Miscellaneies of $K^0 - \bar{K}^0$ mixing and B_K *

Markus Klomfass a and Weonjong Lee b †

aDept. of Physics, Columbia Univ., New York, NY 10027; Veilchenweg 24, 65201 Wiesbaden, Germany.
bIBM, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, U.S.A.

We have computed B_K, using two different methods with staggered fermions on a $16^3 \times 40$ lattice at $\beta = 5.7$ with two dynamical flavors of a mass 0.01. Using an improved wall source method, we have studied a series of non-degenerate quark antiquark pairs and observed no effect on B_K, although effects were seen on the individual terms making up B_K.

1. INTRODUCTION

The standard model which is believed to describe our world of hadrons and leptons contains a number of fundamental parameters. The knowledge of hadronic weak matrix elements is crucial to determine these parameters from the experiments. Lattice gauge theory has reached a point that it is capable of calculating hadronic weak matrix elements. Especially, the knowledge of B_K which describes the neutral K meson mixing is crucial to narrow the domain of V_{td} and the top quark mass, which are the fundamental parameters of the standard model.

We have computed B_K on a $16^3 \times 40$ lattice at $\beta = 5.7$ ($a^{-1} \approx 2.0$ GeV) with two dynamical flavors of a mass 0.01. The results were obtained over 155 gauge configurations. Our work extends earlier calculations of B_K and includes experiments with alternative lattice formulations and improved wall source methods. There are two methods to transcribe the continuum weak matrix elements to the lattice with staggered fermions\[1,2\]: the one spin trace formalism and the two spin trace formalism. The two spin trace formalism (2TR) has been used predominantly for weak matrix element calculations\[3\]. Recently, the one spin trace formalism (1TR) has been developed to a level which allows it to be used for weak matrix element calculation on the lattice\[4\]. We have tried both formalisms to calculate B_K. The results are compared in this paper. We have studied an improved wall source named cubic wall source in order to project out a specific hadronic state exclusively\[4\]. The results are compared with those of the conventional even-odd wall source. We have looked into the effect of non-degenerate quark antiquark pairs on B_K and the individual components making up B_K in detail. From the standpoint of chiral perturbation theory, the effects of non-degenerate valence quark are related to the η' hairpin diagram in (partially) quenched QCD\[5\]. We interpret our numerical results in terms of chiral perturbation theory.

Preliminary results have already appeared in Ref. \[6\].

2. $K - \bar{K}$ Mixing

In the continuum, B_K is defined as

$$B_K \equiv \frac{\langle K^0 \mid \bar{s} \gamma_\mu (1 - \gamma_5) d \mid K^0 \rangle}{\frac{2}{3} \langle K^0 \mid \bar{s} \gamma_\mu \gamma_5 d \mid 0 \rangle \langle 0 \mid \bar{s} \gamma_\mu \gamma_5 d \mid K^0 \rangle}$$

The operator transcription of the continuum $\Delta S = 2$ operator to the lattice in both one spin trace formalism and two spin trace formalism is explained in Ref. \[4\]. The numerical results of B_K calculated in both formalisms are compared in Figure \[4\]. The details of renormalization procedure is given in Ref. \[4\]. From Figure \[4\], note that numerical results of the tadpole-improved renormalized B_K in both formalisms agree with each
Figure 1. Comparison of B_K in one spin trace form (filled circle) with B_K in two spin trace form (empty square). **Top:** unrenormalized B_K. **Bottom:** tadpole-improved renormalized B_K at π/a scale. Even-odd wall source is used.

Figure 2. Unrenormalized B_K of wrong (scalar-like) flavor structure $((V + A) \otimes S)^{2\text{TR}}$ and of a valence quark mass 0.02 versus the Euclidean time. Calculated in two spin trace form. **Top:** even-odd wall source is used. **Bottom:** cubic wall source is used.

other better than those of unrenormalized B_K.

Here, we address two important questions on the validity of our approach to B_K. The higher loop radiative correction of four fermion operators cause the mixing of operators with different spin and flavor structures. The first question is how much the mixing of operators with different flavor structure contributes to our weak matrix measurement at finite lattice spacing non-perturbatively. The second question is how exclusively we can select the pseudo-Goldstone mode using our improved wall source named cubic wall source. We have chosen $((V + A) \otimes S)^{2\text{TR}}$ in order to address the above two questions, where we follow the notation in Ref. \[.\] The matrix element of this operator with K mesons is supposed to vanish in the continuum limit ($a \to 0$) of lattice QCD, due to vanishing flavor trace. We present the numerical results of the wrong flavor channel in Figure 2, which tells us that the wrong flavor channel is highly suppressed (within 1% of B_K) when cubic source is used. This implies that unwanted mixing of $((V + A) \otimes S)^{2\text{TR}}$ should be at most 1% of B_K since it is suppressed by $\alpha_s/(4\pi)$ as well as by vanishing flavor trace. The small deviation of the wrong flavor channel from zero in Figure 2 tells us how efficiently the improved wall sources suppress contaminations from unwanted hadronic states. In Figure 3, we compare B_K
of cubic wall source with B_K of even-odd wall source.

Let us jump into the next issue: the effects of non-degenerate quark antiquark pairs on B_K and its individual components, and their relationship with various chiral logarithms. In our numerical simulation, we have used three degenerate quark antiquark pairs: \{(0.01, 0.02), (0.01, 0.03)\}, and four non-degenerate pairs: \{(0.004, 0.01), (0.04, 0.02), (0.01, 0.03), (0.01, 0.03)\} to produce K meson state. In order to discuss individual components of B_K in an organized way, we need to consider a theory with four valence flavors\[7\]: S and S' both with mass m_s as well as D and D' both with mass m_d. Let K^0 be the $S\gamma_5 D$ pion and $K^{0'}$ be the corresponding state with primed quarks ($S'\gamma_5 D'$). We define individual components of B_K as

\[
\begin{align*}
\mathcal{V.S.} & = 4/3 \langle \bar{K}^0 | S'_a \gamma_\mu S_b \gamma_\mu D_a | 0 \rangle \langle 0 | \bar{S}_b \gamma_\mu S_a \gamma_\mu D_b | K^0 \rangle/\mathcal{V.S.} \\
B_{V1} & = \langle \bar{K}^0 | S'_a \gamma_\mu D'_b \bar{S}_b \gamma_\mu D_a | K^0 \rangle/\mathcal{V.S.} \\
B_{V2} & = \langle \bar{K}^0 | S'_a \gamma_\mu D'_a \bar{S}_b \gamma_\mu D_b | K^0 \rangle/\mathcal{V.S.} \\
B_{A1} & = \langle \bar{K}^0 | S'_a \gamma_\mu \gamma_5 S'_b \gamma_\mu \gamma_5 D_a | K^0 \rangle/\mathcal{V.S.} \\
B_{A2} & = \langle \bar{K}^0 | S'_a \gamma_\mu \gamma_5 D_a \bar{S}_b \gamma_\mu \gamma_5 D_b | K^0 \rangle/\mathcal{V.S.} \\
B_V & = B_{V1} + B_{V2} \\
B_A & = B_{A1} + B_{A2} \\
B_K & = B_V + B_A
\end{align*}
\]

where a, b represent color indices. Let us summarize chiral perturbation results for the above individual components, the details of which are explained in Ref. \[7\]. In full QCD chiral perturbation, the one-loop corrections to B_{V1}, B_{V2}, B_{A1}, and B_{A2} include a logarithmically divergent term in the chiral limit $m_K \to 0$, which is called an enhanced chiral logarithms, and which is absent in B_K. The enhanced chiral logarithms are not a function of quark mass difference between s and d quarks. We present B_K, B_V, and B_A data versus quark mass in Figure\[4\], which illustrates the existence of a divergence in B_V and B_A and no divergence in B_K in the chiral limit.

There are two possible differences between partially quenched or quenched and full QCD. The first difference is that the meson spectrum eigenstates are not same. The second difference comes from q' loops, which can not contribute in full QCD because it is too heavy for chiral dynamics. The hairpin diagram contribution to B_K and its individual component, which is called \"(partially) quenched chiral log\"', vanishes in the limit of $m_s = m_d$. In other words, (partially) quenched chiral logarithms are functions of quark mass dif-

Figure 3. Unrenormalized B_K vs. average quark mass $(m_s \mu)$: The filled circle (empty square) represents the data of cubic wall source (even-odd wall source). Calculated in the two spin trace formalism.

Figure 4. Unrenormalized B_K, B_V, B_A vs. average quark mass: Calculated using cubic wall source in the two spin trace formalism. B_A: empty triangle and filled square. B_K: star and filled circle. B_V: x and filled diamond. Filled square, circle, and diamond represent degenerate quark antiquark pairs. All other symbols correspond to non-degenerate pairs.
Since chiral perturbation theory predicts that B_{A1} has a constant term about $1/3$ smaller and an enhanced chiral logarithmic term around 3 times larger than B_{A2}, we have chosen B_{A1} as a useful measurement adequate to observe, if present, both enhanced and quenched chiral logarithms. In order to observe the effect of non-degenerate quark antiquark pairs on B_{A1}, first we fit data of degenerate pairs to obtain $B_{A1}^{\text{deg}}(m_K)$ and second we subtract those degenerate contributions from non-degenerate data as follows:

$$\Delta B_{A1}(m_K, \epsilon) = \frac{B_{A1}(m_K, \epsilon) - B_{A1}^{\text{deg}}(m_K)}{\epsilon},$$

where $B_{A1}(m_K, \epsilon)$ is data of non-degenerate quark antiquark pairs and $\epsilon \equiv (m_s - m_d)/(m_s + m_d)$. We present ΔB_{A1} data in Figure 5, which indicates that there is an additional divergence as a function of ϵ. This additional divergence might come from (partially) quenched chiral logarithms or from a finite volume effect. This needs more numerical evidence and further theoretical understanding.

In order to detect the effect of non-degenerate quark antiquarks on B_K, we follow the procedure similar to B_{A1} case. First, we fit degenerate date to $B_K^{\text{deg}}(m_K)$. Second, we introduce ΔB_K as follows:

$$\Delta B_K(m_K) = \frac{B_K(m_K, \epsilon) - B_K^{\text{deg}}(m_K)}{\epsilon^2},$$

where the function is normalized by ϵ^2 since chiral perturbation predicts that leading effect of non-degenerate quark antiquark pairs on B_K is of order ϵ^2. We present the ΔB_K data in Figure 6, which illustrates that the non-degenerate quark mass effect is much smaller than our statistical error.

Our best results are unrenormalized $B_K(m_K) = 0.658(77)$ and tadpole-improved renormalized (N.D.R.) $B_K(m_K, \mu = \pi a) = 0.659(63)$.

One of the authors (W. Lee) wants to express heartful gratitude to Prof. N.H. Christ, R.D. Mawhinney, D. Zhu, D. Chen, S. Chandrasukanhar, and Z. Dong for their kind help.

REFERENCES

1. W. Lee and M. Klomfass, Phys. Rev. D **51** (1995) 6426.
2. S. Sharpe et al., Nucl. Phys. B **286** (1987) 253.
3. S. Sharpe, Nucl. Phys. B (Proc. Suppl.) **34** (1994) 403; N. Ishizuka et al., Phys. Rev. Lett. **71** (1993) 24; G. Kilcup, Phys. Rev. Lett. **71** (1993) 1677.
4. M. Fukugita et al., Phys. Rev. D **47** (1993) 4739.
5. S. Sharpe, Phys. Rev. D **46**, (1992) 853.
6. W. Lee and M. Klomfass, Nucl. Phys. B (Proc. Suppl.) **42** (1995) 418.
7. S. Sharpe, Phys. Rev. D **46**, (1992) 3146.