Isolation of *Lactobacillaceae* bacteria from feces of ostrich (*Struthio camelus*)

Misa Onodera, Tomomi Ban-Tokuda and Hiroki Matsui

Graduate School of Bioresources, Mie University, Mie 514-8507, Japan

The ostrich (*Struthio camelus*) is an herbivorous bird with a long and developed hindgut. In the hindgut, there is a dense and highly diverse population of anaerobic bacteria, and active fermentation produces high concentrations of short-chain fatty acids. Bacteria in the hindgut of the ostrich are considered vital for both their nutritional contribution and health benefits, such as benefits to the immune and defense system of the host. We attempted to isolate *Lactobacillaceae*, which might be involved in improving immune function and in inhibiting pathogens. The number of colonies from ostrich feces observed on LBS agar medium was 3.64 × 10^3 per gram of feces. Three strains of *Lactobacillaceae* were isolated from the feces. Nearly the entire length of the 16S ribosomal RNA gene of these isolates was sequenced, and a homology search showed high identity with *L. brevis* (identity = 99.93%), *L. coryniformis* (98.39%), and *L. paracasei* (100.0%). These isolates may be deemed potential probiotics for the ostrich.

Key words: feces, health, *Lactobacillaceae*, ostrich, probiotics

Materials and Methods

Animals and Feed

Three adult ostriches (two males and one female) reared at Hisai Norin High School (Mie Prefecture, Japan) were used in this study. The birds were fed with a self-mixed feed. The ingredients and composition of the feed are listed in Table 1. Water was provided *ad libitum*.

Sample Collection

Sample collection was performed in a non-invasive manner. Fecal samples that were released/excreted were collected at approximately 11:00 am. The fecal samples were immediately placed in a clean plastic bag and kept at 39°C. The collected samples were transferred to the laboratory within 30 minutes.

Isolation of Lactobacillaceae

Lactobacillaceae members were isolated as per protocols described by Tsuchida *et al.* (2014) with a few modifications. One gram of feces from each ostrich was diluted in 9 mL of sterilized saline and mixed thoroughly. The slurry was further diluted to 10^2 with sterilized saline. A portion (100 µL) of the diluted samples was spread onto an LBS agar plate. The plates were then transferred into the BBL GasPak Anaerobic System (Becton, Dickinson and Company, Sparks, MD, USA). The plates were then incubated for 4 days at 39°C. A full loop (10 µL) of the culture fluid was again
streaked onto LBS agar and incubated anaerobically in a GasPak anaerobic system at 39°C. Finally, a single colony was selected, inoculated into 10 mL of MRS broth, and incubated for 4 d at 39°C.

Extraction of DNA and Sequencing

Ten milliliters of the culture fluid was centrifuged (8,000 ×g for 10 min, 4°C), and the pellet was used for genomic DNA extraction using the NucleoSpin Microbial DNA Kit (Macherey-Nagel GmbH & Co. Düren, Germany). The 16S ribosomal RNA gene fragment was amplified as per methods described in our previous study (Hattori and Matsui 2008). The reaction mixture was purified using ExoProStar (GE Healthcare, Buckinghamshire, UK). The purified DNA was sequenced with B35rev (5′-GGTATGGATGAGCCTTG-3′; Guettler et al., 1999), C01rev (5′-GGTTGCGCTCGGGC-3′; Guettler et al., 1999), and 926f (5′-AAACTCAAAGGAATTGACGG-3′; Leser et al., 2002). The sequencing chemistry and sequencer used have been described previously (Abrar et al., 2016). Sequenced fragments were combined into one sequence using the DNADynamo software (Blue Tractor Software Ltd, UK). The combined DNA sequence obtained was explored for homology in BlastN (Altschul et al., 1997).

Results and Discussion

To the best of our knowledge, this is the first report on the isolation of *Lactobacillaceae* members from the hindgut of ostrich.

The number of colonies enumerated based on observation on the LBS agar plate was 3.64×10³±1.65×10² per gram of feces (mean±SE, n=3). Nikravesh-Masouleh et al. (2018) reported that the number of *Lactobacillus* bacteria in the feces of ostrich chicks ranged between 10⁶ and 10⁷ colony forming units/g. This difference may be attributable to the age of the birds. Videvall et al. (2019) reported that the composition of *Lactobacillus* decreased with the growth of ostrich chicks. The present results support this finding. In our previous study conducted on microbial diversity in the hindgut of adult ostrich, there was no *Lactobacillaceae* clone sequence observed in the 16S ribosomal RNA gene library (Matsui et al., 2010b). Therefore, *Lactobacillaceae* is a minor constituent of the adult ostrich hindgut.

A total of 87 colonies were selected for analysis. Within these colonies, the partial 16S ribosomal RNA gene was sequenced using the B35rev primer of 17 isolates. Three *Lactobacillaceae* isolates (HNost011, HNost031, and HNost082) were obtained from ostrich feces (Table 2). The almost full-length 16S ribosomal RNA genes of these isolates were sequenced and searched for homology against the public database. HNost011, HNost031, and HNost082 showed high identity with *Levilactobacillus* (formerly *Lactobacillus*) brevis (identity=99.93%), *Loigolactobacillus* (formerly *Lactobacillus*) coryniformis (98.39%), and *Lacticaseibacillus* (formerly *Lactobacillus*) paracasei (100.0%). *Lactobacillaceae* isolates from chicken cloaca and feces were identified as *Ligilactobacillus* (formerly *Lactobacillus*) agilis, *Lactobacillus* crispatus, *Latilactobacillus* (formerly *Lactobacillus*) curvatus, *Limosilactobacillus* (formerly *Lactobacillus*) fermentum, *Lactobacillus* gallinarum, *Limosilactobacillus* (formerly *Lactobacillus*) inglaviei, *Lactobacillus* johnsonii, *Lactobacillus* kitasatonis, *Lactiplantibacillus* (formerly *Lactobacillus*) plan tarum, *Ligilactobacillus* (formerly *Lactobacillus*) salivarius, and *Limosilactobacillus* (formerly *Lactobacillus*) vaginalis (Kobiercka et al., 2017). Experimentally, *L. plantarum* showed the ability to decrease colonization of the *Campylobacter jejuni* strain (Kobiercka et al., 2017). None of the ostrich isolates overlapped with the isolates from chickens. One reason for this is the small number of isolated *Lactobacillaceae* members. Isolation of more *Lactobacillaceae* members should be performed in the future.

The body weight (BW) and BW gain of ostrich chicks that received commercial probiotics (not for ostrich) were higher than those of chicks fed with a control diet (Karimi-Kivi et al.)
Moreover, the abundance of Lactobacillaceae was significantly higher in chickens in the better feed efficiency group (Yan et al., 2017). If the development of probiotics designated for ostrich can be achieved, ostrich productivity may be improved. The Lactobacillaceae isolates in the present study may be deemed potential candidates for this purpose.

Acknowledgments

The authors thank Mr. Yoshiki Ichikawa (Hisai Norin High School, Mie, Japan) for allowing us to collect the ostrich fecal samples. Nucleotide sequencing was performed at the Life Science Research Center, Mie University (Tsu, Japan).

Conflicts of Interest

The authors declare no conflict of interest.

References

Abrar A, Watanabe H, Kitamura T, Kondo M, Ban-Tokuda T and Matsui H. Diversity and fluctuation in ciliate protozoan population in the rumen of cattle. Animal Science Journal, 87: 1188–1192. 2016.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402. 1997.

Guettrler MV, Rumlter D and Jain MK. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal of Systematic Bacteriology, 49: 207–216. 1999.

Hattori K and Matsui H. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe, 14: 87–93. 2008.

Karimi-Kivi R, Dadashbeiki M and Seidavi A. Growth, body characteristics and blood parameters of ostrich chickens receiving commercial probiotics. Spanish Journal of Agricultural Research, 13: e06–e04. 2015.

Kobierccka PA, Wysyń ska AK, Aleksandrzak-Piekarczyk T, Kuczkowski M, Tuzimek A, Piotrowska W, Görecki A, Adamska I, Wieliczko A, Bardowski J and Jagusztyń-Krynicka EK. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. MicrobiologyOpen, 6: e512. 2017.

Lesar TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M and Möller K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology, 68: 673–690. 2002.

Matsui H, Ban-Tokuda T and Wakita M. Detection of fiber-digesting bacteria in the ceca of ostrich using specific primer sets. Current Microbiology, 60: 112–116. 2010a.

Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T and Wakita M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 16: 83–93. 2010b.

Nikravesh-Masouleh T, Seidavi A, Kawka M and Dadashbeiki M. The effect of dietary energy and protein levels on body weight, size, and microflora of ostrich chicks. Tropical Animal Health and Production, 50: 635–641. 2018.

Skadhauge E, Warüi CN, Kamau JMJ and Maloiy GMO. Function of the lower intestine and osmoregulation in the ostrich: pre- liminary anatomical and physiological observations. Quarterly Journal of Experimental Physiology, 69: 809–818. 1984.

Swart D, Mackie RJ and Hayes JP. Fermentative digestion in the ostrich (Struthio camelus var. domesticus), a large avian species that utilizes cellulose. South African Journal of Animal Science, 23: 127–135. 1993.

Tsuchida S, Kitahara M, Nguema PPM, Norimitsu S, Fujita S, Yamagiwa J, Ngomanda A, Ohkuma M, Ushida K. Lactobacillus gorillae sp. nov., isolated from the faeces of captive and wild western lowland gorillas (Gorilla gorilla gorilla). International Journal of Systematic and Evolutionary Microbiology, 64: 4001–4006. 2014.

Videvall E, Song SJ, Bensch HM, Strandh M, Engelbrecht A, Serfontein N, Hellgren O, Olivier A, Cloete S, Knight R and Cornwallis CK. Major shifts in gut microbiota during development and its relationship to growth in ostriches. Molecular Ecology, 28: 2653–2667. 2019.

Yan W, Sun C, Yuan J and Yang N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Scientific Reports, 7: 45308. 2017.