This paper describes a domain independent, automatically trained natural language call router for directing incoming calls in a call center. Our call router directs customer calls based on their response to an open-ended “How may I direct your call?” prompt. Routing behavior is trained from a corpus of transcribed and hand-routed calls and then carried out using vector-based information retrieval techniques. Terms consist of n-gram sequences of morphologically reduced content words, while documents representing routing destinations consists of weighted term frequencies derived from calls to that destination in the training corpus. Based on the statistical discriminating power of the n-gram terms extracted from the caller’s request, the caller is 1) routed to the appropriate destination, 2) transferred to a human operator, or 3) asked a disambiguation question. In the last case, the system dynamically generates queries tailored to the caller’s request and the destinations with which it is consistent, based on our extension of the vector model. Evaluation of the call router performance over a financial services call center using both accurate transcriptions of calls and fairly noisy speech recognizer output demonstrated robustness in the face of speech recognition errors. Furthermore, our system showed a substantial improvement in performance over existing systems by correctly routing 93.8% of the calls after punting 10.2% of all calls to a human operator on transcription, with approximately 4% degradation in performance when using speech recognizer output with a 23% word error rate.

1. Introduction

The call routing task is one of directing a customer’s call to an appropriate destination within a call center or providing some simple information, such as current loan rates, on the basis of some kind of interaction with the customer. In current systems, such interaction is typically carried out via a touch-tone system with a rigid pre-determined navigational menu. The primary disadvantages of such navigating menus for users are the time it takes to listen to all the options and the difficulty of matching their goals to the given options. These problems are compounded by the necessity of descending a nested hierarchy of choices to zero in on a particular activity. Even requests with simple English phrasings such as “I want the balance on my car loan” may require users to navigate as many as four or five nested menus with four or five options each. We have developed an alternative to touch-tone menus that allows users to interact with a call router in natural spoken English dialogues just as they would with a human operator.

In a typical dialogue interaction between a caller and a human operator, the operator responds to a caller request by either routing the call to an appropriate destination, or by querying the caller for further information to determine where the call should
be routed. Thus, in developing an automatic call router, we select between these two options as well as a third option of sending the call to a human operator in situations where the router recognizes that it is beyond its capabilities to automatically handle the call. The rest of this paper provides both a description and an evaluation of an automatic call router which consists of 1) a routing module driven by a novel application of vector-based information retrieval techniques, and 2) a disambiguation query generation module that utilizes the same vector representations as the routing module and dynamically generates queries tailored to the caller’s request and the destinations with which it is consistent, based on our extension of the vector model. The overall call routing system has the following desirable characteristics. First, the training of the call router is domain independent and fully automatic, allowing the system to be easily ported to new domains. Second, the disambiguation module dynamically generates queries based on caller requests and candidate destinations, allowing the system to tailor queries to specific circumstances. Third, the system is highly robust to speech recognition errors. Finally, the overall performance of the system substantially improves upon that of previous systems. With transcription (perfect recognition), we punt 10.2% of the calls to the operator, correctly routing 93.8% of the remainder either with or without disambiguation. With spoken input processed automatically with recognition performance at a 23% word error rate, the system performance degrades by merely 4%.

2. Related Work

Call routing is similar to topic identification (McDonough et al., 1994) and document routing (Schütze, Hull, and Pedersen, 1995) in identifying which one of n topics (or in the case of call routing, destinations) most closely matches a caller’s request. Call routing is distinguished from these activities by requiring a single destination to be selected, but allowing a request to be refined in an interactive dialogue. We are further interested in carrying out the routing process using natural, conversational language.

The only work on natural language call routing to date that we are aware of is that by Gorin and his colleagues (Gorin, Riccardi, and Wright, 1997; Abella and Gorin, 1997; Riccardi and Gorin, 1998), who designed an automated system to route calls to AT&T operators. They select salient phrase fragments from caller requests (in response to the system’s prompt of “how may I help you?”), such as made a long distance and the area code for, and sometimes including phrases that are not meaningful syntactic or semantic units, such as it on my credit. These salient phrase fragments, which are incorporated into their finite state language model for their speech recognizer, are then used to compute likely destinations, which they refer to as call types. This is done by either computing a posteriori probabilities for all possible call types (Gorin, 1996) or by passing the weighted fragments through a neural network classifier (Wright, Gorin, and Riccardi, 1997). Abella and Gorin (1997) utilized the Boolean formula minimization algorithm for combining the resulting set of call types based on a hand-coded hierarchy of call types. This algorithm provides the basis for determining whether or not the goal of the request can be uniquely identified, and their intention is to utilize the outcome of this algorithm to select from a set of dialogue strategies for response generation.

3. Corpus Analysis

To examine human-human dialogue behavior, we analyzed a set of 4497 transcribed telephone calls involving customers interacting with human operators. We analyzed these calls along two dimensions: the semantics of caller requests and the dialogue actions for operator responses. The analysis of the semantics of caller requests is intended to deter-
mine an appropriate subset of the classes of user utterances that the call router should handle automatically (as opposed to transferring to a human operator). The analysis of the dialogue actions for operator responses, on the other hand, is intended to determine the types of responses the call router should be able to provide in response to user utterances in order to help design the response generation component of the call router.

3.1 Semantics of Caller Requests

In our corpus, all callers respond to an initial open-ended prompt of “<ABC> banking services call director; how may I direct your call?” We classified user responses to this prompt into three classes, based on their levels of specificity:

Destination Name, in which the caller explicitly specifies the name of the department to which he wishes to be transferred. The requested destination can form an answer to the operator’s prompt by itself, as in “deposit services”, or be part of a complete sentence, as in “I would like to speak to someone in auto leasing please.”

Activity, in which the caller provides a description of the activity he wishes to perform, and expects the operator to transfer his call to the appropriate department that handles the given activity. Such descriptions may be ambiguous or unambiguous, depending on the level of detail the caller provides, which in turn depends on the caller’s understanding of the organization of the call center. For instance, in the particular call center we studied, since all transactions related to savings accounts are handled by the deposit services department, the request “I want to talk to someone about savings accounts” will be routed to deposit services. On the other hand, a similar request “I want to talk to someone about car loans” is ambiguous between consumer lending, which handles new car loans, and loan services, which handles existing car loans. Queries can also be ambiguous due to the caller’s providing more than one activity, as in “I need to get my checking account balance and then pay a car loan.”

Indirect Request, in which the caller describes his goal in a roundabout way, often including irrelevant information. This typically occurs with callers who are unfamiliar with the call center organization, or those who have difficulty concisely describing their goals. An example of an indirect request is “ah I’m calling ’cuz ah a friend gave me this number and ah she told me ah with this number I can buy some cars or whatever but she didn’t know how to explain it to me so I just called you you know to get that information.”

Table 1 shows the distribution of caller requests in our corpus with respect to these semantic types. Our analysis shows that in the vast majority of calls, the request was based on either destination name or activity. Since in our corpus there are only 23 distinct destinations,¹ and each destination only handles a fairly small number (dozens to

	Destination Name	Activity	Indirect Request
# of calls	949	3271	277
% of all calls	21.1%	72.7%	6.2%

Table 1
Semantic Types of Caller Requests

¹ Although the call center had near 100 departments, in our corpus of 4,500 calls, only 23 departments received more than 10 calls. We chose to base our experiments on these 23 destinations.
of activities, requests based on destination names and activities are expected to be more predictable and thus more suitable for handling by an automatic call router. Thus, our goal is to focus on automatically routing the calls based on destination names and activities, while leaving the indirect requests for human operators.

3.2 Dialogue Actions for Operator Responses

In addition to analyzing how the callers phrased their requests in response to the operator’s initial prompt, we also analyzed how the operators responded to the callers’ requests. We found that in our corpus, the human operator either notifies the caller of a destination to which the call will be transferred, or queries the caller for further information, most frequently when the original request was ambiguous and much less often when the original request was not heard or understood.

Table 2 shows the frequency that each dialogue action was employed by human operators in our corpus. It shows that nearly 20% of all caller requests require further disambiguation. We further analyzed these calls that were not immediately routed and noted that 75% of them involve underspecified noun phrases, such as requesting *car loans* without specifying whether it is an existing car loan or a new car loan. The remaining 25% mostly involve underspecified verb phrases, such as asking to *transfer funds* without specifying the accounts to and from which the transfer will take place, or missing verb phrases, such as asking for *direct deposit* without specifying whether the caller wants to *set up a direct deposit* or *change an existing direct deposit*.

Based on our analysis of operator responses, we decided to first focus our router responses on notifying the caller of a selected destination in cases where the caller request is unambiguous, and on formulating a query for noun phrase disambiguation in the case of noun phrase underspecification in the caller request. For calls that do not satisfy either criterion, the call router should simply punt them to a human operator.

4. Vector-Based Call Routing

In addition to notifying the caller of a selected destination or querying the caller for further information, an automatic call router should also be able to identify when it is unable to handle a call and route the call to a human operator for further processing. The process of determining whether to route a call, generate a disambiguation query, or to punt the call to an operator is carried out by two modules in our system, the routing module and the disambiguation module, as shown in Figure 1. Given a caller request, the routing module selects a set of candidate destinations to which it believes the call can reasonably be routed. If there is exactly one such destination, the call is routed to that destination and the caller notified; if there is no appropriate destination, the call is

2 In most calls, we analyzed the utterances given in the operator’s second turn in the dialogue. However, in situations where the operator generates an acknowledge, such as *uh-huh*, midway through the caller’s request, we analyzed utterances in the next operator turn.
sent to an operator; and if there are multiple candidate destinations, the disambiguation module is invoked. In the last case, the disambiguation module attempts to formulate a query which it believes will allow it to solicit relevant information from the caller to allow the revised request to be routed to a unique destination. If such a query is successfully formulated, it is posed to the caller, and the system makes another attempt at routing the revised request, which includes the original request and the caller’s response to the follow-up question; otherwise, the call is again sent to a human operator.

Our approach to call routing is novel in its application of vector-based information retrieval techniques to the routing process, and in its extension of the vector-based representation for dynamically generating disambiguation queries (Chu-Carroll and Carpenter, 1998). The routing and disambiguation mechanisms are detailed in the following sections.

4.1 The Routing Module
4.1.1 Vector Representation for the Routing Module. In vector-based information retrieval, the database contains a large collection of documents, each of which is represented as a vector in n-dimensional space. Given a query, a query vector is computed and compared to the existing document vectors, and those documents whose vectors are similar to the query vector are returned. We apply this technique to call routing by treating each destination as a document, and representing the destination as a vector in n-dimensional space. Given a caller request, an n-dimensional request vector is computed. The similarity between the request vector and each destination vector is then computed and those destinations which are close to the request vector are then selected as the candidate destinations. This vector representation for destinations and query is illustrated in simplified 2-dimensional space in Figure 2.

In order to carry out call routing with the aforementioned vector representation, three issues must be addressed. First, we must determine the vector representation for
each destination within the call center. Once computed, these destination vectors should remain constant as long as the organization of the call center remains unchanged. Second, we must determine how a caller request will be mapped to the same vector space for comparison with the destination vectors. Finally, we must decide how the similarity between the request vector and each destination vector will be measured and a threshold above which the candidate destinations will be selected.

4.1.2 The Training Process. The goal of the training phase of the call router is to determine the values of the destination vectors (and term vectors) that will subsequently be used in the routing process. Our training process, depicted in Figure 3, requires a corpus of transcribed calls each of which is routed to the appropriate destination. These routed calls are processed by five domain-independent procedures to obtain the desired document (destination) and term vectors.

Document Construction. Since our goal is to represent each destination as an n-dimensional vector, we must create one (virtual) document per destination. The document for a destination contains the raw text of the callers’ contributions in all calls routed to that des-

3 One may consider allowing the call router to constantly update the destination vectors as new data is being collected while the system is deployed. We leave adding learning capabilities to the call router for future work.

4 The transcription process can be carried out by humans or by an automatic speech recognizer. In the experiments reported in this paper, we used human transcriptions.
tination, since these are the utterances that provided vital information for routing purposes. For instance, the document for deposit services may contain utterances such as “I want to check the balance in my checking account” and “I would like to stop payment on a check.” In our experiments, the corpus contains 3753 calls routed to 23 destinations.5

Morphological Filtering and Stop Word Filtering. For routing purposes, we are concerned with the semantics of the words present in a document, but not with the morphological forms of the words themselves. Thus we filter each (virtual) document, produced by the document construction process, through the morphological processor of the Bell Labs Text-to-Speech synthesizer (Sproat, 1998) to extract the root form of each word in the corpus. This process will reduce singulars, plurals, and gerunds to their root forms, such as reducing *service*, *services*, and *servicing* to the root *service*. Also, the various verb forms are also reduced to their root forms, such as reducing *going*, *went*, and *gone* to go.

Next, the root forms of caller utterances are filtered through two lists, the *ignore list* and the *stop list*, in order to build more accurate n-gram term models for subsequent processing. The ignore list consists of noise words, which are common in spontaneous speech and can be removed without altering the meaning of an utterance, such as *um* and *uh*. These words sometimes get in the way of proper n-gram extraction, as in “I’d like to speak to someone about a car uh loan.” When the noise word *uh* is filtered out of the

5 These calls are a subset of the 4500 calls used in our corpus analysis. We excluded calls to destinations that were not represented by more than 10 calls, as well as ambiguous calls that were not resolved by the operator.
utterance, we can then properly extract the bigram car+loan. The stop list enumerates words that are ubiquitous and therefore do not contribute to discriminating between destinations, such as the, be, for, and morning. We modified the standard stop list distributed with the SMART information retrieval system (Salton, 1971) to include domain specific terms and proper names that occurred in our training corpus. Note that when a word on the ignore list is removed from an utterance, it allows words preceding and succeeding the removed word to form n-grams, such as car+loan in the example above. On the other hand, when a stop word is removed from an utterance, a placeholder is inserted into the utterance to prevent the words preceding and following the removed stop word to form n-grams. For instance, after stop word filtering, the caller utterance “I want to check on an account” becomes “<sw> <sw> check <sw> <sw> account”, resulting in two unigrams check and account. Without the placeholders, we would extract the bigram check+account, just as if the caller had used the term checking account in the utterance.

In our experiments, the ignore list contains 25 words which are variations of common transcriptions of speech disfluencies, such as ah, aah, and ahh. The stop list contains over 1,200 words, including function words, proper names, greetings, etc.

Term Extraction. The output of the filtering processes is a set of documents, one for each destination, containing the root forms of the content words extracted from the raw texts originally in each document. In order to capture word co-occurrence, n-gram terms are extracted from the filtered texts. First, a list of n-gram terms and their counts are generated from all filtered texts. Thresholds are then applied to the n-gram counts to select as salient terms those n-gram terms that occurred sufficiently frequently. Next, these salient terms are used to reduce the filtered text for each document to a bag of salient terms, i.e., a collection of n-gram terms along with their respective counts. Note that when an n-gram term is extracted, all of the lower order k-grams, where 1\(\leq k < n \), are also extracted. For instance, the word sequence “checking account balance” will result in the trigram check+account+balance, as well as the bigrams check+account and account+balance and the unigrams check, account, and balance.

In our experiments, we selected as salient terms unigrams that occurred at least twice and bigrams and trigrams that occurred at least three times. This resulted in 62 trigrams, 275 bigrams, and 420 unigrams. In our training corpus, no 4-gram occurred three times. Manual examination of these n-gram terms indicates that almost all of the selected salient terms are relevant for routing purposes.\(^6\)

Term-Document Matrix Construction. Once the bag of salient terms for each destination is constructed, it is very straightforward to construct an \(m \times n \) term-document frequency matrix \(A \), where \(m \) is the number of salient terms, \(n \) is the number of destinations, and an element \(A_{t,d} \) represents the number of times the term \(t \) occurred in calls to destination \(d \). This number indicates the degree of association between term \(t \) and destination \(d \), and our underlying assumption is that if a term occurred frequently in calls to a destination in our training corpus, then occurrence of that term in a caller’s request indicates that the call should be routed to that destination.

In the term-document frequency matrix \(A \), a row \(A_t \) is an \(n \)-dimensional vector representing the term \(t \), while a column \(A_d \) is an \(m \)-dimensional vector representing the destination \(d \). However, by using the raw frequency counts as the elements of the matrix,

\(^6\) It would have been possible to hand-edit the set of n-gram terms at this point to remove unwanted terms. The results we report in this paper use the automatically selected terms without any hand-editing.
more weight is given to terms that occurred more often in the training corpus than to those that occurred less frequently. For instance, a unigram term such as account, which occurs frequently in calls to multiple destinations will have greater frequency counts than say, the trigram term social+security+number. As a result, when the two vectors are combined, as will be done in the routing process, the term vector for account contributes more to the combined vector than that for social+security+number. In order to balance the contribution of each term, the term-document frequency matrix is normalized so that each term vector is of unit length. Let B be the result of the normalizing the term-document frequency matrix, whose elements are given as follows:

$$B_{t,d} = \frac{A_{t,d}}{(\sum_{1 \leq e \leq n} A_{t,e}^2)^{1/2}}$$

Our second weighting is based on the notion that a term which only occurs in a few documents is more important in routing than a term which occurs in many documents. For instance, the term stop+payment, which occurred only in calls to deposit services, should be more important in discriminating among destinations than check, which occurred in many destinations. Thus, we adopted the inverse-document frequency (IDF) weighting scheme (Sparck Jones, 1972) whereby a term is weighted inversely to the number of documents in which it occurs. This score is given by:

$$IDF(t) = \log_2 \frac{n}{d(t)}$$

where t is a term, n is the number of documents in the corpus, and $d(t)$ is the number of documents containing the term t. If t only occurred in one document, $IDF(t) = \log_2 n$; if t occurred in every document, $IDF(t) = \log_2 1 = 0$. Thus, using this weighting scheme, terms that occur in every document will be eliminated.\(^7\) We weight the matrix B by multiplying each row t by $IDF(t)$ to arrive at the matrix C:

$$C_{t,d} = IDF(t) \cdot B_{t,d}$$

Singular Value Decomposition and Vector Representation. In the weighted term-document frequency matrix C, terms are represented as n-dimensional vectors (in our system, $n=23$), and destinations are represented as m-dimensional vectors (in our system, $m=757$). In order to provide a uniform representation of term and document vectors and to reduce the dimensionality of the document vectors, we applied the singular-value decomposition to the $m \times n$ matrix C (Deerwester et al., 1990) to obtain:

$$C = U \cdot S \cdot V^T,$$

where

1. U is an $m \times m$ orthonormal matrix
2. V is an $n \times n$ orthonormal matrix
3. S is an $m \times n$ positive matrix whose nonzero values are $s_{1,1}, \ldots, s_{r,r}$, where r is the rank of C, and they are arranged in descending order $s_{1,1} \geq s_{2,2} \geq \cdots \geq s_{r,r} > 0$

Figure 4 illustrates the results of singular value decomposition according to the above equation. The shaded portions of the matrices are what we use as the basis for our term and document vector representations, as follows:

\(^7\)To preserve all terms, we could have used a common variant of the IDF weighting where $IDF(t) = \log_2 \frac{n}{d(t) + \epsilon}$ for some non-negative ϵ.

9
1. U_r is an $m \times r$ matrix, in which each row forms the basis of our term vector representation.

2. V_r is an $n \times r$ matrix, in which each row forms the basis of our document vector representation.

3. S_r is an $r \times r$ positive diagonal matrix whose values are used for appropriate scaling in the term and document vector representation.

The actual representation of the term and document vectors is U_r and V_r scaled (or not) by elements in S_r, depending on whether the representation is intended for comparisons between terms, between documents, or between a term and a document. For instance, since the similarity between two documents can be measured by the dot product between vectors representing the two documents (Salton, 1971), and $C^T \cdot C$ contains the dot products of all pairwise column vectors in the weighted term-document frequency matrix C, the similarity between the ith and jth documents can simply be recovered by element $(C^T \cdot C)_{ij}$. Since U is orthonormal and S is a diagonal matrix,

$$C^T \cdot C = (U \cdot S \cdot V^T)^T \cdot (U \cdot S \cdot V^T)$$
$$= V \cdot S^T \cdot U^T \cdot U \cdot S \cdot V^T$$
$$= V \cdot S \cdot S \cdot V^T$$
$$= (V \cdot S) \cdot (V \cdot S)^T$$
$$\approx (V_r \cdot S_r) \cdot (V_r \cdot S_r)^T$$

The above equations suggest that scaling the vectors V_r with elements in S_r, i.e., representing documents as row vectors in $V_r \cdot S_r$, facilitates comparisons between documents. The same reasoning holds for representing terms as row vectors in $U_r \cdot S_r$ for comparisons between terms, although in this particular application, we are not interested in term/term comparisons.

To measure the degree of association between a term and a document, we look up an element in the weighted term-document frequency matrix. Since S is a diagonal matrix, we have

$$C = U \cdot S \cdot V^T$$
$$= U \cdot (V \cdot S)^T$$
$$\approx U_r \cdot (V_r \cdot S_r)^T$$

Therefore, representing terms simply by row vectors in U_r and documents by row vectors in $V_r \cdot S_r$ allows us to make comparisons between documents, as well as between terms and documents.
4.1.3 Call Routing. As discussed earlier, two processes need to be carried out during the call routing process. First, a pseudo-document vector must be constructed to represent the caller’s request in order to facilitate the comparisons between the request and each document vector. Second, a method for comparison must be established to measure the similarity between the pseudo-document vector and the document vectors in \(V_r \cdot S_r \), and a threshold must be determined to allow for selection of candidate destinations.

Pseudo-Document Generation. Given a caller utterance (either in text form from a keyboard interface or as the output from an automatic speech recognizer), we first perform the morphological and stop word filtering and the term extraction procedures as in the training process to extract the relevant n-gram terms from the utterance. Since higher-level n-gram terms are in general better indicators of potential destinations, we further allow trigrams to contribute more to constructing the pseudo-document than bigrams, which in turn contribute more than unigrams. Thus we assign a weight \(w_3 \) to trigrams, \(w_2 \) to bigrams, and \(w_1 \) to unigrams, and each extracted n-gram term is then weighted appropriately to create a bag of terms in which each extracted n-gram term occurs \(w_n \) times. As a result, when we construct a pseudo-document from the bag of terms, we get the effect of weighting each n-gram term by \(w_n \).

Given the extracted n-gram terms, we can present the request as an \(m \times 1 \) vector \(Q \) where each element \(Q_i \) in the vector represents the number of times the \(i \)th term occurred in the bag of terms. The vector \(Q \) is then added as an additional column vector in our original weighted term-document frequency vector \(C \), as shown in Figure 5, and we want to find the new corresponding column vector in \(V_r \cdot S_r \), that represents the pseudo-document in the reduced \(r \)-dimensional space. Since \(U \) is orthonormal and \(S \) is a diagonal matrix, we have

\[
\begin{align*}
Q &= U \cdot S \cdot V_q^T \\
Q^T &= V_q^T \cdot S \cdot U^T \\
Q^T \cdot U &= V_q^T \cdot S \cdot U^T \cdot U \\
&= V_q^T \cdot S
\end{align*}
\]

Finally, note that \(Q^T \cdot U \approx Q^T \cdot U_r \) and that \(V_q \cdot S \approx V_q \cdot S_r \). \(V_q \cdot S_r \) is a pseudo-document representation for the caller utterance in \(r \)-dimensional space, and is scaled appropriately for comparison between documents. This vector representation is simply

\(w_3 = 1; w_2 = 2; \text{ and } w_1 = 4. \)
obtained by multiplying Q^T and U_r, or equivalently, summing the vector representing each term in the bag of n-gram terms.

Candidate Destination Selection. Once the pseudo-document vector representing the caller request is computed, we measure the similarity between the pseudo-document vector and each document vector in $V_r \cdot S_r$. There are a number of ways one may measure the similarity between two vectors, such as using the cosine score between the vectors, the Euclidean distance between the vectors, the Manhattan distance between the vectors, etc. We follow the standard technique adopted in the information retrieval community and select the cosine score as the basis for our similarity measure. The cosine score between two n-dimensional vectors x and y is given as follows:

$$
cos(x, y) = \frac{x \cdot y^T}{\sqrt{\sum_{1 \leq i \leq n} x_i^2} \cdot \sqrt{\sum_{1 \leq i \leq n} y_i^2}}
$$

Using cosine reduces the contribution of each vector to its angle by normalizing for length. Thus the key in maximizing cosine between two vectors is to have them point in the same direction. However, although the raw vector cosine scores give some indication of the closeness of a request to a destination, we noted that the absolute value of such closeness does not translate directly into the likelihood for correct routing. Instead, some destinations may require a higher cosine value, i.e., a closer degree of similarity, than others in order for a request to be correctly associated with those destinations. Thus, in order to select a unique threshold for candidate destination selection that can be appropriately applied across destinations, we transform the cosine score for each destination using a sigmoid function specifically fitted for that destination to obtain a confidence score that represents the router’s confidence that the call should be routed to that destination.

From each call in the training data, we generate, for each destination, a cosine value/routing value pair, where the cosine value is that between the destination vector and the request vector, and the routing value is 1 if the call was routed to that destination in the training data and 0 otherwise. Thus, for each destination, we have a set of cosine value/routing value pairs equal to the number of calls in the training data. The subset of these value pairs whose routing value is 1 will be equal to the number of calls routed to that destination in the training set. Then, for each destination, we used the least squared error method in fitting a sigmoid function, $1/(1 + e^{-(ax+b)})$, to the set of cosine/routing value pairs. Assuming d_a and d_b are the coefficients of the fitted sigmoid function for destination d, we have the following confidence function for a destination d and cosine value x:

$$
Conf(d_a, d_b, x) = 1/(1 + e^{-(d_ax+d_b)})
$$

Thus the score given a request and a destination, where d is the vector corresponding to destination d, and r is the vector corresponding to the request is $Conf(d_a, d_b, cos(r, d))$.

We tested the routing performance using cosine vs. confidence values on transcriptions of 307 unseen unambiguous requests. In each case, we selected the destination with the highest cosine/confidence score to be the target destination. Using raw cosine scores, 92.2% of the calls are routed to the correct destination. On the other hand, using sigmoid confidence fitting, 93.5% of the calls are correctly routed. This yields an error reduction rate of 16.7%, illustrating the advantage of transforming the raw cosine scores to more uniform confidence scores that allow for more accurate comparisons between destinations.
Once we have obtained a confidence value for each destination, the final step in the routing process is to compare the confidence values to a pre-determined threshold and return those destinations whose confidence values are greater than the threshold as candidate destinations. To determine the optimal value for this threshold, we ran a series of experiments to compute the upperbound and lowerbound of the router’s performance by varying the threshold from 0 to 0.9 at 0.1 intervals. The lowerbound represents the percentage of calls that are routed correctly, while the upperbound indicates that percentage of calls that have the potential to be routed correctly after disambiguation (see Section 5 for details on upperbound and lowerbound measures). Figure 6 illustrates the results of this set of experiments and shows that a threshold of 0.2 yields optimal performance. Thus we adopt 0.2 as our confidence threshold for selecting candidate destinations in the rest of our discussion.

4.1.4 Call Routing Example. To illustrate the call routing process with an example, suppose the caller responds to the operator’s prompt with “I am calling to apply for a new car loan.” First the caller’s utterance is passed through morphological filtering to obtain the root forms of the words in the utterance, resulting in “I am call to apply for a new car loan.” Next, words on the stop list are removed and replaced with a placeholder, resulting in “sw sw call sw apply sw sw new car loan”. From the filtered utterance, the router extracts the salient n-gram terms to form a bag of terms as follows: new+car+loan, new+car, car+loan, call, apply, new, car, and loan. A request vector is then computed by taking the weighted sum of the term vectors representing the salient n-gram terms, and the cosine value between this request vector and each destination vector is computed. The cosine value for each destination is subsequently transformed using the destination-specific sigmoid function to obtain a confidence score for each destination. Figures 7(a) and 7(b) show the cosine scores and the confidence scores for the top five destinations, respectively. Given a confidence threshold of 0.2, the only candidate destination selected is Consumer Lending. Thus, the caller’s request is routed unambiguously to that destination.

4.2 The Disambiguation Module
4.2.1 Vector Representation for the Disambiguation Module. When the routing module returns more than one candidate destination, the disambiguation module is invoked in an attempt to formulate an appropriate query to solicit further information from the caller to determine a unique destination to which the call should be routed. As dis-
cussed earlier, this occurs when two or more destination vectors are close to the request vector, as illustrated in reduced 2-dimensional space in Figure 8. In the example, the caller’s request “car loans please” is ambiguous since the caller does not specify whether he is interested in existing or new car loans. Therefore, the vector representation for the request falls between the vectors representing the two candidate destinations, Consumer Lending and Loan Services, and is close to both of them. The goal of the disambiguation process is to solicit an n-gram term from the caller so that when the vector representing this new n-gram term is added to the original request vector, the refined request vector will be unambiguously routed to one of the two candidate destinations. In terms of our vector representation, this means that our goal is to find term vectors that are close to the differences between the candidate destination vectors and the request vector, i.e., the highlighted vectors in Figure 8. These difference vectors, which are dynamically generated from the destination and request vectors, form the basis from which the disambiguation queries will be generated.

4.2.2 Query Formulation. Our disambiguation module selects a subset of the salient n-gram terms from which the query will be generated. The subset of n-gram terms are those related to the original query that can likely be used to disambiguate among the candidate destinations. They are chosen by filtering all n-gram terms based on the following three criteria, as shown in Figure 9:

1. **Closeness:** Since the goal of the disambiguation process is to solicit terms whose corresponding vectors are close to the difference vectors, the first step in the term selection process is to compare each n-gram term vector with the difference vectors and select those n-gram term vectors which are close to the difference vectors by the cosine measure. Since both the destination vectors

![Figure 7](image7.png)

Figure 7
Ranking of Candidate Destinations

![Figure 8](image8.png)

Figure 8
2-Dimensional Vector Representation for the Disambiguation Module
and the request vector are scaled for document/document comparison in $V_r \cdot S_r$ space, the difference vectors are also represented in $V_r \cdot S_r$ space. As discussed in Section 4.1.2, documents represented in $V_r \cdot S_r$ space are suitable for comparison with terms represented in U_r space. In our system, for each difference vector, we compute the cosine score between the difference vector and each term vector, and select the 30 terms with the highest cosine scores as the set of close terms. The reasons for selecting a threshold on the number of terms instead of on the cosine score are twofold. First, in situations where many term vectors are close to the difference vector, we avoid generating an overly large set of close terms but instead focus on a smaller set of most promising terms. Second, in situations where few term vectors are close to the difference vector, we still select a set of close terms in the hope that they may contribute to formulating a reasonable query, instead of giving up on the disambiguation process outright.

2. **Relevance**: From the set of close terms, we select a set of relevant terms which are terms that further specify a term in the original request. A term is considered relevant if it can be combined with a term in the original request to form a valid n-gram term, and the relevant term will be the resulting n-gram term. For instance, if `car+loan` is a term in the original request, then both `new` and `new+car` would produce the relevant term `new+car+loan`. This mechanism for selecting relevant terms allows us to focus on selecting n-gram terms for noun phrase disambiguation by eliminating close terms that are semantically related to underspecified n-gram noun phrases in the original request but do not contribute to further disambiguating them.

3. **Disambiguating power**: The final criterion that we use for term selection is to restrict attention to relevant terms that can be added to the original request to result in an unambiguous routing decision using the routing mechanism described in Section 4.1.3. In other words, we combine the original request
with each relevant term to form a refined request and the routing module is
invoked to determine if this refined request can be unambiguously routed to a
unique destination. The set of relevant terms with disambiguating power then
form the set of selected terms from which the system’s query will be
formulated. If none of the relevant terms satisfy this criterion, then we include
all relevant terms in the set of selected terms. Thus, instead of giving up the
disambiguation process when no one term is predicted to resolve the
ambiguity, the system poses a question to solicit information from the caller to
move the original request one step toward being an unambiguous request.
After the first disambiguation query is answered, the system subsequently
selects a new set of terms from the refined, though still ambiguous, request
and formulates a follow-up disambiguation query.

The result of this selection process is a finite set of terms which are relevant to the
original ambiguous request and, when added to it, are likely to resolve the ambiguity.
The actual query is formulated based on the number of terms in this set as well as
features of the selected terms. As shown in Figure 9, if the three selection criteria ruled
out all n-gram terms, then the call is sent to a human operator for further processing.
If there is only one selected term, then a yes-no question is formulated based on this
term. If there is more than one selected term in the set, and a significant number of
these terms share a common headword, X, the system generalizes the query to ask the
wh-question “for what type of X?” Otherwise, a yes-no question is formed based on the
term in the selected set that occurred most frequently in the training data, based on the
heuristic that a more common term is likely to be relevant than an obscure term. A third
alternative would be to ask a disjunctive question, but we have not yet explored this
possibility. Figure 1 shows that after the system poses its query, it attempts to route the
refined request, which is the original request augmented with the caller’s response to
the disambiguation query. In the case of wh-questions, n-gram terms are extracted from
the caller’s response. In the case of yes-no questions, the system determines whether
a yes or no answer is given. In the former case, the term selected to formulate the
disambiguation query is considered the caller’s response, while in the latter case, the
response is treated as in responses to wh-questions.

Note that our disambiguation mechanism, like our training process for basic rout-
ing, is fully domain-independent. It utilizes the set of n-gram terms, as well as term and
document vectors that were obtained by the training of the call router. Thus, porting
the call router to a new task does not require any domain specific work on the disambigua-
tion module.

4.2.3 Disambiguation Example. To illustrate the disambiguation module of our call
router, consider the request “loans please.” This request is ambiguous because the call
center we studied handles mortgage loans separately from all other types of loans, and
for all other loans, existing loans and new loans are again handled by different depart-
ments.

Given this request, the call router first performs morphological, stop word, and ig-
nore word filterings on the input, resulting in the filtered utterance of “loan <sw>.” N-
gram terms are then extracted from the filtered utterance, resulting in the unigram term \textit{loan}. Next, the router computes a pseudo-document vector that represents the caller’s request, which is compared in turn with the destination vectors. The cosine values between the request vector and each destination vector are then mapped into confidence values. Using a confidence threshold of 0.2, we have two candidate destinations, \textit{Loan Services} and \textit{Consumer Lending}; thus the disambiguation module is invoked.

Our disambiguation module first selects from all n-gram terms those whose term vectors are close to the difference vectors, i.e., the differences between each candidate destination vector and the request vector. This results in a list of 60 close terms, the vast majority of which are semantically close to \textit{loan}, such as \textit{auto+loan}, \textit{payoff}, and \textit{owe}. Next, the relevant terms are constructed from the set of close terms by selecting those close terms that form a valid n-gram term with \textit{loan}. This results in a list of 27 relevant terms, including \textit{auto+loan} and \textit{loan+payoff}, but excluding \textit{owe}, since neither \textit{loan+owe} nor \textit{owe+loan} constitutes a valid bigram. The third step is to select those relevant terms with disambiguating power, resulting in 18 disambiguating terms. Since 11 of these terms share a head noun \textit{loan}, a wh-question is generated based on this headword, resulting in the query “for what type of loan?”

Suppose in response to the system’s query, the user answers “car loan.” The router then adds the new bigram \textit{car+loan} and the two unigrams \textit{car} and \textit{loan} to the original request and attempts to route the refined request. This refined request is again ambiguous between \textit{Loan Services} and \textit{Consumer Lending} because the caller did not specify whether it was an \textit{existing} or \textit{new} car loan. Again, the disambiguation module selects the close, relevant, and disambiguating terms, resulting in a unique trigram \textit{exist+car+loan}. Thus, the system generates the yes-no question “is this about an existing car loan?”11 If the user responds “yes,” then the trigram \textit{exist+car+loan} is added to the refined request and the call unambiguously routed to \textit{Loan Services}; if the user says “no, it’s a new car loan”, then the trigram \textit{new+car+loan} is extracted from the response and the call routed to \textit{Consumer Lending}.

5. Evaluation of the Call Router

5.1 Routing Module Performance
We performed an evaluation of the routing module of our call router on a set of 389 calls disjoint from the training corpus. Of the 389 requests, 307 were unambiguous and routed to their correct destinations, and 82 were ambiguous and annotated with a list of potential destinations. Unfortunately, in this test set, only the caller’s utterance in response to the system’s initial prompt of “how may I direct your call?” was recorded and transcribed; thus we have no information about where the ambiguous calls should be routed after disambiguation. We evaluated the routing module performance on both transcriptions of caller utterances as well as output of the Bell Labs Automatic Speech Recognizer (Reichl et al., 1998) based on speech input of caller utterances (Carpenter and Chu-Carroll, 1998).

5.1.1 Term Extraction Performance. Since the vector representation for caller requests is computed based on the term vectors representing the n-gram terms extracted from the requests, the performance of our call router is directly tied to the the accuracy of terms extracted from each caller utterance. Given the set of n-gram terms obtained from

11 Our current system uses simple template filling for response generation by utilizing manually constructed mappings from n-gram terms to their inflected forms, such as from \textit{exist+car+loan} to \textit{an existing car loan}.
the training process, the accuracy of extraction of such terms based on transcriptions of caller utterances is 100%. However, when using the output of an automatic speech recognizer as input to our call router, deletions of terms present in the caller’s request as well as insertions of terms that did not occur in the request affect the term extraction accuracy and thus the routing performance.

We evaluated the output of the automatic speech recognizer based on both word accuracy and term accuracy, as shown in Table 3. Word accuracy is measured by taking into account all words in the transcript and in the recognized string. Two sets of results are given for word accuracy, one based on raw forms of words and the other based on comparisons of the root forms of words, i.e., after both the transcript and the recognized string are sent through our morphological filter. Term accuracy is measured by taking into account only the set of actual/recognized words which contribute to routing performance, i.e., after both the transcript and the recognized string are sent through the term extraction process.

For each evaluation dimension, we measured the recognizer performance by calculating the precision and recall. Precision is the percentage of words/terms in the recognizer output that are actually in the transcription, i.e., percentage of found words/terms that are correct, while recall is the percentage of words/terms in the transcription that are correctly returned by the recognizer, i.e., percentage of actual word/terms that are found. Table 3 shows that using the root forms of words results in a 1% absolute improvement (approximately 5% relative improvement) in both precision and recall over using the raw forms of words.

A comparison of the rooted word accuracy and the unigram accuracy shows that the recognizer performs much better on content words than on all words combined. Furthermore, comparisons among term accuracies for various n-gram terms shows that as n increases, precision increases while recall decreases. This is because finding a correct trigram requires that all three unigrams that make up the trigram be correctly recognized in order, hence the low recall. On the other hand, this same feature makes it less likely for the recognizer to postulate a trigram by chance, hence the high precision. An overall observation in the results presented in Table 3 is that the speech recognizer misses between 12-17% of the n-gram terms used by the call router, and introduces an extra 1-6% of n-gram terms that should not have existed. In the next section, we show how these deletions and insertions affect the call router’s performance.

5.1.2 Destination Selection Performance. In evaluating the performance of the routing module, we compare the list of candidate destinations with the manually annotated correct destination(s) for each call. The routing decision for each call is classified into one of 8 groups, as shown in Figure 10. For instance, group 2a contains those calls which are 1) actually unambiguous, 2) considered ambiguous by the router, and 3) has the potential to be routed to the correct destination, i.e., the correct destination is one of the candidate destinations. On the other hand, group 3b contains those calls which are 1) actually ambiguous, 2) considered unambiguous by the router, and 3) routed to a
destination which is not one of the potential destinations.

We evaluated the router’s performance on three subsets of our test data: unambiguous requests alone, ambiguous requests alone, and all requests combined. For each set of data, we calculated a lowerbound performance, which measures the percentage of calls that are correctly routed, and an upperbound performance, which measures the percentage of calls that are either correctly routed or have the potential to be correctly routed. Table 4 shows how the upperbounds and lowerbounds are computed based on the classification in Figure 10 for each of the three data sets. For instance, for unambiguous requests (classes 1 and 2), the lowerbound is the number of calls actually routed to the correct destination (group 1a) divided by the number of total unambiguous requests, while the upperbound is the number of calls actually routed to the correct destination (group 1a) plus the number of calls which the router finds to be ambiguous between the correct destination and some other destination(s) (group 2a), divided by the number of unambiguous requests. The calls in 2a are considered potentially correct because it is likely that the call will be routed to the correct destination after disambiguation.

Tables 5(a) and (b) shows the upperbound and lowerbound performance for the three test sets based on transcriptions of caller requests and output of an automatic speech recognizer, respectively. These results show that the system’s overall performance in the case of perfect recognition falls somewhere between 75.6% and 97.2%, while the performance using our current automatic speech recognizer (ASR) output falls between 72.2% and 92.5%. The actual performance of the system is determined by two factors: 1) the performance of the disambiguation module, which determines the correct routing rate of the unambiguous calls that are considered ambiguous by the router (class 2a, 16.6% of all unambiguous calls with transcription and 15.9% with ASR output), and 2) the percentage of calls that were routed correctly out of the ambiguous calls that were considered unambiguous by the router (class 3a, 40.4% of all ambiguous calls with transcription and 36.6% with ASR output). Note that the performance figures given in Tables 5(a) and (b) are based on 100% automatic routing. In the next section, we discuss the performance of the disambiguation module, which determines the overall
system performance, and show how allowing calls to be punted to human operators affects the system’s performance.

5.2 Disambiguation Module Performance
To evaluate our disambiguation module, we needed dialogues which satisfy two criteria. First, the caller’s first utterance must be ambiguous. Second, the operator must have asked a follow up question to disambiguate the request and have subsequently routed the call to the appropriate destination. We used 157 calls that met these two criteria as our test set for the disambiguation module. Note that this test set is disjoint from the test set used in the evaluation of the call router, since none of the calls in that set satisfied the second criterion (those calls were not recorded or transcribed beyond the caller’s response to the operator’s prompt). Furthermore, for this test set, we only had access to the transcriptions of the calls but not the original speech files.

For each ambiguous call, the first caller utterance was given to the router as input. The outcome of the router was classified as follows:

1. Unambiguous: in this case the call was routed to the selected destination. This routing was considered correct if the selected destination was the same as the actual destination and incorrect otherwise.

2. Ambiguous: in this case the router attempted to initiate disambiguation. The outcome of the routing of these calls were determined as follows:
 (a) Correct, if a disambiguation query was generated which, when answered, led to the correct destination.
 (b) Incorrect, if a disambiguation query was generated which, when answered, could not lead to a correct destination.
 (c) Reject, if the router could not form a sensible query or was unable to gather sufficient information from the user after its queries and routed the call to a human operator.

Table 6 shows the number of calls that fall into each of the 5 categories. Out of the 157 calls, the router automatically routed 115 of them either with or without disambiguation (73.2%). Furthermore, 87.0% of these automatically routed calls were sent to the correct destination. Notice that out of the 52 ambiguous calls that the router considered ambiguous, 40 were routed correctly (76.9%). This is because our statistically-trained call router is able to distinguish between cases where a semantically ambiguous

	Unambiguos Requests	Ambiguous Requests	All Requests
Lowerbound	80.1%	98.5%	75.6%
Upperbound	96.7%	98.8%	97.2%

(a) Performance on Transcriptions

	Unambiguos Requests	Ambiguous Requests	All Requests
Lowerbound	77.9%	51.2%	72.2%
Upperbound	93.8%	87.8%	92.5%

(b) Performance on ASR Output

Table 5
Router Performance with Threshold = 0.2
Routed As Unambiguous	Routed As Ambiguous			
Correct	Incorrect	Correct	Incorrect	Reject
40	12	00	3	42

Table 6
Performance of Disambiguation Module on Ambiguous Calls

Class	Correct	Incorrect	Reject
Class 1	63.2%	1.3%	0%
Class 2	7.5%	1.7%	5.3%
Class 3	6.5%	2.2%	0%
Class 4	7.0%	0.4%	4.9%
Total	84.2%	5.6%	10.2%

(a) Performance on Transcriptions

Class	Correct	Incorrect	Reject
Class 1	61.4%	2.3%	0%
Class 2	7.2%	2.9%	5.0%
Class 3	5.9%	2.6%	0%
Class 4	6.3%	2.1%	4.3%
Total	80.8%	9.9%	9.3%

(b) Performance on ASR Output

Table 7
Overall Performance of Call Router

request is equally likely to be routed to two or more destinations, and situations where
the likelihood of one potential destination overwhelms that of the other(s). In the latter
case, the router routes the call to the most likely destination instead of initiating disam-
biguation, which has been shown to be an effective strategy; not surprisingly, human
operators are also prone to guess the destination based on likelihood and route calls
without disambiguation.

5.3 Overall Performance

Our final evaluation of the overall performance of the call router is calculated by apply-
ing the results for evaluating the disambiguation module in Section 5.2 to the results for
the routing module in Section 5.1. Tables 7(a) and (b) show the percentage of calls that
will be correctly routed, incorrectly routed, and rejected, if we apply the performance of
the disambiguation module (Table 6) to the calls that fall into each class in the evaluation
of the routing module (results from which we obtained Tables 5(a) and (b)).

The results in Table 7(a) shows that, with perfect recognition, our call router sends
84.2% of all calls in our test set to the correct destination either with or without disam-
biguation, sends 5.6% of all calls to the incorrect destination, and punts 10.2% of the
calls to a human operator. In other words, our system attempts to automatically han-
dle 89.8% of the calls, of which 93.8% are routed to their correct destinations. When
speech recognition errors are introduced to the routing module, the percentage of calls
correctly routed decreases while that of calls incorrectly routed increases. However, it is
interesting to note that the rejection rate decreases, indicating that the system attempted
to handle a larger portion of calls automatically.

12 Note that the results in Table 7(b) is an upperbound for the system’s overall performance on recognizer
output, since the performance of the disambiguation module presented in Table 6 is evaluated on
transcribed texts (we were not able to obtain any speech data which were recorded and transcribed
beyond the caller’s initial response to the system’s prompt). In reality, the insertions and deletions of
n-gram terms in the recognizer output may lead to some inappropriate disambiguation queries or more
rejections to human operators.
5.4 Performance Comparison with Existing Systems

As discussed in Section 2, Gorin and his colleagues have experimented with various methodologies for relating caller utterances with call types (destinations). Their system performance is evaluated by comparing the most likely destination returned by their call type classifier given the first caller utterance with a manually annotated list of destinations labeled based again on the first caller utterance. A call is considered correctly classified if the destination returned by their classifier is present in the list of possible destinations. In other words, their evaluation scheme is similar to our method for computing the upper bound performance of our router discussed in Section 5.1.2. We evaluated our router using their evaluation scheme with a rejection threshold of 0.2 on both transcriptions and recognition output on our original set of 389 calls used in evaluating the routing module. Table 8 shows a comparison of our system’s performance and the best performing version of their system (Wright, Gorin, and Riccardi, 1997) (WGR97).13

As shown in Table 8, our system not only performs substantially better than the best existing system on both transcription and speech recognizer output, but is also much more robust in the presence of speech recognition errors. When evaluated on transcriptions of caller utterances, our system automatically routes all calls at a correct routing rate of 94%, while to achieve the same routing rate, WGR97 must punt 40% of all calls to the human operator. When evaluated on speech recognizer output, our system achieves a substantially higher correct routing rate at a substantially lower rejection rate. Note that the comparison between these two systems is based strictly on performance alone, and does not take into account factors such as the confusability of destinations and speech recognizer performance.

6. Future Work

In our current system, we performed morphological filtering so that words with the same root form are clustered together. We are interested in further clustering words that are similar in meaning, such as car, auto, and automobile, even though they are not related by regular morphological processes. Similarly, digits or sequences of digits can be conflated into a single term, as can states, car makes and models, and so on. This kind of hand clustering of the lexicon should improve performance by overcoming inherent data sparseness problems. In our earlier experiments, we used latent semantic analysis (Deerwester et al., 1990) for dimensionality reduction in an attempt to automatically cluster words that are semantically similar. This involved selecting dimensionality \(k \) which is less than the rank \(r \) of the original term-document matrix. But we found performance degrades for any \(k < r \). We are interested in exploring other resources for automatically clustering words in a given domain, and in extracting clusters from exist-

13 (Wright, Gorin, and Riccardi, 1997) presents system performance in the form of a rejection rate vs. correct classification rate graph, with rejection rate ranging between 10-55% and correct classification rate ranging between 63-94%. We report on two sets of results from their graph in Table 8, one with the lowest rejection rate and one which they chose to emphasize in their paper.
ing thesauri.

In the current version of our system, the interface between the automatic speech recognizer and the call router is the top hypothesis of the speech recognizer for the speech input. As reported in Table 3, this top hypothesis has an approximately 10% error rate on salient unigrams. One way to improve this error rate is to allow the speech recognizer to produce a probabilistic word graph rather than a single best hypothesis. The n-gram terms can then be extracted from the graph in a straightforward manner and weighted according to their scores from the recognizer. Our assumption is that this will lead to increased recall, with perhaps a slight degradation in precision. However, since increased recall will, at the very least, increase the chance that the disambiguation module can formulate reasonable queries, we expect the system’s overall performance to improve as a result.

7. Conclusions

We described and evaluated a domain independent, automatically trained call router that takes one of three actions in response to a caller’s request. It can route the call to a destination within the call center, attempt to dynamically formulate a disambiguation query, or route the call to a human operator. The routing module selects a set of candidate destinations based on n-gram terms extracted from the caller’s request and a vector-based comparison between these n-gram terms and each possible destination. If disambiguation is necessary, a yes-no question or a wh-question is dynamically generated from among n-gram terms automatically extracted from the training data based on closeness, relevance, and disambiguating power. This query formulation process allows the system to tailor the disambiguating query to the caller’s original request and the candidate destinations.

We have further demonstrated the effectiveness of our call router by evaluating the call router on both transcriptions of caller requests and the output of an automatic speech recognizer on these requests. When the input to the call router is free of recognition error, our system performs substantially better than the best previously existing system by correctly routing 93.8% of the calls after punting 10.2% of all calls to a human operator. When using the output of a speech recognizer with an approximately 23% word error rate, the upperbound of the router performance drops from 97.2% to 92.5%, while the lowerbound of the performance drops from 75.6% to 72.2%, illustrating the robustness of our call router in the face of speech recognition errors.

Acknowledgments

We would like to thank Christer Samuelsson and Jim Hieronymus for helpful discussions, Wolfgang Reichl for providing us with speech recognition results, and Diane Litman for her comments on an earlier draft of this paper.

References

Abella, Alicia and Allen L. Gorin. 1997. Generating semantically consistent inputs to a dialog manager. In Proceedings of the 5th European Conference on Speech Communication and Technology.

Carpenter, Bob and Jennifer Chu-Carroll. 1998. Natural language call routing: A robust, self-organizing approach. In Proceedings of the Fifth International Conference on Spoken Language Processing.

Chu-Carroll, Jennifer and Bob Carpenter. 1998. Dialogue management in vector-based call routing. In Proceedings of the 36th Annual Meeting of the Association of Computational Linguistics (COLING-ACL98), pages 256–262.
Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman. 1990. Indexing by latent semantic analysis. *Journal of the American Society for Information Science*, 41(6):391–407.

Gorin, Allen L. 1996. Processing of semantic information in fluently spoken language. In *Proceedings of the International Conference on Spoken Language Processing*.

Gorin, Allen L., G. Riccardi, and J. H. Wright. 1997. How may I help you? *Speech Communication*, 23:113–127.

Green, Nancy and Sandra Carberry. 1994. A hybrid reasoning model for indirect answers. In *Proceedings of the 32rd Annual Meeting of the Association for Computational Linguistics*.

Hockey, Beth Ann, Deborah Rossen-Knill, Beverly Spejewski, Matthew Stone, and Stephen Isard. 1997. Can you predict responses to yes/no questions? yes, no, and stuff. In *Proceedings of the 5th European Conference on Speech Communication and Technology*, pages 2267–2270.

McDonough, J., K. Ng, P. Jeanrenaud, H. Gish, and J. R. Rohlicek. 1994. Approaches to topic identification on the switchboard corpus. In *Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, pages 385–388.

Reichl, Wolfgang, Bob Carpenter, Jennifer Chu-Carroll, and Wu Chou. 1998. Language modeling for content selection in human-computer dialogues. In *Proceedings of the Fifth International Conference on Spoken Language Processing*.

Riccardi, G. and A. L. Gorin. 1998. Stochastic language models for speech recognition and understanding. In *Proceedings in the Fifth International Conference on Spoken Language Processing*.

Salton, Gerald. 1971. *The SMART Retrieval System*. Prentice Hall, Inc.

Schütze, Hinrich, David A. Hull, and Jan O. Pedersen. 1995. A comparison of classifiers and document representations for the routing problem. In *Proceedings of the 18th SIGIR Conference*.

Sparck Jones, Karen. 1972. A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28(1):11–20.

Sproat, Richard, editor. 1998. *Multilingual Text-to-Speech Synthesis: The Bell Labs Approach*. Kluwer, Boston, MA.

Wright, J. H., A. L. Gorin, and G. Riccardi. 1997. Automatic acquisition of salient grammar fragments for call-type classification. In *Proceedings of the 5th European Conference on Speech Communication and Technology*.