Coagulation dysfunction is associated with severity of COVID-19: A meta-analysis

Jieyun Zhu | Jielong Pang | Pan Ji | Zhimei Zhong | Hongyuan Li | Bocheng Li | Jianfeng Zhang | Junyu Lu

1Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
2Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China

Correspondence
Junyu Lu, Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China. Email: junyulu@gxmu.edu.cn
Jianfeng Zhang, Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China. Email: zhangjianfeng@stu.gxmu.edu.cn

Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 81660132, 81960343; Emergency Science and Technology Brainstorm Project for the Prevention and Control of COVID-19, which is part of the Guangxi Key Research and Development Plan, Grant/Award Number: GuikeAB20058002; High-level Medical Expert Training Program of Guangxi“139”Plan Funding, Grant/Award Number: G201903027

Abstract
To systematically analyze the blood coagulation features of coronavirus disease 2019 (COVID-19) patients to provide a reference for clinical practice. An electronic search in PubMed, EMBase, Web of Science, Scopus, CNKI, WanFang Data, and VIP databases to identify studies describing the blood coagulation features of COVID-19 patients from 1 January 2020 to 21 April 2020. Three reviewers independently screened literature, extracted data, and assessed the risk of bias of included studies, then, the meta-analysis was performed by using Stata 12.0 software. Thirty-four studies involving 6492 COVID-19 patients were included. Meta-analysis showed that patients with severe disease showed significantly lower platelet count (weighted mean differences [WMD]: −16.29 × 10⁹/L; 95% confidence interval [CI]: −25.34 to −7.23) and shorter activated partial thromboplastin time (WMD: −0.81 seconds; 95% CI: −1.94 to 0.33) but higher D-dimer levels (WMD: 0.44 μg/mL; 95% CI: 0.29−0.58), higher fibrinogen levels (WMD: 0.51 g/L; 95% CI: 0.33−0.69) and longer prothrombin time (PT; WMD: 0.65 seconds; 95% CI: 0.44−0.86). Patients who died showed significantly higher D-dimer levels (WMD: 6.58 μg/mL; 95% CI: 3.59−9.57), longer PT (WMD: 1.27 seconds; 95% CI: 0.49−2.06) and lower platelet count (WMD: −39.73 × 10⁹/L; 95% CI: −61.99 to −17.45) than patients who survived. Coagulation dysfunction is common in severe COVID-19 patients and it is associated with severity of COVID-19.

Keywords
coagulation dysfunction, coronavirus disease 2019, critically ill, meta-analysis, severe disease

1 | INTRODUCTION

Coronavirus disease 2019 (COVID-19) has spread rapidly around the world since its emergence in humans last December.¹,² According to data released by World Health Organization (WHO), as of 02:00 on 24 April, there have been 2 626 321 confirmed cases of COVID-19 patients including 181 938 deaths worldwide, with a fatality rate of approximately 6.93%.²

According to a study conducted by Dr Chen et al.,³ 36% of the patients showed an elevated levels of D-dimer, 16% showed a reduced activated partial thromboplastin time (APTT), and 30% showed a shortened prothrombin time (PT). Besides, Wang et al.⁴ conducted a retrospective study of 339 COVID-19 patients, including 80 critical and 159 severe cases. Their results showed that the PT was significantly prolonged, and D-dimer levels were evidently elevated in the death group. Another study by Professor Tang, found that the nonsurvivors COVID-19 patients revealed significantly higher levels of D-dimer and FDP, longer PT, and APTT compared to survivors group on admission.⁵ Elevated levels of D-dimer are an independent risk factors for acute respiratory distress syndrome and mortality in COVID-19 patients.⁶
Although the above studies have shown that COVID-19 has been linked to coagulation dysfunction, most of them were single-center studies that were conducted in a specific hospital or region. Due to differences in study design and small samples, the key outcomes of these studies are complicated and unclear. A meta-analysis of nine studies suggested that COVID-19 involves longer PT and elevated D-dimer levels, yet several large clinical studies of the disease have been conducted since then and have reported inconsistent findings about coagulation dysfunction. Therefore, we meta-analyzed the blood coagulation features of COVID-19 patients to provide a reference for clinical decisions and future research.

2 | MATERIALS AND METHODS

2.1 | Search strategy

This meta-analysis was carried out according to Preferred Reporting Items for Meta-Analyses of Observational Studies in Epidemiology Statement. The databases PubMed, Embase, Web of Science, Scopus, Chinese National Knowledge Infrastructure, WanFang, and China Science and Technology Journal Database were systematically searched for studies published from 1 January 2020 to 21 April 2020 without language limits. We also manually searched the lists of included studies to identify additional potentially eligible studies. If there were two or more studies described the same population, only the study with the largest sample size was chosen. There was no language restriction placed in the literature search, but only literature published online was included. The following keywords were used, both separately and in combination, as part of the search strategy in each database: "Coronavirus," "2019-nCoV," "COVID-19," "SARS-CoV-2," "D-dimer," "platelet," "coagulation function," "blood clotting," "coagulation," "activated partial thromboplastin time," "fibrinogen," or "prothrombin time."

2.2 | Study eligibility

Studies were included in the meta-analysis if they met the following criteria: (a) if they had cohort, case-control, or case series designs involving more than 40 patients with confirmed COVID-19; (b) if they reported sufficient details about blood coagulation parameters; (c) the diagnosis and severity classification were based on the New Coronavirus Pneumonia Prevention and Control Program.
First author	Publication date in 2020	n	Single- or multicentera	Patient population	Ageb, y	Diagnosis and severity criteria	Outcomesd	Follow-up	Quality score
Yang XB14	24 Feb	52	Single center	Survival and nonsurvival COVID-19 patients	59.7-13.3	WHO interim guideline	①	2 Dec 2019 to 9 Feb 2020	7
Zhou F15	11 Mar	191	Multicenter	Survival and nonsurvival COVID-19 patients	56 (46-67)	WHO interim guideline	①②	Dec 2019 to 31 Jan 2020	8
Wang Y16	8 Apr	344	Single center	Survival and nonsurvival COVID-19 patients	52-72	WHO interim guideline	①②③	25 Feb to 25 Feb	7
An W17	16 Apr	110	Single center	Survival and nonsurvival COVID-19 patients	72.4/54.6	Current trial version	①②③	24 Jan to 19 Feb	6
Wang L4	30 Mar	339	Single center	Survival and nonsurvival COVID-19 patients	69 (65-76)	Trial sixth Edition	①②③④	1 Jan to 5 Mar	8
Ruan QR18	6 Apr	150	Multicenter	Survival and nonsurvival COVID-19 patients	67 (15-81)/50 (44-81)	Survival and nonsurvival	①	NR	7
Tu W19	6 Apr	174	Single center	Survival and nonsurvival COVID-19 patients	64.80	Survival and nonsurvival	①	3 Jan to 24 Feb	6
Liu W20	28 Feb	79	Multicenter	Mild and severe COVID-19 patients	38 [33, 57]	Trial fourth Edition	①②	30 Dec 2019 to 15 Jan 2020	7
Shi JH21	12 Mar	54	Single center	Mild, severe, and critically ill COVID-19 patients	62.5 (50.5, 68.5)	Trial sixth Edition	①	9 Feb to 29 Feb	6
Cheng KB22	12 Mar	463	Single center	Mild and severe COVID-19 patients	15-90	Trial fifth Edition	①	Dec 2019 to 06 Feb 2020	7
Wang D23	08 Feb	138	Single center	Mild and severe COVID-19 patients	56 (42-68)	WHO interim guideline	①②③④	1 Jan to 28 Jan	7
Yuan J24	06 Mar	223	Single center	Mild and severe COVID-19 patients	46.5 ± 16	Trial sixth Edition	①②③④	24 Jan to 23 Feb	9
Fang XW25	25 Feb	79	Single center	Mild and severe COVID-19 patients	45 ± 16.6	Trial sixth Edition	①②③④	22 Jan to 18 Feb	6
Guan W26	06 Feb	1099	Multicenter	Mild and severe COVID-19 patients	47.0	WHO interim guideline	①	NR	9
Qian GQ27	17 Mar	88	Multicenter	Mild and severe COVID-19 patients	50 (36.5-57)	WHO interim guideline	①②③④	20 Jan to 11 Feb	9
Huang CL28	15 Feb	41	Single center	Mild and severe COVID-19 patients	49 (41-58)	WHO interim guideline	①②③④	Dec 2019 to 2 Jan 2020	7
First author	Publication date in 2020	n	Single- or multcenter	Patient population	Ageb, y	Diagnosis and severity criteria	Outcomesd	Follow-up	Quality scoree
-------------	-------------------------	----	----------------------	-------------------	-----------	-------------------------------	-------------	-----------	-----------------
Wan SX29	21 Mar	135	Retrospective	Mild and severe COVID-19 patients	47 (36-55)	WHO interim guideline	①②③⑤	23 Jan to 8 Feb	8
Gao Y30	17 Mar	43	Retrospective	Mild and severe COVID-19 patients	45 ± 7.7/43 ± 14	WHO interim guideline	①②③⑤	23 Jan to 2 Feb	6
Zhang JJ31	23 Feb	140	Single center	Mild and severe COVID-19 patients	57.0	trial version 3-5	①	16 Jan to 3 Feb	7
Li D32	26 Mar	80	Single center	Mild and severe COVID-19 patients	47.8 ± 19.5	Trial fifth Edition	①②③⑤	20 Jan to 27 Feb	7
Li D33	2 Apr	62	Single center	Mild, severe, and critically ill COVID-19 patients	49 ± 37/59 ± 31	Trial sixth Edition	①	31 Jan to 25 Feb	6
Zhang W34	2 Apr	74	Single center	Mild, Severe, and critically ill COVID-19 patients	52.7 ± 19	Trial sixth Edition	①	21 Jan to 11 Feb	7
Xiong J35	03 Mar	89	Single center	Mild, severe, and critically ill COVID-19 patients	53 ± 16.9	Trial sixth Edition	①	17 Jan to 20 Feb	7
Xie HS36	2 Apr	79	Single center	Mild and severe COVID-19 patients	60 (48-66)	Trial sixth Edition	①	2 Feb to 23 Feb	7
Peng YD37	2 Mar	112	Single center	Mild and severe COVID-19 patients	62 (55, 67)	Trial sixth Edition	①②③⑤	20 Jan to 15 Feb	7
Ling Y38	18 Mar	292	Single center	Mild and severe COVID-19 patients	48.7 ± 16/65.5 ± 16	Trial fifth Edition	①②③	20 Jan to 10 Feb	9
Zhan TT39	7 Apr	40	Single center	Mild, severe, and critically ill COVID-19 patients	25.90	Trial sixth Edition	①②③⑤	20 Jan to 20 Feb	6
Liu SJ40	2 Apr	342	Single center	Mild, severe, and critically ill COVID-19 patients	1-88	Trial sixth Edition	①②③⑤	23 Jan to 12 Feb	7
Zuo FT41	14 Apr	50	Single center	Mild and severe COVID-19 patients	48.2 ± 15.3	Trial fifth Edition	①②③⑤	19 Jan to 20 Mar	6
Feng Y42	10 Apr	476	Multicenter	Mild, severe, and critically ill COVID-19 patients	53 (40-64)	Trial fifth Edition	①②③⑤	1 Jan to 21 Mar	8
Cai QX43	2 Apr	298	Single center	Mild and severe COVID-19 patients	47.5 (33-61)	WHO interim guideline	①	11 Jan to 6 Mar	7
Zheng F44	Mar	161	Single center	Mild and severe COVID-19 patients	45 (33.5, 57)	Trial fifth Edition	①	17 Jan to 7 Feb	6

(Continues)
in China or WHO interim guideline, and patients were grouped into different types such as mild, moderate, severe, and critical pneumonia; (d) the coagulation parameters of the COVID-19 patients were the findings when they were admitted to the hospital or first visited the hospital without the use of anticoagulant prophylaxis or treatment, disease severity classification was done at the end of the follow-up.

2.3 | Data extraction and quality assessment

Three reviewers independently selected literature, extracted data to an Excel database. And any disagreement was resolved by another reviewer. When required, the authors were contacted directly to obtain further information and clarifications regarding their study. Data extraction included the first author’s surname and the date of publication of the article, study design, sample size, age, outcome measurement data; relevant elements of bias risk assessment.

The quality of included studies was independently evaluated by the three reviewers based on the Newcastle-Ottawa Scale guidelines. Any disagreement was resolved by another reviewer. This evaluation was conducted based on a set of nine criteria, and studies with a score greater than 6 were considered to be of high quality (total score = 9).

2.4 | Statistical analyzes

Data from studies reporting continuous data as ranges or as median and interquartile ranges were converted to mean ± standard deviation. The weighted mean differences (WMDs) in continuous variables between patient groups were calculated, together with the associated 95% confidence intervals (CIs). All meta-analyses were performed using STATA 12 (StataCorp, TX). A fixed-effects model was used when the \(I^2 \) statistic was below 50% and the associated \(P > .10 \); otherwise, a random-effects model was used. Funnel plot together with Egger’s regression asymmetry test and Begg’s test was used to evaluate publication bias. A two-tailed \(P < .05 \) was regarded as statistically significant.

3 | RESULTS

3.1 | Literature screening and assessment

A total of 378 records were identified from the various databases examined. A total of 48 additional records were identified from the Chinese Medical Journal Network. After a detailed assessment based on the inclusion criteria, 34 studies involving 6492 COVID-19 patients were included in the meta-analysis (Figure 1).
3.2 | Characteristics of included studies

All studies included in the meta-analysis were conducted in China and published between 24 January 2020 and 16 April 2020. These retrospective studies examined Chinese patients distributed across 31 provinces. Follow-up data was reported for most patients. All studies received quality scores varied from 6 to 9 points, indicating high quality (Table 1).

3.3 | Meta-analysis results

3.3.1 | Coagulation parameters

Pooled results revealed that patients with severe disease showed significantly lower platelet count (WMD: $-16.29 \times 10^9/L$; 95% CI: -25.34 to -7.23) and shorter APTT (WMD: -0.81 seconds; 95% CI: -1.94 to 0.33) but higher D-dimer level (WMD: 0.44 μg/mL; 95%
CI: 0.29-0.58), higher fibrinogen level (WMD: 0.51 g/L; 95% CI: 0.33-0.69) and longer PT (WMD: 0.65 seconds; 95% CI: 0.44-0.86) (Figures 2-6 and Table 2).

Another analysis of seven studies4,14-19 whose primary outcome was death. The results showed that patients who died showed significantly higher D-dimer levels (WMD: 6.58 μg/mL, 95% CI: 3.59-9.57), longer PT (WMD: 1.27 seconds; 95% CI: 0.49-2.06) and lower platelet count (WMD: \(-39.73 \times 10^{9}/L; 95\%\ CI: -61.99 \text{ to } -17.45\)) (Table 2).

3.3.2 Sensitivity analysis

There was heterogeneity in the pooled results of the platelet count and D-dimer. To determine sensitivity, the meta-analyses of platelet count and D-dimer levels from all included studies were repeated after omitting each study in turn, and the results were similar to those obtained with the entire dataset, indicating the reliability and stability of our meta-analysis (Figure 7).
3.4 Publication bias

A funnel plot based on the outcome of platelet count showed the P values of Egger’s test and Begg’s test were .516 and .529 respectively, suggesting no significant risk of publication bias (Figure 8).

4 DISCUSSION

Previous studies have shown that COVID-19 infection has been linked to coagulation dysfunction and coagulopathy appears to be related to severity of illness and resultant thromboinflammation which may increase risk of associated mortality.23,44,45 This suggested that monitoring blood coagulation parameters during course of the disease may be helpful for the early identification of severe COVID-19 patients, which is essential for healthcare providers in their efforts to treat patients and contain the current outbreak.

Compared to the nine studies involving 1105 patients in the most recent relevant meta-analysis,7 the present work includes 34 studies published up to 21 April 2020 and a total pooled population of 6492 COVID-19 patients. Our results indicate that low platelet count, elevated D-dimer levels, and prolonged PT occur more often in severe than mild COVID-19, and they occur more often in patients who die from the disease than in those who survive. Consistent with this, individual studies have reported that

TABLE 2 Meta-analysis of different blood coagulation parameters in COVID-19 patients

Parameter	No. of studies	No. of patients	Heterogeneity	Meta-analysis			
				WMD (95%CI)	P		
Mild vs severe disease							
Platelet count, ×10^9/L	19	4027	.003	53.5%	Random	-16.29 (-25.34, -7.23)	<.001
D-dimer level, μg/mL	17	2903	<.001	69.4%	Random	0.44 (0.29, 0.58)	<.001
Prothrombin time, s	10	851	.099	38.9%	Fixed	0.65 (0.44, 0.86)	<.001
Fibrinogen level, g/L	6	1304	.848	0.0%	Fixed	0.51 (0.33, 0.69)	<.001
Activated partial thromboplastin time, s	7	598	.109	42.3%	Fixed	-0.81 (-1.94, 0.33)	<.001
Death vs survival							
Platelet count, ×10^9/L	5	1076	.003	74.9%	Random	-39.73 (-61.99, -17.45)	<.001
D-dimer level, μg/mL	5	1258	.001	79.6%	Random	6.58 (3.59, 9.57)	.001
Prothrombin time, s	4	984	.012	72.7%	Random	1.27 (0.49, 2.06)	.001

Abbreviations: CI, confidence interval; WMD, weighted mean difference.
COVID-19 patients in the intensive care unit have significantly higher coagulation parameters than those of COVID-19 patients not receiving intensive care, and that more than 70% of patients who die from COVID-19 meet the criteria of disseminated intravascular coagulation. These findings suggest that monitoring blood coagulation parameters in COVID-19 patients may aid in early detection of severe disease.

The coronavirus causing COVID-19 may trigger coagulation dysfunction because it induces abundant release of proinflammatory cytokines in various tissues, which can lead to systemic inflammatory response syndrome that damages the microvascular system and thereby activates the coagulation system, leading to generalized small vessel vasculitis, and extensive microthrombosis. In particular, patients with severe COVID-19 may be at high risk of venous thromboembolism, which may be present in up to 25% of such patients. Indeed, a study of 1099 patients across China suggests that 40% of all COVID-19 patients may be at high risk of venous thromboembolism. Risk may be exacerbated by the dehydration due to fever and diarrhea, hypotension, and prolonged bed rest characteristic of the disease, all of which are risk factors for coagulation in their own right, as well as by the use of vasopressors and central venous catheters in the intensive care unit. This has led to the recommendation that patients with severe COVID-19 should be carefully monitored for coagulation function and given prophylactic anticoagulant therapy in the absence of anticoagulant contraindications. Dr Connors et al also reported that the use of an increased prophylactic dose of nadroparin resulted in a significant decrease in D-dimer levels.

Although this study rigorously analyzed coagulation parameters data collected from a large sample of COVID-19 patients, we were unable to eliminate the heterogeneity observed between studies. For example, the course and the severity of the disease varied across studies. Given that most of the studies included in our meta-analysis were single-center, retrospective studies, it was difficult for us to control for the effects of several confounding factors, including bias in patient admission and selection, as well as differences in disease severity and course. Further research is needed to verify and extend our results.
5 | CONCLUSION

In summary, current evidence showed that coagulation dysfunction is common in severe COVID-19 patients, and it is associated with severity of COVID-19. And thus could be used as early warning indicators of disease progression during hospitalization.

ACKNOWLEDGMENT

This study was supported by grants from the National Natural Science Foundation of China (81960343; 81660132); the Emergency Science and Technology Brainstorm Project for the Prevention and Control of COVID-19, which is part of the Guangxi Key Research and Development Plan (GuikeAB20058002) and the High-level Medical Expert Training Program of Guangxi “139” Plan Funding (G201903027).

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Pan Ji, Hongyuan Li, Zhimei Zhong, and Bocheng Li collected and analyzed the data. Jianfeng Zhang acquired the funding. Jieyun Zhu and Jielong Pang designed the study and wrote the first draft of the manuscript. Jianfeng Zhang and Junyu Lu designed and supervised the study and finalized the manuscript, which all authors read and approved.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jieyun Zhu http://orcid.org/0000-0001-7718-9591
Bocheng Li http://orcid.org/0000-0002-3174-1595
Jianfeng Zhang http://orcid.org/0000-0003-4213-9310

REFERENCES

1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292. https://doi.org/10.1016/j.cell.2020.02.058
2. WHO. Coronavirus disease 2019 (COVID-19) Situation Dashboard [Internet]. Available: https://covid19.who.int/. Accessed April 25, 2020.
3. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. https://doi.org/10.1016/S0140-6736(20)30111-7
4. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-645. https://doi.org/10.1016/j.jinf.2020.03.019
5. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. https://doi.org/10.1111/jth.14768
6. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):1-11. https://doi.org/10.1001/jama.2020.0994
7. Xiong M, Liang X. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Br J Haematol. 2020;189(6):1050-1052. https://doi.org/10.1111/bjh.16725
8. Feng Y, Ling Y, Bai T, et al. COVID-19 with different severity: a multicenter study of clinical features. Am J Respir Crit Care Med. 2020;201(11):1380-1388. https://doi.org/10.1016/j.jcrc.2020.04459
9. Chen X, Ou JY, Huang Y, et al. Diagnostic roles of several parameters in coronavirus disease 2019. Lab Med. http://kns.cnki.net/kcms/detail/31.1915.R.20200410.0956.002.html
10. Zheng Y, Xu H, Yang M, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol. 2020;127:104366. https://doi.org/10.1016/j.jcv.2020.104366
11. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008-2012. https://doi.org/10.1001/jama.283.15.2008
12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):605-606.
13. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.
14. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with COVID-19 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481. https://doi.org/10.1016/S2213-2600(20)30079-5
15. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10134):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
16. Wang Y, Lu X, Li Y, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;211(11):1430-1434. https://doi.org/10.1164/ajrccm.202003-0736LE
17. An W, Xia F, Chen M, et al. Analysis of clinical features of 11 death cases caused by COVID-19. The Journal of Practical Medicine. http://kns.cnki.net/kcms/detail/44.11193.r.20200414.1620.007.html
18. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. https://doi.org/10.1007/s00134-020-05991-x
19. Tu WJ, Cao J, Yu L, Hu X, Liu Q. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Med. 2020;46(6):1117-1120. https://doi.org/10.1007/s00134-020-06023-4
20. Liu W, Tao ZW, Wang L, et al. Analysis of factors associated with disease outcomes inhospitalized patients with 2019 novel coronavirus disease. Chin Med J. 2020;133(9):1032-1038. https://doi.org/10.1097/CM9.0000000000000775
21. Shi JH, Wang YR, Li WB, et al. Digestive system manifestations and analysis of disease severity in 54 patients with coronavirus disease 2019. Chin J Dig. 2020;40(03):167-170. https://doi.org/10.3760/cma.j.issn.0254-1432.2020.0010
22. Cheng KB, Wei M, Shen H, et al. Clinical characteristics of 463 patients with common and severe type coronavirus disease 2019. Shanghai Medical Journal. 2020;43(04):224-232. http://kns.cnki.net/kcms/detail/31.1366.r.20200312.1254.004.html
23. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. https://doi.org/10.1001/jama.2020.1585
24. Yuan J, Sun YL, Zuo YJ, et al. Clinical characteristics of 223 novel coronavirus pneumonia cases in Chongqing. J Southwest University (Natural Science Edition). 2020;42(03):1-7. http://kns.cnki.net/kcms/detail/50.1189.N.20200305.1429.004.html
25. Fang XW, Mei Q, Yang TJ, et al. Clinical characteristics and treatment analysis of 79 cases of COVID-19. Chinese Pharmacological Bulletin. http://kns.cnki.net/kcms/detail/31.1915.r.20200401.1647.004.html
26. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med. 2020;382(18):1708-1720. https://doi.org/10.1056/NEJMoa2002032
27. Qian GQ, Yang NB, Ding F, et al. Epidemiologic and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. QJM. pii: hca089. https://doi.org/10.1093/qjmed/hca089
28. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
29. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020;92(7):797-806. https://doi.org/10.1002/jmv.25783
30. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92(7):791-796. https://doi.org/10.1002/jmv.25770
31. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. https://doi.org/10.1111/all.14238
32. Li D, Long YZ, Huang P, et al. Clinical characteristics of 80 patients with COVID-19 in Zhuzhou City. Chinese Journal of Infection Control. http://kns.cnki.net/kcms/detail/43.1390.R.20200324.1537.004.html
33. Li D, Wang ML, He B, et al. Laboratory test analysis of sixty-two COVID-19 patients. Medical Journal of Wuhan University. http://kns.cnki.net/kcms/detail/42.1677.l.20200401.1707.001.html
34. Zhang W, Hou W, Li T, et al. Clinical characteristics of 74 hospitalised patients with COVID-19. Journal of Capital Medical University. http://kns.cnki.net/kcms/detail/11.3662.r.20200401.1501.006.html
35. Xiong J, Jiang WL, Zhou Q, et al. Clinical characteristics, treatment, and prognosis in 89 cases of COVID-2019. Medical J Wuhan Univ (Health Sciences). 2020;41(04):542-546. https://doi.org/10.14188/j.1671-8852.2020.0103
36. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhu H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: a retrospective study. Liver Int. 2020;40:1321-1326. https://doi.org/10.1111/liv.14449
37. Peng YD, Meng K, Guan HQ, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Chin J Cardiol. 2020;48(06):450-455. https://doi.org/10.3760/cma.j.cn112148-20200220-00105
38. Ling Y, Lin YX, Qian ZP, et al. Clinical analysis of risk factors for severe patients with novel coronavirus pneumonia. Chin J Infect. http://rs.yigle.com/yufabiao/1185115.htm
39. Zhang TT, Zheng HP, Mai YZ, et al. The correlation between serological dynamic evolution and the severity of coronavirus disease 2019. Guangdong Medical Journal. https://doi.org/10.13820/j.cnki.040401.20200642
40. Liu SJ, Cheng F, Yang XY, et al. A study of laboratory confirmed cases between laboratory indexes and clinical classification of 342 cases with Coronavirus Disease 2019 in Ezhou. Laboratory Medicine. http://kns.cnki.net/kcms/detail/31.3662.r.20200401.1647.004.html
41. Zuo FT, Li CL, Dong ZG, et al. Analysis of the correlation between clinical characteristics and disease severity in patients with novel coronavirus pneumonia. Tianjin Med J. 2020;5(5):455-460.
42. Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubel Province, China. Allergy. 2020;75(7):1742-1752. https://doi.org/10.1111/all.14309
43. Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of Corona virus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci. 2020;24(6):3404-3410. https://doi.org/10.26355/eurrev_202003_20711
44. Connors JM. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559-1561. https://doi.org/10.1111/jth.14849
45. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-2040. https://doi.org/10.1182/blood.2020060000
46. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517-528. https://doi.org/10.1007/s00281-017-0639-8
47. Song JC, Wang G, Zhang W, et al. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil Med Res. 2020;7(1):19. https://doi.org/10.1186/s40779-020-00247-7
48. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-1424. https://doi.org/10.1111/jth.14830
49. Wang T, Chen R, Liu C, et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. J Med Virol. 2020;92(7):791-796. https://doi.org/10.1002/jmv.25770
50. Zhou B, She J, Wang Y. Venous thrombosis and arteriosclerosis obliterations of lower extremities in a very severe patient with 2019 novel coronavirus disease: a case report. J Thromb Thrombolysis. 2020;50(1):229-232. https://doi.org/10.1007/s11239-020-02084-w
51. Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020;189(5):846-847. https://doi.org/10.1111/bjh.16727
52. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559-1561. https://doi.org/10.1111/jth.14849

How to cite this article: Zhu J, Pang J, Ji P, et al. Coagulation dysfunction is associated with severity of COVID-19: A meta-analysis. J Med Virol. 2021;93:962–972. https://doi.org/10.1002/jmv.26336