PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy

Nicholas Ieronimakis, Aislinn Hays, Amalthiya Prasad, Kajohnkiart Janebodin, Jeremy S Duffield and Morayma Reyes

1 Department of Pathology, School of Medicine, University of Washington, WA, USA
2 Department of Pathology, Albert Einstein College of Medicine, NY, USA
3 Department of Anatomy, School of Dentistry, Mahidol University, Thailand
4 Department of Medicine, School of Medicine, University of Washington, WA, USA
5 Discovery Research, Biogen Inc, Cambridge, MA, USA
6 Montefiore Medical Center, Bronx, NY, USA

Abstract

Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+; CD45− mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+; Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolinab, a highly selective PDGFRα/β tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD.

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Keywords: PDGFRα signalling; fibrosis; collagen-producing cells; Duchenne muscular dystrophy; skeletal muscle

Received 5 February 2016; Revised 15 August 2016; Accepted 24 August 2016

Conflict of interest statement: The authors declare no competing interests. JSD is employed by Biogen and has stock in the company.

Introduction

Duchenne muscular dystrophy (DMD) is a fatal disease primarily affecting skeletal and cardiac muscles. There are no approved treatments that halt or reverse the course of the disease. As the disease progresses, connective tissue accumulates in degenerating cardiac and skeletal muscles, a process commonly referred to as fibrosis [1]. Fibrosis is the most prominent pathological feature, and a reliable determinant of disease progression, yet the cellular and molecular milieu that governs fibrosis in DMD remains largely uncharacterized [1–3]. Skeletal muscle mesenchymal progenitors capable of differentiating into resident fibroblasts and adipocytes have been identified (also referred to as FAPs) [4–6]. These mesenchymal progenitors are PDGFRα+ cells that have been associated with the pathogenesis in mdx and DMD skeletal muscles [7,8]. Recently, these mesenchymal progenitors in the skeletal muscle and heart have been shown to express pro-fibrotic genes in response to TGF-β1 and PDGF-AA in vitro, implicating them as potentially important cells in the fibrogenic process [7,9].

Constitutive activation of PDGFRα has been reported to induce spontaneous systemic fibrosis in healthy mice, and pro-fibrotic cells present in many organs express PDGFRα [7,9–12]. In models of toxin injury to skeletal muscle, pro-fibrotic cells also express PDGFRα [5,7,10]. Recently, studies have highlighted a role for PDGFRα signalling in the pro-fibrotic response of not only FAPs but also myogenic, haematopoietic, and endothelial cells [13]. Imatinib, a broad spectrum tyrosine kinase inhibitor, has been reported to decrease
fibrosis in mdx skeletal muscles by inhibiting c-Abl and PDGFR signalling, suggesting that the PDGFR pathway may be important [6,14,15]. Taken together, these reports suggest that pro-fibrotic muscle cells can express PDGFRα and that this pathway has the potential to induce fibrosis. Despite this evidence, it remains unclear whether PDGFRα signalling directly promotes fibrosis and loss of function in DMD. In light of recent evidence indicating that multiple cell populations contribute to fibrosis [13], the proportion of PDGFRα-expressing cells that produce fibrillar collagens and promote fibrosis in muscular dystrophy needs to be carefully examined.

Skeletal muscle fibrosis in DMD is characterized by the accumulation of type I and type III collagens [16]. In cardiac muscle, fibroblasts are thought to be a heterogeneous population with various expression patterns and developmental origins, although very recent studies now suggest that the majority appear to derive from resident populations of mesenchymal cells [17–21]. In skeletal muscles, populations including FAPs and endothelial, myogenic, and haematopoietic cells have been reported to express collagens [6,13]. However, the heterogeneity and the extent of collagen expression by various muscle populations have raised more questions which necessitate greater delineation. The identification of fibrotic cells is inherently hampered by the nature of collagen synthesis, which begins intracellularly, with the expression and production of pro-collagens, and ends with the assembly of collagen fibrils in the extracellular space [22]. Therefore, collagen-producing cells are not easily distinguishable from other cell types, such as inflammatory cells, that also occupy damaged tissue and influence fibrosis in disease or injury [23].

In the present study, we used fate-mapping techniques to study and dissect the roles of PDGFRα+ cells and PDGFRα signalling in disease progression in mdx mice which harbour a mutated dystrophin gene, drawing direct comparison with human dystrophic muscles. We show that PDGFRα+ cells are the primary source of fibrillar collagen matrix synthesis in disease. By comparing acute injury followed by repair in healthy skeletal muscle with chronic disease of mdx muscle, we dissected the differences and similarities between the regeneration process that results in restoration of function and the maladaptive repair process that characterizes muscle dystrophy.

Materials and methods

Expanded methods and details of mouse models, primers, and antibodies are listed in the supplementary material, Supplementary materials and methods and Tables S1–S5, and elsewhere [9,24–28]. Muscle injuries were caused by a single injection of a 10 nM solution of cardiotoxin (Sigma, St Louis, MO, USA) directly into the tibialis anterior (TA; 20 μl) or quadriceps (40 μl) [29]. For inducible Cre activation, 100 μl of 20 mg/ml tamoxifen suspended in corn oil was injected intraperitoneally (i.p.) daily for five consecutive days and then allowed to resolve for a minimum of 5 days prior to cardiotoxin injury. Myography was conducted and specific isometric force was calculated as specified previously [29]. Tissue processing, histology, and staining were in accordance with published procedures [9,29,30].

Cells for molecular analysis were isolated by FACS from single cell preparations prepared by digesting a collection of limb muscles (TA, gastrocnemius, and quadriceps) with collagenase and dispase (Worthington Biochemical Corp, Lakewood, NJ, USA) [26,31]. RNA was isolated from cells or tissue as described previously [29]. Proteins were isolated from muscle tissues snap-frozen with liquid nitrogen, ground into a fine powder, weighed, suspended in RIPA buffer containing protease and phosphatase inhibitors (Thermo/Pierce, Rockford, IL, USA), and then homogenized with a Tissue-Tearor (BioSpec, Bartlesville, OK, USA). The cultured Col1a1-GFP+ cells used for in vitro studies were generated as reported previously [9]. Single muscle fibres were isolated and cultured as described elsewhere [32] from 4-month-old wild-type (WT) and mdx extensor digitorum longus (EDL) muscles.

Measurement of the percentage area staining was performed using ImageJ software (NIH) [29,33,34]. The minimum diameter of muscle fibres and densitometry were also measured by ImageJ [29]. Graphs show the mean of replicates for each condition. Student’s t-test, or ANOVA when appropriate, was used for statistical analyses and computation of p values.

Results

Col1a1-GFP+ cells are responsible for connective tissue accumulation in dystrophic muscles

To study the process of fibrosis in dystrophic skeletal muscles, we utilized mdx mice that harbour a reporter of collagen type I production, the Col1a1-GFP transgene [9,35]. Col1a1-GFP+ cells are abundant in regions of pathology in mdx diaphragms compared with diaphragms from wild-type, healthy mice (Figure 1). Alterations in connective tissue and muscle architecture, highlighted by collagen type I staining and the presence of GFP+ cells, were prominent in diseased diaphragms and quadriceps of mdx mice (Figure 1A). This remodelling of the tissue architecture is characteristic of the cycles of degeneration and regeneration that occur with the progression of muscular dystrophy and presumably results in fibrosis as muscles lose their capacity to repair. Consistent with this, Col1a1-GFP+ cells are closely associated with muscle fibres positive for sarcoplasmic fibronectin, an indicator of degenerating muscle [36], and α-smooth muscle actin (αSMA), which is expressed by regenerating fibres [37] (Figure 1C, D). The cycles of damage and repair are associated with the accumulation of collagen type I and type III, the main components
of connective tissue in mdx muscle fibrosis [38–40]. Although expression of Col1a1-GFP is indicative of likely pro-collagen 1α1 production, it remained unclear if GFP+ cells were also the source of type III collagen. Therefore, we isolated Col1a1-GFP-positive and negative cells from mdx muscle digests by flow sorting to compare their expression of collagen mRNAs by RT-qPCR. GFP+ cells isolated from mdx diaphragms expressed high levels of Col1α1 and Col3α1, whereas other muscle cells such as endothelial cells (CD31+, Sca1+, CD45−) and macrophages (CD45+, F4/80+) did not express these pro-collagen mRNAs (Figure 1E).

To understand the progression of fibrosis, we characterized collagen type III, which accumulates in dystrophic mdx:Col1α1-GFP muscles [40]. Diaphragms from mdx mice showed thickening of endomysial type III collagen by 4 months of age (Figure 2A). GFP+ cells were located in areas of collagen type III accumulation. In quadriceps muscles, which show less severe pathology (Figure 2B), accumulation of collagen type III was evident by 14 months of age (Figure 2B) [41]. Collagen type III was also concentrated in the perimysium surrounding large vessels and associated with intense accumulation of Col1α1-GFP+ cells (supplementary material, Figure S1A). In addition, a microfibrillar collagen, collagen type VI, which is up-regulated in DMD [42], was also present in fibrotic regions occupied by Col1α1-GFP+ cells (supplementary material, Figure S1B). The localization of both collagen type III and collagen type VI with GFP+ cells was also observed in aged hearts from the same mdx mice (supplementary material, Figure S2).

Col1α1-GFP matrix-forming cells are PDGFRα+, Sca1+, CD45− in dystrophic muscles and derive from MSC progenitors

To characterize the markers of Col1α1-GFP+ cells in skeletal muscle, we analysed single-cell preparations of diaphragms from mdx mice by flow cytometry and compared our findings with immunohistological detection in tissue sections. GFP+ cells did not express the haematopoietic or endothelial markers CD45 or CD31, respectively (Figure 3A, B) [43,44]. Evaluation of the PDGFRα cellular compartments indicates that PDGFRα+ cells expressing Col1α1-GFP are also positive for Sca1 in both wild-type and mdx diaphragms. In contrast, Col1α1-GFP+ cells that are PDGFRα-negative are negative for Sca1 (supplementary material, Figure S3). In mdx diaphragms, the majority of Col1α1-GFP+ cells are PDGFRα+/Sca1+ (Figure 3A, B) and their proportion within the non-haematopoietic population (CD45−) steadily increases with age, becoming the majority (>60%) at 20 months of age. This profiling suggests that a proportion of FAPs (PDGFRα+, Sca1+, CD45−) express Col1α1-GFP in normal muscles, while the majority adopt a fibrogenic phenotype with the progression of dystrophy. In contrast, a large proportion of Col1α1-GFP+ cells in wild-type muscle show an absence of PDGFRα/Sca1, suggesting that these are pre-committed cells in a state of inactivity.

Because DMD also directly causes cardiac fibrosis, we examined cardiac Col1α1-GFP+ cells in the same way (supplementary material, Figure S4). In aged mdx heart muscle, more than 80% of Col1α1-GFP+ cells co-expressed PDGFRα but did not express CD31 or CD45. As previously observed, the majority of Col1α1-GFP+, PDGFRα+ cells were also Sca1+ in aged mdx diaphragm and heart muscles (Figure 3A and supplementary material, Figure S4) [9]. By histological analysis, Col1α1-GFP+ cells in mdx diaphragms co-expressed PDGFRα+, but did not co-localize with the vascular markers BS1 and NG2, which label endothelial cells and pericytes, respectively (Figure 3C) [45,46]. Therefore, the majority of Col1α1-GFP+ cells in aged mdx skeletal muscles share close phenotypic similarity to collagen-producing cells that have been characterized in the heart in DMD and in pressure overload cardiac failure [9,19].

To validate the exclusive expression of PDGFRα by the matrix-forming mesenchymal cells, we expressed nuclear GFP (nGFP) at the PDGFRα locus in mdx mice (PDGFRα-nGFP). Similar to Col1α1-GFP+ cells, PDGFRα-nGFP+ cells co-expressed CD34 and Sca1, but did not express CD45 and CD31 (Figure 3D). In addition, PDGFRα-nGFP+ cells were also abundant around regenerating muscle fibres and myogenic cells (Figure 3E), as well as around degenerating, necrotic muscle fibres (supplementary material, Figure S5). Quantitative analysis of RNA established that PDGFRα mRNA abundance was significantly elevated in skeletal and cardiac muscles in mdx compared with wild-type mice (Figure 3F).

To study the response of the PDGFRα+ mesenchymal progenitors to the onset and progression of dystrophy, we generated mdx mice carrying the PDGFRα-Cre allele and mT/mG loxP reporter [47,48]. In mdx muscle, the presence of membrane-EGFP+ cells at 6 weeks of age was similar to healthy muscle (supplementary material, Figure S6). By 8 weeks, however, there was a marked expansion of membrane-EGFP+, PDGFRα fate-mapped cells in diaphragmatic muscle. This timeframe of cell expansion is consistent with the commencement of muscular dystrophy fibrosis in mdx diaphragms [15,40,49]. This patterning of Col1α1-GFP+ and PDGFRα-nGFP+ or PDGFRα-Cre fate-mapped populations highlights the tight cellular localization between collagen production and PDGFRα expression during the processes of skeletal muscle regeneration and degeneration.

PDGFRα signalling by Sca1+, CD45− cells is transiently activated in acute injury–repair of skeletal muscle

Toxin injury in non-diseased muscle leads to a robust myogenic response that results in near-complete regeneration within 14 days [50]. Despite the severity of damage and alteration to the muscle architecture that occur
with toxin-induced injury, there is no persisting fibrosis, suggesting that collagen production is in balance with the need for muscle regeneration and restoration of damaged connective tissue [50], and that resorption of accumulated matrix during regeneration is coordinated and appropriate. With recurring damage in diseased mdx muscles, excessive deposition and thickening of the connective tissue occur, suggesting that fibrosis results from the unbalanced accumulation of collagen during chronic cycles of muscle regeneration and unresolved degeneration. Therefore, to gain insight into the process of connective tissue restoration, we examined the relationship between Col1a1-GFP-expressing cells and myogenic factor-5-expressing myogenic cells using the Myf5\textsuperscript{Δ\textsubscript{acZ}} allele following cardiotoxin (CTX) injury in wild-type mice [51].

Following CTX injection, the myogenic response in wild-type muscles peaks at day 3 post-injury [31,50]. This was evident by the prominence of Myf5\textsuperscript{Δ\textsubscript{acZ}}+ cells in CTX-injured TA muscles compared with uninjured contralateral TA muscles (Figure 4A). Col1a1-GFP+ cells were also abundant within regenerating areas of muscle and in close proximity to myogenic cells and newly regenerated muscle fibres expressing αSMA (supplementary material, Figure S7). This association indicates that Col1a1-GFP+ cells are active in parallel with myogenesis. Such activation of Col1a1-GFP+ cells and myogenic cells correlated with elevated levels of pro-collagen mRNAs at day 3 and subsequent decline by 14 days post-CTX injury (Figure 4A). Consistent with findings in mdx muscle, PDGFRα-GFP cells expanded in regenerating areas and expression levels of both Pdgfra and Pdgfa mRNAs showed the same pattern of increase during the peak of myogenesis at day 3, with subsequent decline at day 14, when regeneration is concluding (Figure 4B). These findings suggest that Col1a1-GFP+ cells and PDGFRα+ signalling in normal muscle repair result in restoration of the connective tissue surrounding regenerating myofibres, a process altered in muscular dystrophy.

Overactivation of PDGFRα signalling enhances fibrotic responses following muscle injury and characterizes human muscle dystrophy

PDGFR expression and activation are seen in mdx skeletal muscle [15], while expression and activation are also increased during muscle repair (Figure 4B). Therefore, in the context of skeletal muscle injury and repair, we tested whether constitutive activation of PDGFR signalling would result in excessive connective tissue deposition spontaneously or in response to injury. We utilized a Cre/loxP somatic cell recombination strategy to express the constitutively active mutant forms of the PDGFRs (PDGFRα \(\Delta D842V \) [10] and PDGFRβ \(\Delta D536A \) [52]) in PDGFRα-expressing cells immediately prior to CTX-mediated injury, using the PDGFRα-\textit{CreER} BAC transgene, which is activated by exposure to the oestrogen analogue tamoxifen [53]. Histological analysis showed that in PDGFRα \(\Delta D842V \) muscles, CTX injury led to excessive connective tissue reminiscent of mdx muscle pathology (Figure 4C, D). In contrast, injured PDGFRβ \(\Delta D536A \) mutant muscles showed slightly increased fibrosis. Uninjured muscles appeared similar between each model. Excessive PDGFRα activation during the process of muscle regeneration can therefore result in fibrosis. In turn, activation of PDGFRβ may also influence the response of collagen-producing cells, but with less potency compared with PDGFRα. The elevated levels of fibrosis in mutant muscles injected with CTX correlated with smaller fibre size in injured areas (supplementary material, Figure S8), indicating that excessive PDGFRα signalling in the context of muscle injury can alter the normal processes of regeneration.

To confirm specificity of PDGFRα-\textit{CreER} and exclude the possibility of non-specific Cre activation with CTX injury, we compared tamoxifen and vehicle-treated PDGFRα-\textit{CreER} mice harbouring the mT/mG loxP flanked conditional reporter. In these studies, GFP+ cells, indicative of Cre-mediated recombination, were observed only in animals pretreated with tamoxifen in both injured and uninjured muscles (supplementary material, Figure S9). In contrast, vehicle-treated controls did not show detectable GFP+ cells in healthy conditions or following CTX injury (supplementary material, Figure S10).

Elevated numbers of PDGFRα+ cells have been reported to co-localize with fibrosis in human DMD muscles [8]. Immunostaining of DMD muscles in our laboratory supports the presence of PDGFRα+ cells in the regions of connective tissue thickening (Figure 5A). Collagen accumulation was pronounced in endomysium and perimysium surrounding vessels in DMD muscle (Figure 5B), sites where Col1a1-GFP+ cells were also concentrated in mdx muscles (Figure 1). Furthermore,
Figure 2. Col1a1-GFP cells accumulate in areas of fibrosis and expand with disease progression. (A) Immunodetection of type III collagen in mdx:Col1a1-GFP muscles shows GFP+ cells accumulated in areas of pathological matrix deposition fibrosis that occurs with age and disease progression in mdx diaphragms. This accumulation is observed as early as 4 months in mdx versus wild-type diaphragms. (B) In contrast, limb muscles are less affected in mdx mice. The build-up of type III collagen and co-localization with GFP+ cells were not obvious until 14 months in the quadriceps from the same mdx mice shown. (C) Quantification of Col1a1-GFP+ cells and type III collagen in diaphragms and quadriceps reveals progressive increase with age. Scale bars = 50 μm.
Figure 3. Col1a1-GFP+ cells express PDGFRα but not endothelial or haematopoietic markers. (A, B) FACS analysis of the Col1a1-GFP population in wild-type and mdx diaphragms (N = 3 males per age group) reveals that GFP+ cells lack CD45 and CD31, but the majority express PDGFRα and Sca1 by 12 months of age in mdx mice. (C) Immunofluorescence analysis of mdx:Col1a1-GFP diaphragms confirms that GFP+ cells co-express PDGFRα+ (arrowhead), but lack vascular markers NG2 (line arrow) and BS1 (filled arrow). (D) FACS analysis comparing single-cell digests of diaphragms from Col1a1-GFP and PDGFRα-GFP mice reveals a similar profile between GFP+ populations: negative for CD45 and CD31, but the majority co-expressing Sca1 and CD34. (E) Images showing PDGFRα-GFP+ cells in mdx diaphragms concentrated in regions with regenerating fibres expressing αSMA+ as well as Myf5lacZ-positive myogenic cells in young mdx:PDGFRα-GFP:Myf5lacZ/+ mice. Scale bars = 50 μm. (F) RT-qPCR analysis for Pdgfra indicating increased expression in mdx versus wild-type skeletal tibialis anterior (TA), diaphragm, and heart muscles. N = 3 per tissues were analysed from 12-month-old mdx and wild-type mice. *p < 0.05. Bars show mean ± SEM.
Figure 4. Legend on next page.
staining for the PDGF-AA ligand revealed increased intensity in DMD and mdx muscle fibres (Figure 5C, D). Co-cultures of myofibres with Col1a1-GFP+ cells provided further evidence of PDGF production and paracrine signalling to mediate fibrogenesis. In this experiment, mdx myofibres showed significantly greater PDGF-AA staining and co-cultured Col1a1-GFP+ cells produced a greater amount of collagen versus wild-type fibre co-cultures (supplementary material, Figure S11). These results highlight the similarities between human and mouse disease and suggest that activation of PDGFαR signalling in muscular dystrophy promotes connective tissue accumulation. Ominously, dystrophic muscle fibres may promote fibrosis in a paracrine fashion via production and secretion of the PDGF-AA ligand.

Inhibition of PDGFαR signalling ameliorates muscular dystrophy fibrosis and improves function

Crenolanib, a potent tyrosine kinase inhibitor selective for PDGFαR, is currently in phase II clinical trials for PDGFαR-associated cancers [54–56]. Compared with imatinib, crenolanib has significantly greater avidity for the active form of PDGFαR, including mutant variants such as ΔD842V [54]. Moreover, it has no activity against VEGFR2, Src or ABL, whose inhibition has been associated with cardiac toxicities [57]. Therefore, we administered crenolanib to Col1a1-GFP+ muscle fibroblasts initially in vitro, to evaluate whether PDGFαR inhibition might reduce the pro-fibrotic activity of collagen-producing cells. Col1a1-GFP+ cells treated with 10 ng/ml PDGF-AA had significantly increased relative expression of both Col1a1 and Col3a1 (supplementary material, Figure S12A). This response to PDGF-AA was inhibited with the addition of 1 μM crenolanib. In contrast, exposure to the same concentration of PDGF-BB did not result in the up-regulation of pro-collagen transcripts. Western blot analysis confirmed the inhibitory effect of crenolanib in reducing PDGFαR phosphorylation when cells were stimulated with PDGF-AA (supplementary material, Figure S12B).

Next, we expanded our studies of PDGFαRα inhibition to mdx mice in order to evaluate whether crenolanib can reduce the pro-fibrotic response of collagen-producing cells in vivo. Crenolanib or the vehicle was administered for 4 weeks in the drinking water ad libitum, beginning at 8 weeks of age, a timeframe when elevated numbers of PDGFαRα-expressing cells are evident (supplementary material, Figure S6), and just prior to the development of fibrosis in mdx diaphragms [15,40]. Based on published pharmacokinetic data [58], the concentration of crenolanib in the drinking water was set at 0.03 mg/ml, so that animals received an approximate daily dose of 5 mg/kg that would achieve inhibition of PDGFαRα. Control mice were treated with an equal amount of the vehicle (DMSO) in their drinking water. Following 4 weeks of treatment, muscle strength was initially tested by ex vivo myography (Figure 6A), an assay commonly used to measure functional improvement in mdx muscles [59]. Crenolanib-treated mdx mice generated significantly greater isometric force in both EDL muscles and diaphragm strips.

To understand the factors and mechanisms that contributed to this functional gain, we examined changes in the muscles’ connective tissue. Histopathology of diaphragm muscles showed reduced collagen deposition, assessed in serial cross-sections as the percentage of Picrosirius red staining (Figure 6B). Whole tissue analysis indicated a significant reduction in the relative level of the Col3α1 transcript (Figure 6C). In contrast, the relative expression of Pdgf receptors and ligands did not change (Figure 6C), suggesting that the treatment does not result in the transcriptional ablation of the pathway. Accordingly, histological quantification of GFP and type III collagen immunofluorescence confirmed a reduction of collagen type III in crenolanib-treated diaphragms, whereas the number of Col1a1-GFP+ cells did not significantly change in comparison to vehicle-treated diaphragms (supplementary material, Figure S13). Western blot analysis of diaphragm muscles confirmed a significant decline in collagen type III with crenolanib. Fibronectin, which also accumulates with fibrosis and can be present in necrotic fibres
Figure 5. PDGFRα+ cells and the PDGF-AA ligand are up-regulated in human DMD muscles. (A) PDGFRα+ immunohistochemistry (brown) reveals increased numbers of PDGFRα+ cells (arrowheads) in biopsies of DMD muscles compared with healthy quadriceps from males aged 8–10 years (N = 3). (B) Picrosirius red and Fast Green staining of the same muscles shows more collagen in the endomysium and perimysium, particularly near vessels, venules (V) and arterioles (A), where PDGFRα+ cells are observed in human and mouse muscles. (C) PDGF-AA immunohistochemistry (brown) on the same DMD and normal muscle tissue sections reveals a strong presence of this ligand in dystrophic muscles, expressed primarily in muscle fibres. (D) PDGF-AA detection by immunofluorescence was also more intense in mdx than in wild-type male mouse quadriceps at 18 and 24 months, respectively. Scale bars = 50 μm. (E) Quantification of staining indicates significant increases in PDGFRα and fibrosis in DMD muscle in addition to elevated PDGF-AA staining in mdx and DMD muscles. *p < 0.05; ***p < 0.0005. Bars indicate mean ± SEM.
Figure 6. Legend on next page.

@ 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
(Figure 1C), was also reduced (Figure 6D). An attenuation of necrotic areas was also noted with crenolanib (supplementary material, Figure S14). Such reductions in connective tissue and fibrotic components correlated with reduced phosphorylation of PDGFRα and its intracellular downstream effector, Src (Figure 6E). Indeed, phosphorylated Src levels are increased in mdx diaphragms in comparison to same-age wild-type diaphragms (supplementary material, Figure S15). In contrast, phosphorylation of c-Abl, which is the main target of imatinib [15], did not change with crenolanib. Of note, a reduction in cardiac fibrosis and PDGFRα phosphorylation was also detected in the hearts of crenolanib-treated mdx mice (supplementary material, Figure S16).

To discern whether a reduction in fibrosis permitted increased regeneration, we evaluated myogenic factors in crenolanib-treated and vehicle-treated mdx:Col1a1-GFP muscles. As previously shown, collagen-producing cells are involved in regeneration (Figure 4A, B). In these experiments, we again observed Col1a1-GFP+ cells in close proximity to regenerating fibres expressing sarcomplasmic αSMA, which were greater in number and size with crenolanib (supplementary material, Figure S17). The Col1a1-GFP+ cells were more abundant in regenerating areas of crenolanib-treated diaphragm and EDL muscles (supplementary material, Figure S18A). Whole tissue levels of Acta2 transcripts in crenolanib-treated diaphragm muscles were increased, in keeping with the reduction in fibrosis being more permissive for regeneration (supplementary material, Figure S18B). Crenolanib-treated muscles showed significantly increased expression of the myogenic regulatory factor Pax7, a specific marker of satellite cells, but not of Myf5 or Myod, which are expressed by satellite cells and myoblasts [51,60,61] (supplementary material, Figure S18B). Such an increase in Pax7 transcripts suggests that the amelioration of fibrosis may result in greater satellite cell renewal during the course of treatment [60].

Discussion

Fibrosis in muscular dystrophy is widely recognized as a barrier to regeneration, yet remains understudied. Utilizing robust genetic models and molecular methods, in our present study we have identified an important role for PDGFRα signalling in collagen-producing cells during damage to connective tissue. In the absence of disease, collagen-producing cells restore the connective tissue in damaged muscles. This process is associated with transient elevations of mRNA levels for pro-collagens and PDGFRα signalling components (the receptor and ligand), as Col1a1-GFP+ cells respond to injury in a coordinated manner with myogenic precursors. In contrast, dystrophic muscles undergo continuous cycles of degeneration/regeneration, which maintains the response of Col1a1-GFP+ cells and PDGFRα signalling. Increased PDGFRα phosphorylation [15] and PDGFRα expression by mesenchymal progenitors that have potential to express collagens [4,5,7,8] suggest a role for this pathway in the pathology of muscular dystrophy.

To date, several populations of muscle cells, including FAPs and myogenic, haematopoietic, and endothelial cells, have been reported to express collagens and promote fibrosis [6,13]. Our results indicate that the majority of Col1a1-GFP+ cells share a profile similar to FAPs (Sca1+, PDGFRα+, CD45−), suggesting that these populations are not mutually exclusive. In addition, a very small number (<3%) of Col1a1-GFP+ cells expressed endothelial (CD31+, CD45−) or haematopoietic (CD45+) markers.Irrespective of cellular origin or classification, the pro-fibrotic transition of muscle cells is frequently associated with PDGFRα expression. This tendency was also observed in our study, where the majority of Col1a1-GFP+ cells were PDGFRα+ in dystrophic but not normal muscles. However, whether PDGFRα-expressing cells expanded or originated from various cell types that up-regulate PDGFRα with disease or injury remains to be elucidated. Careful fate-mapping of PDGFRα expression in conjunction with a reporter of collagen expression will be required to further delineate the origin and heterogeneity of pro-fibrotic cells.

The expression of PDGFRα by collagen-producing cells in vivo and the presence of the PDGF-AA ligand in dystrophic muscles indicate a paracrine role for PDGF-AA, which remains activated in response to chronic injury. PDGF-AA is expressed by developing muscles but is absent in the somites of Myf5-null mutants [62]. Consequently, it is entirely possible that PDGF signalling in muscular dystrophy is a reactivation of the development programme that occurs in response to muscle repair. Therefore, we hypothesize...
that continuous activation of PDGFRα signalling in collagen-producing cells and the resultant fibrosis are a consequence of the chronic injury and repair that occur in dystrophic muscles. In contrast, non-diseased muscles down-regulate PDGFRα signalling once the muscles’ connective tissue has been restored, during the process of regeneration (modelled in Figure 6G). In addition to the aforementioned findings, the capability of PDGFRα signalling to promote fibrosis when constitutively activated during the repair process in non-diseased muscles (Figure 6G) supports our hypothesis that excessive PDGFRα signalling promotes fibrosis and prevents normal repair. Consequently, inhibition of PDGFRα with crenolanib resulted in reduced fibrosis and functional improvement of mdx muscles (Figure 6A–F). Such results not only implicate PDGFRα signalling in the fibrotic response of collagen-producing cells but also present a novel target for reducing connective tissue accumulation in patients with DMD.

Lemos et al. [6] recently demonstrated another paracrine role mediated by macrophages, which in normal regenerating muscle secreted TNF to induce apoptosis of FAPs. In contrast, they showed that in dystrophic muscle, macrophages secreted TGF-β, which prevented apoptosis but induced the fibrogenic programme of FAPs. Whether macrophages or muscle cells in addition to muscle fibres regulate PDGFRα signalling in FAPs and/or Col1a1-GFP+ cells remains an important question worth pursuing.

Importantly, the intracellular signalling cascade by which PDGFRα stimulation leads to collagen production remains unknown. The reported reduction of mdx muscle fibrosis by imatinib has been attributed to PDGFR and c-Abl tyrosine-kinase inhibition [15]. Our results indicate that selective inhibition of PDGFRα, independent of c-Abl, can reduce fibrosis in mdx muscles and improve function (Figure 6). Herein, we demonstrated that Src, a direct downstream target of PDGFRα signalling, is increased in mdx diaphragms and that crenolanib treatment reduces phosphorylated Src. Recently, Pal et al. [63] showed that oxidative stress results in persistent activation of Src in mdx muscles and impairs autophagy via mTOR. Crenolanib has 100-fold higher selectivity for PDGFR than other tyrosine kinases including Src and c-Abl [55]. Thus, the observed reduction of phosphorylated Src following crenolanib treatment is mediated by direct inhibition of PDGFRα. Further studies are needed to define the signalling cascade by which PDGFRα-Src mediates the pro-fibrotic response of collagen-producing cells in skeletal muscles. Although c-Abl may also potentiate collagen transcription, c-Abl inhibition with imatinib, and to a lesser extent with nilotanib, has been associated with cardiomyocyte toxicity and heart failure in cancer patients [57,64]. Such a side effect may compound the cardiomyopathy prevalent in the majority of DMD patients [65]. Therefore, anti-fibrotic therapies that selectively target PDGFRα-Src signalling may prove efficacious and safer than broad-spectrum tyrosine-kinase inhibitors.

To conclude, we have further defined the role of PDGFRα+, Sca1+, CD45+ mesenchymal progenitors in skeletal muscle, which become activated after injury to become pathological matrix-forming cells. In settings of excessive PDGFRα signalling, these cells are a major population of matrix-forming fibroblasts which promote muscle fibrosis and inhibit normal regeneration. Crenolanib, a specific PDGFRα/β inhibitor, reduces fibrosis in a mouse model of DMD and in turn improves muscle function.

Acknowledgements

We are grateful to Dr Luis Gonzalez-Cuyar from the UW Neuropathology division for providing the human muscle sections. Funding that made this research possible was provided by the American Heart Association award 11BGIA7140028, the Muscular Dystrophy Association awards 255907 and 277543, the University of Washington (UW) Provost Bridge award to MR, NIH awards DK94768 and DK84077 to JSD, The UW Nathan Shock Center of Excellence in the Basic Biology of Aging Genetic Approaches to Aging Training award T32 AG000057, the Pancreatin Association of America Venizelion Scholarship to NI, and the Anandamahidol Foundation Scholarship of Thailand to KJ. Support for the myography equipment was received from the Washington Research Foundation, the Duchenne Alliance, RaceMD, and Ryan’s Quest.

Author contribution statement

The authors contributed in the following way: writing and editing: NI, JSD, and MR; study design: NI, MR, and JSD; experimentation: NI, AH, AM, and KJ; data analysis: NI, MR, JSD, AH, AP, and KJ.

References

1. Klingler W, Jurkat-Rott K, Lehmann-Horn F, et al. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 2012; 31: 184–195.
2. Kharraz Y, Guerra J, Pessina P, et al. Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int 2014; 2014: 965631.
3. Desguerre I, Mayer M, Leturcq F, et al. Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with macrophase alternative activation. J Neuropathol Exp Neurol 2009; 68: 762–773.
4. Joe AW, Yi L, Natarajan A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biol 2010; 12: 153–163.
5. Uezumi A, Fukuda S, Yamamoto N, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biol 2010; 12: 143–152.
6. Lemos DR, Babaeijandaghi F, Low M, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nature Med 2015; 21: 786–794.
7. Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 2011; 124: 3654–3664.
27. Au CG, Butler TL, Sherwood MC, et al. Coronary adventitial cells are linked to perivascular cardiac fibrosis via TGFβ1 signaling in the mdx mouse model of Duchenne muscular dystrophy. *J Mol Cell Cardiol* 2013; 63: 122–134.

28. Olson LE, Soriano P. Increased PDGFRα activation disrupts connective tissue development and drives systemic fibrosis. *Dev Cell* 2009; 16: 303–313.

29. Hayes BJ, Riehle KJ, Shimizu-Albergine M, et al. The transcriptome of PDGFα+ fibroblast progenitors. *Int J Exp Pathol* 2011; 108: E1475–E1483.

30. Pena R, Kharraz Y, Jardi M, et al. Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy. *Stem Cell Rep* 2015; 4: 1046–1060.

31. Ieronimakis N, Balasundaram G, Rainey S, et al. Direct isolation, culture and characterization of PDGFRα+ mural cells. *J Cardiovasc Pharmacol Ther* 2011; 16: 87–95.

32. Lin SL, Kisseleva T, Brenner DA, et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. *Am J Pathol* 2008; 173: 1617–1627.

33. Moore-Morris T, Guimaraes-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis and increased collagen I and IIImRNA in mice. *J Pathol* 2003; 2921–2934.

34. Sabatelli P, Gualandi F, Gara SK, et al. Increased connective tissue development and drives systemic fibrosis. *J Comp Neurol* 2008; 593–605.

35. Hwang P, Zhao XS, Fields M, et al. Imatinib attenuates skeletal muscle dystrophy and improves cardiac function in dystrophin-deficient mdx mice. *J Cardiovasc Pharmacol Ther* 2011; 16: 87–95.

36. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy in muscle mesenchymal progenitors. *Stem Cell Rep* 2013; 23: 349–356.

37. Zeisberg EM, Kalluri R. Origins of cardiac fibroblasts. *Circ Res* 2010; 107: 1304–1312.

38. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. *Nature Med* 2007; 13: 952–961.

39. Moore-Morris T, Guimaraes-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibro- sis. *J Clin Invest* 2014; 124: 2921–2934.

40. Acharya A, Baek ST, Mani S, et al. Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. *Genesis* 2011; 49: 870–877.

41. Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. *Development* 2012; 139: 2139–2149.

42. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. *Biochim Biophys Acta* 2013; 1832: 866–875.

43. Mann CJ, Perdiguero E, Kharraz Y, et al. Resident fibroblast repair and fibrosis development in skeletal muscle. *Skelet Muscle* 2011; 1: 21.

44. Chen X, Aravindakshan J, Yang Y, et al. Aberrant expression of PDGF ligands and receptors in the tumor prone ovary of follicular smooth muscle cell growth and intimal hyperplasia. *Carcinogenesis* 2006; 27: 903–915.

45. Fukai N, Kenagy RD, Chen L, et al. Syndecan-1: an inhibitor of arterial smooth muscle cell growth and intimal hyperplasia. *Arterioscler Thromb Vasc Biol* 2009; 29: 1356–1362.

46. Ieronimakis N, Balasundaram G, Reyes M. Direct isolation, culture and transplant of mouse skeletal muscle derived endothelial cells with angiogenic potential. *PLoS One* 2008; 3: e0001753.

47. Au CG, Butler TL, Sherwood MC, et al. Increased connective tissue growth factor associated with cardiac fibrosis in the mdx mouse model of dystrophic cardiomyopathy. *Int J Exp Pathol* 2011; 92: 57–65.

48. Kenyon NJ, Ward RW, McGrew G, et al. TGF-β1 causes artery fibrosis and increased collagen I and III mRNA in mice. *Thorax* 2003; 58: 772–777.

49. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy in muscle mesenchymal progenitors. *Stem Cell Rep* 2013; 23: 349–356.

50. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. *Nature Med* 2007; 13: 952–961.

51. Moore-Morris T, Guimaraes-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibro- sis. *J Clin Invest* 2014; 124: 2921–2934.

52. Acharya A, Baek ST, Mani S, et al. Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. *Genesis* 2011; 49: 870–877.

53. Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. *Development* 2012; 139: 2139–2149.

54. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. *Biochim Biophys Acta* 2013; 1832: 866–875.

55. Mann CJ, Perdiguero E, Kharraz Y, et al. Resident fibroblast repair and fibrosis development in skeletal muscle. *Skelet Muscle* 2011; 1: 21.

56. Chen X, Aravindakshan J, Yang Y, et al. Aberrant expression of PDGF ligands and receptors in the tumor prone ovary of follicular smooth muscle cell growth and intimal hyperplasia. *Arterioscler Thromb Vasc Biol* 2009; 29: 1356–1362.

57. Ieronimakis N, Balasundaram G, Reyes M. Direct isolation, culture and transplant of mouse skeletal muscle derived endothelial cells with angiogenic potential. *PLoS One* 2008; 3: e0001753.

58. Au CG, Butler TL, Sherwood MC, et al. Increased connective tissue growth factor associated with cardiac fibrosis in the mdx mouse model of dystrophic cardiomyopathy. *Int J Exp Pathol* 2011; 92: 57–65.

59. Kenyon NJ, Ward RW, McGrew G, et al. TGF-β1 causes artery fibrosis and increased collagen I and III mRNA in mice. *Thorax* 2003; 58: 772–777.
50. Yan Z, Choi S, Liu X, et al. Highly coordinated gene regulation in mouse skeletal muscle regeneration. *J Biol Chem* 2003; 278: 8826–8836.

51. Beauchamp JR, Heslop L, Yu DS, et al. Expression of CD34 and Mφ5 defines the majority of quiescent adult skeletal muscle satellite cells. *J Cell Biol* 2000; 151: 1221–1234.

52. Olson LE, Soriano P. PDGFRα signaling regulates mural cell plasticity and inhibits fat development. *Dev Cell* 2011; 20: 815–826.

53. Feng D, Yukine T, Song L, et al. Emergency blood vessel formation in skeletal muscle regeneration. *Development* 2005; 132: 4375–4384.

54. Lewis NL, Lewis LD, Eder JP, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. *Clin Cancer Res* 2012; 18: 4375–4384.

55. Lewis NL, Lewis LD, Eder JP, et al. Phase I study of the safety, tolerability, and pharmacokinetics of oral CP-868,596, a highly specific platelet-derived growth factor receptor tyrosine kinase inhibitor in patients with advanced cancers. *J Clin Oncol* 2009; 27: 5262–5269.

56. Cendron M, Gailhard J, Rolland C, et al. Large-scale analysis of PDGFRα mutation in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. *Clin Cancer Res* 2013; 19: 6935–6942.

57. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. *Nature Med* 2006; 12: 908–916.

58. Zimmerman EI, Turner DC, Buaboonnam J, et al. Crenolanib is active against models of drug-resistant FLT3-ITD- and FGFR-1-ITD- and JAK2 V617F-positive acute myeloid leukemia. *Blood* 2013; 122: 3607–3615.

59. Faulkner JA, Ng R, Davis CS, et al. Diaphragm muscle strip preparation for evaluation of gene therapies in *mdx* mice. *Clin Exp Pharmacol Physiol* 2008; 35: 725–729.

60. Nishimura AI, Fazeli K, Taira K, et al. Early myocyte specification regulates PDGFRα expression and axial skeleton development. *Development* 2000; 127: 5059–5070.

61. Pal R, Palmieri M, Loehr JA, et al. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. *Nature Commun* 2014; 5: 4425.

62. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. *Nature Med* 2006; 12: 908–916.

63. Zimmerman EI, Turner DC, Buaboonnam J, et al. Crenolanib is active against models of drug-resistant FLT3-ITD- and FGFR-1-ITD- and JAK2 V617F-positive acute myeloid leukemia. *Blood* 2013; 122: 3607–3615.

64. Faulkner JA, Ng R, Davis CS, et al. Diaphragm muscle strip preparation for evaluation of gene therapies in *mdx* mice. *Clin Exp Pharmacol Physiol* 2008; 35: 725–729.

65. Nishimura AI, Fazeli K, Taira K, et al. Early myocyte specification regulates PDGFRα expression and axial skeleton development. *Development* 2000; 127: 5059–5070.

66. Pal R, Palmieri M, Loehr JA, et al. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. *Nature Commun* 2014; 5: 4425.

67. Kim TD, le Coutre P, Schwartz M, et al. Clinical cardiac safety profile of nilotinib. *Haematologica* 2012; 97: 883–889.

68. Sultan A, Fayaz M. Prevalence of cardiomyopathy in Duchenne and Becker’s muscular dystrophy. *J Ayub Med Coll Abbottabad* 2008; 20: 7–13.

SUPPLEMENTARY MATERIAL ONLINE

Supplementary materials and methods

Supplementary figure legends

Figure S1. Col1a1-GFP+ cells are expanded in areas of perimysial fibrosis of *mdx* quadriceps muscle, where type III and type VI collagens are deposited

Figure S2. GFP+ cells also expand in areas of type III and type VI collagen deposition in the myocardium of *mdx*:Col1a1-GFP mice

Figure S3. Sc1+ is concentrated in the PDGFRα+ portion of the Col1a1-GFP+ population in both wild-type and *mdx* diaphragms

Figure S4. Col1a1-GFP+ cells in the heart and diaphragm share a similar molecular profile

Figure S5. PDGFRα-nGFP+ cells are concentrated in degenerating and regenerating regions of *mdx* muscles

Figure S6. Fate-mapping reveals that PDGFRα-expressing cells are prominent at the onset of dystrophy in *mdx* diaphragm muscle

Figure S7. Col1a1-GFP+ cells are adjacent to both myogenic cells and regenerating fibres following acute cardiotoxic injury in healthy muscle

Figure S8. Histological analysis of mutant muscles shows reduced fibre size with excessive PDGF signalling following CTX injury

Figure S9. Tamoxifen-treated PDGFRα-CreER:tm1TmG loxp mice show activation of the GFP reporter in both uninjured and injured muscle

Figure S10. Vehicle-treated PDGFRα-CreER:tm1TmG loxp mice show no evidence of recombination in uninjured or injured muscle

Figure S11. Single fibre isolations and co-culture with Col1a1-GFP+ cells indicate that *mdx* fibres promote fibrosis by their production of PDGF-AA

Figure S12. Crenolanib inhibits PDGF-AA-mediated expression of pro-collagen mRNAs and phosphorylation of the PDGFRα in primary cultured Col1a1-GFP+ cells

Figure S13. Crenolanib attenuates type III collagen accumulation in *mdx* diaphragms

Figure S14. Necrotic regions are smaller with crenolanib treatment

Figure S15. The phosphorylation of Src is increased in *mdx* diaphragms

Figure S16. Crenolanib reduces PDGFRα signalling and fibrosis in *mdx* hearts

Figure S17. The number and size of regenerating fibres are greater with crenolanib treatment

Figure S18. Crenolanib improves regeneration in *mdx* skeletal muscles

Table S1. Mouse strains used

Table S2. Antibodies and lectins used on tissue sections

Table S3. FACS antibodies and streptavidin conjugates

Table S4. RT-qPCR primer sequences

Table S5. Antibodies used for western blotting