Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

Paul W. Denton
UNC Center for AIDS Research, pdenton@unomaha.edu

Julie M. Long
UNC Center for AIDS Research

Stephen W. Wietgrefe
University of Minnesota

Craig Sykes
UNC Center for AIDS Research

Rae Ann Spagnuolo
UNC Center for AIDS Research

Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE

Recommended Citation
Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, et al. (2014) Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART. PLoS Pathog 10(1): e1003872. doi:10.1371/journal.ppat.1003872

This Article is brought to you for free and open access by the Department of Biology at DigitalCommons@UNO. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
Authors
Paul W. Denton, Julie M. Long, Stephen W. Wietgrefe, Craig Sykes, Rae Ann Spagnuolo, Olivia D. Snyder, Katherine Perkey, Nancie M. Archin, Shailesh K. Choudhary, Kuo Yang, Michael G. Hudgens, Ira Pastan, Ashley T. Haase, Angela D. Kashuba, Edward A. Berger, David M. Margolis, and J. Victor Garcia

This article is available at DigitalCommons@UNO: https://digitalcommons.unomaha.edu/biofacpub/140
Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

Paul W. Denton1, Julie M. Long1, Stephen W. Wietgrefe2, Craig Sykes3, Rae Ann Spagnuolo1, Olivia D. Snyder1, Katherine Perkey2, Nancie M. Archin1, Shailesh K. Choudhary1, Kuo Yang3, Michael G. Hudgens4, Ira Pastan5, Ashley T. Haase2, Angela D. Kashuba9, Edward A. Berger6, David M. Margolis1, J. Victor Garcia1*

1 Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America, 2 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America, 3 Division of Pharmacology and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America, 4 Department of Biostatistics, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America, 5 Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 6 Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.

Citation: Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, et al. (2014) Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART. PLoS Pathog 10(1): e1003872. doi:10.1371/journal.ppat.1003872

Editor: Daniel C. Douek, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America

Received August 26, 2013; Accepted November 22, 2013; Published January 9, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was supported in part by: National Institutes of Health grants AI096113 (JVG), and the UNC Center for AIDS Research Grant P30 AI50410, as well as by the Intramural Program of the NIH, NIAID and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Berger and Dr. Pastan report that they are co-inventors on several immunotoxin issued patents and patent applications. This does not alter our adherence to all PLOS policies on sharing data and materials. All other authors have declared that no competing interests exist.

* E-mail: victor.garcia@med.unc.edu

Introduction

ART is a lifesaving and effective means to control HIV infection [1]. However, the persistent nature of this infection requires lifelong adherence to daily ART dosing [2–4]. This viral persistence, the cumulative costs of ART, adverse events associated with long-term ART and the constant threat of emergence of drug-resistant viral variants have led researchers to pursue HIV eradication therapies that will result in a viral rebound-free interruption of therapy [2–4]. Towards this goal, “kick and kill” HIV eradication strategies are being developed [5]. While interventions that can induce expression of latent HIV [e.g. histone deacetylase inhibitors and protein kinase activators] will function as the “kick” [2–4], it is important to note that “kill” strategies cannot rely on the induction of virus expression in latently infected cells to result in cell death [6]. Therefore, candidate “kill” agents, such as immunotoxins, are being considered for incorporation into HIV eradication protocols [7,8]. Immunotoxins are recombinant or biochemically linked bi-functional proteins that combine the effector domain of a protein toxin with the targeting specificity of an antibody or ligand [8–13]. Soon after HIV was identified as the causative agent of AIDS, several immunotoxins were described as potential therapeutics for HIV [8,10]. These interventions had effector domains from plant and bacterial protein toxins and targeting moieties against either the HIV Env glycoprotein (gp120, gp41) or cellular markers including CD4, CD25 or CD45RO [14–21]. The immunotoxin we chose to evaluate for in vivo efficacy herein, 3B3-PE38, combines the 3B3 scFv which targets the conserved CD4 binding site of HIV-1 gp120 with the Pseudomonas exotoxin A (PE38) effector domain [22].

The fact that tissue specific effects of ART on HIV persistence are poorly understood in patients [23] meant that there was no baseline for characterizing the systemic effects of an immunotoxin on HIV persistence during ART. Therefore, it was essential that we first fully characterize the systemic impact of ART on HIV persistence cells in vivo. To do so, we sought to analyze HIV persistence during ART in a comprehensive panel of tissues and...
Killing HIV Infected Cells That Persist during ART

Author Summary

Antiretroviral therapy (ART) improves the quality of life for HIV infected individuals. However, ART is currently a lifelong commitment because HIV persists during treatment despite being suppressed below detection, if therapy is stopped, the HIV reappears. A concerted effort is ongoing to develop new eradication therapies to prevent virus rebound, but there are challenges to be overcome. Our work is a major step forward in this process. We measured persistent HIV throughout the body during ART using bone marrow/liver/thymus (BLT) humanized mice, a model validated to study HIV persistence. HIV infected BLT mice were treated with tenofovir, emtricitabine and raltegravir. Despite documented tissue penetration by these drugs, we found that HIV expression persists in cells isolated from all the tissues analyzed (bone marrow, thymus, spleen, lymph nodes, liver, lung, intestines and peripheral blood cells). We therefore complemented ART with an immunotoxin that specifically kills HIV expressing cells while leaving other cells untouched. Our results demonstrate a dramatic reduction in persistent HIV throughout the body resulting from the killing of virus producing cells. Thus, our study provides new insights into the locations of HIV persistence during ART and a demonstration that persistent HIV can be successfully targeted inside the body.

Results

Outcomes of ART in HIV infected BLT mice

For this study, BLT mice were treated with a triple combination antiretroviral drug regimen that included the nucleotide reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF), the nucleoside reverse transcriptase inhibitor emtricitabine (FTC) and the integrase inhibitor raltegravir (RAL). This ART regimen was chosen because of its robust pharmacodynamic properties [33], superior efficacy in humans [34] and its efficacy in BLT mice [35].

In human peripheral blood [36,37] and BLT mice (Fig. 1A), the first few weeks of ART are characterized by a rapid decline in plasma viremia (vRNA) followed by a plateau phase concomitant with a recovery of peripheral blood CD4+ T cells levels (Fig. 1B). We also observed that the blood cell-associated vDNA levels remained stable when compared to plasma vRNA levels during this treatment period (Fig. 1A) (Day −3 vs. Day12, p = 0.63, signed rank test), as seen in patients on this same ART regimen [38]. Furthermore, the robust suppression of plasma viremia by ART is consistent with the presence of each of the dosed antiretrovirals in the plasma of treated BLT mice: tenofovir (Fig. 1C), emtricitabine (Fig. 1D) and raltegravir (Fig. 1E). Such peripheral blood analyses are readily performed in both humans and BLT mice; however, the ability to simultaneously examine multiple tissues throughout the course of ART is not possible in patients. Therefore, we evaluated antiretroviral drug penetration as well as the impact of ART on vRNA production in multiple organs in BLT mice. We determined drug levels in the thymic organoid, spleen, liver, lung, terminal ileum and rectum of BLT mice. Importantly, each of the three drugs was detected in each matrix analyzed (Fig. 1C–E). To facilitate direct comparisons of drug levels between tissues and plasma, the data are presented as ng/g and ng/ml, respectively [39]. Overall, the tenofovir, FTC and RAL levels in BLT mice were ~1.6 μM, ~0.4 μM and ~0.05 μM, respectively (Fig. 1C–E). Each of these values is higher than the EC50 for that drug in HIV-1 infected peripheral blood mononuclear cells (TDF: 0.005 μM; FTC: 0.01 μM; and RAL: 0.001 μM) [39–41]. The extensive antiretroviral drug penetration observed in BLT mouse organs during ART led us to examine the systemic impact of ART on HIV production.

We used two different approaches to measure the systemic reduction in vRNA by ART. First, we used in situ hybridization to quantitate the number of individual cells producing vRNA in the human thymic organoid, spleen, lymph nodes, liver, lung, terminal ileum and rectum of HIV infected BLT mice receiving or not receiving ART. We found that antiretroviral penetration and activity in these tissues was sufficient to profoundly reduce the number of cells producing vRNA in all tissues (Fig. 2). However, consistent with the limited human tissue data available [42], vRNA producing cells remained detectable during therapy in all tissues analyzed (Fig. 2). We also used RT-PCR to quantitate cell-associated vRNA levels in the bone marrow, human thymic organoid, spleen, lymph nodes, liver, lung, intestines and peripheral blood cells of BLT mice given ART for 0–64 days. We observed a rapid decline in cell-associated vRNA levels that plateaued by Day 28 of ART in all tissues analyzed (Fig. 3A). The longitudinal vRNA data was analyzed using two different regression models (Lowess and cubic). The observed reductions in cell-associated vRNA in each tissue tested indicate that ART penetrates these tissues sufficiently to significantly reduce viremia in a related manner in each tissue as illustrated in the plots depicting the individual Lowess curves graphed together (Fig. 3B). We found that a Lowess curve generated with cell-associated vRNA data for all tissues together (Fig. 3C) is very similar to the reduction in plasma viremia observed specifically in human peripheral blood soon after ART initiation [36]. We also noted significant (p<0.001) differences in each tissue, including peripheral blood, when we compared cell-associated vRNA levels from mice in an untreated state versus those from treated mice with vRNA levels within the plateau stage (Fig. 4). These similarities in vRNA reduction observed between human peripheral blood and all of the examined tissues from BLT mice during the first months following ART initiation suggest that blood is a reasonable surrogate for the impact of ART throughout the body.

Impact of HIV-specific immunotoxin on residual vRNA production during ART

Since neither cytopathic effects of HIV expression or antiviral immune responses are sufficient to deplete cells expressing virus [6], these cells represent potential targets for cytotoxic HIV-specific immunotherapies such as the immunotoxin 3B3-PE38. This immunotoxin has been shown to be active against HIV-1-infected organs over time – a study that cannot be performed in human subjects. For this reason, we used BLT humanized mice [24], the most advanced, validated, and robust small animal model available for this purpose [25,26]. The process of bioengineering BLT mice results in systemic dissemination of human hematopoietic cells throughout the animal [24,27]. This phenotype facilitates the simultaneous analysis of multiple tissues throughout the body. The systemic effects of HIV infection on the BLT mouse human immune system (e.g., CD4+ T cell depletion and immune activation) recapitulate what is observed in HIV-infected patients [28–32]. Once the tissue-specific parameters of HIV persistence during ART were established, we incorporated 3B3-PE38 into the therapeutic regimen. Systemic analyses revealed that 3B3-PE38 treatment during ART reduced the number of HIV RNA producing cells to levels significantly lower than those achieved with ART alone. This observation demonstrates that immunotoxins can play a critical role in successful HIV eradication strategies.

PLOS Pathogens | www.plospathogens.org 2 January 2014 | Volume 10 | Issue 1 | e1003872
Figure 1. Efficacious plasma and tissue drug concentrations indicate broad dissemination of antiretrovirals during ART. (A) ART suppressed plasma viremia to below detection (vRNA; solid line, closed symbols) while peripheral blood cell-associated vDNA (dashed line; open symbols) were unaffected (Day 23 vs. Day 42, p = 0.63, signed rank test). (B) ART led to a rebound in peripheral blood CD4+ T cells to pre-infection levels. (C–E) Drug concentrations [tenofovir (C), emtricitabine (D) or raltegravir (E)] were determined within the plasma and each of the indicated tissues. For this steady state drug concentration analysis, the 4 BLT mice in (A) were harvested 21 hours following their last ART dosing and the tissue concentrations of the antiretrovirals were determined.

doi:10.1371/journal.ppat.1003872.g001

Figure 2. Durable reduction of the number of vRNA+ cells occurs during ART. Quantitative ISH analysis reveals statistically significant reductions in the numbers of productively infected cells for each tissue obtained from animals undergoing antiretroviral therapy. Exact log rank tests were utilized to generate p values. When no RNA+ cells were detected, then the number of RNA producing cells per gram tissue was set to 200 in the graph. (Closed symbols = no ART; open symbols = ART).

doi:10.1371/journal.ppat.1003872.g002
primary CD4+ T cells, macrophages and thymocytes [43,44]. Knowing that the effect of ART on the vRNA production reached a plateau by Day 28 of treatment led us to ask whether targeted killing of the persisting HIV producing cells during this plateau phase would augment the vRNA decline during ART [8]. As with most anti-HIV agents, monotherapy with immunotoxins is not clinically viable [8]; therefore, we quantitated the systemic impact of 3B3-PE38 on HIV persistence during ART (7 IP doses on alternate days beginning on Day 28 of ART). Compared to ART alone, ART plus 3B3-PE38 reduced the cell-associated vRNA by 3.2 logs (>1,000-fold) in the bone marrow (Fig. 5A). Complementing ART with 3B3-PE38 also led to a reduction in the persisting cell-associated vRNA levels in the human thymic organoid, spleen, lymph nodes, liver, lung, intestines and peripheral blood cells (range: 0.4 to 1.5 logs) (Fig. 5A). When all tissues were analyzed together, ART plus 3B3-PE38 reduced cell-associated vRNA levels in all organs combined by an additional 0.8 logs compared to ART alone (p<0.001) (Fig. 5B).

Following the initiation of ART in humans, there is a multi-phasic decay in viremia that reflects the rate of turnover of productively infected cells [36,45]. Most models of viral dynamics assume that the drugs completely block new infections of susceptible cells, with the observed decay reflecting the decay rate of cells infected prior to the initiation of ART [36,46]. Because this decay is constantly progressing, it is likely that the number of vRNA producing cells would decline over time during ART in the absence of immunotoxin treatment. However, given that we observed an overall 0.8 log reduction in cell-associated vRNA levels beyond the effect of ART alone (Fig. 5B), we used in situ hybridization to examine whether there was an associated

Figure 3. Viral RNA production during ART rapidly declines and then enters a plateau phase in all tissues. (A) Each data point indicates cell-associated vRNA levels (y-axis) and the days following ART initiation (x-axis) for a given BLT mouse in the indicated tissues. Both Lowess (dashed line) and a cubic (solid line) regression models were fit to the data for each tissue. (B) To facilitate comparative analyses between tissues, all of the Lowess regressions are graphed together. (C) To determine the overall impact of ART on systemic cell-associated vRNA levels, data from all of the tissues was used to generate a single Lowess curve.

doi:10.1371/journal.ppat.1003872.g003
reduction in the number of cells producing vRNA. We found that complementation of ART with 3B3-PE38 led to a 1.8 log reduction in the numbers of vRNA producing cells throughout the body (p = 0.007) (Fig. 5C). This profound reduction in the number of vRNA producing cells provides a mechanistic explanation for the rapid reduction in tissue cell-associated vRNA levels relative to the ART only experimental group.

Discussion

Despite the lifesaving benefits of ART in HIV patients, relatively little is known regarding the organ specific impact of this therapy on HIV production and persistence [23]. Improving our knowledge of the systemic effects of ART is a critical step in the development of successful HIV eradication therapies. To address this need, we characterized the impact of ART by analyzing both drug penetration and HIV production in different tissues throughout BLT humanized mice. We found that ART penetration into multiple organ systems is sufficient to significantly reduce the number of cells producing HIV, as well as cell-associated vRNA levels, throughout the body. However, HIV persists during ART in every organ analyzed.

HIV-infected cells persisting during ART represent suitable targets for cytotoxic HIV-specific immunotherapies such as the 3B3-PE38 immunotoxin. Since such therapies target HIV proteins expressed by infected cells, their efficacy requires active virus transcription. Therefore there is no predicted impact of immunotoxin treatment on the size of the transcriptionally silent latent HIV reservoir. For this reason, the HIV latent reservoir was not quantitated in this study and our conclusions are based on the quantitation of cell-associated vRNA levels, throughout the body. However, HIV persists during ART in every organ analyzed.

The results presented here provide proof of concept for targeted cytotoxic therapy as a successful complement to ART for the...
depletion of persisting HIV infected cells. In addition to the 3B3-PE38, alternative immunotoxins with different effector domains and targeting moieties are available [8–10]. This is important because: (i) treatments with different cytotoxic interventions during ART will likely be required to completely eradicate HIV producing cells due to the immunogenicity of the immunotoxin molecules [8–13,51,52], the need to target the diverse cell types that are productively infected with HIV [2–4], and (iii) the likely selection of viral mutants resistant to any single immunotoxin [53]. Beyond immunotoxins, alternative targeted cytotoxic therapy strategies developed for cancer treatment could also be adapted to generate comprehensive anti-HIV cytotoxic therapy regimens [54,55]. Possibilities include: aptamer—toxin conjugates; radioimmunotherapies; antibody—cytotoxic drug conjugates; targeted cytolytic viruses; targeted delivery of a cytotoxic peptides; and adoptive immunotherapy with ex vivo expanded natural or

![Figure 5](image_url)

Figure 5. 3B3-PE38 targets and systemically depletes vRNA+ cells *in vivo*. Beginning on Day 28 after ART initiation 3B3-PE38 was added to the treatment regimen every other day (7 total doses: 4 at 1 µg/25 g followed by 3 at 5 µg/25 g). The ART only control includes mice treated for 28–64 days. (A) Reductions in cell-associated vRNA levels are presented as log10 differences in medians. Mann-Whitney tests were used to generate p values. (B) Reductions in cell-associated vRNA levels for all tissues in (A) are graphed alongside data from untreated mice (Wilcoxon rank-sum statistics with repeated measures corrections). (C) Quantitative ISH for No ART mice (Fig. 2), ART only mice (Fig. 2) and the ART + 3B3-PE38 group revealed reductions in the total number of HIV RNA producing cells per gram. When no RNA+ cells were detected, then the number of RNA producing cells per gram tissue was set to 200 in the graph (Exact log rank tests with repeated measures corrections).

doi:10.1371/journal.ppat.1003872.g005
genetically modified T cells [54,55]. Importantly, the model system developed herein to quantitate the effects of 3B3-PE38 can be used to determine the in vivo efficacy of any of these other strategies alone or in combinations.

In summary, we determined that the systemic penetration of antiretroviral drugs into different organs throughout the body was sufficient to reduce cell-associated vRNA levels ART alone was unable to completely eliminate vRNA expressing cells in tissues. This observation provided a quantitative framework for the systemic in vivo efficacy evaluation of interventions to destroy HIV producing cells during therapy. Within this framework we were able to demonstrate that persistent HIV producing cells systematically present during ART were significantly depleted by an Env-targeting immunotoxin. Such targeted cytotoxic interventions may prove to be critically important components of an effective HIV eradication strategy.

Materials and Methods

Ethics statement

All animal experiments were conducted following NIH guidelines for housing and care of laboratory animals and in accordance with The University of North Carolina at Chapel Hill (UNC Chapel Hill) regulations after review and approval by the UNC Chapel Hill Institutional Animal Care and Use Committee (permit number 12-171).

Generation of BLT humanized mice

BLT mice were prepared essentially as previously described [27]. Briefly, thy/liv implanted NOD/SCID-gamma chain null mice (NSG; The Jackson Laboratories, Stock #5557) were transplanted with autologous human fetal liver CD34+ cells (Advanced Bioscience Resources) and monitored for human reconstitution in peripheral blood by flow cytometry [24,27,32,35]. All BLT mice (n = 40) used for these experiments were characterized for human immune system reconstitution prior to HIV infection. Their peripheral blood contained an average of 57% (±15 SD) human CD45+ cells of which 58% (±22 SD) were human T cells. Of the human T cells, 81% (±6 SD) were human CD4+ T cells.

Analysis of HIV infection of BLT mice

Infection of BLT mice with HIV-1JRCSF was monitored in peripheral blood by determining plasma levels of vRNA as described [level of detection = 750 copies per mL of plasma; 40 μl mouse plasma sample size] using one-step reverse transcriptase real-time PCR [ABI custom TaqMan Assays-by-Design] [35,56–58]. Tissues were harvested and cells isolated as we have previously described for RNA isolation or flow cytometric analysis [24,32]. Flow cytometry data were collected using a BD FACSCanto cytometer and analyzed using BD FACSDiva software (v. 6.1.3).

For HIV RNA in situ hybridization (ISH), tissues were fixed overnight in 4% paraformaldehyde at 4°C and then transferred to 70% ethanol. Tissues were then embedded in paraffin for sectioning. After deparaffinization with xylene and rehydration through graded ethanol, tissue sections were treated with HCl, triethanolamine, digitonin and 4 μg/mL Proteinase K as previously described [59]. After acetylation with acetic anhydride and dehydration, tissue sections were hybridized at 45°C overnight with a 35S labeled antisense riboprobe and 0.5 mM auirintricarboxylic acid in the hybridization mix. After extensive washes and ribonuclease treatment, tissue sections were dehydrated, coated in Ilford K5 emulsion diluted with glycerol and ammonium acetate, exposed at 4°C for 7–14 days, and developed and fixed per manufacturer’s instructions. They were stained with Hematoxylin,
dehydrated, and mounted with Permount. Non-infected control tissues and sense riboprobe controls were analyzed when appropriate. Photographic images using epifluorescence were taken with a digital camera and the tills were analyzed for the area of the sections and the area occupied by silver grains using Photoshop with Fovea Pro. Section weights were estimated from their 3-micron thickness and their area. These methods have been extensively reviewed [59].

Treatment of HIV infection of BLT mice

ART in infected BLT mice consisted of three antiretrovirals administered daily via intraperitoneal injection: tenofovir disoproxil fumarate (TDF; 208 mg/kg, entricitabine (FTC; 240 mg/kg body weight) and raltegravir (RAL; 56 mg/kg) [35]. The gp120-targeting immunotoxin 3B3[Fv]-PE38 [22] (here referred to as 3B3-PE38) was administered intraperitoneally every other day beginning on Day 28 of ART for a total of 7 doses: the first 4 were 1 μg/25 g and the last 3 were 5 μg/25 g.

Analytical methods for drug quantification

Plasma and snap frozen tissue samples from BLT mice receiving daily ART were analyzed for drug concentrations. Quantification of FTC, tenofovir (TFV) and RAL plasma concentrations was performed by protein precipitation and LC-MS/MS analysis. All compounds were eluted from a Phenomenex Synergi Polar-RP (4.6 mm particle size) analytical column. An API-5000 triple quadrupole mass spectrometer (AB Sciex, Foster City, CA) was used to detect the analytes. Data were collected using AB Sciex Analyst Chromatography Software (Analyst version 1.6.1). The dynamic range of this assay was 0.3–300 ng/mL of homogenate for each compound using a 1/ concentration2 weighted linear regression. Calibrators and quality control samples were within 15% of the nominal value all compounds.

The quantitation of FTC, TFV and RAL in tissues started with the homogenization of each tissue in a 70% acetonitrile + 30% 1 mM ammonium phosphate prior to LC-MS/MS analysis. All compounds were eluted from a Phenomenex Synergi Polar-RP (4.6 mm particle size) analytical column. An API-5000 triple quadrupole mass spectrometer (AB Sciex, Foster City, CA) was used to detect the analytes. Data were collected using AB Sciex Analyst Chromatography Software (Analyst version 1.6.1). The dynamic range of this assay was 1–1000 ng/mL for each compound using a 1/ concentration2 weighted linear regression. Calibrators and quality control samples were within 15% of the nominal value all compounds. Plasma samples with concentrations above the calibration range were diluted into the calibration range with blank plasma prior to reanalysis.

The quantitation of FTC, TFV and RAL in tissues started with the homogenization of each tissue in a 70% acetonitrile + 30% 1 mM ammonium phosphate solution. A portion of the resulting homogenate was extracted by protein precipitation with acetonitrile containing isotopically-labeled internal standards (13C TFV, and 15N FNC TFV). Following vortexing and centrifugation, the supernatant was removed and evaporated to dryness. The extracts were reconstituted with 1 mM ammonium phosphate prior to LC-MS/MS analysis. TFV and FTC were eluted from a Waters Atlantis T3 (100 x 2.1 mm, 3 μm particle size) analytical column. RAL was eluted from a Phenomenex Synergi Polar-RP (50 x 4.6 mm, 4 μm particle size) analytical column. An API-5000 triple quadrupole mass spectrometer was used to detect all analytes. Data were collected using AB Sciex Analyst Chromatography Software. The dynamic range of this assay was 0.3–300 ng/mL of homogenate for each compound using a 1/ concentration2 weighted linear regression. Based upon the mass of the tissue extracted, the concentrations were converted from ng/mL homogenate to ng/g tissue. Calibrators and quality control samples were within 15% of the nominal value all compounds.

Statistics

All statistical tests performed using an alpha level of 0.05. Exact log rank tests were utilized to generate p values for Fig. 2 (R v2.14.1). Mann-Whitney comparisons were utilized to generate the p values presented in Figs. 4 & 5A (Prism v4). Wilcoxon rank-sum statistics with repeated measures corrections were utilized to generate p values presented in Fig. 5B (R). Exact log rank tests with repeated measures corrections were utilized to generate p values for Fig. 5C (R). For Figs. 3 & 6, the Lowess and cubic regression models were fit using R. The linear heterogeneity models that allowed for the residual variance to change over time were computed in SAS/STAT software. Graphs were generated in Prism v4 with the exception of the fitted Lowess and cubic regression models which were generated in R.

Acknowledgments

We thank Dr. D. Richman for his critical comments regarding this manuscript. We thank Dr. I. Glenn for providing the JR-CSF plasmid via the AIDS Research and Reagent Program; and former and current lab members and the Animal Services Core at UNC Division of Laboratory Animal Medicine for their assistance with aspects of this work.

Author Contributions

Conceived and designed the experiments: PWD JVG. Performed the experiments: PWD JML SWW CS RAS ODS KP. Analyzed the data: PWD SWW CS KY MGH ATH ADK JVG. Contributed reagents/materials/analysis tools: IP EAB. Wrote the paper: PWD EAB JVG. Provided preliminary data and intellectual input: NMA SKC DMM.

References

1. Nakagawa F, May M, Phillips A (2013) Life expectancy living with HIV: recent estimates and future implications. Curr Opin Infect Dis 26: 17–25.
2. Richman DD, Margolis DM, Delaney M, Greene WC, Hazzard D, et al. (2009) The challenge of finding a cure for HIV infection. Science 323: 1304–1307.
3. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, et al. (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12: 607–614.
4. Durand CM, Blankson JN, Siliciano RF (2012) Developing strategies for HIV-1 eradication. Trends Immunol 33: 554–562.
5. Deeks SG (2013) HIV: Shock and kill. Nature 487: 439–440.
6. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, et al. (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36: 491–501.
7. Hame BH (2004) Can HIV be ‘Cured’? Mechanisms of HIV persistence and strategies to combat it. Curr HIV Res 2: 99–111.
8. Berger EA, Pastan I (2010) Immunotoxin complementation of HAART to deplete persisting HIV-infected cell reservoirs. PLoS Pathog 6: e1000803.
9. Tsuchida GR, Lack LR, Cliniche BC, Vietta ES (1996) Immunotoxins: an update. Annu Rev Immunol 14: 49–71.
10. Pincus SH (1996) Therapeutic potential of anti-HIV immunotoxins. Antiviral Res 33: 1–9.
11. Van Oijen MG, Preijers FW (1998) Rationale for the use of immunotoxins in the treatment of HIV-infected humans. J Drug Target 5: 75–91.
12. Liu S, Schubert RL, Bugge TH, Leppa SH (2003) Anhrax toxin: structures, functions and tumour targeting. Expert Opin Biol Ther 3: 843–853.
13. Engert A, Sausville EA, Vietta E (1998) The emerging role of ricin A-chain immunotoxins in leukemia and lymphoma. Curr Top Microbiol Immunol 234: 13–33.
14. Till MA, Zolla-Pazner S, Gorny MK, Patton JS, Uhr JW, et al. (1989) Human immunodeficiency virus-infected T cells and monocytes are killed by monoclonal human anti-gp120 antibodies coupled to ricin A chain. Proc Natl Acad Sci U S A 86: 1997–1999.
15. Pincus SH, Wehrly K, Chesbro B (1989) Treatment of HIV tissue culture infection with monoclonal antibody-ricin A chain conjugates. J Immunol 142: 3070–3075.
16. Till MA, Gheys V, Gregory T, Patzer EJ, Porter JP, et al. (1988) HIV-infected cells are killed by rCD4-ricin A chain. Science 242: 1166–1168.
17. Chaudhary VK, Mukamami T, Fuerst TR, FritzGerald DJ, Moss B, et al. (1988) Selective killing of HIV-infected cells by recombinant fH CD4-Pseudomonas exotoxin hybrid protein. Nature 335: 369–372.
18. Berger EA, Clouse KA, Chaudhary VK, Chakrabarti S, FritzGerald DJ, et al. (1989) CD4-Pseudomonas exotoxin hybrid protein blocks the spread of human
immunodeficiency virus infection in vitro and is active against cells expressing the envelope glycoprotein from diverse primate immunodeficiency retroviruses. Proc Natl Acad Sci U S A 86: 9539–9543.

19. Ball KD, Ramolo O, Villeta ES (1993) Combined use of an immunotoxin and cyclosporine to prevent both activated and quiescent peripheral blood T cells from producing type 1 human immunodeficiency virus. Proc Natl Acad Sci U S A 90: 1411–1415.

20. McGrog C, Van Dyke G, Chou CS, Piker LJ, Ramolo O, et al. (1999) An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro. Proc Natl Acad Sci U S A 96: 11482–11485.

21. Pincus SH, McClure J (1993) Soluble CD4 enhances the efficacy of immunotoxins directed against gp120 of the human immunodeficiency virus. Proc Natl Acad Sci U S A 90: 332–336.

22. Bera TK, Kennedy PE, Berger EA, Barbas CF, 3rd, Pastan I (1998) Specific killing of HIV-infected lymphocytes by a recombinant immunotoxin directed against the HIV-1 envelope glycoprotein. Mol Med 4: 384–391.

23. Cory TJ, Schacker TW, Stevenson M, Fletcher CV (2013) Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS 8: 190–195.

24. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, et al. (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TST-1. Nat Med 12: 1316–1322.

25. Denton PW, Garcia JV (2011) Humanized mouse models of HIV infection. AIDS Rev 13: 133–140.

26. Denton PW, Garcia JV (2012) Mucosal HIV-1 transmission and prevention strategies in BLT humanized mice. Trends Microbiol 20: 268–274.

27. Denton PW, Nochi T, Lim A, Kriko JF, Martinez-Torres F, et al. (2012) IL-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol 5: 555–566.

28. Long BR, Stoddart CA (2012) Alpha interferon and HIV infection cause activation of human T cells in NSG-BLT mice. J Virol 86: 3327–3336.

29. Brainard DM, Seung F, Frahm N, Carriapa A, Bailey CC, et al. (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83: 7305–7321.

30. Zou W, Denton PW, Watkins RL, Kriko JF, Nochi T, et al. (2012) Nef functions in BLT mice to enhance HIV-1 replication and depletion of CD4+CD8+ thymocytes. Retrovirology 9: 44.

31. Sun Z, Denton PW, Estes JD, Ohtiero FA, Wei BL, et al. (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204: 705–714.

32. Denton PW, Estes JD, Sun Z, Ohtiero FA, Wei BL, et al. (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5: e16.

33. Jilk BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, et al. (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat Med 18: 446–451.

34. Rockstroh JK, Dejesus E, Lemoine JI, Zaydalanpanah Y, Saag MS, et al. (2013) Durable Efficacy and Safety of Raltegravir versus Efavirenz When Combined With Tenofovir/Emtricitabine In Treatment-Naive HIV-1 Infected Patients: Final Five-Year Results From STARTMIRK. J Acquir Immune Defic Syndr 63(1):77–85.

35. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, et al. (2012) Generation of HIV latency in BLT humanized mice. J Virol 86: 630–634.

36. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105: 3079–3084.

37. Autran B, Carcellin G, Li TS, Blanc C, Mathiez D, et al. (1997) Positive effects of combined antiretroviral therapy on CD+4 T-cell homeostasis and function in advanced HIV disease. Science 277: 112–116.

38. Murray JM, McBride K, Boesecke C, Bailey M, Amin J, et al. (2012) Integrated HIV DNA accumulates prior to treatment while episomal HIV DNA records advanced HIV disease. Science 277: 112–116.

39. Douglas CM, Van Dyke G, Chou CS, Piker LJ, Ramolo O, et al. (1999) An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro. Proc Natl Acad Sci U S A 96: 11482–11485.

40. Scozzelli F, Pollizzi M, Ceccherini-Silberstein F, Di Santo F, Sardu M, et al. (2011) Comparative antiviral activity of integrase inhibitors in human monocytederived macrophages and lymphocytes. Antiviral Res 92: 255–261.

41. Fang H, Pincus SH (1995) Unique insertion sequence and pattern of CD4 expression in variants selected with immunotoxins from human immunodeficiency virus type 1-infected T cells. J Virol 69: 75–81.

42. Berger EA (2011) Targeted cytotoxic therapy: adapting a rapidly progressing anticancer paradigm for depletion of persistent HIV-infected cell reservoirs. Curr Opin HIV AIDS 6: 80–85.

43. Kennedy PE, Bera TK, Wang QC, Galió M, Wagner W, et al. (2006) Anti-HIV-1 immunotoxin 3B3(Fv)PE38: enhanced potency against clinical isolates in human PBMCs and macrophages, and negligible hepatotoxicity in macaques. J Leukoc Biol 80: 1175–1182.

44. Lafeuillade A, Khiri H, Chalandaup S, Hintinger G, Hallow P (2000) Persistence of HIV-1 resistance in lymph node mononuclear cell RNA despite effective ART. AIDS 14: 1963–1969.

45. Schinazi RF, McMillan A, Cannon D, Mathis R, Lloyd RM, et al. (1992) Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-thoroxy-1-[2-hydroxymethyl]-1,3-oxathiolan-5-ylhytosine. Antimicrob Agents Chemother 36: 2423–2431.

46. Schinazi RF, McMillan A, Cannon D, Mathis R, Lloyd RM, et al. (1992) Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-thoroxy-1-[2-hydroxymethyl]-1,3-oxathiolan-5-ylhytosine. Antimicrob Agents Chemother 36: 2423–2431.