Highlights

The inflammasome: Friend or foe in Chlamydia infection?

Emma Louise Walton*

Staff Writer at the Biomedical Journal, 56 Dronningens Gate, 7012 Trondheim, Norway

ARTICLE INFO

Article history:
Available online 14 November 2016

Keywords:
Chlamydia
Inflammasome
Caspase-1
Depression
Basilar artery

ABSTRACT

In this issue of the Biomedical Journal, we take a look at the still somewhat perplexing role of the inflammasome in Chlamydia infection. We also highlight findings suggesting a link between structural changes to arteries in the brain and the onset of depression. Finally, we learn about some of the implications of co-morbidity between diabetes and infectious diseases.

Spotlight on reviews

The inflammasome: friend or foe in Chlamydia infection?

As the most common bacterial cause of sexually-transmitted infection and preventable blindness worldwide [1,2], Chlamydia trachomatis is a major public health problem. This obligate intracellular pathogen is able to subvert host immune defenses and keep infected cells alive by interfering with cell death pathways [3], leading to chronic inflammation and substantial damage to local tissues. Recently however, much progress has been made in the understanding of the relationship between important inflammation-associated pathways and Chlamydia species. In this issue of the Biomedical Journal, Pettengill et al. [4] outline the recent developments on two of these pathways, and in particular, the perplexing role of the inflammasome.

Chlamydiae species including C. trachomatis, Chlamydophila pneumoniae and Chlamydophila psittaci cause a spectrum of human and zoonotic infections characterized by one consistent hallmark: chronic, localized inflammation. The chronic and excessive production of inflammatory cytokines is thought to be the main cause of pathology associated with infection [5], such as pelvic inflammatory disease which develops in women with untreated genital tract infections and is a common cause of pregnancy complications and infertility [6]. Therefore, it is very important to understand the relationship between inflammatory signaling and the pathogen.

Like most bacteria, C. trachomatis is detected by host pattern recognition receptors (PRRs) which recognize pathogen associated molecular patterns (PAMPs). These PRRs can be membrane-bound, like the Toll-like receptors (TLRs), which sample the extracellular environment or the interior of endosomes, or cytosolic, like the nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs). These NLRs are capable of recognizing not only PAMPs but also danger associated molecular patterns (DAMPs) [7] like ATP, which are released by damaged host cells. NLRs are also components of a macromolecular complex called the inflammasome, which activates caspase-1, in turn leading to the generation of potent inflammatory cytokines IL-1β and IL-18 [Fig. 1].

These cytokines are so potent that their production must be carefully regulated. The NLRP3 inflammasome, which is the most extensively studied inflammasome to date, requires signals from PAMPs and DAMPs for its activation. Some intracellular pathogens like C. trachomatis provide both signals, and caspase-1 is indeed activated during chlamydial infection in a manner dependent on NLRP3 [8]. Human monocytes infected with C. trachomatis secrete IL-1β following the assembly of NLRP3 and caspase-1 activation [9]. Whether the engagement of the inflammasome is helpful or harmful however is still debatable. Mice lacking caspase-1 showed reduced clearance of C. pneumoniae and increased mortality [10]. However, blocking the activity of caspase-1 with an inhibitor in lung fibroblasts actually makes them more resistant to infection [11]. Perhaps the key lies in the context of infection. Monocytes and macrophages are geared towards the production of pro-inflammatory cytokines following the activation of caspase-1, but this is not the case for epithelial cells. Instead, inflammasome activation in these cells leads to the caspase-1-dependent destruction of the Golgi apparatus [12]. As an obligate pathogen with a substantially reduced genome, Chlamydia species must scavenge many nutrients from their host. Breakdown of the Golgi liberates lipids produced by the host but required by the bacterium, which may explain why caspase-1 is actually needed for optimal C. trachomatis growth in epithelial cells [8].

Thus, as the driver behind the production of pro-inflammatory cytokines and potential sustainer of Chlamydia growth in epithelial cells, the situation looks pretty incriminating for the inflammasome in the pathology of Chlamydia infections. There are however likely to be important nuances to the relationship that require further investigation.

Spotlight on original articles

Structural changes to brain blood vessels correlate with depression

The “vascular depression hypothesis” postulates that cerebrovascular disease can predispose to depressive symptoms in older adults [13]. In this issue of the Biomedical Journal,
Farmar and Prasad [14] provide intriguing evidence that this hypothesis may be relevant to understanding depression in individuals showing no physical manifestations of neurodegenerative disease.

Depressive disorders have been linked to functional changes in several brain regions on neuroimaging, including the prefrontal cortex, anterior cingulate cortex, the basal ganglia and brain stem, the limbic areas (notably the amygdala and hippocampus) [15]. Although the neural basis of depression is far from understood, it has been consistently shown that these functional abnormalities are associated with altered cerebral blood flow [16]. Yet, the histochorarchitecture of the arteries that supply the brain regions involved in depression has never been investigated closely.

To investigate whether functional changes correlate with architectural changes in depression, Parmar and Prasad focused on the basilar artery, which supplies many of the brain areas shown to be involved in depression. By histological staining they examined several variables relating to the structure of the basilar artery, in 20 individuals who had committed suicide and 20 age-matched control individuals who had died of non-head related injuries, including arterial diameter, the thickness of its constituent layers, and the volume fraction of collagen. All of the variables measured were lower in suicide persons than in the control group, and in the case of the thickness of the tunica media (middle arterial layer) and the volume fraction of collagen, these differences were statistically significant.

This analysis reveals that the architecture of blood vessels serving brain regions important for depression is altered in individuals who have committed suicide, thus establishing a firm correlation between structural changes to the vascular circuitry, altered blood flow and brain function. These findings are reminiscent of the vascular depression hypothesis [13]. Specifically, Parmar and Prasad postulate that a loss of collagen and elastic fibers in the arterial wall leads to a failure to distribute appropriately muscle tension around the vessel, which is likely to affect hemodynamics and blood flow. These changes in turn affect the regions supplied by the artery. Of course correlation does not amount to causation, but nonetheless, if substantiated, these findings could provide a useful framework for the understanding vascular depression outside of the context of the physical signs of neurodegeneration.

Review articles

Purinergic signaling in infectious and autoimmune disease

Purinergic signaling is a highly conserved form of cell-cell communication involving extracellular ATP, adenosine and other purines. It plays a key role in modulating inflammatory responses, and as such many pathogens have developed to mechanisms to manipulate the pathway to their advantage [17–19]. In this issue of the Biomedical Journal, Silva [20] reviews another example of this interplay involving the parasitic worm Schistosoma. Not restricted to infectious disease, perturbation to purinergic signaling may also occur in the context of autoimmune disease. Di Virgilio and Giuliani [21] outline the role of purinergic signaling during systemic lupus erythematosus and in particular that of the P2X7 receptor, which when activated by ATP, leads to the processing and release of the pro-inflammatory cytokine IL-1β.

Original articles

Virulent strain of Helicobacter pylori linked to cellular damage in cardiac syndrome X

Patients with cardiac syndrome X (CSX) experience chest pain during exercise even though coronary arteries appear normal on an angiogram. It is thought that CSX is caused by endothelial dysfunction of the coronary microcirculation, although the pathological mechanisms are not completely understood. This heterogeneous condition has been linked to infection with the stomach-dwelling pathogen Helicobacter pylori [22] which despite its location, has been implicated in several extra-intestinal disorders [23]. In particular, strains carrying the cytotoxin-associated gene A (CagA+) elicit heightened inflammatory responses [24]. Rasmie et al. [25] investigated the levels of markers of endothelial dysfunction in CSX patients with or without H. pylori infection. Their findings suggest that H. pylori, especially strains carrying CagA, promote endothelial dysfunction in CSX.

Malaria affects leptin levels differently in diabetics and non-diabetics

Patients with co-morbidities are becoming the norm rather than the exception for health care systems and it is no longer sufficient to study and treat diseases in isolation. In this report, Acquah et al. [26] investigate the coexistence of two diseases of major global burden: type 2 diabetes mellitus (T2DM) and falciparum malaria in a prospective study involving 200 individuals. Specifically they address how infection with falciparum affects the levels of the adipocytokines leptin and adiponectin, both of which are thought to protect against T2DM [27,28]. Following infection, adiponectin levels were increased in both study groups whereas leptin levels were increased in diabetics and decreased in non-diabetics. These findings could have implications for patient management.

Investigating micronutrient levels in diabetic patients with tuberculosis

Diabetics have a higher risk of developing tuberculosis than non-diabetics, and once infected, have a higher risk of treatment failure [29]. This association is probably explained in part by the effect of diabetes on cell-mediated immunity [30], although other mechanisms may be involved. Ginnadjar et al. [31] investigate a possible link with nutrition in 62 patients with tuberculosis and find that those with poor blood glucose control also show altered levels of vitamin E.

Also in this issue:

Treatment of immature necrotic teeth: which method is best?

Internal damage to young permanent teeth is notoriously difficult to treat, in large part because death of the dental pulp halts root formation, leaving a wide open apex. The traditional method for treating such injuries is apexification, in which an inert material is used to stimulate hard tissue to form at the apex, but is not thought to promote root growth. By contrast, regenerative endodontic treatment aims to stimulate continued growth of the immature root (either by replacing damaged tissue in the pulp chamber with live cells or bioactive substances or encouraging organized healing in other ways). In this retrospective study of 38 patients, Chen et al. [32] compare the outcome of these techniques with up to one year of follow-up in children with necrotic dental pulp injuries. Surprisingly, there was no statistical difference in radiographic outcome or root development between the two techniques, suggesting that this new treatment trend should be further validated in larger studies.

Conflicts of interest

The author declares that there are no conflicts of interest.

REFERENCES

[1] Organization WH. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. World Health Organization; 2012.

[2] Mariotti SP, Pascolini D, Rose-Nussbaumer J. Trachoma: global magnitude of a preventable cause of blindness. Br J Ophthalmol 2009;93:563–8.

[3] Fan T, Lu H, Hu H, Shi L, McClarty GA, Zhong G, et al. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 1998;187:487–96.

[4] Pettengill MA, Abdul-Sater A, Coutinho-Silva R, Ocius DM. Danger signals, inflammasomes, and the intricate intracellular lives of chlamydiae. Biomed J 2016;39:306–15.

[5] Davridge O, Benesova Z, Majewska E, Daubin A, Boulanger C. Mouse strain-dependent variation in the course and outcome of chlamydial genital infection is associated with differences in host response. Infect Immun 1997;65:3064–73.

[6] Sweet RL. Sexually transmitted diseases. Pelvic inflammatory disease and infertility in women. Infect Dis Clin North Am 1987;1:199–215.

[7] Fritz JH, Ferrero RL, Philippot DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 2006;7:1250–7.

[8] Abdul-Sater AA, Koo E, Hacker G, Ocius DM. Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J Biol Chem 2009;284:26789–96.

[9] Abdul-Sater AA, Said-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, et al. Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial nod-like family member NLRC1. J Biol Chem 2010;285:41637–45.

[10] Shimada K, Crother TR, Karlin J, Chen S, Chiba N, Ramanujan VK, et al. Caspase-1 dependent IL-1beta secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection. PLoS One 2011;6:e21477.

[11] Jorgensen I, Bednar MM, Amin V, Davis BK, Ting JP, McCallerty DG, et al. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 2011;10:21–32.

[12] Heuer D, Lipinski AR, Machuy N, Karlas A, Wehrens A, Siedler F, et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 2009;457:731–5.

[13] Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Carlson M. “Vascular depression” hypothesis. Arch Gen Psychiatry 1997;54:915–22.

[14] Parmar SK, Prasad VS. Histomorphometric study of basilar artery in normal and suicide persons. Biomed J 2016;39:361–5.

[15] Pandya M, Altinay M, Malone Jr DA, Anand A. Where in the brain is depression? Curr Psychiatry Rep 2012;14:634–42.

[16] Drevets Wayne C, Videen Tom O, Price Joseph L, Preskorn Sheldon H, Carmichael S Thomas, Raichle Marcus E. A functional anatomical study of unipolar depression. J Neurosci 1992;12:3626–41.

[17] Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016;39:234–43.

[18] Braga de Figueiredo A, Conceicao de Souza-Testasica M, Crocco Afonso LC. Purinergic signaling and infection by Leishmania: a new approach to evasion of the immune response. Biomed J 2016;39:244–50.

[19] Coutinho Almeida-da-Silva CI, Morandini AC, Ulrich H, Ocius DM, Coutinho-Silva R. Purinergic signaling during Porphyromonas gingivalis infection. Biomed J 2016;39:251–60.

[20] Silva CLM. Purinergic signaling in schistosomal infection. Biomed J 2016;39:316–25.

[21] Di Virgilio F, Giuliani AL. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus? Biomed J 2016;39:326–38.

[22] Eskandarian R, Malek M, Mousavi SH, Babari M. Association of Helicobacter pylori infection with cardiac syndrome X. Singapore Med J 2006;47:704–6.

[23] Gasbarrini A, Franceschi F, Armuzzi A, Ojetti V, Candelli M, Torre ES, et al. Extradigestive manifestations of Helicobacter pylori gastric infection. Gut 1999;45(Suppl. 1):S1–9.

[24] Atherton JC, et al. Heightened inflammatory response and cytokine expression in vivo to cagAþ Helicobacter pylori strains. Lab Invest 1995;73:760–70.

[25] Rasmussen CE, Eghan BA, Boampong JN. Elevated adiponectin but varied response in circulating leptin levels to falciparum malaria in type 2 diabetics and non-diabetic controls. Biomed J 2016;39:346–53.

[26] Yamamoto S, Matsushita Y, Nakagawa T, Hayashi T, Noda M, Mizoue T. Circulating adiponectin levels and risk of type 2 diabetes in the Japanese. Nut Diabetes 2014;18:e130.

[27] Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999;401:73–6.

[28] Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis 2009;9:737–46.
[30] Moutschen MP, Scheen AJ, Lefebvre PJ. Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabetes Metab 1992;18:187–201.

[31] Ginandjar P, Saraswati LD, Widjanarko B. Profile of glycated-hemoglobin, antioxidant vitamin and cytokine levels in pulmonary tuberculosis patients: A cross-sectional study at Pulmonary Diseases Center Semarang City, Indonesia. Biomed J 2016;39:354–60.

[32] Chen SJ, Chen LP. Radiographic outcome of necrotic immature teeth treated with two endodontic techniques: A retrospective analysis. Biomed J 2016;39:366–71.