Birth weight prediction by Lee formula based on fractional thigh volume in term pregnancies – is it helpful?

Jakub Młodawski, Daniel Wolder, Piotr Niziurski, Olga Adamczyk-Gruszka, Stanisław Głuszek, Wojciech Rokita

Collegium Medicum, Jan Kochanowski University, Kielce, Poland
Department of Obstetrics and Gynecology, Provincial Combined Hospital, Kielce, Poland

Submitted: 8 November 2018; Accepted: 6 February 2019
Online publication: 31 January 2020

Arch Med Sci 2022; 18 (1): 79–83
DOI: https://doi.org/10.5114/aoms.2020.92711
Copyright © 2020 Termedia & Banach

Abstract

Introduction: Ultrasonographic estimation of fetal weight (EFW) is a standard obstetric procedure in daily clinical practice. Formulas for calculating EFW most commonly are a combination of two-dimensional measurements. A relatively new approach is the use of three-dimensional measurements such as fractional thigh volume (TVol) incorporated into specific regression equations. The objective of this study was to compare the Lee formula based on three-dimensional ultrasonographic TVol in the estimation of fetal weight before delivery in term pregnancies to the Hadlock I formula.

Material and methods: 2D/3D abdominal ultrasonography was performed in 104 women, 37–41 gestational weeks, and measurements of biparietal diameter, head circumference, abdomen circumference, and femur length, TVol were taken. Using these measurements, we compared the Lee to the Hadlock formulas in EFW. The timing of procedures was measured in 20 randomly chosen patients by an independent observer.

Results: Mean percentage errors of formulas, Lee vs. Hadlock, were 2.13 ±9.31% vs. –2.02 ±8.79% (p = 0.001). There was no statistically significant difference in median absolute percentage errors between the two formulas (6.09% vs. 6.10%, p = 0.56). The proportion of newborns with estimated birth weights (BW) within ±10% of actual BW was not significantly different between the two formulas (73% vs. 71%, p = 0.11). There was a significant difference in the proportion of the newborns with estimated BW within ±5% (33% vs. 42%, p = 0.000006). Statistical measurements for test performance in detecting fetuses with BW ≥ 4000 g were sensitivity 85% vs. 60%, specificity 88% vs. 96%, and accuracy 88% vs. 89%. There was no significant difference in the time to perform the measurements (69 s for Lee formula vs. 58 s for Hadlock formula, p = 0.16).

Conclusions: Thigh volume measurement incorporated into the Lee single parameter formula is comparable to the Hadlock I formula in terms of accuracy in predicting fetal weight before delivery. There was no significant difference in the time needed for taking necessary measurements between the two groups.

Key words: fetal weight, biometry, ultrasonography, three-dimensional models.

Introduction

Estimation of fetal weight (EFW) is a standard ultrasonographic procedure in antenatal care. It is one of the crucial parameters for adequate planning and managing the time and route of delivery. It helps to detect
fetal growth abnormalities and determine whether elective caesarean section is indicated if fetal macrosomia is suspected. The investigators developed several regression equations to perform this estimation. At least 30 formulas for fetal weight estimation have been published [1]. These formulas are not as precise as actual birth weight (BW) and they are typically associated with estimation errors. Many of them are incorporated in commercially available ultrasound software. Formulas for calculating EFW most commonly are a combination of two-dimensional measurements (i.e. biparietal diameter (BP), head circumference (HC), abdominal circumference (AC), and femur length (FL)) and many factors potentially affect the accuracy of the estimation (i.e. race, maternal adiposity, amniotic fluid index, fetal abnormalities, sex and gestational age) [2]. The prediction of fetal weight by formulas based on three-dimensional ultrasonography (3DUS) measurements is relatively new. Fetal soft tissue parameters – fractional limb volumes: arm (AVol) and thigh (TVol) – are most commonly employed. Multiple available regression equations with other two- and three-dimensional parameters may be combined [3–5]. For the purpose of this study, we employed the least complicated – a single parameter Lee formula. It calculates EFW with TVol. The regression equation is as follows: $\text{EFW} = e^{(4.708 + 0.7596 \times \ln(\text{TVol}))}$, where e is Euler’s number ($\text{e} = 2.71828$) [6]. The objective of this study was to evaluate the Lee formula, which is based on TVol, in the daily practice of estimating fetal weight before delivery. We compared it to one of most commonly used formulas, the Hadlock I formula [7] $(\log_{10} \text{EFW} = 1.3596 - 0.00386 \times \text{AC} \times \text{FL} + 0.0064 \times \text{HC} + 0.00061 \times \text{BPD} \times \text{AC} + 0.0424 \times \text{AC} + 0.174 \times \text{FL})$, combined with four measurements: BP, HC, AC, and FL.

Material and methods

In this study we included patients in singleton, term pregnancy with cephalic presentation of the fetus. All of the patients volunteered for delivery in our clinic and consented to undergo ultrasound examination and participate in this study. Exclusion criteria were pre-labour rupture of membranes and lack of consent for participation in the study. One hundred and four singleton pregnant women met the inclusion criteria. Gestational age was between 37 and 41 (median: 39 weeks) based on the first day of the last normal menstrual period. Patients prospectively underwent three-dimensional ultrasonography for estimating TVol and two-dimensional fetal measurements with BP, HC, AC and FL taken during the same examination. Thigh volume measurement was obtained by a sagittal sweep that included both ends of the femoral diaphysis during maternal breath-holding (Figure 1). Partial volume (50% of femoral length) was automatically subdivided into five equidistant slices that were centred along the mid-thigh (Figure 2), then slices were traced manually from the transverse view of the extremity to obtain TVol (Figure 3). The Lee formula was used to calculate EFW. Evaluation took place within 3 days of delivery and was done by one certificated ultrasonographer. An independent observer measured the time taken to perform the necessary measures in 20 randomly selected patients. Amniotic fluid index (AFI) was also estimated in each patient. Women were recruited in the Department of Obstetrics and Gynaecology, Provincial Combined Hospital in Kielce. We used GE Healthcare Voluson E8 with three-dimensional curved-array abdominal transducer RAB 4–8 D and software to implement the Lee and Hadlock formulas. Immediately after delivery, neonatal staff measured BW. The percentage error (PE) between EFW and BW was calculated using the equation $\text{PE} = (\text{EFW} – \text{BW}/\text{BW}) \times 100\%$, and mean percentage errors (MPE) were calculated for each formula separately. Absolute percentage error (APE) was calculated using the equation $\text{APE} = |\text{EFW} – \text{BW}/\text{BW}) | \times 100\%$ and median absolute percentage errors (MAPE) were calculated. We compared the MPEs and MAPEs of the formulas. We also compared the proportion of newborns with estimated BWs within ± 5% and ± 10% of actual BW. We calculated statistical measures of test performance in detecting fetal macrosomia (arbitrarily set at 4000 g) (Table I).

Statistical analysis

Statistical analysis was performed using the Statistica 13.1 software package and $p < 0.05$ was considered as indicative of a significant difference. Student’s t-test, Mann-Whitney U test and χ^2 test were applied when assumptions were met.

Results

Mean BW in the studied population was 3504 g (± 575 g) and ranged between 2220 g and 4890 g. Distribution of fetal weight tended toward a normal distribution. The percentage of newborns with weight over 4000 g was 19.2% (20 fetuses). Median AFI was 14, and there was no case of oligohydramnios defined as AFI < 5 cm. MPEs of the Lee formula and Hadlock formula were statistically significantly different (2.13 ±9.31% vs. −2.02 ±8.79%, $p = 0.001$, power = 0.93 for $\alpha = 0.05$). MAPEs of formulas were 6.09% for Lee and 6.10% for Hadlock and were not significantly different ($p = 0.56$). The proportion of newborns with estimated BWs within ±10% of actual BW was not significantly different between formulas (73% vs.
Birth weight prediction by Lee formula based on fractional thigh volume in term pregnancies – is it helpful?

71%, \(p = 0.11 \). There was a significant difference in the proportion of the newborns with estimated BWs within ±5% (33% vs. 42%, \(p = 0.000006 \)). Statistical measurements for test performance in detecting fetuses with BW ≥ 4000 g were, for the Lee formula, sensitivity 85% specificity 88% accuracy 88%; in our population positive predictive value (PPV) was 62% and negative predictive value (NPV) was 96%. Hadlock formula test performance was sensitivity 60%, specificity 96%, accuracy 89%, PPV...
Mean time of taking necessary measurements for the Hadlock I formula was 58 s compared with 69 s for taking measurements for the Lee formula. There was no significant difference between groups ($p = 0.16$).

Discussion

Human newborn infant’s fat mass constituted 14% of birth weight but contributed to 46% of its variance [8]. Intrauterine growth abnormalities especially influence this compartment of the fetal body. The investigators demonstrated a correlation between 3DUS fetal limb volume (AVol, TVol) and birth weight [4, 6, 9]. Thigh volume was easily and rapidly measured, and highly reproducible among blinded observers [4]. It is incorporated in many formulas for the estimation of fetal weight, which contain other fetal measurements such as AC, BPD, AVol. These were reported and prospectively validated by the investigators [4, 10]. The advantage of the equation that we chose is that it is a single parameter model with a shorter procedure time. From the reported literature, the time taken to conduct the measurement was 1 to 2 min with manual tracing of the slices [4]. This is similar to our results. For the purpose of shortening the measurement time, software for the automatic tracing of slic-
Birth weight prediction by Lee formula based on fractional thigh volume in term pregnancies – is it helpful?

The authors declare no conflict of interest.

References

1. Mackenzie A, Stephenson C, Funai E. Prenatal sono-
 graphic assessment of fetal weight. Available at: https://
 www.uptodate.com/contents/prenatal-sonographic-as-
 sessment-of-fetal-weight.

2. Dudley NJ. A systematic review of the ultrasound es-
 timation of fetal weight. Ultrasound Obstet Gynecol
 2005; 25: 80-9.

3. Liang RI, Chang FM, Yao BL, Chang CH, Yu CH, Ko HC.
 Predicting birth weight by fetal upper-arm volume with
 use of three-dimensional ultrasonography. Am J Obstet
 Gynecol 1997; 177: 632-8.

4. Lee W, Deter RL, Ebersole JD, Huang R, Blanckaert K,
 Romero R. Birth weight prediction by three-dimensional
 ultrasonography: fractional limb volume. J Ultrasound
 Med 2001; 20: 1283-92.

5. Schild RL, Fimmers R, Hansmann M. Fetal weight esti-
 mation by three-dimensional ultrasound. Ultrasound
 Obstet Gynecol 2000; 16: 445-52.

6. Song TB, Moore TR, Lee j., Kim HH, Kim EK. Fetal weight pre-
 diction by thigh volume measurement with three-dimen-
 sional ultrasonography. Obstet Gynecol 2000; 96: 157-61.

7. Hadlock FP, Harrist RB, Sharman RS, et al. Estimation of fe-
 tal weight with the use of head, body, and femur measure-
 ments – a prospective study. Am J Obstet Gynecol 1985;
 151: 333-7.

8. Catalano PM, Tzybhir ED, Allen SR, McBean JH, McAulif-
 fe TL. Evaluation of fetal growth by estimation of neo-
 natal body composition. Obstet Gynecol 1992; 79: 46-50.

9. Schild RL, Fimmers R, Hansmann M. Fetal weight esti-
 mation by three-dimensional ultrasound. Ultrasound
 Obstet Gynecol 2000; 16: 445-52.

10. Lee W, Balasubramaniam M, Deter RL, Yeo L. New fetal
 weight estimation models using fractional limb volume.
 Ultrasound Obstet Gynecol 2009; 34: 556-65.

11. Mack LM, Kim SY, Lee S, et al. A novel semi-automated
 fractional limb volume tool for rapid and reproducible fe-
 tal soft tissue assessment. J Ultrasound Med 2016; 35:
 1573-8.

12. Dildy GA, Clark SL. Shoulder dystocia: risk identification.
 Clin Obstet Gynecol 2000; 43: 265-82.

13. Nesbitt TS, Gilbert WM, Herrchen B. Shoulder dystocia
 and associated risk factors with macrosomic infants born
 in California. Am J Obstet Gynecol 1998; 179: 476-80.

14. Cunningham F, Leveno K, Bloom S. Normal labor and
 delivery. In: Williams Obstetrics. 23rd ed. McGraw Hill
 Professional, 2010.

15. Lee W, Balasubramaniam M, Deter RL. Fractional limb vol-
 ume – a soft tissue parameter of fetal body composition:
 validation, technical considerations and normal ranges
during pregnancy. Ultrasound Obstet Gynecol 2009; 33:
 427-40.

16. Mack LM, Kim SY, Lee S, et al. A novel semi-automated
 fractional limb volume tool for rapid and reproducible fe-
 tal soft tissue assessment. J Ultrasound Med 2016;
 35: 1573-8.