ABSTRACT

After spinal cord injuries pain remains chronically in many cases and it and its secondary complications delay their recovery and induce poor prognosis in them. Some drugs such as anticonvulsants (gabapentin, pregabalin), tricyclic antidepressants (amitriptyline, desipramine) and serotonin–noradrenaline reuptake inhibitors (duloxetine) are recommended as the first-line treatment for chronic pain and topical lidocaine (which only acts locally), opioids are additionally recommended as second options. However, chronic pain syndrome remains as a common complaint and non-manageable status in many SCI patients. In recent years several alternative approaches such as Botulinum toxin A therapy and medical cannabinoids have been studied and recommended more in clinical practice. Actually medical use of cannabinoids are allowed in some countries and applied widely. Medical cannabinoids have been known as a safe and effective therapy and showed the positive effects in pain reduction and improvement of life quality in SCI patients from previous clinical studies. Further discussion is necessary for the safety and effective application of medical cannabinoids.

Keywords

Spinal cord injury, Pain, Cannabinoid.

Introduction

Pain after spinal cord injury

Every year, as many as 500,000 people suffer a spinal cord injury [1]. Most of these are caused by trauma and followed by complete or incomplete, para- or tetraparesis, incontinence, breathing problem, spasticity, other secondary complications such as muscle atrophy, pressure sores, infections. The prognosis of SCI are different from recovery to permanent severe disability, depending on the extent of injuries, and pain is one of the problems which were often complained among them [2-4].

65-85% of SCI patients have pain [4], which is induced mostly by musculoskeletal, neuropathogenic, visceral triggers, and neuropathic pain of them often remains chronically with high percent. The secondary complications such as spasticity, pressure score, degenerative changes in musculoskeletal organs are also associated with chronic pain. Unfortunately in some cases, the painful conditions persisted for their life, and it affects family interactions, social situations, community participation and overall quality of life. It can become the one of the health concerns of SCI patients [5-9].

The development of chronic pain after SCI

The chronification of nociceptive pain after SCI begins with the activation of receptors (nociceptors) sensitive to noxious stimuli and prolonged or intense exposure to these stimuli, then peripheral sensitization involving a shift in the activation threshold of nociceptors and upregulation of voltage-gated sodium channels. The increased action potential firing and transmitter release in the dorsal horn of the spinal cord induces heightened excitability in the injured location of the spinal cord and central sensitization with exaggerated response to painful stimuli (hyperalgesia) and pain elicited by normally nonpainful stimuli (allodynia). Which is called pain hypersensitivity, it makes some changes in the brain over time and pain "learning" [10-14].

The development of chronic neuropathic pain is however so different. Stimulus-independent activity evoking in injured nerve fibers after SCI induces active microglia at the lesion site in the...
Pain management in SCI patients
Pharmacological therapy is main recommended in the management of chronic pain in SCI patients. Anticonvulsants (e.g. gabapentin, pregabalin), Tricyclic antidepressants (e.g. amitriptyline, desipramine) and serotonin–noradrenaline reuptake inhibitors (e.g. duloxetine) are recommended as the first-line treatment. Topical lidocaine (which only acts locally), opioids (e.g., morphine) are recommended as second-line treatment options. However, many patients complain no or not enough effect under these drugs and require medical help in order to control severe chronic pain syndrome. In recent years botulinum–Neurotoxin (BoNT) and cannabinoids can be also considered as alternative options for them which have already applied widely in clinical practice. As the medical use of cannabinoids is allowed in some European and south-American countries, it is growing evidences for cannabinoids to use in clinical practice [15-21].

Medical cannabinoids
Cannabinoids are chemical compounds found in cannabis plants. They may act on cannabinoid receptor type 1 and type 2 (CB1 and CB2 receptor) which are distributed in the peripheral and central terminals of primary afferent terminals, peripheral ganglia (e.g. dorsal root ganglia), neurons in the spinal cord and brainstem, pain-regulatory circuits in the brainstem (e.g., periaqueductal gray) and different brain regions. CB1 receptors are predominantly expressed in presynaptic neurons and binding cannabinoids with cannabinoid receptors commonly induces the inhibition of adenyl cyclase in the synthesis process of intracellular cAMP and the downregulation of intracellular cAMP-dependent enzymes. It causes the shortening the duration of presynaptic action potentials by the prolonging the inwardly rectifying and A-type outward potassium channels and inhibition of the presynaptic Ca2+ influx through voltage-gated Ca2+ channels, and it results the reduction of release of excitatory neurotransmitters. CB2 receptors are predominantly expressed in immune cells such as mast cell and microglia. Through their inhibition of adenylyl cyclase via their Gi/Goα subunits, cannabinoids cause the reduction in the binding of transcription factor CREB (cAMP response element-binding protein) to DNA, and it can result the inhibition the release of pro-inflammatory mediators. Cannabinoids can also lead the inhibition of T cell receptor signaling through the phosphorylation of leukocyte receptor tyrosine kinase at Tyr-505 [22-27].

On these mechanisms, at the peripheral sites in pain pathway, cannabinoids cause the reduction of release of pre-synaptic neurotransmitters and inflammatory mediators via activation of CB1 and CB2 receptors, leading to decrease the subsequent sensitivity of primary afferent fibers and inhibit unnecessary local immune actions. At the central nervous system, cannabinoids induce the suppression of inhibitory GABAergic inputs onto output neurons which constitute the descending midbrain periaqueductal grey–rostral ventromedial medulla-spinal pathway (PAG-RVM-spinal pathway) through the activation of CB1 receptors in GABAergic neurons and it may elicit analgesia by inhibit ascending nociceptive transmission at the spinal cord dorsal horn. It may have possible therapeutic roles in the treatment of SCI-related pain [28-33].

The phytocannabinoid tetrahydrocannabino (THC) (Delta 9-THC or Delta 8-THC) and cannabidiol (CBD) are mostly applying cannabinoids in clinical practice and they are isolated from cannabis plants or are manufactured artificially. THC has been known to show the antiemetic, anxiolytic, appetite-stimulating, analgesic, neuroprotective and psychoactive effects through the activation of CB1 receptors in neurons. CBD is introduced to support the pain relief effects of THC and combination of THC and CBD (e.g. Sativex® spray) are thought to provide activity greater than that of the individual components. The medical use of cannabinoids has been limited because of possible side effects including sedation, motor impairment, addiction and cognitive impairment. Many studies have discussed on the safety and the efficiency of medical cannabis in many clinical status such as Parkinson disease, Alzheimer disease and multiple sclerosis [30,34-36].

Cannabinoid therapy in SCI patients with pain
Actually, cannabinoid has been reported as a helpful approach for the management of chronic pain in SCI patients. Drossel et al. showed in their study with 244 SCI patients that cannabinoid reduced pain in 70.4% of them and improved spastic movement disorder, which is often related with secondary pain syndrome or aggregation of pain syndrom in 46.3% [34]. In other studies, cannabinoid therapy had also the postive effect with relief chornic pain. Additionally, cannabis improved other symptoms such as spastic movement disorder, sleep disorder, anxiety, appetiteless etc [38-40].

It also suggested that MC could be either as adjuvant therapy or as monotherapy. One survey showed 81% of patients had positive effect as MC monotherapy for chronic pain [41]. In other survey, 63.3% reported that cannabis schould better effects than other classic analgetica or pain modulators, 10.20% answered that only cannabis offered them relief of pain. Although the relief of pain by MC was often short-term effect e.g. for hours, it was helpful in their daily of life and social participation [9,42,43]. The adjective MC therapy with other medications such as opioids showed more effective in some patients [44].

However, MC showed no effect to control pain in some patients [38,45].

dorsal root ganglion and in the dorsal horn of the spinal cord, which release chemical mediators modulating the activity of neuron, such as brain-derived neurotrophic factor (BDNF). BDNF reduces the inhibitory effect of γ-aminobutyric acid (GABA) and glycine and it tolerates abnormal input from the lesioned nerve throughout activity of polysynaptic connections in the dorsal horn, then central sensitization occures. It aggravated by downregulation in transmitter uptake and increased glutamatergic transmission causes excitotoxic cell death, reducing the number of inhibitory interneurons. This pronounces a imbalance between inhibition and excitation by descending pathway from the brainstem [13-15]. The complexity of chronic pain mechanisms make a major therapeutic challenge in chronic pain management after SCI.
In most of studies, cannabinoid therapy was reported as a safe therapy. In few studies the side effects of MC such as fatigue, dizziness, constipation, drowsiness, lack of energy occurred in some patients, but there were no life-threatening side effects and their prevalence was significant low compared to other medication such as opioids [38,46]. Overall, cannabinoid therapy is a safe and effective approach for the management of chronic pain following spinal cord injury, especially in SCI patients with severe pain non-manageable by other therapies and it can be applied as either a monotherapy or combined use with other medication. Although cannabinoid therapy showed several side effects and had no effects in some SCI patients, it is recommended as a safe therapy for chronic pain and in further studies it is necessary to avoid possible side effects and to achieve better effect of them. For instance, the propriate ratio of THC versus CBD as well as their dosages can be further discussed.

References
1. Jerome Bickenbach, Cathy Bodine, Douglas Brown, Anthony Burns, Robert Campbell, Diana Cardenas et al. International perspectives on spinal cord injury. WHO 2013; https://apps.who.int/iris/bitstream/handle/10665/94190/ 9789241564663_eng.pdf?sequence=1
2. Sabharwal S. Essentials of Spinal Cord Medicine. Demos Medical Publishing. 2013.
3. Jensen MP, Molton IR, Groah SL, et al. Secondary health conditions in individuals aging with SCI terminology concepts and analytic approaches. Spinal Cord. 2012; 50: 373-378.
4. Siddall PJ, McClelland JM, Rutkowski SB, et al. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003; 103: 249-257.
5. Maya N Hatch, Timothy R Cushing, Gregory D Carlson, et al. Neuropathic Pain and SCI Identification and Treatment Strategies in the 21st CenturyReview. J Neurol Sci. 2018; 384: 75-83.
6. Janaina Vall, Carlos Mauricio de Castro Costa, Terezinha de Jesus Teixeira Santos, et al. Neuropathic pain characteristics in patients from Curitiba Brazil with spinal cord injury. Arq Neuropsiquiatr. 2011; 69: 64-68.
7. Jacinthe JE Adriaansen, Laura E M Ruijs, Casper F van Koppenhagen, et al. Secondary health conditions and quality of life in persons living with spinal cord injury for at least ten years. J Rehab Med. 2016; 48: 853-860.
8. Lude P, Kennedy P, Eflström ML, et al. Quality of life in and after spinal cord injury rehabilitation a longitudinal multicenter study. Top Spinal Cord Inj Rehabil. 2014; 20: 197-207.
9. John A. Bourke, Victoria J. Catherwood, Joanne L. Nunnerley, et al. Using cannabis for pain management after spinal cord injury a qualitative study. Spinal Cord Series and Cases. 2019; 5: 82.
10. Samuel W Cramer, Christopher Baggott, John Cain, et al. The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury. Molecular Pain. 2008; 4: 36.
11. Pascale Boulenguez, Sylvie Liabeuf, Rémi Bos, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nature Medicine. 2010; 16: 302-307.
12. Adam R Ferguson, J Russell Huie, Eric D Crown, et al. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Frontiers in Physiology. 2012; 3: 399.
13. Tuoxin Cao, Jessica J Matyas, Cynthia L Renn, et al. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells. 2020; 9: E1194.
14. Grau JW, Huang YJ. Metaplasticity within the spinal cord Evidence brain-derived neurotrophic factor BDNF tumor necrosis factor TNF and alterations in GABA function ionic plasticity modulate pain and the capacity to learn. Neurobiology of Learning & Memory. 2018; 154:121-135.
15. Philip J Siddall, James W Middleton. Spinal Cord Injury-Induced Pain Mechanisms and Treatments. Pain Manag. 2015; 5: 493-507.
16. Majid Davari, Bahman Amani, Behnam Amani, et al. Pregabalin and Gabapentin in Neuropathic Pain Management After Spinal Cord Injury A Systematic Review and Meta-Analysis. Korean J Pain. 2020; 33: 3-12.
17. Robert H Dworkin, Alec O’Connor, Joseph Audette, et al. Recommendations for the pharmacological management of neuropathic pain an overview and literature update. Mayo Clinic Proceedings. 2010; 85: S3-S14.
18. Nanna B Finnerup, Nadine Attal, Simon Haroutounian, et al. Pharmacotherapy for neuropathic pain in adults A systematic review and meta-analysis. Lancet Neurol. 2015; 14: 162-173.
19. Songjin Ri, Max Nolte, Jörg Wissel. Combination of local Botulinum toxin A injections and standard oral drug treatment allows improvement of long-term pain management in severe post-herpetic neuralgia A case report. Neurul Disord Therap. 2018; 2: 1-5.
20. Fornsar D. Pharmacotherapy for Neuropathic Pain A Review. Pain Ther. 2017; 6: 25-33.
21. Thomas DA, Frascella J, Hall T, et al. Reflections on the role of opioids in the treatment of chronic pain A shared solution for prescription opioid abuse and pain. J Intern Med. 2015; 278: 92-94.
22. Uberto Pagotto, Giovanni Marsicano, Daniela Cota, et al. The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocrr Rev. 2006; 27: 73-100.
23. Pacher P, Mechoulam R. Is Lipid Signaling Through Cannabinoid 2 Receptors Part of a Protective System. Prog Lipid Res. 2011; 50: 193-211.
24. Elphick MR, Egertová M. The Neurobiology and Evolution of Cannabinoid Signalling. Philos Trans R Soc Lond B Biol Sci. 2001; 356: 381-408.
25. Dirk G Demuth, Areles Mollema. Cannabinoid Signalling. Life Sci. 2006; 78: 549-563.
26. Kaminski NE. Immune regulation by cannabinoid compounds through the inhibition of the cyclic AMP signaling cascade and altered gene expression. Biochemical Pharmacology. 1996; 52: 1133-1140.
27. Cheng Y, Hitchcock SA. Targeting cannabinoid agonists for inflammatory and neuropathic pain. Expert Opinion on Investigational Drugs. 2007; 16: 951-965.
28. Jhaveri MD, Richardson D, Chapman V. Endocannabinoid Metabolism and Uptake Novel Targets for Neuropathic and Inflammatory Pain. Br J Pharmacol. 2007; 152: 624-632.
29. Katarzyna Starowicz, David P Finn. Cannabinoids and Pain Sites and Mechanisms of Action. Adv Pharmacol. 2017; 80: 437-475.
30. Mohammad Zakir Hossain, Hiroshi Ando, Shumpei Unno, et al. Targeting Peripherally Restricted Cannabinoid Receptor 1 Cannabinoid Receptor 2 and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci. 2020; 21: 1423.
31. Moreau JL, Fields HL. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res. 1986, 397: 37-46.
32. Benjamin K Lau, Christopher W Vaughan. Descending Modulation of Pain The GABA Disinhibition Hypothesis of Analgesia. Curr Opin Neurobiol. 2014; 29: 159-164.
33. Drew GM, Lau BK, Vaughan CW. Substance P drives endocannabinoid-mediated disinhibition in a midbrain descending analgesic pathway. J Neurosci. 2009; 29: 7220-7229.
34. Russo E, Guy GW. A tale of two cannabinoids the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses. 2006; 66: 234-246.
35. Nitin Agarwal, Pal Pacher, Irmgard Tegeder, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci. 2007; 10: 870-879.
36. Luigia Cristino, Tiziana Bisogno, Vincenzo Di Marzo. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat Rev Neurol. 2020; 16: 9-29.
37. Drossel C, Forchheimer M, Meade MA. Characteristics of individuals with spinal cord injury who use cannabis for therapeutic purposes. Top Spinal Cord Inj Rehabil. 2016; 22: 3-12.
38. Michael Stillman, Maclain Capron, Michael Mallow, et al. Utilization of medicinal cannabis for pain by individuals with spinal cord injury. Spinal Cord Series and Cases. 2019; 5: 66.
39. Wade DT, Robson P, House H, et al. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neuropenic symptoms. Clin Rehabil. 2003; 17: 21-29.
40. Heutink M, Post MW, Wollaars MM, et al. Chronic spinal cord injury pain pharmacological and non-pharmacological treatments and treatment effectiveness. Disabil Rehabil. 2011; 33: 433-440.
41. Reiman A, Welty M, Solomon P. Cannabis as a substitute for opioid-based pain medication patient self-report. Cannabis Cannabinoid Res. 2017; 2: 160-166.
42. Barth L Wilsey, Reena Deutsch, Emil Samara, et al. A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis. J Pain Res. 2016; 9: 587-598.
43. Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury a survey study. J Spinal Cord Med. 2006; 29: 109-117.
44. Marianne Beare Vyas, Virginia T LeBaron, Aaron M Gilson. The Use of Cannabis in Response to the Opioid Crisis A Review of the Literature. 2018; 66: 56-65.
45. Rintala DH, Fiess RN, Tan G, et al. Effect of dronabinol on central neuropathic pain after spinal cord injury A pilot study. Am J Phys Med Rehabil. 2010; 89: 840-848.
46. Hawley LA, Ketchum JM, Morey C, et al. Cannabis use in individuals with spinal cord injury or moderate to severe traumatic brain injury in colorado. Arch Phys Med Rehabil. 2018; 99: 1584-1590.