Localized Metastatic Recurrence of HCC following Distal Extremity Trauma: Bone Scintigraphy and Anatomicopathological Correlation

Edgar Zamora1 Louisiana Rivera Valladares1 Ukuemi Edema2 Leonard M. Freeman1

1 Division of Nuclear Medicine, Department of Radiology, Montefiore Medical Center and the Albert Einstein College of Medicine, The Bronx, New York, United States
2 Department of Pathology, Montefiore Medical Center and the Albert Einstein College of Medicine, The Bronx, New York, United States

World J Nuclear Med 2022;21:244–247.

Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver cancer, with a poor median survival when left untreated. Extrahepatic metastases involving musculoskeletal tissues typically present with concomitant nonosseous metastases at the time of diagnosis. A 61-year-old male on 1-year remission, following transarterial chemoembolization of a 2.3-cm hepatic HCC 1 year before, presented with a 2-month history of left wrist pain and swelling after falling on an outstretched hand. Computed tomographic scan revealed diffuse osteolytic lesions localized in left hand and distal forearm, associated with equivocal diffuse activity on bone scan. Subsequent surgical debridement revealed metastatic hepatocellular carcinoma.

Abstract

Hepatocellular carcinoma (HCC) is the most common type of liver cancer, with a poor median survival when left untreated. Extrahepatic metastases involving musculoskeletal tissues typically present with concomitant nonosseous metastases at the time of diagnosis. A 61-year-old male on 1-year remission, following transarterial chemoembolization of a 2.3-cm hepatic HCC 1 year before, presented with a 2-month history of left wrist pain and swelling after falling on an outstretched hand. Computed tomographic scan revealed diffuse osteolytic lesions localized in left hand and distal forearm, associated with equivocal diffuse activity on bone scan. Subsequent surgical debridement revealed metastatic hepatocellular carcinoma.

Keywords

► distal metastases
► posttraumatic
► HCC
► osseous

Case Report

A 61-year-old man with 1-year clinical remission of HCC, following partial segmentectomy and transarterial chemoembolization, presented with a 2-month history of persistent inflammation and pain, following trauma, with bone scintigraphy and CT.

Diagnostic evaluation of HCC commonly includes contrast-enhanced computed tomography (CT) or magnetic resonance imaging of the abdomen. Additional imaging following diagnosis may include CT chest and/or bone scintigraphy, although their yield has found to be relative lower6,7 and their use is not recommended on a routine basis.

We present a case of metastatic osseous recurrence in a distal upper extremity in a patient undergoing evaluation for persistent inflammation and pain, following trauma, with bone scintigraphy and CT.
persistent left-hand swelling with worsening pain in the wrist after falling twice on an outstretched left hand. Ante-roposterior plain radiograph and coronal CT of the left wrist (Fig. 1A1 and A2, respectively) showed soft tissue edema and comminuted displaced fracture of the distal end of the radius (Fig. 1A1, white arrow) with erosion of the carpus and third metacarpal base (A1–A2, arrowheads). Axial CT images in (B1) soft-tissue and (B2) bone windowing showing associated synovial thickening (B1, black arrows) and osseous erosion (B2, asterisks). Ultrasound image in long-axis at the third metacarpal bone showing a hypoechogenic polylobulated mass (C, arrows) with adjacent comminuted bone fracture (C, arrowheads).
and third metacarpal base (Fig. 1 A2, arrowheads). The lesions were also characterized on CT images that showed synovial thickening (Fig. 1 B1, black arrows) and osseous erosion (Fig. 1 B2, asterisk). Ultrasound imaging showed a soft tissue mass in the left wrist (Fig. 1C—long-axis) involving the third metacarpal with hypoechoic polylobulated features (Fig. 1C, arrows) associated with adjacent to the areas of comminuted fracture (Fig. 1C, arrow heads). Differential diagnosis from two independent musculoskeletal radiologists included inflammatory arthritis, osteolysis, syndrome, osteoarthritis, or metastatic disease.

Subsequently, the patient was evaluated with whole body bone scintigraphy (Fig. 2) for suspected metastatic involvement, which showed diffuse increased activity involving osseous tissues in the left wrist, in a distribution reminiscent of reflex sympathetic dystrophy (Fig. 2A). Close-up dorsal (Fig. 2 B1) and palmar (Fig. 2 B2) static views of the hands better characterized the distribution of activity involving the small bones of the left distal upper extremity. Subsequent evaluation with CT chest, abdomen, and pelvis also revealed numerous pulmonary nodules suspicious for metastatic disease. The patient subsequently underwent ultrasound-guided biopsy (Fig. 2C) and surgical debridement of the left wrist which revealed metastatic moderate to poorly-differentiated HCC infiltrating lamellar tissue (asterisk) of the third metacarpal bone (Fig. 2 D1—primary 2 years prior; Fig. 2 D2—left wrist biopsy).

Discussion

In this rare presentation of metastatic osseous recurrence of HCC, scintigraphic bone findings were not specific for malignancy, and despite correlation with CT findings, the clinical picture was indeterminate until histopathologic evaluation was performed. Localized aggressive osseous metastatic disease involving a distal extremity is an exceedingly rare presentation of HCC recurrence, and the authors found no literature describing similar presentations. It is unclear whether trauma contributed to the development of metastatic disease, or whether this was a coincidental finding. However, prior authors have described distal osseous metastatic disease following trauma in other malignancies, such as lung cancer, with some suggesting that increased vascularity following trauma may create a more ideal environment for metastatic proliferation. Other authors have also suggested that the inflammatory response associated with physical trauma may lead to growth and proliferation of dormant micrometastases.

Conflict of Interest

None of the authors have conflicts of interest to disclose nor have received any type of financing related to this manuscript.

References

1 Marrero JA, Fontana RJ, Barrat A, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 2005;41(04):707–716
2 Centers for Disease Control and Prevention (CDC) Hepatocellular carcinoma - United States, 2001-2006. MMWR Morb Mortal Wkly Rep 2010;59(17):517–520
3 Katyal S, Oliver JH III, Peterson MS, Ferris JV, Carr BS, Baron RL. Extrahepatic metastases of hepatocellular carcinoma. Radiology 2000;216(03):698–703
4 Lin S, Hoffmann K, Schemmer P. Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer 2012;1(3–4):144–158
Abbas A, Medvedev S, Shores N, et al. Epidemiology of metastatic hepatocellular carcinoma, a nationwide perspective. Dig Dis Sci 2014;59(11):2813–2820

Jin Y-J, Lee HC, Lee D, et al. Role of the routine use of chest computed tomography and bone scan in staging workup of hepatocellular carcinoma. J Hepatol 2012;56(06):1324–1329

Koneru B, Teperman LW, Manzarbeitia C, et al. A multicenter evaluation of utility of chest computed tomography and bone scans in liver transplant candidates with stages I and II hepatoma. Ann Surg 2005;241(04):622–628

Walter ND, Rice PL, Redente EF, et al. Wound healing after trauma may predispose to lung cancer metastasis: review of potential mechanisms. Am J Respir Cell Mol Biol 2011;44(05):591–596

El Saghir NS, Elhajj II, Geara FB, Hourani MH. Trauma-associated growth of suspected dormant micrometastasis. BMC Cancer 2005;5:94