Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface

Kamran Ahmed and Tanvir Akbar

Abstract
This research work describes the investigation of a magnetohydrodynamic flow of Williamson nanofluid over an exponentially porous stretching surface considering two cases of heat transfer i.e., prescribed exponential order surface temperature (PEST), and prescribed exponential order heat flux (PEHF). As a result of this infestation, a mathematical model of the problem based on conservation of linear momentum and law of conservation of mass and energy is developed. Whereas governing nonlinear partial differential equations (PDEs) are converted to nonlinear ordinary differential equations (ODEs). Subsequently, the velocity, concentration, and temperature profiles are developed by using the method of similarity transformation. Furthermore, the effects of various physical parameters of engineering interests are demonstrated graphically. It is highlighted that both the magnetic parameter (M) and Williamson parameter (λ) causes to reduce the boundary layer thickness.

Keywords
Williamson nanofluid, exponentially stretching sheet, similarity transformation, bvp4c

Date received: 27 January 2021; accepted: 5 May 2021

Handling Editor: James Baldwin

Introduction
Numerical and experimental study of nanofluids has gained the attention of researchers considering the importance and practicality.\(^1\,^2\) The nanofluids, which are composed of nano-sized particles fairly homogeneously appended in the base fluid, have been demonstrated to improve fluid properties significantly.\(^3\,^4\) The nano-sized particles, suspended in the fluid, have the ability to augment the thermo-physical properties of the conventional base fluid.\(^6\,^9\) Conventionally, the size distribution of nanoparticles rests closely in the proximity of the size of the base fluid molecules. Therefore, the nanoparticles stay suspended in the base fluid homogeneously for a very long time period without settling or coagulation. Usually, the nanomaterials used for this purpose are carbon nanotubes, metal oxides, nanosized polymers, and nanosized clays.

The idea is principally based on enhancing the thermal properties of the base fluid by producing a nanofluid by enhancing overall thermal conductivity. Various nanofluids having the unique property of increasing the rate of heat transfer in a fluid are being used in many engineering processes like cooling of the vehicle engine, air conditioning cooling, cooling of electronic devices, cooling of power plants, etc. Dey et al.\(^11\) presented a review on nanofluids in which they elaborated one-step and two-step methods of preparation of
fluids. In his work, several methods of increasing the stability of nanofluids and discussed their thermophysical properties like thermal conductivity, the effect on viscosity, etc. were also reported. The idea was propagated by Choi and Eastman based on the fact that the metallic nanoparticles have higher thermal conductivity as compared to the liquid. For example, at room temperature, the thermal conductivity of copper is 700 times higher than water; therefore, the addition of conductive nanoparticles into fluid can enhance heat transfer rate as compared to the rate of heat transfer by conventional fluids alone. Masuda et al. in their research work described a rise in the thermal conductivity of base fluid by dispersal of ultra-fine particles. Wang et al. also presented his experimental work, based on the same principle, for the enhancement of thermal conductivity of nanofluid compared to the base fluid. They observed a reverse relationship exists between the thermal conductivity of nanofluid and the size of the particles. It was noted that on reducing the particle size, the thermal conductivity of a mixture of fluid is increased.

Magnetohydrodynamics plays a significant role in the domain of fluid dynamics where magnetic fields are considered vital. The term magnetohydrodynamics was coined by Swedish Physicist Noble Laureate Hannes Alfven. MHD flow of heat and mass transfer over a stretching surface has practical applications in the field of glass fiber production, polymer technology, and metallurgy. MHD demonstrates a dynamic role in nanofluid flow and heat transfer. Akbar et al. recently investigated the MHD flow of nanofluid due to stretching/shrinking surface with slip effect. Many other researchers have discussed the MHD flow of nanofluids and presented practical solutions.

MHD flow of nanofluid over an exponentially stretching surface and examined heat transfer. Waheed has discussed mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate.

The investigation of boundary layer flow over a stretching sheet has gained attention owing to its broad utilization in designing applications. Sakiadis considered Williamson fluid over an exponentially stretching surface and examined heat transfer. Waheed has discussed mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate.

The investigation of boundary layer flow over a stretching sheet has gained attention owing to its broad utilization in designing applications. Sakiadis considered Williamson fluid over an exponentially stretching surface and examined heat transfer. Waheed has discussed mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate.

The objective of this work is to elaborate the MHD flow of Williamson nanofluid over an exponentially stretching surface. This study particularly emphasizes the heat transfer analysis of Williamson nanofluid where the sheet stretches exponentially which is not addressed so far. Two instances of heat transfer, PEST and PEHF are also discussed. Since governing equations that describe the flow are complex in nature; therefore, analytical solutions are highly unlikely to be obtained satisfactorily. Considering this limitation, we attempted here to solve these equations numerically. Governing highly nonlinear PDEs are reduced into nonlinear ODEs by the assistance of a suitable similarity transformation and subsequently, solving it with the help of bvp4c code. There are seven parameters involved in resulting ODEs and their effects have been demonstrated graphically. The graphical results show that boundary layer thickness is decreasing with the increase of magnetic field \(M \) and Williamson parameter \(\lambda \). It is also seen that thermal boundary layer thickness is achieved little later than the momentum boundary layer.

Problem description

Here we have considered steady incompressible MHD Williamson nanofluid flow in two dimensions over a stretching plate. It is assumed that the plate is stretched along \(x \)-axis with the exponentially varying velocity \(U_w \) and \(y \) direction is taken perpendicular to the plate. The adjustable transverse magnetic field \(B = B_0 e^y \) is subjected in a direction perpendicular to the flow. The velocity, temperature, and nanoparticle concentration of the fluid near the surface is taken to be \(U_w \), \(T_w \) and \(C_w \) respectively. The governing equations for the model considered are given by Nadeem and Hussain.
The following similarity transformation is used to solve the governing equations

\[u = U_0 e^{(\frac{x}{2l})f'(\eta)}, \quad v = -\sqrt{\frac{\nu U_0}{2l}} e^{\frac{x}{2l}}[f(\eta) + \eta f'(\eta)] \]

\[\eta = \sqrt{\frac{U_0}{2l}} e^{\frac{x}{2l}}, \quad g = \frac{C - C_v}{C_w - C_v} \]

PEST Case:

\[T = T_\infty + (T_w - T_\infty)e^{\frac{x}{2l}} \theta(\eta) \]

PEHF Case:

\[T = T_\infty + \frac{(T_w - T_\infty)}{k} e^{\frac{2\nu l}{U_0}} \phi(\eta) \]

Using the above transformations, in equation (2) with the boundary equation given in equation (5) the governing equation takes the following form

\[f'' - \frac{2f'^2}{f} + \frac{f''}{f} + \lambda f' f'' - Mf'' = 0 \]

\[f(0) = -s, f'(0) = 1, f'(\infty) \to 0 \]

where, \(M = \frac{2\nu l \theta_i}{\rho U_0}, \lambda = \frac{\nu U_0}{\rho U_0}, s = V_0 \sqrt{\frac{2l}{U_0 \nu}}. \)

Subject to the boundary condition

\[\theta(0) = 1, g(0) = 1, \theta(\infty) = 0, g(\infty) = 0 \]

where \(N_b = \frac{\rho_{\text{eff}}(C_v - C_w)}{\rho_{\text{eff}}(C_v - C_w)}D_B, N_{\text{f}} = \frac{\rho_{\text{eff}} D_B(T_w - T_\infty)}{\rho_{\text{eff}}}, \text{Sc} = \frac{D_B}{l}, \quad Pr = \frac{\nu}{\rho C_p} \)

Subject to the boundary condition

\[\phi'' + Pr(\phi' - \phi'' + N_{\text{f}} g' \phi' + N_{\text{f}} \phi'^2) = 0 \]

\[g'' + Sc g' + \frac{N_{\text{f}}}{N_{\text{b}}} \phi'' = 0 \]

Subject to the boundary condition

\[\text{Schematic representation of boundary layer flow} \]
Table 1. Comparison of $\sqrt{2Re_c}c_f$ for different values of λ and s, by fixing $Pr = 0.5$, $Nt = 0.5$, $Nb = 0.5$, $M = 0.0$, $Sc = 1.0$.

λ	$s = -0.1$	$s = 0.1$		
	Nadeem and Hussain22	Present	Nadeem and Hussain22	Present
0.0	1.33930	1.33930	1.23638	1.23638
0.1	1.29801	1.29801	1.20710	1.20710
0.2	1.26310	1.26310	1.17481	1.17481
0.3	1.22276	1.22276	1.13825	1.13825

Table 2. Values of $\sqrt{2Re_c}c_f$, for different values of λ, s, and M by fixing of $Pr = 0.5$, $Nb = 0.5$, $Nt = 0.5$, and $Sc = 1.0$.

λ	s	M	$-(f'(0) + \frac{1}{2}f^3(0))$
0.1	0.2	2.0	1.754213
0.2			1.678675
0.3			1.799249
	0.1		1.754213
	0.2		1.237223
	0.3		1.271816

\[\phi'(0) = -1, g(0) = 1, \phi(\infty) = 0, g(\infty) = 0, \]
where
\[Nb = \frac{\mu_0 C_u - C_v}{\rho c} Db, \quad \frac{\rho_0 \sigma}{\kappa_0} \frac{D_T}{T_c - T_0} e^\gamma \sqrt{\nu_0} Sc = \frac{\nu}{D_b}, \]

Some important physical quantities are the local skin friction coefficient c_f, local Nusselt number Nu_s, and the local Sherwood number Sh_s, which are defined as
\[c_f = \frac{1}{\rho U_w^2} \left(\mu_0 \left(\frac{\partial u}{\partial y} + \frac{\Gamma}{\sqrt{2}} \left(\frac{\partial u}{\partial y} \right)^2 \right) \right)_{y=0}, \]
\[Nu_s = -\frac{\sqrt{2l}}{(T_w - T_0)} e^\gamma \left(\frac{\partial T}{\partial y} \right)_{y=0}, \]
\[Nu_s = -\frac{lU_0 k}{(T_w - T_0)} \left(\frac{\partial T}{\partial y} \right)_{y=0}, \]
\[Sh_s = -\frac{\sqrt{2l}}{(C_w - C_v)} \left(\frac{\partial C}{\partial y} \right)_{y=0}. \]

Using equation (7), we obtain
\[\sqrt{2Re_c}c_f = \left(f''(0) + \frac{\lambda}{2} f''(0) \right) \eta = \frac{Nu_s}{\sqrt{Re_s}} = -\theta'(0), \]
\[Nu_s = -\phi'(0), \quad Sh = \frac{Sh_s}{\sqrt{Re_s}} = -g'(0) \]
and
\[\frac{Nu_s}{Re_s} = -\phi'(0), \quad Sh_s = \frac{Sh_s}{\sqrt{Re_s}} = -g'(0) \]
where $Re_s = \frac{U_0 l}{\nu}$.

Results and discussion

The numerical solution of magnetohydrodynamics Williamson nanofluid across an exponentially stretching surface is examined here. The impact of physical parameters that is Williamson fluid parameter λ, suction/injection parameter s, Magnetic parameter M, thermophoretic parameter N_t, and Brownian motion parameter N_b on flow and Prandtl number Pr, Schmidt number Sc, heat and mass transfer characteristic has been investigated. The system of ODEs obtained in equations (10) to (13) are solved by using the MATLAB function bvp4c. In order to certify the code, developed in MATLAB, we obtain the results for the skin friction coefficient when $M = 0$ for distinct values of s and λ, keeping other parameters fixed which are shown in Table 1. These outcomes are reliable and found in agreement with the results reported by Nadeem and Hussain.22

In Tables 2 to 4, the effects on the $\sqrt{2Re_c}c_f$, $Nu_sRe_s^{-\frac{1}{2}}$, and $-g'(0)$ for several effective parameters are shown. equation (13) shows the dimensionless mathematical form of skin friction. As we increase the value of λ, the skin friction coefficient, local Nusselt number, and local Sherwood number decrease because greater values of λ with more relaxation time offer more resistance to fluid motion. As we raise the value of suction/injection parameter s, the skin friction coefficient, local Nusselt number, and local Sherwood number decrease because the
fluid flow is caused only by the stretching sheet. When we increase s, it means an increase in porosity of the stretching sheet which produces the resistivity on the fluid flow. As we raise the value of M, the skin friction coefficient increases, whereas the local Nusselt number and local Sherwood number decrease because of Lorentz force which restrict fluid motion. Prandtl number Pr is the ratio of momentum diffusivity to nanofluid thermal diffusivity. As we increase Pr, local Nusselt number increases whereas local Sherwood number decreases. An escalation in the value of Nb, causes a decrease in the local Nusselt number whereas an increase in the local Sherwood number. As we increase the value of Nt, both local Nusselt number and local

Table 3. Variation in $-\theta'(0)$ for various values of λ, s, M, Pr, Nb, Nt, and Sc.

λ	s	M	Pr	Nb	Nt	Sc	$-\theta'(0)$ PESTCase
0.1	0.2	2.0	0.5	0.5	0.5	1.0	0.355586
0.2							0.34313
0.3							0.34124
	0.1						0.355786
	0.2						0.355786
	0.3						0.338681
	0.1	0.2					0.471722
	0.2	0.2					0.462801
	0.3	0.2					0.454350
	0.1	0.3					0.143461
	0.2	0.3					0.206076
	0.3	0.3					0.255045
	1.0	0.3					0.365769
	1.2						0.366728
	1.3						0.363881
	1.4						0.361076

Table 4. Variation in $-g'(0)$ for various values of λ, s, M, Pr, Nb, Nt, and Sc.

λ	s	M	Pr	Nb	Nt	Sc	PESTCase	PEHFCase
0.1	0.2	2.0	0.5	0.5	0.5	1.0	0.015966	-0.442629
0.2							0.013674	-0.446536
0.3							0.011123	-0.449414
	0.1						0.059514	-0.410602
	0.2						0.015966	-0.442629
	0.3						-0.02406	-0.467926
		0.1					0.079721	-0.288410
		0.2					0.072767	-0.305662
		0.3					0.066373	-0.321260
		0.1					0.221245	-0.048631
		0.2					0.165195	-0.232101
		0.3					0.112387	-0.336034
			0.1				-0.416148	-3.398190
			0.2				-0.175935	-1.551180
			0.3				0.044296	-0.935144
				0.1			0.225522	0.130956
				0.2			0.171509	-0.016000
				0.3			0.118590	-0.161674
					0.1		-0.187086	-0.660461
					0.2		-0.168032	-0.641514
					0.3		-0.147325	-0.620342
Sherwood number decreases. Schmidt number Sc, is the ratio of momentum diffusivity to Brownian diffusivity. As we increase Sc, the local Nusselt number decreases whereas the local Sherwood increases.

Figures 1 and 2 displays the effect of velocity profile $f'(\eta)$ versus η which depends on M, l, and s. Figure 1(a) illustrates that the increment in magnetic parameter M, causes velocity profile to decrease because of retarding force which is responsible for the decrease in velocity. Figure 1(b) shows the effect of l showing the similar effect as before that is velocity profile decreases with an escalation in the values of l. Moreover, higher values of M and l reduce boundary layer thickness. Figure 2 shows the effect of s on the velocity profile. It is evident from this figure that the velocity profile settles at higher values on raising s. Figure 3 shows temperature profile for various values of Nb. The PEST and PEHF cases represent the direct relationship between Brownian motion parameter Nb and temperature profile as shown.
The thermal boundary layer for both the PEST and PEHF cases is also increased.

Figure 4(a) and (b) reveal the similar influence of the N_t on $u(h)$ for PEST and PEHF cases, respectively. It happens because the strong temperature gradient forces particles in the fluid to move in the direction of decreasing temperature. For higher values of Prandtl number Pr, the temperature shows a decreasing behavior for both manifestations of PEST and PEHF as can be seen from Figure 5. It is due to the decrease in thermal diffusivity because the Prandtl number Pr and thermal diffusivity α have inverse relationship with each other.

Figure 6 describes the impact of M on a temperature profile for both instances of heat transform considered and increasing influence of M on temperature profile is observed. Figure 7(a) and (b) depicts the impact of λ on a temperature profile for PEST and PEHF case respectively. The escalation in temperature is observed as λ increases. Moreover, momentum boundary layer thickness has increasing impact of both M and λ. Figure 8 illustrate the effect of suction/injection parameter s on temperature profile. An increase in s results in rise in temperature for both PEST (Figure 8(a)) and PEHF (Figure 8(b)) cases. Consequently, thermal boundary layer thickness becomes large.

Figure 9(a) and (b) shows that concentration increases by increasing the magnetic parameter M for both PEST and PEHF case. Sc has adverse effect on concentration profile which is displayed by Figure 10(a) and (b). In Figure 11(a) and (b), we represent the behavior of Brownian motion parameter Nb for PEST and PEHF cases respectively. Hypothetically, the enhanced thermal conductivity of nanofluid is primarily due to Brownian motion which produces macromixing. By increasing the Nb, it reduces the nanofluid concentration. Figures 12 and 13 depict the effects of N_t and s on concentration profile for PEST and PEHF cases, respectively. It is depicted that there is rise in...
Figure 6. Temperature profile versus η by fixing $Nt = 0.5, Nb = 0.5, \lambda = 0.1, Pr = 0.5, s = 0.2, Sc = 1$: (a) for various values of M (PEST Case) and (b) for various values of M (PEHF Case).

Figure 7. Temperature profile versus η by fixing $Pr = 0.5, Nt = 0.5, Nb = 0.5, Sc = 1, M = 2, s = 0.2$: (a) for various values of λ (PEST Case) and (b) for various values of λ (PEHF Case).

Figure 8. Temperature profile versus η by fixing $Pr = 0.5, Nt = 0.5, \lambda = 0.1, M = 2, Nb = 0.5, Sc = 1$: (a) for various values of s (PEST Case) and (b) for various values of s (PEHF Case).
Figure 9. Concentration profile $g(h)$ versus h by fixing $N_t = 0.5$, $N_b = 0.5$, $\lambda = 0.1$, $Pr = 0.5$, $s = 0.2$, $Sc = 1$: (a) for various values of M (PEST Case) and (b) for various values of M (PEHF Case).

Figure 10. Concentration profile $g(h)$ versus h by fixing $Pr = 0.5$, $N_b = 0.5$, $\lambda = 0.1$, $M = 2$, $s = 0.2$, $N_t = 0.5$: (a) for various values of Sc (PEST Case) and (b) for various values of Sc (PEHF Case).

Figure 11. Concentration profile $g(h)$ versus h by fixing $N_t = 0.5$, $Pr = 0.5$, $\lambda = 0.1$, $M = 2$, $s = 0.2$, $Sc = 1$: (a) for various values of Nb (PEST Case) and (b) for various values of Nb (PEHF Case).
concentration values by increasing the thermophoretic parameter N_t and suction/injection parameter s for both cases.

Conclusion

The following main remarks can be concluded from the results of the current investigation.

- Skin friction coefficient reduces by raising the value of Williamson parameter λ and suction/injection parameter s, whereas it increases on increasing magnetic parameter M.
- Wall temperature gradient increases on an increasing Prandtl number Pr, whereas it decreases for an increase in Williamson parameter λ, suction/injection parameter s, magnetic parameter M, Brownian motion parameter Nb, thermophoresis parameter N_t, and Schmidt number Sc.
- $g(\eta)$ increases by raising the values of Brownian motion parameter Nb and Schmidt number Sc, whereas it decreases by an increase in Williamson parameter λ, suction/injection parameter s, magnetic parameter M, Prandtl number Pr, and thermophoresis parameter N_t.
- Velocity profile settles at lower values for increasing Williamson parameter λ and magnetic parameter M, whereas it settles at higher values for increasing suction/injection parameter s.
- $\theta(\eta)$ for both PEST and PEHF cases have similar behavior on λ, suction/injection parameter s, magnetic parameter M, Brownian motion parameter Nb, thermophoresis parameter N_t, and Prandtl number Pr.
- Concentration profile elevates on raising magnetic parameter M, suction/injection parameter s, thermophoresis parameter N_t, and Schmidt number Sc.

Figure 12. Concentration profile $g(\eta)$ versus η by fixing $Pr = 0.5, Nb = 0.5, \lambda = 0.1, M = 2, s = 0.2, Sc = 1$: (a) for various values of N_t (PEST Case) and (b) for various values of N_t (PEHF Case).

Figure 13. Concentration profile $g(\eta)$ versus η by fixing $Nt = 0.5, Nb = 0.5, \lambda = 0.1, M = 2, Pr = 0.5, Sc = 1$: (a) for various values of s (PEST Case) and (b) for various values of s (PEHF Case).
...and \(N_f \) whereas it drops down for higher values of \(N_b \) and Schmidt number \(Sc \).

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Tanvir Akbar https://orcid.org/0000-0002-1295-9476

References
1. Wong KV and De Leon O. Applications of nanofluids: current and future. *Adv Mech Eng* 2010; 2: 519659.
2. Wang XQ and Mujumdar AS. Heat transfer characteristics of nanofluids: a review. *Int J Therm Sci* 2007; 46(1): 1–19.
3. Wang XQ and Mujumdar AS. A review on nanofluids - Part I: Theoretical and numerical investigations. *Brazilian J Chem Eng* 2008; 25(4): 613–630.
4. Das L, Habib K, Saidur R, et al. Improved thermophysical properties and energy efficiency of aqueous ionic liquid/mxene nanofluid in a hybrid pv/t solar system. *Nanomaterials* 2020; 10(7): 1–26.
5. Li Y, Zhou J, Tung S, et al. A review on development of nanofluid preparation and characterization. *Powder Technol* 2009; 196(2): 89–101.
6. Ahmad HM, Kamal MS, Murtaza M, et al. Improving the drilling fluid properties using nanoparticles and water-soluble polymers. In: proceedings of the SPE Kingdom of Saudi Arabia annual technical symposium and exhibition, Dammam, Saudi Arabia, 24–27 April 2017, pp.106–124.
7. Lyu Z, Asadi A, Alarifi IM, et al. Thermal and fluid dynamics performance of MWCNT-water nanofluid based on thermophysical properties: an experimental and theoretical study. *Sci Rep* 2020; 10(1): 1–14.
8. Giwa SO, Sharifpur M, Goodarzi M, et al. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina-ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. *J Therm Anal Calorim* 2021; 143(6): 4149–4167.
9. Jang SP and Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. *Appl Phys Lett* 2004; 84(21): 4316–4318.
10. Xuan Y and Li Q. Heat transfer enhancement of nanofluids. *Int J Heat Fluid Flow* 2000; 21(1): 58–64.
11. Dey D, Kumar P and Samantaray S. A review of nanofluid preparation, stability, and thermo-physical properties. *Heat Transf Asian Res* 2017; 46(8): 1413–1442.
12. Choi SUS and Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. *Am Soc Mech Eng Fluids Eng Div FED* 1995; 231(March): 99–105.
13. Masuda H, Ebata A, Teramae K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al\(_2\)O\(_3\), SiO\(_2\) and TiO\(_2\) ultra-fine particles. *Netsu Bussei* 1993; 7(4): 227–233.
14. Wang X, Xu X and Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. *J Thermophys Heat Transf* 1999; 13(4): 474–480.
15. Akbar T, Batool S, Nawaz R, et al. Magnetohydrodynamics flow of nanofluid due to stretching/shrinking surface with slip effect. *Adv Mech Eng* 2017; 9(12): 1–11.
16. Brown NM and Lai FC. Correlations for combined heat and mass transfer from an open cavity in a horizontal channel. *Int Commun Heat Mass Transf* 2005; 32(8): 1000–1008.
17. Eastman JA, Choi SUS, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. *Appl Phys Lett* 2001; 78(6): 718–720.
18. Khudheyer AF. MHD mixed convection in double lid-driven flow of micron nanofluid induced by heat trapezoidal cavity. *Int J Appl Innov Eng Manag* 2015; 4(2): 100–107.
19. Roy G, Nguyen CT and Lajoie PR. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. *Superlattices Microstruct* 2004; 35(3–6): 497–511.
20. Kefayati GR, Gorji-Bandpy M, Sajjadi H, et al. Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. *Sci Iran* 2012; 19(4): 1053–1065.
21. Ahmed SE, Mansour MA, Hussein AK, et al. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. *Eng Sci Technol Int J* 2016; 19(1): 364–376.
22. Nadeem S and Hussain ST. Heat transfer analysis of Williamson fluid over exponentially stretching surface. *Appl Math Mech (Engl Ed)* 2014; 35(4): 489–502.
23. Waheed MA. Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate. *Int J Heat Mass Transf* 2009; 52(21–22): 5055–5063.
24. Sakiaidis BC. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. *AIChE J* 1961; 7(1): 26–28.
25. Crane LJ. Flow past a stretching plate. *J Appl Math Phys* 1970; 21: 645–647.
26. Gupta PS and Gupta AS. Heat and mass transfer on a stretching sheet. *Can J Chem Eng* 1977; 55: 744–746.
27. Tsou FK, Sparrow EM and Goldstein RJ. Flow and heat transfer in the boundary layer on a continuous moving surface. *Int J Heat Mass Transf* 1967; 10(2): 219–235.
28. Kumaran V and Ramanaiah G. A note on the flow over a stretching sheet. *Acta Mech* 1996; 116: 229–233.
29. Ali ME. On thermal boundary layer on a power-law stretched surface with suction or injection. *Int J Heat Fluid Flow* 1995; 16(4): 280–290.
30. Elbashbeshy EMA. Heat transfer over an exponentially stretching continuous surface with suction. *Arch Mech* 2001; 53(6): 643–651.
31. Ahmed A, Khan M, Ahmed J, et al. Mixed convective 3D flow of Maxwell nanofluid induced by stretching...
sheet: application of Cattaneo-Christov theory. Proc Inst Mech Eng Part C J Mech Eng Sci 2020; 1–10.

32. Chu YM, Rehman MIU, Khan MI, et al. Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: dual simulations through Runge-Kutta Fehlberg technique. Int Commun Heat Mass Transf 2020; 118: 104858.

33. Rasool G and Shafiq A. Numerical exploration of the features of thermally enhanced chemically reactive radiative Powell–Eyring nanofluid flow via Darcy medium over non-linearly stretching surface affected by a transverse magnetic field and convective boundary conditions. Appl Nanosci. Epub ahead of print 28 November 2020. DOI: 10.1007/s13204-020-01625-2.

34. Nadeem S and Hussain ST. Flow and heat transfer analysis of Williamson nanofluid. Appl Nanosci 2014; 4(8): 1005–1012.

Appendix

Notation

Symbol	Description
U_0	rate of stretching surface
B_0	magnetic field strength (N · m A$^{-1}$)
C_f	skin friction coefficient
Pr	Prandtl number
M	magnetic parameter
T	fluid temperature (K)
C_w	concentration of nanoparticle at the surface
u, v	velocity components (m s$^{-1}$)
D_T	coefficient of thermophoresis diffusion (m$^{-2}$ s$^{-1}$)
C	concentration of nanoparticle
C_w'	ambient concentration of nanoparticle
U_w	velocity at the wall
Pr	Prandtl number
s	suction/injection parameter
$\theta(\eta)$	temperature profile for PEST case
$g(\eta)$	concentration profile
Nt	thermophoretic parameter
Nu_s	represents local Nusselt
Sh_x	local Sherwood number

Nb Brownian parameter

T_w surface temperature (K)

T_∞ ambient temperature (K)

f dimensionless stream function

x, y Cartesian coordinates (m)

g nanoparticle volume fraction

Sc Schmidt number

D_B coefficient of Brownian diffusion (m$^{-2}$ s$^{-1}$)

Re_x Reynolds number

M magnetic parameter

$f'(\eta)$ velocity profile

$\phi(\eta)$ temperature profile for PEHF case

Greek letters

η dimensionless Similarity variable

σ electrical conductivity (S m$^{-1}$)

Γ positive time constant

α thermal diffusivity (m$^{-2}$ s$^{-1}$)

θ dimensionless temperature

$\rho_f\epsilon_p$ heat capacity of nanoparticles (J m$^{-3}$ K$^{-1}$)

ν Kinematic viscosity (m$^{-2}$ s$^{-1}$)

ρ density (kg m$^{-3}$)

λ Williamson fluid parameter

μ dynamic viscosity (kg m$^{-1}$ s$^{-1}$)

ρ_c heat capacity of the nanofluid (J m$^{-3}$ K$^{-1}$)

Superscripts

w condition at the surface

∞ condition at the free stream

Superscripts

$'$ derivative w.r.t η

Abbreviations

ODEs ordinary differential equations

PDEs partial differential equations