Summary: We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with $U(1)^c \times U(1)^c$ symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.

MSC:
83C80 Analogues of general relativity in lower dimensions
83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Keywords: AdS-CFT correspondence; conformal field theory

Full Text: DOI arXiv

References:
[1] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324
[2] Hellerman, S., A universal inequality for CFT and quantum gravity, JHEP, 08, 130 (2011) · Zbl 1298.83051
[3] Friedan, D.; Keller, CA, Constraints on 2d CFT partition functions, JHEP, 10, 180 (2013) · Zbl 1342.81361
[4] Collier, S.; Lin, Y-H; Yin, X., Modular bootstrap revisited, JHEP, 09, 061 (2018) · Zbl 1398.83044
[5] Hartman, T.; Mazáč, D.; Rastelli, L., Sphere packing and quantum gravity, JHEP, 12, 048 (2019) · Zbl 1431.83053
[6] Narain, KS, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett. B, 169, 41 (1986)
[7] Mazac, D., Analytic bounds and emergence of AdS2 physics from the conformal bootstrap, JHEP, 04, 146 (2017) · Zbl 1378.81121
[8] Paulos, MF, Analytic functional bootstrap for CFTs in d > 1, JHEP, 04, 093 (2020) · Zbl 1436.81119
[9] D. Mazáč, L. Rastelli and X. Zhou, A basis of analytic functionals for CFTs in general dimension, arXiv:1910.12855 [INSPIRE] · Zbl 1469.81064
[10] Siegel, CL, On the theory of indefinite quadratic forms, Ann. of Math., 45, 577 (1944) · Zbl 0063.07006
[11] C.L. Siegel, Indefinite quadratische Formen und Funktionentheorie. I, Math. Ann.124 (1951) 17. · Zbl 0043.27402
[12] C.L. Siegel, Indefinite quadratische Formen und Funktionentheorie. II, Math. Ann.124 (1952) 364. · Zbl 0064.27401
[13] C.L. Siegel, Lectures on quadratic forms, notes by K.G. Ramanathan, Tata Institute of Fundamental Research Lectures on Mathematics, Bombay, India (1967) http://www.math.tifr.res.in/publ/ln/tifr07.pdf.
[14] G.W. Moore, Computation of some Zamolodchikov volumes, with an application, arXiv:1508.05612 [INSPIRE].
[15] Maloney, A.; Witten, E., Quantum gravity partition functions in three dimensions, JHEP, 02, 029 (2010) · Zbl 1270.83022
[16] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
[17] Manschot, J.; Moore, GW, A modern Farey tail, Commun. Num. Theor. Phys., 4, 103 (2010) · Zbl 1259.58005
[18] Cheng, MCN; Duncan, JFR, On Rademacher sums, the largest Mathieu group, and the holographic modularity of moonshine, Commun. Num. Theor. Phys., 6, 697 (2012) · Zbl 1281.11040
[19] Castro, A.; Gaberdiel, MR; Hartman, T.; Maloney, A.; Volpato, R., The gravity dual of the Ising model, Phys. Rev. D, 85 (2012)
[20] Jian, C-M; Ludwig, AW; Luo, Z-X; Sun, H-Y; Wang, Z., Establishing strongly-coupled 3D AdS quantum gravity with Ising dual using all-genus partition functions, JHEP, 10, 129 (2020) - Zbl 1456.83026

[21] Keller, CA; Maloney, A., Poincaré series, 3D gravity and CFT spectroscopy, JHEP, 02, 080 (2015) - Zbl 1388.83124

[22] Benjamin, N.; Ooguri, H.; Shao, S-H; Wang, Y., Light-cone modular bootstrap and pure gravity, Phys. Rev. D, 100 (2019)

[23] Alday, LF; Bae, J-B, Rademacher expansions and the spectrum of 2d CFT, JHEP, 11, 134 (2020) - Zbl 1456.81347

[24] Benjamin, N.; Collier, S.; Maloney, A., Pure gravity and conical defects, JHEP, 09, 034 (2020) - Zbl 1454.81178

[25] J.S. Cotler et al., Black holes and random matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE]. - Zbl 1380.81307

[26] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

[27] Afkhami-Jeddi, N.; Cohn, H.; Hartman, T.; de Laat, D.; Tajdini, A., High-dimensional sphere packing and the modular

[28] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

[29] Mertens, TG, The Schwarzian theory — origins, JHEP, 05, 036 (2018) - Zbl 1391.83081

[30] Cotler, J.; Jensen, K., A theory of reparameterizations for AdS_3gravity, JHEP, 02, 079 (2019) - Zbl 1411.83079

[31] Achucarro, A.; Townsend, PK, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B, 180, 89 (1986)

[32] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B311 (1988) 46 [INSPIRE]. - Zbl 1258.83032

[33] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE]. - Zbl 0768.53042

[34] X. Bekaert, S. Conchoert, C. Izazolita and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in the proceedings of the 1st Solvay Workshop on Higher Spin Gauge Theories, May 12-14, Brussels, Belgium (2004), hep-th/0503128 [INSPIRE].

[35] Sundborg, B., Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. B Proc. Suppl., 102, 113 (2001) - Zbl 1006.81066

[36] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B644 (2002) 303 [Erratum ibid.660 (2003) 403] [hep-th/0205131] [INSPIRE]. - Zbl 0999.81078

[37] Klebanov, IR; Polyakov, AM, AdS dual of the critical O(N) vector model, Phys. Lett. B, 550, 213 (2002) - Zbl 1001.81057

[38] Gaberdiel, MR; Gopakumar, R., An AdS_3dual for minimal model CFTs, Phys. Rev. D, 83 (2011)

[39] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 143 (1964) - Zbl 0203.03305

[40] Weil, A., Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math., 113, 1 (1965) - Zbl 0161.2304

[41] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

[42] Almheiri, A.; Hartman, T.; Malhaccura, J.; Shaghourian, E.; Tajdlin, A., Replica wormholes and the entropy of Hawking radiation, JHEP, 05, 013 (2020) - Zbl 1437.83084

[43] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) - Zbl 1454.83042

[44] Maloney, A.; Witten, E., Averaging over Narain moduli space, JHEP, 10, 187 (2020) - Zbl 1456.81347

[45] J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007) [INSPIRE].

[46] Giroux, A.; Porrat, M.; Rabinovic, E., Target space duality in string theory, Phys. Rept., 244, 11 (1994) - Zbl 0999.81078

[47] J.P. Serre, A course in arithmetic, Springer, Germany (1973). - Zbl 0161.02304

[48] Mertens, TG, The Schwarzian theory — origins, JHEP, 05, 036 (2018) - Zbl 1391.83081

[49] Benjamin, N.; Ooguri, H.; Shao, S-H; Wang, Y., Light-cone modular bootstrap and pure gravity, Phys. Rev. D, 100 (2019)

[50] Mathur, SD; Mukhi, S.; Sen, A., On the classification of rational conformal field theories, Phys. Lett. B, 180, 89 (1986)

[51] Heath-Brown, DR, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math., 481, 149 (1996) - Zbl 0857.11049

[52] Benjamin, N.; Maloney, A., Pure gravity and conical defects, JHEP, 09, 034 (2020) - Zbl 1454.81178

[53] Bae, J-B; Lee, S.; Song, J., Modular constraints on conformal field theories with currents, JHEP, 12, 045 (2017) - Zbl 1383.81177

[54] Mathur, SD; Mukhi, S.; Sen, A., On the classification of rational conformal field theories, Phys. Lett. B, 213, 303 (1988)

[55] Kiritsis, EB, Fuchsian differential equations for characters on the torus: a classification, Nucl. Phys. B, 324, 475 (1989)

[56] Coln, H.; Gonçalves, F., An optimal uncertainty principle in twelve dimensions via modular forms, Invent. Math., 217, 2019 (2019) - Zbl 1422.42010

[57] H. Cohn and N. Elkies, New upper bounds on sphere packings I, Ann. Math.,157 (2003) 689 [math.MG/0110009]. - Zbl 1006.81066

[58] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) - Zbl 1454.83042

[59] Simons-Duffin, D., A semidefinite program solver for the conformal bootstrap, JHEP, 06, 174 (2015) - Zbl 1411.83079

[60] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962) 485. - Zbl 0107.14804

[61] Heath-Brown, DR, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math., 481, 149 (1996) - Zbl 0857.11049

[62] Siegel, CL, A mean value theorem in geometry of numbers, Ann. of Math., 46, 340 (1945) - Zbl 0063.07011
[60] Moskowitz, M.; Sacksteder, R., An extension of a theorem of Hlawka, Mathematika, 56, 203 (2010) · Zbl 1227.11082

[61] A. Venkatesh, A note on sphere packings in high dimension, Int. Math. Res. Not. (2013) 1628 · Zbl 1337.52014

[62] Strichartz, RS, Harmonic analysis on hyperboloids, J. Funct. Anal., 12, 341 (1973) · Zbl 0253.43013

[63] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics volume 17, American Mathematical Society, Providence U.S.A. (1997). · Zbl 0905.11023

[64] Franke, J.; Manin, YI; Tschinkel, Y., Rational points of bounded height on Fano varieties, Invent. Math., 95, 421 (1989) · Zbl 0674.15021

[65] Duke, W.; Rudnick, Z.; Sarnak, P., Density of integer points on affine homogeneous varieties, Duke Math. J., 71, 143 (1993) · Zbl 0798.11024

[66] A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula, Internat. Math. Res. Not. (1991) 65 · Zbl 0743.11023

[67] Eskin, A.; McMullen, C., Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71, 181 (1993) · Zbl 0798.11025

[68] Cardy, JL, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B, 270, 186 (1986) · Zbl 0689.17016

[69] Pal, S.; Sun, Z., Tauberian-Cardy formula with spin, JHEP, 01, 135 (2020)

[70] Cheng, MCN; Duncan, JFR, Rademacher sums and Rademacher series, Contrib. Math. Comput. Sci., 8, 143 (2014) · Zbl 1344.11037

[71] Ferrari, F.; Reys, V., Mixed Rademacher and BPS black holes, JHEP, 07, 094 (2017)

[72] Zbl 0930.53057
[73] Zbl 0689.17016
[74] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118

[75] Ferrari, F.; Reys, V., Mixed Rademacher and BPS black holes, JHEP, 07, 094 (2017)

[76] Cohn, H.; Zhao, Y., Sphere packing bounds via spherical codes, Duke Math. J., 163, 1965 (2014)

[77] G.A. Kabatyanskii and V.I. Levenshtein, Bounds for packings on a sphere and in space, Probl. Peredachi Inform.14 (1978) 3

[78] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics volume 17, American Mathematical

[79] Zbl 1380.83136
[80] Zbl 1333.81368
[81] Zbl 1154.83306
[82] D.V. Widder, The Laplace transform, Princeton Mathematical Series volume 6, Princeton University Press, Princeton U.S.A.

[83] Eskin, A.; McMullen, C., Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71, 181 (1993) · Zbl 0798.11025

[84] Cardy, JL, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B, 270, 186 (1986) · Zbl 0689.17016

[85] Pal, S.; Sun, Z., Tauberian-Cardy formula with spin, JHEP, 01, 135 (2020)

[86] Cheng, MCN; Duncan, JFR, Rademacher sums and Rademacher series, Contrib. Math. Comput. Sci., 8, 143 (2014) · Zbl 1344.11037

[87] Ferrari, F.; Reys, V., Mixed Rademacher and BPS black holes, JHEP, 07, 094 (2017)

[88] Zbl 0930.53057
[89] Zbl 0689.17016
[90] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118

[91] Ferrari, F.; Reys, V., Mixed Rademacher and BPS black holes, JHEP, 07, 094 (2017)

[92] Zbl 0930.53057
[93] Zbl 0689.17016
[94] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118

[95] Ferrari, F.; Reys, V., Mixed Rademacher and BPS black holes, JHEP, 07, 094 (2017)

[96] Zbl 0930.53057
[97] Zbl 0689.17016
[98] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH
paper as accurately as possible without claiming the completeness or perfect precision of the matching.