Experimental evidence for a large critical transverse depinning force in weakly-pinned vortices

J. Lefebvre, M. Hilke, and Z. Altounian
Dpt. of Physics, McGill University, Montréal, Canada H3A 2T8.

We present experimental evidence for the existence of a large critical transverse depinning force. These results are obtained in the weakly-pinned superconducting metal glasses Fe$_x$Ni$_{1-x}$Zr$_2$ using crossed ac and dc driving currents. We study the depinning force due to the transverse ac drive as a function of a longitudinal dc drive. The ac/dc combination allows us to separate the transverse drive from the longitudinal one. We show that the force required for depinning in the transverse direction is enhanced by a longitudinal drive, which leads to the existence of a large transverse critical force.

The vortex state of type II superconductors is characterized by a wealth of interaction phenomena: Whereas vortex-vortex repulsion tends to order the system, thermal fluctuations and pinning from material inhomogeneities introduce disorder in the vortex lattice. This sort of competition between ordering and disordering makes the vortex state rich in both static and dynamic phase transitions, as well as in nonequilibrium phenomena. While the effect of disorder on the static case has been widely studied in the past years [1, 2, 3, 4, 5] the driven case has still much to reveal.

A large number of studies have demonstrated that at high driving forces, a disordered system will show ordering (dynamical ordering) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Experimentally, the crossover to a more ordered vortex phase at large driving current is deduced in transport measurements from the presence of a peak in the differential resistance [6, 8], or from a decrease of the low frequency broadband noise [23]; an increase of the longitudinal correlation length in neutron diffraction experiments has also revealed the existence of this dynamical ordering phenomena [7]. In addition, dynamic ordering was directly observed in magnetic decoration experiments [6, 20]. Numerically and analytically, the establishment of the existence of such dynamical phase transitions and ordering has lead to the prediction of the existence of static channels in which the vortices flow; these channels may be decoupled, in which case the vortex phase obtained is called the moving transverse glass (MTG) and has smectic order, or they may be coupled and one has the moving Bragg glass (MBG). It is predicted that these channels act as strong barriers against transverse depinning, resulting in the existence of a finite transverse critical force [11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23]. Experimentally, the existence of this critical force has yet to be proved, and the vortex channels have only been observed in magnetic decoration experiments [6, 20] and STM images [25].

Here we study experimentally the transverse dynamics of vortices and demonstrate the existence of a large transverse critical force. (Experimentally, the critical force is equivalent to the depinning force, so we will use the terminology “critical force” throughout the text to mean “depinning force”.) We find that for a system driven longitudinally with a dc current, application of a small transverse force, provided by an ac current, does not result in immediate transverse depinning. In some regimes, the transverse force required for depinning the vortices in the transverse direction is even increased by more than 30% with respect to the force required in the longitudinal case, thus implying the appearance of very strong barriers against transverse motion. Numerical studies have found the ratio of the critical transverse force over the critical longitudinal force f_t/f_L to be of the order of 1% [11, 12, 24] or 10% [21]. Following Ref. [21], this ratio is expected to increase for weaker pinning. However, finite size effects in numerical simulations do not allow for studies in the limit of very weak pinning, which is the regime of our experiments. Indeed, in our experiments the vortex pinning is at least six times smaller and we obtain a ratio f_t/f_L, which can exceed 100%.

The measurements were performed on different samples of the metal glass Fe$_x$Ni$_{1-x}$Zr$_2$ prepared by melt-spinning [20] and which become superconducting below about 2.4 K depending on the iron content. These samples are particularly clean such that vortices are very weakly-pinned, and pinning is isotropic and has no long-range order because of the amorphous nature of the samples. The samples have a very small critical current density ($J_c \leq 0.4$ A/cm2), which means that we can conveniently study the depinning mechanisms using a very small driving current without introducing uncertainties due to the heating of the sample related to the use of a large driving current. The average vortex velocity can then be measured from the voltage they produce per unit length. These material were found to be strong type II low temperature superconductors [27] from estimates of the different characterizing length scales using standard expressions for superconductors in the dirty limit [28]. These samples show a variety of phases of longitudinal and transverse vortex motion, including a MBG-like phase [27, 29], and hence are ideal for the study of transverse depinning.

We proceed by cooling the samples in a He3 system to a temperature below 0.4 K. We use a dc current as the longitudinal drive, and a 17 Hz ac current provided by a re-
I

netic field measured with different
she show the trajectory followed by vortices in the three regime
s by the dc current
perpendicular to the sample plane, the force exerted on
the configuration shown in Fig. (1a). In a magnetic field
bridge. Indium contacts are soldered to the sample in
sistance bridge as the transverse drive. The resistance is
measured in the transverse direction with the resistance
bridge. Indium contacts are soldered to the sample in
the configuration shown in Fig. (1a). In a magnetic field
perpendicular to the sample plane, the force exerted on
the vortices by the dc current \(I_{dc} \) applied along the short
edge of the sample acts in the direction \(F_{dc} = J_{dc} \times \vec{B} \),
such that the vortices move under the action of that force
along the long edge of the sample. Similarly, because the
ac current \(I_{ac} \) is applied along the long edge of the sam-
ple, the force it provides acts on the vortices in such a
way that they are oscillating along the direction of the
short edge of the sample. Therefore, in this configuration,
the channels of vortices are set up by the dc current in
the longitudinal direction along the long edge of the
sample, and the transverse force is provided by the ac
current and directed along the short edge of the sample.
Evidently, the two sets of contacts used for dc driving
and ac driving are not perfectly perpendicular to each
other, and the transverse voltage measured also contains
a component resulting from the ac component along the
dc longitudinally driven motion. This contact misalign-
ment \(\alpha \) can be estimated to be of the order of \(2^\circ \) for this
particular sample and can be excluded following the dis-
cussion below. In all the figures, the error bars are found
to be smaller than the size of the dot.

For instance, in Fig. (1) we show measurements of
the transverse ac resistance as a function of magnetic
field for zero and non-zero longitudinal dc currents. This
allows us to distinguish three regions corresponding to
three regimes of vortex motion: Region 1 is character-
ized by vortices pinned in both directions, as none of
the currents is strong enough to depin the vortices, lead-
ing to zero resistance. In Region 2, for a longitudinal
dc current of \(I_{dc} = 1.3 \ mA \), which is above the longi-
tudinal depinning current of 0.55 mA, we also measure
an ac resistance, which is due to the small ac compo-
nent proportional to \(\sin(\alpha) \) along the longitudinal direc-
tion. In this region, where the depinning is only lon-
gitudinal, the ac resistance is indeed independent of the
transverse ac current, clearly demonstrating that the vor-
tices are pinned in the transverse direction, since depin-
ing is associated with strong non-linearities. This is in
stark contrast to region 3, where the ac transverse resis-
tance depends on the transverse ac current and indicates
the region where the vortices also start moving in the
transverse direction. The transverse depinning current
is then easily identified as the point in field and ac cur-
cent where the ac resistance depends on the transverse
ac current. Hence, for a given longitudinal dc drive, the
pure transverse dynamics can be obtained by subtract-
ing the contribution due to a very small transverse ac
current with the same longitudinal dc drive, i.e., sub-
tracting \(R_{ac}(I_{ac} = 0.3 mA) + (I_{dc} = 1.3 mA) \) from
\(R_{ac}(I_{ac} = 0.3 mA) + (I_{dc} = 1.3 mA) \) in Fig. (1).

Using the methodology described above, we show in
Fig. (2) the corrected transverse voltage versus the trans-
verse driving force for different longitudinal dc drives at
a magnetic field of \(B = 0.95 T \). The arrows in this figure
indicate the transverse depinning driving force normal-
ized by the critical longitudinal force \(\frac{\Delta R}{T_c} \) for two differ-
ent longitudinal drives using a voltage cutoff of 10 nV
as depinning threshold. The critical longitudinal force is
obtained from the transverse ac depinning current when
the longitudinal current is set to zero. This is justified
since our system is isotropic in both directions and this
choice avoids errors due to the geometrical factor when
computing the difference in longitudinal and transverse
current densities. In addition, the longitudinal depin-
ning currents in the ac and dc driving case are very simi-
lar for these systems. From Fig. (2) we see that for
\(I_{dc} = 0.8 \ mA \) the transverse depinning force is slightly
decreased compared to the longitudinal one, in contrast
to 1.0 mA \(\leq I_{dc} \leq 1.1 \ mA \), where the transverse de-
pinning force is increased, with a ratio \(\frac{\Delta R}{T_c} \) reaching 1.33.
Hence, in this range of longitudinal drives, strong bar-
rriers against transverse motion are set up. The overall

FIG. 1: a) Drawing showing the contact configuration and
resulting directions of vortex motion. b) Resistance vs mag-
netic field measured with different \(I_{ac} \) and \(I_{dc} \). The drawings
show the trajectory followed by vortices in the three regimes
of vortex motion.
dependance can be interpreted in the following manner: for $I_{dc} = 0.8 \text{ mA}$, the force provided by this combination of magnetic field and current is just strong enough to cause depinning in the longitudinal direction, but the strength of the barriers created by the channeling effect is still too small to cause a strong pinning action in the transverse direction. For $0.9 \text{ mA} \leq I_{dc} \leq 1.1 \text{ mA}$, the dc force does work very well at restraining transverse vortex motion, and the force required to induce transverse depinning even increases with the dc current (see Fig. [3]). For $I_{dc} = 1.3 \text{ mA}$, the ratio of the critical forces starts to decay; the decay gets stronger for $I_{dc} \geq 1.5 \text{ mA}$. This strong decay is likely due to additional dynamic disorder, which could weaken the barriers against transverse vortex motion [21].

From Fig. [2] we extract the evolution of f_{y}^{c}/f_{x}^{c} for different transverse cutoff voltages. The results are shown in Fig. [3] for different longitudinal driving currents, where the ratio of the critical forces approaches one for transverse vortex velocities exceeding the longitudinal vortex velocities. In fact, we obtain this ratio to be exactly one when the transverse force equals approximately ten times the longitudinal force (data not shown here). However, the fact that this ratio does not reach one right after transverse depinning occurs implies that the barriers against transverse vortex motion not only delay transverse depinning, but also constrain transverse vortex motion at larger velocities as well. This effect was also observed numerically in Ref. [21]. More importantly, this figure confirms the criticality of the transverse depinning transition observed with the $0.9 \text{ mA} \leq I_{dc} \leq 1.5 \text{ mA}$ longitudinal drives. Indeed, in this regime, extrapolation of f_{y}^{c}/f_{x}^{c} to $V_{cutoff} = 0$ determines the critical f_{y}^{c}/f_{x}^{c}, which clearly will remain much larger than 0. This can be contrasted with the data for $I_{dc} = 0.5$ and 0.8 mA for which f_{y}^{c}/f_{x}^{c} decreases with decreasing cutoff voltage, which could indicate that in this regime the transverse pinning is not critical.

In order to illustrate this critical behavior further, we choose different cutoff voltages to extract the ratio f_{y}^{c}/f_{x}^{c} from the data shown in Fig. [2] and plot this as a function of the dc longitudinal force as shown in Fig. [4] for two different samples. As mentioned previously, the general behavior observed with increasing dc force is an initial slight decrease of f_{y}^{c}/f_{x}^{c} followed by a strong increase reaching a maximum at $f_{dc} = 0.2 \times 10^{-3} f_{0}$ where f_{0} is the interaction force between two vortices separated by a distance λ. In the region below $f_{x} = 0.16 \times 10^{-3} f_{0}$, the longitudinal force is smaller than the longitudinal depinning force, i.e. the ratio f_{y}^{c}/f_{x}^{c} is dominated by the transverse motion and the ratio should therefore be close to one. However, the observed small initial decrease of f_{y}^{c}/f_{x}^{c} is attributable to the small longitudinal dc component in the transverse direction due to our small contact misalignment, which now helps depinning in the transverse direction. In the peak region, $0.16 \times 10^{-3} f_{0} < f_{x} < 0.33 \times 10^{-3} f_{0}$, the longitudinal force is now greater than the longitudinal depinning force and an important enhancement of the transverse
The normalized critical transverse depinning force in our experimental weakly pinned system is consistent with the numerical study in Ref. [21], where they find the critical forces ratio to be larger for weaker pinned simulated samples. This increase in critical ratio for a decreasing longitudinal pinning was attributed to a transverse depinning, which is largely independent of the longitudinal pinning. For a quantitative comparison, we use $f_p = A \left(\vec{J}_x \times \vec{B} \right)$, where A is the area of the sample perpendicular to the B field, to obtain the pinning force per unit length for our sample. This leads to $f_p = 0.02f_0$, which means it is 6 times less pinned than the weakest pinned sample simulated in Ref. [21]. In addition, we obtain the critical longitudinal depinning force for our system using the $V = 10\, nV$ cutoff to be $f_c = 1 \times 10^{-4}f_0$, which is more than 200 times smaller than the longitudinal depinning force simulated in Ref. [21]. These quantities confirm the weak-pinning nature of our samples, which leads to the very large observed critical transverse to longitudinal force ratio.

We have investigated experimentally the transverse dynamics of a vortex system by measuring the resistance developed in a superconductor upon application of an ac current in the transverse direction in the presence of a dc current in the longitudinal direction. We obtain values for the depinning force in the driven case which are increased up to 33 % with respect to the depinning force in the static case, depending on the dc current used. We attribute the large magnitude of the critical force ratio in the driven and the static cases found here to the weak-pinning properties of our samples. We also establish that the longitudinal drive suppresses vortex motion after transverse depinning such that the vortices still feel some transverse pinning at high velocity.

The authors acknowledge support from FQRNT and NSERC. Correspondence and requests for materials should be sent to hilke@physics.mcgill.ca

FIG. 4: Ratio of the critical forces in the driven and the static case versus the longitudinal dc force taken using different cutoff voltages for a) a sample of NiZr$_2$ at $B=$0.95 T (main panel) and $B=$1.05 T (inset) b) a sample of Fe$_{0.3}$Ni$_{0.7}$Zr$_2$ at $B=$1.05 T.

depinning force is observed. This is also the region described above in which we have a true critical transverse force. A strong dependence on the choice of voltage cutoff is also observed, which signifies that the effect of the longitudinal dc drive is not the same for all transverse ac forces. We choose the curve with $V_{\text{cutoff}} = 10\,nV$ to determine the critical transverse force f_c because, as discussed earlier, the criticality of the transverse depinning transition is determined by the behavior in the limit where V_{cutoff} approaches zero.

The most striking overall feature is the very large magnitude of f_c / f_0 measured here (between 0.55 and 1.33), when compared to the numerical studies [11, 12, 21, 24] (between 0.01 and 0.1). This much larger magnitude of

[1] T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990).
[2] J.-P. Bouchaud, M. Mézard, and J. S. Yedidia, Phys. Rev. B 46, 14686 (1992).
[3] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
[4] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994).
[5] T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 (1995).
[6] S. Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70, 2617 (1993).
[7] U. Yaron, P. L. Gammel, D. A. Huse, R. N. Kleiman, C. S. Oglesby, E. Bucher, B. Batlogg, D. J. Bishop, K. Mortensen, K. Clausen, et al., Phys. Rev. Lett. 73, 2748 (1994).
[8] M. C. Hellerqvist, D. Ephron, W. R. White, M. R.
[557x756]5

[72x730]Beasley, and A. Kapitulnik, Phys. Rev. Lett. 76, 4022 (1996).
[9] M. Marchevsky, J. Aarts, P. H. Kes, and M. V. Indenbom, Phys. Rev. Lett. 78, 531 (1997).
[10] A.-C. Shi and A. J. Berlinsky, Phys. Rev. Lett. 67, 1926 (1991).
[11] K. Moon, R. T. Scalettar, and G. T. Zimányi, Phys. Rev. Lett. 77, 2778 (1996).
[12] S. Ryu, M. Hellerqvist, S. Doniach, A. Kapitulnik, and D. Stroud, Phys. Rev. Lett. 77, 5114 (1996).
[13] C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Lett. 81, 3757 (1998).
[14] S. Spencer and H. J. Jensen, Phys. Rev. B 55, 8473 (1997).
[15] A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580 (1994).
[16] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76, 3408 (1996).
[17] L. Balents, M. C. Marchetti, and L. Radzihovsky, Phys. Rev. Lett. 78, 751 (1997).
[18] L. Balents, M. C. Marchetti, and L. Radzihovsky, Phys. Rev. B 57, 7705 (1998).
[19] P. Le Doussal and T. Giamarchi, Phys. Rev. B 57, 11356 (1998).
[20] F. Pardo, F. De La Cruz, P. L. Gammel, E. Bucher, and D. J. Bishop, Nature 396, 348 (1998).
[21] H. Fangohr, P. A. J. de Groot, and S. J. Cox, Phys. Rev. B 63, 064501 (2001).
[22] H. Fangohr, S. J. Cox, and P. A. J. de Groot, Phys. Rev. B 64, 064505 (2001).
[23] A. C. Marley, M. J. Higgins, and S. Bhattacharya, Phys. Rev. Lett. 74, 3029 (1995).
[24] C. J. Olson and C. Reichhardt, Phys. Rev. B 61, R3811 (2000).
[25] A. M. Troyanovski, J. Aarts, and P. H. Kes, Nature 399, 665 (1999).
[26] Z. Altounian, S. Dantu, and M. Dikeakos, Phys. Rev. B 49, 8621 (1994).
[27] M. Hilke, S. Reid, R. Gagnon, and Z. Altounian, Phys. Rev. Lett. 91, 127004 (2003).
[28] P. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983).
[29] J. Lefebvre, M. Hilke, R. Gagnon, and Z. Altounian, to be published in Phys. Rev. B (2006).