Low eradication rate of Helicobacter pylori with triple 7-14 days and quadruple therapy in Turkey

Yuksel Gumurdulu, Ender Serin, Birol Özer, Fazilet Kayaselcuk, Kursat Ozsahin, Arif Mansur Cosar, Murat Gursoy, Gurden Gur, Ugur Yilmaz, Sedat Boyacioglu

Abstract

AIM: The eradication rate of Helicobacter pylori (H pylori) shows variation among countries and regimens of treatment. We aimed to study the eradication rates of different regimens in our region and some factors affecting the rate of eradication.

METHODS: One hundred and sixty-four H pylori positive patients (68 males, 96 females; mean age: 48±12 years) with duodenal or gastric ulcer without a smoking history were included in the study. The patients were divided into three groups according to the treatment regimens. Omeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1 g were given twice daily for 1 week (Group I) and 2 weeks (Group II). Patients in Group III received bismuth subsitrate 300 mg, tetracyline 500 mg and metronidazole 500 mg four times daily in addition to Omeprazole 20 mg twice daily. Two biopsies each before and after treatment were obtained from antrum and corpus, and histopathologically evaluated. Eradication was assumed to be successful if no H pylorus was detected from four biopsy specimens taken after treatment. The effects of factors like age, sex, H pylori density on antrum and corpus before treatment, the total H pylori density, and the inflammation scores on the rate of H pylori eradication were evaluated.

RESULTS: The overall eradication rate was 42%. The rates in groups II and III were statistically higher than that in group I (P<0.05). The rates of eradication were 24.5%, 40.7% and 61.5% in groups I, II and III, respectively. The eradication rate was negatively related to either corpus H pylori density or total H pylori density (P<0.05). The median age was older in the group in which the eradication failed in comparison to that with successful eradication (55 yr vs 39 yr, P<0.001). No correlation between sex and H pylori eradication was found.

CONCLUSION: Our rates of eradication were significantly lower when compared to those reported in literature. We believe that advanced age and high H pylori density are negative predictive factors for the rate of H pylori eradication.

INTRODUCTION

Eradication treatment for H pylori infection has been generally accepted since the relation between H pylori and peptic ulcer disease was established[1,2]. Furthermore, this treatment approach has gained importance since the eradication of H pylori was found to reduce the recurrence of duodenal and gastric ulcer[3,4]. The eradication rate of H pylori has reached high levels with combined use of antibiotics and proton pump inhibitors (PPIs), being 60-90% in Turkey[5]. Different treatment protocols have been used for H pylori eradication. The rate of H pylori eradication was higher than 85% with the combination of drugs consisting of two antibiotics and a PPI[6]. We aimed to study the rates of H pylori eradication in Cukurova region with regard to different treatment regimens and the effects of patient age, sex, and H pylori density on H pylori eradication rates.

MATERIALS AND METHODS

One hundred and 64 patients (68 males, 96 females; mean age 48±12 yr, range 17-78 yr) with gastric or duodenal ulcer and H pylori detected at endoscopy were included in the study. Two biopsies from antrum and two from corpus were taken. H pylori density and gastric inflammation in both antrum and corpus were assessed based on Sydney classification (normal=0, mild=1, moderate=2, marked=3)[7]. The patients were randomly divided into three groups and each group was treated with one of the protocols as follows. Group I received Omeprazole (O) 20 mg, Clarithromycin (C) 500 mg, amoxicillin (A) 1 000 mg, twice daily for 7 d. Group II received the same drugs as in group I for 14 d. Group III received Omeprazole 20 mg twice daily, Bismute subsitrate (BS) 300 mg 4 times daily, tetracycline (T) 500 mg 4 times daily, metronidazole (M) 500 mg 4 times daily for 10 d. There were 53, 59 and 52 patients in the 3 groups, respectively. Antibiotics, PPIs, and H2 receptor blockers were used for at least one month. Smoking, pregnancy and lactation, past history of gastric surgery, renal or liver failure, diabetes mellitus and irregular use of drugs in the eradication regimens were accepted as exclusion criteria. Endoscopy was repeated and two biopsies each from corpus and antrum were obtained after 45-60 d of treatment. Eradication was accepted to be successful if H pylori were not found in any of the 4 samples. Total bacterial density was calculated semi quantitatively by addition of antrum and corpus H pylori density[8]. None of the patients had atrophy in histologic evaluation. The relations of H pylori densities in

- H pylori -
different locations before treatment, age, and sex with the rate of *H. pylori* eradication were analyzed.

Statistical analysis

Data were expressed as medians with interquartiles. Mann-Whitney-U test or χ² test was used to assess significant differences between values in various groups of patients. *P*<0.05 was considered statistically significant. Data were analyzed using the SPSS for Windows (version 9.05; SPSS, Inc., Chicago, Illinois, USA).

RESULTS

Out of 164 patients who completed the study, 69 (42%) had eradication of *H. pylori* infection, and 151 (91.4%) showed ulcer healing. Eradication could not be achieved in 10 of 13 patients without ulcer healing. The eradication rate in group I, II, and III was 24.5% (13/53), 40.6% (24/59), and 61.5% (32/52), respectively. The rate of eradication in group III was higher than group I and II (*P*<0.03). There was a difference between groups I and II, which did not reach statistical significance (*P*=0.07). The ulcer cure was 45/53, 55/59, and 51/52, respectively in the 3 groups. *H. pylori* density in antrum before treatment or severity of inflammation was not statistically related to its eradication. Corpus and total *H. pylori* densities were higher in patients who failed the eradication treatment when compared to those who showed successful eradication (*P*<0.01 and *P*<0.05, respectively for corpus and total densities) (Table 1). The median patient age was higher in the group in which eradication failed. (55 vs 39 yrs, *P*<0.001). The distribution of age, sex and *H. pylori* density of corpus in the patient groups were summarized in Table 2.

Table 1 Rates of *H. pylori* eradication and ulcer healing in various treatment regimens

Group	n	Age	F/M	Eradication (%)	Ülcer healing (%)
I	53	49±12	30/23	13 (24.5)%	45 (84.9)
II	59	48±11	35/24	24 (40.7)%	55 (93.3)
III	52	45±12	31/21	32 (61.5)%	51 (98)
Total	164	48±12	96/68	69 (42)	151 (92.1)

P =0.07 vs Group II; *P* <0.01 vs Group III; *P* =0.03 vs Group III; *P* =N.S. among the three groups.

DISCUSSION

The discovery of *H. pylori* by Marshall and Warren has been considered as a revolution[1]. As the role of this microorganism in gastric pathologies is fully understood, the treatment principles of some of the gastro-duodenal lesions have been changed[2].

Nowadays, *H. pylori*-positive peptic ulcer disease is accepted as an infectious process, and combination of drugs, including the same antibiotics were used in all of the treatment protocols[3-13]. No standard therapy for *H. pylori* eradication has been underlined. An ideal *H. pylori* treatment must be safe, cheap, easy and tolerable with more than an 80% eradication rate and must have a low rate of antibiotic resistance[14,15].

PPIs are commonly used in the combined regimens as a result of significant *in vivo* and *in vitro* effects on *H. pylori*. Many treatment regimens including PPIs were still hard to eradicate *H. pylori*[16-19].

In Europe and in the USA despite resistance to metronidazole, clarithromycin, and tetracycline was 30-40%, 2-10% and <1%, respectively, the eradication rate of the combined treatment with clarithromycin, PPI and amoxicillin or metronidazole for 7-14 d was 87-100% in metronidazole sensitive group and 57-88% in metronidazole resistant group. In 10-12 d of PPI-A-C regimens, 88-96% eradication rate was maintained in clarithromycin sensitive group and 50% in the resistant group. These findings showed the importance of antibiotic resistance in unsuccessful eradication trials[20]. Several studies, in which the antibiotic resistance was analyzed as one of the independent parameters that can be predictors of eradication failure, supported the same suggestion[21-23]. In Turkey, Boyanova *et al* found the resistance to M 37.9%, to C 9.5%, and to A 0.9%, respectively. The double drug resistance (M+C) was 6.1%. In a former study we found C and M resistance rates were 5.2% (1/19) and 36.8% (7/19) in a group of 19 patients (data unpublished). These observations suggested that antibiotic resistance could not explain completely the low eradication rate as we observed in the present study. The resistance in our patients was similar to that detected in the Western world whereas the rate of eradication was markedly lower when compared to Western population.

The effect of combination therapies on *H. pylori* eradication rates varied according to the differences in treatment duration. Some studies which showed that 14 d trials were more successful than 7 d trials, whereas other studies showed no difference. In our study the rate of *H. pylori* eradication was higher in prolonged treatment but did not reach any statistical significance[25].

The reported higher rates of *H. pylori* eradication with either OCA or OCM combination in early studies in our country as compared to recent ones suggested the development of resistance was due to irregular and unsubscribed use of antibiotics in our population[17]. The possible differences in the production process of drugs by various manufacturers may play a role in the bioavailability of active compounds. We could not find any study regarding to this issue. However, Kim *et al*. from South Korea have found similar benefits in *H. pylori* eradication rate of three drug combinations with two different Omeprazole preparations[21]. If similar studies can be made for antibiotics, questions on this matter can be answered.

Patient incompliance to treatment is another factor contributing to eradication failure. Graham *et al* have found that the eradication rate was about 96% in patients who used

Table 2 The distribution of age, sex and *H. pylori* density of corpus in the patient groups

Group	n	Age	F/M	Density
I	13	35.3±17.7	9/4	1.31±0.95
II	24	40±9.3	13/11	1.92±0.8
III	32	40.3±11.6	20/12	1.91±0.69
Total	69	39.14±10.9	42/27	1.8±0.83

P <0.001, vs noneradicated in each group for age, *P* <0.05, vs noneradicated in each group for *H. pylori* corpus density.
60% or more of their drugs and 69% in those who used less than 60% of drugs[27]. We tried to eliminate this factor via good questioning and follow-up throughout the study. Patient incompliance did not seem to be a determinant factor for H pylori eradication failure in our study.

The response to combination of four drugs was around 87-100% in several studies. Nelson et al. found that the ulcer cure and eradication rate of H pylori with BSMOT in a 2 d and 7 d regimen were 95.7% and 76.1%, and 98% and 100%, respectively[21]. In studies using BSTMOT combination, the eradication rate of H pylori was 96% in the metronidazole sensitive group and 82% in the metronidazole resistant group[28]. The rate of H pylori eradication with the same protocol in our study was much lower compared to previous trials, but significantly higher than two other protocols we used. This shows the necessity for studying some geographic factors.

Smoking; one of the parameters of antibiotic resistance in literature, was restrained during the inclusion phase of this study. We studied two other factors associated with H pylori eradication failure, namely the grade of H pylori density and gastritis. Our findings suggested that the eradication was more difficult in patients who had high total or corpus H pylori density. Georgopoulos et al. found no relation between eradication and H pylori density or the severity of gastritis[21]. Yang et al. reported a lower total bacterial density in the eradicated in antrum and corpus H pylori densities were higher in patients with eradication failure compared to the successfully eradicated group. Consequently, the factors affecting H pylori density can be expected to affect the eradication rate. Some studies on this issue showed that some factors related with host or bacteria could affect H pylori density in gastric mucosa[21,26,31].

The patients’ lifetime exposure to several kinds of antibiotics could cause resistance and this might partly explain the difference noted in the age groups with respect to H pylori eradication rate[32]. Another factor that can contribute to the resistance to antibiotic treatment is intracellular settling of bacteria. The examples of this fact were shown in some chronic infections such as tuberculosis and brucellosis for which a long term use of antibiotics was required[23,34]. The difficulty in eradication treatment of H pylori may in part be due to intracellular location of these bacteria since H pylori has been shown to penetrate into cells in cell cultures[23]. This suggestion was firmly supported when 14 d regimens were shown to be more effective than 7 d regiments as reported in this and previous studies.

The rate of eradication we encountered was significantly lower than those in literature, which suggests further studies concerning the mechanisms underlying the eradication failure in our community should be designed.

REFERENCES

1 Ikeda S, Tamamura T, Hamashima C, Asaka M. Evaluation of the cost-effectiveness of Helicobacter pylori eradication therapy: a conventional therapy for ulcers in Japan. A liment Pharmacol Ther 2001; 15: 1777-1785.
2 Malferttheiner P, Megraud F, O’ Morain C, Huning AP, Jones R, Axon A, Graham DY, Tytgat G. Current concepts in the management of Helicobacter pylori infection—the Maastricht 2-2000 Consensus Report. A liment Pharmacol Ther 2002; 16: 167-180.
3 Marzio L, Cellini L, Angelo G. Triple therapy for 7 days vs. triple therapy for 7 days plus omeprazole for 21 days in treatment of active duodenal ulcer with Helicobacter pylori infection. A double blind placebo controlled trial. D ig Liver Dis 2003; 35: 202-23.
4 Ledolter A, Kulig M, Brasch H, Meyer-Sabelek W, Willich SN, Malferttheiner P. Meta-analysis comparing eradication, healing and relapse rates in patients with Helicobacter pylori-associated gastric or duodenal ulcer. A liment Pharmacol Ther 2001; 15:
5 Tytgat GN. Review article: treatments that impact favourably upon the eradication of Helicobacter pylori and ulcer recurrence. A liment Pharmacol Ther 1994; 8: 359-388.
6 Bhasin DK, Sharma BC, Ray P, Pathak CM, Singh K. Comparison of Seven and Fourteen Days of Lansaprazole, Clarithromycin and amoxicillin Therapy for Eradication of Helicobacter pylori: A Report from India. H elicobacter 2000; 5: 54-57.
7 Dixon MF, Genta RM, Yardley JH, Correa P. Classification and Grading of Gastritis. The Updated Sydney system. A m J Surg Pathol 1996; 20: 1161-1181.
8 Yang HB, Sheu BS, Su IJ, Chien CH, Lin XZ. Clinical Application of Gastric Histology to Monitor Treatment of Dual Therapy in H pylori Eradication. D ig D is S cience 1997; 42: 1835-1840.
9 Unidentified curved bacilli on gastric epithelium in active chronic gastritis. L ancart 1983; 1: 1273-1275.
10 World H ealth O rganization. International agency for research on cancer. N efection with Helicobacter pylori. S chistosomiasis, Liver flukes and Helicobacter pylori. L on: IARC 1994; 172-202.
11 Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gastric ulcer recurrence a review. Gastroenterology 1996; 110: 1244-1252.
12 Peitz U, Hackeßberger A, Malferttheiner P. A practical approach to patients with refractory Helicobacter pylori infection, or who are re-infected after standard therapy. D rugs 1999; 57: 905-920.
13 Marshall BJ, Warren J. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. L ancart 1984; 16: 1311-1315.
14 Working P arty of the European Helicobacter pylori s tudy group. Guidelines for clinical trials in Helicobacter pylori infection. Gu t 1997; 41(Suppl 2): S3-9.
15 Soli AH. Consensus conference. Medical treatment of peptic ulcer disease. Practice guidelines. Practice Parameters Committee of the American College of Gastroenterology. J A M A 1996; 275: 622-628.
16 Taskin V, Özyilkun E, Aydin A, Çetin F, Eskiolu A, Köseolu T. Can resistant Helicobacter pylori infection be estimated histologically: Effects of gastric histology on eradication rates of Helicobacter pylori infection. T he T urk J Gastroenterol 2003; 12: 126-129.
17 Aydin A, Erdüz G, Tunçyürek M, Cansuoglu H. One-week triple therapies for Helicobacter pylori eradication. The T urk J Gastroenterol 1998; 9: 40-45.
18 Iwahi T, Satoh H, Nakao M, Iwasaki T, Yamazaki T, Kubo K, Tamura T, Imada A, Lansaprazole, a novel benzimidazole proton pump inhibitor, and its related compounds have selective activity against Helicobacter pylori. A ntim Agents Chem 1991; 35: 495-496.
19 Hunt RH. pH and H pylori-gastric acid secretion and Helicobacter pylori. Ymplications for ulcer healing and eradication the organism. A m J Gastroenterol 1993; 88: 481-483.
20 Glupczynski Y. Antimicrobial resistance in Helicobacter pylori: a global overview. Acta Gastroenterol Belg 1998; 61: 357-366.
21 Georgopoulos SD, Ladas SD, Karapantasis S, Mentis A, Spiliadi C, Artikis V, Raptis SA. Factors that may Affect Treatment Outcome of Triple Helicobacter pylori Eradication Therapy with Omeprazole, Amoxicillin, and Clarithromycin. D ig Dis Sc i 2000; 45: 63-67.
22 Huang JQ, Hunt RH. Treatment after failure of the problem of “non-responders”. G ut 1999; 45(Suppl 1): S140-144.
23 Kim J, Reddy R, Lee M, Kim JG, El-Zaadari FA, Osato MS, Grah am DY, Kwon DH. Analysis of metronidazole, clarithromycin and tetracycline resistance of Helicobacter pylori isolated from Korea. A ntim Ch em 2001; 47: 459-461.
24 Boyanova L, Mentis A, Gubina M, Rozynek E, Goscinski G, Kalenic S, Goral V, Kupcinskas L, Kantarceken B, Aydin A, Archimandritis A, Dzierzanowska D, Vcev A, Ivanova K, Marina M, Mitov I, Petrov P, Ozden A, Popova M. The status of antimicrobial resistance of Helicobacter pylori in eastern Europe. C lin Microbiol Inf ect 2002; 8: 388-396.
25 Fome M, Viver JM, Esteve M, Fernandez-Banares F, Lite J, Espinos JC, Quintana S, Salas A, Garau J. Randomize clinical trial comparing two one week triple therapy regimens for the eradication of Helicobacter pylori infection and duodenal ulcer healing. A m J Gastroenterol 1998; 93: 35-38.
Kim HS, Lee DK, Kim KH, Jeong YS, Kim JW, Seo JI, Baik SK, Kwon SO, Cho MY. Comparison of the efficacy and safety of different formulations of omeprazole-based triple therapies in the treatment of Helicobacter pylori-positive peptic ulcer. J Gastroenterol 2001; 36: 96-102

Graham DY, Lew GM, Malaty HM, Evans DG, Evans DJ Jr, Klein PD, Alpert LC, Genta RM. Factors influencing eradication of Helicobacter pylori with triple therapy. Gastroenterology 1992; 102: 493-496

Kung NN, Sung JJ, Yuen NW, Ng PW, Wong KC, Chung EC, Lim BH, Choi CH, Li TH, Ma HC, Kwok SP. Anti-Helicobacter pylori Treatment in Bleeding Ulcers: Randomized Controlled Trial Comparing 2-day versus 7-Day Bismuth Quadruple Therapy. Am J Gastroenterol 1997; 92: 438-441

Megraud F. Resistance of Helicobacter pylori to antibiotics: the main limitation of current proton-pump inhibitor triple therapy. Eur J Gastroenterol Hepatol 1999; 11: (Suppl 2): S35-37

Kamada T, Haruma K, Komoto K, Mihara M, Chen X, Yoshihara M, Sumii K, Kajiyama G, Tahara K, Kawamura YM. Effect of smoking and histological gastritis severity on the rate of H. pylori eradication with omeprazole, amoxicillin, and clarithromycin. Helicobacter 1999; 4: 204-210

Russo A, Maconi G, Spinelli P, Fice GD, Eboli M, Andreola S, Ravagnani F, Settesoldi D, Ferrari D, Lombardo C, Bertario L. Effect of lifestyle, smoking, and diet on the development of intestinal metaplasia in H. pylori-positive subject. Am J Gastroenterol 2001; 96: 1402-1408

Huang JQ, Hunt RH. Review: eradication of Helicobacter pylori. Problems and recommendations. J Gastroenterol Hepatol 1997; 12: 590-598

Raviglione MC, O’Brien RJ. Tuberculosis. In Fauci A.S. Ed. Harrison’s principles of internal medicine. 14th ed. New York: McGraw-Hill Co 1998: 1004-1014

Madkour M. Brucellosis in Fauci A.S. Ed. Harrison’s principles of internal medicine. 14th ed. New York: McGraw-Hill Co 1998: 1004-1014

Bjorkholm B, Zhukhovitsky V, Lofman C, Hulten K, Enroth H, Block M, Rigo F, Engstrand L. Helicobacter pylori entry into human gastric epithelial cells: A potential determinant of virulence, persistence, and treatment failures. Helicobacter 2000; 5: 148-154

Edited by Wang XL Proofread by Zhu LH