Elucidation of Danzhixiaoyao Wan and Its Constituent Herbs on Antioxidant Activity and Inhibition of Nitric Oxide Production

Hui Liao¹,², Linda K. Banbury¹ and David N. Leach¹

¹Centre for Phytochemistry and Pharmacology, Southern Cross University, Lismore NSW 2480, Australia and ²Shanxi Provincial People’s Hospital, Taiyuan, Shanxi 030012, China

Danzhixiaoyao Wan (DW) is a common 10 herbs formulation in China for regulating several clinical conditions affecting women. This research tried to explain one of DW’s functions, purging heat, using in vitro pharmacological analyses. The whole formulation and each single herb of DW were compared based on antioxidant activity with the oxygen radical absorbance capacity (ORAC) assay, and for their inhibitory effect (IE) on nitric oxide (NO) production by lipopolysaccharide (LPS)-activated RAW 264.7 macrophages with the Griess assay. The results showed that DW as a whole formulation had both antioxidant activity and an IE on NO production, while the individual herb component of DW varied in their ORAC values and inhibition of NO production. The ORAC value of the whole DW was 450 m mol TE g⁻¹. The order of antioxidant (ORAC) activity of the single herbs was: Mentha haplocalyx (1352 m mol TE g⁻¹) > Glycyrrhiza uralensis (1184 m mol TE g⁻¹) > Gardenia jasminoides (1129 m mol TE g⁻¹) > Paeonia suffruticosa (465 m mol TE g⁻¹), with the contributions being additive rather than synergistic. The production of nitrite by stimulated RAW 264.7 murine macrophages (unstimulated: 0.5 ± 0.1 μM versus LPS: 38.9 ± 2.3 μM) was significantly inhibited (P < 0.05) by M. haplocalyx, G. jasminoides, Bupleurum chinense and Paeonia lactiflora. DW as a whole had an IE on NO production, but this was not significant. The single herb M. haplocalyx had the highest ORAC value and the highest IE on NO production, followed by G. jasminoides. Both of these herbs have the ‘purging heat’ property in the theory of traditional Chinese medicine and this property of the samples may be correlated with the antioxidant activity and IE on NO production.

Keywords: antioxidant activity – Danzhixiaoyao Wan – inhibitory effect on nitric oxide production – individual herbs – purging heat property

Introduction

Traditional Chinese medicine (TCM) belongs to Complementary and Alternative Medicine (CAM) in Western countries. TCM is based on a long tradition of herbal medicine, using single herbs, such as ginseng, or more often, multicomponent herbal formulations, such as Shi quan da bu tang. Such herbs and formulations are now being subjected to clinical research and pharmacology (1–3). Thousands of herbal formulations (generally consisting of 4–12 individual herbs) have been recorded in Chinese medical literature from the earliest known ‘Shen Nong Ben Cao Jing’ to the more contemporary Chinese Materia Medica (4,5). TCM may have fewer and less severe side effects than single pure drugs making TCM especially attractive to the consumers. A study on the use of CAM among American women showed that more than half the sample has used a CAM treatment or remedy, and 40% have visited a CAM practitioner (6). The use of CAM has increased in the United States over the past 20 years, reaching 36% in 2002; herbal medicine use accounts for ~22% of all CAM use (7). Chinese herbal medicines contain herbs, either singly or in mixtures, which are used for their scent, flavor and/or therapeutic properties.

Danzhixiaoyao Wan (DW) is a popular prescription to regulate women’s disorders. It is from the famous...
prescription—Xiaoyao San (Ease Powder). The source of Xiaoyao San is Taiping Huimin Hejiju Fang (Benevolent Prescriptions from Taiping Pharmaceutical Bureau). The ingredients of Xiaoyao San are as follows: Angelica sinensis, Paeonia lactiflora, Bupleurum chinense, Atractylodes macrocephala, Poria cocos, Glycyrrhiza uralensis, Mentha haplocalyx and Zingiber officinale. Attributes of the constituents of Xiaoyao San in TCM are as follows: B. chinense is used to disperse stagnated liver-qi; P. lactiflora and Angelica sinensis are used to nourish blood for retaining yin and nourish the liver to relieve spasm; P. cocos, A. macrocephala and G. uralensis can supplement qi, strengthen the middle-energizer and reinforce the spleen to prevent the liver from subjugating it; M. haplocalyx assists to disperse the stagnated liver-qi, and Z. officinale helps to warm and regulate the middle-energizer. All the herbs used together disperse the stagnated liver-qi and enrich liver blood and restore the normal function of the spleen. In case of heat converted from stagnated liver-qi manifesting as a dry and bitter mouth, Paeonia suffruticosa and Gardenia jasminoides are also included in DW. The actions of DW are purging heat and soothing the liver, nourishing blood and invigorating the spleen (8).

In Chinese medicine, heat pertains to yang and relates to inflammation (9). When heat invades the body, it usually scorches the liver meridian, leading to the occurrence of liver-wind. In TCM theory, imbalance between yin and yang is a summation of all kinds of basic pathogeneses. DW can purge heat and reduce excessive yang, so it has yin characteristics. Studies have shown that the effective components of the yin-tonic herbs are mainly flavonoids with strong antioxidant activity (10–12). In addition, some of them are known to have anti-inflammatory properties (13). From recent research, antioxidants have a broad medicinal appeal because they have been linked to disease prevention and health maintenance characteristics for a number of conditions. Some Chinese formulations have been researched for their antioxidant activity. Gui zhi fu ling wan (a traditional Chinese formulation) improved microcirculation in patients with multiple old lacunar infarction prevented the progression of atherosclerosis and preserved endothelium-dependent vasorelaxation in cholesterol-fed rabbits by its antioxidant activity (14).

There have many reports of different test methods for measuring antioxidant effect. Here, we used the most popular, easiest and least expensive of the testing methods available: the oxygen radical absorbance capacity (ORAC) method. ORAC, an in vitro assay, measures antioxidant scavenging activity against peroxyl radical produced by AAPH at 37°C. Fluorescein (FL) was measured as the fluorescent probe. The loss of fluorescence of FL was an indication of the extent of damage from its reaction with the peroxyl radical. A high ORAC value indicates that the tested sample possesses a high potency of antioxidant activity.

Nitric oxide (NO) is a diatomic free-radical produced from l-arginine by constitutive and inducible nitric oxide synthases (cNOS and iNOS) in numerous mammalian cells and tissues. iNOS is induced by either bacterial lipopolysaccharide (LPS) or a number of cytokines in macrophages, hepatocytes and endothelial cells. iNOS and NO are involved in host defense and immunity and modulate the inflammatory response (15,16). NO and its product may be generated in excess during the host response against viral and bacterial infections and contribute to some pathogenesis by promoting oxidative stress (17,18).

Our present study focused on the antioxidant activity of the DW and its constituent herbs as well as the effects of extracts of DW and constituent herbs on NO production in LPS-activated RAW 264.7 macrophages. Modern analytical methods are being used to substantiate pharmacological claims with pharmacological evidence for herbal formulations and their individual components. In this paper, we generated antioxidant and anti-inflammatory data in an attempt to explain the meaning of DW’s TCM action—purging heat from stagnated liver-qi.

Methods

Preparation of Sample

The samples in this study were bought from Shanxi Provincial People’s Hospital. The herbs were supervised by Shanxi Provincial Medicinal Materials Supervision Bureau using vouchedered specimens. The herbs were dried and ground into powder.

Dried herbs (3 g; dried under high vacuum to constant weight) were placed in a centrifuge tube (20 ml) and mixed with water (10 ml). The solution was vortexed, steeped at room temperature (2 h) then sonicated (15 min). Extracts were centrifuged (14 000 r.p.m., 10 min) and the supernatants dried under high vacuum and the residue weighed. The dried extracts were redissolved in water at suitable concentrations for the assays.

The manufacture of DW involves mixing the dried ground herbs with water, compressing into pills and removing the water. The formula is listed in Fig. 1. Before testing, DW was ground in a mortar and pestle and 3 g of the dried DW was extracted as above.

ORAC Assay

The ORAC assay was performed essentially as described by Ou et al. (19). Trolox (6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid) and fluorescein disodium (FL, 3’,6’-dihydroxy-spiro[isobenzofuran-1[3H],9’[9H]-xanthen]-3-one) were obtained from Aldrich (Milwaukee, WI). AAPH [2’-Azobis(2-amidinopropane) dihydrochloride] was purchased from Wako Pure Chemical, USA. Phosphate buffer solution was obtained ‘in house’. All ORAC analyses were performed on a Victor 2 plate reader (Wallac) at 37°C with an excitation wavelength of 485 nm and emission wavelength of 535 nm. The area under the fluorescence decay curve for FL (AUC) was calculated by point-to-point integration. The 96-well polystyrene microplates were purchased from PerkinElmer Life and Analytical Sciences.
The dried sample extracts were dissolved in water, and tested at concentrations of 12.5, 25, 50 and 100 mg extract per liter in triplicate. Briefly, 20 ml of sample or Trolox was incubated with 10 ml 75 nM FL and 170 ml 17 mM AAPH in a total volume of 200 ml. The decrease in fluorescence was followed at one minute intervals for 40 min at 37°C. The protective effect of an antioxidant was measured by comparing the AUC of the sample to that of a known antioxidant, Trolox, a water-soluble analog of vitamin E. The final ORAC values were expressed as micromole Trolox Equivalents per gram dried herb (μmol TE g⁻¹). The results were expressed as mean ± SD.

NO Assay

iNOS activity was determined on RAW 264.7 cells from the American Type Culture Collection (Manassas, VA) cultured in color-free DMEM supplemented with 10% heat inactivated fetal bovine serum, d-glucose (3.5 mg ml⁻¹), Na pyruvate (100 mM), l-glutamine (2 mM) penicillin (100 U ml⁻¹), streptomycin (100 mg ml⁻¹) and amphotericin B (1 g ml⁻¹). Cells were plated at 2 x 10⁶ per ml cells, 100 μl per well and maintained at 37°C in an atmosphere of 5% CO₂. Confluent cells in 96-well plates (Nunc) were pre-treated for 2 h with vehicle or samples prior to LPS (1 μg ml⁻¹) stimulation for 22 h. Nitrite, a stable endproduct of NO, was then measured using the Griess reaction (20). Supernatants of RAW 264.7 cells were mixed with an equal volume of Griess reagent (0.1% N-(1-naphthyl) ethylenediamide dihydrochloride, 1% sulfanilamide in 5% phosphoric acid), followed by spectrophotometric measurement at 550 nm. Nitrite concentrations in the supernatants were determined by comparison with a sodium nitrite standard curve.

Results

ORAC Assessment of DW and Constituent Herbs

Table 1 reported the ORAC contributions of each constituent herb and the combination formula. The highest ORAC value was recorded for *M. haplocalyx* (1352 μmol TE g⁻¹), which is higher than vitamin E (1162 μmol TE g⁻¹) but lower than vitamin C (2000 μmol TE g⁻¹) (21). Significant ORAC contributions are also made by *G. uralensis* (1184 μmol TE g⁻¹), and *G. jasminoides* (1129 μmol TE g⁻¹) whilst *P. cocos* did not show any antioxidant activity even at 400 mg l⁻¹. For the whole formulation, the ORAC value was 450 μmol TE g⁻¹ compared with the contribution of individual herbs at 460 μmol TE g⁻¹ corrected for weight composition of the formulation. From this data the contributions appear to be additive with no evidence for synergy from the traditional combination formulation.

Inhibitory Activity on NO Production by DW and Constituent Herbs

As shown in Table 2, NO production increased dramatically from the basal level of 0.5 ± 0.14 μM to 38.9 ± 6.7 μM following stimulation with LPS. As shown in Table 2, with the

exception of Z. officinale, DW and the other nine herb extracts all reduced the LPS-stimulated NO production. Among them, M. haplocalyx, G. jasminoides, B. chinense and P. lactiflora had a significant effect when compared with LPS alone (Student’s t-test, \(P < 0.05 \)).

We compared the ability of 10 single herbs to reduce NO production. The inhibitory effect (IE) was expressed as the percentage decrease of NO production as

\[
\text{IE} (%) = \frac{100 - \frac{[\text{NO}]^a}{[\text{NO}]^b}}{\times 100},
\]

where \([\text{NO}]^a\) represents the NO concentration in supernatants with sample added, \([\text{NO}]^b\) represents the NO concentration in supernatants from LPS-activated control macrophages (22). The IE is shown in Table 2.

Discussion

Chinese and Western medicines have both contributed greatly to health and disease treatment, but each has evolved its own fundamental rules. These rules make the two quite unique, in practice and in theory, especially in the drugs they design and use. Western medicine uses pure natural or synthetic compounds aimed at a single target, while TCM uses processed or crude multicomponent natural products, in various combinations and formulations aimed at multiple targets to treat a totality of different symptoms (23). DW is a combination of 10 herbs specific to the treatment of female disorders. In TCM, these disorders include hyperplasia of the lobule of the mammary gland, pre-menstrual tension, chronic pelvic inflammation and menopausal syndrome. Such disorders are caused by transformation of heat from liver depression, stagnation of liver-qi consuming blood, liver-wood depression subjugating spleen-earth and dysfunction of the spleen in transportation and transformation. DW is used to treat stagnation of liver-qi and deficiency of blood and spleen, purging heat from stagnated liver-qi. This is marked by hypochondriac pain, headache, dizziness, dry mouth and throat, mental fatigue and poor appetite, or alternate attacks of chills and fever, or irregular menstruation, distension in the breast, reddish tongue, taut and thready pulse. DW is normally used as water-paste pills prepared by mixing the fine powdered herbs with excipients such as water to enhance a slow action and lasting effect (8). Laboratory water-paste pills were prepared as the sample for these antioxidant activity tests.

Some herbs that have high antioxidant activity are known to have anti-inflammatory properties (13). Also, inflammation is a typical symptom of excessive heat in TCM theory. That DW can reduce the excessive heat in TCM theory led us to investigate its antioxidant and anti-inflammatory activity.

DW had strong antioxidant activity, which would equate to 5400 \(\mu \text{mol TE} \) per day taking into consideration its recommended dose of 12 g per day. It could suppress LPS-induced NO synthesis in RAW 264.7 macrophages by 28%. The combination of these pharmacological activities may explain the clinical actions of DW in purging heat in TCM.

In recent years there has been a trend that research would continue worldwide to identify and improve the efficacy of the active principals of herb both singly and in combination—from active ingredients, active fractions and active herbal formulations. There are 10 herbs in DW and the activity of the single herbs and their relationship with their TCM properties were also tested. According to TCM theory, three herbs in DW have the function of clearing heat and they are P. suffruticosa, G. jasminoides and M. haplocalyx. The results showed that M. haplocalyx and G. jasminoides had the highest antioxidant activity and significantly inhibited NO production.

It is interesting to note that Z. officinale had a different effect compared with other herbs whereby it seemed to stimulate the NO production at 500 mg l\(^{-1}\) (235.4 ± 33.0 \(\mu \text{M} \)), but had no effect at 50 mg l\(^{-1}\). As shown in Table 2 when the samples were at 500 mg l\(^{-1}\), the significant IE were as follows:
Table 2. Effects of single herb and formulation on nitric oxide production of LPS-activated RAW 264.7 macrophages

Samples	Latin name	Concentration (mg l⁻¹)	Nitrite (µM)	IE (%)
Unstimulated			0.5 ± 0.1	
LPS			38.9 ± 2.3	
Bo he	Mentha haplocalyx	500	19.5 ± 0.6*	49.9
		50	25.1 ± 2.2*	35.5
Zhi zi	Gardenia jasminoides	500	20.9 ± 1.6*	46.3
		50	26.5 ± 4.2	31.9
Chai hu	Bupleurum chinense	500	36.6 ± 1.6	5.9
		50	24.6 ± 1.3*	36.7
Bai shao	Paeonia lactiflora	500	26.1 ± 1.3	32.9
		50	25.5 ± 1.2*	34.4
Dan pi	Paeonia suffruticosa	500	38.0 ± 5.1	2.3
		50	30.0 ± 2.4	22.9
Dang gui	Angelica sinensis	500	37.0 ± 2.2	4.9
		50	30.5 ± 0.9	21.6
Bai zhu	Atractyloides macrocephala	500	28.6 ± 5.4	26.5
		50	35.9 ± 6.0	7.7
Fu ling	Poria cocos	500	34.4 ± 1.6	11.6
		50	29.3 ± 2.9	24.7
Gan cao	Glycyrrhiza uralensis	500	31.0 ± 7.4	20.3
		50	28.8 ± 8.3	26.0
Sheng jiang*	Zingiber officinale	500	235.4 ± 33.0	
		50	35.7 ± 1.0	9.2
DWd formulation		500	28.0 ± 3.7	28.0
		50	27.9 ± 5.6	28.3

*Data represent mean ± SD values from triplicate.

References

1. Friedl R, Moeslinger T, Kopp B, Speckermann PG. Stimulation of nitric oxide synthesis by the aqueous extract of *Panax ginseng* root in RAW 264.7 cells. *Br J Pharmacol* 2001;134:1663–70.
2. Mahady GB, Gy llenhall C, Feng HH, Farnsworth NR. Ginseng: a review of safety and efficacy. *Nutr Clin Care* 2000;3:90–101.
3. Kiyohara H, Matsumoto T, Yamada H. Combination effects of herbs in a multi-herbal formula: expression of Juzen-taiho-to’s immuno-modulatory activity on the intestinal immune system. *Evid Based Complement Alternat Med* 2004;1:83–91.
4. Hosoya E. *The Pharmacology of Kampo Prescriptions*. Tokyo, Tokyo Life Science Publishing Co., 1985, 52–65.
5. Huang KC. *The Pharmacology of Chinese Herbs*. Boca Raton, FL: CRC Press, 1993, 3–7.
6. Litvak PF, Cushman LF, Kronenberg F, Wade C, Kalmuss D. Use of complementary and alternative medicine among women in New York city: a pilot study. *J Altern Complement Med* 2001;6:659–66.
7. Bressler R. Herb-drug interactions: interactions between Kava and prescription medications. *Geriatrics* 2005;60:24–5.
8. Fan QL, Zhu ZB. *Science of Prescriptions*. Shanghai, Shanghai Publishing House of Shanghai University of Traditional Chinese Medicine, 2002, 19–123.
9. Wu CG, Zhu ZB. *Basic Theory of Traditional Chinese Medicine*. Shanghai, Publishing House of Shanghai University of Traditional Chinese Medicine, 2002, 158.
10. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA. When east meets west: the relationship between yin-yang and antioxidant-oxidation. *FASEB J* 2003;17:127–9.
11. National Traditional Chinese Herb Administration. *Zhonghua Bencao*. Vol. 1–2. Shanghai, Shanghai Science and Technology Publishing House, 1998.
12. Prior RL, Cao GH. Analysis of botanicals and dietary supplements for antioxidant capacity: a review. *J AOAC Int* 2000;83:950–6.
13. Theoharides TC, Alexandrakis M, Kempuraj D, Lytinas M. Anti-inflammatory actions of flavonoids and structural requirements for new design. *Int J Immunopathol Pharmacol* 2001;14:119–27.
14. Nozaki K, Hikiami H, Goto H, Nakagawa T, Shibahare N, Shimada Y. Keishibukuryogan (Gui-Zhi-Fu-Ling-Wan), a Kampo formula, decreases disease activity and soluble vascular adhesion molecule-1 in patients with rheumatoid arthritis. *Evid Based Complement Alternat Med* 2006;3:359–64.

15. Vanem JR, Mitchell JA, Appleton L, Tomlinson A, Bishop BD, Croxall J, et al. Inducible isoforms of cycloxygenase and nitric-oxide synthase in inflammation. *Proc Natl Acad Sci USA* 1994;91:2046–50.

16. Jang D, Murrell GA. Nitric oxide in arthritis. *Free Radic Biol Med* 1998;63:854–65.

17. Maeda H, Akaïe T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. *Biochemistry (Moscow)* 1998;63:854–65.

18. Akaïe T, Fujii S, Kato A, Yoshiitake J, Miyamoto Y, Sawa T, et al. Viral mutation accelerated by nitric oxide production during infection in vivo. *FASEB J* 2000;14:1447–54.

19. Ou B, Hampusch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. *J Agric Food Chem* 2001;49:4619–26.

20. Green LC, Wagner D, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15-N] nitrate in biological fluids. *Anal Biochem* 1982;126:131–8.

21. Huang D, Ou B, Hampusch-Woodill M, Flanagan JA, Deemer EK. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. *J Agric Food Chem* 2002;50:1815–21.

22. Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. *J Agric Food Chem* 2002;50:850–7.

23. Lee KH. Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. *Public Health Nutr* 2000;3:515–22.

24. Bressler R. Herb-drug interactions: interactions between ginseng and prescription medications. *Geriatrics* 2005;60:16–7.

25. Tang DC. *Science of Chinese Materia Medica*. Shanghai, China Publishing House of Shanghai University of Traditional Chinese Medicine, 2003, 57–75.

26. Pham TQ, Cormier E, Farnworth E. Antioxidant properties of crocin from *Gardenia jasminoides Ellis* and study of the reactions of crocin with linoleic acid and crocin with oxygen. *J Agric Food Chem* 2000;48:1455–61.

27. Wu XH, Wu GR, Zhang WM, Gu GP, Shen Q. Antioxidative function of paenol and sodium paenol sulfonate. *J Nanjing Normal Univ (Nat Sci)* 2005;28:83–5.