Detection of radioactive materials from the Fukushima Daiichi Nuclear Power Plant accident at Shizuoka-city

Makoto Yanaga and Yasuhisa Oya

Radioscience Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.

Received May 8, 2012; accepted Feb. 22, 2013

The γ-rays of the atmospheric particles collected in Shizuoka-city from March 15 to March 27, 2011 were measured. Radioactive nuclides due to the Fukushima Daiichi Nuclear Power Plant accident were found in the samples. Day to day variation of concentration of 131I and 137Cs etc. indicated two times arrival of radioactive plume from Fukushima to Shizuoka-city and suggested that the surface of Shizuoka-city had been slightly contaminated with radioactive cesium on mainly March 15.

Key words: nuclear power plant accident, atmospheric particles, 131I, 137Cs, Shizuoka-city

Introduction

An earthquake of magnitude-9.0 and subsequent huge tsunami hit the Pacific Ocean coast of northeastern Japan on 11 March, 2011. The Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company located in Fukushima Prefecture was also struck by the tsunami. Although the reactors shut down automatically, the disasters knocked out the cooling systems of the nuclear power plant. Then, a meltdown of the nuclear fuel rods and several times explosions occurred. The accident resulted in a release of radioactive materials, such as 131I, 134Cs and 137Cs etc., into the environments, and formation of high dose rate zones around the Plant and to the northwest direction1.

In order to search for widespread distribution of the radioactive materials, we collected air samples at Shizuoka-city, Japan, about 370 km southwest of the Fukushima Daiichi Nuclear Power Plant, from 15 March, and examined (Fig. 1). On June 2011, Shizuoka Prefecture said that radioactive cesium levels exceeded the safety limit in tea leaves processed at several factories in Warashina area of Shizuoka-city. The tea products had 581 to 654 Bq kg$^{-1}$ of the radioactive cesium, against the Japanese government’s threshold value, 500 Bq kg$^{-1}$, for vegetables2. Therefore, we also discussed on when Shizuoka-city had been contaminated with radioactive cesium without consideration about a question; Was it right to have applied the regulation level for leaf vegetables to processed tea? Tea producers in Shizuoka suffered financial damage not only by not having been able to ship tea but also by the rumor. Many people stopped buying tea leaves processed in Shizuoka because they thought that Shizuoka products were not good for health, regardless of actual safety.

Experimental

Atmospheric particle samples were collected from March 15 to March 27, 2011, on glass-cellulose fiber filters (HE-40T; 48 mm diameter, 0.41 mm thickness, ADVANTEC Co., Ltd.) with an air sampler (SP-30, M&F Enterprise) placed in front of the building of Radioscience Facility at Faculty of Science, Shizuoka University, Shizuoka-city, Japan (Fig. 2). The air sampler used here is usually used for working environment measurements in our radiation controlled area. In the working environment measurements, this sampling device is set at sampling time of 30 minutes beforehand and used for collection of airborne radioactive particles in the laboratories. Therefore, in the present work, the sampling time was set for 30 min at a flow rate of 30 L min$^{-1}$.

The filters were folded in four and wrapped with polyethylene film. The γ-rays of radioactive nuclides in them on 5 mm thick acrylic plate were measured with a coaxial ORTEC GMX series high purity Ge semiconductor detector. The detector was shielded by 100 mm thick lead bricks, 5 mm thick copper plates...
Fig. 1 Locations of sampling and the Fukushima Daiichi Nuclear Power Plant.

Fig. 2 Locations of Shizuoka University and Kita-Ando monitoring site. The topographic map used is publishing by Geospatial Information Authority of Japan.
Detection of radioactive materials from the Fukushima Daiichi Nuclear Power Plant accident at Shizuoka-city

and 5 mm acrylic plates. At first, the sample collected on March 15 was placed axially centered 55 mm above the detector Be window and the radioactivity in it was measured. Then, the sample was also measured at 10 mm distance for determination of low counting rate nuclide, 131I. An efficiency calibration curve at 55 mm from detector surface was determined by measuring commercially obtained calibration sources. The radionuclides employed for the calibration were 54Mn, 57Co, 60Co, 109Cd, 137Cs and 133Ba. An efficiency curve at 10 mm distance was obtained by parallel translation of the efficiency curve at 55 mm using the determined value of 131I as the secondary standard nuclide. All the samples except for one collected on March 15 were measured at 10 mm above the detector surface. The spectra were stored on a 4096 multi-channel analyzer for 6 - 24 h and were analyzed with the computer software Gamma Studio (SEIKO EG&G Ltd.).

Results and Discussion

Figure 3(a) shows the γ-ray spectrum of the atmospheric particles collected on March 15. The dominant peaks of the spectrum are those due to 132Te, 131I, 134Cs, and 137Cs. These nuclides are highly volatility fission products and rather short-lived products, such as 132Te ($T_{1/2} = 3.20$ d) and 131I ($T_{1/2} = 8.02$ d), are included in the sample. On the other hand, as shown in Fig. 3(b), no peaks due to these nuclides are found in the spectrum of the sample collected on March 18, three days after the explosion at No. 2 reactor. The spectrum was similar to background spectrum of the detector. These indicate that the nuclides found in the atmospheric particles collected in Shizuoka-city were a part of released radioactive nuclides from the Fukushima Daiichi Nuclear Power Plant. In Fig. 3(a), peaks of 131I ($T_{1/2} = 2.30$ h), which is daughter nuclide
of 135Te, and 140La ($T_{1/2} = 1.68$ d) are also seen in the spectrum whereas 146Ba ($T_{1/2} = 12.8$ d), the parent nuclide of 148La, is not recognized. Concentrations of radioactive materials at the end of sampling corrected for decay are summarized in Table 1. In Table 2, concentrations of 131I, 135Te, 134Cs and 137Cs sampled on March 15 are compared with those of KEK (High Energy Accelerator Research Organization) and RIKEN$^{(1)}$. In the present work, glass-cellulose fiber filters were used in the sampling with no activated charcoal filters and only particles were collected whereas large part of released 131I existed in gaseous form9. The data used in Table 2 for radioactivity concentrations of 131I are those for particles collected on filters at KEK and RIKEN. KEK in Tsukuba-city, Ibaraki Prefecture, is located 165 km south of the Fukushima Daiichi Nuclear Power Plant and RIKEN in Wako-city, Saitama Prefecture, is about 200 km southwest of the Plant. When a ratio of 131I for 137Cs at Shizuoka-city is compared with those of KEK and RIKEN, the ratio of 131I in Shizuoka-city is much higher whereas the ratio of 135Te for 137Cs is approximately constant. According to the observation data of the Japan Meteorological Agency, there was the time when it became cloudy, but the rain was not observed in the daytime from the early morning of March 15 of each Kanto prefecture including Ibaraki and Saitama.6 It is hard to think that aerosol-bound radiocesium was removed from the atmosphere by rain on March 15. The data of the Japan Meteorological Agency also indicates that the direction of the wind in each Kanto prefecture from early morning to the daytime of the day blew from Kanto to carry the radioactive plume to Shizuoka. Therefore, the ratio of 131I having been high in Shizuoka-city indicates that the particle size of radioactive tellurium and cesium is much larger than that of iodine and some quantity of 135Te, 134Cs and 137Cs might fall out before the radioactive plume reached Shizuoka, in the route of detouring around the south side of Mt. Fuji7. In fact, the particle size distribution of atmospheric particles of radio nuclides collected in Tsukuba-city showed that much particle size of cesium (both of 134Cs and 137Cs) was 2 or 3 µm and most of particles of 134Cs in solid form were less than 1 µm although large part of 131I existed in gaseous form9. From March 16, only 131I was detected with lower counting rates due to rather low sampling volume (900 L). Changes in the radiation dose rate measured at Kita-Ando site (see Fig. 2) and meteorological data, precipitation, in Shizuoka-city are shown in Fig. 4.6,8 A distinct peak of dose rate on March 15

Start and end of air sampling	Sampling volume	131I (Bq m$^{-3}$)	134Te (Bq m$^{-3}$)	134Cs (Bq m$^{-3}$)	137Cs (Bq m$^{-3}$)	131I/137Cs	134Te/137Cs	132Cs/137Cs
2011/3/15 16:54 - 17:24	0.9 m3	26.56±0.43	2.19±0.14	2.18±0.14	17.6±0.6	7.4±2.4		
2011/3/16 10:45 - 11:15	0.9 m3	0.27±0.04	ND	ND	ND	ND		
2011/3/17 11:10 - 11:40	0.9 m3	0.21±0.05	ND	ND	ND	ND		
2011/3/18 11:50 - 12:20	0.9 m3	ND	ND	ND	ND	ND		
2011/3/19 13:30 - 14:00	0.9 m3	ND	ND	ND	ND	ND		
2011/3/20 12:04 - 12:34	0.9 m3	0.14±0.04	ND	ND	ND	ND		
2011/3/21 7:40 - 8:10	0.9 m3	0.20±0.05	ND	ND	ND	ND		
2011/3/22 11:05 - 11:35	0.9 m3	0.74±0.06	ND	ND	ND	ND		
2011/3/23 10:45 - 11:15	0.9 m3	0.64±0.04	ND	ND	ND	ND		
2011/3/24 11:40 - 12:10	0.9 m3	0.30±0.05	ND	ND	ND	ND		
2011/3/25								
2011/3/26 15:49 - 16:19	0.9 m3	ND	ND	ND	ND	ND		
2011/3/27 14:56 - 15:26	0.9 m3	0.15±0.05	ND	ND	ND	ND		

| Detection limit (Bq m$^{-3}$): | 0.08 | 0.04 | 0.04 | 0.2 | 1.0 |

KEK	134Te	134Cs	137Cs	131I/137Cs	134Te/137Cs	132Cs/137Cs	
Shizuoka Univ.	26.6	17.6	2.19	2.18	12.2	8.1	1.0

RIKEN	134Te	134Cs	137Cs	134I/137Cs	134Te/137Cs	132Cs/137Cs	
	36	61	7.6	9.5	3.8	6.4	0.8

Table 2 Concentrations (Bq m$^{-3}$) of 131I, 135Te, 134Cs, and 137Cs, and their ratios to 137Cs

Table 1 Radioactivity concentrations of 131I, 134Cs, 137Cs, 132Te, and 140La, detected at Shizuoka-city, Japan (Bq m$^{-3}$)
and that from March 21 to March 22 are shown, indicating two times arrival of the dispersed radioactive plume from Fukushima to Shizuoka-city. The fact that there was two time transportation of contaminated air masses to Shizuoka-city in this period was reproduced by numerical simulations\(^7\),\(^9\),\(^10\). Morino et al. and Yasunari et al. also tried reconstruction of atmospheric behavior and deposition of \(^{137}\)Cs using numerical simulations\(^11\),\(^12\). However, there are some discrepancies between the observed and simulated data of deposition because of uncertainties in the treatment of emission, and transport and deposition due to complexities of regional wind and so on. It is impossible to fully reproduce and estimate the distribution of \(^{137}\)Cs deposition across Japan from a limited numbers of observed data.
137Cs in the particulate phase can be removed from the atmosphere and brought to the surface by dry or wet deposition. According to the meteorological data, precipitation was observed from March 21 to March 23 in southern Tōhoku and Kanto area\(^6\). Therefore, the majority of aerosol-bound 137Cs with diameters of several micrometers would be brought to the surface by wet deposition in these areas. In fact, high deposition rates were observed in Yamagata, Ibaraki, Saitama, Chiba, Tokyo, and Kanagawa\(^2\). Then, the second peak of dose rate in Fig. 4 would due to 131I existed in gaseous form or bound to fine particle. Results of another study on distribution of 134Cs and 137Cs in Shizuoka-city also suggest that particles with radioactive cesium released from the Fukushima Daiichi Nuclear Power Plant were arrived at Shizuoka-city on mainly March 15, 2011\(^1\). Surface of Shizuoka-city would be slightly contaminated with radioactive cesium on mainly March 15, 2011.

Conclusion

In the present work, atmospheric particle samples were collected from March 15 to March 27, 2011, after the Fukushima Daiichi Nuclear Power Plant accident occurred, and radioactivity in the samples was determined. Radioactive nuclides from Fukushima were found in the samples. Day to day variation of concentration of 132Te, 131I, 134Cs, and 137Cs indicated two times arrival of radioactive plume from Fukushima and suggested that the majority of radioactive cesium on the surface of Shizuoka-city had been deposited on mainly March 15.

Acknowledgement

We appreciate the financial support from Shizuoka University, Japan. We are grateful to Mr. Toshiyoshi Miyazawa (Faculty of Science, Shizuoka University) for his help in the sampling of atmospheric particles.

References

1) Ministry of Education, Culture, Sports, Science and Technology (MEXT) and U. S. Department of Energy (DOE): MEXT and DOE airborne monitoring, <http://radioactivity.mext.go.jp/en/list/203/list-1.html>.

2) Shizuoka Prefecture: Test results for radioactivity on tea produced in Shizuoka prefecture, <http://www.pref.shizuoka.jp/sangyou/sa-340/20110520_test_results_radio_activity.html>.

3) KEK: Radiation monitoring at KEK, <http://legacy.kek.jp/quake/radmonitor/index-e.html>.

4) RIKEN: Report on the γ-ray measurements after the accident of Fukushima I Nuclear Power Plant, <http://www.radiochem.org/kinkyu/64.pdf>.

5) Ohara, T., Morino, Yu, Tanaka A.: Atmospheric behavior of radioactive materials from Fukushima Daiichi Nuclear Power Plant, J. Natl. Inst. Public Health, 60(4), 292-299(2011).

6) Japan Meteorological Agency: Past weather data search, <http://www.data.jma.go.jp/obd/stats/etrn/index.php> (in Japanese).

7) Japan Atomic Energy Agency: Image sequence of radioactive materials diffusion simulation released into the environment from the Fukushima Daiichi Nuclear Power Plant in TEPCO, <http://nsed.jaea.go.jp/ers/environment/envs/fukushima/index.htm> (in Japanese).

8) Shizuoka Prefecture: Readings of environmental radioactivity in Shizuoka Prefecture following the emergency situation at Tokyo Electric Power Fukushima Dai-ichi Nuclear Power Plant, <http://www.pref.shizuoka.jp/kinkyu/1fmonitoring/110316monitoring_2.html>.

9) Japan Atomic Energy Agency: A trial calculation on fallout of Cs137 from atmosphere due to the Fukushima Daiichi Nuclear Power Plant accident: Simulation using the world version SPEEDI/WSPEEDI, <http://nsed.jaea.go.jp/fukushima/data/20110906.pdf> (in Japanese).

10) Institut de Radioprotection et de Sûreté Nucléaire: Accident de la centrale de Fukushima Daiichi : Dispersion des rejets radioactifs dans l’atmosphère à l’échelle régionale, <http://www.irsn.fr/FR/popup/Pages/animation_dispersion_rejets_19mars.aspx>.

11) Morino, Yu., Ohara, T., Nishizawa, M.: Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011GL048689.

12) Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, soils due to the Fukushima nuclear accident, Proc. Natl. Acad. Sci. USA, 108(49), 19526-19529(2011).

13) Ministry of Education, Culture, Sports, Science and Technology: Reading of radioactivity level in fallout by prefecture, <http://radioactivity.mext.go.jp/en/list/194/list-1.html>.

14) Tsuboi, T., Wada, H., Yanaga, M.: Distribution of 134Cs and 137Cs radioactivity of surface soil originated in the Fukushima Dai-ichi nuclear power plant accident at Shizuoka city, Japan, Radiation Safety Management, 11(1), 11-18(2012).