Hymenoptera fauna, with emphasis on Ichneumonidae from an area of Caatinga in Northeast Brazil

Daniell Rodrigo Rodrigues Fernandes¹, Nicanor Tiago Bueno Antunes¹, Elton Lucio Araujo², Rogéria Inês Rosa Lara³ & Nelson Wanderley Perioto³

1. Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil. 2. Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil. 3. Instituto Biológico, Ribeirão Preto, São Paulo, Brazil.

Abstract. The objectives of this study were to carry out a survey of families of Hymenoptera, with emphasis on Ichneumonidae, in an area of Caatinga, and register the occurrence of new species, if any, for the biome. Samples were taken with Malaise traps between September and November 2008 in a native area of vegetation of Serra do Lima, municipality of Patu, Rio Grande do Norte, Brazil. 7,562 hymenopterans, from 11 superfamilies and 31 families, were collected. The most abundant superfamilies were: Chalcidoidea (2,087 specimens / 33.33% of the total), Platygastroidea (1,572 / 20.87%) and Vespoidea (1,131 / 15.02%) which constituted more than 70% of the captured hymenopterans. A total of 160 specimens of Ichneumonidae from 17 subfamilies were sampled, of which four are new records for Rio Grande do Norte: (Lycorininae, Nesomesochorinae, Phygadeuontinae and Tryphoninae). Altogether, 26 genera were recognized, with 16 new records for the state. Cryptophion espinozai Gauld & Janzen (Campopleginae) and Labena marginata Szépligeti (Labeninae) were registered for the first time in Caatinga. The obtained data demonstrate a considerable diversity of the studied groups in this area and also affirms the necessity of additional studies to establish the richness of this fauna in a more extensive and conclusive way.

Keywords: Biodiversity; Faunistic inventory; Semiarid.

In the order Hymenoptera, there are about 115 thousand described species, but it is estimated that this number can be greater than 250 thousand (Hansson & Gauld 2006). In the Neotropical region, 21 superfamilies and 76 families of Hymenoptera have been found (Fernandez 2006), and 70 families have been cataloged for the Brazilian territory (Penteado-Dias & Braga 2002; Oliveira et al. 2020). Although the fauna of this order is estimated to have about 70 thousand species for Brazil (Meio et al. 2012), only 10,456 species, distributed in 1,610 genera have been registered until now (Oliveira et al. 2020).

Among the families of Hymenoptera, Ichneumonidae is one of the most prominent, as it is one of the largest families in the animal kingdom, with about 25 thousand described species, and an estimate of more than 100 thousand species (Gauld et al. 2002; Yu et al. 2016). In general, Ichneumonidae consists of species of solitary parasitoids; most species with known biology attack larvae and pupae of Lepidoptera, Coleoptera and Hymenoptera (Gauld 1991). Due to their parasitoid habit, ichneumonids have potential importance for the biological control of holometabolic phytophagous insects, which can act as agricultural pests.

The Caatinga biome covers about 10% of the 8,516 thousand km² of Brazilian territory, and is located in the semiarid region of Northeast Brazil. It is the only biome that is exclusively Brazilian, but only 2% of its area is covered for environmental preservation (IBGE 2004; Leal et al. 2005). Despite its extent, knowledge of Hymenoptera biodiversity in this biome is still quite incipient; the diversity of genera and species of this order being known primarily due to the descriptions and reports of the occurrence of Apidae, Braconidae, Bethylidae, Chrysididae, Eulophidae, Eurytomidae, Ichneumonidae, Sclerogibbiidae and Plumeriidae (Zanella 2000; Onody & Penteado-Dias 2002; Penteado-Dias & Scatolini 2003; Fernandez et al. 2012, 2014b, 2014c, 2017; Andenina & Carpenter 2014; Barbosa & Azevedo 2014; Shimbori et al. 2014; Silva 2014; Zanella & Lucena 2014; Bortoni et al. 2016; Lucena et al. 2016; Castro & Penteado-Dias 2017; Fernandez et al. 2019).

The only inventory of Hymenoptera families in Caatinga areas of Rio Grande do Norte (RN) was carried out by Fernandez et al. (2014a), who verified the presence of 36 families. Regarding Ichneumonidae, the little information available for the state is from the lists and descriptions of the species (Aguiar et al. 2013; Santos & Aguiar 2013; Fernandez et al. 2014b; Shimbori et al. 2014). In Brazil, this family is represented by 1,019 species and 233 genera, however, for RN only eight species have been registered so far (Fernandez et al. 2020).

In many areas of Caatinga biome, including mountainous regions and its slopes, which form microclimates within the semiarid environment, there is no information on the diversity of Hymenoptera. The studies carried out in these regions may present taxa, which are still undiscovered, in addition to the ecological importance of the information. Thus, the objectives of this work were to carry out a survey of...
families of Hymenoptera with emphasis on Ichneumonidae, present in an area in Caatinga, located in Serra do Lima, Patu, RN, and record any occurrence of new species in the studied area.

MATERIAL AND METHODS

The studied specimens were collected using two Malaise traps about 100 m apart, installed at Sítio Miranda (6º6’18” S / 37º37’41” W, 248 m above sea level [asl]), in Serra do Lima, municipality of Patu, RN, Brazil. The traps remained active throughout the collection period.

A monthly sampling was carried out for the months of September, October and November 2008 (dry season). Despite being located in the semi-arid region, the average annual temperature in this region is 26.6 ºC, with a relative humidity of 66% and rainfall of 873 mm (EMPARN 2016). During the installation of traps, despite the drought period, some plants had abundant green leaves, especially those situated near water bodies (Figure 1).

Hymenoptera families were identified according to Fernández & Sharkey (2006). Subsequently, the status of superfamily and family nomenclature was updated according to Añgay et al. (2013). For bees, the classification used by Melo & Gonçalves (2005) was maintained, considering all bees as Apidae sensu lato. Subsequently, Ichneumonidae were identified in a subfamily according to Palacio & Wahl (2006), and Gauld (2006). The Cryptinae specimens had their nomenclature updated based on the recent proposal by Santos (2017). Each subfamily was subsequently identified in genera based on specialized literature for each group.

For a preliminary comparison of the sampled material, the richness of families obtained from the two areas of the Caatinga biome was analyzed: Mossoró - RN (5º01’25” S / 37º22’57” W, 59 m asl) (material previously collected by Fernandes et al. 2014a) vs. Patu (present study). For this, a family rarefaction curve was elaborated based on the number of individuals sampled in each study. The rarefaction curves were obtained by the bootstrap process with resampling, to obtain a confidence interval for family richness, similar to that proposed for species by Moreno et al. (2008). Bootstrap analyses were calculated with EstimateS Win9.1 software (Colwell 2013), using 2,000 randomizations and 95% of confidence interval.

The analyzed material was deposited in the Entomological Collection of the Laboratorio de Sistemática e Bioecologia de Parasitoides e Predadores (LRRP) of the Instituto Biológico, Ribeirão Preto, São Paulo, Brazil (NW Perioto, curator).

The distribution map was created using SimpleMappr online software (ShortHouse 2010).

RESULTS

Were obtained 7,562 specimens of Hymenoptera belonging to 11 superfamilies and 31 families (Table 1).

Although the quantity of specimens captured decreased over the sampling time, 2,867 specimens (September), 2,745 (October) and 1,950 (November), the richness remained constant with 27 families. Platygastridae was the most abundant family in all sampled months, with 667 specimens collected in September, 675 in October and 230 in November.

The richness of the families captured in Mossoró - RN (by Fernandes et al. 2014a) was higher than the present study, which can be seen in Figure 2.

In all, 37 families were captured at the studied areas, 30 of them in both localities. Eucharitidae, Leucospidae, Sclerogibbidae, Proctotrupidae, Rhopalosomatidae and Pergidae were collected only in Mossoró and Sphecidae only in Patu.

Figure 1. Collection area at the time of installation of Malaise traps, Serra do Lima, Patu, Rio Grande do Norte, 2008.
Table 1. Number and relative abundance of Hymenoptera collected in an area of Caatinga biome, Serra do Lima, Patu, RN, between September and November 2008.

Superfamily/Family	September	October	November	Total	RF	SRF
Apoidea	95	109	160	364	4.81	-
Apidae (sensu lato)	50	31	93	174	2.30	47.8
Crabronidae	45	77	67	189	2.50	51.9
Sphecidae	0	1	0	1	0.01	0.3
Ceraphronoisea	112	132	32	276	3.65	-
Ceraphronidae	112	132	32	276	3.65	100.0
Chalcidoidea	1214	1064	609	2887	38.18	-
Apheleinidae	167	189	23	379	5.01	13.1
Chalcidae	52	29	90	171	2.26	5.9
Encyrtidae	160	69	77	306	4.05	10.6
Eulophidae	166	147	76	389	5.14	13.5
Eupelmidae	23	20	13	56	0.74	1.9
Eurytomidae	11	16	6	33	0.44	1.1
Mymaridae	237	394	83	714	9.44	24.7
Perilampidae	2	0	1	3	0.04	0.1
Pteromalidae	103	40	75	218	2.88	7.6
Torymidae	1	2	4	7	0.09	0.2
Trichogrammatidae	228	137	131	496	6.56	17.2
Signiphoridae	64	21	30	115	1.52	4.0
Cynipoidea	10	60	3	73	0.97	-
Figitidae	10	60	3	73	0.97	100.0
Chrysidioidea	314	178	242	734	9.71	-
Bethylidae	296	149	212	657	8.69	89.5
Chrysididae	4	7	2	13	0.17	1.8
Drynidae	14	22	28	64	0.85	8.7
Diaprioidea	51	60	36	147	1.94	-
Diapriidae	51	60	36	147	1.94	100.0
Evanoiidea	2	5	8	15	0.20	-
Emaniidae	2	5	8	15	0.20	100.0
Ichneumonoidea	95	220	47	362	4.79	-
Braconidae	79	91	32	202	2.67	55.8
Ichneumonidae	16	129	15	160	2.12	44.2
Platygastroidea	667	675	230	1572	20.79	-
Platygastroidae	667	675	230	1572	20.79	100.0
Vespoidae	307	242	582	1131	14.96	-
Formicidae	162	155	460	777	10.28	68.7
Mutillidae	56	24	37	117	1.55	10.3
Pompiidae	75	37	44	156	2.06	13.8
Tiphidae	2	0	0	2	0.03	0.2
Vespidae	12	26	41	79	1.04	7.0
Tenthredinoidea	0	0	1	1	0.01	-
Argidae	0	0	1	1	0.01	100.0
Total	**2867**	**2745**	**1950**	**7562**		

RF = Relative frequency of Hymenoptera superfamilies and families in comparison to the total samples collected. SRF = Relative frequency of Hymenoptera collected in comparison to the total hymenopterans of the superfamily to which they belong.
The 160 collected specimens of Ichneumonidae belong to 17 subfamilies and 26 genera, of which 16 are new records for RN (Table 2).

Table 2. Ichneumonidae subfamilies and genera collected in an area of Caatinga biome, Serra do Lima, Patu, RN.

Subfamily	Genera
Anomaloninae	Anomalon
Brachycyrtinae	Brachycyrut
Campopleginae	Casinaria
	Charops
	Cryptophion*
	Xanthocampoplex*
Cremastinae	Pristomerus*
	Trathala*
	Xiphosomella*
Cryptinae	Messatoporus*
	Polycyrtidea*
Ichneumoninae	Diacanthurius*
Labeninae	Labena
Lycorininae*	Lycorina*
Meschorinae	Meschorus
Metopinae	Trices*
Nesomeschorinae*	Nonnus*
Ophioninae	Enicospilus
Orthocentrinae	Orthocentrus
Phygadeuontinae*	Isdromas*
Pimplinae	Hymeneopimenes*
	Neotheronia*
	Pimpla
Tersilochinae	Allophrys*
Tryphoninae*	Netelia*

* First record in Rio Grande do Norte.

DISCUSSION

Seventy families of Hymenoptera have been registered for Brazil so far (Penteado-Dias & Braga 2002; Oliveira et al. 2020), however, for RN only 38 families have been registered (Penteado-Dias & Scatolini 2003; Fernandes et al. 2014a; Costa et al. 2016).

Six families sampled in this study do not have parasitoid habits: Apidae sensu lato (some have kleptoparasitic habits), Crabronidae (predators, with some kleptoparasitic species), Formicidae (predators, mycophages, etc.), Vespidae (predators), Sphecidae (predators, with some ectoparasitoid species) and Argidae (phytophagous).

Of the most abundant superfamilies, Aguiar et al. (2013) reported the existence of approximately 23 thousand species of Chalcidoidea in the world however, this group is still relatively less studied. Approximately 12 thousand species of insects are registered as their hosts which demonstrates the huge potential for parasitism and its importance as a factor of biotic mortality in different environments. Grisell & Schaufl (1997) pointed out that groups of insects belonging to Chalcidoidea have great diverse biological habits, with at least 14 different life strategies, including mainly solitary, gregarious, hyperparasitoid and polyembryonic habits.

As for Platygastroidea, the superfamily is composed only of Platygastroidei [in the classification adopted in the present study, Aguiar et al. (2013)] however, in most inventories, it is still common to be divided into Platygastroidea and Scelionidae (traditional classification).

Despite their abundance, and being frequently sampled, it is important to point out that the majority of Hymenoptera surveys carried out in Brazil have not taken into account the specimens of Vespoidea, Apoidea and Symphyta. The data obtained indicate that the diversity of Caatinga biome has not yet been studied for these groups, therefore further studies regarding the fauna of Hymenoptera are necessary in this region, and a deeper study of the already collected material, identification of genera and species are necessary as well.

Regarding the habits, 26 families of parasitoid hymenopterans sampled in this study is similar to that reported by Fernandes et al. (2014a). This number is also similar to those found in other biomes in Brazil, such as in the Atlantic Forest of Espírito Santo and São Paulo (Azevedo et al. 2002; Perotto & Lara 2003, respectively), in the Amazon Rainforest of Amazonas (Fetosa...
et al. 2007) and in the Cerrado of São Paulo and Minas Gerais (Perioto et al. 2008; Pádua & Zampieron 2012, respectively).

Some long-term sampling in the same collection area proved to be effective for capturing uncommon Hymenoptera families in the surveys with Malaise traps, such as Chrysididae, Dryinidae, Monomachidae, Pelecinidae and Sclerogibbidae (Lucena et al. 2012; Lara & Perioto 2014; Versuti et al. 2014; Perioto et al. 2016; Fernandes et al. 2017).

For the Ichneumonidae fauna, 14 subfamilies and 13 genera were previously registered for the Caatinga biome in RN (Shimbori et al. 2014). Thus, four subfamilies are registered for the first time in this biome for the state of RN (Lycorininae, Nesomesochorinae, Phygadeuontinae and Tryphoninae).

As for the genera, Cryptophion, Xanthocampoplex (Campopleginae), Pristomerus, Trathala, Xiphosomella (Cremastinae), Polycyrtidea (Cryptinae), Diahantharius (Ichneumoninae), Lycorina (Lycorininae), Trices (Metopiinae), Nonnus (Nesomesochorinae), Isdromas (Phygadeuontinae), Hymeneopimecis, Neotheronia and Zaglyptus (Pimplinae), Allophys (Tersilochinae) and Netelia (Tryphoninae) are registered for the first time in the state of RN. With the exception of Lycorina, Neotheronia, Netelia, Nonnus, Trathala, Xanthocampoplex and Xiphosomella that have already been associated with the Caatinga biome (Shimbori et al. 2014; Fernandes et al. 2019); the other genera mentioned above are also associated with this biome for the first time.

Thus, from these results, 18 subfamilies and 30 genera were registered in the Caatinga biome, specifically in the state of RN. After adding these results with those of Shimbori et al. (2014) and Fernandes et al. (2019), the Caatinga biome as a whole represents 18 subfamilies and 47 genera. Thus, it is essential to develop more studies in this biome to know the diversity of this group of insects in this environment that is still little explored.

ACKNOWLEDGEMENTS

We thank CES Bezerra and MG de Souza for their assistance in installing the traps, as well as Mr Afonso (in memorian) for the release of the collection area of Sitio Miranda, and BF dos Santos and DG Pádua, for their assistance in the identification of Cryptinae and Pimplinae, respectively. We also thank CAPES for the postdoctoral fellowship received by

Figure 3. Distribution map of Cryptophion espinozai Gauld & Janzen in Brazil. New record (green) and previous records (red).
the first author (PNPD / CAPES). We would also like to thank the National Institute of Science and Technology of Hymenoptera Parasitoids in the Southeast of Brazil (HYPEP / Southeast - CNPq / FAPESP / CAPES).

REFERENCES

Aguiair, AP, AR Deans, MS Engel, M Forshage, JT Huber, JT Jenning, NF Johnson, AS Lelej, JT Longino, V Lohrmann, I Mikó, M Ohi, C Rasmussen, A Taeger & DSK Yu, 2013. Order Hymenoptera. Zootaxa, 3703: 1-82. DOI: https://doi.org/10.11646/zootaxa.3703.1.12

Andena, SR & JM Carpenter, 2014. Checklist das espécies de Polistinae (Hymenoptera, Vespidae) do semiárido brasileiro, pp 169-180. In: Bravo, F & A. Colar (Ed.). Artrópodes do semiárido: biodiversidade e conservação. Feira de Santana: Print Midia.

Azevedo CO, A Dal Molin, AM Penteado-Dias, ACC Macedo, B Rodrigues, BZK Dias, C Wachter, D Aquino, DR Smiths, EM Shimbori, FB Noll, G Gibson, HC Onody, JM Carpenter, JE Lattke, KS Ramos, K Williams, L Masner, L Kimsey, M Tavares, M Olmi, ML Buffington, M Ohi, M Sharkey, NF Johnson, R Kawada, RB Gonçalves, RM Feitosa, S Heydon, TM Guerra, TSR Silva & V Costa, 2015. Checklist of the genera of Hymenoptera (Insecta) from Espírito Santo state, Brazil. Boletim do Museu de Biologia Mello Leitão, 37: 313-343.

Azevedo, CO, R. Kawada, MT Tavares & NW Perioto, 2002. Perfil da fauna de himenópteros parasitóides (Insecta, Hymenoptera) em uma área de Mata Atlântica do Parque Estadual da Fonte Grande, Vitória, ES, Brasil. Revista Brasileira de Entomologia, 46: 133-137, DOI: https://doi.org/10.1590/S0100-56262002000200005

Barbosa, DN & CO Azevedo, 2016. Revision of the Neotropical Laelius (Hymenoptera: Bethylidae) with notes on some Nearctic species. Zoologia, 31: 285-311. DOI: https://doi.org/10.1590/S1984-46702014000300012

Bortoni, MA, CS Souza-Gessner & AM Penteado-Dias, 2016. The subfamily Mendesellinae (Hymenoptera: Braconidae) in Brazil, with the description of six new species. Zootaxa, 4200: 406-416. DOI: https://doi.org/10.11646/zootaxa.4200.3.6

Castro, CS & AM Penteado-Dias, 2017. New species of Heredius Marsh 2002 (Hymenoptera: Braconidae: Doryctinae) from Caatinga Biome, Brazil, with an identification key for seven species. Entomotropica, 46: 205-409. DOI: https://doi.org/10.3157/212.6.059

Colwell, R, 2013. EstimateS: statistical estimation of species richness and shared species from samples. Versão 9.1, Available in: http://viceroy.eeb.uconn.edu/estimates/.

Costa, EM, EL Araujo, DRR Fernandes, PF Silva & R. Sales Junior, 2016. Diversidade e métodos de amostragem de Hymenoptera na cultura da melancia no semiárido do Rio Grande do Norte. Horticultura Brasileira, 34: 257-264, 2016. DOI: https://doi.org/10.1590/S0100-56262016000300217

EMPARN, 2016. Empresa de Pesquisa Agropecuária do Rio Grande do Norte. Available in: http://www.emparn. m.gov.br/.

Feitosa, MFB, RB Querino & AL Henriques, 2007.Perfil da fauna de vespas parasitóides (Insecta: Hymenoptera) em reserva florestal na Amazônia, Amazonas, Brasil. Entomotropica, 22: 37-43.

Fernandes, DRR, BF Santos, DG Pádua, RO Araujo, 2020. Ichneumonidae in Catálogo Taxonômico da Fauna do Brasil. PNUD. Available in: http://fauna.ibig-bij.org.br/fauna/ faunadobrazi/2248/. [Accessed on: 29.ii.2020].

Fernandes, DRR, HC Onody, RIR Lara & NW Perioto, 2014b. Annotated checklist of Brazilian Ophioninae (Hymenoptera: Ichneumonidae). Entomobresilis, 7: 124-133. DOI: https://doi.org/10.12741/ebrasilis.v7i2.330

Fernandes, DRR, JA Guimarães, EL Araujo, RIR Lara & NW Perioto, 2014a. Survey of the Hymenoptera fauna in a “Caatinga” area in the State of Rio Grande do Norte, Northeastern Brazil. Entomobresilis, 7: 211-215. DOI: https://doi.org/10.12741/ebrasilis.v7i3.453

Fernandes, DRR, JJM Santos, RIR Lara, JC Silva Junior, HA Ferreira & NW Perioto, 2019. Fauna de Ichneumonidae (Hymenoptera: Ichneumonioidea) em áreas de Caatinga do Sudoeste da Bahia, Brasil. Entomobresilis, 12: 126-131. DOI: https://doi.org/10.12741/ebrasilis.v12i3.837

Fernandes, DRR, K Schoeninger, RIR Lara & NW Perioto, 2014c. Henyana magnifica Yoshimoto (Hymenoptera: Eulophidae) in Brazil: new records for the Amazon Rainforest and Brazilian Dry Forest. Entomobresilis, 7: 241-243, 2014c. DOI: https://doi.org/10.12741/ebrasilis.v7i3.446

Fernandes, DRR, RIR Lara & NW Perioto, 2012. A new species of Symbra (Hymenoptera, Eurytomidae, Heimbrinae) from dry forest in Brazil and new occurrence records for other Heimbrinae. Revista Brasileira de Entomologia, 56: 415-418. DOI: https://doi.org/10.1590/S0085-56262012000400004

Fernandes, DRR, FP Alves, EM Shimbori, RIR Lara, JC Silva Junior & NW Perioto, 2017. New distribution records of Sclerogibbidae (Hymenoptera: Chrysidioidea) in Brazil. Entomobresilis, 10: 33-36. DOI: https://doi.org/10.12741/ ebrasilis.v10i1.658

Fernández, F & MJ Sharkey, 2006. Introducción a los Hymenoptera de la Región Neotropical. Bogotá: Sociedad Colombiana de Entomología y Universidad Nacional de Colombia. Fernández, F, 2006. Sistemática de los himenópteros de la Región Neotropical: estado del conocimiento y perspectivas, pp 7-35. In: Fernández, F. & MJ Sharkey (Ed.). Introducción a los Hymenoptera de la región Neotropical. Bogotá: Sociedad Colombiana de Entomología y Universidad Nacional de Colombia.

Gauld, ID, 1991. The Ichneumonidae of Costa Rica, 1. Memoirs of the American Entomological Institute, 47: 1-589.

Gauld, ID & DH Janzen, 1994. The classification, evolution and biology of the Costa Rican species of Cryptophion (Hymenoptera: Ichneumonidae). Zoological Journal of the Linnean Society, 110: 297-324. DOI: https://doi.org/10.1111/j.1096-3642.1994.tb01477.x

Gauld, ID, 2006. Family Ichneumonidae. Memoirs of the American Entomological Institute, 77: 446-487.

Gauld, ID, R Sithole, JU Gómez & C Godoy, 2002. The Ichneumonidae of Costa Rica, 4. Memoirs of the American Entomological Institute, 66: 1-768.

Grissell, EE & ME Schaufl, 1997. A handbook of the families of Nearctic Chalcidoidea (Hymenoptera). Washington: The American Entomological Institute, 66: 1-768.

Hanson, PE & ID Gauld, 2006. Introduction to the Memoirs of the American Entomological Institute, 77: 1-11.

IBGE (Instituto Brasileiro de Geografia e Estatística). 2004. Mapa de biomas e de vegetação. Available in: http://www.ibge. gov.br/home/presidencia/noticias/21052004biomashtml.shtml. [Accessed on: 09.iv.2018].

Lara, RIR & NW Perioto, 2014. Seasonality of Pelecinus polyturator (Drury) (Hymenoptera, Pelenicidae) in the Atlantic Rainforest of São Paulo state, Brazil. Revista Brasileira de Entomologia, 58: 63-65. DOI: https://doi.org/10.1590/S0085-56262014000100010

Leal, IR, M Tabarelli & JMC Silva, 2005. Ecologia e conservação da Caatinga: uma introdução ao desafio, pp XII-XVI. In: Leal, IR, M Tabarelli & JMC Silva (Ed.). Ecologia e conservação da Caatinga. 2ed. Recife: Editora Universitária da UFPE.

Lucena, DAA, LS Kimsey & EAB Almeida, 2016. The Neotropical cuckoo wasp genus Ipsirua Linsenmaier, 1959 (Hymenoptera: Chrysididae): revision of the species occurring in Brazil. Zootaxa, 4165: 1-71. DOI: https://doi.org/10.11646/zootaxa.4165.1.1

Lucena, DAA, PE Santos Neto, FCV Zanella, FP Alves, OSN
Trindade & JC Silva Junior, 2012. Chrysididae diversity (Hymenoptera) in caatinga vegetation in Jequié, Bahia state, Northeastern Brazil. Magistra, 24: 215-220.

Melo, GAR & RB Gonçalves, 2005. Higher-level bee classifications (Hymenoptera, Apoidea, Apidae sensu lato). Revista Brasileira de Zoologia, 22: 153-159. DOI: https://doi.org/10.1590/s0101-81752005000100017

Melo, GAR, AP Aguiar & B Garce-Butter, 2012. Hymenoptera Linnaeus, 1758, pp 553-612. In: Rafael, JÁ, GAR Melo, JCB Carvalho, S Casari, R Constantin (Ed.). Insetos do Brasil: diversidade e taxonomia. Ribeirão Preto: Holos Editora.

Moreno, CC Rubia, GA Sánchez- Rojas, D Téllez & JR Verdúc, 2008. Community level patterns in diverse systems: a case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods. Acta Oecologica, 33: 73-84. DOI: https://doi.org/10.1016/j.actao.2007.09.002

Oliveira, ML, DRR Fernandes, TM Alvarenga, SR Andena, RO Araujo, CO Azevedo, DN Barbosa, PR Bartholomay, VA Costa, A Dalmolin, IO Fernandes, SS Gadelha, F Gallardo, MG Hermes, CEL Justino, R Kawada, A Kohler, RIR Lara, DAA Lucena, DR Luz, A Macedo, C Margarita, BG Oliveira, DG Pádua, NW Perioto, TG Pikart, RB Querino, BB Rosa, BF Santos, EF Santos, K Schoening, DR Smith, A Somavilla, MT Tavares, FCV Zanella, K Zilch, 2020. Hymenoptera in Catálogo Taxonômico da Fauna do Brasil. PNUD, 2020. Available in: <http://fauna.jbrj.gov.br/fauna/faunadobrasil/96>. [Accessed on: 01.12.2020].

Onody, HC & AM Penteado-Dias, 2002. Ocorrência dos Ophioniniae (Hymenoptera: Ichneumonidae) em área de Caatinga, Rio Grande do Norte, Brasil. Arquivos do Instituto Biológico, 69: 241-242.

Onody, HC, DL Saldanho & AM Penteado-Dias, 2013. First record and range extensions of Cryptophion Viereck, 1913 (Hymenoptera: Ichneumonidae) species in the Southeast region of Brazil. Check List, 9: 653-654. DOI: https://doi.org/10.15560/9.3.653

Pádua, DG & SLM Zampieron, 2012. Inventário da fauna de Hymenoptera parasitóides coletados com redes de varredura em um fragmento da Serra da Babilônia, no Sudeste do estado de Minas Gerais. EntomoBrasilis, 13: e0874.

Palacio, EE & DB Wahl, 2006. Family Ichneumonidae, pp 293-330. In: Fernández, F & MJ Sharkey (Ed.). Introducción a los Hymenóptero (Hymenoptera, Apoidea, Apidae lato) from Atlantic rainforests in Sao Paulo State, Brazil. Revista Colombiana de Entomología, 42: 171-175. https://doi.org/10.25100/socolen.v42i2.6688

Santos, BF & AP Aguiar, 2013. Phylogeny and revision of Mesastoropus Cushman (Hymenoptera, Ichneumonidae, Cryptinae), with descriptions of sixty-five new species. Zootaxa, 3634: 001-284. DOI: https://doi.org/10.11646/zootaxa.3634.1.1

Santos, BF, 2017. Phylogeny and reclassification of Cryptini (Hymenoptera, Ichneumonidae, Cryptinae), with implications for ichneumonid higher-level classification. Systematic Entomology, 42: 650-676. DOI: https://doi.org/10.1111/syen.12238

Shimbori, EM, APS Loffredo, CS Castro, MA Bortoni & AM Penteado-Dias, 2014. Contribuição ao conhecimento da fauna de Ichneumonoidea (Hymenoptera) do semiárido brasileiro, pp 139-152. In: Bravo, F & A Calor (Ed.). Artrópodes do semiárido: biodiversidade e conservação. Feira de Santana: Print Mídia.

Shimbori, EM, HC Onody, DRR Fernandes, R Silvestre, MT Tavares & AM Penteado-Dias, 2017. Hymenoptera “Parasitica” in the state of Mato Grosso do Sul, Brazil. Iheringia, Série Zoologia, 107: e2017121. DOI: https://doi.org/10.1590/1678-4766/e2017121

Shorthouse, DP, 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available in: <http://www.simplemappr.net>.

Silva, EM, 2014. Lista de espécies de Apidae (Hymenoptera) do semiárido com base na literatura especializada, pp 181-202. In: Bravo, F & A Calor (Ed.). Artrópodes do semiárido: biodiversidade e conservação. Feira de Santana: Print Mídia.

Szepligeti, G, 1914. Ichneumoniden aus der Sammlung des ungarischen National-Museums. Annales Musei Nationalis Hungarici, 12: 414-434.

Versuti, DR, DCC Paz, RIR Lara, DRR Fernandes & NW Perioto, 2014. Comparative abundance and diversity of Dryininae (Hymenoptera, Dryinidae) in three savannah phytophysiognomies in southeastern Brazil, under three sampling methods. Revista Brasileira de Entomologia, 58: 273-279. DOI: https://doi.org/10.11646/zootaxa.5626201400030008

Yu, DS, C Van Achterberg & K Horstmann, 2016. World Ichneumonoidea 2015. Ottawa, Taxapad. Database on flash-drive.

Zanello, FCV & DAA Lucena, 2014. Chrysididae (Hymenoptera) in caatinga vegetation in Jequié, Bahia. Magistra, 24: 215-220.

Zanella, FCV, 2000. The bees of the Caatinga (Hymenoptera, Apoidea, Apidae) from Atlantic rainforests in Sao Paulo State, Brazil. Revista Colombiana de Entomología, 42: 171-175. https://doi.org/10.25100/socolen.v42i2.6688

Zanella, FCV & DAA Lucena, 2014. Chrysididae (Hymenoptera) from Atlantic rainforests in São Paulo State, Brazil. Revista Colombiana de Entomología, 42: 171-175. https://doi.org/10.25100/socolen.v42i2.6688

Zanella, FCV, DAA Lucena, S Zhao, Sjustud C, JH Leite, LW Carvalho, C Margarita, BG Oliveira, DG Pádua, NW Perioto, TG Pikart, RB Querino, BB Rosa, BF Santos, EF Santos, K Schoening, DR Smith, A Somavilla, MT Tavares, FCV Zanella, K Zilch, 2020. Hymenoptera in Catálogo Taxonômico da Fauna do Brasil. PNUD, 2020. Available in: <http://fauna.jbrj.gov.br/fauna/faunadobrasil/96>. [Accessed on: 01.12.2020].

Zanella, FCV, DAA Lucena, S Zhao, Sjustud C, JH Leite, LW Carvalho, C Margarita, BG Oliveira, DG Pádua, NW Perioto, TG Pikart, RB Querino, BB Rosa, BF Santos, EF Santos, K Schoening, DR Smith, A Somavilla, MT Tavares, FCV Zanella, K Zilch, 2020. Hymenoptera in Catálogo Taxonômico da Fauna do Brasil. PNUD, 2020. Available in: <http://fauna.jbrj.gov.br/fauna/faunadobrasil/96>. [Accessed on: 01.12.2020].

Zanella, FCV, DAA Lucena, S Zhao, Sjustud C, JH Leite, LW Carvalho, C Margarita, BG Oliveira, DG Pádua, NW Perioto, TG Pikart, RB Querino, BB Rosa, BF Santos, EF Santos, K Schoening, DR Smith, A Somavilla, MT Tavares, FCV Zanella, K Zilch, 2020. Hymenoptera in Catálogo Taxonômico da Fauna do Brasil. PNUD, 2020. Available in: <http://fauna.jbrj.gov.br/fauna/faunadobrasil/96>. [Accessed on: 01.12.2020].