Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression

Jenni N Weeks*1,2, Cristi L Galindo3, Kenneth L Drake4, Garry L Adams1, Harold R Garner3 and Thomas A Ficht1

Abstract
Background: Quorum sensing is a communication system that regulates gene expression in response to population density and often regulates virulence determinants. Deletion of the luxR homologue vjbR highly attenuates intracellular survival of Brucella melitensis and has been interpreted to be an indication of a role for QS in Brucella infection. Confirmation for such a role was suggested, but not confirmed, by the demonstrated in vitro synthesis of an auto-inducer (AI) by Brucella cultures. In an effort to further delineate the role of VjbR to virulence and survival, gene expression under the control of VjbR and AI was characterized using microarray analysis.

Results: Analyses of wildtype B. melitensis and isogenic ΔvjbR transcriptomes, grown in the presence and absence of exogenous N-dodecanoyl homoserine lactone (C12-HSL), revealed a temporal pattern of gene regulation with variances detected at exponential and stationary growth phases. Comparison of VjbR and C12-HSL transcriptomes indicated the shared regulation of 127 genes with all but 3 genes inversely regulated, suggesting that C12-HSL functions via VjbR in this case to reverse gene expression at these loci. Additional analysis using a ΔvjbR mutant revealed that AHL also altered gene expression in the absence of VjbR, up-regulating expression of 48 genes and a luxR homologue blxR 93-fold at stationary growth phase. Gene expression alterations include previously un-described adhesins, proteases, antibiotic and toxin resistance genes, stress survival aids, transporters, membrane biogenesis genes, amino acid metabolism and transport, transcriptional regulators, energy production genes, and the previously reported fliF and virB operons.

Conclusions: VjbR and C12-HSL regulate expression of a large and diverse number of genes. Many genes identified as virulence factors in other bacterial pathogens were found to be differently expressed, suggesting an important contribution to intracellular survival of Brucella. From these data, we conclude that VjbR and C12-HSL contribute to virulence and survival by regulating expression of virulence mechanisms and thus controlling the ability of the bacteria to survive within the host cell. A likely scenario occurs via QS, however, operation of such a mechanism remains to be demonstrated.

Background
Brucella spp. are Gram-negative, non-motile, facultative intracellular bacterial pathogens that are the etiologic agents of brucellosis, causing abortion and sterility in a broad range of domestic and wild animals. Furthermore, brucellosis is a chronic zoonotic disease characterized in humans by undulant fever, arthritic pain and neurological disorders. Brucella virulence relies upon the ability to enter phagocytic and non-phagocytic cells, control the host’s intracellular trafficking to avoid lysosomal degradation, and replicate in a Brucella-containing vacuole (brucellosome) without restricting host cell functions or inducing programmed death [1-3]. Although a few genes are directly attributed to the survival and intracellular survivor.
trafficking of *Brucella* in the host cell (e.g., cyclic β-(1,2) glucan, lipopolysaccharide and the type IV secretion system (T4SS)), many aspects of the intracellular lifestyle remain unresolved [4-6].

Quorum sensing (QS), a communication system of bacteria, has been shown to coordinate group behavior in a density dependent manner by regulating gene expression; including secretion systems, biofilm formation, AI production, and cell division [7-10]. QS typically follows production of a diffusible signaling molecule or autoinducer (AI) acyl-homoserine lactone (AHL). Among proteobacteria, the larger family to which *Brucella* belong, the AHL signal is synthesized by *luxI*, and shown to interact with the transcriptional regulator LuxR to cooperatively modulate gene expression [9]. In addition to an AHL signal, LuxR regulatory activity can be modulated by phosphorylation (*fixL*), contain multiple ligand binding sites (*malT*), or LuxR can function as an autonomous effector without a regulatory domain (*gerE*) [11-13].

Two LuxR-like transcriptional regulators, VjbR and BlxR (or also referred to as BabR) have been identified in *Brucella melitensis* [14,15]. VjbR was shown to positively influence expression of the T4SS and flagellar genes, both of which contribute to *B. melitensis* virulence and survival [14]. Although an AHL signal N-dodecanoyl homoserine lactone (C12-HSL) has been purified from *Brucella* culture supernatants, the gene responsible for the production of this AHL (*luxI*) has not yet been identified [16]. One possible explanation for the apparent absence of *luxI* homologues is that *Brucella* contains a novel AHL synthetase that remains to be identified. The fact that both LuxR homologues respond to C12-HSL by altering the expression of virulence determinants is also consistent with a role for the autoinducer in regulating expression of genes necessary for intracellular survival [17,18]. Specifically, expression of the *virB* and *flgE* operons are repressed by the addition of exogenous C12-HSL [14,16]. The results reported here extend those observations and suggest that C12-HSL acts as a global repressor of gene expression via interaction with VjbR while functioning to activate expression of other loci independent of VjbR.

In the present study, we sought to identify additional regulatory targets of the putative QS components VjbR and C12-HSL in an effort to identify novel virulence factors to confirm a role for QS in intracellular survival. Custom *B. melitensis* 70-mer oligonucleotide microarrays were utilized to characterize gene expression. Comparison of transcript levels from *B. melitensis* wildtype and a vjbR deletion mutant, with and without the addition of exogenous C12-HSL revealed a large number of genes not previously shown to be regulated in *B. melitensis*, including those involved in numerous metabolic pathways and putative virulence genes (e.g., adhesins, proteases, lipoproteins, outer membrane proteins, secretion systems and potential effector proteins). Additionally, results confirmed earlier findings of genes regulated by these components, validating the microarray approach for identification of genes that may contribute to intracellular survival and virulence.

Methods

Bacteria, macrophage strains and growth conditions

Escherichia coli DH5α-T18 competent cells were used for cloning and routinely grown on Luria-Bertani (LB, Difco Laboratories) overnight at 37°C with supplemental kanamycin (100 mg/l) or carbenicillin (100 mg/l) as needed. *B. melitensis* 16M was grown on tryptic soy agar or broth (TSA or TSB) and J774A.1 murine macrophage-like cells were maintained in T-75 flasks in Dulbecco’s modified Eagle’s medium, HEPES modification (DMEM), supplemented with 1x MEM non-essential amino acids (Sigma, St Louis, MO), 0.37% sodium bicarbonate and 10% fetal bovine serum at 37°C with 5% CO2. All work with live *B. melitensis* was performed in a biosafety level 3 laboratory at Texas A&M University College Station, per CDC approved standard operating procedures. All bacterial strains used are listed in Additional File 1, Table S1.

Generation of gene replacement and deletion mutants

LuxR-like proteins were identified in *B. melitensis* using NCBI BLAST protein homology searches [http://www.ncbi.nlm.nih.gov/]. *B. melitensis* 16M *luxR* gene replacement and deletion mutations were created as previously described by our laboratory, with plasmids and strains generated described in Additional File 1, Table S1 and primers for PCR applications listed in Additional File 2, Table S2 [19]. For complementation of the ΔvjbR mutation, gene locus BMEII1116 was amplified by PCR primers TAF588 and TAF589, cloned into pMR10-Kan XbaI sites, and electroporated into *B. melitensis* 16MΔvjbR (Additional File 1, Table S1 and Additional File 2, Table S2).

Gentamycin protection assay

J774A.1 cells were seeded into 24-well plates at a density of 2.5 × 10⁵ CFU/well and allowed to rest for 24 hours in DMEM. J774A.1 cells were infected with *B. melitensis* 16M or mutant strains in individual wells at an MOI of 20. Following infection, monolayers were centrifuged (200 × g) for 5 min and incubated for 20 minutes. Infected monolayers were washed 3 × in Peptone Saline (1% Bacto-Peptone and 0.5% NaCl), and incubated in DMEM supplemented with gentamycin (40 μg/ml) for 1 hour. To collect internalized bacteria at time 0 and 48 hours post-infection, macrophages were lysed in 0.5% Tween-20 and serial dilutions were plated to determine bacterial colony forming units (CFU).
RNA collection
Cultures were grown in Brucella Broth at 37°C with agitation. Cultures for the AHL experiments were grown with the addition of exogenous N-dodecanoylhomoserine lactone (C_{12}-HSL, Sigma, St. Louis, MO) added at inoculation (50 ng/ml) dissolved in DMSO (at a final concentration of 0.008%) [16]. Total RNA was extracted at mid-exponential (OD_{600} = 0.4) and early stationary (OD_{600} = 1.5) growth phases by hot acidic phenol extraction, as previously described [20]. Contaminating DNA was degraded by incubation with DNAsel I (Qiagen, Valencia, CA) following manufacturer’s instructions and purification using the HighPure RNA isolation kit (Roche, Indianapolis, IN). RNA integrity, purity and concentration were evaluated using a 2100 bioanalyzer (Agilent, Santa Clara CA), electrophoresis, and the Nanodrop® ND-1000 (Nanodrop, Wilmington, DE).

DNA and RNA labeling for microarrays
B. melitensis 16M genomic DNA was processed into cDNA using the BioPrime® Plus Array CGH Indirect Genomic Labeling System (Invitrogen, Carlsbad, CA) and purified using PCR purification columns (Qiagen, Valencia, CA) following the manufacturer’s instructions and eluted in 0.1× of the supplied elution buffer.

The cDNA synthesis from total RNA was produced using SuperScript III reverse transcriptase kit following manufacturer instructions (Invitrogen, Carlsbad, CA). Reactions were subsequently purified with PCR Purification columns (Qiagen, Valencia, CA) using a modified wash (5 mM KPO_{4} (pH 8.0) and 80% ethanol) and incremental elution with 4 mM KPO_{4} pH 8.5. Alexa-Fluor 555 (Invitrogen, Carlsbad, CA) was coupled to the RNA-derived cDNA following the procedure outlined in the BioPrime® Plus Array CGH Indirect Genomic Labeling System (Invitrogen, Carlsbad, CA) and purified using PCR purification columns (Qiagen, Valencia, CA). Labeled RNA samples were dried completely and re-suspended in ddH_{2}O immediately before hybridization to the microarrays.

Microarray construction
Unique 70-mer oligonucleotides (Sigma, St. Louis, MO) representing 3,227 ORFs of *B. melitensis* 16M and unique sequences from *B. abortus* and *B. suis* were suspended in 3× SSC (Ambion, Austin, TX) at 40 μM. The oligonucleotides were spotted in quadruplicate onto ultraGAP glass slides (Corning, Corning, NY) by a custom-built robotic arrayer (Magna Arrayer) assembled at Dr. Stephen A. Johnston’s lab at the University of Texas Southwestern Medical Center (Dallas, TX). The printed slides were steamed, UV cross-linked, and stored in a desiccator until use.

Microarray pre-hybridization, hybridization and washing
Printed slides were submerged in 0.2% SDS for 2 minutes and washed 3× in ddH_{2}O before incubation in prehybridization solution (5× SSC, 0.1% SDS and 1% BSA) at 45°C for 45 minutes. Next, slides were washed 5× in ddH_{2}O, rinsed with isopropanol, and immediately dried by centrifugation at 200 × g for 2 minutes at room temperature. The labeled cDNA mix was combined with 1× hybridization buffer (25% formamide, 1× SSC and 0.1%SDS) and applied to the microarray in conjunction with a 22 × 60 mm LifterSlip (Erie Scientific, Portsmouth, NH). The microarray slides were hybridized at 42°C for approximately 21 hours in a sealed hybridization chamber with moisture (Corning, Corning, NY), and subsequently washed at room temperature with agitation in 2× SSC and 0.2% SDS (pre-heated to 42°C) for 10 minutes, 5 minutes in 2× SSC, followed by 0.2× SSC for 5 minutes, and dried by centrifugation for 2 minutes (200 × g) at room temperature.

Microarray data acquisition and analysis
Array slides were scanned using GenePix 4100A (Molecular Devices, Sunnyvale, CA) and GenePix 6.1 Pro software. Seralogix, Inc. (Austin, TX) performed microarray analysis, normalizing the data and identifying differentially expressed genes by a two-tail z-score level greater than ± 1.96, equating to a confidence level of 95%. Additionally, the NIH/NIAID WRCE bioinformatics core performed microarray analysis as follows: GeneSifter (VizX Labs, Seattle, WA) was used to perform normalization based on the global mean and genes with alterations of least a 1.5-fold, with a p value of 0.05 or less based on Student’s t-test were deemed as statistically significant. Any gene that was considered statistically significant based on Student’s t-test but not by the z-score criteria were further expected to be at least 50% greater in magnitude (e.g., 1.5-fold greater) than the fold-change observed between any two biological replicate samples. All gene expression data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE13634.

Quantitative real time PCR
Taqman® universal probes and primer pairs (Additional File 2, Table S2) were selected using Roche’s Universal Probe Library and probefinder software http://www.universalprobelibrary.com. RNA was reverse transcribed to cDNA using the Transcriptor First Strand cDNA synthesis kit (Roche, Indianapolis, IN) and PCR reactions consisted of 1× TaqMan® universal PCR master mix, no AmpErase® UNG (Applied Biosystems, Foster City, CA), 200 nM of each primer and 100 nM of probe. With the exception of BMEI1758, genes were selected at random for quantitative real time PCR (qRT-PCR) verification,
and were performed in triplicate for each sample within a plate and repeated 3× using the 7500 Real Time PCR System (Applied Biosystems, Foster City, CA). Gene expression was normalized to that of 16s rRNA and the fold-change calculated using the comparative threshold method [21].

Screen for a putative AHL synthase

Fifteen B. melitensis genetic loci and P. aeruginosa lasI and rhlI were amplified by PCR, cloned into BamHI sites in the pET-11a expression vector and transformed by heat-shock into E. coli BL21-Gold(DE3) cells (Additional File 1, Table S1 and Additional File 2, Table S2). The resulting clones were cross streaked on LB agar supplemented with 2 mM IPTG with E. coli JLD271 + pAL105 and pAL106 for detection of C12-HSL production, and E. coli JLD271 + pAL101 and pAL102 for detection of C4-HSL production (Additional File 1, Table S1). Cross-streaks were incubated at 37°C for 2-8 hours, and luminescence was detected using the FluorChem Imaging System (Alpha-Innotech, San Leandro, CA) at varied exposure times.

Results and Discussion

Identification and screening for attenuation of ΔluxR mutants in J774A.1 macrophage-like cells

A luxR-like gene, vjbR, was identified in a mutagenesis screen conducted by this laboratory and others [22]. More recently, a second luxR-like gene, blxR (or babR), has also been identified and characterized [15,23]. These two homologues, VjBR and BxR, contain the two domains associated with QS LuxR proteins (i.e., autoinducer binding domain and LuxR DNA binding domain). BLAST protein homology searches with the LuxR-like proteins identified three additional proteins that contain significant similarity to the LuxR helix-turn-helix (HTH) DNA binding domain but do not contain the AHL binding domain. All 5 B. melitensis LuxR-like proteins exhibit similar levels of relatedness to Agrobacterium tumefaciens TraR homolog (29-34%) and canonical LuxR homolog LasR from Pseudomonas aeruginosa (29-43%). Despite the absence of a characterized activation domain, evaluation of these three proteins was pursued due to their similarity with LuxR homologs best characterized in Vibrio harveyi that act autonomously or via phosphorylation/dephosphorylation to alter gene expression from selected loci [24,25].

Gene replacement and deletion mutations were created for all five homologues including the three newly discovered HTH LuxR DNA binding domain homologues (BME I1582, I1751 and I10853), vjbR, and blxR in B. melitensis 16M and survival in J774A.1 macrophage-like cells was subsequently assessed by gentamycin protection assays. Confirming previous findings, intracellular survival was significantly reduced for both the vjbR transposon and deletion mutants and not for the blxR mutant, as indicated by CFU recovery after 48 hrs of infection (Fig. 1) [14,23]. Survival of the vjbR mutant was restored to nearly wildtype levels after complementation (Fig. 1). No significant difference in CFU was observed for the other three mutants when compared to wildtype infected cells, indicating that these homologues are either not required for intracellular replication in macrophages or there is functional redundancy among some of homologues (Fig. 1). A recent report presented evidence indicating that the ΔblxR and ΔvjbR mutants exhibited similar levels of attenuated intracellular survival in the RAW264.7 macrophage cells [15]. However, the ΔblxR mutant proved to be virulent in IRF1-/- knockout mice, with only a slight delay in mortality when compared to wildtype (10 days vs. 7.4, respectively) [15]. For comparison, all of the mice inoculated with the ΔvjbR mutant survived to at least day 14 [15]. Taken together the results suggest that the loss of blxR expression has only a modest effect on virulence/survival and the attenuated phenotype of the ΔvjbR mutant is more consistently observed.
Microarray analysis indicates that Brucella putative quorum sensing components are global regulators of gene expression

To investigate the transcriptional effects resulting from a vjbR deletion and the addition of exogenous C_{12}-HSL, RNA was isolated from wildtype *B. melitensis* 16M, the isogenic ΔvjbR, and both strains with the addition of exogenous C_{12}-HSL, at a logarithmic growth phase and an early stationary growth phase. The use of exogenous C_{12}-HSL addition to cultures was selected because of the inability to eliminate the gene(s) responsible for C_{12}-HSL production. Three independent RNA samples were harvested at each time point (exponential and early stationary growth phases) and hybridized with reference genomic DNA, which yielded a total of 24 microarrays.

Microarray analysis revealed a total of 202 (Fig. 2A, blue circles) and 229 genes (Fig. 2B, blue circles) to be differentially expressed between wildtype and ΔvjbR cultures at exponential and stationary growth phases, respectively (details provided in Additional File 3, Table S3). This comprises 14% of the *B. melitensis* genome and is comparable to the value of 10% for LuxR-regulated genes previously predicted for *P. aeruginosa* [26]. The majority of altered genes at the exponential phase were down-regulated (168 genes) in the absence of vjbR, while only 34 genes were up-regulated (Fig. 2A, blue circles). There were also a large number of down-regulated genes (108 genes) at the stationary phase; however, at this later time point there were also 121 genes that were specifically up-regulated (Fig. 2B, blue circles). When comparing wild-type cells with and without the addition of exogenous C_{12}-HSL, the majority of genes were found to be down-regulated at both growth phases, 249 genes at exponential phase (Fig. 2A, green circle) and 89 genes at stationary phase (Fig. 2B, green circle). These data suggest that VjbR is primarily a promoter of gene expression at the exponential growth phase and acts as both a transcriptional repressor and activator at the stationary growth phase. Conversely, C_{12}-HSL primarily represses gene expression at both growth phases.

Quantitative real time PCR (qRT-PCR) was performed to verify the changes in gene expression for 11 randomly selected genes found to be altered by the microarray analyses (Table 1). For consistency across the different transcriptional profiling assays, cDNA was synthesized from the same RNA extracts harvested for the microarray experiments. For the 11 selected genes, the relative transcript levels were comparable to the expression levels obtained from the microarray data.

Recently, a *virB* promoter sequence was identified and confirmed to promote expression of downstream genes via VjbR [27]. With such a large number of transcriptional regulators found to be altered downstream of VjbR and by the addition of C_{12}-HSL (Table 2), it is plausible that many of the gene alterations observed may be downstream events and not directly regulated by VjbR. To identify altered genes that are likely directly regulated by VjbR, microarray data from these studies were compared to the potential operons downstream of the predicted VjbR promoter sequences [27]. A total of 91 potential operons from the 144 previously predicted VjbR promoter sequences were found to be altered by a deletion of VjbR and/or treatment of wildtype cells with C_{12}-HSL, comprised of 215 genes (Additional File 4, Table S4) [27]. A total of 11 promoters from the confirmed 15 found to be activated by VjbR in an *E. coli* model were identified in the microarray analyses conducted in this study, confirming the direct regulation of these particular operons (Additional File 4, Table S4) [27].

The differentially expressed genes were categorized by clusters of orthologous genes (COGs), obtained from the DOE Joint Genome Institute Integrated Microbial Genomics project http://img.jgi.doe.gov/cgi-bin/pub/main.cgi. This classification revealed categories that were equally altered by both the vjbR mutant and addition of C12-HSL to wildtype bacteria (Fig. 3). For example; defense mechanisms, intracellular trafficking and secretion were highly over-represented when compared to genomic content. Of particular note, genes involved in cell division were found to be over-represented in wildtype bacteria grown in the presence of C12-HSL but not by deletion of vjbR, indicating that C12-HSL regulates cellular division and may play a key role in the intracellular replication of the bacteria.

Genes found to be altered by deletion of vjbR and treatment with C_{12}-HSL in both wildtype and ΔvjbR backgrounds were compared to data compiled from random mutagenesis screenings, resulting in the identification of 61 genes (Tables 2, 3, 4 and Additional File 3, Table S3) [22,28,39]. This correlation strongly suggests that VjbR and C_{12}-HSL are involved not only in regulating the expression of a diverse array of genes but numerous genetic loci that individually make significant contributions to the intracellular survival of *Brucella* spp.

VjbR and C_{12}-HSL modulate gene transcription in a temporal manner

Comparison of altered gene transcripts resulting from the ΔvjbR mutation revealed that 13% (54 statistically significant genes) were found to be regulated at both growth phases, suggesting that VjbR exerts temporal control over gene regulation (Additional File 3, Table S3). A similar subset of genes were also identified in wildtype bacteria that were treated with C_{12}-HSL when compared to those without treatment, with 12% (54 genes, Additional File 3, Table S3) of transcripts altered at both growth stages. The
low correlation of genes altered at both growth stages suggests that both VjbR and C_{12}-HSL regulate distinct regulons at the two growth stages examined.

A recent study compared microarray and proteomic data from a ΔvjbR mutant at a late exponential growth phase (OD_{600} = 0.75), corresponding to a total of 14 genes and the virB operon found at the growth phases examined here [23]. Of the 14 genes in common with the study by Uzureau et al.; 2 genes and the virB operon identified in our study (BMEI1435 and I1939) correlated in the magnitude of change with both the protein and microarray data, BMEI1267 correlated with the protein data, and 3 genes (BMEI1900, I10358 and I10374) correlated with the microarray data (Additional File 3, Table S3) [23]. Additionally, 5 genes did not correspond with the magnitude of alteration in the microarray analyses conducted in this study (BMEI0747, I1305, I1367, I10098 and I10923; Table 3 and Additional File 3, Table S3) [23]. The low similarity of regulated genes from these two studies that examined a total of 3 different growth phases provides further support of the VjbR temporal gene regulation observed here [23].

A similar pattern of temporal gene regulation by AHL quorum sensing signals has also been observed in P. aeruginosa [26,40]. Distinct regulons were identified at an exponential and early stationary growth phase by utilization of a mutated strain that does not produce AHL signals, leading to the conclusion that the temporal regulation is independent of AHL concentration [26,40]. Examination of two luxR gene transcript levels in P.

Figure 2 Numbers and relationships of transcripts altered by the deletion of vjbR and/or treatment of C_{12}-HSL. Numbers represent the statistically significant transcripts found to be up or down-regulated by microarray analysis at the A) exponential growth phase (OD_{600} = 0.4) and B) stationary growth phase (OD_{600} = 1.5).
Pseudomonas aeruginosa revealed an increase from the late logarithmic to early stationary phase, coinciding with the induction of most quorum-activated genes and supporting a hypothesis that the receptor levels govern the onset of induction [40]. Likewise, the relative expression of *B. melitensis* vjbR was found to increase 25-fold from exponential to stationary growth phase by qRT-PCR (Fig. 4). The observed increase in the transcript levels of *vjbR* supports a similar hypothesis for the temporal gene regulation observed by VjbR in *B. melitensis*

VjbR and C12-HSL alter expression of a common set of genes

To examine the relationship between VjbR and C12-HSL gene regulation, the significantly altered genes from the VjbR regulon were compared to the significantly altered genes from the C12-HSL regulon (Tables 2, 3, 4 and Additional File 3, Table S3). In all, 72 genes were found to be co-regulated during the exponential growth phase and 55 genes at the stationary growth phase, representing approximately 20% of the total number of altered genes identified by microarray analysis. The majority of the common, differently expressed transcripts (124 out of 127) were found to be altered in the same direction by both the vjbR mutant and in response to C12-HSL administration, implying that VjbR and C12-HSL exert inverse effects on gene expression.

In addition to the T4SS and flagella operons being inversely co-regulated, T4SS-dependent effector proteins VceA and VceC were also found to be inversely regulated by the vjbR deletion mutant and addition of C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41]. The down-regulation of these factors in vjbR mutants and in response to C12-HSL to wildtype cells, as well as exopolysaccharide production, proteases, peptidases and a universal stress protein (Table 4). Flagellar and exopolysaccharide synthesis genes have been implicated in the intracellular survival of *Brucella* in mice and macrophages [4,41].

Table 1: Quantitative real time PCR and corresponding microarray data of selected genes.

BME Loci	Gene Function	Condition (growth phase)	Change (Fold) qRT-PCR	Microarray
I 0984	ABC-Type β-(1,2) Glucan Transporter	ΔvjbR/wt (ES)	-2.5	-2.1
II 0151	Flagellar M-Ring Protein, FliF	ΔvjbR/wt (ES)	-7.9	-2.2
II 1069	Adhesin, AidA	ΔvjbR/wt (SP)	-1.9	-1.5
I 0561	Membrane-Bound Lytic Murein Transglycosylase B	ΔvjbR/wt (SP)	-1.7	-2.0
II 0025	Attachment Mediating Protein VirB1	ΔvjbR/wt (SP)	-4.1	-2.6
I 0831	UDP-3-O-[3-hydroxymyristoyl] Glucosamine N-Acyltransferase	wt + AHL/wt (ES)	2.2	2.3
II 0151	Flagellar M-Ring Protein, FliF	wt + AHL/wt (ES)	-3.8	-2.1
II 0838	Succinoglycan Biosynthesis Transport Protein, ExoT	wt + AHL/wt (ES)	-1.7	-4.3
II 1116	LuxR Family Transcriptional Regulator, VjbR	wt + AHL/wt (SP)	-2.9	-
I 1758	LuxR Family Transcriptional Regulator, BlxR	wt + AHL/wt (SP)	27.5	-
I 0155	Putative Allantoin Permease	wt + AHL/wt (SP)	-1.7	-1.4
II 0025	Attachment Mediating Protein VirB1	wt + AHL/wt (SP)	-2.5	-2.2
II 0753	ABC-Type Sorbitol/Mannitol Transport Inner Membrane Protein	ΔvjbR/ΔvjbR + AHL (ES)	1.5	2.5
I 0838	UDP-3-O-[3-hydroxymyristoyl] Glucosamine N-Acyltransferase	ΔvjbR/ΔvjbR + AHL (SP)	99.5	-

A (-) indicates genes excluded for technical reasons or had a fold change of less than 1.5. qRT-PCR values were calculated by the ΔΔCt method normalized to 16s rRNA and are relative to the wildtype, averaged from 3 independently isolated samples, performed in triplicate in a minimum of three assays. ES, Exponential growth phase; SP, Stationary growth phase.
Table 2: Transcripts associated with gene regulation significantly altered between 16M and 16MΔvjbR, with and without the treatment of C12-HSL to cells.

BME Loci	Gene Function	Exponential Growth Phase Change (fold)	Stationary Growth Phase Change (fold)	STM		
		ΔvjbR/ΔvjbR+AHL	wt+AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL	wt+AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL
I 0019	LacI Family	-2.9	-1.8†	1.9	1.5†	-
I 0305	DeoR Family	-1.7	-1.7†	1.9	1.5†	-
I 0447	Leucine-Responsive Regulatory Protein	1.6	-	-2.4	-1.8	-
I 0781	DNA-Directed RNA Polymerase A Subunit	2.4†	2.8	-	-	-
I 1383	AraC Family	-2.4	-1.5†	-	-1.7†	-
I 1607	LuxR Family DNA Binding Domain	1.8†	3.0	-	-1.5†	-
I 1631	TetR Family	-1.9	-2.1	-	-	-
I 1700	Predicted Transcriptional Regulator	2.0	2.9	-	-	-
II 0051	LuxR Family DNA Binding Domain	-1.9	-2.8	-	-	-
II 0800	AraC Family	1.7	2.2†	-	-	-
II 0854	CRP Family Transcriptional Regulator	-	1.6†	-	-1.5	-1.7†
II 0985	Lacl Family	-2.5	-2.7†	-	-2.4	-
II 1022	IclR Family	-1.5†	-1.8	-	-1.9	-2.1†
II 1098	AraC Family	-1.8	-2.8	-	1.9	1.5†
I 0446	MarR Family	1.9†	2.9	2.9†	-	-
I 0518	Cold Shock Protein, CspA	1.6	-	-2.0†	1.7	-
I 0720	Sugar Fermentation Stimulation Protein	-	-2.0†	1.7†	-1.7†	-
I 0899	Phage-Related DNA Binding Protein	-1.8	-1.5†	-1.9†	1.6	-2.4†
I 11098	AsnC Family	-1.7	-2.0†	-1.6†	-	-
I 1291	AraC Family	-	-1.9	-1.7†	1.7	-
I 1641	TetR Family	-	-	-2.7†	-1.7	-1.8
I 1885	LysR Family	-	-1.8†	-2.3†	-1.6	-
II 0127	IclR Family	-	1.6†	-	-1.8	1.6†
II 0219	IclR Family	-	-1.9	-1.7†	1.7	-
II 0657	Transcription Elongation Factor	2.4†	3.1	-	-	-
II 0810	ArsR Family	2.0	2.0	1.8	1.6†	-2.3†

A (-) indicates genes excluded for technical reasons or had a fold change of less than 1.5; † genes that did not pass the statistical significance test but showed an average alteration of at least 1.5-fold. Fold change values are the averaged log2 ratio of normalized signal values from two independent statistical analyses. Abbreviations as follows: STM, Signature Tagged Mutagenesis.
may be the result of C12-HSL reducing VjbR transcriptional activity through the AHL binding domain. Additionally, the observation that the expression of vjbR itself was down-regulated at the stationary growth phase in response to C12-HSL administration further supports a non-cooperative relationship between VjbR and C12-HSL, (2.9-fold by qRT-PCR and 1.2-fold by microarray analysis, Table 1).

Physiological characterization of VjbR and C12-HSL transcriptomes

Virulence. Microarray results confirmed alteration of the previously identified T4SS and flagellar genes, both virulence-associated operons found to be regulated by VjbR and/or C12-HSL, as well as genes with homology to the recently identified T4SS effector proteins in B. abortus and B. suis [14,27]. Furthermore, many putative virulence
Table 3: Transcripts associated with transport significantly altered between 16M and 16MΔvjbR, with and without the treatment of C₁₂-HSL to cells.

BME Loci	Gene Function	Exponential Growth Phase Change fold	Stationary Growth Phase Change (fold)	STM				
		ΔvjbR/wt	wt+AHL/wt	ΔvjbR/ΔvjbR+AHL	ΔvjbR/wt	wt+AHL/wt	ΔvjbR/ΔvjbR+AHL	
Amino Acid								
I 0114	ABC-Type AA Transport	1.6	2.1	-	1.8	1.5†	-	
I 0263	ABC-Type Leucine/Isoleucine/Valine/Threonine/Alanine Transport	-1.8†	-	-	2.1	2.1	-	
II 0038	D-Serine, D-Alanine, Glycine Transporter	-	-1.5†	-	-1.6†	-1.8	-	
II 0517	ABC-Type Branched Chain AA Transport System, AzlC	-1.8	-	-	-2.2	-1.7†	-	
II 0873	ABC-Type High Affinity Branched Chain AA Transport System, LivF	-2.0†	-2.3	-	-	-1.5†	-	
II 0909	Glutamate, γ-Aminobutyrate Antiporter	-	-	-	-2.1	-1.7	-	
I 0260	ABC-Type High-Affinity Branched Chain AA Transport, BraF	-	2.1	-	-1.5†	-	3.0†	
I 0642	Urea Transporter	-2.3†	-1.9	2.0†	-	-	-	
I 1022	ABC-Type Arginine, Ornithine Transporter	1.7†	2.8	2.2†	-	-	-	
I 1869	Homoserine Lactone Efflux Protein	-	-2.3	-	-1.5†	-	2.1†	
II 0070	ABC-Type Branched Chain AA Transport System	-	1.6†	-	-2.5	-1.8†	1.9	
II 0484	ABC-Type Spermidine/Putrescine Transport System	-2.3	-2.5	-	-2.0	-2.3†	-	
Carbohydrate								
I 1385	ABC-Type Lactose Transport System	-2.6†	-3.2	-	-	-	-	
I 0115	ABC-Type G3P Transport System	-1.7†	-3.2	-	-	-	-	
I 0301	ABC-Type Ribose Transport System, RbsC	1.5†	-	-	-1.9	-	-	
II 1096	MFS Family, Putative Tartrate Transporter	1.7†	2.6	-	-	-	-	
I 0556	MFS Transporter ?-Ketoglutarate Permease	-2.4†	-2.5	-	-	-	-2.2†	
Module	Description	I0300	I0362	I0700	I0701	I0702	I0838	I0851
--------	-------------	-------	-------	-------	-------	-------	-------	-------
II 0300	ABC-Type Ribose Transport System, RbsA	-1.9	-1.8	-1.7	-1.6	-1.6	-2.4	2.1
II 0362	ABC-Type Xylose Transport System, XylH	-1.6	-2.5	-3.0	-2.1	-2.8	-2.5	-3.6
II 0700	Galactoside Transport System, MglC	1.6	-1.8	-2.1	-1.7	-1.2	-2.0	-2.0
II 0701	ABC-Type Ribose Transport System, RbsC	2.4	2.2	-	-	-	-	-
II 0702	ABC-Type Simple Sugar Transport System	1.5	-3.6	-2.8	-5.5	-5.1	-2.0	-4.3
II 0838	Succinoglycan Biosynthesis Transport Protein, ExoT	-2.2	-4.2	-4.2	-1.7	-	-	-
II 0851	Exopolysaccharide Export, ExoF Precursor	-2.1	-	-2.1	-	-	-	-

Defense Mechanism

Module	Description	I0361	I0472	I0656	I1743	I1934	I0199	I0205	I0285	I0221
I 0361	ABC-Type Antimicrobial Peptide Transporter System, FtsX	-1.9	-1.6	-1.6	-1.5	-	-	-	-	-
I 0472	ABC-Type Multidrug Transport System	-	2.0	-1.6	-1.5	-				
I 0656	ABC-Type Multidrug Transporter	1.7	2.3	1.6	-	-				
I 1743	ABC-Type Multidrug Transporter System	-	-	-1.8	-1.7	-	-	-	-	-
I 1934	ABC-Type Oligopeptide Transport System	-1.6	-1.9	-	-	-	-	-	-	
I 0199	ABC-Type Oligopeptide Transport System, OppF	-1.5	-2.8	-	-	-	-	-	-	
I 0205	ABC-Type Oligo/Dipeptide Transport System, DppF	-1.9	-2.1	-	-	-	-	-	-	
I 0285	ABC-Type Oligo/Dipeptide/Nickel Transport System, DppB	-	-	-	-	-	-	-	-	
I 0221	ABC-Type Oligo/Dipeptide/Nickel Transport System, DppC	-	-	-	-	-	-	-	-	

Table 3: Transcripts associated with transport significantly altered between 16M and 16MΔvjbR, with and without the treatment of C12-HSL to cells. (Continued)
Gene ID	Description	Fold Change 16MΔvjbR				
II 0382	Acriflavin Resistance Protein D	-1.5†	-1.8	-	1.8†	
Inorganic Ions						
I 1041	ABC-Type Fe-S Cluster Assembly Transporter	1.5†	2.0	-	-	-
I 1954	ABC-Type Metal Ion Transport System	-2.0	-1.6	-	2.0	2.1
II 0005	ABC-Type Molybdate-Binding Protein	-2.7	-2.4	-	1.8†	-
II 0418	Mg²⁺ Transporter Protein, MgtE	-3.2	-1.9†	-	-1.6†	-1.8†
II 0798	ABC-Type Nitrate Transport System, NrtC	-	-	-	-2.1	-2.1
II 0923	ABC-Type Spermidine/Putrescine Transport System	-1.9†	-2.6	-	-	-
II 1121	ABC-Type Fe³⁺ Transport System, SfuB			-1.8†	-1.9	-
I 0637	ABC-Type Cobalt Transport Protein, CbiQ	1.5†	2.3	1.9†	-1.6†	-
I 0641	ABC-Type Co²⁺ Transport System	1.8†	1.9	-	-1.8	-
I 0659	ABC-Type Fe³⁺ Siderophore Transport System	-2.0	-1.8	-1.8†	-1.8†	-1.7†
I 1739	ABC-Type Nitrate/Sulfonate/Bicarbonate Transporter	-1.5†	-1.8	-1.8†	-1.7	-2.1
II 0176	ABC-Type High-Affinity Zn Transport System, ZnuB	-2.4†	-2.3	-1.8†	-	-
II 0770	Potassium Efflux System, PhaA, PhaB	-2.0†	-2.1	-1.6†	-	-
Other						
I 1198	RDD Family, Hypothetical Membrane Spanning Protein	1.5	1.6†	-1.7†	-	-
I 1554	MFS Family Transporter		1.6†	-	-	-
I 1851	ABC-Type Heme Exporter Protein C					
II 1136	ABC-Type Uncharacterized Transport System	-1.5†	-1.9	-2.2	-	-

A (-) indicates genes excluded for technical reasons or had a fold change of less than 1.5; † genes that did not pass the statistical significance test but showed an average alteration of at least 1.5-fold. Fold change values are the averaged log₂ ratio of normalized signal values from two independent statistical analyses. Abbreviations are as follows: STM, Signature Tagged Mutagenesis; DME, Drug/Metabolite Exporter; G3P, Glycerol-3-Phosphate; AA, amino acid.
Table 4: Genetic loci transcripts significantly altered between 16M and 16MΔvjbR, with or without the treatment of C12-HSL that may contribute to virulence.

BME Loci	Gene Function	Exponential Growth Phase Change (fold)	Stationary Growth Phase Change (fold)	STM				
		ΔvjbR/ΔvjbR+AHL	wt + AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL	wt + AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL		
		ΔvjbR/ΔvjbR+AHL	wt + AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL	wt + AHL/ΔvjbR+AHL	ΔvjbR/ΔvjbR+AHL		
Cell Membrane								
I 1873	Autotransporter Adhesin	-2.2	-	-	-1.5†	-	-	
II 1069	Adhesin, AidA	-1.5†	-	-	-1.5	-	-	
I 0402	31 KDa OMP Precursor	-	1.5†	-	-1.7	-1.7†	-	
I 0330	OpgC Protein	-	-2.0	-1.9†	-	-	-	
I 0671	Integral Membrane Protein, Hemolysin	-	-2.7	-2.2†	-	-	-	
II 1070	Adhesin AidA-I	1.7	-	-	-1.9†	-1.9†	-2.6†	
I 1304	Porin, F Precursor	-	-	-3.6†	-3.5	-2.0	-2.0	
I 1305	Porin	-	-2.3	-1.8†	-1.5†	-	-	
Cell Motility								
II 0161	Flagellar Hook-Associated Protein 3	-1.8†	-2.7	-	-	-	-	
II 0165	Flagellar Biosynthesis Protein	-1.9†	-2.8	-	-	-	-	
I 1692	Flagellar Protein, FlgJ	-	-	-2.3†	-1.8	-2.1	-3.4†	
II 0160	Flagellar Hook-Associated Protein, FlgK	-1.6†	-2.0	-1.7†	-	-	-	
II 0162	FlaF Protein	-2.1	-2.0†	-	-	-	-1.6†	
I 0167	Flagellar Biosynthesis Protein, FlhA	-1.6†	-2.3	-1.8†	-1.5†	-1.9†	-5.5†	
II 1109	Chemotaxis Protein, MotA	-1.6†	2.0†	-3.6†	-1.7	-1.5†	-	
Protease and Lipoprotein								
I 0611	HflC Protein, Stomatin, Prohibitin, Flotillin, HflK-C Domains	-1.6	-	-	-1.7†	-	-	
I 1079	Lipoprotein NlpD	-	-1.5†	-	-1.6†	-1.6†	-	
I 1799	Lipoprotein Signal Peptidase	2.2	2.1†	-	-	-1.6†	-	
II 0831	Hypothetical Protein, Aminopeptidase-Like Domain	-1.6†	-2.0	-	-	-	3.1†	
I 0213	Metalloendopeptidase	-1.7†	-2.7†	-1.6†	2.1	-	-	
I 0282	Zinc Metallolipoprotein	-1.8	-1.7	-	-	-	3.4†	
II 0149	Extracellular Serine Protease	-3.2	-1.8	2.9†	-	-	-1.7	-
Secretion System								
I 0390	VceA	-1.4†	-1.3†	-	-	-1.2†	-	
I 0948	VceC	1.1†	1.4†	-	1.6†	1.3†	-	
Table 4: Genetic loci transcripts significantly altered between 16M and 16MΔvjbR, with or without the treatment of C12-HSL that may contribute to virulence.

	Exopolysaccharide Production	Predicted Exported Protein	Tetratricopeptide Repeat Family	Hypothetical Exported Protein, YajC	Attachment Mediating Protein VirB1	Attachment Mediating Protein VirB2	Channel Protein VirB3	Attachment Mediating Protein VirB5	Channel Protein VirB6	Channel Protein VirB8	Channel Protein VirB9	Channel Protein VirB10	OMP, OprF, VirB12	Tetratricopeptide Repeat Family Protein
I	1094	-	-	-	-	-	-	-	-	-	-	-	-	-
II	1141	-1.6	-1.7	-	-	-	-	-	-	-	-	-	-	-
II	1153	-2.1	-2.4	-1.7	-	-	-	-	-	-	-	-	-	-
I	1077	-1.5	-2.1	-1.8†	-1.5†	1.8†	-	-	-	-	-	-	-	-
II	0025	-2.2	-1.9	-2.6	-2.2	-	-	-	-	-	-	-	-	-
II	0026	-	-2.1	-4.3	-3.6	-1.3†	-	-	-	-	-	-	-	-
II	0027	-	-	-3.9	-3.2	-	-	-	-	-	-	-	-	-
II	0029	-2.0	-	1.6†	-5.7	-4.5	-1.2†	-	-	-	-	-	-	-
II	0030	-	-	-1.7†	-2.8	-2.3	-	-	-	-	-	-	-	-
II	0032	-1.6†	-	1.1†	-3.3	-2.6	-	-	-	-	-	-	-	-
II	0033	-	-	-1.8	-1.9	-	-	-	-	-	-	-	-	-
II	0034	-	-1.5	-2.0	-1.9	-	-	-	-	-	-	-	-	-
II	0036	-	-	-1.7†	-1.7†	-	-	-	-	-	-	-	-	-
II	0466	-	2.3	2.2†	-1.5†	-	-	-	-	-	-	-	-	-

Signal Transduction

II	0011	Transcriptional Regulatory Protein, HydG	-1.5†	-2.0	-	-	-	-	-	-	-	-	[31]
II	1014	Two Component Response Regulator	-	1.7†	-	1.6	-1.5†	-					
I	0370	Sensory Transduction Histidine Kinase	-1.7	-2.1	-2.2†	-1.6†	-	2.1†					
I	0372	Two-Component Response Regulator	1.6†	-	-1.5†	1.5†	1.8	-					
I	2034	Sensor Protein, ChvG	-	-1.7	-2.4†	-2.0	-1.6	-					

Stress Response

I	0887	Peptidyl-Prolyl Cis-Trans Isomerase	-	-1.7	-	1.7	1.6	-
I	1619	Hsp33-Like Chaperonin	-	-	-1.8	1.6†	-	
II	0245	Universal Stress Protein Family, UspA	-1.8	-1.7	-2.0†	-2.5	-2.5	-

A (-) indicates genes excluded for technical reasons or had a fold change of less than 1.5; † genes that did not pass the statistical significance test but showed an average alteration of at least 1.5-fold. Fold change values are the averaged log2 ratio of normalized signal values from two independent statistical analyses. Abbreviations are as follows: STM, Signature Tagged Mutagenesis; OMP, Outer Membrane Protein.
factors not previously correlated with VjbR or C12-HSL regulation in Brucella spp. were identified; including protein secretion factors, adhesins, lipoproteins, proteases, outer membrane proteins, antibiotic and toxin resistance genes, stress survival genes and genes containing tetrapeptide repeats (Tables 2, 3, 4 and Additional File 3, Table S3). Many of these gene products have been found to be associated with virulence and infection in numerous other bacterial pathogens have not been studied in Brucella spp., calling for further investigation and characterization.

A BLAST search of the T4SS effector protein VceA against B. melitensis 16M revealed two genes with high and low degrees of similarity, BMEI0390 and BMEI1013, with 98.8% and 35% (respectively) amino acid similarity. VceA (BMEI0390) was found to be down-regulated at the exponential growth phase by the vjbR deletion mutant and the addition of C12-HSL (1.4-fold and 1.3 fold) but was not statistically significant nor met the cut-off value of 1.5-fold (Table 4). Additionally, a BLAST search of VceC revealed a gene with 99% amino acid similarity, BMEI0948, which was found to be up-regulated by ΔvjbR and treatment of C12-HSL in wildtype cells at the stationary growth phase (1.6 and 1.3-fold, respectively, Table 4).

The vceC homologue, which is located downstream of a confirmed VjbR promoter sequence, was unexpectedly found to be down-regulated by VjbR and not up-regulated along with the T4SS (virB operon) [27]. Expression of vceA was found to be promoted at the exponential growth phase by VjbR, however, no information was obtained at the stationary growth phase for comparison to virB in this global survey.

Deletion of vjbR resulted in the down-regulation of a gene locus that encodes for the ATP-binding protein associated with the cyclic β-(1,2) glucan export apparatus (BMEI0984, 2.1-fold) and an exopolysaccharide export gene exoF (BMEI0851, 2.1-fold) at the exponential growth phase; while the treatment of C12-HSL in the ΔvjbR null background up-regulated these same genes 1.7 and 2.1-fold, respectively, (Table 3). Additionally, C12-HSL was found to down-regulate expression of oppC (BMEI0330), responsible for substitutions to cyclic β-(1,2) glucan, 2.0 and 1.9-fold at the exponential growth phase in the wildtype and ΔvjbR backgrounds (respectively, Table 4) [43]. Cyclic β-(1,2) glucan is crucial for the intracellular trafficking of Brucella by diverting the endosome vacuole from the endosomal pathway, thus preventing lysosomal fusion and degradation and favoring development of the brucellosome [4]. Mutations in the vjbR locus do not appear to have a profound effect on trafficking diversion from the early endosomal pathway; however, it is plausible that cyclic β-(1,2) glucan and derivatives may be important for subsequent vacuole modulation and/or brucellosome maintenance during the course of infection [14].

Deletion of vjbR resulted in alteration in the expression of three adhesins: aidA (BMEI1069, down-regulated 1.5-fold at both growth stages examined), aidA-1 (BMEI1070, up-regulated 1.7-fold) at the exponential growth phase, and a gene coding for a cell surface protein (BMEI1873, down-regulated 2.2-fold) at the exponential growth phase (Table 4). Adhesins can serve as potent biological effectors of inflammation, apoptosis and cell recognition, potentially contributing to the virulence and intracellular survival of Brucella spp. [44-46]. For instance, AidA adhesins are important for Bordetella pertussis recognition of host cells and in discriminating between macrophages and ciliated epithelial cells in humans [45].

Transporters. A large number of genes encoding transporters (90 total) were altered in ΔvjbR or in response to the addition of C12-HSL to wildtype cultures (Table 3 and Additional File 3, Table S3). For example, an exporter of O-antigen (BMEI0838) was identified to be down-regulated 2.0-fold by the deletion of vjbR at an exponential growth phase, and 4.3 and 1.7-fold by the addition of C12-HSL to wildtype cells at exponential and stationary growth phases, respectively (Table 3). Among the differently expressed transporters, ABC-type transporters were most highly represented, accounting for 62 out of the 90 transporter genes (including 15 amino acid transporters, 10 carbohydrate transporters and 16 transporters associated with virulence and/or defense
mechanisms) (Table 3 and Additional File 3, Table S3). The correlation between ABC transporters and the ability to adapt to different environments is in tune with the ability of Brucella spp. to survive in both extracellular and intracellular environments [47].

Transcription. Based on microarray analysis results, vjbR deletion or the addition of C12-HSL to wildtype cells altered the expression of 42 transcriptional regulators, comprised of 12 families and 14 two-component response regulators or signal transducing mechanisms (Table 2 and Additional File 3, Table S3). Among the transcriptional families altered by ΔvjbR and/or the addition of C12-HSL, 9 families (LysR, TetR, IclR, AraC, DeoR, GntR, ArsR, MarR and Crp) have been implicated in the regulation of virulence genes in a number of other pathogenic organisms [35,48-55]. The regulation of virB has been reported to be influenced not only by the deletion of vjbR and C12-HSL treatment, but by several additional factors including integration host factor (IHF), BlxR, a stringent response mediator Rsh, HutC, and AraC (BMEII1098) [14,15,56-58]. The same AraC transcriptional regulator was found to altered by vjbR deletion and C12-HSL treatment of wildtype cells: down-regulated 1.8 and 2.8-fold at exponential phase (respectively), and up-regulated 1.9 and 1.5-fold (respectively) at the stationary growth phase (Table 2). Additionally, HutC (BMEII0370) was also found to be down-regulated at the exponential growth phase by the ΔvjbR mutant (1.8-fold), suggesting several levels of regulation for the virB operon by the putative QS components in B. melitensis (Additional File 3, Table S3).

In addition to transcriptional regulators linked to virulence, microarray analyses also revealed two differentially expressed transcriptional regulators that contain the LuxR HTH DNA binding pfam domain (gerE, pfam00196). Gene transcript BMEII0051 was found to be down-regulated 1.9 and 2.8-fold in response to a vjbR deletion and C12-HSL to wildtype cells (respectively) at an exponential growth phase (Table 2). This luxR-like gene is located downstream of a VjbR consensus promoter sequence and thus most likely directly promoted by VjbR [27].

The second luxR-like gene, BMEI1607, was up-regulated 1.8-fold and 3.0-fold in the vjbR mutant and in response to exogenous C12-HSL at the exponential growth phase (respectively), and down-regulated 1.5-fold by the deletion of vjbR at the stationary growth phase (Table 2). This gene locus was not found to be located downstream of a predicted VjbR promoter sequence and may or may not be directly regulated by VjbR. Additionally, blxR was found to be induced 27.5-fold in wildtype cells treated with C12-HSL at the stationary growth phase by qRT-PCR (Table 1). Likewise, qRT-PCR verified a 2.9-fold down-regulation of vjbR in wild-type cells supplied with exogenous C12-HSL at the stationary growth phase. The identification and alteration of genes containing the HTH LuxR DNA binding domain by ΔvjbR and C12-HSL administration, particularly one located downstream of the VjbR consensus promoter sequence, is of great interest. These observations potentially suggest a hierarchical arrangement of multiple transcriptional circuits which may or may not function in a QS manner, as observed in organisms such as P. aeruginosa [26].

AHL synthesis. The deletion of vjbR or addition of C12-HSL resulted in alteration in the expression of 15 candidate AHL synthesis genes, based on the gene product's potential to interact with the known metabolic precursors of AHLS, S-adenosyl-L-methionine (SAM) and acylated acyl carrier protein (acyl-ACP) (Additional File 2, Table S2) [59]. An E. coli expression system was utilized because B. melitensis has been shown to produce an AiiD-like lactonase capable of inactivating C12-HSL [60]. Cross streaks with E. coli AHL sensor strains and clones expressing candidate AHL synthesis genes failed to induce the sensor stains, while positive control E. coli clones expressing rhlB and lasI from P. aeruginosa and exogenous 3-oxo-C12-HSL did in fact induce the sensor strains (data not shown) [61].

C12-HSL regulates gene expression independent of VjbR

In addition to the investigation on the influences of a vjbR deletion or addition of C12-HSL to wildtype bacteria on gene expression, treatment of ΔvjbR with exogenous C12-HSL was also assessed by microarray analyses. Compared to untreated wildtype cells, 87% fewer genes were identified as differentially altered in response to C12-HSL in the vjbR null background as opposed to wildtype cells administered C12-HSL. In the absence of VjbR, exogenous C12-HSL altered the expression of 82 genes; 34 at the exponential growth phase and 48 genes at the stationary growth phase (Fig. 2, red circles and Additional File 5, Table S5). Of these 82 statistically significant altered transcripts, only 4 were commonly altered with the same magnitude by a deletion of vjbR or wildtype cells treated with C12-HSL (Fig. 2). At the exponential growth phase, administration of C12-HSL exerted an equal effect on gene expression, up and down-regulating 19 and 23 genes (respectively, Fig. 2). On the contrary, at the stationary phase all 48 genes were up-regulated, a dramatically different profile than the down-regulation observed for the majority of differently expressed genes in C12-HSL treated wildtype cells (Fig. 2). Collectively, this data supports that C12-HSL is capable of influencing gene expression independent of VjbR.
There is evidence that C_{12}-HSL may interact with a second LuxR homologue, BlxR [18]. Induction of blxR expression in response to C_{12}-HSL was highly variable by microarray analysis; however, qRT-PCR revealed that blxR was up-regulated 99.5-fold in bacteria lacking vjbR treated with C_{12}-HSL, compared to 27.5-fold in wildtype cells that were administered C_{12}-HSL at the stationary growth phase. One possible explanation for this observation is that VjbR inhibits the induction of blxR by binding the AHL substrate and therefore lowering the cellular concentration of available C_{12}-HSL for blxR induction, but has not been demonstrated.

Interestingly, 58% of the gene transcripts found to be altered in an recent study of the function of ΔblxR were also found to be altered by the addition of C_{12}-HSL in the ΔvjbR background, and increased to 88% if we lowered the threshold from our 1.5-fold cutoff (Additional File 5, Table S5) [15]. A second study that similarly examined the transcript and proteomic alterations due to a deletion in babR corresponded with 6 genes identified in our study: with 2 genes found to be unique to the addition of C_{12}-HSL in the ΔvjbR background, and increased to 88% if we lowered the threshold from our 1.5-fold cutoff (Additional File 5, Table S5) [15]. A second study that similarly examined the transcript and proteomic alterations due to a deletion in babR corresponded with 6 genes identified in our study: with 2 genes found to be unique to the addition of C_{12}-HSL in the ΔvjbR background, and increased to 88% if we lowered the threshold from our 1.5-fold cutoff (Additional File 5, Table S5) [15]. A second study that similarly examined the transcript and proteomic alterations due to a deletion in babR corresponded with 6 genes identified in our study: with 2 genes found to be unique to the addition of C_{12}-HSL in the ΔvjbR background, and increased to 88% if we lowered the threshold from our 1.5-fold cutoff (Additional File 5, Table S5) [15].

Deletion of vjbR and treatment of C_{12}-HSL both resulted in a global modulation of gene expression. Examination of the relationship in respect to the genes commonly altered between ΔvjbR and wildtype bacteria administered C_{12}-HSL suggests that C_{12}-HSL reduces VjbR activity, based upon the following observations: 1) An inverse correlation in gene expression for all but three genes found to be altered by VjbR and C_{12}-HSL, 2) Addition of exogenous C_{12}-HSL to growth media mimics the deletion of VjbR in respect to gene alteration, 3) In the absence of vjbR, C_{12}-HSL treatment has a markedly different effect on gene expression at the stationary growth phase, found to only promote gene expression, and 4) virB repression in response to the addition of C_{12}-HSL is alleviated by deletion of the response receiver domain of VjbR [17]. The observed promotion of gene expression with the treatment of C_{12}-HSL in a ΔvjbR background could potentially be occurring through a second LuxR-like protein BlxR, supported by the high correlation of commonly altered genes by ΔblxR and ΔvjbR with the addition of C_{12}-HSL in independent studies [15,23]. Often, the LuxR transcriptional regulator and AHL signal form a positive feedback loop, increasing the expression of luxR and the AHL synthesis gene [62]. The observed up-regulation of blxR by C_{12}-HSL may be an example of such a feedback loop, further supporting an activating role C_{12}-HSL and BlxR activity.

Although evidence is indirect, these observations suggest that there may be two dueling transcriptional circuits with the LuxR transcriptional regulators (VjbR and BlxR). C_{12}-HSL may provide a level of regulation between the two systems, deactivating VjbR and potentially activating...
BlxR activity during the transition to stationary phase. It appears that C₁₂-HSL reduces VjbR activity, alters expression of 2 additional transcriptional regulators that contain the LuxR DNA binding domain, induces expression of BlxR and potentially activates gene expression through interactions with BlxR. It would be interesting to determine if the decrease in virB expression observed in wild-type cells at stationary phase is a result of C₁₂-HSL accumulation and subsequent “switching” of transcriptional circuits in vitro [63]. Further experiments are needed to fully understand the temporal regulation of VjbR and associations with C₁₂-HSL, as well as indemnification of AHL synthesis gene(s) in Brucella spp.

The role of the LuxR transcriptional regulators VjbR and BlxR and the AHL signal in relation to quorum sensing has not been fully deduced. Continuing investigation of these postive QS components in vitro and in vivo will help determine if these components work in a QS-dependent manner in the host cell or if they function more in a diffusion or spatial sensing context to allow differentiation between intracellular and extracellular environments [64]. Future experiments that elucidate how these processes contribute to the “stealthiness” of Brucellae and will provide additional clues to the intracellular lifestyle of this particular bacterium.

Additional material

Additional file 1 Table S1: Bacterial strains and plasmids. Details, genotypes and references for the strains and plasmids used in this study.

Additional file 2 Table S2: PCR and Quantitative Real-Time PCR primers and probes. Provides the sequences and linkers (if applicable) of all primers used for cloning, and the qRT-PCR probes and primers used in this study.

Additional file 3 Table S3: Additional genetic loci identified with significant alterations in transcript levels between B. melitensis 16M and 16MΔvjbR with and without the addition of C₁₂-HSL. Gene transcripts found to be altered by comparison of wild type and ΔvjbR, both with and without the treatment of C₁₂-HSL at an exponential and stationary growth phase.

Additional file 4 Table S4: Promoter(s) sequences and potential operons of downstream genes found to be altered by the deletion of vjbR and/or treatment of C₁₂-HSL. Operons that are both found to be downstream of the predicted VjbR promoter sequence and altered by comparison of wild type and ΔvjbR, both with and without the addition of C₁₂-HSL at exponential or stationary growth phases.

Additional file 5 Table S5: Genetic loci identified with significant alterations in transcript levels between B. melitensis 16MΔvjbR and 16MΔvjbR with the addition of C₁₂-HSL. Altered gene transcripts uniquely identified by the treatment of C₁₂-HSL to the B. melitensis 16MΔvjbR background.

Authors’ contributions

JNW conceived, designed and performed the experiments, and drafted the manuscript. CLG performed computational analyses and assisted in drafting the manuscript. KLD performed computational analyses, contributed to manuscript development and critically revised the manuscript. HRC helped to analyze the data and critically revised the manuscript. LGA contributed to the data acquisition and critically revised the manuscript. TAF conceived and coordinated the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This research was supported by grants from the National Institutes of Health (R01-AI48496 to T.A.F.) and Region VI Center of Excellence for Biodefense and Emerging Infectious Diseases Research (1U54AI057156-010 to T.A.F.). JNW was supported by USDA Food and Agricultural Sciences National Needs Graduate Fellowship Grant (2002-38420-5806).

We thank Tara Crumley, Dr. Carlos Rossetti, and Dr. Sarah Lawhon for all of their assistance with the microarray work, as well as the Western Regional Center of Excellence (WRCE) Pathogen Expression Core (Dr. John Lawson, Dr. Mitchell McGee, Dr. Rhonda Friedberg, and Dr. Stephen A. Johnston, A.S.U.) for developing and printing the B. melitensis DNA microarrays.

Author Details

1Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, 77843-4467, USA, 2Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA, 3Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA, 20246-0477, USA and 4Seralogix, Inc., Austin, TX, 78730, USA

Published: 6 November 2009 Accepted: 8 June 2010

Published: 8 June 2010

References

1. Chaves-Clarte E, Guzman-Verni C, Mereesse S, Desjardins M, Pizarro-Cerda J, Badilla J, Gorvel JP. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell Microbiol 2002, 4(10):663-676.
2. Goss A, Terraza A, Ouahhini-Bettache S, Liatard JP, Donnard J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 2000, 68(1):342-351.
3. Pizarro-Cerda J, Mereesse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goni I, Moreno E, Gorvel JP. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 1998, 66(12):5711-5724.
4. Arellano-Reynoso B, Lapaque N, Salcedo S, Brones G, Cecchini AE, Ugalde R, Moreno E, Morionon I, Gorvel JP. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 2005, 6(6):618-625.
5. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003, 198(4):545-556.
6. Godfroid F, Tamainia B, Danese I, Denoel P, Tibor A, Weynants V, Cloeaerckaert A, Godfroid J, Leteson JJ. Identification of the peroxosomal synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun 1998, 66(11):5485-5493.
7. Anand SK, Griffiths MW. Quorum sensing and expression of virulence in Escherichia coli O157:H7. Int J Food Microbiol 2003, 85(1-2):1-9.
8. Davies DG, Parske MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998, 280(5361):295-298.
9. Furqu C, Parske MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 2001, 35:439-468.
10. Withers HL, Nordstrom K. Quorum-sensing acts at initiation of chromosomal replication in Escherichia coli. Proc Natl Acad Sci USA 1998, 95(26):15694-15699.
11. Beck C, Malfos M, Svegdon D. Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 2002, 321(3):447-457.
12. Ducros VM, Lewis RJ, Verma CS, Dodson EJ, Leonard G, Turkenburg JP, Munschudov GN, Wilkinson AJ, Brannigan JA. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 2001, 306(4):759-771.
13. Schlegel A, Bohm A, Lee SJ, Peist R, Decker K, Boos W. Network regulation of the Escherichia coli maltose system. J Mol Microbiol Biotechnol 2002, 4(3):301-307.
of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 2000, 38(3):543-551.

38. Lestrade P, Dricot A, Delrue RM, Lambert C, Martellini V, De Bolle X, Letesson JJ, Tibor A. Attenuated signature-tagged mutation mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun 2003, 71(12):7053-7060.

39. Haine V, Simon A, Van Steen F, Rousseau S, Dozet M, Lestrade P, Lambert C, Letesson JJ, De Bolle X. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GlnR regulators in the control of virulence. Infect Immun 2005, 73(9):5578-5586.

40. Foulongne V, Bourg G, Cazeveille C, Michaux-Chasron S, O’Callaghan D. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000, 68(3):297-1303.

41. Eskra L, Canavesi A, Carey M, Splinter G. Brucella abortus genes identified following constitutive growth and macrophage infection. Infect Immun 2001, 69(12):7736-7742.

42. Allen CA, Adams LG, Ficht TA. Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 1998, 66(3):1008-1016.

43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.

44. Freeman JA, Bassler BL. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 1999, 31(2):665-677.

45. Freeman JA, Bassler BL. Sequence and function of LuxU: a two-component phosphorylating protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 1999, 181(3):899-906.

46. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulation: effects of growth phase and environment. J Bacteriol 2003, 185(7):2080-2091.

47. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tissot RM. Identification of VceA and VceC, two members of the VJbr region that are translocated into macrophages by the Brucellatyp IV secretion system. Mol Microbiol 2008, 70(6):1378-1396.

48. Kohler S, Foulongne V, Ouahani-Bettache S, Bourg G, Teysier J, Ramuz M, Liautard JP. The analysis of the intramacrophage virulence of Brucella suis decipher the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 2002, 99(24):15711-15716.

49. Hong PC, Tissot RM, Ficht TA. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 2000, 68(7):4102-4117.

50. Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino S, Shirahata T. Purification of RNA from Escherichia coli. In DNA Microarray 2nd edition. Edited by: Bowtell D, Sambrook J. New York: Cold Spring Harbor Laboratory Press, 2002:149-152.

51. Livak KJ, Schmittgen TD. Analysis of real-time gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
54. Ellison DW, Miller VL: Regulation of virulence by members of the MarR/SlyA family. Curr Open Microbiol 2006, 9(2):153-159.
55. Scotti M, Monzo HJ, Lacharme-Lora L, Lewis DA, Vazquez-Boland JA: The PrfA virulence regulon. Microbes Infect 2007, 9(10):1196-1207.
56. Dozoit M, Boigegrain RA, Delrue RM, Hallez R, Ouahhani-Bettache S, Danese I, Letesson JJ, De Bolle X, Kohler S: The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol 2006.
57. Sieira R, Comerci DJ, Pietrasanta LI, Ugalde RA: Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol Microbiol 2004, 54(3):808-822.
58. Sieira R, Arocena GM, Bukata L, Comerci DJ, Ugalde RA: Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J Bacteriol 192(1):217-224.
59. Pappas KM, Weingart CL, Winans SC: Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 2004, 53(3):755-769.
60. Lemaire J, Lazureau S, Mirabella A, De Bolle X, Letesson JJ: Identification of a quorum quenching enzyme in the facultative intracellular pathogen Brucella melitensis 16M. Proceedings of the 60th Annual Brucellosis Research Conference: 1-2 December 2007; Chicago, IL 2007:31.
61. Lindsay A, Ahmer BM: Effect of sdiA on biosensors of N-Acylhomoserine lactones. J Bacteriol 2005, 187(14):5054-5058.
62. Seed PC, Passador L, Iglewski BH: Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 1995, 177(3):654-659.
63. den Hartigh AB, Sun YH, Sondervan D, Heuvelmans N, Reinders MO, Ficht TA, Tsolis RM: Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun 2004, 72(9):5143-5149.
64. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU: Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 2007, 5(3):230-239.

doi: 10.1186/1471-2180-10-167
Cite this article as: Weeks et al., Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression BMC Microbiology 2010, 10:167