ORIGINAL ARTICLE

Nonsteroidal anti-inflammatory drugs prevent gastric cancer associated with the use of proton pump inhibitors after Helicobacter pylori eradication

Junya Arai,* † Ryota Niikura,** †† Yoku Hayakawa,* † Hiroki Sato,* † Takuya Kawahara,† Tetsuro Honda,** †† Kenkei Hasatani,§ Naohiro Yoshida,¶ Tsutomu Nishida,** †† Tetsuya Sumiyoshi,** †† Shu Kiyotoki,** †† Takashi Ikeya,** †† Masahiro Arai,** †† Nobumi Suzuki,** †† Yosuke Tsuji,* † Atsuo Yamada,* † and Kazuhiko Koike*

*Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, †Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo City, ‡Department of Gastroenterology, St. Luke’s International Hospital, Chuo-ku, ††Department of Gastroenterology, Nerima Hikarigaoka Hospital, Nerima-ku, †‡Department of Gastroenterological Endoscopy, Tokyo Medical University, Shinjuku-ku, Tokyo, ‡‡Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, ‡Department of Gastroenterology, Fukui Prefectural Hospital, Fukui-shi, Fukui, †§Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa-shi, Ishikawa, ††Department of Gastroenterology, Toyonaka Municipal Hospital, Toyonaka-shi, Osaka, ‡‡‡Department of Gastroenterology, Tonan Hospital, Sapporo-shi, Hokkaido and †††Department of Gastroenterology, Shuto General Hospital, Yanai-shi, Yamaguchi, Japan

Key words
COX2 inhibitors, gastric cancer, Helicobacter pylori, NSAIDs, proton pump inhibitor.

Accepted for publication 23 May 2021.

Correspondence
Yoku Hayakawa and Ryota Niikura, Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
Email: yhayakawa-tky@umin.ac.jp (Y. H.), niikura-dky@umin.ac.jp (R. N.)

Declaration of conflict of interest: The authors have no conflicts of interest to declare.

Author contribution: Junya Arai, Ryota Niikura, and Yoku Hayakawa contributed to the study design. Junya Arai wrote the initial manuscript draft. Junya Arai, Ryota Niikura, and Takuya Kawahara analyzed the data. Hiroki Sato, Tetsuro Honda, Kenkei Hasatani, Naohiro Yoshida, Tsutomu Nishida, Tetsuya Sumiyoshi, Shu Kiyotoki, Takashi Ikeya, Masahiro Arai, Nobumi Suzuki, Yosuke Tsuji, Atsuo Yamada, and Kazuhiko Koike provided guidance regarding the study design and contributed to manuscript editing.

Funding support: Advanced Research and Development Programs for Medical Innovation (PRIME)

Funding support: AMED

Funding support: KAKENHI17H0508120K08375

Abstract

Background and Aim: Proton pump inhibitors (PPIs) are a potential cause of gastric carcinogenesis after Helicobacter pylori eradication. Thus, appropriate management including chemoprevention is required. The aim of this study was to evaluate the association between nonsteroidal anti-inflammatory drugs (NSAIDs) and the incidence of post-eradication gastric cancer in PPI users.

Methods: A multicenter retrospective cohort study was conducted. Patients who used a PPI (≥30 days) after H. pylori eradication between 2014 and 2019 were analyzed in nine hospital databases. Gastric cancer incidence was a primary outcome, and their association with NSAIDs use and clinical factors was evaluated. Hazard ratios were adjusted by age, sex, smoking, and Charlson Comorbidity Index.

Results: During the mean follow-up period of 2.38 years, 1.13% (31/2431) of all patients developed gastric cancer. The cumulative incidence of gastric cancer in PPI users was 0.25% at 1 year, 0.51% at 3 years, and 1.09% at 5 years in the NSAID users and 0.89% at 1 year, 2.32% at 3 years, and 3.61% at 5 years in nonusers. NSAIDs were associated with a lower gastric cancer risk (adjusted hazard ratio = 0.28, \( P = 0.005 \)). No gastric cancer was observed in the cyclooxygenase-2 inhibitor users (n = 256). NSAID use with high dose and long duration was significantly associated with a lower incidence of gastric cancer.

Conclusion: NSAIDs were associated with a 60% decrease in the gastric cancer incidence in H. pylori-eradicated PPI users, with dose and duration response effects. NSAIDs may be effective for chemoprevention against PPI-related gastric cancer.
Introduction

Gastric cancer is the third leading cause of cancer-related mortality worldwide.1 Helicobacter pylori is the most important carcinogen for gastric cancer,2 and H. pylori eradication reduces gastric cancer risk by 47%. However, the annual incidence rate of post-eradication gastric cancer is approximately 1.4%,2 and understanding its pathogenesis and establishing a novel preventive approach remain to be required.

Previous reports revealed that proton pump inhibitor (PPI) use was associated with a 2.4-fold increase in the risk of H. pylori post-eradication gastric cancer (post-eradication gastric cancer).3,5 Another meta-analysis also supported a possible association between long-term use of PPIs and the risk of gastric cancer.6 Although PPIs may be a potential risk factor for post-eradication gastric cancer, they are among the most commonly used drug groups in the world, and millions of patients need them for peptic ulcers and reflux diseases. Identification of populations at high risk of post-eradication gastric cancer and drugs effective for chemoprevention for the high-risk population would be beneficial for appropriate management of H. pylori-eradicated PPI users.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are potential chemopreventive drugs for gastric cancer. NSAIDs were associated with a 58% decrease in gastric cancer incidence in a country with a high rate of H. pylori infection,7 and a similar effect was found in a country with a low rate.8 Therefore, we hypothesized that NSAIDs may be preventive for gastric cancer development even in H. pylori-eradicated PPI users. However, NSAIDs increase gastrointestinal (GI) bleeding risk and potentially cardiovascular risk. The balance between the benefits and risks of NSAID use must be considered.

To address these issues, we performed a multicenter retrospective cohort study of patients who used PPIs after eradication and evaluated the associations between NSAID use and both gastric cancer development and adverse events, including upper GI bleeding and cardiovascular diseases. Furthermore, we evaluated the association between gastric cancer and patients’ genotype of CYP2C19, which is involved in PPI metabolism. The findings may be useful for identification of optimal PPI users who require additional chemopreventive intervention.

Methods

Study design, setting, and participants. We performed a retrospective cohort study using the diagnostic procedure combination databases from nine hospitals between April 2014 and March 2019. The combined database provided records from all inpatients and outpatients of the University of Tokyo Hospital, Shuto General Hospital, Fukui Prefectural Hospital, Nippon Hikarigaoka Hospital, St. Leuk’s International Hospital, Toyonaka Municipal Hospital, Ishikawa Prefectural Central Hospital, and Nagasaki Minato Medical Center and from inpatients of Tonan Hospital. The database included diagnosis, comorbidities, and adverse events using the International Classification of Diseases, tenth revision (ICD-10), and drugs and procedures coded according to the original Japanese code.

From the database, we extracted the data of patients who used a 7-day course of clarithromycin-based or metronidazole-based triple therapy for H. pylori infection between April 2014 and March 2019 using the drug codes (Table S1). We excluded patients who had used PPIs for less than 30 days and developed gastric cancer within half a year after H. pylori eradication. Patients who have history of gastrectomy before H. pylori eradication were also excluded. The follow-up period was from the date of eradication drug use to the final visit. The end of follow-up was March 2019, and loss to follow-up was defined as the date of the final visit. The study was approved by the institutional review boards of the University of Tokyo Hospital (no. 2019161NI).

Outcomes and variables. The primary outcome was the development of gastric cancer, as defined by the ICD-10 codes (C160, C161, C162, C163, C164, C165, C166, C168, and C169) or procedure codes for endoscopic and surgical resection (K6531, K6532, K6533, K6534, K654-2, K654-31, K654-32, K6551, K6552, K655-21, K655-22, K655-41, K655-42, K655-51, K655-52, K656, K656-2, K656-2, K6571, K6572, K657-21, and K657-22).

The secondary outcomes were upper GI bleeding and cardiovascular diseases, including cerebrovascular diseases and ischemic heart diseases. Upper GI bleeding was defined as performing endoscopic hemostasis for GI bleeding, with a procedure code of K654. Cerebrovascular disease was defined by ICD-10 codes G450–G469, H340, I600–I639, H4, and I650–I699, and ischemic heart disease was defined by ICD-10 codes I210–I229 and I252.

We evaluated the following clinical factors: age, sex, smoking, comorbidities, and medication use. Age was categorized into two groups: >70 and ≤70 years. The following comorbidities were included based on ICD codes: atrial fibrillation, acquired immunodeficiency syndrome, arterial thrombosis, carotid disease, cerebrovascular disease, chronic heart failure, chronic kidney disease (stage 5 or lower), dementia, diabetes mellitus with or without complications, deep vein thrombosis, hemiplegia, dyslipidemia, ischemic heart diseases, liver disorder (mild/severe), malignancy with or without metastasis, pulmonary embolism, peripheral vascular disease, pulmonary disease, rheumatic disease, transient ischemic attack, peptic ulcer disease, unstable angina disease, and valvular disease. The Charlson Comorbidity Index was calculated using these data.9 The details of ICD-10 codes are shown in Table S2.

Usage of NSAIDs, including COX2 (cyclooxygenase-2) inhibitors, aspirin, metformin, and statins with other lipid-lowering agents (fibates and others), was assessed. NSAIDs were defined as loxoprofen, sulindac, diclofenac, flurbiprofen, ibuprofen, indomethacin, ketoprofen, oxaprozin, naproxen, mefenamic acid, flufenamate aluminum, acemetacin, proglumetacin maleate, moxefolac, pranoprofen, tiaprofenic acid, zaltoprofen, tiamide hydrochloride, etodolac, meloxicam, nabumetone, zaltoprofen, lornoxicam, and piroxicam, including COX2 inhibitors (celecoxib). Statins included pitavastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, and rosuvastatin. Rosuvastatin, pitavastatin, and atorvastatin were defined as strong statins. Fibrate included fenofibrate, bezafibrate, clofibrate, and mico-/brs. The duration of NSAID use was categorized as short-term (<30 days) or long-term (≥30 days). The NSAID dose was categorized as low (one tablet) or high (two tablets or more). The
details of the medication codes of the medications are shown in Table S1.

**Genotyping.** Genotyping of the CYP2C19 wild-type gene and two mutated alleles (mutations CYP2C19m1 in exon 5 and CYP2C19m2 in exon 4) was performed using polymerase chain reaction (PCR) restriction fragment length polymorphism (TaqMan Sample-to-SNP kit) for patients who consented to the examination. The patients were categorized into three groups: extensive metabolizers (*1/*1), intermediate metabolizers (*1/*2 and *1/*3), and poor metabolizers (*2/*2, *2/*3, and *3/*3).

**Statistical analysis.** The primary endpoint, gastric cancer development, was censored at the date of the final visit. The Kaplan–Meier method was used to calculate the cumulative probability of gastric cancer development at 5 years. Univariate and multivariate Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs); the multivariate Cox proportional hazards models were adjusted for age and sex. Missing data for sex (n = 1355) and age (n = 1355) were imputed using the fitted values from general linear models for comorbidities.

We also estimated the HRs for gastric cancer development according to NSAID duration and dose using other Cox models. In addition, we performed survival analyses using Cox models to evaluate the associations between NSAID use and the secondary endpoints (GI bleeding and cardiovascular disease). We calculated the posterior probabilities of gastric cancer using the Bayesian model in patients who underwent CYP2C19 genotyping.

A P value <0.05 was considered statistically significant, and HRs with 95% CIs were determined. All statistical analyses were performed using SAS software v. 9.4 (SAS Institute, Cary, NC, USA).

**Patient and public involvement.** Patients and the public were neither involved in the study design nor the recruitment. This study received ethics approval from the institutional review boards of the University of Tokyo (ID: 2058-(2)).

**Results**

**Patient characteristics.** A total of 10,233 patients received *H. pylori* eradication therapy. After excluding 7802 patients, 2431 *H. pylori*-eradiated PPI users were analyzed (Fig. 1). Of these 2431 patients, the mean age was 68.12 years, 58.46% (n = 629) were male (missing data n = 1355), and 41.01% used NSAIDs. High- and low-dose and short-term and -long-term NSAID users made up 2.71, 38.30, 23.36, and 17.65% of the study population, respectively. The percentages of aspirin, statin, strong statin, fibrate, other lipid lowering agent, and metformin users were 17.03, 26.00, 22.75, 2.38, 3.50, and 6.38%, respectively. The baseline characteristics of the cohort are shown in Table 1.

PPIs were principally used for gastroesophageal reflux related symptoms. In addition, PPI users had histories of 14.64% of gastroesophageal reflux disease, 8.68% of cardiovascular diseases, and 10.94% of previous GI bleeding. NSAIDs were principally used for orthopedic disease related pain. In addition, NSAID users had histories of 10.83% of cardiovascular disease, 2.01% of rheumatic diseases, and 2.51% of orthopedic disease including osteoarthritis, spinal disc herniation, and spinal stenosis.

---

**Figure 1** Patient selection flow diagram. GC, gastric cancer; *H. pylori*, *Helicobacter pylori*; PPI, proton pump inhibitor.
Table 1 Patient characteristics of long-term proton pump inhibitor (PPI) users

| Characteristic                              | Number of patients (%) |
|---------------------------------------------|------------------------|
| Male (missing data n = 1355)                | 629 (58.46)            |
| Age > 70 years (missing data n = 1355)      | 550 (51.12)            |
| Follow-up years                             | 2.38 ± 1.45 years      |
| Smoking                                     | 427 (17.56)            |
| Comorbidities                               |                        |
| Atrial fibrillation                         | 23 (0.95)              |
| AIDS                                        | 0 (0.00)               |
| Arterial thrombosis                         | 18 (0.74)              |
| Carotid disease                             | 5 (0.21)               |
| Cerebrovascular disease                     | 74 (3.04)              |
| Chronic heart failure                       | 135 (5.55)             |
| Chronic kidney disease < stage 5            | 42 (1.73)              |
| Chronic kidney disease stage 5              | 4 (0.16)               |
| Dementia                                    | 15 (0.62)              |
| DM without complications                    | 231 (9.50)             |
| DM with complications                       | 83 (3.41)              |
| Deep vein thrombosis                        | 17 (0.70)              |
| Hemiplegia                                  | 1 (0.04)               |
| Hypertension                                | 332 (13.66)            |
| Dyslipidemia                                | 210 (8.64)             |
| Ischemic heart diseases                     | 23 (0.95)              |
| Liver disorder (mild level)                | 99 (4.07)              |
| Liver disorder (severe level)              | 14 (0.58)              |
| Malignancy without metastasis              | 166 (6.83)             |
| Malignancy with metastasis                 | 36 (1.48)              |
| Pulmonary embolism                          | 0 (0.00)               |
| Peripheral vascular diseases                | 38 (1.56)              |
| Pulmonary disease                           | 82 (3.37)              |
| Rheumatic diseases                          | 27 (1.11)              |
| Transient ischemic attack                   | 2 (0.08)               |
| Peptic ulcer diseases                       | 266 (10.94)            |
| Unstable angina diseases                    | 122 (5.02)             |
| Valvular diseases                           | 26 (1.07)              |
| Charlson Comorbidity Index                  | 0.72 ± 1.57            |

Medications

| Medication                        | Number of patients (%) |
|-----------------------------------|------------------------|
| Aspirin                           | 414 (17.03)            |
| NSAIDs                            | 997 (41.01)            |
| COX2I (only celecoxib)            | 256 (10.53)            |
| Statin (total)                    | 632 (26.00)            |
| Strong statin                     | 553 (22.75)            |
| Fibrate                           | 57 (2.34)              |
| Other lipid lowering              | 85 (3.50)              |
| Metformin                         | 155 (6.38)             |

AIDS, acquired immunodeficiency syndrome; DM, diabetes mellitus; NSAIDs, nonsteroidal anti-inflammatory drugs; COX2I, cyclooxygenase-2 inhibitor.

Incidence of gastric cancer and the factors associated with gastric cancer in the long-term PPI users. During the mean follow-up period of 2.38 years, 31 patients (1.13%) developed gastric cancer (2 in the cardia, 14 in the non-cardia region; data were not available for 15 patients). The cumulative incidence of gastric cancer was 0.24% at 1 year, 0.52% at 3 years, and 1.09% at 5 years in the patients using NSAIDs and PPI, and 0.89% at 1 year, 2.32% at 3 years, and 3.61% at 5 years in the patients using PPI alone (Fig. 2a). NSAID use was significantly associated with decreased gastric cancer incidence (P = 0.006, log-rank test).

The cumulative incidence of gastric cancer was 0% at 1, 3, and 5 years in the patients who used COX2 inhibitors with PPI, and 0.69% at 1 year, 1.72% at 3 years, and 2.81% at 5 years in the patients who used PPI but not COX2 inhibitors (Fig. 2b). The use of COX2 inhibitors was significantly associated with a decreased gastric cancer incidence (P = 0.044, log-rank test).

The results of a Cox model evaluating factors associated with gastric cancer are shown in Table 2 and Figure 3. In the analyzed H. pylori-eradicated PPI users, NSAID use was associated with a lower incidence of gastric cancer compared with non-use (adjusted HR [aHR] 0.28, 95% CI 0.11–0.67, P = 0.005). The use of other drugs including aspirin, statin, fibrate, and metformin was not significantly associated with gastric cancer incidence. Analysis of other factors showed that a higher incidence of gastric cancer was associated with age >70 years (aHR 3.52, 95% CI 1.51–8.18, P = 0.004), chronic kidney disease stage 5 (aHR 9.42, 95% CI 1.23–72.36, P = 0.041), and malignancy without metastasis (aHR 0.10, 95% CI 0.01–0.84, P = 0.034).

Sub-analysis of the association between the dose or duration of NSAID use and gastric cancer in long-term PPI users. Of the 931 patients using low-dose NSAIDs, six patients developed gastric cancer (0.64%). None of the 66 high-dose NSAID users developed gastric cancer. The associations between dose or duration of NSAID use and gastric cancer incidence were assessed by using a Cox model (Table 3). The aHR for low-dose NSAID use was 0.29 (95% CI 0.12–0.71) compared with non-use. In terms of duration of NSAID use, aHRs for short-term (<30 days) and long-term (≥30 days) use were 0.44 (95% CI 0.15–1.27) and 0.16 (95% CI 0.037–0.66) compared with the non-use group.

Incidences of cardiovascular diseases and upper GI bleeding in long-term PPI users. Figure 4 shows a Kaplan–Meier plot for the incidences of adverse events including upper GI bleeding and cardiovascular diseases in the NSAID users and nonusers. No patients developed upper GI bleeding in either group (Fig. 4a). Twenty patients (0.82%) developed cardiovascular events. The cumulative incidence of cardiovascular events was 0.22% at 1 year, 0.55% at 3 years, and 1.10% at 5 years in the NSAID use group and 0.49% at 1 year, 1.21% at 3 years, and 1.70% at 5 years in the non-use group (Fig. 4b). No significant difference in the incidence of cardiovascular events was observed between the groups (P = 0.224, log-rank test).

CYP2C19 genotyping. In order to investigate the effects by PPI metabolism in cancer incidence, CYP2C19 genotype was measured in a total of 199 patients. Of these patients, 78.9% were aged >70 years, 72.4% were men. Genotyping results indicated that 77, 90, and 32 patients were CYP2C19 extensive, intermediate, and poor metabolizers, respectively. A total of five patients had gastric cancer. The risk of gastric cancer (aHR 2.47) in the CYP2C19 non-extensive metabolizers, that is, the intermediate and poor metabolizers, was elevated compared with that in extensive metabolizers; however, this difference was not statistically significant (Tables S3 and S4). Nevertheless, a Bayesian
model showed the potential risk of gastric cancer in the non-extensive metabolizers. Combined with the uninformative prior distribution and data, the posterior probabilities of a greater hazard in CYP2C19 intermediate and poor metabolizers than in extensive metabolizers were 79.8 and 87.6%, respectively (Figure S2), suggesting that impaired CYP2C19 metabolizers may encounter prolonged effects by PPI, which potentially further increase the gastric cancer risk.

**Discussion**

In this multicenter cohort study, we found that NSAID use was associated with a 60% decrease in the post-eradication gastric cancer incidence in PPI users, and dose– and duration–response relationships were confirmed. NSAID use was not associated with increased GI bleeding or cerebrovascular events. In addition, COX2 inhibitors showed relatively higher chemopreventive effects, and we identified CYP2C19 poor metabolizers as a potential high-risk population for post-eradication gastric cancer.

*H. pylori* eradication therapy has been widely encouraged for prevention of peptic ulcers, as well as subsequent gastric cancers. However, a significant population in *H. pylori*-eradicated patients often need the prolonged use of PPIs, due to refractory acid-reflux symptoms. Given the potential cancer-promoting effects by PPIs in such patients,4,5

| Factor | Gastric cancer, n = 31 | Non-gastric cancer, n = 2400 | Crude HR (95% CI) | Adjusted HR† (95% CI) | P value |
|--------|------------------------|-------------------------------|-------------------|----------------------|---------|
| PPI-use | 25 (1.74)              | 1409 (98.26)                 | 1                 | 1                    | 0.005*  |
| PPI + NSAID use | 6 (0.60) | 991 (99.40) | 0.30 (0.13–0.74) | 0.28 (0.11–0.67) | 0.005*  |
| PPI-use | 31 (1.43)              | 2144 (98.57)                 | 1                 | 1                    | —       |
| PPI + COX2I use | 0 (0.00) | 256 (100.00) | NA                | NA                   | —       |
| PPI-use | 27 (1.34)              | 1990 (98.66)                 | 1                 | 1                    | —       |
| PPI + aspirin use | 4 (0.97) | 410 (99.03) | 0.67 (0.23–1.90) | 0.43 (0.15–1.26) | 0.123   |
| PPI-use | 24 (1.33)              | 1775 (98.67)                 | 1                 | 1                    | —       |
| PPI + statin use | 7 (1.11) | 625 (98.89) | 0.74 (0.32–1.72) | 0.59 (0.25–1.38) | 0.221   |
| PPI-use | 25 (1.33)              | 1853 (98.67)                 | 1                 | 1                    | —       |
| PPI + strong statin use | 6 (1.08) | 547 (98.92) | 0.75 (0.31–1.82) | 0.58 (0.23–1.44) | 0.241   |
| PPI-use | 30 (1.26)              | 2344 (98.74)                 | 1                 | 1                    | —       |
| PPI + fibrate use | 1 (1.75) | 56 (98.25) | 1.32 (0.18–9.67) | 1.19 (0.16–8.73) | 0.865   |
| PPI-use | 31 (1.32)              | 2315 (98.68)                 | 1                 | 1                    | —       |
| Use of PPI + other lipid-lowering agents | 0 (0.00) | 88 (100.00) | NA                | NA                   | —       |
| PPI-use | 27 (1.19)              | 2249 (98.81)                 | 1                 | 1                    | —       |
| PPI + Metformin use | 4 (2.58) | 151 (97.42) | 1.97 (0.69–5.63) | 1.69 (0.58–4.90) | 0.336   |

†HR adjusted for age > 70 years, sex, smoking, and Charlson Comorbidity Index.

Cl, confidence interval; COX2I, cyclooxygenase-2 inhibitor; HR, hazard ratio; NA, not applicable; NSAID, nonsteroidal anti-inflammatory drug.
there is a clinical dilemma when seeing H. pylori-eradicated PPI users. Our current finding that NSAIDs efficiently prevent gastric cancer development in PPI users would be helpful for solving this problem, that is, additional chemopreventive use of NSAIDs may be considered for a subgroup of H. pylori-eradicated PPI users.

Table 3 Association between the dose/duration of nonsteroidal anti-inflammatory drug (NSAID) use and gastric cancer incidence in long-term proton pump inhibitor (PPI) users

| Factor | Gastrointestinal, n = 31 | Non-gastrointestinal, n = 2399 | Crude HR (95% CI) | Adjusted HR† (95% CI) | P value |
|--------|--------------------------|--------------------------------|-------------------|-----------------------|---------|
| Dose   |                          |                                |                   |                       |         |
| PPI-use| 25 (1.74)                | 1409 (98.26)                   | 1                 | 1                     |         |
| PPI + LD-NSAID use | 6 (0.64) | 925 (99.36) | 0.33 (0.13 to 0.80) | 0.29 (0.12 to 0.71) | 0.007* |
| PPI + HD-NSAID use | 0 (0.00) | 66 (100.00) | Not applicable | Not applicable | — |
| Duration|                          |                                |                   |                       |         |
| PPI-use| 25 (1.74)                | 1409 (98.26)                   | 1                 | 1                     |         |
| PPI + short NSAID use | 4 (0.93) | 425 (99.07) | 0.49 (0.17 to 1.42) | 0.44 (0.15 to 1.27) | 0.128   |
| PPI + long NSAID use | 2 (0.35) | 566 (99.65) | 0.17 (0.041 to 0.72) | 0.16 (0.037 to 0.66) | 0.012* |

†HR adjusted for age >70 years, sex, smoking, and Charlson Comorbidity Index. CI, confidence interval; HD, high dose; HR, hazard ratio; LD, low dose; NSAID, nonsteroidal anti-inflammatory drug.
We found that CYP2C19 non-extensive metabolizers who use PPIs are at high risk of gastric cancer. NSAID use as chemoprevention may be beneficial in these patients following H. pylori eradication. In addition, given that past history of gastric atrophy and intestinal metaplasia are known to be a risk factor for post-eradication gastric cancer, patients with these factors may also be a potential target of chemopreventive approach using NSAIDs.

Since NSAIDs are anti-inflammatory drug, their anti-inflammatory effects may contribute to a low incidence of gastric cancer. In addition, several in vitro and in vivo studies suggested that COX2 may play a critical role in proliferation and tumor growth in gastric cancers. Given the strong cancer-preventing effects by COX2 inhibitors in our cohort and other studies, COX2 pathway may be central in gastric cancer development at least in a subset of chronic gastritis patients.

Contrary to previous reports, NSAID use was not associated with increased upper GI bleeding or cardiovascular events in our study. One explanation for the discrepancy might be that all our patients received H. pylori eradication therapy and used PPIs, which theoretically lower the incidence of upper GI bleeding. In our study, the rate of comorbidities associated with a cardiovascular risk, such as carotid, cerebrovascular, peripheral vascular, and ischemic heart diseases, was also fewer (5%) than in previous studies (more than 10%). While this discrepancy might be due to shorter follow-up period and fewer dosage of NSAIDs in our study, our data suggest that chemopreventive use of NSAIDs may be feasible for H. pylori-eradicated PPI users.

Our study has several strengths. First, to our best knowledge, this was the first study to evaluate the association between NSAID use and the incidence of gastric cancer after H. pylori eradication in PPI users. Second, this was a large multicenter cohort study. Nevertheless, our study has several limitations. First, this study was retrospective. Second, our diagnostic procedure combination database lacked data on successful eradication of H. pylori. However, the success rate of H. pylori eradication was expected to be greater than 90%, based on the primary use of vonoprazan-based drugs in Japan. Third, the follow-up period was relatively short and insufficient to accurately evaluate gastric cancer events. However, we will expand our database to double the number of hospitals and will perform further studies for another 2 years in near future. Lastly, information on some risk factors, including diet, body mass index, and family history, was limited in our database.

In conclusion, NSAIDs were associated with a decreased risk of gastric cancer with dose- and duration-response relationships among PPI users after H. pylori eradication, without adverse events. NSAIDs may be a candidate for prevention of PPI-related gastric cancer.

Acknowledgments

This study was supported by KAKENHI Grants-in-Aid for Scientific Research (grant numbers 20K08375 [R. Niikura] and 17H05081 [Y. Hayakawa]), P-CREATE from AMED, and the Advanced Research and Development Programs for Medical Innovation (PRIME) (Y. Hayakawa). Y. Hayakawa is also supported by Inoue Science Research Award, Takeda Science Foundation Visionary Research Grant, Uehara Memorial Foundation, Naito Foundation, Daiwa-Shoken health foundation, The Waksman Foundation of Japan, Koyanagi Foundation, The Research Foundation for Pharmaceutical Sciences, Yakult BioScience Foundation, Tokyo Biochemical Research Foundation, The NOVARTIS Foundation (Japan) for the Promotion of Science, SGF foundation, and Daiichi Sankyo Foundation of Life Science. The funding agencies had no role in the design of the study, data collection or analyses, decision to publish, or preparation of the manuscript.

References

1. Fitzmaurice C, Abate D, Abbasi N et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with
disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncology. 2019; 5: 12:1749. http://dx.doi.org/10.1001/jamaoncol.2019.2996.

2 Correa P, Piazuelo MB, Camargo MC. The future of gastric cancer prevention. Gastric Cancer. 2004; 7: 9–16.

3 Lee YC, Chiang TH, Chou CK et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology. 2016; 150: 1113–24.

4 Cheung KS, Chan EW, Wong AYS, Chen L, Wong ICK, Tran-Duy A, Spaetgens B, Hoes AW, de Wit NJ, Stehouwer CD. Use of proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut. 2018; 67: 28–35.

5 Niikura R, Hayakawa Y, Hirata Y, Yamada A, Fujishiro M, Koike K. Long-term proton pump inhibitor use is a risk factor of gastric cancer after treatment for Helicobacter pylori: a retrospective cohort analysis. Gut. 2018; 67: 1908–10.

6 Tran-Duy A, Spaetgens B, Hoes AW, de Wit NJ, Stehouwer CD. Use of proton pump inhibitors and risks of fundic gland polyps and gastric cancer: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2016; 14: 1706–19.

7 Wu CY, Wu MS, Kuo KN, Wang CB, Chen YJ, Lin JT. Effective reduction of gastric cancer risk with regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. J. Clin. Oncol. 2010; 28: 2952–7.

8 Epplein M, Nomura AM, Wilkens LR, Henderson BE, Kolonel LN. Nonsteroidal anti-inflammatory drugs and risk of gastric adenocarcinoma. Am. J. Epidemiol. 2009; 170: 507–14.

9 Charlson ME, Pompei P, Alex KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 1987; 40: 373–83.

10 Sawaoka H, Kawano S, Tsuji S, Tsuji M, Murata H, Hori M. Effects of NSAIDs on proliferation of gastric cancer cells in vitro: possible implication of cyclooxygenase-2 in cancer development. J. Clin. Gastroenterol. 1998; 27: 47–52.

11 Nam KT, Hahn KB, Oh SY et al. The selective cyclooxygenase-2 inhibitor nimesulide prevents Helicobacter pylori-associated gastric cancer development in a mouse model. Clin. Cancer Res. 2004; 10: 8105–13.

12 Yanaka K, Oka M, Yoshimura N et al. Preventive effects of etodolac, a selective cyclooxygenase-2 inhibitor, on cancer development in extensive metaplastic gastritis, a Helicobacter pylori-negative precancerous lesion. Int. J. Cancer. 2010; 126: 1467–73.

13 Jia QH, Subbaramiah S, Richard HH. Role of Helicobacter pylori infection and non-steroidal anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet. 2002; 359: 14–22.

14 Haag MD, Bos MJ, Hofman A, Koudstaal PJ, Breteler MM, Stricker BH. Cyclooxygenase selectivity of nonsteroidal anti-inflammatory drugs and risk of stroke. Arch. Intern. Med. 2008; 168: 1219–24.

15 Hippisley-Cox J, Coupland C. Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis. BMJ. 2005; 330: 1366.

16 Murakami K, Sakurai Y, Shiino M, Funao N, Nishimura A, Asaka M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a Phase III, randomised, double-blind study. Gut. 2016; 65: 1439–46.

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s website:

Figure S1. Cumulative incidence of gastric cancer according to (A) CYP2C19 extensive vs non-extensive metabolizers and (B) CYP2C19 extensive vs intermediate vs poor metabolizers.

Figure S2. Posterior probability of gastric cancer in CYP2C19 intermediate and poor metabolizers using a Bayesian model.

Figure S3. Cumulative incidence of gastric cancer in (A) PPI +NSAID high-dose and low-dose users and PPI-users, (B) PPI +NSAID long-term and short-term users and PPI-users.

Table S2. ICD10 codes of comorbidities.

Table S3. Association between CYP2C19 extensive and non-extensive metabolizers and gastric cancer incidence \((n = 199)\).

Table S4. Associations of gastric cancer incidence with CYP2C19 extensive, intermediate, and poor metabolizers \((n = 199)\).

Table S1. Drug codes.