Electronic Supplementary Information (ESI)

Highly efficient one-step microwave-assisted synthesis of structurally diverse bis-substituted α-amino acid derived diimides

Marcin Konopkaa,b, Grzegorz Markiewicz a,b and Artur R. Stefankiewicza,b

a Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89b, 61-614 Poznań, Poland.
b Center for Advanced Technologies, Adam Mickiewicz University, ul. Umultowska 89c, 61-614 Poznań, Poland.
§ These authors contributed equally to this work.

Table of contents
1. 1H and 13C NMR Spectra ...2
 1.1 PMIs ..2
 1.2 BPDIs ..7
 1.3 BTDIs ...12
1. 1H and 13C NMR Spectra

1.1 PMIs

Figure S1. 1H NMR (300 MHz DMSO d-6) spectrum of PMI-Phe.

Figure S2. 13C NMR (75 MHz DMSO d-6) spectrum of PMI-Phe.
Figure S3. 1H NMR (300 MHz DMSO d-6) spectrum of PMI-Tyr.

Figure S4. 13C NMR (75 MHz DMSO d-6) spectrum of PMI-Tyr.
Figure S5. 1H NMR (300 MHz DMSO d-6) spectrum of PMI-Ile.

Figure S6. 13C NMR (75 MHz DMSO d-6) spectrum of PMI-Ile.
Figure S7. 1H NMR (300 MHz DMSO d-6) spectrum of PMI-Lys.

Figure S8. 13C NMR (75 MHz DMSO d-6) spectrum of PMI-Lys.
Figure S9. 1H NMR (300 MHz DMSO d_{-6}) spectrum of PMI-Cys.

Figure S10. 13C NMR (75 MHz DMSO d_{-6}) spectrum of PMI-Cys.
1.2 BPDIs

Figure S11. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Phe.

Figure S12. 13C NMR (75 MHz DMSO d-6) spectrum of BPDI-Phe.
Figure S13. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Tyr.

Figure S14. 13C NMR (75 MHz DMSO d-6) spectrum of BPDI-Tyr.
Figure S15. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Ile.

Figure S16. 13C NMR (75 MHz DMSO d-6) spectrum of BPDI-Ile.
Figure S17. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Lys.

Figure S18. 13C NMR (75 MHz DMSO d-6) spectrum of BPDI-Lys.
Figure S19. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Cys.

Figure S20. 13C NMR (75 MHz DMSO d-6) spectrum of BPDI-Cys.
1.3 BTDIs

Figure S21. 1H NMR (300 MHz DMSO d-6) spectrum of BTDI-Phe.

Figure S22. 13C NMR (75 MHz DMSO d-6) spectrum of BTDI-Phe.
Figure S23. 1H NMR (300 MHz DMSO d-6) spectrum of BTDI-Tyr.

Figure S24. 13C NMR (75 MHz DMSO d-6) spectrum of BTDI-Tyr.
Figure S25. 1H NMR (300 MHz DMSO d-6) spectrum of BPDI-Ile.

Figure S26. 13C NMR (75 MHz DMSO d-6) spectrum of BTDI-Ile.
Figure S27. 1H NMR (300 MHz DMSO d-6) spectrum of BTDI-Lys.

Figure S28. 13C NMR (75 MHz DMSO d-6) spectrum of BTDI-Lys.
Figure S29. 1H NMR (300 MHz DMSO d-6) spectrum of BTDI-Cys.

Figure S30. 13C NMR (75 MHz DMSO d-6) spectrum of BTDI-Cys.