Multi-scale regularity of axisymmetric Navier-Stokes equations

Daoyuan Fanga, Hui Chenb,\ast, Ting Zhanga

aSchool of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P.R. China
bSchool of Science, Zhejiang University of Science and Technology, Hangzhou 310023, P.R. China

Abstract

By applying the delicate \textit{a priori} estimates for the equations of \((\Phi, \Gamma)\), which is introduced in the previous work, we obtain some multi-scale regularity criteria of the swirl component \(u^{\theta}\) for the 3D axisymmetric Navier-Stokes equations. In particularly, the solution \(u\) can be continued beyond the time \(T\), provided that \(u^{\theta}\) satisfies

\[
\begin{align*}
u^{\theta} & \in L_{T}^{p}L_{w}^{q_{v}}L_{h}^{q_{h}}, \quad \frac{2}{p} + \frac{1}{q_{v}} + \frac{2}{q_{h}} \leq 1, \quad 2 < q_{h} \leq \infty, \quad \frac{1}{q_{v}} + \frac{2}{q_{h}} < 1.
\end{align*}
\]

Keywords: axisymmetric Navier-Stokes equations, regularity criteria, anisotropic.

2000 MSC: 35K15, 35K55, 35Q35, 76D03

1. Introduction

This article aims at presenting some new regularity criteria of the swirl component \(u^{\theta}\), in the framework of anisotropic Lebesgue space, which improve in that of [7].

\astCorresponding author.

Email addresses: dyf@zju.edu.cn (Daoyuan Fang), chenhui@zust.edu.cn (Hui Chen), zhangting79@zju.edu.cn (Ting Zhang)
Consider the Cauchy problem of the 3D Navier-Stokes equations:

\begin{equation}
\begin{aligned}
\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \Delta \mathbf{u} + \nabla p &= 0, \\
\nabla \cdot \mathbf{u} &= 0, \\
\mathbf{u}|_{t=0} &= \mathbf{u}_0.
\end{aligned}
\tag{1.1}
\end{equation}

where \(\mathbf{u}(t, x) = (u^1, u^2, u^3) \), \(p(t, x) \) and \(\mathbf{u}_0 \) denote the fluid velocity field, the pressure, and the given initial velocity field, respectively.

For given \(\mathbf{u}_0 \in L^2(\mathbb{R}^3) \) with \(\text{div} \; \mathbf{u}_0 = 0 \) in the sense of distribution, a global weak solution \(\mathbf{u} \) to the Navier-Stokes equations was constructed by Leray [31] and Hopf [20], which is called Leray-Hopf weak solution. The regularity of such Leray-Hopf weak solution in three dimension plays an important role in the mathematical fluid mechanics. One essential work is usually referred as Prodi-Serrin (P-S) conditions (see [10, 11, 18, 38, 40, 41, 42]), i.e. if in addition, the weak solution \(\mathbf{u} \) belongs to \(L^p((0, T); L^q(\mathbb{R}^3)) \), where \(\frac{2}{p} + \frac{3}{q} \leq 1 \), \(3 \leq q \leq \infty \), then the weak solution becomes regular.

In this paper, we assume that the solution \(\mathbf{u} \) of the system (1.1) has the axisymmetric form

\begin{equation}
\mathbf{u}(t, x) = u^r(t, r, x_3)\mathbf{e}_r + u^\theta(t, r, x_3)\mathbf{e}_\theta + u^3(r, x_3)\mathbf{e}_3,
\tag{1.2}
\end{equation}

where

\[
\mathbf{e}_r = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0\right), \quad \mathbf{e}_\theta = \left(-\frac{x_2}{r}, \frac{x_1}{r}, 0\right), \quad \mathbf{e}_3 = (0, 0, 1), \quad r = \sqrt{x_1^2 + x_2^2}.
\]

In above, \(u^\theta \) is usually called the swirl component. And if \(u^\theta = 0 \), the solution \(\mathbf{u} \) is without swirl.

For the axisymmetric solutions of Navier-Stokes system, we can equiva-
lently reformulate (1.1) as

\[
\begin{aligned}
\partial_t u^r + (u^r \partial_r + u^3 \partial_3) u^r - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r - \frac{1}{r^2}) u^r - \frac{(u^\theta)^2}{r} + \partial_r p &= 0, \\
\partial_t u^\theta + (u^r \partial_r + u^3 \partial_3) u^\theta - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r - \frac{1}{r^2}) u^\theta + \frac{u^\theta u^r}{r} &= 0, \\
\partial_t u^3 + (u^r \partial_r + u^3 \partial_3) u^3 - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r) u^3 + \partial_3 p &= 0, \\
\partial_r u^r + \frac{1}{r} u^r + \partial_3 u^3 &= 0, \\
(u^r, u^\theta, u^3)|_{t=0} &= (u^r_0, u^\theta_0, u^3_0).
\end{aligned}
\]

(1.3)

For the axisymmetric velocity field u, we can also compute the vorticity $\omega = \text{curl } u$ as follows,

\[
\omega = \omega^r e_r + \omega^\theta e_\theta + \omega^3 e_3,
\]

(1.4)

with $\omega^r = -\partial_3 u^\theta$, $\omega^\theta = \partial_3 u^r - \partial_r u_3$, $\omega^3 = \partial_r u^\theta + \frac{u^\theta}{r}$. Furthermore, $(\omega^r, \omega^\theta, \omega^3)$ satisfy

\[
\begin{aligned}
\partial_t \omega^r + (u^r \partial_r + u^3 \partial_3) \omega^r - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r - \frac{1}{r^2}) \omega^r - (\omega^r \partial_r + \omega^3 \partial_3) u^r &= 0, \\
\partial_t \omega^\theta + (u^r \partial_r + u^3 \partial_3) \omega^\theta - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r - \frac{1}{r^2}) \omega^\theta - \frac{2u^\theta \partial_3 u^\theta}{r} - \frac{u^r \omega^\theta}{r} &= 0, \\
\partial_t \omega^3 + (u^r \partial_r + u^3 \partial_3) \omega^3 - (\partial_r^2 + \partial_3^2 + \frac{1}{r} \partial_r) \omega^3 - (\omega^r \partial_r + \omega^3 \partial_3) u^3 &= 0, \\
(\omega^r, \omega^\theta, \omega^3)|_{t=0} &= (\omega^r_0, \omega^\theta_0, \omega^3_0).
\end{aligned}
\]

(1.5)

The bounded property of ru^θ preserves as the time grows, i.e. $ru^\theta \in L^\infty([0, +\infty); L^\infty(\mathbb{R}^3))$, if $ru^\theta_0 \in L^\infty(\mathbb{R}^3)$, see [37, 35] etc. It is an essential ingredient for the axisymmetric Navier-Stokes equations. And it makes us to consider the regularity criteria of u^θ in the critical case for the axisymmetric Navier-Stokes equations.

We recall that global well-posedness result was firstly proved under no swirl assumption, i.e. $u^\theta = 0$, independently by Ukhovskii and Yudovich [43], and Ladyzhenskaya [26], also [30] for a refined proof. When the angular velocity u^θ is not trivial, the global well-posedness problem is still open. Much attentions has been draw for decades and tremendous efforts
and interesting progress have been made on the regularity problem of the axisymmetric Navier-Stokes equations\cite{3, 4, 5, 6, 7, 23, 25, 28, 45} etc. . In \cite{4, 5}, Chen, Strain, Tsai and Yau proved that the suitable weak solutions are smooth if the velocity field u satisfies $r|u| \leq C < \infty$. Applying the Liouville type theorem for the ancient solutions of Navier-Stokes equations, Z. Lei and Qi S. Zhang \cite{28} obtained the similar result in the case $b = u^r(t, r, x_3)e_r + u^3(t, r, x_3)e_3 \in L^\infty((0, T); BMO^{-1})$. And we promote in \cite{7} that the solution u is smooth in $(0, T) \times \mathbb{R}^3$, if $r^d u^\theta \in L^p((0, T); L^q(\mathbb{R}^3))$, where

$$\frac{2}{p} + \frac{3}{q} \leq 1 - d, \quad 0 \leq d < 1, \quad \frac{3}{1-d} < q \leq \infty, \quad \frac{2}{1-d} \leq p \leq \infty.$$

The above regularity criteria of u^θ, which is scaling invariant, greatly develop the corresponding regularity criteria in \cite{24, 25, 37, 45}. Unfortunately, it fails in the critical case $d = 1$, which is the ideal goal, since the conservation law of $r u^\theta$. Since then, there are some significant improvements and applications \cite{29, 44, 6, 12}.

In this paper, we introduce an anisotropic Lebesgue space $L^p_T L^q_v L^{q_h,w}_h$, since the solutions behavior anisotropic on the variable r and x_3. By applying the delicate a priori estimations for the equations of (Φ, Γ), we can obtain the regularity criteria

$$u^\theta \in L^p_T L^q_v L^{q_h,w}_h, \quad \frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} \leq 1, \quad 2 < q_h \leq \infty, \quad \frac{1}{q_v} + \frac{2}{q_h} < 1.$$

It improves the regularity criteria in \cite{7}. Moreover it provides us a new perspective to the open problem, instead of the weighted Lebesgue space in \cite{7}. For instance, we assume $r u^\theta$ is Hölder for the variable r, i.e. $|u^\theta| \leq C r^{\alpha-1}$, $0 < \alpha \leq 1$. Therefore, the solution u is regular, since $u^\theta \in L^\infty_T L^\infty_v L^{2,\infty}_h$. The authors in \cite{4, 5, 7, 28} drew a similar argument. And there are some detail discussions in Remark 1 for the extreme points.

Notations. Throughout this paper, $L^{q,r}(\mathbb{R}^n)$ stands for Lorentz space, while $L^{q,w} = L^{q,\infty}$.

Moreover, we introduce the Banach space $L^p_T L^q_v L^{q_h,w}_h$, equipped with norm

$$\|f\|_{L^p_T L^q_v L^{q_h,w}_h} = \||f(t, x_1, x_2, x_3)\|_{L^{q_h,w}((\mathbb{R}^3, dx_1dx_2))} \|L^{q_v}(\mathbb{R}, dx_3)\|_{L^p((0,T), dt)}.$$
And we denote $\dot{H}^{s,p}$ and $\dot{B}^{s,q}_{p,q}$ for the homogeneous Sobolev space and homogeneous Besov space, respectively. For simplicity, we denote $\dot{H}^{s} = \dot{H}^{s}(\mathbb{R}^2, dx_1dx_2)$, $L^p_x = L^p(\mathbb{R}^3, dx)$. And the other ones are similar.

We note $b = u^r(t, r, x_3)e_r + u^3(t, r, x_3)e_3$, and $(\Phi, \Gamma) = (\frac{\omega^r}{r}, \frac{\omega^\theta}{r})$, while ω^r, ω^θ is defined in (1.4).

Finally, we note C the arbitrary constant.

2. Main Result

Theorem 2.1. Let $u \in C([0, T); H^2(\mathbb{R}^3)) \cap L^2_{loc}([0, T); H^3(\mathbb{R}^3))$ be the unique axisymmetric solution of the Navier-Stokes equations with the axisymmetric initial data $u_0 \in H^2(\mathbb{R}^3)$ and $\text{div } u_0 = 0$. If $ru^\theta_0 \in L^\infty$ and the time $T < \infty$, the solution u can be continued beyond the time T, provided that the swirl u^θ satisfies

$$r^d u^\theta \in L_T^p L_v^{q_v} L_h^{q_h,w}, \quad \frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} \leq 1 - d, \quad -1 \leq d < 1, \quad \frac{2}{1-d} < q_h \leq \infty, \quad \frac{1}{q_v} + \frac{2}{q_h} < 1 - d.$$

Set $d = 0$ in Theorem 2.1, and the following corollary is derived straightforward.

Corollary 2.2. Let $u \in C([0, T); H^2(\mathbb{R}^3)) \cap L^2_{loc}([0, T); H^3(\mathbb{R}^3))$ be the unique axisymmetric solution of the Navier-Stokes equations with the axisymmetric initial data $u_0 \in H^2(\mathbb{R}^3)$ and $\text{div } u_0 = 0$. If $ru^\theta_0 \in L^\infty$ and the time $T < \infty$, the solution u can be continued beyond the time T, provided that the swirl u^θ satisfies

$$u^\theta \in L_T^p L_v^{q_v} L_h^{q_h,w}, \quad \frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} \leq 1, \quad 2 < q_h \leq \infty, \quad \frac{1}{q_v} + \frac{2}{q_h} < 1. \quad (2.1)$$

Remark 1. At the extreme points $\{p = \infty, \frac{1}{q_v} + \frac{2}{q_h} = 1, \quad 2 < q_h \leq \infty\}$ in Corollary 2.2, we can still derive regularity criteria with an additional smallness assumption

$$\|u^\theta\|_{L_T^\infty L_v^{q_v} L_h^{q_h,w}} \leq \epsilon,$$

where ϵ is a sufficiently small constant. The precise proof can be dealt with in an analogous process in Section 4.

As a matter of fact, $u^\theta \in L_T^\infty L_v^{\infty} L_h^{2,w}$, since $|ru^\theta| \leq C\|ru^\theta_0\|_{L^\infty(\mathbb{R}^3)}$. And the global regularity of the solutions of axisymmetric Navier-Stokes equations can be solved, if the extreme point $(p, q_v, q_h) = (\infty, \infty, 2)$ in Corollary 5.
2.2 is settled. However, the problems remain open. Recently, D. Wei [44] established regularity criterion of the form \(|u^\theta| \leq \frac{C}{r|\ln r|^2}, r < \frac{1}{2}\). And the function \(\frac{1}{r|\ln r|^2}|_{r<\frac{1}{2}} \in L_T^\infty L_v^\infty L_h^{2,\beta}, \beta > \frac{2}{3}\). Therefore, it remains gaps between \(L_h^{2,\frac{3}{2}}\) and \(L_h^{2,w}\) in a certain sense.

Remark 2. The Corollary 2.2 still holds if we replace the regularity criteria by

\[
u^\theta|_{r<\delta} \in L_T^p L_v^{q_v} L_h^{q_h,w},
\]

where \(\frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} \leq 1, \ 2 < q_v \leq \infty, \ \frac{1}{q_v} + \frac{2}{q_h} < 1\) and \(\delta > 0\) is an arbitrary constant.

Inspired by [4, 5, 23, 28], we have the following theorem in the critical space \(L_T^\infty L_v^\infty L_h^{2,w}\).

Theorem 2.3. Let \(u\) be an axisymmetric suitable weak solution of the Navier-Stokes equations (1.1) with the axisymmetric initial data \(u_0 \in L^2(\mathbb{R}^3), \ \text{div} \ u_0 = 0\), and \(ru^\theta_0 \in L^\infty(\mathbb{R}^3)\). Suppose \(b \in L_T^p L_v^{q_v} L_h^{q_h,w}\), then \(u\) is smooth in \((0,T] \times \mathbb{R}^3\).

Remark 3. The proof is analogously to [28], and we omit the details here.

3. Preliminaries

We will give some useful *a priori* estimates in the axisymmetric Navier-Stokes equations, and refer to [7, 35, 37, 44] for details.

Lemma 3.1. Assume \(u\) is the smooth axisymmetric solution of (1.1) on \([0,T]\). If in addition, \(ru^\theta_0 \in L^\infty(\mathbb{R}^3)\), then \(|ru^\theta| \leq C\|ru^\theta_0\|_{L^\infty(\mathbb{R}^3)}\).

Lemma 3.2 ([44]).

\[
\|\nabla u^\theta_r\|_{L^2(\mathbb{R}^3)} \leq \|\Gamma\|_{L^2(\mathbb{R}^3)}, \quad \|\nabla^2 u^\theta_r\|_{L^2(\mathbb{R}^3)} \leq \|\partial_3 \Gamma\|_{L^2(\mathbb{R}^3)}.
\]

Lemma 3.3. [7]

Let \(u \in C([0,T); H^2(\mathbb{R}^3)) \cap L^2_{loc}([0,T); H^3(\mathbb{R}^3))\) be the unique axisymmetric solution of the Navier-Stokes equations with the axisymmetric initial data \(u_0 \in H^2(\mathbb{R}^3)\) and \(\text{div} \ u_0 = 0\). If in addition, \(T < \infty\) and \(\|\Gamma\|_{L^\infty([0,T);L^2(\mathbb{R}^3))} < \infty\), then \(u\) can be continued beyond \(T\).
For convenience of readers, we will list some basic properties of Lorentz space.

Lemma 3.4. We denote $L^{p,q}, 0 < p, q \leq \infty$ the Lorentz space.

(i) If $0 < p, r < \infty, 0 < q \leq \infty$,

$$\| |g|^r \|_{L^{p,q}} = \| g \|_{L^{pr,qr}}^r. \quad (3.2)$$

(ii) [pointwise product] Let $1 < p < \infty, 1 \leq q \leq \infty$, $1 + \frac{1}{p} + \frac{1}{p'} = 1, \frac{1}{q} + \frac{1}{q'} = 1$. Then pointwise multiplication is a bounded bilinear operator:

a) from $L^{p,q} \times L^{\infty}$ to $L^{p,q}$;

b) from $L^{p,q} \times L^{p',q'}$ to L^1;

c) from $L^{p,q} \times L^{p_1,q_1}$ to L^{p_2,q_2}, for $1 < p_1, p_2 < \infty, \frac{1}{p_2} = \frac{1}{p} + \frac{1}{p_1}, \frac{1}{q_2} = \frac{1}{q} + \frac{1}{q_1}$;

d) if $q < \infty$, the dual space of $L^{p,q}$ is $L^{p',q'}$.

(iii) [convolution] Let $1 < p < \infty, 1 \leq q \leq \infty$, $1 + \frac{1}{p} + \frac{1}{p'} = 1, \frac{1}{q} + \frac{1}{q'} = 1$. Then convolution is a bounded bilinear operator:

a) from $L^{p,q} \times L^1$ to $L^{p,q}$;

b) from $L^{p,q} \times L^{p',q'}$ to L^∞;

c) from $L^{p,q} \times L^{p_1,q_1}$ to L^{p_2,q_2}, for $1 < p_1, p_2 < \infty, 1 + \frac{1}{p_2} = \frac{1}{p} + \frac{1}{p_1}, \frac{1}{q_2} = \frac{1}{q} + \frac{1}{q_1}$.

We give a general Sobolev-Hardy-Littlewood inequality.

Lemma 3.5. We assume $2 \leq p < \infty, 0 \leq s < \frac{n}{p}, 1 \leq r \leq \infty$. For all $f \in B^{s+n\left(\frac{1}{2} - \frac{1}{p}\right)}_{2,r}(\mathbb{R}^n)$, we have

$$\| f \|_{L^r(\mathbb{R}^n)} \leq C \| f \|_{B^{s+n\left(\frac{1}{2} - \frac{1}{p}\right)}_{2,r}(\mathbb{R}^n)}. \quad (3.3)$$

Proof. Set \(\frac{1}{p} = \frac{\alpha}{n} + \frac{1}{q} \), \(p < q < \infty \). Apply Lemma 3.4 and interpolation, successively, we have

\[
\left\| \frac{f}{|x|^s} \right\|_{L^{p,r}(\mathbb{R}^n)} \leq C \left\| \frac{1}{|y|^s} \right\|_{L^{\frac{n}{2},r}(\mathbb{R}^n)} \left\| f \right\|_{L^{q,r}(\mathbb{R}^n)} \\
\leq C \left\| f \right\|_{L^{q,r}(\mathbb{R}^n)} \\
\leq C \left\| f \right\|_{B^{\frac{n}{2}}_{q,r}(\mathbb{R}^n)} \\
\leq C \left\| f \right\|_{B^{\frac{n}{2} + \alpha \left(\frac{1}{2} - \frac{1}{p}\right)}_{q,r}(\mathbb{R}^n)}. \]
\]

Lemma 3.6 (Trace Operator). For all \(f \in \dot{H}^1(\mathbb{R}^3) \), we have

\[
\operatorname{esssup}_{x_3 \in \mathbb{R}} \left\| f(\cdot, x_3) \right\|_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^2)} \leq C \left\| f(\cdot) \right\|_{\dot{H}^1(\mathbb{R}^3)}, \tag{3.4}
\]

Proof. Since the translation invariance and dense embedding, it is sufficiently to show that

\[
\left\| f(\cdot, 0) \right\|_{\dot{H}^{\frac{1}{2}}(\mathbb{R}^2)} \leq C \left\| f(\cdot) \right\|_{\dot{H}^1(\mathbb{R}^3)}, \quad \forall f \in S(\mathbb{R}^3).
\]

Set \(x' = (x_1, x_2) \), \(\xi' = (\xi_1, \xi_2) \) and \(\gamma(f)(x_1, x_2) = f(x_1, x_2, 0) = f(x', 0) \),

\[
\gamma(f)(x_1, x_2) = (2\pi)^{-3} \int \int \int e^{ix' \cdot \xi'} \hat{f}(\xi) \ d\xi, \\
\gamma(\hat{f})(\xi_1, \xi_2) = (2\pi)^{-1} \int \hat{f}(\xi) \ d\xi_3 \\
\leq C \int \hat{f} |\xi| |\xi|^{-1} \ d\xi_3 \\
\leq C \left(\int |\hat{f}|^2 |\xi|^2 \ d\xi_3 \right)^{\frac{1}{2}} \left(\int |\xi|^{-2} \ d\xi_3 \right)^{\frac{1}{2}} \\
\leq C \left(\int |\hat{f}|^2 |\xi|^2 \ d\xi_3 \right)^{\frac{1}{2}} |\xi'|^{-\frac{1}{2}},
\]

Thus

\[
|\xi'||\hat{\gamma f}|^2 \leq C \int |\hat{f}|^2 |\xi|^2 \ d\xi_3.
\]

Finally, integrating both side with \(\int \int \ d\xi' \), we will derive the result. \(\square \)
We present an essential \textit{a priori} estimate below for Theorem 2.1.

\textbf{Lemma 3.7.} Assume $\frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} = 1 - d$, $-1 \leq d < 1$, $\frac{2}{1-d} < q_h \leq \infty$, $\frac{1}{q_v} + \frac{2}{q_h} < 1 - d$. For a sufficiently small constant $\epsilon > 0$, we have

$$
\int_{\mathbb{R}^3} \frac{|u^\theta|}{r}|f|^2 \, dx \leq C_{\epsilon} \|r^d u^\theta\|_{L^{q_v}_w L^{q_h}_w}(\mathbb{R}^3)^2 \|f\|^2_{L^2(\mathbb{R}^3)} + \epsilon \|\nabla f\|^2_{L^2(\mathbb{R}^3)}. \tag{3.5}
$$

\textbf{Proof.} Set

$$
a = \frac{2\tau}{p}, \quad b = \frac{2\tau}{q_v}, \quad c = 2 - a - b, \quad \frac{2}{\gamma} = 1 - \frac{\tau}{q_h}, \quad \tau = \begin{cases} 1, & 0 \leq d < 1 \\ \frac{1}{1-d}, & -1 \leq d < 0 \end{cases}.
$$

Thus

$$0 \leq a, b, c \leq 2, \quad a \neq 0, \quad 2 \leq \gamma < 4.$$

It is appeared to see that $\gamma > 2$ if $q_h < \infty$, and $\gamma = 2$ if $q_h = \infty$. By applying Lemma 3.4, Lemma 3.1, Lemma 3.5, Lemma 3.6 and interpolation, we can deduce the following estimates, respectively.

$$
\int_{\mathbb{R}^3} \frac{|u^\theta|}{r}|f|^2 \, dx = \int_{\mathbb{R}^3} \left|(ru^\theta)^{1-\tau}(r^d u^\theta)^\gamma \right| \frac{f^2}{r^{2+(d-1)\tau}} \, dx
\leq C \int_{\mathbb{R}} \|r^d u^\theta\|_{L^{q_h}_w} \|f\|_{L^{\frac{2}{1+(d-1)\tau}}_{L^2}}^2 \, dx_3
\leq C \int_{\mathbb{R}} \|r^d u^\theta\|_{L^{q_h}_w} \|f\|_{L^{\frac{1}{1+(d-1)\tau}}_{L^2}}^2 \, dx_3
\leq C \int_{\mathbb{R}} \|r^d u^\theta\|_{L^{q_v}_w} \|f(\cdot, x_3)\|_{B^\frac{(d-1)\tau}{2}_{\infty, \frac{d}{2}(\mathbb{R}^2)}}^2 \, dx_3
\leq C \int_{\mathbb{R}} \|r^d u^\theta\|_{L^{q_v}_w} \|f(\cdot, x_3)\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \|f(\cdot, x_3)\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \|f(\cdot, x_3)\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \, dx_3
\leq C \|r^d u^\theta\|_{L^{q_v}_w L^{q_h}_w} \|f\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \|f\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \|f\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^b \|\nabla f\|^2_{L^2}\tag{3.5}
\leq C_{\epsilon} \|r^d u^\theta\|_{L^{q_v}_w L^{q_h}_w} \|f\|_{L^\frac{1}{1+(d-1)\tau}_{L^2}}^2 + \epsilon \|\nabla f\|^2_{L^2}.
$$

\square
4. Proof of Theorem 2.1

• For simplicity, we only prove the Theorem 2.1 in the critical case, i.e.
\[r^d u^\theta \in L_T^p L_v^q L_h^{q_h,w}, \quad \frac{2}{p} + \frac{1}{q_v} + \frac{2}{q_h} = 1 - d, \quad -1 \leq d < 1, \quad \frac{2}{1 - d} < q_h \leq \infty, \quad \frac{1}{q_v} + \frac{2}{q_h} < 1 - d. \]

(4.1)

Otherwise, we can find \(p_* < p \), such that
\[
\| r^d u^\theta \|_{L_T^{p_*} L_v^q L_h^{q_h,w}} \leq T \frac{1}{p} \| r^d u^\theta \|_{L_T^{p} L_v^q L_h^{q_h,w}} < \infty, \\
\frac{2}{p_*} + \frac{1}{q_v} + \frac{2}{q_h} = 1 - d, \quad -1 \leq d < 1, \quad \frac{2}{1 - d} < q_h \leq \infty, \quad \frac{1}{q_v} + \frac{2}{q_h} < 1 - d.
\]

(4.2)

Therefore, we can calculate analogously below with the condition (4.2).

• As in [7], we introduce the ingredient \((\Phi, \Gamma) = (\omega^r, \omega^\theta)r\), which satisfy the following equations
\[
\begin{aligned}
\partial_t \Phi + (b \cdot \nabla) \Phi - (\Delta + \frac{2}{r} \partial_r) \Phi - (\omega^r \partial_r + \omega^\theta \partial_\theta) \frac{u^r}{r} &= 0, \\
\partial_t \Gamma + (b \cdot \nabla) \Gamma - (\Delta + \frac{2}{r} \partial_r) \Gamma + 2 \frac{u^\theta}{r} \Phi &= 0.
\end{aligned}
\]

(4.3)

We show that
\[
\begin{aligned}
\frac{1}{2} \frac{d}{dt} \| \Phi \|_{L_x^2}^2 + \| \nabla \Phi \|_{L_x^2}^2 &= \int_{\mathbb{R}^3} u^\theta (\partial_r \frac{u^r}{r} \partial_\theta \Phi - \partial_\theta \frac{u^r}{r} \partial_r \Phi) \, dx \\
&\leq \frac{1}{2} \int_{\mathbb{R}^3} |u^\theta|^2 |\nabla \frac{u^r}{r}|^2 \, dx + \frac{1}{2} \| \nabla \Phi \|_{L_x^2}^2 \\
&\leq C \int_{\mathbb{R}^3} \frac{|u^\theta|}{r} |\nabla \frac{u^r}{r}|^2 \, dx + \frac{1}{2} \| \nabla \Phi \|_{L_x^2}^2.
\end{aligned}
\]

(4.4)

\[
\begin{aligned}
\frac{1}{2} \frac{d}{dt} \| \Gamma \|_{L_x^2}^2 + \| \nabla \Gamma \|_{L_x^2}^2 &= -2 \int_{\mathbb{R}^3} \frac{u^\theta}{r} \Gamma \Phi \, dx \\
&\leq \int_{\mathbb{R}^3} \frac{|u^\theta|}{r} |\Gamma|^2 \, dx + \int_{\mathbb{R}^3} \frac{|u^\theta|}{r} |\Phi|^2 \, dx.
\end{aligned}
\]

(4.5)
Applying Lemma 3.2 and Lemma 3.7 in (4.4), we have
\[\frac{d}{dt} \| \Phi \|_{L^2_x}^2 + \| \nabla \Phi \|_{L^2_x}^2 \leq C \int_{\mathbb{R}^3} \frac{|u^\theta|}{r} |\nabla \frac{u^r}{r}|^2 \, dx \]
\[\leq C \| r^d u^\theta \|_{L^p_{t,x} L^q_{h,x}}^p \| \nabla \frac{u^r}{r} \|_{L^2_x}^2 + \frac{1}{4} \| \nabla^2 \frac{u^r}{r} \|_{L^2_x}^2 \]
\[\leq C \| r^d u^\theta \|_{L^p_{t,x} L^q_{h,x}}^p \| \Gamma \|_{L^2_x}^2 + \frac{1}{4} \| \nabla \Gamma \|_{L^2_x}^2. \tag{4.6} \]

Analogously, applying Lemma 3.7 in (4.5), it is easy to obtain that,
\[\frac{1}{2} \frac{d}{dt} \| \Gamma \|_{L^2_x}^2 + \| \nabla \Gamma \|_{L^2_x}^2 \leq C \| r^d u^\theta \|_{L^p_{t,x} L^q_{h,x}}^p \left(\| \Phi \|_{L^2_x}^2 + \| \Gamma \|_{L^2_x}^2 \right) + \frac{1}{4} \| \nabla \Phi \|_{L^2_x}^2 + \frac{1}{4} \| \nabla \Gamma \|_{L^2_x}^2. \tag{4.7} \]

Summing up (4.6) and (4.7), we have
\[\frac{d}{dt} \left(\| \Phi \|_{L^2_x}^2 + \| \Gamma \|_{L^2_x}^2 \right) + \| \nabla \Phi \|_{L^2_x}^2 + \| \nabla \Gamma \|_{L^2_x}^2 \leq C \| r^d u^\theta \|_{L^p_{t,x} L^q_{h,x}}^p \left(\| \Phi \|_{L^2_x}^2 + \| \Gamma \|_{L^2_x}^2 \right). \]

Using Gronwall’s inequality, we have
\[\sup_{t \in [0, T^*]} \| \Gamma \|_{L^2_{t,x}(0,T^*;L^2_x)}^2 \leq \left(\| \Phi_0 \|_{L^2_x}^2 + \| \Gamma_0 \|_{L^2_x}^2 \right) \exp \left(C \| u^\theta \|_{L^p_{t,x} L^q_{h,x}}^p \right) < \infty. \tag{4.8} \]

Applying Lemma 3.3, we obtain that \(u \) can be continued beyond \(T \).

\[\square \]

Acknowledgments

This work is partially supported by NSF of China under Grants 11671353, 11331005 and 11771389, Zhejiang Provincial Natural Science Foundation of China LR17A010001.

References

[1] J. L. Burke, Qi S. Zhang, A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations, Adv. Differential Equations, 15(5-6) (2010), 531–560.

[2] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak
solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35(6) (1982), 771–831.

[3] D. Chae, J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239(4) (2002), 645–671.

[4] C. Chen, R. M. Strain, H. Yau, T. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math. Res. Not. IMRN, 2008(9) (2008), 31 pp.

[5] C. Chen, R. M. Strain, H. Yau, T. Tsai, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II, Comm. Partial Differential Equations, 34(1-3) (2009), 203–232.

[6] H. Chen, D. Fang, T. Zhang, Global axisymmetric solutions of three dimensional inhomogeneous incompressible Navier-Stokes system with nonzero swirl, Arch. Ration. Mech. Anal., 223(2) (2017), 817–843.

[7] H. Chen, D. Fang, T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Contin. Dyn. Syst., 37(4) (2017), 1923–1939.

[8] Q. Chen, Z. Zhang, Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations, J. Math. Anal. Appl., 331(2) (2007), 1384–1395.

[9] P. Constantin, C. Foias, Navier-Stokes Equation, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988.

[10] L. Escauriaza, G. Seregin, V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169(2) (2003), 147–157.

[11] E. B. Fabes, B. F. Jones, N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in L^p, Arch. Rational Mech. Anal., 45 (1972), 222–240.

[12] D. Fang, W. Le, T. Zhang, Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl, Nonlinear Anal., 166 (2018), 48–86.

[13] D. Fang, C. Qian, The regularity criterion for 3D Navier-Stokes equations involving one velocity gradient component, Nonlinear Anal., 78 (2013), 86–103.
[14] D. Fang, C. Qian, Some new regularity criteria for the 3D Navier-Stokes equations, arXiv:1212.2335.

[15] D. Fang, C. Qian, Several almost critical regularity conditions based on one component of the solutions for 3D NS equations, arXiv:1312.7378.

[16] T. Gallay, V. Šverák, Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations, Confluentes Mathematici, 7(2) (2015), 67–92.

[17] J. P. García Azorero, I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144(2) (1998), 441–476.

[18] Y. Giga, Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62(2) (1986), 186–212.

[19] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd edition, Cambridge, at the University Press, 1952.

[20] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213–231.

[21] T. Hou, C. Li, Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61(5) (2008), 661–697.

[22] N. Kim, Remarks for the axisymmetric Navier-Stokes equations, J. Differential Equations, 187(2) (2003), 226-239.

[23] G. Koch, N. Nadirashvili, G. A. Seregin, V. Šverák, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203(1) (2009), 83–105.

[24] O. Kreml, M. Pokorný, A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations, Electron. J. Differential Equations, 2017(08) (2017), 10 pp.

[25] A. Kubica, M. Pokorný, W. Zajączkowski, Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations, Math. Methods Appl. Sci., 35(3) (2012), 360–371.
[26] O. A. Ladyženskaja, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 7 (1968), 155–177.

[27] Z. Lei, E. A. Navas, Qi S. Zhang, A priori bound on the velocity in axially symmetric Navier-Stokes equations, Comm. Math. Phys., 341(1) (2016), 289–307.

[28] Z. Lei, Qi S. Zhang, A Liouville theorem for the axially-symmetric Navier-Stokes equations, J. Funct. Anal., 261(8) (2011), 2323–2345.

[29] Z. Lei, Qi S. Zhang, Criticality of the axially symmetric Navier-Stokes equations, Pacific J. Math., 289(1) (2017), 169-187.

[30] S. Leonardi, J. Málek, J. Nečas, M. Pokorný, On axially symmetric flows in \mathbb{R}^3, Z. Anal. Anwendungen, 18(3) (1999), 639–649.

[31] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’Hydrodynamique, Journal de Mathématiques Pures et Appliquées, 12 (1933), 1–82.

[32] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51(3) (1998), 241–257.

[33] J. Liu, W. Wang, Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry, J. Comput. Phys., 200(1) (2004), 8–33.

[34] J. Liu, W. Wang, Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows, SIAM J. Numer. Anal., 44(6) (2006), 2456–2480.

[35] J. Liu, W. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation, SIAM J. Math. Anal., 41(5) (2009), 1825–1850.

[36] Y. Liu, P. Zhang, On the global well-posedness of 3-D axisymmetric Navier-Stokes system with small swirl component, preprints, arXiv:1702.06279v1.
[37] J. Neustupa, M. Pokorný, Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component, Math. Bohem., 126(2) (2001), 469–481.

[38] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173–182.

[39] C. Qian, A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component, J. Differential Equations, 260(4) (2016), 3477–3494.

[40] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187–195.

[41] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41(4) (1988), 437–458.

[42] S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69(3) (1990), 237–254.

[43] M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52–61.

[44] D. Wei, Regularity criterion to the axially symmetric Navier-Stokes equations, J. Math. Anal. Appl., 435(1) (2016), 402–413.

[45] P. Zhang, T. Zhang, Global axisymmetric solutions to three-dimensional Navier-Stokes system, Int. Math. Res. Not., 2014(3) 2014, 610–642.