Design and Performance Thulium Doped Fiber Amplifier in Optical Telecommunication Networks

Zina Abdul Lateef 1, Fatima faydhe al-azzwi 2, Majida Saud Ibrahim 3
Institute of Technology-Baghdad, Middle Technical University (MTU), Iraq

Abstract. Thulium-doped optical Fiber enhancers (T DFA) are advanced to cover the optical media transmission Wavelength Division Multiplexing (WDM) information transmission in the envisioned band (800-1800 nm) with up to 6.5dB increment and noise figure as low as 2.6 dB. We existing the first in-band diode-siphoned thulium-doped fiber amplifier (TDFAs) operational in the wavelength locale and test their appropriateness as high request enhancers in possible coming media transmission frameworks.

Keywords: TDFA, WDM, optical, gain, noise figure, amplifier.

1. Introduction

Because of the colossal addition in correspondence traffic in present years, further and further undertakings in research have been facilitated towards becoming fiber enhancers of exceedingly compelling sweeping band which will totally mishandle of low-misfortune silica with band strands for assemble transmission furthest reaches of WDM frameworks as shown in figure 1[1-4].

![Figure 1. WDM operating principle](image)

These broad-band amplifiers necessity be capable to amplify the innovative short wavelength band (S-band) [5-7] in adding to the present C-and L-groups. Thulium-doped fiber amplifiers (TDFAs) are a positive candidate for the S-band intensification as the intensification data transmission of the TDFA is set at 1470 nm, which falls in the S-band as shown in figure 2 [8].
Figure 2. Thulium energy levels and the pumping scheme. Measured fluorescence lifetimes τ are shown right to the respective level involved in the model.

A hybrid amplifier with a wide-band is appropriate for request in telecommunication schemes that used in optical S-band [9, 10]. By method for the optical signal exchanges along a standard single mode fiber SSMF, it ends up debilitated adjacent to the fiber and if the data snappiness is high adequate (> 10 Gb/s), it winds up mistaken attributable to chromatic and polarization dispersals. To pawn debilitating optical fiber speakers OFA’s are utilized. Showing OFA’s into the plan reasons additional troubles, for example, enhanced unconstrained emanation (Amplified spontaneous emission) ASE commotion which collects as the numeral of OFA’s which the flag drives done developments [11, 12]. The data transmission of optical strands is really unnecessary if the S-band (short 1460-1530 nm), C-band (focal 1530-1565 nm), and L-band (long 1565-1625 nm) are utilized expertly. Along these lines optical fiber intensifiers need be intentional to enhance the flag close to the fiber, the additional the increase, the additional range separate between speakers as stretched out as the flag isn't divided attributable to extraordinary optical power[13]. To make use of this endless data transfer capacity, thick (Dense) wavelength division multiplexing DWDM is utilized as shown in figure 3, yet every sort of optical fiber speaker has different transmission capacity.

Figure 3. Bidirectional DWDM

For instance the information traffic in (WDM) optical correspondence plans is developing rapidly, it is basic to cover the media transmission wavelength go and to propel intensifiers in the S-band (1460-1530 nm) [14, 15]. Single of the likely clarifications is the (TDFA). To maintain a strategic distance from the expressed volume limit, another age of polarization or stage touchy transmitters and collectors must be created or imaginative transmission bunches must be loosened for flag
enhancement. In the interim the entire reachable data transmission is multiple times more prominent from truly utilized, the second clarification has all the earmarks of being casual to appreciate [16].

2. WDM with TDFA system

First experimentations with TDFAs were accomplished beforehand in 1993, at that point the difficulty of the enhancer and the dormant attractive limit of current transmission plans are the issues, which suspension its gainful opening. Improperly, the development of the TDFA is incredibly further complex from that of EDFA. The troublesome astonishments with various vitality levels convoluted in the intensification system. In distinction to the EDFA, enhancement occurs between two inspired dimensions [17]. Moreover, there is one vitality level between the upper and lower enhancement level essential to a quick non-emanate decay. The freedom of the upper vitality level happens inferable from multi phonon decrease. Phonons are the quantized airs of the glass framework and its number needed to connect the expected vitality hole is unique in silica and fluoride glasses.

Figure 4 shows WDM with TDFA where the vitality hole of 1000 cm−1 is crossed over through 1 phonon in silica yet 2 phonons in fluoride glasses. Extraordinary greatest phonon vitality in silica glass limits the capability of the emanates changes in the speaker. For that point glasses with low preeminent phonon vitality are the best swarms for the intensifier. On the extra hand, the primary ionic sort of groups in the fluoride glass grid, which reasons decrease of the phonon vitality results also in harm of the warm and mechanical assets of the filaments complete out of the fluoride glass. This detail defers its joining to the silica transmission fiber.

![Figure 4](image_url)

Figure 4. Configuration of TDFA used for the experiment

In the meantime various vitality levels are confounded in the intensification strategy, various driving structures of the speaker are possible. Besides, the TDFA jobs two-organize siphoning, for which siphons at different wavelengths are reused. They are joint with the flag wavelength in a solitary fiber by unrivaled WDM couplers, which are economically not reachable [15]. Every one of these subjects type the TDFA development not inconsequential, and their clarifications are of essential criticalness for TDFA introduction.

3. Results and discussion

The ASE perceptibly influences the supreme increment both twofold pass TDFAs. and the single pass Figure 5. Exhibits a forward and in switch voyaging Amplified Spontaneous Emission ASE power of the single-pass TDFAs in term of location in the TDF for various TDF length applied. The (800-1800
nm) siphon control is fixed at 200mW. As showed up in the figure, the retrogressive ASE is higher than the forward ASE for both single-pass TDFAs. For instance, the forward and in switch ASE control are procured at 0.03mW. This is a sequence from the effect of the inversion close to the completion of TDF being much lower than the inversion at the beginning of the TDF length. The backward ASE is improved along a particularly switched bit of TDF before leaving the TDF but the forward ASE travel along a touch of TDF that is consistently less disturbed and thusly has less expansion per unit length than the retrogressive ASE does. In this TDFA, the retrogressive ASE goes over an increasingly drawn out detachment and end up being significantly higher close to the beginning of the TDF. In any case, at a TDF length of more than the perfect length, the higher in turn around ASE debilitates the inversion and deceives the expansion to the inconvenience of the flag similarly as forward ASE. Both flag and forward ASE powers will be diminished in view of the less adjusted piece of the TDF close to the end [18].

Figure 5. The propagation of the forward and in reverse enhanced TDFA signal - pass for various TDF length and Gain

Figure 6. Noise figure features for the (TDFA) single –pass
Headway of the TDF length that used is a champion among most basic issues which ought that considered for arranging a T DFA order to get the best expansion with least commotion figure. Because of remote siphoning, the zone of the intensifier are a long way from the source and a streamlined siphon control is principal. The expansion and clamor figure of the T DFA are unequivocally subject to the TDF length and the working siphon control. The ideal TDF length is additionally subject to the working siphon control and accordingly a reference TDF length is right off the bat decided in this work. At that point the working siphon control is streamlined regarding the reference TDF length. Cautious contemplations are fundamental amid the choice of the reference TDF length. On the off chance that the reference TDF length is excessively short, the T DFA determination be immersed in an extremely low siphon power and this ensures not give a great increase. Immersion happens in T DFA because of the fixed thulium particle focus and along these lines after a specific measure of siphon control, the N state populace trips to a nearly. Steady dimension. In our recreation, immersion is characterized as the condition where the addition of increase. On account of a short TDF, the complete populace is low and subsequently the TDF is completely transformed by an extremely low measure of siphon control. In the event that this low measure of siphon control is chosen as the working siphon control then the streamlined TDF length as for this low measure of siphon control is short as appeared in Figure 6, the commotion for single-pass amplifier increments with the augmentation of siphon control. Then again, the commotion figure improves or decreases with the addition of siphon control. The outcome plainly demonstrates that the addition of increase and the diminution of NF are extremely small as for the augmentation of siphon control later the siphon control surpasses 100 mW for the single pass T DFA.

4. Conclusion

In Thulium-doped fiber amplifiers (TDFAs), the effects of design parameters on T DFA are and described. A proficient structure technique was acquainted with improve the single-pass T DFA. The execution parameters of these speakers were portrayed and displayed work. Flag engendering qualities in the T DFA were outlined utilizing different siphon arrangements for fiber optic correspondence framework. Numerical outcome were utilized to depict the plan technique of an upgraded single pass and twofold pass T DFA utilizing 800-1800 nm double siphoning. Effectiveness of improved and non-streamlined single pass T DFA Gain as a component of flag wavelength by different siphon control were determined. The impact of 800-1800 nm siphon control on execution of 800-1800 nm siphon control was portrayed. The models had the capacity to gauge any adjustments in the framework execution regarding the adjustment in the structure parameters and natural fiber parameters. The setup with a forward siphoned T DFA enhancer gave the best optical execution improvement of a lasers diode with strong high power in the 800-1800 nm range of wavelength producing this sort of wide-band cream intensifier a captivating contender for Optical Telecommunication Networks.

References

[1] R. C. M.M. Kozak, W. Kowalsky, "Thulium-doped fiber amplifierforthe S-band, in :Proceedings of 20046th International Conferenceon Transparent Optical Net- works, vol.6,2004, pp.51–54.,” 2004.
[2] Agrawal G.P., "“Fiber-Optic Communication Systems”, 2nd ed. Wiley, New York, NY,,” 1997.
[3] Roy F., "“Recent advances in thulium-doped fiber amplifiers” Optical Fiber Communication Conference and Exhibit, pp: 568 – 570, ,” 2002.
[4] Y. A. T. Morioka, R. Ryf, P. Winzer, D. Richardson, and F. Poletti., " “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012), " 2012.
[5] C. D. Masum-Thomas J., Maroney A, "A 70 nm wide 8-band amplifier by cascading TDFA and Raman fibre amplifier" Optical Fiber Communication Conference and Exhibit, Vol. 3, pp. WDD9-1 - WDD9-3.

[6] N. V. W. F. Poletti, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, "Towards high-capacity fibre-optic communications at the speed of light in vacuum," Nat. Photonics 7(4), 279–284 (2013).

[7] H. P. Emami S. D., Abd-rahman F., Abdul rashid H., Ahmad H., Harun S. W., "Application of high concentration thulium-doped fiber for achieving 8-band gain flattened hybrid optical amplifier" Optoelectronics and Advanced Materials Journal Pages 1446 – 1451, Volume 12 ISSN 7, 2010.

[8] H. P. Emami S. D., Abd-Rahman F., Abdul-Rashid H. A., Ahmad H., and Harun S. W, "wide-band hybrid amplifier operating in s-band region", Progress In Electromagnetics Research, PIER(MIT University) 102, 301-313, 2010.

[9] K. Gred, "Optical Fiber Communications" Singapore: McGraw-HILL, 2000.

[10] M. T. J. M. O. Daniel, and W. A. Clarkson, "Power-scalable wavelength-agile fibre laser source at two-microns," in 5th EPS-QEOD Europhoton Conference (2012), 2012.

[11] G. G. F. Luthi S. R., Freitas J., Gomes A., "TDFA-FOPA hybrid for 8-band amplification and S-to-C, S-to-L band wavelength conversion", Quantum Electronics and Laser Science Conference, pp: 1 – 2, " 2006.

[12] L. S. R. Guimarares G. F., Freitas J. F. L., Gomes A. S. L., "TDFA/FOPA hybrid for broadband amplification and frequency conversion in optical communications", Electronics Letters, Vol. 42, no. 17, pp: 997 – 998, 2006.

[13] L. W. J. Byun J., Lee C. H., Park N., "Study on the transient response for 1.4 μm/1.5 μm dual wavelength pumped thulium-doped fiber amplifiers" IEEE Optical Fiber Communication Conference and Exhibit 2002, pp: 570 – 571, " 2002.

[14] M. H. Miyamoto Y., Hirano A., Kuwahara S., Kisaka Y., Kawakami H., and T. Y. Tomizawa M., Aozasa S., "S-band WDM coherent transmission of 40x43-Gbit/s CS-RZ DPSK signals over 400 km DSF using hybrid GSTDFAs/ Raman amplifiers” Electronics Letters vol. 38, no. 24, pp:1569 – 570, " 2002.

[15] S. T. Aozasa S., Kanamori T., Hoshino K., Kobayashi K., Shimizu M., "Tm-doped fiber amplifiers for 1470-nm-band WDM signals” IEEE Photonics Technology Letters, vol. 12, no. 10, pp:1331 – 1333, " 2000.

[16] D. M. L. Cole B., "S-band amplification in a thulium doped silicate fiber” Optical Fiber Communication Conference and Exhibit vol. 2, pp: TuQ3-1- TuQ3-3, " 2001.

[17] S. L. H. Zimmerman D. R., "Amplifiers for the masses: EDFA, EDWA, and SOA amplifier for metro and access applications”, IEEE Journal of Lightwave Technology, vol. 22 n.1, pp:63-70, " 2004.

[18] A. M. H. Z. Li*, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, "Thulium-doped fiber amplifier for optical communications at 2 μm," Optical Society of America, 2013.