TECHNICAL NOTE

13C MR Imaging of Methionine-rich Gliomas at 4.7T: A Pilot Study

Akira SASAO1*, Toshinori HIRAI1, Norio IRIGUCHI4, Hideo NAKAMURA2, Mareina KUDO2, Ako SASAO3, and Yasuyuki YAMASHITA1

Departments of 1Diagnostic Radiology, 2Neurosurgery, and 3Forensic Medicine, Graduate School of Medical Sciences, and 4Division of Multimedia Information Processing Center, Kumamoto University

1–1–1 Honjo, Kumamoto 860–8556, Japan
(Received June 10, 2010; Accepted February 2, 2011)

We explored the feasibility of using carbon–13 (13C) magnetic resonance imaging (13C-MRI) to depict 13C-labeled methionine-enriched gliomas at 4.7 tesla. We transplanted 2 types of glioma cells separately to 2 subcutaneous tissue sites on the backs of mice weighing 15 to 20 g. After confirming tumor growth, we used 13C-MRI and 1H-MRI to scan 4 mice that had been administered 13C-labeled methionine and 2 control mice. 13C-MRI of all 4 transplanted mice administered with 13C-labeled methionine revealed 2 areas of hyperintensity that corresponded to the tumor sites on 1H-MR images, but no such areas were visualized in transplanted controls. Our data suggest that 13C-MRI can show the accumulation of 13C-labeled tracer by gliomas.

Keywords: 13C-MRI, glioma, high-field MRI

Introduction

Carbon–13 (13C) magnetic resonance imaging (13C-MRI) is expected to facilitate molecular imaging study of biologically important materials. However, the clinical use of 13C-MRI has been limited by the low natural abundance of 13C (1.1%) and its low magnetogyric ratio (the γ of 13C is 25% that of protons [1H]).

Approaches to improve the sensitivity of 13C-MRI have involved proton decoupling and the use of 13C-labeled metabolic substrates.1 The major safety limitation in human 1H decoupled 13C-MRI is the specific absorption rate (SAR) of tissue exposed to 1H frequency irradiation.2 Replacing the 12C (98.9% natural abundance) with the 13C isotope at a specific carbon in a metabolic substrate does not affect its biochemistry. In cells, animals, and humans, the uptake of 13C-labeled substrate and the incorporation of 13C into metabolites can be monitored without interference from background signals.

Methionine positron emission tomography (MetPET) has gained wide acceptance for its high sensitivity in evaluating malignancy grade, tumor extent, tumor progression, and differential diagnosis of gliomas.3–6 After delivery of 13C-labeled methionine to living organisms harboring tumors, 13C-MRI may depict uptake of methionine by tumor metabolites without interference from background signals, but such depiction remains to be investigated. We explored the feasibility of using 13C-MRI to depict gliomas enriched with 13C-labeled methionine at 4.7 tesla.

Material and Methods

MR unit

All experiments were performed using a 4.7T UNITY INOVA MR spectrometer (Varian Associates Inc., Palo Alto, CA, USA). The magnet system was a JASTEC Horizontal NMR magnet (Japan Superconductor Technology Inc., Japan) with a 33-cm horizontal bore. The unit’s 13C frequency was 50.4 MHz, and 1H frequency, 200.6 MHz. The probe was a 3-turn circular surface coil of one-inch diameter that could be tuned to either 13C or 1H frequency. The coil system was mounted on a plastic cradle that contained a mouse placed in the lateral decubitus position (Fig. 1).

Animal preparation

The University Center for Animal Resources and...
Development approved the animal study protocol. We raised 6 male mice with severe combined immune deficiency (SCID) to 6 weeks of age (weight 15 to 20 g) and transplanted each mouse with 2 types of glioma cells, U373 and U87MG, at 2 different subcutaneous tissue sites on the back (Fig. 2). In in vitro culture, U87MG cells divided faster than U373 cells. After we confirmed growth of both subcutaneous tumors to greater than 5 mm in maximum diameter by palpation and inspection, we divided the mice into 3 groups of two each. We injected the first (control) group intraperitoneally (i.p.) with 1 mL of saline and the second group with 10 mg of methyl-13C labeled methionine (Cambridge Isotope Laboratories Inc., USA) dissolved in 1 mL saline; the third group received the same dose of 13C-labeled methionine i.p. once a day for 6 consecutive days. All mice were sacrificed by cervical dislocation one hr after the last injection and immediately cryopreserved at \(-80^\circ\text{C}\) until MR imaging study.

13C-MRI acquisition

We defrosted the mice to room temperature. We used a spin echo sequence with 300 µs Gaussian pulses, diagrammed in Fig. 3; slice selection gradient magnetic field, 0.072 Gauss/cm for 90° pulse and 0.036 Gauss/cm for 180° pulse; field of view (FOV), 10×10 cm; 64 phase-encoding steps (0.078 Gauss/cm each step); 256 read-out gradient magnetic field (4.089 Gauss/cm, 3 ms); echo time (TE),

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Diagram of the spin echo sequence}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{The third group of mice, treated 6 times with 13C-labeled methionine. (a) Two types of glioma cells, U87MG (tumor 1) and U373 (tumor 2), were separately transplanted to 2 subcutaneous tissue sites (circles) on the back of each mouse. (b) 1H-MR image shows 2 areas of marked hyperintensity (arrows) in the area of tumor transplantation. (c) 13C-MR image reveals 2 hyperintense areas (arrows) that appear to coincide with the tumor sites. The more cranial (U373) of the 2 implants showed lower signal, possibly as a result of cell activity of the tumors.}
\end{figure}
7.8 ms; repetition time (TR), 200 ms; and 128 acquisitions. Acquisition time was approximately 27 min. We did not use a proton decoupling pulse in this sequence.

1H-MRI acquisition

Without moving the mice, we scanned them in a plastic cradle using a spin-echo sequence with 1600 μs Gaussian pulses and the same pulse sequence as for 13C-MRI. Parameters were: slice selection gradient magnetic field, 0.906 Gauss/cm with 90° pulse and 0.453 Gauss/cm with 180° pulse; FOV, 10 × 10 cm; 64 phase-encoding steps (0.019 Gauss/cm each step); 256 read-out gradient magnetic field (0.807 Gauss/cm, 4 ms); TE, 11 ms; TR, 1000 ms; and one acquisition. Acquisition time was approximately one minute.

Evaluations

By consensus, one radiologist and one toxicologist evaluated the safety of the administered 13C-labeled material based on the behavior and lifespan or death of the injected mice.

By consensus, 2 radiologists evaluated the location of the 2 transplanted tumors on 1H-MR images and the presence and number of hyperintense areas in the region of the transplanted tumors on 13C-MR images.

Results

None of the 4 tumor-bearing mice with i.p. infusion of 13C-labeled methionine manifested acute intoxication or died.

1H-MR images showed 2 markedly hyperintense areas in the region of tumor transplantation in all 6 mice (Fig. 2). 13C-MR images of the 2 control mice demonstrated a weak signal presumed to correspond to subcutaneous fat seen on 1H-MRI. 13C-MRI images of each of the 4 mice in the second and third groups revealed 2 hyperintense areas that corresponded to the tumors on 1H-MRI and much lower signal for the more cranial of the 2 implants (Fig. 2). Visual assessment indicated slightly higher signal intensity for the third group than the second.

Discussion

Although subcutaneous fat was depicted as a weak signal on 13C-MRI in control mice, we could identify 2 definite areas of hyperintensity in the regions of glioma cell transplantation in all mice injected with 13C-labeled methionine. Thus, methyl-13C labeled methionine accumulated in the glioma cells was visualized on 13C-MRI. We attribute the good visualization to stronger signal from methyl-13C-labeled methionine accumulated in glioma cells than from subcutaneous fat; probable absence of chemical shift of 13C in methyl-13C-labeled methionine because the methyl base including 13C does not take part in the peptide bond in the protein synthesis after uptake into tumor cells; and high signal-to-noise ratio of 13C-labeled methionine that facilitated signal detection on the 4.7T scanner.

The more cranial of the 2 implants consistently showed much lower signal. In *in vitro* culture, cell division of the more cranial tumor (U373) was slower than that of the more caudal tumor (U87MG). Cell activity of the tumors may have affected tracer uptake in our study.

The appropriate dose of 13C-labeled compounds for visualizing their metabolism on 13C-MRI remains to be determined. We expected more intense signals in our group receiving 6 i.p. injections of 13C-labeled methionine than the group with single injection (10 mg), and results were near the expectation, with a slight signal difference between the 2 groups. There may have been an accumulation effect of methionine on the gliomas, with administration route, i.e. intraperitoneal, intravenous, or peroral delivery affecting the dose of 13C-labeled compounds accumulating in tumors. Studies that deliver 13C-labeled compounds via different routes are necessary to address this issue. Use of a higher magnetic field, such as 7T, would facilitate signal detection and might reduce the administrative dose of 13C-labeled compounds.

Unlike positron emission tomography (PET), 13C-MRI does not raise concerns with respect to ionizing radiation, radioactive isotopes, or short tracer half-life. Manufacture of a sophisticated head coil for human 13C-MRI lends promise for diagnostic use of 13C MRI using 13C-labeled substrates in some clinical settings, such as for glioma grading, diagnosis of malignant progression in glioma, and differential diagnosis of brain tumors. Further studies are required to clarify the clinical usefulness of this technique. In our study, we experienced no instance of acute intoxication or death after 13C-labeled methionine administration, and various 13C-labeled substrates have been applied to humans with no side effects reported.3-10 Though initial costs of synthesizing 13C-labeled metabolic substrates are high, their increased production will lower their cost, as was the case for D-glucose-13C6.

Our study has some limitations. First, the animals were imaged *ex vivo*. We sacrificed, cryo-preserved, and defrosted all mice before MR imaging study, a process that may affect biological condition but that preserves 13C-labeled methionine ac-
cumulated in the glioma cells. Therefore, we presumed that increased signal in the mice reflected accumulation of the 13C-labeled substance in the glioma cells. Although questions remain about visualization in vivo, this pilot feasibility study proved that 13C-MR imaging can depict 13C-labeled methionine-enriched gliomas at 4.7T. Further 13C-MR imaging studies are needed to clarify visualization in vivo. Second, we performed only qualitative image analysis, and a quantitative approach that would measure cellular density or other biological parameters would be more useful. Third, we directly compared the images on 13C-MRI and 1H-MRI, and more accurate integration of functional and anatomic information might be expected from image fusion of 13C- and proton signals.

Conclusion

Our pilot study suggests that 13C-MRI using an MR unit with high magnetic field can demonstrate the accumulation of 13C-labeled substance by gliomas.

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science (KAKENHI 19659312 and 20890173).

References

1. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 2008; 49:341–344.
2. van den Bergh AJ, van den Boogert HJ, Heerschap A. Calibration of the 1H decoupling field strength and experimental evaluation of the specific RF absorption rate in 1H-decoupled human 13C-MRS. Magn Reson Med 1998; 39:642–646.
3. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993; 186:45–53.
4. Herholz K, Hölzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50:1316–1322.
5. Ullrich RT, Kracht L, Brunn A, et al. Methyl-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 2009; 50:1962–1968.
6. Galldiks N, Kracht LW, Berthold F, et al. $[11$C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 2010; 96:231–239.
7. Klomp DW, Renema WK, van der Graaf M, de Galan BE, Kentgens AP, Heerschap A. Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla. Magn Reson Med 2006; 55:271–278.
8. Graham DY, Klein PD. Accurate diagnosis of *Helicobacter pylori*. 13C-urea breath test. Gastroenterol Clin North Am 2000; 29:885–893, x.
9. Giannini EG, Fasoli A, Borro P, et al. 13C-galactose breath test and 13C-aminopyrine breath test for the study of liver function in chronic liver disease. Clin Gastroenterol Hepatol 2005; 3:279–285.
10. Nakamura H, Morifuji M, Murakami Y, et al. Usefulness of a 13C-labeled mixed triglyceride breath test for assessing pancreatic exocrine function after pancreatic surgery. Surgery 2009; 145: 168–175.