MINIMAL-MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH GROWTH POTENTIALS

NAOKI MATSUI

Abstract. We consider the following nonlinear Schrödinger equation with growth potentials:

\[i\frac{\partial u}{\partial t} + \Delta u + |u|^p u - V u - U u + \omega_1 |x|^{2\sigma_1} u - \omega_2 |x|^{2\sigma_2} u - \xi \cdot x |x|^\sigma u = 0 \]

in \(\mathbb{R}^N \). From the classical argument, the solution with subcritical mass \(\|u\|_2 < \|Q\|_2 \) is global and bounded in \(X_1 \), where \(X_1 \) is the domain of \(-\Delta + U + \omega_2 |x|^{2\sigma_2} \) in \(L^2(\mathbb{R}^N) \) and \(Q \) is the ground state of the mass-critical problem. Therefore, we are interested in the existence and behaviour of blow-up solutions for the threshold \(\|u\|_2 = \|Q\|_2 \).

Previous studies investigate the existence and behaviour of the critical-mass blow-up solution when the cases of algebraically tractable growth potential or no growth potential. In this paper, we construct a critical-mass blow-up solution for the equation with growth potentials which has no algebraic property.

1. Introduction

We consider the following nonlinear Schrödinger equation with potentials:

\[i\frac{\partial u}{\partial t} + \Delta u + |u|^p u - V u - U u + \omega_1 |x|^{2\sigma_1} u - \omega_2 |x|^{2\sigma_2} u - \xi \cdot x |x|^\sigma u = 0 \]

in \(\mathbb{R}^N \).

Let be \(\omega_2 > 0 \) or \((\omega_1, \omega_2, \xi) = (0, 0, 0) \). Let be \(\xi \in \mathbb{R}^N \). For \(\sigma_j \), we assume that

\[0 \leq \sigma_1 < \sigma_2 \leq 1, \quad -1 < \sigma_3 < 2\sigma_2 - 1. \]

Moreover, we assume that \(U \in C^\infty(\mathbb{R}^N), U \geq 0, \) and

\[\left(\frac{\partial}{\partial x} \right)^\alpha U \in L^\infty(\mathbb{R}^N) \]

for any multi-index \(\alpha \) such that \(|\alpha| \geq 2 \). For the sake of clarity in notation, we define

\[W(x) := V(x) + U(x) - \omega_1 |x|^{2\sigma_1} + \omega_2 |x|^{2\sigma_2} + \xi \cdot x |x|^\sigma. \]

Furthermore, we define Hilbert spaces \(X_k \) and \(\Sigma^k \) by

\[X_k := \left\{ u \in H^k(\mathbb{R}^N) \mid (u + \omega_2 |x|^{2\sigma_2})^k u \in L^2(\mathbb{R}^N) \right\}, \quad (u, v)_{X_k} := (u, v)_{H^k} + \text{Re} \int_{\mathbb{R}^N} (U(x) + \omega_2 |x|^{2\sigma_2})^k u(x) \overline{v(x)} dx, \]

\[\Sigma^k := \left\{ u \in H^k(\mathbb{R}^N) \mid |x|^k u \in L^2(\mathbb{R}^N) \right\}, \quad (u, v)_{\Sigma^k} := (u, v)_{H^k} + \text{Re} \int_{\mathbb{R}^N} |x|^{2k} u(x) \overline{v(x)} dx. \]

Then \(X_k \hookrightarrow \Sigma^k \) holds.

It is well known that if

\[V \in L^p(\mathbb{R}^N) + L^\infty(\mathbb{R}^N) \quad \left(p \geq 1 \text{ and } p > \frac{N}{2} \right), \]

\[\text{Date: September 20, 2021.} \]

\[2010 \text{ Mathematics Subject Classification.} \, 35Q55. \]

\[\text{Key words and phrases.} \, \text{blow-up rate, critical exponent, critical mass, growth potential, minimal mass blow-up, nonlinear Schrödinger equation.} \]
In addition, if $u_0 \in X_1$, there exists a unique maximal solution $u \in C((T_*, T^*), X_1) \cap C^1((T_*, T^*), X_1^*)$. Moreover, the mass (i.e., L^2-norm) and energy E of the solution are conserved by the flow, where

$$E(u) := \frac{1}{2} \| \nabla u \|_2^2 - \frac{1}{2 + \frac{4}{N}} \| u \|_{2 + \frac{4}{N}}^{2 + \frac{4}{N}} + \frac{1}{2} \int_{\mathbb{R}^N} W(x)|u(x)|^2 \, dx.$$

Furthermore, there is a blow-up alternative

$$T^* < \infty \text{ implies } \lim_{t \nearrow T^*} \| u(t) \|_{X_1} = \infty.$$

In addition, if $u_0 \in \Sigma^1$, then the corresponding solution u belongs to $C((T_*, T^*), \Sigma^1)$. Moreover, we consider

$$V \in L^p(\mathbb{R}^N) + L^\infty(\mathbb{R}^N) \quad \left(p \geq 2 \text{ and } p > \frac{N}{2} \right).$$

If $u_0 \in X_2$, then the corresponding solution u belongs to $u \in C((T_*, T^*), X_2) \cap C^1((T_*, T^*), L^2(\mathbb{R}^N))$. In addition, if $u_0 \in \Sigma^2$, then the solution u belongs to $C((T_*, T^*), \Sigma^2)$. In this paper, we investigate the conditions for the potential related with the existence of minimal mass blow-up solution.

1.1. Critical problem. Firstly, we describe the results regarding the mass-critical problem:

$$\frac{\partial}{\partial t} u + \Delta u + |u|^{\frac{4}{N}} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,$$

In particular, (1) with $W = 0$ is reduced to (6).

It is well known (2) (8) (13) that there exists a unique classical solution Q for

$$-\Delta Q + Q - |Q|^\frac{4}{N} Q = 0, \quad Q \in H^1(\mathbb{R}^N), \quad Q > 0, \quad Q \text{ is radial},$$

which is called the ground state. If $\|u\|_2 = \|Q\|_2 (\|u\|_2 < \|Q\|_2, \|u\|_2 > \|Q\|_2)$, we say that u has the critical mass (subcritical mass, supercritical mass, respectively).

We note that $E_{\text{crit}}(Q) = 0$, where E_{crit} is the energy with respect to (6). Moreover, the ground state Q attains the best constant in the Gagliardo-Nirenberg inequality

$$\|v\|_{2 + \frac{4}{N}}^{2 + \frac{4}{N}} \leq \left(1 + \frac{2}{N} \right) \left(\frac{\|v\|_2}{\|Q\|_2} \right)^{\frac{4}{N}} \|\nabla v\|_2^2 \quad \text{for } v \in H^1(\mathbb{R}^N).$$

Therefore, for all $v \in H^1(\mathbb{R}^N)$,

$$E_{\text{crit}}(v) \geq \frac{1}{2} \|\nabla v\|_2^2 \left(1 - \frac{\left(\frac{\|v\|_2}{\|Q\|_2} \right)^{\frac{4}{N}}}{\left(\frac{\|v\|_2}{\|Q\|_2} \right)^{\frac{4}{N}}} \right)$$

holds. This inequality and the mass and energy conservations imply that any subcritical mass solution for (6) is global and bounded in $H^1(\mathbb{R}^N)$.

Regarding the critical mass case, we apply the pseudo-conformal transformation

$$u(t, x) \mapsto \frac{1}{|t|^{\frac{4}{N}}} u \left(-\frac{1}{t}, \frac{x}{t} \right) e^{i |x|^2 \frac{4}{N}}$$

to the solitary wave solution $u(t, x) := Q(x)e^{it}$. Then we obtain

$$S(t, x) := \frac{1}{|t|^{\frac{4}{N}}} Q \left(\frac{x}{t} \right) e^{-\frac{t}{4} e^{i |x|^2 \frac{4}{N}}},$$

which is also a solution for (6) and satisfies

$$\|S(t)\|_2 = \|Q\|_2, \quad \|\nabla S(t)\|_2 \sim \frac{1}{|t|} \quad (t \nearrow 0).$$

Namely, S is a minimal mass blow-up solution for (6). Moreover, S is the only finite time blow-up solution for (6) with critical mass, up to the symmetries of the flow (see (10)).
Regarding the supercritical mass case, there exists a solution u for (6) such that

$$
\|\nabla u(t)\|_2 \sim \sqrt{\frac{\log[\log|T^* - t|]}{T^* - t}} (t \searrow T^*)
$$

(see [12, 13]).

1.2. Previous results. We describe previous results regarding the following nonlinear Schrödinger equation with a real-valued potential:

$$
i \frac{\partial u}{\partial t} + \Delta u + |u|^{4 \nu} u + V(x)u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N.
$$

At first, [3, 4] give results for growth potentials.

Theorem 1.1 (Carles and Nakamura [4]). If $V(x) = E \cdot x$ for some $E \in \mathbb{R}^N$, then (7) has a finite-time blow-up solution

$$
S(t, x) := \frac{1}{|t|^{\frac{4}{p}}} Q \left(\frac{x - t^2 E}{t} \right) \exp \left(i \left(\frac{1}{4t} \frac{|x - t^2 E|^2}{4} - \frac{1}{2} + tE \cdot x - \frac{t^3}{3} |E|^2 \right) \right).
$$

In particular, $\|S\|_2 = |Q|_2$.

Theorem 1.2 (Carles [3]). If $V(x) = \omega^2 |x|^2$ for some $\omega \in \mathbb{R}^N$, then (7) has a finite-time blow-up solution

$$
S(t, x) := \left(\frac{2 \omega}{\sinh (2 \omega t)} \right)^{\frac{1}{3}} Q \left(\frac{2 \omega x}{\sinh (2 \omega t)} \right) \times \exp \left(i \left(\frac{\omega |x|^2}{2 \sinh (2 \omega t) \cosh (2 \omega t)} - \frac{\omega}{2 \tanh (2 \omega t)} + \frac{\omega}{2} |x|^2 \tanh (2 \omega t) \right) \right).
$$

In particular, $\|S\|_2 = |Q|_2$.

These results show that (7) may have a critical-mass blow-up solution with a blow-up rate of t^{-1} when the potential V is easy to handle algebraically and can be reduced to (6).

Theorems 1.1 and 1.2 construct blow-up solutions by applying the pseudo-conformal transformation to the ground states. In contrast to these, the seminal work Raphaël and Szeftel [14] constructs a minimal-mass blow-up solution for

$$
i \frac{\partial u}{\partial t} + \Delta u + k(x)|u|^{\frac{4}{p}} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N
$$

without using the pseudo-conformal transformation. Le Coz, Martel, and Raphaël [7] based on the methodology of [14] obtains the following results for

$$
i \frac{\partial u}{\partial t} + \Delta u + |u|^{\frac{4}{p}} u \pm |u|^{p-1} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N.
$$

Theorem 1.3 (Le Coz, Martel, and Raphaël [7]). Let $N = 1, 2, 3, 1 < p < 1 + \frac{4}{N}$, and $\pm = +$. Then for any energy level $E_0 \in \mathbb{R}$, there exist $t_0 < 0$ and a radially symmetric initial value $u_0 \in H^1(\mathbb{R}^N)$ with

$$
\|u_0\|_2 = |Q|_2, \quad E(u_0) = E_0
$$

such that the corresponding solution u for (8) with $u(t_0) = u_0$ blows up at $t = 0$ with a blow-up rate of

$$
\|\nabla u(t)\|_2 = \frac{C(p) + o_{t \nearrow 0}(t)}{|t|^{\sigma}},
$$

where $\sigma = \frac{4}{4 + N(p - 1)}$ and $C(p) > 0$.

Theorem 1.4 ([7]). Let $N = 1, 2, 3, 1 < p < 1 + \frac{4}{N}$, and $\pm = -$. If an initial value has critical mass, then the corresponding solution for (8) with $u(0) = u_0$ is global and bounded in $H^1(\mathbb{R}^N)$.

Based on the method of [7, 14, 8] shows the following results for the case where the potential V is smooth and integrable but has no algebraic properties.
Theorem 1.5 \([8]\). We assume that \(V\) is locally Lipschitz function, \(V \in L^p(\mathbb{R}^N) + L^\infty(\mathbb{R}^N)\) for some \(p \in [2, \infty] \cap (\frac{N}{2}, \infty)\), and \(\nabla V \in L^q(\mathbb{R}^N) + L^\infty(\mathbb{R}^N)\) for some \(q \in [2, \infty] \cap (N, \infty)\). Then there exist \(t_0 < 0\) and a radial initial value \(u_0 \in \Sigma^1\) with \(\|u_0\|_2 = \|Q\|_2\) such that the corresponding solution \(u\) for (7) with \(u(t_0) = u_0\) blows up at \(t = 0\). Moreover,

\[
\left\| u(t) - \frac{1}{\lambda(t)^2} P\left(t, \frac{x + w(t)}{\lambda(t)} \right) e^{-\frac{\lambda(t)|x + w(t)|^2}{\lambda(t)^2} + \gamma(t)} \right\|_{\Sigma^1} \to 0 \quad (t \nearrow 0)
\]

holds for some \(C^1\) functions \(\lambda : (t_0, 0) \to (0, \infty), b, \gamma : (t_0, 0) \to \mathbb{R}\), and \(w : (t_0, 0) \to \mathbb{R}^N\) such that

\[
\lambda(t) = |t|^{1 + o(1)}, \quad b(t) = |t|^{1 + o(1)}, \quad \gamma(t) \sim |t|^{-1}, \quad |w(t)| = o(|t|)
\]
as \(t \nearrow 0\).

Theorem 1.6 \([9]\). Assume that \(V(x) := |x|^{-2\sigma}\), where \(0 < \sigma < \min\left\{ \frac{N}{2}, 1 \right\}\). Then for any energy level \(E_0 \in \mathbb{R}\), there exist \(t_0 < 0\) and a radially symmetric initial value \(u_0 \in H^1(\mathbb{R}^N)\) with

\[
\|u_0\|_2 = \|Q\|_2, \quad E(u_0) = E_0
\]
such that the corresponding solution \(u\) for (7) with \(u(t_0) = u_0\) blows up at \(t = 0\). Moreover,

\[
\left\| u(t) - \frac{1}{\lambda(t)^2} P\left(t, \frac{x}{\lambda(t)} \right) e^{-\frac{\lambda(t)|x|^2}{\lambda(t)^2} + \gamma(t)} \right\|_{\Sigma^1} \to 0 \quad (t \nearrow 0)
\]

holds for some blow-up profile \(P\) and \(C^1\) functions \(\lambda : (t_0, 0) \to (0, \infty)\) and \(b, \gamma : (t_0, 0) \to \mathbb{R}\) such that

\[
P(t) \to Q \quad \text{in} \quad H^1(\mathbb{R}^N),
\]

\[
\lambda(t) = C_1(\sigma)|t|^{\frac{\sigma}{1+\sigma}} (1 + o(1)), \quad b(t) = C_2(\sigma)|t|^{\frac{\sigma}{1+\sigma}} (1 + o(1)), \quad \gamma(t)^{-1} = O\left(|t|^{-\frac{\sigma}{1+\sigma}}\right)
\]
as \(t \nearrow 0\).

Theorem 1.7 \([9]\). Assume \(N \geq 2\) and \(V(x) := |x|^{-2\sigma}\), where \(0 < \sigma < \min\left\{ \frac{N}{2}, 1 \right\}\). If \(u_0 \in H^1_{\text{rad}}(\mathbb{R}^N)\) such that \(\|u_0\|_2 = \|Q\|_2\), the corresponding solution \(u\) for (7) with \(u(0) = u_0\) is global and bounded in \(H^1(\mathbb{R}^N)\).

The comparison of Theorem 1.3 with Theorem 1.6 and Theorem 1.7 with Theorem 1.8 suggests that a inverse power potential and a power-type nonlinearity have a similar effect on blow-up rate.

1.3. Main results. For \(\sigma_j\), we consider the following:

\[
\max\left\{ \frac{2 - N}{4}, 0 \right\} < \sigma_1 < \sigma_2 \leq 1, \quad \max\left\{ \frac{N}{2} - 1, 0 \right\} < \sigma_3 < 2\sigma_2 - 1.
\]

Moreover, for a potential \(V\), we consider the following:

\[
V \text{ is locally Lipschitz continuous on } \mathbb{R}^N,
\]

\[
\nabla V \in L^q(\mathbb{R}^N) + L^\infty(\mathbb{R}^N) \quad (q \geq 2 \text{ and } q > N).
\]

Theorem 1.8 (Existence of a minimal mass blow-up solution). Let \(\sigma_j\) satisfy (3), \(\xi \in \mathbb{R}^N\), and the potential \(V\) satisfy (3), (10), and (11). Then there exist \(t_0 < 0\) and a radial initial value \(u_0 \in \Sigma^1\) with \(\|u_0\|_2 = \|Q\|_2\) such that the corresponding solution \(u\) for (11) with \(u(t_0) = u_0\) blows up at \(t = 0\). Moreover,

\[
\left\| u(t, x) - \frac{1}{\lambda(t)^2} Q\left(\frac{x + w(t)}{\lambda(t)} \right) e^{-\frac{\lambda(t)|x + w(t)|^2}{\lambda(t)^2} + \gamma(t)} \right\|_{\Sigma^1} \to 0 \quad (t \nearrow 0)
\]

holds for some \(C^1\) functions \(\lambda : (t_0, 0) \to (0, \infty), b, \gamma : (t_0, 0) \to \mathbb{R}\), and \(w : (t_0, 0) \to \mathbb{R}^N\) such that

\[
\lambda(t) = |t| (1 + o(1)), \quad b(t) = |t| (1 + o(1)), \quad \gamma(t) \sim |t|^{-1}, \quad |w(t)| = o(|t|)
\]
as \(t \nearrow 0\).
Remark 1.9. In contrast, if \(\sigma_j \) satisfy (2), \(\xi \in \mathbb{R}^N \), and \(V \) satisfies (1), then any subcritical mass solution for (1) exists globally in time and is bounded in \(X_1 \). This can be proved easily by the Gagliardo-Nirenberg inequality and the Sobolev embedding theorem. Therefore, the solution in Theorem 1.8 is a minimal mass blow-up solution.

1.4. Comments regarding the main result. We present some comments regarding Theorem 1.8.

The potential \(W \) is composed of several terms, due to the existence of several growth potentials: \(\pm |x|^{2\sigma} \) and \(x|x|^\sigma \). This is because we assume that \(V \) is locally Lipschitz continuous near the origin, and therefore we cannot successfully divide growth potentials into \(V \) and \(U \). On the other hand, let \(\chi \) be a non-negative decreasing cut-off function that \(\chi = 1 \) near the origin and we define

\[
V(x) := |x|^{2\sigma} \chi(x), \quad U(x) := |x|^{2\sigma}(1 - \chi(x)).
\]

Then \(V = |x|^{2\sigma} + U \) holds. From Theorem 1.8 there exists a minimal mass blow-up solution for

\[
i \frac{\partial u}{\partial t} + \Delta u + |u|^{4\sigma} u - Uu - |x|^{2\sigma^2} u = 0.
\]

In contrast, \(V \) is not Lipschitz continuous near the origin if \(\sigma \) is a sufficiently small. Therefore, it is suggested that the assumption that \(V \) is a locally Lipschitz continuous is not essential.

A comparison of Theorem 1.5 with Theorem 1.8 suggests that the behaviour of potentials at infinity, in particular its growth, does not affect blow-up rate. Moreover, in comparison with Theorem 1.1 and 1.2 we expect to be able to construct a minimal mass blow-up solution for (1) with a blow-up rate \(t^{-1} \) if \(W = \omega|x|^{2\sigma} \) where \(0 < \sigma < 1 \) and \(\omega \in \mathbb{R}^N \). However, if \(\sigma \) is formally replaced by \(-\sigma \) in Theorem 1.6 the blow-up rate becomes \(t^{-\frac{4\sigma}{|\sigma|}} \), which does not achieve the uniqueness of blow-up rate may not hold for (1). However, the construction of such a solution is not easy, and the proof of Theorem 1.6 is difficult unless \(\sigma > 0 \). For example, it becomes non-trivial that [9, Lemma 5.2] holds.

2. Notation and preliminaries

We define

\[
(u, v)_2 := \text{Re} \int_{\mathbb{R}^N} u(x)\overline{v}(x)dx, \quad \|u\|_p := \left(\int_{\mathbb{R}^N} |u(x)|^pdx \right)^{\frac{1}{p}},
\]

\[
f(z) := |z|^{\frac{4}{N}} z, \quad F(z) := \frac{1}{2} + \frac{|z|^{2+\frac{4}{N}}}{N} \quad \text{for} \ z \in \mathbb{C}.
\]

By identifying \(\mathbb{C} \) with \(\mathbb{R}^2 \), we denote the differentials of \(f \) and \(F \) by \(df \) and \(dF \), respectively. We define

\[
\Lambda := \frac{N}{2} + x \cdot \nabla, \quad L_+ := -\Delta + 1 - \left(1 + \frac{4}{N}\right)Q^{\frac{4}{N}}, \quad L_- := -\Delta + 1 - Q^{\frac{4}{N}}.
\]

Namely, \(\Lambda \) is the generator of \(L^2 \)-scaling, and \(L_+ \) and \(L_- \) come from the linearised Schrödinger operator to close \(Q \). Then

\[
L_-Q = 0, \quad L_+\Lambda Q = -2Q, \quad L_-|x|^2Q = -4\Lambda Q, \quad L_+\rho = |x|^2Q, \quad L_-xQ = -\nabla Q
\]

hold, where \(\rho \in S(\mathbb{R}^N) \) is the unique radial solution for \(L_+\rho = |x|^2Q \). Furthermore, there exists \(\mu > 0 \) such that for any \(u \in H^1(\mathbb{R}^N) \),

\[
\langle L_+ \text{Re} u, \text{Re} u \rangle + \langle L_- \text{Im} u, \text{Im} u \rangle \geq \mu \|u\|_{H^1}^2 - \frac{1}{\mu} \left((\text{Re} u, Q)^2 + |(\text{Re} u, xQ)|^2 + (\text{Re} u, |x|^2Q)^2 + (\text{Im} u, \rho)^2 \right)
\]

holds (see, e.g., [11, 12, 14, 16]). Finally, we use the notation \(\preceq \) and \(\succeq \) when the inequalities hold up to a positive constant. We also use the notation \(\approx \) when \(\preceq \) and \(\succeq \) hold.

For the ground state \(Q \), the following property holds:

Proposition 2.1 (E.g., [7]). For any multi-index \(\alpha \), there exist \(C_\alpha, \kappa_\alpha > 0 \) such that

\[
\left| \left(\frac{\partial}{\partial x} \right)^\alpha Q(x) \right| \leq C_\alpha Q(x), \quad \left| \left(\frac{\partial}{\partial x} \right)^\alpha \rho(x) \right| \leq C_\alpha (1 + |x|)^{\kappa_\alpha} Q(x).
\]
We estimate the error terms Ψ that is defined by
\[\Psi(y) := \lambda^2 W(\lambda y - w)Q(y). \]

Moreover, we define κ by
\[\kappa := \min \left\{ 1 - \frac{N}{q}, 2\sigma_1, 2\sigma_2, \sigma_3 + 1 \right\} \in (0, 1]. \]

Without loss of generality, we may assume that $V(0) = U(0) = 0$.

Proposition 2.2 (Estimate of Ψ). There exists a sufficiently small constant $\epsilon' > 0$ such that
\[\left\| \epsilon' |y| \Psi \right\|_2 + \left\| \epsilon' |y| \nabla \Psi \right\|_2 \lesssim \lambda^{1+\kappa}(\lambda + |w|) \]
for $0 < \lambda \ll 1$ and $w \in \mathbb{R}^N$ such that $|w| \leq 1$.

Proof. As in [8], we have the estimate. We show only for $|x|^{2\sigma}$.

Firstly, we obtain
\[\left| \nabla \left(|\lambda y - w|^{2\sigma} Q(y) \right) \right| \lesssim |\lambda| |\lambda y - w|^{2\sigma - 1} Q(y) + |\lambda y - w|^{2\sigma} |\nabla Q(y)|. \]

If $2\sigma \geq 1$, then we obtain
\[\lambda^2 \left\| |\lambda y - w|^{2\sigma - 1} Q e^{\epsilon' |y|^2} \right\|_2 \lesssim \lambda^3 (\lambda^{2\sigma - 1} + w^{2\sigma - 1}) \lesssim \lambda^{1+2\sigma}(\lambda + w). \]

On the other hand, if $2\sigma \leq 1$, then we obtain
\[
\begin{aligned}
\left\| |\lambda y - w|^{2\sigma - 1} Q e^{\epsilon' |y|^2} \right\|_2 &\leq \lambda^{2\sigma} \left\| |y|^{2\sigma - 1} Q \left(y + \frac{w}{\lambda} \right) e^{\epsilon' |y + \frac{w}{\lambda}|^2} \right\|_2 \\
&\lesssim \lambda^{2\sigma} \left(\left\| |y|^{2\sigma - 1} Q \left(y + \frac{w}{\lambda} \right) e^{\epsilon' |y + \frac{w}{\lambda}|^2} \right\|_{L^2(|y| \leq 1)} + \left\| |y|^{2\sigma - 1} Q \left(y + \frac{w}{\lambda} \right) e^{\epsilon' |y + \frac{w}{\lambda}|^2} \right\|_{L^2(|y| \geq 1)} \right)
\end{aligned}
\]

Therefore, from (9),
\[\lambda^2 \left\| |\lambda y - w|^{2\sigma - 1} Q e^{\epsilon' |y|^2} \right\|_2 \lesssim \lambda^{2+2\sigma} \]
holds.

Accordingly, we obtain Proposition 2.2. \hfill \Box

At the end of this section, we state the following standard result. For the proof, see [12, 9].

Lemma 2.3 (Decomposition). There exists $\overline{C} > 0$ such that the following statement holds. Let I be an interval and $\delta > 0$ be sufficiently small. We assume that $u \in C(I, H^1(\mathbb{R}^N)) \cap C^1(I, X_1)$ satisfies
\[\forall \ t \in I, \ \left\| \lambda(t) \frac{\chi}{\lambda(t)} u(t, \lambda(t) y - w(t)) e^{i\tilde{\gamma}(t)} - Q \right\|_{H^1} < \delta \]
for some functions $\lambda : I \to (0, \infty)$, $\gamma : I \to \mathbb{R}$, and $w : I \to \mathbb{R}^N$. Then there exist unique functions $\tilde{\lambda} : I \to (0, \infty)$, $\tilde{b} : I \to \mathbb{R}$, $\tilde{\gamma} : I \to \mathbb{R}/2\pi \mathbb{Z}$, and $\tilde{w} : I \to \mathbb{R}^N$ such that
\[
\begin{aligned}
\tilde{\lambda}(t) - 1 &+ |\tilde{b}(t)| + |\tilde{\gamma}(t) - \gamma(t)|_{\mathbb{R}/2\pi \mathbb{Z}} + \left| \frac{\tilde{w}(t) - w(t)}{\lambda(t)} \right| < \overline{C}
\end{aligned}
\]
hold, where $|c|_{\mathbb{R}/2\pi \mathbb{Z}}$ is defined by
\[|c|_{\mathbb{R}/2\pi \mathbb{Z}} := \inf_{m \in \mathbb{Z}} |c + 2\pi m|, \]
and that $\tilde{\epsilon}$ satisfies the orthogonal conditions
\[
\begin{aligned}
(\tilde{\epsilon}, i\Lambda Q)_2 &= (\tilde{\epsilon}, |y|^2 Q)_2 = (\tilde{\epsilon}, i\rho)_2 = 0, \quad (\tilde{\epsilon}, yQ)_2 = 0
\end{aligned}
\]
on I. In particular, $\tilde{\lambda}, \tilde{b}, \tilde{\gamma}$, and \tilde{w} are C^1 functions and independent of λ, γ, and w.
3. Uniformity estimates for modulation terms

From this section to Section 6 we prepare lemmas for the proof of Theorem 1.8.

Given $t_1 < 0$ which is sufficiently close to 0, we define $s_1 := -t_1^{-1}$ and $\lambda_1 = b_1 = s_1^{-1}$. Let $u(t)$ be the solution for (11) with an initial value

$$u(t_1, x) := \frac{1}{\lambda_1} Q \left(\frac{x}{\lambda_1} \right) e^{-i \frac{|x|^2}{2 \lambda_1^2}}. \quad (15)$$

Note that $u \in C((T_s, T^*), \Sigma^2(\mathbb{R}^N))$ and $|x| \nabla u \in C((T_s, T^*), L^2(\mathbb{R}^N))$. Moreover,

$$\text{Im} \int_{\mathbb{R}^N} u(t_1, x) \nabla \psi(t_1, x) dx = 0$$

holds.

Since u satisfies the assumption in Lemma 2.3 in a neighbourhood of t_1, there exist decomposition parameters $\tilde{\lambda}_1$, \tilde{b}_1, $\tilde{\gamma}_1$, \tilde{w}_1, and \tilde{e}_1 such that (13) and (14) hold in the neighbourhood. We define the rescaled time s_{t_1} by

$$s_{t_1}(t) := s_1 - \int_t^{t_1} \frac{1}{\lambda_1(s)} \frac{d\tau}{\lambda_1(s)}.$$

Moreover, we define

$$t_{t_1} := s_{t_1}^{-1}, \quad \lambda_{t_1} := \tilde{\lambda}_{t_1}(t_{t_1}(s)), \quad b_{t_1} := \tilde{b}_{t_1}(t_{t_1}(s)), \quad \gamma_{t_1}(s) := \tilde{\gamma}_{t_1}(t_{t_1}(s)), \quad w_{t_1}(s) := \tilde{w}_{t_1}(t_{t_1}(s)), \quad \varepsilon_{t_1}(s, y) := \tilde{\varepsilon}_{t_1}(t_{t_1}(s), y).$$

For the sake of clarity in notation, we often omit the subscript t_1. Furthermore, let I_{t_1} be the maximal interval of the existence of the decomposition such that (13) and (14) hold and we define

$$J_{s_1} := s_{t_1}(I_{t_1}).$$

Additionally, let s_0 ($\leq s_1$) be sufficiently large and

$$s' := \max \{s_0, \inf J_{s_1}\}.$$

Let L, M, and M' satisfy

$$1 < M < L \leq 1 + \frac{\kappa}{2}, \quad 0 < M' < \min\{2(L-1), M\}.$$

Moreover, we define s_* by

$$s_* := \inf \{s \in (s', s_1] \mid (13) \text{ holds on } [\sigma, s_1]\},$$

where

$$\text{Mod}(s) := \left\{ \begin{array}{l}
\|\varepsilon(s)\|_{L^2}^2 + b(s)^2 \|\varepsilon(s)\|_{L^2}^2 < s^{-2L}, \\
|s\lambda(s) - 1| < s^{-M}, \quad |sb(s) - 1| < s^{-M'}, \quad |w(s)| < s^{-1}.
\end{array} \right. \quad (16)$$

Note that for all $s \in (s_*, s_1]$, we have

$$s^{-1}(1 - s^{-M}) < \lambda(s) < s^{-1}(1 + s^{-M}), \quad s^{-1}(1 - s^{-M'}) < b(s) < s^{-1}(1 + s^{-M'}).$$

Finally, we define

$$\text{Mod}(s) := \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b, \frac{\partial b}{\partial s} + b^2, 1 - \frac{\partial \gamma}{\partial s} \cdot \frac{\partial w}{\partial s} \right).$$

The goal of this section is to estimate of $\text{Mod}(s)$.

In the following, positive constants C and ϵ are sufficiently large and small, respectively. If necessary, we retake s_0 and s_1 sufficiently large in response to ϵ.
Lemma 3.1 (The equation for ε). In J_{s_1},
\begin{equation}
\Psi = i \frac{\partial \varepsilon}{\partial s} + \Delta \varepsilon - \varepsilon + f(Q + \varepsilon) - f(Q) - \lambda^2 W(\lambda y - w) \varepsilon
- i \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) \Lambda(Q + \varepsilon) + \left(1 - \frac{\partial \gamma}{\partial s} \right) (Q + \varepsilon) + \frac{1}{\lambda} \frac{\partial w}{\partial s} \cdot \nabla(Q + \varepsilon) + \frac{1}{\lambda} \frac{\partial w}{\partial s} \cdot y(Q + \varepsilon)
\end{equation}
holds.
\textbf{proof.} This result is proven via direct calculation. \hfill \Box

Lemma 3.2. For $s \in (s_*, s_1]$,
\begin{align}
|\text{Im}(\varepsilon(s), \nabla Q)| & \lesssim s^{-(2L-1)}, \\
(\varepsilon(s), Q)_2 & = -\frac{1}{2} \|\varepsilon(s)\|_2^2, \\
|\text{Mod}(s)| & \lesssim s^{-2L}
\end{align}
\textbf{proof.} As in \cite{8}, we have the estimate. \hfill \Box

4. Modified energy function

In this section, we proceed with a modified version of the technique presented in Le Coz, Martel, and Raphaël \cite{7} and Raphaël and Szeftel \cite{14}. Let m satisfy
\[2 < m \leq 2L.\]
Moreover, we define
\[H(s, \varepsilon) := \frac{1}{2} \|\varepsilon\|^2_{H^1} + \epsilon_1 b^2 \|y|\varepsilon\|_2^2 - \int_{\mathbb{R}^N} \left(F(Q(y) + \varepsilon(y)) - F(Q(y)) - \frac{dF(Q(y))}{dy}(\varepsilon(y)) \right) dy
+ \frac{1}{2} \lambda^2 \int_{\mathbb{R}^N} W(y)|\varepsilon(y)|^2 dy,
\]
\[S(s, \varepsilon) := \frac{1}{\lambda^m} H(s, \varepsilon),\]
where ϵ_1 is a sufficiently small.

Lemma 4.1. For $s \in (s_*, s_1]$,
\[\frac{C_1}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + \epsilon_1 b^2 \|y|\varepsilon\|_2^2 \right) \leq S(s, \varepsilon) \leq \frac{C_2}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|_2^2 \right),
\]
\[\frac{b}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|_2^2 - \epsilon s^{-(2L+\kappa')} \right) \lesssim \frac{d}{ds} S(s, \varepsilon(s))
\]
hold.
\textbf{proof.} As in \cite{8}, we have the estimates. \hfill \Box

5. Bootstrap

In this section, we establish the estimates of the decomposition parameters by using a bootstrap argument and the estimates obtained in Section \cite{4}.
Lemma 5.1. There exists a sufficiently small \(\epsilon_2 > 0 \) such that for all \(s \in (s_*, s_1] \),
\[
\| \varepsilon(s) \|_{H^1}^2 + b(s) \| y \varepsilon(s) \|_{H^2}^2 \lesssim s^{-(2L+\kappa')},
\]
\[
| s_1 \lambda(s) - 1 | < (1 - \epsilon_2)s^{-M},
\]
\[
| s_1 b(s) - 1 | \lesssim s^{-2(L-1) + s^{-M}},
\]
\[
| w'(s) | \lesssim s^{-(2L-1)}.
\]
Moreover, \(s_* = s' = s_0 \) if \(s_0 \) is sufficiently large.

proof. See [8] for details of the proof.

\[\square \]

6. Conversion of estimates

In this section, we rewrite the estimates obtained for the time variable \(s \) in Lemma 5.1 into an estimates for the time variable \(t \).

Lemma 6.1 (Interval). If \(s_0 \) is sufficiently large, then there exists \(t_0 < 0 \) such that
\[
[t_0, t_1] \subset s_1^{-1}([s_0, s_1]), \quad |s_1(t) - |t|| \lesssim |t|^{M+1} \quad (t \in [t_0, t_1])
\]
hold for \(t_1 \in (t_0, 0) \).

Lemma 6.2 (Conversion of estimates). For \(t \in [t_0, t_1] \),
\[
\bar{\lambda}_{t_1}(t) = |t| \left(1 + \epsilon_{\bar{\lambda}, t_1}(t) \right), \quad \bar{b}_{t_1}(t) = |t| \left(1 + \epsilon_{\bar{b}, t_1}(t) \right), \quad |\bar{w}_{t_1}(t)| \lesssim |t|^{2L},
\]
\[
\| \bar{\varepsilon}_{t_1} \|_{H^1} \lesssim |t|^{L + \frac{\kappa'}{2}}, \quad \| y \bar{\varepsilon}_{t_1} \|_{H^1} \lesssim |t|^{L + \frac{\kappa'}{2} - 1}
\]
holds. Furthermore,
\[
\sup_{t \in [t_0, t_1]} \left| \epsilon_{\bar{\lambda}, t_1}(t) \right| \lesssim |t|^{M}, \quad \sup_{t \in [t_0, t_1]} \left| \epsilon_{\bar{b}, t_1}(t) \right| \lesssim |t|^{M'}.
\]

See [8] for details of the proofs.

7. Proof of Theorem 1.8

In this section, we prove Theorem 1.8. See [7, 8] for details of the proof.

Proof of Theorem 1.8. Let \(\{t_n\}_{n \in \mathbb{N}} \subset (0, 0) \) be a monotonically increasing sequence such that \(\lim_{n \to \infty} t_n = 0 \). For each \(n \in \mathbb{N} \), let \(u_n \) be the solution for (NLS) with an initial value
\[
u_n(t_n, x) := \frac{1}{\lambda_{1,n}^{\frac{1}{2}}} Q \left(\frac{x}{\lambda_{1,n}} \right) e^{-\frac{b_{1,n}}{2} \left| x \right|^2} \lambda_{1,n}^{-\frac{1}{2}}
\]
at \(t_n \), where \(b_{1,n} = \lambda_{1,n} = s_n^{-1} = -t_n \). According to Lemma 2.3 with an initial value \(\bar{\gamma}_n(t_n) = 0 \), there exists a decomposition
\[
u_n(t, x) = \frac{1}{\lambda_n(t)^{\frac{3}{2}}} (Q + \tilde{\varepsilon}_n) \left(t, \frac{x + \tilde{\gamma}_n(t)}{\lambda(t)} \right) e^{-\frac{b}{2} \left| x + \tilde{\gamma}_n(t) \right|^2} e^{i\tilde{\gamma}_n(t)}
\]
on \([t_0, t_n]\). Then, \(\{u_n(t_n)\}_{n \in \mathbb{N}} \) is bounded in \(\Sigma^1 \). Therefore, up to a subsequence, there exists \(u_{\infty}(t_0) \in \Sigma^1 \) such that
\[
u_n(t_n) \to u_{\infty}(t_0) \quad (n \to \infty)
\]
and
\[
u_n(t_0) \to u_{\infty}(t_0) \quad (n \to \infty).
\]
Let \(u_{\infty} \) be the solution for (NLS) with an initial value \(u_{\infty}(t_0) \) and \(T^* \) be the supremum of the maximal existence interval of \(u_{\infty} \). Moreover, we define \(T := \min \{0, T^*\} \). Then, for any \(T' \in [t_0, T] \), \([t_0, T'] \subset [t_0, t_n] \) if \(n \) is sufficiently large. Then, there exists \(n_0 \) such that
\[
sup_{n \geq n_0} \| u_n \|_{L^\infty([t_0, T'], \Sigma^1)} \lesssim (1 + |T'|^{-1}) (1 + |t_0|^{L'})
\]
holds. Therefore, we obtain

\[u_n \to u_\infty \text{ in } C([t_0, T'), L^2(\mathbb{R}^N)) \quad (n \to \infty). \]

In particular, \(u_n(t) \to u_\infty(t) \) in \(\Sigma^1 \) for any \(t \in [t_0, T) \). Furthermore, we have

\[\|u_\infty(t)\|_2 = \|u_\infty(t_0)\|_2 = \lim_{n \to \infty} \|u_n(t_0)\|_2 = \lim_{n \to \infty} \|u_n(t_n)\|_2 = \|Q\|_2. \]

Based on weak convergence in \(H^1(\mathbb{R}^N) \) and Lemma \ref{lem:weak_convergence}, we decompose \(u_\infty \) to

\[u_\infty(t, x) = \frac{1}{\hat{\lambda}(t)} (Q + \hat{\epsilon}) \left(t, x + \hat{\omega}(t) \right) e^{-i \frac{k_\infty(t)}{\hat{\lambda}(t)} (t + \hat{\omega}(t))^2 + i \gamma(t)} \]

on \([t_0, T) \) for some initial value of \(\hat{\gamma} \) is \(\gamma_\infty(t_0) \in \left(|0|^{-1} - \pi, |0|^{-1} + \pi \right] \). Furthermore, as \(n \to \infty \),

\[\hat{\lambda}_n(t) \to \hat{\lambda}_\infty(t), \quad \hat{b}_n(t) \to \hat{b}_\infty(t), \quad \hat{\omega}_n(t) \to \hat{\omega}_\infty(t), \quad e^{i \gamma_n(t)} \to e^{i \gamma_\infty(t)}, \quad \hat{\epsilon}_n(t) \to \hat{\epsilon}_\infty(t) \]

in \(\Sigma^1 \) holds for any \(t \in [t_0, T) \). Therefore, we have

\[\hat{\lambda}_\infty(t) = |t| (1 + \epsilon_{\hat{\lambda},0}(t)), \quad \hat{b}_\infty(t) = |t| (1 + \epsilon_{\hat{b},0}(t)), \quad \|\hat{\omega}_\infty(t)\|_2 \lesssim |t|^{2L}, \]

\[\|\hat{\epsilon}_\infty(t)\|_H^2 \lesssim |t|^{L + \epsilon_{\gamma,0}'}, \quad \|\|\hat{\epsilon}_\infty(t)\|_2 \| \lesssim |t|^{L + \epsilon_{\gamma,0}' - 1}, \]

\[|\epsilon_{\hat{\lambda},0}(t)| \lesssim |t|^M, \quad |\epsilon_{\hat{b},0}(t)| \lesssim |t|^M \]

from a uniform estimate of Lemma \ref{lem:uniform_estimate}. Consequently, we obtain Theorem \ref{thm:main_theorem}. \(\square \)

REFERENCES

[1] V. Banica, R. Carles, and T. Duyckaerts.: Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation. Comm. Partial Differential Equations 36 (2011), no. 3, 487–531.

[2] H. Berestycki and P.-L. Lions.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.

[3] R. Carles.: Nonlinear Schrödinger equations with repulsive harmonic potential and applications. SIAM J. Math. Anal. 35 (2003), no. 4, 824–845.

[4] R. Carles and Y. Nakamura.: Nonlinear Schrödinger equations with Stark potential. Hokkaido Math. J. 33 (2004), no. 3.

[5] T. Cazenave.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[6] M. K. Kwong.: Uniqueness of positive solutions of \(\Delta u - u + u^p = 0 \) in \(\mathbb{R}^n \). Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266.

[7] S. Le Coz, Y. Martel, and P. Raphael.: Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Rev. Mat. Iberoam. 32 (2016), no. 3, 795–833.

[8] N. Matsui.: Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential, arXiv preprint https://arxiv.org/abs/2007.15968

[9] N. Matsui.: Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential. Nonlinear Anal. 213 (2021), Paper No. 112497.

[10] F. Merle.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 (1993), no. 2, 427–454.

[11] F. Merle and P. Raphael.: On universality of blow-up profile for \(L^2 \) critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), no. 3, 565–672.

[12] F. Merle and P. Raphael.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157–222.

[13] F. Merle and P. Raphael.: On a sharp lower bound on the blow-up rate for the \(L^2 \) critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 (2006), no. 1, 37–90.

[14] P. Raphael and J. Szeftel.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Amer. Math. Soc. 24 (2011), no. 2, 471-546.

[15] M. Weinstein.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567–576.

[16] M. Weinstein.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. 719-729.

N. Matsui DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF SCIENCE, 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN

Email address, N. Matsui: 1120703@ed.tus.ac.jp