Statistical Analysis of Genealogical Trees for Polygamic Species.

Paolo De Los Rios\textsuperscript{1} and Oscar Pla\textsuperscript{2}

\textsuperscript{1}Institut de Physique Théorique, Université de Fribourg, CH-1700, Fribourg, Switzerland.

\textsuperscript{2}Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas,

\textit{Cantoblanco, E-28049 Madrid, Spain}

(February 1, 2008)

Abstract

Repetitions within a given genealogical tree provides some information about the degree of consanguinity of a population. They can be analyzed with techniques usually employed in statistical physics when dealing with fixed point transformations. In particular we show that the tree features strongly depend on the fractions of males and females in the population, and also on the offspring probability distribution. We check different possibilities, some of them relevant to human groups, and compare them with simulations.
One of the main problems encountered in the efforts to preserve species from extinction is genetic diversity. Indeed, besides environmental threats to the welfare of a species, a less obvious but nonetheless extremely important issue is related to the largeness of the genetic pool from which the genes of an individual are taken. Such a problem is related to the degree of consanguinity within the population: the more relatives mate among themselves, the more reduced is the genetic diversity of the population. There are examples in the wilderness of species with a relatively small genetic variety: from molecular biology it is known that cheetahs, for example, show a high degree of consanguinity, probably due to some bottleneck in the number of individuals in their population some ten thousands of years ago; in human societies, it is well known that high rank aristocrats in Europe kept marrying only among themselves. As a consequence, the appearance of a hemophiliac individual spread the genetic disease all over the reigning houses of Europe. This example sheds light on the relevance of the genetic diversity of a population for its conservation: species with a small genetic pool are weaker against genetic diseases. The above examples show that genetic redundancy can come as a consequence of a reduced population.

In this Letter we address the same problem from a different (but we believe complementary) standpoint: we are interested in the genealogical trees of individuals of species where the male-to-female ratio is not 1 as in humans (here we define this ratio taking into account only males and females that are sexually mature). Among such examples we can name lions, sea lions and some antelopes, where each successfully reproducing male mates with more than one female (similar arguments could also be applied to polygamic human groups). Extreme cases are insects like bees and termites, where for every reproductive female (queen) there are very many males.

We measure the genetic redundancy in the gene pool of an individual by measuring the number of times that one of its ancestors many generations in the past appears more than once in its genealogical tree. Indeed, if no relatives would mate among themselves then, since every individual has a mother and a father, it would have $2^g$ ancestors $g$ generations in the past, half of them males and half of them females. Each of them would appear only once
in the genealogical tree of their present descendents. Going back some tens of generations in the past, the number of ancestors would largely exceed the population itself. The only way out from this paradox is to assume that relatives indeed mate among themselves. As a consequence some individuals appear more than once in the genealogical tree of their descendents (that is, more than one branch of the tree had origin from such individuals), thus reducing the genetic pool from which their genes are taken.

We take a population of $N$ individuals, and we assume that it does not change in time. There is a fraction $fN$ of males and $(1 - f)N$ of females, ad also this fraction remains constant in time. Every male mates therefore, on the average, with $1/f - 1$ females. Here in general we make the (politically uncorrect) assumption that the fraction of males is less than $1/2$. Since in this model there is no difference between males and females, the opposite situation is obtained with a transformation $f \rightarrow 1 - f$ (everything is symmetric with respect to $f = 1/2$). We apply and extend the same scheme as developed in [1], generalizing it to the case of male fractions different from $1/2$.

Given an individual in the present generation, we are interested in the number of times its ancestors at a previous generation $g$ appear in the genealogical tree of that individual (at $g = 1$ we find parents, at $g = 2$ the grandparents, and so on). We therefore define $m_r(g)$ ($f_r(g)$) as the number of males (females) appearing $r$ times at generation $g$ in the genealogical tree of an individual at generation 0, the present one.

The normalization of $m_r(g)$ and $f_r(g)$ implies that we can write

$$\sum_{r=0}^{\infty} m_r(g) \Delta r = fN , \quad \sum_{r=0}^{\infty} f_r(g) \Delta r = (1-f)N$$

(1)

where $\Delta r = 1$ trivially (but it is useful to write it explicitly for future rescalings). Since an individual at generation 0 has $2^{g-1}$ male ancestors (not necessarily distinct) at generations $g$ (and $2^{g-1}$ female ancestors as well), we can also write

$$\sum_{r=0}^{\infty} rm_r(g) \Delta r = \sum_{r=0}^{\infty} rf_r(g) \Delta r = 2^{g-1} .$$

(2)

We define then the probabilities connected to $m_r(g)$ and $f_r(g)$. These are probabilities defined over the population at generation $g$. Therefore we have
Using (3) we rewrite (1) as

\[ \sum_{r=0}^{\infty} M_r(g) \Delta r = \sum_{r=0}^{\infty} F_r(g) \Delta r = 1 \]  

(4)

and (2) as

\[ \sum_{r=0}^{\infty} r M_r(g) \Delta r = \frac{2^{g-1}}{fN} \] \[ \sum_{r=0}^{\infty} r F_r(g) \Delta r = \frac{2^{g-1}}{(1-f)N} \]. 

(5)

Finally we rescale \( r, F_r(g) \) and \( M_r(g) \) as

\[ P_M(r, g) = \frac{2^{g-1}}{fN} M_r(g), \quad P_F(r, g) = \frac{2^{g-1}}{(1-f)N} F_r(g) \]

\[ w_M(g) = \frac{fN}{2^{g-1}} r, \quad w_F(g) = \frac{(1-f)N}{2^{g-1}} r. \] 

(6)

With these definitions Eqs.(4) become

\[ \int_{0}^{\infty} P_M(w_M, g)dw_M = \int_{0}^{\infty} P_F(w_F, g)dw_F = 1 \]  

(7)

and Eqs.(5) become

\[ \int_{0}^{\infty} w_M P_M(w_M, g)dw_M = \int_{0}^{\infty} w_F P_F(w_F, g)dw_F = 1 \]. 

(8)

From (6) we see that \( P_M(w_M, g) \) and \( P_F(w_F, g) \) can be considered true probabilities.

Next, we can write a system of equations for \( w_m(g) \) and \( w_F(g) \). A male \( i \) at generation \( g+1 \) in the past has a number of repetitions that is given by the number of repetitions of his children at generation \( g \). Therefore

\[ r_{M,i}(g+1) = \sum_{\text{son of } i} r_{M,j}(g) + \sum_{\text{daughter of } i} r_{F,j}(g) \] 

(9)

and analogously for females

\[ r_{F,i}(g+1) = \sum_{\text{son of } i} r_{M,j}(g) + \sum_{\text{daughter of } i} r_{F,j}(g) \] 

(10)

Dividing the first equation for \( 2^{g-1}/fN \) we get
\[ w_{M,i}(g+1) = \frac{1}{2} \sum_{j \text{ son of } i} w_{M,j}(g) + \frac{f}{2(1-f)} \sum_{j \text{ daughter of } i} w_{F,j}(g) . \] (11)

Dividing (10) for \( 2g^{-1}/(1-f)N \) we get the analogous equation for females.

We assume a stable (on the average) population of \( N \) individuals divided in two parts whose proportions are also (on the average) stable. Therefore the number of sons (daughters) that an individual can have has to obey well defined probability distributions. In our simulations we proceed backward in time, keeping the population fixed at \( N \) and the male proportion fixed at \( f \). Since we assign to every individual a couple of parents at random in the previous generation, the corresponding son/daughter probability distributions are binomials distributions. More precisely, the probability that a male has \( k \) sons is

\[ p_{mm}(k) = \binom{fN}{k} \left( \frac{1}{fN} \right)^k \left( 1 - \frac{1}{fN} \right)^{fN-k} \] (12)

and that he has \( k \) daughters is

\[ p_{mf}(k) = \binom{(1-f)N}{k} \left( \frac{1}{fN} \right)^k \left( 1 - \frac{1}{fN} \right)^{(1-f)N-k} \] (13)

Analogous distributions can be written for \( p_{ff}(k) \) and \( p_{fm}(k) \).

We assume that the population is very large (\( N \to \infty \)) and that all the \( w \)'s are independent (this is verified in the limit of large \( N \)). In this limit the offspring probabilities become

\[ p_{mm}(k,f) = p_{ff}(k,f) = e^{-1}/k! \]

\[ p_{mf}(k,f) = p_{fm}(k,1-f) = e^{-(1-f)/f} \left( \frac{1-f}{f} \right)^k . \] (14)

In the case \( f = 1/2 \) we recover the distributions used in [4].

Upon defining the generating functions

\[ G_g(\lambda) = \int_0^\infty e^{-\lambda w_M} P_M(w_M, g) dw_M \]

\[ H_g(\mu) = \int_0^\infty e^{-\mu w_F} P_F(w_F, g) dw_F \] (15)
we find then that (11) become

\[
G_{g+1}(\lambda) = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} p_{mm}(k) \left[ G_g \left( \frac{\lambda}{2} \right) \right]^k \left[ p_{mf}(j) \left[ H_g \left( \frac{\lambda}{2} \right) \right] - f \right]^j
\]

\[
H_{g+1}(\mu) = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} p_{mf}(k) \left[ G_g \left( \frac{\mu}{2} \right) \right]^k \left[ p_{ff}(j) \left[ H_f \left( \frac{\mu}{2} \right) \right] - f \right]^j
\]

(16)

where also the equation for females has been written explicitly.

Substituing (14) in (16) we get, after some algebra,

\[
G_{g+1}(\lambda) = \exp \left[ - \frac{1}{f} G_g \left( \frac{\lambda}{2} \right) + \frac{1-f}{f} H_g \left( \frac{\lambda}{2} \right) \right]
\]

\[
H_{g+1}(\mu) = \exp \left[ - \frac{1}{1-f} G_g \left( \frac{\mu}{2} \right) + \frac{f}{1-f} H_g \left( \frac{\mu}{2} \right) \right]
\]

(17)

These equations are clearly symmetric in \( f \rightarrow 1-f \), since we do not make any distinction between males and females apart from the male proportion \( f \).

Next, we analyze the stationary equations, \( g = \infty \),

\[
G(\lambda) = \exp \left[ - \frac{1}{f} G_g \left( \frac{\lambda}{2} \right) + \frac{1-f}{f} H_g \left( \frac{\lambda}{2} \right) \right]
\]

\[
H(\mu) = \exp \left[ - \frac{1}{1-f} G_g \left( \frac{\mu}{2} \right) + \frac{f}{1-f} H_g \left( \frac{\mu}{2} \right) \right]
\]

(18)

The probability that a male (a female) in the past does not appear in the genealogical tree of a given individual in the present generation is recovered sending \( \lambda, \mu \rightarrow \infty \) (by tauberian theorems, the limit \( \lambda, \mu \rightarrow \infty \) corresponds to the limit \( r_M, r_F = 0 \)). Therefore, upon calling \( G_0 = G(\infty) \) and \( H_0 = H(\infty) \) we have

\[
G_0 = \exp \left( - \frac{1}{f} G_0 + \frac{1-f}{f} H_0 \right)
\]

\[
H_0 = \exp \left( - \frac{1}{1-f} G_0 + \frac{f}{1-f} H_0 \right)
\]

(19)

These equations can be solved numerically and the solution is shown in Fig.1 (Left) (the results of the simulations agree with this solution up to the third significant digit).

Next, we expand (18) around the fixed point assuming that \( P_M(w_M) \sim G_0 \delta(w_M) + w_M^{\beta_M} \) and \( P_F(w_F) \sim H_0 \delta(w_F) + w_F^{\beta_F} \) for \( w_M, w_F \rightarrow 0 \), which translates, by tauberian theorems, to
\[ G(\lambda) = G_0 + A_M \lambda^{-\beta_M - 1}, \quad H(\mu) = H_0 + A_F \mu^{-\beta_F - 1} \quad (20) \]

for \( \lambda, \mu \to \infty \). Eqs. (18) then become

\[
G_0 \left[ 2^{\beta_M + 1} + \frac{A_F}{A_M} \left( 2 \frac{1 - f}{f} \right)^{\beta_F + 1} \lambda^{\beta_M - \beta_F} \right] = 1
\]

\[
H_0 \left[ 2^{\beta_F + 1} + \frac{A_M}{A_F} \left( 2 \frac{f}{1 - f} \right)^{\beta_M + 1} \mu^{\beta_F - \beta_M} \right] = 1 \quad (21)
\]

Eqs. (21) are well defined only if \( \beta_M = \beta_F = \beta \), and therefore we get, after some algebra,

\[
2^{\beta + 1} (H_0 + G_0) = 1 \quad (22)
\]

from which we can calculate the exponent \( \beta \) as a function of \( f \), shown in Fig. 1 (Right).

From (19) it is also possible to get the analytic behavior of \( H_0, G_0 \) and \( \beta \) close to \( f = 0 \):

\[
G_0 \sim e^{-\sqrt{2f}}, \quad H_0 \sim 1 - \sqrt{2f}, \quad \beta \sim -1 + \frac{\sqrt{2}}{\ln 2} f^{\frac{1}{2}} \quad (23)
\]

As an example of distributions, in Fig. 2 we show \( M_r(g) \) and \( F_r(g) \), (3), and in the inset their rescaled counterpart according to (6), for \( f = 1/16 \). The exponent \( \beta \) is negative, as from our analytical calculations. The delta function for \( r = 0 \) has been omitted for scale reasons.

The dependence of \( \beta \) from \( f \) shows that such an exponent is highly nonuniversal and that it is extremely sensitive to the explicit form of the distributions (14). This becomes important when looking at real data. In the thirties Lotka (2) fitted the probability of a man to have \( k \) sons in the United States by a geometric distribution \( p_k = b_{mm} c_{mm}^{k-1} \) for \( k \neq 0 \), and \( p_0 = d_{mm} \), with \( c_{mm} = 0.5893, d_{mm} = 0.4825 \) and \( b_{mm} \) chosen for normalization. Clearly, such a distribution is not a Poisson distribution as used above. Moreover it would give a rate of increase in the population of \( N_g / N_{g+1} = 1.26 \).

Since in the definition of \( P \) and \( w \) in (6) depend on \( g \), the particular value of \( N_g \) can be explicitly incorporated in it. The left hand side of (11) is now multiplied by \( N_g / N_{g+1} \). The probabilities for a male to be son of a male and a female to be daughter of a female will be
those of Lotka, and the other ones can be evaluated by maintaining the fraction of males and females in the population constant, which translates in the constraints:

\[
\frac{1 - d_{mf}}{1 - c_{mf}} = \frac{1 - f}{f} \frac{N_g}{N_{g+1}}, \quad \frac{1 - d_{fm}}{1 - c_{fm}} = \frac{f}{1 - f} \frac{N_g}{N_{g+1}}.
\]

(24)

We can then rewrite (17) as

\[
\frac{N_g}{N_{g+1}} G_{g+1}(\lambda) = \left( d_{mm} + \frac{(1 - c_{mm})(1 - d_{mm}) G_g(\lambda/2)}{1 - c_{mm} G_g(\lambda/2)} \right) \left( d_{mf} + \frac{(1 - c_{mf})(1 - d_{mf}) H_g(\lambda/2)}{1 - c_{mf} H_g(\lambda/2)} \right)
\]

(25)

Here we examine two different cases. First, we take \( f = 1/2 \) and all \( c \)s and \( d \)s as from Lotka. We find that the probability \( G_0 = H_0 = 0.231 \), different from the one obtained with Poisson distributions [1]. Then we impose that the population size remains constant, \( N_g = N_{g+1} \), but allow for different male fractions. Moreover, for simplicity, we choose \( d = 1 - c \) for the four probability distributions, in such a way that they become genuine geometric distributions:

\[
p_{mm}(k) = p_{ff}(k) = 1/2^{k+1}, \quad p_{mf}(k) = f(1 - f)^k \quad \text{and} \quad p_{fm}(k) = (1 - f)f^k.
\]

The results for \( G_0 \) and \( H_0 \) are shown also in Fig.[4](Left). The exponent \( \beta \) is shown in Fig.[4](Right). \( G_0 \) and \( H_0 \) approach their limit for \( f \to 0 \) as \( f^{1/2} \). In particular, the values for \( f = 1/2 \) are clearly different from the ones with Poisson distributions [1]. We find therefore that neither \( G_0 \) and \( H_0 \), nor \( \beta \) are universal, although their behavior with respect to \( f \) does not, qualitatively, depend on the details of the chosen offspring distribution. Actually, the relevance of the distribution to be used is hardly overestimated: one should take distributions obtained from the analysis of real data, in order to draw more detailed conclusions [3].

The present results show that, besides bottlenecks in the population size, there may be other factors affecting the largeness of the genetic pool from which the genes of an individual are taken. Indeed, for species with a very low value of \( f \) we find that most females do not contribute to the genes of an individual in the present generation, whereas most males (who are anyway a little fraction \( f \) of the entire population) do. As an extreme case (and exchanging males with females), in the absence of interbreeding between different hives, a single bee queen gives its genes to all subsequent generations. Some genetic mutation will
become rapidly a genetic trait of the whole progeny. In case of bad mutations, they could well wipe out the whole family line. Although not dangerous per se, since bees and alike are extremely numerous, such a feature can make the species more sensitive to population size fluctuations.

In conclusion, we have generalized and analyzed the model proposed in [1] to the realistic case of species and human groups with male-to-female mating ratios different from 1. Our results point out that the genes of an individual are taken from a pool whose largeness strongly depends on the male-to-female ratio, with important consequences when the population size strongly fluctuates. We are currently investigating the coupling effects between these different factors. Yet our results, although qualitatively of a general applicability, clearly show that quantitative estimates can only come when the analytical treatment is implemented with field data, since, as it is evident from Figs.1(Left) and 1(Right), different offspring probability distributions give rise to different quantitative results. This is a highly non-universal problem.

We thank F. Guinea for useful comments and discussions. P. De Los Rios thanks the Instituto de Ciencia de Materiales in Madrid, where this work was begun, for its kind hospitality. This work has been partially supported by the European Network contract FMRXCT980183.
REFERENCES

[1] B. Derrida, S.C. Manrubia and D.H. Zanette, Phys. Rev. Lett. 82, 1987 (1999).

[2] A.J. Lotka, J. Wash. Acad. Sci., 21, 377; J. Wash. Acad. Sci., 21, 453. Both references cited in T.E. Harris The Theory of Branching Processes, Dover, New York, 1989.

[3] Indeed, Poisson distributions such as (14) are the natural candidate matching efficient simulations in the large $N$ limit, but once this limit has been taken, we are free to use whatever distribution we like.
FIGURES

FIG. 1. Left: Asymptotic fraction of males and females who do not belong to the genealogical tree of a given individual in the present generation. Circles and squares are data from simulations for 30 generations over a population of 20000 individuals, with (from right to left) $f = 1/2, 1/3, 1/5, 1/8, 1/16$. Right: Exponent $\beta$ as a function of the fraction $f$ of males.

FIG. 2. Male and female repetition probabilities after 20 and 30 generations (the latters are marked by arrows) for a male fraction $f = 1/16$. In the inset we show the collapse of the rescaled distributions.