Defining Radiation Belt Enhancement Events Based on Probability Distributions

Geoffrey D. Reeves1,2, Elizabeth M. Vandegriff2, Jonathan T. Niehof3, Steven K. Morley2, Gregory S. Cunningham1, Michael G. Henderson1, and Brian A. Larsen1,2

1Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, NM, USA, 2The New Mexico Consortium, Los Alamos, NM, USA, 3Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA

Abstract We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of times, “events,” using variable flux thresholds to determine average event occurrence in arbitrary 11-year intervals (“cycles”). We define moderate, strong, and intense events as those that occur 100, 10, and 1 time per cycle and identify the flux thresholds that produce those occurrence frequencies. The methodology does not depend on any ancillary data set (e.g., solar wind or geomagnetic conditions). We show event probabilities using GOES > 2 MeV fluxes and compare them against event probabilities using LANL 1.8–3.5 MeV fluxes. We present some examples of how the methodology picks out moderate, strong, and intense events and how those events are distributed in time: 1989 through 2018, which includes the declining phases of solar cycles 22, 23, and 24. We also provide an illustrative comparison of moderate and strong events identified in the geosynchronous data with Van Allen Probes observations across all L-shells. We also provide a catalog of start and stop times of moderate, strong, and intense events that can be used for future studies.

1. Introduction

Radiation belt electron fluxes undergo periods of rapid enhancement followed by more gradual decay. Therefore, periods of high fluxes are often described as “events” that typically last for several days to weeks (depending in part on the definition of an “event”). There are several reasons why it is valuable to have a quantitative definition of radiation belt electron events including historical studies of spacecraft operational anomalies, statistical studies of the processes that enhance or deplete radiation belt fluxes, real-time identification of enhancement events, quantitative definition of event criteria for forecasting, and others.

There are, however, a number of factors that make it difficult to develop a standard definition of radiation belt enhancement events. NOAA issues an Electron Event Alert when the >2 MeV electron flux measured by the geosynchronous GOES satellites exceeds 10^8 particles/(cm2-s-sr). NOAA’s objective, however, is to provide advance or current warning of hazardous conditions rather than providing a historical catalog of events. Furthermore, NOAA’s event threshold is highly specific to the GOES measurements. It only applies to geosynchronous >2 MeV integral fluxes, that is, particles/(cm2-s-sr). It is not generally possible to apply the same criteria to other measurements, even at geosynchronous orbit. The LANL geosynchronous measurements, for example, have different energy thresholds and are differential measurements, for example, 1.8–3.5 MeV in units of particles/(cm2-s-sr-keV) (Reeves et al., 1996). Similarly, the Van Allen Probes MagEIS and REPT instruments also provide differential flux measurements but with different energy thresholds (Baker et al., 2012; Blake et al., 2013; Spence et al., 2013). It would also be valuable to be able to identify events using other long-term data sets such as GPS (Morley et al., 2016), Polar (Blake et al., 1995), SAMPEX (Baker et al., 1993), and others.
A number of statistical studies have used geomagnetic or solar wind parameters to study radiation belt electron enhancement events. For example, Reeves et al. (2003) examined all times when the Dst index dropped below −50 nT to study whether storms enhanced or depleted the radiation belts (see also Anderson et al., 2015; Kilpua et al., 2015; Moya et al., 2017; Turner et al., 2019; Zhao et al., 2019). Another set of papers starts with specific solar wind conditions such as CMEs or High-Speed Streams and investigates the radiation belt response (e.g., Benacquista et al., 2018; Bingham et al., 2019; Borovsky & Denton, 2006; Borovsky & Denton, 2009; Hartley et al., 2013; Miyoshi et al., 2007; Miyoshi & Kataoka, 2008; Shen et al., 2017). In addition to these types of studies, it would be valuable to be able to start with a set of defined radiation belt enhancement events and ask, “What are the associated geomagnetic and/or solar wind conditions?” In particular an enhancement event list could be used to identify the range of conditions that produce enhancements and determine how uniquely those conditions (or processes) lead to radiation belt enhancement events.

In this paper we describe a methodology based on probability distributions that can be used to identify radiation belt enhancement events using only electron flux data. We illustrate the methodology using geosynchronous, ~2 MeV, daily-averaged electron fluxes but show how the same methodology could be applied to a wide variety of heterogeneous data sets using different energies, different instrument response parameters, or different satellite orbits. We also present a catalog of events that can be used for further scientific studies (section 6).

2. Methodology

In this section we describe a methodology that can be used to identify radiation belt enhancement events and apply that methodology to relativistic electron fluxes measured by the LANL geosynchronous (LANL-GEO) satellite instruments. In developing this methodology, we established the following criteria for success—the methodology should

1. identify the most intense events;
2. not falsely identify data artifacts or misclassify small events;
3. be quantitative and not subjective;
4. establish clearly defined onset and end times;
5. not depend on any data other than the electron fluxes themselves;

Figure 1. Running 27-day averages of MeV electron fluxes for mid-1989 through 2018 along with sunspot numbers for cycles 22 through 24.

A number of statistical studies have used geomagnetic or solar wind parameters to study radiation belt electron enhancement events. For example, Reeves et al. (2003) examined all times when the Dst index dropped below −50 nT to study whether storms enhanced or depleted the radiation belts (see also Anderson et al., 2015; Kilpua et al., 2015; Moya et al., 2017; Turner et al., 2019; Zhao et al., 2019). Another set of papers starts with specific solar wind conditions such as CMEs or High-Speed Streams and investigates the radiation belt response (e.g., Benacquista et al., 2018; Bingham et al., 2019; Borovsky & Denton, 2006; Borovsky & Denton, 2009; Hartley et al., 2013; Miyoshi et al., 2007; Miyoshi & Kataoka, 2008; Shen et al., 2017). In addition to these types of studies, it would be valuable to be able to start with a set of defined radiation belt enhancement events and ask, “What are the associated geomagnetic and/or solar wind conditions?” In particular an enhancement event list could be used to identify the range of conditions that produce enhancements and determine how uniquely those conditions (or processes) lead to radiation belt enhancement events.

In this paper we describe a methodology based on probability distributions that can be used to identify radiation belt enhancement events using only electron flux data. We illustrate the methodology using geosynchronous, ~2 MeV, daily-averaged electron fluxes but show how the same methodology could be applied to a wide variety of heterogeneous data sets using different energies, different instrument response parameters, or different satellite orbits. We also present a catalog of events that can be used for further scientific studies (section 6).

2. Methodology

In this section we describe a methodology that can be used to identify radiation belt enhancement events and apply that methodology to relativistic electron fluxes measured by the LANL geosynchronous (LANL-GEO) satellite instruments. In developing this methodology, we established the following criteria for success—the methodology should

1. identify the most intense events;
2. not falsely identify data artifacts or misclassify small events;
3. be quantitative and not subjective;
4. establish clearly defined onset and end times;
5. not depend on any data other than the electron fluxes themselves;
6. be capable of being applied to other time series of interest for space weather applications; and
7. be able to identify how frequent (or rare) and how severe a given event is relative to the historic record.

2.1. The LANL-GEO Data Set

Los Alamos has operated instruments at geosynchronous orbit to measure the space environment since 1976. A new generation of instruments were deployed starting in 1989 and continue in operation today. Those instruments measure plasma (MPA; Bame et al., 1993), energetic electrons and ions (SOPA; Belian et al., 1992) and relativistic electrons (ESP; Meier et al., 1996). Since 1991 there have been from three to six satellites operating simultaneously and distributed in longitude around the globe. While the measurements on each satellite are in good agreement with each other, some differences remain due to (a) the local time of the measurements—the well-known diurnal variation, (b) differences between the geographic and geomagnetic planes—which puts geographic equatorial satellites at different geomagnetic latitudes, and (c) instrument responses—differences in energy passbands, efficiencies, and so forth. To account for these differences, we use the method described in Reeves et al. (2011) to create a highly uniform, daily-averaged data set spanning nearly 30 years, and three solar cycles (mid-1989 through 2018).

The satellites we use here are designated 1989-046, 1990-095, 1991-080, 1994-084, LANL-97A, LANL-01A, LANL-02A, and LANL-04A. We first calculate daily averages (median values) for each satellite. Since geosynchronous orbit covers all MLT in 24-hr using a daily average essentially removes the large diurnal variations. This is not, however, an absolute criterion to apply our methodology. Shorter time averages are possible if diurnal variation is removed using other methods (O'Brien & McPherron, 2003). Next, an empirical cross-calibration is applied by referencing each satellite to 1989-046 whenever both satellites acquire data simultaneously. This was done for each electron energy channel measured by SOPA and ESP, but here we illustrate the results using a single channel designated ESP-234 which measures electron fluxes from 1.8 to 3.5 MeV (comparable to the GOES or SAMPEX >2 MeV channels).

Figure 1 shows 27-day averages of 1.8–3.5 MeV electron fluxes and sunspot number from 1989 through 2018 in the same format as shown in Reeves et al. (2011) but extended into solar cycle 24. The data set we will use for this study are the multisatellite daily-average 1.8–3.5 MeV electron fluxes from the LANL-GEO satellites. However, we again note that the following procedures can be applied to a variety of data sets even if the data set is not as uniform or long-duration as the one we are using.
2.2. Event Definition Algorithm

The algorithm we use to define a radiation belt enhancement event is quite simple.

1. The event starts when the flux exceeds a defined flux threshold.
2. The event ends when the flux drops below that threshold and remains below the threshold for at least 3 days.

Here we first demonstrate the event definition using somewhat arbitrary round numbers for the threshold. NOAA uses a threshold of \(10^3\) particles/(cm\(^2\)-s-sr) and issues an alert when flux levels exceed that threshold any time during the orbit. The top panel of Figure 2 applies the same criteria. The plot shows the daily-averaged GOES-East fluxes in gray and the maximum 5-min-averaged fluxes (GOES\(_{\text{max}}\)) in blue. Days when the GOES\(_{\text{max}}\) fluxes exceeded the NOAA threshold of \(10^3\) particles/(cm\(^2\)-s-sr) are plotted in red.

The bottom panel of Figure 2 shows events in the LANL-GEO data that are identified by our algorithm using an arbitrary threshold of \(10^9\) particles/(cm\(^2\)-s-sr-keV). Despite the somewhat arbitrary choice of flux thresholds and the difference in flux units, Figure 2 suggests that our algorithm can reasonably be used to identify events similar to those identified by NOAA. Two differences are worth noting. Although NOAA does not provide a list of start and stop dates we can see that the NOAA and LANL-GEO fluxes are not perfectly correlated, so there will always be some difference in the event identification. Secondly, our algorithm requires a minimum of 3 days between events so some of the days within the events identified with our algorithm will have fluxes below the threshold (e.g., 29 March).

Figure 2 also lets us address some potential ambiguities in defining the end of an event. As noted above, an event starts on the day when Flux, \(F > F_{\text{threshold}}\). The event ends when \(F < F_{\text{threshold}}\), meaning that previous day, when \(F > F_{\text{threshold}}\), is the last day of the event. For example, the first event in the lower plot of Figure 2 starts on 13 January and ends 16 January because the fluxes on 17 January were below the threshold. The events near the middle of the plot illustrate “the 3-day rule.” The event starts on 27 March and ends on 3 April; 29 March is considered part of the event because the fluxes only dropped below threshold for 1 day. In contrast, 8 April is considered a separate event because the fluxes for the previous 4 days were below threshold. This last situation is rare but should be considered, particularly for detailed case studies.

As noted, the \(10^9\) particles/(cm\(^2\)-s-sr-keV) flux threshold in Figure 2 is somewhat arbitrary. If we had used a higher (lower) flux threshold in our algorithm we would have identified fewer (more) events. A more quantitative and rigorous approach is to use statistical probability distribution as described in the next section.
In this section we examine the number of relativistic electron enhancement events (and the total number of “Days Above Threshold”) as a function of the flux threshold used to define an event. For consistency we now apply our algorithm in the same way to both the GOES and LANL-GEO data sets. For GOES we use the daily maximum, 5-min average, >2 MeV flux from GOES East (GOES_max) which is approximately the same criteria used by NOAA. For LANL-GEO we use the satellite-averaged, daily median, 1.8–3.5 MeV flux as described in section 2.1.

The probability distributions show the number of events (and Days Above Threshold) in any 11-year cycle, that is, roughly the length of a sunspot cycle. However, a cycle is not tied to fixed start and stop dates. Rather we use a running interval of 11-year (4,015-day) duration. There are 10,692 days in our data set. Therefore, there are approximately 6,600 “cycles” which allows us to statistically determine mean, median, and quartiles.

The number of Days Above Threshold per Cycle is simply the number of days when the fluxes were greater than a specified threshold value (Figure 3). As expected, the number of Days Above Threshold decreases monotonically as the threshold increases. The flattening of the distributions at low flux thresholds occurs because fluxes approach the background noise levels.

The number of Events per Cycle is defined using the algorithm described in section 2.2 and are plotted in Figure 4. In contrast to Days Above Threshold, the number of events as a function of flux threshold have a peak. This is because, at lower flux thresholds, it is more likely that fluxes stay above the threshold for longer and events start to merge together. At thresholds near the background level the entire data set is above threshold and constitutes a single “event.” The location of the probability peak essentially defines a minimum flux threshold that can meaningfully be used to identify distinct, individual relativistic electron events.

Figures 3 and 4 show that the two data sets have probability distributions with quite similar shapes suggesting that a probabilistic definition of events does not depend sensitively on the precise characteristics of the data sets used. With these distributions we can quantify the flux thresholds that give the same number of events-per-cycle or Days Above Threshold. For example, for LANL-GEO, the threshold that gives 100 events/cycle is 5.37 particles/(cm²-s-sr-keV). The threshold that gives 100 events/cycle for GOES is 8,500 particles/(cm²-s-sr). For comparison the NOAA threshold of 1,000 particles/(cm²-s-sr) corresponds to an average (median) number of 160 events/cycle.

Of course, it is possible to define different occurrence thresholds for less common events. Table 1 shows the flux thresholds that give 100, 10, or 1 event(s) per cycle for both the LANL-GEO averaged fluxes and the GOES data.
Table 1 illustrates how we can directly and quantitatively compare events using two different data sets. For example, GOES data are maximum daily fluxes and integral energy (>2 MeV), while LANL-GEO data are median daily flux and differential energy (1.8–3.5 MeV), but the probability distributions are insensitive to the differences in the underlying data. Even data in units of dose, dose rate, or counts/second can be directly compared using this method. Similarly, with appropriate scaling, data sets with different time resolutions can also be compared.

	100 Events-per-Cycle	10 Events-per-Cycle	1 Event(s)-per-Cycle
LANL-GEO Average Flux	5.37 (cm2 s$^{-1}$ sr$^{-1}$ keV) $^{-1}$	17.8 (cm2 s$^{-1}$ sr$^{-1}$ keV) $^{-1}$	46.7 (cm2 s$^{-1}$ sr$^{-1}$ keV) $^{-1}$
GOES_max Flux	8,500 (cm2 s$^{-1}$ sr$^{-1}$) $^{-1}$	62,300 (cm2 s$^{-1}$ sr$^{-1}$) $^{-1}$	167,000 (cm2 s$^{-1}$ sr$^{-1}$) $^{-1}$

Note. The same event identification algorithm described in section 2.2 was applied to both data sets.

GOES_max fluxes. (We note that with just 29.3 years in our data set, the statistics for the 1 event/cycle threshold have much larger uncertainties.)

Table 1 illustrates how we can directly and quantitatively compare events using two different data sets. For example, GOES data are maximum daily fluxes and integral energy (>2 MeV), while LANL-GEO data are median daily flux and differential energy (1.8–3.5 MeV), but the probability distributions are insensitive to the differences in the underlying data. Even data in units of dose, dose rate, or counts/second can be directly compared using this method. Similarly, with appropriate scaling, data sets with different time resolutions can also be compared.

Figure 5. Relativistic electron fluxes in 1994 and 2004 during the declining phases of solar cycles 22 and 23, respectively. Moderate events (100/cycle) are identified in green, strong events (10/cycle) are in blue, and intense events (1/cycle) are in red.
Figure 6. The occurrence rate of moderate, strong, and intense events as a function of time. The top three plots show the number of events and the number of Days Above Threshold in each year for each level of activity. The bottom plots reproduce Figure 1 showing 1.8–3.5 MeV electron flux and sunspot number. Solid and dashed red lines indicate solar maximum and minimum.
It is also possible to define different window lengths. However, a very useful feature of our methodology is that it does not depend on the 11-year window that defines a “cycle.” We are careful to include events that start before the end of the window and to not include events that start before the beginning of the window. Regardless of the window length, no event is counted twice. Therefore, as long as a sliding window is used, the number and timing of the identified events do not depend on the length of the window or its start and stop time.

3. Survey of Relativistic Electron Events

While the flux thresholds discussed above identify \(N \) events/cycle on average, this does not imply that events are distributed uniformly in time. The frequency and distribution of events depend on phase of the sunspot cycle and also vary from one sunspot cycle to another. The largest events tend to occur after sunspot maximum in the declining phase (e.g., McComas et al., 2006; Reeves et al., 2013) when long-lived equatorial coronal holes produce recurring high-speed solar wind streams (HSS) and corotating interaction regions (CIRs) (e.g., Cliver, 1995; Hilmer et al., 2000; Miyoshi & Kataoka, 2005; Morley et al., 2010; Mouikis et al., 2019). Our statistically defined event selections confirm those results. To investigate this further, we consider the number of events each year (1990–2018) in relationship to solar cycle as defined by sunspot number.

Figure 5 shows events identified in 1994 and 2004 which were the years with the highest average fluxes and highest average solar wind speeds of solar cycles 22 and 23. Both occurred in the declining phase of the sunspot cycle (Figure 1). In each plot we have indicated

1. Moderate events in green: 100/cycle and Flux > 5.37 \((\text{cm}^2\cdot\text{s}\cdot\text{sr}\cdot\text{keV})^{-1} \);
2. Strong events in blue: 10/cycle and Flux > 17.8 \((\text{cm}^2\cdot\text{s}\cdot\text{sr}\cdot\text{keV})^{-1} \);
3. Intense events in red: 1/cycle and Flux \(\gtrsim 46.7 \) \((\text{cm}^2\cdot\text{s}\cdot\text{sr}\cdot\text{keV})^{-1} \).

Note that we intentionally avoid the term “extreme” which is reserved for events that might only occur once in 100 years such as those defined for space weather benchmarks (Space Weather Phase 1 Benchmarks, 2018).

In 1994 there were 17 moderate events and only 1 strong event. In contrast, in 2004, which occurred at a similar phase of the solar cycle, had only 12 moderate events but two strong events and one intense event.

Figure 7. A comparison of LANL-GEO and Van Allen Probes observations. The top panel shows flux as a function of time for Van Allen Probes A&B MagEIS data at 2.2 MeV in black with 1.8–3.5 LANL-GEO data over plotted in blue. Thresholds for the 100 per cycle and 10 per cycle levels are shown with gray lines. The bottom panel shows the same MagEIS data plotted as a function of L-shell.
Table 2
A Catalog of Event Start and Stop Dates for Moderate Events Which Occur, on Average, 100 Times in 11 Years

Event	Start Date	Stop Date
M1	1990-04-17	1990-04-17
M2	1991-03-28	1991-03-31
M3	1991-06-13	1991-06-13
M4	1991-06-27	1991-06-30
M5	1991-07-17	1991-07-17
M6	1992-05-12	1992-05-18
M7	1992-07-25	1992-07-25
M8	1992-08-12	1992-08-14
M9	1992-09-05	1992-09-09
M10	1992-09-14	1992-09-14
M11	1992-10-02	1992-10-06
M12	1992-10-17	1992-10-19
M13	1993-01-06	1993-01-10
M14	1993-02-03	1993-02-04
M15	1993-02-11	1993-02-12
M16	1993-02-16	1993-02-16
M17	1993-02-24	1993-02-26
M18	1993-03-19	1993-03-20
M19	1993-04-12	1993-04-12
M20	1993-04-18	1993-04-18
M21	1993-05-13	1993-05-13
M22	1993-06-07	1993-06-11
M23	1993-08-19	1993-08-25
M24	1993-09-06	1993-09-10
M25	1993-09-15	1993-09-20
M26	1993-10-12	1993-10-17
M27	1993-11-07	1993-11-14
M28	1993-12-07	1993-12-07
M29	1994-01-14	1994-01-22
M30	1994-02-10	1994-02-19
M31	1994-02-24	1994-02-25
M32	1994-03-10	1994-03-19
M33	1994-04-06	1994-04-16
M34	1994-04-22	1994-04-22
M35	1994-05-05	1994-05-23
M36	1994-06-01	1994-06-11
M37	1994-06-17	1994-06-17
M38	1994-07-02	1994-07-07
M39	1994-07-18	1994-07-23
M40	1994-08-16	1994-08-18
M41	1994-09-09	1994-09-16
M42	1994-10-05	1994-10-11
M43	1994-10-25	1994-10-29
M44	1994-11-02	1994-11-04
M45	1994-12-05	1994-12-05
M46	1995-01-09	1995-01-10
M47	1995-02-01	1995-02-07
M48	1995-02-15	1995-02-18
M49	1995-03-03	1995-03-05
M50	1995-03-14	1995-03-20
M51	1995-04-09	1995-04-17
M52	1995-05-01	1995-05-01
M53	1995-05-05	1995-05-13
M54	1995-06-01	1995-06-09
M55	1995-06-22	1995-06-25
M56	1995-07-19	1995-07-23
M57	1995-08-16	1995-08-18
M58	1995-09-10	1995-09-11
M59	1995-09-15	1995-09-15
Table 2

Event	Start Date	Stop Date
M60	1995-10-06	1995-10-11
M61	1995-10-15	1995-10-16
M62	1995-10-23	1995-10-23
M63	1995-11-08	1995-11-11
M64	1995-12-28	1995-12-28
M65	1996-03-15	1996-03-15
M66	1996-03-23	1996-03-23
M67	1996-04-16	1996-04-24
M68	1996-08-30	1996-09-03
M69	1996-09-13	1996-09-17
M70	1996-09-22	1996-09-25
M71	1996-10-20	1996-10-21
M72	1997-01-29	1997-02-01
M73	1997-03-01	1997-03-05
M74	1997-03-31	1997-03-31
M75	1998-03-13	1998-03-14
M76	1998-04-29	1998-04-29
M77	1998-05-06	1998-05-07
M78	1998-07-25	1998-07-28
M79	1998-08-28	1998-08-30
M80	1998-09-28	1998-09-30
M81	1998-10-06	1998-10-06
M82	1998-10-21	1998-10-27
M83	1999-05-02	1999-05-06
M84	1999-08-19	1999-08-22
M85	1999-08-29	1999-08-29
M86	1999-09-15	1999-09-15
M87	1999-10-25	1999-10-25
M88	1999-12-07	1999-12-10
M89	2000-01-03	2000-01-04
M90	2000-02-01	2000-02-01
M91	2000-06-01	2000-06-02
M92	2000-09-01	2000-09-02
M93	2000-11-13	2000-11-14
M94	2001-04-11	2001-04-11
M95	2001-04-15	2001-04-17
M96	2002-08-15	2002-08-15
M97	2003-03-23	2003-03-25
M98	2003-05-03	2003-05-04
M99	2003-05-08	2003-05-08
M100	2003-05-14	2003-05-18
M101	2003-05-26	2003-05-26
M102	2003-06-05	2003-06-06
M103	2003-06-13	2003-06-13
M104	2003-06-26	2003-06-26
M105	2003-07-01	2003-07-02
M106	2003-07-06	2003-07-06
M107	2003-07-30	2003-08-05
M108	2003-08-17	2003-08-17
M109	2003-08-23	2003-08-27
M110	2003-09-06	2003-09-08
M111	2003-09-19	2003-09-29
M112	2003-10-16	2003-10-17
M113	2003-11-02	2003-11-02
M114	2003-11-17	2003-11-19
M115	2003-12-11	2003-12-19
M116	2004-01-08	2004-01-08
M117	2004-02-14	2004-02-20
Event	Start Date	Stop Date
-------	------------	-----------
M118	2004-03-04	2004-03-07
M119	2004-03-12	2004-03-17
M120	2004-03-29	2004-03-31
M121	2004-04-07	2004-04-07
M122	2004-05-09	2004-05-10
M123	2004-07-23	2004-08-05
M124	2004-08-12	2004-08-13
M125	2004-09-16	2004-09-16
M126	2004-10-15	2004-10-18
M127	2004-11-11	2004-11-15
M128	2005-01-04	2005-01-06
M129	2005-01-19	2005-01-27
M130	2005-02-10	2005-02-14
M131	2005-03-09	2005-03-13
M132	2005-03-28	2005-03-28
M133	2005-04-06	2005-04-10
M134	2005-04-14	2005-04-18
M135	2005-05-02	2005-05-06
M136	2005-05-16	2005-05-19
M137	2005-06-02	2005-06-02
M138	2005-06-06	2005-06-06
M139	2005-06-13	2005-06-14
M140	2005-06-19	2005-06-21
M141	2005-06-27	2005-06-28
M142	2005-07-14	2005-07-15
M143	2005-07-23	2005-07-24
M144	2005-08-07	2005-08-09
M145	2005-08-20	2005-08-20
M146	2005-08-25	2005-08-28
M147	2005-09-06	2005-09-08
M148	2005-09-12	2005-09-22
M149	2005-10-10	2005-10-10
M150	2005-11-09	2005-11-10
M151	2006-01-28	2006-01-30
M152	2006-02-23	2006-02-25
M153	2006-03-21	2006-03-24
M154	2006-04-11	2006-04-20
M155	2006-05-15	2006-05-16
M156	2006-06-09	2006-06-14
M157	2006-07-06	2006-07-09
M158	2006-08-10	2006-08-14
M159	2006-09-06	2006-09-06
M160	2006-09-20	2006-09-22
M161	2006-10-03	2006-10-05
M162	2006-10-15	2006-10-19
M163	2006-11-12	2006-11-14
M164	2006-11-28	2006-11-28
M165	2006-12-13	2006-12-18
M166	2006-12-22	2006-12-29
M167	2007-01-19	2007-01-25
M168	2007-02-01	2007-02-04
M169	2007-02-17	2007-02-17
M170	2007-03-08	2007-03-09
M171	2007-04-03	2007-04-08
M172	2007-05-01	2007-05-04
M173	2007-05-26	2007-05-31
M174	2007-08-09	2007-08-09
M175	2007-09-04	2007-09-06
Table 2
Continued

Event	Start Date	Stop Date
M176	2007-09-30	2007-10-02
M177	2007-10-28	2007-10-28
M178	2008-01-08	2008-01-11
M179	2008-02-04	2008-02-06
M180	2008-03-01	2008-03-04
M181	2008-03-13	2008-03-16
M182	2008-03-28	2008-04-04
M183	2008-04-10	2008-04-12
M184	2008-04-25	2008-04-27
M185	2008-06-18	2008-06-19
M186	2008-07-15	2008-07-20
M187	2008-07-25	2008-07-26
M188	2008-08-12	2008-08-13
M189	2008-10-07	2008-10-07
M190	2008-10-13	2008-10-14
M191	2010-04-07	2010-04-11
M192	2010-05-04	2010-05-10
M193	2010-06-01	2010-06-03
M194	2010-07-03	2010-07-03
M195	2010-07-30	2010-07-30
M196	2011-02-08	2011-02-08
M197	2011-03-05	2011-03-06
M198	2011-04-05	2011-04-05
M199	2011-05-03	2011-05-07
M200	2011-05-30	2011-06-04
M201	2011-06-25	2011-06-25
M202	2011-07-23	2011-07-24
M203	2012-03-14	2012-03-14
M204	2012-03-18	2012-03-22
M205	2012-04-28	2012-04-28
M206	2012-06-07	2012-06-10
M207	2012-06-21	2012-06-21
M208	2012-07-04	2012-07-04
M209	2012-07-18	2012-07-19
M210	2012-10-16	2012-10-20
M211	2013-05-28	2013-05-31
M212	2013-06-04	2013-06-05
M213	2013-06-25	2013-06-27
M214	2013-07-04	2013-07-04
M215	2013-07-12	2013-07-12
M216	2013-08-07	2013-08-09
M217	2013-08-19	2013-08-19
M218	2015-03-20	2015-03-21
M219	2015-06-24	2015-06-24
M220	2015-08-18	2015-08-18
M221	2015-10-09	2015-10-11
M222	2015-11-11	2015-11-12
M223	2016-02-19	2016-02-21
M224	2016-05-10	2016-05-13
M225	2016-08-06	2016-08-06
M226	2016-08-13	2016-08-14
M227	2016-09-04	2016-09-07
M228	2016-09-30	2016-10-03
M229	2016-10-18	2016-10-21
M230	2016-10-27	2016-10-31
M231	2016-11-15	2016-11-15
M232	2016-11-26	2016-11-30
M233	2016-12-28	2016-12-29
We can further examine the distribution of events as a function of time and compare the event occurrence rates in different solar cycles. Figure 6 shows the number of moderate, strong, and intense events that occurred in each year. The bottom panels show the mean and smoothed sunspot numbers from Figure 1 for reference. The top three plots show, in blue, the number of discrete events in each category in each year (assigned to the year they start if they overlap a year boundary). They also show, in gray, the number of Days Above Threshold. While the two curves are well correlated they do differ because even events of a given category can last a longer or shorter number of days.

Figure 6 shows clearly that solar cycles 22 and 23 produced more, and stronger, events than solar cycle 24. Solar cycles 22 and 23 were similar but also show some interesting differences. Figure 6 also shows a secondary peak in moderate events starting at solar minimum and continuing through the ascending phase of the solar cycle showing how the identification of electron events described here could be used for a study of solar wind drivers without any selection bias.

The strong events show a similar time history as the moderate events but, by definition, with 10-times fewer events. Interestingly, one of the two strong events during cycle 24 occurred in from 8–11 April 2010 during one of the deepest solar minima in the space age.

There are approximately 29.3 years in our data set. Therefore, we would expect 2.66 intense events (i.e., one per 11-year cycle) but there can, of course, only be an integral number of total events. In this case our algorithm identified two intense events: 13 May 1992 and 29–30 July 2004. We note, however, that a small tweak of the once-per-cycle threshold could easily have identified three events reflecting the uncertainty inherent when the statistics push the limits of the data.

4. The Van Allen Probes Era

The NASA Van Allen Probes satellites operated from Fall of 2012 to the Fall of 2019. In addition to a relatively low occurrence of sunspots, the Van Allen Probes era was characterized by relatively infrequent and less severe storms than previous solar cycles. The event identification methodology applied here

Event	Start Date	Stop Date
M234	2017-01-08	2017-01-10
M235	2017-02-04	2017-02-07
M236	2017-03-06	2017-03-09
M237	2017-03-25	2017-03-29
M238	2017-04-24	2017-04-29
M239	2017-05-21	2017-05-27
M240	2017-07-19	2017-07-20
M241	2017-07-25	2017-07-27
M242	2017-08-07	2017-08-08
M243	2017-08-20	2017-08-21
M244	2017-09-09	2017-09-10
M245	2017-09-17	2017-09-21
M246	2017-09-29	2017-10-02
M247	2017-10-15	2017-10-18
M248	2017-11-11	2017-11-13
M249	2018-03-28	2018-03-29
M250	2018-05-10	2018-05-10
M251	2018-08-28	2018-08-31
M252	2018-09-16	2018-09-16
M253	2018-10-12	2018-10-12

The 254 events in our study interval that exceeded the threshold of 5.37 (cm²·sr·keV)^{-1} are numbered chronologically M1 to M254.
allows us to more quantitatively compare the radiation belt activity during the Van Allen Probes era to previous epochs. Based on our statistics, a random 6-year period would have, on average, 54.5 moderate events, 5.5 strong events, and 0.55 intense events. We can compare that against six specific years of Van Allen Probes observations (1 January 2013 through 31 December 2018). What was actually observed at geosynchronous orbit in those 6 years was 44 moderate events or 80% of the average rate for all of 1989 through 2018. Looking at strong events, we find only one in the Van Allen Probes era which is only 18% of the average. The probability of seeing an intense event in any 6-year interval is too low to draw meaningful conclusions. A more detailed application of the methodology used here could potentially be used to help extrapolate the observations of the Van Allen Probes era to past or future epochs.

It should also be noted that, so far, we have only illustrated our event identification methodology using geosynchronous observations of ~2 MeV electrons which represent only a small slice of the rich complexity of radiation belt dynamics. Figure 7 shows a comparison of LANL-GEO and Van Allen Probes observations for 1 March to 15 May 2017 which includes the one strong (10 per cycle) event observed at geosynchronous orbit during the Van Allen Probes era. The figure helps put our event identification in a broader radiation belt context. The top panel shows, in black, the 2.2 MeV background-corrected electron fluxes from the MagEIS instrument on Van Allen Probes A & B (Blake et al., 2013; Claudepierre et al., 2015; Spence et al., 2013). Flux is plotted as a function of time only. Therefore the envelope shows the maximum flux regardless of which L-shell it is observed. The blue curve shows the LANL-GEO 1.8–3.5 MeV electron fluxes used in the preceding analysis. The geosynchronous moderate and strong event thresholds (5.37 and 17.8 (cm²·s-·sr·keV)⁻¹) are shown with dashed lines. The bottom plot again shows 2.2 MeV electron data from MagEIS but now plotted as a function of both time and L-shell.

The first moderate event in this period occurred from 6 March 6 through 9 March. While the fluxes at geosynchronous orbit decayed more quickly than in the heart of the outer belt, the geosynchronous fluxes provide a good, qualitative picture of the level of activity. In the third moderate event, from 29 March 29 through 3 April, the geosynchronous fluxes track the activity in the outer belt even more closely—in part because of the abrupt decrease in fluxes throughout the belt at the end of the event.

The second moderate event, on 25 March, is unusual in the sense that peak geosynchronous fluxes were considerably higher than those observed by MagEIS. This event is similar to that described by Baker et al. (2013) where the flux enhancement was confined to higher L-shells (>4.5) and the event left the fluxes at lower L-shells relatively unchanged. Nevertheless, the event on 25 March shows that geosynchronous fluxes are not always a good indicator of activity throughout the outer belt.

The final event in this interval surpassed moderate event thresholds from 24 April through 29 April and exceeded the strong event threshold on 27 April. Both the upper and lower plots show that this was, indeed, a strong event both at geosynchronous orbit and throughout the outer belt. Both plots also show that the flux intensification at geosynchronous orbit was delayed with respect to the onset of the event. The start of an “event”—particularly a strong or intense event—will nearly always be delayed relative to the onset of “activity.”

Figure 7 illustrates some of the pluses and minuses of using geosynchronous data to define events for the radiation belts as a whole. (See also Baker et al., 2019.) However, we reiterate that the methodology described here is not specific to geosynchronous data but can be applied to different L-shells or different energies. However, the flux

Table 3

A Catalog of Event Start and Stop Dates for Strong Events Which Occur, on Average, 10 Times in 11 Years

Event	Start date	Stop date
S1	1991-03-29	1991-03-31
S2	1992-05-12	1992-05-17
S3	1992-09-07	1992-09-07
S4	1992-10-03	1992-10-04
S5	1993-06-10	1993-06-10
S6	1993-08-22	1993-08-23
S7	1994-04-14	1994-04-14
S8	1995-03-16	1995-03-16
S9	1995-04-14	1995-04-16
S10	2003-08-27	2003-08-27
S11	2003-09-20	2003-09-20
S12	2004-02-16	2004-02-18
S13	2004-07-28	2004-07-31
S14	2005-05-17	2005-05-19
S15	2005-08-08	2005-08-09
S16	2005-09-14	2005-09-21
S17	2006-04-16	2006-04-17
S18	2010-04-08	2010-04-11
S19	2017-04-27	2017-04-27

Note: The 19 events in our study interval that exceeded the threshold of 17.8 (cm²·s-·sr·keV)⁻¹ are numbered chronologically from S1 to S19.

Table 4

A Catalog of Event Start and Stop Dates for Intense Events Which Occur, on Average, Once in 11 Years

Event	Start date	Stop date
I1	1992-05-13	1992-05-13
I2	2004-07-29	2004-07-30

Note: The two events in our study interval that exceeded the threshold of 46.7 (cm²·s-·sr·keV)⁻¹ are numbered chronologically from I1 to I2.
thresholds that define the 100, 10, and 1 per cycle levels will also be a function of L-shell and energy. The primary advantage of the LANL-GEO data set for this purpose is the duration and consistency of the data set.

5. Conclusions

We have presented a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments. We established the following criteria for success—the methodology should

1. identify the most intense events;
2. not falsely identify data artifacts or misclassify small events;
3. be quantitative and not subjective;
4. establish clearly defined onset and end times;
5. not depend on any data other than the electron fluxes themselves;
6. be capable of being applied to other time series of interest for space weather applications; and
7. be able to identify how frequent (or rare) and how severe a given event is relative to the historic record.

In our particular use case we defined the start of an event when fluxes exceeded a particular flux threshold and the end of an event when fluxes dropped below that threshold and remained there for three or more days.

One advantage of defining events is that each event is statistically independent of all other events—as assumed in many formulations of extreme value analysis. In contrast the fluxes on any given day are well-correlated with the fluxes on preceding or following days.

We identified flux thresholds for moderate, strong, and intense events as those that produce on average 100, 10, and 1 event per 11-year time interval. (11 years is approximately one solar cycle.) However, the technique is not dependent on the choice of an 11-year interval.

An advantage of using probability distributions is that they can be used to directly and quantitatively compare heterogeneous data sets. We illustrated this point by comparing 1.8–3.5 MeV LANL-GEO data (i.e., differential flux in units of \((\text{cm}^2\cdot\text{s}^{-1}\cdot\text{sr}^{-1}\cdot\text{keV}^{-1})\)) with >2 MeV GOES data (integral flux channel in units of \((\text{cm}^2\cdot\text{s}^{-1}\cdot\text{sr})^{-1}\)). However, the technique is equally applicable to data from different orbits (e.g., GEO vs. LEO), different instruments (e.g., dose or count rate data), or other space weather data sets of interest (solar wind, geomagnetic indices, etc.)

We presented a comparison of the number of relativistic electron events per year from 1990 through 2018 which span most of solar cycles 22–24. By definition there are approximately 10 times more moderate than strong events and approximately 100 times more moderate than intense events. However, in all three categories solar cycles 22 and 23 looked quite similar. In contrast solar cycle 24 showed far fewer events. Moderate events in cycle 24 occurred at 80% of the average rate (1989 through 2018) while strong events in cycle 24 occurred at only 18% of the average rate. No intense events were observed.

Solar cycle 24 includes the years when the Van Allen Probes mission was operating. We also presented a comparison of geosynchronous fluxes with Van Allen Probes observations—both maximum flux/orbit and flux as a function of L-shell. As expected, geosynchronous fluxes (and events) provide a good qualitative indication of activity in the outer belt, but important quantitative differences are also apparent. A more detailed comparison of Van Allen Probes data with the longer-duration geosynchronous data may allow statistical extrapolation of Van Allen Probes observations to earlier eras without such extensive measurements.

6. Catalog of Relativistic Electron Events

We provide here, a catalog of relativistic electron events that were identified using the methodology described in this paper:

1. Table 2. Moderate Events, 100 per cycle, Flux > 5.37 \((\text{cm}^2\cdot\text{s}^{-1}\cdot\text{sr}^{-1}\cdot\text{keV}^{-1})\);
2. Table 3. Strong Events, 10 per cycle, Flux > 17.8 \((\text{cm}^2\cdot\text{s}^{-1}\cdot\text{sr}^{-1}\cdot\text{keV}^{-1})\);
3. Table 4. Intense Events, 1 per cycle, Flux \(\gtrsim 46.7 \,(\text{cm}^2\cdot\text{s}^{-1}\cdot\text{sr}^{-1}\cdot\text{keV}^{-1})\).
The three lists of events are also available online (https://zenodo.org/record/3764205).

Data Availability Statement

The GOES and LANL geosynchronous data used in this study, the probability distributions shown in Figures 3 and 4, and the catalog of events used in Figures 5 and 6 (also shown in section 6) are available at https://zenodo.org/record/3764205 or by request from the authors. Van Allen Probes MagEIS data are available online (https://rbsp-ect.newmexicoconsortium.org/datapub/). Sunspot numbers were obtained from WDC-SILSO, Royal Observatory of Belgium, Brussels (http://www.sidc.be/silso/datafiles).

References

Anderson, B. R., Millan, R. M., Reeves, G. D., & Friedel, R. H. W. (2015). Acceleration and loss of relativistic electrons during small geomagnetic storms. *Geophysical Research Letters*, 42, 23. https://doi.org/10.1002/2015GL066376

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Balas, S., Bolton, M., Li, X., et al. (2012). The relativistic electron-proton telescope (REPT) instrument on board the radiation belt storm probes (RBSP) spacecraft. Characterization of earth’s radiation belt high-energy particle populations. *Science Reviews*, 179(1-4), 337–381. https://doi.org/10.1002/sirv.2001-012-9590-9

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., et al. (2013). A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. *Science*, 340(6129), 6129–6190. https://doi.org/10.1126/science.1233518

Baker, D. N., Mason, G. M., Figueroa, O., Colon, G., Watzin, J. G., & Aleman, R. M. (1993). An overview of the solar, anomalous, and magnetospheric particle explorer (SAMPEX) mission. *IEEE Transactions of Geoscience and Remote Sensing*, 31(3), 3–541. https://doi.org/10.1109/36.235519

Baker, D. N., Zhao, H., Li, X., Kanekal, S. G., Jaynes, A. N., Kress, B. T., et al. (2019). Comparison of Van Allen Probes energetic electron data with corresponding GOES-15 measurements: 2012–2018. *Journal of Geophysical Research: Space Physics*, 124, 12–9942. https://doi.org/10.1029/2019JA027331

Bame, S. J., McComas, D. J., Thomason, M. F., Barraclough, B. L., Elphic, R. C., Glore, J. P., et al. (1993). Magnetospheric plasma analyzer for spacecraft with constrained resources. *The Review of Scientific Instruments*, 64(4), 1026–1033.

Belian, R. D., Gisler, G. R., Cayton, T., & Christensen, R. (1992). High energy particle event of October, 1989. *Journal of Geophysical Research*, 97(A11), 16897. https://doi.org/10.1029/92JA01139

Benacquista, R., Boscher, D., Rochel, S., & Maget, V. (2018). Variations of the electron fluxes in the terrestrial radiation belts due to the impact of corotating interaction regions and interplanetary coronal mass ejections. *Journal of Geophysical Research: Space Physics*, 123, 1191–1199. https://doi.org/10.1002/2017JA024796

Bingham, S. T., Mouikis, C. G., Kistler, L. M., Paulson, K. W., Farrugia, C. J., Huang, C. L., et al. (2019). The storm time development of energetic particles (ESP): Instrument description and orbital performance. *Journal of Geophysical Research: Space Physics*, 124, 6438–6452. https://doi.org/10.1029/2019JA026689

Blake, J. B., Barranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., et al. (2013). The magnetic electron spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. *Space Science Reviews*, 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8

Blake, J. B., Fennell, J. F., Friesen, L. M., Johnson, B. M., Kosarinski, W. A., Mabry, D. J., et al. (1995). Ceppad: Comprehensive energetic particle and pitch angle distribution experiment on polar. *Space Science Reviews*, 71(1-4), 531–562.

Borovsky, J. E., & Denton, M. H. (2006). Differences between CME-driven storms and CIR-driven storms. *Journal of Geophysical Research*, 111, A07S08. https://doi.org/10.1029/2005JA011447

Borovsky, J. E., & Denton, M. H. (2009). Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind. *Journal of Geophysical Research*, 114, A02201. https://doi.org/10.1029/2008JA013128

Claudepierre, S. G., Bongiorno, T. P., Blake, J. B., Fennell, J. F., Roeder, J. L., Clemmons, J. H., et al. (2015). A background correction algorithm for Van Allen Probes MagEIS electron flux measurements. *Journal of Geophysical Research: Space Physics*, 120, 5703–5727. https://doi.org/10.1002/2015JA021171

Cliver, E. W. (1995). Solar activity and geomagnetic storms: From M regions and flares to coronal holes and CMEs. *EOS Transactions of American Geophysical Union*, 76(8), 75.

Hartley, D. P., Denton, M. H., Green, J. C., Onsager, T. G., Rodrigue, J. V., & Singer, H. J. (2013). Case studies of the impact of high-speed solar wind streams on the electron radiation belt at geosynchronous orbit: Flux, magnetic field, and phase space density. *Journal of Geophysical Research: Space Physics*, 118, 6964–6979. https://doi.org/10.1002/2013JA018923

Hartley, D. P., Ginet, G. P., & Cayton, T. E. (2000). Enhancement of equatorial energetic electron fluxes near L = 4.2 as a result of high speed solar wind streams. *Journal of Geophysical Research*, 105(A10), 23311–23322. https://doi.org/10.1029/1999JA000380

Kilpua, E. J., Hietala, H., Turner, D. L., Koskinen, H. E. J., Pulkinen, T. I., Rodrigue, J. V., et al. (2015). Unraveling the drivers of the storm time radiation belt response. *Geophysical Research Letters*, 42, 3076–3084. https://doi.org/10.1002/2015GL063542

McComas, D. J., Elliott, H. A., Gosling, J. T., & Skoug, R. M. (2006). Ulysses observations of very different heliospheric structure during the declining phase of solar activity cycle 23. *Geophysical Research Letters*, 33, L09102. https://doi.org/10.1029/2006GL025915

Meier, M. M., Belian, R. D., Cayton, T. E., Christensen, R. A., Garcia, B., Grace, K. M., et al. (Eds.) (1996). *The energy spectrometer for particles (ESP): Instrument description and orbital performance* (pp. 203–210). New York, NY: AIP Press.

Miyoshi, Y., & Kataoka, R. (2005). Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. *Geophysical Research Letters*, 32, L21105. https://doi.org/10.1029/2005GL024590

Miyoshi, Y., & Kataoka, R. (2008). Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions. *Journal of Geophysical Research*, 113, A03S09. https://doi.org/10.1029/2007JA012506

Miyoshi, Y., Moroki, A., Kataoka, R., Kasahara, Y., & Mukai, T. (2007). Evolution of the outer radiation belt during the November 1993 storms driven by corotating interaction regions. *Journal of Geophysical Research*, 112, A05210. https://doi.org/10.1029/2006JA012148

Acknowledgments

This work was supported in part by RBSP–Energetic Particle, Composition, and Thermal Plasma funding under NASA’s Prime contract no. NAS5-01072 and by the US Department of Energy (Doe).
