Biochemical and biophysical characterization of humanized IgG1 produced in *Pichia pastoris*

Sha Ha, Yang Wang and Richard R. Rustandi*

Department of Bioprocess Analytical and Formulation Sciences; Merck Research Laboratories; West Point, PA USA

Key words: *Pichia pastoris*, IgG, N-linked glycan, O-linked glycan, analytical characterization

Abbreviations: IgG, immunoglobulin; NGHC, non-glycosylated heavy chain; HC, heavy chain; LC, light chain; CEX, cation exchange chromatography; SEC, size exclusion chromatography; cIEF, capillary isoelectric focusing; DSC, differential scanning calorimetry; CE-SDS, capillary electrophoresis sodium dodecyl sulfate; ADCC, antibody-dependent cellular cytotoxicity; FcyR, human Fcγ receptor; FcRn, neonatal Fc receptor

The first full length IgG produced in *Pichia pastoris* was reported in late 1980. However, use of a wild-type Pichia expression system to produce IgGs with human-like N-linked glycans was not possible until recently. Advances in glycoengineering have enabled organisms such as Pichia to mimic human N-glycan biosynthesis and produce IgGs with human glycans on an industrial scale. Since there are only a few reports of the analytical characterization of Pichia-produced IgG, we summarize the results known in this field, and provide additional characterization data generated in our laboratories. The data suggest that Pichia-produced IgG has the same stability as that produced in Chinese hamster ovary (CHO) cells. It has similar aggregation profiles, charge variant distribution and oxidation levels as those for a CHO IgG. It contains human N-linked glycans and O-linked single mannose. Because of the comparable biophysical and biochemical characteristics, glycoengineered *Pichia pastoris* is an attractive expression system for therapeutic IgG productions.

In both technologies, the secretory pathway of *Pichia pastoris* is genetically engineered to replicate human-like N-linked glycan biosynthesis. Genes responsible for yeast high mannose glycans, e.g., *och1*, are disrupted, and a series of glycosidases and glycosyltransferases are introduced (Fig. 1). The first step of the humanized N-linked glycan synthesis involves an early Golgi mannosidase that trims Man8 to Man5 core structure (Step I). Man5 is then glycosylated to a hybrid structure GlcNAcMan5 by a Golgi-residing fusion protein N-acetylgalactosaminyltransferase I (Step II). Next, a mannosidase II (MnsII) is introduced in Golgi and quantitatively converts the hybrid structure to GlcNAcMan3 (Step III): GlcNAcMan3 is then further glycosylated to G0 structure by N-acetylgalactosaminyltransferase II (GnTII) (Step IV). The last step involves the addition of Gal sugars to the non-reducing end of terminal GlcNAc and is achieved by the introduction of galactosyltransferase (GaIT), as well as ways that increase the cellular pool of UDP-galactose substrate (Step V).

Because of the extensive genetic engineering in Pichia, one of the perceived challenges for industrial scale Pichia IgG production is genetic stability. In the last two years a robust and scalable fermentation process for glycoengineered Pichia with titers of more than 1 g/L of fully assembled IgG1 with uniform N-linked glycosylation was reported. Portieter et al. showed that the N-linked glycan fidelity can be maintained for up to 64 generations, which is double the passage numbers required for a 2,000 L fermentation scale. In addition, the authors have demonstrated that both the productivity and N-linked glycan quality can be maintained across a range of fermentation conditions. The genetic stability of this Pichia strain has laid a solid foundation for industrial scale IgG production.

Since Pichia technology for IgG production is relatively new, there are only a few publications on biochemical and biophysical characterization of Pichia-produced IgG. In early reports of IgG fragments expressed in *Pichia pastoris*, most groups used simple biochemical methods, such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and ELISA, for product characterization, although some used size-exclusion chromatography (SEC), Biacore, nuclear magnetic resonance, peptide mapping, mass spectrometry (MS) and N-terminal sequencing methods. More in-depth
IgG is typically formulated for the high-concentration doses required to achieve therapeutic efficacy. However, IgG has a tendency to form aggregates such as dimers, trimers and multimers when concentrated, and the high-order aggregates could have deleterious consequence, e.g., reduced activity, increased immunogenicity, poor solubility. The tendency toward formation of aggregates is governed by several factors, including intrinsic properties and external conditions during product development. For example, during process development, IgG can experience temperature, pressure, pH and ionic strength changes that can cause aggregation. A number of methods can be used to measure aggregations, but SEC is considered the workhorse for detection and quantification of IgG aggregations. The SEC profile of one IgG1 produced in P. pastoris is shown in Figure 2; SEC method used is described in Cohen et al. The early elution peak represents aggregations, while the monomer form elutes at about 16 min. The fragment is below the quantitation limit for this IgG1 molecule. The amount of aggregation in Pichia expressed IgG is less than 5%, which is similar to typical IgGs produced in either CHO or NS0 cell lines.

Charge Heterogeneities

Charge variant heterogeneities are generated through several pathways such as chemical modification, incomplete enzymatic reaction, and other post-translational modifications. In IgG, these modifications result in charge-based heterogeneities such as deamidation, acetylation, N-terminal cyclization to pyrrolidonecarboxylic acid, incomplete glycosylation, C-terminal lysine cleavage, glycation, phosphorylation and sialylation. Deamidation, in particular, is of great interest as it is one of the major degradation pathways for IgG, and IgG with deamidation in the complementarity-determining region is shown to have reduced biological activity. Deamidation contributes to the majority of the acidic variants of an IgG and is typically monitored through cation-exchange chromatography.
Purity and N-Linked Glycan Occupancy by Capillary Electrophoresis-SDS Gel

Capillary electrophoresis (CE)-SDS gel is becoming a standard technique to evaluate IgG purity under both reducing and non-reducing conditions, replacing the older, labor-intensive and manual slab SDS-PAGE gel. Similar as SDS-PAGE, the separation principle of the CE-SDS gel is based on molecular weight, but CE-SDS gel has the advantages of automatability, reproducibility, easy quantitation, robustness, high resolution and throughput. Unique to the CE-SDS method under reducing condition, the glycosylated heavy chain can be well separated from the non-glycosylated heavy chain (NGHC). Therefore, this method can provide information regarding N-linked glycan occupancy, in addition to purity and percentage of fragmentation. Furthermore, non-reducing CE-SDS gel provides orthogonal information to SEC regarding covalent aggregations and intact IgG.56,57 We have compared CHO- and P. pastoris-produced IgGs using CE-SDS gel under both reducing and non-reducing conditions. The electropherograms under reducing conditions show the profile of light chain (LC), heavy chain (HC) and NGHC (Fig. 4A). High purity with (LC + HC + NGHC) >99% and no fragmentation are achieved for both IgGs. However, with this particular Pichia strain and the fermentation conditions used, the NGHC from the Pichia-produced IgG is ~10%, higher than the level normally observed for IgG produced in CHO or NS0 (<2%). The majority of the observed NGHC could pair with a glycosylated HC and form hemi-glycosylated IgG. Since hemi-glycosylated IgG has impaired binding affinity to FcγRs, the quantity of NGHC could be important for some applications where effector functionality is required.58 As shown in Figure 4B, under non-reducing condition the intact IgG percentage for Pichia-produced IgG

Methionine Oxidation

Methionine oxidation is another post-translational modification that can occur either during antibody production or storage. Two conserved methionine residues in human IgG1, Met 252 and Met 428, are particularly prone to oxidation.50-52 Oxidation of these two methionine residues has been shown to decrease the binding affinity of IgG to FcRn,53 which consequently reduces its serum half-life.54 Methionine oxidation can be quantified by either Protein A high-performance liquid chromatography or peptide mapping.33,55 Using the peptide mapping method as described in Bertolotti-Ciarlet et al.53 we demonstrated that Pichia-produced IgG1 has a level of oxidation comparable to the oxidation level typically observed in CHO-produced IgG1.

Figure 3. (A) Charge heterogeneity of IgG1 revealed by cation exchange chromatography. In this assay, the Pichia-produced IgG1 (lower trace) has 15% acidic variants, 84% main fraction and 1% basic variants. The CHO produced IgG1 (upper trace) has 23%, 61% and 16% acidic, main and basic fractions, respectively. The CEX separation was performed using Dionex ProPac WCX-10 column (4 x 250 mm) with a salt gradient elution and UV detection at 280 nm wavelength. The mobile phase A contained 25 mM sodium phosphate at pH 6.5 and the mobile phase B contained 25 mM sodium phosphate, 300 mM sodium chloride and 0.05% sodium azide at pH 6.5. The salt gradient elution was 4%–22% mobile phase B in 28 min at 1 mL/min flow rate. (B) Charge heterogeneity of IgG1 revealed by imaged capillary isoelectric focusing. The acidic, main and basic fractions assessed by this assay are 24, 75, 1% for Pichia-produced IgG1 (lower trace) and 33, 62, 5% for CHO-produced IgG1 (upper trace), respectively. Imaged capillary isoelectric focusing was carried out using Convergent Bioscience iCE280 analyzer. Samples were diluted to 0.25 mg/mL in a solution containing 0.35% methylcellulose, a mixture of pH 3–10 and 8–10 carrier ampholytes, and two pl markers of 7.6 and 9.5. The prepared samples were focused in a 5 cm long, 100 μm ID x 200 μm OD silica capillary and detected at 280 nm. Focusing time was 1 min at 1.5 kV then 8 min at 3 kV.
is >96%, comparable with IgG produced in CHO or NS0. There are no covalently linked aggregations observed for either of the IgGs. The CE-SDS method used was similar to the one described in Rustandi et al.37

N-Linked Glycan Composition

Human IgG is glycosylated at heavy chain Asn297. The N-linked glycan of human serum IgGs contains predominantly biantennary complex-type structures, with the majority being core-fucosylated—G0F/G1F/G2F. A small percentage of IgG can have sialeylated termini—A2F/A1F or contain a bisecting GlcNAc,59,60 and N-linked glycosylation can also be found in the Fab region.61 Current commercial IgGs produced in CHO or NS0 cell lines contain mostly core-fucosylated glycan structures on Asn297, similar to glycoforms present in human IgGs. However, CHO or NS0 can add abnormal sugars to IgGs, which may lead to immunogenic reactions. A recent report by Chung et al. on the hypersensitivity reaction towards cetuximab (Erbitux®) has highlighted the importance of glycan structures.62 Thus, industry guidelines for the thorough characterization of the glycan profile of IgG products have been provided by regulatory agencies.

The N-linked glycan composition can be analyzed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and electrospray ionization (ESI)-MS using either intact or PNGase digested IgG.63,64 N-glycan profiles for both Pichia- and CHO-derived anti-Her2 mAb have been compared.36,65 While CHO-derived IgG contains predominantly fucosylated G0F and G1F glycans, Pichia-derived IgG is 100% afucosylated and contains mainly G0 and G1 glycans. N-glycan composition can also be analyzed by capillary electrophoresis with laser-induced fluorescence detection.66,67 The ESI-TOF spectra of reduced HCs for both CHO and Pichia-produced IgGs are shown in Figure 5, which illustrates that the Pichia-produced IgG contains mainly G0 and small amount of G1, G2 and Man5. Man5 is also present in the commercially-available, CHO-produced IgG.

O-Linked Glycosylation

O-glycosylation is an important post-translational modification on the Ser/Thr residuals. Mammalian proteins have mainly O-linked GalNAc (mucin-type), Fuc and Glu sugars, while those from yeast have distinctive O-linked oligomannose. The majority of yeast cell wall proteins are O-mannosylated, which is essential for maintaining a stable cell wall. In 1998, Duman et al. showed direct evidence that not only the yeast cellular proteins, but also recombinant proteins from the yeast host, contain O-mannosylation.68 The O-linked glycans from Pichia-expressed recombinant protein comprise from dimeric to pentameric α1,2-linked mannose, while dimeric and trimeric mannose are the two major components of the O-linked glycans.68

Although O-mannosylation is highly abundant in yeast, it is less frequent in mammals. Protein O-mannosylation in mammals has been identified in brain, nerve and muscular tissues.69-72 The most well-characterized human O-mannosylated protein is dystroglycan.73 It has a highly O-mannosylated extracellular domain, with a high abundance of Neu5Ac-Gal-GlcNAc-Man glycan structure. Its impaired O-glycosylation has been linked to several muscular dystrophies.

Although most marketed therapeutic IgGs do not have O-glycosylation, endogenous IgG is known to contain O-glycosylations. Approximately 40% of mouse IgG2b heavy chain hinge region is O-glycosylated, containing mainly the mucin-type tetrasaccharide.74 Arnold et al. have shown that human serum IgA and IgD have multiple O-linked glycosylation within their hinge region.75 O-mannosylated IgG is uncommon; however, an IgG2 produced in both CHO cell line and COS transient cells has been reported to be O-mannosylated on Ser66 of the LC.76

![Figure 4](https://example.com/figure4.png)

Figure 4. (A) CE-SDS gel electropherograms of IgG1 produced in CHO (lower trace) and Pichia (upper trace) under reducing condition. Both have typical IgG pattern with LC, HC and NGHC. This particular Pichia-produced IgG1 contains about 10% NGHC compared to 1% of NGHC in CHO IgG1. Samples (1 mg/mL) were reduced in beta mercaptoethanol (2-ME) containing 0.5% SDS and heated at 70°C for 10 min. CE-SDS gel was performed using Beckman PA800 CE system (220 nm detection) in bare-fused silica capillary. Sample was injected at anode with reverse polarity using -5 kV for 25 s. The separation was performed at -15 kV reverse polarity with 20 psi at both ends of capillary for 30 min. (B) CE-SDS gel electropherograms of IgG1 produced in CHO (lower trace) and Pichia (upper trace) under non-reducing condition. Both have >96% intact IgG with no covalently linked aggregates. Non-reducing samples (1 mg/mL) were treated with 25 mM iodoacetamide in the presence of 0.5% SDS and heated at 70°C for 10 min. CE separation was the same as described in reducing samples above.
The challenge for the Pichia expression system is how to eliminate yeast-like O-mannosylation on the expressed IgGs. Because O-glycosylation is essential to cell survival, complete elimination of O-glycosylation is lethal to yeast.77 However, progress has been made in inhibiting O-glycosylation using small molecule protein-O-mannosyltransferase inhibitors (PMTi).78

As there is no specific enzyme to cleave O-glycans from IgG, the most common release is via chemical β-elimination reaction catalyzed by base. The reaction is then followed immediately with reduction to prevent peeling reaction. Subsequently, the released O-glycans are analyzed with high-performance anion-exchange chromatography with pulsed amperometric detection.79 In general, there is only one type of O-glycan, mannose, observed in Pichia-produced IgG, and its total occupancy can be controlled to a low level of less than 2 mole of mannose per mole of IgG.

Secondary and Tertiary Structures

Circular dichroism (CD) has been routinely used to evaluate protein secondary and tertiary structures. We have compared the far-ultraviolet (UV: 200–260 nm) and the near-UV (260–320 nm) CD spectra (Fig. 6A and B, respectively) of CHO- and Pichia-produced IgG1. The far-UV CD spectra of the two IgG1 overlap with each other, indicating that the two IgG1 have comparable secondary structures regardless of the expression system. The similarity between the near-UV CD spectra indicates the comparable tertiary structures of the two IgG1. The CD method is similar to that described in Wang et al. with minor modifications.80

Thermal Stability by Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is an important tool to characterize the thermal stability of IgGs. Since antigen-binding fragments (Fab), CH1, and CH2 domains unfold with increasing temperature, the DSC profile has been used to evaluate the structural integrity and stability of these domains. The DSC thermograms of one IgG1 expressed from both CHO cells and *Pichia pastoris* are shown in Figure 7. The first transition peak (Tm1) represents the unfolding of the CH2 domain, and the second transition peak (Tm2) represents the unfolding of both the Fab and CH1 domains. CHO- and Pichia-derived IgG1 have the same Tm1 (72°C) and Tm2 (81°C), indicating that Pichia-produced antibody has similar thermal stability compared to the CHO-produced counterpart. The DSC method used is described in Ionescu et al.81

Stability Over Storage

Pichia-produced IgGs have demonstrated good physical stability. No significant aggregation or degradation has been detected for the Pichia-derived anti-HER2 mAb solution during six-week storage at 4, 25 and 37°C.36 We have compared head-to-head the chemical degradation of CHO- and Pichia-produced IgG1 in liquid formulation under different temperatures (4, 25, 37 and 45°C) for two months. Both IgG1 demonstrate similar chemical degradation profiles, and similar activation energies can be derived from the temperature dependent chemical degradation profiles using the Arrhenius model.

Conclusion

As the market for therapeutic IgGs continues to grow rapidly, there is a high demand for industrial scale IgG production. Currently, all marketed therapeutic IgGs are produced from mammalian cell cultures. However, mammalian cell culture is expensive, lengthy (e.g., typical two-week cultivation), and sensitive to fermentation process parameters. The glycoengineered *Pichia pastoris* expression system can substantially reduce the cultivation time34 and the cost associated with fermentation facility, raw material and viral clearance. We have shown that Pichia produces stable IgGs with comparable aggregation, charge variant and oxidation profile compared to the CHO-produced counterpart. Because of the comparable biophysical and biochemical
flexibility in modulating the N-linked glycan composition. It has been shown that IgG with afucosylated N-linked glycosylation binds to FcγRIIIa about 20- to 40-fold tighter than fucosylated variant and elicits higher ADCC response compared with fucosylated IgG. A fucosyltransferase knock-out CHO cell line (Potelligent™ technology) has been explored by several pharmaceutical companies to produce IgGs that require enhanced ADCC function. Glycoengineered Pichia produces 100% afucosylated IgG. A direct comparison of ADCC function has shown that Pichia-produced anti-HER2 antibody elicits 4-fold higher ADCC function with PBMC effector cells than CHO-produced counterpart. Thus, glycoengineered Pichia offers a promising platform for the production of IgGs with a higher ADCC function.

Acknowledgments

We gratefully thank Assunta Ng for providing SEC aggregation data, Anna Mach for CE-SDS data, Feng Wang for CEX data, Brian Peklansky for cIEF data, Yi Du for ESI-TOF data, Bei Wang for DSC data, Yunsong (Frank) Li for CD data and Sarita Mittal for chemical degradation data. We also would like to thank our colleagues from GlycoFi for providing technical assistance and colleagues from BPRD for providing all IgG materials.
References

1. Wood CR, Boss MA, Kenten JH, Calvert JE, Roberts NA. The synthesis and in vivo assembly of functional antibody in yeast. Nature 1985; 314:466-9.
2. Horowitz AH, Chang CP, Better M, Hellstrom KE, Robinson RR. Secretion of functional antibody and Fab fragment from yeast cells. Proc Natl Acad Sci USA 1988; 85:8678-82.
3. Ogonimai AA, Chandler JM, Gooding CM, Recinos A, Choudary PV, Rogue NL, Kalleh D, Ishihara H, van der Slik S, Bharath S, et al. Optimization of humanized IgG1 tag: construction, expression and characterization of the human IgG1 tag. J Biochem 2000; 128:891-5.
4. Booth BJM, Baranowska-Kortylewicz J, et al. Divalent antibody from recombinant methylotrophic yeast, Pichia pastoris. J Biochem 2000; 118:825-31.
5. Wang Y, Wang K, Jette DC, Wishart DS. Production of humanized Fab fragment from yeast cells. Proc Natl Acad Sci USA 2000; 97:1409-14.
6. Li T, Hwang J, Zeng H, Li D, Mah N, Krantz M, Wishart D, Jacobs F, Martin P, Baraniunich P, Kai K, Shinkai M, Honda H, Rittenhour AM, Burnina I, et al. High-throughput technology. Nat Protocols 2009; 4:58-70.
7. Almazan D, Rong L, Rong R, Callewaert N. Engineering complex-type N-glycosylation pathways in yeast. Nat Rev Microbiol 2009; 7:565-76.
8. Orton S, Cardinaux JF, Horisberger M, Forster M, Hyer C, et al. Development of recombinant human monoclonal tissue necrosis factor-alpha antibody using canoniexchange HPLC and capillary isoelectric focusing. Anal Biochem 1999; 275:98-108.
9. Harris RJ, Babakof B, Macchi FD, Shen EJ, Kwong MH, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B 2001; 752:233-45.
10. Mario N, Baudin B, Ausel C, Giboudoue J. Capillary isoelectric focusing and high-performance cation-exchange chromatography compared for qualitative and quantitative analysis of hemoglobin variants. Clin Chem 1997; 43:2173-42.
11. Vlasak J, Bussar MC, Wang S, Wagner-Rouset E, Schaefer M, Klinguer-Hamour C, et al. Identification and characterization of asparagine deamidation in the light chain CDRI of a humanized IgG1 antibody. Anal Biochem 2005; 339:119-28.
12. Li N, Kesler K, Buss L, Zeng D. Evaluation of the CE280 Analyzer as a potential high-throughput tool for formulation development. J Pharm Biomed Anal 2007; 43:963-72.
13. Liu H, Gzda-Busloce G, Xiang T, Chumacae C. Structural effect of deglycosylation and methionine oxidation on a recombinant antibody. Mol Immunol 2008; 45:701-8.
14. Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci 1997; 86:1250-5.
15. Chumacae C, Gzda-Busloce G, Sun J, Liu H. Comparison of methionine oxidation in thermal stable and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850:285-94.
16. Bertolotti-Ciarlet A, Wang W, Lawnes R, Pristakos P, Fang Y, McKevel T, et al. Impact of methionine oxidation on the binding of human IgG1 to FeRn and Fcgamma receptors. Mol Immunol 2009; 46:1877-82.
17. Wang W, Vlasak J, Li Y, Pristakos P, Fang Y, Pittman T, et al. Impact of methionine oxidation in human IgG1Fc on serum half-life of monoclonal antibodies. Mol Immunol 2011; 48:860-6.

www.landesbioscience.com

mAbS 459
55. Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 2009; 18:424-33.
56. Han M, Phan D, Nightlinger N, Taylor L, Jankhah S, Woodruff B, et al. Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 2006; 64:335-42.
57. Rustandi RR, Washabaugh MW, Wang Y. Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 2008; 29:3012-20.
58. Han M, Phan D, Nightlinger N, Taylor L, Jankhah S, Woodruff B, et al. Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 2006; 64:335-42.
59. Huh C, Selmaj MJ, Ruaaak LR, Delder AM, Wuhrer M. IgG glycosylation analysis. Proteomics 2009; 9:882-913.
60. Jafferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005; 21:11-6.
61. Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 2007; 364:8-18.
62. Chung CH, Mirahkar B, Chan E, Le QT, Berlin J, Ha S, Ou Y, Vlasak J, Li Y, Wang S, Vo K, et al. Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 2006; 64:335-42.
63. Li H, Miele RG, Mitchell TL, Gennross T. N-linked glycan characterization of heterologous proteins. Methods Mol Biol 2007; 489:19-50.
64. Gong B, Cukan M, Fisler R, Li T. J. Separation of post-translational modifications in yeast. Nat Protocols 2008; 3:1026-31.
65. Zhang N, Liu T, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, et al. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. mAbs 2011; 3:289-98.

66. Ma S. Nakaheba W. Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 1999; 71:5185-92.
67. Liu Y, Salas-Solano O, Gennaro LA. Investigation of sample preparation artifacts formed during the enzymatic release of N-linked glycans prior to analysis by capillary electrophoresis. Anal Chem 2009; 81:6823-9.
68. Duman JG, Miele RG, Liang H, Grella DK, Sim KL, Castellino KJ, et al. O-mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 1998; 28:39-45.
69. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 1997; 272:2156-62.
70. Sasaki T, Yamada H, Matsumura K, Shimizu T, Kobata A, Endo T. Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan. Biochim Biophys Acta 1998; 1425:599-606.
71. Smallheiser NR, Haalam SM, Sutton-Smith M, Morris HR, Dell A. Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in crani (dystroglycan) purified from sheep brain. J Biol Chem 1999; 274:32369-703.
72. Lommel M, Stahl S. Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 2009; 19:816-28.
73. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 2006; 119:199-207.
74. Kim H, Yamaguchi Y, Masuda K, Matsunaga C, Yamamoto K, Inamura T, et al. O-glycosylation in hinge region of mouse immunoglobulin G2b. J Biol Chem 1994; 269:12345-50.
75. Arnold JN, Radcliffe CM, Womald MR, Royle L, Harvey DJ, Crippin M, et al. The glycosylation of human serum IgG and IgE, and the accessibility of identified oligomannose structures for interaction with mann-binding lectin. J Immunol 2004; 173:6831-40.
76. Martinez T, Pace D, Brady L, Gerhardt M, Ballard A. Characterization of a novel modification on IgG2 light chain evidence for the presence of O-linked mannosylation. J Chrom A 2007; 1156:183-7.
77. Gribach V, Strahl S. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J Biol Chem 2003; 278:12554-62.
78. Karoda K, Kobayashi K, Kitagawa Y, Nakagawa T, Tsumura H, Komeda T, et al. Efficient antibody production upon suppression of O mannosylation in the yeast Opatet muinia. Appl Environ Microbiol 2008; 74:446-53.

79. Stadheim TA, Li H, Kett W, Burnina IN, Gernross T. Use of high-performance anion exchange chromatography with pulsed amperometric detection for O-glycan determination in yeast. Nat Protocols 2008; 3:1026-31.
80. Wang S, Ionescu R, Peekhaus N, Leung J, Ha S, Vlasak J. Separation of post-translational modifications in monoclonal antibodies by exploiting subtle conformational changes under mildly acidic conditions. J Chrom A 2010; 1217:6496-502.
81. Ionescu R, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci 2008; 97:1414-26.
82. Shield RL, Lui J, Keck R, O’Connell LY, Hong K, Meng, YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 2002; 277:26733-40.
83. Suzuki E, Niwa R, Saji S, Mura M, Hirose M, Ida S, et al. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin Cancer Res 2007; 13:1875-82.