Strikingly distinctive NH₃-SCR behavior over Cu-SSZ-13 in the presence of NO₂

Commercial Cu-exchanged small-pore SSZ-13 (Cu-SSZ-13) zeolite catalysts are highly active for the standard selective catalytic reduction (SCR) of NO with NH₃. However, their activity is unexpectedly inhibited in the presence of NO₂ at low temperatures. This is strikingly distinct from the NO₂-accelerated NOₓ conversion over other typical SCR catalyst systems. Here, we combine kinetic experiments, in situ X-ray absorption spectroscopy, and density functional theory (DFT) calculations to obtain direct evidence that under reaction conditions, strong oxidation by NO₂ forces Cu ions to exist mainly as CuII species (fw-Cu²⁺ and NH₃-solvated CuII with high CNs), which impedes the mobility of Cu species. The SCR reaction occurring at these CuII sites with weak mobility shows a higher energy barrier than that of the standard SCR reaction on dynamic binuclear sites. Moreover, the NO₂-involved SCR reaction tends to occur at the Brønsted acid sites (BASs) rather than the CuⅡ sites. This work clearly explains the strikingly distinctive selective catalytic behavior in this zeolite system.

Increasingly stringent mobile source emission regulations have been pursued around the world to tackle environmental pollution. Nitrogen oxides (NOₓ) are inevitable gaseous pollutants emitted from internal combustion engines. Selective catalytic reduction of NOₓ with NH₃ (NH₃-SCR) is the most widely adopted technology for the removal of NOₓ from diesel engines. The successful commercialization of Cu-SSZ-13 as an NH₃-SCR catalyst is a significant achievement for diesel engine exhaust post treatment. In the past decade, numerous studies have endeavored to uncover the standard SCR (SSCR) reaction mechanism, hydrothermal deactivation mechanism, and SO₂ poisoning deactivation mechanism, and to develop economic and sustainable synthesis methods for Cu-SSZ-13, bringing about continuous optimization of Cu-SSZ-13 for commercial SCR catalysts.

In actual application, a diesel oxidation catalyst (DOC) is utilized to oxidize carbon monoxide (CO) and hydrocarbons (HCs), accompanied by partial oxidation of NO to NO₂. The formed NO₂ can participate in the NH₃-SCR process through the so-called “fast SCR” reaction (FSCR, reaction 1, consisting of reactions 2 and 3). It is generally believed that the deNOₓ efficiency of the FSCR reaction should be higher than that of SSCR (reaction 4) due to bypassing the oxidation of NO, which is usually the rate-limiting step in the SSCR reaction.

\[
\begin{align*}
NO + NO₂ + 2NH₃ & \rightarrow 2N₂ + 3H₂O \\
2NO₂ + 2NH₃ & \rightarrow NH₄NO₃ + N₂ + H₂O \\
NO + NH₄NO₃ & \rightarrow N₂ + NO₂ + 2H₂O \\
4NO + 4NH₃ + O₂ & \rightarrow 4N₂ + 6H₂O
\end{align*}
\]
However, there have been few studies reporting that NO₂ measurably promotes the NH₃-SCR efficiency over Cu-SSZ-13 catalytic systems. On the contrary, inhibition of NO conversion by NO₂ was found over Al-rich Cu-SSZ-13 catalysts due to NH₄NO₃ formation, which is the so-called “abnormal fast NH₃-SCR reaction”[22]. In our recent study, we found that the inhibiting effect of NO₂ was closely related to Brønsted acid sites (BASs) and can be alleviated by hydrothermal aging due to the decrease in the number of BASs in Cu-SSZ-13[22]. Therefore, we speculated that NO₂ reduction probably occurs at BASs. Also, we previously observed the reaction between NO and NH₃NO₂ occurring at BASs over the H-SSZ-13 catalyst[22]. Furthermore, Kubota et al. found that NO₂ reduction probably occurs at BASs of Cu-CHA zeolite and showed the important role of BASs in the recent study[22]. However, the situation in Cu-containing zeolites is more complicated. McEwen et al. found that four-fold-coordinated Cu(II) species dominate the Cu-SSZ-13 catalyst under SCR conditions, which differs from the composition under SSCR conditions, where Cu(I) and Cu(II) species both exist[26]. Paolucci et al. investigated the oxidation process of Cu(II)/(NH₃)₂ species by O₂ and NO₂. It was found that oxidation by NO₂ occurred at isolated Cu sites, rather than at the Cu dimer sites required for O₂ activation[26]. More recently, Liu et al. investigated the FSCR mechanism over the Cu-CHA zeolite and showed the important role of BASs in the recent study[22]. However, the existence of both NO and NO₂ was studied by kinetic measurements. In applications.

In this study, the SSCR reaction over the Cu-SSZ-13 catalyst in the presence of both NO and NO₂ was studied by kinetic measurements. In situ X-ray absorption fine structure (XAFS) measurements were applied to reveal the state of copper species under SSCR (with only NO as NO₃⁻), FSCR (equal mixture of NO and NO₂ as NOₓ), and NO₂-SCR (only NO₂ as NO₃⁻) reaction conditions. Density functional theory (DFT) calculations were conducted to identify the NO₂-involved SSCR reaction pathways. These results provide new insights into the role of NO₂ in the NH₃-SCR reaction and shed light on the actual application of Cu-SSZ-13 catalysts in the presence of both NO and NO₂.

Results and discussion

Kinetic studies of NO₂ conversion under SSCR, FSCR and NO₂-SCR conditions

We first carried out kinetic studies on the SCR reaction, with the results shown in Fig. 1 and Supplementary Fig. 1. The SSCR rate increases linearly with the square of Cu loading when the Cu loading is below 1.7 wt.% (magnified in Fig. 1b), indicating the participation of Cu pairs in the standard NH₃-SCR reaction. Previous studies have reported that Cu dimers are formed with O₂ activation in the oxidation half-cycle (Cu→Cu)²⁺[23]. Recently, Hu et al. also proposed a Cu²⁺-pair-mediated low-temperature reduction half-cycle (Cu→Cu²⁺). Chen et al. also indicated the participation of Cu pairs in the reduction half-cycle[23]. Therefore, the formation of a Cu pair in the same cage is significantly important for the overall standard NH₃-SCR reaction process. The increase trend slows down with further rise in the Cu loading.

The turnover frequency (TOF) shows a volcano-type tendency, with a maximum at Cu loading of 1.7 wt.% (Fig. 1c). The increase in TOF at low Cu loading is attributed to the quadratic increase in SSCR rate. At high Cu loading, however, the decline of TOF is probably due to the underutilization of the active Cu sites. According to the calculation method reported by Jones et al.[26], every 2.4 and 3.5 CHA cages contain one Cu ion for Cu₀.₅ SSZ-13 and Cu₀.₇ SSZ-13 samples, respectively. The formed Cu-NH₃ complex or dimer Cu species under SSCR conditions probably impede the access of reactants to the Cu ions deep inside the pores, causing inefficiency in the use of Cu ions[27]. The activation energy (Ea) and pre-exponential factor (A) both increase with the increase in Cu loading, which was also observed by Gao et al.[28]. Recently, Krishata et al. reported that the Ea of Cu²⁺ oxidation increased monotonically with Cu density in a fixed kinetic regime due to the non-mean-field behavior of Cu-SSZ-13 in the NH₃-SCR reaction and that the Ea of CuII reduction was unchanged when the Cu load was higher than 0.69 wt.%[29]. On the other hand, the kinetic relevance of CuII reduction increased with increasing Cu ion density, the Ea of which was higher than that of Cu²⁺ oxidation[29,30]. Therefore, the increase of the Ea in Cu²⁺ oxidation and kinetic relevance of CuII reduction both contributed to the increase in the Ea of the SCR reaction.

Then, the FSCR reaction over Cu-SSZ-13 was carried out as shown in Supplementary Figs. 2a and 3a. Compared to the SSCR reaction, the
NO\textsubscript{x} conversion over Cu3.8-SSZ-13 was significantly inhibited in the presence of NO\textsubscript{2}, which was strikingly distinct from the NO\textsubscript{2}-accelerated NO\textsubscript{x} conversion over Fe-based zeolite and oxide catalysts (Supplementary Fig. 3). Supplementary Fig. 2 shows the NO\textsubscript{x}, NO and NO\textsubscript{2} conversion levels over Cu-SSZ-13 with different Cu loadings under steady-state FSCR conditions. We normalized the NO and NO\textsubscript{2} reaction rates by the catalyst weight as a function of Cu loading, with the results shown in Fig. 2a, b, respectively. The NO consumption rates under FSCR and SSCR condition were compared (Supplementary Fig. 4) and the result showed that NO reduction was severely suppressed at low temperatures under FSCR conditions. The extremely low NO conversion at low temperatures was previously thought to be resulted from zeolite pore blocking by the formation of stable NH\textsubscript{4}NO\textsubscript{3}21,23. The NH\textsubscript{4}NO\textsubscript{3} formation was verified by the observation of N\textsubscript{2}O mainly originated from NH\textsubscript{4}NO\textsubscript{3} decomposition. Interestingly, the NO\textsubscript{2} reduction markedly decreased with the increase in Cu loading, while it increased as the number of BASs rose at low temperatures (Fig. 2b, c and Supplementary Fig. 6). This demonstrated that the block of active sites by NH\textsubscript{4}NO\textsubscript{3} was not the only reason for the NO\textsubscript{2}-inhibition effects, otherwise both NO and NO\textsubscript{2} reduction were inhibited. The BASs primarily participated in the reduction of NO\textsubscript{2}, which was also observed in the NO\textsubscript{2}-SCR reaction (Supplementary Fig. 7). Moreover, the turnover frequency (TOF) of NO\textsubscript{2} on BASs hardly changed as the number of BAS varied. Supplementary Fig. 8 presents the NO\textsubscript{2} reaction rate as a function of Cu loading and BASs under NO\textsubscript{2}-SCR conditions, which showed the same trend as that in the co-existence of NO and NO\textsubscript{2}. Moreover, we carried out the NO\textsubscript{2}-SCR reaction over H-SSZ-13 and Cu2.6-SSZ-13 with different Si/Al ratios and found that the zeolites with low Si/Al exhibited high NO\textsubscript{x} conversion due to their high numbers of BAS at low temperatures (Supplementary Fig. 9). The above results indicated that NO\textsubscript{2} primarily reacted at BASs while NO was difficult to be reduced in the presence of NO\textsubscript{2}. NO\textsubscript{2} disproportionation occurs on the BASs to form nitrates and adsorbed NO+, which then react with NH\textsubscript{3} to form NH\textsubscript{4}NO\textsubscript{3} and NH\textsubscript{2}NO, respectively33-35. It is generally known that NO can be effectively reduced at Cu sites. However, the formation of NH\textsubscript{4}NO\textsubscript{3} impedes NO access to the active Cu sites. Instead, NO reacts with NH\textsubscript{4}NO\textsubscript{3} at BASs to form N\textsubscript{2} and NO\textsubscript{2} through reaction (3) (TPSR shown in Supplementary Fig. 10). Furthermore, the NO and NO\textsubscript{2} conversion levels over Cu2.6-SSZ-13 and Cu0.4-SSZ-13 under SSCR, FSCR and NO\textsubscript{2}-SCR conditions are separately depicted in Supplementary Fig. 11. For Cu2.6-SSZ-13 sample, the NO conversion under SSCR conditions was remarkably higher than that under FSCR conditions, which indicated that the SSCR reaction pathway was significantly inhibited under FSCR conditions. We ascribed the low NO conversion to the reaction with NH\textsubscript{4}NO\textsubscript{3} (i.e., FSCR reaction) and the extra NO\textsubscript{2} conversion to the reaction between NO\textsubscript{2} and NH\textsubscript{3}. For Cu0.4-SSZ-13 sample, the NO conversion under FSCR conditions was likewise inhibited compared to that under SSCR conditions. Differently, the NO\textsubscript{2} conversion under FSCR and NO\textsubscript{2}-SCR conditions were relatively higher than the NO conversion under SSCR conditions due to the insufficient Cu active sites for SSCR reaction. As a result, the FSCR rates of NO\textsubscript{x} can also be higher than SSCR rates of NO\textsubscript{x} especially when the Cu-zeolite behaves low NO conversion (low Cu loadings, hydrothermal aging state, etc.), which was observed in previous studies23,27,36,37. In another word, the NO conversion was inhibited in the presence of NO\textsubscript{2}, while the effect of NO\textsubscript{2} on NO conversion was uncertain and relates to NO\textsubscript{2} conversion under FSCR conditions as well as NO\textsubscript{x} conversion under SSCR conditions.

Wavelet transform analysis of in situ EXAFS measurements

Further, we conducted in situ XAFS measurements on Cu-SSZ-13 samples to uncover the valence state and coordination of copper species under different conditions. Wavelet transform (WT) analysis of extended X-ray absorption fine structure (EXAFS) spectra is a powerful technique to resolve overlapping contributions from different
neighbor atoms at close distances around the absorber. As shown in Fig. 3a, the pretreated sample shows a distinct first shell peak at (4.5 Å⁻¹, 1.3 Å), which is associated with contributions from framework oxygen atoms. This result suggested that the copper species mainly exist as fw-Cu⁡²⁺ species, which have high coordination numbers. For the second shell sphere (R(Å) > 2 Å), two lobes, at (3.5 Å⁻¹, 2.8 Å) and (6.5 Å⁻¹, 3.3 Å), are well-resolved due to the different backscattering properties of various atoms, which strongly depend on the atomic number. The first lobe is assigned to the second-shell oxygen atom due to the low k value of oxygen atoms. The latter one is attributed to the signals from the Si or Al atoms of the framework. Although some studies attributed the latter lobe to the Cu-Cu contributions in oxygen-bridged Cu dimers, we scarcely observed CuO_x species in X-ray absorption near edge structure (XANES) and EXAFS profiles (Supplementary Fig. 12) and did not carry out the procedure of introducing O_2 to NH_3-treated Cu-SSZ-13 to form oxygen-bridged Cu dimers.

After NO adsorption, Cu²⁺ ions are partially reduced, resulting in a slight decrease in the coordination numbers (CNs) of the first shell, denoted by the decrease and weakening of the colored area (Fig. 3b). The lobes resulting from the contributions of the second shell stretched to (3.5 Å⁻¹, 3.1 Å) and (6.5 Å⁻¹, 3.7 Å), respectively. When the pre-treated sample was exposed to an NH_3 or NO + NH_3 atmosphere, the signal of the first shell sharply decreased (Fig. 3c, d), suggesting that the CNs of the Cu ions significantly declined due to their reduction.

Moreover, the two lobes are not well-resolved in the spectra, indicating a decrease in the scattering from the second shell. This is consistent with the formation of dynamic [Cu(NH_3)_2]⁺ species, which is supported by the appearance of feature B in Supplementary Fig. 13a after NH_3 or NO + NH_3 adsorption. After oxidation by O_2 and NO_2, the CNs of the first shell increased to a level similar to that of the pretreated sample, accompanied by the formation of two well-resolved lobes at the second shell (Fig. 3e, f). This demonstrated that Cu(NH_3)_2⁺ species are oxidized into Cu²⁺ ions and that the interaction between the Cu²⁺ ions and the zeolite framework is recovered. Besides the scattering by framework Si (or Al), the second lobe at 6.5 Å⁻¹ probably resulted from the scattering of the second shell Cu species, since oxygen-bridged Cu dimers are formed after Cu(NH_3)_2 oxidation by O_2. Compared with
oxidation by O2, oxidation by NO2 resulted in a higher signal for the lobe at ~6.5 Å−1, indicating that more CuI species are oxidized into CuII ions (fw-CuII or NH3-solvated CuII species with high CNs) during the reaction with NO2. This phenomenon is consistent with the result reported by Paolucci et al. showing that NO2 can oxidize the residual CuI(NH3)2 species that cannot be oxidized by O2. As also reported by Paolucci, the transient oxidation of CuI(NH3)2 species by NO2 is a single-site process without formation of Cu dimers. Therefore, it can be inferred that the presence of NO2 probably changed the SCR reaction active sites from dimer Cu to isolated Cu species, which further influence the SSCR reaction. This deduction indicated that most Cu species are bonded with the zeolite framework and that the mobility of Cu species is limited during the process of CuI(NH3)2 oxidation by NO2. Although the transient reaction can reflect the Cu state and coordination during half-cycles, it was deemed more meaningful to identify the Cu species under FSCR reaction conditions.

Figures 4g–i depicts 2D plots of the WT EXAFS spectra under SSCR, FSCR and NO2-SCR conditions. Under SSCR conditions, the WT EXAFS spectra resemble the ones in Fig. 3c, d. The first shell peak weakened under SSCR conditions, indicating a decrease in the CNs of Cu species. The absence of the lobes at the second shell suggests the easy mobility of the copper complex due to the NH3 solvation effect. In the presence of NO2, however, the CNs of the first shell significantly increased, indicating the oxidation of copper species, which was also supported by the results of McEwen et al.26. Moreover, two well-resolved lobes at the second shell are observed, suggesting that oxidation leads to the copper species becoming closely coordinated with the zeolite framework, which limits their mobility during the SCR reaction. The WT EXAFS spectra are consistent with the Fourier-transformed (FT) EXAFS results (Supplementary Fig. 14 and Table 1), which are discussed in detail in the Supporting Information. The above results proved the existence of greater amounts of dynamic CuI(NH3)2 species under SSCR reaction conditions than that under FSCR and NO2-SCR reaction conditions. Notably, although we proved the existence of significant framework-bound CuII species under FSCR conditions, the NH3-solvated CuII species cannot be ruled out by the XAFS experiment. Indeed, the NH3-solvated CuII species existed, as indicated by the observation of NH3 desorption from Cu sites in FSCR-TPD profiles (Supplementary Fig. 5), which was consistent with the computed phase diagram reported by Paolucci et al.28. Therefore, we next turned to the DFT calculation to investigate the possible SCR reaction pathways over fw- and NH3-solvated CuII[CuII and (CuIIOH)−] species, BASs and dimer Cu species.

Fig. 4 | Reaction pathway of the fast SCR cycle at Z2CuII site. a Gibbs free energy profile. b Optimized geometries of the reactants, transition states (TSs) and products for all elementary steps are presented in the lower panel. Except for the O atoms linked to the CuII ion, all other atoms of the zeolite framework are omitted for clarity. Orange, red, blue and white circles denote Cu, O, N and H atoms, respectively.
We first calculated the FSCR reaction pathway over fw-CuII species (Fig. 4). The framework-bound CuII first adsorbs two NH3 molecules without separation from the framework, which then interacts with NO2 to form Z2CuII NH3OH and NH2NO species (B → C). The Z2CuII NH3OH further adsorbs an NH3 molecule and reacts with NO, resulting in the formation of Z2CuII NH3, NO2 and H2O (E → F), which was predicted to be the rate-determining step of the SCR reaction cycle with a high energy barrier of 1.92 eV. The formed NH2NO is easily decomposed into N2 and H2O through a series of H-migration and isomerization processes (Supplementary Fig. 16)29. Last, the gaseous NH3 molecules are supplied to regenerate the initial A species.

Next, the FSCR reaction pathway over ZCuIIOH was calculated and depicted in Fig. 5. ZCuIIOH first adsorbs an NH3 molecule to reach a coordinately saturated state, which interacts with NO2 to form an HNO3 molecule without any energy barrier. The B species is actually considered to be NH4NO3 adsorbed on Cu sites. Next, the adsorbed HNO3 reacts with NO from the gas phase with an energy barrier of 0.87 eV, resulting in the formation of adsorbed HNO2 and the release of an NO2 molecule (C → D). Then, the adsorbed HNO2 reacts with the NH3 ligand to generate NH2NO and H2O. As the desorption of N2 and H2O molecules occurs, NH3 and NO2 are adsorbed at the Cu site and react to generate NH2NO and -OH groups. With the decomposition of NH2NO into N2 and H2O, the ZCuIIOH site is regenerated. The rate-determining step of the FSCR cycle over the ZCuIIOH site corresponds to the reaction of adsorbed HNO2 with an NH3 ligand to produce NH2NO and H2O (E → F), with an energy barrier of 1.58 eV.

In addition, the FSCR reaction pathways over NH3-solvated CuII species [CuII and (CuIIOH)+] were also calculated and presented in Supplementary Fig. 17, 18. All the energy barriers were found to be relatively high (1.54 and 1.65 eV). Moreover, we consider the possibility that various NH3-solvated CuII species diffuse into an adjacent cage to form CuII pairs as shown in Supplementary Fig. S15. As expected, the formation of CuII pairs from CuII(NH3)4 and CuIINO2(NH3)3 is both thermodynamically and kinetically inhibited due to the steric effect as well as strong interaction with zeolite framework. However, it should
be noted that CuIIOH(NH₃)₃ is different from the other forms since binuclear CuIIOH(NH₃)₃ is not as thermodynamically more stable than the isolated configuration. Villamaina et al. validated the formation of CuIIOH(NH₃)₃ through CO + NH₃ titration experiment. Hu et al. proposed that CuII(OH)(NH₃)₂⁻ that has one charge and two ligands, acts as inter-cage transportation medium. The Z₂CuII species can transform ZCuII(OH) by NH₃-assisted hydrolysis to achieve the Cu pairing. However, the regeneration of CuII(OH) in dimeric form showed a high energy barrier of 1.58 eV (A → Bin Supplementary Fig. S19), suggesting that the dimeric CuII(OH) species were not highly active in the FSCR reaction.

The FSCR reaction pathway at BASs is displayed in Fig. 6. NH₃ is adsorbed on the BASs to form NH₄⁺ species. Two NO₂ molecules interact with the NH₄⁺ species to form NH₄NO₃ species and release an NO molecule without any energy barrier (A → B). The release of NO was also observed in our previous studies during NO₂ adsorption on H-SSZ-13 zeolite. Then, NO interacts with an NH₃ from the gas phase to form an NH₃∙∙∙NO complex, which further reacts with NH₄NO₃ to form NH₄⁺, HNO₃, and NH₂NO via an H-migration process (B → C). NH₂NO is decomposed into N₂ and H₂O. Subsequently, HNO₃ reacts with NO from the gas phase, resulting in the formation of HNO₂ and the release of an NO₂ molecule (E → F). Reaction between HNO₂ and NH₄⁺ species leads to the formation of an NH₃∙∙∙NO complex and an H₂O molecule. The NH₃∙∙∙NO complex transfers an H atom to regenerate the BAS and changes into NH₂NO, which then decomposes into N₂ and H₂O. The whole catalytic cycle is completed. The overall energy barrier of the FSCR over the Brønsted acid site is 1.27 eV, which corresponds to the reaction between NH₄NO₃ and the NH₃∙∙∙NO complex, much lower than that over various Cu sites. The DFT-calculated results indicate that the FSCR process in the SSZ-13 zeolite system tends to occur at BASs.

Fig. 6 | Reaction pathway of the fast SCR cycle at BAS. a Gibbs free energy profile. b Optimized geometries of the reactants, TSs and products for all elementary steps. Except for the Si and Al atoms linked to the OH group, all other atoms of the zeolite framework are omitted for clarity. Yellow and pink circles denote Si and Al atoms, respectively. All other legends are the same as those in Fig. 4.
In summary, by combining the analysis of in situ spectroscopic measurements with DFT calculations, we found that NO₂ leads to the deep oxidation of copper species as Cu⁺ species (fw-Cu⁺ and NH₂-solvated Cu⁺ with high CNs), which significantly inhibits the mobility of Cu sites. As a result, the FSCR reaction occurs primarily at the BASs even though it has a higher energy barrier (1.27 eV) than the locally homogeneous SSCR reaction at dynamic sites (about 1.0 eV). This work reveals the origin of the abnormal NH₃-SCR behavior over the commercial Cu-SSZ-13 catalyst in the presence of NO₂.

Methods

Sample preparation
The initial Cu-SSZ-13 zeolite was in situ synthesized by a one-pot method. The ratio of Na₂O/Al₂O₃/H₂O/SiO₂/Cu-TEPA was 3.5/1.0/200/25/3 and the crystalization of the zeolite was performed at 120 °C for 5 days. Due to the excess Cu in the initial product, aftertreatments were required to optimize the Cu contents and distribution. In detail, the as-synthesized Cu-SSZ-13 was post-treated with 0.1 mol/L HNO₃ at 80 °C for 5 days. The reaction rate (r) in this study was normalized by catalyst weight based on Eq. (8). The activation energies (Eₐ) were calculated by the Arrhenius Eq. (9).

\[r = \frac{F_{NOx} \times X_{NOx}}{W_{cat}} \]

\[r = \left[NO_{2 \text{out}} \right] \times A \exp(-\frac{E_a}{RT}) \]

where \(F_{NOx} \) represents the NO₃ flow rate (mol/s), \(X_{NOx} \) represents the NO₃ conversion, \(W_{cat} \) is the mass of the catalyst (g), and \(\left[NO_{2 \text{out}} \right] \) is the inlet concentration of NO₂. NOx represents NO, NO₂ or a mixture of both.

Characterization
The elemental composition of the catalysts was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). NO₂ adsorption-desorption analysis of the samples was conducted on a Micromeritics ASAP 2020 instrument. The acid site distribution and contents were measured by NH₃ temperature-programmed desorption (NH₃-TPD) using the NH₃-SCR activity measurement instrument described above. Samples of about 30 mg were used and pretreated in 10% O₂/N₂ at 500 °C for 30 min before cooling down to 120 °C. Then, the gas was changed to 500 ppm NH₃/N₂ for 60 min, followed by N₂ purging for 60 min. Finally, the temperature was raised to 700 °C at a rate of 10 °C/min.

The in situ X-ray absorption fine structure (in situ XAFS) experiments were performed on the 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF). The absorption data from -200 eV to 800 eV of the Cu K-edge (8979 eV) were collected. The sample was first pretreated in O₂/He at 500 °C for 30 min before decreasing the temperature to 200 °C, after which the Pre. spectra were collected. Then, the sample was exposed to 500 ppm NH₃/He, 500 ppm NO/He and 500 ppm NH₃/He and 500 ppm NO/He for 60 min, respectively, and spectra were collected. After reduction by (NO+NH₃)/He, the sample was exposed to 5% O₂/N₂ and 500 ppm NO/N₂ for 60 min, respectively, to obtain the absorption data for the oxidized sample. Moreover, the in situ absorption data were collected after the pretreated samples were exposed to SSCR, FSCR and NO₂-SCR atmospheres for 60 min. The X-ray absorption near-edge structure (XANES) data were background-corrected and normalized using the Athena module implemented in the IFFIT software package. Extended X-ray absorption fine structure (EXAFS) data were analyzed and fitted using Athena and Artemis (3.00 k < 13.0 Å). An amplitude reduction factor (S(E)) of 0.85 was used for all the fitted data sets. Wavelet transform (WT) analysis of the EXAFS was performed to precisely investigate the local coordination environment of copper species.

Computational details
Spin-polarized periodic DFT calculations were carried out with the Vienna ab initio simulation package (VASP). The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation was adopted with the van der Waals correction proposed by Grimme (i.e., DFT-D3 method). The Kohn-Sham orbitals were expanded with a plane-wave basis set with a cutoff energy of 500 eV, and the plane augmented wave (PAW) method was used to describe the interaction between the valence electrons and the cores. The DFT + U method was applied to Cu 3d states with \(U_{Cu} = 6.0 eV \) to describe the on-site Coulomb interactions. During geometrical optimization, the self-consistent-field electronic energies were converged to \(1 \times 10^{-6} eV \) and all other atoms were fully relaxed until the maximum force on the atoms was less than \(2 \times 10^{-4} eV/\AA \). The Brillouin zone was sampled with a Monkhorst-Pack k-point grid of \(1 \times 2 \times 2 \). The Gaussian smearing method was utilized, with a smearing width of 0.2 eV. The transition states of elementary steps were located using the climbing image nudged elastic band (CI-NEB) method with several intermediate images between initial and final states. Thermodynamic data were processed with the VASPKIT code and the Gibbs free energies were calculated at 200 °C. The SSZ-13 zeolite structure was modelled using two rhombohedral unit cells (24 tetrahedrally coordinated atoms) with size of 18.84 Å \(\times 9.42 Å \times 9.42 Å \) (Supplementary Fig. 20). One Si atom was replaced by one Al atom in each double 6-membered ring, resulting in a model with a Si/Al ratio of 1.1. One H atom was introduced onto one of the O atoms connected with each Al atom to keep the structure charge-neutral. Based on previous studies, the present computational settings and models were reliable for investigating the NH₃-SCR mechanism over Cu-SSZ-13 zeolites.
Data availability

All data generated and analyzed in this study are provided in the Article and Supplementary Information, and are also available from the corresponding authors upon reasonable request.

References

1. Zhang, R., Liu, N., Lei, Z. & Chen, B. Selective transformation of various nitrogen-containing exhaust gases toward N_2 over Zeolite catalysts. Chem. Rev. 116, 3658–3721 (2016).
2. Han, L. et al. Selective catalytic reduction of NO, with NH_3 by using Novel catalysts: State of the Art and Future Prospects. Chem. Rev. 119, 10916–10976 (2019).
3. Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J. & Peden, C. H. F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO, with NH_3. J. Catal. 275, 187–190 (2010).
4. Gao, F., Mei, D., Wang, Y., Szanyi, J. & Peden, C. H. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J. Am. Chem. Soc. 139, 4935–4942 (2017).
5. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NO_3 selective catalytic reduction. Science 357, 898–903 (2017).
6. Hu, W. et al. On the Redox mechanism of low-temperature NH3-SCR over Cu-CHA: a combined experimental and theoretical study of the reduction half cycle. Angew. Chem. Int. Ed. 60, 7197–7204 (2021).
7. Paolucci, C. et al. Isolation of the Copper Redox steps in the standard selective catalytic reduction on CuSSZ-13. Angew. Chem. Int. Ed. 126, 12022–12027 (2014).
8. Kim, Y. J. et al. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. J. Catal. 311, 447–457 (2014).
9. Gao, F. & Szanyi, J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A 560, 185–194 (2018).
10. Shan, Y. et al. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH_3-SCR reaction. Appl. Catal. B 266, 118655 (2020).
11. Ye, X. et al. Deactivation of Cu-exchanged automotive emissions NH_3-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy. Angew. Chem. Int. Ed. 59, 15610–15617 (2020).
12. Hammershei, P. S., Jangjou, Y., Epling, W. S., Jensen, A. D. & Janssens, T. V. W. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO_2 and SO_3. Appl. Catal. B 226, 38–45 (2018).
13. Jangjou, Y. et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO_2 exposure. ACS Catal. 8, 1325–1337 (2018).
14. Mesilov, V. V. et al. Differences in oxidation-reduction kinetics and mobility of Cu species in fresh and SO_2-poisoned Cu-SSZ-13 catalysts. Appl. Catal. B 284, 119756 (2021).
15. Ren, L. et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO, with NH_3. Chem. Commun. 47, 9789–9791 (2011).
16. Zhang, L. et al. Recent advances in the preparation of zeolites for the selective catalytic reduction of NO, in diesel engines. React. Chem. Eng. 4, 975–985 (2019).
17. Han, J. F. et al. Rapid synthesis and NH_3-SCR activity of SSZ-13 zeolite via coal gangue. Green. Chem. 22, 219–229 (2020).
18. Zhao, Z. et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH_3-SCR catalyst: Effects of Na⁺ ions on the activity and hydrothermal stability. Appl. Catal. B 217, 421–428 (2017).
19. Wang, X. et al. Simultaneous fast decomposition of NH_4HSO_4 and efficient NOx removal by NOx addition: an option for NOx removal in H_2O/SO_2-contained flue gas at a low temperature. Energy Fuels 32, 6990–6994 (2018).
Fourier and wavelet transform analysis of EXAFS. Chem. Sci. 11, 5299–5312 (2020).
40. Song, J. et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: implications from Atomic-Level Understanding of Hydrothermal Stability. ACS Catal. 7, 8214–8227 (2017).
41. Villamaina, R. et al. Low-T CO oxidation over Cu–CHA catalysts in presence of NH3: probing the mobility of Cu II ions and the role of multinuclear CuII species. ChemCatChem 12, 3843–3848 (2020).
42. Hu, W. et al. Unraveling the Hydrolysis of Z2CuII to ZCuII(OH) and its consequences for the low-temperature selective catalytic reduction of NO on Cu–CHA catalysts. ACS Catal. 11, 11616–11625 (2021).
43. Liu, K. et al. Quantitative determination of the Cu species, acid sites and NH3-SCR mechanism on Cu-SSZ-13 and H-SSZ-13 at low temperatures. Catal. Sci. Technol. 10, 1135–1150 (2020).
44. Newville, M. Interactive XAFS analysis and FEFF fitting. J. Synchrotron Ral. 8, 322–324 (2001).
45. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
48. Chen, L., Janssens, T. V. W. & Gronbeck, H. A comparative test of different density functionals for calculations of NH3-SCR over Cu-Chabazite. Phys. Chem. Chem. Phys. 21, 10923–10930 (2019).
49. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
50. He, G. et al. Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOx with NH3. Sci. Adv. 4, eaau4637 (2018).
51. Wang, V., Xu, N., Liu, J., Tang, G. & Geng, W. VASPKIT: A Pre- and Post-Processing Program for VASP Code. arXiv preprint arXiv:1908.08269 (2019).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (21888102, 21906172), the Youth Innovation Promotion Association, CAS (2019046), and the Ozone Formation Mechanism and Control Strategies Project of Research Center for Eco-Environmental Sciences, CAS (RCEES-CYZX-2020). We thank the 1W1B beamline of Beijing Synchrotron Radiation Facility for providing the beam time, and thank Lirong Zheng at the Institute of High Energy Physics Chinese Academy of Sciences and Bin Wang at the Sinopec Beijing Research Institute of Chemical Industry for their help in the in situ XAFS experiments.

Author contributions
H.H. and G.H. designed and supervised the research. Y.L.S. designed and performed the experiments with J.D., Y.S. and Z.L. G.H. and Y.F. conducted the DFT calculations. F.L., X.S. and Y.Y provided suggestions on the manuscript. Y.L.S., G.H. and H.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32136-z.

Correspondence and requests for materials should be addressed to Guangzhi He or Hong He.

Peer review information Nature Communications thanks Siddartha Krishna and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022