Sex-, Age-, and Metabolic Disorder-Dependent Distributions of Selected Inflammatory Biomarkers among Community-Dwelling Adults

So Mi Jemma Cho1,2, Hokyou Lee3,4, Jee-Seon Shim4, Hyeon Chang Kim2,4

Departments of 1Public Health, 2Preventive Medicine, 3Internal Medicine, 4Cardiovascular and Metabolic Diseases Etiology Research Center, Yonsei University College of Medicine, Seoul, Korea

Background: Inflammatory cytokines are increasingly utilized to detect high-risk individuals for cardiometabolic diseases. However, with large population and assay methodological heterogeneity, no clear reference currently exists.

Methods: Among participants of the Cardiovascular and Metabolic Diseases Etiology Research Center cohort, of community-dwelling adults aged 30 to 64 without overt cardiovascular diseases, we presented distributions of tumor necrosis factor (TNF)-α and -β, interleukin (IL)-1α, -1β, and 6, monocyte chemoattractant protein (MCP)-1 and -3 and high sensitivity C-reactive protein (hsCRP) with and without non-detectable (ND) measurements using multiplex enzyme-linked immunosorbent assay. Then, we compared each markers by sex, age, and prevalence of type 2 diabetes mellitus, hypertension, and dyslipidemia, using the Wilcoxon Rank-Sum Test.

Results: In general, there were inconsistencies in direction and magnitude of differences in distributions by sex, age, and prevalence of cardiometabolic disorders. Overall, the median and the 99th percentiles were higher in men than in women. Older participants had higher TNF-α, high sensitivity IL-6 (hsIL-6), MCP-1, hsCRP, TNF-β, and MCP-3 median, after excluding the NDs. Participants with type 2 diabetes mellitus had higher median for all assayed biomarkers, except for TNF-β, IL-1α, and MCP-3, in which the medians for both groups were 0.00 due to predominant NDs. Compared to normotensive group, participants with hypertension had higher TNF-α, hsIL-6, MCP-1, and hsCRP median. When stratifying by dyslipidemia prevalence, the comparison varied significantly depending on the treatment of NDs.

Conclusion: Our findings provide sex-, age-, and disease-specific reference values to improve risk prediction and diagnostic performance for inflammatory diseases in both population- and clinic-based settings.

Keywords: Biomarkers; Cardiovascular diseases; Inflammation; Metabolic diseases

INTRODUCTION

The utility of inflammatory biomarker assays for detecting individuals at high-risk for cardiovascular and metabolic diseases has become increasingly prevalent in clinical and research settings [1-5]. In adjunct to the conventional chemistry and imaging tests, these biomarkers aid in predicting or diagnosing cardiovascular and metabolic diseases in the context of an appropriate clinical presentation [6-8].

Considering that the major contribution of inflammatory mechanisms to cardiometabolic diseases has been repeatedly emphasized, many efforts are continuously being made to discover novel markers and assay methodologies. In particular, cytokines/chemokines are critical in homeostatic trafficking and positioning of immune cells in response to inflammation [9-11]; they trigger and modify intracellular signaling path-
ways, thereby orchestrating innate and adaptive immune responses [12].

Of many, interleukin (IL), monocyte chemotactic proteins (MCP) and tumor necrosis factors (TNF) are critical to macrophagic inhibition [13]. They activate growth factors, stimulate procoagulant activity, and suppress antithrombotic pathways in endothelial cells [6]. By measuring their expression in atherosclerotic lesions, previous studies have observed the association between the aforementioned biomarkers and cardiometabolic outcomes, such as type 2 diabetes mellitus (T2DM), myocardial infarction (MI) and more [14-16]. However, particularly with the advent of newer assay methodologies and large population heterogeneity, no clear consensus exists regarding the universal reference range. Moreover, little is known about the distribution of these biomarkers across healthy community population.

To address this knowledge gap, the objective of this study was to determine distributions of selected inflammatory biomarkers among middle-aged Koreans. Then, we compared their descriptive statistics by sex, age, and metabolic disorders, including T2DM, hypertension and dyslipidemia.

METHODS

Approvals and participant consent

As part of the ethical committee process, the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Study has been approved by the Institutional Review Boards of Severance Hospital, Yonsei University Health System, Seoul, Korea (4-2013-0661) and Ajou University Hospital, Suwon, Korea (AJRIB-BMR-SUR-13-272). Written informed consent has been obtained from all participants prior to the baseline survey. Participants were ensured that they can withdraw from the study at any time, regardless of its cause, without any repercussions.

Study population

The CMERC cohort is a multi-centered, prospective, observational study of community-dwelling population residing in Seoul and capital regions in Republic of Korea [17]. The participants are between the age of 30 to 64 years and without history overt cardiovascular diseases (CVDs), recent history of malignant cancer and autoimmune or chronic inflammatory diseases. In the present study, among 8,108 participants who have undergone baseline examination between 2013 and 2018, 4,058 participants (excluding two with missing variables) from Center 1 underwent high sensitivity C-reactive protein (hsCRP) measurements. Among them, a random subset of participants enrolled between 2013 to 2015 underwent additional measurements via multiplex enzyme-linked immunosorbent assay (ELISA) assay, including TNF-α, TNF-β, IL-1α, IL-1β, hsIL-1β, IL-6, hsIL-6, MCP-1, and MCP-3. The varying number of measurements for each biomarker was due to different number of non-detectable (ND) measurements, requiring higher sensitivity analyses.

Data collection

Overnight-fasting blood samples were obtained in the morning. All biomarker assays were performed in accordance to standard protocols at a single laboratory (Seoul Clinical Laboratory R&D Center, Seoul, Korea).

hsCRP

We collected bubble-free serum samples in plastic containers and allowed them to clot for at least 30 minutes before centrifugation for 10 minutes at 1,000×g. Then, we aliquot and stored the samples below –20°C. During the sample preparation, we allowed all regents to warm to room temperature, premixed beat bottle for 30 seconds, vortexed for 1 minute and centrifuged thoroughly prior to use. No samples were frozen nor thawed for multiple times.

The samples were measured by the immunoturbidimetric CRP-N Assay LA CRP-S Nittobo D-Type high sensitive assay (Nittobo, Tokyo, Japan). The samples were loaded and measured using the latex-enhanced nephelometry technique on an automated analyzer ADVIA 1800 Chemistry System (Siemens Medical Sol., Malvern, PA, USA). The assays were based on the principle of particle-enhanced immunological agglutination method with a commercial test kit (N assay LA, CRP-S, Nittobo). A human CRP calibrator N assay LA CRP-S multi-point was employed to delineate the calibration curve.

The lower and upper detection limits of the hsCRP assay were 0.02 and 40 mg/dL, respectively. The functional sensitivity of the hsCRP assay was 0.45 mg/dL. To calculate intra-assay variability, we repeated the pool serum assay 20 times; the absorbance coefficient variability was less than 5%. Measurement was done in duplicates and any duplicates that were not within a three assay standard deviation from one another were re-run.

Cytokines and chemokines

The sample collection and preparation methods are the same
as the aforementioned hsCRP assay. We quantitatively determined the steady state level of the circulating inflammatory cytokines/chemokines of interest: TNF-α, TNF-β, IL-1α, IL-1β, IL-6, MCP-1, and MCP-3. Their serum concentrations were measured using a MilliPlex MAP Human Cytokine/Chemokine Multiplex Bead-based kit (Millipore, Burlington, MA, USA), with a 38-plex (HMCP3-MAG, HIL1A-MAG, HCY-IL1B-MAG, HCYIL6-MAG, HCYMCP1-MAG, HCYTNFA-MAG, HTNFB-MAG) Millipore Human Cytokine Panel Kits. Specifically, 25 μL of serum was incubated with fluorescently labeled capture antibody-coated beads in a 96-well filter bottomed plate on a plate shaker overnight at 4°C. After incubation, the sample bead mix was removed, and the plate was washed two times using a vacuum manifold. The beads were resuspended in sheath fluid for 5 minutes on the plate shaker. Distinctly colored bead sets of 500 5.6-Nm polystyrene microspheres or 80 6.45-μm magnetic microspheres were created, each of which was coated with a distinctive capture antibody. After an analyte from the sample was captured by the bead, a biotinylated detection antibody was introduced and incubated on a plate shaker at room temperature for 30 minutes. The reaction mixture was incubated with streptavidin-phycoerythrin (Streptavidin-PE) conjugate to complete the reaction on the surface of each microsphere.

The Luminex Bio-Plex 100 analyzer (MAGPIX) identified individual microsphere, and the results were quantified based on fluorescent reporter signals using Luminex xPONENT acquisition software, Milliplex Analyst 5.1. We analyzed the median fluorescence intensity (MFI) using a 5-parameter logistic or spline curve-fitting method to calculate cytokine/chemokines concentrations in each sample. The Luminex MAGPIX instrument was calibrated with the MAGPIX Calibration Kit (EMD Millipore Catalog #40-049), and the performance was verified with the MAGPIX Performance Verification Kit (EMD Millipore Catalog #40-050).

All assays were performed by the same operator according to the manufacturers’ instructions. For quality assurance, each sample was run twice, and the mean derived for each sample was used as the index value. Additionally, we reconstituted two kit-supplied quality control (#1, 2) with 250 μL of deionized water to run on each plate in duplicate. After inverting the vial several times, we allowed the vial to sit for 5 to 10 minutes, and then transferred the controls to appropriately labeled polypropylene microfuge tubes. We confirmed the samples to fall within the expected range in accordance with the kit-specific protocols provided by Millipore. Less than 0.5% cross-reactivity and interference were observed.

High sensitivity cytokines

The sample collection and preparation methods are the same as the aforementioned cytokine/chemokine assay. Here, the samples underwent a 2-fold dilution, maintaining a 125 μL of sample and 125 μL of Calibrator Diluent RD6-40 ratio, respectively.

We quantitatively determined the steady state level of the circulating inflammatory cytokines of interest: hsIL-1 and hsIL-6. Their serum concentrations were modulated using MilliPlex MAP Human High Sensitivity Cytokine/Chemokine Base kit A (Millipore, Billerica, Burlington, USA) on a 96-well filter bottomed plate. Analyte-specific antibodies were pre-coated onto color-coded magnetic microparticles. Microparticles, standards, and samples were pipetted into wells, and the immobilized antibodies captured the analytes of interest. After washing away unbound substances, corresponding biotinylated antibody cocktail was added to each well. After a thorough wash, Streptavidin-PE conjugate was added to each well. A final wash removed residual unbound conjugate, and the microparticles were resuspended in buffer. The Luminex Bio-Plex 100 analyzer (MAGPIX) identified individual microsphere, and the results were quantified based on fluorescent reporter signals within 90 minutes of the run. The results were analyzed using Luminex xPONENT acquisition software, Milliplex Analyst 5.1.

To calculate a 4-fold dilution for the remaining levels, we referred to the standard concentrations provided by the manufacturer. We averaged the duplicate reading for each standard and sample, and subtracted the average blank MFI using a 5-parameter spline curve-fitting method. Since the samples were diluted, the concentration read from the standard curve were multiplied by the corresponding dilution factor. The Luminex MAGPIX instrument was calibrated with the MAGPIX Calibration Kit (EMD Millipore Catalog #40-049), and its performance was verified with the MAGPIX Performance Verification Kit (EMD Millipore Catalog #40-050).

Similar to the aforementioned cytokine and chemokine assay, we employed the manufacturer-recommended quality control (#11). Likewise, less than 0.5% cross-reactivity and interference were observed.

Data for each kit was analyzed with strict adherence to the manufacturers’ guidelines. The proportion of the samples that
had both readings within the accepted recovery range (between 70% and 130%) was determined. The reproducibility of the different multiplex methods was evaluated by describing the limits of agreement between duplicates in range for each combination of method and analyte using the Bland-Altman test.

Type 2 diabetes mellitus
Fasting plasma glucose levels were measured using colorimetry method (ADVIA1800 Auto Analyzer; Siemens Medical Sol.), and glycosylated hemoglobin (HbA1c) measurements were obtained via high-performance liquid chromatography (Variant II Turbo Hemoglobin Testing System; Bio-Rad., Hercules, CA, USA). T2DM was defined based on the Korean Clinical Practice Guidelines for T2DM [18]: participants with fasting glucose level ≥126 mg/dL, HbA1c ≥6.5% or current use of oral glucose-lowering drugs or insulin injection were considered to have T2DM.

Hypertension
Blood pressure was measured using a single-arm automated oscillometric device (HEM-7080; Omron Health, Matsusaka, Japan). Information regarding hypertension treatment was obtained via self-report. Hypertension was defined according to the 2013 Korean Society of Hypertension guidelines for the management of hypertension [19], equivalent to the Eight Joint National Committee guidelines [20]: participants with a mean systolic blood pressure (SBP) ≥140 mm Hg, diastolic blood pressure (DBP) ≥90 mm Hg or currently using antihypertensive medications were considered to have hypertension.

Dyslipidemia
Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were analyzed enzymatically with an ADVIA 1800 Auto Analyzer. Dyslipidemia was defined based on the Korean Dyslipidemia Diagnosis criteria [21], equivalent to Adult Treatment Panel III (ATP III) guidelines [22]. Hypercholesterolemia was defined as TC ≥240 mg/dL; hypertriglyceridemia was defined as TG ≥200 mg/dL; hypoalphalipoproteinemia was defined as HDL-C <40 mg/dL; hyper-LDL-cholesterolemia was defined as LDL-C ≥160 mg/dL. Having any one type of the aforementioned cholesterol abnormality or current intake of lipid-lowering was regarded as prevalent dyslipidemia.

Statistical analysis
We defined the minimum, median, 75th, 90th, 95th, 99th percentile, maximum and mean levels for each biomarker using a non-parametric procedure. We presented distribution statistics of each inflammatory marker with and without NDs below the mechanical detection threshold. We additionally stratified by sex, age, T2DM, hypertension and dyslipidemia prevalence, and compared using Wilcoxon rank-sum test. No detectable outliers were excluded in the analysis to preserve the natural integrity of the cohort characteristics. All statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

RESULTS
A total of 4,058 participants underwent hsCRP measurements between 2013 and 2018 (Fig. 1). Among them, 1,285 participants whom enrolled in the CMERC study between 2013 and 2015, also underwent TNF-α, IL-1α, IL-1β, IL-6, and MCP-1 and three measurements. Additionally, we assayed hsIL-6 and hsIL-1β from 819 participants and TNF-β from 466 participants. TNF-α, IL-1α, IL-1β, IL-6, and MCP-3 had varying number of NDs.

At baseline, 35.1% of the participants were male, with mean age of 51.3 years (Table 1). In terms of prevalence of cardiometabolic disorder, 372 participants had T2DM (9.2%), 1,070 participants had hypertension (26.4%) and 1,882 participants had dyslipidemia (46.4%). Lifestyle factors (i.e., current smoking and drinking status), anthropometric measurements (i.e. body mass index) and biomarkers related to CVD risk differed significantly by sex.

Table 2, Supplementary Tables 1-4, and Supplementary Figs 1-15 illustrate the distribution of each inflammatory biomarker, including and excluding NDs. Five biomarkers had varying proportion of NDs: TNF-β (70.0%), IL-1α (72.8%), IL-1β (8.3%), IL-6 (8.2%), and MCP-3 (60.8%). In general, the descriptive statistics with and without NDs were different when comparing their respective median and upper percentiles. The overall skewedness to right primarily resulted from upper outliers and zero coding of the NDs.

Table 3 illustrates the Spearman’s rank correlation coefficient. Overall, the markers showed weak to moderate positive association among each other. The exceptions are as follows: MCP-1 and TNF-β (r = -0.13), IL-1α and hsIL-6 (r = -0.04), and MCP-1 and MCP-3 (r = -0.01) showed weak yet negative
Distributions of inflammatory biomarkers

For all biomarkers, the median and the 99th percentiles were higher in male than in female regardless of NDs (Tables 4 and 5). For example, the median and the 99th percentile IL-6 values were 1.38 and 345.97 pg/mL in male and 0.37 and 280.06 pg/mL in female, respectively (P<0.001). Such sex-difference extended in high sensitivity analysis, where the median and the 99th percentile hsIL-6 values were 0.83 and 14.06 pg/mL in men and 0.75 and 7.08 pg/mL in women, respectively. Other IL, TNF and MCP subtypes demonstrated similar trend.

When stratifying by the population median age of approximately 55 years, the older group had significantly higher hsIL-6, MCP-1 and hsCRP median (Tables 4 and 5). In contrast, the median value for hsIL-1β was higher in the younger group. Furthermore, the 99th percentile value for hsIL-6 was also markedly higher in the younger group, even after excluding the NDs.

The distributions of the examined markers differed by the presence of each cardiometabolic disorder. Participants with T2DM had higher median for all assayed biomarkers, except for TNF-β, IL-1α, and MCP-3, in which the medians for both groups were 0.00 due to predominant NDs (Table 4). However, when excluding the NDs, the medians for IL-1α and MCP-3 were lower in participants with T2DM than their counterpart (35.24 pg/mL vs. 103.37 pg/mL and 29.85 pg/mL vs. 31.34 pg/mL, respectively), but the differences were statistically insignificant (Table 5). The 99th percentile values for TNF-β, IL-1α, IL-1β, hsIL-1β, hsIL-6, and hsCRP were higher in participants with T2DM, when considering NDs into account.

Compared to the normotensive group, participants with hypertension had higher median TNF-α, hsIL-6, MCP-1, and hsCRP and 99th percentile TNF-β, MCP-3, and hsCRP values. These differences generally persisted even after excluding NDs. Participants with elevated lipid levels had higher median TNF-α, IL-1β, hsIL-1β, hsIL-6, MCP-1, and hsCRP values than those within normal cholesterol range. However, when examining distributions without NDs, participants without dyslipidemia had higher median TNF-β, IL-1α, IL-6, and MCP-3 levels. In terms of the 99th percentile, participants with dyslipidemia had higher IL-1α, hsIL-1β, hsIL-6, and MCP-1 levels, and such difference remained after excluding NDs.

DISCUSSION

In this middle-aged community-dwelling Korean population, we presented the distributions of varying groups of inflammatory biomarkers, which were distinctive by sex, age and prevalence of cardiometabolic disorders. No explicit recommendations nor universal reference range currently exist for these cytokines/chemokines, owing to insufficient evidence from the general population. Without existing manufacturer-recommended 99th percentile nor referent range, we illustrated their distributions detected in relatively healthy population without any data refinement. These results have important clinical im-
Table 1. General characteristics of the study participants by sex (n=4,058)

Variable	Total (n=4,058)	Male (n=1,426)	Female (n=2,632)	P value
Age, yr	51.3±9.4	50.2±10.2	51.9±8.8	<0.001
BMI, kg/m²	23.9±3.1	24.9±2.9	23.4±3.0	<0.001
Alcohol intake				<0.001
Non-drinker	905 (22.3)	118 (8.3)	787 (29.9)	
Previous drinker	184 (4.5)	86 (6.0)	98 (3.7)	
Current drinker	2,969 (73.2)	1,222 (85.7)	1,747 (66.4)	
Smoking status				<0.001
Non-smoker	2,778 (68.5)	322 (22.6)	2,456 (93.3)	
Previous smoker	724 (17.8)	626 (43.9)	98 (3.7)	
Current smoker	556 (13.7)	478 (33.5)	78 (3.0)	0.045
History of CVD				
Yes	26 (0.6)	14 (1.0)	12 (0.5)	
No	4,032 (99.4)	1,412 (99.0)	2,620 (99.5)	
Fasting glucose, mg/dL	91.8±19.3	96.1±23.9	89.5±15.8	<0.001
HbA1c, %	5.7±0.7	5.7±0.8	5.6±0.6	<0.001
Diabetes mellitus				<0.001
Yes	372 (9.2)	178 (12.5)	194 (7.4)	
No	3,686 (90.8)	1,248 (87.5)	2,438 (92.6)	
SBP, mm Hg	118.6±14.9	125.0±13.6	115.2±14.4	<0.001
DBP, mm Hg	76.2±9.9	80.6±9.9	73.8±9.1	<0.001
Hypertension				<0.001
Yes	1,070 (26.4)	509 (35.7)	561 (21.3)	
No	2,988 (73.6)	917 (64.3)	2,071 (78.7)	
Total cholesterol, mg/dL	198.4±35.4	195.3±35.3	200.1±35.3	<0.001
HDL-C, mg/dL	57.6±14.7	51.3±12.8	61.0±14.5	<0.001
LDL-C, mg/dL	115.3±32.1	112.8±33.3	116.6±31.4	<0.001
Triglyceride, mg/dL	127.9±87.8	155.9±115.9	112.7±62.8	<0.001
Dyslipidemia				<0.001
Yes	1,882 (46.4)	793 (55.6)	1,089 (41.4)	
No	2,176 (53.6)	633 (44.4)	1,543 (58.6)	

Values are presented as mean±standard deviation or number (%). P value was derived from the independent t-test, the Wilcoxon rank-sum test, or chi-square test.

BMI, body mass index; CVD, cardiovascular disease; HbA1c, glycosylated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

Applications that are almost certainly relevant to the application of all modern multiplex assays to both epidemiologic and clinical studies.

hsCRP

Previous literature in this field has noted heterogeneous distributions and reference ranges derived from their own study population. In a Chinese population, the median hsCRP was 0.99 mg/L in the middle-aged group and 1.76 mg/L in the elderly group without gender difference [23]. In a Thai adult population, the hsCRP concentration ranged from 0.2 to 7.9 mg/L without significant sex- nor age-differences [24]. Despite
Table 2. Distribution of inflammatory biomarkers in total participants (n=4,058)

Biomarker	No. of ND measurement	Mean	SD	Minimum	25th percentile	Median	75th percentile	90th percentile	95th percentile	99th percentile	Maximum
Including ND measurements											
TNF-α, pg/mL	1,285	19.59	28.62	0.47	8.11	12.26	19.49	33.23	58.52	150.29	301.65
TNF-β, pg/mL	466	7.98	88.97	0.00	0.00	0.00	0.07	1.15	9.48	168.50	1,840.00
IL-1α, pg/mL	1,285	79.19	281.69	0.00	0.00	0.00	2.28	193.19	534.02	1,296.00	4,444.00
IL-1β, pg/mL	1,285	5.10	18.35	0.00	0.13	0.52	2.01	9.54	24.37	95.95	276.47
hsIL-1β, pg/mL	819	0.90	1.00	0.10	0.40	0.70	1.00	1.80	2.57	4.90	15.20
IL-6, pg/mL	1,285	23.50	59.64	0.00	0.09	0.61	11.46	79.77	145.27	300.15	505.69
hsIL-6, pg/mL	819	1.31	3.32	0.22	0.60	0.76	1.13	1.97	3.03	10.25	69.60
MCP-1, pg/mL	1,285	709.40	355.67	80.75	511.57	667.21	843.22	1,056	1,192	1,698	8,129.00
MCP-3, pg/mL	1,285	781	20.50	48.36	0.00	0.00	17.76	69.45	104.44	243.70	525.80
hsCRP, mg/L	4,058	1.44	3.87	0.01	0.33	0.58	1.19	2.66	4.89	16.29	88.49

Excluding ND measurements

Biomarker	No. of ND measurement	Mean	SD	Minimum	25th percentile	Median	75th percentile	90th percentile	95th percentile	Maximum
TNF-β, pg/mL	140	26.55	161.20	0.01	0.13	0.33	3.16	26.71	106.57	381.59
IL-1α, pg/mL	349	291.57	480.27	0.02	15.39	91.43	375.53	853.18	1,151	2,233
IL-1β, pg/mL	1,179	5.55	19.09	0.01	0.22	0.62	2.25	10.52	28.00	97.68
IL-6, pg/mL	1,180	25.59	61.81	0.01	0.14	0.87	15.11	86.56	150.38	301.61
MCP-3, pg/mL	504	52.26	65.62	0.01	10.19	31.16	70.68	123.65	193.87	273.65

ND, non-detectable; SD, standard deviation; TNF, tumor necrosis factor; IL, interleukin; hsIL, high sensitivity interleukin; MCP, monocyte chemoattractant protein; hsCRP, high sensitivity C-reactive protein.

Table 3. Spearman’s correlation among inflammatory biomarkers (n=4,058)

Biomarker	TNF-α	TNF-β	IL-1α	IL-1β	hsIL-1β	IL-6	hsIL-6	MCP-1	MCP-3	hsCRP
TNF-α	1.00	0.03	0.30	0.26	0.21	0.46	0.14	0.32	0.28	0.19
TNF-β	0.43	1.00	0.25	0.26	NA	0.27	NA	−0.13	0.35	0.03
IL-1α	0.27	0.11	1.00	0.44	0.01	0.48	−0.04	0.03	0.29	0.01
IL-1β	0.30	0.42	0.31	1.00	0.23	0.42	0.10	0.12	0.43	0.04
hsIL-1β	0.21	NA	−0.06	0.23	1.00	0.10	0.45	0.17	0.06	0.11
IL-6	0.47	0.39	0.38	0.42	0.04	1.00	0.15	0.12	0.39	0.15
hsIL-6	0.14	NA	−0.01	0.10	0.45	0.10	1.00	0.21	0.01	0.41
MCP-1	0.32	0.16	0.12	0.15	0.17	0.11	0.21	0.10	−0.01	0.13
MCP-3	0.35	0.48	0.30	0.59	0.04	0.33	−0.01	0.10	1.00	0.05
hsCRP	0.19	0.16	−0.01	0.03	0.11	0.14	0.41	0.13	0.06	1.00

The correlation coefficient was obtained from Spearman’s rank correlation. The upper right coefficients are obtained from biomarkers including non-detectable (ND) measurements. The lower left coefficients are obtained from biomarkers excluding ND measurements. TNF, tumor necrosis factor; IL, interleukin; hsIL, high sensitivity interleukin; MCP, monocyte chemoattractant protein; hsCRP, high sensitivity C-reactive protein; NA, not available.

*P<0.05, †P<0.01, ‡P<0.001.

the different numerical range, our hsCRP measurements uniformly demonstrated significant right-skewed distribution, with older and participants with any of the cardiometabolic disorders embodying higher median. hsCRP is known to increase with wide range of both acute and chronic infections, tissue necrosis, neoplasia, insulin resistance, obesity, smoking,
Table 4. Distribution of inflammatory biomarkers by sex, age, and prevalence of type 2 diabetes mellitus, hypertension and dyslipidemia, including NDs (n = 4,058)

Biomarker	Sex	Age, yr	T2DM	Hypertension	Dyslipidemia							
	Male	Female		No	Yes	P value	No	Yes	P value	No	Yes	P value
TNF-α, pg/mL												
Number	458	827	-	797	488	-	1,180	105	-	996	289	-
Median	14.51	11.17	<0.001	12.24	12.32	0.889	12.15	14.04	0.027	12.23	12.52	0.428
75th percentile	23.42	17.03	<0.001	20.61	18.67	<0.001	19.36	20.59	0.766	19.66	19.15	0.050
90th percentile	39.99	28.85	0.011	35.84	29.44	<0.001	33.15	33.51	0.798	33.82	31.50	0.042
95th percentile	76.12	54.16	0.107	67.35	48.44	0.002	58.49	64.58	0.989	59.36	53.92	0.240
99th percentile	157.74	139.54	0.405	158.96	135.10	0.205	157.14	101.24	0.252	157.74	150.29	0.788
TNF-β, pg/mL												
Number	127	339	-	246	220	-	430	36	-	353	113	-
Median	0.00	0.00	0.352	0.00	0.00	<0.001	0.00	0.00	0.149	0.00	0.00	0.056
75th percentile	0.00	0.07	0.015	0.20	0.00	<0.001	0.07	0.00	0.119	0.07	0.01	0.086
90th percentile	1.31	1.09	0.440	1.31	0.50	0.276	1.12	4.40	0.876	0.98	3.90	0.386
95th percentile	9.48	10.19	0.539	11.33	7.49	0.513	9.18	10.19	0.571	9.18	11.33	0.755
99th percentile	178.94	92.26	0.244	125.54	168.50	0.601	125.54	1840.00	0.401	92.26	381.59	0.088
IL-1α, pg/mL												
Number	458	827	-	797	488	-	1,180	105	-	996	289	-
Median	0.00	0.00	0.048	0.00	0.00	0.117	0.00	0.00	0.130	0.00	0.00	0.436
75th percentile	8.33	0.04	0.030	3.77	0.00	<0.001	2.67	0.00	0.130	2.75	0.03	0.013
90th percentile	249.77	186.25	0.492	196.83	159.73	0.003	206.70	46.69	0.015	197.47	123.82	0.155
95th percentile	647.87	496.05	0.107	544.72	470.97	0.009	555.84	117.21	0.032	543.18	530.10	0.373
99th percentile	1,380.00	1,191.00	0.157	1,270.00	1,380.00	0.876	1,296.00	458.64	0.854	1,311.00	1,135.00	0.368
IL-1β, pg/mL												
Number	458	827	-	797	488	-	1,180	105	-	996	289	-
Median	0.49	0.45	<0.001	0.66	0.40	<0.001	0.52	0.68	0.478	0.55	0.48	0.133
75th percentile	1.83	1.07	0.001	2.47	1.26	<0.001	2.03	1.57	0.122	2.03	1.83	0.016
90th percentile	10.96	9.09	0.382	10.64	6.42	<0.001	10.00	5.31	0.034	9.38	11.97	0.683
95th percentile	32.99	24.13	0.572	32.99	15.86	<0.001	24.43	9.27	0.678	24.49	24.17	0.373
99th percentile	143.32	81.31	0.405	101.67	71.66	0.068	86.97	125.57	0.437	97.68	71.66	0.368
hsIL-1β, pg/mL												
Number	331	488	-	551	268	-	750	69	-	643	176	-
Median	0.70	0.60	<0.001	0.70	0.60	0.310	0.64	0.72	0.153	0.66	0.64	0.696
75th percentile	1.20	0.90	<0.001	1.00	1.00	<0.001	1.03	1.08	0.764	1.03	1.05	0.190
90th percentile	2.00	1.50	<0.001	1.80	1.80	0.003	1.72	2.49	0.208	1.74	1.90	0.591
95th percentile	3.30	1.98	0.002	2.24	2.61	0.322	2.32	2.72	0.292	2.33	2.56	0.636
99th percentile	6.50	3.90	0.007	4.70	5.32	0.816	4.89	6.47	0.840	5.32	3.77	0.072

(Continued to the next page)
Biomarker	Value	Male	Female	P value	55>	55≤	P value	75th percentile	90th percentile	95th percentile	99th percentile
IL-6, pg/mL											
Number	458	827	-		797	488	-	1,180	105		
Median	1.38	0.37	<0.001		0.72	0.49	0.051	0.61	0.62	0.913	
75th percentile	14.37	10.04	0.187	<0.001	15.79	7.78	<0.001	12.29	7.26	0.056	
90th percentile	89.78	69.66	0.070	<0.001	86.17	59.02	<0.001	83.60	57.19	0.236	
95th percentile	168.45	137.77	0.276	149.24	137.79	0.035	147.98	92.42	0.396	147.28	137.34
99th percentile	345.97	286.06	0.157	336.88	244.24	0.017	300.15	226.26	0.854	329.69	298.67

hsIL-6, pg/mL											
Number	331	488	-		551	268	-	750	69		
Median	0.83	0.75	<0.001		0.75	0.81	<0.001	0.75	0.98	<0.001	
75th percentile	1.30	1.01	<0.001		1.05	1.31	0.024	1.11	1.43	0.103	
90th percentile	2.11	1.77	<0.001		1.82	2.11	0.418	1.94	4.10	0.567	
95th percentile	3.42	2.34	0.005		3.03	2.91	0.032	2.82	8.32	0.078	
99th percentile	14.06	7.08	0.007		14.06	8.13	0.004	8.13	69.60	0.012	

MCP-1, pg/mL											
Number	753.01	626.03	<0.001		649.71	704.10	0.002	664.72	707.78		
Median	927.38	801.87	<0.001		836.75	856.04	0.003	836.88	911.94	0.088	
75th percentile	1,132.00	985.86	<0.001		1,053.00	1,059.00	0.027	1,045.00	1,132.00	0.500	
90th percentile	1,256.00	1,132.00	0.004		1,200.00	1,176.00	0.035	1,182.00	1,313.00	0.188	
95th percentile	1,843.00	1,530.00	0.157	1,735.00	1,642.00	0.205	1,727.00	1,548.00	0.252		
99th percentile	1,735.00	1,679.00	0.368	1,735.00	1,679.00	0.368	1,679.00	1,727.00	0.987		

MCP-3, pg/mL											
Number	458	827	-		797	488	-	1,180	105		
Median	0.00	0.00	0.089		0.00	0.00	0.050	0.00	0.00	0.135	
75th percentile	16.02	19.33	0.671		19.60	14.93	<0.001	18.12	14.45	0.354	
90th percentile	73.58	69.26	0.617		70.75	67.06	0.010	70.68	42.37	0.881	
95th percentile	115.10	101.10	0.408		116.92	98.13	0.009	104.37	113.04	0.896	
99th percentile	256.00	224.82	0.405		245.16	212.02	0.025	243.25	243.70	0.437	

hsCRP, mg/L											
Number	1,426	2,632	-		2,097	1,961	-	3,686	372		
Median	0.65	0.54	<0.001		0.55	0.61	<0.001	0.56	0.87	<0.001	
75th percentile	1.39	1.10	<0.001		1.16	1.23	0.241	1.13	2.03	<0.001	
90th percentile	3.26	2.45	<0.001		2.58	2.68	0.154	2.51	3.96	<0.001	
95th percentile	6.28	4.01	<0.001		4.68	5.35	0.154	4.56	7.75	<0.001	
99th percentile	21.53	11.41	0.01		15.62	17.37	0.707	14.30	22.42	<0.001	

The P value was derived from the two-sided Wilcoxon rank-sum test.
ND, non-detectable; T2DM, type 2 diabetes mellitus; TNF, tumor necrosis factor; IL, interleukin; hsIL, high sensitivity interleukin; MCP, monocyte chemoattractant protein; hsCRP, high sensitivity C-reactive protein.
Table 5. Distribution of inflammatory biomarkers by sex, age, and prevalence of type 2 diabetes mellitus, hypertension and dyslipidemia, excluding NDs (n = 1,180)

Biomarker	Sex	P value	Age, yr	T2DM	Hypertension	Dyslipidemia
	Male	Female				
Number	33	107	-	95	45	134
Median	0.56	0.30	0.279	0.31	0.42	0.445
75th percentile	6.38	2.31	0.644	1.31	6.38	0.977
90th percentile	129.88	21.03	0.964	14.44	92.26	0.682
95th percentile	178.94	62.92	0.223	62.92	168.50	0.641
99th percentile	1,840	244.58	0.660	1,840	381.59	0.963

IL-1α, pg/mL

Number	140	209
Median	74.54	106.12
75th percentile	413.38	371.13
90th percentile	940.64	852.97
95th percentile	1,282.50	1,116.00
99th percentile	2,233	2,054

IL-1β, pg/mL

Number	433	746
Median	0.77	0.53
75th percentile	2.82	1.91
90th percentile	12.88	10.00
95th percentile	33.86	25.88
99th percentile	143.32	86.97

IL-6, pg/mL

Number	435	745
Median	1.90	0.62
75th percentile	19.46	13.17
90th percentile	94.72	79.71
95th percentile	170.20	145.27
99th percentile	345.97	296.78

MCP-3, pg/mL

Number	160	344
Median	39.31	26.70
75th percentile	80.09	67.04
90th percentile	127.49	113.04
95th percentile	194.87	183.39
99th percentile	480.20	252.64

The P value was derived from the two-sided Wilcoxon rank-sum test.

ND, non-detectable; T2DM, type 2 diabetes mellitus; TNF, tumor necrosis factor; IL, interleukin; MCP, monocyte chemoattractant protein.
and stress [25]. Considering that the prevalence of such proinflammatory conditions are more prevalent with older age, our results align with other population-based studies, where hsCRP was associated with positively graded risk for frailty [26], incident T2DM [2,27], elevated lipid profile [23], and non-alcoholic fatty liver disease [7].

Yet, descriptive assays from population- or clinic-settings of other multiplex assayed inflammatory biomarkers are currently scarce. Several studies have done genetic, experimental and analytic examinations between cytokines/chemokines and diseases with inflammation as a primary basis for pathogenesis. They may provide biological plausibility for some of our current findings.

IL-6

IL-6 is produced in various tissues, including activated leukocytes, adipocytes, and endothelial cells [28]. Our participants of older age or with T2DM, hypertension or dyslipidemia showed higher median IL-6 levels. Similarly, a cross-sectional data from the Newcastle 85+ Study identified positive association between basal IL-6 and frailty risk, enacting as a mediator in inflammatory processes whilst physiological changes accompanied with aging, such as decreased lean body mass, osteopenia, low-grade anemia, decreased serum albumin and cholesterol and increased prevalence of lymphoproliferative disorders [26]. In terms of high IL-6 levels among participants with cardiometabolic disorder, parallel results were also observed in a study, which implicated the pro-coagulant effect of IL-6 from its production in arterial endothelial and smooth muscle cells [29]. Findings from a population-based study also confirmed that elevated levels of IL-6 are associated with increased risk of future MI, reinforcing its role in cytokine-mediated inflammation during the early stages of atherogenesis [3].

IL-1α and IL-1β

IL-1 is crucial for host-defense responses to infection and injury by triggering inflammation in a pathway initiated through myeloid differentiation primary response 88 (MYD88) activation and culminating in NF-KB-induced transcription of inflammatory genes [30,31]. Whereas IL-1β is secreted and active only upon cleavage of its precursor by caspase-1 on the inflammasome [11], IL-1α can be found constitutively inside cells under normal homeostasis, and is active in its precursor as well as calpain-processed mature form [32,33]. These different order of IL-1 subtype expression and activation may explain the low correlation and varying detection rate despite their similar cellular niche. Likewise, whereas no differences were detected by age group for median IL-1α values, IL-1β, and hsIL-1β levels were higher in the younger group. Such results contrast a previous study that tested age-related augmentation of the systemic and myocardial inflammatory responses, in which the older mice displayed greater myocardial mononuclear cell accumulation and IL-1β production than younger mice due to depressed cardiac function with older age [34]. This result translates to higher vulnerability to endotoxemic cardiac depression with aging [34]. We suspect that such inconsistency may arise from different study population structure and size, as similar studies have also observed varying magnitude of association between IL-6 and age by participant sex, age, and race [34,35]. Yet, our results align in terms of the implication of IL-1 in inflammatory diseases. The genetic assay showed the distribution of oncogenic mutations and single nucleotide polymorphisms (SNPs) in the predicted and experimental structures of protein complexes in the IL-1 pathway, supporting its contributions to cancer development and other inflammatory diseases [36]. Although our study excluded participants with recent history of malignant cancer, the hsIL-1β concentrations remained consistently high among those with metabolic disorders, implying that moderate differences in IL-1 subtypes may be present even in non-critical inflammatory diseases.

TNF-α and TNF-β

TNFs play crucial role in innate and adaptive immunity by inducing proatherogenic changes in lipid metabolism, thereby implicated in lymphoid follicle development, production of proinflammatory cytokines and facilitation of fibroblasts and synviocytes proliferation [37]. Despite TNF-β and TNF-α share many common biological activities, TNF-β is more likely to induce the secretion of IL-6, IL-8, and matrix metalloproteinase 3 (MMP-3) than TNF-α even at low levels, thereby supporting differential productions and detections of TNF subtypes in inflammatory and autoimmune diseases [38,39]. Moreover, TNFs are highly implicated in impaired glucose metabolism and elevated insulin resistance via inhibition of insulin-stimulated tyrosine kinase activity of the insulin receptor by downregulating adiponectin and upregulating leptin production [40,41]. These results align with our current findings, in which the both subtypes of TNF were higher among participants with T2DM.
MCP-1 and MCP-3
MCPs selectively recruit monocytes, neutrophils, and lymphocytes, thereby are found during progression of immune disorders, pulmonary diseases, cancer, and vascular diseases [42,43]. Recent experiments demonstrated a reduction in atherosclerotic lesion formation in MCP-1 deficient mice [44,45]. Conversely, macrophage-specific overexpression of MCP-1 resulted in the acceleration of vascular lesion size and infiltration of macrophages in atherosclerosis-prone mice [45]; such findings are in align with higher MCP-1 levels detected among participants with T2DM, hypertension and dyslipidemia in our study population. Another study indicated high feasibility of MCP-1 as a surrogate measure of biological age, as its circulating levels were higher in frail participants [46], in parallel with higher percentiles embodied by our older participants.

Compared with previous findings, inconsistencies may be explained by the following reasons. First, the upper percentiles were largely derived from small counts of very high values; considering that we did not exclude any upper outliers, those extreme values may distort the true distribution differences between participants with and without metabolic disorder(s). Secondly, the assay methodological discrepancies challenge the direct comparison across different studies. Different kits and software extrapolate antigen concentration with different sample preparation and trade-off of sensitivity, specificity and referent. Lastly, the inflammatory biomarkers are highly dependent on the conditions of extraction. Depending on the study design, number of measurements done at specific time point(s) in disease progression may lead to high heterogeneity. These differences may explain the unexpected negative correlation observed between TNF-β and MCP-1, likely due to varying sample size, number of detectable measurements and its range, compared with previous studies.

In short, every family and subtypes of cytokine/chemokines play differential role in disease-specific inflammatory processes. Their concentrations vary by location and timing of secretion, expression and proliferation, depending on the stages of disease progression, individual- and population heterogeneity and genetic susceptibility. These variations challenge the current multiplex assay to provide a consensus on single reference range for risk prediction and diagnosis.

Strengths and limitations
To the extent of our knowledge, this is the first study to assay and to present a wide array of inflammatory markers in community-dwelling Korean population. Our findings may serve as an addendum in reinforcing biological mechanisms of inflammation and a basis for more comprehensive depiction of inflammatory states for both clinic and research purposes. In addition, despite a considerable proportion of NDs, we were still able to illustrate a wide range of inflammatory states from considerably large-sized population, thereby able to portray realistic distributions found in population settings. Future studies warrant larger population- and clinic-based sample with repeated measurements to obtain more robust reference values for diagnostic purposes.

Several limitations warrant cautious interpretations of our findings. The primary concern involves the study nature and the design of the study. Considering the relatively good health of the participants, a large proportion of NDs were observed. Although some of these were overcome by high sensitivity assay, we were unable to distinguish differences within the ND range. Moreover, due to the cross-sectional nature of the study design, we relied on a single measurement, thereby unable to determine whether the assayed biomarkers reflect acute or persistent inflammatory state. Another limitation arises from the detection methodology used. Although the samples were measured via identical kit and technologies, day-to-day variation in sample collection were inevitable. However, we have minimized potential batch effect by assaying the samples at a single time point. Lastly, our study did not limit eligibility nor collect information regarding history of acute infectious diseases.

In sum, the distributions of inflammatory biomarkers varied by its classes and inclusion/exclusion of NDs. Importantly, the median and the 99th percentile for most biomarkers were different when stratifying participants by sex, age and with and without cardiometabolic disorders. These findings lend weight to provide sex- and age-specific reference values to improve risk predictive and diagnostic performance for inflammatory diseases. A more considered approach would be to tailor the references to individual baseline characteristics and comorbidities. Given that independent clinical feasibility of these biomarkers is not yet warranted, they should yet be referred in conjunction with routine examinations, individual’s clinical presentation, and medical history.

SUPPLEMENTARY MATERIALS
Supplementary materials related to this article can be found
CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

AUTHOR CONTRIBUTIONS

Conception or design: S.M.J.C., H.C.K.
Acquisition, analysis, or interpretation of data: S.M.J.C., H.L., J.S.S., H.C.K.
Drafting the work or revising: S.M.J.C., H.L.
Final approval of the manuscript: S.M.J.C., H.L., J.S.S., H.C.K.

ORCID

So Mi Jemma Cho https://orcid.org/0000-0003-2460-3335
Hyeon Chang Kim https://orcid.org/0000-0001-7867-1240

ACKNOWLEDGMENTS

None

REFERENCES

1. Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007;48:751-62.
2. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001;286:327-34.
3. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and risk of developing type 2 diabetes. Circulation 2000;101:1767-72.
4. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, Di Angelantonio E, Gudnason V, Rumley A, Lowe GD, Jørgensen T, Danesh J. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 2014;35:578-89.
5. Schöttker B, Herder C, Rothenbacher D, Roden M, Kolb H, Müller H, Brenner H. Proinflammatory cytokines, adiponectin, and increased risk of primary cardiovascular events in diabetic patients with or without renal dysfunction: results from the ESTHER study. Diabetes Care 2013;36:1703-11.
6. Koch W, Kastrati A, Bottiger C, Mehilli J, von Beckerath N, Schomig A. Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis 2001;159:137-44.
7. Lee J, Yoon K, Ryu S, Chang Y, Kim HR. High-normal levels of hs-CRP predict the development of non-alcoholic fatty liver in healthy men. PLoS One 2017;12:e0172666.
8. Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol 2007;49:2129-38.
9. Parameswaran N, Patial S. Tumor necrosis factor-a signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010;20:87-103.
10. Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 2016;37:1723-32.
11. Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, Pamer EG. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 2008;180:6846-53.
12. Bogavac-Stanojevic N, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V, Spasic S, Kalimanovska-Ostric D. Lipid and inflammatory markers for the prediction of coronary artery disease: a multi-marker approach. Clin Biochem 2007;40:1000-6.
13. Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc) 2016;81:1358-70.
14. Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 2015;26:673-85.
15. Ait-Outella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2011;31:969-79.
16. Shim JS, Song BM, Lee JH, Lee SW, Park JH, Choi DP, Lee MH, Ha KH, Kim DJ, Park S, Lee WW, Youn Y, Shin EC, Kim HC. Cohort profile: the cardiovascular and metabolic diseases etiology research center cohort in Korea. Yonsei Med J 2019;60:804-10.
17. Ko SH, Kim SR, Kim DJ, Oh SJ, Lee HJ, Shim KH, Woo MH, Kim JY, Kim NH, Kim JT, Kim CH, Kim HJ, Jeong IK, Hong EK, Cho JH, Mok JO, Yoon KH; Committee of Clinical Practice Guidelines, Korean Diabetes Association. 2011 Clinical practice guidelines for type 2 diabetes in Korea. Diabetes Metab J 2020;44:711-725.
18. Shin J, Park JB, Kim KI, Kim JH, Yang DH, Pyun WB, Kim YG, Kim GH, Chae SC; Guideline Committee of the Korean Society of Hypertension. 2013 Korean Society of Hypertension guidelines for the management of hypertension: part I-epidemiology and diagnosis of hypertension. Clin Hypertens 2015;21:1.
19. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogdengebe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014;311:507-20.
20. Committee for the Korean Guidelines for the Management of Dyslipidemia. 2015 Korean guidelines for the management of dyslipidemia: executive summary (English translation). Korean Circ J 2016;46:275-306.
21. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;285:2486-97.
22. Zhai Y, Shi XM, Fitzgerald SM, Qian HZ, Kraus VB, Sereny M, Han L, Song JH, Yoon JH, Park YG, Lee SW, Choi YJ, Nam SW, Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023.
23. Rider P, Carmi Y, Gutman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 2011;187:4835-43.
24. Di Paolo NC, Shyakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016;17:906-13.
25. Slimani H, Zhai Y, Youssif NG, Ao L, Zeng Q, Fullerton DA, Meng X. Enhanced monocyte chemoattractant protein-1 production in aging mice exaggerates cardiac depression during endotoxemia. Crit Care 2014;18:527.
26. Hubbard RE, O’Mahony MS, Savva GM, Calver BL, Woodhouse KW. Inflammation and frailty measures in older people. J Cell Mol Med 2009;13(9B):3103-9.
27. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 2014;10:e1003470.
28. Qi L, Rifai N, Hu FB. Interleukin-6 receptor gene variations, plasma interleukin-6 levels, and type 2 diabetes in U.S. Women. Diabetes 2007;56:3075-81.
29. Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 2011;22:189-95.
30. Qi L, Rifai N, Hu FB. Interleukin-6 receptor gene variations, plasma interleukin-6 levels, and type 2 diabetes in U.S. Women. Diabetes 2007;56:3075-81.
31. Rider P, Carmi Y, Gutman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 2011;187:4835-43.
32. Di Paolo NC, Shyakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016;17:906-13.
33. Slimani H, Zhai Y, Youssif NG, Ao L, Zeng Q, Fullerton DA, Meng X. Enhanced monocyte chemoattractant protein-1 production in aging mice exaggerates cardiac depression during endotoxemia. Crit Care 2014;18:527.
34. Hubbard RE, O’Mahony MS, Savva GM, Calver BL, Woodhouse KW. Inflammation and frailty measures in older people. J Cell Mol Med 2009;13(9B):3103-9.
35. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 2014;10:e1003470.
36. Han L, Song JH, Yoon JH, Park YG, Lee SW, Choi YJ, Nam SW, Lee JY, Park WS, TNF-α and TNF-β polymorphisms are associated with susceptibility to osteoarthritis in a Korean population. Korean J Pathol 2012;46:30-7.
37. Svennungson E, Gunnarsson I, Fei GZ, Lundberg IE, Klareskog L, Frostegard J. Elevated triglycerides and low levels of high-density lipoprotein as markers of disease activity in association with up-regulation of the tumor necrosis factor alpha/tumor necrosis factor receptor system in systemic lupus erythematosus. Arthritis Rheum 2003;48:2533-40.
38. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-56.
39. Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 1991;266:21839-45.
40. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003;285:E527-33.
Distributions of inflammatory biomarkers

41. Deshmule SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemotactant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009;29:313-26.
42. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007;117:902-9.
43. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2:275-81.
44. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894-7.
45. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM. Monocyte chemotactant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 1999;19:1518-25.
46. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146-56.