SELF-MATCHING PROPERTIES OF BEATTY SEQUENCES

Zuzana Masáková, Edita Pelantová

Department of Mathematics, FNSPE, Czech Technical University
Trojanova 13, 120 00 Praha 2, Czech Republic
E-mail: masakova@km1.fjfi.cvut.cz, pelantova@km1.fjfi.cvut.cz

Abstract

We study the self-matching properties of Beatty sequences, in particular of the graph of the function \(\lfloor j\beta \rfloor\) against \(j\) for every quadratic unit \(\beta \in (0, 1)\). We show that translation in the argument by an element \(G_i\) of generalized Fibonacci sequence causes almost always the translation of the value of function by \(G_i - 1\). More precisely, for fixed \(i \in \mathbb{N}\), we have \(\lfloor \beta(j + G_i) \rfloor = \lfloor \beta j \rfloor + G_i - 1\), where \(j \notin U_i\). We determine the set \(U_i\) of mismatches and show that it has a low frequency, namely \(\beta^i\).

1 Introduction

Sequences of the form \((\lfloor j\alpha \rfloor)_{j \in \mathbb{N}}\) for \(\alpha > 1\), now known as Beatty sequences, have been first studied in the context of the famous problem of covering the set of positive integers by disjoint sequences [1]. Further results in the direction of the so-called disjoint covering systems are due to [3, 4, 5] and others. Other aspects of Beatty sequences were then studied, such as their generation using graphs [4], their relation to generating functions [9, 10], their substitution invariance [8, 11], etc. A good source of references on Beatty sequences and other related problems can be found in [2, 13].

In [8] the authors study the self-matching properties of the Beatty sequence \((\lfloor j\tau \rfloor)_{j \in \mathbb{N}}\) for \(\tau = \frac{1}{2}(\sqrt{5} - 1)\), the golden ratio. Their study is rather technical; they have used for their proof the Zeckendorf representation of integers as a sum of distinct Fibonacci numbers. The authors also state an open question whether the results obtained can be generalized to other irrationals than \(\tau\). In our paper we answer this question in the affirmative. We show that Beatty sequences \((\lfloor j\alpha \rfloor)_{j \in \mathbb{N}}\) for quadratic Pisot units \(\alpha\) have analogical self-matching property, and for our proof we use a simpler method, based on the cut-and-project scheme.

It is interesting to mention that Beatty sequences, Fibonacci numbers and cut-and-project scheme attracted the attention of physicists in recent years because of their applications for mathematical description of non-crystallographic solids with long-range order, the so-called quasicrystals, discovered in 1982 [12]. The first observed quasicrystals revealed crystallographically forbidden rotational symmetry of...
order 5. This necessitates, for the algebraic description of the mathematical model of such a structure, the use of the quadratic field $\mathbb{Q}(\tau)$. Such a model is self-similar with the scaling factor τ^{-1}. Later, one observed existence of quasicrystals with 8 and 12-fold rotational symmetries, corresponding to mathematical models with selfsimilar factors $\mu^{-1} = 1 + \sqrt{2}$ and $\nu^{-1} = 2 + \sqrt{3}$. Note that all τ, μ, and ν are quadratic Pisot units, i.e. belong to the class of numbers for which the result of Bunder and Tognetti is generalized here.

2 Quadratic Pisot units and cut-and-project scheme

The self-matching properties of the Beatty sequence $(\lfloor j\tau \rfloor)_{j \in \mathbb{N}}$ are best displayed on the graph of $\lfloor j\tau \rfloor$ against $j \in \mathbb{N}$. Important role is played by the Fibonacci numbers, $F_0 = 0$, $F_1 = 1$, $F_{k+1} = F_k + F_{k-1}$, for $k \geq 1$.

The result of [3] states that

$$\lfloor (j + F_i)\tau \rfloor = \lfloor j\tau \rfloor + F_i - 1,$$

except isolated mismatches of frequency τ^i, namely at points $j = kF_{i+1} + \lfloor k\tau \rfloor F_i$.

Our aim is to show a very simple proof of the mentioned results that is valid for all quadratic units $\beta \in (0,1)$. Every such unit is a solution of the quadratic equation

$$x^2 + mx = 1, \quad m \in \mathbb{N},$$

or

$$x^2 - mx = -1, \quad m \in \mathbb{N}, \quad m \geq 3.$$
where \(\vec{x}_1 = \frac{1}{\beta - \beta'}(\beta, -1) \) and \(\vec{x}_2 = \frac{1}{\beta - \beta'}(\beta', -1) \). For the description of the projection of \(\mathbb{Z}^2 \) on \(V_1 \) it suffices to consider the set

\[
\mathbb{Z}[\beta'] := \{a + b\beta' \mid a, b \in \mathbb{Z}\}.
\]

The integral basis of this free abelian group is \((1, \beta')\), and thus every element \(x \) of \(\mathbb{Z}[\beta'] \) has a unique expression in this base. We will say that \(a \) is the rational part of \(x = a + b\beta' \) and \(b \) is its irrational part. Since \(\beta' \) is a quadratic unit, \(\mathbb{Z}[\beta'] \) is a ring and, moreover, it satisfies

\[
\beta' \mathbb{Z}[\beta'] = \mathbb{Z}[\beta'].
\]

A cut-and-project set is the set of projections of points of \(\mathbb{Z}^2 \) to \(V_1 \), that are found in a strip of bounded width, parallel to the straight line \(V_1 \). Formally, for a bounded interval \(\Omega \) we define

\[
\Sigma(\Omega) = \{a + b\beta' \mid a, b \in \mathbb{Z}, a + b\beta \in \Omega\}.
\]

Note that \(a + b\beta' \) corresponds to the projection of the point \((a, b)\) to the straight line \(V_1 \) along \(V_2 \), whereas \(a + b\beta \) corresponds to the projection of the same lattice point to \(V_2 \) along \(V_1 \).

Among the simple properties of cut-and-project sets that we use here are

\[
\Sigma(\Omega - 1) = -1 + \Sigma(\Omega), \quad \beta' \Sigma(\Omega) = \Sigma(\beta' \Omega),
\]

where the latter is a consequence of (6). If the interval \(\Omega \) is of unit length, one can derive directly from the definition a simpler expression for \(\Sigma(\Omega) \). In particular, we have

\[
\Sigma[0, 1) = \{a + b\beta' \mid a + b\beta \in [0, 1)\} = \{b\beta' - \lfloor b\beta \rfloor \mid b \in \mathbb{Z}\},
\]

where we use that the condition \(0 \leq a + b\beta < 1 \) is satisfied if and only if \(a = \lceil -b\beta \rceil = -\lfloor b\beta \rfloor \).

Let us mention that the above properties of one-dimensional cut-and-project sets, and many others, are explained in the review article [6].

3 Self-matching property of the graph \(\lfloor j\beta \rfloor \) against \(j \)

Important role in the study of self-matching properties of the graph \(\lfloor j\beta \rfloor \) against \(j \) is played by the generalized Fibonacci sequence \((G_i)_{i \in \mathbb{N}}\), defined by (2) and (4), respectively. It turns out that shifting the argument \(j \) of the function \(\lfloor j\beta \rfloor \) by the integer \(G_i \) results in shifting the value by \(G_i - 1 \), except of isolated mismatches with low frequency. The first proposition is an easy consequence of the expressions of \(\beta^i \) as an element of the ring \(\mathbb{Z}[\beta] \) in the integral basis \(1, \beta \), given by (3) and (5).

Theorem 1. Let \(\beta \in (0, 1) \) satisfy \(\beta^2 + m\beta = 1 \) and let \((G_i)_{i=0}^\infty \) be defined by (2). Let \(i \in \mathbb{N} \). Then for \(j \in \mathbb{Z} \) we have

\[
\lfloor \beta(j + G_i) \rfloor = \lfloor \beta j \rfloor + G_{i-1} + \varepsilon_i(j), \quad \text{where} \quad \varepsilon_i(j) \in \{0, (-1)^{i+1}\}.
\]

The frequency of integers \(j \), for which the value \(\varepsilon_i(j) \) is non-zero, is equal to

\[
\varrho_i := \lim_{n \to \infty} \frac{\#\{j \in \mathbb{Z} \mid -n \leq j \leq n, \varepsilon_i(j) \neq 0\}}{2n + 1} = \beta^i.
\]
Proof. The first statement is trivial. For, we have

\[
\varepsilon_i(j) = \lfloor \beta j + G_i \rfloor - \lfloor j \rfloor - G_{i-1} = \lfloor \beta j - \lfloor j \rfloor + \beta G_i - G_{i-1} \rfloor = \\
= \lfloor \beta j - \lfloor j \rfloor + (-1)^{i+1} \beta^i \rfloor \in \{0, (-1)^{i+1}\}.
\]

The frequency \(g_i\) is easily determined in the proof of Theorem 2.

In the following theorem we determine the integers \(j\), for which \(\varepsilon_i(j)\) is non-zero. From this, we easily derive the frequency of such mismatches.

Theorem 2. With the notation of Theorem 1, we have

\[
\varepsilon_i(j) = \begin{cases}
0 & \text{if } j \not\in U_i, \\
(-1)^{i+1} & \text{otherwise,}
\end{cases}
\]

where

\[
U_i = \{kG_{i+1} + \lfloor k\beta \rfloor G_i \mid k \in \mathbb{Z}, k \neq 0 \} \cup \{(-1)^{i+1} - G_i \}.
\]

Before starting the proof, let us mention that for \(i\) even, the set \(U_i\) can be written simply as \(U_i = \{kG_{i+1} + \lfloor k\beta \rfloor G_i \mid k \in \mathbb{Z} \}.\) For \(i\) odd, the element corresponding to \(k = 0\) is equal to \(-G_i\) instead of 0. The distinction according to parity of \(i\) is necessary here, since unlike the paper [3], we determine the values of \(\varepsilon_i(j)\) for \(j \in \mathbb{Z}\), not only \(j \geq 1\).

Proof. It is convenient to distinguish two cases according to the parity of \(i\).

- First let \(i\) be even. It is obvious from (7), that \(\varepsilon_i(j) \in \{0, -1\}\) and

\[
\varepsilon_i(j) = -1 \quad \text{if and only if} \quad \beta j - \lfloor j \rfloor \in [0, \beta^i).
\]

Let us denote by \(M\) the set of all such \(j\),

\[
M = \{j \in \mathbb{Z} \mid \beta j - \lfloor j \rfloor \in [0, \beta^i)\} = \{j \in \mathbb{Z} \mid k + \beta j \in [0, \beta^i), \text{ for some } k \in \mathbb{Z} \}.
\]

Therefore \(M\) is formed by the irrational parts of the elements of the set

\[
\{k + j\beta' \mid k + j\beta \in [0, \beta^i)\} = \Sigma[0, \beta^i) = \beta^i \Sigma[0, 1) = \\
= (-\beta' G_i + G_{i-1}) \{k\beta' - \lfloor k\beta \rfloor \mid k \in \mathbb{Z} \}.
\]

Separating the irrational part we obtain

\[
M = \{kG_im + kG_{i-1} + \lfloor k\beta \rfloor G_i \mid k \in \mathbb{Z} \} = \\
= \{G_i[k\beta] + kG_{i+1} \mid k \in \mathbb{Z} \} = U_i,
\]

where we have used the equations \(\beta^2 + m\beta' = 1\) and \(mG_i + G_{i-1} = G_{i+1}\).

- Let now \(i\) be odd. Then from (7), \(\varepsilon_i(j) \in \{0, 1\}\) and

\[
\varepsilon_i(j) = 1 \quad \text{if and only if} \quad \beta j - \lfloor j \rfloor \in [1 - \beta^i, 1).
\]
Let us denote by M the set of all such j,

$$
M = \{ j \in \mathbb{Z} \mid \beta j - \lfloor \beta j \rfloor - 1 \in [-\beta^i, 0) \} = \{ j \in \mathbb{Z} \mid k + \beta j \in [-\beta^i, 0), \text{ for some } k \in \mathbb{Z} \} .
$$

Therefore M is formed by the irrational parts of elements of the set

$$
\{ k + j \beta' \mid k + j \beta \in [-\beta^i, 0) \} = \Sigma[-\beta^i, 0) = \beta'^i \Sigma[-1, 0) = \beta'^i (-1 + \Sigma[0,1)) = (\beta' G_i - G_{i-1}) \{ k \beta' - \lfloor k \beta \rfloor - 1 \mid k \in \mathbb{Z} \} .
$$

Separating the irrational part we obtain

$$
M = \{ -kG_i m - kG_{i-1} - \lfloor k \beta \rfloor G_i - G_i \mid k \in \mathbb{Z} \} = \{ -kG_{i+1} - G_i (\lfloor k \beta \rfloor + 1) \mid k \in \mathbb{Z} \} = \{ kG_{i+1} + G_i (\lfloor k \beta \rfloor - 1) \mid k \in \mathbb{Z} \} = U_i ,
$$

where we have used the equation $\beta'^2 + m \beta' = 1$, $mG_i + G_{i-1} = G_{i+1}$ and $-\lfloor -k \beta \rfloor = \lceil k \beta \rceil$.

Let us recall that the Weyl theorem [15] says that numbers of the form $\alpha j - \lfloor \alpha j \rfloor$, $j \in \mathbb{Z}$, are uniformly distributed in $(0,1)$ for every irrational α. Therefore the frequency of those $j \in \mathbb{Z}$ that satisfy $\alpha j - \lfloor \alpha j \rfloor \in I \subset (0,1)$ is equal to the length of the interval I. Therefore one can derive from (8) and (9) that the frequency of mismatches (non-zero values $\varepsilon_i(j)$) is equal to β^i, as stated by Theorem 1.

If $\beta \in (0,1)$ is the quadratic unit satisfying $\beta^2 - m \beta = -1$, then the considerations are even simpler, because the expression (5) does not depend on the parity of i. We state the result as the following theorem.

Theorem 3. Let $\beta \in (0,1)$ satisfy $\beta^2 - m \beta = -1$ and let $(G_i)_{i=0}^{\infty}$ be defined by (4). For $i \in \mathbb{N}$, put

$$
V_i = \{ kG_{i+1} - (\lfloor k \beta \rfloor + 1)G_i \mid k \in \mathbb{Z} \} .
$$

Then for $j \in \mathbb{Z}$ we have

$$
[\beta (j + G_i)] = \lfloor \beta j \rfloor + G_{i-1} + \varepsilon_i(j) ,
$$

where

$$
\varepsilon_i(j) = \begin{cases}
0 & \text{if } j \notin V_i , \\
1 & \text{otherwise.}
\end{cases}
$$

The density of the set U_i of mismatches is equal to β^i.

Proof. The proof follows the same lines as proofs of Theorems 1 and 2. \qed
4 Conclusions

One-dimensional cut-and-project sets can be constructed from \mathbb{Z}^2 for every choice of straight lines V_1, V_2, if the latter have irrational slopes. However, in our proof of the self-matching properties of the Beatty sequences we strongly use the algebraic ring structure of the set $\mathbb{Z}[\beta']$, and its scaling invariance with the factor β', namely $\beta'\mathbb{Z}[\beta] = \mathbb{Z}[\beta']$. For that, β' being quadratic unit is necessary.

However, it is plausible, that even for other irrationals α, some self-matching property is displayed by the graph $\lfloor j\alpha \rfloor$ against j. For showing that, other methods would be necessary.

Acknowledgements

The authors acknowledge financial support by Czech Science Foundation GA ČR 201/05/0169, by the grant LC06002 of the Ministry of Education, Youth and Sports of the Czech Republic.

References

[1] S. Beatty, Amer. Math. Monthly 33 (1926), 103–105.

[2] T. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15–21.

[3] M. Bunder, K. Tognetti, On the self matching properties of $\lfloor j\tau \rfloor$, Discr. Math. 241 (2001), 139–151.

[4] N.G. de Bruijn, Updown generation of Beatty sequences, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), 385–407.

[5] A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math. 21 (1969), 6–27.

[6] J.P. Gazeau, Z. Masáková, E. Pelantová, Nested quasicrystalline discretization of the line, to be published in IRMA Lectures in Mathematics and Theoretical Physics (2005), 56pp.

[7] R.L. Graham, Covering the positive integers by disjoint sets of the form $\{n\alpha + \beta \}$, J. Combinatorial Theory Ser. A 15 (1973), 354–358.

[8] T. Komatsu, Substitution invariant inhomogeneous Beatty sequences, Tokyo J. Math. 22 (1999), 235–243.

[9] T. Komatsu, A certain power series associated with a Beatty sequence, Acta Arith. 76 (1996), 109–129.

[10] K. O’Bryant, A generating function technique for Beatty sequences and other step sequences, J. Number Theory 94 (2002), 299–319.
[11] B. Parvaix, *Substitution invariant Sturmian bisequences*, Théor. Nombres Bordeaux **11** (1999), 201–210.

[12] D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, *Metallic phase with long-range orientational order and no translation symmetry*, Phys. Rev. Lett., **53** (1984), 1951–1953.

[13] K. Stolarsky, *Beatty sequences, continued fractions, and certain shift operators*, Canad. Math. Bull. **19** (1976), 473–482.

[14] R. Tijdeman, *Exact covers of balanced sequences and Fraenkel’s conjecture*, Algebraic number theory and Diophantine analysis (Graz, 1998), 467–483, de Gruyter, Berlin, 2000.

[15] H. Weyl, *Über die Gleichverteilung von Zahlen mod. Eins*, Math. Ann. **77** (1916), 313–352.