LOCAL ALGEBRAIC APPROXIMATION OF SEMIANALYTIC SETS

M. FERRAROTTI, E. FORTUNA, AND L. WILSON

(Communicated by Daniel Ruberman)

Abstract. Two subanalytic subsets of \mathbb{R}^n are called s-equivalent at a common point P if the Hausdorff distance between their intersections with the sphere centered at P of radius r vanishes to order $> s$ when r tends to 0. In this paper we prove that every s-equivalence class of a closed semianalytic set contains a semialgebraic representative of the same dimension. In other words any semianalytic set can be locally approximated to any order s by means of a semialgebraic set and hence, by previous results, also by means of an algebraic one.

1. Introduction

In [FFW1] we introduced a notion of local metric proximity between two sets that we called s-equivalence: for a real $s \geq 1$, two subanalytic subsets of \mathbb{R}^n are s-equivalent at a common point P if the Hausdorff distance between their intersections with the sphere centered at P of radius r vanishes to order $> s$ when r tends to 0.

Given a subanalytic set $A \subset \mathbb{R}^n$ and a point $P \in A$, a natural question concerns the existence of an algebraic representative X in the class of s-equivalence of A at P; in that case we also say that X approximates A of order s at P.

The answer to the previous question is in general negative for subanalytic sets which are not semianalytic, even for $s = 1$ (see [FFW3]). Furthermore, in [FFW2] we defined s-equivalence of two subanalytic sets along a common submanifold, and studied 1-equivalence of a pair of strata to the normal cone of the pair. By example we showed that a semianalytic normal cone to a linear X may be not 1-equivalent to any semialgebraic set along X. It is still an open problem whether a semialgebraic normal cone along a linear X is s-equivalent to an algebraic variety along X, for all s.

On the other hand some partial positive answers were given in [FFW1] and [FFW3]; in particular we proved that a subanalytic set $A \subset \mathbb{R}^n$ can be approximated of any order by an algebraic one in each of the following cases:
- A is a closed semialgebraic set of positive codimension,
- A is the zero-set $V(f)$ of a real analytic map f whose regular points are dense in $V(f)$,
- A is the image of a real analytic map f having a finite fiber at P.

Received by the editors July 10, 2012 and, in revised form, January 16, 2013; January 18, 2013; and February 25, 2013.

2010 Mathematics Subject Classification. Primary 14P15, 32B20, 32S05.

The first and second authors’ research was partially supported by M.I.U.R. and by G.N.S.A.G.A.
Using the previous results we also obtained that one-dimensional subanalytic sets, analytic surfaces in \(\mathbb{R}^3 \) and real analytic sets having a Puiseux-type parametrization admit an algebraic approximation of any order.

In the present paper we prove that any closed semianalytic set can be locally approximated of any order by a semialgebraic one having the same dimension. Using the main result of [FFW1], it follows that any closed semianalytic set of positive codimension admits an algebraic approximation of any order. Thus we obtain a complete positive answer to our question for the class of semianalytic sets.

The algebraic approximation, elaborating the methods introduced in [FFW3], is obtained by taking sufficiently high order truncations of the analytic functions appearing in a presentation of the semianalytic set.

Finally, let us mention some possible future developments of these notions and ideas. Since we can prove that two subanalytic sets \(A, B \) are 1-equivalent if and only if their tangent cones coincide (see also [FFW1]), it would be interesting to extend the notion of tangent cone associating to \(A \) a sort of “tangent cone of order \(s \)”, say \(C_s(A) \), in such a way that \(A \) and \(B \) are \(s \)-equivalent if and only if \(C_s(A) = C_s(B) \).

There is currently much interest in bi-Lipschitz equivalence of varieties. Most of the work has been in the complex case. One recent such example is [BFGO]. The theory is closely tied up with the notion of the tangent cone, exceptional subcones, and limits of tangent spaces. The real case has been little studied. A good place to start is in the case of surfaces in \(\mathbb{R}^3 \), which is the only real case in which the tangent cone, exceptional lines, and limits of tangent planes have been deeply analyzed (see [OW]). The \(s \)-equivalence classes are Lipschitz invariants, so they should be a useful tool in this analysis.

2. Basic notions and preliminary results

If \(A \) and \(B \) are non-empty compact subsets of \(\mathbb{R}^n \), we denote by \(D(A,B) \) the classical Hausdorff distance, i.e.

\[
D(A,B) = \inf \{ \epsilon \mid A \subseteq N_\epsilon(B), \ B \subseteq N_\epsilon(A) \},
\]

where \(N_\epsilon(A) = \{ x \in \mathbb{R}^n \mid d(x,A) < \epsilon \} \) and \(d(x,A) = \inf_{y \in A} \| x - y \| \).

If we let \(\delta(A,B) = \sup_{x \in B} d(x,A) \), then \(D(A,B) = \max\{\delta(A,B), \delta(B,A)\} \).

We will denote by \(O \) the origin of \(\mathbb{R}^n \) for any \(n \).

We are going to introduce the notion of \(s \)-equivalence at a point; without loss of generality we can assume that this point is \(O \).

Definition 2.1. Let \(A \) and \(B \) be closed subanalytic subsets of \(\mathbb{R}^n \) with \(O \in A \cap B \). Let \(s \) be a real number \(\geq 1 \). Denote by \(S_r \) the sphere of radius \(r \) centered at the origin.

1. We say that \(A \leq_s B \) if either \(O \) is isolated in \(A \) or if \(O \) is non-isolated both in \(A \) and in \(B \) and

\[
\lim_{r \to 0} \frac{\delta(B \cap S_r, A \cap S_r)}{r^s} = 0.
\]

2. We say that \(A \) and \(B \) are \(s \)-equivalent (and we will write \(A \sim_s B \)) if \(A \leq_s B \) and \(B \leq_s A \).

Observe that if \(O \) is non-isolated both in \(A \) and in \(B \), then

\[
A \sim_s B \quad \text{if and only if} \quad \lim_{r \to 0} \frac{D(A \cap S_r, B \cap S_r)}{r^s} = 0.
\]
Moreover, if $A \subseteq B$, then $A \leq_s B$ for any $s \geq 1$. It is easy to check that \leq_s is transitive and that \sim_s is an equivalence relation. The following result shows that s-equivalence behaves well with respect to the union of sets:

Proposition 2.2 ([FFW3]). Let A, A', B and B' be closed subanalytic subsets of \mathbb{R}^n.

1. If $A \leq_s B$ and $A' \leq_s B'$, then $A \cup A' \leq_s B \cup B'$.
2. If $A \sim_s B$ and $A' \sim_s B'$, then $A \cup A' \sim_s B \cup B'$.

Given a closed subanalytic set A and $s \geq 1$, the problem we are interested in is whether there exists an algebraic subset Y which is s-equivalent to A; in this case we also say that Y approximates A to order s. Evidently the question is trivially true when O is an isolated point in A.

Among the partial answers to the previous question that have been already achieved, we recall only the following one which will be used later on:

Theorem 2.3 ([FFW1]). For any real number $s \geq 1$ and for any closed semialgebraic set $A \subseteq \mathbb{R}^n$ of codimension ≥ 1, there exists an algebraic subset Y of \mathbb{R}^n such that $A \sim_s Y$.

The following definition introduces a geometric tool which is very useful to test the s-equivalence of two subanalytic sets:

Definition 2.4. Let A be a closed subanalytic subset of \mathbb{R}^n, $O \in A$. For any real $\sigma > 1$, we will refer to the set

$$\mathcal{H}(A, \sigma) = \{ x \in \mathbb{R}^n \mid d(x, A) < \|x\|^\sigma \}$$

as the horn-neighbourhood with center A and exponent σ.

Note that, if O is isolated in A, then $\mathcal{H}(A, \sigma) = \emptyset$ near O.

Proposition 2.5 ([FFW3]). Let A, B be closed subanalytic subsets of \mathbb{R}^n with $O \in A \cap B$ and let $s \geq 1$. Then $A \leq_s B$ if and only if there exist $\sigma > s$ and an open neighbourhood Ω of O such that $(A \setminus \{O\}) \cap \Omega \subseteq \mathcal{H}(B, \sigma) \cap \Omega$.

The following technical result suggests that horn-neighbourhoods can be used to modify a subanalytic set producing subanalytic sets s-equivalent to the original one:

Lemma 2.6. Let $X \subset Y \subset \mathbb{R}^n$ be closed subanalytic sets such that $O \in X$ and let $s \geq 1$. Then:

1. for any $\sigma > s$ we have $Y \sim_s Y \cup \mathcal{H}(X, \sigma)$;
2. if $\overline{Y \setminus X} = Y$, there exists $\sigma > s$ such that $Y \setminus \mathcal{H}(X, \sigma) \sim_s Y$.

Proof. (a) Since $Y \cup \mathcal{H}(X, \sigma) \subseteq \mathcal{H}(Y, \sigma)$, by Proposition 2.5 for any $\sigma > s$ we have that $Y \cup \mathcal{H}(X, \sigma) \leq_s Y$ and hence $Y \cup \mathcal{H}(X, \sigma) \sim_s Y$.

(b) Let $\mathcal{U}(X, q) = \{ x \in \mathbb{R}^n \mid \exists y \in X, \|x\| = \|y\|, \|x - y\| < \|y\|^{\eta}\}$.

Arguing as in [FFW1] Corollary 2.6, there exists q such that $Y \setminus \mathcal{U}(X, q) \sim_s Y$. Since X and $Y \setminus \mathcal{U}(X, q)$ are subanalytic sets and meet only in O, they are regularly situated, i.e. there exists β such that $d(x, X) + d(x, Y \setminus \mathcal{U}(X, q)) > \|x\|^\beta$ for all x near O. Then $\mathcal{H}(X, \beta) \subseteq \mathcal{U}(X, q)$ and hence taking $\sigma > \max\{\beta, s\}$ we have that $Y \setminus \mathcal{H}(X, \sigma) \sim_s Y$. \hfill \Box

Another essential tool will be Lojasiewicz’ inequality, which we will use in the following slightly modified version.
Proposition 2.7. Let A be a compact subanalytic subset of \mathbb{R}^n. Assume f and g are subanalytic functions defined on A such that f is continuous, $V(f) \subseteq V(g)$, g is continuous at the points of $V(g)$ and such that $|g| < 1$ on A. Then there exists a positive constant α such that $|g|^\alpha \leq |f|$ on A and $|g|^\alpha < |f|$ on $A \setminus V(f)$.

Proof. The result will be obtained by adapting the proof given by Łojasiewicz under the stronger hypothesis that g is continuous on A (see [L] Théorème 1); in that paper he used the following lemma ([L] Lemma 4):

If $E \subset [0, \infty) \times \mathbb{R}$ is a compact semianalytic subset of \mathbb{R}^2 such that $E \cap \{(0) \times \mathbb{R}\} \subseteq \{(0, 0)\}$, then there exist positive constants c, α such that $E \subseteq \{(x, y) \in \mathbb{R}^2 \mid |y|^\alpha \leq c|x|\}$.

The map $\Phi = (|f|, g) : A \to \mathbb{R}^2$ is subanalytic and bounded; hence $\Phi(A)$ is a subanalytic subset of \mathbb{R}^2 and therefore semianalytic ([L] Proposition 2)). Then $E = \Phi(A)$ is a compact semianalytic subset of $[0, \infty) \times \mathbb{R}$.

We have that $E \cap \{(0) \times \mathbb{R}\} \subseteq \{(0, 0)\}$: namely, if $(0, y_0) \in E$, then there exists a sequence $\{a_i\} \subset A$ such that $\lim_{i \to \infty} \Phi(a_i) = (0, y_0)$ with a_i converging to $a_0 \in A$. By continuity $f(a_0) = 0$ and hence $g(a_0) = 0$. By the continuity of g at a_0, we have that $y_0 = g(a_0) = 0$.

So E fulfills the hypotheses of the lemma recalled above and therefore there exist positive constants c, α such that $|g|^\alpha \leq c|f|$ on A.

Since $|g| < 1$, increasing α if necessary we can obtain the thesis. \qed

3. Main results

This section is devoted to the proof of the local approximation theorem for semianalytic sets.

Since s-equivalence depends only on the set-germs at O, all the sets we will work with will be considered as subsets of a suitable open ball Ω in \mathbb{R}^n centered at O; we will shrink such a ball whenever necessary without mention.

Definition 3.1. Let A be a closed semianalytic subset of Ω. We will say that A admits a good presentation if the minimal analytic variety V_A containing A is irreducible and there exist analytic functions f_1, \ldots, f_p which generate the ideal $I(V_A)$ and g_1, \ldots, g_l analytic functions on Ω such that

$$A = \{ x \in \Omega \mid f_i(x) = 0, g_j(x) \geq 0, i = 1, \ldots, p, j = 1, \ldots, l \}.$$

We start with a preliminary result concerning a way to decompose and present semianalytic sets:

Lemma 3.2. Let A be a closed semianalytic subset of Ω with $\dim_{\Omega} A = d > 0$. Then there exist closed semianalytic sets $\Gamma_1, \ldots, \Gamma_r, \Gamma'$ such that

1. $A = (\bigcup_{i=1}^{r} \Gamma_i) \cup \Gamma'$,
2. for each i, $\dim_{\Omega} \Gamma_i = d$ and Γ_i admits a good presentation,
3. $\dim \Gamma' < d$.

Proof. Let V_A be the minimal analytic variety containing A (in particular $\dim_{\Omega} V_A = d$). Let $V_1 \cup \ldots \cup V_m$ be the decomposition of V_A into irreducible components. Then $A = W_1 \cup \ldots \cup W_m$ where $W_i = A \cap V_i$. Then V_i is the minimal analytic variety containing W_i and $\dim_{\Omega} V_i = \dim_{\Omega} W_i$.

Each W_i is a finite union of sets of the form $\Gamma = \{ h_1 = 0, \ldots, h_q = 0, g_1 \geq 0, \ldots, g_l \geq 0 \}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let Γ' be the union, over $i = 1, \ldots, m$, of the Γ's having dimension less than d.

For any $\Gamma \subseteq V_i$ of dimension d, V_i is the minimal analytic variety containing Γ. It follows that $\Gamma = \{ f_1 = 0, \ldots, f_p = 0, g_1 \geq 0, \ldots, g_l \geq 0 \}$ where f_1, \ldots, f_p are generators of the ideal $I(V_i)$. Thus we can take as $\Gamma_1, \ldots, \Gamma_r$ these latter Γ's (over $i = 1, \ldots, m$) suitably indexed. □

Notation 3.3. Let g_1, \ldots, g_l be analytic functions on Ω and let $f = (f_1, \ldots, f_p) : \Omega \to \mathbb{R}^p$ be an analytic map. If $A = \{ x \in \Omega \mid f(x) = O, g_i(x) \geq 0, i = 1, \ldots, l \}$, we will use the following notation:

1. $A_i = \{ x \in \Omega \mid f(x) = O, g_i(x) \geq 0 \}$ for $i = 1, \ldots, l$ (so that $A = \bigcap A_i$),
2. $b(A) = \bigcup_{i=1}^l (V(g_i) \cap A)$.

Lemma 3.4. Consider the closed semianalytic set

$$A = \{ x \in \Omega \mid f(x) = O, g_i(x) \geq 0, i = 1, \ldots, l \},$$

where $f : \Omega \to \mathbb{R}^p$ is an analytic map and g_1, \ldots, g_l are analytic functions on Ω. Assume that $O \in A$. Let σ be a real number > 1 and let $H \subseteq \mathbb{R}^n$ be an open subanalytic set such that $H \supseteq H(b(A), \sigma)$. Then there exists η such that, for each $x \in V(f) \setminus (A \cup H)$, there exists i so that $x \notin H(A_i, \eta)$.

Proof. Since the functions $\sum_i d(x, A_i)$ and $d(x, A)$ are subanalytic and vanish exactly on A, by Proposition 2.7 there exists $\alpha > 0$ such that, for any x,

$$\sum_i d(x, A_i) \geq d(x, A)^\alpha.$$

Let d_g denote the geodesic distance on $V(f)$.

If $x \in V(f) \setminus A$, we have $d_g(x, A) = d_g(x, b(A))$. In a suitable closed ball centered at O we can assume that $V(f)$ is connected; hence, by a result of Kurdyka and Orro ([KO]) for any $\epsilon > 0$ there exists a subanalytic distance $\Delta(x, y)$ on $V(f)$ such that

$$\forall x, y \in V(f) \quad 0 \leq \Delta(x, y) \leq d_g(x, y) \leq (1 + \epsilon)\Delta(x, y).$$

Then, if we take for instance $\epsilon = 1$,

$$\forall x \in V(f) \quad 0 \leq \Delta(x, A) \leq d_g(x, A) \leq 2\Delta(x, A)$$

and so the subanalytic function $\Delta(x, A)$ is continuous at each point of A. Hence by Proposition 2.7 there exists $\mu > 0$ such that, for any x in $V(f)$,

$$d(x, A) \geq \Delta(x, A)^\mu$$

and so

$$\sum_i d(x, A_i) \geq \Delta(x, A)^\mu \geq \left(\frac{d_g(x, A)}{2} \right)^{\mu\alpha}.$$

Moreover for any $x \in V(f) \setminus (A \cup H)$ we have that

$$d_g(x, A) = d_g(x, b(A)) \geq d(x, b(A)) \geq \|x\|^\sigma.$$

Let us show that the thesis holds choosing $\eta > \sigma \mu \alpha$.

If, for a contradiction, any neighbourhood of O contains a point $x \in \bigcap_i \mathcal{H}(A_i, \eta) \cap (V(f) \setminus (A \cup H))$, then we have that

$$\frac{1}{2\mu \gamma} \|x\|^\sigma \mu \alpha \leq \sum_{i=1}^l d(x, A_i) \leq l\|x\|^\eta,$$

which is impossible when x tends to O. □
For any analytic map ψ defined in a neighbourhood of O, we will denote by $T_k^k \psi(x)$ the polynomial map whose components are the Taylor polynomials of order k at O of the components of ψ.

Lemma 3.5. Let φ be an analytic function on Ω such that $\varphi(O) = 0$. Let X be a closed semianalytic subset of Ω, $O \in X$. Then for any real positive θ there exists $\alpha > 0$ such that, for all integers $k > \alpha$, the function $T_k^k \varphi$ has the same sign as φ on $X \setminus \{ \mathcal{H}(X \cap V(\varphi), \theta) \cup \{O\} \}$.

Proof. Denote $Z = X \setminus \mathcal{H}(X \cap V(\varphi), \theta)$. Since $V(\varphi) \cap Z = \{O\}$, by Proposition 2.7 there exists $\alpha > 0$ such that $\|x\|^\alpha < |\varphi(x)|$ for all $x \in Z \setminus \{O\}$.

For all integers $k > \alpha$

$$\lim_{x \to O} \frac{\varphi(x) - T_k^k \varphi(x)}{\|x\|^\alpha} = 0.$$

If O is isolated in Z, there is nothing to prove. Otherwise assume, for a contradiction, that any neighbourhood of O contains a point $x \in Z$ such that $\varphi(x)$ and $T_k^k \varphi(x)$ have different signs (for instance $\varphi(x) > 0$ and $T_k^k \varphi(x) \leq 0$). Then

$$|\varphi(x) - T_k^k \varphi(x)| \geq |\varphi(x)| > \|x\|^\alpha$$

and hence

$$\frac{|\varphi(x) - T_k^k \varphi(x)|}{\|x\|^\alpha} > 1$$

arbitrarily near to O, which is impossible. \hfill \Box

Notation 3.6. Let g_1, \ldots, g_l be analytic functions on Ω and let $f: \Omega \to \mathbb{R}^p$ be an analytic map. If $A = \{ x \in \Omega \mid f(x) = O, g_i(x) \geq 0, i = 1, \ldots, l \}$, for any $h, k \in \mathbb{N}$ let

1. $T^h(A) = \{ x \in \Omega \mid T^h f(x) = O, g_i(x) \geq 0 \text{ for } i = 1, \ldots, l \}$,
2. $T_k^h(A) = \{ x \in \Omega \mid f(x) = O, T^h g_i(x) \geq 0 \text{ for } i = 1, \ldots, l \}$,
3. $T^h_k(A) = \mathcal{H}(T^h_k(A)) = \{ x \in \Omega \mid T^h f(x) = O, T^h g_i(x) \geq 0 \text{ for } i = 1, \ldots, l \}$.

Moreover, for any analytic map $\varphi: \Omega \to \mathbb{R}^p$, denote $\Sigma_\varphi = \{ x \in \Omega \mid \text{rk } d_x \varphi < r \}$, and $\Sigma(\varphi) = \Sigma_{\varphi}(\varphi)$.

Lemma 3.7. Let A be a closed semianalytic subset of Ω, with $\dim O A = d > 0$. Assume that $A = \{ f(x) = O, g_i(x) \geq 0, i = 1, \ldots, l \}$, with g_1, \ldots, g_l analytic functions on Ω and $f: \Omega \to \mathbb{R}^{n-d}$ an analytic map. Assume also that

$$\dim O(A \setminus (\Sigma(f) \cup b(A))) > 0.$$

Then for any $s \geq 1$ there exist $h_0 > 0, k_0 > 0$ such that, for all integers h, k with $h \geq h_0$ and $k \geq k_0$, we have

1. $T^h_k(A) \leq_s A$,
2. $A \setminus (\Sigma(f) \cup b(A)) \leq_s T^h_k(A)$,
3. $\dim O T^h_k(A) = d$.

Proof. Let $s \geq 1$ and let $\sigma > s$. Denote $X = (\Sigma(f) \cap A) \cup b(A)$.

(1) Let $H = \mathcal{H}(X, \sigma)$. By Lemma 3.4 there exists η such that, for each $x \in V(f \setminus (A \cup H))$, there exists η_0 so that $x \notin \mathcal{H}(A_{i_0}, \eta)$.

For all j, applying Lemma 3.5 to $V(f)$, g_j and η, we find $\alpha_j > 0$ such that, for all integers $k > \alpha_j$, the functions g_j and $T^k g_j$ have the same sign on $V(f \setminus (\mathcal{H}(V(f) \cap V(g_j), \eta) \cup \{O\})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $x \in V(f) \setminus (A \cup H)$. Then $x \not\in \mathcal{H}(A_{i_0}, \eta)$ for some i_0 and hence $g_{i_0}(x) < 0$; moreover, since $V(f) \cap V(g_{i_0}) \subseteq A_{i_0}$, we have that $x \in V(f) \setminus (\mathcal{H}(V(f) \cap V(g_{i_0}), \eta) \cup \{O\})$ and hence, for all integers $k > \alpha_1$, $T^k g_{i_0}(x) < 0$. This implies that $T_k(A) \subseteq A \cup H$.

Applying Lemma 2.6 (1) to the sets X and A, we have $A \sim_s A \cup H$, and so $T_k(A) \subseteq A$.

Let $B_k = \{x \in \Omega \mid T^k g_i \geq 0, \ i = 1, \ldots, l\}$.

Since $T_k(A) = B_k \cap V(f)$, by Proposition 2.7 there exists $\rho > 0$ such that $\|f(x)\| \geq d(x, T_k(A))^{\rho}$ for all $x \in B_k$; then for $x \in B_k \setminus \mathcal{H}(T_k(A), \sigma)$ we have that $\|f(x)\| \geq \|x\|^\rho \sigma$.

Let h be an integer such that $h \geq \rho \sigma$. Then

$$\lim_{x \to O} \frac{\|f(x) - T^h f(x)\|}{\|x\|^\rho \sigma} = 0.$$

We have that $T^h (T_k(A)) \setminus \{O\} \subseteq \mathcal{H}(T_k(A), \sigma)$; otherwise there would exist a sequence of points $y_i \not\in O$ converging to O such that $y_i \in T^h (T_k(A)) \setminus \mathcal{H}(T_k(A), \sigma)$ and hence

$$\lim_{i \to \infty} \frac{\|f(y_i) - T^h f(y_i)\|}{\|y_i\|^\rho \sigma} = \lim_{i \to \infty} \frac{\|f(y_i)\|}{\|y_i\|^\rho \sigma} \geq 1,$$

which is a contradiction.

Thus by Proposition 2.5 we get that $T^h_k(A) \sim_s T_k(A) \subseteq A$.

(2) Let $Y = A \setminus X$. By our hypotheses O is not isolated in Y.

Since $Y \setminus X = Y$, applying Lemma 2.6 (2) to the sets $X \cap Y$ and Y and increasing σ if needed, we have that $Y \setminus \mathcal{H}(X \cap Y, \sigma) \sim_s Y$. Denote

$$Y' = Y \setminus \mathcal{H}(X \cap Y, \sigma) \quad \text{and} \quad H_i = \mathcal{H}(V(g_i) \cap Y, \sigma).$$

If for each i we apply Lemma 3.3 to Y, g_i and σ, we can find $\alpha_2 > 0$ such that, for all integers $k > \alpha_2$, the functions g_i and $T^k g_i$ have the same sign on $Y \setminus (H_i \cup \{O\})$.

Since $V(g_i) \cap Y \subseteq X \cap Y$ for each i, then $\bigcup H_i \subseteq \mathcal{H}(X \cap Y, \sigma)$, and therefore $Y' \setminus \{O\} \subseteq \bigcap_i (Y \setminus (H_i \cup \{O\}))$. In particular

$$Y' \setminus \{O\} \subseteq \{T^k g_1 > 0, \ldots, T^k g_l > 0\}.$$

From now on, assume that $k > \alpha_2$. We will get the result by replacing f with a suitable truncation of it in the presentation of $T_k(A)$. We will denote by $B(x, r)$ the open ball centered at x of radius r.

By the last inclusion, the distance $d(x, b(B_k))$ is subanalytic and positive on $Y' \setminus \{O\}$ so, by Proposition 2.7, there exists $\nu > 0$ (and we can assume $\nu > s$) such that $d(x, b(B_k)) > \|x\|^{\nu}$ for all x in $Y' \setminus \{O\}$. As a consequence

$$B(x, \|x\|^{\nu}) \subseteq \{T^k g_1 > 0, \ldots, T^k g_l > 0\}.$$

Following FFW3 consider the real-valued function

$$\Lambda f(x) = \begin{cases} 0 & \text{if } \text{rk } d_x f < n - d \\ \inf_{v \in \ker d_x f, \|v\| = 1} \|d_x f(v)\| & \text{if } \text{rk } d_x f = n - d \end{cases}.$$

Observe that $\Lambda f(x)$ is subanalytic, continuous and positive where f is submersive, in particular on $Y' \setminus \{O\}$. Hence, again by Proposition 2.7, there exists $\beta > 0$ such that $\Lambda f(x) > \|x\|^\beta$ for all x in $Y' \setminus \{O\}$.
Consider the subanalytic set \(W = \{(x, y) \in Y' \times \Omega \mid \Lambda f(y) \geq \|x\|^\beta \} \) and let \(W_0 = \{(x, y) \in Y' \times \Omega \mid \Lambda f(y) = \|x\|^\beta \} \); then the set \(\{(x, x) \mid x \in Y' \setminus \{O\} \} \) is contained in the open subanalytic set \(W \setminus W_0 \).

The function \(\varphi : Y' \setminus \{O\} \to \mathbb{R} \) defined by \(\varphi(x) = d((x, x), W_0) \) is subanalytic and positive. Then again by Proposition 2.7 there exists \(\tau > 0 \) (and we can assume \(\tau > \nu \)) such that \(\varphi(x) > \|x\|^\tau \) on \(Y' \setminus \{O\} \). Then for all \(x \in Y' \setminus \{O\} \) and for all \(y \in B(x, \|x\|^\tau) \) we have

\[
\|(x, y) - (x, x)\| = \|y - x\| < \|x\|^\tau < \varphi(x).
\]

Hence \((x, y) \in W \setminus W_0 \), i.e. for all \(x \in Y' \setminus \{O\} \) and for all \(y \in B(x, \|x\|^\tau) \) we have \(\Lambda f(y) > \|x\|^\beta \). In particular \(\Lambda f(y) > 0 \) and hence \(d_yf \) is surjective for all \(y \in B(x, \|x\|^\tau) \).

Let \(h \) be an integer such that \(h > \beta + 1 \) and let \(\bar{f}(x) = T^hf(x) \).

Then \(T^{h-1}d_yf = d_y\bar{f} \); thus we have that \(\|d_yf - d_y\bar{f}\| \leq \|y\|^{h-1} \) for all \(y \) near to \(O \), where we consider \(\text{Hom}(\mathbb{R}^n, \mathbb{R}^{n-d}) \) endowed with the standard norm

\[
\|L\| = \max_{u \neq 0} \frac{\|L(u)\|}{\|u\|}.
\]

Thus by [FFW3, Proposition 3.3] we have

\[
|\Lambda f(y) - \Lambda \bar{f}(y)| \leq \|y\|^{h-1}.
\]

Claim. For \(x \in Y' \setminus \{O\} \) and for \(y \in B(x, \|x\|^\tau) \), we have

\[
\Lambda \bar{f}(y) \geq \|x\|^\beta + 1.
\]

To see this, assume for a contradiction that there exist a sequence \(x_i \in Y' \setminus \{O\} \) converging to \(O \) and a sequence \(y_i \in B(x_i, \|x_i\|^\tau) \) such that \(\Lambda \bar{f}(y_i) < \|x_i\|^\beta + 1 \). Thus we have

\[
\frac{\Lambda f(y_i) - \Lambda \bar{f}(y_i)}{\|x_i\|^\beta} > \frac{\|x_i\|^\beta - \|x_i\|^\beta + 1}{\|x_i\|^\beta} = 1 - \|x_i\|.
\]

On the other hand

\[
\frac{\Lambda f(y_i) - \Lambda \bar{f}(y_i)}{\|x_i\|^\beta} \leq \frac{\|y_i\|^{h-1}}{\|x_i\|^\beta} \leq \frac{(\|y_i - x_i\| + \|x_i\|)^{h-1}}{\|x_i\|^\beta} = \left(\frac{\|y_i - x_i\|}{\|x_i\|^\beta} + \|x_i\|^{1-q} \right)^{h-1} \leq \left(\|x_i\|^{1-q} + \|x_i\|^{1-q} \right)^{h-1}
\]

where \(q = \frac{\beta}{h-1} \). Since \(\tau > 1 \) and \(q < 1 \), we have that

\[
\frac{\Lambda f(y_i) - \Lambda \bar{f}(y_i)}{\|x_i\|^\beta} \text{ converges to 0, which is a contradiction. So the Claim is proved.}
\]

Consequently, for all \(x \in Y' \setminus \{O\} \) the map \(\bar{f} \) is a submersion on \(B(x, \|x\|^\tau) \). Hence, using [FFW3, Lemma 3.5], we get \(\bar{f}(B(x, \|x\|^\tau)) \supseteq B(\bar{f}(x), \|x\|^\lambda) \) with \(\lambda = \beta + 1 + \tau \).

Observe that if \(x \in Y' \setminus \{O\} \), we have that

\[
\lim_{x \to O} \frac{\|\bar{f}(x)\|}{\|x\|^h} = \lim_{x \to O} \frac{\|\bar{f}(x) - f(x)\|}{\|x\|^h} = 0.
\]
So, for any \(h \geq \lambda \) and \(x \in Y' \), the point \(O \) belongs to \(B(f(x), \|x\|^\tau) \) and hence there exists \(y \in B(x, \|x\|^\tau) \) such that \(f(y) = O \).

Since \(\tau > \nu > s \), then \(y \in B(x, \|x\|^\nu) \) so that \(T^k g_i(y) > 0 \) for all \(i \), i.e. \(y \in T^h_k(A) \); hence \(Y' \setminus \{O\} \subseteq \mathcal{H}(T^h_k(A), \lambda) \). Then by Proposition \(\ref{theo:approximation} \) we have that \(Y' \leq T^h_k(A) \) and hence, since \(Y' \sim Y \), we have that

\[
A \setminus (\Sigma(f) \cup b(A)) = Y \leq T^h_k(A).
\]

Therefore, taking \(h_0 = \max\{\rho \sigma, \lambda\} \) and \(k_0 = \max\{\alpha_1, \alpha_2\} \), we have the thesis.

(3) The previous argument shows that, for all \(h \geq h_0 \) and \(k \geq k_0 \), there exist points \(y \in V(T^h f) \) arbitrarily near to \(O \) where \(T^h f \) is submersive and such that \(T^k g_i(y) > 0 \) for all \(i \). Hence \(\dim O T^h_k(A) = d \). \(\square \)

Theorem 3.8. Let \(A \) be a closed semianalytic subset of \(\Omega \) with \(O \in A \). Then for any \(s \geq 1 \) there exists a closed semialgebraic set \(S \subseteq \Omega \) such that \(A \sim_s S \) and \(\dim O S = \dim O A \).

Proof. We will prove the thesis by induction on \(d = \dim O A \).

If \(d = 0 \) the result holds trivially. So let \(d \geq 1 \) and assume that the result holds for all semianalytic germs of dimension less than \(d \).

By Lemma \(\ref{thm:approximation} \) by Proposition \(\ref{prop:approximation} \) and by the inductive hypothesis, we can assume that

\[
A = \{x \in \Omega \mid f(x) = O, g_i(x) \geq 0, i = 1, \ldots, l\}
\]

with \(f = (f_1, \ldots, f_p) \) such that \(V(f) \) is irreducible, \(V(f) \) is the minimal analytic variety containing \(A \) and \(f_1, \ldots, f_p \) generate the ideal \(I(V(f)) \). In particular \(\dim O(\Sigma_{n-d}(f) \cap A) < d \). Moreover, removing from the previous presentation of \(A \) the inequalities \(g_i(x) \geq 0 \) where \(g_i \) vanishes identically on \(A \) (if any), we can assume that \(\dim O b(A) < d \).

If \(p = n - d \), the thesis follows easily by using Lemma \(\ref{lem:approximation} \). In general \(p \) can be larger than \(n - d \); in this case we introduce a semianalytic set \(\tilde{A} \) of dimension \(d \) which is \(s \)-equivalent to \(A \) and which satisfies the hypotheses of Lemma \(\ref{lem:approximation} \). In order to prove the thesis it will be sufficient to approximate \(\tilde{A} \) by means of a semialgebraic set having the same dimension.

Denote by \(\Pi \) the set of surjective linear maps from \(\mathbb{R}^p \) to \(\mathbb{R}^{n-d} \) and consider the smooth map \(\Phi : (\mathbb{R}^n - V(f)) \times \Pi \to \mathbb{R}^{n-d} \) defined by \(\Phi(x, \pi) = (\pi \circ f)(x) \) for all \(x \in \mathbb{R}^n - V(f) \) and \(\pi \in \Pi \).

The map \(\Phi \) is transverse to \(\{O\} \): namely the partial Jacobian matrix of \(\Phi \) with respect to the variables in \(\Pi \) (considered as an open subset of \(\mathbb{R}^{p(n-d)} \)) is the \((n-d) \times p(n-d) \) matrix

\[
\begin{bmatrix}
f(x) & 0 & 0 & \ldots & 0 \\
0 & f(x) & 0 & \ldots & 0 \\
\vdots \\
0 & 0 & 0 & \ldots & f(x)
\end{bmatrix};
\]

thus, for all \(x \in \mathbb{R}^n - V(f) \) and for all \(\pi \in \Pi \) the Jacobian matrix of \(\Phi \) has rank \(n - d \).

As a consequence, by a well-known result of singularity theory (see for instance \(\cite{BK} \), Lemma 3.2), we have that the map \(\Phi_\pi : \mathbb{R}^n - V(f) \to \mathbb{R}^{n-d} \) defined by \(\Phi_\pi(x) = \Phi(x, \pi) = (\pi \circ f)(x) \) is transverse to \(\{O\} \) for all \(\pi \) outside a set \(\Gamma \subset \Pi \) of measure zero and hence \(\pi \circ f \) is a submersion on \(V(\pi \circ f) \setminus V(f) \) for all such \(\pi \).
Let \(x \in V(f) \) be a point at which \(f \) has rank \(n - d \). Then there is an open dense set \(U \subset \Pi \) such that for all \(\pi \in U \) the map \(\pi \circ f \) is a submersion at \(x \), and hence off some subvariety of \(V(f) \) of dimension less than \(d \).

Thus, if we choose \(\pi_0 \in (\Pi \setminus \Gamma) \cap U \), the map \(F = \pi_0 \circ f \) has \(n - d \) components, \(\Sigma(F) \cap V(F) \subset V(f) \subset V(F) \), and \(\dim_O V(F) = d \) and \(\dim_O (\Sigma(F) \cap V(F)) < d \). In particular \(V(f) \) is an irreducible component of \(V(F) \).

For each \(m \in \mathbb{N} \) denote \(\bar{A}_m = \{ F(x) = 0, \| x \|^2m - \| f(x) \|^2 \geq 0, g_i(x) \geq 0, i = 1, \ldots, l \} \).

Since \(A \subset \bar{A}_m \subset V(F) \), we have that \(A \leq_s \bar{A}_m \) and \(\dim_O \bar{A}_m = d \).

We claim that there exists \(m \) such that \(\bar{A}_m \sim_s A \); to show that it is sufficient to prove that there exists \(m \) such that \(\bar{A}_m \leq_s A \). Namely, let \(B = \{ g_i(x) \geq 0, i = 1, \ldots, l \} \). Since \(V(\| f \|) \cap B = V(\| d(x, A) \|) \cap B \), by Proposition 2.7 there exists \(q \) such that \(d(x, A)^q \leq \| f(x) \| \) for all \(x \in B \). Let \(m > sq \). Then \(d(x, A) \leq \| f(x) \| \frac{1}{q} \leq \| x \| \frac{m}{q} \) for all \(x \in \bar{A}_m \), i.e. \(\bar{A}_m \subset \mathcal{H}(\mathbb{A}, \frac{m}{q}) \) and hence \(\bar{A}_m \leq_s A \).

Fix \(m \) as above and let \(\bar{A} = \bar{A}_m \). Also let \(\bar{X} = (\Sigma(F) \cap A) \cup b(\bar{A}) \).

Observe that \(b(\bar{A}) \cap A = b(A) \) and so \(\bar{X} \cap A = (\Sigma(F) \cap A) \cup b(A) \).

Denote \(K = \bar{X} \cap (\bar{A} \setminus A) \) so that \(X = (\bar{X} \cap A) \cup K \).

By Lemma 3.7 there exist positive integers \(h, k \) such that

\[
\bar{A} \setminus \bar{X} \leq_s T_k^h(\bar{A}) \leq_s \bar{A} \quad \text{and} \quad \dim_O T_k^h(\bar{A}) = d.
\]

Since \(\dim_O (\bar{X} \cap A) < d \), by induction there exists a semialgebraic set \(S_0 \) such that \(S_0 \sim_s \bar{X} \cap A \) and \(\dim_O S_0 < d \). Moreover, since \(A \subset \bar{A} \setminus K \subset \bar{A} \), we have that \(\bar{A} \setminus K \sim_s \bar{A} \).

Then

\[
\bar{A} \sim_s \bar{A} \setminus K = \bar{A} \setminus \bar{X} \cup (\bar{X} \cap A) \leq_s T_k^h(\bar{A}) \cup S_0 \leq_s \bar{A} \cup (\bar{X} \cap A) = \bar{A}
\]

so we can choose \(S = T_k^h(\bar{A}) \cup S_0 \).

From Theorem 3.8 and from Theorem 2.8 we immediately obtain:

Theorem 3.9. Let \(A \) be a closed semianalytic subset of \(\Omega \) of codimension \(\geq 1 \) with \(O \in A \). Then for any \(s \geq 1 \) there exists an algebraic set \(Y \subset \mathbb{R}^n \) such that \(\bar{A} \sim_s Y \).

References

[BFGO] L. Birbair, A. Fernandes, V. Grandjean, and D. O’Shea, *Choking horns in Lipschitz geometry of complex algebraic varieties*, arXiv:1206.3105

[BK] J. W. Bruce and N. P. Kirk, *Generic projections of stable mappings*, Bull. London Math. Soc. **32** (2000), no. 6, 718–728, DOI 10.1112/S0024609300007530. MR1781584

[FFW1] Massimo Ferrarotti, Elisabetta Fortuna, and Les Wilson, *Local approximation of semialgebraic sets*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) **1** (2002), no. 1, 1–11. MR1994799

[FFW2] M. Ferrarotti, E. Fortuna, and L. Wilson, *Approximation of subanalytic sets by normal cones*, Bull. Lond. Math. Soc. **39** (2007), no. 2, 247–254, DOI 10.1112/blms/bdl034. MR2323456

[FFW3] M. Ferrarotti, E. Fortuna, and L. Wilson, *Algebraic approximation of germs of real analytic sets*, Proc. Amer. Math. Soc. **138** (2010), no. 5, 1537–1548, DOI 10.1090/S0002-9939-10-10283-4. MR2587437
[KO] Krzysztof Kurdyka and Patrice Orro, *Distance géodésique sur un sous-analytique* (French, with French summary), Real algebraic and analytic geometry (Segovia, 1995), Rev. Mat. Univ. Complut. Madrid 10. (1997), Special Issue, suppl., 173–182. MR1485298 (98m:32008)

[L] S. Lojasiewicz, *Sur la séparation régulière* (French), Geometry seminars, 1985 (Italian) (Bologna, 1985), Univ. Stud. Bologna, Bologna, 1986, pp. 119–121. MR877540 (88d:32017)

[OW] Donal B. O’Shea and Leslie C. Wilson, *Limits of tangent spaces to real surfaces*, Amer. J. Math. 126 (2004), no. 5, 951–980. MR2089078 (2005f:14110)

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
E-mail address: ferrarotti@polito.it

Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy
E-mail address: fortuna@dm.unipi.it

Department of Mathematics, University of Hawaii, Manoa, Honolulu, Hawaii 96822
E-mail address: les@math.hawaii.edu