SHARP BOUNDS FOR THE SECOND SEIFFERT MEAN IN TERMS OF POWER MEANS

ZHEN-HANG YANG

Abstract. For $a, b > 0$ with $a \neq b$, let $T(a, b)$ denote the second Seiffert mean defined by

$$T(a, b) = \frac{a - b}{2 \arctan \frac{a - b}{a + b}}$$

and $A_r(a, b)$ denote the r-order power mean. We present the sharp bounds for the second Seiffert mean in terms of power means:

$$A_{p_1}(a, b) < T(a, b) \leq A_{p_2}(a, b),$$

where $p_1 = \log_{5/2} \pi$ and $p_2 = 5/3$ can not be improved.

1. Introduction

Throughout the paper, we assume that $a, b > 0$ with $a \neq b$. The power mean of order r of the positive real numbers a and b is defined by

$$A_r(a, b) = \left(\frac{a^r + b^r}{2} \right)^{1/r}$$

if $r \neq 0$ and $A_0 = A_0(a, b) = \sqrt{ab}$.

It is well-known that the function $r \mapsto A_r(a, b)$ is continuous and strictly increasing on \mathbb{R} (see [1]). As special cases, the arithmetic mean, geometric mean and quadratic mean are $A = A(a, b) = A_1(a, b)$, $G = G(a, b) = A_0(a, b)$ and $Q = Q(a, b) = A_2(a, b)$, respectively.

The Lehmer mean of order r of the positive real numbers a and b is defined as

$$L_r = L_r(a, b) = \frac{a^{r+1} + b^{r+1}}{a^r + b^r}$$

(see [11]). It is seen that the function $r \mapsto L_r(a, b)$ is continuous and strictly increasing on \mathbb{R}. In particular, $L_0 = A$, $L_1 = C$ are the arithmetic mean, contra-harmonic mean, respectively. Clearly, Lehmer mean can be expressed by power means as $L_r = A_{r+1}^r A_r^{-r}$.

The first Seiffert mean [17] is defined by

$$P = P(a, b) = \frac{a - b}{2 \arcsin \frac{a - b}{a + b}}.$$
the first Seiffert mean P in terms of power means proved by Jagers \[10\] and Hästö \[8\]:

$$A_{\log_2} (a, b) < P (a, b) < A_{2/3} (a, b).$$

In 1995, Seiffert \[18\] defined his second mean as

$$T = T (a, b) = \frac{a - b}{2 \arctan \frac{a - b}{a + b}},$$

and proved that

$$A < T < Q.$$

Sándor \[16\] pp. 265-267] showed that by a transformation of arguments, the mean T can be reduced to the mean P:

$$T (a, b) = P (x, y),$$

where

$$x = \frac{\sqrt{2} \left(a^2 + b^2 \right) + a - b}{2}, \quad y = \frac{\sqrt{2} \left(a^2 + b^2 \right) - a + b}{2},$$

which implies

$$A (x, y) = Q (a, b), \quad G (x, y) = A (a, b).$$

Therefore, by using the transformations (1.3), the following transformations of means will be true:

$$G \rightarrow A, \quad A \rightarrow Q, \quad P \rightarrow T.$$

Thus, from the known inequalities involving P, A, G he easily obtained corresponding ones involving T, Q, A, for example, (1.2) and the following inequalities:

$$Q^{2/3} A^{1/3} < Q \left(\frac{Q + A}{2} \right)^{2/3} < T < \frac{2Q + A}{3}.\tag{1.4}$$

Recently, Chu et al. in \[4\] proved the double inequality

$$p_1 Q + (1 - p_1) A < T < q_1 Q + (1 - q_1) A$$

holds if and only if $p_1 \leq (\sqrt{2} + 1) (4 - \pi) / \pi, q_1 \geq 2/3$, which shows that the constant 2/3 of the third inequality in (1.3) is the best.

Very recently, Witkowski \[21\] used some geometric ideas to prove a series of inequalities involving T, Q, A, such as

$$A < T < \frac{4}{\pi} A, \tag{1.6}$$

$$\frac{2\sqrt{2}}{\pi} Q < T < Q, \tag{1.7}$$

$$(1 - r_1)Q + r_1 A < T < \frac{2Q + A}{3} \tag{1.8},$$

where $r_1 = \frac{2(\pi - 2\sqrt{2})}{(2 - \sqrt{2})\pi} = 0.340341385...$. It is obvious that (1.8) is actually (1.5).

In 2010, Wang et al. \[20\] presented the optimal upper and lower Lehmer mean bounds for T as follows:

$$L_0 < T < L_{1/3}.\tag{1.9}$$
In [5], Chu et al. demonstrated that the double inequality
\[C(p_2 a + (1 - p_2) b, p_2 b + (1 - p_2) a) < T(a, b) < C(q_2 a + (1 - q_2) b, q_2 b + (1 - q_2) a) \]
if and only if \[p_2 \leq \frac{1 + \sqrt{4/\pi - 1}}{2}, \quad q_2 \geq \frac{3 + \sqrt{3}}{6}. \]

It is interesting and useful to evaluate the second Seiffert mean \(T \) by power means \(A_p \). Until recently, the inequalities (1.2) has improved by Costin and Toader [6] as
\[N < A_{3/2} < T < Q, \]
where \(N \) is the Neuman-Sándor mean defined in [13] by
\[N = N(a, b) = \frac{a - b}{2 \arcsinh \frac{a - b}{\pi + b}}. \]

Up to now, this may be the best result for the bounds for the second Seiffert mean in terms of power means. For this reason, we are going to find the best \(p \in (3/2, 2) \) such that the inequality
\[T(a, b) < A_p(a, b) \]
or its reverse inequality holds in this paper.

Our main results are the following

Theorem 1.1. The inequality (1.12) if and only if \(p \geq p_2 = 5/3 \). Moreover, we have
\[\alpha_1 A_{5/3}(a, b) < T(a, b) < \alpha_2 A_{5/3}(a, b), \]
where \(\alpha_1 = 2^{8/5}\pi^{-1} = 0.964494... \) and \(\alpha_2 = 1 \) are the best possible constants.

Theorem 1.2. The inequality (1.12) is reversed if and only if \(p \leq p_1 = \log_{\pi/2} 2 = 1.5349... \). Moreover, we have
\[\beta_1 A_{\log_{\pi/2} 2}(a, b) < T(a, b) < \beta_2 A_{\log_{\pi/2} 2}(a, b), \]
where \(\beta_1 = 1 \) and \(\beta_2 = 1.0136... \) are the best possible constants.

2. Lemmas

In order to prove our main results, we need the following lemmas.

Lemma 2.1. Let \(F_p \) be the function defined on \((0, 1)\) by
\[F_p(x) = \ln \frac{T(1, x)}{A_p(1, x)} = \ln \frac{1 - x}{2 \arctan \frac{1 - x}{x + 1}} - \frac{1}{p} \ln \left(\frac{x^p + 1}{2} \right). \]
Then we have
\[\lim_{x \to 1^-} \frac{F_p(x)}{(x - 1)^2} = -\frac{1}{24} (3p - 5), \]
\[F_p(0^+) = \lim_{x \to 0^+} F_p(x) = \begin{cases}
\frac{1}{p} \ln 2 - \ln \frac{p}{2} & \text{if } p > 0, \\
\infty & \text{if } p \leq 0,
\end{cases} \]
where \(F_0(x) := \lim_{p \to 0} F_p(x) \).
Proof. Using power series expansion we have
\[F_p(x) = -\frac{1}{24} (3p - 5)(x - 1)^2 + O((x - 1)^3), \]
which yields (2.2).

Direct limit calculation leads to (2.3), which proves the lemma. \(\square\)

Lemma 2.2. Let \(F_p\) be the function defined on \((0, 1)\) by (2.1). Then \(F_p\) is strictly increasing on \((0, 1)\) if and only if \(p \geq 5/3\) and decreasing on \((0, 1)\) if and only if \(p \leq 1\).

Proof. Differentiation yields
\begin{equation}
F_p'(x) = \frac{x^{p-1} + 1}{x(1-x)(x^p+1)} \arctan \frac{1-x}{x+1},
\end{equation}
where
\begin{equation}
f_1(x) = \frac{(1-x)(x^p+1)}{(x^2+1)(x^{p-1}+1)} - \arctan \frac{1-x}{x+1}.
\end{equation}

Differentiation again leads to
\begin{equation}
f_1'(x) = -\frac{x(1-x)}{(x^2+1)^2(x^{p-1}+1)^2} f_2(x),
\end{equation}
where
\begin{equation}
f_2(x) = ((1-p)x^p + (p+1)x^{p-1} - 2x^{2p-3} - (p+1)x^{p-2} + (p-1)x^{p-3} + 2).
\end{equation}

(i) We now prove that \(F_p\) is strictly increasing on \((0, 1)\) if and only if \(p \geq 5/3\). From (2.4) it is seen that \(\text{sgn} F_p'(x) = \text{sgn} f_1(x)\) for \(x \in (0, 1)\), so it suffices to prove that \(f_1(x) > 0\) for \(x \in (0, 1)\) if and only if \(p \geq 5/3\).

Necessity. If \(f_1(x) > 0\) for \(x \in (0, 1)\) then there must be \(\lim_{x \to 1^-} (1-x)^{-3} f_1(x) \geq 0\). Application of L'Hopital rule leads to
\begin{equation}
\lim_{x \to 1^-} \frac{f_1(x)}{(1-x)^3} = \lim_{x \to 1^-} \frac{(1-x)(x^p+1)}{(x^2+1)(x^{p-1}+1)} - \arctan \frac{1-x}{x+1} = \frac{1}{24} (3p - 5),
\end{equation}
and so we have \(p \geq 5/3\).

Sufficiency. We now prove \(f_1(x) > 0\) for \(x \in (0, 1)\) if \(p \geq 5/3\). As mentioned previously, the function
\begin{equation}
p \mapsto L_{p-1}(1, x) = \frac{x^p + 1}{x^{p-1} + 1}
\end{equation}
is increasing on \(\mathbb{R}\), it is enough to show that \(f_1(x) > 0\) for \(x \in (0, 1)\) when \(p = 5/3\).
In this case, we have
\begin{equation*}
3x^{4/3} f_2(x) = -2x^3 + 8x^2 - 6x^{5/3} + 6x^{4/3} - 8x + 2.
\end{equation*}
Factoring yields
\begin{equation*}
3x^{4/3} f_2(x) = 2 \left(1 - \sqrt[3]{x}\right)^3 \left(x^{2/3} + 1\right) \left(x^{4/3} + 3x + 5x^{2/3} + 3x^{1/3} + 1\right) > 0.
\end{equation*}
It follows from (2.4) that \(f_1'(x) < 0\), that is, the function \(f_1\) is decreasing on \((0, 1)\).

(ii) We next prove that \(F_p\) is strictly decreasing on \((0, 1)\) if and only if \(p \leq 1\). Similarly, it suffices to show that \(f_1(x) < 0\) for \(x \in (0, 1)\) if and only if \(p \leq 1\).
Note that if \(f_1(x) < 0 \) for \(x \in (0, 1) \) then we have
\[
\lim_{x \to 0^+} f_1(x) = \begin{cases}
1 - \frac{x}{2} > 0 & \text{if } p > 1, \\
\frac{x}{2} - \frac{x^2}{3} < 0 & \text{if } p = 1, \\
-\frac{x}{2} & \text{if } p < 1
\end{cases}
\]
which yields \(p \leq 1 \).

Sufficiency. We prove \(f_1(x) < 0 \) for \(x \in (0, 1) \) if \(p \leq 1 \). Due to the monotonicity of the function \(p \mapsto L_{p-1}(1, x) \), it suffices to demonstrate \(f_1(x) < 0 \) for \(x \in (0, 1) \) when \(p = 1 \). In this case, we have \(f_2(x) = 4 - 4x^{-1} < 0 \), then \(f'_1(x) > 0 \), and then for \(x \in (0, 1) \) we have \(f_1(x) < f_1(1) = 0 \), which proves the sufficiency and the proof of this lemma is finished.

Lemma 2.3. Let \(f_3 \) be the function defined on \((0, 1) \) by
\[
f_3(x) = -p(p-1)x^3 + (p-1)(p+1)x^2 - 2(2p-3)x^p - (p+1)(p-2)x + (p-1)(p-3).
\]
Then \(f_3 \) is strictly increasing on \((0, 1) \) if \(p \in (1, 5/3) \).

Proof. Differentiation yields
\[
f'_3(x) = -3p(p-1)x^2 + 2(p-1)(p+1)x - 2p(2p-3)x^{p-1} - (p+1)(p-2).
\]
Note that \(1 < p < 5/3 \), using basic inequality for means \(x^{p-1} \leq (p-1)x + (2-p) \) \((x>0) \)
to the last member of the third term in (2.9) we have
\[
f'_3(x) \geq -3p(p-1)x^2 + 2(p-1)(p+1)x - 2p(2p-3)((p-1)x + (2-p)) - (p+1)(p-2) = -3p(p-1)x^2 - 2(p-1)(2p^2 - 4p - 1)x + (p-2)(4p^2 - 7p - 1)
\]
\[
: = f_4(x).
\]
Thus, in order to prove \(f'_3(x) > 0 \), it needs to show that \(f_4(x) > 0 \) for \(x \in (0, 1) \).
Since \(f'_4(x) = -6p(p-1) < 0 \) and for \(p \in (1, 5/3) \)
\[
f_4(0^+) = (p-2)\left(p - \frac{\sqrt{5p+7}}{2}\right)\left(p + \frac{\sqrt{5p+7}}{2}\right) > 0,
\]
\[
f_4(1) = 6p\left(\frac{5}{3} - p\right) > 0,
\]
application of properties of concave functions yields for \(x \in (0, 1) \)
\[
f_4(x) > (1-x)f_4(0^+) + xf_4(1) > 0,
\]
which completes the proof.

Lemma 2.4. Let \(p \in (1, 5/3) \) and let the function \(x \mapsto F_p(x) \) be defined on \((0, 1) \) by (2.7). Then the equation \(f_1(x) = 0 \) has a unique solution \(x_1 \) such that \(F_p \) is increasing on \((0, x_1) \) and decreasing on \((x_1, 1) \), where \(f_1(x) \) is defined by (2.2).

Proof. Differentiating \(f_2(x) \) defined by (2.7) gives
\[
x^{4-p}f'_2(x) = f_3(x),
\]
where \(f_3(x) \) is defined by (2.8).
Because that \(f_3 \) is strictly increasing on \((0,1)\) if \(p \in (1,5/3)\) by Lemma (2.3) and note that
\[
f_3(0^+) = (p-1)(p-3) < 0, \quad f_3(1) = 2(5-3p) > 0,
\]
there is a unique \(x_1 \in (0,1)\) such that \(f_3(x) < 0\) for \(x \in (0,x_1)\) and \(f_3(x) > 0\) for \(x \in (x_1,1)\). Then it is seen from (2.6) that \(f_2\) is decreasing on \((0,x_1)\) and increasing on \((x_1,1)\), which yields \(f_2(x) < f_2(1) = 0\) for \(x \in (x_1,1)\), which together with \(\text{sgn} f_2(0^+) = \text{sgn} (p-1) > 0\) reveals that there exits a unique \(x_2 \in (0,x_1)\) such that \(f_2(x) > 0\) for \(x \in (0,x_2)\) and \(f_2(x) < 0\) for \(x \in (x_2,1)\). It follows from (2.6) that \(f_1\) is decreasing on \((0,x_2)\) and increasing on \((x_2,1)\), and therefore \(f_1(x) < f_1(1) = 0\) for \(x \in (x_2,1)\), which in combination with \(f_1(0^+) = 1 - \frac{1}{3}x > 0\) indicates that there is a unique \(x_3 \in (0,x_2)\) such that \(f_1(x) > 0\) for \(x \in (0,x_3)\) and \(f_1(x) < 0\) for \(x \in (x_3,1)\). By (2.4) it is easy to see that the function \(x \mapsto F_p(x)\) is increasing on \((0,x_3)\) and decreasing on \((x_3,1)\), which proves the lemma. \(\square\)

3. Proofs of Main Results

Based on the lemmas in the above section, we can easily proved our main results.

Proof of Theorem 1.1. By symmetry, we assume that \(a > b > 0\). Then inequality (1.12) is equivalent to
\[
\ln T(1,x) - \ln A_p(1,x) = F_p(x) < 0,
\]
where \(x = b/a \in (0,1)\). Now we prove the inequality (3.1) holds for all \(x \in (0,1)\) if and only if \(p \geq 5/3\).

Necessity. If inequality (3.1) holds, then by Lemma 2.4 we have
\[
\begin{align*}
\lim_{x \to 1^-} F_p(x) &= -\frac{1}{p} (3p-5) \leq 0, \\
\lim_{x \to 0^+} F_p(x) &= \frac{1}{p} \ln 2 - \ln \frac{5}{2} \leq 0 \text{ if } p > 0,
\end{align*}
\]
which yields \(p \geq 5/3\).

Sufficiency. Suppose that \(p \geq 5/3\). It follows from Lemma 2.2 that \(F_p(x) < F_p(1) = 0\) for \(x \in (0,1)\), which proves the sufficiency. Using the monotonicity of the function \(x \mapsto F_{5/3}(x)\) on \((0,1)\), we have
\[
\ln \left(2^{8/5\pi^{-1}}\right) = F_{5/3}(0^+) < F_{5/3}(x) < F_{5/3}(1^-) = 0,
\]
which implies (1.13).

Thus the proof of Theorem 1.1 is finished. \(\square\)

Proof of Theorem 1.2. Clearly, the reverse inequality of (1.12) is equivalent to
\[
\ln T(1,x) - \ln A_p(1,x) = F_p(x) > 0,
\]
where \(x = b/a \in (0,1)\). Now we show that the inequality (3.2) holds for all \(x \in (0,1)\) if and only if \(p \leq \log_{x/2} 2\).

Necessity. The condition \(p \leq \log_{x/2} 2\) is necessary. Indeed, if inequality (3.2) holds, then we have
\[
\begin{align*}
\lim_{x \to 1^-} F_p(x) &= -\frac{1}{p} (3p-5) \geq 0, \\
\lim_{x \to 0^+} F_p(x) &= \frac{1}{p} \ln 2 - \ln \frac{5}{2} \geq 0 \text{ if } p > 0
\end{align*}
\]
or

\[
\begin{aligned}
\lim_{x \to 1-} \frac{F_p(x)}{x-1} &= - \frac{1}{24} (3p - 5) \geq 0, \\
\lim_{x \to 0+} F_p(x) &= \infty \quad \text{if } p \leq 0.
\end{aligned}
\]

Solving the above inequalities leads to \(p \leq \log_{\pi/2} 2 \).

Sufficiency. The condition \(p \leq \log_{\pi/2} 2 \) is also sufficient. Since the function \(r \mapsto A_r(1, x) \) is increasing, so the function \(p \mapsto F_p(x) \) is decreasing, thus it is suffices to show that \(F_p(x) > 0 \) for all \(x \in (0, 1) \) if \(p = p_1 = \log_{\pi/2} 2 \).

Lemma 2.4 reveals that for \(p \in (1, 5/3) \) there is a unique \(x_3 \) to satisfy

\[
f_1(x_3) = \frac{(1 - x_3) (x_3^p + 1)}{(x_3^p + 1) (x_3^{p-1} + 1)} - \arctan \frac{1 - x_3}{x_3 + 1} = 0
\]

such that the function \(x \mapsto F_p(x) \) is strictly increasing on \((0, x_3)\) and strictly decreasing on \((x_3, 1)\). It is acquired that for \(p_1 = \log_{\pi/2} 2 \in (1, 5/3) \)

\[
0 = F_{p_1}(0^+) < F_{p_1}(x) \leq F_{p_1}(x_3)
\]

\[
0 = F_{p_1}(1) < F_{p_1}(x_3) \leq F_{p_1}(x_3),
\]

which leads to

\[
A_{p_1}(1, x) < T(1, x) < (\exp F_{p_1}(x_3)) A_{p_1}(1, x).
\]

Solving the equation (3.3) for \(x_3 \) by mathematical computation software we find that \(x_3 \in (0.186930110570624, 0.186930110570625) \), and then

\[
\beta_2 = \exp (F_{p_1}(x_3)) \approx 1.0136,
\]

which proves the sufficiency and inequalities of (1.14).

\[\square\]

4. REMARKS

Remark 4.1. From the proof of Lemma 2.2, it is seen that \(f_1(x) > 0 \) if and only if \(p \geq 5/3 \), which implies that the inequality

\[
T(1, x) = \frac{x - 1}{2 \arctan \frac{x^2 + 1}{x^2 + 1}} > \frac{(x^2 + 1) (x^{p-1} + 1)}{2 (x^p + 1)}
\]

holds if and only \(p \geq 5/3 \). In a similar way, the inequality

\[
T(1, x) < \frac{(x^2 + 1) (x^{p-1} + 1)}{2 (x^p + 1)}
\]

is valid if and only if \(p \leq 1 \). The results can be restated as a corollary.

Corollary 1. The inequalities

\[
\frac{(a^2 + b^2) (a^{2/3} + b^{2/3})}{2 (a^{5/3} + b^{5/3})} < T(a, b) < \frac{a^2 + b^2}{a + b}
\]

with the best constants \(5/3 \) and \(1 \), and the function

\[
p \mapsto \frac{(a^2 + b^2) (a^{p-1} + b^{p-1})}{2 (a^p + b^p)}
\]

is decreasing.
In particular, putting \(p = 1, 1/2, \ldots \to -\infty \) and \(5/3, 2, \ldots, \to \infty \) we get
\[
\frac{a^2 + b^2}{2 \max(a, b)} < \cdots < \frac{a + b}{2} < \frac{(a^2 + b^2) (a^{2/3} + b^{2/3})}{2 (a^{5/3} + b^{5/3})} < T(a, b) < \frac{a^2 + b^2}{2 \min(a, b)} < \cdots < \frac{a^2 + b^2}{2 \sqrt{ab}}.
\]

Remark 4.2. Using the monotonicity of the function defined on \((0, 1)\) by
\[
F_p(x) = \ln \frac{T(1, x)}{A_p(1, x)}
\]
given in Lemma 2.2, we can obtain a Fan Ky type inequality but omit the further details of the proof.

Corollary 2. Let \(a_1, a_2, b_1, b_2 > 0 \) with \(a_1/b_1 < a_2/b_2 < 1 \). Then the following Fan Ky type inequality
\[
T(a_1, b_1) < A_p(a_1, b_1) < A_p(a_2, b_2) < T(a_2, b_2)
\]
holds if \(p \geq 5/3 \). It is reversed if \(p \leq 1 \).

Remark 4.3. As sharp upper bounds for the second Seiffert mean, we have the following relations:

\[
(4.2) \quad T < \frac{2Q + A}{3} < A_{5/3} < L_{1/3}.
\]

In fact, it has been shown in [22, Conclusion 1] that the function \(r \mapsto A_r \) is strictly log-concave on \([0, \infty)\), and therefore
\[
A_{3/4}^{3/4} A_{1/3}^{1/4} < A_{2/3}^{4/3} = A_{4/3},
\]
which is equivalent with the third inequality in \((4.2)\). Now we prove the second one. Assume that \(a > b > 0 \) and set \((a/b)^{1/3} = x \in (0, 1)\). Then the inequality in question is equivalent to
\[
D(x) := \ln \left(\frac{2 \sqrt{x^6 + 1} + x^3 + 1}{3} - \ln \left(\frac{x^5 + 1}{2} \right)^{3/5} \right) < 0.
\]

Differentiating \(D(x) \) yields
\[
D'(x) = \frac{3x^2 (1-x)}{(x^5 + 1) \left(x^3 \sqrt{\frac{1}{2} x^6 + \frac{1}{2}} + \sqrt{\frac{1}{2} x^6 + \frac{1}{2} + 2 x^6 + 2} \right)} D_1(x),
\]
where
\[
D_1(x) = (1 + x) \sqrt{\frac{1}{2} x^6 + \frac{1}{2} - 2 x^2} = \frac{\left((1 + x) \sqrt{\frac{1}{2} x^6 + \frac{1}{2}} - (2 x^2)^2 \right)}{(1 + x) \sqrt{\frac{1}{2} x^6 + \frac{1}{2} + 2 x^2}}
\]
\[
= \frac{(x - 1)^2 \left(x^6 + 4 x^5 + 8 x^4 + 12 x^3 + 8 x^2 + 4 x + 1 \right)}{2 (1 + x) \sqrt{\frac{1}{2} x^6 + \frac{1}{2} + 2 x^2}} > 0.
\]

Hence, \(D'(x) > 0 \) for \(x \in (0, 1) \), then \(D(x) < D(1) = 0 \).
Remark 4.4. By Theorem 1.1 and 1.2, the inequalities (1.2) and (1.11) can be improved as

\[(4.3) \; \; \; N < A_{3/2} < A_{\log_2 \pi/2} < T < A_{5/3} < A_2.\]

In our forthcoming paper, we shall establish the sharp bounds for the Neuman-Sándor mean in terms of power means as follows:

\[(4.4) \; \; \; A_{p_0} < N < A_{4/3},\]

where \(p_0 = \frac{\ln 2}{\ln \ln (3+2\sqrt{2})} = 1.2228...\)

Thus the chain of inequalities for bivariate means given in [6, (1)] can be refined as a more nice one:

\[(4.5) \; \; \; A_0 < L < A_{1/3} < P < A_{2/3} < I < A_{3/3} < N < A_{4/3} < T < A_{5/3},\]

where \(L, P, I, N, T\) are the logarithmic mean, the first Seiffert mean, the identric means, Neuman-Sándor mean, the second Seiffert mean, respectively.

References

[1] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, *Means and Their Inequalities*, Dordrecht, 1988.

[2] Y.-M. Chu, Y.-F. Qiu, and M.-K. Wang, Sharp power mean bounds for the combination of seiffert and geometric means, *Abstr. Appl. Anal.* 2010 (2010), Art. ID 108920, 12 pages.

[3] Y.-M. Chu, Y.-F. Qiu, M.-K. Wang and G.-D. Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean, *J. Inequal. Appl.* 2010 (2010), Art. ID 436457, 7 pages.

[4] Y.-M. Chu, M.-K. Wang, and W.-M. Gong, Two sharp double inequalities for Seiffert mean, *J. Inequal. Appl.* 2011 (2011): 44, 7 pages; available online at http://dx.doi.org/10.1186/1029-242X-2011-44.

[5] Y.-M. Chu and S.-W. Hou, Sharp bounds for Seiffert mean in terms of contraharmonic mean, *Abstr. Appl. Anal.* 2012 (2012), in press.

[6] I. Costin and G. Toader, A nice separation of some Seiffert type means by power means, Int. J. of Math. Math. Sci. 2012, in print.

[7] P. A. Hästö, A monotonicity property of ratios of symmetric homogeneous means, *J. Inequal. Pure Appl. Math.* 3 (5) (2002), Art. 71, 23 pages.

[8] P. A. Hästö, Optimal inequalities between Seiffert’s mean and power mean, *Math. Inequal. Appl.*, 7 (1) (2004) 47–53.

[9] D. He and Zh.-J. Shen, Advances in research on Seiffert mean, *Communications in inequalities research* 17 (4) (2010), Art. 26; Available online: http://old.irgoc.org/article/uploadFiles/201010/20101026014515652.pdf.

[10] A. A. Jagers, Solution of problem 887, *Nieuw Arch. Wisk.* 12 (1994), 2 30–231.

[11] D. H. Lehmer, On the compounding of certain means, *J. Math. Anal. Appl.* 36 (1971), 183–200.

[12] H. Liu and X.-J. Meng, The optimal convex combination bounds for Seiffert’s mean, *J. Inequal. Appl.* 2011 (2011), Art. ID 686834, 9 pages.

[13] E. Neuman and J. Sándor, On the Schwab-Borchardt mean, *Math. Pannon.* 17 (1) (2006) 49–59.

[14] J. Sándor, On certain inequalities for means III, *Arch. Math.* 76 (2001) 34–40.

[15] J. Sándor and E. Neuman, On certain means of two arguments and their extensions, *Int. J. Math. Math. Sci.* 2003 (16) (2003), 981–993, doi:10.1155/S0161171203208103.

[16] J. Sándor, *Selected Chapters of Geometry, Analysis and Number Theory: Classical Topics in New Perspectives*, LAP Lambert Academic Publishing, August 5, 2009.

[17] H.-J. Seiffert, Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen, * Elem. Math.* 42 (1987), 105–107.

[18] H.-J. Seiffert, *Aufgabe 16, Die Wurzel* 29 (1995) 221–222.

[19] S.-S. Wang and Y.-M. Chu, The best bounds of the combination of arithmetic and harmonic means for the Seiffert’s mean, *Int. J. Math. Anal. (Ruse)* 4 (21–24) (2010) 1079–1084.
[20] M.-K. Wang, Y.-F. Qiu, and Y.-M. Chu, Sharp bounds for Seiffert means in terms of Lehmer means, *J. Math. Inequal.* **4** (4) (2010) 581–586.

[21] A. Witkowski, Interpolations of Schwab-Borchardt mean, *Math. Inequal. Appl.* 2012, in print.

[22] Zh.-H. Yang, On the log-convexity of two-parameter homogeneous functions, *Math. Inequal. Appl.* **10**(3) (2007), 499-516.

System Division, Zhejiang Province Electric Power Test and Research Institute, Hangzhou, Zhejiang, China, 31001

E-mail address: yzhkm@163.com