10-28-2009

Single-crystal neutron diffraction study of short-range magnetic correlations in Tb5Ge4

W. Tian
Iowa State University

Andreas Kreyssig
Iowa State University, kreyssig@ameslab.gov

Jerel L. Zarestky
Iowa State University, zarestkyjl@ornl.gov

L. Tan
Iowa State University

Shibabrata Nandi
Iowa State University

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs

Part of the Condensed Matter Physics Commons, and the Metallurgy Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/65. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Single-crystal neutron diffraction study of short-range magnetic correlations in Tb₅Ge₄

Abstract
We present a single-crystal neutron diffraction study of the magnetic short-range correlations in Tb₅Ge₄ which orders antiferromagnetically below the Neel temperature $T_N \approx 92$ K. Strong diffuse scattering arising from magnetic short-range correlations was observed in wide temperature ranges both below and above T_N. The antiferromagnetic ordering in Tb₅Ge₄ is described to consist of strongly coupled ferromagnetic block layers in the ac plane that stack along the b axis with weak antiferromagnetic interlayer coupling. Diffuse scattering was observed along both a^* and b^* directions indicating three-dimensional short-range correlations. Moreover, the q dependence of the diffuse scattering is Squared Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd₅Ge₄.

Keywords
Physics and Astronomy, Materials Science and Engineering

Disciplines
Condensed Matter Physics | Metallurgy

Comments
This article is from *Physical Review B* 80 (2009): 134422, doi:10.1103/PhysRevB.80.134422.

Authors
W. Tian, Andreas Kreyssig, Jerel L. Zarestky, L. Tan, Shibabrata Nandi, Alan I. Goldman, Thomas A. Lograsso, Deborah L. Schlagel, Karl A. Gschneidner Jr., Vitalij K. Pecharsky, and Robert J. McQueeney

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_pubs/65
Single-crystal neutron diffraction study of short-range magnetic correlations in Tb$_5$Ge$_4$

W. Tian, A. Kreyssig, J. L. Zarestky, L. Tan, S. Nandi, A. I. Goldman, T. A. Lograsso, D. L. Schlager, K. A. Gschneidner, V. K. Pecharsky, and R. J. McQueeney

1Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
2Ames Laboratory, U.S. DOE, Iowa State University, Ames, Iowa 50011, USA
3Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA

(Received 17 August 2009; revised manuscript received 2 October 2009; published 28 October 2009)

We present a single-crystal neutron diffraction study of the magnetic short-range correlations in Tb$_5$Ge$_4$, which orders antiferromagnetically below the Neel temperature T_N=92 K. Strong diffuse scattering arising from magnetic short-range correlations was observed in wide temperature ranges both below and above T_N. The antiferromagnetic ordering in Tb$_5$Ge$_4$ is described to consist of strongly coupled ferromagnetic block layers in the ac plane that stack along the b axis with weak antiferromagnetic interlayer coupling. Diffuse scattering was observed along both a' and b'' directions indicating three-dimensional short-range correlations. Moreover, the q dependence of the diffuse scattering is Squared Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd$_5$Ge$_4$.

DOI: 10.1103/PhysRevB.80.134422

PACS number(s): 75.40.Cx, 75.30.Sg, 75.50.Ee

I. INTRODUCTION

Tb$_5$Ge$_4$ and Gd$_5$Ge$_4$ belong to the rare earth R$_5$(Si$_{1-x}$Ge$_x$)$_4$ series compounds. These materials exhibit large magnetoelastic (MC) effects$^{1-4}$ and are currently attracting much attention for their potential application in magnetic refrigeration.$^{2,5-7}$ Both Tb$_5$Ge$_4$ and Gd$_5$Ge$_4$ are rich in magnetic properties$^{8-16}$ and are believed to play a key role in understanding the underlying physics of the R$_5$(Si$_{1-x}$Ge$_x$)$_4$ systems. They both crystallize in the Sm$_5$Ge$_4$-type crystallographic structure and adopt the same magnetic space group, $Pnma$.15,17,18 Tb$_5$Ge$_4$ and Gd$_5$Ge$_4$ undergo long range antiferromagnetic (AFM) transitions at \sim92 K and \sim127 K, respectively. The magnetic structure of Tb$_5$Ge$_4$ and Gd$_5$Ge$_4$ consist of Tb/Gd-rich block layers in the ac plane that stack along the b axis with strong ferromagnetic intralayer and weak AFM interlayer interactions. Gd$_5$Ge$_4$ has a collinear AFM structure with the magnetic moments lying within the block layers along the c axis. Tb$_5$Ge$_4$ orders in a similar fashion, although the single-ion anisotropy results in significant canting of the moments at low temperature.

Figure 1 shows the magnetic susceptibility of Tb$_5$Ge$_4$ along all three crystallographic axes measured with a quantum design SQUID magnetic properties measurement system. The inset of Fig. 1 depicts the temperature dependence of the inverse magnetic susceptibility. It follows Curie-Weiss behavior above 160 K with similar slope for all three crystallographic directions. The derived Curie constant of 58.8 cm3/K/mol results in an effective paramagnetic moment of $\mu_{eff}/2=9.7 \mu_B$ close to the theoretical value 9.72 μ_B for a free Tb$^{3+}$ ion. The paramagnetic Curie temperatures are about \sim25 K along both a axis and c axis pointing to dominating ferromagnetic coupling in the ac plane. On the other hand, the paramagnetic Curie temperature along the b axis is about \sim50 K indicating dominating antiferromagnetic interaction along this direction. These couplings are consistent with the reported magnetic order in Tb$_5$Ge$_4$.15 Two phase transitions were observed in the magnetic susceptibility measurements: the AFM transition at T_N=92 K and a second phase transition at \sim55 K. The \sim55 K transition was attributed to a spin reorientation transition7,15 [a weak anomaly observed in the electrical resistivity and a x-ray resonant magnetic scattering measurement of Gd$_5$Ge$_4$ at \sim75 K (Ref. 19) was proposed to be associated with a spin reorientation transition similar to Tb$_5$Ge$_4$]. It has been suggested that the spin reorientation transition in Tb$_5$Ge$_4$ may arise from the delicate competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interaction anisotropy.19 In addition to the AFM and spin reorientation transitions, it is of particular interest that significant magnetic short-range correlations (SRC) was suggested in Gd$_5$Ge$_4$ at temperatures both below and above T_N based upon the low magnetic field dc magnetization and ac magnetic susceptibility measurements.12 It has been interpreted as evidence of a Griffiths-like phase similar to the one...
observed in Tb$_5$Si$_2$Ge$_2$, investigated by small-angle neutron scattering. A Griffiths phase20 is a nanoscale magnetic clustering phenomenon that is usually associated with competing magnetic interactions in the system.21-23 It is possible for a Griffiths-like phase to exist in Gd$_5$Ge$_4$ due to the competition between FM and AFM interactions in Gd$_5$Ge$_4$. FM interactions within the layers, and either AFM or FM interactions between the layers (small structural changes or applying relatively low magnetic field comparing to \(T_N\)). It is possible that weak and very broad Lorentzian-shaped diffuse scattering peaks arising from magnetic fluctuations. Below \(T_N\), the diffuse scattering increases with increasing temperatures as illustrated in Fig. 2(a). The diffuse scattering is strongest at \(T_N\) and then weakens as the temperature increases above \(T_N\) as shown in Fig. 2(b) as expected for typical critical behavior. The data indicate strong diffuse scattering around the strong magnetic reflections over a wide temperature range.

We characterized the \(T_N\sim 92\) K AFM transition with an order-parameter measurement. Similar results were obtained by monitoring the magnetic reflections (010) and (030). Figure 3(a) depicts the order parameter of Tb$_5$Ge$_4$ as measured by monitoring the strong magnetic reflection (030) as a function of temperature. The integrated intensity was obtained by fitting the (030) rocking curve measured at each temperature to a Lorentzian function with a constant background. A fit of the order parameter to a power-law

\[
I(T) = I_0 \left(\frac{T_N - T}{T_N} \right)^{-\beta}
\]

yields \(T_N \approx 91.38 \pm 0.05\) K and \(\beta = 0.20 \pm 0.01\), where \(\beta\) is the critical exponent. The fitting result is plotted in Fig. 3(a), solid line, in comparison to calculations using the same fitting parameters but replacing \(\beta\) with the values of a two-dimensional (2D) Ising (\(\beta=0.125\)) and a three-dimensional (3D) Ising (\(\beta=0.326\)) system.26 The obtained critical temperature \(T_N\) is in good agreement with the magnetic susceptibility result. The yielded \(\beta\) value \(-0.2\) is between the theoretical values of 2D and a 3D Ising system, which suggests that the magnetic dimensionality of Tb$_5$Ge$_4$ is intermediate between 2D and 3D consistent with its layered magnetic structure. The in-plane (along the (001) direction) and out-of-plane (along the (0k0) direction) correlation lengths were measured by performing relatively wide transverse and longitudinal scans around (030) at several temperatures. The data at each temperature are fit to a Lorentzian, \(\propto 1/\left(q^2 + k^2 \right)\), convoluted with Gaussian-shaped instrumental resolution. Here \(k = 1/\xi\) and \(\xi\) is the spin correlation length. The derived correlation lengths along both directions are shown in Fig. 3(b). Similar correlation lengths were obtained along both directions.

II. EXPERIMENTAL DETAILS

A large Tb$_5$Ge$_4$ single crystal (~5 grams) was used for the neutron diffraction experiment. The single crystal was grown at the Materials Preparation Center24 using the Bridgman technique as described in Ref. 25. The mosaic of the crystal is 0.41(3)$^\circ$ along the a axis and 0.63(2)$^\circ$ along the b axis as determined by the full width at half maximum of the (400) and (060) Bragg peak rocking curves. The crystal was mounted on a thin aluminum post, oriented in the (hk0) scattering plane, and sealed in a helium filled aluminum sample can. A closed-cycle Helium refrigerator (Displex) was used which allows accurate temperature control between 10 and 300 K. The experiments were performed using the HB1A triple-axis spectrometer located at the high flux isotope reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The HB1A spectrometer operates with a fixed incident energy, \(E_i=14.6\) meV using a double pyrolytic graphite (PG) monochromator system. Two highly oriented PG filters were mounted before and after the second monochromator to significantly reduce higher order contaminations of the incident beam (i.e., \(I_{1/2} \approx 10^{-3}I_0\)). A collimation of open-40'$-$sample-40'$-$68' was used throughout the experiment. All data have been normalized to the beam monitor count.

III. RESULTS AND DISCUSSIONS

Figure 2 compares longitudinal scans measured along the (0k0) direction at selected temperatures both below [Fig. 2(a)] and above [Fig. 2(b)] \(T_N\). Strong AFM magnetic reflections with \(k=\text{odd}\) integer were observed below \(T_N\) consistent with the magnetic structure of Tb$_5$Ge$_4$. At low temperatures, the (010) and (030) magnetic reflections are superimposed on weak and very broad Lorentzian-shaped diffuse scattering peaks arising from magnetic fluctuations. Below \(T_N\), the diffuse scattering increases with increasing temperatures as illustrated in Fig. 2(a). The diffuse scattering is strongest at \(T_N\) and then weakens as the temperature increases above \(T_N\) as shown in Fig. 2(b) as expected for typical critical behavior. The data indicate strong diffuse scattering around the strong magnetic reflections over a wide temperature range.
The longitudinal scans shown in Fig. 2 indicate strong diffuse scattering along the b axis. In order to see how the diffuse scattering is distributed in the (hk0) plane, a series of grid scans around (030) were performed at two temperatures, 8 and 88 K. The 8 K data were subtracted from the 88 K data to eliminate contributions from the (030) magnetic Bragg reflection. Figure 4 is the contour plot of the subtracted diffuse scattering intensity vs k and h around (030) and (010). It shows that the diffuse scattering intensity is strong around the nearby strong magnetic reflection. At 10 K, the diffuse scattering peak is very broad, thus the resolution effect can be neglected and no resolution corrections are applied in the data analysis. Figure 5 shows typical scans at different temperatures. The comparison of the obtained normalized χ² from these two fittings is shown in Fig. 5(a). This indicates that the data are better captured by a Squared-Lorentzian function than by a Lorentzian function. The first Lorentzian term is the conventional critical scattering component representing an Ornstein-Zernike form, i.e., \(\exp(-q^2/r) \), for the magnetic correlations. The second Squared-Lorentzian term is generally considered to arise from static or frozen spin clusters within which the spin correlations decrease more gradually as \(\exp(-q^2) \). The comparison of the obtained normalized χ² from these two fittings is shown in Fig. 5(c).
The integrated intensity and the FWHM obtained from least-squares fits to the data with a Squared-Lorentzian function are plotted in Figs. 5(e) and 5(f). Two features are observed in the integrated intensity data [Fig. 5(e)]. The small kink at ~55 K is associated with the spin reorientation transition, and the peak at ~92 K is associated with the AFM transition. Both temperatures agree well with the magnetic susceptibility data. Despite the small kink at ~55 K, the ~92 K peak is nearly symmetric indicating strong critical fluctuations at \(T_N \) that die off as one moves away from \(T_N \) in either direction. Above \(T_N \), the integrated intensity data can be fit to a power law \(I(T) = I_0 ([T-T_N]/T_N)^{-2\beta} \) yielding \(T_N \approx 90 \pm 1 \) K and \(\beta' \approx 0.22 \pm 0.02 \) [dashed line in Fig. 5(e)]. The obtained \(\beta' \) value agrees to the \(\beta \) value obtained from the fit to the order-parameter data. As illustrated in Fig. 5(f), the correlation length of the SRC remains relatively constant below \(T_N \) as indicated by a nearly constant peak width. Above \(T_N \), the peak width increases as expected as the correlation length decreases with increasing temperature. A fit to the \(T > T_N \) peak width data to a power law \(\xi(T) = \xi_0 ((T-T_N)/T_N)^{\nu} \) gives \(T_N \approx 92 \pm 1 \) K and \(\nu \approx 0.77 \pm 0.06 \) [dashed line in Fig. 5(f)], the \(\nu \) value is between the theoretical values of a 3D Ising (\(\nu = 0.6312 \)) and a 2D Ising (\(\nu = 1 \)) (Ref. 26) consistent with the order-parameter measurement results. The Squared-Lorentzian peak widths obtained from fits to (010) longitudinal and transverse scans are also shown in Fig. 5(f). The Lorentzian-squared line-shape provides the best fit along both the \(h \) and \(k \) directions, indicating that the correlations in the spin clusters extend both in the block layers and between the blocks.

Our neutron diffraction study reveals strong diffuse scattering in \(\text{Tb}_5\text{Ge}_4 \) that persists to temperatures well above \(T_N \). A detailed study of the peak shape indicates it is not conventional critical scattering with a Lorentzian shape but shows a Squared-Lorentzian peak shape. As described in Refs. 29 and 30, the Squared-Lorentzian term arises if the pair correlation function falls off as \(\exp(-\xi^2) \), which is characteristic of a spin-cluster state. Although the diffuse scattering is Squared-Lorentzian in form providing evidence of a clustered magnetic state in \(\text{Tb}_5\text{Ge}_4 \), we believe that the diffuse scattering observed in \(\text{Tb}_5\text{Ge}_4 \) is quite different from the proposed FM Griffiths-like phase in \(\text{Gd}_5\text{Ge}_4 \) (inferred from dc/ac magnetization and magnetic susceptibility studies)\(^{12} \) for the following reasons. (1) As depicted in Fig. 2, at temperatures both below and above \(T_N \), the diffuse scattering is peaked at odd values of \(k \) (AFM wave vector) only, indicating that it is associated with AFM fluctuations. (2) The integrated intensity of the diffuse scattering also behaves like that typical of magnetic critical fluctuations, with a divergence of the correlation length at \(T_N \). (3) The critical exponents obtained by fits of the diffuse scattering integrated intensity and peak width to a power law are consistent with the values obtained from AFM order parameter measurements. (4) Quasielastic measurements indicate the diffuse scattering is static in origin. Our neutron diffraction data indicate that the diffuse scattering observed in \(\text{Tb}_5\text{Ge}_4 \) exhibits behaviors of AFM...
critical fluctuations despite the Squared-Lorentzian peak shape. The fact that the peak shape of the diffuse scattering is not a Lorentzian, as expected for normal critical scattering, is interesting and should not be left without a discussion. Here we consider two possibilities that may affect the diffuse scattering peak shape. (1) The Squared-Lorentzian peak shape may be intrinsic, i.e., related to the Griffiths-like phase, formation of which has been discussed in Refs. 12 and 16; (2) The unusual peak shape may also arise from some extrinsic effects, for example impurities in Tb$_5$Ge$_4$. It has been reported that R$_3$(Si$_x$Ge$_{1-x}$)$_4$-type impurity phases, seen as very thin plates that are scattered through the bulk of R$_3$(Si$_x$Ge$_{1-x}$)$_4$ samples, are present in all studied compounds of this series regardless of R. Our data show that Tb$_5$Ge$_3$ impurity phase is also present in the studied Tb$_5$Ge$_3$ crystal. It is possible that the Tb magnetic sublattices of Tb$_5$Ge$_3$ are disrupted by the Tb$_5$Ge$_3$ impurities resulting in spin-clusters in Tb$_5$Ge$_3$ which give rise to the squared-Lorentzian diffuse scattering peak shape.

ACKNOWLEDGMENTS

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The HFIR is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, Materials Science, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

1 V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997).
2 V. K. Pecharsky and K. A. Gschneidner, Jr., Appl. Phys. Lett. 70, 3299 (1997).
3 V. K. Pecharsky and K. A. Gschneidner, Jr., J. Magn. Magn. Mater. 167, L179 (1997).
4 V. K. Pecharsky and K. A. Gschneidner, Jr., J. Alloys Compd. 260, 98 (1997).
5 V. K. Pecharsky and K. A. Gschneidner, Jr., Adv. Cryog. Eng. 43, 1729 (1998).
6 G. J. Miller, Chem. Soc. Rev. 35, 799 (2006).
7 L. Morellon, C. Magen, P. A. Algarabel, M. R. Ibarra, and C. Ritter, Appl. Phys. Lett. 79, 1318 (2001).
8 F. Casanova, A. Labarta, and X. Batlle, Phys. Rev. B 72, 172402 (2005).
9 H. Tang, V. K. Pecharsky, K. A. Gschneidner, Jr., and A. O. Pecharsky, Phys. Rev. B 69, 064410 (2004).
10 E. M. Levin, K. A. Gschneidner, Jr., and V. K. Pecharsky, Phys. Rev. B 65, 214427 (2002).
11 Z. W. Ouyang, V. K. Pecharsky, K. A. Gschneidner, Jr., D. L. Schlager, and T. A. Lograsso, Phys. Rev. B 74, 024401 (2006).
12 Z. W. Ouyang, V. K. Pecharsky, K. A. Gschneidner, Jr., D. L. Schlager, and T. A. Lograsso, Phys. Rev. B 74, 094404 (2006).
13 E. M. Levin, K. A. Gschneidner, Jr., T. A. Lograsso, D. L. Schlager, and V. K. Pecharsky, Phys. Rev. B 69, 144428 (2004).
14 C. Magen, Z. Arnold, L. Morellon, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, Phys. Rev. Lett. 91, 207202 (2003).
15 C. Ritter, L. Morellon, P. A. Algarabel, C. Magen, and M. R. Ibarra, Phys. Rev. B 65, 094405 (2002).
16 C. Magen, P. A. Algarabel, L. Morellon, J. P. Araújo, C. Ritter, M. R. Ibarra, A. M. Pereira, and J. B. Sousa, Phys. Rev. Lett. 96, 167201 (2006).
17 P. Schobinger-Papamantellos, J. Phys. Chem. Solids 39, 197 (1978).
18 L. Tan, A. Kreyssig, J. W. Kim, A. I. Goldman, R. J. McQueeney, D. Wernimont, B. Sieve, T. A. Lograsso, D. L. Schlager, S. L. Budko, V. K. Pecharsky, and K. A. Gschneidner, Jr., Phys. Rev. B 71, 214408 (2005).
19 L. Tan, Ph.D. thesis, Iowa State University (2008).
20 R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
21 J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R. M. Eremina, V. A. Ivashin, A. M. Balbashov, G. Jug, A. Loidl, T. Kimura, and Y. Tokura, Phys. Rev. Lett. 95, 257202 (2005).
22 M. B. Salamon, P. Lin, and S. H. Chun, Phys. Rev. Lett. 88, 197203 (2002).
23 M. C. de Andrade, R. Chau, R. P.Dickey, N. R. Dilley, E. J. Freeman, D. A. Gajewski, M. B. Maple, R. Movshovich, A. H. Castro Neto, G. Castilla, and B. A. Jones, Phys. Rev. Lett. 81, 5620 (1998).
24 Single-crystals synthesized at the Materials Preparation Center, Ames Laboratory, US DOE Basic Energy Sciences, Ames, IA, USA: www.mpc.ameslab.gov
25 T. A. Lograsso, D. L. Schlager, and A. O. Pecharsky, J. Alloys Compd. 393, 141 (2005).
26 F. Malcolm, Collins (Magnetic Critical Scattering, New York, 1989).
27 K. Motoya and K. Hioki, J. Phys. Soc. Jpn. 72, 930 (2003).
28 P. Bentley, J. R. Stewart, and R. Cywinski, Appl. Phys. A: Mater. Sci. Process. 74, S862 (2002).
29 S. W. Lovesey, J. Phys. C 17, L213 (1984).
30 Methods of Experimental Physics, Vol. 23, Neutron Scattering part C, edited by Kurt Sköld and David L. Price (Academic, New York, 1987).
31 O. Ugurlu, L. S. Chumbley, D. L. Schlager, and T. A. Lograsso, Acta Mater. 54, 1211 (2006).