Hydrocarbon-degrading bacteria in Colombia: systematic review

Diana Carolina Rache-Arce · Maryuris Machacado-Salas · Doris Rosero-García

Received: 30 November 2020 / Accepted: 12 February 2022 / Published online: 2 March 2022
© The Author(s) 2022

Abstract Petroleum industry activities worldwide have caused pollution and resulted in environmental degradation. Microorganisms with the potential to reduce pollutant levels by degradation processes have been reported, and bacteria are among such organisms. The first study on bacterial degradation in Colombia was published in 1996. The study isolated bacteria belonging to the *Pseudomonas* genus from hydrocarbon-polluted sediments. Since then, different reports on degrading bacteria have been published. The objective of this systematic review is to identify and analyze all the studies on hydrocarbon-degrading bacteria performed in Colombia. To accomplish this goal, a literature search was conducted. Inclusion and exclusion criteria were applied, and 37 relevant articles were obtained. We found that 2018 was the year with the largest number of publications in Colombia, and most frequently identified bacterial genera were *Pseudomonas* and *Bacillus*. Some studies showed that the degradation of hydrocarbons is more efficient when bacterial consortia are used rather than pure cultures. This study provides information about bacteria with the potential to degrade hydrocarbons in Colombia, which in turn will be a source of information for future studies in this field.

Keywords Bacteria · Colombia · Degradation · Hydrocarbons

Introduction

Petroleum hydrocarbons are fossil fuels formed from organic matter, which are distributed in the subsoil layers and used for industrial energy production worldwide (Velásquez-Arias 2017). Currently, the presence of various kind of automobiles, the use of cleaning solvents, and some cosmetics may contain large amounts of hydrocarbons, which has caused an increase in their use (Ahmed and Fakhruddin 2018). The petroleum industry has grown in Colombia in recent years. The reserves of this fossil fuel are estimated to be about 1.5 billion barrels, which represents 26% of the country’s exports (Hernández-Rodríguez 2020). The growth of this industry has provided many benefits to the national economy by actively contributing to exports and the production of goods. The sector has further stimulated the generation of jobs and royalties for the financing of public expenditure (Hernández-Rodríguez 2020). However, unfortunately, petroleum sources also contribute to pollution and changes in land use as well as surface and groundwater utilization owing to exploitation, refining, lack of maintenance, and fuel theft (Sales...
da Silva et al. 2020). Moreover, Colombia has been affected by terrorist attacks approximately 829 times between 2007 and 2015 caused spills of thousands of barrels of hydrocarbons (Mendizabala et al. 2021). These problems may affect terrestrial and aquatic biodiversity due to landscape alteration (Sales da Silva et al. 2020).

In the abovementioned context, microorganisms with the potential to reduce pollutant levels by degradation processes have gained attention (Garzón et al. 2017; Sales da Silva et al. 2020). Bacteria are among those microorganisms that are able to convert the pollutants to less toxic molecules, and hence, allow the reclamation of large expanses of polluted areas (Hernández Ruiz et al. 2017; Rentería and Rosero 2019). Bacteria are capable of tolerating and using certain pollutants as sources of carbon and energy, contributing to the remediation of affected ecosystems (Marquez-Rocha et al. 2001). The oxygen-dependent enzymes called monooxygenases provide a means to use hydrocarbons as substrates, which allows the survival of bacteria in hydrocarbon-polluted environments (Das and Chandran 2011). Certain bacteria isolates such as Escherichia coli, Alcaligenes sp. and Thiobacter subterraneus can contribute in the degradation process by combining several metabolic pathways in a consortium to increase the extent of degradation of polycyclic aromatics hydrocarbons—PAHs (Pandey and Dubey 2012). Another important aspect is the presence of indigenous bacterial populations, which are of interest in degradation studies as they can be directly isolated from polluted sites and be characterized for a better understanding of the mechanism of biodegradation (Das and Chandran 2011).

The first study on bacterial degradation in Colombia, published in 1996, isolated bacteria belonging to the Pseudomonas genus from sediments highly polluted by PAHs (Vargas et al. 1996). Since then, several studies have been published, including reviews that list hydrocarbon-degrading bacteria (HDB) and discuss the importance of their management in polluted environments (Lozano 2005; Benavides-López et al. 2006; Trujillo-Toro and Ramírez-Quirama 2012; Garzón et al. 2017; De La Rosa Martínez and Rabelo-Florez 2020). However, thus far, there is no known review gathering data from all the research on hydrocarbon-degrading bacteria, advantages, and applications in Colombia. Since the problem of hydrocarbon pollution is of global relevance (Zhang and Chen 2017; Sales da Silva et al. 2020) and Colombia also considers it a critical issue. Therefore, in this review the objective is to identify all the studies on HDB conducted in the country so far. This paper provides an analysis about bacterial hydrocarbon degradation capability, pinpoint the areas in which degradation studies have been performed, and identify the most evaluated hydrocarbon. This information towards the better understanding in bioremediation challenges and will allow researchers interested in this field to have adequate baseline information to plan future studies.

Materials and methods

Investigations were selected from the Scielo, Pub-Med, Redalyc, ScienceDirect, Scopus, and Dial-net databases. Google Scholar was also used for the search of gray literature, and for peer reviewed articles. The following keywords were defined in Spanish (degradación, Colombia, hidrocarburos, bacterias), and in English (degradation, Colombia, hydrocarbon, bacteria). Different combinations of last keywords were employed to obtain a high number of publications in the exhaustive search. For the selection of publications suitable for analysis, the following inclusion criteria were established: type of study (original articles and theses), place (Colombia), degraded pollutant (petroleum, diesel, gasoline, motor oil), degrading microorganism (bacteria), publication date (between 1996 and 2021), and language (Spanish and English). During the literature search, those articles that did not meet the established criteria were excluded: articles about studies performed outside Colombia, degrading organisms other than bacteria, such as fungi, microalgae, and plants, and degraded pollutants other than hydrocarbons, such as heavy metals and pesticides.

The results of the analysis of the collected studies were recorded in a table using Microsoft® Excel 2019 according to author’s name, year of publication,
source in which the study was conducted, type of study, and identified bacterium (genus and/or species). Additionally, an analysis to determine the behavior and the interest in studying HDB between 1996 and 2021 was performed. The impact and the interest in research on this topic in Colombia were assessed and compared with some reviews performed for other regions of the world.

Results

The exhaustive search yielded 1288 articles, 410 of which were published in Spanish and 878 in English (Table 1).

After removal of the duplicate articles and application of the inclusion criteria, 37 articles were obtained (Fig. 1).

From the analysis of the 37 selected publications, it was observed that a high number of studies on bacterial hydrocarbon degradation were published mainly in 2018 (Fig. 2). This study was done in Colombia’s subnational territories, which comprise Bogotá as Capital District (C.D.), and 32 political-administrative entities called departments. Moreover, the country is divided into six natural regions constituted by differences in topography, weather, vegetation, types of soil and oil production. The Andean Region, covering the three branches of the Andes mountains; the Caribbean Region, covering the area adjacent to the

Table 1 General statistical information for the articles of hydrocarbon-degrading bacteria (until May 2021)

Database	Spanish	English
Scielo	59	154
PubMed	0	82
Redalyc	0	137
ScienceDirect	1	302
Scopus	0	0
Dialnet	0	1
Google Scholar	350	202
Total number of articles	**410**	**878**

Fig. 1 PRISMA flowchart showing the selection of the research articles of hydrocarbon-degrading bacteria in Colombia

Caribbean Sea; the Pacific Region adjacent to the Pacific Ocean; the Orinoquía Region, part of the Llanos plains mainly in the Orinoco River basin along the border with Venezuela; the Amazon Region, part of the Amazon rainforest; and finally the Insular Region, comprising islands in both the Atlantic and Pacific oceans (Fig. 3). Among the departments in which a high number of studies on HDB have been conducted are Antioquia and Cundinamarca with eight and seven publications respectively, located at Andean Region with a oil production of 319 Million barrels per day in 2020 (Minenergía 2021).
Remarkably, the Orinoquía Region had the highest oil production, but two studies have been conducted only (Fig. 3).

Pseudomonas sp. was the most representative genus of HDB on the papers in Colombia (Table 2). In the present study, 19 publications describing the isolation of bacteria belonging to this genus with *Pseudomonas aeruginosa* and *Pseudomonas putida* being the most frequently isolated species (Fig. 4). Furthermore, 7 publications reported bacteria belonging to the *Bacillus* genus (Table 2). Some studies did not report the bacterial genus and/or species because unidentified strains from bacterial consortia were used (Table 2). Among the analyzed studies, 16 on petroleum, 12 on diesel, 4 on gasoline, 1 on oil motor, 1 on kerosene, and 1 on tar. Three studies did not report the evaluated hydrocarbon (Table 2). In addition, an analysis of the universities, companies, and research groups that participated in the publications was performed (Table 3). The bacterial strains able to degrade hydrocarbons were isolated and identified, from soils samples mainly (Table 2).
Table 2 Studies of hydrocarbon degrading bacteria conducted in Colombia

Authors and year of publication	Source of the environmental samples	Hydrocarbon-degrading bacteria (HDB) isolated/identified	Methodology for hydrocarbon-degrading bacteria isolation/identification	Evaluated hydrocarbon		
Vargas et al. (1996)	Bucaramanga Santander	Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas resinovarans, Pseudomonas nitroreducens	Two selection systems called fast route and slow route	Petroleum		
Suárez-Medellin and Vives (2004)	Bogotá D.C Cundinamarca	Pseudomonas luteola, Pseudomonas putida, Micrococcus sp., Alcalines denitrificans, Pseudomonas sp., Pseudomonas aeruginosa	Direct isolation/traditional microbiology	Gasoline		
Perdomo-Rojas and Pardo-Castro (2004)	Zipaquirá Cundinamarca	Stenotrophomonas maltophilia, Acinetobacter iwoffii, Burkholderia cepacia, Pseudomonas putida, Chomobacterium violaceum, Flavimonas oryzihabitants	Direct isolation/BBL™ Crystal™ Identification Systems	Petroleum		
Vallejo et al. (2005)	Bogotá D.C Cundinamarca		Direct isolation/biochemical test	Petroleum		
Authors and year of publication	Source of the environmental samples	Methodology for hydrocarbon-degrading bacteria isolation/identification	Evaluated hydrocarbon			
---------------------------------	-----------------------------------	--------------------------------	-----------------			
Gomez et al. (2006)	Colombian Caribbean	Strains were identified by 16S rRNA	Petroleum			
Duran-Rincon and Contreras (2006)	Pereira	Inoculation with Pseudomonas aeruginosa bacteria	Diesel			
Camargo-Millán and Acero-Pérez (2007)	Tunja	Inoculation with Pseudomonas aeruginosa bacteria	Petroleum			
Narváez-Flórez et al. (2008)	Colombian Caribbean	Direct isolation/ BBL crystal and API 50 CHB/E	Diesel, petroleum			
Authors and year of publication	Source of the environmental samples	Methodology for hydrocarbon-degrading bacteria isolation/identification	Hydrocarbon-degrading bacteria (HDB) isolated/identified	Evaluated hydrocarbon		
-------------------------------	-------------------------------------	---	---	----------------------		
Kopytko and Ibarra-Mojica (2009)	Bucaramanga Santander	Original article Soils	Direct isolation	Serratia sp. Petroleum		
Gómez et al. (2009)	Medellín Antioquia	Original article Soils	Direct isolation	Bacillus sp. Diesel, gasoline		
Nisperuza-Vidal and Montiel-Aroca (2010)	San Sebastián Córdoba	Undergraduate thesis Crude oil well	Direct isolation/Api20E®, Api20NE® and the software Api-Web®	Burkholderia cepacia, Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa		
Vásquez et al. (2010)	Río Frio Santander	Original article Sludge	Direct isolation/Biochemical test and BBL CRYSTAL-NF	Pseudomonas spp., Acinetobacter spp., Enterobacter cloacae, Citrobacter spp., Bacillus brevis, Micrococcus spp., Nocardia spp. Diesel		
Yanine (2010)	Complejo Ecorregional Andes del Norte (CEAN), Pereira	Master’s thesis Soils	Direct isolation/Strains were identified by 16S rRNA 49 degrading bacteria species (See reference for list)	Diesel		
Vallejo et al. (2010)	Ecoregión cafetera Valle, Risaralda, Quindío	Original article Soils	Direct isolation/Inoculation with Acinetobacter sp. bacteria	Degrading bacteria: gram-positive No data available		
Echeverri Jaramillo et al. (2011)	Cartagena Bolívar	Original article Biofilms, sediment, or sludge, neuston and water subsurface	Direct isolation/Biochemical test	Pseudomonas aeruginosa Petroleum		
García et al. (2011)	Bogotá D.C Cundinamarca	Original article Contaminated soils	Direct isolation	Degrading bacteria Petroleum		
Authors and year of publication	Source of the environmental samples	Methodology for hydrocarbon-degrading bacteria isolation/identification	Evaluated hydrocarbon	Type of study	Environmental sample	Hydrocarbon-degrading bacteria (HDB) isolated/identified
---------------------------------	------------------------------------	---	----------------------	---------------	----------------------	--
Arrieta-Ramírez et al. (2012)	Medellín	Direct isolation/Strains were identified by 16S rRNA	Diesel	Original article	Soils	Enterobacter sp., Bacillus sp., Staphylococcus aureus, Sanguibacter soli, Arthrobacter sp., Flavobacterium sp.
Pino et al. (2012)	Apartadó	Direct isolation	Diesel	Original article	Soils	Degrading bacteria Diesel, gasoline
Quintana-Saavedra et al. (2012)	Cartagena	Direct isolation/Biochemical test	Diesel, gasoline	Original article	Water	Pseudomonas spp., Bacillus subtilis, Staphylococcus sp.
Gómez-Rivera and Kopitko (2012)	Puerto Boyacá	Direct isolation	Petroleum	Undergraduate thesis	Soils	Pseudomonas spp.
Ñuste-Cuartas et al. (2014)	Dosquebradas	Direct isolation	Diesel, gasoline	Original article	Sewage water	Degrading bacteria
Pérez-Robles et al. (2015)	Medellín	No data available	Diesel, gasoline	Original article	Soils	Degrading bacteria
Barrios-Ziolo et al. (2015)	Medellín	Direct isolation/Traditional microbiology	Oil motor	Original article	Soil contaminated with used motor oils	Coccus and bacilli-gram-negatives
Authors and year of publication	Source of the environmental samples	Environmental sample	Methodology for hydrocarbon-degrading bacteria isolation/identification	Hydrocarbon (HDB) isolated/identified	Evaluated hydrocarbon	
---------------------------------	------------------------------------	----------------------	---	--	----------------------	
Mezquida et al. (2015)	Lorica	Soil	Direct isolation/macroscopic and microscopic observations, biochemical tests, Commercial kits Api20E® and Api20NE®	Achromobacter denitrificans, Sphingomonas paucimobilis, Pseudomonas putida, Brevundimonas vesicularis, Acinetobacter baumanii, Rhizobium radiobacter, Comamonas testosteroni, Chryseobacterium indologenes	Diesel	
Vallejo-Quintero et al. (2016)	Soacha	Soils	Direct isolation	Not data reported	Petroluem	
Álvarez et al. (2016)	Medellín	Water	Direct isolation/Biochemical test, VITEK®	Pseudomonas sp., Serratia sp., Bacillus sp.	Tar	
Pardo-Díaz et al. (2017)	Castilla la Nueva y Apiay	Soils	Direct isolation/Strains were identified by 16S rRNA	Pseudomonas sp., Pseudomonas putida, Achromobacter sp.	Petroleum	
Delgado-Vallejo (2017)	Medellín	Soils	No data available	Degrading bacteria	Petroleum	
Ondoñez-Burbano et al. (2018)	Cali	Soils	Direct isolation/BBL CRYSTAL™	Burkholderia cepacia	Kerosene	
Doria-Argumedo (2018)	Rioacha	Soils	Direct isolation	Pseudomonas spp., Acinetobacter spp., Bacillus spp.	Diesel	
Authors and year of publication	Source of the environmental samples	Methodology for hydrocarbon-degrading bacteria isolation/identification	Evaluated hydrocarbon			
-------------------------------	-------------------------------------	---	---------------------			
Martínez-Rivera (2018)	Medellín Antioquia Master’s thesis Soils	Direct isolation/ Metagenomic V3-V4 region/ 16S rRNA	21 degrading bacteria Phyla (See reference for list) Petroleum			
Malaver and Muñoz (2018)	Cajibio Cauca Undergraduate thesis Soils	No data available	Degrading bacteria Petroleum			
Reyes-Reyes et al. (2018)	Región centro-oriental Campo petrolero Original article Sludges	Direct isolation/ Strains were identified by 16S rRNA	Bacillus sp., Pseudomonas sp., Serratia sp., Raoultella sp., Enterobacter sp. Petroleum			
Pinto-Varón and Sánchez-Vargas (2018)	Bogotá D.C Cundinamarca Undergraduate thesis Soils	Inoculation with two bacteria	Pseudomonas putida, Acinetobacter baumannii Diesel, gasoline			
Galvis-Ibarra (2019)	San Carlos de Guaroa Meta Undergraduate thesis Oily sludge (Oil residue)	Inoculation with consortium bacteria	Degradation bacteria Petroleum			
Garcés-Ordoñez and Espinoza-Díaz (2019)	Mira river, Tumaco Nariño Original article Mangrove sediments	No data available	Degradation bacteria Not data reported			
Arenas-Soler (2020)	Bogotá, D.C Cundinamarca Undergraduate thesis Bioassays	Inoculation with bacteria	Chromobacterium violaceum, Pseudomonas aeruginosa Diesel			
Discussion

This systematic review was designed to provide the most complete, up-to-date list of studies about hydrocarbon-degrading bacteria (HDB) in Colombia, with a total of 37 investigations. Selecting the HDB is of profound significance in evaluating, developing, and designing strategies for bioremediation studies owing to their potential to adapt to polluted environments and convert the pollutants such as hydrocarbons to innocuous substances by degradation (Das and Chandran 2011). Moreover, it is important to perform studies to identify bacteria with degradation capability like an important step toward successful bioremediation (Reyes-Reyes et al. 2018). In the present review, we found that authors from different universities, companies, and research groups have conducted studies in Colombia to isolate HDB on environmental samples since 1996 (Vargas et al. 1996). For Colombia, 2003 was a year of substantial advances with regard to petroleum exploration given that reforms attracted foreign investment (Trujillo-Quintero et al. 2017). Probably, this is the reason for an increase in publications after 2003. Most of the publications were from 2018, it is likely that the above issue might have aroused the interest of different researchers to study microbial degradation and provide possible solutions for the pollution problem using bioremediation (Rentería and Rosero 2019). Moreover, the increasing available grants to investigations and doctoral formation in last year’s support the results obtained here (Minciencias 2019).

In the Andean Region, the departments of Antioquia and Cundinamarca, there are research groups in microbiology, chemical engineering, and biotechnology, among others. This observation emphasizes the fact that this region is very much interested in and at the cutting edge of studies in HDB. Concerning the research groups, the ones belonging to Universidad Nacional de Colombia, particularly in Medellín at Antioquia department, and Pontificia Universidad Javeriana in Bogotá, D.C. at Cundinamarca department reported the highest number of publications on HDB in Colombia. This establishes the need to continue the search for HDB in all the departments of the country, mainly in those located in regions with high oil production where can provide hydrocarbon residues.

The occurrence of some species belonging to the Pseudomonas and Bacillus genera and others mentioned here, constitutes valuable information for HDB present in Colombia. According to the analyzed publications, Pseudomonas and Bacillus species are the most frequently isolated in hydrocarbon degradation studies in the country. Probably, this result could be attributed to the much higher cultivability of both genera by direct isolation of contaminated samples with hydrocarbons (Gómez et al. 2006; Quintanasavedra et al. 2012; Álvares et al. 2016; Doria-Argumedo 2018). However, Pseudomonas and Bacillus are genera truly important and have been found to play vital roles in petroleum hydrocarbon degradation (Vásquez et al. 2010; Yanine 2010; Das and Chandran 2011; Xu et al. 2018). For example, P. aeruginosa has been identified as a HDB capable of degrading aromatic and polyaromatic hydrocarbons because it produces biosurfactants during its stationary growth phase, which facilitates the solubilization and therefore the degradation (Silva et al. 2018). Inoculation with P. aeruginosa bacteria had the highest rates of hydrocarbon removal, in ground contaminated samples with the Castilla’s crude, coming from 10 fields (Camargo-Millán and Acero-Pérez 2007). Pseudomonas putida is part of the soil microbiota and possesses enzymes called dioxygenases that are involved in hydrocarbon degradation (Truskewycz et al. 2019). On the other hand, species belonging to the Bacillus genus present high adaptability and can grow in extreme and hostile environments such as hydrocarbon-contaminated soil and water (de Mesa et al. 2006; Valdivia-Anistro et al. 2018). Furthermore, the Bacillus genus is another bacterium reported as petroleum hydrocarbon degrader, and could be useful in reducing the levels of these hydrocarbons (Kolsal et al. 2017; Lima et al. 2020).

Another important result is taxonomic information for some HDB is unknown (Perdomo-Rojas and Pardo-Castro 2004; Vallejo et al. 2010; Yanine 2010; García et al. 2011). Additional investigations using molecular and other tools to identify all HDB is highly desirable in these cases. Overall, the taxonomy of environmental bacteria in Colombia is relatively
The bar chart shows the number of times different bacteria were isolated from environmental samples. The bacteria are listed in alphabetical order, and the bars indicate the frequency of isolation:

- Acinetobacter baumannii (1)
- Achromobacter denitrificans (1)
- Acinetobacter iwoffii (1)
- Acinetobacter sp. (1)
- Actinobacteria sp. (1)
- Afipia sp. (1)
- Agrobacterium sp. (1)
- Alcaligenes sp. (1)
- Alcalines denitrificans (1)
- Arthrobacter sp. (1)
- Bartonella sp. (1)
- Brevibacillus agri (1)
- Burkholdelia cepacia (1)
- Chromobacterium sp. (1)
- Chromobacterium violaceum (1)
- CORYNEBACTERIUM SP. (1)
- Corynebacterium sp. (1)
- Citrobacter sp. (1)
- Chromobacterium violaceum (1)
- Chrobacterium sp. (1)
- Burkholdelia cepacia (1)
- Brevisbacillus agri (1)
- Bartonella sp. (1)
- Degradating bacteria (1)
- Bacillus subtilis (1)
- Bacillus sp. (1)
- Bacillus brevis (1)
- Bacillus aquimarinus (1)
- Arthrobacter sp. (1)
- Alcalines denitrificans (1)
- Alcaligenes sp. (1)
- Agrobacterium sp. (1)
- Arficia sp. (1)
- Actinobacteria sp. (1)
- Acinetobacter sp. (1)
- Acinetobacter iwoffii (1)
- Achromobacter denitrificans (1)
- Acinetobacter baumannii (1)

The chart indicates that some bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, were isolated more frequently than others.
poorly known. The taxonomic category of HDB is important for planning and interpreting future biodegradation studies (Ławniczak et al. 2020). In addition, the degradation of hydrocarbons is more effective when bacteria work together in a consortium. For example, Arrieta et al. showed the efficiency of a bacterial consortium that included the genera Arthrobacter, Bacillus, Flavobacterium, Sanguibacter, and Staphylococcus in the degradation of diesel (Arrieta-Ramírez et al. 2012). Vásquez et al. used a bacterial consortium composed of Acinetobacter, Bacillus brevis, Citrobacter, Enterobacter cloacae, Micrococcus, Nocardia, and Pseudomonas to study the degradation of oil sludge from a car wash (Vásquez et al. 2010). The hydrocarbons evaluated in the 37 selected publications; petroleum was the most studied one. In general, the authors suggest that short-chain aliphatic hydrocarbons such as those found in gasoline are more likely to volatilize and also tend to be toxic for bacteria (Suárez-Medellín and Vives 2004; Narváez-Flórez et al. 2008). This fact could explain why there are not as many studies on gasoline degradation as on petroleum.

This systematic review addresses studies specifically performed in Colombia with Columbian environmental samples. A more thorough investigation of knowledge about HDBs in different regions and their role in bioremediation of contaminated sites is useful. There are few similar studies that have systematically reviewed HDBs identified from specific regions or countries around the world. A review of remediation approaches for petroleum hydrocarbon contamination in the Arctic and Antarctic regions included bioremediation and identified bacteria isolated from these regions (Camenzuli and Freidman 2015). A recent review of PAH contamination in China, a country where rapid industrialization and urbanization have created fast economic growth, focused more on sources of PAHs in soils, but not on biodegradation (Zhang and Chen 2017). Other recent reviews examined more generally petroleum hydrocarbon biodegradation in aquifers (Logeshwaran et al. 2018) and provided an overview of enhanced hydrocarbon biodegradation strategies (Ławniczak et al. 2020). Notably, in Colombia a review article provided information regarding the most representative bacterium in biodegrading hydrocarbons Pseudomonas sp., Bacillus sp., Bacillus subtilis and Burkholderia sp. (De La Rosa Martinez and Rabelo-Florez 2020). A compilation of investigations conducted inside a specific country is important for establishing a baseline and needs for future research. This is especially pertinent in countries such as Colombia due to the presence of hydrocarbons as substantial contaminants in different ecosystems throughout the country, and where much research is still needed. We considering that it is also important that similar systematic reviews be conducted by researchers in the different countries to know the HDB and the studies that may be required to control hydrocarbons contamination.

Conclusions

A literature search yielded 1288 articles on HDB. After applying the inclusion criteria, 37 published studies were identified in Colombia between 1996 and 2020. However, among these, no doctoral theses were found. Most of the publications were from 2018, and Bacillus sp. and Pseudomonas sp. are the most studied genera in Colombia. Particularly, *P. aeruginosa* and *P. putida* are the most assessed species owing to the metabolic variation and enzymatic production that allow them to adapt to environments polluted with hydrocarbons. It was observed in several studies that hydrocarbon degradation is more efficient when bacterial consortia are used rather than pure cultures. The most studied hydrocarbon in Colombia is petroleum, while the least reported ones are oil motor, kerosene, and tar. Finally, this study is important because it provides useful information about bacteria that exhibit the potential to degrade hydrocarbons in Colombia.
Table 3 Universities, companies, and research groups that have published on Hydrocarbon Degrading Bacteria (HDB) in Colombia

Universities and companies	Research groups or laboratories	# Authors and year of publication
Universidad Nacional de Colombia	Biorremediación y Desarrollo Tecnológico	2 Delgado-Vallejo (2017); Martínez-Rivera (2018)
	Grupo de investigación en Ciencias de los Alimentos	1 Arrieta-Ramírez et al. (2012)
	PARH-Pos grado de Aprovechamiento de Recursos Hidráulicos	1 Pérez-Robles et al. (2015)
	Laboratorios de Química de Suelos, Análisis Instrumental, Microbiología Molecular y Microbiología Industrial / Laboratorio de Hidráulica/Laboratorio de Microbiología Ambiental y Aplicada	3 Gómez et al. (2009); Barrios-Ziolo et al. (2015); Pardo-Díaz et al. (2017)
	CIEBREG-Centro de Investigaciones y Estudios en Biodiversidad y Recursos Genéticos	1 Yanine (2010)
Universidad Pedagógica y Tecnológica de Colombia	GIGA-Grupo de Investigación en Geomática y Ambiente	1 Camargo-Millán and Acero-Pérez (2007)
Universidad de La Guajira	Grupo de Investigación Territorios Semiáridos del Caribe	1 Doria-Arguedo (2018)
Universidad de los Andes	CIMIC-Centro de Investigaciones Microbiológicas	2 Suárez-Medellin and Vives (2004); Gomez et al. (2006)
Universidad de San Buenaventura	GIMA-Grupo de Microbiología y Ambiente	1 Echeverri Jaramillo et al. (2011)
	CIOH-Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe	1 Quintana-Saavedra et al. (2012)
Universidad de Antioquia	GDCON-Diagnostic and Pollution Control Group	1 Pino et al. (2012)
Universidad de La Salle	Laboratorios de Microbiología de la Universidad de La Salle	2 Perdomo-Rojas and Pardo-Castro (2004); Arenas-Soler (2020)
Universidad Tecnológica de Pereira	Agua y Saneamiento	1 Ñuste-Cuartas et al. (2014)
	Laboratorio de Oleoquímica de la escuela de Química	2 Duran-Rincon and Contreras (2006)
Pontificia Universidad Javeriana	USBA-Unidad de Saneamiento y Biotecnología Ambiental	5 Vallejo et al. (2005); García et al. (2011); Vallejo-Quintero et al. (2016); Pardo-Díaz et al. (2017); Galvis-Ibarra (2019)
Universidad Pontificia Bolivariana	A.T.P Ingeniería S.A.S	1 Galvis-Ibarra (2019)
	Centro de Investigación en Biotecnología, Biotécnica y Ambiente	1 Kopytko and Ibarra-Mojica (2009)
Universidad de Córdoba	GRUBIODEQ-Grupo de Investigación en Biotecnología	2 Nisperuza-Vidal and Montiel-Aroca (2010); Mezquida et al. (2015)
Universidad del Valle	Laboratorio de Docencia de Microbiología de la Universidad del Valle	1 Ordoñez-Burbano et al. (2018)
Universidad Libre	Laboratorios de Ingeniería Ambiental de la Universidad Libre	1 Pinto-Varón and Sánchez-Vargas (2018)
Universidad de Santander	Laboratorio Clínico de la Universidad de Santander (UDES)	1 Vásquez et al. (2010)
Fundación Universidad de America	Not information available	1 Arenas-Piza (2018)
Universidad Industrial de Santander	Corporación para la Investigación de la Corrosión	1 Reyes-Reyes et al. (2018)
Universidad central de Colombia	Agua y Desarrollo Sostenible	1 Gamba and Pedraza (2017)
Acknowledgements DRG received financial support for her postdoctoral research from Ministerio de Ciencia Tecnología e Innovación-Minciencias, Colombia, Grant No. 811-2018.

Author contributions MM-S and DR-G performed the literature search and data analysis and wrote the first draft of the manuscript. DRG came up with the idea for the article and critically reviewed the manuscript drafts. All the authors read and approved the final manuscript.

Funding This work was funded by Universidad Santiago de Cali, Grants Nos. 934-621119-319 and 934-621120-G03 to DRG.

Data availability Not applicable.

Code availability Not applicable.

Material availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed F, Fakhruddin A (2018) A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Resour 11:63–69. https://doi.org/10.19080/IJESNR.2018.11.555811

Álvares S, Arango M, Leudo A, et al (2016) Evaluación de microorganismos viables en medios suplementados con hidrocarburos. Institución Universitaria Colegio Mayor de Cundinamarca. Retrieved from https://www.colmayor.edu.co/wp-content/uploads/2019/08/2-17-evaluacion-microorganismos.pdf. Accessed 1 June 2021

Álvarez-Mejia C, Aguirre-Gomez E, Navarro-Garrido A, Lopez-Ramirez V (2016) Degradación microbiana de gasolina en suelos agrícolas de Pueblo Nuevo, Guanajuato. Rev Ciencias Nat y Agropecu 3:24–32

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Álvarez-Mejia C, Aguirre-Gomez E, Navarro-Garrido A, Lopez-Ramirez V (2016) Degradación microbiana de gasolina en suelos agrícolas de Pueblo Nuevo, Guanajuato. Rev Ciencias Nat y Agropecu 3:24–32

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Álvarez-Mejia C, Aguirre-Gomez E, Navarro-Garrido A, Lopez-Ramirez V (2016) Degradación microbiana de gasolina en suelos agrícolas de Pueblo Nuevo, Guanajuato. Rev Ciencias Nat y Agropecu 3:24–32

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021

Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021
Garzón J, Rodriguez-Miranda J, Hernández-Gómez C (2017) Biodegradation of diesel oil in soil by a microbial consortium. Biocatal Agric Biotechnol 6:195–208. https://doi.org/10.1016/j.bcab.2016.12.007

Lozano N, Barea S, Guevara R, Gómez W (2015) Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas: revisión sistemática. Corporación Universitaria del Cauca. Retrieved from https://repository.ucu.edu.co/handle/10882/10516. Accessed 1 June 2021

Gómez-Díaz C, Fernández-Galván L, García-Orozco A (2021) Evaluación del potencial de biodegradación de hidrocarburos totales del petróleo (THP’S) a través de la atenuación natural, bioestimulación en un suelo contaminado. Universidad Pontificia Bolivariana, Bucaramanga. Retrieved from https://repository.upb.edu.co/handle/20.500.11912/2022. Accessed 1 June 2021

Hernández-Rodríguez D (2020) La dualidad del petróleo en Colombia: positivo futuro económico basado en su dependencia. Universidad EAN. Retrieved from https://repository.ean.edu.co/handle/10882/10516. Accessed 1 June 2021

Hernández Ruiz G, Álvarez Orozco N, Ríos Osorio L (2017) Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas: revisión sistemática. Corporación Cinec Tecal Agropec. Rev Cient La Univ Pontif Boliv 4(1):35–46. https://doi.org/10.3390/1519-6984.2018.3.467

Kolsal F, Akbal Z, Liaqat F et al (2017) Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS Microbiol 3:467–482. https://doi.org/10.3934/microbiol.2017.3.467

Kopytko M, Ibarra-Mojica D (2009) Evaluación del potencial de biodegradación de hidrocarburos torales del petróleo (THP) en suelos contaminados procedentes de Petrosantera (Colombia) Inc. Rev Cient La Univ Pontif Boliv 3:35–46. https://doi.org/10.18566/puente.v3n1.i04

Lawniczak L, Wozniak-Karczewska M, Loibner A et al (2020) Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25:1–19. https://doi.org/10.3390/molecules25040856

Lima S, Oliveira A, Golin R et al (2020) Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Brazil. Braz J Biol 80:354–361. https://doi.org/10.1590/1519-6984.208611

Logeshwaran P, Megharaj M, Chadalavada S et al (2018) Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ Technol Innov 10:175–193. https://doi.org/10.1016/j.eti.2018.02.001

Lozano N (2005) Biorremediación de ambientes contaminados con petróleo. Tecnogestion Una Mirada Al Ambient 2:51–55

Malaver Y, Muñoz J (2018) Degradación de hidrocarburos totales del petróleo a partir de la población microbiana contenida en estiércol bovino. Corporación Universitaria Autónoma del Cauca. Retrieved from https://repository.unicau.edu.co/handle/123456789/307. Accessed 1 June 2021

Marquez-Rocha F, Hernandez-Rodriguez V, Lamela M (2001) Biodegradation of diesel oil in soil by a microbial consortiu. Water Air Soil Pollut 128:313–320
Vallejo V, Yanine H, Roldán F (2010) Aplicación de sales de tetrazolio de nueva generación (XTT) para la estimación de la densidad de microorganismos degradadores de hidrocarburos empleando la técnica del número más probable. Acta Biológica Colomb 15:75–90
Vallejo-Quintero V, Sandoval-Cobo J, Garagoa-Barahona S, Bastos-Arenas J (2016) Evaluación del efecto de la bioestimulación sobre la biorremediación de hidrocarburos en suelos contaminados con alquitrán en Soacha, Cundinamarca—Colombia. Acta Agronómica 65:354–361. https://doi.org/10.15446/acag.v65n4.51013
Vargas M, Ramírez N, Rueda S, Sánches F (1996) Isolation of microorganisms with capability to degrade polycyclic aromatic hydrocarbons (PAHs). CT&F-Ciencia, Tecnol y Futur 1:45–53
Vásquez M, Gerrero-Figueroa J, Quintero A (2010) Biorremediación de lodos contaminados con aceites lubricantes usados. Rev Colomb Biotecnol 12:141–157
Velásquez-Arias JA (2017) Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Rev Invest Agrar y Ambient 8(1):151–167
Xu X, Liu W, Tian S et al (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.02885
Yanine H (2010) Evaluación de la diversidad de bacterias degradadoras de hidrocarburos aisladas de suelos de las cuencas de los ríos Otún y la Vieja. Universidad Nacional de Colombia. Retrieved from https://repositorio.unal.edu.co/handle/unal/70322. Accessed 1 June 2021
Zhang P, Chen Y (2017) Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review. Sci Total Environ 605–606:1011–1020. https://doi.org/10.1016/j.scitotenv.2017.06.247

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.