Assessment of the Impact of Per Unit Parameters Errors on Wave and Output Parameters in a Transmission Line

Sebastian Rózowicz 1,*, Andrzej Zawadzki 1, Maciej Włodarczyk 1, Antoni Rózowicz 1 and Damian Mazur 2

1 Department of Electrical Engineering, Automatics and Computer Science, Kielce University of Technology, 25-314 Kielce, Poland; a.zawadzki@tu.kielce.pl (A.Z.); m.wlodarczyk@tu.kielce.pl (M.W.);
rozowicz@tu.kielce.pl (A.R.)
2 Department of Electrical Engineering and Computer Science, University of Technology, Rzeszów, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland; mazur@prz.edu.pl
* Correspondence: s.rozowicz@tu.kielce.pl

Abstract: The assessment of the impact of per unit length parameter errors on the determination of wave parameters, currents, and voltages at the end of the line has been presented in the paper. The impact on the above-mentioned values has been indicated. This paper presents an assessment of the impact of per unit parameter errors on the determination of both wave parameters, as well as currents and voltages at the end of a transmission line, although it is mainly focused on indicating which of the per unit parameters have the strongest impact on the above-mentioned values. For this purpose, elements of incremental sensitivity have been used.

Keywords: circuit sensitivity; transmission line; output parameters; electrical circuit; model of a two-wire transmission

1. Introduction

In order to determine currents and voltages in circuits with distributed parameters—transmission lines, the knowledge of the so-called wave parameters (the wave impedance and the propagation constant) is necessary. These parameters can be determined knowing the per unit parameters of the line, i.e., resistance, inductance, capacitance, and leakage given per unit of line length (usually 1 km). The determination of these quantities is often inaccurate, e.g., in an overhead line the value of capacitance and leakage depends on the weather conditions, and is usually specified in certain ranges. The study of sensitivity of wave parameters to errors in the determination of unit parameters was presented in the paper [1]. This task was performed based on the definition of the relative sensitivity of electrical circuits [2,3]. This paper presents an assessment of the impact of per unit parameter errors on the determination of both wave parameters, as well as currents and voltages at the end of a transmission line, although it is mainly focused on indicating which of the per unit parameters have the strongest impact on the above-mentioned values. For this purpose, elements of incremental sensitivity have been used [4].

2. Linear Circuits with Distributed Parameters

A transmission line is an electrical circuit with distributed parameters, supplied from a sinusoidal voltage source. The length of the electric circuit is comparable to the voltage wavelength \(\lambda \) [2]. The circuit is composed of elements \(R_0, G_0, L_0, \) and \(C_0 \), which determine the losses of active power related to heat generation and leakage, and as a result of accumulation of energy in magnetic and electric fields [5]. They are called the primary parameters of a transmission line [5]. In the case of circuits with distributed parameters in relation to the length of the line, the longitudinal parameters (resistance \(R_0 \), inductance \(L_0 \), and lateral parameters: capacitance \(C_0 \), and leak conductivity \(G_0 \) [6]) are described. Their values are specified as \(\Omega/m, S/m, H/m, \) and \(F/m \) [7–9]. It is conventionally assumed that...
if l is greater than 0.1λ, or the transmission of impulse signals with a short rise time, as is the case in high voltage cables of spark ignition engines [3,4,6,10], then such a line should be treated as a circuit with distributed parameters. This paper shall examine the properties of a homogeneous line, whose primary parameters are uniformly distributed along the line [7,9]. When analyzing an equivalent circuit of a line with distributed parameters, the following are considered:

- voltage loss on the wire resistance distributed uniformly along the line;
- voltage loss on the wire inductance distributed uniformly along the line;
- leakage current through the insulation distributed uniformly along the line (for cable line: cable insulation, for overhead line: air insulation);
- line capacitance distributed uniformly, where the plates of the capacitor are represented by two wires or a single wire and the earth.

A transmission line can be represented as a cascade connection of elementary sections of Δx length, in which the resistance, capacitor and coil are lumped elements. Instantaneous values of voltage $u(x,t)$ and current $i(x,t)$ at each point of the line are functions of two independent variables: distance and time. If the line parameters are distributed uniformly along the line, the transmission line is homogeneous. A line is linear if its parameters are not dependent on voltage or current at a given point in the line.

Figure 1 presents a model of a homogeneous two-wire transmission line with the length l. Terminals 1–1', called line input terminals, are connected to the $e(t)$ voltage source with internal impedance Z_1. A receiver with impedance Z_2 is connected to output terminals 2–2'.

![Figure 1. Model of a two-wire transmission line.](image-url)

At any point on the line distant by x_1 from the beginning of the line, the voltage is $u(x_1,t)$ and the current is $i(x_1,t)$, in which case for the input terminals $x = 0$, and for the output terminals $x = l$ [3,10,11].

The unit resistance of a single-wire line can be determined using the formula:

$$R_0 = \frac{1000}{\gamma S}\quad(1)$$

where γ is the specific conductivity of the wire [m/Ω mm2], and S is the cross-section of the wire [mm2].

When a two-wire line is considered, the result needs to be multiplied by two.

The per unit inductance for a single wire with a length $l = 1$ m is expressed by the formula:

$$L = \frac{\mu}{4\pi} \left(0.5 + ln \frac{a}{R}\right)\quad(2)$$
where \(a \) is the distance between the axes of the cables, \(R \) is the wire radius, and \(\mu \) is the electric permittivity of the environment (for air assumed as \(\mu = 4\pi \cdot 10^{-7} \text{ H/m} \)).

The per unit capacitance for a two-wire line with a length \(l = 1 \text{ m} \) is expressed by the formula:

\[
C_0 = \frac{\pi \varepsilon_0}{\ln \frac{a}{R}}
\]

where \(\varepsilon_0 \) is the electric permittivity of the environment—air.

3. Transmission Line Wave and Output Parameters

The term wave parameters of a transmission line most commonly refers to: wave impedance expressed by the Equations (6) and (7):

\[
Z_c = \sqrt{R_0 + j\omega L_0} \quad \frac{G_0}{j\omega C_0}
\]

where \(R_0 \) is the per unit length resistance, \(G_0 \) is the per unit length inductance, \(L_0 \) is the per unit length capacitance, and \(C_0 \) is the per unit length leakage.

The propagation constant:

\[
\gamma = \sqrt{(R_0 + j\omega L_0) \cdot (G_0 + j\omega C_0)}
\]

Knowledge of these parameters allows for the determination of the input impedance:

\[
Z_{we} = Z_c \frac{Z_2 e^{j\gamma l} + Z_c e^{j\gamma l}}{Z_2 e^{j\gamma l} + Z_c e^{j\gamma l}}
\]

where \(Z_2 \) is the line load impedance, and \(l \) is the line length.

Then, for a known voltage \(U_1 \) at the beginning of the line, the current \(I_1 \) at the beginning of the line can be determined:

\[
I_1 = \frac{U_1}{Z_{we}}
\]

and then, voltage \(U_2 \) and current \(I_2 \) at the end of the line:

\[
\begin{cases}
U_2 = U_1 e^{j\gamma l} - Z_c I_1 e^{j\gamma l} \\
I_1 = -\frac{U_2}{Z_2 e^{j\gamma l}} + I_1 e^{j\gamma l}
\end{cases}
\]

The sensitivity of wave parameters as well as the output parameters of a transmission line can be traced by changing the per unit length parameters of this line [12–14].

4. Numerical Experiments

Numerical experiments were carried out for a 200 kHz frequency, for an overhead line with following per unit length parameters:

\[
\begin{align*}
R_0 &= 0.68 \Omega/\text{km}; \\
C_0 &= 50 \mu\text{S/km}; \\
L_0 &= 0.128 \text{ mH/km}; \\
C_0 &= 0.01 \mu\text{F/km};
\end{align*}
\]

with an impedance load \(Z_2 = 100 \Omega \)

In order to indicate which of the per unit length parameters have the strongest impact on the values characterizing the transmission line, multiple calculations were carried out, each time substituting a different changed value of a per unit length parameter. These changes consisted in increasing and decreasing the value by 1%. The obtained results—percentage changes—are presented in the form of Tables 1–11.
The highest and lowest values of the modulus are highlighted by bold font in the tables. On the basis of the analysis of the above tables, it can be stated that the biggest influence on the damping factor is the change of R_0, and on the phase factor the change of C_0. C_0 also has the greatest impact on the modulus, and the argument of both the output voltage and current [15–19].

Table 1. Changes to the wave impedance modulus.

| $|Z_C|$ | +1% | −1% |
|-------|-----|-----|
| R_0 | $8.98062178802 \times 10^{-6}$ | $-8.891264700064 \times 10^{-6}$ |
| C_0 | $-7.95516852989 \times 10^{-6}$ | $7.87601573812 \times 10^{-6}$ |
| L_0 | 0.498747363629691 | -0.501247263019991 |
| C_0 | -0.496273219279826 | 0.503773449510121 |

Table 2. Changes to damping constant.

$\alpha = \text{Re}(\gamma)$	+1%	−1%
R_0	0.515151228520686	-0.515151275908188
G_0	0.484848713525002	-0.484848750704316
L_0	-0.013838466672733	0.016490175659639
C_0	0.016313672812472	-0.013964997756260

Table 3. Changes to phase constant.

$\beta = \text{Im}(\gamma)$	+1%	−1%
R_0	$2.85161812570 \times 10^{-7}$	$-2.4048216284705 \times 10^{-7}$
G_0	$-2.27573141879 \times 10^{-7}$	$2.6715125107111 \times 10^{-7}$
L_0	0.49875597170012	-0.501256002512776
C_0	0.49875647683926	-0.501256517856718

Table 4. Changes to the real part of the input resistance.

$\text{Re}(Z_{\text{we}})$	+1%	−1%
R_0	0.000384588324788	-0.0003889650747472
G_0	0.043391174085347	-0.0433956466980439
L_0	-5.732231738707145	5.976853112726378
C_0	3.562167621061453	-3.2793821336200555

Table 5. Changes to the imaginary part of the input resistance.

$\text{Im}(Z_{\text{we}})$	+1%	−1%
R_0	-0.002777179953811	0.002778246452566
G_0	0.001528422276180	-0.0015294640405447
L_0	-0.041812016570611	-0.022198563733944
C_0	-1.189631026642754	1.255414500339767
Table 6. Changes to the I_1 current modulus.

| | $|I_1|$ | +1% | −1% |
|-------|-------------|-----------|-----------|
| R_0 | 0.00274757139330 | −0.0027486055903140 |
| G_0 | −0.000971236507435 | 0.0009719814772497 |
| L_0 | −0.031856013256254 | 0.0939895328519183 |
| C_0 | 1.233753020617313 | −1.2645765148497845 |

Table 7. Changes to the argument of the current I_1.

	arg $\{I_1\}$	+1%	−1%
R_0	0.002372834589791	−0.0023694989848461	
G_0	−0.044547012164130	0.0045534647514297	
L_0	5.72421549430766	−5.9109167085244178	
C_0	−2.381912054750487	1.98184348223934	

Table 8. Changes to the U_2 voltage modulus.

| | $|U_2|$ | +1% | −1% |
|-------|--------|-----------|-----------|
| R_0 | −0.009870362379686 | 0.0098708010242115 |
| G_0 | −0.01099884379695 | 0.011000388578087 |
| L_0 | −0.053850964577535 | 0.0838634668968119 |
| C_0 | 0.630798491006207 | −0.6478547211964083 |

Table 9. Changes to the argument of the voltage U_2.

	arg $\{U_2\}$	+1%	−1%
R_0	0.000288807602249	−0.000288916464849	
G_0	−0.002528487115057	0.002528654755186	
L_0	−2.317110575876312	2.323205351184315	
C_0	−2.751776829843434	2.741194932584926	

Table 10. Changes to the I_2 current modulus.

| | $|I_2|$ | +1% | −1% |
|-------|--------|-----------|-----------|
| R_0 | −0.0098703623797975 | 0.0098708010242179 |
| G_0 | −0.01099884379739 | 0.011000388578038 |
| L_0 | −0.053850964577548 | 0.0838634668968006 |
| C_0 | 0.630798491006164 | −0.6478547211963962 |

In order to evaluate how the values of wave and output parameters change when per unit length parameters are changed, a proprietary program has been written in the MATLAB environment. It allows for the acquisition of graphs of wave and output parameters values for a given frequency, load, input parameters, and variability of individual per unit length parameters (e.g., ±20%) at any value of supply voltage U_1 and load Z_2. The
presented graphs were created for $U_1 = 100 \, \text{V}$, $Z_2 = 100 \, \Omega$. Thus, with a change of per unit length resistance within ±20%, the damping factor α linearly increases from −10% to +10%, regardless of frequency (Figures 2a, 3a and 4a), while the phase factor β reaches a minimum around −5% and then increases, but these changes are very minor, approximately $10^{-5}\%$ for $f = 100 \, \text{kHz}$ (Figure 2b), $10^{-6}\%$ for $f = 500 \, \text{kHz}$ (Figure 3b), and $10^{-7}\%$ for $f = 1 \, \text{MHz}$ (Figure 4b). As far as the wave impedance modulus and argument are concerned, they increase almost linearly, with the exception that the modulus changes for low frequencies are around $10^{-3}\%$ (Figure 2c) and for large ones, around $10^{-5}\%$ (Figures 3c and 4c), whereas the argument changes are large, i.e., ±300% (Figures 2d, 3d and 4d).

Table 11. Changes to the argument of the current I_2.

	$+1\%$	-1%
R_0	0.000288807602261	−0.0002889164648371
G_0	−0.002528487115069	0.0025286547551618
L_0	−2.317110575876356	2.3232053511843256
C_0	−2.751776829843455	2.7411949325849654

Figure 2. Changes of wave parameters depending on R_0 at $f = 100 \, \text{kHz}$; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Changes to the damping factor alpha when changing parameter L_0 are non-linear, and vary from 1% to 0.2%, regardless of frequency (Figures 5a, 6a and 7a). The factor β rises almost linearly from −10% to 10%, regardless of frequency (Figures 5b, 6b and 7b). The impedance modulus rises almost linearly in the range of −10% to 10% for all tested frequencies (Figures 5c, 6c and 7c). The argument changes linearly in the range from approximately 200% to −400%, with minor changes for individual frequencies (Figures 5d, 6d and 7d).
Figure 3. Changes of wave parameters depending on R_0 at $f = 500$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Figure 4. Changes of wave parameters depending on R_0 at $f = 1$ MHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.
Figure 5. Changes of wave parameters depending on L_0 at $f = 100$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Figure 6. Changes of wave parameters depending on L_0 at $f = 500$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Changes to the damping factor alpha when changing parameter C_0 are non-linear, and vary from 0.25% to 1.4%, regardless of frequency (Figures 8a, 9a and 10a). The factor β rises almost linearly from -10% to 10%, regardless of frequency (Figures 8b, 9b and 10b). The impedance modulus rises almost linearly in the range of 12% to -8% for all tested frequencies.
(Figures 8c, 9c and 10c). The argument changes linearly in the range from approximately −400% to 280%, with minor changes for individual frequencies (Figures 8d, 9d and 10d).

Figure 7. Changes of wave parameters depending on L_0 at $f = 1$ MHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Figure 8. Changes of wave parameters depending on C_0 at $f = 100$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.
Figure 9. Changes of wave parameters depending on C_0 at $f = 500$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Figure 10. Changes of wave parameters depending on C_0 at $f = 1$ MHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Changes to the damping factor alpha when changing the C_0 parameter are non-linear, and vary from 1% to 0.2% regardless of frequency (Figures 11a, 12a and 13a). The factor β rises almost linearly from -10% to 10%, regardless of frequency (Figures 11b, 12b and 13b). The impedance modulus rises almost linearly in the range of -10% to 10% for all
tested frequencies (Figures 11c, 12c and 13c). The argument changes linearly in the range from approximately 40% to −200% with minor changes for individual frequencies (Figures 11d, 12d and 13d).

Figure 11. Changes of wave parameters depending on G_0 at $f = 100$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.

Figure 12. Changes of wave parameters depending on G_0 at $f = 500$ kHz; (a) damping factor α, (b) phase factor β, (c) wave impedance modulus, and (d) wave impedance argument.
Changes to the U_2 voltage modulus occur when the R_0 parameter is changed linearly, and vary from 0.4% to -0.4%, depending on the frequency. The higher the frequency, the smaller the change (Figures 14a, 15a and 16a). The U_2 argument increases almost linearly from -2% to 2\%, depending on the frequency (Figures 14b, 15b and 16b). The I_2 Modulus changes linearly from 0.4\% to -0.4% for lower frequencies, and 0.04\% to -0.04% for higher tested frequencies (Figures 14c, 15c and 16c). The I_2 argument rises linearly from -2.1% to 2.1\% for 500 kHz, and -0.13% to 0.13\% for 1 MHz (Figures 14d, 15d and 16d).
Changes of wave parameters depending on R_0 at $f = 500$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Changes of wave parameters depending on R_0 at $f = 1$ MHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Changes of U_2 voltage modulus occur when L_0 parameter is changed parabolically, and change from 7.5% to −3%, regardless of frequency. (Figures 17a, 18a and 19a). The U_2 argument falls almost linearly from 50% to −50%, independently of the frequency (Figures 17b, 18b and 19b). The I_2 modulus changes parabolically in the range of 7.5% to
4%, with slight differences depending on the frequency (Figures 17c, 18c and 19c). The I_2 argument falls linearly in the range from 50% to −50%, independently of the frequency (Figures 17d, 18d and 19d).

Figure 17. Changes of wave parameters depending on L_0 at $f = 100$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Figure 18. Changes of wave parameters depending on L_0 at $f = 500$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.
Figure 19. Changes of wave parameters depending on L_0 at $f = 1$ MHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Changes of the U_2 voltage modulus occur when parameter C_0 is changed non-linearly, and change from -14% to 8% independently of frequency. (Figures 20a, 21a and 22a). The U_2 argument falls almost linearly from 50% to -50%, independently of frequency (Figures 20b, 21b and 22b). The I_2 modulus changes from -14% to 8%, independently of the frequency (Figures 20c, 21c and 22c). The I_2 argument decreases linearly in the range from 50% to -50%, independently of the frequency (Figures 20d, 21d and 22d).

Figure 20. Changes of wave parameters depending on C_0 at $f = 100$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.
Figure 21. Changes of wave parameters depending on L_0 at $f = 500$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Figure 22. Changes of wave parameters depending on L_0 at $f = 1$ MHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Changes of the U_2 voltage modulus occur when the G_0 parameter is changed almost linearly, and change from 0.09% to -0.09% for 500 kHz, and 0.04% to -0.04% for 1 MHz (Figures 23a and 24a). The U_2 argument decreases almost linearly from 0.02% to -0.02% at 500 kHz, and 0.01% to -0.01% at 1 MHz (Figures 23b and 24b). The I_2 modulus runs almost linearly, and changes from 0.09% to -0.09% for 500 kHz, and 0.04% to -0.04% for
1 MHz (Figures 23c and 24c). The I_2 argument falls almost linearly from 0.02% to −0.02% at 500 kHz, and 0.01% to −0.01% at 1 MHz (Figures 23d and 24d).

Figure 23. Changes of wave parameters depending on G_0 at $f = 500$ kHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.

Figure 24. Changes of wave parameters depending on G_0 at $f = 1$ MHz; (a) U_2 voltage modulus, (b) U_2 argument, (c) I_2 modulus, (d) I_2 argument.
5. Conclusions

The paper presents the evaluation of the impact of per unit parameter errors on the determination of wave parameters, as well as currents and voltages at the end of the line. On the basis of numerical calculations, it was found that errors in the determination of per unit inductance have the greatest influence on the value of the part of the input resistance and on I_1 current argument. However, the change of per unit resistance and leakage have the smallest effect on the value of the phase constant. It can also be seen that increasing per unit length parameters by 1% does not always result in an increase of output parameters.

A thorough analysis of the above diagrams may be used to construct optimal high voltage cables used in the ignition systems of spark–ignition engines, where the most important parameter is the U_2 voltage modulus [3,4,10,20].

Author Contributions: Conceptualization, S.R. and M.W.; methodology, A.Z.; software, M.W.; validation, S.R., A.R. and D.M.; formal analysis, S.R.; investigation, A.Z.; resources, M.W.; data curation, S.R.; writing—original draft preparation, M.W.; writing—review and editing, S.R.; visualization, D.M.; supervision, A.R.; project administration, A.R.; funding acquisition, S.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Różowicz, S. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes. *Open Phys.* 2018, 16, 57–62. [CrossRef]
2. Kukiela, A. Sensitivity Analysis and Sensitivity Invariants of Similar Circuits Containing Active Multipolar. Ph.D. Thesis, Politechnika Śląska, Wydział Automatyki, Elektroniki i Informatyki, Gliwice, Poland, 2002. (In Polish).
3. Różowicz, S. Voltage modelling in ignition coil using magnetic coupling of fractional order. *Arch. Electr. Eng.* 2019, 68, 227–235.
4. Włodarczyk, M.; Zawadzki, A. Connecting a capacitor to direct voltage in aspect of fractional degree derivatives. *Przegląd Elektrotechniczny (Electr. Rev.)* 2009, 85, 120–122.
5. Walczak, J.; Pasko, M.; Adrikowski, T. Selected Issues of the Theory of Electrical Circuits; WPŚiI: Gliwice, Poland, 2017. (In Polish)
6. Kwiatkowski, B.; Bartman, J.; Mazur, D. The quality of data and the accuracy of energy generation forecast by artificial neural networks. *Int. J. Electr. Comput. Eng.* 2020, 10, 3957. [CrossRef]
7. Nitha, S.U.; Soumya, A.M. Transmission line characteristics. *IOSR J. Electron. Commun. Eng. 2016, 3, 67–77.*
8. Różowicz, S.; Zawadzki, A. Experimental verification of signal propagation in automotive ignition cables modelled with distributed parameter circuit. *Arch. Electr. Eng.* 2019, 68, 667–675.
9. Włodarczyk, M.; Szczepaniak, J. Symmetrical T—network with fractional order elements. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, July 7–10 2016; pp. 1–5.
10. Udaratin, A.; Alyunov, A.; Krutikov, A.; Mukhametova, L.R.; Zaripov, O.O.; Bochkarev, I.V. Efficiency study of the reactive shunt compensation device in power lines. In Proceedings of the International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), Copenhagen, Denmark, 10–11 September 2019; Volume 124. [CrossRef]
11. Suhail, M.H.; Fuad, M.M. Studying the characteristics impedance of coaxial transmission line using X—band. *Int. J. Eng. Tech. Res.* 2014, 2, 19–24.
12. Mazur, D.; Paszkiewicz, A.; Bolanowski, M.; Budzik, G.; Oleksy, M. Analysis of possible SDN use in the rapid prototyping processes part of the Industry 4.0. *Bull. Pol. Acad. Sciences. Tech. Sci.* 2019, 67. [CrossRef]
13. Włodarczyk, M.; Szczepaniak, J. The impact of unit parameter errors on the values of wave parameters in a long line. In Proceedings of the Conference SPETO 2018, Ustroń, Poland, 16–19 May 2018; pp. 47–48. (In Polish).
14. Berger, J.; Maier, A. Fehlerortung auf Abzweigleitungen vermaschter Mittels—Pannungsnetze. *Elektrizitätswirtschaft 1999, 95, 1246–1252.*
15. Różowicz, S.; Włodarczyk, M.; Zawadzki, A. Wave parameters of symmetrical two—port networks containing elements of fractional order. In Proceedings of the 17th International Conference Computational Problems of Electrical Engineering (CP3EE), Sandomierz, Poland, 14–17 September 2016.
16. Różowicz, S.; Toﬁl, S. The influence of impurities on the operation of selected fuel ignition systems in combustion engines. *Arch. Electr. Eng.* 2016, 65, 349–360. [CrossRef]
17. Różowicz, S. The effect of different ignition cables on spark plug durability. *Przegląd Elektrotechniczny (Electr. Rev.)* 2018, 94, 191–195. [CrossRef]
18. Zawadzki, A.; Różowicz, S. Application of input–state of the system transformation for linearization of selected electrical circuits. *J. Electr. Eng.* **2016**, *67*, 199–205. [CrossRef]

19. Zawadzki, A.; Różowicz, S. Application of input–State of the system transformation for linearization of some nonlinear generators. *Int. J. Control. Autom. Syst.* **2015**, *13*, 1–8. [CrossRef]

20. Szczęśniak, A.; Myczuda, Z. A method of charge accumulation in the logarithmic analog–to–digital converter with a successive approximation. *Przegląd Elektrotechniczny* **2010**, *86*, 336–340.