Sanfu herbal patch applied at acupoints in patients with bronchial asthma: study protocol for a randomized controlled trial

CURRENT STATUS: UNDER REVIEW

Xie Xiaoyan
Guangzhou University of Chinese Medicine

ORCiD: https://orcid.org/0000-0003-1757-8872

Danghan Xu
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Lixing Zhuang
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Hui Liu
Guangzhou University of Chinese Medicine

Sui Tan
Guangzhou University of Traditional Chinese Medicine

Yanqing Lu
The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine

Meiyi Su
The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine

Jie Chen
Guangdong Second Provincial General Hospital

Haihua Pan
Pingshan District People's Hospital of Shenzhen

Lu Lu
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Yiming Xu
Guangzhou Medical University
Muxi Liao
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Zhanqiong Xu
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital

Jun He
First Affiliated Hospital of Guangzhou University of Chinese Medicine

✉ hejuntcm@hotmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-2231-8226

DOI:
10.21203/rs.3.rs-19307/v1

SUBJECT AREAS
Integrative & Complementary Medicine Internal Medicine

KEYWORDS
Bronchial asthma, Sanfu herbal patch, Airway inflammation, RCT
Abstract
Background Bronchial asthma (BA) is one of the most common inflammatory airway disorders. As one of the main non-drug therapies, the Sanfu herbal patch (SHP) has been widely used to treat BA, although the evidence and mechanism are inconclusive. The objective of this pilot trial is to clarify the clinical efficacy and safety of the SHP in the treatment of BA in the chronic persistent or clinical remission stage and to provide high-quality data for further research.

Methods: We propose a multicenter, double-blinded, parallel, randomized, placebo-controlled clinical trial involving 4 study hospitals in China. A total of 72 eligible participants will be randomized into an SHP group and a placebo group. They will receive SHP for 3 treatment sessions (TSs). The primary outcome will be changes in forced expiratory volume in one second after 3 TSs. Secondary outcomes will include: (1) the Asthma Quality of Life Questionnaire, Asthma Control Test, and Asthma Long-term Follow-up Scale; (2) levels of Metallothionein-2 and Transgelin-2 in blood and urine; and (3) levels of IL-5, IL-13, IL-23, IL-25, and thymic stromal lymphopoietin in blood. Analysis of the data will be performed at baseline, at the end of the 2nd and 3rd TSs and at 24-week follow-up. The safety of the SHP will be evaluated at each TS.

Discussion: The aim of this trial is to determine whether SHP is more effective than placebo in the treatment of patients with BA, and whether SHP works by reducing airway inflammation and reversing bronchoconstriction.

Trial registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn), ChiCTR1900024616.

Registered on 19 July 2019.

Background
Bronchial asthma (BA) is one of the most common chronic inflammatory airway disorders presenting with recurrent episodes of wheezing, recurrent cough, shortness of breath, sputum in the throat, and chest tightness[1]. Worldwide, more than 330 million people have BA[2], and the incidence of the disease has been increasing with a number projected to reach 400 million by 2025[3]. Among them, Chinese BA patients now account for 36.7%, as the largest proportion[4]. The high incidence and high recurrence rate of BA not only bring a heavy economic burden to patients but also seriously affect
their quality of life. If symptoms persist, patients may have asthma exacerbations[5, 6], lung function decline[7] and pathological bronchial wall narrowing[8], which may cause psychological depression[9], and eventually lead to limited daily activities and even death[10].

At present, the treatment for BA is to reduce symptoms and improve patients’ daily activities. The commonly used symptomatic pharmacotherapy includes desensitization therapy and drug treatments. The main drug treatments include inhaled corticosteroids (ICSs), beta-2 agonists and leukotriene receptor antagonists (LTRAs)[11]. However, desensitization therapy has strict indications that limit its application[12]. Drug treatments could cause side effects, such as ulcers, Cushing's syndrome, osteoporosis, and the risk increases with age and treatment duration[13]. Therefore, a safe and effective therapy for BA is urgently required to improve patients’ quality of life and reduce uncontrollable symptoms and the national medical burden.

The Sanfu herbal patch (SHP) is important in traditional Chinese medicine as an external therapy for respiratory diseases[14, 15]. It has been widely used in China for more than 300 years[16]. SHP means applying herbal patches to specific acupoints to stimulate skin, meridians and collaterals only during Sanfu period to produce preventive and therapeutic effects. The Sanfu period (between mid-July to mid-August) is supposed to include the hottest days in the year in China. Asthma is the most common condition treated by SHP[14]. SHP is effective at reducing the frequency of symptoms, decreasing concomitant medications and improving lung function and quality of life [17, 18]. Although SHP is widely used to treat BA and has achieved good results, there is still a lack of good medical evidence to verify whether it is beneficial. In addition, the molecular biological mechanism is still unclear. Studies have suggested that SHP has a positive effect on the immune outcomes of asthma[15], such as reducing interleukin 4 (IL-4) and significantly increasing IFN-γ[19].

A systematic review and meta-analysis of 34 randomized controlled trials (RCTs) published in 2017 involving 3313 participants showed that most of the studies were of poor quality[20]. These findings should be interpreted with caution due to limitations in trial quality. Therefore, a large-scale and rigorously designed RCT that overcomes identified methodological problems is necessary.

The motives for this study are twofold. The primary aim is to determine the clinical efficacy of SHP in
BA patients after 3 treatment sessions (TSs) and 24 weeks. Second, we hope to gain insight regarding whether SHP works by reducing airway inflammation and reversing bronchoconstriction.

Methods

Trial design
This study is a multi-centre parallel randomized controlled trial. Participants with BA will be screened based on strict inclusion and exclusion criteria from January 2020 to December 2021. After providing written informed consent, 72 eligible participants will be randomly allocated to one of two groups: an SHP group receiving SHP treatment; a placebo group receiving placebo patch treatments. They will receive treatment for 3 TSs and follow-up assessments for 24 weeks (Fig. 1 and Fig. 2). The trial has been registered with the Chinese Clinical Trial Registry (ChiCTR1900024616, registered on 19 July 2019). The protocol design is based on the guidelines of the Consolidated Standards of Reporting Trials and Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT). (See Additional file 1 SPIRIT 2013 checklist)

Trial population
The trial will be conducted in 4 centres. These include the First Affiliated Hospital of Guangzhou University of Chinese Medicine, the Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Second Provincial General Hospital, and Pingshan District Peoples’ Hospital of Shenzhen. The clinical investigators from each centre will be responsible for screening eligible participants.

Randomization and allocation concealment
Random permuted blocks will be generated by Strategic Applications Software (SAS, version 9.2, SAS Institute, Inc., Cary, USA) and performed by the Key Unit of Methodology in Clinical Research in Guangdong Provincial Hospital of Chinese Medicine. The allocation to the SHP group and to the placebo group will be in a 1:1 ratio. An independent researcher will prepare a treatment card with a serial number and one of two names on it. Each name will represent one of the two groups. This researcher will also attach a label on the tube to mark which is the SHP or placebo ointment. Participants are given treatment cards from independent researchers to ensure adequate
concealment.

Blinding

Except for the independent researchers, all participants, acupuncturists, operational assistants, nurses, data managers, and statisticians will be blinded to the treatment allocations until the end of the study. Operational assistants will prepare the patches from tubes labelled with the same name on the treatment card. The placebo patch will be identical in appearance to the SHP. In addition, acupuncturists and operational assistants will be instructed not to communicate with participants about the possibility of their allocation.

For the better operation of blinding, participants will be required to wait for 120 minutes in a room and to tear off their treatment patches while facing away from the nurses. In addition, nurses will be instructed not to communicate with participants about the possibility of their allocation.

Participants and recruitment

We intend to enrol a total of 72 participants in 4 centres. Participants are being recruited via local advertising, local newspapers, and physician referrals from respiratory clinics. The recruitment information mainly includes eligibility criteria and contact details. A well-trained investigator in each centre will be responsible for screening all potentially eligible patients based on the eligibility criteria and informed consent.

Inclusion criteria

The inclusion criteria are as follows:

1. Aged 18-75 years (either sex)

2. Patients with BA of chronic persistence (symptoms appear weekly) or clinical remission (maintaining the absence of symptoms for over 1 year)

3. Deficiency of lung and kidney qi syndrome (wheezing, shortness of breath, light and tender tongue with white fur, thin pulse, backache, soft knees, tinnitus, chills and cold limbs, tiredness)[21].

4. Mildly to moderately persistent(FEV1≥60%, peak expiratory flow (PEF) variation
rate > 20%)

5. Voluntary participation in the study

Exclusion criteria

The exclusion criteria are as follows:

1. BA of acute exacerbation or intermittent state (frequency of symptoms < once a week, FEV1 ≥ 80%, and PEF variation rate < 20%) and/or severe duration (symptoms appear daily, FEV1 < 60%, and PEF variation rate > 30%)

2. Airflow obstruction disorders such as chronic obstructive pulmonary disease (COPD), bronchiectasis, pulmonary tuberculosis, and so forth

3. Serious health conditions such as severe cardiovascular and cerebrovascular diseases, liver or kidney disease, and so forth (routine blood test, routine urine test, heart rate, temperature, breath rate and pulse are examined for safety screening)

4. Mental disorders

5. Allergy to the test ingredients, or blistering, sputum, or damage to the acupoint skin

6. Pregnant women, breastfeeding mothers

Interventions

SHP group

The complete formula for the SHP includes Angelica dahurica 1 gram (g), Asarum 2 g, Pinellia 1.5 g, Corydalis 0.5 g, Euphorbia kansui 1 g, Brassica Alba 2 g, Ephedra 0.6 g, Arisacma Consanguineum 0.8 g, Atractylodes macrocephala 1 g and musk 0.1 g. The herbs are processed into powder and mixed with fresh ginger juice to create the SHP ointment. The SHP and placebo are manufactured by the Pharmaceutical Preparation Department in the First Affiliated Hospital of Guangzhou University of Chinese Medicine to meet the requirements of the regulatory guidance issued by the China Food and Drug Administration.

The selected acupoints are Feishu (BL13), Dingchuan (EX B1), Shenshu (BL23) on both sides, for a total of 6 acupoints. The locations of the acupoints are shown in Fig. 3 according to the World Health
Participants receive an SHP through the following procedure: (1) Each participant is asked to expose their back. (2) Two grams of ointment is squeezed by operational assistants onto a circular medical proof fabric, 1 centimetre in diameter for one piece of the SHP. (3) One piece of the SHP is attached to each acupoint by an acupuncturist in each centre. (4) Participants are then asked to wait in a room for 120 minutes, and nurses are required to carefully observe them. If a participant feels any unbearable pain or a burning sensation, the SHP is to be removed immediately by nurses. The exact treatment duration of each participant is recorded on the case report form (CRF).

Placebo group

The placebo ointment is similar to the SHP in physical properties such as appearance, colour, dosage form, weight and gas. It is composed of buckwheat flour, caramel and water. Acupoints, dosage of ointment, medical proof fabric and procedures are the same as those in the SHP group.

There are 3 TSs in 2020, and the exact dates for each session are calculated according to the Chinese Lunar Calendar (Table 1).

Concomitant medications

Participants will be allowed to take Budesonide and Formoterol Fumarate Powder for Inhalation (AstraZeneca AB, Sweden), 4.5 μg per dose, twice a day. For participants undergoing an acute attack, Salbutamol Sulphate Inhalation Aerosol (GlaxoSmithKline Australia Pty, Ltd.) will be given at 100 to 200 μg per dose, repeating inhalation every 4 to 8 hours if necessary.

Participants will be requested not to receive any other treatments, such as complementary treatments (moxibustion, herbal medicine, massage, and so on) or other medications, throughout this study. Use of all drugs, if any, will be documented in detail in the CRF.

Trial outcomes

Primary outcome

The primary outcome is the change in the FEV1 from baseline to the end of the 3 TSs. FEV1 will be performed by the Pulmonary Function Test System (MasterScreen, CareFusion Germany 234 GmbH) in the Pulmonary Function Examination Room of the First Affiliated Hospital of Guangzhou University
of Chinese Medicine. Clinically, if FEV1 is less than 80% of the expected value, this indicates pulmonary dysfunction[22].

The effect evaluation is as follows:

1. Clinically complete controlled: asthma attacks are completely relieved, with FEV1 improved by more than 35%;
2. Significantly controlled: asthma attacks are significantly relieved, with FEV1 improved by 25%-35%;
3. Partly controlled: FEV1 improved by 15%-24%;
4. Uncontrolled: no improvement in asthma attack and FEV1 measurement.

Total treatment efficiency = (clinically complete controlled number + significant controlled number+ partly controlled number) /total number × 100%.

Secondary outcome

Questionnaire test

As secondary outcomes, we will use the Asthma Quality of Life Questionnaire(AQLQ)[23]and the Asthma Control Test (ACT)[24] at the 2nd, 3rd TS and at 12th and 24th weeks compared with the baseline.

The AQLQ contains 35 questions with four domains (symptoms, activity limitation, emotional function, and environmental stimuli) as a measure of quality of life for adult patients with asthma. The items are self-assessed by participants using a seven-point scale (1=completely restricted; 2= extremely restricted; 3=severely restricted; 4= moderately restricted; 5=mildly restricted; 6=rarely restricted; 7= unrestricted). The scores for each question are averaged to produce an overall score. The study will compare the mean change scores from baseline at each time point, using the mean scores from each group.

The ACT is a widely used, validated questionnaire for the assessment of asthma control[25]. ACT contains 5 questions, and each allows a response on a 1 to 5 scale, with 5 representing no problems at all. Five points are added to the ACT total score (<20: poorly controlled; 20–24: partly controlled;
In addition, participants will be asked to complete an Asthma Long-term Follow-up Scale (ALFS)[26] at the 12th and 24th weeks during follow-up. The frequency and severity of symptoms, occurrence time, FEV1, and the use of medications (name, dose and date) are recorded in detail on the ALFS to assess the safety of each group.

Laboratory indicators

Airway inflammatory factors

The levels of airway inflammatory factors (IL-5, IL-13, IL-23, IL-25, TSLP) will be detected at the baseline and at the end of the 2nd and 3rd TS. Five millilitres of antecubital vein blood taken from participants on an empty stomach will be collected by trained clinical staff in each centre. Sera will be obtained by coagulation and centrifugation of blood samples for 20 min at 1000 g at room temperature and then aliquoted and frozen at −80 °C before analysis. To determine the antibody response, the samples will be tested by a double-antigen sandwich enzyme-linked immunosorbent assay (ELISA)[27, 28]. All samples will be measured in duplicate and averaged.

Tracheal smooth muscle cell regulatory proteins

Five millilitres of serum and urine of participants will be obtained from participants at the baseline and at the end of the 2nd and 3rd TSs. ELISA will be used to measure the levels of tracheal smooth muscle cell regulatory proteins (Metallothionein-2, Transgelin-2) in serum and urine. Urine samples will be obtained by centrifugation of urine at 1000 g for 20 minutes, particulates will be removed immediately, and stored at -80 °C.

ELISA will be performed according to the kit instructions (Wuhan Youersheng Trading Co., Ltd, China), at Lingnan Medical Research Centre in the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Safety aspects

Adverse events

Any adverse events (AEs) occurring to participants during the treatment period and follow-up, whether associated with the intervention or not, will be assessed and recorded at any time. Some
AEs, such as local itching, redness, and blisters, might be related to the SHP[29]. If slight burning or redness in the local skin or a slight tingling feeling occur, THE SHP will be removed by the nurses in advance. If small blisters occur, the nurses will carefully prick the blisters with a disinfection needle, and then cover them with sterile gauze in case of infection. All details of AEs will be recorded on CRFs. Severe adverse events (SAEs) or adverse drug reactions (ADRs) include repeated episodes of BA, admissions for treatment, prolonged hospital stays, life-threatening conditions and death. SAEs must be reported to the Ethics Committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine within 24 hours. In the event of an emergency medical situation, the individual’s randomization code and group allocation can be identified via a standard operational procedure.

Statistical methods

Sample size

The sample size was calculated based on the primary outcome measure by PASS11.0 (Power Analysis and Sample Size, NCSS, LLC. Kaysville, Utah, USA). The power was set at 90% and calculated based on two-sided 95% confidence intervals. Based on a mean score of 79.41 with a standard deviation (SD) of 13.87 in the SHP group and a mean score of 59.61 (SD: 11.52) in the placebo group after treatments[30], the sample size was determined to be 30 for each group. Considering a 15% drop-out rate, 36 patients will be included in each group. Finally, we will require a sample size of 72 patients with BA in this study.

Data analysis

The final data will be double entered by two statisticians and analysed by PASW Statistic 24.0 (IBM SPSS, Inc., Armonk, New York, USA). (1) All analyses will be based on the intention-to-treat principle. Thus, multiple imputations will be used to address the missing data. Two-tailed \(p \) values < 0.05 will be considered statistically significant. (2) For continuous variables, all data will be firstly to be tested for normality. The t-test will be used for the fitted data, while the rank sum test will be used for the non-fitted data. Continuous variables will be described as the mean ± standard deviation (\(\bar{x} \pm SD \)), maximum, and minimum. (3) Repeated measures will be used to compare the value differences of several continuous observations. (4) For categorical variables, the Achi-square test or Fisher’s exact
test will be used to examine the between-group differences, and percentages and frequencies will be presented to describe the effect size.

Quality supervision and management

Before recruitment, the whole research team in 4 centres, including acupuncturists, operational assistants and data statisticians, will be required to attend a training workshop to ensure strict adherence to the study protocol. They will be provided with a written protocol and standard operation procedure documents. During the study period, clinical trial collaboration meetings will be held regularly to check the progress of the research.

All data collected from participants and modifications will be documented clearly on CRFs. The last-visit-carried-forward method will be used to handle the missing data. Data will be entered using the double-entry method and reported to the clinical trial centre. Data managers will recheck the data before logging them and will promptly notify the research team if any discrepancy is found.

The clinical trial will be suspended or discontinued if the safety of any participant is compromised or if any SAEs are not reported within the prescribed time. If the trial is suspended or discontinued, the participants, the project funder, and the ethics committee will be informed of the reason.

Ethics and dissemination

Patient consent and dissemination policy

This protocol has been registered with the Chinese Clinical Trial Registry. In the first visit, each participant will be informed in detail about the study procedures and provided with enough time to decide whether to sign the written consent before randomization. All blood and urine samples taken from participants will be destroyed after the trial. Participants can withdraw their informed consent at any time during the study. Participants who experience severe adverse reactions or irreversible injuries as a result of the trial will be reasonably compensated, according to the circumstances.

Access to data and confidentiality

Every precaution will be taken to respect the privacy of participants in the conduct of the study. Only research team members will have access to the research data. All data will be kept strictly confidential during the study. Information will be stored in password-protected files and held
independently by the staff of the Key Unit of Methodology in Clinical Research in Guangdong Provincial Hospital of Chinese Medicine. In the course of monitoring data quality and adherence to the study protocol, the monitors will refer to medical records at 4 centres. On completion of the study, participants will receive a personal summary of the data collected in the study.

Discussion
To the best of our knowledge, this will be the first clinical study to investigate the anti-inflammatory mechanism and long-term efficacy of SHP for BA at 4 centres. Compared to previous studies[17, 18, 31], this trial has a larger participant pool, clearer diagnostic criteria for the classification of BA, a more rigorous methodology, and objective indicator detection. We are focusing on lung function, quality of life and airway inflammation during the treatments and long term follow-up period.

BA can be divided into acute attack, chronic duration and clinical remission based on the duration and severity of symptoms[21]. However, previous trials evaluating the effect of SHP have examined BA without clarifying the differences between 3 stages.

Taking real clinical practice into account, we are focusing on patients with BA of chronic duration and clinical remission, with a severity ranging from mildly to moderately persistent. Many previous studies of SHP results are mostly limited to the evaluation of clinical efficacy and the summary of experience[32]. Thus, further research is urged to explore the possible mechanism.

The pathogenesis of BA is very complicated. Current studies mainly focus on three targets: airway hyperresponsiveness, airway inflammation, and tracheal smooth muscle spasm[33]. On the one hand, airway inflammation is considered to be the primary component contributing to the heterogeneity and severity of airway disorders[34]. It is characterized by increased infiltration of various inflammatory cells, including airway inflammatory cells and structural cells (such as eosinophils, neutrophils, mast cells, smooth muscle cells, T lymphocytes, airway epithelial cells, etc.) and cell components[21]. For instance, interleukin 5 (IL-5), interleukin 13 (IL-13) and interleukin 25 (IL-25)are thought to be essential to the allergic asthmatic response[35]. Constitutive overexpression of IL-13 shows it to be essential for airway hyperreactivity, mucus production, and inflammation[36]. In addition, thymic stromal lymphopoietin (TSLP) can induce airway inflammation in asthma[37]. The selected acupoints
in this trial are Feishu (BL13), Dingchuan (EX B1), and Shenshu (BL23). Previous studies showed that EX B1 in combination with BL13 had a significant effect on the treatment of asthma cough [38]. BL23 could enhance lung ventilation[39]. Therefore, we suspect that SHP at acupoints on BL13, EX B1 and BL23 may be related to changes in inflammatory factors, including IL-5, IL-13, IL-23, IL-25 and TSLP. On the other hand, bronchoconstriction causes airway narrowing and generates significant morbidity. Transgelin-2, a smooth muscle marker, is a unique actin-binding protein involved in asthma and cancer[40, 41]. Metallothionein-2 (MT-2) is an isoform of the metallothionein family that has been reported to regulate calcium ion concentrations in smooth muscle cells. A previous study showed that MT-2 protein levels were more than 50% lower in asthmatic lung tissue than in control samples[42]. However, the relationship between SHP and MT-2 expression during asthma is still unknown. In this study, changes in MT-2 and Transgelin-2 in serum and urine are detected. If their levels rise and BA symptoms decrease, we may speculate that the SHP possibly works by relaxing bronchospasm.

This study also has limitations. AEs of the SHP may be allergic skin reactions, such as local skin itching, redness, and blisters. In some cases, AEs may increase the drop-out rate. However, several measures will be taken throughout the study. First, a previous allergic history would be required before recruitment. AEs will be described in detail on the consent forms provided at the first visit. Second, the degree of skin allergic reactions will be evaluated according to the standards of the Guidelines for the Research of New Drugs in Traditional Chinese Medicine (Pharmaceutics, Pharmacology, Toxicology) by experienced acupuncturists. Third, nurses will carefully observe the participants after SHP treatment in the room for 120 minutes and record finding. Moreover, the SHP herbal formula in our team has been further developed and modified by Professor Lixing Zhuang who is a renowned acupuncture expert in China and has registered a national patent(National Intellectual Property Administration, PRC. Patent No. 201710872555.9) to increase the safety and efficacy.

In sum, this protocol describes a randomized controlled trial conducted in 4 centres to assess the efficacy and safety of an SHP applied at acupoints in the treatment of BA. The results of this trial will provide high-quality evidence of the clinical effects of the SHP in alleviating asthma symptoms and improving quality of life among BA patients. Moreover, tracheal smooth muscle cell regulatory
proteins (MT-2 and Transgelin-2) and airway inflammatory factors (IL-5, IL-13, IL-23, IL-25 and TSLP) will be tested. If the efficacy and safety are recognized, the mechanism of SHP in reducing airway inflammation and relaxing bronchospasm will be further explored. Thus, doctors will have more treatment options for BA.

Trial Status

The participants are beginning to be recruited for this study (protocol version 2.0, 19 July 2019). The study will run from May 2020 to December 2021.

Abbreviations

BA: Bronchial asthma; SHP: Sanfu herbal patch; TS: treatment sessions; ICS: inhaled corticosteroids; LTRA: leukotriene receptor antagonists; RCT: randomized controlled trial; SPIRIT: Standard Protocol Items: Recommendations for Interventional Trials; SAS: Strategic Applications Software; PEF: Peak expiratory flow; COPD: chronic obstructive pulmonary disease; AQLQ: Asthma Quality of Life Questionnaire; ACT: Asthma Control Test; ALFS: Asthma Long-term Follow-up Scale; ELISA: Enzyme-Linked Immunosorbent Assay; AEs: adverse events; SAE: Severe adverse events; ADRs: Adverse drug reactions; SD: standard deviation; MT-2: Metallothionein-2; TSLP: Thymic stromal lymphopoietin

Declarations

Acknowledgments

We would like to thank the entire team of researchers, including the nurses and staff at all 4 hospitals, for their determination, professional skills, enthusiasm, and efforts. We also thank Krysta Black-Mazumdar, PhD, of AJE, for linguistic assistance with an earlier version of the manuscript.

Authors’ Contribution

HJ carried out the design of the study. XXY and XDH drafted the manuscript. ZLX provided suggestions on the interventions. LH and TS performed the Clinical Trial Registration. LYQ, SMY, CJ, and PHH help to perform the SHP and data collection. LL is in charge of data analysis. XYM provided methodological recommendations. LMX, follows the research. XZQ helps to analyze data. All authors read and approved the final paper.

Author details
Jun He, PhD, Professor, carried out the design of the study, Department of Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Xiaoyan Xie, PhD, Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine.

Danghan Xu, Acupuncture Doctor, Department of Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Lixing Zhuang, MD, Professor, Department of Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Hui Liu, Bachelor of medicine, Guangzhou University of Chinese Medicine.

Sui Tan, Bachelor of medicine, Guangzhou University of Chinese Medicine.

Yanqing Lu, MD, Acupuncture Doctor, Department of Rehabilitation and Acupuncture, the Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine.

Meiyi Su, MD, Acupuncture Doctor, Department of Rehabilitation and Acupuncture, the Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine.

Jie Chen, PhD, Acupuncture Doctor, Department of Internal Hospital, Guangdong Second Provincial General Hospital.

Haihua Pan, MD, Acupuncture Doctor, Pingshan District Peoples’ Hospital of Shenzhen, Southern Medical University.

Lu Lu, PhD, Lingnan Medical Research Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Yiming Xu, PhD, Professor, Basic School of Medicine, Guangzhou Medical University.

Muxi Liao, MD, Acupuncture Doctor, Department of Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Zhanqiong Xu, MD, Acupuncture Doctor, Department of Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Funding

This study was supported by the Innovative Clinical Research Project of the First Affiliated Hospital of
Guangzhou University of Chinese Medicine(Number.2019IIT04).

The funding body had no role in the study design, data collection, statistical analysis, or interpretation, or in preparing the manuscript.

Availability of data and materials

Data from this randomized controlled study are unavailable at the time of publication. Individual participant data are available upon request.

Ethical approval and consent to participate

The study will be conducted according to Good Clinical Practice Guidelines and the principles of the Declaration of Helsinki. If the protocol needs to be amended, all materials on the trial will be reported to the ethics committee, and the amended protocol can be implemented only after consent acquirement. This study has been approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine (number, ZYYECK[2019]049). The ethics approval applies to all participating centres. And informed consent will be obtained from all study participants (see Additional file 2 Statement).

Consent for publication

All participants have individually agreed to the publication of this report.

Competing interests

The authors declare that they have no competing interests.

References

1. Papadopoulos NG, Arakawa H, Carlsen KH, Custovic A, Gern J, Lemanske R, Le Souef P, Makela M, Roberts G, Wong G et al: International consensus on (ICON) pediatric asthma. Allergy 2012, 67(8):976-997.

2. Genuneit J, Seibold AM, Apfelbacher CJ, Konstantinou GN, Koplin JJ, La Grutta S, Logan K, Flohr C, Perkin MR: The state of asthma epidemiology: an overview of systematic reviews and their quality. Clinical and translational allergy 2017, 7:12.

3. Anandan C, Nurmatov U, van Schayck OC, Sheikh A: Is the prevalence of asthma
declining? Systematic review of epidemiological studies. Allergy 2010, 65(2):152-167.

4. Changzheng W: Improve the state of bronchial asthma control, need to value the long-term management of patients. Chin J Lung Dis(Electronic Edition) 2013, 6(4).

5. Kim RY, Pinkerton JW, Gibson PG, Cooper MA, Horvat JC, Hansbro PM: Inflammasomes in COPD and neutrophilic asthma. Thorax 2015, 70(12):1199-1201.

6. Chipps BE, Zeiger RS, Dorenbaum A, Borish L, Wenzel SE, Miller DP, Hayden ML, Bleecker ER, Simons FE, Szefler SJ et al: Assessment of asthma control and asthma exacerbations in the epidemiology and natural history of asthma: outcomes and treatment regimens (TENOR) observational cohort. Current respiratory care reports 2012, 1(4):259-269.

7. Graff S, Demarche S, Henket M, Paulus V, Louis R, Schleich F: Increase in blood eosinophils during follow-up is associated with lung function decline in adult asthma. Respiratory medicine 2019, 152:60-66.

8. Matsushita S, Yamashiro T, Matsuoka S, Yagihashi K, Nakajima Y: The Association Between Bronchial Wall CT Attenuation and Spirometry in Patients with Bronchial Asthma. Academic radiology 2019, 26(7):960-966.

9. Grosso A, Pesce G, Marcon A, Piloni D, Albicini F, Gini E, Marchetti P, Battaglia S, Ferrari M, Fois A et al: Depression is associated with poor control of symptoms in asthma and rhinitis: A population-based study. Respiratory medicine 2019, 155:6-12.

10. Alvarez GG, Schulzer M, Jung D, Fitzgerald JM: A systematic review of risk factors associated with near-fatal and fatal asthma. Canadian respiratory journal 2005, 12(5):265-270.

11. Global Initiative for Asthma. Global strategy for asthma management and prevention (2015 update). In.; 2015.
12. Shaokang G, Dan G, Hong F: A review on treating bronchial asthma in the integrative medicine. Clinical Journal of Chinese Medicine 2018, 10.

13. Kaisheng Y: Problems and countermeasures in asthma medication. Journal of Clinical Medicine in Practice · 9 · 2008, 12.

14. Zhou F, Yang D, Lu JY, Li YF, Gao KY, Zhou YJ, Yang RX, Cheng J, Qi XX, Lai L et al: Characteristics of clinical studies of summer acupoint herbal patching: a bibliometric analysis. BMC complementary and alternative medicine 2015, 15:381.

15. Yang XC, Yin T, Gao Q, Kong LJ: The immunomodulatory effect of acupoint application for childhood asthma: a systematic review and meta-analysis. Evidence-based complementary and alternative medicine : eCAM 2015, 2015:896247.

16. L. Zhang Zhang shi yi tông Shanghai Science Technology Publications. Shanghai, China; 1990.

17. Xiaqiu W, Jin P, Li Guoqin, Wei Z, Guangxia L, Baoyan L: Efficacy evaluation of summer acupoint application treatment on asthma patients: a two-year follow-up clinical study. J Tradit Chin Med 2015, 35(1):21-27.

18. RanBang M, HyunKim J, YeonMin S: Clinical effectiveness of the Sanfu herbal patch at acupoints for respiratory diseases including otitis media in children: A pilot before-and-after study. European Journal of Integrative Medicine 2017, 10:1-7.

19. JX C, YDLM: Effect of Ke Chuan San Fu Tie on IL-4, IFN-γ in children patients in the asthma remission. Liaoning J Tradit Chin Med 2010(16):485-487.

20. Zhou F, Liang N, Maier M, Liu JP: Sanfu acupoint herbal patching for stable asthma: A systematic review and meta-analysis of randomised controlled trials. Complementary therapies in medicine 2017, 30:40-53.

21. Asthma Study Group of Chinese Thoracic Society 2016 asthma management and prevention guidelines. (In Chinese). Chinese Journal of Tuberculosis and respiratory
Disease 2016, 39(9):675-697.

22. Z J, Gao Y: Practical Guide to Pulmonary Function Testing. Beijing: People's Medical Publishing House; 2010.

23. Everhart RS, Smyth JM, A.M. Santuzzi, Fiese BH: Validation of the Asthma Quality of Life Questionnaire with momentary assessments of symptoms and functional limitations in patient daily life. Respir Care 2010, 55:427-432.

24. Hasegawa T, Koya T, Sakagami T, Kagamu H, Arakawa M, Gejyo F, Narita I, Suzuki E, Group tNATS: The Asthma Control Test, Japanese Version (ACT-J) as a Predictor of Global Initiative for Asthma (GINA) Guideline-Defined Asthma Control: Analysis of a Questionnaire-Based Survey. Allergology International 2013, 62(3):323-330.

25. Ramakrishnan K, Lee LK, al GSe: Asthma Control Test (ACT) Scores Correlate with Health-related Quality of Life (HRQoL) in Patients with Asthma. Journal of Allergy and Clinical Immunology 2019, 143(2):AB105.

26. Zarqa Ali M, Christina Glattre Dirks M, PhD, Charlotte Suppli Ulrik M, DMSc: Long-term Mortality Among Adults With Asthma. CHEST 2013, 143(6):1649-1655.

27. Lianqun J, Zhenglong G, Jintai, Yifang B, Gangwei O: Improvement and Application of a Competitive ELISA for Detection of Metallothionein in Human Urine. J Environ Occup Med 2010, 27(3):131-134.

28. Watcharatanyatipa K, Boonmoha S, Chaichounb K, Songsermc T, Woratantia M, Dharakula T: Multispecies detection of antibodies to influenza A viruses by a double-antigen sandwich ELISA. Journal of Virological Methods 2010, 163(2):238-243.

29. Xin-yi Z, Li W, Zhi-yan L, Hui G, Hong-yan Q, Yong-kai L, Juan L, Huan Y, Lin C: Clinical Observation of Vesiculation Moxibustion for Allergic Rhinitis Due to Deficient Cold of Lung-qi. Shanghai J Acu-mox 2014, 33(10).

30. Lu Y: Summary of 35 Cases of Relief Period of Bronchial Asthma Treated with Sanfu
31. Libing Z, Wei Z, Vivian W, Ziea E, Lixing L, Kwaiching L, Waichung C, To Y, Lei L: Randomized trial of acupoints herbal patching in Sanfu Days for asthma in clinical remission stage. %J Clinical and translational medicine. 2016, 5(1).

32. Juanping Z, Qiuyue Z, Xiao Q, Xue Z, Feng G, Yongji L, Yanhong W: Review on Treatment of Chinese Traditional Medicine Acupoint Sticking on Respiratory Diseases. Chinese Archives Of Traditional Chinese Medicine.2017, 35(7).

33. Fahy JV: Type 2 inflammation in asthma--present in most, absent in many. Nature reviews Immunology 2015, 15(1):57-65.

34. Mukherjee M, Sehmi R, Nair P: Anti-IL5 therapy for asthma and beyond. The World Allergy Organization journal 2014, 7(1):32.

35. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN: Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. The Journal of allergy and clinical immunology 2012, 129(1):191-198.e191-194.

36. Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie AN, Takei F: Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014, 40(3):425-435.

37. Yu G, Zhang Y, Wang X, Sai L, Bo C, Yeo AJ, Lavin MF, Peng C, Jia Q, Shao H: Thymic stromal lymphopoietin (TSLP) and Toluene-diisocyanate-induced airway inflammation: Alleviation by TSLP neutralizing antibody. Toxicology letters 2019, 317:59-67.

38. Lei F, Yu W, Lei-miao Y, Yu-dong2 X, Jun R, Wen-qian W, Zi-feng M, Nan G, Na N, Yong-qing Y: Verification of the Origin and Development of the Nomenclature and Location of Point Dingchuan (Ex-B1). Shanghai J Acu-mox 2015, 34(2):167-170.
39. Risheng D, Hong H, ei WUX, chun CX: Effects of Moxibustion of Zusanli and Shenshu on Function of Pulmonary Ventilation of Tennis Athletes. Journal of ZhanJiang Normal College 2010, 31(3).

40. Yin LM, Ulloa L, Yang YQ: Transgelin-2: Biochemical and Clinical Implications in Cancer and Asthma. Trends in biochemical sciences 2019, 44(10):885-896.

41. Matsui TS, Ishikawa A, Deguchi S: Transgelin-1 (SM22alpha) interacts with actin stress fibers and podosomes in smooth muscle cells without using its actin binding site. Biochemical and biophysical research communications 2018, 505(3):879-884.

42. Zhou DD, Ran J, Li CC, Lu J, Zhao QY, Liu XY, Xu YD, Wang Y, Yang YQ, Yin LM: Metallothionein-2 is associated with the amelioration of asthmatic pulmonary function by acupuncture through protein phosphorylation. Biomedicine & pharmacotherapy = Biomedicine & pharmacotherapie 2019, 123:109785.

Tables

Table 1 Date and acupoints for each treatment session in 2020 in the study

Year	1st TS	2nd TS	3rd TS
dates	16 July	26 July	15 August
(Initial Sanfu)	(Middle Sanfu)	(Final Sanfu)	
acupoints	BL13 (bilateral)	BL13 (bilateral)	BL13 (bilateral)
	BL23 (bilateral)	BL23 (bilateral)	BL23 (bilateral)
	EX B1 (bilateral)	EX B1 (bilateral)	EX B1 (bilateral)

Figures
Figure 1

Trial flow chart. SHP, Sanfu herbal patch

STUDY PERIOD	Screening	Baseline	Treatment phase	Follow-up phase
TIMEPOINT	-1 days	0 days	1 TS	12 weeks
			2 TSs	24 weeks
			3 TSs	

Program upgrading

Randomized allocation n=72 (1:1)

SHP group n=36

FEV1

Metallothionein-2
Transgelin-2
IL-5, IL-13, IL-23, IL-25, TSLP

AQLQ, ACT

AQLQ, ACT

AQLQ, ACT, ALFS

Placebo group n=36

FEV1

Metallothionein-2
Transgelin-2
IL-5, IL-13, IL-23, IL-25, TSLP

AQLQ, ACT

AQLQ, ACT

AQLQ, ACT, ALFS

Outcome assessment at baseline and Sanfu days, 12, 24, weeks after enrollment
ENROLMENT					
Eligibility screen	X				
Informed consent	X				
Medical history	X				
Physical examination	X				
Allocation	X				

INTERVENTIONS		X	X	X	
SHP group		X	X	X	
Placebo group		X	X	X	

OUTCOMES		X	X	X	X	X
FEV1		X	X	X	X	X
AQLQ		X	X	X	X	X
ACT		X	X	X	X	X
IL-5		X	X	X		
IL-13		X	X	X		
IL-23		X	X	X		
IL-25		X	X	X		
TSLP		X	X	X		
Metallothionein-2		X	X	X		
Transgelin-2		X	X	X		
ALFS		X	X	X		

OUTCOMES		X	X			
Adverse events		X	X	X	X	X
Patient’s		X	X	X	X	X
Figure 2

Study schedule. 1 TS: the 1st treatment during the first 10 days. 2 TS: the 2nd treatment during the second 10 days. 3TS: the 3rd treatment during the third 10 days. 12 weeks: the first follow-up period from the baseline. 24weeks: the second follow-up period from the baseline. All outcomes take place at baseline, the end of 2 TS, and end of 3TS during treatment.
Figure 3

Acupuncture points for both groups

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional file 1 SPIRIT 2013 checklist.doc
Additional file 2 Statement.pdf