Concentration for Coulomb gases on compact manifolds

David García-Zelada*

Abstract

We study the non-asymptotic behavior of a Coulomb gas on a compact Riemannian manifold. This gas is a symmetric n-particle Gibbs measure associated to the two-body interaction energy given by the Green function. We encode such a particle system by using an empirical measure. Our main result is a concentration inequality in Kantorovich-Wasserstein distance inspired from the work of Chafaï, Hardy and Maida on the Euclidean space. Their proof involves large deviation techniques together with an energy-distance comparison and a regularization procedure based on the superharmonicity of the Green function. This last ingredient is not available on a manifold. We solve this problem by using the heat kernel and its short-time asymptotic behavior.

Keywords: Gibbs measure; Green function; Coulomb gas; empirical measure; concentration of measure; interacting particle system; singular potential; heat kernel.

AMS MSC 2010: 60B05; 26D10; 35K05.

Submitted to ECP on September 12, 2018, final version accepted on January 16, 2019.
Supersedes arXiv:1809.04231v1.

1 Introduction

We shall consider the model of a Coulomb gas on a Riemannian manifold introduced in [6, Subsection 4.1] and study its non-asymptotic behavior by obtaining a concentration inequality for the empirical measure around its limit. Let us describe the model and the main theorem of this article.

Let \((M, g)\) be a compact Riemannian manifold of volume form \(\pi\). We suppose, for simplicity, that \(\pi(M) = 1\) so that \(\pi \in \mathcal{P}(M)\) where \(\mathcal{P}(M)\) denotes the space of probability measures on \(M\). We endow \(\mathcal{P}(M)\) with the topology of weak convergence, i.e. the smallest topology such that \(\mu \to \int_M f \, d\mu\) is continuous for every continuous function \(f : M \to \mathbb{R}\). Denote by \(\Delta : C^\infty(M) \to C^\infty(M)\) the Laplace-Beltrami operator on \((M, g)\). We shall say that

\[
G : M \times M \to (-\infty, \infty]
\]

is a Green function for \(\Delta\) if it is a symmetric continuous function such that for every \(x \in M\) the function \(G_x : M \to (-\infty, \infty]\) defined by \(G_x(y) = G(x, y)\) is integrable and

\[
\Delta G_x = -\delta_x + 1 \tag{1.1}
\]

*Université Paris-Dauphine, PSL Research university, CEREMADE, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France.
E-mail: garciazelada@ceremade.dauphine.fr
Concentration for Coulomb gases

in the distributional sense. It can be proven that such a G is integrable with respect to
$\pi \otimes \pi$ and that if $f \in C^\infty(M)$ then $\psi : M \to \mathbb{R}$, defined by

$$
\psi(x) = \int_M G(x, y) f(y) d\pi(y),
$$

satisfies that

$$
\psi \in C^\infty(M) \quad \text{and} \quad \Delta \psi = -f + \int_M f(y) d\pi(y).
$$

In particular, $\int_M G_x d\pi$ does not depend on $x \in M$ and the Green function is unique up to
an additive constant. See [1, Chapter 4] for a proof of these results. We will denote by G
the Green function for Δ such that

$$
\int_M G_x d\pi = 0
$$

for every $x \in M$.

For $x \in M$ the function G_x may be thought of as the potential generated by the
distribution of charge $\delta_x - 1$. This would represent a unit charged particle located at
$x \in M$ and a negatively charged background of unit density. The total energy of a system
of n particles of charge $1/n$ (each particle coming with a negatively charged background)
would be $H_n : M^n \to (-\infty, \infty]$ defined by

$$
H_n(x_1, \ldots, x_n) = \frac{1}{n^2} \sum_{i<j} G(x_i, x_j).
$$

Take a sequence $\{\beta_n\}_{n \geq 2}$ of non-negative numbers and consider the sequence of Gibbs
probability measures

$$
dP_n(x_1, \ldots, x_n) = \frac{1}{Z_n} e^{-\beta_n H_n(x_1, \ldots, x_n)} d\pi \otimes_n (x_1, \ldots, x_n)
$$

where Z_n is such that $P_n(M^n) = 1$. This can be thought of as the Riemannian generalization of the usual Coulomb gas model described in [15] or [4]. In the particular case of the round two-dimensional sphere, it is known (see [9]) that if $\beta_n = 4\pi n^2$ the probability measure P_n describes the eigenvalues of the quotient of two independent $n \times n$ matrices with independent Gaussian entries. Define $H : \mathcal{P}(M) \to (-\infty, \infty]$ by

$$
H(\mu) = \frac{1}{2} \int_{M \times M} G(x, y) d\mu(x) d\mu(y).
$$

This is a convex lower semicontinuous function. We can see [6, Subsection 4.1] for a proof of these properties and [12, Chapter 9] for a short introduction and further information in the Euclidean setting. Let $i_n : M^n \to \mathcal{P}(M)$ be defined by

$$
i_n(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

If $\beta_n/n \to \infty$, the author in [6] tells us that $\{i_n(P_n)\}_{n \geq 2}$, the sequence of image measures of P_n by i_n, satisfies a large deviation principle with speed β_n and rate function $H - \inf H$.

In particular, if F is a closed set of $\mathcal{P}(M)$ we have

$$
\limsup_{n \to \infty} \frac{1}{\beta_n} \log P_n(i_n^{-1}(F)) \leq - \inf_{\mu \in F} (H(\mu) - \inf H)
$$

ECP 24 (2019), paper 12.

http://www.imstat.org/ecp/
Concentration for Coulomb gases

or, equivalently,

$$P_n(i_n^{-1}(F)) \leq \exp \left(-\beta_n \inf_{\mu \in F} (H(\mu) - \inf H) + o(\beta_n) \right).$$

(1.5)

The aim of this article is to understand the $o(\beta_n)$ term for some family of closed sets F. Suppose we choose some metric d in $\mathcal{P}(M)$ that induces the topology of weak convergence. As the unique minimizer of H is $\mu_{eq} = \pi$ (see Theorem 3.1) a nice family of closed sets are the sets

$$F_r = \{ \mu \in \mathcal{P}(M) : d(\mu, \mu_{eq}) \geq r \}$$

for $r > 0$. Instead of writing $P_n(i_n^{-1}(F_r))$ we shall write $P_n(d(i_n, \mu_{eq}) \geq r)$, in other words, when we write $\{d(i_n, \mu_{eq}) \geq r\}$ we mean the set $i_n^{-1}(F_r) = \{x \in M^n : d(i_n(x), \mu_{eq}) \geq r\}$.

As H is lower semicontinuous we have that $\inf_{\mu \in F_r} (H(\mu) - \inf H)$ is strictly positive and the large deviation inequality is not vacuous. We would like a simple expression in terms of r for the leading term, so instead of using $\inf_{\mu \in F_r} (H(\mu) - \inf H)$ we will use a simple function of r.

Let d_g denote the Riemannian distance. The metric we shall use on $\mathcal{P}(M)$ is the function $W_1 : \mathcal{P}(M) \times \mathcal{P}(M) \to [0, \infty)$ defined by

$$W_1(\mu, \nu) = \inf \left\{ \int_{M \times M} d_g(x, y) d\Pi(x, y) : \Pi \text{ is a coupling between } \mu \text{ and } \nu \right\}$$

(1.6)

which is known as the Wasserstein or Kantorovich metric. See [16, Theorem 7.12] for a proof that it metrizes the topology of weak convergence. The main result of this article is the following.

Theorem 1.1 (Concentration inequality for Coulomb gases). Let m be the dimension of M. If $m = 2$ there exists a constant $C > 0$ that does not depend on the sequence $\{\beta_n\}_{n \geq 2}$ such that for every $n \geq 2$ and $r \geq 0$

$$P_n(W_1(i_n, \pi) \geq r) \leq \exp \left(-\beta_n \frac{r^2}{4} + \frac{\beta_n \log(n)}{8\pi} + C\frac{\beta_n}{n} \right).$$

If $m \geq 3$ there exists a constant $C > 0$ that does not depend on the sequence $\{\beta_n\}_{n \geq 2}$ such that for every $n \geq 2$ and $r \geq 0$

$$P_n(W_1(i_n, \pi) \geq r) \leq \exp \left(-\beta_n \frac{r^2}{4} + C\frac{\beta_n}{n^2/m} \right).$$

In fact, by a slight modification we will also prove the following generalization. Denote by $D(\|\cdot\|) : \mathcal{P}(M) \to (-\infty, \infty]$ the relative entropy of μ with respect to π, also known as the Kullback-Leibler divergence, i.e. $D(\mu\|\pi) = \int_M \rho \log \rho d\pi$ if $d\mu = \rho d\pi$ and $D(\cdot\|\pi)$ is infinity when μ is not absolutely continuous with respect to π.

Theorem 1.2 (Concentration inequality for Coulomb gases in a potential). Take a twice continuously differentiable function $V : M \to \mathbb{R}$ and define

$$H_n(x_1, \ldots, x_n) = \frac{1}{n^2} \sum_{i<j} G(x_i, x_j) + \frac{1}{n} \sum_{i=1}^n V(x_i)$$

and

$$H(\mu) = \frac{1}{2} \int_{M \times M} G(x, y) d\mu(x) d\mu(y) + \int_M V(x) d\mu(x).$$

Then H has a unique minimizer that will be called μ_{eq}. Suppose P_n is defined by (1.4) and let m be the dimension of M. If $m = 2$ there exists a constant $C > 0$ that does not depend on the sequence $\{\beta_n\}_{n \geq 2}$ such that for every $n \geq 2$ and $r \geq 0$

$$P_n(W_1(i_n, \mu_{eq}) \geq r) \leq \exp \left(-\beta_n \frac{r^2}{4} + \frac{\beta_n \log(n)}{8\pi} + nD(\mu_{eq}\|\pi) + C\frac{\beta_n}{n} \right).$$
If \(m \geq 3 \) there exists a constant \(C > 0 \) that does not depend on the sequence \(\{ \beta_n \}_{n \geq 2} \) such that for every \(n \geq 2 \) and \(r \geq 0 \)

\[
P_n \left(W_1 (i_n, \mu_{eq}) \geq r \right) \leq \exp \left(-\beta_n \frac{r^2}{4} + n D(\mu_{eq}||\pi) + C \frac{\beta_n}{m} \right).
\]

Remark 1.3 (About the sharpness). As we will see below it can be proven that

\[
P_n \left(W_1 (i_n, \pi) \geq r \right) \leq \exp \left(-\beta_n \frac{r^2}{4} + o(\beta_n) \right)
\]

and the natural question would be to find an explicit next order \(o(\beta_n) \). In the two theorems above we have relaxed this inequality to

\[
P_n \left(W_1 (i_n, \pi) \geq r \right) \leq \exp \left(-\beta_n \frac{r^2}{4} + \eta(\beta_n) \right)
\]

where \(\eta(\beta)/\beta \to -r^2/2 \) as \(\beta \) goes to infinity. Nevertheless, the importance of our result lies on the lack of dependence on \(r \) and the explicitness of the terms.

To prove Theorem 1.1 we follow [4] in turn inspired by [13] (see also [14]). We proceed in three steps. The first part, described in Section 2, may be used in any measurable space but it demands an energy-distance comparison and a regularization procedure. The energy-distance comparison will be explained in Section 3 and it may be extended to include Green functions of some Laplace-type operators. The regularization by the heat kernel, in Section 4, will use a short time asymptotic expansion. It may apply to more general kind of energies where a short-time asymptotic expansion of their heat kernel is known. Having acquired all the tools, Section 5 will complete the proof of Theorem 1.1 and, by a slight modification, Theorem 1.2.

2 Link to an energy-distance comparison and a regularization procedure

In this section \(M \) may be any measurable space, \(\pi \) any probability measure on \(M \) and \(H_n : M^n \to (-\infty, \infty] \) any measurable function bounded from below. Given \(\beta_n > 0 \) we define the Gibbs probability measure by \((1.4) \). Let \(H : \mathcal{P}(M) \to (-\infty, \infty) \) be any function that has a unique minimizer \(\mu_{eq} \in \mathcal{P}(M) \). This shall be thought of as a rate function of some Laplace principle as in [6]. Consider a metric

\[
d : \mathcal{P}(M) \times \mathcal{P}(M) \to [0, \infty)
\]

on \(\mathcal{P}(M) \) that induces the topology of weak convergence and define

\[
F_r = \{ \mu \in \mathcal{P}(M) : d(\mu, \mu_{eq}) \geq r \}
\]

for \(r > 0 \). We want to understand a non-asymptotic inequality similar to (1.5) with an explicit \(o(\beta_n) \) term. For this, we consider the following assumption.

Assumption 2.1. We will say that an increasing convex function \(f : [0, \infty) \to [0, \infty) \) satisfies Assumption A if, for all \(\mu \in \mathcal{P}(M) \),

\[
f(d(\mu, \mu_{eq})) \leq H(\mu) - H(\mu_{eq}). \quad (A)
\]
Concentration for Coulomb gases

Under Assumption A, (1.5) implies
\[P_n(i_n^{-1}(F_r)) \leq \exp \left(-\beta_n f(r) + o(\beta_n) \right). \] (2.1)

This \(o(\beta_n) \) term may depend on \(r \). We will prove that if we relax the inequality (2.1) to
\[P_n(i_n^{-1}(F_r)) \leq \exp \left(-\beta_n 2f(r/2) + o(\beta_n) \right) \]
we can find bounds of the \(o(\beta_n) \) term that do not depend on \(r \). To properly use Assumption A when \(\mu \) is an empirical measure \(\frac{1}{n} \sum_{i=1}^n \delta_{x_i} \), we will have to regularize \(\mu \). The reason behind this is that when \(\mu \) is an empirical measure we usually obtain \(H(\mu) = \infty \) by the self-interactions of the particles with themselves. In the Euclidean setting this regularization is obtained by a convolution with a radial distribution while in the Riemannian setting this will be obtained by a diffusion using the heat kernel of the Laplacian which in the Euclidean case may be seen as a convolution by a Gaussian function. The following result is the general concentration inequality we get and it is the first part of the method mentioned in Section 1.

Theorem 2.2 (General concentration inequality). Suppose we have two real numbers \(a_n \) and \(b_n \) such that there exists a measurable function \(R : M^n \to \mathcal{P}(M) \) with the following property

- for every \(\vec{x} = (x_1, \ldots, x_n) \in M^n \) we have
 \[H_n(x_1, \ldots, x_n) \geq H(R(\vec{x})) - a_n, \quad \text{and} \quad d(R(\vec{x}), i_n(\vec{x})) \leq b_n. \]

Let us denote \(e_n = \int_{M^n} H_n d\mu_{\text{eq}}^\otimes n \) and \(e = H(\mu_{\text{eq}}) \). If \(f : [0, \infty) \to [0, \infty) \) is an increasing convex function that satisfies Assumption A then
\[P_n \left(d(i_n, \mu_{\text{eq}}) \geq r \right) \leq \exp \left(-\beta_n 2f \left(\frac{r}{2} \right) + nD(\mu_{\text{eq}}\|\pi) + \beta_n (e_n - e) + \beta_n a_n + \beta_n f(b_n) \right). \]

Proof. We first prove the two following results. The first lemma we state is the analogue of [4, Lemma 4.1].

Lemma 2.3 (Lower bound of the partition function). We have the following lower bound.
\[Z_n \geq \exp \left(-\beta_n e_n - nD(\mu_{\text{eq}}\|\pi) \right). \]

Proof. If \(d\mu_{\text{eq}} = \rho_{\text{eq}} d\pi \) we have
\[Z_n = \int_{M^n} e^{-\beta_n H_n(x_1, \ldots, x_n)} d\pi^\otimes n \left(x_1, \ldots, x_n \right) \]
\[\geq \int_{M^n} e^{-\beta_n H_n(x_1, \ldots, x_n)} e^{-\sum_{i=1}^n 1_{\rho_{\text{eq}} > 0}(x_i) \log \rho_{\text{eq}}(x_i)} d\mu_{\text{eq}}^\otimes n \left(x_1, \ldots, x_n \right) \]
\[\geq \int_{M^n} e^{-\beta_n H_n(x_1, \ldots, x_n)} - \sum_{i=1}^n 1_{\rho_{\text{eq}} > 0}(x_i) \log \rho_{\text{eq}}(x_i)} d\mu_{\text{eq}}^\otimes n \left(x_1, \ldots, x_n \right) \]
\[= e^{-\beta_n e_n - nD(\mu_{\text{eq}}\|\pi)} \]
where we have used Jensen’s inequality to get the last inequality. \(\square \)

The second lemma will help us in the step of regularization.

Lemma 2.4 (Comparison). Take \(\vec{x} = (x_1, \ldots, x_n) \in M^n \). If \(d(R(\vec{x}), i_n(\vec{x})) \leq b_n \) then
\[f(d(R(\vec{x}), \mu_{\text{eq}})) \geq 2f \left(\frac{d(i_n(\vec{x}), \mu_{\text{eq}})}{2} \right) - f(b_n). \]
Concentration for Coulomb gases

Proof. As
d(i_n(x), \mu_{eq}) \leq d(i_n(x), R(x)) + d(R(x), \mu_{eq})
we have that
\[
f \left(\frac{d(i_n(x), \mu_{eq})}{2} \right) \leq f \left(\frac{1}{2} d(i_n(x), R(x)) + \frac{1}{2} d(R(x), \mu_{eq}) \right)
\leq \frac{1}{2} \left[f \left(d(i_n(x), R(x)) \right) + f \left(d(R(x), \mu_{eq}) \right) \right]
\leq \frac{1}{2} f(b_n) + \frac{1}{2} f \left(d(R(x), \mu_{eq}) \right)
\]
where we have used that \(f \) is increasing and convex. \(\square \)

Now, define
\[
A_r = i_n^{-1}(F_r) = \{ x \in M^n : d(i_n(x), \mu_{eq}) \geq r \}.
\]
Then
\[
P_n(A_r) = \frac{1}{Z_n} \int_{A_r} e^{-\beta_n H_n(x_1, \ldots, x_n)} d\pi_n(x_1, \ldots, x_n)
\leq e^{\beta_n v_n + nD(\mu_{eq}\|\pi)} \int_{A_r} e^{-\beta_n H(R(x)) + \beta_n \epsilon_n d\pi_n(x_1, \ldots, x_n)}
\leq e^{\beta_n v_n + \beta_n \epsilon_n + nD(\mu_{eq}\|\pi)} \int_{A_r} e^{-\beta_n H(R(x))} d\pi_n(x_1, \ldots, x_n)
\leq e^{\beta_n (v_n - \epsilon) + \beta_n \epsilon_n + nD(\mu_{eq}\|\pi)} \int_{A_r} e^{-\beta_n f(d(R(x), \mu_{eq}))} d\pi_n(x_1, \ldots, x_n)
\leq e^{\beta_n (v_n - \epsilon) + \beta_n \epsilon_n + nD(\mu_{eq}\|\pi)} \int_{A_r} e^{-\beta_n 2f \left(\frac{d(i_n(x, \mu_{eq}))}{2} \right)} + \beta_n f(b_n) d\pi_n(x_1, \ldots, x_n)
\leq e^{\beta_n (v_n - \epsilon) + \beta_n \epsilon_n + nD(\mu_{eq}\|\pi)} \int_{A_r} e^{-\beta_n 2f \left(\frac{d(i_n(x, \mu_{eq}))}{2} \right)} + \beta_n f(b_n)
\leq e^{\beta_n (v_n - \epsilon) + \beta_n \epsilon_n + nD(\mu_{eq}\|\pi)} + \beta_n (v_n - \epsilon) + \beta_n \epsilon_n + \beta_n f(b_n)
\]
where in (*) we have used Assumption A, in (***) we have used Lemma 2.4 and in (****) we have used the monotonicity of \(f \).

In the next section we return to the case of a compact Riemannian manifold and study a energy-distance comparison that will imply Assumption A.

3 Energy-distance comparison in compact Riemannian manifolds

We take the notation used in Section 1. The Kantorovich metric \(W_1 \) defined in (1.6) can be written as
\[
W_1(\mu, \nu) = \sup \left\{ \int_M f \, d\mu - \int_M f \, d\nu : \|f\|_{Lip} \leq 1 \right\}
\]
where
\[
\|f\|_{Lip} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d_\beta(x, y)}.
\]
Concentration for Coulomb gases

This result is known as the Kantorovich-Rubinstein theorem (see [16, Theorem 1.14]). In the case of a Riemannian manifold, by a smooth approximation argument such as the one in [2], we can prove that

\[W_1(\mu, \nu) = \sup \left\{ \int_M f \, d\mu - \int_M f \, d\nu : f \in C^\infty(M) \text{ and } \|\nabla f\|_\infty \leq 1 \right\}. \]

The next theorem gives the energy-distance comparison required to satisfy Assumption A. This is the analogue of [13, Theorem 1.3] and [4, Lemma 3.1].

Theorem 3.1 (Comparison between distance and energy). Suppose that \(\mu_{eq} \in \mathcal{P}(M) \) is a probability measure on \(M \) such that \(H(\mu_{eq}) \leq H(\mu) \) for every \(\mu \in \mathcal{P}(M) \). Then

\[\frac{1}{2} W_1(\mu, \mu_{eq})^2 \leq H(\mu) - H(\mu_{eq}) \]

(3.1)

for every \(\mu \in \mathcal{P}(M) \). This implies, in particular, that \(H \) has a unique minimizer and that Assumption A is satisfied by \(f(\nu) = \frac{\|\nabla \nu\|_\infty^2}{2}. \) Furthermore, \(\mu_{eq} = \pi \).

Let \(\mathcal{F} \) be the space of finite signed measures \(\mu \) on \(M \) such that \(\int_M G \, d|\mu|^{\otimes 2} < \infty \). For convenience we shall define \(\mathcal{E} : \mathcal{F} \to (-\infty, \infty] \) by

\[\mathcal{E}(\mu) = \int_{M \times M} G(x, y) \, d\mu(x) \, d\mu(y) \]

so that \(\mathcal{E}(\mu) = 2H(\mu) \) whenever \(\mu \in \mathcal{P}(M) \cap \mathcal{F} \). We can also notice that if we take two probability measures \(\mu, \nu \in \mathcal{P}(M) \) such that \(H(\mu) \) and \(H(\nu) \) are finite then, due to the convexity of \(H \), we have

\[\int_{M \times M} G(x, y) \, d\mu(x) \, d\nu(y) < \infty \]

and hence, the measure \(\mu - \nu \) belongs to \(\mathcal{F} \) and

\[\mathcal{E}(\mu - \nu) = \mathcal{E}(\mu) + \mathcal{E}(\nu) - \frac{1}{2} \int_{M \times M} G(x, y) \, d\mu(x) \, d\nu(y). \]

(3.2)

We begin by proving the following result that may be seen as a comparison of distances where the ‘energy distance’ between two probability measures \(\mu, \nu \in \mathcal{P}(M) \) of finite energy is defined as \(\sqrt{\mathcal{E}(\mu - \nu)} \). This is the analogue of [4, Theorem 1.1].

Lemma 3.2 (Comparison of distances). Let \(\mu, \nu \in \mathcal{P}(M) \) such that \(H(\mu) \) and \(H(\nu) \) are finite. Then \(\mathcal{E}(\mu - \nu) \geq 0 \) and

\[W_1(\mu, \nu) \leq \sqrt{\mathcal{E}(\mu - \nu)}. \]

Proof. First suppose \(\mu \) and \(\nu \) differentiable, i.e. suppose they have a differentiable density with respect to \(\pi \). Define \(U : M \to \mathbb{R} \) by

\[U(x) = \int_M G(x, y) \, (d\mu(y) - d\nu(y)). \]

Then, as remarked in (1.2), we know that \(U \) is differentiable and

\[\Delta U = - (\mu - \nu). \]

Take \(f \in C^\infty(M) \) such that \(\|\nabla f\|_\infty \leq 1 \). We can see that

\[\int_M f \, (d\mu - d\nu) = - \int_M f \, \Delta U = \int_M \langle \nabla f, \nabla U \rangle \, d\pi \leq \|\nabla f\|_2 \|\nabla U\|_2 \leq \|\nabla f\|_\infty \|\nabla U\|_2. \]

We also know that

\[(\|\nabla U\|_2)^2 = \int_M \langle \nabla U, \nabla U \rangle \, d\pi = - \int_M U \, \Delta U = \int_M U \, (d\mu - d\nu) = \mathcal{E}(\mu - \nu). \]
Concentration for Coulomb gases

Then,

\[\int_M f (d\mu - d\nu) \leq \| \nabla f \|_{\infty} \| \nabla U \|_2 \leq \| \nabla f \|_{\infty} \sqrt{\mathcal{E} (\mu - \nu)}. \]

This implies that

\[W_1 (\mu, \nu) \leq \sqrt{\mathcal{E} (\mu - \nu)}. \]

In general, let \(\mu, \nu \in \mathcal{P} (M) \) such that \(H (\mu) \) and \(H (\nu) \) are finite. Take two sequences \(\{ \mu_n \}_{n \in \mathbb{N}} \) and \(\{ \nu_n \}_{n \in \mathbb{N}} \) of differentiable probability measures that converge to \(\mu \) and \(\nu \) respectively and such that \(\mathcal{E} (\mu_n) \to \mathcal{E} (\mu) \) and \(\mathcal{E} (\nu_n) \to \mathcal{E} (\nu) \) (see [3] for a proof of their existence) and proceed by a limit argument.

The next step to prove Theorem 3.1 is a fact that works for general two-body interactions i.e. \(G \) is not necessarily a Green function.

Lemma 3.3 (Comparison of energies). Suppose that \(\mu_{eq} \) is a probability measure such that \(H (\mu_{eq}) \leq H (\mu) \) for every \(\mu \in \mathcal{P} (M) \). Then, for every \(\mu \in \mathcal{P} (M) \) such that \(H (\mu) < \infty \), we have

\[\mathcal{E} (\mu - \mu_{eq}) \leq \mathcal{E} (\mu) - \mathcal{E} (\mu_{eq}). \]

Proof. As \(H (\mu) \) and \(H (\mu_{eq}) \) are finite we use (3.2) to notice that the affirmation

\[\mathcal{E} (\mu - \mu_{eq}) \leq \mathcal{E} (\mu) - \mathcal{E} (\mu_{eq}) \]

is equivalent to

\[\int_{M \times M} G (x, y) d\mu (x) d\mu_{eq} (y) \geq \mathcal{E} (\mu_{eq}). \]

But, if

\[\int_{M \times M} G (x, y) d\mu (x) d\mu_{eq} (y) < \mathcal{E} (\mu_{eq}) \]

were true then, defining \(\mu_t = (1 - t) \mu_{eq} + t \mu = \mu_{eq} + t (\mu - \mu_{eq}) \), we would see that the linear term of \(\mathcal{E} (\mu_t) \) is \(\int_{M \times M} G (x, y) d\mu (x) d\mu_{eq} (y) - \mathcal{E} (\mu_{eq}) < 0 \). This means that \(\mathcal{E} (\mu_t) < \mathcal{E} (\mu_{eq}) \) for \(t > 0 \) small which is a contradiction.

Now we may complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let \(\mu_{eq} \) be a minimizer of \(H \) and let \(\mu \in \mathcal{P} (M) \) be a probability measure on \(M \). If \(H (\mu) \) is infinite there is nothing to prove. If it is not, by Lemma 3.2 and 3.3 we conclude (3.1).

To prove that \(H \) has a unique minimizer suppose \(\tilde{\mu}_{eq} \) is another minimizer and use Inequality (3.1) with \(\mu = \tilde{\mu}_{eq} \) to get \(W_1 (\tilde{\mu}_{eq}, \mu_{eq}) = 0 \) and, thus, \(\tilde{\mu}_{eq} = \mu_{eq} \).

Finally, to see that \(\mu_{eq} = \pi \) we use (1.3). Then \(\mathcal{E} (\mu - \pi) = \mathcal{E} (\mu) - \mathcal{E} (\pi) \) when \(\mu \) has finite energy. But by Lemma 3.2 we know that \(\mathcal{E} (\mu - \pi) \geq 0 \) and then \(\mathcal{E} (\mu) \geq \mathcal{E} (\pi) \) for every \(\mu \in \mathcal{P} (M) \) of finite energy.

In the next section we study a way to regularize the empirical measures in the sense of the hypotheses of Theorem 2.2.

4 Heat kernel regularization of the energy

In this section the main tool is the heat kernel for \(\Delta \). A proof of the following proposition may be found in [5, Chapter VI].
Concentration for Coulomb gases

Proposition 4.1 (Heat kernel). There exists a unique differentiable function

\[p : (0, \infty) \times M \times M \to \mathbb{R} \]

such that

\[\frac{\partial}{\partial t} p_t(x, y) = \Delta_y p_t(x, y) \quad \text{and} \quad \lim_{t \to 0} p_t(x, \cdot) = \delta_x \]

for every \(x, y \in M \) and \(t > 0 \). Such a function will be called the heat kernel for \(\Delta \). It is non-negative, it is mass preserving, i.e.

\[\int_M p_t(x, y) d\pi(y) = 1 \]

for every \(x \in M \) and \(t > 0 \), it is symmetric, i.e.

\[p_t(x, y) = p_t(y, x) \]

for every \(x, y \in M \) and \(t > 0 \) and it satisfies the semigroup property i.e.

\[\int_M p_t(x, y) p_s(y, z) d\pi(y) = p_{t+s}(x, z) \]

for every \(x, y \in M \) and \(t, s > 0 \). Furthermore,

\[\lim_{t \to \infty} p_t(x, y) = 1 \]

uniformly on \(x \) and \(y \).

Let \(p \) be the heat kernel associated to \(\Delta \). For each point \(x \in M \) and \(t > 0 \) define the probability measure \(\mu^t_x \in \mathcal{P}(M) \) by

\[d\mu^t_x = p_t(x, \cdot) d\pi, \quad (4.1) \]

or, more precisely, \(d\mu^t_x(y) = p_t(x, y) d\pi(y) \). Then we define \(R_t : M^n \to \mathcal{P}(M) \) by

\[R_t(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n \mu^t_{x_i} \]

and we want to find \(a_n \) and \(b_n \) of the hypotheses of Theorem 2.2 for \(R = R_t \).

We begin by looking for \(b_n \).

4.1 Distance to the regularized measure

Proposition 4.2 (Distance to the regularized measure). There exists a constant \(C > 0 \) such that for all \(t > 0 \) and \(\vec{x} \in M^n \)

\[W_1(R_t(\vec{x}), i_n(\vec{x})) \leq C \sqrt{t}. \]

Proof. The following arguments are very similar to those in [11] and they will be repeated for convenience of the reader. As \(W_1 : \mathcal{P}(M) \times \mathcal{P}(M) \to [0, \infty) \) is the supremum of linear functions, it is convex. So

\[W_1(R_t(\vec{x}), i_n(\vec{x})) \leq \frac{1}{n} \sum_{i=1}^n W_1(\delta_{x_i}, \mu^t_{x_i}). \]

Then, we will try to find a constant \(C > 0 \) such that \(W_1(\delta_{x_i}, \mu^t_{x_i}) \leq C \sqrt{t} \) for every \(x_i \in M \). As the only coupling between \(\delta_{x_i} \) and \(\mu^t_{x_i} \) is their product we see that

\[W_1(\delta_{x_i}, \mu^t_{x_i}) = \int_M d_y(x, y) d\mu^t_{x_i}(y). \]
Concentration for Coulomb gases

In fact we will study the 2-Kantorovitch squared distance between δ_x and μ^t_x

$$D_t(x) = \int_M d_g(x, y)^2 d\mu^t_x(y) = \int_M d_g(x, y)^2 p_t(x, y) d\pi(y).$$

If we prove that there exists a constant $C > 0$ such that for every $x \in M$

$$D_t(x) \leq C^2 t$$

we may conclude that $W_1(\delta_x, \mu^t_x) \leq C\sqrt{t}$ for every $x \in M$ by Jensen’s inequality. To obtain (4.2) we use the following lemma which proof may be found in [8, Section 3.4] and [8, Theorem 3.5.1].

Lemma 4.3 (Radial process representation). Take $x \in M$. Let X be the Markov process with generator Δ starting at x (i.e. $X_t = B_{2t}$ where B is a Brownian motion on M starting at x). Define $r : M \to [0, \infty)$ by $r(y) = d_g(x, y)$. Then r is differentiable π-almost everywhere and there exists a non-decreasing process L and a one-dimensional Euclidean Brownian motion β such that

$$r(X_t) = \beta_{2t} + \int_0^t \Delta r(X_s) ds - L_t$$

for every $t \geq 0$ where Δr is the π-almost everywhere defined Laplacian of r.

Applying Lemma 4.3 and Itô’s formula and then taking expected values we get

$$E[r(X_t)^2] = 2 \int_0^t E[r(X_s) \Delta r(X_s)] ds - E \left[2 \int_0^t r(X_s) dL_s \right] + 2t \leq \int_0^t 2E[r(X_s) \Delta r(X_s)] ds + 2t$$

where we are using the notation of Lemma 4.3. By [8, Corollary 3.4.5] we know that $r \Delta r$ is bounded in M and as $D_t(x) = E[r(X_t)^2]$ we obtain (4.2) where the constant C does not depend on x.

Now we will look for a_n of the hypotheses of Theorem 2.2.

4.2 Comparison between the regularized and the non-regularized energy

Theorem 4.4 (Comparison between the regularized and the non-regularized energy). Let m be the dimension of M. If $m = 2$ there exists a constant $C > 0$ such that, for every $n \geq 2$, $t \in (0, 1]$ and $\bar{x} \in M^n$,

$$H_n(\bar{x}) \geq H(R_t(\bar{x})) - t + \frac{1}{8\pi n} \log(t) - \frac{C}{n}.$$

If $m > 2$ there exists a constant $C > 0$ such that, for every $n \geq 2$, $t \in (0, 1]$ and $\bar{x} \in M^n$,

$$H_n(\bar{x}) \geq H(R_t(\bar{x})) - t - \frac{C}{nt^{m/2-1}}.$$

The terms $\frac{1}{8\pi} \log(t) - C$ and $-1/nt^{m/2-1}$ come from the self-interaction of the regularized punctual charges while the term $-t$ comes from the negatively charged background. In the Euclidean setting, as there is no charged background, the $\frac{1}{8\pi} \log(t) - C$ and $-1/nt^{m/2-1}$ terms arise from the self-interactions without potential and the $-t$ term arise from the regularization of the potential. The proof may be adapted to treat two-body interactions by the Green function of different Markov processes where the short-time asymptotic behavior is known.
To compare $H(R_t(x))$ and $H_n(x)$ we will write, for $x = (x_1, \ldots, x_n) \in M^n$,

$$H(R_t(x)) = \frac{1}{n^2} \sum_{i < j} \int_{M \times M} G(\alpha, \beta) d\mu^t_\alpha(\alpha) d\mu^t_\beta(\beta) + \frac{1}{2n^2} \sum_{i=1}^n \int_{M \times M} G(\alpha, \beta) d\mu^t_\alpha(\alpha) d\mu^t_\beta(\beta).$$

Let us define

$$G_t(x, y) = \int_{M \times M} G(\alpha, \beta) d\mu^t_\alpha(\alpha) d\mu^t_\beta(\beta)$$

$$= \int_{M \times M} G(\alpha, \beta) p_t(x, \alpha) d\pi(\alpha) p_t(y, \beta) d\pi(\beta).$$

Then we may write

$$H(R_t(x)) = \frac{1}{n^2} \sum_{i < j} G_t(x_i, x_j) + \frac{1}{2n^2} \sum_{i=1}^n G_t(x_i, x_i).$$

So we want to compare G_t and G. The idea we shall use is that if G is the kernel of the operator \bar{G} and p_t is the kernel of the operator \bar{P}_t then G_t is the kernel of the operator $\bar{P}_t \bar{G} \bar{P}_t$. But using the eigenvector decomposition we can see that

$$\bar{G} = \int_0^\infty (\bar{P}_t - e_0 \otimes e_0^*) \, ds$$

(4.3)

where e_0 is the eigenvector of eigenvalue 0, i.e. the constant function equal to one. Then

$$\bar{P}_t \bar{G} \bar{P}_t = \int_0^\infty (\bar{P}_{2t+s} - e_0 \otimes e_0^*) \, ds$$

(4.4)

where we have used the semigroup property of $t \mapsto \bar{P}_t$, the fact that $\bar{P}_t e_0 = e_0$ and $\bar{P}_t^* = \bar{P}_t$. Notice that this representation can also be obtained when G is the Green function of different Markov processes.

We will prove the previous idea in a somehow different but very related way. We begin by proving the analogue of (4.3).

Proposition 4.5 (Integral representation of the Green function). For every pair of different points $x, y \in M$ the function $t \mapsto p_t(x, y) - 1$ is integrable. For every $x \in M$ the negative part of the function $t \mapsto p_t(x, y) - 1$ is integrable. Moreover, we have the following integral representation of the Green function. For every $x, y \in M$

$$G(x, y) = \int_0^\infty (p_t(x, y) - 1) \, dt.$$

Proof. To prove the integrability of $t \mapsto p_t(x, y) - 1$ we will need to know the behavior of p_t for large and short t. For the large-time behavior we have the following result.

Lemma 4.6 (Large-time behavior). There exists $\lambda > 0$ such that for every $T > 0$, $s \geq 0$ and $x, y \in M$

$$|p_{T+s}(x, y) - 1| \leq e^{-\lambda s} \sqrt{|p_T(x, x) - 1||p_T(y, y) - 1|}.$$

(4.5)

Proof. We follow the same arguments as in the proof of [7, Corollary 3.7]. By the semigroup property, the symmetry of p_t and the Cauchy-Schwarz inequality we get

$$|p_{T+s}(x, y) - 1| = \left| \int_M \left(p_{T+s}(x, z) - 1 \right) \left(p_{T+s}(z, y) - 1 \right) \, d\pi(z) \right|$$

$$\leq \left\| p_{T+s}(x, \cdot) - 1 \right\|_{L^2} \left\| p_{T+s}(y, \cdot) - 1 \right\|_{L^2}. $$

(4.6)
If \(\lambda \) is the first strictly positive eigenvalue of \(-\Delta\) and if \(f \in L^2(M) \) we get
\[
\left\| \int_M \left(p_z^*(t, z) - 1 \right) f(z) d\pi(z) \right\|_{L^2} \leq e^{-\lambda z} \left\| f - \int_M f d\pi \right\|_{L^2}.
\]
If we choose \(f = p_z^*(x, \cdot) - 1 \) we obtain
\[
\left\| p_{x+y}^*(x, \cdot) - 1 \right\|_{L^2} \leq e^{-\lambda z} \left\| p_z^*(x, \cdot) - 1 \right\|_{L^2} = e^{-\lambda z} \sqrt{p_T(x, x) - 1}
\]
where we have used the semigroup property for the last equality. Similarly, we get
\[
\left\| p_{x+y}^*(y, \cdot) - 1 \right\|_{L^2} \leq e^{-\lambda z} \sqrt{p_T(y, y) - 1}.
\]
By (4.6), (4.7) and (4.8) we may conclude (4.5).

For the short-time behavior, [8, Theorem 5.3.4] implies the following lemma.

Lemma 4.7 (Short-time behavior). Let \(m \) be the dimension of \(M \). Then there exist two positive constants \(C_1 \) and \(C_2 \) such that for every \(t \in (0, 1) \) and \(x, y \in M \) we have
\[
\frac{C_1}{t^2} e^{-\frac{d(g(x,y))^2}{4t^2}} \leq p_t(x, y) \leq \frac{C_2}{t^{m-\frac{3}{2}}} e^{-\frac{d(g(x,y))^2}{4t^2}}.
\]

The integrability of \(t \mapsto p_t(x, y) - 1 \) when \(x \neq y \) and the fact that \(\int_0^\infty (p_t(x, x) - 1) dt = \infty \) for every \(x \in M \) can be obtained from Lemma 4.7 and Lemma 4.6.

Using Lemma 4.6 and the dominated convergence theorem we obtain the continuity of the function \((x, y) \mapsto \int_0^\infty (p_t(x, y) - 1) dt\) at any \((x, y) \in M \times M\). By the dominated convergence theorem and Lemma 4.7 we obtain the continuity of the function given by \((x, y) \mapsto \int_0^1 (p_t(x, y) - 1) dt\) for \(x \neq y\). Using Fatou’s lemma we obtain the continuity of \((x, y) \mapsto \int_0^1 (p_t(x, y) - 1) dt\) at \((x, y)\) such that \(x = y\). So, we get that the function \(K : M \times M \to (-\infty, \infty)\) defined by
\[
K(x, y) = \int_0^\infty (p_t(x, y) - 1) dt
\]
is continuous. The following lemma assures that \(K(x, \cdot)\) is integrable for every \(x \in M\).

Lemma 4.8 (Global integrability). For every \(x \in M\)
\[
\int_0^\infty \int_M |p_t(x, y) - 1| d\pi(y) dt < \infty.
\]

Proof. Take \(T > 0\). By Lemma 4.6 we obtain that
\[
\int_T^\infty \int_M |p_t(x, y) - 1| d\pi(y) dt < \infty.
\]
On the other hand we have
\[
\int_0^T \int_M |p_t(x, y) - 1| d\pi(y) dt \leq \int_0^T \int_M |p_t(x, y) + 1| d\pi(y) dt = 2T < \infty.
\]
Let \(0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots\) be the sequence of eigenvalues of \(-\Delta\) and \(e_0, e_1, e_2, \ldots\) the sequence of respective eigenfunctions. Then, for every \(\psi \in C^\infty(M)\)
\[
\sum_{n=0}^{\infty} \exp(-\lambda_n t) \langle e_n, \psi \rangle^2 = \langle \psi, e^{\Delta \psi} \rangle = \int_{M \times M} \psi(x)p_t(x, y)\psi(y) d\pi(x) d\pi(y).
\]
Concentration for Coulomb gases

Equivalently, we have
\[
\sum_{n=1}^{\infty} \exp(-\lambda_n t) |\langle e_n, \psi \rangle|^2 = \int_{M \times M} \psi(x)(p_t(x, y) - 1)\psi(y)d\pi(x)d\pi(y)
\]
and integrating in \(t \) from zero to infinity we obtain
\[
\sum_{n=1}^{\infty} \frac{1}{\lambda_n} |\langle e_n, \psi \rangle|^2 = \int_{M \times M} \psi(x)K(x, y)\psi(y)d\pi(x)d\pi(y).
\]
By a polarization identity we have that, for every \(\phi, \psi \in C^\infty(M) \),
\[
\sum_{n=1}^{\infty} \frac{1}{\lambda_n} \langle \psi, e_n \rangle \langle e_n, \phi \rangle = \int_{M \times M} \psi(x)K(x, y)\phi(y)d\pi(x)d\pi(y).
\]
Taking \(\phi = \Delta \alpha \) we get
\[
\langle \psi, \alpha \rangle - \int_M \psi d\pi \int_M \alpha d\pi = \sum_{n=1}^{\infty} \langle \psi, e_n \rangle \langle e_n, \alpha \rangle = \int_{M \times M} \psi(x)K(x, y)\Delta \alpha(y)d\pi(x)d\pi(y).
\]
By definition of the Green function we know that \(\int_M G(x, y)\Delta \alpha(y)d\pi(y) = -\alpha(x) + \int_M \alpha d\pi \) and thus
\[
\int_{M \times M} \psi(x)G(x, y)\Delta \alpha(y)d\pi(x)d\pi(y) = \int_{M \times M} \psi(x)K(x, y)\Delta \alpha(y)d\pi(x)d\pi(y).
\]
As \(\int_M K(x, y)d\pi(y) = 0 = \int_M G(x, y)d\pi(y) \) and by the continuity of \(K \) and \(G \) we obtain \(G(x, y) = K(x, y) \) for every \(x, y \in M \).

Now we will state and prove (4.4).

Proposition 4.9 (Integral representation of the regularized Green function). For every \(t > 0 \) and \(x, y \in M \)
\[
G_t(x, y) = \int_{2t}^{\infty} (p_s(x, y) - 1)\, ds.
\]

Proof. Take the time (i.e. with respect to \(t \)) derivative (denoted by a dot above the function)
\[
\dot{G}_t(x, y) = \int_{M \times M} \dot{p}_t(x, \alpha)G(\alpha, \beta)p_t(y, \beta)d\pi(\alpha)d\pi(\beta)
\]
\[
+ \int_{M \times M} \dot{p}_t(x, \alpha)G(\alpha, \beta)p_t(y, \beta)d\pi(\alpha)d\pi(\beta).
\]
We will study the first term of the sum (the second being analogous).
\[
\int_{M \times M} \dot{p}_t(x, \alpha)G(\alpha, \beta)p_t(y, \beta)d\pi(\alpha)d\pi(\beta)
\]
\[
= \int_{M \times M} \Delta_\alpha p_t(x, \alpha)G(\alpha, \beta)p_t(y, \beta)d\pi(\alpha)d\pi(\beta)
\]
\[
= \int_M \left(\int_M \Delta_\alpha p_t(x, \alpha)G(\alpha, \beta)d\pi(\alpha) \right) p_t(y, \beta)d\pi(\beta)
\]
\[
= \int_M \left(\int_M p_t(x, \alpha)\Delta_\alpha G(\alpha, \beta)d\pi(\alpha) \right) p_t(y, \beta)d\pi(\beta)
\]
\[
= \int_M \left(\int_M p_t(x, \alpha)(-\delta_\beta(\alpha) + 1)\, d\pi(\alpha) \right) p_t(y, \beta)d\pi(\beta)
\]
\[
= \int_M (-p_t(x, \beta) + 1)p_t(y, \beta)d\pi(\beta)
\]
\[
= -p_{2t}(x, y) + 1
\]
where in the last line we have used the symmetry and the semigroup property of p. Using again the symmetry of p we get

$$G_t(x, y) = -2p_{2t}(x, y) + 2,$$

and by integrating we obtain

$$G_t(x, y) - G_s(x, y) = \int_s^t (-2p_{2u}(x, y) + 2) \, du = \int_{2s}^{2t} (-p_s(x, y) + 1) \, ds$$

for every $0 < s < t < \infty$. As a consequence of the uniform convergence of Proposition 4.1 we can see that μ^x and μ^y defined in (4.1) converge to π as t goes to infinity. Fix any $T > 0$. As $G_{T+s}(x, y) = \int_{M \times M} G_T(\alpha, \beta) d\mu^x_\alpha d\mu^y_\beta$ for any $s > 0$ and as G_T is continuous we obtain $\lim_{t \to \infty} G_t(x, y) = \int_{M \times M} G_T(x, y) d\pi(x) d\pi(y) = 0$ and then

$$G_t(x, y) = \int_{2t} (p_s(x, y) - 1) ds.$$

Using Proposition 4.5 and 4.9 we conclude the following inequality. We can find an analogous result in [10, Lemma 5.2].

Corollary 4.10 (Off-diagonal behavior). For every $n \geq 2$, $t > 0$ and $(x_1, \ldots, x_n) \in M^n$

$$\sum_{i < j} G(x_i, x_j) \geq \sum_{i < j} G_t(x_i, x_j) - t n^2.$$

Proof. As the heat kernel is non-negative, by Proposition 4.5 and 4.9 we have that, for every $x, y \in M$,

$$G(x, y) - G_t(x, y) = \int_0^{2t} (p_s(x, y) - 1) \, ds \geq -2t.$$

Then, if $(x_1, \ldots, x_n) \in M^n$,

$$\sum_{i < j} G(x_i, x_j) \geq \sum_{i < j} G_t(x_i, x_j) - t(n - 1) \geq \sum_{i < j} G_t(x_i, x_j) - t n^2.$$

What is left to understand is $\sum_{i=1}^n G_t(x_i, x_i)$. This will be achieved using Proposition 4.9 and the short-time asymptotic expansion of the heat kernel. A particular case is mentioned in [10, Lemma 5.3].

Proposition 4.11 (Diagonal behavior). Let m be the dimension of M. If $m = 2$ there exists a constant $C > 0$ such that for every $t \in (0, 1]$ and $x \in M$

$$G_t(x, x) \leq -\frac{1}{4\pi} \log(t) + C.$$

If $m > 2$ there exists a constant $C > 0$ such that for every $t \in (0, 1]$ and $x \in M$

$$G_t(x, x) \leq \frac{C}{t^{\frac{m}{2}}}. $$

Proof. By the asymptotic expansion of the heat kernel (see for instance [5, Chapter VI.4]) we have that there exists a constant $\tilde{C} > 0$ (independent of x and t) such that, for $t \leq 1$,

$$\left| p_t(x, x) - \frac{1}{(4\pi t)^{\frac{m}{2}}} \right| \leq \tilde{C} t^{-\frac{m}{2} + 1}. $$

Then,

$$p_t(x, x) \leq \frac{1}{(4\pi t)^{\frac{m}{2}}} + \tilde{C} t^{-\frac{m}{2} + 1}. \quad (4.9)$$
We know by Proposition 4.9 that
\[G_t(x,x) = \int_{2t}^{\infty} (p_s(x,x) - 1)ds \]
\[= \int_{2t}^{2} (p_s(x,x) - 1)ds + \int_{2}^{\infty} (p_s(x,x) - 1)ds \]
\[\leq \int_{2t}^{2} \left[\frac{1}{(4\pi s)^{\frac{d}{2}}} + C s^{-\frac{d}{2}+1} \right] ds + \int_{2}^{\infty} (p_s(x,x) - 1)ds \]
\[= \int_{2t}^{2} \left[\frac{1}{(4\pi s)^{\frac{d}{2}}} + C s^{-\frac{d}{2}+1} \right] ds + G_2(x,x). \]

In the case \(m = 2 \) we obtain that, for \(t \in (0,1] \),
\[G_t(x,x) \leq -\frac{1}{4\pi} \log(t) + C \]
where \(C \) is \(2\tilde{C} \) plus a bound for \(G_2(x,x) \) independent of \(x \). In the case \(m > 2 \) we use that \(s^{-m/2+1} \leq 2s^{-m/2} \) for \(s \in (0,1] \) and that \(G_2(x,x) \) is bounded from above to obtain a constant \(C \) such that, for \(t \in (0,1] \),
\[G_t(x,x) \leq \frac{C}{t^{\frac{d}{2}-1}}. \]

Knowing the diagonal and off-diagonal behavior of the regularized Green function we can proceed to prove Theorem 4.4.

Proof of Theorem 4.4. Take \(\bar{x} = (x_1, \ldots, x_n) \in M^n \). Then if \(m = 2 \) we have
\[H_n(\bar{x}) \geq \frac{1}{n^2} \sum_{i\neq j} G_t(x_i, x_j) - t \]
\[\geq \frac{1}{n^2} \sum_{i\neq j} G_t(x_i, x_j) - t + \frac{1}{2n^2} \sum_{i=1}^{n} G_t(x_i, x_i) + \frac{1}{8\pi n} \log(t) - \frac{1}{2n} C \]
\[= H(R_t(\bar{x})) - t + \frac{1}{8\pi n} \log(t) - \frac{1}{2n} C \]
where we have used Corollary 4.10 and Proposition 4.11. If \(m > 2 \) we proceed in the same way to get
\[H_n(\bar{x}) \geq \frac{1}{n^2} \sum_{i\neq j} G_t(x_i, x_j) - t \]
\[\geq \frac{1}{n^2} \sum_{i\neq j} G_t(x_i, x_j) - t + \frac{1}{2n^2} \sum_{i=1}^{n} G_t(x_i, x_i) + \frac{C}{2nt^{\frac{d}{2}-1}} \]
\[= H(R_t(\bar{x})) - t + \frac{C}{2nt^{\frac{d}{2}-1}}. \]

Remark 4.12 (Euclidean setting). Let us give a quick explanation of the regularization of the energy in the Euclidean case. Define the two-body interaction \(G \) by
\[G(x,y) = \begin{cases} -\log|x-y| & \text{if } m = 2, \\ |x-y|^{2-m} & \text{if } m > 2. \end{cases} \]

Suppose \(\mu \) is a radial probability measure on \(\mathbb{R}^m \) of finite energy, i.e. such that \(\int_{\mathbb{R}^m \times \mathbb{R}^m} |G(x,y)|d\mu(x)d\mu(y) < \infty \). For \(\varepsilon > 0 \) define \(S_\varepsilon : \mathbb{R}^m \to \mathbb{R}^m \) by
\[S_\varepsilon(x) = \varepsilon x \]
and for $x \in \mathbb{R}^m$ define $T_x : \mathbb{R}^m \to \mathbb{R}^m$ by

$$T_x(\alpha) = \alpha + x.$$ The regularization of the punctual charge at $x \in \mathbb{R}^m$ will be $\mu^x_\varepsilon = (T_x \circ S_\varepsilon)_\ast \mu$ where the subindex \ast is used to denote the image measure. Define the two-body regularized interaction G_ε by

$$G_\varepsilon(x, y) = \int_{\mathbb{R}^m \times \mathbb{R}^m} G(\alpha, \beta) d\mu^x_\varepsilon(\alpha) d\mu^y_\varepsilon(\beta).$$

The analogue of Corollary 4.10 would be

$$\sum_{i<j} G(x_i, x_j) \geq \sum_{i<j} G_\varepsilon(x_i, x_j)$$

which is a consequence of the superharmonicity of $G(x, \cdot)$. The analogue of Proposition 4.11 would be

$$G_\varepsilon(x, x) = -\log \varepsilon - \int_{\mathbb{R}^m \times \mathbb{R}^m} \log |\alpha - \beta| d\mu(\alpha) d\mu(\beta)$$

when $m = 2$ and

$$G_\varepsilon(x, x) = \varepsilon^{2-m} \int_{\mathbb{R}^m \times \mathbb{R}^m} |\alpha - \beta|^{2-m} d\mu(\alpha) d\mu(\beta)$$

when $m > 2$. This is a straightforward application of the change-of-variables formula.

Finally, if we define $R_\varepsilon(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n \mu^x_\varepsilon$, the analogue of Proposition 4.2 would be

$$W_1(R_\varepsilon(\vec{x}), i_n(\vec{x})) \leq \varepsilon \int_{\mathbb{R}^m} |y| d\mu(y).$$

Having acquired all the tools to apply Theorem 2.2 to the case of a Coulomb gas on a compact Riemannian manifold, the next section will be devoted to prove the main theorem and its almost immediate extension.

5 Proof of the concentration inequality for Coulomb gases

Proof of Theorem 1.1. First, we notice that $e_n = \int_M H_n d\mu_{eq} = \frac{n-1}{n} e = 0$. To use Theorem 2.2 we define

$$f(r) = \frac{r^2}{2} \quad \text{and} \quad R = R_t \quad \text{for} \quad t = n^{-\frac{d}{m}}.$$ In this case, Proposition 4.2 tells us that $W_1(R(\vec{x}), i_n(\vec{x})) \leq C/n^{1/m}$ for some $C > 0$ independent of \vec{x} and n. This may be considered as the natural choice since $1/n^{1/m}$ is the ‘closest’ a fixed probability measure absolutely continuous with respect to π can get to an arbitrary empirical measure of n points.

If $m = 2$, by Theorem 4.4 and Proposition 4.2, we have that there exists a constant $\tilde{C} > 0$ such that

$$H_n(\vec{x}) \geq H(R(\vec{x})) - \frac{1}{8\pi n} \log(n) - \frac{\tilde{C}}{n}$$

$$W_1(R(\vec{x}), i_n(\vec{x})) \leq \frac{\tilde{C}}{\sqrt{n}}$$

for every $\vec{x} \in M^n$ and $n \geq 2$ so we can apply Theorem 2.2 to obtain the desired result with $C = \frac{\tilde{C}^2}{2} + \tilde{C}$. Similarly, if $m > 2$, by Theorem 4.4 and Proposition 4.2, we have that there exists a constant $\tilde{C} > 0$ such that

$$H_n(\vec{x}) \geq H(R(\vec{x})) - \frac{\tilde{C}}{n^{\frac{d}{m}}}$$

ECP 24 (2019), paper 12. http://www.imstat.org/ecp/
Concentration for Coulomb gases

\[W_1(R(\vec{x}), i_n(\vec{x})) \leq \frac{\tilde{C}}{n^m} \]

for every \(\vec{x} \in M^n \) and \(n \geq 2 \) so we can apply Theorem 2.2 to obtain the desired result with \(C = \tilde{C}^2 + \tilde{C} \).

Finally we present the proof of Theorem 1.2.

Proof of Theorem 1.2. To apply Theorem 2.2 we notice that Assumption A is satisfied by \(f(r) = r^2 \). Indeed, Theorem 3.1 is still true for this new \(H \) except for the characterization of the minimizer. In particular, \(H \) has a unique minimizer. By a calculation we can see that \(e - e_n = \frac{1}{\tilde{C}^2} \int_{M \times M} G(x, y) d\mu_{eq}(x) d\mu_{eq}(y) \) which is of order \(\frac{1}{n} \) and will be absorbed by the constant \(C \). To meet the hypotheses of Theorem 2.2, we need to compare

\[\frac{1}{n} \sum_{i=1}^{n} V(x_i) \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^{n} \int_{M} V d\mu_{x_i}^t. \]

By using the relation

\[E[V(X_t)] = V(x) + \int_0^t E[\Delta f(X_s)] ds \]

where \(X_t \) is the Markov process with generator \(\Delta \) starting at \(x \) we obtain

\[|E[V(X_t)] - V(x)| \leq \hat{C}t \]

where \(\hat{C} \) is some upper bound to \(\Delta V \) and thus

\[\left| \frac{1}{n} \sum_{i=1}^{n} \int_{M} V d\mu_{x_i}^t - \frac{1}{n} \sum_{i=1}^{n} V(x_i) \right| \leq \hat{C}t. \]

In conclusion, if we choose \(R = R_n^{-\frac{2}{m}} \), there still exists a constant \(C > 0 \) such that

\[H_n(\vec{x}) \geq H(R(\vec{x})) - \frac{1}{8\pi n} \log(n) - \frac{C}{n} \]

in dimension two and

\[H_n(\vec{x}) \geq H(R(\vec{x})) - \frac{C}{n^\frac{m}{2}} \]

in dimension \(m > 2 \) so that we can apply Theorem 2.2.

References

[1] Thierry Aubin: *Some nonlinear problems in Riemannian geometry*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xviii+395 pp. MR-1636569

[2] Daniel Azagra, Juan Ferrera Cuesta, Fernando López-Mesas and Yenny Rangel: Smooth approximation of Lipschitz functions on Riemannian manifolds. *Journal of Mathematical Analysis and Applications* 326, (2007), no. 2, 1370–1378. MR-2280987

[3] Carlos Beltrán, Nuria Corral and Juan G. Criado del Rey: Discrete and continuous Green energy on compact manifolds. *Journal of Approximation Theory* 237, (2019), 160–185. MR-3868631

[4] Djalil Chafaï, Adrien Hardy, and Mylène Maïda: Concentration for Coulomb gases and Coulomb transport inequalities. *Journal of Functional Analysis* 275, (2018), no. 6, 1447–1483. MR-3820329

[5] Isaac Chavel: *Eigenvalues in Riemannian geometry*. Academic Press, Inc., Orlando, FL, 1984. xiv+362 pp. MR-0768584
Concentration for Coulomb gases

[6] David García-Zelada: A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds. To appear in Annales de l’Institut Henri Poincaré, arXiv:1703.02680

[7] Alexander Grigor’yan: Heat kernels on weighted manifolds and applications. The ubiquitous heat kernel, 93–191, Contemporary Mathematics 398, American Mathematical Society, Providence, RI, 2006. MR-2218016

[8] Elton P. Hsu: Stochastic analysis on manifolds. Graduate Studies in Mathematics 38, American Mathematical Society, Providence, RI, 2002. xiv+281 pp. MR-1882015

[9] Manjunath Ramanatha Krishnapur: Zeros of random analytic functions. Ph. D. Thesis, U. C. Berkeley, 2006. 76 pp. MR-2709142

[10] Serge Lang: Introduction to Arakelov theory. Springer-Verlag, New York, 1988. x+187 pp. MR-0969124

[11] Michel Ledoux: On optimal matching of Gaussian samples. Zapiski Nauchnykh Seminarov POMI 457, (2017), 226–264. MR-3723584

[12] Elliott Lieb and Michael Loss: Analysis. Second edition. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. xxii+346 pp. MR-1817225

[13] Mylène Maïda and Édouard Maurel-Segala: Free transport-entropy inequalities for non-convex potentials and application to concentration for random matrices. Probability Theory and Related Fields 159, (2014), no. 1-2, 329–356. MR-3201924

[14] Nicolas Rougerie and Sylvia Serfaty: Higher-dimensional Coulomb gases and renormalized energy functionals. Communications on Pure and Applied Mathematics 69, (2016), no. 3, 519–605. MR-3455593

[15] Sylvia Serfaty: Systems of Points with Coulomb Interactions. Proceedings of the International Congress of Mathematicians 2018 1, 935–978, Rio de Janeiro, 2018. arXiv:1712.04095 MR-3837028

[16] Cédric Villani: Topics in optimal transportation. Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003. xvi+370 pp. MR-1964483