Advancement in research of anti-cancer effects of toad venom (ChanSu) and perspectives

Miao Liu, Li-Xing Feng, Li-Hong Hu, Xuan Liu* and De-An Guo*

Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China

*Correspondence: Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Road, Shanghai 201203, P.R. China. E-mail: Xuan Liu: xuanliu@simm.ac.cn; De-An Guo: daguo@simm.ac.cn

ABSTRACT

Toad venom, called as ChanSu in China, is a widely used traditional Chinese medicine (TCM) whose active components are mainly bufadienolides. ChanSu could exhibit cardiotonic, anti-microbial, anti-inflammatory and, most importantly, anti-cancer effects. In the present review, reports about the in vitro, in vivo and clinical anti-cancer effects of ChanSu or its representative component, bufalin, were summarized. And, reported anti-cancer mechanisms of cardenolides, structure analogues of bufadienolides, were also introduced. Based on the results got from research of ChanSu/bufalin and the results from cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin was predicted. Furthermore, future potential use of ChanSu in anti-cancer therapy was discussed.

Key words: ChanSu, Anti-cancer, Bufadienolides, Bufalin, Cardenolides

INTRODUCTION

The dried secretion from the skin and parotid venom glands of Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider is a kind of TCM named as ChanSu. The earliest record of ChanSu appeared in Tang Dynasty (618-907) [1]. Since then, it had been widely used as a cardiotonic, anodyne, anti-microbial, anti-inflammatory and anti-neoplastic agent [2]. ChanSu could be used either as a single agent or in combination with other TCMs in formulas. Cinobufacini, also known as Huachansu, is the water-soluble extract of the dried skin of Bufo bufo gargarizans Cantor and has been successfully used in clinic to treat patients with various cancers in China [3–5]. Representative TCM formulas containing ChanSu are Shexiang Baoxin Pill for treatment of cardiovascular diseases [6], Mei-Hua-Dian-She-Wan and Liu-Shen-Wan for treatment of inflammatory diseases [5], and etc. Recently, anti-cancer effects of Liu-Shen-Wan was also reported [8]. Up to now, lots of studies about the anti-cancer effects of ChanSu or its components such as bufalin has been reported [9–17]. Notably, in the past two decades, study of anti-cancer effects of cardiac glycosides, including both bufadienolides and cardenolides, was one of the hot topics in the anti-cancer drug research area and some important reviews had been published [18–23]. Therefore, it is time to summarize what we have known about the anti-cancer effects of ChanSu and discuss future perspectives concerning the use of ChanSu in anti-cancer therapy.

CHEMICAL CONSTITUENTS OF ChanSu

ChanSu contains mainly bufadienolides, indoleamines, peptides, amino acids, poly saccharides, and sterols [24]. Bufadienolides were reported to be the major active constituents of ChanSu [25, 26]. So far, more than 100 bufadienolides with a unique steroid skeleton has been identified [27–29]. Bufalin, resibufogenin, and cinobufagin (as shown in Figure 1) were reported to be the three major bufadienolides in ChanSu.
and they weighed as high as 5% of the dry weight in the crude drug [23, 27, 30, 31]. Generally, bufalin was used as a representative component of ChanSu to study the mechanism of ChanSu. In the present review, both studies using crude extract of ChanSu and studies using bufalin are included and discussed to clarify the anti-cancer mechanisms of ChanSu/bufalin.

ANTI-CANCER ACTIVITIES AND POSSIBLE MECHANISMS OF ChanSu/BUFALIN

1. In vitro anti-cancer effects

1.1. Inhibition of proliferation of cancer cells

Numerous experimental studies have indicated that ChanSu and its representative component bufalin inhibited proliferation in a dose-dependent and time-dependent manner in human cancer cells including hepatocellular carcinoma cells [32–39], lung cancer cells [40–45], prostate cancer cells [31, 44], gastric cancer cells [45], leukemia cells [46–53], breast cancer cells [54], colon cancer cells [55, 56], osteosarcoma cells [16, 17, 57–59], bladder carcinoma cells [60], pancreatic cancer cells [61], multiple myeloma cells [62], gallbladder cancer cells [63], malignant melanoma cells [64], skin squamous cell carcinoma cells [65], endometrial cancer cells and ovarian cancer cells [66]. Detailed information about the cell lines in which anti-proliferative effects of ChanSu/bufalin has been reported is shown in Table 1.

1.2. Induction of cell cycle arrest in cancer cells

Treatment of ChanSu/bufalin could induce cell cycle arrest of cancer cells. While, the kinds of cell cycle arrest induced by ChanSu/bufalin might depend on the specific types of treated cancer cells. For example, G2/M phase arrest was induced by ChanSu/bufalin in bladder carcinoma T24 cells [60], pancreatic cancer cell lines (PANC-1 and CFPAC-1) [61], multiple myeloma cells (NCI-H929, U266, RPMI8226 and MML.1S) [62], gastric cancer MGC803 cells [45] and hepatoma cells (HepG2 and SK-HEP-1) [33, 37]. While, S phase arrest was induced by ChanSu/bufalin in gallbladder cancer cells (GBC-SD and SGC996) [63]. G0/G1 phase arrest was induced by ChanSu/bufalin in hepatocellular carcinoma cells with multidrug resistance (BEL-7402/5-FU) [15] and endometrial cancer and ovarian cancer cells [66].

1.3. Induction of apoptosis in cancer cells

Apoptosis induced by ChanSu/bufalin has been well studied. The earliest report about bufalin-induced apoptosis was

Table 1. Human cancer cell lines in which the anti-proliferation effects of ChanSu/bufalin had been reported

Type of cancer	Name of cell lines	Refs
Hepatocellular Carcinoma	Bel-7402, HepG2, Huh7, HCCLM3, HA22T SK-Hep-1, PLC/PRF/5, SMMC7721	32–39
Lung cancer	A549, ASTC-a-1, NCI-H460	40–43
Prostate cancer	LNCaP, DU145, PC3	31, 44
Gastric cancer	MGC803	45
Leukemia	K562, HL60, U937, ML1, Jurkat, NB4	46–53
Breast cancer	MCF-7, MDAMB-231, MCF-10A	54
Colon cancer	HT-29, Caco-2, SW620	55, 56
Osteosarcoma	U-2OS, MG-63, S0S2, IOR/OS9	16, 17, 57–59
Bladder carcinoma	T24	60
Pancreatic cancer	PANC-1, CFPAC-1	61
Multiple myeloma	NCI-H929, U266, RPMI8226, MM.15	62
Gallbladder cancer	GBC-SD, SGC996	63
Melanoma	A375.S2	64
Skin squamous cell Carcinoma	SSSC-1	65
Endometrial cancer	HHUA, HEC-1	66
Ovarian cancer	SK-OV-3, omc-3	66
published in 1994 by research group of Nakaya K[50]. Characteristics of apoptotic cells, such as condensed and fragmented nuclei, fragmented DNA smaller than that of the G1 phase, DNA ladder in agarose gel electrophoretic analysis, were observed in HL-60, MLI, and U937[50] leukemia cells treated with bufalin at 100 nM and above[50]. Research group of Nakaya K. then conducted a series of study investigating the expression of apoptosis-related genes and activation of signal transduction pathways in apoptosis by bufalin[47–49, 67–75]. In their studies, they reported that Ras, Raf-1, Mitogen Activated Protein Kinase (MAPK) kinase and MAPK were sequentially activated in U937 cells treated with bufalin[71]. And, the effect of overexpression of Bcl-2 on the MAPK cascade in bufalin-induced apoptotic process in U937 cells was investigated. Results indicated that Bcl-2 acted downstream of MAPK kinase-1 but upstream of MAPK and the transcriptional activity of activator protein-1 (AP-1) might be down-regulated through the inhibition of MAPK activity by Bcl-2[69]. They found that the activation of AP-1 via a MAPK cascade including c-Jun N-terminal protein kinase (JNK) was required for the induction of apoptosis by bufalin[48]. They also identified another apoptosis-related gene, which was homologous to a human gene for Tiam1, induced by bufalin. Tiam1 might play a critical role in bufalin-induced apoptosis through the activation of the Rac-1-PAK-JNK signaling pathway[49]. Tiam1 was confirmed as a downstream mediator of bufalin-induced apoptosis in the cervical tumor HeLa cells[72]. Besides, topoisomerase II was also identified as a target plays an important role in bufalin-induced apoptosis. In HL-60 cells, the amount and activity of topoisomerase II decreased markedly after the start of bufalin-treatment and the decrease of topoisomerase II preceded the fragmentation of DNA, a typical feature of apoptosis[74]. In U937 cells, the activity of topoisomerase II reached a maximum after 3 h and then decreased markedly after treatment with bufalin for 9 h. The amount of the complex of casein kinase 2 (CK2) and topoisomerase II \(\alpha \) increased just after the start of treatment with bufalin and reached a maximum at 6 h. It suggested that the bufalin signal was transmitted to the nucleus by the translation of CK2, which formed a complex with topoisomerase II \(\alpha \) and modulated the activity of this enzyme, leading to the induction of apoptosis[75].

Other researchers also conducted study of possible mechanisms of apoptosis induced by ChanSu/bufalin. In A549 cells, bufalin induced apoptosis by affecting the protein expressions of Bcl-2/Bax, cytochrome c, caspase-3, poly ADP-ribose polymerase (PARP), p53, p21/WAF1, cyclinD1, and COX-2. And, bufalin decreased the protein expressions and/or phosphorylation of VEGFR-1, VEGFR-2, EGFR, c-Met, Akt, NF-kB, p44/42 MAPK (ERK1/2) and p38 MAPK in A549 cells. The results suggested that bufalin might exert its effects on cells via VEGFR1/VEGFR2/EGFR/c-Met-Akt/p44/42/p38-NF-kB signaling pathways[41]. In ASTC-a-1 cells, Sun et al.[41] found that bufalin induced apoptosis via ROS-dependent mitochondrial death pathway[42]. In HepG2 cells, bufalin induced apoptosis via both Fas- and mitochondria-mediated pathways[76]. Activation of both intrinsic and extrinsic apoptotic pathway by bufalin was also found in T24 cancer cells[60] as well as in human malignant melanoma A375.S2 cells[64].

New technologies such as proteomics, genomics and computational docking analysis shed new lights on understanding of the mechanism of apoptosis induced by ChanSu/bufalin. For example, possible target-related proteins of bufalin were searched by comparing the protein expression profiles of cells with or without bufalin treatment with proteomic methods[69, 77, 78]. Interestingly, an anti-apoptotic protein heat shock protein 27 (Hsp27), was found to be possible target-related protein of bufalin in both study of HeLa cells[78] and U2OS cells[77]. Down-regulation of Hsp27 expression was induced by bufalin treatment in both cultured U2OS cells and \textit{in vivo} osteosarcoma xenografts. And, Hsp27 over-expression protected against bufalin-induced apoptosis and reversed the alterations of its partner signaling molecules (decrease in p-Akt, nuclear NF-kB p65, and co-immunoprecipitated cytochrome c/Hsp27) induced by bufalin[77]. The important role of Hsp27 was also observed in PANC-1 and CFPAC-1 cells[79]. Genomic analysis was also conducted by researchers to search possible target-related genes of bufalin[43, 80, 81]. In HL-60 cells treated with bufalin, 21, 272, 461 or 659 genes, which related functionally to cell proliferation, apoptosis, differentiation, were found to be altered in their expression level with \(\geq 2 \) fold after 6, 12, 24 and 48 h treatment, respectively[81]. In NCI-H460 cells treated with bufalin for 24 h, 6 genes were over 20-fold up-regulated and 21 genes were over 10-fold up-regulated. And, 11 genes were over 10-fold down-regulated and 42 genes were over 6-fold down-regulated. Among those affected genes, 165 genes were associated with apoptosis while 107 genes were associated with DNA damage and repair[43]. In K562 cells treated with bufalin, 2185 were up-regulated and 2111 genes were down-regulated compared with control. The most up-regulated genes were associated with transcription regulation and the most down-regulated genes were associated with the non-coding RNA metabolic processes and DNA repair[80]. By using computational docking analysis, bufalin was suggested to interact directly with PARP1 which was a highly conserved DNA binding protein involved in maintaining the genomic stability, repairing the DNA damage, and regulating transcriptional processes[62].

1.4. Induction of autophagy in cancer cells

Compared with the well-documented apoptosis-inducing activity of ChanSu/bufalin, autophagy induced by ChanSu/bufalin was reported only recently[14, 34, 36, 37, 55, 82]. Researchers reported that, in some kinds of cancer cells, bufalin-induced cell death was autophagy but not apoptosis. For example, Xie \textit{et al.} reported that bufalin did not cause caspase-dependent cell death in HT-29 and Caco-2 cells but activated an autophagy pathway, which linked to the generation of ROS. ROS antioxidants (N-acetylcyesteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA could attenuate bufalin-induced autophagy[50]. Hsu \textit{et al.} reported that, in Huh7, Hep3B and HA22T cells, bufalin inhibited the proliferation and regulated the cell death program in a dose- and time-dependent manner without typical features of apoptosis. Bufalin synergized with the JNK pathway.
induce autophagy and was closely associated with the up-regulation of TNF, BECN-1, MAPK and ATG8, together with the down-regulation of Bcl-2 and Bcl[36]. While, other researchers reported that both apoptosis and autophagy were induced by bufalin in cancer cells though whether autophagy was pro-survival or pro-apoptotic had no unified answers. Shen et al. reported that, in U87MG cells, the mechanism of bufalin-induced autophagy might be associated with ATP depletion involved an increase in the active form of AMPK, decreased phosphorylations levels of mTOR and its downstream targets 4E-BP-1 and p70S6K. Blockage of autophagy increased expression of endoplasmic reticulum (ER) stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death[14]. Hu et al. reported that, in Huh7 and HepG2 cells, bufalin also induced both apoptosis and autophagy. The pro-survival role of bufalin-induced autophagy was suggested when the autophagy pathway was blocked with specific chemical inhibitors[34]. Tsai et al. reported that bufalin might trigger autophagic cell death and cell cycle arrest through the Akt/mTOR signaling pathway in SK-HEP-1 cells. And, inhibition of autophagy by 3-methyladenine or bafilomycin A1 enhanced the effect of bufalin on apoptosis[37]. On the contrary, Miao et al. reported that, in HepG2 cell, the mechanism of action of bufalin-induced autophagy was at least partly AMPK-mTOR dependent. The results that blockage of autophagy by selective inhibitor 3-MA decreased apoptotic ratio in bufalin-treated HepG2 cells suggested a proapoptotic role of bufalin-induced autophagy[82].

Anti-migration and anti-invasion effects on cancer cells

Besides of cytotoxicity, ChanSu/bufalin also could exhibit anti-migration and anti-invasion effects[16, 35, 83–85]. Bufalin inhibited the cell migration and invasion of U-2OS cells in vitro through blocking MAPK signaling and resulting in the inhibition of matrix metalloproteinase (MMP)-2[16]. In A549 cells, the aqueous extract of ChanSu induced marked inhibition of cell motility and invasiveness by inhibiting the activities of MMP-2 and MMP-9 and up-regulating the mRNA expression of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2[40]. Through its inhibition of the Akt/GSK3β/β-catenin/E-cadherin signaling pathway, bufalin inhibited invasion, and adhesion in HCCLM3 and HepG2 cells[35]. Anti-migration effects of bufalin were also observed in the HCT116 cells and HUVECSc[83]. Within the concentration range that was not cytotoxic, bufalin markedly inhibited the cell motility and invasiveness of T24 cells. The inhibitory effects of bufalin on cell migration and invasion of T24 cells might be related to modulating the activity of tight junctions (TJs) and MMPs, possibly in association with the activation of ERK[84]. In SK-Hep1 cells, bufalin markedly inhibited activity, mRNA expression and protein levels of MMP-2 and -9, suppressed protein levels of focal adhesion kinase (FAK) and ras homolog gene family, member A (RhoA), VEGF, MAPK/ERK kinase 3 (MEKK3), mitogen-activated protein kinase kinase 7(MKK7), and urokinase plasminogen activator (uPA), and diminished NF-xB translocation. These results suggested that bufalin might act as an anti-invasive agent by inhibiting MMP-2 and -9 and involving PI3K/Akt and NF-xB pathways[85].

1.5. Enhancing the cytotoxicity of other anti-cancer reagents

ChanSu/bufalin could be used as an enhancer of other anti-cancer chemotherapeutic drugs. Bufalin greatly sensitized both estrogen receptor-α (ER-α)-positive MCF-7 and ER-α-negative MDA-MB-231 cells to TRAIL-induced apoptosis via suppression of STAT3/Mcl-1 pathway[54]. And, bufalin also enhanced the anti-cancer effect of gemcitabine in pancreatic cancer[86] as well as the anti-proliferative effect of sorafenib on human hepatocellular carcinoma cells[38].

2. In vivo anti-cancer effects in nude mice models

The anti-cancer effects of ChanSu/bufalin had been observed in in vitro study using nude mice transplanted with human cancer cells[63, 83, 87–91]. Intraperitoneal injection of bufalin at 0.1-0.4 mg/kg significantly inhibited the growth of gallbladder carcinoma (GBC-SD) xenographs in athymic nude mice[63]. Intravenous administration of bufalin at 1 mg/kg inhibited colorectal cancer metastasis and improved quality of survival of nude mice inoculated with HCT-116 cells[85]. In the study of Zhang et al., intraperitoneal injection of bufalin at 1.5 mg/kg decreased the sizes and qualities of orthotopic transplanted HCCLM3-R tumors as well as pulmonary metastasis. Bufalin treatment also caused changes in expression of Akt/GSK3β/β-catenin/E-cadherin signaling pathway-related proteins in tumor tissues[87]. In studies using MCF-7 tumor models in nude mice, both the remarkable therapeutic effects of bufalin and bufalin encapsulating nanoparticles were observed[86]. Bufalin-loaded pluronic polyetherime nanoparticles also exhibited anti-metastic effects on HCT116 colon cancer-bearing mice[89]. The targeting efficacy and anti-cancer effects of bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs), were observed in SW620 colon cancer-bearing mice[90]. Intraperitoneal injection of bufalin at 0.5-1.5 mg/kg exhibited significant anti-tumor activities in the orthotopic transplantation tumor model of human hepatocellular carcinoma (Bel-7402) in nude mice and was able to induce apoptosis of transplanted tumor cells mainly via up-regulating the expression of apoptosis-regulated gene Bax[91].

Clinical anti-cancer effects of ChanSu preparations

As a well-known anti-cancer TCM, ChanSu could be used by TCM doctors in their TCM prescriptions for anti-cancer therapy. While, it is difficult to collect clinical data of these prescriptions containing ChanSu. In the present review, we focused on summarizing the published results about clinical anti-cancer use of Cinobufacini, a water-soluble extract of the dried skin of Bufo bufo gargarizans Cantor[5, 92–100]. In treating moderate and advanced primary liver cancer, Cinobufacini injection was found to not only inhibited the
proliferation of cancer, but also protected liver function, improved quality of life and prolonged survival time[101]. Combined use of Cinobufacini with gemcitabine-oxaliplatin in patients with advanced gallbladder carcinoma was found to be well tolerated, effective, thus improving the quality of life of patients[92]. In 2009, Meng et al. conducted a pilot study of Cinobufacini using a phase 1 trial design. Totally 15 patients (hepatocellular cancer, n = 11; nonsmall cell lung cancer, n = 2; pancreatic cancer, n = 2) were enrolled in the trial. The results indicated that no dose-limiting toxicities was observed with the use of Cinobufacini at doses up to 8 x higher than typically used in China. Six patients had prolonged stable disease or minor tumor shrinkage[5]. In 2012, Meng et al. performed a randomized, single-blinded, phase II clinical study of Cinobufacini plus gemcitabine versus placebo plus gemcitabine in patients with locally advanced and/or metastatic pancreatic adenocarcinomas (ClinicalTrials.gov Identifier NCT00837239). While, the results indicated that Cinobufacini, when combined with gemcitabine, did not improve the outcome of patients[94]. Xie et al. conducted a meta-analysis to evaluate the efficacy and safety of Cinobufacini combined with chemotherapy for advanced gastric cancer based on literatures. Analysis results of fifteen eligible randomized controlled trials showed that, compared with chemotherapy control group, Cinobufacini combined with chemotherapy provide benefits for advanced gastric cancer on improving the response rate, increasing Karnofsky score, reducing leucocytopenia and major side effects such as gastrointestinal side effects caused by chemotherapy[95]. Yang et al. analyzed all randomized clinical trials of Chinese herbs for advanced or late gastric cancer to assess the effectiveness of Chinese medicinal herbs in the short-term remission of advanced or late gastric cancer. The pooled results from the four injected TCMs, Cinobufacini, Aidi, Fufangkushen, and Shenqiluzheng showed statistically significant differences for the improvement of leukopenia. Limited, weak evidence showed that Cinobufacini, Aidi, and Fufangkushen were of benefit for adverse events in the digestive system caused by chemotherapy. While, these TCMs did not improve the rate of short-term remissions[96]. In 2012, research group of Ling CQ reported a case-control trial in which a total of 120 patients in Changhai hospital were enrolled from December 2001 to December 2006. Among the patients, 60 patients were treated with Jiedu granules plus Cinobufacin injection to prevent tumor recurrence after operation (CM group) while the other 60 patients were treated with transcatheter arterial chemoembolization (TACE group) after surgical resection of hepatocellular carcinoma. The results showed that the survival rate of CM group was significantly higher than that of TACE group and the survival time of CM group was significantly longer than that of TACE group.[93] In 2013, research group of Ling CQ reported a multicenter, open-label, randomized, controlled study, which was undertaken in five centers of China. A total of 379 patients were enrolled and 188 patients were assigned to the traditional herbal medicine (THM) group and received Cinobufacini injection and Jiedu Granule, while the other 191 patients were assigned to the TACE group and received one single course of TACE. The results suggested that, in comparison with TACE therapy, the THM regimen was associated with diminished risk of recurrence of small-sized hepatocellular carcinoma after resection, with comparable adverse events[97]. Sun et al. reported a case concerning treatment of a 63-year-old man in advanced lung cancer with a large amount of pericardial effusion. Pericardium puncture and drainage combined with instillation of Cinobufacini injection in the pericardial cavity to treat pericardial effusion were utilized. After treatment with Cinobufacini injection for two weeks, the cardiac tamponade symptoms such as difficult breathing, chest distress, and palpitations were significantly relieved and the patient’s quality of life was effectively improved with KPS scores increased. Furthermore, the levels of tumor marker CA-125 in the pericardial effusion decreased and pericardium B ultrasound showed that the quantity of pericardial effusion reduced significantly after Cinobufacini treatment[98]. Wang et al. searched 9 electronic databases and 6 gray literature databases in April 20, 2013 to compare clinical efficacy and safety among Chinese herb injections for gastric cancer. A total of 541 records were searched and 38 RCTs met the inclusion criteria (2,761 participants), involving 10 Chinese herb injections. The results of network meta-analysis showed that compared with FOLFOX alone, combinations with Kanglaitie, Astragalus polysaccharides, Cinobufacini, or Yadanyizyouru injections could further strengthen pooled objective response rate (ORR), improve the quality of life, reduce nausea and vomiting, and reduce the incidence of leukopenia (III-IV)[99]. In 2014, Wu et al. reported a meta-analysis to evaluate the clinical efficacy of Cinobufacini combined with TACE in the treatment of advanced hepatocellular carcinoma. Nine studies including a total of 659 subjects (333 in Cinobufacini plus TACE and 326 in TACE only) were finally included in this meta-analysis and the results suggested that, cinobufacini combined with TACE could significantly increase the objective response rate and 2-year survival rate compared with TACE only[100].

ANTI-CANCER MECHANISMS OF CARDENOLIDES, STRUCTURE ANALOGUES OF BUFADIENOLIDES

The family of cardiac glycosides contains two categories, cardenolides and bufadienolides. The difference between cardenolides and bufadienolides is the nature of the lactone ring at position 17 of cardiac glycosides, i.e. cardenolides with an unsaturated butyrolactone ring and the bufadienolides with an α-pyrene ring[102]. With similar chemical structures, cardenolides and bufadienolides are supposed to have similar biological effects and mechanisms. Therefore, research results got from study of cardenolides are presented in the present review to provide some hints for clarifying the mechanism of ChanSu/bufalin. Cardenolides such as digoxin, digitoxin, ouabain and oleandrin have long been used as positive inotropic agents in the treatment of congestive heart failure in Western countries.
Interestingly, in the use of cardenolides, epidemiological data suggested that, more benign histologic characteristics and lower proliferative capacity were observed in tumors from women on digitalis treatment compared with their counterparts not taking cardiac glycosides\(^{103}\), women on digitalis also had a lower recurrence rate\(^{104}\), and their death rate from breast carcinoma was significantly lower compared with that of their counterparts in a 20-year follow up study\(^{105}\). These results induced the research interests of developing cardenolides into new anti-cancer agents and clarifying the mechanisms of anti-cancer effects of cardenolides in the last two decades. New cardenolides were evaluated in clinical trials for anti-cancer therapy. For example, the Phase I clinical trials of PBI-05204 (Nerium oleander extract) (NCT00554268) had finished and the results showed that PBI-05204 was well tolerated in heavily pretreated patients with advanced solid tumors\(^{106}\). A Phase I study of the combination of carboplatin, docetaxel, and increasing doses of sublingual Anvirzel (Nerium oleander extract) in advance non-small cell lung cancer is being conducted (NCT01562301). The Phase I clinical trial of a modified cardenolide UNBS1450 was conducted in Europe (Belgium and The Netherlands)\(^{18, 19}\).

Up to now, Na\(^+\)/K\(^+-\)ATPase on plasma membrane is still the only well-accepted direct target of cardiac glycosides. Na\(^+\)/K\(^+-\)ATPase is the first P-type ion translocating ATPase ever identified and the significance of this class of proteins is highlighted by the 1997 Nobel Prize in Chemistry awarded to Jens C. Skou for the discovery of Na\(^+\)/K\(^+-\)ATPase in 1957\(^{107}\). By using the energy from ATP hydrolysis, Na\(^+\)/K\(^+-\)ATPase exports three Na\(^+\) ions from the cell and imported two K\(^+\) ions into the cell against an electrochemical gradient. It is composed of catalytic \(\alpha\) subunits, regulatory \(\beta\) subunits and tissue-specific regulatory subunits belonging to the FXYD proteins family. So far, four different \(\alpha\) isoforms (\(\alpha_1\), \(\alpha_2\), \(\alpha_3\) and \(\alpha_4\)) and three different \(\beta\)-isoforms (\(\beta_1\), \(\beta_2\) and \(\beta_3\)) have been identified in mammalian cells\(^{108, 109}\). Na\(^+\)/K\(^+-\)ATPase has an evolutionarily conserved cardiac glycosides binding site and cardiac glycosides inhibit the sodium pump by interacting with an extra-cellular surface binding “groove” composed of multiple functional groups in the \(\alpha\) subunits and to a lesser extent the \(\beta\) subunits\(^{19, 102}\). Since Na\(^+\)/K\(^+-\)ATPase is a very difficult protein to crystallize, only in 2011 the first crystal structure of Na\(^+\)/K\(^+-\)ATPase was reported\(^{107}\) and then the structure characteristics of binding between Na\(^+\)/K\(^+-\)ATPase and ouabain were studied\(^{110–113}\).

It has been found that, besides of acting as Na\(^+\)/K\(^+-\)pump, Na\(^+\)/K\(^+-\)ATPase also has other functions such as acting as a signal transducer, playing roles in the formation and maintenance of adhesion complexes, induction of epithelial cell tight junctions (TJs) and polarity, as well as cell motility and actin dynamics\(^{19}\). The concept of “Na\(^+\)/K\(^+-\)ATPase signalosome” appeared at about 2000\(^{114–116}\). The existence of two pools of Na\(^+\)/K\(^+-\)ATPase within the plasma membrane was proposed: one being the classical pool of the enzyme acting as an energy transducing ion pump and the other being the signal transducing pool of the enzyme that was restricted to the caveolae, forming the so-called “Na\(^+\)/K\(^+-\)ATPase signalosome”\(^{117}\). The identification of a mutant \(\alpha_1\) Na\(^+\)/K\(^+-\)ATPase that had normal pumping function but was defective in signal transduction suggested the role of \(\alpha\) subunit in the Na\(^+\)/K\(^+-\)ATPase signalosome\(^{118}\). The Na\(^+\)/K\(^+-\)ATPase signalosome has been found to play an important role in the anti-cancer effects of cardiac glycosides. During the last decade, multiple experiments implicated that, when cardiac glycosides bind to the Na\(^+\)/K\(^+-\)ATPase, Na\(^+\)/K\(^+-\)ATPase signalosome provided normal cells with survival signals but death signals in cancer cells\(^{102}\). More importantly, increased expression and activities of Na\(^+\)/K\(^+-\)ATPase in cancer cells resulted in increased susceptibility of cancer cells to cardiac glycosides which supported the potential use of cardiac glycosides in anti-cancer therapy\(^{119}\). On the other hand, Na\(^+\)/K\(^+-\)ATPase, possibly mainly through its \(\beta\) subunits, were actively involved in cell adhesion, cell motility, epithelial integrity, assembly of TJs and etc\(^{120–125}\). Accordingly, by interacting with Na\(^+\)/K\(^+-\)ATPase, cardenolides such as ouabain could affect cell adhesion, TJs, and invasion of cells\(^{120, 126–129}\). For example, ouabain decreased cell attachment to fibronectin\(^{126}\) and relaxed cell attachment\(^{120, 127}\). Ouabain also promoted cell-cell communication by means of gap junctions by specifically enhancing the expression of connexin 32\(^{128}\). At concentrations that neither inhibit K\(^+\) pumping nor disturb the K\(^+\) balance of the cell, ouabain modulated the degree of sealing of the TJ as measured by transepithelial electrical resistance and the flux of neutral 3 kDa dextran, accompanied by changes in the levels and distribution patterns of claudins 1, 2, and 4\(^{129}\).

Interestingly, there are also some new findings about the anti-cancer mechanism of cardenolides which might need to be confirmed by more studies. Menger et al. reported that, cardenolides might induce specific types of cell death such as immunogenic cell death\(^{130–133}\). Immunogenic cell death involves changes in the composition of the cell surface as well as a release of soluble mediators, which finally induce an immune response against dead-cell antigens\(^{134}\). By binding to Na\(^+\)/K\(^+-\)ATPase, digoxin/digitoxin might induce ER stress which resulted in immunogenic cell death featuring the exposure of calreticulin at the cell surface, the secretion of ATP as well as the release of the nuclear protein HMGB1 into the extracellular space\(^{135}\).

POSSIBLE SIGNAL NETWORK RELATED TO ANTI-CANCER EFFECTS OF ChanSu/BUFALIN

Like cardenolides, bufadienolides could directly bind to the Na\(^+\)/K\(^+-\)ATPase on plasma membrane and act as Na\(^+\)/K\(^+-\)ATPase inhibitors\(^{135, 136}\). The binding to Na\(^+\)/K\(^+-\)ATPase was the basis of the regulative effects of ChanSu/bufalin on cardiovascular system such as cardiotonic, renal sodium excretion and blood pressure stimulating effects\(^{137–139}\). The mechanism of the anti-inflammatory effects\(^{140, 141}\), immunoregulatory effects\(^{142–145}\), and anti-cancer effects\(^{146}\) of ChanSu/bufalin have not been fully clarified. While, though the possibility that ChanSu/bufalin might have other direct targets which play roles in its anti-cancer effects could not be excluded, the important role of Na\(^+\)/K\(^+-\)ATPase in the
anti-cancer effects of ChanSu/bufalin is supported by most of the available research results. In the present review, based on both the research results of anti-cancer effects of ChanSu/bufalin and the reported anti-cancer mechanisms of cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin is predicted (Figure 2).

As shown in Figure 2, three Na+/K+-ATPases (I, II and III) on the plasma membrane indicate the three types of functions of Na+/K+-ATPase, respectively. Firstly, ChanSu/bufalin, by inhibiting the ion pump function of Na+/K+-ATPase (Na+/K+-ATPase I), could induce perturbation of ionic balance. Secondly, ChanSu/bufalin, by affecting the signal transducer function of Na+/K+-ATPase in caveolae (Na+/K+-ATPase II), could induce change in the activation states of signalosome components such as Src, EGFR, and PI3K. Thirdly, ChanSu/bufalin, by disturbing the membrane structure formation function of Na+/K+-ATPase (Na+/K+-ATPase III), could induce perturbation of membrane fluidity and also change in intracellular cytoskeleton structure. The signaling produced from these three effects of ChanSu/bufalin would then affected pathways including MAPK pathway, NF-kB pathway, AKT pathway and AMPK pathway. By changing expression of genes such as Cyclin A, Cdc25 and etc., cell cycle arrest would be induced. By changing expression of genes such as Bax, Tiam 1, and etc., apoptosis would be induced. Autophagy could also be induced based on change in mTOR pathway as well as expression of genes such as Beclin-1. And, change in expression of genes such as TIMP-1, TIMP-2 and direct influence on cytoskeleton structure might both contribute to the anti-migration and anti-invasion effects of ChanSu/bufalin. Possible mechanisms of ChanSu which have not been reported such as the induction of immunogenic cell death through ER stress are shown in dashed line. And, to further decipher the mechanisms of anti-cancer effects of ChanSu/bufalin, more experimental data would be needed.

PERSPECTIVES

Chansu has been successfully used in anti-cancer therapy for a long time in China. The discovery and research of the anti-cancer effects of cardenolides further support the role of...
ChanSu in anti-cancer therapy. To develop new anti-cancer agents based on the anti-cancer effects of ChanSu, efforts have been made to either synthesize chemical derivatives as drug candidates or to design tumor-targeted delivery of ChanSu/bufalin. Lots of derivatives of bufalin were synthesized and their anti-cancer effects were evaluated. Some promising compounds were suggested\(^{147-149}\). On the other hand, tumor-targeted drug delivery systems of bufalin were designed. For example, Tan et al. designed a tumor-targeted drug delivery system of bufalin based on enhanced permeability and retention effect by using biotinylated chitosan which resulted in bufalin encapsulating nanoparticles (Bu-BCS-NPs) with mean hydrodynamic size of 171.6 nm. The remarkable therapeutic effect of Bu-BCS-NPs were confirmed in \textit{in vivo} studies using MCF-7 tumor models in nude mice\(^ {190}\). Both kinds of study would contribute to the future potential use of ChanSu in anti-cancer therapy. Hopefully, derivatives of bufalin with stronger anti-cancer activity delivered by tumor-targeted delivery system might be developed in the near future. While, further clarification of their anti-cancer molecular mechanisms is necessary for the development of new anti-cancer agents from ChanSu as well as more rational use of ChanSu.

REFERENCES

1. Gao H, Zeh M, Leitner A, Wu X, Wang Z, Kopp B. Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. \textit{J. Ethnopharmacol} 2010, 131(2): 368–376.
2. Qi F, Li A, Inagaki Y, Kokudo N, Tamura S, Nakata M, Tang W. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. \textit{Int Immunopharmacol} 2011, 11(3): 342–349.
3. Lu CX, Nan KJ, Lei Y. Agents from amphibians with anticancer properties. \textit{Anticancer Drugs} 2008, 19(10): 931–939.
4. Zhao H, Wu X, Wang H, Gao B, Yang L, Si N, Bui N. Qualitative and quantitative analysis of cinobufacin injection using rapid separation liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and HPLC-photodiode array detection, a feasible strategy for the quality control of Chinese medicine injections. \textit{J Sep Sci} 2013, 36(3): 492–502.
5. Meng Z, Yang P, Shen Y, Bei W, Zhang Y, Ge Y, Newman R A, Cohen L, Liu L, Thornton B, Chang DZ, Liao Z, Kurzrock R. Pilot study of huachansu in patients with hepaticcellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. \textit{Cancer} 2009, 115(2): 5309–5318.
6. Huang H, Yang Y, Lv C, Chang W, Peng C, Wang S, Ge G, Han L, Zhang W, Liu R. Pharmacokinetics and tissue distribution of five bufadienolides from the Shexiang Baoxin pill following oral administration to mice. \textit{J Ethnopharmacol} 2014.
7. Cao Y, Zhao L, Liang Q, Bi K, Wang Y, Luo G. Study of the determination and pharmacokinetics of bufadienolides in dog’s plasma after administration of Liu-Shen-Wan by high performance liquid chromatography time-of-flight mass spectrometry. \textit{J Chromatogr B Anal Technol Biomed Life Sci} 2007, 853(1-2): 227–233.
8. Li XJ, Jia MM, Li YS, Yang YL, Mao XQ, Tang H B. Involvement of substance \textit{p}heurominin-1 receptor in the analgesic and anticancer activities of minimally toxic fraction from the traditional Chinese medicine Liu-Shen-Wan in vitro. \textit{Biol Pharm Bull} 2014, 37(3): 431–438.
9. Qi J, Tan CK, Hashimi SM, Zulfikar AH, Good D, Wei MQ. Toad glandular secretions and skin extractions as anti-inflammatory and anticancer agents. \textit{Evid Based Complement Alternat Med} 2014, 2014: 312684.
Anti-cancer effects of ChanSu

30. Steyn PS, van Heerden FR. Bufadienolides of plant and animal origin. Nat Prod Rep 1998, 15(4): 397–413.

31. Yeh JY, Huang WJ, Kan SF, Wang PS. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostate 2003, 54(2): 112–124.

32. Qi FH, Li AY, Lv H, Zhao L, Li JI, Gao B, Tang W. Apoptosis-inducing effect of cinobufacin, Bufo bufo garugari Cantor skin extract, on human hepatoma cell line BEL-7402. Drug Discov Ther 2008, 2(6): 339–343.

33. Zhang DM, Liu JS, Tang MK, You A, Cao HH, Liang L, Chan JY, Tian HY, Fung KP, Ye WC. Bufotalin from Venenum Bufonis inhibits growth of multidrug resistant HepG2 cells through G2/M cell cycle arrest and apoptosis. Eur J Pharmacol 2012, 692(1-3): 19–28.

34. Hu F, Han J, Zhai B, Ming X, Zhuang L, Liu Y, Pan S, Liu T. Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation. Apoptosis 2014, 19(1): 210–223.

35. Qu DZ, Zhang ZJ, Wu WZ, Yang YK. Bufalin, a component in Chansu, inhibits proliferation and invasion of hepatocellular carcinoma cells. BMC Complement Altern Med 2013, 13: 185.

36. Hsu CM, Tsai Y, Wang TL, Tsai FJ. Bufalin induces G2/M phase arrest and triggers autophagy via the TNF, JNK, BECN-1 and ATG8 pathway in human hepatoma cells. Int J Oncol 2013, 43(3): 338–348.

37. Tsai SC, Yang JS, Peng SF, Lu CC, Chiang JH, Chung JG, Lin MW, Lin JK, Amagaya S, Wai-Shan Chung C, Tung TT, Huang WW, Tseng MT. Bufalin increases sensitivity to AKT/mTOR-induced autophagic cell death in SK-HEP-1 human hepatocellular carcinoma cells. Int J Oncol 2012, 41(4): 1431–1442.

38. Gao Y, Li HX, Xu LT, Wang P, Xu LY, Cohen L, Yang PY, Gu K, Meng ZQ. Bufalin enhances the anti-proliferative effect of sorafenib on human hepatocellular carcinoma cells. Int J Oncol 2012, 40(4): 835–840.

39. Park JS, Shin DY, Lee YW, Cho CK, Kim GY, Kim WJ, Yoo HS, Choi YH. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells. Int J Oncol 2012, 40(4): 1210–1219.

40. Jiang Y, Zhang Y, Luan J, Duan H, Zhang F, Yagasaki K, Zhang G. Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology 2010, 62(6): 573–583.

41. Sun L, Chen T, Wang X, Chen Y, Wei X. Bufalin Induces Reactive Oxygen Species Dependent Bac Translocation and Apoptosis in A549 Cells. Evid Based Complement Alternat Med 2011, 2011: 249090.

42. Wu SH, Hisao YT, Chen JC, Lin JH, Hsu SC, Hsia TC, Yang ST, Hsu WH, Chiu CH. Bufalin alters gene expressions associated DNA damage, cell cycle, and apoptosis in human lung cancer NCIC-H460 cells in vitro. Molecules 2014, 19(5): 6047–6057.

43. Yu CH, Kan SF, Pu HF, Jea Chien E, Wang PS. Apoptotic signaling in bufalin- and cinobufagin-treated androgen-dependent and independent human prostate cancer cells. Cancer Sci 2008, 99(12): 2467–2476.

44. Li D, Qu X, Hou K, Zhang Y, Dong Q, Teng Y, Zhang J, Liu Y. P38K Akt is involved in bufalin-induced apoptosis in gastric cancer cells. Anticancer Drugs 2009, 20(1): 59–64.

45. Zhang LS, Nakaya K, Yoshida T, Kuroiwa Y. Bufalin as a potent inducer of differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 1991, 178(2): 686–693.

46. Masuda Y, Kawazoe N, Nakaja S, Yoshida T, Kuroiwa Y, Nakaya K. Bufalin induces apoptosis and influences the expression of apoptosis related genes in human leukemia cells. Leuk Res 1995, 18(8): 549–556.

47. Watabe M, Ito K, Masuda Y, Nakaja S, Nakaya K. Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene 1998, 16(6): 779–787.

48. Kawazoe N, Watabe M, Masuda Y, Nakaja S, Nakaya K. Tiam1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncogene 1999, 18(15): 2413–2421.

49. Ding Y, Ohizumi H, Kawazoe N, Hashimoto S, Masuda Y, Nakajo S, Yoshida T, Kuroiwa Y, Nakaya K. Selective inhibitory effect of bufalin on growth of human tumor cells in vitro: association with the induction of apoptosis in leukemia HL-60 cells. Jpn J Cancer Res 1994, 85(6): 645–651.

50. Jing Y, Watabe M, Hashimoto S, Nakaja S, Nakaya K. Cell cycle arrest and protein kinase modulating effect of bufalin on human leukemia ML1 cells. Anticancer Res 1994, 14(3A): 1193–1198.

51. Lee S, Lee Y, Choi YJ, Han KS, Chung HW. Cyto-genotoxic effects of the ethanol extract of Chan Su, a traditional Chinese medicine, in human cancer cell lines. J Ethnopharmacol 2014, 152(2): 372–376.

52. Kostecka A, Sznarkowska A, Meller K, Acedo P, Shi Y, Mohammad Sahil HA, Kaviaik A, Lion M, Krocikla A, Wilhelm M, Inga A, Zawacka-Pankau J. JNK-NQO1 axis drives Tap73-mediated tumor suppression upon oxidative and proapoptotic stress. Cell Death Dis 2014, 5: e1484.

53. Dong Y, Yin S, Li J, Jiang C, Ye M, Hu H. Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3-Md-1 pathway. Apoptosis 2011, 16(4): 394–403.

54. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 2011, 51(7): 1365–1375.

55. Winkler LL, Kaleja RF. The 195 Proteasome Activator Promotes Human Cytomegalovirus Immediate Early Gene Expression through Proteolytic and Nonproteolytic Mechanisms. J Virol 2014, 88(20): 11782–11790.

56. Wang J, Yin JQ, Shen JN, Jia Q, Huang G, Jin S, Zou CY. [In vitro screening of 32 traditional Chinese herbal extracts against U2OS human osteosarcoma cells]. Nan Fang Yi Ke Da Xue Xue Bao 2006, 26(9): 1293–1296.

57. Chen G, Jiang X, Li J, Duan G, Yang L, Zhang Y, Wang F. Study on anti-osteosarcoma activity of ethanol extract of venenum bufonis in vitro. Afr J Tradit Complement Altern Med 2014, 11(1): 73–77.

58. Xie XN, Wen LL, Lin QJ, Liao HY, Zou CY, Wang B, Huang G, Shen JN. [Proteomics research of bufalin-induced apoptosis in osteosarcoma cell lines]. Zhongguo Zhong Yao Za Zhi 2014, 39(14): 2739–2743.

59. Hong SH, Choi YH. Bufalin induces apoptosis through activation of both the intrinsic and extrinsic pathways in human bladder cancer cells. Oncol Rep 2012, 27(1): 114–120.

60. Li M, Yu X, Guo H, Sun L, Wang A, Liu Q, Wang X, Li JI. Bufalin exerts antitumor effects by inducing cell cycle arrest and triggering apoptosis in pancreatic cancer cells. Tumour Biol 2014, 35(3): 2461–2471.

61. Huang H, Cao Y, Wei W, Liu W, Lu SY, Chen YB, Wang Y, Yan H, Wu YL. Targeting poly (ADP-ribose) polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells. PLoS One 2013, 8(6): e66130.

62. Jiang L, Zhao MN, Liu TY, Wu XS, Weng H, Ding Q, Shu YJ, Bao RF, Li ML, Mu JS, Wu WG, Ding Q, Cao Y, Hu YP, Shen BY, Tan ZJ, Liu YB. Bufalin induces cell cycle arrest and apoptosis in gallbladder carcinoma cells. Tumour Biol 2014.

63. Hsiao YP, Yu CS, Yu CC, Yang JS, Chung JH, Lu CC, Huang HY, Tang NY, Yang JH, Huang AC, Chung JG. Triggering apoptotic death of human malignant melanoma a375.s2 cells by bufalin: involvement of caspase cascade-dependent and independent mitochondrial signaling pathways. Evid Based Complement Alternat Med 2012, 2012: 591241.

64. Liu N, Li X, Huang H, Zhao C, Liao S, Yang C, Liu S, Song W, Lu X, Lan X, Chen X, Yi S, Xu L, Jiang L, Zhao C, Dong X, Zhou P, Li S, Wang S, Shi X, Dou QQ, Wang X, Liu J. Clinically used antithromotic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 2014, 5(14): 5453–5471.

65. Takai N, Ueda T, Nishida M, Nasu K, Narahara H. Bufalin induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells. Int J Mol Med 2008, 21(5): 637–643.
105. Stenkivist B. Is digitalis a therapy for breast carcinoma? *Oncol Rep* 1999, 6(3): 493–496.

106. Hong DS, Henary H, Falchook GS, Naing A, Fu S, Moulder S, Wheler JJ, Tsimberidou A, Durand JB, Khan R, Yang P, Johansen M, Newman RA, Kurzrock R. First-in-human study of p150-204, an oleander-derived inhibitor of akt, fgf-2, nk-kappabeta and p70s6k, in patients with advanced solid tumors. *Invest New Drugs* 2014.

107. Toyoshima C, Kanai R, Cornelius F. First crystal structures of Na+K+-ATPase: new light on the oldest ion pump. Structure 2011, 19(12): 1732–1738.

108. Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. *Am J Physiol* 1998, 275(5 Pt 2): F633–650.

109. Woo AL, James PF, Lingrel JB. Characterization of the fourth alpha isoform of the Na,K-ATPase. *J Membr Biol* 1999, 169(1): 39–44.

110. Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedosova NU. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. *J Struct Biol* 2011, 174(2): 296–306.

111. Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. *Science* 2013, 302(5470): 201–206.

112. Laursen M, Yatime L, Nissen P, Fedosova NU. Crystal structure of the high-affinity Na+-K+–ATPase: ouabain complex with Mg2+ bound in the cation binding site. *Proc Natl Acad Sci U S A* 2013, 110(27): 10958–10963.

113. Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl MB, Newman RA, Kurzrock R. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-kappabeta and p70s6k, in patients with advanced solid tumors. *Proc Natl Acad Sci U S A* 2006, 103(29): 10911–10916.

114. Larre I, Lazarro A, Contreras RG, Balda MS, Matter K, Flores-Maldonado C, Ponce A, Flores-Benitez D, Rincon-Heredia R, Padilla-Benavides T, Castillo A, Shoshani L, Cereijido M. Ouabain modulates epithelial cell tight junction. *Proc Natl Acad Sci U S A* 2010, 107(25): 11387–11392.

115. Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Mihaud M, Spagni G, Sulicke C, Locher C, Ghihrengelli F, Modjtahedi N, Galluzzi L, Andre F, Zitvogel L, Kepp O, Kroemer G. Cardiac glycosides exert antitumor effects by inducing immunogenic cell death. *Sci Transl Med* 2012, 4(143): 143ra199.

116. Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Cardiac glycosides and cancer therapy. *Oncoimmunology* 2013, 2(2): e23082.

117. Barkas AA, Giltay J, Schinke T, Shoshani L, Cereijido M. Ouabain binding to Na+,K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. *J Biol Chem* 2000, 275(36): 27838–27844.

118. Ye Q, Lai F, Banerjee M, Duan Q, Li Z, Si S, Xie Z. Expression of Na+K+-ATPase as a signal transducer. *J Biol Chem* 2002, 277(20): 17557–17563.

119. Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. *Nat Rev Drug Discov* 2007, 8(7): 926–935.

120. Contreras RG, Shoshani L, Flores-Maldonado C, Lazaro A, Cereijido M. Relationship between Na+K+-ATPase and cell attachment. *J Cell Sci* 1999, 112 (Pt 23): 4223–4232.

121. Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJ, Jr., Bander NH, Peralta Soler A, Rajasekaran AK. Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. *Mol Biol Cell* 2001, 12(2): 279–295.

122. Rajasekaran AK, Rajasekaran SA. Role of Na-K-ATPase in the assembly of tight junctions. *Am J Physiol Renal Physiol* 2003, 285 (3): F388–396.

123. Madan P, Rose K, Watson AJ. Na,K-ATPase beta1 subunit expres- sion is required for blastocyst formation and normal assembly of trophoderm nodum junction-associated proteins. *J Biol Chem* 2007, 282(16): 12127–12134.

124. Vagin O, Sachs G, Tokhtavaeva E. The roles of the Na,K-ATPase beta1 subunit in pump sorting and epithelial integrity. *J Bioenerg Biomembr* 2007, 39(6): 367–372.

125. Bab-Dinitz E, Albeck S, Peleg Y, Brumfeld V, Gottschalk KE, Karlish SJ. A C-terminal lobe of the beta subunit of Na,K-ATPase and H,K-ATPase resembles cell adhesion molecules. *Biochemistry* 2009, 48 (36): 8684–8691.

126. Belusa R, Aizman O, Andersson RM, Aperia A. Changes in Na(+)-K+–ATPase activity influence cell attachment to fibronectin. *Am J Physiol Cell Physiol* 2002, 282(2): C302–309.

127. Contreras RG, Flores-Maldonado C, Lazarro A, Shoshani L, Flores-Benitez D, Larre I, Cereijido M. Ouabain binding to Na+K+–ATPase relaxes cell attachment and sends a specific signal (NACOs) to the nucleus. *J Membr Biol* 2003, 198(3): 167–178.

128. Larre I, Ponce A, Fiorentino R, Shoshani L, Contreras RG, Cereijido M. Contacts and cooperation between cells depend on the hormone ouabain. *Biochimie* 2006, 88(10): 1585–1591.
145. Ye J, Chen S, Maniatis T. Cardiac glycosides are potent inhibitors of interferon-beta gene expression. *Nat Chem Biol* 2011, 7(1): 25–33.

146. Gao H, Popescu R, Kopp B, Wang Z. Bufadienolides and their antitumor activity. *Nat Prod Rep* 2011, 28(5): 953–969.

147. Yuan XF, Tian HY, Li J, Jin L, Jiang ST, Liu KW, Luo C, Middleton DA, Ermann M, Ye WC, Jiang RW. Synthesis of bufalin derivatives with inhibitory activity against prostate cancer cells. *Nat Prod Res* 2014, 28(11): 843–847.

148. Ma B, Xiao ZY, Chen YJ, Lei M, Meng YH, Guo DA, Liu X, Hu LH. Synthesis and structure-activity relationships study of cytotoxic bufalin 3-nitrogen-containing-ester derivatives. *Steroids* 2013, 78(5): 508–512.

149. Cunha-Filho GA, Resck IS, Cavalcanti B, Pessoa C, Moraes M, Ferreira JR, Rodrigues FA, Dos Santos ML. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. *Toxicon* 2010, 56(3): 339–348.