An investigation of the tangent splash of a subplane of PG(2, q^3)

S.G. Barwick and Wen-Ai Jackson
School of Mathematics, University of Adelaide
Adelaide 5005, Australia

Corresponding Author: Dr Susan Barwick, University of Adelaide, Adelaide 5005, Australia. Phone: +61 8 8303 3983, Fax: +61 8 8303 3696, email:susan.barwick@adelaide.edu.au

Keywords: Bruck-Bose representation, cubic extension, subplanes, Sherk surfaces, cover planes

AMS code: 51E20

Abstract

In PG(2, q^3), let \(\pi \) be a subplane of order \(q \) that is tangent to \(\ell_\infty \). The tangent splash of \(\pi \) is defined to be the set of \(q^2 + 1 \) points on \(\ell_\infty \) that lie on a line of \(\pi \). This article investigates properties of the tangent splash. We prove results about sublines contained in a tangent splash, transitivity results, and counting results. We also show that a tangent splash is a Sherk surface. Further, in the Bruck-Bose representation of PG(2, q^3) in PG(6, q), we prove the existence of a set of cover planes of a tangent splash, and investigate the tangent subspace of a point of \(\pi \).

1 Introduction

In [2], the authors study the Bruck-Bose representation of PG(2, q^3) in PG(6, q) and determine the representation of order-\(q \)-subplanes and order-\(q \)-sublines of PG(2, q^3) in PG(6, q). In this article we investigate in more detail the tangent order-\(q \)-subplanes of PG(2, q^3), that is, the subplanes of PG(2, q^3) that have order \(q \) and meet \(\ell_\infty \) in exactly one point.

Let \(\pi \) be a subplane of PG(2, q^3) of order \(q \) that meets \(\ell_\infty \) in 0 or 1 point. Each line of \(\pi \), when extended to PG(2, q^3), meets \(\ell_\infty \) in a point. The set of points of \(\ell_\infty \) that lie on a line of \(\pi \) is called the splash of \(\pi \). If \(\pi \) is tangent to \(\ell_\infty \) at a point \(T \), then the splash of
π consists of $T = \pi \cap \ell_\infty$, and q^2 further points. We call this splash a tangent splash S_T with centre T. If π is disjoint from ℓ_∞, then the splash contains $q^2 + q + 1$ points, and we call it an exterior splash. In this article we investigate the tangent splash of a tangent order-q-subplane. In future work the authors investigate the exterior splash.

Section 2 contains the necessary background information. Section 3 investigates order-q-sublines contained in a tangent splash, and this investigation is continued in Section 7. We show that the unique order-q-subline of ℓ_∞ containing the centre T and two further points of a tangent splash S_T is contained in S_T, and further, these are the only order-q-sublines contained in S_T.

In Section 4 we prove that the collineation group $\text{PGL}(3, q^3)$ is transitive on the tangent splashes of ℓ_∞, and prove further useful group theoretic results about tangent splashes. Section 5 looks at counting the number of tangent splashes on ℓ_∞. Further, we look at how many points are needed to define a unique order-q-subplane with a given tangent splash.

To continue with our investigation, we need to introduce coordinates, and in Section 6 we coordinatise an order-q-subplane of $\text{PG}(2, q^3)$. In Section 8 we prove that a tangent splash is a Sherk surface as defined in [13].

Section 9 looks at a tangent splash in the Bruck-Bose representation in $\text{PG}(6, q)$. A tangent splash corresponds to a set of $q^2 + 1$ planes contained in a regular spread. We show that there is a set of $q^2 + q + 1$ cover planes that meet every element of a tangent splash, and are completely contained in the tangent splash.

In Section 10 we begin with a tangent order-q-subplane π, and for each affine point $P \in \pi$ we construct another order-q-subplane P^\perp, called the tangent subspace, and investigate the relationship between π and P^\perp in $\text{PG}(6, q)$.

2 The Bruck-Bose representation of $\text{PG}(2, q^3)$ in $\text{PG}(6, q)$

2.1 The Bruck-Bose representation

We begin by describing the Bruck-Bose representation of $\text{PG}(2, q^3)$ in $\text{PG}(6, q)$, and introduce the notation we will use.

A 2-spread of $\text{PG}(5, q)$ is a set of $q^3 + 1$ planes that partition $\text{PG}(5, q)$. A 2-regulus of $\text{PG}(5, q)$ is a set of $q + 1$ mutually disjoint planes π_1, \ldots, π_{q+1} with the property that if a line meets three of the planes, then it meets all $q + 1$ of them. Three mutually disjoint planes in $\text{PG}(5, q)$ lie on a unique 2-regulus. A 2-spread \mathcal{S} is regular if for any three planes in \mathcal{S}, the 2-regulus containing them is contained in \mathcal{S}. See [11] for more information on 2-spreads.
The following construction of a regular 2-spread of \(\text{PG}(5, q) \) will be needed. Embed \(\text{PG}(5, q) \) in \(\text{PG}(5, q^3) \) and let \(g \) be a line of \(\text{PG}(5, q^3) \) disjoint from \(\text{PG}(5, q) \). Let \(g^1, g^2 \) be the conjugate lines of \(g \); both of these are disjoint from \(\text{PG}(5, q) \). Let \(P_i \) be a point on \(g \); then the plane \(\langle P_i, P_i^1, P_i^2 \rangle \) meets \(\text{PG}(5, q) \) in a plane. As \(P_i \) ranges over all the points of \(g \), we get \(q^3 + 1 \) planes of \(\text{PG}(5, q) \) that partition \(\text{PG}(5, q) \). These planes form a regular spread \(S \) of \(\text{PG}(5, q) \). The lines \(g, g^1, g^2 \) are called the (conjugate skew) transversal lines of the spread \(S \). Conversely, given a regular 2-spread in \(\text{PG}(5, q) \), there is a unique set of three (conjugate skew) transversal lines in \(\text{PG}(5, q^3) \) that generate \(S \) in this way.

We will use the linear representation of a finite translation plane \(\mathcal{P} \) of dimension at most three over its kernel, due independently to André [1] and Bruck and Bose [6, 7]. Let \(\Sigma_\infty \) be a hyperplane of \(\text{PG}(6, q) \) and let \(S \) be a 2-spread of \(\Sigma_\infty \). We use the phrase a subspace of \(\text{PG}(6, q) \backslash \Sigma_\infty \) to mean a subspace of \(\text{PG}(6, q) \) that is not contained in \(\Sigma_\infty \). Consider the following incidence structure: the points of \(\mathcal{A}(S) \) are the points of \(\text{PG}(6, q) \backslash \Sigma_\infty \); the lines of \(\mathcal{A}(S) \) are the 3-spaces of \(\text{PG}(6, q) \backslash \Sigma_\infty \) that contain an element of \(S \); and incidence in \(\mathcal{A}(S) \) is induced by incidence in \(\text{PG}(6, q) \). Then the incidence structure \(\mathcal{A}(S) \) is an affine plane of order \(q^3 \). We can complete \(\mathcal{A}(S) \) to a projective plane \(\mathcal{P}(S) \); the points on the line at infinity \(\ell_\infty \) have a natural correspondence to the elements of the 2-spread \(S \). The projective plane \(\mathcal{P}(S) \) is the Desarguesian plane \(\text{PG}(2, q^3) \) if and only if \(S \) is a regular 2-spread of \(\Sigma_\infty \cong \text{PG}(5, q) \) (see [5]).

We use the following notation: if \(P \) is an affine point of \(\text{PG}(3, q^3) \), we also use \(P \) to refer to the corresponding affine point in \(\text{PG}(6, q) \). If \(T \) is a point of \(\ell_\infty \) in \(\text{PG}(2, q^3) \), we use \([T]\) to refer to the spread element of \(S \) in \(\text{PG}(6, q) \) corresponding to \(T \). More generally, if \(X \) is a set of points of \(\text{PG}(2, q^3) \), then we let \([X]\) denote the corresponding set in \(\text{PG}(6, q) \).

In the case \(\mathcal{P}(S) \cong \text{PG}(2, q^3) \), we can relate the coordinates of \(\text{PG}(2, q^3) \) and \(\text{PG}(6, q) \) as follows. Let \(\tau \) be a primitive element in \(\text{GF}(q^3) \) with primitive polynomial

\[
x^3 - t_2x^2 - t_1x - t_0.
\]

Then every element \(\alpha \in \text{GF}(q^3) \) can be uniquely written as \(\alpha = a_0 + a_1\tau + a_2\tau^2 \) with \(a_0, a_1, a_2 \in \text{GF}(q) \). Points in \(\text{PG}(2, q^3) \) have homogeneous coordinates \((x, y, z)\) with \(x, y, z \in \text{GF}(q^3) \). Let the line at infinity \(\ell_\infty \) have equation \(z = 0 \); so the affine points of \(\text{PG}(2, q^3) \) have coordinates \((x, y, 1)\). Points in \(\text{PG}(6, q) \) have homogeneous coordinates \((x_0, x_1, x_2, y_0, y_1, y_2, z)\) with \(x_0, x_1, x_2, y_0, y_1, y_2, z \in \text{GF}(q) \). Let \(\Sigma_\infty \) have equation \(z = 0 \). Let \(P = (\alpha, \beta, 1) \) be a point of \(\text{PG}(2, q^3) \). We can write \(\alpha = a_0 + a_1\tau + a_2\tau^2 \) and \(\beta = b_0 + b_1\tau + b_2\tau^2 \) with \(a_0, a_1, a_2, b_0, b_1, b_2 \in \text{GF}(q) \). Then the map

\[
\sigma: \text{PG}(2, q^3) \backslash \ell_\infty \to \text{PG}(6, q) \backslash \Sigma_\infty
\]

\[
(\alpha, \beta, 1) \mapsto (a_0, a_1, a_2, b_0, b_1, b_2, 1)
\]

is the Bruck-Bose map. More generally, if \(z \in \text{GF}(q) \), then we can generalise this to

\[
\sigma(\alpha, \beta, z) = (a_0, a_1, a_2, b_0, b_1, b_2, z).
\]

Note that if \(z = 0 \), then \(T = (\alpha, \beta, 0) \) is a point of \(\ell_\infty \), and \(\sigma(\alpha, \beta, 0) \) is a single point in the spread element \([T]\) corresponding to \(T \).
2.2 Subplanes and sublines in the Bruck-Bose representation

An order-q-subline of $\text{PG}(1,q^3)$ is defined to be one of the images of $\text{PG}(1,q) = \{(a,1) \mid a \in \text{GF}(q)\} \cup \{1,0\}$ under $\text{PGL}(2,q^3)$. An order-q-subplane of $\text{PG}(2,q^3)$ is a subplane of $\text{PG}(2,q^3)$ of order q. Equivalently, it is an image of $\text{PG}(2,q)$ under $\text{PGL}(3,q^3)$. An order-q-subline of $\text{PG}(2,q^3)$ is a line of an order-q-subplane of $\text{PG}(2,q^3)$.

In [2, 3], the authors determine the representation of order-q-subplanes and order-q-sublines of $\text{PG}(2,q^3)$ in the Bruck-Bose representation in $\text{PG}(6,q^3)$, and we quote the results we need here. We first introduce some notation to simplify the statements. A special conic C is a non-degenerate conic in a spread element (a plane), such that when we extend C to $\text{PG}(6,q^3)$, it meets the transversals of the regular spread S. Similarly, a special twisted cubic N is a twisted cubic in a 3-space of $\text{PG}(6,q^3) \setminus \Sigma_\infty$ about a spread element, such that when we extend N to $\text{PG}(6,q^3)$, it meets the transversals of S. Note that a special twisted cubic has no points in Σ_∞.

Theorem 2.1 [2] Let b be an order-q-subline of $\text{PG}(2,q^3)$.

1. If $b \subset \ell_\infty$, then in $\text{PG}(6,q)$, b corresponds to a 2-regulus of S. Conversely every 2-regulus of S corresponds to an order-q-subline of ℓ_∞.

2. If b meets ℓ_∞ in a point, then in $\text{PG}(6,q)$, b corresponds to a line of $\text{PG}(6,q) \setminus \Sigma_\infty$. Conversely every line of $\text{PG}(6,q) \setminus \Sigma_\infty$ corresponds to an order-q-subline of $\text{PG}(2,q^3)$ tangent to ℓ_∞.

3. If b is disjoint from ℓ_∞, then in $\text{PG}(6,q)$, b corresponds to a special twisted cubic. Further, a twisted cubic N of $\text{PG}(6,q)$ corresponds to an order-q-subline of $\text{PG}(2,q^3)$ if and only if N is special.

Theorem 2.2 [2] Let B be an order-q-subplane of $\text{PG}(2,q^3)$.

1. If B is secant to ℓ_∞, then in $\text{PG}(6,q)$, B corresponds to a plane of $\text{PG}(6,q)$ that meets $q+1$ spread elements. Conversely, any plane of $\text{PG}(6,q)$ that meets $q+1$ spread elements corresponds to an order-q-subplane of $\text{PG}(2,q^3)$ secant to ℓ_∞.

2. Suppose B is tangent to ℓ_∞ in the point T. Then B determines a set $[B]$ of points in $\text{PG}(6,q)$ (where the affine points of B correspond to the affine points of $[B]$) such that:

(a) $[B]$ is a ruled surface with conic directrix C contained in the plane $[T] \in S$, and twisted cubic directrix N contained in a 3-space Σ that meets Σ_∞ in a spread element (distinct from $[T]$). The points of $[B]$ lie on $q+1$ pairwise disjoint generator lines joining C to N.

(b) The $q+1$ generator lines of $[B]$ joining C to N are determined by a projectivity from C to N.
When we extend $[B]$ to $\text{PG}(6, q^3)$, it contains the conjugate transversal lines g, g^q, g^{q^2} of the regular spread S. So C and N are special.

(d) $[B]$ is the intersection of nine quadrics in $\text{PG}(6, q)$.

2.3 The collineation group in the Bruck-Bose representation

Consider a homography $\alpha \in \text{PGL}(3, q^3)$, acting on $\text{PG}(2, q^3)$, which fixes ℓ_∞ as a set of points. There is a corresponding homography $[\alpha] \in \text{PGL}(7, q)$ acting on the Bruck Bose representation of $\text{PG}(2, q^3)$ as $\text{PG}(6, q)$. Note that $[\alpha]$ fixes the hyperplane Σ_∞ at infinity of $\text{PG}(6, q)$, and permutes the elements of the regular spread S in Σ_∞. Consequently subgroups of $\text{PGL}(3, q^3)$ fixing ℓ_∞ correspond to subgroups of $\text{PGL}(7, q)$ fixing Σ_∞ and permuting the spread elements in Σ_∞. For more details, see [4]. Hence when we prove results about transitivity in $\text{PG}(2, q^3)$, there is a corresponding transitivity result in $\text{PG}(6, q)$. We are interested in a particular Singer cycle acting on $\text{PG}(6, q)$. It is straightforward to prove the following.

Theorem 2.3 Consider the homography $\Theta \in \text{PGL}(7, q)$ with 7×7 matrix

$$M = \begin{pmatrix}
T & 0 & 0 \\
0 & T & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \text{where} \quad T = \begin{pmatrix}0 & 0 & t_0 \\
1 & 0 & t_1 \\
0 & 1 & t_2
\end{pmatrix}.$$

Then in $\text{PG}(6, q)$, Θ fixes each plane of the spread S, and $\langle \Theta \rangle$ acts regularly on the set of points, and on the set of lines, of each spread element.

3 Sublines contained in a tangent splash

Let π be an order-q-subplane of $\text{PG}(2, q^3)$ tangent to ℓ_∞ at the point T. Recall that the tangent splash S_T of π is the set of points of ℓ_∞ lying on lines of π, and $T = \pi \cap \ell_\infty$ is called the centre of S_T. As two distinct lines of π meet in a point of π, the lines of π not through T meet ℓ_∞ in distinct points. Hence a tangent splash has $q^2 + 1$ points. We say a set of $q^2 + 1$ points $S_T \subset \ell_\infty$ is a tangent splash with centre T if there is an order-q-subplane π with tangent splash S_T and $\pi \cap \ell_\infty = T$.

In this section we investigate the order-q-sublines contained in a tangent splash S_T and show that the points of a tangent splash form an affine plane. The next result investigates order-q-sublines contained in S_T which contain the centre T. We show later in Theorem 7.1 that every order-q-subline contained in S_T must contain the centre T.

Lemma 3.1 Let π be an order-q-subplane of $\text{PG}(2, q^3)$ tangent to ℓ_∞ at the point T with tangent splash S_T.

5
1. The lines of π through an affine point $P \in \pi$ meet S_T in an order-q-subline t_P. Further, there is a bijection between the $q^2 + q$ affine points P of π and the order-q-sublines t_P containing T and contained in S_T.

2. Let U, V be distinct points non-centre points of S_T. Then the unique order-q-subline containing T, U, V is contained in S_T.

Proof Label the lines of π through P by $\ell_0 = PT, \ell_1, \ldots, \ell_q$. For each i, let $\overline{\ell}_i$ denote the extension of ℓ_i to PG(2,q^3). If m is another line of π, $P \notin m$, then the points $\ell_0 \cap m, \ldots, \ell_q \cap m$ are the $q + 1$ distinct points of m. Hence the points $t_P = \{T = \overline{\ell}_0 \cap \ell_\infty, \overline{\ell}_1 \cap \ell_\infty, \ldots, \overline{\ell}_q \cap \ell_\infty\}$ are the projection from P of an order-q-subline m onto the line ℓ_∞, and so t_P is an order-q-subline of ℓ_∞. As the order-q-sublines ℓ_i are lines of π, the points $\overline{\ell}_i \cap \ell_\infty$ are points of S_T, so t_P is contained in S_T and contains the centre T.

As two lines of π meet in T, through a non-centre point U of S_T there is unique line u of π. So an order-q-subline of S_T containing T is projected by at most one point of π. Hence for distinct affine points P, Q of π, the order-q-sublines t_P and t_Q are distinct. There are $q^2 + q$ points of π distinct from T. We show in the next paragraph that there are $q^2 + q$ order-q-sublines contained in S_T and containing T, and hence we have a bijection from affine points $P \in \pi$ to order-q-sublines t_P contained in S_T and containing T.

Let U, V be distinct points of S_T, $U, V \neq T$, and let u, v be the distinct lines in π meeting ℓ_∞ in U, V respectively. Let $P = u \cap v$, so $P \in \pi$ and $P \neq T$ as $T \notin u, v$. The lines of π through P meet ℓ_∞ in an order-q-subline t_P containing T, U, V. Hence t_P is the unique order-q-subline through T, U, V. By part 1, t_P is contained in S_T, completing the proof of part 2. As there are $\binom{q^2}{2}/\binom{q}{2}$ ways to choose U, V to get a unique order-q-subline, S_T contains exactly $q(q + 1)$ order-q-sublines containing T, completing the proof of part 1.

Lemma 3.1 has a natural correspondence in the Bruck-Bose representation in PG(6,q). For example, part 2 says that given a tangent splash $[S_T]$ which consists of $q^2 + 1$ spread elements, the unique 2-regulus containing the centre $[T]$ and two further elements $[U], [V]$ of $[S_T]$ is contained in $[S_T]$.

The next result shows how to construct an affine plane from the points and order-q-sublines of a tangent splash.

Theorem 3.2 Consider the incidence structure \mathcal{I} with points the q^2 elements of $S_T \setminus \{T\}$, lines the order-q-sublines containing T and contained in S_T, and incidence is inclusion. Then \mathcal{I} is an affine plane of order q.

Proof By Lemma 3.1[2], two points of \mathcal{I} lie in a unique line of \mathcal{I}. Hence \mathcal{I} is a 2-($q^2, q, 1$) design and so is an affine plane of order q. □
4 Group properties of tangent subplanes and tangent splashes

In this section we study the collineation group of $\text{PG}(2, q^3)$ fixing ℓ_∞ and show it is transitive on order-q-subplanes tangent to ℓ_∞, and hence transitive on tangent splashes on ℓ_∞. Thus all tangent subplanes have the same geometrical and group properties, and to prove results about tangent subplanes in general, we may coordinatise a particular tangent subplane, and work with that. The two main results of this section are:

Theorem 4.1 The subgroup of $\text{PGL}(3, q^3)$ acting on $\text{PG}(2, q^3)$ and fixing the line ℓ_∞ is transitive on all the order-q-subplanes meeting ℓ_∞ in a point.

Corollary 4.2 The subgroup of $\text{PGL}(3, q^3)$ acting on $\text{PG}(2, q^3)$ and fixing the line ℓ_∞ is transitive on the tangent splashes of ℓ_∞.

We begin by counting order-q-subplanes in $\text{PG}(2, q^3)$.

Lemma 4.3 In $\text{PG}(2, q^3)$ there are $q^6(q^6 + q^3 + 1)(q^2 - q + 1)(q^2 + q + 1)$ order-q-subplanes in total, and $q^7(q^3 - 1)(q^3 + 1)(q^2 + q + 1)$ order-q-subplanes tangent to a given line.

Proof It is straightforward to count the number of order-q-subplanes in $\text{PG}(2, q^3)$ as each quadrangle of $\text{PG}(2, q^3)$ is contained in a unique order-q-subplane. To count x, the number of order-q-subplanes tangent to a fixed line, we count in two ways the number of pairs (ℓ, π) where ℓ is a line of $\text{PG}(2, q^3)$ tangent to an order-q-subplane π. This gives

$$x = q^6(q^6 + q^3 + 1)(q^2 - q + 1)(q^2 + q + 1) \times (q^2 + q + 1)(q^3 - q)/(q^6 + q^3 + 1)$$

$$= q^7(q^3 - 1)(q^3 + 1)(q^2 + q + 1).$$

The following lemma provides the proof for Theorem 4.1 and Corollary 4.2 as well as some other collineation results that are used in later sections.

Lemma 4.4 Consider the collineation group $G = \text{PGL}(3, q^3)$ acting on $\text{PG}(2, q^3)$. Let $K = G_\pi$ be the subgroup of G fixing an order-q-subplane π; let $H = G_\ell$ be the subgroup of G fixing a line ℓ of $\text{PG}(2, q^3)$; and let $I = G_{\pi, \ell}$ be the subgroup of G fixing a line ℓ and an order-q-subplane π tangent to ℓ. Then

1. $G = \text{PGL}(3, q^3)$ is transitive on the order-q-subplanes of $\text{PG}(2, q^3)$.
2. \(K = G_\pi \) has three orbits on the points of \(\text{PG}(2,q^3) \): the points of \(\pi \), the points of \(\text{PG}(2,q^3) \setminus \pi \) that lie on a line of \(\pi \), and the points that do not lie on a line of \(\pi \). \(K \) has three line orbits: lines of \(\pi \), lines of \(\text{PG}(2,q^3) \) tangent to \(\pi \), and lines of \(\text{PG}(2,q^3) \) exterior to \(\pi \).

3. \(|H| = q^9(q^3 - 1)^2(q^3 + 1)|.\)

4. \(|I| = q^2(q - 1)|.\)

5. \(H = G_\ell \) is transitive on all the order-\(q \)-subplanes tangent to \(\ell \).

6. \(I = G_{\pi,\ell} \) fixes linewise the lines of \(\pi \) through \(T = \pi \cap \ell \), and is transitive on the points of \(\pi \setminus \{T\} \) on these lines. Further \(I \) is transitive on the lines of \(\pi \) not through \(T \).

7. \(I = G_{\pi,\ell,\infty} \) fixes the tangent splash of \(\pi \) and is transitive on the non-centre points of this splash.

Proof Part \([1]\) is an immediate corollary of the Fundamental Theorem of Projective Geometry (see \([10]\)). Hence when we consider \(K = G_\pi \), we can choose \(\pi = \text{PG}(2,q) \). Now \(K \) fixes \(\pi = \text{PG}(2,q) \) as a set and acts faithfully on \(\text{PG}(2,q) \) (as the only collineations of \(\text{PG}(2,q^3) \) that fix \(\pi \) pointwise are the automorphic collineations in \(\text{PGL}(3,q^3) \setminus \text{PGL}(3,q^3) \)). Hence \(K = \text{PGL}(3,q) \), and so \(K \) is transitive on the points and lines of \(\pi \). Note that \(|K| = |\text{PGL}(3,q)| = q^3(q^3 - 1)(q^2 - 1)|, see for example \([9]\). Hence the points of \(K \) form one point orbit of \(K \). Consider the line \([1,-1,0]\) which meets \(\pi = \text{PG}(2,q) \) in a line of \(\pi \). The point \(P = (1,1,\tau) \) is on the line \([1,-1,0]\) but not in \(\pi \). We find the subgroup \(K_P \) of \(K \) fixing \(P \). Suppose

\[
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
\tau
\end{pmatrix}
\equiv
\begin{pmatrix}
1 \\
1 \\
\tau
\end{pmatrix}
\]

(where \(a, \ldots, i \in \text{GF}(q) \)). This gives \(a + b + c \tau = d + e + f \tau \) (and so \(c = f \), \(a + b = d + e \)) and \((a + b + c \tau) \tau = g + h + i \tau \) (and so \(c = 0 \), \(a + b = i \), \(g + h = 0 \)). Hence the matrix is

\[
\begin{pmatrix}
a & b & 0 \\
d & a + b - d & 0 \\
g & -g & a + b
\end{pmatrix}
\]

As the determinant is non-zero, we may take \(a + b = 1 \) and the matrix is

\[
\begin{pmatrix}
a & 1 - a & 0 \\
d & 1 - d & 0 \\
g & -g & 1
\end{pmatrix}
\]

which has non-zero determinant if and only if \(a \neq d \). Hence the size of \(K_P \) is \(q^2(q - 1) \).

The orbit stabilizer theorem gives \(|P^K| = |K|/|K_P| = (q^3(q^3 - 1)(q^2 - 1))/(q^2(q - 1)) = (q^2 + q + 1)(q^3 - q) \). This is equal to the number of points of \(\text{PG}(2,q^3) \setminus \pi \) that lie on a line of \(\pi \). Hence the points of \(\text{PG}(2,q^3) \setminus \pi \) that lie on a line of \(\pi \) form an orbit of \(K \).
We now consider the points of $\text{PG}(2, q^3) \setminus \pi$ that do not lie on a line of π. The point $Q = (1, \tau, \tau^2)$ does not lie on any lines of $\pi = \text{PG}(2, q)$. We find the subgroup K_Q of K fixing Q. Suppose the matrix

$$B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

(where $a, \ldots, i \in \text{GF}(q)$) fixes the point Q. Then $(a + b \tau + c \tau^2)\tau = d + e \tau + f \tau^2$ and $(d + e \tau + f \tau^2)\tau = g + h \tau + i \tau^2$, so we have

$$B = \begin{pmatrix} a & b & c \\ ct_0 & a + ct_1 & b + ct_2 \\ t_0(b + ct_2) & ct_0 + (b + ct_2)t_1 & a + ct_1 + (b + ct_2)t_2 \end{pmatrix} = \begin{pmatrix} x^t \\ (T x)^t \\ (T^2 x)^t \end{pmatrix}$$

where $x^t = (a, b, c)$ and T is the matrix given in Theorem 2.3. The matrix T has order $q^2 + q + 1$, and generates a Singer cycle on the points of $\pi = \text{PG}(2, q)$. Hence the points $x, T x, T^2 x$ of π are non-collinear, and so the matrix B has nonzero determinant provided a, b, c are not all zero. Further (a, b, c) and $y(a, b, c)$ give the same collineation if and only if $y \in \text{GF}(q) \setminus \{0\}$. Thus the subgroup K_Q is of size $(q^3 - 1)/(q - 1) = q^2 + q + 1$. Note that setting $(a, b, c) = (0, 1, 0)$ gives the matrix T^t which fixes Q, so as the matrix T generates a Singer cycle of order $q^2 + q + 1$, the subgroup K_Q is the Singer cycle generated by the matrix T^t. By the orbit stabilizer theorem, $|K^Q| = |K|/|K_Q| = (q^3(q^3 - 1)/(q^2 - 1))/(q^2 + q + 1) = q^3(q - 1)(q^2 - 1)$. This is equal to the number of points of $\text{PG}(2, q^3) \setminus \pi$ that lie on no line of π, hence these points form an orbit of K. The lines orbits of K follow by a dual argument, completing the proof of part 2.

As G is transitive on the $q^6 + q^3 + 1$ lines of $\text{PG}(2, q^3)$, the orbit stabilizer theorem gives $|H| = |G|/(q^6 + q^3 + 1) = q^6(q^3 - 1)^2(q^3 + 1)/(q^6 + q^3 + 1) = q^6(q^3 - 1)^2(q^3 + 1)$, proving part 3.

Consider the subgroup I fixing a order-q-subplane π and a line ℓ tangent to π. By part 1 we can choose $\pi = \text{PG}(2, q)$ and so $G_\pi = \text{PGL}(3, q)$. By part 2 without loss of generality we can pick $\ell = [0, 1, \tau] = \{ (1, 0, 0) \} \cup \{ (x, -\tau, 1) \mid x \in \text{GF}(q^3) \}$. Note that ℓ is tangent to $\pi = \text{PG}(2, q)$ in the point $T = (1, 0, 0)$. If an element of $\text{PGL}(3, q)$ fixes $T = (1, 0, 0)$ and fixes ℓ, then it has form

$$A = \begin{pmatrix} a & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad a, b, c \in \text{GF}(q), \ a \neq 0. \quad (1)$$

Thus $I = G_{\pi, \ell}$ consists of matrices of this form, and so $|I| = q^2(q - 1)$, proving part 4. Note that only the identity element of I fixes ℓ pointwise.

For part 5, the orbit stabilizer theorem gives $|\pi^H| = |H|/|I|$. Using parts 3 and 4 gives $|\pi^H| = q^4(q^3 - 1)(q^3 + 1)(q^2 + q + 1)$. By Lemma 4.3, this is the number of order-q-subplanes tangent to ℓ, so H is transitive on order-q-subplanes tangent to ℓ. Note that this completes the proof of Theorem 4.4. As H is transitive on order-q-subplanes tangent to ℓ_∞, it is transitive on tangent splashes of ℓ_∞, proving Corollary 4.2.
For part 6, as before we can without loss of generality let \(\pi = \text{PG}(2, q) \), \(\ell = [0, 1, \tau] \) and consider \(I = G_{\pi, \ell} \). We know that the matrices of \(I \) have form given in equation (1). So a point \(P = (x, y, z) \in \pi \) \((x, y, z \in \text{GF}(q)) \) is mapped under an element of \(I \) to \(P' = (ax + by + cz, y, z) \), which lies on the line \(PT \). Hence the line \(PT \) is fixed by \(I \). Further, the points of the order-\(q \)-subline \(PT \cap \pi \) distinct from \(T \) have coordinates \((\lambda + x, y, z)\), for some \(\lambda \in \text{GF}(q) \), so we can choose \(a, b, c \in \text{GF}(q) \) so that \(P' \) is any point of the line \(PT \). Hence \(I \) is transitive on the points of \((PT \cap \pi) \setminus \{T\} \).

Next let \(m = [r, s, t], \ r, s, t \in \text{GF}(q) \) be any line \(\pi \) not through \(T \), so \(r \neq 0 \). Using the general form of an element of \(I \) from equation (1), the line \(m \) is mapped to the line \([r, -br + as, -cr + at]\) for some \(a, b, c \in \text{GF}(q), \ a \neq 0 \). This line is equal to \(m \) if and only if \(b = s(a - 1)/r \) and \(c = t(a - 1)/r \). Thus the subgroup of \(I \) fixing a line \(m \) of \(\pi \) not through \(T \) is of size \(q - 1 \) (one for each possible value of \(a \)). Hence by the orbit stabilizer theorem, the orbit of \(m \) in \(I \) is of size \(q^2(q - 1)/(q - 1) = q^2 \), which is equal to the number of lines of \(\pi \) not through \(T \). Hence \(I \) is transitive on lines of \(\pi \) not through \(T \), proving part 6.

For part 7, let \(I \) be the subgroup of \(G \) fixing \(\ell_{\infty} \) and an order-\(q \)-subplane \(\pi \) tangent to \(\ell_{\infty} \). As \(I \) is transitive on the lines of \(\pi \) not through \(T = \pi \cap \ell_{\infty} \) (by part 6), \(I \) fixes the tangent splash \(S_T \) of \(\pi \) on \(\ell_{\infty} \) and is transitive on the non-centre points of \(S_T \). \(\square \)

5 Counting tangent splashes

In this section we count the number of tangent splashes on \(\ell_{\infty} \). Further we investigate the number of points needed to determine a unique order-\(q \)-subplane with a given tangent splash.

Theorem 5.1 Let \(S_T \) be a tangent splash of \(\ell_{\infty} \) and let \(\ell \) be an order-\(q \)-subline disjoint from \(\ell_{\infty} \) lying on a line of \(\text{PG}(2, q^3) \) which meets \(S_T \setminus \{T\} \). Then there is a unique tangent order-\(q \)-subplane that contains \(\ell \) and has tangent splash \(S_T \).

Proof We prove this result using coordinates. Everywhere else in this article we let the line at infinity \(\ell_{\infty} \) of \(\text{PG}(2, q^3) \) have homogeneous coordinates \([0, 0, 1]\). Here we give the line at infinity the coordinates \([0, 1, \tau]\), and to avoid confusion, denote it by \(\ell'_{\infty} \). Consider the order-\(q \)-subplane \(\pi = \text{PG}(2, q) \), it is tangent to \(\ell'_{\infty} \) at the point \(T = (1, 0, 0) \). The lines of \(\pi \) not through \(T \) have coordinates \([1, r, s], \ r, s \in \text{GF}(q) \), and meet \(\ell_{\infty} \) in the points \((s - r\tau, \tau, -1)\). So the tangent splash of \(\pi \) onto \(\ell_{\infty} \) is \(S_T = \{T = (1, 0, 0)\} \cup \{(s - r\tau, \tau, -1) \mid r, s \in \text{GF}(q)\} \). Note that the set \(\ell = \{(0, c, 1) \mid c \in \text{GF}(q) \cup \{\infty\}\} \) is an order-\(q \)-subline of \(\pi \) that is disjoint from \(\ell_{\infty} \).

By Corollary 4.2 and Lemma 4.4(6), without loss of generality we only need prove the theorem holds for the splash \(S_T = \{T = (1, 0, 0)\} \cup \{(s - r\tau, \tau, -1) \mid r, s \in \text{GF}(q)\} \) and
the order-q-subline $\ell = \{(0, c, 1) \mid c \in \text{GF}(q) \cup \{\infty\}\}$. It suffices to show that the only order-q-subplane containing ℓ with tangent splash S_T is $\pi = \text{PG}(2, q)$.

Any point in an order-q-subplane containing T and ℓ will be on a line joining T to a point of ℓ. Such a point has coordinates $(\alpha, 1, 0)$ or $(\alpha, c, 1)$ for $\alpha \in \text{GF}(q^3)$, $c \in \text{GF}(q)$. Consider one such point $X = (\alpha, d, 1)$ for some $\alpha \in \text{GF}(q^3)$, $d \in \text{GF}(q)$. The set of points T, X, ℓ contains a quadrangle and so lie in a unique order-q-subplane $\pi'. We show that π' has splash $S_{T'} = \{T = (1, 0, 0)\} \cup \{(s - \tau r, \tau, -1) \mid r, s \in \text{GF}(q)\}$ if and only if $\alpha \in \text{GF}(q)$, and so $\pi' = \text{PG}(2, q)$.

Let m be the unique order-q-subline determined by $T = (1, 0, 0)$, $X = (\alpha, d, 1)$, and $(0, d, 1)$. The homography with matrix

$$
\begin{pmatrix}
\alpha & 0 & 0 \\
0 & d & 0 \\
0 & 1 & 1
\end{pmatrix}
$$

maps the order-q-subline $\{(a, 1, 0) \mid a \in \text{GF}(q) \cup \{\infty\}\}$ onto the order-q-subline m, so m has points $X_a = (aa, d, 1)$ where $a \in \text{GF}(q) \cup \{\infty\}$. The line joining X_a to the point $(0, c, 1)$ of ℓ meets the line ℓ'_∞ in the point $(-aa\tau - aac, -\tau(d - c), d - c)$. As $a, c, d \in \text{GF}(q)$, this point belongs to the tangent splash S_T only if $\alpha \tau + \alpha c = s - \tau r$ for some $r, s \in \text{GF}(q)$. Writing $\alpha = \alpha_0 + \alpha_1 \tau + \alpha_2 \tau^2$ for unique $\alpha_0, \alpha_1, \alpha_2 \in \text{GF}(q)$, we get

$$
\alpha \tau + \alpha c = (\alpha_2 t_0 + \alpha_0) + (\alpha_0 + \alpha_2 t_1 + \alpha_1) \tau + (\alpha_1 + \alpha_2 t_2 + \alpha_2) \tau^2.
$$

We want the coefficient of τ^2 to be zero for all $c \in \text{GF}(q)$, that is, $\alpha_1 + \alpha_2 t_2 + \alpha_2 = 0$. Setting $c = -t_2$ gives $\alpha_1 = 0$, and setting $c = -t_2 + 1$ gives $\alpha_2 = 0$. Hence $\alpha = \alpha_0$ is in $\text{GF}(q)$, and so the point X_a lies in $\text{PG}(2, q)$ for all $a \in \text{GF}(q)$. Hence the order-q-subplane π' has splash S_T if and only if $\pi' = \text{PG}(2, q)$. Hence there is a unique order-q-subplane (namely $\text{PG}(2, q)$) that contains T, ℓ, and has tangent splash S_T. \(\square\)

In \cite{[4]}, it is shown how to geometrically construct the unique order-q-subplane from a tangent splash of ℓ_∞ and an order-q-subplane disjoint from ℓ_∞.

We now count the number of tangent splashes in $\text{PG}(2, q^3)$.

Theorem 5.2

1. The number of tangent order-q-subplanes with a given tangent splash is $q^6(q^3 - 1)$.

2. The number of tangent splashes on ℓ_∞ is $q(q^3 + 1)(q^2 + q + 1)$.

3. The number of tangent splashes of ℓ_∞ with a common centre is $q(q^2 + q + 1)$.

Proof To prove part \(\square\) let S_T be a tangent splash on the line ℓ_∞ in $\text{PG}(2, q^3)$. We count the pairs (ℓ, π) where π is an order-q-subplane tangent to ℓ_∞ at T with splash S_T and ℓ is line of π not through T. First note that if m is a line of $\text{PG}(2, q^3)$ and X a point of m,
then it is straightforward to show that the number of order-q-sublines of m that do not contain X is $q^3(q^3 - 1)$. There are q^2 points in S_T distinct from T, and each point lies on q^3 lines of $\text{PG}(2, q^3)$ distinct from ℓ_∞. Hence there are $q^2 \times q^3 \times q^3(q^3 - 1)$ choices for an order-q-subline ℓ. By Theorem 5.1, each of these order-q-sublines ℓ lies on a unique order-q-subplane that contains ℓ and has tangent splash S_T. Hence if n is the number of order-q-subplanes with the given tangent splash, we have $q^2 \times q^3 \times q^3(q^3 - 1) \times 1 = n \times q^2$ and so there are $q^6(q^3 - 1)$ tangent order-q-subplanes with a given tangent splash.

To count the number of tangent splashes on ℓ_∞, by Corollary 4.2 we can divide the total number of order-q-subplanes tangent to ℓ_∞ (calculated in Lemma 4.3) by the number of order-q-subplanes with a given tangent splash (calculated in part 1). This proves part 2.

For part 3, the subgroup of $\text{PGL}(3, q^3)$ fixing ℓ_∞ is transitive on the points of ℓ_∞, hence each point of ℓ_∞ is the centre of a constant number of splashes. The result now follows from part 2.

Theorem 5.1 shows that a tangent splash and one affine order-q-subline not through the centre uniquely determines an order-q-subplane. We now consider the case of a tangent splash and one affine order-q-subline through the centre, and show that this determines more than one order-q-subplane.

Theorem 5.3 In $\text{PG}(2, q^3)$, let S_T be a tangent splash of ℓ_∞ with centre T. Let m be an order-q-subline through T (not in ℓ_∞). Then there are $q(q^2 - 1)$ tangent order-q-subplanes that contain m and have tangent splash S_T.

Proof First note that the subgroup of $\text{PGL}(3, q^3)$ containing translations with axis ℓ_∞ is 2-transitive on the affine points of an affine line. Hence the number of order-q-subplanes containing two distinct affine points P, Q such that $T \in PQ$ is a constant, denote it by x. As T, P, Q lie in a unique order-q-subline, x is the number of order-q-subplanes containing an affine order-q-subline through T. We count in two ways the triples (P, Q, π) where P, Q are distinct affine points, the line PQ contains T and π is a tangent order-q-subplane with splash S_T containing P and Q. Using Lemma 5.2(1) we have $q^6(q^3 - 1) \times x = q^6(q^3 - 1) \times (q^2 + q)(q - 1)$ and so $x = q(q^2 - 1)$.

We now look at how many points of ℓ_∞ are needed to uniquely determine a tangent splash.

Theorem 5.4 Two tangent splashes with a common centre T can meet in at most an order-q-subline which contains T. Further, there are $q + 1$ tangent splashes of ℓ_∞ with centre T containing a fixed order-q-subline through T.

Proof Suppose two splashes S_T and S'_T have a common centre T and contain three further common points U, V, W not all on order-q-subline through T. Denote by $\ell(X, Y, Z)$ the unique order-q-subline through any three distinct points X, Y, Z of ℓ_∞. By Lemma 3.1(2), S_T and S'_T both contain the order-q-subline $\ell(T, U, V) = \{T, U_1 = U, U_2, \ldots, U_q\}$. Further,
the \(q \) order-\(q \)-sublines \(\ell(T, U_i, W) \), \(i = 1, \ldots, q \), are contained in both \(S_T \) and \(S'_T \). These \(q \) order-\(q \)-sublines together with \(\ell(T, U, V) \) cover \((q + 1) + q \times (q - 1) = q^2 + 1 \) points. Hence \(S_T = S'_T \). Thus \(S_T, S'_T \) can both contain the order-\(q \)-subline \(\ell(T, U, V) \), but cannot have any further points in common.

Let \(x \) be the number of splashes with centre \(T \) containing a fixed order-\(q \)-subline \(\ell \) of \(\ell_\infty \), where \(\ell \) contains \(T \). We count in two ways the pairs \((\ell, S_T) \) where \(\ell \) is an order-\(q \)-subline of \(\ell_\infty \) through \(T \) and \(S_T \) is a tangent splash with centre \(T \) containing \(\ell \). By Lemma 3.1(1), the number of order-\(q \)-sublines contained in \(S_T \) and containing \(T \) is \(q^2 + q \). So using Theorem 5.2(3), we have

\[
q^2(q^2 + q + 1) \times x = q(q^2 + q + 1) \times q(q + 1),
\]

so \(x = q + 1 \). That is, there are \(q + 1 \) tangent splashes with common centre \(T \) and containing a common order-\(q \)-subline \(\ell \) through \(T \). \(\square \)

Theorem 5.5 Let \(T, U, V, W \) be four distinct points of \(\ell_\infty \) not on a common order-\(q \)-subline. Then there is a unique tangent splash containing \(T, U, V, W \) with centre \(T \).

Proof Let \(\ell \) be the unique order-\(q \)-subline containing \(T, U, V \). By Lemma 3.1(2), a tangent splash with centre \(T \) containing \(U, V \) must contain \(\ell \). By Theorem 5.4, there are \(q + 1 \) tangent splashes with centre \(T \) containing \(\ell \). These tangent splashes cover \((q^2 - q) \times (q + 1) + q + 1 = q^3 + 1\) points of \(\ell_\infty \). Hence \(W \) lies in exactly one of these tangent splashes. Hence \(T \) and three further points of \(\ell_\infty \) not all on a common order-\(q \)-subline lie in a unique tangent splash with centre \(T \). \(\square \)

6 Coordinatisation of a tangent subplane

We need to calculate the coordinates of points in an order-\(q \)-subplane of PG(2, \(q^3 \)) that is tangent to \(\ell_\infty \). The order-\(q \)-subplane PG(2, \(q \)) of PG(2, \(q^3 \)) meets \(\ell_\infty \) in \(q + 1 \) points. By [2, Lemma 2.6], we can map PG(2, \(q \)) to an order-\(q \)-subplane \(B \) tangent to \(\ell_\infty \) using the homography \(\zeta \) with matrix \(A_1 \), where

\[
A_1 = \begin{pmatrix}
-\tau & 1 + \tau & 0 \\
0 & 1 & 0 \\
0 & 1 + \tau & -\tau
\end{pmatrix}, \quad A'_1 = \begin{pmatrix}
-1 & 1 + \tau & 0 \\
0 & \tau & 0 \\
0 & 1 + \tau & -1
\end{pmatrix}.
\]

The matrix \(A'_1 \) is the matrix of the inverse homography \(\zeta^{-1} \) that maps \(B \) to PG(2, \(q \)).

Note that \(\zeta \) fixes the points \(T = (1, 0, 0) \) and \(P_\infty = (1, 1, 1) \) of PG(2, \(q \)). The lines of PG(2, \(q \)) through \(T \) can be written with homogeneous coordinates \(m'_e = [0, 1 - e, e], e \in GF(q) \) and \(m'_\infty = TP_\infty = [0, 1, -1] \). For \(e \in GF(q) \), the line \(m'_e \) is mapped by \(\zeta \) to the line \(m_e = [0, e + \tau, -e] \) of \(B \) (a line through \(T \)). The line \(m'_\infty \) of PG(2, \(q \)) is fixed by \(\zeta \) and so \(m_\infty = [0, 1, -1] \) is the final line of \(B \) through \(T \).
Next we find the coordinates of the points in B, see Figure 1 for an illustration of the notation used. First consider the line m'_∞ of $PG(2,q)$. For $f \in GF(q)$, the point $U'_f = (1-f,1,1) \in m'_\infty$ is mapped under ζ to the point $U_f = (1+f\tau,1,1)$ on m_∞ in B. Now consider the line m'_0 of $PG(2,q)$, it has points T and $S'_d = (d,0,1)$, $d \in GF(q)$. The point S'_d maps under ζ to $S_d = (d,0,1)$. So the affine points of m_0 in B are S_d, $d \in GF(q)$.

We work out the coordinates of the other points of B as follows. First define the q lines $\ell_d = P_\infty S_d$, $d \in GF(q)$. Now for $d,e,f,h \in GF(q)$, let $P_{e,d} = \ell_d \cap m_e$, $\ell_{e,d,f} = P_{e,d} U_f$, and $R_{d,e,f,h} = \ell_{e,d,f} \cap m_h$, $R_{e,d,f,\infty} = \ell_{e,d,f} \cap m_\infty = U_f$. Working out the coordinates for these points and lines is straightforward, and they are given in Table 1.

The notation $\ell_{e,d,f}$ is needed in subsequent calculations. However, if we wish to enumerate the lines of B, we can use the following lemma.

Lemma 6.1 Every line in B not through T is represented by some $\ell_{0,d,f}$ with $d,f \in GF(q)$.

Proof Consider the image of the general affine line $t' = [1,a,b]$ of $PG(2,q)$ not through $T = (1,0,0)$. Under ζ it is mapped to $t = [-1,1+b+(1+a+b)\tau,-b]$. Calculating $\ell_{e,d,f}$ with $e = 0, d = -b, f = 1+a+b$ gives $[-1,0 \times f+b+1+(1+a+b)\tau,-b]$ which is the line t as required. \hfill \square

We can use this to calculate the coordinates of the tangent splash of B.

Lemma 6.2 The tangent splash S_T for B has centre $T = (1,0,0)$ and points $V_{d,f} = \ell_{0,d,f} \cap \ell_\infty = (1-d+f\tau,1,0)$ for $d,f \in GF(q)$. Alternatively, we can write $S_T = \{(a+b\tau,1,0) \mid a,b \in GF(q)\} \cup \{(1,0,0)\}$.
Table 1: Coordinates in the tangent order-q-subplane \mathcal{B}, $(e, d, f, h \in \text{GF}(q))$

Notation	Coordinates	Description
T	$(1, 0, 0)$	$\mathcal{B} \cap \ell_{\infty}$
P_{∞}	$(1, 1, 1)$	lines of \mathcal{B} through T
m_e	$[0, e + \tau, -e]$	TP_{∞}
m_{∞}	$[0, 1, -1]$	points of \mathcal{B} on m_{∞}
S_d	$(d, 0, 1)$	$P_{\infty}S_d$
U_f	$(1 + f\tau, 1, 1)$	$m_e \cap \ell_d$
ℓ_d	$[1, d - 1, -d]$	$P_{e,d}U_f$
$P_{e,d}$	$(e + d\tau, e, e + \tau)$	$\ell_{e,d,f} \cap m_h$
$\ell_{e,d,f}$	$[-1, ef - d + 1 + f\tau, d - e\tau]$	$\ell_{e,d,f} \cap m_{\infty} = U_f$
$R_{e,d,f,h}$	$(h + (fh - fe + d)\tau, h, h + \tau)$	
$R_{e,d,f,\infty}$	$(1 + f\tau, 1, 1)$	

Proof By Lemma 6.1, the lines of \mathcal{B} are $\ell_{a,d,f}$. Let $V_{d,f} = \ell_{a,d,f} \cap \ell_{\infty} = (1 - d + f\tau, 1, 0)$, so the splash of \mathcal{B} is $S_T = \{T\} \cup \{V_{d,f} | f, d \in \text{GF}(q)\}$. It is straightforward to rewrite this as $\{(a + b\tau, 1, 0) | a, b \in \text{GF}(q)\} \cup \{(1, 0, 0)\}$. □

7 Sublines of a tangent splash revisited

In this section we show that every order-q-subline contained in a tangent splash must contain the centre. Further, we show that a tangent splash has a unique centre.

Theorem 7.1 Let S_T be a tangent splash of $\text{PG}(2,q^3)$. Then every order-q-subline contained in S_T contains T.

Proof By Corollary 4.2, the collineation group fixing ℓ_{∞} is transitive on the tangent splashes of ℓ_{∞}. So without loss of generality, we prove the result for the tangent splash of the order-q-subplane \mathcal{B} coordinatised in Section 6. So using Lemma 6.2, we assume that $S_T = \{(d + f\tau, 1, 0) | d, f \in \text{GF}(q)\} \cup \{(1, 0, 0)\}$ with centre $T = (1, 0, 0)$. Let $U = (0, 1, 0), V = (\alpha_1, 1, 0), W = (\alpha_2, 1, 0)$, where $\alpha_i = d_i + f_i\tau$, $d_i, f_i \in \text{GF}(q)$, $i = 1, 2$, be three distinct non-centre points of S_T, so $\alpha_1 \neq \alpha_2$ and $\alpha_1, \alpha_2 \neq 0$. Let ℓ be the unique order-q-subline containing U, V, W, and suppose ℓ is contained in S_T. We will show that ℓ contains T. As the collineation group fixing the tangent splash is transitive on the non-centre points of the tangent splash (by Lemma 4.4[7]) this is sufficient to show that all the order-q-sublines contained in S_T must contain T.

Consider the order-q-subline $\ell_0 = \{(a, 1, 0) | a \in \text{GF}(q)\} \cup \{(0, 1, 0)\}$ of ℓ_{∞}. To show that ℓ contains T, we find a homography ϕ that maps ℓ_0 to ℓ, and demonstrate a point of ℓ_0 that ϕ maps to T.
For brevity, we omit the last (zero) coordinate, and represent points by column vectors. Consider the matrix
\[
\begin{pmatrix}
0 & \alpha_1 \alpha_2 \\
\alpha_1 - \alpha_2 & \alpha_2
\end{pmatrix}.
\]
It has nonzero determinant by the choice of \(\alpha_1, \alpha_2\). Hence it represents a homography \(\phi\) which maps the points \((1,0)^t, (0,1)^t, (1,1)^t\) of \(\ell_0\) to \(U, V, W\) of \(\ell\) respectively, hence \(\phi\) maps the order-\(q\)-subline \(\ell_0\) to the order-\(q\)-subline \(\ell\). So \(\phi\) maps the point \((a, 1)^t\) of \(\ell_0\) to the point \(W_a = (\alpha_1 \alpha_2, a(\alpha_1 - \alpha_2) + \alpha_2)^t\) of \(\ell\). By assumption, \(W_a \in S_7\), so \(\alpha_1 \alpha_2/(a(\alpha_1 - \alpha_2) + \alpha_2)\) is of the form \(d + f\tau\) for some \(d, f \in GF(q)\). Now \(\alpha_1 \alpha_2 = d_1 d_2 + (d_1 f_2 + d_2 f_1)\tau + f_1 f_2 \tau^2\) and \(a(\alpha_1 - \alpha_2) + \alpha_2 = (a(d_1 - d_2) + d_2) + (a(f_1 - f_2) + f_2)\tau\), so \((\alpha_1 \alpha_2)/(a(\alpha_1 - \alpha_2) + \alpha_2) = d + f\tau\) implies that
\[
d_1 d_2 + (d_1 f_2 + d_2 f_1)\tau + f_1 f_2 \tau^2 = (d + f\tau)((a(d_1 - d_2) + d_2) + (a(f_1 - f_2) + f_2)\tau).
\]
Hence, for all \(a \in GF(q)\),
\[
0 = [d(a(d_1 - d_2) + d_2) - d_1 d_2] + [f(a(d_1 - d_2) + d_2) + (a(f_1 - f_2) + f_2)d - (d_1 f_2 + d_2 f_1)]\tau + [f(a(f_1 - f_2) + f_2) - f_1 f_2]\tau^2.
\]
The constant term and the coefficient of \(\tau^2\) give
\[
d = \frac{d_1 d_2}{a(d_1 - d_2) + d_2} \quad \text{and} \quad f = \frac{f_1 f_2}{a(f_1 - f_2) + f_2},
\]
and substituting into the coefficient of \(\tau\) gives (where \(D = a(d_1 - d_2) + d_2, F = a(f_1 - f_2) + f_2\))
\[
0 = \frac{f_1 f_2}{F} D + \frac{d_1 d_2}{F} D - (d_1 f_2 + d_2 f_1)
\]
\[
0 = (f_1 D - d_1 F)(f_2 D - d_2 F).
\]
Hence either \((f_1 D - d_1 F) = 0\) or \((f_2 D - d_2 F) = 0\). Expanding and rearranging the first condition gives \(0 = a(f_1 d_2 - f_2 d_1) + (d_1 f_2 - f_1 d_2)\) for all \(a \in GF(q)\) and so \(f_1 d_2 - f_2 d_1 = 0\). Expanding and rearranging the second condition gives \(0 = a(f_2 d_1 - f_1 d_2)\) for all \(a \in GF(q)\) and so we have the same condition \(f_1 d_2 - f_2 d_1 = 0\).

We study the condition \(f_1 d_2 - f_2 d_1 = 0\) by considering the following four cases that cover all the possibilities: (1) \(d_2, f_2 \neq 0\), (2) \(d_1 = d_2 = 0\), (3) \(f_2 = 0, f_1 = 0\), (4) \(d_2 = f_2 = 0\).

For case (1) we have \(f_1/f_2 = d_1/d_2\), let \(k = f_1/f_2\), so \(k \in GF(q)\). Note that \(k \neq 1\) since otherwise \(V = W\), contradicting \(U, V, W\) being distinct. Similarly, \(k \neq 0\). So \(f_1 = k f_2\), \(d_1 = k d_2\), thus \(\alpha_1 = k \alpha_2\), and the homography \(\phi\) has matrix
\[
\begin{pmatrix}
0 & k \alpha_2 \\
k - 1 & 1
\end{pmatrix},
\]
so \(\phi\) maps the point \((-1/(k - 1), 1)^t\) of \(\ell_0\) to \(T\), that is, \(\ell\) contains \(T\). For case (2), if \(f_1 = 0\) or \(f_2 = 0\), then \(V = U\) or \(W = U\), a contradiction. So \(f_1 f_2 \neq 0\), and \(\phi\) has matrix
\[
\begin{pmatrix}
0 & f_1 f_2 \tau \\
f_1 - f_2 & f_2
\end{pmatrix}.
\]
so ϕ maps the point $(-f_2/(f_1-f_2), 1)^t$ of ℓ_0 to T, so ℓ contains T. For case (3), if $d_1 = 0$ or $d_2 = 0$, then $V = U$ or $W = U$, a contradiction. So $d_1d_2 \neq 0$, and ϕ has matrix
\[
\begin{pmatrix}
0 & d_1d_2 \\
(d_1 - d_2) & d_2
\end{pmatrix},
\]
so ϕ maps the point $(-d_2/(d_1 - d_2), 1)^t$ of ℓ_0 to T, so ℓ contains T. Finally for case (4), if $d_2 f_2 = 0$, then $U = W$, a contradiction.

Hence in every case, the homography ϕ maps the order-q-subline ℓ_0 to the order-q-subline ℓ which contains U, V, W and also T. Thus every order-q-subline through three points of S_T that is contained in S_T also contains the point T. \hfill \Box

We can use this result to show that a tangent splash has only one centre.

Theorem 7.2 A tangent splash has a unique centre.

Proof We note that from Theorem 7.1, every order-q-subline contained in a tangent splash S_T with centre T contains T. Suppose S_T has another centre U. Then every order-q-subline contained in S_T contains T and U, hence there are exactly $(q^2-1)/(q-1) = q+1$ order-q-sublines contained in S_T, contradicting Lemma 3.1(2) which shows that there are $q(q+1)$ order-q-sublines contained in S_T which contain T. \hfill \Box

8 Tangent splashes and Sherk surfaces

We can uniquely identify points $(a_0, a_1, a_2, 1)$ of $AG(3, q)$, $a_0, a_1, a_2 \in GF(q)$, with elements $a_0 + a_1\tau + a_2\tau^2$ of $GF(q^3)$. In [13], Sherk considers this representation of $A = AG(3, q)$ and lets $\overline{A} = AG(3, q) \cup \{\infty\}$. A Sherk surface $S(\theta, K, L, \phi)$, $\theta, \phi \in GF(q)$, $K, L \in GF(q^3)$, is the set of points X in \overline{A} satisfying
\[
\theta X^{1+q+q^2} + (K X^{1+q} + K^q X^{q+q^2} + K^{q^2} X^{1+q^2}) + (L X^q + L^q X^q + L^{q^2} X^{q^2}) + \phi = 0.
\]

There are four orbits of Sherk surfaces, uniquely determined by the size of the surfaces in each orbit. A Sherk surface has size 1, $q^2 - q + 1$, $q^2 + 1$, or $q^2 + q + 1$. The Sherk surfaces of size $q^2 + q + 1$ are precisely the Bruck covers/hyper-reguli, see [12]. In future work, we show that an exterior splash of $PG(2, q^3)$ (the splash of an order-q-subplane exterior to ℓ_∞) is a Sherk surface of size $q^2 + q + 1$. We show here that a tangent splash of $PG(2, q^3)$ is a Sherk surface of size $q^2 + 1$.

Theorem 8.1 A tangent splash of $PG(2, q^3)$ is a Sherk surface of size $q^2 + 1$.

Proof We can naturally identify the points of $\ell_\infty = PG(1, q^3)$ with elements of $GF(q^3) \cup \{\infty\}$: the point $(a, 1, 0) \in \ell_\infty$ corresponds to the element $a \in GF(q^3)$, and the point
(1, 0, 0) corresponds to the element ∞. By Corollary 4.2 and Lemma 6.2, we can without loss of generality, take our tangent splash to be $S_T = \{(a + \tau b, 1, 0) \mid a, b \in \text{GF}(q)\} \cup \{(1, 0, 0)\}$. The four points $(1, 0, 0), (0, 1, 0), (1, 1, 0), (\tau, 1, 0)$ are contained in S_T, and are not on an order-q-subline, so by Theorem 5.5 they uniquely determine S_T.

Sherk shows that a plane of $A = \text{AG}(3, q)$ together with ∞ is a Sherk surface $S(0, 0, L, \phi)$, $L \in \text{GF}(q^3)$, $\phi \in \text{GF}(q)$ of size $q^2 + 1$. This Sherk surface is the set of points satisfying

$$(LX + L^qX^q + L^{q^2}X^{q^2}) + \phi = 0.$$

We show that our tangent splash is one of these planes. The centre of our tangent splash S_T is the point $T = (1, 0, 0)$, which corresponds to the element ∞, which is on every Sherk surface that corresponds to a plane in $\text{AG}(3, q)$. The point $(0, 1, 0)$ corresponds to the element 0 of $\text{GF}(q^3)$. This is on the Sherk surface $S(0, 0, L, \phi)$ if and only if $\phi = 0$. Now consider the points $(1, 1, 0), (\tau, 1, 0)$ of S_T which correspond to the elements 1, τ of $\text{GF}(q^3)$ respectively. These lie on the Sherk surface $S(0, 0, L, 0)$ if

$$L + L^q + L^{q^2} = 0, \quad (2)$$

$$L\tau + L^q\tau^q + L^{q^2}\tau^{q^2} = 0. \quad (3)$$

These equations have a unique nonzero solution for L, since in $\text{AG}(3, q)$ there is a unique plane through the three points $0, 1, \tau$, hence there is a unique Sherk surface $S(0, 0, L, \phi)$ containing these three points. Note this Sherk surface also contains ∞.

Now $a \times (2) + b \times (3)$ gives: $L(a + b\tau) + L^q(a + b\tau^q) + L^{q^2}(a + b\tau^{q^2}) = 0$. If $a, b \in \text{GF}(q)$, then this can be written as

$$L(a + b\tau) + L^q(a + b\tau)^q + L^{q^2}(a + b\tau)^{q^2} = 0.$$

Hence the element $a + b\tau$ of $\text{GF}(q^3)$ lies on the Sherk surface $S(0, 0, L, 0)$. That is, the Sherk surface containing the elements $\infty, 0, 1, \tau$ contains all the elements $a + b\tau$, where $a, b \in \text{GF}(q)$. So this Sherk surface is equivalent to our tangent splash $S_T = \{(a + b\tau, 1, 0) \mid a, b \in \text{GF}(q)\} \cup \{(1, 0, 0)\}$. □

9 Cover planes of a splash in PG(5, q)

In this section we look at the points of a tangent splash in the Bruck-Bose representation in PG(6, q). A tangent splash S_T of ℓ_∞ in PG(2, q^3) corresponds in PG(6, q) to a set $[S_T]$ of $q^2 + 1$ planes of the spread S in $\Sigma_\infty \cong \text{PG}(5, q)$. We show that there is an interesting set of planes in PG(5, q) meeting every element of the splash and contained entirely within the splash.

Theorem 9.1 Let S_T be a tangent splash of ℓ_∞ with centre T, and let $[S_T]$ be the corresponding set of planes in Σ_∞ in the Bruck-Bose representation in PG(6, q). There are
exactly \(q^2 + q + 1 \) planes of \(\Sigma_\infty \cong \text{PG}(5, q) \) that meet every plane of \([S_T]\), called \textit{cover planes}. The cover planes each meet the centre \([T]\) in distinct lines, and meet every other plane of \([S_T]\) in distinct points, and hence are contained entirely within the splash.

Proof By Corollary 4.2, without loss of generality, we can let \(S_T \) be the tangent splash determined by the order-\(q \)-subplane \(\mathcal{B} \) coordinatised in Section 5. So by Lemma 5.2, \(S_T = \{ T = (1, 0, 0) \} \cup \{ X_{a,b} = (a + b \tau, 1, 0) \mid a, b \in \text{GF}(q) \} \). In the Bruck-Bose representation in \(\text{PG}(6, q) \), the plane \([X_{a,b}] \) consists of the points with homogeneous coordinates \(\sigma(\delta(a + b \tau), \delta, 0) \) for \(\delta \in \text{GF}(q^2) \), where \(\sigma \) is the generalised Bruck-Bose map defined in Section 2.1. Consider the plane \(\pi = \langle \sigma(\tau, 0, 0), \sigma(0, \tau, 0), \sigma(\tau^2, 0, 0) \rangle \) of \(\Sigma_\infty \). The plane \(\pi \) meets \([T]\) in the line \(\langle \sigma(\tau, 0, 0), \sigma(\tau^2, 0, 0) \rangle \) and meets the plane \([X_{a,b}] \), \(a, b \in \text{GF}(q) \), in the point \(A_{a,b} = \sigma(a \tau + b \tau^2, \tau, 0) \). That is, \(\pi \) meets \([T]\) in a line and meets every other plane of \([S_T]\) in a point, this accounts for all the points of \(\pi \). Recall the mapping \(\Theta \) from Theorem 2.3, the group \(\langle \Theta \rangle \) fixes the planes of the spread \(S \) and acts regularly on the points and lines of these planes. Hence \(\Theta \) maps \(\pi \) to a plane that meets \([T]\) in a line, and meets the other planes of \([S_T]\) in points, so \(\Theta \) maps \(\pi \) to another cover plane of \([S_T]\). As \(\langle \Theta \rangle \) acts regularly on the lines of \([T]\), there are at least \(q^2 + q + 1 \) cover planes.

By Lemma 5.2, the number of tangent splashes with a common centre \([T]\) is \(q(q^2 + q + 1) \). Each of these tangent splashes has at least \(q^2 + q + 1 \) cover planes, giving at least \(q(q^2 + q + 1)^2 \) distinct planes of \(\Sigma_\infty \) that meet \([T]\) in a line. As there are in total \(q(q^2 + q + 1)^2 \) planes of \(\text{PG}(5, q) \) that meet \([T]\) in a line, every plane that meets \([T]\) in a line is a cover plane for some tangent splash with centre \([T]\). Further, if a plane \(\pi \) meets one element \([P]\) of a tangent splash \([S_T]\) in a line, and every other element of \([S_T]\) in a point, then \(\pi \) must be a cover plane for a splash with centre \([P]\). As a splash has a unique centre by Theorem 7.2, \([P]\) is the centre of the splash \([S_T]\), that is, \(P = T \). Hence a tangent splash has exactly \(q^2 + q + 1 \) cover planes, each meeting the centre in a line. Note also that if \(\pi \) is a plane of \(\text{PG}(5, q) \) that meets a spread element \([T]\) in a line, then the planes of \(S \) that meet \(\pi \) form a tangent splash with centre \([T]\). \(\square \)

As a direct consequence of this proof we have the following properties of cover planes.

Corollary 9.2 The \(q^2 + q + 1 \) cover planes of a tangent splash \([S_T]\) lie in an orbit of \(\langle \Theta \rangle \).

Corollary 9.3 If a plane of \(\Sigma_\infty \) meets \(q^2 + 1 \) planes of the spread \(S \), then these \(q^2 + 1 \) planes form a tangent splash.

Corollary 9.4 Two distinct cover planes of a tangent splash \([S_T]\) meet in exactly one point, which lies in the centre \([T]\).

Proof Recall that in the proof of Theorem 9.1 we constructed the \(q^2 + q + 1 \) cover planes by considering the action of \(\Theta \) on the tangent splash calculated in Lemma 6.2. As \(\langle \Theta \rangle \) acts regularly on the points of the spread element \([X_{a,d}]\), the \(q^2 + q + 1 \) cover planes meet
Let \([X_{a,d}] \) in distinct points. So any two cover planes meet in exactly one point which is in \([T]\).

The next two theorems contain further properties of cover planes which will be useful later.

Theorem 9.5 Let \([S_T]\) be a tangent splash in the Bruck-Bose representation of \(\text{PG}(2, q^3)\) in \(\text{PG}(6, q)\). Let \(\ell\) be a line that meets \(q + 1\) elements of \([S_T]\), then \(\ell\) lies in a unique cover plane of the splash \([S_T]\).

Proof As in the proof of Theorem 9.1, without loss of generality let \(S_T = \{T = (1, 0, 0)\} \cup \{X_{a,b} = (a + b\tau, 1, 0) | a, b \in \text{GF}(q)\}\). Let \(\ell\) be a line that meets \(q + 1\) elements of \([S_T]\). As \(S\) is a regular spread, these \(q + 1\) splash elements form a 2-regulus. By Theorem 2.1, \(\ell\) corresponds in \(\text{PG}(2, q^3)\) to an order-\(q\)-subline \(\ell\) of \(\ell_\infty\). By Theorem 7.1, \(\ell\) contains the centre \(T\), so in \(\text{PG}(6, q)\), the line \(\ell\) meets the centre \([T]\). By Lemma 4.4(7) we can assume without loss of generality that the order-\(q\)-subline \(\ell\) in \(\ell_\infty\) contains the point \(V = (0, 1, 0)\). Let \(W = (d + f\tau, 1, 0)\) for some \(d, f \in \text{GF}(q)\) be another point on \(\ell\). So in \(\text{PG}(6, q)\), the line \(\ell\) meets the spread elements \([T], [V]\) and \([W]\). By Theorem 2.3 we may assume \(\ell\) meets \([V]\) in the point \(C = \sigma(0, 1, 0)\). There is a unique line through \(C\) that meets \([T]\) and \([W]\), so we can calculate that \(\ell\) meets \(W\) in the point \(\sigma(d + f\tau, 1, 0)\) and hence meets \([T]\) in the point \(A_\infty = \sigma(d + f\tau, 0, 0)\). Suppose \(d \neq 0\). Let \(A'_\infty = \sigma(\tau, 0, 0)\) and consider the plane \(\pi = \langle A_\infty, A'_\infty, C\rangle\), it meets the splash element \([X_{a,b}]\) \((a, b \in \text{GF}(q))\) in the point \(\sigma(a + b\tau, 1, 0) = (a/d)A_\infty + ((bd - af)/d)A'_\infty + C\). Thus \(\pi\) is a cover plane of \([S_T]\) containing the line \(\ell\). By Corollary 9.4, cover planes do not meet off \([T]\), hence there is exactly one cover plane containing \(\ell\).

Now suppose that \(d = 0\), so \(f \neq 0\) as \(W \neq T\). In this case let \(A'_\infty = \sigma(1, 0, 0)\) and let \(\pi = \langle A_\infty, A'_\infty, C\rangle\). Then \(\pi\) meets the spread element \([X_{a,b}]\) \((a, b \in \text{GF}(q))\) in the point \(\sigma(a + b\tau, 1, 0) = (a/f)A_\infty + aA'_\infty + C\), and so \(\pi\) is the required cover plane. \(\Box\)

Theorem 9.6 Let \([S_T]\) be a tangent splash in the Bruck-Bose representation of \(\text{PG}(2, q^3)\) in \(\text{PG}(6, q)\). Let \(\pi\) be a plane of \(\Sigma_\infty = \text{PG}(5, q)\) which meets the centre \([T]\) in a line, and meets three further elements \([U], [V], [W]\) of \([S_T]\), where \([T], [U], [V], [W]\) are not in a common 2-regulus. Then \(\pi\) is a cover plane of \([S_T]\).

Proof Let \(\pi\) be a plane that meets the centre \([T]\) in a line and meets three further elements \([U], [V], [W]\) of \([S_T]\) at points \(U', V', W'\) respectively, where \([T], [U], [V], [W]\) are not in a common 2-regulus. Then \(U'V' \cap [T], U', V'\) are three points on a line \(m\) of \(\pi\). As \(m\) meets the splash elements \([T], [U], [V]\), by Lemma 3.1(2) the line \(m\) is contained entirely within the splash. Similarly \(U'W' \cap [T], U', W'\) define a line \(n\) of \(\pi\) that lies entirely in the splash. Note that \(n \neq m\) as \([T], [U], [V], [W]\) are not in a common 2-regulus. Repeating this argument for the remaining lines of \(\pi\) which join a point of \(m\) to a point of \(n\) shows that \(\pi\) is contained entirely within the splash. That is, \(\pi\) is a cover plane of the splash. \(\Box\)
10 The tangent subspace at an affine point

Consider an order-q-subplane \mathcal{B} in $\mathrm{PG}(2,q^3)$ tangent to ℓ_∞ at the point T. For each affine point P of \mathcal{B}, we construct an order-q-subplane P_{\perp} that contains P and is secant to ℓ_∞ as follows. Let $\ell_1, \ldots, \ell_{q+1}$ be the $q+1$ lines of \mathcal{B} through P. Then by Lemma 3.1, $m = \{ \ell_i \cap \ell_\infty \mid i = 1, \ldots, q+1 \}$ is an order-q-subline of ℓ_∞ through T. Now m and $PT \cap \mathcal{B}$ are two order-q-sublines through T, and so lie in a unique order-q-subplane which we denote by P_{\perp}. We show in Corollary 10.3 that the order-q-subplanes \mathcal{B} and P_{\perp} meet in exactly the order-q-subline $PT \cap \mathcal{B}$.

By Theorem 2.2 in $\mathrm{PG}(6,q)$, \mathcal{B} corresponds to a ruled surface $[\mathcal{B}]$ and P_{\perp} corresponds to a plane $[P_{\perp}]$ that meets $q+1$ elements of the spread \mathcal{S}. We will show in Theorem 10.2 that $[P_{\perp}]$ is the tangent space to $[\mathcal{B}]$ at the point P. This leads us to call P_{\perp} the tangent space of P.

By Theorem 4.1 we can without loss of generality let \mathcal{B} be the order-q-subplane coordinatised in Section 6. Consider the point $P_{e,d}$ of \mathcal{B} for some $e, d \in \mathrm{GF}(q)$ and consider the order-q-subplane $P_{e,d}$. We work in $\mathrm{PG}(6,q)$ and in the next lemma determine the coordinates of two points in $[P_{e,d}] \cap \Sigma_\infty$. We use the following notation for $e \in \mathrm{GF}(q)$:

$$\theta'(e) = (e + \tau)^{q^2} = \theta(e),$$

$$\theta(e) = (e + \tau)^{q^2 + q} = (e + \tau)(e + \tau^q),$$

Note that since $\theta'(e)^q = \theta(e)$, it follows that $\theta(e) \in \mathrm{GF}(q)$. We again use the generalised Bruck-Bose map σ defined in Section 2.1.

Lemma 10.1 In $\mathrm{PG}(6,q)$, the plane $[P_{e,d}]$, $d, e \in \mathrm{GF}(q)$, contains the points $J_{e,d}$, $K_{e,d}$ of Σ_∞, where

$$J_{e,d} = \sigma((1 - d)\tau\theta(e)^2, \tau\theta(e)^2, 0), \quad K_{e,d} = \sigma((1 - d + e + \tau)\tau\theta(e)^2, \tau\theta(e)^2, 0).$$

Proof In $\mathrm{PG}(2,q^3)$, the order-q-subplane $P_{e,d}$ contains all the affine points of the order-q-subline $m_e = TP_{e,d} \cap \mathcal{B}$. Firstly, suppose that $d \neq 0$, so $P_{e,d}$ and $P_{e,0}$ are distinct points of m_e. Consider the two lines $\ell_{e,d,0}$ and $\ell_{e,d,1}$ through $P_{e,d}$. Using Table 1 we calculate $V_{e,d,0} = \ell_{e,d,0} \cap \ell_\infty = (-d + 1, 1, 0)$ and $V_{e,d,1} = \ell_{e,d,1} \cap \ell_\infty = (e - d + 1 + \tau, 1, 0)$. Now $P_{e,d}, P_{e,0}, V_{e,d,0}, V_{e,d,1}$ are all distinct points of $P_{e,d}$, so $X_{e,d} = P_{e,d}V_{e,d,1} \cup P_{e,0}V_{e,d,0}$ is in $P_{e,d}$. Straightforward calculation shows $X_{e,d} = (e^2 + (e - d + d^2)\tau, e^2 + (e - d)\tau, (e + \tau)^2)$. Note that the lines $P_{e,0}X_{e,d}$, $P_{e,d}X_{e,d}$ meet ℓ_∞ in points of the order-q-subplane $P_{e,d}$. The order-q-subline of $P_{e,d}$ through $P_{e,d}$ and $X_{e,d}$ contains the point $V_{e,d,1}$ of ℓ_∞, so by Theorem 2.1 corresponds in $\mathrm{PG}(6,q)$ to the line through $P_{e,d}$ and $X_{e,d}$. Hence in $\mathrm{PG}(6,q)$, the point $P_{e,d}X_{e,d} \cap \Sigma_\infty$ lies in the plane $[P_{e,d}]$. Similarly the point $P_{e,0}X_{e,d} \cap \Sigma_\infty$ lies in $[P_{e,d}]$. To calculate the coordinates of these points in $\mathrm{PG}(6,q)$, we need to take the coordinates of $X_{e,d}, P_{e,0}, P_{e,d}$ in $\mathrm{PG}(2,q^3)$ and write them with third coordinate in $\mathrm{GF}(q)$. So using the
Bruck-Bose map σ, we have in $\operatorname{PG}(6, q)$,

$$
X_{e,d} = \sigma((e^2 + (e - d + d^2)\tau)\theta(e)^2, (e^2 + (e - d)\tau)\theta(e)^2),
$$

$$
P_{e,0} = \sigma(e(e + \tau)\theta(e)^2, e(e + \tau)\theta(e)^2, \theta(e)^2),
$$

$$
P_{e,d} = \sigma((e + d\tau)(e + \tau)\theta(e)^2, e(e + \tau)\theta(e)^2, \theta(e)^2).
$$

Now $X_{e,d} = P_{e,0} - dJ_{e,d}$, hence the line $P_{e,0}X_{e,d}$ of $\operatorname{PG}(6, q)$ meets Σ_∞ in the point $J_{e,d}$, so $J_{e,d}$ is in the plane $[P_{e,d}]^\perp$. Similarly, $X_{e,d} = P_{e,d} - dK_{e,d}$, hence the line $P_{e,d}X_{e,d}$ of $\operatorname{PG}(6, q)$ meets Σ_∞ in the point $K_{e,d}$, so $K_{e,d}$ is in the plane $[P_{e,d}]^\perp$.

Now suppose $d = 0$. In this case, let $X_e = P_{e,1}V_{e,0,1} \cap P_{e,0}V_{e,0,0}$. Straightforward calculation gives

$$
X_e = (e^2 + e\tau - \tau, e^2 + e\tau - \tau, (e + \tau)^2)
$$

$$
= ((e^2 + e\tau - \tau)\theta^-(e)^2, (e^2 + e\tau - \tau)\theta^-(e)^2, \theta(e)^2).
$$

Then in $\operatorname{PG}(6, q)$, $X_e = P_{e,0} - J_{e,0}$ and $X_e = P_{e,1} - K_{e,0}$. So $J_{e,0}, K_{e,0} \in [P_{e,d}]^\perp$ as required. □

Theorem 10.2 Let \mathcal{B} be a tangent order-q-subplane in $\operatorname{PG}(2, q^3)$ and let $[\mathcal{B}]$ be the corresponding ruled surface in $\operatorname{PG}(6, q)$. By Theorem 3.2, $[\mathcal{B}]$ is the intersection of nine quadrics. Let P be an affine point of \mathcal{B}, then in $\operatorname{PG}(6, q)$, the plane $[P^\perp]$ is the intersection of the tangent spaces at P to each of these nine quadrics.

Proof As before, without loss of generality we prove this for the tangent order-q-subplane \mathcal{B} coordinatised in Section 6. The equations of the nine quadrics determining $[\mathcal{B}]$ are given in [2] in equations (16), (17), (18), and are:

$$
(1 - x)^q((1 + \tau)y - 1) - (1 - x)((1 + \tau)y - 1)^q = 0,
$$

$$
(1 - x)(ty)^q - (1 - x)^qty = 0,
$$

$$
(1 - y)^q(1 - x) - (1 - y)(1 - x)^q = 0.
$$

These equations are in $\operatorname{PG}(2, q^3)$, and each equation corresponds to three quadrics in $\operatorname{PG}(6, q)$. A point $(x, y, 1)$ of $\operatorname{PG}(2, q^3)$ satisfying one of these equations corresponds to a point $\sigma(x, y, 1)$ in $\operatorname{PG}(6, q)$ lying on all three quadrics. Note that equation (4) is equation (6) minus equation (5), so we only need consider the second two equations.

By Lemma 4.1.4.2, without loss of generality we can prove the result for the affine point $P_{e,d}$ in \mathcal{B} for some $e, d \in \operatorname{GF}(q)$. In $\operatorname{PG}(6, q)$ we want to find all lines through $P_{e,d}$ tangent to each of the nine quadrics. A line ℓ through the point $P_{e,d}$ meets Σ_∞ in a point $R = \sigma(u, v, 0)$ where $u, v \in \operatorname{GF}(q^3)$ depend on e, d. A general point on the line ℓ has form $P_{e,d} + tR$, where $t \in \operatorname{GF}(q)$. To determine which lines ℓ are tangent lines, we substitute this general point into the equations for the quadrics and solve for points R where $t = 0$ is a double root.
From Table \(1\) we have \(P_{e,d} = (e + dτ, e + τ)\). Writing this as \((x, y, 1)\) gives

\[
x = (e + dτ) \frac{θ(e)}{θ(e)}, \quad y = e \frac{θ(e)}{θ(e)}, \quad 1 - x = (1 - d) τ \frac{θ(e)}{θ(e)}, \quad 1 - y = τ \frac{θ(e)}{θ(e)}.
\]

Replacing \(x\) with \(x + tu\) and \(y\) with \(y + tv\) in \(5\) we obtain

\[
0 = (1 - x - tu)(τ(y + tv))^q - (1 - x - tu)^q τ(y + tv)
\]

\[
= (1 - x)(τy)^q - (1 - x)^q τy + t^2(-uτ^qv^q + u^qτv) +
\]

\[
+ t(-uτ^qy^q + (1 - x)τ^qv^q - (1 - x)^qτv + u^qτy).
\]

Note that \(P_{e,d} = (x, y, 1)\) satisfies \(5\), so when the above equation is regarded as a polynomial in \(t\), the constant term is equal to 0. For \(t = 0\) to be a repeated root, we need the coefficient of \(t\) to be equal to zero, that is \(-uτ^qy^q + (1 - x)τ^qv^q - (1 - x)^qτv + u^qτy = 0\). Substituting for \(x, y\) using \(7\) yields

\[
0 = -uτ^q \frac{θ(e)^q}{θ(e)} + (1 - d) τ \frac{θ(e)}{θ(e)} τ^q v^q - (1 - d) τ^q \frac{θ(e)^q}{θ(e)} τv + u^q τ e \frac{θ(e)}{θ(e)}
\]

Rearranging gives

\[
\frac{1}{τθ(e)}((1 - d)τv + eu) = \left(\frac{1}{τθ(e)}((1 - d)τv + eu)\right)^q,
\]

and so \((1 - d)τv + eu/τθ(e)\) is in \(GF(q)\). So we want \(u, v \in GF(q^3)\) such that \((1 - d)τv + eu/τθ(e) = a\), for any \(a \in GF(q)\). That is,

\[
(1 - d)τv + eu = aτθ(e) \tag{8}
\]

for \(a \in GF(q)\). We now repeat these calculations for equation \(6\): we replace \(x\) by \(x + tu\) and \(y\) by \(y + tv\) to obtain

\[
(1 - y - tv)^q(1 - x - tu) - (1 - y - tv)(1 - x - tu)^q = 0,
\]

setting the coefficient of \(t\) to 0 gives

\[-v^q(1 - x) - (1 - y)^q u + (1 - y)u^q + v(1 - x)^q = 0,
\]

and substituting for \(x, y\) from \(7\) gives \(\((1 - d)v - u)/τθ(e)\) is an element of \(GF(q)\). So we want \(u, v \in GF(q^3)\) such that

\[
(1 - d)v - u = bτθ(e) \tag{9}
\]

for any \(b \in GF(q)\). Solving \(8\) and \(9\) for \(u, v\) gives

\[
u = \frac{1}{θ(e)}(a + be)τθ(e)^2 - bτθ(e), \quad v = \frac{1}{1 - d θ(e)}(a + be)τθ(e)^2,
\]

23
where \(a, b\) are any values in \(\text{GF}(q)\), that is, \(u, v\) are functions of \(a, b \in \text{GF}(q)\). Hence the points \(R\) for which \(P_{e,d}R\) is a tangent line to the nine quadrics forming the variety \([\mathcal{B}]\) are, for any \(a, b \in \text{GF}(q)\),

\[
R = \sigma(u,v,0) = \left(\frac{a + be}{(1-d)\theta(e)}\right) \sigma((1-d)\tau\theta'(e)^2, \tau\theta'(e)^2, 0) - b\sigma\tau\theta'(e), 0, 0).
\]

Note that \((a + be)/((1 - d)\theta(e)) \in \text{GF}(q)\). By varying \(a, b \in \text{GF}(q)\), we see that \(R\) is any point on the line joining \(J_{e,d} = \sigma((1 - d)\tau\theta'(e)^2, \tau\theta'(e)^2, 0)\) and \(C_e = \sigma(\tau\theta'(e), 0, 0)\).

Hence the lines through \(P_{e,d}\) that are tangent to \([\mathcal{B}]\) form a plane \(\alpha = \langle P_{e,d}, J_{e,d}, C_e \rangle\). By Lemma \[10.1\] the point \(J_{e,d}\) is in the plane \([P_{e,d}^\perp]\). Further, the point \(K_{e,d} = J_{e,d} + \theta(e)C_e\) is in \(\alpha\) as \(\theta(e) \in \text{GF}(q)\), and is in \([P_{e,d}^\perp]\) by Lemma \[10.1\]. Hence \(\alpha = [P_{e,d}^\perp]\), that is, the plane \([P_{e,d}^\perp]\) is formed from the lines tangent to \([\mathcal{B}]\) at \(P_{e,d}\). \(\square\)

Corollary 10.3 Let \(\mathcal{B}\) be a tangent order-\(q\)-subplane of \(\text{PG}(2,q^3)\) and let \(P\) be an affine point of \(\mathcal{B}\). Then the order-\(q\)-subplanes \(\mathcal{B}\) and \(P^\perp\) meet in exactly the order-\(q\)-subline \(PT \cap \mathcal{B}\). Further, there is a bijection from affine points \(P\) of \(\mathcal{B}\) to order-\(q\)-subplanes \(P^\perp\) that contain the order-\(q\)-subline \(PT \cap \mathcal{B}\) and meet \(\ell_\infty\) in an order-\(q\)-subline contained in \(S_T\).

Proof The proof of Theorem \[10.2\] shows that \(\mathcal{B}\) and \(P^\perp\) meet in the order-\(q\)-subline \(PT \cap \mathcal{B}\). The bijection follows from Lemma \[3.1\] \[2\]. \(\square\)

The next corollary states a result from the final paragraph of the proof of Theorem \[10.2\]. This result is needed in another article.

Corollary 10.4 \([P_{e,d}^\perp]\) = \(\langle P_{e,d}, J_{e,d}, C_e \rangle\).

11 Conclusion

This article explored further properties of a tangent order-\(q\)-subplane \(\mathcal{B}\) in \(\text{PG}(2,q^3)\). In particular, we investigated the tangent splash of \(\mathcal{B}\) (the intersection of the lines of \(\mathcal{B}\) with \(\ell_\infty\)). Most of this investigation was carried out in the plane \(\text{PG}(2,q^3)\). However, the tangent splash has interesting properties when looked at in the Bruck-Bose representation of \(\text{PG}(2,q^3)\) in \(\text{PG}(6,q)\). In particular, we demonstrated a set of cover planes, and investigated the tangent subspace of an affine point of \(\mathcal{B}\). In another article \[4\], the authors continue this investigation by working in \(\text{PG}(6,q)\) and looking at the interaction between the ruled surface corresponding to \(\mathcal{B}\) and the set of planes forming the tangent splash of \(\mathcal{B}\).
References

[1] J. André. Über nicht-Desarguessche Ebenen mit transitiver Translationgruppe. \textit{Math. Z.}, 60 (1954) 156–186.

[2] S.G. Barwick and W.A. Jackson. Sublines and subplanes of PG(2, \(q^3\)) in the Bruck-Bose representation in PG(6, \(q\)). Finite Fields Th. App. 18 (2012) 93–107.

[3] S.G. Barwick and W.A. Jackson. A characterisation of tangent subplanes of PG(2, \(q^3\)). To appear, Designs Codes, Crypt. (DOI) 10.1007/s10623-012-9754-7

[4] S.G. Barwick and W.A. Jackson. The tangent splash in PG(6, \(q\)). Submitted.

[5] R.H. Bruck. Construction problems of finite projective planes. \textit{Conference on Combinatorial Mathematics and its Applications}, University of North Carolina Press, (1969) 426–514.

[6] R.H. Bruck and R.C. Bose. The construction of translation planes from projective spaces. \textit{J. Algebra}, 1 (1964) 85–102.

[7] R.H. Bruck and R.C. Bose. Linear representations of projective planes in projective spaces. \textit{J. Algebra}, 4 (1966) 117–172.

[8] L.R.A. Casse. \textit{A Guide to Projective Geometry}. Oxford University Press, 2006.

[9] J.W.P. Hirschfeld. \textit{Finite Projective Spaces of Three Dimensions}. Oxford University Press, 1985.

[10] J.W.P. Hirschfeld. \textit{Projective Geometry over Finite Fields, Second Edition}. Oxford University Press, 1998.

[11] J.W.P. Hirschfeld and J.A. Thas. \textit{General Galois Geometries}. Oxford University Press, 1991.

[12] N.L. Johnson, V. Jha and M. Biliotti. \textit{Handbook of Finite Translation Planes}. Chapman and Hall/CRC 2007.

[13] F.A. Sherk. The Geometry of GF(\(q^3\)). \textit{Can. J. Math.} 38 (1986) 672–696.