Transcriptomic profiles of high and low antibody responders to smallpox vaccine

RB Kennedy1,2, AL Oberg1,3, IG Ovsyannikova1,2, IH Haralambieva1,2, D Grill1,3 and GA Poland1,2

Despite its eradication over 30 years ago, smallpox (as well as other orthopox viruses) remains a pathogen of interest both in terms of biodefense and for its use as a vector for vaccines and immunotherapies. Here we describe the application of mRNA-Seq transcriptome profiling to understanding immune responses in smallpox vaccine recipients. Contrary to other studies examining gene expression in virally infected cell lines, we utilized a mixed population of peripheral blood mononuclear cells in order to capture the essential intercellular interactions that occur in vivo, and would otherwise be lost, using single cell lines or isolated primary cell subsets. In this mixed cell population we were able to detect expression of all annotated vaccinia genes. On the host side, a number of genes encoding cytokines, chemokines, complement factors and intracellular signaling molecules were downregulated upon viral infection, whereas genes encoding histone proteins and the interferon response were upregulated.

We also identified a small number of genes that exhibited significantly different expression profiles in subjects with robust humoral immunity compared with those with weaker humoral responses. Our results provide evidence that differential gene regulation patterns may be at work in individuals with robust humoral immunity compared with those with weaker humoral immune responses.

Genes and Immunity (2013) 14, 277–285; doi:10.1038/gene.2013.14; published online 18 April 2013

Keywords: Next-generation sequencing; mRNA-Seq; vaccinia virus; smallpox vaccine

INTRODUCTION

Vaccinia virus (VACV) is the immunologically cross-protective orthopox virus found in the smallpox vaccine used in the eradication of smallpox.1 Although smallpox has been eradicated, there continues to be significant public health interest in smallpox and other orthopox viruses for multiple reasons: biodefense against weaponized poxviruses; continuing outbreaks of zoonotic orthopox virus infections; the use of VACV as a vector for cancer immunotherapy and vaccines against other infectious agents.2–9 Thus, there continues to be a need for an increased understanding of poxvirus biology, host response to infection and the immunologic mechanisms behind immunity to poxviruses.

Next-generation sequencing is a powerful technology that holds tremendous promise in the areas of systems biology10 and vaccinomics11–15 for developing a deeper understanding of the host response to both vaccines and viral infections. Here we describe the use of next-generation sequencing mRNA-Seq to analyze transcriptomic changes occurring in peripheral blood mononuclear cells (PBMCs) from smallpox vaccine recipients after VACV stimulation, with a focus on early, innate responses to viral stimulation.

RESULTS

The high antibody (Ab) titer group (n = 21) had a median ID50 titer of 433.4 (interquartile range: 400.7–481.9), whereas the low Ab titer group (n = 23) had a median ID50 titer of 35.5 (interquartile range: 29.5–40.2). Of note, 19 of the low Ab group had Ab titers below the presumed protective threshold titer of 1:32.16 Each of these 44 subjects had two samples (uninfected and vaccinia infected). We detected a similar number of reads between samples from high and low Ab responders. The read counts between the stimulated and unstimulated samples were also comparable. We detected a mean of 11.3 million reads in the high-titer stimulated samples (10.9 million reads mapped to the human genome and 350,000 reads mapped to the vaccinia genome). In the high-titer unstimulated samples we detected a mean of 11.7 million reads (of which a mean of only 530 reads mapped to the viral genome).

Viral stimulation and host gene expression

Viral stimulation had a dramatic effect on host gene expression, with over 1200 genes exhibiting significant upregulation or downregulation between unstimulated and stimulated samples from all subjects (P<0.001 and false discovery rate <0.01). A small subset of these genes with P-values <0.001, a false discovery rate <0.01 and fold changes in expression >1.5 or <0.75 are listed in Table 1 (the Supplementary Table contains the list of 1000 genes, all with P<0.001, which were used in the pathway analysis). These genes encode for a number of histone proteins, cytokines and growth factors (interleukin (IL)3, IL18, interferon-γ and bone morphogenic protein), chemokines and receptors (CXCL6 and XCR1), G protein-coupled receptors (GPBAR1, GPR84, ADORA3), proteins involved in lipid metabolism (APO2 and OLR1), heat shock proteins (HSPA4L and HSPA6), cellular receptors with immune function (CD14, PDCD1LG2 and TNFRSF10D), as well as a number of proteins specifically expressed in antigen-presenting cells (C5orf20, MEG1 and TREML4).
Table 1. Effect of vaccinia stimulation on cellular gene expression

Gene name	Gene description	Fold change	P-value^a	FDR
Cellular genes downregulated upon vaccinia stimulation				
CXCL6	Chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)	0.70	<1.00E−15	<1.00E−15
ARNT2	Aryl-hydrocarbon receptor nuclear translocator 2	0.71	<1.00E−15	<1.00E−15
PDG	Podoplanin	0.72	<1.00E−15	<1.00E−15
CD14	CD14 molecule	0.73	<1.00E−15	<1.00E−15
S100A8	S100 calcium-binding protein A8	0.73	<1.00E−15	<1.00E−15
TREM4	Triggering receptor expressed on myeloid cells-like 4	0.74	<1.00E−15	<1.00E−15
S100A10	S100 calcium-binding protein A9	0.74	<1.00E−15	<1.00E−15
PDCD1LG2	Programmed cell death 1 ligand 2	0.74	<1.00E−15	<1.00E−15
THBS1	Thrombospondin 1	0.74	<1.00E−15	<1.00E−15
SIRPB2	Signal-regulatory protein beta 2	0.75	<1.00E−15	<1.00E−15
MPEG1	Macrophage expressed 1	0.75	<1.00E−15	<1.00E−15
GPRB4	G protein-coupled receptor 84	0.72	<1.00E−15	8.86E−14
CSF2R	TRAF-interacting protein with forkhead-associated domain	0.73	3.42E−14	2.66E−12
IL18	Interleukin 18 (interferon-gamma-inducing factor)	0.71	3.57E−14	2.77E−12
OLR1	Oxidized low-density lipoprotein (lectin-like) receptor 1	0.72	1.42E−11	7.73E−10
HNMT	Histamine N-methyltransferase	0.75	2.89E−11	1.48E−09
HAMP	Heparin antimicrobial peptide	0.67	3.73E−11	1.88E−09
C1orf38	Chromosome 1 open reading frame 38	0.75	7.43E−09	2.68E−07
MYEOV	Myeloma overexpressed (in a subset of t11;14) positive multiple myelomas	0.72	1.76E−06	4.16E−05
C2orf103	Chromosome 2 open reading frame 103	0.74	3.15E−06	6.96E−05
SYT15	Synaptotagmin XV	0.68	3.79E−06	8.22E−05
TRIM50	Serine protease 50, involved in cellular proliferation	0.55	7.23E−06	3.0E−05
XCR1	Chemokine (C motif) receptor 1	0.75	1.50E−05	0.003
SEMA3A	Semaphorin 3A, secreted	0.73	4.04E−05	0.0007
SIRPD	Signal-regulatory protein delta	0.55	5.34E−05	0.0009
APOC2	Apolipoprotein C-II	0.73	6.50E−05	0.0011
BMP3	Bone morphogenetic protein 3	0.42	6.69E−05	0.0011
ADORA3	Adenosine A3 receptor	0.62	9.11E−05	0.0014
KCNJ10	Potassium inwardly rectifying channel, subfamily J, member 10	0.74	0.0001	0.0018
NDP	Norrie disease (pseudoglioma)	0.75	0.0002	0.0032
C4BPB	Complement component 4 binding protein, beta	0.66	0.0002	0.0033
GBP1	G protein-coupled bile acid receptor 1	0.74	0.0003	0.0043
PTGES	Prostaglandin E synthase	0.69	0.000364055	0.004745659
CHST6	Carbohydrate (N-acetylgalactosamine 6-O) sulfotransferase 6	0.52	0.000621449	0.007433113

Cellular genes upregulated upon vaccinia stimulation				
MFAP5	Microfilibrar associated protein 5	0.74	0.000878039	0.00996752
TNFRSF10D	Tumor necrosis factor receptor superfamily 10d, death domain	1.90	<2.00E−16	<2.00E−14
HIST4H4	Histone cluster 1, H4i	2.31	<2.00E−16	<2.00E−14
HIST4H4H	Histone cluster 1, H4i	3.86	<2.00E−16	<2.00E−14
HIST4H4C	Histone cluster 1, H4i	5.68	<2.00E−16	<2.00E−14
HSPA4L	Heat shock 70kDa protein 4-like	5.74	<2.00E−16	<2.00E−14
HIST1H4E	Histone cluster 1, H4i	6.91	<2.00E−16	<2.00E−14
HIST1H1D	Histone cluster 1, H1d	9.37	<2.00E−16	<2.00E−14
HIST1H1E	Histone cluster 1, H1e	40.45	<2.00E−16	<2.00E−14
IL3	Interleukin 3	3.35	2.22E−16	2.36E−14
HIST1H2AM	Interleukin 3 cluster, H2ag	3.77	1.34E−09	5.40E−08
IFNβ	Interferon, beta 1, fibroblast	4.49	1.56E−08	5.29E−07
EPB3	EPB receptor B3	1.65	3.39E−08	1.09E−06
HIST1H2AE	Histone cluster 1, H2ae	1.85	3.09E−07	8.55E−06
HSPA6	Heat shock 70kDa protein 6 (HSP70B); heat shock 70kDa protein 6 (HSP70B′)	1.60	2.34E−06	5.34E−05
HIST1H2BG	Histone cluster 1, H2bi	2.46	2.85E−06	6.34E−05
RNFL52	Ring finger protein 152	1.82	4.33E−06	9.24E−05
CH25H	Cholesterol 25-hydroxylase	2.66	6.58E−06	0.000137
HIST2H2AC	Histone cluster 2, H2ac	1.90	3.11E−05	0.000545
WIPKIN	WIPKIN, a functional partner of WIPR	1.52	0.000187	0.002686
LVRN	Lateral, aminopeptidase Q	2.12	0.000247	0.003421
HIST1H2BN	Histone cluster 1, H2bn	1.81	0.000419	0.005343
IFNG	Interferon, gamma	2.57	0.00069	0.008117

Abbreviation: FDR, false discovery rate. *Corrected P-value.

Interaction (high responders vs low responders) assessment of gene expression

Our study subjects were individuals from a large cohort, who had the highest and lowest neutralizing Ab titers following smallpox vaccination, allowing us to compare high responder gene expression patterns following viral stimulation with the expression patterns in low responders. Given the large number of genes analyzed, we set a P-value cutoff of 5×10^{-5} and a false discovery rate cutoff value of 0.05. After applying these thresholds, three genes remained (see Table 2): KIR2DL3 (a killer cell
immunoglobulin-like receptor), TPSD1 (a serine protease expressed in mast cells) and UNC13A (a phorbol ester receptor).

Pathway analysis
Recognizing that both infection and immune responses are the result of a highly complex, ordered series of events, and that contributions of individual genes may be quite small, we conducted both Metacore- and Ingenuity-based pathway analyses of host gene expression, using the top 1000 genes with lowest read counts. Table 2 shows that analyses using a subset of the BROAD gene sets (those that included the keyword ‘immune’ in their title/functional description) indicated that 200 of the 234 immunology-related gene sets were differentially activated upon infection (P<0.05), whereas gene set 132 (Innate_Immune_Response) was the only gene set with significant differences when comparing high and low Ab responders. Gene set analysis using a subset of the BROAD gene sets (those that included the keyword ‘immune’ in their title/functional description) indicated that 200 of the 234 immunology-related gene sets were differentially activated upon infection (P<0.05), whereas gene set 132 (Innate_Immune_Response) was the only gene set with significant differences when comparing high and low Ab responders.

Viral gene expression
mRNA-Seq analysis provides both host and viral gene expression data, and allowed us to investigate host–pathogen interaction at the gene expression level. Figure 1 illustrates the average read count across all samples (infected read count – uninfected read counts) for each of the ~ 250 open reading frames of VACV. Reads were mapped to the ACAM2000 sequence (Genbank: AY313848.1). We detected gene expression of each of the putative viral genes across a wide range of expression levels. Mean viral read counts ranged from 71 for the A38L semaphorin gene to 10 740 for the A38L semaphorin gene. We detected gene expression of each of the putative viral genes across a wide range of expression levels. Mean viral read counts ranged from 71 for the A38L semaphorin gene to 10 740 for the A38L semaphorin gene. We detected gene expression of each of the putative viral genes across a wide range of expression levels. Mean viral read counts ranged from 71 for the A38L semaphorin gene to 10 740 for the A38L semaphorin gene.

Table 2. Differential effect of vaccinia stimulation on high and low responders

Gene name	Gene description	FC high responders	FC low responders	P-value	FDR
KIR2DL3	Killer cell immunoglobulin-like receptor, long cytoplasmic tail	0.88	1.2	1.55E - 12	3.76E - 09
TPSD1	Trypsate, delta 1	1.15	0.81	1.68E - 11	3.49E - 08
UNC13A	Unc-13 homolog A	0.83	0.62	2.96E - 05	0.05

Abbreviation: FDR, false discovery rate.

Table 3. Pathways enriched in differentially expressed genes upon viral stimulation

Pathway	P-value
Ingenuity pathway	
TREM1 signaling	2.43 x 10^-11
Dendritic cell maturation	6.17 x 10^-9
NRF2-mediated oxidative stress response	3.48 x 10^-8
Role of PRR in recognition of bacteria and viruses	
FcR-mediated phagocytosis in macrophages and monocytes	1.04 x 10^-7
Metacore	
Immune response—alternative complement pathway	1.03 x 10^-7
Immune response—classical complement pathway	2.08 x 10^-7
Immune response—lectin-induced complement pathway	1.79 x 10^-6
Immune response—FcR-mediated phagocytosis in macrophages	7.62 x 10^-5
Apoptosis and survival—inhibition of ROS-induced apoptosis by 17b-estradiol	2.01 x 10^-4
Cell adhesion—chemokines and adhesion	2.06 x 10^-4
Immune response—TREM1 signaling pathway	2.98 x 10^-4
Inhibitory action of Lipoxins on superoxide production in neutrophils	4.83 x 10^-4
Immune response—inhibitory action of lipoxins on superoxide production induced by IL-8 and Leukotriene B4 in neutrophils	4.83 x 10^-4
Cell adhesion—ECM remodeling	5.37 x 10^-4
Development—EPO-induced MAPK pathway	7.92 x 10^-4
Immune response—CCR3 signaling in eosinophils	9.21 x 10^-4
Chemotaxis—Lipoxin inhibitory action on fMLP-induced neutrophil chemotaxis	1.07 x 10^-3
Immune response—HMGB1/RAGE signaling pathway	1.16 x 10^-3

Abbreviations: CCR3, chemokine (C-C motif) receptor 3; ECM, extracellular matrix; EPO, erythropoietin; fMLP, formyl-Methionyl–Leucyl–Phenylalanine; HMBG1, high mobility group box 1 protein; IL-8, interleukin 8; MAPK, mitogen-activated protein kinase; NRF2, nuclear factor-erythroid 2; PRR, pattern recognition receptor; TREM1, triggering receptor expressed on myeloid 1.
DISCUSSION

The transcriptional profiles of PBMCs from individuals vaccinated with the Dryvax smallpox vaccine were assessed after stimulation with VACV for 8 h. Our primary interest was to examine the early transcriptional responses to VACV in a mixed cell population. As the subjects tested were taken from transcriptomic events that occur during innate responses to VACV and viral gene expression patterns after infection of HeLa cells, and identified clusters of genes involved in innate immunity that were downregulated upon infection with VACV. Of the genes that they identified, in our experimental system only CXCL3 and STAT1 were downregulated, whereas the remaining genes exhibited insignificant changes in expression pattern. This is likely due to the different cell types examined.

Table 4. Pathways enriched in differentially expressed genes comparing high/low responders

Ingenuity pathway	P-value
Nitrogen metabolism	0.002
Mitochondrial dysfunction	0.002
Dopamine receptor signaling	0.003
eIF2 signaling	0.004
Corticotropin releasing hormone signaling	0.008
Biosynthesis of steroids	0.018
Aldosterone signaling in epithelial cells	0.020
Lysine biosynthesis	0.021
Endothelin-1 signaling	0.028
Starch and sucrose metabolism	0.030
Systemic lupus erythematosus signaling	0.030
T-helper cell differentiation	0.032
Signaling by Rho family GTPases	0.036
LXR/RXR activation	0.037
Sonic Hedgehog signaling	0.038
Melatonin signaling	0.038
Regulation of eIF4 and p70S6K signaling	0.040

Abbreviations: eIF2, eukaryotic initiation factor 2; eIF4, eukaryotic initiation factor 4; LXR, liver X receptor; RXR, retinoid X receptor.

Table 5. Transcriptional module M7.35

Symbol	Description
ANKRD22	Homo sapiens ANKRD22, mRNA
CCNA1	Homo sapiens cyclin A1 (CCNA1), mRNA
CD163	Homo sapiens CD163 molecule (CD163), transcript variant 1, mRNA.
CD177	Homo sapiens CD177 molecule (CD177), mRNA.
CLEC5A	Homo sapiens C-type lectin domain family 5, member A (CLEC5A), mRNA.
CREBS	Homo sapiens AMP responsive element binding protein 5 (CREBS), transcript variant 4, mRNA.
DAAM2	Homo sapiens dishevelled associated activator of morphogenesis 2 (DAAM2), mRNA.
ECHDC3	Homo sapiens enoyl Coenzyme A hydratase domain containing 3 (ECHDC3), mRNA.
GPR84	Homo sapiens G protein-coupled receptor 84 (GPR84), mRNA.
IL1R1	Homo sapiens interleukin 1 receptor, type I (IL1R1), mRNA.
KAAA1026	Homo sapiens kazrin (KAAA1026), transcript variant 8, mRNA.
LOC400793	PREDICTED: Homo sapiens hypothetical LOC400793, transcript variant 2 (LOC400793), mRNA.
LOC401233	Homo sapiens similar to HIV TAT specific factor 1; cofactor required for Tat activation of HIV-1 transcription (LOC401233), mRNA.
LOC651612	PREDICTED: Homo sapiens hypothetical protein LOC651612 (LOC651612), mRNA.
METTL7B	Homo sapiens methyltransferase like 7B (METTL7B), mRNA.
MYO10	Homo sapiens myosin X (MYO10), mRNA.
OLAH	Homo sapiens oleoyl-ACP hydrolase (OLAH), transcript variant 1, mRNA.
ORM1	Homo sapiens oromucoid 1 (ORM1), mRNA.
ORM2	Homo sapiens orosomucoid 2 (ORM2), mRNA.
PCOLCE2	Homo sapiens procollagen C-endopeptidase enhancer 2 (PCOLCE2), mRNA.
PFKFB2	Homo sapiens 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), transcript variant 2, mRNA.
SLC1A3	Homo sapiens solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), mRNA.
SLC2A11	Homo sapiens solute carrier family 2 (facilitated glucose transporter), member 11 (SLC2A11), transcript variant 3, mRNA.
SYN2	Homo sapiens synapsin II (SYN2), transcript variant Ia, mRNA.
TDRD9	Homo sapiens tudor domain containing 9 (TDRD9), mRNA.
TLR2	Homo sapiens Toll-like receptor 2 (TLR2), mRNA.
ZDHHC19	Homo sapiens zinc finger, DHHCC-type containing 19 (ZDHHC19), mRNA.

Individual genes—stimulated/unstimulated

Previous reports of host gene expression after vaccinia infection indicate a generalized downregulation of gene expression with a few select genes being upregulated. Rubins et al.18 used microarrays to compare the effect of vaccinia and monkeypox infection on gene expression patterns in macrophages, fibroblasts and HeLa cells, and identified clusters of genes involved in innate immunity that were downregulated upon infection with VACV. Of the genes that they identified, in our experimental system only CXCL3 and STAT1 were downregulated, whereas the remaining genes exhibited insignificant changes in expression pattern. This is likely due to the different cell types examined. Rubins et al.18 reported that their three cell types responded to viral infection with distinct differences in the gene expression pattern. Moss and colleagues9 used RNA sequencing to simultaneously analyze host and viral gene expression patterns after infection of HeLa cells with VACV. Four hours post infection, they reported that 50–75% of host genes were decreased, while relatively few genes were overexpressed. They also indicated that expression of genes involved in nuclear factor-κB signaling, apoptosis, signal transduction and other ligand-mediated signaling pathways was significantly altered. These results match our findings in a mixed cell population (Table 1), indicating that general features of vaccinia infection may be shared across cell type. Interestingly, a number of histone genes exhibited strong (2- to 40-fold) upregulation upon vaccinia infection. This is similar to the results obtained with those at the two extremes of the humoral immune response after smallpox vaccination, we also compared gene expression patterns in individuals with high and low vaccinia-specific neutralizing Ab responses. Transcriptomic analysis of the effect of vaccinia infection on host cells has previously been reported primarily in immortalized cell lines or single cell subsets, and has typically utilized microarray technology. Here we report the use of mixed cell population PBMCs and next-generation sequencing technology to assess global gene expression changes (both cellular and viral).
in published reports using monkeypox and rabbitpox. The authors speculate that cellular histone proteins may have a function in the organization and compaction of the viral genome. Our data support these earlier results; VACV elicits a similar effect as the other poxviruses. At this point, it is too early to determine whether this effect is the result of an antiviral host response or is necessary for the poxvirus life cycle.

Several groups have shown that monocytes are particularly susceptible to vaccinia infection. In our hands, flow cytometry analysis of PBMCs infected with VACV for 8 h indicate that the vast majority (>85%) of monocytes are infected (data not shown), and our mRNA-Seq results indicated that a large number of monocyte-/macrophage-related genes (CD14, MPEG1 and PDCD1LG2) have significantly altered expression. The CD14 gene produces a surface antigen expressed on macrophages (and to a lesser extent by some granulocytes and dendritic cells), which recognizes lipopolysaccharide, leading to activation of nuclear factor-κB, cytokine secretion and initiation of inflammatory responses. MPEG1 encodes for a macrophage-specific protein with limited homology to perforin. PDCD1LG2 encoding for the programmed cell death 1 ligand 2 protein (a costimulatory molecule essential for T-cell proliferation and IFN-γ production) was downregulated upon vaccinia infection. Importantly, the IL18 gene expression was also downregulated upon infection. This cytokine has been shown to have a critical function in cellular responses to poxvirus infection, and we have previously reported that single-nucleotide polymorphisms in both IL18 and IL18R genes are associated with variations in immune response following smallpox vaccination.

Individual genes—interaction

In the interaction analysis (differential effect of vaccinia stimulation in high and low responders), the KIR2DL3 gene was expressed at a significantly lower level in high responders and was downregulated upon vaccinia stimulation; in contrast, the low responders had higher baseline levels that increased upon viral stimulation. KIR2DL3 is a killer cell Ig-like receptor with two immunoglobulin domains and a longer cytoplasmic tail containing the immune tyrosine-based inhibitory motif that inhibits natural killer cell lysis of target cells expressing human leukocyte antigen-C alleles. KIR2DL3 has been linked to the resolution of hepatitis C virus infection, and this effect requires expression of both the natural killer receptor and its human leukocyte antigen-C1 ligand. It is possible that downregulation of this natural killer receptor in high responders allows for increased killing of vaccinia-infected cells; however, a cause and effect relationship, if one exists, between high responder status and KIR2DL3 expression is unclear and will require additional study. The second gene of interest, TPSD1, encodes for a mast cell serine protease. TPSD1 was expressed at similar levels in both high and low responders, but vaccinia stimulation resulted in increased expression in high responders and the opposite effect in low responders. TPSD1 contains a premature stop codon that leads to the loss of the carboxy-terminal regions necessary for optimal catalytic activity, but has been implicated in autoimmune pathology. Although TPSD1 is largely inactive, an increase in gene expression may serve as an indicator of mast cell activity. Elevated levels may be due to mast cell recognition of vaccinia through IgE, or may merely be an indirect effect of other immune recognition pathways. The third significant gene, UNC13A, is a phorbol ester receptor similar to protein kinase C that is integral to synaptic vesicle priming. UNC13A expression levels were lower to begin with in high responders and decreased 20% upon viral stimulation, whereas in low responders background levels were high to begin with and exhibited a dramatic decrease (~45%) upon stimulation (P = 2.96 × 10^{-5}). UNC13A has also been shown to interact with Rab37 and control tumor necrosis factor-α secretion in activated macrophages; however, tumor necrosis factor-α mRNA expression did not differ between the high and low responder groups. The high Ab responders secreted greater amounts of tumor necrosis factor-α (224.7 pg ml^{-1} vs 150.8 pg ml^{-1}) in low responders.
Our transcriptomic data indicate that propensity for VACV to infect CD14+ PBMCs from these subjects infected with VACV revealed a strong monocyte chemotactic protein-1, and upregulation of adhesion response to pathogen-associated molecular patterns resulting in expressed on monocytes and neutrophils, and is upregulated in pathogen.

Pathway analysis

Our pathway analyses indicated several important immune recognition pathways exhibiting differential activation upon viral stimulation, including complement, pattern recognition receptor, dendritic cell maturation pathways, as well as oxidative stress response, TREM1 triggering receptor expressed on myeloid cells 1) signaling and FcγR-mediated phagocytosis. In spite of high-level transcription of immunomodulatory genes, some innate immune recognition pathways are still activated in response to vaccinia transcription of immunomodulatory genes, some innate immune recognition pathways are still activated in response to vaccinia infection, while others are suppressed. These results further illustrate the dynamic tension that exists between a host and a pathogen.

TREM1 encodes for an immunoglobulin superfamily receptor expressed on monocytes and neutrophils, and is upregulated in response to pathogen-associated molecular patterns resulting in monocyte activation, secretion of IL-8, tumor necrosis factor-α and monocyte chemotactic protein-1, and upregulation of adhesion and costimulatory molecules (ITGβ1 and CD40). Flow analysis of PBMCs from these subjects infected with VACV revealed a strong propensity for VACV to infect CD14+ monocytes (data not shown). Our transcriptomic data indicate that TREM1 and multiple downstream components of its signaling pathways are decreased upon viral infection, which might impair the immune function of infected monocytes and may lead to a decreased ability to prime adaptive immune responses.

Table 6. Immunomodulatory gene expression by vaccinia virus

ACAM name	COP name	Function	Median (IQR)	No. of reads stimulated
001	C23L, B29R	Chemokine binding protein	1006 (485–1546)	1
002	C22L, B28R	TNFαR	166 (103–223)	0
003	TNFαR	231 (122–305)	0	
013	C1L	Serpin 1,2,3	3640 (2026–5,187)	7
014	C1R	EGF	1254 (577–1973)	2
015	C10L	IL-1R antagonist	1244 (672–1886)	2
018	Apoptosis, host defense mod	92 (45–145)	0	
019	IL-18 binding prot	2147 (1158–3,661)	4	
031	C4L	IL-1R antagonist	502 (241–706)	1
032	C4L	IL-1R antagonist	666 (304–882)	1
033	C4L	IL-1R antagonist	155 (66–210)	0
037	NTL	NF-κB in/n/virokine	3230 (1684–4,651)	4
042	M2L	NF-κB inh	4554 (3176–7,382)	8
045	K3L	IFN resist, PKR inh	335 (215–785)	1
049	K7R	Inh IFNβ signal	572 (238–750)	1
069	E3L	IFN resist, PKR inh, dsRNA binding	9325 (5180–15,798)	16
183	A46R	IL-1 signal inhibitor TLR-like	4233 (2232–6,450)	8
189	A52R	TLR/IL-1 signal inhibitor	486 (243–666)	1
201	B8R	IFNy receptor	10,664 (6994–14,488)	16
206	B13R	SPI-2, crmA, IL-1 convertase,	4110 (2351–5,450)	5
207	B14R	SPI-2, crmA, IL-1 convertase	7536 (4242–10,295)	9
212	B19R	Secreted IFNα/β receptor	7452 (4629–10,948)	13
224	IL-18 binding	1235 (700–2270)	2	
229	C12L	Alpha-1	4506 (2566–6,306)	8
239	TNFαR like	210 (140–310)	0	
240	TNFαR like	187 (110–223)	0	
034	C3L	Complement binding	72 (46–134)	0
044	K2L	Serpin, SPI-3, host defense modulator	263 (167–513)	0
190	A53R	TNFR Crm C	538 (279–789)	1
209	B16R	IL-1R receptor	73 (42–125)	0

Abbreviations: ACAM, ACAM2000 strain; COP, Copenhagen strain; Crm c, cytokine response modifiers; EGF, epidermal growth factor; IFN, interferon; IL, interleukin; IQR, interquartile range; NF-κB, nuclear factor-kB; PKR inh., protein kinase R inhibitor; SPI, Salmonella pathogenicity island 1; TLR, Toll-like receptor; TNFαR, tumor necrosis factor-α receptor; TNFR, TNF receptor.

Gene set analysis

Our gene set analysis comparing uninfected and infected samples indicated that a large number of transcriptional modules were differentially expressed. These modules were identified from subjects with a variety of immunologic conditions and, hence, it is not surprising that many of the same modules would be affected by a viral infection. With the exception of module M7.35, we did not see significant differences between subjects with robust or weak Ab responses to smallpox vaccine. A potential functional role for this module has not yet been determined; however, several genes within the module are integral to innate and inflammatory responses (IL1R1, IL1R2). Other genes include(1) the monocyte marker CD163, (2) CLEC5A, a C-type lectin that serves as a macrophage recognition receptor for dengue virus stimulating pro-inflammatory responses, and (3) the ORM1 and ORM2 proteins involved in transport of lipophilic compounds in the blood. The ORM proteins are also thought to regulate immune function during acute phase responses. Further examination of the contributions of these genetic elements in host responses to vaccinia infection is warranted and may provide additional insights into host–pathogen interactions. The Broad gene set M3064 (annotated by GO:0045087), containing 23 innate immune response genes, was the only gene set with significantly different expression when comparing high and low Ab responders. This gene set includes several defensins (DEFB1, DEFB118, DEFB127), IL12A and IL12B, as well as receptors involved in natural killer cell activity (CD1D, CR2AM and NCR1). It is possible that high Ab responders have more innate responses that more readily recognize and react to VACV, and that this increased innate
activity promotes stronger adaptive responses culminating in higher vaccinia-neutralizing Ab titer.

Viral gene expression analysis
Examination of the expression levels of viral genes indicated robust viral gene expression, predominantly in early genes (Figure 2). We saw a striking similarity of viral gene expression between individuals with high and low immune response to the smallpox vaccine. One possible explanation may be the experimental setup in which subjects’ PBMCs were isolated, frozen, thawed and placed in tissue culture with growth medium for an 8-h incubation. These conditions abrogate immediate binding by virus-specific serum Ab and may not allow sufficient time for the differential cellular immune reactivity between these two groups to alter the initial and early rounds of viral replication.

Assarsson et al. used a genome-tiling array to measure expression kinetics of 223 vaccinia genes after infection of HeLa cells and found that a majority of the viral genes were detected at the 8-h time point. They found several genes were not expressed at any of their studied time points, however those genes were expressed in our experiments (mean read counts are as follows: WR092 = 41 reads; WR097 = 766 reads; WR145 = 378 reads; WR162 = 141 reads; WR206 = 5022; see Figure 1). Our data indicates that each of the 241 ACAM2000 open reading frames were expressed in the stimulated samples, and for some viral genes we identified relatively high expression levels (5000–10 000 read counts), indicating that strain and, more likely, cell-specific differences can dramatically affect viral gene expression and care must be taken when comparing expression data across studies.

A limitation of this study is the possible dilution of observable effects, given that each individual cell type may respond differently to vaccinia infection. On the other hand, this system more closely matches the in vivo environment during infection, and allows for the myriad cell-cell interactions that will occur during an infection or vaccination event. These interactions, involving either cell-to-cell contact, or mediated through soluble factors, is likely to alter the local microenvironment and the individual cell response to infection. The response of a mixed T-cell:macrophage population may not reflect the response of a pure T-cell population nor that of a pure macrophage population, but rather will include at least four components: (1) a T-cell response to infection; (2) a macrophage response to infection; (3) a T-cell response to infected macrophages and (4) a macrophage response to infected T cells. However, further studies on purified cell populations, such as monocytes (given our findings with multiple monocyte-specific genes), or alternatively B cells or Th cells (given the neutralizing Ab titer-based subject selection) will yield valuable additional information. Our subjects were selected based on differences in humoral immunity and are likely to have different numbers of vaccinia-specific memory T and B cells. It is possible that interindividual differences in the memory lymphocyte pool contribute to the differences seen in this study. We selected an 8-h time point in order to allow for the development of innate responses, while minimizing the contribution of the memory T or B cells.

A strength of this study is the combined use of both individual analyses and pathway/gene set analyses along with highly sensitive NGS technology. Taken together, these separate analyses can identify individual components of the immune response and the interaction of multiple signaling components. The gene set-type analyses have the additional benefit of reducing the number of associations to help offset false discovery.

Previous reports of gene expression in the context of vaccinia infection have focused on established cell lines or on primary cultures of single cell types. Our results indicate that numerous innate genes and pathways are activated upon vaccinia infection of a complex mixture of PBMCs. A number of chemokines, cytokines, interferons and macrophage-associated genes exhibited significant downregulation upon infection. Upregulated genes included histones, IFNβ, IFNγ and heat-shock proteins. Our data also indicate that notable differences in gene expression between high and low responders to the smallpox vaccine exist. It is possible that these differences are the result of divergent immunoregulatory processes in high and low responders. Further investigation of the effect of these loci on immune responses to viral vaccines may lead to important findings regarding genetic control of immune responses and the ability to use such information in engineering new vaccine candidates.

MATERIALS AND METHODS

Subject recruitment
Details regarding the cohort from which we selected subjects for use in this study have been previously published. Briefly, we selected 44 subjects from a cohort of 1076 recipients of Dryvax (Wyeth Laboratories, Marietta, PA, USA). All subjects had been vaccinated 1–48 months before enrollment, and were generally healthy, had received no more than one dose of the smallpox vaccine and were successfully immunized as evidenced by the characteristic vaccine ‘take.’ Subjects were enrolled at the Mayo Clinic (Rochester, MN, USA) and at the Naval Health Research Center (San Diego, CA, USA). Institutional Review Board approval from both centers (Mayo Clinic and Naval Health Research Center) was obtained before subject enrollment, and informed consent was obtained in writing from all subjects. We selected subjects from among those individuals with the highest (n = 21) and those with the lowest (n = 23) vaccinia-specific neutralizing Ab titers.

Viruses and cell lines
The NYCBOH strain of VACV was purchased from ATCC (Manassas, VA, USA), whereas the vSC56 strain of VACV was graciously provided by B Moss (NIH/AID, Bethesda, MD, USA). All virus strains were grown and titered according to established protocols. HeLa, HeLa S3 and Vero cells were also obtained from ATCC.

VACV neutralization assay
VACV-specific, neutralizing Ab titers from each subject’s serum sample were obtained using a high-throughput neutralization assay developed at the Food and Drugs Administration and further optimized in our lab as previously described.

Cell cultures, RNA extraction, mRNA-Seq
PBMCs were stimulated for 8-h with or without live VACV NYCBOH at amultiplicity of infection of 5. Following the incubation, RNAProtect reagent (Qiagen, Valencia, CA, USA) was added to each culture and total RNA was extracted by RNeasy Plus mini Kit (Qiagen). The quantity and quality of each RNA sample were determined by Nanodrop (Thermo Fisher Scientific, Wilmington, DE, USA) and by an Agilent 2010 Bioanalyzer (Agilent, Palo Alto, CA, USA). cDNA libraries were created using the mRNA-Seq 8 Sample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s directions. Sample preparation was performed at the Advanced Genomics Technology Center, Gene Sequencing core facility at the Mayo Clinic. Poly-A RNA was isolated using two rounds of magnetic purification with oligo-dT-coated beads. The purified poly-A RNA was fragmented and reverse transcribed into double-stranded cDNA fragments, which were attached to Illumina adaptor sequences. Library validation and quantification was carried out using DNA 1000 Nano Chip kits on an Agilent 2100 Bioanalyzer (Agilent). cDNA libraries were loaded onto individual channels of each flow cell at a concentration of 5–7 pm. Single-end read sequencing was performed using the Genome Analyzer GAIIx (Illumina), with Illumina’s Single Read Cluster Generation kit (v2) and 50 Cycle Illumina Sequencing Kit (v3). Flow cells were then analyzed with SC5 v2.01 and v2.4. Image processing utilized the Illumina Pipeline Software v1.5 and FireCrest, bastard, ELAND and CASAVA. Viral gene expression was determined by mapping sequencing reads to the VACV ACAM2000 (GenBank: AY313847.1) reference genome using Bowtie.
Statistical modeling and analyses

Randomized block principles were utilized to allocate specimens to flow cell and lane. Specifically, samples were randomly allocated to library preparation batch, flow cell and lane, with the constraints that (1) high and low responders were evenly balanced across flow cell and lane assignment and (2) all samples for a given subject were assayed on the same flow cell. Per-gene tests of statistical significance used generalized linear modeling, assuming a negative binomial distribution. An offset of the 75th percentile was included as a normalization factor. Predictor variables were response status, stimulation status and the interaction of these two variables. The dispersion was allowed to vary across genes and was estimated via edgeR in an empirical Bayes-like manner, sharing variance information across genes (moderated dispersion) with the prior.n estimates via edgeR in an empirical Bayes-like manner, sharing variance information across genes (moderated dispersion) with the prior.n estimates. Self-contained gene set tests were conducted using the self-contained gene set test package. Both R35 and SAS36 computing packages were utilized.

CONFLICT OF INTEREST

Dr Poland is the chair of a Safety Evaluation Committee for investigation vaccine trials being conducted by Merck Research Laboratories. Dr Poland offers consultative advice to Merck & Co. Inc, CSL Biotherapies, Avianax, Sanofi Pasteur, Dynavax, Novartis Vaccines and Therapeutics, and PAVVAX Inc. These activities have been reviewed by the Mayo Clinic Conflict of Interest Review Board and are conducted in compliance with Mayo Clinic Conflict of Interest policies. The content is the sole responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We gratefully acknowledge the subjects who participated in this study. We wish to thank the nurses, phlebotomists and study coordinators at both the Naval Health Research Center and the Mayo Clinic—particularly, Dr Meg Ryan for her time and efforts in subject recruitment, and Shaun Rika, Sumit Middha and Aisha Nair for biostatistical and bioinformatics support. This study was supported by the National Institutes of Health contract HHSN266200400065C (AI40065).

REFERENCES

1 Fenner F. Smallpox and its Eradication. World Health Organization: Geneva, 1999.
2 Henderson DA, Inglesby TV, Bartlett JG, Ascher MS, Eitzen E, Jahrling PB. Smallpox and its Eradication. World Health Organization: Geneva, 1988.
3 Kennedy RB, Ovsyannikova I, Poland GA. Smallpox vaccines. In Vaccine technology: an encyclopedia. (eds. B. K. A. D. Ray, J. A. G. D. May, and H. G. D. Smith). J. Ross Publishing, 2004: 2127–2127.
4 Rossner S, Fuchsbrunner K, Lange-Dohna C, Hartlage-Rubsamen M, Bigl V, Betz A. Susceptibility of different leukocyte subpopulations to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 1996; 4: 407–414.
5 Brum LM, Lopez MC, Varela JC, Baker HV, Moyer RW. Microarray analysis of A549 cells infected with rabies virus (RVP): a comparison of wild-type RVP and RVP deleted for the host range gene, SPI. Virology 2003; 315: 322–334.
6 Sanchez-Puig JM, Sanchez L, Roy G, Blasco R. Susceptibility of different leukocyte cell types to Vaccinia virus infection. Virology 2004; 1: 10.
7 Arlen PM, Skarupa L, Pazdur M, Seetharam M, Tsang KY, Grosenbach DW. Recent Pat Antiinfect Drug Discov 2011; 6: 335–336.
8 Gilbert PA, McFadden G. Poxvirus cancer therapy. Expert Opin Biol Ther 2001; 1: 575–588.
9 Brum LM, Lopez MC, Varela JC, Baker HV, Moyer RW. Microarray analysis of A549 cells infected with rabies virus (RVP): a comparison of wild-type RVP and RVP deleted for the host range gene, SPI. Virology 2003; 315: 322–334.
10 Sanchez-Puig JM, Sanchez L, Roy G, Blasco R. Susceptibility of different leukocyte cell types to Vaccinia virus infection. Virology 2004; 1: 10.
11 Brum LM, Lopez MC, Varela JC, Baker HV, Moyer RW. Microarray analysis of A549 cells infected with rabies virus (RVP): a comparison of wild-type RVP and RVP deleted for the host range gene, SPI. Virology 2003; 315: 322–334.
12 Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci USA 2010; 107: 11513–11518.
13 Alkhali A, Hammadieh R, Hardick J, Ichou MA, Mett M, Ibrahim S. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. J Virol 2010; 7: 173.
14 Griffin JD, Ritz J, Nadler LM, Schlossman SF. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest 1981; 68: 932–941.
15 Haralambieva IH, Ovsyannikova IG, Dhiman N, Kennedy RB, O’Byrne M, Pankratz VS et al. Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with increased risk of Staphylococcus aureus infection. OMICS 2011; 15: 625–636.
16 Mack TM, Noble Jr, J, Thomas DB. A prospective study of serum antibody and protection against smallpox. Am J Trop Med Hyg 1972; 21: 214–218.
17 Banchereau J, Rondinilla A, Ardura M, Mejias A, Baldwin N, Xu H et al. Host immune transcriptional profiles reflect the variability in clinical disease manifestations in patients with Staphylococcus aureus infections. PLoS One 2012; 7: e34390.
18 Rubins KH, Hensley LE, Relman DA, Brown PO. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS One 2011; 6: e15615.
19 Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be programmed to directly induce the transcription of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem 1999; 274: 3355–3362.
20 Gaeta BG, Ovsyannikova IG, Dhiman N, Kennedy RB, O’Byrne M, Pankratz VS et al. Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with increased risk of Staphylococcus aureus infection. OMICS 2011; 15: 625–636.
21 Brum LM, Lopez MC, Varela JC, Baker HV, Moyer RW. Microarray analysis of A549 cells infected with rabies virus (RVP): a comparison of wild-type RVP and RVP deleted for the host range gene, SPI. Virology 2003; 315: 322–334.
22 Sanchez-Puig JM, Sanchez L, Roy G, Blasco R. Susceptibility of different leukocyte cell types to Vaccinia virus infection. Virology 2004; 1: 10.
23 Yu Q, Jones B, Hu N, Chang H, Ahmad S, Liu J et al. Comparative analysis of tropism between canarypox (ALVAC) and vaccinia viruses reveals a more restricted and preferential tropism of ALVAC for human cells of the monocytic lineage. Vaccine 2006; 24: 6376–6391.
24 Griffin JD, Ritz J, Nadler LM, Schlossman SF. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest 1981; 68: 932–941.
25 Haralambieva IH, Ovsyannikova IG, Dhiman N, Kennedy RB, O’Byrne M, Pankratz VS et al. Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with increased risk of Staphylococcus aureus infection. OMICS 2011; 15: 625–636.
26 Pallaoro M, Fejzo MS, Shayesteh L, Blount J, Caughey GH. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem 1999; 274: 3355–3362.
27 Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 2007; 217: 141–154.
28 Rossner S, Fuchsbrunner K, Lange-Dohna C, Hartlage-Rubsamen M, Bigl V, Betz A et al. Munc13-1-mediated vesicle priming contributes to secretory amyloid precursor protein processing. J Biol Chem 2004; 279: 27841–27844.
29 Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T et al. Release of TNN-alpha from macrophages is mediated by small GTPase Rab37. Euro J Immunol 2011; 41: 3230–3239.
30 Bouchen A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1: a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164: 4991–4995.
31 Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY et al. CELC5A is critical for dengue-virus-induced lethal disease. Nature 2008; 453: 672–676.
32 Treuheit MJ, Costello CE, Halsall HB. Analysis of the five glycosylation sites of human alpha 1-lysylidopeptidase. Biochem J 1992; 283(1 Pt 1): 105–112.
33 Fourrier T, Medjoubi NN, Porquet D. Alpha-1-lysylidopeptidase. Biochim Biophys Acta 2000; 1482: 157–161.
34 Assarsson E, Greenbaum BA, Sundstrom M, Schaffer L, Hammond JA, Pasqueto V et al. Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc Natl Acad Sci USA 2006; 105: 2140–2145.
1. Kennedy RB, Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Ryan MA et al. Gender effects on humoral immune responses to smallpox vaccine. *Vaccine* 2009; 27: 3319–3323.

2. Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Human leukocyte antigen genotypes in the genetic control of adaptive immune responses to smallpox vaccine. *J Infect Dis* 2011; 203: 1546–1555.

3. Manischewitz J, King LR, Bleckwenn NA, Shiloach J, Taffs R, Merchlinsky M et al. Development of a novel vaccinia-neutralization assay based on reporter-gene expression. *J Infect Dis* 2003; 188: 440–448.

4. Oberg AL, Bot BM, Grill DE, Poland GA, Therneau TM. Technical and biological variance structure in mRNA-Seq data: life in the real world. *BMC Genomics* 2012; 13: 304.

5. McCullagh P, Nelder JA. *Generalized Linear Models*. Chapman and Hall: London, England, 1983.

6. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. *BMC Bioinformatics* 2010; 11: 94.

7. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 2010; 26: 139–140.

8. Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. *Biostatistics* 2008; 9: 321–332.

9. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. *Biometrics* 1986; 42: 121–130.

10. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J Roy Stat Soc B* 1995; 57: 289–300.

11. Storey JD, Tibshirani R. Statistical significance for genomewide studies. *Proc Natl Acad Sci USA* 2003; 100: 9440–9445.

12. Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. *Bioinformatics* 2007; 23: 980–987.

13. Fridley BL, Jenkins GD, Biernacka JM. Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods. *PLoS One* 2010; 5: 9.

14. Fisher RA. *Statistical Methods for Research Workers*. 4th edn, Oliver and Boyd: Edinburgh, 1932.

15. Witten DM, Tibshirani R. Testing Significance of Features by Lassoed Principal Components. *Ann Appl Stat* 2008; 2: 986–1012.

16. Chassabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. *Immunity* 2008; 29: 150–164.

17. Team RDC. *R: A language and environment for statistical computing*. 2008.

18. SAS Institute Inc. *SAS/STAT User's Guide*. Version 9. SAS Institute: Cary, NC, 2005.