Non-diagonal problem Hamiltonian for adiabatic quantum computation

Oleg Lychkovskiy

Skolkovo Institute of Science and Technology

Steklov Mathematical Institute

TU Delft, 03 Feb 2019
Overview

1. Brief introduction to AQC
2. Monotone not-all-equal 3-satisfiability
3. Bottlenecks of AQC
4. Non-diagonal problem Hamiltonian
5. Summary
Adiabatic quantum computation (AQC) – two-step procedure:
Adiabatic quantum computation (AQC) – two-step procedure:

- map a computational problem to a *problem Hamiltonian* H_P with a ground state encoding the solution
Adiabatic quantum computation (AQC) – two-step procedure:

- map a computational problem to a *problem Hamiltonian* H_p with a ground state encoding the solution
- prepare this ground state adiabatically:

$$H_t = (1 - \frac{t}{T})H_0 + \frac{t}{T}H_p$$

Adiabatic condition: $T \gg \frac{1}{\Delta^2}$
Adiabatic quantum computation (AQC) – two-step procedure:

- map a computational problem to a problem Hamiltonian H_p with a ground state encoding the solution
- prepare this ground state adiabatically:

$$H_t = (1 - \frac{t}{T})H_0 + \frac{t}{T}H_p$$

adiabatic condition: $T_N \sim 1/\Delta_N^2$
Appeals of AQC
Appeals of AQC

- an elegant idea
Appeals of AQC

- an elegant idea
- good implementation prospects
Appeals of AQC

- an elegant idea
- good implementation prospects
- multiple interrelations with condensed matter physics
Challenges of AQC
Challenges of AQC

- run time T not known rigorously (for most of the algorithms)
Challenges of AQC

- run time T not known rigorously (for most of the algorithms)
- there is strong evidence that T can often scale unfavorably with the problem size N
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

N bits $z = (z_1, z_2, ..., z_N)$ (we take $z_i = \pm 1$)
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

\(N \) bits \(z = (z_1, z_2, ..., z_N) \) (we take \(z_i = \pm 1 \))

Instance of the problem:
- set \(C \) of \(M \) clauses
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

\[N \text{ bits } z = (z_1, z_2, ..., z_N) \quad (\text{we take } z_i = \pm 1) \]

Instance of the problem:

- set \(C \) of \(M \) clauses
- clause = \((i, j, m), \quad i, j, m \in [1, N] \text{ are pairwise nonequal}\)
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

N bits $z = (z_1, z_2, \ldots, z_N)$ (we take $z_i = \pm 1$)

Instance of the problem:

- set \mathcal{C} of M clauses
- clause $= (i, j, m)$, $i, j, m \in [1, N]$ are pairwise nonequal
- a clause satisfied whenever (z_i, z_j, z_j) are not all equal
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

\[N \text{ bits } z = (z_1, z_2, ..., z_N) \quad \text{(we take } z_i = \pm 1) \]

Instance of the problem:

- set \(\mathcal{C} \) of \(M \) clauses
- clause = \((i, j, m), \quad i, j, m \in [1, N] \) are pairwise nonequal
- a clause satisfied whenever \((z_i, z_j, z_j)\) are not all equal
- \(z \) is a solution (satisfying assumption) if all clauses from \(\mathcal{C} \) are satisfied
Monotone not-all-equal 3-satisfiability (MNAE3SAT)

\(N \) bits \(z = (z_1, z_2, ..., z_N) \) (we take \(z_i = \pm 1 \))

Instance of the problem:
- set \(C \) of \(M \) clauses
- clause = \((i, j, m),\) \(i, j, m \in [1, N]\) are pairwise nonequal
- a clause satisfied whenever \((z_i, z_j, z_j)\) are not all equal
- \(z \) is a solution (satisfying assumption) if all clauses from \(C \) are satisfied

MNAE3SAT is NP-complete
MNAE3SAT as a binary optimization problem

MNAE3SAT = binary optimization problem with the cost function

\[H_{cl}^p(z) = \sum_{(i,j,m) \in C} C_{ijm}^{cl}(z) \]

with

\[C_{ijm}^{cl}(z) = \begin{cases} 1 & \text{if } z_i = z_j = z_k, \\ 0 & \text{otherwise.} \end{cases} \]
MNAE3SAT as a binary optimization problem

MNAE3SAT = binary optimization problem with the cost function

\[H_p^{cl}(z) = \sum_{(i,j,m) \in C} C_{ijm}^{cl}(z) \]

with

\[C_{ijm}^{cl}(z) = \begin{cases}
1 & \text{if } z_i = z_j = z_k, \\
0 & \text{otherwise.}
\end{cases} \]

\[H_p^{cl}(z) \geq 0 \]

z is a satisfying assignment \[\iff \] \[H_p^{cl}(z) = 0 \]
Conventional H_p for MNAE3SAT

$$H_p = \sum_{(i,j,m) \in C} C_{ijm}$$

with

$$C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right)$$
Conventional H_p for MNAE3SAT

$$H_p = \sum_{(i,j,m) \in C} C_{ijm}$$

with

$$C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right)$$

H_p diagonal in the product basis of

$$|z\rangle \equiv |z_1, z_2, \ldots, z_N\rangle, \quad \sigma_j^z |z\rangle = z_j |z\rangle$$
Conventional H_p for MNAE3SAT

$$H_p = \sum_{(i,j,m) \in C} C_{ijm}$$

with

$$C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right)$$

H_p diagonal in the product basis of

$$|z\rangle \equiv |z_1, z_2, ..., z_N\rangle, \quad \sigma_j^z |z\rangle = z_j |z\rangle$$

H_p is frustration-free:

$$H |z\rangle = 0 \iff \forall (i,j,m) \in C \quad C_{ijm} |z\rangle = 0.$$
Conventional H_p for MNAE3SAT

\[H_p = \sum_{(i,j,m) \in C} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

\[|z\rangle \equiv |z_1, z_2, \ldots, z_N\rangle, \quad \sigma_j^z |z\rangle = z_j |z\rangle \]
Conventional H_p for MNAE3SAT

\[H_p = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

\[|z\rangle \equiv |z_1, z_2, ..., z_N\rangle, \quad \sigma_j^z |z\rangle = z_j |z\rangle \]

\[H_p \geq 0 \]
Conventional H_p for MNAE3SAT

\[H_p = \sum_{(i,j,m) \in C} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

\[|z\rangle \equiv |z_1, z_2, \ldots, z_N\rangle, \quad \sigma_j^z |z\rangle = z_j |z\rangle \]

\[H_p \geq 0 \]

z is a satisfying assignment \iff z is a gs, i.e. $H_p |z\rangle = 0$
Bottleneck of AQC \equiv avoided level crossings with $\Delta \sim e^{-N^\alpha}$
Two types of bottlenecks
Two types of bottlenecks

- Quantum phase transitions
Two types of bottlenecks

- Quantum phase transitions
- Many-body localised (glassy) phase [Altshuler, Krovi, Roland, 2010; Laumann *et al.* 2015; Knysh 2016; ...]
“Conventional” AQC

\[
H_t = (1 - \frac{t}{T})H_0 + \frac{t}{T}H_p
\]

\[
H_p = \sum_{i,j} J_{ij}\sigma_i^z\sigma_j^z + \sum_i h_i\sigma_i^z
\]

\[
\hat{H}_0 = \sum_i \sigma_i^x
\]
Ways to improve the performance of AQC
Ways to improve the performance of AQC

- modify H_0
Ways to improve the performance of AQC

- modify H_0
- modify H_t for $0 < t < T$ (catalyst Hamiltonians etc)
Ways to improve the performance of AQC

- modify H_0
- modify H_t for $0 < t < T$ (catalyst Hamiltonians etc)
- modify H_P
What is wrong with a conventional H_p?
Bottlenecks of AQC

What is wrong with a conventional H_p?

- in disordered systems eigenstates can be many-body localised (MBL)
What is wrong with a conventional H_p?

- In disordered systems eigenstates can be many-body localised (MBL)
- MBL entails small energy gaps
What is wrong with a conventional H_p?

- In disordered systems, eigenstates can be many-body localised (MBL).
- MBL entails small energy gaps.
- Product states are ultimately localised.
What is wrong with a conventional H_p?

- In disordered systems, eigenstates can be many-body localised (MBL).
- MBL entails small energy gaps.
- Product states are ultimately localised.
- Eigenstates of H_p are of product form, hence the evolution inevitably traverses MBL phase.
Non-diagonal problem Hamiltonian

The ground state of H_p is of product form for a purpose – it should be easily measurable. However, excited states of H_p are also product states – absolutely unnecessary for computation!

The idea is to introduce H_{ent} with a product ground state and entangled excited states.
Non-diagonal problem Hamiltonian

- ground state of H_p is of product form for a purpose – it should be easily measurable
Non-diagonal problem Hamiltonian

- ground state of H_p is of product form for a purpose – it should be easily measurable
- however, excited states of H_p are also product states – absolutely unnecessary for computation!
ground state of H_p is of product form for a purpose – it should be easily measurable

however, excited states of H_p are also product states – absolutely unnecessary for computation!

the idea is to introduce H_p^{ent} with a product ground state and entangled excited states
Non-diagonal problem Hamiltonian

\[H_{\text{p}} = \sum_{(i, j, m) \in \mathbb{C}} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} (1 + \sigma_z^i \sigma_z^j + \sigma_z^j \sigma_z^k + \sigma_z^k \sigma_z^i) \]

A problem Hamiltonian (generically) non-diagonal in comp. basis:

\[H_{\text{ent}} = \sum_{(i, j, m) \in \mathbb{C}} C_{ijm} A_{ijm} \]

\[A_{ijm} \] arbitrary positive non-diagonal term

\[A_{ijm} \] not necessarily acts on spins
Non-diagonal problem Hamiltonian

Reminder:

\[H_P = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]
Non-diagonal problem Hamiltonian

Reminder:

\[H_p = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

A problem Hamiltonian (generically) non-diagonal in comp. basis:

\[H_{p}^{\text{ent}} = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} A_{ijm} C_{ijm} \]

\(A_{ijm} \) – arbitrary positive non-diagonal term
Non-diagonal problem Hamiltonian

Reminder:

\[H_P = \sum_{(i,j,m) \in C} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

A problem Hamiltonian (generically) non-diagonal in comp. basis:

\[H_P^{\text{ent}} = \sum_{(i,j,m) \in C} C_{ijm} A_{ijm} C_{ijm} \]

\(A_{ijm} \) – arbitrary positive non-diagonal term

\(A_{ijm} \) not necessarily acts on spins \(i, j, m \)
Non-diagonal problem Hamiltonian

\[H_{P}^{\text{ent}} = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} A_{ijm} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]
Non-diagonal problem Hamiltonian

\[H_{\text{ent}}^p = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm} A_{ijm} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

A specific choice of \(A_{ijm} \):

\[A_{ijm} = 2 + \sigma_i^x \sigma_j^x \sigma_m^x + \sigma_r^x \sigma_s^x \]

\(r \neq i, j, m \) and \(s \neq i, j, m \)
Non-diagonal problem Hamiltonian

\[H_{\text{ent}}^p = \sum_{(i,j,m)\in C} C_{ijm} A_{ijm} C_{ijm} \]

\[C_{ijm} = \frac{1}{4} \left(1 + \sigma_i^z \sigma_j^z + \sigma_j^z \sigma_k^z + \sigma_k^z \sigma_i^z \right) \]

A specific choice of \(A_{ijm} \):

\[A_{ijm} = 2 + \sigma_i^x \sigma_j^x \sigma_m^x + \sigma_r^x \sigma_s^x \]

\[r \neq i, j, m \text{ and } s \neq i, j, m \]

Locality issue: \(H_{\text{ent}}^p \) is 4-local (while \(H_p \) is only 2-local)
Entanglement of eigenstates of H_p^{ent}

Participation ratio – figure of merit for entanglement:

$$R(\Psi) = \left(\sum_{\mu=1}^{2^N} |\psi_{\mu}|^4 \right)^{-1}.$$
Entanglement of eigenstates of H_{p}^{ent}

Participation ratios of eigenstates of H_{p}^{ent} (blue dots) compared to those of eigenstates of a nonintegrable Ising model.
Entanglement of eigenstates of H_{ent}^p

- ground states are product states with $R = 1$
Entanglement of eigenstates of H_p^{ent}

- ground states are product states with $R = 1$
- some excited states have small $R \sim 1$
Entanglement of eigenstates of H_{p}^{ent}

- ground states are product states with $R = 1$
- some excited states have small $R \sim 1$
- entanglement of most of low lying excited states is comparable to that of a *bona fide* chaotic model
Entanglement of eigenstates of H_{p}^{ent}

- ground states are product states with $R = 1$
- some excited states have small $R \sim 1$
- entanglement of most of low lying excited states is comparable to that of a bona fide chaotic model
- work in progress...
Diagonal frustration-free problem Hamiltonian:

\[H_p = \sum_{(i,j,m) \in \mathcal{C}} C_{ijm}, \quad C_{ijm} \geq 0 \]

Product ground state \(|z\rangle \) with zero energy: \(H_p |z\rangle = 0 \)
Non-diagonal problem Hamiltonian - generalisation

Diagonal frustration-free problem Hamiltonian:

\[H_p = \sum_{(i,j,m)\in C} C_{ijm}, \quad C_{ijm} \geq 0 \]

Product ground state |z⟩ with zero energy: \(H_p |z⟩ = 0 \)

Non-diagonal frustration-free problem Hamiltonian:

\[H_{p}^{\text{ent}} = \sum_{(i,j,m)\in C} C_{nlq} A_{ijm}^{nlq} C_{ijm}, \quad A_{ijm}^{nlq} > 0 \]

has the same ground state, \(H_{p}^{\text{ent}} |z⟩ = 0 \) but (generically) entangled excited eigenstates.
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC

the mapping can be done in many different ways
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC

the mapping can be done in many different ways

a problem Hamiltonian with entangled excited states can always be chosen
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC

the mapping can be done in many different ways

a problem Hamiltonian with entangled excited states can always be chosen

entanglement comes for the price of increased non-locality
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC

the mapping can be done in many different ways

a problem Hamiltonian with entangled excited states can always be chosen

entanglement comes for the price of increased non-locality

such problem Hamiltonians may help in evading localisation bottlenecks of AQC
mapping computational problem to the problem Hamiltonian is an important ingredient of AQC

the mapping can be done in many different ways

a problem Hamiltonian with entangled excited states can always be chosen

entanglement comes for the price of increased non-locality

such problem Hamiltonians may help in evading localisation bottlenecks of AQC

more work is needed to evaluate their performance
arXiv:1811.09453

Supported by RSF under grant N 17-71-20158
Thank you for your attention!