K. Senthil Kumar

Linear dependence of quasi-periods over the rationals

Volume 359, issue 4 (2021), p. 409-414

<https://doi.org/10.5802/crmath.171>
Linear dependence of quasi-periods over the rationals

K. Senthil Kumar

National Institute of Science Education and Research, HBNI, P.O.Jatni, Khurda, Odisha-752 050, India
E-mail: senthil@niser.ac.in

Abstract. In this note we shall show that a lattice \(Z\omega_1 + Z\omega_2 \) in \(\mathbb{C} \) has \(\mathbb{Q} \)-linearly dependent quasi-periods if and only if \(\omega_2/\omega_1 \) is equivalent to a zero of the Eisenstein series \(E_2 \) under the action of \(SL_2(\mathbb{Z}) \) on the upper half plane of \(\mathbb{C} \).

2020 Mathematics Subject Classification. 11J72, 11J89.

Manuscript received 23rd March 2020, revised 7th August 2020, accepted 17th December 2020.

1. Introduction

Let \(\mathcal{L} = Z\omega_1 + Z\omega_2 \) be a lattice in \(\mathbb{C} \) with \(\omega_2/\omega_1 \in \mathbb{H} \), the upper half plane of \(\mathbb{C} \). Let \(\sigma(z; \omega_1, \omega_2) \) and \(\zeta(z; \omega_1, \omega_2) \) respectively be the Weierstrass sigma and zeta functions associated to \(\mathcal{L} \). Let \(g_2 \) and \(g_3 \) be the invariants of \(\mathcal{L} \). The numbers \(\eta_1(\mathcal{L}) = \eta(\omega_1) = 2\zeta(\omega_1/2; \omega_1, \omega_2) \), \(\eta_2(\mathcal{L}) = \eta(\omega_2) = 2\zeta(\omega_2/2; \omega_1, \omega_2) \) are called the quasi-periods associated to \(\mathcal{L} \). When \(\mathcal{L} \) is clear from the context, we simply write \(\eta_1, \eta_2 \) instead of \(\eta_1(\mathcal{L}) \) and \(\eta_2(\mathcal{L}) \) respectively. One of the long standing open problem in transcendental number theory is to find the dimension of the vector space \(V_{\mathcal{L}} \) generated by

\[1, \omega_1, \omega_2, \eta_1, \eta_2, \pi \]

over \(\overline{\mathbb{Q}} \), the algebraic closure of \(\mathbb{Q} \). Starting from the work of Siegel [10], Schneider [9], Baker [1], Coates [3,4] and finally by Masser [8], it is now known that for a lattice \(\mathcal{L} \) with algebraic invariants \(g_2, g_3 \), the vector space \(V_{\mathcal{L}} \) has dimension 4 in the CM case and 6 in the non-CM case. This is because in the CM case, there are two linear relations among the numbers in (1). The first one is

\[\tau \omega_1 - \omega_2 = 0 \]

where \(\tau = \omega_2/\omega_1 \in \overline{\mathbb{Q}} \) and the other one is given by

\[C\eta_1 - \tau \eta_2 - \kappa \omega_2 = 0, \]

(2)

where \(C \) is the constant term of the minimal polynomial of \(\tau \) over \(\mathbb{Q} \) and \(\kappa \in \mathbb{Q}(\tau, g_2, g_3) \) (see [8, Lemma 3.1] or [2, Theorem 8] for more details). Masser also proved that the number \(\kappa \) in (2)
vanishes if and only if \(\tau \) is congruent to \(i = \sqrt{-1} \) or \(\rho = e^{2\pi i/3} \) under \(\text{SL}_2(\mathbb{Z}) \); and in that case, \(\eta_1 \) and \(\eta_2 \) are linearly dependent over \(\mathbb{Q}(\tau) \).

Apart from lattices with algebraic invariants, there are two more cases for which we know the dimension of \(V_L \). For example, if \(\omega_1 = 1 \) and \(\omega_2 = i \) then by Siegel [10] at least one of the \(g_2, g_3 \) is not algebraic. And by (2), the quotient \(\eta_2/\eta_1 = -i \) in this case. (Note that we used (2) to find the ratio \(\eta_2/\eta_1 \); because, as we shall see later that, \(\eta_2/\eta_1 \) depends only on \(\omega_2/\omega_1 \) and not on \(g_2, g_3 \); this ratio can also be obtained from (4) and (9) below by choosing an appropriate \(\gamma \). Hence by the Legendre’s relation [7, p. 241] the vector space \(V_L \) has dimension two. Similarly, if \(\omega_1 = 1 \) and \(\omega_2 = \rho \) then in this case also at least one of the \(g_2, g_3 \) is not algebraic and by (2) we have \(\eta_2/\eta_1 = \rho^{-1} \). Hence in this case also the vector space \(V_L \) has dimension two. Except for these cases the author is not aware of any other lattices \(L \).

The following corollary is immediate.

Corollary 1. Let \(L = Z\omega_1 + Z\omega_2 \) be a lattice in \(\mathbb{C} \) with \(\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H} \). Then \(\eta_1 \) and \(\eta_2 \) are \(\mathbb{Q} \)-linearly dependent if and only if \(\tau \) is congruent to a zero of \(E_2(z) \) under \(\text{SL}_2(\mathbb{Z}) \).

The following corollary is immediate.

Main Theorem. Let \(L = Z\omega_1 + Z\omega_2 \) be a lattice in \(\mathbb{C} \) with \(\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H} \). Then \(\eta_1 \) and \(\eta_2 \) are \(\mathbb{Q} \)-linearly dependent if and only if \(\tau \) is congruent to a zero of \(E_2(z) \) under \(\text{SL}_2(\mathbb{Z}) \).

We shall prove the Main Theorem in the next section. The proof relies on the formula expressing the quasi-periods in-terms of \(G_2 \) (see Lemma 3) and the transformation formula of \(E_2 \) given by

\[
E_2(\gamma \tau) = (\gamma + d)^2 E_2(\tau) + \frac{6c}{\pi^2} (\gamma + d)
\]

where \(\gamma \in \mathbb{H} \) and \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \).

2. Quasi-periods and Laurent’s expansions

Let \(\sigma(z; \tau) = \sigma(z; 1, \tau) \) and \(\zeta(z; \tau) = \zeta(z; 1, \tau) \) respectively be the Weierstrass sigma and zeta functions associated to the lattice \(L' = Z + Z\tau \) with \(\tau \in \mathbb{H} \). These two functions are connected by the relation \(\zeta(z; \tau) = \frac{\sigma'(z; \tau)}{\sigma(z; \tau)} \).

For \(\omega \in L' \setminus \{0\} \), we write

\[
\frac{1}{z - \omega} = -\frac{1}{\omega} - \frac{z}{\omega^2} - \frac{z^2}{\omega^3} - \frac{z^3}{\omega^4} - \cdots
\]

for \(z \) near the origin. Thus, we have

\[
\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} = -\frac{z^2}{\omega^3} - \frac{z^3}{\omega^4} - \cdots.
\]
Now summing over all non-zero periods of \(\mathcal{L}_\tau \) and adding the term \(1/z \), we obtain
\[
\zeta(z; \tau) = \frac{1}{z} - \sum_{k=2}^{\infty} G_{2k} z^{2k-1} \quad (6)
\]
where \(G_{2k} = G_{2k}(\tau) = \sum_{\omega \in \mathcal{L}_\tau \setminus \{0\}} \omega^{-2k} \) for \(k \geq 2 \) (the coefficients of even powers of \(z \) in (6) are zero, since \(\zeta(z; \tau) \) is an entire function).

The next lemma gives a connection between quasi-periods and the values of generalized Eisenstein series \(G_2 \).

Lemma 2. Let \(\eta_1 \) be the quasi-period associated to the period 1 of the lattice \(\mathcal{L}_\tau = \mathbb{Z} + \mathbb{Z} \tau \) with \(\tau \in \mathbb{H} \). Then \(\eta_1 = G_2(\tau) \).

Proof. We follow the strategy as given in [7, Chapter 18]. Accordingly, we express the Laurent’s expansion of \(\zeta(z; \tau) \) near the origin into two different ways and then comparing the corresponding coefficients we obtain the required representation for \(\eta_1 \). The first one is given by (6). For obtaining the second representation, let \(q_z = e^{2\pi i z} \). Consider the function
\[
\phi_1(z) = (2\pi i)^{-1} \left(q_z - 1 \right) \prod_{n=1}^{\infty} \frac{1 - q_{z+nt}}{(1 - q_{zt})^2} \quad (7)
\]
Since \(\tau \in \mathbb{H} \), we have \(|q_{nt}| < 1/2^n \) for large values of \(n \), and hence, for such values
\[
\left\| \frac{q_{nt}}{(1 - q_{nt})^2} \right\| < \frac{1}{(2^n - 1)^2}
\]
It follows that the series
\[
\sum_{n=1}^{\infty} \left(\frac{1 - q_{z+nt}}{(1 - q_{zt})^2} - 1 \right)
\]
converges absolutely and uniformly on compact subsets of \(\mathbb{C} \). Thus, the function \(\phi_1 \) is entire. Moreover, it satisfying the following transformation formulas (see [7, p. 247] for more details):
\[
\phi_1(z + 1) = \phi_1(z) \quad \text{and} \quad \phi_1(z + \tau) = -\frac{1}{q_z} \phi_1(z).
\]
On the other hand, the entire function
\[
\phi_2(z) = e^{-\frac{1}{2} \eta_1 z^2} q_z^{1/2} \sigma(z; \tau)
\]
also satisfies
\[
\phi_2(z + 1) = \phi_2(z) \quad \text{and} \quad \phi_2(z + \tau) = -\frac{1}{q_z} \phi_2(z).
\]
Therefore, the quotient \(\phi_1(z)/\phi_2(z) \) is elliptic. The product in (7) shows that both \(\phi_1 \) and \(\phi_2 \) have a simple zero at each point of \(\mathbb{Z} + \mathbb{Z} \tau \) and no other zeros. Hence \(\phi_1(z)/\phi_2(z) \) must be constant. Taking limit \(z \to 0 \) we see that the constant is 1, and therefore \(\phi_1(z) = \phi_2(z) \). We thus have
\[
\sigma(z; \tau) = (2\pi i)^{-1} e^{\frac{1}{2} \eta_1 z^2} \left(q_z^{1/2} - q_z^{-1/2} \right) \prod_{n=1}^{\infty} \frac{1 - q_{z+nt}}{(1 - q_{zt})^2}.
\]
Since the series in (8) converges absolutely and uniformly on compact subsets of \(\mathbb{C} \), taking logarithmic derivative term by term on the right side of the above equation we obtain
\[
\zeta(z; \tau) = \eta_1 z + \pi i \left(\frac{q_z + 1}{q_z - 1} \right) + 2\pi i \sum_{n=1}^{\infty} \frac{q_{nt} - z}{1 - q_{nt}^2} - \frac{q_{z+nt}}{1 - q_{z+nt}}.
\]
If we restrict the values of \(z \) such that \(|q_z| < |q_{z}^{-1}|\), then we have
\[
\sum_{n=1}^{\infty} \left(\frac{q_{n-z}}{1-q_{n-z}} - \frac{q_{n+z}}{1-q_{n+z}} \right) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(q_{n+z}^m - q_{n-z}^m \right) = \sum_{m=1}^{\infty} q_{n+z}^m - q_{n-z}^m.
\]

Near the origin, we have
\[
i \left(\frac{q_{z} + 1}{q_{z} - 1} \right) = \cot \pi z = \sum_{k=0}^{\infty} (-1)^k \frac{2 \pi m z 2k+1}{(2k+1)!},
\]

and
\[
q_{z}^{-m} - q_{z}^{m} = -2i \sum_{k=0}^{\infty} (-1)^k \frac{(2 \pi m z 2k+1)}{(2k+1)!},
\]

where \(B_r \) is the \(r \)-th Bernoulli's number. Thus we have,
\[
\zeta(z; \tau) = \eta_{1} z + \pi \sum_{k=0}^{\infty} \frac{(-1)^k 2 2k B_{2k}(\pi z 2k+1)}{(2k)!} - 4 \pi \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} (-1)^k \frac{q_{m \tau}}{1-q_{m \tau}} \frac{(2 \pi m z 2k+1)}{(2k+1)!}.
\]

Now comparing the coefficients of \(z \) on the above equation with that of (6) we get
\[
\eta_{1} = \frac{\pi^2 2^2 B_2}{2} - 8 \pi^2 \sum_{m=1}^{\infty} \frac{mq_{m \tau}}{1-q_{m \tau}} = \frac{\pi^2}{3} \left(1 - 24 \sum_{m=1}^{\infty} \frac{mq_{m \tau}}{1-q_{m \tau}} \right) = \frac{\pi^2}{3} \left(1 - 24 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m q_{m \tau}^n \right) = \frac{\pi^2}{3} \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q_{n \tau}^n \right) = G_2(\tau),
\]

by (4). This completes the proof of the Lemma 2. □

There is a slight change in the notations used in the above lemma from that of [7, Chapter 18]. In [7], lattices in \(\mathbb{C} \) are written in the form \(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) with the assumption \(\omega_1 / \omega_2 \in \mathbb{H} \). This implies that the quasi-period associated to the period 1 of the lattice \(\omega_2^{-1}(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2) \) is denoted by \(\eta_2 \) in [7, Chapter 18]. Whereas, in our notation lattices in \(\mathbb{C} \) are written in the form \(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) with the assumption \(\omega_2 / \omega_1 \in \mathbb{H} \). This implies that the quasi-period associated to the period 1 of the lattice \(\omega_1^{-1}(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2) \) is denoted by \(\eta_1 \).

The following lemma is the homogeneous version of Lemma 2.

Lemma 3. Let \(\mathcal{L} = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) be a lattice in \(\mathbb{C} \) with \(\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H} \). We have
\[
\eta_1 = \frac{G_2(\tau)}{\omega_1} \quad \text{and} \quad \eta_2 = \frac{\tau G_2(\tau) - 2 \pi i}{\omega_1}.
\]

Proof. By the Legendre's relation
\[
\omega_2 \eta_1(\mathcal{L}) - \omega_1 \eta_2(\mathcal{L}) = 2 \pi i,
\]
hence it is sufficient to show that \(\eta_1(\mathcal{L}) = \frac{G_2(\tau)}{\omega_1} \). Since \(\eta_1(\mathcal{L}) \) is homogeneous of degree \(-1\), it is enough to prove this lemma when \(\mathcal{L} = \mathbb{Z} + \mathbb{Z} \tau \) with \(\tau \in \mathbb{H} \). We are thus reduced to show that for \(\mathcal{L} = \mathbb{Z} + \mathbb{Z} \tau \) with \(\tau \in \mathbb{H} \), we have \(\eta_1(\mathcal{L}) = G_2(\tau) \); but, this is a consequence of Lemma 2. This completes the proof. □
3. Proof of the Main Theorem

Let \(L = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) be a lattice in \(\mathbb{C} \) with \(\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H} \). By Lemma 3, the quotient \(\eta_2(L)/\eta_1(L) \) is a function of \(\tau \) and we denote it by \(F(\tau) \) (this function was first introduced and studied by Heins [5]). Hence by (4) and (9) we have

\[
F(\tau) = \frac{\tau E_2(\tau) + 6i/\pi}{E_2(\tau)}. \tag{10}
\]

It follows from this identity that \(\eta_1(L) \) and \(\eta_2(L) \) are \(\mathbb{Q} \)-linearly dependent if and only if \(F(\tau) \) is a rational number (it is convenient here to assume \(\infty \) is a rational). Hence we are reduced to show that \(F(\tau) \) is a rational number if and only if there exists a zero \(\tau' \) of \(E_2(z) \) and a matrix \(\gamma \in SL_2(\mathbb{Z}) \) such that \(\tau = \gamma \tau' \).

If \(F(\tau) = \infty \), then we have \(E_2(\tau) = 0 \). If \(F(\tau) = 0 \), then we have \(\tau E_2(\tau) + 6i/\pi = 0 \); and hence \(E_2(\tau) = \tau E_2(\tau) + 6i/\pi = 0 \). Suppose that \(F(\tau) \) is a rational number which is neither 0 nor \(\infty \), say \(q/p \), with \((p,q) = 1 \). Then, by (10) we have

\[
(-pr + q)E_2(\tau) = \frac{6p}{\pi i} \tag{11}
\]

Choose \(r, s \in \mathbb{Z} \) such that \(pr - qs = -1 \). Then the matrix

\[
\gamma = \begin{pmatrix} s & -r \\ -p & q \end{pmatrix} \in SL_2(\mathbb{Z}).
\]

We set \(\tau' = \gamma \tau \). Then by (5),

\[
E_2(\tau') = (-p \tau + q) \left((-p \tau + q)E_2(\tau) - \frac{6p}{\pi i}\right),
\]

which is equal to zero by (11).

Conversely, let \(\tau' \) be a zero of \(E_2(z) \), and let \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be an element of \(SL_2(\mathbb{Z}) \). We shall show that \(F(\gamma \tau') \) is a rational number. If \(c = 0 \), then \(\gamma = T^b \) where \(T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). Thus \(E_2(\gamma \tau') = 0 \), and hence \(F(\gamma \tau') = \infty \). If \(a = 0 \), then \(\gamma = \begin{pmatrix} 0 & -1 \\ 1 & d \end{pmatrix} \), and hence \(\gamma \tau' = \frac{1}{i \tau + d} \). It follows from (5) that \(F(\gamma \tau') = 0 \). Now let \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be an element of \(SL_2(\mathbb{Z}) \) such that \(ac \neq 0 \). Then, by (5) we have

\[
0 = E_2(\tau') = E_2(\gamma^{-1}(\gamma \tau')) = (-c(\gamma \tau') + a)^2 E_2(\gamma \tau') - \frac{6c}{\pi i} (-c(\gamma \tau') + a).
\]

Since \(\tau' \) is not a rational number we must have

\[
(\gamma \tau' - a/c) E_2(\gamma \tau') + \frac{6}{\pi i} = 0.
\]

Again by (5), we have \(E_2(\gamma \tau') \neq 0 \), from this we conclude that \(F(\gamma \tau') = a/c \) is a rational number, and this completes the proof of the Main Theorem.

4. Concluding remarks

It is expected that the zeros of \(E_2 \) are transcendental; but so far none of them is known to be transcendental. One may ask whether transcendence of \(\omega_2/\omega_1 \) is a necessary condition for \(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) to have \(\mathbb{Q} \)-linearly dependent quasi-periods? The answer is no. For example, the quasi-periods associated to \(\mathbb{Z} + \mathbb{Z} i \) are \(\mathbb{Q} \)-linearly dependent. It is interesting to classify all lattices with \(\mathbb{Q} \)-linearly dependent quasi-periods.

Acknowledgments

I would like to thank the referee for the careful reading and helpful suggestions on the earlier version of the manuscript.
References

[1] A. Baker, "On the quasi-periods of the Weierstrass ζ-function", Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. 1969 (1970), p. 145-157.
[2] W. D. Brownawell, K. K. Kubota, "The algebraic independence of Weierstrass functions and some related numbers", Acta Arith. 33 (1977), p. 111-149.
[3] J. Coates, "Linear forms in the periods of the exponential and elliptic functions", Invent. Math. 12 (1971), p. 290-299.
[4] ———, "The transcendence of linear forms in $\omega_1,\omega_2,\eta_1,\eta_2,2\pi i$", Am. J. Math. 93 (1971), p. 385-397.
[5] M. H. Heins, "On the pseudo-periods of the Weierstrass zeta-functions", SIAM J. Numer. Anal. 3 (1966), p. 266-268.
[6] ———, "On the pseudo-periods of the Weierstrass zeta functions. II.", Nagoya Math. J. 30 (1967), p. 113-119.
[7] S. Lang, Elliptic functions, second ed., Graduate Texts in Mathematics, vol. 112, Springer, 1987.
[8] D. Masser, Elliptic functions and transcendence, Lecture Notes in Mathematics, vol. 437, Springer, 1975.
[9] T. Schneider, Einführung in die transzendenten Zahlen, Grundlehren der Mathematischen Wissenschaften, vol. 81, Springer, 1957.
[10] C. L. Siegel, "Über die Perioden elliptischer Funktionen", J. Reine Angew. Math. 167 (1932), p. 62-69.