Assessment of 232Th, 226Ra, 137Cs, and 40K concentrations and annual effective dose due to the consumption of Vietnamese fresh milk

Van-Hao Duong1 · Thanh-Duong Nguyen1 · Miklós Hegedűs2 · Edit Tóth-Bodrogi2 · Tibor Kovács2

Received: 4 January 2021 / Accepted: 11 February 2021 / Published online: 25 February 2021 © The Author(s) 2021

Abstract
Vietnam has little data on radionuclide concentrations in milk, despite steadily increasing domestic consumption. Eight milk brands were investigated by gamma-spectrometry, and the resulting ingestion dose was calculated. The 232Th, 226Ra, 137Cs, and 40K concentrations varied from 0.60 ± 0.19 to 1.21 ± 0.24, 1.45 ± 0.18 to 2.45 ± 0.24, below detection limit to 0.13 ± 0.06, and 341 ± 6 to 387 ± 7 Bq/kg (dry w.t). The total average Annual Effective Dose for all age groups were similar for all brands, and concentrations are far less than the WHO guidance level. All brands are safe for consumption.

Keywords Radionuclide concentration · Fresh milk · Annual effective dose · Risk factor · Infants · Children · Adults

Introduction
The humans are often exposed to natural and artificial radionuclides, which can enter the human body through breathing, eating, and drinking. In the food chain, milk is one of the fundamental foodstuffs for humans, especially for infants, children and old people. In addition, milk is sensitive to be contaminated because some radionuclides such as 137Cs, 40K are easily transferred to the milk through the grass-cow-milk pathway [1]. Therefore, evaluating and monitoring the level of radionuclides in milk (fresh and powdered) play an important role in estimating the annual effective dose for the population.

The radionuclides in milk have received much attention from researchers in many parts of the world. In Nigeria, a report showed unusually high average activity concentrations of 40K compared to other reported values, reaching 831.6 ± 53.8 Bq/kg [2]. For powdered milk in Brazil, Melquiades & Appoloni [3] indicated that the activity of 40K (475 ± 12 for polly and 489 ± 13 for cativa) was usual for powdered milk, while the observed 137Cs and 232Th activity concentrations were comparatively small. The average activity concentrations of 40K were also monitored in fresh and powdered milk in Tehran-Iran [4]. Observed mean activity concentrations of radionuclides in imported infant powdered milk in Malaysia of 232Th, 226Ra, 137Cs, and 40K were 2.6 ± 2.3, 3.1 ± 1.8, 0.3 ± 0.2, and 99.1 ± 69.4 (Bq/kg), respectively [5]. Amongst these, the infant powdered milk from the Philippines had the lowest level of radioactivity, and the brand from Singapore showed the highest one [5]. In addition, the research also determined the mean annual effective dose due to consumption of powdered milk in Malaysia and found it to be 635 and 111 µSv/year for infants ≤ 1 and infants from 1 to 2 years old respectively [5]. In general, the radioactivity of fresh and powdered milk in many countries has been investigated and the effective dose has been calculated for various parts of the population, especially for infants. These investigations have shown that the level of radioactivity and effective dose can change an order of magnitude depending on the source of origin.

In Vietnam, the demand for milk is on the rise year by year. Most of the fresh milk brands consumed in Vietnam are domestic products. Although Vietnam has no nuclear power plant, the country is somewhat affected by the Fukushima nuclear disaster in 2011 (transfer by fallout and rainfall to surface soil) [6, 7]. In addition, there are many natural radioactive sources, such as mines, along the mainland of Vietnam, which contain natural, and long half-life artificial radionuclides such as 232Th, 226Ra, 137Cs, and 40K. Thus, the radionuclides may transfer from soil to plant (grass) and from grass and air to cow’s milk. These reasons could
potentially lead to high artificial radionuclide activity concentrations in milk products produced by cows in Vietnam. These pathways are well described by many, such as the transfer of radionuclides from soil to plant (grass) [8–11] and from grass and air to cow’s milk [12–14]. However, so far there is no research nor monitoring on the radionuclides in milk consumed in Vietnam. This study deals with the investigation of the radioactive levels in the local fresh milks in Vietnam. The research focuses on the determination of radioactive level in fresh milk using a high-resolution HPGe detector. The results of activity concentration measurements will be used to calculate the average annual effective doses for different age groups. The data reported here can be used to establish the baseline for natural and artificial radioactivity in milk as well as comparison for new data, when there is some event involving nuclear plants or exploration activities in radioactive bearing mines in Vietnam.

Materials and methods

Eight brands of the fresh milk consumed commonly in Vietnam were bought from local prestigious markets and were used to investigate their radionuclide contents, including 232Th, 226Ra, 137Cs and 40K. All these milk brands were produced from local dairy cow’s farms in Vietnam and were collected between 2018 and 2019. These brands are, namely: Vinamilk (VN); TH True Milk (TH); Moc Chau (MC); Da Lat Milk (DL); Dutch Lady (DuL); Vinamilk Organic (VO); Ba Vi (BV); and Nutifood (NT).

About three kilograms of each type of fresh milk (wet w.t) were taken for analysis. The fresh milk in the form of liquid was converted to powder and dried at 90 °C in a clean nonstick container to avoid radionuclide loss, contamination and to ensure that the moisture was completely removed. The obtained samples were weighted and packed in a plastic cylindrical beaker and sealed to prevent the escape of radon. The samples were left for at least 28 days to obtain the secular equilibrium between 226Ra and its daughters (mostly 214Bi and 214Pb) [15]. The weight of milk after drying (dry w.t) is shown in Table 1.

After equilibrium was reached, activity concentration measurements were performed using a high-resolution HPGe detector (Canberra-GC5019) with 30% relative efficiency. The analysis was performed using Genie-2000 software. The detector’s energy resolution is 1.9 keV at 1.33 MeV of 60Co gamma-ray peak. To reduce the surrounding natural background radiation at the laboratory, the detector is shielded by a 15 cm thick lead cylinder.

The activity concentration of each sample was determined based on their respective gamma lines: 609.3 keV, 1120.3 keV and 1764.5 keV from 214Bi were used to determine the activity concentration of 226Ra, while that of 232Th were determined from the gamma lines of 911.2 keV and 969.0 keV from 228Ac and 583.0 keV and 2614.4 keV from 208Tl [15–17]. The radioactive equilibrium in the 232Th decay chain might not be present all the way to 232Th, just 228Ra, but similarly to the current literature, the values will be reported as 232Th. For 40K, its activity concentration was determined from its 1461 keV gamma line and 662 keV was used for 137Cs. The samples were counted for over 50 h to avoid the statistical counting error. The gamma spectrometer was calibrated using IAEA reference materials RGU, RGTH and RGK [15]. The quality control tests were carried out based on standard reference materials (IAEA-321 and IAEA-414, IAEA reference materials produced by the International Atomic Energy Agency). The results agreed well with the values of IAEA-321 and IAEA-414 samples (except for 232Th because of low activity) for 40K, 137Cs, 238U and 40K, 137Cs in 492 ± 25, 3.02 ± 0.10, 1.36 ± 0.21 and 71.9 ± 2.1, 544 ± 29 Bq/kg and the reference values 480 ± 22, 3.09 ± 0.07, 1.40 ± 0.36 and 72.6 ± 1.6, 552 ± 17 Bq/kg respectively. The self-gamma absorption difference resulting from the difference in density of the studied samples and standard ones were corrected for following the method described by Debettin [18] and Jodlowski [19]. To lessen the photoeffect absorption in the sample, all of the gamma lines used are higher than 500 keV. The detection limits for 232Th, 226Ra, 137Cs, and 40K were 0.56, 0.32, 0.11 and 2.1 Bq/kg, respectively.

The activity concentrations of 232Th, 226Ra, 137Cs, and 40K is calculated by the formula (1).

$$A_{sp} = \frac{N_{sp} \times M_{st} \times A_{st} \times C_i}{N_{st} \times M_{sp}}$$

where N_{sp}, M_{sp}, and N_{st}, M_{st} are the net intensity, mass of the measured sample and of standard sample respectively; A_{st} is activity concentration of standard sample; C_i is the corrected factor for the differences between the densities of the sample and standard sample.
The annual effective dose D (µSv/year) of radionuclides to individuals due to the consumption of milk is calculated based on the following equation below [20].

$$D = A \times I \times E \quad (2)$$

where A is the activity concentration of radionuclides in milk (Bq/kg); E is the dose conversion coefficient for the radionuclides due to ingestion (µSv/Bq) (Table 2) [21]; I is the annual intake of milk (kg/year) which depends on the age groups. In this study, the annual ingestion dose for three age groups was investigated, including infants; children; and adults. The average annual intakes of fresh milk are 14.8 kg, 13.6 kg and 13.0 kg (dry w.t) for infants, children, and adults. The average annual intake of milk (kg/year) which depends on the age groups was investigated, including infants; children; and adults. The average annual intakes of fresh milk are 14.8 kg, 13.6 kg and 13.0 kg (dry w.t) for infants, children, and adults.

Results and discussions

The activity concentration of 232Th, 226Ra, 137Cs, and 40K in eight selected brands of fresh milk are presented in Table 3. The results showed that the lowest activity concentration belongs to the artificial radionuclide, 137Cs. The activity concentration of 40K was found in VN milk and all other milk samples had activity concentrations below the detection limit (BDL). All results for this radionuclide are well below the guideline level [23]. The low 137Cs activity concentration in milk samples could be explained by low 137Cs activity concentration in soil which was reported to be 3.82 Bq/kg (average) in surface soil (0–20 cm from surface) [24] before the Fukushima accident; the low 137Cs activity concentration in water; the reduction due to the transfer processes from soil to grass, and from grass and water to cow milk. More recent data, albeit local data confirms the low 137Cs activity concentration in soil (0.17–5.28 Bq/kg at Luong My Farm in Hoa Binh Province) [25]. The major radionuclide is 40K in all brands, it shows the highest value among other radionuclides with a low standard deviation. The MC milk sample shows the highest activity concentration with 387 ± 7 Bq/kg of 40K and the highest activity concentration of 226Ra with 2.45 ± 0.24 Bq/kg. The lowest activity concentration of 40K and 226Ra are found in NT milk samples with 341 ± 6 and 1.45 ± 0.18 Bq/kg respectively. The relatively high activity concentration of 40K in milk samples could be justified because potassium is a highly mobile in the environment [26–28], it is one of the major radionuclide elements in soil, and it naturally poses a part of potassium, which is a major nutrient for plants, animals and humans [10, 11]. These reasons lead to high 40K activity concentration in comparison with other radionuclides due to the transfer process from soil to grass and from grass and water to cow milk. The highest and lowest activity concentrations of 232Th are observed in NT and BV samples with 1.21 ± 0.24 and 0.60 ± 0.19 Bq/kg respectively. The activity concentration of 226Ra is two times greater than that of 232Th. In general, 40K is the dominant radionuclide in the studied samples. All of the radionuclides (232Th, 226Ra, 137Cs and 40K) are similar in value for the eight milk brands and are far less than the guidance level reported by the WHO [29].

The activity of concentrations of 232Th, 226Ra, 137Cs, and 40K in fresh milk found by this study are compared with reports by other authors from different countries in in Table 4. Therein, for the natural radionuclides, countries such as Saudi Arabia, Singapore, Indian, Malaysia, New Zealand, Thailand, Spain show higher results of 232Th, 226Ra activity concentrations, but lower 40K activity concentration compared to those in Vietnam. Other countries such as Jordan, Israel and Iran reported lower values of the 226Ra, 232Th activity concentrations, but higher value of 40K activity concentrations compared to those in Vietnam. On the other hand, there are two countries having values of activity concentrations higher than those in Vietnam with 23.1, 4.35, 832 (Bq/kg) for 226Ra, 232Th, 40K respectively in Nigeria and 1.6–3.7, 5.1–11.2, 475–489 (Bq/kg) for 232Th, 137Cs, and 40K respectively in Brazil. By contrast, Australia has activity concentrations lower than those in Vietnam. For artificial radionuclides, 137Cs activity concentration in the world is generally higher than that in Vietnam, except for Australia and Israel with 0.11 and BDL-0.08 (Bq/kg) respectively.

Table 2 Dose conversion factors for different age groups

Age groups	Dose conversion factors (µSv/Bq)			
	232Th	226Ra	137Cs	40K
Infants	5.7	0.96	0.011	0.042
Children	3.9	0.8	0.0098	0.013
Adults	0.69	0.28	0.013	0.0062

Table 3 Activity concentrations of 232Th, 226Ra, 137Cs, and 40K in eight fresh milk brands in Vietnam

Brands	Activity concentrations of fresh milk (Bq/kg dry w.t)			
	232Th	226Ra	137Cs	40K
VN	0.87 ± 0.16	1.84 ± 0.24	0.13 ± 0.06	365 ± 7
TH	0.64 ± 0.17	1.84 ± 0.17	BDL	381 ± 7
MC	0.99 ± 0.16	2.45 ± 0.24	BDL	387 ± 7
DL	1.18 ± 0.16	2.05 ± 0.16	BDL	386 ± 7
DuL	0.79 ± 0.24	2.04 ± 0.24	BDL	374 ± 7
VO	1.05 ± 0.23	2.39 ± 0.23	BDL	375 ± 7
BV	0.60 ± 0.19	1.86 ± 0.17	BDL	384 ± 7
NT	1.21 ± 0.24	1.45 ± 0.18	BDL	341 ± 6
Min	0.60 ± 0.19	1.45 ± 0.18	BDL	341 ± 6
Max	1.21 ± 0.24	2.45 ± 0.24	0.13 ± 0.06	387 ± 7
Mean ± SD	0.91 ± 0.23	1.98 ± 0.36		371 ± 17

BDL below detection limit
The variations of activity concentrations of 232Th, 226Ra, 137Cs, and 40K in powdered milk in the world may be affected by the type of milk, which is related to the animal of origin, different studied breeds, and the pollution in the local environment that affects the concentration of 232Th, 226Ra, 137Cs, and 40K as well.

The calculated annual effective doses (AED) due to the ingestion of 232Th, 226Ra, 137Cs, and 40K in Vietnamese milk for different age groups are presented in Table 5. The results show that the annual effective dose due to the intake of radionuclides in this study (except for 137Cs) by infants is much higher than that of children and adults, especially the adults. For the 137Cs, the AEDs by infants, children, and adults are almost the same. This result is similar to that of Ababneh and coworkers [1]. The research results also indicate that 40K has the highest contribution to the total annual effective dose due to the ingestion of fresh milk: 66.9 % for infants, 48.4 % for children and 66.1 % for adults. Since K is in homeostasis in the body, it might be argued, that the resulting dose from 40K should be disregarded from the excess dose. 232Th gives the second-highest contribution to the total effective dose: 22.9 % for infants; 35.7 % for children and 18.2 % for adults. On the other hand, the contribution of 137Cs to the total AED of infants is 0.009 µSv/y.

Table 4	Activity concentration of 232Th, 226Ra, 137Cs, and 40K in milk from previous investigations in different countries				
Country	Activity concentration (Bq/kg dry w.t)	Reference			
	232Th	226Ra	137Cs	40K	
Vietnam	0.60–1.21	1.45–2.45	BDL-0.13	341–387	Present study
Australia	1.04	1.51	0.11	47	[5]
Bangladesh	15.0	26.7	–	494	[30]
Brazil	1.6–3.7	–	5.1–11.2	475–489	[1]
Egypt	0.60	0.91	0.42	477	[31]
India	1.48	2.5	–	34	[32]
India (Karnataka)	–	0.03	0.06	71.9	[33]
India (Vizag)	0.25–2.8	1.10–2.70	0.03–0.90	3–26	[34]
Iran	0.094–0.166	0.05–0.186	–	434–610	[35]
Israel	BDL-0.8	–	BDL-0.08	54–472	[36]
Jordan	BDL-1.28	BDL-2.14	BDL-1.5	297–393	[1]
Korea	–	–	0.023–0.024	18–48	[37]
Malaysia	0.31–8.57	1.36–7.06	–	40–254	[5]
Malaysia	BDL-1.86	1.09–3.62	–	124–213	[38]
Malaysia	0.20–2.83	0.20–2.93	0.10–0.95	212–508	[39]
New Zealand	0.31–1.37	1.89–2.49	0.63–0.73	52–78	[5]
Nigeria	4.35	23.1	–	832	[7]
Saudi Arabia	6.77	9.64	–	75	[40]
Saudi Arabia	0.09–0.76	0.25–0.85	–	210–257	[41]
Saudi Arabia	0.52	0.49	–	402	[42]
Singapore	8.57	7.06	–	235	[5]
Spain	2.22	3.86	0.17	104	[5]
Thailand	1.83–2.42	2.37–4.95	0.16–0.23	94–245	[5]
Tunesia	BDL	BDL	2.26	160	[43]

BDL below detection limit

$^{[5, 33]}$. The variations of activity concentrations of 232Th, 226Ra, 137Cs, and 40K in powdered milk in the world may be affected by the type of milk, which is related to the animal of origin, different studied breeds, and the pollution in the local environment that affects the concentration of 232Th, 226Ra, 137Cs, and 40K as well.

Table 5	Annual effective dose (AED) for different age groups			
Radionuclides	Value	Age groups (µSv/y)		
		Infants	Children	Adults
232Th	Maximum	103.3	64.8	10.9
	Minimum	47.9	30.0	5.1
	Average	77.9	48.9	8.3
	SD	± 21.3	± 13.3	± 2.3
226Ra	Maximum	35.8	27.4	9.1
	Minimum	20.9	15.9	5.3
	Average	28.5	21.7	7.3
	SD	± 5.1	± 3.9	± 1.3
137Cs	Maximum	0.021	0.172	0.022
	Minimum	0	0	0
	SD	± 0.009	± 0.007	± 0.009
40K	Maximum	246.6	70.0	31.8
	Minimum	214.9	61.0	27.8
	Average	227.4	66.3	30.2
	SD	± 10.8	± 3.1	± 1.4
Total average AED, µSv	340.0	136.9	45.7	
effective dose is insignificant for all age groups and accounts for the smallest proportions among the four radionuclides.

The total average annual effective doses due to the intake of 232Th, 226Ra, 137Cs, and 40K from Vietnamese fresh milk are 340.0, 136.9 and 45.7 μSv for infants, children, and adults in respectively (Table 5). This shows that infants have the highest risk factor compared to other age groups. The risk factor for infants is 2.4 and 7.4 times higher than that for children and adults, respectively. This is similar to the results reported by Ababneh et al. [1] for the intake of milk in Jordan. In general, the total average annual effective dose results for the three age groups in this study are within the typical worldwide range of annual effective dose (200–800 μSv) due to the ingestion of natural radiation sources [20].

Conclusions

A systematic study of radioactivity concentration in Vietnamese fresh milk is presented for the first time. Activity concentrations of radionuclides (232Th, 226Ra, 137Cs, and 40K) in selected eight fresh milk brands consumed in Vietnam have been determined by a HPGe detector. The annual effective dose due to the ingestion of fresh milk in Vietnam was also calculated. Based on the analysis of results, the following conclusions can be drawn:

The artificial of 137Cs has a very minor presence, while 40K is present in all brands in two order of magnitude higher concentration than the other observed radionuclides. The activity concentrations of the four radionuclides in each fresh milk brand was quite similar. In general, the level of radioactivity in Vietnamese fresh milk brands was found to be similar to the worldwide level reported in the literature.

The 40K has the highest contribution to the total AED due to the ingestion of Vietnamese fresh milk, followed by 232Th, 226Ra, and 137Cs. The AED due to the intake of radionuclides in this study (except for 137Cs) for infants is much higher than that for children and adults. For 137Cs, the AEDs by infants, children and adults are almost the same. The 40K contribution to the total annual effective dose was 66.9 % for infants, 48.4 % for children and 66.1 % for adults, due to K being in homeostasis in the body it might be argued, that the AED is less by this amount.

The total average AEDs due to the intake of 232Th, 226Ra, 137Cs, and 40K from Vietnamese fresh milk for infants have the highest risk factor compared to other age groups.

Acknowledgements

The research work is supported by Grant of the National Foundation for Science and Technology Development (NAFOSTED), Vietnam, no 105.05-2019.10 and Hungarian National Research OTKA grant No. K128805 and K128818. The authors would like to thank the technicians in the laboratories of the Key Laboratory of Environmental and Climate Change Response, Vietnam University of Science (VNU) for supporting in conducting the experimental part of this work.

Funding

Open access funding provided by University of Pannonia.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ababneh Z, Alyassain Q, Aljarrah AM, Ababneh KM (2010) Measurement of natural and artificial radioactivity in powdered milk consumed in Jordan and estimates of the corresponding annual effective dose. Radiat Prot Dosim 138:278–283. https://doi.org/10.1093/rpd/ncp260
2. Osibote OA, Olomo JB, Tchokossa P, Balogun FA (1999) Radioactivity in milk consumed in Nigeria 10 years after Chernobyl reactor accident. Nucl Instrum Methods Phys Res A 442:778–783. https://doi.org/10.1016/S0168-9002(98)00996-6
3. Melguiaides FL, Appoloni CR (2001) Radiation of powdered milk produced at Londrina, PR, Brazil. Radiat Phys Chem 61:691–692. https://doi.org/10.1016/S0168-9002(01)00376-0
4. Afshari NS, Abbassiaei FM, Abdomealeki P, nejad MG (2009) Determination of 40K concentration in milk samples consumed in Tehran-Iran and estimation of its annual effective dose. Iran J Radiat Res 7:159–164
5. Uwatse OB, Olatunji MA, Khandaker MU, Amin YM, Bradley DA, Alkhoyalef M, Alzimami (2015) Measurement of natural and artificial radioactivity in infant powdered milk and estimation of the corresponding annual effective dose. Environ Eng Sci 32:10, 1–9. https://doi.org/10.1089/ees.2015.0114
6. Long NQ, Truong Y, Hien PD, Binh NT, Sieu LN, Giap TV, Phan NT (2012) Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. J Environ Radioact 111:53–58. https://doi.org/10.1016/j.jenvrad.2011.11.018
7. Kanai Y, Saito Y, Tamura T, Nguyen VL, Ta O, Sato TK, A (2013) Sediment erosion revealed by study of Cs isotopes derived from the Fukushima Dai-ichi nuclear power plant accident. Geochem J 47:79–82. https://doi.org/10.2343/geochemj.2012.0234
8. Al-Masri MS, Al-Akel B, Nashawani A, Amin Y, Khalifa KH, Al-Ain F (2008) Transfer of 40K, 238U, 210Pb, and 210Po from soil to plant in various locations in south of Syria. J Environ Radioact 99:322–331. https://doi.org/10.1016/j.jenvrad.2007.08.021
9. Al-Hamarneh IF, Alkhomashi N, Almasoud FI (2016) Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 232Th and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J Environ Radioact 160:1–7. https://doi.org/10.1016/j.jenvrad.2016.04.012
10. Cengiz GB (2019) Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey. J Radioanal Nucl Chem 319:83–89. https://doi.org/10.1007/s10967-018-6337-8
11. Azeez HH, Mansour HH, Ahmad ST (2019) Transfer of natural radioactive radionuclides from soil to plant crops. Appl Radiat Isot 147:152–158. https://doi.org/10.1016/j.apradiso.2019.03.010
12. Vreman K, Van Der Struijs TDB, Van Den Hoek J, Berende PLM, Coehart PW (1989) Transfer of 133Cs from grass and wilted grass silage to milk of dairy cows. Sci Total Environ 85:139–147. https://doi.org/10.1016/0048-9697(89)90312-4
13. Spezzano P, Giacomelli R (1991) Transport of 131I and 137Cs from air to cow’s milk produced in North-Western Italian farms following the Chernobyl accident. J Environ Radioact 13:235–250. https://doi.org/10.1016/0265-931X(91)90063-L
14. Karunakara N, Ujwal P, Yahodhara I, Rao C, Kumara SK, Dileep BN, Ravi PM (2013) Studies on soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J Environ Radioact 124:101–112. https://doi.org/10.1016/j.jenvrad.2013.03.008
15. Jodkowski P, Kalia J (2010) Gamma-ray spectrometry laboratory for high-precision measurements of radionuclide concentrations in environmental samples. Nukleonika 55:143
16. ICRP (1983) International Commission on Radiological Protection. Radionuclide transformations. Publication of International Commission on Radiological Protection. ICRP-38, 11–13
17. IAEA (1989) International Atomic Energy Agency. Measurement of radionuclides in food and the environment. Technical report series, No. 295. IAEA, Vienna
18. Debertin K, Helmer RG (1988) Gamma- and X-Ray Spectrometry with Semiconductor Detectors. North-Holland Publ., Amsterdam
19. Jodkowski P (2006) Self-absorption correction in gamma-ray spectrometry of environmental samples—an overview of methods and correction values obtained for the selected geometries. Nukleonika 51(2S):21–25
20. UNSCEAR (2000) Sources and effects of Ionizing radiation. Report to the general assembly with scientific annexes. New York
21. UNSCEAR (1993) United Nations Scientific Committee on the effects of atomic radiation. Reports to the general assembly. New York
22. UNSCEAR (2008) Sources and effects of ionizing radiation. New York
23. Codex AC (2004) World Health Organization ISBN 92-5-105180-1
24. Quang NH, Long NQ, Lieu DB, Mai TT, Ha NT, Nhan DD, Hien PD (2004) 240Pu, 90Sr and 137Cs inventories in surface soils of Vietnam. J Environ Radioact 75:329–337. https://doi.org/10.1016/j.envrad.2003.12.009
25. Duc HH, Cuong PV, Loat BV, Anh LT, Minh ND, Khiem LH (2019) Correlation between 137Cs and 40K concentration in soils of Vietnam. J Environ Radioact 296:322–330. https://doi.org/10.1016/j.envrad.2019.10.009
26. Kumar A, Singhal RK, Preetha J, Rupali K, Narayanan U, Suresh S, Mishra MK, Ranade AK (2008) Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232, U-238 in environmental samples. Nukleonika 55:143
27. Zeng Q, Brown MP (1999) Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant Soil. https://doi.org/10.1023/A:1004738414847
28. Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070. https://doi.org/10.1007/s11270-008-9656-5
29. WHO (2017) World Health Organization. Guidelines for drinking-water quality, Fourth edition incorporating the first addendum. ISBN 978-92-4-154995-0
30. Sultana A, Siraz M, Pervin S, Rahman A, Das S, Yeasmin S (2020) Assessment of radioactivity and radiological hazard of different food items collected from local market in Bangladesh. J Bangladesh Acad Sci 43:141–148. https://doi.org/10.3329/jbas.v43i2.45735
31. Salahel Din K (2020) Assessment of natural and artificial radioactivity in infants’ powdered milk and their associated radiological health risks. J Radioanal Nucl Chem 324:977–981. https://doi.org/10.1007/s10967-020-07170-0
32. Shanthi G, Kumanar JTT, Raj GAG, Maniyan CG (2010) Natural radionuclides in the South Indian foods and their annual dose. Nucl Instrum Methods Phys Res 619:436. https://doi.org/10.1016/j.nima.2009.10.068
33. Rangaswamy DR, Sannappa J (2011) Distribution of natural radionuclides and radiation level measurements in Karnataka State, India: an overview. J Radioanal Nucl Chem 310:1–12. https://doi.org/10.1007/s10967-016-4887-1
34. Patra AC, Mohapatra S, Sahoo SK, Lenka P, Dubey JS, Thakur VK, Kumar AV, Ravi PM, Tripathi RM (2014) Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. J Radioanal Nucl Chem 300, 903–910 (2014). https://doi.org/10.1007/s10967-014-3097-y
35. Hosseini T, Fathivand AA, Barati H, Karimi M (2006) Assessment of radionuclides in imported foodstuffs in Iran. Iran J Radiat Res 4:149
36. Lavi N, Golob G, Alfassi Z (2006) Monitoring and surveillance of radio-cesium in cultivated soils and foodstuffs sample in Israel 18 years after the Chernobyl disaster. Radiat Meas 41:78. https://doi.org/10.1016/j.radmeas.2005.04.005
37. Chae JS, Kim TH, Kim HJ, Yun JY (2016) Estimation of annual effective dose from ingestion of 40K and 137Cs in foods frequently consumed in Korea. J Radioanal Nucl Chem 310:1069–1075. https://doi.org/10.1007/s10967-016-4891-5
38. Priharti W, Samat SB, Yasir MS, Garba NN (2016) Assessment of radiation hazard indices arising from natural radionuclides content of powdered milk in Malaysia. J Radioanal Nucl Chem 307:297–303. https://doi.org/10.1007/s10967-015-4172-8
39. Yi MW (2019) Measurement of activity concentrations in powdered milk and estimation of the corresponding annual effective dose. J. Radioanal. Nucl. Chem. 320, 193–199 (2019). https://doi.org/10.1007/s10967-019-06460-6
40. Alamousi ZM (2013) Assessment of natural radionuclides in powdered milk consumed in Saudi Arabia and estimates of the corresponding annual effective dose. J. Am Sci 9:267
41. Al-Zahrani JH (2012) Natural radioactivity and heavy metals in milk consumed in Saudi Arabia and population dose rate estimates. Life Sci J 9:651
42. Jemii E, Alharbi T (2018) Measurements of natural radioactivity in infant formula and radiological risk assessment. J Radioanal Nucl Chem 315:157–161. https://doi.org/10.1007/s10967-017-5646-7
43. El Mestikou R, Jemii E, Mazouz M, Benali M, Ghedira L (2018) Measurements of natural radioactivity and heavy metals in milk consumed in North-Western Italian farms followed by cow’s milk produced in North-Western Italian farms following the Chernobyl accident. J Environ Radioact 13:235–250. https://doi.org/10.1016/0265-931X(91)90063-L