Nonlinear Boundary Output Feedback Stabilization of Reaction Diffusion PDEs

Hugo Lhachemi a, Christophe Prieur b,

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France
bUniversité Grenoble Alpes, CNRS, Grenoble-INP, GIPSA-lab, F-38000, Grenoble, France

Abstract

This paper studies the design of a finite-dimensional output feedback controller for the stabilization of a reaction-diffusion equation in the presence of a sector nonlinearity in the boundary input. Due to the input nonlinearity, classical approaches relying on the transfer of the control from the boundary into the domain with explicit occurrence of the time-derivative of the control cannot be applied. In this context, we first demonstrate using Lyapunov direct method how a finite-dimensional observer-based controller can be designed, without using the time derivative of the boundary input as an auxiliary command, in order to achieve the boundary stabilization of general 1-D reaction-diffusion equations with Robin boundary conditions and a measurement selected as a Dirichlet trace. We extend this approach to the case of a control applying at the boundary through a sector nonlinearity. We show from the derived stability conditions the existence of a size of the sector (in which the nonlinearity is confined) so that the stability of the closed-loop system is achieved when selecting the dimension of the observer large enough.

Key words: Reaction-diffusion PDE, Nonlinear boundary control, Nonlinear sector condition, Output feedback, Finite-dimensional controller

1 Introduction

The impact of various input nonlinearities in the control design and stability assessment of finite-dimensional systems has been intensively studied in the literature [34,35,36]. These include, to cite a few that are commonly encountered in practical applications [2], saturations, deadzones, general sector nonlinearities, etc. Despite their relative simplicity, these nonlinearities, even when applied in input of a linear time invariant system, induce many challenges such as multiple equilibria points, existence of a region of attraction, etc [3]. The extension of these problematics to infinite dimensional systems, and particularly to the control of partial differential equations (PDEs), has attracted much attention in the recent years. Among the early contributions in this field, one can find the study of saturation mechanisms in [16,33]. More recently, Lyapunov-based stabilization of different class of PDEs, including wave and Kortweg-de Vries equations, in the presence of cone-bounded nonlinearities in the control input have been reported in [24,25,30]. Model predictive control was proposed in [8] in order to achieve the feedback stabilization of reaction-diffusion equations in the presence of constraints. Singular perturbations techniques were reported in [9].

In this paper, we are concerned with the output feedback stabilization of a 1-D reaction-diffusion equation presenting a sector nonlinearity in the boundary input. The developed approach relies on spectral reduction methods [32] that have been intensively used for the control of parabolic PDEs in a great variety of settings [4,5,19,21,22,23,28,31]. They were in particular used in the context of the both local stabilization and estimation of region of attraction for reaction-diffusion equations in the presence of an in-domain input saturation; see [26] and [20] in the context of state and output feedback, respectively. It should be noted that spectral reduction methods have been very attractive for parabolic PDEs because they allow the design of finite-dimensional state-feedback, making them particularly relevant for practical applications. However, due to the...
determined nature of the state, the design of an observer is generally necessary. In order to avoid late lumping approximations required for the implementation of observers with infinite dimensional dynamics [15], a number of works have been devoted to the design of finite-dimensional observer-based control strategies, in particular for parabolic PDEs [1,6,10,11,13,17,18].

The control design strategy adopted in this paper takes the form of a finite-dimensional observer coupled with a finite-dimensional state feedback [13]. Using a re-scaling procedure, this control strategy was extended to Dirichlet and/or Neumann boundary actuation and measurement in [17], achieving the exponential stabilization of the PDE trajectories in H^1 norm. See also [14] with a different approach in the stability analysis but limited to Dirichlet measurements. In these two latter works, the boundary control input u was handled using the classical procedure consisting of a change of variable that allows the transfer of the input from the boundary into the domain [7, Sec. 3.3]. However, this procedure requires the use of the time derivative $v = \frac{du}{dt}$ of the input u as an auxiliary input to design the control law. When considering a nonlinearity φ in the application of the control input u, such an approach fails in general. This is because the actual input applied to the system is $u_\varphi = \varphi(u)$ and its time derivative reads $v_\varphi = \dot{u}_\varphi = \varphi'(u)\dot{u}$. Therefore, since u remains the actual command to be applied in input of the system, it is generally not possible to use v_φ as an auxiliary input to perform the control design.

Using Lyapunov direct method, the first objective of this paper is to demonstrate how a finite-dimensional observer-based controller can be designed, without using the time derivative of the boundary input as an auxiliary command, in order to achieve the output feedback boundary stabilization of a linear reaction-diffusion equation with Robin boundary conditions. More specifically, we consider the case of a control input applying through a Robin boundary condition while the measurement takes the form of a Dirichlet trace located at the other boundary. Note that a similar setting has been achieved in [10] by invoking small-gain arguments for PDE trajectories evaluated in L^2 norm (see also [12] for a Lyapunov-based approach but which is limited to the specific case of a bounded output operator and a Neumann control input while considering the L^2 norm). In contrast, the results presented in this paper rely on the use of Lyapunov functionals and provide stability estimates in both L^2 and H^1 norms. This is achieved by first designing the control strategy on the original PDE (which only involves the input u) while the stability analysis is performed) 1) based on an homogeneous representation of the PDE that involves $v = \dot{u}$; and 2) by extending the scaling strategy employed in [17]. The second objective consists in taking advantage of the aforementioned Lyapunov functional in order to tackle the case of a boundary control input subject to a sector nonlinearity. We show the existence of a size of the sector (in which the nonlinearity is confined) so that the proposed strategies always achieve the exponential stabilization of the plant when selecting the dimension of the observer large enough.

The remainder of this paper is organized as follows. Notations and properties of Sturm-Liouville operators are presented in Section 2. The preliminary study consisting of the design of a finite-dimensional observer-based controller for the linear reaction-diffusion without using the time derivative of the input as an auxiliary command input is reported in Section 3. The extension to the case of a reaction-diffusion equation with a sector nonlinearity in the boundary input is reported in Section 4. A numerical illustration is carried out in Section 5. Finally, concluding remarks are formulated in Section 6.

2 Notation and properties

Spaces \mathbb{R}^n are equipped with the usual Euclidean norm denoted by $|| \cdot ||$. The associated induced norms of matrices are also denoted by $|| \cdot ||$. For any two vectors X and Y of arbitrary dimensions, $\text{col}(X,Y)$ denotes the vector $[X^T, Y^T]^T$. The space $L^2(0,1)$ stands for the space of square integrable functions on $(0,1)$ and is endowed with the usual inner product $(f,g) = \int_0^1 f(x)g(x)\,dx$. The associated norm is denoted by $|| \cdot ||_{L^2}$. For an integer $m \geq 1$, the m-order Sobolev space is denoted by $H^m(0,1)$ and is endowed with its usual norm $|| \cdot ||_{H^m}$. For a symmetric matrix $P \in \mathbb{R}^{n \times n}$, $P \succeq 0$ (resp. $P > 0$) means that P is positive semi-definite (resp. positive definite).

Let $\theta_1 \in (0, \pi/2]$, $\theta_2 \in [0, \pi/2]$, $p \in C^1([0,1])$ and $q \in C^0([0,1])$ with $p > 0$ and $q \geq 0$. Let the Sturm-Liouville operator $\mathcal{A} : D(\mathcal{A}) \subset L^2(0,1) \rightarrow L^2(0,1)$ be defined by $\mathcal{A}f = -(pf')' + qf$ on the domain $D(\mathcal{A}) = \{f \in H^2(0,1) : c_0 f(0) - s_0 f'(0) = c_1 f(1) + s_1 f'(1) = 0\}$, where $c_q = \cos \theta_q$ and $s_q = \sin \theta_q$. The eigenvalues λ_n, $n \geq 1$, of \mathcal{A} are simple, non negative, and form an increasing sequence with $\lambda_n \rightarrow +\infty$ as $n \rightarrow +\infty$. Moreover, the associated unit eigenvectors $\phi_n \in L^2(0,1)$ form a Hilbert basis. The domain of the operator \mathcal{A} is equivalently characterized by $D(\mathcal{A}) = \{f \in L^2(0,1) : \sum_{n \geq 1} |\lambda_n|^2 |\langle f, \phi_n \rangle|^2 < +\infty\}$. Let p, q^*, $q^* > 0$ be such that $0 < p_s = p(x) \leq p_0$ and $0 \leq q(x) \leq q^*$ for all $x \in [0,1]$, then it holds $0 \leq \pi^2 (n - 1)^2 p_s \leq \lambda_n \leq \pi^2 n^2 p_s + q^*$ for all $n \geq 1$ [27]. Moreover if $p \in C^2([0,1])$, we have (see, e.g., [27]) that $\phi_n(\xi) = O(1)$ and $\phi'_n(\xi) = O(\sqrt{\lambda_n})$ as $n \rightarrow +\infty$ for any given $\xi \in [0,1]$. Assuming further that $q > 0$, an integration by parts and the continuous embedding $H^1(0,1) \subset L^\infty(0,1)$ show the existence of constants $C_1, C_2 > 0$ such that

$$C_1 ||f||_{H^1}^2 \leq \sum_{n \geq 1} \lambda_n \langle f, \phi_n \rangle^2 = \langle \mathcal{A}f, f \rangle \leq C_2 ||f||_{H^1}^2$$

for any $f \in D(\mathcal{A})$. The latter inequalities and the Riesz-spectral nature of \mathcal{A} imply that the series
Introducing the change of variable

3.1 Spectral reduction

such that $f(0) = \sum_{n \geq 1} (f, \phi_n) \phi_n(0)$. We finally define, for any integer $N \geq 1$, $R_N f = \sum_{n \geq N+1} (f, \phi_n) \phi_n$.

3 Design for linear reaction-diffusion equation

Consider the reaction-diffusion system described by

$$
\begin{align*}
&z_t(t,x) = (p(x)z_x(t,x))_x - \bar{q}(t,x)z(t,x) \quad (2a) \\
&c_0 z(t,0) - s_0 z_x(t,0) = 0 \\
&c_0 z(t,1) + s_0 z_x(t,1) = u(t) \quad (2c) \\
&y(t) = z(t,0) \\
&z(0, x) = z_0(x) \quad (2e)
\end{align*}
$$

for $t > 0$ and $x \in (0,1)$ where $\theta_1 \in [0,\pi/2]$, $\theta_2 \in [0,\pi/2]$, $p \in C^2([0,1])$ with $p > 0$, and $\bar{q} \in C^0([0,1])$. Here $z(t, \cdot)$ represents the state at time t, $u(t)$ is the command, $y(t)$ is the measurement, and z_0 is the initial condition. Without loss of generality, let $q \in C^0([0,1])$ and $q_c \in \mathbb{R}$ be such that

$$
\bar{q}(x) = q(x) - q_c, \quad q(x) > 0. \quad (3)
$$

3.1 Spectral reduction

Introducing the change of variable

$$
w(t,x) = z(t,x) - \frac{x^2}{c_0^2 + 2s_0^2} u(t) \quad (4)
$$

we infer that

$$
\begin{align*}
v(t) &= \dot{u}(t) \\
w_t(t,x) &= (p(x)w_x(t,x))_x - \bar{q}(t,x)w(t,x) \\
&\quad + a(x)u(t) + b(x)v(t) \\
c_0 w(t,0) - s_0 w_x(t,0) &= 0 \\
c_0 w(t,1) + s_0 w_x(t,1) &= 0 \\
y(t) &= w(t,0) \\
w(0, x) &= w_0(x)
\end{align*}
$$

where $a(x) = \frac{1}{c_0^2 + 2s_0^2} \{2p(x) + 2xp'(x) - x^2 \bar{q}(x)\}$, $b(x) = -\frac{x^2}{c_0^2 + 2s_0^2}$, and $w_0(x) = z_0(x) - \frac{x^2}{c_0^2 + 2s_0^2} u(0)$. We define $z_n(t) = (z(t, \cdot), \phi_n)$, $w_n(t) = (w(t, \cdot), \phi_n)$, $a_n = (a, \phi_n)$, and $b_n = (b, \phi_n)$. In particular, one has

$$
w_n(t) = z_n(t) + b_n u(t), \quad n \geq 1. \quad (6)
$$

The projection of (2) into the Hilbert basis $(\phi_n)_{n \geq 1}$ gives

$$\hat{z}_n(t) = (-\lambda_n + q_c) z_n(t) + \beta_n u(t) \quad (7)$$

with $\beta_n = a_n + (-\lambda_n + q_c)b_n = p(1)\{-c_0^2 \phi_n'(1) + s_0 \phi_n(1)\} = O(\sqrt{n})$, while the projection of (5) reads

$$
\begin{align*}
\dot{u}(t) &= v(t) \quad (8a) \\
\dot{w}_n(t) &= (-\lambda_n + q_c) w_n(t) + a_n u(t) + b_n v(t), \quad (8b) \\
y(t) &= \sum_{n \geq 1} w_n(t) \phi_n(0) \quad (8c)
\end{align*}
$$

Remark 1 Representation (7) is more convenient for control design since only the input u appears in the dynamics. However, Lyapunov stability analysis based on this representation is difficult because $\beta_n = O(\sqrt{n})$. Conversely, representation (8) is less natural for control design since both input u and its time derivative $v = \dot{u}$ appear in the dynamics. Nevertheless, this representation is easier to handle in the context of a Lyapunov stability analysis because $a_n, b_n \in \ell^2(\mathbb{N})$; see [14,17] where $v = \dot{u}$ was used as the input for control design. Control design and stability analysis in L^2 norm have been performed solely based on representation (7) in [12] in the very specific case of a bounded output operator $y(t) = \int_0^1 c(x)z(t,x)\,dx$ with $c \in L^2(0,1)$ and Neumann control input/boundary condition $(\theta_1 = \theta_2 = \pi/2)$, that correspond to the most favorable case $\beta_n = p(1)\phi_n(1) = O(1)$.

In this section, we show for the general setting of (2) how to perform the control design directly with u as the input, based on representation (7), while carrying out the Lyapunov stability analysis using representation (8) in order to obtain stability estimates in both L^2 and H^1 norms.

3.2 Control strategy

Let $\delta > 0$ and $N_0 \geq 1$ be such that $-\lambda_n + q_c < -\delta < 0$ for all $n \geq N_0 + 1$. For an arbitrarily given $N \geq N_0 + 1$, we design an observer to estimate the N first modes of the plant in z-coordinates while the state-feedback is computed based on the estimation of the N_0 first modes of the plant. More precisely, the control strategy investigated in this section takes the form:

$$
\begin{align*}
\hat{w}_n(t) &= \hat{z}_n(t) + b_n u(t) \quad (9a) \\
\hat{z}_n(t) &= (-\lambda_n + q_c) \hat{z}_n(t) + \beta_n u(t) \quad (9b) \\
- \lambda_n \left\{ \sum_{k=1}^N \hat{w}_k(\phi_k(0) - y(t)) \right\}, & 1 \leq n \leq N_0 \quad (9c) \\
\hat{z}_n(t) &= (-\lambda_n + q_c) \hat{z}_n(t) + \beta_n u(t), \quad N_0 + 1 \leq n \leq N \quad (9d) \\
u(t) &= \sum_{k=1}^{N_0} k \hat{z}_k(t) \quad (9e)
\end{align*}
$$

where $\lambda_n \in \mathbb{R}$ and $k \in \mathbb{R}$ are the observer and feedback gains, respectively.

Remark 2 We denote $\hat{z}(t) \in \mathbb{R}^N$ the state of the observer. The well-posedness of the closed-loop system composed on (5) and (9) in terms of classical solutions for
initial conditions \(w_0 \in D(A) \) and \(\hat{z}(0) \in \mathbb{R}^N \) and defined for all \(t \geq 0 \), namely \((w, \hat{z}) \in C^0(\mathbb{R}_{\geq 0}; L^2(0, 1) \times \mathbb{R}^N) \cap C^1(\mathbb{R}_{> 0}; L^2(0, 1)) \) with \(w(t, \cdot) \in D(A) \) for all \(t > 0 \), is a direct consequence of [29, Thm. 6.3.1 and 6.3.3]. Moreover, from the proof of [29, Thm. 6.3.1], we have \(\mathcal{A} w \in C^0(\mathbb{R}_{> 0}; L^2(0, 1)) \) and \(\mathcal{A}^{1/2} w \in C^0(\mathbb{R}_{\geq 0}; L^2(0, 1)) \).

3.3 Model for stability analysis

We define \(e_n = z_n - \hat{z}_n \) for all \(1 \leq n \leq N \). From (9a-9b) and using (6) and (8c), we infer that

\[
\dot{z}_n = (-\lambda_n + q_e)\hat{z}_n + \beta_n u + l_n \sum_{k=1}^{N} \phi_k(0)e_k + l_n \zeta (10)
\]

for \(1 \leq n \leq N_0 \) where \(\zeta(t) = \sum_{n>N_0} w_n(t)\phi_n(0) \). We define first the scaled quantities \(\tilde{z}_n = z_n/\lambda_n \), and, as in [17], \(\tilde{e}_n = \sqrt{\lambda_n}e_n \). We then introduce \(\tilde{Z}_{N_0} = \left[\tilde{z}_1 \ldots \tilde{z}_{N_0} \right]^\top, \quad E_{N_0} = \left[e_1 \ldots e_{N_0} \right]^\top, \quad \tilde{Z}^{N-N_0} = \left[\tilde{z}_{N_0+1} \ldots \tilde{z}_N \right]^\top, \quad \text{and} \quad \tilde{E}_{N_0} = \left[\tilde{e}_{N_0+1} \ldots \tilde{e}_N \right]^\top \). We obtain from (9d) that

\[
u = K \tilde{Z}_{N_0} (11)\]

where \(K = \left[k_1 \ldots k_{N_0} \right] \). Next, we infer from (9) and (10) that

\[
\begin{align*}
\dot{Z}_{N_0} &= (A_0 + \mathfrak{B}_0 K)\tilde{Z}_{N_0} + LC_0 E_{N_0} + L\zeta (12a) \\
&\quad + L\hat{C}_1 E^{N-N_0} \quad (12b) \\
\dot{E}_{N_0} &= (A_0 - LC_0)E_{N_0} - L\hat{C}_1 E^{N-N_0} - L\zeta (12c) \\
\dot{Z}^{N-N_0} &= A_1 \tilde{Z}^{N-N_0} + \mathfrak{B}_1 K \tilde{Z}_{N_0} (12d) \\
\dot{E}^{N-N_0} &= A_1 \tilde{E}^{N-N_0} + \mathfrak{B}_1 E_{N_0}
\end{align*}
\]

where the different matrices are defined by \(A_0 = \text{diag}(-\lambda_1 + q_e, \ldots, -\lambda_{N_0} + q_e) \), \(A_1 = \text{diag}(-\lambda_{N_0+1} + q_e, \ldots, -\lambda_N + q_e) \), \(\mathfrak{B}_0 = \left[\beta_1 \ldots \beta_{N_0} \right]^\top \), \(\mathfrak{B}_1 = \left[\beta_{N_0+1} \ldots \beta_N \right]^\top \), \(C_0 = \left[\phi_1(0) \ldots \phi_{N_0}(0) \right] \), \(\hat{C}_1 = \left[\phi_{N_0+1}(0) \ldots \phi_N(0) \right] \), and \(L = \left[l_1 \ldots l_{N_0} \right]^\top \). Therefore, defining the vector

\[
X = \text{col} \left(\tilde{Z}_{N_0}, E_{N_0}, \tilde{Z}^{N-N_0}, \tilde{E}_{N_0} \right), (13)
\]

we infer that

\[
\dot{X} = FX + L\zeta (14)
\]

where

\[
F = \begin{bmatrix}
A_0 + \mathfrak{B}_0 K & LC_0 & 0 & L\hat{C}_1 \\
0 & A_0 - LC_0 & 0 & -L\hat{C}_1 \\
\mathfrak{B}_1 K & 0 & A_1 & 0 \\
0 & 0 & 0 & A_1
\end{bmatrix}, \quad L = \begin{bmatrix}
L \\
-L \\
0 \\
0
\end{bmatrix}
\]

Remark 3 The pairs \((A_0, \mathfrak{B}_0)\) and \((A_0, C_0)\) satisfy the Kalman condition. Indeed, since \(A_0 \) is diagonal with simple eigenvalues, the Kalman conditions hold if and only if, from the definition of the matrices \(\mathfrak{B}_0 \) and \(C_0 \), \(\beta_n = p(1)\{-c_{02}\phi_n(1) + s_{0}\phi_n(1)\} \neq 0 \) and \(\phi_n(0) \neq 0 \) for all \(1 \leq n \leq N_0 \). From the definition of the eigenvectors \(\phi_n \) and by Cauchy uniqueness, this is indeed case. Hence, we can always compute a feedback gain \(K \in \mathbb{R}^{1 \times N_0} \) and an observer gain \(L \in \mathbb{R}^{N_0} \) such that \(A_0 + \mathfrak{B}_0 K \) and \(A_0 - LC_0 \) are Hurwitz with eigenvalues that have a real part strictly less than \(-\delta < 0\). In that case, from the above definition of the matrix \(F \), one can observe that matrix \(F \) is Hurwitz with eigenvalues that have a real part strictly less than \(-\delta < 0\).

Finally, defining \(\bar{X} = \text{col} (X, \zeta) \) and based on (11) and (12a), we also have

\[
u = \bar{K} \dot{X}, \quad \dot{u} = \bar{K} \tilde{Z}_{N_0} = E\bar{X} (15)
\]

with \(E = K \left[A_0 + \mathfrak{B}_0 K \quad LC_0 \quad 0 \quad L\hat{C}_1 \quad L \right] \) and \(\bar{K} = \left[K \quad 0 \quad 0 \quad 0 \right] \).

3.4 Main stability results

Theorem 4 Let \(\theta_1 \in [0, \pi/2], \theta_2 \in [0, \pi/2], \rho \in C^2([0, 1]) \) with \(\rho > 0 \), and \(\gamma \in C^2([0, 1]) \). Let \(q \in C^0([0, 1]) \) and \(q_c \) be such that (3) holds. Let \(\delta > 0 \) and \(N_0 \geq 1 \) be such that \(-\lambda_n + q_c < -\delta \) for all \(n \geq N_0 + 1 \). Let \(K \in \mathbb{R}^{1 \times N_0} \) and \(L \in \mathbb{R}^{N_0} \) be such that \(A_0 + \mathfrak{B}_0 K \) and \(A_0 - LC_0 \) are Hurwitz with eigenvalues that have a real part strictly less than \(-\delta < 0\). For a given \(N \geq N_0 + 1 \), assume that there exist \(P > 0, \alpha > 1, \) and \(\beta, \gamma > 0 \) such that

\[
\Theta_1 \leq 0, \quad \Theta_2 \leq 0 (16)
\]

where

\[
\begin{align*}
\Theta_1 &= \left[F^T P + PF + 2\delta \beta + \gamma \alpha \| R_N a \|_2^2 \hat{K}^T \hat{K} \right] P \mathcal{L} + \beta \\
&\quad + \gamma \alpha \| R_N b \|_2^2 E^T E \\
\Theta_2 &= 2\gamma \left\{ -\left(1 - \frac{1}{\alpha} \right) \lambda_{N+1} + q_c + \delta \right\} + \beta M_\phi
\end{align*}
\]

and with \(M_\phi = \sum_{n>N_0+1} |\phi_n(0)|^2 < +\infty \). Then there exists a constant \(M > 0 \) such that for any initial conditions \(z_0 \in H^2(0, 1) \) and \(\hat{z}(0) \in \mathbb{R} \) such that \(c_{01} z_0(0) -
\]
where \(\Gamma\), \(s_\theta t, z_0(0) = 0\) and \(c_\theta z_0(1) + c_\theta z_0'(1) = K\hat{X}N_0(0)\), the trajectory of the closed-loop system composed of the plant (2) and the controller (9) satisfy

\[
\|z(t, \cdot)\|_{H^2}^2 + \sum_{n = 1}^{N} \hat{z}_n(t)^2 \leq M e^{-2\delta t} \left(\|z_0\|_{H^2}^2 + \sum_{n = 1}^{N} \hat{z}_n(0)^2 \right)
\]

for all \(t \geq 0\). Moreover, the constraints (16) are always feasible for \(N\) selected large enough.

Proof. Let the Lyapunov function candidate

\[
V(X, w) = X^TPX + \gamma \sum_{n \geq N+1} \lambda_n \langle w, \phi_n \rangle^2
\]

for \(X \in \mathbb{R}^{2N}\) and \(w \in \mathcal{D}(A)\). Note that the first term of \(V\) accounts for the \(N\) first modes of the PDE expressed in \(z\)-coordinates (2) while the second term accounts for the modes labeled \(n \geq N + 1\) of the PDE expressed in \(w\)-coordinates (5). The computation of the time derivative of \(V\) along classical solution of the system composed of (8) and (14), whose existence is provided by [29, Thm. 6.3.1], gives

\[
\dot{V} = \dot{X}^T \begin{bmatrix}
F^TP + PF & P \mathcal{L} \\
\mathcal{L}^TP & -P
\end{bmatrix} \dot{X} + 2\gamma \sum_{n \geq N+1} \lambda_n \{(-\lambda_n + q_n \rangle w_n + a_nu + b_nv \} w_n.
\]

where \(\dot{X} = \text{col}(X, \zeta)\). Using Young inequality, we infer for any \(\alpha > 0\) that

\[
2 \sum_{n \geq N+1} \lambda_n a_n uw_n \leq \frac{1}{\alpha} \sum_{n \geq N+1} \lambda_n^2 u_n^2 + \alpha \|R_Na\|_{L^2} u_n^2,
\]

\[
2 \sum_{n \geq N+1} \lambda_n b_n v w_n \leq \frac{1}{\alpha} \sum_{n \geq N+1} \lambda_n^2 v_n^2 + \alpha \|R_Nb\|_{L^2} v_n^2
\]

where, using (15), \(u^2 = X^T\hat{K}^T\hat{K}X\) and \(v^2 = \hat{X}^T\hat{E}^T\hat{E}X\). Moreover, since \(\zeta = \sum_{n \geq N+1} w_n \phi_n(0)\), Cauchy-Schwarz inequality gives \(\zeta^2 \leq M_\phi \sum_{n \geq N+1} \lambda_n w_n^2\). Combining the above estimates, we infer that

\[
\dot{V} + 2\delta V \leq \dot{X}^T \Theta_1 \dot{X} + \sum_{n \geq N+1} \lambda_n \Gamma_n w_n^2
\]

where \(\Gamma_n = 2\gamma \{ (1 - \frac{1}{\delta}) \lambda_n + q_n + \delta \} + \beta M_\phi\). Recalling that \(\alpha > 1\), we have \(\Gamma_n \leq \Theta_2 \leq 0\) for all \(n \geq N + 1\). Since \(\Theta_2 \leq 0\), we have that \(\dot{V} + 2\delta V \leq 0\). Using (1), (4), (6), and (11), the obtain the claimed stability estimate.

It remains to show that the constraints \(\Theta_1 \leq 0\) and \(\Theta_2 \leq 0\) are always feasible for \(N \geq N_0 + 1\) selected large enough. To do so, we apply Lemma 14 reported in appendix to the matrix \(F + \delta I\). This is possible because (i) \(A_0 + \mathcal{B}_n K + \delta I\) and \(A_0 - \mathcal{L}_C + \delta I\) are Hurwitz; (ii) \(\|e^{(A_1 + \delta I)t}\| \leq e^{-\delta t}\) for all \(t \geq 0\) with \(N_0 = \lambda N_0 + 1 - q_n - \delta > 0\) defined independently of \(N\); and (iii) \(\|L\delta \| \leq \|L\|\|\mathcal{C}_1\|\) and \(\|\mathcal{B}_1 K\| \leq \|\mathcal{B}_1\|\|K\|\) where \(K\) and \(L\) are independent of the number of observed modes \(N\) while \(\|\mathcal{C}_1\| = O(1)\) and \(\|\mathcal{B}_1\| = O(1)\) when \(N \to +\infty\). Hence the solution \(P \succ 0\) to the Lyapunov equation \(F^TP + PF + 2\delta P = -I\) is such that \(\|P\| = O(1)\) as \(N \to +\infty\). With this choice of matrix \(P\), the constraint \(\Theta_1 \leq 0\) becomes equivalent to \(\Theta_{1p} + \alpha \gamma \|R_N b\|_{L^2} E^T E \leq 0\) where

\[
\Theta_{1p} = \begin{bmatrix}
-I + \alpha \gamma \|R_N a\|_{L^2} \hat{K}^T \hat{K} P \mathcal{L} \\
\mathcal{L}^TP & -\beta
\end{bmatrix}.
\]

We note that \(\|\hat{K}\| = \|K\|\) and \(\|\mathcal{L}\| = \sqrt{2}\|L\|\) are independent of \(N\). Hence, fixing the value of \(\alpha > 1\) and selecting \(\beta = \sqrt{N}\gamma + 1\) and \(\gamma = 1/N\) with \(N \geq N_0 + 1\) large enough, we infer that (i) \(\Theta_2 \leq 0\) and (ii) by invoking Schur complements, \(\Theta_{1p} \leq -\frac{1}{\alpha} I\). Noting from (15) that \(\|E\| = O(1)\) as \(N \to +\infty\), this implies that \(\Theta_1 \leq 0\) for \(N \geq N_0 + 1\) large enough. We have shown that the constraints (16) are feasible when selecting \(N \geq N_0 + 1\) large enough. This completes the proof \(\Box\)

Remark 5 For a given number of modes of the observer \(N \geq N_0 + 1\), the constraints (16) are nonlinear w.r.t. the decision variables \(P \succ 0\), \(\alpha > 1\), and \(\beta, \gamma > 0\). However, fixing the value of \(\alpha > 1\), the constraints (16) now take the form of LMIs of the decision variables \(P \succ 0\) and \(\beta, \gamma > 0\). This latter LMI formulation of the constraints remains feasible for \(N \geq N_0 + 1\) selected large enough as shown in the proof of Theorem 4. A similar remark applies to the next theorem.

Remark 6 The result of Theorem 4 in the case of the Dirichlet measurement (3d) can easily be adapted to the case of the Neumann measurement \(y(t) = z_e(t, 0)\) with \(\theta_1 \in [0, \pi/2]\) and \(\theta_2 \in [0, \pi/2]\) by combining the approach developed in this paper along with the rescaling procedure reported in [17].

We also state below a \(L^2\) version of the stability result presented in Theorem 4.

Theorem 7 Let \(\theta_1 \in (0, \pi/2]\), \(\theta_2 \in [0, \pi/2]\), \(p \in C^2([0, 1])\) with \(p > 0\), and \(q \in C^\alpha([0, 1])\). Let \(q \in C^\alpha([0, 1])\) and \(q_c \in \mathbb{R}\) be such that (3) holds. Let \(\delta > 0\) and \(N_0 \geq 1\) be such that \(\lambda_n + q_c < -\delta\) for all \(n \geq N_0 + 1\). Let \(K \in \mathbb{R}^{1 \times N_0}\) and \(\mathcal{L} \in \mathbb{R}^{N_0}\) be such that \(A_0 + \mathcal{B}_n K\) and \(A_0 - \mathcal{L} C\) are Hurwitz with eigenvalues that have a real part strictly less than \(-\delta < 0\). For a given \(N \geq N_0 + 1\), assume that there exist \(P \succ 0\) and \(\alpha, \beta, \gamma > 0\) such that

\[
\Theta_1 \leq 0, \quad \Theta_2 \leq 0, \quad \Theta_3 \geq 0
\]
\[\Theta_2 = 2\gamma \left\{ -\lambda_{N+1} + q_c + \delta + \frac{1}{\alpha} \right\} + \beta M_\phi \lambda_{N+1}^{3/4} \]
\[\Theta_3 = 2\gamma - \frac{\beta M_\phi}{\lambda_{N+1}^{1/4}} \]

with \(M_\phi = \sum_{n \geq N+1} \frac{|\phi_n(0)|^2}{\lambda_n^{1/4}} < +\infty \). Then there exists a constant \(M > 0 \) such that for any initial conditions \(z_0 \in H^2([0,1]) \) and \(z_n(0) \in \mathbb{R} \) such that \(c_\theta z_0(0) - s_\theta z'_0(0) = 0 \) and \(c_{\theta_2} z_0(1) + s_{\theta_2} z'_0(1) = K\hat{Z}N_0(0) \), the trajectories of the closed-loop system composed of the plant (2) and the controller (9) satisfy

\[\|z(t, \cdot)\|^2_{L^2} + \sum_{n=1}^{N} \tilde{z}_n(t)^2 \leq M e^{-2\delta t} \left(\|z_0\|^2_{L^2} + \sum_{n=1}^{N} \tilde{z}_n(0)^2 \right) \]

for all \(t \geq 0 \). Moreover, the constraints (19) are always feasible for \(N \) selected large enough.

Proof. Let the Lyapunov function candidate

\[V(X, w) = X^T P X + \gamma \sum_{n \geq N+1} \langle w, \phi_n \rangle^2 \] (20)

for \(X \in \mathbb{R}^{2N} \) and \(w \in L^2(0,1) \). Proceeding as in the proof of Theorem 4 while replacing the estimate of \(\zeta \) by \(\zeta^2 \leq M_\phi \sum_{n \geq N+1} \lambda_n^{3/4} w_n^2 \), we infer that

\[\dot{V} + 2\delta V \leq X^T \Theta_1 \dot{X} + \sum_{n \geq N+1} \Gamma_n w_n^2 \]

where \(\dot{X} = \text{col} (X, \zeta) \) and \(\Gamma_n = 2\gamma \left\{ -\lambda_n + q_c + \delta + \frac{1}{\alpha} \right\} + \beta M_\phi \lambda_n^{3/4} \). For \(n \geq N + 1 \) we have \(\lambda_n^{3/4} = \lambda_n/\lambda_{N+1}^{1/4} \leq \lambda_n/\lambda_{N+1}^{1/4} \) hence

\[\Gamma_n \leq -\Theta_3 \lambda_n + 2\gamma \left\{ q_c + \delta + \frac{1}{\alpha} \right\} \]
\[\leq -\Theta_3 \Theta_2 \leq 0 \]

where we have used that \(\Theta_3 \geq 0 \). Combining this result with \(\Theta_1 \leq 0 \), we obtain that \(\dot{V} + 2\delta V \leq 0 \) and which implies the claimed stability estimate.

To show that the constraints (19) are always feasible for \(N \geq N_0 + 1 \) selected large enough, we proceed as in the proof of theorem 4 while setting \(\alpha = 1 \), \(\beta = N^{1/8} \), and \(\gamma = 1/N^{1/4} \). □

4 Design in the presence of a sector nonlinearity

Consider now the reaction-diffusion system presenting a sector nonlinearity in the control input, described by

\[z(t, x) = (p(x)z_\perp(t, x)) - \tilde{q}(x)z(t, x) \] (21a)
\[c_{\theta_1} z(t, 0) - s_{\theta_1} z'_x(t, 0) = 0 \] (21b)
\[c_{\theta_2} z(t, 1) + s_{\theta_2} z'_x(t, 1) = u_\varphi(t) \triangleq \varphi(u(t)) \] (21c)
\[y(t) = z(t, 0) \] (21d)
\[z(0, x) = z_0(x) \] (21e)

for \(t > 0 \) and \(x \in (0, 1) \) where \(\theta_1 \in (0, \pi/2], \theta_2 \in [0, \pi/2], p \in C^2([0,1]) \) with \(p > 0 \) and \(\tilde{q} \in C^0([0,1]) \). As in the previous section, we consider without loss of generality \(q \in C^0([0,1]) \) and \(q_c \in \mathbb{R} \) such that (3) holds. The mapping \(\varphi : \mathbb{R} \to \mathbb{R} \) is assumed to be a function of class \(C^1 \) for which there exist \(k_\varphi > 0 \) and \(\Delta k_\varphi \in (0, k_\varphi) \) so that

\[(k_\varphi - \Delta k_\varphi)|x| \leq \text{sign}(x)\varphi(x) \leq (k_\varphi + \Delta k_\varphi)|x| \] (22)

for all \(x \in \mathbb{R} \). We also assume that \(\varphi' \) is locally Lipschitz continuous and \(\|\varphi'\|_{L^\infty} < +\infty \). The objective is to design a finite-dimensional controller ensuring the exponential stabilization of (21).

4.1 Spectral reduction

Introducing the change of variable

\[w(t, x) = z(t, x) - \frac{x^2}{c_{\theta_2} + 2s_{\theta_2}} u_\varphi(t) \] (23)

we infer that

\[v_\varphi(t) = \dot{u}_\varphi(t) = \varphi'(u(t))\dot{u}(t) \] (24a)
\[w_\perp(t, x) = (p(x)w_\perp(t, x)) - \tilde{q}(x)w(t, x) \] (24b)
\[+ a(x)w_\perp(t) + b(x)w_\varphi(t) \] (24c)
\[c_{\theta_1} w(t, 0) - s_{\theta_1} w'_x(t, 0) = 0 \] (24d)
\[c_{\theta_2} w(t, 1) + s_{\theta_2} w'_x(t, 1) = 0 \] (24e)
\[y(t) = w(t, 0) \] (24f)
\[w(0, x) = w_0(x) \] (24g)

where \(a, b \) are defined as in the previous section and \(w_0(x) = z_0(x) - \frac{x^2}{c_{\theta_2} + 2s_{\theta_2}} u_\varphi(0) \). With the coefficients of projection defined in the previous section, we have

\[w_n(t) = z_n(t) + b_n u_\varphi(t), \ n \geq 1. \] (25)

The projection of (21) into \((\phi_n)_{n \geq 1} \) gives

\[\dot{z}_n(t) = (-\lambda_n + q_c)z_n(t) + \beta_n u_\varphi(t) \] (26)

with \(\beta_n = \alpha_n + (-\lambda_n + q_c)\beta_n(1) = p(1)\{-c_{\theta_2}\phi_n(1) + s_{\theta_2}\phi_n(1)\} = O(\sqrt{n}) \), while the projection of (24) reads

\[\dot{u}_\varphi = v_\varphi = \varphi'(u(t))\dot{u} \] (27a)
\[\dot{w}_n(t) = (\lambda_n + q_n)w_n(t) + a_n u_\phi(t) + b_n v_\phi(t), \quad n \geq 1 \]
\[y(t) = \sum_{n \geq 1} w_n(t) \phi_n(0) \]
(27b), (27c)

Remark 8: Representation (24) cannot be used for control design with \(v_\phi \) selected as an auxiliary input signal. This is because \(v_\phi = \phi'(u)u \) where \(u \) remains the actual to-be-implemented input of the plant (21). Hence the approach proposed in [17] is inapplicable in the presence of the input nonlinearity \(\phi \). We solve this problem by adopting the approach reported in the previous section, namely by performing the control design on (21) while carrying out the Lyapunov-based stability analysis using (24).

4.2 Control strategy

Let \(\delta > 0 \) and \(N_0 \geq 1 \) be such that \(-\lambda_n + q_n < -\delta < 0\) for all \(n \geq N_0 + 1 \). We consider the following observer-based control strategy:

\[\begin{align*}
\dot{\hat{z}}_n(t) &= \tilde{w}_n(t) + b_n u_\phi(t) \\
\dot{\hat{z}}_n(t) &= (\lambda_n + q_n) \tilde{z}_n(t) + \beta_n u_\phi(t) \\
\hat{z}_n(t) &= (\lambda_n + q_n) \tilde{z}_n(t) + \beta_n u_\phi(t), \quad 0 < n < N_0 \\
u(t) &= \sum_{k=1}^{N_0} k_\delta \hat{z}_k(t)
\end{align*} \]
(28a), (28b), (28c), (28d)

Here \(l_n \in \mathbb{R} \) and \(k_k \in \mathbb{R} \) are the observer and feedback gains, respectively.

Remark 9: We denote \(\hat{z}(t) \in \mathbb{R}^N \) the state of the observer. Under the above mentioned assumption for the sector nonlinear \(\phi \), the well-posedness of the closed-loop system composed of (24) and (28) in terms of classical solutions for initial conditions \(w_0 \in D(A) \) and \(\tilde{z}(0) \in \mathbb{R}^N \), namely \((w, \tilde{z}) \in C^0([0, T]; L^2(0, 1) \times \mathbb{R}^N) \cap C^1((0, T); L^2(0, 1) \times \mathbb{R}^N) \), defined on a maximal interval of existence \([0, T)\) with either \(T > 0 \) or \(T = +\infty \), is a direct consequence of [29, Thm. 6.3.1]. Moreover, \(w(t, \cdot) \in D(A) \) for all \(t > 0 \) and, from the proof of [29, Thm. 6.3.1], we have \(Aw \in C^0((0, T); L^2(0, 1)) \) and \(A^{1/2} w \in C^0((0, T); L^2(0, 1)) \). Finally, from the preliminary remark of the proof of [29, Thm. 6.3.3], if \(T < +\infty \) then \(\| A^{1/2} w(t, \cdot) \|_{L^2}^2 + \| \tilde{z}(t) \|^2 = \sum_{n \geq 1} \lambda_n w_n(t)^2 + \| \tilde{z}(t) \|^2 \) is unbounded on \([0, T)\).

4.3 Model for stability analysis

We define the mapping \(\psi : \mathbb{R} \to \mathbb{R} \) by

\[\psi(x) = \varphi(x) - k_\delta x. \]
(29)

Adopting the definitions and the approach of Subsection 3.3, we infer from (28) that

\[u = K\tilde{Z}^N \]
(30a)

\[\dot{\tilde{Z}}^N = (A_0 + k_\delta B_0K)^\dagger \tilde{Z}^N + L C_0 E^N + \dot{L} C_1 \tilde{Z}^N - L \zeta + B_0 \psi(K\tilde{Z}^N) \]
(30b)

\[\dot{E}^N = (A_0 - L C_0) E^N - L \tilde{C}_1 \dot{E}^N - L \zeta \]
(30c)

\[\dot{\tilde{Z}}^{N - N_0} = A_1 \tilde{Z}^{N - N_0} + k_\delta B_1 K \tilde{Z}^{N_0} + B_1 \psi(K\tilde{Z}^N) \]
(30d)

\[\dot{E}^{N - N_0} = A_1 \dot{E}^{N - N_0} \]
(30e)

Hence, with \(X \) defined by (13), \(u \) can still be expressed by \(u = \tilde{K} X \) and we have that

\[\dot{X} = FX + LC \psi(K\tilde{Z}^N) \]
(31)

where

\[F = \begin{bmatrix} A_0 + k_\delta B_0K & LC_0 & 0 & L \tilde{C}_1 \\ 0 & A_0 - L C_0 & 0 & -L \tilde{C}_1 \\ k_\delta B_1 K & 0 & A_1 & 0 \\ 0 & 0 & 0 & A_1 \end{bmatrix} \]

\[L = \text{col}(L_1, -L_2, 0, 0), \quad \text{and} \quad \mathcal{L}_\psi = \text{col}(B_0, 0, B_1, 0). \]

With \(\dot{X} = \text{col}(X, \zeta, \psi(K\tilde{Z}^N)) \) and based on (30a-30b), we infer that

\[v_\phi = \dot{u}_\phi = \psi'(K\tilde{Z}^N)K\tilde{Z}^N = \psi'(K\tilde{Z}^N)E \tilde{X} \]
(32)

where \(E = K \left[A_0 + k_\delta B_0K \right] L C_0 0 L \tilde{C}_1 L B_0 \).

4.4 Main stability results

Theorem 10: Let \(\theta_1 \in (0, \pi/2] \), \(\theta_2 \in [0, \pi/2] \), \(p \in C^2([0, 1]) \) with \(p > 0 \), and \(\bar{q} \in C^0([0, 1]) \). Let \(k_\delta > 0 \), \(\Delta k_\delta \in (0, k_\delta) \), and \(M_\phi > 0 \). Let \(q \in C^0([0, 1]) \) and \(q_\delta \in \mathbb{R} \) be such that (13) holds. Let \(\delta > 0 \) and \(N_0 \geq 1 \) be such that \(-\lambda_n + q_n < -\delta \) for all \(n \geq N_0 + 1 \). Let \(K \in \mathbb{R}^{1 \times N_0} \) and \(L \in \mathbb{R}^{N_0} \) be such that \(A_0 + k_\delta B_0K \) and \(A_0 - L C_0 \) are Hurwitz with eigenvalues that have a real part strictly less than \(-\delta \). For a given \(N \geq N_0 + 1 \), assume that there exist \(P > 0 \), \(\alpha > 1/2 \), and \(\beta, \gamma, \tau > 0 \) such that

\[\begin{bmatrix} \Theta_1 & \Theta_2 \\ 0 & 0 \end{bmatrix} \preceq \begin{bmatrix} P \mathcal{L} & P \mathcal{L}_\psi \\ \mathcal{L}_\psi^T P - \beta & 0 \\ \mathcal{L}^T P & 0 \end{bmatrix} \]
(33)

where

\[\Theta_1 = \begin{bmatrix} \Theta_{1,1} & P \mathcal{L} \\ \mathcal{L}_\psi^T P & 0 \end{bmatrix} \]

\[\Theta_2 = \begin{bmatrix} \mathcal{L}^T P & 0 \end{bmatrix} \]
and with $M_\phi = \sum_{n=0}^{\infty} \frac{\phi_n(0)^2}{2n+1} < +\infty$. Then there exists a constant $M > 0$ such that for any $\varphi \in C^1(\mathbb{R})$ such that (22) holds with φ' locally Lipschitz continuous and $\|\varphi'\|_{L^\infty} \leq M_\varphi$, and for any initial conditions $z_0 \in H^2(0,1)$ and $\tilde{z}_n(0) \in \mathbb{R}$ such that $c_{\theta_1}z_0(0) - s_{\theta_1}z_0(0) = 0$ and $c_{\theta_2}z_0(1) + s_{\theta_2}z_0(1) = \varphi(K \tilde{Z}N_0(0))$, the trajectories of the closed-loop system composed of the plant (21) and the controller (28) satisfy

$$\|z(t, \cdot)\|^2_{H^1} + \sum_{n=1}^{\infty} \tilde{z}_n(t)^2 \leq Me^{-2\delta t} \left(\|z_0\|^2_{H^1} + \sum_{n=1}^{\infty} \tilde{z}_n(0)^2 \right)$$

for all $t \geq 0$. Moreover, for any given $k_\varphi, M_\varphi > 0$, there exists $\Delta k_\varphi \in (0, k_\varphi)$ such that the constraints (33) are always feasible when selecting N large enough.

Proof. Considering the Lyapunov function candidate defined by (18), the computation of its time derivative along the system trajectories (27) and (31) gives

$$\dot{V} = \dot{X}^T \begin{bmatrix} F^T P + PF + PL \gamma \xi & 0 & P \xi \\ \xi^T P & 0 & 0 \\ \xi^T \gamma \xi & 0 & 0 \end{bmatrix} \dot{X} + 2\gamma \sum_{n=0}^{\infty} \lambda_n \{ (- \lambda_n + q_\alpha) w_n + a_n u_\varphi + b_n v_\varphi \} w_n,$$

where $\dot{X} = \begin{bmatrix} X, \xi, \zeta(K \tilde{Z}N_0) \end{bmatrix}$. Since $u_\varphi = \varphi(K \tilde{Z}N_0) = k_\varphi \dot{K}X + \psi(K \tilde{Z}N_0)$, using Young inequality, we infer for any $\alpha > 0$ that

$$2 \sum_{n=0}^{\infty} \lambda_n a_n u_\varphi w_n \leq \frac{1}{\alpha} \sum_{n=0}^{\infty} \lambda_n a_n^2 w_n^2 + \alpha \| N a \|_{L^2}^2 \{ k_\varphi \tilde{X} \} + \psi \{ K \tilde{Z}N_0 \}^2 \},$$

$$2 \sum_{n=0}^{\infty} \lambda_n b_n v_\varphi w_n \leq \frac{1}{\alpha} \sum_{n=0}^{\infty} \lambda_n^2 w_n^2 + \alpha \| N \|_{L^2}^2 v_\varphi^2,$$

where, using (32), $v_\varphi^2 \leq M_\varphi \tilde{X} E \tilde{X}$. Moreover, since $\zeta = \sum_{n=0}^{\infty} w_n \phi_n(0), \text{Cauchy-Schwarz inequality gives } \zeta^2 \leq M_\varphi \sum_{n=0}^{\infty} \lambda_n w_n^2$. Combining the above estimates, we have $\dot{V} + 2\delta V \leq \dot{X}^T \Theta_{1,1} \dot{X} + \sum_{n=0}^{\infty} \lambda_n \Gamma_n \lambda_n^2$ where $\Theta_{1,1}, \Gamma_n$ is obtained from Θ_1 by setting $\tau = 0$ and $\Gamma_n = 2\gamma \{ (-1 - \frac{3}{2n}) \lambda_n + q_\alpha \} + \beta M_\varphi$. We now need to take advantage of the sector condition (22) satisfied by φ. More precisely, (22) implies that $(\varphi(x) - (k_\varphi + \Delta k_\varphi)x)(\varphi(x) - (k_\varphi - \Delta k_\varphi)x) \leq 0$ for all $x \in \mathbb{R}$. Using (29), this is equivalent to $\psi(x)^2 - \Delta k_\varphi x \leq 0$ for all $x \in \mathbb{R}$. The use of this sector condition applied at $x = K \tilde{Z}N_0 = \dot{K}X$ into the above estimate of $\dot{V} + 2\delta V$ implies that

$$\dot{V} + 2\delta V \leq \dot{X}^T \Theta_{1,1} \dot{X} + \sum_{n=0}^{\infty} \lambda_n \Gamma_n \lambda_n^2 \leq 0.$$

Using $\alpha > 3/2$, we have $\Gamma_n \leq \Theta_2 \leq 0$ for all $n \geq N + 1$. Since $\Theta_1 \geq 0$, we infer that $\dot{V} + 2\delta V \leq 0$. From (18) we infer that $\| \dot{A}^{1/2} z(t, \cdot) \|_{L^2}^2 = \sum_{n=0}^{\infty} \lambda_n |n_\psi(t) |^2$ and $\| \dot{z}(t) \|_{L^2}^2$ are bounded on the maximal interval of existence of the system trajectories. Hence the trajectories are well-defined for all $t \geq 0$ (see end of Remark 9) and we obtain the claimed stability estimate.

It remains to show for any given $k_\varphi, M_\varphi > 0$ the existence of some $\Delta k_\varphi \in (0, k_\varphi)$ so that the constraints $\Theta_1 \geq 0$ and $\Theta_2 \leq 0$ are always feasible when taking $N \geq N_0 + 1$ large enough. Proceeding as in the proof of Theorem 4, the application of Lemma 14 reported in appendix to the matrix $F + \delta I$ ensures that the solution $P > 0$ to the Lyapunov equation $F^T P + PF + 2\delta P = I$ is such that $\| P \| = O(1)$ as $N \to +\infty$. This ensures the existence of a constant $M_\varphi > 0$ such that $\| P \| \leq M_\varphi$ for all $N \geq N_0 + 1$. There also exists a constant $M_\psi > 0$ such that $\| \psi \| \leq M_\psi$ for all $N \geq N_0 + 1$. This allows us to define $\tau = 1 + 4M_\varphi M_\psi^2 + \| a \|_{L^2}^2$ and $\Delta k_\varphi = \min \{ \frac{1}{(1+2\| \psi \|)^2}, k_\varphi \}$ which are constants independent of N and φ. We also set $\alpha = 2$, $\beta = \sqrt{\gamma}$, and $\gamma = 1/N$. Since $\| \dot{K} \| = \| K \| \text{ and } \| \xi \| = \sqrt{2} \| L \| \text{ are constants independent of } N$, the use of Schur complement implies that

$$\Xi_1 = \begin{bmatrix} -I - \alpha \gamma k_\varphi^2 \| \dot{N} a \|_{L^2}^2 K \tilde{X} & \dot{X}^T \xi \\ L^T P & -\beta \end{bmatrix} \leq -\frac{3}{4} I.$$
As a corollary of Theorem 10, we have the following

Corollary 12 In addition of all the assumptions of Theorem 10, assume further that \(N \geq N_0 + 1 \) is selected such that there exist \(P' \succ 0 \), and \(\alpha', \beta', \gamma', \tau' > 0 \) so that

\[
\Theta' \leq 0, \quad \Theta_2 \leq 0, \quad \Theta_3 \geq 0
\]

where

\[
\Theta_1' = \begin{bmatrix}
\Theta_{1,1}' & P' \mathcal{L} & P' \mathcal{L}_\psi \\
\mathcal{L}_\psi^T P' - \beta' & 0 \\
\mathcal{L}_\psi^T P' & \alpha' \gamma' \| R_N a \|^2_{L^2} - \tau'
\end{bmatrix}
\]

\[
\Theta_{1,1}' = F^T P' F + P' F + 2 \Delta k^2 + \left\{ \alpha' \gamma' k^2 \| R_N a \|^2_{L^2} + \tau' \Delta k^2 \right\} \tilde{K}^T \tilde{K}
\]

\[
\Theta_2 = 2 \gamma' \left\{ -\lambda_{N+1} + q_e + \delta + \frac{3}{2 \alpha'} \right\} + \beta' M_0 \lambda_{N+1}^{3/4}
\]

\[
\Theta_3 = 2 \gamma' - \frac{\beta' M_0'}{\lambda_{N+1}^{1/4}}
\]

and with \(M_0' = \sum_{n \geq N+1} \frac{|\phi_n(0)|^2}{\lambda_n^4} < +\infty \). Then there exists a constant \(M' > 0 \) such that, under the same assumptions for \(\varphi \) and the initial conditions that the ones of Theorem 10, the trajectories of the closed-loop system composed of the plant (21) and the controller (28) satisfy

\[
\|z(t, \cdot)\|^2_{L^2} + \sum_{n=1}^N \hat{z}_n(t)^2 \leq M'e^{-2\delta t} \left(\|z_0\|^2_{L^2} + \sum_{n=1}^N \hat{z}_n(0)^2 \right)
\]

for all \(t \geq 0 \). Moreover, for any given \(k_{\varphi}, M_{\varphi} > 0 \), there exists \(\Delta k_{\varphi} \in (0, k_{\varphi}) \) such that both constraints (33) and (34) are always feasible when selecting \(N \) large enough.
equation in the presence of a sector nonlinearity in the control input. It is worth noting that even if the method has been presented in the case of a Robin boundary input with parameter $\theta_1 \in (0, \pi/2]$ and $\theta_2 \in [0, \pi/2]$, the approach readily extends to the case $\theta_1 \in (0, \pi)$ and $\theta_2 \in [0, \pi)$ provided q in (3) is selected sufficiently large positive so that (1) still holds and by replacing the change of variable (4) by $w(t, x) = z(t, x) - \frac{x^n}{c_{\theta_2} + \alpha s_{\theta_2}} u(t)$ for any fixed $\alpha > 0$ so that $c_{\theta_2} + \alpha s_{\theta_2} \neq 0$. Future research directions may be concern with extensions to other types of nonlinearities.

References

[1] Mark J Balas. Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters. Journal of Mathematical Analysis and Applications, 133(2):283–296, 1988.

[2] Dennis S Bernstein and Anthony N Michel. A chronological bibliography on saturating actuators. 5:375–380, 1995.

[3] PJ Campo and M Morari. Robust control of processes subject to saturation nonlinearities. Computers & Chemical Engineering, 14(4-5):343–358, 1990.

[4] Jean-Michel Coron and Emmanuel Trélat. Global steady-state controllability of one-dimensional semilinear heat equations. SIAM Journal on Control and Optimization, 43(2):549–569, 2004.

[5] Jean-Michel Coron and Emmanuel Trélat. Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun. Contemp. Math., 8(4):535–567, 2006.

[6] Ruth Curtain. Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input. IEEE Transactions on Automatic Control, 27(1):98–104, 1982.

[7] Ruth F Curtain and Hans Zwart. An introduction to infinite-dimensional linear systems theory, volume 21. Springer Science & Business Media, 2012.

[8] Stevan Dubljevic, Nael H El-Farra, Prashant Mhaskar, and Panagiotis D Christofides. Predictive control of parabolic PDEs with state and control constraints. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 16(16):749–772, 2006.

[9] Nael H El-Farra, Antonios Armaou, and Panagiotis D Christofides. Analysis and control of parabolic PDE systems with input constraints. Automatica, 39(4):715–725, 2003.

[10] Lars Grüne and Thomas Meurer. Finite-dimensional output stabilization of linear diffusion-reaction systems—a small-gain approach. arXiv preprint arXiv:2104.06102, 2021.

[11] Christian Harkort and Joachim Deutscher. Finite-dimensional observer-based control of linear distributed parameter systems using cascaded output observers. International Journal of Control, 84(1):107–122, 2011.

[12] Rami Katz, Idan Basre, and Emilia Fridman. Delayed finite-dimensional observer-based control of 1D heat equation under Neumann actuation. arXiv preprint arXiv:2011.10780, 2020.

[13] Rami Katz and Emilia Fridman. Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs. Automatica, 122:109285, 2020.

[14] Rami Katz and Emilia Fridman. Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement. arXiv preprint arXiv:2011.07256, 2020.

[15] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs: A course on backstepping designs. SIAM, 2008.

[16] Irena Lasiecka and Thomas I Seidman. Strong stability of elastic control systems with dissipative saturating feedback. Systems & Control Letters, 48(3-4):243–252, 2003.

[17] Hugo Lhachemi and Christophe Prieur. Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with a either Dirichlet or Neumann boundary measurement. Preprint: http://www.gipsa-lab.grenoble-inp.fr/%7Echristophe.prieur/Papers/submitted.pdf.

[18] Hugo Lhachemi and Christophe Prieur. Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation. arXiv preprint arXiv:2012.05063, 2020.

[19] Hugo Lhachemi and Christophe Prieur. Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control. IEEE Transactions on Automatic Control, 66(1):105–120, 2021.

[20] Hugo Lhachemi and Christophe Prieur. Local output feedback stabilization of a reaction-diffusion equation with saturated actuation. arXiv preprint arXiv:2103.16523, 2021.
Let $n, m, N \geq 1$, $M_{11} \in \mathbb{R}^{n \times n}$ and $M_{22} \in \mathbb{R}^{m \times m}$, $M_{12} \in \mathbb{R}^{n \times m}$, $M_{14} \in \mathbb{R}^{n \times N}$, $M_{24} \in \mathbb{R}^{m \times N}$, $M_{31} \in \mathbb{R}^{N \times n}$, $M_{33} \in \mathbb{R}^{N \times N}$, $M_{44} \in \mathbb{R}^{N \times N}$, and
\[
F^N = \begin{bmatrix}
M_{11} & M_{12} & 0 & M_{14}^N \\
0 & M_{22} & 0 & M_{24}^N \\
M_{31}^N & 0 & M_{33}^N & 0 \\
0 & 0 & 0 & M_{44}^N
\end{bmatrix}.
\]

We assume that there exist constants $C_0, \kappa_0 > 0$ such that
\[
\|e^{M_{31}^N t}\| \leq C_0 e^{-\kappa_0 t} \quad \text{and} \quad \|e^{M_{24}^N t}\| \leq C_0 e^{-\kappa_0 t}
\]
for all $t \geq 0$ and all $N \geq 1$. Moreover, we assume that there exists a constant $C_1 > 0$ such that

\[
\|M_{14}^N\| \leq C_1, \quad \|M_{24}^N\| \leq C_1,
\]
and

\[
\|M_{31}^N\| \leq C_1 \quad \text{for all } N \geq 1.
\]

Then there exists a constant $C_2 > 0$ such that, for any $N \geq 1$, there exists a symmetric matrix $P^N \in \mathbb{R}^{n+m+2N}$ with $P^N > 0$ such that

\[
P^N F^N + (F^N)^T P^N = -I \quad \text{and} \quad \|P^N\| \leq C_2.
\]