INTRODUCTION

Gastric cancer (GC) is the leading cause of cancer-related death worldwide due to its high morbidity and lack of effective treatments. Despite advances in surgical techniques, molecular-targeted therapies and oncology immunotherapy, the overall 5-year survival rate for patients with GC remains low. Since there are few specific symptoms in the early stage of GC, most patients have already had lymph node metastasis at the time of diagnosis. At present, there is no clear molecular feature in the diagnosis and treatment of GC. Therefore, it is important to find biomarkers and new effective therapeutic targets for the diagnosis and treatment of GC.

1 Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, China
2 State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
3 College of Computer Science and Technology, Jilin University, Changchun, China
4 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China

Correspondence
Xin Xie; Bing Xu; Haiming Liu, Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Tai Bai North Road, Xi'an, Shaanxi, 710069, China. Emails: xieixin@nwu.edu.cn (XX); bingxu0107@hotmail.com (BX) and liuhaiming0702@163.com (HL)

Funding information
National Natural Science Foundation of China, Grant/Award Number: 61471181 and 2019M653667; China Postdoctoral Science Foundation
Long non-coding RNAs (lncRNAs) are a class of transcripts greater than 200 nucleotides in length with limited protein-coding ability or no protein-coding ability. It has been found that lncRNA is abundantly transcribed in mammalian cells and in plant cells. These lncRNAs can be involved in a number of important cellular biological processes, including regulation of cell growth, apoptosis, cell differentiation, and cell invasion and metastasis. Increasing evidence showed that lncRNA can be used as a biomarker for diagnosis and prognosis in a variety of cancers, such as colorectal cancer, breast cancer, liver cancer, prostate cancer and GC. Typically, lncRNAs exert their biological functions by regulating epigenetic, transcriptional and post-transcriptional levels that regulate potential target gene expression. In recent years, more and more studies have shown that lncRNA plays an important role in human cancer. For example, LINC00941 is significantly up-regulated in liver cancer and is significantly associated with poor clinical outcomes, and regulates the metastasis and proliferation of liver cancer by binding ANXA2 to affect the activity of the Wnt/β-catenin signalling pathway. Furthermore, in colorectal cancer, IncRNA UICLM inhibits the expression of miR-150-5p by competitive endogenous RNA action, thereby promoting liver metastasis of colorectal cancer. It is well documented that a number of important lncRNAs have been proved to be significant survival prognosis of GC. For example, IncRNA HOTAIR promotes gastric cancer metastasis by binding to the epigenetic transcriptional regulator polycomb inhibitor complex 2 (PRC2). HOTAIR also regulates cisplatin resistance in GC by acting as a competitive endogenous RNA (ceRNA) of miR-126. In addition, LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p regulating the malignant proliferation of GC.

LncRNA MYOSLID was first reported in human VSMC-selective and serum-responsive factor/CARG-dependent lncRNA, which regulates VSMC differentiation through the MKL1 and transforming growth factor-beta/SMAD pathways. We have previously studied the differentially expressed IncRNA in GC from the Cancer RNA-Seq Nexus database and found that the expression of IncRNA MYOSLID in GC is significantly different and is associated with the survival prognosis of GC. However, the mechanism of lncRNA MYOSLID in GC remains elusive.

In this study, we studied IncRNA MYOSLID in GC. We first discovered that IncRNA MYOSLID is significantly up-regulated in GC tissues and is associated with poor prognosis. Loss and functional gain assays showed that IncRNA MYOSLID promotes GC cell proliferation and inhibits apoptosis by acting as a miR-29c-3p ceRNA, thereby preventing miR-29c-3p from binding to the target protein MCL-1. Collectively, the results suggested that IncRNA MYOSLID is an oncogenic regulator of tumorigenesis in GC and may be a potential target for the diagnosis and treatment of patients with GC.

2 | MATERIALS AND METHODS

2.1 | Tissue samples

Seventy-five patients with gastric adenocarcinoma and paired normal tissues were obtained from patients undergoing GC surgery at Xijing Digestive Disease Hospital. All samples were clinically and pathologically validated. This study was approved by the Xijing Hospital Human Body Protection Committee. Informed consent was obtained from each patient.

2.2 | Cell culture

Human GC cell lines MKN45, AGS, SGC-7901 and BGC-823 were purchased from Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences (Shanghai, China). The immortal normal gastric epithelial cell line GES-1 was purchased from the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences (Shanghai, China). All cells were cultured in DMEM basic containing 10% foetal bovine serum (Gibco) and 1% penicillin-streptomycin (Gibco). All cells were incubated with 5% (v/v) CO2 at 37°C. All cells were tested for mycoplasma contamination before the experiments.

2.3 | RNA extraction, reverse transcription and real-time RT-PCR

Total RNA from cells was extracted using an RNA isolation kit (TaKaRa, Tokyo, Japan) according to the manufacturer’s instructions. Subsequently, the RevertAid First Strand cDNA Synthesis Kit (TaKaRa, Tokyo, Japan) was used to reverse-transcribe the messenger RNA (mRNA) from the total mRNA; primers for miR-29c-3p and U6 were purchased from RiboBio (Guangzhou, China); the specific primer (Table S2) and the SYBR premix Ex Taq (TaKaRa, Tokyo, Japan) were used to expand by real-time qPCR (Bio-Rad, CA, USA). It was carried out with the following parameters: pre-denaturation at 95°C for 5 minutes, denaturation at 95°C for 10 seconds, annealing at 62°C for 20 seconds and extension at 72°C for 30 seconds for 40 cycles. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control.

2.4 | Western blot analysis

The cells were washed three times with PBS and collected in RIPA lysis buffer (Beyotime Biotechnology, Shanghai, China) supplemented with a protease inhibitor cocktail (Calbiochem, San Diego, USA). Protein concentration was determined by staining with Coomassie Blue (Beyotime Biotechnology, Shanghai, China). Cellular protein lysates were separated by 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a 0.22 mm polyvinylidene fluoride membrane (Millipore) and probed with specific antibodies. Specific bands were detected by ECL chromogenic substrate and quantified by densitometry (Quantity One software, Bio-Rad). The GAPDH antibody was used as a control. Anti-caspase-3, cleaved caspase-3, poly (ADP ribose) polymerase protein (PARP), cleaved PARP, cyclin D1, CDK2 and MCL-1 (1:1000) were purchased from Cell Signalling Technology. GAPDH antibody was purchased from Proteintech. All antibodies are listed in Table S3.

2.5 | RNA fluorescent in situ hybridization

The subcellular localization of IncRNA MYOSLID was detected by FISH kit (RiboBio, Guangzhou, China) according to the manufacturer’s
instructions. The Cy3 labelled IncRNA MYOSLID probe was obtained from RiboBio (Guangzhou, China). Briefly, gastric cancer cells (2 × 10^5) were seeded on cell slides in 24-well culture plates. After waiting for the cells to adhere, the cells were fixed in 4% paraformaldehyde for 30 minutes at room temperature. After permeabilization, the cells are pre-hybridized with the pre-hybridization solution and the hybridization solution and then incubated with the cy3-labelled IncRNA MYOSLID oligonucleotide probe. The nuclei were stained with DAPI for 10 minutes at room temperature.

2.6 | RNA immunoprecipitation

RNA immunoprecipitation was performed using the EZ-Magna RIP kit (Millipore, Billerica, MA, USA) according to the manufacturer's instructions. First, we lysed SGC-7901 and BGC-823 cells and incubated with Protein A magnetic beads; next, we conjugated the magnetic beads to the antibody at 4°C. After 3-6 hours, the beads were washed with washing buffer and then incubated with 0.1% SDS/0.5 mg/mL proteinase K for 30 minutes at 55°C to remove proteins. Finally, we performed qRT-PCR analysis of immunoprecipitated RNA using primers specific for IncRNA MYOSLID.

2.7 | Virus

Virus packaging was performed in HEK293T cells by co-transfection with lentiviral vectors with the packaging plasmid pHelper 1.0 vector (GeneChem Co., Ltd., Shanghai, China) and the envelope plasmid pHelper 2.0 vector (GeneChem Co., Ltd.) using Lipofectamine 2000 (Invitrogen). At 48 hours after transfection, supernatants containing lentiviral particles were collected, and the virus titre was quantified according to the manufacturer's instructions. Lentiviral vectors encoding short hairpin RNAs (shRNAs) (Sh: ATTATTGTAACCACCCGTT) targeting MYOSLID were generated using the GV344 vector (hU6-MCS-Ubiquitin-Luc_firefly IRES-puromycin, GeneChem Co., Ltd., Shanghai, China). A scrambled GV344 vector (TTTCCGAACGTGCACGT) was used as the negative control. Stable transfectants overexpressing MYOSLID were generated by lentiviral transduction using a GV341 vector (Ubi-MCS-3FLAG-SV40-puromycin, GeneChem Co., Ltd.). An empty vector was used as the negative control.

2.8 | Animal experiments

Control shRNA-Ctrl or sh-MYOSLID (3 × 10^5) stably transfected SGC-7901 cells and carried miR-29c-3p, miR-NC (negative control), sh-MCL-1 and empty vector (negative control)-stained cells SGC-7901 were injected subcutaneously into either side of the axillary region of male BALB/c nude mice (4-5 weeks old). At 28 days after the injection, the mice were euthanized and the subcutaneous growth of each tumour was examined. This study was conducted in strict accordance with the recommendations of the National Institutes of Health Laboratory Animal Care and Use Guidelines. All experimental procedures were approved by the Xijing Hospital Institutional Review Board. Animal experiments were conducted with the approval of the Animal Research Institutions Committee and are consistent with the National Laboratory Animal Care and Use Guidelines.

2.9 | Statistical analysis

We performed statistical analysis using Prism 5 (San Diego, CA, USA) and SPSS 18.0 (Chicago, IL, USA) software. Differences between the two groups were assessed using Student's t test. A P value < .05 was considered to represent a significant difference. The overall survival curve was estimated by the Kaplan-Meier method and the Cox proportional hazard model. All values are expressed as mean ± SD unless otherwise stated.

3 | RESULTS

3.1 | IncRNA MYOSLID is up-regulated in GC and associated with poor prognosis

To investigate the expression of IncRNA MYOSLID in human GC, we searched the Cancer Genome Atlas (TCGA) database and found that the IncRNA MYOSLID gene copy number was significantly elevated in GC tissues compared with normal gastric tissue (Figure 1A). We next analysed publicly available data and found that IncRNA MYOSLID expression is closely related to the overall survival of patients with GC (Figure 1B). Then, the expression of IncRNA MYOSLID in GC tissues was detected by real-time PCR and found that the expression of IncRNA MYOSLID was higher in GC tissues than in matched non-tumour tissues (n = 75, P < .0001, Figure 1C). To assess the clinical significance of IncRNA MYOSLID overexpression in GC, we evaluated the association between IncRNA MYOSLID levels and clinicopathological features. As shown in Table S1, high IncRNA MYOSLID expression was associated with patients age (P = .018), larger tumour size (P = .001), invasion-related depth (P = .010) and AJCC staging (P = .001), while IncRNA MYOSLID was no significant correlation between expression and other factors including gender (P = 1.000). We also examined the association between IncRNA MYOSLID expression levels and prognosis in patients with GC. Kaplan-Meier survival analysis showed that patients with higher IncRNA MYOSLID levels had shorter overall survival than patients with lower IncRNA MYOSLID levels (Figure 1D). In addition, IncRNA MYOSLID was significantly overexpressed in GC cell lines compared with human normal gastric epithelial cells (GES-1) (Figure 1E). These data suggested that IncRNA MYOSLID is involved in the pathogenesis of GC.

3.2 | IncRNA MYOSLID silencing inhibits GC cell proliferation

To elucidate the biological function of IncRNA MYOSLID in GC cell lines, we transfected with siRNA, lentiviral recombinant short hairpin RNA (shRNA) vector or lentiviral recombinant overexpression
plasmid, to knock down or overexpress lncRNA MYOSLID in GC cell lines SGC-7901 and BGC-823 (Figure 2A,B). CCK-8 proliferation assay showed that lncRNA MYOSLID knockdown significantly inhibited the proliferation of SGC-7901 and BGC-823 cells, while lncRNA MYOSLID overexpression significantly promoted the growth of SGC-7901 and BGC-823 cells (Figure 2C,D). Consistently, cell colony formation assay showed that down-regulation of lncRNA MYOSLID significantly reduced the colony formation ability of SGC-7901 and BGC-823 cells, but lncRNA MYOSLID overexpression significantly increased colony formation ability (Figure 2E,F). In addition, the use of EdU proliferation assay showed that knockdown of lncRNA MYOSLID significantly reduced the EdU-positive rate of GC cells, but overexpression of lncRNA MYOSLID significantly increased the EdU-positive rate (Figure 2G,H). These results indicated that lncRNA MYOSLID acts as an oncogene to promote malignant proliferation of GC.

3.3 Knockdown of lncRNA MYOSLID induces apoptosis and G1 arrest in gastric cancer cells

Malignant proliferation is one of the main causes of high mortality in GC. Increased apoptosis and cell cycle arrest are the two major factors leading to cancer cell proliferation. Therefore, we performed flow cytometry to analyse the effect of knockdown lncRNA MYOSLID on these characteristics. We found that GC cell lines SGC-7901 and BGC-823 transfected with lncRNA MYOSLID-specific siRNA (si-MYOSLID 2# or 3#) had higher apoptotic rates than cells of scrambled siRNA (Figure 3A). Meanwhile, SGC-7901 and BGC-823 cells transfected with lncRNA MYOSLID-specific siRNA showed significant cell cycle arrest compared to cells transfected with scrambled siRNA (Figure 3B). In addition, significantly higher levels of apoptosis-related proteins are expressed in cells transfected with lncRNA MYOSLID-specific siRNA, including cleaved...
caspase-3, cleaved PARP, etc. At the same time, cell cycle arrest is significantly associated with G1/S checkpoint protein expression, including cyclin D1, CDK2, cyclin D3 and CDK4. We found that knockdown of lncRNA MYOSLID in GC cell lines SGC-7901 and BGC-823 significantly increased the expression of cleaved caspase-3 and cleaved PARP (Figure 3C). In addition, the expression of cycle-associated proteins (such as Cyclin D1 and CDK2) was also significantly reduced. These data indicate that inhibition of GC cell proliferation after knockdown of lncRNA MYOSLID is attributable to increased apoptosis and cell cycle arrest at the G1/S checkpoint.
FIGURE 3 Knockdown of IncRNA MYOSLID induces apoptosis and G1 arrest in vitro and vivo. A, Flow cytometry was used to detect apoptosis rates. B, The IncRNA MYOSLID was silenced in SGC-7901 and BGC-823 cells, and flow cytometry showed a significant increase in the proportion of cells in the G1 phase. C, Western blot analysis of apoptosis-related proteins and cell cycle-associated proteins after transfection of scrambled siRNA, si-MYOSLID 2# or si-MYOSLID 3# in SGC-7901 and BGC-823 cells. The GAPGH protein was used as an internal control. Error bars indicate mean ± standard errors of the mean. D, Stable IncRNA MYOSLID knockdown SGC-7901 cells were used for in vivo assays. Tumours from two groups of nude mice were shown and measured and showed tumour growth curves after injection of SGC-7901 cells. Tumour volume was calculated every 4 days. E, Represents tumour weight from both groups (n = 5). F, Ki67 protein levels and apoptotic cells in tumour tissues from sh-MYOSLID or negative control SGC-7901 cells were determined by Immunofluorescence and TUNEL staining. The data represent the mean ± SEM from three independent experiments. *P < .05, **P < .01, ***P < .001
3.4 | **Knockdown of IncRNA MYOSLID inhibits gastric cancer cell tumorigenesis in vivo**

To determine whether IncRNA MYOSLID affects tumour growth in vivo, the GC cell line SGC-7901 was stably transfected with a control vector or shRNA targeting IncRNA MYOSLID and inoculated subcutaneously into female nude mice. All mice developed tumours at the injection site. We found that the size and weight of tumours in knockdown IncRNA MYOSLID group were significantly decreased compared with the empty vector group. (Figure 3D.E). Immunofluorescence of Ki-67 and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining in xenograft tissues showed knockdown IncRNA MYOSLID decreased the proportion of Ki-67-positive cells and increased the proportion of apoptotic cells (Figure 3F). Taken together, these results confirmed the carcinogenic activity of IncRNA MYOSLID in GC in vivo.

3.5 | **LncRNA MYOSLID acts as a molecular sponge for miR-29c-3p in GC cells**

Previous studies have shown that the main forms of action of IncRNAs include RNA-binding protein interactions or miRNAs as miRNAs to regulate expression of downstream target genes. To explore the potential molecular mechanisms of IncRNA MYOSLID in GC cell proliferation, we used in situ hybridization to analyse the subcellular localization of IncRNA MYOSLID for the first time. The results showed that the expression of IncRNA MYOSLID was mainly concentrated in the cytoplasm (Figure 4A), suggesting that the function of IncRNA MYOSLID may be post-transcriptional level regulation of target expression. Then, we used Ago2 antibody in GC cells SGC-7901 and BGC-823 for RNA-binding protein immunoprecipitation to elucidate that IncRNA MYOSLID binds directly to Ago2, which is one of the important components of...
RNA-induced silencing complexes, mainly involved in miRNA-mediated mRNA inhibition (Figure 4B). From these results, we initially hypothesized that the molecular mechanism of IncRNA MYOSLID in GC cells may act as a ceRNA of miRNA. To further confirm this hypothesis, we used an online bioinformatics database (Cancer RNA-Seq Nexus database) to analyse predicted miRNAs that bind to the IncRNA MYOSLID sequence. The data indicate the presence of a putative binding site between IncRNA MYOSLID and miR-29c-3p. Then, we analysed RNA sequencing data from GC tissues and found that miR-29c-3p was significantly down-regulated in gastric tissue (Figure 4C). Additionally, we analysed the expression levels of IncRNA MYOSLID and miR-29c-3p in GC tissue RNA sequencing data from TCGA and found a negative correlation (Figure 4D). At the same time, we analysed the expression of miR-29c-3p in 75 pairs of GC tissues by qRT-PCR and found that the expression level of miR-29c-3p in cancer tissues was significantly lower than that in adjacent tissues (Figure 4E). In addition, qRT-PCR analysis of IncRNA MYOSLID and miR-29c-3p in 75 gastric cancer tissues revealed a significant negative correlation between the expression levels of IncRNA MYOSLID and miR-29c-3p (Figure 4F). Meanwhile, the Kaplan-Meier survival analysis showed that patients with higher expression levels of miR-29c-3p had longer overall survival than patients with low expression of miR-29c-3p (Figure 4G). Then, we detected the expression level of miR-29c-3p in SGC-7901 and BGC-823 cells after knockdown or overexpressing IncRNA MYOSLID. Interestingly, the knockdown of IncRNA MYOSLID significantly increased the expression level of miR-29c-3p (Figure 4H). Meanwhile, overexpression of IncRNA MYOSLID significantly inhibited the expression level of miR-29c-3p (Figure 4I). Then, we determined the change in the activity of IncRNA MYOSLID by the luciferase reporter gene after site-directed mutagenesis by the putative miR-29c-3p binding site in the IncRNA MYOSLID sequence. As expected, the luciferase reporter assay showed that miR-29c-3p directly targets the 3'UTR of IncRNA MYOSLID-WT to negatively regulate the luciferase activity of IncRNA MYOSLID-wt-3'UTR, rather than IncRNA MYOSLID-MUT's 3'UTR (Figure 4J). As shown in Figure 4K, the expression level of miR-29c-3p in GC cell lines was significantly lower than that in normal gastric epithelial cells.

3.6 | The biological function of IncRNA MYOSLID is partly mediated by the negative regulation of miR-29c-3p

To determine the role of miR-29c-3p in GC cells, we transfected miR-29c-3p mimics or miR-29c-3p inhibitors in GC cell
significant changes (Figure 5B). Then, CCK-8 and colony formation assay showed that miR-29c-3p mimics transfection (Figure 5H, I). All mice developed tumours at the injection site. We found that the size and weight of tumours in the overexpressed miR-29c-3p group were significantly reduced compared with the empty vector group (Figure S1B, C). Immunofluorescence of Ki-67 and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining were used in xenograft tissues. The results showed that overexpression of miR-29c-3p reduced Ki-67-positive cells while increasing the proportion of apoptotic cells (Figure S1D). These results indicated that the function of lncRNA MYOSLID in GC cells is at least partly mediated by the negative regulation of miR-29c-3p.

3.7 | MCL-1 is a miR-29c-3p target gene and is indirectly regulated by lncRNA MYOSLID

The role of ceRNA regulatory networks in GC has been widely reported. To determine the ceRNA regulatory network between lncRNA MYOSLID, miR-29c-3p and downstream targets, we used a network database (miRWalk, miRtarbase and Diana) to predict potential miR-29c-3p target genes. In addition, we predicted the lncRNA MYOSLID-miR-29c-3p targeting ceRNA network.
using their expression in TCGA data and found that genes such as MCL-1, CCNA2 and DDX21 may be involved in this network (Figure 6A). MCL-1 protein is a special protein in the process of controlling apoptosis, and MCL-1 can protect tumour cells against apoptosis. Next, we performed a luciferase reporter gene assay driven by the wild-type 3’UTR sequence of MCL-1, which contains the predicted miR-29c-3p-binding site (wt-MCL-1), or mutant constructs containing a mutation in the miR-29c-3p-binding sites (mut-MCL-1). These plasmids were co-transfected into HEK293T cells with non-targeting control miRNA, miR-29c-3p mimics and miR-29c-3p inhibitor. The results showed that co-transfection with miR-29c-3p mimic significantly reduced wt-MCL-1-driven luciferase expression compared with control, and co-transfection of miR-29c-3p inhibitor increased wt-MCL-1 drives luciferase expression, but this change is abolished by mutation of the putative miR-29c-3p binding site (Figure 6B). To determine whether MCL-1 is regulated by miR-29c-3p in GC cells, we measured the protein level of MCL-1 when miR-29-3p was overexpressed or inhibited in SGC-7901 and BGC-823 cells. We found that overexpression or inhibition of miR-29c-3p significantly reduced or increased protein levels of MCL-1, respectively (Figure 6C). Since lncRNA MYOSLID could bind to miR-29-3p, we next determined whether lncRNA MYOSLID could regulate MCL-1 expression by binding to the same site in miR-29-3p. We found that knockdown of lncRNA MYOSLID also significantly reduced the protein level of MCL-1 in SGC-7901 and BGC-823 cells (Figure 6D). To determine whether miR-29c-3p plays a role in the relationship between lncRNA MYOSLID and MCL-1, we examined SGC-7901 and BGC-823 cells co-transfected with si-MYOSLID and miR-29c-3p inhibitors. In fact, si-MYOSLID-2-mediated reduction in MCL-1 protein levels was effectively reversed by miR-29c-3p inhibitors (Figure 6E). In addition, we analysed the association between miR-29c-3p and MCL-1 expression in 75 pairs of GC tissues and found a negative correlation between miR-29c-3p and MCL-1 (Figure 6F). Taken together, these data suggest that MCL-1 expression regulation is primarily mediated by post-transcriptional regulation of miR-29c-3p via lncRNA MYOSLID.

3.8 MCL-1 expression is up-regulated in GC tissues and promotes GC cell growth

To investigate the potential role of MCL-1 in GC, we analysed its expression in GC and normal tissues. Similarly, immunohistochemical staining of human GC tissues showed a significant increase in
MCL-1 protein in GC tissues (Figure S2A). Interestingly, Kaplan-Meier analysis found that higher MCL-1 expression was significantly associated with shorter overall survival in patients with gastric cancer (Figure S2B). Then, gastric cancer cell lines SGC-7901 and BGC-823 were transfected with MCL-1 siRNA to knockdown their expression, which was confirmed by qRT-PCR and Western blot (Figure 7A,B). Simultaneously, CCK8 and colony formation assay incorporation assays showed knockdown of MCL-1 expression significantly reduced cell growth viability and colony formation (Figure 7C,G). In addition, cycle arrest and apoptotic cell rates of GC cells SGC-7901 and BGC-823 transfected with si-MCL-1 or scrambled siRNA were analysed by flow cytometry (Figure 7D,7). Western blot analysis showed that the expression of cycle-regulated proteins such as cyclin D1 and CDK2 was significantly decreased in MCL-1 knockdown SGC-7901 and BGC-823 cells, and the expression of apoptosis-related proteins such as cleaved PARP and cleaved caspase-3 was significantly increased in these cells (Figure S2C). In addition, knockdown of MCL-1 inhibits tumour growth in GC cells in vivo (Figure S2D,E). Immunofluorescence of Ki-67 and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining were used in xeno-graft tissues. The results showed that the knockdown of MCL-1 reduced Ki-67-positive cells while increasing the proportion of apoptotic cells. (Figure S2F) Furthermore, proliferation and colony formation were significantly promoted in GC cell lines SGC-7901 and BGC-823 transfected with miR-29c-3p inhibitors, but this effect was significantly reversed by co-transfection with MCL-1-targeted siRNA (Figure 7F,G). Taken together, these data suggest that MCL-1 promotes GC growth.

4 | DISCUSSION

Increasing evidences revealed that non-coding RNAs, particularly IncRNAs and miRNAs, have considerable potential values in improving the diagnostic and therapeutic of GC.25,26 Researchers have found a large number of IncRNAs in GC development, such as IncRNA HOXC-AS3,27 LINCO1234 and IncRNA-KRTAP5-AS1.28 Aberrantly expressed IncRNAs are involved in various malignant cytological behaviours of GC. Our previously study showed a comprehensive analysis of a novel dysregulated IncRNA-related ceRNA network in gastric cancer revealing the expression of functional IncRNA in GC.24 In the present study, we first discovered the function of IncRNA MYOSLID in GC, which is significantly up-regulated in GC tissues and cell lines. The high expression of IncRNA MYOSLID is related to AJCC staging, tumour size and depth of invasion. In addition, the high expression of IncRNA MYOSLID expression is associated with a shorter overall survival time in patients with GC. In vitro and in vivo experiments demonstrated that after knockdown of IncRNA MYOSLID, cell proliferation and tumour growth were significantly inhibited and apoptosis was significantly increased, while overexpression of IncRNA MYOSLID promoted cell proliferation. These findings indicated that IncRNA MYOSLID plays a carcinogenic role in gastric tumorigenesis and can be considered as a potential prognostic indicator of GC.

Meanwhile, a large number of reports have demonstrated that there is a novel and extensive network of interactions involving ceRNAs in the biological function of non-coding RNAs, in which IncRNA or circRNA can regulate gene expression by competitively binding to miRNAs with mRNA.29-31 Such as, LINC01234 promotes GC cell proliferation and inhibits cell apoptosis by ceRNA as miR-204-5p; IncRNA-KRTAP5-AS1 promotes invasion and metastasis of GC cells by ceRNA as miR-59632; and IncRNA-HOXA11-AS promotes the proliferation and metastasis ability of GC cells by ceRNA as miR-1297.32 In this study, we found that IncRNA MYOSLID is mainly localized in the cytoplasm by in situ hybridization and interacts with Ago2 in GC cells, suggesting that IncRNA MYOSLID may act as an endogenous miRNA sponge. Then, bioinformatics analysis and luciferase reporter analysis revealed that miR-29c-3p is a new target for IncRNA MYOSLID. By analysing TCGA data, it was found that miR-29c-3p is down-regulated in human GC and acts as a tumour suppressor. There is evidence that the expression of miR-29c-3p in GC is lower than that in adjacent tissues, and it can significantly inhibit the proliferation of GC cells by down-regulating the expression of ITGB1.33 In addition, it has been reported that miR-29c is significantly down-regulated in colon cancer.34 In this study, we also found that miR-29c-3p was significantly down-regulated in GC, and we found that increased expression of miR-29c-3p inhibited GC cell proliferation and induced apoptosis. At the same time, our results reveal that IncRNA MYOSLID plays an important role in GC cells by sponging miR-29c-3p during tumorigenesis and progression.

In general, IncRNA acts primarily by inhibiting miRNAs to affect downstream miRNA targets in the mechanism of the competing endogenous RNAs of IncRNA. Therefore, miRNA targets are an important part of the ceRNA network.35,36 Next, we used three online prediction databases and found that MCL-1 is one of the potential miR-29c-3p targets not reported in GC. Meanwhile, to elucidate that miR-29c-3p directly targets MCL-1, we performed a luciferase reporter assay and confirmed that the 3'UTR region of MCL-1 mRNA is the target site for miR-29c-3p. In addition, overexpression of miR-29c-3p in GC cells significantly reduced the protein level of MCL-1. MCL-1 is a unique anti-apoptotic BCL-2 family member that is overexpressed in many tumour types.37 For example, Chen G et al reported that targeting MCL-1 enhanced the sensitivity of DNA replication stress to cancer treatment.38 In addition, Zhan Z et al also reported that MCL-1 can increase the anti-apoptotic ability of GC cells, thereby promoting the proliferation of GC cells.39 In our study, we found that MCL-1 was significantly up-regulated in GC tissues compared with normal samples. At the same time, Kaplan-Meier analysis found that higher MCL-1 expression was significantly associated with poor overall survival in patients with GC. Then, we found that knockdown of MCL-1 expression significantly inhibited GC cell proliferation and induced apoptosis. Furthermore, by co-transfection of MCL-1 siRNA with the miR-29c-3p inhibitor, we found that...
the function of the miR-29c-3p inhibitor can be reversed by MCL-1 knockdown. These results indicated that miR-29c-3p inhibits GC cell proliferation depending on inhibition of MCL-1 expression.

In conclusion, we report a novel gastric cancer-associated IncRNA MYOSLID and first discovered that IncRNA MYOSLID is a carcinogenic lncRNA that promotes cell proliferation and inhibits apoptosis in human GC via the miR-29c-3p-MCL-1 axis. This study provided better understanding of IncRNA-miRNA-mRNA ceRNA network in the development of GC. IncRNA MYOSLID may be a potential important target for the diagnosis and treatment of GC.

ACKNOWLEDGEMENTS

This research was funded by the National Natural Science Foundation of China (Grant No. 614102). China Postdoctoral Science Foundation Grant (Nos. 2019M653667).

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

NW, MZJ, YC and ZYW contributed equally. XX, BX and HML designed the study. NW, MZJ, YC and ZYW performed the in vitro experiments. YYY, HL and YJC performed the in vivo experiments. NW and MZJ analysed the data and wrote the manuscript. YC and ZYW evaluated the histological features. XX and HML supervised the study.

ORCID

Xin Xie https://orcid.org/0000-0002-7132-5609

REFERENCES

1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-132.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30.
3. Torre LA, Sauer AM, Chen MS Jr, Kagawa-Singer M, Jemal A, Siegel RL. Cancer statistics for American Indians, Native Hawaiians, and Pacific Islanders, 2016: Converging incidence in males and females. CA Cancer J Clin. 2016;66(3):182-202.
4. Chen X, Chen Z, Yu S, et al. Long Noncoding RNA LINC01234 Functions as a Competing Endogenous RNA to Regulate CBFB Expression by Sponging miR-204-5p in Gastric Cancer. Clin Cancer Res. 2018;24(8):2002-2014.
5. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178-181.
6. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452-463.
7. Wang HV, Chekanova JA. Long noncoding RNAs in plants. Adv Exp Med Biol. 2017;1008:133-154.
8. Sun Y, Wei G, Luo H, et al. The long noncoding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes. Oncogene. 2017;36(49):6774-6783.
9. Zhang D, Lee H, Haspel JA, Jin Y. Long noncoding RNA FOXD3-A51 regulates oxidative stress-induced apoptosis via sponging microRNA-150. FASEB J. 2017;31(10):4472-4481.
10. Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA IncRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis. 2015;6:e1700.
11. Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long Noncoding RNA GASS Suppresses Cell Growth and Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating the miR-221/ARHI Pathway. J Cell Biochem. 2017;118(12):4772-4781.
12. Chen D-L, Chen L-Z, Lyu Y-X, et al. Long noncoding RNA XIST participates in colorectal cancer. Cell Death Dis. 2017;8(8):e3011.
13. Jiang Z, Slater CM, Zhou Y, et al. LincRNAs, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis. Breast Cancer Res. 2017;19(1):62.
14. Wang Y, He L, Du Y, et al. The long noncoding RNA LncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Stem Cell. 2015;16(4):413-425.
15. Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci. 2017;108(11):2107-2114.
16. Yang Z, Guo X, Li G, Shi Y, Li L. Long noncoding RNAs as potential biomarkers in gastric cancer: Opportunities and challenges. Cancer Lett. 2016;371(1):62-70.
17. Mercer TR, Mattick JS. Structure and function of long non-coding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300-307.
18. Spurlock CF, Cooke PS, Aune TM. Biogenesis and Transcriptional Regulation of Long Noncoding RNAs in the Human Immune System. J Immunol. 2016;197(12):4509-4517.
19. Dykes IM, Emanuelli C. Transcriptional and Post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics & Bioinformatics. 2017;15(3):177-186.
20. Yan X, Zhang D, Wu W, et al. Mesenchymal stem cells promote hepatocarcinogenesis via IncRNA-MUF Interaction with ANXA2 and miR-34a. Can Res. 2017;77(23):6704-6716.
21. Chen D-L, Lyu Y-X, Zhang J-X, et al. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics. 2017;7(19):4836-4849.
22. Liu L, Cui S, Wan T, et al. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR-126-5p. J Cell Physiol. 2018;233(9):6822-6831.
23. Zhao J, Zhang W, Lin M, et al. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arterioscler Thromb Vasc Biol. 2016;36(10):2088-2099.
24. Liu H, Zhang Z, Wu N, et al. Integrative analysis of dysregulated IncRNA-associated ceRNA network reveals functional IncRNAs in gastric cancer. Genes. 2018;9(6):303.
25. Fang XY, Pan HF, Leng RX, Ye DQ. Long noncoding RNAs: novel insights into gastric cancer. Cancer Lett. 2015;356(2 Pt B):357-366.
26. Zeng MS. Noncoding RNAs in Cancer Diagnosis. Adv Exp Med Biol. 2016;927:391-427.
27. Zhang E, He X, Zhang C, et al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol. 2018;19(1):154.
28. Song Y-X, Sun J-X, Zhao J-H, et al. Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun. 2017;8(1):289.
29. Li MJ, Zhang J, Liang Q, et al. Exploring genetic associations with ceRNA regulation in the human genome. Nucleic Acids Res. 2017;45(10):5653-5665.

30. Glenfield C, McLysaght A. Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol. 2018;35(12):2886-2899.

31. Gao M, Li C, Xu M, Liu Y, Cong M, Liu S. LncRNA MT1DP Aggravates Cadmium-Induced Oxidative Stress by Repressing the Function of Nrf2 and is Dependent on Interaction with miR-365. Adv Sci. 2018;5(7):1800087.

32. Sun M, Nie F, Wang Y, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Can Res. 2016;76(21):6299-6310.

33. Han TS, Hur K. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut. 2015;64(2):203-214.

34. Chen G, Zhou T, Li Y, Yu Z, Sun L. p53 target miR-29c-3p suppresses colon cancer cell invasion and migration through inhibition of PHLD2. Biochem Biophys Res Comm. 2017;487(1):90-95.

35. Karreth FA, Pandolfi PP. ceRNA Cross-Talk in Cancer: When ce-bling Rivalries Go Awry. Cancer Discov. 2013;3(10):1113-1121.

36. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344-352.

37. Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol. 2017;95(10):870-877.

38. Chen G, Magis AT, Xu KE, et al. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Investig. 2018;128(1):500-516.

39. Akagi H, Higuchi H, Sumimoto H, et al. Suppression of myeloid cell leukemia-1 (Mcl-1) enhances chemotherapy-associated apoptosis in gastric cancer cells. Gastric cancer. 2013;16(1):100-110.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Han Y, Wu N, Jiang M, et al. Long non-coding RNA MYOSLID functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-29c-3p in gastric cancer. Cell Prolif. 2019;52:e12678. [https://doi.org/10.1111/cpr.12678]