review

Cutaneous manifestations of dermatomyositis characterized by myositis-specific autoantibodies [version 1; peer review: 3 approved]

Naoko Okiyama1, Manabu Fujimoto2

1Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
2Department of Dermatology, Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan

Abstract

Dermatomyositis (DM) is an inflammatory myopathy with characteristic skin manifestations, the pathologies of which are considered autoimmune diseases. DM is a heterogeneous disorder with various phenotypes, including myositis, dermatitis, and interstitial lung disease (ILD). Recently identified myositis-specific autoantibodies have been associated with distinct clinical features. For example, anti-melanoma differentiation-associated protein 5 antibodies have a high specificity for clinically amyopathic DM presenting rapidly progressive ILD. Furthermore, anti-transcriptional intermediary factor 1γ antibodies found in patients with juvenile and adult DM are closely correlated with malignancies, especially in elderly patients. Finally, patients with anti-aminoacyl-transfer RNA synthetase antibodies share characteristic clinical symptoms, including myositis, ILD, arthritis/arthralgia, Raynaud’s phenomenon, and fever; thus, the term “anti-synthetase syndrome” is also used. With a focus on the characteristic cutaneous manifestations in each subgroup classified according to myositis-specific autoantibodies, we introduce the findings of previous reports, including our recent analysis indicating that skin eruptions can be histopathologically classified into myositis-specific autoantibody-associated subgroups and used to determine the systemic pathologies of the different types of antibody-associated DM.

Keywords
dermatomyositis, myositis-specific autoantibodies
Corresponding author: Naoko Okiyama (naoko.okiyama@md.tsukuba.ac.jp)

Author roles: Okiyama N: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Fujimoto M: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The research included in this article was supported by JSPS KAKENHI (grant numbers JP 18K08263 and JP 18H02829) and by an AMED Practical Research Project for Rare/Intractable Diseases (Innovation Research in Autoimmune Diseases). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Okiyama N and Fujimoto M. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Okiyama N and Fujimoto M. Cutaneous manifestations of dermatomyositis characterized by myositis-specific autoantibodies [version 1; peer review: 3 approved] F1000Research 2019, 8(F1000 Faculty Rev):1951 (https://doi.org/10.12688/f1000research.20646.1)

First published: 21 Nov 2019, 8(F1000 Faculty Rev):1951 (https://doi.org/10.12688/f1000research.20646.1)
Introduction
Dermatomyositis (DM) is an inflammatory myopathy with characteristic skin manifestations, the pathologies of which are considered autoimmune diseases. DM is a heterogeneous disorder with various phenotypes, including myositis, dermatitis, and interstitial lung disease (ILD)\(^1\). Recently, in addition to the already-established anti-ribonucleoprotein (RNP)-B23 RNA synthetase (ARS) antibody, a number of myositis-specific autoantibodies—including anti-melanoma differentiation-associated protein 5 (MDA5) antibody and anti-transcriptional intermediary factor 1γ (TIF1\(\gamma\)) antibody—that are not detected in patients with an inherited muscle disease\(^2\) have been identified. These autoantibodies not only are highly disease-specific but also are associated with distinct clinical features (Table 1)\(^3\). This article reviews their epidemiology and characteristic clinical features, with a focus on their characteristic cutaneous manifestations, to determine the systemic pathologies of the different types of antibody-associated DM.

Epidemiology and characteristic clinical features of subgroups classified according to myositis-specific autoantibodies
Anti-MDA5 antibody has a high specificity for clinically amyopathic DM (CADM) presenting rapidly progressive ILD (RP-ILD)\(^5\). Anti-MDA5 antibody was first reported as an anti-CADM-140 antibody that reacted with a 140-kDa cytoplasmic protein\(^6\) subsequently identified as the retinoic acid-inducible gene I (RIG-I)-like receptor MDA5/IFIH1 (interferon [IFN] induced with helicase C domain protein 1). The anti-MDA5 antibody is detected at high frequencies among patients with DM in Asia (15.8% [26/165 cases] in Japan and 36.6% [53/145 cases] in China)\(^7\) and South America (16% [21/131 cases] in Brazil)\(^8\) and at low frequency (2.8%, 21/748 cases) in a cohort of patients with DM in a combined European cohort in which 87.4% of enrolled cases were Caucasian\(^9\). Case series studies reported CADM frequencies of around 40% in anti-MDA5 antibody-positive patients with DM\(^10,11\). A meta-analysis of 16 studies estimated pooled sensitivity and specificity of anti-MDA5 antibody for RP-ILD of 77% (95% confidence interval [CI] 64–87%) and 86% (95% CI 79–90%), respectively, with a pooled diagnostic odds ratio of 20.41 (95% CI 9.02–46.20)\(^11\). The severity and prognosis of RP-ILD in anti-MDA5 antibody-positive patients with DM were strongly correlated with anti-MDA5 antibody titer (detected by established enzyme-linked immunosorbent assay) and serum ferritin level\(^12\). In a series of 44 Japanese patients with juvenile DM (JDM), 41% were positive for anti-MDA5 antibody\(^13\) compared with 7.4% of 285 patients with JDM in the UK\(^14\). Both studies reported anti-MDA5 antibody to be strongly associated with ILD; however, only 8 (18%) of the 44 Japanese cases and none of the UK patients developed RP-ILD. A recent cohort study in the UK observed low myositis severity scores depending on muscle biopsies in 11 anti-MDA5 antibody-positive patients\(^15\).

The anti-TIF1\(\gamma\) antibody was originally described as anti-155/140 and anti-p155 antibodies targeting a 155-kDa nuclear protein, sometimes with a 140-kDa protein\(^16,17\). These antigens were subsequently identified as TIF1 family proteins belonging to the tripartite motif (TRIM) superfamily, TIF1\(\gamma\) (TRIM33) and TIF1\(\alpha\) (TRIM24), respectively. Anti-TIF1\(\gamma\) antibody was detected in both adult DM and JDM patients and was closely correlated with malignancies, especially in elderly patients\(^18–20\), at high risk of dysphagia\(^1\) and at low risk of ILD, Raynaud phenomenon, and arthritis/arthritis\(^21\). Anti-TIF1\(\gamma\) antibody was present in 7 to 15% of patients with DM\(^22\). A meta-analysis including 1,962 patients with DM demonstrated a prevalence of malignancy-associated DM of 0.41 in patients with anti-TIF1\(\gamma\) autoantibody (95% CI 0.36–0.45). The diagnostic odds ratio of cancer was 9.37 (95% CI 5.37–16.34) with low heterogeneity—Cochran’s Q, 14.88 (degrees of freedom = 17, \(P = 0.604\), I\(^2\) = 0%—in the presence of anti-TIF1\(\gamma\) autoantibody\(^21\). In contrast, 30% of patients with JDM present anti-TIF1\(\gamma\) antibody\(^21,22\) and do not develop malignancies.

Patients with anti-ARS antibodies, including anti-Jo-1, anti-PL-7, anti-PL-12, anti-EJ, anti-OJ, anti-KS, anti-Ha, and anti-Zo, share characteristic clinical symptoms such as myositis, ILD, arthritis/arthritis, Raynaud’s phenomenon, and fever; thus, the term “anti-synthetase syndrome” is also used\(^26\).

Autoantigen	Clinical features	Typical cutaneous manifestations
MDA5	Clinically amyopathic DM\(^*\) with ILD\(^1\), especially rapid progressive ILD	Palmar violaceous macules/papules due to vascular injury
TIF1	Juvenile DM\(^*\); cancer-associated DM\(^*\)	Severe cutaneous manifestations
M2	Classic DM\(^*\)	Sometimes refractory
ARS	Anti-synthetase syndrome with chronic ILD\(^1\)	Mechanic’s hands
NXP2	Juvenile DM and adult DM	Calcinosis
SAE	Clinically amyopathic DM\(^*\) followed by severe myositis including dysphagia	Extensive rash, sometimes as erythroderma

ARS, aminoacyl-transfer RNA synthetase; MDA5, melanoma differentiation-associated protein 5; NXP2, nuclear matrix protein 2; SAE, small ubiquitin-like modifier activating enzyme; TIF1, transcriptional intermediary factor 1; \(^*\)Dermatomyositis; \(^1\)Interstitial lung disease.
The anti-Mi-2 antibody is directed mainly to Mi-2β, a component of the nucleosome-remodeling deacetylase complex. Anti-Mi-2 antibody was detected in 3% of patients with JDM and 12% of patients with adult DM. Anti-Mi-2 antibody-positive patients have a lower risk of ILD and typically respond well to therapy, although the recurrence of DM symptoms is possible.

The anti-nuclear matrix protein 2 (NXP2) antibody, originally termed anti-MJ antibody, was first identified in a cohort of patients with JDM/juvenile polymyositis (JPM). Generally, anti-NXP2 antibody-positive myopathy is related to either DM or polymyositis (PM) phenotypes. Cohort studies have detected anti-NXP2 antibody in 22 to 25% of patients with JDM. Another cohort study reported that severe myopathy characterized by muscle contractures and atrophy was associated with anti-NXP2 antibody-positive JDM. In contrast, anti-NXP2 antibody was detected in only 2.3% of patients with adult PM/DM. Moreover, two cohort studies of patients with adult PM/DM in Japan and the US suggested a possible association between anti-NXP2 antibody and malignancy.

The anti-small ubiquitin-like modifier activating enzyme (anti-SAE) antibody, which was observed in about 6% of patients with DM, is associated with inflammatory myopathy with extensive rash and dysphagia. The target autoantigen is a heterodimer of SAE1 (40 kDa) and SAE2 (90 kDa). ILD and malignancies were observed in, respectively, 42 and 21% of 46 previously reported patients with anti-SAE antibody-associated DM.

Severe cutaneous manifestations, including V-neck sign, shawl sign, heliotrope rash, Gottron’s papules/sign, and flagellate erythema, are often observed in patients with anti-TIF1γ antibody-associated DM. Fiorentino et al. termed these characteristic cutaneous manifestations palmar hyperkeratotic papules, psoriasiform-like lesions, and hypopigmented and “red on white” telangiectatic patches.

Mechanic’s hands, characterized by keratotic erythema on the sides of the thumbs and forefingers, are generally specific to patients with anti-synthetase syndrome, including those with anti-ARS antibody-associated DM.

Juvenile and adult myopathy patients positive for anti-NXP2 antibody have a high risk of calcinosis, although patients positive for anti-NXP2 antibody include those with JPM/PM. In contrast, anti-SAE antibody-positive patients with DM demonstrated extensive rash, including erythroderma with “angel wings” sign.

The histopathological findings of cutaneous lesions in DM include vascular degeneration of the basilar keratinocytes, lymphocytic inflammatory infiltrate around the dermal blood vessels, and interstitial mucin deposition. We previously analyzed the histological findings of finger lesions characterized according to myositis-specific autoantibodies (anti-ARS, anti-MDA5, and anti-TIF1γ). Our study included finger skin specimens from 30, 19, and 25 cases positive for anti-ARS, anti-MDA5, and anti-TIF1γ antibodies classified according to cutaneous histopathological classifications—(i) interface dermatitis, (ii) psoriasiform dermatitis, (iii) eczematous reaction, and (iv) vascular injury—and also analyzed by immunohistochemistry to detect myxovirus resistance A (MxA) expression, which is usually associated with type I IFN activity. Finger eruptions of anti-ARS antibody-positive DM were histologically characterized by not only interface dermatitis but also psoriasiform dermatitis and eczematous reaction, which were rarely observed in the other patients with DM. Dyskeratotic cells were frequently observed in anti-ARS antibody-positive DM, while vascular injury in the upper dermis was found in anti-MDA5 antibody-positive DM. MxA expression in the epidermis was high in anti-MDA5 antibody-positive DM and rarely observed in anti-ARS antibody-positive DM. The conclusion is shown in Figure 1. MxA expression was rarely observed in the muscle biopsy samples. Previous studies also identified anti-synthetase syndrome as a histological subset in muscle biopsy samples among patients with idiopathic inflammatory myositis, which...

Figure 1. Histopathological classification of skin eruptions in myositis-specific autoantibody-associated groups. The anti-aminoacyl-transfer RNA synthetase (ARS) antibody-positive dermatomyositis (DM) group is characterized by a mixture of psoriasiform dermatitis and eczematous reaction with interface dermatitis mainly presenting dyskeratotic cells and without epidermal expression of myxovirus resistance A (MxA). Vascular injury in the upper dermis and high epidermal expression of MxA are observed in patients with anti-melanoma differentiation-associated protein 5 (anti-MDA5) antibody-positive DM. Epidermal expression of MxA is also detected in patients with anti-transcriptional intermediary factor 1γ (TIF1γ) antibody-positive DM. IFN, interferon.
was characterized by perifascicular necrosis and negative MxA expression, which is generally highly expressed in the muscle fibers of patients with DM. Moreover, a recent study reported that plasma IFN-γ levels and the expression of IFN-inducible molecules from peripheral blood mononuclear cells and skin biopsies were higher in anti-MDA5 antibody-associated DM patients than those in anti-ARS antibody-associated or autoantibody-negative DM patients. Collectively, our findings indicate that these histological characteristics are shared between skin, muscle, and blood samples of patients with DM; that anti-ARS antibody-positive patients are clearly distinguished from other DM subgroups; and that the pathogenesis of anti-MDA5 antibody-associated DM is mediated mainly by type I IFN.

Further studies are needed to clarify the differences among the DM subgroups according to myositis-specific autoantibodies and to provide a basis for the development of subgroup-specific DM therapies.

Abbreviations

ARS, aminoacyl-transfer RNA synthetase; CADM, clinically amyopathic dermatomyositis; DM, dermatomyositis; IFN, interferon; ILD, interstitial lung disease; JDM, juvenile dermatomyositis; tripartite motif, JPM, juvenile polymyositis; MDA5, melanoma differentiation-associated protein 5; MxA, myxovirus resistance A; PM, polymyositis; RP-ILD, rapidly progressive interstitial lung disease; SAE, small ubiquitin-like modifier activating enzyme; TIF1γ, transcriptional intermediary factor 1γ; TRIM; NXP2, nuclear matrix protein 2

Acknowledgments

We thank Ichizo Nishino (Department of Neuromuscular Research, National Institute of Neuroscience and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan) for his helpful discussions.

References

1. Lilieker JB, Vencovský J, Wang G, et al.: The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis. 2018; 77(1):30-9. PubMed Abstract | Publisher Full Text | Free Full Text
2. Mammen AL, Cacciola-Rosen L, Christopher-Stine L, et al.: Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease. Neurol Neuroimmunol Neuroinflamm. 2015; 2(6):e172. PubMed Abstract | Publisher Full Text | Free Full Text
3. Tansley SL, McHugh NJ, Wedderburn LR: Adult and juvenile dermatomyositis: are the distinct clinical features explained by our current understanding of serological subgroups and pathogenic mechanisms? Arthritis Res Ther. 2013; 15(2):211. PubMed Abstract | Publisher Full Text | Free Full Text
4. Lundberg IE, de Visser M, Werth VP: Classification of myositis. Nat Rev Rheumatol. 2018; 14(5):249–78. PubMed Abstract | Publisher Full Text | F1000 Recommendation
5. Fujimoto M, Watanabe R, Ishitsuka Y, et al.: Recent advances in dermatomyositis-specific autoantibodies. Curr Opin Rheumatol. 2016; 28(6):636–44. PubMed Abstract | Publisher Full Text
6. Sato S, Hirakata M, kuwana M, et al.: Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 2003; 52(5):1571–6. PubMed Abstract | Publisher Full Text
7. Chen Z, Hu W, Wang Y, et al.: Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin Rheumatol. 2015; 34(9):1627–31. PubMed Abstract | Publisher Full Text | F1000 Recommendation
8. Borges IBP, Silva MG, Shirio SK: Prevalence and reactivity of anti-melanoma differentiation-associated gene 5 (anti-MDA5) autoantibody in Brazilian patients with dermatomyositis. An Bras Dermatol. 2018; 93(4):517–23. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
9. Betteridge Z, Tansley S, Shaddock G, et al.: Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J Autoimmun. 2019; 101:48–55. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
10. Hall JC, Cacciola-Rosen L, Sameda LA: Anti-melanoma differentiation-associated protein 5-associated dermatomyositis: expanding the clinical spectrum. Arthritis Care Res (Hoboken). 2013; 65(8):1307–15. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
11. Chen Z, Cao M, Plana MN, et al.: Utility of anti-melanoma differentiation-associated gene 5 antibody measurement in identifying patients with dermatomyositis and a high risk for developing rapidly progressive interstitial lung disease: a review of the literature and a meta-analysis. Arthritis Care Res (Hoboken). 2013; 65(8):1316–24. PubMed Abstract | Publisher Full Text
12. Gono T, Kawaguchi Y, Satoh T, et al.: Clinical manifestation and prognostic factor in anti-melanoma differentiation-associated gene 5 antibody-associated interstitial lung disease as a complication of dermatomyositis. Rheumatology (Oxford). 2010; 49(9):1713–9. PubMed Abstract | Publisher Full Text | Free Full Text
13. Kobayashi N, Takezaki S, Kobayashi I, et al.: Clinical and laboratory features of fatal rapidly progressive interstitial lung disease associated with juvenile dermatomyositis. Rheumatology (Oxford). 2015; 54(5):784–91. PubMed Abstract | Publisher Full Text
14. Tansley SL, Betteridge ZE, Gunawa R, et al.: Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthritis Res Ther. 2014; 16(4):R138. PubMed Abstract | Publisher Full Text | Free Full Text
15. Yasim SA, Schutz PW, Deakin CT, et al.: Histological heterogeneity in a large clinical cohort of juvenile idiopathic inflammatory myopathy: analysis by myositis autoantibody and pathological features. Neuropathol Appl Neurobiol. 2015; 41(6):495–512. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
16. Kaj K, Fujimoto M, hasegawa M, et al.: Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford). 2007; 46(1):25–8. PubMed Abstract | Publisher Full Text
17. Targoing IN, Mamoya G, Trieu EP, et al.: A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 2006; 54(11):3682–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
18. Fujimoto M, Hamaguchi Y, Kaj K, et al.: Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 2012; 64(2):513–22. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
19. Fiorentino DF, Chung LS, Christopher-Stine L, et al.: Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 2013; 65(11):2954–62. PubMed Abstract | Publisher Full Text | Free Full Text
20. Venalis P, Selicka S, Lundberg K, et al.: Association of Anti-Transcription intermediary Factor 1γ Antibodies With Paraneoplastic Rheumatic Syndromes Other Than Dermatomyositis. Arthritis Care Res (Hoboken). 2017; 70(4):648–51. PubMed Abstract | Publisher Full Text | F1000 Recommendation
21. Mugi N, hasegawa M, Matsushita T, et al.: Orphanpharyngeal Dysphagia in Dermatomyositis: Associations with Clinical and Laboratory Features
23. Fiorentino DF, Kuok K, Chung L, et al.: Distinctive cutaneous and systemic features associated with anti-inflammatory interferon-tumor factor-1 antibodies in adults with dermatomyositis. J Am Acad Dermatol. 2015; 72(3): 449–55.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Hamaguchi Y, Kawanuma M, Hoshino K, et al.: Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: A multicenter cross-sectional study. Arch Dermatol. 2011; 147(4): 391–8.
Published Abstract | Publisher Full Text

25. Rider LG, Nistala K: The juvenile idiopathic inflammatory myopathies: Pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Intern Med. 2016; 280(1): 24–38.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Lega JC, Fabien N, Reynaud Q, et al.: The clinical phenotype associated with myositis-specific and associated autoantibodies: A meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev. 2014; 13(9): 883–91.
Published Abstract | Publisher Full Text

27. Zhang Y, LeRoy G, Seelig HP, et al.: The dermatomyositis-specific autoantigen mii2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998; 95(2): 279–89.
Published Abstract | Publisher Full Text

28. Espada G, Maldonado Coco JA, Fertig N, et al.: Clinical and serologic characterization of an Argentine pediatric myositis cohort: Identification of a novel autoantibody (anti-MJ) to a 142-kDa protein. J Rheumatol. 2009; 36(11): 2547–51.
Published Abstract | Publisher Full Text

29. Ichimura Y, Matsushita T, Hamaguchi Y, et al.: Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: Possible association with malignancy. Ann Rheum Dis. 2012; 71(5): 710–3.
Published Abstract | Publisher Full Text

30. Betteridge Z, Gunawardena H, North J, et al.: Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 2007; 56(9): 3152–7.
Published Abstract | Publisher Full Text

31. Inoue S, Okiyama N, Shobo M, et al.: Diffuse erythema with ‘angel wings’ sign in Japanese patients with anti-small ubiquitin-like modifier activating enzyme antibody-associated dermatomyositis. Br J Dermatol. 2018; 179(6): 1414–1415.
Published Abstract | Publisher Full Text

32. Fiorentino D, Chung L, Zwemer J, et al.: The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDAS (CADM-140): A retrospective study. J Am Acad Dermatol. 2011; 65(1): 25–34.
Published Abstract | Publisher Full Text | Free Full Text

33. Narang NS, Casciola-Rosen L, Li S, et al.: Cutaneous ulceration in dermatomyositis: Association with anti-melanoma differentiation-associated gene 5 antibodies and interstitial lung disease. Arthritis Care Res (Hoboken). 2016; 67(5): 667–72.
Published Abstract | Publisher Full Text | Free Full Text

34. Koguchi-Yoshioka H, Okiyama N, Iwamoto K, et al.: Intravenous immunoglobulin contributes to the control of anti-melanoma differentiation-associated protein 5 antibody-associated dermatomyositis with palmar violaceous macules/papules. Br J Dermatol. 2017; 177(5): 1442–1446.
Published Abstract | Publisher Full Text

35. Concha JJ, Morita JF, Fiorentino D, et al.: Re-examining mechanic’s hands as a characteristic skin finding in dermatomyositis. J Am Acad Dermatol. 2018; 78(4): 769–775.e2.
Published Abstract | Publisher Full Text | F1000 Recommendation

36. Zhong L, Yu Z, Song H: Association of anti-nuclear matrix protein 2 antibody with complications in patients with idiopathic inflammatory myopathies: A meta-analysis of 20 cohorts. Clin Immunol. 2019; 198: 11–8.
Published Abstract | Publisher Full Text | F1000 Recommendation

37. Okiyama N, Yamaguchi Y, Kodera M, et al.: Distinct Histopathologic Patterns of Finger Eruptions in Dermatomyositis Based on Myositis-Specific Autoantibody Profiles. JAMA Dermatol. 2019.
Published Abstract | Publisher Full Text | Free Full Text

38. Noguchi E, Uruha A, Suzuki S, et al.: Skeletal Muscle Involvement in Antisynthetase Syndrome. JAMA Neurol. 2017; 74(9): 992–999.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

39. Uruha A, Nishikawa A, Tsuburaya RS, et al.: Sarcoplasmic MxA expression: A valuable marker of dermatomyositis. Neurology. 2017; 88(5): 493–500.
Published Abstract | Publisher Full Text | F1000 Recommendation

40. Zhang SH, Zhao Y, Xie QB, et al.: Aberrant activation of the type I interferon system may contribute to the pathogenesis of anti-melanoma differentiation-associated gene 5 dermatomyositis. Br J Dermatol. 2019; 180(5): 1090–1098.
Published Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ⭕ ✅ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1
1 Lisa Christopher-Stine
 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
 Competing Interests: No competing interests were disclosed.
2 Samuel Katsuyuki Shinjo
 Division of Rheumatology, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
 Competing Interests: No competing interests were disclosed.
3 Guochun Wang
 Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com