Prevalence of post-traumatic stress disorder symptoms in adult critical care survivors: a systematic review and meta-analysis

Cássia Righy 1,2, Regis Goulart Rosa 3,4*, Rodrigo Teixeira Amancio da Silva 1,5, Renata Kochhann 4, Celina Borges Migliavaca 4,6, Caroline Cabral Robinson 4, Stefania Pigatto Teche 7,8, Cassiano Teixeira 3, Fernando Augusto Bozza 1,9 and Maicon Falavigna 4,6

Abstract

Background: As more patients are surviving intensive care, mental health concerns in survivors have become a research priority. Among these, post-traumatic stress disorder (PTSD) can have an important impact on the quality of life of critical care survivors. However, data on its burden are conflicting. Therefore, this systematic review and meta-analysis aimed to evaluate the prevalence of PTSD symptoms in adult critical care patients after intensive care unit (ICU) discharge.

Methods: We searched MEDLINE, EMBASE, LILACS, Web of Science, PsycNET, and Scopus databases from inception to September 2018. We included observational studies assessing the prevalence of PTSD symptoms in adult critical care survivors. Two reviewers independently screened studies and extracted data. Studies were meta-analyzed using a random-effects model to estimate PTSD symptom prevalence at different time points, also estimating confidence and prediction intervals. Subgroup and meta-regression analyses were performed to explore heterogeneity. Risk of bias was assessed using the Joanna Briggs Institute tool and the GRADE approach.

Results: Of 13,267 studies retrieved, 48 were included in this review. Overall prevalence of PTSD symptoms was 19.83% (95% confidence interval [CI], 16.72–23.13; $I^2 = 90\%$, low quality of evidence). Prevalence varied widely across studies, with a wide range of expected prevalence (from 3.70 to 43.73% in 95% of settings). Point prevalence estimates were 15.93% (95% CI, 11.15–21.35; $I^2 = 90\%$; 17 studies), 16.80% (95% CI, 13.74–20.09; $I^2 = 66\%$; 13 studies), 18.96% (95% CI, 14.28–24.12; $I^2 = 92\%$; 13 studies), and 20.21% (95% CI, 13.79–27.44; $I^2 = 58\%$; 7 studies) at 3, 6, 12, and > 12 months after discharge, respectively.

Conclusion: PTSD symptoms may affect 1 in every 5 adult critical care survivors, with a high expected prevalence 12 months after discharge. ICU survivors should be screened for PTSD symptoms and cared for accordingly, given the potential negative impact of PTSD on quality of life. In addition, action should be taken to further explore the causal relationship between ICU stay and PTSD, as well as to propose early measures to prevent PTSD in this population.

Trial registration: PROSPERO, CRD42017075124, Registered 6 December 2017.

Keywords: Critical care, Intensive care units, Meta-analysis, Post-traumatic stress disorder, Prevalence, Systematic review

* Correspondence: regis.rosa@hmv.org.br
3Intensive Care Unit, Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, 3° andar, Porto Alegre, RS 90035-001, Brazil
4Research Projects Office, HMV, Porto Rua Ramiro Barcelos, 910, 3° andar, Porto Alegre, RS 90035-001, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Mortality in critical care has steadily declined in recent decades [1, 2]. As a result, concerns about long-term outcomes and quality of life in critical care survivors have become a priority. Recently, more attention has been given to the psychiatric consequences of acute illness in the intensive care unit (ICU), especially in young patients. Psychiatric disorders, such as anxiety, depression, and post-traumatic stress disorder (PTSD), are known to have a strong impact on the quality of life in long-term ICU survivors [3].

PTSD is characterized by having been exposed to an event that is life-threatening or perceived as life-threatening and, subsequently, developing intrusive recollections of the event, hyperarousal symptoms, and avoidant behavior related to the traumatic event [4]. Negative changes in cognition and mood are often part of the clinical picture of PTSD. The classical notion of PTSD as a reaction to warfare or natural disasters has been recently extended to include reaction to road traffic accidents, sexual assaults, and medical conditions such as critical care admission [5]. However, the burden of PTSD associated with critical illness remains unclear.

An in-depth understanding of the current prevalence, risk factors, and accuracy of diagnostic tools is essential to establish early interventions aiming to prevent or minimize PTSD after ICU admission [6]. Prevalence estimates of PTSD among ICU survivors have ranged widely from 4 to 62% [7]. This variability seems to be dependent on the time of PTSD assessment, instrument used, and population studied [7].

Although previous systematic reviews of PTSD prevalence among ICU survivors have been published, there has been increasing interest in this topic in the last few years, and the literature on PTSD in survivors of critical illness has expanded substantially. Moreover, there has been an improvement in methods used for pooling prevalence estimates and interpreting their results. Therefore, given the absence of recent reviews on this topic, we designed the present systematic review and meta-analysis to estimate the overall prevalence of PTSD in adult survivors of critical care.

Methods
This systematic review and meta-analysis was conducted following the recommendations of the Joanna Briggs Institute (JBI) Reviewers’ Manual [8] and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Statement [9, 10]. The systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO; registration number CRD42017075124).

Eligibility criteria
The inclusion criteria were defined based on the Condition, Context, Population (CoCoPop) framework, as follows: (1) observational studies (cohort, case-control, cross-sectional studies, or case series) published as full-text articles, (2) context—patients who survived critical care admission, (3) condition—prevalence of PTSD symptoms after ICU discharge, and (4) population analyzed—adult critical care survivors (age ≥ 18 years). We excluded studies that did not report sufficient data to estimate PTSD prevalence, review articles, letters to the editor or comments, studies evaluating neonatal/pediatric critical care units, and studies evaluating patients admitted for acute neurological diseases.

Data sources and search strategy
We searched the MEDLINE (via PubMed), EMBASE, LILACS, Web of Science, PsycNET, and Scopus databases from inception to September 2018. In addition, we reviewed the reference lists of previous systematic reviews covering the same research question [7, 11, 12]. No language restrictions were imposed. The following search terms were used for all databases: critical care, intensive care units, critical illness, sepsis, and adult respiratory distress syndrome, which were cross-referenced to the terms outcome, follow-up, and post-traumatic stress disorder. The complete search strategies used for all databases are presented in Additional file 1: Table S1.

Study selection
Two reviewers (CR and RTAS) independently screened titles and abstracts identified by the initial search. The full text of potentially relevant articles was obtained to determine whether the studies met the inclusion criteria. Furthermore, the reference lists of the selected articles were hand-searched to detect any additional studies that had not been identified by the initial electronic search. Disagreements between the two reviewers were resolved by consensus or by involving a third reviewer (FAB) for arbitration.

Data extraction
Two reviewers (CR and RTAS) independently extracted data from the selected articles, recording the following information if available: (1) study characteristics (location, period of enrollment, criteria for enrollment, number of patients enrolled, population characteristics, duration of follow-up), (2) study design, (3) reason for ICU admission, (4) number of patients evaluated/observed, (5) instrument used for PTSD assessment, (6) prevalence of PTSD after ICU discharge, and (7) time elapsed from discharge to assessment. Any discrepancies were resolved by discussion and consensus among the reviewers (CR, RTAS, FAB). If data were not reported, we contacted the corresponding authors by email.
Outcomes
The main outcome of interest was the prevalence of PTSD in adult survivors of critical care at different time points after ICU discharge. The diagnosis of PTSD was considered according to each individual study definition.

Assessment of study quality
We assessed the methodological quality of included studies using the JBI critical appraisal checklist for studies reporting prevalence data [13]. This checklist contains 9 questions, which we divided into 3 domains: participants (questions 1, 2, 4, and 9), outcome measurement (6 and 7), and statistics (3, 5, and 8). A study was rated as having high quality when the methods were appropriate in all 3 domains.

We used the GRADE approach to assess the overall quality of evidence [14]. In the absence of a formal procedure for the assessment of certainty in prevalence estimates, we applied the framework developed for incidence estimates in the context of prognostic studies [15].

Statistical analysis
We pooled the prevalence estimates from included studies using a random-effects meta-analysis model with the DerSimonian and Laird variance estimator. Prevalence estimates were transformed using the Freeman-Tukey double arcsine transformation so that the data followed an approximately normal distribution. Heterogeneity between studies was assessed by Cochran’s Q test and I² statistic. Since prevalence estimates vary in different settings due to several factors, such as different patient and ICU characteristics, we also estimated prediction intervals to provide a range of expected PTSD prevalence in different settings [16].

Data from the longest follow-up available in each study were used to estimate the overall prevalence. We performed subgroup analyses to assess whether the method used to diagnose PTSD (screening instrument alone or clinical assessment) and the time point of PTSD assessment (< 3, 3, 6, 12, or > 12 months after ICU admission or discharge) influenced our pooled estimate. We also performed a meta-regression analysis to explore the association between PTSD prevalence estimates and two variables: mean participant age and percentage of respondents in each study. We did not perform a meta-regression analysis for time point of PTSD assessment as a covariate, because we did not expect it to have a linear association with PTSD prevalence.

Results are presented in forest plots with 95% confidence intervals (95% CIs) or scatter plots with point estimates and 95% CI. All analyses were performed using R statistical software version 3.4.4 (R Development Core Team, 2008), with package meta version 4.8-1 [17] and package ggplot2 version 2.2.1 [18].

Results
Of 13,267 records identified, 250 studies were selected for full-text assessment (Fig. 1). Of these, 48 studies enrolling a total of 7152 patients were included in our systematic review and meta-analysis [3, 6, 19–64].
The characteristics of the included studies are shown in Table 1. The time span of the studies was from 1996 to 2018. Most studies were conducted in mixed ICUs (16 studies), followed by medical ICUs (13 studies), trauma ICUs (5 studies), surgical ICUs (3 studies), and long-term and cardiac ICUs (2 studies each). Ten studies did not report the type of ICU involved. The mean age of enrolled patients ranged from 36.5 to 68.0 years; 27 studies reported a male predominance. Except for 4 studies conducted in Australia [20, 25, 33, 62], 2 conducted in Iran [22], and 4 studies in which location was not reported [30, 41, 46, 57], all other studies (77%) were conducted in the USA or Europe.

Prevalence of PTSD

The overall pooled prevalence of PTSD symptoms in ICU survivors was 19.83% (95% CI, 16.72–23.13; $I^2 = 90$%; low quality of evidence) (Fig. 2). The prediction interval for overall PTSD symptoms estimate ranged from 3.70 to 43.73%, with 95% confidence. This prediction interval represents the range of expected PTSD prevalence after ICU discharge in 95% of settings.

The prevalence of PTSD symptoms ranged from 15.93 to 25.69% according to the time of assessment (Fig. 3). Point prevalence estimates were 15.93% (95% CI, 11.15–21.35; $I^2 = 90$%; low quality of evidence) (Fig. 2). The prediction interval for overall PTSD symptoms estimate ranged from 3.70 to 43.73%, with 95% confidence. This prediction interval represents the range of expected PTSD prevalence after ICU discharge in 95% of settings.

Subgroup analysis showed that PTSD prevalence as measured by screening instruments alone was 20.18% (95% CI, 16.64–23.96; $I^2 = 91$%). When the diagnosis was based on clinical assessment, PTSD prevalence was 18.58% (95% CI, 12.26–25.80; $I^2 = 80$%) (Fig. 4). The difference between these two subgroups was not statistically significant ($p = 0.71$). Additional analyses according to different instruments used at different time points provided similar results (Additional file 1: Table S2, Figure S1, S2, S3, S4, and S5).

Meta-regression analysis showed no linear association between the prevalence of PTSD symptoms and mean participant age or percentage of respondents in the study (data not shown).

Quality of evidence

A summary of the risk of bias in the included studies, based on the JBI tool, is provided in Additional file 1: Table S3. No study was rated as having high quality; all had limitations in at least 1 of the 3 prespecified domains (participants, outcome measurement, and statistics). Most studies ($n = 45, 94$%) clearly described the study participants and the setting. However, most studies ($n = 29, 61$%) had a study population that did not appropriately address our target population, since they included patients only from specific ICU settings or with specific medical conditions. Twenty-seven studies (56%) did not report how patients were recruited. Eleven studies (23%) had an inadequate response rate. Regarding outcome measurement, most studies ($n = 45, 94$%) assessed PTSD using a standard method for all patients. However, only 10 studies (21%) used clinical assessment to diagnose PTSD, while the other 38 (79%) used only screening instruments. All studies performed appropriate statistical analyses, but the sample size was considered inappropriate in 19 studies (40%).

The overall quality of evidence for PTSD symptoms prevalence estimates was rated as low according to GRADE, mainly because the studies provided only indirect evidence (Additional file 1: Table S4).

Discussion

In this systematic review and meta-analysis of 48 studies, we found that 1 in every 5 adult survivors of critical care (19.83%) develops PTSD symptoms in the year following ICU discharge. The pooled prevalence of PTSD symptoms in critical care survivors was comparable to that of civilian war survivors (26%) [65], but much higher than that reported in many countries among those exposed to traumatic events (2.5–3.5%) [66]. It was also similar to the 20% prevalence of mental disorder after humanitarian emergencies estimated by the World Health Organization [67]. In the USA, 5.7 million patients are admitted annually to ICUs, with an average mortality rate ranging from 10 to 29% [68]. These data allow us to estimate that approximately 1 million patients develop PTSD after ICU admission annually.

In the present study, the pooled prevalence of PTSD symptoms was 25.69% when measured shortly after ICU discharge (less than 3 months). However, such a high early prevalence of PTSD symptoms may reflect acute stress disorder rather than PTSD. Acute stress symptoms are similar to the post-traumatic stress symptoms that occur within the first month of exposure to a stressor, such as ICU admission [4]. Acute stress disorder may be triggered by fragmented ICU memories of traumatic or psychotic experiences [42] and is a risk factor for the development of PTSD [69]. Although lower, the prevalence range (from 15.93% at 3 months to 18.96% at
Table 1: Characteristics of included studies

Reference	Study period	Location	Type of ICU	No. of patients	Age, mean ± SD	Male sex, n (%)	PTSD prevalence, n (%)	Instrument of assessment	Time of assessment
Abraham et al. [19]	Not reported	USA	Trauma ICU	115	42.4 ± 16.7	64 (55.7%)	30 (26%)	DTS	1 year after hospital discharge
Aitken et al. [20]	May 2014–April 2015	Australia	Not reported	57	53.7 ± 14.8	37 (65%)	7 (12.3%)	PCL-5	3–5 months after ICU discharge
Asimakopoulou and Medianos [21]	March 2009–June 2011	Greece	General hospitals	102	45.98 ± 15.17	65 (63.7%)	18 (17.6%)	Mini DSM-IV	3 months after ICU discharge
Bashar et al. [22]	2018	Iran	Mixed ICU	181	65	60 (33%)	181 (100%)	IES-R	3–21 days after ICU discharge
Bienvenu et al. [6]	October 2004–October 2007	USA	Mixed ICU	151 (3 months)	49 ± 14	123 (59%)	36 (23.8%)	IES-R	3, 6, 12, and 24 months after ICU admission
Bienvenu et al. [6]	October 2004–October 2007	USA	Mixed ICU	161 (6 months)	54 ± 15	98 (70%)	19 (18.8%)	PTSS-10 and IES-R	1 year after ICU admission
Boer et al. [23]	December 2001–February 2005	Netherlands	Surgical ICU	108	66.8 (57–73)*	41 (38%)	41 (38%)	PTSS-10 and IES-R	1 year after ICU admission
Bugedo et al. [24]	April 2006–January 2007	Chile	Not reported	75	59.5	Not reported	20 (26.6%)	PTSS-10 and IES-R	1 year after ICU admission
Castillo et al. [25]	September 2012–February 2013	Australia	Mixed ICU	101 (3 months)	54 ± 15	98 (70%)	19 (18.8%)	PTSS-10 and IES-R	3 and 6 months after ICU discharge
Chahraoui et al. [26]	January–June 2013	France	Medical ICU	20	68 ± 8.5	9 (45%)	3 (15%)	IES-R	3 months after ICU discharge
Cox et al. [27]	2009–2010	USA	Mixed ICU	21	56 (47–74)*	9 (43%)	12 (57.1%)	PTSS-10 and IES-R	6 weeks after ICU discharge
Cuthbertson et al. [28]	Not reported	Scotland	Mixed ICU	78	58 (18–87)*	44 (56%)	11 (14.1%)	DSM-IV	3 months after ICU discharge
Da Costa et al. [29]	September 2008–August 2009	Brazil	Medical ICU	138	43.5 ± 17	95 (68.8%)	7 (5%)	IES-R	3 months after ICU discharge
Davydow et al. [30]	Not reported	Not reported	Trauma ICU	1456	40.8 (32.0)*	Not reported	364 (25%)	PCL-17	12 months after ICU discharge
Davydow et al. [31]	September 2010–August 2011	USA	Mixed ICU	131 (3 months)	49.0 ± 14.6	69 (57.5%)	20 (15.2%)	PCL-C	3 and 12 months after ICU discharge
de Miranda et al. [32]	Not reported	France	Not reported	126	67 (57–75)*	Not reported	26 (20.6%)	IES-R	3 months after ICU discharge
Elliott et al. [33]	Not reported	Australia	Not reported	178	57.20 ± 17.20	116 (65%)	24 (13.5%)	PCL-5	6 months after hospital discharge
Giard et al. [34]	February–May 2001	USA	Medical and cardiac ICU	43	52 (39–65)*	20 (47%)	6 (13.9%)	PTSS-10 and IES-R	6 months after ICU discharge
Ganja et al. [35]	January–June 2015	Portugal	Not reported	313	59 (44–71)*	183 (58%)	54 (17.2%)	PTSS-14	6 months after ICU discharge
Table 1 Characteristics of included studies (Continued)

Reference	Study period	Location	Type of ICU	No. of patients	Age, mean ± SD	Male sex, n (%)	PTSD prevalence, n (%)	Instrument of assessment	Time of assessment
Griffiths et al. [36]	January 2000–December 2002	England	Not reported	108	56.9	Not reported	56 (54.7%)	PTSS-10	3 months after ICU discharge
Günther et al. [37]	December 2015–March 2016	Sweden	Mixed ICU	30	62 ± 15	18 (60%)	4 (13.3%)	PTSS-10	1 week after ICU discharge
Hauer et al. [38]	Not reported	Germany	Not reported	33	40.3 ± 1.25	16 (48%)	9 (27.3%)	PTSS-10	7.5 ± 2.9 years after ICU discharge
Hauer et al. [39]	July 2004–July 2005	Germany	Cardiac ICU	126	66 ± 9.5	Not reported	15 (11.9%)	PTSS-10	6 months after ICU admission
Hepp et al. [40]	January 1996–June 2000	Sweden	Trauma ICU	90	38.9 ± 13.2	69 (77%)	32 (36%)	CAPS	Up to 3 years after ICU admission
Huang et al. [41]	Not reported	Not reported	Medical ICU	605 (6 months)	49 ± 15	Not reported	148 (24.5%)	IES-R	6 and 12 months after ICU admission
Jackson et al. [3]	March 2007–June 2010	USA	Medical or surgical ICU	467 (3 months)	59 (49–69)*	234 (50%)	27 (5.8%)	PCL-S	3 and 12 months after hospital discharge
Jones et al. [42]	2003–2005	England	Mixed ICU	238	61 (17–86)*	149 (62%)	22 (9.2%)	PTSS-14	3 months after ICU discharge
Jones et al. [43]	2006–2008	Europe	Not reported	332	59.9	210 (63.2%)	29 (8.7%)	TSQ	3 months after ICU discharge
Jónasdóttir et al. [44]	2017	Iceland	Mixed ICU	143	Not reported	M—88 (61.9%)	12/130 (9%)	IES-R	3, 6, and 12 months after ICU discharge
Jubran et al. [45]	Not reported	USA	Long-term ICU	41	66 (59–72)*	26 (63%)	5 (12.2%)	PTSS-10	3 months after weaning
Kapfhammer et al. [46]	Not reported	Not reported	Not reported	46 (discharge)	36.5 (18.0–50.0)*	Not reported	20 (43.5%)	DSM-IV	At ICU discharge and (average of) 8 years after ICU discharge
Kress et al. [47]	Not reported	USA	Medical ICU	32	48.1	20 (62.5)	6 (18.7)	IES-R	3 months after ICU discharge
Myhren et al. [48]	February 2006–December 2006	Norway	Mixed, medical and cardiac ICU	238	47.9 (15.7)	160 (62.7)	64 (26.8)	IES	4–6 weeks after ICU discharge
Myhren et al. [49]	February 2005–December 2006	Norway	Mixed, medical, and cardiac ICU	180	47.9 (15.7)*	Not reported	48 (26.6%)	IES	12 months after ICU discharge
Nickel et al. [50]	1999–2000	Germany	Medical ICU	41	47.4	Not reported	4 (9.7%)	SCID	3–15 months after ICU discharge (average: 6.2 months)
Richter et al. [51]	Not reported	Germany	Surgical ICU	37	41.7 (17.0)*	28 (76%)	3 (8.1%)	DSM-IV	Mean of 35 (±14) months after ICU discharge
Reference	Study period	Location	Type of ICU	No. of patients	Age, mean ± SD	Male sex, n (%)	PTSD prevalence, n (%)	Instrument of assessment	Time of assessment
----------------------	-------------------------------	-------------------	--------------------------	-----------------	----------------	------------------	------------------------	--------------------------	---------------------------
Samuelson et al.	September 2003–March 2005	Sweden	Medical ICU	226	63.3 (13.4)	117 (52%)	19 (8.4%)	IES-R	12 months after ICU discharge
Schelling et al.	Not reported	Germany	Not reported	54	54.2	Not reported	21 (38.8%)	PTSS-10	Not reported
Schelling et al.	Not reported	Germany	Not reported	20	51.8	8 (40%)	8 (40%)	DSM-IV	Median 31 months after ICU discharge
Schnyder et al.	January 1996–June 1997	Switzerland	Trauma ICU	106	37.5 (13.2)	Not reported	5 (4.7%)	DSM-IV	Within 1 month of trauma (median 13.7 days)
Scragg et al.	October 1995–October 1997	England	Medical ICU	80	57.1	42 (52.5%)	12 (15%)	IES	Not reported
Shaw et al.	Not reported	Not reported		20	Not reported	Not reported	7 (35%)	IES	Not reported
Strøm et al.	Not reported	Denmark	Mixed, medical and surgical ICU	26	67.0	9 (34.61%)	1 (3.8%)	PTSS-10	2 years after ICU stay
Twigg et al.	December 2000–February 2002	United Kingdom	Medical ICU	44	56.0	20 (40.4%)	10 (22.7%)	PTSS-14	3 months after ICU discharge
Van der Schaaf et al.	June 2004–June 2005	Netherlands	Mixed ICU	255	58.8 (16.6)	166 (69%)	43 (16.8%)	IES	1 year after ICU admission
Wade et al.	November 2008–September 2009	England	Medical ICU	100	57.2 (17.4)	52 (52%)	27 (27%)	PDS	3 months after ICU admission
Wallen et al.	Not reported	Australia	Mixed, medical, surgical and trauma ICU	100	63 (29.8)	68 (68%)	13 (13%)	IES-R	1 month after ICU discharge
Weinert and Sprenkle	2001–2003	USA	Mixed, medical and surgical ICU	80	54.6	Not reported	12 (15%)	PDS	6 months after ICU admission
Wintermann et al.	2017	Germany	Long-term ICU	97	Not reported	73 (75.2%)	29/97 (29.9%)	PTSS-10	3 and 6 months post-transfer (combined result)

CAPS Clinician-Administered Post-Traumatic Stress Disorder Scale; DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th edition; DTS Davidson Trauma Scale; IES Impact of Event Scale; IES-R Impact of Event Scale—revised; PCL-5 Post-traumatic Stress Disorder Checklist—Civilian V5; PCL-17 Post-Traumatic Stress Disorder Checklist—Civilian V17; PCL-C Post-traumatic Stress Disorder Checklist—Civilian Version; PCL-S Post-traumatic Stress Disorder Checklist—Specific Version; PDS Posttraumatic Stress Diagnostic Scale; PTSS-10 Post-Traumatic Stress Syndrome 10-Question Inventory; PTSS-14 Post-Traumatic Stress Syndrome 14-Question Inventory; SCID Structured Clinical Interview; TSQ Trauma Screening Questionnaire

*Median (interquartile range)
12 months) is clinically important, since it may have a negative impact on the quality of life in long-term ICU survivors.

Our systematic review has several limitations. First, despite the use of rigorous, up-to-date methods of data analysis and quality of evidence assessment and a comprehensive search of 6 databases that identified more than 13,000 records, only a few studies reporting data on PTSD prevalence in ICU survivors in specific settings were eligible for inclusion. In addition, most of the included studies had methodological issues that limited the generalizability of the results. Second, PTSD was assessed using different strategies in the included studies. As discussed previously, the diagnosis of PTSD can be challenging, and the use of screening instruments may overestimate PTSD prevalence [70]. However, to date, only a few instruments have been validated for use in the ICU, of which only the Impact of Event Scale—revised [71] and the Post-Traumatic Stress Syndrome 10-Question Inventory have shown good correlation with clinical diagnosis [72]. The lack of proper validation of methods used to evaluate PTSD, as well as their heterogeneity, may have had an impact on the exact prevalence measured in the different studies. However, this impact was minimized in the present systematic review, since similar prevalence estimates of PTSD symptoms were obtained with both clinical assessment (18.58%) and screening instruments (20.18%). Third, there was no parallel assessment of cognitive function in the included studies. An association of long-term PTSD with cognitive dysfunction has been recently reported [73]; however, to date, it remains unknown how cognitive dysfunction can

Study	Events Total	Events per 100 observations	Events	95% CI	Weight
Abraham, 2014	30	26.09 [18.34; 35.10]	2.2%		
Aitken, 2017	7	12.29 [5.08; 23.68]	2.0%		
Asimakopoulou, 2015	18	17.65 [10.81; 26.45]	2.2%		
Bashar, 2018	83	45.86 [38.44; 53.41]	2.3%		
Biemvu, 2016	66	35.48 [28.62; 42.82]	2.3%		
Boer, 2008	41	37.96 [28.80; 47.81]	2.2%		
Bugueto, 2013	20	26.67 [17.11; 38.14]	2.1%		
Castillo, 2016	15	16.30 [9.42; 25.46]	2.2%		
Chahraoui, 2015	3	15.00 [3.21; 37.89]	1.4%		
Cox, 2012	12	57.14 [34.02; 78.18]	1.5%		
Cuthbertson, 2004	11	14.10 [7.26; 23.83]	2.1%		
da Costa, 2012	7	5.07 [2.06; 10.17]	2.3%		
Davydow, 2009	364	25.00 [22.79; 27.31]	2.5%		
Davydow, 2014	18	15.00 [9.14; 22.67]	2.2%		
De Miranda, 2008	11	20.79 [10.84; 34.11]	2.0%		
Elliott, 2016	24	13.48 [8.83; 19.39]	2.3%		
Girard, 2007	6	13.95 [5.30; 27.93]	1.9%		
Grana, 2008	54	17.25 [13.23; 21.90]	2.4%		
Griffiths, 2006	56	51.85 [42.03; 61.57]	2.2%		
Gunther, 2017	4	13.33 [3.76; 30.72]	1.7%		
Hauer, 2009	9	27.27 [13.30; 45.52]	1.7%		
Hauer, 2011	15	11.90 [6.82; 18.87]	2.3%		
Hepp, 2008	32	35.56 [25.74; 46.35]	2.2%		
Huang, 2016	132	23.04 [19.65; 26.71]	2.5%		
Jackson, 2014	24	6.65 [4.31; 9.73]	2.4%		
Jönásdottir, 2017	15	14.71 [8.47; 23.09]	2.2%		
Jones, 2007	22	9.24 [5.88; 13.66]	2.4%		
Jones, 2017	29	8.73 [5.93; 12.30]	2.4%		
Jubran, 2010	5	12.20 [4.08; 26.20]	1.8%		
Kaphammer, 2004	11	23.91 [12.59; 38.77]	1.9%		
Kress, 2003	6	18.76 [7.21; 36.44]	1.7%		
Myren, 2009	64	26.89 [21.37; 33.00]	2.4%		
Myren, 2010	48	26.67 [20.36; 33.76]	2.3%		
Nickel, 2004	4	9.76 [2.72; 23.13]	1.8%		
Richter, 2006	7	18.92 [7.96; 35.16]	1.8%		
Samuelsson, 2007	19	8.41 [5.14; 12.82]	2.4%		
Schelling, 1999	21	38.89 [25.92; 53.12]	2.0%		
Schelling, 2001	8	4.00 [19.12; 63.95]	1.4%		
Schnyder, 2001	5	4.72 [1.55; 10.67]	2.2%		
Scragg, 2001	12	15.00 [8.00; 24.74]	2.1%		
Shaw, 2001	7	3.00 [15.39; 59.22]	1.4%		
Strom, 2011	1	3.85 [0.10; 19.64]	1.6%		
Twigg, 2008	10	22.73 [11.47; 37.84]	1.9%		
van der Schaaf, 2009	43	16.86 [12.48; 22.03]	2.4%		
Wade, 2012	27	27.00 [18.61; 36.80]	2.2%		
Wallen, 2008	13	13.00 [7.11; 21.20]	2.2%		
Weisert, 2008	12	15.00 [8.00; 24.74]	2.1%		
Wintermann, 2017	29	29.90 [21.02; 40.04]	2.2%		

Random effects model

Heterogeneity: τ² = 0.0158, p < 0.001	19.63 [16.72; 23.13]	100%
Prediction interval	7152	

Fig. 2 Overall pooled prevalence of post-traumatic stress disorder in adult critical care survivors
Fig. 3 Prevalence of post-traumatic stress disorder according to the time point of assessment

Study	Events Total	Events per 100 observations	Events	95% CI
Less than 3 months				
Bashar, 2018	83 181		45.65	[38.48, 53.41]
Cox, 2012	12 46		57.14	[40.02, 78.16]
Gunther, 2017	4 95		13.33	[3.76, 30.72]
Kapfhammer, 2004	20 46		43.48	[28.93, 58.89]
Myhren, 2009	64 238		26.89	[21.37, 33.30]
Samuelsson, 2007	19 226		8.41	[5.14, 12.82]
Wallen, 2008	13 100		13.00	[7.11, 21.20]
Weinert, 2008	25 149		16.78	[11.16, 23.76]
Random effects model			26.56	[16.87, 38.19]
3 months				
Alitken, 2017	7 57		12.28	[5.06, 23.68]
Ansmakopoulou, 2015	18 102		17.65	[10.81, 25.49]
Bienvenu, 2016	36 151		31.65	[21.26, 41.45]
Castillo, 2016	19 101		18.81	[11.72, 27.81]
Chahroul, 2015	3 20		15.00	[3.21, 37.89]
Cuthbertson, 2004	11 78		14.10	[7.26, 23.83]
da Costa, 2012	7 138		5.07	[2.06, 10.17]
Davydow, 2014	21 131		16.03	[10.21, 23.45]
De Miranda, 2008	11 53		20.75	[10.84, 34.11]
Griffiths, 2006	56 108		51.85	[42.03, 61.57]
Jackson, 2014	27 415		6.51	[4.33, 9.33]
Jónsson, 2017	12 130		9.23	[4.86, 15.57]
Jones, 2007	4 238		9.24	[5.86, 13.66]
Jones, 2017	29 332		8.73	[5.93, 12.30]
Jahani, 2010	5 41		12.20	[4.08, 26.20]
Twigg, 2008	10 44		22.73	[11.47, 37.84]
Wade, 2012	27 100		27.00	[18.61, 36.80]
Random effects model			15.93	[11.10, 21.35]
6 months				
Bienvenu, 2016	32 161		19.88	[14.01, 26.88]
Castillo, 2016	15 92		16.30	[9.42, 25.46]
Elliott, 2016	24 178		13.48	[8.83, 19.39]
Girard, 2007	6 95		13.95	[5.30, 27.93]
Granja, 2008	54 313		17.25	[13.23, 21.90]
Hauer, 2011	15 126		11.90	[6.82, 18.87]
Hosp, 2008	11 90		12.22	[6.26, 20.82]
Huang, 2016	148 605		24.46	[20.06, 28.90]
Jónasdóttir, 2017	15 110		13.64	[7.84, 21.49]
Kress, 2003	6 32		18.75	[7.21, 36.44]
Nickel, 2004	4 41		9.76	[7.27, 23.13]
Weinert, 2008	12 80		15.00	[8.00, 24.74]
Wintzmann, 2017	29 87		29.90	[21.02, 40.40]
Random effects model			16.56	[13.74, 20.08]
12 months				
Abraham, 2014	30 115		26.09	[18.34, 35.10]
Bienvenu, 2016	32 141		22.70	[16.07, 30.50]
Boer, 2008	41 108		37.96	[26.80, 47.81]
Bugudo, 2013	29 75		26.67	[17.11, 38.14]
Davydow, 2009	364 1456		25.00	[22.79, 27.31]
Davydow, 2014	18 120		15.00	[9.14, 22.67]
Hosp, 2008	12 90		13.33	[7.06, 22.13]
Huang, 2016	132 573		23.04	[19.66, 26.71]
Jackson, 2014	24 361		6.65	[4.31, 9.73]
Jónasdóttir, 2017	15 102		14.71	[8.47, 23.03]
Myhren, 2010	48 180		26.67	[20.36, 33.76]
Schnyder, 2001	5 121		4.13	[1.36, 9.38]
van der Schaar, 2009	43 256		18.86	[12.46, 25.20]
Random effects model			18.86	[14.29, 24.12]
More than 12 months				
Bienvenu, 2016	32 135		23.70	[16.81, 31.76]
Hauer, 2009	9 33		27.27	[13.90, 45.57]
Hosp, 2008	13 90		14.44	[7.39, 23.43]
Kapfhammer, 2004	11 46		23.91	[12.59, 38.77]
Richter, 2006	7 37		18.92	[7.96, 35.16]
Schelling, 2011	8 20		40.00	[18.12, 63.95]
Strom, 2011	1 26		3.85	[0.10, 19.64]
Random effects model			20.21	[13.79, 27.44]

Heterogeneity: $I^2 = 94\%$, $T^2 = 0.0326$, $p < 0.01$
influence PTSD assessment and follow-up, especially regarding consolidation of traumatic memories during mechanical ventilation and sedation. Moreover, PTSD can coexist and be confused with other major psychiatric disorders, such as depression and anxiety [74]. Fourth, the observed statistical heterogeneity was high (90%). However, in contrast with randomized trials, non-controlled studies (e.g., studies of prevalence and incidence) usually have smaller variances and narrower CIs, even with small sample sizes. Thus, a high statistical inconsistency is often expected in meta-analyses of prevalence estimates. Given that the estimates of individual studies included in our meta-analysis ranged mostly from 12 to 30% (similar to the pooled estimate and included in the prediction

Study	Events Total	Events per 100 observations	Events 95%–CI	Weight
Clinical assessment				
Asimakopoulou, 2015	18	102	17.65 [10.81; 26.45]	2.2%
Cuthbertson, 2004	11	78	14.10 [7.26; 23.83]	2.1%
da Costa, 2012	7	138	5.07 [2.06; 10.17]	2.3%
Hauer, 2009	9	33	27.27 [13.30; 45.56]	1.7%
Jibrani, 2010	5	41	12.20 [4.08; 26.20]	1.8%
Kapfhammer, 2004	11	46	23.91 [12.59; 38.77]	1.9%
Kress, 2003	6	32	18.75 [7.21; 36.44]	1.7%
Nickel, 2004	4	41	9.76 [2.72; 23.13]	1.8%
Richter, 2006	1	8	18.92 [7.96; 35.16]	1.8%
Schelling, 1999	21	54	38.89 [25.92; 53.12]	2.0%
Wintermann, 2017	29	97	29.90 [21.02; 40.40]	2.2%
Random effects model			18.58 [12.26; 25.80]	21.5%

Screening instrument only				
Abrahams, 2014	30	115	26.09 [18.34; 35.10]	2.2%
Aitken, 2017	7	57	12.28 [5.08; 23.68]	2.0%
Bashar, 2018	183	181	45.86 [38.44; 53.41]	2.3%
Bienvenu, 2016	66	186	35.48 [28.62; 42.82]	2.3%
Boer, 2008	41	108	37.96 [28.00; 47.81]	2.2%
Buguedo, 2013	20	75	26.67 [17.11; 38.14]	2.1%
Castillo, 2016	15	92	16.30 [9.42; 25.46]	2.2%
Chahraoui, 2015	3	20	15.00 [3.21; 37.89]	1.4%
Cox, 2012	12	21	57.14 [34.02; 78.18]	1.5%
Davydov, 2009	364	1456	25.00 [22.79; 27.31]	2.5%
Davydov, 2014	18	120	15.00 [9.14; 22.67]	2.2%
De Miranda, 2008	11	53	20.75 [10.84; 34.11]	2.0%
Elliott, 2016	24	178	13.48 [8.83; 19.39]	2.3%
Girard, 2007	6	43	13.95 [5.30; 27.93]	1.9%
Granja, 2008	54	313	17.25 [13.23; 21.90]	2.4%
Griffiths, 2006	56	108	51.85 [42.03; 61.57]	2.2%
Gunther, 2017	4	30	13.33 [3.76; 30.72]	1.7%
Hauer, 2011	15	126	11.90 [6.82; 18.87]	2.3%
Heppe, 2008	32	90	35.56 [25.74; 46.35]	2.2%
Huang, 2016	132	573	23.04 [19.65; 26.71]	2.5%
Jackson, 2014	24	361	6.65 [4.31; 9.73]	2.4%
Jonassdotir, 2017	15	102	14.71 [8.47; 23.09]	2.2%
Jones, 2007	22	238	9.24 [5.88; 13.66]	2.4%
Jones, 2017	29	332	8.73 [5.93; 12.30]	2.4%
Myhren, 2009	64	238	26.89 [21.37; 33.00]	2.4%
Myhren, 2010	48	180	26.67 [20.36; 33.76]	2.3%
Samuelsohn, 2007	19	226	8.41 [5.14; 12.82]	2.4%
Schelling, 2001	8	20	4.00 [19.12; 63.95]	1.4%
Schryder, 2001	5	106	4.72 [1.55; 10.67]	2.2%
Scrugg, 2001	12	80	15.00 [8.00; 24.74]	2.1%
Shaw, 2001	7	20	35.00 [15.39; 59.22]	1.4%
Strom, 2011	1	26	3.85 [0.10; 19.64]	1.6%
Twigg, 2008	10	44	22.73 [11.47; 37.84]	1.9%
van der Schaaf, 2009	43	255	16.86 [12.48; 22.03]	2.4%
Wade, 2012	27	100	27.00 [18.61; 36.80]	2.2%
Wallen, 2008	13	100	13.00 [7.11; 21.20]	2.2%
Weinert, 2008	12	80	15.00 [8.00; 24.74]	2.1%

| Random effects model | | | | |
| Heterogeneity: $I^2 = 91\%$, $\tau^2 = 0.0160$, $p < 0.01$ | 6453 | | | |

| Random effects model | | | | |
| Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0158$, $p < 0.01$ | 7152 | 19.83 [16.72; 23.13] | 100.0% |

Fig. 4 Prevalence of post-traumatic stress disorder according to the assessment method
interval), and we observed consistent results within subgroup analyses (according to instrument used for diagnosis, length of time after ICU stay, and demographic factors), we hypothesize that most of observed inconsistencies may have been the result of the diversity of settings (e.g., patient and ICU characteristics). Fifth, despite the high prevalence observed, it was not possible to establish a direct causal relationship between ICU stay and PTSD, which may be partially explained by other factors, such as the underlying condition of each patient. In this context, action should be taken to further explore the causal relationship between ICU stay and PTSD, as well as to more accurately identify individuals at increased risk of developing PTSD symptoms.

Common stressors in critically ill patients, such as respiratory failure, inflammation, delirium, and communication barriers, may contribute to the occurrence of PTSD, and proper prevention and management of these factors may reduce PTSD incidence after ICU discharge [75]. Also, evidence is emerging that an ICU diary—written by family members or ICU staff—may help patients fill in gaps in their memories, thus reducing the risk of PTSD development [42, 76, 77]. The increased prevalence of PTSD over time in cases that have not received treatment for PTSD symptoms must be highlighted. Although there is little evidence to support the effectiveness of interventions to improve PTSD symptoms among ICU survivors, early treatment with psychotherapy or pharmacological therapy (e.g., antidepressants) may improve quality of life, as observed in PTSD associated with other stressful events [78].

Overall, our findings may have important clinical implications. Despite the high prevalence of PTSD, this disorder is probably underdiagnosed in the post-ICU population. ICU survivors should be screened for PTSD symptoms and cared for accordingly, given the high rates and potential negative impact of PTSD on quality of life. In addition, early and effective measures should be implemented during and after ICU stay to prevent PTSD in this population.

Conclusion

PTSD symptoms affect a large proportion of critical care survivors, with a high expected prevalence in the first year following discharge from the ICU. Screening of ICU patients for PTSD symptoms, followed by proper support and treatment, is needed, given the potential negative impact of PTSD on quality of life. Additional studies should explore whether a causal relationship exists between ICU stay and PTSD, as well as propose additional measures to prevent and treat PTSD among critically ill patients.

Additional file

Additional file 1: Table S1. Search strategy. Table S2. Classification of studies according to the instrument used and the time point of assessment. Figure S1. PTSD symptoms assessed with PTSS-10 up to 3 months after an ICU stay. Figure S2. Clinical assessment of PTSD and assessment of PTSD symptoms with IES-R, 3 months after an ICU stay. Figure S3. PTSD symptoms assessed with IES-R and PTSS-10, 6 months after an ICU stay. Figure S4. PTSD symptoms assessed with IES-R and IES, 1 year after an ICU stay. Figure S5. Clinical assessment of PTSD assessed more than 1 year after an ICU stay. Table S3. Risk of bias in included studies (Joanna Briggs Institute critical appraisal checklist). Table S4. Quality of evidence for post-traumatic stress disorder (PTSD) prevalence by the GRADE approach. (DOCX 711 kb)

Abbreviations

CI: Confidence interval; CoCoPop: Condition, Context, Population; ICU: Intensive care unit; JBI: Joanna Briggs Institute; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; PROSPERO: International Prospective Register of Systematic Reviews; PTSD: Post-traumatic stress disorder

Acknowledgements

We thank Hospital Moinhos de Vento and the Brazilian Ministry of Health for their support. We also thank Pedro Emmanuel Alvarenga Americano do Brazil for his assistance in formulating the search strategy.

Authors’ contributions

RGR, CBM, CCR, CT, FAB, and MF developed the original concept of this systematic review and meta-analysis. CR, RTAS, CBM, and FAB contributed to the screening of eligible studies, data extraction, and data synthesis. CR, RGR, FAB, CBM, CCR, and MF drafted the first version of the manuscript. All authors read and approved the final manuscript and take public responsibility for it. FAB and MF contributed equally to this study.

Funding

The present systematic review and meta-analysis was supported by the Brazilian Ministry of Health through the Program of Institutional Development of the Brazilian Unified Health System (PROADI-SUS).

Availability of data and materials

All data related to the present systematic review and meta-analysis are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil. 2Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende, 156, Centro, Rio de Janeiro, RJ 20230-026, Brazil. 3Intensive Care Unit, Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, 3° andar, Porto Alegre, RS 90035-001, Brazil. 4Research Projects Office, HMV, Porto Rua Ramiro Barcelos, 910, 3° andar, Porto Alegre, RS 90035-001, Brazil. 5Hospital Federal dos Servidores do Estado, Rua Sacadura Cabral, 178, Saúde, Rio de Janeiro, RJ 20221-903, Brazil. 6National Institute for Health Technology Assessment, Universidade Federal do Rio Grande do Sul, Av. Paulista Garna, 110, Farpouplina, Porto Alegre, RS 90040-060, Brazil. 7Post-Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 8PTSD Outpatient program (NET-Trauma), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. 9O’Do Institute for Research and Education, Rua Diniz Condeiro, 30, Botafogo, Rio de Janeiro, RJ 22281-100, Brazil.
References

1. Meyer N, Harhay MO, Small DS, Prescott HC, Bowles KH, Galeski DF, et al. Temporal trends in incidence, sepsis-related mortality, and hospital-based acute care after sepsis. Crit Care Med. 2018;46:354–60.
2. Lilly CM, Swami S, Liu X, Riker RR, Badawi O, Peterson ED, et al. Five-year trends of critical care practice and outcomes. Chest. 2017;152:233–35.
3. Jackson JC, Pandharipande PP, Girard TD, Brummel NE, Thompson JL, Hughes CG, et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med. 2014;2:669–79.
4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing, Inc; 2013. https://www.psychiatry.org/psychiatrists/practice/dsm.
5. Javidî H, Yadollahie M. Post-traumatic stress disorder. Int J Occup Environ Med. 2012;3:2–9.
6. Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, Shanholtz C, Dennison-Himmelfarb CR, Pronovost PJ, et al. Cooccurrence of and remission from general anxiety, depression, and posttraumatic stress disorder symptoms after acute lung injury: a 2-year longitudinal study. Crit Care Med. 2015;43:642–53.
7. Parker AM, Srichaoenchai T, Rapaia S, Schneck KW, Bienvenu OJ, Needham DM. Posttraumatic stress disorder in critical illness survivors: a metaanalysis. Crit Care Med. 2015;43:1121–9.
8. Joanna Briggs Institute. Joanna Briggs Institute reviewers’ manual: 2014 edition. Australia: The Joanna Briggs Institute; 2014. https://reviewersmanual.joannabriggs.org/. Accessed 8 Feb 2019.
9. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
10. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.
11. Griffiths J, Fortune G, Barber V, Young JD. The prevalence of post-traumatic stress disorder in survivors of ICU treatment: a systematic review. Intensive Care Med. 2007;33(9):1506–18.
12. Davydow DS, Gifford JM, Dasai SV, Needham DM, Bienvenu OJ. Post-traumatic stress disorder in very long ICU stay patients with discharge from intensive care units in greater Athens area. J Trauma Acute Care Surg. 2017;83:1166–75.
13. Chiarolotto K, Laurent A, Biyo A, Quenot JP. Psychological experience of patients and family members regarding psychological support using intensive care diaries: an exploratory mixed methods study. J Crit Care. 2017;38:263–9.
14. Righy R, Brunnström M, Madianos P. Posttraumatic stress disorder after discharge from intensive care units in greater Athens area. J Trauma Nurs. 2015;22(2):209–17.
15. Boer KR, van Ruler O, van Emmering AA, Sprangers MA, de Rooy J, Vroom MB, et al. Dutch Peritonitis Study Group. Factors associated with posttraumatic stress symptoms in a prospective cohort of patients after abdominal sepsis: a nomogram. Intensive Care Med. 2008;34(4):664–674.
16. Bugedo G, Tobar E, Aguilera M, Gonzalez H, Godoy J, Lira MT. The implementation of an analgesia-based sedation protocol reduced deep sedation and proved to be safe and feasible in patients on mechanical ventilation. Rev Bras Ter Intensiva. 2013;25(3):188–96.
17. Castillo MI, Cooke ML, Macfarlane B, Atkén LM. In ICU state anxiety is not associated with posttraumatic stress symptoms over six months after ICU discharge: a prospective study. Aust Crit Care. 2016;29:158–64.
18. Chiarolatto K, Laurent A, Biyo A, Quenot JP. Psychological experience of patients 3 months after a stay in the intensive care unit: a descriptive and qualitative study. J Crit Care. 2015;30(3):599–605.
19. Cox CE, Porter LS, Hough CL, White DB, Kahn JM, Carson SS, et al. Development and preliminary evaluation of a telephone-based coping skills training intervention for survivors of acute lung injury and their informal caregivers. Intensive Care Med. 2012;38:1289–97.
20. Cuthbertson BH, Hull A, Strachan M, Scott J. Post-traumatic stress disorder after critical illness requiring general intensive care. Intensive Care Med. 2004;30(3):450–5.
21. da Costa JB, Marcon SS, Rossi RM. Transtorno de estresse pós-traumático e a presença de recordações referentes à unidade de terapia intensiva. J Bras Pneumol. 2012;38:13–9.
22. Davydow DS, Zatzick DF, Frvapa FO, Jurkovich GJ, Wang J, Roy-Byrne PP, et al. Predictors of post-traumatic stress disorder and return to usual major activity in traumatically injured intensive care unit survivors. Gen Hosp Psychiatry. 2009;31(5):428–35.
23. Davydow DS, Zatzick D, Hough CL, Katon WI. A longitudinal investigation of posttraumatic stress and depressive symptoms over the course of the year following medical-surgical intensive care unit admission. Gen Hosp Psychiatry. 2013;35(3):236–42.
24. de Miranda S, Pochard F, Chez M, Megarbane B, Cuvellier A, Bele N, et al. Postintensive care unit psychological burden in patients with chronic obstructive pulmonary disease and informal caregivers: a multicenter study. Crit Care Med. 2011;39(1):112–8.
25. Elliot R, McKinley S, Fien M, Elliott D. Posttraumatic stress symptoms in intensive care patients: an exploration of associated factors. Rehabil Psychol. 2016;61:141–50.
26. Girard TD, Shintani AK, Jackson C, Gordon SM, Pun BT, Henderson MS, et al. Risk factors for post-traumatic stress disorder symptoms following critical illness requiring mechanical ventilation: a prospective cohort study. Crit Care. 2007;11(1):R28.
27. Granja C, Gomes E, Aamaro A, Ribeiro O, Jones C, Carneiro A, et al. Understanding posttraumatic stress disorder-related symptoms after critical illness: the early illness amnesia hypothesis. Crit Care Med. 2008;36(10):2801–9.
28. Griffiths J, Gager M, Ander N, Fawcett D, Waldemar C, Quinlan J. A self-report-based study of the incidence and associations of sexual dysfunction in survivors of intensive care treatment. Intensive Care Med. 2006;32(3):445–51.
29. Gunther A, Sackey P, Bjart A, Schandl A. The relation between skin conductance responses and recovery from symptoms of PTSD. Acta Anaesthesiol Scand. 2017;61:688–95.
30. Hauer D, Weis F, Krause M, Togeser M, Schelling G, Roodendaal B. Traumatic memories, post-traumatic stress disorder and serum cortisol levels in long-term survivors of the acute respiratory distress syndrome. Brain Res. 2009;1293:114–20.
31. Hauer D, Weis F, Papassotiriopoulou A, Schmeckeil M, Beras-Fernandez A, Lleie J, et al. Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit Care Med. 2011;39(4):943–50.
32. Hepp U, Moergeli H, Buchi S, Bruchhaus-Steinert H, Kraemer B, Sensky T, et al. Post-traumatic stress disorder in serious accidental injury: 3-year follow-up study. Br J Psychiatry. 2008;192(5):376–83.
33. Huang M, Parker AM, Bienvenu OJ, Dinglas VW, Colantuoni E, Hopkins RD, et al. National Institutes of Health, National Heart, Lung, and Blood Institute acute respiratory distress syndrome network. Psychiatric symptoms in acute respiratory distress syndrome survivors: a 1-year National Multicenter Study. Crit Care Med. 2016;44(5):954–965.
34. Jones C, Bäckman C, Capuzzo M, Egerod J, Flaatren H, Granja C, et al. Intensive care diaries reduce new onset post traumatic stress disorder following critical illness: a randomised, controlled trial. Crit Care. 2010;14(1R):68.
43. Jones JM, Williams WH, Jetten J, Haslam SA, Harris A, Geibs H. The role of psychological symptoms and social group memberships in the development of post-traumatic stress after traumatic injury. Br J Health Psychol. 2012;17(4):798–811.

44. Jonsdottir RJ, Jonsdottir H, Gudmundsdottir B, Sigurdsson GH. Psychological recovery after intensive care: outcomes of a long-term quasi-experimental study of structured nurse-led follow-up. Intensive Crit Care Nurs. 2018;44:59–66.

45. Jubran A, Lawm G, Duffner LA, Collins EG, Lanuza DM, Hoffman LA, et al. Post-traumatic stress disorder after weaning from prolonged mechanical ventilation. Intensive Care Med. 2010;36(12):2030–7.

46. Kapfhammer HP, Rothenhäusler HB, Krauseneck T, Stoll C, Schelleng G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry. 2004;161(5):52–60.

47. Kress JP, Gehlbach B, Littt K, Mitterlehrer F, Rother W, et al. The occurrence of posttraumatic stress disorder in patients following intensive care treatment: a cross-sectional study in a random sample. J Intensive Care Med. 2004;19(5):285–90.

48. Richter JC, Waydhas C, Pajonk FG. Incidence of posttraumatic stress disorder after surgical intensive care unit treatment. Psychosomatics. 2006;47(4):233–30.

49. Samuelson KA, Lundberg D, Fridlund B. Stressful memories and psychological distress in adult mechanically ventilated intensive care patients - a 2-month follow-up study. Acta Anaesthesiol Scand. 2007;51(6):671–8.

50. Scragg P, Jones A, Fafuln. Psychological problems following ICU treatment. Anaesthesia. 2001;56(1):9–14.

51. Shaw RJ, Harvey JE, Nelson KL, Gunary R, Kruk H, Steiner H. Linguistic analysis to assess medically related posttraumatic stress symptoms. Psychosomatics. 2004;41(2):35–40.

52. Shrub G, Biegel J, Rozendoald B, Stoll C, Rothenhäuser HB, Kapfhammer HP. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder and health-related quality of life in survivors. Crit Care Med. 1999;27(12):2678–83.

53. Schelleng G, Biegel J, Rozendoald B, Stoll C, Rothenhäuser HB, Kapfhammer HP. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol Psychiatry. 2001;50(12):978–85.

54. Schnyder U, Moergeli H, Klaghofer R, Buddeberg C. Incidence and epidemiological studies. J Affect Disord. 2018;239:328–32.

55. Schnyder U, Moergeli H, Klaghofer R, Buddeberg C. Incidence and epidemiological studies. J Affect Disord. 2018;239:328–32.

56. Schelling G, Briegel J, Roozendaal B, Stoll C, Rothenhäusler HB, Kapfhammer HP. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder symptoms in severely injured accident victims. Am J Psychiatry. 2001;158(4):594–9.

57. Schelling G, Briegel J, Rozendoald B, Stoll C, Rothenhäuser HB, Kapfhammer HP. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol Psychiatry. 2001;50(12):978–85.

58. Scragg P, Jones A, Fafuln. Psychological problems following ICU treatment. Anaesthesia. 2001;56(1):9–14.

59. Shaw RJ, Harvey JE, Nelson KL, Gunary R, Kruk H, Steiner H. Linguistic analysis to assess medically related posttraumatic stress symptoms. Psychosomatics. 2004;41(2):35–40.

60. Strøm T, Stylsvig M, Toft P. Long-term psychological effects of a no-sedation protocol in critically ill patients. Crit Care. 2011;15(6):R293.

61. Wallen K, Chaboyer W, Thalib L, Creedy DK. Symptoms of acute posttraumatic stress disorder after intensive care. Am J Crit Care. 2008;17(6):43–43.

62. Weinert CR, Sprenkle M. Post-ICU consequences of patient wakefulness and sedative exposure during mechanical ventilation. Intensive Care Med. 2008;34(1):82–90.

63. Weintert CR, Sprenkle M. Post-ICU consequences of patient wakefulness and sedative exposure during mechanical ventilation. Intensive Care Med. 2008;34(1):82–90.

64. Wintermann GB, Rosendahl J, Weidner K, Strauß B, Petrovski K. Risk factors of delayed onset posttraumatic stress disorder in chronically critically ill patients. J Nerv Ment Dis. 2017;205(10):797–8.

65. Morina N, Stamm K, Pollert TV, Priebe S. Prevalence of depression and posttraumatic stress disorder in adult civilian survivors of war who stay in war-affected regions. A systematic review and meta-analysis of epidemiological studies. J Affect Disord. 2018;239:326–38.