Supplementary Materials
Supplementary Materials and Methods

Specimens and tissue samples

Samples were taken from 13 female ibex-goat hybrids (Capra sibirica and Capra hircus) (4–5 years old) from the Xinjiang Tianshan Wildlife Park, Karamay, China. All animals were born in the park and were in good health when the blood samples were taken. All samples were compared based on fixed divergent sites (FDSs) between ibex and goat to identify those fragments with ibex descent/lineage from the bin map (see “Lineage/descent/generation identification”).

Genome sequencing read alignment and single nucleotide polymorphism (SNP) calling

Genomic DNA was extracted from whole blood using the phenol-chloroform method. Purified libraries were constructed using at least 6 μg of genomic DNA following the standard library preparation protocols with 300–500 bp insert sizes for 150 bp paired-end sequencing. All libraries were then sequenced on the Illumina-HiSeq 2500 system with paired-end sequencing. To obtain high-quality reads, all reads were initially filtered using Trimmomatic v0.36 (Bolger et al., 2014). The leading or trailing stretches of Ns and bases below three were trimmed. Reads with an average quality of bases less than 16 and shorter than 36 bases were removed. High-quality reads were then aligned to the latest goat reference genome (GCF_001704415.1) using BWA-MEM v0.7.15 with default parameters (Li, 2013). Picard v2.1 was used to filter potential polymerase chain reaction (PCR) duplicates and to sort reads. To reduce the influence of indels, all BAM files were realigned in the surrounding region using GATK v3.7.0 (McKenna et al., 2010). HaplotypeCaller in GATK was used to call SNPs, and VariantFiltration was used to filter SNPs with a filtering expression: "QD<2.0 || ReadPosRankSum<8.0 || FS>60.0 || MQ<40.0 || MQRankSum<-12.5". All variants were finally annotated using ANNOVAR (Wang et al., 2010).

Evolutionary analysis

For genomic evolutionary analysis, we used the genomes of ibex (GCA_001704415.1), goat (GCA_003182615.2), and other eight bovine species, including sheep (GCA_000298735.2), Tibetan antelope (GCA_000400835.1), bohor reed buck (GCA_006410935.1), steenbok (GCA_006410735.1), common duiker (GCA_006408735.1), gerenuk (GCA_006410535.1), yak (GCA_000-298355.1), and cattle (GCA_002263795.2). Each genome was aligned to the goat reference genome using the "lastal" command with default parameters. The phylogenetic tree structure (Supplementary Figure S1) and conserved genome synteny methodology referred to previous study (Chen et al., 2019), used to establish a high-confidence orthologous gene set.

Based on the orthologous set of 13 534 genes, evolutionary analyses were conducted using the Codeml program of PAML v4.10.0 (Yang, 2007), which includes branch-site and free-ratio models. The branch-site model was used to detect genes under positive selection (PSGs) (Supplementary Table S1, S2), estimated using the likelihood ratio test (LRT). The free-ratio model was used to calculate the values of Ka and Ks and the Ka/Ks ratio for each orthologous gene, while lineage-specific Ka/Ks values were estimated using 10 000 concatenated alignments constructed from 150 randomly chosen genes (Supplementary Figure S2). We collected the human Gene Ontology (GO) annotation results from Ensembl to assign GO categories. To ensure accuracy, categories with more than 20 genes were examined using a binomial test (Supplementary Figure S3) to determine whether they had a significant excess of nonsynonymous changes in either the ibex or goat lineage (Qiu et al., 2012).

Transcriptome sequencing and mapping
Total RNA was extracted using TRIzol reagent (Invitrogen, USA) following the manufacturer’s protocols. Genomic DNA contamination was removed using RNA-free DNase I, and RNA quality was measured using a bioanalyzer (Agilent, USA). The RNA Integrity Number (RIN) was required to be greater than 7. mRNA was isolated from total RNA using a NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) according to the manufacturer’s recommendations. cDNA fragments (300–500 bp) were used to construct the library. The Illumina X Ten platform was used to sequence the DNA library and generate 150 bp paired-end reads. Due to the unusually high frequency of some short partial sequences, we used Trimmomatic (Bolger et al., 2014) to remove adapters and reads. All high-quality reads were then aligned to GCF_001704415.1 using STAR v2.7.9a with default parameters (Dobin et al., 2013). Expression levels were quantified using FPKM in Cufflinks v2.2.1 (Trapnell et al., 2010).

Divergent site definition and pseudogenome construction

To define the FDSs between ibex and goat species, we used whole-genome resequencing data of 186 domestic goats and three Siberian ibex collected from a previous study (Zheng et al., 2020). Based on this worldwide dataset, we called divergent sites between ibex and goat groups by GATK v3.7.0, using a threshold of \(F_\text{ST} \) equal to 1. When assigning the initial divergent sites to the hybrid transcriptome, some sites still showed multi-polymorphism. After removing the sites with more than two genotypes in the hybrids, we finally obtained 5,560,781 FDSs. All divergent sites were then annotated by ANNOVAR (Supplementary Figure S4) (Wang et al., 2010).

The ibex pseudogenome was constructed by replacement of the FDSs without changing the genome coordinates, as per previous study (Wang et al., 2013). By merging the reads uniquely mapped to the genome and pseudogenome, we reduced the mapping bias caused by the FDSs. An in-house script was used to achieve construction. Effectiveness was tested by evaluating the mapping rate (Supplementary Figure S5).

Lineage/descent/generation identification

The FDSs were used to judge fragments with ibex descent in the 13 hybrids with a bin map. We applied a 1 Mb window/bin with 500 kb steps to slide the whole genome using an in-house script. Using the FDS genotypes in each bin, the bins were tagged with “ibex-like” or “goat-like”, then merged with adjacent bins with the same tag. In F1 samples, all bins were “ibex-like”. In F2 samples, the “ibex-like” and “goat-like” bins were mixed due to partial and discontinuous recombination events (Supplementary Figure S6).

Identification of genes with allele-specific expression

Genes with allele-specific expression were identified by comparing read counts between the two alleles. Fragments with ibex-like tags in F2 samples were partial and inconsistent with each other, so the FDSs were overlapped with the ibex-like fragments to obtain individual FDSs. Fragment information was obtained from resequencing the DNA data of each sample. In the transcriptome, individual FDSs with read depth below 10-fold and total depth (both alleles) below 30-fold were filtered out to avoid incorrect SNPs. Only sites passing these specific filters were used for further analysis.

The statistical significance of imbalance was calculated using a binomial test and Benjamin-Hochberg false discovery rate (FDR) correction (threshold of 0.05). Allele ratio (>0.65 or <0.35) and FDR (<0.05) cut-off criteria were used to measure allele-specific expression genes (ASEGs), as in previous study (Wang et al., 2013). Due to the rarity of ibex samples, we could not remove imprinted genes by backcrossing, so we used intersections with currently known databases (http://www.geneimprint.com/site/home) to remove all possible imprinted genes. These genes, which
contained both goat-preferred and ibex-preferred expression sites, were regarded as unconcordant and removed. To improve the accuracy of the final ASEG list for further analysis, genes with at least three imbalanced expression alleles were retained (Cao et al., 2019). ASEGs were annotated with ANNOVAR using the annotated gtf-file downloaded from NCBI.

The ASEGs were used to mark the origin of each read and separate the whole transcriptome into three categories, i.e., ibex, goat, and unknown. The separated ibex and goat transcriptomes were used to calculate gene expression levels (Supplementary Figure S7) and for splicing analysis.

Identification of genes with allele-specific splicing

Genes showing alternative (allele-specific) splicing events were defined as allele-specific splicing genes (ASSGs). Due to the random nature of recombination events, the hybrid fragments of ibex descent in the F2 samples were only partial fragments, which can affect accuracy when testing splicing ratios in the samples. To ensure the reliability of the three replicates in the experiments, ASS events were detected in the three F1 hybrids using replicate multivariate analysis of transcript splicing (rMATS) (Shen et al., 2014) with the separated genetic allele samples described in ASEG analysis. The five alternative splicing events include exon skipping (SE), mutually exclusive exons (MXEs), alternative 5' splice sites (A5SSs), alternative 3' splice sites (A3SSs), and retained introns (RIs). The likelihood-ratio method was applied to test significance of splicing events, using the exon-inclusion ratio (ψ value), also known as percent spliced in (PSI). Statistical criteria were applied to obtain the final ASS events (Supplementary Figure S8), i.e., $|\Delta\psi|>10\%$ and $\text{FDR}\leq0.05\%$.

For some genes displaying both ASE and ASS events, we performed further tests to judge whether allele-specific expression was caused by allele-specific splicing. We ignored splicing regions within these genes and re-defined them following the ASEG criteria. Results showed that determination of ASS and ASE was independent.

Gene set enrichment analysis

GO and Reactom enrichment analyses were performed using KOBAS. To increase the accuracy of enrichment, gene symbol IDs were converted into protein sequences, referring to GCF_001704415.1. Fisher’s exact test was used for statistical analysis and the Benjamin-Hochberg method was used for FDR correction.
Supplementary Figure S1 Phylogenetic tree used in positive selection analysis.
Supplementary Figure S2 Ka/Ks ratios of 10 species. Box plot shows ratio of nonsynonymous to synonymous mutations (Ka/Ks) for 10 species.
Supplementary Figure S3 Mean Ka/Ks ratios of goat and ibex pairs for all 1487 GO categories. Bionomic tests were used to check reliability of putatively accelerated GO categories (P<0.05). Accelerated categories in ibex and goat lineages are highlighted by red and blue circles, respectively. Complete list of categories is provided in Supplementary Table S7.
Supplementary Figure S4 Distribution of fixed divergent sites. (A) Functional annotation of fixed divergent sites in genes. (B) Functional annotation of fixed divergent sites in transcriptional region.
Supplementary Figure S5 Adjustment of mapping bias in hybrid transcriptome. Raw results represent initial mapping bias using goat as reference. Optimal results represent average mapping results of goat and pseudogenome.
Supplementary Figure S6 Distribution of fragments with ibex descent in 13 hybrids. Descent of fragment was defined by fixed divergent sites. Heterozygous (ibex-like bins) and pure regions (goat-like bins) are represented in red and yellow, respectively.
Supplementary Figure S7 Heatmap of gene expression of ASEGs in three F1 hybrids.
Supplementary Figure S8 Statistical results of ASS events.
Supplementary Figure S9 Proportion of ASEGs and ASSGs belonging to immune-related pathways in KEGG. Pattern recognition receptor (PRR) pathways and other receptor pathways are marked in green and orange, respectively, while others are in gray.
Supplementary Figure S10 Expression ratios of *CXCL8* and *TLR9* in hybrids. (A, B) Allele-specific expression of *CXCL8* (A) and *TLR9* (B) in heterozygous individuals.
Supplementary Figure S11 Adjacent 100 bp around *PNKP* alternative splicing event in UCSC Genome Browser. Orange arrow points to fixed divergent site (18:57 225 162) in *PNKP*.
Supplementary Figure S12 Isoforms of STAT1 in goat. (A) Structures of two transcripts from Ensembl. (B) Predicted protein structure of two isoforms by SMART (Letunic & Bork, 2018), with human as a reference. (C) Nuclear localization signal prediction in goats showing the new N-terminal region of STAT1-202 contains a stronger nuclear localization signal, as predicted by NLStradamus (Ba et al., 2009).
Supplementary Figure S13 Comparison of STAT1 isoforms in different species. STAT1 splicing isoform in goat first appeared in Bovidae, but not in pig or other mammals.
Supplementary Figure S14 Alternative splicing condition of new isoform. Isoform exists in other tissues, such as thigh muscles, thalamus, pituitary, pineal, spleen, omasum, rumen, medulla-oblongata, reticulum, lung, hypothalamus, liver, esophagus, and cerebellum.
Supplementary Table S1 Summary of positively selected genes in goat lineage. All gene IDs, transcript IDs, and peptide IDs are annotated from cattle.

Gene ID	Transcript ID	Peptide ID	Gene Symbol
gene:ENSBTAG000000013693.5	transcript:ENSBTAT00000018202.4	pep:ENSBTAP000000018202	na
gene:ENSBTAG000000043561.1	transcript:ENSBTAT00000065069.1	pep:ENSBTAP000000053147	COX1
gene:ENSBTAG000000014158.5	transcript:ENSBTAT00000018816.4	pep:ENSBTAP000000018816	CCNT2
gene:ENSBTAG000000023918.4	transcript:ENSBTAT00000055181.2	pep:ENSBTAP000000050989	na
gene:ENSBTAG000000046915.1	transcript:ENSBTAT00000066040.1	pep:ENSBTAP000000053954	na
gene:ENSBTAG000000047426.1	transcript:ENSBTAT00000064259.1	pep:ENSBTAP000000055421	LYPD6
gene:ENSBTAG000000021883.4	transcript:ENSBTAT00000029169.4	pep:ENSBTAP00000029169	AP3M1
gene:ENSBTAG000000021706.5	transcript:ENSBTAT00000028930.5	pep:ENSBTAP00000028930	TBX3
gene:ENSBTAG00000007441.4	transcript:ENSBTAT0000009785.4	pep:ENSBTAP0000009785	SEC23IP
gene:ENSBTAG000000008013.4	transcript:ENSBTAT00000044459.1	pep:ENSBTAP00000041953	LRR2C
gene:ENSBTAG00000006921.5	transcript:ENSBTAT0000009089.5	pep:ENSBTAP0000009089	ABCA6
gene:ENSBTAG000000013556.5	transcript:ENSBTAT00000018027.5	pep:ENSBTAP00000018027	UNC13D
gene:ENSBTAG000000044151.2	transcript:ENSBTAT00000061288.2	pep:ENSBTAP00000053262	ANKDD1B
gene:ENSBTAG000000046421.1	transcript:ENSBTAT0000008579.5	pep:ENSBTAP0000008579	na
gene:ENSBTAG000000045860.1	transcript:ENSBTAT0000002951.5	pep:ENSBTAP0000002951	na
gene:ENSBTAG000000013364.5	transcript:ENSBTAT0000017778.5	pep:ENSBTAP0000017778	LIPM
gene:ENSBTAG000000019007.3	transcript:ENSBTAT0000025298.3	pep:ENSBTAP0000025298	na
gene:ENSBTAG000000021337.5	transcript:ENSBTAT0000028448.5	pep:ENSBTAP0000028448	SBF1
gene:ENSBTAG000000035777.3	transcript:ENSBTAT0000050265.3	pep:ENSBTAP0000046998	na
gene:ENSBTAG00000002138.5	transcript:ENSBTAT0000015977.5	pep:ENSBTAP0000015977	PADI1
gene:ENSBTAG000000019555.4	transcript:ENSBTAT0000026057.4	pep:ENSBTAP0000026057	ZSCAN20
gene:ENSBTAG000000047862.1	transcript:ENSBTAT0000063587.1	pep:ENSBTAP0000055397	na
gene:ENSBTAG000000040323.2	transcript:ENSBTAT0000057166.2	pep:ENSBTAP0000052542	na
gene:ENSBTAG000000045731.1	transcript:ENSBTAT0000063972.1	pep:ENSBTAP0000054874	na
Gene ID	Transcript ID	Peptide ID	Gene Symbol
------------------	------------------------	---------------------	-------------
gene:ENSBTAG00000046161.1	transcript:ENSBTAT00000066127.1	pep:ENSBTAP00000056562	na
gene:ENSBTAG00000017863.4	transcript:ENSBTAT00000023743.4	pep:ENSBTAP00000023743	SRGN
gene:ENSBTAG00000021721.5	transcript:ENSBTAT00000028955.5	pep:ENSBTAP00000028955	CDSN
gene:ENSBTAG00000047632.1	transcript:ENSBTAT00000065204.1	pep:ENSBTAP00000056315	IGHE
gene:ENSBTAG00000010504.5	transcript:ENSBTAT00000013895.5	pep:ENSBTAP00000013895	TBRG4
gene:ENSBTAG00000038576.2	transcript:ENSBTAT00000053287.2	pep:ENSBTAP00000052286	na
gene:ENSBTAG00000018237.4	transcript:ENSBTAT00000024275.4	pep:ENSBTAP00000024275	MYO16
gene:ENSBTAG00000011002.5	transcript:ENSBTAT00000014612.5	pep:ENSBTAP00000014612	CCDC136
gene:ENSBTAG00000039873.2	transcript:ENSBTAT00000053102.2	pep:ENSBTAP00000050775	na
gene:ENSBTAG00000007457.4	transcript:ENSBTAT00000009810.4	pep:ENSBTAP00000009810	na
gene:ENSBTAG00000015490.5	transcript:ENSBTAT00000020581.5	pep:ENSBTAP00000020580	HS1BP3
gene:ENSBTAG00000013378.4	transcript:ENSBTAT00000017800.4	pep:ENSBTAP00000017800	na
gene:ENSBTAG00000012215.5	transcript:ENSBTAT00000016173.5	pep:ENSBTAP00000016173	CPNE7
gene:ENSBTAG00000009764.5	transcript:ENSBTAT00000012877.3	pep:ENSBTAP00000012877	na
gene:ENSBTAG00000014368.3	transcript:ENSBTAT00000034482.2	pep:ENSBTAP00000034373	SLAMF6
gene:ENSBTAG0000002937.5	transcript:ENSBTAT00000003821.5	pep:ENSBTAP00000003821	ADGRE3
gene:ENSBTAG000000030714.3	transcript:ENSBTAT00000043427.3	pep:ENSBTAP00000041000	na
gene:ENSBTAG00000012817.5	transcript:ENSBTAT00000009631.5	pep:ENSBTAP00000009631	JAG1
gene:ENSBTAG00000009547.5	transcript:ENSBTAT00000012560.5	pep:ENSBTAP00000012560	ZDHHC4
gene:ENSBTAG00000021841.5	transcript:ENSBTAT00000026607.5	pep:ENSBTAP00000026607	CHD7
gene:ENSBTAG00000008330.5	transcript:ENSBTAT00000010969.5	pep:ENSBTAP00000010969	RNF19B
gene:ENSBTAG00000016804.5	transcript:ENSBTAT00000022355.5	pep:ENSBTAP00000022355	LYST
gene:ENSBTAG00000007580.3	transcript:ENSBTAT0000009973.1	pep:ENSBTAP0000009973	ZSWIM2
gene:ENSBTAG00000021414.5	transcript:ENSBTAT00000028547.4	pep:ENSBTAP00000028547	na
gene:ENSBTAG0000002331.5	transcript:ENSBTAT0000003008.5	pep:ENSBTAP0000003008	DLGAP5
Gene ID	Transcript ID	Peptide ID	Gene Symbol
--------------	------------------------	---------------------	-------------
gene:ENSBTAG00000037882.1	transcript:ENSBTAT00000054145.1	pep:ENSBTAP00000049904	ZNF584
gene:ENSBTAG00000023258.2	transcript:ENSBTAT00000031637.2	pep:ENSBTAP00000031587	na
gene:ENSBTAG00000046461.1	transcript:ENSBTAT00000066165.1	pep:ENSBTAP00000055465	na
gene:ENSBTAG00000009171.5	transcript:ENSBTAT00000023823.5	pep:ENSBTAP00000023823	MUC13
gene:ENSBTAG00000010382.5	transcript:ENSBTAT00000013702.5	pep:ENSBTAP00000013702	RECK
gene:ENSBTAG0000000076.4	transcript:ENSBTAT0000000084.4	pep:ENSBTAP0000000084	TP53RK
gene:ENSBTAG00000027326.4	transcript:ENSBTAT00000039179.4	pep:ENSBTAP00000038979	CSMD2
gene:ENSBTAG00000046729.1	transcript:ENSBTAT00000065674.1	pep:ENSBTAP00000055770	KHK
gene:ENSBTAG00000005784.5	transcript:ENSBTAT0000007609.5	pep:ENSBTAP0000007609	na
gene:ENSBTAG00000011325.5	transcript:ENSBTAT00000015052.5	pep:ENSBTAP00000015052	na
gene:ENSBTAG00000022227.4	transcript:ENSBTAT00000030005.4	pep:ENSBTAP00000029993	na
gene:ENSBTAG00000008943.4	transcript:ENSBTAT0000011774.4	pep:ENSBTAP0000011774	ZSCAN12
gene:ENSBTAG00000040459.1	transcript:ENSBTAT0000052426.1	pep:ENSBTAP0000048758	na
gene:ENSBTAG00000011403.4	transcript:ENSBTAT0000015156.4	pep:ENSBTAP0000015156	na
gene:ENSBTAG00000015810.5	transcript:ENSBTAT0000020999.5	pep:ENSBTAP0000020999	PLET1
gene:ENSBTAG00000002773.5	transcript:ENSBTAT000003593.5	pep:ENSBTAP000003593	na
gene:ENSBTAG00000040392.2	transcript:ENSBTAT0000010394.5	pep:ENSBTAP0000010394	na
gene:ENSBTAG00000038368.2	transcript:ENSBTAT0000056122.2	pep:ENSBTAP0000051461	SNRPG
gene:ENSBTAG00000001810.4	transcript:ENSBTAT000002366.4	pep:ENSBTAP000002366	SCAF11
gene:ENSBTAG00000031355.1	transcript:ENSBTAT0000044432.1	pep:ENSBTAP0000041928	na
gene:ENSBTAG000000038286.1	transcript:ENSBTAT0000055170.1	pep:ENSBTAP0000048663	na
gene:ENSBTAG00000018290.4	transcript:ENSBTAT0000024340.4	pep:ENSBTAP0000024340	IL9
gene:ENSBTAG00000040367.1	transcript:ENSBTAT0000044482.2	pep:ENSBTAP0000048506	RRP8
gene:ENSBTAG00000000697.5	transcript:ENSBTAT0000039795.4	pep:ENSBTAP0000039583	LAMB4
gene:ENSBTAG00000033169.3	transcript:ENSBTAT0000047111.2	pep:ENSBTAP0000044341	LAMB4
Gene ID	Transcript ID	Peptide ID	Gene Symbol
---------	---------------	------------	-------------
gene:ENSBTAG000000015868.4 transcript:ENSBTAT00000021092.4 pep:ENSBTAP00000021092	LIG4		
gene:ENSBTAG000000043990.2 transcript:ENSBTAT00000061105.2 pep:ENSBTAP00000053440	KHDRBS2		
gene:ENSBTAG000000038794.2 transcript:ENSBTAT00000053653.1 pep:ENSBTAP00000047510	TMEM245		
gene:ENSBTAG00000007823.4 transcript:ENSBTAT00000010295.4 pep:ENSBTAP00000010295	TG		
gene:ENSBTAG00000001034.4 transcript:ENSBTAT0000001371.4 pep:ENSBTAP0000001371	IL1B1R		
gene:ENSBTAG00000012577.4 transcript:ENSBTAT00000016697.4 pep:ENSBTAP00000016697	UVSSA		
gene:ENSBTAG000000015517.5 transcript:ENSBTAT00000020621.4 pep:ENSBTAP00000020621	na		
gene:ENSBTAG000000045664.1 transcript:ENSBTAT00000064452.1 pep:ENSBTAP00000056252	LRRC41		
gene:ENSBTAG000000015729.5 transcript:ENSBTAT00000020879.5 pep:ENSBTAP00000020879	ADH7		
gene:ENSBTAG000000035710.4 transcript:ENSBTAT00000061334.2 pep:ENSBTAP00000053687	ZBBX		
gene:ENSBTAG00000015839.5 transcript:ENSBTAT00000021045.5 pep:ENSBTAP00000021045	MAP4		
gene:ENSBTAG000000019919.4 transcript:ENSBTAT00000026536.4 pep:ENSBTAP00000026536	na		
gene:ENSBTAG00000002501.5 transcript:ENSBTAT0000003250.5 pep:ENSBTAP0000003250	CUEDC2		
gene:ENSBTAG00000004585.5 transcript:ENSBTAT0000006021.4 pep:ENSBTAP0000006021	CCDC30		
gene:ENSBTAG00000011481.5 transcript:ENSBTAT00000065322.1 pep:ENSBTAP00000056128	IL12RB1		
gene:ENSBTAG00000011036.5 transcript:ENSBTAT00000014658.5 pep:ENSBTAP00000014658	CEACAM20		
gene:ENSBTAG000000024891.4 transcript:ENSBTAT00000034665.4 pep:ENSBTAP00000034552	na		
gene:ENSBTAG00000007955.5 transcript:ENSBTAT00000010460.3 pep:ENSBTAP00000010460	SEZ6L2		
gene:ENSBTAG000000046727.1 transcript:ENSBTAT00000062985.1 pep:ENSBTAP00000055309	na		
gene:ENSBTAG000000036297.3 transcript:ENSBTAT00000050795.3 pep:ENSBTAP00000047450	RBFA		
gene:ENSBTAG00000019686.5 transcript:ENSBTAT00000047448.3 pep:ENSBTAP00000044656	NCKAP1L		
gene:ENSBTAG00000005190.4 transcript:ENSBTAT0000006842.4 pep:ENSBTAP0000006842	TSC1		
Supplementary Table S2

Summary of positively selected genes in ibex lineage. All gene IDs, transcript IDs, and peptide IDs are annotated from cattle.

Gene ID	Transcript ID	Peptide ID	Gene Symbol
gene:ENSBTAG00000020633.2	transcript:ENSBTAT00000027497.2	pep:ENSBTAP00000027497	NOB1
gene:ENSBTAG00000009850.3	transcript:ENSBTAT00000039003.2	pep:ENSBTAP00000038807	na
gene:ENSBTAG00000020573.5	transcript:ENSBTAT00000027416.5	pep:ENSBTAP00000027416	SCUBE2
gene:ENSBTAG00000016407.5	transcript:ENSBTAT0000021815.5	pep:ENSBTAP0000021815	IRX6
gene:ENSBTAG00000014762.5	transcript:ENSBTAT0000065058.1	pep:ENSBTAP0000056176	ISG20
gene:ENSBTAG00000020155.5	transcript:ENSBTAT0000064867.1	pep:ENSBTAP0000054813	RP1L1
gene:ENSBTAG00000044195.2	transcript:ENSBTAT0000061463.2	pep:ENSBTAP0000053549	SDK2
gene:ENSBTAG00000011349.5	transcript:ENSBTAT0000015083.5	pep:ENSBTAP0000015083	CDH24
gene:ENSBTAG00000021791.4	transcript:ENSBTAT0000029045.4	pep:ENSBTAP0000029045	PARP9
gene:ENSBTAG00000019231.4	transcript:ENSBTAT0000025606.4	pep:ENSBTAP0000025606	MAIP1
gene:ENSBTAG00000045606.1	transcript:ENSBTAT0000066010.1	pep:ENSBTAP0000054961	na
gene:ENSBTAG0000002539.4	transcript:ENSBTAT0000042716.3	pep:ENSBTAP0000040347	TRIOBP
gene:ENSBTAG00000021557.2	transcript:ENSBTAT0000028720.2	pep:ENSBTAP0000028720	FUT2
gene:ENSBTAG0000000799.4	transcript:ENSBTAT000001057.4	pep:ENSBTAP000001057	ICA1
gene:ENSBTAG00000005183.5	transcript:ENSBTAT000006828.5	pep:ENSBTAP000006828	MVK
gene:ENSBTAG00000040305.2	transcript:ENSBTAT0000057213.2	pep:ENSBTAP0000050373	na
gene:ENSBTAG00000023933.4	transcript:ENSBTAT0000042743.3	pep:ENSBTAP0000040372	SEC16A
gene:ENSBTAG00000014599.5	transcript:ENSBTAT0000019433.5	pep:ENSBTAP0000019433	LRR2C66
gene:ENSBTAG00000012837.5	transcript:ENSBTAT0000017057.5	pep:ENSBTAP0000017057	COL6A6
gene:ENSBTAG00000037803.1	transcript:ENSBTAT0000055475.1	pep:ENSBTAP0000051224	ZNF197
gene:ENSBTAG00000009907.5	transcript:ENSBTAT0000013073.5	pep:ENSBTAP0000013073	MAPK4
gene:ENSBTAG00000026825.1	transcript:ENSBTAT0000038349.1	pep:ENSBTAP0000038164	TMEM37
gene:ENSBTAG00000006721.5	transcript:ENSBTAT0000047621.3	pep:ENSBTAP0000044811	TWISTNB
gene:ENSBTAG00000008253.5	transcript:ENSBTAT0000010864.5	pep:ENSBTAP0000010864	EXPH5
Gene ID	Transcript ID	Peptide ID	Gene Symbol
------------	--------------------------------	-----------------------	-------------
gene:ENSBTAG000000038267.2	transcript:ENSBTAT000000052988.2	pep:ENSBTAP000000050887	na
gene:ENSBTAG00000001618.5	transcript:ENSBTAT00000002122.5	pep:ENSBTAP00000002122	ALPK3
gene:ENSBTAG00000002868.3	transcript:ENSBTAT00000003720.3	pep:ENSBTAP00000003720	GPR6
gene:ENSBTAG00000009192.5	transcript:ENSBTAT00000005973.5	pep:ENSBTAP00000005973	na
gene:ENSBTAG00000006635.3	transcript:ENSBTAT00000008720.3	pep:ENSBTAP00000008720	DBX2
gene:ENSBTAG000000047943.1	transcript:ENSBTAT000000064919.1	pep:ENSBTAP000000054477	na
gene:ENSBTAG00000004423.5	transcript:ENSBTAT00000005797.5	pep:ENSBTAP00000005797	ARHGAP42
gene:ENSBTAG00000013245.5	transcript:ENSBTAT00000053490.2	pep:ENSBTAP00000047648	ITPR3
gene:ENSBTAG00000012682.5	transcript:ENSBTAT00000047528.3	pep:ENSBTAP00000044729	UNC13A
gene:ENSBTAG00000005753.5	transcript:ENSBTAT00000007566.5	pep:ENSBTAP00000007566	PARP6
gene:ENSBTAG000000047174.1	transcript:ENSBTAT000000064843.1	pep:ENSBTAP00000047648	ARHGAP42
gene:ENSBTAG00000004464.5	transcript:ENSBTAT00000005861.5	pep:ENSBTAP00000005861	C17orf53
gene:ENSBTAG000000046101.1	transcript:ENSBTAT000000064558.1	pep:ENSBTAP00000005450	na
gene:ENSBTAG000000032224.3	transcript:ENSBTAT00000023466.5	pep:ENSBTAP00000023466	na
gene:ENSBTAG000000021150.5	transcript:ENSBTAT00000032152.4	pep:ENSBTAP00000032090	na
gene:ENSBTAG000000032429.3	transcript:ENSBTAT00000046004.3	pep:ENSBTAP00000043341	OR10AD1
gene:ENSBTAG000000038327.2	transcript:ENSBTAT00000052094.2	pep:ENSBTAP00000050462	na
gene:ENSBTAG000000047078.1	transcript:ENSBTAT00000064859.1	pep:ENSBTAP00000054706	NTF4
gene:ENSBTAG00000000712.5	transcript:ENSBTAT0000000956.5	pep:ENSBTAP0000000956	FBXW2
gene:ENSBTAG00000011922.5	transcript:ENSBTAT0000015828.4	pep:ENSBTAP0000015828	PLEC
gene:ENSBTAG00000006240.3	transcript:ENSBTAT0000008190.2	pep:ENSBTAP0000008190	TLR4
gene:ENSBTAG00000017426.5	transcript:ENSBTAT0000023165.5	pep:ENSBTAP0000023165	PDCD6IP
gene:ENSBTAG00000007062.5	transcript:ENSBTAT0000009285.5	pep:ENSBTAP0000009285	IGFBP5
gene:ENSBTAG000000047569.1	transcript:ENSBTAT00000065958.1	pep:ENSBTAP00000055893	na
gene:ENSBTAG000000048135.1	transcript:ENSBTAT00000066155.1	pep:ENSBTAP00000055469	na
Gene ID	Transcript ID	Peptide ID	Gene Symbol
------------------	------------------------	---------------------	-------------
gene:ENSBTAG00000000237.4 transcript:ENSBTAT00000000291.4 pep:ENSBTAP000000042520	na		
gene:ENSBTAG0000000039615.2 transcript:ENSBTAT0000000054186.2 pep:ENSBTAP000000049857	na		
gene:ENSBTAG0000000020532.5 transcript:ENSBTAT0000000027356.5 pep:ENSBTAP000000048750	na		
gene:ENSBTAG0000000018872.4 transcript:ENSBTAT0000000025122.4 pep:ENSBTAP000000025122	F12		
gene:ENSBTAG0000000018134.5 transcript:ENSBTAT0000000024140.4 pep:ENSBTAP000000024140	AREG		
gene:ENSBTAG0000000003937.4 transcript:ENSBTAT000000005143.4 pep:ENSBTAP00000005143	na		
gene:ENSBTAG0000000021310.5 transcript:ENSBTAT0000000018302.5 pep:ENSBTAP000000018302	COL4A4		
gene:ENSBTAG0000000005154.4 transcript:ENSBTAT000000006789.4 pep:ENSBTAP00000006789	APCDD1		
gene:ENSBTAG0000000040153.2 transcript:ENSBTAT0000000053199.2 pep:ENSBTAP000000050564	na		
gene:ENSBTAG0000000030564.3 transcript:ENSBTAT0000000043163.3 pep:ENSBTAP000000040753	na		
gene:ENSBTAG0000000014768.5 transcript:ENSBTAT000000019646.5 pep:ENSBTAP000000019646	ZNF786		
gene:ENSBTAG0000000046228.1 transcript:ENSBTAT000000064530.1 pep:ENSBTAP000000056226	na		
gene:ENSBTAG0000000046321.1 transcript:ENSBTAT000000015433.5 pep:ENSBTAP000000015433	TSPOAP1		
gene:ENSBTAG0000000006933.5 transcript:ENSBTAT000000009104.5 pep:ENSBTAP000000009104	PPP1R10		
gene:ENSBTAG0000000024545.4 transcript:ENSBTAT000000017605.5 pep:ENSBTAP000000017605	DCHS2		
gene:ENSBTAG0000000046313.1 transcript:ENSBTAT0000000063186.1 pep:ENSBTAP00000005319	CCDC54		
gene:ENSBTAG0000000040232.5 transcript:ENSBTAT000000005544.5 pep:ENSBTAP000000005544	TMIE		
gene:ENSBTAG000000002853.5 transcript:ENSBTAT000000043065.2 pep:ENSBTAP000000040660	HRC		
gene:ENSBTAG0000000027629.4 transcript:ENSBTAT000000004244.5 pep:ENSBTAP000000004244	na		
gene:ENSBTAG0000000025320.4 transcript:ENSBTAT000000049153.3 pep:ENSBTAP000000046086	AKAP1		
gene:ENSBTAG0000000012721.4 transcript:ENSBTAT000000016909.4 pep:ENSBTAP000000016909	HOGA1		
gene:ENSBTAG0000000048115.1 transcript:ENSBTAT0000000063444.1 pep:ENSBTAP000000056282	na		
gene:ENSBTAG0000000025526.4 transcript:ENSBTAT000000035900.4 pep:ENSBTAP000000035767	MDC1		
gene:ENSBTAG000000002962.5 transcript:ENSBTAT000000003860.5 pep:ENSBTAP000000003860	na		
gene:ENSBTAG0000000046138.1 transcript:ENSBTAT000000063124.1 pep:ENSBTAP000000056436	C1orf68		
Supplementary Table S3 Enrichment results of positively selected genes in goats

Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input													
Olfactory Signaling Pathway	Reactome	R-HSA-381	6	393	0.0003839	0.02617453	ENSBTAP00000055309	ENSBTAP0000003455	2	ENSBTAP00000048758	ENSBTAP000000041000	ENSBTAP00000038888	ENSBTAP00000020621							
Immune System	Reactome	R-HSA-168	14	2096	0.0004358	0.02617453	ENSBTAP000000013702	ENSBTAP00000003593	ENSBTAP000000044656	ENSBTAP00000003821	ENSBTAP00000041928	ENSBTAP00000010969	ENSBTAP00000018027	ENSBTAP000000002951	ENSBTAP000000052286	ENSBTAP000000034373	ENSBTAP00000024340	ENSBTAP000000056252	ENSBTAP000000056128	ENSBTAP00000001371
Supplementary Table S4 GO enrichment of positively selected genes in goats

Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
leukocyte mediated immunity	Gene Ontology	GO:0002443	3	32	7.97E-05	0.024096	ENSBTAP00000009631	ENSBTA P00000022355	ENSBTAP00000056315
negative regulation of cell cycle arrest	Gene Ontology	GO:0071157	2	5	0.000116	0.024096	ENSBTAP000000055397	ENSBTA P00000055770	
L-amino acid transmembrane transporter activity	Gene Ontology	GO:0015179	2	5	0.000116	0.024096	ENSBTAP000000023823	ENSBTA P00000010394	
cellular anatomical entity	Gene Ontology	GO:0110165	18	2864	0.000128	0.024096	ENSBTAP00000015977	ENSBTA P00000016173	ENSBTAP00000038979
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
---	---	---	---	---	---	---	---	---	---
membrane	Gene Ontology	GO:0016020	12	1443	0.000167	0.024096	AP000000055421	ENSBTAP00000017800	
histone-lysine N-methyltransferase activity	Gene Ontology	GO:0018024	2	7	0.000198	0.024096	ENSBTAP000000055397	ENSBTAP00000055770	
alpha-beta T cell differentiation involved in immune response	Gene Ontology	GO:0002293	2	7	0.000198	0.024096	ENSBTAP00000056128	ENSBTAP0000001371	
histone methyltransferase activity	Gene Ontology	GO:0042054	2	9	0.000301	0.025515	ENSBTAP00000055397	ENSBTAP00000055770	
site of	Gene	GO:0035861	2	9	0.000301	0.025515	ENSBTAP00000055397	ENSBTAP00000055770	
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
-------------------------------	----------	-------------	--------------	-------------------	-------------	-------------------	--		
double-strand break	Ontology	P0000000023823	2	9	0.000301	0.025515	P000000055770		
L-alpha-amin o acid transport	Gene Ontology	GO:1902475	2	9	0.000301	0.025515	ENSBTAP00000010394		
nitrogen compound metabolic process	Gene Ontology	GO:0006807	12	1541	0.000302	0.025515	ENSBTAP00000016697	ENSBTA P00000009973	ENSBTAP00000048506
single-stranded DNA binding	Gene Ontology	GO:0003697	2	10	0.000361	0.026175	ENSBTAP000000055397	ENSBTA P000000055770	
positive regulation of ATPase activity	Gene Ontology	GO:0032781	2	10	0.000361	0.026175	ENSBTAP000000055397	ENSBTA P000000055770	
DNA catabolic process	Gene Ontology	GO:0006308	2	11	0.000426	0.026175	ENSBTAP000000055397	ENSBTA P000000055770	
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
---	------------------	-----------	--------------	-------------------	-----------	------------------	--		
positive regulation of cell cycle	Gene Ontology	GO:0045787	3	61	0.000483	0.026175	ENSBTAP000000055397	ENSBTA000000055770	ENSBTAP00000018816
TOR signaling	Gene Ontology	GO:0031929	2	12	0.000496	0.026175	ENSBTAP000000023823	ENSBTA00000010394	
ion binding	Gene Ontology	GO:0043167	9	962	0.000501	0.026175	ENSBTAP00000020580	ENSBTA000000038979	ENSBTAP00000010295
olfactory receptor activity	Gene Ontology	GO:0004984	3	67	0.000628	0.028604	ENSBTAP000000048758	ENSBTA000000041000	ENSBTAP000000034552
binding	Gene Ontology	GO:0005488	14	2247	0.00086	0.034926	ENSBTAP00000020580	ENSBTA00000003008	ENSBTAP000000022355
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
---	----------------	-------------	--------------	-------------------	----------	-------------------	--		
molecular function regulator	Gene Ontology	GO:0098772	5	307	0.000901	0.035291	BTAP00000024275	ENSBTAP00000021092	
sensory perception of chemical stimulus	Gene Ontology	GO:0007606	3	78	0.00096	0.036324	ENSBTAP00000010295	ENSBTAP00000000084	ENSBTAP00000009631
embryonic appendage morphogenesis	Gene Ontology	GO:0035113	2	18	0.001026	0.036577	ENSBTAP000000026607	ENSBTAP00000000084	
metal ion binding	Gene Ontology	GO:0046872	7	657	0.001034	0.036577	ENSBTAP00000021092	ENSBTAP0000003821	ENSBTAP00000009636
amino acid transmembrane transport	Gene Ontology	GO:0003333	2	20	0.001243	0.042622	ENSBTAP00000023823	ENSBTAP00000010394	
cell migration	Gene	GO:0016477	4	198	0.001389	0.045127	ENSBTAP00000000084	ENSBTAP00000000084	
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input		
--	------------------------	-------------	--------------	-------------------	----------	------------------	--------------------------------		
stem cell population maintenance	Gene Ontology	GO:0019827	2	22	0.001481	0.045127	ENSBTAP00000021092	ENSBTA P000000028930	
immune receptor activity	Gene Ontology	GO:0140375	2	22	0.001481	0.045127	ENSBTAP00000056128	ENSBTA P00000001371	
histone methylation	Gene Ontology	GO:0016571	2	23	0.001607	0.047652	ENSBTAP00000055397	ENSBTA P00000055770	
Supplementary Table S5 Enrichment results of positively selected genes in ibex

Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input													
Signal Transduction	Reactome	R-HSA-162	16	2689	4.67E-06	0.00474170	ENSBTAP00000049857	ENSBTAP00000018302	ENSBTAP00000023466	ENSBTAP000000050887	ENSBTAP000000043341	ENSBTAP000000027416	ENSBTAP00000005797	ENSBTAP000000055893	ENSBTAP000000054961	ENSBTAP000000054706	ENSBTAP000000017057	ENSBTAP000000056282	ENSBTAP0000000547648	ENSBTAP00000024140
G alpha (s) signalling events	Reactome	R-HSA-418	7	536	2.84E-05	0.00982455	ENSBTAP00000049857	ENSBTAP00000023466	ENSBTAP000000050887	ENSBTAP000000043341	ENSBTAP000000050373	ENSBTAP000000054961	ENSBTAP0000000547648	ENSBTAP000000056282						
Olfactory Signaling Pathway	Reactome	R-HSA-381	6	393	4.71E-05	0.01223478	ENSBTAP00000023466	ENSBTAP000000050887	ENSBTAP000000043341	ENSBTAP000000050373	ENSBTAP000000054961	ENSBTAP000000056282								
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input													
---	----------	------------	--------------	-------------------	---------	------------------	--													
Signaling by Receptor Tyrosine Kinases	Reactome	R-HSA-900	6	458	0.00010803	0.01868955	ENSBTAP00000018302	ENSBTA P00000054706	ENSBTAP00000055893	ENSBTAP000000017057	ENSBTAP 00000024140									
ER to Golgi Anterograde Transport	Reactome	R-HSA-199	4	154	0.00013068	0.01937873	ENSBTAP00000040753	ENSBTA P00000004244	ENSBTAP00000054961	ENSBTAP 00000024140										
Assembly of collagen fibrils and other multimeric structures	Reactome	R-HSA-202	3	60	0.00015104	0.01959741	ENSBTAP00000015828	ENSBTA P00000018302	ENSBTAP00000017057											
Transport to the Golgi and subsequent modification	Reactome	R-HSA-948	4	185	0.00025935	0.02278378	ENSBTAP00000040753	ENSBTA P00000004244	ENSBTAP00000024140											
GPCR downstream signalling	Reactome	R-HSA-388	8	1108	0.00043532	0.03092901	ENSBTAP00000049857	ENSBTA P00000023466	ENSBTAP00000054961	ENSBTAP 000000054961										
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input													
-------------------------------	-----------	-----------	--------------	-------------------	-----------	------------------	--													
Collagen formation Reactome	R-HSA-147	4290	3	89	0.00046190	0.03092901	ENSBTAP00000015828	ENSBTA P000000018302	ENSBTAP00000017057											
Cell junction organization	R-HSA-446	728	3	90	0.00047674	0.03092901	ENSBTAP00000015083	ENSBTA P00000053549	ENSBTAP00000015828											
Nicotinamide salvaging Reactome	R-HSA-197	264	2	19	0.00053394	0.03260226	ENSBTAP00000007566	ENSBTA P00000029045												
Signaling by GPCR Reactome	R-HSA-372	790	8	1170	0.00062101	0.03392724	ENSBTAP00000049857	ENSBTA P00000023466	ENSBTAP00000050887											
Mitochondrial calcium ion transport	R-HSA-894	9215	2	23	0.00075959	0.03892686	ENSBTAP00000046086	ENSBTA P00000025606												
Supplementary Table S6 GO ontology enrichment for Ibex Positive Selection Genes

Term	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input							
sensory perception	Gene Ontology	GO:000760	4	145	0.000104244	0.018689559	ENSBTAP00000056282	ENSBTAP00000005544	ENSBTAP00000054961	ENSBTAP00000050887				
DNA catabolic process	Gene Ontology	GO:000630	2	11	0.000199992	0.022783787	ENSBTAP00000056176	ENSBTAP00000054477						
regulation of blood coagulation	Gene Ontology	GO:003019	3	12	0.000233079	0.022783787	ENSBTAP00000008190	ENSBTAP00000025122						
detection of chemical stimulus	Gene Ontology	GO:0005090	7	73	0.000263396	0.022783787	ENSBTAP00000043341	ENSBTAP00000054961	ENSBTAP00000050887					
involved in sensory perception	Gene Ontology	GO:005078	9	1778	0.000576837	0.033264293	ENSBTAP00000040660	ENSBTAP0000021815	ENSBTAP00000010864	ENSBTAP00000029045	ENSBTAP00000023165	ENSBTAP00000050373	ENSBTAP00000055450	ENSBTAP00000050564
I band	Gene	GO:003167	2	24	0.000822030	0.0389268552	ENSBTAP00000040660	ENSBTAP00000050564						

Ontology	Gene	GO:004322	4	8	63	0.00000004244	
intracellular organelle	Ontology	9	10	1863	0.00082503	0.0389268	
	ENSBTAP00000040660	ENSBTAP00000027497	ENSBTAP000000512	ENSBTAP000000016909	ENSBTAP00000025606	ENSBTAP0000000000000054706	
collagen metabolic process	Gene	GO:003296	3	2	27	0.001023697	0.0461999
	Ontology	9	9	84	84	ENSBTAP00000018302	ENSBTAP00000017057
Supplementary Table S7 Summary of candidate accelerated GO categories in goat and ibex lineages

Pathway ID	G-dNdS	I-dNdS	Group	Description
GO:0030545	0.34	0.18	Goat	mitochondrial protein complex
GO:0045787	0.31	0.26	Goat	lymphocyte mediated immunity
GO:0002683	0.31	0.20	Goat	receptor regulator activity
GO:0002696	0.31	0.19	Goat	antigen receptor-mediated signaling pathway
GO:0004518	0.30	0.28	Goat	spindle pole
GO:0006869	0.29	0.24	Goat	sensory perception of chemical stimulus
GO:0002684	0.26	0.19	Goat	positive regulation of cell cycle
GO:0009314	0.26	0.20	Goat	negative regulation of immune system process
GO:0001775	0.26	0.20	Goat	receptor-mediated endocytosis
GO:0003006	0.25	0.18	Goat	DNA biosynthetic process
GO:0016042	0.47	0.17	Goat	mitotic cell cycle checkpoint
GO:0045087	0.25	0.20	Goat	organelle outer membrane
GO:0046545	0.41	0.13	Goat	lipid transport
GO:0006974	0.23	0.20	Goat	hydrolase activity, acting on glycosyl bonds
GO:0030997	0.23	0.17	Goat	cytokine-mediated signaling pathway
GO:0006955	0.22	0.20	Goat	peptidase regulator activity
GO:0033554	0.20	0.16	Goat	monooxygenase activity
GO:0031982	0.19	0.15	Goat	detection of stimulus involved in sensory perception
GO:0002376	0.19	0.17	Goat	cellular component organization or biogenesis
GO:0070062	0.18	0.14	Goat	defense response to bacterium
GO:1903561	0.18	0.17	Goat	vacuolar membrane
GO:0034645	0.18	0.15	Goat	selective autophagy
GO:0043229	0.18	0.16	Goat	myeloid cell differentiation
GO:0071944	0.18	0.17	Goat	establishment of localization
GO:0099503	0.30	0.22	Goat	positive regulation of mitophagy
GO:0007165	0.17	0.16	Goat	response to radiation
GO:0050794	0.17	0.16	Goat	peptidase inhibitor activity
GO:0046879	0.27	0.10	Goat	protein C-terminus binding
GO:0010817	0.22	0.16	Goat	cell activation
GO:0031224	0.17	0.16	Goat	neurotransmitter transport
GO:0050851	0.34	0.35	Ibex	amino acid transport
GO:0006898	0.30	0.31	Ibex	mitotic nuclear division
GO:0030879	0.26	0.38	Ibex	glycosaminoglycan binding
GO:0050663	0.25	0.39	Ibex	fatty acid metabolic process
GO:0050727	0.24	0.33	Ibex	active ion transmembrane transporter activity
GO:0051656	0.24	0.29	Ibex	regulation of response to DNA damage stimulus
GO:0002250	0.23	0.30	Ibex	response to nutrient
GO:0031334	0.21	0.40	Ibex	small molecule catabolic process
GO:0051251	0.21	0.30	Ibex	response to other organism
Pathway ID	G-dNdS	I-dNdS	Group	Description
------------	--------	--------	-------	--
GO:0016072	0.21	0.44	Ibex	negative regulation of cell adhesion
GO:0006281	0.20	0.26	Ibex	regulation of membrane potential
GO:0006310	0.20	0.31	Ibex	cellular response to stress
GO:0051707	0.20	0.22	Ibex	nuclear envelope
GO:0002703	0.19	0.43	Ibex	regulation of transmembrane transport
GO:0038023	0.18	0.21	Ibex	cellular macromolecule biosynthetic process
GO:0060089	0.18	0.21	Ibex	guanyl-nucleotide exchange factor activity
GO:0016301	0.17	0.21	Ibex	response to biotic stimulus
GO:0009607	0.18	0.22	Ibex	RNA splicing, via transesterification reactions
GO:0098687	0.18	0.28	Ibex	regulation of cellular component size
GO:0006364	0.18	0.39	Ibex	cell adhesion
GO:0007186	0.20	0.26	Ibex	oxoacid metabolic process
GO:0051345	0.15	0.23	Ibex	cellular response to toxic substance
GO:0043167	0.16	0.17	Ibex	inorganic ion homeostasis
GO:0043233	0.16	0.18	Ibex	binding
GO:0042221	0.16	0.18	Ibex	non-membrane-bounded organelle
GO:0032561	0.16	0.30	Ibex	transition metal ion binding
GO:0007154	0.16	0.17	Ibex	negative regulation of cellular protein metabolic process
GO:0002831	0.20	0.32	Ibex	nucleoside phosphate binding
GO:0001816	0.20	0.27	Ibex	positive regulation of apoptotic process
GO:0022402	0.13	0.20	Ibex	detection of chemical stimulus
GO:0044706	0.12	0.29	Ibex	channel activity
GO:0008643	0.18	0.41	Ibex	embryo development ending in birth or egg hatching
Supplementary Table S8 Top 20 enrichment results for allele-specific expression genes in Reactome

Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	
Immune System	Reactome	R-HSA-16	8256	144	2096	1.24E-32	9.59E-29

Input:
- TNFRSF25
- LOC102168547
- AP1M1
- A1
- C5AR2
- SERPINB1
- B2M
- CALM1
- ACA1
- MIB2
- PYGB
- C7H1orf35
- IRAK3
- STK11
- UNKL
- LTA4H
- HK3
- CTSD
- SIGLEC10
- LY96
- CTSS
- SOS2
- IKBKB
- CRCP
- AKT1
- CXCL8
- KIF5B
- FCER2
- FBXL5
- VIM
- PTGES2
- TLR9
- ELMO2
- CD300E
- RASGRP1
- CL5
- NFKBIA
- MX2
- NCSTN
- IRS2
- TRIB3
- COSLG
- IFIT3
- TIRAP
- DGAT1
- ZBP1
- TRAF7
- FBXL12
- OSM
- LOC102186356
- PJA2
- RAB7A
- CSK
- TICAM2
- HERC1
- HERC6
- ANAPC1
- TPR3
- RHOA
- RPS6KA5
- IRF5
- LOC102171703
- TNFAIP6
- HMOX2
- TCIRG1
- CD14
- FXO30
- PPIA
- SIGIRR
- PPP2R5D
- BAIAP2
- CD3G
- LOC102184087
- NCF2
- NCF1
- PTX3
- LOC102183941
- AMPD3
- AR RB1
- DCTN2
- AREG
- IL9R
- STAT1
- ACTR10
- PGLYRP1
- FBXW8
- LOC102170640
- MARK3
- PML
- DUSP4
- MAPK8
- DUSP6
- BOL2
- ATP6V0B
- LOC102179713
- SH3RF1
- LTB
- FBXW2
- LOC102188986
- NUP500
- CDC42
- RBSN
- MAP2K1
- GLB1
- AGPAT2
- PRKACB
- NBEAL2
- MVP
- NCKAP1L
- CD55
- CD
| Terms | Database | ID | Input number | Backgroun d number | P-Value | Corrected P-Value | Input |
|-----------------------|----------|----------|--------------|-------------------|------------|-------------------|--|
| Innate Immune System | Reactome | R-HSA-16 | 89 | 1043 | 4.40E-26 | 1.70E-22 | LOC102168547|AP1M1|AGA|C5AR2|SE RPINB1|B2M|CALM1|CXCR1|PYGB|C7 H1orf35|IRAK3|STK11IP|LTA4H|HK3|CT SD|LY96|CTSS|KBK|CRCP|PTGES2|TLR9|ELMO2|CD300E|RASGRP1|NFkB IA|NCSTN|TIRAP|DGAT1|ZBP1|RA7A|ITPR3|RHOA|ACTR10|RPS6KA5|TNFA P6|HMOX2|TCIRG1|CD14|ITGAL|PPIA|SIGIRR|PPP2R5D|BAIAP2|CD3G|NCF2 |NCF1|LOC102183941|AMPD3|MAP2K1 |TICAM2|PTX3|DUSP4|MAPK8|DUSP6|ATP6V0B|CA|RBSN|PGLYRP1|GLB1|AGPAT2|PRKACB|NBEAL2|MVP|NCKA P1L|CD55|CD58|CD59|BIRC3|NLRC4|PLCG1|RIPK2|ATP11B|PGLYRP4|P2RX1
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|---|
| Neutrophil degranulation | Reactome | R-HSA-67 98695 | 51 | 478 | 4.79E-19 | 5.30E-16 | [ARHGAP45|ACAA1|NOD2|DPP7|RAC1|PRKCD|PLAU|LOC108633263|LOC102180421|LOC102178567|LOC102176691|CFD|MAP3K14|PLAC8|CMTM6 |
| Neutrophil degranulation | Reactome | R-HSA-14 30728 | 113 | 2075 | 4.44E-18 | 3.61E-15 | NQO2|AKT1|PYCR2|ASS1|CALM1|TIA2|M2|PYGB|NDUFA10|PYGM|FM02|HAL|TBXAS1|HMGCL|H3|TNFRSF21|GNP2|AT|CNDP2|INPP5A|INPP5B|INPP5E|AD|CY3|PTGES2|MMA8|LOC102189950|TNFAIP8L2|SLC7A5|SERINC3|TRIB3|URTCT1|DGAT1|LOC102169935|LOC102186759|RIDA|PNPLA2|TKT|PNPLA7|HNMT|SLC46A1|PARP4|NAXD|ITPR3|BLVR |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|-------|----------|----------|--------------|-------------------|---------|------------------|-------|
| | | | A|CSGALNACT2|UBE2I|GALK1|LOC106503208|HMOX2|NUBP2|BTLD|HS6ST1|PPP2R5D|LOC102183750|AMPD3|MBOAT7|HAAO|NCOR2|TMEM86B|SLC52A2|SACM1L|GPCPD1|NDUFA3|RPS29|ARSG|PRKAR1A|CHST15|IDUA|NUP50|CDA|ACOX3|LOC102181832|GSTM3|GSTZ1|SLC22A13|GLB1|PITPNM1|AGPA2|PRKACB|DECR2|SLC35D1|SPHK1|RPS10|BPGM|RPS19|NFYC|PLCG1|LOC102189751|ADPGK|GPD2|LTA4H|OPLAH|SLC37A1|PFKP|CRYL1|ACAA1|PDK2|NARFL|ST3GAL2|ST3GAL1|ESISRA|LOC102190167|CHST11|UPP1|INPP1|SAMHD1|LOC102176691|SLC16A3|PFKFB2|OA2Z2|PFKFB4|GNA15|LOC102189835|NDUFS6|SDHB | UNKL|NCF1|LOC102189932|LOC102168547|ACTR10|AP1M1|IKKB|ANAPC1|PLCG1|RIPK2|TRAFA7|TRIB3|DCTN2|BTN2A2|ICOSLG|ITGAL|TIRAP|TIPAR3|SH3RF1|MIB2|PPL|FBXW8|FBXL12|LOC102186356|MAP3K14|FBXW2|PJA2|LOC102183941|RAB7A|NFKBIA|CSK|RAC1 |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|------------------|----------|----|--------------|-------------------|---------|-------------------|---|
| CTSD|HERC1|LNPEP|LOC108633263 | SIGLEC10|HERC6|LY96|LOC10217856 | 7|CTSS|NCF2|LOC102188986|LOC10217695 | RASGRP1|AKT1|KIF5B|CALM1 | FBXL5|B2M|LOC102190927|CD14|FBXO30|PRKACB|PPP2R5D|CD3G|LOC1021703 | PPIA|CD300E |
| AHCTF1|WLS|C5AR2|AKT1|EEF2K|CA LM1|GRK6|ARHGEF7|RBPJ|GRK5|GRK3|MIB2|ARHGAP22|DOK1|ARHGAP27 | PLXND1|IGF1R|LOC108638461|CTSD|STK4|LOC102179758|IKKB|INPP5B|ADCY3|CXCL8|KIF5B|FCER2|F2R|GRB7 | GRB10|TLR9|ELMO2|LOC102189950 | RASGRP1|CCL5|ITGA2|NFKBIA|KAT2B | NCSTN|TRIB3|KREMEN1|SERPINE1|CKBR|ADORA2B|MAML2|MKL1|TIAM2 | ACVRL1|SIRT6|CSK|TPR3|RHOA|RPS6KA5|TAGAP|TCIRG1|PPP2R5D|BAIAP2|CCNK|TFDP2|NCF2|NCF1|RFXP4|CC R3|LOC102180576|CTNND1|ARRB1|CBX6|NCOR2|AREG|STAT1|ADAP1|MAR K3|PML|DUSP4|MAPK8|DUSP6|ATP6V0B|FGD4|DAGLB|LOC102185066|OTUL |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|-------|----------|----|--------------|------------------|---------|------------------|-------|
| Metabolism of proteins | Reactome | R-HSA-39 2499 | 96 | 2012 | 3.25E-12 | 8.67E-10 | RPN1|CPM|LOC102168547|B2M|USP2 4|USP22|CALM1|EIF3E|CUL9|COG2|WIP1|CTSD|LOC102173518|LOC1021797 58| RNF185|CXCL8|KIF5B|FBXL5|KDEL R2|FOXK1|NFKBIA|KAT2B|NCSTN|ARF GAP2|ADORA2B|MKL1|TULP4|DERL1|FBXL12|TOP2B|RA B7A|TARS2|ROHA|UBE2I|LOC102184009|ITM2B|FBXO30|ST8SIA4|LOC102182048|UBE2T|MTRF 1L|EIF2B2|CARS2|ARRB1|DCTN2|POF UT2|NCOR2|AREG|RAB8A|PNPLA2|AC TR10|FBXW8|PML|RAB13|CD59|OTTULI N|MRPS18A|YKT6|LOC102169730|ST3 GAL1|GOLM1|FBXW2|NUP50|GALNT1 0|ERO1B|GLB1|RNF144A|SPHK1|RPS1 |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|--------------------------------------|----------|-------------|--------------|-------------------|----------------|-------------------|---|
| Signaling by Receptor Tyrosine Kinases | Reactome | R-HSA-90 | 37 | 458 | 6.99E-11 | 1.13E-08 | NCF2|NCF1|NCKAP1L|ITGA2|SPHK1|NSTN|AKT1|PLCG1|CTNN1|TRIB3|AD|CYAP1R1|AREG|STAT1|CALM1|ARHG|EF7|ADAP1|PXN|DUSP4|DUSP6|ATP6V0B|IGF1R|CSK|RAC1|PRKCD|FES|ITPR3|RHOA|RPS6KA5|GRB10|IRS2|TCIRG1|GRB7|PRKACB|PPP2R5D|BAIAP2|TLR9|ELMO2 |
| Cytokine Signaling in Immune system | Reactome | R-HSA-12 | 52 | 836 | 9.56E-11 | 1.45E-08 | RASGRP1|LOC102168547|CCL5|TRIB3|BIRC3|IKBKB|AKT1|PLCG1|RIPK2|ARB1|TLR9|IFIT3|AREG|B2M|STAT1|CALM1|ARHG|EF7|ADAP1|PXN|DUSP4|DUSP6|ATP6V0B|IGF1R|CSK|RAC1|PRKCD|FES|ITPR3|RHOA|RPS6KA5|GRB10|IRS2|TCIRG1|GRB7|PRKACB|PPP2R5D|BAIAP2|TLR9|ELMO2 |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|------------------------------|----------|-------------|--------------|-------------------|-----------|------------------|--------------------------------|
| Hemostasis | Reactome | R-HSA-10 | 43 | 617 | 1.63E-10 | 2.25E-08 | 2R5D|IL9R|LOC102184087|PPIA |
| | | 9582 | | | | | RASGRP1|EHDP|CD58|SLC7A5|ITGA6|AKT1|PLCG1|DOCK9|KIF5B|CD2|ARRB1|P2RX1|P2RX5|SERPINE1|CALM1|SLC8A1|CABLES2|ITGA2|PRKCH|DAGLB|CSK|RAC1|PRKCD|PLAU|LOC102180421|LOC102169725|RHOA|PLEK|ATP2B4|AKAP1|RBSN|CFD|F2R|GNA15|ITGAL|GRB7|PRKAC|PPP2R5D|LOC102189950|SLC16A3|PPIA|PRKAR1A| |
| Toll-like Receptor Cascades | Reactome | R-HSA-16 | 21 | 154 | 2.23E-10 | 2.97E-08 | TICAM2|CTSS|NFKBIA|RPS6KA5|TLR9|TIRAP|RBSN|BIRC3|MAP2K1|IKBKB|LY96|CD14|RIPK2|LOC108633263|SIGIR|NOD2|PPP2R5D|IRAK3|MAPK8|DUSP6|DUSP4| |
| VEGFA-VEGFR2 Pathway | Reactome | R-HSA-44 | 17 | 97 | 3.84E-10 | 4.50E-08 | NCF2|NCF1|NCKAP1L|CALM1|ITPR3|RAC1|PRKCD|SPHK1|AKT1|PLCG1|PRKAC|PXN|CTNND1|TRIB3|BAIAP2|RHOA|ELMO2| |
| Signaling by VEGF | Reactome | R-HSA-19 | 17 | 106 | 1.28E-09 | 1.31E-07 | NCF2|NCF1|NCKAP1L|CALM1|ITPR3|RAC1|PRKCD|SPHK1|AKT1|PLCG1|PRKAC|PXN|CTNND1|TRIB3|BAIAP2|RHOA|ELMO2| |
| Disease | Reactome | R-HSA-16 | 57 | 1049 | 1.43E-09 | 1.44E-07 | RPS10|LOC102168547|TRAK1|AP1M1| |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|--------------------------|----------|-----|--------------|-------------------|----------|-------------------|--|
| KAT2B|NCSTN|IKBKB|AKT1|PLCG1|IR S2|CTNND1|ARRB1|KREMEM1|OPLAH|AREG|UBAP1|MAML2|STAT1|TIRAP|R BPJ|MIB2|NCOR2|DERL1|FAM114A2|M ARK3|B2M|RPS19|NFKBIA|TBXAS1|CSK|RAC1|CLCN6|RPS29|LOC108633263|GTF2E2|LY96|LOC102190167|IDUA|FG FR1|VAMP1|NUP50|GALK1|RNF185|LOC106503208|SYT2|CALM1|MAP2K1|GL B1|CTDP1|BDT|CD14|PPP2R5D|SLC35 D1|MMAB|LOC102182048|PPIA|CCNK |
| Post-translational protein modification | Reactome | R-HSA-59 7592 | 69 | 1412 | 1.79E-09 | 1.71E-07 | RPN1|ST8SIA4|RAB7A|CPM|FOXK1|CD55|USP3|BIRC3|KAT2B|OTULIN|RIPK2|ARFGAP2|ARRB1|DCTN2|DERL1|USP24|OTUB1|NCOR2|AREG|RAB8A|FBXO30|CALM1|POFUT2|ACTR10|LOC102 184572|MKL1|TULP4|USP22|TGOLN2|PNPLA2|FBXL12|CUL9|NOD2|PML|MBD1|RAB13|FEM1B|FEM1A|ST3GAL2|PIGB|CD59|TTLL1|ST3GAL5|FBXW8|RH OA|COG2|DCAF4|YKT6|ST3GAL1|LOC102173518|ARSG|GOLM1|LOC102179758|FBXW2|UBE2|NUP50|GALNT1|DPH7|RNF185|TOP2B|LOC102184009|FB |
| Terms | Database | ID | Input number | Background number | P-Value | Corrected P-Value | Input |
|-------|----------|----------|--------------|-------------------|----------|-------------------|-------|
| Toll Like Receptor TLR6:TLR2 Cascade | Reactome | R-HSA-16 8188 | 16 | 95 | 2.09E-09 | 1.96E-07 | XL5|GLB1|MGAT4A|NFKBIA|RNF144A|KDEL2|LOC102182048|UBE2T |
| MyD88:MAP L(TIRAP) cascade initiated on plasma membrane | Reactome | R-HSA-16 6058 | 16 | 95 | 2.09E-09 | 1.96E-07 | RPS6KA5|TIRAP|NFKBIA|MAP2K1|IKBKB|LY96|CD14|RIPK2|LOC108633263|SIGIRR|NOD2|PPP2R5D|IRAK3|MAPK8|DUSP6|DUSP4 |
| Toll Like Receptor 4 (TLR4) Cascade | Reactome | R-HSA-16 6016 | 18 | 128 | 2.76E-09 | 2.46E-07 | TICAM2|RPS6KA5|TIRAP|NFKBIA|BIRC3|MAP2K1|IKBKB|LY96|CD14|RIPK2|LOC108633263|SIGIRR|NOD2|PPP2R5D|IRAK3|MAPK8|DUSP6|DUSP4 |
| Toll Like Receptor 2 (TLR2) Cascade | Reactome | R-HSA-18 1438 | 16 | 98 | 3.12E-09 | 2.72E-07 | RPS6KA5|TIRAP|NFKBIA|MAP2K1|IKBKB|LY96|CD14|RIPK2|LOC108633263|SIGIRR|NOD2|PPP2R5D|IRAK3|MAPK8|DUSP6|DUSP4 |
| Toll Like Receptor TLR1:TLR2 Cascade | Reactome | R-HSA-16 8179 | 16 | 98 | 3.12E-09 | 2.72E-07 | RPS6KA5|TIRAP|NFKBIA|MAP2K1|IKBKB|LY96|CD14|RIPK2|LOC108633263|SIGIRR|NOD2|PPP2R5D|IRAK3|MAPK8|DUSP6|DUSP4 |
Supplementary Table S9 Top 20 enrichment results for alternative splicing genes in Reactome

Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
Immune System	Reactome	R-HSA-168 256	91	2096	9.91E-19	6.28E-15	UBE2Q2	TNFRSF25	IKBKB	PTK2B	IKBKE	LOC102186637	PECAM1	DYNLT1	MIB2	CUL7	IRAK4	HK3	SEC24D	SIGLEC10	PLD4	CXCL8	KIF5B	TARM1	ADAM8	CYLD	LOC102175896	LOC102189890	RNF213	EV	UBE2D4	CD209	LAIR1	TIRAP	MGAM	PIK3R2	LOC102186356	SURF4	GHDC	PKM	IL4R	ASB3	UBA7	HERC5	ITPR2	ANAPC2	RHO F	ITGAX	IRF1	ABCE1	ZNRF1	UBE2O	IRF4	UBE2F	ITGAM	RNF125	CD19	LOC102169209	RAF1	STAT6	PELI1	STAT1	RACGAP1	TIGAT2B	MAPK9	RAB14	AREL1	IRF3	SH3RF1	UNC13D	LOC102178529	FLT3LG	UBE2V1	CLEC6A	NEAL2	LOC102175938	TOM1	BIRC3	PLCG2	MAP2K1	BIN2	FYB	FYN	ACAA1	NRG1	LOC102188617	CRACR2A	CD44	TPP2	GALNS	LOC102180421	LOC102186814	LOC102176695	RAB24	VCN1	CASP9	ADAR
Innate Immune	Reactome	R-HSA-168 249	55	1043	8.13E-15	6.43E-12	LOC102169209	RAB14	HK3	FYN	BIRC3	IKBKB	CD209	TARM1	LAIR1	IKBKE																																																																																	
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
------------	----------	-------------	--------------	-------------------	-----------	------------------	--																																																																																										
System							E	RAF1	IRF3	BIN2	STAT6	PELI1	LOC102175938	TIRAP	MGAM	DYNLT1	AC AA1	PIK3R2	TOM1	MAPK9	LOC102188617	SURF4	IRAK4	CRACR2A	TGAX	PECAM1	CD44	GALNS	GHDC	UBA7	UNC13D	HERC5	LOC102180421	LOC102189890	ITPR2	UBE2V1	RHOF	PL D4	LOC102178529	RAB24	PLCG2	HV CN1	MAP2K1	ADAM8	CASP9	CYLD	ITGAM	CLEC6A	RNF125	PKM	NBEAL2	CD19																																													
Metabolism	Reactome	R-HSA-143 0728	80	2075	7.94E-14	5.59E-11	PNPLA7	BPGM	PGS1	NADSYN1	ACO X3	MOC5S2	LOC102183750	LOC102189751	SGMS1	SCAP	SUOX	NR1H3	ML X	ST3GAL6	LOC102170668	PCYT2	L HPP	OGDH	LOC102169935	CIAPlN1	LOC102186759	OPLAH	ALAS1	ACA A1	RPE	PIK3R2	HK3	MED14	MTHFD1	CAD	MTM3R3	RAB14	PNPLA6	GALT	S T3GAL1	TPMT	RAB5A	MIGA2	PIKFYVE	GNB5	CD44	MED31	GALNS	KDSR	GYS1	SEC24D	CPTP	GU K1	PUDP	EC I1	PIK3R5	ITPR2	TBL1X	CHST3	RTEL1	TSPO	HSD17B4	PHYH	PLD4	PLA2																															
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
------------------------------	------------	----------	--------------	-------------------	-----------	-------------------	---																																																																																										
Adaptive Immune System	Reactome	R-HSA-128 0218	38	748	3.65E-10	1.16E-07	G15	CA9	ARSG	SDSL	INPP5E	NAXD	UCKL1	ACAD8	LOC106503208	OSBP L5	PLCG2	ACSL5	NUBP2	MTF1	PDK3	DTYMK	PITPNM2	INPP5B	MMAB	OSBP	SLC19A1																																																																						
Metabolism of lipids	Reactome	R-HSA-556 833	37	728	6.19E-10	1.70E-07	SGMS1	PGS1	SCAP	PNPLA6	LOC102186759	ACAA1	ALAS1	PIK3R5	PNPLA7	PIK3R2	MED14	OSBPL5	MTMR3	RAB14	NR1H3	MED31	RAB5A	MIGA2	PKFNYE	CPTP	PCYT2	SEC24D	HSD17B4	TSPO	PHYH	PLD4	PLA2G15	KDS R	ARSG	TBL1X	INPP5E	MTF1	ACOX3	ACSL5	EC1	PITPNM2	OSBP																																																						
Neutrophil degranulation	Reactome	R-HSA-679 8695	29	478	1.11E-09	2.61E-07	LOC102175938	TOM1	TARM1	LAIR1	BIN2	PECAM1	MGAM	DYNLT1	ACAA																																																																																		
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
-----------------------	----------	-------------	--------------	-------------------	-----------	-------------------	--																																																																																										
on							1	CD44	LOC102188617	SURF4	GHDC	PKM	HK3	GALNS	UNC13D	LOC102189890	RHOF	ITGAX	LOC102178529	RAB24	HVCN1	ADAM8	RAB14	ITGAM	CRACR2A	NBEAL2																																																																							
Disease	Reactome	R-HSA-164	42	1049	3.39E-08	4.57E-06	HDAC9	IKK	MPRIP	MAP2K1	SLC29A3	ADAMTS14	MPDU1	PMM2	RAF1	OPLAH	EPS15	GTF2E2	STAT1	TIRAP	ITGA2B	FYN	MIB2	THBS1	PIK3R2	SV2A	IRAK4	GALT	TGFB1	APH1B	TPM2	GALNS	GYS1	NRG1	TSC2	CHST3	LOC102175896	TBL1X	MYO18A	TPBA	KAP9	CASP9	LOC106503208	POMT1	APC	NTHL1	MMAB	CD19																																																	
Class I MHC mediated antigen processing & presentation	Reactome	R-HSA-983	22	370	1.58E-07	1.77E-05	UBE2Q2	LOC102175938	UBE2D4	IKKB	LOC102186637	ASB3	TIRAP	MIB2	CUL7	LOC102188617	AREL1	SH3RF1	TPP2	SEC24D	HERC5	UBE2V1	ANAPC2	ZNRF1	UBE2O	UBA7	UBE2F	RFN213																																																																					
Metabolism of proteins	Reactome	R-HSA-392	62	2012	2.15E-07	2.18E-05	ERCC8	UBE2Q2	MTRF1L	BIRC3	ST3GAL1	CALU	PMM2	TRAM1	ADAMTS1																																																																																		
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
-----------------------	----------	--------	--------------	-------------------	-------------	-------------------	--																																																																																										
Hemostasis	Reactome	R-HSA-109	29	617	2.17E-07	2.18E-05	MPDU1	IKBKE	SEC16A	EXOSC3	U SP25	LOC102186637	APH1B	ST6GAL NAC4	ZBTB17	PIAS3	COMMD7	THBS1	MRPL55	AMHD2	CUL9	DDB2	AAR S2	CUL7	RAB14	TTL5	DGP2	TGFBR 1	RAB5A	ST3GAL6	ASB3	GNB5	COG 2	LARGE2	LOC102186814	GGA1	SEC 24D	GGA3	PCGF2	MYSM1	USP19	NF RKB	USP37	EXOC2	PTRH2	ARSG	RA B24	B3GALNT2	CXCL8	KIF5B	DAP3	UBE2F	RABGGTB	METTL22	CYLD	RF NF144A	POMT1	APC	HLTF																																						
Phospholipid metabolism	Reactome	R-HSA-148	16	212	4.19E-07	3.64E-05	ATP2A3	ZFP21	ECM1	PLCG2	RAF1	DGKZ	PECAM1	RACGAP1	IT GA2B	FYN	CD84	THBS1	DOK2	PIK3R 5	PIK3R2	DAGLB	RAB5A	GNB5	CD44	FERMT3	LOC102184021	TMX3	ITPR 2	ITGAX	IRF1	KIF5B	CALU	ITGAM																																																															
Post-translational	Reactome	R-HSA-597	47	1412	9.28E-07	6.83E-05	ERCC8	UBE2Q2	BIRC3	ST3GAL1	AD AMTS14	MPDU1	IKBKE	PMM2	SEC16																																																																																		
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
-----------------------------	----------	----------	--------------	-------------------	---------------	------------------	---																																																																																										
protein modification							A	USP25	LOC102186637	ASB3	ST6G ALNAC4	PIAS3	COMMD7	THBS1	AM DHD2	CUL9	DDB2	CUL7	RAB14	TTLL 5	TGFB1	RAB5A	ST3GAL6	COG2	LARGE2	LOC102186814	SEC24D	PCG F2	MYSM1	USP19	NFRKB	USP37	PT RH2	ARSG	RAB24	B3GALNT2	CALU	UBE2F	RABGGTB	METTL22	CYLD	R NF144A	POMT1	APC	HLTF																																																				
Toll Like Receptor 4 (TLR4)	Reactome	R-HSA-166 016	12	128	1.46E-06	9.42E-05	IRF3	PELI1	TIRAP	BIRC3	IKBK	PLCG2	M APK9	IRAK4																																																																																			
DNA Repair	Reactome	R-HSA-738 94	19	331	1.80E-06	0.0001096	ERCC8	SPIDR	RTEL1	SIRT6	SPRTN	ACD	PNKP	ERCC5	TERF2	UBA7	PAS3	DDB2	ATR	NTHL1	POLL	NFRKB	P OLM	LOC102186637	UVSSA																																																																								
Gene expression (Transcript	Reactome	R-HSA-741 60	47	1448	1.80E-06	0.0001096	HDAC9	MTERF1	LOC102189751	GTF 3C5	LOC102180305	TSC2	SAP130	C DC7	LOC102170668	GTF2E2	INTS10	STAT1	POLDIP3	TGA2B	LOC102170 775	THBS1	BRPF1	CNOT8	MED14	ZF P69	ZNF263	DDB2	PRELID3A	ZNF66 4	KMT2C	TCF7	ZFP1	M1	TFAM	BANP	T																																																												
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
--	-----------	----------	--------------	-------------------	-------------	-------------------	--																																																																																										
Diseases of signal transduction	Reactome	R-HSA-566	20	374	2.69E-06	0.0001533	CF3	MED31	ZNF446	SNAPC4	PHF20	MGA	PCGF2	TBL1X	TBP	RABGGTB	ATR	HTT	PRDM1	FAS	ZN500	PLAGL1	ZNF394	PHF1																																																																									
Platelet activation, signaling and aggregation	Reactome	R-HSA-760	16	260	5.08E-06	0.0002594	APH1B	TGFBR1	TBL1X	STAT1	M1O1	8A	HDAC9	ITGA2B	FYN	AKAP9	MIB2	CASP9	MPRIP	MAP2K1	PIK3R2	RAF1	NRG1	APC	LOC102175896	TSC2	CD19																																																																						
Toll-like Receptor Cascades	Reactome	R-HSA-168	12	154	8.57E-06	0.0003885	IRF3	PELI1	TIRAP	BIRC3	IKKB	PLCG2	M2K1	ITGAM	IKBKE	UBE2V1	MAP9	RAK4																																																																															
Centrosome maturation	Reactome	R-HSA-380	9	81	8.57E-06	0.0003885	CEP164	SF11	AKAP9	CEP192	HAUS3	LOC102188159	PCNT	CDK5RAP2	TUBGCP2																																																																																		
Recruitment of mitotic centrosome	Reactome	R-HSA-380	9	81	8.57E-06	0.0003885	CEP164	SF11	AKAP9	CEP192	HAUS3	LOC102188159	PCNT	CDK5RAP2	TUBGCP2																																																																																		
Terms	Database	ID	Input number	Background number	P-Value	Corrected P-Value	Input																																																																																										
---------------------------	----------	----	--------------	--------------------	---------	-------------------	-------																																																																																										
e proteins and complexes																																																																																																	

Supplementary Table S10 Overlap between TLR-cascade (map04620) and ASEGs/ASSGs

Types	Genes
ASEGs	CXCL8, MAP2K1, IKBKB, MAPK8, IRF5, NFKBIA, CD14, RAC1, LY96, TIRAP, CCL5, STAT1, TICAM2, TLR9
ASSGs	TIRAP, IRAK4, IKBKB, IRF3, IKBKE, STAT1, CD40, CXCL8, MAP2K1
REFERENCES

Ba ANN, Pogoutse A, Provart N, Moses AM. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. *BMC Bioinformatics*, 10: 202.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15): 2144–2146.

Cao YH, Xu H, Li R, Gao S, Chen NB, Luo J, et al. 2019. Genetic basis of phenotypic differences between chinese yunling black goats and nubian goats revealed by allele-specific expression in their F1 hybrids. *Frontiers in Genetics*, 10: 145.

Chen L, Qiu Q, Jiang Y, Wang K, Lin ZS, Li ZP, et al. 2019. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. *Science*, 364(6446): eaav6202.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1): 15–21.

Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. *Nucleic Acids Research*, 46(1): D493–D496.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv: 1303.3997.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9): 1297–1303.

Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, et al. 2012. The yak genome and adaptation to life at high altitude. *Nature Genetics*, 44(8): 946–949.

Shen SH, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. *Proceedings of the National Academy of Sciences of the United States of America*, 111(51): E5593–E5601.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology*, 28(5): 511–515.

Wang K, Li MY, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Research*, 38(16): e164.

Wang X, Miller DC, Harman R, Antczak DF, Clark AG. 2013. Paternally expressed genes predominate in the placenta. *Proceedings of the National Academy of Sciences of the United States of America*, 110(26): 10705–10710.

Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*, 24(8): 1586–1591.

Zheng ZQ, Wang XH, Li M, Li YJ, Yang ZR, Wang XL, et al. 2020. The origin of domestication genes in goats. *Science Advances*, 6(21): eaaz5216.