, are suggested to monitor and alter synaptic activity (Wake et al., 2009; Tremblay et al., 2010; Kato et al., 2016). Moreover, neuronal hyperactivity, including after status epilepticus, triggered increasing microglial process extension to interact with neurons (Dissing-Olesen et al., 2014; Eyo et al., 2014). Previous studies reported a novel microglia–neuron physical interaction named microglial process convergence (MPC) toward neuronal dendrites under conditions of reduced extracellular calcium (Eyo et al., 2015) as well as after repetitive neuronal stimulation (Kato et al., 2016). However, molecular regulators guiding MPC and whether they are functionally relevant in epilepsy remain to be elucidated.

Fractalkine (CX3CL1) is a neuronal chemokine, whose receptor (CX3CR1) is principally expressed by microglia in the CNS (Cardona et al., 2006). Given the distinct expression of fractalkine and its receptor in neurons and microglia, respectively, this communication axis presents a potentially unique avenue for microglia–neuron interactions. Indeed, fractalkine signaling was shown to regulate learning and memory (Maggi et al., 2011), social behaviors (Zhan et al., 2014), and microglial neurotoxicity during inflammation and stroke (Cardona et al., 2006; Tang et al., 2014). Under epileptic conditions, recent studies found that fractalkine deficiency resulted in reduced dendritic complexity and delayed maturation of adult newborn neurons (Xiao et al., 2015). However, the exact role of fractalkine signaling in seizure-induced microglia–neuron physical interactions has not been investigated. In the current study, we found that experimentally induced seizures triggered increased MPCs toward neuronal dendrites, which are regulated by fractalkine and interleukin (IL)-1β signaling. Moreover, reduced MPCs correlated with worsened seizure phenotypes. Our study reveals a novel regulation of microglia–neuron physical interaction by fractalkine signaling that is relevant during seizures.

Materials and Methods

Animals

Both male and female mice were used in accordance with institutional guidelines, as approved by the animal care and use committee at the university. Heterozygous (CX3CR1^{GFP+/−}) and homozygous (CX3CR1^{GFP/GFP}) GFp reporter mice expressing GFp under control of the fractalkine receptor (CX3CR1) promoter (Jung et al., 2000) and transgenic mice expressing YFP (Feng et al., 2000), or a genetically encoded calcium sensor, i.e. GCaMP2.2/ GCaMP3.3 (Chen et al., 2012) in a subset of pyramidal neurons under the control of the Thy1 promoter were purchased from the Jackson Laboratory. The CX3CR1^{GFP/GFP} line as a knock-in GFP mouse line that serves as a CX3CR1 knockout mouse in a genetically encoded calcium sensor, i.e. GCaMP2.2/ GCaMP3.3 (Chen et al., 2012) in a subset of pyramidal neurons under the control of the Thy1 promoter were purchased from the Jackson Laboratory. The CX3CR1^{GFP/GFP} line as a knock-in GFP mouse line that serves as a CX3CR1 knockout mouse in a subset of pyramidal neurons under the control of the Thy1 promoter were purchased from the Jackson Laboratory.

Slice preparation

Freshly isolated brain slices were prepared from 3- to 5-week-old mice. Briefly, mice were anesthetized and swiftly decapitated. Brains from decapitated mice were carefully removed and placed in ice-cold oxygenated (95% O₂ and 5% CO₂) artificial cerebrospinal fluid (ACSF) with the following composition (in mM): NaCl, 124; NaHCO₃, 25; KCl, 2.5; NaH₂PO₄, 1; CaCl₂, 2; MgSO₄, 2; glucose, 10; and sucrose added to make 300–320 mOsmol. Coronal slices (300 μm) were prepared and transferred to a recovery chamber for ∼30 min with oxygenated ACSF with the same composition as above at room temperature before imaging.

Preparation for in vivo imaging

Thirty- to sixty-day-old mice were anesthetized with isoflurane. We used 5% isoflurane for induction for up to 1 min in a chamber until the mouse was still, and 1.5%–2% for surgery for 15–30 min in the stereotactic frame. Under anesthesia, the mouse head was secured with ear bars on a heating pad and in a stereotactic frame, and a thin skull window was made with a high-speed dental drill. A head plate was glued to the skull around the cranial window, and the plate was screwed into a customized stage and placed under the two-photon microscope. Mice were maintained under light anesthesia (1% isoflurane) on the imaging stage for the duration of imaging and killed immediately after.

Two-photon imaging

Experiments were conducted at room temperature with slices maintained in oxygenated ACSF with the same composition as above in a perfusion chamber at a flow rate of ∼2 mL/min. Microglia from heterozygous (CX3CR1^{GFP+/−}) and homozygous (CX3CR1^{GFP/GFP}) GFP reporter mice expressing GFp under control of the fractalkine receptor (CX3CR1) promoter (Jung et al., 2000) and neurons from and transgenic mice expressing YFP (Feng et al., 2000), or a genetically encoded calcium sensor, i.e. GCaMP2.2/GCaMP3.3 (Chen et al., 2012) un-
under the control of the Thy-1 promoter were typically imaged using a two-photon microscope (Scientifica) with a Ti:Sapphire laser (Mai Tai; Spectra Physics) tuned to 890–900 nm with a 40× water-immersion lens (0.8 NA; Olympus). Fluorescence was detected using two photomultiplier tubes in whole-field detection mode and a 565-nm dichroic mirror with 525-/50-nm (green channel) and 620-/60-nm (red channel) emission filters. The laser power was maintained at 25 mW, and images were collected at 50–120 μm from the slice surface, or at <40 mW, 50–120 μm of the cortical surface in vivo. For imaging microglial and neuronal YFP dynamics, 15 consecutive z-stack images were collected at 3-μm intervals every minute while 10 consecutive z-stack images were collected at 2-μm intervals every 30 s during imaging in GCaMP2.2 tissues. For in vivo imaging, 20 consecutive z-stack images were collected at 1.5-μm intervals every minute.

Drugs

Glutamate and NMDA were purchased from Sigma. 6-Cyano-7-nitroquinoxaline-2,3-dione, kainic acid, tetrodotoxin (TTX), D-AP5, (+)-α-methyl-4-carboxyphenylglycine, and dihydroxyphenylglycine were purchased from Tocris. Recombinant mouse fractalkine (472-FF-02), IL-1β (401-ML), function-blocking fractalkine antibody (α-
CX3CL1; MAB571), and IL-1ra (480-RM) were purchased from R&D Systems. Stock solutions of all drugs (except TTX) were made in water and diluted to the appropriate working concentrations in ACSF. TTX stock was diluted in citric acid (pH 4.8). The drugs were applied to the slices through a bath perfusion.

Experimental seizure models

Thirty- to sixty-day-old mice were i.p. injected with kainic acid at 18–22 mg/kg or pilocarpine at 300 mg/kg. Seizure behavior was monitored under a modified Racine scale as follows: (1) freezing behavior; (2) rigid posture with raised tail; (3) continuous head bobbing and forepaws shaking; (4) rearing, falling, and jumping; (5) continuous occurrence of level 4; and (6) loss of posture and generalized convulsion activity (Racine, 1972; Avignone et al., 2008). Mice that progressed to at least stage 3 were killed at 2 h, and microglial dynamics were subsequently monitored in the slices generated. Alternatively, mice were killed at 2 h, and microglial dynamics were subsequently monitored in the slices generated. Alternatively, mice were used for microglial imaging in vivo. To block NMDA receptors, AP5 (3 μg in 5 μL ACSF) was applied through a previously implanted cannula for intracerebroventricular delivery 15 min before and 30 min after i.p. injection of kainic acid.

Statistical analysis

Quantification of process convergence events was done manually through time-lapse movies. Events were identified when microglial processes spontaneously converged toward a focal point. These converging processes were redirected from normal random surveillance (extension/retraction) toward the focal region and terminating their convergence within minutes from one to four nearby microglia. This is best visualized in the movies presented (Movies 1–5). We noticed a variability in the sizes of the focal convergences from ~2 to 8 μm. To avoid arbitrary selection of these events, analysis was done by counting all the observed events irrespective of size so as not to bias our analysis/quantification. At least five slices and two animals were used for each experimental condition. The frequency of occurrence of these events was determined in our typical 330 × 330 × 45-μm field of view from 30-min long imaging sessions in slices and 220 × 220 × 45-μm field of view from 60-min long imaging sessions in vivo. Data are presented as mean ± SEM. Student’s t-test was used to establish significance.

Results

Experimental seizures trigger microglial process convergence

The existence of a novel form of microglial–neuron physical interaction termed microglial process convergence (MPCs) was reported that increased upon extracellular calcium reduction (Eyo et al., 2015), a paradigm known to lead to epileptiform burst activity (Bikson et al., 1999) and prolonged neuronal depolarization (Kato et al., 2016). Typically, MPCs consist of several microglial processes that spontaneously converge at distinct sites and make transient focal aggregations (see movies). To determine whether these phenomena are present during epileptiform conditions, we induced experimental seizures (at least stage 3 seizures along a modified Racine scale) by intraperitoneal injection of kainic acid (18–22 mg/kg) or pilocarpine (300 mg/kg; Fig. 1a). Two hours after seizure induction, brain slices were generated from mice and monitored for MPC events by time-lapse two-photon microscopy. We detected a significant number of these events in real time in cortical slices after both kainic acid– and pilocarpine-induced seizures (Fig. 1b−e; Movie 1). The MPC events were maintained independently of ionotropic glutamate receptor function and action potential firing (Fig. 1f, g). However, when NMDA receptors were antagonized during seizures by a 15-min pre- and 30-min posttreatment of AP5 (3 μg in 5 μL ACSF) with kainic acid treatment, the number of MPCs was significantly reduced (Fig. 1h), indicating that NMDA receptors are required for the induction of seizure-induced MPC events. To exclude the possibility that seizure-induced MPCs occur because of the brain slice preparation, we used in vivo two-photon microscopy to monitor microglial dynamics in the intact cortex after 2 h of kainic acid treatment. Consistent with our observations in brain slices, we found a significant increase in the occurrence of MPCs in vivo after kainic acid treatment (Fig. 1i).
simulate and study the mechanisms underlying seizure-induced MPCs, we treated slices from naive mice with glutamate (1 mM) to mimic seizure activities. Interestingly, whereas vehicle treatment did not increase the occurrence of MPCs, 10 min of glutamate treatment was able to significantly increase MPC events (Fig. 2a–c; Movie 2), and this increase persisted for up to 3 h after treatment (Fig. 2d, e).

Consistent with seizure-induced MPCs, glutamate-induced MPCs required NMDA receptor activation for their induction, since they were blocked by coapplication of AP5 (50 μM) with glutamate (Fig. 2f). However, antagonists for non-NMDA glutamate receptors (6-cyano-7-nitroquinoxaline-2,3-dione, 10 μM), voltage-gated sodium channels (TTX, 1 μM), and metabotropic glutamate receptors [(+)-α-methyl-4-carboxyphenylglycine, 200 μM] could not inhibit glutamate-induced MPCs (Fig. 2f). Moreover, activation of the NMDA receptor was sufficient to trigger MPCs, whereas activation of non-NMDA glutamate receptors (by kainic acid) failed to induce MPCs without NMDA receptors (Fig. 2g).

Although 1 mM glutamate (10-min) treatment yielded robust increases in MPCs, lower concentrations (0.1–0.5 mM) for the same duration or 1 mM glutamate for shorter durations (2–5 min) were also able to increase MPC numbers significantly, although less robustly (Fig. 3a–d). In these different conditions, MPCs exhibited similar features with regard to the maximum distance from which they responded and the time to complete the convergence (Fig. 3e, f). Finally, because glutamate can lead to excitotoxicity, we confirmed via calcium imaging in Thy1-GCaMP3.3 and Thy1-GCaMP2.2 mice that after a 10-min, 1-mM glutamate treatment, cortical neurons continued to exhibit somatic and dendritic calcium responses, sug-
Fractalkine signaling is necessary and sufficient to trigger MPCs.

To determine a molecular regulator of seizure- and glutamate-induced MPCs, we turned to fractalkine (CX3CL1-CX3CR1) signaling, which has been shown to be a paramount signaling mechanism for microglia–neuron interactions (Paolicelli et al., 2014). To this end, we performed imaging in slices generated after either glutamate treatment or experimental seizures induced by kainic acid or pilocarpine from CX3CR1^GFP/+ and CX3CR1^GFP/GFP mice. Interestingly, we found a significant reduction in the number of MPC events in CX3CR1^GFP/GFP mice compared with CX3CR1^GFP/+ mice (Fig. 6a–e; Movie 4), although the number of MPC events in basal conditions was not different between the genotypes (Fig 6f).

In addition, this reduction in the number of MPCs did not result from a difference in the number of microglia in our imaging fields of view between genotypes (38.9 ± 1.0 cells per field of view in CX3CR1^GFP/+ slices compared to 38.1 ± 1.3 cells per field of view in CX3CR1^GFP/GFP slices) or in various features of the convergence events such as the time to complete the convergence (data not shown).

Next, we asked whether exogenous fractalkine (CX3CL1) is sufficient to induce MPCs in cortical slices. Indeed, we found that bath application of CX3CL1 (200 ng/mL) increased MPC occurrence in slices from CX3CR1^GFP/+ mice (Fig. 6g, h) but failed to do so in slices from CX3CR1^GFP/GFP mice (Fig. 6i). Together, these results indicate that fractalkine signaling is sufficient for MPC induction and is required for glutamate- and seizure-induced MPCs.

Glutamate-induced MPCs requires IL-1β.

We attempted to determine factors downstream of fractalkine signaling that may directly induce MPCs. Because of the widespread evidence of fractalkine signaling regulating IL-1β (Cardona et al., 2006; Dénès et al., 2008; Rogers et al., 2011), we investigated its role in MPCs. Interestingly, we found that application of 30 ng/mL recombinant mouse IL-1β significantly increased MPCs in slices (Fig. 7a, b; Movie 5). This increase occurred independently of action potential firing, as the number of events was similar with IL-1β only (n = 6; 16.5 ± 1.4 events per 30 min) or IL-1β pretreated (30 min) and co-treated with TTX (1 μM; n = 8; 14.0 ± 1.4 events per 30 min). In addition, IL-1β also induced a significant increase of MPC events from mice deficient in CX3CR1 (CX3CR1^GFP/GFP; Fig. 7c). To determine whether IL-1β functions downstream of CX3CL1-induced MPC (Fig. 6), we applied CX3CL1 with IL-1ra (100 ng/mL) to antagonize IL-1β function. In these experiments, IL-1ra significantly reduced the occurrence of MPCs (Fig. 7d). Finally, to confirm roles for fractalkine and IL-1β signaling in glutamate-induced MPCs, we performed glutamate experiments in the presence of either fractalkine neutralizing antibody (α-
Figure 3. Characteristics of glutamate-induced MPCs.

Figure 4. Neurons respond functionally to multiple hits of glutamate. Images (a, b) and time series (a', b') data showing intracellular calcium transients in neuronal somata (top) and dendrites (bottom) from GCaMP2.2 mouse slices after repeated glutamate (1 mM) treatment in cortical layer II/III.
CX3CL1) or IL-1ra. Consistent with the foregoing results, glutamate failed to significantly increase MPCs in the presence of CX3CL1 (Fig. 7e, g) or IL-1ra (Fig. 7f, g). Together, these results indicate that glutamate-induced MPCs requires fractalkine and IL-1β signaling.

Neuroprotective potential of MCP

Our results indicate that MPCs generated after neuronal hyperactivity were promoted by fractalkine (Fig. 7) and purinergic (Fig. 5) signaling. To gain insights into the potential functional significance of these observations, we investigated the consequence of a deficiency of fractalkine signaling on acute seizures. It has previously been documented that in P2Y12−/− mice, kainic acid treatment resulted in worsened seizure phenotypes (Eyo et al., 2014). Interestingly, we now report that a deficiency in the CX3CR1 receptor similarly resulted in increased seizure behaviors in response to kainic acid treatment (Fig. 8a, b). In addition, at the concentrations used, 55.6% of wild-type, 64.3% of CX3CR1GFP/−, and 82.8% of CX3CR1GFP/GFP mice seizes up to at least stage 3 on the modified Racine scale after kainic acid treatment (Fig. 8c). Moreover, whereas none of the wild-type and only 7.1% of the CX3CR1GFP/− mice died, 27.3% of the CX3CR1GFP/GFP mice died within the first 2 h of kainic acid treatment. These results indicate that a CX3CR1 deficiency results in increased seizure phenotypes and animal mortality that correlates with decreased MPCs.

Discussion

In the current study, we investigated the real-time dynamics of microglia–neuron interactions after exper-
imental seizures and glutamate-induced hyperactivity using two-photon microscopy. We extend the findings of previous studies and show that, in addition to depleted extracellular calcium conditions and repeated neuronal stimulation, MPCs are induced in experimental seizure models and by glutamate application. We further delved into the mechanism of MPC induction and show that NMDA receptors are required to trigger these interactions. Furthermore, we determined a molecular regulation of the MPC phenomena by fractalkine signaling through IL-1β release (Fig. 9). Finally, we correlated the CX3CR1-dependent role in MPC generation with neuroprotection during acute seizures. Our results suggest a neuroprotective bidirectional microglial-neuronal communication axis after status epilepticus and provide novel evidence for microglial-neuronal physical interactions in acute epilepsy in the brain.

Microglial process convergence: a distinct form of microglial-neuronal physical interactions

In this study, we report MPCs, a novel form of microglia-neuron physical interactions, that are dramatically increased after status epilepticus. It is important to note that the seizure-induced MPC event described here is distinct from the transient process extension phenomena previously reported (Dissing-Olesen et al., 2014; Eyo et al., 2014), even though both are NMDA and P2Y12 dependent. They are different in that although (a) process extension is exhibited by all processes (global) at a given time point after glutamate/NMDA treatment, MPCs are exhibited by select processes at a given time point in a focalized (local) manner, (b) process extension occurs only immediately after glutamate/NMDA treatment, MPCs persist for hours even after the withdrawal of the inducing agent, and (c) process extension is mechanistically inde-
dependent of fractalkine signaling, whereas MPCs require it. These and other considerations indicate that MPCs represent a novel form of microglia–neuron physical interactions distinct from NMDA-dependent microglial process extension.

More importantly, MPCs triggered during hyperactive neuronal conditions as reported here are also distinct from MPCs previously reported under reduced \([\text{Ca}^{2+}]_o\) conditions (Eyo et al., 2015) and repeated neuronal depolarization (Kato et al., 2016) for several reasons. First, MPCs under reduced \([\text{Ca}^{2+}]_o\) conditions do not require NMDA receptors or action potentials, as they are not

![Movie 4](image1.png)

Movie 4. Microglial process convergence in fractalkine receptor heterozygote (left) and knockout (right) slices after glutamate treatment. Representative time-lapse movie taken from CX3CR1^{GFP/–} (i.e., CX3CR1^{+/–}, left) and CX3CR1^{GFP/GFP} (i.e., CX3CR1^{−/−}, right) slices showing several MPC events (arrows) after a 10-min glutamate (1 mM) treatment. This movie is 30 min long and is sped up 180×.

![Movie 5](image2.png)

Movie 5. IL-1β increases MPCs. Representative time-lapse movie taken from CX3CR1^{GFP/−} showing that IL-1β (30 ng/mL) increases the occurrence of MPCs (arrows). This movie is 70 min long and is sped up 180×.

MPCs under reduced \([\text{Ca}^{2+}]_o\) conditions do not require NMDA receptors or action potentials, as they are not

![Figure 7](image3.png)

Figure 7. Glutamate-induced MPCs requires IL-1β. a–c, Quantified summary (a, c) and schematic representation (b) showing that IL-1β (30 ng/mL) increases MPCs in slices from both CX3CR1^{GFP/–} and CX3CR1^{GFP/GFP} mice (n = 6–17 slices). d, CX3CL1-induced MPCs is blocked by IL-1ra (100 ng/mL), an IL-1α antagonist, in slices from CX3CR1^{GFP/−} mice (n = 8–9 slices each). e–g, Glutamate-induced MPCs fails to occur in the presence of function-blocking CX3CL1 antibodies and is reduced in the presence of IL-1ra (n = 10–12 slices each). **p < 0.01; ***p < 0.001.
blocked with AP5 treatment (data not shown). Although low extracellular calcium levels are known to occur in epileptic contexts (Wadman et al., 1985; Heinemann et al., 1986; Konnerth et al., 1986), removal of extracellular calcium or doubling the extracellular calcium concentration did not alter the occurrence of MPCs in response to glutamate (data not shown), suggesting that glutamate-induced MPCs are not regulated by extracellular calcium concentrations. Similarly, MPCs after repeated neuronal stimulation required action potentials (Kato et al., 2016), whereas seizure-induced MPCs did not. Second, MPCs under reduced [Ca$^{2+}$]o conditions are not modulated by fractalkine signaling, as they are unaltered in CX3CR1GFP/GFP mice. Third, MPCs elicited after repeated neuronal stimulation are directed toward axons, whereas the reported seizure-induced MPCs in our study are directed toward dendrites. However, because the various phenomena require microglial P2Y12 receptors, it is likely that the localized ATP release is similar under the different conditions. However, it remains to be determined whether common mechanisms are used to release ATP from neuronal dendrites in reduced [Ca$^{2+}$]o conditions, repeated neuronal stimulation, and after status epilepticus. Together, these considerations indicate that we have uncovered a unique form of microglia–neuron physical interactions in response to seizure activities in the brain.

The mechanism of MPCs

Microglial interactions with neuronal elements in real time have been widely evidenced (Wake et al., 2009; Tremblay et al., 2010; Li et al., 2012; Dissing-Olesen et al., 2014; Eyo et al., 2014, 2015; Kato et al., 2016). However, factors that modulate such interactions have not been identified. Over the last decade, a wealth of data has shown important roles for fractalkine signaling between microglia and neurons in the developing and mature CNS (Limatola and Ransohoff, 2014; Paolicelli et al., 2014), but this unique signaling axis has not been sufficiently interrogated with regard to microglia–neuron physical interactions. Here, we found that fractalkine signaling is critical for this interaction, showing reduced MPCs in CX3CR1-deficient tissues after glutamate application and in two seizure models. Although fractalkine signaling did not play a significant role in microglial process outgrowth to neuronal NMDA receptor activation (Dissing-Olesen et al., 2014) or microglial interactions with the axon initial segment of neurons (Baalman et al., 2015), it would be of interest to determine whether fractalkine signaling regulation is also present in previously described interactions such as the bulbous presynaptic, postsynaptic, and somata contacts of neurons by microglial processes (Wake et al., 2009; Tremblay et al., 2010; Li et al., 2012).
Our results suggest the following bidirectional mechanism for MPCs on to neuronal dendrites: after increased glutamate release, (1) neuronal NMDARs activation results in (2) the release of CX3CL1 from neuronal membranes that activates microglial CX3CR1 receptors. (3) CX3CR1 activation subsequently triggers IL-1β release from microglia, which in turn increases neuronal excitability to elicit (5) a localized release of ATP at specific dendritic hotspots. Finally, (6) ATP released from these hotspots attracts microglial processes via P2Y12 receptor to converge at the release site.

Presumably, the mechanism of action for IL-1β occurs through activating its receptors, which are predominantly expressed by neurons in the naive CNS (Ban et al., 1991; Ban, 1994). Consistent with our model, IL-1β has been shown to enhance neuronal excitability (Vezzani et al., 2008a; Vezzani and Viviani, 2014). Moreover, IL-1β depresses GABAergic neurotransmission (Wang et al., 2000), indirectly enhancing glutamatergic neurotransmission. Thus, IL-1β may induce MPCs by concomitantly enhancing NMDAR function and inhibiting GABAergic neuronal inhibition, resulting in an overall increase in neuronal excitability. Alternatively, IL-1β may trigger the opening of as-yet-unidentified channels through which ATP may be released in a localized fashion to mediate the defined convergence. Although the precise mechanism by which IL-1β acting on neurons would trigger ATP release remains to be determined, ATP and ADP are widely recognized to mediate microglial process chemotaxis through P2Y12Rs (Honda et al., 2001; Davalos et al., 2005; Wu et al., 2007).

The pathological relevance of MPCs

Because glutamate transporters efficiently limit the extracellular concentration of glutamate, it is unlikely that our findings are relevant for healthy brain conditions.
Consistent with this fact, we detected a low MPC frequency in both naive brain slices and the intact cortex in vivo. However, because we found that the phenomenon could be elicited by shorter durations and lower concentrations of glutamate, we cannot rule out the possibility that MPCs could be triggered in the healthy brain during periods of intense physiological activity. In any case, our data suggest that the phenomenon is most relevant for conditions in which there is (even transient) increase in extracellular glutamate levels. Localized puff applications of glutamate did not reliably elicit MPCs (data not shown), suggesting that more global (rather than local) alterations in glutamate-dependent network activity are required for MPC induction. Indeed, we were able to observe an increase in MPCs in both brain slices and in vivo after experimental seizures, when global synchronized increases in neuronal network activities are known to occur.

In summary, we report here the existence of a novel microglia–neuron physical interaction phenomenon, microglial process convergence, or MPCs, that occurs after elevated glutamate levels in the murine cortex and is relevant during epileptic pathologies. Furthermore, we have determined some of the key players in the mechanism underlying the bidirectional communication between microglia and neurons, such as fractalkine signaling, IL-1β release, and P2Y12R-induced chemotaxis. Our results show a correlation between reduced MPCs (Figs. 5 and 7) and increased seizure severity and animal mortality with genetic depletion of microglial P2Y12 receptors (Eyo et al., 2014) and CX3CR1 receptors (Fig. 8). Although this relationship is not clearly causal between the two phenomena, it is suggestive of a neuroprotective relationship between MPCs and seizure consequences.

References

Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced pulsnerging signaling. J Neurosci 28:9133–9144. CrossRef Medline

Saalmann K, Marin MA, Ho TS, Godoy M, Cherian L, Robertson C, Rasband MN (2015) Axon initial segment-associated microglia. J Neurosci 35:2283–2292. CrossRef Medline

Ban E, Milon G, Prudhomme N, Fillon G, Haour F (1991) Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience 43:21–30. Medline

Ban EM (1994) Interleukin-1 receptors in the brain: characterization by quantitative in situ autoradiography. Immunothermethods 5:31–40. Medline

Ben Achour S, Pascual O (2012) Astrocyte-neuron communication: functional consequences. Neurochem Res 37:2464–2473. CrossRef Medline

Bikson M, Ghai RS, Baraban SC, Durand DM (1999) Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+)-model state of epileptiform activity. J Neurophysiol 82:2262–2270. Medline

Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924. CrossRef Medline

Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherman RS, Krystal JH, Spencer BD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235. CrossRef Medline

Cavus I, Pan JW, Hetherington HP, Abi-Saab W, Zaveri HP, Vives KP, Krystal JH, Spencer SS, Spencer DD (2008) Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 49:1358–1366. CrossRef Medline

Chapman GA, Moeres K, Harrison D, Campbell CA, Stewart BR, Stirbox PJ (2000) Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excito-toxic brain damage. J Neurosci 20:RC87. Medline

Chen Q, Cichon J, Wang W, Qiu L, Lee SJ, Campbell NR, Destefino N, Goard MJ, Fu Z, Yasuda R, Looger LL, Arenkiel BR, Gan WB, Feng G (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76:297–308. CrossRef Medline

Clark AK, Gruber-Schoffnegger D, Drdla-Schütting R, Gerold KJ, Malcangio M, Sandkühler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570. CrossRef Medline

Dalby NO, Mody I (2001) The process of epileptogenesis: a pathological-physiological approach. Curr Opin Neurol 14:187–192. Medline

Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. CrossRef Medline

Dénes A, Ferenczi S, Halász J, Környei Z, Kovécs KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721. CrossRef Medline

Devinsky O, Zeviani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184. CrossRef Medline

Dispiling-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34:10511–10527. CrossRef Medline

Erikkson C, Zou LP, Ahlenius S, Winblad B, Schultzberg M (2000) Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. Brain Res Mol Brain Res 85:103–113. Medline

Erikkson C, Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M (1999) Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 93:915–930. Medline

Eyo UB, Murugan M, Wu LJ (2016) Microglia-neuron communication in epilepsy. Glia 65:5–18. Medline

Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34:10529–10540. CrossRef Medline

Eyo UB, Gu N, De S, Dong H, Richardson JR, Wu LJ (2015) Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium. J Neurosci 35:2417–2422. CrossRef Medline

Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51. Medline

Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr. (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472. CrossRef

Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. CrossRef Medline

Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol 44:641–661. Medline
Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21:1975–1982. CrossRef Medline

Jander S, Schroeter M, Stoll G (2000) Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol 109:181–187. CrossRef Medline

Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V, Campisi J, Langer S, Martin D, Green P, Fleshtner M, Leinwand L, Maier SF, Watkins LR (2004) A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24: 7353–7365. CrossRef Medline

Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. Medline

Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, Eto K, Ishikawa T, Moorhouse AJ, Strassman AM, Nabekura J (2016) Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. eNeuro 3:0004.16. CrossRef

Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogen- sis in the mammalian hippocampus in vitro. I. Development of seizure-like activity in low extracellular calcium. J Neurophysiol 56:409–423. Medline

Kwan P, Brodie MJ (2006) Refractory epilepsy: mechanisms and solutions. Expert Rev Neurother 6:397–406. CrossRef Medline

Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation of hippocampal cognitive function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. Medline

Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, Limatola C (2011) CX3CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front Cell Neurosci 5:22. CrossRef Medline

Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y, Takeuchi H, Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, Limatola C (2011) Fractalkine attenuates excitotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286:2308–2319. CrossRef Medline

Paolicelli RC, Bisht K, Tremblay ME (2014) Fractalkine regulation of cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82. CrossRef Medline

Paolicelli RC, Bisht K, Tremblay ME (2014) Fractalkine regulation of cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82. CrossRef Medline

Wadman WJ, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizure-like activity in low extracellular calcium. J Neurophysiol 56:409–423. Medline

RAnschoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. CrossRef Medline

Ravizza T, Baloso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230. CrossRef Medline

Rogers JT, Morgan JT, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250. CrossRef Medline

Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. CrossRef Medline

Sperlagh B, Baranyi M, Haskó G, Vizi ES (2004) Potent effect of interleukin-1 beta to evoke ATP and adenosine release from rat hippocampal slices. J Neuroimmunol 151:33–39. CrossRef Medline

Tang Z, Yan G, Liu Q, Yin JX, Liu Q, Shi J, Shi FD (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26. CrossRef Medline

Temkin NR (2009) Preventing and treating posttraumatic seizures: the human experience. Epilepsia 50: Suppl 2:10–13. CrossRef Medline

Thurman DJ, et al. (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52: Suppl 7:2–26. CrossRef Medline

Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K, Takano T, Nedergaard M (2012) Extracellular Ca(2+)(+)-mediator. J Neurosci 32:281–294. CrossRef Medline

Vezzani A, Viviani B (2014) Neuromodulatory properties of inflamma- tory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82. CrossRef Medline

Vezzani A, Baloso S, Ravizza T (2008a) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803. CrossRef Medline

Vezzani A, Ravizza T, Baloso S, Aronica E (2008b) Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49: Suppl 2:24–32. CrossRef Medline

Vezzani A, Aronica E, Mazarati A, Pittman OJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21. CrossRef Medline

Wang S, Cheng Q, Malik S, Yang J (2000) Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther 292:497–504. Medline

Wang W, Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Gabbianelli L, Dormont D, Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate administration: functional evidence for enhancement of electrophysiological seizures. J Neurosci 19:5054-5065. CrossRef Medline

Wadman WJ, Heinemann U, Konnerth A, Neuhaus S (1985) Hip- pocampal slices of kindled rats reveal calcium involvement in epileptogenesis. Exp Brain Res 57:404–407. Medline

Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980. CrossRef Medline

Wang S, Cheng Q, Malik S, Yang J (2000) Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther 292:497–504. Medline

Wu LJ, Vadakkannil KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55:810–821. CrossRef Medline

Xiao F, Xu JM, Jiang XH (2015) CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus. Neural Regen Res 10:772–777. CrossRef Medline

Zhan Y, Paolicelli RC, Storrizzini F, Weinhard L, Bolasco G, Pagani F, Vysotskii AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406. CrossRef Medline