Uniform bounds for solutions to elliptic problems on simply connected planar domains

Luca Battaglia

Abstract

We consider the following elliptic problems on simply connected planar domains

\[
\begin{cases}
-\Delta u = \lambda |x|^{2\alpha} K(x)e^u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]

and

\[
\begin{cases}
-\Delta u = |x|^{2\alpha} K(x)u^p & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]

with \(\alpha > -1, \lambda > 0, p > 1, 0 < K(x) \in C^1(\Omega) \).

We show that any solution to each problem must satisfy a uniform bound on the mass, which is given respectively by \(\lambda \int_{\Omega} |x|^{2\alpha} K(x)e^u \, dx \) and \(p \int_{\Omega} |x|^{2\alpha} K(x)u^{p+1} \, dx \). The same results applies to some systems and more general non-linearities.

The proofs are based on the Riemann mapping theorem and a Pohožaev-type identity.

1 Introduction

We are interested in the following PDE, known as Liouville equation:

\[
\begin{cases}
-\Delta u = \lambda |x|^{2\alpha} K(x)e^u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]

with \(\Omega \ni 0 \) being a smooth bounded planar domain, \(\alpha > -1, \lambda > 0 \) and \(0 < K(x) \in C^1(\Omega) \).

Equation (1.1) has been very deeply studied in the last decades due to its applications in geometry and physics. It may be considered as a critical elliptic problem on planar domain, as the exponential nonlinearity is a natural counterpart of the Sobolev critical exponent in dimension greater or equal than 3.

Solutions to (1.1) can be found either variationally ([23, 24, 2, 11]) or by computing the Leray-Schauder degree ([12, 13]), and blowing-up families have also been constructed ([25, 19]). In all of these cases the geometry and topology of the domain \(\Omega \) play a fundamental role.

In this paper we give a mass bound for solutions to (1.1) when \(\Omega \) is simply connected, namely we show that any solution must satisfy a uniform bound on the \(L^1 \) norm of the laplacian \(\rho := \lambda \int_{\Omega} |x|^{2\alpha} K(x)e^u \). Such a quantity plays an important role especially in the variational formulation of the problem and sometimes, to stress its importance, it is used as a parameter in place of \(\lambda \), with the equation in (1.1) rewritten as \(-\Delta u = \rho \frac{|x|^{2\alpha} K(x)e^u}{\int_{\Omega} |x|^{2\alpha} K(x)e^u \, dx} \).

The following results extends a previous one on the unit disk ([3], Proposition 5.7).

*Università degli Studi Roma Tre, Dipartimento di Matematica e Fisica, Largo S. Leonardo Murialdo 1, 00146 Roma - lbattaglia@mat.uniroma3.it
Theorem 1.1.
Let \(\Omega \) be a simply connected planar domain and \(u \) be a solution to (1.1).
Then, there exists \(\rho_0 > 0 \), not depending on \(u \), such that \(\lambda \int_{\Omega} |x|^{2\alpha} K(x) e^u dx \leq \rho_0 \).

We are also considering the Hénon-Lane-Emden equation:
\[
\begin{cases}
-\Delta u = |x|^{2\alpha} K(x) u^p & \text{in } \Omega \\
\quad u > 0 & \text{in } \Omega \\
\quad u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
with \(p > 1 \) and \(\Omega, \alpha, K(x) \) as before. The power-type nonlinearity in (1.1) is subcritical on planar domains for any \(p \), hence positive solutions can be easily found. Nonetheless, it is interesting to investigate the asymptotic behavior of solutions as the exponent \(p \) goes to \(+\infty\).

Despite the different structure, the latter problem shares surprising similarities with blow-up analysis for equation (1.1) (see [16, 15]), and in particular the problem heavily depends on the shape of \(\Omega \). In the regular case \(\alpha = 0 \) solutions to (1.2) have been found on multiply connected domains with arbitrarily large values of the mass, which in this case is given by \(p \int_{\Omega} |x|^{2\alpha} K(x) u^{p+1} dx \) (see [26]). On the other hand, when \(\Omega \) is convex ([30, 15]) or strictly star-shaped ([31]) different bounds on the mass have been given, which are equivalent to giving an upper bound on the number of blow-up points.

Here we fill the gap between the two results by showing that, in the same spirit as Theorem 1.1, similar bounds hold true for solutions to (1.2) on simply connected domains.

Theorem 1.2.
Let \(\Omega \) be a simply connected planar domain, \(p_0 > 1 \) and \(u \) be a solution to (1.2) with \(p \geq p_0 \).
Then, there exists \(\rho_0 > 0 \), not depending on \(u \) nor on \(p \), such that \(p \int_{\Omega} |x|^{2\alpha} K(x) u^{p+1} dx \leq \rho_0 \).

We will also provide results similar to Theorems 1.1, 1.2 to some Liouville systems, namely systems of PDEs with the same features as (1.1). Such problems have been increasingly studied in the last years, especially in the case when the matrix of coefficients \(A \) is a Cartan matrix of some Lie algebra.

To get a mass bound for solutions on simply connected domains, we need the matrix \(A \) to be positive definite, which in the case of Cartan matrices holds true. Such a result had already been proven when \(\Omega \) is the unit disk, in [8] (Theorem 1.3) for the SU(3) Toda system and in the author’s PhD thesis [3] for general systems. A similar estimate was proved also in [1] for general systems on strictly star-shaped domains.

Theorem 1.3.
Let \(\Omega \) be a simply connected planar domain, \(A = \{a_{ij}\}_{i,j=1}^N \) be a positive definite matrix and \(u = (u_1, \ldots, u_N) \) be a solution to
\[
\begin{cases}
-\Delta u_i = \sum_{j=1}^{N} a_{ij} \lambda_j |x|^{2\alpha_j} K_j(x) e^{u_j} & \text{in } \Omega \\
u_i = 0 & \text{on } \partial \Omega
\end{cases}
\]
with \(\Omega \ni 0, \alpha_i > -1, \lambda_i > 0, 0 < K_i(x) \in C^1(\Omega) \).

Then, there exists \(\rho_0 > 0 \), not depending on \(u \), such that \(\lambda_i \int_{\Omega} |x|^{2\alpha_i} K_i(x) e^{u_i} dx \leq \rho_0 \) for all \(i \)’s.

Finally, similar estimates also hold true for some more general critical linearities.
Roughly speaking, we need a positive potential \(W(x) \) to be not too singular at 0 and the non-linearity \(F'(u) \) to grow at least as fast as its anti-derivative \(F(u) \). This case includes most exponential functions, including \(F'(u) = \lambda u^{p-1} e^{u^p} \) with \(1 < p < 2 \), which was studied in [21, 20, 22].
Theorem 1.4.
Let Ω be a simply connected planar domain and u be a solution to
\[
\begin{cases}
-\Delta u = W(x)F'(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
with $W(x), F(u)$ satisfying
\[
\begin{aligned}
W(x) &\in C^1_{\text{loc}}(\Omega \setminus \{0\}) \\
0 &\leq W(x) \leq C|x|^{2\alpha} \\
0 &\leq F'(u) \leq Ce^{Cu^2} \\
F(u) &\leq C(1 + F'(u)).
\end{aligned}
\]
Then, there exists $\rho_0 > 0$, not depending on u, such that $\int_{\Omega} W(x)F'(u)dx \leq \rho_0$.

It is interesting to compare all these results with previous works concerning existence and non-existence of solutions. This is the content of the following remark.

Remark 1.5.

- If the domain Ω is not simply connected, then each of the problem we are considering can have solutions with arbitrarily high values of the mass. This was done in [19, 23, 24, 2, 11, 10] for problem (1.1), in [26, 27] for (1.2), in [7, 4, 6] for some systems of the type (1.3) and in [21, 20, 22] for some nonlinearities of the type (1.4).

- In [25] the authors prove that for any $M > 0$ there exist a simply connected dumbbell-shaped domain Ω_M and a solution to (1.1) on Ω_M with $\lambda \int_{\Omega_M} |x|^{2\alpha}K(x)e^u dx \geq M$; the same argument also works for problems (1.2), (1.4) (see [27] and [21], respectively). The results presented here complement the latter, since Theorem 1.1 implies that there cannot exists any Ω_M such that the property shown in [25] holds for any M.

- In Theorem 1.3 it is essential to assume the matrix A to be positive definite. Otherwise, in [29, 33, 34, 9] the authors build solutions to (1.3) whose masses can be arbitrarily large also on simply connected domains.

- If one allows more than one singularity, namely replaces the singular term $|x|^{2\alpha}$ with $|x|^{2\alpha}\prod_{i=1}^N|x-x_i|^{2\alpha_i}$ for some $x_i \in \Omega \setminus \{0\}, \alpha_i > -1$, then uniform mass bounds do not seem to be true anymore. In fact, in this case Theorem 1.4 in [13] shows that the Leray-Schauder degree of (1.1) does not vanish for arbitrarily high values of the mass.

- Finally, assuming $K(x)$ to be positive is essential. In fact, in [32, 17, 18] the authors show existence of solutions to the Liouville equation (1.1) with sign-changing potential even in the case of simply connected domain; here, a crucial role seems to be played not by the topology of Ω but rather of the set $\{x \in \Omega : K(x) > 0\}$.

The main tools to prove Theorems 1.1, 1.2, 1.3, 1.4 will be the Riemann Mapping Theorem and a Pohožaev-type identity. We will recall these very well-known results in Section 2, as well as some other preliminary. Then, in Section 3 we will prove the main results of this paper.
2 Preliminaries

Let us recall some facts which will be used in the proof of the results of this paper. We start with a very classical and powerful tool, the Riemann Mapping Theorem. Such a result will allow to conformally deform the simply connected domain Ω into the unit disk; in such a way, the PDE defined on Ω is transformed into a new equation on the disk, different from the original but with similar features. We actually need a refined version of the theorem by Carathéodory, which ensures that the conformal factor appearing in the new PDE is not singular on the boundary of Ω.

Theorem 2.1 (Riemann Mapping Theorem, Carathéodory’s Theorem).

Let $\Omega \ni 0$ be a smooth simply connected planar domain and $D \subset \mathbb{R}^2$ be the unit disk. Then, there exists a conformal diffeomorphism $\Phi : \Omega \rightarrow D$, smooth up to $\partial \Omega$, such that $\Phi(0) = 0$.

Moreover, if u solves
\[
\begin{aligned}
-\Delta u &= f(x, u) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega ,
\end{aligned}
\]
then $v := u \circ \Phi^{-1}$ solves
\[
\begin{aligned}
-\Delta v &= \frac{1}{\det(D\Phi(y))} f(\Phi^{-1}(y), v) \quad \text{in } D \\
v &= 0 \quad \text{on } \partial D .
\end{aligned}
\]

Our proofs will also use the Pohožaev identity, an often-used instrument to show non-existence of solutions to elliptic PDEs. Such a result is usually stated for solutions having at least a $W^{2,2}$ regularity, which in general does not hold true for solutions to (1.1), (1.2), (1.3), (1.4) if α is negative. Anyway, in the proof of the theorems we will verify that we are still in position to apply the following result.

Theorem 2.2 (Pohožaev Identity).

Let u be a sufficiently regular solution to
\[
\begin{aligned}
-\Delta v &= \partial_v G(y, v) \quad \text{in } D \\
v &= 0 \quad \text{on } \partial D .
\end{aligned}
\]

Then, it satisfies
\[
\frac{1}{2} \int_{\partial D} (\nabla v \cdot \nu(y))^2 \, d\sigma(y) = 2 \int_D G(y, v) \, dy + \int_D (\nabla_y G(y, v) \cdot y) \, dy - \int_{\partial D} G(y, v) \, d\sigma(y).
\]

If $v = (v_1, \ldots, v_N)$ solves
\[
\begin{aligned}
-\Delta v_i &= \sum_{j=1}^N a_{ij} \partial_{v_j} G_j(y, v_j) \quad \text{in } D \\
v_i &= 0 \quad \text{on } \partial D
\end{aligned}
\]
with $A = \{a_{ij}\}_{i,j=1,...,N}$ being a non-singular matrix, then u satisfies
\[
\frac{1}{2} \sum_{i,j=1}^N a_{ij} \int_{\partial D} (\nabla v_i \cdot \nu(y)) (\nabla v_j \cdot \nu(y)) \, d\sigma(y) = \sum_{i=1}^N \left(2 \int_D G_i(y, v_i) \, dy + \int_D (\nabla_y G_i(y, v_i) \cdot y) \, dy - \int_{\partial D} G_i(y, v_i) \, d\sigma(y)\right).
\]

We finally need some *a priori* estimates for solutions to (1.2), which are essential to adapt the argument for (1.1).

The following result was originally stated in [31] for the case $K \equiv 1, \alpha = 0$ but the same argument, based on estimates from [14] and the celebrated moving plane technique from [28], seems to be working more generally.

Theorem 2.3.

Let u be a solution to (1.2) with $p \geq p_0$.

Then, there exists $C_0 > 0$, not depending on p nor u, such that $\sup_{\Omega} u = \|u\|_{L^\infty(\Omega)} \leq C_0$.

4
3 Proofs

We are now in position to prove the results stated in the introduction. Since all the proofs are rather similar to each other, we will give more details for Theorem 1.1 but we will skip some for the other theorems.

Proof of Theorem 1.1.
Let \(u \) be a solution to (1.1) on \(\Omega \) and \(\Phi : \Omega \to \mathbb{D} \) be the Riemann mapping described in Theorem 2.1. Then, \(v := u \circ \Phi^{-1} \) will solve \[\begin{cases} -\Delta v = \lambda \tilde{K}(y)|y|^{2\alpha}e^v & \text{in } \mathbb{D} \\ u = 0 & \text{on } \partial \mathbb{D} \end{cases} \] for some \(0 < \tilde{K}(y) \in C^1(\mathbb{D}) \).

We want to apply to \(v \) Theorem 2.2 with \(G(y,v) = \lambda|y|^{2\alpha}\tilde{K}(y)e^v \). If \(\alpha > 0 \) this is immediate since standard regularity gives \(v \in C^{2,2\alpha}(\mathbb{D}) \), but in case \(\alpha < 0 \) we only have \(v \in W^{2,q}(\mathbb{D}) \) with \(q < \frac{1}{-\alpha} \), therefore we need an ad hoc argument. Pohožaev identity is based on applying the divergence theorem to \((\nabla v \cdot y) \nabla v - \frac{|\nabla v|^2}{2} y \) and \(\lambda \tilde{K}(y)|y|^{2\alpha}e^v y \), so we need to check that both vector fields are in \(W^{1,1}(\mathbb{D}) \).

Concerning the former field, we have
\[
D \left((\nabla v \cdot y) \nabla v - \frac{|\nabla v|^2}{2} y \right) = (\nabla v \cdot y)D^2v + \nabla v \otimes \nabla v + (D^2v, y) \otimes \nabla v - \frac{|\nabla v|^2}{2} y - (D^2v, \nabla v) \otimes y;
\]
since we already know that \(|\nabla v|^2 \in L^1(\mathbb{D}) \), we suffice to check that \(|D^2v||\nabla v|y| \in L^1(\mathbb{D}) \). We have \(D^2v \in L^1(\mathbb{D}) \) and moreover, since \(|\Delta v| \leq C|y|^{2\alpha} \), by the Green’s representation formula we deduce
\[
|\nabla v| \leq C \int_{\mathbb{D}} \frac{|\eta|^{2\alpha}}{|y - \eta|} d\sigma(\eta) \leq \frac{C}{|y|};
\]
hence \(|\nabla v|y| \in L^\infty(\mathbb{D}) \) and we are done.

The other vector field verifies
\[
D \left(\lambda \tilde{K}(y)|y|^{2\alpha}e^v y \right) = \lambda \tilde{K}(y)|y|^{2\alpha}e^v y + \lambda |y|^{2\alpha}e^v \left(\nabla \tilde{K}(y) \otimes y \right) + 2\alpha \lambda |y|^{2\alpha-2} \tilde{K}(y)e^v (y \otimes y),
\]
which is in \(L^1(\mathbb{D}) \) because each term can be estimated by constant times \(|y|^{2\alpha} \).

We are therefore in position to use Theorem 2.2, which gives:
\[
\frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y) = 2\lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy + \lambda \int_{\mathbb{D}} \left(2\alpha |y|^{2\alpha} \tilde{K}(y) + |y|^{2\alpha} \left(\nabla \tilde{K}(y) \cdot y \right) \right) e^v dy - \lambda \int_{\partial \mathbb{D}} \tilde{K}(y)e^v d\sigma(y).
\]

On the left-hand side we can use Hölder’s inequality and integrate by parts:
\[
\frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y) \geq 1 - \frac{1}{4\pi} \left(\int_{\partial \mathbb{D}} \nabla v \cdot \nu(y) d\sigma(y) \right)^2 = \frac{1}{4\pi} \left(\int_{\mathbb{D}} \Delta v dy \right)^2 = \frac{1}{4\pi} \lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy ;
\]
on the right-hand side we exploit the positivity of \(\tilde{K}(y) \) and the boundedness of \(\nabla \tilde{K}(y) \):
\[
2\lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy + \lambda \int_{\mathbb{D}} \left(2\alpha |y|^{2\alpha} \tilde{K}(y) + |y|^{2\alpha} \left(\nabla \tilde{K}(y) \cdot y \right) \right) e^v dy - \lambda \int_{\partial \mathbb{D}} \tilde{K}(y)e^v d\sigma(y) \\
\leq 2(1 + \alpha) \lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy + \lambda \int_{\mathbb{D}} |y|^{2\alpha} \left(\nabla \tilde{K}(y) \cdot y \right) e^v dy \\
\leq \left(2(1 + \alpha) + \sup_{y \in \mathbb{D}} \frac{|\nabla \tilde{K}(y)|}{\inf_{y \in \mathbb{D}} \tilde{K}(y)} \right) \left(\lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy \right).
\]
Putting the two estimates together we get
\[
\frac{1}{4\pi} \left(\lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy \right)^2 \leq \frac{2\alpha}{4\pi} \left(\lambda \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y)e^v dy \right),
\]
hence we conclude
\[
\lambda \int_\Omega |x|^{2\alpha} K(x) e^{u} dx = \lambda \int_\mathbb{D} |y|^{2\alpha} \tilde{K}(y) e^{v} dy \leq \rho_0.
\]

\[\Box\]

Proof of Theorem 1.2.

As in the proof of Theorem 1.1, we take a solution to (1.2) and transform it, via the Riemann mapping, into a solution to \(-\Delta v = |y|^{2\alpha} \tilde{K}(y) y^p \) \(v > 0\) in \(\mathbb{D}\) and \(v = 0\) on \(\partial \mathbb{D}\), with some \(0 < \tilde{K}(y) \in C^1(\mathbb{D})\).

By the same argument as in Theorem 1.1, we are allowed to apply Theorem 2.2, this time with \(G(y, v) = |y|^{2\alpha} \tilde{K}(y) v^{p+1}\), which reads as

\[
\frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y) = \frac{1}{2} \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^{p+1} dy + \int_{\mathbb{D}} \left(2\alpha |y|^{2\alpha} \tilde{K}(y) + |y|^{2\alpha} \left(\nabla \tilde{K}(y) \cdot y\right)\right) \frac{v^{p+1}}{p+1} dy.
\]

On the left-hand side, we integrate by parts as before and then we apply Theorem 2.3:

\[
\frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y) \geq \frac{1}{4\pi} \left(\int_{\Delta} \Delta v dy\right)^2 = \frac{1}{4\pi} \left(\int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^p dy\right)^2 \geq \frac{1}{4\pi C_0^2 p^2} \left(p \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^{p+1} dy\right)^2.
\]

On the right-hand side, we argue as before exploiting the properties of \(\tilde{K}(y)\):

\[
2 \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) \frac{v^{p+1}}{p+1} dy + \int_{\mathbb{D}} \left(2\alpha |y|^{2\alpha} \tilde{K}(y) + |y|^{2\alpha} \left(\nabla \tilde{K}(y) \cdot y\right)\right) \frac{v^{p+1}}{p+1} dy \leq \left(2(1 + \alpha) + \sup_{y \in \mathbb{D}} \frac{\nabla \tilde{K}(y)}{\inf_{y \in \mathbb{D}} \tilde{K}(y)}\right) \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) \frac{v^{p+1}}{p+1} dy.
\]

Therefore we get

\[
\frac{1}{4\pi C_0^2 p^2} \left(p \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^{p+1} dy\right)^2 \leq \frac{\rho_0}{4\pi C_0^2 p^2} \left(p \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^{p+1} dy\right),
\]

namely

\[
p \int_{\Omega} |x|^{2\alpha} K(x) u^{p+1} dx = p \int_{\mathbb{D}} |y|^{2\alpha} \tilde{K}(y) v^{p+1} dy \leq \rho_0.
\]

\[\Box\]

Proof of Theorem 1.3.

We apply the Riemann mapping to a solution \(u = (u_1, \ldots, u_N)\) to (1.3) and we get a solution \(v = (v_1, \ldots, v_N)\) to

\[
-\Delta v_i = \sum_{j=1}^N a_{ij} \lambda_j |y|^{2\alpha} \tilde{K}_j(y) e^{v_j} \quad \text{in } \mathbb{D}, \quad u_i = 0 \quad \text{on } \partial \mathbb{D}
\]

apply to the latter Pohožaev identity, which gets

\[
\frac{1}{2} \sum_{i,j=1}^N a_{ij} \int_{\partial \mathbb{D}} (\nabla v_i \cdot \nu(y))(\nabla v_j \cdot \nu(y)) d\sigma(y)
\]
\[= \sum_{i=1}^{N} \left(2\lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy + \lambda_i \int_{\mathbb{D}} (2\alpha_i |y|^{2\alpha_i} \tilde{K}_i(y) + |y|^{2\alpha_i} \left(\nabla \tilde{K}_i(y) \cdot y \right)) e^{\nu_i} dy - \lambda \int_{\partial \mathbb{D}} \tilde{K}_i(y) e^{\nu_i} d\sigma(y) \right). \]

On the left-hand side we use the positivity of \(A^{-1} \), as well as previous arguments, and we get \[
\frac{1}{2} \sum_{i,j=1}^{N} a^{ij} \int_{\partial \mathbb{D}} (\nabla v_i \cdot \nu(y)) (\nabla v_j \cdot \nu(y)) d\sigma(y) \geq \frac{1}{4\pi} \sum_{i,j=1}^{N} a^{ij} \left(\int_{\partial \mathbb{D}} |\nabla v_i| \, d\sigma(y) \right) \left(\int_{\partial \mathbb{D}} |\nabla v_j| \, d\sigma(y) \right) = \frac{1}{4\pi} \sum_{i,j=1}^{N} a^{ij} \left(\lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy \right) \left(\lambda_j \int_{\mathbb{D}} |y|^{2\alpha_j} \tilde{K}_j(y) e^{\nu_j} dy \right); \]

on the right-hand side we just use the same estimates as in Theorem 1.1 to each term and get \[
\sum_{i=1}^{N} \left(2\lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy + \lambda_i \int_{\mathbb{D}} (2\alpha_i |y|^{2\alpha_i} \tilde{K}_i(y) + |y|^{2\alpha_i} \left(\nabla \tilde{K}_i(y) \cdot y \right)) e^{\nu_i} dy - \lambda_i \int_{\partial \mathbb{D}} \tilde{K}_i(y) e^{\nu_i} d\sigma(y) \right) \leq C \sum_{i=1}^{N} \lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy. \]

Finally, since \(A^{-1} \) is positive definite, the relation we just found \[
\frac{1}{4\pi} \sum_{i,j=1}^{N} a^{ij} \left(\lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy \right) \left(\lambda_j \int_{\mathbb{D}} |y|^{2\alpha_j} \tilde{K}_j(y) e^{\nu_j} dy \right) \leq C \sum_{i=1}^{N} \lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy \]
can only be satisfied if every integral belongs to a bounded region, namely \[
\lambda_i \int_{\Omega} |x|^{2\alpha_i} K_i(x) e^{\nu_i} dx = \lambda_i \int_{\mathbb{D}} |y|^{2\alpha_i} \tilde{K}_i(y) e^{\nu_i} dy \leq \rho_0 \quad i = 1, \ldots, N. \]

Proof of Theorem 1.4.
As before, we take a solution \(u \) to (1.4) and apply the Riemann mapping theorem, thus getting a solution to \(-\Delta v = \tilde{W}(y) F'(v) \) in \(\mathbb{D} \) on \(\partial \mathbb{D} \), with \(\tilde{W}(y) \) satisfying the same conditions as (1.5).

Because of the properties of \(\tilde{W}(y) \) and \(F(v) \), we have \(v \in W^{2,q}(\mathbb{D}) \) for some \(q > 1 \), \(|\Delta v| \leq C |y|^{2\alpha} \) and \(\left| \nabla \tilde{W}(y) \right| |y| \leq C |y|^{2\alpha} \), therefore, as we argued in the proof of Theorem 1.1, we can apply Theorem 2.2 to get:
\[\frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y) = 2 \int_{\mathbb{D}} \tilde{W}(y) F'(v) dy + \int_{\mathbb{D}} \left(\nabla \tilde{W}(y) \cdot y \right) F(v) dy - \int_{\partial \mathbb{D}} \tilde{W}(y) F'(v) d\sigma(y). \]

Arguing as before we obtain
\[\frac{1}{4\pi} \left(\int_{\mathbb{D}} \tilde{W}(y) F'(v) dy \right)^2 \leq \frac{1}{2} \int_{\partial \mathbb{D}} (\nabla v \cdot \nu(y))^2 d\sigma(y). \]
\[
2 \int_D \tilde{W}(y) F(v) \, dy + \int_D \left(\nabla_y \tilde{W}(y) \cdot y \right) F(v) \, dy - \int_{\partial D} \tilde{W}(y) F(v) \, d\sigma(y) \\
\leq (2 + C) \int_D \tilde{W}(y) F(v) \, dy \\
\leq C(2 + C) \int_D \tilde{W}(y) F'(v) \, dy + C(2 + C) \int_D \tilde{W}(y) \, dy,
\]
which means the mass must be uniformly bounded.

Acknowledgments

The author wishes to thank Professor Daniele Bartolucci for the fruitful discussions concerning the topics of the paper.

References

[1] D. Bartolucci. Existence and non existence results for supercritical systems of Liouville-type equations on simply connected domains. *Calc. Var. Partial Differential Equations*, 53(1-2):317–348, 2015.

[2] D. Bartolucci, F. De Marchis, and A. Malchiodi. Supercritical conformal metrics on surfaces with conical singularities. *Int. Math. Res. Not. IMRN*, (24):5625–5643, 2011.

[3] D. Bartolucci and A. Malchiodi. An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. *Comm. Math. Phys.*, 322(2):415–452, 2013.

[4] L. Battaglia. Existence and multiplicity result for the singular Toda system. *J. Math. Anal. Appl.*, 424(1):49–85, 2015.

[5] L. Battaglia. Variational aspects of singular Liouville systems. *PhD thesis*, 2015.

[6] L. Battaglia. B_2 and G_2 Toda systems on compact surfaces: A variational approach. *J. Math. Phys.*, 58(1):011506, 25, 2017.

[7] L. Battaglia, A. Jevnikar, A. Malchiodi, and D. Ruiz. A general existence result for the Toda System on compact surfaces. *Adv. Math.*, 285:937–979, 2015.

[8] L. Battaglia and A. Malchiodi. Existence and non-existence results for the $SU(3)$ singular Toda system on compact surfaces. *J. Funct. Anal.*, 270(10):3750–3807, 2016.

[9] L. Battaglia and A. Pistoia. A unified approach of blow-up phenomena for two-dimensional singular Liouville systems. *preprint*, 2016.

[10] A. Carlotto. On the solvability of singular Liouville equations on compact surfaces of arbitrary genus. *Trans. Amer. Math. Soc.*, 366(3):1237–1256, 2014.

[11] A. Carlotto and A. Malchiodi. Weighted barycentric sets and singular Liouville equations on compact surfaces. *J. Funct. Anal.*, 262(2):409–450, 2012.

[12] C.-C. Chen and C.-S. Lin. Topological degree for a mean field equation on Riemann surfaces. *Comm. Pure Appl. Math.*, 56(12):1667–1727, 2003.

[13] C.-C. Chen and C.-S. Lin. Mean field equation of Liouville type with singular data: topological degree. *Comm. Pure Appl. Math.*, 68(6):887–947, 2015.

[14] D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum. A priori estimates and existence of positive solutions of semilinear elliptic equations. *J. Math. Pures Appl.* (9), 61(1):41–63, 1982.
[15] F. De Marchis, M. Grossi, I. Ianni, and F. Pacella. L^∞-norm and energy quantization for the planar Lane-Emden problem with large exponent. preprint, 2018.

[16] F. De Marchis, I. Ianni, and F. Pacella. Asymptotic profile of positive solutions of Lane-Emden problems in dimension two. J. Fixed Point Theory Appl., 19(1):889–916, 2017.

[17] F. De Marchis and R. López-Soriano. Existence and non existence results for the singular Nirenberg problem. Calc. Var. Partial Differential Equations, 55(2):Art. 36, 35, 2016.

[18] F. De Marchis, R. López-Soriano, and D. Ruiz. Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials. J. Math. Pures Appl. (9), 115:237–267, 2018.

[19] M. del Pino, M. Kowalczyk, and M. Musso. Singular limits in Liouville-type equations. Calc. Var. Partial Differential Equations, 24(1):47–81, 2005.

[20] S. Deng, D. Garrido, and M. Musso. Multiple blow-up solutions for an exponential nonlinearity with potential in \mathbb{R}^2. Nonlinear Anal., 119:419–442, 2015.

[21] S. Deng and M. Musso. Bubbling solutions for an exponential nonlinearity in \mathbb{R}^2. J. Differential Equations, 257(7):2259–2302, 2014.

[22] S. Deng and M. Musso. Blow up solutions for a Liouville equation with Hénon term. Nonlinear Anal., 129:320–342, 2015.

[23] Z. Djadli. Existence result for the mean field problem on Riemann surfaces of all genuses. Commun. Contemp. Math., 10(2):205–220, 2008.

[24] Z. Djadli and A. Malchiodi. Existence of conformal metrics with constant Q-curvature. Ann. of Math. (2), 168(3):813–858, 2008.

[25] P. Esposito, M. Grossi, and A. Pistoia. On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(2):227–257, 2005.

[26] P. Esposito, M. Musso, and A. Pistoia. Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Differential Equations, 227(1):29–68, 2006.

[27] P. Esposito, A. Pistoia, and J. Wei. Concentrating solutions for the Hénon equation in \mathbb{R}^2. J. Anal. Math., 100:249–280, 2006.

[28] B. Gidas, W. M. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68(3):209–243, 1979.

[29] M. Grossi and A. Pistoia. Multiple blow-up phenomena for the sinh-Poisson equation. Arch. Ration. Mech. Anal., 209(1):287–320, 2013.

[30] M. Grossi and F. Takahashi. Nonexistence of multi-bubble solutions to some elliptic equations on convex domains. J. Funct. Anal., 259(4):904–917, 2010.

[31] N. Kamburov and B. Sirakov. Uniform a priori estimates for positive solutions of the Lane-Emden equation in the plane. preprint, 2018.

[32] R. López-Soriano and D. Ruiz. Prescribing the Gaussian curvature in a subdomain of S^2 with Neumann boundary condition. J. Geom. Anal., 26(1):630–644, 2016.

[33] M. Musso, A. Pistoia, and J. Wei. New blow-up phenomena for $SU(n + 1)$ Toda system. J. Differential Equations, 260(7):6232–6266, 2016.

[34] A. Pistoia and T. Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete Contin. Dyn. Syst., 37(11):5651–5692, 2017.