Root growth, leaf area, fresh and dry weight of mango seedlings influence by foliar spray of growth substances

Thejaswini K, Patil SJ, Patel MA and Tandel BM

Abstract
The present investigation was carried out at Regional Horticultural Research Station, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari during 2019-2020. An experiment consisted of thirteen treatments viz., GA3 (100 and 200 mg l⁻¹), BA (50 and 100 mg l⁻¹), NAA (50 and 100 mg l⁻¹), Novel organic liquid nutrients (1 and 2%), Sea weed extract (1 and 2%), Urea (0.5% and 1%) and control. Above growth substances applied thrice at 3rd, 4th and 5th months after sowing of mango stones. The experiment was laid out in Completely Randomized Design (CRD) and repeated thrice. The results of present investigation revealed that, there was a significant difference on growth of mango seedling due to foliar spray of growth substances at 3rd, 4th and 5th months after sowing of mango stones.

Keywords: GA3, BA, NAA, novel organic liquid nutrients, sea weed extract, urea

Introduction
Mostly, mangoes are vegetatively propagated by inarching, veneer grafting, epicotyl grafting, softwood grafting, etc. For that it is essential to raise the seedlings to be used as rootstocks for grafting. Rootstocks are always seedling origin irrespective of nucellar in nature. The present day nursery practices involve high cost and risk with respect to raising of seedling rootstocks and their later maintenance till they reach the graftable size. Healthy growth of rootstock is mainly important in attaining the higher rate of grafting success. In the nursery activities, the preparation of media and make use of growth substances should receive the considerable attention of the nursery man and growers for improving the germination and successive growth of seedlings.

Material and Methods
The present investigation was carried out at Regional Horticultural Research Station, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari during 2019-20. An experiment consisted of thirteen treatments viz., GA3 @ 100 mg l⁻¹ (T1), GA3 @ 200 mg l⁻¹ (T2), BA @ 50 mg l⁻¹ (T3), BA @ 100 mg l⁻¹ (T4), NAA @ 50 mg l⁻¹ (T5), NAA @ 100 mg l⁻¹ (T6), Novel organic liquid nutrients @1% (T7), Novel organic liquid nutrients @2% (T8), Sea weed extract @1% (T9), Sea weed extract @2% (T10), Urea @ 0.5% (T11), Urea@ 1% (T12) and control (T13). Above growth substances applied thrice at 3rd, 4th and 5th months after sowing of mango stones.

The experiment was laid out in Completely Randomized Design (CRD) and repeated thrice. The effect of these treatments on leaf area (cm²), length of the longest root, number of roots, girth of the longest root, fresh and dry weight of mango seedling were studied.
Results and Discussion

Leaf area (cm²)

It is clear from the data presented in Table 1 that maximum leaf area of mango seedling was significantly affected by foliar spray of growth substances. Significantly maximum leaf area of mango seedling at 4th, 5th, 6th, 7th and 8th MAS (56.79, 58.42, 60.62, 62.66 and 65.22 cm², respectively) recorded under the NAA @ 100 mg l⁻¹ treatment (T₀). The increased growth may be due to growth promoting activities of auxin in plant through RNA and protein synthesis and photosynthetic rate (Phinney et al., 1957) cell elongation as well as cell division and increased cell wall plasticity (Tagaw and Bonner, 1957). The maximum leaf area might be due increase in leaf length and width, which ultimately increased in leaf area of the plant.

Length (cm) and Girth (mm) of the longest root

The differences for the length and girth of the longest root were significant due to foliar application of growth substances (Table 1). Significantly maximum length and girth of the longest root of mango seedling at 8th MAS (52.67 cm and 2.35 mm, respectively) noted in GA₃ @ 200 mg l⁻¹ treatment (T₂). This may be due to fact that GA₃ increases the somatic uptake of nutrients, causing root cell elongation and increasing the root volume and tap root length (Tagaw and Bonner, 1957).

Number of roots per seedling

In the present study, it was observed that foliar spray of growth substances had profound influence on number of roots (Table 1). Plants treated with BA @ 100 mg l⁻¹ (T₄) exhibited significantly maximum (7.47) number of roots. Increase in number of roots might be due to cytokinin promotes protein synthesis, increasing cell division and enlargement (Cheema and Sharma, 1982).

Fresh and Dry weight of mango seedling (g)

The data on fresh and dry weight of mango seedling presented in Table 1 significantly differed due to foliar spray of growth substances. It is evident from the study that the maximum fresh and dry weight at 8th MAS (52.97 and 23.33 g, respectively) was recorded in the GA₃ @ 200 mg l⁻¹ treatment (T₂). Maximum fresh weight and dry weight of seedling might be due to effect of GA₃ by mobilization of water and nutrients transported at higher rate which might have promoted more production of photosynthetic product and translocated them to various plant parts which might have resulted in better growth of seedlings and hence more fresh weight and dry weight. A possible reason for this might be due to overall growth of the seedling and increased rate of photosynthesis that lead to the overall assimilation and redistribution of photosynthates within the seedling and hence, resulted in higher fresh and dry weight and total biomass.

Thus, increased growth is a consequence of increased dry matter accumulation (Joshi et al., 2017). Similar findings were supported by Muralidhara et al. (2014) in mango and Patil (2017) in jamun.

Table 1: Effect of foliar spray of growth substances on leaf area, root growth, fresh and dry weight of mango seedling

Treatments	Leaf area (cm²)	Length of the longest root (cm)	Girth of the longest root (mm)	Number of roots per seedling	Fresh weight of mango seedling (g)	Dry weight of mango seedling (g)				
4th MAS	5th MAS	6th MAS	7th MAS	8th MAS						
T₁	44.41	48.45	49.82	52.78	50.45	2.34	5.73	50.60	21.83	
T₂	46.69	48.81	51.27	54.88	56.57	52.67	2.35	6.40	52.97	23.33
T₃	41.06	42.97	45.08	46.75	48.84	40.50	2.03	7.20	49.57	19.90
T₄	41.09	43.04	45.38	47.92	49.50	41.58	2.11	7.47	50.40	20.60
T₅	46.88	53.15	54.89	56.77	58.65	45.56	2.22	5.47	46.83	18.33
T₆	56.79	58.42	60.62	62.66	65.22	47.92	2.27	5.53	47.17	18.37
T₇	43.81	45.27	46.86	48.98	51.07	42.90	2.17	4.80	44.27	17.83
T₈	43.93	45.36	47.18	49.22	51.28	43.76	2.20	5.20	44.40	18.23
T₉	41.38	43.83	45.99	48.01	49.64	40.14	1.86	4.67	43.60	16.97
T₁₀	41.97	45.03	46.39	48.36	50.87	40.27	1.87	4.73	44.00	17.13
T₁₁	37.16	39.34	40.77	42.63	44.64	35.03	1.84	4.60	47.90	18.63
T₁₂	38.33	39.54	43.03	45.64	47.82	35.07	1.85	4.60	49.50	19.43
T₁₃	36.93	38.27	40.52	42.36	44.55	32.57	1.67	4.60	39.60	15.67
S.E.m.±	0.96	1.03	0.95	1.02	1.03	0.46	0.04	0.12	0.55	0.44
C.D. @ 5%	2.80	3.00	2.75	2.97	3.00	1.34	0.13	0.34	1.60	1.27
C.V. %	3.87	3.93	3.45	3.56	3.44	1.89	3.80	3.66	2.03	4.00

Conclusion

Based on the results of the present investigation, it can be concluded that, foliar application of GA₃ @ 200 mg l⁻¹ at 3rd, 4th and 5th months after sowing of mango stone resulted maximum growth of mango seedling in respect length and girth of the longest root and fresh and dry weight of mango seedling. Whereas, maximum leaf area of mango seedling was observed in NAA @ 100 mg l⁻¹ treatment.

References

1. Cheema GS, Sharma DP. In vitro propagation of apple rootstocks. International Horticulture Congress XXI, Hamburg, German Federal Republic, International Society of Horticultural Science 1982;1:1035.
2. Joshi CJ, Sharma DK, Gotur M, Rajani Rajan et al. Effect of different chemicals on seedling growth and biomass of chironji (Buchanania lanzan Spreng.). International Journal of Current Microbiology and Applied Sciences 2017;6(9):1819-1823.
3. Muralidhara BM, Reddy YTN, Shivaprasad MK, Akshitha HJ, Kishor KM et al. Studies on foliar application of growth regulators and chemicals on seedling growth of mango varieties. International Quarterly Journal Life Sciences 2014;9(1):203-205.
4. Patil HM. Effect of seed treatment on germination and foliar spray of chemical substances on seedling growth of jamun (Syzygium cumini L.). M.Sc. (Hort.) Thesis submitted to Navsari Agricultural University, Navsari 2017.
5. Phinney BO, Charles AW, Mary R, Peyter MN et al. Evidence of gibberellins like substances from flowering plants. Proceedings of the National Academy of Sciences 1957;43:398.

6. Tagaw T, Bonner J. Mechanical properties of the avena coleoptiles as related to auxin and to ionic interactions. Plant Physiology 1957;32:201-212.