Resumo

Objetivo: Avaliar os achados de imagem da tomografia computadorizada por emissão de pósitrons com 18F-fluordesoxiglicose (18F-FDG PET/TC) e tomografia computadorizada (TC) em pacientes portadores de tumores primários adicionais, correlacionando com o método realizado para elucidação do diagnóstico e relatórios anatomopatológicos.

Materiais e Métodos: Avaliamos, retrospectivamente, prontuários, relatórios anatomopatológicos e exames de 11 pacientes que realizaram 18F-FDG PET/TC e/ou TC. Foram incluídos pacientes que apresentaram pelo menos duas neoplasias, com histopatologia distinta confirmada nos diferentes locais. Foram excluídos pacientes sem confirmação diagnóstica e pacientes com suspeita de que a lesão adicional fosse uma metástase da primeira.

Resultados: Lesões sugestivas de novas malignidades primárias foram encontradas em 11 pacientes, apresentando em 10 deles uma única nova lesão e em 1 caso dois novos tumores. Locais comprovados de lesão adicional foram pulmão, rim, próstata, jejuno e mama. Biópsia percutânea única ou múltipla foi realizada em 10 pacientes e 1 paciente foi submetido a procedimento cirúrgico para fins diagnósticos e terapêuticos. Os tumores eram metacrônicos em 6 casos e sincrônicos em 5 pacientes.

Conclusão: A TC e a 18F-FDG PET/TC associadas a biópsias percutâneas múltiplas podem auxiliar no diagnóstico de lesões adicionais, otimizando o tratamento e acompanhamento desses pacientes.

Unitermos: Segunda neoplasia primária/etiologia; Biópsia por agulha/métodos; Tomografia por emissão de pósitrons/métodos; Tomografia computadorizada/métodos; Fluordesoxiglicose F18.

INTRODUÇÃO

Múltiplos tumores primários podem ser definidos como mais do que uma lesão, histologicamente diferente, sincrônia ou metacrônica em um mesmo indivíduo(1). São inco-

muns, porém, a incidência e prevalência vêm aumentando progressivamente, devido em grande parte ao aumento da expectativa de vida da população e aos avanços em técnicas diagnósticas(2). Do ponto de vista diagnóstico, é essencial o
reconhecimento e confirmação precoces, para que se alcance o tratamento ideal. Portanto, os radiologistas devem estar familiarizados com os diferentes padrões de apresentação em paciente com múltiplos tumores primários.

As modalidades convencionais por imagem, incluindo ultrassonografia (US), tomografia computadorizada (TC) e ressonância magnética (RM), têm limitações na detecção de tumores múltiplos, devido aos seus padrões de imagem regionais. Nos últimos anos, a tomografia por emissão de pósitrons com ¹⁸F-fluordesoxiglicose (¹⁸F-FDG PET/TC) emergiu como uma modalidade de imagem promissora na avaliação de tumores malignos. Além disso, estudos indicam que a introdução de imagens de ²⁰¹Tl-PIB PET/TC para avaliar tumores malignos resulta em maior detecção de múltiplos tumores primários.

O advento da radiologia intervencionista tornou possível avanços notáveis no diagnóstico e tratamento de diversas situações. Com a contínua evolução nos métodos de imagem e a necessidade de buscar tratamentos cada vez mais eficazes e menos agressivos, vem crescendo a oncológia a representatividade dos procedimentos intervencionistas guiados por imagem. O objetivo deste trabalho foi avaliar os achados de imagem da ¹⁸F-FDG PET/TC e TC em pacientes portadores de tumores primários adicionais, correlacionando com o método realizado para elucidação do diagnóstico e relatórios anatomopatológicos.

MATERIAIS E MÉTODOS

De janeiro de 2016 a janeiro de 2018 foram avaliados, retrospectivamente, os exames de imagem de dois serviços de imagem e radiologia intervencionista, sendo um hospital público e uma clínica privada. Os dados clínicos foram obtidos de prontuários médicos e contato telefônico com médicos assistentes, pacientes e familiares. Seleccionamos os pacientes que apresentaram tumores primários sincrônicos ou metacrônicos comprovados histologicamente e realizaram TC e/ou PET/TC para fins diagnósticos ou de seguimento. Os critérios de inclusão foram a presença de pelo menos duas neoplasias, confirmadas por exame histopatológico, com histopatologia distinta nos diferentes locais. Usamos o intervalo de seis meses para diferenciar as neoplasias sincrônicas das metacrônicas, critério utilizado por vários autores. Foram excluídos deste estudo os pacientes sem confirmação diagnóstica e os com suspeita de que a lesão adicional fosse uma metástase da primeira. A amostra final totalizou 11 pacientes (8 do sexo masculino e 3 do sexo feminino). Foram registrados os tumores primários previamente conhecidos e a suspeita do novo sítio primário, bem como suas histologias. Os procedimentos percutâneos guiados por TC são técnicas seguras e já bem estabelecidas. As biópsias direcionadas por estudos funcionais, como a PET/TC, têm sido amplamente estudadas na literatura. Analisamos o procedimento realizado pela radiologia intervencionista em cada caso, para elucidação diagnóstica e desfecho ou tratamento realizado.

Os exames foram realizados em aparelhos multidetectores de 128 canais GE Discovery 610 (General Electric; Milwaukee, WI, EUA), com aquisições após jejum de pelo menos seis horas. Os pacientes receberam uma solução intravenosa de ¹⁸F-FDG, com atividade entre 3,7 e 5,2 MBq/kg (0,10 a 0,14 mCi/kg). As imagens tomográficas foram adquiridas após 60 a 120 minutos. As técnicas de pós-processamento foram realizadas com reconstruções multiplanares e projeção de intensidade máxima.

Um radiologista com sete anos de experiência em diagnóstico por imagem abdominal, um médico nuclear com dez anos de experiência em exames de PET/TC e dois residentes de radiologia analisaram os estudos por imagem, verificando a quantidade e localização das lesões. Foram também analisados registros clínicos, relatórios anatomopatológicos e desfecho. Idade do paciente no momento do diagnóstico de cada tumor, sexo, tumor sincrônico ou metacrônico, local de origem, método de diagnóstico, histologia e regime de tratamento foram registrados. Todos os dados foram tabulados e analisados em programa MS Excel.

RESULTADOS

A idade dos pacientes variou de 52 a 80 anos. Lesões sugestivas de novos tumores primários foram encontradas em 11 pacientes, sendo em 10 deles uma única nova lesão e em 1 caso dois novos tumores. Os locais comprovados da lesão primária adicional foram pulmão (4 lesões), rim (3 lesões), próstata (2 lesões), jejuno (2 lesões), mama (1 lesão). Em todos os pacientes, a histologia e a imuno-histoquímica mostraram que as novas lesões eram claramente uma malignidade primária diferente, mas não metástases da lesão primária conhecida. Em um paciente com neoplasia de pênis conhecida, a TC mostrou duas novas lesões, sendo um carcinoma renal de células claras e um adenocarcinoma de jejuno. Em todos os pacientes, a histologia e a imuno-histoquímica mostraram que as novas lesões eram claramente uma malignidade primária diferente, mas não metástases da lesão primária conhecida. Em um paciente com neoplasia de pênis conhecida, a TC mostrou duas novas lesões, sendo um carcinoma renal de células claras e um adenocarcinoma de jejuno. Biópsia percutânea única ou múltipla, guiada por US ou TC, foi realizada em 10 pacientes, e 1 paciente foi submetido somente a procedimento cirúrgico para fins diagnósticos e terapêuticos. Dos 12 novos tumores encontrados, 6 foram sincrônicos e 6 foram metacrônicos. Das malignidades suspeitadas ou já conhecidas, 2 eram hepatocarcinomas, 3 adenocarcinomas pulmonares, 1 timoma, 1 carcinoma renal de células claras com metástase para adrenal ipsilateral, 1 carcinoma espinocelular de pênis, 1 carcinoma ductal invasivo de mama e 1 carcinoma espinocelular de esôfago.

O manejo dos casos variou de quimioterapia isolada (3 casos), quimioterapia e ressecção cirúrgica (1 caso), quimioterapia e radioterapia (1 caso), hormonioterapia com ressecção cirúrgica (1 caso), ablação de hepatocarcinoma e ressecção cirúrgica (1 caso), transplante associado a quimioterapia e radioterapia (1 caso). Somente um paciente evoluiu para óbito, três meses após o diagnóstico das novas lesões. Dois pacientes
DISCUSSÃO

Múltiplos tumores primários podem ser definidos como mais do que uma lesão sincrônica ou metacrônica em um mesmo indivíduo. Devem ser histologicamente diferentes, envolver órgãos distintos, além de lesões metastáticas deverem ser excluídas. Tumores sincrônicos correspondem a um outro sítio tumoral, diagnosticados com intervalo de até seis meses, em pacientes que já apresentavam uma lesão primária, e metacrônicos quando diagnosticados com intervalo superior a seis meses.

Pacientes portadores de neoplasias têm risco 20% maior de desenvolver uma nova lesão primária em comparação à população em geral. Aproximadamente um terço dos pacientes com idade maior que 60 anos pode ter o diagnóstico de uma outra lesão primária. Os fatores de risco mais comuns incluem hereditariedade, hábitos de vida, fatores hormonais, ambientais e tratamento anterior de neoplasia primária.

Alguns tipos de neoplasias tendem a se agrupar por conta de fatores de risco compartilhados, como tabagismo.
nos cânceres do pulmão e cabeça e pescoço, fatores dietéticos ou endócrinos em cânceres ginecológicos, luz ultravioleta em melanoma e câncer de pele e agentes virais em câncer cervical e anogenital. As malignidades primárias adicionais subsequentes também podem estar associadas a tratamento potencialmente cancerígeno da lesão inicial, como quimioterapia, radioterapia ou ambos. Além disso, fatores de risco genéticos, como as mutações BRCA1 ou BRCA2, demonstraram predispor a múltiplas malignidades, como câncer de mama e ovário\(^{12}\).

Condições genéticas podem desencadear as síndromes hereditárias de câncer, que se caracterizam pela maior prevalência de neoplasias em indivíduos de uma mesma família\(^{13}\) e alto risco de desenvolvimento de tumores em idade precoce, bem como múltiplos primários síncrônicos ou metacrônicos\(^{14}\). O conhecimento dessas síndromes é importante, uma vez que o diagnóstico inicial de uma neoplasia “chave” pode desencadear a investigação de possível contexto sindrômico e descobrimento de outras lesões. Como exemplo, podemos citar o diagnóstico...
de hemangioblastoma do sistema nervoso central como início de rastreio para síndrome de von Hippel-Lindau\(^\text{19}\), hamartoma pulmonar em contexto da triade de Carney\(^\text{16}\), pacientes jovens com carcinoma medular da tireoide em neoplasias endócrinas múltiplas\(^\text{17}\).

Em outros tumores mais comuns, como carcinomas endometriais, colorretais e neoplasias sebáceas de pele, pode ser solicitado estudo imuno-histoquímico de lesões para avaliação de instabilidade de microsatélite (DNA mismatch repair) e possível associação com síndrome de Lynch e síndrome de Muir-Torre\(^\text{18}\).

A detecção de lesões malignas inesperadas tem impacto clínico significativo não apenas em indivíduos saudáveis, mas também em pacientes com doença maligna conhecida. Em pacientes com neoplasias já diagnosticadas, os trabalhos geralmente se concentram na doença primária do paciente, e a coexistência incidental de outra lesão maligna primária pode ser perdida\(^\text{19}\). Do ponto de vista diagnóstico, é essencial o reconhecimento e confirmação precoces, para que se alcance o tratamento ideal. Portanto, radiologistas devem estar familiarizados com os diferentes padrões de apresentação em paciente com múltiplos tumores primários\(^\text{2}\).

A PET com \(^{18}\)F-FDG vem sendo empregada com frequência crescente na avaliação e no gerenciamento clínico de um número cada vez maior de neoplasias\(^\text{20–23}\). Alguns relatórios também indicam que a PET com \(^{18}\)F-FDG tem potencial para triagem do câncer e pode detectar novos tumores malignos em uma pequena fração de indivíduos assintomáticos\(^\text{24,25}\). A PET/TC combinada é uma modalidade de imagem híbrida promissora que está sendo utilizada de forma mais rotineira em diversas situações clínicas\(^\text{26–29}\) e que permite a fusão precisa de imagens PET metabólicas com imagens de TC de alta qualidade, numa aquisição que vai do vértex à raiz das coxas\(^\text{19}\). A FDG é um análogo da glicose marcada com o flúor-18, radioisótopo emissor de pósitrons, que permite o estudo do metabolismo da glicose, pela sua maior captação em tecidos com maior atividade glicólica. Um amplo espectro de alterações bioquímicas está presente nas células tumorais, incluindo maiores taxas de glicólise aeróbia e anaeróbia quando comparadas com as encontradas em tecidos normais. O sítio da absorção de \(^{18}\)F-FDG pode ser determinado precisamente por nessas imagens, explorando as diferenças metabólicas entre células benignas e malignas\(^\text{19,21,30}\).

Biópsias guiadas por TC têm sido amplamente utilizadas como procedimento efetivo e seguro para confirmação diagnóstica em diversos contextos clínicos. A biópsia guiada por PET/TC, que combina informações anatômicas obtidas da TC e metabólicas obtidas da PET com \(^{18}\)F-FDG, é um procedimento que pode otimizar o rendimento diagnóstico de intervenções guiadas por imagens, uma vez que lesões que apresentem captação de \(^{18}\)F-FDG, mas sem anomalia anatômica correspondente, podem ser acessíveis a intervenções percutâneas\(^\text{31}\). Apesar de estudos não demonstrarem diferenças significativas na capacidade de se obter uma amostra de diagnóstico ou nas taxas de complicações entre PET/TC e TC, acreditamos que é um método especialmente importante nos casos em que focos ávidos de \(^{18}\)F-FDG não mostram lesões correspondentes na TC\(^\text{31}\).

A biópsia percutânea guiada por imagem é uma técnica bem estabelecida e segura e desempenha papel crucial no gerenciamento de pacientes oncológicos. Melhorias nos projetos de agulhas, desenvolvimento de novas técnicas de biópsia e avanços contínuos em tecnologia de orientação de imagem melhoraram a segurança e a eficácia dos procedimentos. As lesões antes consideradas relativamente inacessíveis, agora podem ser acessadas com segurança\(^\text{32}\).

Alguns das vantagens desses métodos incluem a possibilidade de realização de procedimentos complexos com

Tabela 1–Tumores confirmados por exame anatopatológico, malignidades adicionais, procedimentos diagnósticos e desfechos dos casos.

Paciente	Idade (anos)	Sexo	Tumor conhecido ou suspeitado	Procedimento diagnóstico	Malignidade adicional	Sin./Met.	Desfecho
1	80	M	Carcinoma hepatocelular	Biópsia percutânea	Adenocarcinoma de próstata	Met.	Ablação / prostatectomia
2	56	M	Adenocarcinoma pulmonar	Biópsia percutânea	Carcinoma renal de células claras	Met.	Nefrectomia / quimioterapia e radioterapia pulmonar
3	61	M	Timoma	Biópsia percutânea	Adenocarcinoma de próstata	Met.	Timectomia / quimioterapia
4	68	M	Carcinoma renal de células claras	Biópsia percutânea	Oncocitoma renal	Sin.	Quimioterapia
5	60	M	Carcinoma espinocelular de pênis	Cirurgia	Carcinoma renal de células claras / adenocarcinoma de jejun	Sin.	Óbito
6	62	M	Adenocarcinoma pulmonar com metástases adenal e hepática	Biópsia percutânea	Adenocarcinoma de jejun	Sin.	Quimioterapia
7	71	F	Adenocarcinoma pulmonar	Biópsia percutânea	Carcinoma ductal invasivo de mama	Sin.	Hormonioterapia / reseccção de lesão pulmonar
8	52	F	Carcinoma ductal invasivo de mama	Biópsia percutânea	Carcinoma pulmonar epidermoide	Met.	Quimioterapia
9	69	F	Carcinoma hepatocelular	Biópsia percutânea	Adenocarcinoma pulmonar	Met.	Transplante / quimioterapia e radioterapia
10	66	M	Adenocarcinoma de próstata	Biópsia percutânea	Adenocarcinoma pulmonar	Met.	Prostatectomia / transfervência
11	58	M	Carcinoma espinocelular de esôfago	Biópsia percutânea	Adenocarcinoma pulmonar	Sin.	Transferência

M, masculino; F, feminino; Sin., sincrônico; Met., metacrônico.
incisões de pequena extensão, a diminuição da probabilidade de infecções, o rápido restabelecimento do paciente e a redução do tempo de internação, tratando-se de técnicas minimamente invasivas, seguras e altamente eficazes (6).

CONCLUSÃO

A 18F-FDG PET/TC pode ser utilizada como ferramenta adicional aos métodos de imagem convencionais como a TC (30), e quando associada aos procedimentos minimamente invasivos da radiologia intervencionista, pode ser útil na identificação das malignidades primárias adicionais. O reconhecimento e diagnóstico precoces são essenciais, uma vez que o manejo do paciente é frequentemente alterado se essas informações estão disponíveis. Trabalhos mostram que, embora os falso-positivos possam ocorrer, a prevalência de verdadeiro-positivos é substancial (19). As lesões adicionais frequentemente identificadas estão muitas vezes em fase inicial e, portanto, têm excelente probabilidade de serem curadas se tratadas prontamente e agressivamente (19). As biópsias guiadas por 18F-FDG PET/TC podem ajudar em situações difíceis, especialmente quando é importante saber qual parte do tumor está ativa ou qual lesão está ativa em pacientes com lesões múltiplas e disseminadas (33).

REFERÊNCIAS

1. Shah SA, Riaz U, Zahoor I, et al. Carcinoma multiplex. J Coll Physicians Surg Pak. 2013;23:290–2.
2. Testori A, Ciolfi U, De Simone M, et al. Multiple primary synchronous malignant tumors. BMC Res Notes. 2015;8:730.
3. Barber TW, Duong CP, Leong T, et al. 18F-FDG PET/CT has a high impact on patient management and provides powerful prognostic stratification in the primary staging of oesophageal cancer: a prospective study with mature survival data. J Nucl Med. 2012;53:864–71.
4. Agress H Jr, Cooper BJ. Detection of clinically unexcted malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology. 2004;230:417–22.
5. Hiraoka A, Hirooka M, Ochi H, et al. Importance of screening for synchronous malignant neoplasms in patients with hepatocellular carcinoma: impact of FDG PET/CT. Liver Int. 2013;33:1085–91.
6. O’Brien B, van der Putten W. Quantification of risk-benefit in interventional radiology. Radiat Prot Dosimetry. 2008;129:59–62.
7. Suzuki T, Takahashi H, Yao K, et al. Multiple primary malignancies in the head and neck: a clinical review of 121 patients. Acta Otolaryngol Suppl. 2002;(547):88–92.
8. Morris LGT, Sikora AG, Patel SG, et al. Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol. 2011;29:739–46.
9. Cheng HY, Chu CH, Chang WH, et al. Clinical analysis of multiple primary malignancies in the digestive system: a hospital-based study. World J Gastroenterol. 2005;11:4215–9.
10. Luciani A, Balducci L. Multiple primary malignancies. Semin Oncol. 2004;31:624–73.
11. Szerjomataram I, Coebergh JW. Epidemiology of multiple primary cancers. Methods Mol Biol. 2009;471:85–105.