Abstract

Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named entities such as ‘London’ and ‘Paris’ with different expressions: “the major cities”, “the capital cities” and “two European cities”. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3K crowd-sourced entity aggregations of PERSON, ORGANIZATION, and LOCATION named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We fine-tune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.

1 Introduction

Abstractly speaking, abstraction can be defined as the process of deriving general concepts from specific instances. In automatic summarization, however, “abstractive” summarization often means any type of rewriting of words in some source document into an output summary. Concretely, recent summarization datasets including XSum (Narayan et al., 2018) and NEWSROOM (Grusky et al., 2018) quantify the degree of abstractiveness of a summary in terms of its novel N-grams.

While such a surface-level definition of abstractiveness is certainly useful and convenient, it is nevertheless only a proxy for abstraction in the broader sense which concerns semantic generalization. We argue that it is important to also focus explicitly on semantic abstraction, as this capability is required for more difficult types of summarization which are out of reach of current methods. For example, generating a plot summary of a novel might require describing sequences of events using one sentence. Writing a survey of a scientific field would require categorizing papers and ideas, and being able to refer to them as a whole. Outside of domain-specific settings such as opinion summarization (Ganesan et al., 2010; Gerani et al., 2014, inter alia), and tasks such as sentence fusion (Barzilay and McKeown, 2005), there has been little work focusing on semantic generalization and abstraction.
In this paper, we start to tackle this issue by focusing on the specific task of semantic aggregation of entities; i.e., how to refer to a tuple of named entities using a noun phrase instead of enumerating them (See Table 1 for an example). We define a task to evaluate summarization models on semantic entity aggregation, which we call TESA (A Task in Entity Semantic Aggregation). In TESA, a system is presented with a list of named entities in an original textual context, and it must produce a non-enumerating noun phrase which refers to the designated entities. Solving this task requires finding a semantic link between all the entities in the list (e.g., London and Paris are cities of considerable sizes), then using this information to generate a noun phrase (e.g., “the major cities”).

We introduce an accompanying dataset of entities in context drawn from the New York Times corpus (Sandhaus, 2008), and their aggregations which were written by crowd workers. Our dataset contains 5.3K aggregation expressions. Each example, contains a tuple of PERSON, ORGANIZATION or LOCATION named entities, a paragraph context from an NYT article discussing the entities, and background information about entities in the form of summary snippets from Wikipedia. We also introduce the first models for the TESA task which are based on an encoder-decoder system pretrained for abstractive summarization, BART (Lewis et al., 2019). We present two ways of fine-tuning BART to TESA, either in a discriminative or in a generative fashion, and compare them against simpler statistical and frequency-based methods.

The simple classifier achieves decent results on TESA. It is however outperformed by a wide margin by BART, when fine-tuned on our task in a discriminative manner. When fine-tuned as a generative model, BART yields similar performance as the simple classifier. Yet, the generative model is able to freely generate entity aggregations with diversity and quality, despite some factual inconsistencies.

2 Related work

Abstractive summarizers have gained prominence with the popularization of RNNs (Sutskever et al., 2014; Nallapati et al., 2016), and more recently Transformers (Vaswani et al., 2017) like BERT (Devlin et al., 2019). Several abstractive models have achieved state-of-the-art performances on benchmark summarization datasets in terms of ROUGE, including ProphetNet (Yan et al., 2020), PEGASUS (Zhang et al., 2019) and BART (Lewis et al., 2019). Recent work has also focused on specific issues such as preventing inappropriate repetition (Kryściński et al., 2018), word-level rewriting, and evaluating factual consistency (Kryściński et al., 2019; Maynez et al., 2020).

Abstraction is critical for certain domains and applications, but has not been thoroughly explored in many. For example, in scientific article summarization the particular structure and length of scientific articles make extractive techniques much easier to apply (Agarwal et al., 2011), therefore abstractive summarizers (Lloret et al., 2013) remain a minority. In opinion summarization, there have been abstractive systems that leverage cues specific to this task, such as redundancy in opinions (Ganesan et al., 2010) and specific discourse structures (Gerani et al., 2014). As abstractive systems have become strong in terms of generation capabilities, the time is apt to examine issues in semantic abstraction that could be useful in many summarization domains and tasks. Our work is a step in this direction.

Our proposed entity aggregation task is related to referring expression generation (REG). REG is concerned with determining the form and content that entity references should take during generation (Krahmer and van Deemter, 2012; Castro Ferreira et al., 2018; Cao and Cheung, 2019). It emphasizes finding the right distinguishing characteristics of the intended referent or referents. Our work can be seen as a specific REG task that focuses on semantically abstracting multiple named entities. Our work is also related to coreference resolution, especially those that examine multi-antecedent resolution (Burga et al., 2016; Vala et al., 2016), an inverse problem to ours. To the best of our knowledge, no previous work has directly addressed entity aggregation.

3 The TESA dataset

We used the New York Times (NYT) Annotated Corpus (Sandhaus, 2008) to extract tuples of named entities and their document context. The NYT corpus contains high-quality metadata listing the salient named entities mentioned in each article. We form our tuples from entities tagged in the metadata for the same article.

We refer to a tuple of entities and its associated information as an aggregatable instance. We
first describe the components of an aggregatable instance in more detail. Then, we describe our data extraction and crowd-sourcing experiments.

3.1 An aggregatable instance

The starting point of an aggregatable instance is the tuple of named entities which should be aggregated and the type of its entities (e.g., PERSON). As we aim for contextual entity aggregations, an aggregatable instance also contains a document context; i.e., a passage from a document in which all the entities are mentioned. To provide additional background knowledge, we also include introductory summaries for the entities taken from Wikipedia.

An example of aggregatable instance, as presented to the annotators, is in Figure 1. For more examples, see Table 8 in the appendix.

3.2 Data extraction

While we could have gathered naturally occurring entity aggregations, work on multi-antecedent coreference resolution is still nascent, and our initial attempts to define heuristic methods to extract entity aggregations were very noisy. We instead used crowd-sourcing to gather human-generated aggregations from sets of entities.

We used the 2006 and 2007 portions of the New York Times corpus. We started with the editorial metadata which tags salient named entities in each article. These are entities we believe are likely to be included in a summary. We filtered the entity tuples to remove those that are unlikely to be naturally aggregatable using the following two constraints. First, the entities should have the same type (PERSON, LOCATION, or ORGANIZATION in this corpus). Second, the entities should be mentioned close together, within a span of consecutive sentences of the same length as the size of the tuple of entities (e.g., three consecutive sentences for three entities). We also selected those entity tuples that are mentioned together in the abstract of an article.

To extract the document context, we extracted both the title of the article and the span of sentences which mentions the entities. If the same entity tuple is mentioned in different qualifying sentence spans in the same article, they would be extracted as different aggregatable instances.

As for the background information, we extracted an excerpt of each entity’s Wikipedia article, using the first paragraph of the article if it exists, up to 600 tokens. We used the entity name to identify its Wikipedia page2, and, in case of ambiguous or incorrect linking, we corrected it manually when possible, or discarded it.

After extraction, we sampled 2,100 instances uniformly at random for annotation. A tuple contains between 2 and 6 entities, for an average of 2.4.

3.3 Data Annotation

We used Amazon Mechanical Turk to collect entity aggregations. Annotators were asked to generate aggregations given information about an aggregatable instance. For each instance, we showed the same information as described above, including the mentions of the entities in context, and a link to the Wikipedia pages of the entities. Some of the instructions given to the annotators and examples of the annotation layout are in Figures 1, 2. The complete instructions and examples are available in Figures 3–6 in the appendix.

The entity tuple, document context, Wikipedia background information are presented to annotators, alongside a prompt (see Figure 1). For the PERSON entities in our example, this prompt is “In this article, François Bayrou, Nicolas Sarkozy and Ségolène Royal are discussed. The three people...” Annotators were asked to replace the phrase “The three people” with a relevant one referring to the entities. The prompt serves to prime the annotator to produce a fluent and comprehensive aggregation

Data collected		
aggregatable instances	2100	
annotators	63	
annotations	6299	

Preprocessed dataset		
aggregatable instances	1718	
annotators	42	
annotations	4675	

PERSON entities tuples		
LOCATION entities tuples		
ORGANIZATION entities tuples		
PERSON aggregations	2900 (951)	
LOCATION aggregations	2041 (505)	
ORGANIZATION aggregations	456 (239)	

Table 2: Statistics on the sizes of the annotated data and of the final dataset. For entity tuples and aggregations, we indicate the total count of occurrences, and in parentheses the count of unique occurrences.

2Using Wikipedia’s python’s library: https://pypi.org/project/wikipedia/
Figure 1: Layout of the annotation task. The mentions of the entities in the New York Times article are colored and the name of the corresponding entity is visible when an annotator clicks on a mention. The title of the Wikipedia information is an hyperlink to the corresponding web page.

Figure 2: First page of the instructions provided to the annotators.

Title of the article: Street Violence by Paris Youths Intrudes Again Into French Politics

[... The Socialist candidate, Ségolène Royal, who is running second in the opinion polls, said the incident showed that Mr. Sarkozy had failed as interior minister: “In five years with a right-wing government that has made crime its main campaign issue, you can see that it is a failure all the way,” she said on Canal + television. François Bayrou, a centrist presidential candidate, also took aim at Mr. Sarkozy, saying: “It is very important to end this climate of perpetual confrontation between police and some citizens.” [...]

François Bayrou	Nicolas Sarkozy	Ségolène Royal
A French centrist politician and the president of the Democratic Movement, who was a candidate in the 2002, 2007 and 2012 French presidential elections.	Nicolas Paul Stéphane Sarkozy de Nagy–Bocsa (born 28 January 1955) is a retired French politician who served as President of France and ex-officio Co-Prince of Andorra from 16 May 2007 until 15 May 2012.	Ségolène Royal (born 22 September 1953) is a French politician and former Socialist Party candidate for President of France.

In this article, François Bayrou, Nicolas Sarkozy and Ségolène Royal are discussed. The three people...

Replace "The three people" with your most relevant phrase referring to the entities.

If you have a second answer, you can write it here

Issues:
- remember that you can’t answer "they" or any pronoun.
- If you cannot find any relevant phrase mentioning all the entities, write "NA" in the first cell above and check the following box:
 - I can’t find a relevant phrase

Instructions

Summary

Detailed Instructions

Examples

Goal

The goal of this task is to write a phrase that can refer to several persons, areas or organizations (referred to as "entities") in the following at once, but without listing them or using a pronoun. Here are some examples:

Dick Cheney and George W. Bush:
- ✓ the American politicians
- ✓ the Republicans
- ✗ they
- ✗ George W. Bush and Dick Cheney

As mentioned previously, the pronoun "they" or "George W. Bush and Dick Cheney", which is a list of entities, are not good answers.

France and Italy:
- ✓ the neighbouring countries
- ✓ the European countries
- ✗ the continent
- ✗ the neighbouring countries in the South of Europe and bordered by the Mediterranean Sea

The answer "the continent" is not valid since France and Italy alone don’t correspond to a whole continent; your answer should be accurate. The answer "the neighbouring countries in the South of Europe and bordered by the Mediterranean Sea" is not valid because, even if it’s true, the information is far too specific and too long, hence not natural.

These phrases should contain some kind of information about the entities (for instance, the information in the first example is that Dick Cheney and George W. Bush are both involved in politics and are Republicans). The more specific the answer is, while still being natural, the better.

Before answering, you should read the information presented about the entities (described in the section Detailed instructions) which will help you with contextualizing the entities. Then, write a phrase that could replace the standard one already written in the introductory sentence (typically, "the two people" or "the three areas") in the first cell.

As illustrated previously, in many cases, several answers are possible. If you can come up with a second answer, you can write it as well in the second cell, but it is not mandatory.
covering all the entities. For other named entity types, the prompt is changed accordingly. While simple, we found this prompt to be rather effective in the collection process.

We also presented detailed examples (see Figure 2) explaining the desired aggregations. Annotators were asked not to use generic aggregations involving only the entities’ type (e.g., “the three people”) and to avoid using “and”, as it would often imply an enumeration.

For each of the 2,100 aggregatable instances, three different annotators were asked to provide an annotation. In each annotation, an annotator could provide between zero (meaning the instance is not aggregatable) and two aggregations.

The aggregations produced for the example of Figure 1 by the three annotators are below:

Annotator 1
- french politicians

Annotator 2
- the French politicians
- the French presidential candidates

Annotator 3
- the politicians

We discarded instances that at least two of the three annotators considered as ‘not aggregatable’. In addition, we discarded those annotations that did not conform to our instructions, and annotations from workers who performed less than five annotations.

Finally, we post-processed the aggregations, removing determiners, numerical expressions and standardized the casing (e.g., “The two cities” became “cities”).

Table 2 presents statistics on the size of the data collected and the final dataset.

3.4 Data Splits

We split the dataset into training, validation, and test sets using a 2:1:1 ratio, resulting in 858/430/430 aggregatable instances in each set, respectively (corresponding to 20592/10320/10320 ranking candidates, respectively).

The entities in our dataset are quite diverse. In the validation and test sets, 29% and 30% of the aggregatable instances respectively have a set of input entities which do not overlap with entities in the training set at all. On average, each aggregatable instance has 2.7 different aggregations.

4 The TESA task

4.1 Task Definition

We frame TESA as a ranking task where, given an aggregatable instance as input, models must rank a list of candidates according to their plausibility as an aggregation of the input entities (in context). We choose a discriminative approach to avoid relying on word-overlap metrics, and we opt for a ranking task set-up to avoid classification between heavily imbalanced classes, as the number of gold standards remains limited. In this set-up, generative models can also be evaluated.

In our experiments, the list of candidate aggregations contains 24 candidates in total, including the gold-standard, correct aggregations generated by the human annotators, as well as a list of negative candidates which serve as distractors. The candidates’ number is chosen to yield approximately 10 times more negative candidates than gold standards. Negative candidates are sampled uniformly at random from other aggregatable instances sharing the same named entity type.

An example of TESA’s tasks is available in Table 3; for more examples, see Table 9 in the appendix.

4.2 Evaluation Measures

We evaluate the models’ performances using three widely used ranking performance measures. Let \(\text{rank}(i) \) be the rank of candidate \(i \), \(G \) be the set of gold-standard candidates in a ranking and \(R(n) \) be the set of candidates retrieved up to and including position \(n \). Then, for an aggregatable instance:

Average precision.

\[
AP = \frac{1}{|G|} \sum_{i \in G} \frac{|G \cap R(\text{rank}(i))|}{|R(\text{rank}(i))|} \quad (1)
\]

Recall at 10.

\[
R@10 = \frac{1}{|G|} |G \cap R(10)| \quad (2)
\]

Reciprocal rank.

\[
RR = \frac{1}{\min_{i \in G} \text{rank}(i)} \quad (3)
\]

We report the mean of these values across all instances in the test set (MAP, \(R@10 \), MRR). We chose these measures because they provide different perspectives on the evaluation results. Recall
François Bayrou is a French centrist politician [...], who was a candidate in the 2002, 2007 and 2012 French presidential elections. Nicolas Paul Stéphane Sarkozy [...] is a retired French politician who served as President of France [...] from 16 May 2007 until 15 May 2012. Ségolène Royal [...] is a French politician and former Socialist Party candidate for President of France. Street Violence by Paris Youths Intrudes Again Into French Politics: The Socialist candidate, Ségolène Royal, who is running second in the opinion polls, said the incident showed that Mr. Sarkozy had failed as interior minister. [...] François Bayrou, a centrist presidential candidate, also took aim at Mr. Sarkozy, saying, “It is very important to end this climate of perpetual confrontation between police and some citizens.” François Bayrou, Nicolas Sarkozy, Ségolène Royal

BART-based models’ input	Candidates to rank
François Bayrou is a French centrist politician [...], who was a candidate in the 2002, 2007 and 2012 French presidential elections. Nicolas Paul Stéphane Sarkozy [...] is a retired French politician who served as President of France [...] from 16 May 2007 until 15 May 2012. Ségolène Royal [...] is a French politician and former Socialist Party candidate for President of France. Street Violence by Paris Youths Intrudes Again Into French Politics: The Socialist candidate, Ségolène Royal, who is running second in the opinion polls, said the incident showed that Mr. Sarkozy had failed as interior minister. [...] François Bayrou, a centrist presidential candidate, also took aim at Mr. Sarkozy, saying, “It is very important to end this climate of perpetual confrontation between police and some citizens.” François Bayrou, Nicolas Sarkozy, Ségolène Royal	afghans, police officers, french presidential candidates, intelligence analysts, tv talent, american lobbyists, former presidents, defectors, former boxers, politicians, real estate company owners, participants in anna nicole smith case, american men, french politicians, new york mafiosos, people involved in the scandal, iraqi citizens, billionaire businessmen, male speed skaters, investors, men involved in professional sports, screen artists, poets, alleged criminals

Table 3: Ranking task from the running example. BART-based models’ inputs are presented in the left-hand-side column. Background information is in blue, context is in violet, and entities’ names are in orange. Models have to rank the 24 candidates (separated by commas) of the right-hand-side column. The gold-standard aggregations are in bold. For displaying purposes, this example has been shortened.

at 10 captures the models’ ability to rank correct aggregations as promising or neutral at worst. Reciprocal rank focuses solely on the best ranked correct aggregation.

5 Models

We tested several simple baselines as well as models adapted from current work on abstractive summarization on TESA.

5.1 Simple Baselines

All the baselines and models are given as input an aggregatable instance and a list of candidates to rank with the same entity type as the aggregatable instance. The first two baselines are agnostic to the aggregatable instance:

Random. This baseline produces a random ordering of the candidate entities.

Frequency. This baseline ranks the candidates according to their frequency as a correct aggregation in the training set.

5.2 Logistic Regression

We defined a number of statistical and linguistically informed features, which we extracted from each candidate aggregation and its aggregatable instance’s context and background information. These 15 features include:

- the count of the “frequency” baseline,
- the number of common tokens (with repetition) between the candidate and the union of the background information,
- the size of the word overlap between a candidate and the intersection of the entities’ background information,
- the cosine similarity between the average word embeddings of the candidate and of the context.

We detail these features in Appendix C. We trained a binary logistic regression using this representation, to discriminate between the gold-standard aggregations and the negative candidates. We used the model’s predictive probability for the gold-standard class to produce a ranking over the candidate list.

5.3 BART-based models

We tested BART (Lewis et al., 2019) as a representative model of recent high-performance abstractive summarization systems based on an encoder-decoder architecture with a Transformer backbone. We compared three versions of BART, which differ based on whether and how they are fine-tuned on TESA.

Pre-trained BART. We applied an existing pre-trained version of BART in a generative set-up without fine-tuning. We formatted each aggregatable
instance into a single sequence of tokens by concatenating the fields of the aggregatable instances in the following order: background information, context (title of the article and excerpt), and entity names. An example of such input can be seen in Table 3.

We fed this as input to BART’s encoder, and we evaluated the probability of each candidate aggregation to be generated autoregressively by the decoder. We used these probabilities to rank the candidates.

Generative BART. This version is similar to the above, but we fine-tuned BART on TESA, considering each correct aggregation as a separate target, and training the model to generate each target given the corresponding aggregatable instance. For the aggregatable instances, we used the same input format as above. We did not add any form of separation tokens, as our initial experiments showed that they slightly hurt the performance.

Discriminative BART. Finally, we fine-tuned BART discriminatively as a classifier. During fine-tuning, we consider each candidate and its aggregatable instance as a separate sample, and the model was trained on these samples to discriminate the correct aggregations from the negative candidates. At test time, we rank the candidates by their probability of being the correct aggregation according to the classifier. Again, we did not add any separation tokens, as it did not improve the performance.

The main advantage of this approach over the previous one is that it leverages the set-up of TESA as a ranking task, and the model is exposed to both correct and incorrect aggregations during training (which, on the other hand, makes it more computationally expensive). By contrast, generative BART only sees correct ones. We thus expect the discriminative model to produce higher performance. However, this comes at a cost, as this approach cannot generate freely an aggregation, but only retrieve one from a set of candidates.

For all three versions above, we built upon code that is available through fairseq (Ott et al., 2019). We use the version of BART pre-trained on the CNN/DailyMail dataset. The choice of hyperparameters is described in Appendix D.

6 Results

The results of the models on TESA’s test set are presented in Table 4. We see that most models outperform the frequency baseline, except pre-trained BART. Fine-tuning BART on TESA increased its performance significantly, especially if done discriminatively. Discriminative BART achieves the best results. Its high performance can be mitigated by our choice of ranking only 24 candidates, which makes unlikely confusing negative candidates.

6.1 Ablation Study

To understand the importance of the different components of the input for this task, we performed an ablation study, where we removed selected parts of the input: without the background information (context, entities), without context (info., entities) and with only the names of the entities (entities).

We fine-tuned generative and discriminative BART on these modified datasets. The hyperparameters used are described in Appendix D.

We report the mean average precision results, which are representative of the other measures, in Table 5. Models perform best when all information is available, which validates our choice of input format. The background information seems to be more important than the context, as removing the context leads to the smallest drop in average precision. Interestingly, models perform quite well when given only the entities’ names, though the performance gap is still quite significant.
Discriminative BART

Entities	Generative BART
Francois Bayrou, Nicolas Sarkozy and Segolene Royal	Francois Bayrou, Nicolas Sarkozy and Segolene Royal
1. politicians	1. politicians
2. french politicians	2. french politicians
3. french presidential candidates	3. people involved in the scandal
4. former presidents	4. french presidential candidates
5. police officers	5. new york mafiosos
6. alleged criminals	6. american men

Table 6: Results of generative and discriminative BART on the running example. We show the input entities, and the candidates ranked from 1 to 6, as well as any other gold standard candidate, if any. Gold standards are in bold.

6.2 Qualitative analysis

We compare the two best-performing models: generative and discriminative BART. In Table 6, we present an example of their results on a ranking task from TESA’s test set. In general, the discriminative approach performs well, is robust and the negative candidates ranked at high positions are quite coherent (e.g., “former presidents” and “police officers”). On the other hand, generative BART performs quite well on the ranking task, but is far less robust and its negative candidates ranked at high positions are more intriguing (e.g., “new york mafiosos” and “american men”), which seems to indicate a poorer understanding of the aggregatable instance.

Besides, we show some aggregations generated by the generative approach in Table 7. Qualitatively speaking, the generated samples are quite interesting as many of them are accurate and have a diverse vocabulary (e.g., “politicians”, “figures”, “candidates”, “leader”). However, some samples are factually inconsistent (e.g., “american politicians”) which seems to indicate that the model does not have a deep understanding of relevant semantic concepts (e.g., nationalities cannot be substituted for each other).

For other examples, including some specifically chosen as the models failed on them, see Tables 10–13 in the appendix.

7 Conclusion and future work

We have proposed TESA, a novel task and an accompanying dataset of crowd-sourced entity aggregations in context. TESA directly measures the ability of summarizers to abstract at a semantic level. We have compared several baseline models and models adapted from existing abstractive summarizers on TESA, and find that a discriminative fine-tuning achieves the best performance, though this model inherently cannot generate aggregations.

In future work, we would like to expand the domains covered by our dataset, which is biased towards topics found in the source corpus, such as politics. Another important direction is to investigate how to integrate the ability to aggregate entities derived from training on TESA into an abstractive summarizer. This would require models to tackle another challenging issue which we have not addressed: which set of entities should a model aggregate in the first place?
Acknowledgements

We would like to thank Ido Dagan for useful initial discussions about this work, Jingyun Liu, whose automatic preprocessing of the New York Time Corpus was a precious help, and José Ángel González Barba, who helped us with analysis and proofreading. We also wish to mention our two pilot annotators. Finally, we would like to thank our anonymous reviewers for their kind and helpful comments.

This work was supported by the Natural Sciences and Engineering Research Council of Canada, and the last author is supported by a Canada CIFAR AI Chair.

References

Nitin Agarwal, Ravi Shankar Reddy, Kiran Gvr, and Carolyn Penstein Rosé. 2011. Towards multi-document summarization of scientific articles: making interesting comparisons with SciSumm. In Proceedings of the Workshop on Automatic Summarization for Different Genres, Media, and Languages, pages 8–15, Portland, Oregon. Association for Computational Linguistics.

Regina Barzilay and Kathleen R. McKeown. 2005. Sentence fusion for multidocument news summarization. Computational Linguistics, 31(3):297–328.

Alicia Burga, Sergio Cajal, Joan Codina-Filbà, and Leo Wanner. 2016. Towards multiple antecedent coreference resolution in specialized discourse. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 2052–2057, Portorož, Slovenia. European Language Resources Association (ELRA).

Meng Cao and Jackie Chi Kit Cheung. 2019. Referring expression generation using entity profiles. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3163–3172, Hong Kong, China. Association for Computational Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Ákos Kádár, Sander Wubben, and Emiel Krahmer. 2018. NeuralREG: An end-to-end approach to referring expression generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1959–1969, Melbourne, Australia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. OpinionSum: A graph based approach to abstractive summarization of highly redundant opinions. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 340–348, Beijing, China. Coling 2010 Organizing Committee.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond T. Ng, and Bita Nejat. 2014. Abstractive summarization of product reviews using discourse structure. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1602–1613, Doha, Qatar. Association for Computational Linguistics.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 708–719.

Emiel Krahmer and Kees van Deemter. 2012. Computational generation of referring expressions: A survey. Computational Linguistics, 38(1):173–218.

Wojciech Kryściński, Romain Paulus, Caiming Xiong, and Richard Socher. 2018. Improving abstraction in text summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1808–1817, Brussels, Belgium. Association for Computational Linguistics.

Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Evaluating the factual consistency of abstractive text summarization. Computing Research Repository, arXiv:1910.12840.

Mike Lewis, Yinhan Liu, Naman Goyal, Meng-Ming Chiu, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. Computing Research Repository, arXiv:1910.13461.

Elena Lloret, María Teresa Romá-Ferri, and Manuel Palomar. 2013. Editorial: Compendium: A text summarization system for generating abstracts of research papers. Data Knowl. Eng., 88:164–175.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On faithfulness and factuality in abstractive summarization.
Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gulçehre, and Bing Xiang. 2016. Abstractive text summarization using sequence-to-sequence RNNs and beyond. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 280–290, Berlin, Germany. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1797–1807, Brussels, Belgium. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Evan Sandhaus. 2008. The New York Times annotated corpus. In Philadelphia: Linguistic Data Consortium. LDC2008T19. DVD.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Hardik Vala, Andrew Piper, and Derek Ruths. 2016. The more antecedents, the merrier: Resolving multi-antecedent anaphors. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2287–2296, Berlin, Germany. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.

Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. 2020. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training.
Appendix A Detailed examples

In Tables 8, 9, 10 and 11, we present several examples following the examples presented in Figure 1 and Tables 3, 6 and 7 respectively.

In Tables 12 and 13, we present two examples of aggregatable instances where BART-based models performed poorly.

Appendix B Human-sourcing set-up

To ensure maximal reproducibility, we provide here some details regarding the collection of the human annotations. For the task set-up, we used the Amazon Mechanical Turk website. We present in details the layout of the annotation process in Figure 3, and its instructions in Figures 4, 5 and 6.

Appendix C Linguistically informed features

For the representation of an aggregatable instance to train the logistic regression, we used the following features:

- count of the “frequency” baseline,
- number of common tokens (with repetition) between the candidate and the union of the entities’ background information,
- size of the word overlap between a candidate and the union of the entities’ background information,
- size of the word overlap between a candidate and the intersection of the entities’ background information,
- number of entities whose background information words are overlapping the candidate’s words,
- cosine similarity between the average token embeddings of the candidate and the union of the entities’ background information,
- cosine similarity between the average word embeddings of the candidate and the union of the entities’ background information, the context, and the names of the entities,
- cosine similarity between the average token embeddings of the candidate and the union of the entities’ background information, the context, and the names of the entities,
- size of the word overlap between a candidate and the union of the entities’ background information, the context, and the names of the entities,
- size of the word overlap between a candidate and the union of the context and the intersection of the entities’ background information,
- cosine similarity between the average token embeddings of the candidate and the union of the context and the intersection of the entities’ background information.

During the feature extraction, we removed any capitalization and any punctuation. We removed the stop-words from the candidates’ tokens. We removed the stop-words and we lemmatized the tokens of the context and of the background information.

Appendix D Hyperparameters

In the following, we describe our choice of hyperparameters for each model, as well as any eventual hyperparameter search.

D.1 Logistic regression

We used a simple logistic regression for binary classification. The model has 32 parameters, and we use Adam optimizer, a learning rate of 3×10^{-3} and the cross entropy loss. We ran the experiment for 50 epochs, which took typically 15 minutes on a CPU, and we kept the model’s parameters of the epoch maximizing the average precision of the validation set.

D.2 Pre-trained BART

To evaluate pre-trained BART, we used the following parameters to evaluate candidates’ likelihood:

- beam=10,
- lenpen=1.0,
- max_len=100,
- min_len=1,
- no_repeat_ngram_size=2.

This model had 401 million parameters, none of them was trained in this approach.

D.3 Generative BART

To finetune generative BART, our choice of hyperparameter search and final hyperparameters was
inspired by BART’s finetuning on summarization datasets described here. We kept the model’s parameters of the experiment and the epoch maximizing the average precision of the validation set. We performed a grid search on the following hyperparameters:

- lr in \{3e-6, 5e-6, 1e-5, 2e-5, 3e-5\},
- max-tokens in \{1024, 2048\}.

We used the following final hyperparameters:

- lr=5e-06,
- max-tokens=1024,
- max-epochs=6,
- update-freq=1,
- total-num-updates=4974,
- warmup-updates=149.

We used the following final hyperparameters:

- lr=2e-5,
- max-sentences=8,
- num-classes=2,
- max-epochs=6,
- total-num-updates=18180,
- warmup-updates=1090.

total-num-updates was determined empirically as \(\text{max-epochs} \times \text{updates-per-epoch} \times \text{update-freq} \) and warmup-updates was chosen as 6% of total-num-updates. During the hyperparameter search we used total-num-updates=30888, 18180, 16254 and warmup-updates=1853, 1090, 975 for max-sentences=4, 8, 16 respectively. We ran each experiment on a single V100 GPU with 32GB of memory with the memory-efficient-fp16 option, and an experiment took typically 5 hours. This model had 401 million parameters, all of them being trained.

For the ablation study, we used the following hyperparameters, as they yielded very similar performances:

- lr=1e-5,
- max-tokens=1024,
- max-sentences=8,
- update-freq=4,
- max-epochs=5.

We used the following final hyperparameters:

- lr=2e-5,
- max-sentences=8,
- num-classes=2,
- max-epochs=6,
- total-num-updates=18180,
- warmup-updates=1090.

total-num-updates was determined empirically as \(\text{max-epochs} \times \text{updates-per-epoch} \times \text{update-freq} \) and warmup-updates was chosen as 6% of total-num-updates. During the hyperparameter search we used total-num-updates=30888, 18180, 16254 and warmup-updates=1853, 1090, 975 for max-sentences=4, 8, 16 respectively. We ran each experiment on a single V100 GPU with 32GB of memory with the memory-efficient-fp16 option, and an experiment took typically 5 hours. This model had 401 million parameters, all of them being trained.

For the ablation study, we used the following hyperparameters, as they yielded very similar performances:

- lr=1e-5,
- max-tokens=1024,
- max-sentences=8,
- update-freq=4,
- max-epochs=5.

We used the following final hyperparameters:

- lr=2e-5,
- max-sentences=8,
- num-classes=2,
- max-epochs=6,
- total-num-updates=18180,
- warmup-updates=1090.

total-num-updates was determined empirically as \(\text{max-epochs} \times \text{updates-per-epoch} \times \text{update-freq} \) and warmup-updates was chosen as 6% of total-num-updates. During the hyperparameter search we used total-num-updates=30888, 18180, 16254 and warmup-updates=1853, 1090, 975 for max-sentences=4, 8, 16 respectively. We ran each experiment on a single V100 GPU with 32GB of memory with the memory-efficient-fp16 option, and an experiment took typically 5 hours. This model had 401 million parameters, all of them being trained.

For the ablation study, we used the following hyperparameters, as they yielded very similar performances:

- lr=1e-5,
- max-tokens=1024,
- max-sentences=8,
- update-freq=4,
- max-epochs=5.

We used the following final hyperparameters:

- lr=2e-5,
- max-sentences=8,
- num-classes=2,
- max-epochs=6,
- total-num-updates=18180,
- warmup-updates=1090.

total-num-updates was determined empirically as \(\text{max-epochs} \times \text{updates-per-epoch} \times \text{update-freq} \) and warmup-updates was chosen as 6% of total-num-updates. During the hyperparameter search we used total-num-updates=30888, 18180, 16254 and warmup-updates=1853, 1090, 975 for max-sentences=4, 8, 16 respectively. We ran each experiment on a single V100 GPU with 32GB of memory with the memory-efficient-fp16 option, and an experiment took typically 5 hours. This model had 401 million parameters, all of them being trained.

For the ablation study, we used the following hyperparameters, as they yielded very similar performances:

- lr=1e-5,
- max-tokens=1024,
- max-sentences=8,
- update-freq=4,
- max-epochs=5.

We used the following final hyperparameters:

- lr=2e-5,
- max-sentences=8,
- num-classes=2,
- max-epochs=6,
- total-num-updates=18180,
- warmup-updates=1090.

total-num-updates was determined empirically as \(\text{max-epochs} \times \text{updates-per-epoch} \times \text{update-freq} \) and warmup-updates was chosen as 6% of total-num-updates. During the hyperparameter search we used total-num-updates=30888, 18180, 16254 and warmup-updates=1853, 1090, 975 for max-sentences=4, 8, 16 respectively. We ran each experiment on a single V100 GPU with 32GB of memory with the memory-efficient-fp16 option, and an experiment took typically 5 hours. This model had 401 million parameters, all of them being trained.

For the ablation study, we used the following hyperparameters, as they yielded very similar performances:

- lr=1e-5,
- max-tokens=1024,
- max-sentences=8,
- update-freq=4,
- max-epochs=5.
Table 8: Examples of aggregatable instances and their crowd-sourced aggregations. An aggregatable instance contains the names of the input entities, their type, the background information extracted from Wikipedia and the New York Times article’s context (underlined title and excerpt with mentions of the entities in bold). For each aggregatable instance, we gathered three annotations from different workers, who could give between zero and two aggregations each. For displaying purposes, these examples have been shortened.
| BART-based models’ input | Candidates to rank |
|--------------------------|-------------------|
| Chicago, officially the City of Chicago, is the most populous city in the U.S. state of Illinois and the third most populous city in the United States. With an estimated population of 2,705,994, it is also the most populous city in the Midwestern United States. [...] London is the capital and largest city of England and the United Kingdom. Standing on the River Thames in the south-east of England, at the head of its 50-mile estuary leading to the North Sea, London has been a major settlement for two millennia. [...] Virtually Cool: The author of the hour was Chris Anderson, who after the drinks entertained the crowd with a simulcast PowerPoint lecture on the topic of his new best seller, “The Long Tail,” which describes how the chokehold of mass culture is being loosened by the new Internet-enabled economics of niche culture and niche commerce. The party was sponsored in part by a small SoHo-based new-media company called Flavorpill, which produces free e-mail magazines and weekly event guides for New York, Los Angeles, San Francisco, Chicago and London. | western asia cities, major cities, western-asia countries, eastern european locales, large political entities, neighboring middle eastern countries, rival nations, east coast states, major american cities, middle eastern counties, major metropolitan cities, eastern locations, african locations, central asian countries, sovereign states of the USA, security council members, new england areas, middle eastern regions, saudi arabian neighbors, places near the mediterranean sea, cities, iraqi areas, surrounding countries, political climates |

Microsoft Corporation is an American multinational technology company with headquarters in Redmond, Washington. It develops, manufactures, licenses, supports, and sells computer software, consumer electronics, personal computers, and related services. Its best known software products are the Microsoft Windows line of operating systems, the Microsoft Office suite, and the Internet Explorer and Edge web browsers. [...] Sony Corporation is a Japanese multinational conglomerate corporation headquartered in Kōnan, Minato, Tokyo. Its diversified business includes consumer and professional electronics, gaming, entertainment and financial services. Battleground For Consoles Moves Online: Over all, though, it is Microsoft that has had the steeper mountain to climb. In the last generation of video game consoles, Sony had a roughly 60 percent market share, compared to 20 percent for each Microsoft and Nintendo. Microsoft Corp., Sony Corp.

Table 9: Ranking tasks from the running examples. BART-based models’ inputs are presented in the left-hand-side column. Background information is in blue, context is in violet, and entities’ names are in orange. Models have to rank the 24 candidates (separated by commas) of the right-hand-side column. The gold standard aggregations are in bold. For displaying purposes, these examples have been shortened.
Discriminative BART

Entities	Chicago and London
1. cities [0.993]	1. cities [0.067]
2. major cities [0.980]	2. major american cities [0.049]
3. major metropolitan cities [0.970]	3. neighboring middle eastern countries [0.038]
4. major american cities [0.149]	4. eastern european locales [0.036]
5. new england areas [0.031]	5. major cities [0.034]
6. political climates [0.008]	6. surrounding countries [0.022]
7. major metropolitan cities [0.016]	10. major metropolitan cities [0.016]

Generative BART

Entities	Microsoft Corp. and Sony Corp.
1. technology companies [0.988]	1. multinational corporations [0.063]
2. multinational corporations [0.951]	2. technology companies [0.056]
3. multinational consumer electronics corporations [0.899]	3. multinational consumer electronics corporations [0.039]
4. business partners [0.029]	4. american entertainment companies [0.036]
5. rivals [0.022]	5. entertainment groups [0.028]
6. communications groups [0.001]	6. retailers [0.019]

Table 10: Results of generative and discriminative BART on the running examples. We show the input entities, and the candidates ranked from 1 to 6, as well as any other gold standard candidate, if any. Gold standards are in bold; the candidates’ likelihoods predicted by the models are in brackets.

Table 11

Entities	Chicago and London
1. american cities [0.087]	1. multinational companies [0.067]
2. cities [0.067]	2. corporations [0.065]
3. political powers [0.054]	3. multinational corporations [0.063]
4. american regions [0.045]	4. american companies [0.057]
5. american areas [0.044]	5. technology companies [0.056]
6. major cities [0.034]	6. tech companies [0.049]
7. politicians [0.030]	7. companies [0.040]
8. us cities [0.027]	8. businesses [0.034]
9. world cities [0.026]	9. countries [0.032]
10. people [0.009]	10. technology firms [0.028]

Table 11: Aggregations generated by generative BART on the running examples. The model’s encoder is fed an aggregatable instance, and the decoder generates autoregressively the aggregations without constraint. We show the input entities, and the 10 aggregations retrieved by the beam search, ranked according to their likelihoods. If a generated aggregation matches a gold standard (except for capital letters), it is in bold; the generated examples probabilities are in brackets.
Table 12: Examples of TESA’s ranking tasks which were poorly solved by generative and discriminative BART. We show the candidates ranked from 1 to 6, as well as any other gold standard candidate, if any. Gold standards are in bold; the candidates’ likelihoods predicted by the models are in brackets. For displaying purposes, these examples have been shortened. Both examples can be considered as noisy and difficult to solve, as they could fool human judgement: in the first example the set of entities is made of a person and a movie; in the second example, the candidate “developers” is relevant to the aggregatable instance and can be considered as a false negative.
Entities	Cobra Verde, Klaus Kinski	Entities	Joe D’Alonzo and Sam Suzuki
1.	entertainers [0.091]	1.	hotel owners [0.091]
2.	filmmakers [0.079]	2.	hotel developers [0.083]
3.	american actors [0.067]	3.	Hotel owners [0.071]
4.	film industry professionals [0.063]	4.	hotel plans [0.070]
5.	american filmmakers [0.051]	5.	Hotel developers [0.069]
6.	politicians [0.049]	6.	hotel partners [0.067]
7.	German film actors [0.048]	7.	Hotel partners [0.059]
8.	actors [0.046]	8.	hotels [0.053]
9.	directors [0.042]	9.	businessmen [0.037]
10.	film makers [0.042]	10.	business partners [0.036]

Table 13: Examples of the aggregations generated by generative BART on the examples of Table 12. We show the input entities, and the 10 aggregations retrieved by the beam search, ranked according to their likelihoods. If a generated aggregation matches a gold standard (except for capital letters), it is in bold; the generated examples probabilities are in brackets.

Method	MAP	$\hat{R}_{@10}$	MRR
Random baseline	0.226	0.415	0.304
Frequency baseline	0.557	0.637	0.773
Logistic regression	0.675	0.843	0.834
Pre-trained BART	0.385	0.666	0.488
Generative BART	0.684	0.882	0.835
Discriminative BART	**0.892**	**0.980**	**0.964**

Table 14: Validation results of the different models on TESA, for reproducibility purposes.
8048

Figure 3: Layout of the annotation task. The mentions of the entities in the New York Times article are colored and the name of the corresponding entity is visible when an annotator clicks on a mention. The title of the Wikipedia information is a hyperlink to the corresponding web page.

Instructions

Summary Detailed Instructions Examples

Goal

The goal of this task is to write a phrase that can refer to several persons, areas or organizations (referred to as “entities”) in the following at once, but without listing them or using a pronoun. Here are some examples:

Dick Cheney and George W. Bush:
✓ the American politicians
✓ the Republicans
✗ they
✗ George W. Bush and Dick Cheney

As mentioned previously, the pronoun "they" or "George W. Bush and Dick Cheney", which is a list of entities, are not good answers.

France and Italy:
✓ the neighbouring countries
✓ the European countries
✗ the continent
✗ the neighbouring countries in the South of Europe and bordered by the Mediterranean Sea

The answer "the continent" is not valid since France and Italy alone don't correspond to a whole continent; your answer should be accurate. The answer "the neighbouring countries in the South of Europe and bordered by the Mediterranean Sea" is not valid because, even if it's true, the information is far too specific and too long, hence not natural.

These phrases should contain some kind of information about the entities (for instance, the information in the first example is that Dick Cheney and George W. Bush are both involved in politics and are Republicans). The more specific the answer is, while still being natural, the better.

Before answering, you should read the information presented about the entities (described in the section Detailed instructions) which will help you with contextualizing the entities. Then, write a phrase that could replace the standard one already written in the introductory sentence (typically, "the two people" or "the three areas") in the first cell.

As illustrated previously, in many cases, several answers are possible. If you can come up with a second answer, you can write it as well in the second cell, but it is not mandatory.

Figure 4: First page of the instructions provided to the annotators.
Instructions

Summary Detailed Instructions Examples

Full example

Title of the article: Iraq Findings Leaked by Aide Were Disputed
[...] The official refused to be named because he was not authorized to discuss the issue. Why those three men were acting so quietly remains a mystery, and Mr. Bush and Mr. Cheney have never discussed it in public. [...]

Dick Cheney	George W. Bush
Richard Bruce Cheney is an American politician and businessman who served as the 46th vice president of the United States from 2001 to 2009. He has been cited as the most powerful vice president in American history.	George Walker Bush is an American politician and businessman who served as the 43rd president of the United States from 2001 to 2009. He had previously served as the 46th governor of Texas from 1995 to 2000.

In this article, Dick Cheney and George W. Bush are discussed. The two people... [Replace “The two people” with another phrase referring to the entities]

✓ the politicians ✓ they
✓ the Republicans ✓ George W. Bush and Dick Cheney
✓ the American statesmen

The entities

In this task, you are presented with several entities of the same type (either people, areas, or organizations). In the example presented above, the entities are people: Dick Cheney and George W. Bush. Your task is to replace the standard phrase (here: “The two people”) with another phrase that can refer to all the entities at once, and ideally which is natural and brings information that is specific to the context of the entities’ mentions.

Be careful, your answer should not be a list of the entities, nor a pronoun.

Information available

New York Times excerpt

Title of the article: Iraq Findings Leaked by Aide Were Disputed
[...] The official refused to be named because he was not authorized to discuss the issue. Why those three men were acting so quietly remains a mystery, and Mr. Bush and Mr. Cheney have never discussed it in public. [...]

As you can see above, you could think about several different phrases for the same entities, therefore having a few sentences to help you contextualize your answer can help. These sentences come from a New York Times article, and should be used to determine what information you wish to underline: ideally, your answer should be specific to the excerpt (this means that your answer could be used in the same context as the article).

In order to help you, the entities have been colored in the excerpt (you can click on a colored word to see to which entity it is referring to). However, it is an automatic process, so in some cases there might be some bugs. In that case you should try to give an answer without taking the highlighting into account.

Wikipedia Information

Dick Cheney	George W. Bush
Richard Bruce Cheney is an American politician and businessman who served as the 46th vice president of the United States from 2001 to 2009. He has been cited as the most powerful vice president in American history.	George Walker Bush is an American politician and businessman who served as the 43rd president of the United States from 2001 to 2009. He had previously served as the 46th governor of Texas from 1995 to 2000.

In order to write a relevant phrase, you also need to have some knowledge about the entities. In the example above, you cannot write any of the answers if you don’t know that Dick Cheney and George W. Bush are politicians, Republicans, etc. You can use your own knowledge, but in case you don’t know enough about the entities, we provide some information extracted from Wikipedia. If you need more information, the name of the entity is a link to the Wikipedia page.

Note that the Wikipedia Information is just an help. Sometimes no information is found about an entity or the information retrieved is about an irrelevant article (especially when namesakes can be found). In that case you should still try to give an answer, using only what you know or what you can infer from the example.

Issue

In some cases, it can happen that you may not be able to find an answer. Such situation can happen for several reasons: not enough information about the entities, no common ground or opposition between them, or bug in the example that you cannot overcome... In that case, you should write “N/A” (for “no answer”) or in short “NA” in the first cell, and check the corresponding box.

Figure 5: Second page of the instructions provided to the annotators.
Instructions

Summary

Good examples	Bad examples
![Image](image1.png)	![Image](image2.png)

Detailed Instructions

Title of the article: Western Powers Disagree on Elements of Iran Proposal

[...] The disagreements on these issues are clouding the possibility of a deal with Iran on its nuclear program, even as tensions have increased over Tehran’s refusal to change its behavior, the diplomat said. In addition, they said, Europe, the United States and Russia have not agreed on the need to impose sanctions on Iran if it continues to defy the West. [...]

Europe

Country	Description
Iran	also called Persia, is the Islamic Republic of Iran, is a country in Western Asia. With 82 million inhabitants, Iran is the world’s 18th most populous country. Its territory spans 1.648,195 km², making it the second largest country in the Middle East and the 17th largest in the world.
Russia	or the Russian Federation, is a transcontinental country in Eastern Europe and North Asia. At 17,125,200 square kilometres, Russia is, by a considerable margin, the largest country in the world by area, covering more than one-eighth of the Earth’s inhabitable land area.

In this article, Europe, Iran and Russia are discussed. The three areas...

This is a difficult example since the three entities don’t have an obvious common ground (two of them are countries, the other one is a continent). Here are several answers you can consider:

- "The political powers: these areas are either important countries or continents, therefore you can consider them as "political powers";"
- "the conflicting entities: considering the context established by the article, we can learn that these three areas are in some conflict (Europe and Russia are defied by Iran), therefore you can come up with an answer around this piece of information;"
- "the three countries: it is important not to give an answer that doesn’t work for every entity; since Europe is not a country, "the three countries" cannot be accepted here."

Among the answers you can think about, remember that you should chose the one that seems to you the most specific while still being natural:

- "NA: you can consider that no natural answer can be found since the entities are not really distinct;"
- "the New York jurisdiction: if you can come up with an answer that overcomes the difficulty of the example, you can give it as well;"
- "the New York region: another way to find an answer is to find something that gather the entities, here the region can account for the city and the state;"
- "the state and the city of New York: remember that you should not list the entities (you can consider it as a list as soon as there is "and" in the answer);"
- "the largest metropolitan area in the world by urban landmass and one of the world’s most populous megalopolises: even if this fact is true, it is by far too specific and really unnatural."

Again, your choice of answer should be based on the following question: which one is the most natural and specific? You should especially chose whether you want to give an answer or not ("NA"), depending on if you think you could use naturally your answer, or if it’s not natural at all.

Examples

Title of the article: In the Race For Governor, A Big Divide On School Aid

[...] Many policy makers say the state’s economic prospects hinge on improving schools. “For New York State to succeed and become vibrant again, education and economic development have to become top priorities,” said Abraham M. Lederman, who has been both a top budget aide to the Republican-controlled State Senate and a New York City budget director." [...]

New York City

- The City of New York, usually called either New York City or simply New York, is the most populous city in the United States. With an estimated 2018 population of 8,398,748 distributed over a land area of about 302.6 square miles, New York is also the most densely populated major city in the United States.

New York State

- New York is a state located in the Northeastern United States. New York was one of the original thirteen colonies that formed the United States. With an estimated 19.54 million residents in 2018, it is the fourth most populous state. In order to distinguish the state from its city with the same name, it is sometimes referred to as New York State.

Figure 6: Third page of the instructions provided to the annotators.