INTERACTION OF A MAGNETIZED SHELL WITH AN AMBIENT MEDIUM: LIMITS ON IMPULSIVE MAGNETIC ACCELERATION

Amir Levinson
School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978, Israel; Levinson@wise.tau.ac.il
Received 2010 June 2; accepted 2010 July 19; published 2010 August 23

ABSTRACT
The interaction of relativistic magnetized ejecta with an ambient medium is studied for a range of structures and magnetization of the unshocked ejecta. We particularly focus on the effect of the ambient medium on the dynamics of an impulsive, high-sigma shell. It is found that for sufficiently high values of the initial magnetization σ_0, the evolution of the system is significantly altered by the ambient medium well before the shell reaches its coasting phase. The maximum Lorentz factor of the shell is limited to values well below σ_0; for a shell of initial energy $E = 10^{52} E_{52}$ erg and size $r_0 = 10^{12} T_{30}$ cm expelled into a medium having a uniform density n_i, we obtain $\Gamma_{\text{max}} \simeq 180(E_{52}/T_{30}n_i)^{1/8}$ in the high-sigma limit. The reverse shock and any internal shocks that might form if the source is fluctuating are shown to be very weak. The restriction on the Lorentz factor is more severe for shells propagating in a stellar wind. Intermittent ejection of small sub-shells does not seem to help, as the shells merge while still highly magnetized. Lower sigma shells start decelerating after reaching the coasting phase and spreading away. The properties of the reverse shock then depend on the density profiles of the coasting shell and the ambient medium. For a self-similar cold shell the reverse shock becomes strong as it propagates inward, and the system eventually approaches the self-similar solution recently derived by Nakamura & Shigeyama.

Key words: gamma-ray burst: general – magnetohydrodynamics (MHD) – shock waves

Online-only material: color figures

1. INTRODUCTION
The interaction of relativistic ejecta with the surrounding medium is an issue of considerable interest. During the early stages of the evolution a double shock structure forms, consisting of a forward shock that propagates in the ambient medium, a reverse shock crossing the ejecta, and a contact interface separating the shocked ejecta and the shocked ambient medium. Under certain conditions, an observable flash of electromagnetic radiation is expected to be emitted during the propagation of the reverse shock. In the commonly adopted fireball scenario, the naive expectation has been that optical flashes associated with reverse shock crossing should be quite common (e.g., Kumar & Panaitescu 2003; but cf. Nakar & Piran 2004), however, despite considerable observational efforts only a few have been detected, indicating that such flashes are rare.

It has been proposed that the paucity of optical flashes may be attributed to an early onset of a Rayleigh–Taylor instability (Levinson 2010a, 2010b) or strong magnetization of the ejecta (e.g., Zhang & Kobayashi 2005; Mimica et al. 2009). The latter is anticipated if the free energy is extracted magnetically in GKS10 and a more detailed discussion in Lyutikov (2010a, 2010b). Specifically, it is shown that for initial magnetization σ_0, expelled by a central source. They have shown that, unlike a stationary flow for which acceleration ceases at $\Gamma_{\infty} \sim \sigma_0^{1/3}$, $\sigma_{\infty} \sim \sigma_0^{2/3}$, the impulsive shell continues accelerating even after loosing causal contact with the central source until reaching nearly complete conversion of magnetic energy into bulk kinetic energy. The terminal Lorentz factor of the shell is $\Gamma_{\infty} \simeq \sigma_0$. During the acceleration phase, that they term “magnetic rocket acceleration,” the major fraction of the shell energy is contained in a layer of width $2r_0$, bounded between the front of a rarefaction wave reflected from the central source and the head of the shell. The average Lorentz factor of the shell, roughly equals the Lorentz factor of the fluid at the rarefaction front, evolves as $(\Gamma) \propto t^{1/3}$. The structure of this layer is well described by a self-similar solution. Once the shell enters the coasting phase its width starts growing and its magnetization continues to drop.

In this paper, we consider the interaction of the shell with the external medium and show that in the high-sigma limit the evolution of the system is dramatically altered. A preliminary account of the effect of the ambient medium is given in GKS10 and a more detailed discussion in Lyutikov (2010a, 2010b). Specifically, it is shown that for initial magnetization σ_0 larger than some critical value, deceleration of the contact interface commences well before the shell has reached the coasting phase, when it is still highly magnetized. The Lorentz factor of the contact discontinuity evolves as $\Gamma_{\text{c}} \propto t^{-1/2}$, while the rear boundary of the unshocked shell is still accelerating. The maximum Lorentz factor of the compressed shell is then limited to $\Gamma \ll \sigma_0$. The reverse shock in this case is very weak or nonexistent, and with the framework of ideal magnetohydrodynamics (MHD) no internal dissipation is practically expected (by either the reverse shock or any internal shocks that might form in a multi-shell scenario) before the onset of the afterglow phase. Lower sigma shells start decelerating after reaching the...
coasting phase. The properties of the reverse shock then depend on the density profiles of the coasting shell and the ambient medium, as discussed in Section 2.2.

2. THIN SHELL MODEL

We consider the interaction of a cold, magnetized shell with an ambient medium having a density profile $\rho_i(r) = a_i r^{-k}$. The ejecta is characterized by a Lorentz factor $\gamma_e(r,t)$, density $\rho_e(r,t)$, and magnetic field vector $b_{\mu}(r,t)$, assumed to be where the 4-vector of the magnetic field, b^μ, is defined in Appendix A. To simplify the analysis, we shall assume a spherical shell with a purely toroidal magnetic field, viz., $b^\mu = (0,0,0,b_\phi)$. The magnetic pressure of the shell is then $b_\phi^2/2$ and the corresponding sigma parameter is $\sigma_e = b_\phi^2/\rho_e$. The structure of the shocked shell is schematically shown in Figure 1. The subscript 1 refers to the shocked ambient medium and 2 to the shocked shell. The Lorentz factors of the forward shock, reverse shock, and the contact discontinuity are denoted by $\Gamma_f(t)$, $\Gamma_r(t)$, and $\Gamma_c(t)$, respectively, and satisfy the relation $\Gamma_f < \Gamma_c < \Gamma_r$.

The thin shell approximation assumes that the shocked layers are uniform. Then $\gamma_1 = \gamma_2 = \Gamma_c$. For the situations envisaged here the forward shock can be considered ultrarelativistic, $\Gamma_f \gg 1$. The jump conditions at the forward shock then yield $\Gamma_f = \sqrt{2} \Gamma_c$ and

$$p_1 = \frac{4}{3} \rho_1 \Gamma_c^2.$$ \hfill (1)

The reverse shock, on the other hand, cannot be considered ultrarelativistic in general and, therefore, a complete treatment is required. The jump conditions at the reverse shock, derived in Appendix A, yield the relations

$$\rho_2 = \rho_c h(q_2,q_e), \quad b_2 = b_c h(q_2,q_e), \quad p_2 = \rho_c f(q_2,q_e,\sigma_e),$$ \hfill (2)

subject to the condition

$$\Psi(q_2,q_e,\sigma_e) = 0.$$ \hfill (3)

here $q_2 = (\Gamma_c/\Gamma_r)^2$, $q_e = (\gamma_e/\Gamma_r)^2$, and the functions f, h, and Ψ are defined in Equations (A17)–(A19). Pressure balance at the contact, viz., $p_1 = p_2 + b_{\phi}^2/2$, yields $4(4/3)\rho_c \Gamma_c^2 = \rho_c f + b_{\phi}^2 h^2/2 = \rho_c (f + \sigma_e h^2/2)$, where Equations (1) and (2) have been employed. Dividing the latter equation by $(4/3)\rho_i h_e^2$, noting that $\Gamma_c^2/\gamma_e^2 = q_2/q_e$, and defining

$$G(r,t) = 3 \rho_e/(4 \rho_i \gamma_e^2),$$ \hfill (4)

one finally arrives at

$$q_2/q_e = G(R_e,t)[f(q_2,q_e,\sigma_e) + \sigma_e(R_e,t)h^2(q_2,q_e)/2].$$ \hfill (5)

The functions $G(r,t)$ and $\sigma_e(r,t)$ in Equation (5) are computed just upstream of the reverse shock, at $r = R_e(t)$, where

$$R_e(t) = R_0 + \int_0^t V_r dt' = R_0 + \int_0^t \left(1 - \frac{1}{2 \Gamma_r^2} \right) dt'$$ \hfill (6)

is the trajectory of the reverse shock, given to order $O(\Gamma_r^{-2})$ by approximating the velocity of the reverse shock as $V_r \simeq 1-1/2\Gamma_r^2$. Here $t = 0$ is the initial time of impact. Equations (3), (5), and (6) determine the evolution of the variables $q_2(t), q_e(t)$, and $R_e(t)$ once $G(r,t)$ and $\sigma_e(r,t)$ are specified.

The shock compression ratio is given by

$$r = \frac{\rho_2 \gamma'_e}{\rho_1 \gamma_e} = \frac{(q_2 + 1)(q_e - 1)}{(q_2 - 1)(q_e + 1)},$$ \hfill (7)

where $\gamma'_e = \gamma_e(1 - v_e V_e)$ and $\gamma_e = \gamma_e(1 - v_e V_e)$ are the Lorentz factors of the unshocked and shocked ejecta, respectively, as measured in the shock frame. For an unmagnetized, relativistic shock, $q_e \gg 1$, $q_e \simeq 2$, and $r = 3$ as it should be. The fast magnetosonic Mach number of the flow just upstream the reverse shock is given by

$$M_A(t) = \frac{u'_e}{\sqrt{\sigma_e(R_e,t)}} = \frac{q_e - 1}{2 \sqrt{q_e \sigma_e(R_e,t)}},$$ \hfill (8)

with $u'_e = (\gamma'_e - 1)^{1/2}$. The reverse shock exists as long as $M_A > 1$. For $M_A < 1$, the compression of the shell is communicated by a magnetosonic wave that propagates from the contact discontinuity backward in the fluid rest frame.

2.1. Unmagnetized Shell

The limit of very low magnetization simplifies to $\sigma_e = 0$ in the above equations. To illustrate the properties of the solutions we examine two situations. The first one is that of a uniform shell, $\partial_r \gamma_e = \partial_r \rho_e = 0$. For a non-expanding shell, mass conservation implies $\rho_e = \rho_{e0}(t/t_0)^{-2}$ and $G(R_e,t) = (3 \rho_{e0}/4a_0)v_{e0}^{-2}(t/t_0)^{k-2}$. For sufficiently small values of G, the reverse shock is relativistic, yielding $\Gamma_c^2 \simeq 2\Gamma_r^2$, $\gamma'_e \simeq \Gamma_r^2$, or equivalently $q_2 \simeq 2$, $q_e \gg 1$. Equation (A18) with $\sigma_e = 0$, $a = 4$, $q_2 = 2$, and $q_e \gg 1$ gives $f(q_2,q_e) \simeq q_e/6$. Substituting the above results into Equation (5), one finally obtains

$$\Gamma_r(t) = \gamma_e^{1/2}(\rho_{e0}/4a_0)^{1/4}(t/t_0)^{k-2)/4},$$ \hfill (9)

recovering earlier results (Sari & Piran 1995).

Our second example is the self-similar ejecta considered by Nakamura & Shigeyama (2006, hereafter NS06) and discussed in Appendix B. In this case, $\gamma_e(\chi) = \Gamma_0 \chi^{-1/2}$ and the density profile is unrestricted. Here $\chi = (1 + 2\Gamma_0^2)(1 - r/r_0)$ is the self-similar parameter of the unshocked shell and Γ_0 is the initial Lorentz factor at the shell’s head ($\chi = 1$) just before impact (at $t = t_0$). The location of the reverse shock is given by

$$\chi_r(t) = (1 + 2\Gamma_0^2)(1 - R_r/t).$$ \hfill (10)
Differentiating the latter equation, using \(dR_r/dt = 1 - 1/2 \Gamma_r^2 \) from Equation (6) and omitting terms of order \(\Gamma_0^{-2} \) and higher, gives

\[
\frac{d}{dt}(\Gamma_r) = \left(\Gamma_0 / \Gamma_r \right)^2 = \frac{q_e(\chi_r) \Gamma_r^2}{\chi_r^2(\chi_r, t)}. \tag{11}
\]

The initial conditions at \(t = t_0 \) are \(\chi_r = 1 \), and \(\gamma_e(\chi_r) = \Gamma_0 \). For illustration, we adopt \(\gamma_e = a_e(t/t_0)^{-3} \chi_r^{-2} \) for which

\[
G(\chi_r, t) = \left(3a_e/4a_0 \Gamma_0^2 \right)(t/t_0)^{-k-1} \chi_r^{-3/2}. \tag{12}
\]

Equations (11), (3), and (5), with \(\sigma_e = 0 \) and \(G \) given by Equation (12), are solved simultaneously to yield \(\Gamma_r(t) \), \(\Gamma_r(t) \), and \(\chi_r(t) \).

A particular solution can be sought for which \(q_e \) and \(q_2 \) are constants. Equation (11) with \(\gamma_e(\chi_r) = \gamma_e(\chi_r)/\Gamma_0 = \chi_r^{-1/2} \) readily yields

\[
\chi_r(t) = (t/t_0)^{(n-1)}, \quad \Gamma_r = q_e^{-1} \Gamma_0(t/t_0)^{(1-n)/2},
\]

\[
\Gamma_e = \sqrt{q_e/q_2 \Gamma_0}. \tag{13}
\]

Equation (5) with \(dq_e/dt = dq_2/dt = 0 \) and \(\sigma_e = 0 \) implies \(dG/dt = 0 \), and using Equation (12) one finds

\[
q_e - 1 = \frac{6 - 2k}{n + 2}, \tag{14}
\]

in accord with the self-similar solution derived by NS06. The value of \(q_2 \) is computed numerically from Equation (3). For any initial condition different than the value given in Equation (14), self-similarity is broken and \(q_e \) and \(q_2 \) must evolve with time. However, it is found that for the range of values for which the NS06 solution is applicable, the dynamics of the shell eventually approaches the self-similar limit, as naively expected since there is no scale in the problem. This is demonstrated in Figure 2, where solutions for \(q_e \) and \(q_2 \) are plotted for different initial conditions. As seen, the evolution quickly converges to the self-similar solution, whereby \(q_e = 2.5 \) and \(q_2 = 1.26 \) for the choice of parameters in this example (\(k = 0, n = 2 \)).

2.2. Magnetized Shell

The structure of an impulsive high-\(\sigma \) shell has been computed recently by GKS10 and Lyutikov (2010a, 2010b). They considered a situation in which a shell, initially at rest, is expanding into vacuum by pushing against a conducting wall. The shell is assumed to be uniform initially with a density \(\rho_0 \), magnetization \(\sigma_0 = b_0^2 / \rho_0 \gg 1 \), and finite width \(r_0 \). For a spherical shell, the total energy is \(E = (4\pi/3)r_0^3 \rho_0 \sigma_0 \). The dynamics of the shell follows several phases. At \(t = 0 \) the shell starts accelerating; a simple rarefaction wave forms and propagates from the shell’s head toward the wall. At \(t = r_0 \), the rarefaction wave reaches the wall, reflects, and starts propagating back toward the head of the shell. At this point the shell loses causal contact with the wall. The major fraction of the energy (as measured in the lab frame) is contained in a layer of thickness \(\sim 2r_0 \) bounded by the reflected wave (at the rear end) and the shell’s head (see Appendix B.2). The structure of this layer can be described by a self-similar solution. The rear boundary of the shell accelerates as \(\gamma_w \approx \sqrt{2\sigma_0^{2/3} (r/r_0)^{1/6}} \) (corresponding to the local magnetosonic speed in the fluid frame) and the fluid at the boundary as \(\Gamma_0 \approx (\sigma_0 d/2 r_0)^{1/3} \). The head moves at a maximum Lorentz factor \(\Gamma_0 = 2\sigma_0 \). In terms of the self-similar variable

\[
\chi = 8\sigma_0^2 [1 - (r - 2r_0)/t], \tag{15}
\]

the solution for the magnetization, density, and Lorentz factor is approximately given by (see Appendix B)

\[
\sigma_e(\chi) = (\chi^{1/3} - 1)^2 / 4\chi^{1/3}, \quad \rho_e(\chi) = \rho_0 \sigma_e(\chi) (t/r_0)^{-2},
\]

\[
\gamma_e = 2\sigma_0 \chi^{-1/3}. \tag{16}
\]

This solution is applicable above the front of the rarefaction wave, at \(\chi < \chi_s(t) \), where

\[
\chi_s(t) = \left[1 + \left(8\sigma_0^2 r_0 / t \right)^{2/3} \right]^{3/2} \simeq 8\sigma_0^2 (t/r_0)^{-1} \tag{17}
\]

(see Equation (B20)). The head of the shell is located at \(\chi = 1 \).

To study the effect of the ambient medium on the evolution of the shell during the acceleration phase, we assume that the structure of the unshocked shell is given by Equation (16). We then obtain

\[
G(\chi_r, t) = \frac{3\rho_0}{8\sigma_0^3 a_t} \chi_r^{2/3} \sigma_e(\chi_r) (t/r_0)^{k-2}. \tag{18}
\]
The trajectory of the reverse shock is governed by the equation (see Equation (11))

$$\frac{d}{dt}(\chi_r) = \frac{q_r(\chi_r)\Gamma^2_e}{\gamma e(\chi_r, t)} - \frac{q_r(\chi_r)}{2} \chi_r^{\gamma_e/3}. \quad (19)$$

At $t = t_0$, $\chi_r = 1$, and $\rho_e = \sigma_e = 0$. A strong shock forms initially at the shell’s head and quickly propagates inward (in the fluid rest frame). This brief initial phase is an artifact of our initial conditions that implicitly assume that impact with the external medium starts only after reflection of the rarefaction wave by the central source. As the density and magnetization increase, the shock weakens and the contact discontinuity accelerates until reaching a terminal value (Figures 3 and 4). This phase lasts for a very short time. Subsequently, the contact discontinuity starts decelerating if $k < 2$ or maintain a constant speed if $k = 2$. For $k > 2$, the shell will eventually approach free expansion with $\Gamma_e \simeq 2\sigma_0$. For $q_e \gg 1$ and $q_2 \gg 1$, we have from Equation (A17) $h^2 \simeq q_e/q_2$. Equation (5) with $f = 0$ then admits the solution

$$\Gamma_e(t) = \left(\frac{3\rho_0\sigma_0}{8\sigma_i}\right)^{1/4} \left(t/r_0\right)^{(k-2)/4}, \quad (20)$$

which is viable as long as $\Gamma_e < \Gamma_0 = 2\sigma_0$. At early times, when q_e and q_2 are of order unity the solution must be obtained numerically. Note that for $k = 2$, Equation (20) reduces to Equation (47) in Lyutikov (2010a) that gives the Lorentz factor of a one-dimensional planar shell expanding in a constant density medium. This is expected since for the case considered here (a cold shell with a purely toroidal magnetic field) the flow equations in spherical geometry, (B1)–(B4), reduce to those in planar geometry upon the change of variables: $\rho \rightarrow r^2\rho$, $b \rightarrow rb$.

Figure 4 delineates solutions for $k = 0$ (a constant density medium) and different values of $G_0 \equiv 3\rho_0/(8\sigma_0^2a_i)$. For $G_0 \gg 1$, the effect of the ambient medium is initially small; the reverse shock is confined at the head of the shell, viz., $\chi_r \sim 1$ (see the right panel of Figure 4), and $\Gamma_e \sim \Gamma_0$ and declines slowly. For sufficiently high σ_0, the reverse shock will eventually start accelerating inward in the shell frame before crossing of the shell has completed, so that γ_e becomes significantly larger than Γ_e and $q_e \gg 1$. As seen in the left panel of Figure 4, the evolution of the contact discontinuity then approaches $\Gamma_e \propto t^{-1/2}$, as expected from Equation (20). This transition occurs at a time $t = t_{dec}$, where

$$t_{dec}/r_0 = \left(\frac{3\rho_0}{8\sigma_0^2a_i}\right)^{1/(2-k)} = \left(\frac{9E}{32\pi r_0^3\sigma_0^2a_i}\right)^{1/(2-k)}, \quad (21)$$

at which $G(R_e, t_{dec})$ in Equation (5) approaches unity. Here $E = \rho_0\sigma_0^4\pi r_3^3/3$ is the total energy of the shell. The transition will occur before complete shock crossing, that is at $1 < \chi(t_{dec}) < \chi_{t_{dec}}$, if $t_{dec} < 8\sigma_0^2r_0$, or

$$\sigma_0 > \sigma_{crit} = \frac{1}{2} \left(\frac{9E}{32\pi r_0^3}\right)^{1/(8-2k)}. \quad (22)$$

The latter scaling can also be derived from energy considerations. The energy accumulated inside the shocked ambient medium layer (i.e., between the forward shock and the contact discontinuity) at time t is approximately $E_f = 4\pi\Gamma_0^2\sigma_0^4a_i^3(t/r_0)^3-k/(3-k)$. Deceleration of the shocked layer will commence before the shell reaches the coasting phase if $E_f \simeq E$ at time $t < 8\sigma_0^2r_0$. With $\Gamma_0 = 2\sigma_0$ the latter condition yields

$$\sigma_0 > \frac{1}{2} \left(\frac{(3-k)E}{32\pi r_0^3a_i}\right)^{1/(8-2k)}, \quad (23)$$

in rough agreement with Equation (22). For a burst of duration $T = 30 T_{30}$ s and total energy $E = 10^{52} E_{52}$ erg, expanding in...
an ambient medium of constant number density \(n_i \) measured in cgs units the condition (22) reduces to

\[
\sigma_0 > \sigma_{\text{crit}} = 90 \left(\frac{E_{52}}{T_{30} n_i} \right)^{1/8},
\]

where the initial shell width has been taken to be \(r_0 = c T \). Consequently, sub-critical shells (i.e., \(\sigma_0 < \sigma_{\text{crit}} \)) will not be significantly affected by the ambient medium before reaching the coasting phase. High-sigma shells (\(\sigma_0 \gg \sigma_{\text{crit}} \)), on the other hand, will experience significant deceleration of the head well before the onset of the coasting phase, and it is anticipated that the Lorentz factor of the shell will be limited to \(\Gamma_{\text{max}} \approx 2 \sigma_{\text{crit}} \). The dependence of the terminal Lorentz factor on the initial magnetization \(\sigma_0 \), obtained from numerical integrations of Equations (3), (5), and (19), is exhibited in Figure (5).

As seen, for high-sigma shells the scaling \(\Gamma_{\text{max}} \approx 2 \sigma_{\text{crit}} = 180(E_{52}/T_{30} n_i)^{1/8} \), derived above using heuristic arguments, is in quite good agreement with the numerical result. Note that the critical magnetization (24) depends on the initial energy density of the shell, \(E/r_0^3 \). Thus, for a given power \(L = E/T = c E/r_0 \) we have \(\sigma_{\text{crit}} \propto L^{1/8} r_0^{-1/4} \), implying a less restrictive constraint on the Lorentz factor for smaller (sub) shells. For all cases studied it is found that a reverse shock always exists (i.e., \(M_A > 1 \)) in the acceleration phase, however, except for the very early stages of the evolution the shock is weak and magnetically dominated, that is \(\beta = 2 p_2/b_2^2 \ll 1 \). Emission from the shocked ejecta is not anticipated in high-sigma shells, at least not in the ideal MHD case.

In the case of a stellar wind (\(k = 2 \)), the shocked layer, after a brief rearrangement phase, maintains a constant speed (Figure 6), as expected from Equation (20). The reverse shock in this case quickly weakens and eventually dies away (\(M_A \) becomes smaller than unity). The communication with the contact discontinuity then proceeds via a magnetosonic wave.

Figure 4. Left panel: time profiles of \(\Gamma_r \) for \(\gamma = 5/3, k = 0 \), and different values of \(G_0 \), where \(G_0 = 3 n_i/(8 \sigma_0^2 n_i) \). Right panel: the corresponding trajectories of the reverse shock \(\gamma_r(t) \). The red dotted lines mark the location of the rear boundary of the shell (the front of the reflected rarefaction wave) \(\gamma_r(t) \), for \(\sigma_0 = 10 \) (lower curve) and \(\sigma_0 = 30 \) (upper curve). The intersection of the two trajectories \(\gamma_r(t) \) and \(\gamma_c(t) \) gives the time at which crossing of the accelerating shell by the reverse shock has completed.

(A color version of this figure is available in the online journal.)

Figure 5. Dependence of the terminal Lorentz factor of the accelerating shell \(\Gamma_{\text{max}} \), measured at time of complete shock crossing, on the initial magnetization \(\sigma_0 \), for \(k = 0 \), \(\gamma = 5/3 \) and \(E_{52}/T_{30} n_i = 1 \) (solid line), \(E_{52}/T_{30} n_i = 100 \) (dashed line).

For a mass loss rate \(\dot{M}_w = \dot{M}_{-5} 10^{-5} M_\odot \) yr\(^{-1}\) and terminal velocity \(v_{w0} = 10^8 v_{w0} \) cm s\(^{-1}\) the ambient density scales as \(n_i = 10^{11} M_{-5} (r/R_0)^{-2} v_{w0}^{-1} \) cm\(^{-3}\), with \(R_0 = 10^{13} R_{13} \) cm being the radius at the wind’s base. With this parameterization Equation (20) yields for the Lorentz factor of the contact

\[
\Gamma_c \simeq 10 \left(\frac{E_{52} v_{w0}}{T_{30} R_{13}^2 M_{-5}} \right)^{1/4}.
\]

As explained above, in a uniform circumburst medium a shell with initial magnetization \(\sigma_0 < \sigma_{\text{crit}} \) will start decelerating only
This is confirmed in Figure 7. In practice, the shell has a finite eventu-
ally converge to that of NS06 discussed in Section 2.1.
creasing χ in GKS10 (see also Appendix B) for the unshocked, coasting
system in this region, we adopt the self-similar solution derived
structure is altered (GKS10). To compute the evolution of the
approaching the coasting phase the shell starts spreading and its
Left panels: time profiles of the Lorentz factors of the contact discontinuity Γ_c and the reverse shock Γ_r, for adiabatic index $\gamma = 5/3$, $k = 2$ and $3\rho_0/(8\sigma_0^2 c) = 10^3$ (upper window), $3\rho_0/(8\sigma_0^2 c) = 1$ (lower window). Right panels: the evolution of the shock compression ratio r, the ratio of kinetic-to-magnetic
pressure $\beta = 2\rho_0/c_s^2$, and the Alfvén Mach number M_A.
(A color version of this figure is available in the online journal.)

after reaching the coasting phase, when conversion of magnetic
energy into bulk kinetic energy has nearly completed. Once
approaching the coasting phase the shell starts spreading and its
structure is altered (GKS10). To compute the evolution of the
system in this region, we adopt the self-similar solution derived
GKS10 (see also Appendix B) for the unshocked, coasting
ejecta. As noted in Appendix B, this solution is not fully self-
consistent in vacuum, as it implicitly assumes a confining agent
at the head. However, it can be matched self-consistently to a
shocked layer through the jump conditions at the reverse shock,
and so may provide a reasonable description for the interacting
ejecta after its spreading. With this choice $\gamma_c = \Gamma_0 \chi^{-1/2}$,
$G(\chi, t)$ is given by Equation (12) (see Appendix B), and

$$\sigma_h(\chi, t) = \sigma_h \chi^{-(n/2+1)/(t/t_{dec})^{-1}}$$

(26)

where σ_h denotes the magnetization at the head ($\chi = 1$) of the
freely coasting shell at time of impact, $t = t_{dec}$. The energy
density of the unshocked shell can be expressed as

$$T^{00} = \rho_c(1 + \sigma_c)\Gamma_0^2 = a_c \Gamma_0^2/(t/t_{dec})^{-3} \chi^{(n/2-1)(1+\sigma_c)}$$

(27)

with σ_c given by Equation (26), so that for $\sigma_c \ll 1$ the choice
n = 2 corresponds roughly to a uniform energy distribution
(since the shell is thin). Inspection of Equation (26) reveals that
for $n > -2$ the magnetization of the shell decreases with in-
creasing χ. Consequently, it is anticipated that the solution will
eventually converge to that of NS06 discussed in Section 2.1.
This is confirmed in Figure 7. In practice, the shell has a finite
width Δ. At the onset of the coasting phase the width of the
shell is still $\Delta_c \sim 2r_0$, corresponding to $\Delta \chi \sim (2r_0/r_c)2\Gamma_0 \sim 1$,
using $r_c \sim \sigma_0^2$ and $\Gamma_0 \sim \sigma_0$ for the coasting radius and terminal
Lorentz factor (GKS10 and Appendix B). At this point, the width
of the shell starts growing and at the deceleration radius r_{dec} it is
expected to be $\Delta \sim \eta \Delta_c$, corresponding to $\Delta \chi \sim \eta$, where η is a fraction of the ratio r_{dec}/r_c. Figure 8 exhibits solutions for a shell of width $\Delta \chi = 10$ interacting with a constant density medium
($k = 0$). Although $\sigma_c < 1$ is expected in the coasting phase,
we also present a case with $\sigma_h = 10$ to elucidate the general
behavior of the system. As seen, for $\sigma_h < 1$ the compression
ratio of the reverse shock increases considerably and the pres-
sure downstream becomes kinetic dominated before complete
crossing of the reverse shock, at $\ln(t/t_{dec}) = 0.5$. We find this
behavior to be quite robust for self-similar ejecta with $n \gg 0$.

2.3. Multiple Shell Model

The rapid variability observed in many GRBs is commonly
attributed to ejection of many sub-shells of small width that
collide at relatively large radii. Such a multi-shell scenario can
also be envisaged for magnetically dominated ejecta. In that
case collisions of shells should occur only after full conversion
of magnetic energy into bulk kinetic energy is accomplished,
and before the onset of deceleration by the ambient medium.
As explained above, the restriction on the dynamics of a single
shell imposed by the surrounding medium (Equation (24)) is
less stringent for a shell of small width, so that in principle it
is anticipated that for sufficiently rapid ejections, the resultant
shells may accelerate to the maximum Lorentz factor, $\Gamma \sim \sigma_0$
(at which the initial magnetic energy is fully converted), before
a substantial fraction of their energy is dissipated at the forward
shock. However, in order that the shells will collide only
after reaching the coasting phase, the time interval between
successive ejections of shells must be large enough, otherwise
the shells will merge to form a steepening magnetosonic wave
train with a characteristic size of the order of the engine’s
life time.
To estimate the duty cycle required for shells to collide at the coasting phase, I consider two shells of initial width l_i and magnetization σ_i ($i = 1, 2$) expelled into vacuum. The shells will collide provided $\sigma_{20} > \sigma_{10}$. Suppose that the first shell is ejected at time t_0 and the second one at $t_0 + \Delta t$. Now, the rarefaction wave of the first shell accelerates as $\gamma_{w1} = \sqrt{2\sigma_{10}^2/(t/l_1)}$ (see Equation (B18)). Let $\gamma_{r2}(x_2) = 2\sigma_{20}x_2^{-1/3}$ denote the Lorentz factor of some point (that is, a fixed value of the self-similarity parameter χ_2) above the front of the rarefaction wave of the second shell. The relative velocity between that point and the rarefaction front of the first shell is

$$v_{r2} - v_{w1} \simeq \frac{1}{2\gamma_{w1}^2} - \frac{1}{2\gamma_{r2}^2} = \frac{1}{4\sigma_{10}^{-4/3}} \left(\frac{t}{l_1} \right)^{-1/3} \left[1 - \frac{\sigma_{10}^{4/3}}{\gamma_{r2}} \left(\frac{l}{l_1} \right)^{1/3} \right].$$

(28)

The two parts will catch up at time

$$t_{coll} = \int_0^{\Delta t} \frac{dt'}{v_{r2} - v_{w1}} \simeq 4l_1\sigma_{10}^{4/3} \int_0^{y_1} \frac{y^{1/3}}{1 - \left(2\sigma_{10}^{4/3}/\gamma_{r2}^2\right) y^{1/3}} dy,$$

(29)

where $y_1 = \Delta t/l_1$. For $2\sigma_{10}^{4/3} y_1^{1/3} \ll \gamma_{r2}^2$ the result is approximately

$$t_{coll} \simeq 3l_1(\sigma_{10}\Delta t/l_1)^{4/3}.$$

(30)

The coasting time (radius) of the first shell is $t_{cost} \simeq 8\sigma_{10}^2/l_1$. Thus, collision will occur after the first shell has reached the coasting phase provided $t_{coll} > t_{cost}$ or

$$(\Delta t/l_1) > (8/3)^{3/4} \sigma_{10}^{1/2}.$$

(31)

For $\sigma_{10} \gg 1$ Equation (31) implies an unlikely small duty cycle. The above discussion suggests that within the framework of ideal MHD, intermittent ejection of magnetically dominated outflow ultimately leads to one impulsive shell of size that roughly equals the lifetime of the system.

3. CONCLUSIONS

We considered the interaction of a relativistic magnetized shell with an ambient medium, focusing on the case of an impulsive, high-sigma shell. We find that for values of the initial magnetization σ_0 larger than the critical value given by Equation (22) the evolution of the system is significantly
altered by the ambient medium well before the shell reaches its coasting phase. For such high-sigma shells, a major fraction of the explosion energy is dissipated behind the forward shock by the time compression of the shell by the ambient medium is communicated to the accelerating rarefaction wave. The maximum Lorentz factor of the shell is then limited to values well below σ_0 (see Figure 5). Such episodes are expected to produce a smooth, relatively fast rising slowly decaying (power law) light curve, even in a multi-shell scenario. Events like GRB080916C and GRB090510 (Abdo et al. 2009a, 2009b) are not easily accounted for by the impulsive high-sigma shell model.

If extracted magnetically, such outflows may require magnetic dissipation beyond the ideal MHD limit, as may occur in, e.g., a striped wind model. Intermittent ejection does not seem to help, as unlikely small duty cycle is required in order for shells to collide after reaching the coasting phase.

Lower sigma shells start deaccelerating only after reaching the coasting phase. The properties of the reverse shock then depend on the structure of the coasting shell. For a self-similar shell with a reasonable density profile the magnetization decreases on the structure of the coasting shell. For a self-similar shell coasting phase. The properties of the reverse shock then depend in, e.g., a striped wind model. Intermittent ejection does not seem to help, as unlikely small duty cycle is required in order for shells to collide after reaching the coasting phase.

The slow acceleration of high-sigma shells, $(\sigma \approx 1)$ the self-similar solution derived by Nakamura & Shigeyama (2006). The slow acceleration of high-sigma shells, $(\Gamma \propto \rho^{1/3})$, relative to a radiatively driven outflow $(\Gamma \propto \tau)$, implies a smaller optical depth at the radius of collision. This can alleviate the need for extremely high Lorentz factors for most GRBs, to avoid strong absorption of the highly variable prompt emission.

I thank Yoni Granot, Yuri Lyubarsky, Maxim Lyutikov, and Udi Nakar for useful comments, and the anonymous referee for a detailed report. This work was supported by an ISF grant for the Israeli Center for High Energy Astrophysics.

APPENDIX A

JUMP CONDITIONS AT THE REVERSE SHOCK

The stress-energy tensor of a magnetized fluid takes the form

$$T^{\mu\nu} = \rho h u^\mu u^\nu - g^{\mu\nu} \bar{p} - b^\mu b^\nu,$$ \hspace{1cm} (A1)

where ρ is the proper density, $\bar{p} = p + p_e$ is the sum of the kinetic pressure p and the magnetic pressure $p_h = b^\mu b^\nu/2 = b^2/2$, $\tilde{h} = e + p / \rho + b^2 / \rho$ is the generalized specific enthalpy, u^μ is the fluid 4-velocity, and $g^{\mu\nu}$ is the metric tensor. The 4-vector of the magnetic field is defined in terms of the electromagnetic tensor $F^{\mu\nu}$ as

$$b_\alpha = \frac{1}{2} \eta_{\alpha \beta \gamma \delta} u^\beta F^{\gamma \delta},$$ \hspace{1cm} (A2)

where $\eta_{\alpha \beta \gamma \delta}$ is the Levi-Civita tensor. The jump conditions are obtained from integration of the flow equations,

$$\partial_\mu (\rho u^\mu) = 0,$$ \hspace{1cm} (A3)

$$\partial_\mu T^{\mu\nu} = 0,$$ \hspace{1cm} (A4)

$$\partial_\mu (b^\mu u^\nu - b^\nu u^\mu) = 0,$$ \hspace{1cm} (A5)

across the shock surface $\psi(x^\mu) \equiv r - R(t, \theta, \phi) = 0$, whereby we have

$$[\rho u^\mu]_\nu = 0, \ [b^\mu u^\nu - b^\nu u^\mu]_\nu = 0, \ [T^{\mu\nu}]_\nu = 0.$$ \hspace{1cm} (A6)

The square brackets denote the difference of the enclosed quantity across the shock front, and

$$n^\alpha = \frac{\partial_\alpha \psi}{\sqrt{2 \gamma / \psi \partial^\alpha \psi}}$$ \hspace{1cm} (A7)

is a 4-vector normal to the shock front. For the reverse shock with $R(t, \theta, \phi) = R_r(t)$

$$n_\mu = \Gamma_r(-V_r, 1, 0, 0),$$ \hspace{1cm} (A8)

here $V_r = dR_r/dt$ is the velocity of the reverse shock and $\Gamma_r = (1 - V_r^2)^{-1/2}$. Equations (A1), (A6), and (A8) yield for the quantities defined in Figure 1

$$b_\alpha \gamma_\alpha (v_e - V_r) = b_\gamma \gamma_\gamma (v_e - V_r),$$ \hspace{1cm} (A9)

$$\rho_e \gamma_e (v_e - V_r) = \rho_\gamma \gamma_\gamma (v_e - V_r),$$ \hspace{1cm} (A10)

$$\rho_e \tilde{h} \gamma_e^2 v_e (v_e - V_r) + \tilde{p}_e = \rho_\gamma \tilde{h} \gamma_\gamma^2 v_e (v_e - V_r) + \tilde{p}_\gamma,$$ \hspace{1cm} (A11)

$$\rho_e \bar{h} \gamma_e^2 (v_e - V_r) + \bar{p}_e V_r = \rho_\gamma \bar{h} \gamma_\gamma^2 (v_e - V_r) + \bar{p}_\gamma V_r.$$ \hspace{1cm} (A12)

We assume a cold ejecta, $p_e = 0$, and adopt $h_2 = \rho_2 + a p_2$, where $a = \gamma / (\gamma - 1)$ and γ are the adiabatic index, for the shocked ejecta (see Figure 1). Then, to order $O(\Gamma_r^{-2})$ the solution of Equations (A9)–(A12) is given by

$$\Psi(q_2, q_e, \sigma_e) = 0,$$ \hspace{1cm} (A13)

$$p_2 = \rho_e \gamma_\gamma (q_2, q_e),$$ \hspace{1cm} (A14)

$$b_2 = b_e (\rho_2 / \rho_e) = b_e h(q_2, q_e),$$ \hspace{1cm} (A15)

$$p_2 = \rho_e f(q_2, q_e, \sigma_e),$$ \hspace{1cm} (A16)

with

$$h(q_2, q_e) = \frac{\sqrt{q_2}}{\sqrt{q_e}} \left(\frac{q_e - 1}{q_2 - 1} \right),$$ \hspace{1cm} (A17)

$$f(q_2, q_e, \sigma_e) = \frac{(q_e - 1)}{a(q_2 - 1) + 2} \times \left[1 - \sqrt{q_2 / q_e} + \frac{q_e \sigma_e}{q_e - 1} - \frac{\sigma_e q_2 (q_e - 1)}{q_e (q_2 - 1)^2} \right],$$ \hspace{1cm} (A18)

$$\Psi(q_2, q_e, \sigma_e) = 2 q_e (1 + \sigma_e - \sqrt{q_2 / q_e}) + (a - 2 q_2 \sigma_e) \left(\frac{q_e - 1}{q_2 - 1} \right) + (1 + \sigma_e) [a(q_2 - 1) + 2] \left(\frac{q_2 - q_e}{q_2 + 1} \right) - a \sigma_e q_e \left(\frac{q_2 - 1}{q_e - 1} \right),$$ \hspace{1cm} (A19)

where $q_2 = (\Gamma_r / \Gamma_e)^2$, $q_e = (\gamma_e / \Gamma_e)^2$, and $\sigma_e = b^2 / \rho_e$. The relations (A17)–(A19) generalize those derived by Kennel & Coroniti (1984) for a high Alfvén Mach number shock,
corresponding to \(q_e \gg q_2 \) in our notation. In this limit, Equations (A13) and (A19) with \(\dot{\gamma} = 4/3 \) reduce to

\[
\frac{2 - q_2}{q_2} + \left(\frac{q_2 + 1}{q_2 - 1} \right) \left(\frac{\sigma_e}{1 + \sigma_e} \right) = 0.
\]
(A20)

This condition can be expressed in terms of the 4-velocity of the downstream fluid, measured with respect to the shock frame, \(u'_2 = \Gamma_e \gamma_e(v_2 - V_r) = (q_2 - 1)/2\sqrt{q_2} + O(\Gamma_e^{-1}) \), as

\[
1 + 4u'_2 - \sqrt{\frac{1 + u'_2^2}{u'_2^2}} \left(4u'_2 - \frac{\sigma_e}{1 + \sigma_e} \right) = 0,
\]
(A21)

which is equivalent to Equation (4.10) in Kennel & Coroniti (1984). The solution for \(u'_2 \) is given by Equation (4.11) in the same reference.

APPENDIX B

SELF-SIMILAR EJECTA

We consider a spherically symmetric, magnetized ejecta with a purely toroidal magnetic field, viz., \(b_\theta^2 = (0, 0, 0, b_\phi) \). The flow Equations (A3)–(A5) then reduce to

\[
\frac{\partial (\rho_e \gamma_e)}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho_e \gamma_e v_e) = 0,
\]
(B1)

\[
\frac{\partial (b_e \gamma_e)}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r b_e \gamma_e v_e) = 0,
\]
(B2)

\[
\rho \tilde{\gamma} \gamma_e \frac{d v_e}{d t} + v_e \frac{\partial \rho_e}{\partial t} + \frac{\partial \rho_e}{\partial r} + \frac{b_e^2}{r} = 0,
\]
(B3)

\[
\frac{d}{d t} \ln \left(\frac{\rho_e}{\rho_e} \right) = 0.
\]
(B4)

We seek self-similar solutions that are separable, to order \(O(\Gamma_e^{-2}) \), in the variables \(\tau = \ln(t) \) and

\[
\chi = \left\{ 1 + 2(m + 1) \Gamma_0^2 \right\} \left[1 - (r - r_a)/r \right],
\]
(B5)

with the front of the expanding ejecta located at \(\chi = 1 \) and \(\Gamma_0 = \gamma, \chi(\chi = 1) = A \tau^{-m/2} = \sigma e^{-m/2} \). We adopt the following parameterization of the fluid variables:

\[
\gamma_e^2 = \Gamma_0^2 g(\chi),
\]
(B6)

\[
b_e = b_0 e^{-\sigma t} B(\chi),
\]
(B7)

\[
\rho_e' = \rho_e \gamma_e = \rho_e e^{-\sigma t} H(\chi).
\]
(B8)

Transforming from the coordinates \((r, t) \) to \((\chi, \tau) \) and using the relations

\[
t \partial_r = \partial_r + \left\{ (m + 1) (2 \gamma_0^2 - \chi) + 1 \right\} \partial_\chi,
\]
(B9)

\[
t \partial_\tau = - \left\{ 1 + 2(m + 1) \Gamma_0^2 \right\} \partial_\chi,
\]
(B10)

one obtains, upon substitution of Equations (B6)–(B8) into the flow Equations (B1)–(B4),

\[
\frac{A d \ln g}{g d \chi} = m(1 - g \chi) - 4\sigma e(1 - p - m/2),
\]
(B11)

\[
\frac{A d \ln B}{g d \chi} = m - (1 - p)(1 - g \chi) - 2\sigma e(1 - p - m/2),
\]
(B12)

\[
\frac{A d \ln H}{g d \chi} = m - (2 - q)(1 - g \chi) + 4\sigma e \left[m/2 + p - 1 + (2 - q)g \right].
\]
(B13)

to order \(O(\Gamma_e^{-2}) \), where \(A = (m + 1)[(1 - g \chi)^2 - 4\sigma e g \chi] \).

B.1. Freely Expanding Ejecta

For a freely expanding ejecta \(d\gamma_e/dt = -m/2 + (m + 1) (1/g - \chi) \delta_0 \sqrt{g} = 0 \). The boundary condition \(g(\chi) = 1 \) implies \(m = 0 \) and \(g(\chi) = \chi^{-1} \). Equations (B11)–(B13) give \(p = 2, q = 3, B(\chi) = \chi^{-3/2} \). The function \(H(\chi) \) is unrestricted. To summarize, the solution can be expressed as

\[
\gamma_e^2 = \Gamma_0^2 \chi^{-1}, \quad b_e = b_0 e^{-\sigma e t} \chi^{-1/2}, \quad \rho_e' = \rho_e a e^{-\sigma e t} H(\chi),
\]
(B14)

with \(b_0 \) denoting the value of \(b_e \) at \(\tau = 0, \chi = 1 \). The discussion in NS06 suggests that a power-law density profile, \(\rho_e \propto \gamma_e^{-n} \), corresponding to \(H = \chi^{(n-1)/2} \), provides a reasonable description of realistic ejecta. Note that magnetic and kinetic energies have different scaling, \(\rho_e \gamma_e^2 \propto t^{-3} \) and \(b_e^2 \gamma_e^2 \propto t^{-4} \), so that the enthalpy is not self-similar. Note also that magnetic energy is not conserved, viz., \(b_e^2 \gamma_e^2 \propto t^{-1} \), implying a loss of Poynting energy from the front. This is a consequence of an implicit boundary condition at the vacuum–shell interface that assumes a confining agent. The loss of magnetic energy is then associated with a \(p dV \) work. For the interacting shell, this solution can be matched with the shocked shell layer, as discussed in Section 2.2.

B.2. An Accelerating High-\(\sigma \) Shell

The solution describing an impulsive accelerating shell (GKS10; Lyutikov 2010a) corresponds to the choice \(m = 0, p = 1, q = 2 \). Equations (B11)–(B13) then readily yield

\[
\sigma_e(\chi, \tau) = \left(\frac{\chi^{1/3} - 1}{4 \chi^{1/3}} \right)^2,
\]
(B15)

independent of \(\tau \), and

\[
g(\chi) = \chi^{-2/3},
\]
(B16)

\[
B(\chi) = H/\sqrt{g} = \sigma_e(\chi).
\]
(B17)

The requirement \(\gamma_e = \Gamma_0 \chi^{-1/3} > 1 \) formally implies \(\chi < \chi_0 = \Gamma_0^{1/3} \) and \(\Gamma_0 < 4\chi_0 \). However, the above solution is applicable only well above the magnetosonic point, defined by the condition \(\sigma_e = \gamma_e^2 \gamma_e^2 \sim \gamma_e^2 \). A full treatment (GKS10)
gives $\Gamma_0 = 2 \sigma_0$, where σ_0 is the initial magnetization of the shell. To the order at which we are working, the self-similar variable is then given by Equation (15) and the solution by Equation (16) with ρ_0 denoting the initial density of the shell.

We choose $r_a = r_m = 2 r_0$ in Equation (B5), where r_0 is the initial shell width and r_m is the magnetosonic radius. Then at $t = 0$ (corresponding to $t = r_m$), the front of the reflected rarefaction wave is located at $\chi = 8 \sigma_0^2$. The local velocity of the front, as measured in the fluid frame, is $v'_w = \sqrt{\sigma_e/(1 + \sigma_e)}$, and the corresponding Lorentz factor is $\gamma'_w = (1 - v'_w^2)^{-1/2}$. The Lorentz factor of the wave front in the lab frame is obtained upon a Lorentz transformation:

$$\gamma_w = \gamma_e \gamma'_w (1 + v_e v'_w) \simeq 2 \gamma_e \sqrt{\sigma_e}.$$ \hspace{1cm} (B18)

The trajectory of the wave front is governed by the equation

$$\frac{d}{dt}(t \chi_*) = \left(8 \sigma_0 / \gamma_w \right)^2 = \frac{\chi_*^{2/3}}{4 \sigma_e (\chi_*)} \simeq \chi_*^{1/3},$$ \hspace{1cm} (B19)

where the last equality holds at $\chi_* \gg 1$ for which $4 \sigma_e \simeq \chi_*^{1/3}$. The solution of the latter equation reads

$$\chi_*(t) = \left[1 + (8 \sigma_0^2 r_0 / t) \right]^{2/3}.$$ \hspace{1cm} (B20)

At $t \ll 8 \sigma_0^2 r_0$, we have $\chi_* \simeq 8 \sigma_0 (r_0 / t)$ and $\gamma_e (\chi_*) \simeq (\sigma_0 t / 2 r_0)^{-1/3}$, $\gamma_w \simeq \sqrt{2} \sigma_e (t / r_0)^{1/6}$ in agreement with GKS10 and Lyutikov (2010a).

The energy density is

$$T^{00} = \rho_e (1 + \sigma_e) V_e^2 \simeq \frac{\rho_0 \sigma_0}{4} (1 - \chi^{-1/3})^4 (t / r_0)^{-2}.$$ \hspace{1cm} (B21)

Using $r^2 dr = (t^3 / 8 \sigma_0^2) d\chi$, we obtain for the total energy contained between the reflected rarefaction wave and the head

$$\Delta E = \int T^{00} 4 \pi r^2 dr = \pi \rho_0 \sigma_0 r_0^3 (t / 8 \sigma_0^2)^2 \int_{\chi}^{\chi_*} (1 - \chi^{-1/3})^4 d\chi$$

$$\simeq \pi \rho_0 \sigma_0 r_0^3 = (3 / 4) E$$ \hspace{1cm} (B22)

independent of time, where E is the initial energy (i.e., the explosion energy).

REFERENCES

Abdo, A. A., et al. 2009a, Science, 323, 1688
Abdo, A. A., et al. 2009b, Nature, 462, 331
Giannios, D., & Spruit, H. 2005, A&A, 430, 1
Granot, J., Komissarov, S., & Spitkovsky, A. 2010, arXiv:1004.0959
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694
Komissarov, S., Vlahakis, N., Knigl, A., & Barkov, M. V. 2009, MNRAS, 394, 1182
Komissarov, S., Vlahakis, N., & Königl, A. 2010, MNRAS, 729
Kumar, P., & Panaitescu, A. 2003, MNRAS, 346, 905
Levinson, A. 2010a, ApJ, 705, 213
Levinson, A. 2010b, Geophys. Astrophys. Fluid Dyn., 104, 85
Levinson, A., & Eichler, D. 1993, ApJ, 418, 386
Lyubarsky, Y. E. 2010, MNRAS, 402, 353
Lyutikov, M. 2010a, arXiv:1004.2428
Lyutikov, M. 2010b, arXiv:1004.2429
Lyutikov, M., & Blandford, R. D. 2003, arXiv:astro-ph/0312347
Mimica, P., Giannios, D., & Aloy, M. A. 2009, A&A, 494, 879
Nakamura, K., & Shigeyama, T. 2006, ApJ, 645, 431
Nakar, E., & Piran, T. 2004, MNRAS, 353, 647
Sari, R., & Piran, T. 1995, ApJ, 455, L143
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2010, New Astron., 15, 749
Zhang, B., & Kobayashi, S. 2005, ApJ, 628, 315