A case of asymptomatic intraductal papillary neoplasm of the bile duct without hepatolithiasis

Junpei Hayashi, Shyun-ichi Matsuoka, Makiko Inami, Shu Ohshiro, Akiyasu Ishigami, Hirotoshi Fujikawa, Masahide Miyagawa, Kenji Mimatsu, Youichi Kuboi, Hisao Kanou, Takatsugu Oida, Mitsuhiko Moriyama

Junpei Hayashi, Shyun-ichi Matsuoka, Makiko Inami, Shu Ohshiro, Akiyasu Ishigami, Hirotoshi Fujikawa, Masahide Miyagawa, Department of Gastroenterology, Social Insurance Yokohama Central Hospital, Yokohama 231-8553, Japan
Kenji Mimatsu, Youichi Kuboi, Hisao Kanou, Takatsugu Oida, Department of Surgery, Social Insurance Yokohama Central Hospital, Yokohama 231-8553, Japan
Junpei Hayashi, Makiko Inami, Shu Ohshiro, Mitsuhiko Moriyama, Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan

Author contributions: Hayashi J wrote the paper; Matsuoka S, Inami M, Ohshiro S, Fujikawa H, Ishikami A and Miyagawa M treated patient with some examinations; Fujikawa H analyzed the histopathological findings; Mimatsu K, Kuboi Y, Kanou H, and Oida T performed hepatectomy; Moriyama M contributed to get the diagnosis.

Correspondence to: Junpei Hayashi, Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Tokyo 173-8610, Japan. jhayasi@nihon-u.med.ac.jp

Telephone: +81-3-39728111 Fax: +81-3-39568496
Received: November 21, 2007 Revised: January 30, 2008

Abstract

A 65-year-old woman was found to have dilatation of the intrahepatic bile duct in the right anterior segment during a general health. Laboratory data were within normal ranges and no solid mass was detected in her abdominal computer tomography (CT) or nuclear magnetic resonance imaging (MRI). However, endoscopic retrograde cholangiopancreatography (ERCP) demonstrated an obstruction of the right bile duct. Intraoperative cholangiography showed stenosis of the intrahepatic bile duct in the anterior inferior segment (BS) and narrowness of the intrahepatic bile duct in the anterior superior segment (BS), so that we strongly suspected intrahepatic cholangiocarcinoma (ICC). Histologically, intraoperative cholangiography showed stenosis of the intrahepatic bile duct in the anterior segment (BS) and narrowness of the intrahepatic bile duct in the anterior superior segment (BS), so that we strongly suspected intrahepatic cholangiocarcinoma (ICC). Histologically, IPN-B is characterized by a prominent papillary growth of atypical biliary epithelium with distinct fibrovascular cores and, frequently, mucin-secretion. It has previously been described as biliary papillomatosis, bile duct cystadenocarcinoma, intrahepatic cholangiocarcinoma (ICC) or a mucin hypersecreting bile duct tumor.

On the other hand, biliary intraepithelial neoplasia (BilIN) showing, microscopically, growth of atypical biliary epithelium, has been identified as another type of neoplastic lesion preceding ICC. BilIN is known often to progress to tubular adenocarcinoma, while IPN-B is associated with mucinous carcinoma and tubular adenocarcinoma. Biliary papillary tumors, including IPN-B, resemble, histologically, intraepithelial neoplastic mucinous neoplasms of the pancreas (IPMN-P). In both organs, these neoplasms arise within the duct system and show a predominantly intraductal growth pattern, commonly an overproduction of mucin and an association with invasive adenocarcinoma.
Based on gross morphology, ICC can be divided into three types: mass-forming, periductal-infiltrating, and intraductal growth types. Of these, the intraductal growth type, which corresponds to IPN-B, is associated with the most favorable outcome. One feature of IPN-B is its relatively good prognosis after complete hepatic resection. Therefore, it is important to make a precise diagnosis at an early stage and to perform early surgical resection.

We report the clinical and histological findings of a patient who was diagnosed as IPN-B without hepatolithiasis and underwent a hemihepatectomy.

CASE REPORT

A 65-year-old woman was found to have dilatation of the intrahepatic bile duct in the right anterior segment during a general health examination in our hospital (Figure 1A). She had no history of liver disease, including hepatolithiasis. She was admitted to our hospital for detailed examination. Physical examination on admission revealed a height of 152.3 cm, a weight of 45 kg, a temperature of 37.1°C, a blood pressure of 117/61 mmHg, a pulse rate of 78/min, and a respiration rate of 22/min. Pertinent laboratory values included a white blood cell count (WBC) of 3180/μL, aspartate aminotransferase (AST) level of 30 IU/L, alanine aminotransferase (ALT) level of 30 IU/L, alkaline phosphatase (ALP) level of 400 IU/L, γ-glutamyl transferase (γ-GTP) level of 15 IU/L, CEA of 1.4 ng/mL, CA19-9 of 3 U/mL, and AFP of 5.6 ng/mL. Abdominal computed tomography (CT, Figure 1B) and magnetic resonance imaging (MRI) showed dilatation of the intrahepatic bile duct in the right anterior segment, but no solid mass around it. No metastases were found inside or outside the liver. Celiac angiography did not reveal any hypervascular tumors. Endoscopic retrograde cholangiopancreatography (ERCP) demonstrated an obstruction of the right bile duct at the root of the right hepatic duct but the common and left intrahepatic bile ducts were not dilated (Figure 2). These findings suggested that the dilatation of bile duct was due to the invasion of ICC and prompted us to plan a curative excision.

Neither ascites nor a palpable tumor of the liver was detected during laparotomy. Intraoperative US showed only dilatation of the bile duct (B5), as had been detected preoperatively. Subsequently, cholangiography demonstrated stenosis of the B5 bile duct and narrowing of the B8 bile duct (Figure 3). This feature was strikingly suspicious of cholangiocarcinoma, so we elected to perform a right-lobe hepatectomy. An intraoperative frozen section was negative for malignancy in the margin of the right bile duct.

Macroscopic examination of the resected liver revealed bile duct dilatation in the right hepatic lobe (Figure 4). However, we could not identify any mass lesions and mucin was not observed macroscopically.

Microscopically, intrahepatic bile ducts were dilated with slight peri-ductal fibrosis. Within the dilated bile ducts, atypical biliary epithelium proliferated in a papillary fashion, associated with fine fibro-vascular cores (Figure 5A). Atypical cells showed nuclear enlargement, irregular nuclear membranes and distorted cellular polarity (Figure 5B). These atypical features corresponded to carcinoma in situ. Carcinoma cells proliferated continuously from the intrahepatic large bile ducts to small bile ducts (Figure 5C). Interestingly, carcinoma cells also were observed in proliferating bile ductules, which showed an irregular arrangement and slight dilatation (Figure 5D). Portal tracts showing irregular bile duct dilatation resembled Caroli’s disease; however, we could not identify any features of Caroli’s disease in the non-neoplastic area. No invasive growth could be detected.

Immunohistochemical examination revealed that tumor cells were positive for CK7, CK20 and MUC5AC, and negative for MUC1, MUC2, and p53 (Figure 6). Finally, we diagnosed this lesion as IPN-B (carcinoma in situ), showing...
extensive intraductal spreading. The histopathological stage of the tumor according to the General Rules for Surgical and Pathological Studies on Cancer of Biliary Tract was the final stage I (pT1, pN0, P0, H1, M0) and final curability was evaluated as A. No event has been observed during the medical follow-up (an 18-mo period).

DISCUSSION

IPN-B is characterized by intrabiliary papillary growth, overproduction of mucin, multifocal occurrence, jaundice and cholangitis, and also has been reported to be accompanied by hepatolithiasis\(^1\), which is recognized as being a risk factor for ICC. Recently, it has been reported that the number of cases of IPN-B without hepatolithiasis is much higher than those with it, and that it is hard to diagnose ICC with hepatolithiasis before laparotomy\(^2,3\).

In our case, when dilatation of the intrahepatic bile duct in the right anterior segment was detected by abdominal ultrasonography, neither a solid mass component nor hepatolithiasis was observed on imaging studies, and all laboratory data, including liver function and tumor markers (AFP, CEA, CA19-9), were within normal ranges. Therefore, we had difficulty in determining whether this case was malignant.

Several types of primary liver tumor with apparent cystic changes were considered in the differential diagnosis of our case\(^4\). For instance, biliary mucinous cystadenocarcinoma, intraductal neoplasm of liver (IPNL) and cholangiocarcinoma arising in a congenital cystic liver fibrosis are known examples.

We performed ERCP to evaluate the cause of intrahepatic cholangiectasis. This showed an obstruction of the right bile duct at the root of the right hepatic duct,
which might have been due to a mucinous plug. ERCP is recommended to determine the presence and location of suspected intraductal tumors before laparotomy[19].

Furthermore, we believe that cholangiography is a reliable procedure for investigating the cause of bile duct dilatation and the image showed abnormalities of bile ducts that were strikingly suspicious of the infiltration of carcinoma cells along the intrahepatic biliary epithelium. These results demonstrated that cholangiographic images are helpful in diagnosing IPN-B and determining the extent of dissection in case of surgical treatment. Generally, the prognosis of ICC (especially the non-papillary type) at an advanced stage is poor, whereas surgical excision of IPN-B has a good prognosis[18,20]. Early detection of cancer in IPN-B improves survival, although it is hard to make an accurate assessment of the tumor invasion at an early stage, when a curative excision can be performed.

As mentioned above, ERCP and cholangiography are useful for the diagnosis in situ carcinoma such as our case besides CT and MRI. Otherwise, bile cytology or biopsy of the bile duct as complementary diagnostic tools may be helpful to diagnose malignancy. It is necessary to cumulate the number of IPN-B cases and to observe their clinical manifestations and long term survival in advanced stage, compared to ICC.

We observed some remarkable findings in terms of histopathology. First, we needed to distinguish IPN-B from BillIN. In general, the former is characterized by flat or low papillary growth of atypical biliary epithelium, whereas the latter is characterized by papillary growth of that tissue. In our case, prominent papillary growth of atypical biliary epithelium was predominant, and this was appropriate for the diagnosis of IBN-B. As mentioned above, it is said that IPN-B could be the counterpart of pancreatic IPMN, and it is divided into various clinical stages: adenoma, carcinoma in situ (CIS) and periductal infiltrating type[9,10]. There are a lot of similarities in terms of the clinicopathological findings. This case corresponds to CIS, because dysplasia of biliary epithelium was mild in the small portal vein area and severe in the large bile duct. Secondly, regarding the dilatation of the bile duct, we had to distinguish the dilatation with tumor from focal Caroli’s disease or congenital hepatic fibrosis, etc. However, we considered that the dilatation was associated with a tumor because we were not able to find evidence of disease in other areas. Most IPN-Bs are characterized by mucin over-production and dilatation of bile duct with a remarkable papillary mass, but these are not detected in some cases comparable to ours. Finally, low papillary carcinoma cells extended superficially along the intrahepatic bile ducts, which was a very interesting feature.

Zen et al. reported various expression patterns of MUCs and cytokeratins in neoplastic biliary epithelia of BillIN and IPN-B with progression to ICC in hepatolithiasis[21]. IPN-B with hepatolithiasis was characterized predominantly by the intestinal phenotype (MUC2+/CK20+). However, in the present case, the immunophenotype was MUC2-/CK20+/MUC5AC+/CK7+, which corresponds to that of the pancreaticobiliary type[22]. This type consists of carcinoma cells, including CIS but not adenoma, and is likely predominant in such a case without hepatolithiasis. According to recent analyses, biliary papillary tumors are characterized by the common expression of MUC2, CDX2 and CK20, and CK7 is expressed in neoplastic lesion of biliary papillary tumors[23,24]. Identification of immunophenotypes of MUCs and CKs may aid following up patients in terms of progression.

Although there are some reports of carcinogenesis of ICC arising from IPN-B or IPNL, the carcinogenic pathways in IPN-B are still unclear. However, it has been reported recently that the state of field cancerization may
affect the carcinogenesis[26]. It is proposed to investigate the phenotypic and genetic changes in IPN-B for improving diagnosis and therapy.

Recently, it has been reported that highly invasive IPN-B may be involved in cases of ICC at an advanced stage, although IPN-B is generally characterized by lower malignancy and well differentiated histology. Further analyses of cases are necessary to establish its clinical features, therapy and prognosis.

ACKNOWLEDGMENTS

We thank Drs. Yoh Zen and Yasuni Nakanuma (Department of Pathology, Kanazawa University) for their kind advice of immunohistochemical study and histopathology.

REFERENCES

1. Chen TC, Nakanuma Y, Zen Y, Chen MF, Jan YY, Yeh TS, Chiu CT, Kuo TT, Kamilya J, Oda K, Hamaguchi M, Ohno Y, Hsieh LL, Nimura Y. Intraductal papillary neoplasia of the liver associated with hepatolithiasis. Hepatology 2001; 34: 651-658

2. Nakanuma Y, Sasaki M, Ishikawa A, Tsui W, Chen TC, Huang SF. Biliary papillary neoplasm of the liver. Histol Histopathol 2002; 17: 851-861

3. Lee SS, Kim MH, Lee SK, Jang SJ, Song MH, Kim KP, Kim HJ, Seo DW, Song DE, Yu E, Lee SG, Min YI. Clinicopathologic review of 58 patients with biliary papillomatosis. Cancer 2004; 100: 783-793

4. Takayasu K, Muramatsu Y, Moriyama N, Yamada T, Hasegawa H, Hirohashi S, Ichikawa T, Ohno G. Imaging diagnosis of bile duct cystadenocarcinoma. Cancer 1988; 61: 941-946

5. Yeh TS, Tseng JH, Chiu CT, Liu NJ, Chen TC, Jan YY, Chen MF. Cholangiographic spectrum of intraductal papillary mucinous neoplasm of the bile ducts. Ann Surg 2006; 244: 248-253

6. Kim HJ, Kim MH, Lee SK, Yoo KS, Park ET, Lim BC, Park HJ, Myung SJ, Seo DW, Min YI. Mucin-hypersecreting bile duct tumor characterized by a striking homology with an intraductal papillary mucinous neoplasm (IPMT) of the pancreas. Endoscopy 2000; 32: 389-393

7. Shimonishi T, Sasaki M, Nakanuma Y. Precancerous lesions of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2000; 7: 542-550

8. Shimonishi T, Zen Y, Chen TC, Chen MF, Jan YY, Yeh TS, Nimura Y, Nakanuma Y. Increasing expression of gastrointestinal phenotypes and p53 along with histologic progression of intraductal papillary neoplasm of the liver. Hum Pathol 2002; 33: 503-511

9. Shibahara H, Tamada S, Goto M, Oda K, Nagino M, Nagasaka T, Batra SK, Hollingsworth MA, Imai K, Nimura Y, Yonezawa S. Pathologic features of mucin-producing bile duct tumors: two histopathologic categories as counterparts of pancreatic intraductal papillary-mucinous neoplasms. Am J Surg Pathol 2004; 28: 327-338

10. Zen Y, Fuji T, Iatsu K, Nakamura K, Minato H, Kasashima S, Kurumaya H, Katayangi K, Kawashima A, Masuda S, Niwa H, Mitsui T, Asada Y, Miura S, Ohita T, Nakanuma Y. Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepatology 2006; 44: 1333-1343

11. Adsay NV, Conlon KC, Zee SY, Brennan MF, Klimstra DS. Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer 2002; 94: 62-77

12. Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR, Wasan H. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002; 51 Suppl 6: VII-V19

13. Suh KS, Roh HR, Koh YT, Lee KU, Park YH, Kim SW. Clinicopathologic features of the intraductal growth type of peripheral cholangiocarcinoma. Hepatology 2006; 31: 12-17

14. Martin RC, Klimstra DS, Schwartz L, Yilmaz A, Blumgart LH, Jarnagin W. Hepatic intraductal oncocytic papillary carcinoma. Cancer 2002; 95: 2180-2187

15. Tajima Y, Kuroki T, Fukuda K, Tsunekoa N, Furui J, Kanematsu T. An intraductal papillary component is associated with prolonged survival after hepatic resection for intrahepatic cholangiocarcinoma. Br J Surg 2004; 91: 99-104

16. Jan YY, Chen MF. Surgical treatment of peripheral cholangiocarcinoma. Asian J Surg 1996; 19: 105-111

17. Shibata Y, Ueda T, Seki H, Yagishashi N. A case of intrahepatic Cholangiocarcinoma associated with hepatolithiasis. Jpn Gastroenterol Surg 2002; 35: 166-170

18. Fujii T, Harada K, Katayangi K, Kurumaya H, Nakanuma Y. Intrahepatic cholangiocarcinoma with multicystic, mucinous appearance and oncocyic change. Pathol Int 2005; 55: 206-209

19. Lim JH, Yoon KH, Kim SH, Kim HY, Lim HK, Song SY, Nam KJ. Intraductal papillary mucinous tumor of the bile ducts. Radiographics 2004; 24: 53-66; discussion 66-67

20. Ishida M, Seki K, Honda K, Kimura T, Katayama K, Hirose K, Dojo M, Azuma T, Imanura Y, Hutchins RR, Yamaguchi A. Intraductal mucinous tumors occurring simultaneously in the liver and pancreas. J Gastroenterol 2002; 37: 1073-1078

21. Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS, Jan YY, Huang SF, Nimura Y, Nakanuma Y. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct--an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol 2006; 44: 350-358

22. Furukawa T, Klöppel G, Volkag Adsay N, Albores-Saavedra J, Fukushima N, Horii A, Hruban RH, Kato Y, Klimstra DS, Longnecker DS, Lüttges J, Offerhaus GJ, Shimizu M, Sunamura T, Batra SK, Hollingsworth MA, Imai K, Nimura Y, Yonezawa S. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 2005; 447: 794-799

23. Ishikawa A, Sasaki M, Ohira S, Ohata T, Oda K, Nimura Y, Chen MF, Jan YY, Yeh TS, Nakanuma Y. Aberrant expression of CDX2 is closely related to the intestinal metaplasia and MUC2 expression in intraductal papillary neoplasm of the liver in hepatolithiasis. Lab Invest 2004; 84: 629-638

24. Zen Y, Fuji T, Iatsu K, Nakamura K, Minato H, Kasashima S, Kurumaya H, Katayangi K, Kawashima A, Masuda S, Niwa H, Mitsui T, Asada Y, Miura S, Ohita T, Nakanuma Y. Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepatology 2006; 44: 1333-1343

25. Yeh TS, Tseng JH, Chen TC, Liu NJ, Chiu CT, Jan YY, Chen MF. Characterization of intrahepatic cholangiocarcinoma of the intraductal growth-type and its precursor lesions. Hepatology 2005; 42: 657-664

26. Izawa T, Obara T, Tanaka Y, Mizukami Y, Yanagawa N, Kohgo Y, Clonality and field carcinogenesis in intraductal papillary-mucinous tumors of the pancreas. Cancer 2001; 92: 1807-1817

S-Editor Li DL, E-Editor Negro F, E-Editor Ma WH