ON THE MAXIMAL REGULARITY FOR A CLASSE OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

A. AMANSAG, H. BOUNIT, A. DRIOUICH, AND S. HADD

Abstract. We propose an approach based on perturbation theory to establish maximal L^p-regularity for a class of Volterra integro-differential equations. As the left shift semigroup is involved for such equations, we study maximal regularity on Bergman spaces for autonomous and non-autonomous integro-differential equations. Our method is based on the formulation of the integro-differential equations to a Cauchy problems, infinite dimensional systems theory and some recent results on the perturbation of maximal L^p-regularity (see [1, 2]). Applications to heat equations driven by the Dirichlet (or Neumann)-Laplacian are considered.

1. Introduction

In recent years, somewhat more progress on the concept of maximal L^p-regularity ($p \in (1, \infty)$) has been made in the evolution equations literature. This property plays an important role in the well-posedness of nonlinear evolution equations, quasilinear ones and non-autonomous evolution ones. Various approaches have been proposed for the concept of maximal L^p-regularity, we cite the variational approach e.g. [18], the operator one e.g. [3], [16], and the perturbation one e.g. [1, 2]. For more facts on this property, the reader is invited to consult this non-exhaustive list [9], [8], [17], [16], [3], [14], [21], [22] and references therein.

This paper focuses on proving the maximal L^p-regularity for some classes of Volterra integro-differential equations using the recent results based on the perturbation approach developed in [1, 2]. On the one hand, the results displayed throughout this article draw from our recent papers [1, 2], where the above equations are studied with kernels $a(\cdot) = 0$, and, on the other hand, from Bárta [1] where these problems are studied on UMD spaces by using the concept of R-sectoriality. One remarkable fact is that in the context of UMD spaces the left shift semigroup on Bergman space enjoys the maximal L^p-regularity.
We first consider in Section 3 the following autonomous Volterra integro-differential equation
\[
\begin{aligned}
&z(t) = A z(t) + \int_0^t a(t - s) Fz(s)ds + f(t), \quad t \geq 0, \\
&z(0) = 0,
\end{aligned}
\tag{1.1}
\]
where \(A : D(A) \subset X \rightarrow X\) is the generator of a \(C_0\)-semigroup \(T := (T(t))_{t \geq 0}\) on a Banach space \(X\) and \(F : D(A) \rightarrow X\) a linear operator, and \(a : \mathbb{C} \rightarrow \mathbb{C}\) and \(f : [0, \infty) \rightarrow X\) are measurable functions.

In a suitable product space, the previous problem is reformulated as the following non-homogeneous problem
\[
\begin{aligned}
&\dot{\rho}(t) = A \rho(t) + \zeta(t), \quad t \geq 0, \\
&\rho(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix},
\end{aligned}
\]
where \(A\) is a matrix operator (see Section 3). Using a recent perturbation result of maximal \(L^p\)-regularity, we prove, under assumptions, that the operator \(A\) has maximal \(L^p\)-regularity and we give an estimate for the solution of the problem (1.1).

In [20], the author studied maximal \(L^p\)-regularity of type \(C^\alpha\) of (1.1), which differs from the maximal \(L^p\)-regularity of type \(L^p\) presented in this paper. Here we use a direct approach in the treatment of (1.1) without appealing the concept of \(\kappa\)-regular kernels as in the paper [24].

In Section 4, we study the maximal \(L^p\)-regularity for Volterra integro-differential equations with boundary conditions of the form
\[
\begin{aligned}
&\dot{z}(t) = A_m z(t) + \int_0^t a(t - s) Pz(s)ds + f(t), \quad t \in [0, T], \\
&z(0) = 0, \\
&Gz(t) = K z(t), \quad t \in [0, T],
\end{aligned}
\tag{1.2}
\]
where \(A_m : Z \rightarrow X\) is a closed linear operator with \(Z\) is a Banach space that is densely and continuously embedded in the Banach space \(X\). \(G, K : Z \rightarrow U\) are linear operators with \(U\) another Banach space. \(P : Z \rightarrow X\) is a linear operator.

In [1] and [2], the authors studied the problem (1.2) in the case \(a(\cdot) = 0\) using the feedback theory of infinite dimensional linear systems.

In order to prove maximal \(L^p\)-regularity of (1.2), we reformulate the problem as
\[
\begin{aligned}
&\dot{\rho}(t) = A \rho(t) + \zeta(t), \quad t \in [0, T] \\
&\rho(0) = 0,
\end{aligned}
\]
where \(A\) is some matrix operator (see Section 3). Using results from [2], we prove, under some assumptions, that \(A\) has maximal \(L^p\)-regularity and we derive a useful estimate satisfied by the solution of (1.2).

Section 2 is devoted to recall the definition of maximal \(L^p\)-regularity and a useful perturbation result. In Section 3 we study well-posedness and maximal \(L^p\)-regularity of
evolution equations (1.1). In Section 4, we review some useful results on feedback theory of infinite dimensional systems and prove maximal L^p-regularity of (1.2) under suitable assumptions.

2. Background on maximal L^p-regularity for Cauchy problems

In this section, we collect necessary background on maximal L^p-regularity that will be used in this paper. Let \mathcal{X} be a Banach space with norm $\| \cdot \|$, $p \in (1, \infty)$ a real number, and $\mathcal{A} : D(\mathcal{A}) \subset \mathcal{X} \to \mathcal{X}$ a closed linear operator.

Definition 2.1. We say that \mathcal{A} has the maximal L^p-regularity, and we write $\mathcal{A} \in MR_p(0, T; \mathcal{X})$, if for every $f \in L^p([0, T], \mathcal{X})$ there exists a unique $u \in W^{1,p}([0, T], \mathcal{X}) \cap L^p([0, T], D(\mathcal{A}))$ such that

$$\dot{u}(t) = \mathcal{A}u(t) + f(t) \quad \text{for } t \in [0, T] \quad \text{and } u(0) = 0.$$

By ”maximal” we mean that the applications f, $\mathcal{A}u$ and \dot{u} have the same regularity. According to the closed graph theorem, if \mathcal{A} has maximal L^p-regularity,

$$\|\dot{u}\|_{L^p([0, T], \mathcal{X})} + \|u\|_{L^p([0, T], \mathcal{X})} + \|\mathcal{A}u\|_{L^p([0, T], \mathcal{X})} \leq \kappa \|f\|_{L^p([0, T], \mathcal{X})}$$

for a constant $\kappa := \kappa(p) > 0$ independent of f.

It is known that a necessary condition for the maximal L^p-regularity is that \mathcal{A} generates an analytic semigroup $\mathcal{T} := (\mathcal{T}(t))_{t \geq 0}$. This condition is also sufficient if \mathcal{X} is a Hilbert space, see De Simon [7]. Moreover, it is shown in [9] that if \mathcal{A} has maximal L^p-regularity for one $p \in [1, \infty]$ then \mathcal{A} has maximal L^q-regularity for all $q \in]1, \infty[$.

Next we recall a perturbation result on maximal L^p-regularity. To this end, we need the following concept.

Definition 2.2. let \mathcal{A} be the generator of a strongly continuous semigroup $(\mathcal{T}(t))_{t \geq 0}$ on a Banach space \mathcal{X}, and let \mathcal{Y} be another Banach space. An operator $\mathcal{C} \in \mathcal{L}(D(\mathcal{A}), \mathcal{Y})$ is called p-admissible observation operator for \mathcal{A}, if there exist (hence all) $\alpha > 0$ and a constant $\gamma := \gamma(\alpha) > 0$ such that:

$$\int_0^\alpha \| \mathcal{C} \mathcal{T}(t)x \|^p_y dt \leq \gamma^p \| x \|^p,$$

for all $x \in D(\mathcal{A})$. We also say that $(\mathcal{C}, \mathcal{A})$ is p-admissible.

The following theorem gives an invariance result of the maximal L^p-regularity, see [1].

Theorem 2.3. If $\mathcal{P} \in \mathcal{L}(D(\mathcal{A}), \mathcal{X})$ is l-admissible for \mathcal{A} for some $l > 1$ and \mathcal{A} has maximal L^p-regularity then the operator $\mathcal{A} + \mathcal{P} : D(\mathcal{A}) \to \mathcal{X}$ is so.

3. Maximal regularity for Volterra integro-differential equations

In this section, we study the maximal L^p-regularity of the autonomous Volterra integro-differential equation (1.1). First, certain conventions are defined. Let the Banach product
Let us define the left shift semigroup on \(L^q(\mathbb{R}^+, X) \) by
\[
(\mathbb{S}(t)f)(s) = f(t+s), \quad t, s \geq 0.
\]
We select
\[
\Upsilon x := a(\cdot)Fx, \quad x \in D(A),
\]
\[
\mathfrak{A} := \begin{pmatrix} A & \delta_0 \\ \Upsilon & \frac{d}{ds} \end{pmatrix}, \quad D(\mathfrak{A}) = D(\mathbb{A}) \times D(\frac{d}{ds}).
\] (3.1)
Moreover, we consider the function
\[
\zeta : [0, \infty) \to X, \quad \zeta(t) = \begin{pmatrix} f(t) \\ 0 \end{pmatrix}, \quad t \in [0, T].
\] (3.2)
Let \(z : [0, \infty) \to X \) satisfies (1.1). According to [10, Section VI.7], the Volterra equation (1.1) can be reformulated as the following non-homogeneous Cauchy problem on \(\mathcal{X} \),
\[
\begin{aligned}
\dot{\varrho}(t) &= \mathfrak{A} \varrho(t) + \zeta(t), & t \in [0, T], \\
\varrho(0) &= \begin{pmatrix} 0 \\ 0 \end{pmatrix},
\end{aligned}
\] (3.3)
where
\[
\varrho(t) = \begin{pmatrix} z(t) \\ g(t, \cdot) \end{pmatrix}, \quad g(t, \cdot) = \mathbb{S}(t)g(0, \cdot) + \int_0^t \mathbb{S}(t-s)\Upsilon z(s)ds, \quad t \geq 0.
\]
In order to study the maximal \(L^p \)-regularity of (1.1), it suffices to study the one of the linear operator \(\mathfrak{A} \). To this end, we will use Theorem 2.3. In fact, we first split the operator \(\mathfrak{A} \) as
\[
\mathfrak{A} = \mathcal{A} + \mathcal{P}
\] (3.4)
where
\[
\mathcal{A} := \begin{pmatrix} A & 0 \\ 0 & \frac{d}{ds} \end{pmatrix}, \quad D(\mathcal{A}) = D(\mathbb{A}) \times W^{1,q}(\mathbb{R}^+, X),
\]
\[
\mathcal{P} := \begin{pmatrix} 0 & \delta_0 \\ \Upsilon & 0 \end{pmatrix}, \quad D(\mathcal{P}) = D(\mathcal{A}).
\] (3.5)
Clearly, the operator \(\mathcal{A} \) generates the following \(C_0 \)-semigroup on \(\mathcal{X} \),
\[
\mathcal{T}(t) = \begin{pmatrix} \mathbb{T}(t) & 0 \\ 0 & \mathbb{S}(t) \end{pmatrix}, \quad t \geq 0.
\]
Moreover, \(\mathcal{T} \) is not an analytic semigroup on \(\mathcal{X} \) even if we assume that the semigroup \(\mathbb{T} \) is analytic on \(X \). This is due to the fact that the left shift semigroup \(\mathbb{S} := (\mathbb{S}(t))_{t \geq 0} \) is not analytic in \(L^q(\mathbb{R}^+, X) \). This means that \(\mathcal{A} \) has not the maximal \(L^p \)-regularity on the space \(\mathcal{X} \). To overcome this problem, one way is to look for subspaces of \(L^q(\mathbb{R}^+, X) \) in which the shift semigroup \(\mathbb{S} \) is analytic. As shown [4] and [5] a perfect space in which the shift semigroup is analytic is the Begrman space which we define as follows:
Definition 3.1. For $q \in (1, \infty)$, we define the Bergman space of holomorphic L^q-integrable functions by:

$$B^q(\Sigma_\theta; X) := \left\{ f : \Sigma_\theta \to X \text{ holomorphic} ; \int_{\Sigma_\theta} \| f(\tau + i\sigma) \|^q_X d\tau d\sigma < \infty \right\}.$$

where

$$\Sigma_\theta := \{ \lambda \in \mathbb{C} : |\arg(\lambda)| < \theta \}, \quad 0 < \theta \leq \frac{\pi}{2}.$$

This space is also defined by B^q_θ, X. Moreover, if $X = \mathbb{C}$, then we write B^q_θ instead of B^q_θ, \mathbb{C}.

The space B^q_θ, X, endowed with the following norm

$$\| f \|_{B^q_\theta, X} := \left(\int_{\Sigma_\theta} \| f(\tau + i\sigma) \|^q_X d\tau d\sigma \right)^{\frac{1}{q}},$$

is a Banach space.

The proof of the following result can be found in [5] and [6].

Proposition 3.2. The complex derivative $\frac{d}{dz}$ with its natural domain:

$$D \left(\frac{d}{dz} \right) := \{ f \in B^q_\theta, X ; f' \in B^q_\theta, X \}$$

generates an analytic semigroup of translation on B^q_θ, X. Furthermore, if X is an UMD space, then $\frac{d}{dz}$ enjoys the maximal L^p-regularity on B^q_θ, X.

This result motivated us to replace the state space \mathcal{X} with the following appropriate space

$$\mathcal{X}^q := X \times B^q_\theta, X, \quad \|(x, f)\|_{\mathcal{X}^q} := \| x \|_X + \| f \|_{B^q_\theta, X}.$$

According to Proposition 3.2, the following result becomes trivial.

Lemma 3.3. Assume that X is an UMD space. If A has the maximal L^p-regularity in X, then the operator \mathcal{A} defined in (3.5) has the maximal L^p-regularity in \mathcal{X}^q.

Now if $\frac{d}{dz}$ has the maximal L^p-regularity on B^q_θ, X for some $\theta \in (0, \frac{\pi}{2}]$ then according to Theorem 2.3 and the decomposition (3.4), \mathcal{A} will have the maximal L^p-regularity on \mathcal{X}^q as long as one proves that the perturbation \mathcal{P} is l-admissible for \mathcal{A} for some $l \in (1, \infty)$.

We have the following technical result.

Lemma 3.4. Assume that $a(\cdot) \in B^q_\theta$ for $0 < \theta \leq \frac{\pi}{2}$ and let $F \in \mathcal{L}(D(\mathcal{A}), X)$ be p-admissible for \mathcal{A}. Then

$$\int_0^\alpha \| \mathcal{P} \mathcal{T}(t)(\frac{\tau}{\alpha}) \|^p dt \leq 2^{p-1} \left(\| a \|^p_{B^q_\theta} \gamma^p \| x \|^p_X + \int_0^\alpha \| f(t) \|^p dt \right) \quad (3.6)$$

$\alpha > 0$ and $(\frac{\tau}{\alpha}) \in D(\mathcal{A})$.

5
Proof. Let $\alpha > 0$ and $(\vec{f}) \in D(\mathcal{A})$, we have

\[
\int_0^\alpha \| \mathcal{P} \mathcal{T}(t)(\vec{f}) \|^p dt \leq 2^{p-1} \left(\int_0^\alpha \| \Upsilon \mathcal{T}(t)x \|^p_{B^q_\theta} dt + \int_0^\alpha \| f(t) \|^p dt \right) \leq 2^{p-1} \left(\| a \|^p_{B^q_\theta} \int_0^\alpha \| F \mathcal{T}(t)x \|^p_{X} dt + \int_0^\alpha \| f(t) \|^p dt \right).
\]

Now the estimate (3.6) immediately follows the p-admissible of F for \mathcal{A}. \qed

According to Lemma 3.4, To prove the p-admissibility of \mathcal{P} for \mathcal{A} for some $p \in (1, \infty)$ it suffices to estimate the L^p norm of f by its norm on the Bergman space $B^{q}_{\theta,X}$. To this end, we need the following lemma inspired from [6, lem.4.3] (here we slightly modify the result proved in [6, lem.4.3] and give a sharp estimate.)

Lemma 3.5. Let $s \in (1, 2)$ and $q > 2$. For $p_{s,q} := \frac{q(s-1)}{s} (> 1)$ and $f \in B^{q}_{\theta,X}$ for some $\theta \in (0, \frac{\pi}{2})$, we have

\[
\left(\int_0^R \| f(t) \|^p_{X} dt \right)^{\frac{1}{p_{s,q}}} \leq C_R \| f \|_{B^{q}_{\theta,X}}.
\]

for all $R > 0$ and $C_R > 0$ only depends on R that verifies $C_R \to 0$ as $R \to 0$.

Proof. First, let $\theta \in (0, \frac{\pi}{2})$ and let us estimate the value of $\| f(t) \|_{p_{s,q}}$ using the Cauchy formula. The integration path will consist of two circle segments (see the next Figure). Let $\gamma_1(t) := r - acr + are^{it}$ and $\gamma_2(t) := r + acr - are^{it}$, $t \in [-\alpha, \alpha]$ with $c := \cos \alpha$ and $a = \tan(\theta)$ such that $ac < 1$.
\[f(r) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z - r} \, dz \]

\[= \frac{1}{2i\pi} \left(\int_{-\alpha}^{\alpha} \frac{f(r - \text{arc} + \text{are}^{it})\text{iar}e^{it}}{-\text{arc} + \text{are}^{it}} \, dt + \int_{-\alpha}^{\alpha} \frac{f(r + \text{arc} - \text{are}^{it})\text{iar}e^{it}}{\text{arc} - \text{are}^{it}} \, dt \right) \]

then

\[\|f(r)\|^{p_{q}} \leq \frac{1}{(2\pi)^{p_{q}}} \left(\int_{-\alpha}^{\alpha} \|f(r - \text{arc} + \text{are}^{it})\| \, dt \right)^{p_{q}} + \left(\int_{-\alpha}^{\alpha} \|f(r + \text{arc} - \text{are}^{it})\| \, dt \right)^{p_{q}} \]

\[\leq \frac{2^{p_{q} - 1}}{(2\pi(1 - c))^{p_{q}}} \left(\int_{-\alpha}^{\alpha} \|f(r - \text{arc} + \text{are}^{it})\|^{p_{q}} \, dt \right) + \left(\int_{-\alpha}^{\alpha} \|f(r + \text{arc} - \text{are}^{it})\|^{p_{q}} \, dt \right) \]

\[\leq \frac{(4\alpha)^{p_{q} - 1}}{(2\pi(1 - c))^{p_{q}}} \left(\int_{-\alpha}^{\alpha} \|f(r - \text{arc} + \text{are}^{it})\|^{p_{q}} \, dt \right) + \int_{-\alpha}^{\alpha} \|f(r + \text{arc} - \text{are}^{it})\|^{p_{q}} \, dt \)

Now we shall estimate the first integral in the above inequality, and the second one can be estimated in a similar way. We set \(\psi(t, r) = (r - \text{arc} + \text{ar} \cos t, \text{ar} \sin t) \) then the Jacobian
of ψ satisfies

$$|J_\psi| = \begin{vmatrix} 1 - ac + a \cos t & -ar \sin t \\ ar \sin t & ar \cos t \end{vmatrix} = ar((1 - ac) \cos t + a)$$

$$\geq ar(c(1 - ac) + a)$$

Since $x = r + ar(\cos t - c) < r(1 + a(1 - c))$, we have

$$|J_\psi| \geq ax(c(1 - ac) + a) := c_1 x$$

then

$$\int_0^R \int_{-\alpha}^{\alpha} \|f(\psi(t, r))\|^{p_{s,q}} dx dy = \int_0^R \int_{|J_\psi|} \|f(x + iy)\|^{p_{s,q}} dx dy$$

where $M := \psi((0, R) \times [-\alpha, \alpha])$ is contained in $M' := \{x + iy \in \mathbb{C}; 0 < x < R + \delta \}$ with $\delta := R(1 - c)a$, and $|y| \leq ax \sin \alpha < ax \sin \alpha$. This inclusion and Hölder inequality imply that

$$\int_M \|f(x + iy)\|^{p_{s,q}} dx dy \leq \frac{1}{c_1} \int_{M'} \|f(x + iy)\|^{p_{s,q}} x dx dy$$

$$\leq \frac{1}{c_1} \left(\int_{M'} \|f(x + iy)\|^{p_{s,q,s'}} x^{s'} dx \right)^{\frac{1}{s'}} \left(\int_{M'} x^{-\frac{s}{2}} dx \right)^{\frac{s}{s'}}$$

$$\leq \frac{(2a \sin \alpha)^{\frac{1}{2}}}{c_1} \|f\|_{B_{s,q,s'}^{p_{s,q}}(\mathbb{C}; \mathbb{R}^2)} \left(\int_0^{R + \delta} x^{1-s} dx \right)^{\frac{1}{2}} \left(\int_0^{\frac{ax \sin \alpha}{x}} 2dy dx \right)^{\frac{1}{s'}}$$

$$\leq \frac{(2a \sin \alpha)^{\frac{1}{2}}}{c_1} \|f\|_{B_{s,q,s'}^{p_{s,q}}(\mathbb{C}; \mathbb{R}^2)} \left(\int_0^{R + \delta} x^{1-s} dx \right)^{\frac{1}{2}} \left(\int_0^{\frac{ax \sin \alpha}{x}} 2dy dx \right)^{\frac{1}{s'}}$$

$$= \frac{(2a \sin \alpha)^{\frac{1}{2}}}{a(a + c(1 - ac))} \left(R(1 + (1 - c)a) \right)^{\frac{2-s}{2}} \|f\|_{B_{s,q,s'}^{p_{s,q}}(\mathbb{C}; \mathbb{R}^2)}$$

$$:= \tilde{C} R^{\frac{2-s}{2}} \|f\|_{B_{s,q,s'}^{p_{s,q}}(\mathbb{C}; \mathbb{R}^2)}.$$

where the constant \tilde{C} does not depend on R.

Finally we have

$$\left(\int_0^R \|f(t)\|^{p_{s,q}} dt \right)^{\frac{1}{p_{s,q}}} \leq C_R \|f\|_{B_0^{q}}$$

with $C_R \to 0$ as $R \to 0$.

The case of $\theta = \frac{\pi}{2}$ follows easily due to the fact that the space $B_{q,X}^\theta$ is decreasing with respect to θ with continuous injection. \qed

Remark 3.6. Given $q, l > 1$, there always exists $s_{q,l} \in (1, 2)$ such that:

$$1 < p_{s,q,l} := \frac{q(s_{q,l} - 1)}{s_{q,l}} \leq l.$$
In fact, if \(q \in (1, l] \) the assertion is trivial. Now if \(q \in [2l, \infty) \) we have \(\frac{q}{q - l} \in (1, 2) \). Hence all \(s_{q,l} \in (1, \frac{q}{q - l}] \) satisfy the required estimation. Finally, for \(q \in (1, 2l] \) we have \(2 \leq \frac{q}{q - l} \). Thus all \(s \in (1, 2) \) will satisfy the estimation. The fact that the space of \(l \)-admissible operators is decreasing with respect to the exponent \(l \), the discussion above shows that a sufficient condition to have the required \(p_{s,q,l} \)-admissibility for \(A \) in Theorem 3.7 is in fact the \(l \)-admissibility for some \(l > 1 \).

Now we state the first result of this paper:

Theorem 3.7. Let \(X \) be a UMD space and that \(a(\cdot) \in B_0^q \) for some \(q > 2 \) and \(\theta \in (0, \pi/2] \) and \(F \in \mathcal{L}(D(A), X) \) is a \(l_0 \)-admissible observation operator for \(A \) for some \(l_0 \in (1, \infty) \). If both \(A \) and \(\frac{dz}{dz} \) have the maximal \(L^p \)-regularity in \(X \) and \(B_{\theta,X}^q \) respectively, then \(A \) has the maximal \(L^p \)-regularity on \(\mathcal{X}^q \). Moreover, if \(p \in (1, l_0] \) and \(z \) is the solution of the problem (1.1), then there exists \(C_p > 0 \) independent of \(f \in L^p([0, T], X) \) such that

\[
\| \dot{z} \|_{L^p([0, T], X)} + \| A z \|_{L^p([0, T], X)} + \| z \|_{L^p([0, T], X)} \leq C_p \| f \|_{L^p([0, T], X)}.
\]

(3.7)

Proof. The proof uses Theorem 2.3 and the decomposition \(\mathfrak{A} = \mathcal{A} + \mathcal{P} \) given in (3.4). Lemma 3.3 shows that the operator \(\mathcal{A} \) has the maximal \(L^p \)-regularity on \(\mathcal{X}^q \). Let \(s_{q,l_0} \) and \(p_{s,q,l_0} \) as in Remark 3.6. Now by combining Lemma 3.4 and Lemma 3.5, it is clear that the operator \(\mathcal{P} \) is \(p_{s,q,l_0} \)-admissible for \(\mathcal{A} \). Appealing to Theorem 2.3, the operator \(\mathfrak{A} \) also enjoys the maximal \(L^{p_{s,q,l_0}} \)-regularity on \(\mathcal{X}^q \). It is well known that if an operator has maximal \(L^p \)-regularity for some \(p \in (1, \infty) \), then it has maximal \(L^p \)-regularity for all \(p \in (1, \infty) \) (see for instance [9]) and hence \(\mathfrak{A} \) has the maximal \(L^p \)-regularity on \(\mathcal{X}^q \). Thus there is a constant \(C_p > 0 \) such that

\[
\| \dot{\mathfrak{A}} \|_{L^p([0, T], \mathcal{X}^q)} + \| \mathfrak{A} \mathfrak{A} \|_{L^p([0, T], \mathcal{X}^q)} + \| \mathfrak{A} \|_{L^p([0, T], \mathcal{X}^q)} \leq C_p \| f \|_{L^p([0, T], X)}.
\]

Since \(\mathfrak{A} \mathfrak{A} (t) = \left(\frac{A z(t) + g(t, 0)}{\Theta z(t) + \frac{d g(t, \cdot)}{d z}} \right) \) and \(\dot{\mathfrak{A}}(t) = \left(\frac{\dot{z}(t)}{\dot{g}(t, \cdot)} \right) \), we have

\[
\| \dot{z} \|_{L^p([0, T], X)} + \| A z \|_{L^p([0, T], X)} + \| z \|_{L^p([0, T], X)} \\
\leq \| \dot{z} \|_{L^p([0, T], X)} + \| A z + g(\cdot, 0) \|_{L^p([0, T], X)} + \| g(\cdot, 0) \|_{L^p([0, T], X)} + \| z \|_{L^p([0, T], X)} \\
\leq C \| f \|_{L^p([0, T], X)} + \| g(\cdot, 0) \|_{L^p([0, T], X)}.
\]

On the other hand, we have \(\dot{g}(t, \cdot) = \Theta z(t) + \frac{d g(t, \cdot)}{d z} \), hence

\[
g(t, \cdot) = \mathcal{S}(t) g(0, \cdot) + \int_0^t \mathcal{S}(t-s) a(\cdot) F z(s) ds.
\]
Thus
\[\|g(\cdot, 0)\|_{L^p([0,T], X)}^p = \int_0^T \|g(t, 0)\|_X^p dt \]
\[= \int_0^T \| \int_0^t a(t-s)Fz(s)\|^p dt \]
\[\leq T^{p-1} \int_0^T \int_0^T |a(t-s)|^p \|Fz(s)\|^p ds dt \]
\[= T^{p-1} \int_0^T \int_s^T |a(t-s)|^p \|Fz(s)\|^p dt ds \]
\[= T^{p-1} \left(\int_0^T |a(t)|^p dt \right) \left(\int_0^T \|Fz(s)\|^p ds \right) \]
\[\leq T^{p-1} \left(\int_0^T |a(t)|^p dt \right) \int_0^T \|Fz(s)\|^p ds \]
\[\leq T^{p-1} C_T^p \|a\|_{B^p_\theta}^p \int_0^T \|Fz(s)\|^p ds. \]

where $C_T > 0$ is the constant in Lemma 3.5.

Note that $z(t) \in D(A)$ for almost every $t \in [0, T]$, due to the maximal L^p-regularity of A. This shows that
\[\|g(\cdot, 0)\|_{L^p([0,T], X)} \leq T^{\frac{p-1}{p}} C_T \|a\|_{B^p_\theta} \|Fz\|_{L^p([0,T], X)}. \]

It suffices only to estimate $\|Fz\|_{L^p([0,T], X)}$ by $\|f\|_{L^p([0,T], X)}$. In fact, we know that
\[\dot{z}(t) = A z(t) + g(t, 0) + f(t), \quad t \in [0, T], \]

which gives
\[Fz(t) = F \int_0^t \mathbb{T}(t-s)g(s, 0)ds + F \int_0^t \mathbb{T}(t-s)f(s)ds, \quad \text{a.e. } t \in [0, T]. \]

Keeping in mind that the space of l-admissible operators is decreasing with respect to the exponent l and that $p \leq l_0$ implies that F is p-admissible for A. Therefore, by using [12 Prop 3.3],
\[\|Fz\|_{L^p([0,T], X)} \leq \gamma_T \|g(\cdot, 0)\|_{L^p([0,T], X)} + \gamma_T \|f\|_{L^p([0,T], X)} \]
\[\leq \gamma_T T^{\frac{p-1}{p}} C_T \|a\|_{B^p_\theta} \|Fz\|_{L^p([0,T], X)} + \gamma_T \|f\|_{L^p([0,T], X)}, \]

where $\gamma_T > 0$ is the constant satisfying $\gamma_T \to 0$ as $T \to 0$. Hence, if we choose T such that $\beta_T := \gamma_T T^{\frac{p-1}{p}} C_T \|a\|_{B^p_\theta} < 1$, we obtain
\[\|Fz\|_{L^p([0,T], X)} \leq \frac{\gamma_T}{1 - \beta_T} \|f\|_{L^p([0,T], X)}. \]
Hence we have
\[
\|\dot{z}\|_{L^p([0,T],X)} + \|Az\|_{L^p([0,T],X)} + \|z\|_{L^p([0,T],X)} \leq C\|f\|_{L^p([0,T],X)}.
\]
\[
\square
\]

Remark 3.8. In contrast to Barta’s result and as for Cauchy problem, we have obtained the estimation (3.7). One wonders if the method used in [5] can prove the aforementioned estimate.

Example 3.9. In this section we investigate the maximal \(L^p\)-regularity of the following Volterra integro-differential heat equation involving a fractional power of the Laplace operator

\[
\begin{cases}
\dot{u}(t,x) = (\Delta + P)u(t,x) + \int_0^t \beta e^{-\gamma(t-s)}(-\Delta)^\alpha u(s,x)ds + f(t), & t \in [0,T], x \in \Omega \\
u(t,x) = 0, & t \in [0,T], x \in \partial \Omega \\
u(0,x) = 0, & x \in \Omega
\end{cases}
\]

(3.8)

where \(\Omega \in \mathbb{R}^n\) is a bounded Lipschitz domain and \(\alpha \in (0,1/2]\) and \(\beta, \gamma > 0\). It is an example of anomalous equation of diffusion type. Let us first verify that the following Dirichlet-Laplacian operator defined on suitable \(L^r(\Omega)\) by

\[
D(\Delta^D) = W^{2,r}(\Omega) \cap W^{1,r}_0(\Omega),
\]

\[
\Delta^D = \Delta,
\]

for certain domains \(\Omega\) and a range of exponents \(r\), has the maximal \(L^p\)-regularity. For \(n \geq 2\) and \(1 < r < 2\), it is shown in [23] that for an \(\Omega\) satisfying a uniform outer ball condition, the operator \(\Delta^D\) generates a positive, contractive and exponentially stable \(C_0\)-semigroup on \(L^r(\Omega)\) enjoying the maximal \(L^2\)-regularity. Therefore, due to Kalton and Weis’ result [15, Corollary 5.2], the Dirichlet operator \(-\Delta^D\) admits a bounded \(H^\infty(\Sigma_0)\) functional calculus with \(\theta < \pi/2\). The fact that \(L^r(\Omega)\) is of cotype 2, thanks to [19, Theorem 4.2], the fractional power \((\Delta^D)^{1/2}\) is 2-admissible for \(\Delta^D\). Now assume that the unbounded operator \(P\) satisfies the following resolvent estimate \(P : D(\Delta^D) \to L^r(\Omega)\) such that

\[
\|\sqrt{\lambda}PR(\lambda,\Delta^D)\| \leq M
\]

for some constant \(M > 0\) and for all \(\lambda > 0\).

In view of [19, Theorem 4.1], the operator \(P\) is 2-admissible for \(\Delta^D\). Now Theorem 2.2 show that \(\Delta^D + P\) enjoys the maximal \(L^2\)-regularity on \(L^r(\Omega)\). Since both \(P\) and \((\Delta^D)^{1/2}\) are 2-admissible for \(\Delta^D\), we deduce that \((\Delta^D)^{1/2}\) is 2-admissible for \(\Delta^D + P\) (see. [12]) and in virtue of Theorem (3.7) and Remark 3.6 we conclude that the problem (3.8) has maximal \(L^2\)-regularity \(L^r(\Omega)\) and the estimation (3.7) takes place in particular for \(p = 2\).
For a bounded Lipschitz (or convex) domain and \(n \geq 3 \), similar result can now be also obtained for the Neumann-Laplacian defined on \(L^r(\Omega) \) by

\[
D(\Delta^N_r) = \left\{ u \in W^{2,r}(\Omega) : \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \right\}.
\]

\(\Delta^N_r = \Delta. \)

Indeed, in virtue of [23, Theorem 6.4] and by proceeding in a very similar way as for Dirichlet boundary conditions we obtain the maximal \(L^p \)-regularity result for the above integro-differential equation with Neumann-Laplacian. For \(\alpha \in (0, \frac{1}{2}) \) the result follows in a similar way since analyticity shows that \((−\Delta^D_r)^{\alpha} \) is always \(2 \)-admissible for \(\Delta^D_r \).

4. MAXIMAL REGULARITY FOR BOUNDARY VOLterra INTEGRO-DIFFERENTIAL EQUATIONS

Let \(X, U \) and \(Z \) be Banach spaces such that \(Z \subset X \) continuously and densely. Let \(A_m : D(A_m) := Z \to X \) be a closed linear operator, and let \(F : Z \to X \), \(G, K : Z \to U \) be linear operators.

The object of this section is to investigate the maximal \(L^p \)-regularity of the problem (1.2)

\[
\begin{align*}
\dot{z}(t) &= A_m z(t) + \int_0^t a(t-s) Fz(s)ds + f(t), \quad t \in [0, T], \\
z(0) &= 0, \\
Gz(t) &= Kz(t), \quad t \in [0, T].
\end{align*}
\]

We introduce the linear operator

\[
A := A_m, \quad D(A) = \{ x \in Z : Gx = Kz \}.
\]

and we set \(\mathcal{P} := Fi \) where \(i \) the continuous injection from \(D(A) \) to \(Z \). Then the equation (1.2) is similar to the equation (1.1) with \(\Upsilon := a(\cdot)\mathcal{P} \). Thus, to prove maximal \(L^p \)-regularity of (1.2) it suffices to find conditions for which \(A \) has maximal regularity and \(\Upsilon \) is admissible for \(A \).

Throughout this section we assume that the operator \(G \) is surjective and

\[
A := (A_m)|_{D(A)} \quad \text{with} \quad D(A) := \ker(G),
\]

generates a strongly continuous semigroup \(T := (T(t))_{t \geq 0} \) on \(X \). We denote by \(\rho(A) \) the resolvent set of \(A \), \(R(\lambda, A) = (\lambda - A)^{-1}, \lambda \in \rho(A) \), the resolvent operator of \(A \). We also consider a new norm on \(X \) defines by \(\| x \|_{-1} := \| R(\mu, A)x \| \) for \(x \in X \) and \(\mu \in \rho(A) \) (this norm is independent of the choice of \(\mu \), due to the resolvent equation). We denote by \(X_{-1} \) the completion of \(X \) with respect to the norm \(\| \cdot \|_{-1} \), which a Banach space, called the extrapolation space associated with \(X \) and \(A \). We have the following continuous and dense embedding \(D(A) \subset X \subset X_{-1} \). The semigroup \(T \) is extended to another strongly continuous semigroup \(T_{-1} := (T_{-1}(t))_{t \geq 0} \) on \(X_{-1} \), whose generator \(A_{-1} : X \to X_{-1} \) is the extension of \(A \) to \(X \), see [10, Chapter II].
According to Greiner [11], for each \(\lambda \in \rho(A) \), the restriction of \(G \) to \(\ker(\lambda - A_m) \) is invertible with inverse \(\mathbb{D}_\lambda \) (called the Dirichlet operator) given by
\[
\mathbb{D}_\lambda := (G|_{\ker(\lambda - A_m)})^{-1} \in \mathcal{L}(U, X).
\]
Now, define the operators
\[
B := (\lambda - A - 1)\mathbb{D}_\lambda \in \mathcal{L}(U, X_{-1}), \quad \lambda \in \rho(A),
\]
\[
C := Kj \in \mathcal{L}(D(A), U),
\]
\[
\mathbb{P} := Fj \in \mathcal{L}(D(A), X)
\]
where \(j \) is the continuous injection from \(D(A) \) to \(Z \). Due to the resolvent equation, the operator \(B \) is independent of \(\lambda \).

We also need the operators
\[
\Phi_t u := \int_0^t T_1(t - s)Bu(s)ds, \quad t \geq 0, \quad u \in L^p([0, +\infty), U).
\]
This integral takes its values in \(X_{-1} \). However, by using an integration by parts, for any \(t \geq 0 \) and \(u \in W^{2,p}_{0,t}(U) \), where
\[
W^{2,p}_{0,t}(U) := \{ u \in W^{2,p}([0, t], U) : u(0) = \dot{u}(0) = 0 \},
\]
we have
\[
\Phi_t u = \mathbb{D}_0 u(t) - \int_0^t T(t - s)\mathbb{D}_0 \dot{u}(s)ds \in Z,
\]
where we assumed that \(0 \in \rho(A) \) (without loss of generality).

Thus the following operator is well defined
\[
(\mathbb{F}u)(t) = K\Phi_t u, \quad u \in W^{2,p}_{0,t}(U), \quad t \geq 0.
\]
Here, we make the following assumption

(\textbf{H}) The triple \((A, B, C)\) is \(p \)-regular, \(p \in (1, \infty) \), with \(I_U : U \to U \) as an admissible feedback. That is the following assertions hold:

1. \(C \) is a \(p \)-admissible observation operator for \(A \) (see Definition 2.2),
2. \(B \) is a \(p \)-admissible control operator for \(A \). This means that there exists \(\tau > 0 \) such that \(\Phi_\tau u \in X \) for any \(u \in L^p([0, +\infty), U) \),
3. For any \(\tau > 0 \), there exists \(\kappa := \kappa(\tau) > 0 \) such that
 \[
 \|\mathbb{F}u\|_{L^p([0, \tau], U)} \leq \kappa \|u\|_{L^p([0, \tau], U)}, \quad \forall u \in W^{2,p}_{0,\tau}(U),
 \]
 (hence we can extend \(\mathbb{F} \) to a bounded operator on \(L^p([0, \tau], U) \) for any \(\tau > 0 \)).
4. The following limit exists in \(U \) for any \(v \in U \):
 \[
 \lim_{h \to 0^+} \frac{1}{h} \int_0^h (\mathbb{F}(1_U, v))(s)ds = 0.
 \]
5. \(1 \in \rho(\mathbb{F}) \).

We have the following observations about the condition (\textbf{H}).
Remark 4.1. (i) If \(C \) is bounded from \(X \) to \(U \) (hence \(C = K \in \mathcal{L}(X,U) \)), and \(B \) is \(p \)-admissible for \(A \), then the condition (\(H \)) is satisfied.
(ii) Assume that \(A \) has the maximal \(L^p \)-regularity for \(p \in (1, \infty) \), \(B \) is \(p \)-admissible for \(A \), and \(K = (-A)^{\alpha} \) for \(\alpha \in (0, \frac{1}{p}) \). Then the condition (\(H \)) is verified, see [1].

The first part of the following result was obtained in [13], while the second part is taken from [2].

Theorem 4.2. Let the condition (\(H \)) be satisfied. Then \(Z \subset D(C_\Lambda) \), \(C_\Lambda = K \) on \(Z \) and the operator \(A \) defined by \(4.1 \) generates a strongly continuous semigroup \(T := (T(t))_{t \geq 0} \) on \(X \) given by

\[
T(t)x_0 = T(t)x_0 + \int_0^t T_{-1}(t-s)BC_\Lambda T(s)x_0ds \quad x_0 \in X, \ t \geq 0. \tag{4.2}
\]

Furthermore, if in addition \(T \) is an analytic semigroup, then it is so for \(T \).

Now we state the following lemma.

Lemma 4.3. If \((A, B, \mathcal{P}) \) generates a \(p \)-regular linear system, then \(\mathcal{P} \) is a \(p \)-admissible observation for \(A \) whenever condition (\(H \)) is satisfied.

Proof. Condition (\(H \)) asserts that \(A \) is a generator of a \(C_0 \)-semigroup \(T \) given by (4.2). Now, we first remark that \(Z \subset D(\mathcal{P}_\Lambda) \) and \(P = \mathcal{P}_\Lambda \) on \(Z \), where \(\mathcal{P}_\Lambda \) denotes the Yosida extension of \(\mathcal{P} \) w.r.t. \(A \). Let \(x \in D(\mathcal{A}) \) and \(\alpha > 0 \). The facts that \((A, B, \mathcal{P}) \) is \(p \)-regular and \(C_\Lambda \) is a \(p \)-admissible observation for \(T \) imply respectively that

\[
\int_0^t T_{-1}(t-s)BC_\Lambda T(s)x \in D(\mathcal{P}_\Lambda) \quad \text{a.e. } t \geq 0,
\]

and

\[
\left\| \mathcal{P}_\Lambda \int_0^t T_{-1}(t-s)BC_\Lambda T(s)x \right\|_{L^p([0,\alpha],X)} \leq \beta_\alpha \|x\|, \tag{4.3}
\]

where \(\beta_\alpha > 0 \) is a constant. On the other hand, by (4.2), we have

\[
\mathcal{P}T(t)x = \mathcal{P}_\Lambda T(t)x,
\]

\[
= \mathcal{P}_\Lambda T(t)x + \mathcal{P}_\Lambda \int_0^t T_{-1}(t-s)BC_\Lambda T(s)x.
\]

Hence \(p \)-admissibility of \(\mathcal{P} \) for \(\mathcal{A} \) follows by (4.3) and \(p \)-admissibility of \(\mathcal{P} \) for \(A \). \hfill \Box

The following theorem is a result of maximal \(L^p \)-regularity for the operator \(A \) in the case of bounded perturbation \(K \), see Remark 4.1(i), Theorem 4.2 and [1].

Theorem 4.4. If \(B \) is a \(p \)-admissible control operator for \(A \) and \(K \) is bounded, then if \(A \) has maximal \(L^p \)-regularity, then so has \(\mathcal{A} \).

The following result (see [2, Thm.4]) gives conditions implying the maximal \(L^p \)-regularity for \(\mathcal{A} \) when the state space \(X \) is a UMD space. The result is based on the concept of \(\mathcal{R} \)-boundedness.
Theorem 4.5. Let X be an UMD space, $p, p' \in (1, \infty)$ such that $\frac{1}{p} + \frac{1}{p'} = 1$ and the condition (H) be satisfied. Assume that there exists $\omega > \max\{\omega_0(A), \omega_0(\mathbb{A})\}$ such that the sets $\{s^{\frac{1}{p}} R(\omega + is, A_{-1}) B, s \neq 0\}$ and $\{s^{\frac{1}{p'}} CR(\omega + is, A), s \neq 0\}$ are \mathcal{R}-bounded. If A has maximal L^p-regularity, then \mathbb{A} has the same property.

Let us now prove the maximal L^p-regularity for the boundary Volterra integro-differential equations (1.2). We start with the following special case of bounded boundary perturbation K.

Theorem 4.6. Let X be a UMD space and $q \in (1, \infty)$. Assume that $a(\cdot) \in B^q_\theta$ for some $\theta \in (0, \frac{\pi}{2}]$, B is an l_0-admissible control operator for A for some $l_0 \in (1, \infty)$, $K \in \mathcal{L}(X,U)$ and (A, B, \mathbb{P}) generates an l_0-regular linear system. If both A and $\frac{d}{dz}$ have maximal L^p-regularity on X and $B^q_{\theta,X}$ respectively for some $p \in (1, \infty)$, then \mathbb{A} has maximal L^p-regularity on \mathcal{X}^q. Moreover, if $p \in (1, l_0]$ then there exists a constant $C_p > 0$ independent of $f \in L^p([0,T], X)$ such that the solution z of (1.2) satisfies

$$
\|\dot{z}\|_{L^p([0,T],X)} + \|A_m z\|_{L^p([0,T],X)} + \|z\|_{L^p([0,T],X)} \leq C_p \|f\|_{L^p([0,T],X)}.
$$

(4.4)

Proof. By Theorem 4.4, l_0-admissibility of B and maximal regularity of A imply that \mathbb{A} has maximal L^p-regularity. By Lemma 4.3, the l_0-regularity of the system generated by (A, B, \mathbb{P}) asserts that \mathcal{P} is an l_0-admissible observation operator for \mathbb{A}. These facts together with maximal L^p-regularity of $\frac{d}{dz}$ imply, by Theorem 3.7, that \mathbb{A} has maximal L^p-regularity. The estimate follows by the same theorem. This ends the proof.

Now, we suppose that K is unbounded and state the second main theorem of this paper.

Theorem 4.7. Let X be a UMD space and $q \in (1, \infty)$. Assume that $a(\cdot) \in B^q_\theta$ for some $\theta \in (0, \frac{\pi}{2}]$, (A, B, C) and (A, B, \mathbb{P}) generate l_0-regular linear systems for some $l_0 \in (1, \infty)$ and the identity I_U is an admissible feedback for the system generated by (A, B, C). If both A and $\frac{d}{dz}$ have maximal L^p-regularity on X and $B^q_{\theta,X}$ respectively for some $p \in (1, \infty)$ and the sets $\{s^{\frac{1}{p}} R(is, A_{-1}) B, s \neq 0\}$ and $\{s^{\frac{1}{p'}} CR(is, A), s \neq 0\}$ are \mathcal{R}-bounded, then \mathbb{A} has maximal L^p-regularity on \mathcal{X}^q. Moreover, if $p \in (1, l_0]$ then there exists a constant $C_p > 0$ independent of $f \in L^p([0,T], X)$ such that the solution z of (1.2) satisfies

$$
\|\dot{z}\|_{L^p([0,T],X)} + \|A_m z\|_{L^p([0,T],X)} + \|z\|_{L^p([0,T],X)} \leq C_p \|f\|_{L^p([0,T],X)}.
$$

(4.5)

Proof. By Theorem 4.5, the assumptions imply that \mathbb{A} has maximal L^p-regularity. By Lemma 4.3, l_0-regularity of the system generated by (A, B, \mathbb{P}) asserts that \mathcal{P} is an l_0-admissible observation operator for \mathbb{A}. Gathering these facts with maximal L^p-regularity of $\frac{d}{dz}$, we conclude by Theorem 3.7, that \mathbb{A} has maximal L^p-regularity. The same theorem justifies the estimate which ends the proof.

\[15\]
REFERENCES

[1] A. Amansag, H. Bounit, A. Driouich, S. Hadd On the maximal regularity for perturbed autonomous and non-autonomous evolution equations. J. Evol. Equ. 20, 165–190 (2020). https://doi.org/10.1007/s00028-019-00514-8

[2] A. Amansag, H. Bounit, A. Driouich, S. Hadd, Staffans-Weiss perturbations for Maximal L^p-regularity in Banach spaces, in press in J. Evol. Equ.

[3] W. Arendt, R. Chill, S. Fornaro and C. Poupaud, L^p-maximal regularity for nonautonomous evolution equations, J. Differ. Equations 237, 1–26, (2007).

[4] T. Bárta, Analytic solutions of Volterra equations via semigroups, Semigroup Forum 76, 1, 142–148, (2008).

[5] T. Bárta, On R-sectorial derivatives on Bergman spaces, Bull. Austral. Math. Soc. 77, 305–313, (2008).

[6] T. Bárta, Smooth solutions of Volterra equations via semigroups, Semigroup Forum 76, 1, 142–148, (2008).

[7] L. De Simon, Un’ applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine, Rend. Sem. Mat., Univ. Padova 99 (1964), 205-223.

[8] R. Denk, M. Hieber, and J. Prüss, R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Memoirs Amer. Math. Soc., vol. 166, Amer. Math. Soc., Providence, R.I., 2003.

[9] G. Dore, Maximal regularity in L^p spaces for an abstract Cauchy problem. Adv. Differ. Equat. 5(1-3), 293-322 (2000).

[10] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, Berlin, Heidelberg, 2000.

[11] G. Greiner. Perturbing the boundary conditions of a generator. Houston J. Math., 18:405-425, 2001.

[12] S. Hadd. Unbounded perturbations of C_0-semigroups on Banach spaces and applications. Semigroup Forum, 70:451-465, 2005.

[13] S. Hadd, R. Manzo, A. Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[14] M. Hieber, S. Monniaux, Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations, Proc. Amer. Math. Soc. 128 (2000), 1047–1053, (2000).

[15] N. J. Kalton and L. Weis, The H^∞-calculus and sums of closed operators, Math. Ann. 321, 319–345, (2001).

[16] P. C. Kunstmann and L. Weis, Maximal L^p regularity for parabolic equations, Fourier multiplier theorems and H^∞ functional calculus, Leivo Lectures, Proceedings of the Autumn School on Evolution Equations and Semigroups (M. Iannelli, R. Nagel, S. Piazzera eds.), vol. 69, Springer Verlag, Heidelberg, Berlin, 2004, pp. 65-320

[17] P. C. Kunstmann and L. Weis, Perturbation theorems for maximal L^p-regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 415-435.

[18] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, Bd. 111, Springer-Verlag, Berlin, (1961).

[19] C. Le Merdy. The Weiss conjecture for bounded analytic semigroups. J. Lond. Math. Soc. 67(3):715–738, 2003.

[20] J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics 87, Birkhäuser, Basel, (1993).

[21] L. Weis, A new approach to maximal L^p-regularity, Proc. 6th International Conference on Evolution Equations, G. Lumer and L. Weis, eds, Dekker, New York (2000), 195-214.

[22] L. Weis, Operator-valued Fourier multiplier theorems and maximal L^p-regularity, Math. Ann., 319 (2001), 735-758.
[23] I. Wood, Maximal L^p-regularity for the Laplacian on Lipschitz domain, *Math. Z.* **255**, pp. 855–875, (2007).

[24] R. Zacher, Maximal regularity of type L^p for abstract parabolic Volterra equations, *J. evol. equ.* **5**, pp. 79–103, (2005).

Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Hay Dakhla, BP8106, 80000–Agadir, Morocco; ahmed.amansag@uiz.ac.ma, h.bounit@uiz.ac.ma, a.driouich@uiz.ac.ma, s.hadd@uiz.ac.ma