Some Aspects of the Etiology of Non-Hodgkin’s Lymphoma

Lennart Hardell,1 Gunilla Lindström,2 Bert van Bavel,2 Mats Fredrikson,3 and Göran Liljegren4

1Department of Oncology, Örebro Medical Center, Örebro, Sweden;
2Institute of Environmental Chemistry, Umeå University, Umeå, Sweden;
3Department of Occupational and Environmental Medicine, University Hospital, Linköping, Sweden; 4Department of Surgery, Örebro Medical Center, Örebro, Sweden

In epidemiologic studies, non-Hodgkin’s lymphoma (NHL) has been associated with exposure to chemicals such as phenoxyacetic acids; chlorophenols; dioxins; organic solvents including benzene, polychlorinated biphenyls, chlordane; and immunosuppressive drugs. Experimental evidence and clinical observations indicate that these chemicals may impair the immune system. The risk is increased for NHL in persons with acquired and congenital immune deficiency as well as autoimmune disorders. Also, certain viruses have been suggested to be of etiologic significance for NHL. In some cases of NHL the common mechanism for all these agents and conditions may be immunosuppression, possibly in combination with viruses. — Environ Health Perspect 106(Suppl 2):679–681 (1998). http://ehpnet1.niehs.nih.gov/docs/1998/Suppl-2/679-681/hardellabstract.html

Key words: non-Hodgkin’s lymphoma, etiology, phenoxyacetic acids, chlorophenols, dioxins, organic solvents, polychlorinated biphenyls, chlordane, viruses, immunosuppression

During the last two decades, non-Hodgkin’s lymphoma (NHL) has been one of the most rapidly increasing malignant diseases in the developed countries (1). The etiology of NHL is not well understood although the knowledge in this respect has accumulated during the past decades.

In this paper etiologic aspects are discussed with some emphasis on results of Swedish studies. The aim is not to give a thorough review on the epidemiology of NHL; this is found in other papers. Some hypotheses on etiology are discussed at the end of the paper.

A number of NHL patients with exposure to phenoxyacetic acid herbicides and to chlorophenol impregnating agents were first reported in 1979 (2). Subsequent studies on malignant lymphoma including both Hodgkin’s disease and NHL showed increased odds ratios for exposure to phenoxyacetic acids, chlorophenols, or organic solvents including benzene (3–8).

Whether impurities such as dioxins and dibenzofurans in chlorophenols and certain phenoxyacetic acids are of etiologic significance has been discussed. In that context it is of interest that the levels of some dioxin and dibenzofuran congeners were significantly higher in the adipose tissue of 7 patients with malignant lymphoproliferative disease than in 12 surgical controls without malignant disease (9). Also, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent factor was significantly higher in these 7 patients; 64.7 pg/g wet basis (19.9–187) compared to 29.7 (12.9–53.4), p = 0.04 (Wilcoxon’s two-tailed test). Six cases reported potential occupational exposure to dioxins and dibenzofurans. One case was a high consumer of fish from the Baltic sea. Similarly, the higher chlorinated congeners of polychlorinated biphenyls (PCBs) were significantly elevated in 27 NHL patients compared with 17 surgical controls without malignancy (10). The mean sum of PCBs was 1614 ng/g lipid (637–4705) in the cases compared to 1213 (366–2282) in the controls with a Wilcoxon’s two-tailed p value of 0.06 (Figure 1). Also, for the insecticide chlordanes, significantly higher concentrations were found in NHL cases than in controls in the same study (11). The sum of chlordanes in the 27 NHL patients was 180 ng/g lipid (48.3–678) compared to 92.8 (37.0–164) in the 17 surgical controls, p = 0.002 (Figure 2). No significant differences were found between cases and controls for dioxins, dibenzofurans, hexachlorobenzene, or p,p’-DDE. The results reflect exposure, mainly through the food chain, to environmental concentrations of these organochlorines (12,13). It should be noted that on the basis of occupational exposure to the studied chemicals the case group was not included. Exposure to PCBs and increased risk of NHL appear to be corroborated in a recent study from the United States (14).

Both PCBs and chlordanes are immunotoxic substances (15,16). Immunotoxic effects also have been reported for other chemicals such as dioxins (17–19), chlorophenols (20,21), and organic solvents (22,23), which have been associated with increased risk for NHL. Recent evidence shows immunologic changes among farmers exposed to phenoxy herbicides (24). The incidence of NHL increases with age and an age-related decline in the protective immune response has been reported and may be added to the list of immunosuppressive factors (25).

Figure 1. Box plot of the sum of PCBs expressed as nanogram per gram of lipid for cases and controls where 50% of the subjects have values within the box; median value, 25th, and 75th percentiles are shown. Smallest and largest values that are not outliers as shown by bars. o, outlier more than 1.5 box length from 75th percentile; *, extreme more than 3 box lengths from the 75th percentile. n, numbers of cases and controls.
immune deficiency (27) or autoimmune diseases such as rheumatoid arthritis (28,29), Sjögren’s syndrome (30), and systemic lupus erythematosus (31). It is also well known that immunosuppressive therapy increases the risk for NHL (32,33). NHL has also been reported to be a late complication of certain chemotherapy and radiotherapy regimens in patients with Hodgkin’s disease (34).

Ultraviolet (UV) irradiation may cause immunosuppression (35). However, studies that have especially evaluated the possible role of UV light in NHL have not shown an increased risk for outdoor occupations (5,36) or exposure to sunlight (37).

Epstein-Barr virus (EBV), a herpes virus, has been associated with Burkitt lymphoma (38). EBV is persistent in over 95% of adults in nasopharyngeal epithelium and B cells (39). Normally, EBV production is held back by active cellular and humoral immune mechanisms. In immunodeficiency states, this balance may be disrupted, and EBV-infected B cells begin to proliferate (40).

The retrovirus human immunodeficiency virus-I is endemic in parts of the world and has been demonstrated to cause adult T-cell leukemia/lymphoma (41). Other retroviruses such as human immunodeficiency viruses are associated with acquired immune deficiency syndrome and an increased incidence of NHL (42).

Finally, a working group at the International Agency for Research on Cancer recently classified TCDD as a Group 1 human carcinogen (43). It was concluded that based on epidemiologic evidence exposure to TCDD increases the risk for all cancers combined, but with higher relative risks for NHL and soft-tissue sarcoma.

It is postulated that exposures or conditions that affect the immune system increase the risk for NHL. Virus proliferation is under immunologic surveillance and impairment of the immune system may cause B-cell lymphomas (40) and also T-cell lymphoma (44). Studies of the interaction between immune response, viruses, and various agents, therefore, would be of great interest.

REFERENCES AND NOTES

1. Rabkin CS, Devesa S, Hoar Zahm S, Gail MH. Increasing incidence of non-Hodgkin’s lymphoma. Sem Hematol 30:286–296 (1993).
2. Hardell L. Malignant lymphoma of histiocytic type and exposure to phenoxycetic acids or chlorophenols. Lancer i:55–56 (1979).
3. Hardell L, Eriksson M, Lenner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br J Cancer 43:169–176 (1981).
4. Hardell L, Bengtsson NO. Epidemiologic study of socioeconomic factors and clinical findings in Hodgkin’s disease, and reanalysis of previous data regarding chemical exposure. Br J Cancer 48:217–225 (1984).
5. Hardell L, Eriksson M, Degerman A. Exposure to phenoxyacetic acids, chlorophenols, or organic solvents in relation to histopathology, stage, and anatomical localization of non-Hodgkin’s lymphoma. Cancer Res 54:2386–2389 (1994).
6. Hardell L, Eriksson M, Axelsson O, Hoar-Zahm S. Cancer epidemiology. In: Dioxins and Health (Schechter A, ed). New York: Plenum Press, 1994;525–547.
7. Yin S-N, Hayes RB, Linet MS, Li G-L, Dosemeci M, Travis LB, Zhang Z-N, Li D-G, Chow W-H, Wacholder S, et al. An expanded cohort study of cancer among benzene-exposed workers in China. Environ Health Perspect 104(Suppl 6):1339–1341 (1996).
8. Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Chow WH, Rothman N, Wang YZ, Dai TR, Chao X-J, et al. Mortality among benzene-exposed workers in China. Environ Health Perspect 104(Suppl 6):1349–1352 (1996).
9. Hardell L, Fredriksson M, Eriksson M, Hansson M, Rappe C. Adipose tissue concentrations of dioxins and dibenzofurans in patients with malignant lymphoproliferative diseases and in patients without a malignant disease. Eur J Cancer Prev 4:225–229 (1995).
10. Hardell L, van Bavel B, Lindström G, Fredriksson M, Hagberg H, Liljegren G, Nordström M, Johansson B. Higher concentrations of specific polychlorinated biphenyl congeners in adipose tissue from non-Hodgkin’s lymphoma patients compared with controls without a malignant disease. Int J Oncol 9:605–608 (1996).
11. Hardell L, Liljegren G, Lindström G, van Bavel B, Broman K, Fredriksson M, Hagberg H, Nordström M, Johansson B. Increased concentrations of chlordane in adipose tissue from non-Hodgkin’s lymphoma patients compared with controls without a malignant disease. Int J Oncol 9:1139–1142 (1996).
12. Tojo Y, Wariishi M, Suzuki Y, Nishiyama K. Quantification of chlordane residues in mother’s milk. Arch Environ Contam Toxicol 15:327–332 (1986).
13. Rappe C. Sources of exposure, environmental concentrations and exposure assessment of PCDDs and PCDFs. Chemosphere 27:221–225 (1993).
14. Rothman N, Cantor KP, Blair A, Bush D, Brock JW, Helzlsouer K, Zahm SH, Needham LL, Pearson GR, Hoover RN, et al. A nested case-control study of non-Hodgkin lymphoma and serum organochlorine residues. Lancet 350:240–244 (1997).
15. Lu YC, Wu YC. Clinical findings and immunological abnormalities in Yu-Cheng patients. Environ Health Perspect 59:17–29 (1985).
16. McConnachie PR, Zahalak AS. Immune alterations in humans exposed to the herbicide technical chloral. Arch Environ Health 47:295–301 (1992).
17. Vos JG, Moore JA, Zinkl JG. Effect of 2,3,7,8-tetrachlorodibenzo- p-dioxin on the immune system of laboratory animals. Environ Health Perspect 5:149–162 (1973).
18. Tonn T, Esser C, Schneider EM, Steinmann-Steiner-Haldensträtter W, Gleichmann E. Persistence of decreased T-helper cell function in industrial workers 20 years after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect 104:422–426 (1996).
19. Kerkvliet NJ, Brauner TA. Mechanisms of 1,2,3,4,6,7,8-heptachlorodibeno-p-dioxin (HpCDD)-induced humoral immune suppression: evidence of primary defect in T-cell regulation [published erratum appears in Toxicol Appl Pharmacol 89:148 (1987)]. Toxicol Appl Pharmacol 87:18–31 (1987).
20. Exon JH, Perez LD. Effects of chlorinated phenols on immunity in rats. Int J Immunopharmacol 7:239–247 (1985).
21. Daniel V, Huber W, Bauer K, Opelz G. Impaired in-vitro lymphocytes responses in patients with elevated pentachlorophenol (PCP) blood levels. Arch Environ Health 50:287–292 (1995).
22. Sharma RP, Reddy RV. Toxic effects of chemicals on the immune system. In: Handbook of Toxicology (Haley TJ, ed.). Washington: Hemisphere Publishing, 1987:423–435.
23. Ling Sung H, Araki S, Tanigawa T, Sakurai S. Selective decrease of the suppressor-inducer (CD4+CD45RA−)T lymphocytes in workers exposed to benzidine and beta-naphthylamine. Arch Environ Health 50:196–199 (1995).
24. Faustini A, Settini L, Pacifici R, Fano V, Zuccaro P, Forastiere F. Immunological changes among farmers exposed to phenoxy herbicides: preliminary observations. Occup Environ Med 53:583–585 (1996).
25. Miller RA. The aging immune system: primer and prospectus. Science 273:70–74 (1996).
26. Blomberg J, Möller T, Olsson H, Anderson H, Jonsson M. Cancer morbidity in blood recipients—results of a cohort study. Eur J Cancer 29A:2101–2105 (1993).
27. Spector B, Percy GS III, Kersey JH. Genetically determined immunodeficiency disease and malignancy: report from the Immunodeficiency Registry. Clin Immunol Immunopathol 11:12–19 (1978).
28. Isomäki HA, Hakulinen T, Joutsenlahti U. Excess risk of lymphomas, leukemia, and myeloma in patients with rheumatoid arthritis. J Chron Dis 31:691–696 (1978).
29. Møllemkjaer L, Liner MS, Gridley G, Frisch M, Möller H, Olsen JH. Rheumatoid arthritis and cancer risk. Eur J Cancer 32A:1753–1757 (1996).
30. Kassan SS, Thomas TL, Moutsopoulos HM, Hoover R, Kimberly RP, Budman DR, Costa J, Decker JL, Chused TM. Increased risk of lymphoma in Sicca Syndrome. Ann Intern Med 89:888–892 (1978).
31. Petteerson T, Pukkala E, Teppo L, Friman C. Increased risk of cancer in patients with systemic lupus erythematosus. Ann Rheum Dis 51:437–439 (1992).
32. Hoover R, Fraumeni JF, Jr. Risk of cancer in renal-transplant recipients. Lancet ii:55 (1973).
33. Kinlen LJ, Shell AG, Petro J, Doll R. Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. Br Med J II:1461–1466 (1979).
34. Varrilino D. Non-Hodgkin's lymphoma after treatment of Hodgkin's disease: association with Epstein-Barr virus. Ann Intern Med 105:668–679 (1986).
35. Cruz PD Jr. Ultraviolet B (UVB)-induced immunosuppression: biologic, cellular, and molecular effects. Adv Dermatol 9:79–94 (1994).
36. Hantge P, Devesa SS, Grauman D, Fears TR, Fraumeni JF Jr. Non-Hodgkin's lymphoma and sunlight. J Natl Cancer Inst 88:298–300 (1996).
37. Freedman DM, Zahm SH, Dosemeci M. Residential and occupational exposure to sunlight and mortality from non-Hodgkin's lymphoma: composite (threefold) case-control study. Br Med J 314:1451–1455 (1997).
38. Klein G. Immunovirology of transforming viruses. Curr Opin Immunol 3:665–673 (1991).
39. Rowe M, Lear AL, Croon-Carter D, Davies AH, Rickinson AB. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B-lymphocytes. J Virol 66:122–131 (1992).
40. Poter M. Pathogenetic mechanisms in B-cell non-Hodgkin's lymphoma in humans. Cancer Res 52(Suppl):5522s–5528s (1992).
41. Tajima K. The 4th nation-wide study of adult T-cell leukemia/lymphoma (ATL) in Japan: estimates of risk of ATL and its geographical and clinical features. The T- and B-Cell Malignancy Study Group. Int J Cancer 45:237–243 (1990).
42. Ziegler JL, Beckstead JA, Volberding PA, Abrams DI, Levine AM, Lukes RJ, Gill PS, Burke RL, Meyer PR, Metroka CE, et al. Non-Hodgkin's lymphoma in homosexual men: relationship to generalized lymphadenopathy and acquired immunodeficiency syndrome. N Engl J Med 311:565–570 (1984).
43. IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 69: Polychlorinated Dibenzo-p-Dioxin and Polychlorinated Dibenzofurans. Lyon:International Agency for Research on Cancer, 1997.
44. Manzari V, Gismondi A, Barillari G, Moroni S, Modesti A, Albonici L, De Marchis L, Fazio V, Gradilone A, Zani M et al. HTLV-V: a new human retrovirus isolated in a TAC-negative T-cell lymphoma/leukemia. Science 238:1581–1583 (1987).