Mechanisms of Platelet Activation and Integrin αIIβ3

Seung-Jae Joo, MD
Cardiology Division, Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea

Introduction

Platelets play a key and beneficial role for primary hemostasis on the disruption of the integrity of vessel wall. Platelets adhere to the exposed subendothelial collagen through the interaction of circulating von Willebrand factor and glycoprotein (GP) Ib-IX-V complex, a major platelet membrane receptor responsible for adhesion. After the adhesion of platelets to the subendothelial collagen, platelets become activated. Activation processes of platelets include the release of adenosine diphosphate (ADP) from dense granules, the synthesis of thromboxane A₂ (TXA₂) via a series of enzymatic reactions, and thrombin formation via a coagulation cascade. In addition, ADP is released from endothelial cells at the site of vascular injury. Binding of these mediators to G protein-coupled receptors of platelet membrane, changes the shapes of platelets from smooth discs to irregular spheroids with extrusion of filopodia, and activates platelet membrane GP IIb/IIIa receptors through complex signal transduction mechanisms. Activated GP IIb/IIIa binds to fibrinogen, finally forming platelet aggregates. Platelet aggregation is not only an essential part of hemostasis, but also initiates acute coronary syndrome or ischemic stroke. Recent efforts to prevent the development of unstable angina or acute myocardial infarction from stable atheromatous plaques, and thrombotic complications related to percutaneous coronary intervention progress the understanding of mechanisms of platelet activation, but its precise mechanism and related proteins are not fully identified. This review will focus on the recent progress of knowledge about platelet activation mechanism.

Mediators of Platelet Activation

Adenosine diphosphate

Adenosine diphosphate and its analogues bind to P2 receptors, which are expressed ubiquitously throughout the human body including on platelets, on vascular smooth muscle cells, and on endothelial cells. P2 receptors are divided into P2X and P2Y receptors. P2X receptors are ligand-gated ion channel receptors, and P2Y receptors are G-protein coupled receptors. Each subtype of P2X and P2Y receptors is classified by the relative potency of purine and pyrimidine nucleotides, as agonists, to induce intracellular calcium transients or smooth muscle contraction after genetic cloning. Seven P2X receptors (P2X₁, P2X₂, P2X₃, P2X₄, P2X₅, P2X₆, and P2X₇) and 13 P2Y receptors (P2Y₁, P2Y₂, P2Y₃, P2Y₄, P2Y₅, P2Y₆, P2Y₇, P2Y₁₀, P2Y₁₁, P2Y₁₂, P2Y₁₄, P2Y₁₉) are classified.
Adenosine diphosphate binding to P2X₁ receptor results in rapid extracellular calcium influx, leading to alteration of platelet shape, but without platelet activation. ADP-stimulation of G_q-coupled P2Y₁ receptor activates phospholipase C (PLC) and induces a transient increase in intracellular calcium concentration resulting in platelet shape change and in weak, transient platelet aggregation. Stable and firm platelet aggregation requires ADP binding to P2Y₁₂ receptor and activation of GP_{IIb/IIIa} receptors in the platelet membrane. Activation of Gi-coupled P2Y₁₂ receptor liberates the Gi protein subunits, α_{Gi} and β_γ. The subunit α_{Gi} decreases the platelet cyclic adenosine monophosphate (cAMP) level through the inhibition of adenyl cyclase. This decrease in cAMP production leads, in turn, to a reduction in the activation of protein kinase C (PKC), and, after complex signal transduction processes, activation of GP_{IIb/IIIa} receptors (Fig. 1). The subunit β_γ activates the phosphatidylinositol 3-kinase (PI3K), which regulates protein kinase Akt and contributes to the activation of GP_{IIb/IIIa} receptors.

The P2Y₁₂ receptor is inhibited by ticlopidine, clopidogrel, prasugrel, or ticagrelor, which are currently used for patients with acute coronary syndrome or coronary stents to prevent thrombotic complications.

Thrombin

Thrombin is the most potent activator of platelets. Thrombin formation is initiated by the exposure of tissue factor to the coagulation system after disruption of the vascular endothelium. Thrombin formation takes place on cellular surfaces, including the phospholipid membrane of activated platelets, which amplifies coagulation processes. Thrombin interacts with protease-activated receptors (PARs) on the surface of human platelets, which couple to G_α₁₂G_{β3} and G_{αi} family of heterotrimeric G proteins. Of the 4 PARs, human platelets express PAR1 and PAR4. PAR1 mediates human platelet activation at low thrombin concentrations, whereas PAR4 induces platelet activation only at high thrombin concentrations.

Thrombin binding of PARs initiates the cleavage of the extracellular domain of the receptor and exposure of a tethered ligand at the new end of the receptor. Signaling through either PAR uses PLC pathway and PKC pathway, leading to the activation of GP_{IIb/IIIa} receptors. In addition, interaction of thrombin with PARs causes the production of TXA₂, the release of ADP, and generation of more thrombin on the platelet surface.

Vorapaxar is an oral reversible PAR1 antagonist. In a phase 2 trial, vorapaxar showed a trend toward lower incidence of major adverse cardiovascular events (MACE) without differences of major and minor bleeding in patients scheduled for angiography and possible coronary stenting. However, in a recent large randomized clinical trial, the addition of vorapaxar to standard therapy in patients with non-ST elevation acute coronary syndrome did not reduce MACE but significantly increased the risk of major bleeding, including intracranial hemorrhage.

Thromboxane A₂

Thromboxane A₂ is produced from arachidonic acid through conversion by cyclooxygenase-1 and thromboxane synthase. Like ADP, TXA₂ functions as a positive-feedback mediator during platelet activation. Human TXA₂/prostaglandin (TP) receptor exists in 2 isoforms, TP_A and TP_B, and human platelets express both isoforms. TP receptor couples to G_{αi} and G_{α12/Gβ13}. TXA₂ stimulation of G_{αi} proteins causes activation of PLC, resulting in accumulation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Stimulation of G_{α12/Gβ13} proteins activates Rho signaling. TP receptor-mediated platelet shape change is mainly dependent on G_{α12/Gβ13}, while aggregation is dependent on G_{αi}.

Platelet Integrins

Integrins are a widely expressed family of heterodimeric transmembrane receptors linking extracellular ligands to intracellular signaling pathways and contributing to a wide variety of physio-
logical processes. They are composed of α- and β-subunits, which are non-covalently linked to each other. Both subunits consist of a large N-terminal extracellular domain forming a globular head, a single transmembrane domain and a short cytoplasmic tail domain. Platelets express 3 different β1-integrins: α2β1 (collagen receptor), α5β1 (fibronectin receptor), and α6β1 (laminin receptor); and 2 β3-integrins: αIIbβ3 and αvβ3. Although integrin α2β1 is associated with platelet adhesion to the injured vessel wall, the dominant integrin on the platelet surface is αIIbβ3, which mediates platelet aggregation.\(^{10,16}\)

Integrin αIIbβ3 is present 60,000–80,000 copies per resting platelet, which is the highest density of all platelet membrane proteins. The membranes of platelet α-granules contain αIIbβ3 that becomes externalized on platelet secretion to increase the surface expression of αIIbβ3 by 25% to 50%. The αIIb subunit consists of 1008 amino acids, which is composed of a heavy and a light chain. The light chain contains a 20-amino acid cytoplasmic tail, a transmembrane helix, and an extracellular segment that is a disulfide-linked to the heavy chain, which is entirely extracellular. The β3 subunit is a single polypeptide chain of 762 amino acids. The 2 subunits assemble into the dimer, cation-dependent heterodimer during biosynthesis in megakaryocytes (Fig. 2).\(^{10,16}\)

The ligands of αIIbβ3 include fibrinogen, fibronectin, von Willebrand factor, and vitronectin. Fibrinogen and von Willebrand factor support platelet aggregation. Integrin αIIbβ3 recognizes Arg-Gly-Asp (RGD) sequence of the ligands. The most important characteristic of integrin αIIbβ3 is the affinity modulation after its activation. In resting platelets, the affinity of αIIbβ3 for fibrinogen, a main ligand of platelet aggregation, is low, and minimal binding occurs despite the high levels of fibrinogen in blood. Activation of integrin αIIbβ3 depends primarily on the conformational change of the receptors, whether induced by platelet adhesion to extracellular matrix, or agonists, such as ADP, thrombin, or arachidonic acid. This requires transmission of information from within the cell to the extracellular domain of αIIbβ3, a process referred to as "inside-out" signaling, which changes receptors from a low- to high-affinity state (Fig. 3A). Integrin activation can involve changes not only in affinity for ligand, but also in avidity for ligand, a consequence of receptor clustering. Both mechanisms can lead to activation of αIIbβ3, but affinity modulation is dominant. Platelet activation leads to a marked increase in the affinity of αIIbβ3 for fibrinogen. Ligand-occupied integrin αIIbβ3, on the other hand, triggers various cellular processes, such as reorganization of the cytoskeleton within platelets, through "outside-in" signaling (Fig. 3B).\(^{17}\)

Activation Mechanism of Integrin αIIbβ3

The activation mechanism of integrin αIIbβ3 from a low- to high-affinity state has been intensively studied because this signal transduction pathway may be a potential target for a new antithrombotic agent. Conformational changes of the extracellular do-
mains of integrin αIIbβ3 and resulting affinity modulation are initiated by the interaction at the cytoplasmic tails. Cellular control of integrin activation requires transmission of a signal from the small cytoplasmic tails to the large extracellular domains. The exact mechanism involved in inside-out and outside-in signaling of integrin αIIbβ3 is not fully understood, and the functional significance of the related proteins is still evolving (Fig. 4).1016

Rap1b/CalDAG-GEFI

Recent studies have emphasized the role of the Rap family of small GTPases in inside-out signaling of integrin activation. Rap1b is the most abundant Ras family member in platelets.188 Rap1b deficiency in murine platelets showed reduced platelet aggregation, decreased activation of integrin αIIbβ3, and protection from arterial thrombosis.24 Rap proteins cycle between GDP-bound inactive form and GTP-bound active form. GTP binding to Rap is facilitated by guanine nucleotide exchange factors (GEFs). In platelets, Rap1b is controlled by Ca2+ and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), which contains binding sites for Ca2+ and DAG, and a GEF domain.217 The importance of CalDAG-GEFI was demonstrated in CalDAG-GEFI-deficient mice. Cal-DAG-GEFI deficiency resulted in impaired platelet aggregation responses to ADP or TXA\textsubscript{2}, but not to collagen or thrombin.240 CalDAG-GEFI−/− mice showed prolonged bleeding time and protection against experimental thrombosis.

Different agonist responses in CalDAG-GEFI-deficient platelets suggest the existence of a CalDAG-GEFI-independent mechanism of integrin αIIbβ3 activation. In murine platelets, PAR4 agonist-induced aggregation in the absence of CalDAG-GEFI required co-signaling through the αq-coupled P2Y\textsubscript{12} receptor involving PKC. Therefore, PKC was identified as an alternative pathway leading to Rap1 and αIIbβ3 activation. It has been proposed that rapid, but reversible activation of Rap1 is mediated by CalDAG-GEFI, whereas PKC ensures sustained Rap1 activation through its central role in the release of ADP from dense granules.241

Agonist activation of platelets is usually accompanied by an increase in the cytosolic Ca2+ concentration, which is required for integrin activation and releases of the second wave mediators, such as ADP or TXA\textsubscript{2}. The source of Ca2+ can be either intracellular or extracellular. Agonists binding of platelet Gq-coupled-receptors activates PLC, which in turn produces inositol 1,4,5-triphosphate (IP\textsubscript{3}) from phosphoinositid biphosphate (PIP\textsubscript{2}). The intracellular Ca2+ is released from the sarcoplasmatic reticulum (SR) by IP\textsubscript{3}. Because of the limited Ca2+ store of the ER, the major source of an intracellular Ca2+ transient is store-operated Ca2+ entry (SOCE) of the extracellular Ca2+ through the activation of Ca2+ release activated calcium channels (CRAC), Orai1, in the platelets membrane, which are controlled by the depletion of SR Ca2+ stores.242 Recent studies identified stromal interaction molecule 1 (STIM1) as a key regulator of SOCE into platelets.241 STIM1 is a type I transmembrane protein containing a calcium binding EF hand motif, which is occupied by Ca2+ in resting platelets. After platelet activation, Ca2+ is released from the ER and STIM1 is no longer occupied by Ca2+, resulting in translocation of STIM1 within the platelets to allow SOCE by opening the Orai1. Platelets of STIM1 or Orai1-deficient mice showed defective SOCE, but largely intact agonist-induced integrin activation, demonstrating that this process can be initiated by relatively small rises in intracellular Ca2+ transients from the ER.243

Rap1–GTP–interacting adaptor molecule

The Rap1 effector molecule Rap1–GTP–interacting adaptor molecule (RIAM) is a member of the MRL (Mig-10, RIAM, and lamellipodin) family of adaptor proteins.260 MRL proteins function as scaffolds to connect the membrane targeting sequences in Ras GTPases to talin-1. This interaction of MRL proteins with both Rap1–GTP and talin-1 mediates adhesion of β1 and β2 integrins.271 In living cells, RIAM over-expression stimulates talin recruitment to αIIbβ3 with integrin activation,186 but RIAM knockdown blocks talin recruitment to αIIbβ3 with integrin response.269 These findings suggest the im-
The important interaction of Rap1-GTP, RIAM, and talin-1, resulting in the binding of talin-1 to integrin β cytoplasmic tails.29

Akt

PL-3K, via phosphatidylinositol-dependent kinase-1, generates phosphoinositide products including Akt, which is a family of intracellular serine/threonine protein kinases (also called protein kinase B).30 Three isoforms of Akt, which possess more than 80% homology, have been identified: Akt1, Akt2, and Akt3. Platelets contain both the Akt1 and Akt2 isoforms. Platelets from Akt1-deficient mice exhibited defects in dense and α-granule secretion, reduced fibrinogen binding, and impaired aggregation in response to low concentrations of thrombin.31 Also, Akt2-deficient mice showed impaired platelet aggregation, fibrinogen binding, and granules secretion especially in response to low concentrations of thrombin and TXA2, which activate the Gq-coupled receptors.32 The above findings showed that both Akt-1 and Akt-2 are important in low dose agonist-induced platelet activation and in platelet-dependent thrombus formation.

Several signaling molecules have been implicated as the downstream targets of PL-3K- and Akt-mediated platelet activation. These include glycogen synthase kinase (GSK)-3β, nitric oxide synthase (NOS) 3, and cAMP-dependent phosphodiesterase (PDE3A). GSK-3β suppresses platelet function and thrombosis in mice. Akt-mediated phosphorylation of GSK-3β inhibits its suppressive function of platelet activation.33 Akt-mediated stimulation of NOS3 induces protein kinase G-dependent degranulation of platelets.34 In addition, Akt has been implicated in activation of PDE3A, resulting in reduced platelet cAMP levels after thrombin stimulation.35

Talin-1

Talin is one of several proteins that link the cytoplasmic domains of integrin β subunits to actin filaments. Binding of talin to cytoplasmic domains of β-integrins triggers a conformational change in the extracellular domain that increases its affinity for ligands.36

Talin-1, a 270-kDa cytoplasmic protein, is composed of a globular N-terminal head domain and a flexible rod domain, which can be dissociated by the protease calpain 2. The head region of talin-1 contains a FERM (protein 4.1, ezrin, radixin, moesin) domain comprising 3 subdomains F1, F2, and F3, which has binding sites for the cytoplasmic domains of β-integrins, as well as for filamentous actin (F-actin). The talin rod contains an additional integrin-binding site, at least 2 actin-binding sites and several binding sites for vinculin.37

The cytoplasmic domains of β-integrins are essential for integrin activation. The β3 tail interacts with a large number of cytosolic proteins to induce the conformational change of the extracellular domain. To identify structural features responsible for these interactions, nuclear magnetic resonance (NMR) studies about β3 transmembrane (TM) and cytoplasmic domains were performed.38 The results of these studies showed 3 α helices followed by a short unstructured C-terminus. The first helix, β3 TM helix, embedded in the lipid bilayer, but oriented at a tilted angle because the length of this helix is longer than that of a typical membrane bilayer. The β3 TM helix is followed by a hinge at residues H722-D723, the second helix (residues K725-A735), a hinge containing NPLY motif (residues 744–747), and the third helix at the C-terminal end.

In one suggested model for talin-mediated activation of integrins, the low-affinity αIIbβ3 is maintained through the interaction between α and β subunit at the TM and membrane-proximal domains. The TM helices specifically pack together and are in a long and tilted geometry. The membrane-proximal regions of αIIb and β3 cytoplasmic tails are believed to interact through a salt bridge between a conserved Arg in the αIIb tail and an Asp in the β3 tail, thereby keeping αIIbβ3 in the inactive state. The F3 subdomain of talin FERM domain contains a phosphotyrosine binding (PTB) domain, which interacts with NPLY motif of β3 tail. This interaction is proposed to induce αIIbβ3 activation by disrupting salt bridge formed between αIIb-Arg995 and β3-Asp723, and hence inducing a series of conformational changes that give rise to the affinity modulation of the extracellular domain.39

The analysis of platelets from conditional talin-1-deficient mice (Tln-/-, CreloxP) supported an essential function of talin-1 in platelet integrin activation.39 Talin-1-deficient platelets were unable to activate integrin αIIbβ3 in response to any tested agonists and consequently did not aggregate. Furthermore, they failed to spread on immobilized fibrinogen, suggesting that talin-1 is required for αIIbβ3-dependent outside-in signaling, as well as inside-out signaling. This complete lack of integrin function in Tln-/- platelets resulted in defective hemostasis and thrombus formation in injured vessels in vivo.

Kindlin-3

Kindlins constitute a family of evolutionarily conserved cytoplasmic components of cell-extracellular matrix adhesions that bind to cytoplasmic tails of β-integrins directly and cooperate with talin in integrin activation. There are 3 mammalian kindlins: kindlin-1 (also known as kindlerin and FERMT1), kindlin-2 (also known as MIG-2) and kindlin-3 (also known as URP 2). They exhibit identical domain architecture and high sequence similarities. One of the important features of kindlins is that they contain a FERM domain, which binds to the cytoplasmic tail of β1 and β3 integrins. So far, 2 more kindling binding proteins other than β integrins have been identified: integrin-linked kinase (ILK) and migfilin.40

It is proposed that the PTB site of the F3 domain in kindlin-3 di-
Platelet Aggregation

The final common step leading to the formation of the platelet plug is platelet aggregation. Platelet aggregation is mediated by the activated GP IIb/IIIa, which binds fibrinogen and von Willebrand factor at high affinity. The dimeric structure of fibrinogen and the multimeric structure of vWF allow these ligands to act as bridges between adjacent platelets and to generate a platelet aggregate.

GP IIb/IIIa receptor blockers inhibit fibrinogen binding to the receptors, resulting in the suppression of platelets aggregation (Fig. 5). PPACK, a synthetic, non-peptide inhibitor based on RGD sequence, competes with fibrinogen for receptor binding and blocks platelet aggregation.

Fig. 5. Mechanism of action of platelet glycoprotein (GP) IIb/IIIa blockers. Activated GP IIb/IIIa binds to fibrinogen at high affinity. Fibrinogen acts as a bridge between adjacent platelets, forming firm platelet aggregates. GP IIb/IIIa receptor antagonists inhibit fibrinogen binding to the receptors.

Conclusion

Numerous antiplatelet agents have been developed based on the platelet activation mechanism, and some of these agents have been used for the primary and secondary prevention of cardiovascular diseases. Sometimes dual or triple antiplatelet agents, GP IIb/IIIa antagonists, or more potent drugs, are required to prevent thrombotic complications, especially in patients with acute coronary syndrome or coronary stents. Receptors and signaling proteins involved in platelet activation are targets for a new antiplatelet agent. Through an improved understanding of activation mechanism of platelet and integrin αIIbβ3, more effective antiplatelet therapy can be developed.

References

1. Joo SJ, Lee JW, Park YS. Increased activation of platelet glycoprotein IIb/IIIa in hypercholesterolemic patients. Korean Circ J 1996;26:2030-41.
2. Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002;8:1227-34.
3. Di Virgilio F, Solini A. P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 2002;135:831-42.
4. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004;113:340-5.
5. Gachet C, Léon C, Hechler B. The platelet P2 receptors in arterial thrombosis. Blood Cells Mol Dis 2006;36:223-7.
6. Gury C, Toth-Zsamboki E, Vermuyen J, Hoyaerts MF. The platelet ATP and ADP receptors. Curr Pharm Des 2006;12:859-75.
7. Nguyen TA, Diodati JG, Pharan P, Sacker L. Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol 2005;45:1157-64.
8. Brass S. Cardiovascular biology: platelets and proteases. Nature 2001;413:26-7.
9. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006;99:1293-304.
10. Smyth SS, Wouffe DS, Weitz JI, et al. G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler Thromb Vasc Biol 2009;29:449-57.
11. Becker RC, Molterino DJ, Jennings DK, et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 2009;373:919-28.
12. Tricoci P, Huang Z, Held C, et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 2012;366:20-33.
13. Giannarelli C, Zafar MU, Badimon JJ. Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism? Thromb Haemost 2010;104:949-54.
14. Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A 1994;91:504-8.
15. Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995;332:1553-9.
16. Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation.

http://dx.doi.org/10.4070/kcj.2012.42.5.295
17. Topol EJ, Byzova TV, Plow EF. Platelet GPIIb-IIIa blockers. Lancet 1999; 353:227-31.
18. Quinn MJ, Byzova TV, Qin J, Topol EJ, Plow EF. Integrin alphaIIbbeta3 and its antagonism. Arterioscler Thromb Vasc Biol 2003;23:945-52.
19. Banno A, Ginsberg MH. Integrin activation. Biochem Soc Trans 2008; 36(Pt 2):229-34.
20. Chizanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 2005;115:680-7.
21. Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 2008;111:1696-703.
22. Crittenden JR, Bergmeier W, Zhang Y, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004;10:982-6.
23. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29.
24. Varga-Szabo D, Braun A, Kleinschnitz C, et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 2008;205:1583-91.
25. Braun A, Varga-Szabo D, Kleinschnitz C, et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009;113:2056-63.
26. Lefuente EM, van Puijenbroek AA, Krause M, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 2004;7:585-95.
27. Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009;284:5119-27.
28. Watanabe N, Bodin L, Pandey M, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphallbeta3. J Cell Biol 2008;181:1211-22.
29. Han J, Lim CJ, Watanabe N, et al. Reconstructing and deconstructing agonist-induced activation of integrin alphallbeta3. Curr Biol 2006; 16:1796-806.
30. Woulfe D, Jiang H, Morgans A, Monks R, Birnbaum M, Brass LF. Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest 2004;113:441-50.
31. Chen J, De S,Damron DS, Chen WS, Hay N, Byzova TV. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 2004;104:1703-10.
32. Li D, August S, Woulfe DS. GSK3beta is a negative regulator of platelet function and thrombosis. Blood 2008;111:3522-30.
33. Stojanovic A, Marjanovic JA, Brovkovich VM, et al. A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signaling pathway in stimulating platelet secretion and aggregation. J Biol Chem 2006;281:16333-9.
34. Zhang W, Colman RW. Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood 2007;110:1475-82.
35. Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost 2009;7(Suppl 1):200-5.
36. Critchley DR, Gingras AR. Talin at a glance. J Cell Sci 2008;121(Pt 9): 1345-7.
37. Li R, Babu CR, Valentine K, et al. Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry 2002;41:15618-24.
38. Lau TL, Partridge AW, Ginsberg MH, Ulmer TS. Structure of the integrin beta3 transmembrane segment in phospholipid bilayers and detergent micelles. Biochemistry 2008;47:4008-16.
39. Petrich BG, Marchese P, Ruggieri ZM, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007;204:3103-11.
40. Nieswandt B, Moser M, Pleines I, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007;204:3113-8.
41. Larjava H, Plow EF, Wu C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep 2008;9:1203-8.
42. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008;14:325-30.