ABSTRACT

Visual graphics, such as plots, charts, and figures, are widely used to communicate statistical conclusions. Extracting information directly from such visualizations is a key subproblem for effective search through scientific corpora, fact-checking, and data extraction. This paper presents a framework for automatically extracting compared variables from statistical charts. Due to the diversity and variation of charting styles, libraries, and tools, we leverage a computer vision based framework to automatically identify and localize visualization facets in line graphs, scatter plots or bar graphs and can include multiple series per graph. The framework is trained on a large synthetically generated corpus of matplotlib charts and evaluate the trained model on other chart datasets. In controlled experiments, our framework is able to classify, with 87.5% accuracy, the correlation between variables for graphs with 1-3 series per graph, varying colors, and solid line styles. When deployed on real-world graphs scraped from the internet, it achieves 72.8% accuracy (81.2% accuracy when excluding “hard” graphs). When deployed on the FigureQA dataset, it achieves 84.7% accuracy.

PVLDB Reference Format:
Dale Decatur and Sanjay Krishnan. VizExtract: Automatic Relation Extraction from Data Visualizations. PVLDB, 14(1): XXX-XXX, 2021. doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at github.com/ddecatur/VizExtract.

1 INTRODUCTION

Organizing and indexing data products, such as reports, charts, and models, is a core aspect of data governance [8, 17]. Data scientists need to be able to quickly identify how datasets have been used, by whom, and what the conclusions were. Generally, this process involves extracting metadata from analysis code and any derived data artifacts and storing that metadata in a database [6, 8]. The extraction problem has been extensively studied in the context of tabular analytics [6, 15, 19], raw text (e.g., publications) [16], and machine learning [7, 22].

Figure 1: Examples of visual relations. Visual relations describe how a particular chart series relates to the X-Y plane.

Notably missing from this body of work are reliable tools that can extract information from data visualizations. Several research prototypes have been proposed: Scatteract, FigureQA, ChartText, ChartOCR, and Reverse Engineering Visualizations (REV) [2, 5, 9, 14, 18]. However, our literature survey suggests relatively narrow applications for these systems focusing on certain graph types, styles, and facets. For example, REV focuses on extracting textual fields such as legends, axis labels, and ticks from a visualization, ignoring the actual data [18]. On the other hand, ChartOCR [14] attempts to extract all information, including the data, but that can result in poor performance on “charts in the wild” due to unanticipated charting styles. Accordingly, this paper explores the methodology and limits of a general-purpose visualization information extraction system. Fundamentally, this problem is a computer vision problem, in which an AI system needs to be able to segment and classify different facets of an image file representing the visualization. We show that with an appropriately defined extraction scope, a deep learning system can effectively identify key visualization aspects across varied chart types, styles, and arrangements.

This paper proposes VizExtract, a visualization information extraction system. VizExtract extracts axis labels, legends, and series from bar graphs, scatter plots, and line graphs. In terms of plot content, VizExtract focuses on identifying high-level relationships among the visualized data rather than identifying every individual mark. This is similar in spirit to relation extraction in natural language processing, where the objective is to identify binary relations between entities. Similarly, visual relations are binary relationships between the variables described on a chart (i.e., the variables represented on the x and y axes) conditioned on a particular chart series. For example, one could tag every series with a “correlation” (positive, negative, or neutral). This correlation would describe if the series is generally increasing on Y w.r.t X, decreasing, or constant (Figure 1). Thus, in visual relation extraction, given an input chart represented as an image, we would like to yield 4-tuples of the form (x-axis, y-axis, series, relationship). For the purposes of this
paper, we scope visual relations to solely determining correlation, but this same approach should hold for any relation.

In practice, the implementation of such a system is quite complex because charts have varying styles, multiple series, and are generated using a diverse range of graphing libraries. We contribute a computer vision pipeline, which given an input chart as an image, extracts a set of discovered relations. The framework is based on a deep learning model that is trained on a large synthetically generated corpus of matplotlib charts. These charts are varied in their organization, style, and coloring. The trained model can then be deployed on unseen charts and easily fine-tuned for new styles.

In developing VizExtract, we have learned much about the strengths and weaknesses of deep learning in this context. While deep learning is an immensely powerful tool and is the foundation of our system, our research suggests that the approach of using solely a deep learning network is not sufficient to achieve accurate results and a mix of learned and programmed components is necessary to achieve best performance. VizExtract uses a combination of pre-processing and other algorithmic approaches surrounding its central convolutional neural network (CNN) in order to deliver its results.

We evaluated VizExtract against a state-of-the-art baseline called ChartOCR [14]. We chose to compare to this system since ChartOCR is recent, state-of-the-art, and closest in structure to VizExtract. In this comparison, we observed that, within the application to python style graphs, the scale and diversity of graphs supported by VizExtract is greater than that supported by ChartOCR. At a high level, VizExtract supports more complex plot types such as scatter plots (both single and multi series) or certain multi-series bar charts. However, from this comparison, we were also able to directly observe that in situations where multiple series significantly overlapped, VizExtract was more robust and better able to identify the individual series. Specifically, we found that for multi-series line graphs, the raw score performance of VizExtract was twice as accurate as ChartOCR. We believe that this advantage of VizExtract is due to its relation extraction approach. By using this approach, VizExtract can more easily segment out series and focus on high level relations as opposed to other systems that focus on individual data point extraction and thus are easily confused by noisy or overlapping series.

2 BACKGROUND AND RELATED WORK

First, we describe the basic problem statement and how existing approaches work.

2.1 Problem Statement

VizExtract accepts 2-dimensional plots that visualize data in the X-Y plane (Figure 2). These plots illustrate how multiple series (subsets of data) compare on those coordinates. VizExtract considers scatter plots, line graphs, and bar charts, each with up-to 3 different series. The goal of VizExtract is to extract visual relations from these charts.

Definition 2.1 (Visual Relation). Let V be a visualization and $S \subseteq V$ be a series. A visual relation is the association of the series with a binary function θ of the series:

$$S \rightarrow \theta(S)$$

This definition is a bit abstract so let us consider an example as in Figure 1. We could define a property called isIncreasing() which, for a given series, measures the Spearman correlation coefficient between each mark’s x and y coordinates and tests to see if it is above 0.4. Each series would have a true and false value for isIncreasing(). Suppose that we have a family of such visual relations functions $\Theta = \{\theta_1, \ldots, \theta_N\}$. The visual relation extraction problem is to:

Definition 2.2 (Visual Relation Extraction). Let S_1, \ldots, S_k be a set of series in a chart and \{\theta_1, \ldots, \theta_N\} be a set of visual relation functions. The visual relation extraction problem is to identify all the visual relations in the chart:

$$\{S_i \rightarrow \theta_j(S_i)\}_{1 \leq i \leq k, 1 \leq j \leq N}$$

This task is straightforward when the data that generated the chart is available. However, the main challenge in the visual relation extraction problem is to infer these relationships purely from an image of the visualization. This system will have to identify all of the chart series and use visual cues to infer the results of the visual relation functions. For example, isIncreasing() looks different in a line graph than it does in a bar chart.

2.2 Related Work and Current Scope

To the best of our knowledge, no other system focuses on relation extraction in the way that VizExtract does. However, there do exist a variety of systems that algorithmically extract data from plots [1, 2, 4, 5, 9, 11, 13, 14, 18]. Recent and comparable systems can be categorized based on the types of graphs they support, their ability to extract data and text from the graph, their ability to process multi-series graphs, and their overall intended function (extraction or question answering). We compare the capabilities of VizExtract and other prominent systems in Table 1.

From this table we can see that the VizExtract system is the most general/versatile and provides coverage for all areas except pie charts which we chose not to support since correlations are not well defined in this context. Scatteract is a system that fully automates the process of extracting data points from images of scatter plots, but does not support other plot types. Furthermore, it does not extract series or axis labels (needed for the relation extraction problem). ChartText is a system that first uses a CNN

\(^{1}\)For other relations where pie charts are relevant, pie charts could be supported by adding them to the training data.
we exclude an experimental comparison. There is an entire line
VizExtract which uses a single network for all graph types. We
Table 1: We survey the features of existing visual information extraction systems. Existing systems have varying scopes and
projects like Web Tables [3] that study how to extract relational
to evaluate our model.

However, due to differences in the interface (exhaustive extractions
often ends up extracting information about the underlying dataset.
these graphs, for example, “does line X intercept line Y?”). While
this system does not perform the same function as VizExtract, it
these graphs, for example, “does line X intercept line Y?”. While
these graphs, for example, “does line X intercept line Y?”). While

Thus, while there has been a lot of work on this problem, the
aforementioned systems are not quite comparable to VizExtract.
Closer to our contribution, ChartOCR is a system that extracts exact
data from images and supports multiple different types of
graphs. Similarly to VizExtract, this system uses a combination of
an algorithmic approach and deep learning to do so. This system
is powerful in that it supports many different graph types, how-
ever, each graph type requires a separate network in contrast to
VizExtract which uses a single network for all graph types. We
picked ChartOCR as a baseline system and ran it on our gener-
gated graphs. We consider ChartOCR to be a strong, state-of-the-art
baseline to compare to since: (1) it was published in the last year,
and (2) it supports more graph types, and performs better than
many standard data point extraction systems. Additionally, since
ChartOCR combines a rule-based, algorithmic approach with deep
neural networks, its structure is most similar to VizExtract.

Beyond ChartOCR, we also identified another line of work in
the machine learning community that studies this problem. Fig-
ureQA is another system that analyzes images of graphs. However,
nstead of focusing on extracting specific information from the
graphs, FigureQA attempts to answer common questions about
these graphs, for example, “does line X intercept line Y?”. While
this system does not perform the same function as VizExtract, it
often ends up extracting information about the underlying dataset.
However, due to differences in the interface (exhaustive extractions
vs. question answering), it was unclear how to make a comparison
of performance. Instead, we use the FigureQA dataset as a test case
to evaluate our model.

This work is, in spirit, similar to other information extraction
projects like Web Tables [3] that study how to extract relational
data from unstructured sources (for a full survey of web extraction
refer to [12]). Table extraction is a key problem in data lake man-
agement [15] and we think that extracting relations from charts is
the next frontier of this area.

2.3 Example Application

Our motivating application for VizExtract is fact-checking [10].
Plots and charts can be designed to mislead by scaling/cutting axes
or linking unrelated data series [21]. VizExtract gives fact-checkers
a tool to understand what relations are being described in a given
plot and can corroborate those “visual relations” with master data.
Consider the following examples. (1) Suppose, that an analyst is
plot and can corroborate those “visual relations” with master data.

Figure 3: An overview of the main components of VizExtract
diagnosing the failure of a recent marketing campaign and plots
several KPIs on a line graph of sales to illustrate correlated fac-
tors. VizExtract can determine which series are being compared to
each other, and these series can be linked back to their data source
to determine if that comparison is meaningful (e.g., they might
have wildly different data qualities). (2) A chart in a presentation
to executives might be scaled in a way to increase the apparent
correlation between two variables (e.g., cutting an axis). VizExtract
can determine the correlation between the two variables, and that
correlation can be tested against the data source to avoid this sit-
uation. We envision that VizExtract would be integrated with a
knowledge base like system with a queryable interface.

3 SYSTEM ARCHITECTURE

Next, we briefly summarize the workflow in VizExtract and all of
the major components.

3.1 Dataset Generation and Model Training

The first step is to generate training data and then to train the
models for the desired type of relation we want to extract. The user
provides a set of visual relation functions $\theta_1, ..., \theta_N$. The system
generates a number of charts with random attributes (plot types,
colors, styles, and number of series) of these charts. For each of these attributes, the choices of either fixed or randomly varying values are both permitted by the system and can be chosen according to the preferences desired for the given experiment. All charts are generated with the matplotlib Python library.

VizExtract is not explicitly restricted to matplotlib plots. We find that with appropriate randomization the models trained on matplotlib plots generalize to a wide variety of chart styles beyond those generated by this library. Furthermore, if the user has a very particular plotting library, she can generate a training dataset specific to that library and fine-tune the models described in this work.

Each graph will consist of one to three series with random titles, axis labels, and legends (series names). Since the ground truth data is known, it is straightforward to determine the true value of \(\theta \) and the true values for all of the textual attributes. The system generates a large training dataset of synthetic charts. Two models are then trained: facet_detector and relation_extractor. facet_detector model is an object detection model that, given an image, outputs bounding boxes around the key visualization facets: the location of the legend, the location of the axes, and any textual data. The relation_extractor is a model that evaluates each of the \(\theta_1, \ldots, \theta_N \) on each series in the chart image.

In our experiments, we focus on "increasing", "decreasing", and "neutral" as our desired relations. We determine these relations using the Spearman correlation formula which returns a value ranging from -1 to 1. For all types of graphs, we used a threshold of 0.4, such that data with correlations above 0.4 are classified as positive correlation (increasing), those with correlations below -0.4 are classified as negative correlation (decreasing), and those with correlations between -0.4 and 0.4 are classified as neutral correlation.

3.2 Model Inference

Figure 3 illustrates the main computer vision pipeline in VizExtract. VizExtract takes an input chart as an image file. It first runs the facet_detector to identify all of the core components, such as the legend, the axes labels, and the plot area. VizExtract then applies the pre-processing algorithm to the input image. This will convert the original input into a high contrast image where non-background pixels have high saturation. Then VizExtract determines the number of series in the image by running the k-selection algorithm. From here, VizExtract uses k-means to identify the colors of the background and of each series. For each series color, VizExtract segments out all pixels in the image that are within a certain range of that color and saves those pixels as a separate image representing the given series. Then VizExtract runs each new image of a single series through the classifier and for each receives a classification of "positive", "negative", or "neutral".

In addition to the series classification, VizExtract also performs OCR to determine the text in the image. VizExtract feeds the raw input image into the object detection network to identify relevant text regions in the image. Then OCR is applied to these regions to extract the text. The identified text is then algorithmically matched to graph elements and VizExtract returns all of the graph/axis information such as title, axis labels, and legend information. This information (which is initially a map from text to colors) is then joined with the series correlations resulting in a map from text to correlations.

Finally the series classifications and graph text are combined to create the final output of VizExtract consisting of the general plot text such as title, x-axis label, and y-axis label, and for each series both the text of the series and its corresponding correlation. The user can then use these correlations having extracted the relationship between the variables in their plots.

4 VIZEEXTRACT: VISUAL PROCESSING PIPELINE

Next, we describe in more detail the core components of VizExtract.

4.1 Chart Pre-Processing

In order to apply our model to the diverse types of graphs found in real-world situations, we needed to devise a method to remove noise and excess information from images of graphs before we classify them with our model. There are two main types of pixels we want to remove: randomly introduced noise and excessively blurry edges. The random noise is often introduced from processes such as jpeg compression. While the synthetically generated graphs had sharp edges, many graphs in the wild did not.

To de-noise the charts, we implemented a novel algorithm to pre-process each image and remove such problematic pixels. This algorithm takes advantage of the fact that these graphs are made to be clearly readable by humans. High saturation colors stand out and are easily distinguishable to the human eye and thus graphs are often created with high saturation series (with different hues) such that these series can be easily differentiated by humans interpreting the graph. This pre-processing algorithm supports graphs with dark backgrounds as well since any grayscale background (including black) gets converted to white and then can be processed normally.

The algorithm works as follows:

Algorithm 1 Saturation Threshold

```python
1: thresh ← predetermined saturation threshold constant
2: convert pixels from RGB space to HSV space
3: for each pixel, p, in the image do
4:   if p’s saturation > thresh then
5:     p’s Saturation ← 255
6:     p’s Value ← 255
7:   else
8:     p’s Saturation ← 0
9:     p’s Value ← 0
10: end if
11: end for
```

4.2 Facet Detection

After pre-processing, the next step is to detect the different facets within the chart image.

4.2.1 Object Detection Design. We train an object detection network based on the Single-Shot Detector architecture to recognize key areas of a graph such as plot space, legend, axis labels, and
The series extraction process takes images of graphs and segments varied the location of the legend, axis labels, and title. These detections each return a bounding box of pixels around the relevant areas of the chart. The bounding boxes can be used to anchor downstream processing. To train our object detection network, we generate data using the same techniques for creating graphs as described earlier in this paper. When generating the graphs, we generated them in a way that ground truth labels (the true bounding boxes) were simultaneously generated. We found that the model was sensitive to variation in input data and as a result, model accuracy was reliant on providing diverse training data. To address this, we created label strings consisting of 3-12 randomly selected upper and lowercase letters. Additionally, we varied the location of the legend, axis labels, and title.

4.2.2 Textual Post-Processing. Once the relevant sections of the image have been identified by the object detection process, we utilize the open source Tesseract optical character recognition software to detect text in these relevant sections. Tesseract handles most of the work, there are a few processing steps we preform that greatly increase accuracy. We start by cropping out each relevant section of the image. For the y axis label we rotate its cropped image 90° clockwise before passing it to Tesseract since in Matplotlib the y axis label is rotated 90° counter-clockwise by default. Tesseract does support functionality where it can detect and support rotated text, however, we found that on this data, manual rotation led to higher accuracy.

4.3 Series Extraction

The series extraction process takes images of graphs and segments out each series for individual analysis. This allows one to independently determine the visual relations of multiple series contained in a single graphical image. This process can be broken down into four main steps: series count determination, identifying series marks, constructing segmentation ranges, and legend series assignment.

4.3.1 Series Identification. The first step is to identify the distinct series in a chart. To do so, we first transform the image into “color space”. Every pixel in an image can be thought of as a 3D point (r, g, b). One can think of an image as a collection of these points, i.e., a set of 3D points. We can visualize this color space with an image like Figure 4. This shows the different colors present in a particular chart.

Different mark types and colors will result in clusterings in this space. For example, Figure 4 shows a cluster of orange and a cluster of blue pixels. We make use of k-means clustering to identify the relevant colors in the image of the graph to segment out each series. We run a k-means clustering algorithm on the RGB values of the pixels in the image of the graph with k equal to one more than the number of series to additionally account for the color of the background. From the colors that the k-means algorithm returns, we then eliminate the color that corresponds to the background (the color of the axes will already have been removed by pre-processing).

In order to differentiate the background from series marks, we simply eliminate the color group that contains the largest percentage of pixels since in all of these types of graphs, there are significantly more pixels making up the background than in the series themselves or in the axes and labels. This method works successfully on the matplotlib graphs created for training data that have solid backgrounds. However, for graphs with multicolor backgrounds, this method could fail. Once the background color has been eliminated, we return the remaining colors that correspond to the series in the graph. These colors are turned into segmentation masks that can extract each data series on its own (Figure 5).

4.3.2 Legend Series Assignment. Once we have found each series, we must match each text element in the legend with the series. We loop over every text element detected in the legend from the object detection model. For each, we calculate the centroid of this text element and find the nearest “mark” pixel to this element (one that resides in a color cluster corresponding to a mark). This process is heuristic but we find that it is reasonably robust across multiple different chart styles. The main failure mode is that when the bounding box for the legend is too large, the segmentation might detect a few pixels from points in the data itself. The points are often just as saturated as the key and, if not accounted for, can massively skew the associations. By choosing the median pixel location we make sure that as long as there are more pixels in the series key mark than the confounding pixels, we will still get the correct location.

4.4 Relation Extraction

Finally, given the segmented series, VizExtract performs visual relation extraction. We train a convolutional neural network model to identify each relation extraction function. This network uses a total of nine layers. The first six alternate between a layer of convolution and a layer of max pooling. There are then three fully

5Series count determination and constructing segmentation ranges are considered less central and are described in the appendix.

6The appendix describes how k is chosen using the combination of a standard "elbow" method and normalized error thresholds.
connected layers including one flattening layer and one output layer. In order to train this model, we first generate training graph images as described in section 3.1. We label each image with ground truth during dataset generation and divide the images into two groups with half for training and half for validation.

5 RESULTS
Next, we report the performance of VizExtract on a variety of real and synthetic datasets.

5.1 Accuracy Metrics
VizExtract is a system that extracts many pieces of information from a plot. First, we evaluate how well VizExtract can extract different facets of the visualization such as axes, legends, and series. We measure the accuracy of each of these facets individually and report a composite score.

5.1.1 Axis Detection. First, we calculate the fraction of charts where the x-axis label and y-axis label are correctly predicted (within an edit distance threshold). This results in our first accuracy metric called “axis” accuracy that measures correctly extracted x and y axes:

\[A_{\text{axis}} = \frac{\text{# within edit threshold}}{n} \]

The axis accuracy might be low for multiple reasons: (1) the OCR might fail at recognizing the characters, (2) the axes might be improperly detected in the plot, or (3) the axes labels are confused with other facets. We do not differentiate these failures unless otherwise noted.

5.1.2 Series Detection. Similarly, we defined another metric for detecting and identifying series from the legends. Like with the axes, there are many steps including identifying the series from the legend, determining its label text, and assigning it its appropriate relation. We wrap all three functions into a single metric called \(A_{\text{Series}} \) for series accuracy. A chart series is determined to be correct if it is accurately detected in the legend, the corresponding series label is assigned to it, and the correct relation is determined. A chart itself containing \(n \) series receives \(\frac{1}{n} \) points for every correct series. For \(n \) charts with scores \(c_1 ... c_n \), we define a series accuracy:

\[A_{\text{Series}} = \frac{\sum_{i=1}^{n} c_i}{n} \]

5.1.3 Composite Accuracy. Finally, once we have calculated both axis and series accuracy, we combine them to get a total accuracy score:

\[A_{\text{Total}} = \frac{A_{\text{axis}} + A_{\text{Series}}}{2} \]

Of course, this metric is reductive and accounts for many different sources of errors. We will present experiments with the appropriate ablation studies to illustrate what factors contribute to the accuracy.

5.1.4 Series Detection without OCR. While the metrics defined above are helpful for evaluating the entirety of the functionality of VizExtract, there are many situations, such as when comparing to other systems, when OCR accuracy is not as important or even practical. As such we define yet another metric, Series\(_{\text{NoOCR}}\), to measure the series accuracy that does not depend on OCR. This metric works exactly the same way as \(A_{\text{Series}} \), except instead of comparing the series text label as extracted by OCR to the ground truth text label, it compares the color determined for the series by VizExtract to the ground truth color label.

5.2 Evaluation on Generated matplotlib Charts
In this experiment, we tested the end to end accuracy of our model when both trained and evaluated on charts generated using matplotlib that mirrored those used in the training set (in format but not in content). The results are presented in Table 2 over 100 unseen graphs.

These results show that our end-to-end pipeline can extract plot information from unseen synthetic graphs with reasonably high accuracy. Specifically, it can extract axis information such as labels and titles with 86% accuracy implying that static text extraction is doable. From manual inspection of the graphs on which the axis extraction fails, we can see that there are often small typos and sometimes these typos exceed the 5 character buffer specified in the accuracy metric. This error is not especially concerning as these typos are often small (e.g. an “l” gets switched with an “I” or “t” and the text can still be easily interpreted by a human reader. However, in a fully automated application, such typos might be problematic. Another axis error type that we see is that the object detection network misses an axis object entirely (perhaps returning only the title and x label bounding boxes and missing the y label box entirely). This error less concerning since a better trained object detection network should solve this problem. With less limited training examples and more computing power, a more accurate and robust object detection network could be trained and this issue could likely be avoided.

Similarly, the relatively low series accuracy can be largely blamed on the OCR portion. Since the series accuracy without OCR is significantly higher at 87.5%, the fall off in accuracy logically can be attributed to the OCR portion of the pipeline. From manual inspection, we can observe that the vast majority of these errors occur when the object detection network fails to recognize the legend object, thus preventing our model from being able to associate each series that has been classified with the appropriate text. Furthermore, of the 12.5% error in the Series\(_{\text{NoOCR}}\) accuracy, we can see

Metric	Accuracy
Axis	86.0%
Series	83.3%
Total	84.5%
Series\(_{\text{NoOCR}}\)	87.5%

Table 2: The end to end accuracy metrics for VizExtract. The “Accuracy” column refers to the accuracy metric for graphs generated

\(^{4}\)The average length of labels in our experiments 22.5 characters, and we chose 5 as an appropriate edit distance threshold.

\(^{5}\)We tolerate an OCR error up to an edit distance of 2 for series labels.
from manual inspection that the majority of these errors occur on series that are close (within 0.15) to the 0.4 boundary that determines the ground truth correlation. In practice, humans themselves would even have difficulty discerning these correlations. If we re-run this experiment excluding such graphs, we get a Series\textsubscript{NoOCR} accuracy of 94.3%.

5.3 Comparison to ChartOCR

Next, we compare VizExtract to ChartOCR, a recently published plot data information extraction system. Since ChartOCR does not support scatter plots, we only evaluated it on line and bar graphs. To compare the two systems, we ran both VizExtract and ChartOCR on the generated plots described before on the relation extraction task. For the line graphs, we generated 100 line graphs with 1-3 series as specified in the dataset generation section. Additionally, since ChartOCR only reports the turning points on line graphs, we interpolated to find more points on those lines and then computed the correlation of those points. This experiment reported the results shown in table 3 with graph type “line”.

The situations where ChartOCR failed was primarily when the series in the graph had significant overlap (see figure 6). In these situations, it is hard for ChartOCR to pick out exact turning points or even distinguish between two series at all. However, the relation extraction approach of VizExtract is able to succeed in these scenarios in particular due to its method of series segmentation.

On our generated bar graphs, ChartOCR supports a different format of multi-series bar graphs and thus will only work on our single series bar graphs. As such, we generated 100 single series bar graphs as specified in the dataset generation section. This results for this experiment are reported in table 3 with graph type “single series bar”.

Table 3: Accuracy metrics comparing VizExtract to ChartOCR when evaluated on synthetic line and single series bar.

System	Graph Type	Raw Score	Series Accuracy
VizExtract	Line	90.0%	95.3%
ChartOCR	Line	43.3%	73.3%
VizExtract	Single Series Bar	96.7%	96.7%
ChartOCR	Single Series Bar	100%	100%

Table 4: Accuracy metrics for VizExtract when evaluated on graphs collected from the internet.

System	Graph Type	Raw Score	Series Accuracy
Easy Series\textsubscript{NoOCR}		81.2%	
Hard Series\textsubscript{NoOCR}		43.2%	
Total Series\textsubscript{NoOCR}		72.8%	

ChartOCR outperforms VizExtract here, but only slightly as both accuracy metrics are very accurate. Furthermore, the high accuracy of both systems is likely due to the fact that single series bar graphs, the one type of bar graph supported by both of these systems, are a simpler problem.

5.4 Generalization to Alternative Datasets

Next, we evaluate how VizExtract performs on alternative datasets of plots. In these experiments, we evaluate the transfer setting where the model is trained on the synthetic data and the system is applied to unseen plot types. We actually found that VizExtract performed surprisingly well on completely unanticipated data (assuming the broad category of plots were seen in the training dataset). We did find that a large number of failures could be attributed to the OCR system so we ignore OCR errors in detecting axes labels and series labels. Development of better OCR tools is outside the scope of this project and we focus on proper facet detection.

5.4.1 Graphs Collected from the Internet

In this experiment, we evaluate our model on graphs collected from the internet. The criteria for choosing these graphs were that they displayed correlations between variables for 1-3 series and that they were either line, scatter, or bar graphs. Given these loose requirements, some of these images are very “difficult” to understand due to overlaps in series or odd scaling. Thus, we divided these graphs into two subcategories: easy and hard. These categories were constructed from visual inspection since the generating data is not available. Graphs are by default considered easy and are placed into the hard category if they meet any of the following criteria: the graph contains more than 3 series, there is a large overlap of series making it hard to see data points, or the correlation of a series in the graph is very close to the boundary and could almost be classified either way. Of our 50 total graphs, 39 were classified as easy and 11 were classified as hard. The accuracy for our model evaluated on these 50 graphs gathered from the internet is shown in table 4.

From these results we can see that the accuracy on “easy” graphs is significantly higher than the accuracy on “hard” graphs as expected. The overall Series\textsubscript{M} accuracy is lower than the Series\textsubscript{M} accuracy for the synthetic graphs, but that is to be expected since they are closer to the actual data that this model was trained on. Through manual inspection, we can observe that the errors on this dataset mostly fall into three categories. The first is that sometimes axis pixels are non-grayscale and thus bypass the pre-processing filter and taint the classification model inputs. The second is when certain series have very specific positions within the graph that are
For all three experiments, we first train a model, model-1, on a dataset of 100 synthetic graphs in the default matplotlib style as outlined in section 3.1. For experiment 1, we then test model-1 using a new dataset of 100 synthetic graphs using a diverse assortment of plotting styles instead of the default matplotlib style. For experiment 2, we instead test model-1 using the same “from the internet” dataset referenced in section 5.4.1 of 50 graphs collected from the internet. For experiment 3, we instead test model-1 using the first 100 graphs from the subset of the FigureQA dataset referenced in section 5.4.2.

For our controls for each experiment, we train a new model with the same type of data being used to test the model in that experiment. For experiment 1, we both train and test a new model, model-2, on two new datasets of 100 synthetic graphs, both of which use a diverse assortment of plotting styles instead of the default matplotlib style. For experiment 2, we both train and test a new model, model-2, on the “from the internet” dataset (train on 50%, test on 50%). For experiment 3, we both train and test a new model, model-2, on the subset of the FigureQA dataset referenced in section 5.4.2 (train on graphs 101-200, test on graphs 201-300).

The results of all three experiments are shown in table 6.

5.5.2 Analysis. The results from all three of these experiments show that VizExtract is relatively transferable. As expected, training on the same type of data on which you are testing is preferable and thus the “same dataset” scores report higher accuracy. If our model was not transferable at all, we might expect to see synthetic transfer accuracy scores near 33% (accuracy of randomly guessing one of the three possible correlations), however, in all cases and especially in the “Diverse Plotting Styles” experiment, the transfer score is high and has relatively small drop off from the control.

Table 5: Accuracy metrics for all datasets.

Dataset	$\text{Series}_{\text{NoOCR}}$
Synthetic	87.5%
From The Internet	72.8%
FigureQA	84.7%

Table 6: Model Transfer accuracy scores for same dataset control and transfer from synthetic intervention.

Transfer Experiment	Same Dataset	Synthetic Transfer
Diverse Plotting Styles	85.4%	84.6%
From The Internet	82.8%	71.8%
FigureQA	93.3%	84.6%

Table 6: Model Transfer accuracy scores for same dataset control and transfer from synthetic intervention.

5.5 Model Transfer and Fine Tuning

Model transfer refers to how well a model performs on new data types that it has not seen in training. The importance model transfer is that one would want to avoid having to retrain one’s model on each new type of graph. Thus, if our model transfers well to a new data type, we can immediately apply it without any need for additional training. We conduct three experiments to test our model transfer: (1) on synthetic graphs that include diverse plotting styles (distinct from the training data plotting styles), (2) on graphs collected from the internet, and (3) on FigureQA graphs.

5.5.1 Experiment Setup. For all three experiments, we first train a model, model-1, on a dataset of 100 synthetic graphs in the default matplotlib style as outlined in section 3.1. For experiment 1, we...
REFERENCES

[1] Rabah A Al-Zaidy, Sagnik Ray Choudhury, and C Lee Giles. 2016. Automatic summary generation for scientific data charts. In Workshops at the thirtieth aaai conference on artificial intelligence.

[2] Abhijit Balaji, Thoararkkesh Ramanathan, and Venkateshwarlu Sonathi. 2019. ChartText: A Fully Automated Chart Image Descriptor. (2019).

[3] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang. 2008. WeTables: exploring the power of tables on the web. Proceedings of the VLDB Endowment 1, 1 (2008), 538–549.

[4] Jinho Choi, Sanghun Jung, Deok Gun Park, Jaegul Choo, and Niklas Elmqvist. 2019. Visualizing for the non-visual: Enabling the visually impaired to use visualization. Computer Graphics Forum 38, 3 (2019), 249–260. https://doi.org/10.1111/cgf.13686

[5] Mathieu Cliche, David Rosenberg, Dhruv Madeka, and Connie Yee. 2017. Scatteract: Automated extraction of data from scatter plots. Machine Learning and Knowledge Discovery in Databases (2017), 135–150. https://doi.org/10.1007/978-3-319-71249-9_9

[6] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001–1012.

[7] Rolando García, Vikram Sreekanti, Joseph E Gonzalez, and Joseph M Hellerstein. 2018. Context: The missing piece in the machine learning lifecycle. In KDD CMI Workshop, Vol. 114.

[8] Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton, Akon Dey, Sreyashy Nag, Krishna Ramachandran, Sudhanushu Arora, Arka Bhat-tacharyya, Shisharshoka Das, et al. 2017. Ground: A Data Context Service. In CDT. Citeseer.

[9] Samira Kahou, Vincent Michalski, Adam Atkinson, Ákos Kadar, Adam Trischler, and Yoshua Bengio. 2018. FigureQA: An Annotated Figure Dataset for Visual Reasoning. 2018 International Conference on Learning Representations (ICLR) (2018).

[10] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer. 2020. Scrutinizer: fact checking statistical claims. Proceedings of the VLDB Endowment 13, 12 (2020), 2965–2968.

[11] Saurabh Kataria, William Browner, Prasenjit Mitra, and C Lee Giles. 2008. Automatic extraction of data points and text blocks from 2-dimensional plots in digital documents. In AAAI, Vol. 8. 1169–1174.

[12] Alberto HF Laender, Berthier A Ribeiro-Neto, Altigran S Da Silva, and Juliana S Teixeira. 2002. A brief survey of web data extraction tools. ACM Sigmod Record 31, 2 (2002), 84–93.

[13] Xiaoyi Liu, Diego Klahjan, and Patrick N Bress. 2019. Data Extraction from Charts via Single Deep Neural Network. (2019).

[14] Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin. 2021. ChartOCR: Data extraction from charts images via a DEEP hybrid framework. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (2021). https://doi.org/10.1109/wacv48630.2021.00196

[15] Fatemeh Nargessian, Erkang Zhu, Renée J Miller, Ken Q Pu, and Patricia C Arocena. 2019. Data lake management: challenges and opportunities. Proceedings of the VLDB Endowment 12, 12 (2019), 1986–1989.

[16] Feng Niu, Che Zhang, Christopher Ré, and Jude W Shavlik. 2012. DeepDrive: Web-scale Knowledge-base Construction using Statistical Learning and Inference. VLDS 12 (2012), 25–28.

[17] Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook of choice. Nature 563, 7732 (2018), 145–147.

[18] Jorge Poco and Jeffrey Heer. 2017. Reverse-engineering visualizations: Recovering visual encodings from chart images. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 353–363.

[19] Mohammed Suhail Rehman, Sihu Huang, and Aaron J Elmore. [n.d.]. A Demonstration of RELIC: A System for REtrospective Lineage InferenCe of Data Workflows. [In d.]

[20] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Finding a “kneedle” in a haystack: Detecting knee points in system behavior. 2011 31st International Conference on Distributed Computing Systems Workshops (2011). https://doi.org/10.1109/icdcsw.2011.20

[21] Dirk Strebe, Mennatallah El-Assady, Daniel Keim, and Min Chen. 2019. Why visualize? Untangling a large network of arguments. IEEE transactions on visualization and computer graphics (2019).

[22] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andrew Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, et al. 2018. Accelerating the machine learning lifecycle with MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.
A K SELECTION ALGORITHM

In order to segment each series in our image of a graph, we use of k-means clustering. We use this technique to identify the relevant colors in the image of the graph that correspond to series that we want to segment out. However, in order to do so, we need to determine an appropriate value for \(k \). In the current context, this determination depends on the number of series in the image since we will want a cluster center for each series color as well as an extra one for the background color. A common approach is to use a technique called the Kneedle algorithm [20]. However, this technique was not designed for our specific k-means selection in the context of colors and thus what is considered a “knee” by this algorithm is not always the best \(k \) that captures the number of series plus one extra cluster center for the background color. As such, this method did not give great accuracy for our specific problem. To correct this, we added an algorithm on top of the kneedle algorithm to further customize the output to the needs of our problem. The algorithm works as follows. We first normalized the error rates for each \(k \). Then we found the \(k \) given by the kneedle algorithm. Next, we check if the normalized error of this \(k \) choice is below some threshold. If so, we return this \(k \) given by the kneedle algorithm. If not, we return the \(k \) given by the kneedle algorithm +1. This ensures that in the situations where the slope of the \(k \) vs error graph is less steep and the kneedle algorithm would normally return too small a \(k \), the normalized error would fall above the threshold and thus this algorithm would instead return the true best \(k \).

Algorithm 2 k Selection. Here Kneedle() refers to applying the “Knee”-finding Kneedle algorithm specified in [20]

Require: arr (a pixel array representing the image)
1. normalizedErrors
2. for \(k \) in range(1-8) do
3. perform k-means clustering on arr with \(k \) clusters
4. append the normalized error of the clustering to the normalizedErrors list
5. end for
6. predictedK \(-\) Kneedle(normalizedErrors)
7. if predictedK.normalError < 0.985 then
8. predictedK+ = 1
9. end if
10. return predictedK

B CONSTRUCTING COLOR RANGES

Another important step of segmentation is deciding which pixels should go with which mean. We refer to this process as finding the appropriate segmentation ranges of the identified colors since we are going to create a color range such that any pixels within that range are segmented out. These ranges are required since the k-means will return means that are similar, but not exactly the same as the exact color of every pixel that makes up a given series. Since hue, saturation, value or HSV color representations are more intuitive to spatially reason about than RGB colors, we convert the RGB colors returned by the color identification step into HSV colors. Then for each HSV color, we create a lower and upper bound around the given mean such that even if the color of the pixels representing the series is slightly different than the associated color returned by k-means it will still be picked up.

The lower and upper bounds for HSV ranges given an HSV triple (labelled: \([h, s, v]\)) are created as follows. Lower \([H, S, V]\) = \([\min(0, h-10), \min(0, s-10), \min(0, v-40)]\). Upper \([H, S, V]\) = \([\max(180, h+10), \max(255, s+10), \max(255, v+40)]\). Additionally, since hue is essentially the angle in degrees on a color wheel, and since the color red is centered at 0º, we need to implement some system to account for colors wrapping around the color wheel in either direction. We implement this through adding an additional range corresponding to the same series. It works such that if the range of a hue would lead to wrap around, it is capped off by the min and max operations as seen above, but then a second range is added that uses the same S and V values, but encapsulates the wrap around. These two ranges can then be combined later on into a single mask to segmentation. (Note: the API we are using, openCV, measures H from 0º to 180º instead of the usual 360º and S and V both range from 0-255 as opposed to the usual 0-100).

In terms of how to choose the size of the ranges for H, S, and V, through experimentation with our dataset we decided on ±10 for hue, ±25 for saturation, and ±40 for value. One thing to note with these ranges is that they have been chosen specifically for the colors used in the data we trained on which were red, green, and blue. Since these colors are evenly spaced out, relatively larger ranges do not run the risk of conflating the colors of multiple distinct series. However, if these methods were to be used on colors that were much closer in HSV space, large ranges would have a much higher risk of covering the colors of multiple distinct series.