Application Monitoring and Evaluation using SMART (Simple Multi attribute Rating Technique) Method

Nurhayati Fitriani 1*, Ika Oktavia Suzanti 2, Achmad Jauhari 3, Ach. Khozaimi 4

1,2,3, 4 Informatic Engineering Department, University Of Trunojoyo Madura, Jl. Raya Telang, Kecamatan Kamal, Bangkalan, Madura 69162 Indonesia.
Email: 150411100045@student.trunojoyo.ac.id 1, iosuzanti@trunojoyo.ac.id 2, ahmadjauhari@trunojoyo.ac.id 3, ach.khozaimi@trunojoyo.ac.id 4

Abstract. Monitoring is a systematic process of collecting data from that data to be evaluated to find out the quality of the system, along with the times the monitoring and evaluation process is done using technology that can be web-based or android mobile, so that the process of monitoring & evaluation is easier and more efficient. In addition to getting an accurate assessment, it is necessary to apply a method that can process data into an objective assessment, the SMART method is a simple multi-attribute method that can be used in processing data into an accurate assessment. Trunojoyo Madura University Dormitory has many activities aimed at realizing the education of the dormitory character, the activity data is monitored and evaluated to provide an assessment of the activeness of students living in the dormitory. However, the process of monitoring & evaluation of the dormitory is still carried out manually, so an application for monitoring & evaluating the activities of the hostel which uses the SMART method is needed to facilitate the monitoring process and obtain an objective assessment result.

1. Introduction
Monitoring is a systematic data collection activity regarding ongoing activities, generally carried out to inform the development and achievement of an activity [1]. The results of the data obtained through the monitoring process will be evaluated. Evaluation is an objective systematic assessment of an ongoing project, program or policy [2], an evaluation is carried out to obtain an assessment that will determine the quality characteristics of the system or product [3]. Monitoring and Evaluation aims to get efficiency, evivitas and know the impact of the system, program or activity carried out [4]. Sustainability evaluation places more emphasis on evaluating results and impacts rather than achieving results [5].

Nowadays, technological developments are increasingly rapid, so the application of technology is considered necessary to support the effectiveness and efficiency of the monitoring and evaluation process that can be implemented in the form of Web [6] or mobile [7]. At the same time, monitoring and evaluation are used to track data in real time and dynamically, and can also carry out aggregation, processing, and data analysis as needed, to obtain accurate evaluation results it is necessary to apply methods to process data into results accurate assessment [8][9], one of the methods that can be used is the SMART (Simple Multi Attribute Rating Technique) method which is the simplest method by assigning weight values to each criterion [10][11][12], SMART method is a method of multi-attribute decision making. This multi-attribute decision making technique is used to support decision makers in choosing several alternatives and will not affect other attributes if there are reduction or addition of attributes [13][14][15][16].

Trunojoyo University Dormitory has many activities aimed at realizing the character education of students who live in the dormitory, to optimize character education at the hostel it is necessary to monitor which consists of routine absences, non-routine absences, violations and records. However, the monitoring process in the dormitory is still done manually so that data can be manipulated and affect the results of the evaluation in addition to the unavoidable accumulation of paper. Therefore web-based and mobile applications are needed to facilitate the process of monitoring and evaluating boarding activities so that data processing becomes more quality [4][17] by applying the SMART method to calculate and obtain objective assessments.

2. Methods
SMART method is the simplest decision support method [18] [19] which has several parameters for determining decisions. This parameter has varying values and weights [13]. The weight of the SMART method uses a scale between 0 -1 so that it simplifies the calculation and comparison of the value of each alternative results from the calculation of the SMART method to be the decision maker to be taken [20]. The formula applied in the SMART method is:

\[u(a_i) = \sum_{j=1}^{m} w_j u_j(a_i) \quad i=1,2,\ldots,m \]

Explanation:
- \(w_j \) = criteria weighting value to-j
- \(u_j(a_i) \) = utility criterion value to-i

The techniques in the SMART method are:
1. Determine the number of criteria
2. Determine the percentage of criteria weights. (system defaults to a scale of 0-1) based on the priorities that have been inputted and then normalized like equation (2).

\[\text{Normalization} = \frac{w_j}{\sum w_j} \]

Explanation:
- \(w_j \) = weighting criteria value to-j
- \(\sum w_j \) = weight total of all criteria
3. Provide criteria values for each alternative.
4. Calculate the utility value for each sub-criteria using equation (3).

\[u_j(a_i) = \left(\frac{C_{\text{max}} - c_{\text{min}}}{C_{\text{max}} - c_{\text{min}}} \right) \% \]

Explanation:
- \(u_j(a_i) \) = utility criteria value to-I for to-i
- \(C_{\text{max}} \) = maximum criteria value
- \(c_{\text{max}} \) = maximum criteria value
- \(c_{\text{min}} \) = criteria value to-i

3. Result
3.1. Analysis Calculation of the SMART Method
Data to be processed is the data of students who live in a dormitory, to determine the performance of the assessment of the residents of Trunojoyo University Madura from the Monitoring & Evaluation Process of Dormitory activities, through 4 criteria as in Table 1 namely notes, violations, routine absences and non-routine absences.

NO.	ALTERNATIF	NIM	ROOM (K1)	NOTES (K2)	VIOLATIONS (K3)	ROUTININE ABSENCES (K4)	NON-ROUTINE ABSENCE (K4)
1	AINUR ROSIDAH	170815100078	201	Late night curfew 2 times			
2	RINI AZLINDA	170411100031	201	Permission is rare, hard to get up to dawn	13		
3	SHELLY FEBRIANTI	170111100072	201	It's hard to collect memorized deposits, never go home without permission	14		
4	UMU KULSUM	170651100030	201	Be tough on friends, late 1 night curfew, tabarruj category, tight clothes, never leave permission home	7	Late night curfew 1 time,	
5	FAKHRUDIANA ZAHRROH	170611100001	202	Sleep often in a boarding house	30		
Criteria data for each alternative will be converted according to Table 2. The biggest value from Table 2 and Table 3 which will be used as the Cmax value and the smallest value is 1 will be Cmin, then the conversion results will be calculated according to the Utility formula, the calculation results can be seen in Table 3, the results of the utility calculation are then calculated using the SMART method to get a score. The results of the decision are in accordance with the range (0-0.3 "out", 0.3-0.6 "consideration", 0.6-1 "stay") determined by the Trunojoyo Madura University dormitory.

Table 2 Value
No
1
2
3
4

Table 3. Utility value
Alternatif
AINUR ROSIDAH
RINI AZLINDA
SHELLY FEBRIANTI
UMU KULSUM
FAKHRUDIANA ZAHROH

Table 4. Rating result
Alternatif
AINUR ROSIDAH
RINI AZLINDA
SHELLY FEBRIANTI
UMU KULSUM
FAKHRUDIANA ZAHROH

3.2. Backend

Monitoring & Evaluation application is implemented on Android for users and the Web for admins. The SMART method is applied to the Web as in Code Program 1 which is a repetition and calculation of the SMART method from data inputted by students through an android application and stored in a database, then the conversion will be processed through repetition.

```php
for ($i=0; $i < count($tabel_total) ; $i++) {
    array_push($tabel_total_konversi,
        array( $tabel_total[$i]['id_student'],
        konversion_routin ($tabel_total[$i]['v_total_routin']),
        konversion_nonroutin( $tabel_total[$i]['v_total_nonroutin']),
```
3.3. Frontend
Monitoring & evaluation application Frontend application dormitory activities can be accessed via android for students as in Code program 2.

```
package com.dormitory.skripsi.API
import retrofit2.Retrofit
import retrofit2.converter.gson.GsonConverterFactory
class APIResponse {
    val url: String = "http://dormitory.pasarin.web.id/admin/api/
    fun response(): APIClient {
        val retrofit: Retrofit = Retrofit.Builder().baseUrl(url)
            .addConverterFactory(GsonConverterFactory.create())
            .build()
        return retrofit.create(APIClient::class.java)
    }
}
```

Code Program 2. URL Access

Android applications connected to the web to process data, it is needed a connection like in code program 3 so that both of them can be accessed easily, after the android and web applications are connected, the android application display on the web will appear as in Figure 1.

```
require_once('../koneksi.php');
$sql = "SELECT * FROM warga where ID_WARGA = '$ID_WARGA' AND NAMA_WARGA = '$NAMA_WARGA' " ;
$check = mysqli_query($koneksi_database,$sql);
if(mysqli_num_rows($check)==1){
    $result = array();
    while($row = mysqli_fetch_array($check)){
        array_push($result, array('ID_WARGA'=>$row[0], 'NAMA_WARGA'=>$row[2]));
    }
    $response['result'] = $result;
    $response['message'] = "login";
    echo json_encode($response);
} else {
    $response['value'] = 0;
    $response['message'] = "gagal";
    echo json_encode($response);
}
```

Code Program 3. Koneksi android dengan web
4. Conclusion

Based on the above research it can be concluded that the monitoring and evaluation application of dormitory activities can be used to facilitate the monitoring process of dormitory activities, besides that by applying the SMART method it can facilitate the data processing activities at the Tunojoyo Madura University dormitory providing an objective assessment.

References

[1] A. Misbah and A. Ettalbi, "Towards a Standard WSDL Implementation of Multiview Web Service," Internasional Conference on Multimedia Computing and Systems (ICSM), pp. 1-5, 2016.

[2] Essa and A. J., "MONITORING AND EVALUATION," International journal of agricultural extension, pp. 13-14, 2014.

[3] Y. Kanellopoulos, P. Antonellis, D. Antoniou, C. Makris, E. Theodoridis, C. Tjortjis and N. Tsirakis, "Code Quality Evaluation Methodology using the ISO/IEC 9126 Standard," International Journal of Software Engineering & Applications (IJSEA), vol. I, no. 3, pp. 17-35, 2010.

[4] Y. Li, P. L, F. Z. and R. Wang, "Design of Higher Education Quality Monitoring and Evaluation Platform Based on Big Data," in The 12th International Conference on Computer Science & Education (ICCSE 2017), USA, 2017.

[5] L. O. Okello and F. Mugambi, "Determinants of Effective Monitoring and Evaluation System of Public Health Programs: A Case Study of School-Based Hand Washing Program in Kwale County, Kenya," International Journal of Economics, Finance and Management Sciences, vol. III, no. 3, pp. 235-251, 2015.

[6] C. Sanga, K. Fue, N. Nicodemus and Kilima, "Web-based System for Monitoring and Evaluation of Agricultural Projects," Interdisciplinary Studies on Information Technology and Business, vol. I, no. 1, pp. 15-41, 2013.

[7] P. Mani, A. Thangavelu, A. Sharma and N. Chaudhari, "A Real Time Monitoring System for Yoga Practitioners," International Journal of Intelligent Engineering & Systems, vol. X, no. 3, pp. 83-93, 2017.

[8] S. Fong and H. Simeng, "A Web Based Performance Monitoring System For E-Government Service," in In Proceedings of the 3rd International conference on Theory and practice of electronic governance (ICEGOV '09), New York, USA, 2019.
[9] T. Arh and B. J. Blaȋi, "Application of Multi-Attribute Decision Making Approach to Learning Management Systems," *JOURNAL OF COMPUTERS*, vol. 2, no. 10, pp. 28-37, 2007.

[10] Risawandi and R. Rahim, "Study of the Simple Multi-Attribute Rating Technique For Decision Support," *International Journal of Scientific Research in Science and Technology (IJSRT)*, vol. II, no. 6, pp. 491-494, 2016.

[11] R. J. Conejar and H.-K. Kim, "Medical Decision Support System (DSS) for Ubiquitous HealthcareDiagnosis System," *International Journal of Software Engineering and Its Applications*, vol. VIII, no. 10, pp. 237-244, 2014.

[12] F. M. Kasie, "Combining Simple Multiple Attribute Rating Technique and Analytical Hierarchy Process for Designing Multi-Criteria Performance Measurement Framework," *Global Journal of Researches in Engineering Industrial Engineering*, vol. XIII, no. 1, pp. 15-29, 2013.

[13] D. Siregar, D. Arisandi, A. Usman, D. Irwan and R. Rahim, "Research of Simple Multi-Attribute Rating Technique for Decision Support," *International Conference on Information and Communication Technology (IconICT)*, pp. 1-6, 2017.

[14] J. Taylor and B. Love, "Simple Multi-Attribute Rating Technique for Renewable Energy Deployment Decisions (SMART REDD)," *Journal of Defense Modeling and Simulation: Applications, Methodology, Technology*, vol. XI, no. 3, pp. 227-232, 2014.

[15] U. Baizyldayeva, O. Vlasov, A. A. Kuandykov and T. B. Akhmetov, "Multi-Criteria Decision Support Systems. Comparative Analysis," *Middle-East Journal of Scientific Research*, vol. XVI, no. 12, pp. 1725-1731, 2013.

[16] F. Amato, V. Casola, M. Esposito and N. Mazzocca, "A smart decision support systems based on a fast classifier and a semantic post reasoner," *International Journal of System of Systems Engineering*, vol. IV, no. 3, pp. 317-336, 2013.

[17] Khairul, M. Simaremare and A. P. Ut, "@IJRTER-2016, All Rights Reserved215Decision Support System in Selecting The Appropriate Laptop Using Simple Additive Weighting," *International Journal of Recent Trends In Engineering & Research*, vol. II, no. 12, pp. 215-223, 2016.

[18] A. BÂRA, I. BOTHA, I. LUNGU and S.-V. OPREA, "Decision Support System in National Power Companies. A Practical Example (Part I)," *Database Systems Journal*, vol. IV, no. 1, pp. 37-45, 2013.

[19] R. u. A. Othman and N. M. M. Noor, "Decision Support Systems (DSS) in Construction Tendering Processes," *International Journal of Computer Science Issues (IJCSI)*, vol. 7, no. 2, pp. 35-45, 2010.

[20] G. Valiris and P. Chytas, "Making decisions using the balanced scorecard and the simple multi-attribute rating technique," vol. VI, no. 3, pp. 159 - 171.