Socioeconomic Status and Obesity

Lindsay McLaren

From the Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.

Accepted for publication February 20, 2007.

The objective of this review was to update Sobal and Stunkard's exhaustive review of the literature on the relation between socioeconomic status (SES) and obesity (Psychol Bull 1989;105:260–75). Diverse research databases (including CINAHL, ERIC, MEDLINE, and Social Science Abstracts) were comprehensively searched during the years 1988–2004 inclusive, using "obesity," "socioeconomic status," and synonyms as search terms. A total of 333 published studies, representing 1,914 primarily cross-sectional associations, were included in the review. The overall pattern of results, for both men and women, was of an increasing proportion of positive associations and a decreasing proportion of negative associations as one moved from countries with high levels of socioeconomic development to countries with medium and low levels of development. Findings varied by SES indicator; for example, negative associations (lower SES associated with larger body size) for women in highly developed countries were most common with education and occupation, while positive associations for women in medium- and low-development countries were most common with income and material possessions. Patterns for women in higher- versus lower-development countries were generally less striking than those observed by Sobal and Stunkard; this finding is interpreted in light of trends related to globalization. Results underscore a view of obesity as a social phenomenon, for which appropriate action includes targeting both economic and sociocultural factors.

developing countries; obesity; review [publication type]; sex; social class

INTRODUCTION

In 1989, Sobal and Stunkard (1) published a seminal review of the literature on the relation between socioeconomic status (SES) and obesity. On the basis of an exhaustive search of literature that covered the 1960s through the mid-1980s, these authors found 144 published studies on the SES-obesity relation in men, women, and children in the developed and developing world. Primary findings included the observation of a consistently inverse association for women in developed societies, with a higher likelihood of obesity among women in lower socioeconomic strata. The relation for men and children in developed societies was inconsistent. In developing societies, a strong direct relation was observed for women, men, and children, with a higher likelihood of obesity among persons in higher socioeconomic strata. Sobal and Stunkard’s work (1) has greatly influenced subsequent research on the socioeconomic patterning of weight, as evidenced by its having been cited well over 500 times, according to the Web of Science Science Citation Index (http://scientific.thomson.com/products/sci/).

While this earlier review continues to have high relevance for current research on SES and weight, it is becoming somewhat limited by its dated content. Therefore, the objective of the present review was to update and build on Sobal and Stunkard’s (1) earlier work. Because of the increasing prevalence of obesity in many countries (2–5), coupled with growing interest in social inequalities in health (6–9), continued monitoring of the socioeconomic patterning of weight is important. Although other published reviews have investigated specific aspects of this association (10–12), no one has endeavored to comprehensively examine the overall pattern of findings across the literature. Thus, the specific aims of the current review were twofold: 1) to update Sobal and Stunkard’s work through 2004 and to

Abbreviations: HDI, Human Development Index; SES, socioeconomic status.
continue their focus on patterns by sex and on countries in different stages of socioeconomic development; and 2) to build on the earlier work by looking more closely at different indicators of SES and using a three-category (rather than dichotomous) format to characterize the development status of countries.

It was hypothesized that the findings would resemble those of Sobal and Stunkard’s review (1), but with the following qualification: that the differences in patterns between countries at higher versus lower stages of development would not be as pronounced in the present review, due to large-scale societal and nutritional change having to do with economic growth, modernization, and globalization of food markets (5, 13, 14). Such trends could plausibly dilute both between- and within-country variation in obesity-promoting exposures and are consistent with reports of dramatic increases in obesity worldwide, including previously unaffected regions (5, 15). No specific hypotheses were formed regarding the different indicators of SES, because this part of the analysis was exploratory.

METHODS

Search strategy

The following databases were searched for the period 1988–2004 inclusive: ABI Inform, Business Source Premiere, CINAHL, EMBASE, ERIC, MEDLINE, PsychInfo, and Social Science Abstracts. Search terms used included “obesity” and synonyms (e.g., body mass index, body weight, overweight) and “socioeconomic status” and synonyms (e.g., employment, educational status, salaries, poverty). Language was restricted to English. There were no other limitations specified.

Approximately 4,000 documents were returned, and the title and abstract (when available) were examined in all cases. For those abstracts that indicated or hinted at an association between SES and body size (body mass index, obesity, etc.), the full-text article was retrieved. Additionally, if it appeared from the abstract that the article might speak to the association in question, the full-text article was retrieved. Thus, a conservative approach was taken. Reference lists of key articles were also consulted, the aim being to conduct as exhaustive a search as feasible.

Refining the sample of studies

In light of recent reviews published on longitudinal aspects of the SES-obesity relation (10, 11), the decision was made to exclude such studies from the present review. Thus, the focus was on the relation between any indicator of SES and any indicator of body size at one point in time (i.e., associations based on change in weight were not included). Contemporaneous indicators of SES and body size thus constituted the majority of associations. Although there are limitations associated with cross-sectional data, such as the inability to consider temporal or causal implications, there are now solid data from various high-quality prospective studies indicating that lower SES has implications for higher weight later on in the life course (10, 16, 17). Therefore, the focus here allowed for an overall survey of patterns of association, for which a highly restricted subset of studies is not appropriate. For example, because of their restrictive inclusion and exclusion criteria, Ball and Crawford (11) were unable to study patterns of SES and weight change in developing countries, because only one study that used appropriate methods was identified. In line with Sobal and Stunkard’s (1) objective, the aim here was to gather a sufficient number of studies to be able to examine patterns across societies in various stages of socioeconomic development and, in addition, to build on this by examining different patterns by indicator of SES.

In light of the large number of studies identified, a further decision was made to restrict this report to adults (persons aged 18 years or older). Finally, articles that did not present the results of a statistical test of association were excluded.

Tabulating and analyzing study data

Data from each study were tabulated along a number of dimensions, including country, sample, SES indicator, and body size indicator. Based on country and sample, the level of development in each study was classified as high, medium, or low on the basis of the 2003 Human Development Index (HDI) assigned by the United Nations Development Program (www.undp.org). The United Nations Development Program uses the HDI to characterize and rank countries on a number of attributes, including life expectancy at birth, school enrollment and adult literacy, and standard of living based on the gross domestic product. Examples of countries included in the three HDI categories are: Norway, the United Kingdom, and Germany (high); Brazil, Columbia, and Saudi Arabia (medium); and Cameroon, Benin, and Zambia (low). When a study in the present review explicitly concerned a sample of immigrants, HDI status was assigned on the basis of country of origin rather than destination (this occurred in one instance). To be consistent with Sobal and Stunkard (1), traditional subcultures within a larger developed society were classified as being at a lower stage of development. In this case, American Indian and Maori subgroups were classified as having a medium HDI (one instance each), although the studies took place in the United States and New Zealand (both high-HDI), respectively.

For each study, all contemporaneous associations between SES and body size were tabulated. When the investigators provided results from both unadjusted and adjusted models, associations from the adjusted models were recorded, and the variables that were adjusted for were recorded. Many studies incorporated more than one association, and it was often not possible to characterize each study by a single pattern. Thus, similar to the method of Ball and Crawford (11), association rather than study was the unit of analysis. A disadvantage of this approach is that it entails weighting all associations equally; therefore, studies with many associations have more influence on the overall results, regardless of their methodological quality. However, this approach is advantageous in that it allows the...
examination of patterns for different indicators of SES, which were often used in the same study.

For conveying results, associations were stratified on three dimensions: HDI status (high, medium, low), sex (women, men, both sexes combined), and SES indicator. Data for men and women combined were only recorded when results for men and women separately were not provided. Eight categories of SES indicator were established: income and related factors (income, poverty, inability to afford essentials such as food and shelter); education (including schooling and literacy); occupation (occupational prestige or status, employment grade or ordered job type); employment (work status category—e.g., employed versus not employed); a composite indicator (a combination of multiple different indicators of SES); an area-level indicator (e.g., deprivation measured at the neighborhood or regional level rather than the individual level); assets and material belongings (e.g., car ownership, owning versus renting one’s dwelling); and other (factors that could not otherwise be classified—e.g., subjective social class). For the area-level indicators, both ecologic and multilevel associations were included and were not distinguished because of the small number of multilevel associations.

For women, men, and both sexes combined, numbers and percentages were tabulated by SES indicator within each HDI status category. To achieve the primary objective of updating Sobal and Stunkard’s original work, results were not stratified by body size indicator, because this variable took a number of formats, including body mass index (weight (kg)/height (m)², based on both measured and self-reported height and weight), skinfold thickness, and waist:hip ratio, and included both continuous (e.g., body mass index) and categorical (e.g., obesity, defined as body mass index ≥30) measures. However, because of the potential for bias and inaccuracies associated with self-report data (2, 18), the subset of associations based on measured data was also examined separately (n = 1,400 associations). Each association was classified as positive, negative, or nonsignificant/curvilinear. The decision to combine these latter categories was based on the very small number of curvilinear associations, as well as the possibility that nonsignificant findings obtained using a linear statistical tool may have failed to detect curvilinear associations and therefore the sample of curvilinear findings might not have been accurate.

RESULTS

A total of 333 published studies were included. The number of articles published per year increased between 1988 and 2004. A total of 1,914 associations were examined, as described below.

Women

Results for women are presented in table 1. For women, for high-HDI countries, the majority of associations (63 percent) were negative (lower SES associated with higher body size). This effect was especially prominent for the following SES indicators: education (220/305; 72 percent negative), area-level indicators (10/14; 71 percent negative), occupation (100/146; 68 percent negative), and composite indicators (31/46; 67 percent negative). However, as one moved from high to medium to low HDI status, the proportion of positive associations increased, from 3 percent (23/731) in high-HDI countries to 43 percent (75/173) in medium-HDI countries to 94 percent (33/35) in low-HDI countries. Focusing on associations from medium-HDI countries, this positive association was particularly prominent for income (24/34; 71 percent) and material possessions (12/14; 86 percent) as indicators of SES. For associations among women in low-HDI countries, the vast majority were based on education as an indicator of SES (89 percent; 31/35), all of which were positive in nature (100 percent; 31/31). Across the three HDI strata, education was the SES indicator most often studied (47 percent of all associations were based on education).

Men

Results for men are presented in table 2. For men in high- and medium-HDI countries, the predominant finding was that of nonsignificance or curvilinearity. This was particularly true for associations with employment for men in high-HDI countries (85 percent (28/33) nonsignificant or curvilinear) and associations with education (70 percent; 35/50), material possessions (80 percent; 4/5), and employment (100 percent; 3/3) for men in medium-HDI countries (although the latter two findings were based on a small number of associations). Following nonsignificant or curvilinear findings, the next most prominent pattern for men in high-HDI countries was negative associations, and this was particularly true for education as an indicator of SES (50 percent negative; 126/254). Although positive associations were uncommon among studies of men in high-HDI countries (9 percent (53/564) of all associations in this group), associations with income were overrepresented (24 percent of associations with income in this group were positive).

In contrast, for men in medium-HDI countries, the second most common pattern was positive associations (39 percent (50/128) of all associations), and this was most prominent for income (59 percent; 26/44) and composite indicators of SES (83 percent; 5/6). There were only three associations from studies of men from low-HDI countries, and all were positive in nature.

Both sexes combined

Results for associations that combined male and female samples are presented in table 3. Not unexpectedly, these results were somewhat intermediate between the results presented separately for men and women. Among combined associations from high-HDI countries, negative and nonsignificant/curvilinear associations were about equally common (47 percent and 48 percent of associations, respectively), and both were more common than positive associations (5 percent). Negative associations were most often observed with education (65 percent; 31/48), occupation (59 percent; 16/27), and area-level indicators of SES (52 percent; 17/33), whereas nonsignificant/curvilinear
SES indicator	Total (n = 939)	Nature of the SES-body size association	High Human Development Index	Medium Human Development Index				
	No. of associations	%† Reference no(s).‡	No. of associations	%† Reference no(s).‡	No. of associations	%§ Reference no(s).§	No. of associations	%§ Reference no(s).§
Area								
	0	0	10	71	48–50	4	29	49, 51, 52
	14	2						
Composite								
	0	0	31	67	53–68	15	33	54, 57, 58, 65, 66,
	46	6						68–71
Education			4	1	72–75	220	72	52, 53, 55, 59, 68,
	305	42						72–74, 76–170
	17	38	17	38	52, 79, 105, 119,	21	47	57, 66, 75, 77, 100,
					139, 149, 155,			119, 130, 156, 171,
					166, 171, 188			175, 181, 185, 187,
								188
Income			9	6	72, 74, 87, 142,	69	49	59, 72, 74, 99, 106,
	142	19			109, 112, 123, 28,			129, 137, 142, 151,
					156, 162, 165–167,			171, 177, 183,
					188–201			188–201
Occupation			2	1	112, 154	100	68	17, 54, 68, 69, 79,
	146	20						83, 86, 89, 92, 96,
								98, 99, 108, 112,
								118, 119, 121, 122,
								144, 151, 152, 154,
								155, 161, 164, 165,
								174, 176, 211–231
Other			1	6	173	4	22	78, 166, 173
	18	2						73, 139, 173, 177,
Possessions			0	0	0	6	40	52, 54, 155, 165, 177
	15	2						54, 69, 89, 131, 139
Overall	23	3	457	63	251	34	731	100†
Area			1	17	235	2	33	236
	6	3						236, 237
Composite			4	50	238–240	0	0	238, 241
	8	5						238, 241
Education			32	31	132, 138, 242–249	39	38	131, 132, 137, 138,
	102	59						250–261
Employment			0	0	0	0	0	0
Income			24	71	240, 249, 250, 252,	1	3	272
	34	20			260, 267–272			245, 246, 258, 260,
Occupation			1	17	267	3	50	244, 251
	6	3						213, 251
Other			1	33	265	1	33	173
	3	2						173
associations were most often observed for employment as an indicator of SES (88 percent; 7/8). For medium- and low-HDI countries, positive associations were more common (49 percent and 60 percent in medium- and low-HDI countries, respectively), and in the case of medium-HDI countries, this reflected a large proportion of positive associations when income (63 percent; 17/27) and area-level indicators of SES (62 percent; 13/21) were used.

Associations based on measured data only

Associations based on measured indicators of body size only (e.g., measured height and weight, body fat based on measured skinfold thickness) were also examined for women (n = 710 associations), men (n = 525 associations), and both sexes combined (n = 165 associations). In relation to associations based on self-report indicators only (229 for women, 170 for men, and 115 for both sexes combined), the overall pattern of findings was quite similar (results not shown). One difference of interest is that among women from high-HDI countries, the proportion of negative associations was lower in the measured data subset (59 percent) than in the self-report data subset (71 percent). The proportion of positive associations among women from medium-HDI countries was also lower in the measured data subset (42 percent) than in the self-report data subset (70 percent); however, this latter value was based on only 10 associations.

DISCUSSION

These results update and build on our understanding of the relation between SES and body size, initially reviewed by Sobal and Stunkard (1). Overall, a primary observation was the gradual reversal of the social gradient in weight: As one moved from high- to medium- to low-HDI countries, the proportion of positive associations increased and the proportion of negative associations decreased, for both men and women. However, this finding masked nuances by sex and indicator of SES. With regard to sex, this updated review revealed a predominance of negative associations for women in countries with a high development status, although this finding (63 percent negative) was not as striking as that observed by Sobal and Stunkard (1), who observed 93 percent and 75 percent negative associations for women in the United States and other developed countries, respectively. Furthermore, when the sample was restricted to associations based on measured body size data only, the proportion of negative associations was further reduced to 59 percent. This could reflect the widespread and relatively nondiscriminating nature of the current obesity epidemic: Although some demographic variation in obesity rates may be evident, virtually all social groups are increasingly affected to some extent, speaking to the existence of large-scale social drivers at work. Thus, although women in higher social strata in developed countries may still be more likely to value and pursue thinness (19), our obesogenic environment (20, 21) may make it increasingly difficult for women of any class group to maintain resistance.

However, since the inverse association remains the predominant finding among women from developed societies,
TABLE 2. Associations between socioeconomic status (SES) and body size among men, according to Human Development Index status, SES indicator, and the nature of the SES-body size association

SES indicator	Nature of the SES-body size association	Total (n = 695)							
	Positive	Negative	Nonsignificant or curvilinear						
	No. of associations	%†	Reference no(s).‡	No. of associations	%†	Reference no(s).‡	No. of associations	%‡	Reference no(s).§
High Human Development Index									
Area	0	0	3 100 48, 50, 52	3 1					
Composite	7 16	58, 66, 280, 281	13 30 53, 54, 56, 58, 60–63, 69	23 53 53, 57, 58, 62, 64–66, 280–282	43 7				
Education	14 6 75, 84, 95, 96, 137, 159, 163, 283, 284	126 50 53, 74, 81, 86, 87, 90–92, 96, 97, 100–102, 105, 107–112, 115–117, 120, 121, 124, 126–128, 130, 133–137, 140–142, 145–147, 152, 153, 155–159, 161, 164–166, 170, 176, 178, 285–293	114 45 52, 73, 74, 76, 84, 93–99, 102, 103, 105, 106, 115–117, 124, 126, 133, 137, 141, 142, 144, 150, 151, 161, 163, 170, 174, 175, 177, 182, 184, 185, 187, 280, 282–284, 287, 294–299	254 45					
Employment	3 9 75, 187	2 6 105	28 85 52, 57, 77, 100, 105, 130, 152, 155, 156, 166, 175, 185, 188, 287, 291	33 6					
Income	20 24 74, 98, 112, 128, 164, 184, 185, 187, 188, 195, 196, 200, 205, 206, 208, 293	12 14 74, 156, 165, 166, 177, 195, 200, 206, 207	51 61 52, 75, 87, 98, 99, 106, 109, 137, 140, 142, 151, 162, 166, 175, 177, 185, 187, 188, 195, 196, 198, 199, 202–205, 207, 208, 282, 283, 295	83 15					
Occupation	7 6 54, 87, 98, 112, 215, 218	49 39 17, 92, 108, 112, 121, 155, 161, 174, 176, 184, 211, 213, 216, 222, 224–230, 286, 288, 299–304	70 56 17, 54, 66, 69, 77, 86, 90, 92, 96, 98, 99, 112, 130, 133, 140, 144, 150–152, 164, 165, 177, 202, 212, 213, 215, 217, 218, 223, 227, 229, 231, 232, 282, 295–297, 304, 305	126 22					
Other	0 0	3 25 73, 285	9 75 70, 73, 166, 177, 202, 287	12 2					
Possessions	2 20 54	4 40 54, 69, 155	4 40 52, 54, 165, 177	10 2					
Overall	53 9 209 37	302 54	564 100§						

Medium Human Development Index

SES indicator	Nature of the SES-body size association	Total (n = 695)							
	Positive	Negative	Nonsignificant or curvilinear						
	No. of associations	%†	Reference no(s).‡	No. of associations	%†	Reference no(s).‡	No. of associations	%‡	Reference no(s).§
Area	2 40 236, 237	0 0	3 60 236	5 4					
Composite	5 83 239–241	1 17 306	0 0	6 5					
Education	12 24 137, 245, 246, 248, 255, 263, 264, 295	3 6 263, 295, 307	35 70 137, 237, 246, 249, 250, 254, 255, 258–261, 267, 295, 308, 309	50 39					
Employment	0 0	0	3 100 307, 309	3 2					
some consideration of this finding is necessary. There is evidence from several countries (including Europe, the United States, Australia, and Canada) of a socioeconomic gradient in diet, whereby persons in higher socioeconomic groups tend to have a healthier diet, characterized by greater consumption of fruit, vegetables, and lower-fat milk and less consumption of fats (22). On the one hand, this reflects a person's income or economic capacity to purchase these foods, which have been shown to be more expensive than less nutritious food items (23–25). Research on gendered aspects of food and eating in families suggests that, despite structural changes in gender roles over recent decades, women often remain responsible for food purchase and preparation (26, 27); thus, these factors probably have some relevance to understanding the social gradient in weight among women from higher-income countries. However, given that income is not the only, or even the most consistent, inverse correlate of obesity/fatness among women in these countries, consideration of other mechanisms is also important. A useful framework here is the sociology of Bourdieu and his theory of class (22, 28–30). Of particular relevance is Bourdieu's concept of "habitus," which refers to the embodiment of social structures in individuals. According to the concept of habitus, the body (inclusive of appearance, style, and behavioral affinities) is a social metaphor for a person's status. Thus, class or status is not just about money but rather comprises a constellation of attributes that Bourdieu calls "capital," which may be economic, cultural, or social in nature. Furthermore, these forms of capital can take on symbolic value when they are recognized as legitimate; for example, a certain accent or a certain body shape/size may have prestige that is not necessarily in keeping with its economic dimensions (30, 31). From this perspective, a thinner body may be socially valued and materially viable to a greater extent for those women in higher socioeconomic strata, and even within obesity-promoting environments these factors could help maintain class differences for women, for whom thinness continues to be promoted as an ideal of physical beauty (32–34).

By examining patterns of association for different SES indicators, additional understanding is gained for women's influence in economic, cultural, and social levels. For example, income and occupation are especially common when education, occupation, and area-level indicators of SES were used. In other words, income, occupation, and area-level indicators are primary in plausible ways. The area-level indicators at the postcode level and it is plausible that living in an affluent area conveys heightened exposure and pressure on thinness (35, 36), as well as more access to and exposure to healthy foods (37–39). Regarding occupation, in line with research on stigma and discrimination associated with excess weight (40), it is possible that persons high in the occupational hierarchy may internalize the symbolic value of a thin body and a healthy lifestyle (in line with their class) and at the same time face exposure to a workplace environment that likewise promotes these values. For example, in a white-collar office environment with on-site exercise and shower facilities, it is easy to imagine workplace practices such as going to the gym during lunch hour. Educational qualifications, as a form of cultural capital, are also tied to status and prestige. Educational qualifications, as a form of cultural capital, are also tied to status and prestige. Educational qualifications, as a form of cultural capital, are also tied to status and prestige. Educational qualifications, as a form of cultural capital, are also tied to status and prestige.
SES indicator	Nature of the SES-body size association	Total (n = 280)									
	Positive	Negative	Nonsignificant or curvilinear								
	No. of associations	%†	Reference no(s).‡	No. of associations	%†	Reference no(s).‡	No. of associations	%†	Reference no(s).‡		
High Human Development Index											
Area	3	9	311	17	52	50, 312–320	13	39	311, 312, 314, 317–319, 321–323	33	18
Composite	0	0	0	2	50	62	2	50	324	4	2
Education	1	2	321	31	65	93, 140, 213, 312, 321, 325–344	16	33	213, 323–325, 328, 330, 332, 345–350	48	26
Employment	0	0	0	1	13	166	7	88	323, 325, 326, 336, 337	8	4
Income	5	8	203, 328, 348, 351	19	31	312, 328–330, 333, 340, 342, 343, 347, 350–355	38	61	140, 203, 213, 311, 324, 330, 336, 337, 347, 348, 350–352, 355–357	62	34
Occupation	1	4	334	16	59	213, 314, 334, 339, 358–361	10	37	213, 314, 321, 323, 324, 362	27	15
Other	0	0	0	0	0	0	0	0	335	1	1
Possessions	0	0	0	0	0	0	0	0	0	0	
Overall	10	5	86	86	47				183	100§	
Medium Human Development Index											
Area	13	62	363–365	2	10	364	6	29	237, 363, 366	21	24
Composite	1	50	367	0	0	1	50	367	2	2	
Education	8	32	268, 368–370	7	28	348, 366, 371	10	40	213, 237, 257, 348, 369, 372–375	25	29
Employment	1	50	371	1	50	371	0	0	2	2	
Income	17	63	268, 274, 365, 368–370, 374–376	3	11	366, 370	7	26	213, 257, 348, 366, 373	27	31
Occupation	3	38	369, 372	1	13	374	4	50	213, 257, 369, 372	8	9
Other	0	0	0	0	0	0	0	0	0	0	
Possessions	0	0	0	0	0	2	100	377	2	2	
Overall	43	49	0	14	16	30	34	87	100§		
Low Human Development Index											
Area	0	0	0	0	0	0	0	0	0	0	
Composite	0	0	0	0	0	0	0	0	0	0	
Education	0	0	0	0	0	1	100	378	1	10	
Employment	0	0	0	0	0	0	0	0	0	0	
Income	5	71	378, 379	0	0	2	29	379	7	70	
Occupation	1	50	378	0	0	1	50	277	2	20	
Other	0	0	0	0	0	0	0	0	0	0	
Possessions	0	0	0	0	0	0	0	0	0	0	
Overall	6	60	0	0	4	40			10	100§	

* Body size includes both continuous (e.g., body mass index) and categorical (e.g., obesity defined as body mass index \(\geq 30 \text{ kg/m}^2 \)) measures.
† Percent values apply to each SES indicator and should be read across each row.
‡ The number of references listed does not necessarily match the number of associations indicated, because studies may contain multiple associations.
§ Percent values apply to the entire Human Development Index category and should be read down the column.
¶ Percentages may not add up to exactly 100 because of rounding.
(30, 31), may have implications for the extent to which someone is attuned to or influenced by societal standards of attractiveness and health messages regarding diet and physical activity, thereby underscoring recognition and pursuit of attributes that are valued in developed societies, such as health and a thin body. Education may also imply expectations for personal achievement, whether in a general sense or specific to health, weight, and physical appearance. Previous work has identified education as the SES variable most strongly associated with body dissatisfaction (19), and thus a constellation of attributes favoring pursuit of thinness among highly educated women is plausible.

For women in medium- and low-HDI countries, positive associations between SES and body size were most common. This is in line with Sobal and Stunkard’s findings (1). In the present review, there were a sufficient number of associations from medium-HDI countries to examine different indicators of SES; those results revealed that income and material possessions were the two indicators most likely to show a positive association. This probably reflects the relatively more important role of the economic or material dimension of class in the developing world: Where food is less ubiquitous, the ability to afford food is an important factor in the socioeconomic patterning of weight. As Monteiro et al. (12) suggested, patterns of high energy expenditure among the poor and cultural values favoring a larger body size may also continue to contribute to the positive associations observed in lower-income countries. Another interesting observation within the medium-HDI countries was that for certain indicators of SES (education, occupation, and area-level indicators), the association was more often negative than positive, suggesting that the social patterning of weight-related attributes is perhaps in transition across the development spectrum. Monteiro et al. (12), in their review of the socioeconomic patterning of obesity in developing countries, similarly alluded to a transition, highlighting a shift of obesity towards persons with low SES (i.e., a shift from a positive association to a negative association) as a country’s annual gross national product increases; this is consistent with our finding that associations are much more often negative in medium-HDI countries (many of which would have been included in Monteiro et al.’s “developing country” category) than in low-HDI countries.

Thus, on the one hand, there exist large-scale factors contributing to dramatic increases in obesity worldwide, particularly in the developing world (5, 15); on the other hand, there are forces acting to shift the burden of obesity onto the poor within developing countries. The factors contributing to rising obesity rates worldwide are believed to include large-scale societal and nutritional changes having to do economic growth, modernization, and globalization of food markets (5, 13, 14). These are well-illustrated by case studies of societies in developmental transition. For example, exorbitantly high levels of excess weight among residents of Kosrae, Micronesia (nearly 90 percent of adults are overweight) have been attributed to a constellation of factors related to foreign dependence and influence, the global food trade, and massive associated social changes—epitomized by the popularity and prestige of imported foods such as Spam (Hormel Foods Corporation, Austin, Minnesota) and potato chips on an island that is overrun with breadfruit and coconut and has one of the world’s richest sources of tuna (41, 42). However, the present results and those of Monteiro et al. (12) suggest that the impact of these factors within societies is not equal, and that the burden in fact is falling disproportionately on persons of lower SES within middle-income countries. Hawkes (13) points out that key processes related to globalization and the nutrition transition (including production and trade of agricultural goods, foreign direct investment in food processing and retailing, and global food advertising and promotion) serve to worsen inequalities in diet between the rich and the poor. In particular, whereas high-income groups (especially in developing countries) tend to benefit from a more dynamic marketplace, lower-income groups are more likely to bear the brunt of economic and cultural convergence towards low-quality diets (e.g., use of inexpensive vegetable oils and trans-fats), which in some cases are popular because of earlier promotion and popularity of these products among the rich (13). Adding to this, there is evidence of global exportation of the thin ideal of beauty in the form of Western media images. In their work with ethnic Fijian schoolgirls, Becker et al. (43, 44) observed an increase in disordered eating attitudes and behaviors over the 3 years following introduction of Western television. Within this context of rapid social change in a culture that did not traditionally value thinness, girls’ comments indicated a desire to emulate television characters. If the situation in higher-income countries is any indication, pursuit of thinness as an aesthetic ideal may well become an upper-class aspiration in the developing world, and potentially further exacerbate the emerging inverse social gradient in weight observed in this review.

Among men, associations in high- and medium-HDI countries were most often nonsignificant or curvilinear. This finding is similar to Sobal and Stunkard’s results (1) in that these authors also detected inconsistency among male samples. However, when examining those effects that did emerge as significant and linear, it becomes apparent that indicator of SES is important. For example, for men in high-HDI countries, a negative association was common when education was the indicator of SES, yet associations with income were often positive in nature (in nearly one quarter of associations), even though the overall proportion of positive associations for men in high-HDI countries was much lower (less than 10 percent). This direct effect of income was also apparent in men from medium-HDI countries. This seemingly contradictory finding may be reconciled by drawing on the work of Power (30) and Bourdieu (31) as above, particularly the notion of habitus and Bourdieu’s theory of the body as a symbolic metaphor. While body size and shape has symbolic value for both men and women, the dimensions of the valued body differ between the sexes. For men, more so than for women, a larger body size is likely to be valued as a sign of physical dominance and prowess. This is consistent with research on body image in children, which shows that while girls often wish to be thinner, boys often wish to be larger and more muscular (45). With men being the traditional wage earners in families, it is plausible that income and pursuit of physical dominance remain linked.
One reason why the associations in general for men are less consistent than those for women may be that for men, contrary forces are at work: weight-based stigma and discrimination on the one hand (which, though it may be more salient for women, remains a societal phenomenon) and the valuation of a large body size on the other as an indication of power and dominance.

Some limitations of the present review must be acknowledged. First, the restriction to English-language articles probably resulted in missing some studies from countries with a lower status of development. However, through the use of three categories of HDI status, it was possible to detect graded associations across these categories (e.g., an increasing proportion of positive associations from high to medium to low), which lent support to the findings detected in the small number of associations from lower-HDI countries. Second, because of the present review’s reliance on published articles, there may have been an element of publication bias, whereby articles that contain significant effects tend to be more likely to be published than articles containing nonsignificant results (46). However, it is believed that this bias may be minimal, for two reasons: Nonsignificant results were actually quite plentiful in some subgroups (e.g., men in high- and medium-HDI countries), and many studies contained other findings not extracted for this review (due to irrelevance) that could have influenced publication likelihood, even if the body mass index-body size association was nonsignificant.

A third limitation is that associations based on child samples were not included in this review, largely because of the enormity of the task (as it stands, over 300 studies were scrutinized). Certainly it is important to examine the SES-body size association among children, since this can provide clues as to the origins of social patterning of weight, as well as possibly foreshadow secular trends in this association. Relatedly, there is the issue of age variation within the adult samples examined and whether this may have influenced the overall pattern of findings. In a follow-up examination of the associations that adjusted for age among women ($n = 511$) and men ($n = 424$) in relation to those that did not adjust for age (428 in women and 271 in men), the overall pattern of findings in high-HDI countries was very similar. For women in medium-HDI countries, however, the proportion of positive associations was lower (37 percent vs. 49 percent) and the proportion of negative associations was higher (32 percent vs. 22 percent) in the age-controlled data set than in the non-age-controlled data set. For men in medium-HDI countries, a similar but less pronounced pattern was found for the proportion of positive associations: 37 percent in age-controlled data versus 43 percent in non-age-controlled data. Thus, there is the suggestion that age may be an effect modifier (47) whereby the SES-obesity relation varies across age in medium-HDI countries, particularly for women.

A fourth limitation is that results of studies were tabulated and synthesized descriptively; no meta-analysis was conducted, and all associations were weighted equally. Although there may have been benefits associated with a more sophisticated analysis (e.g., estimation of overall effect magnitudes), the aim of this review was to describe cumulative patterns in the literature in a way that facilitated continuity between this study and Sobal and Stunkard’s original work (which was also descriptive).

Finally, this review focused primarily on cross-sectional associations. While there are certainly limitations associated with interpreting cross-sectional associations (e.g., one cannot draw any conclusions regarding causality or temporality), a large benefit of using cross-sectional studies is that, because of the very large number available, it was possible to examine patterns across a variety of SES indicators and across three categories of HDI status, in a way that would not have been possible had more stringent exclusion criteria been employed. Furthermore, high-quality reviews that tapped into the longitudinal dimensions of SES and weight have previously been published (10, 11); thus, the present review can be viewed as complementary to this other work.

In conclusion, the current review updates the seminal work of Sobal and Stunkard (1) and builds on this work by incorporating multiple indicators of SES and three graded categories of societal development status. For a number of reasons, this work was timely. When Sobal and Stunkard published their review in 1989, they reported that of the 144 studies included, most did not specifically set out to study the relation in question (SES-obesity); rather, most studies investigated the association in the course of examining other issues (1). In contrast, there have since been a large number of studies that focused specifically on the social patterning of weight. Therefore, this topic is currently of great interest, reflecting the highly topical nature of both obesity and social/socioeconomic influences on health. This review represents an exhaustive search of a diverse array of databases and thus makes an important contribution to this exciting research area.

ACKNOWLEDGMENTS

This study was funded by a research contract with the Public Health Agency of Canada. During the period in which this review was undertaken, the author was also supported by postdoctoral fellowships from the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research. This support is gratefully acknowledged.

The author thanks the following persons for their valuable assistance: Ame-Lia Tamburrini, Diane Lorenzetti, and Melissa Potestio.

Conflict of interest: none declared.

REFERENCES

1. Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. Psychol Bull 1989;105:260–75.
2. Tjepkema M, Shields M. Measured obesity: adult obesity in Canada. In: Nutrition: findings from the Canadian Community Health Survey. Issue no. 1. Ottawa, Ontario, Canada: Statistics Canada, 2005. (Catalogue no. 82-620-MWE).
3. Hedley AA, Ogden CL, Johnson CL, et al. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004;291:2847–50.
4. Dal Grande E, Gill T, Taylor AW, et al. Obesity in South Australian adults—prevalence, projections and generational assessment over 13 years. Aust N Z J Public Health 2005;29:343–8.
5. World Health Organization, Global Strategy on Diet, Physical Activity, and Health. Obesity and overweight: fact sheet, 2003. Geneva, Switzerland: World Health Organization, 2003.
6. Marmot M, Wilkinson RE. Social determinants of health. 2nd ed. New York, NY: Oxford University Press, 2005.
7. Ball K, Crawford D. Socioeconomic status and weight change in adults: a review. Soc Sci Med 2005;60:1987–2010.
8. Monteiro CA, Moura EC, Conde WL, et al. Socioeconomic status and obesity in adult populations of developing countries: a review. Bull World Health Organ 2004;82:940–6.
9. Langenberg C, Hardy R, Kuh D, et al. Central and total body fatness in adults: evidence and a theoretical framework. Health Policy 2006;79:132–43.
10. Parsons TJ, Power C, Logan S, et al. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 1999;23(suppl 8):S1–107.
11. Ball K, Crawford D. Socioeconomic status and weight change in adults: a review. Soc Sci Med 2005;60:1987–2010.
12. Monteiro CA, Moura EC, Conde WL, et al. Socioeconomic status and obesity in adult populations of developing countries: a review. Bull World Health Organ 2004;82:940–6.
13. Hawke C. Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases. Global Health 2006;2:4.
14. Hawkes C. The role of foreign direct investment in the nutrition transition. Public Health Nutr 2005;8:357–65.
15. Popkin BM. The shift in stages of the nutrition transition from past experiences! Public Health Nutr 2002;5:205–14.
16. Hardy R, Wadsworth M, Kuh D. The influence of childhood weight and socioeconomic status on change in adult body mass index in a British national birth cohort. Int J Obes Relat Metab Disord 2000;24:725–34.
17. Langenberg C, Hardy R, Kuh D, et al. Central and total obesity in middle aged men and women in relation to lifetime socioeconomic status: evidence from a national birth cohort. J Epidemiol Community Health 2003;57:816–22.
18. Rowland ML. Self-reported weight and height. Am J Clin Nutr 1990;52:1125–33.
19. McLaren L, Kuh D. Women’s body dissatisfaction, social class, and social mobility. Soc Sci Med 2004;58:1575–84.
20. Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev Med 1999;29:563–70.
21. French SA, Story M, Jeffery RW. Environmental influences on eating and physical activity. Annu Rev Public Health 2001;22:309–35.
22. Power EM. Determinants of healthy eating among low-income Canadians. Can J Public Health 2005;96(suppl 3):S37–8.
23. Travers KD, Cogdon A, McDonald W, et al. Availability and cost of heart healthy dietary changes in Nova Scotia. J Can Diet Assoc 1997;58:176–83.
24. Drewnowski A, Specter SE. Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr 2004;79:6–16.
25. Drewnowski A, Darmon N. The economics of obesity: dietary energy density and energy cost. Am J Clin Nutr 2005;82(suppl):625S–73S.
26. Janssens V. Food practices and division of domestic labor—a comparison between British and Swedish households. Sociol Rev 1995;43:462–77.
27. Kemmer D. Tradition and change in domestic roles and food preparation. Sociology 2000;34:323–33.
28. Bourdieu P. Distinction: a social critique of the judgement of taste. London, United Kingdom: Routledge and Kegan Paul Ltd, 1984.
29. Shilling C. The body and social theory. 2nd ed. Thousand Oaks, CA: Sage Publications, 2005.
30. Power EM. An introduction to Pierre Bourdieu’s key theoretical concepts. J Study Food Soc 1999;3:48–52.
31. Bourdieu P. The forms of capital. In: Richardson JH, ed. Handbook of theory and research for the sociology of education. New York, NY: Greenwood Press, 1896:241–58.
32. Ruhtinstein S, Caballero B. Is Miss America an undernourished role model? (Letter). JAMA 2000;283:1569.
33. Katzmarzyk PT, Davis C. Thinness and body shape of Playboy centerfolds from 1978 to 1998. Int J Obes 2001;25:590–2.
34. Groesz LM, Levine MP, Murnen SK. The effect of experimental presentation of thin media images on body satisfaction: a meta-analytic review. Int J Eat Disord 2002;31:1–16.
35. McLaren L, Gauvin L. Neighbourhood level versus individual level correlates of women’s body dissatisfaction: toward a multilevel understanding of the role of affluence. J Epidemiol Community Health 2002;56:193–9.
36. McLaren L, Gauvin L. Does the ‘average size’ of women in the neighbourhood influence a woman’s likelihood of body dissatisfaction? Health Place 2003;9:327–35.
37. Morland K, Wing S, Roux AD, et al. Neighborhood characteristics associated with the location of food stores and food service places. Am J Prev Med 2002;22:23–9.
38. Baker EA, Schootman M, Barmidge E, et al. The role of race and poverty in access to foods that enable individuals to adhere to dietary guidelines. Prev Chronic Dis 2006;3:176.
39. Giles-Corti B. People or places: what should be the target? J Sci Med Sport 2006;9:357–66.
40. Puhl R, Brownell KD. Bias, discrimination, and obesity. Obes Res 2001;9:788–805.
41. Cassels S. Overweight in the Pacific: links between foreign dependence, global food trade, and obesity in the Federated States of Micronesia. Global Health 2006;2:10.
42. Ruppell Shell E. The hungry gene: the science of fat and the future of thin. New York, NY: Atlantic Monthly Press, 2002.
43. Becker AE, Burwell RA, Gilman SE, et al. Eating behaviours and attitudes following prolonged exposure to television among ethnic Fijian adolescent girls. Br J Psychiatry 2002;180:509–14.
44. Becker AE. Television, disordered eating, and young women in Fiji: negotiating body image and identity during rapid social change. Cult Med Psychiatry 2004;28:533–59.
45. McVey G, Tweed S, Blackmore E. Correlates of weight loss dependence, global food trade, and obesity in the Federated States of Micronesia. Global Health 2006;2:10.
46. Last JM, ed. A dictionary of epidemiology. 4th ed. New York, NY: Oxford University Press, 2001.
47. Greenland S, Rothman KJ. Introduction to stratified analysis. In: Rothman KJ, Greenland S, eds. Modern epidemiology. 2nd ed. Philadelphia, PA: Lippincott-Raven Publishers, 1998:253–79.
48. Davey Smith G, Hart C, Watt G, et al. Individual social class, area-based deprivation, cardiovascular disease risk factors, and mortality: The Renfrew and Paisley Study. J Epidemiol Community Health 1998;52:399–405.

49. Mobley LR, Finkelstein EA, Khavjou OA, et al. Spatial analysis of body mass index and smoking behavior among WISEWOMAN participants. J Womens Health (Larchmt) 2004;13:519–28.

50. van Lenthe FJ, Mackenbach JP. Neighbourhood deprivation and overweight: The GLOBE Study. Int J Obes 2002;26:234–40.

51. Hoslop P, Smith GD, Macleod J, et al. The socioeconomic position of employed women, risk factors and mortality. Soc Sci Med 2001;53:477–85.

52. Robert SA, Reither EN. A multilevel analysis of race, community disadvantage, and body mass index among adults in the US. Soc Sci Med 2004;59:2421–34.

53. Aranceta J, Perez-Rodrigo C, Serra-Majem L, et al. Influence of sociodemographic factors in the prevalence of obesity in Spain. The SEEDO’97 Study. Eur J Clin Nutr 2001;55:430–5. Int J Obes Relat Metab Disord 2002;26:559–65.

54. Baughcum AE, Chamberlin LA, Deeks CM, et al. Maternal perceptions of overweight preschool children. Pediatrics 2000;106:1380–6.

55. Bielicki T, Szklarska A, Welon Z, et al. Variation in body mass index among Polish adults: effects of sex, age, birth cohort, and social class. Am J Phys Anthropol 2001;116:166–70.

56. Croft JB, Strogatz DS, James SA, et al. Socioeconomic and behavioral correlates of body mass index in black adults: The Pitt County Study. Am J Public Health 1992;82:821–6.

57. Georges E, Mueller WH, Wear ML. Body fat distribution and risk factors for coronary heart disease in the Federal Republic of Germany. Results of the baseline survey of the German Cardiovascular Prevention Study (GCP). J Epidemiol Community Health 1989;43:37–42.

58. Helmer U, Herman B, Joeckel KH, et al. Social class and risk factors for coronary heart disease in the Federal Republic of Germany. Results of the baseline survey of the German Cardiovascular Prevention Study (GCP). J Epidemiol Community Health 1989;43:37–42.

59. Helmer U, Shea S, Greiser E, et al. Effects of 3.5 years of community intervention on social class gradients for cardiovascular disease risk factors in the German Cardiovascular Prevention Study. Ann Epidemiol 1993;3(suppl):S36–43.

60. Hulshof KF, Lowik MR, Kok FJ, et al. Diet and other lifestyle factors in high and low socio-economic groups (Dutch Nutrition Surveillance System). Eur J Clin Nutr 1991;45:441–50.

61. Jeffery RW, French SA, Forster JL, et al. Socioeconomic status differences in health behaviors related to obesity: The Healthy Worker Project. Int J Obes 1991;15:689–96.

62. Keenan NL, Strogatz DS, James SA, et al. Distribution and correlates of waist-to-hip ratio in black adults: The Pitt County Study. Am J Epidemiol 1992;135:678–84.

63. Rand CS, Kulda JM. The epidemiology of obesity and self-defined weight problems in the general population: gender, race, age, and social class. Int J Eat Disord 1990;9:329–43.

64. Shavers VL, Shankar S. Trend in the prevalence of overweight and obesity among urban African American hospital employees and public housing residents. J Natl Med Assoc 2002;94:566–76.

65. Wamala SP, Wolk A, Orth-Gomer K. Determinants of obesity in relation to socioeconomic status among middle-aged Swedish women. Prev Med 1997;26:734–44.

66. Pomerleau J, McKeigue PM, Chaturvedi N. Factors associated with obesity in South Asian, Afro-Caribbean and European women. Int J Obes Relat Metab Disord 1999;23:25–33.

67. Ball K, Mishra GD, Crawford D. Social factors and obesity: an investigation of the role of health behaviours. Int J Obes Relat Metab Disord 2003;27:394–403.

68. Fornalid LC, Gutierrez JP, Neufeld LM, et al. High prevalence of obesity among the poor in Mexico. JAMA 2004;291:2544–5.

69. Sallis JF, Broyles SL, Frank-Spohrer G, et al. Child’s home environment in relation to the mother’s adiposity. Int J Obes Relat Metab Disord 1995;19:190–7.

70. Bell AC, Adair LS, Popkin BM. Understanding the role of mediating risk factors and proxy effects in the association between socio-economic status and untreated hypertension. Soc Sci Med 2004;59:275–83.

71. Ishizaki M, Morikawa Y, Nakagawa H, et al. The influence of work characteristics on body mass index and waist to hip ratio in Japanese employees. Ind Health 2004;42:41–9.

72. Jorm AF, Korten AE, Christensen H, et al. Association of obesity with anxiety, depression and emotional well-being: a community survey. Aust N Z J Public Health 2003;27:434–40.

73. Sarlo-Lahteenkorva S, Silventoinen K, Jousilahti P, et al. The association between thinness and socio-economic disadvantage, health indicators, and adverse health behaviour: a study of 28 000 Finnish men and women. Int J Obes Relat Metab Disord 2004;28:568–73.

74. Abdul-Rahim HF, Holmboe-Ottesen G, Stene LC, et al. Obesity in a rural and an urban Palestinian West Bank population. Int J Obes Relat Metab Disord 2003;27:140–6.

75. Al Isa AN. Body mass index and prevalence of obesity changes among Kuwaitis. Eur J Clin Nutr 1997;51:743–9.

76. Baghaei P, Rosmond R, Westberg L, et al. The lean woman. Obes Res 2002;10:115–21.

77. Becker ES, Margraf J, Turke V, et al. Obesity and mental illness in a representative sample of young women. Int J Obes Relat Metab Disord 2001;25(suppl 1):S5–9.

78. Bernstein M, Morabia A, Heritier S, et al. Passive smoking, active smoking, obesity in South Asian, Afro-Caribbean and European women. Int J Obes Relat Metab Disord 1999;23:7–17.

79. Blokstra A, Burns CM, Seidell JC. Perception of weight status and dieting behaviour in Dutch men and women. Int J Obes Relat Metab Disord 1999;23:7–17.

80. Brown WJ, Dobson AJ, Mishra G. What is a healthy weight for middle aged women? Int J Obes Relat Metab Disord 1998;22:520–8.

81. Brown WJ, Mishra G, Kenardy J, et al. Relationships between body mass index and well-being in young Australian women. Int J Obes Relat Metab Disord 2000;24:1360–8.

82. Burke GL, Jacobs DR Jr, Sprafka JM, et al. Obesity and overweight in young adults: The CARDIA Study. Prev Med 1990;19:476–88.

83. Burke GL, Savage PJ, Manolio TA, et al. Correlates of obesity in young black and white women: The CARDIA Study. Am J Public Health 1992;82:1621–5.

84. Cairney J, Ostbye T. Time since immigration and excess body weight. Can J Public Health 1999;90:120–4.
87. Cameron AJ, Welborn TA, Zimmet PZ, et al. Overweight and obesity in Australia: the 1999–2000 Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Med J Aust 2003; 178:427–32.
88. Carter AO, Saadi HF, Reed RL, et al. Assessment of obesity, lifestyle, and reproductive health needs of female citizens of Al Ain, United Arab Emirates. J Health Popul Nutr 2004;22: 75–83.
89. Cota D, Vicennati V, Ceroni L, et al. Relationship between socio-economic and cultural status, psychological factors and body fat distribution in middle-aged women living in northern Italy. Eat Weight Disord 2001;6:205–13.
90. Cournot M, Ruidavets JB, Marquie JC, et al. Environmental factors associated with body mass index in a population of southern France. Eur J Cardiovasc Prev Rehabil 2004;11:291–7.
91. Drewnowski A, Kurth CL, Krahn DD. Body weight and dieting in adolescence: impact of socioeconomic status. Int J Eat Disord 1994;16:61–5.
92. Galobardes B, Morabia A, Bernstein MS. The differential effect of education and occupation on body mass and overweight in a sample of working people of the general population. Ann Epidemiol 2000;10:532–7.
93. Garn SM, Sullivan TV, Hawthorne VM. Educational level, fatness, and fatness differences between husbands and wives. Am J Clin Nutr 1989;50:740–5.
94. Georgiou CC, Betts NM, Hoerr SL, et al. Among young adults, college students and graduates practiced more healthful habits and made more healthful food choices than did nonstudents. J Am Diet Assoc 1997;97:754–9.
95. Grabauskas V, Petkeviciene J, Klumbiene J, et al. The prevalence of overweight and obesity in relation to social and behavioral factors (Lithuanian health behavior monitoring). Medicina (Kaunas) 2003;39:1223–30.
96. Grabowska J. Social conditioning of body height and mass in children and adolescents, as well as in adult inhabitants of the Konin Province, Poland. Anthropol Anz 2001;59:123–47.
97. Greenlund KJ, Liu K, Dyer AR, et al. Body mass index in children and adolescents, as well as adult inhabitants of the Canadian National Population Health Survey. J Gerontol A Biol Sci Med Sci 2003;58:1018–30.
98. Greveink L, Alberts JF, O’Niel J, et al. Waist circumference as a measurement of obesity in the Netherlands Antilles; associations with hypertension and diabetes mellitus. Eur J Clin Nutr 2004;58:1159–65.
99. Grol ME, Eimers JM, Alberts JF, et al. Overweight, stature, and socioeconomic status among women—cause or effect: Israel National Women’s Health Interview Survey, 1998. J Gend Specif Med 2001;4:18–24.
100. Kaplan MS, Huguet N, Newsom JT, et al. Prevalence and correlates of overweight and obesity among older adults: findings from the Canadian National Population Health Survey. J Gerontol A Biol Sci Med Sci 2003;58:1018–30.
101. Jia H, Li JZ, Leserman J, et al. Overweight, fatness, and fatness differences between husbands and wives. J Clin Nutr 1989;50:740–5.
102. Jalkanen L, Tuomilehto J, Nissinen A, et al. Changes in body mass index in a Finnish population between 1972 and 1982. J Intern Med 1989;226:163–70.
103. Jeffery RW, Forster JL, Folsom AR, et al. The relationship between social status and body mass index in the Minnesota Heart Health Program. Int J Obes 1989;13:59–67.
104. Jia H, Li JZ, Leserman J, et al. Relationship of abuse history and other risk factors with obesity among female gastrointestinal patients. Dig Dis Sci 2004;49:872–7.
105. Jia H, Li JZ, Leserman J, et al. Relationship of abuse history and other risk factors with obesity among female gastrointestinal patients. Dig Dis Sci 2004;49:872–7.
106. Klumbiene J, Petkeviciene J, Helasoja V, et al. Socio-demographic and health behaviour factors associated with obesity in adult populations in Estonia, Finland and Lithuania. Eur J Public Health 2004;14:390–4.
107. Kussowska-Wolk A, Bergstrom R. Trends in body mass index and prevalence of obesity in Swedish women 1970–89. J Epidemiol Community Health 1993;47:195–9.
108. Lahmann PH, Lissner L, Gullberg B, et al. Socio-demographic factors associated with long-term weight gain, current body fatness and central adiposity in Swedish women. Int J Obes Relat Metab Disord 2000;24:685–94.
109. Lahtis-Koski M, Pietinen P, Mannisto S, et al. Trends in waist-to-hip ratio and its determinants in adults in Finland from 1987 to 1997. Am J Clin Nutr 2000;72:1436–44.
110. Lahtis-Koski M, Vartiainen E, Mannisto S, et al. Age, education and occupation as determinants of trends in body mass index in Finland from 1982 to 1997. Int J Obes Relat Metab Disord 2000;24:1669–76.
111. Lapidus L, Bengtsson C, Hallstrom T, et al. Obesity, adipose tissue distribution and health in women—results from a population study in Gothenburg, Sweden. Appetite 1989;13: 25–35.
112. Lin BH, Huang CL, French SA. Factors associated with women’s and children’s body mass indices by income status. Int J Obes Relat Metab Disord 2004;28:536–42.
124. Lindstrom M, Isacsson SO, Merlo J. Increasing prevalence of overweight, obesity and physical inactivity: two population-based studies 1986 and 1994. Eur J Public Health 2003;13:306–12.

125. Lipowicz A. Effect of husbands’ education on fatness of wives. Am J Hum Biol 2003;15:1–7.

126. Lipowicz A, Gronkiewicz S, Malina RM. Body mass index, overweight and obesity in married and never married men and women in Poland. Am J Hum Biol 2002;14:468–75.

127. Lissner L, Johansson SE, Qvist J, et al. Social mapping of the obesity epidemic in Sweden. Int J Obes Relat Metab Disord 2000;24:801–5.

128. Luepker RV, Rosamond WD, Murphy R, et al. Socioeconomic status and coronary heart disease risk factor trends. The Minnesota Heart Survey. Circulation 1993;88:2172–9.

129. Manson JE, Lewis CE, Kotchen JM, et al. Ethnic, socioeconomic, and lifestyle correlates of obesity in U.S. women: The Women’s Health Initiative. Clin J Womens Health 2001;1:225–34.

130. Martinez-Ros MT, Tormo MJ, Navarro C, et al. Extremely high prevalence of overweight and obesity in Murcia, a Mediterranean region in south-east Spain. Int J Obes Relat Metab Disord 2001;25:1372–80.

131. Martorell R, Khan LK, Hughes ML, et al. Obesity in Latin American women and children. J Nutr 1998;128:1464–73.

132. Martorell R, Khan LK, Hughes ML, et al. Obesity in women developing countries. Eur J Clin Nutr 2000;54:247–52.

133. Merkus MP, Mathus-Vliegen LM, Broekhoff C, et al. Extreme obesity: sociodemographic, familial and behavioural correlates in the Netherlands. J Epidemiol Community Health 1995;49:22–7.

134. Millar WJ, Stephens T. Social status and health risks in Canadian adults: 1985 and 1991. Health Rep 1993;5:143–56.

135. Moliari A, Seidell JC. Differences in the association between smoking and relative body weight by level of education. Int J Obes Relat Metab Disord 1997;21:189–96.

136. Moliari A. The contribution of lifestyle factors to socioeconomic differences in obesity in men and women—a population-based study in Sweden. Eur J Epidemiol 2003;18:227–34.

137. Moliari A, Seidell JC, Sans S, et al. Educational level, relative body weight, and changes in their association over 10 years: an international perspective from the WHO MONICA Project. Am J Public Health 2000;90:1260–8.

138. Monteiro CA, Conde WL, Lu B, et al. Obesity and inequities in health in the developing world. Int J Obes Relat Metab Disord 2004;28:1181–6.

139. Musaiger AO, Al Ansari M. Factors associated with obesity among women in Bahrain. Int Q Community Health Educ 1991;12:129–36.

140. Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Epidemiology of overweight and obesity in a Greek adult population: The ATTICA Study. Obes Res 2004;12:1914–20.

141. Pekkanen J, Uutela A, Valkonen T, et al. Coronary risk factor levels: differences between educational groups in 1972–87 in eastern Finland. J Epidemiol Community Health 1995;49:144–9.

142. Pommerleau J, Podule I, Grinberga D, et al. Patterns of body weight in the Baltic republics. Public Health Nutr 2000;3:3–10.

143. Progetto Menopausa Italia Study Group. Determinants of body mass index in women around menopause attending menopause clinics in Italy. Climacteric 2003;6:67–74.

144. Regidor E, Gutierrez-Fisac JL, Banegas JR, et al. Obesity and socioeconomic position measured at three stages of the life course in the elderly. Eur J Clin Nutr 2004;58:488–94.

145. Rissanen AM, Heliovaara M, Knekt P, et al. Determinants of weight gain and overweight in adult Finns. Eur J Clin Nutr 1991;45:419–30.

146. Rodriguez Artalejo F, Garcia EL, Gutierrez-Fisac JL, et al. Changes in the prevalence of overweight and obesity and their risk factors in Spain, 1987–1997. Prev Med 2002;34:72–81.

147. Rogucka E, Bielicki T. Social contrasts in the incidence of obesity among adult large-city dwellers in Poland in 1986 and 1996. J Biosoc Sci 1999;31:419–23.

148. Rosenberg L, Palmer JR, Adams-Campbell LL, et al. Obesity and hypertension among college-educated black women in the United States. J Hum Hypertens 1999;13:237–41.

149. Rosmond R, Bjorntorp P. Psychosocial and socio-economic factors in women and their relationship to obesity and regional body fat distribution. Int J Obes Relat Metab Disord 1999;23:138–45.

150. Santos AC, Barros H. Prevalence and determinants of obesity in an urban sample of Portuguese adults. Public Health 2003;117:430–7.

151. Sarlio-Lahteenkorva S, Silventoinen K, Lahelma E. Relative weight and income at different levels of socioeconomic status. Am J Public Health 2004;94:468–72.

152. Scali J, Siari S, Grosclaude P, et al. Dietary and socioeconomic factors associated with overweight and obesity in a southern French population. Public Health Nutr 2004;7:513–22.

153. Schnohr C, Højbjerg L, Rieigs M, et al. Does educational level influence the effects of smoking, alcohol, physical activity, and obesity on mortality? A prospective population study. Scand J Public Health 2004;32:250–6.

154. Seidell JC, Cigolini M, Charzewska J, et al. Regional obesity and serum lipids in European women born in 1948. A multicenter study. Acta Med Scand Suppl 1988;723:189–97.

155. Shewry MC, Smith WC, Woodward M, et al. Variation in coronary risk factors by social status: results from the Scottish Heart Health Study. Br J Gen Pract 1992;42:406–10.

156. Sobal J, Rauschenbach BS, Frongillo EA Jr. Marital status, fatness and obesity. Soc Sci Med 1992;35:915–23.

157. Stam-Moraga MC, Kolanowski J, Dramaix M, et al. Socio-demographic and nutritional determinants of obesity in Belgium. Int J Obes Relat Metab Disord 1999;23(suppl 1):1–9.

158. Sundquist J, Johansson SE. The influence of socioeconomic status, ethnicity and lifestyle on body mass index in a longitudinal study. Int J Epidemiol 1998;27:57–63.

159. Sundquist K, Qvist J, Johansson SE, et al. Increasing trends of obesity in Sweden between 1996/97 and 2000/01. Int J Obes Relat Metab Disord 2004;28:254–61.

160. Szklarska A, Jankowska EA. Independent effects of social position and parity on body mass index among Polish adult women. J Biosoc Sci 2003;35:575–83.

161. Tavani A, Negri E, La Vecchia C. Determinants of body mass index: a study from northern Italy. Int J Obes Relat Metab Disord 1999;23:189–97.

162. Townsend MS, Peerson J, Love B, et al. Food insecurity is positively related to overweight in women. J Nutr 2001;131:1738–45.

163. Van Horn LV, Ballew C, Liu K, et al. Diet, body size, and plasma lipids-lipoproteins in young adults: differences by race and sex. The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol 1991;133:9–23.
164. van Lenthe FJ, Droomers M, Schrijvers CT, et al. Socio-demographic variables and 6 year change in body mass index: longitudinal results from the GLOBE Study. Int J Obes Relat Metab Disord 2000;24:1077–84.
165. Wardle J, Waller J, Jarvis MJ. Sex differences in the association of socioeconomic status with obesity. Am J Public Health 2002;92:1299–304.
166. Weng HHI, Bastian LA, Taylor DH Jr, et al. Number of children associated with obesity in middle-aged women and men: results from the Health and Retirement Study. J Womens Health (Larchmt) 2004;13:85–91.
167. Winkleby MA, Kraemer HC, Ahn DK, et al. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988–1994. JAMA 1998;280:356–62.
168. Yancey AK, Cochran SD, Corliss HL, et al. Correlates of overweight and obesity among lesbian and bisexual women. Prev Med 2003;36:676–83.
169. Zablotsky D, Nink KA. Changes in obesity prevalence among women aged 50 years and older: results from the Behavioral Risk Factor Surveillance System, 1990–2000. Res Aging 2004;26:13–30.
170. Zhang Q, Wang Y. Trends in the association between obesity and socioeconomic status in U.S. adults: 1971 to 2000. Obes Res 2004;12:1622–32.
171. Ayala GX, Elder JP, Campbell NR, et al. Correlates of body mass index and waist-to-hip ratio among Mexican women in the United States: implications for intervention development. Womens Health Issues 2004;14:155–64.
172. Forslund HB, Lindroos AK, Blomkvist K, et al. Number of teeth, body mass index, and dental anxiety in middle-aged Swedish women. Acta Odontol Scand 2002;60:346–52.
173. Gavaler JS, Rosenblum E. Predictors of postmenopausal body mass index and waist hip ratio in the Oklahoma Postmenopausal Health Disparities Study. J Am Coll Nutr 2003;22:269–76.
174. Guillford MC, Rona RJ, Chinn S. Trends in body mass index in young adults in England and Scotland from 1973 to 1998. J Epidemiol Community Health 1992;46:187–90.
175. Khan LK, Sobal J, Martorell R. Acculturation, socioeconomic status, and obesity in Mexican Americans, Cuban Americans, and Puerto Ricans. Int J Obes Relat Metab Disord 1997;21:91–6.
176. Kuskowska-Wolak A, Rossner S. Inter-relationships between socio-demographic factors and body mass index in a representative Swedish adult population. Diabetes Res Clin Pract 1990;10(suppl 1):S271–5.
177. Laaksonen M, Sarlio-Lahteenkorva S, Lahelma E. Multiple dimensions of socioeconomic position and obesity among employees: The Helsinki Health Study. Obes Res 2004;12:1851–8.
178. Laitinen J, Pietilainen K, Wadhsworth M, et al. Predictors of abdominal obesity among 31-y-old men and women born in northern Finland in 1966. Eur J Clin Nutr 2004;58:180–90.
179. Matthews KA, Kelsey SF, Meilahn EN, et al. Educational attainment and behavioral and biologic risk factors for coronary heart disease in middle-aged women. Am J Epidemiol 1989;129:1132–44.
180. Musaiger AO, Radwan HM. Social and dietary factors associated with obesity in university female students in United Arab Emirates. J R Soc Health 1995;115:96–9.
181. Patt MR, Yanek LR, Moy TF, et al. Sociodemographic, behavioral, and psychological correlates of current overweight and obesity in older, urban African American women. Health Educ Behav 2004;31(suppl):57S–68S.
182. Puig T, Marti B, Rickenbach M, et al. Some determinants of body weight, subcutaneous fat, and fat distribution in 25–64 year old Swiss urban men and woman. Soz Praventivmed 1990;35:193–200.
183. Ramsey PW, Glenn LL. Obesity and health status in rural, urban, and suburban southern women. South Med J 2002;95:666–71.
184. Shah M, Jeffery RW, Hannan PJ, et al. Relationship between socio-demographic and behaviour variables, and body mass index in a population with high-normal blood pressure: Hypertension Prevention Trial. Eur J Clin Nutr 1989;43:583–96.
185. Shankar S, Nanda JP, Bonney G, et al. Obesity differences between African-American men and women. J Natl Med Assoc 2000;92:22–8.
186. Stallings SF, Wolman PG, Goodner CH. Contribution of food intake patterns and number of daily food encounters to obesity in low-income women. Top Clin Nutr 2001;16:51–60.
187. Young TK. Sociocultural and behavioural determinants of obesity among Inuit in the central Canadian Arctic. Soc Sci Med 1996;43:1665–71.
188. Sarlio-Lahteenkorva S, Lahelma E. The association of body mass index with social and economic disadvantage in women and men. Int J Epidemiol 1999;28:445–9.
189. Monteiro CA, Mondini L, de Souza AL, et al. The nutrition transition in Brazil. Eur J Clin Nutr 1995;49:105–13.
190. Adams EJ, Grummer-Strawn L, Chavez G. Food insecurity and obesity in Latino women. Am J Clin Nutr 2003;80:1372–8.
191. Baughcum AE, Powers SW, Johnson SB, et al. Maternal feeding practices and beliefs and their relationships to overweight in early childhood. J Dev Behav Pediatr 2001;22:391–408.
192. Gibson D. Food stamp program participation is positively related to obesity in low income women. J Nutr 2003;133:2225–31.
193. Jeffery RW, French SA. Socioeconomic status and weight control practices among 20- to 45-year-old women. Am J Public Health 1996;86:1005–10.
194. Kaiser LL, Townsend MS, Melgar-Quinonez HR, et al. Choice of instrument influences relations between food insecurity and obesity in Latino women. Am J Clin Nutr 2004;80:1372–8.
195. Lauderdale DS, Rathouz PJ. Body mass index in a US national sample of Asian Americans: effects of nativity, years since immigration and socioeconomic status. Int J Obes Relat Metab Disord 2000;24:1188–94.
196. Maranto CL, Stenoien AF. Weight discrimination: a multidisciplinary analysis. Emp Respons Rights J 2000;12:9–24.
197. Morrison JA, Payne G, Barton BA, et al. Mother-daughter relationships of obesity and cardiovascular disease risk factors in black and white households: The NHLBI Growth and Metab Disord 2000;24:1188–94.
198. Morisson JA, Payne G, Barton BA, et al. Mother-daughter correlations of obesity and cardiovascular disease risk factors in black and white households: The NHLBI Growth and Health Study. Am J Public Health 1994;84:1761–7.
199. Register CA, Williams DR. Wage effects of obesity among young workers. Soc Sci Q 1990;71:130–41.
200. Sargent JD, Blanchflower DG. Obesity and stature in adolescence and earnings in young adulthood. Analysis of a British birth cohort. Arch Pediatr Adolesc Med 1994;148:681–7.
218. Hazuda HP, Masse BR. Income, body fatness, and fat patterns in Hispanic women from the Hispanic Health and Nutrition Examination Survey. Health Care Women Int 1993;14:117–28.

219. Collins MA, Zebrowitz LA. The contributions of appearance to occupational outcomes in civilian and military settings. J Appl Soc Psychol 1995;25:129–63.

220. Guilford MC, Mahabir D, Rocke B. Food insecurity, food choices, and body mass index in adults: nutrition transition in Trinidad and Tobago. Int J Epidemiol 2003;32:508–16.

221. Leigh JP, Berger MC. Effects of smoking and being overweight on current earnings. Am J Prev Med 1989;5:8–14.

222. Loh ES. The economic-effects of physical appearance. Soc Sci Q 1993;74:420–38.

223. Melamed T. Correlates of physical features—some gender differences. Pers Individ Diff 1994;17:689–91.

224. Saporta I, Halpern JJ. Being different can hurt: effects of deviation from physical norms on lawyers’ salaries. Ind Relat 2002;41:442–66.

225. Wallace D, Wallace R, Rauh V. Community stress, demoralization, and body mass index: evidence for social signal transduction. Soc Sci Med 2003;56:2467–78.

226. Wong J, Wong S. Cardiovascular health of immigrant women: implications for evidence-based practice. Clin Govern Int J 2003;8:112–22.

227. Brunner EJ, Marmot MG, Nanchahal K, et al. Social inequality in coronary risk: central obesity and the metabolic syndrome. Evidence from the Whitehall II Study. Diabetologia 1997;40:1341–9.

228. Davis C, Durnin JVGA, Elliott S. Social, psychological, and behavioral factors related to body size in adult men and women: a comparison of methods. Ann Behav Med 1995;17:25–31.

229. Dryson E, Metcalf P, Baker J, et al. The relationship between body mass index and socioeconomic status in New Zealand: ethnic and occupational factors. N Z Med J 1992;105:233–5.

230. Dykes J, Brunner EJ, Martikainen PT, et al. Socioeconomic gradient in body size and obesity among women: the role of dietary restraint, disinhibition and hunger in the Whitehall II Study. Int J Obes Relat Metab Disord 2004;28:262–8.

231. Ford G, Ecob R, Hunt K, et al. Patterns of class inequality in health through the lifespan: class gradients at 15, 35 and 55 years in the west of Scotland. Soc Sci Med 1994;39:1037–50.

232. Galobardes B, Costanza MC, Bernstein MS, et al. Trends in risk factors for the major “lifestyle-related diseases” in Geneva, Switzerland, 1993–2000. Ann Epidemiol 2003;13:537–40.

233. Hazuda HP, Haffner SM, Stern MP, et al. Effects of acculturation and socioeconomic status on obesity and diabetes in Mexican Americans. The San Antonio Heart Study. Am J Epidemiol 1988;128:1289–301.

234. Hazuda HP, Mitchell BD, Haffner SM, et al. Obesity in Mexican American subgroups: findings from the San Antonio Heart Study. Am J Clin Nutr 1991;53(suppl):1529S–34S.

235. Hemminki E, Malin M, Rahkonen O. Mother’s social class and perinatal problems in a low-problem area. Int J Epidemiol 1990;19:983–90.

236. Krieger N, Chen JT, Selby JV. Comparing individual-based and household-based measures of social class to assess class inequalities in women’s health: a methodological study of 684 US women. J Epidemiol Community Health 1999;53:612–23.

237. Lawlor DA, Ebrahim S, Davey Smith G. Socioeconomic position in childhood and adulthood and insulin resistance: cross sectional survey using data from British Women’s Heart and Health Study. BMJ 2002;325:805.

238. Maillard G, Charles MA, Thibult N, et al. Trends in the prevalence of obesity in the French adult population between 1980 and 1991. Int J Obes Relat Metab Disord 1999;23:389–94.

239. Mantel HG, Dotevall A, Wilhelmsen L, et al. Social gradients in cardiovascular risk factors and symptoms of Swedish men and women: The Göteborg MONICA Study 1995. J Cardiovasc Risk 2000;7:359–68.

240. Marron MG, Smith GD, Stansfeld S, et al. Health inequalities among British civil servants: The Whitehall II Study. Lancet 1991;337:1387–93.

241. Martikainen PT, Marron MG. Socioeconomic differences in weight gain and determinants and consequences of coronary risk factors. Am J Clin Nutr 1999;69:719–26.

242. Moens G, Van Gaal L, Muls E, et al. Body mass index and health among the working population—epidemiologic data from Belgium. Eur J Public Health 1999;9:119–23.

243. Okasha M, McCarron P, McEwen J, et al. Childhood social class and adulthood obesity: findings from the Glasgow Alumnus Cohort. J Epidemiol Community Health 2003;57:508–9.

244. Power C, Moynihan C. Social class and changes in weight-for-height between childhood and early adulthood. Int J Obes 1988;12:445–53.

245. Rahkonen O, Lundberg O, Laehlma E, et al. Body mass and social class: a comparison of Finland and Sweden in the 1990s. J Public Health Policy 1998;19:88–105.

246. Siodal T, Rahkonen O, Helakorpi S, et al. Eighteen-year trends in obesity among the elderly. Age Ageing 2004;33:632–5.

247. Wardle J, Griffith J. Socioeconomic status and weight control practices in British adults. J Epidemiol Community Health 2001;55:185–90.

248. Appleby PN, Thorogood M, Mann JI, et al. Low body mass index and social class: a comparison of Finland and Sweden in the 1990s. J Public Health Policy 1998;19:88–105.

249. Roberts DF, Dann TC. Social class and diachronic trends in physique in young university women. J Biosoc Sci 1992;24:269–79.

250. Adler NE, Epel ES, Castellazzo G, et al. Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychol 2000;19:586–92.

251. Sichieri R, Silva CV, Moura AS. Combined effect of short stature and socioeconomic status on body mass index and weight gain during reproductive age in Brazilian women. Braz J Med Biol Res 2003;36:1319–25.

252. Monteiro CA, Conde WL, Popkin BM. Independent effects of income and education on the risk of obesity in the Brazilian adult population. J Nutr 2001;131(suppl):SS1–6S.

253. Bloch KV, Klein CH, de Souza e Silva NA, et al. Socioeconomic aspects of spousal concordance for hypertension, obesity, and smoking in a community of Rio de Janeiro, Brazil. Arq Bras Cardiol 2003;80:179–86.

254. Rodrigues ML, Da Costa TH. Association of the maternal position in childhood and adulthood and insulin resistance: cross sectional survey using data from British Women’s Heart and Health Study. BMJ 2002;325:805.
240. Reddy BN. Body mass index and its association with socio-economic and behavioral variables among socioeconomically heterogeneous populations of Andhra Pradesh, India. Hum Biol 1998;70:901–17.

241. Reddy KK, Rao AP, Reddy TP. Socioeconomic status and the prevalence of coronary heart disease risk factors. Asia Pac J Clin Nutr 2002;11:98–103.

242. Adair LS. Dramatic rise in overweight and obesity in adult Filipino women and risk of hypertension. Obes Res 2004;12:1335–41.

243. Bhuiya A, Mostafa G. Levels and differentials in weight, height and body mass index among mothers in a rural area of Bangladesh. J Biosoc Sci 1993;25:31–8.

244. Griffiths PL, Bentley ME. The nutrition transition is underway in India. J Nutr 2001;131:2692–700.

245. Hu G, Hu G, Peckarinen H, et al. Comparison of dietary and non-dietary risk factors in overweight and normal-weight Chinese adults. Br J Nutr 2002;88:91–7.

246. Jacobs E, Goldstein J, Lopez A, et al. Social class, family, and life-style factors associated with overweight and obesity among adults in Peruvian cities. Prev Med 2003;37:396–405.

247. Perez-Cueto FJ, Kolsteren PW. Changes in the nutritional status of Bolivian women 1994–1998: demographic and social predictors. Eur J Clin Nutr 2004;58:660–6.

248. Shukla HC, Gupta PC, Mehta HC, et al. Descriptive epidemiology of body mass index of an urban adult population in western India. J Epidemiol Community Health 2002;56:876–80.

249. Ulijaszek SJ. Socio-economic factors associated with physique of adults of the Purari Delta of the Gulf Province, Papua New Guinea. Ann Hum Biol 2003;30:316–28.

250. Monteiro CA, Conde WL, Popkin BM. The burden of disease attributable to undernutrition and overweight in children undergoing rapid nutrition transition: a view from Brazil. Am J Public Health 2004;94:433–4.

251. Bharati P. Variation in adult body dimensions in relation to economic condition among the Mahishyas of Howrah district, West Bengal, India. Ann Hum Biol 1989;16:529–41.

252. Mendez MA, Cooper RS, Luke A, et al. Higher income is more strongly associated with obesity than with obesity-related metabolic disorders in Jamaican adults. Int J Obes 2004;28:543–50.

253. Hodge AM, Dowse GK, Koki G, et al. Modernity and obesity and life-style factors associated with overweight and obesity among the Chinese: results from the 1989 and 1991 China Health and Nutrition Surveys. Am J Public Health 1995;85:690–4.

254. Shah SM, Nanan D, Rahbar MH, et al. Assessing obesity and overweight in a high mountain Pakistani population. Trop Med Int Health 2004;9:526–32.

255. Sichieri R, Siqueira KS, Moura AS. Obesity and abdominal fatness associated with undernutrition early in life in a survey in Rio de Janeiro. Int J Obes Relat Metab Disord 2000;24:614–18.

256. Hakeem R. Socio-economic differences in height and body mass index of children and adults living in urban areas of Karachi, Pakistan. Eur J Clin Nutr 2001;55:400–6.

257. Bovet P, Ross AG, Gervasoni JP, et al. Distribution of blood pressure, body mass index and smoking habits in the urban population of Dar es Salaam, Tanzania, and associations with socioeconomic status. Int J Epidemiol 2002;31:240–7.

258. Siqueira KS, Appolinario JC, Sichieri R. Obesity, weight gain, and weightlessness in a non-clinical sample of five Brazilian women. Obes Res 2003;11:1383–91.

259. Shukla HC, Gupta PC, Mehta HC, et al. Descriptive epidemiology of body mass index of an urban adult population in western India. J Epidemiol Community Health 2002;56:876–80.

260. Reddy BN. Body mass index and its association with socio-economic and behavioral variables among socioeconomically heterogeneous populations of Andhra Pradesh, India. Hum Biol 1998;70:901–17.

261. Reddy KK, Rao AP, Reddy TP. Socioeconomic status and the prevalence of coronary heart disease risk factors. Asia Pac J Clin Nutr 2002;11:98–103.

262. Adair LS. Dramatic rise in overweight and obesity in adult Filipino women and risk of hypertension. Obes Res 2004;12:1335–41.

263. Bhuiya A, Mostafa G. Levels and differentials in weight, height and body mass index among mothers in a rural area of Bangladesh. J Biosoc Sci 1993;25:31–8.

264. Griffiths PL, Bentley ME. The nutrition transition is underway in India. J Nutr 2001;131:2692–700.

265. Hu G, Hu G, Peckarinen H, et al. Comparison of dietary and non-dietary risk factors in overweight and normal-weight Chinese adults. Br J Nutr 2002;88:91–7.

266. Jacobs E, Goldstein J, Lopez A, et al. Social class, family, and life-style factors associated with overweight and obesity among adults in Peruvian cities. Prev Med 2003;37:396–405.

267. Perez-Cueto FJ, Kolsteren PW. Changes in the nutritional status of Bolivian women 1994–1998: demographic and social predictors. Eur J Clin Nutr 2004;58:660–6.

268. Shukla HC, Gupta PC, Mehta HC, et al. Descriptive epidemiology of body mass index of an urban adult population in western India. J Epidemiol Community Health 2002;56:876–80.

269. Ulijaszek SJ. Socio-economic factors associated with physique of adults of the Purari Delta of the Gulf Province, Papua New Guinea. Ann Hum Biol 2003;30:316–28.

270. Al Nuaim AR, Al Rubeaan K, Al Mazrou Y, et al. High prevalence of overweight and obesity and life-style factors associated with overweight among the adult population in Sao Paulo, Brazil. Int J Obes Relat Metab Disord 1999;23:639–44.

271. Reddy BN. Body mass index and its association with socio-economic and behavioral variables among socioeconomically heterogeneous populations of Andhra Pradesh, India. Hum Biol 1998;70:901–17.

272. Reddy KK, Rao AP, Reddy TP. Socioeconomic status and the prevalence of coronary heart disease risk factors. Asia Pac J Clin Nutr 2002;11:98–103.

273. Adair LS. Dramatic rise in overweight and obesity in adult Filipino women and risk of hypertension. Obes Res 2004;12:1335–41.

274. Bhuiya A, Mostafa G. Levels and differentials in weight, height and body mass index among mothers in a rural area of Bangladesh. J Biosoc Sci 1993;25:31–8.

275. Hodge AM, Dowse GK, Koki G, et al. Modernity and obesity in coastal and highland Papua New Guinea. Int J Obes Relat Metab Disord 1995;19:154–61.

276. Hodge AM, Dowse GK, Koki G, et al. Modernity and obesity in coastal and highland Papua New Guinea. Int J Obes Relat Metab Disord 1995;19:154–61.

277. Shah SM, Nanan D, Rahbar MH, et al. Assessing obesity and overweight in a high mountain Pakistani population. Trop Med Int Health 2004;9:526–32.

278. Alsaif MA, Hakim IA, Harris RB, et al. Prevalence and risk factors of obesity and overweight in adult Saudi population. Nutr Res 2002;22:1243–52.

279. Benjelloun S. Nutrition transition in Morocco. Public Health Nutr 2002;5:135–40.

280. Bharati P. Variation in adult body dimensions in relation to economic condition among the Mahishyas of Howrah district, West Bengal, India. Ann Hum Biol 1989;16:529–41.

281. Mendez MA, Cooper RS, Luke A, et al. Higher income is more strongly associated with obesity than with obesity-related metabolic disorders in Jamaican adults. Int J Obes 2004;28:543–50.

282. Monteiro CA, Conde WL, Popkin BM. The burden of disease from undernutrition and overnutrition in countries undergoing rapid nutrition transition: a view from Brazil. Am J Public Health 2004;94:433–4.

283. Popkin BM, Baeratakul S, Ge K, et al. Body weight patterns among the Chinese: results from the 1989 and 1991 China Health and Nutrition Surveys. Am J Public Health 1995;85:690–4.

284. Popkin BM, Baeratakul S, Zhai F, et al. Dietary and environmental correlates of obesity in a population study in China. Obes Res 1995;3(suppl 2):135s–43s.

285. Sichieri R, Siqueira KS, Moura AS. Obesity and abdominal fatness associated with undernutrition early in life in a survey in Rio de Janeiro. Int J Obes Relat Metab Disord 2000;24:614–18.

286. Hakeem R. Socio-economic differences in height and body mass index of children and adults living in urban areas of Karachi, Pakistan. Eur J Clin Nutr 2001;55:400–6.

287. Bovet P, Ross AG, Gervasoni JP, et al. Distribution of blood pressure, body mass index and smoking habits in the urban population of Dar es Salaam, Tanzania, and associations with socioeconomic status. Int J Epidemiol 2002;31:240–7.

288. Holdsworth M, Gartner A, Landais E, et al. Perceptions of healthy and desirable body size in urban Senegalese women. Int J Obes 2004;28:1561–8.

289. Sobngwi E, Mbanya JC, Unwin NC, et al. Exposure over the life course to an urban environment and its relation with obesity, diabetes, and hypertension in rural and urban Cameroon. Int J Epidemiol 2004;33:769–76.
280. Bielicki T, Szklarska A, Welon Z, et al. Variation in the body mass index among young adult Polish males between 1965 and 1995. Int J Obes Relat Metab Disord 2000;24:658–62.

281. Koziel S, Welon Z, Bielicki T, et al. The effect of the economic transition on the body mass index of conscripts in Poland. Econ Hum Biol 2004;2:97–106.

282. Al Isa AN. Dietary and socio-economic factors associated with obesity among Kuwaiti college men. Br J Nutr 1999;82:369–74.

283. Flegal KM, Harlan WR, Landis JR. Secular trends in body mass index and skinfold thickness with socioeconomic factors in young-adult men. Am J Clin Nutr 1988;48:544–51.

284. Freedman DS, Strogradz E, Eaker E, et al. Differences between black and white men in correlates of high density lipoprotein cholesterol. Am J Epidemiol 1990;132:656–69.

285. Henriksson KM, Lindblad U, Agren B, et al. Associations between unemployment and cardiovascular risk factors with socioeconomic position during childhood and during adulthood. BMJ 1996;313:1434–8.

286. Mansson NO, Merlo J. The relation between self-rated health, socioeconomic status, body mass index and disability pension among middle-aged men. Eur J Epidemiol 2001;17:65–9.

287. Rosmond R, Bjorntorp P. Occasional status, cortisol secretory pattern, and visceral obesity in middle-aged men. Obes Res 2000;8:445–50.

288. Paxton SJ, Sculthorpe A, Gibbons K. Weight-loss strategies and smoking. Int J Epidemiol 1998;27:33–40.
319. Sundquist J, Malmström M, Johansson SE. Cardiovascular risk factors and the neighbourhood environment: a multilevel analysis, Int J Epidemiol 1999;28:841–5.

320. Vandegrift D, Yoked T. Obesity rates, income, and suburban sprawl: an analysis of US states. Health Place 2004;10:221–9.

321. Giles-Corti B, Macintyre S, Clarkson JP, et al. Environmental and lifestyle factors associated with overweight and obesity in Perth, Australia. Am J Health Promot 2003;18:93–102.

322. Payne JN, Coy J, Milner PC, et al. Are deprivation indicators a proxy for morbidity? A comparison of the prevalence of arthritis, depression, dyspepsia, obesity and respiratory symptoms with unemployment rates and Jarman scores. J Public Health Med 1993;15:161–70.

323. Peach HG, Bath NE. Prevalence and sociodemographic determinants of cardiovascular risk in a rural area. Aust J Rural Health 1999;7:23–7.

324. Al Isa AN. Obesity among Kuwait University students: an explorative study. J R Soc Med 1999;119:223–7.

325. Baughman K, Logue E, Sutton K, et al. Biopsychosocial characteristics of overweight and obese primary care patients: do psychosocial and behavior factors mediate sociodemographic effects? Prev Med 2003;37:129–37.

326. Chung CS, Tash E, Raymond J, et al. Health risk behaviours and ethnicity in Hawaii. Int J Epidemiol 1990;19:1011–18.

327. Ettner SL, Grzywacz JG. Socioeconomic status and health among Californians: an examination of multiple pathways. Am J Public Health 2003;93:441–4.

328. Ferraro KD, Yu Y. Body weight and self-ratings of health. J Health Soc Behav 1995;36:274–84.

329. Frank LD, Andresen MA, Schmid TL. Obesity relationships with community design, physical activity, and time spent in cars. Am J Prev Med 2004;27:87–96.

330. Friestad C, Pirks J, Biehl M, et al. Socioeconomic patterning of smoking, sedentary lifestyle, and overweight status among adolescents in Norway and the United States. J Adolesc Health 2003;33:275–8.

331. Grabowski DC, Ellis JE. High body mass index does not predict mortality in older people: analysis of the Longitudinal Study of Aging. J Am Geriatr Soc 1999;47:1574–9.

332. Hann N, Ashgar A. Prevalence of overweight and associated factors among Oklahomans. J Okla State Med Assoc 1996;89:353–61.

333. Lopez R. Urban sprawl and risk for being overweight or obese. Am J Public Health 2004;94:1574–9.

334. Martinez-Gonzalez MA, Martin-Almendros MI, Gibney MJ, et al. Perceptions about body weight and weight reduction in Spain. Public Health Nutr 1999;2:557–63.

335. Martinez JA, Kearney JM, Kafatos A, et al. Variables independently associated with self-reported obesity in the European Union. Public Health Nutr 1999;2:125–33.

336. Nayga RM Jr. Sociodemographic factors associated with obesity in the USA. J Consum Stud Home Econ 1999;23:161–4.

337. Nayga RM. Schooling, health knowledge and obesity. Appl Econ 2000;32:815–22.

338. Osler M, Gerdes LU, Davidsen M, et al. Socioeconomic status and trends in risk factors for cardiovascular diseases in the Danish MONICA population, 1982–1992. J Epidemiol Community Health 2000;54:108–13.

339. Oshby T, Pomerleau J, Speechley M, et al. Correlates of body mass index in the 1990 Ontario Health Survey. CMAJ 1995;152:1811–17.

340. Paeratakul S, Lovejoy JC, Ryan DH, et al. The relation of gender, race and socioeconomic status to obesity and obesity comorbidities in a sample of US adults. Int J Obes Relat Metab Disord 2002;26:1205–10.

341. Poldak AP. Weight/height ratio in Hispanic adults surveyed by telephone. Health Values 1995;19:30–7.

342. Ross CE. Overweight and depression. J Health Soc Behav 1994;35:63–79.

343. Sharp DJ, Brownson RC, Wilkerson JC, et al. Patterns of obesity in Missouri. Mo Med 1993;90:119–22.

344. Vioque J, Torres A, Quiles J. Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int J Obes Relat Metab Disord 2000;24:1683–8.

345. Diaz VA, Mainous AG III, Koopman RJ, et al. Undiagnosed obesity: implications for undiagnosed hypertension, diabetes, and hypercholesterolemia. Fam Med 2004;36:639–44.

346. Kaber NH, Simoes EJ, Murayi T, et al. Correlates of overweight and weight-loss practices in Missouri. Am J Health Behav 2001;25:125–39.

347. Laraia BA, Siega-Riz AM, Evenson KR. Self-reported overweight and obesity are not associated with concern about enough food among adults in New York and Louisiana. Prev Med 2004;38:175–81.

348. Lizarzaburu JL, Palinkas LA. Immigration, acculturation, and risk factors for obesity and cardiovascular disease: a comparison between Latinos of Peruvian descent in Peru and in the United States. Ethn Dis 2002;12:342–52.

349. Soriguer F, Rojo-Martinez G, Esteva de Antonio I, et al. Prevalence of obesity in south-east Spain and its relation with social and health factors. Eur J Epidemiol 2004;19:33–40.

350. VanEenwyk J, Sabel J. Self-reported concern about food security associated with obesity—Washington, 1995–1999. MMWR Morb Mortal Wkly Rep 2003;52:840–2.

351. Sarlio-Lahteenkorva S, Lahelma E. Food insecurity is associated with past and present economic disadvantage and body mass index. J Nutr 2001;131:2880–4.

352. Costa-Font J, Gill J. Social interactions and the contemporaneous determinants of individuals’ weight. Appl Econ 2004;36:2253–63.

353. King GA, Fitzhugh EC, Bassett DR Jr, et al. Relationship of leisure-time physical activity and occupational activity to the prevalence of obesity. Int J Obes Relat Metab Disord 2001;25:606–12.

354. Morton JF, Guthrie JF. Diet-related knowledge, attitudes, and practices of low-income individuals with children in the household. Fam Econ Nutr Rev 1997;10:2–16.

355. Pawson IG, Martorell R, Mendoza FE. Prevalence of overweight and obesity in US Hispanic populations. Am J Clin Nutr 1991;53:639–44.

356. Kohlmann CW, Weidner G. Emotional correlates of body weight: the moderating effects of gender and family income. Anxiety Stress Coping 1996;9:357–67.

357. Lower Mississippi Delta Nutrition Intervention Research Consortium. Self-reported health of residents of the Mississippi Delta. J Health Care Poor Underserved 2004;15:645–62.

358. Al Asi T. Obesity and obesity among Kuwait Oil Company employees: a cross-sectional study. Occup Med (Lond) 2003;53:431–5.

359. Shaw MP, Bath LE, Duff J, et al. Obesity in leukemia survivors: the familial contribution. Pediatr Hematol Oncol 2000;17:231–7.

360. Teasdale TW, Sorensen TI, Stunkard AJ. Genetic and early environmental components in sociodemographic influences on adult body fatness. BMJ 1990;300:1615–18.
361. van de Mheen H, Stronks K, Looman CW, et al. Does childhood socioeconomic status influence adult health through behavioural factors? Int J Epidemiol 1998;27:431–7.

362. Donkin AJ, Johnson AE, Morgan K, et al. The interaction of physical, psychological, socioeconomic and sociodemographic variables on the body mass index (MINDEX) of the community-dwelling elderly. J Nutr Health Aging 1998;2:143–8.

363. Ge K, Weisell R, Guo X, et al. The body mass index of Chinese adults in the 1980s. Eur J Clin Nutr 1994;48(suppl 3):S148–54.

364. Popkin BM, Keyou G, Zhai F, et al. The nutrition transition in China: a cross-sectional analysis. Eur J Clin Nutr 1993;47:333–46.

365. Sichieri R, Coitinho DC, Leao MM, et al. High temporal, geographic, and income variation in body mass index among adults in Brazil. Am J Public Health 1994;84:793–8.

366. Ramos de Marins VM, Varnier Almeida RM, Pereira RA, et al. Factors associated with overweight and central body fat in the city of Rio de Janeiro: results of a two-stage random sampling survey. Public Health 2001;115:236–42.

367. Delpeuch F, Cornu A, Massamba JP, et al. Is body mass index sensitively related to socio-economic status and to economic adjustment? A case study from the Congo. Eur J Clin Nutr 1994;48(suppl 3):S141–7.

368. Al Nuaim AA, Bamgboye EA, Al Rubeaan KA, et al. Overweight and obesity in Saudi Arabian adult population, role of socio-demographic variables. J Community Health 1997;22:211–23.

369. INCLEN Multicentre Collaborative Group. Body mass index and cardiovascular disease risk factors in seven Asian and five Latin American centers: data from the International Clinical Epidemiology Network (INCLEN). Obes Res 1996;4:221–8.

370. Nube M, Asenso-Okyere WK, van den Boom GJ. Body mass index as indicator of standard of living in developing countries. Eur J Clin Nutr 1998;52:136–44.

371. Al Riyami AA, Afifi MM. Prevalence and correlates of obesity and central obesity among Omani adults. Saudi Med J 2003;24:641–6.

372. Aekplakom W, Chaiyapong Y, Neal B, et al. Prevalence and determinants of overweight and obesity in Thai adults: results of the Second National Health Examination Survey. J Med Assoc Thai 2004;87:685–93.

373. Bertera EM, Bertera RL, Shankar S. Acculturation, socioeconomic factors and obesity among immigrants from El Salvador living in the Washington, D.C. area. J Ethn Cult Divers Soc Work 2003;12:43–59.

374. Erem C, Arslan C, Hacihasanoglu A, et al. Prevalence of obesity and associated risk factors in a Turkish population (Trabzon City, Turkey). Obes Res 2004;12:1117–27.

375. Kruger HS, Venter CS, Vorster HH, et al. Physical inactivity is the major determinant of obesity in black women in the North West Province, South Africa: The THUSA Study. Nutrition 2002;18:422–7.

376. Stooke JD. Energy density, energy intake and weight status in a large free-living sample of Chinese adults: exploring the underlying roles of fat, protein, carbohydrate, fiber and water intakes. Eur J Clin Nutr 2001;55:349–59.

377. Soori H. Pattern of dietary behaviour and obesity in Ahwaz, Islamic Republic of Iran. East Mediterr Health J 2001;7:163–70.

378. Mauny F, Viel F, Roubaux F, et al. Blood pressure, body mass index and socio-economic status in the urban population of Antananarivo (Madagascar). Ann Trop Med Parasitol 2003;97:645–54.

379. Dayton J, Ainsworth M. The elderly and AIDS: coping with the impact of adult death in Tanzania. Soc Sci Med 2004;59:2161–72.