Late Gadolinium Enhanced (LGE) Cardiovascular Magnetic Resonance (CMR) imaging has a unique ability to characterize diverse mechanisms of non-ischemic myocardial injury. The pattern and extent of LGE findings have been studied across a wide range of cardiomyopathy states. To date, these collective findings provide strong justification for the use of LGE-CMR in the evaluation and prognostication of patients with Dilated, Hypertrophic, Restrictive and Inflammatory cardiomyopathies. This review article summarizes relevant studies in the field and highlights the clinical role of LGE-CMR in contemporary practice.

Keywords: Cardiomyopathy, Fibrosis, Late gadolinium enhancement, Magnetic resonance imaging, Prognosis

Ann Nucl Cardiol 2017; 3 (1): 80-87

doi: 10.17996/anc.17-00008

Yoko Mikami, James A. White

Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Department of Diagnostic Imaging, University of Calgary #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, Canada

E-mail: ymikami@ucalgary.ca
gadolinium, the registration of these images allows for voxel-based estimation of the extra-cellular volume (ECV) fraction (11). This may be particularly valuable for patients with non-ischemic cardiomyopathy where fibrosis may be both regional and diffuse, the latter being challenging to characterize with conventional LGE techniques. This promises to expand the capacity of gadolinium-based CMR imaging to identify and prognosticate patients with cardiomyopathy.

The following review highlights studies identifying the prognostic value of LGE in a variety of non-ischemic cardiomyopathies. For ischemic cardiomyopathy, similar reviews can be found elsewhere (12, 13).

Interpreting LGE-CMR: Visual versus quantitative techniques

It is prudent to first recognize variability by which LGE imaging has been studied by various investigators over the years, and how addressing this through standardized reporting is of priority for wide-spread clinical application as a prognostic tool. Two ways of evaluating LGE images exist; i) visual scoring with description of distribution pattern, and ii) signal-threshold based quantification using computer-assisted algorithms. While a combination of these approaches appears optimal, the latter has been challenging to introduce into routine clinical workflow. Visual scoring can be performed using a sub-segmental model (14) with good agreement with signal-threshold based techniques for total fibrosis burden.

The pattern of fibrosis is an important and signature feature associated with specific non-ischemic cardiomyopathy states. Fig. 1 illustrates the 6 typical patterns of LGE that should be identified with routine clinical reporting (15).

Fig. 1 Schematic of typical late gadolinium enhancement (LGE) patterns in various cardiomyopathy states. (a) Ischemic cardiomyopathy: patient with transmural inferoseptal LGE and nontransmural lateral wall LGE. (b) Dilated cardiomyopathy: patient with midwall “striae” LGE throughout the interventricular septum. (c) Hypertrophic cardiomyopathy: patchy midwall LGE within the hypertrophied septal wall segments. (d) Viral myocarditis: epicardial-based LGE in the anteroapical and inferolateral walls. (e) Sarcoidosis: dense epicardial-based LGE of the anteroapical and inferior walls. This case also shows right ventricular involvement. (f) Amyloidosis: diffuse, global, subendocardial to epicardial LGE involving both the left and the right ventricle. Figure from John Stirrat, James A. White The Prognostic Role of Late Gadolinium Enhancement Magnetic Resonance Imaging in Patients With Cardiomyopathy. Canadian Journal of Cardiology, Volume 29, Issue 3, 2013, 329-336 http://dx.doi.org/10.1016/j.cjca.2012.11.033
diomyopathy (17), whereas >3SD has been identified to best represent fibrosis in Non-Ischemic Dilated Cardiomyopathy (NIDCM) (18) and Hypertrophic Cardiomyopathy (HCM) (16). The second most commonly employed quantification technique is Full Width at Half Maximum (FWHM) (19) (Fig. 2) and is suitable for the identification of dense replacement fibrosis. This technique references the peak signal of visually identified fibrosis and applies a threshold at 50% of this peak signal. The summed extent of fibrosis is typically expressed as a % of Left Ventricular (LV) mass.

Studies evaluating the prognostic value of LGE in various non-ischemic cardiomyopathy have used a combination of these described visual and/or quantitative techniques. Careful attention must therefore be paid to specific techniques used and the comfort and experience of the clinician in reproducing such analyses.

Non-ischemic dilated cardiomyopathy (NIDCM)

Significant interest has emerged surrounding the improved risk stratification of patients with NIDCM. Indeed, the recently reported DANISH trial highlighted a poor discriminative power of left ventricular ejection fraction (LVEF) criteria alone to appropriately select patients likely to benefit from primary prevention Implantable Cardioverter Defibrillator (ICD) (20). Numerous studies have now identified a 30-40% prevalence of non-ischemic fibrosis, typically described as a mid-wall septal “striae” pattern, on LGE-CMR in this referral population (5, 21). While the pathophysiology of this phenomenon remains uncertain, the presence of any LGE (22) or specifically a septal striae pattern of LGE (5, 21, 23) has been associated with elevated rates of adverse cardiac outcomes in this population.

A recent meta-analysis, including 2,948 NIDCM patients from 29 studies, showed that the presence of any LGE was
strongly associated with arrhythmic endpoints (sustained ventricular arrhythmia, appropriate implantable cardioverter-defibrillator therapy or sudden cardiac arrest) with an odds ratio of 4.3 (24). This association remained significant for studies with a mean LVEF >35% (odds ratio 5.2), indicating LGE to be a superior risk stratifier of arrhythmic risk over LV function in this population.

Towards standardizing the reporting of this important finding and reducing reliance on expert opinion, recent efforts have focused on establishing objective criteria for mid-wall septal fibrosis (18). Using an STRM based approach, non-expert analysis was able to stratify NIDCM patients into high versus low risk (22% versus 3% annualized risk, Hazard Ratio (HR)=8.7) of cardiac mortality or appropriate ICD therapy using a septal fibrosis cut-off of 3% by LV mass. The use of such criteria is important for non-expert sites as subtle, physiologic signal changes of the basal septum are not uncommon and may reduce the specificity of this finding (25).

Hypertrophic cardiomyopathy (HCM)

Given high prevalence of HCM in the general population, estimated at 1 in 500, and an estimated 0.5 to 1% annual risk of arrhythmic event (26), substantial efforts have and continue to be made in establishing risk prediction models for this population. While existing guidelines provide little emphasis on imaging markers beyond LV wall thickness (27), interval evidence provided by LGE-CMR has provoked emerging recommendations that LGE imaging should now be considered a first-line risk prediction tool in this population (28). The presence or extent of LGE seen in HCM does not appear to show strong association with underlying genotype (29). When present, it is most typically of a mid-wall patchy distribution in hypertrophied segments (Fig. 1), which may be of septal, apical or diffuse phenotype.

Numerous studies have identified that the presence of LGE is a significant predictor of ventricular arrhythmias (30), Sudden Cardiac Arrest (SCA) (31), and all-cause/cardiac mortality (32) in this population. A recent meta-analysis including 2,993 HCM patients from 5 studies confirmed the presence of any LGE to be associated with an elevated risk of SCA (OR 3.41), cardiovascular mortality (OR 2.93) and a trend for heart failure death (OR 2.21) (33).

Given that LGE is highly prevalent in HCM, occurring in approximately two-thirds of patients (32, 34-36), challenges exist for its use as a binary variable in driving clinical decision making. Accordingly, several studies have focused on the prognostic role of LGE quantification in this cohort (35, 37). The largest of these, published by Chan et al., included 1,293 HCM patients followed for a median of 3.3 years for SCA or appropriate ICD therapy. Using expert manual threshold adjustment, %LGE was a significant predictor of the primary outcome (adjusted HR of 1.46/10% LV mass) (38). A LGE burden ≥15% was associated with a HR of 2.14 and an estimated 5-year event rate of 6.3%. Accordingly, this threshold has now become a potentially important stratifier of risk in this population. When combined with a second publication by Ismail et al. also reporting adjusted risk for quantitative LGE extent (35), meta-analysis showed LGE extent to be a strong independent predictor of SCA (adjusted HR 1.36/10% LGE) (33).

Given an expanded focus on LGE extent (rather than binary presence) for risk stratification in this population, standardization for the reporting of LGE extent is of immediate priority. Sub-segmental visual scoring is a validated option (14). However, should signal threshold-based approaches be sought, a recent study critically examining all techniques identified the STRM > 3SD approach to most accurately reflect expert, manually adjusted thresholds for total LGE burden (16).

Cardiac sarcoidosis

The presence of granulomatous myocardial fibrosis in sarcoidosis is readily identified by LGE imaging, and may be found in 19-26% patients with systemic disease (7, 39). The typical pattern of LGE identified in this population is that of dense, sub-epicardial fibrosis in the basal to mid anteroseptal and/or inferoseptal segments, however, a wide variety of LGE distribution has also been reported. The presence of LGE in this population has been associated with Sudden Cardiac Death (SCD) or ventricular arrhythmia (40), death or VT (41, 42), and death, aborted SCD or appropriate ICD therapy (43). Event hazards associated with LGE in this population have been reported to be as high as 31.6 (43).

A recent meta-analysis, inclusive of 760 patients with known or suspected cardiac sarcoidosis (95% with extracardiac sarcoidosis, 22% with known cardiac sarcoidosis), showed the presence of LGE to be associated with significantly elevated risk for all-cause mortality (OR 3.06), as well as the composite outcome of ventricular arrhythmia, ICD shock or SCD (OR 10.74). The annual event rate for the composite outcome was 11.9% in those with LGE versus 1.1% among those without LGE (44).

It is important to recognize the potentially synergistic value of Positron Emission Tomography (PET) in this population. While LGE imaging identifies accrued fibrosis burden, a recognized nidus for arrhythmia, Fluoro-deoxyglucose (FDG) PET imaging may provide incremental value for the identification of disease activity (45). In a recent study by Blankstein et al., the presence of regional FDG uptake identified increased risk of death or ventricular tachycardia beyond that of perfusion abnormalities alone, the latter being a surrogate marker of myocardial scar (46). Another recent study by Ohira et al. including two groups of patients with
cardiac sarcoidosis; one group with chronic mild conduction system disease (CSD) and the other with new-onset atrioventricular (AV) block. This showed that, while CMR can adequately detect cardiac involvement in patients with chronic mild CSD, FDG PET may be valuable for detecting cardiac involvement in patients with new onset AV Block and a negative CMR (47). The potential of combined LGE/FDG imaging to be of clinical value in this population through the recent availability of hybrid PET-MRI hardware is of particular interest (48).

Cardiac amyloidosis

Cardiac involvement in systemic amyloidosis is common among patients with immunoglobulin light-chain amyloidosis (AL or “primary”) and transthyretin (ATTR) type amyloidosis, the latter having both wild type and mutant sub-types. It is well recognized that a primary driver of mortality among these conditions is the presence of cardiac involvement, commonly leading to rapid clinical deterioration and high 1-year mortality (49). For the detection of cardiac involvement, LGE-CMR has emerged as a robust and prognostically relevant imaging test in patients with known or suspected cardiac amyloidosis with numerous studies describing presence of a diffuse, sub-endocardial based pattern of LGE in patients with confirmed cardiac involvement (8, 50). Following small sentinel studies (51, 52), several larger cohort studies have gone on to demonstrate reliable associations between this pattern of LGE and elevated mortality (53, 54). The most recent study by Boynton et al. including 76 histological proven AL amyloidosis showed that diffuse pattern of LGE is associated with all-cause mortality in univariable analysis (HR 2.93) and multivariable analysis (HR 2.43) (54). In a recent meta-analysis, inclusive of 425 patients with known or suspected cardiac amyloidosis from 7 studies (mean follow up of 25 months), LGE positive patients had a 5-fold increased risk of mortality versus those without this finding (55). This meta-analysis included both AL and ATTR amyloidosis.

It is important to recognize challenges surrounding conventional LGE imaging among patients with amyloidosis owing to diffuse myocardial involvement (potentially eliminating visual reference tissue) and rapid clearance of gadolinium from the circulation related to high systemic amyloid burden (51). To assist in this diagnosis several approaches have been validated, including rapid visual T1 assessment using a T1 scout sequence where the relative T1 of blood and myocardium can be compared (56), phase-correction of LGE images (57), and quantitative T1 mapping techniques (58), as shown in Fig. 3. Preliminary data suggests the potential of T1 mapping without contrast administration to identify patients with biopsy-proven systemic amyloidosis (AL) with 1.5T T1 values using a ShMOLLI sequence >1,044 ms being predictive of all-cause mortality with a HR of 5.39 (59). This may be particularly valuable for patients with associated renal dysfunction.

Conclusions

LGE imaging has achieved a level clinical maturity that supports its routine use among patients with all forms of non-ischemic cardiomyopathy. Meta-analyses have now been published summarizing strong prognostic utility in patients with NIDCM, HCM, sarcoidosis, and amyloidosis, supporting the consistent findings of numerous contributory studies. This work provided a foundation for larger, prospective cohort studies currently underway that will further clarify the role of LGE in these populations, such as the NIH-funded Hypertrophic Cardiomyopathy Registry (NCT-01915615) soon to
complete international site enrolment (60). Along with anticipated consideration of these contemporary studies in societal guidelines, a more expanded and consistent role for LGE imaging in the management of patients with non-ischemic cardiomyopathies is expected.

Acknowledgments
None.

Sources of funding
None.

Conflicts of interest
Dr. White is a shareholder of Cohesic Inc.

References
1. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999; 100: 1992-2002.
2. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001; 218: 215-23.
3. White JA, Fine N, Gula LJ, et al. Fused whole-heart coronary and myocardial scar imaging using 3-T CMR. Implications for planning of cardiac resynchronization therapy and coronary revascularization. JACC Cardiovasc Imaging 2010; 3: 921-30.
4. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003; 361: 374-9.
5. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006; 48: 1977-85.
6. Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004; 43: 2260-4.
7. Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009; 120: 1969-77.
8. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-93.
9. Friedrich MG. Myocardial edema – a new clinical entity? Nat Rev Cardiol 2010; 7: 292-6.
10. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson 2011; 13: 13.
11. Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications. JACC Cardiovasc Imaging 2016; 9: 67-81.
12. Flett AS, Westwood MA, Davies LC, et al. The prognostic implications of cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2009; 2: 243-50.
13. von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Cardiovascular magnetic resonance imaging in ischemic heart disease. J Magn Reson Imaging 2012; 36: 20-38.
14. Fine NM, Tandon S, Kim HW, et al. Validation of subsegmental visual scoring for the quantification of ischemic and nonischemic myocardial fibrosis using late gadolinium enhancement MRI. J Magn Reson Imaging 2013; 38: 1369-76.
15. Stirrat J, White JA. The prognostic role of late gadolinium enhancement magnetic resonance imaging in patients with cardiomyopathy. Can J Cardiol 2013; 29: 329-36.
16. Mikami Y, Kolman L, Joncas SX, et al. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2014; 16: 85.
17. Bondarenko O, Beek AM, Hofman MB, et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 2005; 7: 481-5.
18. Mikami Y, Cornhill A, Heydari B, et al. Objective criteria for septal fibrosis in non-ischemic dilated cardiomyopathy: validation for the prediction of future cardiovascular events. J Cardiovasc Magn Reson 2016; 18: 82.
19. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 2004; 44: 2383-9.
20. Kober L, Thune JJ, Nielsen JC, et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med 2016; 375: 1221-30.
21. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896-908.
22. Wu KC, Weiss RG, Thiemann DR, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 2008; 51: 2414-21.
23. Almehmadi F, Joncas SX, Nevis I, et al. Prevalence of myocardial fibrosis patterns in patients with systolic dysfunction: prognostic significance for the prediction of sudden cardiac arrest or appropriate implantable cardiac defibrillator therapy. Circ Cardiovasc Imaging 2014; 7: 593-600.
24. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail 2017; 5: 28-38.
25. Joncas SX, Kolman L, Lydell C, et al. Differentiation of physiologic versus pathologic basal septal fibrosis: Proposed
diagnostic criteria and associations with clinical and CMR-based markers of cardiovascular disease. J Cardiovasc Magn Reson 2014; 16: P104.

26. Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation 2000; 102: 858-64.

27. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011; 58: e212-60.

28. Maron BJ, Maron MS. LGE means better selection of HCM patients for primary prevention implantable defibrillators. JACC Cardiovasc Imaging 2016; 9: 1403-6.

29. Weissler-Snir A, Hindieh W, Gruner C, et al. Lack of phenotypic differences by cardiovascular magnetic resonance imaging in MYH7 (β-Myosin Heavy Chain)- versus MYBPC3 (Myosin-Binding Protein C)-related hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 2017; 10.

30. Adabag AS, Maron BJ, Appelbaum E, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 2008; 51: 1369-74.

31. Rubinstein R, Glockner JF, Ommen SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 2010; 3: 51-8.

32. Bruder O, Wagner A, Jensen CJ, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 875-87.

33. Weng Z, Yao J, Chan RH, et al. Prognostic value of LGE-CMR in HCM: A meta-analysis. JACC Cardiovasc Imaging 2016; 9: 1392-402.

34. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 867-74.

35. Ismail TF, Jabbour A, Gulati A, et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart 2014; 100: 1851-8.

36. Tyan CC, Armstrong S, Scholl D, et al. Stress hyperperfusion and tissue injury in hypertrophic cardiomyopathy: spatial characterization using high-resolution 3-tesla magnetic resonance imaging. Circ Cardiovasc Imaging 2013; 6: 229-38.

37. Kwon DH, Setser RM, Popović ZB, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging 2008; 24: 617-25.

38. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014; 130: 484-95.

39. Patel AR, Klein MR, Chandra S, et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail 2011; 13: 1231-7.

40. Nadel J, Lancefield T, Voskoboinik A, et al. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging 2015; 16: 634-41.

41. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2016; 9: e003738.

42. Crawford T, Mueller G, Sarsam S, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ Arrhythm Electrophysiol 2014; 7: 1109-15.

43. Greulich S, Deluigi CC, Gloeckler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2013; 6: 501-11.

44. Coleman GC, Shaw PW, Balfour PC Jr, et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis: a systematic review and meta-analysis. JACC Cardiovasc Imaging 2017; 10: 411-20.

45. Okumura W, Iwasaki T, Toyama T, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med 2004; 45: 1989-98.

46. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-36.

47. Ohira H, Birnie DH, Pena E, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2016; 43: 259-69.

48. White JA, Rajchel M, Butler J, et al. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography – magnetic resonance imaging for the diagnosis of cardiac disease. Circulation 2013; 127: e639-41.

49. R apezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 2009; 120: 1203-12.

50. Vogelsberg H, Mahrholdt H, Deluigi CC, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 2008; 51: 1022-30.

51. Maceira AM, Prasad SK, Hawkins PN, et al. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008; 10: 54.

52. Ruberg FL, Appelbaum E, Davidoff R, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol
2009; 103: 544-9.
53. Austin BA, Tang WH, Rodriguez ER, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2009; 2: 1369-77.
54. Boynton SJ, Geske JB, Dispenzieri A, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging 2016; 9: 680-6.
55. Raina S, Lensing SY, Nairooz RS, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging 2016; 9: 1267-77.
56. White JA, Kim HW, Shah D, et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 7: 143-56.
57. Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132: 1570-9.
58. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488-97.
59. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015; 36: 244-51.
60. Kramer CM, Appelbaum E, Desai MY, et al. Hypertrophic cardiomyopathy registry: The rationale and design of an international, observational study of hypertrophic cardiomyopathy. Am Heart J 2015; 170: 223-30.

■ ANC News

Online First!

Accepted manuscripts will be published online as e-Pubs ahead of print via J-STAGE (Japan Science and Technology Information Aggregator, Electronic).

J-STAGE, operated by the Japan Science and Technology Agency (JST), makes the content of several major Japanese scientific journals available worldwide.