A note on meromorphic functions with positive coefficients associated with Bessel function

K.C. Deshmukh¹, Rajkumar N. Ingle² and P. Thirupathi Reddy ³*

Abstract
The aim of the present paper is to introduce a new subclass of meromorphic functions with positive coefficients defined by a certain integral operator and obtain coefficient inequality, convex linear combinations, extremepoint, radii of close-to-convexity, starlikeness, convexity, Hadamard product and integral transforms for the functions \(f \) in this class.

Keywords
Meromorphic, coefficient inequality, starlikeness, Hadamard product.

AMS Subject Classification
30C45.

1 Introduction

Let \(\Sigma \) be the class of functions \(f(z) \) of the form

\[
f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \quad n \in N = \{1, 2, 3, \ldots\} \quad (1.1)
\]

which are analytic in the punctured unit disc \(U^* = \{z \in C : 0 < |z| < 1\} = U \setminus \{0\} \).

Analytically a function \(f \in \Sigma \) given by (1.1) is said to be meromorphically starlike of order \(\alpha \) if it satisfies the following:

\[
Re \left\{ -\left(\frac{zf''(z)}{f'(z)} \right) \right\} > \alpha, \quad (z \in U)
\]

for some \(\alpha (0 \leq \alpha < 1) \). We say that \(f \) is in the class \(\Sigma^*(\alpha) \) of such functions.

Similarly a function \(f \in \Sigma \) given by (1.1) is said to be meromorphically convex of order \(\alpha \) if it satisfies the following:

\[
Re \left\{ -\left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > \alpha, \quad (z \in U)
\]

for some \(\alpha (0 \leq \alpha < 1) \). We say that \(f \) is in the class \(\Sigma_k(\alpha) \) of such functions.

For a function \(f \in \Sigma \) given by (1.1) is said to be meromorphically close to convex of order \(\beta \) and type \(\alpha \) if there exists a function \(g \in \Sigma^*(\alpha) \) such that

\[
Re \left\{ -\left(\frac{zf'(z)}{g(z)} \right) \right\} > \beta, \quad (0 \leq \alpha < 1, 0 \leq \beta < 1, z \in U).
\]

We say that \(f \) is in the class \(K(\beta, \alpha) \).

The class \(\Sigma^*(\alpha) \) and various other subclasses of \(\Sigma \) have been studied rather extensively by Clunie [5], Miller [10], Pommerenke [13], Royster [14], Akgul [1, 2], Sakar and Guney [11, 12] and Venkateswarlu et al. [15].

Recent years, many authors investigated the subclass of meromorphic functions with positive coefficient Juneja and Reddy [9] class \(\Sigma_p \) functions of the form

\[
f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, a_n \geq 0 \quad (1.2)
\]
we recall here the generalized Bessel function of first kind of \(\phi \) where Bessel function .

\[g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n, \]

we define the Hadamard product (or convolution) of \(f \) and \(g \) by

\[(f * g)(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n. \]

We recall here the generalized Bessel function of first kind of order \(\gamma \) (see [6]), denoted by

\[w(z) = \sum_{n=0}^{\infty} \frac{(-c)^n}{n! \Gamma(\gamma + n + \frac{b+1}{2})} \left(\frac{z}{2} \right)^{2n+\gamma} (z \in U) \]

(where \(\Gamma \) stands for the Gamma Euler function) which is the particular solution of the second order linear homogeneous differential equation (see, for details, [16])

\[z^2 w''(z) + bcz'(z) + [cz^2 - \gamma^2 - (1-b)\gamma]w(z) = 0 \]

where \(c, \gamma, b \in C \).

We introduce the function \(\phi \) defined, in terms of the generalized Bessel function \(w \) by

\[\phi(z) = 2^{\gamma} \Gamma \left(\gamma + \frac{b+1}{2} \right)z^{-(-1+\gamma)}w(\sqrt{z}). \]

By using the well-known Pochhammer symbol \((x)_\mu\) defined, for \(x \in C \) and in terms of the Euler Gamma function, by

\[(x)_\mu = \begin{cases} 1, & (\mu = 0) \\ x(x+1)(x+2)\cdots(x+n-1), & (\mu = n \in N = \{1,2,3\cdots\}) \end{cases} \]

We obtain the following series representation for the function \(\phi(z) \)

\[\phi(z) = \frac{1}{\tau} + \sum_{n=0}^{\infty} \frac{(-c)^{n+1}}{\Gamma(n+1)(n+1)!\tau_{n+1}} \tau^n \]

\[(\tau = \gamma + \frac{b+1}{2} \notin \mathbb{Z}_0 = \{0,-1,-2,\cdots\}) \]

Corresponding to the function \(\phi \) define the Bessel operator \(S^\beta_{\tau} \) by the following Hadamard product

\[S^\beta_{\tau} f(z) = (\phi * f)(z) = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{(-c)^{n+1}}{(n+1)!\Gamma(\tau_{n+1})} a_n z^n \]

\[= \frac{1}{z} + \sum_{n=1}^{\infty} \phi(n,\tau,c) a_n z^n, \]

where \(\phi(n,\tau,c) = \frac{(-c)^n}{n!\Gamma(\tau_n)}. \)

It easy to verify from the definition (1.3) that

\[z[S^\beta_{\tau} f(z)] = \tau S^\beta_{\tau} f(z) - (\tau + 1)S^\beta_{\tau+1} f(z). \]

Now we introduce the following subclass of \(\Sigma_p \) associated with Bessel function .

Definition 1.1. A function \(f \in \Sigma_p \) is said to be in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \) if and only if satisfies the inequality

\[\Re \left\{ -z \left[\frac{(\lambda S^\beta_{\tau} f(z))^n + (\lambda - \alpha)z(S^\beta_{\tau} f(z))^n + (1-\lambda + \alpha)S^\beta_{\tau+1} f(z)}{\lambda S^\beta_{\tau} f(z)+\beta} \right] \right\} \]

\[> \beta \left\{ \frac{\xi}{\phi(z) + 1} + \xi \right\} \]

where \(0 \leq \tau < 1, 0 \leq c, 0 \leq \xi < 1, 0 \leq \lambda < \frac{1}{\tau}, \beta \geq 0. \)

Let \(\Phi(z) = \lambda S^\beta_{\tau} f(z) + (\lambda - \alpha)z(S^\beta_{\tau} f(z))^n + (1-\lambda + \alpha)S^\beta_{\tau+1} f(z). \)

If we write equation (1.6) in the inequality (1.5), then by a simple calculation the inequality (1.5) can be written as

\[\Re \left\{ -z[\Phi(z)] \right\} > \beta \left\{ \frac{\Phi(z)}{\phi(z)} + 1 \right\} + \xi. \]

It is easily shown that there is following equality between these subclasses

\[\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) = \Sigma(\alpha, \lambda, \tau, c, \xi, \beta) \cap \Sigma_p. \]

In order to prove our results we need the following lemmas [3].

Lemma 1.2. Let \(\sigma \) be a real number and \(\omega = u + iv \) is a complex number. Then

\[\Re(\omega) \geq \sigma \Leftrightarrow |\omega - (1 + \sigma)| \leq |\omega + (1 - \sigma)|. \]

Lemma 1.3. Let \(\omega = u + iv \) be a complex number and \(\sigma, \gamma \) are real numbers. Then

\[\Re(-\omega) \geq |\sigma| - |\omega - 1| + \gamma \]

\[\Leftrightarrow \Re(-\omega(1 + \sigma e^{ic}) - \sigma ye^{ic}) \geq \gamma, (-\pi \leq c \leq \pi). \]

The purpose of this paper is to introduce a new subclass of meromorphic functions with positive coefficients and obtain the necessary and sufficient conditions for the functions defined by the relation (1.3) in this class. We also obtain coefficient inequality, convex linear combinations, extreme point, radii of close-to-convexity, starlikeness, convexity, Hadamard product and integral transforms for this class.

2. Coefficient estimates

We obtain in this section a necessary and sufficient condition for a function \(f \) to be in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). We employ the technique adopted by Aqlan et al. [3] and Athan and Kulkarni [4] to find the coefficient estimates for the functions \(f \) defined by the equation (1.3) in the class.
A note on meromorphic functions with positive coefficients associated with Bessel function — 1624/1628

\[\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta). \]

A subclass for meromorphic function \(f \in \Sigma_p \) given by the equality (1.3) with positive coefficient was defined and investigated in [6]. In this study we modified and extended their subclass to the subclass of the functions \(f \in \Sigma_p \) defined by the certain Bessel function.

Theorem 2.1. A meromorphic function \(f \) defined by the equation (1.3) in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \) if and only if

\[
\sum_{n=1}^{\infty} \left[(n+\xi) + \beta(n+1) \right] \left[(n-1)(n\lambda\alpha + \lambda - \alpha) \right] \phi(n, \tau, c)a_n \\
\leq \left(1 - \xi \right)(2\alpha\lambda - 2\lambda + 2\alpha + 1)
\]

(2.1)

for some \(0 \leq \xi < 1 \), \(0 \leq \tau < 1 \), \(0 \leq c < 1 \), \(0 \leq \alpha \leq \lambda \leq \frac{1}{2} \) and \(\beta \geq 0 \).

Proof. Let \(f \in \Sigma_p \) and suppose satisfies the condition (2.1). Then by applying Lemma 1.3, we have to show that

\[
\text{Re} \left\{ \frac{-z\Phi(z)}{\Phi(z)} (1 + \beta e^{\phi}) - \beta e^{\phi} \right\} > \xi,
\]

\(-\Pi \leq \phi \leq \Pi, 0 \leq \xi < 1, \beta \geq 0\)
or equivalently

\[
\text{Re} \left\{ \frac{-z(\Phi(z))(1 + \beta e^{\phi}) - \beta e^{\phi}\Phi(z)}{\Phi(z)} \right\} > \xi.
\]

(2.2)

Let \(\Psi(z) = -z\Phi'(z)[1 + \beta e^{\phi}] - \beta e^{\phi}\Phi(z) \).

Thus, the equation (2.2) is equivalent to

\[
\text{Re} \left\{ \frac{\Psi(z)}{\Phi(z)} \right\} > \xi.
\]

(2.3)

In view of Lemma 1.2, it is sufficient to prove that

\[
|\Psi(z) + (1 - \xi)\Phi(z)| - |\Psi(z) - (1 + \xi)\Phi(z)| > 0.
\]

Therefore

\[
|\Psi(z) + (1 - \xi)\Phi(z)| = \\
\left(2 - \xi \right)(2\alpha\lambda - 2\lambda + 2\alpha + 1) \left(\frac{1}{z} \right)
\]

\[
+ \sum_{n=1}^{\infty} \left[(n+\xi) + \beta(n+1) \right] \left(1 - n - \xi \right) \phi(n, \tau, c) a_n z^n
\]

\[
\geq \left(2 - \xi \right)(2\alpha\lambda - 2\lambda + 2\alpha + 1) \left(\frac{1}{z} \right)
\]

\[
- \sum_{n=1}^{\infty} \left[(n+\xi) - 1 + \beta(n+1) \right] \left[(n-1)(n\lambda\alpha + \lambda - \alpha) \right] \phi(n, \tau, c) a_n z^n.
\]

(2.4)

Thus, similarly we obtain

\[
|\Psi(z) - (1 + \xi)\Phi(z)|
\leq \left(2 - \xi \right)(2\alpha\lambda - 2\lambda + 2\alpha + 1) \left(\frac{1}{z} \right)
\]

\[
+ \sum_{n=1}^{\infty} \left[(n+\xi) + \beta(n+1) \right] \left[(n-1)(n\lambda\alpha + \lambda - \alpha) \right] \phi(n, \tau, c) a_n z^n.
\]

(2.5)

Thus from (2.5) and (2.6), we get

\[
|\Psi(z) + (1 - \xi)\Phi(z)| - |\Psi(z) - (1 + \xi)\Phi(z)|
\geq 2(1 - \xi)(2\alpha\lambda - 2\lambda + 2\alpha + 1)
\]

\[
- \sum_{n=1}^{\infty} \left[2(n+\xi) + 2\beta(n+1) \right] \left[(n-1)(n\lambda\alpha + \lambda - \alpha) + 1 \right] \phi(n, \tau, c) a_n z^n.
\]

(2.6)

If we use the inequality (2.1) in last inequality then we obtain the desired result.

Conversely assume that that the function \(f \) defined by the equation (1.1) is in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). That is, the inequality (1.5) holds for the function \(f \). By choosing the value of \(z \) on the positive real axis, where \(0 \leq |z| = r < 1 \) the inequality (1.5) reduced to

\[
\text{Re} \left\{ \frac{1}{z(2\alpha\lambda - 2\lambda + 2\alpha + 1) + \sum_{n=1}^{\infty} \left| (n+\xi) + \beta(n+1) \right| (n-1)(n\lambda\alpha + \lambda - \alpha) + 1 \phi(n, \tau, c) a_n z^n} \right\}
\]

\[
\geq 0, \text{ where } \text{Re}(-e^{\phi}) \geq -|e^{\phi}| = -1.
\]

Letting \(r \to 1^+ \) through positive values, we obtain

\[
\sum_{n=1}^{\infty} \left| (n+\xi) + \beta(n+1) \right| (n-1)(n\lambda\alpha + \lambda - \alpha) + 1 \phi(n, \tau, c) a_n z^n
\]

\[
\leq \left(1 - \xi \right)(2\alpha\lambda - 2\lambda + 2\alpha + 1)
\]

and this is desired result.

Corollary 2.2. Let the function \(f \) defined by the equation (1.3) be in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). Then

\[
da_n \leq
\frac{(1 - \xi)(2\lambda\alpha - 2\lambda + 2\alpha + 1)}{[(n+\xi) + \beta(n+1)][(n-1)(n\lambda\alpha + \lambda - \alpha) + 1] \phi(n, \tau, c)}
\]

for \(n \geq 1 \). The result is sharp for each \(n \) for the functions of the form

\[
f_n(z) = \frac{1}{z} + \\
\frac{1}{(n+\xi) + \beta(n+1)][(n-1)(n\lambda\alpha + \lambda - \alpha) + 1] \phi(n, \tau, c) z^n}.
\]

(2.7)

where \(n \geq 1 \).

3. Convex Linear Combination

In this section, we shall prove the closure theorem of the functions given by the form (1.3) in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \).

Theorem 3.1. The class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \) is closed under convex linear combination.
Proof. Let the functions \(f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \) and
\[
g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n
\]
be in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \).

Then by Theorem 2.1, we have
\[
\sum_{n=1}^{\infty} [(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \\
\times \phi(n, \tau, c)a_n \\
\leq (1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1) \tag{3.1}
\]
and
\[
\sum_{n=1}^{\infty} [(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \\
\times \phi(n, \tau, c)a_n \\
\leq (1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1). \tag{3.2}
\]

For \(0 \leq \tau \leq 1 \), define the function \(h(z) = \tau f(z) + (1 - \tau)g(z) \).

Then, we get
\[
h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} [\tau a_n + (1 - \tau) b_n] z^n.
\]
Now, we obtain
\[
\sum_{n=1}^{\infty} [(n + \xi + \beta(n+1)] \\
\times [(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)[\tau a_n + (1 - \tau) b_n] \\
= \tau [(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)a_n \\
+ (1 - \tau) [(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)b_n] \\
\leq \tau (1 - \alpha) + (1 - \tau)(1 - \alpha) \\
= (1 - \alpha). \tag{5.1}
\]

This completes the proof of the theorem. \(\square \)

5. Radii of Starlikeness and Convexity

In this section, we find the radii of meromorphically close-to-convexity, starlikeness and convexity for functions \(f \) in the class \(\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \).

Theorem 5.1. Let \(f \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). Then \(f \) is meromorphically close-to-convex of order \(\delta \) in the disk \(|z| < r_1 \), where
\[
r_1 = \inf_{n \in \mathbb{N}} \left[\frac{(1 - \delta)(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)}{(1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \right] \frac{1}{1 - \delta},
\]
and the result is sharp.

Proof. Let \(f \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). It is sufficient to prove that
\[
|z|^{n+1} f^{(n)}(z) + 1 < 1 - \delta. \tag{5.1}
\]
By Theorem 2.1, we have
\[
\sum_{n=1}^{\infty} \left[\frac{(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)}{(1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \right] a_n \leq 1.
\]
So the inequality
\[
|z|^{n+1} f^{(n)}(z) + 1 \leq \sum_{n=1}^{\infty} na_n |z|^{n+1} < 1 - \delta
\]
holds true if
\[
n|z|^{n+1} \leq \frac{(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)}{(1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)}. \tag{5.1}
\]
Then, (5.1) holds true if
\[
|z|^{n+1} \leq \frac{(1 - \delta)(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)}{(1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)},
\]
which yields the close-to-convexity of the function and completes the proof. Also, the result is sharp for the functions of the form (2.7). \(\square \)

Theorem 5.2. Let \(f \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). Then \(f \) is meromorphically starlike of order \(\delta \) in the disk \(|z| < r_2 \), where
\[
r_2 = \inf_{n \in \mathbb{N}} \left[\frac{(1 - \delta)(n + \xi + \beta(n+1)][(n-1)(n\lambda \alpha + \lambda - \alpha)] \phi(n, \tau, c)}{(1 - \xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \right] \frac{1}{1 - \delta},
\]
and the result is sharp.
Proof. Let \(f \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). It is sufficient to prove that
\[
\left| \frac{zf'(z)}{f(z)} + 1 \right| < 1 - \delta
\]
(5.2)
where \(0 \leq \delta < 1 \), \(|z| < r_2 \). For the function \(f \in \Sigma_p \) given by the equation (1.3), we get
\[
\left| \frac{zf''(z)}{f(z)} + 1 \right| \leq \frac{\sum_{n=1}^{\infty} (n+1)a_n|z|^{n+1}}{1 - \sum_{n=1}^{\infty} a_n|z|^{n+1}} \leq 1 - \delta
\]
holds true if
\[
\sum_{n=1}^{\infty} (n+2-\delta) a_n z^{n+1}. \]
By Theorem 2.1, we have
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} a_n \leq 1.
\]
Then inequality (5.2) holds true if
\[
\frac{(n+2-\delta)}{(1-\xi)} \leq \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \leq \delta
\]
which is equivalent to
\[
|z| \leq \left\{ \frac{(1-\xi)}{(n+2-\delta)} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \right\}^{\frac{1}{\rho}}
\]
which yields the starlikeness of the function and completes the proof.

Also, the result is sharp for the functions of the form (2.7). \(\Box \)

Theorem 5.3. Let \(f \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). Then \(f \) is meromorphically convex of order \(\delta (0 \leq \delta < 1) \) in the disk \(|z| < r_3 \), where
\[
r_3 = \inf_{n \geq 0} \left\{ \frac{(1-\xi)}{(n+2-\delta)} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \right\}^{\frac{1}{\rho}}.
\]
The result is sharp for the extremal function \(f \) given by
\[
f_n(z) = \frac{1}{z^n} \frac{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)}{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)} a_n z^n, \quad n \geq 1.
\]
Proof. By using the technique employed in the proof of Theorem 5.1 and 5.2, we can show that
\[
\left| \frac{zf''(z)}{f'(z)} + 1 \right| < 1 - \delta
\]
for \(|z| < r_3 \) and prove that the assertion of the theorem is true. The result is sharp for the functions given by the equation (2.7). \(\Box \)

6. Hadamard Product

Theorem 6.1. For functions \(f, g \in \Sigma_p \) defined by (1.1), let \(f, g \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta) \). Then the Hadamard product
\[
f \ast g \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta),
\]
where
\[
\rho \leq \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} \sum_{n=1}^{\infty} \left| \frac{(n+\xi)+\beta(n+1)}{(n-1)(n\lambda \alpha + \lambda - \alpha)} \right|^2 \phi(n, \tau, c) (1-\alpha)^2 [1-\delta(n+1)]
\]
Proof. From Theorem 2.1, we have
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} a_n \leq 1
\]
(6.1)
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} b_n \leq 1.
\]
From (6.1) and (6.2) we find, by means of the Cauchy-Schwarz inequality, that
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} a_n b_n \leq 1.
\]
(6.3)
We need to find the largest \(\rho \) such that
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} a_n b_n \leq 1.
\]
Thus it is enough to show that
\[
\sum_{n=1}^{\infty} \frac{|(n+\xi)+\beta(n+1)|(|n-1)(n\lambda \alpha + \lambda - \alpha)|\phi(n, \tau, c)}{(1-\xi)(2\lambda \alpha - 2\lambda + 2\alpha + 1)} a_n b_n \leq \sqrt{a_n b_n}
\]
that is,
\[
\sqrt{a_n b_n} \leq \frac{(1-\rho)(n+\xi)+\beta(n+1)}{(1-\xi)(n+\xi)+\beta(n+1)}.
\]
(6.4)
On the other hand, from (6.3), we have
\[
\sqrt{a_n b_n} \leq \frac{(1-\xi)}{(n+\xi)+\beta(n+1)} (n-1)(n\lambda \alpha + \lambda - \alpha) \phi(n, \tau, c).
\]
(6.5)
Therefore in view of (6.4) and (6.5), it is enough to show that
\[
\frac{(1-\xi)}{(n+\xi)+\beta(n+1)} (n-1)(n\lambda \alpha + \lambda - \alpha) \phi(n, \tau, c) \leq \frac{(1-\rho)(n+\xi)+\beta(n+1)}{(1-\xi)(n+\xi)+\beta(n+1)}
\]
\[
\rho \leq \frac{2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1) \phi(n, \tau, c) + 2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1)}{(n+\xi)+\beta(n+1)(n-1)(n\lambda \alpha + \lambda - \alpha) \phi(n, \tau, c) + 2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1)}
\]
Let \(\Phi(n) = \frac{2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1) \phi(n, \tau, c) + 2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1)}{(n+\xi)+\beta(n+1)(n-1)(n\lambda \alpha + \lambda - \alpha) \phi(n, \tau, c) + 2(1-\xi)^2(2\lambda \alpha - 2\lambda + 2\alpha + 1)}
\]
Clearly \(\Phi(n) \) is an increasing function of \(n \geq 1 \). Letting \(n = 1 \), we have proven the assertion. \(\Box \)
Theorem 6.2. For functions $f, g \in \Sigma_p$ defined by (1.1), let
\[f, g \in \Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta). \]
Then the function
\[k(z) = \frac{z}{1 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) z^n} \]
is in the class
\[\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta), \]
where
\[k(z) = \frac{z}{1 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) z^n}. \]

Proof. Let the function $f \in \Sigma_p$ be given by (1.3). Then by a simple computation we have
\[F(z) = \frac{d}{dz} f(uz) du = \frac{1}{z} \sum_{n=1}^{\infty} \frac{d}{dn+n+1} a_n z^n. \]

Theorem 7.1. Let the function $f \in \Sigma_p$ be defined by the equation (1.3) is in the class
\[\Sigma_p(\alpha, \lambda, \tau, c, \xi, \beta). \]
Then the integral operator
\[F(z) = \int_{0}^{z} u^d f(uz) du, \quad 0 < u \leq 1, \quad 0 < d < \infty \]
is in $\Sigma_p(\alpha, \lambda, \tau, c, \rho, \beta)$, where
\[\rho = 1 - \frac{2d(1-\xi)[(2\lambda-2\alpha+2\alpha+1)]}{d(1-\xi)[(2\lambda-2\alpha+2\alpha+1)] + (d+2)(2\lambda+\xi+1)} \]
and the result is sharp.

Proof. Let the function $f \in \Sigma_p$ be given by (1.3). Then by a simple computation we have
\[F(z) = \int_{0}^{z} u^d f(uz) du = \frac{1}{z} \sum_{n=1}^{\infty} \frac{d}{dn+n+1} a_n z^n. \]
We have to show that
\[\sum_{n=1}^{\infty} \frac{d(n+\rho) + \beta(n+1)}{(d+n+1)(1-\rho)(2\lambda-2\alpha+2\alpha+1)} a_n \leq 1. \]

Since $f \in \Sigma_p$, we have
\[\sum_{n=1}^{\infty} \frac{d(n+\rho) + \beta(n+1)}{(d+n+1)(1-\rho)(2\lambda-2\alpha+2\alpha+1)} a_n \leq 1. \]

References

[1] A. Akgul, A certain subclass of meromorphic functions with positive coefficients associated with an integral operator, Honam Math. J., 39(3) (2017), 331–347.
[2] A. Akgul, A new subclass of meromorphic functions with positive and fixed second coefficients defined by the Rapid-Operator, Commun. Fac. Sci. Univ. Ank. Series A1, 66 (2)(2017), 1-13.
[3] A. Akgul, J. M. Jhangiri and S. R. Kulkarni, Class of K–uniformly convex and starlike functions, Tamkang J. Math., 35 (2004), 261–266.
[4] W. G. Athisan and S. R. Kulkarni, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivate I, J. Rajasthan, Acad. Phy. Sci., 6(2)(2007), 129–140.
[5] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34(1959), 115–216.
[6] E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math., 15(2)(2011), 883–917.
[7] P.L. Duren, *Univalent Functions*, Springer, New York, NY, USA, 1983.
[8] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, *Glasnik Math. Ser. III*, 17(1981), 19–28.
[9] O. P. Juneja and T. R. Reddy, Meromorphic starlike univalent functions with positive coefficients, *Ann. Univ. Mariae Curie Sklodowska, Sect. A*, 39(1985), 65–76.
[10] J. E. Miller, Convex meromorphic mapping and related functions, *Proc. Amer. Math. Soc.*, 25(1970), 220–228.
[11] F. Muge Sakar and H. Ozlem Guney, On meromorphic functions with fixed residue defined using convolution, *Scientific Research and Essays*, 8(31)(2013), 1532–1539.
[12] F. Muge Sakar and H. Ozlem Guney, On a new subclass of harmonic meromorphic functions with fixed residue ξ, *TWMS Journal of Applied and Engg. Math.*, 4(1)(2014), 92–97.
[13] Ch. Pommerenke, On meromorphic starlike functions, *Pac. J. Math.*, 13(1963), 221–235.
[14] W. C. Royster, Meromorphic starlike univalent functions, *Trans. Amer. Math. Soc.*, 107(1963), 300–308.
[15] B. Venkateswarlu, P. Thirupathi Reddy and N. Rani, Certain subclass of meromorphically uniformly convex functions with positive coefficients, *Mathematica (Cluj)*, 61(84)(2019), 85–97.
[16] G. N. Watson, *A Treatise on the Theory of Bessel Functions*, 2nd edn. Cambridge University Press, Cambridge, (1994).

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
