The quasar epoch and the stellar ages of early-type galaxies

A. Cattaneo 1 & M. Bernardi 2

1 Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014 Paris, France
2 Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

ABSTRACT

We investigate the hypothesis that quasars formed together with the stellar populations of early-type galaxies. This hypothesis, in conjunction with the stellar ages of early-type galaxies from population synthesis models, the relation of black hole mass to bulge velocity dispersion, and the velocity dispersion distribution of spheroids from the Sloan Digital Sky Survey, completely determines the cosmic accretion history of supermassive black holes and the redshift evolution of the characteristic luminosity. On the other hand the precise shape of the luminosity function of quasars depends on the light curve of quasars and, in the optical, but no so much in X-rays, on the covering factor of the dust surrounding the active nucleus. We find a plausible set of assumptions for which the coeval formation of supermassive black holes and elliptical galaxies is in good agreement with the observed B-band and X-ray luminosity functions of quasars.

1 INTRODUCTION

Several pieces of evidence point to a link between quasars and the formation histories of elliptical galaxies: i) Spectrophotometric studies of the host galaxies of optical quasars show isophotal profiles consistent with the $r^{1/4}$ law and colours consistent with red old stellar populations (McLure et al. 1999; Nolan et al. 2001). ii) A comparable number of active galactic nuclei are embedded in dusty, violently interacting, starbursting systems, which are thought to be the progenitors of elliptical galaxies. iii) The comoving density of bright quasars drops dramatically after $z \sim 2$. By that time the stellar populations of bright ellipticals have been formed. In contrast, star formation in discs extends to much lower redshifts. iv) There is mounting evidence for ubiquitous supermassive black holes (SMBHs) in the nuclei of spheroids with a tight correlation of the form $M_\ast \propto \sigma^4$ between the BH mass M_\ast and the velocity dispersion of the host galaxy σ (Ferrarese & Merritt 2000; Gebhardt et al. 2000a,b; Merritt & Ferrarese 2001a,b; Tremaine et al. 2002). BHs found in spiral galaxies are much less massive (Salucci et al. 2000).

The existence of a link between quasars and elliptical galaxies is thus difficult to dispute. However, the fuelling mechanism and the timing of the active phase are still not well understood. In the hierarchical picture for galaxy formation it is natural to assume that the active phase coincides with the mergers responsible for determining the elliptical morphologies (Cattaneo, Haehnelt & Rees 1999; Kauffmann & Haehnelt 2000; Haehnelt & Kauffmann 2000; Cattaneo 2001; Kauffmann & Haehnelt 2002; Volonteri, Haardt & Madau 2002). The active phase may not coincide with the epoch of star formation if much of the gas mass has already formed stars before the mergers. Kauffmann & Haehnelt succeeded in reproducing a good agreement with the luminosity function of quasars over the magnitude range $-28 < M_B < -25$. They were also able to reproduce the qualitative evolution of the luminosity function with redshift, but they could not account for the observed sharp decline in the comoving density of quasars at $z \lesssim 2$ (Fig. 9 of Kauffmann & Haehnelt 2000). In the hierarchical model the cooling of pristine gas forms larger and larger galaxies at low redshift. That partly compensates the decrease in the merging rate and the consumption of gas by star formation, and has been indicated as the most plausible cause for this discrepancy.

Granato et al. (2001) explored the alternative assumption that quasars were formed monolithically together with, or just after, the stellar populations of elliptical galaxies. They started from the observed luminosity function of quasars and used the assumption of the joint formation of quasars and spheroids to derive the rate of formation of spheroids at high redshift. The predicted contribution of spheroids to SCUBA counts was found to be in agreement with the existing data. The Granato et al. model is phenomenological because of the lack of a model to incorporate monolithic collapse into cold dark matter cosmologies.

This paper continues the approach of Granato et al. Our main aim is to determine if the assumption that quasars were formed together with the stellar populations of elliptical galaxies is consistent with the observed luminosity function of optical quasars. The ingredients of the paper are: i) the relation of BH mass to bulge velocity dispersion, ii) the velocity dispersion distribution of spheroids, and iii) the stellar ages of ellipticals inferred from population synthesis models. In Section 2 we combine these ingredients to construct our model of the luminosity function of quasars. In Section 3 we compare our model luminosity function with...
the pure luminosity evolution model of Boyle et al. (2000) and the X-ray data of Cowie et al. (2003).

As a final point before we start, it is important to clarify that we do not think of monolithic collapse as an alternative to hierarchical structure formation. When we write that massive ellipticals were formed monolithically at high redshift, we just mean that they have been passively evolving since \(z \sim 2 \) (e.g. Bernardi et al. 2003b,c,d). This is not in conflict with the merging scenario if the mergers in which the stellar populations of these galaxies were formed happened at \(z \sim 2 \). Similarly, when we write that quasars were formed together with the stellar populations of ellipticals, we do not mean the processes of BH accretion and star formation are synchronous. We just mean that if there is a delay of one with respect to the other, this delay is short in comparison with the age of the Universe. However, the delay can be significant in relation to the star formation time-scale or the quasar life-time, and that would have important consequences if we tried to predict the colours and infrared/sub-millimetre properties of quasar hosts (e.g. Archibald et al. 2002). See also Romano et al. (2002) and the new observations by Dietrich et al. (2003) and Baldwin et al. (2003) for a discussion of the quasar timing in relation to the star formation history of the host galaxy.

2 A MONOLITHIC COLLAPSE MODEL OF THE LUMINOSITY FUNCTION OF QUASARS

2.1 Ingredients

In this section we shall develop a monolithic collapse model for the observed luminosity function of quasars and its evolution.

In our model quasars have a distribution of masses \(M_\ast \) and times of formation \(t_f \) (time means lookback time throughout this paper). Quasars do not shine before their time of formation. At \(t < t_f \) quasars shine with

\[
L_{\text{bol}}(t) = L_{\text{bol}}(M_\ast, t_f, |t - t_f|).
\]

(1)

The luminosity function at \(t \) is the sum of the contributions from all quasars of all masses which formed at earlier times than \(t \). Therefore, two elements combine to determine the luminosity function of quasars in our model: i) the joint distribution of \(M_\ast \) and \(t_f \), and ii) the quasar light curve (Eq. 5).

The goal of this paper is to test the hypothesis that the distribution of \(M_\ast \) and \(t_f \) is determined by the distribution of velocity dispersions and stellar ages of elliptical galaxies. We note that this hypothesis only enters point (i). Instead, the two physical quantities that determine the light curve are the life-time and the radiative efficiency of quasars. Our strategy is therefore as follows. Firstly, we shall use the early-type galaxy sample in the Sloan Digital Sky Survey (SDSS, Bernardi et al. 2003a) to infer a joint distribution for \(M_\ast \) and \(t_f \) (Section 2.2). Then we determine what light curve gives a good fit to the observed blue luminosity function when taken in combination with this distribution. The idea is that if we find a good fit by using a quasar life-time and a radiative efficiency which are consistent with those favoured by the literature, then we have an argument for believing that we have a tenable model for the distribution of masses and formation times of SMBHs.

2.2 Black hole formation times and masses from the SDSS

Our model relates the masses and formation times of quasars to those of early-type galaxies. We discuss the distribution of quasar masses first, and then discuss the distribution of formation times at fixed mass.

BHs of mass \(M_\ast \) are thought to form in galaxies with velocity dispersion \(\sigma \) given by

\[
M_\ast = 1.7 \times 10^8 h_{65}^{-1} \sigma_{200}^{3} M_\odot.
\]

(2)

\(\sigma_{200} \equiv \sigma/200 \text{km s}^{-1} \). Therefore, if the distribution of stellar velocity dispersions is known, the distribution of BH masses can be obtained by a change of variables. The power in Eq. (2) is still the object of a controversy. We have used a power of 5 because it gives the best fit to the luminosity function of quasars (see the next Section), but a power of 4 would still give an acceptable fit to the luminosity function, specially if one readjust the stellar ages within their large margins of error.

Bernardi et al. (2003a) present a sample of nearly 9000 early-type galaxies at redshifts \(z < 0.3 \), selected from the SDSS by using morphological and spectral criteria. In a series of papers they study the properties of early-type galaxies such as the luminosity function, and various early-type galaxy correlations in multiple bands (Bernardi et al. 2003b), the Fundamental Plane and its dependence on wavelength, redshift and environment (Bernardi et al. 2003c), the colours, and how the chemical composition of the early-type galaxy population depends on redshift and environment (Bernardi et al. 2003d). In this SDSS sample, the distribution of the velocity dispersion \(\sigma \) is

\[
N(\sigma) \, d\sigma = 1.388 \times 10^{-3} h_{65}^{3} \left(\frac{\sigma}{94.4 \text{ km s}^{-1}} \right)^{6.3} \times
\]

\[
x \exp \left[- \left(\frac{\sigma}{94.4 \text{ km s}^{-1}} \right)^2 \right] \, d\sigma
\]

(Sheth et al. 2003). By inserting the \(M_\ast(\sigma) \) variable transformation into the \(N(\sigma) \) from the SDSS we have a model for the distribution of \(M_\ast \).

The next step is to determine the distribution of formation times. We assume that this is given by the distribution of formation times for the stellar populations of early-type galaxies. As we describe below, this too can be determined from the SDSS sample.

The signal-to-noise ratios of the spectra in the SDSS sample are substantially smaller than the \(S/N \sim 100 \) required to estimate the Lick indices reliably. One of the results of Bernardi et al. (2003d) is a library of 182 co-added spectra, which contains spectra that represent a wide range of early-type galaxies. Specifically, galaxies were divided into six bins for each of the following quantities/characteristics: luminosity, velocity dispersion, size, redshift and environment. The spectra in each bin were co-added (this was a straight average, i.e., no weighting by \(S/N \) was used). The bin sizes were chosen to be small enough that each composite spectrum is truly representative of galaxies with similar
properties, but large enough to ensure that the resulting co-added spectra have $S/N > 50$ (the mean S/N per pixel is 129 with a rms scatter of 37, and the maximum S/N is 238). The co-added spectra were used to obtain reliable estimates of absorption-line strengths and to investigate the chemical evolution and star formation histories of early-type galaxies.

By comparing the measured line indices (Mgb and Hβ) reported in Table 4 of Bernardi et al. (2003d) with the single burst stellar population models of Worthey et al. (1994) it is possible (by linear interpolation) to determine the age and the metallicity of each spectrum. There are at least two caveats associated with these age estimates. First, the age estimates make use of models which assume that the bulk of the stellar population formed in a single burst. Second, the models assume solar values for the ratio of α element abundances relative to iron, whereas early type galaxies have [α/Fe] enhanced relative to the solar value. Bernardi et al. (2003d) describe a simple correction for this, but their correction is by no means secure. However, by applying that simple correction the resulting galaxy age estimates given by the (Mgb and Hβ) diagram are consistent with the ages obtained by using the (Fe and Hβ) measurements. In addition, the resulting age estimates from galaxies in different redshift bins are consistent with one another, once the cosmic time difference between different redshifts has been accounted for. That suggests that these single-burst ages offer at least a self-consistent picture of the passive evolution of the early-type galaxy population. These age estimates are also consistent with the evolution of the luminosity function (Bernardi et al. 2003b), the colours (Bernardi et al. 2003d) and the Fundamental Plane (Bernardi et al. 2003c). It is these single-burst ages which we use in what follows.

Table 4 of Bernardi et al. (2003d) also provides the velocity dispersion, σ, and the redshift of the spectra. Thus, for each redshift bin, we can compute the mean age as function of velocity dispersion. The result is shown in Fig. 1 (open squares show the measurements from spectra at $z < 0.075$ and filled circles refer to spectra in the redshift interval $0.075 < z < 0.1$). The error bars show the rms scatter divided by \sqrt{N}. Notice that there is a strong correlation between stellar velocity dispersion and age: the galaxies with the highest values of σ contain the oldest stellar populations. Other analyses of the stellar populations of early-type galaxies come to a similar conclusion. E.g., Thomas, Maraston & Bender (2002) find a similar trend, although the actual ages they report are slightly older. If we use their models to estimate ages in the SDSS data, then we also find higher formation redshifts, and a shallower relation between age and σ.

The dashed line in Fig. 1 shows a simple fit to the relation between age and σ:

$$t = \left[12.05 - 45 \left(\log \frac{\sigma}{339 \, \text{km s}^{-1}} \right)^2 \right] \, \text{Gyr}.$$

(4)

Fig. 1 also shows that there is a spread in ages at fixed velocity dispersion of $\Delta t \sim 2$ Gyr, which is approximately independent of σ (the dotted lines show $\bar{t} \pm \Delta t$). We assume that this spread is Gaussian. Thus, the SDSS sample provides us with a measurement of the joint distribution of early-type galaxy velocity dispersions and formation times. Therefore, we now have a model for the joint distribution of BH masses and formation times which we can use to construct our model of the quasar luminosity function.

2.3 The quasar light curve

We assume that a quasar of mass M_\bullet which forms at t_f shines at $t \leq t_f$ with luminosity:

$$L_{\text{bol}} = \dot{m}_0 L_{\text{Edd}}(M_\bullet) \exp \left(-\frac{|t - t_f|}{t_{\text{QSO}}}/L_{\text{Edd}}(M_\bullet) \right),$$

(5)

where $\dot{m}_0 < 1$ is a free parameter, which may depend on M_\bullet and z. This is our way of specifying Eq. (1). Here

$$t_{\text{QSO}} = 0.44 \frac{L_{\text{bol}}}{\dot{m}_0} \, \text{Gyr}$$

(6)

is the characteristic life-time of quasars determined by the condition $\int L_{\text{bol}} \, dt = cM_\bullet \epsilon c^2$, where c is the speed of light and $\epsilon \sim 0.1$ is the radiative efficiency of quasars.

In reality the quasar light curve will not be a simple function such that in Eq. (5). Very probably there will be two phases: a rising part, in which the luminosity is limited by rate at which the BH can grow (the Eddington limit), and a fading part, in which the luminosity drops as the quasar runs out of fuel. Here we do not follow the mass growth of the BH, so we do not have the mass as a function of time. Instead we take a model light curve $L_{\text{bol}}(t)$ such as that given by Eq. (5), which contains a number of free parameters including the final BH mass M_\bullet. The careful reader will have

![Figure 1](image-url)
noticed that with this modelling L_{bol} can never be equal to $L_{\text{Edd}}(M_*)$, if the Eddington limit is to be respected, because a quasar cannot have already reached its final mass at the peak of its activity. We chose this model because $L_{\text{Edd}}(M_*)$ is the best estimate of the order of magnitude of the maximum luminosity a quasar can ever had. Any constant of proportionality will be reabsorbed in the value of \dot{m}_0.

The conversion of bolometric luminosities into blue magnitudes and X-ray luminosities is performed by assuming the spectral energy distribution in Elvis et al. (1994), for which a bolometric luminosity of $L_{\text{bol}} = 1.3 \times 10^{46} \text{ erg s}^{-1}$ corresponds to a blue magnitude of $M_B = -25$ and a total luminosity in the 2-8 keV band of $L_X = 4 \times 10^{44} \text{ erg s}^{-1}$. Also notice that this is the emission corresponding to a quasar of $M_* = 10^8 M_\odot$ which is radiating at the Eddington limit.

In Section 2.5 we shall tune the free parameters ϵ and \dot{m}_0 to fit the observed blue luminosity function, given the joint distribution of M_* and t_f determined in Section 2.2.

2.4 Luminosity-dependent obscuration

There is one final subtlety that we must incorporate into our model of the quasar luminosity function.

The development of spectropolarimetry imaging (see Antonucci (2002), the discovery of type 2 quasars in X-ray surveys (e.g. Norman et al. 2002) and the infrared spectroscopy of ultra-luminous infrared galaxies (see Lutz 2000; Sturm et al. 1997) and radio galaxies (Hill, Goodrich & De Poy 1996) have shown that many quasars do not contribute to optical counts because of the presence of various sorts of absorbers along the line of sight: dusty tori, narrow-emission-line clouds, clouds of gas in the host galaxy, etc. (see Rowan-Robinson 1995). Scheuer (1987) and Barthel (1989) used the dusty torus model to propose that radio-loud quasars and radio galaxies are the same type of object – the former observed pole-on, the latter with the torus’s axis close to the plane of the sky. In this way, they successfully extended to radio sources the orientation model introduced by Antonucci & Miller (1985) to unify Seyferts 1 and Seyferts 2.

There is evidence that the ratio of obscured to unobscured quasars is a function of the bolometric luminosity. E.g. for radio-loud objects Lawrence (1991) found that at the highest radio luminosities the numbers of broad-line and narrow-line quasars are about even, while the ratio of narrow-line and reddened broad-line quasars is substantially higher at lower radio powers. His explanation was that, as the quasar grows more and more powerful, it heats the surrounding dust to the point of sublimation. Consequently, the dusty torus is eroded from within and opens up its angle. This is called the receding torus model and predicts that the tangent of the torus’s opening angle scales as a power of the radio luminosity.

While the absorbing material may not always have the form or the geometry of a dusty torus, the finding that the fraction of broad-line quasars is much lower at lower source power is strongly supported by recent X-ray studies. An extremely deep (~ 1 Ms) CHANDRA X-ray study of the Hubble Deep Field North and its environs has resolved 90% of the X-ray background from the targeted sky area into 370 discrete X-ray sources (Brandt et al. 2001). Barger et al. (2002) have been able to collect good quality optical spectra, and therefore spectroscopic redshifts, for 170 of these sources. It is obvious from this work and from another more recent paper of the same group (Cowie et al. 2003) that broad emission lines are much more common in objects that are very luminous in hard X-rays. The majority of objects with low hard X-ray luminosity show absorption features at soft X-rays consistent with very large column densities ($N_H > 10^{23} \text{ cm}^{-2}$) as well as very steep (highly absorbed) infrared/optical spectra when compared with the median spectral energy distribution of Elvis et al. (1994). Also see Mainieri et al. (2002) for the relation between X-ray absorption and optical reddening/obscuration.

In our Monte Carlo simulations, we assume that the probability of a quasar being observed is proportional to the opening cone of a torus, the opening angle θ of which is determined by the relation

$$\tan \theta = \left(\frac{L_{\text{bol}}}{L_B/4} \right)^{\alpha},$$

independently of whether that is the real geometry of the obscuring screen. Here we treat $L_{B/4}$ and η as two additional free parameters, besides ϵ and \dot{m}_0, which we use to fit the observed blue luminosity function of quasars. In a forthcoming publication Cattaneo et al. (2003) will analyse the fraction of obscured quasars as a function of L_{bol} for X-ray selected quasars.

3 COMPARISON WITH THE OBSERVED OPTICAL AND X-RAY LUMINOSITY FUNCTIONS

Following Boyle, Shanks & Peterson (1988), it is usual to fit the blue luminosity function of quasars to a double power law function of the form:

$$\phi(M_B, z) = \frac{\phi_*}{10^{10.4(M_B-M_B(z))\left(\alpha+1\right)} + 10^{0.4(M_B-M_B(z))\left(\beta+1\right)}}$$

where the only dependence on redshift is in the characteristic magnitude $M_B = M_B(z)$ at which the exponent of the power changes (pure luminosity evolution).

Boyle et al. (2000) have analysed over 6000 quasars from the 2dF QSO Redshift Survey. For a cosmology with $\Omega = 0.3$ and $\Lambda = 0.7$ (assumed throughout this paper) their best fit parameters are: $\phi_* = 2.9 \times 10^{-6} h_{65}^2 \text{ Mpc}^{-3} \text{ mag}^{-1}$, $\alpha = -1.58$, $\beta = -3.41$, and $M_B(z) = -22.08 - 2.5(1.36z - 0.27z^2) + 5 \log h_{65}$.

Here $h_{65} \equiv H_0/65 \text{ km s}^{-1} \text{ Mpc}^{-1}$. The lines in Fig. 2 show the pure evolution model of Boyle et al. from $z = 2.3$ (upper solid line) to $z = 0.61$ (lower dashed line).

Our best fit to the pure luminosity evolution model of Boyle et al. (2000) is shown by the symbols in Fig. 2 (open squares, filled circles and hexagons) and is obtained for a BH radiative efficiency of $\epsilon = 0.1$ and a power of $\eta = 0.88$ in the scaling of the torus opening angle with luminosity (Eq. 7). To obtain the best fit we normalise the relation between opening angle and luminosity, which means we set the value of $L_{B/4}$, so that a quasar with $M_B = -24$ has a 50% chance of being observed. We find no need to change these three quantities (ϵ, η, $L_{B/4}$) with redshift. Instead, to find a good fit, we need to allow for a dependence on redshift in the value of \dot{m}_0. We find a good agreement with the luminosity
For this purpose, let us call \(L \) the model at higher redshifts is equivalent to extrapolating consistently with the \(\sigma \) characteristic blue luminosity in the Boyle et al. model is directly calculated from Eq. (9) to \(\sigma > 250 \text{km s}^{-1} \) (see Fig. 1), and it is not clear that this extrapolation is warranted.

As a check, we show that the evolution of the characteristic blue luminosity in the Boyle et al. model is directly consistent with the \(\sigma \)-age relation for early-type galaxies. For this purpose, let us call \(L_{\text{bol}}(z) \) the characteristic luminosity as a function of redshift, which we infer from Eq. (9) by using the bolometric corrections in Elvis et al. (1994). We use the Eddington limit to associate a characteristic BH mass \(M_\bullet \) to a characteristic luminosity \(L_{\text{bol}} \). Similarly, we use our model cosmology (\(\Omega = 0.3 \) and \(\Lambda = 0.7 \), \(h_{65} = 1 \)) to calculate the lookback time \(t \) of an event at redshift \(z \). So, we have determined \(M_\bullet(t) \), the characteristic mass of quasars that form at lookback time \(t \). With this double transformation and by using Eq. (2), which relates the BH mass to the velocity dispersion, the function \(M_\phi(z) \) of Eq. (9) becomes the function \(\sigma(t) \) displayed as the solid line in Fig. 1.

This figure shows consistency between the \(\sigma \)-age relation of early-type galaxies derived from the stellar population synthesis models and the cosmic evolution of the characteristic luminosity of quasars. The solid line turns back at \(\log(\sigma/\text{km s}^{-1}) \approx 2.36 \) because \(M_\phi(z) \) reaches a minimum at \(z \approx 2.52 \). The point is that the blue luminosity function of bright quasars rises up to \(z \approx 2.5 \) and then drops. In our model we interpret that as consequence of the fact that \(\bar{I}(\sigma) \) reaches a maximum at \(t_{\text{max}} \approx 12 \text{Gyr} \) because it is difficult for a galaxy with \(\log(\sigma/\text{km s}^{-1}) \gtrsim 2.5 \) to be assembled in less than \(\sim 2.5 \text{Gyr} \) (14.46 Gyr is the age of the Universe in the cosmology used for this paper). Only a Gaussian tail of increasingly rarer galaxies form at \(t > t_{\text{max}} \). So in our model the luminosity function drops at \(z \gtrsim 2.5 \) because the number of quasars, and not their characteristic luminosity, drops. However, in the Boyle et al. pure luminosity evolution model a fall in the characteristic luminosity is the only way to reproduce the decrease of the blue luminosity function. Consequently, we do not think of the discrepancy at \(\log(\sigma/\text{km s}^{-1}) \approx 2.36 \) as a failure of our model. Moreover, we remark that in our model a large fraction of the quasars at lookback time \(t \sim 11.5 \text{Gyr} \) are in galaxies with \(\log(\sigma/\text{km s}^{-1}) \approx 2.3 \) and not \(\log(\sigma/\text{km s}^{-1}) \approx 2.4 \). That is because the former are much more numerous than the latter (Eq. 3) and because we have assumed that there is a large spread (\(\sim 2 \text{Gyr} \)) around \(\bar{I} \) (see comment at the end of this section). It can be argued that the test performed in this paragraph is redundant because if our model reproduces the luminosity function and its redshift evolution, then automatically it also reproduces the redshift evolution of the characteristic magnitude at which the slope of the luminosity function changes. However, the interesting point of this check is that the comparison in Fig. 1 is independent of any free parameter. So the comparison in Fig. 1 probes the distribution of BH masses and formation times directly, independently of the details of the light curve (as long as \(\bar{m}_0 \) is not much smaller than one).

A comparison of Figs. 2 and 3 show that while Eq. (4) is the driving factor in determining the evolution of the comoving density of bright quasars, the evolution of faint sources is almost entirely driven by the assumption made about the obscuration.
Now all parameters are fixed and we no longer have any freedom for adjusting the X-ray luminosity function. With the bolometric correction for the X-band inferred from the Elvis et al. (1994) spectral energy distribution and by assuming that we can neglect X-ray absorption, we find the X-ray luminosity function shown by the lines in Fig. 3, which we compare with the data points of Cowie et al. (2003) from the CHANDRA Deep Field North (CDFN). The difference between the observed and simulated $0.1 < z < 1$ luminosity functions at $L_X < 10^{43}$ erg s$^{-1}$ is not significant because that part of the diagram receives a contribution from active galactic nuclei in the bulges of spirals and Eq. (3) only contain information about early-type galaxies.

As a final comment, we note that, in order to reproduce the quasar luminosity function successfully, it is necessary that a large part of the age spread in Eq. (4) is intrinsic, and not just the consequence of measurement errors. Otherwise, the only BHs that would be forming at lookback time t would be those with $M_* \leq M_\bullet[\sigma(t)]$, where $M_\bullet[\sigma(t)]$ and $\sigma(t)$ are given by Eqs. (2) and (4). So there would be a sharp cut-off in the luminosity function of quasars at $L_{\text{Edd}}[M_\bullet(t)]$, which is not found in the observation (in our model the life-time of quasars is so short that the contribution to the luminosity function at lookback time t from quasars formed at higher redshifts is negligible).

\section{4 COSMIC ACCRETION HISTORY OF SUPERMASSIVE BLACK HOLES}

The previous section showed that a picture in which the formation of SMBHs is closely tied to that of elliptical galaxies, is consistent with the observed quasar luminosity function. We now explore what this implies for the cosmic accretion history of SMBHs.

The BH mass per comoving volume in galaxies with velocity dispersion between σ and $\sigma + d\sigma$ is $M_\bullet N(\sigma) d\sigma$, where $N(\sigma) d\sigma$ is given by Eq. (3) of the previous section. In the previous section we modelled the formation time distribution of elliptical galaxies as a Gaussian with mean $\bar{t}(\sigma)$ and standard deviation $\Delta t(\sigma) \sim 2$ Gyr inferred from the SDSS measurements (Eq. 4, dashed line in Fig. 1). Therefore, in this model, the cosmic accretion rate of SMBHs is:

$$\dot{\rho}_\bullet(t) = \int M_\bullet(\sigma) N(\sigma) \sqrt{2\pi}\Delta t(\sigma) \exp\left\{ -\frac{(t - \bar{t}(\sigma))^2}{2\Delta t^2(\sigma)} \right\} d\sigma. \quad (10)$$

This estimate of the cosmic accretion rate, which is based on measurements of the properties of early-type galaxies, can be compared with a lower limit which comes directly from the quasar luminosity function:

$$\frac{d\rho_\bullet}{dz} = \frac{1}{c^2} \int L_{\text{bol}}(M_B) \phi(M_B, z) dM_B \quad (11)$$

where $L_{\text{bol}}(M_B)$ is the bolometric luminosity corresponding to a quasar of blue magnitude M_B, c is the speed of light, ϵ is the radiative efficiency of quasars, and $\phi(M_B, z)$ is the luminosity function of quasars at redshift z (Soltan 1982; Chokshi & Turner 1992). With the luminosity function of Boyle et al. (2000; Eqs. 8-9), Eq. (11) becomes:

$$\dot{\rho}_\bullet = \frac{1}{c^2(1.08\epsilon_\bullet)L_{\text{bol}}[M_B(z)]} \int \frac{d\zeta}{\zeta^{a-1} + \zeta^{b-1}}, \quad (12)$$

where the factor of 1.08 originates from converting from magnitudes into luminosities.

Fig. 4 compares the cosmic accretion rates inferred from Eqs. (10) and (12). Our model predicts that optical quasars are not a good a tracer of the cosmic accretion history of SMBHs. Our model does reproduce the observed peak of the characteristic luminosity at $z \sim 2.5$ (Fig. 2), but, as seen in Fig. 4, the largest contribution to the cosmic density of SMBHs does not come from the very bright quasars at $z \sim 2.5$. It rather comes from intermediate luminosity quasars at $z \sim 1 - 1.5$, which are much more numerous, although optical counts underestimate their number, since they are much more frequently obscured than their $M_B = -26$ counterparts. This result is robust in the sense that it is independent of \bar{t}_0, L_{Edd}, and η, and continues to hold for reasonable changes of the fitting function (4). We shall expand this point in the next section.

\section{5 DISCUSSION AND CONCLUSION}

In this paper we have demonstrated that a very simple model in which quasars are short lived and form monolithically with the stellar populations of elliptical galaxies reproduces an excellent agreement with the optical and X-ray luminosity functions of quasars if two very plausible and motivated assumptions are made: i) the peak luminosity is $\sim L_{\text{Edd}}$ at $z \sim 2.5$ but drops to $\sim 0.1L_{\text{Edd}}$ at $z \sim 0$, and ii) the less powerful quasars are more likely to be absorbed at optical wavelengths by large column densities on the line of sight. Haiman & Menou (2000) and Kauffmann & Haehnelt (2000) also found (from a completely different approach) that one requires longer accretion time scales at low redshift to reproduce the optical luminosity function of quasars (assumption i). That makes sense because cosmic structures that form
The clustering length for quasars with $M_B < -23$ (open points; La Franca, Andreani & Cristiani 1998) compared with the clustering length of local ellipticals and $z \sim 1$ extremely red objects (filled points; Daddi et al. 2001).

at high redshift are denser and therefore have shorter dynamical times. However, (ii) is the key assumption that has allowed to find a good fit to the blue luminosity function of quasars. This hypothesis can be checked by assessing the fraction of objects with broad emission lines at different values of the intrinsic power. To construct a sample of objects with the same intrinsic power one has to find a band in which one can see the unobscured quasar emission. Studies in this sense have done by using: i) Paschen spectroscopy (Hill, Goodrich & De Poy 1996): broad lines in the Paschen series should appear through the dust even for extinction as high as $A_V = 15$, ii) radio surveys (for radio-loud quasars; e.g. Simpson 1998), and iii) X-ray surveys (e.g. Barger et al. 2002). These studies confirm that the less powerful active galactic nuclei are less likely to display detectable broad line emission, but it is important to obtain a more quantitative statement to be able to remove some of the uncertainty, which is always present in models with a number of free parameters. Moreover, we need to understand whether not only the column density but also the type of the absorber depends on the range of power or changes with redshift. However, it should be remarked that, while we need to make a number of assumptions about the light curve in order to produce a model for the quasar luminosity function, it is also true that there are some results which are to a large extent independent of the parameters and the parameterisation (Figs. 1 and 4). They are the results that originate directly from our main assumption that SMBHs were formed at the same epoch of the stellar populations of ellipticals.

A key ingredient of our model is the σ-age empirical relation, which assigns older ages to the most massive ellipticals. At a superficial look that seems to contradict hierarchical structure formation. Granato et al. (2001) proposed a theoretical explanation for this finding. Stellar feedback can prolong star formation in low mass haloes, while in massive haloes the potential well is much deeper, and it is therefore more difficult for the gas to be reheated or ejected. So the less massive haloes, which are statistically the first ones to virialise, do not form many stars. Stars form much more rapidly and easily in the most massive haloes. That produces an anti-hierarchical behaviour of the baryons, where the most massive galaxies are the first ones to form stars. That anti-hierarchical behaviour is what makes the Granato et al. model close to a monolithic one. Moreover Blanton et al. (1999, 2000) have argued that the formation of large systems is prohibited at low redshift in hot cluster gas. When environmental effects of that sort are included, inverted ages arise naturally in hierarchical model of structure formation.

Here we have implicitly assumed that each SMBH forms in one short (0.06-0.2Gyr) episode. Quasars cannot radiate for much longer than that without producing an excess of SMBHs (we have checked ourselves that if quasars with $M_B < -23$ which are active at $z = 2.5$ remained switched on for the rest of the life of the Universe, that would leave far too large a number of relic BHs with $M_\bullet > 2 \times 10^{10} M_\odot$). However, the accretion could still be spread over most of the life of the Universe as a sequence of intermittent progressively less violent bursts. In fact, it is plausible that many low redshift quasars are triggered by the refuelling of SMBHs formed at an earlier epoch. That is particularly true for BHs that are found in rich environments (Cattaneo 2002). There are, nevertheless, two points that should not escape our attention. First of all, the decrease of the quasar clustering length at low redshift is accompanied by a similar decrease in the correlation length when we pass from $z \sim 1$ extremely red objects (EROs) to local $z \sim 0$ ellipticals (Fig. 5). There is evidence that the population of low redshift quasars is dominated by the formation of new lower mass BHs in shallower potential wells, which we identify with galaxies with $\sigma \sim 110 - 130$ km s$^{-1}$. Haehnelt, Natarajan & Rees (1998), Haiman & Loeb (1998), La Franca, Andreani & Cristiani (1998), Kauffmann & Haehnelt (2000) and Haiman & Hui (2001) reached a similar conclusion from Press-Schechter theory, arguing for the continuous formation of new BHs and short duty-cycles. Secondly, Shields et al. (2003) have used width measurements of quasar emission lines to probe the $M_\bullet(\sigma)$ relation as a function of redshift (BH masses were derived from the continuum luminosity and the broad Hβ emission line of the quasar with a method known as reverberation mapping, whereas the velocity dispersions of the host galaxies were determined from the width of the narrow [O III] lines). They found that the relation out to $z \sim 3$ is indistinguishable from that found locally and concluded that this is consistent with the idea that SMBHs and bulges grow simultaneously. Thus, if BHs form after the host bulges, then the delay has to be short in comparison with the Hubble time.

Perhaps the most interesting result of this paper is that optical quasars are biased tracers of the cosmic accretion rate of SMBHs (Fig. 4). Although the optical luminosity function peaks at $z \sim 2.5$ (Fig. 2), most of the accretion happens later ($z \sim 1.3 - 1.5$, and even lower, when the contribution from Seyferts in Sa-Sb bulges is considered) in lower mass BHs. This accretion is not properly accounted for in optical studies because it is highly obscured. The importance of obscured accretion is demonstrated by the fact that opti-
cal quasars account for \(\sim 20\% \) of the hard X-ray background (e.g., Salucci et al. 1999). Our finding is also consistent with the recent discovery from ultra-deep CHANDRA and XMM counts that most of the X-ray background come from sources around \(z \sim 1 \) and not \(z > 2 \) (Rosati et al. 2002; Hasinger 2002; Franceschini, Braito & Fadda 2002), and also from the X-ray selected quasar sample from the CDFN, where Cowie et al. (2003) find that the most powerful quasars are much more likely to show broad emission lines. Our confidence about this result also relies on the fact that we are able to reproduce a reasonable agreement with the observed X-ray luminosity function of quasars (Fig. 3). This partly explains why studies of quasars in the context of semi-analytic galaxy formation have had so many problems finding the peak at the right redshift: it is not because the model assumptions were wrong in themselves, but that the power dependence of the obscuration was not properly considered.

6 ACKNOWLEDGEMENTS

We acknowledge discussion with Claudia Maraston, Daniel Thomas and Pierluigi Monaco. Moreover we thank Luigi Danese and Gian Luigi Granato for comments on the manuscript. This research has been supported by the European Commission under the Fifth Framework Program.

REFERENCES

Antonucci R., 2002, in J. Trujillo-Bueno, F. Moreno-Insertis, F. Sánchez, eds., Proceedings of the XII Canary Islands Winter School of Astrophysics. Cambridge University Press, Cambridge, p. 151
Antonucci R.J., Miller J.S., 1985, ApJ, 297, 621
Archibald E.N., Dunlop J.S., Jimenez R., Friaça A.C.S., McLure R.J., Hughes D.H., 2002, MNRAS, 336, 353
Balmer J.A., Hamann F., Korista K.T., Dietrich M., Warner C., 2003, ApJ, 583, 649
Barger A.J., Cowie L.L., Brandt W.N., Panuzzo P., Salucci P., De Zotti G., Danese L., 2001, MNRAS, 324, 757
Franceschini A., Braito V., Fadda D., 2002, MNRAS, 338, L35
Haiman M.G., Kauffmann G., 2000, MNRAS, 318, L35
Haiman M.G., Natarajan P., Rees M.J., 1998, MNRAS, 300, 817
Hallman Z., Hui L., 2001, ApJ, 547, 27
Haiman Z., Loeb A., 1998, ApJ, 503, 505
Haiman Z., Menou K., 2000, ApJ, 531, 42
Hasinger G., 2002, in F. Jansen, ed., New Visions of the X-ray Universe in the XMM-NEWTOWN and CHANDRA Era. ESTEC, the Netherlands, ESA SP-488
Hill G.J., Goodrich R.W., De Poy D.L., 1996, ApJ, 462, 163
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kauffmann G., Haehnelt M., 2002, MNRAS, 332, 529
La Franca F., Andreani P., Cristiani S., 1998, ApJ, 497, 529
Lawrence A., 1991, MNRAS, 252, 586
Lutz D., 2000, The Institut of Space and Astronautical Science Report, 14, 99
McLure R.J., Kukula M.J., Dunlop J.S., Baum S.A., O'Dea C.P., Hughes D.H., 1999, MNRAS, 308, 377
Mainieri V., Bergeron J., Hasinger G., Lehmann I., Rosati P., Schmidt M., Szkoky G., Della Ceca R., 2002, A&A, 393, 425
Merritt D., Ferrarese L., 2001a, MNRAS, 320, 130
Nolan L.A., Dunlop J.S., Kukula M.J., Hughes D.H., Boroson T., Jimenez R., 2001, MNRAS, 323, 308
Norman C., et al., 2002, ApJ, 571, 218
Romano D., Silva L., Matteucci F., Danese L., 2002, MNRAS, 334, 444
Rosati P., et al., 2002, ApJ, 566, 667
Rowan-Robinson M., 1995, MNRAS, 272, 737
Salucci P., Ratnam C., Monaco P., Danese L., 2000, MNRAS, 317, 488
Scheuer P.A.G., 1987, in T.J. Pearson, J.A. Zensus, eds., "Superluminal Radio Sources". Cambridge University Press, Cambridge, p. 104
Sheth R. K., Bernardi M., Schechter P., et al., 2003, ApJ, submitted (astro-ph/0303092)
Shields G.A., et al., 2003, ApJ, accepted, pre-print astro-ph/0210050
Simons C., 1998, MNRAS, 297, 39p
Soltan A., 1982, MNRAS, 200, 115
Sturm E., Genzel R., Lutz D., Spoon H., Kunze D., Moorwood A., Netzer H., Sternberg A., 1997, Bulletin of the American Astronomical Society, 29, 832
Thomas D., Maraston C., Bender R., 2002, Astrophysics and Space Science, 281, 371
Trager S.C., Faber S.M., Worthey G., Gonzalez J.J., 2000, AJ, 120, 165
Tremaine S., et al., 2002, A&A, 398, 891
Worthey G., 1994, ApJS, 95, 1
Wirtanen C., Smail I., Danese L., 2003d, AJ, in press
Worrall D.M., Hughes D.H., 1999, MNRAS, 308, 77
Zappacosta L., 1998, MNRAS, 298, 388
Zucker D.B., 2001, AJ, 122, 2810
Zuckerman B., Hill J., 2002, MNRAS, 327, 1071
Zucker D.B., Hill J., 2002, MNRAS, 327, 1161
Zucker D.B., Hill J., 2002, MNRAS, 327, 1217
Zucker D.B., Hill J., 2002, MNRAS, 327, 1297
Zucker D.B., Hill J., 2002, MNRAS, 327, 1361
Zucker D.B., Hill J., 2002, MNRAS, 327, 1441
Zucker D.B., Hill J., 2002, MNRAS, 327, 1521
Zucker D.B., Hill J., 2002, MNRAS, 327, 1601
Zucker D.B., Hill J., 2002, MNRAS, 327, 1681
Zucker D.B., Hill J., 2002, MNRAS, 327, 1761
Zucker D.B., Hill J., 2002, MNRAS, 327, 1841
Zucker D.B., Hill J., 2002, MNRAS, 327, 1921
Zucker D.B., Hill J., 2002, MNRAS, 327, 2001
Zucker D.B., Hill J., 2002, MNRAS, 327, 2081
Zucker D.B., Hill J., 2002, MNRAS, 327, 2161
Zucker D.B., Hill J., 2002, MNRAS, 327, 2241
Zucker D.B., Hill J., 2002, MNRAS, 327, 2321
Zucker D.B., Hill J., 2002, MNRAS, 327, 2401
Zucker D.B., Hill J., 2002, MNRAS, 327, 2481
Zucker D.B., Hill J., 2002, MNRAS, 327, 2561
Zucker D.B., Hill J., 2002, MNRAS, 327, 2641
Zucker D.B., Hill J., 2002, MNRAS, 327, 2721
Zucker D.B., Hill J., 2002, MNRAS, 327, 2801
Zucker D.B., Hill J., 2002, MNRAS, 327, 2881
Zucker D.B., Hill J., 2002, MNRAS, 327, 2961
Zucker D.B., Hill J., 2002, MNRAS, 327, 3041
Zucker D.B., Hill J., 2002, MNRAS, 327, 3121
Zucker D.B., Hill J., 2002, MNRAS, 327, 3201
Zucker D.B., Hill J., 2002, MNRAS, 327, 3281
Zucker D.B., Hill J., 2002, MNRAS, 327, 3361
Zucker D.B., Hill J., 2002, MNRAS, 327, 3441
Zucker D.B., Hill J., 2002, MNRAS, 327, 3521
Zucker D.B., Hill J., 2002, MNRAS, 327, 3601
Zucker D.B., Hill J., 2002, MNRAS, 327, 3681
Zucker D.B., Hill J., 2002, MNRAS, 327, 3761
Zucker D.B., Hill J., 2002, MNRAS, 327, 3841
Zucker D.B., Hill J., 2002, MNRAS, 327, 3921
Zucker D.B., Hill J., 2002, MNRAS, 327, 3981
Zucker D.B., Hill J., 2002, MNRAS, 327, 4061
Zucker D.B., Hill J., 2002, MNRAS, 327, 4141
Zucker D.B., Hill J., 2002, MNRAS, 327, 4221