Sensitivity analysis of process parameters on tensile properties in Plasma Arc Welding of AA8011-H24 aluminium alloys and Ti3Al2.5V Titanium alloys using Response Surface Methodology

K Palani¹, C Elanchezhian² and M Raju³

¹ Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University), Kanchipuram, 631561, Tamilnadu, India
² Department of Mechanical Engineering, Sri Sairam Engineering College, Chennai, 600 044, Tamil Nadu, India
³ Department of Mechanical Engineering, Eswari Engineering College, Chennai, 600 089, Tamil Nadu, India

E-Mail: palani.k@kanchiuniv.ac.in

Abstract. The quality of a welded joint is strongly decided by the input parameters of the plasma arc welding process. The mathematical models used to predict the optimum tensile properties based on the input process parameters of the plasma arc welding. In this investigation, the response surface methodology is applied to optimize the tensile properties of the Plasma arc welding of AA8011-H24 aluminium alloys and Ti3Al2.5V Titanium alloys by proper selection of process parameters such as welding speed, welding current and gas flow rate. The three factors, five levels central composite design was applied to conduct the experiments. The impact of the process parameters on tensile properties of the plasma arc welding process was investigated by using the sensitivity analysis of the mathematical models. The welding speed was the more sensitive parameter on the tensile properties of the plasma arc welding compared to the other parameters followed by the welding current and gas flow rate.

1. Introduction

Owing to high strength-to-weight ratio, good corrosion resistance, low density and low cost of lightweight hybrid materials, both aluminium alloy and titanium alloy are having more demand in the fields of aerospace, marine, automotive and transportation industries [1-3] and it reduces the effort of the fuel consumption. Even though, the formation of brittle intermetallic structures (IMCs) and residual stress were found which degrade the strength properties at the weld centre of the dissimilar aluminium alloys with the titanium alloys due to their different chemical properties, viz., melting temperature and physical properties, viz., Coefficient of linear expansion [4, 5]. Umanath K et al. [6] made an investigation on the austenitic stainless steel rods using friction welding process and studied the effect of individual parameters of friction welded joints. They concluded that the least influencing parameters of forging pressure and friction pressure followed by the rotational speed of the rods on the tensile strength of the friction welded joints. Tahsini SM et al. [7] made an investigation on the microstructure of the similar friction welded (FW) joints of AA 7005 aluminum rods with the parameters, viz., friction pressure and friction time. The fine equiaxed grains were appeared at the rotating side due to higher cooling rate. The parameters selection of the welding process was the key factor in deciding the quality of the welded joints discussed by Palani et al. [8, 9].
The responses of the welding process, viz., bead geometry, tensile properties, hardness and grain size were optimized by using the different optimization techniques, such as Taguchi method and response surface methodology reported by Montgomery DC [10]. The enhancement of mechanical properties was decided by investigating the microstructures at the different zones of the welded joints studied by Palani et al. [11]. Some of the previous literature was made on the effects of process parameters on the microstructures and mechanical properties of the welded joints for the different welding processes. Shi Y et al. [12] studied the effect of underwater wet flux cored arc welding (FCAW) parameters on weld bead geometry using Taguchi L16 orthogonal array design and they predicted the responses of the bead geometry in welding compared with the experimental responses. Raja Dhas JE et al. [13] attempted the investigation on the bead geometry of the low alloy steel using submerged arc welding process (SAW) with the parameters of arc voltage, welding speed and welding current and also applied the sensitivity analysis on the SAW process parameters of the welded joints. They reported that the more sensitiveness of the dilution was found for arc voltage and welding current compared to the other bead geometry of the joints. Yeni C et al. [14] made an investigation on the microstructure and mechanical properties of the AA 7075 aluminium alloy joints using both friction stir welding process and conventional fusion welding process, viz., Metal inert gas welding (MIG) and tungsten inert gas welding (TIG) process. They observed that the coarse grains for both fusion welding process were found in weld centre of the joints, whereas the fine grains appeared in stir zone of the joints.

Dongxia Y et al. [15] successfully made a laser welding of dissimilar non-ferrous Al-Mg alloys with the proper selection of laser welding process parameters, such as welding laser power, welding speed, wire feed rate to produce the good quality of the welded joints. They optimized that the process parameters of 2.4 kW laser power, 50 mm/sec welding speed and 35 mm wire feed rate using the Taguchi method. They reported that the welding speed was the dominant significant parameter compared to other parameters on the bead geometry of the joints. The lightweight nonferrous alloys were focused in aerospace, transportation and automobile industries due to its properties such as high strength-to-weight ratio and corrosion resistance using the friction stir welding process by Elanchezhian C et al. [16]. They used the Taguchi L9 orthogonal array design to optimize the tensile strength of the welded joints with the optimum parameters of tool rotational speed of 1400 RPM, transverse speed of 75mm/min, plunge force of 7 kN, 15.54 mm diameter of the tool, 5.13 mm diameter of the tool pin with tool hardness of 600 HV. Arun Kumar N et al. [17] applied the friction stir welding process on the AA 7075-T651 aluminium alloy 6.35 mm thick plates and optimized the process parameters viz., rotational speed, transverse speed and plunge force on the impact strength of the welded joints using Taguchi L9 orthogonal array design. The most contributing parameters of transverse speed 35.81%, axial force 22.23% and rotational speed 7.49% was found using the analysis of variance and also they reported the maximum impact strength 43.89 for the optimum process settings of rotational speed 1200r/min, axial force 2 kN and transverse speed 62 mm/min for the FSW joints. The sensitivity of the responses based on small changes in process parameters of the welding process was studied using the sensitivity analysis. It is used to enhance the output responses of the welding process by selecting the suitable process parameters of the joints. Rajakumar S et al. [18] successfully friction stir welding on AA 6061-T6 aluminium alloys and developed the mathematical models to study the nature of the sensitiveness of the parameters on the welded joints. Also they reported that the optimum parameter settings of rotational speed of 1150 r/min, axial force of 7.16 kN, transverse speed of 84.3 mm/min, shoulder and pin diameter of the tool of 15.5 mm and 5.2 mm with 45 HRC tool hardness exhibited the maximum strength (225 Mpa) of the welded joints.
The transverse speed showed that as more sensitive than the other parameters on the strength of the joints using sensitivity analysis. Karthikeyan R et al. [19] focused on the lightweight materials (AA 7075-T6) in aerospace applications using the friction stir spot welding process with the suitable parameters of plunge depth, rotational speed, plunge rate and dwell period and optimized these parameters using the response surface methodology. They reported that the initial plunge depth involvement was more in joining of the alloys, further increment of the plunge depth, there were no changes occurred, whereas the strength of the joints at certain limit increased by increasing the other parameter then it was decreased further increment of the other parameters. Saravanan V et al. [20, 21] successfully investigated the effect of the rotational speed of the FSW tool on the dissimilar AA 2014-T6 and AA 7075-T6 aluminum alloys joints. They reported that the enhancement of strength properties owing to the formation of fine equiaxed grain regions in the stir zone with proper material mixing and plastic deformation of the alloy materials by microstructural analysis. The very limited work was carried out earlier literature on the dissimilar nonferrous alloys using the plasma arc welding (PAW) process and the discussion was made only on the bead properties of the welded joints. Ther is no work was carried out on the sensitiveness of the tensile properties of the PAW process. This work is focused to investigate the sensitivity of the PAW process parameters on the tensile properties of the joints.

2. Experimental Procedure

In this investigation, the AA 8011 aluminium alloys [22] and Ti3Al2.5V Titanium alloys (purchased from Kataria steel distributors, Mumbai, Maharashtra) with the dimensions of 100 mm x 100 mm x 6 mm were selected to make the plasma arc welded (PAW) butt joints. The chemical composition (wt. %) and mechanical properties of the AA 8011 aluminium alloys and Ti3Al2.5V Titanium alloys are presented in Table 1 and Table 2 respectively. The plates were initially cut by using the power hacksaw and the cleaning process was done with Ultrasonic bath sonicator and acetylene.

Table 1 Chemical composition (wt. %) and Mechanical properties of the AA8011-H24 Aluminium alloy

Chemical composition (wt. %)	Fe	Si	Mn	Cu	Mg	Cr	Ti	Zn	Al
	0.74	0.56	0.10	0.13	0.08	0.10	0.005	0.08	Balance
Mechanical properties									
Yield strength (Mpa)	110								
Ultimate tensile strength (Mpa)	140								
Elongation (%)	5.6								

Table 2 Chemical composition (wt. %) and Mechanical properties of the Ti3Al2.5V Titanium alloy

Chemical composition (wt. %)	Si	Fe	Al	V	O	C	H	N	Ti
	0.0.14	0.30	3.0	2.5	0.12	0.05	0.02	0.02	Balance
Mechanical properties									
Yield strength (Mpa)	518								
Ultimate tensile strength (Mpa)	620								
Elongation (%)	15								

The alloy plates were placed in a horizontal position with 45° chamber angle and maintained 0.5 mm gap between the plates. The standard ER4043 filler rod with 2 mm diameter and argon gas as shielding gas was used to join the alloy materials using the plasma arc welding machine is shown in Figure 1 (fabricated from Sri Multi Weld Systems, Chennai, Tamil Nadu) and the welding conditions are shown in Table 3. The selection of proper parameters and clamping fixtures decide the good quality of the welded joints.
In this investigation, the welding speed, welding current and gas flow rate were selected as the welding process parameters of the PAW process based on the previous literature on the non-ferrous alloy materials. The three factors, five levels central composite design of response surface methodology [23] was introduced to conduct the effective experimental trails by minimizing the effort and cost through avoiding the unnecessary experiments. The range of parameters and their levels are presented in Table 4. The twenty different combination of experiments were conducted on these aluminium alloys and titanium alloys using plasma arc welding process.

Table 3 Plasma Arc Welding process conditions
PAW Parameters
Welding Speed, (mm/min)
Welding Current, A
Gas flowrate, (lpm)
Shielding gas
Electrode rod and its diameter
Nozzle to plate distance, mm
Torch angle, deg

The tensile specimens were prepared to perform the tensile behaviour of the PAW butt joints according to the ASME SEC IX standards [24] using the Tensile testing machine (Model: FIE, UTN 40) and the tensile testing was conducted in Omega inspection and analytical laboratory, Chennai. The tensile test response of the PAW butt joints, viz., the tensile strength was shown in Table 5 along with the design matrix.

3. Results and Discussion

3.1 Developing a mathematical model for PAW process

The statistical method was used to analyze the responses using the input parameters by response surface methodology through the collective information of the process shown in equation (1),

\[Y = f(x_1, x_2, \ldots, x_k) \pm \varepsilon \]

(1)
Table 5 Design matrix and Experimental results for Plasma Arc Welding (PAW)

Exp. No.	Welding Speed (mm/min)	Welding Current (Amp)	Gas Flow rate (l/min)	Tensile strength (Mpa)
1	-1	-1	-1	82
2	1	-1	-1	85.6
3	-1	1	-1	82.8
4	1	1	-1	90.7
5	-1	-1	1	93.2
6	1	-1	1	88.8
7	-1	1	1	66.6
8	1	1	1	68.5
9	-1.682	0	0	88.2
10	1.682	0	0	95
11	0	-1.682	0	72.8
12	0	1.682	0	57.6
13	0	0	-1.682	94
14	0	0	1.682	86.4
15	0	0	0	88.2
16	0	0	0	86
17	0	0	0	85.8
18	0	0	0	85.2
19	0	0	0	86.6
20	0	0	0	85.4

Where Y is the response variable and x1, x2 and xk are the input parameter variables of the process. The present work deals with the developed regression models shown in equation (2) which gives the relationship between the PAW parameters and the tensile properties of the butt joints. These second order models used to predict the tensile properties of the PAW process with acceptable values of the experimental responses [],

$$Y=b_o + \sum b_i x_i + \sum b_{ij} x_i^2 + \sum b_{ij} x_i x_j + \varepsilon$$

(2)

Where \(b_o\) is the mean value of the responses and \(b_i, b_{ij}, b_{ij}\) is the parameter coefficients of the main and interaction effects. The three factors, five levels central composite design was applied on the second order quadratic models of the welded joints using Design-Expert 8.1 software [25]. The mathematical models of the response, viz., the tensile strength of the PAW process are represented in equations (3)

$$TS(MPa)=86.19+1.50(S)-4.87(I)-2.69(Q)+1.33(SI)-1.75(SQ)-6.60(IQ)+1.95(S^2)-7.39(I^2)+1.45(Q^2)$$

(3)
Table 6 Analysis of variance for Tensile strength

Source	Sum of Squares	df	Mean Square	F Value	p-value (Prob > F)
Model	1787.50	9	198.61	161.51	< 0.0001
S-Welding Speed*	30.58	1	30.58	24.87	0.0005
I-Welding Current*	324.43	1	324.43	263.82	< 0.0001
Q-Gas Flowrate*	99.06	1	99.06	80.56	0.0001
SI*	14.05	1	14.05	11.42	0.0070
SQ*	24.50	1	24.50	19.92	0.0012
IQ*	348.48	1	348.48	283.38	< 0.0001
S^2*	54.60	1	54.60	44.40	< 0.0001
F^*	786.48	1	786.48	639.55	< 0.0001
Q^2*	30.36	1	30.36	24.69	0.0006
Residual	12.30	10	1.23		
Lack of Fit	6.30	5	1.26	1.05	0.4795
Pure Error	6.00	5	1.20		
Core Total	1799.80	19			
R-Squared	0.9932				
Adj R-Squared	0.9870				
Adeq Precision	48.112				
Pred R-Squared	0.9682				

* Significant Terms

3.2 Checking for adequacy of the model

In this work, the analysis of variance (ANOVA) was used to check the adequacy of the developed regression model for tensile strength using the Design-Expert 8.1 software. The model F-value of the tensile strength was found as 161.51 which indicates the model is significant at 95% confidence level shown in Table 6. The main effects of S, I, Q and interaction effects of SI, SQ, IQ, S^2, F^ and Q^ were studied as a significant model for the tensile strength, whereas there is 47.95% chance of lack of fit found for the tensile strength which could be more due to noise effects. Furthermore, the regression coefficient (R^2 value) is closer to one which has a good reasonable agreement with the responses [26]. The predicted R^2 value of 0.9682 is in good agreement with the adjacent R^2 value of 0.9870 for the tensile strength of the PAW butt joints.

3.3 Sensitivity analysis on the tensile strength of the PAW process

The Sensitivity analysis is to study the sensitiveness of the objective function by the variation of input parameters of the process which is used to predict the quality of the welded joints. The tendency of increment or decrement of the objective function based on the critical input process parameters and priority of these parameters by their contribution were identified to optimize the parameters on the responses [27]. The partial derivatives were applied on the objective function with respect to the design parameters to identify the sensitivity of the parameters on the responses [28].

\[
\frac{\partial TS}{\partial S} = 1.5 + 1.33(I) - 1.75(Q) + 3.9(S) \quad (4)
\]

\[
\frac{\partial TS}{\partial I} = -4.87 + 1.33(S) - 6.60(Q) - 14.78(I) \quad (5)
\]
In this analysis, the increment of the objective function by a small change in parameter showed as the positive sensitive behaviour, while the decrement of the objective function showed the negative sensitive behaviour in the variation of a small amount of parameters of the welded joints [29]. The partial derivatives of the tensile strength with respect to the input PAW parameters were given in Table 7. The sensitivity analysis of the tensile strength of the PAW butt joints with respect to a small change in input process parameters, such as welding speed, welding current and gas flow rate is presented in Figure 2.
The figure 2(a) showed that the sensitivity of the tensile strength of the PAW process with the small variations of the welding speed. It can be seen that the tensile strength of the joints is decreased at the lower welding speed and at constant welding current (250A) whereas tensile strength of the welded joints gradually increases further increment of welding speed due to proper diffusion of the alloys [30]. The lower tensile strength was observed at the higher welding speed and the constant current shown in figure 2(b) which is due to improper material reaction at the weld zone and it produces the solidification defects. The figure 2(c) shows the decrement of the tensile strength of the joints by the small changes in welding speed and gas flow rate. The combinations of lower gas flow rate and welding speed produced the higher tensile strength compared to other flowrates while it is lower than the measured tensile strength.

Figure 2 Sensitivity analysis on the tensile strength of the PAW process, (a) Welding Speed, (b) Welding Current and (c) Gas Flowrate.

It can be seen that the maximum tensile strength was obtained at the higher welding speed with a constant welding current (250A) due to proper shielding gas nearby and at the welded region which controls the environmental oxidation process is presented in figure 3. The lower strength was achieved at the higher gas flow rate with constant welding current (250A) due to the oxidation process was occurring at the welded region [31] which degrades the strength of the welded joints. The results were revealed from the figure 2, the welding speed was the more sensitive than the other parameters followed by the welding current and gas flow rate.
3.4 Microstructural Analysis

The microstructural analysis of the plasma arc welded joints was discussed to decide the behaviour of the welded joints on the strength properties. The dissimilar plasma arc welded joints of AA8011-H24 aluminium alloys and Ti3Al2.5V Titanium alloys was presented in Figure 3. In this work, the microstructures were examined at different zones of the welded joints. Figure 3(a) showed that the coarse grains appeared in the base AA8011-H24 of aluminium alloys whereas the grain growth was found at the heat affected zone (HAZ) in Figure 3(b).

![Microstructural Analysis of the PAW butt joints](image)

Figure 3 Microstructural Analysis of the PAW butt joints

The different crystalline structure was formed at the weld interface between the aluminium alloys and titanium alloys in Figure 3(c) which degrades the strength of the welded joints. The clear interface zone was found in Figure 3(d) nearby the titanium alloys which degrades the strength of the joints and induced the grain growth due to the heat input [32]. The needle-like structure appeared in Figure 3(e) which was shown in the titanium material.

4 Conclusions

The optimization of the PAW process parameters on the tensile properties of the AA8011 aluminium alloys and Ti3Al2.5V Titanium alloys were investigated using the Response surface methodology. From this investigation, the following important conclusions are listed below:

- The mathematical relationship was obtained to predict the tensile properties of the plasma arc welded dissimilar AA8011 aluminium alloys and Ti3Al2.5V Titanium alloys joints by incorporating the input parameters at 95% confidence level.
- The sensitivity analysis was applied to investigate the sensitiveness of the response, tensile strength of the welded joints with small variations of process parameters of the dissimilar joints.
The welding speed was the more sensitive parameter compared to the other PAW parameters followed by the welding current and gas flow rate.

The intermetallic region was observed at the interface which was nearby the titanium alloys which reduces the strength of the joints and induced the grain growth due to the heat input.

5 References

[1] Kreimeyer M, Wagner F and Vollertsen F 2005 Opt. Las. Engg. 43 1021-35
[2] Chen YC and Nakata K 2009 Mater. Des. 30 469-74
[3] Palani K, Elanchezhian C, Vijaya Ramnath V, Bhaskar GB, Sai Jagadeesh J and Kumar GM 2017 Int. J. Res. Appl. Sci. Engg. Technol. 5 437-42
[4] Tomashchuk I, Sallamand P, Méasson A, Cicala E, Duband M and Peyre P 2017 J. Mater. Proc. Tech. 245 24-36
[5] Peyre P, Berthe L, Dal M, Pouzet S, Sallamand P and Tomashchuk I 2014 J. Mater. Proc. Tech. 214 1946-53
[6] Umanath K, Palanikumar K, Balasubramanian V and Selvamani ST 2015 Appl. Mecha. Mater. 766 757-64
[7] Tahsini SM, Halvace A and Khosravi H 2016 J. Cent. South Univ. 23 1839-46
[8] Palani K and Elanchezhian C 2015 App. Mech. Mat. 814 451-55
[9] Palani K and Elanchezhian C 2015 App. Mech. Mat. 766 921-27
[10] Montgomery DC 2017 9th ed. Wiley J & Sons, New York
[11] Palani K, Elanchezhian C, Bhaskar GB and Ramnath BV 2018 Adv. Sci. Enng. Med. 10 1-6
[12] Shi Y, Zheng Z and Huang J 2013 Trans. Nonfer. Met. Soc. China 23 1977-84
[13] Raja Dhas JE and Satheesh M 2013 Ind. J. Eng. Mater. Sci 20 425-34
[14] Yeni C, Sayer S and Pakdil M 2009 Kovov. Mater. 47 341-47
[15] Dongxia Y, Xiaoyan L, Dingyong H, Zuoren N and Hui H 2012 Opt. Las. Tech. 44 2020-25
[16] Elanchezhian C, Ramnath BV, Venkatesan P, Sathish S, Vignesh T, Siddharth RV, Vinay B and Gopinath K 2014 Proc. Engg. 97 775-82
[17] Arun Kumar N, Elanchezhian C and Ramnath BV 2014 Int. J. Engg. Res. 3 (1) 148-50
[18] Rajakumar S, Muralidharan C and Balasubramanian V 2011 Int. J. Manuf. Res. 6 (3) 215-35
[19] Karthikeyan R and Balasubramanian V 2012 Int. J. Manuf. Res. 7 (3) 257-72
[20] Saravanan V, Rajakumar S and Muruganandam A 2016 J. Adv. Mech. Engg. Sci. 2 (4) 19-24
[21] Saravanan V, Banerjee N, Amuthakkannan R and Rajakumar S 2015 Appl. Mech. Mater. 787 350-54
[22] Palani K, Elanchezhian C 2015 Appl. Mecha. Mater. 813 446-450
[23] Palanivel R and Koshy Mathews P 2012 J. Cent. South Univ. 19 1-8
[24] Juang SC and Tang YS 2005 J. Mater. Proc. Tech. 160 128-37
[25] Vijayan D and Rao VS 2016 J. Cent. South Univ. 23 1847-57
[26] Benyounis KY, Olabi AG and Hashmi MSJ 2005 J. Mater. Proc. Tech. 164 978-85
[27] Karthikeyan R and Balasubramanian V 2013 Exp. Tech. 37 (2) 6-15
[28] Kim IS, Son KJ, Yang YS and Yaragada PKDV 2003 Int. J. Mach. Tools Manuf. 43 763-69
[29] Karaoglu S and Secgin A 2008 J. Mater. Proc. Tech. 202 500-07
[30] Tian X, Liu Y, Deng W and Liu G 2015 Int. J. Adv. Manuf. Tech. 78 (1-4) 481-92
[31] Taban E and Kaluc E 2007 Kovov. Mater. 45 241-48
[32] Balasubramanian M, Jayabalan V and Balasubramanian V 2007 Int. J. Manu. Res. 2 (4) 403-13