Photodynamic therapy in the therapy for recurrent/persistent nasopharyngeal cancer

Maarten AM Wildeman*, Heike J Nyst, Baris Karakullukcu and Bing I Tan*

Address: Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands

Email: Maarten AM Wildeman* - m.wildeman@nki.nl; Heike J Nyst - h.nyst@nki.nl; Baris Karakullukcu - h.karakullukcu@nki.nl; Bing I Tan* - i.tan@nki.nl

* Corresponding authors

Abstract
To determine the efficacy of Photodynamic therapy of patients with recurrent Nasopharyngeal Carcinoma we reviewed all available literature.

Since the treatment options for recurrent or persistent Nasopharyngeal Carcinoma are limited, the survival rates poor and the complications severe; there is definitely a place for alternative treatment modalities with more efficacy and less morbidity. Photodynamic therapy (PDT) has the potential to be a very effective local treatment modality for recurrent or persistent nasopharyngeal cancer, without the severe side effects seen with re-irradiation. This review shows all reported results of Photodynamic therapy in the treatment for Nasopharyngeal Carcinoma.

Introduction

Nasopharyngeal carcinoma (NPC) occurs sporadically in the Western world, but is endemic in certain parts of South-East Asia, such as southern China and the Indonesian archipelago [1]. The worldwide incidence of NPC exceeds 80,000 cases/year with 19,616 new cases each year in South-China [2], but for most developing countries data are lacking due to absent or inadequate registries.

Treatment for primary NPC is radiotherapy, with chemotherapy for advanced stage disease. Despite the radiotherapy responsiveness of nasopharyngeal tumours, good long term survival is only achieved for patients who have early primary tumours with minimal neck disease with 67-71% 10 years disease free survival for T1, T2 and N0-1. Survival is poor for patients who have extended tumours and/or extended neck nodes 29-54% 10 years disease free survival for T3, T4 and N2, N3) [3-6].

Poor survival in the T4N0-1 category is chiefly the result of the high local recurrence rate (63.8%), where as for the T1-2N2-3 category, it is the result of the high distant metastases rate (approximately 50%). For the local recurrent or persistent tumours there are few treatment options left all with severe side effects.

Re-treatment of recurrent/persistent NPC

Usual treatment options for early stage recurrent or persistent NPC are surgery in combination with external radiotherapy, brachytherapy alone [7-9], or in combination with external re-irradiation [10-13] or stereotactic radiosurgery [14]. The standard treatment for advanced stages of recurrent or persistent disease is chemotherapy fol-
followed by re-irradiation, or concomitant chemo-re-irradiation [15]. Pryzant reported on 53 patients with locally persistent or recurrent NPC treated with re-irradiation. Forty-two patients were re-treated with external beam therapy alone and 11 with a component of brachytherapy. Local recurrence was confined to the nasopharynx in 27 patients, and persistent tumour in 26 patients. The five-year actuarial local tumour control rate was 35%, five-year disease free survival was 18%, and overall survival was 21%. Eight Patients developed severe complications from retreatment, two involving the brain, one the spinal cord, and two the cranial nerves, all of which were fatal. The five-year actuarial incidence of severe complications was 17%. The incidence of severe complications was related to the total cumulative dose of external irradiation [16].

Lee described the incidence of late complications after re-irradiation in 891 patients with local recurrence after definitive radiation therapy for nasopharyngeal carcinoma. After external re-irradiation, brachytherapy or a combination of both, a wide variety of serious complications, such as temporal lobe necrosis, cranial neuropathy, endocrine dysfunction, trismus and bone/soft tissue necrosis was reported, with an overall incidence of 23 to 29% and a treatment mortality from 1 to 3% [17]. Other authors also report these serious side effects [10-12]. A major determinant of post-treatment complication is the severity of damage sustained during the initial course. In case of re-irradiation after an interval of 2 years or more, the sum of total doses tolerated is higher than predicted based on results of single course irradiations [18].

Since the treatment options for recurrent or persistent NPC are limited, the survival rates poor and the complications severe; there is definitely a place for alternative treatment modalities with more efficacy and less morbidity.

Photodynamic Therapy

Photodynamic therapy (PDT) is a non-invasive treatment modality that might have a substantial role in treatment of recurrent nasopharyngeal carcinoma. PDT facilitates tumour destruction by the combination of a photosensitizer and laser light of a specific wavelength.

The therapeutic response of PDT depends on a complex combination of parameters that includes drug dose, drug-light interval, tissue oxygenation, light dose and light intensity (the last two are more accurately referred to as fluence and fluence rate, respectively). PDT works through non thermal chemical pathways to damage cancer cells. The main agents of cell destruction are activated singlet oxygens. The cancer cells are destroyed by a process that might take up to several weeks and the treated area heals with normal mucosa advancing from adjacent tissue much like radiation treatment.

Photodynamic Therapy for Recurrent and Persistent NPC

Sun [19] has published the largest case series with 137 patients. Unfortunately this article is in Chinese. He has treated 137 NPC patients with hematoporphyrin derivative mediated PDT. Forty-eight and 72 hours after iv administration of 3-5 mg/kg HpD, laser treatment with either argon or dye laser was carried out. Dye laser (630 nm) with over 350 mw output transmitted through quartz fiber was given to 57 patients. Argon laser (488 nm and 514.5 nm) was delivered to 80 patients. The results were: complete response 76 cases (55.47%) and marked response 47 cases (34.31%), with an over-all marked response rate of 89.78% (123/137). These results are very successful. However, it is not clear if the patients had recurrent NPC or PDT is delivered as primary first choice treatment. In either case the results are very encouraging with such a large case series.

Kulapaditharom [20] et al reported in 1996 five patients treated with PDT for recurrent or residual NPC in Ramathibodi hospital in Bangkok. Three of these patients had a T1 tumour with no lymph node involvement and no distant metastasis. Two of these patients had a T3 tumour with no lymph node involvement and no distant metastases. 48 hours before illumination patients received Hematoporphyrin derivat with a dosage of 3 mg/kg and were illuminated (630 nm) by an optical fiber. The dose varied within 50-100 J/cm2. Power of the laser beam was adjusted to give a density within 100-150 mW/cm2 to avoid thermal effect.

The T1 tumour patients had a complete response after one treatment. Complete response has been suggested by endoscopic examination and negative biopsy. The duration of response were: 24, 16 and 11 months. The T3 tumours responded partially. One patient received 4 treatments and the other one 2 treatments before they switched to chemotherapy. The partial response duration was respectively 19 and 12 months.

The side effects described for all treatment were oedema, pain and photosensitivity. All side effects would solve without treatment. There was one patient with severe pain after PDT. All other side effects were mild and moderate.

The same Kulapaditharom [21] et al reported in 2000 the treatment of 12 NPC patients. The patients received Hematoporphyrin derivat with a dosage of 3 mg/kg 48 hours before they were illuminated (630 nm) by an flat cut optical fiber (with a core diameter of 400 μm, Laserscope California) with a with a dose of 100 J/cm2 and a fluence rate of 100 mW/cm2.

One patient was primary treated for an unknown primary. The primary tumour revealed in the nasopharynx (T1 NO21.4 cm) and two the cranial nerves, all of which were fatal. The incidence of severe complications was related to the total cumulative dose of external irradiation [16].
Lofgren et al. reported 5 patients treated with PDT for recurrent NPC in Orebro Medical Center Hospital, Sweden. Four patients were treated with hematoporphyrin derivative 2.5 mg/kg and exposed with 200 J/cm² delivered from a gold laser vaper with a wave length of 630 nm.

In the papers reviewed above they all used the first generation photosensitizer hematoporphyrin. Yow et al. has shown in nasopharyngeal cancer cell lines that the uptake of second generation photosensitizer temoporfirin is higher and efficiency is better compared with hematoporphyrin. Yow et al. also compared temoporfirin and merocyanine 540, both second generation photosensitizers. They concluded that temoporfirin-mediated PDT has a more potent effect in comparison with merocyanine-540-mediated PDT. Based on these studies we hope for even better treatment results if temoporfirin is used.

Illumination of nasopharyngeal cavity is a challenge, since access is difficult and the cavity has a complex and irregular geometry. Furthermore the cavity varies significantly in size and geometry between patients. The complex shape of the nasopharyngeal cavity makes it impossible to produce a homogenous field of illumination. In order to deliver a sufficient light distribution
throughout the nasopharyngeal cavity over exposure cannot be avoided. Over exposure of tumour or surrounding normal mucosa is however not considered a problem. Some critical structures are well protected by bone others; however, like the soft palate and the dorsal oropharyngeal wall would suffer unacceptable damage by this approach. Hence, these areas must be shielded against the laser light. For this purpose we have developed a novel dedicated light delivery applicator that ensures proper light delivery to the target area and enables for proper shielding of the risk areas [26,27]. A new study has been commenced to use this applicator to deliver PDT to patients with recurrent NPC cancers by our group. How we illuminate the Nasopharynx is shown by Figure 1, 2, 3.

The side effects are much less frequent and severe compared to chemotherapy. Sunlight exposure have shown that photosensitivity is not a real burden for these patients and only limited adverse events were related to this problem [28]. In general, patients in this part of the world have a colored skin that makes them less prone to sunburn. The fact that people in the tropics generally avoid sun exposure also helps to minimize the problems around the photosensitivity.

The immunologic reaction followed by PDT could be partly responsible for the good results. The theory is that an immunological response will be provoked by the use of PDT [29]. So in addition to these clinical trials several groups are working on the effectiveness of PDT in laboratory settings. PDT and the use of natural compounds become one of the new approaches in the investigation of NPC treatment. Such a group from Singapore has reported very encouraging results with hyperecin mediated PDT. This group has published extensively on biochemical pathways of cell damage caused by hypericin-PDT on NPC cell lines in vitro. Their excellent review titled "Hypericin lights up the way for the potential treatment of nasopharyngeal cancer by photodynamic therapy" by Olivo [30] et al summarizes this effort and proposes that hypericin-PDT is a potential treatment of NPC in humans. Koon [31] et al has chosen a different photosensitizing agent from the traditional Chinese medicine: curcumin. Their in vitro study with CNE2 NPC cells shows it to be a promising agent.

Xu et al [32] preferred to worked with photodynamic effects of pyropheophorbide-a methyl ester (MPPa) in CNE2 NPC cells, demonstrating the apoptotic effect and suggesting its clinical potential. Mak et al [33] worked with...
the same cell line inducing phototoxicity with sulfonamide derivatives of porphycene with successful results. Betz [34] et al obtained good results in their in vitro study with a more conventional photosensitizer: 5-aminolevulinic acid.

Bae [35] et al examined the immunotherapeutic significance of HPV-immortalized tumour cell lysates induced by PDT and CpG-oligodeoxynucleotide(ODN). They found a significant induced IFN-β production and cytokine T- cell response in the PDT-cell lysate plus ODN immunized groups. Although PDT in combination with immunotherapy is still in experimental phase it offers a great promise as a new alternative treatment. On to this time no research has been done on PDT in combination with Immunotherapy in EBV related NPC. This combination could be very promising not only for local recurrence but also for advanced disease.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MW did the literature search and wrote the article, HN and BK both repeated literature search and helped writing the introduction and discussion. IT designed overall article. All authors read and approved the final manuscript.

Author information
Prof. Tan is also connected to Amsterdam Medical Center, as such his alternative email address is i.b.tan@amc.uva.nl

Acknowledgements
The authors greatly appreciate the cooperation of Prof. dr. H.J.C.M. Steenbergen and dr. R.J. van Veen from Erasmus Medical Center with their help on the pictures and animations.

References
1. Devi BC, Pisani P, Tang TS, Parkin DM: High incidence of nasopharyngeal carcinoma in native people of Sarawak, Borneo Island. Cancer Epidemiol Biomarkers Prev 2004, 13:482-486.
2. Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics. CA Cancer J Clin 2005, 55:74-108.
3. Lee AW, Poon YF, Foo W, Law SC, Cheung FK, Chan DK, Tung SY, Thaw M, Ho JH: Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys 1992, 23:261-270.
4. Moench HC, Phillips TL: Carcinoma of the nasopharynx. Review of 146 patients with emphasis on radiation dose and time factors. Am J Surg 1972, 124:515-518.
5. Chien CR, Chen SW, Hsieh CY, Liang JA, Yang SN, Huang CY, Lin FJ: Retrospective comparison of the AJCC 5th edition classification for nasopharyngeal carcinoma with the AJCC 4th edition: an experience in Taiwan. Jpn J Clin Oncol 2001, 31:363-369.
6. Kajanti MJ, Mantyla MJ: Carcinoma of the nasopharynx. A retrospective analysis of treatment results in 125 patients. Acta Otolaryngol 1990, 29:611-614.
7. Law SC, Lam WK, Ng MF, Au SK, Mak WT, Lau WH: Reirradiation of nasopharyngeal carcinoma with intracavitary mold brachytherapy: an effective means of local salvage. Int J Radiat Oncol Biol Phys 2002, 54:1095-1113.
8. Kwong DL, Wei WI, Cheng AC, Choy DT, Lo AT, Wu PM, Sham JS: Long term results of radioactive gold grain implantation for the treatment of persistent and recurrent nasopharyngeal carcinoma. Cancer 2001, 91:105-1113.
9. Leung TW, Tung SY, Sze WK, Sze WM, Wong YY, Wong CS, SK O: Salvage radiation therapy for locally recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2000, 48:1331-1338.
10. Leung TW, Tung SY, Sze WK, Sze WM, Wong YY, SK O: Salvage brachytherapy for patients with locally persistent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2000, 47:405-412.
11. Teo PM, Kwan WH, Chan AT, Lee WY, King WW, Mok CO: How successful is high-dose (> or = 60 Gy) reirradiation using mainly external beams in salvaging local failures of nasopharyngeal carcinoma? Int J Radiat Oncol Biol Phys 1998, 40:897-913.
12. Lee AW, Foo W, Law SC, Poon YF, Sze WM, SK O, Tung SY, Chappell R, Lau WH, Ho JH: Recurrent nasopharyngeal carcinoma: the puzzles of long latency. Int J Radiat Oncol Biol Phys 1999, 44:149-156.
13. Hwang JM, Fu KK, Phillips TL: Results and prognostic factors in the retreatment of locally recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1998, 41:1099-1111.
14. Chua DT, Sham JS, Kwong PW, Hung KN, Leung LH: Linear accelerator-based stereotactic radiosurgery for limited, locally persistent, and recurrent nasopharyngeal carcinoma: effi-

Additional material

Additional file 1
Overall Treatment Results
Click here for file: [http://www.biomedcentral.com/content-supplementary/1758-3284-1-40-S1.DOC]
Photodynamic therapy-generated tumor cell lysates with CpG-oligodeoxynucleotide enhance immunotherapy efficacy in human papillomavirus 16 (E6/E7) immortalized tumor cells. Cancer Sci 2007, 98:747-752.