Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study

Boukje C. Eveleens Maarse, Nicholas C. Chesnaye, Robbert Schouten, Wienene M. Michels, Willem Jan W. Bos, Maciej Szymczak, Magdalena Krajewska, Marie Evans, Olof Heimburger, Fergus J. Caskey, Christoph Wanner, Kitty J. Jager, Friedo W. Dekker, and the EQUAL Study Investigators

ABSTRACT

Background. Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex.

Methods. CKD patients (≥65 years; estimated glomerular filtration rate ≤20 mL/min/1.73 m²) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off ≤70; 0–100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders.
INTRODUCTION

Depressive symptoms are common in patients with chronic kidney disease (CKD), with a prevalence of 23–29% among patients with end-stage kidney disease (ESKD) [1, 2]. Previous studies have shown that depressive symptoms are associated with adverse health outcomes in patients with ESKD. A meta-analysis found that patients with depressive symptoms have a 1.5 times higher risk of mortality [3] and several other studies found comparable results regarding other clinical outcomes (e.g., hospitalization) [4–9]. The effect of depressive symptoms has also been explored in patients with advanced CKD not receiving dialysis, but not as extensively as in patients with ESKD. Earlier studies in this population show that depressive symptoms are associated with a higher rate of adverse outcomes [10–12]. However, these studies were conducted in small cohorts, with heterogeneous results [10–12]. Additionally, literature suggests that associations between depressive symptoms and adverse outcomes are stronger in men than in women on dialysis [13, 14]. To the best of our knowledge, no studies have been conducted to investigate whether this relationship indeed differs depending on sex in patients with advanced CKD.

It is of great importance to identify modifiable factors, such as depressive symptoms, affecting decline in kidney function. If depressive symptoms affect decline in kidney function indeed, adequate treatment of depressive symptoms may be used to impede disease progression and delay dialysis initiation in CKD patients. This is especially important because, once dialysis is initiated, health-related quality of life (HRQOL) deteriorates [15] and patients are exposed to dialysis-related health risks [16]. Specifically in older patients, maintaining HRQOL, rather than prolonging life, is emphasized during the decision process of initiating dialysis or starting conservative management [17]. Thus, considering the association between depressive symptoms and HRQOL [18, 19], it is particularly important to focus on depressive symp-toms and associated outcomes of older patients with advanced CKD.

Taken together, this study aims to investigate associations between depressive symptoms and adverse outcomes in older patients with advanced CKD during nephrology care. The adverse outcomes studied include disease progression towards ESKD (i.e., decline in kidney function and time to dialysis initiation) and all-cause mortality. Second, this study aims to investigate whether these relationships differ depending on sex. It was hypothesized that depressive symptoms would be associated with faster disease progression and higher mortality, and that these associations would be stronger in men than in women [10–14].

MATERIALS AND METHODS

Study cohort

Data were obtained from the European Quality (EQUAL) study, an ongoing prospective observational cohort study of older patients with advanced CKD. Patients have been included since 2012 and originate from Germany, Italy, Sweden, Poland, the UK and the Netherlands. Inclusion criteria were as follows: age ≥65 years and estimated glomerular filtration rate (eGFR) that had dropped below 20 mL/min/1.73 m² for the first time during the past 6 months. Patients were excluded if the eGFR drop had resulted from an acute event, or if patients had received renal replacement therapy in the past. Included patients were followed until kidney transplantation, death or refusal of further participation. Follow-up ended on 24 April 2019, or earlier when patients were discharged to primary care or when treatment moved to another nephrology clinic. During participation, patients received routine medical care according to national treatment guidelines [based on the Kidney Disease Outcomes Quality Initiative (KDOQI)/Kidney Disease: Improving Global Outcomes (KDIGO) guidelines] [20]. A full description of the EQUAL study is published elsewhere [21]. For all participating centres, approval was obtained from the medical ethical committee or a comparable institutional board. All included patients gave written informed consent. The study was carried out in accordance with the declaration of Helsinki. Reporting was executed according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist [22].

Data collection

Demographic and clinical data were collected at baseline and subsequent 6-monthly follow-up visits. Dates of death, transplantation and dialysis initiation were registered, as well as causes of death and reasons for end of follow-up. Clinical data were entered into a web-based clinical record form by physicians and research nurses. Data on lifestyle and HRQOL were patient reported. Depressive symptoms were assessed using the validated five-question Mental Health Inventory (MHI-5) in each country’s local language and showed a high internal consistency (Cronbach α = 0.835) [23, 24]. MHI-5 scores ranges from 0 to 100, with a higher score indicating a better mental health (i.e., fewer depressive symptoms; Supplementary Appendix 1). A score ≤70 was used as cut-off for presence of depressive symptoms. This cut-off value was validated in patients with ESKD, with a sensitivity of 77% and specificity of 72% [25, 26]. The MHI-5 is a subset of questions from the Short Form 36 (SF-36).
Health Survey (SF-36), representing its ‘mental health’ domain. The SF-36 has been validated in a variety of European countries, including Italy, Germany, the Netherlands, Sweden and the UK [25]. Following official SF-36 guidelines, the mental health score was calculated when minimal three of five questions were answered [26]. All laboratory tests and physical examinations were performed according to standard protocols of local participating nephrology centres. Data from different centres were standardized and recalculated into one uniform unit. Data will be shared on reasonable request to the corresponding author.

Statistical analyses

We used descriptive statistics to compute baseline characteristics. Average decline in eGFR was calculated by means of linear mixed modeling (LMM) with continuous kidney function (eGFR) as dependent variable and time as random variable. eGFR was updated every 6 months. Cox proportional hazard analysis was used to study associations between the presence of depressive symptoms at baseline and time to events (i.e. start of dialysis, all-cause mortality and combined adverse outcome) [27]. Associations between depressive symptoms at baseline and additional eGFR decline were studied by a joint model, combining longitudinal data (i.e. kidney function measurements) and time-to-event data (i.e. survival data such as time to events like dialysis initiation and mortality) [28, 29]. Depressive symptoms were included as dichotomous (cut-off value: 70) and continuous variables (scale 0–100) in separate Cox models. The model was adjusted for potential baseline confounders [age, sex, ethnicity, educational level, primary kidney disease (PKD), Charlson Comorbidity Index (CCI), body mass index (BMI), smoking status, nutritional status (Subjective Global Assessment: SGA), plasma albumin and urea levels], and adjusted for baseline eGFR. Time zero was the date patients completed the MHI-5. Patients were censored following kidney transplantation, discharge from nephrology clinic to primary care, withdrawal from study, lost-to-follow-up or end of follow-up, whichever came first. When start of dialysis was the outcome of interest, patients who had died were censored as well.

LMM was used to study the association between depressive symptoms at baseline and the change of kidney function per month. The LMM adequately takes into account a variable number of follow-up measurements and includes all measurements of patients who have been included in this study [30]. As we followed patients until death or dialysis initiation, missing eGFR values may be introduced when patients dropped out of the study due to mortality or were censored due to dialysis initiation. As eGFR is related to these events, we applied joint models to study the association between presence of depressive symptoms at baseline and change in eGFR over time, adjusted for informative drop-out due to death or dialysis initiation. The joint model combines Cox regression analysis with LMM in which presence of depressive symptoms was included as a fixed independent variable, time as both a fixed and random variable, and eGFR as a dependent variable [31]. The LMM included an interaction term (depressive symptoms * time), indicating additional eGFR change in the presence of depressive symptoms. The model was adjusted for the same potential baseline confounders as the Cox model. The joint model links the LMM described above to the Cox model, which captures the risk of the combined event of either mortality or dialysis. In this manner, the joint model informs the longitudinal eGFR trajectory on missingness caused by either dialysis initiation or death, and accounts for missing eGFR measurements due to drop-out. The LMM estimates caused by either dialysis initiation or death, and accounts for missing eGFR measurements due to drop-out. The LMM estimates caused by either dialysis initiation or death, and accounts

RESULTS

Baseline characteristics

Data were available from 1708 patients. Out of those, 1326 patients (78%) completed at least three out of five mental health questions at baseline and were included. There were no clinically relevant differences in baseline characteristics between patients with and without missing values.

Table 1 describes baseline characteristics for all patients, also stratified by presence of depressive symptoms (mental health score ≤70). Depressive symptoms were reported by 515 patients (39%), with median (interquartile range (IQR)) score of 56 (46–64), which was 88 (80–92) in patients without depressive symptoms. Compared with patients without depressive symptoms, patients with depressive symptoms were more often men (P < 0.001) and had more comorbidity (P = 0.002). Patients with depressive symptoms had more often a history of psychiatric disease (P < 0.001), particularly depression. Mean baseline eGFR was 18.8 mL/min/1.73 m², with no difference between patients with and without depressive symptoms (P = 0.2). Overall eGFR decline in all patients was −0.12 mL/min/1.73 m²/month (95% CI −0.14 to −0.10). Median number of eGFR measurements was 2 (IQR 1–4), and 930 (70.1%) patients had one or more follow-up measurements in addition to their baseline measurement. An overview of baseline eGFR and all outcomes (both decline in kidney function and adverse clinical outcomes) analysed per group (with and without depressive symptoms; men and women) is shown in Table 2.

Depressive symptoms and time to adverse events

Median follow-up time was 24 (IQR 12–38) months, with maximum 78 months. During follow-up, 379 patients (28.6%) started dialysis, 30 patients (2.3%) received a kidney transplantation and 272 patients (20.5%) died (Supplementary Figures S1 and S2). There were no relevant differences in causes of death between the groups with and without depressive symptoms (Supplementary Table S1) (P = 0.7). Reasons for end of follow-up were as follows: wanting to stop study participation (N = 66; 5.0%), treatment taken over by general practitioner or...
non-EQUAL centre (N = 87; 6.5%) or other reasons (N = 45; 3.4%). A total of 826 patients (62.3%) survived until end of follow-up.

Adjusted and unadjusted hazard ratios (HRs) for the entire cohort and stratified by sex are presented in Tables 3 and 4. Depressive symptoms were not significantly associated with earlier dialysis initiation [adjusted HR 1.05 (95% CI 0.84–1.31)], higher mortality risk [adjusted HR 1.26 (95% CI 0.98–1.63)] or combined adverse outcome [adjusted HR 1.15 (95% CI 0.97–1.36)]. In men, presence of depressive symptoms at baseline was associated with a higher mortality [adjusted HR 1.41 (95% CI 1.03–1.93)]. This result was also found in men using depressive symptoms as continuous variable [adjusted HR per

Table 1. Baseline characteristics of all patients, and stratified by patients with and without depressive symptoms

Demographic data	All patients (N = 1326)	No depressive symptoms (N = 811; 61%)	Depressive symptoms (N = 515; 39%)	P-value
Male sex, N (%)	883 (66.6)	588 (72.5)	295 (57.3)	<0.001
Age	75.74 ± 6.72	75.60 ± 6.64	75.97 ± 6.84	0.339
Country, N (%)				<0.001
Germany	138 (10.4)	85 (10.5)	53 (10.3)	
Italy	311 (23.5)	140 (17.3)	171 (33.2)	
The Netherlands	201 (15.2)	133 (16.4)	68 (13.2)	
Poland	51 (3.8)	30 (3.7)	21 (4.1)	
Sweden	292 (22.0)	212 (26.1)	80 (15.5)	
UK	333 (25.1)	211 (26.0)	122 (23.7)	
Ethnicity, N (%)				0.204
White	1282 (96.7)	787 (97.0)	495 (96.1)	
Black	12 (0.9)	4 (0.5)	8 (1.6)	
Asian	10 (0.8)	7 (0.9)	3 (0.6)	
Mixed	4 (0.3)	3 (0.4)	1 (0.2)	
Level of education, N (%)				<0.001
No education	28 (2.1)	7 (0.9)	21 (4.1)	
Low education	363 (27.4)	190 (23.4)	173 (33.6)	
Intermediate education	660 (49.8)	432 (53.3)	228 (44.3)	
High education	181 (13.7)	129 (15.9)	52 (10.1)	
Marital status, N (%)				0.080
Married or living with partner	834 (62.9)	533 (65.7)	301 (58.4)	
Divorced or separated	92 (6.9)	53 (6.5)	39 (7.6)	
Widowed or partner has died	313 (23.6)	175 (21.6)	138 (26.8)	
Never married/lived with partner	51 (3.8)	31 (3.8)	20 (3.9)	
Smoking status, N (%)				0.004
Current smoker	853 (64.3)	550 (67.8)	303 (58.8)	
Clinical data				
Primary kidney disease, N (%)				<0.001
Glomerular disease	125 (9.4)	94 (11.6)	31 (6.0)	
Diabetes	266 (20.1)	148 (18.2)	118 (22.9)	
Hypertension	472 (35.6)	310 (38.2)	162 (31.5)	
Other causes of kidney failure	244 (18.4)	140 (17.3)	104 (20.2)	
Comorbidity, N (%)				
Diabetes mellitus	535 (40.3)	306 (37.7)	229 (44.5)	0.013
Cerebrovascular disease	195 (14.7)	120 (14.8)	75 (14.6)	0.599
Cardiac disease	582 (43.9)	340 (41.9)	242 (47.0)	0.951
Peripheral vascular disease	218 (16.4)	123 (15.2)	95 (18.4)	0.093
Malignancy	275 (20.7)	163 (20.1)	112 (21.7)	0.394
Lung disease	202 (15.2)	112 (13.8)	90 (17.5)	0.067
BMI, kg/m²	28.26 ± 5.32	28.09 ± 4.87	28.54 ± 5.96	0.148
Nutritional status (SGA score)				
Severely malnourished (1–2)	10 (0.8)	3 (0.4)	7 (1.4)	<0.001
Moderately malnourished (3–5)	328 (24.7)	169 (20.8)	159 (30.9)	
Normal nutritional status (6–7)	851 (64.2)	564 (69.5)	287 (55.7)	
eGFR (1.73 mL/min/m²)	18.80 ± 5.44	18.95 ± 5.21	18.58 ± 5.78	0.231
Plasma albumin level (g/L)	37.76 ± 5.71	37.84 ± 5.65	37.64 ± 5.81	0.558
Plasma urea level (mmol/L)	19.15 (15.40–24.1)	18.90 (15.31–23.80)	19.72 (15.47–24.61)	0.093
Systolic blood pressure (mmHg)	142 ± 21.9	144 ± 21.9	140 ± 21.7	<0.001
Diastolic blood pressure (mmHg)	74 ± 11.3	75 ± 11.6	73 ± 10.7	0.001
Heart rate (beats/min)	71 ± 12.6	71 ± 13.2	71 ± 11.5	0.786
Plasma creatinine level (μmol/L)	127 ± 94.8	137 ± 89.3	127 ± 103.0	0.844
Use of ACE inhibitors, N (%)	262 (19.8)	185 (22.8)	77 (15.0)	<0.001
Table 1. Continued

Psychological/psychiatric data	All patients (N = 1326)	No depressive symptoms (N = 811; 61%)	Depressive symptoms (N = 515; 39%)	P-value
Psychological/psychiatric data	(N = 1326)	(N = 811; 61%)	(N = 515; 39%)	(N = 220)
Psychiatric history, N (%)a	97 (7.3)	35 (4.3)	62 (12.0)	<0.001
Depression	58 (4.4)	17 (2.1)	41 (8.0)	0.001
Dementia	15 (1.1)	7 (0.9)	8 (1.6)	0.001
Use of antidepressantsn	79 (7.7)	29 (4.8)	50 (11.5)	<0.001
Mental health scoreo	80 (60–92)	88 (80–92)	56 (46–64)	<0.001

Continuous variables are displayed as means ± standard deviation for normally distributed variables, and as median (boundaries of interquartile range) for skewed variables. Dichotomous and categorical variables are displayed as number (percentage).

aComplete data available with the exception of the following variables: ethnicity 1308 (98.6%), level of education 1232 (92.9%), marital status 1290 (97.3%), smoking status 1289 (97.2%), PKD 1107 (83.5%), diabetes mellitus 1297 (97.8%), cerebrovascular disease 1283 (96.8%), cardiac disease 1187 (89.5%), peripheral vascular disease 1269 (95.7%), malignancy 1275 (96.2%), lung disease 1276 (96.2%), BMI 1230 (92.8%), nutritional status 1189 (89.7%), CCI 1290 (97.3%), eGFR 1303 (98.3%), plasma albumin level 1183 (89.2%), plasma urea level 1267 (97.4%), systolic blood pressure 1291 (97.4%), diastolic blood pressure 1291 (97.4%), heart rate 1166 (87.9%), plasma creatinine level 1303 (98.3%) and psychiatric history 1289 (97.2%).

bEthnicity was self-reported.

1Comprehensive analysis—seven-point scale, objectively assessing the patient’s nutritional status.

2Comprising myocardial infarct, angina pectoris, heart failure and left ventricular hypertrophy.

3Any malignancy, except for basal cell carcinoma and squamous cell carcinoma of the skin.

4Comprising chronic obstructive pulmonary disease and asthma.

5Subjective global assessment—seven-point scale, objectively assessing the patient’s nutritional status [35]. A higher SGA score indicates a better nutritional status.

6Score summarizing patient’s health status based on comorbidity and age. A higher CCI score indicates a higher rate of comorbidity, and therefore a worse health status [36].

7eGFR—estimated glomerular filtration rate, calculated with the MDRD formula.

8Data on use of medication were not available for patients originating from Sweden. Data were available for 1032 patients (77.9%).

9Mental health score includes the score on the MHI-5 questionnaire, with a higher score indicating a better mental health (range 0–100).

Table 2. Baseline eGFR, overall kidney function decline and incidence of adverse clinical outcomes, presented per subgroup

Outcome	Entire cohort (N = 1326)	Men (N = 883)	Women (N = 443)			
Baseline eGFR ± SD	(N = 811)	(N = 515)	(N = 588)	(N = 295)	(N = 223)	(N = 220)
Baseline eGFR ± SD	18.95 ± 5.21	18.58 ± 5.78	18.83 ± 5.21	18.27 ± 5.59	19.26 ± 5.31	18.98 ± 6.01
Overall kidney function decline	−0.14 (−0.16 to −0.12)	−0.09 (−0.12 to −0.01)	−0.16 (−0.19 to −0.11)	−0.15 (−0.16 to −0.14)	−0.07 (−0.12 to −0.07)	−0.07 (−0.12 to −0.07)
All-cause mortality, N (%)	237 (29.2)	142 (27.6)	189 (32.1)	95 (32.2)	48 (21.5)	47 (21.4)
Combined adverse outcome, N (%)	388 (47.8)	263 (51.1)	298 (50.7)	170 (57.6)	90 (40.4)	93 (42.3)

aEstimated GFR—estimated glomerular filtration rate at baseline, calculated with the MDRD formula.

bOverall decline in kidney function, calculated with Linear Mixed Modelling.

cNumber of patients that started dialysis during follow-up.

dNumber of patients that died during follow-up.

eNumber of patients that either started dialysis or died during follow-up.

10 points 1.09 (95% CI 1.01–1.17). In men, having more depressive symptoms was associated with faster progression towards a combined adverse outcome (adjusted HR per 10 points 1.05 (95% CI 1.00–1.10)). The association between depressive symptoms at baseline and all-cause mortality in men was also present when the analysis was additionally adjusted for country (Supplementary Table S2). In women, depressive symptoms were not significantly associated with adverse outcomes.

Depressive symptoms and eGFR decline

We found no significant association between depressive symptoms and kidney function over time in the joint model analyses accounting for drop-out (Table 5). In Supplementary Table S3, results of the LMM are shown (i.e. unadjusted for drop-out). Results of the LMM showed a small but statistically significant association between the presence of depressive symptoms at baseline and adjusted eGFR change over time [adjusted additional eGFR over time 0.05 mL/min/1.73 m²/month (95% CI 0.01–0.09)]. This
DISCUSSION

This study aimed to investigate associations between depressive symptoms and disease progression in an international multicentre cohort of older patients with advanced CKD. Our results showed an association between depressive symptoms at baseline and all-cause mortality in men, but not in women. However, neither in men nor in women did we find a significant association between depressive symptoms at baseline and dialysis initiation, or with kidney function decline.

Previous studies investigating associations between depressive symptoms and clinical outcomes in patients with CKD did find an association between depressive symptoms and kidney function decline. Recently, the association between depressive symptoms and faster kidney function decline was found in healthy adults. It is possible that the sample size in our study was not large enough to detect small differences in kidney function decline related to depression using a joint model. Also, the absence of an association between depressive symptoms and faster decline in kidney function in our study might be explained by the relatively low number of eGFR measurements per patient. Otherwise, it is possible that the association between depressive symptoms and kidney function decline is more pronounced in earlier CKD stages than in advanced CKD. Presumably, in later CKD stages, other health-related factors such as physical condition are likely to be more influential on kidney function decline. The LMM analysis showed a small but statistically significant association between depressive symptoms at baseline and a slower decline in kidney function. Results of the joint model were similar, but not significant.

Table 3. Association of the presence of depressive symptoms at baseline with time to start of dialysis, all-cause mortality and a combined adverse outcome

Table 4. Association of the mental health score at baseline with time to start of dialysis, all-cause mortality and a combined adverse outcome

significant result was also found in men [adjusted additional eGFR over time 0.05 mL/min/1.73 m²/month (95% CI 0.00–0.10)]. These results imply a slower decline in eGFR over time associated with the presence of depressive symptoms at baseline. When additionally adjusting for drop-out, similar effects were found but were not significant anymore, as shown by the joint model results [entire cohort: adjusted additional eGFR over time 0.05 mL/min/1.73 m²/month (95% CI –0.02 to –0.11)].
Table 5. The association of depressive symptoms with kidney function during follow-up, adjusted for competing events

Entire cohort	Men	Women	
Presence of depressive symptoms			
10 points decrease in mental health score	-0.05 (0.01 to 0.11)	-0.05 (0.02 to 0.10)	
eGFR over time (95% CI)			
Crude additional eGFR over time	0.05 (0.01 to 0.10)	0.05 (0.02 to 0.10)	
Adjusted additional eGFR over time	-0.01 (0.00 to 0.00)	-0.01 (0.00 to 0.00)	
Adjusted additional eGFR over time (95% CI)			
(N = 883)	(N = 883)	(N = 443)	(N = 443)

The strengths of this study include the multicentre design including patients in various countries, long follow-up duration and large sample of patients. Also, this is the first study using a joint model to account for informative drop-out in the association between depressive symptoms and adverse outcomes in CKD patients. However, our study also has limitations. First, 1326 out of 1708 patients (77.6%) answered at least three MHI-5 has influenced our results [40]. As we did not find a significant effect of depressive symptoms on kidney function, the absence of an association between depressive symptoms and dialysis initiation is expected. Furthermore, similar to previous studies in CKD patients [10–12], we did not observe an association between depressive symptoms and mortality in our complete study population (although we did observe this association in men). However, in ESKD patients, a meta-analysis did show a significant association between depressive symptoms and mortality [3]. This inconsistency—presence of an association between depressive symptoms and mortality in ESKD patients, but not in CKD patients—might partly be explained by the higher baseline risk of mortality in patients with ESKD [41]. It should also be noted that the HRs found in our study can be considered comparable to the HR found in the meta-analysis [HR 1.51 (95% CI 1.35–1.69)], but our confidence intervals are slightly too wide to conclude that our effects are significant. Moreover, adjusting for confounding remains a challenge given the all-encompassing nature of depression and the various potential mechanisms for adverse outcomes. Our adjustment for a large number of confounders may have led to overadjustment, emphasizing the importance of also considering our unadjusted results that do align with the meta-analysis results.

Interestingly, we found an increased risk of mortality in men with depressive symptoms, but not in women. This sex-specific effect has—to the best of our knowledge—not been reported previously in patients with advanced CKD [10–12]. Nevertheless, these findings correspond with those in other populations, where studies found a stronger effect of depressive symptoms on mortality in older men compared with older women [13, 14], and with the finding of Kop et al. that the association between depressive symptoms and acute kidney injury is stronger in men than in women [38]. Although it is well known that sex affects expression of affective disorders, mechanisms underlying the interaction between sex and adverse clinical outcomes have not yet been elucidated. It was hypothesized that men do not seek treatment until their symptoms are more severe [13, 42]. Thus, supposedly, when depression is recognized in men, it is often a more severe depression.

Several mechanisms could explain the association between depression and adverse clinical outcomes, such as the higher mortality we observed in male patients. First, depression is associated with maladaptive coping styles [43], which have been shown to predict mortality [44]. As such, depressive symptoms are associated with decreased treatment compliance in ESKD patients [45, 46]. Furthermore, biological effects of depression, such as activation of the hypothalamic–pituitary–adrenal axis and increased autonomic nerve system activity might lead to increased systemic inflammation and higher risk of cardiovascular events [47–49]. Presumably, a combination of behavioral and biological factors related to depression collectively results in adverse health outcomes. Recently, a Mendelian randomization study showed an association between positive life affect and lower risk of CKD, and a negative association between depressive symptoms and eGFR [50]. This suggests a causal link between psychological characteristics and kidney function, despite non-significance in our results.

The strengths of this study include the multicentre design including patients in various countries, long follow-up duration and large sample of patients. Also, this is the first study using a joint model to account for informative drop-out in the association between depressive symptoms and adverse outcomes in CKD patients. However, our study also has limitations. First, 1326 out of 1708 patients (77.6%) answered at least three MHI-5.
importance.

Depressive symptoms in men with earlier CKD stages is of great importance because this association could be observed before ESKD, attention for and detection of older male patients with CKD. Because this association could be observed before ESKD, attention for and detection of depressive symptoms in men with earlier CKD stages is of great importance.

Funding for the present study was received from the European Renal Association (ERA), Dutch Kidney Foundation (SB142), National Institute for Health Research (NIHR) in the UK, Swedish Medical Association (SLS), Njurfonden (Sweden), Stockholm County Council ALF, Italian Society of Nephrology (SIN-Renil) and a Young Investigators grant in Germany. The funders had no role in the study design (collection, analysis or interpretation of data), writing of the paper and the decision to submit this paper.

Conflict of Interest Statement
The results presented in this paper have not been published previously in whole or part, except in abstract form. M.E. reports grants from Astellas, AstraZeneca, Vifor Pharma, Fresenius Medical Care, Baxter Healthcare (outside the scope of this manuscript). O.H. reports personal fees from Baxter Healthcare, AstraZeneca, Vifor Pharma, Fresenius Medical Care, Adcock Ingram, Gilead, Opterion (outside the scope of this manuscript). C.W. reports fees from the European Renal Association Charity. W.M.M. reports grants from Baxter Healthcare (outside the scope of this manuscript). K.J.J. reports fees from ERA. W.J.W.B. reports fees from Zilveren Kruis Insurance (outside the scope of this manuscript). All other authors declare that they have no relevant financial interests or disclosures to report.

Supplementary data available at cdk online.

Acknowledgements
We would like to thank all the patients participating in the EQUAL study. We are also grateful for the support by the staff of the participating centres, the research nurses and data managers of the EQUAL study.

Authors’ Contributions
Research idea and study design: F.W.D., Y.M., B.C.E.M.; data acquisition: K.J.J., F.J.C., M.E., F.W.D., C.W.; statistical analysis: B.C.E.M., N.C.C., Y.M.; data interpretation: all authors; supervision or mentorship: Y.M., F.W.D. Each author contributes important intellectual content during manuscript drafting or revision, accepts personal accountability for the author’s own contributions, and agrees to ensure that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.
APPENDIX

The EQUAL Study Investigators:

Andreas Schneider
Anke Torp
Beate Iwig
Boris Perras
Christian Marx
Christiane Drechsler
Christof Blaser
Christoph Wanner
Claudia Emde
Detlef Krieter
Dunja Fuchs
Ellen Irmier
Eva Platen
Hans Schmidt-Gürtler
Hendrik Schlee
Holger Naujoks
Ines Schlee
Sabine Cäsar
Joachim Beige
Jochen Röthele
Justyna Mazur
Kai Hahn
Katja Blouin
Katrin Neumeier
Kirsten Anding-Rost
Lothar Schramm
Monika Hopf
Nadja Wuttke
Nikolaus Frischmuth
Pawlos Ichtiazis
Petra Kirste
Petra Schulz
Sabine Aign
Sandra Biribauer
Sherin Manan
Silke Röser
Stefan Heidenreich
Stephanie Palm
Susanne Schwedler
Sylke Delrieux
Sylvia Renker
Sylvia Schättel
Theresa Stephan
Thomas Schmiedeke
Thomas Weinreich
Til Leimbach
Torsten Stövesand
Udo Bahner
Wolfgang Seeger
Adamsco Cupiati
Adelia Sagliocca
Alberto Ferraro
Alessandra Mele
Alessandro Naticchia
Alex Còsaro
Andrea Ranghino
Andrea Stucchi
Angelo Pignataro
Antonella De Blasio
Antonello Pani
Aris Tsalouchos
Bellasi Antonio
Biagio Raffaele Di Iorio
Butti Alessandra
Cataldo Abaterusso
Chiara Somma
Claudia D’alesandri
Claudia Torino
Claudia Zullo
Claudio Pozzi
Daniela Bergamo
Daniele Ciurlino
Daria Motta
Domenico Russo
Enrico Favaro
Federica Viggotti
Ferruccio Ansaldi
Ferruccio Conte
Francesca Clanciotta
Francesca Giacchino
Francesco Cappellaio
Francesco Pizzarelli
Gaetano Greco
Gaetana Porto
Giada Bigatti
Giancarlo Marinangeli
Gianfranca Cabiddu
Giordano Fumagalli
Giorgia Caloro
Giorgina Piccoli
Giovanbattista Capasso
Giovanni Gambaro
Giuliana Tognarelli
Giuseppe Bonforte
Giuseppe Conte
Giuseppe Toscano
Goffredo Del Rossa
Irene Capizzi
Ivano Baragetti
Lamberto Oldrizzi
Loreto Gesualdo
Luigi Biancone
Manuela Magnano
Marco Ricardi
Maria Di Bari
Maria Laudato
Maria Luisa Sirico
Martina Ferraresi
Maurizio Postorino
Michele Provenzano
Moreno Malaguti
Nicola Palmieri
Paola Murrone
Pietro Cicillo
Pietro Dattolo
Pina Acampora
Rita Nigro
Roberto Boero
Roberto Scarponi
Rosa Sicoli
Rosella Malandra
Silvana Savoldi
Associations between depressive symptoms and disease progression
REFERENCES

1. Hedayati SS, Minhajuddin AT, Toto RD et al. Prevalence of major depressive episode in CKD. Am J Kidney Dis 2009; 54: 424–432.

2. Palmer S, Vecchio M, Craig JC et al. Prevalence of depression in chronic kidney disease: systematic review and meta-analysis of observational studies. Kidney Int 2013; 84: 179–191.

3. Farrokhi F, Abedi N, Beyene J et al. Association between depression and mortality in patients receiving long-term dialysis: a systematic review and meta-analysis. Am J Kidney Dis 2014; 63: 623–635.

4. Lopes A, Bragg J, Young E et al. Depression as a predictor of mortality and hospitalization among hemodialysis patients in the United States and Europe. Kidney Int 2002; 62: 199–207.

5. Hedayati S, Bosworth H, Briley L et al. Death or hospitalization of patients on chronic hemodialysis is associated with a physician-based diagnosis of depression. Kidney Int 2008; 74: 930–936.

6. Kimmel P, Peterson R, Weis K et al. Multiple measurements of depression predict mortality in a longitudinal study of chronic hemodialysis outpatients. Kidney Int 2000; 57: 2093–2098.

7. Drayer R, Piraino B, Reynolds C et al. Characteristics of depression in hemodialysis patients: symptoms, quality of life and mortality risk. Gen Hosp Psychiatry 2006; 28: 306–312.

8. Riezebos R, Nauta K, Honig A et al. The association of depressive symptoms with survival in a Dutch cohort of patients with end-stage renal disease. Nephrol Dial Transplant 2010; 25: 231–236.

9. Palmer S, Vecchio M, Craig JC et al. Association between depression and death in people with CKD: a meta-analysis of cohort studies. Am J Kidney Dis 2013; 62: 493–505.

10. Tsai Y, Chiu Y, Hung C et al. Association of symptoms of depression with progression of CKD. Am J Kidney Dis 2012; 60: 54–61.

11. Hedayati S, Minhajuddin A, Afshar M et al. Association between major depressive episodes in patients with chronic kidney disease and initiation of dialysis, hospitalization, or death. JAMA 2010; 303: 1946–1953.

12. Loosman W, Rottier M, Honig A et al. Association of depressive and anxiety symptoms with adverse events in Dutch chronic kidney disease patients: a prospective cohort study. BMC Nephrol 2015; 16: 155.

13. Diniz B, Reynolds C, Butters M et al. The effect of gender, age, and symptom severity in late-life depression on the risk of all-cause mortality: the Bambui Cohort Study of Aging. Depress Anxiety 2014; 31: 787–795.

14. Jeong H, Lee J, Lee S et al. Role of severity and gender in the association between late-life depression and all-cause mortality. Int Psychoger 2013; 25: 677–684.

15. Miskulin D, Abebe K, Chapman A et al. Health-related quality of life in patients with autosomal dominant polycystic kidney disease and CKD stages 1-4: a cross-sectional study. Am J Kidney Dis 2014; 63: 214–226.

16. McIntyre C, Rosansky S. Starting dialysis is dangerous: how do we balance the risk? Kidney Int 2012; 82: 382–387.

17. Chen T, Lee VW, Harris DC. When to initiate dialysis for end-stage kidney disease: evidence and challenges. Med J Aust 2018; 209: 275–279.

18. Weisbord S, Fried L, Arnold R et al. Prevalence, severity, and importance of physical and emotional symptoms in chronic hemodialysis patients. J Am Soc Nephrol 2005; 16: 2487–2494.

19. Kimmel P. Psychosocial factors in adult end-stage renal disease patients treated with hemodialysis: correlates and outcomes. Am J Kidney Dis 2000; 35: S132–S140.

20. PE S, Levin A. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Am Intern Med 2013; 158: 825–830.

21. Jager K, Ock G, Drechsler C et al. The EQUAL study: a European study in chronic kidney disease stage 4 patients. Nephrol Dial Transplant 2012; 27 Suppl 3: iii27–31.

22. von Elm E, Altman D, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg 2014; 12: 1495–1499.

23. Berwick D, Murphy J, Goldman F et al. Performance of a five-item mental health screening test. Med Care 1991; 29: 169–176.

24. van den Beukel T, Siegert C, van Dijk S et al. Comparison of the SF-36 Five-Item Mental Health Inventory and Beck Depression Inventory for the screening of depressive symptoms in chronic dialysis patients. Nephrol Dial Transplant 2012; 27: 4453–4457.

25. Gill SC, Butterworth P, Rodgers B et al. Validity of the mental health component scale of the 12-item Short-Form Health Survey (MCS-12) as measure of common mental disorders in the general population. Psychiatry Res 2007; 152: 63–71.

26. Ware JJ. SF-36 Health Survey - Manual & Interpretation Guide. Boston, MA: The Health Institute, New England Medical Center, 1993, 316.

27. Stel V, Dekker F, Tripepi G et al. Survival analysis II: Cox regression. Nephron Clin Pract 2011; 119: c255–c260.

28. Chesnaye N, Tripepi G, Dekker F et al. An introduction to joint models-applications in nephrology. Clin Kidney J 2020; 13: 143–149.

29. Asar O, Ritchie J, Kalra P et al. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 2015; 44: 334–344.

30. Jansma CJ, van Diepen M, Tsonaka R et al. Pitfalls of linear regression for estimating slopes over time and how to avoid them by using linear mixed-effects models. Nephrol Dial Transplant 2019; 34: 561–566.

31. Kwon S, Lee K, Chung C et al. An introduction to the linear mixed model for orthopaedic research. JBI/S Rev 2014; 2: e5.

32. Bell M, Fairclough D. Practical and statistical issues in missing data for longitudinal patient-reported outcomes. Stat Methods Med Res 2014; 23: 440–459.

33. Sterne J, White I, Carlin J et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: 157–160.

34. Fewell Z, Davey Smits G, Sterne J. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol 2007; 166: 646–655.

35. Kimmel P. Depression in patients with chronic renal disease: what we know and what we need to know. J Psychosom Res 2002; 53: 951–956.

36. Soares A, Eyyf T, Campani R et al. Glomerular filtration rate measurement and prediction equations. Clin Chem Lab Med 2009; 47: 1023–1032.

37. Wang W, Lian S, Zhu F et al. The prevalence of depression and the association between depression and kidney function and health-related quality of life in elderly patients with chronic kidney disease: a multicenter cross-sectional study. Clin Interv Aging 2019; 14:905–913.
38. Kop W, Seliger S, Fink J et al. Longitudinal association of depressive symptoms with rapid kidney function decline and adverse clinical renal disease outcomes. Clin J Am Soc Nephrol 2011; 6: 834–844
39. Zhang Z, He P, Liu M et al. Association of depressive symptoms with rapid kidney function decline in adults with normal kidney function. Clin J Am Soc Nephrol 2021; 16: 889–897
40. van de Luijtgaarden M, Noordzij M, Tomson C et al. Factors influencing the decision to start renal replacement therapy: results of a survey among European nephrologists. Am J Kidney Dis 2012; 60: 940–948
41. Hoefield R, Kalra P, Baker P et al. Factors associated with kidney disease progression and mortality in a referred CKD population. Am J Kidney Dis 2010; 56: 1072–1081
42. Alexandrino-Silva C, Wang Y, Viana C et al. Gender differences in symptomatic profiles of depression: results from the Sao Paulo Megacity Mental Health Survey. J Affect Disord 2013; 147: 355–364
43. Knowles S, Castle D, Biscan S et al. Relationships between illness perceptions, coping and psychological morbidity in kidney transplants patients. Am J Med Sci 2016; 351: 233–238
44. Wolf E, Mori D. Avoidant coping as a predictor of mortality in veterans with end-stage renal disease. Health Psychol 2009; 28: 330–337
45. Cukor D, Rosenthal D, Jindal R et al. Depression is an important contributor to low medication adherence in hemodialyzed patients and transplant recipients. Kidney Int 2009; 75: 1223–1229
46. Kimmel P, Peterson R, Weihs K et al. Psychosocial factors, behavioral compliance and survival in urban hemodialysis patients. Kidney Int 1998; 54: 245–254
47. Carney R, Blumenthal J, Stein P et al. Depression, heart rate variability, and acute myocardial infarction. Circulation 2001; 104: 2024–2028
48. Otte C, Neylan T, Pipkin S et al. Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. Am J Psychiatry 2005; 162: 2139–2145
49. Otte C, Marmar C, Pipkin S et al. Depression and 24-hour urinary cortisol in medical outpatients with coronary heart disease: the Heart and Soul Study. Biol Psychiatry 2004; 56: 241–247
50. Park S, Lee S, Kim Y et al. Causal effects of positive affect, life satisfaction, depressive symptoms, and neuroticism on kidney function: a Mendelian randomization study. J Am Soc Nephrol 2021; 32: 1484–1496
51. Tuot D, Lin F, Norris K et al. Depressive symptoms associate with race and all-cause mortality in patients with CKD. Kidney Int Rep 2018; 4: 222–230
52. Chan R, Dear B, Titov N et al. Examining internet-delivered cognitive behaviour therapy for patients with chronic kidney disease on haemodialysis: a feasibility open trial. J Psychosom Res 2016; 89: 78–84
53. Griva K, Lam K, Nandakumar M et al. The effect of brief self-management intervention for hemodialysis patients (HED-SMART) on trajectories of depressive and anxious symptoms. J Psychosom Res 2018; 113:37–44