Response of Muskmelon (Cucumis melo L.) cv. Durgapur Madhu to Different Levels of Gibberellic Acid and Time of Seed Soaking on Yield Parameters and Economics

K.S. Pandya *, L.R. Varma, T. Thomson, J.B. Thakar and Y.D. Pawar

Horticulture Instructional Farm, College of Horticulture SD Agricultural University, Sardarkrushinagar 385506 Gujarat, India
*Corresponding author

Abstract

The present investigation entitled, “Response of muskmelon (Cucumis melo L.) cv. Durgapur Madhu to different levels of gibberellic acid and time of seed soaking on yield yield parameters and economics,” was carried out from February to May 2013 in the summer season at Horticulture Instructional Farm, College of Horticulture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar. Experiment was laid out in randomized block design with factorial concept having four replications. There were five levels of GA3 (0 ppm, 250 ppm, 500 ppm, 750 ppm and 1000 ppm) with two soaking periods 16 and 24 hours. There was treatment combinations altogether ten. The results revealed that maximum fruit set per cent, maximum number of fruit per plant, maximum yield of fruit per plant was recorded with treatment GA3 at 750 ppm, whereas in case of time of seed soaking maximum fruit set per cent, minimum days taken for first harvest, maximum average weight of fruit was recorded with S1 treatments. Over all treatment combination G3S2 (GA3 750 ppm, 24 hours seed soaking) found to be beneficial.

Keywords
Muskmelon, GA3, Yield, Yield parameters and Economics.

Introduction

Muskmelon is an annual climbing or creeping herb with large, soft, hairy leaves and elliptical fruits of varying size and colour. It is an important vegetable crop cultivated throughout India particularly in the hot and dry North Western part of the country. Muskmelon fetches premium price in the market compared to other vegetables and is a popular vegetable grown under both rainfed and irrigated conditions almost throughout the year. It has great importance due to its short duration and high production potential as well as high nutritive value. It contains 78.0 % edible portion, 95.2 g moisture, 0.3 g protein, 0.2 g fat, 0.4 g fiber, 0.11 mg riboflavin, 0.4 g minerals, 32 mg calcium, 26 mg vitamin C, 3.5 g carbohydrate per 100 g of fresh edible portion (Chaudhary, 2000).

In India area under muskmelon are about 41 (000) hectare with the production of 868 (000) MT (Anon. 2013). It is widely grown in Bihar, Uttar pradesh, Punjab, Rajasthan, Gujarat and some parts of Maharashtra.
(Chaudhary, 2000). It is grown on small scale but it has great prospects for large scale cultivation in the Gujarat state due to congenial soil and climatic conditions.

Materials and Methods

The investigation was conducted at Horticulture Instructional Farm, College of Horticulture, S. D. Agricultural University, Sardarkrushinagar during the year 2013. The experiment was laid out in four replications with Randomized Block Design with Factorial Concept. Five levels of gibberellic acid G_0 (0 ppm GA$_3$), soaking of seeds in distilled water), G_1 (250 ppm GA$_3$), G_2 (500 ppm GA$_3$), G_3 (750 ppm GA$_3$) and G_4 (1000 ppm GA$_3$) and two levels of seed soaking viz. 16 hours (S_1) and 24 hours (S_2) were taken singly and with combined form and thus total number of treatment combinations were altogether ten.

To raise the crop recommended package of practices was followed. The crop was sown on 21st February, 2013. The effect of different treatments was studied on three randomly selected plants. The mean values were subjected to statistical analysis following analysis of variance technique (Panse and Sukhatme, 1995).

Results and Discussion

Maximum per cent fruit set was recorded with treatment G_3, whereas in case time of seed soaking maximum per cent fruit set was recorded with treatment S_2. These findings are closely in accordance with Gopalkrishnan and Choudhury (1978) in watermelon, Biradar (2008) in bitter gourd and Mollier (2010) in cucumber.

Table 1: Response of musk melon (Cucumis melo L.) cv. Durgapur Madhu to different levels of gibberellic acid and time of seed soaking on yield parameters

GA$_3$	% Fruit set	Days taken for first harvest	Average fruit weight (g)	No. of fruits / plant	
G_0	51.77	77.73	566.05	4.25	
G_1	56.85	76.47	695.43	5.31	
G_2	58.46	76.21	717.72	6.83	
G_3	62.18	75.25	701.55	7.46	
G_4	59.03	75.93	732.16	6.51	
S_1	1.23	0.56	24.83	0.35	
S_2	56.34	77.18	654.40	5.95	
$S_{.Em}±$	0.78	0.35	15.71	0.22	
$CD @ 5 %$	2.26	1.02	45.58	NS	
$G X S$	$S_{.Em}±$	1.74	0.79	35.12	0.49
$CD @ 5 %$	5.06	2.28	101.92	1.43	
CV%	6.04	2.06	10.29	16.22	
Table 2 Response of musk melon (Cucumis melo L.) cv. Durgapur Madhu to different levels of gibberellic acid and time of seed soaking on yield and benefit cost ratio

GA₃	Yield /Plant (kg)	Yield /ha (q)
G		
G₀	2.68	89.33
G₁	3.91	130.45
G₂	4.80	160.18
G₃	5.31	177.14
G₄	4.55	151.88
S.Em±	0.87	10.02
CD @ 5 %	0.30	29.04

Table 3 Response of musk melon (Cucumis melo L.) cv. Durgapur Madhu to different levels of gibberellic acid and time of seed soaking on economics

Treat. No.	Cost of cultivation ₹/ha	Yield (q) per hectare	Gross income ₹/ha	Net income ₹/ha	Cost Benefit Ratio
G₀S₁	67418.46	69.09	138180	70761.54	1:1.04
G₀S₂	67418.46	109.56	219120	151701.54	1:2.25
G₁S₁	69370.46	112.30	224600	155229.54	1:2.23
G₁S₂	69370.46	148.60	297200	227829.54	1:3.28
G₂S₁	71322.46	149.56	299120	227797.54	1:3.19
G₂S₂	71322.46	170.79	341580	270257.54	1:3.78
G₃S₁	73274.46	175.71	351420	278145.54	1:3.79
G₃S₂	73274.46	178.58	357160	283885.54	1:3.87
G₄S₁	75226.46	173.48	346960	271733.54	1:3.61
G₄S₂	75226.46	130.27	260540	185313.54	1:2.46

Days taken for first harvest was influenced by time of seed soaking and minimum days required for first harvest was recorded with treatment S₂. Similar result was observed by Ram et al., (2001 and 2003) in muskmelon. Maximum number of fruit per plant may be due to more number of hermaphrodite flower and better vegetative growth (Biradar et al., 2008). Maximum average weight of fruit was recorded with treatment G₃ whereas in case of time of seed
soaking, maximum average weight of fruit was recorded with treatment S_2. These findings are closely in accordance with the findings of Ram et al., (2001, 2003) in muskmelon and Hidayatullah et al., (2011) in cucumber (Table 1). Maximum yield of fruit per plant was recorded with treatment G_3 whereas in case of time of seed soaking, maximum yield of fruit per plant was recorded with treatment S_2. These findings are closely in accordance with the findings of Ram et al., (2001 and 2003) in muskmelon, Hidayatullah et al., (2011) in cucumber, Deepthi (2008) in muskmelon and Biradar (2008) in bitter gourd.

Yield of fruit per ha (q) was significantly influenced by different levels of GA$_3$. Maximum fruit yield per ha (q) was recorded with treatment G_3. These findings are closely in accordance with the findings of Deepthi, (2008) in muskmelon and Biradar (2008) in bitter gourd and Mollier (2010) in cucumber (Table 2).

The results summarized in table 3 indicated that maximum net income Rs. 2,83,885.54 ha$^{-1}$ and highest net CBR (1:3.87) was obtained with G_3S_2 (750 ppm GA$_3$, 24 hour seed soaking). The minimum net income Rs. 70,761.54 ha$^{-1}$ and lowest net CBR (1: 1.04) was obtained with G_0S_1 (0 ppm GA$_3$, 16 hour seed soaking).

From the investigation it can be concluded that different levels of GA$_3$ and time of seed soaking was significantly influenced yield and economics of muskmelon. The treatment G_3 (750 ppm GA$_3$) and treatment combination G_3S_2 (750 ppm GA$_3$, 24 hours seed soaking) found to be beneficial.

References

Anonymous (2013). NHB Database- 2013. Ministry of Agriculture, Government of India

Biradar, G. and Navalagatti C. M. (2008). Effect of plant growth regulators on physiology and quality in bitter gourd (Momordica charantia L.). M.Sc thesis submitted to the University of Agricultural Sciences, Dharwad.

Chaudhary, B. (2000). Vegetable production, National Book trust pub. New Delhi, 150-151.

Deepthi, H.R. (2008). Physiology and quality of muskmelon (Cucumis melo L.) as influenced by plant growth regulators. M.Sc thesis submitted to the University of Agricultural sciences, Dharwad.

Gopalkrishnan, P. K and Choudhury, B. 1978. Effect of plant regulator sprays on modification of sex, fruit set and development in watermelon. Indian J. Hort., 35: 235-241.

Hidayatullah, Bano, A., Khokhar, K. M. and Mahmood, T. (2011). Effect of seed soaking treatment with growth regulators on phytohormone level and sex modification in cucumber (Cucumis sativus L.). Afri. J. Pl. Sci. 5(10): 599-608.

Mollier. (2010). Influence of plant growth regulators on growth, physiology and yield in cucumber. M.sc thesis submitted to the University of Agricultural sciences, Dharwad.

Panse, V. G. and Sukhatme, P. V. (1995). Statistical methods for agricultural workers, ICAR. Pub., New Delhi.

Ram Asrey, Singh, G. N., Shukla, H. S. and Rajbir Singh. (2001). Effect of seed soaking with gibberellic acid on growth and fruiting of muskmelon (Cucumis melo L.). Haryana J. Horti. Sci., 3(3/4): 277-278.

Ram Asrey., Singh, G. N. and Shukla, H. S. (2003). Effect of seed soaking with gibberellic acid on growth and fruiting of muskmelon (Cucumis melo L.). Haryana J. Horti. Sci., 32 (3/4): 297-298.