Supporting Information 1 for ‘A novel family of beta mixture models for the differential analysis of DNA methylation data: an application to prostate cancer’ data by Majumdar et al.

Appendix S1

K-. Model The complete data log-likelihood for this model is,

\[\ell_C(\tau, \theta, Z | X) = \sum_{c=1}^C \sum_{k=1}^K z_{ck} \left\{ \log \tau_k + \sum_{n=1}^N \sum_{r=1}^1 \log \text{Beta}(x_{cnr}; \alpha_k, \delta_k) \right\}. \]

In the Expectation-step of the EM algorithm the \(\hat{z}_{ck} \) is calculated given the current parameter estimates. In the Maximisation-step the expected complete data log-likelihood function to be optimized is,

\[\ell_C(\tau, \theta | X, \hat{Z}) = \sum_{c=1}^C \sum_{k=1}^K \hat{z}_{ck} \left\{ \log \tau_k + \sum_{n=1}^N \sum_{r=1}^1 \left[(\alpha_k - 1) \log x_{cnr} + (\delta_k - 1) \log (1 - x_{cnr}) - \log B(\alpha_k, \delta_k) \right] \right\}. \]

(1)

Differentiating (1) w.r.t \(\alpha_k \) yields,

\[\frac{\partial \ell_C}{\partial \alpha_k} = \sum_{c=1}^C \hat{z}_{ck} \left\{ \log x_{cnr} - [\psi(\alpha_k) - \psi(\alpha_k + \delta_k)] \right\} \]

(2)

where \(\psi \) is the digamma function.

Similarly, the derivative of \(\ell_C(\tau, \theta | X, \hat{Z}) \) w.r.t \(\delta_k \) is,

\[\frac{\partial \ell_C}{\partial \delta_k} = \sum_{c=1}^C \hat{z}_{ck} \left\{ \log (1 - x_{cnr}) - [\psi(\delta_k) - \psi(\alpha_k + \delta_k)] \right\}. \]

(3)

The lower bound value of the digamma function (\(\psi(y) > \log(y - 1/2) \)) is used in (2) and (3) to get closed-form solutions at the Maximisation-step of the EM algorithm,

\[\frac{\partial \ell_C}{\partial \alpha_k} \approx \sum_{c=1}^C \hat{z}_{ck} \sum_{n=1}^N \sum_{r=1}^1 \left[\log x_{cnr} - \log \frac{\alpha_k - 1/2}{\alpha_k + \delta_k - 1/2} \right] \]

(4)

and

\[\frac{\partial \ell_C}{\partial \delta_k} \approx \sum_{c=1}^C \hat{z}_{ck} \sum_{n=1}^N \sum_{r=1}^1 \left[\log (1 - x_{cnr}) - \log \frac{\delta_k - 1/2}{\alpha_k + \delta_k - 1/2} \right]. \]

(5)

Equating (4) and (5) to zero, we get the approximate estimates of \(\alpha_k \) and \(\delta_k \) as,

\[\alpha_k = 0.5 + \frac{0.5 \exp(-y_2)}{\{\exp(-y_2) - 1\} \{\exp(-y_1) - 1\} - 1} \]
and

$$\delta_{k..} = \frac{0.5 \exp(-y_2)[\exp(-y_1) - 1]}{\{\exp(-y_2) - 1\}[\exp(-y_1) - 1]} - 1,$$

where $y_1 = \frac{\left(\sum_{c=1}^{C} z_{ck} \log x_{cnr} \right)}{(N \sum_{c=1}^{C} z_{ck})}$ and $y_2 = \frac{\left(\sum_{c=1}^{C} z_{ck} \log(1 - x_{cnr}) \right)}{(N \sum_{c=1}^{C} z_{ck})}$.
Appendix S2

KN· Model The complete data log-likelihood for this model is,

\[\ell_{C}(\tau, \theta, Z|X) = \sum_{c=1}^{C} \sum_{k=1}^{K} z_{ck} \{ \log \tau_{k} + \sum_{n=1}^{N} \sum_{r=1}^{1} \log[\text{Beta}(x_{cnr}; \alpha_{kn}, \delta_{kn})] \}. \]

In the Expectation-step of the EM algorithm the \(\hat{z}_{ck} \) is calculated given the current parameter estimates. In the Maximisation-step the expected complete data log-likelihood function to be optimized is,

\[\ell_{C}(\tau, \theta|X, \hat{Z}) = \sum_{c=1}^{C} \sum_{k=1}^{K} \hat{z}_{ck} \{ \log \tau_{k} + \sum_{n=1}^{N} \sum_{r=1}^{1} \left[(\alpha_{kn} - 1) \log x_{cnr} + (\delta_{kn} - 1) \log(1 - x_{cnr}) - \log B(\alpha_{kn}, \delta_{kn}) \right] \}. \]

Differentiating (6) w.r.t \(\alpha_{kn} \) yields,

\[\frac{\partial \ell_{C}}{\partial \alpha_{kn}} = \sum_{c=1}^{C} \hat{z}_{ck} \{ \log x_{cnr} - [\psi(\alpha_{kn}) - \psi(\alpha_{kn} + \delta_{kn})] \} \]

where \(\psi \) is the digamma function.

Similarly, the derivative of \(\ell_{C}(\tau, \theta|X, \hat{Z}) \) w.r.t \(\delta_{kn} \) is,

\[\frac{\partial \ell_{C}}{\partial \delta_{kn}} = \sum_{c=1}^{C} \hat{z}_{ck} \{ \log(1 - x_{cnr}) - [\psi(\delta_{kn}) - \psi(\alpha_{kn} + \delta_{kn})] \}. \]

The lower bound value of the digamma function (\(\psi(y) > \log(y - 1/2) \)) is used in (7) and (8) to get closed-form solutions at the Maximisation-step of the EM algorithm,

\[\frac{\partial \ell_{C}}{\partial \alpha_{kn}} \approx \sum_{c=1}^{C} \hat{z}_{ck} \sum_{n=1}^{N} \sum_{r=1}^{1} \left[\log x_{cnr} - \log \frac{\alpha_{kn} - 1/2}{\alpha_{kn} + \delta_{kn} - 1/2} \right] \]

and

\[\frac{\partial \ell_{C}}{\partial \delta_{kn}} \approx \sum_{c=1}^{C} \hat{z}_{ck} \sum_{n=1}^{N} \sum_{r=1}^{1} \left[\log(1 - x_{cnr}) - \log \frac{\delta_{kn} - 1/2}{\alpha_{kn} + \delta_{kn} - 1/2} \right]. \]

Equating (9) and (10) to zero, we get the approximate estimates of \(\alpha_{kn} \) and \(\delta_{kn} \) as,

\[\alpha_{kn} = 0.5 + \frac{0.5 \exp(-y_{2})}{\{\exp(-y_{2}) - 1][\exp(-y_{1}) - 1]\} - 1 \]

and

\[\delta_{kn} = \frac{0.5 \exp(-y_{2})[\exp(-y_{1}) - 1]}{\{\exp(-y_{2}) - 1][\exp(-y_{1}) - 1]\} - 1, \]

where \(y_{1} = (\sum_{c=1}^{C} \hat{z}_{ck} \log x_{cnr}) / (\sum_{c=1}^{C} \hat{z}_{ck}) \) and \(y_{2} = (\sum_{c=1}^{C} \hat{z}_{ck} \log(1 - x_{cnr})) / (\sum_{c=1}^{C} \hat{z}_{ck}). \)
Appendix S3

K-R Model The complete data log-likelihood for this model is,
\[
\ell_C(\tau, \theta, Z|X) = \sum_{c=1}^{C} \sum_{k=1}^{K} \hat{z}_{ck}\{\log \tau_k + \sum_{n=1}^{N} \sum_{r=1}^{R} \log[\text{Beta}(x_{cnr}; \alpha_{kr}, \delta_{kr})]\}.
\]

In the Expectation-step of the EM algorithm the \(\hat{z}_{ck}\) is calculated given the current parameter estimates. In the Maximisation-step the expected complete data log-likelihood function to be optimized is,
\[
\ell_C(\tau, \theta|X, \hat{Z}) = \sum_{c=1}^{C} \sum_{k=1}^{K} \hat{z}_{ck}\{\log \tau_k + \sum_{n=1}^{N} \sum_{r=1}^{R} \log\psi(x_{cnr} + (\delta_{kr} - 1)\log(1 - x_{cnr}) - \log B(\alpha_{kr}, \delta_{kr}))\}.
\]

Differentiating (11) w.r.t \(\alpha_{kr}\) yields,
\[
\frac{\partial \ell_C}{\partial \alpha_{kr}} = \sum_{c=1}^{C} \hat{z}_{ck}\{\log x_{cnr} - [\psi(\alpha_{kr}) - \psi(\alpha_{kr} + \delta_{kr})]\}
\]
where \(\psi\) is the digamma function.

Similarly, the derivative of \(\ell_C(\tau, \theta|X, \hat{Z})\) w.r.t \(\delta_{kr}\) is,
\[
\frac{\partial \ell_C}{\partial \delta_{kr}} = \sum_{c=1}^{C} \hat{z}_{ck}\{\log(1 - x_{cnr}) - [\psi(\delta_{kr}) - \psi(\alpha_{kr} + \delta_{kr})]\}.
\]

The lower bound value of the digamma function \((\psi(y) > \log(y - 1/2))\) is used in (12) and (13) to get closed-form solutions at the Maximisation-step of the EM algorithm,
\[
\frac{\partial \ell_C}{\partial \alpha_{kr}} \approx \sum_{c=1}^{C} \hat{z}_{ck}\sum_{n=1}^{N} \sum_{r=1}^{1} \left[\log x_{cnr} - \log \frac{\alpha_{kr} - 1/2}{\alpha_{kr} + \delta_{kr} - 1/2}\right]
\]
and
\[
\frac{\partial \ell_C}{\partial \delta_{kr}} \approx \sum_{c=1}^{C} \hat{z}_{ck}\sum_{n=1}^{N} \sum_{r=1}^{1} \left[\log(1 - x_{cnr}) - \log \frac{\delta_{kr} - 1/2}{\alpha_{kr} + \delta_{kr} - 1/2}\right].
\]

Equating (14) and (15) to zero, we get the approximate estimates of \(\alpha_{knr}\) and \(\delta_{knr}\) as,
\[
\alpha_{kr} = 0.5 + \frac{0.5 \exp(-y_2)}{\{[\exp(-y_2) - 1][\exp(-y_1) - 1]\} - 1}
\]
and
\[
\delta_{kr} = \frac{0.5 \exp(-y_2)[\exp(-y_1) - 1]}{\{[\exp(-y_2) - 1][\exp(-y_1) - 1]\} - 1},
\]
where \(y_1 = (\sum_{c=1}^{C} \hat{z}_{ck}\log x_{cnr})/(N \sum_{c=1}^{C} \hat{z}_{ck})\) and \(y_2 = (\sum_{c=1}^{C} \hat{z}_{ck}\log(1 - x_{cnr}))/\sum_{c=1}^{C} \hat{z}_{ck})\).
Appendix S4

Table 1: Beta distributions’ parameter estimates for sample type A in a simulated dataset under the K-\(\cdot\) model

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	4.161	3.129	0.571	0.336
2	1.396	14.092	0.090	0.077
3	13.761	1.371	0.909	0.273

Table 2: Beta distributions’ parameter estimates for sample type A in a simulated dataset under the K-R model.

(a) Sample A

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	1.391	14.024	0.090	0.077
2	13.918	1.386	0.909	0.273
3	1.384	13.954	0.090	0.078
4	4.168	3.137	0.571	0.335
5	4.157	3.134	0.570	0.335
6	13.832	1.383	0.909	0.274
7	13.987	1.398	0.909	0.274
8	4.155	3.134	0.570	0.335
9	1.395	14.088	0.090	0.077

(b) Sample B

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	13.908	1.383	0.909	0.273
2	1.393	14.060	0.090	0.077
3	4.186	3.154	0.570	0.335
4	1.411	14.207	0.909	0.274
5	13.909	1.391	0.909	0.274
6	4.156	3.128	0.571	0.336
7	13.857	1.384	0.909	0.274
8	4.150	3.124	0.571	0.336
9	1.385	13.981	0.090	0.078

Table 3: Beta distributions’ parameter estimates for benign sample type in the PCa dataset under the KN- model.

(a) Patient 1

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	13.774	2.205	0.862	0.084
2	1.491	12.454	0.107	0.080
3	3.970	2.965	0.572	0.176

(b) Patient 3

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	20.158	2.624	0.885	0.065
2	2.183	28.896	0.070	0.045
3	3.618	3.023	0.545	0.180

(c) Patient 2

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	21.434	2.871	0.882	0.064
2	2.166	18.166	0.107	0.067
3	4.111	2.980	0.580	0.174

(d) Patient 4

Clusters	\(\hat{\alpha}\)	\(\hat{\delta}\)	Mean	Std. deviation
1	26.825	2.644	0.910	0.052
2	2.462	30.940	0.074	0.045
3	3.338	2.237	0.599	0.191
Figure 1: Kernel density estimates under the K-error model fitted to data from sample type A in the simulated dataset. The thresholds are 0.258 and 0.802. The estimated mixing proportions are displayed.
Appendix S6

Figure 2: The AIC, BIC and ICL information criteria for different numbers of clusters, K, for the simulated datasets.
Figure 3: Kernel density estimates under the clustering solution of the K-R model fitted to DNA samples from sample A and sample B from a simulated dataset. The estimated mixing proportions are displayed in the relevant panel.
Figure 4: Mean computational time for fitting the K-R model, with 95% confidence intervals, as the number of patients N is increased. The computational times for the K- and KN- models show a similar trend, with elapsed times ranging from 0.33 to 2.5 minutes for the former and 0.47 to 4 minutes for the latter. As the complexity of the algorithm with respect to N is proportional to N, as the number of patients increases the computational cost scales linearly.
Figure 5: Boxplot displaying the FDR, sensitivity, specificity and ARI values from the BMM and Limma methods when applied to the simulated data from a mixture of beta distributions.
Figure 6: Boxplot showing the FDR, sensitivity and specificity values from the BMM and Limma methods applied to the simulated datasets generated from scaled t-distribution with 8 degrees of freedom to assess the impact of model misspecification.
Appendix S11

Figure 7: Fitted density estimates under the clustering solution of the KN· model fitted to the benign sample collected from patient 1 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.258 and 0.747.

Figure 8: Fitted density estimates under the clustering solution of the KN· model fitted to the benign sample collected from patient 2 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.252 and 0.774.
Figure 9: Fitted density estimates under the clustering solution of the KN model fitted to the benign sample collected from patient 3 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.189 and 0.766.

Figure 10: Fitted density estimates under the clustering solution of the KN model fitted to the benign sample collected from patient 4 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.198 and 0.814.
Figure 11: Fitted density estimates under the clustering solution of the KN· model fitted to the tumour sample collected from patient 1 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.19 and 0.751.

Figure 12: Fitted density estimates under the clustering solution of the KN· model fitted to the tumour sample collected from patient 2 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.227 and 0.81.
Figure 13: Fitted density estimates under the clustering solution of the KN model fitted to the tumour sample collected from patient 3 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.176 and 0.776.

Figure 14: Fitted density estimates under the clustering solution of the KN model fitted to the tumour sample collected from patient 4 in the prostate cancer dataset. The threshold points are illustrated in the graph as 0.198 and 0.789.
Figure 15: Kernel density estimates under the clustering solution of the KN· model fitted to DNA methylation data from the benign sample collected from patient 1 in the prostate cancer dataset. The thresholds are illustrated along with the estimated mixing proportions.
Appendix S13

Figure 16: The AIC, BIC and ICL information criteria for different numbers of clusters, K, for the PCa dataset.
Figure 17: Kernel density estimates under the clustering solution of the K-R model fitted to the DNA methylation data from benign and tumour prostate cancer samples. The estimated mixing proportions are displayed in the relevant panel.
Appendix S15

Figure 18: Methylation levels of the differentially methylated CpG sites related to the RARB genes in the benign and tumour sample types.
Figure 19: ECDFs for the DMCs related to the RARB genes for all patients and sample types.
Appendix S17

Figure 20: Methylation levels of the differentially methylated CpG sites in clusters 3-9 related to the AKT1 gene for all patients and sample types.

Figure 21: ECDFs for the CpG sites in clusters 3-9 related to the AKT1 gene for all patients and sample types.
Figure 22: Clustering uncertainties for CpG sites in the PCa data.