MASSIVE AND RED OBJECTS PREDICTED BY A SEMIANALYTICAL MODEL OF GALAXY FORMATION

X. Kang,1,2 Y. P. Jing,1 and J. Silk2

Received 2005 October 8; accepted 2006 May 23

ABSTRACT

We study whether hierarchical galaxy formation in a concordance ΛCDM universe can produce enough massive and red galaxies compared to the observations. We implement a semianalytical model in which the central black holes gain their mass during major mergers of galaxies and the energy feedback from active galaxy nuclei (AGNs) suppresses the gas cooling in their host halos. The energy feedback from AGNs acts effectively only in massive galaxies when supermassive black holes have been formed in the central bulges. Compared with previous models without black hole formation, our model predicts more massive and luminous galaxies at high redshift, agreeing with the observations of K20 up to z ~ 3. Also, the predicted stellar mass density from massive galaxies agrees with the observations of GDDS. Because of the energy feedback from AGNs, the formation of new stars is stopped in massive galaxies with the termination of gas cooling and these galaxies soon become red with color $R - K > 5$ (Vega magnitude), comparable to the extremely red objects (EROs) observed at redshift $z \sim 1$–2. Still, the predicted number density of very EROs is lower than observed at $z \sim 2$, and it may be related to inadequate descriptions of dust extinction, star formation history and AGN feedback in those luminous galaxies.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: luminosity function, mass function

1. INTRODUCTION

There are many recent observations of high-redshift galaxies that probe the star formation history of the universe. The findings of many massive galaxies, especially massive extremely red objects (EROs), at high redshift is particularly interesting. These observations show that some EROs are passive ellipticals, and were already in place at redshift $z \sim 2$. It is usually argued that in a cold dark matter (CDM) universe, structures form via a hierarchical formation process in which small galaxies form first at early times, and massive galaxies form later through the continuous mergers of the smaller systems. With representative semianalytical models (SAMs; Kauffmann et al. 1999; Somerville & Primack 1999; Cole et al. 2000), it was found that in the concordance ΛCDM universe, it is difficult to produce enough massive and red galaxies that look like those observed (e.g., Cimatti et al. 2002a; Glazebrook et al. 2004). On the other hand, the existence of the observed massive galaxies at high redshift is not necessarily in conflict with the concordance ΛCDM model, because the conversion of just 10% of baryons in dark matter halos of mass $M > 10^{14} M_{\odot}$ to stars is sufficient to produce the number of observed massive galaxies (Somerville 2004).

Many authors have studied the formation of these massive, red objects using SAMs or smoothed particle hydrodynamics (SPH) simulations. It was shown that the SAMs (Kauffmann et al. 1999; Somerville & Primack 1999; Cole et al. 2000) cannot produce enough massive/red objects at redshift $z > 1$ (e.g., Firth et al. 2002; Somerville et al. 2004b; Daddi et al. 2005). The SPH simulations (e.g., Nagamine et al. 2004; 2005) have succeeded in producing massive and red galaxies at high redshift, but at the cost of introducing more uncertainties. First, it is unknown if these SPH simulations can produce the local galaxy luminosity function. It seems that these simulations produce too many bright galaxies at $z = 0$ (Nagamine et al. 2004). Second, Nagamine et al. (2005) used a high dust extinction for the entire galaxy population, but the observations show that some EROs are passive ellipticals with little dust extinction (Cimatti et al. 2002b). The main reason that the SAMs fail to produce enough massive and luminous galaxies at high redshift is that the gas cooling and star formation in early massive halos is overshooted. In previous SAMs, the gas cooling in massive halos is switched off in order not to produce more luminous central galaxies than observed at redshift $z = 0$. The suppression of gas cooling is also motivated by the X-ray observations that massive cooling flows are not observed in groups and clusters (e.g., Peterson et al. 2003). But as the consequence, the gas cooling may be oversuppressed at high redshift if a simplified prescription is used for the cooling cutoff. For example, in the Munich group model and also in Kang et al. (2005), the gas cooling is shut off by hand in halos with the virial velocity greater than 350 km s$^{-1}$. Since the halo mass is much lower at high redshift than at the present for a given virial velocity, the gas cooling is suppressed in this model for halos with the virial mass greater than $2.5 \times 10^{12} M_{\odot}$ at $z = 3$. This artificial cooling switch-off seems to be the main reason that these models do not produce as many massive galaxies as observed.

In this paper we implement a new model in which the energy from AGNs is used to suppress the cooling of hot gas in halos. Following Kauffmann & Haehnelt (2000), we use a simple model wherein black holes gain most of their mass during major mergers. Our implementation of the feedback from AGN is very similar to that used recently by Croton et al. (2006) and Bower et al. (2006), and resembles a combination of their models. In our model, the total energy from the AGN is proportional to the Eddington luminosity of the central black hole, and the efficiency of reheating the gas is proportional to a power of the virial velocity of the galaxy. Then the energy compensates for the radiative energy of the cooling gas, and the actual cooling rate is determined by the ratio between the two energies. The cooling is totally suppressed if the energy from AGN is larger than the energy radiated by the cooling gas. Compared with the previous model used by Kang et al. (2005) with an artificial cut-off of the gas
cooling in the halos with the virial velocity larger than 350 km s\(^{-1}\), the gas cooling and AGN feedback in the new model are treated in a more self-consistent way. The \(M_{bh}\)-\(\sigma\) relation of black hole mass \(M_{bh}\) and the bulge velocity dispersion \(\sigma\) implies that massive black holes are present only in massive spheroids. In our present model, the energy feedback from AGN indeed is efficient in galaxies with a massive spheroid. We also require that the star formation rate in quiescent disks is reduced at high redshift as motivated by the observed evolution of cosmological cold gas content with redshift (Keres et al. 2005); thus the gas-rich mergers result in earlier formation of supermassive black holes in massive central bulges. Once the energy feedback is enough to suppress the gas cooling, the termination of new star formation will soon make the galaxies red. We compare the model prediction of the number density of luminous galaxies with the K20 survey, and find that good agreement holds up to \(z \sim 3\), beyond which there is little observational data. Compared with previous SAMs, our present model can also produce some very red (\(R-K>5\); magnitudes are given in the Vega system unless otherwise stated) passive ellipticals that are observed by the Great Observatories Origins Deep Survey (GOODS) at \(z \sim 1-2\).

We arrange our paper as follows. In \(\S\) 2 we briefly introduce our new model with AGN feedback and compare our model predictions with the local galaxy population. In \(\S\) 3 we give the model predictions and compare them with the observations at high redshift. Finally, we discuss our results and conclude our work in \(\S\) 4.

2. MODEL

The SAM that we use here was described in detail by Kang et al. (2005), who studied the local galaxy population. The merger tree is constructed based on a high-resolution \(N\)-body simulation (Jing & Suto 2002) of 512\(^3\) particles in a box of 100 \(h^{-1}\) Mpc. The cosmological parameters adopted there are \(\Omega_m=0.3\), \(\Omega_{\Lambda}=0.7\), \(\Omega_b=0.7\), and \(\sigma_8=0.9\). Here we still use this simulation, but the SAM model is modified in two ways:

1. We adopt a star formation efficiency \(\alpha \sim (1+z)^{-1}\) in a quiescent disk, which was shown to give a better match with the evolution of cosmological cold gas content with redshift (Kauffmann & Haehnelt 2000; Péroux et al. 2003; Keres et al. 2005). In the recent model of Durham group (Baugh et al. 2005; Bower et al. 2006), they adopt a constant star formation timescale for the disk. The star formation timescale used in our model is the dynamical time of the disk which scales with redshift as \((1+z)^{-1/2}\). So the star formation rate (\(\dot{M}_s = \alpha M_{\text{cold}}/\tau_{\text{dyn}}\)) of our model differs from that of the Durham model only slightly. Note that the relatively lower star formation rate in quiescent disks leaves more cold gas which helps to produce massive black holes during galaxy mergers at high redshift.

2. We include a model for the growth of black holes and for the energy feedback from AGNs to suppress the gas cooling. As the \(M_{bh}-\sigma\) relation indicates that the central black holes grow with the growth of the spheroid components, it is plausible that the black holes get their mass through major mergers. But it is far from clear about the exact way that the black holes accrete the surrounding material. Here following Kauffmann & Haehnelt (2000), we use a simple parameterized form to describe the cold gas accreted by the black hole during a major merger,

\[
\Delta M_{bh} = F_{\text{acc}} \frac{M_{\text{cold}}}{1 + (280 \text{ km s}^{-1}/V_{\text{vir}})^2},
\]

where \(M_{\text{cold}}\) is the total cold gas in merging galaxies, and \(V_{\text{vir}}\) is the virial velocity of the postmerger host halo. We normalize the parameter \(F_{\text{acc}}\) by best matching the observed \(M_{\text{bulge}}-M_{bh}\) relation at \(z=0\) (H"aring & Rix 2004). During the gas accretion by black holes, part of the gravitational energy will be converted into radiations that in turn will heat the surrounding cold gas. But it is again unclear in a quantitative way about how much the radiation is produced and how efficiently the cold gas is reheated. Croton et al. (2006) use a simple phenomenological model to describe the accretion rate, which depends on the hot gas fraction and circular velocity of the halo, but the efficiency of heating the gas by AGNs is the same in all halos of different mass. Sijacki & Springel (2006) have shown that heating efficiency from an AGN bubble is lower in low-mass halos. Here we simply assume that the energy from the central AGN is proportional to the Eddington luminosity \(L_{\text{edn}}\) and the heating efficiency is proportional to a power of the virial velocity of the host halo. Thus the heating rate ejected into the gas is taken as

\[
L_{\text{reheat}} = F_0 (V_{\text{vir}}/V_s)^n L_{\text{edn}}.
\]

If we denote the cooling rate in a halo of gas temperature \(T\) by \(\dot{M}_{0,\text{cool}}\) in the case of no AGN feedback, then the cooling rate \(\dot{M}_{\text{cool}}\) in the presence of AGN feedback is

\[
\frac{\dot{M}_{\text{cool}}}{\dot{M}_{0,\text{cool}}} = 1 - \frac{L_{\text{reheat}}}{4 M_{0,\text{cool}} V^2_{\text{vir}}}.
\]

If the heating rate from AGN \(L_{\text{reheat}}/3 V^2_{\text{vir}}\) is larger than the radiative cooling rate \(M_{0,\text{cool}}\), the gas cooling is totally suppressed. We normalize the parameters \(F_0, V_s\) to get a good match to the galaxy luminosity function at \(z=0\). In our model we obtain \(F_0 = 2 \times 10^{-5}\) and \(V_s = 200\) km s\(^{-1}\) and \(n=4\).

In Figure 1 we plot the relation between the bulge mass and the black hole mass. The data points show for the model galaxies and the solid line the best fit to the observations by H"aring & Rix (2004). Here \(F_{\text{acc}}\) is taken to be 0.01. It is seen that a simple
A model of black hole growth with a free parameter can reproduce the observed $M_{\text{bulge}} - M_{\text{bh}}$ relation. After the black hole mass is normalized, we then tune the parameters in equation (2) to get good fits to the local galaxy luminosity functions. In Figure 2 we show the luminosity function at B_j and K bands. The top panel shows a comparison with the Two Degree Field Galaxy Redshift Survey (2dFGRS) at B_j band. The solid circles show the observational data of 2dFGRS, and the thick solid histogram associated with Poisson errors is our model prediction. The bottom panel shows the comparison at K band, where the circles are from Cole et al. (2001) and squares are the observations by Huang et al. (2003). We find that the new model can produce more massive galaxies at high redshift. In Figure 3 we show the predicted rest-frame K-band luminosity function at $z \sim 1.5$. The squares with error bars are the observational results from K20 (Pozzetti et al. 2003). The histograms are the predictions by the new model and the triangles show the results predicted by Kang et al. (2005), where they used an artificial cooling cut for halos with $V_{\text{vir}} > 350$ km s$^{-1}$. We also replotted the results of K-band luminosity function at $z = 0$ by the solid line, taken from the bottom panel of Figure 2. It is clearly seen from the plot that the new model produces more massive galaxies and the agreement with the observations is very good. Also note that the good agreement holds for faint galaxies as well, whereas it was reported previously that SAM models produce more faint galaxies than observed (Pozzetti et al. 2003).

Another test, firstly proposed by Kauffmann & Charlot (1998), is the evolution of the surface number density of galaxies at a fixed limiting magnitude, which also widely used to constrain the models. There are plenty of data from GOODS that are already publicly available (Giavalisco et al. 2004). In Figure 4 we show the predicted redshift surface number density of galaxies with $K < 20$. The square points show the results of K20 and triangles are the data from GOODS. The new model predictions are shown as the solid line, and the dashed line shows the prediction by the model of Kang et al. (2005). Here we find that compared with Somerville et al. (2004b), who predicted much fewer luminous galaxies at $z > 1.5$, the agreement between our model and the observations holds much better up to $z \sim 3$. Here we also show how dust extinction will change the result. The dotted line is the new model with the simple dust extinction model from AGNs in the galaxy center. So compared to previous SAMs without AGNs, the gas cooling and star formation continues until a massive spheroid forms at the galaxy center. It is expected that this model can produce more massive and luminous galaxies at high redshift.
of Calzetti et al. (2000) with \(E(B-V) = 0.1 \). Clearly, dust extinction has no significant effect on the predicted number of galaxies in the observed-frame \(K \) band up to \(z = 3 \).

Although the predicted numbers of luminous galaxies agree with the observations, it would be interesting to check the predicted color distributions. The color is dependent on the star formation history and on the dust extinction. At high redshift the galaxy mergers are very frequent, and the dust extinction is significant in these starburst galaxies, but no reliable model of dust extinction is available for such galaxies. Observations show that at \(z \sim 1-2 \) the EROs have contributions both from passive ellipticals with little dust and from dust-enshrouded starburst galaxies (Cimatti et al. 2002b; 2003; Yan & Thompson 2003; Yan et al. 2004; Moustakas et al. 2004). Because there are significant uncertainties in the dust extinction modeling for the starburst galaxies, we think that the predicted number density of passive ellipticals should set a more meaningful constraint on the galaxy formation model. Here we take a simple model of dust extinction. We classify the galaxies with starbursts produced during the major mergers in the past 0.1 Gyr as young starburst galaxies and those otherwise as passive galaxies. We then use the Calzetti et al. (2000) reddening law to model the dust extinction effect on the galaxy color. The amount of dust in passive and young starburst galaxies is difficult to assess, and here we simply assume a small reddening \(E(B-V) = 0.05 \) for the passive galaxies. The dust extent in young starburst galaxy is expected to be high. Observations of EROs show that some extremely red galaxies have heavy dust extinction with \(E(B-V) = 0.4 \). But the average extinction should be lower. Here we assume a Gaussian distribution of \(E(B-V) \) with a mean of 0.1 and a dispersion of 0.05 for the young starburst galaxies. Our main motivation is to see if a simple dust reddening model can produce the main features of the observed color distribution.

In Figure 5 we show the observed \(R - K \) [both in the AB magnitude system, \((R-K)_{AB} \approx (R-K)_{Vega} - 1.65\)] color distribution with a comparison with data from the GOODS Southern field in an area of 160 arcmin\(^2\) (Somerville et al. 2004b). The top panel shows the GOODS data, which is from Figure 2 of Somerville et al. (2004b). The model galaxies are selected using the magnitude cut and are normalized to the same area of 160 arcmin\(^2\). The total number of galaxies selected in our model is 1595, which is 6% higher than the GOODS data points used here. The bottom panel shows the model predictions. In each panel we also show the evolution track of single-burst stellar populations with solar metallicity, the Salpeter IMF, and the ages (at \(z = 0 \)) of 13.35 and 11.7 Gyr (i.e., \(z_f = 26, 2.6 \)) based on the model of Bruzual & Charlot (2003). From the figure, our model can reproduce the main features of the observed galaxies: (1) many extremely red galaxies \((R-K > 4)\) at \(z > 1 \); 2) the bimodal color distribution, red passive and young starburst galaxies at \(z > 1.5 \). Still there are some discrepancies. The predicted numbers of blue galaxies are too prominent at \(z < 1.5 \) and this might be due to the inadequate treatment of star formation rate, stellar initial mass function, or the dust extinction model. Also the predicted number of extremely red galaxies with \((R-K)_{AB} > 3.35\) at \(z \sim 2 \) is still lower than observed. In our model there are enough luminous galaxies but insufficient number of very red galaxies, which means that the star formation (at \(\sim 2 \))
the current model is still high. There are two possible reasons for this discrepancy. First, the star formation is not strong enough in the past in our model, as we do not include any star formation during minor mergers which are also frequent at early times. Second, the energy from central AGN is not high enough to suppress the hot gas cooling. Observations have shown that there are already massive black holes (∼10^9 \text{M}_\odot) at \(z \approx 6 \) (Fan et al. 2001), so the growth of black holes in massive galaxies might be much quicker at early time than in our model in which the fraction of cold gas accreted by black hole is constant with time. We will address this in a forthcoming paper (X. Kang et al. 2006, in preparation).

Glazebrook et al. (2004) used the Gemini Deep Deep Survey (GDDS) to obtain the stellar mass distribution from \(z \approx 0.7–2 \). The evolution of stellar mass density does place important constraints on the formation model of massive spheroids. But due to the uncertainties in fitting the multiple broadband colors of high-redshift galaxies including those of the IMF and dust extinction, the constraints are weak. In Figure 6 we show the stellar mass density of galaxies with stellar mass above certain limits. The lines show the predicted stellar density in galaxies with stellar mass in the range indicated in the plot. Solid lines are for this model, and dashed lines are from the model of Kang et al. (2005), where they used an artificial cut of gas cooling in the halos with \(V_{\text{vir}} > 350 \text{ km s}^{-1} \). We can still see a good match between the model and the data. Although it seems that the stellar mass density with \(M_*>10^{10.46} \text{M}_\odot \) is higher than the data points, it agrees with the integral of the star formation rate (see Fig. 4 of Glazebrook et al. 2004). Note that galaxies with \(M_*>10^{11} \text{M}_\odot \) are in the sharply declining tail of the mass function; therefore, a small uncertainty in the estimated stellar mass can introduce a very large uncertainty in the number density. The hexagon in the plot shows the stellar mass density of massive galaxies with \(M_*>10^{11} \text{M}_\odot \), recently obtained by van Dokkum et al. (2006) making use of the deep multiwavelength GOODS, FIRES, and MUSYC surveys. It is seen from the solid lines that our model prediction is slight lower than the data by a factor of 2. At high redshift the cosmic variance is so large in the observed catalogs (about 60%; Somerville et al. 2004a) that the discrepancy might not be serious.

4. DISCUSSION

Here we have implemented a new semianalytical model in which the energy from AGN suppresses hot gas cooling in massive halos. The growth of black holes and bulges, and the gas cooling, are determined in a self-consistent way. In our description, the AGN feedback becomes efficient in massive galaxies after a massive black hole is formed in the galaxy center. The AGN feedback model has drawn much recent attentions. The main motivation is that in massive groups and clusters cooling flows are not observed. There should be some physical process to reheat the cooling region, and the energy from AGN has been proposed as an effective source (e.g., Böhringer et al. 2002; Begelman et al. 2003; Sijacki & Springel 2006). At the same time, the AGN feedback models have also been incorporated into the SAMs recently and it has been shown that AGN feedback can produce a break of the luminosity function at the bright end and produce the color-magnitude relation observed in SDSS (Croton et al. 2006; Bower et al. 2005). Our model of AGN feedback is very similar to theirs in spirit, but the detailed prescription is different. In this paper we use this model to address some issues about the number distribution and color distribution of galaxies at high redshift. We compare the model predictions with the K20 and GOODS surveys. Our conclusions are as follows.

1. The predicted number distribution of \(K<20 \) galaxies matches well with that of the GOODS and K20 galaxies up to a redshift of \(z \sim 3 \).

2. The predicted color distribution is similar to that observed in the surveys and many extremely red galaxies (\(R-K_{\text{AB}}>4 \)) are produced, which has not been seen in previous models (Somerville et al. 2004b). At \(z>1.5 \) the galaxy population already displays a bimodal color distribution.

3. The predicted stellar mass density can marginally agree with the GOODS observation even with the uncertainties in the IMFs.

These results demonstrate that it is not difficult to produce massive and red galaxies at \(z \sim 1–2 \) in the concordance CDM universe. The stellar mass in galaxy centers continues to grow until the energy from central AGN is high enough to suppress the gas cooling. In our model the black holes acquire most of their mass during major mergers, so the AGN energy feedback is expected to be effective after the last major merger, which led to massive bulge formation at galactic centers. In our model we can produce some of those passive ellipticals at \(z \sim 1–2 \) with extremely red colors (\(R-K_{\text{AB}}>4 \)).

Many observations have shown that the star formation rate was higher in massive galaxies at high redshift, and these support the “downsizing” formation scenario (Cowie et al. 1996). It is often argued that hierarchical galaxy formation cannot reproduce the downsizing formation process. But recent works (de Lucia et al. 2006; Bower et al. 2005; Scannapieco et al. 2005) have shown that models with AGN feedback in the hierarchical universe can reproduce the downsizing process in which the massive galaxies forms earlier. In this paper, we also find that the predicted luminous and massive galaxies are increased to the degree that is in agreement with the observations, although the predicted number of red galaxies may still be fewer than observed. Once more observations are available on the dust extinction in
these galaxies, the number density and evolution of red passive ellipticals will put more stringent constraints on the galaxy formation models. It is also possible that a new ingredient is needed, such as the star formation induced by AGN feedback prior to disruption of the cold gas supply (Silk 2005), in order to make bulge formation more efficient and to account for the chemical evolution of massive early-type galaxies.

We thank Mashiro Nagashima for kindly providing the GOODS data, and Manfred Georg Kitzbichler for the binned data of GOODS and K20. Xi Kang acknowledges support from the Royal Society China Royal Fellowship scheme. This work is supported in part by NSFC (Nos. 10373012 and 10533030) and by Shanghai Key Projects in Basic research (04jc14079 and 05xd14019).

REFERENCES

Baugh, C. M., Lacey, C. G., Frenk, C. S., Granato, G. L., Silva, L., Bressan, A., Benson, A. J., & Cole, S. 2005, MNRAS, 356, 1191
Begelman, M. C. 2003, in Coevolution of Black Hole and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), 374
Boehringer, H., Matsushita, K., Churazov, E., Ikebe, Y., & Chen, Y. 2002, A&A, 382, 804
Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S., & Lacey, C. G. 2006, MNRAS, 370, 645
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682
Cimatti, A., et al. 2002a, A&A, 391, L1
———. 2002b, A&A, 381, L68
———. 2003, A&A, 412, L1
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168
Cole, S., et al. 2001, MNRAS, 326, 255
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Croton, D. J., et al. 2006, MNRAS, 365, 11
Daddi, E., et al. 2005, ApJ, 626, 680
De Lucia, G., Springel, V., White, S. D. M., Croton, D., & Kauffmann, G. 2006, MNRAS, 366, 499
Giavalisco, M., et al. 2004, ApJ, 600, L93
Glazebrook, K., et al. 2004, Nature, 430, 181
Fan, X., et al. 2001, AJ, 122, 2833
Firth, A. E., et al. 2002, MNRAS, 332, 617
Haering, N., & Rix, H. W. 2004, ApJ, 604, L89
Huang, J. S., Glazebrook, K., Cowie, L. L., & Tinney, C. 2003, ApJ, 584, 203
Jing, Y. P., & Suto, Y. 2002, ApJ, 574, 538
Kang, X., Jing, Y. P., Mo, H. J., & Boorner, G. 2005, ApJ, 631, 21
Kauffmann, G., & Charlot, S. 1998, MNRAS, 297, L23
Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188
Kauffmann, G., & Haehnelt, M. 2000, MNRAS, 311, 576
Keres, D., Katz, N., Weinberg, D. H., & Dave, R. 2005, MNRAS, 363, 2
Moustakas, L. A., et al. 2004, ApJ, 600, L131
Nagamine, K., Springel, V., Hernquist, L., & Machacek, M. 2004, MNRAS, 350, 385
Nagamine, K., Cen, R., Hernquist, L., Oxliker, J. P., & Springel, V. 2005, ApJ, 627, 608
Norberg, P., et al. 2002, MNRAS, 336, 907
Péroux, C., McMahon, R. G., Storrie-Lombardi, L. J., & Irwin, M. J. 2003, MNRAS, 346, 1103
Peterson, J. R., et al. 2003, ApJ, 590, 207
Pozzetti, L., et al. 2003, A&A, 402, 837
Scannapieco, E., Silk, J., & Bouwens, R. 2005, ApJ, 635, L13
Sijacki, D., & Springel, V. 2006, MNRAS, 366, 397
Silk, J. 2005, MNRAS, 364, 1337
Somerville, R. S. 2004, in Multiwavelength Mapping of Galaxy Formation and Evolution, ed. R. Bender & A. Renzini (Heidelberg: Springer,) 131
Somerville, R. S., Lee, K., Ferguson, H. C., Gardner, J. P., Moustakas, L. A., & Giavalisco, M. 2004a, ApJ, 600, L171
Somerville, R. S., & Primack, J. R. 1999, MNRAS, 310, 1087
Somerville, R. S., et al. 2004b, ApJ, 600, L135
van Dokkum, P. G., et al. 2006, ApJ, 638, L59
Yan, L., & Thompson, D. 2003, ApJ, 586, 765
Yan, L., Thompson, D., & Soifer, B. T. 2004, AJ, 127, 1274