Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review

Wenjia Hou1, Guorui Shi1, Songze Wu2, Jiayi Mo1, Lan Shen1, Xiuqiang Zhang3* and Yabin Zhu1*

1 School of Medicine, Ningbo University, Ningbo, China, 2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China, 3 Ningbo Key Laboratory of Hearing and Balance Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China

Antimicrobial photodynamic inactivation (aPDI) is a newly emerged treatment approach that can effectively address the issue of multidrug resistance resulting from the overuse of antibiotics. Fullerenes can be used as promising photosensitizers (PSs) for aPDI due to the advantages of high triplet state yields, good photostability, wide antibacterial spectrum, and permissibility of versatile functionalization. This review introduces the photodynamic activities of fullerenes and the up-to-date understanding of the antibacterial mechanisms of fullerene-based aPDI. The most recent works on the functionalization of fullerenes and the application of fullerene derivatives as PSs for aPDI are also summarized. Finally, certain remaining challenges are emphasized to provide guidance on future research directions for achieving clinical application of fullerene-based aPDI.

Keywords: antimicrobial photodynamic inactivation, photosensitizers, fullerene derivatives, antibacterial, multidrug resistance, functionalization

INTRODUCTION

In the past few decades, the overuse of antibiotics has brought about the emergence of super bacteria with multidrug resistance, posing tremendous challenges to the treatment of bacterial infections (Prestinaci et al., 2015; Willyard, 2017; Rawson et al., 2021; Varela et al., 2021). Antimicrobial photodynamic inactivation (aPDI) is a newly emerged treatment approach that can effectively address the issues of multidrug resistance (Hu et al., 2018; Blum et al., 2020; Wang et al., 2021). Up till now, no resistance against aPDI has been reported in bacteria even after 20 successive bactericidal cycles (Giuliani et al., 2010; Hamblin, 2016, 2018; Al-Mutairi et al., 2018; Pieranski et al., 2020; Wozniak et al., 2021). aPDI starts with the injection or coating of photosensitizers (PSs) to the infected area. After the accumulation of PSs in the targeted area, irradiation with the light of specific wavelengths is applied to trigger photodynamic reactions. Under irradiation, PSs in the ground state absorb photons and are excited into a transient singlet state, from which they enter a relatively stable triplet state by fluorescence, heat conversion, or undergoing an intersystem crossing (ISC) process (Ochsner, 1997). The two mechanisms of aPDI are as follows: (1) Type-I mechanism: PS in the triplet state produces reactive oxygen species (ROS), such as hydroxyl radicals (HO·), hydrogen peroxide, and superoxide anion radicals (O2·−) through gain or loss of electrons; and (2) Type-II mechanism: PS in the triplet state interacts with oxygen and produces singlet oxygen (1O2). ROS and 1O2 are strong oxidants that can cause disruption of the cell wall, alteration of the cell membrane structure, damage of DNA and RNA molecules, inhibition of essential enzymatic
activities, denaturation of proteins, peroxidation of unsaturated lipids, leakage of intracellular substances, and disruption of the transmembrane transport system, leading to irreversible damage to the bacterial cells (Michaeli and Feitelson, 1994; Cadet et al., 2010; Allison and Moghissi, 2013; Vatansever et al., 2013; Gao et al., 2021; Rapacka-Zdonczyk et al., 2021). The Type-I mechanism does not rely on oxygen and is not limited by oxygen deprivation, while the Type-II mechanism is limited by the lack of oxygen in certain infected areas. To improve the effectiveness of aPDI treatment, the ideal PSs are required to produce high yields of ROS or $^{1}$O$_2$ that also possess supreme bacteria-targeting abilities to minimize damage to the normal tissue.

Owing to the fact that PSs can be directly injected or coated to the infected site, aPDI will not cause damage to the entire body like antibiotics do and thus can be repetitively applied to achieve higher bactericidal efficiency while minimizing the side effects inflicted on patients (Hamblin, 2016). These advantages of aPDI have been particularly demonstrated in the treatment of dental infections, such as peri-implantitis and periodontitis (Oruba and Chomyszyn-Gajewska, 2016; Diogo et al., 2019; Tan et al., 2020, 2021; Betancourt et al., 2021; Luchian et al., 2021), and infections due to burns or damaged tissues with insufficient blood supply that are hardly available for antibiotics (Gad et al., 2004; Choudhary et al., 2009; Sperandio et al., 2010; Simonetti et al., 2021).

Among the commonly used PSs (e.g., porphyrin and its derivatives, phthalocyanine, xanthene dyes, etc.), fullerenes are promising candidates due to their high triplet state yields, good photostability, high photoactivity, and supreme ROS and $^{1}$O$_2$ production abilities (Table 1). Fullerenes are a kind of hollow molecules composed entirely of carbon atoms with a spherical, ellipsoidal, cylindrical, or tubular shape. The condensed aromatic rings of fullerenes cause extended $\pi$-conjugation of molecular orbitals (Rahmati and Mozafari, 2019; Mohammed et al., 2020). The large amounts of conjugated double bonds can effectively adsorb light in the ultraviolet (UV) and visible regions, generating ROS with high triplet yields under irradiation (Hamblin, 2018). This review introduces the photodynamic activities of fullerenes and the up-to-date understanding of the antibacterial mechanisms of fullerene-based aPDI. The most recent works on the functionalization of fullerenes and the application of fullerene derivatives as PSs for aPDI are also summarized.

### ADVANTAGES OF FULLERENE DERIVATIVES AS PHOTOSENSITIZERS FOR ANTIMICROBIAL PHOTODYNAMIC INACTIVATION

Fullerenes are a kind of PSs that can produce high yields of $^{1}$O$_2$ and ROS, including $O_2^{'-}$, HO-, lipid hydroperoxides, and hydrogen peroxides through both Type-I and Type-II mechanisms (Yamakoshi et al., 2003; Vileno et al., 2006). Under UV or visible light irradiation, fullerenes can be excited into the transient singlet state (process A in Figure 1) and then immediately transform into the triplet state by ISC (process B in Figure 1; Guldii and Prato, 2000; Koeppe and Sariciftci, 2006). Compared with other photosensitizers, fullerenes have a higher triplet yield of nearly 100% with a longer lifetime of 50–100 µs (Sharma et al., 2011; Huang Y.-Y. et al., 2014). Subsequent charge transfers to the surrounding biomolecules lead to the formation of ROS (Type-I mechanism as illustrated by process C in Figure 1). The remaining fullerene radicals can further transfer an electron to oxygen to form $O_2^{'-}$ (process D in Figure 1).

Fullerenes in the triplet state can also transfer energy to oxygen, forming $^{1}$O$_2$ (Type-II mechanism, as illustrated by process E in Figure 1).

Generally speaking, aPDI is more effective against Gram-positive bacteria than against Gram-negative bacteria. The cell wall of Gram-positive bacteria is a thick but porous peptidoglycan layer, while that of Gram-negative bacteria is composed of a relatively dense outer phospholipid bilayer and a thin peptidoglycan inner layer. Owing to the differences in membrane permeability and polar head size of phospholipids, which is smaller for Gram-positive bacteria (Indeglia et al., 2018), the cell wall and cell membrane of Gram-positive bacteria are easier to be penetrated by $^{1}$O$_2$ and ROS while Gram-negative bacteria are difficult to be killed (Bertoloni et al., 1992; Kashef and Hamblin, 2017). Compared with other PSs, fullerene can produce HO· free radicals with stronger toxicity that are also capable of killing Gram-negative bacteria (Huang et al., 2012). Huang L. et al. (2014) reported that fullerene-mediated PDT could treat wound infections caused by virulent Gram-negative bacterial species.

Moreover, when used in conjunction with antibiotics, fullerene-based aPDI can increase the susceptibility of multidrug-resistant bacteria to antibiotics. Wozniak et al. (2021) reported that the synergistic effect of fullerene-based aPDI and imipenem reduced the resistance of Enterococcus faecalis against imipenem. The use of antibiotics, including gentamycin, streptomycin, tigecycline, doxycycline, and daptomycin, accompanied by fullerene-based aPDI exhibited a more pronounced inhibition of multidrug-resistant Enterococcus faecium than when these antibiotics were used alone. The resensitization of multidrug-resistant bacteria to antibiotics could be attributed to the aPDI-induced increase in membrane permeability (Wozniak et al., 2021).

Other advantages of fullerenes as a PS are as follows: (1) High resistance to photobleaching. Many traditional PSs completely lose their photoactivity after relatively low total energy doses ($<10$ J/cm$^2$), while fullerenes can retain photoactivity even after very high energy doses ($>1,000$ J/cm$^2$) (Hamblin, 2018). (2) Abundance of double bonds on the surface that allows versatile functionalization. (3) Oxygen-independent photokilling through Type-I mechanism. These combined advantages make fullerenes supreme PSs with promising prospects of application in aPDI.

### ANTIBACTERIAL MECHANISMS OF FULLERENE-BASED ANTIMICROBIAL PHOTODYNAMIC INACTIVATION

To deepen the understanding of fullerene-based aPDI, researchers have strived to explore the underlying photodynamic antibacterial mechanisms of fullerenes. Up till now, three
Table 1: Advantages and disadvantages of commonly used PSs.

| Class                     | PS                                                | Advantages                                                                 | Disadvantages                                                                 | References                                                                 |
|--------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Photofrin and its derivatives | Hematoporphyrin and its derivatives (HpD)         | First-generation PS                                                         | Slow metabolism; strong histotoxicity; low active constituent content; short adsorption wavelength; cause skin allergies | Gomes et al., 2018                                                          |
|                          | Verteoporfin; 5-aminolevulinic acid (5-ALA); hematoporphyrin monomethyl ether (HMME); Temoporfin (m-THPC) | High 1^1 O_2 yields; high phototoxicity                                      | Slow metabolism; low immune clearance rate; poor photostability; poor water solubility | Inoue, 2017; Gomes et al., 2018; Zhang et al., 2020 |
| Phthalocyanine-based PS   | Silicon(IV) phthalocyanine Pc4; Zinc(II) phthalocyanines | Physicochemical stability; long adsorption wavelengths (660–720 nm, with a 50-time higher adsorption at 680 nm); high immune clearance rate; low toxicity in dark | Poor water solubility; prone to agglomeration; low 1^1 O_2 yields in oxygen deprivation | Galstyan, 2021                                                           |
| Polycyclic quinone PS     | Riboflavin; curcumin; hypericin; hypocrellin       | Easy purification; high quantum yields; high phototoxicity; low toxicity in dark; good biocompatibility | Short adsorption wavelengths (400–500 nm); poor water solubility; prone to agglomeration | Hamblin, 2018; Yin and Hamblin, 2015; Rajendran, 2016 |
| Xanthene dyes             | Rhodamine; fluorescein                             | Good water solubility; high fluorescence quantum yields; high molar extinction coefficient; good biocompatibility; low cytotoxicity | Poor chemical stability; poor photostability; short adsorption wavelengths (~500 nm) | Chen et al., 2012                                                        |
| 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) | Easy modification; good photophysical and photochemical stability; high fluorescence quantum yields; absorption and emission in the visible region with high molar absorption coefficients | Poor water solubility; low triplet state yield; low 1^1 O_2 yield | Duranti et al., 2018; Agazzi et al., 2019a                                      |
| Transition metal complexes| Ruthenium (II); rhodium; iridium; platinum (II); gold (II) | High ROS yields; high immune clearance rate | Short excitation wavelengths; low penetration depths; poor biocompatibility | Armstrong et al., 2021; Pobłocki et al., 2021 |
| Fullerene derivatives     | High triplet state yields (~100%); high ROS yields; good photostability; able to generate highly toxic hydroxyl radicals | Short adsorption wavelengths (400–500 nm); low penetration depths; poor water solubility | Hamblin (2018); Pan et al., 2020; Heredia et al., 2022 |                                                                |

Major mechanisms have been proposed: disruption of the cell membrane, denaturation of proteins, and induction of DNA damage (Figure 2).

Fullerene-based aPDI can lead to the peroxidation of lipids, causing bacterial cell membrane disruption, cytoplasm leakage, and eventually cell death (Sayes et al., 2004). Fang et al. (2007) found that the photodynamic reactions of fullerene changed the composition of the bacterial cell membrane in a strain-dependent manner. For Gram-negative bacterium Pseudomonas putida, aPDI decreased the proportions of unsaturated fatty acids while increasing that of cyclopropane fatty acids. For Gram-positive Bacillus subtilis, aPDI increased the proportions of monounsaturated fatty acids and membrane fluidity. Grinholc et al. (2015) also reported that photodynamic reactions of fullerene compromised the structural integrity of the cell membrane of Staphylococcus aureus, indicating that the bacterial cell membrane is a major target for fullerene-based aPDI. In addition, the inherent hydrophobic structure of fullerenes can cause mechanical disruption of the cell membrane. Even at low concentrations, fullerenes can adhere to and insert into the cell membrane, leading to the change in membrane permeability and leakage of intracellular substances, eventually causing bacterial death (Zhang et al., 2021). Furthermore, fullerenes can cause protein denaturation under irradiation (Radic et al., 2014). Nakagawa et al. (2014) reported that fullererenes induced necrocytosis and apoptosis of bacteria by causing protein denaturation through oxidation of cysteine.

Fullerenes have also been reported to bind DNA molecules after entering microbial cells and change the structures and biochemical functions of DNA, inducing oxidative stress and cellular respiration interruption (Lyon and Alvarez, 2008; Nishizawa et al., 2009; An and Jin, 2011). Moreover, fullerenes are prone to adhere to DNA chains due to their high affinity to guanine, causing damage to DNA and eventually bacterial death.
of functionalized fullerene derivatives for application in aPDI is being increasingly focused on the synthesis and development of fullerene allow surface grafting of various functional groups of short wavelengths. Nevertheless, the abundant double bonds areas of the body is limited by the poor penetration depth of light (et al., 2022). The applicability of fullerene-based aPDI in deep inflict damage on normal tissue. Lack of ability to target bacterial generated by the photodynamic reactions of fullerene may also photoactivity (Mizuno et al., 2011). Second, the ROS and agglomerate in a liquid environment, adversely affecting their virtually impossible. Fullerene nanoparticles are also prone to the surface of fullerene not only improves water solubility, but also facilitates targeted attacks on bacteria by rapidly binding to the anionic residues on the bacterial cell wall (Merchat et al., 1996; Mashino et al., 2003; Hamblin, 2016). Additionally, the cellular uptake of cationic fullerene derivatives by bacteria is significantly greater than that by mammalian cells (Soncin et al., 2002), making cationic fullerene derivatives perfect PSs for aPDI. Based on the type of cationic functional groups, cationic fullerene derivatives can be classified into fullerene-pyrrolidine derivatives and fullerene-cyclopropane derivatives.

**Cationic Fullerene Derivatives**

Pyrrolidination of fullerene is one of the main approaches to prepare cationic fullerene derivatives. (Huang Y.-Y. et al., 2014) charged pyrroldinium groups on fullerene and compared the antibiotic effectiveness and spectrum of the two derivatives. It was found that the neutral dienol-functionalized fullerene exhibited only modest antibacterial activity against Gram-positive Staphylococcus aureus, while the cationic pyrroldinium-functionalized fullerene effectively induced light-mediated killing of Gram-positive S. aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungal yeast Candida albicans by inhibiting oxygen uptake. Spesia et al. (2008) investigated the relationship between the number of cationic charges of fullerene-pyrrolidine derivatives and aPDI effectiveness against E. coli suspensions. After 30 min of irradiation, the dicationic fullerene derivative DTC$_{60}$ (Figure 3A) and the monocationic fullerene derivative DTC$_{60}$+ (Figure 3B) decreased the viability of E. coli by 99.97 and 96.8%, respectively, while the non-charged fullerene derivative MAC$_{60}$ showed negligible effect on E. coli. These results indicate that the effectiveness of aPDI is positively correlated to the number of charges on cationic fullerene derivatives.

**Fullerene-Pyrrolidine Derivatives**

Grinholc et al. (2015) prepared a mono-N-methylpyrrolidinium fullerene iodide (Figure 3C) with supreme bactericidal effect on E. coli, P. aeruginosa, S. aureus, and C. albicans under white light irradiation. The bacterial inactivation observed was attributed to cell membrane disruption induced by O$_2$· and O$_2$ instead of DNA cleavage. In vivo studies showed that the as-prepared fullerene derivative was effective in treating mice infected with S. aureus (Grinholc et al., 2015). Agazzi et al. (2015) synthesized a novel fullerepyrrolidine C$_{60}$ derivative (MPC$_{60}$) containing an aliphatic chain with an amino group at the end. By exhaustive methylation of the amino group, a dicaticonic fullerepyrrolidinium (DPC$_{60}$+2+) was further synthesized (Figure 3D). Although MPC$_{60}$ generated higher yield of 1O$_2$ than DPC$_{60}$+2+, higher photoinactivation of S. aureus was reported for the dicaticonic DPC$_{60}$+2+. After
incubation with 0.5 µM fullerene and irradiation for 30 min, MPC\textsubscript{60} and DPC\textsubscript{60}\textsuperscript{2+} decreased the cell viability by 4.4 and 5.0 log, respectively. Oxygen was found to be essential for effective aPDI by DPC\textsubscript{60}\textsuperscript{2+}, and \textsuperscript{1}O\textsubscript{2} was detected in \textit{S. aureus} cells. After the addition of NADH (which is able to quench \textsuperscript{1}O\textsubscript{2}) into the bacterial suspension, a weakened aPDI performance was observed, indicating that DPC\textsubscript{60}\textsuperscript{2+} killed \textit{S. aureus} mainly through Type-II mechanism (Gsponer et al., 2016). In 2021, the same research group prepared an amphiphilic tricationic fullerene derivative DMC\textsubscript{60}\textsuperscript{3+} (Figure 3E) with strong UV adsorption that effectively inhibited the growth of \textit{E. coli} and \textit{S. aureus} through the synergistic effect of Type-I and Type-II mechanisms (Agazzi et al., 2021). 

Apart from the number of cationic charges, the position of charges may also affect the aPDI effectiveness of fullerene-pyrrolidine derivatives. Mizuno et al. (2011) found that distributing cationic charges around the fullerene cage can minimize the tendency of fullerene to aggregate and enhance
their aPDI effectiveness. Palacios et al. (2021) prepared four fullerene-pyridoline derivatives and found that compounds with the highest dipole moments exhibited a stronger inactivation effect against methicillin-resistant *E. coli* and *S. aureus*.

**Fullerene-Cyclopropane Derivatives**

Cyclopropanation is another common approach to prepare cationic fullerene derivatives. Fullerene-cyclopropane derivatives can effectively target Gram-negative bacteria due to their rich abundance of quaternary ammonium cations. When irradiated with UV (wavelength 320–420 nm) or white light, fullerene-cyclopropane derivatives can generate both \(^1\text{O}_2\) and ROS (predominantly \(\text{HO}^*\)) with bactericidal potencies against multiple drug-resistant bacterial species. Yin et al. (2015) synthesized three fullerene-cyclopropane derivatives as PSs for aPDI, \(\text{C}_{60}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC14), \(\text{C}_{60}[\text{CPA}-\text{F}(\text{M}_6\text{N}_6^+\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC15), and \(\text{C}_{60}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}][\text{M}(\text{C}_3\text{N}_6\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC16), and their molecular structures are shown in Figure 4. Zhang et al. (2015) investigated the ROS-generating ability of these three fullerene derivatives and their inhibition effectiveness against methicillin-resistant *S. aureus*, *E. coli*, and *C. albicans*. LC15 showed the best broad-spectrum antibacterial properties, followed by LC16 and LC14 in sequence. Owing to the lack of electron-donating groups, LC14 could only produce \(^1\text{O}_2\) via a Type-II mechanism that is only effective against Gram-positive bacteria. Nevertheless, \(^1\text{O}_2\) cannot effectively kill Gram-negative bacteria due to the difficulty in penetrating their cell wall. LC15, which produces \(\text{HO}^*\), was more effective against Gram-negative bacteria. Wang et al. (2013) prepared a water-soluble decacationic fullerene derivative \(\text{C}_{60}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}](\text{I}^-)_{10}\) capable of producing both \(^1\text{O}_2\) and \(\text{HO}^*\) under UV and white light irradiation. The 10 quaternary ammonium cations per \(\text{C}_{60}\) provided the compound with excellent bactericidal ability against pathogenic Gram-positive and Gram-negative bacteria. Wang et al. (2012) compared the bactericidal effect of decacationic \(\text{C}_{60}\) and \(\text{C}_{70}\) derivatives \(\text{C}_{60}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}][\text{M}(\text{C}_3\text{N}_6\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC17). Compared with \(\text{C}_{60}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}][\text{M}(\text{C}_3\text{N}_6\text{C}_3)_{12}](\text{I}^-)_{10}\), LC17 was more effective against Gram-negative bacteria due to its ability to produce \(\text{HO}^*\) via the Type-I mechanism. Based on LC17, Sperandio et al. (2013) added a deca-tertiary ethyleneamino-chain as an electron source and prepared \(\text{C}_{70}[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}][\text{M}(\text{C}_3\text{N}_6\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC18). Huang L. et al. (2014) reported excellent effectiveness of LC18 in treating mice with third-degree burns infected by Gram-negative bacteria. The 10 tertiary amine groups of LC18 (with each tertiary amine group providing one electron for the \(\text{C}_{70}\) cage) enable the production of \(\text{HO}^*\) under UV light irradiation. Sperandio et al. (2013) further replaced the \(\text{C}_{70}\) of LC17 and LC18 with \(\text{C}_{84}\text{O}_2\) and prepared \(\text{C}_{84}\text{O}_2[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC19) and \(\text{C}_{84}\text{O}_2[\text{M}(\text{C}_3\text{N}_6^+\text{C}_3)_{12}][\text{M}(\text{C}_3\text{N}_6\text{C}_3)_{12}](\text{I}^-)_{10}\) (LC20). LC19 was found to exhibit stronger phototoxicity when irradiated with light of longer wavelengths (615–645 nm), while LC20 exhibited stronger phototoxicity at short wavelengths (350–420 nm).

**Fullerenols**

Fullerenols are a family of polyhydroxylated fullerene that can be used as PSs for aPDI and are prepared by chemical functionalization of fullerene using hydrogen peroxide. Pickering and Wiesner (2005) first proved the ability of

![Figure 4: Molecular structures of the fullerene-cyclopropane derivatives, LC14-LC20 (Sperandio et al., 2013; Yin et al., 2015).](image-url)
fullerenols to simultaneously produce $^1\text{O}_2$ and $\text{O}_2^-$ under UV or polychromatic light irradiation. Fullerenols were found to exhibit 2~3 times greater light adsorption in the wavelength range of 300~400 nm than in the visible range, accompanied by an order of magnitude greater ROS generation rate. Compared with C$_{60}$ nanoparticles, fullerenols possess stronger abilities to bind bacterial DNA and induce DNA mutations (An and Jin, 2011). Aoshima et al. (2009) reported that fullerenols C$_{60}$(OH)$_{12}$, C$_{60}$(OH)$_{38}$·8H$_2$O, and C$_{60}$(OH)$_{44}$·8H$_2$O significantly inhibited the growth of C. albicans, Malassezia furfur, and Propionibacterium acnes. Furthermore, C$_{60}$(OH)$_{44}$·8H$_2$O was found to inhibit the growth of E. coli, S. aureus, Staphylococcus epidermidis, and Bacillus sp. Brunet et al. (2009) found that the photodynamic activities of fullerenols were dependent on the solution in which they were suspended. When suspended in ultrapure water, fullerenols generated abundant $^1\text{O}_2$, while when suspended in minimal Davis microbial growth medium, fullerenols generated both $^1\text{O}_2$ and $\text{O}_2^-$. However, when suspended in tetrahydrofuran, fullerenols exhibited no photoactivity. Kuo et al. (2020) reported massive production of ROS and complete elimination of methicillin-resistant S. aureus by water-soluble fullerenol C$_{60}$(OH)$_{30}$ under two-photon excitation in the near-infrared region (760 nm).

Fullerenols can also be used in conjunction with other antibacterial agents for enhanced aPDI performances. Krishna et al. (2008) found that the adsorption of polyhydroxyl fullerenol on the surface of TiO$_2$ nanoparticles increased the photocatalytic performance of TiO$_2$ nanoparticles by 70% through scavenging of photo-generated electrons. The combination of fullerene and TiO$_2$ achieved a 2-fold higher killing rate against E. coli due to increased yields of HO$.^\cdot$ (Krishna et al., 2008). Bai et al. (2012) synthesized a nanocomposite of polyhydroxy fullerene and TiO$_2$ that can effectively kill microbes, such as Aspergillus niger, under visible light irradiation. The spore inactivation rate of this nanocomposite was 3~4 times greater than that of pure TiO$_2$. Wan et al. (2021) used fullerenols in conjunction with ultra-small copper nanoparticles to achieve synergistic antibacterial and antioxidative effects. The addition of fullerenols reduced the usage of copper nanoparticles, alleviating the copper-induced environmental harm. Ansari et al. (2022) loaded the surface of fullerenols with an antibacterial drug sulfasalazine and found that the addition of fullerenols decreased the minimum inhibitory concentration (MIC) of sulfasalazine against Bacillus cereus, Proteus mirabilis, and Salmonella typhimurium, but not against E. coli or S. aureus.

**Fullerene Derivatives With Light-Harvesting Antenna**

Despite the supreme $^1\text{O}_2$ and ROS-generating ability, the applicability of fullerenes as a PS for aPDI in deep areas of the body is limited due to their short adsorption wavelengths (usually green, blue, or UV light which is hard to penetrate deep into the body) (Agazzi et al., 2015; Sobotta et al., 2019). Thus, covalently grafting light-harvesting agents, such as chromophores, on the surface of fullerene to broaden its adsorption spectrum is a desirable strategy to improve the aPDI effectiveness of fullerene in deep areas of the body. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) has the advantages of good photostability, low toxicity, high adsorption, and fluorescence emission in the visible range, and thus can be covalently grafted on the surface of fullerene as a “light-harvesting antenna” to increase the generation of excited triplet state and produce $^1\text{O}_2$ through the Type-II mechanism (Wei et al., 2017; Durantini et al., 2018; Agazzi et al., 2019a,b). Agazzi et al. (2019b) grafted dimethylaminophenyl-BODIPY (aBDP) on the surface of N-methylfulleropyrrolidine (MC$_{60}$) to synthesize a novel C$_{60}$-BODIPY dyad (BDP-C$_{60}$) (Figure 5A). The aBDP acted as a “light-harvesting antenna” and singlet energy or electron donor, while C$_{60}$ served as singlet energy or electron acceptor to produce triplet state C$_{60}$. Granting of BODIPY red-shifted the adsorption peak from 415 to 515 nm, even longer than that of pure BODIPY (502 nm). Additionally, the $^1\text{O}_2$ yield was found to be correlated with solvent polarity. In the toluene solution with strong polarity, $^1\text{O}_2$ yield was high; while in the dimethylformamide solution with weak polarity, $^1\text{O}_2$ yield was relatively low. The presence of BODIPY also increased the ROS yield of fullerene. The dyad exhibited excellent aPDI effectiveness at physiological pH, decreasing the viability of S. aureus by 99.97% and E. coli by 99.98% within 15 and 30 min of green light irradiation, respectively. Covalently binding a bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (BOPHY) fluorophore unit to C$_{60}$ increased the ROS yield of fullerene. The dyad exhibited excellent aPDI effectiveness at physiological pH, decreasing the viability of S. aureus by 99.97% and E. coli by 99.98% within 15 and 30 min of green light irradiation, respectively. Covalently binding a bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (BOPHY) fluorophore unit to C$_{60}$ increased the ROS yield of fullerene. The dyad exhibited excellent aPDI effectiveness at physiological pH, decreasing the viability of S. aureus by 99.97% and E. coli by 99.98% within 15 and 30 min of green light irradiation, respectively. Covalently binding a bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (BOPHY) fluorophore unit to C$_{60}$ increased the ROS yield of fullerene. The dyad exhibited excellent aPDI effectiveness at physiological pH, decreasing the viability of S. aureus by 99.97% and E. coli by 99.98% within 15 and 30 min of green light irradiation, respectively. Covalently binding a bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (BOPHY) fluorophore unit to C$_{60}$ increased the ROS yield of fullerene. The dyad exhibited excellent aPDI effectiveness at physiological pH, decreasing the viability of S. aureus by 99.97% and E. coli by 99.98% within 15 and 30 min of green light irradiation, respectively.
FIGURE 5 | Molecular structures of the fullerene derivatives with a light-harvesting antenna. (A) BDP-\(C_{60}\), aBDP, and MC_{60} (Agazzi et al., 2019b). (B) BP-\(C_{60}\) (Lopez et al., 2021). (C) Distryl-BODIPY-cyclotriphosphazene-fullerene triad (Sarikaya et al., 2019). (D) Schematic diagram of LMIcat\(C_{60}\)–light-harvesting antenna molecules (Kawasaki et al., 2020). (E) GO-\(C_{60}\) (Li et al., 2017).

Efficiently transferred energy to fullerenes, eliminating bacteria without causing harm to erythrocytes. Gotfredsen et al. (2017) prepared a class of thieno-fused subporphyrines with broad adsorption spectra and red-shifted adsorption limits as light-harvesting agents. These molecules are easy to co-crystallize with \(C_{60}\) and thus could be used as antennas to improve the aPDI effectiveness of fullerene. Li et al. (2017) covalently grafted graphene oxide (GO) as a light-harvesting antenna on fullerene to produce a PS for aPDI (Figure 5E). Taking advantage of GO’s strong adsorption in the near-IR range, the adsorption spectrum of GO-\(C_{60}\) was significantly broadened to enable photodynamic treatment in deep areas of the body.

Fullerene Derivatives Modified With Amino Acids and Peptides

Fullerene derivatives can be modified with amino acids and peptides through nucleophilic addition reactions (Yang et al., 2014; Pochkaeva et al., 2020). Kornev et al. (2012) prepared pentakisamino derivatives of \(C_{60}\) using \(C_{60}Cl_6\) as a precursor with strong antibacterial activities against \(E.\ coli\) and \(B.\ subtilis\). Antibacterial peptides are a family of novel
antibacterial agents that kill bacteria by inducing cell membrane rupture and cellular content leakage via electrostatic interactions with the cell membrane (Raheem and Straus, 2019; Yan et al., 2021). Nevertheless, the bactericidal performance of antibacterial peptides against Gram-negative bacteria is limited by the relatively dense outer cell membrane. Conjugation of fullerene and antibacterial peptides can greatly overcome this limitation. Generally, there are two common strategies to combine fullerene with peptides: (1) Covalently grafting preformed peptides on fullerene; and (2) Introducing the fullerene fragment as a special amino acid into the peptide sequence (Pochkaeva et al., 2020). Using the first approach, Pellarini et al. (2001) prepared a C$_{60}$-functionalized amino acid by condensing a fullerene derivative containing a free amino group with N-Fmoc-L-glutamic acid-tert-butyl ester (Figure 6A). The unmodified peptides showed no antibacterial activity against E. coli or S. aureus. Conjugation of fullerene significantly enhanced the antibacterial performance, with a MIC of 8 and 64 µM against S. aureus and E. coli, respectively. Pantarotto et al. (2002) adopted the second strategy and introduced a fulleropyrrolidino-glutamic acid residue (Fgu) into the peptide sequence (H-Gly-(Nle)$_2$-Gln-Orn-Nle-Gly-(Orn)$_2$-Nle-(Orn)$_2$-Nle-Gly-(Orn)$_2$-Nle-Gly-Tyr-NH$_2$) using solid-phase synthesis and investigated the influence of the position of Fgu on aPDI performance (Figure 6B). Compared with other cationic antimicrobial peptides, the Fgu-functionalized peptides exhibited significantly higher antibacterial activities against S. aureus. The introduction of Fgu at the N terminus of the peptide achieved better antibacterial effectiveness than in the middle of the peptide. Zhang et al. (2018) fabricated a hybrid hydrogel containing C$_{60}$ pyrrolidine tris-acid (C$_{60}$-PTC) and amphiphilic small peptides (Fmoc-FF) (Figure 6C). The hybrid hydrogel effectively inhibited S. aureus growth by generating ROS and promoted wound healing.

**Fullerene as Additives to Other Materials**

Fullerenes can also be used as additives to other materials for optimized antibacterial performance. Gudkov et al. (2021) added fullerene as an additive to borosiloxane polymers and observed noticeable ROS production and bacterial inhibition under visible light irradiation. The ROS yield of the composite increased with the increase of the amount of fullerene added. A reliable indicator of oxidative damage to DNA by ROS is the levels of long-lived active forms of proteins (LRPS) and 8-oxoguanine (8-OH-Gua; Matsuda et al., 2011). It was observed that the composite induced a significant increase in LRPS

![Figure 6](https://example.com/f6.png)
and 8-OH-Gua levels, indicating that the ROS produced by fullerene caused oxidative damage to bacterial DNA and cell death. Liu et al. (2022) introduced a self-assembled fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to the surface of g-C3N4, a polymer-like organic photocatalytic semiconductor (Figure 7A) to prepare heterostructures for water purification. The presence of PC71BM extended the adsorption range of g-C3N4 from 450 to 650 nm and generated abundant ROS under irradiation. The heterostructures achieved a bactericidal rate of over 99.7% against S. aureus and E. coli, and effectively inactivated their biofilms after prolonged irradiation (Figure 7B).

CONCLUSION AND PERSPECTIVES

Overuse of antibiotics has brought about the issue of multidrug resistance of bacteria. In the past decades, various novel antibacterial strategies have been proposed as potential alternatives to antibiotics (Alavi and Rai, 2021; Fazeli-Nasab et al., 2021; Khodadadi et al., 2021; Ahmadi, 2022; Alavi et al., 2022a,b). As a newly emerged antibacterial strategy, aPDI can effectively address the issue of drug resistance and thus has promising prospects of application in treating bacterial infections. Fullerene can be used as a PS for aPDI for its high 1O2 and ROS yields and bactericidal activities against both Gram-positive and Gram-negative bacteria. This review summarizes the up-to-date studies on the application of fullerene derivatives in aPDI, including fullerene-pyrrolidine derivatives, fullerene-cyclopropane derivatives, fullerenols, fullerene derivatives with light-harvesting antenna, fullerene derivatives modified with amino acids and peptides, and fullerenes as additives to other materials.

Grafting cationic functional groups on the surface of fullerenes is an effective strategy to improve their ability to target negatively charged bacterial cells. Nevertheless, it is worth noting that surface modification may affect the photophysical and photochemical properties of fullerene, resulting in decreased triplet state yield and ROS generation. Moreover, although fullerene-cyclopropane derivatives have a greater number of cationic charges, they are also of higher molecular weights and thus are more difficult to penetrate into bacteria. Therefore, it is desirable to find a balance between the number of cationic charges and molecular weight for optimized bactericidal efficacy.

The adsorption wavelengths of fullerenes are limited to the green, blue, and UV regions, limiting their use in deep areas of the body. Although grafting light-harvesting antennas is a potent strategy to broaden the adsorption range of fullerenes, application of this strategy in aPDI is still rare and remains to be explored. Conjugation of fullerenes can also increase the susceptibility of bacteria to antibacterial peptides. However, the binding site of fullerenes has a considerable influence on the bactericidal efficacy of antibacterial peptides, which is worthwhile to be extensively investigated. Additionally, fullerenes also possess ROS clearance ability in the dark, which is beneficial to the proliferation of normal cells and tissue growth. This advantage makes fullerenes promising candidates as additives to wound dressings and dental implants with both antibacterial and wound healing promotion abilities.

Furthermore, the shape, structure, and performance of fullerene derivatives are closely related to preparation methods. Distinct antibacterial performances have been reported for the same fullerene derivatives prepared with different methods, and for those commercially manufactured and prepared in the laboratory (Indeglia et al., 2018). Therefore, it is needed to further investigate the relationships between preparation methods, molecular structures, and antibacterial performance to optimize and standardize the preparation of fullerene derivatives. Finally, more attention needs to be paid to the histotoxicity resulting from the accumulation of fullerene nanoparticles in...
organs, such as the liver and the spleen (Shipkowski et al., 2019). To address this issue, the interactions between fullerene nanoparticles and serum proteins need to be disclosed, and the influence of such interactions on their in vivo destiny needs to be investigated.

**AUTHOR CONTRIBUTIONS**

WH, GS, JM, and LS: writing – original draft preparation. WH and SW: writing – review and editing. XZ, WH, and YZ: funding acquisition. XZ and YZ: resources. All authors contributed to the article and approved the submitted version.

**REFERENCES**

Agazzi, M. L., Almodovar, V. A. S., Gepson, N. S., Bertolotti, S., Tome, A. C., and Duranti, E. N. (2020). Diketopyrrolopyrrole-fullerene C60 architectures as highly efficient heavy atom-free photosensitizers: synthesis, photophysical properties and photodynamic activity. *Org. Biomol. Chem.*, 18, 1449–1461. doi: 10.1039/c0ob02487e

Agazzi, M. L., Belen Ballatore, M., Duranti, A. M., Duranti, E. N., and Tome, A. C. (2019a). BODIPYs in antimutant and antimicrobial photodynamic therapy: an integrating review. *J. Phototh. Photobiol. C*, 40, 21–48. doi: 10.1016/j.jphotochemrev.2019.04.002

Agazzi, M. L., Duranti, J. E., Gepson, N. S., Duranti, A. M., Bertolotti, S. G., and Duranti, E. N. (2019b). Light-harvesting antenna and proton-activated photodynamic effect of a novel BODIPY-fullerene C60 dyad as potential antimicrobial agent. *Chemphyschem*, 20, 1110–1125. doi: 10.1002/cphc.201900181

Agazzi, M. L., Duranti, J. E., Quiroga, E. D., Alvarez, M. G., and Duranti, E. N. (2021). A novel tricaticionic fullerene C60 as broad-spectrum antimicrobial photosensitizer: mechanisms of action and potentiation with potassium iodide. *Phototh. Photobiol. Sci.*, 20, 327–341. doi: 10.1016/j.apsc.2015.05.026

Ahmadi, S. (2022). Antibacterial and antifungal activities of medicinal plant species and endophytes. *Cell. Mol. Biomed. Rep.*, 2, 109–115. doi: 10.55705/cmbr.2022.340532.1042

Alavi, M., Hamblin, M. R., Martinez, F., Kennedy, J. F., and Khan, H. (2022a). Synergistic combinations of metal, metal oxide, or metalloid nanoparticles plus antibiotics against resistant and non-resistant bacteria. *Micro Nano Bio. Aspects*, 1, 1–9.

Alavi, M., Hamblin, M. R., Mozafari, M. R., de Menezes, I., and Coutinho, H. (2022b). Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products. *Cell. Mol. Biomed. Rep.*, 2, 87–98. doi: 10.55705/cmbr.2022.338888.1039

Alavi, M., and Rai, M. (2021). Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. *Cell. Mol. Biomed. Rep.*, 1, 52–59. doi: 10.55705/CMBR.2021.142436.1014

Allison, R. R., and Moghissi, K. (2013). Photodynamic therapy (PDT): PDT mechanisms. *Clin. Endocrin.* 46, 24–29. doi: 10.5946/cen.2013.46.1.24

Al-Mutairi, R., Tovmasyan, A., Batinic-Haberle, I., and Benov, L. (2018). Sublethal mechanisms of inactivation of prokaryotic and eukaryotic microbial cells. *Microbios*, 71, 33–46.

An, H., and Jin, B. (2011). DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. *Environ. Sci. Technol.*, 45, 6608–6616. doi: 10.1021/es2012319

An, H., and Jin, B. (2015). Fullerenoïds and fullerene alter cell growth and metabolism of *Escherichia coli*. *J. Biomed. Nanotechnol.*, 11, 1261–1268. doi: 10.1166/jbn.2015.2070

Ansari, M. J., Soltani, A., Ramezanitaghahpar, M., Singla, P., Aghaei, M., Fadafan, H. K., et al. (2022). Improved antibacterial activity of sulfasalazine loaded fullerene derivative: computational and experimental studies. *J. Mol. Liq.*, 348:118083. doi: 10.1016/j.molliq.2021.118083

Aoshiba, H., Kokubo, K., Shirakawa, S., Ito, M., Yamana, S., and Oshima, T. (2009). Antimicrobial activity of fullerences and their hydroxylated derivatives. *Biocntrol. Sci.*, 14, 69–72. doi: 10.4265/bio.14.69

Armstrong, D. W., Yu, J., Cole, H. D., McFarland, S. A., and Nafie, J. (2021). Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antimutator agents. *J. Pharmaceut. Biomed.*, 204:114233. doi: 10.1016/j.jpba.2021.114233

Bai, W., Krishna, V., Wang, J., Moudgil, B., and Koopman, B. (2012). Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene. *Appl. Catal. B: Environ.*, 125, 128–135. doi: 10.1016/j.apcatb.2012.05.026

Bertolini, G., Rossi, F., Valsugna, G., Jori, G., Ali, H., and van Lier, J. E. (1992). Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. *Microbios*, 71, 33–46.

Betancourt, P., Brocal, N., Sans-Serramitiana, E., and Zaror, C. (2021). Functionalized nanoparticles activated by photodynamic therapy as an antimicrobial strategy in endodontics: a scopeing review. *Antibiotics-Basel*, 10:1064. doi: 10.3390/antibiotics10010164

Blum, N. T., Zhang, Y., Qu, J., Lin, J., and Huang, P. (2020). Recent advances in self-excitasing photodynamic therapy. *Front. Biog. Biotechnol.*, 8:594491. doi: 10.3389/fbioe.2020.594491

Brunet, L., Lyon, D. Y., Hotz, E. M., Alvarez, P. J. J., and Wiesner, M. R. (2009). Comparative phototoxicity and antibacterial properties of c-60 fullerences and titanium dioxide nanoparticles. *Environ. Sci. Technol.*, 43, 4355–4360. doi: 10.1021/es080393t

Cadet, J., Douki, T., and Ravanat, J.-L. (2010). Oxidatively generated base damage to cellular DNA. *Free Radical Bio. Med.*, 49, 9–21. doi: 10.1016/j.freeradbiomed.2010.03.025

Chen, X., Pradhan, T., Wang, F., Kim, J. S., and Yoon, J. (2012). Fluorescent chemosensors based on spiro-ringing-opening of xanthenes and related derivatives. *Chem. Rev.*, 112, 1910–1956. doi: 10.1021/cr200021g

Choudhary, S., Nouri, K., and Elsaei, M. L. (2009). Photodynamic therapy in dermatology: a review. *Laser Med. Sci.*, 24, 971–980. doi: 10.1007/s10103-009-0716-x

Diogo, P., Faustino, M. A. F., Neves, M. G., Palma, P. J., Baptista, I. P., Goncalves, T., et al. (2019). An insight into advanced approaches for photosensitizer optimization in endodondics-a critical review. *J. Funct. Biomater.*, 10:44. doi: 10.3390/jfb10040044

Duranti, A. M., Heredia, D. A., Duranti, J. E., and Duranti, E. N. (2018). BODIPYs to the rescue: potential applications in photodynamic inactivation. *Eur. J. Med. Chem.*, 144, 651–661. doi: 10.1016/j.ejmech.2017.12.068

Fang, J. S., Lyon, D. Y., Wiesner, M. R., Dong, J. P., and Alvarez, P. J. J. (2007). Effect of fullerene water suspension on bacterial phospholipids and membrane phase behavior. *Environ. Sci. Technol.*, 41, 2636–2642. doi: 10.1021/es062181w

Fazeli-Nasab, B., Solouki, M., and Sobhanizadeh, A. (2021). Green synthesis of silver nanoparticles using an echdera sinica herb extract with antibacterial properties. *JMB*, 10, 30–47.

Gad, F., Zahra, T., Francis, K. P., Hasan, T., and Hamblin, M. R. (2004). Targeted photodynamic therapy of established soft-tissue infections in mice. *Phototh. Photobiol. Sci.*, 3, 451–458. doi: 10.1039/b311901g
Nakagawa, Y., Suzuki, T., Nakajima, K., Inomata, A., Ogata, A., and Nakae, D. (2014). Effects of N-acetyl-L-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. Arch. Toxicol. 88, 115–126. doi: 10.1007/s00218-014-1096-3

Nishiuawa, C., Hashimoto, N., Yokoo, S., Funakoshi-Tago, M., Kasahara, T., Takahashi, K. et al. (2009). Pyrrolidinium-type fullerene derivative-induced apoptosis by the generation of reactive oxygen species in HL-60 cells. Free Rad. Res. 43, 1240–1247. doi: 10.1080/01015710903273849

Ochsner, M. (1997). Photophysical and photochemical processes in the photodynamic therapy of tumours. J. Photot. Photobiol. B 39, 1–18. doi: 10.1016/s1011-1344(96)007428-3

Oruba, Z., and Chomyszyn-Gajewska, M. (2016). Application of photodynamic therapy in dentistry – literature review. Przegl. Lek. 73, 857–861.

Palacios, Y. B., Durantini, J. E., Heredia, D. A., Martinez, S. R., Gonzalez de la Torre, L., and Durantini, A. M. (2021). Tuning the polarity of fullerene C60 derivatives for enhanced photodynamic inactivation (dagger). Phys. Photon. 97, 1431–1444. doi: 10.1111/php.13465

Pan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., et al. (2020). Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl. Catal. B Environ. 265:118579. doi: 10.1016/j.apcatb.2019.118579

Pantarotto, D., Bianco, A., Pellarini, F., Tossi, A., Giangaspero, A., Zelezetsky, I., et al. (2002). Solid-phase synthesis of fullerene-peptides. J. Am. Chem. Soc. 124, 12543–12549. doi: 10.1021/ja026763q

Pellarini, F., Pantarotto, D., Da Ros, T., Giangaspero, A., Tossi, D., and Prato, N. (2001). A novel [60] fullerene amino acid for use in solid-phase peptide synthesis. Org. Lett. 3, 1845–1848. doi: 10.1021/ol0105934

Pickering, K. D., and Wiesner, M. R. (2005). Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ. Sci. Technol. 39, 1359–1365. doi: 10.1021/es049840x

Pieranski, P., Sitkiewicz, I., and Grinholc, M. (2020). Increased photoactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments. Free Radical Bio. Med. 160, 657–669. doi: 10.1016/j.freeradbiomed.2020.09.003

Poblocki, K., Drezidzjon, J., Kostrezwa, T., and Jacewicz, D. (2021). Coordination induced protein misfolding. Nanoscale 13, 8340–8349. doi: 10.1039/c4nr01544d

Sayes, C. M., Fortner, J. D., Guo, W., Lyon, D., Boyd, A. M., Ausman, K. D., et al. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881–1887. doi: 10.1021/nl0489586

Sera, N., Tokiwa, H., and Miyata, N. (1996). Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17, 2163–2169. doi: 10.1093/carcin/17.10.2163

Sharma, S. K., Chiang, L. Y., and Hamblin, M. R. (2011). Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine 6, 1813–1825. doi: 10.2217/nmn.11.144

Shipkowski, K. A., Sanders, J. M., McDonald, J. D., Walker, N. J., and Waidyanatha, S. (2019). Disposition of fullerene C60 in rats following intratracheal or intravenous administration. Xenobiotica 49, 1078–1085. doi: 10.1080/00498254.2018.1528646

Simonetti, O., Rizzetto, G., Radi, G., Molinelli, E., Cirion, O., Giacomelli, A., et al. (2021). New perspectives on old and new therapies of Staphylococcal skin infections: the role of biofilm targeting in wound healing. Antibiotics Basel 10:1377. doi: 10.3390/antibiotics10111377

Sobotta, L., Skupin-Mrugalska, P., Piskora, J., and Mielcarek, J. (2019). Non-porphyrin photosensitizers mediated photodynamic inactivation against bacteria. Dyes Pigments 163, 337–355. doi: 10.1016/j.dyepig.2018.12.014

Soncin, M., Fabris, C., Busetti, A., Dei, D., Nistri, D., Roncucci, G., et al. (2002). Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photoc. Photobio. Sci. 1, 815–819. doi: 10.1039/b206554a

Sperandio, F. F., Sharma, S. K., Wang, M., Jeon, S., Huang, Y. Y., Dai, T. H., et al. (2013). Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C70 and C84O2 fullerene derivatives. Nanomol Nanotechnol 9, 579–586. doi: 10.1016/j.nano.2012.09.005

Sperandio, F. F., Simões, A., Aranha, A. C., Corrêa, L., and Orsini Machado de Sousa, S. C. (2010). Photodynamic therapy mediated by methane blue dye in wound healing. Photomed. Laser Surg. 28, 581–587. doi: 10.1097/JPHO.2009.2601

Spies, M. B., Milanese, A. E., and Durantini, E. N. (2008). Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives. Eur. J. Med. Chem. 43, 853–861. doi: 10.1016/j.ejmech.2007.06.014

Tan, O. L., Safii, S. H., and Razali, M. (2020). Commercial local pharmacotherapeutics and adjunctive agents for nonsurgical treatment of periodontitis: a contemporary review of clinical efficacies and challenges. Antib. Basel 9:11. doi: 10.3390/antibiotics9010011

Tan, O. L., Safii, S. H., and Razali, M. (2021). Clinical efficacy of repeated applications of local drug delivery and adjunctive agents in nonsurgical periodontal therapy: a systematic review. Antib. Basel 10:1178. doi: 10.3390/antibiotics1011174

Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., et al. (2021). Bacterial resistance to antimicrobial agents. Antibi. Basel 10:59. doi: 10.3390/antibiotics10050593

Vatansifer, F., de Melo, W. M. C. A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., et al. (2013). Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37, 955–989. doi: 10.1111/1574-6976.12026

Vileno, B., Marcoux, P. R., Lelka, M., Senkiewicz, A., Feher, T., and Forro, L. (2006). Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv. Funct. Mater. 16, 120–128. doi: 10.1002/adfm.200500425

Wang, M., Huang, L., Sharma, S. K., Jeon, S., Sperandio, F. F., Simões, A., Aranha, A. C., Corrêa, L., and Orsini Machado de Sousa, S. C. (2010). Photodynamic therapy mediated by methane blue dye in wound healing. Photomed. Laser Surg. 28, 581–587. doi: 10.1097/JPHO.2009.2601

Wang, M., Huang, L., Sharma, S. K., Jeon, S., Thota, S., Sperandio, F. F., et al. (2012). Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells. J. Med. Chem. 55, 4274–4285. doi: 10.1021/jm3000664

Wang, M., Maragani, S., Huang, L., Jeon, S., Canteenwala, T., Hamblin, M. R., et al. (2013). Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective pdt-mediation
on antimicrobial photoinactivation. *Eur. J. Med. Chem.* 63, 170–184. doi: 10.1016/j.ejmech.2013.01.052

Wang, Z., Xu, F. J., and Yu, B. (2021). Smart polymeric delivery system for antitumor and antimicrobial photodynamic therapy. *Front. Bioeng. Biotechnol.* 9:783354. doi: 10.3389/fbioe.2021.783354

Wei, Y., Zhou, M., Zhou, Q., Zhou, X., Liu, S., Zhang, S., et al. (2017). Triplet-triplet annihilation upconversion kinetics of C60-BODIPY dyads as organic triplet photosensitzers. *Phys. Chem. Chem. Phys.* 19, 22049–22060. doi: 10.1039/c7cp03840b

Willyard, C. (2017). Drug-resistant bacteria ranked. *Nature* 543:15. doi: 10.1038/nature.2017.21550

Wozniak, A., Kruszewska, B., Pieranski, M. K., Rychlowski, M., and Grinholc, M. (2021). Antimicrobial photodynamic inactivation affects the antibiotic susceptibility of *Enterococcus* spp. clinical isolates in biofilm and planktonic cultures. *Biomolecules* 11:693. doi: 10.3390/biom11050693

Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., et al. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-• versus 1O2. *J. Am. Chem. Soc.* 125, 12803–12809. doi: 10.1021/ja0355574

Yan, Y., Li, Y., Zhang, Z., Wang, X., Niu, Y., Zhang, S., et al. (2021). Advances of peptides for antibacterial applications. *Colloid. Surface. B* 202:111682. doi: 10.1016/j.colsurfb.2021.111682

Yang, X., Ebrahimi, A., Li, J., and Cui, Q. (2014). Fullerene-biomolecule conjugates and their biomedical applications. *Int. J. Nanomed.* 9, 77–92. doi: 10.2147/ijn.S52829

Yin, R., and Hamblin, M. R. (2015). Antimicrobial photosensitizers: drug discovery under the spotlight. *Carr. Med. Chem.* 22, 2159–2185. doi: 10.2174/092986732266150319120134

Yin, R., Wang, M., Huang, Y.-Y., Landi, G., Vecchio, D., Chiang, L. Y., et al. (2015). Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. *Free Rad. Bio. Med.* 79, 14–27. doi: 10.1016/j.freeradbiomed.2014.10.514

Zhang, C., Ge, Y., Lu, X., Chen, Z., Liu, J., Zhang, M., et al. (2021). Membrane perturbation of fullerene and graphene oxide distinguished by pore-forming peptide melittin. *Carbon* 180, 67–76. doi: 10.1016/j.carbon.2021.04.081

Zhang, M., Wu, Q., Lin, T., Guo, L., Ge, Y., Zeng, R., et al. (2020). Hematoporphyrin monomethyl ether photodynamic therapy for the treatment of facial port-wine stains resistant to pulsed dye laser. *Photodiagnosis Photodyn. Ther.* 31:101820. doi: 10.1016/j.pdpdt.2020.10.1820

Zhang, X., Cong, H., Yu, B., and Chen, Q. (2019). Recent advances of water-soluble fullerene derivatives in biomedical applications. *Mini Rev. Org. Chem.* 16, 92–99. doi: 10.2174/1570193x15666180712114405

Zhang, Y., Dai, T., Wang, M., Vecchio, D., Chiang, L. Y., and Hamblin, M. R. (2015). Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies. *Nanomedicine* 10, 603–614. doi: 10.2217/nmn.14.131

Zhang, Y. K., Zhang, H., Zou, Q. L., Xing, R. R., Jiao, T. F., and Yan, X. H. (2018). An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy. *J. Mater. Chem. B* 6, 7335–7342. doi: 10.1039/c8tb01487f

Zhao, X. C., Striolo, A., and Cummings, P. T. (2005). C60 binds to and deforms nucleotides. *Biophys. J.* 89, 3856–3862. doi: 10.1529/biophysj.105.04410

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hou, Shi, Wu, Mo, Shen, Zhang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.