between January 2014 and October 2017. A manual chart review was performed. Sensitivity (SEN), specificity (SPEC), PPV, and NPV were calculated for NE prediction. Vancomycin use was quantified during the same period. Linear models with prediction intervals (PI) were generated to identify potential outbreaks, which were linked to monthly NE counts defined as a binary factor.

Results. A total of 220 NE cases were electronically identified for vancomycin at NM (n = 197) and HF (n = 23). Random cases were matched 1:1 (NM = 200) and 1:5 (HF = 115) to controls for manual review. At NM and HF, 35 and 24 true positives were identified, respectively. Thus, overall SEN and SPEC were 93.7% and 75.1% and PPV and NPV were 85.7% and 98.1%, respectively. Linear models revealed 11 potential outbreak periods at HF and 5 at NM. A PI of 80% showed a combined SEN below 10% and SPEC above 90%, respectively.

Conclusion. The methodology was generalizable across two centers. In the pilot review, our method was highly sensitive and an effective screening tool for NE identification. Antibiotic consumption trends did not correlate with NE. In summary, the NE classification was sensitive in assessment of antibiotic appropriateness, whereas consumption alone does not predict NE.

Disclosures. All authors: No reported disclosures.

2001. Assessment of Real-world Effectiveness of a Rapid Blood Culture Diagnostic Panel at a Veterans Affairs Medical Center Jordan Chiasson, PharmD1; James B. Cottrell, MD2; James B. Cottrell, MD2; Jodkowski Tomasz, PharmD3; Winter Smith, PharmD3; Marcus Kouma, PharmD3; 1VA North Texas Health Care System, Dallas, Texas; 2UT Southwestern Medical Center, Dallas, Texas; 3Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Dallas, Texas

Session: 235. Antibiotic Stewardship: Diagnostics and Diagnostic Stewardship Saturday, October 5, 2019: 12:15 PM

Background. Rapid blood culture diagnostics can improve patient outcomes, particularly when paired with robust interventions such as 24/7 stewardship coverage. We sought to determine the clinical impact of a rapid blood culture identification (BCID) panel (BioFire FilmArray Multiplex PCR) in an established antimicrobial stewardship program (ASP). In addition to clinician education, BCID results were reviewed by the ASP team during weekday business hours, for an average of 2 hours daily based on availability.

Methods. Data on demographics, blood cultures, antimicrobial use, length of stay and mortality were collected on inpatients at the VA North Texas Health Care System with at least one positive blood culture for bacterial or yeast isolates from March 2017 to June 2017 (pre-BCID) and from March 2018 to June 2018 (post-BCID). The primary outcome was a composite of time to optimal therapy from blood culture collection, defined as escalation, de-escalation, discontinuation, or optimization of antimicrobials retrospectively adjudicated based on final culture results. Secondary outcomes included time to effective therapy, total days of therapy (DOT), length of stay, and 30-day mortality and readmission rates.

Results. 195 patients were screened with 130 patients included in the study. No significant differences in baseline characteristics were observed between groups (Table 1). Sixty-one patients were included in the pre-BCID arm and 69 in the post-BCID arm. Median time to optimal therapy was 82.9 hours (IQR, 12.8–99.8) in the pre-BCID arm and 33.9 hours (IQR, 11.2–64.8) in the post-BCID arm (p = 0.005) (Table 2). No significant change in 30-day mortality or 30-day readmission rates was noted. Vancomycin DOT was 4 days (IQR; 2–5) and 3 days (IQR; 1–4) (p = 0.043), in the pre-BCID and post-BCID groups, respectively (Figure 1).

Conclusions. Introduction of BCID into the daily workflow of our ASP resulted in a significant reduction in time to optimal therapy for bloodstream infections. DCF for select broad-spectrum antibiotics were also significantly reduced. This study highlights the potential benefit of rapid diagnostics without negative impact to patient care even in settings without resources for 24/7 ASP review.

Disclosures. All authors: No reported disclosures.

2002. BioFire® FilmArray® Pneumonia Panel: A Powerful Rapid Diagnostic Test for Antimicrobial Stewardship Daitsuke Furukawa, MD1; Brian Kim, PharmD2; Arthur Jeng, MD2; 1David Geffen School of Medicine at UCLA, Los Angeles, California; 2Olive View-UCLA Medical Center, Sylmar, California

Session: 235. Antibiotic Stewardship: Diagnostics and Diagnostic Stewardship Saturday, October 5, 2019: 12:15 PM

Background. BioFire® FilmArray® Pneumonia Panel (BFPP) is a multiplex PCR panel that identifies 33 common bacterial and viral pathogens seen in community- and hospital-acquired pneumonias. It rapidly identifies these pathogens in addition to 7 antibiotic resistance genes on sputum and bronchoalveolar lavage samples in 1 hour. As one of the test centers for this panel, our institution utilized this panel for clinical and laboratory use. We reviewed the impact of BFPP on antimicrobial stewardship, particularly its role in early discontinuation of empiric antibiotics and prompt initiation of optimized targeted therapy.

Methods. We retrospectively reviewed all cases by which BFPP was ordered. We reviewed medical records of each case to identify the results of the panel, culture data, antibiotics used, and subsequent clinical intervention.

Results. 43 tests were ordered in total. 17 were for clinical use by an infectious disease specialist and 26 were randomly obtained by the microbiology lab. All 17 clinical cases were intervened upon with the following interventions: discontinuation of anti-pseudomonal antibiotics (8 cases), discontinuation of anti-MRSA antibiotics (5 cases), discontinuation of azithromycin (4 cases), discontinuation of carbapenem (1 case), prevention of inappropriate antibiotic escalation or initiation of inappropriate antibiotics (2 cases), and early IV to PO transition (3 cases). Of the random 26 samples ordered by lab, 13 had opportunities for antibiotic de-escalation if a physician were notified of the results. Viruses were identified in 15 samples with coronavirus being the most common. Viral was the sole pathogen in 9 of the 15 samples. Bacterial pathogens were identified in 20 samples that were reported as normal flora by conventional culture; none of these cases led to or potentially could have led to antibiotic escalation as the sole intervention.

Conclusion. Clinical use of BFPP had 100% intervention rate with all interventions leading to de-escalation of antibiotics or prevention of inappropriate antibiotics use. Though over-identification of colonizers is a potential limitation, BFPP is a powerful tool for antibiotic stewardship that results in rapid interventions to achieve optimal targeted therapy.

Disclosures. All authors: No reported disclosures.

2003. Vancomycin Discontinuation Is Supported by-negative Nasal Methicillin-Resistant Staphylococcus aureus (MRSA) in Patients with Pneumonia Katherine A. Pleasants, PharmD; Karly Low, PharmD; Sara A. Lucas, PharmD, BCPS; Audrey Kivlehan, PharmD; Ronald G. Washburn, MD; Ralph H. Johnson Vet. Medical Center, Charleston, South Carolina

Session: 235. Antibiotic Stewardship: Diagnostics and Diagnostic Stewardship Saturday, October 5, 2019: 12:15 PM

Table 1: Baseline Characteristics

Characteristic	Pre-BCID (n=61)	Post-BCID (n=68)	p-value
Age (median [IQR])	67 (63–73)	67 (61–72)	0.5961
Sex, Male (%)	58 (96%)	96 (66%)	0.372
Race (%)			
White (%)	54% (33)	57% (39)	0.781
African American (%)	36% (22)	39% (27)	0.719
Other (%)	10% (6)	4% (3)	0.219
Baseline SGR > 1.5 mg/dl (%)			
Normal (%)	25% (15)	28% (16)	0.852
Active Cancer (%)			
% of cases	15% (9)	7% (5)	0.158
Causative Organism (%)			
Gram-positive (%)	52% (12)	51% (35)	0.843
Gram-negative (%)	48% (12)	48% (12)	0.664
Yeast (%)	2% (1)	3% (2)	0.488
MRSA History* (%)			
% of cases	16% (10)	23% (16)	0.334

*Multidrug resistant organism – MRSA, VRE, ESBL

Table 2: Clinical Outcomes Pre- and Post-BCID Implementation

Outcome	Pre-BCID (n=61)	Post-BCID (n=68)	p-value
Time to Optimal Therapy	82.9 (12.8–99.8)	33.9 (11.2–64.8)	0.005
Time to Effective Therapy	6.2 (1.1–15.5)	2.6 (1.1–4.7)	0.294
Length of Hospitalization	13 (7–19)	10 (6–13)	0.059
Total duration of antibiotics	8 (4–14)	9 (6–12)	0.332
30 day mortality (%)	11.5% (7)	4.3% (3)	0.128
30 day readmission rate (%)	19.7% (12)	10.1% (7)	0.125

Figure 1: Days of Select Broad Spectrum Antibiotics

Days of Select Broad Spectrum Antibiotics

Antibiotic	Pre-BCID	Post-BCID
Vancomycin		
Piperacillin		
Tazobactam		

Disclosures. All authors: No reported disclosures.