Generalized Compression Strategy for the Downlink Cloud Radio Access Network
Pratik Patil, Wei Yu

Abstract—This paper studies the downlink of a cloud radio access network (C-RAN) in which a centralized processor (CP) communicates with mobile users through base stations (BSs) that are connected to the CP via finite-capacity fronthaul links. Information theoretically, the downlink of a C-RAN is modeled as a two-hop broadcast-relay network. Among the various transmission and relaying strategies for such model, this paper focuses on the compression strategy, in which the CP centrally encodes the signals to be broadcasted jointly by the BSs, then compresses and sends these signals to the BSs through the fronthaul links. This paper characterizes an achievable rate region for a generalized compression strategy with Marton’s multicoding for broadcasting and multivariate compression for fronthaul transmission. We then compare this rate region with the distributed decode-forward (DDF) scheme, which achieves the capacity of the general relay networks to within a constant gap, and show that the difference lies in that DDF performs Marton’s multicoding and multivariate compression jointly as opposed to successively as in the compression strategy. A main result of this paper is that under the assumption that the fronthaul links are subject to a sum capacity constraint this difference is immaterial, so the successive encoding based compression strategy can already achieve the capacity region of the C-RAN to within a constant gap, where the gap is independent of the channel parameters and the power constraints at the BSs. For the special case of the Gaussian network, we further establish that under individual fronthaul constraints, the compression strategy achieves to within a constant gap to the sum capacity of the C-RAN.

Index Terms—Cloud radio access network (C-RAN), compression, distributed decode-forward, fronthaul, relay channel.

I. INTRODUCTION

A. Downlink C-RAN

Cloud radio access network (C-RAN) is a promising architecture for future cellular networks in which the base stations (BSs) are connected to a centralized cloud-computing-enabled processor through wired or wireless fronthaul links [1]. A key benefit of the C-RAN architecture is that it facilitates cooperative signal processing across the multiple BSs, coordinated by the central processor (CP) through the fronthaul links, so that inter-cell interference can be actively managed or mitigated, thus achieving a significantly higher overall throughput. The focus of this paper is characterization of the theoretical achievable rate region of the downlink C-RAN.

Information theoretically, the downlink C-RAN can be modeled as a broadcast-relay channel: the CP broadcasts the user messages through the BSs via the fronthaul links and the BSs act as relays for the mobile users. This paper considers the C-RAN model where the BSs are connected to the CP through noiseless digital fronthaul links of finite capacities and there are no direct links between the CP and the mobile users. In the ideal case when the capacities of fronthaul links are infinite, downlink C-RAN model reduces to a multi-antenna broadcast channel. The optimal transmission strategy in this case is cooperative beamforming combined with dirty-paper coding (DPC) [2, 3]. For the practical situation where the fronthaul links have finite capacities, the optimal coding strategy must combine both broadcasting and relaying, and is highly non-trivial and currently still an open problem. This paper makes progress by establishing the achievable rate region of a generalized compression strategy and showing that it is approximately optimal for the downlink C-RAN under certain conditions.

B. Coding Strategies

There are two main classes of transmission strategies for the downlink C-RAN in the literature: the data-sharing and compression strategies. In the data-sharing strategy, individual user messages are sent directly via the digital fronthaul to the BSs, which then perform cooperative beamforming to the users. The capacity constraints on the fronthaul links limit the number of users whose messages can be sent to each BS, hence limiting the cooperation BS cluster size for each user. Among the data-sharing schemes, the joint encoding at the BSs can be done using linear beamforming with sharing of the entire messages [4] or with message splitting [5]. Further, generalized data sharing using Marton’s broadcast coding is proposed for a 2-user 2-BS C-RAN in [6], which is improved upon in [7] by using a common message and generalized in [8] for arbitrary number of users and BSs. Recently, an achievable rate based on Marton’s coding is further proposed in [9] for a C-RAN with a single user but any number of BSs. Finally, instead of sharing the individual user messages directly, the CP may send a function of user messages to the BSs. For example, in the reverse compute-forward strategy [10], a function of the messages is relayed to the BSs using lattice codes.

Alternatively, the capacity limitation of the fronthaul links can also be dealt with using a compression strategy [11], in which the encoding is performed at the CP as a function of the messages of all users, but in order to accommodate the capacity constraints of the fronthaul links, the encoded analog signals are compressed and sent to the BSs. The BSs then transmit the encoded signals to the users after decompressing the received compression bits. We note here that a hybrid
scheme combining the data sharing and compression strategies is also possible [12].

This paper aims to understand the compression strategy for C-RAN from an information theoretical point of view. As pointed out earlier, if the fronthaul capacity is infinite, the downlink C-RAN reduces to the well-known vector Gaussian broadcast channel, for which DPC achieves the capacity region. For the finite fronthaul case, DPC and linear precoding schemes cannot be applied directly. A compressed version of DPC using independent compression across the BSs is introduced in [13] and achievable user rates are derived for a simplified Wyner type model. The independent compression scheme can be further improved by using a multivariate compression strategy across all the BSs [14]. To better control the effect of quantization noises at the users, [14] proposes to correlate the quantization noises introduced at different BSs. The achievable rate expressions under linear beamforming and multivariate compression for the Gaussian C-RAN model are given in [14] and the corresponding achievable rate region using dirty paper coding followed by multivariate compression is given in [15].

Can either the data-sharing or compression strategy approach the information theoretic capacity region of the C-RAN model? Toward answering this question, this paper draws inspiration from a new coding strategy named distributed decode-forward (DDF) [16] for broadcasting multiple messages over a general relay network, which has been shown to achieve the capacity region of the general Gaussian broadcast relay network to within a constant gap, which is independent of the channel parameters and the power constraints, but linear in the number of nodes in the network. When specialized to the downlink C-RAN model, the gap can be further improved from linear to logarithmic in the number of users and BSs [17]. Further, an improvement to the DDF strategy using a common message in Marton’s coding is proposed in [7] for a 2-user 2-BS C-RAN model; moreover, the model in [7] also allows for cooperation between the BSs.

C. Contributions

This paper makes an observation that when specialized to C-RAN model, the DDF strategy resembles the compression strategy for C-RAN, but with a crucial difference that instead of performing the compression followed by Marton’s multicoding, the DDF performs both the Marton’s coding and multivariate compression jointly at the CP. As practical implementation for performing successive Marton’s coding and multivariate compression would likely be much easier, we ask in this paper whether there are conditions under which the difference is immaterial. One of the main results of this paper is that under a sum fronthaul constraint, this is indeed true. Furthermore, in the special case of Gaussian networks, we show that Marton’s encoding followed by multivariate compression achieves the sum capacity of the downlink C-RAN to within a constant gap.

Specifically, this paper makes the following contributions:

1) We provide the achievable rate region of a general form of the compression strategy that includes Marton’s multicoding followed by multivariate compression for the C-RAN model with digital fronthaul in the first hop and a general discrete memoryless channel (DMC) in the second hop.

2) We specialize the DDF strategy to the C-RAN model and compare the coding strategies of the above generalized compression strategy and the DDF strategy. We observe that DDF is a further generalization in that the Marton’s coding and multivariate compression are done jointly.

3) We analyze the conditions under which such a generalization of the compression strategy in the DDF strategy does not strictly enlarge the achievable rate region.

 a) For any DMC on the second hop, the generalized compression strategy and the DDF strategy achieve the same rate region under a sum fronthaul constraint.

 b) For Gaussian networks on the second hop, the sum rate achieved by the above general compression strategy is within a constant gap to the sum capacity of C-RAN, where the gap is independent of the network parameters.

D. Notations

The notations used in the paper are as follows. Random variables are denoted by uppercase letters (e.g., X), their realizations by lowercase letters (e.g., x), and the probability distributions by $p(\cdot)$ (e.g., $p(x)$). Sets are denoted by calligraphic letters (e.g., \mathcal{X}), while $[1 : n]$ denotes the set \{1, \ldots, n\} for all natural numbers n. A subscript for a random variable and its realization denotes its node index (e.g., X_i or x_i). A superscript for a random variable and its realization is a time index that denotes a sequence of random variables till that index (e.g., $X^n_\tau = (X^n_1, \ldots, X^n_\tau)$ or $x^n_\tau = (x^n_1, \ldots, x^n_\tau)$). Random variables can be indexed with sets (e.g., $X(S) = (X_l : l \in S)$). Plain lower and upper case letters are also used to denote scalar constants (e.g., n, C). Bold-face lower case letters are used to denote vectors (e.g., \mathbf{w}); bold-face upper case letters are used to denote random vectors (e.g., X) or matrices (e.g., \mathbf{H}).

The standard notations for entropy, $H(X)$, and mutual information, $I(X;Y)$, are used. Total correlation between a group of random variables is denoted by $T(\cdot)$ and is defined as

$$T(X(S)) = \sum_{l \in S} H(X_l) - H(X(S)).$$

(1)

We follow the typicality notation of [18] and use $\mathcal{T}^{(n)}_{\epsilon}$ to denote the set of typical sequences of length n with parameter ϵ. All logarithms are with respect to base two throughout the paper.

E. Organization

The rest of the paper is organized as follows. Section II provides a mathematical model for the downlink C-RAN. Section III provides the achievable rate region results of the generalized compression strategy. Section IV specializes the distributed decode-forward strategy to the downlink C-RAN.
model under consideration. In Section VI, we compare the rate regions achieved by the two strategies and provide conditions under which the two coincide. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

Consider the downlink of a C-RAN comprising of a CP, L BSs that serve a pool of K users as shown in Fig. 1. The CP communicates with BSs through noiseless fronthaul links with finite capacities. Let C_l denote the capacity of the fronthaul link from the central processor to BS l, $l \in \mathcal{L} := [1 : L]$. We assume a discrete memoryless channel $(X_1 \times \cdots \times X_L, p(y_1, \ldots, y_K|x_1, \ldots, x_L), Y_1 \times \cdots \times Y_K)$ between the BSs and the users.

Let the intended message for user k be denoted by M_k, $k \in \mathcal{K} : = [1 : K]$. The CP conveys the messages to the users through the BSs which act as relays. A $(2^{nR_1}, \ldots, 2^{nR_K}, n)$ code for the downlink C-RAN consists of

1) A mapping at the CP from the K user messages $(m_1, \ldots, m_K) \in [1 : 2^{nR}] \times \cdots \times [1 : 2^{nR_K}]$ to L indices $(t_1, \ldots, t_L) \in [1 : 2^{nC_1}] \times \cdots \times [1 : 2^{nC_L}]$;
2) Encoders at the BSs that map the index t_l to a codeword $x_l^n(t_l)$;
3) Decoders at the K users that estimate \hat{m}_k based on the received signals y_l^n.

The average probability of error is defined as $P_e^{(n)} = P\{\hat{m}_k \neq m_k \text{ for some } k \in \mathcal{K}\}$. A rate tuple (R_1, \ldots, R_K) is achievable if there exists a sequence of codes such that $\lim_{n \to \infty} P_e^{(n)} = 0$.

Of particular interest is the special case where the channel between the BSs and the users is a vector additive white Gaussian noise channel such that the received signal at user k is given by

$$Y_k = \sum_{l \in \mathcal{L}} h_{k,l} X_l + Z_k,$$

where Z_k are independent Gaussian noises with zero mean and variance σ^2. We assume all the BSs have an average power constraint of P without loss of generality. For simplicity, both the BSs and the users are assumed to be equipped with a single antenna in this paper.

III. GENERALIZED COMPRESSION STRATEGY

The compression strategy has been extensively studied in the literature [11], [13], [14]. The coding strategy involves two steps. First, the CP jointly encodes the user messages. Second, the encoded signals are compressed in order to accommodate them through the fronthaul links. Different options for joint encoding include linear beamforming strategies such as zero-forcing or regularized zero-forcing, or non-linear beamforming strategies such as dirty paper coding. Different options for compression include independent compression or multivariate compression.

The main point of this section is to show that these specific compression strategies previously studied in [11], [13], [14] are special forms of a generalized compression strategy in which joint encoding is performed via Marton’s multicoding. This section characterizes the achievable rate region of such a generalized compression strategy assuming a general DMC on the second hop of C-RAN. Finally, we specialize the achievable rate region to specific examples.

A. Achievable Rate Region

Theorem 1. A rate tuple (R_1, \ldots, R_K) is achievable for the downlink C-RAN using the compression strategy with Marton’s multicoding followed by multivariate compression if

$$\sum_{k \in D} R_k < \sum_{k \in D} I(U_k; Y_k) - T(U(D))$$

for all $D \subseteq \mathcal{K}$ such that

$$\sum_{l \in S} C_l > I(U(K); X(S)) + T(X(S))$$

for all $S \subseteq \mathcal{L}$ for some distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$.

Proof. We provide a proof sketch by first describing the coding scheme, then establishing the conditions on the achievable rates for vanishing probability of error $P_e^{(n)}$.

Fix the distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$. Let $\epsilon > 0$.

1) Codebook generation: We generate a random codebook for Marton’s multicoding according to $u_k^n(m_k, l_k) \sim \prod_{k=1}^K p(U_k(m_k) \mid l_k)$ for $(m_k, l_k) \in [1 : 2^{nR_k}] \times [1 : 2^{nC_k}]$, $k \in \mathcal{K}$. Similarly, we generate a random codebook for multivariate compression according to $x_l^n(t_l) \sim \prod_{l=1}^L p_X(x_{l_1})$ for $t_l \in [1 : 2^{nC_l}]$, $l \in \mathcal{L}$.

2) Encoding at the CP: To send $(m_1 : m_K)$, we find $[l_1 : l_K]$ such that $[u_1^n(m_1, l_1) : u_K^n(m_K, l_K)] \in T_e^{(n)}$. Then, we find $[t_1 : t_L]$ such that $[w_1^n(m_1, l_1) : w_K^n(m_K, l_K), x_l^n(t_l) : y_l^n(t_L)] \in T_e^{(n)}$. Finally, we forward t_l to BS l.

3) Mapping at the BSs: BSs transmit $x_l^n(t_l)$ to users.

4) Decoding at the users: User k finds (\hat{m}_k, \hat{l}_k) such that $(u_k^n(\hat{m}_k, \hat{l}_k), y_k^n) \in T_e^{(n)}$.

In order to show that the average probability of error $P_e^{(n)}$ for the coding scheme vanishes as $n \to \infty$, we analyze three sources of error. For encoding at the central processor, we can find the indices $[l_1 : l_K]$ correctly with high probability if $\sum_{k \in D} R_k > T(U(D))$ due to the multivariate covering lemma [13] Lemma 14.1. Similarly, we can find the indices...
the fronthaul required is $I(U(K); X(S)) + T(X(S))$. Finally, the decoding at the user side is successful with high probability if $R_k + \tilde{R}_k < I(U_k; Y_k)$ due to the joint typicality lemma [13] p. 29. Using the Fourier-Motzkin elimination, we project out the auxiliary rates \tilde{R}_k to obtain required the rate region.

The set of inequalities (3) represents the achievable user rates using Marton’s multicoing for broadcast channels. In linear beamforming, the U’s are just the messages and are thus independent of each other. The advantage of using Marton’s multicoing is to introduce correlation among U’s for the possibility of increased rates. But doing so incurs a penalty that depends on the total correlation present among U’s. DPC is an example of such Marton’s coding.

One way to implement Marton’ coding is through successive encoding of user messages. Assuming without loss of generality that the encoding order is user 1, . . . , K. The achievable rate for user 1 is $I(U_1; Y_1)$. Treating user 1’ message as known interference, user 2 achieves a rate of $I(U_2; Y_2) − I(U_1; U_2)$; and user k achieves a rate of $I(U_k; Y_k) − I(U_k; U_{k−1}, . . . , U_1)$. We remark that, as pointed out in [19], there is a subtle issue that such successive encoding may not achieve the entire Marton’ region. The reason is that even though the set function $\sum_{k \in D} I(U_k; Y_k) − T(U(D))$ satisfies the submodular property, it is not guaranteed that it satisfies the monotone property that the successive user rates $I(U_k; Y_k) − I(U_k; U_{k−1}, . . . , U_1)$ are always non-negative. Hence, the Marton’ region itself is not guaranteed to be a polymatroid. The rest of this paper chooses to ignore this subtlety, and simply assumes that the Marton’ rate region is polymatroid so that we can use successive encoding to achieve the corner points of the rate region.

The set of inequalities (4) represents the multivariate compression of $U(K)$ into X’s that are transmitted by the BSs. If the BSs were co-located and can cooperate, the amount of quantization needed for compression is simply the first term $I(U(K); X(S))$. If the BSs are distributed and cannot cooperate, there’s a penalty in terms of the correlation between the signals transmitted by the BSs.

Similar to the successive encoding for the Marton’ region, the multivariate compression can also be implemented in a successive manner [14]. Without loss of generality assume that the encoding order is BS 1, . . . , L. The fronthaul required to compress the signal for BS 1 is $I(U_1; X_1)$. After compressing the signal for BS 1, the fronthaul required to compress BS 2’s signal is given by $I(U(K); X_2) + I(X_2; X_1)$; and for any BS l the fronthaul required is $I(U(K); X_l) + I(X_l; X_{l−1}, . . . , X_1)$. It can be verified that the fronthaul region in general is a contra-polymatroid [19].

The above achievability region has been presented at [20] and is subsequently generalized in [17] to the case with common information and BS cooperation where there are two BSs in the C-RAN.

B. Illustrative Examples

We now specialize the compression strategy using various choices for the distribution $p(u_1, . . . , u_K; x_1, . . . , x_L)$ and show how it results in the known compression strategies in the literature. For simplicity, consider a 2-BS 2-user C-RAN with a DMC $p(y_1, y_2|x_1, x_2)$ on the second hop and with fronthaul capacities C_1 and C_2 between the CP and BSs 1 and 2, respectively. The rate region using the generalized compression strategy is then given as follows.

A rate pair (R_1, R_2) is achievable using the generalized compression strategy if

$$R_1 < I(U_1; Y_1)$$ \hspace{1cm} (5)

$$R_2 < I(U_2; Y_2)$$ \hspace{1cm} (6)

$$R_1 + R_2 < I(U_1; Y_1) + I(U_2; Y_2) − I(U_1; U_2)$$ \hspace{1cm} (7)

for some joint distribution $p(u_1, u_2, x_1, x_2)$ that satisfies

$$C_1 > I(U_1, U_2; X_1)$$ \hspace{1cm} (8)

$$C_2 > I(U_1, U_2; X_2)$$ \hspace{1cm} (9)

$$C_1 + C_2 > I(U_1, U_2; X_1, X_2) + I(X_1; X_2)$$ \hspace{1cm} (10)

Further, we specialize to the case of Gaussian channel on the second hop of the C-RAN, i.e.,

$$Y = HX + Z,$$ \hspace{1cm} (11)

where $Y = [Y_1, Y_2]^T$ are the received signals at the two receivers, $X = [X_1, X_2]^T$ are the transmitted signals from the two BSs, $H = [h_1, h_2]^T$ is the 2×2 channel matrix consisting of channel vectors h_1 and h_2 to user 1 and 2 respectively, and $Z = [Z_1, Z_2]^T \sim \mathcal{N}(0, \sigma^2 I)$ is the additive white Gaussian noise.

1) **Linear Beamforming with Compression:** First, we consider the example of linear beamforming by choosing the U’s as independent Gaussian random variables (message signals) and constructing beamforming coefficients to compute the signals to be transmitted by the BSs. The computed beamformed signals are then compressed either using independent compression or multivariate compression. Mathematically, we express the distribution $p(u_1, u_2, x_1, x_2)$ as

$$X = WU + N,$$ \hspace{1cm} (12)

where $W = [w_1, w_2]$ is a 2×2 beamforming matrix with beamformers w_1 and w_2 for users 1 and 2, respectively, and N is the quantization noise, assumed to be a Gaussian vector $\mathcal{N}(0, Q)$. Here, $U = [U_1, U_2]^T \sim \mathcal{N}(0, I)$ are the independent message signals for the two users.

The achievable user rates of the generalized compression strategy with this choice of U are given by

$$R_1^{\text{linear}} = I(U_1; Y_1)$$ \hspace{1cm} (13)

$$= \frac{1}{2} \log \left(1 + \frac{h_1^T w_1 w_1^T h_1 + h_1^T Q h_1 + \sigma^2}{h_1^T w_2 w_2^T h_1 + h_1^T Q h_1 + \sigma^2} \right)$$ \hspace{1cm} (14)

for user 1, and similarly for user 2

$$R_2^{\text{linear}} = I(U_2; Y_2)$$ \hspace{1cm} (15)

$$= \frac{1}{2} \log \left(1 + \frac{h_2^T w_1 w_1^T h_2 + h_2^T Q h_2 + \sigma^2}{h_2^T w_2 w_2^T h_2 + h_2^T Q h_2 + \sigma^2} \right).$$ \hspace{1cm} (16)

Note that the covariance matrix of N enters the rate expression as an additional noise term. Depending on the compression strategy used, Q is either diagonal in case of
independent compression owing to independent noise components among the compressed BS signals, or a full matrix in case of multivariate compression, due to the introduced correlation among the noise components of \(\mathbf{N} \).

In the independent compression case, let \(\mathbf{Q} = \text{diag}(q_{11}, q_{22}) \), and \(\mathbf{w}_1 = [w_{11}, w_{12}]^T \) and \(\mathbf{w}_2 = [w_{21}, w_{22}]^T \). The amount of fronthaul needed to support compression at BS 1 is

\[
C_{1\text{, linear, indep}} = I(X_1; U_1, U_2) = \frac{1}{2} \log \left(1 + \frac{w_{11}^2 + w_{12}^2}{q_{11}} \right)
\]

(17)

and similarly for BS 2

\[
C_{2\text{, linear, indep}} = I(X_2; U_1, U_2) = \frac{1}{2} \log \left(1 + \frac{w_{21}^2 + w_{22}^2}{q_{22}} \right).
\]

(18)

For the multivariate compression, the required fronthaul rates \((C_1, C_2) \) must be inside a rate region. A corner point of the region assuming a successive compression strategy with the order of compression to be BS 1 followed by BS 2 is as follows. For BS 1, \(C_1 \) is exactly the same as the independent compression case, i.e., \((17)\).

\[
C_{1\text{, linear, multi}} = I(X_1; U_1, U_2) = \frac{1}{2} \log \left(1 + \frac{w_{11}^2 + w_{12}^2}{q_{11}} \right)
\]

(19)

but for BS 2, we have

\[
C_{2\text{, linear, multi}} = I(X_2; U_1, U_2 | X_1) + I(X_1; X_2) = I(X_2; U_1, U_2) + I(X_1; X_2 | U_1, U_2)
\]

(20)

\[
= \frac{1}{2} \log \left(1 + \frac{w_{12}^2 + w_{22}^2}{q_{22}} \right) + \frac{1}{2} \log \left(\frac{q_{22}}{q_{22} - q_{21}q_{11}^{-1}q_{12}} \right)
\]

(21)

where \(\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \) is a full matrix whose correlation structure, although leading to higher \((C_1, C_2)\), nevertheless allows possible reduction in the effective noise in the achievable rates \((14)\) and \((16)\), thereby potentially providing an overall benefit. These derived rate expressions can be shown to be equivalent to that in \((14)\).

2) DPC with Compression: The linear beamforming strategy of the previous section can be improved by introducing correlation between the \(U \)'s. One example of using such correlation is DPC, which is capacity achieving for the Gaussian vector broadcast channel (i.e., with infinite \(C_1 \) and \(C_2 \)). With DPC, the \(U \)'s are now random vectors. Although using the \(U \)'s designed for the broadcast channel for C-RAN is not necessarily optimal when \(C_1 \) and \(C_2 \) are finite, it is nevertheless instructive to write down the rate expressions to gain some insight.

Assume the 2-BS 2-user C-RAN model \((11)\) and assume an ordering of DPC with user 1 followed by user 2. The auxiliary random variables for DPC can be constructed as follows. Let \(\mathbf{S}_1 \) and \(\mathbf{S}_2 \) be two independent Gaussian vectors with covariance matrices \(\mathbf{K}_1 \) and \(\mathbf{K}_2 \). Fix \(\mathbf{N} \sim \mathcal{N}(0, \mathbf{Q}) \). We choose

\[
\mathbf{U}_1 = \mathbf{S}_1
\]

(23)

\[
\mathbf{U}_2 = \mathbf{S}_2 + \mathbf{A} \mathbf{S}_1
\]

(24)

\[
\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{N}
\]

(25)

where \(\mathbf{A} = \mathbf{K}_2 \mathbf{h}_2 (\mathbf{h}_2^T (\mathbf{K}_2 + \mathbf{Q}) \mathbf{h}_2 + \sigma^2)^{-1} \mathbf{h}_2^T \) and \(\mathbf{N} \) is the quantization noise.

This choice of the auxiliary variables allows the interference from user 1 to be completely pre-subtracted from user 2 \((21)\), resulting in the following achievable user rates

\[
R_{1\text{, DPC}} = I(\mathbf{U}_1; Y_1)
\]

(26)

\[
= \frac{1}{2} \log \left(1 + \frac{\mathbf{h}_1 \mathbf{K}_1 \mathbf{h}_1^T}{\mathbf{h}_1 \mathbf{Q} \mathbf{h}_1^T + \sigma^2} \right)
\]

(27)

for user 1 who sees user 2 as noise, and

\[
R_{2\text{, DPC}} = I(\mathbf{U}_2; Y_2) - I(\mathbf{U}_1; \mathbf{U}_2)
\]

(28)

\[
= I(\mathbf{X}; Y_2 | \mathbf{S}_1)
\]

(29)

\[
= \frac{1}{2} \log \left(1 + \frac{\mathbf{h}_2^T \mathbf{K}_2 \mathbf{h}_2^T}{\mathbf{h}_2 \mathbf{Q} \mathbf{h}_2 + \sigma^2} \right)
\]

(30)

for user 2, who no longer sees user 1 as interference.

The required fronthaul rates depend on whether independent or multivariate compression is performed. Let the covariance matrix of \(\mathbf{S}_1 + \mathbf{S}_2 \) be \(\mathbf{K}_1 + \mathbf{K}_2 = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \) and the covariance matrix of the quantization noise \(\mathbf{N} \) be \(\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \).

With independent compression, we have \(q_{12} = q_{21} = 0 \) and

\[
C_{1\text{, DPC, indep}} = I(X_1; \mathbf{U}_1, \mathbf{U}_2) = \frac{1}{2} \log \left(1 + \frac{\Sigma_{11}}{q_{11}} \right)
\]

(31)

\[
C_{2\text{, DPC, indep}} = I(X_2; \mathbf{U}_1, \mathbf{U}_2) = \frac{1}{2} \log \left(1 + \frac{\Sigma_{22}}{q_{22}} \right).
\]

(32)

For multivariate compression, assuming the corner point of the fronthaul rate region with the ordering of compression to be BS 1 followed by BS 2, we have \(C_1 \) for BS 1 exactly the same as in the case of independent compression, i.e.,

\[
C_{1\text{, DPC, multi}} = I(X_1; \mathbf{U}_1, \mathbf{U}_2) = \frac{1}{2} \log \left(1 + \frac{\Sigma_{11}}{q_{11}} \right)
\]

(33)

but for BS 2, we need additional fronthaul capacity as given by

\[
C_{2\text{, DPC, multi}} = I(X_2; \mathbf{U}_1, \mathbf{U}_2 | X_1) + I(X_1; X_2) = I(X_2; \mathbf{U}_1, \mathbf{U}_2) + I(X_1; X_2 | \mathbf{U}_1, \mathbf{U}_2)
\]

\[
= \frac{1}{2} \log \left(1 + \frac{\Sigma_{22}}{q_{22}} \right) + \frac{1}{2} \log \left(\frac{q_{22}}{q_{22} - q_{21}q_{11}^{-1}q_{12}} \right).
\]

(34)

These rate expressions for DPC over C-RAN are equivalent to the ones given in \((13)\). They can be interpreted as the compression of \(\mathbf{X} \) at the CP for transmission to the BSs. The above more rigorous derivation is based on transmitting \(\mathbf{U} \) to the BSs via compression.
IV. DISTRIBUTED DECODE-FORWARD

The main objective of this paper is to understand whether the generalized compression strategy can approximately achieve the capacity region of the C-RAN model. Toward this end, we examine the DDF strategy [16], which is a general coding scheme for broadcasting multiple messages over a general relay network that combines Marton’s coding for the broadcast channel with partial decode-forward for the relay channel. The coding scheme involves using auxiliary random variables at each node in the network that implicitly carry information about the user messages. By specializing the DDF strategy to the C-RAN setup, we write down a succinct form of the achievable rate region using DDF and a simplified coding strategy that can be readily compared with the generalized compression strategy.

A. Achievable Rate Region

Theorem 2 [16]. A rate tuple (R_1, \ldots, R_K) is achievable for the downlink C-RAN using the DDF strategy if

$$\sum_{k \in D} R_k < \sum_{k \in D} I(U_k; Y_k) + \sum_{l \in S} C_l - T(U(D), X(S))$$

for all $D \subseteq K$ and $S \subseteq L$ for some distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$.

Proof. We specialize the DDF coding scheme to the C-RAN model as follows.

1) Codebook generation: We generate a random codebook for Marton’s multico-ding according to $u^i_k \sim p_{U_k}(u_k)$ for $(m_k, l_k) \in [1 : 2^{nR_k}] \times [1 : 2^{n\tilde{R}_k}]$, $k \in K$. Similarly, we generate a random codebook for multivariate compression according to $x^i_l(t_l) \sim \prod_{i=1}^n p_{X_l}(x_l)\{t_l\} \in [1 : 2^{nC_l}]$, $l \in L$.

2) Encoding at the CP: To send $[m_1 : m_K]$, we find $[l_1 : l_K, t_1 : t_L]$ such that $u^i_k(m_k, l_k) : u^i_k(m_K, l_K, x^i_1(t_1) : x^i_L(t_L)) \in T^{(n)}$.

3) Mapping at the BSs: BSs transmit $x^i_l(t_l)$ to users.

4) Decoding at the users: User k finds (\hat{m}_k, \hat{l}_k) such that $(\hat{m}_k, \hat{t}_k, \hat{y}_k^i) \in T^{(n)}$.

C. Constant Gap to Capacity Region

A key advantage of enlarging the allowable distributions to beyond the ones that explicitly satisfy the fronthaul constraints is that it permits a proof that the DDF strategy can achieve to within a constant gap to the cut-set bound of the general Gaussian broadcast relay channel [16]. The ingenious choice of $p(u_1, \ldots, u_K|x_1, \ldots, x_L)$ proposed in [16] that accomplishes this task is a distribution for $p(u_1, \ldots, u_K|x_1, \ldots, x_L)$ that tries to mimic the Gaussian channel distribution $p(y_1, \ldots, y_K|x_1, \ldots, x_L)$.

We now specialize the result of [16] to the C-RAN setup, where the second hop is a Gaussian network

$$Y = HX + Z,$$
where \(Y = [Y_1, \ldots, Y_K]^T \) are the received signals at the \(K \) users, \(X = [X_1, \ldots, X_L]^T \) are the transmitted signals from the \(L \) BSs, \(H = [h_1, \ldots, h_K]^T \) is the \(K \times L \) channel matrix consisting of channel vectors \(h_k \) to \(h_k \) for users 1 to \(K \), respectively, and \(Z = [Z_1, \ldots, Z_K]^T \sim \mathcal{N}(0, \sigma^2 I) \) is the additive white Gaussian noise. Assume that the average power constraint the BSs is \(P \). The DDF strategy can be shown to achieve to within a constant gap to the cut-set outer bound by choosing \(X \) to be a vector of independent Gaussian random variables \(\mathcal{N}(0, P) \) and by choosing
\[
U = HX + \tilde{Z},
\] (41)
where \(\tilde{Z} \sim \mathcal{N}(0, \sigma^2 I) \) is independent of \(Z \). With this choice of \(p(u_1, \ldots, u_K; x_1, \ldots, x_L) \), we have

Corollary 1 ([17]). With Gaussian \(p(y_1, \ldots, y_K|x_1, \ldots, x_L) \) on the second hop of the C-RAN model and individual fronthaul constraints \((C_1, \ldots, C_K) \), the DDF strategy achieves a rate region which is within a constant gap to the capacity region of C-RAN, where the gap is independent of the channel, the BS power constraints, and the fronthaul constraints, and only depends on the number of BSs and users.

A natural question at this point is whether we can use the generalized compression strategy to accomplish the same. The next section gives some partial answer in the affirmative but under specific conditions.

V. **Compression Versus DDF**

As DDF generalizes the compression strategy, the achievable rate region of the generalized compression strategy must be a subset of the DDF region. This section asks the question of whether this subset inclusion is strict. The main result here is that under certain conditions the rate regions of the two strategies actually coincide. Specifically, we show that under a sum fronthaul constraint, the rate regions of the two strategies coincide for any discrete memory channel on the second hop of C-RAN. In other words, under a sum fronthaul constraint, performing Marton’s coding and multivariate compression separately does not reduce the achievable user rates. As a second result of this section, we show that in the special case of Gaussian networks but under individual fronthaul constraint, the compression strategy achieves the sum capacity of C-RAN to within a constant gap. These results are useful, because successive Marton’s coding and multivariate compression is much easier to implement in practice than DDF.

A. Rate Region Under Sum Fronthaul Constraint

Definition 1. Consider the closure of the convex hull of achievable rate-fronthaul tuples \((R_1, \ldots, R_K, C_1, \ldots, C_L)\) using the generalized compression strategy satisfying (4) over all joint distributions \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) satisfying possibly input constraints on \((x_1, \ldots, x_L)\). Define \(\mathcal{R}_{\text{COM}}(C) \) to be the projection of the above set along a sum fronthaul constraint \(C \), i.e., the set of rate tuples \((R_1, \ldots, R_K)\) such that \(C_l \geq 0 \) and \(\sum_l C_l \leq C \).

Definition 2. Consider the closure of the convex hull of achievable rate-fronthaul tuples \((R_1, \ldots, R_K, C_1, \ldots, C_L)\) using the DDF strategy satisfying (4) over all joint distributions \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) satisfying possibly input constraints on \((x_1, \ldots, x_L)\). Define \(\mathcal{R}_{\text{DDF}}(C) \) to be the projection of the above set along a sum fronthaul constraint \(C \), i.e., the set of rate tuples \((R_1, \ldots, R_K)\) such that \(C_l \geq 0 \) and \(\sum_l C_l \leq C \).

Let us write down the two rate regions \(\mathcal{R}_{\text{COM}}(C) \) and \(\mathcal{R}_{\text{DDF}}(C) \) defined above more explicitly. For the compression strategy, under a fixed joint distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) and a fixed sum fronthaul constraint \(C \), the only constraint for \(S = L \) is active in (4). Therefore, the set of \((R_1, \ldots, R_K)\) that satisfies the sum fronthaul constraint \(C \) under a fixed joint distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) is described by the constraints

\[
\sum_{k \in D} R_k < \sum_{k \in D} I(U_k; Y_k) - T(U(D)) \quad \text{(42)}
\]

\[
C > I(U(K); X(L)) + T(X(L)) \quad \text{(43)}
\]

over all \(D \subseteq K \). The set \(\mathcal{R}_{\text{COM}}(C) \) is then the projection of the closure of the convex hull of these \((R_1, \ldots, R_K, C)\) tuples, where the convex hull is taken over both the distributions as well as \(C \).

Similarly, for the DDF strategy, under a fixed joint distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) and a fixed sum fronthaul constraint, the active constraints are those corresponding to \(S = L \) or \(S = 0 \). Thus, the set of \((R_1, \ldots, R_K)\) that satisfies the sum fronthaul constraint \(C \) under a fixed joint distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \) is described by the constraints

\[
\sum_{k \in D} R_k < \sum_{k \in D} I(U_k; Y_k) - T(U(D)) \quad \text{(44)}
\]

\[
\sum_{k \in D} R_k < \sum_{k \in D} I(U_k; Y_k) + C - T(U(D), X(L)) \quad \text{(45)}
\]

\[
= \sum_{k \in D} I(U_k; Y_k) - T(U(D)) + C - I(U(D); X(L)) - T(X(L)) \quad \text{(46)}
\]

over all \(D \subseteq K \). The set \(\mathcal{R}_{\text{DDF}}(C) \) is then the projection of the closure of the the convex hull of the above \((R_1, \ldots, R_K, C)\) tuples, where the convex hull is taken over both the distributions as well as \(C \).

Theorem 3. For the downlink C-RAN with a general DMC \(p(y_1, \ldots, y_K|x_1, \ldots, x_L) \) in the second hop and a sum fronthaul constraint \(C \), we have \(\mathcal{R}_{\text{COM}}(C) = \mathcal{R}_{\text{DDF}}(C) \).

We first explain the main ideas of the proof using the illustrative 2-BS 2-user example. Consider any given channel \(p(y_1, y_2|x_1, x_2) \) in the second hop of C-RAN and a sum fronthaul constraint \(C \). The rate region using the generalized compression strategy is given by

\[
R_1 < I(U_1; Y_1) \quad \text{(47)}
\]

\[
R_2 < I(U_2; Y_2) \quad \text{(48)}
\]

\[
R_1 + R_2 < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \quad \text{(49)}
\]

under joint distributions \(p(u_1, u_2, x_1, x_2) \) that satisfy

\[
I(U_1, U_2; X_1, X_2) + I(X_1; X_2) < C. \quad \text{(50)}
\]
For the DDF strategy, the rate region under any fixed distribution \(p(u_1, u_2, x_1, x_2) \) can be expressed as

\[
R_1 < I(U_1; Y_1) + \min \left\{ 0, \frac{C - I(U_1; X_1, X_2) - I(X_1; X_2)}{I(U_2; Y_2) - I(U_1; U_2)} \right\} \tag{51}
\]
\[
R_2 < I(U_2; Y_2) + \min \left\{ 0, \frac{C - I(U_2; X_1, X_2) - I(X_1; X_2)}{I(U_2; Y_2) - I(U_1; U_2)} \right\} \tag{52}
\]
\[
R_1 + R_2 < I(U_1, Y_1) + I(U_2, Y_2) - I(U_1; U_2) + \min \left\{ 0, C - I(U_1, U_2; X_1, X_2) - I(X_1; X_2) \right\}. \tag{53}
\]

To show that the generalized compression and DDF regions coincide (after convex hull), we start with the DDF region under some fixed distribution \(p(u_1, u_2, x_1, x_2) \). If the sum fresources capacity is such that \(C > I(U_1, U_2; X_1, X_2) + I(X_1; X_2) \) under a fixed distribution \(p(u_1, u_2, x_1, x_2) \), then both rate regions are exactly the same. The interesting case is when the distribution \(p(u_1, u_2, x_1, x_2) \) is such that

\[
C < I(U_1, U_2; X_1, X_2) + I(X_1; X_2), \tag{54}
\]

which is allowed under the DDF strategy but not under the generalized compression strategy. But, we show that by time-sharing across varying \(p(u_1, u_2, x_1, x_2) \), the DDF achievable rate region can nevertheless be achieved using the compression strategy.

In particular, we can show that the extreme corner points of the DDF region can be achieved using time-sharing of the generalized compression strategies while satisfying an average fresources constraint. A detailed analysis involves several cases. Assume for now the case in which \(C \) is such that \(C < I(U_1, U_2; X_1, X_2) + I(X_1; X_2) \), but \(C > I(U_1, U_2; X_1) + I(X_1; X_2) \) and \(C > I(U_1, U_2; X_2) + I(X_1; X_2) \). We consider this case just for illustration here; other cases can be analyzed similarly. In this fresources range, the rate region for DDF expressed in \(51-53 \) reduces to

\[
R_1 < I(U_1, Y_1) \tag{55}
\]
\[
R_2 < I(U_2, Y_2) \tag{56}
\]
\[
R_1 + R_2 < I(U_1, Y_1) + I(U_2, Y_2) - I(U_1; U_2) + C - I(U_1, U_2; X_1, X_2) - I(X_1; X_2). \tag{57}
\]

Therefore, a corner point \((R_1, R_2) \) for such a \(C \) in the DDF region (corresponding to maximizing the rate for user 1) is given by

\[
R_1 = I(U_1; Y_1) \tag{58}
\]
\[
R_2 = I(U_2; Y_2) - I(U_1; U_2) - (I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - C). \tag{59}
\]

and the corner point for maximizing the rate user 2 is similar. To achieve this point using the compression strategy, we can no longer use the same \(p(u_1, u_2, x_1, x_2) \) as the fresources constraint is violated under compression. Instead, we time-share this distribution \(p(u_1, u_2, x_1, x_2) \) with another distribution with \(U_2 \) set as constant, while keeping the marginal distribution of \((U_1, X_1, X_2) \) the same.

Specifically, we rewrite the rate for user 2 in the form of a fraction of Marton’s rate, i.e.,

\[
R_2 = I(U_2; Y_2) - I(U_1; U_2) - (I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - C) \tag{60}
\]
\[
= (1 - \alpha)(I(U_2; Y_2) - I(U_1; U_2)), \tag{61}
\]

where the factor \(\alpha \) is given by

\[
\alpha = \frac{I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - C}{I(U_2; Y_2) - I(U_1; U_2)}. \tag{62}
\]

Note that \(\alpha \in (0,1] \) due to \(54 \) and the fact that \(R_2 \geq 0 \). The idea now is to use \(p(u_1, u_2, x_1, x_2) \) to transmit to both the user 1 and user 2 but only for \((1 - \alpha)\) fraction of the time. For the rest \(\alpha \) fraction of time, we only transmit to user 1, thereby achieving \(R_1 = I(U_1; Y_1) \) and \(R_2 = 0 \). Thus overall, user 1 gets the full Marton’s rate, while user 2 gets \((1 - \alpha)\) fraction of the Marton’s rate. By our construction of \(\alpha \), this overall rate is exactly \(58-59 \).

We now show that this time-sharing of two compression strategies uses the fresources capacity of at most \(C \) on average. Note that for \((1 - \alpha)\) portion of time, the fresources used is \(I(U_1, U_2; X_1, X_2) + I(X_1; X_2) \); and for \(\alpha \) portion of time, the fresources used is \(I(U_1; X_1, X_2) + I(X_1; X_2) \), because \(U_2 \) is shut off in the latter case. The average fresources capacity used is therefore given by

\[
C = (1 - \alpha) (I(U_1, U_2; X_1, X_2) + I(X_1; X_2)) + \alpha (I(U_1; X_1, X_2) + I(X_1; X_2)) \tag{63}
\]
\[
= I(U_1, U_2; X_1, X_2) + I(X_1; X_2) \tag{64}
\]
\[
- \alpha (I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2)) \tag{65}
\]
\[
= I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - \left(\frac{I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - C}{I(U_2; Y_2) - I(U_1; U_2)} \right) \tag{66}
\]
\[
(1 - \frac{I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2)}{I(U_2; Y_2) - I(U_1; U_2)}) + C \tag{67}
\]

where the last inequality follows because of \(54 \) and because

\[
I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2) + I(U_1; U_2) - I(U_2; Y_2) \geq h(U_2|Y_2) - h(U_2|X_1, X_2, U_1) \tag{68}
\]
\[
= h(U_2|Y_2) - h(U_2|X_1, X_2, Y_2) \tag{69}
\]
\[
= I(U_2; X_1, X_2|Y_2) \geq 0, \tag{70}
\]

where we use the fact that \(U_2 \rightarrow (X_1, X_2) \rightarrow Y_2 \) forms a Markov chain. Note that the term \(I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - C \) is positive due to the assumption in \(54 \).

This shows that a time-sharing of two compression strategies with the original \(p(u_1, u_2, x_1, x_2) \) and with \(U_2 \) shut off achieves the same rate region corner point as DDF, while satisfying the same fresources constraint. The penalty that the DDF strategy pays to go beyond the fresources capacity is at
least as large as the penalty for shutting off the appropriate users.

The proof for the general case extends this idea for arbitrary number of users and BSs. We make use of the polymatroidal structure of the rate region to characterize all the corner points of the rate region achieved by the DDF strategy and construct appropriate time-shared compression strategies to achieve all such corner points. The proof is relegated to Appendix A.

Since the DDF strategy is known to achieve the rate region of the C-RAN to within a constant gap for the Gaussian network, having the generalized compression rate region coincide with the DDF region under the sum fronthaul constraint immediately gives us the following corollary.

Corollary 2. With Gaussian $p(y_1, \ldots, y_K|x_1, \ldots, x_L)$ on the second hop of the C-RAN model and under a sum fronthaul constraint C, the compression strategy achieves a rate region to within a constant gap to the capacity region, where the gap is independent of the channel, the BS power constraints, and the sum fronthaul constraint, and only depends on the number of BSs and users.

As a final remark of this section, we wonder whether the generalized compression and DDF rate regions coincide not just under the sum fronthaul constraint, but also individual fronthaul constraints. While the answer to this question is still not yet clear, we note here that the successive coding strategy of computing Marton’s codewords (U_1, \ldots, U_K) first, then forming the compression codewords (X_1, \ldots, X_L) is not the only way to perform successive encoding. There is also the possibility of breaking the encoding into more than two steps. As an example, consider a 2-BS 2-user C-RAN. The compression encoding order that we consider in this paper encodes (U_1, U_2) jointly first, and then (X_1, X_2) is computed. But it is possible to encode (U_1, X_1) first, and then encode (U_2, X_2). Such order can potentially help user 2 because knowing the exact signals to be transmitted to user 1 can benefit the search for U_2 to align its correlation with U_1 to appropriately cancel the interference at user 2. Such interleaving in the encoding of U’s and X’s is perhaps needed in order to achieve the same rate region as DDF under arbitrary fronthaul constraints.

However, the next section shows that if we only consider the sum rate, the two-step encoding of the generalized compression strategy indeed achieves the sum capacity of C-RAN to within a constant gap, even under individual fronthaul constraints, if we assume a Gaussian channel $p(y_1, \ldots, y_K|x_1, \ldots, x_L)$ and use a Gaussian $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$ in the encoding.

B. Sum Rate Under Individual Fronthaul Constraints

In this section, we consider the general case of individual fronthaul constraints instead of restricting to the sum fronthaul constraint as in the previous section. However, we focus on the sum rate only, and aim to find the approximate sum capacity of C-RAN under arbitrary fronthaul constraints. The main result of this section is that under a Gaussian C-RAN model, the generalized compression strategy can achieve a sum rate which is within a constant gap to the cut-set bound of C-RAN under individual fronthaul constraints.

More precisely, consider the Gaussian C-RAN model specified in (40). For such a Gaussian channel, recall that if we set the distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$ according to (41), the DDF strategy can be shown to achieve to within a constant gap to the capacity region of the Gaussian C-RAN. For convenience, we call the distribution in (41) the constant-gap distribution. We show in this section that the sum rate achieved by the DDF strategy for the Gaussian C-RAN under the constant-gap distribution can also be achieved using the generalized compression strategy under the same set of fronthaul constraints.

For each fixed distribution, we can write down the achievable sum rate of the DDF and the generalized compression strategies explicitly. The sum rate achieved by the DDF strategy is given by R that satisfies

$$R < \sum_{k \in K} I(U_k; Y_k) + \sum_{l \in S} C_l - T(U(K), X(S)),$$

for all $S \subseteq L$ under some distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$. The sum rate achieved by the generalized compression strategy is given by R that satisfies

$$R < \sum_{k \in K} I(U_k; Y_k) - T(U(K))$$

$$\sum_{l \in S} C_l > I(U(K); X(S)) - T(X(S)),$$

for all $S \subseteq L$ under some joint distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$.

Definition 3. Consider the closure of the convex hull of achievable sum-rate-fronthaul tuples (R, C_1, \ldots, C_L) for the C-RAN with the Gaussian channel model (40) using the DDF strategy as expressed in (71) under the constant-gap distribution (41) with the BS powers constrained by the power constraint P. Define R_{DDF} to be the maximum sum rate under individual fronthaul constraints (C_1, \ldots, C_L) in this set.

Definition 4. Consider the closure of the convex hull of achievable sum-rate-fronthaul tuples (R, C_1, \ldots, C_L) of the C-RAN with the Gaussian channel model (40) using the generalized compression strategy (72)-(73) under the constant-gap distribution (41) with the BS powers constrained by the power constraint P. Define R_{COM}^g to be the maximum sum rate under individual fronthaul constraints (C_1, \ldots, C_L) in this set.

Comparing the sum rate of DDF in (71) with the sum rate of generalized compression in (72)-(73), we clearly have $R_{COM}^g \leq R_{DDF}^g$. We show in this section that actually $R_{COM}^g = R_{DDF}^g$. As a consequence, we have the following main theorem of this section.

Theorem 4. For a memoryless Gaussian channel on the second hop of C-RAN, the compression scheme achieves a sum rate to within a constant gap to the cut-set bound under arbitrary fronthaul constraints (C_1, \ldots, C_L) where the gap is independent of the channel parameters, the BS power.
constraints, and the individual fronthaul constraints, and only depends on the number of BSs and users.

To gain insight, we use the 2-BS 2-user running example to illustrate the key ideas in the proof. Under a fixed distribution \(p(u_1, u_2, x_1, x_2) \), the sum rate achieved by the DDF strategy is given by

\[
R < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) + \min \{ 0, C_1 - I(U_1; U_2; X_1), C_2 - I(U_1; U_2; X_2), C_1 + C_2 - I(U_1, U_2; X_1, X_2) - I(X_1; X_2) \}. \tag{74}
\]

Likewise, for the generalized compression strategy, the sum rate is given by

\[
R < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \tag{75}
\]

\[
C_1 > I(U_1, U_2; X_1) \tag{76}
\]

\[
C_2 > I(U_1, U_2; X_2) \tag{77}
\]

\[
C_1 + C_2 > I(U_1, U_2; X_1, X_2) + I(X_1; X_2). \tag{78}
\]

Clearly, if the fronthaul capacity constraints \(C_1 \) and \(C_2 \) are such that under the distribution \(p(u_1, u_2, x_1, x_2) \), the fronthaul constraints \(\text{(76)-(78)} \) for the compression strategy are all satisfied, then the sum rate for the compression strategy is exactly equal to that of the DDF strategy.

However, if either \(C_1 \) or \(C_2 \) or both are not large enough so that some of the fronthaul constraints are violated, then the DDF strategy can still provide an achievable rate-tuple, but the sum rate would be smaller than \(I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \) by a penalty term equal to how large the maximum violation in the three fronthaul constraints is.

For the compression strategy, however, whenever the fronthaul constraints are not satisfied, we can no longer use the distribution \(p(u_1, u_2, x_1, x_2) \) directly. The idea of the proof is that we can modify the distribution so that under the new distribution, we stay within the allowed fronthaul constraint and achieve a sum rate \(I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \) that is at least as large as the penalized sum rate of the DDF strategy.

In order to illustrate this, we rewrite the DDF achievable rate \(\text{(74)} \) under a fixed distribution \(p(u_1, u_2, x_1, x_2) \) as follows:

\[
R < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \tag{79}
\]

\[
C_1 > I(U_1, U_2; X_1) - (I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R) \tag{80}
\]

\[
C_2 > I(U_1, U_2; X_2) - (I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R) \tag{81}
\]

\[
C_1 + C_2 > I(U_1, U_2; X_1, X_2) + I(X_1; X_2) - (I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R). \tag{82}
\]

Comparing the above with the compression strategy, we again see that if the fronthaul constraints \(\text{(76)-(78)} \) for the compression strategy are satisfied, then the maximum sum rate is \(R = I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \) for both the compression and the DDF strategies. The interesting case is when the fronthaul constraints for the compression strategy are not satisfied, in which case the maximum sum rate \(R \) for the DDF strategy falls in the range

\[
R < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2). \tag{83}
\]

We proceed to analyze the DDF sum-rate-fronthaul achievable region \((R, C_1, C_2)\) for this case. If we fix some extreme point \(R \) in this region, then the minimum fronthaul capacities \((C_1, C_2) \) needed to support this \(R \) are defined by \(\text{(80)-(82)} \).

A full analysis would involve several cases. Here, we consider the case in which \(R \) is such that \(R < I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \), but \(R > I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - I(U_1, U_2; X_1) \) and \(R > I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - I(U_1, U_2; X_2) \) for illustration; other cases can be analyzed similarly. For this range of \(R \), one corner point in the \((C_1, C_2)\) fronthaul region can be expressed as

\[
C_1 = I(U_1, U_2; X_1) - (I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R) \tag{84}
\]

\[
C_2 = I(U_1, U_2; X_2; X_1) + I(X_1; X_2). \tag{85}
\]

The rest of the section focuses on this corner point. The analysis for the other corner point swapping the roles of \(C_1 \) and \(C_2 \) is similar.

Observe that we cannot operate at this corner point using the generalized compression strategy directly under the distribution \(p(u_1, u_2, x_1, x_2) \), because at this corner point the fronthaul capacity \(C_1 \) cannot support the required fronthaul \(I(U_1, U_2; X_1) \). In the following, we show that by modifying the distribution \(p(u_1, u_2, x_1, x_2) \), we can satisfy the fronthaul constraints and achieve a sum rate which is at least as large as the DDF sum rate under the new distribution.

We rewrite the required fronthaul rate at BS 1 under DDF as a fraction of the required fronthaul under compression, i.e.,

\[
C_1 = I(U_1, U_2; X_1) - (I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R) = (1 - \beta)I(U_1, U_2; X_1), \tag{86}
\]

where \(\beta \) is given by

\[
\beta = \frac{I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) - R}{I(U_1, U_2; X_1)}. \tag{87}
\]

Observe that \(\beta \in (0, 1) \) from the assumption on the range of \(R \) in this case and the fact that \(C_1 \geq 0 \). Rewriting \(C_1 \) in this way motivates the following time-sharing scheme of two compression strategies that would meet the fronthaul constraints for compression. For \((1 - \beta)\) fraction of the time, we use the generalized compression strategy under the fixed distribution \(p(u_1, u_2, x_1, x_2) \) that performs compression at both the BSs, while for the rest \(\beta \) fraction of the time, we use a different distribution that shuts down BS 1 and performs compression only at BS 2. We can show that such a time-sharing strategy keeps the fronthaul constraints satisfied while achieving a sum rate at least as large as the DDF sum rate.

First, we analyze the fronthaul rates. Recall from \(\text{(41)} \) that under the constant-gap distribution, \(p(u_1, u_2, x_1, x_2) \) factorizes as \(p(x_1)p(x_2)\) for both the compression strategies that would meet the fronthaul constraints for compression. For \((1 - \beta)\) fraction of the time, we use the generalized compression strategy under the fixed distribution \(p(u_1, u_2, x_1, x_2) \) that performs compression at both the BSs, while for the rest \(\beta \) fraction of the time, we use a different distribution that shuts down BS 1 and performs compression only at BS 2. We can show that such a time-sharing strategy keeps the fronthaul constraints satisfied while achieving a sum rate at least as large as the DDF sum rate.
constant-gap distribution $p(u_1, u_2, x_1, x_2)$ for $(1 - \beta)$ fraction of the time, while for the rest β fraction of the time it uses a modified distribution $p(u'_1, u'_2, x'_1, x'_2)$, where we use the same additive Gaussian form as in $p(u_1, u_2, x_1, x_2)$ but set $X_1 = 0$. Using such a choice proves useful in two ways. First, we have that $I(U_1, U_2; X_2|X_1) = I(U'_1, U'_2; X'_2)$ when we set $X_1 = 0$. Additionally, the independence of X’s in the constant-gap distribution leads to $I(X_1; X_2) = I(X'_1; X'_2) = 0$. Using these facts, we have that the fronthaul used for compression at BS 1 is $(1 - \beta)I(U_1, U_2; X_1)$ which is the same as the fronthaul limit from (84). For BS 2, the fronthaul used is $(1 - \beta)(I(U_1, U_2; X_2|X_1) + I(X_1; X_2)) + \beta I(U'_1, U'_2; X'_2) = I(U_1, U_2; X_2|X_1)$ as required in (85).

Finally, we show that the time-sharing scheme achieves a sum rate at least as large as the sum rate achieved by the DDF strategy. Before we proceed, it is useful to write the mutual information expression for the sum rate in a form that involves the random variables X’s directly as follows:

$$I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2)$$

$$= h(U_1, U_2) - h(U_1|Y_1) - h(U_2|Y_2)$$

$$= h(U_1, U_2) - h(U_1, U_2|X_1, X_2) + h(U_1, U_2|X_1, X_2) - h(U_1, U_2|Y_2)$$

$$= I(U_1, U_2; X_1, X_2) + h(U_1|X_1, X_2, Y_1) - h(U_1|Y_1)$$

$$+ h(U_2|X_1, X_2, Y_2) - h(U_2|Y_2)$$

$$= I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2|Y_1)$$

$$- I(U_2; X_1, X_2|Y_2),$$

where in (a) we used the fact that $(U_1, U_2) \rightarrow (X_1, X_2) \rightarrow (Y_1, Y_2)$ and $U_1 \rightarrow (X_1, X_2) \rightarrow U_2$ form Markov chains.

The sum rate for the compression strategy can then be written as

$$R = (1 - \beta)(I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2|Y_1) - I(U_2; X_1, X_2|Y_2)) + \beta I(U'_1, U'_2; X'_2)$$

$$= (1 - \beta)(I(U_1, U_2; X_1|X_1) + I(U_1, U_2; X_2|X_2)) + \beta I(U'_1, U'_2; X'_2)$$

$$= (1 - \beta)(I(U_1, U_2; X_1|X_1) + I(U_1, U_2; X_2|X_2)) + \beta I(U'_1, U'_2; X'_2)$$

$$\geq (1 - \beta) I(U_1, U_2; X_1) + I(U_1, U_2; X_2|X_1)$$

$$- I(U_1; X_1, X_2|Y_1) - I(U_2; X_1, X_2|Y_2)$$

$$\geq I(U_1, U_2; X_1, X_2) - I(U_1; X_1, X_2|Y_1)$$

$$- I(U_2; X_1, X_2|Y_2) - I(U_1; Y_1) + I(U_2; Y_2)$$

$$\geq R,$$

where (a) follows from the fact that $I(U_1, U_2; X_2|X_1) = I(U'_1, U'_2; X'_2)$, i.e., conditioning on X_1 is the same as setting $X_1 = 0$; (b) follows because under the constant-gap distribution, we have

$$I(U_k; X_1, X_2|Y_k) = \frac{1}{2} \log \left(1 + \frac{h^2_{k,1}P + h^2_{k,2}P + \sigma^2}{h^2_{k,1}P + \sigma^2} \right)$$

$$> \frac{1}{2} \log \left(1 + \frac{h^2_{k,2}P + \sigma^2}{h^2_{k,1}P + \sigma^2} \right)$$

$$= I(U'_k; X'_2|Y'_k)$$

for $k = 1, 2$ (see Appendix B for a detailed derivation); (c) follows (86)–(87); and (d) follows from the sum rate mutual information equivalence in (93).

The proof for the general case extends this idea for arbitrary number of users and BSs. We use the contra-polymatroidal structure of the fronthaul region to characterize the corner points for each fixed sum rate R under the DDF strategy. Using appropriate time-sharing schemes in the generalized compression strategy (by shutting down some BSs), we show that each such corner point is achievable in the compression strategy with a sum rate at least as large as R. The complete proof is relegated to Appendix B.

As a final remark, we mention the work of [17], which shows that the gap between the achievable rate region and the cut-set bound for DDF can be refined, so that the gap is logarithmic in the number of BSs and users, instead of being linear as in [16]. The refinement uses a slightly modified form of the constant-gap distribution. The equivalence result shown in this section also works for this modified constant-gap distribution. Thus, a similar refinement can be used to conclude that the compression strategy can achieve the sum capacity of the C-RAN network to within a constant gap which is a logarithmic in the number of BSs and users.

C. Sum Rate Under Sum Fronthaul Constraint

The previous two sections show that even though the DDF strategy allows for distributions $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$ that can compress beyond the fronthaul constraints, under certain conditions, the compression strategy, which compresses within the fronthaul constraints, can achieve the same rate-region or the same sum rate if we allow time-sharing between different achievable rate tuples of the compression strategy. Applying this result to the Gaussian C-RAN gives us the conclusion that time-sharing of compression strategies can achieve the sum capacity of Gaussian C-RAN to within a constant gap.

This section provides a slightly stronger statement: We show that for maximizing the sum rate under the sum fronthaul constraint, there exists a Gaussian compression strategy that achieves to within a constant gap of the cut-set bound even without time-sharing.

Let us first write down the achievable sum rates for the DDF and compression strategies under a sum fronthaul constraint C. From (44) and (46), we have that the achievable sum rate
For the DDF strategy under the sum fronthaul constraint

\[R_{\text{DDF}}^s \leq \sum_{k \in K} I(U_k; Y_k) - T(U(K)) + \min \{0, C - I(U(K); X(L)) - T(X(L))\}, \]

(102)

for some distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L)\). Similarly, from [12], the achievable sum rate \(R_{\text{COM}}^s\) using the compression strategy under the sum fronthaul constraint is given by

\[R_{\text{COM}}^s \leq \sum_{k \in K} I(U_k; Y_k) - T(U(K)), \]

(103)

for some distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L)\) that satisfies

\[C > I(U(K); X(L)) + T(X(L)). \]

(104)

Now, consider the channel model of [40]. We know that the DDF strategy can achieve to within a constant gap to the capacity region (and hence the sum capacity) of this Gaussian C-RAN model under individual fronthaul constraints (and hence also the sum fronthaul constraint) by using the distribution given by [41]. We now show that by using a (possibly) modified version of this distribution, the compression strategy can achieve the same sum rate under the sum fronthaul constraint.

We consider two cases. If under the distribution given in [41], we have

\[C \geq I(U(K); X(L)) + T(X(L)) \]

(105)

\[= \frac{1}{2} \log |I + PHH^T|, \]

(106)

then we can simply use the same distribution in the compression strategy to achieve the same rate.

If \(C < \frac{1}{2} \log |I + PHH^T|\), we propose to modify the distribution in [41] in such a way that when used in the compression strategy, the fronthaul constraint is satisfied, and further, it achieves a higher sum rate than the DDF strategy. The proposed modification is to reduce the power of \(X\)’s by a factor \(\gamma < 1\). We find \(\gamma\) such that

\[C = \frac{1}{2} \log |I + \gamma PHH^T|. \]

(107)

This allows us to compress with exactly the same sum fronthaul capacity as the DDF strategy.

To show that compression with this modified distribution actually improves upon the DDF sum rate, we compare the sum rate achieved by the compression strategy to that with DDF under the modified distribution as follows:

\[R_{\text{COM}}^s = \sum_{k \in K} I(U'_k; Y'_k) - T(U'(K)) \]

(108)

\[\overset{(a)}{=} I(U'(K); X'(L)) - \sum_{k \in K} I(U'_k; X'(L)|Y'_k) \]

(109)

\[= C - \sum_{k \in K} \frac{1}{2} \log \left(1 + \frac{\sum_{l=1}^{L} h_{k,l}^2 \gamma P}{\sum_{l=1}^{L} h_{k,l}^2 P + \sigma^2}\right) \]

(110)

\[> C - \sum_{k \in K} \frac{1}{2} \log \left(1 + \frac{\sum_{l=1}^{L} h_{k,l}^2 P}{\sum_{l=1}^{L} h_{k,l}^2 P + \sigma^2}\right) \]

(111)

where \((a)\) and \((c)\) are due to Lemma 5 in Appendix B, and \((b)\) is due to (105). Since the DDF sum rate achieves to within a constant gap to the sum capacity of C-RAN, the above shows that this choice of (non-time-shared) distribution also achieves to within a constant gap to the sum capacity.

D. Numerical Example

We now provide a numerical example that illustrates a performance comparison between the compression and DDF strategies, along with the more traditional beamforming based strategy that takes fronthaul into account.

Consider the 2-BS 2-user setup introduced in [11]. As baseline, we consider beamforming followed by compression as described in [12], where we use the zero-forcing beamformers in the directions of \(W = H^{-1}\). We then allocate powers across the two normalized beams \(w_1\) and \(w_2\), and also find the quantization noise levels to maximize the sum rate by exhaustive search, while satisfying the sum fronthaul constraint. For the DDF strategy, the sum rate is calculated as given in (110). For the generalized compression scheme, we construct the explicit distribution that achieves the sum capacity to within a constant gap as explained in the previous section. The parameter \(\gamma\) is found using a line search between \([0, 1]\).

Fig. 2 shows the sum rate achieved using these strategies as a function of the sum fronthaul capacity available for a fixed real-valued channel (generated at random according to a Rayleigh fading distribution). Individual BS power constraints of \(P = 100\) and background noise \(\sigma^2 = 1\) are assumed. For comparison, we also plot the cut-set bound. The figure shows that the compression strategy performs nearly the same as the DDF strategy for most of the sum fronthaul capacity range. It
performs slightly better than the DDF strategy at very low sum fronthaul capacities because of the improvement in the gap as a result of choosing $\gamma < 1$ to accommodate the fronthaul capacity as shown from (108) to (113). We note that both the compression and the DDF strategies are within a constant gap to the cut-set bound. When $C < \frac{1}{2} \log(1 + P H H^2)$, the gap is at most 1 bit, while for higher values of C, the gap is at most 2 bits. As compared to the zero-forcing strategy, we observe that the generalized compression strategy performs much better at lower sum fronthaul capacities, because the zero-forcing beam direction does not account for the quantization noise. At higher sum fronthaul capacities, all three strategies saturate. However, the zero-forcing strategy may achieve a higher sum rate than the compression and DDF strategies, because the latter does not explicitly null interference, but only aims to provide a universal strategy that approximately achieves the rate than the compression and DDF strategies, because the zero-forcing strategy is a special case of the DDF strategy, as opposed to successively in the compression strategy. The paper shows that under a sum fronthaul constraint, such generalization does not lead to higher rates and the rate regions of the two strategies coincide. Furthermore, for the case of Gaussian network, the paper shows that the two-phase compression strategy achieves a sum rate that is within a constant gap to the cut-set bound. These results provide a justification for the practical choice of the two-phase compression strategy for the downlink C-RAN.

VI. CONCLUSION

This paper investigates the compression strategy for the downlink of a C-RAN from an information theoretic point of view. The paper first generalizes the existing compression strategies to include Marton’s multicoding followed by multivariate compression, then analyzes the resulting rate region for a C-RAN with a general DMC between the BSs and the users. When compared with the DDF strategy specialized to the downlink C-RAN, it is pointed out that DDF is a generalization of the compression strategy where the Marton’s multicoding and the multivariate compression are done jointly as opposed to successively in the compression strategy. The paper then shows that under a sum fronthaul constraint, such generalization does not lead to higher rates and the rate regions of the two strategies coincide. Furthermore, for the case of Gaussian network, the paper shows that the two-phase compression strategy achieves a sum rate that is within a constant gap to the cut-set bound. These results provide a justification for the practical choice of the two-phase compression strategy for the downlink C-RAN.

APPENDIX A

PROOF OF THEOREM 3

Proof: We examine the set of achievable rate tuples (R_1, \ldots, R_K) of the generalized compression and the DDF strategies under a sum fronthaul constraint C. Since the compression strategy is a special case of the DDF strategy, we have that $\mathcal{R}_{\text{COM}}(C) \subseteq \mathcal{R}_{\text{DDF}}(C)$. The main part of the proof is to show that $\mathcal{R}_{\text{DDF}}(C) \subseteq \mathcal{R}_{\text{COM}}(C)$. The proof uses the properties of submodular optimization.

Take any achievable (R_1, \ldots, R_K) using the DDF strategy under a fixed distribution $p(u_1, \ldots, u_K, x_1, \ldots, x_L)$ and under the fixed sum fronthaul constraint C. By definition, it must satisfy the inequalities (114) and (115). Define $\mathcal{P}(C) \in \mathbb{R}^K$ to be the polytope formed by the inequalities (114) and (115). We show that each extreme point of $\mathcal{P}(C)$ can be achieved using the time-sharing of rate-tuples under the generalized compression strategy.

The inequalities (114) define $\mathcal{P}(C)$ to be set of (R_1, \ldots, R_K) for which

$$\sum_{k \in D} R_k \leq \min \left\{ \sum_{k \in D} I(U_k; Y_k) - T(U(D)), \right.$$

$$\left. \sum_{k \in D} I(U_k; Y_k) + C - T(U(D), X(L)) \right\}$$

for all $D \subseteq K$. First, we show that we can alternatively write the above as

$$\sum_{k \in D} R_k \leq \min \left\{ \sum_{k \in D} I(U_k; Y_k) - T(U(D)), \right.$$

$$\left. \sum_{k \in D} I(U_k; Y_k) + C - T(U(K), X(L)) \right\}$$

for all $D \subseteq K$. The reason is that for any set $D \subseteq K$, we always have $\sum_{k \in D} R_k \leq \sum_{k \in K} R_k$, since the user rates are non-negative. But we already have the constraint

$$\sum_{k \in K} R_k \leq \sum_{k \in K} I(U_k; Y_k) + C - T(U(K), X(L)).$$

So, we can add the constraint

$$\sum_{k \in D} R_k \leq \sum_{k \in K} I(U_k; Y_k) + C - T(U(K), X(L))$$

to (114) without affecting $\mathcal{P}(C)$. Now, it turns out that

$$\sum_{k \in K} I(U_k; Y_k) + C - T(U(K), X(L)) \leq$$

$$\sum_{k \in D} I(U_k; Y_k) + C - T(U(D), X(L)),$$

so this new constraint is actually tighter than the second constraint in (114). Therefore, (114) can be equivalently written as (115).

To verify (118), we take the difference in summing over D versus summing over K in (118) as below:

$$T(U(K), X(L)) - T(U(D), X(L)) - \sum_{k \in D^c} I(U_k; Y_k)$$

$$= I(U(D^c); U(D)) + T(U(D^c))$$

$$+ I(U(D^c); X(L)|U(D)) - \sum_{k \in D^c} I(U_k; Y_k),$$

where $D^c = K \setminus D$. This can be simplified as

$$\sum_{k \in D^c} h(U_k|Y_k) - h(U(D^c)|X(L), U(D))$$

$$(a) \geq \sum_{k \in D^c} h(U_k|Y_k) - \sum_{k \in D} h(U_k|X(L))$$

$$(b) \geq \sum_{k \in D^c} h(U_k|Y_k) - \sum_{k \in D^c} h(U_k|X(L), Y_k)$$

$$= \sum_{k \in D^c} I(U_k, X(L)|Y_k)$$

$$\geq 0, \quad (124)$$
where (a) follows from the fact that conditioning reduces entropy and (b) follows since $U_k \rightarrow X(\mathcal{L}) \rightarrow Y_k$ form a Markov chain. This verifies (118), hence the equivalence between (114) and (115).

Let us now define a set function $f : 2^\mathcal{K} \rightarrow \mathbb{R}$ as

$$f(D) := \min \left\{ \sum_{k \in D} I(U_k; Y_k) - T(U(D)), \sum_{k \in \mathcal{K}} I(U_k; Y_k) + C - T(U(\mathcal{K}), X(\mathcal{L})) \right\}$$

for each $D \subseteq \mathcal{K}$. By construction, $\mathcal{P}(C)$ is the set of (R_1, \ldots, R_K) that satisfies

$$\sum_{k \in \mathcal{K}} R_k \leq f(D).$$

Finally, we express R_j as

$$R_j = \sum_{k \in \mathcal{K}} I(U_k; Y_k) + C - T(U(\mathcal{K}), X(\mathcal{L}))$$

$$- \sum_{k=1}^{j-1} I(U_k; Y_k) - T(U_1, \ldots, U_{j-1})$$

$$= I(U_j; Y_j) - I(U_j; U_{j-1}, \ldots, U_1)$$

$$+ \sum_{k \in \mathcal{K}} I(U_k; Y_k) + C - T(U(\mathcal{K}), X(\mathcal{L}))$$

$$- \sum_{k=1}^{j} I(U_k; Y_k) + T(U_1, \ldots, U_j)$$

$$= (1 - \alpha)(I(U_j; Y_j) - I(U_j; U_{j-1}, \ldots, U_1)),$$

where α can be written explicitly as below

$$\frac{T(U(\mathcal{K}), X(\mathcal{L})) - T(U_1, \ldots, U_j) - C - \sum_{k=j+1}^{K} I(U_k; Y_k)}{I(U_j; Y_j) - I(U_j; U_{j-1}, \ldots, U_1)}.$$

Note that $\alpha \in (0, 1]$ due to (128) and the fact that $R_j \geq 0$.

Now we construct the time-sharing of two rate-tuples corresponding to the generalized compression strategy that achieves this above rate (R_1, \ldots, R_K) as follows:

1. For $(1 - \alpha)$ fraction of the time, transmit messages for users $1, \ldots, j$, only, i.e., set $p(u_1, \ldots, u_j, x_1, \ldots, x_L)$ to be the marginal distribution of the original distribution, but let U_{j+1}, \ldots, U_K be constants.

2. For the rest α fraction of time, transmit messages for users $1, \ldots, (j-1)$ only, i.e., set $p(u_1, \ldots, u_{j-1}, x_1, \ldots, x_L)$ to be the marginal distribution of the original distribution, but let U_j, U_K be constants.

By construction, the time-sharing of these two compression schemes achieves the same rate tuple as the extreme point of $\mathcal{P}(C)$, (110), (111), and (114).

To calculate the fronthaul capacity consumption of this time-sharing scheme, we have

$$\hat{C} = (1 - \alpha)(I(U_1, \ldots, U_j; X(\mathcal{L})) + T(X(\mathcal{L])))$$

$$- \alpha(I(U_1, \ldots, U_{j-1}; X(\mathcal{L})) + T(X(\mathcal{L})))$$

$$+ I(U_1, \ldots, U_j; X(\mathcal{L})) + T(X(\mathcal{L})) - C$$

$$- I(U_1, \ldots, U_j; X(\mathcal{L})) - I(U_1, \ldots, U_{j-1}; X(\mathcal{L}))$$

$$- \left(T(U(\mathcal{K}), X(\mathcal{L})) - T(U_1, \ldots, U_j) - C \right) - \sum_{k=j+1}^{K} I(U_k; Y_k)$$

$$\leq I(U_1, \ldots, U_j; X(\mathcal{L})) + T(X(\mathcal{L})) - C$$

Furthermore, using the fact that the second term of $f(D)$ does not depend on D, so when the second term is the minimum, i.e., $\forall k > j$, we have

$$R_k = 0.$$
The inequality sharing of points in the compression region.

Therefore, every extreme point \((R_1, \ldots, R_K) \) of \(\mathcal{P}(C) \) is achievable using time-sharing of generalized compression strategies under the same average fronthaul constraint. \(\square \)

APPENDIX B

Proof of Theorem 3

Proof. The proof is based on comparing the sum rate achieved by the compression strategy with that by the DDF strategy. Recall that, from the result in [16], for the DDF strategy the following choice of the distribution achieves to within a constant gap to the cut-set bound of a Gaussian relay broadcast network: Let \(X \) to be a vector of \(L \) i.i.d. \(\mathcal{N}(0, P) \) random variables and \(U = HX + Z \), where \(Z \sim \mathcal{N}(0, \sigma^2 I) \) is independent of \(X \). We show that under such a choice of distribution \(R_{\text{DDF}} = R_{\text{COM}} \). Then it follows that the compression strategy also achieves the sum rate to within a constant gap to the cut-set bound.

Consider the set of \((R, C_1, \ldots, C_L) \) achievable using the DDF strategy under such a constant-gap distribution. For fixed \(R \), we define \(\mathcal{P}(R) \subseteq \mathbb{R}^K \) to be the polytope defined by inequalities (71) under the said distribution. We now show that each extreme point of \(\mathcal{P}(R) \) is dominated by some time-sharing of points in the compression region.

Let us define a set function \(g : 2^L \to \mathbb{R} \) as

\[
g(S) := \max \left\{ T(U(K), X(S)) + R - \sum_{k \in K} I(U_k; Y_k), 0 \right\}
\]

for each \(S \subseteq L \). By construction, then \(\mathcal{P}(R) \) is equal to the set of \((C_1, \ldots, C_L) \) that satisfy

\[
\sum_{i \in S} C_i \geq g(S).
\]

Since the second term in the \(\max \) expression in (148) is a constant, it can be verified that the function \(g \) is a supermodular function [24] and as a consequence the \(\mathcal{P}(R) \) region is a contra-polymatroid [19]. Similar to the case of submodular optimization, for a linear ordering \(i_1 \prec i_2 \prec \ldots \prec i_K \) of \(\{1, \ldots, K\} \), an extreme point of \(\mathcal{P}(R) \) can be greedily computed as

\[
C_{i_j} = g(\{i_1, \ldots, i_j\}) - g(\{i_1, \ldots, i_{j-1}\}).
\]

Furthermore, all the extreme points of \(\mathcal{P}(R) \) can be computed by considering all linear orderings. Each ordering of \(\{1, \ldots, K\} \) is analyzed in the same manner, hence for notational simplicity we consider the natural ordering \(i_j = j \).

Let \(j \) be the first index for which \(C_j > 0 \). Then, by construction,

\[
C_l = 0, \quad \forall l < j
\]

and

\[
C_l = I(X_l; U(K)|X_{l-1}, \ldots, X_1), \quad \forall l > j.
\]

Note that the term \(T(X(S)) \) vanishes because of the assumption of independence of \(X \)'s in the constant-gap distribution. Finally, we express \(C_j \) as

\[
C_j = I(X_j, \ldots, X_1; U(K)) + R - \sum_{k \in K} I(U_k; Y_k) + T(U(K))
\]

\[
= I(X_j; U(K)|X_{j-1}, \ldots, X_1) + I(X_{j-1}, \ldots, X_1; U(K))
\]

\[
+ R - \sum_{k \in K} I(U_k; Y_k) + T(U(K))
\]

\[
= (1 - \beta)I(X_j; U(K)|X_{j-1}, \ldots, X_1),
\]

where \(\beta \) is defined as

\[
- \frac{(I(X_{j-1}, \ldots, X_1; U(K)) + R - \sum_{k \in K} I(U_k; Y_k) + T(U(K)))}{I(X_j; U(K)|X_{j-1}, \ldots, X_1)}
\]

It is not difficult to see that \(\beta \in (0, 1] \). This is because \(j \) is the first index for which \(C_j > 0 \), so \(C_{j-1} = 0 \). By definition of \(C_j \), it is easy to see that \(g(\{1, \ldots, j - 1\}) = 0 \). Observe that the numerator in the expression for \(\beta \) is the negative of the first term in the definition of \(g(\{1, \ldots, j - 1\}) \), so the numerator must be positive, hence \(\beta > 0 \). Further, by (154) and the fact that \(C_j \geq 0 \), we have \(\beta \leq 1 \).

Now consider the following time-sharing of two compression schemes. Starting with the fixed constant-gap distribution \(p(u_1, \ldots, u_K, x_1, \ldots, x_L) \), we modify the distribution as follows:
1) For \((1−\beta)\) fraction of the time, keep the BSs \(j,\ldots,L\) active, i.e., for \((1−\beta)\) fraction of the time, keep \(X_j,\ldots,X_L\) the same and set \(X_1=\ldots=X_{j−1}=0\); denote this distribution as \(p(u_1,\ldots,u_K,x_1,\ldots,x_L)\).

2) For the remaining \(\beta\) fraction of the time, keep the BSs \(j+1,\ldots,L\) active, i.e., for \(\beta\) fraction of the time, keep \(X_{j+1},\ldots,X_L\) the same and set \(X_1=\ldots,X_j=0\); denote this distribution as \(p(u_1,\ldots,u_K,x_1,\ldots,x''_L)\).

We first verify that the average fronthaul capacities required for this time-sharing of two compression schemes, denoted here as \(C_1,\ldots,C_L\), are exactly the same as the fronthaul capacities \(C_1,\ldots,C_L\) under the DDF strategy. For the inactive BSs from 1 to \(j−1\) the fronthaul capacities used is zero, i.e.,

\[\tilde{C}_l = 0 = C_l, \quad \forall l = 1,\ldots,j−1. \quad (157)\]

We use the modified distributions under the compression strategy to calculate the fronthaul needed for the active BSs. Note that under the constant-gap distribution (or its modified form), a corner point of the fronthaul region \([\overline{S}]\) is just

\[C_l = I(X_l;U(K)|X_{l−1},\ldots,X_1) \quad (158)\]

where the term \(T(X(S))\) vanishes because of the assumed independence of \(X\)'s in the constant-gap distribution.

Now for BS \(j\), since \(X_1=\ldots=X_{j−1}=0\), the fronthaul used by the compression strategy is just

\[C_j = (1−\beta)I(X_j';U'(K)) \quad (159)\]

where the equality is due to the form of the Gaussian \(p(u_1,\ldots,u_K,x_1,\ldots,x_L)\) in which conditioning on \(X_{j−1},\ldots,X_1\) is the same as setting them to be zero.

For BS \(l = (j+1),\ldots,L\), the fronthaul capacity used by the generalized compression strategy is given by

\[\tilde{C}_j = (1−\beta)I(X_j';U''(K)|X_{j−1}',\ldots,X_j') + \beta I(X_j';U''(K)|X_{j−1},\ldots,X_j,\ldots,X_1) \quad (161)\]

where in \((a)\) we used the fact that \(U(K)\) forms a Markov chain and that conditioned on \(X(L)\) the \(U\)'s are independent.

Based on the Lemma, the sum rate achieved using the time-sharing of the two generalized compression schemes with the modified constant-gap distributions can be written as

\[\tilde{R} = (1−\beta)(I(X_j',\ldots,X_L';U'(K)) + \beta I(X_j',\ldots,X_L;U''(K))) \quad (170)\]

\[= (1−\beta)\sum_{k\in K} I(U_k';X_j',\ldots,X_L'|Y'_k) \quad (171)\]

\[= (1−\beta)(I(U(K);X_j|X_{j−1},\ldots,X_1) + I(U(K);X_{j+1},\ldots,X_L|X_j,\ldots,X_1)) \quad (172)\]

\[\geq I(U(K);X_1,\ldots,X_L) + R - \sum_{k\in K} I(U_k;Y_k) + T(U(K)) \quad (173)\]

\[\overset{\text{(d)}}{=} R. \quad (174)\]
The equality (a) holds, because as mentioned before, for the constant-gap distribution, shutting down a BS is the same as conditioning on the corresponding random variable. For the first \((1 - \beta)\) fraction of time, we condition on \(X_1, \ldots, X_{j-1}\) and for the rest \(\beta\) fraction of the time, we condition on \(X_1, \ldots, X_j\). The equality (b) holds from the relation (155). The inequality (c) follows because under the modified constant-gap distribution,

\[
I(U_k', X_j', \ldots, X_j | Y_k') = h(U_k' | Y_k') - h(U_k' | X_j', \ldots, X_j, Y_k')
\]

\[
= h(U_k', Y_k') - h(Y_k') - h(\tilde{Z}_k')
\]

\[
= \frac{1}{2} \log \left(1 + \frac{\sum_{l=j}^{L} h_{k,l}^2 P}{\sum_{l=1}^{L} h_{k,l}^2 P + \sigma^2} \right)
\]

\[
< \frac{1}{2} \log \left(1 + \frac{\sum_{l=j}^{L} h_{k,l}^2 P}{\sum_{l=1}^{L} h_{k,l}^2 P + \sigma^2} \right)
\]

\[
= I(U_k; X(L) | Y_k).
\]

and similarly \(I(U'''; X''_{j+1}, \ldots, X''_{L} | Y'''_{k}) < I(U_k; X(L) | Y_k)\). Finally, the equality (d) follows from the equivalent way of writing the sum rate as shown in Lemma [5].

Therefore, for every extreme point \((C_1, \ldots, C_L)\) of \(P(R)\), the time-shared compression strategy achieves a sum rate at least as large as the DDF strategy. This completes the proof.

\[\square\]

REFERENCES

[1] T. Q. S. Quek, M. Peng, O. Simeone, and W. Yu, Eds., Cloud Radio Access Networks: Principles, Technologies, and Applications. Cambridge University Press, 2017.

[2] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439–441, 1983.

[3] H. Weingarten, Y. Steinberg, and S. S. Shamai, “The capacity region of the gaussian multiple-input multiple-output broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sept. 2006.

[4] B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326–1339, 2014.

[5] R. Zakhour and D. Gesbert, “Optimized data sharing in multicell MIMO with finite backhaul capacity,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6102–6111, Dec. 2011.

[6] N. Liu and W. Kang, “A new achievability scheme for downlink multicell processing with finite backhaul capacity,” in IEEE Int. Symp. Inf. Theory (ISIT), 2014, pp. 1006–1010.

[7] C. Wang, M. A. Wigger, and A. Zaidi, “On achievability for downlink cloud radio access networks with base station cooperation,” CoRR, vol. abs/1610.09407, 2016. [Online]. Available: http://arxiv.org/abs/1610.09407.

[8] X. Yi and N. Liu, “An achievability scheme for downlink multicell processing with finite backhaul capacity: The general case,” in Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct 2015, pp. 1–5.

[9] S. S. Bidokhti, G. Kramer, and S. Shamai (Shitz), “Capacity bounds on the downlink of symmetric, multi-relay, single receiver C-RAN networks,” in IEEE Int. Symp. Inf. Theory (ISIT), 2017.

[10] S.-N. Hong and G. Caire, “Compute-and-forward strategies for cooperative distributed antenna systems,” IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5227–5243, 2013.

[11] S. H. Park, O. Simeone, O. Sahin, and S. S. Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 69–79, Nov. 2014.

[12] P. Patil and W. Yu, “Hybrid compression and message-sharing strategy for the downlink cloud radio-access network,” in Inf. Theory Applicat. Workshop (ITA), Feb. 2014.

[13] O. Simeone, O. Somekh, H. Poor, and S. Shamai, “Downlink multicell processing with limited-backhaul capacity,” EURASIP J. Advances Singal Proces., Feb. 2009.

[14] S.-H. Park, O. Simeone, O. Sahin, and S. Shamai, “Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5646–5658, Nov. 2013.

[15] O. Simeone, A. Maeder, M. Peng, O. Sahin, and W. Yu, “Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems,” J. Commun. Networks, vol. 18, no. 2, pp. 135–149, 2016.

[16] S. H. Lim, K. T. Kim, and Y. H. Kim, “Distributed decode-forward for relay networks,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4103–4118, July 2017.

[17] S. Ganguly and Y.-H. Kim, “On the capacity of cloud radio access networks,” in IEEE Int. Symp. Inf. Theory (ISIT), 2017.

[18] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge University Press, 2011.

[19] X. Zhang, J. Chen, S. B. Wicker, and T. Berger, “Successive coding in multiuser information theory,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2246–2254, 2007.

[20] W. Yu, “Cloud radio-access networks: Coding strategies, capacity analysis, and optimization techniques,” in IEEE Commun. Theory Workshop (CTW), 2016.

[21] W. Yu, A. Sutivong, D. Julian, T. M. Cover, and M. Chiang, “Writing on colored paper,” in IEEE Int. Symp. Inf. Theory (ISIT), 2001, p. 302.

[22] Y. Zhou, Y. Xu, W. Yu, and J. Chen, “On the optimal fronthaul compression and decoding strategies for uplink cloud radio access networks,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7402–7418, 2016.

[23] A. Schrijver, Combinatorial optimization: polyhedra and efficiency. Springer-Verlag, 2003, vol. 24.

[24] T. A. Courtade and T. Weissman, “Multiterminal source coding under logarithmic loss,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 740–761, 2014.