Multi-Agent Reinforcement Learning for Traffic Signal Control through Universal Communication Method

Qize Jiang\(^1\).2,.3, Minhao Qin\(^1\).2,.3, Shengmin Sh\(^1\).2,.3, Weiwei Sun\(^1\).2,.3 and Baihua Zheng\(^4\)

\(^1\)School of Computer Science, Fudan University
\(^2\)Shanghai Key Laboratory of Data Science, Fudan University
\(^3\)Shanghai Institute of Intelligent Electronics & Systems
\(^4\)School of Computing and Information Systems, Singapore Management University

\{qzjiang21,mhqin21\}@m.fudan.edu.cn, \{cmshi20,wwsun\}@fudan.edu.cn, bhzheng@smu.edu.sg

Abstract

How to coordinate the communication among intersections effectively in real complex traffic scenarios with multi-intersection is challenging. Existing approaches only enable the communication in a heuristic manner without considering the content/importance of information to be shared. In this paper, we propose a universal communication form UniComm between intersections. UniComm embeds massive observations collected at one agent into crucial predictions of their impact on its neighbors, which improves the communication efficiency and is universal across existing methods. We also propose a concise network UniLight to make full use of communications enabled by UniComm. Experimental results on real datasets demonstrate that UniComm universally improves the performance of existing state-of-the-art methods, and UniLight significantly outperforms existing methods on a wide range of traffic situations. Source codes are available at https://github.com/zyr17/UniLight.

1 Introduction

Traffic congestion is a major problem in modern cities. While the use of traffic signal mitigates the congestion to a certain extent, most traffic signals are controlled by timers. Timer-based systems are simple, but their performance might deteriorate at intersections with inconsistent traffic volume. Thus, an adaptive traffic signal control method, especially controlling multiple intersections simultaneously, is required.

Existing conventional methods, such as SOTL [Cools et al., 2013], use observations of intersections to form better strategies, but they do not consider long-term effects of different signals and lack a proper coordination among intersections. Recently, reinforcement learning (RL) methods have showed promising performance in controlling traffic signals. Some of them achieve good performance in controlling traffic signals at a single intersection [Zheng et al., 2019a; Oroojlooy et al., 2020]; others focus on collaboration of multi-intersections [Wei et al., 2019b; Chen et al., 2020].

Multi-intersection traffic signal control is a typical multi-agent reinforcement learning problem. The main challenges include stability, nonstationarity, and curse of dimensionality. Independent Q-learning splits the state-action value function into independent tasks performed by individual agents to solve the curse of dimensionality. However, given a dynamic environment that is common as agents may change their policies simultaneously, the learning process could be unstable.

To enable the sharing of information among agents, a proper communication mechanism is required. This is critical as it determines the content/amount of the information each agent can observe and learn from its neighboring agents, which directly impacts the amount of uncertainty that can be reduced. Common approaches include enabling the neighboring agents (i) to exchange their information with each other and use the partial observations directly during the learning [El-Tantawy et al., 2013], or (ii) to share hidden states as the information [Wei et al., 2019b; Yu et al., 2020]. While enabling communication is important to stabilize the training process, existing methods have not yet examined the impact of the content/amount of the shared information. For example, when each agent shares more information with other agents, the network needs to manage a larger number of parameters and hence converges in a slower speed, which actually reduces the stability. As reported in [Zheng et al., 2019b], additional information does not always lead to better results. Consequently, it is very important to select the right information for sharing.

Motivated by the deficiency in the current communication mechanism adopted by existing methods, we propose a universal communication form UniComm. To facilitate the understanding of UniComm, let’s consider two neighboring intersections \(I_i\) and \(I_j\) connected by a unidirectional road \(R_{i,j}\) from \(I_i\) to \(I_j\). If vehicles in \(I_i\) impact \(I_j\), they have to first pass through \(I_i\) and then follow \(R_{i,j}\) to reach \(I_j\). This observation inspires us to propose UniComm, which picks relevant observations from an agent \(I_i\) who manages \(I_i\), predicts their impacts on road \(R_{i,j}\), and only shares the prediction with its neighboring agent \(I_j\) that manages \(I_j\). We conduct a theoretical analysis to confirm that UniComm does pass the most important information to each intersection.

While UniComm addresses the inefficiency of the current communication mechanism, its strength might not be fully achieved by existing methods, whose network structures are designed independent of UniComm. We therefore design UniLight, a concise network structure based on the observa-
tions made by an intersection and the information shared by UniComm. It predicts the Q-value function of every action based on the importance of different traffic movements.

In brief, we make three main contributions in this paper. Firstly, we propose a universal communication form UniComm in multi-intersection traffic signal control problem, with its effectiveness supported by a thorough theoretical analysis. Secondly, we propose a traffic movement importance based network UniLight to make full use of observations and UniComm. Thirdly, we conduct experiments to demonstrate that UniComm is universal for all existing methods, and UniLight can achieve superior performance on not only simple but also complicated traffic situations.

2 Related Works

Based on the number of intersections considered, traffic signal control problem (TSC) can be clustered into i) single intersection traffic signal control (S-TSC) and ii) multi-intersection traffic signal control (M-TSC).

S-TSC. S-TSC is a sub-problem of M-TSC, as decentralized multi-agent TSC is widely used. Conventional methods like SOTL choose the next phase by current vehicle volumes with limited flexibility. As TSC could be modelled as a Markov Decision Process (MDP), many recent methods adopt reinforcement learning (RL) [van Hasselt et al., 2016; Mnih et al., 2016; Haarnoja et al., 2018; Ault et al., 2020]. In RL, agents interact with the environment and take rewards from the environment, and different algorithms are proposed to learn a policy that maximizes the expected cumulative reward received from the environment. Many algorithms [Zheng et al., 2019a; Zang et al., 2020; Oroojlooy et al., 2020] perform well for S-TSC. Their performance at M-TSC is not stable, as they suffer from a poor generalizability and their models are hard to train.

M-TSC. Conventional methods for M-TSC mainly coordinate different traffic signals by changing their offsets, which only works for a few pre-defined directions and has low efficiency. When adapting RL based methods from single intersection to multi-intersections, we can treat every intersection as an independent agent. However, due to the unstable and dynamic nature of the environment, the learning process is hard to converge [Bishop, 2006; Nowé et al., 2012]. Many methods have been proposed to speedup the convergence, including parameter sharing and approaches that design different rewards to contain neighboring information [Chen et al., 2020]. Agents can also communicate with their neighboring agents via either direct or indirect communication. The former is simple but results in a very large observation space [El-Tantawy et al., 2013; Arel et al., 2010]. The latter relies on the learned hidden states and many different methods [Nishi et al., 2018; Wei et al., 2019b; Chen et al., 2020] have been proposed to facilitate a better generation of hidden states and a more cooperative communication among agents. While many methods show good performance in experiments, their communication is mainly based on hidden states extracted from neighboring intersections. They neither examine the content/importance of the information, nor consider what is the key information that has to be passed from an agent to a neighboring agent. This makes the learning process of hidden states more difficult, and models may fail to learn a reasonable result when the environment is complicated. Our objective is to develop a communication mechanism that has a solid theoretical foundation and meanwhile is able to achieve a good performance.

3 Problem Definition

We consider M-TSC as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [Oliehoek et al., 2016], which can be described as a tuple \(G = (S, A, P, r, Z, O, N, \gamma) \). Let \(s \in S \) indicate the current true state of the environment. Each agent \(i \in \mathcal{N} := 1, \cdots, N \) chooses an action \(a_i \in \mathcal{A} \), with \(\mathcal{A} := \{a_1, \cdots, a_N\} \) referring to the joint action vector formed. The joint action then transits the current state \(s \) to another state \(s' \), according to the state transition function \(P(s' | s, a) : \mathcal{S} \times \mathcal{A}^N \times \mathcal{S} \rightarrow [0, 1] \).

The environment gets the joint reward by reward function \(r(s, a) : \mathcal{S} \times \mathcal{A}^N \rightarrow \mathbb{R} \). Each agent \(i \) can only get partial observation \(z \in Z \) according to the observation function \(O(s, i) : \mathcal{S} \times i \rightarrow Z \). The objective of all agents is to maximize the cumulative joint reward \(\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \), where \(\gamma \in [0, 1] \) is the discount factor.

Following CoLight [Wei et al., 2019b] and MPLight [Chen et al., 2020], we define M-TSC in Problem 1. We plot the schematic of two adjacent 4-arm intersections in Figure 1 to facilitate the understanding of following definitions.

Definition 1. An intersection \(I_1 \in \mathcal{T} \) refers to the start or the end of a road. If an intersection has more than two approaching roads, it is a real intersection \(I_1^{RN} \in \mathcal{T} \) as it has a traffic signal. We assume that no intersection has exactly two approaching roads, as both approaching roads have only one outgoing direction and the intersection could be removed by connecting two roads into one. If the intersection has exactly one approaching road, it is a virtual intersection \(I_1^V \in \mathcal{T}^V \), which usually refers to the border intersections of the environment, such as \(I_2 \) to \(I_1 \) in Figure 1. The neighboring intersections \(\mathcal{I} \) of \(I_1 \) is defined as \(\mathcal{I} = \{I_1\} \cup \{I_j|\forall I_j \in \mathcal{R}\} \), where roads \(R_{i,j} \) and \(\mathcal{R} \) are defined in Definition 2.

Definition 2. A Road \(R_{i,j} \in \mathcal{R} \) is a unidirectional edge from intersection \(i \) to another intersection \(j \). \(\mathcal{R} \) is the set of all valid roads. We assume each road has multiple lanes, and each lane belongs to exactly one traffic movement, which is defined in Definition 3.

Definition 3. A traffic movement \(T_{x,y} \) is defined as the traffic movement travelling across \(I_1 \) from entering lanes on road \(R_{i,j} \) to exiting lanes on road \(R_{i,y} \). For a 4-arm intersection, there are 12 traffic movements. We define the set of traffic movements passing \(I_1 \) as \(\mathcal{T} = \{T_{x,y}|x, y \in \mathcal{I} \} \), represented by orange dashed lines in Figure 1 are two example traffic movements.

Definition 4. A vehicle route is defined as a sequence of roads \(V \) with a start time \(e \in \mathbb{R} \) that refers to the time when the vehicle enters the environment. Road sequence \(V = (R^e, R^{e+1}, \cdots, R^n) \), with a traffic movement \(T \) from \(R^e \) to \(R^{e+1} \) for every \(e \). We assume that all vehicle
routes start from/end in virtual intersections. \mathcal{V} is the set of all valid vehicle routes. V_0 in Figure 1 is one example.

Definition 5. A traffic signal phase P_i is defined as a set of permissible traffic movements at I_i. The bottom of Figure 1 shows eight phases. A_i denotes the complete set of phases at I_i, i.e., the action space for the agent of I_i.

Problem 1. In multi-intersection traffic signal control (M-TSC), the environment consists of intersections \mathcal{I}, roads \mathcal{R}, and vehicle routes \mathcal{V}. Each real intersection $I_i \in \mathcal{I}$ is controlled by an agent A_i. Agents perform actions between time interval Δt based on their policies π_i. At time step t, A_i views part of the environment z_i as its observation, and tries to take an optimal action $a_i \in A_i$ (i.e., a phase to set next) that can maximize the cumulative joint reward r.

As we define the M-TSC problem as a Dec-POMDP problem, we have the following RL environment settings.

True state s and partial observation z. At time step $t \in \mathbb{N}$, agent A_i has the partial observation $z_i^t \subset s^t$, which contains the average number of vehicles $n_{x,i,y}$ following traffic movement $T_{x,i,y} \subset \mathcal{T}_i$ and the current phase P_i^t.

Action a. After receiving the partial observation z_i^t, agent A_i chooses an action a_i^t from its candidate action set A_i corresponding to a phase in next Δt time. If the activated phase P_i^{t+1} is different from current phase P_i^t, a short-all-red phase will be added to avoid collision.

Joint reward r. In M-TSC, we want to minimize the average travel time, which is hard to optimize directly, so some alternative metrics are chosen as immediate rewards. In this paper, we set the joint reward $r^t = \sum_{I_i \in \mathcal{I}} r_i^t$, where $r_i^t = -r_{x,i,y}^{t+1}$, s.t. $x, y \in \mathcal{I}^N$ and $T_{x,i,y} \in \mathcal{T}_i$ indicates the reward received by I_i, with $n_{x,i,y}$ the average vehicle number on the approaching lanes of traffic movement $T_{x,i,y}$.

4 Methods

In this section, we first propose UniComm, a new communication method, to improve the communication efficiency among agents; we then construct UniLight, a new controlling algorithm, to control signals with the help of UniComm. We use Multi-Agent Deep Q Learning with double Q learning and dueling network as the basic reinforcement learning structure. Figure 2 illustrates the newly proposed model, and the pseudo codes of UniComm and UniLight are presented in our technique report [Jiang et al., 2022].

4.1 UniComm

The ultimate goal to enable communication between agents is to mitigate the nonstationarity caused by decentralized multi-agent learning. Sharing of more observations could help improve the stationarity, but it meanwhile suffers from the curse of dimensionality.

In existing methods, neighboring agents exchange hidden states or observations via communication. However, as mentioned above, there is no theoretical analysis on how much information is sufficient and which information is important. While with deep learning and back propagation method, we expect the network to be able to recognize information importance via well-designed structures such as attention. Unfortunately, as the training process of reinforcement learning is not as stable as that of supervised learning, the less useful or useless information might affect the convergence speed significantly. Consequently, how to enable agents to communicate effectively with their neighboring agents becomes critical. Consider intersection I_0 in Figure 1. Traffic movements such as $T_{4,0.2}$ and $T_{3,0.4}$ will not pass $R_{0,1}$, and hence their influence to I_1 is much smaller than $T_{2,0.1}$. Accordingly, we expect the information related to $T_{4,0.2}$ and $T_{3,0.4}$ to be less relevant (or even irrelevant) to I_1, as compared with information related to $T_{2,0.1}$. In other words, when I_0 communicates with I_1 and other neighboring intersections, ideally I_0 is able to pass different information to different neighbors.

We propose to share only important information with neighboring agents. To be more specific, we focus on agent A_1 on intersection I_1 which learns maximizing the cumulative reward of r_1 via reinforcement learning and evaluate the importance of certain information based on its impact on r_1.

We make two assumptions in this work. First, spillback that refers to the situation where a lane is fully occupied by vehicles and hence other vehicles cannot drive in never happens. This simplifies our study as spillback rarely happens and will disappear shortly even when it happens. Second, within action time interval Δt, no vehicle can pass though an entire road. This could be easily fulfilled, because Δt in M-TSC is usually very short (e.g. 10s in our settings).

Under these assumptions, we decompose reward r_1^t as follows. Recall that the reward r_1^t is defined as the average of $n_{x,1,y}$ with $T_{x,1,y} \in \mathcal{T}_1$ being a traffic movement. As the number of traffic movements $|\mathcal{T}_1|$ w.r.t. intersection I_1 is a constant, for convenience, we analyze the sum of $n_{x,1,y}$. i.e., $|\mathcal{T}_1| r_1$, and r_1^t can be derived by dividing the sum by $|\mathcal{T}_1|$.

\[
|\mathcal{T}_1| r_1^t = \sum_{x,y \in \mathcal{I}_1^N} n_{x,1,y}^{t+1} x, y \in \mathcal{I}_1^N
\]

\[
= \sum_{x,y \in \mathcal{I}_1^N} \left((n_{x,1,y}^t - m_{x,1,y}^t) + t_{x,1,y}^t \right)
\]

\[
= f(z_i^t) + g(s_i^t)
\]
In Eq. (1), we decompose $n_{x,y}^{t+1}$ into three parts, i.e., current vehicle number $n_{x,y}^t$, approaching vehicle number $l_{x,y}^t$, and leaving vehicle number $m_{x,y}^t$. Here, $n_{x,y}^t$, $l_{x,y}^t$, and $m_{x,y}^t$ can be observed directly. All leaving vehicles in $m_{x,y}^t$ are on $T_{x,y}$ now and can drive into next road without the consideration of spillback (based on first assumption). $P_{x,y}^t$ is derived by π_1, which uses partial observation z_1^t as input. Accordingly, $m_{x,y}^t$ is only subject to $n_{x,y}^t$ and $P_{x,y}^t$ that both are captured by the partial observation z_1^t. Therefore, approaching vehicle number $l_{x,y}^t$ is the only variable affected by observations $s \notin z_1^t$. We define $f(z_1^t) = \sum (n_{x,y}^t - m_{x,y}^t)$ and $g(s^t) = \sum l_{x,y}^t$, as shown in Eq. (2).

To help and guide an agent to perform an action, agent A will receive communications from other agents. Let c_0 denote the communication information received by A_0 in time step t. In the following, we analyze the impact of c_0 on A_0.

For observation of next phase $z_{x,y}^{t+1} = \{n_{x,y}^{t+1}, P_{x,y}^{t+1}\}$, we have i) $n_{x,y}^{t+1} = n_{x,y}^t + l_{x,y}^t - m_{x,y}^t$, and ii) $P_{x,y}^{t+1} = \pi_1(z_1^t, c_1)$. As $n_{x,y}^t$ and $m_{x,y}^t$ are part of z_1^t, there is a function Z_1 such that $z_{x,y}^{t+1} = Z_1(z_1^t, c_1, l_{x,y}^t)$. Consequently, to calculate $z_{x,y}^{t+1}$, the knowledge of $l_{x,y}^t$ is necessary. Without loss of generality, we assume $y_{x,y}^t \subseteq c_1$, so $z_{x,y}^{t+1} = Z_1(z_1^t, c_1)$. In addition, $z_{x,y}^{t+1}$ can be represented as $Z_2(z_1^t, c_1, l_{x,y}^t, \ldots, l_{x,y}^{t+1-1})$. Specifically, we define $Z_2(\cdots) = z_{x,y}^{t+1}$, regardless of the input.

We define the cumulative reward of A_0 as R_1, which can be calculated as follows:

$$ R_1^{t} = \sum_{j=0}^{\infty} \gamma^j I_{1}^{t+j} = \sum_{j=0}^{\infty} \gamma^j (f (z_{1}^{t+j}) + g (s^{t+j})) $$

$$ = \sum_{j=0}^{\infty} \gamma^j (f (Z_1 (z_{1}^{t}, c_1^t, \ldots, c_1^{t-j-1})) + g (s^{t+j})) $$

From above equation, we set c_1 as the future values of I:

$$ c_1 = \{ g (s^t), g (s^{t+1}), \ldots \} = \{ \sum l_{x,y}^t, \sum l_{x,y}^{t+1}, \ldots \} $$

All other variables to calculate R_1^t can be derived from c_1:

$$ c_1^{t+j} = c_1 \setminus \{ g (s^t), \ldots, g (s^{t+j-1}) \} \quad j \in \mathbb{N}^+ $$

$$ g (s^{t+k}) \in c_1 \quad k \in \mathbb{N} $$

Hence, it is possible to derive the cumulative rewards R_1^t based on future approaching vehicle numbers of traffic movements $l_{x,y}^{t+1}$s from c_1, even if other observations remain unknown. As the conclusion is universal to all existing methods on the same problem definition regardless of the network structure, we name it as UniComm. Now we convert the problem of finding the cumulative reward R_1^t to how to calculate approaching vehicle numbers $l_{x,y}^{t+1}$ with current full observation s^t. As we are not aware of exact future values, we use existing observations in s^t to predict $l_{x,y}^{t+1}$.

We first calculate approaching vehicle numbers on next interval Δt. Take intersections I_0, I_1, and road $R_{0,1}$ for example, for traffic movement $T_{0,1}$ which passes intersections I_0, I_1, I_2, and I_3, approaching vehicle number $l_{x,y}^{t+1}$ depends on the traffic phase $P_{0,1}^{t+1}$ to be chosen by A_0. Let’s revisit the second assumption. All approaching vehicles should be on $T_{0,1} = \{ T_{y,0.1} \cap T_{y,0.1} \cap I_0, y \in T_{y} \}$, which belongs to z_0^t. As a result, $T_{0,1}$ and the phase P_{0}^{t+1} affect $l_{0,1}$, even though there might be other factors.

We convert observations in T_0 into hidden layers h_0 for traffic movements by a fully-connected layer and ReLU activation function. As P_{0}^{t+1} can be decomposed into the permission for every $T \in T_0$, we use self-attention mechanism [Vaswani et al., 2017] between $R_{0,1}$ with Sigmoid activation function to predict the permissions g_0, traffic movements in next phase, which directly multiplies to h_0. This is because for traffic movement $T_{x,y} \in T_0$, if $T_{x,y}$ is permitted, $h_{x,y}$ will affect corresponding approaching vehicle numbers $l_{x,y}^t$; otherwise, it will become an all-zero vector and has no impact on $l_{x,y}^t$. Note that $R_{x,0}$ and $R_{0,y}$ might have different numbers of lanes, so we scale up the weight by the lane numbers to eliminate the effect of lane numbers. Finally, we add all corresponding weighted hidden states together and use a fully-connected layer to predict $l_{0,y}^t$.

To learn the phase prediction P_{0}^{t+1}, a natural method is using the action a_0 finally taken by the current network. However, as the network is always changing, even the result phase action a_0 corresponding to a given s is not fixed, which makes phase prediction hard to converge. To have a more stable action for prediction, we use the action a_0^s stored in the replay buffer of DQN as the target, which makes the phase prediction more stable and accurate. When the stored action a_0^s is selected as the target, we decompose corresponding phase P_{0}^{t} into the permissions g_0^p of traffic movements, and calculate the loss between recorded real permissions g_0^p and predicted permissions g_0^p as $L_p = \text{BinaryCrossEntropy}(g_0^p, g_0^p)$.
For learning approaching vehicle numbers $l_{0,y,z}$ prediction, we get vehicle numbers of every traffic movement from replay buffer of DQN, and learn $l_{0,y,z}$ through recorded results $l_{0,y,z}$. As actions saved in replay buffer may be different from the current actions, when calculating volume prediction loss, different from generating UniComm, we use g_0^t instead of g_0, i.e., $L_v = \text{MeanSquaredError}(g_0^t \cdot h_0, l_{0,y,z})$.

Based on how c_k^t is derived, we also need to predict approaching vehicle number for next several intervals, which is rather challenging. Firstly, with off-policy learning, we can’t really apply the selected action to the environment. Instead, we only learn from samples. Considering the phase prediction, while we can supervise the first phase taken by A_0, we, without interacting with the environment, don’t know the real next state $s' \sim P(s,a)$, as the recorded a_0^t may be different from a_0. The same problem applies to the prediction of $l_{0,y,z}$ too. Secondly, after multiple Δt time intervals, the second assumption might become invalid, and it is hard to predict $l_{0,y,z}$ correctly with only z_0. As the result, we argue that as it is less useful to pass unsupervised and incorrect predictions, we only communicate with one time step prediction.

4.2 UniLight

Although UniComm is universal, its strength might not be fully achieved by existing methods, because they do not consider the importance of exchanged information. To make better use of predicted approaching vehicle numbers and other observations, we propose UniLight to predict the Q-values.

Take prediction of intersection I_1 for example. As we predict $l_{x,1,y}$ based on traffic movements, UniLight splits average number of vehicles $n_{x,1,y}$, traffic movement permissions g_1 and predictions $l_{x,1,y}$ into traffic movements $T_{x,1,y}$, and uses a fully-connected layer with ReLU to generate the hidden state h_1. Next, considering one traffic phase P that permits traffic movements T_P among traffic movements T_{1} in I_1, we split the hidden states h_1 into two groups $G_1 = \{ h_{1,x} | T_{1} \in T_{P} \}$ and $G_2 = \{ h_{1,x} | h_{1,x} \in G_1, T_{x} \notin T_{P} \}$, based on whether the corresponding movement is permitted by P or not. As traffic movements in the same group will share the same permission in phase P, we consider that they can be treated equally and hence use the average of their hidden states to represent the group. Obviously, traffic movements in G_1 are more important than those in G_2, so we multiply the hidden state of G_1 with a greater weight to capture the importance. Finally, we concatenate two hidden states of groups and a number representing whether current phase is P through a fully-connected layer to predict the final Q-value.

5 Experiments

We conduct our experiments on the microscopic traffic simulator CityFlow [Zhang et al., 2019], set the action time interval Δt to 10s and the all-red phase to 5s. We train our newly proposed methods and their competitors, including newly proposed ones and the existing ones selected for comparison, with 240,000 frames on a cloud platform with 2 virtual Intel 8269CY CPU core and 4GB memory. We run all the experiments 4 times independently to pick the best one, which is then tested 10 times to get the average performance.

5.1 Experimental Setup

Datasets. We use the real-world datasets from four different cities, including Hangzhou (HZ), Jinan (JN), and Shanghai (SH) from China, and New York (NY) from USA. The HZ, JN, and NY datasets are publicly available [Wei et al., 2019b], and widely used in many related studies. Though these datasets are constructed based on real traffics, they have short simulation time, same road length, a small number of lanes, and vehicle trajectories are simulated. To simulate an environment that is much closer to reality, we construct SH dataset based on real taxi trajectories in Shanghai. The detail of SH dataset (including SH_1 and SH_2) can be found in our technique report [Jiang et al., 2022].

Competitors. To evaluate the effectiveness of newly proposed UniComm and UniLight, we implement five conventional TSC methods and six representative reinforcement learning M-TSC methods as competitors, which are listed below. (1) SOTL [Cools et al., 2013], a S-TSC method based on current vehicle numbers on every traffic movement; (2) MaxPressure [Varaiya, 2013], a M-TSC method that balances the vehicle numbers between two neighboring intersections; (3) MaxBand [Little et al., 1981] that maximizes the green wave time for both directions of a road; (4) TFP-TCC [Jiang et al., 2021] that predicts the traffic flow and uses traffic congestion control methods based on future traffic condition; (5) MARLIN [El-Tantawy et al., 2013] that uses Q-learning to learn joint actions for agents; (6) MA-A2C [Mnih et al., 2016], a general RL method with actor-critic structure and multiple agents; (7) MA-PPQ [Schulman et al., 2017], a popular policy based method; (8) PressLight [Wei et al., 2019a], a RL based method motivated by MaxPressure; (9) CoLight [Wei et al., 2019b] that uses GAT for communication; (10) MPLight [Chen et al., 2020], a state-of-the-art M-TSC method that combines FRAP [Zheng et al., 2019a] and PressLight; and (11) AttendLight [Oroojlooy et al., 2020] that uses attention and LSTM to select best actions.

Performance Metrics. Following existing studies [Oroojlooy et al., 2020; Chen et al., 2020], we adopt the average travel time of all the vehicles as the performance metric to evaluate the performance of different control methods. We also evaluate other commonly-used metrics such as average delay and throughput, as well as their standard deviation in our technique report [Jiang et al., 2022].

5.2 Evaluation Results

Overall Performance. Table 1 reports the overall evaluating results. We focus on the results without UniComm, i.e., all competitors communicate in their original way, and UniLight runs without any communication. The numbers in bold indicate the best performance. We observe that RL based methods achieve better results than traditional methods in public datasets. However, in a complicated environment like SH$_1$, agents may fail to learn a valid policy, and accordingly RL based methods might perform much worse than the traditional methods. UniLight performs the best in almost all datasets, and it demonstrates significant advantages in complicated environments. It improves the average performance by 8.2% in three public datasets and 35.6% in more compli-
Table 1: The overall performance (average travel time) of UniLight and its competitors with and without UniComm.

Datasets	JN	HZ	NY	SH1	SH2
SOTL	420.70	451.62	1137.29	2562.73	2084.93
MaxPressure	434.75	408.47	243.59	4843.07	788.55
MaxBand	378.45	458.00	1038.67	5675.98	4501.39
TFP-TCC	362.70	400.24	1216.77	2403.66	1380.05
MARLIN	409.27	388.00	1274.23	6623.83	5373.53

DRL Algorithms	MA-A2C	MA-PPO	PressLight	CoLight	MPLight	AttendLight
Hidden State	355.29	552.64	460.18	394.61	384.04	361.94
UniComm	359.73	558.41	463.92	398.47	387.94	364.31
No Com.	365.85	564.24	470.86	402.79	390.83	367.66

| UniLight | 325.47 | 323.03 | 180.72 | 159.88 | 208.06 |

Table 2: Compare UniComm with hidden state in average travel time.

Datasets	JN	HZ	NY	SH1	SH2
No Com.	335.85	324.24	186.85	232.69	209.89
Hidden State	330.99	323.88	180.99	1874.11	224.55
UniComm	325.47	323.03	180.72	159.88	**208.06**

Figure 3: Phase prediction loss of different phase prediction target in JN and HZ.

The Impact of UniComm. As UniComm is universal for existing methods, we apply UniComm to the six representative RL based methods and re-evaluate their performance, with results listed in the bottom portion of Table 1. We observe that UniLight again achieves the best performance consistently. In addition, almost all RL based methods (including UniLight) are able to achieve a better performance with UniComm. This is because UniLight predicts the approaching vehicle number on \(R_{i,j} \) mainly by the hidden states of traffic movements covering \(R_{i,j} \). Consequently, \(A_{i} \) is able to produce predictions for neighboring \(A_{i} \) based on more important/relevant information. As a result, neighbors will receive customized results, which allow them to utilize the information in a more effective manner. In addition, agents only share predictions with their neighbors so the communication information and the observation dimension remain small. This allows existing RL based methods to outperform their original versions whose communications are mainly based on hidden states. Some original methods perform worse with UniComm in certain experiments, e.g., PressLight in SH1. This is because these methods have unstable performance on some datasets with very large variance, which make the results unstable. Despite of a small number of outliers, UniLight makes consistent boost on all existing methods.

Phase Prediction Target Evaluation. As mentioned previ-ously, instead of directly using current phase action to calculate phase prediction loss \(L_{p} \), we use actions stored in replay buffer. To evaluate its effectiveness, we plot the curve of \(L_{p} \) in Figure 3. Due to space limitation, we only show the curve of datasets JN and HZ. Current and Replay refer to the use of the action taken by the current network and that stored in the replay buffer respectively when calculating \(L_{p} \). The curve represents the volume prediction loss, i.e., the prediction accuracy during the training process. We can observe that when using stored actions as the target, the loss becomes smaller, i.e., it has learned better phase predictions. The convergence speed of phase prediction loss with stored actions is slower at the beginning of the training. This is because to perform more exploration, most actions are random at the beginning, which is hard to predict.

UniComm vs. Hidden States. To further evaluate the effectiveness of UniComm from a different angle, we introduce another version of UniLight that uses a 32-dimension hidden state for communication, the same as [Wei et al., 2019b]. In total, there are three different versions of UniLight evaluated, i.e., No Com., Hidden State, and UniComm. As the names suggest, No Com. refers to the version without sharing any information as there is no communication between agents; Hidden State refers to the version sharing 32-dimension hidden state; and UniComm refers to the version that implements UniComm. The average travel time of all the vehicles under these three variants of UniLight is listed in Table 2. Note, Hidden State shares the most amount of information and is able to improve the performance, as compared with version of No Com.. Unfortunately, the amount of information shared is not proportional to the performance improvement it can achieve. For example, UniLight with UniComm performs better than the version with Hidden State, although it shares less amount of information. This further verifies our argument that the content and the importance of the shared information is much more important than the amount.

6 Conclusion

In this paper, we propose a novel communication form UniComm for decentralized multi-agent learning based M-TSC problem. It enables each agent to share the prediction of approaching vehicles with its neighbors via communication. We also design UniLight to predict Q-value based on UniComm. Experimental results demonstrate that UniComm is universal for existing M-TSC methods, and UniLight outperforms existing methods in both simple and complex environments.

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China under grant 62172107.
