ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

Based on Barenfeld et al. (2016)

Scott Barenfeld (Caltech) with John Carpenter, Luca Ricci, and Andrea Isella

Image Credit: ESO/L. Calçada
Outline

I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary
Upper Sco: the end of primordial disk evolution

Hernandez et al. (2008)
Upper Sco: the end of primordial disk evolution

Hernandez et al. (2008)

Upper Sco
(age = 5-11 Myr,
d = 145 pc)
I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary

Upper Sco Disk Sample

- Debris/Evolved Transitional
- Primordial

Bar chart showing the number of disks in different spectral types:
- G-K: 10 disks
- M0: 5 disks
- M1: 3 disks
- M2: 4 disks
- M3: 5 disks
- M4: 30 disks
- M5: 4 disks
Our ALMA Upper Sco Survey

106 disks in Upper Sco (Luhman & Mamajek 2012)
341 GHz (0.88 mm) continuum and CO J = 3-2
Our ALMA Upper Sco Survey

106 disks in Upper Sco (Luhman & Mamajek 2012)

341 GHz (0.88 mm) continuum and CO J = 3-2

0.34” resolution

0.15 mJy continuum sensitivity
Our ALMA Upper Sco Survey

106 disks in Upper Sco (Luhman & Mamajek 2012)
341 GHz (0.88 mm) continuum and CO J = 3-2

0.34” resolution
0.15 mJy continuum sensitivity

50 AU resolution
0.1 M_\oplus of dust
Our ALMA Upper Sco Survey

106 disks in Upper Sco (Luhman & Mamajek 2012)
341 GHz (0.88 mm) continuum and CO J = 3-2

0.34” resolution
0.15 mJy continuum sensitivity

50 AU resolution
0.1 M⊕ of dust

Detections

Disk Type	Continuum	CO
Primordial	53/75	26/75
Debris/Evolved	5/31	0/31
Transitional		
I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary

0.88 mm continuum images, 0.34” resolution
Disk fluxes are correlated with spectral type.

![Graph showing correlation between 0.88 mm Flux Density (mJy) and Spectral Type (G5 to M5).]
Faint continuum disks are also faint in CO.
Faint continuum disks are also faint in CO.
Faint continuum disks are also faint in CO.

< 40 AU or depleted
Conversion of continuum flux density to dust mass

\[M_{dust} = \frac{S_\nu d^2}{\kappa_\nu B_\nu(T)} \]
Conversion of continuum flux density to dust mass

\[M_{dust} = \frac{S_v d^2}{\kappa_v B_v(T)} \]

145 pc

\[M_{dust} = \frac{S_v d^2}{\kappa_v B_v(T)} \]
Conversion of continuum flux density to dust mass

\[M_{\text{dust}} = \frac{S_{\nu} d^2}{\kappa_{\nu} B_{\nu}(T)} \]

\[\kappa_{341 \, \text{GHz}} = 2.7 \, \text{cm}^2/\text{g} \]

145 pc
Conversion of continuum flux density to dust mass

\[M_{\text{dust}} = \frac{S_{\nu}d^2}{\kappa_{\nu}B_{\nu}(T)} \]

\[\kappa_{341 \, \text{GHz}} = 2.7 \, \text{cm}^2/\text{g} \quad T_{\text{dust}} = 25 \, K \times \left(\frac{L_*}{L_{\odot}} \right)^{0.25} \]
I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary

Dust mass correlates with stellar mass.
Dust mass to stellar mass ratio declines with age.

Upper Sco (age 5-11 Myr)
I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary

Dust mass to stellar mass ratio declines with age.

\[
\frac{M_{\text{dust}}}{M_*} \quad \text{vs. Stellar Host Mass (M_\odot)}
\]

Taurus (age 1-2 Myr)
Upper Sco (age 5-11 Myr)
Dust mass to stellar mass ratio declines with age.

Lupus Data: Andrews et al. (2013)
Taurus Data: Ansdell et al. (2016), Alcalá et al. (2014, 2016)
Upper Sco Data: Barenfeld et al. (2016)
I. Introduction

II. Our Survey

III. Disk Fluxes and Masses

IV. Disk Evolution

V. Summary

Dust mass to stellar mass ratio declines with age.

Graph:
- Upper Sco (age 5-11 Myr)
- Taurus (age 1-2 Myr)
- Lupus (age 1-3 Myr)
Dust mass to stellar mass ratio declines with age.

\[P\left(\frac{M_{dust}}{M_*} \geq M\right) \]

- **Lupus** (age 1-3 Myr)
- **Taurus** (age 1-2 Myr)
- **Upper Sco** (age 5-11 Myr)
Dust Mass Evolution Summary

• Disk dust mass is correlated with stellar mass in Upper Sco, consistent with younger systems.
Dust Mass Evolution Summary

- Disk dust mass is correlated with stellar mass in Upper Sco, consistent with younger systems.

- BUT, the ratio of disk dust mass to stellar mass is lower in Upper Sco than in Taurus and Lupus by a factor of 5.
Dust Mass Evolution Summary

- Disk dust mass is correlated with stellar mass in Upper Sco, consistent with younger systems.

- BUT, the ratio of disk dust mass to stellar mass is lower in Upper Sco than in Taurus and Lupus by a factor of 5.
 - Disk dissipation?
 - Grain growth?
 - Planet formation?
Dust Mass Evolution Summary

• Disk dust mass is correlated with stellar mass in Upper Sco, consistent with younger systems.

• BUT, the ratio of disk dust mass to stellar mass is lower in Upper Sco than in Taurus and Lupus by a factor of 5.
 • Disk dissipation?
 • Grain growth?
 • Planet formation?

See Barenfeld et al. (2016) for more details.