Enhanced energy storage properties of Bi$_{0.5}$Li$_{0.5}$TiO$_3$ modified Sr$_{0.1}$Bi$_{0.45}$Na$_{0.45}$TiO$_3$ based ceramics

Qin FENGa,b, Xiao LIUc, Changlai YUANb,*, Xinyu LIUa,b, Changrong ZHOUb, Guohua CHENb

aCollege of Material Science and Engineering, Central South University, Changsha 410083, China
bCollege of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
cCollege of Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

Received: April 03, 2016; Revised: May 24, 2016; Accepted: May 30, 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract: Lead-free (1−x)Sr$_{0.1}$Bi$_{0.45}$Na$_{0.45}$TiO$_3$−xBi$_{0.5}$Li$_{0.5}$TiO$_3$ (x = 0−0.4) ceramics were successfully prepared by a solid-state reaction technique. The effects of amount of Bi$_{0.5}$Li$_{0.5}$TiO$_3$ on structure and electrical properties were examined. The X-ray diffraction (XRD) analysis revealed that all the investigated specimens have a perovskite structure. An obvious change in microstructure with the increase of Bi$_{0.5}$Li$_{0.5}$TiO$_3$ concentration was observed. This study demonstrated that relaxor could be stabilized in Sr$_{0.1}$Bi$_{0.45}$Na$_{0.45}$TiO$_3$ based ceramics by lowering the tolerance factor and electronegativity difference. Besides, a dielectric anomaly related to thermal evolution of crystallographic symmetry was emerged at the depolarization temperature. Upon incorporation of 26 mol% Bi$_{0.5}$Li$_{0.5}$TiO$_3$, the specimens were able to withstand an electric field intensity of 106.9 kV/cm with an energy density of 0.88 J/cm3 and an energy efficiency of 65%.

Keywords: energy storage; ferroelectricity; Bi$_{0.5}$Li$_{0.5}$TiO$_3$

1 Introduction

In response to the current environmental regulations against the use of lead in daily electronic devices, ceramics with a perovskite structure have been of great interest to the community. The presence of interstitial sites and relatively large spatial tolerance for substitution atoms are beneficial for chemical modifications and enabling perovskite structure to tailor electrical properties [1]. Among various perovskite-type materials, Bi$_{0.5}$Na$_{0.5}$TiO$_3$ (BNT) is considered as one of the most competitive alternatives for lead based ceramics. BNT is a typical ferroelectric material with 1:1 ratio of Na$^+$ and Bi$^{3+}$ at A-site, which causes high polarization due to the existence of stereo-chemically active long pair electrons [2]. Therefore, it is also a candidate for energy storage dielectric. However, pure BNT ceramic is a typical ferroelectric (FE) substance suffering for large polarization loss which limits its application in practice.

Recently, binary and ternary system relaxor ceramics have been investigated for their high energy storage application, e.g., BNT–BaTiO$_3$ [3], BNT–BaTiO$_3$–K$_{0.5}$Na$_{0.5}$NbO$_3$ [4−6], BNT–BaTiO$_3$–NaNO$_3$ [7], BNT–CaTiO$_3$ [8], BNT–SrTiO$_3$–BaTiO$_3$ [9], BNT–K$_{0.5}$Bi$_{0.5}$TiO$_3$–BaTiO$_3$ [10], etc. The decreased remnant polarization (P_r) value, which is favored to receive larger recoverable energy density compared with pure BNT, is found in these systems. As reported, the discharged energy density (J_d) of BNT based ceramics.

* Corresponding author.
E-mail: yclguet@yahoo.com, yclai-2002@163.com
is ranged from 0.6 to 0.9 J/cm\(^2\) if no glass phase is added. Among these systems, \(\text{Sr}_{0.1}\text{Bi}_{0.45}\text{Na}_{0.45}\text{TiO}_3\) (SBNT) has attracted much attention due to its strong dispersion of the permittivity with a relaxor-like behavior [11–13]. Besides, the alkali metal ion of \(\text{Li}^+\), which is in the same group as \(\text{Na}^+\) and \(\text{K}^+\) in periodic table of elements, has the similar properties. Based on the above, in this paper, \(\text{Li}_2\text{TiO}_3\) appears with \(x > 0.2\), although its content is found only in trace amount. The FE-SEM micrographs of the samples are shown in Fig. 2. The average grain size for the pristine ceramic is much less than the others. Besides, with the increase of BLT concentration, the grain size distribution gradually becomes uniform. The result suggests that a certain amount of additive of BLT will result in increasing grain size and affect their electrical properties accordingly.

Tolerance factor \((t)\) and electronegativity difference \((X)\) can be used to assess the rational design of stability in perovskite. Lead-containing ceramics possess double \(P–E\) loops with both low \(t\) and \(X\). Compared to complex lead perovskite compounds, lead-free perovskite phase is more stabilized via solid solutions when \(t\) or \(X\) is increased. On the contrary, a relaxor phase, which exhibits a pseudocubic symmetry in average with the presence of non-polar below the detection limit of XRD technique, can be stabilized by decreasing the value of \(t\) [15], e.g., Nd-doped BiFeO\(_3\) displays double \(P–E\) loops that is attributed to a decrease in \(t\) [16,17]. The Goldschmidt tolerance factor \(t\) and electronegativity difference \(X\), are given by Eq. (1) and Eq. (2) respectively:

\[
t = \frac{(R_A + R_O)}{2^{1/2}(R_A + R_O)}
\]

\[
X = \frac{X_{\text{AO}} + X_{\text{BO}}}{2}
\]

Fig. 1 XRD patterns of the SBNT–\(x\)BLT \((0 \leq x \leq 0.4)\) ceramics.
where R_A, R_B, and R_O are ionic radii for the A- and B-site cations and the oxygen anion, respectively. $X_{\lambda O}$ and X_{BO} are the electronegativity difference of A cation and B cation with oxygen anion, respectively. Figure 3 shows a linear relationship between t and X for SBNT–xBLT compositions. With the increase of the BLT concentration, both t and X decrease gradually and SBNT–xBLT ceramics, therefore, are expected to approach a square P–E loop. Meanwhile, the relaxor phase will become more and more stable, which is manifested in the follow-up experiments.

A set of temperature-dependent dielectric measurements on SBNT–xBLT ceramics, given in Fig. 4, confirms that the changes of dielectric constant induced by compositional modifications are apparent. The dielectric properties of pure SBNT ceramic are featured with a distinct dielectric anomaly at T_m (~250 °C), as marked in the figure. Compared to the pristine ceramic, the BLT-added ceramics exhibit another dielectric anomaly with $0.2 \leq x \leq 0.3$, locating at depolarization temperature T_f (~90 °C). The corresponding dielectric loss in the inset (a) of Fig. 4 also possesses a peak, which can be ascribed to that the polar nanoregions (PNRs) transform into microsized domains at T_f [18]. And PNRs are also the origin of relaxation behavior for SBNT–0.2BLT ceramic around T_f, as seen in the inset (b) of Fig. 4. Simultaneously, the dielectric constant decreases and the curves become more flat with increasing BLT concentration. Previously, this anomaly was believed to be attributed to thermal evolution of ferroelectric polar and weakly polar [19] or non-polar symmetry [7].

Fig. 2 FE-SEM images of the samples sintered at 1020 °C: (a) N1, (b) N2, (c) N3, (d) N4, (e) N5, and (f) N6.

Fig. 3 Tolerance factor versus averaged electronegativity difference for SBNT–xBLT ($0 \leq x \leq 0.4$) ceramics.

Fig. 4 Temperature dependence of dielectric constant for SBNT–xBLT ($0 \leq x \leq 0.4$) ceramics. Inset (a): temperature dependence of dielectric loss; inset (b): frequency and temperature dependence of dielectric constant for SBNT–0.2BLT ceramic.
Figure 5 shows the Weibull distribution of the breakdown strength (BDS) for SBNT–xBLT ceramics with different BLT concentrations. The Weibull linear equation, as a widely acceptable model, is always employed to calculate the reasonable values of BDS. The plot can be expressed by the following relationships:

\[
X_i = \ln E_i
\]

\[
Y_i = \ln \left(-\ln \left(\frac{1}{1 - \frac{i}{n+1}} \right) \right)
\]

where \(E_i\) is the specific breakdown value of each specimen in the experiments, \(n\) is the sum of specimens, \(i\) is the serial number of the specimens, and the specimens are arranged in ascending order of BDS values so that \(E_1 \leq E_2 \leq \cdots \leq E_i \leq \cdots \leq E_n\). Obviously, all the slopes \((m)\) of the Weibull curves are linear, and \(m > 1\); it indicates that the BDS can be analyzed by the Weibull model. The values of BDS as a function of BLT addition are shown in the inset of Fig. 5. As the BLT concentration increases up to 26 mol%, the breakdown strength of the ceramic samples increases from 48.1 (x = 0) to 106.9 kV/cm (x = 0.26). With the further increase of BLT content, the values of BDS decrease gradually. It was reported that the breakdown strength is closely related to activation energy (\(E_a\)) and grain size [20–22]. According to the experiment results, \(E_a\) is the most likely driving force for breakdown strength variation, and the change of grain size is unnoticeable when the BLT concentration exceeds 20 mol% (as seen in Fig. 2).

The energy storage behavior of the SBNT–xBLT ceramics with the same electric field is investigated in terms of the polarization–electric field (\(P–E\)) hysteresis loops. Figure 6 displays hysteresis loops of SBNT–xBLT ceramics measured with a frequency of 1 Hz at room temperature. A massive alignment of randomly-oriented ferroelectric domains occurs in BNT ceramics along the field direction by switching its polarity towards one of the energetically equivalent directions [1]. As mentioned before, a reduction in tolerance factor and electronegativity difference can contribute to the lessening of the relative stability of the FE structure. As a result, a greater fraction of reoriented ferroelectric domains switch back with the removal of the applied electric field, leaving the material reach a reduced remanent state. And this corresponds to the
evolution of P–E loops in Fig. 6. However, the so called “non-polar phase” is too stable to induce a ferroelectric state out of a relaxor state under the same external applied electric field in N5 and N6, as shown in Figs. 6(e) and 6(f), respectively.

The discharged energy density is obtained by integrating the area between the polarization axis and the discharge curve in the first quartile of P–E hysteresis loops [23]. According to the definition of discharged energy density, saturated polarization and remnant polarization have a direct impact on it. It is observed that with the increase of the BLT concentration, the saturated polarization (P_s) decreases gradually. Meanwhile, the remnant polarization first decreases sharply and then almost remains constant. Figure 7 shows the discharged energy density of the samples sintered at 1020 °C as a function of electric field at room temperature. The nonlinear behavior, with increasing electric field, is observed for all the cases. Obviously, higher applied electric field is more conducive to energy storage capability. Pure SBNT ceramic has the lowest discharged density, owing to the rather slow kinetics of reoriented domains back switching. The increasing concentration of BLT leads to a sharp drop in remnant polarization, which improves energy storage properties gradually. Consequently, a maximum energy storage density of 0.88 J/cm³ under an applied field 95 kV/cm is achieved when the increasing content of BLT up to 26 mol%. Thereafter, the energy storage properties deteriorate as BLT further increases. The energy efficiency (η) is defined as the ratio of the energy density discharged to the energy density charged (J_d). As presented in Fig. 8, the energy efficiencies of BLT-added specimens are obviously enhanced, showing the values in the range of 60%–75% at 60–90 kV/cm. The polarization retention behavior is believed to be the scenario to explicate the difference between J_d and J_c in a charge–discharge cycle. For the BLT-added specimens, reoriented ferroelectric domains switch back rapidly depending on their energetic stability with the removal of the applied electric field, resulting in a depressed poling process in the grains. Consequently, the BLT-added specimens achieve higher energy efficiencies as compared to the pristine specimen. However, the increase of the external applied electric field will expand the gap between J_d and J_c, and the corresponding energy efficiencies of SBNT–0.26BLT specimen initially at around 88% then gradually decrease to ~65%.

4 Conclusions

(1−x)Sr_{0.1}(Bi_{0.5}Na_{0.5})_{0.9}TiO_3–xBi_{0.5}Li_{0.5}TiO_3 ceramics with different content x were fabricated by solid-state reaction method. The effects of x values on the microstructure, ferroelectric properties (including the energy storage density), and dielectric properties were studied. XRD results of all the samples exhibited a typical perovskite structure. In the system, the BLT showed a strong influence on the microstructure, dielectric constant, BDS, and energy density. Besides, a maximum recoverable energy storage density of 0.88 J/cm³ with a high BDS of 106.9 kV/cm was achieved. These results showed that SBNT–BLT ceramics are a promising candidate dielectric material for high voltage, high energy density capacitors.

Acknowledgements

Financial supports of the National Natural Science
Foundation of China (Grant Nos. 11464006, 61561011, and 51462005) and the Natural Science Foundation of Guangxi (Grant No. 2014GXNSFBA118254) are gratefully acknowledged by the authors.

References

[1] Jo W, Dittmer R, Acosta M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 2012, 29: 71–93.
[2] Barick BK, Choudhary RNP, Pradhan DK. Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram Int 2013, 39: 5695–5704.
[3] Guo Y, Akai D, Sawada K, et al. Structure and electrical properties of trilayered BaTiO3/(Na0.5Bi0.5)TiO3–BaTiO3/BaTiO3 thin films deposited on Si substrate. Solid State Commun 2009, 149: 14–17.
[4] Viola G, Ning H, Reece MJ, et al. Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics. J Phys D: Appl Phys 2012, 45: 355302.
[5] Wang B, Luo L, Jiang X, et al. Energy-storage properties of (1−x)Bi0.47Na0.53Bi6.99Ti6O17–xKNbO3 lead-free ceramics. J Alloys Compd 2014, 585: 14–18.
[6] Ding J, Liu Y, Lu Y, et al. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater Lett 2014, 114: 107–110.
[7] Xu Q, Li T, Hao H, et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J Eur Ceram Soc 2015, 35: 545–553.
[8] Yuan Y, Zhao CJ, Zhou XH, et al. High-temperature stable dielectrics in Mn-modified (1−x)Bi0.5Na0.5TiO3–xCaTiO3 ceramics. J Electroceram 2010, 25: 212–217.
[9] Cao W, Li W, Zhang T, et al. High-energy storage density and efficiency of (1−x)0.94NaTiO3–0.06BT–xST lead-free ceramics. Energy Technology 2015, 3: 1198–1204.
[10] Li WL, Cao WP, Xia D, et al. Phase structure and piezoelectric properties of NBT–KBT–BT ceramics prepared by sol–gel flame synthetic approach. J Alloys Compd 2014, 613: 181–186.
[11] Hiruma Y, Imai Y, Watanabe Y, et al. Large electrostrain near the phase transition temperature of (Bi0.3Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl Phys Lett 2008, 92: 262904.
[12] Wang T, Du H, Shi X. Dielectric and ferroelectric properties of (1−x)Na0.7Bi0.3TiO3–xSrTiO3 lead-free piezoceramics system. J Phys: Conf Ser 2009, 152: 012065.
[13] Wang Y, Wang Z, Xu H, et al. Properties of (1−x)Bi0.3Na0.7TiO3–xSrTiO3 ferroelectric thin films prepared by metalorganic solution deposition. J Alloys Compd 2009, 484: 230–232.
[14] Hao J, Bai W, Li W, et al. Phase transitions, relaxor behavior, and electrical properties in (1−x)(Bi0.5Na0.5)TiO3–x(K0.5Na0.5)NbO3 lead-free piezoceramics. J Mater Res 2012, 27: 2943–2955.
[15] Shimizu H, Guo H, Reyes-Lillo SE, et al. Lead-free antiferroelectric: xCaZrO3–(1–x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 2015, 44: 10763–10772.
[16] Karimi S, Reaney IM, Han Y, et al. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 2009, 44: 5102–5112.
[17] Karimi S, Reaney IM, Levin I, et al. Nd-doped BiFeO3 ceramics with antipolar order. Appl Phys Lett 2009, 94: 112903.
[18] Li F, Zuo R, Zheng D, et al. Phase-composition-dependent piezoelectric and electromechanical strain properties in (Bi12−xNa12x)TiO3–Ba(Ni0.5Nb0.5)O3 lead-free ceramics. J Am Ceram Soc 2015, 98: 811–818.
[19] Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi12−xNa12x)TiO3–xmol%BaTiO3. J Appl Phys 2011, 110: 074106.
[20] Zhang W, Xue S, Liu S, et al. Structure and dielectric properties of Ba5Sr1−xTiO3-based glass ceramics for energy storage. J Alloys Compd 2014, 617: 740–745.
[21] Wang Z, Cao M, Yao Z, et al. Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Int 2014, 40: 14127–14132.
[22] Wang X, Zhang Y, Song X, et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J Eur Ceram Soc 2012, 32: 559–567.
[23] Young SE, Zhang JY, Hong W, et al. Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. J Appl Phys 2013, 113: 054101.

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.