Dust attenuation in $z \sim 1$ galaxies from Herschel and 3D-HST $\text{H}\alpha$ measurements

A. Puglisi1, G. Rodighiero1, A. Franceschini1, M. Talia2,3, A. Cimatti2, I. Baronchelli1, E. Daddi8, A. Renzini4, K. Schawinski5, C. Mancini1,4, J. Silverman10, C. Gruppioni3, D. Lutz6, S. Berta7, and S. J. Oliver9

1 Dipartimento di Fisica e Astronomia, Università di Padova, vicolo dell’Osservatorio 2, I-35122, Padova, Italy
e-mail: annagrazia.puglisi@studenti.unipd.it
2 Dipartimento di Fisica e Astronomia, Università di Bologna, Via Ranzani 1, I-40127, Bologna, Italy
3 INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127, Bologna, Italy
4 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio, 5, I-35122, Padova, Italy
5 Institute for Astronomy, Departement of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany
7 Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, 85741, Garching, Germany
8 Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette, France
9 Astronomy Centre, Dept. of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK
10 Kavli Institute for the Physics and Mathematics of the Universe, Todai Institute for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI)

3rd May 2015

ABSTRACT

We combined the spectroscopic information from the 3D-HST survey with Herschel data to characterize the Hα dust attenuation properties of a sample of 79 main sequence star-forming galaxies at $z \sim 1$ in the GOODS-S field. The sample was selected in the far-IR, at $\lambda=100$ and/or 160 μm, and only includes galaxies with a secure Hα detection (S/N>3). From the low resolution 3D-HST spectra we measured the redshifts and the Hα fluxes for the whole sample (a factor of $1/1.2$ was applied to the observed fluxes to remove the [NII] contamination). The stellar masses (M_*), infrared (L_{IR}) and UV luminosities (L_{UV}) were derived from the SEDs by fitting multi-band data from GALEX near-UV to SPIRE 500 μm. We estimated the continuum extinction $E_{\text{star}}(B-V)$ from both the IRX=$L_{\text{IR}}/L_{\text{UV}}$ ratio and the UV-slope, β, and found an excellent agreement between the two. The nebular extinction was estimated from comparison of the observed SFR$_{\text{H\alpha}}$ and SFR$_{\text{UV}}$. We obtained $f=E_{\text{star}}(B-V)/E_{\text{nab}}(B-V)=0.93\pm0.06$, i.e. higher than the canonical value of $f=0.44$ measured in the local Universe. Our derived dust correction produces good agreement between the Hα and IR+UV SFRs for galaxies with SFR $\gtrsim 20 M_*/$yr and M_* $\gtrsim 5 \times 10^{10} M_\odot$, while objects with lower SFR and M_* seem to require a smaller f-factor (i.e. higher Hα extinction correction). Our results then imply that the nebular extinction for our sample is comparable to that in the optical-UV continuum and suggest that the f-factor is a function of both M_* and SFR, in agreement with previous studies.

Key words. galaxies: high-redshift – galaxies: star-formation – dust, extinction

1. Introduction

The rate at which a galaxy converts gas into stars, the Star Formation Rate (SFR), is a fundamental quantity to characterize the evolutionary stage of the galaxy. The SFR can be measured in several ways, e.g. from the UV luminosity, the far-IR emission, the recombination lines or the radio-continuum [Kennicutt 1998; Madau & Dickinson 2014], although each of these SFR tracers suffers from some uncertainties. Concerning the UV and optical indicators, the main source of uncertainty in the estimate of the SFR is due to the dust extinction, that strongly absorbs the flux emitted by stars at UV and optical wavelengths and re-emits it in the far-IR. Hence, an accurate quantification of the impact of dust on the galaxy integrated emission is crucial to precisely evaluate the SFR. The dust distribution inside a galaxy can be described by a two component model [Charlot & Fall 2000], e.g., including a diffuse, optically thin component (the Inter-Stellar Medium, ISM) and an optically-thick one (the birth cloud) related to the star forming regions. The birth clouds have a finite lifetime ($t_{\text{BC}} \sim 10^7$ yr) and consist of an inner HI region ionized by young stars and bounded by an outer HI region. This model assumes that the stars are embedded in their birth clouds for some time and then disrupt them or mi-
grate away into the ambient ISM of the galaxy. In this model the emission lines are produced only in the HII regions of the birth clouds as the lifetime of the birth clouds is in general greater than the lifetimes of the stars producing most of the ionizing photons ($\sim 3 \times 10^6$ yr). The emission lines and the non-ionizing continuum from young stars are attenuated in the same way by dust in the outer HI envelopes of the birth clouds and the ambient ISM but, since the birth clouds have a finite lifetime, the non-ionizing continuum radiation from stars that live longer than the birth clouds is attenuated only by the ambient ISM (Charlot & Fall 2000).

This two component model was conceived to explain the higher extinction observed on the nebular lines with respect to the UV/optical stellar continuum in the local Universe (e.g. Fanelli et al. 1988, Mas-Hesse & Kunth 1999, Mayya et al. 2004; Cid Fernandes et al. 2005; Calzetti et al. 1994, 2000).

The relation between the color excess of the nebular regions and that of the stellar continuum derived by Calzetti et al. (1994, 2000), i.e. $f = E_{\text{star}}(B-V)/E_{\text{neb}}(B-V) = 0.44$, has proven to be successful for local star-forming galaxies, while it is still unclear if it holds true in the high redshift Universe.

The most secure method to quantify the amount of dust extinction in the HII regions of the birth clouds is by directly measuring the Balmer decrement (i.e. the Hα/Hβ line ratio).

Nevertheless, such measurements are very challenging at $z \geq 0.5$ since the Hα line is shifted to the less-accessible near-infrared window so indirect methods are often needed to infer the attenuation related to the nebular lines.

Current studies on dust properties in high redshift galaxies lead to contrasting results. In fact, while some authors claim that the extinction related to the emission lines and to the stellar continuum are comparable in $z \sim 2$ galaxies (e.g. Erb et al. 2006, Reddy et al. 2010, using UV-selection), other authors confirm the validity of the Calzetti et al. local relation (e.g. Förster Schreiber et al. 2009, Whitaker et al. 2014, Yoshikawa et al. 2010) for samples of mainly optical and/or near-IR selected sources. Some recent works also suggested that the factor $f = E_{\text{star}}(B-V)/E_{\text{neb}}(B-V)$ required to reconcile the various SFR measurements is higher than those computed in the local Universe (e.g. Kashino et al. 2013, Pannella et al. 2014, on sBzk selections). These contrasting results found in the literature are not surprising, given the different and indirect methods used and/or the small and sometimes biased samples of most of these studies. Direct measurements of the Balmer Decrement would be required on statistical samples of sources at high redshift to clarify dust properties of distant star forming galaxies.

In the present paper we used near-infrared spectroscopic data from the 3D-HST survey (Brammer et al. 2012) and multi-wavelength photometry to derive the differential attenuation on a sample of 79 star forming galaxies at z between 0.7 and 1.5, selected in the far-IR within the GOODS-South field. The presence of the far-IR photometry for the whole sample is very important, as these data allow us to robustly constrain the integrated dust emission. This kind of approach has been often applied to galaxies in the local Universe (see for example Domínguez Sánchez et al. 2014), but only very occasionally at higher redshifts.

The paper is organized as follows. In Section 2 the properties of the sample and the data-set are described. Section 3 presents the spectral analysis. Section 4 illustrates the computation of the physical quantities for the galaxies in the sample. Section 5 describes the measurement of dust extinction on the Hα emission. Section 6 presents a critical discussion about the results wht carefully attention to the assumption behind our analysis and Section 7 summarizes the results.

We adopt throughout this work a standard cosmology ($H_0 = 70$ km/s/Mpc, $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$) and assume a Salpeter (1955) IMF.

2. Sample and data-set

Our sample is selected in the far-IR using the Herschel observations from the PACS Evolutionary Probe survey (PEP; Lutz et al. 2011) in the GOODS-South field, that has the deepest sampling with PACS-Herschel photometry. The far-IR data are a key ingredient for the purpose of this work, as they allow to strongly constrain the thermal emission by dust and therefore to infer robust estimates of the continuum dust attenuation for all the galaxies in the sample. The Herschel selected sample has been matched with objects at $0.7 < z < 1.5$ from the 3D-HST survey catalog (Brammer et al. 2012, Skelton et al. 2014) for which the Hα line is observable with the G141 grism. For the cross-correlation procedure we took advantage of the GOODS-Multiwavelength Southern Infrared Catalog (GOODS-MUSIC, Grazian et al. 2006), that collects the available photometry from ~ 0.3 to 8μm for the objects detected in the GOODS-S field. In the following we briefly describe the catalogs used and the sample selection procedure.

2.1. The Herschel/PEP survey

The PEP survey is a deep extra-galactic survey based on the observations of the PACS instrument at 70, 100 and 160 μm. The GOODS-South field is the deepest field analyzed by the PEP survey and it is the only one observed also at 70 μm. The 3σ limit in the GOODS-S field is 1.0 mJy, 1.2 mJy and 2.4 mJy at 70, 100 and 160 μm respectively.

PACS photometry has been performed with a PSF fitting tool, adopting the positions of Spitzer MIPS 24 μm detected sources as priors. This approach has been applied to maximize the depth of the extracted catalogs, to improve the deblending at longer wavelengths, and to optimize the band-merging of the Herschel photometry to the available ancillary data in the UV-to-near IR. As described in Berta et al. (2011, 2013), the 24 μm have been used as a bridge to match Herschel to Spitzer/IRAC (3.6 to 8.0 μm) and then to the optical bands. PACS priors source extraction followed the method described by Magnelli et al. (2009). The completeness of the catalogs have been estimated through extensive Monte-Carlo simulations and it turns to be on the order of 80%, with flux limits of 1.39, 1.22 and 3.63 mJy at 70, 100 and 160 μm, respectively (see PEP full public data release 1). We

1 http://www.mpe.mpg.de/ir/Research/PEP/DR1
2.2. Multi-wavelength photometry

2.2.1. The GOODS-MUSIC catalog

The GOODS-MUSIC catalog reports photometric data for the sources detected in z and K_s bands in the GOODS-South area and it is entirely based on public data. The catalog was produced with an accurate PSF matching for space and ground-based images of different resolutions and depths and it includes 14847 objects. The photometric catalog was cross-correlated with a master catalog released by the ESO-GOODS’s team, that summarizes all the information about the spectroscopic redshifts collected from several surveys in the GOODS area. For the sources lacking a spectroscopic measurement, Grazian et al. (2006) computed a photometric redshift using a standard χ^2 technique with a set of synthetic templates drawn from the PEGASE2.0 synthesis model (Fioc & Rocca-Volmerange 1997). The MUSIC catalog was extended by Santini et al. (2009) with the inclusion of the mid-infrared fluxes, obtained from MIPS observations at 24 μm. This catalog was also used for the computation of the Spectral Energy Distributions (SED, see Section 4.1 for more details about the SED-fitting).

2.2.2. GALEX, IRS-Spitzer and SPIRE observations

In order to increase the spectral coverage of the final sample, we added to the MUSIC photometry also the GALEX near-UV observations at $\lambda = 2310$ Å acquired from the on-line catalog Mikulski Archive for Space Telescopes (MAST), the IRS observations at 16 μm (Teplitz et al. 2005) and the SPIRE data at 250, 350 and 500 μm (Oliver et al. 2012). Roseboom et al. (2010) Levenson et al. (2010) see also Viero et al. 2013 and Gruppioni et al. 2013.

Both the GALEX and the SPIRE observations are extremely important for the scope of this work. The GALEX data allow us to better constrain the SED at UV wavelengths, enabling a more accurate estimate of the UV spectral slope β (see Section 5.2 and Appendix A for details). On the other hand, the SPIRE data improve the spectral coverage in the far-IR, thus allowing us to derive a robust estimate of the bolometric infrared luminosity (see Section 4.1).

The SPIRE catalog is also selected with positional priors at 24 μm. SPIRE fluxes were obtained with the technique described in Roseboom et al. (2010). Images at all Herschel wavelengths have undergone extractions using the same MIPS prior catalog positions.

For the GALEX data we used publicly available photometric catalog from MAST [2], and rely in this case on a simple positional association.

The ancillary photometry was included by cross-correlating the above mentioned catalog using a positional association with a matching radius of 1 arcsec. About 28 % of the galaxies in the final sample have a near-UV observation, the 82 % of these sources have a 16 μm counterpart, while 87 %, 62 % and 23 % of the galaxies have a SPIRE 250, 350 and 500 μm detection, respectively. This fast decreasing fraction with λ is due to the degrading of the PSF in the SPIRE diffraction-limited imager.

2.3. The 3D-HST survey

The 3D-HST near-infrared spectroscopic survey [Brammer et al. 2012 Skelton et al. 2014] covers roughly 75% of the area imaged by the CANDELS ultra-deep survey fields (Grogin et al. 2011 Koekemoer et al. 2011). In this work we used the observations in the GOODS-S field from the preliminary data release, that covers an area of about 100 square arcminutes. The WFC3/G141 grism is the primary spectral element used in the survey. The G141 grism covers a wavelength range from 1.1 to 1.65 μm, thus can detect the Hα emission line in a redshift interval between 0.7 and 1.5. The mean resolving power of this grism is about $R \sim 130$, insufficient to deblend the Hα and [NII] emissions. Our measured Hα flux is then affected by contamination from [NII], that we took into account and removed as described in Section 4.2.

Because no slit is used, and the length of the dispersed spectra is larger than the average separation of galaxies down to the detection limit of the survey ($F_{\text{lim}}(\lambda) \sim 2.3 \times 10^{-17} \text{erg/s/cm}^2$ at 5σ), there is a significant chance that the spectra of nearby objects could be overlapped. This “contamination” by the neighbors must be carefully accounted for in the analysis of the grism spectra. To evaluate the contribution to the flux from nearby sources, we considered the quantitative model developed by Brammer et al. (2012). For a complete description of the instrumental set-up, the data-reduction pipeline and the contamination model we refer to Brammer et al. (2012). Further details about the contamination issue are discussed in Sections 2.4 and 3.

2.4. Cross correlation and cleaning of the sample

The use of the MUSIC catalog is fundamental for the association between the Herschel and 3D-HST observations, as the Herschel’s beam is not directly matchable to the high resolution imaging of HST: the spatial resolution of PACS at short and long wavelengths is ~ 5 arcsec and ~ 11 arcsec respectively, while the WFC3 camera has a spatial resolution of 0.13 arcsec. The inclusion of the MIPS data at 24 μm was very useful for the association with the Herschel data, due to the Spitzer - MIPS intermediate resolution between optical instruments and the Herschel Space Telescope.

The PACS-MUSIC catalog includes 591 sources, selected at 100 and/or 160 μm above the 3σ flux limits of 1.1 mJy and 2 mJy, respectively. About 40% of these objects have ground-based spectroscopic redshift in the MUSIC catalog. We then cross-correlated the PACS-MUSIC and 3D-HST catalogs, using a matching radius of 2 arcsec, and found that 378 PACS-MUSIC objects have a counterpart in the 3D-HST catalog. The choice of the adopted near-search radius, 2 arcsec, to cross-match the PACS-MUSIC sample and the 3D-HST is the best com-
promise between the 24 μm beam size (5.6 arcsec) and the IRAC ones (from 1.7 to 2 arcsec going from the 3.6 μm to the 8.0 μm channel). We have however verified that using a slightly smaller (1 arcsec) or larger (3 arcsec) search radius does not affect the statistics of our final sample. Of these 378 sources, we only considered the 144 galaxies with a MUSIC redshift between 0.7 and 1.5, for which the Hα emission line is expected to fall in the WFC3-G141 grism spectral range. The spectra of these sources have been visually inspected to discard faint or saturated objects or sources without emission lines. We excluded also sources that are strongly contaminated by nearby objects, carefully evaluating by eye the 2D and 1D spectra of each galaxy, also considering the quantitative contamination model of Brammer et al. (2012). Galaxies whose spectra are strongly contaminated were discarded from the final sample. To avoid mis-identification of the lines, we also discarded objects with $|z_{\text{MUSIC}} - z_{\text{3D-HST}}| \geq 0.2$.

2.4.1. The X-ray luminous AGN population

We used the Chandra 4Ms catalog from Xue et al. (2011) to identify and discard the AGN from our sample. Following Xue et al. (2011), we classified as AGN only those objects with an absorption-corrected rest frame 0.5-9 keV luminosity $L_{\text{x-ray}} \geq 3 \times 10^{42}$ erg/s; we found that 8 objects match the criterion. We cannot confirm the presence of the AGN relying on the 3D-HST data alone, as they do not have neither the required resolution to deblend the [NII] and Hα lines, nor the adequate spectral coverage to detect other emission lines entering the BPT diagram (Baldwin et al. 1981), e.g. [OIII]5007 and Hβ.

2.5. The final sample

To summarize, since we wanted to study galaxies with detections in the far-IR and in the Hα emission line, we considered only the 144 galaxies in the range $0.7 \leq z \leq 1.5$ from the full sample of PACS objects with 3D-HST counterparts. The spectra of these sources were then visually inspected to discard the faint, noisy, saturated or strongly contaminated ones, removing AGN as explained in the previous section.

The final sample includes 79 sources, i.e. \sim55% of the 144 PACS-selected objects at $0.7 \leq z \leq 1.5$ with a counterpart in the 3D-HST catalog. The sample galaxies have observed Hα luminosities $L_{\text{Hα,obs}} \in [1.4 \times 10^{41} - 5.6 \times 10^{42}]$ erg/s and bolometric infrared luminosity $L_{\text{IR}} \in [1.2 \times 10^{10} - 1.3 \times 10^{12}]$ L⊙. An overlay showing the spatial distribution of our source sample is reported in Figure 1.

Due to the adopted selection criteria, our sources are not representative of the whole Main Sequence (MS) population at $z \sim 1$. (Elbaz et al. 2007; Noeske et al. 2007). This effect is visible in Figure 2, showing the distribution of our sample in the $M_\star - \text{SFR}$ plane with respect to the 3D-HST galaxies at $z \in [0.7 - 1.5]$. The stellar masses and SFR for the overall 3D-HST population are derived from SED fitting (Skelton et al. 2014). The SFR for the galaxies analyzed in this work are instead estimated from the IR+UV luminosities and the stellar masses M_\star are computed using the MAGPHYS software (da Cunha et al. 2008), as detailed in Sections 4.1 and 4.2.

Fig. 1 offers a qualitative comparison of the two selections, and has the only purpose of showing the effects of the used selection criteria on the global properties of our sample. Our objects occupy the upper part of the MS of “normal” star-forming galaxies at $z \sim 1$, due to the adopted far-IR selection (corresponding to a selection in SFR, cf. Rodighiero et al. 2014). Only one galaxy lies $4 \times$ above the MS, i.e. the starburst region (Rodighiero et al. 2011). However, the presence of this outlier does not influence our results, hence we did not remove it from the sample. The SFR and mass ranges spanned by our sample are $3 \leq \text{SFR}_{\text{IR+UV}} \leq 232$ M⊙/yr, $2.6 \times 10^{9} \leq M_\star \leq 3.5 \times 10^{11}$ M⊙, respectively.

Figure 3 shows the dependence of the total infrared luminosity as a function of the redshift for the PACS/MUSIC sources that are located inside the area observed also by the 3D-HST survey: 97% of these objects have a 3D-HST counterpart. In Figure 4, the 79 sources of our final sample, namely the PACS-MUSIC/3D-HST sources with an Hα emission and a “clean” spectrum, are also highlighted.

3. Spectral analysis

We extracted the 1D spectra by collapsing the 2D spectra inside specific apertures, adapting an IDL procedure which also applies the calibration files by (Brammer et al. 2012). Figure 4 shows the grism spectrum and the extracted 1D spectrum for one of the sources in our sample. The upper panel displays the cutout of the grism exposure: the 2D spectrum of the object is located in the central part of the frame. The extraction of the 1D spectrum (lower panel of Figure 4) is done inside a frame region called “virtual slit” (inside the two red horizontal lines in the upper panel of Figure 4). The width and the position of the virtual slit are adjusted ad hoc on each object to maximize the S/N ratio and to minimize the contribution to the flux from other spectra. The flux contribution from other sources is negligible in the extracted spectra, as we defined the position of the virtual slits to minimize this effect. Furthermore, for the majority of galaxies in our final sample, this confusion usually affects the flux at all wavelengths, so the contamination, if present, is mostly removed.
by the flux correction to the spectrum as discussed in Sect. 3.2. For 9 sources out of 79, we found that the flux is strongly contaminated at the edge of the spectrum but the spectral range around the Hα and the closelyby continuum are not affected by this contamination. We accounted for this problem in these 9 sources by carefully selecting the portion of the continuum near the Hα emission when rescaling the spectrum to the observed broad-band photometry (i.e. to derive the aperture correction factor) and excluding the part of the continuum affected by the contamination.

3.1. Hα fluxes and redshift measurements

We measured the redshift and the integrated Hα flux from the extracted 1D spectra by fitting the emission lines with a Gaussian profile based on the IRAF tool splot, even if the spectral line profile is dominated by the object shapes (the so-called “morphology” broadening, Schmidt et al. 2013) and the grism line shape may not be well described by the Gaussian profile. For part of the sample sources we re-measured the fluxes by simply integrating the area under the line, without fitting any profile, and found that the flux measurements are in agreement with those obtained with the Gaussian fit. The errors on the redshift and on the Hα integrated flux were estimated using Monte Carlo simulations with random Gaussian noise. The measurements of the observed Hα luminosities and the redshifts are listed in Tab. B.1 in Appendix B. The redshifts are distributed between $z \sim 0.7$ and 1.5 as shown in Figure 5, as a result of the combined transmission of the grism G141 + F140W filter. Our measurements are in good agreement with the pre-existing redshift measurements. Figure 6 shows the excellent correlation between the MUSIC spectroscopic (black dots) and photometric (red dots) redshifts and our redshifts measured from 3D-HST spectra. The median absolute scatter $\Delta z = |z_{3D-HST} - z_{MUSIC}|$ is 0.0040, while the me-
dian relative scatter \(\Delta z/(1+z_{3D-HST}) \simeq 0.0022 \). We also compare our redshifts with those from the recent catalog of Morris et al. (2015), measured also from 3D-HST spectra: also in this case a very good agreement is found \(\Delta z/(1+z_{3D-HST}) \simeq 0.0051 \), \(\Delta z/(1+z_{3D-HST}) \simeq 0.0027 \).

3.2. Flux correction by SED scaling

The position and the width of the virtual slit used to extract the 1D spectrum were adjusted for each object in order to maximize the S/N ratio and minimize the contamination from nearby sources. We applied corrections to the measured \(\text{H}\alpha \) fluxes to account for flux losses outside the slit. For each 1D spectrum the correction factor was derived as the ratio between the average continuum flux in the 1D spectrum \((F_{\text{spec}}) \) and on the galaxy SED \((F_{\text{SED}}) \), measured in the same wavelength range. The average value of the correction factor is \(F_{\text{SED}}/F_{\text{spec}} \sim 1.41 \), ranging from \(F_{\text{SED}}/F_{\text{spec}} \sim 0.39 \) up to \(F_{\text{SED}}/F_{\text{spec}} \sim 8.24 \).

Once this flux correction is applied, all the objects show an excellent agreement between the 1D spectrum and the near-IR part of the SED. An example is shown in Figure 7.

4. Derivation of the main physical quantities of the sample galaxies

4.1. SED-fitting

We fitted the Spectral Energy Distributions with the MAGPHYS package (Multi-wavelength Analysis of Galaxy Physical Properties, da Cunha et al. 2008). This software has the main advantage of fitting the whole SED from the UV to the far-IR, relating the optical and IR libraries in a physically consistent way. To compute the SEDs, we ran MAGPHYS in the default mode, using the stellar-population synthesis models of Bruzual & Charlot (2003). For the SED fitting we used 21 photometric bands, i.e. from the near-UV (GALEX) to the SPIRE 500 \(\mu m \). The filters used for the SED fitting are listed in Table 1. The errors of the photometric data points were set to be 10% of the measured flux and were then adjusted ad hoc. The best-fit SEDs were obtained by fixing the redshifts to the spectroscopic values that we measured from the
3D-HST spectra. Figure 8 shows an example of a best-fit SED as output by MAGPHYS.

In addition to the best-fit SED, MAGPHYS returns several physical parameters of the observed galaxy together with their marginalized likelihood distributions. We used in particular the stellar masses M_\star and the bolometric infrared luminosity L_{IR}, considering the values at the 50th percentile of the likelihood distribution. The errorbars at 68% for these quantities were derived from the PDFs computed by MAGPHYS. Since MAGPHYS adopts a Chabrier (2003) IMF, we converted the stellar masses to a Salpeter IMF by multiplying by a constant factor of 1.7 (e.g. Cimatti et al. 2008).

Filter	λ_{eff} [µm]
GALEX_NUV	0.2310
U	0.346
ACSF435W	0.4297
ACSF606W	0.5907
ACSF775W	0.7774
ACSF850LP	0.9445
ISAACJ	1.2
ISAACH	1.6
ISAACK	2.2
IRAC1	3.55
IRAC2	4.493
IRAC3	5.731
IRAC4	7.872
IRS16	16
MIPS24	23.68
PACS70	70
PACS100	100
PACS160	160
SPIRE250	250
SPIRE350	350
SPIRE500	500

Table 1. Filters used for the SED fitting and respective effective wavelengths λ_{eff} (µm).

4.2. Measuring the SFRs

We derived for all the sources in the sample the SFR from several indicators, thanks to the availability of a wide multi-wavelength photometric coverage and the near-IR spectra. In particular, we computed the SFRs from the Hα luminosity, the UV luminosity and the IR luminosity, adopting the classical calibrations of Kennicutt (1998).

The Hα luminosity is derived from 3D-HST near-IR spectra. The measured Hα flux is aperture corrected as described in section 3.2 while the [NII] contribution was removed by scaling down the Hα flux by a factor 1.2, following Wuyts et al. (2013). The contamination by [NII] could produce some uncertainties in the estimate of $L_{H\alpha}$ since the ratio [NII]/Hα may vary object by object as a function of the stellar mass and the redshift (Zahid et al. 2014). To validate our choice of using a constant factor, we then computed the [NII] correction factor as a function of M_\star, using the evolutionary parametrization of the ISM metallicity by Zahid et al. (2013). We found that the use of a more accurate [NII] correction does not change our results about the dust extinction corrections (i.e. Figures 10 and 11). Results of our later analysis (like the f-factor and the comparison between SFR indicators) are not affected by the choice of a mass-dependent [NII] correction or of a constant scaling factor.

In order to account for both the unattenuated and the obscured Star Formation, we measured the “total” SFR combining the L_{IR} and the observed L_{1600} (the same procedure was adopted by Nordon et al. 2012):

$$SFR_{IR+UV} = (1.4L_{1600} + 1.7L_{IR}) \times 10^{-10}[L_\odot].$$

We estimated the luminosity at $\lambda_{rest-frame} = 1600$Å from the best-fit SED, and used the IR luminosity L_{IR} derived by MAGPHYS (cfr. Section 3.1). The SFR$_{IR+UV}$ is the best estimate of the SFR for our objects, considering the wide photometric coverage in the far-IR, and will be used as a benchmark to verify the validity of our dust extinction correction.

The errors for the various estimates of the SFR are computed via MC simulation by randomly varying $L_{H\alpha}$, L_{1600} and L_{IR} within the errorbars, assuming that these quantities are Gaussian distributed.

5. Dust extinction corrections

In order to precisely evaluate the SFR and to reconcile the various SFR estimates, we need to accurately quantify the effect of dust on the integrated emission of our galaxies. According to Calzetti (2001), the action of dust on starlight for starburst galaxies in the local Universe can be parametrized as:

$$F_{obs}(\lambda) = F_{int}(\lambda)\times 10^{-0.4A_\lambda} = F_{int}(\lambda)\times 10^{-0.4E(B-V)k(\lambda)}$$

where $F_{obs}(\lambda)$ and $F_{int}(\lambda)$ are the dust-obscured and the intrinsic stellar continuum flux densities,

![Fig. 8. Example of a Spectral Energy Distribution in output from MAGPHYS.](image)
respectively. \(A_\lambda \) and \(E_{\text{star}}(B-V) \) are the dust attenuation and the color excess on the stellar continuum respectively, while \(k(\lambda) \) parametrizes the Calzetti et al. (1994) starburst reddening curve.

As already stated in the introduction, Calzetti et al. (2000) found that exists a differential attenuation between the stellar continuum and the nebular lines by measuring both the hydrogen line ratios and the continuum reddening in a sample of local star-forming galaxies. This differential attenuation is parametrized by a \(f \)-factor of 0.44, as defined by:

\[
E_{\text{star}}(B-V) = f \times E_{\text{neb}}(B-V) \tag{3}
\]

with \(f = 0.44 \pm 0.03 \).

We note that in the original calibration of eq. (3) two different reddening curves were used to measure the continuum and the nebular extinction (Fitzpatrick 1999 and Calzetti et al. 2000 respectively). If the Calzetti reddening curve is used to measure both the nebular and continuum components, as done in this work, the local \(f \)-factor becomes \(f = 0.58 \), instead of the canonical \(f = 0.44 \) (Pannella et al. 2014; Steidel et al. 2014). Hence, hereafter we refer to \(f = 0.58 \) as the “local” \(f \)-factor.

Equation 3 implies that the ionized gas is about two times more extincted than the stars. The applicability of such relation in the high redshift Universe is still not clear, as already mentioned in Sect. 1. Several authors (e.g. Pannella et al. 2014; Kashino et al. 2013; Erb et al. 2006; Reddy et al. 2010; Price et al. 2014; Wuys et al. 2015) found that the use of this equation implies to overestimate the intrinsic line flux, i.e. the \(\text{H}\alpha \) line is less attenuated in the high redshift galaxies with respect to the local Universe.

To shed some light on this issue, we investigated the differential extinction between nebular lines and continuum at high-z by using the ratio between the observed SFR\(_{\text{H}\alpha}\) and SFR\(_{\text{UV}}\), this uncorrected for dust attenuation. To validate the derived dust correction we compared our measurements of SFR\(_{\text{H}\alpha}\) to the SFR\(_{\text{IR+UV}}\), that we assume as the “true” SFR estimator.

In the following section we present the formalism and the methods to derive the \(\text{H}\alpha \) differential attenuation.

5.1. Differential extinction from \(\text{H}\alpha \) to UV-based SFR indicators

We use the \(\text{H}\alpha \) and UV luminosities, both uncorrected for dust extinction, to derive the extra correction factor associated with the nebular lines as a function of the color excess on the continuum emission. For the reader’s convenience, we report in this Sect. the relevant formalism.

We assume that the total Star Formation Rate SFR\(_{\text{tot}}\) is proportional to luminosity:

\[
SFR_{\text{tot}} = \text{const} \times L_{\text{int}}(\lambda) \tag{4}
\]

where, in the case of UV-optical wavelengths, the intrinsic luminosity \(L_{\text{int}}(\lambda) \) is related to the observed \(L_{\text{obs}}(\lambda) \) through the attenuation \(A_\lambda \) (eq. 2). Combining equations 2 and 4 we obtain for the observed SFR:

\[
SFR_{\text{uncorr}} = \text{const} \times L_{\text{obs}}(\lambda) = 10^{-0.4A_\lambda} \times SFR_{\text{tot}} \tag{5}
\]

Considering the UV and the \(\text{H}\alpha \) SFR tracers and assuming that the intrinsic SFRs in absence of dust attenuation are the same (SFR\(_{\text{H}\alpha} = \text{SFR}_{\text{UV}}\)), we obtain that the ratio between the observed SFRs is related to the differential extinction in the \(\text{H}\alpha \) emission line:

\[
\frac{SFR_{\text{H}\alpha,\text{uncorr}}}{SFR_{\text{UV,uncorr}}} = \frac{10^{-0.4A_{\text{H}\alpha}} \times SFR_{\text{tot}}}{10^{-0.4A_{\text{UV}}} \times SFR_{\text{tot}}} = 10^{-0.4E_{\text{star}}(B-V)(k(\text{UV})-k(\text{H}\alpha))} \tag{6}
\]

or in logarithmic units

\[
\log\left(\frac{SFR_{\text{H}\alpha,\text{uncorr}}}{SFR_{\text{UV,uncorr}}} \right) = -0.4A_{\text{H}\alpha} \times E_{\text{star}}(B-V). \tag{7}
\]

We can then quantify the differential extinction of nebular lines through a linear fit in the plane \(E_{\text{star}}(B-V), \log\left(\frac{SFR_{\text{H}\alpha,\text{uncorr}}}{SFR_{\text{UV,uncorr}}} \right) \) from eq. 7.

We stress here that in this analysis we impose that the intrinsic \(\text{H}\alpha \) and UV luminosities are tracing the same stellar populations and this condition could be in principle not satisfied, as these two SF tracers are sensitive to different star formation timescales. In fact, the UV luminosity is dominated by stars younger that \(10^8 \) yr while only stars with masses higher than 10 \(M_\odot \) and lifetimes lower than \(\sim 20 \) Myr contribute significantly to the ionization of the HII regions, i.e. to the \(\text{H}\alpha \) luminosity (Kennicutt 1998). However, our assumption seems to be reasonable from a statistical point of view, as we would need to observe a galaxy when the formation of stars with ages \(< 10^7 \) yrs (i.e. the Star Formation traced by \(L(\text{H}\alpha) \)) is already exhausted, while the formation of stars with ages \(10^7 < t < 10^8 \) yr is already in place (i.e. sources that produce \(L(\text{UV}) \) but do not contribute significantly to \(L(\text{H}\alpha) \)), to have \(L(\text{H}\alpha) \) substantially different from \(L(\text{UV}) \).

5.2. Measurements of the continuum extinction

After we have parametrized the \(f \)-factor and measured the ratio \(SFR_{\text{H}\alpha,\text{uncorr}}/SFR_{\text{UV,uncorr}} \), we need to estimate the continuum color excess \(E_{\text{star}}(B-V) \).

Taking advantage of the far-IR measurements available for our sample, we derived the continuum attenuation \(A_{\text{IRX}} \) from the ratio \(L_{\text{IR}}/L_{\text{UV}} \) (Nordon et al. 2012):

\[
A_{\text{IRX}} = 2.5 \log \left(\frac{SFR_{\text{IR+UV}}}{SFR_{\text{UV}}} \right). \tag{8}
\]

We can independently infer the continuum attenuation also from the UV spectral slope \(\beta \) because it is a sensitive indicator of dust attenuation. The intrinsic shape of the UV continuum spectrum for a star-forming galaxy is nearly flat in \(F(\lambda) \), even considering two extreme situations: an instantaneous burst of star formation and a constant star formation rate. For the case of the instantaneous burst, the usually assumed burst duration is typically \(\sim 20 \) Myr. During the first \(2 \times 10^7 \) yr, the stars contributing to the flux in the range \(\lambda \in [1200 - 3200] \AA \) have had no time to evolve off the main sequence, so that the shape of the intrinsic spectrum in the UV wavelength range of interest has not changed. Considering instead a region of constant star formation, the continuous
generation of new stars keeps the shape of the UV spectrum roughly constant. In conclusion, we can reasonably assume that the intrinsic shape of the UV spectra of star-forming galaxies is constant so each deviation from this intrinsic shape is produced by dust (Calzetti et al. 1994).

We then computed the continuum attenuation at 1600 Å (A_{1600}) from β using the calibration from Meurer et al. (1999), derived on a local sample of starburst galaxies:

\[A_{1600} = 4.43 + 1.99β . \] (9)

Here the UV-slope parameter β is defined as the linear interpolation of the observed spectrum (or in the lack of it from the photometric data) in the rest-frame wavelength range λ ∈ [1250 – 2600]Å. The applicability of the Meurer relationship in different ranges of redshift has been demonstrated by several authors (e.g. Reddy et al. 2012; Buat et al. 2012; Talia et al. 2015).

In our case, since we lack observational data in this wavelength interval for the majority of the sample, we estimated β from a linear interpolation of our best-fit MAGPHYS spectral model discussed in Sect. 4.1, as done e.g. in Oteo et al. (2014). To test the robustness of this slightly model-dependent estimate of the UV-slope, we also computed β from the UV rest-frame photometry, when available (i.e. for 13 objects), and found that the two measurements are in good agreement. For more details see Appendix A.

The attenuation is related to the color excess E_{star,IRX}(B-V). Assuming the reddening curve of Calzetti et al. (2000) from the photometric data) in the rest-frame wavelength λ, the UV-slope parameter (β) is measured from SEDs and the continuum extinction derived from the infrared excess IRX (y-axis). The red line is the 1:1 correlation relationship. In the lower part of the plot on the right are indicated the typical size of the errorbars.

5.3. Extra extinction from the f-factor

Following the formalism of section 5.1 we evaluated the f-factor as a function of the color excess on the continuum by using the ratio SFR_{Hα, uncorr}/SFR_{UV, uncorr} and the two measurements of the color excess on stellar continuum, E_{star,β}(B-V) and E_{star,IRX}(B-V). To derive the f-factor we fitted a linear function y = s × x to the data points through a minimization of a weighted \(\chi^2 \) (i.e. a least square fit obtained by weighting each data point for its error, both in the x and y axes), where \(y = \log(\text{SFR}_{Hα, uncorr}/\text{SFR}_{UV, uncorr}) \) and \(x = E_{star}(B-V) \). To obtain this fit we used the routine mpfit.pro, and took care of checking the result by a MC simulation by inserting a scatter in the x-coordinate value for each datapoint. The f-factor is finally obtained from the slope s of the best-fit line as

\[f = \frac{0.4 \times k(Hα)}{0.4 \times k(1600) - s} . \] (12)

The uncertainty for the f-factor was estimated by propagating the error on the best-fit parameter s.

Figure 10 reports SFR_{Hα, uncorr}/SFR_{UV, uncorr} as a function of the continuum color excess. The red solid line in Figure 10 corresponds to Equation 7 with \(f = 0.93 \pm 0.065 \) that is the best-fit value from our data distribution. Hence we found that the f-factor required to match SFR_{Hα} and SFR_{UV} in our sample is larger than the local value \(f = 0.58 \), blue dashed line in Fig. 10 and turns out to be also higher than the values computed by Kashino et al. (2013) on a sample with slightly higher z and different selection criteria \(f = 0.69 \) and 0.83, black dot-dashed and green dot-dot-dashed lines in Fig. 10 respectively).

The value of the f-factor does not change using either E_{star,β}(B-V) or E_{star,IRX}(B-V): this result is in line with the high correlation of these two measurements, as seen in Fig. 9.
Fig. 10. Ratio of Hα to UV-based SFRs (not corrected for dust extinction) as a function of $E_{\text{star,IRX}}(B-V)$ derived from the IRX ratio. The lines are the equation \[\text{Eq. (7)} \] with different values of f from Kashino et al. (2013) and Calzetti et al. (2000), as the legend indicates. The grey shaded area marks the confidence interval for our estimate of the f-factors.

5.4. Testing the dust correction: comparison between SFR$_{\text{H\alpha}}$ and SFR$_{\text{IR+UV}}$

We tested the reliability of our extinction correction in Figure 11 where we compare the SFR$_{\text{IR+UV}}$ with the SFR$_{\text{H\alpha}}$, corrected for dust extinction using both the prescription derived in this work (i.e. $E_{\text{star,IRX}}(B-V)$ and $f=0.93$, upper panel), and that derived by Calzetti et al. (2000) for local galaxies ($E_{\text{star,IRX}}(B-V)$ and $f=0.58$, lower panel). The results show that a better agreement between SFR$_{\text{H\alpha}}$ and SFR$_{\text{IR+UV}}$ is obtained by applying our correction factor, with a median ratio SFR$_{\text{H\alpha}}$/SFR$_{\text{IR+UV}}=0.88$ and a median relative scatter $|\text{SFR}_{\text{IR+UV}}-\text{SFR}_{\text{H\alpha}}|/(\text{1+}\text{SFR}_{\text{IR+UV}})=0.38$. On the contrary, the Calzetti et al. prescription would lead to overestimate the SFR$_{\text{H\alpha}}$ by a factor up to 3.3 above SFR$_{\text{IR+UV}}$ > 50 M$_{\odot}$/yr. We emphasize that our recipe for the nebular dust attenuation seems to “fail” for the tail of objects with SFR$_{\text{IR+UV}} \in (10-20)M_{\odot}$/yr and M$_* \sim 10^{10}M_{\odot}$ (light blue points in Fig. 11). For these sources our dust correction underestimates the SFR$_{\text{H\alpha}}$ with respect to SFR$_{\text{IR+UV}}$, while using the Calzetti prescription the two SFRs are in slightly better agreement. This could imply that the f-factor is an increasing function of SFR and M$_*$. However, the disagreement between SFR indicators at SFR$_{\text{IR+UV}} \lesssim 20$ M$_{\odot}$/yr can be due also to an overestimate of SFR$_{\text{IR+UV}}$ rather than a problem of the dust correction. At lower M$_*$ and SFRs in fact, the contamination to the heating of dust by an older stellar population (the so-called “cirrus” component, e.g. Kennicutt et al. 2009) became not negligible and can cause to overestimate L$_{IR}$. Finally, the trend seen in Figure 11 could also be a consequence of the selection criterion used in this work, considering that SFR$_{\text{IR+UV}} \sim 15$M$_{\odot}$/yr is the value that corresponds to the 3σ flux limit at 160 μm at z ~ 1 as estimated using the median SEDs of Magdis et al. (2012) (see also Fig. 2 of section 2.5).

5.5. A$_{\text{H\alpha}}$ vs M$_*$

Figure 12 shows the relationship between the attenuation A$_{\text{H\alpha}}$ and stellar masses. Here we converted the continuum attenuation E$_{\text{star,IRX}}(B-V)$ to A$_{\text{H\alpha}}$ by using $f=0.93$ and the k(A) from Calzetti et al. (2000). Despite the high dispersion of the data, we can observe an excess of A$_{\text{H\alpha}}$ at the highest masses with respect to the local relationship of Garn & Best (2010) (green dashed line in Figure 12). We report also the relationship of Kashino et al. (2013), derived at z ~ 1.6 (blue solid line). The grey filled dots of Figure 12 represent the median values of A$_{\text{H\alpha}}$ obtained in three M$_*$ bins as reported in the figure. The errorbars are the median scatter of A$_{\text{H\alpha}}$ and M$_*$ in each bin. Within the large scatter in the data, the median values in each bin are consistent with both the local and the higher-z relationship, in agreement with the results of Ibar et al. (2013). Of course, there may be selection effects in operation in the graph disfavoring the detection of galaxies with high values of A$_{\text{H\alpha}}$, that may be more important for the lower mass objects with intrinsically faint Hα flux. Our combined selection requiring detection of the Hα line may be somewhat exposed to such an effect. To confirm if an evolution with z exists in the dust properties of star forming galaxies it would be necessary to have deeper observations for the most attenuated galaxies. This aspect of the analysis will be investigated in a further paper.

Fig. 12. A$_{\text{H\alpha}}$ as a function of stellar masses. The black filled circles are the sources at z < 1 while red filled squares are objects with z > 1. The attenuation is computed from E$_{\text{star,IRX}}(B-V)$ by using $f=0.93$. The grey filled circles are the median values of A$_{\text{H\alpha}}$ in three mass bins ($M_* < 3 \times 10^{10}$ M$_{\odot}$, $3 \times 10^{10} \leq M_* < 1.7 \times 10^{11}$ M$_{\odot}$, $M_* \geq 1.7 \times 10^{11}$ M$_{\odot}$) and the errorbars are the median scatter for A$_{\text{H\alpha}}$ and M$_*$ in each mass bin. The two vertical dashed lines highlight the mass bins ($M_* < 3 \times 10^{10}$ M$_{\odot}$, $3 \times 10^{10} \leq M_* < 1.7 \times 10^{11}$ M$_{\odot}$, $M_* \geq 1.7 \times 10^{11}$ M$_{\odot}$).

5.6. Main sequence at z ~ 1

In Figure 13 we report an updated version of the relation between the stellar mass and the SFR, already presented in Figure 2, where SFR is now computed from the Hα luminosities, corrected for dust extinction according to our reference dust correction. As already mentioned in Section 2.5 our sources do not span the overall range covered by the
star-forming Main Sequence population at \(z \sim 1 \), since our far-IR selection favor the detection of sources with \(\text{SFR} > 10^{-20} \text{ M}_\odot/\text{yr} \). However, we note that above stellar masses on the order of \(3 \times 10^{10} \text{M}_\odot \), our sample is basically representative of a mass-selected sample that traces the underlying MS at the same redshift.

![Fig. 13. SFR\(_{H\alpha}\) versus \(M_*\) with \(L_{H\alpha}\) corrected by dust with our recipe. The blue solid line reports the MS relationship from Elbaz et al. (2007) at \(z = 1\) and the blue dashed line is the corresponding \(4 \times MS\). The black filled circles are the sources at \(z < 1\) while the red filled squares are the objects at \(z > 1\). The median errors for \(M_*\) and SFR\(_{H\alpha}\) are reported in the lower part of the plot on the right.](image)

6. Caveats: the many faces of the f-factor

Values of the f-factor estimated in the literature range from 0.44 to \(\sim 1\), as shown in Table 3 and in this section we briefly discuss the likely origins of these differences. An f-factor less than unity is currently interpreted as implying more average obscuration affecting the line emitting regions (HII regions) compared to the average obscuration affecting the hot stars emitting the UV continuum, i.e., \(f \neq 1\) would be the result of a geometrical effect with the spacial distribution of line emitting regions being different from that of continuum emitting stars. Actually, the reality may be somewhat more complicated.

First of all, the f-factor can be derived in two radically different ways: either by comparing two extinctions or two SFRs. In the former case the Hα extinction derived from the Balmer decrement is compared to the extinction in the UV as derived from either the UV slope or from Equation (10). Then one has to adopt one specific reddening law \(k(\lambda)\). In the latter case, the f-factor is estimated by enforcing equality between the SFR derived from the Hα flux with the SFR derived from another indicator, such as SFR(UV), SFR(UV+IR) or SFR from SED fitting, etc.

When the f-factor is derived by comparing Hα and UV extinction, then the result depends on the adopted reddening law \(k(\lambda)\), hence it reflects at once both the mentioned geometrical effect and possible departures from the adopted reddening law. As well known, the reddening law is not universal, not even within the Local Group. These two contributions to determine the value of \(f\) can barely be disentangled. When the f-factor is derived by forcing agreement between SFR(Hα) and the SFR from another indicator, then it becomes a fudge factor to compensate for the relative biases of the two SFR estimators, neither of which will be perfect.

Moreover, the measured Hα flux is subject to dust absorption in two distinct ways: first, each Hα photon has a probability \(10^{-0.4A_{H\alpha}}\) to escape the galaxy, but, second, dust absorption in the Lyman continuum reduces the number of produced Hα photons by a factor \(10^{-0.4A_{\text{Lyman-\cont}}}\), where \(A_{\text{Lyman-\cont}}\) is the extinction in the Lyman continuum. With few exceptions (e.g. Boselli et al. 2009), this second aspect is generally ignored, in the hope that an empirical calibration of SFRs may subsume in it also this part of the involved physics. In any event, the resulting f-factor depends on the actual extinction law of each galaxy, extending from the optical all the way to the Lyman continuum, on the geometry of the emitting regions, as well as on the relative systematic biases in the relations connecting SFRs to observables.

Besides these aspects, derived \(f\) values can also depend on the specific galaxy sample from which it is derived. For example, in our approach the far-IR selection criterion leads to select objects with strong levels of dust obscuration in the UV. The other requirement is to select objects with a strong Hα emission (\(F_{\alpha,\text{uncorr}}(H\alpha) > 2.87 \times 10^{-17} \text{erg/s} \)) and S/N higher than \(\sim 3\), hence with lower levels of Hα attenuation. The two selection criteria partially conflict with each other and combined favor sources with \(E_{\text{star}}(B-V) \approx E_{\text{star}}(B-V)\). To understand how the selection criterion influences the results we can compare our analysis with the work of Kashino et al. (2013). Our analysis was performed following the same approach of Kashino et al. (2013) but our sample has different selection criterion and size (165 sBzK galaxies for Kashino, 79 far-IR sources in this work) and we obtained an \(f = 0.93\), that is 35% larger than the Kashino result. In the case of rest-frame UV-selected galaxies, such as in Erb et al. (2006), this bias favors galaxies with low extinction which may result in a different \(f\) value compared to the case of samples including also highly reddened galaxies.

All of these considerations imply that different indicators lead to different estimates of the f-factor. For example, if we consider the ratio SFR\(_{H\alpha,\text{uncorr}}\)/SFR\(_{\text{IR+UV}}\), we get (see e.g. eq. 17)

\[
\frac{\text{SFR}_{H\alpha,\text{uncorr}}}{\text{SFR}_{\text{IR+UV}}} = 10^{-0.4A_{H\alpha}} = 10^{-0.4A_{\text{star}}(B-V)} k(H\alpha).
\]

Our data would imply in this case \(f \approx 0.85\), however not very significantly different from our best-guess of \(f \approx 0.93\).

Also the estimate of \(E_{\text{star}}(B-V)\) and its errors influences the estimate of the f-factor, leading to results that can vary from \(f \approx 0.4\) to a value larger than 1.

The last point to consider is again the reddening law \(k(\lambda)\) assumed in the analysis. In the literature one finds very different trends for \(k(\lambda)\), such as the presence of a bump at \(\sim 2200\text{Å}\) (Fitzpatrick 1999 for the LMC) or a smoother trend (Calzetti et al. 2000 for a starburst galaxy), and also very different values for its normalization \(R_V \equiv A_V/E_{\text{star}}(B-V)\), that vary from 3.1 (Cardelli et al. 1989) to 4.05 (Calzetti et al. 2000). At redshift \(\sim 2\)
both galaxies with and without the 2200 Å bump appear to coexist (Noll et al. 2009). The shape and the normalization of the assumed $k(\lambda)$ strongly influences the value of f_0 for both direct or indirect measurements. As an exercise we derived the f-factor using different $k(\lambda)$ expressions in eq. 12. Table 2 summarizes the results, showing that the value of the f-factors ranges from ~ 0.7 to ~ 1.2.

In summary, the f-factor may offer a fair measure of the relative extinction of emission lines and the stellar continuum, still however relying on not completely well defined and understood ingredients.

Table 2. Summary of the values obtained for the f-factor as a function of the assumed reddening curve $k(\lambda)$: the first column is the $k(\lambda)$ assumed to compute the UV attenuation at 1600 Å, the second column is the $k(\lambda)$ used to compute the Hα attenuation while the last column is the f-factor, obtained from eq. 12.

$k(\lambda)$	$k(\lambda)$	f-factor
Caizzetti et al. (2008)	Caizzetti et al. (2008)	0.93
Caizzetti et al. (2008)	Fitzpatrick (1999)	0.66
Reddy et al. (2015)	Reddy et al. (2015)	0.96
Reddy et al. (2015)	Fitzpatrick (1999)	1.19

7. Summary and conclusions

In this work we analyzed the near-IR spectra of 79 star forming galaxies at $z \in [0.7 - 1.5]$, acquired from the 3D-HST survey. The sources were selected in the far-IR from the Herschel/PACS observations: the PACS catalogs were associated with the 3D-HST observations using the IRAC positions of the PACS sources. From the near-IR spectra we measured the Hα fluxes and the spectroscopic redshifts of the whole sample.

We computed the SEDs with the MAGPHYS software, using data from near-UV to far-IR including the GALEX-NUV, the GOODS-MUSIC optical to mid-IR catalog, the IRS-16 μm and the far-IR photometry from Herschel PACS and SPIRE (i.e. at 70, 100, 160, 250, 350 and 500 μm). From the SEDs we derived the stellar masses, M_*, the bolometric infrared luminosities, L_{IR}, the UV luminosities, L_{UV}, and the UV slope, β.

We then evaluated the color excess $E_{star}(B-V)$ from the IRX-L_{IR}/L_{UV} ratio and from the UV slope β and found that these two quantities are in good agreement. In our sample the color excess on the stellar continuum ranges from $E_{star}(B-V) \sim 0.1$ mag to $E_{star}(B-V) \sim 1.1$ mag.

We computed the dust attenuation on the Hα emission $E_{nuc}(B-V)$ as a function of $E_{star}(B-V)$ by comparing the SFR$_{nuc}$ and the SFR$_{UV}$, both uncorrected for extinction. We obtained that the f-factor, which parametrizes the differential extinction on the nebular lines, is $f = E_{star}(B-V)/E_{nuc}(B-V) = 0.93 \pm 0.06$. This result is consistent within the errors with the analysis of Kashino et al. (2013) from the Balmer Decrement and of Pannella et al. (2014), performed in a similar redshift range. Our analysis is also consistent with the results of Erb et al. (2006) and Reddy et al. (2010) performed at higher z, as summarized in Table 3 which collect a list of results from others works. The good agreement found in our sample between the SFR$_{IR+UV}$ and the SFR$_{H\alpha}$ corrected for extinction using our recipe further confirm our results.

From our dust correction we then computed the attenuation $A_{H\alpha}$ as a function of M_*.

We found that $A_{H\alpha}$ is increasing with M_* and this trend seems to diverge from the local relationship: our sources shows an excess of $A_{H\alpha}$ with respect to the relationship of Garn & Best (2010) for $M_* \gtrsim 10^{11}$ M_\odot, suggesting an evolution in the dust properties of star-forming galaxies with z.

In conclusion we found that the level of differential extinction required to match the SFR$_{H\alpha}$ with the SFR$_{IR+UV}$ is lower in the local Universe, thus $A_{H\alpha} \sim A_{UV}$ for the sources in our sample. The value of the f-factor seems to be related to the physical properties of the sample rather than being dependent on z. The trends of Figures 11 and 12 suggest that the Hα extinction (thus the f-factor) is a function of SFR and M_*. In particular we notice that in Figure 11 our dust correction underestimate SFR$_{H\alpha}$ with respect to SFR$_{IR+UV}$ for sources with SFR $\lesssim 20$ M_\odot/yr; these sources require a lower value of f, similar to the local $f=0.58$. This trend could be explained by the two components model of dust sketched in Figure 5 of Price et al. (2014).

A galaxy with high sSFR is supposed to have an high number of OB stars, which are located inside the optically thick birth cloud: in this case these massive stars dominate both the UV-continuum and the Hα emissions, so the level of attenuation for the continuum and the nebular emission will be similar ($A_{UV} \sim A_{H\alpha}$). On the other hand, for a galaxy with low sSFR the number of OB stars will be lower, so in this case the optical-UV continuum is mainly produced by the less massive stars that are located both in the birth cloud and in the diffuse ISM: in this case $A_{H\alpha} > A_{UV}$ since the Hα emission is produced in a different and more dusty-dense region with respect to the continuum.

In this paper we do not examine in depth the consequences of this modellistic approach for the reasons discussed in the previous section. We defer to a future paper a more detailed analysis of the extinction properties of star-forming galaxies based on the “Intensive Program” (S12B-045, PI J. Silverman) with the FMOS spectrograph at the Subaru Telescope in the COSMOS field (Silverman et al. 2014).

Acknowledgements. We thank the anonymous referee for their careful reading of the manuscript and their valuable comments. AP, GR and AF acknowledge support from the Italian Space Agency (ASI) (Herschel Science Contract 1/005/07/0). We are grateful to Antonio Cava for the improvement of the IDL code used for the spectral analysis and Robert Kennicutt and Naveen Reddy for their comments. We also thank Mattia Negrello for his help with the error analysis and his comments. This work is based on observations taken by the 3D-HST Treasury Program (GO 12177 and 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

References

Akritas, M. G. & Bershady, M. A. 1996, ApJ, 470, 706
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Berta, S., Lutz, D., Santini, P., et al. 2013, A&A, 551, A100
Berta, S., Magnelli, B., Nordon, R., et al. 2011, A&A, 532, A49
Boselli, A., Boissier, S., Cortese, L., et al. 2009, ApJ, 706, 1527
Brammer, G., van Dokkum, P. G., Franx, M., et al. 2012, ApJs, 200, 13
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
The UV slope is derived from a linear fit to the model best-fit SED in the wavelength range $\lambda \in [1250 - 2600]$ Å, lacking observations in this rest-frame range for the majority of the sample. An example of the fit is shown in figure A.1. The errors related to the β_{model}, i.e. the UV slope derived from the MAGPHYS SED, are computed from the linear fit.

Appendix A: Computation of the UV spectral slope

Appendix A.1: β from the best-fit SED

The UV slope is derived from a linear fit to the model best-fit SED in the wavelength range $\lambda \in [1250 - 2600]$ Å, lacking observations in this rest-frame range for the majority of the sample. An example of the fit is shown in figure A.1.

The photometric UV-spectral slope is defined as:

$$
\beta_{\text{phot}} = -0.4 \left(\frac{M_2 - M_1}{\log \lambda_1 / \lambda_2} \right) - 2
$$

where M_1 and M_2 are the AB magnitudes at wavelengths $\lambda_1 = 1600$ Å and $\lambda_2 = 2800$ Å. The rest frame 1600 Å and 2800 Å magnitudes (M_{1600} and M_{2800}) were estimated by interpolating between the available photometric bands. To derive M_{1600} we used the filters between rest-frame $\lambda = [1200 - 2800]$ Å and interpolated the flux at 1600Å (converted to AB magnitudes) by fitting a linear function between the observed photometric bands. To derive M_{2800} we selected the filters that observe the rest-frame $\lambda \in [1500 - 3500]$ Å. Figure A.2 shows an example for the computation of M_{1600} and M_{2800} for a source that have the required photometric coverage. Figure A.3 shows the case in which we haven't the coverage in the rest-frame. The β_{phot} was computed for 13 sources. We computed the errors for β_{phot} by using a set of MC simulations: we randomly varied the observed photometry within the errorbars and we then computed the interpolation for each set of simulated values of the observed photometry. The σ uncertainty on β_{phot} was then estimated.
from the width of the probability distribution function of the simulated values, assuming that this distribution has a Gaussian shape. The median error on β_{phot} was added in quadrature to the error of β_{model} thus the error for the UV-slope is $\sigma_{\beta,i}^2 = \sigma_{\beta_{\text{model}},i}^2 + \text{median}(\sigma_{\beta_{\text{phot}},i}^2)$.

Fig. A.2. The plot displays the method for the computation of β_{phot} for the source 3213 (ID MUSIC). In the figure it is specified also the redshift of the source. The black open diamonds are the observed photometry, connected with a linear interpolation (black solid line). The green vertical lines highlight the rest-frame spectral range considered to compute M_1 while the blue vertical lines mark the range for the computation of M_2. The two dash-dot red lines mark respectively the positions of 1600 Å and 2800 Å rest-frame.

Fig. A.3. The plot is analogous to the previous. In this case we do not have the photometric coverage to derive β_{phot}.

Appendix A.3: β_{phot} vs β_{model}

The UV spectral slope is model-dependent, since it is obtained from a fit to the SED; in order to verify the validity of our measurements we compared β_{model} to β_{phot} for the 13 sources that have the required photometric coverage in the UV spectrum. The Spectral Energy Distributions were recomputed in this case excluding the photometric bands in the UV rest-frame spectral range, as we want to compare a value strongly dependent on the model to those constrained by the observed data. The correlation between β_{model} and β_{phot} is shown in figure A.4, the agreement between the two estimates is quite good, considering also the poor statistic, and confirms the reliability of β_{model} derived by fitting the modeled SEDs.

Fig. A.4. Comparison between β_{model}, derived from the SED fitting, and β_{phot}, computed by fitting the observed photometry, for the 15 sources with photometric coverage in the rest-frame range $\lambda \in [1200 − 3500]$ Å. The blue line is the 1:1 line. The linear Pearson correlation coefficient is $r=0.96$.
Appendix B: Main parameters of the sample

Table B.1 summarizes the MUSIC ID, the coordinates, the redshift measured from the 3D-HST near-IR spectra, the observed Hα luminosity $L_{\text{H} \alpha, \text{obs}}$ corrected for the aperture as explained in section 3.2, the infrared luminosity L_{IR}, the observed UV luminosity L_{UV} and the stellar masses M_\star of the sample.
Fig. 11. Comparison between SFR_{IR+UV} and SFR_{H\alpha} when varying the dust correction for the H\alpha emission. The lower panel shows the case in which L_{H\alpha} are corrected for dust attenuation by using the classical prescription of Calzetti (f=0.58) while in the upper panel the H\alpha luminosities are corrected with our dust correction (f=0.93). The black solid line is the 1:1 correlation line and the different colors mark the stellar masses, as indicated in the vertical color-bar. In the lowest part of each panel are also shown the median errors on the SFR measurements.

Table 3. Different values of f obtained from literature. In the table are also specified the redshift ranges (third column of Tab. 3), the types of sample and the methods implied to measure the differential extinction on nebular lines (fourth and fifth columns of Tab. 3, respectively).

Author	f	z range	Sample	Method
Calzetti et al.	0.44 (0.58)	0.003-0.05	starburst galaxies	Balmer decrement
Kashino et al.	0.83±0.10	1.4-1.7	sBzk galaxies	Balmer decrement (stacked spectra)
	0.69±0.02			H\alpha to UV SFRs
Wuyts et al.	0.44	0-3	K_s selected galaxies	SFR indicators
Price et al.	0.55±0.16	1.36-1.5	MS star forming galaxies	Balmer decrement (stacked spectra)
Pannella et al.	0.58	< 1	UVJ selected galaxies	comparison between A_{UV-M_*}/A_{H\alpha-M_*}
	0.77	1		
Valentino et al.	0.74±0.05	2	CL J1449+0856	Balmer decrement (stacked spectra)
Erb et al.	1	2	rest-frame UV selected galaxies	matching UV and H\alpha SFRs
Reddy et al.	1	1.5-2.6	Lyman Break Galaxies	matching X-ray, UV and H\alpha SFRs
This work	0.93±0.06	0.7-1.5	far-IR selected galaxies	H\alpha to UV SFRs
Table B.1. List of the main parameter measured for the galaxies in the sample. The first column indicates the MUSIC-ID of the sources, the second and third columns are the coordinates, the 4th column reports the redshift derived from the 3D-HST near-IR spectrum, the 5th column is the observed Hα luminosity (i.e. not corrected for dust attenuation), the 6th column reports the infrared luminosity, the 7th column is the bolometric rest-frame UV luminosity (derived from L_{1600}, as explained in Section 4.1 and the last column is the stellar mass. For each of the quantities listed here it is also indicated the 1σ uncertainty.

The quantities L_{IR}, L_{UV} and M_∗ are derived from the SED fitting with the MAGPHYS code (see Section 4.1).

The Hα luminosity is corrected for the contamination by [NII] (cfr. Section 4.2) and for the aperture (see Section 3.2).
Table B.2. List of the main parameter computed for the galaxies in the sample (continuation).

MUSIC ID	RA [deg]	Dec [deg]	z_{3D-HST}	log($L_{H\alpha, obs}$)±1σ [erg/s]	log(L_{IR})±1σ [L$_{\odot}$]	log(L_{1600})±1σ [L$_{\odot}$]	log(M_\star)±1σ [M$_{\odot}$]
12401	53.0729218	-27.7578526	1.04	42.15±0.01	11.04±0.01	9.56±0.96	10.30±0.01
12468	53.0228424	-27.7570210	1.19	42.07±0.02	11.63±0.02	8.64±0.86	10.95±0.07
12660	53.0804939	-27.7538910	0.73	41.79±0.03	10.78±0.07	9.32±0.93	9.75±0.06
12667	53.1952438	-27.7537766	0.84	41.94±0.01	11.26±0.08	9.34±0.93	10.56±0.05
12781	53.0962143	-27.7525444	1.01	42.91±0.01	10.39±0.06	8.92±0.89	10.36±0.07
12815	53.0361824	-27.752297	1.29	42.15±0.04	11.92±0.01	8.95±0.89	11.22±0.04
12967	53.1073837	-27.7498131	0.83	42.06±0.01	10.99±0.02	9.36±0.94	9.64±0.06
13192	53.1616096	-27.7492344	0.73	41.59±0.02	11.72±0.01	8.38±0.84	10.91±0.01
13194	53.0687332	-27.7460501	0.97	41.38±0.12	11.44±0.02	9.66±0.97	10.54±0.16
13382	53.1463699	-27.7443180	1.03	41.66±0.03	11.29±0.02	9.70±0.97	10.18±0.03
13505	53.0615921	-27.7425251	0.73	42.37±0.01	11.03±0.13	7.84±0.78	10.37±0.05
13540	53.1073494	-27.7419224	0.89	41.47±0.06	11.48±0.02	7.93±0.79	11.03±0.18
13552	53.0940933	-27.7405053	0.73	41.45±0.06	11.49±0.01	9.86±0.99	11.11±0.03
13617	53.1501236	-27.7399464	1.05	42.11±0.03	11.30±0.04	10.02±1.00	10.12±0.09
13664	53.0837898	-27.7395668	1.22	42.08±0.03	11.51±0.02	9.48±0.95	10.93±0.09
13694	53.1752434	-27.7392445	1.15	41.29±0.23	11.10±0.07	9.50±0.95	10.31±0.09
13844	53.0494808	-27.7370377	1.28	41.87±0.09	11.43±0.06	8.96±0.99	10.51±0.06
13915	53.1443443	-27.7355614	1.26	41.90±0.04	11.11±0.02	8.94±0.89	10.80±0.08
14519	53.0166168	-27.7270679	0.96	42.52±0.01	11.57±0.02	8.80±0.88	11.23±0.08
14585	53.0393867	-27.7268464	1.02	42.41±0.01	10.91±0.01	8.74±0.87	10.65±0.01
15143	53.1693153	-27.7180751	1.22	41.86±0.07	11.39±0.01	9.94±0.99	10.65±0.01
15279	53.1508827	-27.7161102	0.96	42.37±0.02	11.37±0.02	10.53±1.05	10.13±0.08
15568	53.1889420	-27.7137222	1.19	41.89±0.13	11.49±0.07	9.16±0.92	10.83±0.09
15711	53.1235085	-27.7118225	0.65	42.16±0.01	11.38±0.02	9.79±0.98	10.27±0.11
16046	53.0786095	-27.7074299	1.08	41.48±0.08	11.13±0.05	9.56±0.96	10.90±0.07
16930	53.1391869	-27.6944133	1.04	42.47±0.01	11.45±0.02	9.37±0.94	10.96±0.05
17069	53.1626816	-27.6923409	0.73	42.52±0.01	10.39±0.09	9.76±0.98	9.55±0.05
17450	53.0881300	-27.6851749	1.12	42.75±0.01	11.04±0.04	9.52±0.95	11.01±0.07
17593	53.1090813	-27.6837875	1.04	42.53±0.01	11.04±0.08	9.49±0.95	9.18±0.09
30257	53.1665344	-27.7037868	0.82	41.44±0.06	10.93±0.07	9.42±0.94	9.69±0.04

A. Puglisi et al.: Dust attenuation in $z \sim 1$ galaxies from Herschel and 3D-HST Hα measurements