Prospects of measuring Higgs boson decays into muon pairs at the ILC

Shin-ichi Kawada, Jenny List, Mikael Berggren (DESY)

LCWS2018 @ UTA, USA

2018/October/22-26
Introduction

Discovery of SM-like Higgs boson at the LHC

But, still many open questions:
- SM Higgs? BSM Higgs?
- dark matter, dark energy
- BSM (SUSY, composite...)
- ...

Precise measurement of Higgs boson would be a key to answer the questions
- mass-coupling relation
- any deviation shows the existence of BSM
- typically small deviation

One example: Supersymmetry

\[
\frac{g_{hbb}}{g_{h_{SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \approx 1 + 1.7\% \left(\frac{1 \text{ TeV}}{m_A} \right)^2
\]

arXiv:1306.6352
The **International Linear Collider (ILC)**

- e^+e^- collider, $E_{CM} = 250$ GeV (upgradable to 500 GeV, 1 TeV)
- polarized beam ($e^-: \pm 80\%, e^+: \pm 30\%$)
- clean environment, known initial state

under in-depth consideration by the Japanese government
Key Point

LHC: all measurements are $\sigma \times BR$

ILC: $\sigma \times BR$ measurements + σ measurement
Detector Concept at the ILC

ILD (International Large Detector)

Tracker: Vertex, TPC
Calorimeter: ECAL, HCAL
3.5T magnetic field
Yoke for muon, Forward system

Requirements:
➢ Impact parameter resolution
\[\sigma_{r\phi} < 5 \oplus \frac{10}{p\sin^{3/2} \theta} \text{ } \mu m \]
➢ Momentum resolution
\[\sigma_{1/p_T} < 2 \times 10^{-5} \text{ GeV}^{-1} \]
➢ Energy resolution
\[\sigma_E/E = 3 - 4\% \]
In This Talk: $h \rightarrow \mu^+ \mu^-$

- Can be used for testing:
 - $y_f \propto m_f$
 - Mass generation mechanism between 2nd/3rd leptons (κ_μ/κ_τ) and 2nd lepton/quark (κ_μ/κ_c)

- Challenging: tiny branching ratio ($\text{BR}(h \rightarrow \mu^+ \mu^-) = 2.2 \times 10^{-4}$)
Previous Studies

Everything performed at >= 1 TeV, or not realistic

Reference	E_{CM}	beam pol. $P(e^-, e^+)$	$\int L dt$	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	comment
LC-REP-2013-006	1 TeV	(-0.8, +0.2)	500 fb$^{-1}$	44%	ILC/ILD
arXiv:1306.6329 [hep-ex]	1 TeV	(-0.8, +0.2)	1000 fb$^{-1}$	32%	ILC/SiD
arXiv:1603.04718 [hep-ex]	1 TeV	(-0.8, +0.2)	500 fb$^{-1}$	36%	ILC/ILD used TMVA
Eur. Phys. J. **C73**(2), 2290 (2013)	3 TeV	unpol.	2000 fb$^{-1}$	15%	CLIC_SiD $M_h = 120$ GeV used TMVA
Euro. Phys. J. **C75**, 515 (2015)	1.4 TeV	unpol.	1500 fb$^{-1}$	38%	CLIC_ILD used TMVA
		(-0.8, 0)		25%	
arXiv:0911.0006 [physics.ins-det]	250 GeV	(-0.8, +0.3)	250 fb$^{-1}$	91%	ILC/SiD $M_h = 120$ GeV
ILC Running Scenario

optimized scenario with considering
- Higgs precise measurements
- Top physics
- New physics search

~20 years running with energy range [250-500] GeV, beam polarization sharing

--- then possible 1 TeV upgrade

preferred scenario:

2000 fb\(^{-1}\) @ 250 GeV
200 fb\(^{-1}\) @ 350 GeV
4000 fb\(^{-1}\) @ 500 GeV
Single Higgs Production

$\sqrt{s} = 250$ GeV
Higgs-strahlung (Zh) dominant

$\sqrt{s} = 500$ GeV
WW-fusion dominant

E_{CM}	process	beam pol.	$\int L\,dt$ (fb$^{-1}$)	# events
500	$\nu\bar{\nu}h$	L	1600	57.5
		R	1600	7.9
500	$q\bar{q}h$	L	1600	24.6
		R	1600	16.5
250	$\nu\bar{\nu}h$	L	900	15.0
		R	900	8.4
250	$q\bar{q}h$	L	900	41.1
		R	900	28.1

$P(e^-, e^+) = (-0.8, +0.3)$, $M_h = 125$ GeV

L: $(e^-, e^+) = (-0.8, +0.3)$
R: $(e^-, e^+) = (+0.8, -0.3)$
Analysis Settings

• Geant4-based full detector simulation with ILD model
• Included all available SM backgrounds
 • (for specialist) Used DBD-world samples
 • Performed toy MC in the end to estimate the precision

E_{CM}	# total MC events
500 GeV	1.4×10^7
250 GeV	7.1×10^7
1. select $h \rightarrow \mu^+ \mu^-$ candidate
2. channel-specific analysis
3. multivariate analysis
4. modeling and toy MC with $M_{\mu^+ \mu^-}$
 - extract final precision
 - (for experts) Crystal Ball + Gaussian (CBG) for signal, pol1 for background

Analysis is structured in the same way for all channels.
Results

ILC250 combined = 24.9% (“theoretical limit” = 10.4%)

ILC250+500 combined = 17.5% (“theoretical limit” = 7.1%)

HL-LHC: 10-13%

※theoretical limit = 100% efficiency, no backgrounds, no detector effects

Energy	\(q\bar{q}h\)	\(\nu\bar{\nu}h\)	
250 GeV	L	36.2%	122.4%
	R	38.0%	105.1%

\[
\text{precision for } \frac{\Delta(\sigma \times \text{BR})}{(\sigma \times \text{BR})}
\]

Energy	\(q\bar{q}h\)	\(\nu\bar{\nu}h\)	
500 GeV	L	43.8%	37.9%
	R	54.2%	108.8%
Impact of Momentum Resolution

• The variable $M_{\mu^+ \mu^-}$ is most important and essential for this analysis. Thus, the momentum resolution (P_t resolution) has a crucial role.

• Studied what will happen when we change the momentum resolution artificially
 • 13 benchmark points

Resolution (GeV$^{-1}$)
1×10^{-3}
5×10^{-4}
5×10^{-5}
5×10^{-6}
3×10^{-4}
3×10^{-5}
3×10^{-6}
2×10^{-4}
2×10^{-5}
2×10^{-6}
1×10^{-4}
1×10^{-5}
1×10^{-6}
Impact of Momentum Resolution

• smeared MCParticle momentum of $h \rightarrow \mu^+ \mu^-$ candidate
 • Gaussian-smeared with constant number
 • no momentum/angular dependencies
 • Not 100% correct, but muons will fly everywhere and rather high momentum. On average, this is still good approximation.
 • replace $M_{\mu^+ \mu^-}$ to $M_{\mu^+ \mu^-}^{\text{smeared}}$ in toy MC

Studied the impact to final number:
$$\frac{\Delta(\sigma \times \text{BR})}{(\sigma \times \text{BR})}$$ in this study

arXiv:1306.6329
Results (Major Channel)

qqh250-L
full: 36.2%

nnh500-L
full: 37.9%
Combined Results

- better resolution gives better result
- relative improvement is ~20% when resolution is factor 10 better
- relative ~40% worse when resolution is factor 10 worse

ILC250: ~18-23%
ILC250+500: ~14-18%
Summary

• Precise measurements and extracting absolute Higgs couplings are possible at the ILC
• Studied $h \rightarrow \mu^+ \mu^-$ channel with $E_{\text{CM}} = 250/500$ GeV at the ILC
 • Can reach 17.5% combined precision for $\frac{\Delta(\sigma \times \text{BR})}{(\sigma \times \text{BR})}$
• Studied the impact of momentum resolution
• Now summarizing into a full paper: ongoing
• (for specialist) IDR analysis has just started