Tight Bounds on the Optimization Time of the (1+1) EA on Linear Functions

Carsten Witt
DTU Informatics, Technical University of Denmark

December 16, 2011

Abstract

The analysis of randomized search heuristics on classes of functions is fundamental for the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of the simple (1+1) EA on the class of linear functions. We improve the best known bound in this setting from $(1.39 + o(1))en \ln n$ to $en \ln n + O(n)$ in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutations probabilities p are derived, which imply expected polynomial optimization time as long as $p = O((\ln n)/n)$ and which are tight if $p = c/n$ for a constant c. As a consequence, the standard mutation probability $p = 1/n$ is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. The proofs are based on adaptive drift functions and the recent multiplicative drift theorem.

1 Introduction

The rigorous runtime analysis of randomized search heuristics, in particular of evolutionary computation, is a growing research area where many results have been obtained in recent years. This line of research started off in the early 1990’s [Mühlenbein, 1992] with the consideration of very simple evolutionary algorithms such as the well-known (1+1) EA on very simple example functions such as the well-known OneMax function. Later on, results regarding the runtime on classes of functions were derived (e.g. Droste, Jansen, and Wegener, 2002; He and Yao, 2001; Wegener and Witt, 2005a,b) and important tools for the analysis were developed. Nowadays the state of the art in the field allows for the analysis of different types of search heuristics on problems from combinatorial optimization [Neumann and Witt, 2010].
Recently, the analysis of evolutionary algorithms on linear pseudo-boolean functions has experienced a great renaissance. The first proof that the (1+1) EA optimizes any linear function in expected time $O(n \log n)$ by Droste, Jansen and Wegener (2002) was highly technical since it did not yet explicitly use the analytic framework of drift analysis (Hajek, 1982), which allowed for a considerably simplified proof of the $O(n \log n)$ bound, see He and Yao (2004) for the first complete proof using the method. Another major improvement was made by Jägersküpper (2008), who for the first time stated bounds on the implicit constant hidden in the $O(n \log n)$ term. This constant was finally improved by Doerr, Johannsen, and Winzen (2010a) to the bound $(1.39 + o(1))en \ln n$, using a clean framework for the analysis of multiplicative drift (Doerr, Johannsen, and Winzen, 2010b). The best known lower bound for general linear functions with non-zero weights is $en \ln n - O(n)$ and was also proven by Doerr, Johannsen and Winzen (2010a), building upon the case of the OneMax function analyzed by Doerr, Fouz, and Witt (2010, 2011).

The standard (1+1) EA flips each bit with probability $p = 1/n$ but also different values for the mutation probability p have been studied in the literature. Recently, it has been proved by Doerr and Goldberg (2011) that the $O(n \log n)$ bound on the expected optimization time of the (1+1) EA still holds (also with high probability) if $p = c/n$ for an arbitrary constant c. This result uses the multiplicative drift framework mentioned above and a drift function being cleverly tailored towards the particular linear function. However, the analysis is also highly technical and does not yield explicit constants in the O-term. For $p = \omega(1/n)$, no runtime analyses were known so far.

In this paper, we prove that the (1+1) EA optimizes all linear functions in expected time $en \ln n + O(n)$, thereby closing the gap between the upper and the lower bound up to terms of lower order. Moreover, we show a general upper bound depending on the mutation probability p, which implies that the expected optimization time is polynomial as long as $p = O((\ln n)/n)$ (and $p = \Omega(1/poly(n))$). Since the expected optimization time is proved to be superpolynomial for $p = \omega((\ln n)/n)$, this implies a phase transition in the regime $\Theta((\ln n)/n)$. If the mutation probability is c/n for some constant c, the expected optimization time is proved to be $(1 \pm o(1))c n \ln n$. Altogether, we obtain that the standard choice $p = 1/n$ of the mutation probability is optimal for all linear functions. This is remarkable since this seems to be the choice that is most often recommended by practitioners in evolutionary computation (Bäck, 1993). In fact, the lower bounds hold for the large class of so-called mutation-based EAs, in which the (1+1) EA with $p = 1/n$ is found to be an optimal algorithm.

The proofs of the upper bounds use the recent multiplicative drift theorem and a drift function that is adapted towards both the linear function and the mutation probability, p. The proofs of the lower bounds use the standard multiplicative drift theorem and a drift function that is adapted towards the linear function only.
probability. As a consequence from our main result, we obtain the results by Doerr and Goldberg (2011) with less effort and explicit constants in front of the $n \ln n$-term. All these bounds hold also with high probability, which follows from the recent tail bounds added to the multiplicative drift theorem by Doerr and Goldberg (2011). The lower bounds are based on a new multiplicative drift theorem for lower bounds.

This paper is structured as follows. Section 2 sets up definitions, notations and other preliminaries. Section 3 summarizes and explains the main results. In Sections 4 and 5 respectively, we prove an upper bound for general mutation probabilities and a refined result for $p = 1/n$. Lower bounds are shown in Section 6. We finish with some conclusions.

2 Preliminaries

The (1+1) EA is a basic search heuristic for the optimization of pseudo-boolean functions $f : \{0, 1\}^n \to \mathbb{R}$. It reflects the typical behavior of more complicated evolutionary algorithms, serves as basis for the study of more complex approaches and is therefore intensively investigated in the theory of randomized search heuristics (Auger and Doerr, 2011). For the case of minimization, it is defined as Algorithm 1.

Algorithm 1 (1+1) EA

\[t := 0. \]
choose uniformly at random an initial bit string $x_0 \in \{0, 1\}^n$.
\[\text{repeat} \]
\[\text{create } x' \text{ by flipping each bit in } x_t \text{ independently with prob. } p \text{ (mutation).} \]
\[x_{t+1} := x' \text{ if } f(x') \leq f(x_t), \text{ and } x_{t+1} := x_t \text{ otherwise (selection).} \]
\[t := t + 1. \]
\[\text{until forever.} \]

The (1+1) EA can be considered a simple hill-climber where search points are drawn from a stochastic neighborhood based on the mutation operator. The parameter p, where $0 < p < 1$, is often chosen as $1/n$, which then is called standard mutation probability. We call a mutation from x_t to x' accepted if $f(x') \leq f(x_t)$, i.e., if the new search point is taken over; otherwise we call it rejected. In our theoretical studies, we ignore the fact that the algorithm in practice will be stopped at some time. The runtime (synonymously, optimization time) of the (1+1) EA is defined as the first random point in time t such that the search point x_t has optimal, i.e., minimum f-value. This corresponds to the number of f-evaluations until reaching the optimum. In many cases, one is aiming for results on the expected optimization time. Here, we also prove results that hold with high probability (w.h.p.), which means probability $1 - o(1)$.

3
The (1+1) EA is also an instantiation of the algorithmic scheme that is called mutation-based EA by Sudholt (2010) and is displayed as Algorithm 2. It is a general population-based approach that includes many variants of evolutionary algorithms with parent and offspring populations as well as parallel evolutionary algorithms. Any mechanism for managing the populations, which are multisets, is allowed as long as the mutation operator is the only variation operator and follows the independent bit-flip property with probability \(0 < p \leq 1/2\). Again the smallest \(t\) such that \(x_t\) is optimal defines the runtime. Sudholt has proved for \(p = 1/n\) that no mutation-based EA can locate a unique optimum faster than the (1+1) EA can optimize OneMax. We will see that the (1+1) EA is the best mutation-based EA on a broad class of functions, also for different mutation probabilities.

Algorithm 2 Scheme of a mutation-based EA

```plaintext
for \(t := 0 \rightarrow \mu - 1\) do
    create \(x_t \in \{0, 1\}^n\) uniformly at random.
end for

repeat
    select a parent \(x \in \{x_0, \ldots, x_t\}\) according to \(t\) and \(f(x_0), \ldots, f(x_t)\).
    create \(x_{t+1}\) by flipping each bit in \(x\) independently with probability \(p \leq 1/2\).
    \(t := t + 1\).
until forever.
```

Throughout this paper, we are concerned with linear pseudo-boolean functions. A function \(f: \{0,1\}^n \rightarrow \mathbb{R}\) is called linear if it can be written as \(f(x_n, \ldots, x_1) = w_n x_n + \cdots + w_1 x_1 + w_0\). As common in the analysis of the (1+1) EA, we assume w.l.o.g. that \(w_0 = 0\) and \(w_n \geq \cdots \geq w_1 > 0\) hold. Search points are read from \(x_n\) down to \(x_1\) such that \(x_n\), the most significant bit, is said to be on the left-hand side and \(x_1\), the least significant bit, on the right-hand side. Since it fits the proof techniques more naturally, we assume also w.l.o.g. that the (1+1) EA (or, more generally, the mutation-based EA at hand) is minimizing \(f\), implying that the all-zeros string is the optimum. Our assumptions do not lose generality since we can permute bits and negate the weights of a linear function without affecting the stochastic behavior of the (1+1) EA/mutation-based EA.

The probably most intensively studied linear function is \(\text{OneMAX}(x_n, \ldots, x_1) = x_n + \cdots + x_1\), occasionally also called the \(\text{CountingOnes}\) problem (which would be the more appropriate name here since we will be minimizing the function). In this paper, we will see that on the one hand, OneMAX is not only the easiest linear function definition-wise but also in terms of expected optimization time. On the other hand, the upper bounds obtained for OneMAX hold for every linear function up to lower-order terms. Hence, surprisingly the (1+1) EA is basically as efficient on an arbitrary linear function as it is on OneMAX. This underlines the robustness of the
randomized search heuristic and, in retrospect and for the future, is a strong motivation to investigate the behavior of randomized search heuristics on the OneMax problem thoroughly.

Our proofs of the forthcoming upper bounds use the multiplicative drift theorem in its most recent version (cf. Doerr, Johannsen and Winzen, 2010b and Doerr and Goldberg, 2011). The key idea of multiplicative drift is to identify a time-independent relative progress called drift.

Theorem 1 (Multiplicative Drift, Upper Bound). Let $S \subseteq \mathbb{R}$ be a finite set of positive numbers with minimum 1. Let $\{X^{(t)}\}_{t \geq 0}$ be a sequence of random variables over $S \cup \{0\}$. Let T be the random first point in time $t \geq 0$ for which $X^{(t)} = 0$.

Suppose that there exists a $\delta > 0$ such that

$$E(X^{(t)} - X^{(t+1)} | X^{(t)} = s) \geq \delta s$$

for all $s \in S$ with $\text{Prob}(X^{(t)} = s) > 0$. Then for all $s_0 \in S$ with $\text{Prob}(X^{(0)} = s_0) > 0$,

$$E(T | X^{(0)} = s_0) \leq \frac{\ln(s_0) + 1}{\delta}.$$

Moreover, it holds that $\text{Prob}(T > (\ln(s_0) + t)/\delta)) \leq e^{-t}$.

As an easy example application, consider the (1+1) EA on OneMax and let $X^{(t)}$ denote the number of one-bits at time t. As worse search points are not accepted, $X^{(t)}$ is non-increasing over time. We obtain $E(X^{(t)} - X^{(t+1)} | X^{(t)} = s) \geq s(1/n)(1 - 1/n)^{n-1} \geq s/(en)$, in other words a multiplicative drift of at least $\delta = 1/(en)$, since there are s disjoint single-bit flips that decrease the X-value by 1. Theorem 1 applied with $\delta = 1/(en)$ and $\ln(X^{(0)}) \leq \ln n$ gives us the upper bound $en(\ln n + 1)$ on the expected optimization time, which is the same as the classical method of fitness-based partitions (Wegener, 2001; Sudholt, 2010) or coupon collector arguments (Motwani and Raghavan, 1995) would yield.

On a general linear function, it is not necessarily a good choice to let $X^{(t)}$ count the current number of one-bits. Consider, for example, the well-known function $\text{BinVal}(x_n, \ldots, x_1) = \sum_{i=1}^{n} 2^{i-1}x_i$. The (1+1) EA might replace the search point $(1, 0, \ldots, 0)$ by the better search point $(0, 1, \ldots, 1)$, amounting to a loss of $n - 2$ zero-bits. More generally, replacing $(1, 0, \ldots, 0)$ by a better search point is equivalent to flipping the leftmost one-bit. In such a step, an expected number of $(n - p)$ zero-bits flip, which decreases the expected number of zero-bits by only $1 - (n - p)p$. The latter expectation (the so-called additive drift) is only $1/n$ for the standard mutation probability $p = 1/n$ and might be negative for larger p. Therefore, $X^{(t)}$ is typically defined as $X^{(t)} := g(x^{(t)})$, where $x^{(t)}$ is the current search point at time t and $g(x_n, \ldots, x_1)$ is another linear function called drift function or potential function. Doerr, Johannsen and Winzen (2010b) use $x_1 + \cdots + x_n/2 + (5/4)(x_{n/2+1} + \cdots + x_n)$
as potential function in their application of the multiplicative drift theorem. This leads to a good lower bound on the multiplicative drift on the one hand and a small maximum value of $X(t)$ on the other hand. In our proofs of upper bounds in the Sections 4 and 5 it is crucial to define appropriate potential functions.

For the lower bounds in Section 6 we need the following variant of the multiplicative drift theorem.

Theorem 2 (Multiplicative Drift, Lower Bound). Let $S \subseteq \mathbb{R}$ be a finite set of positive numbers with minimum 1. Let $\{X(t)\}_{t \geq 0}$ be a sequence of random variables over S, where $X(t+1) \leq X(t)$ for any $t \geq 0$, and let $s_{\text{min}} > 0$. Let T be the random first point in time $t \geq 0$ for which $X(t) \leq s_{\text{min}}$. If there exist positive reals $\beta, \delta \leq 1$ such that for all $s > s_{\text{min}}$ and all $t \geq 0$ with $\text{Prob}(X(t) = s) > 0$ it holds that

1. $E(X(t) - X(t+1) \mid X(t) = s) \leq \delta s,$
2. $\text{Prob}(X(t) - X(t+1) \geq \beta s \mid X(t) = s) \leq \beta \delta / \ln s,$

then for all $s_0 \in S$ with $\text{Prob}(X(0) = s_0) > 0$,

$$E(T \mid X(0) = s_0) \geq \frac{\ln(s_0) - \ln(s_{\text{min}})}{\delta} \frac{1 - \beta}{1 + \beta}.$$

Compared to the upper bound, the lower-bound version includes a condition on the maximum stepwise progress and requires non-increasing sequences. As a technical detail, the theorem allows for a positive target s_{min}, which is required in our applications.

3 Summary of Main Results

We now list the main consequences from the lower bounds and upper bounds that we will prove in the following sections.

Theorem 3. On any linear function, the following holds for the expected optimization time $E(T_p)$ of the $(1+1)$ EA with mutation probability p.

1. If $p = \omega((\ln n)/n)$ or $p = o(1/\text{poly}(n))$ then $E(T_p)$ is superpolynomial.
2. If $p = \Omega(1/\text{poly}(n))$ and $p = O((\ln n)/n)$ then $E(T_p)$ is polynomial.
3. If $p = c/n$ for a constant c then $E(T_p) = (1 \pm o(1))\frac{c}{n}n \ln n$.
4. $E(T_p)$ is minimized for mutation probability $p = 1/n$ if n is large enough.
5. No mutation-based EA has an expected optimization time that is smaller than $E(T_{1/n})$ (up to lower-order terms).
In fact, our forthcoming analyses are more precise; in particular, we do not state available tails on the upper bounds above and leave them in the more general, but also more complicated Theorem 4 in Section 4. The first statement of our summarizing Theorem 3 follows from the Theorems 7, 8 and 9 in Section 6. The second statement is proven in Corollary 2 which follows from the already mentioned Theorem 4. The third statement takes together the Corollaries 1 and 3. Since e^c/c is minimized for $c = 1$, the fourth statement follows from the third one in conjunction with Corollary 3. The fifth statement is also contained in the Theorems 7 and 9.

It is worth noting that the optimality of $p = 1/n$ apparently was never proven rigorously before, not even for the case of OneMax, where tight upper and lower bounds on the expected optimization time were only available for the standard mutation probability (Sudholt, 2010; Doerr, Fouz and Witt, 2011). For the general case of linear functions, the strongest previous result said that $p = \Theta((\ln n)/n)$ is optimal (Droste, Jansen and Wegener, 2002). Our result on the optimality of the mutation probability $1/n$ is interesting since this is the commonly recommended choice by practitioners.

4 Upper Bounds

In this section, we show a general upper bound that applies to any non-trivial mutation probability.

Theorem 4. On any linear function, the optimization time of the (1+1) EA with mutation probability $0 < p < 1$ is at most

$$(1 - p)^{1-n} \left(\frac{n \alpha^2 (1 - p)^{1-n}}{\alpha - 1} + \frac{\alpha}{\alpha - 1} \ln(1/p) + (n - 1) \ln(1 - p) + t \right) =: b(t)$$

with probability at least $1 - e^{-t}$, and it is at most $b(1)$ in expectation, where $\alpha > 1$ can be chosen arbitrarily (also depending on n).

Before we prove the theorem, we note two important consequences in more readable form. The first one (Corollary 1) displays upper bounds for mutation probabilities c/n. The second one (Corollary 2) is used in Theorem 3 above, which states a phase transition from polynomial to superpolynomial expected optimization times at mutation probability $p = \Theta((\ln n)/n)$.

Corollary 1. On any linear function, the optimization time of the (1+1) EA with mutation probability $p = c/n$, where $c > 0$ is a constant, is bounded from above by $(1 + o(1))((e^c/c)n \ln n)$ with probability $1 - o(1)$ and also in expectation.

Corollary 2. On any linear function, the optimization time of the (1+1) EA with mutation probability $p = 1/n$, where $c > 0$ is a constant, is bounded from above by $(1 + o(1))((e^c/c)n \ln n)$ with probability $1 - o(1)$ and also in expectation.

2 A recent technical report extending Sudholt (2010) shows the optimality of $p = 1/n$ in the case of OneMax using a different approach, see http://arxiv.org/abs/1109.1504.
Proof. Let $\alpha := \ln \ln n$ or any other sufficiently slowly growing function. Then $\alpha / (\alpha - 1) = 1 + O(1/\ln \ln n)$ and $\alpha^2 / (\alpha - 1) = O(\ln \ln n)$. Moreover, $(1 - c/n)^{1-n} \leq e^c$. The $b(t)$ in Theorem 3 becomes at most

$$e^c \cdot \left(O(n \ln \ln n) + (1 + o(1)) \frac{n(\ln(n) + \ln(1/c) + t)}{c} \right),$$

and the corollary follows by choosing, e.g., $t := \ln \ln n$. □

Corollary 2. On any linear function, the optimization time of the (1+1) EA with mutation probability $p = O((\ln n)/n)$ and $p = \Omega(1/poly(n))$ is polynomial with probability $1 - o(1)$ and also in expectation.

Proof. Let $\alpha := 2$. By making all positive terms at least 1 and multiplying them, we obtain that the upper bound $b(t)$ from Theorem 4 is at most

$$8n(1 - p)^{2 - 2n} \cdot \frac{\ln(e/p) + t}{p} \leq 8ne^{2mp} \cdot \frac{\ln(e/p) + t}{p}.$$

Assume $1/p = \Omega(poly(n))$ and $p \leq c(\ln n)/n$ for some constant c and sufficiently large n. Then $e^{2mp} \leq n^{2c}$ and the whole expression is polynomial for $t = 1$ (proving the expectation) and also if $t = \ln n$ (proving the probability $1 - o(1)$). □

The proof of Theorem 4 uses an adaptive potential function as in Doerr and Goldberg (2011). That is, the random variables $X^{(t)}$ used in Theorem 1 map the current search point of the (1+1) EA via a potential function to some value in a way that depends also on the linear function at hand. As a special case, if the given linear function happens to be OneMax, $X^{(t)}$ just counts the number of one-bits at time t. The general construction shares some similarities with the one in Doerr and Goldberg (2011), but both construction and proof are less involved.

Proof of Theorem 4. Let $f(x) = w_n x_n + \cdots + w_1 x_1$ be the linear function at hand. Define

$$\gamma_i := \left(1 + \frac{\alpha p}{(1 - p)^{n-1}} \right)^{i-1}$$

for $1 \leq i \leq n$, and let $g(x) = g_n x_n + \cdots + g_1 x_1$ be the potential function defined by $g_1 := 1 = \gamma_1$ and

$$g_i := \min \left\{ \gamma_i, g_{i-1} \cdot \frac{w_i}{w_{i-1}} \right\}$$

for $2 \leq i \leq n$. Note that the g_i are non-decreasing w.r.t. i. Intuitively, if the ratio of w_i and w_{i-1} is too extreme, the minimum function caps it appropriately, otherwise g_i and g_{i-1} are in the same ratio. We consider the stochastic process $X^{(t)} := g(a^{(t)})$,
where \(a^{(t)} \) is the current search point of the \((1+1)\) EA at time \(t \). Obviously, \(X^{(t)} = 0 \) if and only if \(f \) has been optimized.

Let \(\Delta_t := X^{(t)} - X^{(t+1)} \). We will show below that

\[
E(\Delta_t | X^{(t)} = s) \geq s \cdot p \cdot (1 - p)^{n-1} \cdot \left(1 - \frac{1}{\alpha}\right).
\]

The initial value satisfies

\[
X^{(0)} \leq g_n + \cdots + g_1 \leq \sum_{i=1}^n \gamma^i \leq \frac{(1 + \frac{\alpha p}{1 - p})^n - 1}{\alpha p (1 - p)^{1-n}} \leq \frac{e^{\alpha p (1 - p)^{1-n}}}{\alpha p (1 - p)^{1-n}},
\]

which means

\[
\ln(X^{(0)}) \leq n \alpha p (1 - p)^{1-n} + \ln(1/p) + \ln((1 - p)^{n-1}).
\]

The multiplicative drift theorem (Theorem 1) yields that the optimization time \(T \) is bounded from above by

\[
\frac{\ln(X_0) + t}{p(1 - p)^{n-1}(1 - 1/\alpha)} \leq \frac{\alpha (n \alpha p (1 - p)^{1-n} + \ln(1/p) + \ln((1 - p)^{n-1}) + t)}{(\alpha - 1)p(1 - p)^{n-1}} = b(t)
\]

with probability at least \(1 - e^{-t} \), and \(E(T) = b(1) \), which proves the theorem.

To show (2), we fix an arbitrary current value \(s \) and an arbitrary search point \(a^{(t)} \) satisfying \(g(a^{(t)}) = s \). In the following, we implicitly assume \(X^{(t)} = s \) but mostly omit this for the sake of readability. We denote by \(I := \{ i | a_i^{(t)} = 1 \} \) the index set of the one-bits in \(a^{(t)} \) and by \(Z := \{1, \ldots, n\} \setminus I \) the zero-bits. We assume \(I \not= \emptyset \) since there is nothing to show otherwise. Denote by \(a' \) the random (not necessarily accepted) offspring produced by the \((1+1)\) EA when mutating \(a^{(t)} \) and by \(a^{(t+1)} \) the next search point after selection. Recall that \(a^{(t+1)} = a' \) if and only if \(f(a') \leq f(a^{(t)}) \). In the following, we will use the event \(A \) that \(a^{(t+1)} = a' \neq a^{(t)} \) since obviously \(\Delta_t = 0 \) otherwise. Let \(I^* := \{ i \in I | a'_i = 0 \} \) be the random set of flipped one-bits and \(Z^* := \{ i \in Z | a'_i = 1 \} \) be the set of flipped zero-bits in \(a' \) (not conditioned on \(A \)). Note that \(I^* \neq \emptyset \) if \(A \) occurs.

We need further definitions to analyze the drift carefully. For \(i \in I \), we define \(k(i) := \max\{ j \leq i | g_j = \gamma_j \} \) as the most significant position to the right of \(i \) (possibly \(i \) itself) where the potential function might be capping; note that \(k(i) \geq 1 \) since \(g_1 = \gamma_1 \). Let \(L(i) := \{ k(i), \ldots, n\} \cap Z \) be the set of zero-bits left of (and including) \(k(i) \) and let \(R(i) := \{ 1, \ldots, k(i) - 1\} \cap Z \) be the remaining zero-bits. Both sets may be empty. For event \(A \) to occur, it is necessary that there is some \(i \in I \) such that bit \(i \) flips to zero and

\[
\sum_{j \in I^*} w_j - \sum_{j \in Z^* \cap L(i)} w_j \geq 0
\]
since we are taking only zero-bits out of consideration. Now, for $i \in I$, let A_i be the event that

1. i is the leftmost flipping one-bit (i.e., $i \in I^*$ and $\{i + 1, \ldots, n\} \cap I^* = \emptyset$) and
2. $\sum_{j \in I^*} w_j - \sum_{j \in Z^* \cap L(i)} w_j \geq 0$.

If none of the A_i occurs, $\Delta_i = 0$. Furthermore, the A_i are mutually disjoint.

For any $i \in I$, Δ_i can be written as the sum of the two terms

$$
\Delta_L(i) := \sum_{j \in I^*} g_j - \sum_{j \in Z^* \cap L(i)} g_j \quad \text{and} \quad \Delta_R(i) := -\sum_{j \in Z^* \cap R(i)} g_j.
$$

By the law of total probability and the linearity of expectation, we have

$$
E(\Delta_i) = \sum_{i \in I} E(\Delta_L(i) \mid A_i) \cdot \Prob(A_i) + E(\Delta_R(i) \mid A_i) \cdot \Prob(A_i). \quad (**)
$$

In the following, the bits in $R(i)$ are pessimistically assumed to flip to 1 independently with probability p each if A_i happens. This leads to $E(\Delta_R(i) \mid A_i) \geq -p \sum_{j \in R(i)} g_j$.

In order to estimate $E(\Delta_L(i))$, we carefully inspect the relation between the weights of the original function and the potential function. By definition, we obtain $g_j/g_k(i) = w_j/w_k(i)$ for $k(i) \leq j \leq i$ and $g_j/g_k(i) \leq w_j/w_k(i)$ for $j > i$ whereas $g_j/g_k(i) \geq w_j/w_k(i)$ for $j < k(i)$. Hence, if A_i occurs then $g_j \geq g_k(i) \cdot \frac{w_j}{w_k(i)}$ for $j \in I^*$ (since i is the leftmost flipping one-bit) whereas $g_j \leq g_k(i) \cdot \frac{w_j}{w_k(i)}$ for $j \in L(i)$. Together, we obtain under $A(i)$ the nonnegativity of the random variable $\Delta_L(i)$:

$$
\Delta_L(i) \mid A_i = \sum_{j \in I^* \mid A_i} g_j - \sum_{j \in (Z^* \cap L(i)) \mid A_i} g_j \geq \sum_{j \in I^* \mid A_i} g_k(i) \cdot \frac{w_j}{w_k(i)} - \sum_{j \in (Z^* \cap L(i)) \mid A_i} g_k(i) \cdot \frac{w_j}{w_k(i)} \geq 0
$$

using the definition of A_i.

Now let $S_i := \{Z^* \cap L(i) = 0\}$ be the event that no zero-bit from $L(i)$ flips. Using the law of total probability, we obtain that

$$
E(\Delta_L(i) \mid A_i) \cdot \Prob(A_i) = E(\Delta_L(i) \mid A_i \cap S_i) \cdot \Prob(A_i \cap S_i) + E(\Delta_L(i) \mid A_i \cap \overline{S_i}) \cdot \Prob(A_i \cap \overline{S_i}).
$$

Since $\Delta_L(i) \mid A_i \geq 0$, the conditional expectations are non-negative. We bound the second term on the right-hand side by 0. In conjunction with (**), we get

$$
E(\Delta_i) \geq \sum_{i \in I} E(\Delta_L(i) \mid A_i \cap S_i) \cdot \Prob(A_i \cap S_i) + E(\Delta_R(i) \mid A_i) \cdot \Prob(A_i).
$$
Obviously, $E(\Delta_L(i) \mid A_i \cap S_i) \geq g_i$. We estimate $\text{Prob}(A_i \cap S_i) \geq p(1-p)^{n-1}$ since it is sufficient to flip only bit i and $\text{Prob}(A_i) \leq p$ since it is necessary to flip this bit. Further above, we have bounded $E(\Delta_R(i) \mid A_i)$. Taking everything together, we get

$$E(\Delta_t) \geq \sum_{i \in I} \left(p(1-p)^{n-1}g_i - p^2 \sum_{j \in R(i)} g_j \right) \geq \sum_{i \in I} \left(p(1-p)^{n-1} \frac{g_i}{g_{k(i)}} \gamma_{k(i)} - p^2 \sum_{j=1}^{k(i)-1} \gamma_j \right).$$

The term for i equals

$$p(1-p)^{n-1} \frac{g_i}{g_{k(i)}} \left(1 + \frac{1}{\alpha p} \frac{\alpha p}{(1-p)^{n-1}} \right)^{k(i)-1} - p^2 \cdot \left(1 + \frac{1}{\alpha p} \frac{\alpha p}{(1-p)^{n-1}} \right)^{k(i)-1} - 1 \geq \left(1 - \frac{1}{\alpha} \right) p(1-p)^{n-1} \frac{g_i}{g_{k(i)}} \left(1 + \frac{1}{\alpha p} \frac{\alpha p}{(1-p)^{n-1}} \right)^{k(i)-1} = \left(1 - \frac{1}{\alpha} \right) p(1-p)^{n-1} g_i,$$

where the inequality uses $g_i \geq g_{k(i)}$. Hence,

$$E(\Delta_t) \geq \sum_{i \in I} \left(1 - \frac{1}{\alpha} \right) p(1-p)^{n-1} g_i = \left(1 - \frac{1}{\alpha} \right) p(1-p)^{n-1} g(a(t)),$$

which proves (II), and, therefore, the theorem. \(\square \)

5 Refined Upper Bound for Mutation Probability

$1/n$

In this section, we consider the standard mutation probability $p = 1/n$ and refine the result from Corollary II. More precisely, we obtain that the lower order-terms are $O(n)$. The proof will be shorter and uses a simpler potential function.

Theorem 5. On any linear function, the expected optimization time of the $(1+1)$ EA with $p = 1/n$ is at most $en \ln n + 2en + O(1)$, and the probability that the optimization time exceeds $en \ln n + (1 + t)en + O(1)$ is at most e^{-t}.

Proof. Let $f(x) = w_n x_n + \cdots + w_1 x_1$ be the linear function at hand and let $g(x) = g_n x_n + \cdots + g_1 x_1$ be the potential function defined by

$$g_i = \left(1 + \frac{1}{n-1}\right)^{\min\{j \leq i \mid w_j = w_i\} - 1},$$

11
hence \(g_i = (1 + 1/(n-1))^{i-1} \) for all \(i \) if and only if the \(w_i \) are mutually distinct. We consider the stochastic process \(X^{(t)} := g(a^{(t)}) \), where \(a^{(t)} \) is the current search point of the \((1+1)\) EA at time \(t \). Obviously, \(X^{(t)} = 0 \) if and only if \(f \) has been optimized.

Let \(\Delta_t := X^{(t)} - X^{(t+1)} \). In a case analysis (partly inspired by Doerr, Johannsen and Winzen, 2010b), we will show below for \(n \geq 4 \) that \(E(\Delta_t \mid X^{(t)} = s) \geq s/(en) \). The initial value satisfies

\[
X^{(0)} \leq g_n + \cdots + g_1 \leq \sum_{i=0}^{n-1} \left(1 + \frac{1}{n-1} \right)^i = \frac{(1 + 1/(n-1))^{n-1} - 1}{1/(n-1)}
\]

where we have used \((1 + 1/(n-1))^{n-1} \leq e\). Hence, \(\ln(X_0) \leq (\ln n) + 1 \). Assuming \(n \geq 4 \), Theorem 1 yields \(E(T) \leq en(\ln(n) + 2) \) and \(\text{Prob}(T > en((\ln n) + t + 1)) \leq e^{-t} \) regardless of the starting point, from which the theorem follows.

The case analysis fixes an arbitrary current search point \(a^{(t)} \). We denote by \(I := \{ i \mid a_i^{(t)} = 1 \} \) the index set of its one-bits and by \(Z := \{ 1, \ldots, n \} \setminus I \) its zero-bits. We assume \(I \neq \emptyset \) since there is nothing to show otherwise. Denote by \(a' \) the random (not necessarily accepted) offspring produced by the \((1+1)\) EA when mutating \(a^{(t)} \) and by \(a^{(t+1)} \) the next search point after selection. Recall that \(a^{(t+1)} = a' \) if and only if \(f(a') \leq f(a^{(t)}) \). In what follows, we will often condition on the event \(A \) that \(a^{(t+1)} = a' \neq a^{(t)} \) holds since \(\Delta_t = 0 \) otherwise. Let \(I^* := \{ i \in I \mid a_i' = 0 \} \) be the set of flipped one-bits and by \(Z^* := \{ i \in Z \mid a_i' = 1 \} \) be the set of flipped zero-bits. Note that \(I^* \neq \emptyset \) if \(A \) occurs.

Case 1: Event \(S_1 := \{|I^*| \geq 2\} \cap A \) occurs. Under this condition, each zero-bit in \(a^{(t)} \) has been flipped to 1 in \(a^{(t+1)} \) with probability at most \(1/n \). Since \(g_i \geq 1 \) for \(1 \leq i \leq n \), we have

\[
E(\Delta_t \mid S_1) \geq |I^*| - \frac{1}{n} \sum_{i \in I^*} g_i \geq 2 - \frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{1}{n-1} \right)^{i-1} - \frac{1}{n} \sum_{i \in I^*} g_i \geq 2 - \frac{1 + 1/(n-1))^{n-1} - 1}{n/(n-1)} \geq 2 - \left(e - \left(1 - \frac{1}{n} \right) \right) \geq 0
\]

for \(n \geq 4 \), where we have used \(1 + 1/(n-1) = 1/(1-1/n) \). Hence, we pessimistically assume \(E(\Delta_t \mid S_1) = 0 \).

Case 2: Event \(S_2 := \{|I^*| = 1\} \cap A \) occurs. Let \(i^* \) be single element of \(I^* \) and note that this is a random variable.

Subcase 2.1: \(S_{21} := \{|I^*| = 1\} \cap \{Z^* = \emptyset\} \cap A \) occurs. Since \(\{|I^*| = 1\} \) and \(\{Z^* = \emptyset\} \) together imply \(A \), the index \(i^* \) of the flipped one-bit is uniform over \(I \). Hence, \(E(\Delta_t \mid S_{21}) = \sum_{i \in I} g_i/|I| \). Moreover, \(\text{Prob}(S_{21}) \geq |I|/(1/n)(1 - 1/n)^{n-1} \geq |I|/(en) \), implying \(E(\Delta_t \mid S_{21}) \cdot \text{Prob}(S_{21}) \geq g(a^{(t)})/(en) = X^{(t)}/(en) \). If we can show
that $E(\Delta_t \mid \{I^* = 1\} \cap \{|Z^*| \geq 1\} \cap A) \geq 0$, which will be proven in Subcase 2.2 below, then $E(\Delta_t \mid X^{(t)} = s) \geq s/(en)$ follows by the law of total probability and the proof is complete.

Subcase 2.2: $S_{22} := \{|I^* = 1\} \cap \{|Z^*| \geq 1\} \cap A$ occurs. Let $j^* := \max\{j \mid j \in Z^*\}$ be the index of the leftmost flipping zero-bit, and note that also j^* is random. Since we work under $|I^*| = 1$ and the w_j are monotone increasing w.r.t. j, it is necessary for A to occur that $w_{j^*} \leq w_{j^*}$ holds.

Subcase 2.2.1: $S_{221} := \{|I^* = 1\} \cap \{|Z^*| \geq 1\} \cap \{j^* > i^*\} \cap A$ occurs. Then $w_{j^*} = w_{j^*}$ and $|Z^*| = 1$ must hold. In this case, $g_{j^*} = g_{j^*}$ by the definition of g and $E(\Delta_t \mid S_{221}) = 0$ follows immediately.

Subcase 2.2.2: $S_{222} := \{|I^* = 1\} \cap \{|Z^*| \geq 1\} \cap \{j^* < i^*\} \cap A$ occurs. If $w_{j^*} = w_{j^*}$ then $|Z^*| = 1$ must hold for A to occur, and zero drift follows as in the previous subcase. Now let us assume $w_{j^*} < w_{j^*}$ and thus $g_{j^*} < g_{j^*}$. For notational convenience, we redefine $i^* := \min\{i \mid w_i = w_{j^*}\}$. We consider $Z_r := Z \cap \{1, \ldots, i^* - 1\}$, the set of potentially flipping zero-bits right of i^*, denote $k := |Z_r|$ and note that in the worst case, $Z_r = \{i^* - 1, \ldots, i^* - k\}$ as the g_i are non-decreasing. By using $\tilde{p} := \text{Prob}(Z^* \cap Z_r \neq \emptyset) = 1 - (1 - 1/n)^k$ and the definition of conditional probabilities, we obtain under S_{222} that every bit from Z_r is flipped (not necessarily independently) with probability at most $(1/n)/\tilde{p} = n(1 - (1 - 1/n)^k)$. We now assume that all the corresponding a' are accepted. This is pessimistic for the following reasons: Consider a rejected a'. If $|Z^*| = 1$ then our prerequisite $j^* < i^*$ and the monotonicity of the g_i imply a negative Δ_t-value. If $|Z^*| > 1$ then the negative Δ_t-value is due to the fact $g_i < g_{i-1} + g_{i-2}$ for $3 \leq i \leq n$. Hence, using the linearity of expectation we get

$$E(\Delta_t \mid S_{222}) \geq g_{i^*} \cdot \frac{1}{n\tilde{p}} \cdot \sum_{j \in Z_r} g_j \geq g_{i^*} - \sum_{j=1}^k \frac{g_{i^*-j}}{n(1 - (1 - 1/n)^k)}$$

$$= \left(1 + \frac{1}{n-1}\right)^{i^*-1} - \sum_{j=0}^{k-1} \frac{(1 + 1/(n-1))^{i^* - 1 - j}}{n(1 - (1 - 1/n)^k)}$$

$$= \left(1 + \frac{1}{n-1}\right)^{i^*-k} \left(\left(1 + \frac{1}{n-1}\right)^{k-1} - \frac{(1 + 1/(n-1))^{k-1} - 1}{n(1 - (1 - 1/n)^k)}\right) = 0,$$

where the last equality follows since $1 + 1/(n-1) = (1 - 1/n)^{-1}$ and

$$\frac{(1 + 1/(n-1))^{k-1} - 1}{n(1 - (1 - 1/n)^k)} = \left(1 - \frac{1}{n}\right)^{1-k} \cdot \left(1 - \frac{1}{n}\right)^{-k - 1} = 1 - \frac{1}{n}^{1-k}.$$

This completes the proof. \hfill \Box
6 Lower Bounds

In this section, we state lower bounds that prove the results from Theorem 4 to be tight up to lower-order terms for a wide range of mutation probabilities. Moreover, we show that the lower bounds hold for the very large class of mutation-based algorithms (Algorithm 2). Recall that a list of the most important consequences is given above in Theorem 3. For technical reasons, we split the proof of the lower bounds into two main cases, namely $p = O(n^{-2/3-\varepsilon})$ and $p = \Omega(n^{\varepsilon-1})$ for any constant $\varepsilon > 0$. Unless $p > 1/2$, the proofs go back to OneMax as a worst case, as outlined in the following subsection.

6.1 OneMax as Easiest Linear Function

Doerr, Johannsen and Winzen (2010a) show with respect to the (1+1) EA with standard mutation probability $1/n$ that OneMax is the “easiest” function from the class of functions with unique global optimum, which comprises the class of linear functions. More precisely, the expected optimization time on OneMax is proved to be smallest within the class.

We will generalize this result to $p \leq 1/2$ with moderate additional effort. In fact, we will relate the behavior of an arbitrary mutation-based EA on OneMax to the (1+1) EA$_{\mu}$ in a similar way to Sudholt (2010, Section 7). The latter algorithm, displayed as Algorithm 3, creates search points uniformly at random from time 0 to time $\mu - 1$ and then chooses a best one from these to be the current search point at time $\mu - 1$; afterwards it works as the standard (1+1) EA. Note that we obtain the standard (1+1) EA for $\mu = 1$. Moreover, we will only consider the case $\mu = \text{poly}(n)$ in order to bound the running time of the initialization. This makes sense since a unique optimum (such as the all-zeros string for OneMax) is with overwhelming probability not found even when drawing $2\sqrt{n}$ random search points.

Algorithm 3 (1+1) EA$_{\mu}$

```plaintext
for $t := 0 \rightarrow \mu - 1$ do
    choose $x_t \in \{0, 1\}^n$ uniformly at random.
end for

$x_t := \arg \min \{f(x) \mid x \in \{x_0, \ldots, x_t\}\}$ (breaking ties uniformly).

repeat
    create $x'$ by flipping each bit in $x_t$ independently with prob. $p$.
    $x_{t+1} := x'$ if $f(x') \leq f(x_t)$, and $x_{t+1} := x_t$ otherwise.
    $t := t + 1$.
until forever.
```
Our analyses need the monotonicity statement from Lemma 1 below, which is similar to Lemma 11 in Doerr, Johannsen and Winzen (2010a) and whose proof is already sketched in Droste, Jansen, and Wegener (2000, Section 5). Note, however, that Doerr, Johannsen and Winzen (2010a) only consider \(p = 1/n \) and have a stronger statement for this case. More precisely, they show \(\text{Prob}(|\text{mut}(a)|_1 = j) \geq \text{Prob}(|\text{mut}(b)|_1 = j) \), which does not hold for large \(p \). Here and hereinafter, \(|x|_1 \) denotes the number of ones in a bit string \(x \).

Lemma 1. Let \(a, b \in \{0,1\}^n \) be two search points satisfying \(|a|_1 < |b|_1 \). Denote by \(\text{mut}(x) \) the random string obtained by mutating each bit of \(x \) independently with probability \(p \). Let \(0 \leq j \leq n \) be arbitrary. If \(p \leq 1/2 \) then

\[
\text{Prob}(|\text{mut}(a)|_1 \leq j) \geq \text{Prob}(|\text{mut}(b)|_1 \leq j).
\]

Proof. We prove the result only for \(|b|_1 = |a|_1 + 1 \). The general statement then follows by induction on \(|b|_1 - |a|_1 \).

By the symmetry of the mutation operator, \(\text{Prob}(|\text{mut}(x)|_1 \leq j) \) is the same for all \(x \) with \(|x|_1 = |a|_1 \). We therefore assume \(b \geq a \) (i.e., \(b \) is component-wise not less than \(a \)). In the following, let \(s^* \) be the unique index where \(b_{s^*} = 1 \) and \(a_{s^*} = 0 \). Let \(S(x) \) be the event that bit \(s^* \) flips when \(x \) is mutated. Since bits are flipped independently, it holds \(\text{Prob}(S(x)) = p \) for any \(x \). We write \(a' := \text{mut}(a) \) and \(b' := \text{mut}(b) \). Assuming \(p \leq 1/2 \), the aim is to show \(\text{Prob}(|a'|_1 \leq j) \geq \text{Prob}(|b'|_1 \leq j) \), which by the law of total probability is equivalent to

\[
\left(\text{Prob}(|a'|_1 \leq j \mid S(a)) - \text{Prob}(|b'|_1 \leq j \mid S(a)) \right) \cdot (1 - p)
+ \left(\text{Prob}(|a'|_1 \leq j \mid S(a)) - \text{Prob}(|b'|_1 \leq j \mid S(b)) \right) \cdot p \geq 0. \quad (*)
\]

Note that the relation \(\text{Prob}(|a'|_1 \leq j \mid S(a)) \geq \text{Prob}(|b'|_1 \leq j \mid S(b)) \) follows from a simple coupling argument as \(a' \leq b' \) holds if the mutation operator flips the bits other than \(s^* \) in the same way with respect to \(a \) and \(b \). Moreover,

\[
\text{Prob}(|a'|_1 \leq j \mid S(a)) - \text{Prob}(|b'|_1 \leq j \mid S(b)) = \text{Prob}(|b'|_1 \leq j \mid S(b)) - \text{Prob}(|a'|_1 \leq j \mid S(a))
\]

since \(a \) is obtained from \(b \) by flipping bit \(s^* \) and vice versa. Hence, (*) follows. \(\square \)

The following theorem is a generalization of Theorem 9 by Doerr, Johannsen and Winzen (2010a) to the case \(p \leq 1/2 \) instead of \(p = 1/n \). However, we not only generalize to higher mutation probabilities, but also also consider the more general class of mutation-based algorithms. Finally, we prove stochastic ordering,
while Doerr, Johannsen and Winzen (2010a) inspect only the expected optimization times. Still, many ideas of the original proof can be taken over and be combined with the proof of Theorem 5 in Sudholt (2010).

Theorem 6. Consider a mutation-based EA A with population size μ and mutation probability $p \leq 1/2$ on any function with a unique global optimum. Then the optimization time of A is stochastically at least as large as the optimization time of the $(1+1)$ EA μ on OneMax.

Proof. Let f denote the function with unique global optimum, which we w.l.o.g. assume to be the all-zeros string. For any sequence $X = (x_0, \ldots, x_{\ell-1})$ of search points over $\{0,1\}^n$, let $q(X)$ be the probability that X represents the first ℓ search points $x_0, \ldots, x_{\ell-1}$ created by Algorithm A on f (its so-called history up to time $\ell - 1$). For any history X with $q(X) > 0$, let $T_f(X)$ denote the random optimization time of Algorithm A on f, given that its history up to time ℓ equals X. Let

$$\Xi_\ell := \left\{ X = (x_0, \ldots, x_{\ell-1}) \in \times_{i=1}^{\ell} \{0,1\}^n \mid q(X) > 0 \right\}$$

denote the set of all possible histories of length ℓ with respect to Algorithm A on f, and let $\Xi := \bigcup_{m=1}^{\infty} \Xi_\ell$ denote all possible histories of finite length. Finally, for any $X \in \Xi$, let $L(X)$ denote the length of X.

Given any $X \in \Xi$, let $(1+1)$ EA$^{(X)}$ be the algorithm that chooses a search point with minimal number of ones from X as current search point at time $L(X) - 1$ (breaking ties uniformly) and afterwards proceeds as the standard $(1+1)$ EA on OneMax. Now, let $T_{OneMax}(X)$ denote the random optimization time of the $(1+1)$ EA$^{(X)}$. We claim that the stochastic ordering

$$\text{Prob}(T_f(X) \geq t) \geq \text{Prob}(T_{OneMax}(X) \geq t)$$

holds for every $X \in \Xi$ satisfying $L(X) \geq \mu$ and every $t \geq 0$. Note that the random vector of initial search points $X^{\ast} := (x_0, \ldots, x_{\mu-1})$ follows the same distribution in both Algorithm A and the $(1+1)$ EA$^{(X)}$. In particular, the two algorithms are identical before time $\mu - 1$, i.e., before initialization is finished. Furthermore, $(1+1)$ EA$^{(X^{\ast})}$ is the $(1+1)$ EA$^\mu$ initialized with X^{\ast}. Altogether, the claimed stochastic ordering implies the theorem. Moreover, regardless of the length $L(X)$, the claim is obvious for $t \leq L(X)$ since the behavior up to time $L(X)$ is fixed.

For any $X \in \Xi$, let $|X|_1 := \min\{|x| \mid x \in X\}$ denote the best number of ones in the history, where $x \in (x_0, \ldots, x_{\ell-1})$ means that $x = x_i$ for some $i \in \{0, \ldots, \ell - 1\}$. For every $k \in \{0, \ldots, n\}$, every $\ell \geq \mu$ and every $t \geq 0$, let

$$p_{k,\ell}(t) := \min\{\text{Prob}(T_{OneMax}(X) \geq \ell + t) \mid X \in \Xi_\ell, |X|_1 = k\}$$
be the minimum probability of the (1+1) EA(\mathcal{X}) needing at least $\ell + t$ steps to optimize ONE\textsc{Max} from a history of length ℓ whose best search point has exactly k one-bits. Due to the symmetry of the ONE\textsc{Max} function and the definition of (1+1) EA(\mathcal{X}), we have $\operatorname{Prob}(T_{\text{OneMax}}(\mathcal{X}) \geq \ell + t) = k,\ell(t)$ for every \mathcal{X} satisfying $|\mathcal{X}| = \ell$ and $|\mathcal{X}|_1 = k$. In other words, the minimum can be omitted from the definition of $p_{k,\ell}$.

Furthermore, for every $k \in \{0, \ldots, n\}$, every $\ell \geq \mu$ and every $t \geq 0$, let

$$\tilde{p}_{k,\ell}(t) := \min\{\operatorname{Prob}(T_f(\mathcal{X}) \geq \ell + t) \mid \mathcal{X} \in \Xi, |\mathcal{X}|_1 \geq k\}$$

be the minimum probability of Algorithm A needing at least $\ell + t$ steps to optimize f from a history of length $\ell \geq \mu$ whose best search point has at least k one-bits. We will show $\tilde{p}_{k,\ell}(t) \geq p_{k,\ell}(t)$ for any $k \in \{0, \ldots, n\}$ and $\ell \geq \mu$ by induction on t. In particular, by choosing $\ell := \mu$ and applying the law of total probability with respect to the outcomes of $|\mathcal{X}|_1$, this will imply the above-mentioned stochastic ordering and, therefore, the theorem.

If $k \geq 1$ then $p_{k,\ell}(0) = \tilde{p}_{k,\ell}(0) = 1$ for any $\ell \geq \mu$ since the condition means that the first ℓ search points do not contain the optimum. Moreover, $p_{0,\ell}(t) = \tilde{p}_{0,\ell}(t) = 0$ for any $t \geq 0$ and $\ell \geq \mu$ since a history beginning with the all-zeros string corresponds to optimization time 0 and thus minimizes both $\operatorname{Prob}(T_f(\mathcal{X}) \geq t + \ell)$ and $\operatorname{Prob}(T_{\text{OneMax}}(\mathcal{X}) \geq t + \ell)$. Now let us assume that there is some $t \geq 0$ such that $\tilde{p}_{k,\ell}(t') \geq p_{k,\ell}(t')$ holds for all $0 \leq t' \leq t$, $k \in \{0, \ldots, n\}$, and $\ell \geq \mu$. Note that the inequality has already been proven for all t if $k = 0$.

Consider the (1+1) EA(\mathcal{X}) for an arbitrary \mathcal{X} satisfying $L(\mathcal{X}) = \ell \geq \mu$ and $|\mathcal{X}|_1 = k+1$ for some $k \in \{0, \ldots, n-1\}$. Let some $x \in \{0, 1\}^n$, where $|x|_1 = k+1$, be chosen from \mathcal{X} and let $y \in \{0, 1\}^n$ be the random search point generated by flipping each bit in x independently with probability p. The (1+1) EA(\mathcal{X}) will accept y as new search point at time $\ell + 1 > \mu$ if and only if $|y|_1 \leq |x|_1 = k + 1$. Hence,

$$p_{k+1,\ell}(t + 1) = \operatorname{Prob}(|y|_1 \geq k + 1) \cdot p_{k+1,\ell+1}(t) + \sum_{j=0}^{k} \operatorname{Prob}(|y|_1 = j) \cdot p_{j,\ell+1}(t). \quad (\ast)$$

Next, let \mathcal{X}, where again $L(\mathcal{X}) = \ell \geq \mu$, be a history satisfying $\operatorname{Prob}(T_f(\mathcal{X}) \geq t + 1) = \tilde{p}_{k+1,\ell}(t + 1)$ and let \tilde{x} be the (random) search point that is chosen for mutation at time ℓ in order to obtain the equality of the two probabilities. Note that $|\tilde{x}|_1 \geq k + 1$. Moreover, let $\tilde{y} \in \{0, 1\}^n$ be the random search point generated by flipping each bit in \tilde{x} independently with probability p. Let \mathcal{X}' be the concatenation of \mathcal{X} and \tilde{y}. Then

$$\tilde{p}_{k+1,\ell}(t + 1) = \operatorname{Prob}(|\tilde{y}|_1 \geq k + 1) \cdot \operatorname{Prob}(T_f(\mathcal{X}') \geq t \mid |\tilde{y}|_1 \geq k + 1)$$

$$+ \sum_{j=0}^{k} \operatorname{Prob}(|\tilde{y}|_1 = j) \cdot \operatorname{Prob}(T_f(\mathcal{X}') \geq t \mid |\tilde{y}|_1 = j),$$

17
which, by definition of the $\tilde{p}_i(t)$, gives us the lower bound

$$\tilde{p}_{k+1,t}(t+1) \geq \text{Prob}(|\tilde{y}|_1 \geq k + 1) \cdot \tilde{p}_{k+1,t+1}(t) + \sum_{j=0}^{k} \text{Prob}(|\tilde{y}|_1 = j) \cdot \tilde{p}_{j,t+1}(t).$$

To relate the last inequality to (**) above, we interpret the right-hand side as a function of $k + 2$ variables. More precisely, let $\phi(a_0, \ldots, a_{k+1}) := \sum_{j=0}^{k+1} a_j \tilde{p}_{j,t+1}(t)$ and consider the vectors

$$v^{(f)} = (v_0^{(f)}, \ldots, v_{k+1}^{(f)}) := (\text{Prob}(|\tilde{y}|_1 = 0), \ldots, \text{Prob}(|\tilde{y}|_1 = k), \text{Prob}(|\tilde{y}|_1 \geq k + 1))$$

and

$$v^{(O)} = (v_0^{(O)}, \ldots, v_{k+1}^{(O)}) := (\text{Prob}(|y|_1 = 0), \ldots, \text{Prob}(|y|_1 = k), \text{Prob}(|y|_1 \geq k + 1)).$$

If we can show that $\phi(v^{(f)}) \geq \phi(v^{(O)})$, then we can conclude

$$\tilde{p}_{k+1,t}(t+1) \geq \phi(v^{(f)}) \geq \phi(v^{(O)})$$

$$\geq \text{Prob}(|y|_1 \geq k + 1) \cdot p_{k+1,t+1}(t) + \sum_{j=0}^{k} \text{Prob}(|y|_1 = j) \cdot p_{j,t+1}(t) = p_{k+1,t}(t+1),$$

where the last inequality follows from the induction hypothesis and the equality is from (**). This will complete the induction step.

To show the outstanding inequality, we use that for $0 \leq j \leq k$

$$\text{Prob}(|y|_1 \leq j) \geq \text{Prob}(|\tilde{y}|_1 \leq j),$$

which follows from Lemma 4 since $|\tilde{x}|_1 \geq |x|_1$ and $p \leq 1/2$. In other words,

$$\sum_{i=0}^{j} v_i^{(O)} \geq \sum_{i=0}^{j} v_i^{(f)}$$

for $0 \leq j \leq k$ and $\sum_{i=0}^{k+1} v_i^{(O)} = \sum_{i=0}^{k+1} v_i^{(f)}$ since we are dealing with probability distributions. Altogether, the vector $v^{(O)}$ majorizes the vector $v^{(f)}$. Since they are based on increasingly restrictive conditions, the $\tilde{p}_j(t)$ are non-decreasing in j. Hence, ϕ is Schur-concave (cf. Theorem A.3 in Chapter 3 of [Marshall, Olkin, and Arnold, 2011]), which proves $\phi(v^{(f)}) \geq \phi(v^{(O)})$ as desired. □
6.2 Large Mutation Probabilities

It is not too difficult to show that mutation probabilities \(p = \Omega(n^{\varepsilon-1}) \), where \(\varepsilon > 0 \) is an arbitrary constant, make the (1+1) EA (and also the (1+1) EA\(_{\mu}\)) flip too many bits for it to optimize linear functions efficiently.

Theorem 7. On any linear function, the optimization time of an arbitrary mutation-based EA with \(\mu = \text{poly}(n) \) and \(p = \Omega(n^{\varepsilon-1}) \) for some constant \(\varepsilon > 0 \), is bounded from below by \(2^{\Omega(n^\varepsilon)} \) with probability \(1 - 2^{-\Omega(n^\varepsilon)} \).

Proof. Due to Theorem 6, it suffices to show the result for the (1+1) EA\(_{\mu}\) on OneMax. The following two statements follow from Chernoff bounds (and a union bound over \(\mu = \text{poly}(n) \) search points in the second statement).

1. Due to the lower bound on \(p \), the probability of a single step not flipping at least \(\lfloor pi/2 \rfloor \) bits out of a set of \(i \) bits is at most \(2^{-\Omega(pi)} = 2^{-\Omega(in^{\varepsilon-1})} \).

2. The search point \(x_{\mu-1} \) has at least \(n/3 \) and at most \(2n/3 \) one-bits with probability \(1 - 2^{-\Omega(n)} \).

Furthermore, as we consider OneMax, the number of one-bits is non-increasing over time. We assume an \(x_{\mu-1} \) being non-optimal and having at most \(2n/3 \) one-bits, which contributes a term of only \(2^{-\Omega(n)} \) to the failure probability. The assumption means that all future search points accepted by the (1+1) EA\(_{\mu}\) will have at least \(n/3 \) zero-bits. In order to reach the optimum, none of these is allowed to flip. As argued above, the probability of this happening is \(2^{-\Omega(n^\varepsilon)} \), and by the union bound, the total probability is still \(2^{-\Omega(n^\varepsilon)} \) in a number of \(2^{cn^\varepsilon} \) steps if the constant \(c \) is chosen small enough. \(\square \)

Mutation-based EAs have only been defined for \(p \leq 1/2 \) since flipping bits with higher probability seems to contradict the idea of a mutation. However, for the sake of completeness, we also analyze the (1+1) EA with \(p > 1/2 \) and obtain exponential expected optimization times. Note that we do not know whether OneMax is the easiest linear function in this case.

Theorem 8. On any linear function, the expected optimization time of the (1+1) EA with mutation probability \(p > 1/2 \) is bounded from below by \(2^{\Omega(n)} \).

Proof. We distinguish between two cases.

Case 1: \(p \geq 3/4 \). Here we assume that the initial search point has at least \(n/2 \) leading zeros and is not optimal, the probability of which is at least \(2^{-n/2-1} \). Since the \(n/2 \) most significant bits are set correctly in this search point, all accepted search points must have at least \(n/2 \) zeros as well. To create the optimum, it is
necessary that none of these flips. This occurs only with probability at most \((1/4)^{n/2} \), hence the expected optimization time under the assumed initialization is at least \(4^{n/2} \). Altogether, the unconditional expected optimization time is at least \(2^{-n/2} \cdot 4^{n/2} = 2^{\Omega(n)} \).

Case 2: \(1/2 < p \leq 3/4 \). Now the aim is to show that all created search points have a number of ones that is in the interval \(I := [n/8, 7n/8] \) with probability \(1 - 2^{-\Omega(n)} \). This will imply the theorem by the usual waiting time argument.

Let \(x \) be a search point such that \(|x|_1 \in I\). We consider the event of mutating \(x \) to some \(x' \) where \(|x'|_1 < n/8\). Since \(p > 1/2 \), this is most likely if \(|x|_1 = 7n/8 \) (using the ideas behind Lemma 1 for the complement of \(x \)). Still, using Chernoff bounds and \(p \leq 3/4 \), at least \((1/5) \cdot (7n/8) > n/8 \) one-bits are not flipped with probability \(1 - 2^{-\Omega(n)} \). By a symmetrical argument, the probability is \(2^{-\Omega(n)} \) that \(|x'|_1 > 7n/8\).

As was to be expected, no polynomial expected optimization times were possible for the range of \(p \) considered in this subsection.

6.3 Small Mutation Probabilities

We now turn to mutation probabilities that are bounded from above by roughly \(1/n^{2/3} \). Here relatively precise lower bounds can be obtained.

Theorem 9. On any linear function, the expected optimization time of an arbitrary mutation-based EA with \(\mu = \text{poly}(n) \) and \(p = O(n^{-2/3-\varepsilon}) \) is bounded from below by

\[
(1 - o(1))(1 - p)^{-n/p} \min\{\ln n, \ln(1/(p^3 n^2))\}.
\]

As a consequence from Theorem 9, we obtain that the bound from Theorem 4 is tight (up to lower-order terms) for the \((1+1)\) EA as long as \(\ln(1/(p^3 n^2)) = \ln n - o(\ln n) \). This condition is weaker than \(p = O((\ln n)/n) \). If \(p = \omega((\ln n)/n) \) or \(p = o(1/\text{poly}(n)) \), then Theorem 9 in conjunction with Theorem 7 and 8 imply superpolynomial expected optimization time. Thus, the bounds are tight for all \(p \) that allow polynomial optimization times.

Before the proof, we state another important consequence, implying the statement from Theorem 8 that using the \((1+1)\) EA with mutation probability \(1/n \) is optimal for any linear function.

Corollary 3. On any linear function, the expected optimization time of a mutation-based EA with \(\mu = \text{poly}(n) \) and \(p = c/n \), where \(c > 0 \) is a constant, is bounded from below by \((1 - o(1))((e^c/c)n \ln n) \). If \(p = \omega(1/n) \) or \(p = o(1/n) \), the expected optimization time is \(\omega(n \ln n) \).
Proof. The first statement follows immediately from Theorem \(\text{9}\) using \((1 - c/n)^{-n} \geq e^c\) and \(\ln(1/(p^3n^2)) = \ln n - O(\ln c)\). The second one follows, depending on \(p\), either from Theorem \(\text{7}\) or, in that case assuming \(p = O((\ln n)/n)\), from Theorem \(\text{9}\), noting that \((1 - p)^{-n}(1/p) \geq e^{np}/p = \omega(n)\) if \(p = \omega(1/n)\) or \(p = o(1/n)\). \(\square\)

Recall that by Theorem \(6\), it is enough to prove Theorem \(9\) for the \((1 + 1)\ EA\) on \textsc{OneMax}. As mentioned above, this is a well-studied function, for which strong upper and lower bounds are known in the case \(p = 1/n\). Our result for general \(p\) is inspired by the proof of Theorem \(1\) in Doerr, Fouz and Witt (2010), which uses an implicit multiplicative drift theorem for lower bounds. Therefore, we now need an upper bound on the multiplicative drift, which is given by the following generalization of Lemma 6 in Doerr, Fouz and Witt (2011).

Lemma 2. Consider the \((1+1)\ EA\) with mutation probability \(p\) for the minimization of \textsc{OneMax}. Given a current search point with \(i\) one-bits, let \(I'\) denote the random number of one-bits in the subsequent search point (after selection). Then we have \(E[i - I'] \leq ip(1 - p + ip^2/(1 - p))^{n-i}\).

Proof. Note that \(I' \leq i\) since the number of one-bits in the process is non-increasing. Hence, only mutations that flip at least as many one-bits as zero-bits have to be considered. The event that the total number of one-bits is decreased by \(k \geq 0\) can be partitioned into the subevents \(F_{k,j}\) that \(k + j\) one-bits and \(j\) zero-bits flip, for all \(j \in \mathbb{Z}_{\geq 0}^+\). The probability of an individual event \(F_{k,j}\) equals
\[
\binom{i}{k+j} \binom{n-i}{j} p^{k+2j} (1 - p)^{n-k-2j},
\]
where \(\binom{a}{b} := 0\) for \(b > a\). Thus, we have
\[
E(i - I') \leq \sum_{k=1}^{i} k \sum_{j=0}^{i} \left(\binom{i}{k+j} \binom{n-i}{j} p^{k+2j} (1 - p)^{n-k-2j} \right) =: S_1
\]
\[
\leq \sum_{k=1}^{i} k \binom{i}{k} p^k (1 - p)^{n-k} \cdot \sum_{j=0}^{n-i} \binom{n-i}{j} \left(\frac{p}{1-p} \right)^{2j} =: S_2,
\]
where the second inequality uses \(\binom{i}{k+j} \leq \binom{i}{k} \cdot \binom{i}{j}\). Factoring out \((1 - p)^{n-i}\) of \(S_1\), we recognize the expected value of a binomial distribution with parameters \(i\) and \(p\), which means \(S_1 = (1 - p)^{n-i} \cdot ip\). Regarding \(S_2\), we apply the Binomial Theorem and obtain \(S_2 = (1 + i(p/(1 - p))^2)^{n-i}\). The product of \(S_1\) and \(S_2\) is the upper bound from the lemma. \(\square\)
Proof of Theorem9. As already mentioned, we may assume that the linear function is \textsc{OneMax} and that the algorithm is the (1+1) \textsc{EA}. The idea is to apply Theorem2 which is the above-mentioned multiplicative drift theorem for lower bounds, for a suitable choice of the parameters. Let \(\tilde{p} := \max\{p, 1/n\} \). We first observe that the probability of flipping at least \(b := \tilde{p}n \ln n \) bits in a single step is bounded from above by

\[
\binom{n}{\tilde{p}n \ln n} \cdot \tilde{p}^{\tilde{p}n \ln n} \leq \left(\frac{e\tilde{p}n}{\tilde{p}n \ln n} \right)^{\tilde{p}n \ln n} = 2^{-O(\tilde{p}n(\ln n)(\ln \ln n))},
\]

where we have used \(p \leq \tilde{p} \). Hence, the probability is superpolynomially small. In the following, we assume that the number of one-bits changes by at most \(p \) where we have used \(s = \tilde{b} \). Furthermore, we have \(\ln(s) \) is OneMax. As already mentioned, we may assume that the linear function \(\tilde{b} := 1/(2\tilde{p}^2n \ln n) \) as an additional upper bound. Note that \(s_{\max} \leq n/(2\ln n) \) due to \(\tilde{p} \geq 1/n \). Since the \(\mu \) initial search points are drawn uniformly at random and \(\mu = \text{poly}(n) \), it holds \(X_{\mu} \geq s_{\max} \) with probability \(1 - o(1) \). Again, assuming this to happen, we lose a factor \(1 - o(1) \) in the bound we want to prove. Moreover, due to our assumption \(p = O(n^{-2/3 - \varepsilon}) \) (which means \(\tilde{p} = O(n^{-2/3 - \varepsilon}) \)), we have \(b = n\tilde{p} \ln n \leq 1/(4\tilde{p}^2n \ln n) = s_{\max}/2 \) for \(n \) large enough. Altogether, it holds \(s_{\max}/2 \leq X_t \leq s_{\max} \) at the first point of time \(t^* \) where \(X_t \leq s_{\max} \). To simplify issues, we consider the process only from time \(t^* \) on. Skipping the first \(t^* \) steps, we pessimistically assume \(s_0 := s_{\max}/2 \) as starting point and \(X(t) \leq s_{\max} \) for all \(t \geq 0 \). The second condition of the drift theorem is now fulfilled since the bound on \(\tilde{p} \) also implies \(b = \tilde{p}n \ln n \leq 1/(2\tilde{p}^2n \ln^2 n) = \beta s_{\max} \), where \(\beta s_{\max} \) is the largest value for \(\beta s \) to be taken into account.

Assembling the factors from the lower bound in Theorem2 we get \(\frac{1 - \beta}{1 + \beta} = 1 - o(1) \). Furthermore, we have \(\ln(s_0/s_{\min}) = \ln(1/(4\tilde{p}^3n^2 \ln^3 n)) = \ln(1/((\tilde{p}^2n^2))) - O(\ln \ln n) \), which is \((1 - o(1)) \ln(1/(\tilde{p}^2n^2))\) by our assumption on \(\tilde{p} \). If we can prove that \(1/\delta = (1 - o(1))(1 - p)^{-n/(1/p)} \), the proof is complete.

To bound \(\delta \), we use Lemma2 Note that \(i \leq s_{\max} \) holds in our simplified process. Using the lemma and recalling that \(1/\tilde{p} \geq 1/p \), we get

\[
\frac{E(X(t) - X(t+1) \mid X(t) = i)}{i} \leq p \left(1 - p + \frac{s_{\max}p^2}{1 - p} \right)^{n - s_{\max}} \leq p \left(1 - p + \frac{1}{n \ln n} \right)^{n - s_{\max}} \leq p \left(1 - p \right) \left(1 + \frac{2}{n \ln n} \right)^{n - s_{\max}} = (1 + o(1))p(1 - p)^n,
\]
where we have used $p \leq 1/2$ and $(1 + 2/(n \ln n))^n = 1 + o(1)$ and $(1 - p)^{-s_{\text{max}}} = (1 - p)^{-1/(2p^2 n \ln n)} = 1 + o(1)$. Hence, $1/\delta \geq (1 - o(1))(1/p)(1 - p)^{-n}$ as suggested, which completes the proof.

Finally, we remark that the expected optimization time of the (1+1) EA with $p = 1/n$ on OneMax is known to be $en \ln n - \Theta(n)$ (Doerr, Fouz and Witt, 2011). Hence, in conjunction with Theorems 5 and 6, we obtain for $p = 1/n$ that the expected optimization time of the (1+1) EA varies by at most an additive term $\Theta(n)$ within the class of linear functions.

Conclusions

We have presented new bounds on the expected optimization time of the (1+1) EA on the class of linear functions. The results are now tight up to lower-order terms, which applies to any mutation probability $p = O((\ln n)/n)$. This means that $1/n$ is the optimal mutation probability on any linear function. We have for the first time studied the case $p = \omega(1/n)$ and proved a phase transition from polynomial to exponential running time in the regime $\Theta((\ln n)/n)$. The lower bounds show that OneMax is the easiest linear function for all $p \leq 1/2$, and they apply not only to the (1+1) EA but also to the large class of mutation-based EAs. They so exhibit the (1+1) EA as optimal mutation-based algorithm on linear functions. The upper bounds hold with high probability. As proof techniques, we have employed multiplicative drift in conjunction with adaptive potential functions. In the future, we hope to see these techniques applied to the analysis of other randomized search heuristics.

We finish with an open problem. Even though our proofs of upper bounds would simplify for the function BinVal, this function is often considered as a worst case. Is it true that the runtime of the (1+1) EA on BinVal is stochastically largest within the class of linear functions, thereby complementing the result that the runtime on OneMax is stochastically smallest?

Acknowledgments

The author thanks Benjamin Doerr, Timo Kötzing, Per Kristian Lehre and Carola Winzen for constructive discussions on the subject and for ruling out an early proof attempt. Moreover, he thanks Daniel Johannsen for proofreading a draft of the Sections 4 and 5 and pointing out a simplification of the proof of Theorem 4. Finally, he thanks Dirk Sudholt, who suggested to study the class of mutation-based EAs.
A Multiplicative Drift for Lower Bounds

In this appendix, we supply the proof of Theorem 2, the lower-bound version of the multiplicative drift theorem. The proof follows the one of Theorem 5 in Lehre and Witt (2010) and uses the following additive drift theorem.

Theorem 10 (Jägersküpper (2007)). Let \(X^{(1)}, X^{(2)}, \ldots \) be random variables with bounded support and let \(T \) be the stopping time defined by \(T := \min\{t \mid X^{(1)} + \cdots + X^{(t)} \geq g\} \) for a given \(g > 0 \). If \(E(T) \) exists and \(E(X^{(i)} \mid T \geq i) \leq u \) for \(i \in \mathbb{N} \), then \(E(T) \geq g/u \).

The proof of Theorem 2 also makes use of the following simple lemma.

Lemma 3. Let \(X \) be any random variable, and \(k \) any real number. If it holds that \(\text{Prob}(X < k) > 0 \), then \(E(X) \geq E(X \mid X < k) \).

Proof. Define \(p := \text{Prob}(X < k) \) and \(\mu_k := E(X \mid X < k) \). The lemma clearly holds when \(p = 1 \) such that we assume \(0 < p < 1 \) in the following. If \(E(X) \) is positive infinite then \(E(X) \geq \mu_k \) is obvious. If \(E(X) \) is negative infinite then so is \(\mu_k \) by the law of total probability. Finally, for finite \(E(X) \), the law of total probability yields

\[
E(X) = (1 - p) \cdot E(X \mid X \geq k) + p \cdot \mu_k \geq (1 - p) \cdot k + p \cdot \mu_k
\]

\[
> (1 - p) \cdot \mu_k + p \cdot \mu_k = E(X \mid X < k).
\]

\[\square \]

Proof of Theorem 2. The proof generalizes the proof of Theorem 1 in Doerr, Fouz and Witt (2010). The random variable \(T \) is non-negative. Hence, if the expectation of \(T \) does not exist, then it is positive infinite and the theorem holds. We condition on the event \(T > t \), but we omit stating this event in the expectations for notational convenience. We define the stochastic process \(Y^{(t)} := \ln(X^{(t)}) \) (note that \(X^{(t)} \geq 1 \)), and apply Theorem 10 with respect to the random variables

\[
\Delta_{t+1}(s) := (Y^{(t)} - Y^{(t+1)} \mid X^{(t)} = s) = \left(\ln\left(\frac{s}{X^{(t+1)}} \right) \mid X^{(t)} = s \right).
\]

We consider the time until \(X^{(t)} \leq s_{\min} \) if \(X^{(0)} = s_0 \) and use the parameter \(g := \ln(s_0/s_{\min}) \). By the law of total probability, the expectation of \(\Delta_{t+1}(s) \) can be expressed as

\[
\text{Prob}(s - X^{(t+1)} \geq \beta s) \cdot E(\Delta_{t+1}(s) \mid s - X^{(t+1)} \geq \beta s) + \text{Prob}(s - X^{(t+1)} < \beta s) \cdot E(\Delta_{t+1}(s) \mid s - X^{(t+1)} < \beta s).
\] (1)
By applying the second condition from the theorem, the first term in (1) can be bounded from above by \(\frac{\beta \delta}{\ln s} \cdot \ln s = \beta \delta \). The logarithmic function is concave. Hence, by Jensen’s inequality, the second term in (1) is at most

\[
\ln \left(E \left(s - X^{(t+1)} < \beta s \wedge X^{(t)} = s \right) \right) = \ln \left(1 + E \left(\frac{s - X^{(t+1)}}{X^{(t+1)}} \mid s - X^{(t+1)} < \beta s \wedge X^{(t)} = s \right) \right).
\]

By using the inequality \(\ln(1 + x) \leq x \) as well as the conditions \(X_{t+1} \geq (1 - \beta)s \) and \(X_{t+1} \leq X_t \), this simplifies to

\[
E \left(\frac{s - X^{(t+1)}}{X^{(t+1)}} \mid s - X^{(t+1)} < \beta s \wedge X^{(t)} = s \right) < E \left(\frac{s - X^{(t+1)}}{(1 - \beta)s} \mid s - X^{(t+1)} < \beta s \wedge X^{(t)} = s \right).
\]

By Lemma 3 and the first condition from the theorem, it follows that the second term in (1) is at most

\[
E \left(\frac{s - X^{(t+1)}}{(1 - \beta)s} \mid X^{(t)} = s \right) \leq \frac{\delta}{1 - \beta}.
\]

Altogether, we obtain \(E(\Delta_{t+1}(s)) \leq (\beta + 1/(1 - \beta))\delta \leq ((\beta + 1)/(1 - \beta))\delta \). From Theorem 10, it now follows that

\[
E(T \mid X^{(0)} = s_0) \geq \frac{1}{\delta} \cdot \frac{1 - \beta}{1 + \beta} \cdot \ln \left(\frac{s_0}{s_{\min}} \right).
\]

□

References

Auger, Anne and Doerr, Benjamin (2011). Theory of Randomized Search Heuristics – Foundations and Recent Developments. World Scientific Publishing.

Bäck, Thomas (1993). Optimal mutation rates in genetic search. In Proc. of ICGA ’93, 2–8. Morgan Kaufmann.

Doerr, Benjamin and Goldberg, Leslie Ann (2011). Adaptive drift analysis. Algorithmica. To appear; preprint: http://arxiv.org/abs/1108.0295.
Doerr, Benjamin, Johannsen, Daniel, and Winzen, Carola (2010a). Drift analysis and linear functions revisited. In Proc. of CEC ’10, 1–8. IEEE Press.

Doerr, Benjamin, Johannsen, Daniel, and Winzen, Carola (2010b). Multiplicative drift analysis. In Proc. of GECCO ’10, 1449–1456. ACM Press.

Doerr, Benjamin, Fouz, Mahmoud, and Witt, Carsten (2010). Quasirandom evolutionary algorithms. In Proc. of GECCO ’10, 1457–1464. ACM Press.

Doerr, Benjamin, Fouz, Mahmoud, and Witt, Carsten (2011). Sharp bounds by probability-generating functions and variable drift. In Proc. of GECCO ’11, 2083–2090. ACM Press.

Droste, Stefan, Jansen, Thomas, and Wegener, Ingo (2000). A natural and simple function which is hard for all evolutionary algorithms. In Proc. of IECON ’00, 2704–2709. DOI 10.1109/IECON.2000.972425.

Droste, Stefan, Jansen, Thomas, and Wegener, Ingo (2002). On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 276, 51–81.

Hajek, Bruce (1982). Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability, 13(3), 502–525.

He, Jun and Yao, Xin (2001). Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127, 57–85.

He, Jun and Yao, Xin (2004). A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing, 3(1), 21–35.

Jägersküpper, Jens (2007). Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theoretical Computer Science, 379(3), 329–347.

Jägersküpper, Jens (2008). A blend of markov-chain and drift analysis. In Proc. of PPSN ’08, vol. 5199 of LNCS, 41–51. Springer.

Lehre, Per Kristian and Witt, Carsten (2010). Black-box search by unbiased variation. ECCC report TR10-102, http://eccc.hpi-web.de/report/2010/102/.

Marshall, Albert W., Olkin, Ingram, and Arnold, Barry (2011). Inequalities: Theory of Majorization and Its Applications. Springer, 2nd ed.

Motwani, Rajeev and Raghavan, Prabhakar (1995). Randomized Algorithms. Cambridge University Press.

Mühlenbein, Heinz (1992). How genetic algorithms really work: I. Mutation and hillclimbing. In Proc. of PPSN ’92, 15–26. Elsevier.
Neumann, Frank and Witt, Carsten (2010). *Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Computational Complexity*. Natural Computing Series. Springer.

Sudholt, Dirk (2010). General lower bounds for the running time of evolutionary algorithms. In *Proc. of PPSN ’10*, 124–133. Springer. Extended version: http://arxiv.org/abs/1109.1504.

Wegener, Ingo (2001). Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In Sarker, Ruhul, Mohammadian, Masoud, and Yao, Xin (eds.), *Evolutionary Optimization*. Kluwer Academic Publishers.

Wegener, Ingo and Witt, Carsten (2005a). On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions. *Journal of Discrete Algorithms*, 3(1), 61–78.

Wegener, Ingo and Witt, Carsten (2005b). On the optimization of monotone polynomials by simple randomized search heuristics. *Combinatorics, Probability & Computing*, 14(1-2), 225–247.