On the Schwartz space isomorphism theorem for rank one symmetric space

JOYDIP JANA and RUDRA P SARKAR

Indian Statistical Institute, Division of Theoretical Statistics and Mathematics,
203 B.T. Road, Kolkata 700 108, India
E-mail: joydip_r@isical.ac.in; rudra@isical.ac.in

MS received 9 August 2005; revised 14 May 2007

Abstract. In this paper we give a simpler proof of the L^p-Schwartz space isomorphism theorem for the class of functions of left δ-type on a Riemannian symmetric space of rank one. Our treatment rests on Anker’s [2] proof of the corresponding result in the case of left K-invariant functions on X. Thus we give a proof which relies only on the Paley–Wiener theorem.

Keywords. δ Spherical transform; Helgason Fourier transform.

1. Introduction

Let X be a rank one Riemannian symmetric space of noncompact type. We recall that such a space can be realized as G/K, where G is a connected noncompact semisimple Lie group of real rank one with finite center and K is a maximal compact subgroup of G. Anker [2], in his paper gave a remarkably short and elegant proof of the L^p-Schwartz space isomorphism theorem for K bi-invariant functions on G under the spherical Fourier transform for $(0 < p \leq 2)$. The result for K bi-invariant functions was first proved by Harish-Chandra [6–8] (for $p = 2$) and Trombi and Varadarajan [12] (for $0 < p < 2$). Eguchi and Kowata [4] addressed the isomorphism problem for the L^p-Schwartz spaces on X. In [2], Anker has successfully avoided the involved asymptotic expansion of the elementary spherical functions, which has a crucial role in all the earlier works. In this paper, we have exploited Anker’s technique to obtain the isomorphism of the L^p-Schwartz space $(0 < p \leq 2)$ under Fourier transform for functions on X of a fixed K-type.

Let (δ, V_δ) be an unitary irreducible representation of K of dimension δ. Our basic L^p-Schwartz space $S^p_\delta(X)$ is a space of Hom(V_δ, V_δ)-valued C^∞ functions, the Eisenstein integral $\Phi_{\lambda, \delta}(x)$ is a Hom(V_δ, V_δ)-valued entire function on \mathbb{C} and $S_\delta(a_\epsilon^\ast)$ consists of analytic functions on the strip $a_\epsilon^\ast = \{\lambda \in \mathbb{C} | |\text{Im } \lambda | \leq \epsilon \}$. Anticipating these and other notations and definitions developed in §§2 and 3, we state the main result of the paper.

Theorem 1.1. For $0 < p \leq 2$ and $\epsilon = 2/p - 1$ the δ-spherical transform $f \mapsto \tilde{f}$, where

$$\tilde{f}(\lambda) = d(\delta) \int_X \text{tr } f(x) \Phi_{\lambda, \delta}(x)^* dx,$$

(1.1)
is a topological vector space isomorphism between the spaces $S^p_3(X)$ and $S_3(a^*_+)$; with the inverse
\[f(x) = \omega^{-1} \int_{\mathfrak{a}^*_+} \Phi_{\lambda, \delta}(x) \tilde{f}(\lambda)|c(\lambda)|^{-2} \, d\lambda. \] (1.2)

2. Preliminaries

The pair (G, K) and X are as described in the introduction. We let $G = KAN$ denote a fixed Iwasawa decomposition of G. Let \mathfrak{g}, \mathfrak{k}, \mathfrak{a} and \mathfrak{n} denote the Lie algebras of G, K, A and N respectively. We recall that dimension of \mathfrak{a}^*_+.

Let \mathfrak{a}^* be the real dual of \mathfrak{a} and $\mathfrak{a}^*_+\subset \mathfrak{a}^*$ be its complexification. We identify \mathfrak{a}, \mathfrak{a}^* with \mathbb{R} and $\mathfrak{a}^*_\mathbb{C}$ with \mathbb{C} using a normalization explained below. Let $H: g \mapsto H(g)$ and $A: g \mapsto A(g)$ be projections of $g \in \mathfrak{g}$ in \mathfrak{a} in Iwasawa KAN and NAK decompositions respectively, that is any $g \in G$ can be written as $g = k \exp H(g)n = n' \exp A(g)k_1$. These two are related by $A(g) = -H^{-1}(g)$ for all $g \in G$. Let M' and M respectively be the normalizer and centralizer of A in K. M also normalizes N. Let $\mathcal{W} = M'/M$ be the Weyl group of G. Here $\mathcal{W} = \{\pm 1\}$. Let us choose and fix a system of positive restricted roots which we denote by Σ^+. The real number ρ corresponds to $\frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$ where m_α is the multiplicity of the root α. With a suitable normalization of the basis of \mathfrak{a} we can identify ρ with 1. The positive Weyl chamber $\mathfrak{a}^+ \subset \mathfrak{a}$ is identified with the positive real numbers. We denote x^+ to be the \mathfrak{a}^+ component of $x \in G$ for the Cartan decomposition $G = K^\mathfrak{a}^+ K = K(\exp \mathfrak{a}^+)K$ and let $|x| = x^+$. We have a basic estimate (Proposition 4.6.11 of [5]): there is a constant $c > 0$ such that
\[|H(x)| \leq c|x| \quad \text{for} \quad x \in G. \] (2.1)

We note that, any function f on X can also be considered as a function on the group G with the property $f(gk) = f(k)$, where $g \in G$ and $k \in K$. Let $x = ka_tk'$ where $a_t = \exp t \in A$, $t \in \mathfrak{a} \cong \mathbb{R}$. The Haar measure of G for the Cartan decomposition is given by
\[\int_H f(x) \, dx = \text{const} \int_K dk \int_{\mathfrak{a}^+} \Delta(t) \, dt \int_K dk' f(ka_tk'), \] (2.2)
where $\Delta(t) = \prod_{\alpha \in \Sigma^+} \sinh^{m_\alpha} \alpha(t)$. In the Iwasawa decomposition, $x = katn$, the Haar measure is
\[\int_g f(x) \, dx = \text{const} \int_K dk \int_{\mathfrak{a}^+} e^{2t} \, dt \int_N df(ka_tn). \] (2.3)

In both (2.2) and (2.3) ‘const’ stands for positive normalizing constants for the respective cases.

Let (δ, V^δ) be an unitary irreducible representation of K. Let $d(\delta)$ and χ_δ stand for the dimension and character of the representation δ. Let V^M_δ be the subspace of V^δ fixed under $\delta|_M$; i.e $V^M_\delta = \{v \in V^\delta | \delta(m)v = v, \forall m \in M\}$. Recall that as G is of real rank one, the dimension of V^M_δ is 0 or 1 (see [11]). Let \tilde{K}_M be the set of all equivalence classes of irreducible unitary representation δ of K for which $V^M_\delta \neq [0]$. For our result we choose $\delta \in \tilde{K}_M$. We shall also fix an orthonormal basis $\{v_1, v_2, \ldots, v_{d(\delta)}\}$ of V^δ such that v_1 spans V^M_δ.
We shall denote $D(X)$ for the space of all C^∞ functions on X with compact support. For any function $f \in D(X)$, the Helgason Fourier transform (HFT) (III, §1 of [9]) Ff is defined by

$$Ff(\lambda,kM) = \int_X f(x)e^{i(\lambda-1)H(x^{-1}k)} \, dx.$$ \hspace{1cm} (2.4)

Let us fix the notation $Ff(\lambda,kM) = Ff(\lambda,k)$. The inversion formula for HFT for $f \in D(X)$ is given by

$$f(x) = \frac{1}{\omega} \int_{a^*} \int_K Ff(\lambda,k)e^{-(i\lambda+1)H(x^{-1}k)}|c(\lambda)|^{-2}d\lambda dk.$$ \hspace{1cm} (2.5)

Here, $\omega = |W|$ is the cardinality of the Weyl group and $c(\lambda)$ is the Harish-Chandra c-function. For our purpose we shall need the following simple estimate on $c(\lambda)$: there exist constants $c, b > 0$ such that

$$|c(\lambda)|^{-2} \leq c(|\lambda| + 1)^b \hspace{1cm} \text{for} \hspace{1cm} \lambda \in a^*$$ \hspace{1cm} (2.6)

(see, [IV, Proposition 7.2 of [10]).

Let $D(X, \text{Hom}(V_\delta, V_\delta))$ be the space of all C^∞ functions on X taking values in $\text{Hom}(V_\delta, V_\delta)$ and with compact support.

Let $D^\delta(X) = \{ f \in D(X, \text{Hom}(V_\delta, V_\delta)) \mid f(k \cdot x) = \delta(k) f(x) \}$. We topologize $D^\delta(X)$ by the inductive limit topology of the spaces $D_R(X, \text{Hom}(V_\delta, V_\delta))$, where $R = 0, 1, 2, \ldots$. These are the spaces of functions on X with support lying in the geodesic R-balls. Let δ be the contragradient representation of δ. The class of functions $D^\delta(X) = \{ f \in D(X) \mid f = d(\delta) \chi_\delta * f \}$ is the space of all left δ type functions on X. Being a subspace of $D(X)$, $D^\delta(X)$ inherits the subspace topology of $D(X)$. We also notice that, for $f \in C^\infty(X)$ the function

$$f^\delta(x) = d(\delta) \int_K f(k \cdot x) \delta(k^{-1})dk$$ \hspace{1cm} (2.7)

is a C^∞ map from X to $\text{Hom}(V_\delta, V_\delta)$ satisfying

$$f^\delta(k \cdot x) = \delta(k) f^\delta(x).$$

The following lemma (III, Proposition 5.10 of [9]) shows that the two function spaces $D^\delta(X)$ and $D^\delta_\delta(X)$ are topologically isomorphic.

Lemma 2.1 [9]. The map $Q: D^\delta(X) \rightarrow D^\delta_\delta(X)$ given by

$$Q: f \mapsto \text{tr} f$$

is a homeomorphism with the inverse given by $Q^{-1}(g) = g^\delta$ for $g \in D^\delta_\delta(X)$.

3. The δ-spherical transform

Most of the material in this section can be retrieved from [9]. Here we will restructure the results in a form which is suitable for our purpose. In particular we will transfer the results from $D^\delta(X)$ to $D^\delta_\delta(X)$ using the homomorphism Q, defined in Lemma 2.1.
DEFINITION 3.1

For \(f \in D^\delta(X) \) the \(\delta \)-spherical transform \(\tilde{f} \) is given by

\[
\tilde{f}(\lambda) = d(\delta) \int_X \text{tr} f(x) \Phi_{\lambda, \delta}(x)^* dx, \quad \lambda \in \mathbb{C}
\]

(3.1)

where, \(\Phi_{\lambda, \delta}(x) \) is the generalized spherical function (Eisenstein integral). Precisely,

\[
\Phi_{\lambda, \delta}(x) = \int_K e^{-i(\lambda + 1)H(x^{-1}k)} \delta(k) dk
\]

(3.2)

and therefore, the adjoint of \(\Phi_{\lambda, \delta}(x) \) is

\[
\Phi_{\lambda, \delta}^*(x) = \int_K e^{i(\lambda - 1)H(x^{-1}k)} \delta(k^{-1}) dk.
\]

(3.3)

The following is a list of some basic properties of the generalized spherical functions.

1. For \(k \in K \), \(\Phi_{\lambda, \delta}(kx) = \delta(k) \Phi_{\lambda, \delta}(x) \) and \(\Phi_{\lambda, \delta}(kx)^* = \Phi_{\lambda, \delta}(x)^* \delta(k^{-1}) \). For \(v \in V_\delta \) and \(m \in M \), \(\delta(m)(\Phi_{\lambda, \delta}(x)^* v) = \Phi_{\lambda, \delta}(x)^* v \). This shows that \(\Phi_{\lambda, \delta}^* \) is a Hom\((V_\delta, V_M^\delta)\)-valued function on \(X \).

2. Let \(L \) be the Laplace–Beltrami operator of \(X \). Then \(L \Phi_{\lambda, \delta} = -(\lambda^2 + 1)\Phi_{\lambda, \delta} \) (§1(6) of [9]).

3. Let \(U(g_{\mathbb{C}}) \) be the the universal enveloping algebra of \(G \). For any \(g_1, g_2 \in U(g_{\mathbb{C}}) \) there exist constants \(c_\delta = c_\delta(g_1, g_2, \delta), c_0 > 0, b = b(g_1, g_2) \) so that (see [3])

\[
\| \Phi_{\lambda, \delta}(g_1, x, g_2) \| \leq c_\delta(1 + |\lambda|^2) \varphi_0(x) e^{c_0|\text{Im} \lambda|(1 + |x|)}, \quad x \in X.
\]

(3.4)

Here \(\| \cdot \| \) is the Hilbert–Schmidt norm.

4. If \(\delta \) is the trivial representation of \(K \) then \(\Phi_{\lambda, \delta}(x) \) reduces to the elementary spherical function

\[
\varphi_\delta(x) = \int_K e^{-i(\lambda + 1)H(x^{-1}k)} dk.
\]

(3.5)

It satisfies the following estimates:

(i) For each \(H \in a^\tau \) and \(\lambda \in a^{\tau+} \),

\[
0 < \varphi_{-1, \delta}(\exp H) \leq e^{\lambda H} \varphi_0(\exp H),
\]

(3.6)

where, \(\varphi_0(\cdot) \) is the elementary spherical function at \(\lambda = 0 \) (see Proposition 4.6.1 of [5]).

(ii) For all \(g \in G \), \(0 < \varphi_0(g) \leq 1 \) (Proposition 4.6.3 of [5]) and for \(t \in a^\tau \),

\[
e^{-t} \leq \varphi_0(\exp t) \leq q(1 + t)e^{-t}
\]

(3.7)

for some \(q > 0 \) (see [1] for a sharper estimate).
5. We have already noticed that V^M_δ is 1-dimensional. For $\lambda \in \mathfrak{a}_C^*$, $\delta \in \hat{K}_M$ and $x \in X$, the linear functional $\Phi_{\lambda, \delta}(x)|_{V^M_\delta}$ is a scalar multiplication. The elementary spherical function ϕ_δ is related to $\Phi_{\lambda, \delta}$ in the following way (see III, Corollary 5.17 of [9]):

$$\Phi_{\lambda, \delta}(x)|_{V^M_\delta} = Q_{\delta}(\lambda)^{-1} (D_{\lambda, \delta}(\varphi_{\lambda}))(x), \quad (3.8)$$

where $D_{\lambda, \delta}$ is a certain constant coefficient differential operator and $Q_{\delta}(\lambda)$ is a constant real coefficient polynomial in $i\lambda$. An explicit expression for the polynomial Q_{δ} is available in III, §2 of [9].

6. For each $a \in A$, the functions $\lambda \mapsto Q_{\delta}(\lambda)\Phi_{\lambda, \delta}(a)$ and $\lambda \mapsto Q_{\delta}(\lambda)^{-1}\Phi_{\lambda, \delta}(a)^*$ are even holomorphic functions on \mathfrak{a}_C^* (see III, Theorem 5.15 of [9]).

It follows from 1 and 6 above that for $f \in D^\delta(X)$, $\lambda \mapsto Q_{\delta}(\lambda)f(\lambda)$ is a Hom(V_{δ}, V^M_δ)-valued even function on \mathbb{C}.

The HFT and the δ-spherical transform of a function $f \in D^\delta(X)$ are related in the following manner.

DEFINITION 3.2

Let $\delta \in \hat{K}_M$, $f \in D(X)$ and Ff be its HFT. Then let us define the δ-projection $(Ff)^\delta$ of Ff by

$$ (Ff)^\delta(\lambda, k) = d(\delta) \int_K Ff(\lambda, k) \delta(k^{-1}) dk. \quad (3.9) $$

As noted earlier for $f \in D(X)$, its δ-projection $f^\delta \in D^\delta(X)$. Each of its matrix entry is a member of $D(X)$. We define the HFT of f^δ by

$$ F(f^\delta)(\lambda, k) = \int_X f^\delta(x) e^{i(\lambda - 1)(x - k)} dx. \quad (3.10) $$

This is nothing but the usual HFT at each matrix entry of f^δ.

PROPOSITION 3.3

For $f \in D(X)$ and $\delta \in \hat{K}_M$ the following are true:

1. $(Ff)^\delta(\lambda, k) = \delta(k)(Ff)^\delta(\lambda, e)$.
2. $ F(f^\delta)(\lambda, k) = (Ff)^\delta(\lambda, k).$

Proof. It is clear from the definition that $(Ff)^\delta(\lambda, k) = \delta(k)(Ff)^\delta(\lambda, e)$.

The following straightforward calculation using Fubini’s theorem proves the second assertion.

$$ F(f^\delta)(\lambda, kM) = \int_X f^\delta(x) e^{i(\lambda - 1)(x - k)} dx,$$

$$ = d(\delta) \int_X \left\{ \int_K f(k_1 x) \delta(k_1^{-1}) dk_1 \right\} e^{i(\lambda - 1)(x - k)} dx,$$
The next lemma relates the δ-spherical transform defined in (3.1) with the HFT.

Lemma 3.4. If $f \in D^\delta(X)$ and $\delta \in \hat{K}_M$, then $F f(\lambda, e) = \tilde{f}(\lambda)$.

Proof. For any $f \in D^\delta(X)$, by Lemma 2.1, $f(x) = d(\delta) \int_K \text{tr} f(kx) \delta(k^{-1}) dk$. From the definition of HFT (2.4) we get

$$F f(\lambda, e) = \int_X f(x) e^{(i\lambda - 1)H(x^{-1})} dx,$$

$$= \int_X d(\delta) \int_K \text{tr} f(kx) \delta(k^{-1}) dk e^{(i\lambda - 1)H(x^{-1})} dx.$$

Substituting $kx = y$ we have

$$F f(\lambda, e) = d(\delta) \int_X \text{tr} f(y) \int_K e^{(i\lambda - 1)H(y^{-1}k)} \delta(k^{-1}) dk,

= d(\delta) \int_X \text{tr} f(y) \Phi_{\lambda, \delta}(y)^* dy,

= \tilde{f}(\lambda).$$

Lemma 3.5. The inversion formula for the δ-spherical transform $f \mapsto \tilde{f}$ is given by the following: For each $f \in D^\delta(X)$,

$$f(x) = \frac{1}{\omega} \int_{q^*} \Phi_{\lambda, \delta}(x) \tilde{f}(\lambda) |c(\lambda)|^{-2} d\lambda. \quad (3.11)$$

Moreover,

$$\int_X \|f(x)\|^2 dx = \frac{1}{w} \int_{q^*} \|\tilde{f}(\lambda)\|^2 |c(\lambda)|^{-2} d\lambda. \quad (3.12)$$

Here, the norm $\|\cdot\|$ is the Hilbert–Schmidt norm.
Proof. We use the inversion formula for the HFT (2.5), Proposition 3.3 and Lemma 3.4 to obtain
\[
f(x) = \frac{1}{\omega} \int_{\mathfrak{a}^*} \int_{K} \mathcal{F} f(\lambda, k) e^{-(i\lambda+1)H(x^{-1}k)}|c(\lambda)|^{-2} d\lambda dk
\]
\[
= \frac{1}{\omega} \int_{\mathfrak{a}^*} \int_{K} \delta(k) \mathcal{F} f(\lambda, e) e^{-(i\lambda+1)H(x^{-1}k)}|c(\lambda)|^{-2} d\lambda dk
\]
\[
= \frac{1}{\omega} \int_{\mathfrak{a}^*} \left(\int_{K} e^{-(i\lambda+1)H(x^{-1}k)} \delta(k) dk \right) \mathcal{F} f(\lambda, e) |c(\lambda)|^{-2} d\lambda
\]
\[
= \frac{1}{\omega} \int_{\mathfrak{a}^*} \Phi_{\lambda, \delta}(x) \tilde{f}(\lambda) |c(\lambda)|^{-2} d\lambda.
\]
As the HFT (2.4) of a function \(f \in \mathcal{D}(X) \) is defined entry-wise, it is clear that the Plancherel formula for Helgason Fourier transform is as follows:
\[
\int_X \|f(x)\|^2 dx = \frac{1}{\omega} \int_{\mathfrak{a}^*} \int_{K} \|\tilde{f}(\lambda, k)\|^2 |c(\lambda)|^{-2} d\lambda dk.
\]
(3.13)
Using the relation \(\tilde{f}(\lambda, k) = \delta(k) \tilde{f}(\lambda) \) together with the Schur’s orthogonality relation, the formula (3.12) can be deduced from (3.13).

DEFINITION 3.6

A \(C^\infty \) function \(\psi \) on \(\mathfrak{a}^*_c \) with values in \(\text{Hom}(V_\delta, V_M^\delta) \), is said to be of **exponential type** \(R \) if there exists a constant \(R \geq 0 \) such that for each \(N \in \mathbb{Z}^+ \),
\[
\sup_{\lambda \in \mathfrak{a}^*_c} e^{-R|\text{Im}\lambda|(1 + |\lambda|)^N} \|\psi(\lambda)\| < +\infty.
\]

We denote the space of \(C^\infty \) function from \(\mathfrak{a}^*_c \rightarrow \text{Hom}(V_\delta, V_M^\delta) \) of exponential type \(R \) by \(\mathcal{H}^R(\mathfrak{a}^*_c) \). Let \(\mathcal{H}(\mathfrak{a}^*_c) = \bigcup_{R > 0} \mathcal{H}^R(\mathfrak{a}^*_c) \). We state the following topological Paley–Wiener theorem for the \(K \)-types. The proof of this theorem follows from III, Theorem 5.11 of [9] and Lemma 2.1.

Theorem 3.7. The \(\delta \)-spherical transform defined in Definition 3.1 is a homeomorphism between the spaces \(\mathcal{D}(X) \) and \(\mathcal{P}_\delta(\mathfrak{a}^*_c) \), where
\[
\mathcal{P}_\delta(\mathfrak{a}^*_c) = \{ F \in \mathcal{H}(\mathfrak{a}^*_c) | (Q^\delta)^{-1} \cdot F \text{ is an even entire function} \}.
\]
Here \(Q^\delta(\lambda) \) is the polynomial in \(i\lambda \) with real coefficients introduced in (3.8).

Let \(\mathcal{P}_0(\mathfrak{a}^*_c) \) denote the set of all even functions in \(\mathcal{H}(\mathfrak{a}^*_c) \), with the relative topology. Let \(h \in \mathcal{P}_0(\mathfrak{a}^*_c) \). By definition, \(h \) is a \(\text{Hom}(V_\delta, V_M^\delta) \)-valued function. As \(V_M^\delta \) is of dimension 1 so we can write \(h = (h_1, \ldots, h_{d(\delta)}) \), where each of \(h_i \) satisfies the following conditions:

(i) it is of exponential type,
(ii) it is entire,
(iii) it is an even function.
Let \(\mathcal{D}(K \setminus X) \) and \(\mathcal{D}(K \setminus X, \text{Hom}(V_\delta, V_\delta^M)) \) denote the left \(K \)-invariant, compactly supported, \(C^\infty \) functions on \(X \) taking values respectively in \(\mathbb{C} \) and \(\text{Hom}(V_\delta, V_\delta^M) \). The spherical transform of \(\phi \in \mathcal{D}(K \setminus X) \) is defined by \(\phi \mapsto \int_X \phi(x) \varphi_\lambda(x^{-1}) \, dx \). For the class \(\mathcal{D}(K \setminus X, \text{Hom}(V_\delta, V_\delta^M)) \) we define it entry-wise. From the Paley–Wiener theorem for the spherical transform [5], there exists one \(f_i \in \mathcal{D}(K \setminus X) \) so that \(h_i(\lambda) = \int_G f_i(x) \varphi_\lambda(x^{-1}) \, dx \). Therefore \(\mathcal{P}_0(\alpha_\cdot^\cdot) \) is the image of \(\mathcal{D}(K \setminus X, \text{Hom}(V_\delta, V_\delta^M)) \) under the spherical transform. The following lemma shows that the Paley–Wiener (PW) spaces \(\mathcal{P}_\delta(\alpha_\cdot^\cdot) \) and \(\mathcal{P}_0(\alpha_\cdot^\cdot) \) are homeomorphic.

Lemma 3.8 (III, Lemma 5.12 of [9]). The mapping

\[
\psi(\lambda) \mapsto Q_\lambda(\lambda) \psi(\lambda)
\]

is a homeomorphism of \(\mathcal{P}_0(\alpha_\cdot^\cdot) \) onto \(\mathcal{P}_\delta(\alpha_\cdot^\cdot) \).

Lemma 3.9. Any \(f \in \mathcal{D}_\delta(X) \) can be written as \(f(x) = D^\delta \phi(x) \), where \(\phi \in \mathcal{D}(K \setminus X, \text{Hom}(V_\delta, V_\delta^M)) \) and \(D^\delta \) is a certain constant coefficient differential operator.

Proof. Let \(f \in \mathcal{D}_\delta(X) \). Then \(\tilde{f} \in \mathcal{P}_0(\alpha_\cdot^\cdot) \). Therefore by Lemma 3.8, the map \(\lambda \mapsto \Phi(\lambda) = Q_\lambda(\lambda)^{-1} \tilde{f}(\lambda) \) is in \(\mathcal{P}_0(\alpha_\cdot^\cdot) \). By the PW theorem for the spherical function we get one \(\phi \in \mathcal{D}(K \setminus X, \text{Hom}(V_\delta, V_\delta^M)) \) such that

\[
\phi(x) = \frac{1}{w} \int_{a^\cdot} \varphi_\lambda(x) \Phi(\lambda) |\epsilon(\lambda)|^{-2} \, d\lambda,
\]

where \(\varphi_\lambda(\cdot) \) is an elementary spherical function. Now applying the differential operator \(D^\delta \) (see 3.8)) on both sides of (3.15) we get

\[
(D^\delta \phi)(x) = \frac{1}{w} \int_{a^\cdot} \Phi_{\lambda, \cdot}(x) Q_\lambda(\lambda) \Phi(\lambda) |\epsilon(\lambda)|^{-2} \, d\lambda,
\]

\[
= \frac{1}{w} \int_{a^\cdot} \Phi_{\lambda, \cdot}(x) \tilde{f}(\lambda) |\epsilon(\lambda)|^{-2} \, d\lambda,
\]

\[
= f(x).
\]

We shall denote the Hilbert–Schmidt norm of an operator by \(\|H\| \).

DEFINITION 3.10 (The \(L^p \)-Schwartz space on \(X \))

For every \(0 < p \leq 2 \), \(\mathbf{D}, \mathbf{E} \in \mathcal{U}(\mathfrak{g}_\mathbb{C}) \) and \(q \in \mathbb{N} \cup \{0\} \) we define a semi-norm on \(f \in C^\infty(X, \text{Hom}(V_\delta, V_\delta^M)) \) by

\[
\nu_{\mathbf{D}, \mathbf{E}, q}(f) = \sup_{x \in G} \|f(D, x, E)\| \varphi_0(x)^{-2/p}(1 + |x|)^q.
\]

Let \(S^p(X) \) be the space of all functions in \(C^\infty(X, \text{Hom}(V_\delta, V_\delta^M)) \) such that \(\nu_{\mathbf{D}, \mathbf{E}, q}(f) < \infty \) for all \(\mathbf{D}, \mathbf{E} \in \mathcal{U}(\mathfrak{g}_\mathbb{C}) \) and \(q \in \mathbb{N} \cup \{0\} \). We topologize \(S^p(X) \) by means of the seminorms \(\nu_{\mathbf{D}, \mathbf{E}, q} \), \(\mathbf{D}, \mathbf{E} \in \mathcal{U}(\mathfrak{g}_\mathbb{C}) \), \(q \in \mathbb{N} \cup \{0\} \).
Then \(S^p(X) \) is a Frechet space and \(D(X, \text{Hom}(V_\delta, V_\delta)) \) is a dense subspace of \(S^p(X) \). Let \(S_0^\delta(X) \) be the subspace of \(S^p(X) \) consisting of the left \(\delta \) type \(\text{Hom}(V_\delta, V_\delta) \)-valued functions in \(S^p(X) \). Then clearly \(D^\delta(X) \) is a dense subspace in \(S_0^\delta(X) \).

Remark 3.11. Let \(D^\delta(X) \) be the Schwartz space of scalar-valued \(\delta \) type functions. Recall that \(D^\delta(X) \) is dense in \(S_0^\delta(X) \). Therefore the homeomorphism \(Q \) defined in Lemma 2.1 between \(D^\delta(X) \) and \(S_0^\delta(X) \) extends to a homeomorphism between the corresponding Schwartz spaces \(S_0^\delta(X) \) and \(D^\delta(X) \).

We shall now define the Schwartz space \(S_0^\delta(a^*_\epsilon) \) containing the Paley–Wiener space \(P_\delta(a^*_C) \) as follows.

DEFINITION 3.12

Let \(S_0^\delta(a^*_\epsilon) \) be the class of functions on \(a^*_\epsilon \) taking values in \(\text{Hom}(V_\delta, V_M^\delta) \) and satisfying the following conditions:

1. \(h \) is analytic in the interior of the strip \(a^*_\epsilon \).
2. \(h \) extends continuously to the boundary of the strip \(a^*_\epsilon \).
3. \((Q_\delta)^{-1}h\) is even and analytic in the interior of the strip \(a^*_\epsilon \).
4. For each positive integer \(r \) and for each symmetric polynomial \(P \) on \(a^*_\epsilon \),
 \[
 \tau_r(P, h) = \sup_{\lambda \in \text{Int} a^*_\epsilon} \left\| \frac{d}{d\lambda} h(\lambda) \right\| (1 + |\lambda|)^r < +\infty.
 \] (3.18)

\(P(\partial\lambda) \) is the differential operator obtained by replacing the variable \(\lambda \) by \(d/d\lambda \).

The topology given by the countable family of seminorms \(\tau_r, P \) makes \(S_0^\delta(a^*_\epsilon) \) a Frechet space.

The condition (3.18) can also be written in the form

\[
\tau_{r, t}(h) = \sup_{\lambda \in \text{Int} a^*_\epsilon} \left\| \left(\frac{d}{d\lambda} \right)^t \left(\frac{d}{d\lambda} \right)^{t-1} h(\lambda) \right\| (1 + |\lambda|)^m < +\infty.
\]

Let \(S_0(a^*_\epsilon) \) be the class of all even functions on \(a^*_\epsilon \) taking values in \(\text{Hom}(V_\delta, V_M^\delta) \) satisfying conditions (1), (2) and (4) of Definition 3.12. Then \(S_0(a^*_\epsilon) \) becomes a Frechet space with the seminorms \(\tau_r, P \). Clearly, \(P_\delta(a^*_C) \subset S_0(a^*_\epsilon) \).

Lemma 3.13. The map

\[
h(\lambda) \mapsto Q_\delta(\lambda)h(\lambda)
\]

is a homeomorphism from \(S_0(a^*_\epsilon) \) onto \(S_0^\delta(a^*_\epsilon) \)

Proof. Let \(h \in S_0(a^*_\epsilon) \). Then

\[
\sup_{\lambda \in \text{Int} a^*_\epsilon} \left\| \left(\frac{d}{d\lambda} \right)^t Q_\delta(\lambda)h(\lambda) \right\| (1 + |\lambda|)^m \\
\leq \sum_{t_i} c_{t_i} \sup_{\lambda \in \text{Int} a^*_\epsilon} \left\| \left(\frac{d}{d\lambda} \right)^{t_i} Q_\delta(\lambda) \right\| \left(\frac{d}{d\lambda} \right)^{t_i - t_0} h(\lambda) \left(1 + |\lambda| \right)^m,
\]

\[
\leq \sum c_{t_i} \sup_{\lambda \in \text{Int} a^*_\epsilon} \left\| \left(\frac{d}{d\lambda} \right)^{t_i - t_0} h(\lambda) \right\| (1 + |\lambda|)^m.
\]
The constants c_{i} and the positive integers m_{i} are dependent on δ. On the other hand, if $g \in S_{\delta}(a_{\epsilon}^{*})$ then $\psi(\lambda) = g(\lambda)/Q^{i}(\lambda)$ satisfies the conditions (1) and (2) of Definition 3.12. As $g \in S_{\delta}(a_{\epsilon}^{*})$, by (3), ψ is an even function. We need to establish (4) of Definition 3.12 to conclude $\psi \in S_{0}(a_{\epsilon}^{*})$.

Let us choose a compact subset C of a_{ϵ}^{*} containing all the zeros of $Q^{i}(\lambda)$ in the strip a_{ϵ}^{*} such that $|Q^{i}(\lambda)| \geq \alpha$ for all $\lambda \in a_{\epsilon}^{*} \setminus C$, where α is a positive constant.

\[
\sup_{\lambda \in \text{int } a_{\epsilon}^{*}} \left| \left(\frac{d}{dx} \right)^{j} \psi(\lambda) \right| (1 + |\lambda|)^{m} \leq \sup_{\lambda \in C} \left| \left(\frac{d}{dx} \right)^{j} \frac{g(\lambda)}{Q^{i}(\lambda)} \right| (1 + |\lambda|)^{m} + \sup_{\lambda \in \text{int } a_{\epsilon}^{*} \setminus C} \frac{\|\beta(\lambda)\left(\frac{d}{dx} \right)^{j} g(\lambda)\|}{|Q^{i}(\lambda)|^{2}} \leq k_{1} + \frac{k_{2}}{\alpha} \sup_{\lambda \in \text{int } a_{\epsilon}^{*}} \left| \left(\frac{d}{dx} \right)^{j} g(\lambda) \right| (1 + |\lambda|)^{m+1} < +\infty,
\]

where $\beta(\lambda)$ is a polynomial in λ. This concludes the proof. □

It follows from above that any $h \in S_{\delta}(a_{\epsilon}^{*})$ can be written as $Q^{i}(\lambda)g(\lambda)$ where $g \in S_{0}(a_{\epsilon}^{*})$ and vice-versa.

Let $g = (g_{1}, \ldots, g_{d(\delta)}) \in S_{0}(a_{\epsilon}^{*})$. Then each scalar-valued function g_{i} belongs to the Schwartz space $S(a_{\epsilon}^{*})$ containing the Paley–Wiener space $P(a_{\epsilon}^{*})$ under the spherical Fourier transform.

PROPOSITION 3.14

The Paley–Wiener space $P_{\delta}(a_{\epsilon}^{*})$ is a dense subspace of $S_{\delta}(a_{\epsilon}^{*})$.

Proof. We have seen in Lemma 3.13 that any $h = (h_{1}, \ldots, h_{d(\delta)}) \in P_{\delta}(a_{\epsilon}^{*})$ can be written as $Q^{i} \cdot (g_{1}, \ldots, g_{d(\delta)})$, where each g_{i} belongs to the Paley–Wiener space $P(a_{\epsilon}^{*})$ under the spherical Fourier transform. We recall that $P(a_{\epsilon}^{*})$ is dense in $S(a_{\epsilon}^{*})$. Let $H = (H_{1}, \ldots, H_{d(\delta)}) \in S_{\delta}(a_{\epsilon}^{*})$. Then $H = (Q^{i}G_{1}, \ldots, Q^{i}G_{d(\delta)})$ where $G = (G_{1}, \ldots, G_{d(\delta)}) \in S_{0}(a_{\epsilon}^{*})$, i.e., each $G_{i} \in S(a_{\epsilon}^{*})$. Then there exists a sequence $[G_{i}^{*}]$ in $P_{0}(a_{\epsilon}^{*})$ converging to G_{i}. Hence $\{Q^{i} \cdot g_{i}^{*}\}$ converges to $Q^{i} \cdot G_{i}$ in the topology of $S(a_{\epsilon}^{*})$. Therefore, the sequence $\{Q^{i} \cdot (g_{i}^{*}, \ldots, g_{d(\delta)}^{*})\} \subset P_{\delta}(a_{\epsilon}^{*})$ converges to $(Q^{i}G_{1}, \ldots, Q^{i}G_{d(\delta)})$ in $S_{\delta}(a_{\epsilon}^{*})$. This completes the proof. □

4. Proof of Theorem 1.1

Lemma 4.1. Let $f \in S_{0}^{\delta}(X)$. Then its δ-spherical transform \tilde{f} is an analytic function in the interior of the strip a_{ϵ}^{*}.

Proof. For any function $f : X \mapsto \text{Hom}(V_{\delta}, V_{\delta}^{M})$, it is easy to show that $|\text{tr } f(x)| \leq \|f(x)\|$ for all $x \in X$. As $f \in S_{0}^{\delta}(X)$, from (3.17), we conclude that for each $D, E \in \mathcal{U}(g_{\mathcal{C}})$ and $n \in \mathbb{Z}^{+} \cup \{0\}$,

\[
\sup_{x \in X} \|\text{tr } f(D, x, E)\|(1 + |x|)^{n} \psi_{0}^{-2/p}(x) < +\infty. \tag{4.1}
\]
Using (4.1) and the estimate (3.4) one can show that the integral in Definition 3.1 of the \(\delta \)-spherical transform converges absolutely for \(\lambda \in a^+_\ast \).

A standard application of Morera’s theorem together with Fubini’s theorem shows that \(\lambda \mapsto \tilde{f}(\lambda) \) is analytic in the interior of the strip \(a^+_\ast \).

Lemma 4.2. For \(f \in S^0_\phi(X) \) and for each \(t, n \in \mathbb{Z}^+ \cup \{0\} \), there exists a positive integer \(m \) and \(n \) such that

\[
\sup_{\lambda \in \text{Int} a^+_\ast} \left\| \left(\frac{d}{d\lambda} \right)^t (1 + \lambda^2)^n \tilde{f}(\lambda) \right\| \leq c \sup_{x \in X} \|L^n f(x)\|(1 + |x|)^m \psi_0^{-2/p}(x),
\]

where \(c \) is a positive constant.

Proof. From (3.1) we have

\[
\left(\frac{d}{d\lambda} \right)^t (1 + \lambda^2)^n \tilde{f}(\lambda) = \left(\frac{d}{d\lambda} \right)^t \left(d(\delta) \int_X \text{tr} f(x)(1 + \lambda^2)^n \Phi_{\lambda,\delta}(x) \right) dx
\]

\[
= \left(\frac{d}{d\lambda} \right)^t \left(d(\delta) \int_X \text{tr} f(x)(-L)^n \Phi_{\lambda,\delta}(x) \right) dx.
\]

(4.2)

where the last equality follows from (2) of the discussion following Definition 3.1. Using integration by parts we get from above that

\[
\left(\frac{d}{d\lambda} \right)^t (1 + \lambda^2)^n \tilde{f}(\lambda) = \left(i \right)^t d(\delta) \int_X \int_K (H(x^{-1}k))^{(i(\lambda^{-1})H(x^{-1}k))} e(i\lambda^{-1}H(x^{-1}k)) \delta(k^{-1}) dk dx
\]

\[
= \left(i \right)^t d(\delta) \int_X \int_K (H(x^{-1}k))^{(i(\lambda^{-1})H(x^{-1}k))} L^n \text{tr} f(x) e(i\lambda^{-1}H(x^{-1}k)) \delta(k^{-1}) dk dx
\]

\[
= \left(i \right)^t d(\delta) \int_K \int_X (H(x^{-1}k))^{(i(\lambda^{-1})H(x^{-1}k))} L^n \text{tr} f(x) e(i\lambda^{-1}H(x^{-1}k)) \delta(k^{-1}) dx dk.
\]

We substitute \(x^{-1}k = y^{-1} \) and use \(L \text{tr} f(y) = \text{tr} (L f)(y) \) to obtain

\[
\left(\frac{d}{d\lambda} \right)^t (1 + \lambda^2)^n \tilde{f}(\lambda) = \left(i \right)^t d(\delta) \int_K \int_X (H(y^{-1}))^{(i(\lambda^{-1})H(y^{-1}))} \text{tr} (L^n f)(ky) e(i\lambda^{-1}H(y^{-1}) \delta(k^{-1}) dk dy.
\]
Note that $L^n f$ is again a function of left δ type. Therefore from above we get

$$
\left(\frac{d}{d\lambda} \right)^t \{ (1 + \lambda^2)^n \tilde{f}(\lambda) \} \\
= (i)^t \int_X H(y^{-1}) e^{i(\lambda - 1)H(y^{-1})} \left\{ d(\delta) \int_K \text{tr} (L^n f)(ky) \delta(k^{-1}) dk \right\} dy,
$$

$$
= (i)^t \int_X (H(y)^{-1})L^n f(y) e^{i(\lambda - 1)H(y^{-1})} dy \quad \text{(by (2.7))}
$$

$$
= (i)^t \int_X (H(y))L^n f(y^{-1}) e^{i(\lambda - 1)H(y)} dy.
$$

(4.3)

We use the Iwasawa decomposition $G = KAN$ and write $y = kan$, where $r \in a$ and $\exp r = a$, to obtain

$$
\left(\frac{d}{d\lambda} \right)^t \{ (1 + \lambda^2)^n \tilde{f}(\lambda) \} \\
= c(i)^t \int_K \int_a \int_N L^n f(n^{-1}a_{\lambda}^{-1}k^{-1}) (H(ka_n)) e^{i(\lambda - 1)H(ka_n)} dk e^{2\pi i r} dr dn
$$

$$
= (i)^t \int_a \int_N L^n f((a_{\lambda}n)^{-1}) r e^{i(\lambda + 1)r} dr dn.
$$

(4.4)

From (4.4) we get the following norm inequality.

$$
\left\| \left(\frac{d}{d\lambda} \right)^t \{ (1 + \lambda^2)^n \tilde{f}(\lambda) \} \right\| \leq c \int_a \int_N \| L^n f((a_{\lambda}n)^{-1}) \| |r| e^{i|\text{Im}\lambda + 1| r} dr dn.
$$

(4.5)

As $f \in S^p_\delta(X)$, for each $m \in \mathbb{Z}^+$ we have $\| L^n f((a_{\lambda}n)^{-1}) \| \leq v_{m} L_n^p (f) (1 + |(a_{\lambda}n)^{-1}|)^{-m} \phi_{0}^{2/p}((a_{\lambda}n)^{-1})$ where v is as defined in (3.17). Using (2.1) we get from above

$$
\left\| \left(\frac{d}{d\lambda} \right)^t \{ (1 + \lambda^2)^n \tilde{f}(\lambda) \} \right\| \\
\leq c_1 v_{m} L_n^p (f) \int_a \int_N (1 + |(a_{\lambda}n)|)^{-m} \phi_{0}^{2/p}((a_{\lambda}n)^{-1}) (1 + |r|)^t e^{i|\text{Im}\lambda + 1| r} dr dn
$$

$$
\leq c_1 v_{m} L_n^p (f) \int_a \int_N (1 + |(a_{\lambda}n)|)^{-m} (\phi_{0}^{2/p}((a_{\lambda}n)^{-1}) e^{i|\text{Im}\lambda + 1| H(a_{\lambda}n)} dr dn
$$

$$
= c_1 v_{m} L_n^p (f) \int_G (1 + |x|)^t \phi_{0}^{2/p}((x)^{-1}) e^{i|\text{Im}\lambda| - 1)H(x)} dx.
$$

(4.6)

For convenience we denote $c_1 v_{m} L_n^p (f)$ by c_v. We use the Cartan decomposition $G = K A^* K$ and write $x = k_1 \exp |x| k_2$ and decompose the integral (4.6) as follows:
\[c_0 \int_{K} \int_{a^+} (1 + |k_1 \exp |x|k_2|)^{-m+t} \phi_0^{2/p}(\exp |x^{-1}|) \]
\[\times e^{(\operatorname{Im} \lambda - 1)H(\exp |x|k_2)\Delta(|x|)dx}dk_2 \]
\[= c_0 \int_{a^+} \int_{K} (1 + |x|)^{-m+t} \phi_0^{2/p}(\exp |x|) \]
\[\times e^{(\operatorname{Im} \lambda - 1)H(\exp |x|k_2)\Delta(|x|)dx}dk_2, \]

as \(|x^{-1}| = |x|\) and \(|k_1 \exp |x|k_2| = |x|\). Using (3.6) the expression above is
\[\leq c_0 \int_{a^+} (1 + |x|)^{-m+t} \phi_0^{2/p}(\exp |x|) \]
\[\times \left\{ \int_{K} e^{i(\operatorname{Im} \lambda - 1)H(\exp |x|k_2)\Delta(|x|)dx} \right\} |\lambda - 1|H(\exp |x|k_2)\Delta(|x|)dx]. \quad (4.7) \]

We take \(\lambda \in \operatorname{Int}a^*_\epsilon\), i.e., \(|\operatorname{Im} \lambda| < \epsilon = \left(\frac{2}{p} - 1 \right)\). Using the estimate (3.7) we get
\[\leq c_0 \int_{a^+} (1 + |x|)^{-m+t} \phi_0^{2/p}(\exp |x|) \exp |x| \Delta(|x|)dx, \quad \text{(see (2.2))}. \quad (4.8) \]

Choosing a suitably large \(m\), we see that the integral in (4.8) converges (Lemma 11 of [8]). Hence, we conclude that
\[\sup_{\lambda \in \operatorname{Int}a^*_\epsilon} \left\| \left(\frac{d}{d\lambda} \right)^t (1 + \lambda^2)^{\frac{n}{2}} \tilde{f}(\lambda) \right\| \leq \text{const} \nu_{L,m}(f). \quad (4.9) \]

This completes the proof of the lemma.

Lemma 4.3. The \(\delta\)-spherical transform \(f \mapsto \tilde{f}\) is a continuous injection of \(S^\delta_{\phi}(X)\) into \(S_\delta(a^*_\epsilon)\).

Proof. From Lemma 4.1, Lemma 4.2 and (6) of the discussion below Definition 3.1, we conclude that if \(f \in S^\delta_{\phi}(X)\) then \(\tilde{f} \in S_\delta(a^*_\epsilon)\). Also the transform \(f \mapsto \tilde{f}\) is continuous. The fact that \(f \mapsto \tilde{f}\) is injective is a consequence of the Plancherel formula for the HFT (III, Theorem 1.5 of [9]).

The next lemma is an extension of the inversion formula given in Lemma 3.5 for the Schwartz class functions.
Lemma 4.4. Let $h \in S_\delta(a^*_\epsilon)$. Then the inversion Ih given by

$$Ih(x) = \frac{1}{\omega} \int_{a^*} \Phi_{\lambda,\delta}(x)h(\lambda)|c(\lambda)|^{-2}d\lambda.$$

is a left δ-type C^∞ function on X taking values in $\text{Hom}(V_\delta, V_\delta)$.

Proof. Let us take any derivative D of X. For any $D \in \mathcal{U}(g_C)$,

$$Ih(D; x) = \frac{1}{\omega} \int_{a^*} \Phi_{\lambda,\delta}(D; x)h(\lambda)|c(\lambda)|^{-2}d\lambda. \quad (4.10)$$

Therefore,

$$\|Ih(D; x)\| \leq c \int_{a^*} \|\Phi_{\lambda,\delta}(D; x)\| |h(\lambda)|((1 + |\lambda|)^b d\lambda \leq c_\delta \int_{a^*} (1 + |\lambda|)^{b_n + b - n} \psi_0(x) d\lambda,$$

(using estimate (3) of the discussion below Definition 3.1 and (3.18))

$$\leq c_\delta \int_{a^*} (1 + |\lambda|)^{b_n + b - n} d\lambda.$$

We choose n sufficiently large so that the last integral on the right-hand side exists. Hence, $Ih(D; x)$ exists for every D. Therefore Ih is a C^∞ function on X. As $\Phi_{\lambda,\delta}(x)$ is of left δ type, so is Ih. \hfill \Box

Lemma 4.5. If $h \in S_\delta(a^*_\epsilon)$, then $Ih \in \mathcal{S}_p^\delta(X)$.

Proof. We consider the spaces $\mathcal{P}_\delta(a^*_C)$ and $\mathcal{D}^\delta(X)$ equipped with the topologies of the Schwartz spaces $S_\delta(a^*_\epsilon)$ and $S_\delta^p(X)$ respectively. It is clear from the Paley–Wiener theorem that I maps $\mathcal{P}_\delta(a^*_C)$ onto $\mathcal{D}^\delta(X)$. We shall show that I is a continuous map from $\mathcal{P}_\delta(a^*_C)$ onto $\mathcal{D}^\delta(X)$ in these topologies. Let $h \in \mathcal{P}_\delta(a^*_C)$ and $Ih = f \in \mathcal{D}^\delta(X)$. We have to show that for any seminorm ν on $\mathcal{D}^\delta(X)$ there exists a seminorm τ on $P(a^*_\epsilon)$ so that

$$\nu(f) \leq c_\delta \tau(h),$$

where c_δ is a constant depending only on δ.

Let $D \in \mathcal{U}(g_C)$ and $n \in \mathbb{Z}^+$. We consider f as a right K-invariant function on the group G. Let

$$\nu_{D,M}(f) = \sup_{x \in G} \|Df(x)\|(1 + |x|^n)^{-2/p} \psi_0(x). \quad (4.11)$$

From Lemmas 3.8 and 3.9 we know that $f(x) = D^\delta \phi(x)$, where ϕ is a K bi-invariant function on G and $h(\lambda) = Q^\delta(\lambda)\Phi(\lambda)$. Here Φ is the spherical Fourier transform of ϕ. Hence from (4.11) we have

$$\nu_{D,M}(f) = \sup_{x \in G} \|DD^\delta \phi(x)\|(1 + |x|^n)^{-2/p} \psi_0(x) = \nu_{D,D^\delta,n}(\phi). \quad (4.12)$$
By the isomorphism of the K bi-invariant functions in the Schwartz space (see [2]), for each $D \in U(g)$, $D' \in U(g)$ and for each $n \in \mathbb{Z}^+$ there exists $m_\delta, t \in \mathbb{Z}^+$ and a positive constant c_δ so that,

$$
\sup_{x \in G} \|DD'\phi(x)\|(1 + |x|)^{n}\varphi_0^{-2/p}(x) \leq c_\delta \sup_{\lambda \in \text{Int} a_\ast^\delta} \left\| \left(\frac{d}{d\lambda}\right)^t \Phi(\lambda) \right\| (1 + |\lambda|)^{m_\delta}.
$$

(4.13)

Now by Lemma 3.13, for $t, m_\delta \in \mathbb{Z}^+$ there exists $t_1, m_1 \in \mathbb{Z}^+$ such that

$$
\sup_{\lambda \in a_\ast^\delta} \left\| \left(\frac{d}{d\lambda}\right)^{t_1} \Phi(\lambda) \right\| (1 + |\lambda|)^{m_1} \leq c_\delta' \sup_{\lambda \in \text{Int} a_\ast^\delta} \left\| \left(\frac{d}{d\lambda}\right)^{m_1} h(\lambda) \right\| (1 + |\lambda|)^{m_1} = c_\delta' \tau_{t_1,m_1}(h) < +\infty.
$$

Hence, $\nu_{\delta,n}(f) \leq c_\delta' c_\delta \tau_{t_1,m_1}(h)$. The positive constants c_δ and c_δ' are dependent on $|\delta|$. The positive integer m_1 can be made independent of the $\delta \in \hat{K}_M$ chosen. This shows that the inversion I is a continuous linear transformation on a dense subset $P_\delta(a_\ast^\epsilon)$ of $S_\delta(a_\ast^\epsilon)$ onto $D^\delta(X)$ (The surjectivity follows from Theorem 3.7.)

Let us now take $h \in S_\delta(a_\ast^\epsilon)$. As $P_\delta(a_\ast^\epsilon)$ is dense in $S_\delta(a_\ast^\epsilon)$, there exists a Cauchy sequence $\{h_n\} \subset P_\delta(a_\ast^\epsilon)$ converging to h. Then by what we have proved above, we can get a Cauchy sequence $\{f_n\} \subset D^\delta(X)$ such that $\tilde{f}_n = h_n$. As $S^\delta_0(X)$ is a Frechet space, the sequence converge to some $f \in S^\delta_0(X)$. Clearly, $f = Ih$. This completes the proof.

Finally, Lemmas 3.7, 4.3 and 4.5 together show that the δ-spherical transform is a surjection onto $S_\delta(a_\ast^\epsilon)$ and that $I: S_\delta(a_\ast^\epsilon) \rightarrow S^\delta_0(X)$ is continuous. That is, the δ-spherical transform is a topological isomorphism between the spaces $S^\delta_0(X)$ and $S_\delta(a_\ast^\epsilon)$. This proves Theorem 1.1.

References

[1] Anker J P, La forme exacte de l’estimation fondamentale de Harish-Chandra, *C. R. Acad. Sci. Paris Sér. I* 305 (1987) 371–374
[2] Anker J P, The spherical Fourier transform of rapidly decreasing functions, A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan, *J. Funct. Anal.* 96 (1991) 331–349
[3] Arthur James, Eisenstein series and the trace formula, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 253–274, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc.
[4] Eguchi Masaaki and Kowata A, On the Fourier transform of rapidly decreasing functions of L^p type on a symmetric space, *Hiroshima Math. J.* 7 (1976) 143–158
[5] Gangolli R and Varadarajan V S, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 101 (Berlin: Springer-Verlag) (1988)
[6] Harish-Chandra, Spherical functions on a semisimple Lie group I, *Am. J. Math.* 80 (1958) 241–310
[7] Harish-Chandra, Spherical functions on a semisimple Lie group II, *Am. J. Math.* 80 (1958) 553–613
[8] Harish-Chandra, Discrete series for semisimple Lie group II. Explicit determination of the characters, *Acta Math.* 116 (1966) 1–111

[9] Helgason S, Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs, vol. 39, *Am. Math. Soc.* (1994)

[10] Helgason S, Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83, *Am. Math. Soc.* (2000)

[11] Kostant B, On the existence and irreducibility of certain series of representations, *Bull. Am. Math. Soc.* 75 (1969) 627–642

[12] Trombi P C and Varadarajan V S, Spherical transform on semisimple Lie groups, *Ann. Math.* 94 (1971) 246–303