Quantification of native mRNA dynamics in living neurons using fluorescence correlation spectroscopy and reduction-triggered fluorescent probes

Received for publication, September 2, 2019, and in revised form, April 22, 2020 Published, Papers in Press, April 27, 2020, DOI 10.1074/jbc.R119.010921

Hirotaka Fujita (藤田 裕貴), Ryota Oikawa (篠川 涼大), Mayu Hayakawa (早川 真由), Fumiaki Tomoike (友池 史明), Yasuaki Kimura (木村 康明), Hiroyuki Okuno (奥野 浩行), Yoshiki Hatashita (畑下 嘉紀), Carolina Fiallos Oliveros, Haruhiko Bito (尾藤 晴彦), Toshio Ohshima (大島 登志男), Satoshi Tsuneda (常田 聡), Hiroshi Abe (阿部 洋), and Takafumi Inoue (井上 貴文)

From the 1Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan, the 2Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan, the 3Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan, and the 4Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

Edited by Karin Musier-Forsyth

RNA localization in subcellular compartments is essential for spatial and temporal regulation of protein expression in neurons. Several techniques have been developed to visualize mRNAs inside cells, but the study of the behavior of endogenous and nonengineered mRNAs in living neurons has just started. In this study, we combined reduction-triggered fluorescent (RETF) probes and fluorescence correlation spectroscopy (FCS) to investigate the diffusion properties of activity-regulated cytoskeleton-associated protein (Arc) and inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) mRNAs. This approach enabled us to discriminate between RNA-bound and unbound fluorescent probes and to quantify mRNA diffusion parameters and concentrations in living rat primary hippocampal neurons. Specifically, we detected the induction of Arc mRNA production after neuronal activation in real time. Results from computer simulations supported the idea that free diffusion is incapable of transporting mRNA of sizes close to those of Arc or IP3R1 to distal dendrites. In conclusion, the combined RETF-FCS approach reported here enables analyses of the dynamics of endogenous, unmodified mRNAs in living neurons, affording a glimpse into the intracellular dynamics of RNA in live cells.

The transport and local translation of mRNA play crucial roles in synaptic functions in neurons (1–3). A variety of mRNAs are delivered to dendrites and axons and translated in response to synaptic activation (4). To date, genetic and biochemical approaches have been used to visualize mRNAs in living cells. Aptamer-based RNA imaging techniques have been widely applied (5). The MS2 system is the most popular one and enables highly sensitive and specific imaging of transcripts (6). However, this method requires genetic manipulation of the target RNA sequence by inserting multiple aptamer-binding sequences. Many studies using the MS2 system exogenously expressed abundant target mRNAs containing the MS2-binding sequence, which can lead to biased results due to overexpression. Singer’s group knocked in the MS2- or PP7-binding sequence to the 3′-UTRs of target RNAs (7, 8), which avoids the exogenous overexpression effects but requires tedious efforts to produce knock-in animals.

Switch-on fluorogenic hybridization probes have been used to investigate the dynamics of unmodified mRNAs. The peptide Pumilio homology domain RNA probe binds to RNA in a sequence-specific manner by recognizing eight conterminous bases, thus allowing spatiotemporal analysis of endogenous RNA localization (9, 10). It requires optimization of the amino acid sequence for each target. Fluorescent oligonucleotide hybridization probes such as molecular beacons (11, 12), in which internally quenched fluorescent antisense probes are used, and RNA-targeting Cas9 (13) enable the mapping of RNA localization with high versatility. Because of the weak signal and background fluorescence derived from unbound probes, the range of target mRNA species is limited. Turner-Bridger et al. (14) have succeeded in labeling native RNA in distal axons of neurons using molecular beacon probes with highly inclined and laminated optical sheet microscopy; however, it was difficult to detect mRNA signals in the soma and proximal axon owing to nonspecific signals derived from probes detached from mRNAs.

To label native mRNA, we used the reduction-triggered fluorescence (RETF) probe technique (15), which consists of a pair of oligonucleotides conjugated with a nonfluorescent azidomethyl fluorescein derivative as a fluorogenic tag and with triphenylphosphine as a reducing reagent (Fig. 1A). The RETF probe emits fluorescence after the pair of probes hybridize to the target mRNA side by side and a reducing reaction between them occurs. The RETF probe detected endogenous mRNA at the single-nucleotide-mismatched level in fixed bacterial and living human cells (15, 16), and distinguished between prelariat and lariat RNA structures in the intron (17). Although the high signal-to-background ratio (S/B) of the RETF probe, reaching 2400:1 (15), stands out among RNA probes (e.g. the best S/B of FRETR-based RNA probes reported was 50:1 (18)), background

This article contains supporting information.
* For correspondence: Takafumi Inoue, inoue.t@waseda.jp.
This is an Open Access article under the CC BY license.
Quantification of mRNA dynamics by FCS and RETF probe

fluorescence derived from reduced probes dissociated from target mRNA complicates quantitative analyses.

We adopted the fluorescence correlation spectroscopy (FCS) method to overcome the background issue of the RETF probe. FCS allows quantification of the diffusion coefficient and concentration of fluorescently labeled biomolecules in living cells based on fluorescence fluctuation analysis within a tiny focal spot, which is small enough to measure molecular dynamics in not only neuronal dendrites (19), but also spines (20). Autocorrelation functions calculated from the fluorescence fluctuation are fitted with theoretical diffusion models, and quantitative parameters are deduced. With fluorescence fluctuation spectroscopy, which is closely related to FCS, quantitative measurements of MS2-labeled β-actin mRNA were performed (21), and protein-mRNA interactions were revealed (22). FCS differentiates diffusing molecule species of different diffusion coefficients, which are mainly influenced by the radius of gyration of the diffusion molecules and the viscosity of the medium. The radii of gyration of mRNA bound with RETF probes and free RETF probes were expected to be sufficiently different to be distinguished by diffusion coefficients.

Numerous mRNA types, such as activity-regulated cytoskeleton protein (Arc; also known as Arg3.1), inositol 1,4,5-trisphosphate receptor type 1 (Ip3r1), and Ca\(^{2+}\)/CaM kinase IIα (CaMKIIα), are distributed in the dendrites of central nervous system neurons. The immediate early gene, Arc, plays a role in activity-dependent synaptic modifications. Arc mRNA is robustly expressed by synaptic activity and then rapidly delivered throughout dendrites (23, 24). After stimulation, Arc mRNA appeared in the cytoplasm within 15 min and translocated to the tips of distal dendrites within 1 h (25, 26). Newly synthesized Arc mRNA transcripts are selectively localized at activated synapses by an activity-dependent mRNA degradation mechanism, which eliminates Arc mRNA from inactive dendritic regions (27). The localization and translation of Arc mRNA are associated with endocytosis of AMPA-type glutamate receptors, thus contributing to the regulation of synaptic efficacy (28, 29). In addition to synaptic modification, Arc protein forms a retrovirus-like capsid structure and transfers mRNA between neurons (30, 31). A previous study using the MS2 system reported that exogenously expressed RNA containing the 3’-UTR of Arc mRNA moved bidirectionally at a velocity of 6–65 μm/min in dendrites (32). Furthermore, the RNA localized at or near the base of dendritic spines with a high probability (33). A knock-in mouse line where Arc mRNA was labeled with an aptamer-binding cassette allowed visualization of the endogenous activity-induced transcription of individual mRNAs (8).

Ip3r1 is an intracellular Ca\(^{2+}\) release channel expressed in central nervous system neurons, including cerebellar Purkinje cells and hippocampal neurons (34). It plays pivotal roles in synaptic plasticity in the hippocampus and cerebellum (35–37). Whereas the MS2 system was previously used to visualize the 3’-UTR of Ip3r1 mRNA, its use was limited to the detection of colocalization with RNA-interacting proteins (38, 39). Thus, the dynamics of Ip3r1 mRNA is poorly understood.

In this study, we aimed to develop a technique to assess the dynamics of nonengineered endogenous mRNAs using the RETF probe together with FCS. We first tested whether RETF probes can detect Arc and Ip3r1 mRNAs in neuron. Subsequently, we employed FCS to discriminate mRNA-unbound and -bound probes by the difference in their diffusion coefficients. And finally, we tried out this approach by monitoring changes in the diffusion coefficient and concentration of Arc mRNA by neuronal activation. This combined RETF probe-FCS method, as demonstrated here, has a potential to distinguish RNA-bound and -unbound probes by diffusion patterns, providing semi-quantitative estimations of endogenous and unmodified mRNAs in living neurons.

Results

Fluorescence derived from RETF probes increases after introduction by patch clamp

We designed two RETF probes targeting different mRNA locations, termed target 1 and target 2, for Arc mRNA and Ip3r1 mRNA, respectively. The target sequences were chosen from locations where successful in situ hybridization results were reported. To test whether the RETF probes can detect target RNAs in living neurons, we introduced sets of RETF probes targeting Arc mRNA or Ip3r1 mRNA into hippocampal neurons by the whole-cell patch-clamp method. The RETF probe-derived fluorescence signal started to increase after patch-clamp formation in both soma and dendrites and was saturated within 40 min, whereas a mismatched probe pair consisting of the azidomethyl fluorescein (Az) probe of target 1 and the triphenylphosphine (TPP) probe of target 2 Arc RETF probes yielded no fluorescence signal more than autofluorescence (Fig. 1, B and C). Fluorescence signals derived from RETF probes targeting Arc or Ip3r1 mRNAs spread across the cytosol (Fig. 1D).

FCS measurement with RETF probe

Although the increase in fluorescence derived from the RETF probes was clear, there was a possibility that not all of the fluorescence signal was emitted from RETF probes bound to target mRNAs, as some of it may have been from RETF probes detached from target mRNAs. To test this, we performed FCS, which was expected to distinguish between the RNA-bound and -unbound forms of RETF probes by virtue of diffusion coefficients. As a control probe, we used a fluorescein-conjugated scramble probe: a 15-base ssDNA of a random sequence conjugated with fluorescein instead of reduced Az. The sequence was confirmed not to have a match in the rat RNA database.

Calibration of the FCS system

Laser power adjustment and focal volume calibration should be done periodically (Fig. 2A). The irradiance of the 488-nm blue laser was adjusted to around 5 microwatts at the tip of the ×60 objective, which was determined not to saturate the absorption of the fluorophore within the focused laser spot (40). The focal volume was determined as horizontal and vertical radii (r\(_x\) and r\(_z\), respectively) by fitting an autocorrelation function of 10 nm rhodamine 6G in PBS buffer to a one-component three-dimensional (3D) diffusion model, with a fixed diffusion coefficient of 414 μm\(^2\)/s (41). The diameter of the
detection pinhole built in the FV-300 confocal system, which also determines the effective focal volume for FCS, was fixed to 150 μm for all FCS experiments, which was larger than the one optimal for confocality for the objective (100 μm) due to the low signal condition in this study. The resultant r_{xy} and r_z were 0.34 and 3.26 μm, respectively. The structure parameter ($\gamma = r_z/r_{xy}$; 9.6) was larger than the benchmark values (ranging from 3 to 8) in optimally aligned systems, and γ was 5.6 with the 100-μm-diameter pinhole in our system.

FCS measurement with RETF probes in vitro

In an in vitro condition, a RETF probe for Arc yielded autocorrelation functions after mixed with in vitro–transcribed Arc RNA (Fig. S1B), which were fitted well to a two-component diffusion model irrespective of the addition of the scramble probe. The addition of RNase A to the mixtures eliminated the slower diffusion components, leaving the faster diffusion component unchanged (Fig. S1C). The slower-diffusing component was thought to represent the RNA-RETF probe complex, because it was diminished by the RNase addition, and the concentration of it (C_{slow}) was decreased by the dilution with the scramble probe solutions (Fig. S1D). And we consider that the faster diffusion component observed in the RNA-RETF probe mixture without the addition of the scramble probe represented RETF probe molecules detached from RNA, because its diffusion coefficient (D_{fast}) was very similar to that of the scramble probe (Fig. S1D). The concentration range of the fast and slow components (2–30 nM) indicates that our FCS system faithfully measures concentration at the low nanomolar range in cell-free conditions. Contribution of RETF probes that were
Quantification of mRNA dynamics by FCS and RETF probe

A. Calibration (periodically)
- laser power adjustment
- focal volume calibration

B. Data acquisition
- probe loading
- image capture
- laser irradiation
- series of FCS measurements

C. FCS analysis
- determination of dendrite size and confined parameter Y

Figure 2. Schematic drawing of FCS measurement and analysis. A, calibrations of the FCS measurement system. Laser power adjustment (a) and focal volume calibration (b) should be done periodically. B, procedure of data acquisition. a, RETF probes or the scramble probe together with a marker dye, Alexa Fluor 594 biocytin, were loaded to neurons with the whole-cell patch-clamp method (for details, see “Electrophysiology”). b, a confocal image of Alexa Fluor 594 biocytin was taken with a 561-nm laser for the determination of dendritic width. c, a recording point was chosen and irradiated with a 488-nm laser at the same laser power as used in FCS measurements for 5 s. d, 20-s FCS records were repeated for several times at the same point. Step d was repeated in the neuron stimulation experiments, and steps c and d were repeated several times in other experiments (for details, see “FCS measurements and analysis”). C, FCS analysis. a, dendritic size of the measurement positions was determined using the confocal images, and parameters for the confined diffusion model were calculated for dendritic FCS measurements (for details, see “Size of dendrites”). b, photobleaching of raw fluorescence intensity traces was assessed and corrected. c, autocorrelation function (ACF) was calculated from each corrected intensity trace. ACFs taken from each cell were averaged. Diffusion parameters in each cell were obtained by fitting with diffusing models to the average of ACF of each cell (for details, see “FCS measurements and analysis”).

directly reduced by the triphenylphosphine-tagged probes without binding to RNA should be negligible, because the fluorescence signal was not detectable in an in vitro RETF experiment with RETF probes without RNA.

FCS measurement with RETF probe in neurons

In intracellular experiments, neurons were loaded with the target 1 and/or target 2 RETF probes or with the scramble probe together with Alexa Fluor 594 biocytin by whole-cell patch clamp (Fig. 2Ba) in a separate inverted microscope setup from the confocal/FCS microscope in this study. If the confocal/FCS microscope allows the patch-clamp experiment, the same microscope can be used. Substances may be alternatively loaded by microinjection, whereas it is much more difficult to apply to neurons than to cell lines because neurons are fragile. The success rate of the patch-clamp dye loading method was 80% (147 trials) in this study. If substance loading by patch-clamp and FCS measurement are performed on a single microscope setup, keeping patch-clamping during FCS measurements is possible; however, that is not suggested because continuous exchange of contents between pipette and cytosol makes conditions complex.

The co-injected marker, Alexa Fluor 594 biocytin dye, was necessary to identify the target cell after changing microscope and to capture clear shapes of the cells, because the fluorescence intensity of RETF probes is too dim to identify easily and to capture confocal images of sufficient quality. Due to the high sensitivity of FCS, a scant cross-talk from the marker fluorescence channel to the FCS fluorescence channel would cause serious deformations of autocorrelation curves. There was no detectable contamination of the Alexa Fluor 594 fluorescence to the FCS recording channel.

A stainless chamber holding a coverslip with neurons was transferred from the microscope for patch-clamp to the confocal/FCS microscope, and FCS measurement was performed. Neurons injected with probes and the marker Alexa Fluor 594 biocytin were identified by epifluorescence microscopy with the Alexa Fluor 594 biocytin fluorescence, and confocal images were taken and stored (Fig. 2Bb). FCS recording was performed at the earliest 5 min after the patch-clamp loading to gain enough RETF signals (see Fig. 1C).

The recording point for FCS was located at the cytosol in the soma or locations in dendrites 30–50 μm away from the soma. The fluorescence intensity recorded at single points in cells often rapidly decayed during the first 2–3 s and then became relatively stable. We considered that this rapid decay of fluorescence signal derived from immobile fluorescence sources, which was not the subject of this study. Hence, at each recording point, we omitted the first 5 s of irradiance (Fig. 2Bc) and then started a series of FCS recordings (Fig. 2Bd; 5–12 times for 20 s in each cell).

The waiting time for obtaining meaningful FCS results after loading RETF probe may depend on factors such as the concentration of target mRNA and the location of the recording point in the cell (e.g. cell body and distal or proximal dendrite). If an autocorrelation function is not smooth enough for fitting with diffusion models even after repeated records are averaged, the fluorescence signal is too weak for FCS analysis, and more time should be allowed (~30 min; see the saturation of fluorescence signals in Fig. 1C). If acceptable signal intensity is not gained after trying several cells, it is possible that the target mRNA concentration in the target cell is not high enough for the RETF-FCS method or that the choice of target sequence is not...
appropriate. Although in cell-free FCS, longer recording time compensates for weak fluorescence signals, longer recording time, or more repetitions, results in too much photobleaching in intracellular FCS. Thus, the minimum limit of target RNA concentration is higher in intracellular FCS than cell-free FCS. More photostable fluorescence tags will be required for better sensitivity of intracellular FCS.

Dendritic shape and diffusion models

Knowing the dendrite size is necessary for choosing appropriate diffusion models (42). The dendritic width of target neurons for FCS measurement was measured at 30–50 μm away from the soma on Alexa Fluor 594 biocytin images (Fig. 2Ca; see Experimental Procedures), where FCS measurements in the dendrite were performed. Accordingly, the dendrite diameter ranged from 1.9 to 3.0 μm (2.5 ± 0.3 μm; Fig. 3B). The confinement degree is expressed as d/r_o, using the dendritic diameter d and the focal radius r_o (42). Diffusion in the z-direction, perpendicular to the coverslip surface, is negligible because the d/r_z value (0.75) was smaller than 0.833 (42). In the axial direction of the dendrite, the diffusion space was confined by the dendritic boundaries because the average d/r_{yz} value was 7.2. Thus, we adopted a confined diffusion model to the autocorrelation functions recorded in dendrites with $d_z = 2.5$ μm and the confinement parameter $Y = 7.2$ (19). In the case of somata, a standard 3D diffusion model was used to fit to autocorrelation functions (19).

Photobleaching

Photobleaching of fluorescence molecules in the cytosol during single FCS recording led to an artifact, which gave rise to a very slow artifactual diffusion fraction (43). Thus, photobleaching was assessed by fitting each fluorescence trace to a double-exponential equation, $i(t) = i_0 + i_1 \exp(-t/t_{B1}) + i_2 \exp(-t/t_{B2})$, and deducing a photobleaching parameter, i_{20}/i_{0}, which represents fluorescence decay during the 20-s measurement period (Fig. S2). The photobleaching magnitude differed among the probesets, and, in particular, those with the scramble probe and the combination of targets 1 and 2 of Arc and Ipl3r1 probes were larger than those of singly loaded probes (Fig. S2A). There was a positive correlation between the photobleaching magnitude and the probe concentration (Fig. S2B), which is consistent with a previous study in which the photobleaching effect was smaller in weakly fluorescent cells (43). To minimize the photobleaching effect, we applied a photobleaching correction before the calculation of autocorrelation functions (Fig. 2Cb; see “Experimental procedures”).

Autocorrelation function and fitting with diffusion models

Autocorrelation functions calculated from each series of 20-s fluorescence recordings were averaged for each cell and fitted with one- and two-component diffusion models (Figs. 2Cc and 4B and C). As the residual of the fitting of both RETF and scramble probes showed that the one-component model did not yield acceptable fitting, the two-component diffusion mod-
els were used in the rest of this study. Fitting to a two-compo-
ent model is common in intracellular FCS studies because of
the existence of slow diffusion fractions (19, 43, 44), which are
thought to derive from autofluorescence, nonspecific binding
of fluorescent probes to intracellular molecules that slowly dif-
fuse, and other unknown factors affecting the shape of the auto-
correlation function. In this study, the contribution of autofluo-
rescence seems small, because no reasonable autocorrelation
curves were obtained in neurons without loading fluorescent
probes (data not shown).

The diffusion parameters were deduced by fitting averaged
autocorrelation functions in each cell to the two-component
model with triplet-state correction (Fig. 5). The faster- and
slower-diffusing components of the scramble probe, therefore,
represent freely diffusing ones and nonspecific binding of it to
slowly diffusing molecules together with other unknown fac-
tors, respectively. The severalfold smaller D_{fast} of the scramble
probe in neurons (ranging from 62 to 68 μm2/s in soma and
dendrite) compared with its D value in cell-free medium $(1.3 \times
10^2 \pm 5.0$ μm2/s, $n = 4$ in water; Fig. S1) was consistent with

Figure 4. Fluorescence intensity time course and autocorrelation functions. A, representative fluorescence intensity traces with the control scramble probe and the Arc target 1 and Ip3r1 target 1 RETF probes taken at dendrites are shown after resampling at 10 Hz. Inset, raw photon events sampled at 1 MHz with scale bars (2 ms and 1 MHz). B and C, top, representative averaged autocorrelation functions obtained in somata (B) and in dendrites (C) of single cells are fitted with one-component (blue line) and two-component (red line) diffusion models. A 3D diffusion model and a confined diffusion model were used for soma and dendrite, respectively. For Arc and Ip3r1 probes, results with the target 1 probes are shown. The dashed red lines represent each component of the two-component fit results. Middle, residuals of the fitting. Bottom, autocorrelation functions averaged in each cell are superposed after normalization by the $G(0)$ value deduced by the fitting.
previous intracellular FCS studies (19, 43–45) showing much smaller D values in intracellular FCS recordings than those obtained in the cell-free FCS.

In the case of the RETF probes, the averaged autocorrelation functions of each cell show fluctuation at the shortest lag ranges (<0.01 ms). This fluctuation was presumably caused by low...
Quantification of mRNA dynamics by FCS and RETF probe

occurrence of correlated events (i.e. the concentration of fluorophore was low). This notion is supported by the finding that the fluctuation at the same lag range of the scramble probe, of which fluorescence intensity, and thus concentration, was higher than those of RETF probes, was smaller than those of the RETF probes (Fig. 4A). The small event number may have manifested the stochastic nature of the triplet-state transition. To reduce this fluctuation of autocorrelation functions of the RETF probes, more repeat of recording was necessary, but photobleaching prevented it. This fluctuation at the shortest lags may be inevitable with the low concentration of endogenous mRNA. The impact of the fluctuation to the fitting result was investigated by swapping the shorter lag part of an autocorrelation function of a cell with those of other cells (Fig. S3). Fitting of the chimeric autocorrelation functions to the two-component 3D diffusion model resulted in varying D_{fast} and diffusion coefficient of the slower component (D_{slow}), relatively steady concentration of faster component (C_{fast}), and very steady C_{slow} values (Fig. S3C). Thus, the accuracy of the diffusion coefficients is impaired by the fluctuation of the shorter lag range of autocorrelation function for each cell, which requires enough cell number for reliable results, whereas the concentration values are not affected much.

Although the slower part of the autocorrelation functions (≥0.01 ms) of the RETF probes look well-fitted to the two-component diffusion models (Fig. 4, B and C), diffusing molecule species may consist of not only the free RETF probes and RETF probes bound with full-length target RNAs but also RETF probes bound with different-sized degraded target RNAs in addition to the nonspecific binding to intracellular molecules and other factors. Thus, the two-compartment diffusion models may reflect complex convolutions of such complicated diffusing molecular species, which is a shortcoming of FCS that it cannot handle many diffusion species precisely, but the FCS results should still reflect features of the binding of RETF probes to target RNA.

The range of D_{fast} of the RETF probes in neurons (24–73 μm²/s, range of medians of cells of the same probe set) was close to that of the scramble probe (61–66 μm²/s), implying that the faster component of the RETF probes in cells mainly reflects free RETF probes. The D_{fast} values of the RETF probes in cells, especially in the soma, varied more widely than those of the scramble probe, and the unevenness differed among the RETF probe types (Fig. 5A), suggesting that the faster component of the RETF probes may consist of not only free RETF probes but also RETF probes bound to fragmented RNAs. Free RETF probes may have derived from those once bound to the target RNA then detached, as was seen in the cell-free experiment (Fig. S1), whereas RETF probes that underwent a reduction reaction with reducing probes in the cytosol or in the patch pipette without binding target RNAs were negligible because, in a control experiment, Arc RETF probes introduced into HEK cells, which do not express Arc mRNA (31), did not show detectable fluorescence or reasonable autocorrelation curves (data not shown).

C_{fast} and C_{slow} of the scramble probe had a positive correlation in both soma and dendrite (Fig. 5A), indicating that the slower-diffusing component of the scramble probe contains not only the background of unknown causes inherent in the intracellular FCS analysis (19, 43, 44), which rides on slow diffusing ranges of the autocorrelation curve, but also nonspecifically bound scramble probes with slowly diffusing molecules. In the case of RETF probes, such nonspecific binding should be much smaller because the overwhelming nonfluorescent RETF probes mask most of the nonspecific binding sites. Thus, C_{slow} of RETF probes may represent binding to the target mRNAs in addition to the background inherent in the intracellular FCS analysis and nonspecific binding that is presumably much smaller than that of the scramble probe. This idea that the slower-diffusing component of the RETF probes reflected their binding to mRNAs is further supported by the following arguments. First, the ratios of C_{slow} to the total concentration (C_{slow}/C_{total}, where $C_{total} = C_{fast} + C_{slow}$) of single Arc probes and of single and both IP3R probes together were much larger than that of the scramble probe and of both Arc probes together (Fig. 5C). Second, the brightness of particles in the slower-diffusing component relative to the faster-diffusing component ($\epsilon_{slow}/\epsilon_{fast}$) was larger in cells loaded with targets 1 and 2 together than in those loaded with single RETF probes (Fig. 5Bc). This is because mRNA molecules bound to two RETF probes should be twice as bright as those bound to single RETF probes (Fig. 5D). However, the actual value of $\epsilon_{slow}/\epsilon_{fast}$ was not 2 but around 1.2–1.4, because not all target RNAs are bound by the two types of RETF probes: some target RNAs may have degraded and lost one of the RETF probe-binding sites, and some of the bound RETF probes may have been photobleached. Altogether, we consider that the slower component of the RETF probes contains an evaluable RNA-bound RETF probe fraction; however, it was not separable from nonspecific binding of RETF probes with slowly diffusing molecules, as seen with the scramble probe, which made quantitative evaluation of RNA-bound RETF probes difficult.

To evaluate the confined diffusion model applied to the dendrite, the autocorrelation curves obtained in the dendrite were also fitted with the 3D diffusion model (Fig. 5). As a result, the overall tendency did not differ, and the diffusion parameters, especially in D_{slow} and $\epsilon_{slow}/\epsilon_{fast}$ with the 3D diffusion model in the dendrite were closer to those in the soma than those with the confined diffusion model in the dendrite.

Arc mRNA increases upon TTX withdrawal

Although the slowly diffusing component of RETF probes in neuron possibly contains the mRNA-bound RETF probes, other slow components, as seen with the control scramble probe, are mingled with it and make interpretation of the mRNA-bound RETF probe diffusion difficult. To further characterize the mRNA-bound RETF probe fraction, we examined changes in the FCS properties during Arc transcription induction by neuronal activation. Neuronal activation was suppressed by incubation with 2 μM tetrodotoxin (TTX) for 2 days, and then TTX was washed out, which induces rapid and robust Arc transcription (8, 46, 47). An RT-PCR assay showed that the Arc mRNA levels increased within 20 min and reached 4-fold within 40 min after TTX removal (Fig. 6A).

Neurons incubated with TTX were loaded with an Arc RETF probe (target 2) or the scramble probe by the whole-cell patch-
clamp method, and FCS was performed under HEPES-buffered saline (HBS) with 2 μM TTX. Then the medium was washed with TTX-free HBS. Thereafter, FCS measurements were performed at the same locations in each cell every 20 min for 1 h. Two concentrations of the RETF probe, 2 and 10 μM, were used to test the saturation level of the probe. In control experiments using the Arc RETF probe without TTX removal and the scramble probe with TTX removal, the \(C_{\text{slow}} \) values were decreased rather than increased during the time course, which was interpreted as photobleaching of probes during the series of measurements. TTX withdrawal led to overall increases in \(C_{\text{slow}} \) with the RETF probe in both soma and dendrites (Fig. 6Ba). In the soma, \(C_{\text{slow}} \) slightly decreased 20 min after TTX withdrawal, possibly because of photobleaching during the series of measurements, and then it increased after 40 min (\(p < 0.05 \), paired \(t \) test between 20 and 40 min). The initial \(C_{\text{slow}} \) values of the scramble probe were larger or about the same level as \(C_{\text{slow}} \) of the Arc RETF probe 40–60 min after TTX removal in soma and dendrite, respectively. It does not mean that \(C_{\text{slow}} \) of the Arc RETF probe was below the background level: nonspecific binding is a major fraction of \(C_{\text{slow}} \) of the scramble probe, whereas the nonspecific binding of fluorescent RETF probes should be very small because the overwhelming nonspecific binding sites. Therefore, \(C_{\text{slow}} \) of RETF probes is smaller than that of the scramble probe. \(\varepsilon_{\text{slow}}/\varepsilon_{\text{fast}} \) of the RETF probes was increased by the TTX removal, whereas it decreased in the control experiments (Fig. 6Bb). Although the increment of \(\varepsilon_{\text{slow}}/\varepsilon_{\text{fast}} \) was not

\[\text{Figure 6. Activation of Arc transcription and changes in FCS parameters of the slower component after neural activation.} \]

\[\text{A, the expression level of Arc mRNA was measured by RT-PCR and normalized to that of GAPDH mRNA every 20 min after TTX washout (}} n = 3). \text{Data are means ± S.D. (error bars).} \]

\[\text{B, time course of } C_{\text{slow}}(a), \varepsilon_{\text{slow}}/\varepsilon_{\text{fast}}(b), \text{and } D_{\text{slow}}(c) \text{ in the soma and dendrites (} n = 5 \text{ cells).} \]

\[\text{Neurons were loaded with 2 or 10 μM RETF probe (target 2) or the scramble probe.} \]

\[\text{The fluorescence fluctuation was measured 4–13 times for 20 s every 20 min after TTX removal.} \]

\[\text{Averaged autocorrelation functions in single neurons of each time point were fitted with the two-component diffusion model. Each dot represents the result of each single neuron. Medians are indicated by marks and connected by lines.} \]

\[* , p < 0.05; ** , p < 0.01, \text{ assessed by paired } t \text{ test between 0 min and each time course.} \]

\[\text{Data are also shown numerically in Table S2.} \]
large, there is a possibility that a small portion of RETF probe-target RNA complexes formed aggregates or incorporated in ribonucleoprotein particles (7, 48). These results strongly suggest that the increase in \(C_{\text{slow}} \) of the RETF probe reflected activation of \(\text{Arc} \) mRNA production by neuronal activation.

Because the absolute \(C_{\text{fast}} \) values differed among the conditions owing to the difference in RETF probe concentration and the difference in the fluorescence emission nature of the RETF and scramble probes (Fig. 7A), normalized \(C_{\text{fast}} \) time courses were plotted (Fig. 7B). In the control experiments (i.e. the RETF probe without TTX withdrawal or the scramble probe), \(C_{\text{fast}} \) decreased, possibly because of photobleaching during the series of measurements. In the RETF probe with TTX withdrawal experiment, \(C_{\text{fast}} \) increased in the dendrites, but not in the soma (Fig. 7B). Whereas \(D_{\text{fast}} \) of the RETF probe fluctuated, it was larger than the intracellular diffusion coefficient of mGFP (\(D = 13.8 \pm 0.9 \, \mu \text{m}^2/\text{s} \), mean \(\pm \) S.E. (45)) throughout the measurement (Fig. 7C).

Simulation of RNA distribution

With the median diffusion coefficient of \(\text{Arc} \) mRNA (\(D_{\text{slow}} = 2.1 \, \mu \text{m}^2/\text{s} \)) obtained in this study, the time course of the distribution pattern of newly synthesized \(\text{Arc} \) mRNA by free diffusion along the dendrite was simulated using a one-dimensional (1D) diffusion model along a tapering cylindrical shape (Fig. 8A). The simulated translocation of diffusing RNA reached 100 \(\mu \text{m} \) from the soma within 60 min, but it did not effectively reach 300 \(\mu \text{m} \) even after 120 min under conditions with an \(\text{Arc} \) mRNA half-life of 47 min (46) (Fig. 8B). Because RNA protection from degradation has been proposed as a factor explaining uneven mRNA distribution within the cell (49, 50), a scenario without the RNA degradation term was also tested. We found that diffusing RNA still did not reach 300 \(\mu \text{m} \) within 60 min (Fig. 8C). These simulation results indicate that the free diffusion of mRNAs is not sufficient for the distribution of mRNAs in distal dendrites within a reasonable time, and thus active transport mechanisms are necessary, as has been argued in previous reports (25, 26).

Discussion

In this study, the dynamics and concentration of endogenous \(\text{Arc} \) and \(\text{Ip3r1} \) mRNA in living neurons were investigated, using the RETF probe technique and the FCS method. The RETF probe has a high S/B ratio due to its very low leaky fluorescence before target binding, which makes it a unique RNA-labeling method among other methods such as molecular beacons (11, 12) and RNA-targeting dCas9 (13). The fact that reduced and fluorescent RETF probes remain fluorescent after detachment...
from the target RNA molecule is a shortcoming of this probe. The FCS method was able to constrain this issue by sorting the free detached RETF probes from mRNA-bound probes based on the different diffusion coefficients. However, as was seen with the scramble probe (Fig. 4 (C and D), scramble), the autocorrelation function of intracellular FCS inherently accompanies slowly diffusing components (19, 43, 44), which overlap with the slowly diffusing component deriving from RETF probe-RNA complex and make it difficult to isolate pure diffusion parameters of RNA-bound RETF probes. Also, the possibility of the existence of different-sized degraded target RNAs makes the interpretation of the fitting results difficult. However, the increase in the slow component of the RETF probe after Arc mRNA induction by TTX removal indicated that the slower diffusion component of the RETF probes still reflect an increase in the RNA-bound RETF probes; hence, detection of changes in the Arc mRNA amount in single cells was achieved by the combination of RETF probe and FCS.

The total RNA concentration ([RNA\text{total}]) is calculated as follows.

\[
[RNA_{\text{total}}] = [RNA_{\text{bound}}] \cdot \frac{[RET\text{F}_{\text{total}}] - [RNA_{\text{bound}}]}{[RET\text{F}_{\text{total}}] - [RNA_{\text{bound}}]} + K_D
\]

(See “Experimental procedures.”) Because the \(C_{\text{fast}}\) value of the scramble probe (61 (median, interquartile range (IQR): 56–66) and 38 (median, IQR: 28–78) nm in soma and dendrites, respectively) was about one-tenth of the probe concentration in the patch pipette (0.5 \(\mu\)M), \([RET\text{F}_{\text{total}}]\) is assumed to be 1000 nm, when we take the experiments in which patch pipette was filled with 10 \(\mu\)M RETF into consideration here. \(K_D\) is assumed to range from 0.01 to 200 nm, according to a study in which \(K_D\) of RNA-DNA complex was measured using \(\beta\)-actin RNA and a series of 17-mer antisense DNAs targeting several locations in the RNA (51). \([RNA_{\text{bound}}]\) is less than the \(C_{\text{slow}}\) value (e.g. 7.1 nm at time 0) because \(C_{\text{slow}}\) consists of \([RNA_{\text{bound}}]\) and presumably the concentration of RETF probes nonspecifically binding to intracellular molecules. Because \([RET\text{F}_{\text{total}}]\) is much higher than \([RNA_{\text{bound}}]\) and \(K_D\) \([RNA_{\text{total}}]\) can be approximated by the \([RNA_{\text{bound}}]\) value with an error of at most 20%. The increase in \(C_{\text{slow}}\) of the Arc RETF probe (10 \(\mu\)M in pipette) was 3.0 (median, IQR: 1.7–3.1) and 4.9 (median, IQR: 3.6–4.9) nm 60 min after the TTX withdrawal in soma and dendrite, respectively (Fig. 6), representing an actual increase in RNA concentration with permissible errors.

The faster-diffusing component of the RETF probes is considered to reflect the unbound reduced RETF probes deriving from RNA degradation of the RNA-RETF probe complex or from dissociation of the RETF probe from the RNA. Although the dissociation rate constant of DNA-RNA complex is unknown, if we assume that the dissociation rate constant between RETF probe and the RNA target is not very different
from that between RETF probe and DNA (10^{-2} \text{ order s}^{-1}) \text{ (16)}, a non-negligible portion of RNA-bound RETF may detach from RNA constantly, as was observed in the in vitro experiment (Fig. S1). The contribution of self-reduction of the RETF probe pair was negligible at the concentration ranges used in this study (15). The apparently large increase in C_{fast} of the RETF probe upon TTX removal in dendrites may reflect activity-dependent Arc mRNA production and degradation (27), at least in the dendrite.

Reported diffusion coefficients of transcripts vary widely, possibly because of differences in the labeling and measurement methods; the diffusion coefficients of β-actin mRNA were $3.8 \times 10^{-3} \mu m^2/s$ in neurons, $0.09 \mu m^2/s$ in mouse embryonic fibroblasts (7), $0.1 \mu m^2/s$ in the COS-7 cell line (52), and $5.3 \times 10^{-3} \mu m^2/s$ in A549 lung carcinoma cells (53), using the single-particle tracking method. Moreover, the diffusion coefficient of β-actin/M52 mRNA measured by FCS in mouse embryonic fibroblasts was $0.35 \mu m^2/s$ (21). Because the D_{slow} values in the present study were higher than those in these previous reports, especially for the Arc RETF probes in the dendrite (Fig. 5B), the slower-diffusing component may include RETF probes bound to degraded RNAs, of which the diffusion coefficients were larger than those of probes bound to native RNAs.

In both soma and dendrite, C_{slow}/C_{total} of the double-probe cases, where both the target 1 and 2 RETF probes were loaded, was smaller than those of the single-probe cases for Arc, whereas it was not for IP3R1 (Fig. 5C). This difference between the double probe and the single probes seen for Arc can be explained by both detachment of RETF probes from target RNA and fragmentation of RNA: a single RNA molecule bound with both target 1 and 2 RETF probes yields two separate fluorescent particles when one of the probes detaches or when the RNA is broken into small pieces and the two bound probes are separated. In the former case, C_{total} increases but C_{slow} does not. In the latter case, C_{total} increases as well, but C_{slow} does not increase as much as C_{total} does, because RETF probes bound with small RNA fragments may only contribute to increase in C_{fast}. Thus, the apparent smaller C_{slow}/C_{total} with the double probe than those with the single probes observed only for Arc may reflect that the degradation rate of Arc mRNA is greater than that of IP3R1 mRNA, which is in good accordance with a report that Arc mRNA has an especially short half-life (44) (Fig. 9), together with the possibility that the dissociation rates of the Arc RETF probes from RNA were greater than those of the IP3R1 probes.

Activity-dependent rapid Arc transcription and transport have been reported with the in situ hybridization method; Arc mRNA appeared in the perikaryal cytoplasm within 15 min and propagated to proximal dendrites within 30 min (25, 26). The RT-PCR assay in the current study showed that the Arc mRNA level was increased within 20 min after TTX withdrawal. In the RETF probe experiments, the concentration of Arc mRNA (C_{slow}) started to increase at 20 min after TTX withdrawal in the dendrite, whereas in the soma, this occurred at 40 min (Fig. 6). The delay in the C_{slow} increase in the cell body may be explained by photobleaching during the series of measurements: the C_{slow} time course curves of the Arc RETF probes may have been decreased by about 20% every 20 min as the time course of C_{slow} of the scramble probe shows. RNA degradation also contributes to the decline in the C_{slow} curve of the RETF probe. Thus, we consider that C_{slow} of the RETF probe in the soma actually started to increase 20 min after the TTX wash. Additionally, the time lag of the RETF probe to become fluorescent after RNA binding (16) should be taken into account. The absolute increments in C_{slow} in the soma and dendrites were almost the same; however, the rate of increase in the soma was smaller because the basal C_{slow} value was larger in the soma than in the dendrites. Furthermore, the decrease in C_{slow} of the scramble probe after TTX removal and that of the RETF probe without wash, both of which are attributed to photobleaching during the series of measurements, were larger at the soma than at the dendrite (Fig. 6Ba), showing that the tendency for a basal decrease was greater in the soma due to its larger irradiated volume. Thus, we consider that the true increase in C_{slow} of the Arc RETF probe upon TTX removal in the soma was more dampened than that in the dendrite.

Whereas the simulation of mRNA diffusion showed that free diffusion of RNA was not sufficient to bring RNA molecules to distal dendrites within a reasonable time, newly synthesized Arc mRNAs appeared in distal tips of the dendrite, about 300 μm from the soma, within 60 min (25, 26). MS2-labeled β-actin mRNAs moved in various patterns, including stationary, corralled, diffusive, and directed motion (7). Indeed, the velocity of
actively transported exogenously expressed mRNA containing the 3′-UTR of Arc mRNA was sufficiently high to be translocated to distal dendrites rapidly (32). Given these findings, our results would support the idea that free diffusion is not capable of transporting mRNAs of sizes close to Arc or IP3R to distal dendrites (2, 54–56).

Through this study, shortcomings of the method, combination of RETF probe and FCS, have emerged as follows.

1) A non-negligible amount of fluorescent RETF probes is released from target mRNA, which prevents visualizing each mRNA as a dot by masking the RNA-bound RETF probe signal (Fig. 1). The MS2 and molecular beacon systems enable visualization of mRNA particles and thus single-particle tracking to quantify diffusion coefficients of labeled RNA by adding repeats of probe-binding sequence to target RNA (6, 12). For the RETF probe method, FCS is necessary for analyzing diffusion properties of labeled RNA. The dissociation of RETF probe from target RNA may be minimized by optimizing the binding sequence length for better separation of RNA-bound RETF probes from free ones.

2) Intracellular FCS accompanies slowly diffusing components presumably due to nonspecific bindings and other unknown factors (19, 43, 44), as was also seen with the scramble probe in this study. These slow components overlap with the diffusion of the RETF probe-RNA complex, making estimation of the RNA diffusion parameters difficult. In this study, the rapid Arc mRNA production by neuronal activation helped to distinguish RNA diffusion from other diffusion fractions.

3) The RETF probe method requires turning-on of nonfluorescent fluorophores to fluorescent ones by chemical reaction. At present, only fluorescein is available for the mechanism. The weak photostability of fluorescein results in the apparent photobleaching in intracellular FCS measurement. Development of next-generation RETF probes with more photostable chromophores is awaited.

However, this method provides the following advantages.

1) The RETF probe technique enables observation of the native movement and amount of mRNA in living cells. Fluorescence in situ hybridization (FISH) enables observation of mRNA localization and estimation of copy number of mRNA (57, 58); however, it cannot report temporal changes but only a snapshot of mRNA localization and quantity because of tissue fixation. Live RNA imaging techniques are superior to it in obtaining temporal insights into the RNA dynamics and regulation of mRNA such as biosynthesis, processing, and intracellular transport. By combining with FCS, the behavior of the very low-concentration, low-nanomolar-order endogenous mRNA could be investigated, whereas precise measurement of the absolute concentration is hindered by the artifacts peculiar to intracellular FCS.

2) Endogenous mRNA can be monitored without alteration of the sequence by the RETF probe-FCS method, whereas other live RNA-imaging techniques require the addition of probe-binding sequences to the target RNA sequence. In the MS2 system, aptamer-binding sequence is added to target RNA. The molecular beacon method requires the fusion of long probe-binding sequence repeats to the target RNA sequence when visualizing single RNA molecules. The difficulty in quantitative control of exogenous RNA expression is another issue of these methods. Singer’s group created knock-in mouse lines for endogenous β-actin and Arc mRNAs to contain aptamer-binding sequences to avoid this problem; however, this solution is expensive and time-consuming.

3) A pair of chromophore- and reducing reagent–conjugated oligonucleotide probes is sufficient for the quantification of RNA dynamics. To obtain sufficiently high S/B values, the other methods usually use multiple probes per RNA (12, 59). In the MS2 and molecular beacon systems, a long repeat of probe-binding sequence is fused to the target RNA, and many fluorescent probes bind to it, which may affect the measurements of RNA dynamics, as the diffusion coefficient depends on the shape of molecule. Whereas these approaches have been successful in visualizing single mRNA molecules, it is better to minimize the number of tags per RNA molecule, as bound tags may disrupt the natural conformation of the target mRNA.

In summary, we combined the RETF probe technique and FCS to establish a method for analyzing the dynamics of endogenous unmodified mRNA in living neurons. This study demonstrates that free RETF probes can be segregated from RNA-bound forms by the difference in the diffusion coefficient together with concentration estimation at the low-nanomolar range. And limitations of this method emerged, including the inability to estimate absolute RNA concentration, but rather only relative changes in RNA concentration, due to nonspecific binding of RETF probes.

Experimental procedures

Animal care and neuron culture

Animal care was in accordance with the guidelines outlined by the Institutional Animal Care and Use Committee of Waseda University. Throughout the experimental procedures, all efforts were made to minimize the number of animals used and their suffering. Primary cultured neurons were prepared from embryos of Wistar rats on embryonic day 18, in accordance with a standard protocol (60) with modifications. Triturated neurons were plated at a density of 1.7×10^4 cells/cm² onto circular glass coverslips (12 mm in diameter; CD12001, Matsunami Glass, Osaka, Japan) coated with 4% polyethyleneimine (P3143, Sigma–Aldrich (Tokyo, Japan)), which were set in 24-well plastic dishes (92424, TPP Techno Plastic Products (Trasadingen, Switzerland)), in plating medium consisting of modified Eagle’s medium supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, and 10% horse serum. After incubation for 3 days, the medium was changed to maintenance medium consisting of Neurobasal-A medium (12349-015, Gibco) supplemented with 2% B27 (17504-044, Gibco), 2 mM L-glutamine, and 0.05% penicillin/streptomycin. Primary cultured neurons at 15–20 days in vitro were used.

In the electrophysiology and FCS experiments, coverslips on which neurons adhered were mounted in a stainless chamber (SCC-D35, Tokai Hit (Fujinomiya, Japan)) that allows the bottom side of the coverslip to face the objective directly and the top side to be immersed with extracellular solution. Alternatively, disposable glass-bottomed plastic dishes can be used, where weight on the top of the dish may be necessary to gain
stable focus. HBS (20 mM HEPES, 115 mM NaCl, 5.4 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, and 10 mM glucose, pH 7.4) was used as an extracellular solution at room temperature throughout experiments, in which neurons were kept healthy within at least 2 h. If cells need to be kept for longer periods in experiment chambers, HEPES-supplemented Neurobasal-A with B27 is recommended (60).

In neuron activation experiments, neural activity was suppressed with 2 μM TTX (L8503, Latoxan (Valence, France)) for 2 days before the experiment. For the induction of Arc mRNA, cells were washed five times with TTX-free HBS.

Electrophysiology

Probes were loaded with the whole-cell patch-clamp method at room temperature. HBS was used as the external solution. Patch pipettes (6–9 MΩ) pulled from borosilicate glass capillaries (Sutter Instrument Co., Novato, CA, USA) were filled with the internal solution: 65 mM potassium gluconate, 65 mM cesium methanesulfonate, 10 mM KCl, 1 mM MgCl₂, 4 mM Na₂ATP, 20 mM HEPES, and 0.4 mM EGTA, pH 7.3, 295 mosm. On the day of the experiment, 2 or 10/pH262 μM RETF probe or 0.5 μM scramble probe and 5 μM Alexa Fluor 594 biocytin (A12922, Life Technologies Japan (Tokyo, Japan)) were added to the extracellular solution at room temperature throughout the experiment. The dendritic width was determined by the line profile of fluorescence intensity presupposing a circular cross-section of dendrite, S(y), was developed by Gennerich and Schild (19),

\[
S(y) = \theta \exp\left(-2(y - y_0)^2/r_y^0\right) - 2(y - y_0)r \cos \varphi + r^2 \sin^2 \varphi / \gamma^2 / r_y^0 \tag{Eq. 2}
\]

with y = y₀ and z = 0 being the center of the circular cross-section, the radial radius of the confocal volume r_y = 0.34 μm, structure factor γ = r₀/r_y = 9.6, where r₀ is the focal axial radius and the fitting parameter θ. Methods to deduce r_y and γ are described in the “Results” section. The dendritic radius R, y₀, and θ were obtained by fitting the dendritic profile of Alexa Fluor 594 biocytin to the model. The measurement points on the dendrite were positioned 30–50 μm away from the soma to be orthogonal to the dendrites on confocal fluorescent images of Alexa Fluor 594 biocytin. Dendritic widths were measured at two or three points in each cell. Data analyses were implemented and performed in in-house software, TI Workbench, running on Mac computers (61).

RETF probe design

RETF probes were synthesized as described previously (16). Pairs of 15-mer oligonucleotides were modified at the 5′ terminus of one of the pair with TPP and at the 3′ terminus of the other one with Az. The sequences of the RETF probes were complementary to Arc mRNA (target 1, 5′-CAGTTCCTTGCCGGTATGTGCAGTTGGTAC-3′ and 5′-ACGGCTCTCGGTTTCCCC-3′; target 2, 5′-CGGGTCCGCTGTCATACCGG-3′; target 3, 5′-AGGTTTGTAACGCTGAGTT-3′; and 5′-AGGTTTGTAACGCTGAGTT-3′ for GAPDH mRNA.

Imaging

For time-lapse imaging, neurons were placed on an inverted fluorescence microscope (IX-81, Olympus (Tokyo, Japan)). Fluorescence excitation at 470–490 nm was acquired with a ×40 objective (UPlanFLN, numerical aperture 0.75; Olympus) through a 500–550-nm band-pass filter using a CCD camera (C4742-95-12ERG, Hamamatsu Photonics (Hamamatsu, Japan)). Confocal images were obtained using a confocal laser-scanning microscope (FV-300, Olympus) equipped with a water immersion objective lens (UPlanSApo, numerical aperture 1.2, ×60; Olympus). RETF probes were excited with a 488-nm argon-ion laser (IMA ×10; Melles Griot, Carlsbad, CA, USA) or diode laser (STRADIUS 488–25; Vortran, Sacramento, CA, USA) and detected through a 510–540-nm band-pass filter. Alexa Fluor 594 biocytin was excited using a 561-nm diode-pumped solid-state laser (85-YCA-010-040, Melles Griot), and the fluorescence was detected through a 610-nm long pass filter. Images with RETF probes and Alexa Fluor 594 biocytin were taken separately with respective lasers. Confocal images were taken with Fluoview software (Olympus) bundled with the FV-300 confocal microscope system, and resultant TIFF-format image files were transferred to a Mac computer for further analysis, including dendrite size measurement.

FCS system

The confocal microscope mentioned above (FV-300, Olympus) was equipped with an additional GaAsP-type photomulti-
Quantification of mRNA dynamics by FCS and RETF probe

Intracellular FCS measurements and analysis

The recording point for FCS was positioned at the cytosol in the somata or dendrites 30–50 μm away from the soma, guided by the Alexa Fluor 594 biocytin fluorescence. The z-position was set to positions where the signal of Alexa Fluor 594 biocytin was maximal. The recording mode of the Fluoview software, running on a Windows PC, was switched from the 2D image acquisition mode to the point-scan mode, and the recording point was set on the 2D image on a computer screen. The light path for fluorescence was switched to the additional PMT for FCS, and the point-scan mode recording was started in the Fluoview software. TI Workbench on a Mac computer started recording through the additional PMT by receiving a TTL trigger from the FV-300 confocal system.

FCS measurement was performed at a single point for 20 s, which was repeated 5–12 times at the same point. The autocorrelation function of each 20-s recording was calculated separately as described above, and autocorrelation functions recorded from the same recording point were averaged to avoid slow fluorescence decay of time constants longer than several seconds arising from photobleaching of diffusing molecules within the diffusion compartment, which would have occurred if the recording and autocorrelation calculation was not divided and then averaged but done continuously in living cells (43).

To further compensate for the photobleaching effects, intensity traces were corrected before calculating the autocorrelation function. The fluorescence intensity time course, I(t), was fitted to a two-component exponential function, which accounts for fast and slow photobleaching, I(t) = I₀ + Iᵣ exp(t/τᵣ) + Iₛ exp(t/τₛ). With these fitted parameters, bleach-corrected fluorescence intensity, Iᶜ(t), was calculated with the following formula.

\[Iᶜ(t) = I(t) \cdot \frac{i(0)}{i(t)} \]

(Eq. 3)

Autocorrelation functions were calculated along an exponentially interleaved delay time progression, \(τᵣ = τ₀ \cdot 10^{0.01n} \), where \(τ₀ \) is the sampling time (1 μs), \(τᵣ \) ranged from 1 μs to 10 s (i.e., integer \(n \) was in the range of 0 ≤ \(n \) ≤ 700 in this study).

The autocorrelation function, \(G(τ) = \langle F(t)F(t + τ) \rangle / \langle F(t) \rangle^2 - 1 \), where \(\langle F(t) \rangle \) is the mean fluorescence intensity of each photobleaching-corrected recording (Iᶜ), was calculated as follows.

\[G(τ) = \frac{1}{M} \sum_{k=0}^{M} \left(\sum_{l=nk + 1}^{nk + n} Iᶜ(τ₀) \cdot \left(\sum_{l=n(k + 1) + 1}^{nk + 1} Iᶜ(τ₀) \right) \right) \]

\[\left(\frac{1}{M} \sum_{k=0}^{M} \sum_{l=nk + 1}^{nk + n} Iᶜ(τ₀) \right)^2 \]

(Eq. 4)

Here, \(M \) is an integer given by \(T/τᵣ \), where \(T \) is the total measurement duration (20 s).

Autocorrelation functions taken from each single cell were averaged and then fitted to a one- or two-component diffusion model, using the Levenberg–Marquardt algorithm (45, 62).

\[G(τ) = \sum_{i=1}^{N} Cᵢ \cdot gᵢ(τ) / Vᵢ + Gᵦ \]

(Eq. 5)

with

\[gᵢ(τ) = 1 + \frac{pᵢ Tᵢ}{1 - pᵢ} \cdot \exp \left(-\frac{τ}{Tᵢ} \right) \]

(Eq. 6)

where \(Cᵢ \) and \(ϵᵢ \) are the concentration of the \(i \)th species and the brightness of each diffusing particle in the \(i \)th component. Fitting the autocorrelation functions with the two-component model resulted in brightness of fluorescent particles in the second (slower-diffusing) component relative to that in the first (faster-diffusing) component, \(ϵᵢ/dᵢ \). The \(Tᵢ(τ) \) term expresses triplet-singlet transitions (63, 64). \(pᵢ \) is the fraction of particles in the triplet state with a delay time of \(τᵢ \).

In the 3D free diffusion model, \(gᵦ(τ) \) is given by the following (65).

\[gᵦ(τ) = \frac{1}{1 + \frac{τ}{τᵢ} \cdot \frac{1}{1 + \frac{τ}{τᵢ}}} \]

(Eq. 7)

The effective detection volume, \(Vᵦ \), for this 3D model is given by \(Vᵦ = πrᵦ^2 z x \).

In the case that diffusion is confined in axial and lateral directions, it is appropriate to apply a confinement diffusion model (19, 42). When the dendritic diameter, \(d₀ \), is sufficiently smaller than the height of the detection volume, namely, \(dᵦ/rᵦ < 0.833 \), the diffusion in the axial direction is negligible (42). Thus, \(gᵦ(τ) \) is expressed by Equation 8 in such a case.

\[gᵦ(τ) = gᵦ(τ) \cdot gᵦ(τ) \]

(Eq. 8)

If the confinement parameter \(Y = dᵦ/rᵦ \) is smaller than 8, \(gᵦ(τ) \) is approximated as follows (42),
Quantification of mRNA dynamics by FCS and RETF probe

\[g_x(t) = \frac{1}{\sqrt{1 + \frac{t}{\tau_{D_i}}} \left(1 + \left(\frac{\sqrt{\pi}}{Y} - 1\right) \exp\left(-\left(\frac{0.83\pi}{Y}\right)^2 \frac{t}{\tau_{D_i}}\right)\right)^{1/2}} \] \hspace{1cm} (Eq. 9)

and \(V_{eff} \) is given by \(V_{eff} = \pi r^2_d n_{dread} \).

The single-triplet transition was corrected by setting a constant value \(\tau_T \), which was deduced to be 23 \(\mu s \) for intracellular measurements of the RETF probes, 18 \(\mu s \) for intracellular measurements of the scramble probe, and 10 \(\mu s \) for the scramble probe in cell-free measurements after fitting the averaged auto-correlation curves of each probe. The diffusion coefficient \(D_i \) was calculated by the following.

\[D_i = \frac{r_{xy}^2}{4\tau_{D_i}} \] \hspace{1cm} (Eq. 11)

Simulation

Diffusion simulation was performed based on the Fick–Jacobs equation (66), representing a 1D diffusion model in a cylindrical tube of varying cross-sectional area. Directing the \(x \) axis along the tube and denoting the cross-sectional area at \(x \) by \(S(x) \) with RNA degradation constant \(\gamma_{na} \), the effective 1D concentration \(C(x, t) \) was given by the Fick–Jacobs equation,

\[\frac{\partial C(x, t)}{\partial t} = D \frac{\partial}{\partial x} \left(S(x) \frac{\partial}{\partial x} \frac{C(x, t)}{S(x)} \right) - \gamma_{na} C(x, t) \]

\[= D \frac{\partial^2 C(x, t)}{\partial x^2} - D \frac{\partial}{\partial x} \left(S(x) \frac{\partial C(x, t)}{\partial x} \right) - \gamma_{na} C(x, t) \] \hspace{1cm} (Eq. 12)

where \(D \) is the diffusion coefficient. To simplify the cross-sectional change in the dendrite, \(S(x) \) was imposed according to Rall’s 3/2 power law (67): \(DIA^{3/2} = \sum dia^{3/2} \), which describes the relationship between the diameter of the parent (\(DIA \)) and daughter (\(dia \)) branches. When the cross-sectional area of the branch was calculated based on Rall’s law, the sum of the daughter cross-sectional area was reduced by \(\approx 20\% \) of the mother cross-sectional area at every bifurcation point. The change in cross-sectional area was formulated as \(S(x) = 0.8^{bn/2L} \), where \(L \) is the dendrite length and \(bn \) represents the total bifurcation number. In this simulation, both parameters were set as \(L = 300 \mu m \) and \(bn = 16 \). The degradation rate \(\gamma_{na} \) was log(2)/\(h_{lt} \), where the half-life \(h_{lt} \) was set as 47 min (46). As the particles cannot escape from the tip of a dendrite, the boundary condition at \(x = L \) was \(\partial C(L, t)/\partial x = 0 \). At the dendrite base (\(x = 0 \)), the concentration was increased linearly within 40 min to match the result of the gene induction experiment by the RT–PCR assay. In other words, \(C(0, t) = 0.025f_{x} \) for \(0 \leq t \leq 40 \) min and \(C(0, t) \) for \(40 < t \) min. The simulation was performed on Python.

Concentrations of RNA and RETF probe in equilibrium

The equilibrium dissociation constant \((K_D) \) of the RNA–RETF probe binding is calculated as follows,

\[K_D = \frac{[RNA_{free}] \cdot [RETF_{free}]}{[RNA_{bound}]} \] \hspace{1cm} (Eq. 13)

where \([RNA_{free}]\) is free RNA concentration, \([RETF_{free}]\) is free RETF probe concentration, and \([RNA_{bound}]\) is RETF probe–bound RNA concentration. Using the relations, \([RNA_{total}] = [RNA_{bound}] + [RNA_{free}]\), \([RETF_{total}] = [RETF_{bound}] + [RETF_{free}]\), and \([RETF_{bound}] = [RNA_{bound}]\), the \(K_D \) formula is rearranged to be the following.

\[[RNA_{total}] = [RNA_{bound}] \cdot \frac{[RETF_{total}] - [RNA_{bound}] + K_D}{[RETF_{total}] - [RNA_{bound}]} \] \hspace{1cm} (Eq. 14)

Statistics

All offline analyses were performed using the in-house software, TI Workbench, running on a Mac computer (61) in combination with Microsoft Excel (Microsoft Japan, Tokyo, Japan), R (Vienna University of Economics and Business), and Igor Pro (Wavemetrics, Lake Oswego, OR, USA). The indicated data are given as average ± S.D. unless otherwise indicated.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments—We thank Edanz for editing the English text of a draft of the manuscript.

Author contributions—H. F. and T. I. formal analysis; H. F., Y. H., C. F. O., T. O., and T. I. investigation; H. F. and T. I. visualization; H. F., R. O., M. H., F. T., Y. K., S. T., H. A., and T. I. methodology; H. F. and T. I. writing–original draft; H. F. and T. I. writing–review and editing; H. O. and H. B. resources; T. I. conceptualization; T. I. software; T. I. supervision; T. I. funding acquisition; T. I. validation; T. I. project administration.

Funding and additional information—This work was supported by Grants-in-Aid for Scientific Research 23300121 and 26640016 from the Japan Society for the Promotion of Science (JSPS) (to T. I.), the Private University Research Branding Project (MEXT, Japan) (to T. I.), and Waseda University Grants for Special Research Projects.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: RETF, reduction–triggered fluorescence; Arc, activity–regulated cytoskeleton protein; Az, azidomethyl fluorescein; C, concentration; D, diffusion constant; FCS, fluorescence correlation spectroscopy; IP3R1, inositol 1,4,5-trisphosphate receptor type 1; S/B, signal–to–background ratio; TPP, triphenylphosphine; TTX, tetrodotoxin; HBS, HEPES–buffered saline; 1D, 2D, and 3D, one–, two–, and three–dimensional; PMT,
photomultiplier tube; TTL, transistor-transistor logic; ACF, auto-correlation function.

References

1. Doyle, M., and Kiebler, M. A. (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. *EMBO J.* 30, 3540–3552 CrossRef Medline

2. Bramham, C. R., and Wells, D. G. (2007) Dendritic mRNA: transport, translation and function. *Nat. Rev. Neurosci.* 8, 776–789 CrossRef Medline

3. Glock, C., Heumüller, M., and Schuman, E. M. (2017) mRNA transport & local translation in neurons. *Curr. Opin. Neurobiol.* 45, 169–177 CrossRef Medline

4. Holt, C. E., Martin, K. C., and Schuman, E. M. (2019) Local translation in neurons: visualization and function. *Nat. Struct. Mol. Biol.* 26, 557–566 CrossRef Medline

5. Urbanek, M. O., Galka-Marciniak, P., Olejniczak, M., and Krzyzosiak, W. J. (2014) RNA imaging in living cells—methods and applications. *RNA Biol.* 11, 1083–1095 CrossRef Medline

6. Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., and Long, R. M. (1998) Localization of ASH1 mRNA particles in living yeast. *Mol. Cell.* 2, 437–445 CrossRef Medline

7. Park, H. Y., Lim, H., Yoon, Y. J., Follenzi, A., Nwokafor, C., Lopez-Jones, M., Meng, X., and Singer, R. H. (2014) Visualization of dynamics of single endogenous mRNA labeled in live mouse. *Science* 343, 422–424 CrossRef Medline

8. Das, S., Moon, H. C., Singer, R. H., and Park, H. Y. (2018) A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. *Sci. Adv.* 4, eaar3448 CrossRef Medline

9. Ozawa, T., Natori, Y., Sato, M., and Umezawa, Y. (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. *Nat. Methods* 4, 413–419 CrossRef Medline

10. Yamada, T., Yoshimura, H., Shimada, R., Hattori, M., Eguchi, M., Fujiwara, T. K., Kusumi, A., and Ozawa, T. (2016) Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. *Sci. Rep.* 6, 38910 CrossRef Medline

11. Tyagi, S., and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. *Nat. Biotechnol.* 14, 303–308 CrossRef Medline

12. Vargas, D. Y., Raj, A., Marras, S. A. E., Kramer, F. R., and Tyagi, S. (2005) Mechanism of mRNA transport in the nucleus. *Proc. Natl. Acad. Sci. U.S.A.* 102, 17008–17013 CrossRef Medline

13. Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., and Kuhl, D. (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. *Proc. Natl. Acad. Sci. U.S.A.* 92, 5734–5738 CrossRef Medline

14. Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A., and Worley, P. F. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. *Neuron* 14, 433–445 CrossRef Medline

15. Wallace, C. S., Lyford, G. L., Worley, P. F., and Steward, O. (1998) Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. *J. Neurosci.* 18, 26–35 CrossRef Medline

16. Guzowski, J. F., McNaughton, B. L., Barnes, C. A., and Worley, P. F. (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. *Nat. Neurosci.* 2, 1120–1124 CrossRef Medline

17. Farris, S., Lewandowski, G., Cox, C. D., and Steward, O. (2014) Selective localization of Arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. *J. Neurosci.* 34, 4481–4493 CrossRef Medline

18. Moga, D. E., Calhoun, M. E., Chowdhury, A., Worley, P., Morrison, J. H., and Shapiro, M. L. (2004) Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. *Neuroscience* 125, 7–11 CrossRef Medline

19. Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., and Worley, P. F. (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. *Neuron* 52, 445–459 CrossRef Medline

20. Ashley, J., Cordy, B., Lucia, D., Fradkin, L. G., Budnik, V., and Thomson, T. (2018) Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. *Cell* 172, 262–274.e11 CrossRef Medline

21. Pastuzyn, E. D., Day, C. E., Kears, R. B., Kyre-Smith, M., Taibi, A. V., McCormick, J., Yoder, N., Belnap, D. M., Erldssond, S., Morado, D. R., Briggs, J. A. G., Feschotte, C., and Shepherd, J. D. (2018) The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. *Cell* 172, 275–288.e18 CrossRef Medline

22. Dynes, J. L., and Steward, O. (2007) Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. *J. Comp. Neurol.* 500, 433–447 CrossRef Medline

23. Dynes, J. L., and Steward, O. (2012) Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. *J. Comp. Neurol.* 520, 3105–3119 CrossRef Medline

24. Furuchi, T., Simon-Chazottes, D., Fujino, I., Yamada, N., Hasegawa, M., Miyawaki, A., Yoshikawa, S., Quenet, J. L., and Mikoshiba, K. (1993) Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (InsP3R1) in the mouse central nervous system. *Receptors Channels* 1, 11–24 CrossRef Medline

25. Inoue, T., Kato, K., Kohda, K., and Mikoshiba, K. (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. *J. Neurosci.* 18, 5366–5373 Medline

26. Itoh, S., Ito, K., Fujii, S., Kanclo, K., Kato, K., Mikoshiba, K., and Kato, H. (2001) Neuronal plasticity in hippocampal mossy fiber-CA3 synapses of mice lacking the inositol-1,4,5-trisphosphate type 1 receptor. *Brain Res.* 901, 237–246 CrossRef Medline

27. Fujii, S., Matsumoto, M., Igashiki, K., Kato, H., and Mikoshiba, K. (2000) Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1
Quantification of mRNA dynamics by FCS and RETF probe

in ositol-1,4,5-trisphosphate receptors. Learn. Mem. 7, 312–320 CrossRef Medline

38. Banai, H., Fukatsu, K., Mizutani, A., Natsume, T., Jimura, S.-I., Ikegami, T., Inoue, T., and Mikoshita, K. (2004) An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. J. Biol. Chem. 279, 53427–53434 CrossRef Medline

39. Savas, J. N., Ma, B., Deinhardt, K., Culver, B. P., Restituito, S., Wu, L., Belasco, J. G., Chao, M. V., and Tanese, N. (2010) A role for huntington disease protein in dendritic RNA granules. J. Biol. Chem. 285, 13142–13153 CrossRef Medline

40. Kinjo, M., Sakata, H., and Mikuni, S. (2010) First steps for fluorescence correlation spectroscopy of small cytosolic compartments depends critically on the diffusion model used. Biophys. J. 79, 3294–3306 CrossRef Medline

41. Pack, C., Saito, K., Tamura, M., and Kinjo, M. (2006) Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys. J. 91, 3921–3936 CrossRef Medline

42. Wachsmuth, M., Waldeck, W., and Langowski, J. (2000) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83, 46001 CrossRef

43. Gennerich, A., and Schild, D. (2000) Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys. J. 79, 3294–3306 CrossRef Medline

44. Carson, J. H., Cui, H., and Barbarese, E. (2001) The balance of power in RNA trafficking. Curr. Opin. Neurobiol. 11, 558–563 CrossRef Medline

45. Hirokawa, N. (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J. Neurosci. 26, 7139–7142 CrossRef Medline

46. Kiebler, M. A., and Bassell, G. J. (2006) Neuronal RNA granules: movers and makers. Neuron 51, 685–690 CrossRef Medline

47. Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998) Visualization of single RNA transcripts in situ. Science 280, 585–590 CrossRef Medline

48. Raj, A., van den Bogaard, P., Ritkin, S. A., van Oudenaarden, A., and Tyagi, S. (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 CrossRef Medline

49. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S. (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 CrossRef Medline

50. Banai, H., Lévi, S., Schweizer, C., Inoue, T., Launey, T., Racine, V., Sibarita, J.-B., Mikoshita, K., and Triller, A. (2009) Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670–682 CrossRef Medline

51. Inoue, T. (2018) TI Workbench, an integrated software package for electrophysiology and imaging. Microscopy 67, 129–143 CrossRef Medline

52. Wohland, T., Rigler, R., and Vogel, H. (2001) The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80, 2987–2999 CrossRef Medline

53. Widengren, J., Mets, U., and Rigler, R. (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 99, 13368–13379 CrossRef

54. Shin, H.-S., Okamoto, A., Sako, Y., Kim, S. W., Kim, S. Y., and Pack, C.-G. (2013) Characterization of the triplet state of hybridization-sensitive DNA probe by using fluorescence correlation spectroscopy. J. Phys. Chem. A 117, 27–33 CrossRef Medline

55. Rigler, R., Mets, U., Widengren, J., and Kask, P. (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 CrossRef

56. Jacobs, M. H. (1967) Diffusion Processes, pp. 67–69, Springer, New York

57. Rall, W. (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 CrossRef Medline