New Clustering Algorithm for Vector Quantization using Rotation of Error Vector

Dr. H. B. Kekre
Computer Engineering
Mukesh Patel School of Technology Management and Engineering, NMIMS University, Vileparle(w)
Mumbai 400–056, India
hbkekre@yahoo.com.

Tanuja K. Sarode
Ph.D. Scholar, MPSTME, NMIMS University,
Associate Professor, Computer Engineering,
Thadomal Shahani Engineering College,
Bandra(W), Mumbai 400-050, India
tanuja_0123@yahoo.com

Abstract — The paper presents new clustering algorithm. The proposed algorithm gives less distortion as compared to well known Linde Buzo Gray (LBG) algorithm and Kekre’s Proportionate Error (KPE) Algorithm. Constant error is added every time to split the clusters in LBG, resulting in formation of cluster in one direction which is 135° in 2-dimensional case. Because of this reason clustering is inefficient resulting in high MSE in LBG. To overcome this drawback of LBG proportionate error is added to change the cluster orientation in KPE. Though the cluster orientation in KPE is changed its variation is limited to ± 45° over 135°. The proposed algorithm takes care of this problem by introducing new orientation every time to split the clusters. The proposed method reduces PSNR by 2db to 5db for codebook size 128 to 1024 with respect to LBG.

Keywords-component; Vector Quantization; Codebook; Codevector; Encoding; Compression.

I. INTRODUCTION

World Wide Web Applications have extensively grown since last few decades and it has become requisite tool for education, communication, industry, amusement etc. All these applications are multimedia-based applications consisting of images and videos. Images/videos require enormous volume of data items, creating a serious problem as they need higher channel bandwidth for efficient transmission. Further high degree of redundancies is observed in digital images. Thus the need for image compression arises for resourceful storage and transmission. Image compression is classified into two categories, lossless image compression and lossy image compression techniques.

Vector quantization (VQ) is one of the lossy data compression techniques [1], [2] and has been used in number of applications, like pattern recognition [3], speech recognition and face detection [4], [5], image segmentation [6-9], speech data compression [10], Content Based Image Retrieval (CBIR) [11], [12], Face recognition[13], [14] iris recognition[15], tumor detection in mammography images [29] etc.

VQ is a mapping function which maps k-dimensional vector space to a finite set $CB = \{C_1, C_2, C_3, \ldots, C_N\}$. The set CB is called as codebook consisting of N number of codevectors and each codevector $C_i = \{c_{i1}, c_{i2}, c_{i3}, \ldots, c_{ik}\}$ is of dimension k. Good codebook design leads to reduced distortion in reconstructed image. Codebook can be designed in spatial domain by clustering algorithms [1], [2], [16-22].

For encoding, image is split in blocks and each block is then converted to the training vector $X_i = (x_{i1}, x_{i2}, \ldots, x_{ik})$. The codebook is searched for the nearest codevector C_{min} by computing squared Euclidean distance as presented in equation (1) between vector X_i and all the codevectors of the codebook CB. This method is called as exhaustive search (ES).

$$d(X_i, C_{min}) = \min_{1 \leq j \leq N} \{d(X_i, C_j)\} \text{ Where}$$
$$d(X_i, C_j) = \sum_{p=1}^{k} (x_{ip} - c_{jp})^2 \quad (1)$$

Exhaustive Search (ES) method gives the optimal result at the end, but it intensely involves computational complexity. Observing equation (1) to obtain one nearest codevector for a training vector computations required are N Euclidean distances computations. For M image training vectors, will require $M*N$ number of Euclidean distances computations. It is obvious that if the codebook size is increased the distortion will decrease with increase in searching time.

A variety of encoding methods are available in literature: Partial Distortion search (PDS) [23], nearest neighbor search algorithm based on orthonormal transform (OTNNS) [24], Partial Distortion Elimination (PDE) [25], Kekre’s fast search algorithms [26], [27], [28] etc., are classified as partial search methods. All these algorithms minimize the computational cost needed for VQ encoding keeping the image quality close to Exhaustive search algorithm.

II. CODEBOOK GENERATION ALGORITHMS

In this section existing codebook generation algorithms i.e. Linde Buzo Gray (LBG) and Kekre’s Proportionate Error (KPE) are discussed.
A. Linde Buzo and Gray (LBG) Algorithm [1], [2]

In this algorithm centroid is computed by taking the average as the first codevector for the training set. In Figure 1 two vectors v1 & v2 are generated by using constant error addition to the codevector. Euclidean distances of all the training vectors are computed with vectors v1 & v2 and two clusters are formed based on closest of v1 or v2. This modus operandi is repeated for every cluster. The shortcoming of this algorithm is that the cluster elongation is +135° to horizontal axis in two dimensional cases resulting in inefficient clustering.

![Figure 1 LBG for Two dimensional case.](image1)

B. Kekre’s Proportionate Error (KPE) Algorithm [10], [18]

Here to generate two vectors v1 & v2 proportionate error is added to the covector. Magnitude of elements of the codevector decides the error ratio. Hereafter the procedure is same as that of LBG. While adding proportionate error a safe guard is also introduced so that neither v1 nor v2 go beyond the training vector space eliminating the disadvantage of the LBG. Figure 2. shows the cluster elongation after adding proportionate error.

![Figure 2. Orientations of the line joining two vector v1 and v2 after addition of proportionate error to the centroid.](image2)

III. PROPOSED ALGORITHM

In this algorithm two vectors v1 & v2 are generated by adding error vector to the codevector. Euclidean distances of all the training vectors are computed with vectors v1 & v2 and two clusters are formed based on closest of v1 or v2. The codevectors of the two clusters are computed and then both clusters are split by adding and subtracting error vector rotated in k-dimensional space at different angle to both the codevector. This modus operandi is repeated for every cluster and every time to split the clusters error ei is added and subtracted from the codevector and two vectors v1 and v2 is generated. Error vector ei is the ith row of the error matrix of dimension k. The error vectors matrix E is given in Equation (2).

\[
E = \begin{bmatrix}
e_1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
e_2 & 1 & 1 & 1 & \ldots & 1 & 1 & -1 \\
e_3 & 1 & 1 & 1 & \ldots & 1 & -1 & 1 \\
e_4 & 1 & 1 & 1 & \ldots & 1 & -1 & -1 \\
e_5 & 1 & 1 & 1 & \ldots & -1 & 1 & 1 \\
\vdots & \vdots \\
e_k & \vdots
\end{bmatrix}
\]

Note that these error vector sequence have been obtained by taking binary representation of numbers starting from 0 to k-1 and replacing 0’s by 1’s and 1’s by -1’s.

Algorithm

Step 1: Divide the image into non overlapping blocks and convert each block to vectors thus forming a training vector set.

Step 2: initialize i=1;

Step 3: Compute the centroid (codevector) of this training vector set.

Step 4: Add and subtract error vector e, from the codevector and generate two vector v1 and v2.

Step 5: Compute Euclidean distance between all the training vectors belonging to this cluster and the vectors v1 and v2 and split the cluster into two.

Step 6: Compute the centroid (codevector) for the clusters obtained in the above step 5.

Step 7: increment i by one and repeat step 4 to step 6 for each codevector.

Step 8: Repeat the Step 3 to Step 7 till codebook of desire size is obtained.

IV. RESULTS

The algorithms discussed above are implemented using MATLAB 7.0 on Pentium IV, 1.66GHz, 1GB RAM. To test the performance of these algorithms eleven color images belonging to different classes of size 256x256x3 are used.

![Figure 3. Eleven color training Images. The images used belong to class portrait, collection of objects, Bird, Animal, Fruit, Flower, Monument, Place, Scenary etc.](image3)
Figure 4. Results of LBG KPE and Proposed algorithm from codebook size 1024 on Balls, Flower and Tajmahal image.

Figure 5. Comparison of LBG, KPE and Proposed algorithm for varying codebook sizes 128, 256, 512 and 1024 with respect to average MSE.

Table 1. Results of LBG KPE and Proposed algorithm on eleven color images from different categories of size 256x256x3 for codebook size 1024 and 512.

Table 2. Results of LBG KPE and Proposed algorithm on eleven color images from different categories of size 256x256x3 for codebook size 256 and 128.

Figure 3. Eleven Training Images.

Aishwariya Balls Bird Boat

Flower Ganesh Scenary Strawberry

Tajmahal Tiger Viharlake

Figure 3. Eleven Training Images.
TABLE I. RESULTS OF LBG, KPE AND PROPOSED ALGORITHM ON ELEVEN COLOR IMAGES FROM DIFFERENT CATEGORIES OF SIZE 256X256X3 FOR CODEBOOK SIZE 1024 AND 512.

Images	Parameters	LBG 128	KPE 128	Proposed 128	LBG 256	KPE 256	Proposed 256
Aishwariya	MSE 186.09	162.02	83.37	183.45	134.59	72.87	
	PSNR 25.43	26.04	28.92	25.50	26.84	29.51	
Balls	MSE 1912.70	1104.00	779.15	1895.50	853.43	603.18	
	PSNR 15.31	17.70	19.21	15.35	18.82	19.72	
Bird	MSE 305.40	395.28	174.12	302.11	320.79	148.98	
	PSNR 23.28	22.16	25.72	23.33	23.07	26.40	
Boat	MSE 620.06	762.48	410.54	614.73	685.49	344.17	
	PSNR 20.21	19.31	22.00	20.24	19.77	22.76	
Flower	MSE 256.28	339.30	160.73	253.76	314.99	131.32	
	PSNR 24.04	22.82	26.07	24.09	23.15	26.95	
Ganesha	MSE 650.92	652.82	481.61	645.64	610.63	421.70	
	PSNR 20.00	19.99	21.30	20.03	20.03	21.88	
Scenary	MSE 355.95	453.20	191.29	352.46	406.39	153.17	
	PSNR 22.62	21.57	25.31	22.66	22.04	26.28	
Strawberry	MSE 933.50	393.16	266.80	925.90	338.06	228.22	
	PSNR 18.43	22.19	23.87	18.47	22.84	24.55	

Figure 4. Results of Proposed, KPE and LBG algorithm from codebook size 1024 on Balls, Flower and Tajmahal image.
TABLE II. RESULTS OF LBG KPE AND PROPOSED ALGORITHM ON ELEVEN COLOR IMAGES FROM DIFFERENT CATEGORIES OF SIZE 256x256x3 FOR CODEBOOK SIZE 256 AND 128.

Images	MSE	PSNR											
Tajmahal	910.25	18.54	601.56	20.34	301.23	23.34	902.56	18.58	364.59	21.22	241.31	21.24	24.31
Tiger	491.44	21.22	488.83	21.24	340.02	22.82	487.72	21.25	463.80	21.25	288.65	21.47	23.53
Viharlake	162.73	26.02	161.91	26.04	134.83	26.83	160.78	26.07	154.99	26.07	113.28	26.23	27.59
Average	616.85	21.37	518.72	21.66	302.15	24.13	611.33	21.41	436.81	22.37	257.89	24.86	

Images	Parameters	LBG	KPE	Proposed	LBG	KPE	Proposed
Aishwariya	MSE	178.51	106.41	54.12	170.05	70.71	41.60
	PSNR	25.61	27.86	30.80	25.83	29.64	31.94
Balls	MSE	1866.20	680.73	574.34	1801.60	507.33	465.95
	PSNR	15.42	19.80	20.54	15.57	21.08	21.45
Bird	MSE	296.48	233.30	116.87	285.04	164.40	90.08
	PSNR	23.41	24.45	27.45	23.58	25.97	28.58
Boat	MSE	604.63	526.01	22.76	583.59	417.39	222.50
	PSNR	20.32	20.92	23.80	20.47	21.93	24.66
Flower	MSE	247.55	249.18	102.84	236.97	167.20	70.86
	PSNR	24.19	24.17	28.01	24.38	25.90	29.63
Ganesh	MSE	635.20	533.10	354.68	613.29	449.07	307.90
	PSNR	20.10	19.97	22.63	20.25	20.77	23.25
Scenery	MSE	346.55	296.83	119.19	333.81	189.24	90.19
	PSNR	22.73	23.41	27.37	22.90	25.36	28.58
Strawberry	MSE	912.77	277.28	186.65	884.99	233.57	152.89
	PSNR	18.53	23.70	25.42	18.66	24.45	26.29
Tajmahal	MSE	889.35	279.01	179.13	862.02	230.30	137.62
	PSNR	18.64	23.67	25.60	18.78	24.51	26.74
Tiger	MSE	480.53	432.18	235.52	465.69	345.72	195.16
	PSNR	21.31	21.77	24.41	21.45	22.74	25.23
Viharlake	MSE	157.44	138.34	92.49	151.13	112.72	77.14
	PSNR	26.16	26.72	28.47	26.34	27.61	29.26
Average	MSE	601.38	352.12	185.33	580.74	271.22	168.35
	PSNR	21.49	23.31	25.86	21.66	24.54	26.87
In this paper a novel codebook generation algorithm is proposed. In LBG constant error is added every time to split the clusters, which results in cluster formation in one direction only. The cluster elongation in LBG is 135° in 2-dimensional case. Due to this reason clustering in LBG is inefficient resulting in high MSE. To overcome this drawback of LBG modification to it is introduced by adding proportionate error to change the cluster orientation in KPE. Although the orientation is changed its variation is limited to the first quadrant. The proposed algorithm takes care of these problems by introducing new orientation every time to split the cluster. This has resulted in improving the clustering and reducing the image degradation in reconstructed image considerably. The proposed method reduces MSE by 51% to 71% for codebook size 128 to 1024 with respect to LBG and reduces MSE by 41% to 37% for codebook size 128 to 1024 with respect to KPE.

V. CONCLUSIONS

In this paper a novel codebook generation algorithm is proposed. In LBG constant error is added every time to split the clusters, which results in cluster formation in one direction only. The cluster elongation in LBG is 135° in 2-dimensional case. Due to this reason clustering in LBG is inefficient resulting in high MSE. To overcome this drawback of LBG modification to it is introduced by adding proportionate error to change the cluster orientation in KPE. Although the orientation is changed its variation is limited to the first quadrant. The proposed algorithm takes care of these problems by introducing new orientation every time to split the cluster. This has resulted in improving the clustering and reducing the image degradation in reconstructed image considerably. The proposed method reduces MSE by 51% to 71% for codebook size 128 to 1024 with respect to LBG and reduces MSE by 41% to 37% for codebook size 128 to 1024 with respect to KPE.

References
1. R. M. Gray, “Vector quantization”, IEEE ASSP Mag., pp. 4-29, Apr. 1984.
2. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84-95, 1980.
3. Ahmed A. Abdelwahab, Nora S. Muharram, “A Fast Codebook Design Algorithm Based on a Fuzzy Clustering Methodology”, International Journal of Image and Graphics, vol. 7, no. 2 pp. 291-302, 2007.
4. Chin-Chen Chang, Wen-Chuan Wu, “Fast Planar-Oriented Ripple Search Algorithm for Hyperspace VQ Codebook”, IEEE Transaction on image processing, vol 16, no. 6, June 2007.
5. C. Garcia and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis,” IEEE Trans. Multimedia, vol. 1, no. 3, pp. 264–277, Sep. 1999.
6. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, “Color Image Segmentation using Kekre’s Algorithm for Vector Quantization”, International Journal of Computer Science (IJCS), Vol. 3, No. 4, pp. 287-292, Fall 2008. available: http://www.waset.org/ijcs.
7. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, "Color Image Segmentation using Vector Quantization", Journal of Advances in Engineering Science, Section C, Number 3, 2008.
8. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, "Color Image Segmentation using Kekre’s Algorithm for Vector Quantization Based on Energy Ordering Concept” International Journal of Computing Science and Communication Technologies (IJCST) Volume 1, Issue 2, January 2009.
9. H. B. Kekre, Tanuja K. Sarode, Bhakti Raul, "Color Image Segmentation using Kekre’s Fast Codebook Generation Algorithm Based on Energy Ordering Concept”, ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), 23-24 Jan 2009, Fr. Conceicaco Rodrigues College of Engg., Mumbai. Available on online ACM portal.
10. H. B. Kekre, Tanuja K. Sarode, “Speech Data Compression using Vector Quantization”, WASET International Journal of Computer and Information Science and Engineering (IJCISE), vol. 2, No. 4, 251-254, Fall 2008. available: http://www.waset.org/ijcise
11. H. B. Kekre, Ms. Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features based on DCT applied on Kekre’s Median Codebook”, International Journal on Imaging (IJI), Available online at http://www.ijcst.com/gvip/Volume9/Issue5/P1150921752.html.
12. H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Color-Texture Feature based Image Retrieval using DCT applied on Kekre’s Median Codebook”, International Journal on Imaging (IJI), Available online at www.ceser.res.in/iij.html.
13. H. B. Kekre, Kamal Shah, Tanuja K. Sarode, Sudeep D. Thepade, “Performance Comparison of Vector Quantization Technique – KFCG with LBG, Existing Transforms and PCA for Face Recognition”, International Journal of Information Retrieval (IJIR), Vol.02, Issue 1, pp: 64-71, 2009.
14. H.B.Kekre, T.K.Sarode, V.A.Bharadi, Tejas Bajaj, Somesh Chatterjee, Mithilesh Bhat, Kunal Bihani “A Comparative Study of DCT and Kekre’s Median Code Book Generation Algorithm for Face Recognition”, International Conference and Workshop on Emerging Trends in Technology (ICWET 2010), To be held at Thakur College of Engineering and Technology (TCET), 26 & 27th February 2010, the paper will be uploaded on ACM portal.
15. H.B.Kekre, T.K.Sarode, V.A.Bharadi, A A Agrawal, R J Arora, M C Nair “Iris Recognition Using Vector Quantization”, International Conference on Signal Acquisition and Processing (ICSAP 2010), Organized by International Association of Computer Science &
Information Technology (IACSIT) Singapore, held at Bangalore, 9-10th February 2010. Available on IEEE Xplore.
16. H. B. Kekre, Tanuja K. Sarode, “New Fast Improved Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Engineering and Technology, vol. 1, No. 1, pp. 67-77, September 2008.
17. H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization,” International Journal of Computer Science and Information Technology, Vol. 1, No. 1, pp. 7-12, Jan 2009.
18. H. B. Kekre, Tanuja K. Sarode, “An Efficient Fast Algorithm to Generate Codebook for Vector Quantization,” First International Conference on Emerging Trends in Engineering and Technology, ICETET-2008, held at Raisoni College of Engineering, Nagpur, India, 16-18 July 2008. Available at online IEEE Xplore.
19. H. B. Kekre, Tanuja K. Sarode, “Vector Quantized Codebook Optimization using K-Means”, International Journal on Computer Science and Engineering (IJCSE) Vol.1, No. 3, 2009, pp.: 283-290. Available online at: http://journals.indexcopernicus.com/abstracted.php?id=839392.
20. H. B. Kekre, Tanuja K. Sarode, “Multilevel Vector Quantization Method for Codebook Generation”, International Journal of Engineering Research and Industrial Applications (IJERIA), vol. 2, no. V, 2009, ISSN 0974-1518, pp.: 217-231. Available online at: http://www.ascent-journals.com/ijeria_contents_Vol2No5.htm.
21. H. B. Kekre, Tanuja K. Sarode, “Bi-level Vector Quantization Method for Codebook Generation”, Second International Conference on Emerging Trends in Engineering and Technology, at G. H. Raisoni College of Engineering, Nagpur on 16-18 December 2009, this paper will be uploaded online at IEEE Xplore.
22. H.B.Kekre, Tanuja K. Sarode, “Bi-level Vector Quantization Method for Codebook Generation”, Second International Conference on Emerging Trends in Engineering and Technology, at G. H. Raisoni College of Engineering, Nagpur on 16-18 December 2009, pp.: 866-872. Available online at IEEE Xplore.
23. C. D. Bei and R. M. Gray.: ‘An improvement of the minimum distortion encoding algorithm for vector quantisation’, IEEE Trans. Commun., vol. 33, No. 10, pp. 1132–1133, Oct. 1985.
24. Z. Li, and Z.- M. Lu : ‘Fast codevector search scheme for 3D mesh model vector quantization’, Electron. Lett., vol. 44, No. 2, pp. 104-105, Jan 2008.
25. C. Bei, R. M. Gray, ‘An improvement of the minimum distortion encoding algorithm for vector quantization’, IEEE Trans. Commun., Vol. 33, no. 10, pp. 1132–1133, Oct 1985.
26. H. B. Kekre, Tanuja K. Sarode, “Centroid Based Fast Search Algorithm for Vector Quantization”, International Journal of Imaging (IJ), Vol 1, No. A08, pp. 73-83, Autumn 2008, available: http://www.ceser.res.in/iij.html.
27. H. B. Kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook”, WASET International Journal of cal Computer Information Science and Engineering (IJCISE), Volume 2, No. 4, pp. 235-239, Fall 2008. available: http://www.waset.org/ijcise.
28. H. B. Kekre, Tanuja K. Sarode, "Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique", ACM International Conference on Advances in Computing, Communication and Control (ICAC3-2009), 23-24 Jan 2009, Fr. Conceicao Rodrigues College of Engg., Mumbai. Available on line ACM portal.
29. H. B. Kekre, Tanuja K. Sarode, Saylee Gharbe, “Detection and Demarcation of Tumor using Vector Quantization in MRI images”, International Journal of Engineering Science and Technology, Vol.1, Number (2), pp.: 59-66, 2009. Available online at: http://arxiv.org/ftp/arxiv/papers/1001/1001.4189.pdf.