Evaluation of Association Studies and an Updated Meta-Analysis of VDR Polymorphisms in Osteoporotic Fracture Risk

Yi-yang Mu¹, Biao Liu¹, Bin Chen¹, Wang-fa Zhu¹, Xiang-Hua Ye², Hong-zhuo Li³* and Xiao-feng He⁴*

¹Second Affiliated Hospital of Soochow University, Suzhou, China, ²Department of Radiotherapy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, ³Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China, ⁴Southern Medical University, Guangzhou, China

Background: Several studies have examined the association between vitamin D receptor (VDR) polymorphisms and osteoporotic fracture risk; however, the results are not uniform. Furthermore, many new articles have been published, and therefore, an updated meta-analysis was performed to further explore these issues.

Objectives: The aim of the study was to investigate the association between VDR BsmI, ApaI, TaqI, FokI, and Cdx2 polymorphisms and osteoporotic fracture risk.

Methods: The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between VDR BsmI, ApaI, TaqI, FokI, and Cdx2 polymorphisms and the risk of osteoporotic fracture. We also used the false-positive reporting probability (FPRP) test and the Venice criteria to evaluate the credibility of the statistically significant associations.

Results: Overall, this study found that the VDR ApaI and BsmI polymorphisms significantly increased the risk of osteoporotic fracture in European countries and America, respectively. However, when sensitivity analysis was performed after excluding low-quality and Hardy–Weinberg disequilibrium (HWD) studies, it was found that only individuals with the double-mutated genotype have an increased risk of osteoporotic fracture in European countries. In addition, when the credibility of the positive results was assessed, it was found that the positive results were not credible.

Conclusion: This meta-analysis indicates that there may be no significant association among the polymorphisms of VDR BsmI, ApaI, TaqI, FokI, and Cdx2 and the risk of osteoporotic fracture. The increased risk of osteoporotic fracture is most likely due to false-positive results.

Keywords: VDR, polymorphism, osteoporosis, risk of fracture, meta-analysis

Abbreviations: BMD, bone mineral density; 95% CI, 95% confidence interval; Fn, femoral neck; FPRP, false-positive report probabilities; HWD, Hardy–Weinberg disequilibrium; HWE, Hardy–Weinberg equilibrium (ideally, the frequency of alleles is constant in heredity; that is, gene balance is maintained); LS, lumbar spine; OR, odds ratio; VDR, vitamin D receptor; PRISMA, preferred reporting items for systematic review and meta-analyses; SNP, single-nucleotide polymorphism.
INTRODUCTION

Osteoporosis is characterized by reduced bone density and increased bone fragility, leading to an increased risk of fracture (Recker, 2005). Its clinical significance lies in the triggering of osteoporotic fractures (e.g., fractures of the forearm, vertebrae, and hip) (Cummings and Melton, 2002). The World Health Organization estimates that 200 million people worldwide suffer from osteoporosis (Uzann et al., 2007), placing a huge burden on families and society, and that osteoporosis has become a major public health problem. Therefore, it is important to explore the underlying pathogenic factors.

The main factors in the development of osteoporosis encompass both environmental and genetic factors. The environmental factors include smoking, exercise, and alcohol consumption (Ng et al., 2006; Kaufman et al., 2008; Binici and Gunes, 2010). Many studies have found that genetic factors play an important role in the pathogenesis of osteoporosis (Jin and Ralston, 2001; Recker and Deng, 2002). It has been estimated that the heritability of osteoporosis-related traits (e.g., bone mineral density) can be as high as 60–80% (Uitterlinden et al., 2004). To date, dozens of risk genes for osteoporosis have been identified, of which ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, and TNFSF11B are thought to be involved in bone mineral density (BMD) homeostasis, bone remodeling, and bone matrix composition, and thus influence BMD and osteoporotic fractures. In addition, a number of candidate genes have been investigated (COL1A1, TGFBI, TGFβ3, and VDR), but no clear genome-wide significant association with osteoporosis has been demonstrated (Saccone et al., 2015).

The vitamin D receptor (VDR) gene is located on chromosome 12q13 (Seuter et al., 2016) and exerts various biological effects by mediating the downstream signaling 1,25-dihydroxycholecalciferol (1,25(OH)2D3) (Fang et al., 2003). In human monocytes, 1,25(OH)2D3 regulates chromatin susceptibility at 8979 loci (Ling et al., 2016), and as such, VDR single-nucleotide polymorphisms (SNPs) have been associated with various diseases, including reduced bone mineral density and osteoporosis (Gómez et al., 1999; Garnero et al., 2005). In recent years, numerous studies have reported the association of VDR polymorphisms (e.g., BsmI, ApaI, TaqI, FokI, and Cdx2) with osteoporotic fractures. However, these results were inconsistent and even conflicting. For example, Garnero et al. found that the VDR BsmI B allele was associated with lower BMD and an increased risk of fracture (Alvarez-Hernández et al., 2003). In contrast, other studies found no association between the B allele and the risk of osteoporotic fractures (Uitterlinden et al., 2001; Horst-Sikorska et al., 2005; Iván et al., 2008; Karpinski et al., 2017). Similarly, there were conflicting associations between the ApaI, TaqI, FokI, and Cdx2 polymorphisms and osteoporotic fractures in different studies (Gennari et al., 1999; Gómez et al., 1999; Garnero et al., 2005; Nguyen et al., 2005; Fang et al., 2006; Ji et al., 2010; Horst-Sikorska et al., 2013; Jawiarczyk-Przybylowska et al., 2019; Iveta et al., 2020). These different results may be owing to differences in sample size, ethnicity, and sampling methods used. Although correlations between the VDR BsmI, ApaI, TaqI, and FokI polymorphisms and the risk of osteoporotic fracture development have been reported in several meta-analyses (Aerssens et al., 2000; Moher et al., 2009; Shen et al., 2014; Gao et al., 2015), there are some limitations in these studies. First, their findings are inconsistent; in the study of Ji et al., the bb genotype in the BsmI gene significantly reduced the risk of fracture (odds ratio (OR) 0.87, 95% confidence interval (CI): 0.76–0.98); in the grouped study, they found that the frequency of the bb genotype was significantly decreased in patients with hip fracture, and the frequency of the Tt genotype was also decreased in patients with hip fracture (Gao et al., 2015), while the frequency of the tt genotype was increased in patients with hip fracture. In addition, they observed an increase in the frequency of the Aa genotype in patients with vertebral fractures. Similarly, in a subgroup analysis, Gao et al. found that the BsmI gene was associated with osteoporotic fractures when the control group was population-derived (OR BB vs. bb 1.22, 95% CI 1.01–1.48; OR B vs. b 1.10, 95% CI 1.00–1.20) (Aerssens et al., 2000). No significant association was found between the BmsI and TaqI by Fang et al. and the BsmI by Shen et al. (BsmI OR 0.98, 95% CI 0.86–1.12; BsmI [b vs. B] OR 1.07, 95% CI 0.90–1.29; TaqI [T vs. t] OR 0.89, 95% CI 0.68–1.15; ApaI [A vs. a] OR 0.91, 95% CI 0.76–1.08; FokI [F vs. f] OR 1.20, 95% CI 0.76–1.90) (Moher et al., 2009; Shen et al., 2014). Second, a literature quality assessment was not performed in some of the meta-analyses (Shen et al., 2014; Gao et al., 2015). Finally, the Hardy–Weinberg equilibrium (HWE) test was not performed in the three studies (Moher et al., 2009; Shen et al., 2014; Gao et al., 2015), and not all studies on the VDR polymorphisms with osteoporosis fracture risk adjusted the P-value (Aerssens et al., 2000; Moher et al., 2009; Shen et al., 2014; Gao et al., 2015). Therefore, an updated meta-analysis was conducted to provide results that were more reliable regarding these issues.

MATERIALS AND METHODS

Search Strategy

The present meta-analysis was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. The databases searched included PubMed, EMBASE, China Knowledge Network, and China Wanfang Data Knowledge Service Platform to analyze the relationship between VDR polymorphisms and osteoporotic fracture risk. The search strategy was (“vitamin D receptor” or “VDR”) and (“polymorphism” or “variant” or “variation” or “mutation” or “SNP” or “genome-wide association study” or “genetic association study” or “genotype” or “allele”) and (“Fractures, Bone” or “Broken Bones” or “Fractures” or “Fracture” or “Broken Bone” or “Bone Fractures” or “Bone Fracture”). The search deadline was March 2021.
First author / Year	Country	Ethnicity	Gender	Cases	N	Gender	Cases	Controls								
Houston et al. (1996)	UK	E	Female		44	66.0 ± 0.85	Vertebral	WHO	Age and Sex	44	65.3 ± 0.95	HWE	Yes	Vertebral	11	
Feskrian et al. (1998)	USA	Am	Female		54	62.3 ± 5.7	Hip	WHO	Age and Sex	108	62.2 ± 5.7	HWE	Yes	Hip	13	
Feskrian et al. (1998)	USA	Am	Female		163	58.9 ± 6.8	Forearm	WHO	Age and Sex	163	58.1 ± 6.7	HWE	Yes	Forearm	13	
Ramalho et al. (1998)	Brazil	Am	Female		56	78.52 ± 7.2	Hip	Ne	Age and Sex	36	78.52 ± 7.2	HWE	Yes	Hip	11	
Gómez et al. (1999)	Spain	E	Female		37	Ne	Vertebral	WHO	Sex		122	Ne	Vertebral	13		
Gómez et al. (1999)		Spain	Men		39	Ne	Vertebral	WHO	Sex		114	Ne	Vertebral	13		
Aerssens et al. (2000)	Belgium	E	Female		135	78.9	Vertebral	WHO	Sex		13	Ne	Vertebral	13		
Langdahl et al. (2000)	Denmark	E	Female		80	64.8 ± 8.3	Vertebral	WHO	Sex		80	47.2 ± 13.6	HWE	Yes	Vertebral	12
Langdahl et al. (2000)		Denmark	Men		30	55.7 ± 11.0	Vertebral	WHO	Sex		73	51.1 ± 15.7	HWE	Yes	Vertebral	13
Välimäki et al. (2001)	Finland	E	Female		64	78.9	Hip	WHO	Sex		88	Ne	HWE	Yes	Vertebral	15
Feskanich et al. (1998)	USA	Am	Female		54	62.3 ± 5.7	Forearm	WHO	Age and Sex	108	62.2 ± 5.7	HWE	Yes	Hip	13	
Gomez et al. (2000)	Greece	E	Female		37	78.9	Vertebral	WHO	Sex		122	Ne	Vertebral	13		
Gómez et al. (1999)	Spain	E	Female		39	Ne	Vertebral	WHO	Sex		114	Ne	Vertebral	13		
Langdahl et al. (2000)		Denmark	Men		80	64.8 ± 8.3	Vertebral	WHO	Sex		80	47.2 ± 13.6	HWE	Yes	Vertebral	12
Välimäki et al. (2001)	Finland	E	Female		64	78.9	Hip	WHO	Sex		88	Ne	HWE	Yes	Vertebral	15
Feskanich et al. (1998)	USA	Am	Female		54	62.3 ± 5.7	Forearm	WHO	Age and Sex	108	62.2 ± 5.7	HWE	Yes	Hip	13	
Gomez et al. (2000)	Greece	E	Female		37	78.9	Vertebral	WHO	Sex		122	Ne	Vertebral	13		
Gómez et al. (1999)	Spain	E	Female		39	Ne	Vertebral	WHO	Sex		114	Ne	Vertebral	13		
Selection Criteria

The inclusion criteria were as follows: 1) case–control or cohort studies; 2) investigation of the association between VDR BsmI, Apal, TaqI, FokI, and Cdx2 polymorphisms and osteoporosis risk; and 3) detailed control and case group genotype data or their OR with 95% CI. The exclusion criteria were as follows: 1) overlapping studies; 2) articles without detailed genotype data; and 3) abstracts, case reports, editorials, reviews, letters, and meta-analyses.

A total of 221 articles were retrieved from all databases. In all, 194 articles were subsequently excluded because they were abstracts, case reports, editorials, reviews, letters, or meta-analyses. When the remaining 27 articles were read, two articles were excluded because patients with both osteoporosis and osteoporotic fractures were considered in the same group. In addition, two articles were found to be repetitive, and one article had missing genotype data, and attempts to contact the corresponding author have not been answered. In the end, 23 relevant studies were included. In the process of article screening, the retrieval work and the screening process were performed by Yi-yang Mu and Biao-Liu independently and then summarized, and the author Bin-Chen made the final decision when there was any disagreement.

Data Extraction

We predesigned the data extraction form. The data from the selected articles were extracted and cross-checked according to the defined inclusion and exclusion criteria. When different results were obtained, and no consensus could be reached after the discussion, a third author was invited to repeat the data extraction and check for confirmation. If the data were unclear or questionable in the article, the author was contacted to obtain the original data. The following information was extracted: first author of the article, year of publication, country of study, corresponding continent, origin of cases and controls, type of osteoporotic fracture, sex of study subjects, number of cases and controls, number of genotypes distributed among cases and controls, diagnostic criteria for osteoporotic fractures, and conclusion of the investigators.

Quality Assessment

The quality of all articles was independently assessed by two authors. We adopted and refined the quality assessment criteria from two previous meta-analyses (Aerssens et al., 2000; Moher et al., 2009). **Supplementary Table S1** lists the quality assessment scales for studies on the factors associated with osteoporotic fracture risk. A total of 20 points were awarded, with articles scoring above 12 rated as excellent, those lying between 9 and 12 labeled as moderate, and studies scoring below 9 rated as poor.

Statistical Analysis

The strength of association was evaluated using ORs with their 95% CIs and was considered statistically significant when the P-value was <0.05. Comparisons were performed using the following five genetic models: 1) allelic model, 2) additive

Table 1 | (Continued) Main characteristics and quality score of studies included.

First author / Year	Country	Ethnicity	Gender	Cases	Controls	N	Agea	Matching	Diagnosis	OF site	BMD site	HWE	Healthy	BMD	Site	
Langdahl et al. (2000)	Denmark	E	Men	30	55.7 ± 11.0	13	12	Verterbral	WHO	Age and Sex	73	51.1 ± 9.9	HWE	Yes	Verterbral	13
Horst-Sikorska et al. (2007)	Poland	E	Female	85	64.4 ± 10.9	12	10	Hip	WHO	Age and Sex	191	65.5 ± 9.9	HWE	Yes	Hip	12
Quevedo et al. (2008)	Chile	Am	Female	67	77 ± 12.5	10	8	Hip	T-Score < 2.0	Age and Sex	59	78 ± 9.9	HWE	Yes	Hip	8
Karpinski et al. (2017)	Brazil	E	Ne	100	11.5 ± 2.5	10	8	Ne	WHO	Age and Sex	124	13.5 ± 2.5	HWE	Yes	Ne	8
Aleksandra et al. (2019)	Poland	E	Ne	69	60.3 ± 11.2	11	9	Hip	WHO	Age and Sex	51	65.0 ± 9.9	HWE	Yes	Hip	9
Iveta et al. (2020)	Slovak	E	Female	13	67.16 ± 9.22	11	8	Verterbral	WHO	Age and Sex	390	65.01 ± 9.28	HWE	Yes	Verterbral	8
Iveta et al. (2020)	Slovak	E	Female	68	67.16 ± 9.22	11	8	Noverterbral	WHO	Age and Sex	335	65.01 ± 9.28	HWE	Yes	N/A	8
Fang et al. (2003)	Dutch	E	Ne	381	Ne	Ne	12	Ne	WHO	Sex	1534	Ne	HWE	Yes	Ne	12
Fang et al. (2003)	Dutch	E	Ne	217	Ne	Verterbral	12	Ne	WHO	Sex	1698	Ne	HWE	Yes	Verterbral	12
Fang et al. (2003)	Dutch	E	Ne	248	Ne	Noverterbral	12	Ne	WHO	Sex	2600	Ne	HWD	Yes	N/A	12
Ling et al. (2016)	China	A	Female	67	Ne	Noverterbral	11	Ne	WHO	Sex	352	Ne	HWE	Yes	Ne	11
Ling et al. (2016)	China	A	Men	15	Ne	Noverterbral	11	Ne	WHO	Sex	295	Ne	HWE	Yes	Ne	11
Ling et al. (2016)	China	A	Female	76	Ne	Ne	11	Ne	WHO	Sex	352	Ne	HWE	Yes	Ne	11
model, 3) dominant model, 4) recessive model, and 5) over-dominant model. The chi-square–based Q test and I² values were used to assess heterogeneity. \(P > 0.10 \) and/or \(I^2 < 50\% \) indicated no significant heterogeneity among the included studies, and a fixed-effects model was used. Otherwise, a random-effects model was applied. Publication bias was detected using Begg’s funnel plot and Egger’s test. Sensitivity analyses were assessed using three methods: 1) exclusion of one included study; 2) exclusion of included HWD studies and low-quality studies; and 3) only including high-quality studies, the Hardy–Weinberg equilibrium (HWE), and matched studies. A chi-square goodness-of-fit test was applied to assess the HWE, and controls were identified as the HWE when \(p > 0.05 \). In addition, the false-positive reporting probability (FPRP) test and Venice criteria were used to assess the credibility of statistically significant associations. The abovementioned statistical analyses were made possible using Stata 12.0 software.

RESULTS

Description of Included Studies

A total of 221 relevant studies were retrieved, and 23 articles met our criteria (5,844 osteoporotic fracture cases and 19,339 controls), of which 18 articles examined VDR BsmI (involving 2,429 osteoporotic fracture cases and 5,187 controls), eight studies discussed VDR ApaI (involving 875 osteoporotic fracture cases and 2,120 controls), nine studies reported VDR TaqI (involving 860 osteoporotic fracture cases and 2,538 controls), seven studies documented VDR FokI (involving 579 osteoporotic fracture cases and 1635 controls), and three studies investigated VDR Cdx2 (involving 1101 osteoporotic fracture cases and 7859 controls), and how each of these polymorphisms correlates with osteoporotic fracture risk. In addition, 18, 5, and 1 case–control studies have been conducted in European, American, and Asian populations, respectively. Among them, four studies discussed these associations in men, and 22 studies analyzed these relationships in women. Finally, there were six high-quality studies and 12 medium-quality studies discussing VDR BsmI; two high-quality studies and seven medium-quality studies discussing VDR ApaI; two high-quality studies and six medium-quality studies on VDR TaqI; one high-quality, five medium-quality, and one low-quality studies on VDR FokI; and one medium-quality and two low-quality studies on VDR Cdx2. Table 1 shows the detailed characteristics and scores of each study. The literature selection and inclusion processes are illustrated in Figure 1. Tables 2–6 show the genotype frequencies of the VDR BsmI, ApaI, TaqI, FokI, and Cdx2 polymorphisms, and the impact of each on the risk of osteoporotic fracture.

Meta-Analysis Results

We did not observe a significant association between the VDR BsmI polymorphism and the risk of osteoporotic fractures (\(p > \)
First author/year	Country	Ethnicity	Source of controls	Fracture type	Sex	HWE	Number of samples	Genotypes of cases	Alleles of cases	Minor allele frequency	Genotypes of controls	Controls' alleles	Minor allele frequency					
Houston et al. (1996)	United Kingdom	E	Hospital	Vertebral	F	ch2 0.571	P 0.4498	44	44 88	35 53	1.514285714	9	B/B 19	16	37 51	1.378923078		
Feskanich et al. (1998)	United States	Am	Population	Hip	F	ch2 0.085	P 0.7702	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Feskanich et al. (1998)	United States	Am	Population	Forearm	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Romano et al. (1996)	Brazil	Am	Hospital	Hip	F	ch2 0.085	P 0.7702	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Gómez et al. (1999)	Spain	E	Population	Vertebral	M	ch2 3.825	P 0.0505	56	36 92	13	23 20	49 63	2.857142857	7	B/B 11	18	25 47	1.88
Gómez et al. (1999)	Spain	E	Population	Vertebral	M	ch2 3.825	P 0.0505	56	36 92	13	23 20	49 63	2.857142857	7	B/B 11	18	25 47	1.88
Ramalho et al. (1998)	Brazil	Am	Hospital	Hip	F	ch2 8.184	P 0.0036	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Gómez et al. (1999)	Spain	E	Population	Hip	F	ch2 8.184	P 0.0036	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Aerssens et al. (2000)	Belgium	E	Hospital	Hip	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Gómez et al. (1999)	Spain	E	Population	Forearm	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Aerssens et al. (2000)	Belgium	E	Hospital	Hip	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Langdahl BL et al. (2000)	Denmark	E	Community	Vertebral	M	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Langdahl BL et al. (2000)	Denmark	E	Community	Hip	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Välimäki et al. (2001)	Finland	E	Population	Vertebral	F	ch2 8.184	P 0.0036	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Uitterlinden et al. (2001)	Netherlands	E	Population	Any	F	ch2 8.184	P 0.0036	54	108 162	16	21 17	53 55	1.037358649	16	B/B 53	39	85 131	1.541176471
Alvarez-Hernández et al. (2003)	Spain	E	Population	Vertebral	M	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Gómez et al. (1999)	Spain	E	Population	Forearm	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Aerssens et al. (2000)	Belgium	E	Hospital	Hip	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Horst-Sikorska et al. (2005)	Poland	E	Population	Non-vertebral	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Efesoy et al. (2003)	Turkey	A	Hospital	Vertebral	F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
Alekseandr et al. (2019)	Poland	E	Hospital	Vertebral and femur	M/F	ch2 2.055	P 0.1517	163	163 326	25	83 55	133 193	1.45112782	26	B/B 89	48	141 185	1.312056738
TABLE 3 | Genotype frequencies of VDR ApaI polymorphism in studies included in this meta-analysis.

First author/year	Country	Ethnicity	Source of controls	Fracture type	Sex	HWE	Number of samples	Genotypes of cases	Alleles of cases	Minor allele frequency	Genotypes of controls	Controls' alleles	Minor allele frequency
Langdahl et al. (2000)	Denmark	E	Community	Vertebral F	1.155	0.2826	78 74 152	22 44 12	88 68	0.772727273	25 32 17	82 66	0.804878049
Langdahl et al. (2000)	Denmark	E	Community	Vertebral M	1.779	0.1823	29 73 102	8 17 4	33 25	0.757575758	18 42 13	78 68	0.871794872
Uitterlinden et al. (2001)	Netherlands	E	Population	Any F	2.709	0.0998	97 907 1004	15 48 34	78 116	1.487179487	258 428 221	944 870	0.921610169
Alvarez-Hernández et al. (2003)	Spain	E	Population	Vertebral M	0.118	0.7313	17 117 134	4 12 1	20 14	0.7	33 60 24	123 108	0.87804878
Horst-Sikorska et al. (2005)	Poland	E	Population	Vertebral F	1.445	0.2293	48 93 141	8 21 19	37 59	1.584594596	24 52 17	100 86	0.86
Horst-Sikorska W et al. (2007)	Poland	E	Population	Hip F	0.450	0.5024	85 191 276	20 36 29	76 74	0.973684211	49 100 42	198 184	0.929292929
Quevedo et al. (2008)	Chile	Am	Hospital	Hip F	0.383	0.5363	67 59 126	25 31 11	81 53	0.664320988	18 27 14	63 55	0.873015873
Horst-Sikorska et al. (2013)	Poland	E	Hospital	Vertebral F	1.508	0.2195	168 216 384	41 83 44	165 171	1.036363636	48 117 51	213 219	1.028169014
Horst-Sikorska et al. (2013)	Poland	E	Hospital	Non-vertebral	1.508	0.2195	117 216 333	18 59 40	95 139	1.463157895	48 117 51	213 219	1.028169014
Karpiński et al. (2017)	Brazil	E	Hospital	Any M/F	0.204	0.6516	100 123 223	23 43 34	89 111	1.247191011	29 64 30	122 124	1.016393443
Aleksandra et al. (2019)	Poland	E	Hospital	Hip M/F	0.157	0.6916	69 51 120	17 35 17	69 69	1	15 24 12	54 48	0.888888889
TABLE 4 | Genotype frequencies of VDR TaqI polymorphism in studies included in this meta-analysis.

First author/year	Country	Ethnicity	Source of controls	Fracture type	Sex	HWE	Number of samples	Genotypes of cases	Alleles of cases	Minor allele frequency	Genotypes of controls	Controls’ alleles	Minor allele frequency													
Langdahl et al. (2000)	Denmark	E	Community	Vertebral	F	0.231	78	75	153	23	41	14	87	69	0.792	103	44	28	34	13	90	60	0.666	666666667		
Langdahl et al. (2000)	Denmark	E	Community	Vertebral	M	0	0.9945	29	73	102	8	19	2	35	23	0.657	142	857	29	34	10	92	54	0.586	6956922	
Utterhelden et al. (2001)	Netherlands	E	Population	Any	F	3.045	97	907	1004	49	41	7	139	55	0.3956	83453	319	416	117	1054	760	0.721	062	8319		
Alvarez-Hernández et al. (2003)	Spain	E	Population	Vertebral	M	0.523	21	117	138	7	7	7	21	21	1	40	60	17	140	94	0.671	428	571			
Horst-Sikorska et al. (2005)	Poland	E	Population	Vertebral	F	2.554	48	93	141	26	19	3	71	25	0.3521	12676	38	37	18	113	73	0.646	017	699		
Nguyen et al. (2005)	Australia	E	Population	Hip	F	1.023	69	608	677	24	27	18	75	63	0.84	218	302	88	738	478	0.647	696	477			
Quevedo et al. (2008)	Chile	E	Am	Hospital	Hip	F	1.912	67	59	126	26	31	10	83	51	0.614	457	831	17	34	8	68	50	0.735	294	118
Horst-Sikorska et al. (2013)	Poland	E	Hospital	Vertebral	F	4.237	168	216	384	62	79	27	203	133	0.6551	72414	82	90	44	254	178	0.700	787402			
Horst-Sikorska et al. (2013)	Poland	E	Hospital	Non-vertebral	F	4.237	117	216	333	55	49	13	159	75	0.471	698113	82	90	44	254	178	0.700	787402			
Karpinski et al. (2017)	Brazil	E	Hospital	Any	M/F	21.417	0	97	123	220	43	52	2	138	56	0.405	797101	44	77	2	165	81	0.490	909091		
Aleksandra et al. (2019)	Poland	E	Hospital	Hip	M/F	0.462	69	51	120	32	26	11	90	48	0.5333	33333	20	22	9	62	40	0.645	16129			
The VDR BsmI polymorphism was found to significantly increase the risk of osteoporotic fracture (OR 1.17, 95% CI 1.03–1.34). In the overall analysis, it was not found whether VDR ApaI polymorphism could significantly increase the risk of osteoporotic fracture (p > 0.05 in all genetic models). When stratified by race, the results showed that in the European population, the aa genotype increased the risk of osteoporotic fracture compared with the AA genotype (allelic model: OR 0.83, 95% CI 0.71–0.97; additive model: OR 1.50, 95% CI 1.09–2.07; dominant model: OR 1.26, 95% CI 1.02–1.56; recessive model: OR 1.40, 95% CI 1.07–1.83). All data are shown in Table 8 and Figure 3.

Heterogeneity and Sensitivity Analyses
We observed heterogeneity in the overall and several subgroup analyses. Heterogeneity may be attributed to factors such as race, sex, and HWE. To explore the source of heterogeneity, a regression meta-analysis was used. However, no obvious source of heterogeneity was found by the results of regression meta-analyses. However, if it was taken into consideration that the previous exclusion of HWD-related articles leads to significant results in subgroup analysis, then it can be said that the source of heterogeneity might be HWD-related. Sensitivity analysis was estimated using three methods. First, a study was deleted every time to evaluate its robustness, and no change was observed in the research results. However, a significant change was observed in the obtained results once when low-quality and HWD studies were excluded. In previous studies, the VDR BsmI B allele increased the risk of osteoporotic fracture (OR 1.17, 95% CI 1.03–1.34), and the bb genotype reduced the risk of osteoporotic fracture in the United States (additive model: OR 0.74, 95% CI 0.88–0.94; allelic model: OR 0.81, 95% CI 0.66–0.99), but after excluding low-quality and HWD studies, the results showed no significant association between VDR Bsm1 gene polymorphism and the risk of osteoporotic fractures. In addition, an increased risk of osteoporosis fracture was found in individuals with the AA 0.05) in all genetic models. However, subgroup analysis by race showed that the VDR BsmI B allele increased the risk of osteoporotic fracture (OR 1.17, 95% CI 1.03–1.34), and the BB genotype (additive model: OR 0.74, 95% CI 0.58–0.94; recessive model: OR 0.81, 95% CI 0.66–0.99) reduced the risk of osteoporotic fractures in Americans. We believe that articles with HWD control data should be excluded because the inclusion of HWD articles may interfere with the real results. When HWD-related article data were excluded, the positive results of the subgroup analysis corresponding to race changed. Table 7 summarizes the evaluation of the association between VDR BsmI polymorphism and the risk of osteoporotic fractures. Overall, the VDR BsmI polymorphism did not significantly increase the risk of osteoporotic fractures, as shown in Figure 2.
First author/year	Country	Ethnicity	Source of controls	Fracture type	Sex	HWE	Number of samples	Genotypes of cases	Alleles of cases	Minor allele frequency	Controls’ alleles	Minor allele frequency		
Fang et al. (2003)	Netherlands	E	Hospital	Any	F/M	2.293	0.13	381	1534 1915	639 123	0.192488263	1002 464 68	0.243111831	
Fang et al. (2003)	Netherlands	E	Hospital	Vertebral	F/M	2.159	0.1417	217	1698 1915	156 56 6	0.179347826	1114 511 73	2739 667	0.239888565
Fang et al. (2003)	Netherlands	E	Hospital	Non-vertebral	F/M	4.547	0.033	248	2600 2848	173 70 5 416 80	0.192307692	1721 768 111	4210 990 0.235154394	
Ling et al. (2016)	China	A	Hospital	Non-vertebral	F	1.427	0.2323	67	361 428	15 35 17 65 69	1.061538462	130 164 67	424 298 0.702830189	
Ling et al. (2016)	China	A	Hospital	Non-vertebral	M	0.595	0.4405	15	295 310	8 6 1 22 8	0.363636364	93 151 51	337 253 0.75074184	
Ling et al. (2016)	China	A	Hospital	Any	F	1.140	0.2857	76	352 428	19 38 19 76 76	1	126 161 65	413 291 0.704600484	
Ling et al. (2016)	China	A	Hospital	Any	M	0.510	0.475	16	294 310	8 7 1 23 9	0.391304348	93 150 51	336 252 0.75	
Iveta et al. (2020)	Slovak	E	Hospital	Vertebral	F	0.001	0.9708	13	390 403	7 6 0 20 6	0.3	260 117 13	637 143 0.224489796	
Iveta et al. (2020)	Slovak	E	Hospital	Non-vertebral	F	1.259	0.2619	68	335 403	21 38 9 80 56	0.7	246 85 4	577 93 0.16117851	
genotype only in the European population (allele model: OR 0.83, 95% CI 0.70–0.98; additive model: OR 1.52, 95% CI 1.07–2.16; dominant model: OR 1.26, 95% CI 1.01–1.57; recessive model: OR 1.42, 95% CI 1.06–1.90), which was also different from previous studies (allelic model: OR 0.83, 95% CI 0.71–0.97; additive model: OR 1.50, 95% CI 1.09–2.07; dominant model: OR 1.26, 95% CI

Genetic model	Variable	Test of association	Tests for heterogeneity	Egger’s test		
		OR (95% CI)	P	P_h	I^2 (%)	P_E
B vs b	Overall	0.94 (0.81–1.09)	0.413	<0.001	60.70	0.450
	Europe	0.92 (0.78–1.09)	0.322	<0.001	61.50	
	America	1.18 (0.82–1.70)	0.363	0.139	49.4	
	Female	0.92 (0.77–1.10)	0.399	<0.001	65.60	
	Male	1.09 (0.69–1.71)	0.709	0.183	41.1	
bb vs BB	Overall	1.13 (0.83–1.53)	0.437	<0.001	55.50	0.953
	Europe	1.20 (0.86–1.67)	0.289	0.002	56.20	
	America	0.73 (0.38–1.40)	0.347	0.186	40.5	
	Female	1.16 (0.81–1.65)	0.417	<0.001	61.10	
	Male	0.83 (0.38–1.82)	0.642	0.295	18.00	
Bb + bb vs BB	Overall	1.11 (0.88–1.39)	0.381	0.044	37.50	0.399
	Europe	1.18 (0.93–1.49)	0.171	0.100	32.10	
	America	0.72 (0.40–1.31)	0.284	0.182	41.3	
	Female	1.13 (0.86–1.48)	0.377	0.020	47.0	
	Male	0.91 (0.49–1.69)	0.756	0.823	0.00	
bb vs BB + Bb	Overall	1.08 (0.89–1.31)	0.457	0.007	48.40	0.098
	Europe	1.08 (0.87–1.35)	0.471	0.018	52.00	
	America	0.91 (0.59–1.42)	0.690	0.245	28.90	
	Female	1.09 (0.87–1.36)	0.449	0.006	53.50	
	Male	0.88 (0.40–1.95)	0.756	0.098	57.00	
BB + bb vs Bb	Overall	1.01 (0.89–1.15)	0.819	0.900	0.00	0.372
	Europe	0.99 (0.87–1.14)	0.935	0.893	0.00	
	America	1.13 (0.39–3.13)	0.545	0.299	17.10	
	Female	1.01 (0.88–1.16)	0.857	0.829	0.00	
	Male	0.95 (0.56–1.60)	0.846	0.305	15.80	

VDR BsmI: allele model: B vs. b, additive model: bb vs. BB, dominant model: Bb + bb vs. BB, recessive model: bb vs. BB + Bb, over-dominant model: BB+ bb vs. Bb.

Bold values represent with statistical significance.
1.02–1.56; recessive model: OR 1.40, 95% CI 1.07–1.83). In addition, when the studies were limited to only high quality, HWE, and matching, the corresponding total OR value was not significantly changed. The sensitivity analysis results are presented in Table 13.

Publication Bias

Publication bias was evaluated using Begg’s funnel plot and Egger’s test. The shape of the funnel plot shows that there was no obvious funnel asymmetry in the entire population (Figure 7). Egger’s test also showed no evidence of
FIGURE 2 | (continued)
FIGURE 3 | Forest plots of all selected studies on the association between VDR Apal polymorphism and the risk of osteoporotic fracture in different races [(A) allele model, (B) additive model, (C) dominant model, and (D) recessive model].
FIGURE 3 (continued)
significant publication bias ($p > 0.05$ in all genetic models), as displayed in Tables 7–11.

Credibility of the Identified Genetic Associations

We determined that significant associations meeting the following statistical criteria were classified as “positive results” (Montazeri et al., 2019): 1) the P value of the Z-test <0.05 in at least two gene models; 2) at the P value level of 0.05, the FPRP was <0.2; 3) statistical power >0.8; and 4) $I^2 < 50\%$. Results were considered as “less credible results” with a lower threshold when the following conditions were met: 1) $p < 0.05$ in at least one of the genetic models; 2) the statistical power was between 50 and 79$\%$, FPRP >0.2, or $I^2 > 50\%$. After confidence evaluation, it was determined that the statistically significant associations in this
meta-analysis were “unreliable.” The detailed confidence evaluation results are presented in Table 14.

DISCUSSION

Osteoporosis is characterized by decreased bone density and increased bone fragility, which leads to increased fracture risk (Recker, 2005). Genes play an important role in the development of osteoporotic fractures, and the VDR gene has been extensively studied as a candidate gene that plays a key role in regulating bone resorption and metabolism (Jin and Ralston, 2001; Recker and Deng, 2002), and influencing bone mass (Kim et al., 2007). Therefore, it is important to study the relationship between VDR polymorphisms and osteoporotic fracture risk. Many previous studies have attempted to clarify the relationship between the polymorphisms of VDR and the risk of osteoporotic fracture. Unfortunately, there is no reliable
evidence to show whether there is a relationship between them, which may be due to different reasons, including small sample size, race, and regional differences. Therefore, a meta-analysis is a valid alternative.

This meta-analysis included 23 studies, among which 18 explored the relationship between the VDR polymorphism BsmI and osteoporosis fracture risk, eight studies reported VDR ApaI polymorphism, nine studies reported VDR TaqI polymorphism, seven studies reported VDR FokI polymorphism, and three studies were related to VDR Cdx2 polymorphism. In addition, five genetic models were compared. Overall, the VDR BsmI polymorphism had no significant effect on the risk of osteoporotic fractures. However, in subgroup analysis, there was a significant correlation between the two. Moreover, the VDR ApaI polymorphism also did not significantly affect the risk of...
osteoporotic fracture. According to racial stratification, it was found that the genotype aa increased the risk of osteoporotic fracture in European countries compared with the AA genotype. However, no meaningful results were found regarding the relationship between the VDR polymorphisms (TaqI, VDR FokI, and Cdx2) and osteoporotic fracture. Moreover, when the low-quality and HWD research were excluded, and when the combined analysis involved only high-quality, HWE, and matching research, no significant correlation was observed. Furthermore, the current meta-analysis was carried out by applying multiple subgroups and different genetic models at the expense of multiple comparisons; in this case, the aggregated P value must be adjusted (Attia et al., 2003).
The Venice standard, statistical ability, and I^2 value are important standards (Langdahl et al., 2000). Therefore, the FPRP and Venice standards were used to evaluate positive results. After the credibility evaluation, it was determined that "positive results are not credible," which are statistically significant in the current meta-analysis. After the regression meta-analysis, no source of obvious heterogeneity was identified. In addition, no obvious asymmetry was found in the study of VDR BsmI, Apal, TaqI, and FokI polymorphisms using Begg's funnel plot and Egger's test. However, owing to the limited number of studies, Begg's funnel plot was not used to explore publication deviation in VDR Cdx2 research. Finally, Egger's test showed that there was no clear statistical evidence to show publication bias.

Four meta-analyses analyzed the association between VDR polymorphisms and risk of osteoporotic fracture. Fang et al. (Shen et al., 2014), Shen et al. (Moher et al., 2009), and Gao et al. (Aerssens et al., 2000) discussed the association between the VDR BsmI polymorphism and the risk of osteoporotic fracture. FIGURE 6 | Forest plots of all selected studies on the association between VDR Cdx2 polymorphism and the risk of osteoporotic fracture in different races [(A) allele model, (B) additive model, (C) dominant model, and (D) recessive model].
fracture, and their results showed that there was no significant association between VDR BsmI polymorphism and the risk of osteoporotic fracture. However, Ji et al. (Gao et al., 2015) examined 17 studies on the relationship of VDR BsmI polymorphism with osteoporotic fracture risk, including 2,112 osteoporotic fracture cases and 4,521 controls, and indicated that there was a statistically significant association between the VDR BsmI polymorphism and osteoporotic fracture risk. In addition, Fang et al. (Shen et al., 2014) and Shen et al. (Moher et al., 2009) examined four and five VDR TaqI studies, respectively, all of which considered that the VDR TaqI polymorphism was not significantly associated with osteoporotic fracture risk. Four studies on VDR ApaI and four studies on VDR FokI analyzed by Shen et al. (Moher et al., 2009) did not find that the VDR ApaI and FokI polymorphisms increased the risk of osteoporotic fracture. In addition, some shortcomings were found when published meta-analyses were carefully checked. First, there was no quality evaluation for the included studies in the two meta-analyses (Shen et al., 2014; Gao et al., 2015), results.
TABLE 9 | Pooled estimates of association of VDR TaqI polymorphism and the risk of osteoporotic fracture.

Genetic model	Variable	Test of association	Tests for heterogeneity	Egger’s test		
		OR (95% CI)	P	P_h	I^2 (%)	P_E
T vs t	Overall	1.10 (0.83–1.47)	0.510	0.005	65.80	0.497
	Europe	1.09 (0.78–1.51)	0.623	0.002	70.70	
	Female	1.20 (0.81–1.78)	0.356	0.002	76.50	
	Male	0.78 (0.50–1.23)	0.284	0.538	0	
tt vs TT	Overall	0.82 (0.44–1.54)	0.544	0.004	66.40	0.549
	Europe	0.82 (0.40–1.68)	0.590	0.002	71.20	
	Female	0.70 (0.29–1.68)	0.422	0.001	77.80	
	Male	1.54 (0.51–4.67)	0.445	0.267	18.8	
Tt + tt vs TT	Overall	0.84 (0.62–1.14)	0.254	0.119	39.00	0.183
	Europe	0.84 (0.62–1.23)	0.439	0.085	46.00	
	Female	0.77 (0.53–1.13)	0.187	0.082	51.70	
	Male	1.36 (0.69–2.68)	0.379	0.463	0	
tt vs TT + Tt	Overall	0.91 (0.49–1.66)	0.749	0.001	70.20	0.276
	Europe	0.87 (0.43–1.75)	0.699	0.001	74.50	
	Female	0.79 (0.35–1.78)	0.187	0.001	78.20	
	Male	1.29 (0.21–8.00)	0.784	0.053	73.30	
TT + tt vs Tt	Overall	1.15 (0.87–1.50)	0.323	0.219	26.20	0.705
	Europe	1.10 (0.82–1.47)	0.537	0.194	30.70	
	Female	1.18 (0.92–1.52)	0.186	0.427	0.00	
	Male	0.97 (0.22–4.32)	0.968	0.024	80.30	

VDR TaqI: allele model: T vs. t, additive model: tt vs. TT, dominant model: Tt + tt vs. TT, recessive model: tt vs. TT + Tt, over-dominant model: TT + tt vs. Tt.

TABLE 10 | Pooled estimates of association of VDR FokI polymorphism and the risk of osteoporotic fracture.

Genetic model	Variable	Test of association	Tests for heterogeneity	Egger’s test		
		OR (95% CI)	P	P_h	I^2 (%)	P_E
F vs f	Overall	0.84 (0.63–1.11)	0.210	0.009	62.80	0.609
	Europe	0.84 (0.61–1.15)	0.269	0.005	68.00	
	Female	0.79 (0.56–1.11)	0.178	0.005	70.20	
ff vs FF	Overall	1.48 (0.80–2.75)	0.212	0.006	64.30	0.949
	Europe	1.49 (0.73–3.03)	0.274	0.003	69.40	
	Female	1.66 (0.77–3.67)	0.185	0.003	71.90	
Ff + ff vs FF	Overall	1.27 (0.86–1.82)	0.196	0.071	48.30	0.199
	Europe	1.31 (0.86–2.00)	0.206	0.043	53.80	
	Female	1.43 (0.90–2.27)	0.134	0.036	58.00	
ff vs FF + Ff	Overall	1.23 (0.77–1.97)	0.377	0.019	58.20	0.122
	Europe	1.20 (0.71–2.03)	0.503	0.010	64.20	
	Female	1.28 (0.72–2.27)	0.400	0.009	67.40	
FF + ff vs Ff	Overall	0.97 (0.78–1.22)	0.821	0.684	0	0.237
	Europe	0.96 (0.76–1.22)	0.750	0.584	0.00	
	Female	0.96 (0.75–1.22)	0.719	0.463	0.00	

VDR FokI: allele model: F vs. f, additive model: ff vs. FF, dominant model: Ff + ff vs. FF, recessive model: ff vs. FF + Ff, over-dominant model: FF + ff vs. Ff.

TABLE 11 | Pooled estimates of association of VDR Cdx2 polymorphism and the risk of osteoporotic fracture.

Genetic model	Variable	Test of association	Tests for heterogeneity	Egger’s test		
		OR (95% CI)	P	P_h	I^2 (%)	P_E
G vs A	Overall	0.89 (0.56–1.41)	0.628	<0.001	90.40	0.697
AA vs GG	Overall	1.22 (0.48–3.13)	0.679	<0.001	83.10	0.918
AG + AA vs GG	Overall	1.23 (0.71–2.12)	0.463	<0.001	88.30	0.434
AA vs GG + AG	Overall	1.11 (0.55–2.24)	0.764	<0.001	73.50	0.830
GG + AA vs AG	Overall	0.84 (0.57–1.23)	0.377	<0.001	76.60	0.385

VDR Cdx2: allele model: G vs. A, additive model: AA vs. GG, dominant model: AG + AA vs. GG, recessive model: AA vs. GG + AG, over-dominant model: GG + AA vs. AG.
TABLE 12 | Data related to the HWD article were not excluded.

Genetic model	Variable	Test of association OR (95% CI)	Tests for heterogeneity P_r I^2 (%)	Egger’s test P_E	
		Overall: B vs b			
		Europe: 0.92 (0.78–1.09)	0.317	0.010	
		America: 1.17 (1.03–1.34)	0.018	6.4	
		Female: 0.95 (0.81–1.12)	0.684	68.60	
		Male: 1.09 (0.69–1.71)	0.709	41.1	
		Overall: bb vs BB	1.07 (0.81–1.41)	0.079	0.001
		Europe: 1.02 (0.86–1.27)	0.562	64.80	
		America: 0.74 (0.58–0.94)	0.121	0.001	
		Female: 1.10 (0.79–1.47)	0.629	62.80	
		Male: 0.83 (0.38–1.82)	0.642	18.00	
		Overall: Bb vs BB + bb	1.06 (0.87–1.30)	0.535	36.50
		Europe: 1.18 (0.93–1.49)	0.171	32.10	
		America: 0.83 (0.67–1.02)	0.409	0.00	
		Male: 1.08 (0.86–1.36)	0.524	45.30	
		Overall: bb vs $BB + Bb$	1.03 (0.85–1.24)	0.774	56.20
		Europe: 1.08 (0.87–1.35)	0.471	52.00	
		America: 0.81 (0.66–0.99)	0.040	66.80	
		Female: 1.03 (0.84–1.27)	0.781	60.90	
		Male: 0.88 (0.40–1.95)	0.756	57.00	
		Overall: $BB + bb$ vs Bb	0.96 (0.86–1.06)	0.429	0.00
		Europe: 0.99 (0.87–1.14)	0.935	0.00	
		America: 0.93 (0.75–1.16)	0.527	15.60	
		Female: 0.95 (0.85–1.86)	0.372	0.00	
		Male: 0.95 (0.56–1.69)	0.846	15.80	
		Overall: A vs a	0.86 (0.74–1.01)	0.072	38.30
		Europe: 0.83 (0.71–0.97)	0.089	30.00	
		Female: 0.84 (0.67–1.04)	0.104	56.90	
		Male: 1.19 (0.75–1.91)	0.462	0.00	
		Overall: aa vs AA	1.38 (0.99–1.93)	0.057	39.30
		Europe: 1.50 (1.09–2.07)	0.012	30.20	
		Female: 1.50 (0.97–2.32)	0.088	55.90	
		Male: 0.57 (0.17–1.87)	0.353	0.00	
		Overall: $Aa + aa$ vs AA	1.21 (0.99–1.49)	0.065	0.00
		Europe: 1.26 (1.02–1.56)	0.032	0.00	
		Female: 1.27 (0.95–1.69)	0.103	30.90	
		Male: 1.01 (0.47–2.14)	0.986	0.00	
		Overall: aa vs $AA + Aa$	1.31 (1.00–1.73)	0.054	43.60
		Europe: 1.40 (1.07–1.83)	0.015	38.00	
		Female: 1.39 (0.99–1.94)	0.056	54.60	
		Male: 0.56 (0.19–1.58)	0.271	0.00	
		Overall: $AA + aa$ vs Aa	1.08 (0.90–1.30)	0.420	13.10
		Europe: 1.08 (0.88–1.33)	0.443	21.10	
		Female: 1.10 (0.88–1.36)	0.398	18.50	
		Male: 0.70 (0.33–1.48)	0.349	15.20	
		Overall: T vs t	1.15 (0.95–1.40)	0.159	56.40
		Europe: 1.15 (0.93–1.42)	0.212	60.70	
		Female: 1.22 (0.94–1.58)	0.138	68.70	
		Male: 0.78 (0.50–1.23)	0.284	0.00	
		Overall: tt vs TT	0.77 (0.49–1.21)	0.264	57.90
		Europe: 0.77 (0.47–1.26)	0.297	62.20	
		Female: 0.68 (0.38–1.20)	0.181	70.30	
		Male: 1.54 (0.51–4.67)	0.445	18.8	
		Overall: $Tt + tt$ vs TT	0.82 (0.66–1.01)	0.061	27.00
		Europe: 0.83 (0.67–1.05)	0.116	32.30	
		Female: 0.80 (0.61–1.05)	0.101	43.20	
		Male: 1.36 (0.69–2.68)	0.379	0.00	
		Overall: tt vs $TT + Tt$	0.84 (0.54–1.32)	0.453	63.80
		Europe: 0.82 (0.50–1.33)	0.421	67.10	
		Female: 0.74 (0.43–1.26)	0.270	71.80	
		Male: 1.29 (0.21–8.00)	0.784	73.30	
		Overall: $TT + tt$ vs Tt	1.09 (0.89–1.34)	0.387	23.80

(Continued on following page)
TABLE 12 | (Continued) Data related to the HWD article were not excluded.

Genetic model	Variable	Test of association	Tests for heterogeneity	Egger’s test		
		OR (95% CI)	P	P_h	I² (%)	P_E
Europe		1.06 (0.86–1.31)	0.560	0.215	24.80	0.573
Female		1.05 (0.86–1.29)	0.615	0.375	6.90	
Male		0.97 (0.22–4.32)	0.968	0.024	80.30	

Pooled estimates of association of VDR FokI polymorphism and the risk of osteoporotic fracture

		OR (95% CI)	P	P_h	I² (%)	P_E
FF vs f	Overall	0.83 (0.65–1.05)	0.121	0.016	57.50	0.573
Europe		0.83 (0.63–1.08)	0.161	0.009	62.80	
Female		0.79 (0.56–1.11)	0.178	0.006	70.20	
Male		1.53 (0.90–2.61)	0.116	0.011	59.90	0.996

F vs f | Overall | 1.54 (0.95–2.51) | 0.157 | 0.006 | 64.90 | |
| Europe | | 1.68 (1.00–2.83) | 0.188 | 0.003 | 71.90 | |

		OR (95% CI)	P	P_h	I² (%)	P_E
FF vs FF + Ff	Overall	1.22 (0.89–1.66)	0.220	0.100	40.10	0.153
Europe		1.24 (0.87–1.78)	0.231	0.064	47.60	
Female		1.43 (0.90–2.27)	0.134	0.036	58.00	
Male		1.45 (0.92–2.30)	0.167	0.020	56.10	0.086

Pooled estimates of association of VDR Cdx2 polymorphism and the risk of osteoporotic fracture

		OR (95% CI)	P	P_h	I² (%)	P_E
G vs A	Overall	0.92 (0.63–1.31)	0.691	<0.001	89.50	0.599
AA vs GG	Overall	1.08 (0.46–2.53)	0.866	<0.001	82.60	0.903
AG vs AA + GG	Overall	1.17 (0.76–1.82)	0.477	<0.001	87.00	0.362

VDR BsmI: allele model: B vs. b, additive model: bb vs. BB, dominant model: Bb + bb vs. BB+, recessive model: bb vs. BB ± b. VDR ApaI: allele model: A vs. a, additive model: aa vs. AA, dominant model: Aa + aa vs. AA, recessive model: aa vs. AA + Aa. VDR TaqI: allele model: T vs. t, additive model: tt vs. TT, dominant model: Tt + tt vs. TT, recessive model: tt vs. TT + Tt, over-dominant model: TT + tt vs. Tt. VDR FokI: allele model: F vs. f, additive model: ff vs. FF, dominant model: Ff + ff vs. FF, recessive model: ff vs. FF + Ff, over-dominant model: FF + ff vs. Ff.

VDR Cdx2: allele model: G vs. A, additive model: AA vs. GG, dominant model: AG + AA vs. GG, recessive model: AA vs. GG + AG, over-dominant model: GG + AA vs. AG.

TABLE 13 | Pooled estimates of association of VDR BsmI, ApaI, TaqI, and FokI polymorphisms and the risk of osteoporotic fracture, excluding low-quality and HWD studies.

Genetic model	Test of association	OR (95% CI)	P	P_h	I² (%)	P_E
VDR BsmI	B vs b	0.93 (0.79–1.08)	0.339	0.000	61.60	
bb VS BB	1.15 (0.84–1.58)	0.370	0.001	56.70		
Bb + bb VS BB	1.13 (0.90–1.43)	0.298	0.042	38.50		
bb VS BB + Bb	1.09 (0.89–1.32)	0.415	0.006	50.20		
BB + bb VS BB	1.01 (0.79–1.15)	0.868	0.872	0		
VDR ApaI	A vs a	0.86 (0.73–1.03)	0.100	0.063	44.3	
aa VS AA	1.39 (0.96–1.99)	0.009	0.059	45.1		
Aa + aa VS AA	1.21 (0.97–1.50)	0.086	0.391	5.5		
aa VS AA + Aa	1.33 (0.99–1.78)	0.063	0.044	48.1		
AA + aa VS AA	1.09 (0.90–1.33)	0.383	0.269	18.9		
VDR TaqI	T vs t	1.09 (0.78–1.51)	0.624	0.002	70.7	
tt VS TT	0.83 (0.60–1.17)	0.311	0.002	71.2		
tt + tt VS TT	0.86 (0.61–1.22)	0.350	0.076	47.6		
tt VS TT + Tt	0.90 (0.45–1.82)	0.770	0.001	74.4		

VDR FokI: allele model: F vs. f, additive model: ff VS FF, dominant model: FF + ff VS FF, over-dominant model: FF + ff VS Ff.
and low-quality studies might have been included, which led to a deviation in the results. Second, the genotype distribution in the control group was not detected by the HWE (Moher et al., 2009; Shen et al., 2014; Gao et al., 2015). The HWE is necessary for a sound genetic association study. If the control group does not meet the requirements of the HWE, there may be selection bias or genotype errors, thus making the results unreliable. Third, the statistical power was not calculated in some previous meta-analyses (Moher et al., 2009; Shen et al., 2014; Gao et al., 2015). At the same time, the statistically significant false-positive report probability was not evaluated in all previously published meta-analyses. Therefore, the meta-analysis results may not be credible. Finally, none of the abovementioned studies discussed the relationship between the VDR Cdx2 polymorphism and osteoporotic fracture.

This meta-analysis had the following advantages: 1) evaluating the quality of the included research; 2) the control group underwent the HWE test; 3) applying the FPRP and Venice criteria to evaluate the correlations that were found to be significant in the current meta-analysis; 4) compared with the previous meta-analysis, the sample size has been significantly expanded; and 5) exploring the sources of heterogeneity based on regression meta-regression analysis. However, there are still some limitations to this study. First, the confounding factors closely related to the outcome were not controlled, such as smoking, drinking, and variable research designs. Second, there are relatively few studies on Americans and Asians in several subgroup analyses, and not enough statistical power to explore the real connection. Moreover, owing to the limited number of studies, a subgroup analysis was not carried out in the summary analysis of the VDR Cdx2 polymorphism and osteoporotic fracture risk. Finally, it was found that the research quality of VDR Cdx2 is low, and hence, the results may not be credible. Future research with large sample sizes and large enough subgroups will help verify our findings.

This meta-analysis strongly indicates that there is no significant association between the polymorphisms of VDR BsmI, ApaI, TaqI, FokI, and Cdx2 and the risk of osteoporotic fracture. The increased risk of osteoporotic fracture elucidated in previous studies is most likely due to false-positive results.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Y-yM designed research, performed research, collected data, analyzed data, and wrote the article. BL collected data. BC and W-fZ checked the data. X-HY contributed to
methodology. H-ZL and X-FH designed research and revised the article.

ACKNOWLEDGMENTS

We would like to thank the authors of all the original studies included in the meta-analysis. At the same time, we would like to thank X-FH and H-ZL for their guidance. In addition, we would like to thank Yu-hui Pan for his help in revising the grammar of this article.

REFERENCES

Aerssens, J., D(equeker, J., Peeters, J., Breemans, S., Broos, P., and Boonen, S. (2000). Polymorphisms of the VDR, ER and COL1A1 Genes and Osteoporotic Hip Fracture in Elderly Postmenopausal Women. Osteoporos. Int. 11, 583–591. doi:10.1007/s0019800070079

Alvarez-Hernández, D., Naves, M., Díaz-López, J. B., Gómez, C., Santamaria, I., Cannata-Andia, J. B., et al. (2003). Influence of Polymorphisms in VDR and COL1A1 Genes on the Risk of Osteoporotic Fractures in Aged Men. Kidney International. Suppl. 63 (85), S14–S18. doi:10.1016/j.1523-1755.63.85.5.x

Attia, J., Thakkinstian, A., and D’Este, C. (2003). Meta-analyses of Molecular Association Studies: Methodologic Lessons for Genetic Epidemiology. J. Clin. Epidemiol. 56 (4), 297–303. doi:10.1016/s0895-4356(03)00011-8

Binici, D. N., and Gunes, N. (2010). Risk Factors Leading to Reduced Bone mineral Density in Hemodialysis Patients with Metabolic Syndrome. Ren. Fail. 32 (4), 469–474. doi:10.3109/088692209033675260

Iveta, B., Jarmila, B., Soňa, M., Ján, K., Zlávica, T., Ivan, B., et al. (2020). Association between Vitamin D Receptor Gene Polymorphisms (Fok I, Cdx-2) and Bone mineral Density in Slovak Postmenopausal Women. Anthropologischer Anzeiger 77, 195–203. doi:10.1227/anthranz/2020/1048

Cummings, S. R., and Melton, L. J. (2002). Epidemiology and Outcomes of Osteoporotic Fractures. The Lancet 359, 1761–1767. doi:10.1016/s0140-6736(02)08657-9

Efesoy, A., Yilmaz, O., Erdem, G., Güçtekin, A., Bodur, H., Yildirimkaya, M., et al. (2003). Relationship of the Vitamin D Receptor and Collagen Iα1 Gene Polymorphisms with Low Bone Mineral Density and Vertebral Fractures in Postmenopausal Turkish Women. Turk J. Rheumatol. 26, 295–302. doi:10.5056/atr.2011.047

Fang, Y., Rivadeneira, F., van Meurs, J. B. J., Pols, H. A. P., Ioannidis, J. P. A., and Uitterlinden, A. G. (2006). Vitamin D Receptor Gene Bsml and Taq1 Polymorphisms and Fracture Risk: A Meta-Analysis. Bone 39 (4), 938–945. doi:10.1016/j.bone.2006.04.016

Fang, Y., Van Meurs, J. B., Bergink, A. P., Hofman, A., Van Duijn, C. M., Van Leeuwen, J. P., et al. (2003). Cdx-2 Polymorphism in the Promoter Region of the Human Vitamin D Receptor Gene Determines Susceptibility to Fracture in the Elderly. J. Bone Miner. Res. 18 (9), 1632–1641. doi:10.1359/jbmr.2003.18.9.1632

Feskanich, D., Hunter, J. D., Willett, W. C., Hankinson, S. E., Hollis, B. W., Hough, H. L., et al. (1998). Vitamin D Receptor Genotype and the Risk of Bone Fractures in Women. Epidemiology 9, 535–539. doi:10.1097/00001648-199809000-00011

Gao, J., Wang, L., and Zhu, J. (2015). Influence of Bsml Polymorphism in Vitamin D Receptor Gene on the Risk of Fracture in Caucasian Populations: a Meta Analysis. Int. J. Clin. Exp. Med. 8 (1), 589–597.

Garnero, P., Munoz, F., Borel, O., Sornay-Rendu, E., and Delmas, P. D. (2005). Vitamin D Receptor Gene Polymorphisms Are Associated with the Risk of Fractures in Postmenopausal Women, Independently of Bone mineral Density. J. Clin. Endocrinol. Metab. 90 (8), 4829–4833. doi:10.1210/jc.2005-0364

Genomics-wide Linkage Screen of Bone mineral Density (BMD) in European Pedigrees Ascertained through a Male Relative of Affected Individuals. J. Am. Coll. Nutr. 36 (1), 64–71. doi:10.1080/07315724.2016.1218803

Kim, M.-s., Fujiki, R., Murayama, H., Kitagawa, H., Yamaoka, K., Yamamoto, Y., et al. (2007). 1a,25(OH)2D3-Induced Transrepression by Vitamin D Receptor through E-box-type Elements in the Human Parathyroid Hormone Gene Promoter. Mol. Endocrinol. 21, 334–342. doi:10.1210/me.2006-0231

Langdahl, B. L., Gravholt, C. H., Brixen, K., and Eriksen, E. F. (2000). Polymorphisms in the Vitamin D Receptor Gene and Bone Mass, Bone Turnover and Osteoporotic Fractures. Eur. J. Clin. Invest. 30, 608–617. doi:10.1046/j.1365-2362.2000.00686.x
