Random transverse field Ising model in dimensions $d = 2, 3$: infinite disorder scaling via a non-linear transfer approach

Cécile Monthus and Thomas Garel

Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Yvette cedex, France
E-mail: Cecile.Monthus@cea.fr and thomas.garel@cea.fr

Received 17 November 2011
Accepted 8 December 2011
Published 16 January 2012

Online at stacks.iop.org/JSTAT/2012/P01008
doi:10.1088/1742-5468/2012/01/P01008

Abstract. The ‘cavity-mean-field’ approximation developed for the random transverse field Ising model on the Cayley tree (Ioffe and Mézard 2010 Phys. Rev. Lett. 105 037001) has been found to reproduce the known exact result for the surface magnetization in $d = 1$ (Dimitrova and Mézard 2011 J. Stat. Mech. P01020). In the present paper, we propose to extend these ideas in finite dimensions $d > 1$ via a non-linear transfer approach for the surface magnetization. In the disordered phase, the linearization of the transfer equations corresponds to the transfer matrix for a directed polymer in a random medium of transverse dimension $D = d - 1$, in agreement with the leading order perturbative scaling analysis (Monthus and Garel 2011 arXiv:1110.3145). We present numerical results of the non-linear transfer approach in dimensions $d = 2$ and 3. In both cases, we find that the critical point is governed by infinite disorder scaling. In particular, exactly at criticality, the one-point surface magnetization scales as $\ln m_{L}^{\text{surf}} \simeq -L^{\omega_{c}}v$, where $\omega_{c}(d)$ coincides with the droplet exponent $\omega_{\text{DP}}(D = d - 1)$ of the corresponding directed polymer model, with $\omega_{c}(d = 2) = 1/3$ and $\omega_{c}(d = 3) \simeq 0.24$. The distribution $P(v)$ of the positive random variable v of order $O(1)$ presents a power-law singularity near the origin $P(v) \propto v^{\alpha}$ with $\alpha(d = 2, 3) > 0$, so all moments of the surface magnetization are governed by the same power-law decay $(m_{L}^{\text{surf}})^{k} \propto L^{-x_{s}}$ with $x_{s} = \omega_{c}(1 + \alpha)$ independently of the order k.
1. **Introduction**

The quantum Ising model

\[
\mathcal{H} = - \sum_{\langle i,j \rangle} J_{i,j} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^x
\]

(1)

do:10.1088/1742-5468/2012/01/P01008
where the nearest-neighbor couplings \(J_{i,j} > 0 \) and the transverse fields \(h_i > 0 \) are independent random variables drawn with two distributions \(\pi_{\text{coupling}}(J) \) and \(\pi_{\text{field}}(h) \) is the basic model to study quantum phase transitions at zero temperature in the presence of frozen disorder. In dimension \(d = 1 \), exact results for a large number of observables have been obtained by Fisher [1] via the asymptotically exact strong disorder renormalization procedure (for a review, see [2]). In particular, the transition is governed by an infinite disorder fixed point and presents unconventional scaling laws with respect to the pure case. In dimension \(d > 1 \), the strong disorder renormalization procedure can still be defined. It cannot be solved analytically, because the topology of the lattice changes upon renormalization, but it has been studied numerically with the conclusion that the transition is also governed by an infinite disorder fixed point in dimensions \(d = 2, 3, 4 \) [3]–[13]. These numerical renormalization results are in agreement with the results of independent quantum Monte Carlo in \(d = 2 \) [14,15].

Even if it is clear that the most natural method to study infinite disorder fixed points is the strong disorder renormalization approach, it seems useful to determine whether other approaches are able to describe infinite disorder scaling. In this paper, we introduce a simple non-linear transfer approximation for the surface magnetization in finite dimension \(d > 1 \), which is inspired from the ‘cavity-mean-field’ approximation developed in [16]–[18], and we study numerically the critical properties of this approximation in dimensions \(d = 2 \) and \(3 \).

The paper is organized as follows. In section 2, we recall briefly the ‘cavity-mean-field’ approximation developed in [16]–[18] and introduce the non-linear transfer approach for finite dimensions \(d > 1 \). Our numerical results in dimensions \(d = 2 \) and \(3 \) are presented in sections 3 and 4 respectively. Our conclusions are summarized in section 5.

2. Non-linear transfer approach for the surface magnetization

2.1. ‘Cavity-mean-field’ approximation on the Cayley tree [16]–[18]

For the random quantum Ising model defined on a tree of coordinance \((K + 1)\), the following ‘cavity-mean-field’ approximation has been developed [16]–[18]: an ancestor \(i \) is subjected to the effective single spin Hamiltonian

\[
H_i^{\text{eff}} = -B_i \sigma_i^z - h_i \sigma_i^x
\]

where \(h_i \) is its own random transverse field, and where \(B_i \) represents the longitudinal field created by the \(K \) children \(j \) (related to \(i \) by the ferromagnetic couplings \(J_{i,j} \)) within a ‘mean-field approximation’ (the operator \(\sigma_j^z \) is replaced by its expectation value \(\langle \sigma_j^z \rangle \))

\[
B_i = \sum_{j=1}^{K} J_{i,j} \langle \sigma_j^z \rangle.
\]

The effective Hamiltonian of equation (2) is only a two-level system that can be solved immediately: the magnetization of the ground state reads

\[
m_i \equiv \langle \sigma_i^z \rangle_{H_i^{\text{eff}}} = \frac{B_i}{\sqrt{B_i^2 + h_i^2}}
\]

doi:10.1088/1742-5468/2012/01/P01008
Using equation (3), one obtains the following non-linear recurrence for the magnetizations m_i (see equation (4) of [16], equation (7) of [17] and equation (17) of [18] in the limit of zero temperature $\beta = +\infty$):

$$m_i = \frac{\sum_{j=1}^{K} J_{i,j} m_j}{\sqrt{(\sum_{j=1}^{K} J_{i,j} m_j)^2 + h_i^2}}. \quad (5)$$

We refer to [16]–[18] for more details on this ‘cavity-mean-field’ approximation and on its properties. As a final remark, let us stress that the ‘cavity mean field’ is not exact for the pure model on the Cayley tree (see figure 3 of [18]), but has been argued to become quantitatively correct in the limit of high connectivity $K \gg 1$ [16]–[18].

In the disordered phase where the magnetization flows towards zero, the non-linear recurrence of equation (5) can be linearized to give the following recursion:

$$m_i \simeq \frac{1}{h_i} \sum_{j=1}^{K} J_{i,j} m_j \quad (6)$$

which is equivalent to the problem of a directed polymer on the Cayley tree [16]–[18]. This equivalence can be justified directly at the level of lowest-order perturbation theory (i.e. without invoking the ‘cavity-mean-field’ approximation of equation (5)), and can be in this way extended to the finite-dimensional case [19].

2.2. ‘Cavity-mean-field’ approximation in $d = 1$ [18]

For $K = 1$, the Cayley tree of coordinance $(K + 1)$ discussed in the previous section becomes a one-dimensional chain, and equation (5) becomes the one-dimensional non-linear recurrence [18]

$$m_i = \frac{J_{i,i+1} m_{i+1}}{\sqrt{(J_{i,i+1} m_{i+1})^2 + h_i^2}}. \quad (7)$$

Assuming one starts with the boundary condition $m_L = 1$ at site $i = L$, one obtains the following explicit expression for the surface magnetization m_{0}^{surf} at the site $i = 0$ [18]:

$$m_{0}^{\text{surf}} = \left[1 + \sum_{i=0}^{L-1} \prod_{j=0}^{i} \left(\frac{h_j}{J_{j,j+1}} \right)^2 \right]^{-1/2}. \quad (8)$$

As stressed in [18], this expression exactly coincides with the rigorous expression that can be obtained from a free-fermion representation [20,21], and from which many critical exponents can be obtained [21]–[23].

The reason why the ‘cavity-mean-field’ approximation turns out to become exact for the surface magnetization in $d = 1$ is not clear to us, and seems rather surprising: usually ‘mean-field’ approximations are exact in sufficiently high dimensions or on trees, and are not exact in low dimensions, the ‘worst case’ being precisely $d = 1$. Here we have exactly the opposite conclusion: the ‘cavity mean field’ is not exact for the pure model on the tree (for the disordered case, it is not known), but turns out to be exact in $d = 1$, for both the pure and the disordered case. In the absence of any satisfactory explanation for
Figure 1. Notations to define the non-linear transfer approach in $d = 2$: we impose the boundary conditions $m(x = 0, y) = 1$ on the left boundary, and we study the surface magnetizations $m(x = L, y) = 1$ on the right boundary (see text for more details).

For clarity, let us first explain the procedure for the case $d = 2$. As shown in figure 1, we consider a lattice containing L^2 spins: when x is even ($x = 0, 2, 4, \ldots$), the coordinate y takes the L integer values $y = 1, 2, \ldots, L$; when x is odd ($x = 1, 3, \ldots$), the coordinate y takes the L half-integer values $y = 3/2, 5/2, \ldots, L + 1/2$. The boundary conditions are periodic in y with $y + L \equiv y$. At $x = 0$, we impose the boundary condition of unity magnetization

$$m(x = 0, y) = 1$$

and we are interested in the L surface magnetizations $m(x = L, y)$ at the opposite boundary $x = L$.

For this situation, we propose to use the ideas of equation (5) within the following transfer approach. We assume that we have already found the surface magnetizations on
Random transverse field Ising model in dimensions $d = 2, 3$

the column $m(x - 1, y)$, and we add another column of L sites at x. From the cavity point of view, the new spin at (x, y) is subjected to its own random transverse field $h(x, y)$ and to the longitudinal field (see equation (3)) created by its two neighbors on the column $x - 1$

$$B(x, y) = J_{(x, y), (x-1, y+1/2)} m(x - 1, y + \frac{1}{2}) + J_{(x, y), (x-1, y-1/2)} m(x - 1, y - \frac{1}{2})$$ \hspace{1cm} (10)

so its surface magnetization reads (equation (4))

$$m(x, y) = \frac{B(x, y)}{\sqrt{B^2(x, y) + h^2(x, y)}}$$ \hspace{1cm} (11)

Equations (10) and (11) define a non-linear transfer procedure that can be iterated from the boundary condition on the column $x = 0$ of equation (9) up to $x = L$, where we analyze the statistics of the final surface magnetizations $m(x = L, y)$. It is clear that the generalization of this procedure to $d = 3$ is straightforward: we add another direction z with periodic boundary conditions that plays exactly the same role as y.

2.3.2. Linearized transfer matrix within the disordered phase. Within the disordered phase, the surface magnetizations $m(x = L, y)$ are expected to decay typically exponentially in L, so that one may linearize the transfer equations (10) and (11) to obtain

Linearization: $m(x, y) \simeq \frac{J_{(x, y), (x-1, y+1/2)}}{h(x, y)} m(x - 1, y + \frac{1}{2})$

$$+ \frac{J_{(x, y), (x-1, y-1/2)}}{h(x, y)} m(x - 1, y - \frac{1}{2})$$ \hspace{1cm} (12)

This linearized equation can be derived directly within a lowest-order perturbative approach [19] (i.e. without invoking the ‘cavity-mean-field’ approximation) and corresponds to the transfer matrix satisfied by the partition function of a directed polymer with $D = (d - 1)$ transverse directions, as discussed in detail in [19]. We refer to [19] for the description of the consequences of this correspondence, and for the analogy with Anderson localization, where the droplet exponent of the directed polymer also appears in the localized phase [24]–[26]. Here our conclusion is that the non-linear transfer approach describes at least correctly the disordered phase, where it coincides with the lowest-order perturbative approach [19].

2.3.3. Discussion. Besides its correctness in the disordered phase that we have just discussed, the validity of the non-linear transfer exactly at criticality and in the ordered phase has to be studied for the disordered case in $d > 1$. Since it has been found to be exact in $d = 1$ (see section 2.2), one could hope that it is not ‘too bad’ in $d = 2, 3$ (even if it is clear that this approximation is not valid for the pure model): we believe that it should capture correctly the nature of the transition between ‘infinite disorder’ or ‘conventional’ scaling. In the following, we present our numerical results in $d = 2$ and 3 and discuss the scaling properties in the two phases and at criticality.

doi:10.1088/1742-5468/2012/01/P01008
3. Numerical results in dimension $d = 2$

In this section, we present the numerical results obtained with the following sizes L and the corresponding numbers $n_s(L)$ of disordered samples of volume L^2:

$$L = 10^3, 2 \times 10^3, 3 \times 10^3, 4 \times 10^3, 5 \times 10^3, 6 \times 10^3, 7 \times 10^3, 8 \times 10^3$$

$$n_s(L) = 2 \times 10^5, 13 \times 10^4, 65 \times 10^3, 37 \times 10^3, 24 \times 10^3, 17 \times 10^3, 13 \times 10^3, 10^4.$$ (13)

For each sample α, we collect the L values of the surface magnetization $m^{(\alpha)}(x = L, i)$ at the different points $i = 1, 2, \ldots, L$ of the surface (see figure 1). Average values and histograms are then based on these $L \times n_s(L)$ values.

We have chosen to consider the following log-normal distribution for the random transverse fields $h_i > 0$

$$\pi_{LN}(h) = \frac{1}{h \sqrt{2\pi \sigma^2}} e^{-(\ln h - \ln \bar{h})^2 / 2\sigma^2}$$ (14)

of parameter $\ln \bar{h} = 0$ and $\sigma = 1$, whereas the ferromagnetic couplings $J_{i,j}$ are not random but take a single value J that will be the control parameter of the quantum transition.

3.1. Disordered phase ($J < J_c$)

3.1.1. Exponential decay of the typical surface magnetization $m^{\text{typ}}_L \equiv e^{\ln m^{\text{surf}}_L}$. In the disordered phase $J < J_c$, one expects that the typical surface magnetization defined by

$$\ln(m^{\text{typ}}_L) \equiv \ln m^{\text{surf}}_L$$ (15)

decays exponentially with L

$$\ln(m^{\text{typ}}_L) \equiv \ln m^{\text{surf}}_L (J < J_c) \underset{L \to \infty}{\simeq} - \frac{L}{\xi^{\text{typ}}(J)}$$ (16)

where ξ^{typ} represents the typical correlation length that diverges at the transition as a power law

$$\xi^{\text{typ}}(J) \underset{J \to J_c}{\simeq} (J_c - J)^{-\nu^{\text{typ}}}.$$ (17)

In figure 2(a) we show our numerical Results, concerning the exponential decay with L of equation (16) for various values of J. We find that the corresponding slope $1/\xi^{\text{typ}}(J)$ vanishes near the critical value $J_c \simeq 0.335$ with the exponent

$$\nu^{\text{typ}} \simeq 1.$$ (18)
Figure 2. Disordered phase $J < J_c$ in $d = 2$. (a) Exponential decay of the typical surface magnetization $m_L^{\text{typ}} \equiv e^{\ln m_L^{\text{surf}}}$: we show the linear decay of $\ln m_L^{\text{typ}}$ as a function of the length L (see equation (16)). (b) Log–log plot of the width Δ_L of the distribution of the logarithm of the surface magnetization as a function of L (here for $J = 0.29$): the slope is of order $\omega \simeq 0.33$ (see equation (20)).

3.1.2. Growth of the width of the distribution of the logarithm of the surface magnetization. In the disordered phase $J < J_c$, one expects that the width Δ_L of the distribution of the logarithm of the surface magnetization defined by

$$\Delta_L \equiv \left((\ln m_L^{\text{surf}})^2 - (\ln m_L^{\text{surf}})^2 \right)^{1/2}$$

(19)

grows as a power law of L

$$\Delta_L(J < J_c) \underset{L \to \infty}{\simeq} L^\omega.$$

(20)

Our numerical data shown in figure 2(b) correspond to the value

$$\omega(d = 2) \simeq 0.33$$

(21)
in agreement with the argument presented in [19], where $\omega(d = 2)$ should coincide with the directed polymer droplet exponent $\omega_{DP}(D = d - 1 = 1) = 1/3$ [27]–[30].

3.1.3. Distribution of the logarithm of surface magnetization. We show in figure 3(a) our numerical results concerning histograms of the logarithm of the surface magnetization in the disordered phase. Our conclusion is that the surface magnetization follows the scaling

$$\ln(m_L^{\text{surf}}) \underset{L \to \infty}{\simeq} \ln(m_L^{\text{typ}}) + \Delta_L u$$

(22)

where the behaviors of the typical value $\ln(m_L^{\text{typ}}) \simeq -L/\xi_{\text{typ}}$ and of the width $\Delta_L \sim L^\omega$ have been already discussed above in equations (16) and (20) respectively. In figure 3(b), we show that the stable distribution $P(u)$ of the rescaled variable u coincides with the GOE Tracy–Widom distribution, as expected from the correspondence to the directed polymer model in the disordered phase [19].
Figure 3. Disordered phase in $d = 2$ (here $J = 0.29$): (a) evolution with L of the probability distribution $P_L(\ln m_{\text{surf}}^L)$ of the logarithm of surface magnetization; (b) corresponding fixed distribution of the rescaled variable $u = (\ln m_{\text{surf}}^L - \ln m_{\text{typ}}^L)/\Delta L$ in log scale to show the tails, compared to the exact Tracy–Widom GOE distribution (thick line).

3.2. Ordered phase

3.2.1. Behavior of the typical surface magnetization m_{typ}^∞ in the ordered phase $J > J_c$. In the ordered phase, the typical surface magnetization remains finite in the limit where the number of generations L diverges

$$\ln m_{\text{typ}}^L(J > J_c) \equiv \ln m_{\text{surf}}^L(J > J_c) \sim L^{-\kappa} \ln m_{\infty}(J > J_c) > -\infty \quad (23)$$

and one expects an essential singularity behavior

$$\ln m_{\infty}^{\text{typ}}(J > J_c) \propto (J - J_c)^{-\kappa}. \quad (24)$$

Our data shown in figure 4(a) can be fitted with the value

$$\kappa(d = 2) \simeq 0.5 \quad (25)$$

that can be related to other exponents via finite-size scaling (see below around equation (34)).

3.2.2. Distribution of the logarithm of the surface magnetization. In the ordered phase, the probability distribution $P_L(\ln m_{\text{surf}}^L)$ of the logarithm of surface magnetization remains fixed as L varies, and terminates discontinuously at the origin, as a consequence of the bound $m_{\text{surf}}^L \leq 1$ corresponding to $\ln m_{\text{surf}}^L \leq 0$ (see figure 4(b)).

doi:10.1088/1742-5468/2012/01/P01008
Random transverse field Ising model in dimensions $d = 2, 3$

3.3. Critical point

3.3.1. Behavior of the typical surface magnetization m_{typ}^L and of the width Δ_L. Exactly at criticality, one expects that the typical surface magnetization follows an activated behavior of exponent $\omega_c < 1$ (compare with equation (16) in the disordered phase)

$$\ln(m_{\text{typ}}^L(J = J_c)) \equiv \ln m_{\text{surf}}^L(J = J_c) \sim L^{-\omega_c}$$

(26)

and that the width defined in equation (19) is also governed by the same exponent

$$\Delta_L(J = J_c) \sim L^{\omega_c}.$$

(27)

Our numerical data at $J_c \simeq 0.335$ shown in figure 5(a) are compatible with these behaviors with the value

$$\omega_c \simeq 0.33$$

(28)

i.e. ω_c coincides with the fluctuation exponent ω measured in the disordered phase (see equation (21)).

This last property implies that the finite-size scaling for the typical surface magnetization m_{typ}^L involves some correlation length exponent ν_{av} different from ν_{typ}

$$\ln m_{\text{typ}}^L(J) \equiv \ln m_{\text{surf}}^L(J) \simeq -L^{\omega_c} G(x \equiv (J - J_c)L^{1/\nu_{\text{av}}}).$$

(29)

The matching with the behavior of equation (22) in the disordered phase implies that

$$G(x) \propto (x)^{\nu_{\text{typ}}}$$

(30)
Figure 5. Critical point (here $J_c = 0.335$). (a) Log–log plot of the logarithm of the typical surface magnetization m_{typ}^L and of the width Δ_L: both slopes are of order $\omega_c \simeq 0.33$ (see equations (26) and (27)). (b) Finite-size scaling of the typical surface magnetization according to equation (29) with $J_c = 0.335$, $\omega_c = 0.33$ and $\nu_{\text{av}} = 1.5$.

and that ν_{av} reads

$$\nu_{\text{av}} = \frac{\nu_{\text{typ}}}{1 - \omega}. \quad (31)$$

This relation can be understood within a rare event analysis for the averaged correlation in the disordered phase [19]. The values $\nu_{\text{typ}} \simeq 1$ and $\omega = 1/3$ yield

$$\nu_{\text{av}}(d = 2) \simeq \frac{3}{2}. \quad (32)$$

The matching of the finite-size scaling form of equation (29) with the essential singularity of equation (24) in the ordered phase implies that

$$G(x) \propto x^{-\kappa} \quad (33)$$

with

$$\kappa = \omega_c \nu_{\text{av}} = \frac{\nu_{\text{typ}}}{1 - \omega}. \quad (34)$$

The values $\nu_{\text{typ}} = 1$ and $\omega = 1/3$ yield

$$\kappa(d = 2) \simeq \frac{1}{2}. \quad (35)$$

in agreement with the estimate of equation (25).

As shown in figure 5(b), our numerical data collapse well with the finite-size scaling form of equation (29) with $\nu_{\text{av}} = 1.5$.

doi:10.1088/1742-5468/2012/01/P01008
3.3.2. Distribution of the logarithm of surface magnetization. At criticality, the rescaled variable

\[v \equiv \frac{\ln m_{L_{\text{surf}}}^{\text{surf}}}{\ln m_{L_{\text{typ}}}^{\text{typ}}} \propto -\frac{\ln m_{L_{\text{surf}}}^{\text{surf}}}{L^{\omega_c}} \]

remains a positive random variable of order O(1) as \(L \to +\infty \). Our numerical measure of its probability distribution \(P(v) \) shown in figure 6 is compatible with a power-law singularity near the origin

\[P(v) \sim v^{a} \]

with an exponent of order \(a \geq 2 \) that we do not measure precisely. Note that this is different from the case \(d = 1 \) where \(P(v = 0) \) is finite \((a = 0)\). We have not been able to find a physical argument to predict the value of \(a \) in \(d = 2 \). This exponent \(a \) will directly influence the scaling of the moments of the surface magnetization, as we now discuss.

3.3.3. Moments of the surface magnetization. In contrast to the activated behavior of the typical surface magnetization \(m_{L_{\text{typ}}}^{\text{typ}} \) of equation (26), the moments of the surface magnetization are expected to follow a power law, as a consequence of the following rare event analysis: the surface magnetization of equation (36) will be of order O(1) if the random variable \(v \) happens to be smaller than \(1/L^{\omega_c} \). Taking into account the behavior of equation (37), this will happen with probability

\[\text{Prob}(m_{L_{\text{surf}}}^{\text{surf}} = 1) \simeq \int_{0}^{1/L^{\omega_c}} dv P(v) \sim \int_{0}^{1/L^{\omega_c}} dv v^{a} \propto L^{-\omega_c(1+a)} \]

doi:10.1088/1742-5468/2012/01/P01008
and all moments will be governed by this power law
\[
(m_{L}^{\text{surf}})^k \simeq \text{Prob}(m_{L}^{\text{surf}} = 1) \propto L^{-x_s} \quad \text{with} \quad x_s = \omega_c(1 + a)
\] (39)
independently of the order \(k\).

Our numerical data for the three first moments \(k = 1, 2, 3\) and various sizes are compatible with equation (39) with an exponent
\[
x_s(d = 2) \simeq 1.2.
\] (40)

The relation of equation (39) then corresponds to
\[
a(d = 2) \simeq 2.6.
\] (41)

In the ordered phase, our numerical data are compatible with the power law
\[
\overline{m_{L}^{\text{surf}}} \propto (J - J_c)^{\beta_s}
\] (42)
with
\[
\beta_s(d = 2) = x_s \nu_{av} \simeq 1.8.
\] (43)

4. Numerical results in dimension \(d = 3\)

In this section, we present the numerical results obtained with the following sizes \(L\) and the corresponding numbers \(n_s(L)\) of disordered samples of volume \(L^3\):

\[
L = 10^2, 2 \times 10^2, 3 \times 10^2, 4 \times 10^2, 5 \times 10^2, 6 \times 10^2, 7 \times 10^2, 8 \times 10^2\]
\[
n_s(L) = 27 \times 10^3, 7 \times 10^3, 3 \times 10^3, 16 \times 10^2, 10^3, 7 \times 10^2, 5 \times 10^2, 4 \times 10^2.
\] (44)

For each sample \(\alpha\), we collect the \(L^2\) values of the surface magnetization at the different points of the surface. Average values and histograms are then based on these \(L^2 \times n_s(L)\) values. We consider again the disorder distribution of equation (14) and take \(J\) as the control parameter of the transition.

4.1. Disordered phase

Our data follow the scaling of equation (22), with the following properties.

(i) The scaling of the typical surface magnetization is given by equation (16), and the typical correlation length exponent of equation (17) seems again very close to unity
\[
\nu_{\text{typ}} \simeq 1.
\] (45)

(ii) The width \(\Delta_L\) of equation (19) grows as the power law of equation (20) with the exponent
\[
\omega(d = 3) \simeq 0.24
\] (46)
that coincides with the numerical values of the droplet exponent of the directed polymer model with \(D = d - 1 = 2\) transverse dimensions [31]–[37], in agreement with the argument presented in [19].

(iii) As \(L\) grows, the evolution of the probability distribution \(P_L(\ln m_{L}^{\text{surf}})\) is shown in figure 7(a). The corresponding fixed distribution of the rescaled random variable \(u = (\ln m_{L}^{\text{surf}} - \ln m_{L}^{\text{typ}})/\Delta_L\) is shown in figure 7(b).

doi:10.1088/1742-5468/2012/01/P01008 13
Random transverse field Ising model in dimensions $d = 2, 3$

Figure 7. Disordered phase in $d = 3$ (here $J = 0.11$): (a) evolution with L of the probability distribution $P_L(\ln m_{\text{surf}}^L)$ of the logarithm of surface magnetization; (b) corresponding fixed distribution of the rescaled variable $u = (\ln m_{\text{surf}}^L - \ln m_{\text{typ}}^L)/\Delta L$ in log scale to show the tails.

Figure 8. Typical surface magnetization in the critical region in $d = 3$. (a) Log–log plot of the logarithm of the typical surface magnetization m_{typ}^L and of the width ΔL at criticality $J_c = 0.1528$: both slopes are of order $\omega_c \simeq 0.24$ (see equations (26) and (27)). (b) Finite-size scaling of the typical surface magnetization in $d = 3$ according to equation (29) with $\nu_\text{av} = 1.32$.

4.2. Critical point

At criticality $J_c = 0.1528$, we find that the exponent ω_c of equations (26) and (27) coincides with the value of ω of equation (46) concerning the disordered phase (see figure 8(a))

$$\omega_c(d = 3) \simeq 0.24.$$

(47)
Random transverse field Ising model in dimensions $d = 2, 3$

Figure 9. Critical point in $d = 3$ (here $J_c = 0.1528$): evolution with L of the probability distribution $P_L(\ln m_{\text{surf}}^L)$ of the logarithm of surface magnetization. Inset: corresponding fixed distribution of the rescaled variable $v = (\ln m_{\text{surf}}^L)/\ln m_{\text{typ}}^L$.

We show in figure 8(b) the finite-size scaling analysis of equations (29) for the logarithm of the typical surface magnetization with the averaged correlation length exponent $\nu_{av} = 1/(1 - \omega) \simeq 1.32$.

We show in figure 9 our numerical data for the probability distribution of the surface magnetization at criticality: the fixed point distribution $P(v)$ of the rescaled variable v of equation (36) displays a power-law singularity near the origin (equation (37)), that will determine the scaling of all moments of the surface magnetization according to equation (39). Our numerical data for the moments are compatible with equation (39) with an exponent $x_s(d = 3) \simeq 1.34$ (48) that would correspond to

$$a(d = 3) = \frac{x_s}{\omega_c} - 1 \simeq 4.5$$

(49) and to the exponent (equation (42))

$$\beta_s(d = 3) = x_s\nu_{av} \simeq 1.76.$$

(50)

5. Conclusion

Since the ‘cavity-mean-field’ approximation developed for the random transverse field Ising model on the Cayley tree [16]–[18] has been found to reproduce the known exact result for the surface magnetization in $d = 1$ [18], we have proposed to extend these ideas in finite dimensions $d > 1$ via a non-linear transfer approach for the surface magnetization. In the disordered phase, the linearization (equation (12)) of the transfer equations corresponds

doi:10.1088/1742-5468/2012/01/P01008
to the transfer matrix for a directed polymer in a random medium of transverse dimension $D = d - 1$, in agreement with the leading order perturbative scaling analysis [19].

We have presented numerical results of this non-linear transfer approach in dimensions $d = 2$ and 3, where large system sizes can be easily studied. In both cases, we have found that the critical point is governed by infinite disorder scaling. In particular, exactly at criticality, the one-point surface magnetization scales as $\ln m_{\text{surf}} \sim L^{-\omega_c} v$, where $\omega_c(d)$ coincides with the droplet exponent $\omega_{\text{DP}}(D = d - 1)$ of the corresponding directed polymer model, with $\omega_c(d = 2) = 1/3$ and $\omega_c(d = 3) \approx 0.24$. The distribution $P(v)$ of the positive random variable v of order $O(1)$ presents a power-law singularity near the origin $P(v) \propto v^a$ with $a(d = 2, 3) > 0$ so that all moments of the surface magnetization are governed by the same power-law decay $(m_{\text{surf}}^k) \propto L^{-x_s}$ with $x_s = \omega_c(1 + a)$ independently of the order k. Our conclusion is thus that this non-linear transfer approach is able to lead to infinite disorder scaling, that had been found previously via Monte Carlo in $d = 2$ [14, 15] and via strong disorder RG in $d = 2, 3, 4$, [3]–[13].

(i) In the disordered phase and for ‘typical’ situations exactly at criticality, the linearization of equation (12) is valid and coincides with the leading order perturbative scaling analysis [19]: it is thus likely to give exact values for critical exponents, in particular for the exponent ω_c of activated scaling.

(ii) In the ordered phase and for ‘rare’ situations at criticality, the non-linear terms of the transfer approach plays an important role. Since they come from an uncontrolled approximation, the critical exponents like β_s and x_s that are determined by these non-linear contributions could be different from the exact ones. To judge the accuracy of this approximation, it would be very helpful to compare with other approaches such as quantum Monte Carlo and strong disorder RG (but up to now, these other approaches have not studied surface properties).

References

[1] Fisher D S, 1992 Phys. Rev. Lett. 69 534
Fisher D S, 1995 Phys. Rev. B 51 6411
[2] Igloi F and Monthus C, 2005 Phys. Rep. 412 277
[3] Fisher D S, 1999 Physica A 263 222
[4] Motrunich O, Mau S-C, Huse D A and Fisher D S, 2000 Phys. Rev. B 61 1160
[5] Lin Y-C, Kawashima N, Igloi F and Rieger H, 2000 Prog. Theor. Phys. 138 479
[6] Karevski D, Lin Y C, Rieger H, Kawashima N and Igloi F, 2001 Eur. Phys. J. B 20 267
[7] Lin Y-C, Igloi F and Rieger H, 2007 Phys. Rev. Lett. 99 147202
[8] Yu R, Saleur H and Haas S, 2008 Phys. Rev. B 77 140402
[9] Kovacs I A and Igloi F, 2009 Phys. Rev. B 80 214416
[10] Kovacs I A and Igloi F, 2010 Phys. Rev. B 82 054437
[11] Kovacs I A and Igloi F, 2011 Phys. Rev. B 83 174207
[12] Kovacs I A and Igloi F, 2011 arXiv:1108.3942
[13] Kovacs I A and Igloi F, 2011 arXiv:1109.4267
[14] Pich C, Young A P, Rieger H and Kawashima N, 1998 Phys. Rev. Lett. 81 5916
[15] Rieger H and Kawashima N, 1999 Eur. Phys. J B 9 233
Random transverse field Ising model in dimensions $d = 2, 3$

[16] Ioffe L B and Mézard M, 2010 Phys. Rev. Lett. 105 037001
[17] Feigelman M V, Ioffe L B and Mézard M, 2010 Phys. Rev. B 82 184534
[18] Dimitrova O and Mézard M, 2011 J. Stat. Mech. P01020
[19] Monthus C and Garel T, 2011 arXiv:1110.3145
[20] Peschel I, 1984 Phys. Rev. B 30 6783
[21] Igloi F and Rieger H, 1998 Phys. Rev. B 57 11404
[22] Dhar A and Young A P, 2003 Phys. Rev. B 68 134441
[23] Monthus C, 2004 Phys. Rev. 69 054431
[24] Nguyen V L, Spivak B Z and Shklovskii B I, 1985 JETP Lett. 41 42
Nguyen V L, Spivak B Z and Shklovskii B I, 1985 Sov. Phys. JETP 62 1021 (translation)
[25] Medina E, Kardar M, Shapir Y and Wang X R, 1989 Phys. Rev. Lett. 62 941
Medina E and Kardar M, 1992 Phys. Rev. B 46 9984
[26] Prior J, Somoza A M and Ortuno M, 2005 Phys. Rev. B 72 024206
Somoza A M, Prior J and Ortuno M, 2006 Phys. Rev. B 73 184201
Somoza A M, Ortuno M and Prior J, 2007 Phys. Rev. Lett. 99 116602
[27] Huse D A, Henley C L and Fisher D S, 1985 Phys. Rev. Lett. 55 2924
[28] Kardar M, 1987 Nucl. Phys. B 290 582
[29] Johansson K, 2000 Commun. Math. Phys. 209 437
[30] Prähofer M and Spohn H, 2000 Physica A 279 342
Prähofer M and Spohn H, 2000 Phys. Rev. Lett. 84 4882
Prähofer M and Spohn H, 2002 J. Stat. Phys. 108 1071
Prähofer M and Spohn H, 2004 J. Stat. Phys. 115 255
[31] Tang L H, Forrest B M and Wolf D E, 1992 Phys. Rev. A 45 7162
[32] Ala-Nissila T, Hjelt T, Kosterlitz J M and Venalainen V, 1993 J. Stat. Phys. 72 207
[33] Perlsman E and Schwartz M, 1996 Physica A 234 523
[34] Ala-Nissila T, 1998 Phys. Rev. Lett. 80 887
Kim J M, 1998 Phys. Rev. Lett. 80 888
[35] Marinari E, Pagnani A and Parisi G, 2000 J. Phys. A: Math. Gen. 33 8181
Marinari E, Pagnani A, Parisi G and Racz Z, 2002 Phys. Rev. E 65 026136
[36] Monthus C and Garel T, 2006 Phys. Rev. E 73 056106
Monthus C and Garel T, 2006 Phys. Rev. E 74 051109
[37] Schwartz M and Perlsman E, 2011 arXiv:1108.4604

doi:10.1088/1742-5468/2012/01/P01008