THE GROTHENDIECK RING OF VARIETIES IS NOT A DOMAIN

BJORN POONEN

1. The Grothendieck ring of varieties

Let k be a field. By a k-variety we mean a geometrically reduced, separated scheme of finite type over k. Let \mathcal{V}_k denote the category of k-varieties. Let $K_0(\mathcal{V}_k)$ denote the free abelian group generated by the isomorphism classes of k-varieties, modulo all relations of the form $[X - Y] = [X] - [Y]$ where Y is a closed k-subvariety of a k-variety X. Here, and from now on, $[X]$ denotes the class of X in $K_0(\mathcal{V}_k)$. The operation $[X] \cdot [Y] := [X \times_k Y]$ is well-defined, and makes $K_0(\mathcal{V}_k)$ a commutative ring with 1. It is known as the Grothendieck ring of k-varieties. A completed localization of $K_0(\mathcal{V}_k)$ is needed for the theory of motivic integration, which has many applications: see [Loo00] for a survey.

Our main result is the following.

Theorem 1. Suppose that k is a field of characteristic zero. Then $K_0(\mathcal{V}_k)$ is not a domain.

Remark. We conjecture that the result holds also for fields k of characteristic p. But we use a result whose proof relies on resolution of singularities and weak factorization of birational maps, which are known only in characteristic zero.

2. Abelian varieties of GL_2-type

If A is an abelian variety over a field k_0, and k is a field extension of k_0, then $\text{End}_k(A)$ denotes the endomorphism ring of the base extension $A_k := A \times_{k_0} k$, that is, the ring of endomorphisms defined over k.

Lemma 2. Let k be a field of characteristic zero, and let \overline{k} denote an algebraic closure. There exists an abelian variety A over k such that $\text{End}_k(A) = \text{End}_{\overline{k}}(A) \cong \mathcal{O}$, where \mathcal{O} is the ring of integers of a number field of class number 2.

Let us precede the proof of Lemma 2 with a few paragraphs of motivation. Our strategy will be to find a single abelian variety A over \mathbb{Q} such that the base extension A_k works over k.

Suppose that A is a nonzero abelian variety over \mathbb{Q}. Let $\text{Lie} A$ be its Lie algebra, which is a \mathbb{Q}-vector space of dimension $\dim A$. If $\text{End}_\mathbb{Q}(A)$ is an order in a number field F, then the \mathcal{O}-action makes $\text{Lie} A$ a vector space over $\mathcal{O} \otimes \mathbb{Q} = F$; hence $[F : \mathbb{Q}] \leq \dim A \text{Lie} A = \dim A$. If moreover equality holds, then A is said to be of GL_2-type. (The terminology is due to the following: If A is of GL_2-type, then the action of the Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on a Tate module $T_\ell A$ can be viewed as a representation $\rho_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_\ell)$.)

Date: April 15, 2002.

1991 Mathematics Subject Classification. Primary 14A10; Secondary 14G35.

Key words and phrases. Grothendieck ring of varieties, modular abelian variety, stable birational equivalence, Albanese variety.

This research was supported by NSF grant DMS-9801104, and a Packard Fellowship.
Because \(\mathbb{Q} \) has class number 1, we must take \([F : \mathbb{Q}] \geq 2\) to find an \(A \) over \(\mathbb{Q} \) as in Lemma \(\ref{lemma:extension} \). The inequality \([F : \mathbb{Q}] \leq \dim A\) then forces \(\dim A \geq 2\). Moreover, if we want \(\dim A = 2\), then \(A \) must be of \(\text{GL}_2\)-type.

Abelian varieties of \(\text{GL}_2\)-type are closely connected to modular forms. For each \(N \geq 1 \), let \(\Gamma_1(N) \) denote the classical modular group, let \(X_1(N) \) denote the corresponding modular curve over \(\mathbb{Q} \), and let \(J_1(N) \) be the Jacobian of \(X_1(N) \). G. Shimura \cite{Shimura1971}, Theorem 7.14, attached to each weight-2 newform \(f \) on \(\Gamma_1(N) \) an abelian variety quotient \(A_f \) of \(J_1(N) \). It is known that \(\dim A_f = [F : \mathbb{Q}] \), where \(F \) is the number field generated over \(\mathbb{Q} \) by the Fourier coefficients of \(f \). These coefficients can also be identified with the endomorphisms of \(A_f \) induced by the Hecke correspondences on \(X_1(N) \); hence \(A_f \) is \(\text{GL}_2\)-type. Conversely, it is conjectured that each abelian variety of \(\text{GL}_2\)-type is \(\mathbb{Q}\)-isogenous to some \(A_f \). See \cite{Ribet1980} for more details. The \(\dim A = 1 \) case of this conjecture is the statement that elliptic curves over \(\mathbb{Q} \) are modular, which is known \cite{B成功}.

Therefore we are led to consider \(A_f \) of dimension 2, where \(f \) is a newform as above.

Proof of Lemma \(\ref{lemma:inclusion} \) Tables \cite{Stein} show that there exists a weight-2 newform \(f = \sum_{n=1}^{\infty} a_n q^n \) on \(\Gamma_0(276) \) (hence also on \(\Gamma_1(276) \)) such that \(\mathbb{Q}(\{a_n : n \geq 1\}) = \mathbb{Q}(\sqrt{10}), \ a_{17} = 4 - \sqrt{10} \), and \(a_{19} = 2 + \sqrt{10} \). Let \(A = A_f \) be the corresponding abelian variety over \(\mathbb{Q} \). Then \(\dim A = [\mathbb{Q}(\sqrt{10}) : \mathbb{Q}] = 2 \). Also, \(\text{End}_\mathbb{Q}(A) \) is an order of \(\mathbb{Q}(\sqrt{10}) \) containing \(4 - \sqrt{10} \), so \(\text{End}_\mathbb{Q}(A) \) is the maximal order \(\mathbb{Z}[\sqrt{10}] \) of \(\mathbb{Q}(\sqrt{10}) \). The class number of \(\mathbb{Q}(\sqrt{10}) \) is 2.

It remains to show that \(\text{End}_k(A) = \mathbb{Z}[\sqrt{10}] \) for any field extension \(k \) of \(\mathbb{Q} \). For any place of \(k \) at which \(A \) has good reduction, \(\text{End}_k(A) \) injects into the endomorphism ring of the reduction. We will use this to bound \(\text{End}_k(A) \). The abelian variety \(A \) has good reduction at all primes not dividing 276, so in particular it has good reduction at 17 and 19. Let \(A_{17} \) and \(A_{19} \) denote the resulting abelian varieties over \(\mathbb{F}_{17} \) and \(\mathbb{F}_{19} \). The places 17 and 19 of \(\mathbb{Q} \) extend to places of \(k \) taking values in \(\mathbb{F}_{17} \) and \(\mathbb{F}_{19} \). Thus \(\text{End}_k(A) \) injects into \(\text{End}_{\mathbb{F}_{17}}(A_{17}) \) and \(\text{End}_{\mathbb{F}_{19}}(A_{19}) \).

By the work of Eichler and Shimura (see Theorem 4 in D. Rohrlich’s article in \cite{CSS97}), the characteristic polynomial \(P_{17}(x) \) of Frobenius on \(A_{17} \) equals

\[
N_{\mathbb{Q}(\sqrt{10})/\mathbb{Q}}(x^2 - a_{17}x + 17) = x^4 - 8x^3 + 40x^2 - 136x + 289.
\]

This is irreducible over \(\mathbb{Q} \), and its middle coefficient is prime to 17, so \(A_{17} \) is a simple ordinary abelian surface. Checking the criterion in \cite{Hida2002} (see especially Theorem 6 and the last paragraph of Section 2), we find that \(\text{End}_{\mathbb{F}_{17}}(A_{17}) \otimes \mathbb{Q} \simeq \mathbb{Q}[x]/(P_{17}(x)) \). Similarly, \(\text{End}_{\mathbb{F}_{19}}(A_{19}) \otimes \mathbb{Q} \simeq \mathbb{Q}[x]/(P_{19}(x)) \). The ratio of the discriminants of \(P_{17}(x) \) and \(P_{19}(x) \) is not a square in \(\mathbb{Q} \), so \(\mathbb{Q}[x]/(P_{17}(x)) \) and \(\mathbb{Q}[x]/(P_{19}(x)) \) are distinct number fields of degree 4. But \(\text{End}_k(A) \otimes \mathbb{Q} \) embeds into both, so \(\dim_{\mathbb{Q}}(\text{End}_k(A) \otimes \mathbb{Q}) \leq 2 \). On the other hand, \(\mathbb{Z}[\sqrt{10}] \subseteq \text{End}_k(A) \), so \(\text{End}_k(A) = \mathbb{Z}[\sqrt{10}] \).

Remark. The case \(k = \mathbb{C} \) of Lemma \(\ref{lemma:complex} \) has an easy proof: let \(A \) be an elliptic curve over \(\mathbb{C} \) with complex multiplication by \(\mathbb{Z}[\sqrt{-5}] \).

3. Abelian varieties and projective modules

Let \(A \) be an abelian variety over a field \(k \), and let \(\mathcal{O} = \text{End}_k(A) \). Given a finite-rank projective right \(\mathcal{O} \)-module \(M \), we define an abelian variety \(M \otimes_\mathcal{O} A \) as follows: choose a finite presentation \(\mathcal{O}^m \to \mathcal{O}^n \to M \to 0 \), and let \(M \otimes_\mathcal{O} A \) be the cokernel of the homomorphism
\(A^m \rightarrow A^n \) defined by the matrix that gives \(\mathcal{O}^m \rightarrow \mathcal{O}^n \). It is straightforward to check that this is independent of the presentation, and that \(M \mapsto (M \otimes_{\mathcal{O}} A) \) defines a fully faithful functor \(T \) from the category of finite-rank projective right \(\mathcal{O} \)-modules to the category of abelian varieties over \(k \). (Essentially the same construction is discussed in the appendix by J.-P. Serre in [Lau01].)

Lemma 3. Let \(k \) be a field of characteristic zero. There exist abelian varieties \(A \) and \(B \) over \(k \) such that \(A \times A \simeq B \times B \) but \(A_k \ncong B_k \).

Proof. Let \(A \) and \(\mathcal{O} \) be as in Lemma 2. Let \(I \) be a nonprincipal ideal of \(\mathcal{O} \). Since \(\mathcal{O} \) is a Dedekind domain, the isomorphism type of a direct sum of fractional ideals \(I_1 \oplus \ldots \oplus I_n \) is determined exactly by the nonnegative integer \(n \) and the product of the classes of the \(I_i \) in the class group \(\text{Pic}(\mathcal{O}) \). Since \(\text{Pic}(\mathcal{O}) \simeq \mathbb{Z}/2 \), we have \(\mathcal{O} \oplus \mathcal{O} \simeq I \oplus I \) as \(\mathcal{O} \)-modules. Applying the functor \(T \) yields \(A \times A \simeq B \times B \), where \(B := I \otimes_{\mathcal{O}} A \). Since \(\text{End}_k(A) \) also equals \(\mathcal{O} \), we have \(B_k \ncong I_k \otimes_{\mathcal{O}} A_k \). Since \(T \) for \(k \) is fully faithful, \(A_k \ncong B_k \). \(\square \)

4. Rings related to the Grothendieck ring of varieties

For any extension of fields \(k \subseteq k' \), there is a ring homomorphism \(K_0(V_k) \rightarrow K_0(V_{k'}) \) mapping \([X]\) to \([X_{k'}]\).

Let \(k \) be a field of characteristic zero. Smooth, projective, geometrically integral \(k \)-varieties \(X \) and \(Y \) are called *stably birational* if \(X \times \mathbb{P}^m \) is birational to \(Y \times \mathbb{P}^n \) for some integers \(m, n \geq 0 \). The set \(\text{SB}_k \) of equivalence classes of this relation is a monoid under product of varieties over \(k \). Let \(\mathbb{Z}[\text{SB}_k] \) denote the corresponding monoid ring.

When \(k = \mathbb{C} \), there is a unique ring homomorphism \(K_0(V_k) \rightarrow \mathbb{Z}[\text{SB}_k] \) mapping the class of any smooth projective integral variety to its stable birational class [LL01]. (In fact, this homomorphism is surjective, and its kernel is the ideal generated by \(L := [A^1] \).) The proof in [LL01] requires resolution of singularities and weak factorization of birational maps [AKMW00, Theorem 0.1.1], [W01, Conjecture 0.0.1]. The same proof works over any algebraically closed field of characteristic zero.

The set \(\text{AV}_k \) of isomorphism classes of abelian varieties over \(k \) is a monoid. The Albanese functor mapping a smooth, projective, geometrically integral variety to its Albanese variety induces a homomorphism of monoids \(\text{SB}_k \rightarrow \text{AV}_k \), since the Albanese variety is a birational invariant, since formation of the Albanese variety commutes with products, and since the Albanese variety of \(\mathbb{P}^n \) is trivial. Therefore we obtain a ring homomorphism \(\mathbb{Z}[\text{SB}_k] \rightarrow \mathbb{Z}[\text{AV}_k] \).

5. Zerodivisors

Proof of Theorem 2. Let \(A \) and \(B \) be as in Lemma 3. Then \(([A] + [B])([A] - [B]) = 0 \) in \(K_0(V_k) \). On the other hand, \([A] + [B]\) and \([A] - [B]\) are nonzero, because their images under the composition

\[
K_0(V_k) \rightarrow K_0(V_{k'}) \rightarrow \mathbb{Z}[\text{SB}_{k'}] \rightarrow \mathbb{Z}[\text{AV}_{k'}]
\]

are nonzero. (The Albanese variety of an abelian variety is itself.) \(\square \)

Acknowledgements

I thank Eduard Looijenga and Arthur Ogus for discussions. The package GP-PARI was used to perform the calculations in the last paragraph of the proof of Lemma 3.
References

[AKMW00] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jaroslaw Wlodarczyk, *Torification and factorization of birational maps*, MPI 1999 - 59, 31 May 2000, arXiv:math.AG/9904135.

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, *On the modularity of elliptic curves over \(\mathbb{Q} \): wild 3-adic exercises*, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

[CSS97] Gary Cornell, Joseph H. Silverman, and Glenn Stevens (eds.), *Modular forms and Fermat’s last theorem*, Springer-Verlag, New York, 1997, Papers from the Instructional Conference on Number Theory and Arithmetic Geometry held at Boston University, Boston, MA, August 9–18, 1995.

[HZ02] Everett W. Howe and Hui June Zhu, *On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field*, J. Number Theory 92 (2002), no. 1, 139–163.

[Lau01] Kristin Lauter, *The maximum or minimum number of rational points on curves of genus three over finite fields*, with an appendix by Jean-Pierre Serre, arXiv:math.AG/0104086, 7 April 2001.

[LL01] Michael Larsen and Valery A. Lunts, *Motivic measures and stable birational geometry*, arXiv:math.AG/0110255, 23 October 2001.

[Loo00] Eduard Looijenga, *Motivic measures*, arXiv:math.AG/0006220, 21 October 2000.

[Rib92] Kenneth A. Ribet, *Abelian varieties over \(\mathbb{Q} \) and modular forms*, Algebra and topology 1992 (Taejön), Korea Adv. Inst. Sci. Tech., Taejön, 1992, pp. 53–79.

[Shi71] Goro Shimura, *Introduction to the arithmetic theory of automorphic functions*, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1.

[Shi73] Goro Shimura, *On the factors of the jacobian variety of a modular function field*, J. Math. Soc. Japan 25 (1973), 523–544.

[Ste] William Stein, *The Modular Forms Database*, http://modular.fas.harvard.edu/Tables.

[Wlo01] Jaroslaw Wlodarczyk, *Toroidal varieties and the weak factorization theorem*, 22 June 2001, arXiv:math.AG/9904076.

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

E-mail address: poonen@math.berkeley.edu