ESTIMATION OF WEIGHTED L^2 NORM RELATED TO DEMAILLY’S STRONG OPENNESS CONJECTURE

QI’AN GUAN, ZHENQIAN LI, AND XIANGYU ZHOU

Abstract. In the present article, we obtain an estimation of the weighted L^2 norm near the singularities of plurisubharmonic weight related to Demailly’s strong openness conjecture, which implies the convergence of the weighted L^2 norm.

1. Introduction

Let $D \subset \mathbb{C}^n$ be a bounded pseudoconvex domain, $o \in D$ the origin of \mathbb{C}^n and $\varphi \in Psh(D)$ a plurisubharmonic function on D. The multiplier ideal sheaf $\mathcal{I}(\varphi)$ consists of germs of holomorphic functions f such that $|f|^2 e^{-\varphi}$ is locally integrable, which is a coherent sheaf of ideals (see [1]).

Demailly’s strong openness conjecture (SOC) [2]: If $(f,o) \in \mathcal{I}(\varphi)_o$, then there exists $\varepsilon > 0$ such that $(f,o) \in \mathcal{I}((1 + \varepsilon)\varphi)_o$.

Note that $\mathcal{I}(\varphi)_o$ is finitely generated by $(f_j)_{j=1,\ldots,k_0}$. Let $\mathcal{I}(\varphi)_o = (f_1,\ldots,f_{k_0})$. The truth of SOC implies that there exists $\varepsilon_j > 0$ such that $(f_j,o) \in \mathcal{I}((1 + \varepsilon_j)\varphi)_o$ for any $1 \leq j \leq k_0$. Then, SOC is equivalent to $\mathcal{I}(\varphi)_o = \mathcal{I}_+(\varphi)_o$, where $\mathcal{I}_+(\varphi)_o = \bigcup_{\varepsilon > 0} \mathcal{I}((1 + \varepsilon)\varphi)_o \subset \mathcal{I}(\varphi)_o$.

In [8], Guan and Zhou proved the above SOC. Moreover, they also established an effectiveness about ε of the conjecture in [9].

Let $L^2(D)$ be the Hilbert space of homomorphic functions on D with finite L^2 norm

$$L^2(D) := \{ f \in \mathcal{O}(D) | ||f||^2_D = \int_D |f|^2 d\lambda_n < \infty \},$$

whose inner product is defined to be $(f,g) = \int_D f \cdot \overline{g} d\lambda_n$.

Let $I \subset \mathcal{O}_o$ be an ideal and $(e_k)_{k \in \mathbb{N}^+}$ an orthonormal basis of $\mathcal{H}_I := \{ f \in L^2(D) | (f,o) \in I \}$, a closed subspace of $L^2(D)$. It is known that there exists a neighborhood $U_0 \subset \subset D$ of o, integer $k_0 > 0$ and some constant $C_0 > 1$ such that

$$\sum_{k=1}^{\infty} |e_k|^2 \leq C_0 \cdot \sum_{k=1}^{k_0} |e_k|^2 \quad \text{on} \ U_0.$$
one can see the detail in Lemma 2.1.

Put

\[C = C_{\varepsilon_0}(\varphi) := \left[\left(\frac{e^{e_0+1}(t_0+1)}{\varepsilon_0} \right) C_0 \sum_{k=1}^{k_0} \int_D \mathbb{I}_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right]^{-1}, \]

where \(t_0, \varepsilon_0 \) are two positive numbers and \(\varphi \) is negative on \(D \) with \(\varphi(0) = -\infty \).

In the present article, we obtain the following estimation of the weighted \(L^2 \) norm near the singularities of plurisubharmonic weight related to SOC:

Theorem 1.1. Assume that \(\mathcal{I}(\varphi) \subset I \subset \mathcal{O}_o \). If \(C > 0 \), then

\[\int_{U_0 \cap \{\varphi < -(t_0+1)\}} \left(\sum_{k=1}^{k_0} |e_k|^2 \right) e^{-\varphi} d\lambda_n < C^2. \]

Corollary 1.1. Let \(e_k \) \((1 \leq k \leq k_0)\) be generators of \(I = \mathcal{I}(\varphi)_o \) with bounded \(\sum_{k=1}^{k_0} |e_k| \) on \(D \), which is in the unit ball \(B(o;1) \) and

\[\sum_{k=1}^{k_0} \int_D |e_k|^2 e^{-\left((1+\varepsilon_0)\varphi\right)} d\lambda_n < \infty. \]

Then, for any \(M > 0 \), there exists \(t_0 \gg 0 \) such that for any negative plurisubharmonic function \(\psi \) on \(D \) with \(\mathcal{I}(\psi)_o \subset \mathcal{I}(\varphi)_o \) and

\[\sum_{k=1}^{k_0} \int_D \mathbb{I}_{\{\tilde{\varphi} < -t_0\}} |e_k|^2 d\lambda_n \leq 2 \sum_{k=1}^{k_0} \int_D \mathbb{I}_{\{\tilde{\varphi} < -t_0\}} |e_k|^2 d\lambda_n, \]

we have

\[\int_{U_0 \cap \{|\tilde{\varphi}| < e^{-\left((1+\varepsilon_0)(1+\varepsilon_0/2)\right)} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\tilde{\varphi}} d\lambda_n < M, \]

where

\[\tilde{\varphi} = \varphi + \frac{\varepsilon_0/2}{(1+\varepsilon_0)(1+\varepsilon_0/2)} \log|z|, \quad \psi = \psi + \frac{\varepsilon_0/2}{(1+\varepsilon_0)(1+\varepsilon_0/2)} \log|z|. \]

By the truth of SOC and the above Corollary, we have the following convergence of the weighted \(L^2 \) norm related to SOC:

Corollary 1.2. Let \((\varphi_j)_{j \in \mathbb{N}^+}\) be a sequence of negative plurisubharmonic functions on \(D \), which is convergent to \(\varphi \) in Lebesgue measure, and \(\mathcal{I}(\varphi)_o \subset \mathcal{I}(\varphi)_o \). Let \((F_j)_{j \in \mathbb{N}^+}\) be a sequence of holomorphic functions on \(D \) with \((F_j, o) \in \mathcal{I}(\varphi)_o \), which is compactly convergent to a holomorphic function \(F \). Then, \(|F_j|^2 e^{-\varphi_j} \) converges to \(|F|^2 e^{-\tilde{\varphi}} \) in the \(L^p_{\text{loc}} \) norm near \(o \). In particular, there exists \(\varepsilon_0 > 0 \) such that \(\mathcal{I}(\varphi_j)_o = \mathcal{I}((1+\varepsilon_0)\varphi)_o = \mathcal{I}(\varphi)_o \) for any large enough \(j \).

The last conclusion in the above Corollary can be obtained by Proposition 1.8 in [3] and finite generation of \(\mathcal{I}(\varphi)_o \).

Remark 1.1. Let \((\varphi_j)_{j \in \mathbb{N}^+}\) be a sequence of negative plurisubharmonic functions on \(D \). If \(\varphi_j \) is convergent to \(\varphi \) in Lebesgue measure, then \(\varphi_j \) converges to \(\varphi \) in the \(L^p_{\text{loc}} \) \((0 < p < \infty)\) norm.
Proof. It suffices to prove \(p \in \mathbb{N}^+ \). By a small enough multiplication, it is enough to assume the Lelong number \(\nu(c,o) < 1 \). Thus, \(\mathcal{I}(\varphi_j)_o \subset \mathcal{I}(\varphi)_o = \mathcal{O}_o \). Then, the desired result follows from Corollary 1.2 and the inequality
\[
\frac{1}{p!} \int_D |\varphi_j - \varphi|^p d\lambda_n \leq \int_D |e^{-\varphi_j} - e^{-\varphi}| d\lambda_n.
\]
which follows from the inequality \(\frac{1}{p!}(a - b)^p \leq (e^{a-b} - 1)e^b \), for any \(a \geq b \geq 0 \). \(\square \)

2. Lemmas used in the proof of main results

We are now in a position to prove the following Lemma.

Lemma 2.1. Let \(I \subset \mathcal{O}_o \) be an ideal and \((e_k)_{k \in \mathbb{N}^+}\) an orthonormal basis of
\[
\mathcal{H}_I := \{f \in L^2_0(D) | (f,o) \in I\},
\]
a closed subspace of \(L^2_0(D) \). Then, there exists a neighborhood \(U_0 \subset D \) of \(o \), integer \(k_0 > 0 \) and some constant \(C_0 > 1 \) such that
\[
\sum_{k=1}^{\infty} |e_k|^2 \leq C_0 \cdot \sum_{k=1}^{k_0} |e_k|^2 \quad \text{on } U_0.
\]

Proof. It follows from the strong Noetherian property of coherent analytic sheaves that the sequence of ideal sheaves generated by the holomorphic functions
\[
(e_k(z)e_k(\overline{w}))_{k \leq N}, \quad N = 1, 2, ..., \]
on \(D \times D \) is locally stationary.

Let \(U \subset D \) be a neighborhood of the origin \(o \). Then there exists \(k_0 > 0 \) such that for any \(N \geq k_0 \) we have \((e_k(z)e_k(\overline{w}))_{k \leq N} = (e_k(z)e_k(\overline{w}))_{k \leq k_0} \) on \(U \). Since
\[
|\sum_{k=1}^{\infty} e_k(z)e_k(\overline{w})| \leq \left(\sum_{k=1}^{\infty} |e_k(z)|^2 \right) \sum_{k=1}^{\infty} |e_k(\overline{w})|^2,
\]
then \(\sum_{k=1}^{\infty} e_k(z)e_k(\overline{w}) \) is uniformly convergent on every compact subset of \(D \times D \). By the closedness of coherent ideal sheaves under the topology of compact convergence (see [3]), \(\sum_{k=1}^{\infty} e_k(z)e_k(\overline{w}) \) is a section of the coherent ideal sheaf generated by \((e_k(z)e_k(\overline{w}))_{k \leq k_0} \) over \(U \times U \). Then, there exists a neighborhood \(U_0 \subset U \) of \(o \) and functions \(a_k(z,w) \in \mathcal{O}(U_0 \times U_0) \), \(1 \leq k \leq k_0 \), such that on \(U_0 \times U_0 \)
\[
\sum_{k=1}^{\infty} e_k(z)e_k(\overline{w}) = \sum_{k=1}^{k_0} a_k(z,w)e_k(z)e_k(\overline{w}).
\]
Finally, by restricting to the conjugate diagonal \(w = \overline{z} \), we get
\[
\sum_{k=1}^{\infty} |e_k|^2 \leq C_0 \cdot \sum_{k=1}^{k_0} |e_k|^2 \quad \text{on } U_0.
\]
\(\square \)

To prove Theorem [4], we also need the following Lemma, whose various forms already appear in [5] [6] [7] [9].
Lemma 2.2. Let $B_0 \in (0,1]$ be arbitrarily given and t_0 a positive number. Let D_v be a strongly pseudoconvex domain relatively compact in Δ^n containing α. Let F be a holomorphic function on Δ^n. Let φ, ψ be two negative plurisubharmonic functions on Δ^n, such that $\varphi(\alpha) = \psi(\alpha) = -\infty$. Then there exists a holomorphic function F_{v,t_0} on D_v, such that,

$$ (F_{v,t_0} - F, \varphi) \in \mathcal{J}(\varphi + \psi)_v $$

and

$$ \int_{D_v} |F_{v,t_0} - (1 - b_{t_0}(\psi))F|^2 e^{-\varphi} d\lambda_n $$

$$ \leq (1 - e^{-(t_0+B_0)}) \int_{D_v} \frac{1}{B_0} (\mathbb{1}_{(-t_0-B_0<\psi<-t_0)}) |F|^2 e^{-\varphi-\psi} d\lambda_n, $$

(1)

where $b_{t_0}(t) = \int_{-\infty}^{t} \frac{1}{B_0} \mathbb{1}_{(-t_0-B_0<s<-t_0)} ds$.

In particular, given $\varepsilon_0 > 0$ and replacing B_0, t_0, ψ by $\varepsilon_0, \varepsilon_0 t_0, \varepsilon_0 \varphi$ respectively, we have

$$ \int_{D_v} |F_{v,t_0} - (1 - b_{t_0}(\varepsilon_0 \varphi))F|^2 e^{-\varphi} d\lambda_n $$

$$ \leq \frac{1 - e^{-(t_0+B_0)}}{\varepsilon_0} \int_{D_v} \mathbb{1}_{(-t_0+1)<\psi<-t_0} |F|^2 e^{-\varphi-\varepsilon_0 \varphi} d\lambda_n $$

$$ \leq \frac{1}{\varepsilon_0} \int_{D_v} \mathbb{1}_{(-t_0+1)<\psi<-t_0} |F|^2 e^{(\varepsilon_0+1)(t_0+1)} d\lambda_n. $$

(2)

The following Lemma is well known in real analysis.

Lemma 2.3. Let $(f_j)_{j \in \mathbb{N}^+}$ be a sequence of functions in $L^p_{loc}(D)$ $(p > 1)$, which is convergent to f in Lebesgue measure. If there exists some constant $M > 0$ such that

$$ \left(\int_D |f_j|^p d\lambda_n \right)^{\frac{1}{p}} < M, $$

then

$$ \int_D |f_j - f| d\lambda_n \to 0 \quad (j \to \infty). $$

3. THE PROOF OF MAIN RESULTS

Proof of Theorem 1.1. Following from Lemma 2.2 for any $1 \leq k \leq k_0$, there exists a holomorphic function $F_k \in \mathcal{O}(D)$ such that

$$ \int_D |F_k - (1 - b_{t_0}(\varepsilon_0 \varphi))e_k|^2 e^{-\varphi} d\lambda_n $$

$$ \leq \frac{1}{\varepsilon_0} \int_D \mathbb{1}_{(-t_0+1)<\psi<-t_0} |e_k|^2 e^{(\varepsilon_0+1)(t_0+1)} d\lambda_n. $$

(3)

By Minkowski’s inequality, we obtain

$$ \left(\sum_{k=1}^{k_0} \int_D |F_k|^2 d\lambda_n \right)^{\frac{1}{2}} $$

$$ \leq \left(\sum_{k=1}^{k_0} \int_D |F_k - (1 - b_{t_0}(\varepsilon_0 \varphi))e_k|^2 e^{-\varphi} d\lambda_n \right)^{\frac{1}{2}} + \left(\sum_{k=1}^{k_0} \int_D (1 - b_{t_0}(\varepsilon_0 \varphi))e_k|^2 d\lambda_n \right)^{\frac{1}{2}} $$

(4)
It follows from (3) and $0 \leq 1 - b_{t_0}(\varepsilon_0 \varphi) \leq 1_{\{\varphi < -t_0\}}$ that

$$
\left(\sum_{k=1}^{k_0} \int_D |F_k|^2 d\lambda_n \right)^{\frac{1}{2}}
\leq \left(\frac{1}{\varepsilon_0} \sum_{k=1}^{k_0} \int_D 1_{\{(1 + \varepsilon_0)\varphi < -t_0\}} |e_k|^2 e^{(\varepsilon_0 + 1)(t_0 + 1)} d\lambda_n \right)^{\frac{1}{2}} + \left(\sum_{k=1}^{k_0} \int_D 1_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right)^{\frac{1}{2}}
\leq \left(\frac{e^{(\varepsilon_0 + 1)(t_0 + 1)}}{\varepsilon_0} \right)^{\frac{1}{2}} + 1 \left(\sum_{k=1}^{k_0} \int_D 1_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right)^{\frac{1}{2}}.
$$

(5)

By Lemma 2.2 we know that $(F_k - e_k, o) \in \mathcal{F}((1 + \varepsilon_0)\varphi) \subset \mathcal{F}(\varphi) \subset I$ and $(F_k, o) \in I$.

Hence, we have

$$
F_k = \sum_{j=1}^{\infty} a_k^j e_j, \quad a_k^j \in \mathbb{C}, \quad 1 \leq k \leq k_0,
$$

and

$$
\int_D |F_k|^2 d\lambda_n = \sum_{j=1}^{\infty} |a_k^j|^2, \quad 1 \leq k \leq k_0.
$$

By Lemma 2.1 the following holds on U_0,

$$
\left(\sum_{k=1}^{k_0} |F_k - e_k|^2 \right)^{\frac{1}{2}} \geq \left(\sum_{k=1}^{k_0} |e_k|^2 \right)^{\frac{1}{2}} - \left(\sum_{k=1}^{k_0} |F_k|^2 \right)^{\frac{1}{2}}
\geq \left(\frac{1}{C_0} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{k_0} |e_k|^2 \right)^{\frac{1}{2}} - \left(\sum_{k=1}^{k_0} \left(\sum_{j=1}^{\infty} |a_k^j|^2 \right) \right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} |e_k|^2 \right)^{\frac{1}{2}}
\geq \left(\frac{1}{C_0} \right)^{\frac{1}{2}} - \left(\sum_{k=1}^{k_0} \int_D |F_k|^2 d\lambda_n \right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} |e_k|^2 \right)^{\frac{1}{2}}
\geq \left(\frac{1}{C_0} \right)^{\frac{1}{2}} - \left(\frac{e^{(\varepsilon_0 + 1)(t_0 + 1)}}{\varepsilon_0} \right)^{\frac{1}{2}} + 1 \left(\sum_{k=1}^{k_0} \int_D 1_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} |e_k|^2 \right)^{\frac{1}{2}}.
$$

(6)

Denote by

$$
A := \left(\frac{1}{C_0} \right)^{\frac{1}{2}} - \left(\frac{e^{(\varepsilon_0 + 1)(t_0 + 1)}}{\varepsilon_0} \right)^{\frac{1}{2}} + 1 \left(\sum_{k=1}^{k_0} \int_D 1_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right)^{\frac{1}{2}}.
$$

Since $C_{c_0}(\varphi) > 0$ and

$$
A \cdot C_{c_0}(\varphi) = \left(\frac{e^{(\varepsilon_0 + 1)(t_0 + 1)}}{\varepsilon_0} \right)^{\frac{1}{2}} \sum_{k=1}^{k_0} \int_D 1_{\{\varphi < -t_0\}} |e_k|^2 d\lambda_n \right)^{\frac{1}{2}} > 0,
$$

it follows that $A > 0$.
Then from (6) we obtain

\[
A^2 \cdot \left(\int_{\{\phi < -(t_0+1)\} \cap U_0} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\phi} d\lambda_n \right)
\]

\[
\leq \int_{\{\phi < -(t_0+1)\} \cap U_0} \left(\sum_{k=1}^{k_0} |F_k - e_k|^2 \right) e^{-\phi} d\lambda_n
\]

\[
= \sum_{k=1}^{k_0} \int_{\{\phi < -(t_0+1)\} \cap U_0} |F_k - e_k|^2 e^{-\phi} d\lambda_n.
\]

Note that

\[
\sum_{k=1}^{k_0} |F_k - (1 - b_{t_0}(\varepsilon_0 \phi)) e_k|^2 \mathbb{1}_{\{\phi < -(t_0+1)\} \cap U_0} = \sum_{k=1}^{k_0} |F_k - e_k|^2.
\]

It follows from Lemma 2.2 that

\[
\sum_{k=1}^{k_0} \int_{D} |F_k - (1 - b_{t_0}(\varepsilon_0 \phi)) e_k|^2 e^{-\phi} d\lambda_n
\]

\[
\leq \frac{1}{\varepsilon_0} \sum_{k=1}^{k_0} \int_{D} \mathbb{1}_{\{-(t_0+1) < \phi < -t_0\}} |e_k|^2 e^{(\varepsilon_0+1) (t_0+1)} d\lambda_n
\]

\[
\leq e^{(\varepsilon_0+1) (t_0+1)} \frac{1}{\varepsilon_0} \sum_{k=1}^{k_0} \int_{D} \mathbb{1}_{\{\phi < -t_0\}} |e_k|^2 d\lambda_n.
\]

Combining inequalities (7) and (8), we have

\[
\int_{\{\phi < -(t_0+1)\} \cap U_0} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\phi} d\lambda_n
\]

\[
\leq \frac{1}{A^2} \cdot \frac{e^{(\varepsilon_0+1) (t_0+1)}}{\varepsilon_0} \sum_{k=1}^{k_0} \int_{D} \mathbb{1}_{\{\phi < -t_0\}} |e_k|^2 d\lambda_n
\]

\[
= \left[\frac{e^{(\varepsilon_0+1) (t_0+1)}}{\varepsilon_0} C_0 \sum_{k=1}^{k_0} \int_{D} \mathbb{1}_{\{\phi < -t_0\}} |e_k|^2 d\lambda_n \right] - \frac{1}{2} \left(1 + \frac{e^{(\varepsilon_0+1) (t_0+1)}}{\varepsilon_0} \right)^{-\frac{1}{2}}
\]

\[
= C_\varepsilon^2_0(\phi).
\]

Remark 3.1. If \(I = \mathcal{I}(\phi) = \mathcal{I}(1+\varepsilon_0 \phi) \) in the above theorem and

\[
\sum_{k=1}^{k_0} \int_{D} |e_k|^2 e^{-(1+\varepsilon_0) \phi} d\lambda_n < \infty,
\]

then for any \(\varepsilon_1, \varepsilon_2 > 0 \), there exists \(t_0 \gg 0 \) such that

\[
\sum_{k=1}^{k_0} \int_{D} \mathbb{1}_{\{-(t_0+1) < \phi < -t_0\}} |e_k|^2 e^{(\varepsilon_0+1) (t_0+1)} d\lambda_n < \varepsilon_1
\]
and
\[\sum_{k=1}^{k_0} \int_D |(1 - b_{t_0}(\varepsilon_0 \varphi))e_k|^2 d\lambda_n < \varepsilon_2. \]

Furthermore, we can get
\[\int_{\{\varphi < -(t_0+1)\} \cap t_0} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\varphi} d\lambda_n \leq \left(\left(\frac{\varepsilon_1}{\varepsilon_0} \cdot C_0 \right)^{-1/2} - (1 + \left(\frac{\varepsilon_1}{\varepsilon_0} \right)^{-1/2})^{-2} \right)^2. \]

Proof of Corollary 1.1. By Hölder inequality, we have
\[
\int_U |F|^2 e^{-\left(1+\varepsilon_0/2\right)\tilde{\varphi}} d\lambda_n \\
\leq \left(\int_U |F|^2 e^{-\left(1+\varepsilon_0\right)\varphi} d\lambda_n \right)^{1+\varepsilon_0/2} \left(\int_U |F|^2 e^{-\log|z|/2} d\lambda_n \right)^{\varepsilon_0/2},
\]
which implies \(\mathcal{J}((1 + \varepsilon_0)\varphi) \subset \mathcal{J}((1 + \varepsilon_0/2)\tilde{\varphi}) \subset \mathcal{J}(\tilde{\varphi}) \subset \mathcal{J}(\varphi) \), i.e.,
\[\mathcal{J}((1 + \varepsilon_0/2)\tilde{\varphi})_o = \mathcal{J}(\tilde{\varphi})_o = \mathcal{J}(\varphi)_o. \]

As
\[\sum_{k=1}^{k_0} \int_D |e_k|^2 e^{-\left(1+\varepsilon_0\right)\varphi} d\lambda_n < \infty, \]
there exists \(t_0 \gg 0 \) such that \(0 < C_{\varepsilon_0/2} / \sqrt{M} < \varepsilon_0/2 \), and \(0 < C_{\varepsilon_0/2}(\tilde{\varphi}) \leq 2 \cdot C_{\varepsilon_0/2}(\tilde{\varphi}) \) by (†).

Since \(\bar{\psi} \leq \frac{e^{\varepsilon_0/2}}{(1+\varepsilon_0)(1+\varepsilon_0/2)} \log|z| \) on \(D \), we have
\[\{|z| < e^{-\left[(1+\varepsilon_0)(1+\varepsilon_0/2)(t_0+1)\right]} \} \subset \{|\bar{\psi}| < -(t_0+1)\}. \]

Then, we obtain that
\[\int_{U_0 \cap \{|z| < e^{-\left[(1+\varepsilon_0)(1+\varepsilon_0/2)(t_0+1)\right]}} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\bar{\psi}} d\lambda_n \\
\leq \int_{U_0 \cap \{\bar{\psi} < -(t_0+1)\}} \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-\bar{\psi}} d\lambda_n \leq C^2_{\varepsilon_0/2}(\tilde{\psi}) < M. \]

\[\square \]

Proof of Corollary 1.2. As every sequence which is convergent in Lebesgue measure has a subsequence which is convergent almost everywhere, then it is sufficient to prove the result for the case that \(\varphi_j \) is convergent to \(\varphi \) almost everywhere.

By the truth of SOC, there exists \(\varepsilon_0 > 0 \) such that \(\mathcal{J}(\varphi) = \mathcal{J}((1 + \varepsilon_0)\varphi) \) on a neighborhood \(D \) of \(o \). Without loss of generality, we assume the unit ball \(B(\alpha; 1) \supset D \).

Since \(F_j \) is compactly convergent to a holomorphic function \(F \), by shrinking \(D \), we can assume that \(\int_D |F_j|^2 d\lambda_n \) is uniformly bounded. Let \(e_k, 1 \leq k \leq k_0, \) be as in Corollary 1.1. Then, we infer from \((F_j, o) \in \mathcal{J}(\varphi)_o \) and Lemma 2.1 that there exist complex numbers \(a_j^k \) such that \(F_j = \sum_{k=1}^{\infty} a_j^k e_k \) and \(\sum_{k=1}^{\infty} |a_j^k|^2 = \int_D |F_j|^2 d\lambda_n \) is uniformly bounded.
Since \(\varphi_j \) is convergent to \(\varphi \) almost everywhere, it follows from the dominated convergence theorem that
\[
\sum_{k=1}^{k_0} \int_D \mathbb{I}_{(\varphi_j < -t_0)} |e_k|^2 d\lambda_n \leq 2 \sum_{k=1}^{k_0} \int_D \mathbb{I}_{(\varphi < -t_0)} |e_k|^2 d\lambda_n,
\]
where \(\varphi_j = \varphi + \frac{\log |z|}{(1+\varepsilon_0)(1+\varepsilon_0/j)^2} \). By Corollary 1.1 there exists a neighborhood \(V_0 \subset \subset D \) of \(o \) and \(M > 0 \) such that
\[
\int_{V_0} \sum_{k=1}^{\infty} |e_k|^2 e^{-\varphi_j} d\lambda_n < M.
\]

Let \(\varepsilon \in (0, \varepsilon_0) \). Replacing \(\varphi \) by \((1+\varepsilon/2)\varphi \) and \(\varphi_j \) by \((1+\varepsilon/2)\varphi_j \), we have
\[
\int_{V_0} \sum_{k=1}^{\infty} |e_k|^2 e^{-(1+\varepsilon/2)\varphi_j} d\lambda_n < \tilde{M},
\]
for some neighborhood \(\tilde{V}_0 \supset o \) and some constant \(\tilde{M} \) which are independent of \(\varphi_j \).

As \(\sum_{k=1}^{\infty} |a_j^k|^2 \) is uniformly bounded, by Schwarz inequality, it follows that
\[
\int_{\tilde{V}_0} |F_j|^2 e^{-(1+\varepsilon/2)\varphi_j} d\lambda_n \leq \int_{\tilde{V}_0} \left(\sum_{k=1}^{\infty} |a_j^k|^2 \right) \cdot \left(\sum_{k=1}^{\infty} |e_k|^2 \right) e^{-(1+\varepsilon/2)\varphi_j} d\lambda_n
\]
is uniformly bounded. Then, by Lemma 2.3 we obtain that \(F_j e^{-\varphi_j} \) converges to \(F e^{-\varphi} \) as \(j \) goes to infinity in the \(L^1_{loc} \) norm on \(\tilde{V}_0 \).

Replacing \(\varphi_j \) by \((1+\varepsilon_0)\varphi_j \), we obtain the second assertion from the first one. \(\square \)

4. Relation to semi-continuity of complex singularity exponents

In [3], Demailly and Kollár proved the following semi-continuity of complex singularity exponents.

Theorem 4.1. (Main Theorem 0.2, [3]). Let \(X \) be a complex manifold, \(K \subset X \) a compact subset and \(\varphi \) a plurisubharmonic function on \(X \). If \(c < c_K(\varphi) \) and \((\varphi_j) \) is a sequence of plurisubharmonic functions on \(X \) which is convergent to \(\varphi \) in \(L^1_{loc} \) norm, then \(e^{-2c\varphi_j} \) converges to \(e^{-2c\varphi} \) in \(L^1 \) norm over some neighborhood \(U \) of \(K \).

Indeed, by subtracting a constant, we can assume \(\varphi \) is negative on \(K \). As
\[
\int_K \varphi_j d\lambda_n \leq \int_K |\varphi - \varphi_j| d\lambda_n + \int_K \varphi d\lambda_n,
\]
we obtain that \(\varphi_j \) is also negative on \(K \). Then, **Theorem 4.1** is a special case of Corollary 1.2 when \(\mathcal{F}(\varphi)_o = O_o \). With additional condition \(\varphi_j \leq \varphi \), **Theorem 4.1** can be referred to [10] for multiplier ideals, which is also a special case of Corollary 1.2.

If \(\varphi = \log |g| \) for \(J \)-vector holomorphic functions \(g(z,c) = (g_1, ..., g_J) \) on a polydisk \(\Delta^n \times \Delta \), then it follows that

Theorem 4.2. (Main Theorem, [11]). Assume that \(\int_{\Delta^n} |g(z,0)|^{-\delta} < \infty \). Then there exists a smaller polydisk \(\Delta'^n \times \Delta' \) so that the function \(c \mapsto \int_{\Delta'^n} |g(z,c)|^{-\delta} \) is finite and continuous for \(c \in \Delta' \).
References

[1] J.-P. Demailly, Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010.
[2] J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), 1–148, ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.
[3] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556.
[4] H. Grauert, R. Remmert, Coherent Analytic Sheaves, Grundlehren der mathematischen Wissenschaften, 265, Springer-Verlag, Berlin, 1984.
[5] Q. A. Guan, X. Y. Zhou, Optimal constant in an \(L^2\) extension problem and a proof of a conjecture of Ohsawa. Sci. China Math. 58 (2015), no. 1, 35-59.
[6] Q. A. Guan, X. Y. Zhou, A solution of an \(L^2\) extension problem with optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208.
[7] Q. A. Guan, X. Y. Zhou, Strong openness conjecture and related problems for plurisubharmonic functions, arXiv:1401.7158.
[8] Q. A. Guan, X. Y. Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), 605–616. See also arXiv:1311.3781.
[9] Q. A. Guan, X. Y. Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math. 202 (2015), no. 2, 635–676.
[10] H. H. Pham, The weighted log canonical threshold, C. R. Math. Acad. Sci. Paris (4) 352 (2014), 283–288.
[11] D. H. Phong, J. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152 (2000), no. 1, 277–329.

Qi’an Guan: School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China.
E-mail address: guanqian@amss.ac.cn

Zhenqian Li: School of Mathematical Sciences, Peking University, Beijing, 100871, China.
E-mail address: lizhenqian@amss.ac.cn

Xiangyu Zhou: Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, 100190, China
E-mail address: xyzhou@math.ac.cn