Hecke actions on certain strongly modular genera of lattices

Gabriele Nebe and Maria Teider

Abstract

We calculate the action of some Hecke operators on spaces of modular forms spanned by the Siegel theta-series of certain genera of strongly modular lattices closely related to the Leech lattice. Their eigenforms provide explicit examples of Siegel cusp forms.

1 Introduction

One of the most remarkable lattices in Euclidean space is the Leech lattice, the unique even unimodular lattice $\Gamma_1 \subset (\mathbb{R}^{24}, (,))$ of dimension 24 that does not contain vectors of square length 2. Here a lattice $\Lambda \subset (\mathbb{R}^n, (,))$ is called unimodular, if Λ equals its dual lattice $\Lambda^\# := \{ x \in \mathbb{R}^n \mid (x, \lambda) \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \}$ and even, if the quadratic form $x \mapsto (x, x)$ takes only even values on Λ. [13] studies spaces of Siegel modular forms generated by the Siegel theta-series of the 24 isometry classes of lattices in the genus of Γ_1. The present paper extends this investigation to further genera of lattices, closely related to Γ_1. A unified construction is given in [16]: Consider the Mathieu group $M_{23} \leq \text{Aut}(\Gamma_1)$, where the automorphism group of a lattice $\Lambda \subset (\mathbb{R}^n, (,))$ is $\text{Aut}(\Lambda) := \{ g \in O(n) \mid \Lambda g = \Lambda \}$. Let $g \in M_{23}$ be an element of square-free order $l := |\langle g \rangle|$. Then

$$l \in \{1, 2, 3, 5, 6, 7, 11, 14, 15, 23\} =: \mathcal{N} = \{ n \in \mathbb{N} \mid \sigma_1(n) : = \sum_{d \mid n} d \text{ divides } 24 \}$$

and for each $l \in \mathcal{N}$, there is an up to conjugacy unique cyclic subgroup $\langle g \rangle \leq M_{23}$ of order l. Let $\Gamma_l := \{ \lambda \in \Gamma_1 \mid \lambda g = \lambda \}$ denote the fixed lattice of g. Then Γ_l is an extremal strongly modular lattice of level l and of dimension $2k_l$, where

$$k_l := 12\sigma_0(l)/\sigma_1(l)$$

and $\sigma_0(l)$ denotes the number of divisors of l. In particular Γ_1 is the Leech lattice, Γ_2 the 16-dimensional Barnes-Wall lattice and Γ_3 the Coxeter-Todd lattice of dimension 12.

Let Λ be an even lattice. The minimal $l \in \mathbb{N}$ for which $\sqrt{l}\Lambda^\#$ is even, is called the level of Λ. Then $l\Lambda^\# \subset \Lambda$. For an exact divisor d of l let

$$\Lambda^{\#,d} := \Lambda^\# \cap \frac{1}{d}\Lambda$$

denote the d-partial dual of Λ. A lattice Λ is called strongly l-modular, if Λ is isometric to $\sqrt{d}\Lambda^{\#,d}$ for all exact divisors d of the level l of Λ. If l is a prime, this coincides with the notion of modular lattices, which just means that the lattice is similar to its dual lattice. The Siegel theta-series

$$\Theta^{(m)}_\Lambda(Z) := \sum_{(\lambda_1, \ldots, \lambda_m) \in \Lambda^m} \exp(i\pi \text{trace}((\lambda_i, \lambda_j)Z))$$

*Mathematics Subject Classification: 11F46, 11H06
(which is a holomorphic function on the Siegel halfspace $\mathcal{H}^{(m)} = \{ Z \in \text{Sym}_m(\mathbb{C}) \mid \exists (Z) \text{ positive definite } \}$ of a strongly l-modular lattice is a modular form for the l-th congruence subgroup $\Gamma_0^{(m)}(l)$ of $\text{Sp}_{2m}(\mathbb{Z})$ (to a certain character) invariant under all Atkin-Lehner-involutions (cf. [11]). In particular for $m = 1$ and $l \in \mathcal{N}$ the relevant ring of modular forms is a polynomial ring in 2 generators as shown in [14], [15]. Explicit generators of this ring allow to bound the minimum of an n-dimensional strongly l-modular lattice Λ with $l \in \mathcal{N}$,

$$\min(\Lambda) := \min_{0 \neq \lambda \in \Lambda} (\lambda, \lambda) \leq 2 + 2\lfloor \frac{n}{2k_l} \rfloor.$$

Lattices Λ achieving this bound are called extremal. For all $l \in \mathcal{N}$ there is a unique extremal strongly l-modular lattice of dimension $2k_l$ and this is the lattice Γ_l described above. All the genera are presented in the nice survey article [17].

In this paper we investigate the spaces of Siegel modular forms generated by the Siegel theta-series of the lattices in the genus $G(\Gamma_l)$ for $l \in \mathcal{N}$ using similar methods as for the case $l = 1$ which is treated in [13]. The vector space $V := V(G)$ of all complex formal linear combinations of the isometry classes of lattices in any genus G forms a finite dimensional commutative \mathbb{C}-algebra with positive definite Hermitian scalar product. Taking theta-series defines linear operators $\Theta^{(m)}$ from V into a certain space of modular forms and hence a filtration of V by the kernels of these operators. This filtration behaves nicely under the multiplication and is invariant under all Hecke-operators. With the Kneser neighbouring process we construct a family of commuting self-adjoint linear operators on V. Their common eigenvectors provide explicit examples of Siegel cusp forms.

The genera $G(\Gamma_l)$ ($l \in \mathcal{N}$) share the following properties:

Corollary 1.1 Let $l \in \mathcal{N}$ and let p be the smallest prime not dividing l. The mapping $\Theta^{(k_l)}$ is injective on $V(G(\Gamma_l))$. For $l \neq 7$, the construction described in [2] (see Paragraph 2.3) gives a non-zero cusp form $BFW(\Gamma_l, p) = \Theta^{(k_l)}(\text{Per}(\Gamma_l, p))$. The eigenvalue of the Kneser operator K_2 at the eigenvector $\text{Per}(\Gamma_l, p)$ is the negative of the number of pairs of minimal vectors in Γ_l which is also the minimal eigenvalue of K_2.

Remark 1.2 In Section 4 we also list the eigenvalues of some of the operators $T(q)$ defined in Subsection 2.4. These eigenvalues suggest that for even values of k_l, the cusp form $BFW(\Gamma_l, p)$ is a generalized Duke-Imamoglu-Ikeda lift (see [8]) of the elliptic cusp form of minimal weight k_l.

Acknowledgement. We thank R. Schulze-Pillot for helpful comments, suggestions and references.

2 Methods

The general method has already been explained in [13] (see also [19], [20], [21] and [2] for similar strategies).

2.1 The algebra $V = V(G)$

Let G be a genus of lattices in the Euclidean space $(\mathbb{R}^{2k}, (,))$. Then G is the disjoint union of finitely many isometry classes

$$G = [\Lambda_1] \cup \ldots \cup [\Lambda_k].$$
Let \(\mathcal{V} := \mathcal{V}(\mathcal{G}) \cong \mathbb{C}^h \) be the complex vector space with basis \((\Lambda_1), \ldots, (\Lambda_h)\). Let \(\mathcal{V}_\mathbb{Q} = \{ (\Lambda_1), \ldots, (\Lambda_h) \}_\mathbb{Q} \cong \mathbb{Q}^h \) be the rational span of the basis.

The space \(\mathcal{V} \) can be identified with the algebra \(\mathcal{A} \) of complex functions on the double cosets \(G(\mathbb{Q}) \backslash G(\mathbb{A}) / \text{Stab}_{G(\mathbb{A})}(\Lambda_\mathbb{A}) = \bigcup_{i=1}^h G(\mathbb{Q}) x_i \text{Stab}_{G(\mathbb{A})}(\Lambda_\mathbb{A}) \) where \(G \) is the integral form of the real orthogonal group \(G(\mathbb{R}) = O_{2k} \) defined by \(\Lambda_1 \), \(\mathbb{A} \) denotes the ring of rational adèles and \(\Lambda_\mathbb{A} \) the adèlic completion of \(\Lambda_1 \). If \(\chi_i \) denotes the characteristic function mapping \(G(\mathbb{Q}) x_j \text{Stab}_{G(\mathbb{A})}(\Lambda_\mathbb{A}) \) to \(\delta_{ij} \) and \(\Lambda_i = x_i \Lambda_1 \) \((i = 1, \ldots, h)\) then the isomorphism maps \([\Lambda_i] \) to \([\text{Aut}(\Lambda_i)]\chi_i \). The usual Petersson scalar product then translates into the Hermitian scalar product on \(\mathcal{V} \) defined by

\[
\langle [\Lambda_i], [\Lambda_j] \rangle := \delta_{ij} |\text{Aut}(\Lambda_i)|
\]

and the multiplication of \(\mathcal{A} \) defines a commutative and associative multiplication \(\circ \) on \(\mathcal{V} \) with

\[
[\Lambda_i] \circ [\Lambda_j] := \#(\text{Aut}(\Lambda_i)) \delta_{ij} [\Lambda_i]
\]

(see for instance [\ref{3} Section 1.1]). Note that the Hermitian form \(\langle \cdot, \cdot \rangle \) is associative, i.e.

\[
\langle v_1 \circ v_2, v_3 \rangle = \langle v_1, v_2 \circ v_3 \rangle \quad \text{for all } v_1, v_2, v_3 \in \mathcal{V}.
\]

2.2 The two basic filtrations of \(\mathcal{V} \)

For simplicity we now assume that \(\mathcal{G} \) consists of even lattices. Let \(l \) be the level of the lattices in \(\mathcal{G} \). Taking the degree-\(n \) Siegel theta-series \(\Theta^{(n)}_{\Lambda_i}(n = 0, 1, 2, \ldots) \) of the lattices \(\Lambda_i \) \((i = 1, \ldots, h)\) then defines a linear map

\[
\Theta^{(n)} : \mathcal{V} \rightarrow \mathcal{M}_{n,k}(l) \text{ by } \Theta^{(n)} \left(\sum_{i=1}^h c_i [\Lambda_i] \right) := \sum_{i=1}^h c_i \Theta^{(n)}_{\Lambda_i}
\]

with values in a space of modular forms of degree \(n \) and weight \(k \) for the group \(\Gamma^{(n)}_0(l) \) (see [\ref{1}]).

For \(n = 0, \ldots, 2k \) let \(\mathcal{V}_n := \ker(\Theta^{(n)}) \) be the kernel of this linear map. Then we get the filtration

\[
\mathcal{V} := \mathcal{V}_{-1} \supseteq \mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \ldots \supseteq \mathcal{V}_{2k} = \{0\}
\]

where \(\mathcal{V}_0 = \{ v = \sum_{i=1}^h c_i [\Lambda_i] \mid \sum_{i=1}^h c_i = 0 \} \) is of codimension 1 in \(\mathcal{V} \).

Clearly \(\Theta^{(n)}(\mathcal{V}_{n-1}) \) is the kernel of the Siegel \(\Phi \)-operator mapping \(\Theta^{(n)}(\mathcal{V}) \) onto \(\Theta^{(n-1)}(\mathcal{V}) \). For square-free level one even has

Theorem 2.1 (see [\ref{4} Theorem 8.1]) If \(l \) is square-free, then \(\Theta^{(n)}(\mathcal{V}_{n-1}) \) is the space of cusp forms in \(\Theta^{(n)}(\mathcal{V}) \).

Let \(\mathcal{W}_n := \mathcal{V}_n^\perp \) be the orthogonal complement of \(\mathcal{V}_n \). We then have the ascending filtration

\[
0 = \mathcal{W}_{-1} \subseteq \mathcal{W}_0 \subseteq \mathcal{W}_1 \subseteq \ldots \subseteq \mathcal{W}_{2k} = \mathcal{V}.
\]

By [\ref{12} Proposition 2.3, Corollary 2.4] one has the following lemma:

Lemma 2.2

\[
\mathcal{W}_n \circ \mathcal{W}_m \subset \mathcal{W}_{n+m} \text{ for all } m, n \in \{-1, \ldots, 2k\}
\]

and

\[
\mathcal{W}_n \circ \mathcal{V}_m \subset \mathcal{V}_{m-n} \text{ for all } m > n \in \{-1, \ldots, 2k\}.
\]
Since theta-series have rational coefficients, both filtrations are rational, i.e. \(V_n = \mathbb{C} \otimes (V_n \cap V_{\mathbb{Q}}) \) and \(W_n = \mathbb{C} \otimes (W_n \cap V_{\mathbb{Q}}) \), hence the same statements hold when \(V \) is replaced by \(V_{\mathbb{Q}} \).

2.3 The Borcherds-Freitag-Weissauer cusp form

The article [5] gives a quite general construction of a cusp form of degree \(k \). Let \(\Lambda \) be a \(2k \)-dimensional even lattice and choose some prime \(p \) such that the quadratic space \((\Lambda/p\Lambda, Q_p)\) is isometric to the sum of \(k \) hyperbolic planes. Fix a totally isotropic subspace \(F \) of \(\Lambda/p\Lambda \) of dimension \(k \). For \(\lambda = (\lambda_1, \ldots, \lambda_k) \in \Lambda^k \) we put \(E(\lambda) := \langle \lambda_1, \ldots, \lambda_k \rangle + p\Lambda \) and \(S(\lambda) := \frac{1}{p^k}((\lambda_i, \lambda_j))_{i,j} \in \text{Sym}_k(\mathbb{R}) \). Define \(\epsilon(E(\lambda)) = \epsilon(\lambda) := (-1)^{\dim(F \cap E(\lambda))} \) if \(E(\lambda) \) is a \(k \)-dimensional totally isotropic subspace of \(\Lambda/p\Lambda \) and \(\epsilon(E(\lambda)) = \epsilon(\lambda) := 0 \) otherwise.

Definition 2.3 \(\text{BFW}(\Lambda, p)(Z) := \sum_{\lambda \in \Lambda^k} \epsilon(\lambda) \exp(i\pi \text{trace}(S(\lambda)Z)) \).

By [5] the form \(\text{BFW}(\Lambda, p) \) is a linear combination of Siegel theta-series of lattices in the genus of \(\Lambda \): For any \(k \)-dimensional totally isotropic subspace \(E \) of \(\Lambda/p\Lambda \) let \(\Gamma(E) := (E, p\Lambda) \) be the full preimage of \(E \). Dividing the scalar product by \(p \), one obtains a lattice \(\frac{1}{p}\Gamma(E) := (\Gamma(E), \frac{1}{p}(,)) \in \mathcal{G} \). Then we define

\[
\text{Per}(\Lambda, p) := \sum_{E} \epsilon(E)\left[\frac{1}{p}\Gamma(E) \right] \in \mathcal{V}
\]

where the sum runs over all \(k \)-dimensional totally isotropic subspaces of \(\Lambda/p\Lambda \). As \(\epsilon \) is only defined up to a sign, also \(\text{Per}(\Lambda, p) \) is only well defined up to a factor \(\pm 1 \). It is shown in [5, Theorem 2] that

\[
\Theta^{(k)}(\text{Per}(\Lambda, p)) = \text{BFW}(\Lambda, p).
\]

In analogy to the notation in [10] we call \(\text{Per}(\Lambda, p) \) the **perestroika** of \(\Lambda \). Clearly \(\text{BFW}(\Lambda, p) \) is in the kernel of the \(\Phi \)-operator and hence a cusp form, if the level of \(\Lambda \) is square-free by Theorem 2.1.

2.4 Hecke-actions

Strongly related to the Borcherds-Freitag-Weissauer construction are the Hecke operators \(T(p) \) which define self-adjoint linear operators on \(\mathcal{V} \) and whose action on theta series coincides with the one of \(T(p) \) in [7, Theorem IV.5.10] and [22, Proposition 1.9] up to a scalar factor (depending on the degree of the theta series). Assume that the genus \(\mathcal{G} \) consists of even \(2k \)-dimensional lattices of level \(l \). For primes \(p \) not dividing \(l \) we define \(T(p) : \mathcal{V} \to \mathcal{V} \) by

\[
T(p)([\Lambda]) := \sum_{E} \left[\frac{1}{p}\Gamma(E) \right]
\]

where the sum runs over all \(k \)-dimensional totally isotropic subspaces of \(\Lambda/p\Lambda, Q_p \). Note that \(T(p) \) is 0 if \(\Lambda/p\Lambda, Q_p \) is not isomorphic to the sum of \(k \) hyperbolic planes.

The following operators commute with the \(T(p) \) and are usually easier to calculate using the Kneser neighbouring-method (see [9]): For a prime \(p \) define the linear operator \(K_p \) by

\[
K_p([\Lambda]) := \sum_{\Gamma} [\Gamma], \text{ for all } \Lambda \in \mathcal{G}
\]
where the sum runs over all lattices Γ in G such that the intersection $\Lambda \cap \Gamma$ has index p in Λ and in Γ. If p does not divide the level l \cite[Proposition 1.10]{22} shows that the operators K_p are essentially the Hecke operators $T_i^{(m-1)(p^2)}$ (up to a summand, which is a multiple of the identity and a scalar factor). Also if p divides l, the operators K_p are self-adjoint: For Λ and Γ in G, the number $n(\Gamma, [\Lambda])$ of neighbours of Γ that are isometric to Λ equals the number of rational matrices $X \in \text{GL}_{2k}(\mathbb{Z}) \text{diag}(p^{-1}, 1^{2k-1}, p) \text{GL}_{2k}(\mathbb{Z})$ solving

$$I(\Gamma, \Lambda) : \quad X F_{\Gamma} X^{tr} = F_{\Lambda}$$

(where F_{Γ} and F_{Λ} denote fixed Gram matrices of Γ respectively Λ) divided by the order of the automorphism group of Λ (since one only counts lattices, X and gX have to be identified for all $g \in \text{GL}_{2k}(\mathbb{Z})$ with $gF_{\Lambda}g^{tr} = F_{\Lambda}$). Mapping X to X^{-1} gives a bijection between the set of solutions of $I(\Gamma, \Lambda)$ and $I(\Lambda, \Gamma)$. Therefore

$$n(\Gamma, [\Lambda]) | \text{Aut}(\Lambda)| = n(\Lambda, [\Gamma]) | \text{Aut}(\Gamma)|.$$

Hence the linear operators K_p and $T(p)$ generate a commutative subalgebra

$$\mathcal{H} := \langle T(q), K_p \mid q, p \text{ primes} , q/l \rangle \leq \text{End}^s(\mathcal{V})$$

of the space of self-adjoint endomorphisms of \mathcal{V} and \mathcal{V} has an orthogonal basis (d_1, \ldots, d_k), consisting of common eigenvectors of \mathcal{H}.

For each $1 \leq i \leq h$ we define $v(i) \in \{-1, \ldots, 2k - 1\}$ by $d_i \in \mathcal{V}_{v(i)}$, $d_i \not\in \mathcal{V}_{v(i)+1}$. Analogously let $w(i) \in \{0, \ldots, 2k\}$ be defined by $d_i \in \mathcal{W}_{w(i)}$, $d_i \not\in \mathcal{W}_{w(i)-1}$.

Lemma 2.4 (\cite[Lemma 2.5]{23}) Let $1 \leq i \leq h$ and assume that d_i generates a full eigenspace of \mathcal{H}. Then $w(i) = v(i) + 1$.

If the genus G is strongly modular of level l, by which we mean that $\sqrt{d}\Lambda^{#,d} \in G$ for all $\Lambda \in G$ and all exact divisors d of l, then the Atkin-Lehner involutions

$$W_d : [\Lambda] \mapsto [\sqrt{d}\Lambda^{#,d}]$$

for exact divisors d of l define further self-adjoint linear operators on \mathcal{V}. In this case let

$$\hat{\mathcal{H}} := \langle \mathcal{H}, W_d \mid d \text{ exact divisor of } l \rangle.$$
3 Results

The explicit calculations are performed in MAGMA (12). Fix \(l \in \mathcal{N} \), let \(\mathcal{G} := \mathcal{G}(\Gamma_1) \), \(\mathcal{V} = \mathcal{V}(\mathcal{G}) \) and denote by \(\Lambda_1 := \Gamma_1, \Lambda_2, \ldots, \Lambda_l \) representatives of the isometry classes of lattices in \(\mathcal{G} \). We find that in all cases \(\mathcal{H} = \langle K_2, K_3 \rangle \cong \mathbb{C}^h \) is a maximal commutative subalgebra of End(\(\mathcal{V} \)). Therefore the common eigenspaces are of dimension one and it is straightforward to calculate an explicit orthogonal basis \((d_1, \ldots, d_h)\) of \(\mathcal{V} \) consisting of eigenvectors of \(\mathcal{H} \). In particular \(v(i) = w(i) - 1 \) for all \(i = 1, \ldots, h \) by Lemma 2.3. Here we choose \(d_1 := \sum_i^{h} |\mathrm{Aut}(\Lambda_i)|^{-1} [\Lambda_i] \in \mathcal{V}_0 - \mathcal{V}_1 \) to be the unit element of \(\mathcal{V} \) and \((l \neq 7) \, d_h = \mathrm{Per}(\Gamma_l, p) \in \mathcal{V}_{k_l - 1} \) where \(p \) is the smallest prime not dividing \(l \). We then determine some Fourier-coefficients of the series \(\Theta^{(n)}(d_i) (n = 0, 1, \ldots, k_l) \) to get upper bounds on \(v(i) \). In all cases the degree-\(k_l \) Siegel theta-series of the lattices are linearly independent hence \(\mathcal{V}_{k_l} = \{0\} \).

Moreover \(\mathcal{V}_{k_l - 1} = \langle d_h \rangle \) if \(l \neq 7 \). We also know that \(w(1) = 0 \) and we may choose \(d_2 \) such that \(w(2) = 1 \). By Lemma 2.2 and 2.4 the product \(d_j \circ d_l \) lies in \(\mathcal{V}_{w(i) + w(j)} \). If the coefficient of \(d_h \) in the product is non-zero, this yields lower bounds on the sum \(w(i) + w(j) \) which often yield sharp lower bound for \(w(i) \) and \(w(j) \). The method is illustrated in [13, Section 3.2] and an example is given in Paragraph 3.1.

3.1 The genus of the Barnes-Wall lattice in dimension 16.

The lattices in this genus are given in [18]. The class number is \(h = 24 \) and we find

\[\langle K_2, K_3 \rangle = \mathcal{H}_Q \cong \mathbb{Q}^{13} \oplus F_1 \oplus F_2 \oplus F_3 \]

where the totally real number fields \(F_i \cong \mathbb{Q}[x]/(f_i(x)) \) are given by

\[
\begin{align*}
 f_1 &= x^3 - 11496x^2 + 41722560x - 47249837568, \\
 f_2 &= x^3 - 1704x^2 + 400320x + 173836800, \\
 f_3 &= x^5 - 11544x^4 + 42868800x^3 - 53956108800x^2 + 1813238784000x + 20094119608320000
\end{align*}
\]

and \(\langle K_2, K_3, W_2 \rangle = \mathcal{H}_Q \cong \mathbb{Q}^{13} \oplus \text{Mat}_3(\mathbb{Q}) \oplus \text{Mat}_3(\mathbb{Q}) \oplus \text{Mat}_5(\mathbb{Q}) \).

Let \(\alpha_i, \beta_i \) and \(\gamma_j \) \((i = 1, \ldots, 3, j = 1, \ldots, 5)\) denote the complex roots of the polynomials \(f_1, f_2 \) respectively \(f_3 \). Let \(\epsilon_i \) \((i = 1, \ldots, 3)\) denote the primitive idempotents of \(\mathcal{H}_Q \) with \(\mathcal{H}_Q \epsilon_i \cong F_i \).

Since the image of \(\theta_Q \) under \(\Theta^{(n)} \) has rational Fourier-coefficients, the functions \(v \) and \(w \) are constant on the eigenspaces \(E_i = \mathcal{V} \epsilon_i \) \((i = 1, 2, 3)\). We therefore give their values in one line in the following tabular:

Theorem 3.1 The functions \(v \) and the eigenvalues of \(ev_2 \) and \(ev_3 \) of \(K_2 \) respectively \(K_3 \) on \((d_1, \ldots, d_{24}) \) are as follows:

\(i \)	\(v(i) \)	\(ev_2 \)	\(ev_3 \)	\(i \)	\(v(i) \)	\(ev_2 \)	\(ev_3 \)
1	-1	34560	7176640	15	3, 4	1320	8640
2	0	16200	2389440	\(E_2 \)	4	\(\beta_j \)	31680
3	1	8760	792000	19	3, 4, 5	1080	-45120
4	1	7128	804288	20	3, 4, 5	312	4032
\(E_1 \)	2	\(\alpha_j \)	266688	21	5	-216	8640
8	3	2664	90048	22	5	-216	20928
9	3	1320	77760	23	6	-936	13248
\(E_3 \)	3	\(\gamma_j \)	100800	24	7	-2160	39360
For the dimensions of D_v one finds

\[
\begin{array}{ccccccccc}
 v & -1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \dim(D_v) & 1 & 1 & 2 & 3 & 7-10 & 3-5 & 2-4 & 1 \\
\end{array}
\]

Proof. By explicit calculations of the Fourier-coefficients the values given in the table are upper bounds for the $v(i)$. By Lemma 2.4 they also provide upper bounds on the $w(i) = v(i) + 1$.

We see that

\[d_i \circ d_j = A_{ij}d_{24} + \sum_{m=1}^{23} b_{ij}^m d_m\]

with a nonzero coefficient A_{ij} for the following pairs (i, j):

$(23, 2), (22, 3), (21, 4), (E_1, E_2), (E_3, E_3), (8, 8), (9, 9)$

(where (E_1, E_2) means that there is some vector in E_1 and some in E_2 such that this coefficient is non-zero, similarly (E_3, E_3)). Since $d_{m} \in W_7$ for all $m \leq 23$ and $d_j \circ d_i \in W_{w(i)+w(j)}$ the inequality $w(i) + w(j) \leq 7$ together with $A_{ij} \neq 0$ implies that $d_{24} \in W_7$ which is a contradiction. Hence $w(i) + w(j) \geq 8$ for all pairs (i, j) above. This yields equality for all values $v(i)$ and $v(j)$ for these pairs. Similarly we get $3 \leq v(i)$ for $i = 15, 19, 20$ since $A_{i,i} \neq 0$ for these i.

Conjecture 3.2 $v(19) = 5$ and $v(20) = 5$.

Since $d_{15} \circ d_2 = \sum_{m=1}^{18} c_m d_m + A_1 d_{19} + A_2 d_{20}$ with $A_1 \neq 0 \neq A_2$, we get $w(15) + 1 \geq \max(w(19), w(20))$.

Remark 3.3 If the conjecture is true, then $v(15) = 4$ and $\dim(D_3) = 7$, $\dim(D_4) = 4$, and $\dim(D_5) = 4$.

Using the formula in [11] Korollar 3 (resp. 22 Proposition 1.9]) we may calculate the eigenvalues of $T^{(n-1)}(3^2)$ from the one of K_3 and compare them with the ones given in [6] formula (7). The result suggests that $\Theta^{(2)}(d_4)$, $\Theta^{(3)}(v)$ (for some $v \in E_3$), $\Theta^{(6)}(d_{19})$ and $\Theta^{(8)}(d_{24})$ are generalized Duke-Imamoglu-Ikeda-lifts (cf. 8) of the elliptic cusp forms $\delta_8 \theta_{D_4}^i$ ($i=3,2,1,0$) where $\delta_8 = \frac{1}{10} (\theta_{D_4}^4 - \theta_{D_4})$ is the cusp form of $\Gamma_0(2)$ of weight 8 and θ_{D_4} the theta series of the 4-dimensional 2-modular root lattice D_4. This would imply that $v(19) = 5$ and, with Lemma 2.2, $v(15) = 4$.

3.2 The genus of the Coxeter-Todd lattice in dimension 12.

For $l = 3$ one has $h = 10$, all lattices in this genus are modular, and $H_Q = \langle K_2 \rangle \cong \mathbb{Q}^{10} = \hat{H}_Q$.

Theorem 3.4 There is some $a \in \{0, 1\}$ such that the function v and the eigenvalues ev_2 of K_2 and e_2 of $T(2)$ are as follows:

i	$v(i)$	ev_2	e_2	i	$v(i)$	ev_2	e_2
1	-1	2079	151470	6	3 - a	234	7560
2	0	1026	-27540	7	3	126	2376
3	1	594	17820	8	3	-36	432
4	1	432	3240	9	4	-144	-864
5	2	288	-5400	10	5	-378	1944
For the dimensions of D_v one finds

v	$\dim(D_v)$
-1	1
0	1
1	2
2	$1+a$
3	$3-a$
4	1
5	1

We conjecture that $a = 0$ but cannot prove this using Lemma 2.2.

The eigenvalues of $T(2)$ suggest that $\Theta(2)(d_3)$, $\Theta(4)(d_6)$ and $\Theta(6)(d_{10})$ are generalized Duke-Imamoglu-Ikeda-lifts (cf. [3]) of the elliptic cusp forms δ_6, $\delta_6\theta_A^2$, respectively δ_0, where $\delta_0 = \frac{1}{36}(\theta_A^6 - \theta_{15}^2)$ is the cusp form of $\Gamma_0(3)$ of weight 6 and θ_A^2 the theta series of the hexagonal lattice A_2. This would imply $v(3) = 1$, $v(6) = 3$ and $v(10) = 5$ and hence $a = 0$.

3.3 The genus of the 5-modular lattices in dimension 8.

The class number of this genus is $h = 5$, all lattices in this genus are modular, and $H = \langle K_2 \rangle \cong \mathbb{Q}^5 = \hat{\mathcal{H}}_Q$.

Theorem 3.5 For $l = 5$ one has $\dim(D_v) = 1$ for $v = -1, 0, 1, 2, 3$. The function v and the eigenvalues ev_2 of K_2 and ev_p of $T(p)$ ($p = 2, 3$) are given in the following table:

i	$v(i)$	ev_2	ev_3	i	$v(i)$	ev_2	ev_3
1	-1	135	2240	2	0	70	-120
2	0	70	160	3	1	42	84

3.4 The genus of the strongly 6-modular lattices in dimension 8.

The class number of $G(\Gamma_6)$ is $h = 8$, the Hecke-algebras are $\hat{\mathcal{H}}_Q = \langle K_2, W_2 \rangle \cong \mathbb{Q}^5 + \text{Mat}_3(\mathbb{Q})$ and $H = \langle K_2 \rangle \cong \mathbb{Q}^5 + \mathbb{Q}[x]/(f(x))$ where

$$f(x) = x^3 - 66x^2 - 216x + 31104.$$

Let $\delta_i \in \mathbb{R}$ ($i = 1, 2, 3$) denote the roots of f.

Theorem 3.6 Then the function v and the eigenvalues ev_2 of K_2 and ev_5 of $T(5)$ are given in the following table:

i	$v(i)$	ev_2	ev_5	i	$v(i)$	δ_j
1	-1	144	39312	E	1	1872
2	0	54	1872	7	2	-6
3	1	18	1008	8	3	-36

Hence $\dim(D_v) = 1$ for $v = -1, 0, 2, 3$ and $\dim(D_1) = 4$.

3.5 The genus of the 7-modular lattices in dimension 6.

The class number is $h = 3$, all lattices are modular, and $\hat{\mathcal{H}}_Q = \mathcal{H}_Q = \langle K_2 \rangle \cong \mathbb{Q}^3$. In contrast to the other genera, the perestroika $\text{Per}(\Gamma_7, 2)$ and hence also $\text{BFW}(\Gamma_7, 2)$ vanishes due to the fact that the image of $\text{Aut}(\Gamma_7)$ in $GO_7^+(2)$ is not contained in the derived subgroup $O_7^+(2)$. In fact, $\Theta(2)$ is already injective. Since the discriminant of the space is not a square modulo 3 and 5, the Hecke operators $T(3)$ and $T(5)$ vanish.

Theorem 3.7 We have $v(i) = i - 2$ for $i = 1, 2, 3$ and hence $\dim(D_v) = 1$ for $v = -1, 0, 1$. The eigenvalues of K_2 are 35, 19, and 5, the ones of $T(2)$ are 30, -18, and 10, and $T(11)$ has eigenvalues 2928, -144, and 248.
3.6 The genus of the strongly l-modular lattices in dimension 4 for $l = 11, 14, 15$.

For $l = 11, 14, 15$ the genus $G(\Gamma_l)$ consists of 3 isometry classes and $\mathcal{H}_Q = \langle K_2 \rangle \cong \mathbb{Q}^3 = \hat{\mathcal{H}}_Q$ since all lattices in the genus are strongly modular.

Theorem 3.8 For $l = 11, 14, 15$ one has $\dim(D_v) = 1$ for $v = -1, 0, 1$. The eigenvalues ev_2 of K_2 and e_p of $T(p)$ for primes $p \leq 7$ not dividing l are given in the following table:

i	$v(i)$	$l = 11$	$l = 14$	$l = 15$	
		e_2	e_3	e_5	e_7
1	-1	9	6	12	16
2	0	4	-4	-2	2
3	1	-6	1	3	7
		ev_2	e_3	e_5	e_7
1	-1	8	8	12	9
2	0	2	-4	0	1
3	1	-4	2	6	-3

3.7 The genus of the 23-modular lattices in dimension 2.

In the smallest possible dimension 2 the genus $G(\Gamma_{23})$ consists of only 2 isometry classes and $\mathcal{H}_Q = \langle K_2 \rangle \cong \mathbb{Q}^2 = \hat{\mathcal{H}}_Q$ for the same argument that all lattices in the genus are modular.

Theorem 3.9 For $l = 23$ one has $\dim(D_v) = 1$ for $v = -1, 0$. One has $v(1) = -1$, $v(2) = 0$, $d_1K_2 = 2d_1$ and $d_2K_2 = -d_2$. For the $T(p)$ for primes $p < 23$ we find $T(2) = T(3) = T(13) = K_2$ and $T(5) = T(7) = T(11) = T(17) = T(19) = 0$.

References

[1] A. N. Andrianov, *Quadratic forms and Hecke Operators*, Springer Grundlehren 286 (1987).

[2] B.J. Birch, *Hecke actions on classes of ternary quadratic forms*. Computational Number Theory, de Gruyter (1991).

[3] S. Böcherer, *Über den Kern der Thetaliftung*. Abh. Math. Sem. Univ. Hamburg 60 (1990) 209-223.

[4] S. Böcherer, R. Schulze-Pillot, *Siegel modular forms and theta series attached to quaternion algebras*. Nagoya Math. J. 121 (1991) 35-96.

[5] R. E. Borcherds, E. Freitag, R. Weissauer, *A Siegel cusp form of degree 12 and weight 12*, J. reine angew. Math. 494 (1998) 141-153.

[6] S. Breulmann, M. Kuss, *On a conjecture of Duke-Imamoglu*. Proc. AMS 128 (2000) 1595-1604.

[7] E. Freitag, *Siegelsche Modulfunktionen*, Springer Grundlehren 254 (1983).

[8] T. Ikeda, *On the lifting of elliptic cusp forms to Siegel cusp forms of degree n*, Annals of Math. 154 (2001) 641-682.

[9] M. Kneser, *Klassenzahlen definiter quadratischer Formen*. Arch. Math. 8 (1957), 241–250.
[10] H. Koch, B.B. Venkov, Über ganzzahlige unimodulare euklidische Gitter. J. reine angew. Math. 398 (1989) 144-168.

[11] A. Krieg, Das Vertauschungsgesetz zwischen Hecke-Operatoren und dem Siegelschen ϕ-Operator. Arch. Math. 46 (1986) 323-329.

[12] The Magma Computational Algebra System for Algebra, Number Theory and Geometry, http://magma.maths.usyd.edu.au/

[13] G. Nebe, B. Venkov, On Siegel modular forms of weight 12, J. reine angew. Math. 531 (2001) 49-60.

[14] H.-G. Quebbemann, Modular lattices in euclidean spaces. J. Number Th. 54 (1995) 190-202.

[15] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997) 55-65.

[16] E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Theory, 73 (1998)

[17] R. Scharlau, R. Schulze-Pillot, Extremal lattices. Algorithmic algebra and number theory. Edited by B. H. Matzat, G. M. Greuel, G. Hiss. Springer (1999) 139–170. Preprint available via http://www.matha.mathematik.uni-dortmund.de/preprints/welcome.html

[18] R. Scharlau, B. Venkov, The genus of the Barnes-Wall lattice. Comment. Math. Helv. 69 (1994), no. 2, 322–333

[19] R. Schulze-Pillot, Darstellung durch definite ternäre quadratische Formen. J. Number Theory 14 (1982), no. 2, 237–250.

[20] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen. Invent. Math. 75 (1984), no. 2, 283–299.

[21] R. Schulze-Pillot, Ternary quadratic forms and Brandt matrices. Nagoya Math. J. 102 (1986), 117–126.

[22] H. Yoshida, The Action of Hecke Operators on Theta Series. Algebraic and topological theories (Kinosaki, 1984), 197–238, Kinokuniya, Tokyo, 1986.

Authors' addresses:
Gabriele Nebe, Lehrstuhl D für Mathematik, RWTH Aachen, 52056 Aachen, Germany, nebe@math.rwth-aachen.de
Maria Teider, Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany maria.teider@mathematik.uni-ulm.de