3-Kenmotsu Manifolds
Hassan Attarchi*

(Submitted by M. A. Malakhaltsev)
School of Mathematics, Georgia Institute of Technology, Atlanta, USA
Received June 11, 2019; revised November 7, 2019; accepted November 24, 2019

Abstract—In this paper, a 3-Kenmotsu structure is defined on a 4n + 1 dimensional manifold where such structure seems to be never studied before.
DOI: 10.1134/S1995080220030051
Keywords and phrases: quaternion Kahler structure, 3-Kenmotsu, Einstein space.

1. INTRODUCTION

A (2n + 1)-dimensional smooth manifold M is said to have an almost contact structure if the structural group of its tangent bundle reduces to $U(n) \times 1$, where $U(n)$ is the unitary group of degree n [14]. Equivalently, an almost contact structure is given by a triple (ϕ, ξ, η) satisfying certain conditions [12–14]. It is well-known that the almost contact metric structure on an odd-dimensional manifold is analogous to an almost Hermitian structure on an even-dimensional manifold. For example, in [16], it is shown that a hypersurface in an almost Hermitian manifold has an almost contact metric structure. Moreover, a Kenmotsu manifold is a locally warped product of an interval of the real line and a Kahler manifold with a special warped function [7]. Also, in [3], it is proven that the warped product of a Sasakian manifold with the real line under a certain conformal change will result in a Kahlerian structure.

However, the situation is completely different when someone wants to construct an odd-dimensional structure analogous to the quaternion spaces. There are two choices, $(4n + 1)$ and $(4n - 1)$-dimensional spaces. In literature, what is known as an almost contact 3-structure is based on a $(4n - 1)$-dimensional space or equivalently a $(4n + 3)$-dimensional space [8]. In this case, the structural group of almost contact 3-structure reduces to $Sp(n) \times I_3$ [5, 8].

On the other hand, what makes this difference more deepening is about constructing an analogous structure of Kenmotsu manifolds on $(4n + 3)$-dimensional spaces. The $(4n + 3)$-dimensional manifolds as underlying manifolds of almost contact 3-structures lead us to have only almost contact 3-structure or 3-Sasakian manifold [1, 6]. This terminology is completely in agreement with the result of [3] which was mentioned earlier. This means one can expect that the warped product of a 3-Sasakian manifold with the real line under a certain conformal change will result in a quaternion Kahler manifold. While it cannot support the strategy behind constructing the Kenmotsu manifolds [7]. To have a structure which is locally the warped product of an interval and a quaternion Kahler manifold, one should study a new structure on $(4n + 1)$-dimensional manifolds where its structural group reduces to $Sp(n) \times I$. To the best of my knowledge, nobody has considered and studied $(4n + 1)$-dimensional manifolds from this perspective. To name one of the most recent works on $(4n + 1)$-dimensional manifolds, one can see [2].

The structure of the paper is the following. In Section 2, we introduce necessary notations and study some properties of Kenmotsu manifolds. Section 3 deals with the definition of a 3-Kenmotsu manifold as an odd-dimensional analogous structure of the quaternion Kahler manifolds. In Section 4, it is proved that 3-Kenmotsu manifolds are Einstein spaces. Moreover, it is shown that the φ_α-holomorphic sectional curvature $H_\alpha(X)$ of this structure satisfies the equation $\sum_{\alpha=1}^{3} H_\alpha(X) = -3$ for all $X \in \Gamma H$ where H is the contact distribution of Kenmotsu structures. In Section 5, an example of 3-Kenmotsu manifolds is studied.

*E-mail: hattarchi@gatech.edu
2. PRELIMINARIES AND NOTATIONS

Let \((\varphi, \eta, \xi, g)\) be an almost contact metric structure on \((2n + 1)\)-dimensional manifold \(M\), where \(\varphi \in \text{End}(TM)\), \(\xi\) is the Reeb vector field, and \(\eta\) is its dual 1-form with respect to the Riemannian metric \(g\). Also, they satisfy following properties:

\[\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \eta(\varphi) = 0, \quad \varphi = 0, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \] \(1\)

where \(X, Y \in \Gamma TM\) [1]. An almost contact metric manifold is called a Kenmotsu manifold if

\[(\nabla_X \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X, \] \(2\)

where \(\nabla\) is the Levi-Civita connection of the Riemannian metric \(g\) and \(X, Y \in \Gamma TM\). This implies that

\[\nabla_X \xi = X - \eta(X)\xi, \quad (\nabla_X \eta)Y = g(X, Y) - \eta(X)\eta(Y), \] \(3\)

where \(X, Y \in \Gamma TM\) [7]. Moreover, the 1-form \(\eta\) of almost contact structure of a Kenmotsu manifold is closed (i.e. \(d\eta = 0\)). The Kahler form \(\Omega\) is defined on an almost contact metric manifold as follows:

\[\Omega(X, Y) := g(X, \varphi Y), \] \(4\)

where \(X, Y \in \Gamma TM\). Let \((M, \varphi, \eta, \xi, g)\) be a Kenmotsu manifold of dimension \(2n + 1\). The Kahler form \(\Omega\) of \(M\) satisfies the equation \(d\eta = \eta \wedge \Omega\) [11]. Consider the foliation \(F\) of the Reeb vector field \(\xi\) on \(M\). Then, there are local frames \(\{U; x^0, x^i\}\) adapted to this foliation where \(\xi = \partial/\partial x^0\) on \(U\) [10]. The local vector fields of this coordinate system define local frames \(\{\partial/\partial x^0, \partial/\partial x^i\}\) on \(U\), where

\[\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - \eta_i \frac{\partial}{\partial x^0}, \] \(5\)

\(\eta_i := \eta(\partial/\partial x^i)\) for \(i = 1, ..., 2n\). The Riemannian metric \(g\) in the local frames (5) has the following format:

\[g := \begin{pmatrix} 1 & 0 \\ 0 & \text{diag}(g_{ij}) \end{pmatrix}, \] \(6\)

where \(g_{ij} = g(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j})\). It is easy to check that the Lie bracket of these local frames satisfies the following properties:

\[\left[\frac{\partial}{\partial x^0}, \frac{\delta}{\delta x^i} \right] = 0, \quad \left[\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j} \right] = 0. \] \(7\)

Lemma 1. Let \((M, \varphi, \eta, \xi, g)\) be a Kenmotsu manifold, then components of \((g_{ij})\) defined in (6) satisfy the equation \(\xi g_{ij} = 2g_{ij}\).

Proof. Using (3), (7) and the Levi-Civita connection \(\nabla\) on \(M\), they imply that

\[\xi g_{ij} = g\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = g\left(\nabla_{\xi} \frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) + g\left(\frac{\delta}{\delta x^i}, \nabla_{\xi} \frac{\delta}{\delta x^j}\right) = g\left(\nabla_{\frac{\delta}{\delta x^i}} \xi, \frac{\delta}{\delta x^j}\right) + g\left(\frac{\delta}{\delta x^i}, \nabla_{\xi} \frac{\delta}{\delta x^j}\right) \]

\[= g\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = 2g\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = 2g_{ij}. \]

\[\square \]

Theorem 1. The Levi-Civita connection \(\nabla\) on a Kenmotsu manifold \(M\) has the local components:

\[\nabla_{\frac{\delta}{\delta x^i}} \frac{\delta}{\delta x^j} = \Gamma_{ij}^k \frac{\delta}{\delta x^k} - g_{ij} \frac{\partial}{\partial x^0}, \quad \nabla_{\frac{\delta}{\delta x^i}} \frac{\partial}{\partial x^0} = \frac{\partial}{\partial x^i}, \quad \nabla_{\frac{\partial}{\partial x^0}} \frac{\partial}{\partial x^0} = 0, \]

where \(\Gamma_{ij}^k = \frac{1}{2} g^{kl} (g_{lj}, \frac{\delta g_{ij}}{\delta x^l} - \frac{\delta g_{li}}{\delta x^j}). \)

Proof. The proof follows from (5)-(7) and Lemma 1. \[\square \]
A 3-Kenmotsu manifold is defined as follows:

Definition 1. Let M be an m-dimensional smooth manifold. Then, M is a 3-Kenmotsu manifold if it is equipped with three Kenmotsu structures $(\varphi_\alpha, \eta, \xi, g)$, where $\alpha = 1, 2, 3$ and

$$\varphi_k = \varphi_i \circ \varphi_j,$$

for all (i, j, k) where they are even permutations of $(1, 2, 3)$.

It is easy to see that any 3-Kenmotsu manifold is a $(4n + 1)$-dimensional manifold. The transversal distribution to the foliation F given by Reeb vector field ξ is integrable because η is a closed form. Let denote the transversal distribution by H, then

$$H = \{X \in TM \mid \eta(X) = 0\}.$$

One can define three almost complex structures $J_\alpha = \varphi_\alpha|_H$ for $\alpha = 1, 2, 3$ on the maximal integral submanifolds of H. It will be easy to check that J_α for $\alpha = 1, 2, 3$ form an almost quaternion structure on these maximal integral submanifolds of H. Thus, the distribution H is a $4n$-dimensional distribution and consequently any 3-Kenmotsu manifold is $(4n + 1)$ dimensional manifold.

Moreover, there is a natural volume form on a 3-Kenmotsu manifold given by $Vol_{3} = \Omega^n \wedge \eta$, where Ω is a 4-form of maximum rank with the following structure

$$\Omega = \Omega_1 \wedge \Omega_2 \wedge \Omega_3 \wedge \Omega_4,$$

$\Omega_\alpha(\ldots) = g(\ldots, \varphi_\alpha)$ for $\alpha = 1, 2, 3$.

Theorem 2. Let M be a 3-Kenmotsu manifold. Then, for any $p \in M$, some neighborhood U of that point is identified with a warped product space $(-\epsilon, +\epsilon) \times_f V$ such that $(-\epsilon, +\epsilon)$ is an open interval, $f(t) = ce^t$, and V is a quaternion Kahler manifold.

Proof. All three Kenmotsu structures of a 3-Kenmotsu manifold share the same Reeb vector field, therefore they have the same distribution H defined in (9). Theorem 4 in [7] implies that for each Kenmotsu structure $(\varphi_\alpha, \eta, \xi, g)$ on M, the manifold M is locally warped product of an open interval and a Kahler manifold with the warped function $f(t) = ce^t$. This means a 3-Kenmotsu manifold is locally warped product of an open interval and an almost quaternion manifold. Considering the Levi-Civita connection ∇ on a maximal integral submanifold of the foliation H which is locally the same as the almost quaternion manifold in the warped product. By using Eqs. (2) and (4), it will be easy to check that $\nabla J_\alpha = 0$ and $\nabla \Omega_\alpha = 0$ for $\alpha = 1, 2, 3$. Thus, theorem 1.1 in [5] implies that the structure on the maximal integral submanifolds of the foliation H are quaternion Kahler manifolds.

Corollary 1. The structural group of the tangent bundle of a 3-Kenmotsu manifold will be reducible to $Sp(n) \times I$.

Similar to the quaternion structures, one can show that there is no fourth Kenmotsu structure $(\varphi_4, \eta, \xi, g)$ on M which satisfies the anti-commutativity conditions with the other three structures [1, 15]. To see this, let $J_\alpha = \varphi_\alpha|_H$ for $\alpha = 1, 2, 3, 4$ be almost complex structures induced on the maximal integral submanifolds of H. Then, $J_i \circ J_4 = -J_4 \circ J_i$ for $i = 1, 2, 3$ and

$$J_3 \circ J_4 = J_1 \circ J_2 \circ J_4 = -J_4 \circ J_4 \circ J_2 = J_4 \circ J_1 \circ J_2 = J_4 \circ J_3,$$

which is a contradiction with the anti commutativity condition.

Also, it is well-known if there are two almost complex structures (or two Sasakian structures) on M, then under some simple conditions, one can construct a quaternion structure (or 3-Sasakian structure) [1, 8] based on those two structures.

Theorem 3. Assume M is a $(4n + 1)$-dimensional differential manifold. If there are two Kenmotsu structures $(\varphi_1, \eta, \xi, g)$ and $(\varphi_2, \eta, \xi, g)$ on M satisfying $\varphi_1 \circ \varphi_2 = -\varphi_2 \circ \varphi_1$, then M will have a 3-Kenmotsu structure.

Proof. Let $\varphi_3 = \varphi_1 \circ \varphi_2$. Then to prove $(\varphi_3, \eta, \xi, g)$ is a Kenmotsu structure on M, one can show that φ_3 satisfies the equation (2). Thus,

$$(\nabla_X \varphi_3)Y = (\nabla_X \varphi_1 \circ \varphi_2)Y = \nabla_X (\varphi_1 \circ \varphi_2 Y) - \varphi_1 \circ \varphi_2 \nabla_X Y$$

$$= (\nabla_X \varphi_1)\varphi_2 Y + \varphi_1 \nabla_X \varphi_2 Y - \varphi_1 \circ \varphi_2 \nabla_X Y.$$
\[= g(\varphi_1 X, \varphi_2 Y)\xi - \eta(\varphi_2 Y)\varphi_1 X + \varphi_1((\nabla_X \varphi_2)Y + \varphi_2 \nabla_X Y) - \varphi_1 \circ \varphi_2 \nabla_X Y \]
\[= g(\varphi_1 X, \varphi_2 Y)\xi + \varphi_1(g(\varphi_2 X, Y)\xi - \eta(Y)\varphi_2 X) \]
\[= g(\varphi_1 \circ \varphi_2 X, Y)\xi - \eta(Y)\varphi_1 \circ \varphi_2 (X) = g(\varphi_3 X, Y)\xi - \eta(Y)\varphi_3 (X). \]
Moreover, it is easy to check that \(\varphi_k = \varphi_i \circ \varphi_j \) satisfies for all even permutations \((i, j, k) \) of \((1, 2, 3) \). \(\square \)

4. SOME PROPERTIES OF A 3-KENMOTSU MANIFOLD

Let \(\tilde{M} \) be a maximal integral submanifold of the foliation \(H \) in the 3-Kenmotsu manifold \(M \). Let denote the Levi-Civita connections of \(M \) and \(\tilde{M} \) by \(\nabla \) and \(\bar{\nabla} \), respectively. The relation between these two connections is given by the Gauss formula \([9]\) as follows:
\[\nabla_X Y = \bar{\nabla}_X Y + h(X, Y), \quad (10) \]
where \(X, Y \in \Gamma TM \). It follows from Proposition 1 that
\[h(X, Y) = g(X, Y)\xi, \quad (11) \]
where \(X, Y \in \Gamma TM \). Let \(R \) and \(\bar{R} \) be the curvature tensors of \(M \) and \(\tilde{M} \), respectively. Then (10) and (11) imply that \(R \) and \(\bar{R} \) satisfy the following equation:
\[R(X, Y, Z, W) = \bar{R}(X, Y, Z, W) - g(h(X, W), h(Y, Z)) + g(h(X, Z), h(Y, W)) \]
\[= \bar{R}(X, Y, Z, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W), \quad (12) \]
where \(X, Y, Z, W \in \Gamma TM \). Moreover, Ricci tensors \(Ric \) and \(\bar{R}ic \) of curvature tensors \(R \) and \(\bar{R} \), respectively, satisfy the following equation for all \(X, Y \in \Gamma TM \):
\[Ric(X, Y) = \sum_{k=1}^{4n} R(E_k, X, Y, E_k) + R(\xi, X, Y, \xi) = \sum_{k=1}^{4n} R(E_k, X, Y, E_k) - g(X, Y), \quad (13) \]
where \(\{E_1, E_2, ..., E_{4n}\} \) is an orthonormal local basis of \(\Gamma H \). Then, it follows from (12) and (13) that
\[\bar{R}ic(X, Y) = \sum_{k=1}^{4n} \bar{R}(E_k, X, Y, E_k) = \sum_{k=1}^{4n} R(E_k, X, Y, E_k) \]
\[+ \sum_{k=1}^{4n} g(X, Y) - \sum_{k=1}^{4n} g(E_k, Y)g(X, E_k) = Ric(X, Y) + 4ng(X, Y). \quad (14) \]

Theorem 4. Let \(M \) be a 3-Kenmotsu manifold of dimension \(\geq 9 \). Then, its Ricci tensor is parallel.

Proof. Lemma 3.1 in \([5]\) implies that the Ricci tensor \(\bar{R}ic \) of the quaternion Kahler manifold \(\bar{M} \) is parallel. Then, it follows from (14) that the Ricci tensor \(Ric \) of 3-Kenmotsu manifold \(M \) is parallel. \(\square \)

Theorem 5. Let \(M \) be a 3-Kenmotsu manifold of dimension \(\geq 9 \). Then, it is an Einstein space.

Proof. Theorem 3.3 in \([5]\) implies that the quaternion Kahler manifold \(\bar{M} \) is an Einstein space. Then, it follows from (14) that the Ricci tensor \(Ric \) of 3-Kenmotsu manifold \(M \) satisfies the Einstein equation. Thus, \(M \) is an Einstein space. \(\square \)

Now, we define the \(\varphi_\alpha \)-holomorphic sectional curvature of \(X \in \Gamma H \) by
\[H_\alpha(X) = K(X, \varphi_\alpha X) = -\frac{R(X, \varphi_\alpha X, X, \varphi_\alpha X)}{g(X, X)g(\varphi_\alpha X, \varphi_\alpha X) - g(X, \varphi_\alpha X)^2} = -\frac{R(X, \varphi_\alpha X, X, \varphi_\alpha X)}{g(X, X)^2}, \]
where \(\alpha = 1, 2, 3 \).

Theorem 6. The \(\varphi_\alpha \)-holomorphic sectional curvatures \(H_\alpha \) satisfy the following equation on a 3-Kenmotsu manifold: \(H_1(X) + H_2(X) + H_3(X) = -3 \), where \(X \in \Gamma H \).

Proof. Let \((\varphi, \eta, \xi, g) \) be a Kenmotsu structure. Then, it follows from (2), (3) and Proposition 1 that
\[R(X, Y)\varphi Z = g(\varphi Y, Z)X - g(\varphi X, Z)Y + g(Y, Z)\varphi X - g(X, Z)\varphi Y + \varphi(R(X, Y)Z). \]
Therefore,
\[R(X, Y, \varphi Z, \varphi W) = g(R(X, Y)\varphi Z, \varphi W) = g(\varphi Y, Z)g(X, \varphi W) - g(\varphi X, Z)g(Y, \varphi W) \\
+ g(Y, Z)g(\varphi X, \varphi W) - g(X, Z)g(\varphi Y, \varphi W) + g(\varphi (R(X, Y)Z), \varphi W). \]

Considering this equation on a 3-Kenmotsu structure for each \(\varphi \alpha \). Let \(\varphi = \varphi_1, Z = X \) and \(Y = W = \varphi_3 X \), then
\[-R(X, \varphi_3 X, \varphi_1 X, \varphi_2 X) = -g(X, X)g(\varphi_2 X, \varphi_2 X) + R(X, \varphi_3 X, X, \varphi_3 X) \]
\[= -g(X, X)^2 + R(X, \varphi_3 X, X, \varphi_3 X). \]

Dividing both sides by \(g(X, X)^2 \), it implies
\[\frac{R(X, \varphi_3 X, \varphi_2 X, \varphi_1 X)}{(g(X, X))^2} = -1 - H_3(X). \]

Consider even permutations of \((1, 2, 3) \), one can get two other similar equations for \(H_1(X) \) and \(H_2(X) \). Then, the proof is completed by adding these three equations and using the Bianchi identity. \(\square \)

5. AN EXAMPLE OF 3-KENMOTSU MANIFOLDS

Consider the manifold \(M \) given by \(\{(x_0, x_1, x_2, x_3, x_4) \in \mathbb{R}^5 \mid x_0 \neq 0\} \) and vector fields
\[\xi = X_0 = -x_0 \frac{\partial}{\partial x_0}, \ X_1 = x_0 \frac{\partial}{\partial x_1}, \ X_2 = x_0 \frac{\partial}{\partial x_2}, \ X_3 = x_0 \frac{\partial}{\partial x_3}, \ X_4 = x_0 \frac{\partial}{\partial x_4}, \]
on \(M \). It is easy to check that these vector fields satisfy following properties
\[[X_i, X_j] = 0, \quad [\xi, X_i] = -X_i, \]
where \(i, j = 1, 2, 3, 4 \). Let \(g \) be a Riemannian metric on \(M \) such that,
\[g(X_i, X_j) = \delta_{ij} = \begin{cases} 1, & i = j; \\ 0, & i \neq j, \end{cases} \quad i, j = 0, 1, 2, 3, 4. \]

Let \(\varphi_\alpha \) for \(\alpha = 1, 2, 3 \) be \((1,1)\)-tensor field on \(M \) defined by
\[\varphi_1(\xi) = 0, \quad \varphi_1(X_1) = X_2, \quad \varphi_1(X_2) = -X_1, \quad \varphi_1(X_3) = X_4, \quad \varphi_1(X_4) = -X_3, \]
\[\varphi_2(\xi) = 0, \quad \varphi_2(X_1) = X_3, \quad \varphi_2(X_2) = -X_4, \quad \varphi_2(X_3) = -X_1, \quad \varphi_2(X_4) = X_2, \]
\[\varphi_3(\xi) = 0, \quad \varphi_3(X_1) = X_4, \quad \varphi_3(X_2) = X_3, \quad \varphi_3(X_3) = -X_2, \quad \varphi_3(X_4) = -X_1. \]
It is easy to check for all \((i, j, k)\) as an even permutation of \((1, 2, 3)\) we have \(\varphi_k = \varphi_i \circ \varphi_j \). If we define the \(1\)-form \(\eta \) by \(\eta(\cdot) = g(\xi, \cdot) \), it will be a straightforward calculation to check other properties in (1). In this case, the corresponding Levi-Civita connection of \(g \) on \(M \) will have the following components:
\[\nabla_\xi \xi = \nabla_\xi X_i = \nabla X_i \xi - X_i = \nabla X_i X_j + \delta_{ij} \xi = 0, \quad (15) \]
where \(i, j = 1, 2, 3, 4 \). To show \((\varphi_\alpha, \eta, \xi, g)\), for \(\alpha = 1, 2, 3 \), is a 3-Kenmotsu structure one should check equation (2) which is easy by the help of (15) and definition of \(\varphi_\alpha \), where \(\alpha = 1, 2, 3 \). Moreover, (15) implies that components of the curvature tensor \(R \) satisfy the following equations:
\[R(X_i, X_j)\xi = 0, \quad i, j = 1, 2, 3, 4, \]
\[R(\xi, X_i)X_j = -R(X_i, \xi)X_j = \nabla X_i X_j, \quad i, j = 0, 1, 2, 3, 4, \]
\[R(X_i, X_j)X_k = g(X_i, X_k)X_j - g(X_j, X_k)X_i, \quad i, j = 0, 1, 2, 3, 4. \]
Since \(\{X_1, X_2, X_3, X_4\} \) is an orthonormal basis of sections on \(H \), we can write all \(X \in \Gamma H \) as \(X = \sum_{i=1}^{4} a_i X_i \), where \(a_i \) is a scalar function on \(M \) for \(i = 1, 2, 3, 4 \). Then, the \(\varphi_\alpha \)-holomorphic sectional curvature \(H_\alpha(X) \) of \(X \in \Gamma H \) for \(\alpha = 1, 2, 3 \) can be calculated as follows:
\[H_\alpha(X) = -\frac{R(X, \varphi_\alpha X, X, \varphi_\alpha X)}{g(X, X)} \]
\[= -\frac{g(R(X, \varphi_\alpha X)X, \varphi_\alpha X)}{g(X, X)^2 - g(X, \varphi_\alpha X)^2} \]
\[= -\frac{g(R(X, X)\varphi_\alpha X - g(\varphi_\alpha X, X)X, \varphi_\alpha X)}{g(X, X)^2 - g(X, \varphi_\alpha X)^2} = -1, \]
which confirms the result of Theorem 6.
REFERENCES

1. D. E. Blair, *Riemannian Geometry of Contact and Symplectic Manifolds* (Birkhauser, Basel, 2002).
2. S. V. Galaev, “Admissible Hyper-Complex Pseudo-Hermitian Structures,” Lobachevskii J. Math. 39 (1), 71–76 (2018).
3. G. Ganchev and V. Mihova, “Warped product Kahler manifolds and Bochner–Kahler metrics,” J. Geom. Phys. 58, 803–824 (2008).
4. J. W. Gray, “Some global properties of contact structures,” Ann. Math. 69, 421–450 (1959).
5. S. Ishihara, “Quaternion Kahlerian Manifolds,” J. Diff. Geom. 9, 483–500 (1974).
6. T. Kashiwada, “On a contact 3-structure,” Math. Z. 238, 829–832 (2001).
7. K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. 24, 93–103 (1972).
8. Y. Y. Kuo, “On almost contact 3-structure,” Tohoku Math. J. 22, 325–332 (1970).
9. J. M. Lee, *Riemannian Manifolds, an Introduction to Curvature* (Springer, New York, 1997).
10. P. Molino, *Riemannian Foliations* (Birkhauser, Univ. of Michigan, 1988).
11. Z. Olszak and R. Rosca, “Normally conformal almost symplectic manifolds,” Publ. Math. Debrecen 39, 315–323 (1991).
12. S. Sasaki, “On differentiable manifolds with certain structures which are closely related to almost contact structure I,” Tohoku Math. J. 12, 459–476 (1960).
13. S. Sasaki and Y. Hatakeyama, “On the differentiable manifolds with certain structures which are closely related to almost contact structure II,” Tohoku Math. J. 13, 281–294 (1961).
14. S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with contact metric structures,” J. Math. Soc. Jpn. 14, 249–271 (1962).
15. S. I. Tachibana and W. N. Yu, “On a Riemannian space admitting more than one Sasakian structures,” Tohoku Math. J. 22, 536–540 (1970).
16. Y. Tashiro, “On contact structure of hypersurfaces in complex manifolds I,” Tohoku Math. J. 15 (2), 62–78 (1963).