Pathology and Biomechanics of the Human Achilles Tendon

Abstract
Biomechanical engineering has achieved much progress in an attempt to improve and recover impaired functions of tissues and organs. Although many studies have been done, progress for biomechanical-engineered Achilles tendon has been slow due to their complex structures and mechanical properties. In this review, the Achilles tendon anatomical structure, mechanical properties, and risk factors of rupture have been discussed. This is a considerably huge amount work that needs to be carried out; as such, future direction in tendon biomechanical engineering is proposed in hope that this review will give information on future tendon biomechanical engineering.

Keywords: Achilles tendon; Mechanical properties; Risk factors

Introduction
The tendinous portions of the gastrocnemius and soleus muscles merge to form the Achilles tendon [1]. Achilles tendinopathy, including tendon rupture, occur at a rate of about 250,000 per year in the US alone [2,3]. The incidences of Achilles tendon ruptures have significantly increased over the last 20 years [2,4], achieving, within the tendon disease, an incidence between 6 and 18% [5-7]. The Achilles tendon rupture etiology remains poorly known [8,9] and it is essentially based on two main theories: the degenerative theory and the mechanical theory.

In humans, the Achilles tendon is the thickest and strongest tendon that sustains some of the largest tensile loads in the body [10]. Dysfunction and injuries are commonly seen in the Achilles tendon. The fibrous matrix of tendons mainly consists of collagen and a small amount of elastin, which are produced and maintained by tenoblasts and tenocytes [11]. Tendon consists primarily of collagen (70-80% of the tissue's dry weight) and less than 5% tenocytes and tendoblasts [12]. These insoluble elements are embedded within a hydrated environment containing ground substance of proteoglycans, glycosaminoglycan (GAG) and some other small molecules [13].

The mechanism of tendinopathy and rupture is complex and thought to be influenced by tendon geometry, material-strength, sex, disease and genetics. Achilles tendon rupture is typically reported to occur at 2-6 cm above the insertion to the calcaneus bone, in a region that is hypovascular [14]. It is not understood why this region receives poor blood supply and is prone to rupture.

Research on Achilles tendon has been going on for some time, with the hope of overcoming the present problems. Usually, mechanical and structural information about Achilles tendon are necessary to facilitate studies in biomechanical, tissue engineering, surgical and rehabilitation fields.

Methods
In this review, we try to find mechanical properties in vivo and in vitro because of calculating the human Achilles tendon's properties passively and actively. In addition, identifying of structure and risk factors of Achill tendon can provide appropriate information to scientists.

Results
Mechanical properties
The functional and mechanical behavior of human skeletal muscle are in many ways unknown during natural and artificial locomotion. To gain more insight into these questions a method was developed to record directly in vivo and in vitro forces from the human Achilles tendon. The Table 1 shows the mechanical properties of the Achill tendon.

Structure of fibrous matrix
The Table 2 shows the biomechanical constituents of the Achill tendon. The recent study [15] showed that while the majority of the Achilles tendon is supplied by the posterior tibial artery from its medial edge, the peroneal artery provides supply to the middle section of the tendon laterally. The midsection of the Achilles tendon was found to be hypovascular in all cases of the study.

Risk factors
The Achilles tendon is the most frequently ruptured tendon. The Table 3 shows the risk factors of the Achilles tendon rupture. The ruptured Achilles tendons show various forms of degenerative tendinopathy. It is not known why there are differences in types and amounts of degeneration between individual tendons, although there is evidence suggesting that decreased arterial
blood flow, resulting local hypoxia and impaired nutrition and metabolic activity are the key factors. A sedentary lifestyle has been proposed as the main reason for poor circulation in the tendon.

Table 1: Summary of structural and mechanical properties of human Achilles tendon.

Type of study	Age (y)	Loading rate	Ultimate strength (N)	Ultimate strain (%)	Tangent modulus of elasticity (MPa)	Maximal force (N)	Deformation (mm)	Stiffness (N/mm)	Young's modulus (MPa)	Hysteresis (%)	Elongation (mm)	Tensile force (N)	Yield stress (MPa)	Yield strain (%)	Reference
T	36-50	10%/s	73±8	21±4	459 ±54	21±4	34±1	23±4	73±54	10±9	459±54	21±4	73±54	10±9	21
	52-67	10%/s	73±13	25±3	401 ±59	21±1	333±109	22±8	59±16	375±102	21±7	375±102	59±16	375±102	22±8
	79-100	10%/s	48±16	22±8	333±109	21±7	375±102	22±8	59±16	375±102	21±7	375±102	59±16	375±102	22±8
	36-100	10%/s	59±16	22±7	375±102	21±7	375±102	22±8	59±16	375±102	21±7	375±102	59±16	375±102	22±8
V			1924±229	2.2±0.6	2622±534	1124±229	23±21	816±218	816±218	71±17	71±17	BT12.8±1.7	MD 7.5±1.1	22±21	
T	35-80	1%/s	816±218		71±17	816±218	71±17	816±218	816±218	71±17	71±17	BT12.8±1.7	MD 7.5±1.1	22±21	
		10%/s	822±211		822±211	822±211	822±211	822±211	822±211	822±211	822±211	BT12.8±1.7	MD 7.5±1.1	22±21	
T			822±211	21±7	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	1000-2000	
V			822±211	2.2±0.6	822±211	822±211	822±211	822±211	822±211	822±211	822±211	BT12.8±1.7	MD 7.5±1.1	22±21	
T			1160±150	18±3	1160±150	1160±150	1160±150	1160±150	1160±150	1160±150	1160±150	1160±150	1160±150	1160±150	
T	36-100	10%/s	59±18	22±7	375±102	21±7	375±102	22±7	59±18	375±102	21±7	375±102	59±18	375±102	22±7

Values are in second: mean ± SD. Abbreviation: R (running), W (walking), V (in vivo), T (in vitro), BT (bone-tendon), MD (midsubstance), S (attach to soleus), G (lateral and medial Gastrocnemius). 10% and 80% of maximum voluntary contraction (MVC) forces at fast (a) and slow (b) loading rates.
Table 2: The biomechanical constituents of Achilles tendon.

Contents of fibrous matrix	Value (%)	Explanation	Reference
Collagen I	95%	All of collagens 70% (dry weight)	16,17
Collagen II			17
Collagen III			16-18
Collagen IV			17
Collagen V			17,19
Collagen VI			17
Elastin	1-2% (dry weight)	*Bearing of 200% strain before failure *Produced and maintained by tenoblasts and tenocytes	16-18,20
Blood supply Values are in percent.		Posterior tibial artery Peroneal artery	15

Discussion

This research investigated the properties of human Achilles tendon materially, mechanically, anatomically, and pathologically. The human Achilles tendon is the thickest and strongest tendon among all of human’s tendons [10]. The incidence of total Achilles tendon rupture has increased during the past decade. The rise is more prominent among men and in the context of sports-related injuries. Majority of ruptures occurs in recreational involved in sports requiring bursts of jumping, pivoting and running (Table 3). Lack of a universal, consistent protocol for passive and active evaluation of Achilles tendon has prevented any direct comparison of results. This paper makes it possible to analyze and compare the results and seek prognostic factors related to the results.

Table 3: Summary of Achilles tendon rupture (ATR) risk factors.

Cause	Explanation	Range	Reference
Middle-aged	Decreasing blood flow rate	30 - 40 y	31,36,41
	Increasing stiffness	40 - 50 y	40
	Decreasing the ability to withstand stress		
male	Male relative to female	1.7:1 - 12:1	31
	2:1:1 - 19:1	32	
	2:1 - 12:1	37,38	
	5:1	41	
Serum lipid profile	Total cholesterol (TC)		31,33
(hyperlipidemia)	Triglyceride (TG)		
	LDL-C		
	VLDL-C		
O blood group			31,33,34
Inflammatory conditions			31,36,37
Autoimmune disorders			31,36,37
genetic	Collagen abnormalities		31,36,37,42
Infectious diseases			31,36,37
Neurological disorders			31,37
drugs	Injectable steroid (corticosteroid)		31-33,36,37
	Antibiotics (fluoroquinolone)		
Pathology and Biomechanics of the Human Achilles Tendon

| Decreased blood flow rate | With increasing age | 36,37
| | Lowest vascularity area at approximately 2-6 cm from the calcaneal insertion (80% ATR) | 32,35,37,38
| | Male Loading conditions | 37
| | | 37

| Sport activity | Gymnastics Cheerleading Dance | 32,37,39
| | Soccer Football Basketball Tennis | Long-distance running |
| | Great speed variance & rapid footwork | 32 |

| Degeneration (degenerative theory) | Increasing of Collagen III and V | 32,33,37
| Violent muscular strain | Acute rupture | 32
| Left side | Right-sided dominance and pushing off with the left | 32,41

| Repetitive overuse (mechanical theory) | Accumulating of micro-trauma | 32,36,37
| Dehydration | 33
| Hyperuricemia | 33
| Ankle equinus | 36
| Achilles calcification | 36
| Abnormal pronation and mechanics | Subtalar hyperpronation | 36,37
| Hyperthermia | During exercise (after 30 minutes) | 33,37
| Tendon geometry | 38
| Material-strength | 38

Conclusion

This article tries to help the future studies are about the injuries, rehabilitations, pathology, tissue engineering, and biomechanical engineering of Achilles tendon.

References

1. Maffulli N (2010) Current Concepts Review-Rupture of the Achilles Tendon. The Journal of Bone and Joint Surgery 81(7): 1019-1036.
2. Järvinen TA, Kannus P, Maffulli N, Khan K (2005) Achilles tendon disorders: etiology and epidemiology. Foot and Ankle Clinics of North America 10(2): 255-266.
3. Pennisi E (2002) Tending tender tendons. Science 295(5557): 1011.
4. Möller A, Åström M, Westlin NE (1996) Increasing incidence of Achilles tendon rupture. Acta Orthopaedica Scandinavica 67(5): 479-481.
5. Rees JD, Wilson AM, Wolman RL (2006) Current concepts in the management of tendon disorders. Rheumatology: (Oxford) 45(5): 508-521.
6. Scheepers A, Jones AH, Haas AL (2002) Achilles tendon disorders in athletes. Am J Sports Med 30(2): 287-305.
7. Marzone M, McCue T (2002) Common conditions of the achilles tendon. American Family Physician 65(9): 1805-1810.
8. Maffulli N (1999) Rupture of the Achilles tendon. The Journal of bone and joint surgery. American 81(7): 1019-1036.
9. Williams J (1986) Achilles tendon lesions in sport. Sports Medicine 3(2): 114-135.
10. Yang Xin, Pugh Neil D, Coleman Declan P, Nokes Leonard Derek Martin (2010) Are Doppler studies a useful method of assessing neovascularization in human Achilles tendinopathy? A systematic review and suggestions for optimizing machine settings. Journal of Medical Engineering & Technology 34(7-8): 365-372.
11. Kannus P (2000) Structure of the tendon connective tissue. Scandinavian Journal of Medicine & Science in Sports 10(6): 312-320.

12. Wang T, Gardiner BS, Lin Z, Rubenson J, Kirk TB, et al. (2013) Bioreactor Design for Tendon/Ligament Engineering. Tissue Engineering Part B: Reviews 19(2): 133-146.

13. Hess GP, Cappiello WL, Poole RM, Hunter SC (1989) Prevention and Treatment of Overuse Tendon Injuries. Sports Medicine 8(4): 371-384.

14. Theobald P, Benjamin M, Nokes L, Pugh N (2005) Review of the vascularisation of the human Achilles tendon. Injury 36(11): 1267-1272.

15. Chen TM, Rozen WM, Pan WR, Ashton MW, Richardson MD, et al. (2009) The arterial anatomy of the Achilles tendon: Anatomical study and clinical implications. Clin Anat 22(3): 377-385.

16. Bailey AJ, Lapierre CM (1973) Effect of an additional connective extension of the N-terminus of collagen from dermatosparactic calves on the cross-linking of the collagen fibres. Eur J Biochem 34(1): 91-96.

17. Pang X, Wu JP, Allison GT, Xu J, Rubenson J, et al. (2016) The three dimensional microstructural network of elastin, collagen and cells in Achilles tendons. J Orthop Res 35(6): 1203-1214.

18. Eriksen HA, Pajala A, Leppilathi J, Risteli J, et al. (2002) Increased content of type III collagen at the rupture site of human Achilles tendon. Journal of Orthopaedic Research 20(6): 1352-1357.

19. Mokone GG, Schwellnus MP, Noakes TD, Collins M (2006) The COL5A1 gene and Achilles tendon pathology. Scandinavian Journal of Medicine & Science in Sports 16(1): 19-26.

20. Gigante A, Claudio Chillemi, Claudia Bevilacqua, Francesco Greco, Faustino Bisaccia, et al. (2003) Effects of elastin-derived peptide on Achilles' tendon healing: an experimental study. Journal of Materials Science: Materials in Medicine 14(8): 717-720.

21. Shaw KM, G Lewis (1997) Tensile Properties of Human Achilles Tendon. Biomedical Engineering Conference, IEEE Biloxi MS, 338-341.

22. Kongsgaard M, CH Nielsen, S Hegnsvad, P Aagaard, SP Magnusson (2014) Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture. Journal of Biomechanics 47(15): 3598-604.

23. Shim VB, Fernandez JW, Gambe PB, Regency C, Smith DW, et al. (2014) Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture. Journal of Biomechanics 47(15): 3598-604.

24. Carlsson A, Svahn M, Larsson T, Eriksson BE, et al. (2015) Viscoelastic Properties of Achilles Tendon: A Case report Accident and Emergency Nursing, 13(4): 220-223.

25. Mezzarobba S, Bortolato S, Giaconazzi A, Fancellu G, Marcovich R, et al. (2012) Percutaneous repair of Achilles tendon ruptures with Tenolog: Quantitative analysis of postural control and gait pattern. The Foot 22(4): 303-309.

26. Raleigh SM, Collins M (2012) Gene Variants that Predispose to Achilles Tendon Injuries: An Update on Recent Advances. Achilles Tendon, A Čretnik, (Ed.), Creative Commons by 3.0 license. p. 25-40.