Testing The Core Competency Model of Multi-Product Exporters

Carsten Eckel
University of Munich, CEPR and CESifo

Beata Javorcik
University of Oxford, CEPR and CESifo

Leonardo Iacovone
The World Bank

J. Peter Neary
University of Oxford, CEPR and CESifo

EEA 2016, Geneva
August 24, 2016
Growing literature on multi-product firms (MPFs) in trade
- MPFs dominate exports
Growing literature on multi-product firms (MPFs) in trade

MPFs dominate exports

Partly based on the concept of “core competence/competency”:

Prahalad and Hamel (1990): “Core Competencies of the Corporation”:

- Contribute to the perceived customer benefits of the end product;
- Provide potential access to a wide variety of markets;
- Difficult to imitate by competitors.
Background: Multiproduct Firms in Trade

- Growing literature on multi-product firms (MPFs) in trade
 - MPFs dominate exports
- Partly based on the concept of “core competence/competency”:
 - Prahalad and Hamel (1990): “Core Competencies of the Corporation”:
 - Contribute to the perceived customer benefits of the end product;
 - Provide potential access to a wide variety of markets;
 - Difficult to imitate by competitors.
 - Eckel and Neary (2010): Core competence model of MPFs:
 - Costs of production differ across products;
 - At the level of the firm rather than of particular markets;
 - All products are differentiated from rivals’ as well as from each other.
Growing literature on multi-product firms (MPFs) in trade
- MPFs dominate exports

Partly based on the concept of “core competence/competency”:
- Prahalad and Hamel (1990): “Core Competencies of the Corporation”:
 - Contribute to the perceived customer benefits of the end product;
 - Provide potential access to a wide variety of markets;
 - Difficult to imitate by competitors.
- Eckel and Neary (2010): Core competence model of MPFs:
 - Costs of production differ across products;
 - At the level of the firm rather than of particular markets;
 - All products are differentiated from rivals’ as well as from each other.

Why does the core competence perspective matter?
- “Intra-firm extensive margin” an important channel of adjustment to trade shocks . . .
- . . . and a distinct source of potential gains from trade
- . . . because firm productivity varies with product scope
Our Contribution

- We focus on the predictions of the core competence model for firms of different productivity
- We extend model to allow for investment in market penetration
 - Arkolakis (2010), Arkolakis, Ganapati, and Muendler (2014)
- This allows us to explain the “market-size puzzle”:
 - For plausible parameter values, basic model predicts that most firms should export more of their core product than they sell at home.
Our Contribution

- We focus on the predictions of the core competence model for firms of different productivity.
- We extend model to allow for investment in market penetration:
 - Arkolakis (2010), Arkolakis, Ganapati, and Muendler (2014)
- This allows us to explain the “market-size puzzle”:
 - For plausible parameter values, basic model predicts that most firms should export more of their core product than they sell at home.
- We show that our extended model is consistent with Mexican data:
 - Data from Iacovone and Javorcik (2010):
 - Detailed plant-product-year data for both home and export sales
 - ... at the same level of disaggregation
Our Contribution

- We focus on the predictions of the core competence model for firms of different productivity
- We extend model to allow for investment in market penetration
 - Arkolakis (2010), Arkolakis, Ganapati, and Muendler (2014)
- This allows us to explain the “market-size puzzle”:
 - For plausible parameter values, basic model predicts that most firms should export more of their core product than they sell at home.
- We show that our extended model is consistent with Mexican data
 - Data from Iacovone and Javorcik (2010):
 - Detailed plant-product-year data for both home and export sales
 - ... at the same level of disaggregation
- A companion paper, Eckel, Iacovone, Javorcik, and Neary (2015), uses investment in quality to explain the “price-profile puzzle”:
 - Basic model predicts that core products should sell at lower prices
 - But the opposite is more common, especially for differentiated products
Related Work on Multi-Product Firms

a.k.a. “testing” relative to what?

- IO: Product scope small and/or fixed, vertical product differentiation:
 - Brander and Eaton (1984), Klemperer (1992), Baldwin and Ottaviano (2001), Johnson and Myatt (2003)

- Uniform Sales Profiles:
 - Helpman (1985), Ju (2003), Allanson and Montagna (2005), Feenstra and Ma (2008), Dhingra (2013), Qiu and Zhou (2013), Nocke and Yeaple (2014)

- Demand Differs across Products:
 - Bernard, Redding, and Schott (2010), Bernard, Redding, and Schott (2011)

- Core Competence Model:
 - Prahalad and Hamel (1990), Eckel and Neary (2010)
 - Monopolistic competition: Arkolakis, Ganapati, and Muendler (2014), Mayer, Melitz, and Ottaviano (2014), Timoshenko (2015)
 - Quality: Eckel, Iacovone, Javorcik, and Neary (2015)
Outline

1. Introduction

2. The Core Competence Model
 - Preferences
 - Technology
 - Optimal Scale and Scope

3. Sales Profiles in Home and Foreign Markets

4. Empirics

5. Summary and Conclusion
Preferences

- Utility function of a representative consumer:
 \[u = aQ - \frac{1}{2} b \left[(1 - e) \int_{i \in \tilde{\Omega}} q(i)^2 \, di + eQ^2 \right] \]

- \(\tilde{\Omega} \): The set of differentiated products
- \(q(i) \): Consumption of variety \(i \), \(Q \equiv \int_{i \in \tilde{\Omega}} q(i) \, di \)
- \(e \): Substitution index between goods (\(0 \leq e \leq 1 \))
Preferences

- Utility function of a representative consumer:
 \[u = aQ - \frac{1}{2}b \left[(1 - e) \int_{i \in \tilde{\Omega}} q(i)^2 di + eQ^2 \right] \]

 \(\tilde{\Omega} \): The set of differentiated products
 \(q(i) \): Consumption of variety \(i \), \(Q \equiv \int_{i \in \tilde{\Omega}} q(i) di \)
 \(e \): Substitution index between goods \((0 \leq e \leq 1)\)

- Alternative rationales:
 - \(u \) is a sub-utility function in an additively separable function; or
 - \(u \) is part of a quasi-linear utility function \(U = u + m \)
 - In either case, set marginal utility of income = 1

- Implied market demand functions \([x(i) = Lq(i)]\):
 \[p(i) = a - \tilde{b} \left[(1 - e)x(i) + eX \right], \quad i \in \Omega \subset \tilde{\Omega} \]

 \(\tilde{b} \): \(b/L \)
 \(X \): \(\int_{i \in \Omega} x(i) di \)
“Flexible Manufacturing” technology, as in Eckel and Neary (2010)

- Marginal production costs are independent of output but differ across products: \(c(i) \)
- Firm has a “core competence” product which it produces at lowest cost: \(c(0) = c_0 \)
- Adding more products incurs adaptation costs: \(c'(i) > 0 \)
“Flexible Manufacturing” technology, as in Eckel and Neary (2010)

- Marginal production costs are independent of output but differ across products: $c(i)$
- Firm has a “core competence” product which it produces at lowest cost: $c(0) = c_0$
- Adding more products incurs adaptation costs: $c'(i) > 0$

Industry of heterogeneous firms, differing in c_0

- We look at cross-section only, so all firms face the same residual demand curve in each market
- Consistent with either:
 - Monopolistic competition as in Mayer, Melitz, and Ottaviano (2014), Arkolakis, Ganapati, and Muendler (2014)
 - Oligopoly as in Eckel and Neary (2010)
Flexible Manufacturing

\[\pi = \int_{i \in \Omega} [p(i) - c(i) - t] x(i) \, di \]

First-order conditions for scale \(x(i) \) and scope \(\delta \):

\[\Omega = [0, \delta] \]

“Core Competence”
Firm wants to maximise operating profits:

\[
\pi = \int_{i \in \Omega} \left[p(i) - c(i) - t \right] x(i) di
\]
Firm wants to maximise operating profits:

$$\pi = \int_{i \in \Omega} [p(i) - c(i) - t] x(i) di$$

⇒ First-order conditions for scale $x(i)$ and scope δ: $\Omega = [0, \delta]$
First-Order Condition for Scale

\[p(i) = a - \tilde{b}eX \]

\[a - 2\tilde{b}eX \]

\[p(i) = a - \tilde{b}[(1-e)x(i) + eX] \]

"Cannibalization Effect"
First-Order Condition for Scale

\[p(i) = a - \tilde{b} eX \]

\[a - 2\tilde{b} eX \]

\[p(i) = a - \tilde{b}[(1-e)x(i) + eX] \]

\[\text{Cannibalization Effect} \]

Cannibalisation effect shifts the MR curve downwards

Produce where \(MC = MR \)
First-Order Condition for Scope

\[c(i) = a - 2\tilde{b}eX \]

Product Range

"Core Competence"

\[2\tilde{b}(1-e)X \]
First-Order Condition for Scope

- Produce a positive amount of a variety as long as its marginal cost ...
- \(\leq \) the marginal revenue of the first unit consumed: \(a - 2\tilde{b}eX \)
Output Profile

\[x(0) \]

\[x(i) \]

\[c(0) + t \]

\[c(i) + t \]

"Core Competence"
Output Profile

\[x(i) = \frac{a - c(i) - t - 2\tilde{b}eX}{2\tilde{b}(1 - e)} \quad i \in [0, \delta] \]
Output Profile

\[x(i) = \frac{a - c(i) - t - 2\tilde{b}eX}{2\tilde{b}(1 - e)} \quad i \in [0, \delta] \]

\[x(\delta) = 0 \quad \Rightarrow \quad x(i) = \frac{c(\delta) - c(i)}{2\tilde{b}(1 - e)} \]
Price Profile

“Core Competence”

\[p(i) = (i + t)(p(0)) \]

Prices and sales inversely related. Converse more plausible, especially in more differentiated-good industries: Eckel, Iacovone, Javorcik, and Neary (2015).
Prices and sales inversely related

Converse more plausible, especially in more differentiated-good industries: Eckel, Iacovone, Javorcik, and Neary (2015)
Outline

1. Introduction

2. The Core Competence Model

3. Sales Profiles in Home and Foreign Markets
 - Sales Profiles
 - The Market-Size Puzzle
 - Resolving the Puzzle: Export Market Penetration Costs
 - Recap: Predictions of the Model

4. Empirics

5. Summary and Conclusion
Sales Profiles at Home and Away

(a) Trade-Cost Effect

- Segmented home and foreign markets: () and (*)
- Sales: \(r(i) = p(i)x(i), \quad r^*(i) = p^*(i)x^*(i) \)

(b) Market-Size Effect

(c) Combined Effect
Sales Profiles at Home and Away

(a) Trade-Cost Effect

- Segmented home and foreign markets: () and (*)
- Sales: \(r(i) = p(i)x(i) \), \(r^*(i) = p^*(i)x^*(i) \)
- Predictions of model:
 - All firms export fewer products: \(\delta^* \leq \delta \)
 - Export ratio of core product ambiguous in general: \(\frac{r^*(0)}{r(0)} \geq 1 \)
 - BUT: Simple calibrations suggest it should be \(> 1 \) for most firms

(b) Market-Size Effect

(c) Combined Effect
Most Mexican firms should have higher exports of their core product:

\[
\begin{align*}
 \text{Large differences in market size: } L^* &>> L \\
 \text{Relatively low trade costs: 95% of exports to NAFTA}
\end{align*}
\]
The Market-Size Puzzle

- Most Mexican firms should have higher exports of their core product:
 - Large differences in market size: $L^* \gg L$
 - Relatively low trade costs: 95% of exports to NAFTA
- To resolve the puzzle, we introduce *market penetration costs*:
 - Reaching a proportion n of foreign consumers incurs costs $f(n)$:
 - Assume: $f(0) = 0$, $f' > 0$, $f'' > 0$, and $\lim_{n \to 1} f(n) = \infty$
The Market-Size Puzzle

- Most Mexican firms should have higher exports of their core product:
 - Large differences in market size: \(L^* \gg L \)
 - Relatively low trade costs: 95% of exports to NAFTA
- To resolve the puzzle, we introduce market penetration costs:
 - Reaching a proportion \(n \) of foreign consumers incurs costs \(f(n) \):
 - Assume: \(f(0) = 0, f' > 0, f'' > 0 \), and \(\lim_{n \to 1} f(n) = \infty \)
 - \(q^*(i) \): Sales per consumer abroad; exports: \(x^*(i) = nL^*q^*(i) \)
The Market-Size Puzzle

- Most Mexican firms should have higher exports of their core product:
 - Large differences in market size: $L^* \gg L$
 - Relatively low trade costs: 95% of exports to NAFTA

- To resolve the puzzle, we introduce *market penetration costs*:
 - Reaching a proportion n of foreign consumers incurs costs $f(n)$:
 - Assume: $f(0) = 0$, $f' > 0$, $f'' > 0$, and $\lim_{n \to 1} f(n) = \infty$
 - $q^*(i)$: Sales *per consumer* abroad; exports: $x^*(i) = nL^* q^*(i)$
 - Sales profile $\{q^*(i)\}$ and scope δ^* chosen optimally:

$$\pi^*(c_0) = \max_{\{q^*(i)\}, \delta^*} \left[\int_0^{\delta^*} \{p^*(i) - c(i) - t\} q^*(i) di \right]$$
The Market-Size Puzzle

- Most Mexican firms should have higher exports of their core product:
 - Large differences in market size: $L^* \gg L$
 - Relatively low trade costs: 95% of exports to NAFTA

To resolve the puzzle, we introduce *market penetration costs*:

- Reaching a proportion n of foreign consumers incurs costs $f(n)$:
 - Assume: $f(0) = 0$, $f' > 0$, $f'' > 0$, and $\lim_{n \to 1} f(n) = \infty$

- $q^*(i)$: Sales per consumer abroad; exports: $x^*(i) = nL^*q^*(i)$

- Sales profile $\{q^*(i)\}$ and scope δ^* chosen optimally:

$$
\bar{\pi}^*(c_0) = \max_{\{q^*(i)\}, \delta^*} \left[\int_0^{\delta^*} \{p^*(i) - c(i) - t\} q^*(i) di \right]
$$

$$
\Pi^*(c_0) = \max_n \left[nL^* \bar{\pi}^*(c_0) - f(n) \right]
$$
The Market-Size Puzzle

Most Mexican firms should have higher exports of their core product:
- Large differences in market size: $L^* \gg L$
- Relatively low trade costs: 95% of exports to NAFTA

To resolve the puzzle, we introduce *market penetration costs*:
- Reaching a proportion n of foreign consumers incurs costs $f(n)$:
 - Assume: $f(0) = 0$, $f' > 0$, $f'' > 0$, and $\lim_{n \to 1} f(n) = \infty$
- $q^*(i)$: Sales *per consumer* abroad; exports: $x^*(i) = nL^*q^*(i)$
- Sales profile $\{q^*(i)\}$ and scope δ^* chosen optimally:

$$\bar{\pi}^*(c_0) = \max_{\{q^*(i)\}, \delta^*} \left[\int_0^{\delta^*} \{p^*(i) - c(i) - t\} q^*(i) di \right]$$

$$\Pi^*(c_0) = \max_n \left[nL^* \bar{\pi}^*(c_0) - f(n) \right]$$

Results:
- $n < 1$ for all firms;
- n higher for more productive firms: $\frac{dn}{dc} < 0$
Resolving the Market-Size Puzzle

Sales:

\[r^*(i) = p^*(i)x^*(i) = \frac{[a + c(i) + t][c(\delta^*) - c(i)]}{4b(1 - e)} L^* n \]
Resolving the Market-Size Puzzle

- **Sales:**
 \[r^*(i) = p^*(i)x^*(i) = \frac{[a + c(i) + t][c(\delta^*) - c(i)]}{4b(1 - e)} L^* n \]

- **Ratio of export to home sales:**
 \[\frac{r^*(i)}{r(i)} = \frac{a + c(i) + t}{a + c(i)} \frac{c(\delta^*) - c(i)}{c(\delta) - c(i)} \frac{L^*}{L} n \]

 (1) Higher gross prices abroad
 (2) Lower sales per consumer abroad
 (3) Larger market size
 (4) Lower foreign market penetration:
 \[0 \leq n \leq 1 < 1 \uparrow \uparrow \]

Eckel-Iacovone-Javorcik-Neary Testing The Core Competence Model August 24, 2016 17 / 32
Resolving the Market-Size Puzzle

Sales:

\[r^*(i) = p^*(i)x^*(i) = \frac{[a + c(i) + t][c(\delta^*) - c(i)]}{4b(1 - e)} L^* n \]

Ratio of export to home sales:

\[\frac{r^*(i)}{r(i)} = \frac{a + c(i) + t}{a + c(i)} \frac{c(\delta^*) - c(i)}{c(\delta) - c(i)} \frac{L^*}{L} n \]

Effect	\(c_0 \downarrow \)
(1) Higher gross prices abroad	\(> 1 \) ↑
(2) Lower sales per consumer abroad	\(< 1 \) ↑
(3) Larger market size	\(>> 1 \) n/a
(4) Lower foreign market penetration: \(0 \leq n \leq 1 \)	\(< 1 \) ↑↑
Recap: Predictions of the Model

Predictions:

1. The profile of sales revenue in a given market is not uniform
2. The ranking of varieties by sales revenue is the same in home and foreign markets
3. Irrespective of relative market sizes, a firm’s product range is larger in its home market
4. All exported products are also sold at home
5. Sales of core products are higher in the export relative to the home market for more productive firms
Recap: Predictions of the Model

Predictions:

1. The profile of sales revenue in a given market is not uniform
2. The ranking of varieties by sales revenue is the same in home and foreign markets
3. Irrespective of relative market sizes, a firm’s product range is larger in its home market
4. All exported products are also sold at home
5. Sales of core products are higher in the export relative to the home market for more productive firms

Data:

- As in Eckel et al. (2015)
- 58,106 Mexican plants, 1994-2004, 175,195 products, of which 39,272 exported
Outline

1 Introduction

2 The Core Competence Model

3 Sales Profiles in Home and Foreign Markets

4 Empirics
 - Is the profile of sales revenue uniform?
 - Is the ranking of varieties the same in both markets?
 - Do firms sell more products in their home market?
 - Are all exported products also sold at home?
 - Are export sales higher than home sales?

5 Summary and Conclusion
Prediction 1: Sales Profiles are not Uniform

Ratio of i'th to top	mean
Ratio of 2nd to top	0.408
Ratio of 3rd to top	0.234
Ratio of 4th to top	0.162
Ratio of 5th to top	0.125
Ratio of 6th to top	0.100
Ratio of 7th to top	0.078

- Ratio of sales of i’th product to those of top product
- Clearly, sales profile is not uniform across products
Sales Profiles in Detail

Sold products (value of sales)

Ratio of 2nd to top	mean	10th pctile	25th pctile	50th pctile	75th pctile	90th pctile	No. of plants
	0.408	0.041	0.140	0.365	0.649	0.857	36,059
Ratio of 3rd to top	0.234	0.015	0.053	0.166	0.360	0.569	24,119
Ratio of 4th to top	0.162	0.008	0.030	0.102	0.239	0.409	16,405
Ratio of 5th to top	0.125	0.005	0.022	0.075	0.180	0.321	11,476
Ratio of 6th to top	0.100	0.004	0.018	0.057	0.141	0.253	8,318
Ratio of 7th to top	0.078	0.003	0.014	0.042	0.106	0.198	6,192

Only plants with 5 products

Ratio of 2nd to top	mean	10th pctile	25th pctile	50th pctile	75th pctile	90th pctile	No. of plants
	0.475	0.108	0.230	0.460	0.708	0.889	3,157
Ratio of 3rd to top	0.241	0.035	0.081	0.185	0.352	0.533	3,157
Ratio of 4th to top	0.119	0.007	0.023	0.071	0.170	0.301	3,157
Ratio of 5th to top	0.052	0.001	0.004	0.019	0.066	0.135	3,157

Only plants with 3 products

Ratio of 2nd to top	mean	10th pctile	25th pctile	50th pctile	75th pctile	90th pctile	No. of plants
	0.392	0.051	0.142	0.336	0.616	0.833	7,697
Ratio of 3rd to top	0.132	0.004	0.016	0.057	0.182	0.376	7,697

Note: products which tied in terms of their rank were excluded from the bottom two panels of the table.
2: Same Product Ranking at Home and Away

Dependent variable: product rank in terms of domestic sales
Product rank in terms of export sales
Intercept
Plant fixed effects
No. of obs.
R-squared

Note: *** denotes significance at the one percent level
Product Ranking at Home and Away in Detail

Is the ranking of varieties the same in both markets?

Rank in export sales	1	2	3	4	5	Total
Number of products						
Rank in domestic sales						
1	7,430	1,756	459	168	139	9,952
2	2,615	3,524	846	307	208	7,500
3	909	1,156	1,440	434	317	4,256
4	354	446	606	710	421	2,537
5+	357	527	675	698	2,984	5,241
Total	11,665	7,409	4,026	2,317	4,069	29,486

Rank in domestic sales						
Percentage of products with a given rank in export sales						
1	75%	18%	5%	2%	1%	100%
2	35%	47%	11%	4%	3%	100%
3	21%	27%	34%	10%	7%	100%
4	14%	18%	24%	28%	17%	100%
5+	7%	10%	13%	13%	57%	100%
Total	40%	25%	14%	8%	14%	100%
3: Larger Product Range at Home than Away

- Ratio of number of exported to home products
- Very few firms (2.2%) sell more abroad; 61.9% sell fewer
4: Almost all Exported Products are Sold at Home

- Only 2.5% of exported products are not sold at home
- True for all years in the sample
Prediction 5: Sales Abroad Relative to Home

- Ratio of sales of top three products abroad relative to home
- Most firms sell less abroad; top firms sell much more

Empirics

Are export sales higher than home sales?

	10th pctile	25th pctile	50th pctile	75th pctile	95th pctile
Top	0.009	0.039	0.160	0.599	3.448
2nd	0.010	0.042	0.165	0.629	3.598
3rd	0.009	0.036	0.134	0.558	3.197
Sales of Core Product Abroad Relative to Home

	r*(0)/r(0)	ln(Plant global sales)	ln(Plant global sales) squared	6-digit-industry year FE	Plant FE	Year FE	Adj R-squared	No. of obs.
		-0.011 (0.008)	0.039*** (0.011)	no	no	yes	0.000	9,770
ln(Plant global sales)		0.128*** (0.025)		no	no	yes	0.134	9,770
		-0.429*** (0.081)		no	no	yes	0.587	9,770
ln(Plant global sales) squared		-0.243** (0.097)	0.018*** (0.003)	yes	no	yes	0.003	9,770
		0.350** (0.142)	-0.010 (0.006)	yes	no	yes	0.134	9,770

- Ratio of sales of top product abroad relative to home
- Positively related to global sales
Summary and Conclusion

- **Theory:**
 - We focus on the predictions of the core competence model for firms of different productivity
 - We combine market penetration costs and multi-product firms
 - This allows us to explain the market-size puzzle

- **Empirics:**
 - We show that our model is consistent with Mexican data
 - Highly disaggregated data on both home and foreign sales

- **Empirical findings:**
 - Profile of sales is highly non-uniform
 - Ranking of products is the same in home and export sales
 - Product ranges are weakly larger in home market
 - Almost all exported products are sold at home
 - Export sales are much lower, except for the largest firms
Thank you for listening. Comments welcome!

Peter Neary’s research on this paper has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC grant agreement no. 295669. The contents reflect only the authors’ views and not the views of the ERC or the European Commission, and the European Union is not liable for any use that may be made of the information contained therein.
Market Penetration Costs: Details

- Market Penetration Costs:
 \[\Pi^*(c_0) = \max_n \left[nL^* \pi^*(c_0) - f(n) \right], \quad \pi^*(c_0) = \max_{\{q^*(i)\}, \delta^*} \left[\int_0^{\delta^*} \{p^*(i) - c(i) - t\} q^*(i) di \right] \]

- Arkolakis: CES preferences; \(f(n) = \frac{1-(1-n)^{1-\beta}}{1-\beta}, \quad \beta \in (0, \infty), \quad \beta \neq 1 \)

- Mrázová and Neary (2011): Comparative statics hold more generally

- First-order condition: \(L^* \pi^*(c_0) = f'(n) \)

- More productive firms spend more on market penetration:
 \[\frac{dn}{dc_0} = L^* \frac{d\pi^*}{dc_0} = f''(n) < 0 \]

- Envelope theorem:
 \[\frac{d\pi^*}{dc_0} = \frac{\partial \pi^*}{\partial c_0} = -\int_0^{\delta^*} q^*(i) di = -\frac{X^*}{nL^*} < 0 \]
The Data

Mexican survey giving plant-product-level data:

- *Encuesta Industrial Mensual* (EIM): home and foreign sales
- Monthly survey, aggregated to annual observations 1994-2004
- Coverage: c. 85% of Mexican industrial output (exc. “maquiladoras”)
- From 6,291 (1994) to 4,424 (2004) plants
- ... of which, 1,579 to 2,137 engaged in exporting
- Information on 3,183 unique products, in 205 *clases*
 - Similar to 6-digit Harmonized System
- Detailed plant-product-year data for home and export sales
- ... consistently concorded at the same level of disaggregation
Number of Plants and Products

Year	Total Owned by	Other Exporters	Number of products
	MPFs¹	Total/Adjusted	Produced/Exported
1994	6,291	1,259/5,032	19,154/2,844
1995	6,011	1,245/4,766	18,568/3,406
1996	5,747	1,256/4,491	17,662/3,881
1997	5,538	1,256/4,282	16,938/4,092
1998	5,380	1,268/4,112	16,419/4,193
1999	5,230	1,279/3,951	15,885/3,889
2000	5,100	1,280/3,820	15,279/3,737
2001	4,927	1,258/3,669	14,714/3,509
2002	4,765	1,237/3,528	14,182/3,321
2003	4,603	1,193/3,410	13,507/3,282
2004	4,424	1,159/3,265	12,887/3,118
Total	58,016	13,690/44,326	175,195/39,272

(1) MPFs: Multi-plant firms; information on the number of plants owned by a single firm is available for 2003 only.
(2) The adjusted data exclude plants not reporting production in the year in question.
Examples of Product Classification into Classes

- 313014: “Distilled Alcoholic Beverages”:
 - Gin
 - Vodka
 - Whisky
 - Other distilled alcoholic beverages
 - Coffee liqueurs
 - “Habanero” liqueurs
 - “Rompope”
 - Prepared cocktails
 - Hydroalcoholic extract
 - Other alcoholic beverages prepared from agave,
 - or brandy,
 - or rum,
 - or table wine
Examples of Classification into Clases (cont.)

- 313011: “Produccion De Tequila Y Mezcal”:
 - Tequila
 - Mezcal
 - Sangrita
 - Otras Bebidas Preparadas (Especificar) [Other Prepared Beverages (to be Specified)]
 - Otras Bebidas Alcoholicas (Especificar) [Other Alcoholic Beverages (to be Specified)]
 - Otros Desechos Y Subproductos [Other Subproducts and Waste]
 - Otros Productos No Genericos [Other Non-Generic Products]
Differentiated vs. Non-Differentiated Classes

Differentiated:
- 311901: Produccion de chocolate y golosinas a partir de cocoa o chocolate
 - Production of chocolate and candy from cocoa or chocolate
- 323003: Produccion de maletas, bolsas de mano y similares
 - Production of suitcases, handbags and similar
- 322005: Confeccion de camisas
 - Ready-to-wear shirts

Non-Differentiated:
- 311201: Pasteurizacion de leche
 - Pasteurization of milk
- 311404: Produccion de harina de trigo
 - Production of wheat flour
- 341021: Produccion de papel
 - Production of paper
References I

Arkolakis, C. (2010): “Market Penetration Costs and the New Consumers Margin in International Trade,” *Journal of Political Economy*, 118(6), 1151–1199.

Arkolakis, C., S. Ganapati, AND M.-A. Muendler (2014): “The Extensive Margin of Exporting Products: A Firm-Level Analysis,” Working paper, Yale University.

Bernard, A. B., S. J. Redding, AND P. K. Schott (2010): “Multiple-Product Firms and Product Switching,” *American Economic Review*, 100(1), 70–97.

——— (2011): “Multi-Product Firms and Trade Liberalization,” *Quarterly Journal of Economics*, 126(3), 1271–1318.

Dhingra, S. (2013): “Trading Away Wide Brands for Cheap Brands,” *American Economic Review*, 103(6), 2554–2584.

Eckel, C., L. Iacovone, B. Javorcik, AND J. P. Neary (2015): “Multi-Product Firms at Home and Away: Cost- versus Quality-Based Competence,” *Journal of International Economics*, 95(2), 216–232.

Eckel, C., AND J. P. Neary (2010): “Multi-Product Firms and Flexible Manufacturing in the Global Economy,” *Review of Economic Studies*, 77(1), 188–217.

Feenstra, R., AND H. Ma (2008): “Optimal Choice of Product Scope for Multiproduct Firms,” in E. Helpman, D. Marin and T. Verdier (eds.) : *The Organization of Firms in a Global Economy*, Harvard University Press, 173–199.
HELPMAN, E. (1985): “Multinational Corporations and Trade Structure,” *Review of Economic Studies*, 52, 443–457.

IACOVONE, L., AND B. S. JAVORCIK (2010): “Multi-Product Exporters: Product Churning, Uncertainty and Export Discoveries,” *Economic Journal*, 120(544), 481–499.

MAYER, T., M. J. MELITZ, AND G. I. OTTAVIANO (2014): “Market Size, Competition, and the Product Mix of Exporters,” *American Economic Review*, 104(2), 495–536.

MRÁZOVÁ, M., AND J. P. NEARY (2011): “Selection Effects with Heterogeneous Firms,” Discussion Paper No. 588, Department of Economics, University of Oxford.

Nocke, V., AND S. Yeaple (2014): “Globalization and Multiproduct Firms,” *International Economic Review*, 55(4), 993–1018.

Prahalad, C., AND G. Hamel (1990): “The Core Competency of the Corporation,” *Harvard Business Review*, 68(3), 79–91.

QIU, L. D., AND W. ZHOU (2013): “Multiproduct Firms and Scope Adjustment in Globalization,” *Journal of International Economics*, 91(1), 142–153.

Timoshenko, O. A. (2015): “Product Switching in a Model of Learning,” *Journal of International Economics*, 95(2), 233–249.