BMJ Open Socioeconomic and health-related inequalities in major depressive symptoms among older adults: A Wagstaff’s decomposition analysis of data from the LASI baseline survey, 2017–2018

T. Muhammad, Anjali Elsa Skariah, Manish Kumar, Shobhit Srivastava

ABSTRACT

Objectives To find out the association between socioeconomic and health status and depression among older adults and explore the contributing factors in the socioeconomic and health-related inequalities in late-life depression.

Design A cross-sectional study was conducted using large representative survey data.

Setting and participants Data for this study were derived from the baseline wave of the Longitudinal Ageing Study in India conducted during 2017–2018. The effective sample size was 30888 older adults aged 60 years and above.

Primary and secondary outcome measures The outcome variable in this study was depression among older adults. Descriptive statistics along with bivariate analysis was conducted to report the preliminary results. Multivariable binary logistic regression analysis and Wagstaff’s decomposition were used to fulfill the objectives of the study.

Results There was a significant difference for the prevalence of depression (4.3%; p<0.05) among older adults from poor (11.2%) and non-poor categories (6.8%). The value of the Concentration Index was −0.179 which also confirms that the major depression was more concentrated among poor older adults. About 38.4% of the socioeconomic and health-related inequality was explained by the wealth quintile for major depression among older adults. Moreover, about 26.6% of the inequality in major depression was explained by psychological distress. Self-rated health (SRH), difficulty in activities of daily living (ADL) and instrumental ADL (IADL) contributed 8.7%, 3.3% and 4.8% to the inequality, respectively. Additionally, region explained about 23.1% of inequality followed by life satisfaction (11.2) and working status (9.8%) for major depression among older adults.

Conclusions Findings revealed large socioeconomic and health-related inequalities in depression in older adults which were especially pronounced by poor household economy, widowhood, poor SRH, ADL and IADL difficulty, and psychological distress. In designing prevention programmes, detection and management of older adults with depression should be a high priority, especially for those who are more vulnerable.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ The study uses a large nationally representative sample of the older population.
⇒ A comprehensive scale was used to measure the depression among older adults.
⇒ The cross-sectional design is a limitation of the study as it is impossible to establish the observed directions of the relationships.

BACKGROUND

The WHO estimates that the proportion of older adults would double from 12% to 22% and that low-income and middle-income countries will be home to 80% of all older adults by 2050. Similarly in India, it is estimated that the population of older adults will double by the year 2050 and is expected to reach 19% of the total population.

Increasing age reduces both physical and mental wellness. Studies have shown that older adults are highly prone to mental illness because of biological and socioeconomic factors. Mental health conditions affect the quality of life, and could also lead to morbidity and premature mortality. One of the common mental disorders in late life is depression, which has devastating consequences and therefore becomes a serious public health concern. Globally, around 322 million people suffer from depression. In 2010, depression alone accounted for the second global disease burden and it was also projected to be the key cause of years lived with disability in 2020. Numerous studies have been carried out to estimate the overall
A higher rate of depression at 43%. A higher pooled study among the older population in Iran also estimated and widowhood among women. Hence, educational be partly explained through health problems, poverty is higher in women than in men. This high rate could further, social comparisons stemming from income reduce social cohesion and capital, thus increasing stress. The potential mechanisms of economic inequality in mental health can be the insufficient expenditure on healthcare services. Additionally, higher inequality can reduce social cohesion and capital, thus increasing stress. Further, social comparisons stemming from income inequality can cause various psychosocial and physiological issues.

The role of education, occupation and income cannot be used interchangeably in understanding health. Each one of these point to different phenomena and reflect different mechanisms underlying the social inequality in health. With regard to mental health, educational attainment reflects and relates to cognitive ability, self-efficacy, values that shape mental health related behaviour, coping strategy and the use of mental health services. Similarly, occupation can affect mental health in various ways. It can expose one to psychosocial stress due to lack of work, job strain, lack of balance between work-related effort and reward, low occupational social prestige, and so on. Furthermore, the prevalence of depression is higher in women than in men. This high rate could be partly explained through health problems, poverty and widowhood among women. Hence, educational status, gender/ethnic group, functional limitations, hearing difficulty, physical disability, perceived income inadequacy and living arrangement were significant correlates of depression and psychological distress among the young population and older adults. Studies in low-income and middle-income countries revealed that female older adults, those living in urban areas, those with lower educational attainment and lower household wealth, and those who have never worked in the past were found to have higher prevalence of depression. The same study has also found that increasing education was found to be significant in lowering the odds of depression in India.

Furthermore, findings from a previous study has revealed that older women living without a spouse in a nuclear family and living alone were more strongly associated with depressive symptoms. A Vietnamese study revealed that the distribution of depression (slight, moderate and major) varied among older adults according to the age group, alcohol use, physical activity, medicine intake, quality of life and some components of social connectedness. Thus, due to increasing availability of cross-country data sets, previous evidence suggests that social inequality and health are bound to specific country contexts and the policy environment and they can influence health through various channels. Although depression is a major health problem among older adults, it is yet to be recognised as a public health issue. Often, depression among older adults remains hidden and untreated, which ultimately leads to declined quality of life. Studies have firmly established that illnesses in the middle and later life are shaped by the development processes experienced in the different stages of life. Furthermore, literature has also supported the fact that older people who have experienced differential socioeconomic status might experience large inequality in depression. In addition, studies on the association between socioeconomic and health status and inequality are scarce. Therefore, insights from studies oriented in this direction can help in developing intervention tools and determining the inter-relationships that can help plan better policies and service delivery mechanisms, thus improving the quality of life of older adults.

Figure 1 represents the theoretical framework for the study. In this study, we aim to bridge the gap in the literature with the objective of finding the association between socioeconomic and health status and depression among older adults and explore the contributing factors in the inequalities in late-life depression. Moreover, this study has also employed Wagstaff’s decomposition analysis, a widely used method for studying income inequality determinants for understanding late-life mental health inequality in India.

METHODS

Data

This study makes use of data from India’s first nationally representative longitudinal ageing survey (Longitudinal Ageing Study in India (LASI), 2017–2018), which looks into the health, economic, and social determinants and repercussions of population ageing in the country. Except for Sikkim, the sample includes 72,250 people aged 45 years and up, as well as their spouses, from all Indian states and union territories. To choose the final units of observation, the LASI uses a multistage stratified area probability cluster sampling design. The last unit of observation was households with at least one member aged 45 years or older. This survey offers empirical
evidence on demographics, household economic status, chronic health issues, symptom-based health conditions, functional and mental health, biomarkers, healthcare utilisation, work and employment, and more. It was created to analyse the impact of altering policies and behavioural outcomes in India, and it allows for cross-state and cross-national evaluations of ageing, health, economic status and social behaviours. The LASI Wave 1 report contains detailed information about the sampling frame. Older persons, aged 60 years and up, were simply included for the purpose of analysis. After removing 576 missing cases, the study’s effective sample size was 30,888 older individuals.43

Variable description

Outcome variable

The outcome variable for the study was depression which was coded as 0 for ‘not diagnosed with depression’ and 1 for ‘diagnosed with depression’.43 Major depression among older adults with symptoms of dysphoria was calculated using the Composite International Diagnostic Interview - Short Form (CIDI-SF) on a scale of 0–10. This scale estimates a probable psychiatric diagnosis of major depression and has been validated in field settings and widely used in population-based health surveys.44,45 It has 10 questions and respondents with positive answers to 3 or more symptoms are considered ‘depressed’. The scale was validated for older adults.

The questions which were used to assess depression are as follow:

1. During the last 12 months, was there ever a time when you felt sad, blue or depressed for 2 weeks or more in a row?
2. Please think of the 2-week period during the last 12 months when these feelings were worst. During that time did the feelings of being sad, blue or depressed usually last all day long, most of the day, about half the day or less than half the day?
3. During those 2 weeks, did you feel this way every day, almost every day or less often than that?
4. Did you lose interest in most things?
5. Did you ever feel more tired out or low in energy than is usual for you?
6. Did you lose your appetite?
7. During the same 2-week period did you have a lot more trouble concentrating than usual?
8. People sometimes feel down on themselves, and no
good or worthless. During that 2-week period, did
you feel this way?
9. Did you think a lot about death—either your own,
someone else’s or death in general—during those
2 weeks?
10. Did you have more trouble falling asleep than you
usually do during those 2 weeks?

Equity stratifier

Wealth Index was calculated using variables related to
household assets, amenities and housing quality. For
constructing the Wealth Index in LASI, we have used
a similar approach that is being used in Demographic
Health Surveys.46 To construct the Wealth Index, we have
used a set of 46 variables that cover the broad domains
of the household’s wealth and amenities and access to
financial institutions. We have used principal component
analysis to construct the composite Wealth Index. We
observed that the first principal component with an eigen-
value of 7.2 has explained around 16% of the variance.47

The factor scores of the variables were used as the weight
in constructing the overall composite index. The five
wealth quintiles were derived from the overall composite
score: poorest, poorer, middle, richer and richest. These
quintiles were based on the household’s distribution, and
population weight is adjusted for the household size in
generating the composite Wealth Index. The reliability of
the estimates has been carried out by

KMO of

=0.82 indicates the reliability of the Wealth Index.
Moreover, the Kaiser-Meyer-Olkin (KMO) test was used
to measure sampling adequacy of the factor extracted. A
KMO of >0.6 confirms sampling adequacy.50 The descrip-
tion of the variables included in calculating the Wealth
Index is as follows:

Housing quality: number of rooms, separate kitchen,
the monetary value of the house.
Household amenity: water and toilet facilities in the
household, availability of the electricity and cooking
fuel.
Consumer durables: cars, scooters, motorcycles, bicy-
cles, mopeds, refrigerators, computers, washing ma-
chines, laptops, stereo systems, cameras, camcorders,
fans, coolers, air conditioners, mobile phones, musical
instruments, jewellery, precious metals (gold, silver)
and ornaments, antiques, valuable paintings, televi-
sions, sewing machines, radios/transistors, water puri-
fiers, juicer and mixtures, microwave oven.
Others: saving accounts, postal accounts, certificate of
deposits or other depository products, stocks, mutual
funds or shares in companies, and bonds.
Finally, the wealth quintile was categorised as poor
which includes poorest and poorer category and non-
poor which includes middle, richer and richest.

Explanatory variables

Individual factors

1. Age was categorised as young-old (60–69 years), old-
old (70–79 years) and oldest-old (80+ years).51
2. Sex was categorised as male and female.
3. Educational status was categorised as no education/
primary not completed, primary, secondary and high-
er.
4. Living arrangement was categorised as living alone,
living with spouse, living with children and living with
others.
5. Marital status was coded as currently married, widowed
and others. Others included respondents who separat-
ed/divorced/never married.52
6. Working status was categorised as currently working,
ever worked but currently not working and not work-
ing. Ever worked and currently not working category
also included the older adults who were retired.
7. Social participation was categorised as no and yes.
Social participation was measured though the question
‘Are you a member of any of the organisations, reli-
gious groups, clubs, or societies?’. The response was
categorised as no and yes.51

Health indicators

1. Life satisfaction among older adults was assessed using
the questions: (a) In most ways my life is close to ideal;
(b) The conditions of my life are excellent; (c) I am
satisfied with my life; (d) So far, I have got the import-
ant things I want in life; (e) If I could live my life again,
I would change almost nothing. The responses were
categorised as strongly disagree, somewhat disagree,
slightly disagree, neither agree nor disagree, slightly
agree, somewhat agree and strongly agree. Using the
responses to the five statements regarding life satis-
faction, a scale was constructed. The categories of
the scale are ‘low satisfaction’ (score of 5–20), ‘medium
satisfaction’ (score of 21–25) and ‘high satisfaction’
(score of 26–35) (Cronbach’s \(\alpha \): 0.84).43 53

2. Self-rated health (SRH) was coded as good which in-
cludes excellent, very good and good whereas poor in-
cludes fair and poor.26

3. Difficulty in activities of daily living (ADL) was coded as
no and yes. ADL is a term used to refer to normal daily
self-care activities (such as movement in bed, chang-
ing position from sitting to standing, feeding, bathing,
dressing, grooming, personal hygiene, etc). The ability
or inability to perform ADLs is used to measure a per-
son’s functional status, especially in the case of people
with disabilities and the older adults.54

4. Difficulty in IADL (instrumental ADL) was coded as
no and yes. This refers to ADLs that are not necessarily
related to fundamental functioning of a person, but
allow an individual to live independently in a commu-
nity. The set of questions asked were necessary for old-
er adults’ independent functioning in the community.
Respondents were asked if they were having any diffi-
culties that were expected to last more than 3 months,
such as preparing a hot meal, shopping for groceries, making a telephone call, taking medications, doing work around the house or garden, managing money (such as paying bills and keeping track of expenses), and getting around or finding an address in unfamiliar places.54

5. Psychological distress was coded as low, medium and high. Psychological distress was measured using the following questions: (a) How often did you have trouble concentrating? (b) How often did you feel depressed? (c) How often did you feel tired or low in energy? (d) How often were you afraid of something? (e) How often did you feel you were overall satisfied? (f) How often did you feel alone? (g) How often were you bothered by things that don’t usually bother you? (h) How often did you feel that everything you did was an effort? (i) How often did you feel hopeful about the fu-

Background characteristics	Poor	Non-poor
Age		
Young-old	6833	11311
Old-old	3503	5762
Oldest-old	1345	2134
Sex		
Male	5415	9336
Female	6266	9871
Education		
No education/primary not completed	10021	10439
Primary completed	888	2725
Secondary completed	655	3751
Higher and above	118	2292
Living arrangements		
Alone	1186	440
With spouse	3049	2990
With children	6653	14835
Others	792	942
Marital status		
Currently married	7008	12207
Widowed	4383	6620
Others	291	379
Working status		
Working	4426	4957
Ever worked but currently not working	4927	8297
Not working	2328	5953
Social participation		
No	11308	18134
Yes	373	1073
Health indicators		
Life satisfaction*		
Low	4529	4827
Medium	2805	3775
High	3934	10006
Self-rated health*		
Good	5327	10489
Poor	6088	8353
Difficulty in ADL*		
No	8573	14991
Yes	3108	4216
Difficulty in IADL*		
No	5441	10712
Yes	6240	8495
Psychological distress		
Low	3567	8592

Continued
ture? (j) How often did you feel happy? The response was coded as: (1) Rarely or never; (2) Sometimes; (3) Often; and (4) Most or all of the times. The response was coded as per the question in binary form 0 ‘Rarely or never/ Sometimes’ and 1 ‘Often/ Most or all of the time’ (Cronbach’s α: 0.70). A score of 0–10 was thus calculated using the *egen* command in STATA and a variable consisting of three quintiles (low, medium and high) was made using the *xtile* command in STATA.

6. Morbidity status was categorised as 0 ‘no morbidity’, 1 ‘any one morbid condition’ and 2+ ‘co-morbidity’.

Household/community related factors

1. Religion was coded as Hindu, Muslim, Christian and Others.
2. Caste was recorded as Scheduled Tribe, Scheduled Caste, Other Backward Classes and others. The Scheduled Castes are a group of people who are socially separated and financially/economically disadvantaged as a result of their low caste status in the Hindu traditional hierarchy. The Scheduled Castes and Scheduled Tribes are among India’s most economically disadvantaged groups. The Other Backward Classes refer to those who have been labelled ‘educationally, economically, and socially backward’. In the traditional caste order, they are regarded as the lower castes but now most disadvantaged. The others group refers to mainly higher castes who are thought to have a greater social position.
3. Place of residence was categorised as rural and urban.
4. The region was coded as North, Central, East, North-East, West and South.

Statistical analysis

Bivariate analysis was conducted to identify the significant variables that are related to major depression. A two-sample proportion test was used to evaluate if the prevalence of the various socioeconomic and demographic variables obtained according to the wealth status (Poor, Non-poor) were significantly different. In addition, multiple logistic regression was used to examine the association between major depression and various socioeconomic and demographic covariates. The presence of multicollinearity among the independent variables was detected using the variance inflation factor at a cut-off point of 10. In the final model, to check the goodness of fit, an F-adjusted goodness-of-fit test was employed. Due to complex sampling design effects in LASI, we accounted for inverse probability weights by using the *svyset* command in STATA V.15.

Concentration curve (CC) and Concentration Index were used to determine the inequalities in the distribution of major depression by Wealth Index Scores. The CC depicts how a cumulative share of the major depression (y-axis) is accounted for by the cumulative percentage of the individuals ranked by Wealth Scores (x-axis). If every individual has an identical health outcome, regardless of the wealth status, the CC would be a 45° line that runs from the lower-left corner to the upper-right corner, also known as the ‘line of equality’. On the contrary, if the health outcome variable has higher values among poorer people, the CC will lie above the ‘line of equality’ and vice versa. The farther the curve is away from the baseline, represented by the equality line, the more unequal is the distribution of the health outcome variable. The Concentration Index corresponds to twice the area between the CC and the line of equality. In the present paper, the Concentration Index (CI) is computed as twice the covariance of the health outcome variable and a person’s rank in terms of wealth status, divided by the mean of the health variable:

\[CI = \frac{2}{\mu} \text{cov}(\gamma_j, R_j), \]

where \(\gamma_j\) and \(R_j\) are the health status and fractional rank (in terms of the index of economic status) of the jth individual, respectively; \(\mu\) is the mean of the health outcome variable and cov denotes the covariance.

Decomposition of the Concentration Index

The present study used Wagstaff’s Concentration Index decomposition approach to reveal the contribution of each explanatory variable to the measured health inequality (ie, major depression inequality). According to Wagstaff, a linear regression model links health outcome variable (y) to a set of k explanatory variables (\(x_k\)):

\[y_i = \alpha + \sum_k \beta_k x_{ki} + \epsilon_i, \]

where \(x_{ki}\) is a set of k explanatory variables for the ith individual, \(\beta_k\) signifies the coefficient and \(\epsilon_i\) is an error term. Given the association of \(y_i\) and \(x_{ki}\), in equation (2), the Concentration Index for y, can be written as follows:

\[C = \sum_k \left(\frac{\beta_k \bar{x}_k}{\mu} \right) C_k + G C, \]

where C denotes the overall Concentration Index, \(\mu\) is the mean of y, \(\bar{x}_k\) is the mean of \(x_k\), \(C_k\) is the normalised Concentration Index for \(x_k\) (defined exactly like Concentration Index), \(\frac{\beta_k \bar{x}_k}{\mu}\) is the elasticity of health variable with the explanatory variables and \(G C\) is the generalised Concentration Index for \(\epsilon_i\) (residual component). Equation (3) suggests that the Concentration Index consists of explained and residual (unexplained) components. In most cases, health outcome variables are rarely continuous. We have approximated decomposition analysis by using marginal effects on the logit model. A linear approximation of the non-linear estimation can be represented as:

\[y_i = \alpha^m + \sum_k \beta_k^m x_{ki} + \mu_i, \]

where \(\beta_k^m\) is the marginal effects (\(\frac{dy}{dx}\) of each \(x\) and \(\mu_i\) signifies the error term generated by the linear approximation. The Concentration Index (CI) for the health variable (y) (in our case, major depression) is given as:
Table 2 Percentage of older adults suffering from major depression by their background characteristics

Background characteristics	Poor	Non-poor	Differences	P value
Individual factors				
Age				
Young-old	11.0	6.5	4.5	0.001
Old-old	10.5	6.8	3.7	0.001
Oldest-old	13.8	8.5	5.3	0.001
Sex				
Male	9.7	6.0	3.7	0.001
Female	12.5	7.6	4.8	0.001
Education				
No education/primary not completed	11.3	7.5	3.7	0.001
Primary completed	10.8	7.0	3.8	0.001
Secondary completed	11.1	5.2	5.9	0.001
Higher and above	6.0	6.0	0.0	0.483
Living arrangements				
Alone	14.5	10.0	4.5	0.205
With spouse	9.9	6.7	3.2	0.001
With children	10.8	6.7	4.2	0.001
Others	14.5	8.5	5.9	0.001
Marital status				
Currently married	10.3	5.9	4.4	0.001
Widowed	12.8	8.6	4.1	0.001
Others	8.7	5.5	3.3	0.001
Working status				
Working	9.9	5.4	4.5	0.001
Ever worked but currently not working	13.1	7.7	5.4	0.001
Not working	9.6	6.7	2.8	0.772
Social participation				
No	11.2	7.0	4.2	0.001
Yes	10.9	4.5	6.4	0.198
Health indicators				
Life satisfaction				
Low	15.5	10.4	5.1	0.001
Medium	8.6	7.1	1.5	0.082
High	7.9	5.1	2.9	0.001
Self-rated health				
Good	6.5	3.6	2.9	0.001
Poor	15.3	10.9	4.4	0.001
Difficulty in ADL				
No	8.7	5.3	3.4	0.001
Yes	18.3	12.5	5.8	0.001
Difficulty in IADL				
No	8.1	4.0	4.1	0.001
Yes	14.0	10.5	3.4	0.001
Psychological distress				
Low	5.3	3.0	2.3	0.001

Table 2 Continued

Background characteristics	Poor	Non-poor	Differences	P value
Household/community related factors				
Religion				
Hindu	11.0	6.9	4.1	0.001
Muslim	12.7	7.3	5.4	0.001
Christian	9.9	4.5	5.4	0.572
Others	12.7	6.7	5.9	0.016
Caste				
Scheduled Caste	11.6	7.7	4.0	0.000
Scheduled Tribe	5.1	4.5	0.6	0.016
Other backward Class	12.4	7.2	5.2	0.001
Others	11.9	6.3	5.6	0.001
Place of residence				
Rural	11.1	7.7	3.4	0.001
Urban	12.4	5.7	6.7	0.001
Region				
North	6.9	6.9	0.0	0.718
Central	16.6	12.0	4.6	0.020
East	9.4	6.4	3.0	0.001
North-East	7.4	4.1	3.3	0.044
West	11.8	5.7	6.2	0.001
South	7.8	5.1	2.7	0.016
Total	11.2	6.8	4.3	0.001

P value based on proportion test. ADL, activities of daily living; Differences, Poor – Non-poor; IADL, instrumental activities of daily living.

CI = \sum_k \left(\frac{\beta_k \bar{x}_k}{\mu} \right) C_k + GC_{e/\mu}, \quad (5)

Patient and public involvement
No patient was involved.

RESULTS
Table 1 represents the socioeconomic profile of older adults in India. About 85.8% and 54.4% of older adults were not educated in the poor and non-poor categories, respectively. Nearly, 10.2% and 2.3% of older adults were living alone in the poor and non-poor categories, respectively. Almost 37.9% and 25.8% of older adults were working in the poor and non-poor categories, respectively. Almost 3.2% and 5.6% of older adults socially participated in the poor and non-poor categories, respectively.
A higher proportion of older adults from the poor category reported low life satisfaction (poor: 40.2% and non-poor: 25.9%). Similarly, a higher proportion of older adults who were from the poor category had poor SRH (53.3%) in reference to older adults from the non-poor category (44.3%). A higher proportion of older adults had difficulty in ADL (poor: 26.6% vs non-poor: 22.0%) and IADL (poor: 53.4% vs non-poor: 44.2%) were from the poor category. A higher proportion of older adults from the poor category had high psychological distress (34.8%) compared with older adults from the non-poor category.

Table 3 Logistic regression estimates for major depression among older adults

Background characteristics	AOR	95% CI
Individual factors		
Age		
Young-old	Ref.	
Old-old	0.79*(0.7 to 0.88)	
Oldest-old	0.71*(0.6 to 0.83)	
Sex		
Male	Ref.	
Female	1.07 (0.95 to 1.21)	
Education		
No education/primary not completed	0.76*(0.61 to 0.96)	
Primary completed	0.88 (0.69 to 1.12)	
Secondary completed	0.84 (0.67 to 1.07)	
Higher and above	Ref.	
Living arrangements		
Alone	0.91 (0.71 to 1.18)	
With spouse	0.81 (0.63 to 1.03)	
With children	0.82*(0.67 to 0.99)	
Others	Ref.	
Marital status		
Currently married	Ref.	
Widowed	1.24*(1.09 to 1.4)	
Others	0.85 (0.61 to 1.18)	
Working status		
Working	Ref.	
Ever worked but currently not working	0.96 (0.85 to 1.08)	
Not working	0.79*(0.68 to 0.92)	
Social participation		
No	Ref.	
Yes	0.87 (0.7 to 1.08)	
Health indicators		
Life satisfaction		
Low	1.62*(1.45 to 1.82)	
Medium	1.11 (0.98 to 1.26)	
High	Ref.	
Self-rated health		
Good	Ref.	
Poor	1.96*(1.76 to 2.18)	
Difficulty in ADL		
No	Ref.	
Yes	1.51*(1.35 to 1.68)	
Difficulty in IADL		
No	Ref.	
Yes	1.47*(1.31 to 1.64)	
Psychological distress		
Low	Ref.	

Table 3 Continued

Background characteristics	AOR	95% CI
Morbidity status		
0		
1	1.24*(1.1 to 1.39)	
2+	1.59*(1.41 to 1.8)	
Household/community related factors		
Wealth quintile		
Poorest	1.39*(1.15 to 1.68)	
Poorer	1.25*(1.04 to 1.5)	
Middle	1.19*(1.1 to 1.41)	
Richer	1.19*(1.01 to 1.4)	
Richest	Ref.	
Religion		
Hindu	Ref.	
Muslim	1.09 (0.94 to 1.27)	
Christian	1.01 (0.8 to 1.28)	
Others	1.36*(1.09 to 1.7)	
Caste		
Scheduled Caste	1.02 (0.88 to 1.18)	
Scheduled Tribe	0.57*(0.46 to 0.69)	
Other backward Class	1.16*(1.03 to 1.31)	
Others	Ref.	
Place of residence		
Rural	1.18*(1.05 to 1.33)	
Urban	Ref.	
Region		
North	Ref.	
Central	1.8*(1.53 to 2.11)	
East	0.86 (0.73 to 1.01)	
North-East	0.67*(0.52 to 0.85)	
West	1.28*(1.08 to 1.53)	
South	0.6*(0.51 to 0.71)	
*If p<0.05.

ADL, activities of daily living; AOR, adjusted OR; IADL, instrumental activities of daily living; Ref, references.
category (24.8%). A higher proportion of older adults from the non-poor category (30.1%) had more than two morbidity conditions in comparison to older adults from the poor category (15.7%).

Table 2 represents the percentage of older adults suffering from major depression by their background characteristics in India. It was found that the prevalence of major depression was higher among older adults from the poor category (11.2%) than the non-poor category (6.8%). The difference in prevalence was also statistically significant (4.3%; p<0.05).

Table 3 reveals logistic regression estimates for major depression among older adults by their background characteristics in India. The estimates presented are adjusted estimates in the table. It was found that wealth quintile was significantly associated with major depression among older adults. That is, older adults from the poorest wealth quintile had 39% significantly higher likelihood of suffering from major depression than older adults from the richest wealth quintile [adjusted OR: 1.39; CI 1.15 to 1.68]. Additionally, age, education, living arrangement, marital status and working status were the significant predictors of major depression. Moreover, life satisfaction, SRH, difficulty in ADL and IADL, psychological distress and morbidity status were also significantly associated with major depression among older adults.

Figure 2 reveals that major depression was concentrated among older adults from the socioeconomically poor strata. The value of the concentration quintile was −0.179 which also confirms that the major depression was more concentrated among poor older adults.

Table 4 represents the decomposition estimates for major depression among older adults in India. It was found that about 38.4% of the socioeconomic and health-related inequality was explained by the wealth quintile for major severe depression among older adults. Moreover, about 26.6% of the inequality in major depression was explained by psychological distress. Additionally, region explained about 23.1% of inequality followed by life satisfaction (11.2%) and working status (9.8%) for major depression among older adults.

Background characteristics	Elasticity	CCI	Absolute contribution	Percentage contribution
Individual factors				
Age				
Young-old				
Old-old	−0.005	−0.006	0.000	−0.2
Oldest-old	−0.001	0.005	0.000	0.0
Sex				
Male	0.9			
Female	0.012	−0.011	0.000	0.9
Education				
No education/primary not completed	−11.0			
Primary completed	0.002	0.160	0.000	−1.9
Secondary completed	0.002	0.369	0.001	−3.8
Higher and above	0.001	0.601	0.001	−5.3
Living arrangements				
Alone	3.4			
With spouse	−0.002	−0.166	0.000	−2.0
With children	−0.008	0.098	−0.001	5.2
Others	0.000	−0.091	0.000	0.2
Marital status				
Currently married				
Widowed	0.003	−0.022	0.000	0.4
Others	−0.001	−0.072	0.000	−0.3
Working status				
Working	9.8			
Ever worked but currently not working	−0.002	0.010	0.000	0.1
Not working	−0.009	0.158	−0.001	9.7
Social participation				
No				
Yes	0.000	0.171	0.000	0.1
Health indicators				
Life satisfaction				
Low				
Medium	−0.009	−0.057	0.001	−3.7
High	−0.016	0.137	−0.002	14.9
Self-rated health				
Good				
Poor	0.022	−0.059	−0.001	8.7
Difficulty in ADL				
No				
Yes	0.010	−0.051	0.000	3.3
Difficulty in IADL				
No				
Yes	0.014	−0.052	−0.001	4.8
Psychological distress				

Table 4: Decomposition estimates for major depression among older adults.
and IADL explained 8.7%, 3.3% and 4.8%, respectively, and place of residence explained 5.6% of the observed inequalities in major depression among older adults.

DISCUSSION

The current study was an attempt to understand the socioeconomic and health-related inequalities in major depression among the older population in India, using nationally representative data. The overall prevalence was comparable and in parallel with other studies which showed that the prevalence of depression ranged from 17% to 34.4%. On the other hand, the study found greater inequality with 11.2% of the poor older adults suffering from major depression in comparison to nearly 7% of non-poor older adults. A substantial contribution of household wealth status (with a more than 38%) to the inequality in prevalence of depressive symptoms among older individuals was observed in the present study.

The study validates that age, education, living arrangement, marital status and working status were significantly associated with major depression in the older population. Previous studies have examined the association between age and depression and the results have been mixed. Some studies found that the likelihood of developing depression increases with age, and in case of older adults living alone in particular, while several other studies had contradicting results, suggesting that with increasing age, individuals tend to have higher adaptation towards stressful events. The present study found that the chances of suffering from major depression decreases with age confirming the later studies. Depressive disorders were found to be higher in women than in men. Similar bivariate estimates of this study found that the prevalence of depression in older women was higher compared with men. The possible explanation for this could be that older women were exposed to various health problems and adverse life events including widowhood and limited resource availability.

Our study findings are contrary to the evidence regarding the role of lack of education as a major factor associated with depression. There is high level of inequality in the distribution of depression with significantly increased rates of depression among higher educational groups. Previous research investigated inequalities in depression by gender, educational attainment and wealth in isolation. On the other hand, with regard to the household economic status, our findings are consistent with previous studies in India and other developing countries showing a greater prevalence of depression in the population and in older adults in particular from the economically poor background. Therefore, in developing countries like India, the benefits of depression treatment in primary-care units may more than offset its associated costs among older individuals from poor households in particular.

Another major finding of the study was the lower level of life satisfaction that was positively associated with major depression which is in parallel to previous findings that reported a significant inverse association of life satisfaction with mental distress and depressive symptoms. Importantly, the psychological distress that was assessed using the Center for Epidemiological Studies Depression (CESD-10) scale was positively associated with major depression (measured using the GIDI-SF scale) in our study. This is in line with previous studies showing that multiple domains of depressive symptoms are directly

Table 4 Continued

Background characteristics	Elasticity	CCI	Absolute contribution	Percentage contribution
Low	0.003	−0.038	0.000	0.7
Medium	0.030	−0.125	−0.004	25.8
High				
Morbidity status				
0				
1	0.004	0.039	0.000	−1.1
2	0.010	0.209	0.002	−13.7
Household/community related factors				
Wealth quintile				
Poorest				
Poorer	−0.003	−0.282	0.001	−5.0
Middle	−0.003	0.084	0.000	1.8
Richer	−0.003	0.441	−0.001	9.0
Richest	−0.006	0.796	−0.005	32.6
Religion				
Hindu				
Muslim	0.000	0.012	0.000	0.0
Christian	0.001	0.010	0.000	0.0
Others	0.001	0.211	0.000	−1.0
Caste				
Scheduled Caste				
Scheduled Tribe	−0.003	−0.351	0.001	−7.7
Other backward Class	0.007	0.019	0.000	−0.9
Others	0.000	0.213	0.000	−0.3
Place of residence				
Rural				
Urban	−0.002	0.452	−0.001	5.6
Region				
North				
Central	0.013	−0.187	−0.002	16.5
East	−0.002	−0.215	0.000	−3.4
North-East	0.000	−0.013	0.000	0.0
West	0.001	0.097	0.000	−0.9
South	−0.009	0.175	−0.002	10.8
Calculated CCI	−0.015	100.0		
Total CCI	−0.179			
Residual	−0.164			

ADL, activities of daily living; CCI, concentration index; IADL, instrumental activities of daily living.
associated with endorsement of clinical depressive disorder.80 Furthermore, significant links have been found between functional disability in ADL and IADL and depression among older adults. Various studies17,52–64 have shown that depressive symptoms were found among older adults with functional limitations.14,27 A higher depressive rate among older adults with functional disability or limitation could be attributed to reduced physical activity and social interactions.81,82 Nonetheless, the association of social participation with depression showed no significance in our study. Furthermore, a positive and significant association between presence of higher number of morbidities and depressive symptoms was also found in our study. The finding is consistent with previous studies suggesting that the older population is more likely to suffer from multiple chronic diseases, which is also associated with escalating mental distress and depressive disorders.83

Findings from the Western countries indicate that strong welfare states may prevent or lower the depressive symptoms by providing a social strata with better healthcare and social service.82 Similarly, studies in developing countries show that the state provisions like welfare schemes and old age pensions can offset the socioeconomic consequences of poor health by reducing the cost of healthcare and improving quality of life, associated with increased healthy life expectancy.84–86 Unlike the well-established healthcare systems and policies in the Western countries for older adults, dedicated geriatric care is a distant dream in India because of the lack of a trained workforce, absence of infrastructure87 and poor implementation of polices. However, it is also worth mentioning that despite the existence of various schemes, the awareness and utilization of these schemes vary from region to region.88,89 Hence, a proper understanding of the morbidity pattern among the older adults and their underlying inequalities is essential to strengthen the geriatric healthcare services to meet the needs of older people.

Our study has certain limitations. First, we classified people as having probable depression on the basis of the CIDI-SF depression screening tool. Thus, the estimates reported in the study are not based on clinical appraisal and should be interpreted with caution. Also, the cross-sectional design of the study does not allow any causal inferences in the observed associations and suggests the possibility of reverse or bidirectional causality in many of the findings. The strength of this study is that it is based on one of the largest, nationally representative data of older adults’ mental health in a resource-poor setting in the developing world. We measured depression using an internationally validated scale of CIDI-SF.

Conclusion

The findings revealed large socioeconomic and health-related inequalities in depression in older adults which were especially pronounced by poor household economy, widowhood, poor SRH, difficulty in ADL and IADL, and psychological distress. Identifying these vulnerable groups can be the starting point for designing and evaluating social, economic and mental health-related interventions to reduce the avoidable inequalities in depression. Further, in order to reduce the burden of older adults’ mental health problems in India, it is vital to strengthen interventions that address determinants such as socioeconomic position, health status and structural supports. The findings also highlight that in designing prevention programmes, detection and management of older adults with depression should be a high priority, especially for those who are more vulnerable.

Contributors TM and SS provided the original idea, and SS made the statistical analyses. TM, MK and AES drafted the first manuscript. All authors (TM, SS, AES and MK) contributed to the final manuscript. TM and SS act as guarantors who are responsible for the content.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval The data are freely available in the public domain and survey agencies that conducted the field survey for the data collection have collected prior informed consent from the respondents. The Indian Council of Medical Research (ICMR) and all partner institutions extended the necessary guidance and ethical approval for conducting the LASI.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available. The data are a secondary source of data that is freely available in the public domain through a request from https://ipsindia.ac.in/sites/default/files/LASI_DataRequestForm_0.pdf.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

T Muhammad http://orcid.org/0000-0003-1486-7038
Shobhit Srivastava http://orcid.org/0000-0002-7138-4916

REFERENCES

1 World Health Organization. WHO report on ageing and health. 2 Ingle GK, Nath A. Geriatric health in India: concerns and solutions. Indian J Community Med 2008;33:214–8.
3 Dening T, Barapatre C. Mental health and the ageing population. J Br Menopause Soc 2004;10:49–54.
4 Patel V, Prince M. Ageing and mental health in a developing country: who cares? Qualitative studies from Goa, India. Psychol Med 2001;31:29–38.
5 Mirkena T, Retza MM, Haile K, et al. Prevalence of depression and associated factors among older adults at ambo town, Oromia region, Ethiopia. BMC Psychiatry 2018;18:1–7.
6 Friedrich MJ. Global health. JAMA 2017;317:1529–45.
7 Becker AE, Kleinman A. Mental health and the global agenda. N Engl J Med 2013;369:66–73.
8 Anand A. Understanding depression among older adults in six low-middle income countries using WHO-SAGE survey. Behavioral Health.
9 Pliaania M, Yadav V, Bairwa M, et al. Prevalence of depression among the elderly (60 years and above) population in India, 1997–2016: a systematic review and meta-analysis. BMC Public Health 2019;19:1–18.
10 Assari-arambil AR, Noronha JA, Kamath A, et al. Depression among older adults: a systematic review of South Asian countries. *Psychogeriatrics* 2021;21:201–19.

11 Lorant V, Deliège D, Eaton W, et al. Socioeconomic inequalities in depression: a meta-analysis. *Am J Epidemiol* 2003;157:98–112.

12 Inaba A, Thills VER, Ueno K, et al. Depression in the United States and Japan: gender, marital status, and SES patterns. *Soc Sci Med* 2005;61:2280–92.

13 Rajkumar AP, Thangadurai P, Senthilkumar P, et al. Nature, prevalence and factors associated with depression among the elderly in a rural South Indian community. *Int Psychogeriatr* 2009;21:372–8.

14 Yunning L, Changsheng C, Haibo T, et al. Prevalence and risk factors for depression in older people in Xian China: a community-based study. *Int J Geriatr Psychiatry* 2012;27:31–9.

15 Leggatt A, Zari SH, Nguyen NH, et al. The influence of social factors and health on depressive symptoms and worry: a study of older Vietnamese adults. *Aging Ment Health* 2012;16:780–6.

16 Fernández-Niño JA, Manrique-Espinosa BS, Bojorquez-Chapela I, et al. Income inequality, socioeconomic deprivation and depressive symptoms among older adults in Mexico. *PLoS One* 2014;9:e108127.

17 Xu Y, Yang J, Gao J, et al. Decomposing socioeconomic inequalities in depressive symptoms among the elderly in China. *BMC Public Health* 2016;16:1214.

18 Hoebel J, Maske UE, Zeeb H, et al. Social inequalities and depressive symptoms in adults: the role of objective and subjective socioeconomic status. *PLoS One* 2017;12:1–18.

19 Sahni B, Bala K, Kumar T, et al. Prevalence and determinants of geriatric depression in North India: a cross-sectional study. *J Family Med Prim Care* 2020;9:2392.

20 Kessler RC, Bromet EJ. The epidemiology of depression across cultures. *Ann Rev Public Health* 2013;34:119–38.

21 Bhalia RK, Butters MA, Mulsant BH, et al. Persistence of neuropsychologic deficits in the remitted state of late-life depression. *Am J Geriatr Psychiatry* 2006;14:419–27.

22 Burns RA, Browning CJ, Kendig HL. Examining the 16-year trajectories of mental health and wellbeing through the transition into old age. *Int Psychogeriatr* 2015;27:1979–86.

23 Brinda EM, Rajkumar AP, Attermann J, et al. Health, social, and economic variables associated with depression among older people in low and middle income countries: World Health organization study on global ageing and adult health. *Am J Geriatr Psychiatry* 2016;24:1196–208.

24 Achdut N, Rafea T, Schwartz Tayri TM. Subjective poverty, material deprivation indices and psychological distress among young adults: the mediating role of social capital and usage of online social networks. *Soc Indic Res* 2021;158:863–87.

25 Rafea T, Achdut N. Perceived poverty, perceived income adequacy and loneliness in Israeli young adults: are social capital and neighbourhood capital resilience factors? *Health Soc Care Community* 2022;6:17–17.

26 Achdut N, Rafea T. An ethnocultural perspective on loneliness in young adulthood: a population-based study in Israel. *Socio Health Policy* 2021;43:1154–74.

27 Mahotra R, Chan A, Östbye T. Prevalence and correlates of clinically significant depressive symptoms among elderly people in Sri Lanka: findings from a national survey. *Int Psychogeriatr* 2010;22:227–36.

28 Muhammad T, Srivastava S, Sekher TV. Association of self-perceived income status with psychological distress and subjective well-being: a cross-sectional study among older adults in India. *BMC Psychol* 2021;9:1–13.

29 Achdut N, Sarid O. Socio-Economic status, self-rated health and mental health: the mediation effect of social participation on early-late midlife and older adults. *Int J Health Policy Res* 2020;9:1–12.

30 Oh D, Park JH, Lee HY, et al. Association between living arrangements and depressive symptoms among older women and men in South Korea. *Soc Psychiatry Psychiatr Epidemiol* 2015;50:133–41.

31 Dao ATM, Nguyen VT, Nguyen HV, et al. Factors associated with depression among the elderly living in urban Vietnam. *Biomed Res Int* 2018;2018:2370284.

32 Hansen T, Slagsvold T, Veenstra M. Educational inequalities in late-life depression across Europe: results from the generations and gender survey. *Eur J Ageing* 2017;14:407–18.

33 Richardson RA, Keyes KM, Medina JT, et al. Socioeconomic inequalities in depressive symptoms among older adults: cross-sectional evidence from 18 countries. *Langsrud* 2020;7:673–81.

34 Barua A, Ghosh MK, Kar N, et al. Prevalence of depressive disorders in the elderly. *Ann Saudi Med* 2011;31:620–4.

35 Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. *Ann Epidemiol* 2006;16:91–104.

36 Galobardes B, Lynch JW, Davey Smith G. Childhood socioeconomic circumstances and age-specific mortality in adulthood: systematic review and interpretation. *Epidemiol Rev* 2004;26:7–21.

37 Politt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. *BMC Public Health* 2005;5:1–13.

38 Liu S, Jones JH. Glymour MM. Implications of lifecycle epidemiology for research on determinants of adult disease. *Public Health Rev* 2010;32:489–511.

39 Srivastava S, Purkayastha N, Chaurasia H. Socioeconomic inequality in psychological distress among older adults in India: a decomposition analysis. *BMC Psychiatry* 2021;21:1–15.

40 D. Papar, R. M. Kale, R. A. Awar, et al. A cross-sectional study on prevalence of depression and its socio-demographic correlates among older adults in rural India. *JIFCM* 2020;5:210–4.

41 Goll S, Singh L, Jain K. Socioeconomic determinants of health inequalities among the older population in India: a decomposition analysis 2014:533–69.

42 Wang Z, Li X, Chen M. Catastrophic health expenditures and its inequality in elderly households with chronic disease patients in China. *Int J Equity Health* 2015;14:1–11.

43 International Institute for Population Sciences (IIPS), NPHCE, MoHFW. Longitudinal ageing study in India (LASI) wave 1, Mumbai, India 2020.

44 Muhammad T, Meher T. Association of late-life depression with cognitive impairment: evidence from a cross-sectional study among older adults in India. *BMC Geriatr* 2021;22:1–13.

45 Muhammad T, Srivastava S, Hossain B, et al. Decomposing rural-urban differences in successful aging among older Indian adults. *Sci Rep* 2022;12:1–14.

46 Rutstein SO, Staveteig S. Making the demographic and health surveys wealth index comparable, 2014.

47 Vidal R, Ma Y, Sastry SS. Robust principal component analysis, interdisciplinary applied mathematics.

48 Zahra R, Rina N, Alpha Cronbach. Lontar.

49 Heo M, Kim N, Faith MS. Statistical power as a function of Cronbach alpha of instrument questionnaire items. *BMC Med Res Methodol* 2015:1–9.

50 Beavers AS, Lounsbury JW, Richards JK. Practical considerations for using exploratory factor analysis in educational research. *Practical Assessment, Research and Evaluation* 2013;18:1–13.

51 Srivastava S, Joseph K-JV, Drishthi D, et al. Interaction of physical activity on the association of obesity-related measures with multimorbidity among older adults: a population-based cross-sectional study in India. *BMJ Open* 2021;11:e050245.

52 Srivastava S, Sulaivan KM, Drishthi D, et al. Factors associated with psychiatric disorders and treatment seeking behaviour among older adults in India. *Sci Rep* 2021;11:1–13.

53 Srivastava S, Muhammad T, Sulaivan KM, et al. Types of household headship and associated life satisfaction among older adults in India: findings from LASI survey, 2017–8. *BMC Geriatr* 2022;22:1–13.

54 Srivastava S, Muhammad T. Income inequality and associated health outcomes among older adults in India: a gendered perspective. *SSM Popul Health* 2020;12:100702.

55 Keetle M, Navaneetham K, Letamo G. Prevalence and correlates of multimorbidity among adults in Botswana: a cross-sectional study. *PLoS One* 2020;15:e0239334.

56 Muhammad T, Balachandran A, Srivastava S. Socio-economic and health determinants of preference for separate living among older adults: a cross-sectional study in India. *PLoS One* 2021;16:1–14.

57 Cohen J. Statistical power analysis for the behavioral sciences. Routledge, 2013.

58 Miles J. Tolerance and variance inflation factor. *Wiley StatsRef: Statistics Reference Online*.

59 Lewis-Beck M, Bryman AE, Liao TF. The SAGE encyclopedia of social science research methods. *Sage Publications*, 2003.

60 Vogt W. Variance inflation factor. *VIII Dictionary of Statistics & Methodology*.

61 Henseler J, Sarstedt M. Goodness-Of-Fit indices for partial least squares path modeling. *Comput Stat* 2013:28:565–60.

62 Janková J, Shah RD, Bühlmann P, et al. Goodness-Of-Fit testing in high dimensional generalized linear models. *J. R. Stat. Soc. B* 2022;82:773–95.

63 StataCorp L. *Stata statistical software: release 15*. College Station, TX: StataCorp LP, 2017.

64 Kakwani N, Wagstaff A, van Doorslaer E. Socioeconomic inequalities in health: measurement, computation, and statistical inference. *J Econom* 1997;77:87–103.
65 Konings P, Harper S, Lynch J. et al. Analysis of socioeconomic health inequalities using the concentration index. Int J Public Health 2010;55:71–4.
66 O’Donnell O, van Doorslaer E, Wagstaff A. Measurement of living standards: analyzing health equity using household survey data: a guide to techniques and their implementation. Washington, DC: The World Bank, 2008.
67 Wagstaff A. Socioeconomic inequalities in child mortality: comparisons across nine developing countries. Bull World Health Organ 2000;78:19–28.
68 Goyal A, Kajal KS. Prevalence of depression in elderly population in the southern part of Punjab. J Family Med Prim Care 2014;3:359–61.
69 Snowdon J. Is depression more prevalent in old age? Aust N Z J Psychiatry 2001;35:782–7.
70 Bulloch AGM, Williams JVA, Lavorato DH, et al. The depression and marital status relationship is modified by both age and gender. J Affect Disord 2017;223:65–8.
71 Ma X, Xiang Y-T, Li S-R, et al. Prevalence and sociodemographic correlates of depression in an elderly population living with family members in Beijing, China. Psychol Med 2008;38:1723–30.
72 Ouyang Z, Chong AML, Ng TK, et al. Leisure, functional disability and depression among older Chinese living in residential care homes. Aging Ment Health 2015;19:723–30.
73 Torres JM, Wong R. Childhood poverty and depressive symptoms for older adults in Mexico: a life-course analysis. J Cross Cult Gerontol 2013;28:317–37.
74 Sravastava S, Chauhan S, Muhammad T, et al. Older adults’ psychological and subjective well-being as a function of household decision making role: Evidence from cross-sectional survey in India. Clin Epidemiol Glob Health 2021;10:100676.
75 Shidhaye R, Patel V. Association of socio-economic, gender and health factors with common mental disorders in women: a population-based study of 5703 married rural women in India. Int J Epidemiol 2010;39:1510–21.
76 Lund C, Breen A, Flisher AJ, et al. Poverty and common mental disorders in low and middle income countries: a systematic review. Soc Sci Med 2010;71:517–28.
77 Strine TW, Chapman DP, Balluz LS, et al. The associations between life satisfaction and health-related quality of life, chronic illness, and health behaviors among U.S. community-dwelling adults. J Community Health 2008;33:40–50.
79 Koivumaa-Honkanen H, Kaprio J, Honkanen R, et al. Life satisfaction and depression in a 15-year follow-up of healthy adults. Soc Psychiatry Psychiatr Epidemiol 2004;39:994–9.
80 Assare A, Moazen-Zadeh E. Ethnic variation in the cross-sectional association between domains of depressive symptoms and clinical depression. Front Psychiatry 2016;7:1–10.
81 Djemnes JK. Prevalence and predictors of depression in populations of elderly: a review. Acta Psychiatr Scand 2006;113:372–87.
82 Chiu H-C, Chen C-M, Huang C-J, et al. Depressive symptoms, chronic medical conditions and functional status: a comparison of urban and rural elders in Taiwan. Int J Geriatr Psychiatry 2005;20:635–44.
83 Lee Y, Shinkai S. Correlates of cognitive impairment and depressive symptoms among older adults in Korea and Japan. Int J Geriatr Psychiatry 2005;20:576–86.
84 Kim JJ, Kim G. Relationship between the remaining years of healthy life expectancy in older age and national income level, educational attainment, and improved water quality. Int J Aging Hum Dev 2016;83:402–17.
85 Kim JJ, Kim G. Country-Level socioeconomic indicators associated with healthy life expectancy: income, urbanization, schooling, and Internet users: 2000–2012. Soc Indic Res 2016;129:391–402.
86 Kim J, Kim G. Factors affecting the survival probability of becoming a centenarian for those aged 70, based on the human mortality database: income, health expenditure, telephone, and sanitation. BMC Geriatr 2014;14:1–11.
87 Evans JM, Kiran PR, Bhattacharyya OK. Activating the knowledge-to-action cycle for geriatric care in India. Health Res Policy Syst 2011;9:1–10.
88 Bhanjeek S. Determinants of rural-urban differential in healthcare utilization among the elderly population in India. BMC Public Health 2021;21:1–18.
89 Paul NSS, Asirvatham M. Geriatric health policy in India: the need for scaling-up implementation. J Family Med Prim Care 2016;5:242.