User Reputation Calculation for Service-Oriented Environments

J Paul Raja Singh, Sharmishtha Sen, Shreyes Prasad

Abstract: All the cloud based applications work on service-oriented architectures and collaborate with multiple components from other services to execute discreet application logic. In this environment there are a lot of Web services facilitated to the customer to make the systems. As the potential of the same Web service will change with respect to users' needs. On an average a user will be heavily relied on tools to aid their activities on the internet vice versa the Service provider are also dependent on the users profile and what services are being used in the system. A User Reputation model offers a solution to the Service providers in supporting their service decision based on the User Profile. This model takes usage ratings as data and produces a personalised score. We suggest a new Cumulative separation on the basis of Tags and popularity estimation method and showcase its enhanced filtration ability.

Keywords: Collaborative filtering, Feedback rating, Matrix factorization, Quality of Service (QoS), Reputation, Service-Oriented Architectures.

I. INTRODUCTION

Reputation Model is an analysis based on previous activities of a Web service, either straight from the user (direct exposure) otherwise as portrayed by other users (indirect exposure), users in any platform are allowed to provide their evaluation on the services provided by the platform. These evaluations provide a great influence on other users in the same platform and are built-up to give rise to its reputation. This type of reliance is used for creating trustworthy reputation, where the past activities of a service are collaborated to grade its following performance, and aid users in providing and determining the best services.

Service-oriented computing (SOC) imparts an elemental computing example by dynamically combining its components through service composition. As a comparatively fresh SOC model, a service-oriented method differs from conventional component-based methods and consists of multiple software components powered by other platforms that can be called upon remotely via the Internet.

In recent times, QoS was observed to be a vital nonfunctional attribute for choosing services. However, It's still a tedious job because it is challenged by the open and loosely put together environment, with the ever changing network efficiency, QoS provided by any of the Web services is not certain. Additionally, vivid users can be bothered with multiple QoS elements, whereas the same QoS elements may not be given enough precedence by other users. Trust is individualized and personal showing a person’s opinion on a product. The finer the QoS is, users trust the services more.

II. RELATED WORK

We viewed correlated works in collaborative filtering and Matrix Factorization efficiency measurements with the algorithms.

A. Collaborative Filtering

Collaborative filtering is used for making a filtering data modal. The study of Collaborative filtering started with methods based on memory. This method includes a user based view or item based view. During the modern age, a model-centric way appeared. In this method, a concise model is implemented that elucidates the monitored scores that are made up of existing scores. With this method, using this model predictions can be made about a users rating on something not viewed by them.

Well known model based ways have Probabilistic Latent Semantic Analysis, low rank matrix factorization based methods. In low rank matrix factorization based methods, all things are assumed to have a similar low rank space.

\[R_U = \left(\sum_{u=1}^{n} R_{u} * S_{u} \right) / \left(\sum_{u=1}^{n} S_{u} \right) \]

everything is taken as a vector and the rating that a user provides to an it is the dot product of their feature vectors. Low rank matrix factorization is very efficient and gives great results in practice.

B. Low Rank Matrix Factorization

Low-rank matrix factorization is a method in data science. The main proposal of MF is that there are unexpressed structures in given data, by exposing these we might get a compressed illustration of the data. By factoring a master matrix into a low-rank matrix, MF provides a consolidated way for dimensional reduction, clustering, and matrix completion. We reviewed several vital variants of MF, together with: Non-negative MF, Basic MF, Orthogonal non-negative MF.
As names suggest, orthogonal non-negative MF and Non-negative MF are variants of basic MF.

These parameters are required in vivid scenarios. By accurately adapting MF, one can surpass the issue of clustering and matrix completion. In the later part one will extend MF to sparse matrix completion, enhance matrix completion using multiple regularization methods, and use MF for (semi-)supervised learning by enlisting latent space reinforcement. We will see that MF is a useful model as well as a versatile framework that is useful for multiple prediction problems.

III. REPUTATION MODEL

The reputation represents a cumulative approach to the users on a platform regarding a web service, the popularity of service being provided is a collective grading of the people that have used the service before. Rating is the perception of individual users about invoked services. It can be a singular value showing a general perception or a vector showing values for every QoS element of a web service, such as a response time, reliability, and availability.

A. Problem Formulation

Using the matrix for calculating the similarity of users, the results can get affected because of the sparseness of the user-tag matrix. Hence, in the paper, we used weighted tags to construct a user-resource collaborative filtered tags to calculate the alikeness of users. Assuming the resources tagged by the people with the same tags have the similar choices then the user will produce more tags to the resources.

B. Tag Analysis Algorithm

The model of multiple tag system can be described as $F = (U, T, R, t)$ in which U stands for the set of m users, R stands for the set of n resources, T stands for the set of p tags, and t is the time information of tagging. using relationship $Y \subseteq U \times T \times R \times t$ in F as the set of tagging relationships.

For each element in Y, $y = (U_i, T_i, R_i, t_i)$, meaning user U_i tags resource R_i with tag T_i at the time of t_i.

The algorithm follows these steps:
1. Create a tag_based profile
2. Get tag_based reputation model based on the data_set gather in python-library
3. Compute User_based on the frequency and usage parameter SU with current users U based on cosine similarity between tag profiles
4. ForEach Loop similar user SU_j get top 200 tags TG_j
5. Combine_lists TG_i of tags into => RTG
6. Create a Query Q
7. For each_loop tag TG_i in RTG
8. Add a pair $< TG_i, P(TG_i, U) >$ to Q
9. Search_All with Q tracks being tagged with tags in $Q => RT R$
10. Computation of Cosine_similarity between tags in the Data_Set obtained and Q
11. Ranking Based result $RT R$ on Cosine_similarity
12. Creation of user_reputation Model.

IV. EXPERIMENTAL SETUP AND ANALYSIS

The goal of the experimentation is to compute every user provided data and confirm the effectiveness of the algorithm. In the trials, using the real-worlds trusted user dataset. The data set has vectors from multiple users on Web services. For making the experiment more realistic, many unreliable data generated randomly were mixed. The added unreliable users might affect the optimization of the algorithm.

Where $Freq_{u,t}$ is the frequency of tag t of user u and $Num_{u,t}$ is the number of tags used by a user.

\[
Freq_{u,t} = \frac{Num_{u,t}}{\max_{j \in T(u)}[Num_{u,j}]},
\]

Figure 4.1

With the Frequency Scores as the result we have the tag based user profile that can be further evaluated to the CF model. Computing the User profile based on the frequency usage from the previous algorithm, cosine similarity function is used that uses the vector form of the data for the user and the frequency tags in the Lucene index and Q.

\[
sim(i, j) = \cos(i, j) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}|| \cdot ||\vec{j}||}
\]

Figure 4.2

Result of the Experiment

The model can calculate the user on the basis of usage and the user profile with most and least access was found in this experiment.

Apparently, there are no proper measures that researchers have agreed upon for evaluating the models, thus the most common measure of Similarity is used. Accurate reputation score is the one with very small, close to zero. The similarity degree falls between 0.5 (typical disagreement) and 50%. In this case, the results are procured when the lists have dissimilar rankings which show that each reputation model is different.
V. CONCLUSION
The Tag based collaborative model was used to generate the User Profile in an Service oriented Computing environment. The results were very positive and we gained information based on tag search which was observed to be efficient in this scenario where vast amounts of users are using the platform stack overflow.

REFERENCES
1. OPRC: An Online Personalized Reputation Calculation Model in Service-Oriented Computing Environments, Date of publication June 28, 2019.
2. Changsheng Zhu Chi-Tsun Cheng, Yindong Chen. MeUREp: A novel user reputation calculation approach in personalized cloud services PLoS One. 2019; 14(6): e0217933. Published online 2019 Jun 21.
3. Guang Ling, Irwin King, Michael R. Lyu A Unified Framework for Reputation Estimation in Online Rating Systems in Proc. IJCAI, 2013, pp. 26702676.
4. YUYU YIN, (Member, IEEE), LU CHEN, YUESHEN XU, JIAN WANG IEEE Location-Aware Service Recommendation With Enhanced Probabilistic Matrix Factorization E Int. Conf. Web Services (ICWS), Jun. 2017
5. Junwei Zhang , Deyu Li ,and Xiaoqin Fan A Customer-Centric Trust Evaluation Model for Personalized Service Selection, JJnwin, Scientific Programming Volume 2018, Article ID 4819195, 13 pages
6. Mohammad Aziz,Online Reputation Model Using Moving Window International Journal of Advanced Computer Science Applications, Vol.8, No.4, 2017
7. Rui Li and Xin ZHANG, A Tag-based Recommendation Algorithm Integrating Short-term and Long-term Interests of Users School of Information Science and Engineering, Hunan University, Changsha, 410082 China. 2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017) .ISBN: 978-1-60595-458-5
8. Mohamed Amine Chatti, Simona Dakova, Hendrik Thuis and Ulrik Schroeder, Tag-Based Collaborative FilteringRecommendation in Personal Learning Environments IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
9. Jiang D, Xue J, Xie W, A reputation model based on hierarchical bayesian estimation for web services. In: Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th International Conference on. IEEE; 2012. p. 88–93.
10. Y. Wu, C. Yan, Z. Ding et al., “A novel method for calculating service reputation,” IEEE Transactions on Automation Science and Engineering, vol. 10, no. 3, pp. 634–642, 2013

AUTHORS PROFILE

J. Paul Rajasingh, is currently working as Assistant Professor (Senior Grade) in SRM Institute of Science and Technology, Ramapuram, Chennai. He completed his B.E(Computer Science and Engineering) from Thiragaraaj college of Engineering, Madurai and M.E(Software Engineering) from College of Engineering Guindy, Anna University, Chennai. He is currently doing Ph.D in Anna University. Having over 10 years of teaching experience, he has published papers in International Journals and Conferences and handled various courses including Software Engineering, Data Structures, Operating Systems, Python Programming, Database Management Systems and Service Oriented Architecture. His area of interest includes Software Engineering, Data Analytics and Internet of Things.

Ms. Sharmishtha Sen, is a B.Tech Candidate in the Department of Computer Science and Engineering at SRM institute of Science and Technology. She was trained as a computer science engineer in the same department and as a researcher through her involvement in various fields in technology such as game design and development for children, educational application for e-learning, AI based cognitive skill test on web based platforms. Her research interests lie in the fields of web services, user experience design, Design thinking methodology. Her research aims to establish a theoretical model to design a better service for a service oriented environment.