A FAMILY OF FUSION SYSTEMS RELATED TO THE GROUPS
\(\text{Sp}_4(p^a) \) AND \(\text{G}_2(p^a) \)

CHRIS PARKER AND GERNOT STROTH

Abstract. A family of exotic fusion systems generalizing the group fusion systems on Sylow \(p \)-subgroups of \(\text{G}_2(p^a) \) and \(\text{Sp}_4(p^a) \) is constructed.

1. Introduction

In this paper we will construct an infinite series of exotic fusion systems. More precisely for each prime \(p \geq 5 \) we build an exotic fusion system on a \(p \)-group which contains an extraspecial \(p \)-group of order \(p^{p-2} \) of index \(p \) (see Proposition 3.5). The catalyst for this construction came from the authors’ investigation of groups \(G \) that contain a subgroup \(H \) which is an automorphism group of a simple group of Lie type in characteristic \(p \), such that \(|G : H| \) is coprime to \(p \) [5]. In [5, Chapter 16] we apply the results of this article to extend the main theorem of [7] to groups of rank two with some exceptions related to the fact that the fusion systems constructed in this article are exotic. A thorough discussion of fusion systems is presented in [2].

Our construction of the exotic fusion systems develops in two phases. First for an arbitrary finite field \(F \), we define a group \(P \) that generalizes the structure of the normalizer of a root subgroup in \(\text{G}_2(F) \) and \(\text{PSp}_4(F) \) and show that a certain amalgam exists if and only if \(F \) has prime order \(p \) and \(O_p(P) \) is extraspecial of order \(p^{p-2} \). In the second phase, we show that the fusion system determined by the free amalgamated product of the amalgam is saturated and exotic. The smallest of the amalgams is for \(p = 5 \) on a Sylow 5-subgroup of \(\text{Sp}_4(5) \) and has the sporadic group \(\text{Co}_1 \) as a completion; however the fusion systems do not coincide.

2. The amalgams

Let \(F \) be a finite field of characteristic \(p > 0 \), \(F[X, Y] \) be the polynomial algebra in two commuting variables and \(V_m \) the \((m+1)\)-dimensional subspace of \(F[X, Y] \) consisting of homogeneous polynomials of degree \(p - 1 \geq m \geq 1 \). Set \(L = F^\times \times \text{GL}_2(F) \). Then, for \((t, \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right)) \in L\), we define an action of this element on \(V_m \) via

\[
X^aY^b \cdot (t, \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right)) = t(aX + \beta Y)^\alpha(\gamma X + \delta Y)^b
\]

where \(a + b = m \). Since \(m < p \), \(V_m \) is an irreducible \(FL \)-module [3].

Define a bilinear function \(\beta_m \) on \(V_m \) by setting

\[
\beta_m(X^aY^b, X^cY^d) = \begin{cases}
0 & \text{if } a \neq d \\
\left(\frac{-1}{m} \right)^a & \text{if } a = d
\end{cases}
\]

and extending bilinearly.

Lemma 2.1. The following hold:
(i) β_m is alternating if and only if m is odd.
(ii) β_m is non-degenerate.
(iii) β_m is preserved up to scalars by L and the scale factor of an element $(t, A) \in L$ is $t^2(\det A)^m$.

Proof. Since the matrix associated with β_m has zeros everywhere other than on the anti-diagonal, β_m is non-degenerate and alternating if and only if m is odd.

Let $G = \{(1, A) \mid A \in \text{SL}_2(\mathbb{F})\}$. We will show that β_m is G-invariant. For this exercise we forget the first factor of the elements of G and simply work with matrices. We also suppress β_m. It suffices to prove that the form is invariant under a set of generators of G. So observe that $G = \{(\lambda X, \lambda^{-1}Y), (0 1 0), (1 1) \mid \lambda \in \mathbb{F}\}$.

Suppose that $\lambda \in \mathbb{F}$. Then

$$(X^aY^b (\lambda X, \lambda^{-1}Y), X^cY^d (\lambda X, \lambda^{-1}Y)) = ((\lambda X)^a(\lambda^{-1}Y)^b, (\lambda X)^c(\lambda^{-1}Y)^d) = \lambda^{a-b+c-d}(X^aY^b, X^cY^d).$$

Since (X^aY^b, X^cY^d) is only non-zero when $a = d$ (so $b = c$), the form is invariant under these elements. We have

$$(X^aY^b (-1 0 1), X^cY^d (-1 0 1)) = (Y^a(-X)^b, Y^c(-X)^d) = (-1)^{b+d}(X^bY^a, X^dY^c).$$

The last term is non-zero if and only if $c = b$ (so $a = d$). Hence the final term is

$$(-1)^{b+d}(X^bY^a, X^dY^c) = \frac{(-1)^{a+b}}{m} = \frac{(-1)^{a}}{m} = (X^aY^b, X^cY^d)$$

as required.

Finally we consider

$$(X^aY^b (1 0 1), X^cY^d (1 0 1)) = (X^a(X + Y)^b, X^c(X + Y)^d)$$

$$= \sum_{j=0}^{b} \binom{b}{j} X^{a+j} Y^{b-j} \sum_{k=0}^{d} \binom{d}{k} X^{c+(d-k)} Y^k$$

$$= \sum_{j=0, a+j=k}^{b} (-1)^{a+j} \binom{b}{j} \binom{d}{k} \binom{m}{a+j} \frac{b!d!(a+j)!(m-a-j)!}{(b-j)!j!(d-k)!k!m!}$$

$$= \sum_{j=0, a+j=k}^{b} (-1)^{a+j} \frac{b!d!}{j!(d-k)!m!} \sum_{j=0}^{d-a} (-1)^{a+j} \frac{(d-a)!}{j!(d-a-j)!}$$

$$= \frac{b!d!}{m!(d-a)!} \sum_{j=0}^{d-a} (-1)^{a+j} \binom{d}{j}.$$
Now the final term here is zero unless \(d = a \) in which case
\[
\frac{b! a!}{m!(d-a)!} \sum_{j=0}^{d-a} (-1)^{a+j} \binom{d}{j} = (-1)^a \frac{(m-a)!a!}{m!} = (-1)^a \binom{a}{m}
\]
as required to show that the form is invariant. This establishes (ii).

Given (ii), to prove (iii), we note that the matrix \((t, (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}))\) scales the form by \(t^2 \det \lambda m\).

From now on suppose that both \(p \) and \(m \) are odd. The construction of the group which will turn out to be \(O_p(P) \) only requires that \(\beta_m \) is a non-degenerate alternating form. Set
\[
Q = V_m \times \mathbb{F}^+
\]
and define a binary operation on \(Q \) by
\[
(v, y)(w, z) = (v + w, y + z + \beta_m(v, w))
\]
for \((v, y), (w, z) \in Q\). Then, as \(\beta_m \) is alternating, \(\beta_m(v, v) = 0 \) and so \(Q \) is a group.

Lemma 2.2. The following statements hold.

(i) If \((v, y) \in Q\), then \(C_Q((v, y)) = \{(w, z) \mid w \in v^\perp, z \in \mathbb{F}\}\).

(ii) The \(p \)-group \(Q \) is special with
\[
Z(Q) = \{(0, \lambda) \mid \lambda \in \mathbb{F}\} = Q' = \Phi(Q).
\]

Proof. Let \((w, z) \in C_Q((v, y))\). Then
\[
(w, z)(v, y) = (w + v, z + y + \beta_m(w, v))
\]
and
\[
(v, y)(w, z) = (v + w, y + z + \beta_m(v, w)).
\]

Since \(\beta_m \) is alternating, we see that these two equation are equal if and only if \(\beta_m(v, w) = 0 \). Thus (i) holds and, as \(\beta_m \) is non-degenerate, we have \(Z(Q) = \{(0, \lambda) \mid \lambda \in \mathbb{F}\} \).

Plainly \(Q/Z(Q) \) is abelian of exponent \(p \). Hence to prove (ii), we just need to show that \(Q' \geq Z(Q) \). So we calculate
\[
[(v, y), (w, z)] = (v, y)(-w, -z)(v, y)(w, z)
= (v - w, -y - z + \beta_m(y, z))(v + w, y + z + \beta_m(z, y))
= (0, 2\beta(y, z))
\]
Thus (ii) follows as \(p \) is odd. \(\square \)

For \((t, A) \in L \) and \((v, z) \in Q \) define
\[
(v, z)^{(t, A)} = (tv \cdot A, t^2(\det A)^m z).
\]
Notice that
\[
((v, y)(w, z))^{(t, A)} = (v + w, y + z + \beta_m(v, w))^{(t, A)}
= (tv + w \cdot A, t^2(\det A)^m(y + z + \beta_m(v, w))
= (tv \cdot A + tw \cdot A, t^2(\det A)^m y + t^2(\det A)^m z + \beta_m(tv \cdot A, tw \cdot A))
= (tv \cdot A, t^2(\det A)^m y)(tw \cdot A, t^2(\det A)^m z)
= (v, y)^{(t, A)}(w, z)^{(t, A)}.
\]
Therefore, \(L \) acts on \(Q \).

We define the following subgroups of \(L \):

\[
B_0 = \mathbb{F}^x \times \left\{ \begin{pmatrix} \alpha & 0 \\ \gamma & \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{F}^x, \gamma \in \mathbb{F} \right\}
\]

and

\[
S_0 = \{1\} \times \left\{ \begin{pmatrix} 1 \\ \gamma \end{pmatrix} \mid \gamma \in \mathbb{F} \right\}.
\]

Next we form the semidirect product of \(Q \) and \(L \) and some subgroups

\[
P = P(m, \mathbb{F}) = LQ;
\]

\[
B = B_0Q; \text{ and}
\]

\[
S = S_0Q.
\]

Plainly \(B = N_P(S) \).

Lemma 2.3. Suppose that \(m < p \). Then the following hold:

(i) \(C_L(Q) = \{ (\mu^{-m}, \begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix}) \mid \mu \in \mathbb{F}^x \} \);

(ii) \(C_Q(S_0) = \langle (\mu X^m, \lambda) \mid \lambda, \mu \in \mathbb{F} \rangle ; \) and

(iii) \(C_{Q/Z(Q)}(S_0) = C_{Q/Z(Q)}(s) = C_Q(S_0)/Z(Q) \) for all \(s \in S_0^\# \).

Proof. Obviously \(C_L(Q) \leq Z(L) \) and so the elements are of type \((t, \begin{pmatrix} 0 & 0 \\ 0 & \mu \end{pmatrix}) \) Now the action on \((X^m, 0)\) gives \((tm^mX^m, 0)\). Hence \(t = \mu^{-m} \).

As \(Q/Z(Q) \) is an irreducible \(L \)-module, we have with \([9]\) that \(C_{Q/Z(Q)}(S_0) \) is 1-dimensional and so the same applies for all \(1 \neq s \in S_0 \). Obviously \(S_0 \) centralizes \((X^m, 0)\), which implies (iii). As \([Z(Q), S_0] = 1\), also (ii) follows. \(\square \)

So we have constructed the group \(P \) of our amalgam. Next we will construct \(K \), which is an extension of the natural module by \(\text{SL}_3(\mathbb{F}) \). Hence we will consider \(K \) as the subgroup of \(\text{SL}_3(\mathbb{F}) \) consisting of the matrices of the form

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & \beta \\
0 & \gamma & \delta
\end{pmatrix}
\]

with determinant 1. Let

\[
C = \left\{ \begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & \theta \\
0 & \delta & \epsilon
\end{pmatrix} \mid \alpha, \delta, \epsilon \in \mathbb{F}, \theta \in \mathbb{F}^x \right\},
\]

\[
D = \left\{ \begin{pmatrix}
0 & 1 & 0 \\
\delta & 1 & 0 \\
\epsilon & 0 & 1
\end{pmatrix} \mid \alpha, \delta, \epsilon \in \mathbb{F} \right\}
\]

and \(W = O_p(K) \). So

\[
W = \left\{ \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \theta
\end{pmatrix} \mid \alpha, \delta \in \mathbb{F} \right\}.
\]

Then we have

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \delta
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \theta
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & \epsilon \\
0 & \delta & \epsilon
\end{pmatrix}.
\]

Our objective is to determine under what conditions \(P/C_L(Q) \) has a subgroup, which we call \(W_0 \), such that \(N_{P/Z(P)}(W_0Z(P)/Z(P)) \) is isomorphic to \(C \) in such a way that \(W_0 \) maps to \(W \). Suppose that \(W_0 \) is such a subgroup, and let \(C_0 \) be the preimage of \(N_P(W_0) \). Obviously \(Z(Q) = Z(S) \leq W_0 \) and, after conjugation in \(P \), we may assume that \(N_S(W_0) \in \text{Syl}_p(C_0) \). Suppose that \(W_0 \leq Q \). Then, as \(Q \) is special by Lemma 2.2(ii), \(N_S(W_0) = Q \) and so \(m = 1 \). Furthermore, \(W_0 = \{(u, z) \mid u \in w^k\} \) where \(x \) is an arbitrary member of \(W_0 \setminus Z(Q) \). But then \(S \)
normalizes W_0, which is impossible as $S \not\leq C_0$. As $Z(Q) \leq W_0$, $N_S(W_0)$ contains $R = \langle (X^m, \lambda) \mid \lambda \in \mathbb{F} \rangle$ which is the preimage of $C_{Q/Z(Q)}(S)$. Let $Q_0 = C_Q(R)$. Then W_0Q_0/Q_0 is normalized by $C_0Q_0/Q_0 \leq B/Q_0$. Since C_0 acts irreducibly on $W_0/Z(Q)$, $|W_0Q_0/Q_0| = p^a$ and, since B normalizes Q and Q_0S, Q_0W is diagonal to these subgroups. We intend to determine the elements of B which are candidates for the diagonal elements of C_0. Now acting on the S_0Q_0/Q_0, elements of the form $d = (t, (\lambda \mu))$ normalize $\langle \lambda Y^m \mid \lambda \in \mathbb{F} \rangle + Q_0$ and Q_0S_0. Furthermore, d acts by scaling Y^m by $t \mu^m$ and mapping $(\lambda, \theta, \mu \gamma)X^m$ to $(\lambda_{\mu^{-1}}, \theta, \mu \gamma)X^m$. Assume that $d \in C_0$ is in the image of an element of C which acts on D as $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \theta & 0 \\ 0 & 0 & \theta^{-1}\end{array}\right)$. Then the entries in d must satisfy

$$t \mu^m = \lambda \mu^{-1} = \theta^{-1}.$$

Furthermore, using Equation (1) and $(X^m)^d = t\lambda^mX_m$, we additionally require:

$$t\lambda^m = \theta^2.$$

There is also a third equation forced by the action of d on $Z(Q)$, but it turns out that this is dependent on the former two equations. The first equality in Equation (2) yields $t = \lambda \mu^{-m-1}$ and then combining Equation (2) and (3) gives us

$$1 = \theta^{-2}\theta^2 = t^2\mu^2m\lambda^m = \lambda^m\mu^{-2m}\lambda^{-m} = (\lambda\mu^{-1})^{m+3} = \theta^{-(m+3)}.$$

Since θ is an arbitrary element of \mathbb{F}^\times, it follows that every element of \mathbb{F}^\times is an $(m+3)$rd root of unity. Thus, \mathbb{F} is finite and letting $p^a = |\mathbb{F}|$, we have $p^a - 1$ divides $m + 3$. Since $m < p$ and m is odd, we deduce that $a = 1$ and either $p = 3$ and $m = 1$ or $p - 1 = m + 3$. Assume that $p = 3$ and $m = 1$. Let

$$U = \langle (1, (\frac{1}{\gamma} \mu)) \mid (\gamma, \mu) \in \mathbb{F} \rangle.$$

Then U has index 9 in S and U contains no non-trivial normal subgroups of S. Hence S is isomorphic to a Sylow 3-subgroup of $A\ell(9)$. In the Sylow 3-subgroup of $A\ell(9)$ we can show that every elementary abelian subgroup of order 9 is contained in the extraspecial subgroup of order 27 or has centralizer of order 27. Hence this case does not occur.

Proposition 2.4. Suppose that $P/C_L(Q)$ has a p-subgroup W_0 such that $N_{P/Z(P)}(W_0Z(P)/Z(P))$ is isomorphic to C in such a way that W_0 maps to W. Then \mathbb{F} has prime order p and $p = m + 4$.

So from now on suppose that $p = m + 4$ and \mathbb{F} has order p. In particular, by Lemma 2.3 Q is extraspecial of order p^{m+3} and of exponent p and P is isomorphic to a subgroup of p^{m+3}: $\text{Sp}_{p-3}(p)$ which is isomorphic to a subgroup of $\text{Sp}_{p-1}(p)$. In this representation the Jordan form of a p-element of S has no blocks of size p and consequently S has exponent p. We now explicitly show that when $p = m + 4$, then C is isomorphic to a subgroup of $P/C_L(Q)$. To do this, we first write down a candidate for W_0 and then determine its normalizer.

Define

$$w(\alpha) = \sum_{j=0}^{m} \frac{\alpha^{j+1}}{(j+1)} \binom{m}{j} X^j Y^{m-j} \in V_m$$

and set

$$W_0 = \langle (1, (\frac{1}{\gamma} \mu))(w(\gamma), \delta) \mid \gamma, \delta \in \mathbb{F} \rangle \leq S.$$
To calculate explicitly in the extraspecial group Q, we need the following facts:

Lemma 2.5. Suppose that $\lambda, \mu \in \mathbb{F}$. Then

(i) $\beta_m(\lambda X^m, w(\mu)) = -\lambda \mu$; and

(ii) $\beta_m(w(\lambda), w(\mu)) = \frac{(\lambda - \mu)^{m+2} - \lambda^{m+2} + \mu^{m+2}}{(m+1)(m+2)}$.

Proof. For the first part, as the coefficient of Y^m in $w(\mu)$ is α, we have

$$\beta_m(\lambda X^m, w(\mu)) = \beta_m(\lambda X^m, \mu Y^m) = -\lambda \mu.$$

For part (ii), we calculate

$$\beta_m(w(\lambda), w(\mu)) = \beta_m(\beta_m^{m+1}(\lambda^{m+1} X^{m+1}Y^{m-j} - \sum_{j=0}^{m} \frac{\lambda^{m-j+1}}{(j+1)} X^j Y^{m-j}))$$

$$= \sum_{j=0}^{m} \frac{\lambda^{j+1}}{(j+1)} \sum_{j=0}^{m} \frac{\mu^{j+1}}{(j+1)} X^j Y^{m-j}$$

$$= \sum_{j=0}^{m} \frac{\lambda^{j+1}}{(j+1)} (-\mu)^{m+2-(j+1)} \frac{m+2}{j+1}$$

$$= \frac{(\lambda - \mu)^{m+2} - \lambda^{m+2} + \mu^{m+2}}{(m+1)(m+2)}.$$

□

Lemma 2.6. Let $a, b, \lambda, \mu \in \mathbb{F}$ with a and b non-zero. Then

$$w(\lambda)^{(1, (a \mu \ b))} = \frac{b^{m+1}}{a} \left(w\left(\frac{a \lambda + \mu}{b} \right) - w\left(\frac{\mu}{b} \right) \right).$$

Proof.

$$w(\lambda)^{(1, (a \mu \ b))} = \left(\sum_{j=0}^{m} \frac{\lambda^{j+1}}{(j+1)} (a X)^j (\mu X + b Y)^{m-j} \right)^{(1, (a \mu \ b))}$$

$$= \sum_{j=0}^{m} \frac{\lambda^{j+1}}{(j+1)} (a X)^j (\mu X + b Y)^{m-j}$$

$$= \sum_{j=0}^{m} \frac{\lambda^{j+1}}{(j+1)} (a X)^j \left(\sum_{k=0}^{m-j} \frac{m-j}{k} (\mu X)^k (b Y)^{m-j-k} \right).$$
We now determine the coefficient of X^eY^{m-e}:

\[
\sum_{f=0}^{e} \frac{\lambda^{f+1} a^f \mu^{e-f} b^{m-e}}{f+1} (m-f) \left(\frac{m-f}{e-f} \right) \mu^{e-f} b^{m-e} = \sum_{f=0}^{e} \frac{\lambda^{f+1} a^f \mu^{e-f} b^{m-e}}{f+1} \left(\frac{e}{e} \right) \left(\frac{m}{f+1} \right) = b^{m-e} a(e+1) \sum_{f=0}^{e} \lambda^{f+1} a^f \mu^{e-f} b^{m-e} \left(\frac{m}{f+1} \right) = b^{m+1} a(e+1) \left(\frac{a \lambda + \mu}{b} \right)^{e+1} \left(\frac{\mu}{b} \right)^{e+1}.
\]

Therefore,

\[
w(\lambda)^{(1, \frac{a}{\lambda}, \frac{0}{b})} = b^{m+1} a \left(w \left(\frac{a \lambda + \mu}{b} \right) - w \left(\frac{\mu}{b} \right) \right),
\]

as claimed.

One of the nice consequences of Lemma 2.6 is that W_0 is a subgroup of S. By the discussion before Proposition 2.4, we have $N_P(W_0)Q/Q$ is isomorphic to a subgroup of

\[
\{ (\frac{a}{b^{m+1}}, \frac{a}{b^{e}}) \mid a, b \in F \}.
\]

On the other hand, Lemma 2.6 shows that elements of the form $(\frac{a}{b^{m+1}}, (\frac{a}{b^{e}})) (0, 0)$ normalize W_0.

Lemma 2.7. We have

\[
N_P(W_0) = \{ (\frac{a}{b^{m+1}}, (\frac{a}{b^{e}}))(w(\lambda) + \tau X^m, \theta) \mid a, b \in F^\times, \lambda, \tau, \theta \in F \}.
\]

In a moment we shall write down a homomorphism from $N_P(W_0)$ onto C. To check that this is a homomorphism the following remark is helpful. (Note that it uses $p = m + 4$.)

Lemma 2.8. Suppose that

\[
x = (\frac{a}{b^{m+1}}, (\frac{a}{b^{e}}))(w(\lambda) + \tau X^m, \theta)
\]

and

\[
y = (\frac{c}{d^{m+1}}, (\frac{c}{d^{e}}))(w(\mu) + \sigma X^m, \phi)
\]

are elements of $N_P(W)$. Then

\[
xy = \left(\frac{ac}{bd} \right)^{(m+1)} (\frac{ac}{bd} + \mu) (w(\frac{cb\lambda + bd\mu}{bd}) + (\frac{e^{m+1}}{e^{m+1}} + \tau + \sigma) X^m,
\]

\[
\frac{c^{m+2}}{d^{m+2}} \theta + \phi + \left(\frac{(\frac{a}{d})^{m+2} - (\frac{c}{d}^{m+2} + \mu)^{m+2} + \mu^{m+2}}{(m+1)(m+2)} \right) - \frac{c^{m+1}}{d^{m+1}} \tau \mu + \frac{c \lambda \sigma}{d}.
\]

Now a straightforward calculation using Lemma 2.8 shows that the map Θ defined by

\[
(ab^{-m-1}, (\frac{a}{b}, \frac{0}{b}))(w(\lambda) + \tau X^m, \theta) \mapsto \left(\frac{1}{b^{(m+1)}}, \frac{1}{b^{(m+1)(m+2)}} \right)
\]

is a homomorphism from $N_P(W_0)$ onto C. To check that this is a homomorphism the following remark is helpful. (Note that it uses $p = m + 4$.)
is a surjective homomorphism from $N_P(W_0)$ to C with kernel $C_L(Q)$.

Combining the above discussion with Proposition 2.4 yields

Theorem 2.9. Suppose that p is an odd prime and $m \leq p-1$ is also odd. Set $P = P(m,F) = LQ$. Then $P/C_L(Q)$ has a p-subgroup W_0 such that $N_P/Z(P)(W_0Z(P)/Z(P))$ is isomorphic to C in such a way that W_0 maps to W if and only if F has prime order p and $p = m + 4$.

□

Using the homomorphism Θ we can build the free amalgamated product

$$G = P/C_L(Q) \ast_C K.$$

3. THE FUSION SYSTEMS

Saturated fusion systems were designed by Puig to capture the p-local properties of defect groups of p-blocks in representation theory. Given a group X and p-subgroup T, the fusion system $\mathcal{F}_T(X)$ is a category with objects the subgroups of T and, for objects P and Q, the morphisms from P to Q, $\text{Hom}_{\mathcal{F}_T(X)}(P,Q)$, are the conjugation maps c_x where $x \in X$ and $P^x \leq Q$. If X is a finite group and $T \in \text{Syl}_p(X)$, then $\mathcal{F}_T(X)$ is saturated. An exotic fusion system is a saturated fusion system which is not $\mathcal{F}_T(X)$ for any finite group X with $T \in \text{Syl}_p(X)$. For an extensive introduction to fusion systems we recommend Craven’s book [2].

In this section we construct a fusion system from the free amalgamated product $G = P/C_L(Q) \ast_C K$. Set $P_1 = P/C_L(Q)$ and identify P_1 and K with their images in G, set $C = P_1 \cap K$ and $D = O_p(C)$. We identify subgroups of S with their images in the quotient P_1. Thus $D = S \cap K$, $Q = O_p(P_1)$ and $W = O_p(K)$. We intend to show that $\mathcal{F} = \mathcal{F}_{S}(G)$ is an exotic saturated fusion system. We see that \mathcal{F} contains two sub-fusion systems $\mathcal{F}_{S}(P_1)$, $\mathcal{F}_{D}(K)$ and since P_1 and K are finite groups with Sylow p-subgroups S and D respectively, these fusion systems are saturated. A finite p-subgroup T of an infinite group X is a Sylow p-subgroup of X provided every finite p-subgroup of X is X-conjugate to a subgroup of T.

Lemma 3.1. We have that S is a Sylow p-subgroup of G and

$$\mathcal{F} = \langle \mathcal{F}_{S}(P_1), \mathcal{F}_{D}(K) \rangle$$

is the smallest fusion system on S which contains both $\mathcal{F}_{S}(P_1)$ and $\mathcal{F}_{D}(K)$.

Proof. This follows with [6, Theorem 1]. □

The free amalgamated product G determines a graph Γ. This graph has vertices all the cosets of P_1 in G and all the cosets of K in G. Two vertices are adjacent precisely when they have non-empty intersection. By [3, Theorem 7], Γ is a tree and, by construction, G acts transitively on the edges of Γ and has two orbits on the vertices of Γ. Moreover, Γ is bi-partite. We let $\alpha = P_1$ and $\beta = K$ (vertices of Γ) and note that (α, β) is an edge. For $\gamma \in \Gamma$, $\Gamma(\gamma)$ denotes the set of neighbours of γ in Γ. The stabiliser G_γ of γ in G is G-conjugate to either P_1 or K and, especially, $G_{\alpha} = P_1$ and $G_{\beta} = K$. Finally, we note that G_γ operates transitively on $\Gamma(\gamma)$. For a subgroup X of G denote by Γ^X the subgraph of Γ fixed vertex wise by X. Since Γ is a tree, so is Γ^X.

In the proof of part (iii) of the next lemma, we need to consider centric subgroups of \mathcal{F}. These are subgroups T of S such that $C_{S}(T\alpha) = Z(T\alpha)$ for all $\alpha \in \text{Hom}_{\mathcal{F}_{S}(G)}(T,S)$. Note that centric subgroups have order at least p^2.

8
Lemma 3.2. If \(X \leq S \) has order at least \(p^2 \), then \(\Gamma^X \) is finite. Furthermore,

(i) \(X \) does not fix a path of length 5 with middle vertex a coset of \(P_1 \).
(ii) \(N_G(X) \) is conjugate to a subgroup of either \(P_1 \) or \(K \);
(iii) \(\mathcal{F} \) is a saturated fusion system.

Proof. Assume that \(X \) is a \(p \)-subgroup of \(G \) of order at least \(p^2 \). Assume the path \(\pi = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \) of length 5 is in \(\Gamma^X \) with \(\alpha_3 \) a coset of \(P_1 \). Then, as \(G \) acts edge transitively on \(\Gamma \), we may conjugate \(X \) inside \(\Gamma \) so that \(\alpha_2 = \beta \) and \(\alpha_3 = \alpha \). Then \(X \leq G_\alpha \cap G_\beta = P_1 \cap K = C \). Thus \(X \leq D \) as \(X \) is a \(p \)-group.

Now \(X \) also fixes \(\alpha_1 \) and so, as any two Sylow \(p \)-subgroups of \(K \) intersect in \(W \) and \(X \) has order at least \(p^2 \), we have that \(W = X \). Similarly, \(X = O_p(G_\alpha) \) and consequently \(X = W = O_p(G_\beta) = O_p(G_\alpha) \). Now \(G_\alpha \) acts transitively on \(\Gamma(\alpha) \) and so there exists \(g \in G \) so that \(G_{\alpha^g} = G_\beta \). But then \(g \) normalizes \(W \). Since, by Lemma 3.4, \(G_\beta = K \geq C = N_{P_1}(W) = N_{G_\alpha}(W) \), we see that \(\beta = \alpha_4 \) and this is a contradiction. This proves (i). Using (i), we see that \(X \) fixes no paths of length 6 and so \(|\Gamma^X| \) is finite. In particular, if \(X \) is a centric subgroup in \(\mathcal{F} \) then \(|\Gamma^X| \) is finite.

Since \(\Gamma^X \) is finite and \(\Gamma \) is bipartite, we now see with [8] Corollary, page 20 that \(N_G(X) \) fixes a vertex of \(\Gamma \). This proves (ii).

Finally, application of [1] Corollary 3.4] yields that \(\mathcal{F} \) is saturated and this is (iii).

A subgroup \(X \) of \(S \) is fully \(\mathcal{F} \)-normalized provided \(|N_S(X)| \geq |N_S(X_\alpha)| \) for all \(\alpha \in \text{Hom}_\mathcal{F}(X, S) \).

Lemma 3.3. We have \(W \) is centric and fully \(\mathcal{F} \)-normalized.

Proof. Suppose that \(\alpha \in \text{Hom}_\mathcal{F}(W, S) \) and \(|N_S(W_\alpha)| > |N_S(W)| \). We have that \(\alpha = c_g \) for some \(g \in G \) with \(W^g \leq S \). Since \(|N_S(W^g)| > p^3 \), \(P_1 \) is the unique vertex of \(\Gamma \) fixed by \(N_S(W^g) \). Since \(W^g \) fixes \(Kg \) and \(Kgh \) for all \(h \in N_S(W^g) \), we infer that \(W^g \) fixes a path of length at least 5 with \(P \) at the middle vertex, this contradicts Lemma 3.2(i). Hence \(W \) is fully \(\mathcal{F} \)-normalized. Since \(|N_S(W)| = p^3 \), it also follows that \(W \) is centric.

Lemma 3.4. The fusion system \(\mathcal{F} = \mathcal{F}_S(G) \) is exotic.

Proof. Suppose \(\mathcal{F} \) is not exotic and let \(H \) be a finite group with Sylow \(p \)-subgroup \(S \) such that \(\mathcal{F}_S(H) = \mathcal{F}_S(G) \). Then there exists subgroups \(Q_0 \) and \(W_0 \) of \(S \) such that \(\text{Aut}_H(Q_0) = \text{Aut}_\mathcal{F}(Q) \) and \(\text{Aut}_H(W_0) = \text{Aut}_\mathcal{F}(W) \). Let \(K_0 = N_H(W_0) \) and \(P_0 = N_H(Q_0) \).

We may assume \(O_{p'}(H) = 1 \). Let \(N \) be a minimal normal subgroup of \(H \). Then, as \(p \) divides \(|N| \) and \(Z(S) \) has order \(p \), \(Z(S) \leq N \). The action of \(K_0 \) implies \(W = \langle Z(S)^{K_0} \rangle \leq N \). Hence \(Z_2(S) \leq [Q, S] \leq N \) and finally \(S = QW = \langle Z_2(S)^{K_1} \rangle W \leq N \). Hence \(N = O_{p'}(H) \). Since \(\langle S^{P_1} \rangle \) is not a \(p \)-group, \(N \) is a direct product of isomorphic non-abelian simple groups. Moreover, as \(|Z(S)| = p \), \(N \) is a simple group and \(C_H(N) = 1 \). Therefore \(H \) is an almost simple group. We now consider the finite simple groups as given by the classification theorem.

Recall that \(p \geq 5 \), \(|S| = p^{p-1} \) and \(S \) is of exponent \(p \) and is not abelian. In particular, \(H \) is not an alternating group.

Suppose that \(H \) is a Lie type group in characteristic \(p \). Then, by the Borel -Tits Theorem, \(K \) is contained in some parabolic subgroup \(L \) of \(H \) and \(W_0 \leq O_p(K_0) \leq
$O_p(L)$. As W_0 is centric by Lemma 3.3 (i), $W_0 \geq Z(O_p(L))$. Since W_0 is fully \mathcal{F}-normalized, W_0 is not normal in L and so $Z(O_p(L)) < W_0$, contrary to $K_0 < L$ and W_0 being a minimal normal subgroup of K_0. Hence H is not of Lie type in characteristic p.

Assume that H is of Lie type in characteristic $r \neq p$. If p does not divide $|Z(H)|$, where \hat{H} is the universal version of H, then application of [4, Theorem 4.10.3(e)] to W_0 shows $p = 5$ and $H = E_8(r^a)$. Since $|S| = 5^4$ and 5^5 divides the order of $E_8(r^a)$, this is impossible. So we may assume that p divides $|Z(H)|$. In particular $H \cong PSL_n(r^a)$ or $PSU_n(r^a)$ and p divides $(r^a - 1, n)$ in the first case and $(r^a + 1, n)$ in the second. Therefore S contains a toral subgroup of order $p^{n-2} \geq p^{p-2}$, as p divides n. Since Q_0 is extraspecial of order p^{p-2} and $|S| = p^{p-1}$, and the largest abelian subgroup of Q_0 is of order $p^{(p-1)/2}$, we infer that $(p - 1)/2 + 1 \geq p - 2$, and then $p = 5$. Thus H contains a subgroup $L \cong 5^3.Sym(5)$. Since this does not embed in P_1, this is impossible.

Finally suppose that H is a sporadic simple group. Inspection of the lists in [4, Table 5.3] shows the either $H = Co_1$ and $p = 5$ or $H = F_1$ and $p = 7$. In the first case we again observe a subgroup $5^3.PGO_3(5)$, which does not exist in \mathcal{F}. In the second case $Aut_H(Q) \cong 6.\text{Alt}(7)$ which is impossible.

We conclude that \mathcal{F} is exotic.

We summarize the above result in a way that we can easily cite it in [5].

Proposition 3.5. Let $p \geq 5$ be a prime. Set $P_1 = QL$, where Q is extraspecial of order p^{p-2}, $L \cong GL_2(p)$ and L' induces the irreducible module of homogeneous polynomials in X, Y of degree $p - 4$ on $Q/Z(Q)$. Then for S a Sylow p-subgroup of QL, there is an exotic fusion system on S which extends $\mathcal{F}_{QL}(S)$.

We close the paper by remarking that (when $m = p - 4$) the amalgam $B/C_L(Q)*_C K$ also provides an exotic fusion system. This example has exactly one class of essential subgroups.

References

[1] M. Clelland, Chr. Parker, Two families of exotic fusion systems, J. Algebra, 323, 2010, 287 - 304.

[2] David A. Craven, The theory of fusion systems. An algebraic approach. Cambridge Studies in Advanced Mathematics, 131. Cambridge University Press, Cambridge, 2011.

[3] R. Brauer, C. Nesbitt, On the modular characters of groups, Ann. Math. 42, 1941, 556-590.

[4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups.Number 3, Part I Chapter A, Almost simple K-groups, Math. Survey Monogr. vol 40.3, Amer. Math. Soc. 1998.

[5] Christopher Parker, Gerald Pientka, Andreas Seidel, Gernot Stroth, Groups which are almost groups of Lie type in characteristic p, manuscript.

[6] G.R. Robinson. Amalgams, blocks, weights. fusion systems and simple groups, J. Algebra 314, 2007, 912 –923.

[7] R. Salarian, G. Stroth, Existence of strongly p-embedded subgroups, Comm. in Algebra, to appear.

[8] Serre, Jean-Pierre. Trees. Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, 1980.

[9] S. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75, 1982, 286–289.

Chris Parker, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: c.v.parker@bham.ac.uk
Gernot Stroth, Institut für Mathematik, Universität Halle - Wittenberg, Theodor Lieber Str. 5, 06099 Halle, Germany

E-mail address: gernot.stroth@mathematik.uni-halle.de