The risk factors associated with treatment-related mortality in 16,073 kidney transplantation—A nationwide cohort study

Hyunji Choi1, Woonhyoung Lee1, Ho Sup Lee2, Seom Gim Kong3, Da Jung Kim4, Sangjin Lee5, Haeun Oh5, Ye Na Kim6, Soyoung Ock6, Taeyun Kim7, John Hoon Rim8,9, Jong-Han Lee10, Seri Jeong7*

1 Department of Laboratory Medicine, Kosin University College of Medicine, Busan, South Korea, 2 Department of Hematology-Oncology, Kosin University College of Medicine, Busan, South Korea, 3 Department of Pediatrics, Kosin University College of Medicine, Busan, South Korea, 4 Graduate School of Pediatrics, Kosin University College of Medicine, Busan, South Korea, 5 Department of Statistics, Pusan National University, Busan, South Korea, 6 Department of Nephrology, Kosin University College of Medicine, Busan, South Korea, 6 Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea, 7 Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea, 8 Department of Pharmacology, Yonsei University College of Medicine, Seoul, South Korea, 9 Department of Medicine, Physician-Scientist Program, Yonsei University Graduate School of Medicine, Seoul, South Korea, 10 Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea

These authors contributed equally to this work.

Abstract

Mortality at an early stage after kidney transplantation is a catastrophic event. Treatment-related mortality (TRM) within 1 or 3 months after kidney transplantation has been seldom reported. We designed a retrospective observational cohort study using a national population-based database, which included information about all kidney recipients between 2003 and 2016. A total of 16,073 patients who underwent kidney transplantation were included. The mortality rates 1 month (early TRM) and 3 months (TRM) after transplantation were 0.5% (n = 74) and 1.0% (n = 160), respectively. Based on a multivariate analysis, older age (hazard ratio [HR] = 1.06; \(P < 0.001 \)), coronary artery disease (HR = 3.02; \(P = 0.002 \)), and hemodialysis compared with pre-emptive kidney transplantation (HR = 2.53; \(P = 0.046 \)) were the risk factors for early TRM. Older age (HR = 1.07; \(P < 0.001 \)), coronary artery disease (HR = 2.88; \(P < 0.001 \)), and hemodialysis (HR = 2.35; \(P = 0.004 \)) were the common independent risk factors for TRM. In contrast, cardiac arrhythmia (HR = 1.98; \(P = 0.027 \)) was associated only with early TRM, and fungal infection (HR = 2.61; \(P < 0.001 \)) and epoch of transplantation (HR = 0.34; \(P < 0.001 \)) were the factors associated with only TRM. The identified risk factors should be considered in patient counselling, selection, and management to prevent TRM.

Introduction

After kidney transplantation, patients with end-stage renal disease (ESRD) had better survival, improved cognition, and less economic burden than those who continued with dialysis [1–3].
Kidney transplantation has improved over the past decades [4]. However, some kidney recipients still die at an early stage after surgery, which is catastrophic for both the patient and medical staff.

Investigation of treatment-related mortality (TRM), which is a concept different from disease-related mortality, is important for improved survival after treatment. It provides information about factors that require intensive care and medical decisions during critical period [5,6]. In cardiovascular procedures or major abdominal surgery, 30-day mortality after surgery is considered TRM [7–9]. In addition, 90-day postoperative mortality is a legitimate measure of hepatobiliary–pancreatic surgery [10]. Furthermore, 90-day mortality rate is a good predictor of postoperative index in the field of hepatectomy, colectomy, and pneumonectomy [10–13]. Data about 1-year mortality after kidney transplantation or long-term outcome were well reported [14–17]. Most reports have shown the results of kidney transplantation after 1 [18], 5 [16], and greater than 10 years [19]; however, studies about 1- or 3-month mortality were extremely limited [20,21].

The present study was based on the use of a comprehensive database, which is operated by the National Health Insurance (NHI) of the Korean government. This database contains all the records of healthcare utilization among inpatients and outpatients particularly kidney recipients who were enrolled in the Rare Intractable Disease (RID) system and who received additional medical financial support. The registration is confirmed by a certified physician based on the RID criteria, which reflect international guidelines. Therefore, the use of this database was suitable for the investigation of TRM among kidney recipients.

Using this database, we performed a comprehensive population-based analysis to investigate the risk factors and causes of TRM after kidney transplantation. It would facilitate pre- and post-transplantation assessment and management, which contributed to the improvement of the survival of kidney recipients.

Materials and methods

Study design

This was a retrospective and observational cohort study that used prospectively registered national data sets for reimbursement purposes. All patients who underwent kidney transplantation procedures (Z94.0 code of the International Classification of Disease, 10th revision, Clinical Modification [ICD-10-CM]) at any Korean medical center from January 2003 to December 2016 were included. We defined death within 1 and 3 months after kidney transplantation as early TRM and TRM, respectively. We investigated the risk factors related to early TRM and TRM and the causes of death.

Ethics statement

This study was approved by the independent institutional review board of Kosin University Gospel Hospital (KUGH 2017-12-009) and was conducted in accordance with the Declaration of Helsinki. Moreover, the need for informed consent was waived because anonymity of personal information was maintained.

Study population (patient selection)

The study included all patients who have been listed for kidney transplantation from January 2003 to December 2016 in the Health Insurance Review and Assessment Service (HIRA). The patients were registered in the HIRA database after kidney transplantation, as defined by the ICD-10-CM code Z94.0. During this period, 18,822 patients were enrolled in the database. We
excluded 2,726 patients who did not have complete demographic information and 59 patients who concurrently underwent other organ transplantations. The final cohort consisted of 16,037 patients. The records of medical visits, demographic characteristics, and death status were collected from the HIRA database for all kidney recipients.

Study variables

We collected the following demographic data and baseline characteristics of kidney recipients from the HIRA database: age, sex, medical comorbidities focusing on cardiac and cerebrovascular diseases reported to be important causes of early mortality [16], dialysis status, cytomegalovirus (CMV) and fungal infection, and year of transplantation (S1 Table). The induction regimens such as basiliximab, and anti-thymocyte globulin were also extracted. CMV infection included CMV diseases (mononucleosis, pneumonitis, and hepatitis) and the post-transplant administration of antiviral agent (ganciclovir or valganciclovir) [22]. The ICD-10-CM codes for CMV disease were B27.1, B25.0, B25.1, B25.8, and B25.9. Fungal infection encompassed candidiasis and aspergillosis and post-transplant administration of antifungal agents (amphotericin, caspofungin, itraconazole, voriconazole, fluconazole, posaconazole, anidulafungin, and micafungin) [23].

Data source

The data used in this study were obtained from the HIRA database, which is based on the NHI system operated by the Korean government. Healthcare institutions submit the medical data of all inpatients and outpatients in electronic format to the HIRA for reimbursement purposes. The claims data integrated by HIRA include all healthcare utilization information on inpatients and outpatients. Data about the demographic characteristics of the patients, principal diagnosis, comorbidities, prescription history, and performed procedures based on ICD-10-CM codes are included in this database. In this study, we obtained all data about kidney recipients from the RID program of the HIRA database registered between January 2003 and the end of December 2016. The Korean government assigned kidney transplantation to the RID system for reducing the payments of the patients. The diagnosis must be reviewed by the corresponding healthcare institution before submission to the NHI. Therefore, the data registered in the RID registry are verified and reliable.

The data for dialysis vintage, and donor state omitting in HIRA database were obtained from another database operated by the Korean Network for Organ Sharing system. In this database, the records of recipients who underwent kidney transplantation in 40 medical centers around the country were registered.

Statistical analysis

We evaluated the TRM, risk factors, and causes of death of kidney recipients in Korea from 2003 to 2016. Descriptive statistics were used for patient characteristics correlated to early TRM and TRM. Comparisons of nominal and continuous variables between groups were assessed using chi-square test and Mann–Whitney U test, respectively. The median and interquartile range were used for non-normally distributed variables. Multivariate Cox proportional-hazards regression models adjusting age, sex, cardiac and cerebrovascular diseases, hemodialysis, infection, and epoch of transplantation were used to examine the variables correlated to TRM.

Statistical analyses were performed using the R statistical software (version 3.4.4; R Foundation for Statistical Computing, Vienna, Austria) and SAS statistical analysis software (version
9.4; SAS Institute Inc., Cary, NC, the USA). The two-tailed P values less than 0.05 were considered statistically significant.

Results

Characteristics of patients

A total of 16,073 patients who underwent kidney transplantation between 2003 and 2016 were included in our study cohort. The baseline characteristics of these patients are presented in Table 1. The median age of the patients was 47.0 years (1st to 3rd quartile range: 38.0–55.0 years). Our cohort consisted of 9,495 men and 6,578 women. Most patients received kidney from living donor (62.2%), followed by deceased (37.5%) and non-heart beating (0.3%) donors. The most common underlying disease was coronary artery disease (CAD) or cardiac arrhythmia, present in 10.3% of included patients. Most of patients received kidney transplantation after hemodialysis (82.1%). Regarding to induction therapy, basiliximab, and anti-thymocyte globulin were administered to 79.0%, and 11.4% of recipients, respectively. Cytomegalovirus (CMV) and fungal infections were more commonly reported at 3-month than 1-month (4.3% to 12.1% for CMV; 4.0% to 7.7% for fungus). The number of transplantation cases more than doubled from 2003–2009 (4,661 transplantations, 29.0% of included patients) to 2010–2016 (11,412 transplantations, 71.0% of included patients).

Treatment-related mortality

Of the 16,073 patients, 74 (0.5%) and 160 (1.0%) died within 1 and 3 months after kidney transplantation, respectively. The overall cumulative incidence of mortality is shown in Fig 1A. The characteristics of kidney recipients who died within 1 and 3 months were compared to those of living patients, and such characteristics are summarized in Table 1. Based on this comparative analysis, the values of both early TRM and TRM rates significantly increased as the age group increased. In particular, the number of patients who died 1 month (6.8%) and 3 months (5.6%) after transplantation was five times higher than that of living patients (0.9%) aged over 70 years. The rates of recipients who died 1 month (n = 1, 1.4% for living; n = 2, 2.7% for deceased; and n = 2, 2.7% for non-heart beating) and 3 months (n = 5, 3.1% for living; n = 9, 5.6% for deceased; and n = 5, 3.1% for non-heart beating) after transplantation showed significant difference according to the donor state ($P < 0.001$). The number of patients with a history of cardiac disease, including coronary artery disease (CAD) ($P < 0.001$) and cardiac arrhythmia ($P = 0.002$), was significantly higher in the TRM groups than in the non-TRM groups. The recipients with TRM more frequently had undergone hemodialysis ($P = 0.012$ for early TRM; $P = 0.001$ for TRM). Patients with anti-thymocyte globulin showed significant relation to TRM ($P < 0.001$), whereas those with basiliximab did not. CMV and fungal infections ($P < 0.001$) and the epoch of transplantation ($P < 0.001$), were associated with TRM at 3 months post-transplantation only.

Risk factors for early TRM and TRM

The risk factors of early TRM and TRM are shown in Tables 2 and 3, respectively. Based on the Cox multivariate analysis, older age (hazard ratio [HR] = 1.06; $P < 0.001$), CAD (HR = 3.02; $P = 0.002$), cardiac arrhythmia (HR = 1.98; $P = 0.027$), and hemodialysis compared to pre-emptive kidney transplant (HR = 2.53; $P = 0.046$) were independently associated with early TRM. Moreover, older age (HR = 1.07; $P < 0.001$), CAD (HR = 2.88, $P < 0.001$), and hemodialysis (HR = 2.35, $P = 0.004$) were consistently independent risk factors of TRM at any time. However, fungal infection, (HR = 2.61; $P < 0.001$), and the epoch of transplantation
Table 1. Comparison of the characteristics between living kidney recipients versus deceased ones at 1 and 3 months after transplantation.

Characteristics*	Early TRM	TRM				
Living at 1 month	Death by 1 month	P-value	Living at 3 months	Death by 3 months	P-value	
Number (%)	15,999	74				
Age, years	47 (37–55)	56 (48.8–61)	< 0.001	47 (37–55)	55.5 (48–61)	< 0.001
< 50	9,188 (57.4)	19 (25.7)	< 0.001	9,163 (57.6)	44 (27.5)	< 0.001
50–59	4,830 (30.2)	32 (43.2)		4,792 (30.1)	70 (43.8)	
60–69	1,838 (11.5)	18 (24.3)		1,819 (11.4)	37 (23.1)	
70–79	143 (0.9)	5 (6.8)		139 (0.9)	9 (5.6)	
Sex, male	9,451 (59.1)	44 (59.5)	0.946	9,403 (59.1)	92 (57.5)	0.684
Cause of ESRD						
Diabetes mellitus	3,501 (21.9)	19 (25.7)	0.431	3,479 (21.9)	41 (25.6)	0.252
Hypertension	2,001 (12.5)	8 (10.8)	0.660	1,992 (12.5)	17 (10.6)	0.471
Glomerulonephritis	2,850 (17.8)	11 (14.9)	0.508	2,840 (17.8)	21 (13.1)	0.120
Cystic kidney disease	368 (2.3)	2 (2.7)	0.818	365 (2.3)	5 (3.1)	0.485
Underlying diseasec						
Cardiac disease						
Coronary artery disease	392 (2.5)	9 (12.2)	< 0.001	384 (2.4)	17 (10.6)	< 0.001
Acute myocardial infarction	288 (1.8)	2 (2.7)	0.561	283 (1.8)	7 (4.4)	0.014
Cardiac arrhythmia	1,240 (7.8)	13 (17.6)	0.002	1,230 (7.7)	23 (14.4)	0.002
Cerebrovascular disease						
Cerebral hemorrhage	54 (0.3)	0 (0.0)	0.617	54 (0.3)	0 (0.0)	0.460
Cerebral infarction	247 (1.5)	1 (1.4)	0.893	246 (1.5)	2 (1.3)	0.763
Hemodialysis	13,134 (82.1)	69 (93.2)	0.012	13,055 (82.0)	148 (92.5)	0.001
Dialysis vintage, monthsd	42.5 (29.5–62.8)	16.0 (9.5–24.5)	0.051	41.0 (29.0–63.5)	24.5 (12.8–39.0)	0.179
Before steroid use						
Induction therapy						
Basiliximab	12,637 (79.0)	55 (74.3)	0.402	12,569 (79.0)	123 (76.9)	0.579
Anti-thymocyte globulin	1,818 (11.4)	22 (29.7)	< 0.001	1,799 (11.3)	41 (25.6)	< 0.001
Infection						
CMV infection	694 (4.3)	4 (5.4)	0.653	1,900 (11.9)	37 (23.1)	< 0.001
Fungal infection	639 (4.0)	2 (2.7)	0.571	1,205 (7.6)	37 (23.1)	< 0.001
Epoch of transplantation						
2003–2009	4,634 (29.0)	27 (36.5)	0.155	4,594 (28.9)	67 (41.9)	< 0.001
2010–2016	11,365 (71.0)	47 (63.5)		11,319 (71.1)	93 (58.1)	

a Data were expressed as number (%) or median (interquartile range).
b P value was calculated using chi-square test or Mann–Whitney U test.
c In case of the presence of underlying diseases, multiple diseases were designated to one patient.
d Data were obtained from the Korean Network for Organ Sharing system.
*The use of intravenous steroids such as dexamethasone, and prednisolone within 6 months before transplantation.

Abbreviations: CMV, cytomegalovirus; ESRD, end-stage renal disease; TRM, treatment-related mortality.

https://doi.org/10.1371/journal.pone.0236274.t001

(HR = 0.34 for 2010–2016; P < 0.001) were correlated to TRM only. Regarding to the epoch of transplantation, the aged between 50 and 59 years (HR = 0.37, P = 0.005 for early TRM; HR = 0.37, P < 0.001 for TRM), the patients receiving basiliximab as induction therapy (HR = 0.44, P = 0.002 for early TRM; HR = 0.40, P < 0.001 for TRM), and recipients with CMV infection (HR = 0.13, P = 0.040 for early TRM; HR = 0.39, P = 0.005 for TRM) presented better outcome in 2010–2016, when compared to 2003–2009.
The effect of age on cumulative incidence of mortality is presented in Fig 1B. The older age group presented with higher HRs for both early TRM (50–59 years, 3.21; 60–69 years, 4.74; and 70–79 years, 16.66; \(P < 0.001 \)) and TRM (50–59 years, 3.05; 60–69 years, 4.24; and 70–79 years, 13.16; \(P < 0.001 \)). The effects of CAD and hemodialysis on cumulative incidences are shown in Fig 1C and 1D. In terms of early TRM, a significant difference was observed between patients with a history of cardiac arrhythmia and those without (Fig 2A). Fungal infection (Fig
affected TRM (after early TRM). The protective effect of transplantation in 2010–2016 is illustrated in Fig 2C.

Discussion
In the present study, a comprehensive analysis of 1- and 3-month mortality after kidney transplantation in Korea was conducted. Older age, CAD, cardiac arrhythmia, and hemodialysis were risk factors for early TRM. For TRM, older age, CAD, and hemodialysis were common independent risk factors observed in both early TRM and TRM. In contrast, cardiac arrhythmia is a risk factor that associated with early TRM only. Fungal infection and the epoch of transplantation were factors associated with TRM only.
Cardiovascular disease has been a well-known risk factor and cause of short- and long-term mortality after kidney transplantation [16,24]. Mortality from cardiovascular disease rather than infection has become a more predominant cause of death due to infection control [25]. Atheroma, left ventricular hypertrophy, and vascular calcification were the main mechanisms of cardiovascular disease after kidney transplantation [26]. Regarding CAD, coronary artery calcification was highly prevalent after kidney transplantation [27]. Coronary angiogram is recommended to individuals aged over 50 years who present with DM or previous cardiac events [28]. Cardiac arrhythmia occurred in 30–60% of ESRD patients and was affected by physiologic changes and hemodialysis [29,30]. The use of an implantable cardioverter defibrillator has been recommended if a life-threatening ventricular arrhythmia exists in a patient

Table 3. Univariate and multivariate analyses of 3-month mortality after kidney transplantation.

Variable	Univariate	Multivariate		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Age, years^a				
< 50			1.07 (1.05–1.09)	< 0.001
50–59	3.05 (2.09–4.44)	< 0.001	1.07 (1.05–1.09)	< 0.001
60–69	4.24 (2.74–6.57)	< 0.001		
70–79	13.16 (6.43–26.96)	< 0.001		
Sex, female	1.07 (0.78–1.46)	0.690		
Cause of ESRD				
Diabetes mellitus	1.25 (0.92–1.59)	0.273		
Hypertension	0.86 (0.68–1.10)	0.463		
Glomerulonephritis	0.91 (0.49–1.75)	0.385		
Cystic kidney disease	1.23 (0.87–2.41)	0.526		
Underlying disease				
Cardiac disease				
Coronary artery disease	4.82 (2.92–7.97)	< 0.001	2.88 (1.71–4.84)	< 0.001
Acute myocardial infarction	2.48 (1.16–5.29)	0.019	1.75 (0.81–3.80)	0.157
Cardiac arrhythmia	1.99 (1.28–3.10)	0.002	1.40 (0.89–2.18)	0.145
Cerebrovascular disease				
Cerebral hemorrhage	NA			
Cerebral infarction	0.80 (0.20–3.23)	0.755		
Hemodialysis	2.69 (1.49–4.85)	0.001	2.35 (1.30–4.25)	0.004
Dialysis vintage, months^b	0.963 (0.911–1.017)	0.179		
Before steroid use^d	0.95 (0.52–1.76)	0.882		
Induction therapy				
Basiliximab	0.88 (0.61–1.28)	0.514		
Anti-thymocyte globulin	2.73 (1.92–3.90)	< 0.001	2.38 (1.62–3.49)	< 0.001
Infection				
CMV infection	2.19 (1.51–3.16)	< 0.001	1.39 (0.93–2.08)	0.106
Fungal infection	3.57 (2.47–5.15)	< 0.001	2.61 (1.79–3.82)	< 0.001
Epoch of transplantation, 2010–2016	0.58 (0.42–0.79)	0.001	0.34 (0.24–0.48)	< 0.001

^a Variables less than 0.05 of P-values in univariate analysis were included in the multivariate analysis.

^b NA is presented if the paucity of deceased or living patients exists for each variable 3 months after kidney transplantation.

^c Data were obtained from the Korean Network for Organ Sharing system.

^d The use of intravenous steroids such as dexamethasone, and prednisolone within 6 months before transplantation.

Abbreviations: CI, confidence interval; CMV, cytomegalovirus; ESRD, end-stage renal disease; HR, hazard ratio; NA, not applicable.
who is waiting for kidney transplantation [31]. According to a previous study, graft loss and
mortality increased after 1 and 5 years of kidney transplantation in patients with cardiac
arrhythmia [32]. Because of these risk factors of TRM, patients who have a history of CAD or
cardiac arrhythmia should be counselled for additional work-up and proper management.

Patients without previous hemodialysis showed more favorable outcomes based on our
study, despite of discrepancies in preemptive kidney transplantation suggested in previous
reports [33,34]. Dialysis-associated comorbidities, decreased immune response, and cardiovas-
cular complications might influence the outcome of non-preemptive kidney transplantation.
Prolonged hemodialysis with long waiting times for transplantation has been consistently con-
firmed to be associated with worse outcomes [35]. The present study revealed that non-pre-
emptive kidney transplantation is related to very short term mortality, such as early TRM and
TRM. These findings support early access to transplantation whenever feasible.

The use of anti-thymocyte globulin has been greater in high-risk recipients such as highly
sensitized patients, recipients from deceased donors, re-transplantations, and ABO incompati-
ble transplants [36]. According to a prospective, randomized study, patients receiving anti-thy-
mocyte globulin presented a greater incidence of infection (85.8%) compared to those with
basiliximab (75.2%) at 12 months after transplantation [37]. However, there was no significant
difference in patient survival, similar to the results of a recent study using a network meta-
analysis [38]. In Korea, the one-year patient survival in the anti-thymocyte globulin group
(89.4%) was compared to the basiliximab group (93.8%), and presented no significant differ-
ence [39]. Based on our data, the high-risk recipients receiving anti-thymocyte globulin were
significantly associated with early mortality. Further studies for the premature mortality are
necessary to validate our results, and intensive care for the high-risk patients receiving anti-
thymocyte globulin is important for improving outcomes.

Fungal infections were not common (about 5%) [40] and usually detected after 90 days,
however, most infections occurring within 90 days consisted of invasive candidiasis or asper-
gillusis [41]. Since invasive fungal infections have a mortality rate of 25–30%, these patients
require careful management [42]. Obtaining a detailed history of the candidate’s risk, as posed
by travel and residential exposures, is an important step for prevention and early diagnosis.
The risk factors such as triple immunosuppression, broad spectrum antibiotics for more than
2 weeks, and diabetes mellitus should be also noted. Augmented screening, prophylaxis, and

Fig 2. Cumulative incidence of mortality according to the factors associated 1- or 3-month mortality after kidney transplantation. (A) Cardiac arrhythmia was related to a worse outcome 1 month after transplantation. (B) Fungal infection were a risk factor of 3-month mortality after transplantation. (C) Recent epoch of transplantation (2010–2016) was a protective factor of 3-month mortality compared to the treatment-related mortality of previous epoch (2003–2009).

https://doi.org/10.1371/journal.pone.0236274.g002
proper work-ups including culture, antigen-based immunoassay, chest radiography, and computed tomography, are all essential to improving the prognosis of kidney recipients [43].

Our risk analysis showed that age was a significant factor (\(P < 0.001 \)) for both early TRM and TRM. The significant association between old age and poor outcome was persistently reported in previous studies [14,18,44], which have to be considered for patient counselling and selection.

Donor status has been a well-known important factor for short- and long-term mortality after kidney transplantation [15,45]. According to previous studies, kidney allograft recipients that died within the first year after transplantation were more likely to be recipients of deceased donor kidneys [18,44]. It was difficult to compare TRM of our cohort with those of other countries directly because of lack of available data. More intensive care for recipients from deceased donors at early point after transplantation is recommended.

The recent year of transplantation was a protective factor for TRM, which is similar to previous studies [4,24,26,46]. This improvement was based on improvements in surgical and anesthesia techniques and methods for immunologic barriers; the development of chemical and biological immunosuppressive drugs, including cyclosporine, mycophenolate mofetil, and tacrolimus [36]; and infection control and appropriate patient selection. The risk of mortality has decreased over the years in most of the categories of patients [26], which is consistent with our results. Even diabetic and old-aged recipients had better outcome. In particular, relatively low- or intermediate-risk patients such as aged 50 to 59 years, and patients receiving basiliximab were influence by the improved protocols, and showed better outcome than high-risk recipients (aged over 60 years, and recipients with anti-thymocyte globulin). Further, more aggressive and sophisticated infection controls on CMV such as monitoring quantitative levels, and high dose of antiviral therapy [47] may protect more recipients in 2010–2016 than those in 2003–2009. However, patients with cardiovascular disease, particularly CAD, should be counselled because their outcome has not improved based on our study and previous reports [26,48].

This study had several limitations. The lack of detailed clinical information, such as donor’s characteristics and laboratory data (immunologic antibody profiles, and serology for CMV and fungus), led to restrictions on the analysis of wider variables for TRM. Moreover, classification bias could exist because we used registry data based on physicians’ diagnoses. Despite these limitations, the strength of this study includes the use of a nationwide population database of recent kidney recipients. To the best of our knowledge, no other study has reported about TRM and the causes of death using a nationwide data source, particularly in Asia. The relatively large sample size covering the entire national population and unbiased measures used in this study could provide reliable information about kidney recipients.

In conclusion, our study characterized risk factors and causes of 1- and 3-month mortality after kidney transplantation. Old age, particularly greater than 70 years, CAD, and hemodialysis prior to transplant were common risk factors of both early TRM and TRM. By contrast, cardiac arrhythmia was a risk factors for early TRM only, and fungal infection, and epoch of transplantation were important risk factors associated with TRM only. The most common causes of death were chronic kidney disease, cardiovascular disease, and type 2 DM, which require intensive management immediately after transplantation. The risk factors we have identified should be considered when counselling and selecting patients to prevent catastrophic TRM.

Supporting information

S1 Table. Data set of recipients with TRM after kidney transplantation.
(XLSX)
Acknowledgments

The authors acknowledge the efforts of the staff of the HIRA database, which is supported by the NHI system of Korea, for the maintenance and extraction of data about precise kidney transplantation as a research resource. We also thank Hyun Jung Kim and Hyeong Sik Ahn and the staff of the Department of Preventive Medicine, College of Medicine, Korea University, for their assistance in preparing this article.

Author Contributions

Conceptualization: Ho Sup Lee, Soyoung Ock, Seri Jeong.

Data curation: Sangjin Lee, Seri Jeong.

Formal analysis: Sangjin Lee, Haeun Oh.

Funding acquisition: Seri Jeong.

Investigation: Hyunji Choi, Woonhyoung Lee.

Methodology: Seom Gim Kong, Da Jung Kim, Taeyun Kim.

Project administration: Seri Jeong.

Resources: Seom Gim Kong, Da Jung Kim, Seri Jeong.

Supervision: Ye Na Kim, Soyoung Ock, Seri Jeong.

Validation: Min-Jeong Park, Wonkeun Song.

Visualization: Sangjin Lee, John Hoon Rim, Seri Jeong.

Writing – original draft: Hyunji Choi, Woonhyoung Lee, Taeyun Kim.

Writing – review & editing: John Hoon Rim, Jong-Han Lee, Seri Jeong.

References

1. Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizien A, Rutkowski B. Continuous cognitive improvement 1 year following successful kidney transplant. Kidney Int. 2011; 79: 1353–1360. https://doi.org/10.1038/ki.2011.40 PMID: 21389973

2. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, JadHAV D, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011; 11: 2093–2109. https://doi.org/10.1111/j.1600-6143.2011.03686.x PMID: 21883901

3. Yildirim A. The importance of patient satisfaction and health-related quality of life after renal transplantation. Transplant Proc. 2006; 38: 2831–2834. https://doi.org/10.1016/j.transproceed.2006.08.162 PMID: 17112842

4. Hanihan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000; 342: 605–612. https://doi.org/10.1056/NEJM200003023420901 PMID: 10699159

5. Ethier MC, Blanco E, Lehmbacher T, Sung L. Lack of clarity in the definition of treatment-related mortality: pediatric acute leukemia and adult acute promyelocytic leukemia as examples. Blood. 2011; 118: 5080–5083. https://doi.org/10.1182/blood-2011-07-363333 PMID: 21937689

6. Santori G, Andorno E, Morelli N, Antonucci A, Bottino G, Mondello R, et al. MELD score versus conventional UNOS status in predicting short-term mortality after liver transplantation. Transpl Int. 2005; 18: 65–72. https://doi.org/10.1111/j.1432-2277.2004.00024.x PMID: 15612986

7. Finlayson EV, Birkmeyer JD. Operative mortality with elective surgery in older adults. Eff Clin Pract. 2001; 4: 172–177. PMID: 11525104

8. Welch HG, Black WC. Are deaths within 1 month of cancer-directed surgery attributed to cancer? J Natl Cancer Inst. 2002; 94: 1066–1070. https://doi.org/10.1093/jnci/94.14.1066 PMID: 12122097
9. Begg CB, Cramer LD, Hoskins WJ, Brennan MF. Impact of hospital volume on operative mortality for major cancer surgery. JAMA. 1998; 280: 1747–1751. https://doi.org/10.1001/jama.280.20.1747 PMID: 9842949

10. Mise Y, Vauthey JN, Zimmetti G, Parker NH, Conrad C, Aloia TA, et al. Ninety-day Postoperative Mortality Is a Legitimate Measure of Hepatopancreatobiliary Surgical Quality. Ann Surg. 2015; 262: 1071–1078. https://doi.org/10.1097/SLA.0000000000001048 PMID: 25590497

11. Hu Y, McMurry TL, Wells KM, Isbell JM, Stukenberg GJ, Kozower BD. Postoperative mortality is an inadequate quality indicator for lung cancer resection. Ann Thorac Surg. 2014; 97: 973–979; discussion 978–979. https://doi.org/10.1016/j.athoracsur.2013.12.016 PMID: 24480256

12. Visser BC, Keegan H, Martin M, Wren SM. Death after colectomy: it’s later than we think. Arch Surg. 2009; 144: 1021–1027. https://doi.org/10.1001/archsurg.2009.197 PMID: 19917938

13. Mayo SC, Shore AD, Nathan H, Edil BH, Hirose K, Anders RA, et al. Refining the definition of perioperative mortality following hepatectomy using death within 90 days as the standard criterion. HPB (Oxford). 2011; 13: 473–482.

14. Arend SM, Mallat MJ, Westendorp RJ, van der Woude FJ, van Es LA. Patient survival after renal transplantation; more than 25 years follow-up. Nephrol Dial Transplant. 1997; 12: 1672–1679. https://doi.org/10.1093/ndt/12.8.1672 PMID: 9269647

15. Wang JH, Skeans MA, Israni AK. Current Status of Kidney Transplant Outcomes: Dying to Survive. Adv Chronic Kidney Dis. 2016; 23: 281–286. https://doi.org/10.1053/j.ackd.2016.07.001 PMID: 27742381

16. Morales JM, Marcen R, del Castillo D, Andres A, Gonzalez-Molina M, Oppenheimer F, et al. Risk factors for graft loss and mortality after renal transplantation according to recipient age: a prospective multicentre study. Nephrol Dial Transplant. 2012; 27 Suppl 4: iv39–46.

17. Chapter 5: Mortality. American Journal of Kidney Diseases. 2018; 71: S337–S350.

18. Gill JS, Pereira BJ. Death in the first year after kidney transplantation differs for black patients in England versus New York State? A comparative, population-cohort analysis. BMJ Open. 2017; 7: e014069. https://doi.org/10.1136/bmjopen-2016-014069 PMID: 28487457

19. Howard RJ, Patton PR, Reed Al, Hemming AW, Van der Werf WJ, Pfaff WW, et al. The changing causes of graft loss and death after kidney transplantation. Transplantation. 2002; 73: 1923–1928. https://doi.org/10.1097/00007890-200206270-00013 PMID: 12131689

20. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K. Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA. 1993; 270: 1339–1343. PMID: 8360969

21. Tahir S, Gillott H, Jackson-Spence F, Nath J, Mytton J, Evison F, et al. Do outcomes after kidney transplantation differ for black patients in England versus New York State? A comparative, population-cohort analysis. BMJ Open. 2017; 7: e014069. https://doi.org/10.1136/bmjopen-2016-014069 PMID: 28487457

22. Azvedo LS, Pierrotti LC, Abdala E, Costa SF, Strabelli TM, Campos SV, et al. Cytomegalovirus infection in transplant recipients. Clinics (Sao Paulo). 2015; 70: 515–523.

23. Husain S, Sole A, Alexander BD, Aslam S, Avery R, Benden C, et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J Heart Lung Transplant. 2016; 35: 261–282. https://doi.org/10.1016/j.healun.2016.01.007 PMID: 26970469

24. Diethelm AG, Deierholz MH, Hudson SL, Laskow DA, Julian BA, Gaston RS, et al. Progress in renal transplantation: a single center study of 3359 patients over 25 years. Ann Surg. 1995; 221: 446–457; discussion 457–448. https://doi.org/10.1097/00000658-199505000-00002 PMID: 7748026

25. Matas AJ, Payne WD, Sutherland DE, Humar A, Gruessner RW, Kandawamy R, et al. 2,500 living donor kidney transplants: a single-center experience. Annals of surgery. 2001; 234: 149–164. https://doi.org/10.1097/00000658-200108000-00004 PMID: 11505069

26. Briggs JD. Causes of death after renal transplantation. Nephrology Dialysis Transplantation. 2001; 16: 1545–1549.

27. Paizis IA, Mantzouratou PD, Tzanis GS, Melexopoulou CA, Darema MN, Boletis JN, et al. Coronary artery disease in renal transplant recipients: an angiographic study. Hellenic J Cardiol. 2018. 2018/07/10. https://doi.org/10.1016/j.hjc.2018.07.002 PMID: 29881889

28. Aalten J, Peeters SA, van der Vlugt MJ, Hoitsma AJ. Is standardized cardiac assessment of asymptomatic high-risk renal transplant candidates beneficial? Nephrol Dial Transplant. 2011; 26: 3006–3012. https://doi.org/10.1093/ndt/fgq822 PMID: 21321004

29. Roy-Chaudhury P, Tumlin JA, Koplan BA, Costea AI, Kher V, Williamson D, et al. Primary outcomes of the Monitoring in Dialysis Study indicate that clinically significant arrhythmias are common in hemodialysis patients and related to dialytic cycle. Kidney International. 2018; 93: 941–951. https://doi.org/10.1016/j.kint.2017.11.019 PMID: 29395340
30. Roberts PR, Zachariah D, Morgan JM, Yue AM, Greenwood EF, Phillips PC, et al. Monitoring of arrhythmia and sudden death in a hemodialysis population: The CRASH-ILR Study. PLoS One. 2017; 12: e0188713. https://doi.org/10.1371/journal.pone.0188713 PMID: 29240772

31. Fuster V, Rydén LE, Cannon DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Journal of the American College of Cardiology. 2006; 48: e149–e246.

32. Lenihan CR, Montez-Rath ME, Scandling JD, Turakhia MP, Winkelmayer WC. Outcomes After Kidney Transplantation of Patients Previously Diagnosed With Atrial Fibrillation. American Journal of Transplantation. 2013; 13: 1566–1575. https://doi.org/10.1111/ajt.12197 PMID: 23721555

33. Sayin B, Colak T, Tutar E, Sezer S. Comparison of preemptive kidney transplant recipients with non-preemptive kidney recipients in single center: 5 years of follow-up. Int J Nephrol Renovasc Dis. 2013; 6: 95–99. https://doi.org/10.2147/IJNRD.S42042 PMID: 23761978

34. Lee S, Yoo KD, An JN, Oh YK, Lim CS, Kim YS, et al. Factors affecting mortality during the waiting time for kidney transplantation: A nationwide population-based cohort study using the Korean Network for Organ Sharing (KONOS) database. PLoS One. 2019; 14: e0212748. https://doi.org/10.1371/journal.pone.0212748 PMID: 30978204

35. Chang JY, Yu J, Chung BH, Yang J, Kim SJ, Kim CD, et al. Immunosuppressant prescription pattern and trend in kidney transplantation: A multicenter study in Korea. PLoS One. 2017; 12: e0183826. https://doi.org/10.1371/journal.pone.0183826 PMID: 28846737

36. Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D. Thymoglobulin Induction Study G. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med. 2006; 355: 1967–1977. https://doi.org/10.1056/NEJMoa0600068 PMID: 17093248

37. Shao M, Tian T, Zhu X, Ming Y, Iwakiri Y, Ye S, et al. Comparative efficacy and safety of antibody induction therapy for the treatment of kidney: a network meta-analysis. Oncotarget. 2017; 8: 66426–66437. https://doi.org/10.18632/oncotarget.19815 PMID: 29029524

38. Cheon SU, Moon JI, Choi IS, Yoon SH, Hwang WM, Yun SR. Comparison of the Clinical Outcomes between Anti-thymocyte Globulin and Basiliximab Induction Therapy in Deceased Donor Kidney Transplantation: Single Center Experience. J Korean Soc Transplant. 2015; 29: 61–67.

39. Eswarappa M, Varma PV, Madhyastha R, Reddy S, Gireesh KC, et al. Unusual Fungal Infections in Renal Transplant Recipients. Case Reports in Transplantation. 2015; 2015: 4.

40. Pappas PG, Alexander BD, Andes DR, Hadley S, Kaufman CA, Freifeld A, et al. Invasive Fungal Infections among Organ Transplant Recipients: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clinical Infectious Diseases. 2010; 50: 1101–1111. https://doi.org/10.1086/651262 PMID: 20218876

41. Patel MH, Patel RD, Vanikar AV, Kanodia KV, Suthar KS, Nigam LK, et al. Invasive fungal infections in renal transplant patients: a single center study. Renal failure. 2017; 39: 294–298. https://doi.org/10.1080/0886022X.2016.1268537 PMID: 28085530

42. Miller R, Assi M, the ASTIDCoP. Endemic fungal infections in solid organ transplant recipients—Guidelines from the American Society of Transplantation Infections Community of Practice. Clinical Transplantation. 2019; 33: e13553. https://doi.org/10.1111/ctr.13553 PMID: 30924967

43. Farrugia D, Cheshire J, Begaj I, Khosla S, Ray D, Sharif A. Death within the first year after kidney transplantation—an observational cohort study. Transpl Int. 2014; 27: 262–270. https://doi.org/10.1111/tri.12218 PMID: 24138318

44. Jehn U, Schutte-Nutgen K, Bautz J, Ravenstad H, Suwelack B, Tholking G, et al. Cytomegalovirus Viremia after Living and Deceased Donation in Kidney Transplantation. J Clin Med. 2020; 9.

45. Chapman JR. Progress in Transplantation: Will It Be Achieved in Big Steps or by Marginal Gains? Am J Kidney Dis. 2017; 69: 287–295. https://doi.org/10.1053/j.ajkd.2016.08.024 PMID: 27823818

46. Selvey LA, Lim WH, Boan P, Swaminathan R, Slings C, Harrison AE, et al. Cytomegalovirus viremia and mortality in renal transplant recipients in the era of antiviral prophylaxis. Lessons from the western Australian experience. BMC Infectious Diseases. 2017; 17: 501. https://doi.org/10.1186/s12879-017-2599-y PMID: 28716027
48. Schweitzer EJ, Matas AJ, Gillingham KJ, Payne WD, Gores PF, Dunn DL, et al. Causes of renal allograft loss. Progress in the 1980s, challenges for the 1990s. Ann Surg. 1991; 214: 679–688. https://doi.org/10.1097/00000658-199112000-00007 PMID: 1741647