How do 66 European Institutional Review Boards approve one protocol for an International Prospective Observational study on traumatic brain injury? Experiences from the CENTER-TBI study.

CURRENT STATUS: UNDER REVIEW

Marjolein Timmers
Erasmus MC

Jeroen Van Dijck
Leids Universitair Medisch Centrum

Roel van Wijk
Universiteit Leiden

Valerie Legrand
Icon Clinical Research Uk Ltd

Ernest van Veen
Erasmus MC

Andrew Maas
Universitair Ziekenhuis Antwerpen

David Menon
University of Cambridge

Guiseppe Citerio
Università degli Studi di Milano Facolta di Medicina e Chirurgia

Nino Stocchetti
Università degli Studi di Milano Facolta di Medicina e Chirurgia

Erwin Kompanje
Erasmus MC

Corresponding Author
erwinkompanje@me.com

ORCiD: https://orcid.org/0000-0002-0649-4019
DOI: 10.21203/rs.2.18273/v2

SUBJECT AREAS
Medical Ethics Neurology

KEYWORDS
Research Ethic Committees; European Union; Health-care Research; CENTER-TBI; Harmonization.
Abstract
Background:The European Union (EU) aims to optimize patient protection and efficiency of healthcare research by harmonizing procedures across Member States. Nonetheless, further improvements are required to increase multicenter research efficiency. We investigated IRB procedures in a large prospective European multicenter study on traumatic brain injury (TBI), aiming to inform and stimulate initiatives to improve efficiency. Methods: We reviewed relevant documents regarding IRB submission and IRB approval from European neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI). Documents included detailed information on IRB procedures and the duration from IRB submission until approval(s). They were translated and analyzed to determine the level of harmonization of IRB procedures within Europe. Results: From 18 countries, 66 centers provided the requested documents. The primary IRB review was conducted centrally (N=11, 61%) or locally (N=7, 39%) and primary IRB approval was obtained after one (N=8, 44%), two (N=6, 33%) or three (N=4, 23%) review rounds with a median duration of respectively 50 and 98 days until primary IRB approval. Additional central IRB approval was required in 55% of countries and increased duration to 535 days. Total duration from submission until required IRB approval was obtained was 114 days (IQR 75-224) and appeared to be shorter after submission to local IRBs compared to central IRBs (50 vs. 138 days, p=0.0074). Conclusion: We found variation in IRB procedures between and within European countries. There were differences in submission and approval requirements, number of review rounds and total duration. Research collaborations could benefit from the implementation of more uniform legislation and regulation while acknowledging local cultural habits and moral values between countries.

Background
A Research Ethics Committee or Institutional Review Board (collectively referred to as IRB in the remainder of this manuscript) is appointed to review research protocols to ensure their compliance with ethical standards and national laws. IRBs have an essential role in (clinical) research to protect the dignity, fundamental rights, safety, and well-being of research participants and their formal approval is compulsory before a clinical study can start.[1] Although several international models
exist to improve the harmonization of ethical principles, the functioning of IRBs are subject to national legislation and regulation, which refine their structure and function to better serve local needs and cultural preferences.[2-3] Approval of research protocols submitted to IRBs is subject to these differences, which may complicate the conduct of international research.

Managing variations in IRB procedures is important because of the increasing number of research initiatives which involve multiple European Union (EU) Member States.[4-6] Variation could be improved by harmonization of European law, which is the process of creating uniformity in laws, regulations and practices between countries. Regarding research and IRB procedures, lack of procedural harmonization 'leads to a complex and uncertain framework for ethical review and for participant information consent, resulting in numerous inefficiencies in observational studies'.[7]

Greater procedural harmonization is generally considered desirable, because it could improve quality and efficiency of healthcare research by decreasing costs, increasing statistical validity,[8-10] optimizing data management,[10] allowing choice of relevant and generalizable outcome variables,[9] promoting uniform product safety regulations[8] and minimizing waste of resources due to inefficiencies.[8]

Although most IRBs have websites that describe the local submission process and provide access to submission guidelines and forms, up to date systematic information on IRB procedures and their level of harmonization in European health-care research is scarce. We are aware of only one previous meta-analysis on IRB procedures across European countries from 2005 to 2007 that was also related to research involving acutely mentally incapacitated individuals.[6] The Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study is a large observational study conducted in many countries across Europe that provides a unique opportunity to assess European IRB policies and procedures.[11]

This study aims to improve the efficiency of future research initiatives by quantifying the differences in IRB procedures through analyzing the procedural details, problems and challenges that researchers encountered in obtaining IRB approval for the general research protocol of the CENTER-TBI study.

Methods
Study setting

The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI, www.center-tbi.eu) Core study is a prospective observational study on traumatic brain injury (TBI), which was conducted between December 2014 and December 2017 in 63 neurotrauma centers across Europe and Israel.[11-12] The study included patients with TBI of all severities, and aims to improve characterization of TBI, in order to facilitate the development of precision medicine approaches and to identify best practices by using a comparative effectiveness research (CER) approach.[11-14] In the context of the project high-quality Personal Health related Data (PHD) were collected with repositories for neuro-imaging, DNA, and serum biomarkers. Prior to the study start and collection of clinical data, a uniform CENTER-TBI research protocol including all relevant documents was sent to all responsible IRBs to ensure its legal, ethical and statistical soundness and to obtain IRB approval.

A total of 68 centers from 19 countries initially submitted applications for IRB approval. Because this article focuses on IRB approval in Europe, two centers from Israel were excluded from our analysis. The 66 center that participated in this present study are from Austria (N=2), Belgium (N=5), Denmark (N=2), Finland (N=2), France (N=7), Germany (N=4), Hungary (N=3), Italy (N=8), Latvia (N=3), Lithuania (N=2), the Netherlands (N=7), Norway (N=3), Romania (N=1), Serbia (N=1), Spain (N=4), Sweden (N=2), Switzerland (N=1), and the United Kingdom (UK), (N=9). Sixty-one European centers were initiated and actively enrolled patients in the study.

Data collection and administration

All IRB submission documents, communication records and approval documents were collated per center by the Contract Research Organization, ICON plc (ICON), directly after final approval of IRBs. [15] ICON is a global company operating in the healthcare industry that was responsible for the clinical monitoring of CENTER-TBI data. The received IRB documents were obtained in 15 different languages (Danish, Dutch, English, Finnish, French, German, Hungarian, Italian, Latvian, Lithuanian, Norwegian, Romanian, Serbian, Spanish, and Swedish) and were partly translated before analysis. The authors contacted the principle investigators to obtain additional information to minimize the amount
of unclear or missing data. Identifiable information was deleted to protect the privacy of stakeholders. This resulted in a final set of documents, that was analyzed for this study.

Analyses

We assessed the IRB review procedures by using the final set of documents and aimed to answer the following research questions in order to evaluate differences in obtaining IRB approval (1) Was the study considered to be observational or interventional? (2) Was the research protocol to be submitted to a central IRB or local IRB for primary IRB review and primary IRB approval? (3) Was additional IRB review required after primary IRB approval had already been obtained? If yes, to what extent? (4) How many review rounds were conducted before primary IRB approval was obtained? What were the reasons? (5) What was the time between protocol submission and obtaining the required IRB approval to start the study? The use of ‘primary’ in this context should be interpreted as first in an order and ‘additional’ as second in an order, without including a statement on importance.

To elaborate on the fifth question, we reconstructed six timeframes regarding the primary IRB review procedure: (1) time between protocol submission and primary IRB approval or first IRB reaction, (2) time between first IRB reaction and first reaction of researcher, (3) time between first reaction of researcher and primary IRB approval or second IRB reaction, (4) time between second IRB reaction and second reaction researcher, (5) time between second reaction researcher and primary IRB approval, and (6) total time between protocol submission and primary IRB approval. The existence of these timeframes naturally depended on the actual procedure. Data on any additional IRB review focused only on the duration of this particular review until the required IRB approval was obtained.

In order to assess regional variation, countries were grouped into six regions based on the United Nation geo-scheme: Baltic States (Latvia, and Lithuania), Eastern Europe (Hungary, Romania, and Serbia), Northern Europe (Denmark, Finland, Norway, and Sweden), Southern Europe (Italy, and Spain), the United Kingdom (UK), and Western Europe (Austria, Belgium, France, Germany, the Netherlands, Switzerland).[16] Incomplete data was marked ‘Missing’ (M) and all timeframes were reported in days.

To determine significant differences between the time from submission till approval of the research
protocol between primary local IRBs and primary central IRBs, we performed a Mann-Whitney U test (continuous). Analyses were performed using R version 3.6.0. Finally, a descriptive analysis of questions, comments and answers from both IRB and researcher during the IRB review procedure was performed to summarize the problems and challenges that researchers encountered in obtaining IRB approval. IRB reactions were categorized and reported by their appearance: (1) Procedure, (2) Blood collection and biomarkers, (3) MRI, (4) Privacy and data security, (5) Other.

Results
A total of 66 neurotrauma centers from 18 countries were included in this analysis. Most centers were located in Western Europe (N=26, 39%) and least in Eastern Europe (N=5, 8%) and the Baltic States (N=5, 8%). Most participating centers were from the UK (N=9), followed by Italy (N=8), The Netherlands and France (N=7) (Table 1). In all countries the local principal investigators were responsible to submit the general CENTER-TBI research protocol for IRB review and IRB approval.

Observational or interventional
The majority of countries (N=14, 78%) considered the study to be observational, while others judged it to be observational with diagnostic interventions (The Netherlands), interventional (France, Hungary) and observational and interventional (Serbia) (Table 1).

Primary central or primary local IRB review
Primary IRB review started directly after protocol submission and was considered ‘central’ when submitted to a central institution or an institution that was part of a national network (N=11, 61%). There were three options: (1) Primary central IRB approval had a national impact and applied to all participating centers within a country, without the need for additional IRB review (N=5; Denmark, Finland, France, Norway, Sweden). (2) Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers in the country required approval after an additional extensive local IRB review. This involved the re-evaluation of the entire protocol and applicable ethics (N=4; Belgium, Germany, Hungary, Italy). (3) Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers required additional approval after marginal local IRB review, mainly assessing
local feasibility (N=2; UK, The Netherlands) (Figure 1).

Primary IRB review was considered ‘local’ when the protocol was submitted to an independent ‘local’ IRB. Obtained primary local IRB approvals only applied to the associated research centers and allowed study start without any additional requirements (N=7; Austria, Switzerland, Spain, Lithuania, Latvia, Romania, Serbia). Primary local IRB review could be performed simultaneously in each independent IRB (Figure 1).

For every protocol submission, there were two outcome options after IRB review: (1) the required (primary or additional) IRB approval had been obtained and the study could start, or (2) researchers were asked to answer questions or make protocol changes, which was followed by an extra IRB review round. This process varied between IRBs and was repeated until the required IRB approval was eventually obtained. None of the submissions in this study were rejected.

IRB review rounds

Eight countries (44%), including all countries from Eastern Europe and the Baltic State, obtained primary IRB approval in the first round after submission, while six countries (Austria, Belgium, France, Finland, Spain and UK) required one extra review round and four countries (Denmark, Germany, Norway and Sweden) required two extra review rounds (Figure 2). Extra review rounds were found in 73% of centers after primary central IRB submission and in 20% after primary local IRB submission. Several IRBs commented on different aspects of the protocol: selection criteria (n=3, 38%), patient/proxy consent (n=4, 50%), and information forms (n=3, 38%). Also, specific questions were asked on possible non-standard care factors in particular MRI scans (N=4), blood sample collection (N=4). Four questions were asked about privacy and data security, mainly related to the period after study completion. All relevant information can be found in the supplementary files.

Duration from protocol submission to IRB approval

The median time from protocol submission until the required IRB approval was obtained to start the study was 114 days (IQR 75-224). The fastest required IRB approval was obtained after one day in Serbia and Romania, whereas the longest time was found in a center in the UK (535 days). Obtaining central IRB approval (138 days, IQR: 91-229) took significantly longer (p=0.0074) than obtaining local
IRB approval (50 days, IQR: 29-102) (Table 2).

In Norway and Denmark, the majority of time from submission to primary central IRB approval was spent by researchers (67% and 69%, respectively), while in France (95%) and Hungary (71%) most time was consumed by IRBs. Regarding primary local IRB submissions, researchers only accounted for 12% of time in Spain and 21% in Austria (Figure 2).

Additional IRB review rounds after primary central IRB review were required in 55% of countries. An additional marginal (feasibility) review had a median duration of 104 days (IQR: 62-224), whereas an additional extensive IRB review took 189 days (IQR: 140-270) (Table 3).

Variation between centers within countries was least in Lithuania (31 to 47 days), Germany (288 to 312 days), Belgium (131 to 155 days), and Hungary (177 to 204 days), compared to Spain (69 to 349 days), the Netherlands (27 to 224 days), the UK (58 to 535 days), and Italy (65 to 288 days) (Table 3).

Discussion

This study shows variation in IRB procedures between and within European countries, indicating a lack of uniform legislation and regulation, or inconsistencies in how such legislation or regulation were implemented. In some countries, a primary central IRB approval was sufficient for study initiation, while others required an additional IRB review at the participating site. Also, the number of review rounds, duration until IRB approval, and the nature of questions and comments from the IRBs varied. Not all IRBs considered the study to be observational, demonstrating a different way of understanding the study. The apparent lack of integration and harmonization in this context suggests that the efficiency of European research collaborations could benefit from improving knowledge on the existing differences, inefficiencies and moral values between and within countries.

The duration from protocol submission to required IRB approval was highly variable and ranged from one day up to nearly one year. In literature, differences between IRB procedures were also reported and IRB review durations varied from weeks to several months. [6,17] The difference in total duration between primary central and primary local IRB approval could respectively be overestimated and underestimated by the short primary IRB review times in Serbia and Romania and the missing data of the first review round for the UK. The difference is not necessarily related to the number of review
rounds, but might be more explained by the reason and nature (primary central/local review or extensive/marginal additional local review) of the extra review round(s), the accompanying amount of work and the working speed of both IRB and research team. The influence of the latter was substantiated by our data as responding to questions from the IRB seemed to account for an important part of time in several countries (e.g. Denmark and Norway), while the majority of time in other countries (e.g. Belgium, Spain and France) was accounted for by the time taken in primary evaluation by IRBs. The exact reasons for these ‘delays’ could however not be derived from our data and deserves further study. They might be caused by the difficulty of requirements or questions, although, according to the communication records, IRBs mainly requested extra explanation of research procedures. Based on the IRB information requests in this study, special attention should be given to the description of inclusion criteria, informed consent procedures, patient information forms, non-standard care procedures, privacy and data security. A quick response by investigators and agreeing on a maximal turnover time of 1 month to 2 months for IRBs could already minimize substantial delay. This is also in correspondence with literature, where IRB turnover time targets range from 30 to 60 days.[17-18]

The question whether CENTER-TBI was an observational or an interventional study did not appear to be a clear explanation for differences in number and duration of review rounds. Interventional studies are generally subject to a more extensive review process, where observational study reviews may be more marginal. Nonetheless, duration was short in France and long in the UK. CENTER-TBI is registered as an observational study, in which ‘the investigator is not acting upon study participants, but instead observing natural relationships between factors and outcomes’. [19] Two IRBs considered the study to be purely interventional. Interventional studies are studies ‘where the researcher intercedes as part of the study design’. [19] An explanation for this opposing classification is that the IRBs did and did not consider the following procedures to be standard-of-care: (1) Different amounts of additional blood draws at presentation and follow-up. (2) Neuropsychological assessments and outcome questionnaires up to a 24-month follow-up. (3) Additional MRIs at sites participating in the MRI sub-study.
Extra work without clear benefits delays projects and should be avoided when possible. An additional IRB review after primary central IRB approval is usually double work and could result in an extra delay of weeks to more than a year, without always having clear benefits over the already obtained primary approval.[17] Cancelling potentially unnecessary (extensive) additional IRB review procedures could not only reduce turnover time, but also reduce costs. The exact costs of European IRB review procedures are unfortunately unknown, but the direct costs of an IRB review and approval in the US have been calculated to be $107,544 ($82,610 in IRB fees and $24,934 in labor).[20]

Delays in obtaining IRB approval not only adversely affect study initiation, but are also associated with several other risks. Long procedures with many feedback rounds will delay study start, frustrate researchers and might even endanger meeting subsidiary demands. Researchers might attempt to speed up the process by changing the protocol or submitting the protocol to IRBs that are considered to be less strict but able to process the submission the quickest. This does not necessarily serve primary research objectives and might even hamper quality and generalizability of study results.

Optimization of IRB review procedures is urgently needed as multinational collaborations in healthcare research are increasing and even promoted by multiple European research grants.[4-5,21] Harmonization and adequate implementation of regulatory and ethical standards between European countries could improve the present situation.[7,22] The EU already aims to freely cooperate across borders by defining common standards and removing legal obstacles, but true harmonization of Member State laws in a research context has clearly not been established yet.[21-24] For example, the General Data Protection Regulation (GDPR) aimed to ensure a fair and transparent processing of personal data and aimed to improve patients’ control over their own data.[25] The implementation and use of the GDPR however showed the difficulty of harmonization in the protection of the EU citizens in this context. This was especially caused by the possibility for European countries to use their own national legislation in addition to the GDPR, which does not improve the desired harmonization.

Harmonization remains to be a highly complex process due to variation of national regulations that are based on national customs, culture, ethics, religion and other beliefs. [6] Harmonization of laws is
designed to incorporate different legal systems under a basic framework. To overcome the highly complex process of harmonization in the area of research, it has been suggested to combine similarities between legislations and regulations of countries under a basic framework like a European research directive. A framework should acknowledge these local cultural or religious beliefs, as disregarding them is neither feasible nor desirable. While the desirable goal of harmonizing regulation will certainly benefit research in the future, both IRBs and researchers will have to put in efforts until that time. IRBs can accelerate the turnover by only requiring central IRB approval and researchers should respond quicker and more comprehensively to questions from IRBs, preventing the repetition of questions.

Strengths and limitations

The CENTER-TBI study provides a unique opportunity to provide comprehensive insight in the procedural differences between European IRBs. The study benefits from its large size and because the data acquisition process increased the quality and completeness of documents. Despite the quality of the documents, results were still dependent on the recorded information. Therefore, we could not always identify causal factors for variation, which is something to look for in future initiatives. The data on IRB review procedures in an observational study conducted with mentally incapacitated patients in neurotrauma centers might not be generalizable for other research settings.

Conclusions

This study shows variation between IRB procedures across Europe, which pose major challenges to large European research collaborations. Differences are likely caused by the lack of harmonization, integration and implementation of national legislations and regulations. To optimize efficiency for multinational European studies in context of obtaining IRB approval, the encountered differences and inefficiencies should be studied further and policymakers should evaluate the opportunities to optimize regulatory harmonization, while acknowledging the boundaries of national sovereignty and local cultural preferences.

Abbreviations
Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

There are legal constraints that prohibit us from making all data publicly available. Data could be identifiable because the limited number of centres per country that were included in this study. Readers may contact Dr. Erwin J. O. Kompanje (erwinkompanje@me.com) for reasonable requests for the data.

Competing interests

The authors declare that they have no competing interests.

Funding

CENTER-TBI was supported by the European Union 7th Framework program (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA) and from Integra LifeSciences Corporation (USA). David K. Menon was supported by a Senior Investigator Award from the National Institute for Health Research (UK).

Authors’ contributions

MT and JD analyzed the data and drafted the manuscript and the supplementary tables. EV analyzed the data. All coauthors gave feedback on the manuscript. EJOK supervised the project. All coauthors were involved in the design of the study. All coauthors approved the final version of the manuscript.

Acknowledgements

Not applicable.
References
1. Guide for Research Ethics Committee Members, Steering Comm. on Bioethics, revised version 3 December 2010, Council of Europe April (2012).
2. Emanuel E, Crouch R, Lie R, et al. The Oxford Textbook of Clinical Research Ethics. Oxford: Oxford University Press, Reprint edition 2011.
3. Standards and operational guidance for ethics review of health-related research with human participants, World Health Organization (2011).
4. Innovative Medicine Innitiative, IMI mission and objectives. https://www.imi.europa.eu/about-imi/mission-objectives. Accessed August 3, 2019.
5. European Commission, Horizon 2020 - The Framework Programme for Research and Innovation. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0808&from=EN. Published 2011. Accessed September 3, 2019.
6. Tridente A, Holloway P, Hutton P, et al. Methodological challenges in European ethics approvals for a genetic epidemiology study in critically ill patients: the GenOSept experience. BMC Med Ethics 2019;20:30.
7. Urushihara H, Parmenter L, Tashiro S, et al. Bridge the gap: The need for harmonized regulatory and ethical standards for postmarketing observational studies. Pharmacoepidemiol Drug Saf. 2017;26:1299-1306.
8. Aledort L. Harmonization of clinical trial guidelines for assessing the risk of inhibitor development in hemophilia A treatment. J Thromb Haemost. 2011;9(3):423-427.
9. Oliver Daly J. Harmonisation of research outcomes for meaningful translation to practice: The role of Core Outcome Sets and the CROWN Initiative. Aust N Z J Obs Gynaecol. 2018;58:15-16.
10. Bowles K, Potashnik S, Ratcliffe S, et al. Conducting research using the electronic health record across multi-hospital systems: semantic harmonization implications for
administrators. J Nurs Adm. 2013;43:355-360.

11. Maas A, Menon D, Steyerberg E, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76:67-80.

12. Steyerberg E, Wiegers E, Sewalt C, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. The Lancet Neurol. 2019;18:923-934.

13. Maas A, Menon D, Adelson P, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987-1048.

14. Cnossen M, Polinder S, Lingsma H, et al. Variation in structure and process of care in traumatic brain injury: Provider profiles of European Neurotrauma Centers participating in the CENTER-TBI study. PLoS One. 2016;11(8):e0161367.

15. ICON plc. http://www.iconplc.com. Accessed August 8, 2019.

16. United Nations, Standard country or area codes for statistical use (M49). https://unstats.un.org/unsd/methodology/m49/. Published 1999. Accessed September 5, 2019.

17. Mascette A, Bernard G, Dimichele D, et al. Are central institutional review boards the solution? The National Heart, Lung, and Blood Institute Working Group’s report on optimizing the IRB process. Acad Med. 2012;87:1710-1714.

18. Adams P, Kaewkungwal J, Limphatthararacharoen C, et al. Is Your Ethics Committee Efficient? Using “IRB Metrics“as a Self-Assessment Tool for Continuous Improvement at the Faculty of Tropical Medicine, Mahidol University, Thailand. PLoS ONE 2014;9(11):e113356.

19. Thiese M. Observational and interventional study design types; an overview. Biochem Med. 2014;24(2):199-210.
20. Ravina B, Deuel L, Siderowf A, et al. Local institutional review board (IRB) review of a multicenter trial: local costs without local context. Ann Neurol. 2010;67(2):258-260.

21. Consolidated version of the Treaty on the Functioning of the European Union. Official Journal of the European Union C 326/47, 26 October (2012).

22. Henshall C, Mardhani-Bayne L, Fronsdal KB, et al. Interactions between health technology assessment, coverage, and regulatory processes: emerging issues, goals, and opportunities. Int J Technol Assess Heal Care. 2011;27(3):253-260.

23. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General data Protection Regulation) Official journal of the European Union L 119/1, 4 May (2016)

24. European Commission. The European Union. What it is and what it does. Luxembourg: Publications Office of the European Union 2018. doi:10.2775/665897

25. Timmers M, Van Veen E-B, Maas A, et al. Will the Eu Data Protection Regulation 2016/679 Inhibit Critical Care Research? Med Law Rev. 2019;27:59-78.

The Center-tbi Participants And Investigators

The CENTER-TBI participants and investigators:

Cecilia Åkerlund¹, Krisztina Amrein², Nada Andelic³, Lasse Andreassen⁴, Audny Anke⁵, Anna Antoni⁶, Gérard Audibert⁷, Philippe Azouvi⁸, Maria Luisa Azzolini⁹, Ronald Bartels¹⁰, Pál Barzó¹¹, Romuald Beauvais¹², Ronny Beer¹³, Bo-Michael Bellander¹⁴, Antonio Belli¹⁵, Habib Benali¹⁶, Maurizio Berardino¹⁷, Luigi Beretta⁹, Morten Blaabjerg¹⁸, Peter Bragge¹⁹, Alexandra Brazinova²⁰, Vibeke Brinck²¹, Joanne Brooker²², Camilla Brorsson²³, Andras Buki²⁴, Monika Bullinger²⁵, Manuel Cabeleira²⁶, Alessio Caccioppola²⁷, Emiliana Calappi ²⁷, Maria Rosa Calvi⁹, Peter Cameron²⁸, Guillermo Carbayo Lozano²⁹, Marco Carbonara²⁷, Simona Cavallo¹⁷, Giorgio Chevallard³⁰, Arturo
Chieregato, Giuseppe Citerio, Iris Ceyisakar, Mark Coburn, Jonathan Coles, Jamie D. Cooper, Marta Correia, Amra Ćović, Nicola Curry, Endre Czeiter, Marek Czosnyka, Claire Dahyot-Fizelier, Paul Dark, Helen Dawes, Véronique De Keyser, Vincent Degos, Francesco Della Corte, Hugo den Boogert, Bart Depreitere, Dula Dilvesi, Abhishek Dixit, Emma Donoghue, Jens Dreier, Guy-Loup Dulière, Ari Ercole, Patrick Esser, Erzsébet Ezer, Martin Fabricius, Valery L. Feigin, Kelly Foks, Shirin Frisvold, Alex Furmanov, Pablo Gagliardo, Damien Galanaud, Dashiell Gantner, Guoyi Gao, Pradeep George, Alexandre Ghuysen, Lelde Giga, Ben Glocker, Jagoš Golubovic, Pedro A. Gomez, Johannes Gratz, Benjamin Gravesteijn, Francesca Grossi, Russell L. Gruen, Deepak Gupta, Juanita A. Haagsma, Iain Haitsma, Raimund Helbok, Eirik Helseth, Lindsay Horton, Jilske Huijben, Peter J. Hutchinson, Bram Jacobs, Stefan Jankowski, Mike Jarrett, Ji-yao Jiang, Faye Johnson, Kelly Jones, Mladen Karan, Angelos G. Koliás, Erwin Kompanje, Daniel Kondziella, Evgenios Koraropoulos, Lars-Owe Koskinen, Noémi Kovács, Ana Kowark, Alfonso Lagares, Linda Lanyon, Steven Laureys, Fiona Lecky, Didier Ledoux, Rolf Lefering, Valerie Legrand, Aurelie Lejeune, Leon Levi, Roger Lightfoot, Hester Lingsma, Andrew I.R. Maas, Ana M. Castaño-León, Marc Maegele, Marek Majdan, Alex Manara, Geoffrey Manley, Costanza Martino, Hugues Maréchal, Julia Mattern, Catherine McMahon, Béla Melegh, David Menon, Tomas Menovsky, Benoit Misset, Davide Mulazzi, Visakh Muraleedharan, Lynnette Murray, Ancuta Negru, David Nelson, Virginia Newcombe, Daan Nieboer, József Nyirádi, Otesile Olubukola, Matej Oresić, Fabrizio Ortolano, Aarno Palotie, Paul M. Parizel, Jean-François Payen, Natascha Perera, Vincent Perlberg, Paolo Persona, Wilco Peul, Anna Piippo-Karjalainen, Matti Pirinen, Horia Ples, Suzanne Polinder, Inigo Pomposo, Jussi P. Posti, Louis Puybasset, Andreea Radoi, Arminas Ragauskas, Rahul Raj, Malinka
Rambadagalla105, Jonathan Rhodes106, Sylvia Richardson107, Sophie Richter47, Samuli Ripatti93, Saulius Rocka104, Cecilia Roe108, Olav Roise109,110, Jonathan Rosand111, Jeffrey V. Rosenfeld112, Christina Rosenlund113, Guy Rosenthal55, Rolf Rossaint34, Sandra Rossi98, Daniel Rueckert61, Martin Rusnák114, Juan Sahuquillo103, Oliver Sakowitz88,115, Renan Sanchez-Porras115, Janos Sandor116, Nadine Schäfer79, Silke Schmidt117, Herbert Schoechl118, Guus Schoonman119, Rico Frederik Schou120, Elisabeth Schwendenwein6, Charlie Sewalt33, Toril Skandsen121,122, Peter Smielewski26, Abayomi Sorinola123, Emmanuel Stamatakis47, Simon Stanworth39, Robert Stevens124, William Stewart125, Ewout W. Steyerberg33,126, Nino Stocchetti127, Nina Sundström128, Anneliese Synnot22,129, Riikka Takala130, Viktória Tamás123, Tomas Tamosuitis131, Mark Steven Taylor20, Braden Te Ao52, Olli Tenovuo101, Alice Theadom52, Matt Thomas85, Dick Tibboel132, Marjolein Timmers73, Christos Tolias133, Tony Trapani28, Cristina Maria Tudora91, Peter Vajkoczy134, Shirley Vallance28, Egils Valeinis60, Zoltán Vámos50, Gregory Van der Steen43, Joukje van der Naalt70, Jeroen T.J.M. van Dijick99, Thomas A. van Essen99, Wim Van Hecke135, Caroline van Heugten136, Dominique Van Praag137, Thijs Vande Vyvere135, Roel P. J. van Wijk99, Alessia Vargiolo32, Emmanuel Vega81, Kimberley Velt33, Jan Verheyden135, Paul M. Vespa138, Anne Vik120,139, Rimantas Vilcinis131, Victor Volovici66, Nicole von Steinbüchel38, Daphne Voormolen33, Petar Vulekovic46, Kevin K.W. Wang140, Eveline Wiegers33, Guy Williams47, Lindsay Wilson68, Stefan Winzeck47, Stefan Wolf141, Zhihui Yang140, Peter Ylén142, Alexander Younsi88, Frederick A. Zeiler47,143, Veronika Zelinkova20, Agate Ziverte60, Tommaso Zoerle27

1 Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden

2 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary

3 Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation,
Oslo University Hospital and University of Oslo, Oslo, Norway

4 Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway

5 Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway

6 Trauma Surgery, Medical University Vienna, Vienna, Austria

7 Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France

8 Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France

9 Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy

10 Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands

11 Department of Neurosurgery, University of Szeged, Szeged, Hungary

12 International Projects Management, ARTTIC, Munchen, Germany

13 Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria

14 Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden

15 NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK

16 Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France

17 Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma Center, Torino, Italy

18 Department of Neurology, Odense University Hospital, Odense, Denmark

19 BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia

20 Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia

21 Quesgen Systems Inc., Burlingame, California, USA
22 Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia

23 Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden

24 Department of Neurosurgery, Medical School, University of Pécs, Hungary and Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, Hungary

25 Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany

26 Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK

27 Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy

28 ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia

29 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain

30 NeuroIntensive Care, Niguarda Hospital, Milan, Italy

31 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy

32 NeuroIntensive Care, ASST di Monza, Monza, Italy

33 Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands

34 Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany

35 Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK

36 School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia

37 Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK
38 Institute of Medical Psychology and Medical Sociology, Universitätsmedizin Göttingen, Göttingen, Germany

39 Oxford University Hospitals NHS Trust, Oxford, UK

40 Intensive Care Unit, CHU Poitiers, Poitiers, France

41 University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, Salford Royal Hospital NHS Foundation Trust, Salford, UK

42 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK

43 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium

44 Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy

45 Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium

46 Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

47 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK

48 Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

49 Intensive Care Unit, CHR Citadelle, Liège, Belgium

50 Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary

51 Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark

52 National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand

53 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
54 Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway

55 Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, Israel

56 Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain

57 Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China

58 Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden

59 Emergency Department, CHU, Liège, Belgium

60 Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia

61 Department of Computing, Imperial College London, London, UK

62 Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain

63 Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria

64 College of Health and Medicine, Australian National University, Canberra, Australia

65 Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi-110029, India

66 Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands

67 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway

68 Division of Psychology, University of Stirling, Stirling, UK

69 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital & University of Cambridge, Cambridge, UK

70 Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands

71 Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

72 Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford, UK
Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden

Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-II/8, University of Pécs, Pécs, Hungary

Cyclotron Research Center, University of Liège, Liège, Belgium

Centre for Urgent and Emergency Care Research (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK

Emergency Department, Salford Royal Hospital, Salford UK

Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany

VP Global Project Management CNS, ICON, Paris, France

Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France

Department of Neurosurgery, Rambam Medical Center, Haifa, Israel

Department of Anesthesiology & Intensive Care, University Hospitals Southhampton NHS Trust, Southampton, UK

Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany

Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK

Department of Neurological Surgery, University of California, San Francisco, California, USA

Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy

Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany

Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK

Department of Medical Genetics, University of Pécs, Pécs, Hungary

Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
92 School of Medical Sciences, Örebro University, Örebro, Sweden

93 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

94 Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA

95 Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA

96 Department of Radiology, University of Antwerp, Edegem, Belgium

97 Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France

98 Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy

99 Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands

100 Department of Neurosurgery, Helsinki University Central Hospital

101 Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland

102 Department of Anesthesiology and Critical Care, Pitié -Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France

103 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute, Barcelona, Spain

104 Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania

105 Department of Neurosurgery, Rezekne Hospital, Latvia

106 Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburg,
Edinburgh, UK

107 Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK

108 Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway

109 Division of Orthopedics, Oslo University Hospital, Oslo, Norway

110 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway

111 Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, USA

112 National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia

113 Department of Neurosurgery, Odense University Hospital, Odense, Denmark

114 International Neurotrauma Research Organisation, Vienna, Austria

115 Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany

116 Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary

117 Department Health and Prevention, University Greifswald, Greifswald, Germany

118 Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria

119 Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands

120 Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark

121 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway

122 Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
123 Department of Neurosurgery, University of Pécs, Pécs, Hungary

124 Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA

125 Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK

126 Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands

127 Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy

128 Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden

129 Cochrane Consumers and Communication Review Group, Centre for Health Communication and Participation, School of Psychology and Public Health, La Trobe University, Melbourne, Australia

130 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland

131 Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania

132 Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands

133 Department of Neurosurgery, Kings college London, London, UK

134 Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, Germany

135 icoMetrix NV, Leuven, Belgium

136 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK

137 Psychology Department, Antwerp University Hospital, Edegem, Belgium

138 Director of Neurocritical Care, University of California, Los Angeles, USA

139 Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, Trondheim,
Norway

140 Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA

141 Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

142 VTT Technical Research Centre, Tampere, Finland

143 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada

Åkerlund Cecilia
Amrein Krisztina
Andelic Anna
Andreassen Lasse
Anke Audny
Antoni Anna
Audibert Gérard
Azouvi Philippe
Azzolini Maria Luisa
Bartels Ronald
Barzó Pál
Beauvais Romuald
Beer Ronny
Bellander Bo-Michael
Belli Habib
Benali Maurizio
Berardino Luigi
Beretta Morten
Blaabjerg Peter
Bragge Alexandra
Brazinova Vibeke
Brinker Camilla
Brooker Andras
Brsson Monika
Buki Manuel
Bullinger Alessio
Cabeleira Emiliana
Caccioppola Maria Rosa
Cagliari Peter
Calleja Guillermo
Carbonara Marco
Castaño-León Ana M.
Carbayo Lozano Simona
Carbonara Giorgio
Carbayo Lozano Arturo
Cavallaro Giuseppe
Ceyisakar Iris
Coburn Mark Steven
Coles Jonathan
Cooper Jamie D.
Correia Marta
cecilia.ai.akerlund@gmail.com
tina.amrein84@gmail.com
Lasse.Andreassen@unn.no
Audny.anke@unn.no
anna.antonio@meduniwien.ac.at
l.g.audibert@chu-nancy.fr
philippe.azouvi@rpc.aphp.fr
azzolini.maria@hsr.it
Ronald.Bartels@radboudumc.nl
pbarzo@gmail.com
beauvais@arttic.eu
ronny.beer@i-med.ac.at
bo-michael.bellander@karolinska.s
a.belli@bham.ac.uk
habib.benali@gmail.com
maurizio_berardino@fastwebnet.it
beretta.luigi@hsr.it
mortal.blabaarjerg@rsyd.dk
peter.bragge@monash.edu
alexandra.brazinova@gmail.com
vibeke.brinck@quesgen.com
joanne.Brooker@monash.edu
Camilla.Broossen@umu.se
2saturn@gmail.com
bullinger@uke.de
mc916@cam.ac.uk
alessio.caccioppola@gmail.com
calemy02@yahoo.it
calvi.mariana@hsr.it
peter.cameron@med.monomasche
eguillermobilbo@gmail.com
marco.carbonara@gmail.com
ana.maria.castaño.leon@gmail.com
cavallosimona1@gmail.com
giorgio.cavallaro@ospedalenig
arturo.chieregato@ospedalenig
giuseppe.citerio@unimib.it
i.ceyisakar@erasmusmc.nl
mcaoburn@ukaachen.de
jpc44@wbic.cam.ac.uk
jamie.cooper@monash.edu
Marta.Correia@mrc-cbu.cam.ac.uk
Name	Email
Ćović	amra.covic@med.uni-goettingen.de
Curry	nicola.curry@ouh.nhs.uk
Czeiter	endre.czeteir@gmail.com
Czosnyka	mc141@medschl.cam.ac.uk
Dahyot-Fizelier	c.dahyot-fizelier@chu-poitiers.fr
Dawes	paul.m.dark@manchester.ac.uk
De Keyser	hdares@brookes.ac.uk
Degos	veronique.dekeyser@uza.be
Della Corte	vincent.degos@aphp.fr
den Boogert	dellacorte.f@gmail.com
Depreitere	Hugo.denBoogert@radboudumc.nl
Dilvesi	bart.depreitere@uzleuven.be
Dixit	djuladjilvesi@gmail.com
Donoghue	ad825@cam.ac.uk
Dreier	emma.donoghue@monash.edu
Dulière	jens.dreier@charite.de
Ercole	glduliere@gmail.com
Esser	ae105@cam.ac.uk
Ezer	pessrer@brookes.ac.uk
Fabricius	aezzersezebet@yahoo.com
Feigin	fabricius@dadinet.dk
Foks	valery.feigin@aut.ac.nz
Frisvold	Shirin.Kordasti@unn.no
Furmanov	alexpuil@yahoo.com
Giaglardo	pablo@fiv.org
Galanaud	galanaud@gmail.com
Gantner	dashiell.gantner@monash.edu
Gao	gao3@sina.com
George	george@incond.org
Ghuysen	A.Ghuysen@chu.ulg.ac.be
Giga	lelde.giga@stradini.lv
Glocke	b.glocher@imperial.ac.uk
Golubović	jagosgolubovic@gmail.com
Gomez	pagolopez@gmail.com
Gratz	johannes.gratz@meduniwien.ac.at
Gravesteijn	b.gravesteijn@erasmusmc.nl
Grossi	francesca.grossi@libero.it
Gruen	russell.gruen@anu.edu.au
Gupta	drdeepakgupta@gmail.com
Haagsma	i.haagsma@erasmusmc.nl
Haitsmá	haitsm@erasmusmc.nl
Helbok	EHELSETH@ous-hf.no
Helseth	lindsay.horton@stir.ac.uk
Horton	j.a.huijben@erasmusmc.nl
Huijben	pjah2@cam.ac.uk
Hutchinson	b.jacob@umcg.nl
Jacobs	Stefan.Jankowski@sth.nhs.uk
Jankowski	mike.jarrett@quesgen.com
Jarrett	jyaoj@126.com
Jiang	faye.johnson@live.co.uk
Johnson	kejones@aut.ac.nz
Jones	mladjkaran@gmail.com
Karan	angeloskollas@gmail.com
Kolias	erwinkomaxenje@me.com
Kompanje	Daniel.Kompanje@regionh.dk
Kondziella	ek481@cam.ac.uk
Koraropoulos	Lars-Owe.Koraropoulos@umu.se
Koskininen	kovacs.noemi@pte.hu
Kovács	algadac@yahoo.com
Lagares	lindal@inl.org
Lanyon	steven.laney@ulag.ac.be
Laureys	f.e.lecky@sheffield.ac.uk
Lecky	dledoux@chu.ulag.ac.be
Ledoux	Rolf.Ledoux@uni-wh.de
Lefering	Valerie.Lefering@iconicp.com
Legrand	aurellie.lejeune@chru-lille.fr
Lejeune	llever@rambam.health.gov.il
Levi	Roger.Lightfoot@uhs.nhs.uk
Lightfoot	h.lingsma@erasmusmc.nl
Lingsma	andrew.maas@uza.be
Maas	Marc.Maeger@t-online.de
Maegele	Marc.Majdan@nbt.nhs.uk
Majdan	Alex.Manara@nbt.nhs.uk
Name	Email
-------------------	------------------------------
Stocchetti Nino	nina.stocchet@policlinico.mi.it
Sundström Nina	Nina.Sundstrom@vll.se
Synnot Riiinka	anneliese.synnot@monash.edu
Takala Tiikkkka	riiika.takala@tyks.fi
Tamás Víktória	tamas.viktoria@pte.hu
Tamosuitis Mark	mark.tamosuits@kaunoklinikos.lt
Taylor Olly	olly.tenovuo@tyks.fi
Te Ao Alice	alice.theadom@aut.ac.nz
Tenovuo Matt	d.tibboel@erasmusmc.nl
Theadom Dick	d.tibboel@erasmusmc.nl
Thomas Shirley	christos.tolas@nhs.net
Tibboel Tony	christos.tolas@nhs.net
Timmers Zoltán	tony.trapani@monash.edu
Tolias Peter	cristina.tudora@neuromed.ro
Trapani Gregory	Peter.Vajkoczy@charite.de
Tudora Egiis	Egiis.Valeinis@atnet.lv
Vajkoczy Caroline	S.Vallance@alfred.org.au
Valeinis S.Vallance	azozoka@gmail.com
Valiance olli	j.van.der.naalt@umcg.nl
Vamos Gregory	J.t.m.van_dijck@lumc.nl
VandesVyvere Jan	T.A.van_Essen@lumc.nl
Vargioli Wim	wim.vanheegten@maastrichtu
Vega Roel	dominique.vanpraag@uza.be
Velt Anne	roel-van-wijk@ziggo.nl
Verheyden Paul M.	thijs.vandeveyvere@icometrix.com
Vespa Emmanuel	neurorianimazione@hsgerardo.org
Vik Anne	k.velt@erasmusmc.nl
Vilcinis Victor	jan.verheyden@icometrix.com
Volovici Nicole	PVespa@mednet.ucla.edu
von Steinbüchel Daphne	anne.vik@ntnu.no
Vonmolen Petar	rimantas.vilcinis@kaunoklinikos.lt
Vulekovic Kevin W.	v.volovici@erasmusmc.nl
Wang Nicole	nvsteinbuechel@med.uni-goettingen.de
Wiegiers Guy	d.voormolen@erasmusmc.nl
Williams Lindsay	pvulekovic@gmail.com
Wilson Stefan	kawangwang17@gmail.com
Winzeck Stefan	e.wiegers@erasmusmc.nl
Wolf Zhihui	gbw1000@wbic.cam.ac.uk
Yang Peter	l.wilson@stir.ac.uk
Ylen Alexander	sw742@cam.ac.uk
Younssi Stefan	stefan.wolf@charite.de
Zeiler Zhinui	zhihuiyang@ufl.edu
Ziverte Peten	peter.ylen@vtt.fi
Zoerle Agate	alexander.younsi@med.uni-heidelberg.de
	umzeiler@myumanitoba.ca
	agate.ziverte@inbox.lv
	tommaszoerle@policlinico.mi.it
Table 1: Baseline study information

Region	Country	Centers (N)	Central or local IRB review	IRB decision on study type
Baltic States	Latvia	3	Local^a	Observational
	Lithuania	2	Local	Observational
Eastern Europe	Hungary	3	Central	Interventional
	Romania	1	Local	Observational
	Serbia	1	Local	Observational and Interventional
Northern Europe	Denmark	2	Central	Observational
	Finland	2	Central	Observational
	Norway	3	Central	Observational
	Sweden	2	Central	Observational
Southern Europe	Italy	8	Central	Observational
	Spain	4	Local	Observational
United Kingdom		9	Central^b	Observational
Western Europe	Austria	2	Local	Observational
	Belgium	5	Central	Observational
	France	7	Central	Interventional
	Germany	4	Central	Observational
	Netherlands	7	Central	Observational with diagnostic interventions
	Switzerland	1	Local	Observational

^a Latvia has a local review procedure, but, after approval had been obtained for the first center, other centers did not require additional approval.

^b In the UK, the research protocol had to be submitted to an external national committee that was not associated to the submitting center. After primary approval by this national committee, all centers (including the submitting center) required additional IRB approval.

Table 2

	Duration (days)[*]	Centers (N)	Missing (N)
All centers	114 (75-224)	58	8
Local review	50 (29-102)	10	4
Central review	138 (91-229)**	48	4
- Central (1)	98 (94-114)	16	0
- Central (2)	189 (140-270)	17	3
- Central (3)	104 (62-224)	15	1

Table 2

Title: Duration of protocol submission until required IRB approval before study start.

Legend:

*Duration was reported in median number of days (IQR).
**Group difference between local and central review were significant (P=0.0074, Mann-Whitney U).

Local review: Obtained primary local IRB approvals only applied to the associated research centers and allowed study start without any additional requirements

Central (1): Primary central IRB approval with national impact, applying to all center within a country, without the need for additional local IRB review.

Central (2): Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers required approval after additional extensive local IRB review.

Central (3): Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers required approval after additional marginal local IRB review.
Table 3. Duration from submission to required IRB approval before study start per country and study center.

Country	Central or local IRB review	Duration in days	Centre						
		1	2	3	4	5	6	7	8
Denmark	Central (1)	114	114						
Finland	Central (1)	75	75						
France	Central (1)	98	98	98	98	98	98	98	98
Norway	Central (1)	233	233	233					
Sweden	Central (1)	83	83						
Belgium	Central (2)	131	138	141	257				
Germany	Central (2)	288	296	312					
Hungary	Central (2)	177	200	204					
Italy	Central (2)	65	70	139	141	155	261	273	28
Netherlands	Central (3)	27	46	91	209	223	224		
United Kingdom *	Central (3)	58	61	63	84	104	157	229	28
Austria	Local	52							
Latvia	Local	113							
Lithuania	Local	31							
Romania	Local	1							
Serbia	Local	1							
Spain	Local	69	179	349					
Switzerland	Local	28							

Table 3.

Central (1): Primary central IRB approval with national impact, applying to all center within a country, without the need for additional local IRB review to start study.

Central (2): Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers required approval after additional extensive local IRB review to start study.
Central (3): Primary central IRB approval only allowed study start in the research centers associated with the approving IRB. Other participating centers required approval after additional marginal local IRB review to start study.

*In the UK, the research protocol had to be submitted to an external national committee not associated to the submitting center. After primary approval by this national committee, all centers required additional IRB approval.

Local review: Obtained primary local IRB approvals only applied to the associated research centers and allowed study start without any additional requirements

\(M = \text{Missing} \)

Figures

![Figure 1](image)

IRB review and approval processes in the CENTER-TBI study. This figure shows an overview of the different IRB review and approval processes in the CENTER-TBI study. IRB; Institutional Review Board
Figure 2

Detailed overview of primary IRB review rounds and duration. This figure provides a detailed overview of the number of primary local and central IRB review rounds and their duration in days. *The number of review rounds is only reported for the initial center of each country. **Information on the first review round is missing. ***Only the total number of days was available.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

ICON Suppl Files.docx
STROBE_checklist_cohort.docx