Analysis of tsunami hazard in the Southern Coast of West Java Province - Indonesia

W Windupranata1,3, N R Hanifa2, C A D S Nusantara3, G Aristawati4, M R Arifianto4
1 Research Group of Coastal, Ocean and Maritime Engineering, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung – Indonesia
2 Centre for Earthquake Science and Technology, Research Centre for Disaster Mitigation, Institut Teknologi Bandung
3 Research Laboratory of Hydrography, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung
4 Study Program of Geodesy and Geomatics Engineering, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung
Email: w.windupranata@itb.ac.id

Abstract. The Southern Coast of West Java Province in the Java Islands is one of prone and exposed area to tsunami hazard. It has about 428 kilometers coastline length, covering 5 administrational regencies (i.e. Sukabumi, Cianjur, Garut, Tasikmalaya, and Pangandaran). It is a strategic area that support many economic activities including tourism, fisheries, electricity power plants, agriculture, markets as well as social factors such as coastal villages, schools and other public facilities. The existence of this strategic area is threatened by the potential for a tsunami disaster mainly from megathrust along the Southern Coast of Java Island. On 2006, a tsunami earthquake of M7.7 occurred off Pangandaran Regency with tsunami height of 5-8 meters and inundated about 500 meters along southern coast of West and Central Java Province. The tsunami caused more than 600 casualties and damage to buildings, public facilities and infrastructure. Yet, the Indonesia National Earthquake Source and Hazard Map suggest a bigger threat of a plausible M8.7 – M9.2 megathrust earthquake off Java island. This research aims to analyze and map potential areas affected by the tsunami in the South Coast of West Java Province based on numerical modelling carried out with Cornell Multi-grid Coupled Tsunami Model (COMCOT) v1.7 based on the several megathrust earthquake scenarios in southern off West Java. The results of tsunami modelling show that the highest impact is generated in the Sunda Straits & West Java - Central Java Megathrust Scenarios with highest tsunami inundation and the fastest travel time occurred in Cianjur Regency with 26.7 meters height and estimated arrival time of tsunami wave approximately 10 minutes after the mainshock, while the farthest inundation distance is estimated in Sukabumi Regency about 5.8 kilometers from the coast due to existence of river.

1. Introduction
Tsunamis are sudden ocean waves which can be triggered by several factors. However most of tsunami are generated by seismic activities that create large earthquakes that occur under or near the ocean. The other generating factors are submarine and subaerial gravitative mass wasting, volcanism, atmospheric disturbances and meteorite impacts [1]. Like many other natural phenomena, tsunamis can range in size
from micro-tsunamis with no effect to coastline, to mega-tsunamis that can affect large area on the coastlines, as with the Indian Ocean tsunami of 2004 or Japan 2011.

Tsunami disaster risk means the potential of human loss, damages and economic losses that can be caused due to tsunami. Tsunami has shown in the past able to extraordinary, catastrophic impact due to large number of victims, large material losses and high economic loss. Tsunami disaster mitigation measures are those that eliminate or reduce the impacts and risks of tsunami hazards through proactive measures taken before an emergency or disaster occurs. Assessment of tsunami hazard and risk is required to support preparedness measures and effective disaster reduction.

Accessibility to tsunami safe zone or tsunami shelters is one on important key measure of adaptive capacity in response to tsunami risks. Important information for tsunami disaster risk reduction strategic planning include understanding of tsunami hazard and risk to support preparedness measures and effective disaster reduction. Tsunami hazard data include inundation, flow-depth, estimated time arrival time as accurate as possible.

The southern coast of Java is one of the areas that has the potential for a tsunami disaster due to tectonic activity in the south of Java, namely the existence of a subduction to the north of the Indo-Australian plate under the Eurasian plate with near normal direction to the trough [2]. Sudradjat in [3] included the southern part of Java into group of vulnerable tsunami disaster based on the cause of tectonic earthquakes. Based on the history, there was an earthquake that triggered tsunami on July 17, 2006 at precisely 15:19 WIB on the south coast of Pangandaran. The earthquake occurred at coordinates 9.33˚ LS and 107.26˚ BT at a depth of 10 km with a magnitude of 7.7 SR and the epicentre of the earthquake occurred in the Indian Ocean south of Ciamis Regency, and the location of the epicentre was 245 km south of Tasikmalaya [4].

Referring to the Indonesian Tsunami Catalog 416-2017 published by BNPB (National Agency of Disaster Mitigation) [5], the phenomenon of a potential tsunami that occurred earlier on January 4, 1840 was examined by [6] and [7] with magnitude 7.0 SR. The same study was carried out by observing the phenomenon of the tsunami that occurred on October 20, 1859 along with [8]. Furthermore, an earthquake occurred in the Cilacap, Central Java on September 7, 1904 which was studied together with [9]. The disasters continued on September 11, 1921 with magnitude 7.5 SR which hit Parangtritis and Cilacap according to [6], [10], and [11]. On June 19, 1930 an earthquake with a magnitude of 6.0 SR was observed in Teluk Betung and in the District of Besuki just a month after. In 1957 there was an earthquake in Banyumas accompanied by tidal flooding based on the reference of [6]. Entering the 21st century there has been an earthquake in Pangandaran, West Java in 2006 with a magnitude of 7.7 SR which caused a tsunami according to BMKG (Agency for Climatology and Geophysics) and BIG (Geospatial Information Agency) in the Tasikmalaya in 2009 with a magnitude of 7.6 SR which is potential to tsunami to be occurred. Some of tsunami sources around the Java Island are presented in Fig. 1.

![Figure 1. Tsunami sources around the Java Islands (red star with year of occurrence)](image-url)
2. Study Area

West Java (Jawa Barat) is a province of Indonesia on the western part of the island of Java. It is the most populous province of Indonesia with a projected population of 49,316,700 as of 2019 [12]. It occupies an area of 37,095 km2, which is divided into 26 cities or regencies. Five of those regencies (Sukabumi, Cianjur, Garut, Tasikmalaya and Pangandaran) are situated on the southern coast and will be used as the study area of this research (Fig 2).

![Figure 2. Study Area](image)

2.1 Hazard Characteristics

West Java Province is one of the area where the most of natural disasters occur. According to the DIBI (Data Informasi Bencana Indonesia or Indonesian Disasters Information Data) from BNPB [13], Fig.3 presents disasters data along with the number of deaths in related disaster within year 2004-2018.

![Figure 3. Number of disaster occurrences and its related deaths by type of disaster in the last 15 years (2004-2018)](image)

2.2 Mitigation Systems and Adaptive Capacity to Tsunami Hazard in the Study Area

According to Law No. 24 of 2007 concerning disaster management, mitigation is a series of efforts to reduce disaster risk, both through physical development and awareness and capacity building in the face of disaster threats. The concept of adaptation according to the United Nations Framework Convention
on Climate Change (UNFCC) is defined as something that involves the discovery and application of ways to adapt to environmental changes (climate change) [14].

Observed during the field survey, several districts already have various mitigation systems and adaptive capacities. In general, temporary evacuation sites (TES) are already established along the coastline and the evacuation routes are equipped with signs that indicate the direction to TES. According to the Disaster Mitigation Agency in Sukabumi, the sites are selected with the following criteria: (1) minimum distance of 500 m from coastline; (2) minimum elevation of 16 m from sea level. With those criteria, with its typical topography most of the TES are located quite far from the coastline (in the range 2-6 km), as a consequence the required time for the villagers to reach TES can be up to 30-90 minutes. One of the recommendation to solve this problem is to build a shelter for TES. However at this moment, the shelters are found only in Pangandaran, but none in the other regencies.

BNPB and BMKG have built some Early Warning System (EWS) in the area to detect earthquakes and tsunamis, one of which is in the Districts of Tegalbuleud (Cianjur Regency), Ciracap, Ciemas, and Cisolok Districts (Sukabumi Regency) including some alert system (e.g. siren or alarm). Unfortunately, lack of maintenance leads to inoperative status of those system, particularly in the EWS alert system.

3 Data & Methods

3.1 Data types and sources

Detailed and accurate bathymetry and topographic data are required in tsunami modelling in order to produce good results. Bathymetry data are obtained from BATNAS (BAtimetri NASional) and topographic data obtained from DEMNAS (Digital Elevation Model NASional) that provided by BIG. Then, modelling domains are formed from these two data for tsunami modelling and earthquake parameter data and seismicity data are used as a tsunami wave generating factor. List of data used in the modelling are presented in Table 1.

No.	Data Types	Data Sources	Notes
1	Topographic Data	DEMNAS (Digital Elevation Model NASional) – Badan Informasi Geospasial (BIG)	Resolution: 0.27 sec
2	Bathymetric Data	BATNAS (BAtimetri NASional) – Badan Informasi Geospasial (BIG)	Resolution: 6 sec
3	Earthquake Parameter	PuSGeN (Pusat Studi Gempa Nasional) (2017) [15]	
4	Seismicity Data	PuSGeN (Pusat Studi Gempa Nasional) (2017) [15]	

3.2 Numerical simulations

3.2.1 Earthquake parameters

In this study, 5 scenarios that caused the tsunami were made, including: 1 historical scenario (Pangandaran 2006) and 4 probabilistic scenarios. COMCOT requires input parameters which are parameters of the earthquake that will generate a tsunami wave. These parameters are listed in Table 2.

In probabilistic scenarios, parameters such as length, width, and plate dislocation are obtained through the calculation process. Depth parameters, strike, dip are obtained from the USGS Slab model 1.0 [16], with the rake angle considered to be the opposite of the direction of movement of the plate in the interseismic phase. The epicentre centre parameters were obtained from the results of the study of the National Earthquake Study Centre (Pusat Studi Gempa Nasional) [15] by adjusting the segmentation carried out by PusGen.
Table 2. Parameters from elastic fault plane model

Parameters	Symbol	Unit
Epicentre (Lat, Long)	Lat;Long	Degree
Depth	d	Meter
Fault Length	L	Meter
Fault Width	W	Meter
Dislocation (slip)	MD	Meter
Strike		Degree
Dip		Degree
Rake (slip angle)		Degree

To get the value of length, width, and fault dislocation, the following equation is used [17]:

\[\log L = -2.42 + (0.58 \times M_w) \] \hspace{1cm} (1)
\[\log W = -1.61 + (0.41 \times M_w) \] \hspace{1cm} (2)
\[\log MD = -1.38 + (1.02 \times \log L) \] \hspace{1cm} (3)

\(L \) is fault length, \(W \) is fault width, and \(MD \) is fault dislocation. Seismic moment calculations can also be used to find the slip rate through equations [17] & [18]:

\[Mo = \mu mS \] \hspace{1cm} (4)
\[Mw = \frac{2}{3} \log Mo - 6.07 \] \hspace{1cm} (5)

where \(m \) is the slip rate, \(S \) is the area of the fault segment, \(\mu \) is normal rigidity \((3 \times 10^{10}) \). After all parameters are obtained, fault parameter setup is done by entering the fault parameters according to Table 2 in the COMCOT v.1.7 modeling script.

3.2.2 Numerical Model Cornell Multi-Grid Coupled Tsunami (COMCOT)

Cornell Multi-Grid Coupled Tsunami v.1.7 is a software that is used to modelling tsunami waves using FORTRAN 90 programming language and uses the Shallow Water Equation (SWE) to calculate tsunami wave height during its propagation. In addition, COMCOT only simulates tsunami waves without the influence of wind and tidal waves. The COMCOT model will also produce inundation and run-up values from modelling [19].

COMCOT uses Linear Shallow Water Equation (LSWE) and Nonlinear Shallow Water Equation (NLSWE). In the tsunami event on the open seas, the tsunami amplitude is smaller than the depth so that it uses the LSWE equation as follows [19]:

\[\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial P}{\partial \theta} + \frac{\partial}{\partial \varphi} (\cos \varphi Q) \right) = -\frac{\partial h}{\partial t} \] \hspace{1cm} (6)
\[\frac{\partial P}{\partial t} + \frac{1}{R \cos \varphi} \frac{\partial}{\partial \theta} (P^2) + \frac{1}{R} \frac{\partial}{\partial \varphi} (H) + gH \frac{\partial \eta}{\partial \varphi} - fQ + F_x = 0 \] \hspace{1cm} (7)
\[\frac{\partial Q}{\partial t} + \frac{1}{R \cos \varphi} \frac{\partial}{\partial \theta} (PQ) + \frac{1}{R} \frac{\partial}{\partial \varphi} (Q^2) + gH \frac{\partial \eta}{\partial \varphi} + fP + F_y = 0 \] \hspace{1cm} (8)

When the tsunami spreads in shallow waters, the NLSWE equation is used, this is because when a tsunami wave passes through an area that has shallow depth, the wavelength becomes shorter and the amplitude of the wave becomes larger. Following is the NLSWE equation used [19]:

\[\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial P}{\partial \theta} + \frac{\partial}{\partial \varphi} (\cos \varphi Q) \right) = -\frac{\partial h}{\partial t} \] \hspace{1cm} (9)
\[\frac{\partial P}{\partial t} + \frac{1}{R \cos \varphi} \frac{\partial}{\partial \theta} (P^2) + \frac{1}{R} \frac{\partial}{\partial \varphi} (HQ) + gH \frac{\partial \eta}{\partial \varphi} - fQ + F_x = 0 \] \hspace{1cm} (10)
\[\frac{\partial Q}{\partial t} + \frac{1}{R \cos \varphi} \frac{\partial}{\partial \theta} (PQ) + \frac{1}{R} \frac{\partial}{\partial \varphi} (Q^2) + gH \frac{\partial \eta}{\partial \varphi} + fP + F_y = 0 \] \hspace{1cm} (11)

With:
\[H = \eta + h \]
(12)
\[f = \Omega \sin \phi \]
(13)
\[F_x = \frac{gn^2}{H^{7/3}} P \sqrt{P^2 + Q^2} \]
(14)
\[F_y = \frac{gn^2}{H^{7/3}} Q \sqrt{P^2 + Q^2} \]
(15)
\[P = \int_{-h}^{\eta} udz = u (h + \eta) = uH \]
(16)
\[Q = \int_{-h}^{\eta} vdz = v (h + \eta) = uH \]
(17)

where:

- \(g \) = gravitational acceleration (m/s\(^2\))
- \(P \) = volume fluxes in \(-x\) (West-East) (m/s\(^2\))
- \(Q \) = volume fluxes in \(-y\) (South-North) (m/s\(^2\))
- \(f \) = Coriolis force coefficient
- \(\varphi, \psi \) = latitude and longitude (\(^\circ\))
- \(R \) = radius of the Earth (m)
- \(h \) = water depth (m)
- \(\eta \) = water surface elevation (m)
- \(H \) = total water depth (m)
- \(\Omega \) = rotation rate of the Earth (7,2921 \times 10^{-5} \text{ rad/s})
- \(F_x, F_y \) = bottom friction in \(-x\) dan \(-y\)
- \(n \) = Manning’s roughness coefficient (s/m\(^{1/3}\))
- \(u \) = current velocity in \(-x\) (m/s)
- \(v \) = current velocity in \(-y\) (m/s)

3.2.3 Domains

The tsunami modelling domain is divided into 3 layers of Domain with Domain 1 is the Java Island Domain, Domain 2 is the West Java Domain, while Domain 3 is the domain of each Regency in the south of West Java including Sukabumi Regency, Cianjur Regency, Garut Regency, Tasikmalaya Regency and Pangandaran Regency. The design of the Domain 1, Domain 2, and Domain 3 models can be seen in Fig. 4-6.

Figure 4. Java Island domain
Figure 5. West Java domain

Figure 6. Domain 3 of the tsunami modelling
3.2.4 Scenarios.
Tsunami modelling is carried out with a domain scenario as presented in the Table 3.

Parameter	Domain
Simulation Time (second)	Min. 7200
Time Interval to Save Data (second)	60
Governing Equations	Linear
Parent Domain	0
Numbers of Domain	1
Grid Size (meter)	1800

The tsunami generating factor used in this study was from earthquakes that obtained from seismic studies in the southern subduction zone of West Java, as well as from historical tsunamis that have occurred before. The tsunami generating factor (earthquake scenario) scenario was carried out in this tsunami modelling is presented in Table 4.

Scenarios	1	2	3	4	5
Location	Pangandaran 2006	Seg. Selat Sunda, TE	Seg. Cilacap TE [15]	Seg. Selat Sunda [15]	Seg. Jabar-Jateng [15]
Mw	8.1	7.8	7.8	8.7	8.7
Depth (km)	10.575	10.575	34	20.188	
Length (km)	200	215	340	460	
Width (km)	70	70	180	160	
Max. Disp (m)	9.269	9.979	15.926	21.678	
Strike (°)	289	300	277.356	297	296.753
Dip (°)	10	12	18	9.962	
Slip (m)	12	1.5	8	6.5	
Rake (°)	95	104	104	104	
Lat;Long(°)	-9.295; 107.347	-8.46; 105.595	-9.826; 109.255	-7.239; 104.435	-8.92; 107.88

4 Results and Discussions

4.1 Tsunami Hazard
The tsunami modelling came from 1 historical scenario and 4 probabilistic tsunami scenarios in the southern region of West Java Province. Fault parameter from the previous study is chosen as a reference data input to obtain tsunami inundation data based on the results of the latest study of the possibility of a tsunami generating earthquake in South West Java Province.

4.1.1 Inundation Maps
The following images in Fig. 7 show inundation maps of along the southern coast of West Java Province. Based on the map, the districts that have inundation height significantly are in the Cisolok District, Ujung Genteng Beach-Ciracap District, and the Tegalbuleud District (Sukabumi Regency), Cidaun District in Cianjur Regency, Cisewu and Cibalong District in Garut Regency, Karangnunggal District in Tasikmalaya Regency, and Pangandaran District in Pangandaran Regency. The mean of inundation height varies up to a dozen meters from five scenarios.
Figure 7. Inundation Maps of Southern Coast of West Java Province
4.1.2 Table of Tsunami Arrival Time, Inundation Range and Inundation Height

The following tables show the arrival time, inundation range and inundation height of the tsunami from each district in the southern coast of West Java. Arrival time refers to the time the tsunami reaches the area (in minutes) after the earthquake as seen from the first tsunami wave that reaches the coastal area based on modeling results. Inundation range is the range from coastline where the inundation caused by the tsunami may take. Inundation height is defined as the height of tsunami inundation above ground level. Tsunami arrival time, tsunami inundation range, and tsunami height can be seen in Table 5, Table 6, and Table 7 respectively.

Table 5. Arrival time of tsunami disaster of southern coast of West Java Province

District	Arrival Time (-minutes after earthquake)	Scenarios					
		1	2	3	4	5	
Sukabumi Regency							
Cisolok	37	28	-	16	18		
Cikakak	36	27	-	16	18		
Palabuhanratu	35	27	-	16	18		
Simpenan	34	26	-	15	17		
Ciemas	33	26	-	14	16		
Ciracap	27	21	42	16	12		
Surade	27	24	41	19	12		
Cibitung	27	26	42	19	13		
Tegalbuleud	26	28	44	19	14		
Cianjur Regency							
Agravinta	25	28	38	20	11		
Sindangbarang	21	21	34	20	10		
Cidaun	23	25	33	20	12		
Garut Regency							
Caringin	23	24	32	20	11		
Bungbulang	23	25	32	22	11		
Mekarmukti	23	25	32	22	11		
Pakenjeng	23	25	32	22	11		
Cikelet	23	25	31	24	11		
Pameungpeuk	24	26	31	27	13		
Cibalong	23	28	30	27	13		
Tasikmalaya Regency							
Cipatujah	27	33	33	30	17		
Karangnunggal	27	33	30	35	17		
Cikal longitud	27	38	33	37	18		
Pangandaran Regency							
Cimerak	32	43	35	45	23		
Cijulang	42	48	39	54	28		
Parigi	45	53	46	57	34		
Sidamulih	45	54	46	57	34		
Pangandaran	45	55	47	57	34		
Kalipucang	47	57	47	58	37		
District	Sukabumi Regency	Cianjur Regency	Garut Regency	Tasikmalaya Regency	Pangandaran Regency	Kalipucang	
-------------------	------------------	-----------------	---------------	---------------------	---------------------	------------	
	1	2	3	4	5		
	Mean	Max.	Mean	Mean	Mean	Mean	
Cisolok	289.6	563.84	197.37	509.15	754.44		
	118.17	153.98	98.63	229.85	458.23		
	203.6	341.09	187.87	760.16	840		
Cikakak	130.56	186.9	95.78	355.4	462.32		
	1061.5	1292	1330	2703	5298		
Palabuhanratu	420.6	690.56	409.7	823.88	755.96		
	1015.5	2010	1104	2618	5864.8		
Simpenan	375.8	583.69	330.8	753.4	632.84		
	431.18	2501	658.47	2292	2734.01		
Ciemas	155.46	289.1	136.32	215.6	475.66		
	1022.1	3696	450.47	1664	2348.18		
Ciracap	355.81	548.78	155.42	612.3	697.87		
	1010.6	1376	450.34	923.2	1791.2		
Surade	318.56	375.93	186.96	206.5	546.96		
	554.06	1813.9	475.15	545.42	627.45		
Cibitung	330.86	362.85	179.6	235.11	563.45		
	2202	2592	1749.1	2786.12	2847.67		
Tegalbuleud	409.12	970.95	650.6	660.07	1530.31		
Agravinta	2140.1	2802	1430	2655.82	3638.17		
	486.2	712.03	582.57	521.51	1885.45		
Sindangbarang	631.96	880.3	841.23	757.7	2077.55		
	289.34	259.1	258.92	330.03	875.65		
Cidaun	1511	521.84	388.38	776.67	3014.18		
	345.23	148.4	145.12	150.31	1457.83		
Caringin	578.3	251.5	233.24	231.3	2369		
	204.24	188.1	182.9	180.1	818.61		
Bungbulang	472.95	377.86	390.95	268.77	1472.2		
	155.32	180.65	179.65	186.53	483.98		
Mekarmukti	872.87	663.78	521.21	603.8	1426.4		
	217.86	192.86	193.56	206.56	587.65		
Pakenjeng	560.23	188.1	192.65	200.2	860.35		
	182.89	80.3	80.92	82.44	522.96		
Cikelet	552.15	310.97	215.59	491.6	1221		
	243.84	159.2	136.18	215.4	561.75		
Pameungpeuk	2086	1174	964.87	1405	3941		
Cibalong	873.53	474.69	347.9	586.2	1423		
	888.27	464.62	304.77	600.87	1585		
	355.02	182.3	155.32	243.81	670.47		
Lembang	284	165.05	230.04	189.72	2376		
	164.74	106.72	114.76	126.07	492.94		
Cijulang	931.54	163.64	621.09	1012	2215		
	134.54	95.86	142.84	145.96	264.45		
Parigi	312.68	117.06	335.3	457.47	2908		
	100.39	88.27	142.32	184.78	940.14		
Sidamulih	902.19	519.67	732.92	600.4	3854.4		
	125.68	60.96	146.68	172.62	2286.96		
Pangandaran	607.21	554.06	546.49	528.65	3735		
	115.25	114.89	126.82	143.65	1856.83		
Kalipucang	1081	268.03	302.49	967.58	1890		
	108.45	124.98	127.44	124.23	284.8		
District	Inundation Height (in meters)	1	2	3	4	5	
--------------------------	--------------------------------	-----	-----	-----	-----	-----	
	Scenarios	Mean	Max.	Mean	Max.	Mean	Max.
Sukabumi Regency							
Cisolok		0.25	0.41	0.136	0.25	1.32	1.75
Cikakak		0.32	0.53	0.125	0.32	2.56	1.98
Palabuhanratu		2.16	0.53	6.62	2.16	8.62	8.69
Simpenan		1.76	0.53	7.52	1.76	7.52	8.62
Siemias		2.86	0.54	11.23	2.86	11.23	6.76
Ciracap		6.23	0.62	18.97	6.23	18.97	10.69
Surade		7.59	0.98	16.84	7.59	16.84	9.27
Cibitug		3.75	0.65	9.13	3.75	9.13	2.05
Tegalbuleud		4.58	0.72	9.254	4.58	9.254	9.38
Cianjur Regency							
Agrabinta		4.97	0.97	6.76	4.97	6.76	2.75
Sindangbarang		6.63	1.43	5.47	6.63	5.47	2.83
Cidaun		10.65	1.43	8.7	10.65	8.7	3.51
Garut Regency							
Caringin		12.2	2.11	4.5	12.2	4.5	3.21
Bungbulang		10.28	3.34	3.31	10.28	3.31	2.18
Mekarmukti		10.32	3.78	4.36	10.32	4.36	3.09
Pakenjeng		7.85	2.11	2.53	7.85	2.53	1.54
Cikelet		7.58	2.11	3.82	7.58	3.82	3.26
Pameungpeuk		12.96	2.11	5.18	12.96	5.18	3.05
Cibalong		13.86	2.11	7.85	13.86	7.85	4.97
Tasikmalaya Regency							
Cipatujah		13.6	2.11	4.19	13.6	4.19	5.54
Karangnunggal		5.87	1.7	1.66	5.87	1.66	2.71
Cikalong		1.7	2.11	0.45	1.7	0.45	0.71
Pangandaran Regency							
Cimerak		7.37	1.78	1.78	7.37	1.78	5.01
Cijulang		6.32	2.11	1.67	6.32	1.67	8.59
Parigi		1.16	0.72	0.37	1.16	0.37	1.09
Sidamulih		5.47	2.79	1.61	5.47	1.61	5.83
Pangandaran		5.07	2.79	1.32	5.07	1.32	5.36
Kalipucang		7.64	2.79	1.8	7.64	1.8	7.46
The results of the tsunami arrival time show that each region has a tsunami arrival time that varies from 10 minutes to about 1 hour depending on the type of scenario applied. This is because in each scenario the tsunami modeling has different tsunami generating earthquake locations. For example in scenario 1, with the location of the earthquake in the south of Pangandaran Regency, the tsunami waves made it very quickly to the coast of Pangandaran and Tasikmalaya compared to other places farther away. Table 6 shows the mean and maximum inundation range in meters. The maximum inundation range in each regency is 5.86 km in Simpenan District (Sukabumi Regency – scenario 5), 3.63 km in Agrabinta District (Cianjur Regency – scenario 5), 3.94 km in Pameungpeuk District (Garut Regency – scenario 5), 3.37 km in Karangnunnggal District (Tasikmalaya Regency – scenario 5), and 2.28 km in Pangandaran District (Pangandaran Regency – scenario 5). The more details of inundation range of each scenarios in each district can be seen in Table 6. In Table 7 shows the mean and maximum inundation height in meters in each scenarios. The maximum inundation range in each regency is 19.34 m in Tegalbuleud District (Sukabumi Regency – scenario 5), 26.21 m in Cidaun District (Cianjur Regency – scenario 5), 26.24 m in Caringin District (Garut Regency- scenario 5), 26.73 m in Cikalong District (Tasikmalaya Regency – scenario 5), and 25.41 m in Kalipucang District (Pangandaran Regency – scenario 5). The more details of inundation height of each scenarios in each district can be seen in Table 7.

From all of these results it can be seen that the most severe tsunami scenario is scenario 5, which is the west java - central java segment scenario with magnitude 8.7 which causes a high tsunami inundation height and a far inundation range with a fairly short tsunami arrival time. In addition, the relatively flat topography of the coastal areas and the presence of river mouths made the tsunami disasters even worse.

Figure 8. River in Palabuhanratu District, Sukabumi Regency

Figure 8 is an example showing that the existence of the Cimandiri River in Palabuhanratu Subdistrict, Sukabumi Regency, which caused the tsunami waves to enter the river area and caused the riverbanks to be affected by the tsunami waves.

Figure 9. DEM on Cikalong District, Tasikmalaya Regency
Whereas in Figure 9 is DEMNAS data in the Cikalong Subdistrict, Tasikmalaya District which has a relatively high tsunami inundation height with fairly flat topographic characteristics and has several basins on the ground that cause tsunami traps resulting from the calculation of tsunami modeling.

4.2 Analysis to Socio-Economics Impact
In any district in the southern coast of West Java, the inundation area of tsunami will have an impact on the population living in the coastal area, and also on the social-economic aspects. In Sukabumi Regency, Cisolok District is an area that threatens 71.332 people in 6 villages including 8 schools, as well as economic activities dominated by tourism aspects (Cibangban and Karanghawu Beach) and fisheries (Cisolok and Cibangban Fishing Port). Besides that, Palabuhanratu District is area that potentially affected by tsunami with busy fishing activities and is equipped with 2 tourism sites, 2 fishing ports, 1 electricity steam power plants, and 2 markets that threatens 111.788 people of population. Whereas in Cianjur Regency, the impact of the tsunami included Cidaun District with a 66.729 people in 5 villages and Agrabinta District with 37.934 people in 3 villages. In Cidaun District there are 2 beaches and 13 schools while in Agrabinta District there are 3 beaches, 2 schools, 1 estuary and 1 fishing port that has an impact on economic losses.

In Pakenjeng District, Garut Regency there is Cimari Muara Fishing Port which is the centre of economic activity that has an impact on economic losses caused by the tsunami disaster and threatening 7.105 people. It is different from the Karangnunggal District, Tasikmalaya Regency which has 84.155 endangered people and 6 schools in the event of a tsunami. Pangandaran District, Pangandaran Regency consists of 6 villages with 53.057 endangered populations. there are also 32 schools, 2 beaches, 1 fishing port and the conservation areas that are at risk of being affected by the tsunami disaster.

Conclusions
In this study, tsunami hazards and its socio-economics impacts in five coastal regencies in West Java Province, Indonesia are examined. Highest possible tsunami hazard is found in Cikalon, Tasikmalaya Regency in scenario 5 which can reach up to 26,73 meters of inundation, while the maximum inundation range in can reach up to 5,8 km in Palabuhanratu, Sukabumi. Shortest arrival time may occurs in Sindangbarang, Sukabumi which only needs 10 minutes for tsunami waves to arrive after the earthquake.

Palabuhanratu, with busy fishing activities and is equipped with 2 tourism sites, 2 fishing ports, 1 power plants, and 2 public markets, and populated by 111.788 inhabitants, is area that potentially highest socio-economic impacted by tsunami.

Acknowledgments
Authors would like to thank to Institute for Research and Community Services – ITB for the funding of P3MI research scheme and also to the late Prof. Widyo N. Sulasdi for his services and dedication to ITB and the opportunity to deliver this topic.

References
[1] B. R. Röbke and A. Vött, “The tsunami phenomenon,” Progress in Oceanography, pp. 296-322, 2017.
[2] S. Rohadi, “Spatial and Seismotectonic Temporal Distribution of Java Subduction Areas,” Megasains, vol. 1, no. 4, pp. 180-188, 2009.
[3] A. Sudrajat, Tsunami Disaster Prone Zone in Geological Illustration, Jakarta: PT. Grafimatra Tatamedia, 1997.
[4] W. Kongko, South Java tsunami model using highly resolved data and probable tsunamigenic sources, Hannover: Gottfried Wilhelm Leibniz University of Hannover, 2011.
[5] BMKG, Indonesian Tsunami Catalog Year 416-2017, Jakarta: Deputy of Geophysics BMKG, 2018.
[6] S. L. Soloviev and C. N. Go, A catalogue of tsunamis on the western shore of the Pacific Ocean (1763-1968), Moscow: Nauka Publishing House, 1974.
[7] C. E. A. Wichman, Die Erdbeben des indischen Archipels bis zum Jahre 1857, Amsterdam: Müller, 1918.
[8] N. H. Heck, “List of Seismic Waves,” Seismological Society of America Bulletin, vol. 37, pp. 269-268, 1947.
[9] E. Oddone, Temblements de terre ressentis pendant l'aane 1904, Strasbourg : Publication Bureau Central de l'Association Internationale Seismique Serie B.
[10] S. W. Visser, Inland and submarine epicenters of Sumatera and Java earthquakes, vol. Verhandlingen 9, Jakarta: Koninklijk Magnetisch en Meteorologisch Observatorium te Batavia, 1922, p. 19.
[11] B. Gutenberg and C. F. Richter, Seismicity of the earth and associated phenomena, Princeton: Princeton University Press, 1954, p. 310.
[12] B.-S. o. J. B. Province, Jawa Barat Province in Figures, Bandung: BPS-Statistics of Jawa Barat Province, 2019.
[13] BNPB, “Data Informasi Bencana Indonesia,” BNPB, 30 07 2019. [Online]. Available: http://bnpb.cloud/dibi/. [Accessed 30 07 2019].
[14] V. Corpuz and S. Chavez, Guide to Climate Change and Indegenous Peoples, International Centre for Policy Research and Education, 2009.
[15] PusGen, Map of Earthquake Sources and Hazards Year 2017, Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman, 2017.
[16] G. P. Hayes, D. J. Wald and R. L. Johnson, “Slab 1.0: A three-dimensional model of global subduction zone geometries,” Journal of Geophysical Research: Solid Earth, vol. 117, 2012.
[17] D. Wells and K. Coppersmith, “New empirical relationship among magnitude, rupture, length, rupture width, rupture area and surface displacement,” Bulletin of seismological society of America, 1994.
[18] T. C. Hank and H. Kanamori, “A moment magnitude scale,” Journal of Geophysical Research, vol. 84, pp. 2348-2350, 1979.
[19] X. Wang, User Manual for COMCOT version 1.7, Institute of Geological & Nuclear Science, New Zealand, 2009.
[20] NR HanifA, I MeiAano, T Sagiya, F Kimata, HZ Abidin, “Numerical Modeling Of The 2006 Java Tsunami Earthquake,” Advances in Geosciences, vol. 13, pp. 231-248, 2009.