Disaster mitigation on lands affected by landslides in Banjarnegara Regency

P D Susanti¹, A Miardini¹, B Harjadi¹

¹Watershed Management Technology Centre
Jl. A. Yani-Pabelan PO BOX 295 Surakarta 57101

Email: pdyahsusanti@gmail.com

Abstract. Landslide mitigation on potentially-affected lands is one of the crucial efforts in Banjarnegara Regency. Such effort, however, must comply with the existing environmental and land use conditions. This research aimed to determine the landslide susceptibility level and landslide mitigation on the affected land. A descriptive quantitative method was used to determine landslide susceptibility, and a survey method was used to determine its condition. Landslide susceptibility was examined using an overlay analysis of the major factors: slope, texture fault, regolith, and geology. The analysis results show that the levels of landslide susceptibility of the research location consisted of: not prone (19.21%), slightly prone (4.95%), moderate (6.92%), prone (29.20%), and very prone (39.72%). It also predicted that 335,940 people (36.80%) lived in highly and very-highly vulnerable areas. Based on the results, mitigation is targeted on three groups of land, including water bodies (269.57 ha), vegetated area (69,946.98 ha), and non-vegetated area (3,506.25 ha). Both physical and social mitigation actions are thus required. Physical mitigation includes slope protection (terracing, vetiver system, slope-protection structures, ground fractures covering), water management (manual horizontal drainage, drainage channel), vegetation management (multi-stratum canopy, root morphology, and plant biomass), whereas social mitigation involves community management by promoting public awareness and vigilance against disasters, and the active role of both community and stakeholders.

1. Introduction
Landslide disaster mitigation requires information on the level of vulnerability of a particular area [1] and is very important in disaster risk management [2]. The level of vulnerability will determine a more precise and accurate action in the disaster mitigation process. Banjarnegara is among the areas that often experience landslides due to its geological and meteorological conditions [3]. Many landslides have been recorded in this regency, which have been disastrous and causing casualties.

Recent mitigation actions to avoid casualties primarily refer to the standard guidelines for disaster mitigation [4]. Land-use based mitigation actions are considered effective to facilitate the needs of the vulnerable area. In addition, land-use changes are also a major concern. It potentially affects erosion and landslides [5] and indirectly affects the resilience of land to climate change [6].

Land use is one of the physical conditions that potentially affect the characteristics of disaster [7]. It is one of the contributing factors in landslides [2]; [8]. In addition, land-use change is a factor that can increase the occurrence of landslides [9]. This mitigation must follow the existing environmental and land use conditions. The factors that cause landslide can be categorized into major factors (slope, fault, soil texture, regolith, and geology), minor factors (slope shape, soil aggregation, permeability,
drainage, and soil structure), and triggers (natural and artificial) [10]. The purpose of this research was to determine the level of landslide susceptibility based on the major factors that cause landslides, and mitigation actions on the affected land in Banjarnegara Regency.

2. Methods

2.1. Location

The research was conducted in Banjarnegara Regency, Central Java, Indonesia, with the coordinates between 7°12′ - 7°3′ S and 109°20′ - 109°45′ E. Banjarnegara Regency has a tropical climate with rainfall rate of 4923 mm/year. The topographic conditions are dominated by 31,410.08 ha (29.36%) of steep slope; 25,493.21 ha (23.83%) of flat land; 23,363.96 ha (21.84%) of moderate slope; 16,297.50 ha (15.23%) of extremely steep slope; and 10,406.24 ha (9.73%) of low slope. The land in Banjarnegara comprises mostly latosols (70,868.29 ha or 66.25%), while other soil types consists of alluviums, andosols, grumusols, organosols, and lithosols. Latosol is very prone to landslides because it expands easily and causes fractures.

2.2. Materials and tools

The materials included the RBI map published by Indonesian Geospatial Information Agency (BIG; Badan Informasi Geospasial) with a scale of 1:25,000 (for land slope, land administration, and land use) and a soil map published by the Indonesian Soil Research Institute (Balittanah; Balai Penelitian Tanah) with a scale of 1:100,000 (for the depth and texture of regolith). Data obtained from field observation was also used to reassure the materials obtained. Other materials included geological maps, the 500-meter buffer on fault maps for the limitation of the affected area, and the Statistics Bureau (BPS) of Banjarnegara Regency for the 2019 population data. The tools utilized were ArcGIS 10.1, Microsoft Word, and Microsoft Excel.

2.3. Data analysis

The identification of landslide-prone areas was made by assessing the vulnerability of land to landslides [10]. The method was overlay-mapping by overlapping several major factors of slope (S), texture (T), fault (F), regolith (R), and geology (G). Landslide disaster assessment used scoring and weighting (Table 1). The overlapping of these parameters was grouped into five classes using the natural breaks classification method, as shown in Table 2.

No	Parameter/weight	Classification	Category	Scoring
1	Slope 0.415	0–8%	Flat	1
		8–15%	Low slope	2
		15–25%	Moderate	3
		25–45%	Steep slope	4
		> 45%	Extremely	5
2	Soil texture 0.136	Very rough	Low	1
		Coarse	Slightly low	2
		Medium	Moderate	3
		Smooth	Slightly high	4
		Very smooth	High	5
3	Fault 0.172	No fault	Low	1
		Fault	High	5
4	Regolith 0.121	< 1	Low	1
		1–2	Slightly low	2
		2–3	Moderate	3
		3–5	Slightly high	4
Table 2. The weighting of landslide hazard classification

No	Parameter/weight	Classification	Category	Scoring
5	Geology	> 5	High	5
0.157	Alluvial plain	Chalk	Slightly low	2
	Granite	Slightly high		4
	Sediment	Basalt-Clay shale	high	5

Source: [10]

An analysis of landslide-affected lands was done based on SNI 7645:2010 concerning Land Cover Classification [11]. The classification divides land use into three groups, namely water (freshwater and swamps), vegetated areas (agricultural and non-agricultural), and non-vegetated areas (built-up land). Agricultural areas include rice fields, moor, and plantations, while non-agricultural areas are forests, shrubs, and grasses. Finally, built-up areas include buildings and settlements.

3. Result and discussion

3.1. Landslide susceptibility level

Based on the analysis results, Banjarnegara Regency has a high landslide risk. According to the major factors of landslide assessment, the susceptibility level of the Banjarnegara Regency is presented in Figure 1.

Figure 1. Landslide hazard map in Banjarnegara Regency

3.2. Lands affected by landslides based on land use

The analysis and calculation of the population were done based on the data derived from the Statistics Bureau of Banjarnegara Regency in 2019 [12]. A total of 335,940 (36.80%) Banjarnegara residents lived in settlements with a high risk of landslides. Based on the land use classification, 73,722.77 ha or 68.92% of the total area are prone and very prone to landslide. Meanwhile, the affected land consisted of water bodies (fresh water and swamp) with an area of 269.57 ha, vegetated area (agricultural and non-agricultural) with a total of 60,677.33 ha, and non-vegetated areas (built-up land) with an area of 355,405.36 ha.
non-agricultural) with an area of 69,946.98 ha, and non-vegetated area (built-up land) with an area of 3,506.25 ha. The largest land uses identified in the landslide-affected areas include settlement (3,504.82 ha), rain-fed rice field (3,364 ha), and forest (3,203.38 ha) (Table 3).

3.3. Landslide mitigation

3.3.1. Slope management
Slope is the topography of the Earth's surface with a certain tilt angle, which can cause unstable conditions [13]. Therefore, slope management is the most critical effort in landslide mitigation aimed to stabilize any slopes. Steep slopes, particularly, potentially trigger landslides [9]. Therefore, such slopes require serious management through proper actions. Slope mitigation actions include the Vetiver system, terracing, the construction of slope-protection structures, and the closure of soil fractures at the end of the dry season.

Vetiver is a plant that can be used for slope stabilization to directly and effectively reduce landslides [14]. Vetiver is a fast-growing plant that can increase soil cohesion to 119.6% and soil internal friction factor to 81.96% [15]. In addition, with specific systems and configurations, vetiver can help improve soil aggregation to protect slopes.

Terracing is another effort to reduce the slope length so that the slope is not too steep. Terracing is designed to reduce the slope angle in order to minimize potential landslides [13]. The construction of slope-protection structures, such as wire gabions and soil nailing, are standard techniques. Soil nailing is frequently used as a slope protection and slope stability method [16]; [17], and it has a similar function with wire gabions [18]; [19]. In addition, the closure of soil fractures, especially on slopes, can prevent rainwater infiltration, reduce soil saturation, and increase slope stability. This action is undertaken at the end of the dry season or before the rainy season.

3.3.2. Water management
Water management is critical in landslide mitigation. Water management includes the construction of manual horizontal drainage and drainage channels. The construction of horizontal water channels can reduce water saturation and stabilize the slopes [17]. In addition, the construction of structured waterways can hinder water flow, optimize the flow system, and reduce stagnant water[20].

3.3.3. Vegetation management
Vegetation is essential in landslide mitigation [21]. Vegetation management focuses on selecting functional and eligible types of plants to be planted in landslide-prone areas. Planting and structuring with a multi-strata canopy system can reduce slope loads. Plants with light canopies at the top of the slope, plants with strong roots on the lower slope, and plant biomass that should not load the slope are among the features. This multi-strata canopy can protect the slopes from direct rainwater infiltration into the soil [21]. In this context, the root morphology is the root shape; the roots' tensile strengths will affect soil cohesion and be placed systematically along the slope [22].

3.3.4. Community empowerment management
The concept of community-based mitigation in the community will optimize the use of local natural resources and the role of community organizations by increasing the community and stakeholders' participation in monitoring and promoting awareness of landslide hazards, which can reduce their impacts [23].
No	Districts	The potential affected area (Ha)	Water bodies	Vegetated areas	Non-vegetated areas											
		Fresh water	Swamp	Rice Fields	Rain-fed Rice fields	Forest	Fields	Moor	Bush	Grass	Building	Settlement				
1	Banjarmangu					21.76	897.05	1.41	306.73	1,632.46	347.15	202.67	0.22	296.96		
2	Banjarnegara					7.88	248.21			1,555.68	118.86	70.16	3.53	239.40		
3	Batur					4.17	0.08	26.31	135.94	2,078.97	591.51	22.19	0.25	59.25		
4	Bawang					11.17	112.82	52.59	68.75	864.03	1,112.86	82.96	58.60	160.86		
5	Kalibening					26.11	212.35	21.06	380.74	1,768.88	4,080.80	359.57	23.68	198.65		
6	Karangkobar					9.81	359.44			1,119.65	1,443.19	98.32	60.01	143.96		
7	Madukara					18.34	84.47	58.76	2,265.64	51.26	27.73		195.05			
8	Mandiraja					12.66	8.94	47.59	64.28	899.40	740.07	33.11	20.39	101.61		
9	Pagetan					5.73	19.63	807.33	1,316.89	907.31	1,135.84	4.70	0.14	173.96		
10	Pandamanum					16.52	856.91	1002.80	1,360.70	1,120.25	655.79	45.77	0.45	126.83		
11	Pegedongan					37.06	233.25	31.55	114.34	3,704.38	1,399.91	339.83		363.39		
12	Pejawaran					43.57	435.77	219.34	4,066.72	157.70		0.24	233.13			
13	Punggelen					34.47	171.00	601.89	2,518.00	2,131.13	835.03		392.27			
14	Purwonegoro					15.43	52.52	1.53	19.07	933.34	2,545.57	158.50	6.61	114.48		
15	Purworejo Klampok					3.43	368.10	28.36	24.28				26.31			
16	Rakit					16.21	91.81	7.64	165.45	147.97	143.33		52.61			
17	Sigaluh					6.94	66.53	139.73	2,631.65	172.66	166.99	0.16	151.16			
18	Susukan					0.54	17.19	13.16	1,933.12	133.62	128.99		186.13			
19	Wanadadi					20.22	65.23	0.08	472.11	67.98	9.36	29.93	0.07	87.48		
20	Wanayasa					4.47	169.78	257.26	969.46	3,606.73	1,934.52	1.81	0.43	201.31		
	Total					269.49	0.08	2,810.22	3,364.00	3,203.38	26,834.22	26,301.37	7,156.18	277.61	1.43	3,504.82

Source: Data analysis, 2021
Table 4. Mitigation actions based on land-use

No	Mitigation	Water bodies	Vegetation area	Non-vegetation area		
		Fresh water	Rice Fields	Moor		
		Swamp	Irrigation	Bush		
		Rain-fed Rice fields	Forest	Grass	Building	Settlement
1	Slope management			v		
	1.1. Vetiver system	v	v	v		
	1.2. Terracing	v	v	v		
	1.3. The construction of slope protection structures	v	v	v		
	1.4. The closure of soil fractures at the end of the dry season	v	v	v		
2	Water management			v		
	2.1. Manual horizontal drainage	v	v	v		
	2.2. drainage channels	v	v	v		
3	Vegetation management			v		
	3.1. Multi-stratum canopy	v	v	v		
	3.2. Root morphology	v	v	v		
	3.3. Plant biomass	v	v	v		
4	Community management			v		
	4.1. Community-based mitigation	v	v	v		
	4.2. Community and stakeholders' participation	v	v	v		

Source: Data analysis, 2021
Based on the discussion, landslide mitigation can be carried out according to the level of landslide susceptibility and land use. In general, landslide mitigation in water bodies (fresh water and swamp) will require water-related specific actions and community management. Similarly, landslide mitigation in vegetated areas will involve slope, water, vegetation, and community management. On the other hand, mitigation for in-built areas will require water, slope and community management. The results of the mitigation management analysis are presented in Table 4.

4. Conclusion
Based on the level of landslide susceptibility, Banjarnegara Regency can be divided into not prone (19.21%), slightly prone (4.95%), moderate (6.92%), prone (29.20%), and very prone (39.72%). Based on land use, the potentially affected area includes 269.57 ha of water bodies; 69,946.98 ha of vegetated areas; and 3,506.25 ha of non-vegetated areas. Each group requires different mitigation actions. Mitigation can be designed by considering several aspects, including slope management, water management, vegetation management, and community management.

5. Acknowledgment
The authors would like to express their gratitude to the Watershed Management Technology Centre Solo for facilitating the research.

References
[1] Kroh P 2020 Analysis of land use in landslide affected areas along the Łososina Dolna Commune, the Outer Carpathians, Poland Geomatics, Nat. Hazards Risk 5705(8:2) 836–875
[2] Roccati A, Paliaga G, Luino F, Faccini F, Turconi L 2021 GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment Anna Land 10(162) 1–28
[3] Suwarini E, Arfina F, Kurniawan E 2021 The Level of Threats and Community Capacity Concerning to Landslide Emergency in Banjarnegara Indonesia Int. J. Environ. Sci. Dev. 12(4) 118–125
[4] Bandara R M S, Jayasingha P 2018 Landslide Disaster Risk Reduction Strategies and Present Achievements in Sri Lanka Historical Background of Landslide Research in Sri Lanka Geosci. Res. 3(3) 21–27
[5] Senanayake S, Pradhan B, Huete A, Brennan J 2020 Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka Sumudu Remote Sens. 12(1483) 1–18
[6] Aç S et al. 2019 Modeling spatial climate change landuse adaptation with multi-objective genetic algorithms to improve resilience for rice yield and species richness and to mitigate disaster risk Environ. Res. Lett 14(024001) 1–13
[7] Oktorie O 2017 A Study of Landslide Areas Mitigation and Adaptation in Palupuah Subdistrict, Agam Regency, West Sumatra Province, Indonesia Sumatra J. Disaster, Geogr. Geogr. Educ. 1(1) 43–49
[8] Chen L, Guo Z, Yin K, Shrestha D P, Jin S 2019 The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan’en County (Hubei, China) Lixia Nat. Hazards Earth Syst. Scinnces 19 2207–2228
[9] Naryanto H S, Prawiradisastra F, Ardiyanto R, Hidayat W 2020 Analisis Pasca Bencana Tanah Longsor 1 Januari 2020 Dan Evaluasi Penataan Kawasan Di Kecamatan Sukajaya, Kabupaten Bogor Geogr. Gea 20(2) 197–213
[10] Harjadi B et al., 2019 Sintesis Mitigasi Longsor (Surakarta)
[11] Indonesia B S N 2010 Klasiﬁkasi penutup lahan SN1 7645:2 (Jakarta: Badan Standardisasi Nasional Indonesia)
[12] Badan Pusat Statistik Kabupaten Banjarnegeara, 2019 Kabupaten Banjarnegeara Dalam Angka (Banjarnegeara: Bapan Pusat Statistik Kabupaten Banjarnegeara)
[13] Haryadi D, MawardiRazali M R 2017 Analisis Lereng Terasering Dalam Upaya
Penanggulangan Longsor Metode Fellenius dengan Program Geostudio Slope. *J. Inersia* 10(2) 53–60

[14] Leknoi U, Likitlersuang S 2020 Land Use Policy Good practice and lesson learned in promoting vetiver as solution for slope stabilisation and erosion control in Thailand. *Land use policy* 99 105008

[15] Hamidifar H Keshavarzi A, Truong P 2018 Enhancement of river bank shear strength parameters using Vetiver grass root system. *Arab. J. Geosci.* 11(611) 1–11

[16] Singh S, Shrivastava A 2017 Effect of Soil Nailing On Stability of Slopes. *Int. J. Res. Appl. Sci. Eng. Technol.* 5(X) 752–763

[17] Islam M A Islam M S, Islam T 2017 Geology of Chittagong Hill Tracts and Possible Measures in *International Conference on Disaster Risk Mitigation* September

[18] Basnet K Wagle D Bhattarai S, Sagadev B B 2020 Analysis of Slope Stability for Kaande Landslide Of Phewa Watershed, Pokhara, Nepal. *Tech. J.* 2(1) 11–21

[19] Febe M, Sasongko I H 2019 Analisis Stabilitas Dinding Penahan Tanah Dengan Perkuatan Bronjong Pada Jalan Tol Ulujami – Pondok Ranji Ramp Bintaro Viaduct. *Constr. Mater. J.* 1(1) 91–100

[20] Ismayani N 2018 Studi Pencegahan Longsor Akibat Aktivitas Vulkanik Sinabung Melalui Konservasi Lahan Di Kecamatan Simpang Empat Kabupaten Karo. *J. Kapita Sel. Geogr.* 1(3) 49–54

[21] Adhitya F Rusdiana O, Saleh M B 2016 Penentuan Jenis Tumbuhan Lokal dalam Upaya Mitigasi Longsor dengan Teknik Budidayanya Pada Areal Rawan Longsor Di KPH Lawu DS: Studi Kasus di RPH Cepoko. *Techniques in KPH Lawu Ds: Case Study in RPH Cepoko J. Silvikultur Trop.* 08(1) 9–19

[22] Hales T C, Miniat C F 2017 Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. *Earth Surf. Process. Landforms* 42(5) 803–813

[23] Hojat A *et al.* 2019 Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator. *J. Appl. Geophys.* 170 103844