Stunting, Micronutrient Deficiencies, and Worm Infections among Primary School Children at Low and Lower-Middle Income Countries in Asia and Africa: A Systematic Review (2007-2017)

Fauzi Budi Satria1, Odilia Isabel Bermudez2, Rahayu Lubis3, Le Thi Huong4,*

1International Master of Public Health (IMPH), Hanoi Medical University, Vietnam
2Department of Public Health and Community Medicine, Tufts University School of Medicine, United States
3Department of Epidemiology, Faculty of Public Health, University of Sumatera Utara, Indonesia
4Department of Nutrition and Food Safety, School of Preventive Medicine and Public Health, Hanoi Medical University, Vietnam
*Corresponding author. E-mail address: lethihuong@hmu.edu.vn

ABSTRACT

Introduction: Most of stunting and children with micronutrient deficiencies lived in Asia and in Africa region. In many developing countries, any nutritional disorders are aggravated by some infectious diseases such as worm infections especially among children aged 5 to 15 years.

Objectives: This review study was conducted to describe and compare the prevalence of stunting, micronutrient deficiencies, and worm infections prevalence among primary school children at low and lower-middle income countries in Asia and Africa from 2007 to 2017.

Materials and methods: Population target in this study is primary school children aged 6-15 years. The resources of this review study came from online and offline databases; included PubMed, Cochrane Library, Google and Google Scholars. Selected studies should be published journals from the low and low-middle income countries in last 10 years. A total of 450 selected articles from the various resources were exported to Endnote. Then all the references were filtered by reading the titles to exclude duplicate resources and the abstracts to exclude resources with unmatched criteria such as children’s age range. Remaining references then were appraised by using appraisal tool and extraction tools from JBI. All these steps were recorded in PRISMA flow diagram. Finally, there were 57 of 450 references were selected in this review study.

Results: In the last ten years, stunting and micronutrient deficiencies among primary school children in lower-middle income countries are higher in Africa, while the prevalence of worm infections is higher in Asia region.

Keywords:
Low income countries
Micronutrient deficiencies
Primary school children
Stunting
Worm infections

Introduction

Stunting is the devastating result of poor nutrition in early childhood and the effect can last a lifetime (United Nations Children’s Fund, 2017). Most of stunting children lived in Asia Africa region (United Nations Children’s Fund, 2017). Not only stunting, micronutrient deficiencies are also affected the children in developing countries in Asia and Africa. In many developing countries, any nutritional disorders are aggravated by some infectious diseases (WHO, 2018b). One of most common infectious diseases in children is helminth infections, with the highest prevalence was found in 5 to 15 years of age children (U. WHO, 2004). In long term, helminth infections showed the delayed in growth and physical development in children (WHO, 2017). This review study is expected to describe and compare the prevalence of stunting, micronutrient deficiencies, and helminth infections prevalence among primary school children at low and lower-middle income countries in Asia and Africa from 2007 to 2017.

Materials and methods

This systematic review study collected and analysed multiple literatures from researches or papers critically. Then, summarized all evidences from references that matched to criteria in this study to answer research question in this study (Edinburgh, 2013). In this study, all references with children population in age range of 6 to 15 years will be included. The references should also have the same criteria in determine stunting, micronutrient deficiencies, and helminth infections condi-
tion in children. This review study defined stunting children as child’s physical condition with anthropology measurement in height-for-age WHO growth charts showed Z-score below -2 SD. Next, micronutrient deficiencies is defined as deficiency in Vitamin A, iron, and zinc among children. Then, helminth infections is defined as worm infections that caused by 3 types of worm; nematodes, trematodes, or cestodes. Lastly, all the references should from low- and lower-middle income countries in Asia and Africa based on World Bank list.

There are some other criteria for the references to be included in this review study. First, the references should have been published in peer reviewed journal in the last ten years (2007-2017). PUBMED/MEDLINE, Cochrane Library, Google Scholars and Google were online search engines that had been used in this review study to collect the references. Beside from online resources, journals in both printed and PDF file version which meet the criteria for this study were included. Then, all the references also should be available in full text English version. Then, the resources should show the prevalence of stunting, micronutrient deficiencies, and helminth infections among primary school children to give evidence about those conditions, so this review study will be able to answer the research question.

This study used some techniques to find suitable resources from online databases. Boolean Logic technique was used in PUBMED/MEDLINE search engine. Then, MeSH (Medical Sub Heading) was used for Cochrane library, and typing suitable keywords is used for Google. Keywords and their synonyms for stunting, micronutrient deficiencies and/or helminth infections among primary school children in low and lower-middle income countries in Asia and Africa were used for any search techniques in online search engines. In the filter sections, last ten years full text published journals and available in English version were chosen. Then, all studies from online databases were imported to Endnote to make it easier in calculating the total documents were chosen and to make doing citation easier later.

Next, critical appraisal framework and data extraction form from the Joanna Briggs Institute (JBI) was used as a guide to assess the quality of studies reviewed (Q. s. U. JBI, 2015; U. o. A. JBI, 2017). Then, the data extraction result was discussed with independent reviewer. Finally, based on the discussion with independent viewer, a table list of included final selected resources and the data from those references were developed. Total of 450 selected articles from the various resources were exported to Endnote and recorded in PRISMA flow diagram. From those 450 resources, 393 articles were removed due to several factors such as duplication, inappropriate study setting, published year, sample’s age range and study result. Total 57 articles were selected and recorded in a table 1 and PRISMA flow diagram, as can be seen in Figure 1 below.

![Figure 1. PRISMA 2009 flow diagram](image)

Results

1. **Stunting**

 The description of stunting among primary school children in some low and lower-middle income countries in Asia and Africa is assessed by the prevalence of 6 to 15 years of age children with Z-score below -2 SD in WHO Growth Charts based on anthropology measurements. The summary table has been developed to show description of stunting among primary children in low and lower-middle income countries in Asia and Africa (Table 1).

2. **Micronutrient deficiencies**

 The description of micronutrient deficiencies among primary school children in some low and lower-middle income countries in Asia and Africa is assessed by the prevalence of 6 to 15 years children with deficiencies in Vitamin A, zinc, and/or iron. The resources summary of micronutrient deficiencies among primary school children has been drawn in Table 2.

3. **Helminth infections**

 The description of helminth infections among primary school children in some low and lower-middle income countries in Asia and Africa is assessed by the prevalence of 6 to 15 years children...
with helminth infections caused by nematodes, cestodes, and/or trematodes. Total 34 resources have been collected to describe the prevalence of helminth infection among primary school children in low and lower-middle income countries from Asia and Africa. Table 3 has been built to give summary of included resources of helminth infections among primary school children in low and lower-middle income countries in Asia and Africa.

4. Comparison

The comparison of stunting, micronutrient deficiencies, and helminth infections among primary school children is assessed by comparing the prevalence of stunting, micronutrient deficiencies, and helminth infections among primary school children between low and lower-middle income countries in Asia and Africa. To compare the prevalence of stunting, micronutrient deficiencies, and helminth infections among primary school children in low and lower-middle income countries in Asia and Africa, this study collected all resources from Table 1. Then, total sample of each resource was calculated based on their income country group and their region.

4.1 Stunting, micronutrient deficiencies, and helminth infections in low and lower-middle income countries in Asia and Africa

Figure 2 showed the comparison of stunting, micronutrient deficiencies, and helminth infections prevalence between primary school children in low and lower-middle income countries from Asia and Africa. From the figure, it can be seen that stunting is higher among primary school children in low income countries from Asia than children from Africa. However, in lower-middle income countries, more primary school children from Africa suffered from stunting than children in Asia region. Similar to stunting prevalence, micronutrient deficiencies prevalence also showed the same trend. Higher prevalence of micronutrient deficiencies is higher among children from low income countries in Asia than children in Africa. Then, primary school children in low income countries from Africa have higher prevalence of micronutrient deficiencies than children from Asia region. For helminth infections, the data showed that the prevalence of helminth infections among primary school children is higher in Africa than Asia, in both income country groups.

4.2 Stunting, micronutrient deficiencies, and helminth infections in Asia and Africa

This review study also compares the prevalence of stunting, micronutrient deficiencies, and helminth infections among primary school children between Asia and Africa region without considered their income group. All the resources from Asian countries are compared to all resources from African countries to describe the comparison of stunting, micronutrient deficiencies, and helminth infections prevalence among primary school children. Based on the region, prevalence of micronutrient deficiencies and helminth infections among

Table 1

Description of stunting among primary school children

Income country group - region	Country	Population group (aged)	Sample (aged 6-15 years)	Stunting prevalence (%)
Low income country - Asia	Nepal (Nepal et al., 2014)	6-12 years	125	34.4%
	Nepal (Palmer et al., 2015)	9-13 years	287	56.1%
	Nepal (Buckley et al., 2013)	10-13 years	381	55.1%
	Nepal (Stewart et al., 2009)	6-8 years	3,356	45.4%
Low income country - Africa	Ethiopia (Grimes et al., 2017)	5-18 years	1,368	10%
	Ethiopia (Getaneh et al., 2017)	6-14 years	523	46.1%
	Ethiopia (Mekonnen et al., 2014)	5-18 years	284	10.6%
	Ethiopia (Mahmud et al., 2013)	6-15 years	587	34.6%
	Ethiopia (Hall et al., 2008)	7-17 years	7431	22.2%
	Ethiopia (Abdi et al., 2017)	6-14 years	356	13.5%
	Uganda (Iswanga et al., 2012)	6-14 years	432	22.5%
	Burkina Faso (Ermann et al., 2017)	6-14 years	385	29.4%
	Tanzania (S.R. Tatala, 2008)	7-14 years	845	30%
Lower-middle income country - Asia	Sri Lanka (Naoturina et al., 2017)	5-10 years	4,021	15%
	Sri Lanka (Galgamuwa et al., 2017)	1-15 years	341	26.4%
	Bangladesh (Sazawal et al., 2013)	6-9 years	571	22%
	Vietnam (Nga et al., 2011)	6-8 years	510	25.5%
	Philippines (Papier et al., 2014)	6-14 years	693	49.2%
	Myanmar (Prenkert & Ehnfors, 2016)	5-19 years	513	57.5%
Lower-middle income country - Africa	Nigeria (Ayogu et al., 2016)	12-18 years	169	50.3%
	Nigeria (Senzbanjo et al., 2011)	5-15 years	245	19.6%
	Nigeria (Goon et al., 2011)	9-12 years	2,015	52.7%
	Nigeria (Ekpo et al., 2008)	6 months to 15 years	202	33.2%
	Ghana (Aye-H Kumi et al., 2016)	6-13 years	404	22.3%
	Ghana (Goodfried et al., 2017)	6-12 years	142	24%
	Ghana (Alicke et al., 2017)	14-15 years	188	15%
primary school children are higher in Africa than Asia. In contrast, the prevalence of stunting among primary school children is higher in Asia than in Africa.

4.3 Stunting, micronutrient deficiencies, and helminth infections in low and lower-middle income countries

Based on income country group, this study divided it into two groups which are low and lower-middle income countries. The references for each group were taken from selected references from any countries in Asia and Africa. The result showed the prevalence of micronutrient deficiencies and helminth infections among primary school children were higher in low income country group, while slight higher prevalence of stunting was higher in lower-middle income country group than low income country group.

Based on the type of micronutrient deficiencies, prevalence of iron deficiency was the highest in primary school children from low income countries, while zinc deficiency prevalence was the highest among primary school children in lower-middle income countries.

Lastly, based on the type of worm that infected the children, prevalence of nematodes infection was the highest in primary school children from low and lower-middle income country group, and followed by trematodes and cestodes infections.

Discussion

The prevalence of stunting among children aged below 5 years was higher in Asia than Africa (United Nations Children's Fund, 2017). This review study showed that among primary school-age children aged 6-15 years, stunting prevalence also was higher in Asia than in Africa.

In Asia, the highest prevalence of stunting children was found in Southern and Southeastern region. This report was relevant to this review study result, where all the references that contributed to the result of this review study were from both part of Asia. In addition, the countries such as Nepal, Afghanistan, Sri Lanka, and Bangladesh were located at South part of Asia, while Myanmar, Philippines, and Vietnam which also contributed in this review study result were located at Southeast part of Asia. There were no references in this review study came from the countries at other part of Asia.

It was reported that only Northern Africa which has low prevalence of stunting children (United Nations Children's Fund, 2017). This report was also relevant to the result of this review study. In this study, there were no references from North part of Africa showed stunting prevalence among primary school children.

Some references showed that the prevalence of micronutrient deficiencies such as iron deficiency, Vitamin A deficiency, and zinc deficiency was high in Africa and Asia specifically low income countries (Bailey, West, & Black, 2015). The result of this

Table 2
Description of micronutrient deficiencies among primary school children

Income country group - region	Country	Population group (aged)	Total sample (aged 6-15 years)	Prevalence of micronutrient deficiency (%)		
				Vitamin A	Iron	Zinc
Low income country - Asia	Nepal (Nepal et al., 2014)	6-12 years	125		-	85.6%
Low income country - Africa	Tanzania (S.R. Tatala, 2008)	7-14 years	798	31.9%	32.7%	
	Ethiopia (Desalegn et al., 2014)	6-12 years	586		37.5%	
Lower-middle income country - Asia	Bangladesh (Adams et al., 2017)	6-11 years	368		-	39.1%
	Bangladesh (Rahman et al., 2015)	6-15 years	352	29%	43.9%	
	Sri Lanka (Allen et al., 2017)	6-19 years	2,281		14.7%	
	India (Gupta et al., 2009)	6-16 years	1,247	2%	-	
	Vietnam (Nga et al., 2009)	6-8 years	510	11.2%	5.1%	55.8%
	Vietnam (de Gier et al., 2016)	6-9 years	510	10.2%	0.8%	70.6%
Lower-middle income country - Africa	Nigeria (Ayogu et al., 2016)	12-18 years	13	46.2%	76.9%	
	Kenya (Butler et al., 2012)	9-12 years	206		-	21%
	Ghana (Godfred et al., 2017)	6-12 years	142	93.6%	-	
	Ghana (Alicke et al., 2017)	14-15 years	188	36%	4%	

Figure 2. Comparison of stunting, micronutrient deficiencies, and helminth infections prevalence between primary school children in low and lower-middle income countries from Asia and Africa
review study showed the same trend to the references. This review study showed the higher prevalence of micronutrient deficiencies was found in Africa than Asia. Moreover, micronutrient deficiencies prevalence was also higher in low income country group than lower-middle income country group. Then, the prevalence of zinc deficiency was always high in any references which compared it with iron and vitamin A deficiency directly.

Many references showed that helminth infections were affected the poorest and most deprived communities mostly (WHO, 2018a). This review study showed that children who lived in the low income country group in Asia and Africa had higher prevalence of helminth infections than children who lived in lower-middle income country group. Nematode is the most common type of worm that infected primary school children in low and lower-middle income country from Asia and Africa region. This high prevalence comes from all species which are categorized as nematodes worm, but mostly infections were caused by Schistosoma sp.

Conclusion

The prevalence of stunting, micronutrient deficiencies, and helminth infections among primary school children (aged 6-15 years) has the identical trend as pre-school children (below 5 years of age). We concluded that children aged primary school children and pre-school children from low and lower-middle income countries in Asia and Africa have the same burden of stunting, micronutrient deficiencies, and helminth infections.

Acknowledgements

This systematic review study was supported by USAID, SEAOHUN, Hanoi Medical University, and Tufts University to accomplish the International Master of Public Health degree at Hanoi Medical University. I am so thankful to all supervisors and reviewer; Associate Professor Le Thi Huong, Associate Professor Odilia Isabel Bermudez, and Dr. Rahayu Lubis, M.Kes. PhD who supported and facilitated me completed this study. I also want to assure that this study has not ever been published at any journal yet. However, this study is in reviewing process in some conferences, but it is not for published in any scientific journal.

Limitation

The result of this review study was highly influenced by the data resources which dominated by...
the 5th Food Safety and Zoonoses Symposium for Asia Pacific

Some particular countries in each country group and each region. Limitation also caused by age range of the population target in this review study. Most of studies were excluded due to variety of age range didn’t meet the age range requirement for this review study.

References

Bailey, R. L., West, K. P., Jr., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. *Ann Nutr Metab*, 66 Suppl 2, 22-33. doi: 10.1159/000371618

Edinburgh, U. o. (2013). Systematic reviews and meta-analyses: a step-by-step guide. *Research*. Retrieved March 25th, 2018, from http://www.ccace.ed.ac.uk/research/software-resources/systematic-reviews-and-meta-analyses

JBI, Q. s. U. (2015). *CAN-SYNTHESIZE* (M. B. H. Christina M. Godfrey Ed. 4.0 ed.): Joanna Briggs Institute.

JBI, U. o. A. (2017). The Joanna Briggs Institute Critical Appraisal tools. Retrieved December 27th, 2017, from http://joannabriggs.org/research/critical-appraisal-tools.html

United Nations Children’s Fund, W. H. O., World Bank Group. (2017). Joint child malnutrition estimates - levels and trends in child malnutrition. *UNICEF Data*.

WHO. (2017, September 2017). Soil-transmitted helminth infections. *Media Centre-Fact Sheet*. from http://www.who.int/mediacentre/factsheets/fs366/en/

WHO. (2018a). Intestinal worms. *What are intestinal worms (soil transmitted helminthiasis)?*. Retrieved January 25th, 2018, from http://www.who.int/intestinal_worms/disease/en/