A Decade of Empirical Research on Research Integrity: What Have We (Not) Looked At?

Noémie Aubert Bonn1 and Wim Pinxten1

Abstract
Research on research integrity has become a field of its own; yet, a comprehensive overview the field is still missing. We systematically searched SCOPUS, Web of Science, and PubMed for relevant articles published between 2005 and 2015. We extracted the topic, methodology, focus, and citations from each articles. From the 986 articles included, only 342 report empirical data. Empirical papers predominantly targeted researchers and students. Although empirical articles questioning causes for misconduct mostly blamed research systems (e.g., pressure, competition) for detrimental research practices, articles proposing approaches to foster integrity focused on researchers’ awareness and compliance rather than on system changes. Involving nonresearchers and reconnecting what is known to what is proposed may help research on research integrity move forward.

Keywords
research integrity, research misconduct, questionable research practices, detrimental research practices, meta-research, research fraud

Introduction
Research integrity (RI) has been part of the scientific discourse for many years, and evolved to a topic of research itself over the past 20 years. Research on RI highlighted that research misconduct comes in many forms (De Vries, Anderson, & Martinson, 2006), occurs more often than was initially thought, and that questionable research practices (QRP)—also referred to as detrimental research practices, practices outside the realm of misconduct, which still risk damaging the scientific output—are far from rare (Fanelli, 2009; Pupovac & Fanelli, 2014).

In 1999, one of the first paper setting the agenda for research on RI concluded with the following words:

“Over the last decade, researchers and research institution have made significant strides toward restoring [trust in science] by actively confronting misconduct . . . With so much accomplished, the time is right to see whether the policies we have put in place, the funds and time spent, have made a difference. Have we achieved levels of integrity in research that are acceptable?” (Steneck, 1999, p. 173)

Now, nearly two decades later, this call for research on RI seems to have been heard. Scientific literature on RI and research misconduct increased exponentially, broad scale funding and consortiums have been established to enable more research on the topic (e.g., the European Commission Horizon 2020 contributed an impressive 20 million euros in projects on RI since 2015), attendance to the last World Conference on Research Integrity exceeded 900, and some institutions are starting to build departments with PhD students specializing on the topic.

Notwithstanding this growing interest for research on RI and misconduct, it is unclear how the potential to identify and quantify the problems, to highlight and understand determinants of bad science, and to assess and propose approaches that foster integrity and prevent misconduct has been employed. To provide better insight in the field, we analyzed published research on RI. The goal of this analysis was two-fold. On one hand, we aimed to understand how researchers focusing on RI perform research (i.e., which methods are used, which stakeholders are studied, and which topics are most investigated). On the other hand, we aimed to document gaps of knowledge to inform future research endeavors.

Method
Studying research on RI is methodologically challenging. Researchers from many different fields address the topic

1Hasselt University, Belgium

Corresponding Author:
Noémie Aubert Bonn, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium.
Email: noemie.aubertbonn@uhasselt.be
in different ways. There is poor consistency in how the scope of RI is delimited (e.g., Is research ethics part of integrity? Is academic integrity only targeting students?) and in the choice of journals or article formats. For example, the empirical piece of Brian Martinson, Anderson, and de Vries (2005)—widely recognized as a cornerstone in research on RI—was published as a “Commentary” in Nature, is currently being classified as a “Note” in Scopus and as “Editorial material” in the Web of Science. Consequently, systematic searches for relevant empirical works on RI have serious blind spots if the sample is kept manageable.

We are aware that, despite all efforts to gather a manageable sample of the highest possible relevance, the choices we made toward our search strategy unavoidably come at a cost (e.g., not including the Martinson et al. paper, and unavoidably several others). We ensured that such costs are transparently reflected throughout this article.

To characterize the broad spectrum of research on RI, we performed an analysis of the literature on RI published in English between 2005 and 2015. Our analysis differs from a typical literature review: We classified several variables beyond the findings of the included articles (e.g., publication year, impact metrics, geographical distribution, and several methodology characteristics) and analyzed the relationship between such variables. Consequently, our findings do not describe what is known about specific aspects of RI, but rather provide an overview of how research on RI is performed and published to highlight the areas or actors where/with whom most research is done and areas or actors current research might have overlooked.

We used three major bibliographic databases to find relevant literature on RI: SCOPUS, Web of Knowledge, and PubMed. We performed and adapted our search between February and April 2017 for SCOPUS, between October and November 2017 for Web of Science and PubMed, and in February 2019 to add the terms “scientific fraud” and “research fraud” as recommended by reviewers. We extracted all results in an Excel spreadsheet, which is available as tab delimited in “Supplemental Appendix 3—General Data.” We only kept the records present on the spreadsheet for further analyses. The complete study flow diagram with inclusion/exclusion counts and search queries may be seen in Figure 1.

In summary, our queries screened titles, abstracts, and keywords of published literature for any mention of “academic misconduct,” “academic integrity,” “research misconduct,” “research integrity” (or any expression of six words or less containing such terms), “responsible research” (or any expression of four words or less containing these two terms), “scientific integrity,” “scientific misconduct,” “scientific fraud,” and “research fraud.” We chose these keywords after a few adaptations as we believed that they would provide a broad and yet specific enough overview of works that have been published on RI. Having worked in the field of RI in non-English-speaking countries for some time, we purposively included the expression “academic misconduct” despite its more direct relationship to student cheating to allow capturing articles that might have used the

Figure 1. Study flow diagram.
term differently to refer to research misconduct (Aubert Bonn et al., 2017).

We did not include papers relating to the ethical care of animals in research. Beyond papers whose scope was directly irrelevant, we also excluded several themes that were related, but not directly linked to RI, namely, (a) academic integrity or cheating limited to undergraduate students, or with no apparent extension to RI in the discussion and the abstract of the paper (later referred as cheating [exclusively]); (b) research ethics looking at the protection of human participants; (c) clinical ethics or bioethics; (d) responsible research innovations focusing on societal concerns of research discovery (b-d later referred as research ethics, bioethics, clinical ethics, or ethical role of universities in society); and (e) techniques meant to improve the validity of research, but devoid of direct reference to QRP, misconduct, or integrity (later referred as methods and tools).

Classification Process

To build the classifications for our research, we used an inductive process based on the findings from the first set of papers retrieved (i.e., the SCOPUS search). An inductive process means that we started with the general goal of describing research, and that we decided on which categories and classification options we should include based on what we found in the abstracts and papers assessed. For this analysis, NAB built the search, retrieved the literature, selected articles to be included, and inductively classified the articles in categories. WP helped refine and simplify the categories, revised individual papers that were ambiguous, and provided assistance on the specific wording used for the categories.

A full description of the inductive process that led to our final categories is available in “Supplemental Appendix 1—Building the Classifications.” The final categories and classification options and their definitions are listed in Table 1. The full description of each category is included in “Supplemental Appendix 2—Instructions for Use.”

Except for the “determinants” and the “approaches” subcategories, which were weighed, each article was fitted only once in each category. In case of ambiguity, we revised the papers further to determine what the authors highlighted most in the title and abstract, and we decided the classification based on their emphasis. For example, if a paper looked at guidelines and policies for plagiarism, the paper would obviously be a good fit for both the topic class of “guidelines and policy” and the one of “plagiarism.” In such a case, we decided according to the terminology used by the authors in the abstract and title. We did not assess the quality of included literature.

We first classified all relevant papers according to their topic of interest. We then used the abstract and full text to determine whether the article was empirical or not. For the purpose of our analysis, we considered anything that includes a minimal description of data collection and analysis, from qualitative research to bibliometric studies or textual analyses, as “empirical.”

We further classified each empirical article according to (a) the general methodology, (b) the studied population, (c) the source of data collection, (d) the focus of interest, and (e) the research objective.

In addition, for papers in which the focus of interest was “determinants” of misconduct and QRP, we extracted the specific determinants found in the empirical work and classified them between personal issues, issues with the system, and issues related to researcher’s awareness or compliance. Likewise, in papers in which the focus of interest was “approaches” to misconduct and QRP, we classified the approach as either targeting the system, or targeting researchers’ awareness or compliance (we luckily did not find any approaches that proposed to change personal characteristics such as gender or personality, so we did not include personal approaches).

After completing the classification, we analyzed our data in Excel to observe ongoing trends. We used the data visualization program Tableau Software inc. to build figures that illustrate our findings. Given the inductive approach and the lack of predefined hypotheses from our review, we do not include expression of precisions such as confidence intervals and p values.

Data Availability

The full data set, with both included and excluded records and full classification categories, is available in “Supplemental Appendix 3—General Data,” and the data on determinants and approaches are available in “Supplemental Appendix 4—Determinants and Approaches.” “Supplemental Appendix 2—Instructions for Use” describes these data sets in greater depth to allow reuse and extension. All supplemental appendices are also available in the preprint version of this article at https://www.biorxiv.org/content/10.1101/567263v1. We welcome future analyses and queries on our data.

Study Limitations and Other Considerations

Given the current lack of a comprehensive review in the field of RI, we consider our work to be a first step to expose what has been done and how it has been done in research on RI. That being said, as in any research project, several limitations were inevitable to allow us to manage the amount of data gathered with the resources at hand.

First, we decided on a cutoff of 2005 to 2015 to grasp the bulk of research on RI that happened after the impactful Nature paper “Scientists Behaving Badly” (Martinson et al., 2005), widely recognized as a milestone in the field. As this review was the first step of a bigger project, we had to set a cutoff to achieve a realistic record sample. Starting these extractions in 2016, we chose not to include literature
published after 2015 because it might not be fully archived on databases at the time where we performed the search. We invite follow-ups on our study as it would be very interesting to see what has happened in the most recent years.

Furthermore, we limited our search to records classified as "articles" to obtain a more manageable and relevant subset of research to include in our analyses. Although we are aware that this automatic classification is not flawless (i.e.,

Table 1. Classification Categories Found Inductively and Used in Our Analyses.

Topic of interest	Type of research
• QRP and misconduct (general)	• Empirical (if empirical, continue with the following categories)
• RI (general)	• Not empirical
• RCR training, education, and mentorship	• Systemic reviews and meta analyses (if non-empirical, stop classification process)
• Cheating and academic misconduct	
• Publication ethics	
• Authorship and collaborations	
• Plagiarism	
• Conflicts of interest	
• Guidelines and policies	
• Peer review	
• Research infrastructures and environments	
• REC/IRB	
• Allegations, sanctions, disclosure of cases	
• Whistleblowing	
• CV and application misrepresentation	
• Research on RI	

To identify the topic of interest, we looked more particularly at the title and abstract to highlight what the authors appeared most interested in discussing. There could be overlap or different interpretations in this category, but it provides a general overview of the themes most addressed in the field.

We classified included papers according to whether or not they reported empirical work, as defined earlier. A few systematic reviews were also found but we did not include them in further classification processes.

Additional categories for Empirical research

General methodology	Studied population	Focus	Objective
• Surveys, interviews, or focus groups	• Researchers	• Determinants	• Describe, explore, or quantify
• Content and textual analysis	• Students	– System	• Test a hypothesis
• Bibliometric study	• Mentor/RCR instructor	– Personal	• Denounce or detect QRP and misconduct
• Investigation or forensic analysis	• Institution	– Awareness and compliance	• Build approach
• Tool building or validation	• Industry	– Problem/state of affair	• Assess approach efficacy
• Combined methods	• Editors	– Approaches	• Build or validate research tool
• Other	• Participants/public/media	– System	
	• Peer reviewers	– Awareness and compliance	
	• Policy makers	– Consequences	
	• REC/IRB	– Research on RI	
	• Clinical professional		
	• RI officer		
	• General		

This category shows the general methodology used in the investigated paper. Naturally, it will be tightly linked with the source of data.

Here, we show who participated or was studied in the work. Depending on the source of data, these authors might not have been investigated directly, but by a proxy (e.g., looking at researchers’ misconduct through retractions, looking at editors’ policies through guidelines for authors).

Here, we identified which particular step of the integrity problem is studied (i.e., the determinants or causes for misconduct, the problem itself, approaches to fight the problem, consequences of the problem, or research on RI).

For each focus, we described what we considered appeared to be the general objective of researchers.

Note. A more detailed description of the classification process and how we developed the categories inductively is available in "Supplemental Appendix I—Building the Classifications." For each relevant paper, we first noted the topic of interest. We then identified the paper as either empirical or not empirical. For empirical papers, we further identified the general methodology used, the studied population, the source where the data came from, the focus on RI issues, and the general research objective. QRP = questionable research practices; RI = research integrity; RCR = responsible conduct of research; REC = research ethics committee; IRB = institutional review board; CV = curriculum vitae.
it sometimes includes editorials, news pieces, etc., and it might overlook a few research articles), we considered this automatic classification to be the best way to obtain a manageable sample of papers in which the bulk of empirical research on RI should be present. During the manual screening of the papers, we further excluded papers that were evidently not “articles” (e.g., labeled editorials, labeled news reports, short conference abstracts, and letters to the editor). Nonetheless, to avoid biasing our inclusions to the terminology used by journals to distinguish article categories, and because we noticed that empirical data were sometimes reported in differently labeled records, we kept other papers with a more substantial format (e.g., opinions, commentary, viewpoint, ethics corner, correspondence) when they were automatically classified under the “article” category.

In light of the two former points, and added to the fact that we lacked a reference point, it was difficult to evaluate the completeness of our sample and the sensitivity of our search strategy. Our findings should, thus, not be considered in isolation of the methods we have used (e.g., search terms included and not included, the way we defined integrity for the purpose of this research) and choices we have made (e.g., document type, years included) to reach a manageable sample of papers.

It is also essential to note that a certain level of subjectivity cannot be fully excluded from the classification of the included papers. For example, when looking at the topic of interest, many papers could fit in several topics—a paper on ghost authorship with the industry would inevitably not only fit into “authorship” but also concern “conflicts of interest,” “QRP and misconduct,” “reporting and publishing,” and so forth. We were careful to select the categories and classifications we considered most appropriate based on what was highlighted by the authors in the abstract. Although the classification process was not triangulated by individual reviewers, uncertainties were marked and discussed until a common agreement could be reached. Oftentimes, we reflected upon, corrected, and revisited our categories to strengthen the fit, but we did so without consideration of trends or hypotheses.

Classifications in one category were also often linked to classifications in another category. For example, papers on “RCR training and mentoring” (where RCR stands for responsible conduct of research) will often involve “approaches” to deter misconduct, have the objective to “assess” a method, and study researchers, students, or RCR educators. We tried to remain as neutral as possible when classifying our articles by building our classification from the content of the paper rather than from expected trends. Nonetheless, we believe that our results should not be considered in isolation but as a whole in which each category may intertwine with another.

Finally, because we decided not to assess the quality of included papers, we included a wide range of journals and paper standards. Within our inclusions, 10 articles were published in journals present on Beall’s list of predatory publishers (note, however, that five records come from the publisher Frontiers, whose status as predatory publisher is now mostly refuted). Given that Beall estimates that predatory publications account for 5% to 10% of all open access articles (Butler, 2013), 10 papers in 986 is a small proportion. Nonetheless, given the topic of our review, the fact that not all included articles were open access, and the fact that we conducted our search using databases, which already screen for journal quality, we considered that 1% was still worthy of mention.

Results and Discussion

Inclusions and Exclusions

After screening titles and abstracts for relevance to the topic, we included 986 articles. Table 2 highlights the number of inclusions and manual exclusions (i.e., manually excluded after the initial Excel sheet has been compiled). The complete data set, with both included and excluded papers and full classification categories, is available in the “Supplemental Appendix 3—General Data.”

Within the 5,453 publications yielded by the initial search in SCOPUS (i.e., our first search strategy, see Figure 1), 2,477 records (44.4%) were classified as “articles.”

Empirical Coverage

Around a third of the included publications described empirical work (N = 342; see Table 2). Within our inclusions, theoretical approaches, narrative reviews, recommendations, and opinions were most common (classified as nonempirical in the “Supplemental Appendix 3—General Data”).

Topics of Interest

We extracted the topics of interest of all included papers and grouped them in categories. When papers were not clearly targeting a specific topic, we classified them in the more general categories of “QRP and misconduct” or “Research integrity,” accordingly. Most papers targeted “QRP and misconduct,” but a substantial proportion of papers also targeted “RCR training, education, and mentoring”; “Publication ethics”; and “Conflicts of interests” (Figure 2). The proportion of empirical articles was highest for topics of “Cheating and academic misconduct” (77%), “CV and application misrepresentation” (79%), “Research on research integrity” (57%), and “RCR training, education, and mentoring” (49%).

Method

More than half of empirical papers used direct approaches, such as surveys, questionnaires, interviews, and focus groups (N = 175) to obtain their data. Bibliometric studies
(N = 58) and content and textual analyses (e.g., policy documents, case studies; N = 50) were also frequent. The distribution of methodologies alongside more specific research objectives can be seen in Table 3. The more precise sources of data used for each record are available in the full data set in the “Supplemental Appendix 3—General Data.”

Table 2. Number of Included and Excluded Records.

Inclusions	Exclusions	Reason for exclusion
Total	**986**	**2,454**
Empirical	342	
Nonempirical	621	
Systematic review/meta-analysis	3	
Accessibility and language	183	
Article format or year	295	
Cheating (exclusively)	190	
Duplicate/incomplete/retracted	426	
Methods and tools	81	
Research ethics, bioethics, clinical ethics, or ethical role of universities in society	406	
Scope irrelevant	873	

Note. Bold values indicate total rows.

Figure 2. Topics of interest of included papers and corresponding research type.

Note. Most papers targeted “QRP and misconduct,” but a substantial proportion of papers also targeted, “Publication ethics”; “RCR training, education, and mentoring”; and “Conflicts of interests.” The proportion of empirical articles was higher on certain topics, for example, “Cheating and academic misconduct” and “RCR training, education, and mentoring.” QRP = questionable research practices; RCR = responsible conduct of research; CV = curriculum vitae; REC = research ethics committee; IRB = institutional review boards.

Studied Population

More than 60% of empirical papers study researchers and students, whereas fewer articles involved actors other than researchers (Figure 3). Researchers and students further account for more than 75% of articles that used direct approaches—approaches in which investigators directly addressed the studied population, such as interviews,
survey, focus groups, and direct observation. Other research actors were most often studied by proxy through documents, reports, or published material.

Focus

To map the most studied aspects of RI, we classified all empirical papers according to their focus on the RI issue (i.e., which particular step of the integrity problem they looked at). We defined five general focuses, namely, (a) the “determinants” of misconduct, (b) the “problem/state of affair” of issues of RI, (c) the “approaches” meant to deter misconduct and promote integrity, (d) the “consequences” of misconduct and QRP, and (e) tools and approaches specific to “research on RI.” We then further classified the specific research objective we could grasp from the methodology of the paper (see Table 1).

Figure 4 shows that more than 45% of empirical work on RI focused on the problem, generally with the objective to describe, quantify, or explore the issue. About a third of the articles focused on approaches to promote RI or deter misconduct, with more than half of those assessing the efficacy of an approach. Only 13% of the papers focused on determinants of research misconduct and QRP, generally attempting to test the relationship between

Table 3. Distribution of Methodologies Alongside More Specific Research Objectives of Empirical Papers.

General methodology	Objective	Number of records
Surveys, interviews, or focus groups	Describe, explore, or quantify	113
	Assess approach efficacy	41
	Test a hypothesis	18
	Build or validate research tool	1
	Build approach	2
	Total	**175**
Content and textual analysis	Describe, explore, or quantify	35
	Assess approach efficacy	11
	Test a hypothesis	2
	Denounce or detect misconduct and QRP	1
	Build approach	1
	Total	**50**
Bibliometric study	Describe, explore, or quantify	40
	Assess approach efficacy	1
	Test a hypothesis	14
	Denounce or detect misconduct and QRP	2
	Build approach	1
	Total	**58**
Investigation or forensic analysis	Describe, explore, or quantify	18
	Test a hypothesis	4
	Denounce or detect misconduct and QRP	8
	Total	**30**
Tool building or validation	Describe, explore, or quantify	6
	Total	**6**
Other	Describe, explore, or quantify	3
	Assess approach efficacy	3
	Test a hypothesis	1
	Denounce or detect misconduct and QRP	2
	Build or validate research tool	1
	Build approach	4
	Total	**14**
Combined methods	Describe, explore, or quantify	8
	Test a hypothesis	1
	Total	**9**
	Total number empirical records	**342**

Note. About half of all included empirical papers used direct approaches to describe or quantify issues related to research integrity. A fair proportion also used content and textual analyses and bibliometric studies, also mostly to describe or quantify integrity issues. QRP = questionable research practices.
Figure 3. Studied population and general methodologies used.
Note. Representation of the major actors studied in included empirical papers. The different colors represent the general methodology used. More than 60% of included empirical papers studied researchers and students—a percentage that rose to 75% within direct approaches such as surveys, interviews, and focus groups (blue bar). RCR = responsible conduct of research; REC = research ethics committee; IRB = institutional review board.

Figure 4. Focus of included empirical work.
Note. We classified papers according to their focus (i.e., which particular step of the integrity problem they looked at), and associated research objectives. Yellow crosses show the average number of citations per article for each different focus. We can see that almost half of all empirical work targets the problem, whereas very few articles focus on determinants and consequences. Nonetheless, determinants yielded higher average number of citations (red crosses) than other focus. QRP = questionable research practices; RI = research integrity.
a hypothesized determinant and reported misconduct or QRP. Finally, very few articles focused on the consequences of misconduct and QRP (e.g., loss of public trust, risks to research participants, financial waste), or on research on RI.

Determinants and Approaches

We looked in greater depth into papers focusing on determinants and approaches for misconduct and QRP.

Determinants. We extracted findings from the papers focusing on determinants of misconduct and QRP (40 out of the 42 papers on determinants) and grouped them into factor categories to highlight what they found as potential causes for misconduct and QRP.

We then grouped these into broader groups as either highlighting (a) personal issues, (b) issues with the system, or (c) issues with researchers’ awareness and compliance. In addition, we computed a weighed indicator for the determinant groups to ensure that, regardless of the number of determinants found per paper, each article would account only for “one” paper (e.g., if a paper found three determinants, each determinant would have a weight of 0.33 in the paper count). As shown in Figure 5, 45% of the papers found that problems with the system played a role in misconduct and QRP, whereas only 16% of papers found that problems of awareness and compliance of researchers were at play.

Nevertheless, two precisions are important here. First, the papers we classified in the “determinants” categories sometimes reported direct effects on the prevalence of misconduct and QRP, but other times, they reported the influence, or the perceived influence of different factors on ethical behaviors, compliance, or reporting bias. Second, even though Figure 5 only includes factors that were found to influence integrity, a few negative or integrity-promoting findings were also highlighted within the papers that looked at “determinants,” and some of those effects are not visible in Figure 5.1

Approaches. Similar to the determinants, we classified papers that targeted approaches to misconduct and QRP into categories, which we later grouped as either targeting the system, or targeting researchers’ awareness and compliance. We did not include personal issues in the approaches, as we considered these to be somewhat immutable (i.e., it would be difficult for approaches to really target or aim to change gender, seniority, discipline, or country of affiliation). As we can see in Figure 5, almost 88% of papers on approaches targeted researcher’s awareness and compliance, whereas very few papers targeted the system.

Geographic Distribution and Citation Analysis

Affiliations from the United States largely accounted for more than half of the literature on RI captured by our sample (Figure 6b). The United Kingdom, Australia, Canada, India, Croatia, and the Netherlands followed, respectively, each accounting for more than 10 included articles. China, which is rapidly becoming the second most important player in scientific publication, only accounts for seven articles included (0.7%).

Although we did not do a thorough citation analysis, we wanted to have an overview of the citation patterns of included articles. A few things are important to note before getting into our findings. First, we extracted citation counts directly from the databases (i.e., each database counts the citations of its articles based on its pool of included material, and, therefore, differs), a database effect is thus possible. In addition, when the citations were not available in the database (i.e., PubMed), we looked for citations by searching for the DOI or title first in SCOPUS, then in Web of Science, and if unavailable, we grabbed the citation counts from Google Scholar. We marked the source of the citation count in the column “Citation Source” in “Supplemental Appendix 3—General Data.” Second, we looked at the total number of citations for each included paper without normalizing for the “age” of the paper. We made this decision to avoid possible issues linked with normalization (Ioannidis, Boyack, & Wouters, 2016). Consequently, it is important to consider that reported citation means and median may be influenced by the number of years the publications have been online, the output of the years following publication, or, on a country level, the size of the output in early years of research on RI; we include a figure showing the average citations per paper for each publication year in Figure 6.

We extracted citation counts from SCOPUS and Web of Science on February 10, 2019 (older citation counts from November, 2017, are also available in Supplemental Appendix 3—General Data). On average, articles were cited 15 times; yet, the distribution of citations was heavily skewed. The median number of citation was six, and 103 articles (10%) were seemingly never cited in February 2019. Within the 10% of the literature that was never cited, only 25% were published in 2015, proposing that uncited records probably have slim chances of being taken up in the future. More than half of the total citations came from less than a 10th of the included papers (7.6%). Looking specifically within empirical papers, we further noticed that articles focusing on determinants of misconduct and QRP yielded on average more citations per paper than research focusing on the problem, its approaches, or its consequences (see the yellow crosses in Figure 4). When looking at highly impactful papers (we selected a cutoff of 30 citations; \(N = 77\)), 64% were empirical, and more than half (54.7%) had a main affiliation from the United States.
When looking at the citation weight for different continents, it was clear that North America generates most citations in research on RI, but that this dominance of citations is partly due to the important number of publications North America generates (especially the United States). In fact, North America has a lower citation average than Australia/New Zealand, and a citation average similar to European averages (Figure 6c). Australia/New Zealand has the highest citation average, but this may be due to one very highly cited paper. The median number of citations per papers (i.e., the yellow asterisks in Figure 6c) are more uniform between continents, ranging from a median of seven citations (i.e., North America and Australia/New Zealand) to one of three citations (i.e., Asia).

Discussion

Research on RI is a field that is difficult to review systematically. The lack of consistency of its key terms, the
absence of a clear delimitation of its scope, the interdisciplinary nature of the journals it targets, and the inconsistency of the article formats it employs to report empirical works make research on RI a fractionated field in which systematic and comprehensive overviews are challenging. Nevertheless, our analysis of a decade (2005-2015) of scientific articles in the field of research on RI reveals a few important points, which may help us define an agenda for future research in the field. We will start by describing diverse noticeable findings from our results and will end with what we consider the two main messages from our study, namely, the lack of research on a number of key actors and the mismatch between what we know on the possible causes for misconduct and the approaches empirically assessed to promote integrity.

Select Noticeable Findings From Our Results

The first noticeable findings from our results are the low proportions of “articles” and empirical works. First, the low representation of research “articles” compared with other publication formats in our initial search (i.e., 44.4%) was atypical for scientific disciplines (e.g., for medicine and health sciences, the proportion of journal article

Figure 6. Citation and publication distribution: (a) Number of articles included per affiliation region for each included year. The size of markers represents the average number of citations per paper acquired by such region in a specific year. Trend lines illustrate the overall research on RI publication growth for each region. (b) Specific country distribution of included articles. We did not include collaborations (i.e., articles with several countries mentioned in the affiliations included in the reference record), international articles (i.e., articles in which the main author was represented by an international organization), and independent articles (i.e., where the main author did not mention a located affiliation) on the map. (c) Average number of citations per paper for each affiliation region. Australia/New Zealand dominates the average number of yearly citations per article, but this is due, in part, to one heavily cited paper. The yellow asterisks, which display the median number of citations per paper, show much greater uniformity between continents.
surpasses 90%; SCOPUS Content Coverage Guide of 2016). Nonetheless, similar proportions may be seen in disciplines such as politics and policy, suggesting that such disciplines may be more aligned with the type of documents published in research on RI. Second, the low proportion of empirical works among included articles was surprising, given that we only included publications automatically classified as “articles” and, thus, excluded most editorials, letters, and other more theoretical types of publications. Although imperfections in the automatic classification may explain parts of this finding—as we described in the “Method” section—the broad and multidisciplinary relevance of RI may also come into play. For instance, given the fact that few of the authors of articles on RI are engaged full time in RI, and that collaborators and target audience sometimes spread through an array of distinct disciplines, it may still be challenging to engage in empirical works on the topic. It would be interesting to see whether the proportion of empirical articles increased in recent years (i.e., 2016 on), now that research on RI is becoming a field of its own.

The second noticeable finding from our result is the distribution of topics targeted. Although we admit that our keywords may have played a role in the topics found in our results, certain topics were seldom explored in our sample despite their direct relevance toward RI. For example, research ethics committees/institutional review boards (“RECs/IRBs”), “Peer review,” and “Whistleblowing”—which may be considered as potential safeguards for integrity in research—were very rarely the main topics of included papers. The current focus, instead, appears to be motivated by describing the problem (“QRP and misconduct”), strengthening reporting standards (“Publication ethics,” “Conflicts of interest,” “Plagiarism,” and “Authorship”), and examining integrity training and policies (“RCR training, education and mentorship” and “Guidelines and policies”). We also found that empirical research was more frequent in academic cheating, falsification of credentials, and integrity training. This might result from the relative ease of building empirical designs in such topics compared with other topics.

The third noticeable finding from our results is the geographic distribution of our sample. The predominance of the United States in the affiliations as the most represented country in our sample is not surprising, given that they are the biggest player in published literature worldwide (see, for example, Phillips, 2016). Nonetheless, China, which is rapidly becoming an important player in scientific publishing worldwide, was scarcely represented in our sample. It is possible that the language limitations of our study (i.e., we only included articles in English), contributed to this disparity, but it would be interesting to extend this search to different languages to assess whether this is the case.

Finally, when looking at the distribution of citations generated by our sample, we noticed that the distribution of citations was highly skewed, and that a notable percentage of articles were never cited. The skewness of citation distributions is not specific to research on RI, and even often occurs within single journals (see, for example, Larivière et al., 2016). The highly skewed distribution of citations included in our sample may simply propose that research on RI is not immune to such dynamics. The fact that about a 10th of the included papers were never cited 4 years or more after publication also raised some questions. First, are there more efficient dissemination systems that could ensure utility and uptake of research on RI; and second, is it possible that published research on RI is being used but not attributed as such? It is conceivable, for example, that a significant part of the readership of research on RI uses RI literature to stay up-to-date, to gain insight, and to update training or policy rather than to conduct research, thereby using the findings without citing the articles as such. We have not conducted a deeper analysis about the source of the citations and about possible network in the citing patterns; however, we assume that such analyses may also yield interesting results. In particular, investigating whether citation counts of research on RI correlate with implementation, systemic changes, and policy building may be relevant to better understand dynamics of change and impact in the field.

Empirical Research on RI Overlooks Important Actors

As we explained in our findings, researchers and research students were the most involved in empirical works on RI. The high representation of researchers and research students is not surprising, given that researchers are directly affected by and targeted in research misconduct and QRP. Nonetheless, others players involved in research who also have an important role in promoting integrity appeared left out from our sample. Studies on policy makers and institutions, for example, were sparse and rarely involved direct contact with these actors, despite their crucial role in defining funding and regulations (see Figure 3). RECs and peer reviewers were also rarely studied, despite their potentially powerful role in preventing and detecting misconduct. The public and research participants were only studied in a few papers that explored the consequences of misconduct (e.g., loss of public trust, risks to research participants), and they were rarely approached directly.

Altogether, this imbalance points to an important gap of knowledge in research on RI. Different members of the research community are unlikely to have the same perceptions and expectations toward research (Bird, 2010). Involving a more balanced share of diverse research actors would likely bring new perspectives to the discussion. But
beyond individual actors’ perspectives, the social contexts and the interaction between actors was also largely untouched by empirical works. Given the complex relationships between research actors and their interrelated dependencies, considering the broader social contexts, the conflicting perspectives, and the shared expectations of different research actors may be essential in building a realistic and comprehensive understanding of RI and misconduct.

A Mismatch Between What We Know and What We Propose

At first glance, our results insinuate that we know a lot about the problem of integrity, but that our understanding of why misconduct happens (determinants), what it engenders (consequences), and what can be done to promote integrity (approaches) is still limited.

The lack of research on determinants of misconduct and systemic approaches for promoting integrity is not new and has been called before (see, for example, Fanelli, 2015). Our findings add to this perspective by highlighting that this imbalance also reveals a mismatch between what we know may predispose to inadequate research practices and the approaches to target misconduct that are discussed in the empirical literature. Specifically, factors identified as contributing to misconduct and QRP (i.e., determinants) most often point to the system, whereas approaches to deter misconduct and QRP most often target researchers’ awareness and compliance, rather than the system.

In addition, although a substantial number of articles assess approaches to promote awareness and compliance toward responsible conduct of research training, the efficacy of training and mentoring on integrity have been debated in the past (Anderson, Horn, Risbey, Ronning, De Vries, & Martinson, 2007). Ana Marušić, Wager, Utrobicic, Rothstein, and Sambunjak (2016), who performed a Cochrane Review looking at the effectiveness of interventions to prevent misconduct and promote integrity in research, concluded that “Due to the very low quality of evidence, the effects of training in responsible conduct of research on reducing research misconduct are uncertain” (p. 2).

Although it is important to mention that many nonempirical articles discussed potential causes for misconduct or proposed approaches—also often systemic approaches—to deter misconduct and QRP, our findings may indicate that ideas for systemic change often remain untested empirically (or at least absent from empirical literature).

In sum, research on RI undertaken over the past decades has undeniably produced useful knowledge and improved our understanding of the issues faced by researchers and the research system, and it certainly continues to do so. Our review highlights the areas, methods, and actors that have been most studied, and sheds light on points that have been overlooked. Being aware of unanswered questions in research on RI is a first step toward generating executable knowledge that will allow us to better align the research agenda with the goal of promoting integrity in research.

Best Practices

As we have thoroughly discussed in the “Method” section, studying research on RI is methodologically challenging. The costs from our efforts to keep the review sample manageable must be considered carefully. All our decisions (i.e., limiting our search to papers from 2005 to 2015 and to automatically categorized “articles”, the choice of keywords, inclusion of articles published in English only, and so forth) allowed us to kept our sample manageable within the resources available, but also came at a cost. We made efforts to maximize the relevance of our results and to ensure transparency throughout the article; yet, it may be important to reiterate that the findings from this study must be used in consideration of the methods and decisions taken. To increase transparency and reuse, we encourage authors to examine and complement the data set shared alongside the article.

Research Agenda

Although the present work is only a first glance in the broad body of research on RI, several points brought up by our analysis may serve to inspire future research agendas.

First, although the predominant involvement of researchers and research students in research on RI is justified, given their implication at the core of research practices, involving participants beyond research producers in future research on RI might help broaden our understanding of the problem. In particular, exploring the perspectives of different research actors and the social context that links these actors might help assess the possibilities, impact, and acceptability of different approaches to foster integrity. In the same way, involving topics and actors who play important roles early in the research process (e.g., REC, policy makers, funders) may be key to better understand how misconduct can be prevented.

Second, reconnecting the approaches that are proposed and assessed empirically to what is already known from past research on determinants of misconduct may be essential to increase the success of future approaches to foster RI and deter misconduct. In other words, research on RI may benefit from developing methods and projects to assess feasibility and success of systemic approaches beyond researchers’ compliance and awareness.

Educational Implications

The sense of urgency attached to the topic of misconduct sometimes appears to push scientists to explore new venues for solutions rather than to optimize preexisting opportunities.
We found that past research on RI most often discussed problems with RI and reporting standards, and responded by proposing new surveillance, training, and compliance techniques. Nonetheless, in focusing on new approaches, researchers may overlook important insights from past research and useful safeguards, which are currently available in the research organization (e.g., peer review, whistleblowing, RECs). Building greater cohesiveness in the field of RI to allow comprehensive iterations of past research and approaches might help better optimize existing opportunities for fostering integrity.

Acknowledgments

The authors would like to thank professor Raymond De Vries for his help in revising the manuscript. They would also like to thank the organisers of the Doctoral Forum of the 5th World Conference of Research Integrity (Nicholas H. Steneck, Elizabeth Heitman, and Nils Holger Axelsen) as well as its participants for their comments and recommendations regarding this work. Finally, the authors would like to thank the peer-reviewers from PLOS One and Science and Engineering Ethics for their useful comments which helped improve earlier version of our manuscript

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The project is funded by internal funding from Hasselt University through the Bijzonder Onderzoeksfonds (BOF), grant number 15NI05. NAB has received an award with financial reward from the World Conference on Research Integrity (WCRI) at the Fifth WCRI in 2017 for the present work.

ORCID iD

Noémie Aubert Bonn https://orcid.org/0000-0003-0252-2331

Supplemental Material

Supplemental material for this article is available online.

Note

1. When training was found to deter misconduct and questionable research practices (QRP; i.e., to promote integrity), we counted it as if the paper stated that “lack of awareness” contributed to misconduct and QRP (e.g., Geller, Boyce, Ford, & Sugarman, 2010; Kraemer Diaz, Spears Johnson, & Arcury, 2015). When papers found no effects of potential factors, we did not include those factors in the findings in Figure 5. The negative effects found were as follows: Wolfgang Stroebe, Postmes, and Spears (2012) found that social psychology (i.e., discipline) was not more prone to fraud than other disciplines. Karen Woolley et al. (2011) found that, although country of affiliation, prior misconduct, and single authorship were related to higher misconduct-related retractions, declarations of financial incentives were not. Michael Mumford et al. (2007) found a whole array of factors encompassing all three categories of personal, systemic, or awareness and compliance, but they also found that work commitment and limited competition did not promote unethical decisions. Finally, Daniele Fanelli, Costas, and Larivière (2015) found that inadequate oversight or policies, financial incentives, hampered mutual criticism, and career stage affected scientific integrity, but not gender and pressure.

References

Anderson, M. S., Horn, A. S., Risbey, K. R., Romming, E. A., De Vries, R., & Martinson, B. C. (2007). What do mentoring and training in the responsible conduct of research have to do with scientists’ misbehavior? Findings from a national survey of NIH-funded scientists. Academic Medicine, 82, 853-860. doi:10.1097/ACM.0b013e31812f764c

Aubert Bonn, N., Godecharle, S., & Dierickx, K. (2017). European universities’ guidance on research integrity and misconduct: Accessibility, approaches, and content. Journal of Empirical Research on Human Research Ethics, 12, 33-44. doi:10.1177/1556264616688980

Bird, S. (2010). Responsible research: What is expected? Science and Engineering Ethics, 16, 693-696. doi:10.1007/s11948-010-9248-9

Butler, D. (2013, March 28). Investigating journals: The dark side of publishing. Nature. Retrieved from https://www.nature.com/news/investigating-journals-the-dark-side-of-publishing-1.12666

De Vries, R., Anderson, M. S., & Martinson, B. C. (2006). Normal misbehavior: Scientists talk about the ethics of research. Journal of Empirical Research on Human Research Ethics, 1, 43-50. doi:10.1525/jer.2006.1.1.43

Fanelli, D. (2009). How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE, 4(5), e5738. doi:10.1371/journal.pone.0005738

Fanelli, D. (2015). We need more research on causes and consequences, as well as on solutions. Addiction, 110, 11-13. doi:10.1111/add.12772

Fanelli, D., Costas, R., & Larivière, V. (2015). Misconduct policies, academic culture and career stage, not gender or pressures to publish, affect scientific integrity. PLoS ONE, 10(6), e0127556. doi:10.1371/journal.pone.0127556

Geller, G., Boyce, A., Ford, D. E., & Sugarman, J. (2010). Beyond “compliance”: The role of institutional culture in promoting research integrity. Academic Medicine, 85, 1296-1302. doi:10.1097/ACM.0b013e3181e5f0e5

Ioannidis, J. P. A., Boyack, K., & Wouters, P. F. (2016). Citation metrics: A primer on how (not) to normalize. PLoS Biology, 14(9), e1002542. doi:10.1371/journal.pbio.1002542

Kraemer Diaz, A. E., Spears Johnson, C. R., & Arcury, T. A. (2015). Perceptions that influence the maintenance of scientific integrity: Scientists talk about the ethics of research. Journal of Empirical Research on Human Research Ethics, 11(12), 33-44. doi:10.1177/1556264616688980

Larivière, V., Kiernan, V., MacCallum, C. J., McNutt, M., Patterson, M., Pulverer, B., . . . Curry, S. (2016). A simple
proposal for the publication of journal citation distributions. Biorxiv. Retrieved from https://www.biorxiv.org/content/10.1101/062109v2.full

Martinson, B. C., Anderson, M. S., & de Vries, R. (2005). Scientists behaving badly. Nature, 435, 737-738. doi:10.1038/435737a

Marušić, A., Wager, E., Utrobicic, A., Rothstein, H. R., & Sambunjak, D. (2016). Interventions to prevent misconduct and promote integrity in research and publication. Cochrane Database of Systematic Reviews, 4. doi:10.1002/14651858.MR000038.pub2

Mumford, M. D., Murphy, S. T., Connelly, S., Hill, J. H., Antes, A. L., Brown, R. P., & Devenport, L. D. (2007). Environmental influences on ethical decision making: Climate and environmental predictors of research integrity. Ethics and Behavior, 17, 337-366. doi:10.1080/10508420701519510

Phillips, N. (2016, April 20). US tops global research performance. Nature. Retrieved from https://www.natureindex.com/news-blog/us-tops-global-research-performance

Pupovac, V., & Fanelli, D. (2014). Scientists admitting to plagiarism: A meta-analysis of surveys. Science and Engineering Ethics, 21, 1331-1352. doi:10.1007/s11948-014-9600-6

Steneck, N. H. (1999). Confronting misconduct in science in the 1980s and 1990s: What has and has not been accomplished? Science and Engineering Ethics, 5, 161-176. doi:10.1007/s11948-999-0005-x

Stroebe, W., Postmes, T., & Spears, R. (2012). Scientific misconduct and the myth of self-correction in science. Perspectives on Psychological Science, 7, 670-688. doi:10.1177/174569161246687

Woolley, K. L., Lew, R. A., Stretton, S., Ely, J. A., Bramich, N. J., Keys, J. R., . . . Woolley, M. J. (2011). Lack of involvement of medical writers and the pharmaceutical industry in publications retracted for misconduct: A systematic, controlled, retrospective study. Current Medical Research and Opinion, 27, 1175-1182. doi:10.1185/03007995.2011.573546

Author Biographies

Noémie Aubert Bonn is a PhD Student supervised by Prof. Dr. Wim Pinxten at the Faculty of Health and Life Sciences in Hasselt University, Belgium. She currently conducts an empirical research project, which aims to understand the interplay between success, integrity, and research culture, to propose changes to how researchers are assessed and rewarded (see re-sinc.wixsite.com/project). The present publication comes from the literature review for the project. She contributed to the conceptualization, methodology, investigation, formal analysis, visualisation, and writing — both the original draft and the review and editing.

Wim Pinxten is Associate Professor at the Faculty of Health and Life Sciences in Hasselt University, Belgium. As a medical ethicist with expertise in research ethics, he has increasingly devoted attention to education and research in the field of research integrity, with a specific interest in research culture and the definition of success in science. He is supervisor of Noémie Aubert Bonn. He contributed to the funding acquisition, conceptualization, methodology, validation, supervision, and writing — both the original draft and review and editing.