Anisotropic critical fields of MgB$_2$ single crystals *

T. DAHM

Universität Tübingen, Institut für Theoretische Physik, Auf der Morgenstelle 14, 74076 Tübingen, Germany

AND

A. I. POSAZHENNIKOVA

Laboratorium voor Vaste-Stoffisica en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

AND

K. MAKI

Max-Planck-Institute for Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA

The recently discovered superconductivity in MgB$_2$ has created the world sensation. In spite of the relatively high superconducting transition temperature $T_c = 39$ K, the superconductivity is understood in terms of rare two gap superconductor with energy gaps attached to the σ and π-band. However, this simple model cannot describe the temperature dependent anisotropy in H_{c2} or the temperature dependence of the anisotropic magnetic penetration depth. Here we propose a model with two anisotropic energy gaps with different shapes. Indeed the present model describes a number of peculiarities of MgB$_2$ which have been revealed only recently through single crystal MgB$_2$.

PACS numbers: 74.20.Rp, 74.25.Bt, 74.70.Ad

* Presented at the Strongly Correlated Electron Systems Conference, Kraków 2002
1. Introduction

The discovery of new superconductivity in MgB$_2$ took the world by surprise [1]. Early studies based on polycrystalline samples lead to a two gap model [2, 3, 4]. On the other hand the anisotropy in $H_{c2}(t, \Theta)$ suggested an anisotropic s-wave model [5, 6, 7, 8, 9]. Further it is clear that the simple two gap model cannot describe the strong temperature dependence of $\gamma(t) = H_{c2}^{ab}(t)/H_{c2}^c(t)$ observed in single crystal MgB$_2$ [6, 9]. For this we need an order parameter $\Delta(\vec{k})$ of oblate shape [9]. On the other hand, it is well known that $H_{c2}^{ab}(t)/H_{c2}^c(t) > 1$ and $H_{c1}^{ab}(t)/H_{c1}^c(t) > 1$ for single crystal experiments [10, 11, 12], which contradicts the Ginzburg-Landau phenomenology. Further, both magnetic penetration depth data and $H_{c1}^c(t)$ data suggest a prolate order parameter as in [7, 8]. Indeed, an earlier STM study suggested a prolate order parameter as well [13].

Is the order parameter prolate or oblate? The answer is that we need both. We suggest, that the oblate order parameter is attached to the σ-band while the prolate order parameter to the π-band. In the following we shall describe salient features of single crystal MgB$_2$ within the present model.

2. Upper critical field

We just point out two features in the upper critical field which are outside of the Ginzburg-Landau phenomenology.

(a) the strong temperature dependence of the anisotropy parameter $\gamma(t) = H_{c2}^{ab}(t)/H_{c2}^c(t)$ [9]. (b) second the deviation from the effective mass model $H_{c2}(t, \Theta)/H_{c2}(t, 0) \neq (\cos^2 \Theta + \gamma \sin^2 \Theta)^{-1/2}$ [6].

For example $\Delta(\vec{k}) \sim 1/\sqrt{1 + az^2}$, where $z = \cos \Theta$ and $a \sim 100$ can describe the temperature dependence of $\gamma(t)$, as has been shown in Ref. [9]. Also, by fitting the experimental data we obtained $v_a \simeq 2.7 \cdot 10^7$ cm/sec and $v_c/v_a \simeq 0.48$. We point out that these values are very consistent with the ones for the σ-band [2].

By fitting experimental data for $H_{c2}(\theta)$ [14] close to T_c we can deduce the ratio $v_c/v_a \simeq 0.73$, implying $a = 10$, for example. This result is bigger than that estimated in our previous analysis of $H_{c2}(t)$ [9]. Next order correction in $(T - T_c)/T_c$ leads to the increase of the ratio v_c/v_a for the same values of the parameter a. In the future we are going to elaborate our study of the upper critical field behavior in MgB$_2$ by taking into account impurity scattering, what we believe will improve the agreement with experiment.

3. Lower critical field

¿From c-axis oriented films and single crystals, the superfluid density $\rho_{s,a}$ and the lower critical fields H_{c1}^c and H_{c1}^{ab} have been extracted reliably
It is clear this time that we need a prolate order parameter to fit these data. We choose $\Delta(k) = 1/\sqrt{1 - az^2}$ with $a \simeq 0.92 \sim 0.95$. These values give a good fit of penetration depth data [11]. The magnetic penetration depths are related to the lower critical fields via the formulas

$$H_{cl}^c(t) = \frac{\Phi_0}{2\pi \lambda_a^2(t)} \ln \frac{\lambda_a(t)}{\xi_a(t)}$$

$$H_{cl}^{ab}(t) = \frac{\Phi_0}{2\pi \lambda_a(t) \lambda_c(t)} \ln \sqrt{\frac{\lambda_a(t) \lambda_c(t)}{\xi_a(t) \xi_c(t)}}$$

where $\lambda_a(t)$ and $\lambda_c(t)$ are the magnetic penetration depth with the supercurrent in the ab-plane and in parallel to the c-axis, respectively. They are related to the superfluid density via $\rho_{s,a}(t) = \lambda_a^2(t)/\lambda_a^2(0)$ and $\rho_{s,c}(t) = \lambda_c^2(0)/\lambda_c^2(t)$. Taking $a = 0.95$, which fits $\rho_{s,a}(t)$ from Ref. [11], we calculate $\rho_{s,c}(t)$ and obtain the temperature dependences of H_{cl}^c and H_{cl}^{ab} from Eqs. (1) and (2), neglecting the temperature dependence of the logarithms. The result is shown in Fig. 1 along with the experimental results from Ref. [12]. From these fits we obtain $H_{cl}^c(0) = 24$ mT and $H_{cl}^{ab}(0) = 32$ mT. From this the ratio of the relevant Fermi velocities can be estimated as $H_{cl}^{ab}(0)/H_{cl}^c(0) \approx v_c/v_a = 1.3$. In other words, the corresponding Fermi surface is more isotropic and further $v_c > v_a$. This strongly suggests that the prolate order parameter we are considering has to be associated with the π-band.

Fig. 1. Temperature dependence of the lower critical fields H_{cl}^c (dashed line) and H_{cl}^{ab} (solid line) along with the corresponding experimental data from Ref. [12].
4. Synthese

We have seen so far that we need two energy gaps of different shape in order to describe $H_{c2}(t, \Theta)$ and $H_{c1}(t, \Theta)$. The temperature dependence of $\gamma(t)$ indicates that an oblate order parameter ($\Delta(\vec{k}) = 1/\sqrt{1 + az^2}$) dominates the behavior at high magnetic field. Also we need $v_c/v_a = 0.48$. This suggests the cylindrical Fermi surface associated with the σ-band as the carrier of this order parameter. On the other hand, for $H_{c1}(t, \Theta)$ we need a prolate order parameter ($\Delta(\vec{k}) = 1/\sqrt{1 - az^2}$). Also, the anisotropy in $H_{c1}(t, \Theta)$ suggests the π-band as the carrier of this order parameter. In other words, if we assume that the high field properties are controlled by the oblate order parameter attached to the σ-band, while the low field properties are due to the prolate order parameter attached to the π-band, we have a consistent picture for superconductivity in MgB$_2$.

We believe that this picture will be crucial to understand also a variety of anomalies observed in the vortex state in MgB$_2$.

We would like to thank M. Angst, F. Bouquet, S. Haas, A. Janossy, A. Junod, B. B. Jin and N. Klein for useful discussions on MgB$_2$.

REFERENCES

[1] J. Nagamatsu et al, Nature(London) 410, 63 (2001).
[2] S. V. Shulga et al, cond-mat/0103154.
[3] J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001).
[4] A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
[5] O. F. de Lima et al., Phys. Rev. B 64, 144517 (2001).
[6] M. Angst et al, Phys. Rev. Lett. 88, 167004 (2002).
[7] Y. Chen, S. Haas, and K. Maki, Current Appl. Phys. 1, 333 (2001).
[8] S. Haas and K. Maki, Phys. Rev. B 65, 020502(R) (2002).
[9] A. I. Posazhennikova, T. Dahm, and K. Maki, cond-mat/0204272, to appear in Europhys.Lett.
[10] C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).
[11] B. B. Jin et al, cond-mat/0112350, to appear in Phys. Rev. B.
[12] M. Xu et al, Appl. Phys. Lett. 79, 2779 (2001).
[13] P. Seneor et al, Phys. Rev. B 65, 012505 (2002).
[14] Yu. Eltsev et al, Physica C (Proceedings of ISS2001, Kobe, Japan, Sept. 24-26, 2001), in press.