Hydrodynamical equation for electron swarms

JOEL L. LEBOWITZ and A. ROKHLENKO

1Department of Mathematics and 2Department of Physics, Rutgers University, Piscataway, NJ 08854-8019, USA

(Received 7 April 1998)

We study the long-time behaviour of light particles, for example an electron swarm in which Coulomb interactions are unimportant, subjected to an external field and elastic collisions with an inert neutral gas. The time evolution of the velocity and position distribution function is described by a linear Boltzmann equation (LBE). The small ratio of electron to neutral masses, ϵ, makes the energy transfer between them very inefficient. We show that, under suitable scalings, the LBE reduces, in the limit $\epsilon \to 0$, to a formally exact equation for the speed (energy) and position distribution of the electrons that contains mixed spatial and speed derivatives. When the system is spatially homogeneous, this equation reduces to and thus justifies, for small-enough ϵ, the commonly used ‘two-term’ approximation.

1. Introduction

The motion of an electron under the influence of an external electric field and elastic ‘collisions’ with the ‘background’ is a problem of both historical and contemporary interest. It arises in gas discharges in the laboratory and in the atmosphere, when the degree of ionization is so low that electron–electron and electron–ion interactions are negligible: the so-called swarm approximation (Margenau and Hartman 1948; Allis 1956; Franklin 1976; Carron 1992). Similar situations arise in the study of electron transport in solids in a semiclassical regime (Lorentz 1916; Sommerfeld 1956; Golse and Poupaud 1992; Ben Abdallah and Degond 1996; Ben Abdallah et al. 1996). In such situations it is often reasonable to treat the scatterers as if they were in thermal equilibrium. For electrons moving in a (almost) neutral gas with constant density ρ, this corresponds to the atoms having a Maxwellian velocity distribution $F(V; M)$ at a specified temperature T:

$$F(V; M) = \left(\frac{2\pi kT}{M}\right)^{-d/2} \exp\left(-\frac{MV^2}{2kT}\right),$$

where M is the mass of the scatterers (e.g. the neutral atoms in a noble gas), k is the Boltzmann constant and d is the space dimension.

The time evolution of the electron distribution function is then given by a linear
Boltzmann equation (LBE) of the form (Franklin 1976; Landau and Lifshitz 1993)
\[
\frac{\partial f(r, v, t)}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \frac{eE}{m} \cdot \frac{\partial f}{\partial v} = \int [K(v, v') f(r, v', t) - K(v', v) f(r, v, t)] d\nu' = \mathcal{H} f, \quad (2)
\]
where \(e \) and \(m \) are the electron charge and mass, \(E \) is the external field and \(K \) gives the rate of scattering. The transition rate \(K \) will depend on the nature of the scatterers, but, for the case of elastic collisions, to which we restrict ourselves here, \(K \) will satisfy detailed balance with respect to a Maxwellian velocity distribution for the electrons \(F(v; m) \), at the same temperature as that of the neutrals, so that \(K(v, v') F(v', m) = K(v', v) F(v; m) \). This ensures that, for \(E = 0 \), \(F(v; m) \) is a stationary velocity distribution that will be approached by \(f(v, t) \) as \(t \to \infty \); \(f(v, t) \) is obtained from \(f(r, v, t) \) by integrating over the spatial coordinate \(r \). We assume for simplicity that the electrons are confined to a large periodic box: \(f \) is then a probability density with \(\int \int \int f(r, v; t) dr dv = 1 \). It is also possible to consider other boundary conditions, as well as electric and magnetic fields that are space- and time-dependent, but we shall not do so here. We shall also not consider here explicitly electrons in solids, for which the scatterers are various kinds of excitations (Golse and Poupaud 1992; Ben Abdallah and Degond 1996; Ben Abdallah et al. 1996).

The central physical fact about the electron–neutral system is the great disparity in their masses: \(m/M = \epsilon < 10^{-4} \). Consequently the change in the speed of an electron in a typical collision, which is of order \(\epsilon^{1/2} \), will be very small, while the change in the velocity direction will be large, becoming independent of \(\epsilon \) when \(\epsilon \to 0 \) (Franklin 1976; Landau and Lifshitz 1993). This suggests approximating the integral operator in (2) by expanding the right-hand side of (2) in powers of \(\epsilon \) and dropping ‘small terms’ in \(\epsilon \). There is a certain amount of ambiguity in carrying out such an expansion, arising from the uncertainty of how to treat the dependence of the unknown \(f \) on \(\epsilon \). A reasonable choice gives
\[
\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial r} - \frac{eE}{m} \cdot \frac{\partial f}{\partial v} - \epsilon \rho \sigma (v) \left(f_0 + \frac{kT}{mv} \frac{\partial f_0}{\partial v} \right) = v \rho \sigma (v) (f_0 - f). \quad (3)
\]
In (3), \(v = |v| \), \(f_0(r, v, t) \) is the average of \(f(r, v, t) \) over angles, and \(\sigma(v) \) is the collision cross-section (see Margenau and Hartman 1948; Ginzburg and Gurevich 1960). The dependence of \(f \) on \(\epsilon \) is then to be determined from the solution of (3).

There is, however, very little control over this expansion. In fact, (3) is not necessarily positivity-preserving. Nevertheless, (3) yields reasonable answers for the stationary velocity distribution of the electrons, \(\bar{f}(v) \). The latter can be obtained explicitly in the so-called ‘two-term’ approximation (Lorentz 1916; Margenau and Hartman 1948; Allis 1956; Carron 1991), in which one keeps only the first two terms in a spherical-harmonic expansion of \(\bar{f}(v) \). This distribution was first found by Druyvesteyn (Druyvesteyn 1930; Druyvesteyn and Penning 1940), who considered the case \(T = 0 \), \(\sigma = \text{const} \), and was later generalized by Davydov (1935) for all \(T \) and \(\sigma \). For an analysis of the error made by the two-term approximation to (3), see Rokhlenko and Lebowitz (1997) and Rokhlenko (1998).

A somewhat different approach to this problem was taken by Koura (1987). Starting with a two-term \(\epsilon \)-expanded kinetic equation (slightly different than what is obtained from (3)), he observed that, after a scaling of space, time and electric
Hydrodynamical equation for electron swarms

field and neglecting the time variation of the first harmonic, one is led to an equation in which \(\epsilon \) does not appear at all. Koura then argued that the actual physical quantities of interest in an electron swarm should have a similar simple scaling dependence on \(\epsilon \) when \(\epsilon \) is small. This has the advantage of permitting more efficient computer simulations at larger than realistic value of \(\epsilon \). Doing simulations for several values of \(\epsilon \), Koura found good agreement with results from the scaled two-term approximation for \(\epsilon \lesssim 10^{-2} \).

In this paper we shall use the same scaling as Koura, but apply it directly to (2) without any other approximation. This is in the same spirit as the scalings used for electrons in solids (Golse and Poupaud 1992; Ben Abdallah and Degond 1996; Ben Abdallah et al. 1996). It is based on a formulation of space–time scalings now commonly used to obtain a 'reduced hydrodynamic description' from a more detailed microscopic one (see Spohn 1995).

2. One-dimensional problem

To simplify matters, we shall first consider the one-dimensional version of (2), corresponds to hard collisions of point particles with masses \(m \) and \(M = m/\epsilon \):

\[
\frac{\partial f(x, v, t)}{\partial t} + v \frac{\partial f(x, v, t)}{\partial x} - \frac{eE}{m} \frac{\partial f(x, v, t)}{\partial v}
= \rho \int_{-\infty}^{\infty} |v - V| \left[f \left(x, \frac{2V - (1 - \epsilon)v}{1 + \epsilon}, t \right) F \left(\frac{1 - \epsilon}{1 + \epsilon} \cdot \frac{m}{\epsilon} \right) - f(x, v, t) F \left(V; \frac{m}{\epsilon} \right) \right] dV,
\]

(4)

where \(v \in \mathbb{R} \). Equation (4) is to be solved subject to some initial condition \(f(x, v, 0) \).

To obtain the behaviour of \(f \) for long times, we rescale our variables by setting \(y = \epsilon^{1/2} x, \tau = \epsilon t \) (diffusive scaling: Spohn 1995) and \(E = \epsilon^{1/2} E^* \) (the field has to be small on this scale for the energy to remain bounded when the time is of order \(\epsilon^{-1} \)). We now define the even and odd parts of the velocity distribution function:

\[
\phi_\epsilon(y, v, \tau) = \frac{1}{2 \epsilon^{1/2}} \left[f \left(\frac{y}{\epsilon^{1/2}}, \frac{v}{\epsilon}, \frac{\tau}{\epsilon} \right) + f \left(\frac{y}{\epsilon^{1/2}}, -\frac{v}{\epsilon}, \frac{\tau}{\epsilon} \right) \right],
\]

(5a)

\[
\epsilon^{1/2} \psi_\epsilon(y, v, \tau) = \frac{1}{2 \epsilon^{1/2}} \left[f \left(\frac{y}{\epsilon^{1/2}}, \frac{v}{\epsilon}, \frac{\tau}{\epsilon} \right) - f \left(\frac{y}{\epsilon^{1/2}}, -\frac{v}{\epsilon}, \frac{\tau}{\epsilon} \right) \right],
\]

(5b)

where \(v = |v| \) and we have put \(f \to \epsilon^{-1/2} f \) to preserve the normalization: in the scaled variable \(y \) the system is in a periodic box of size \(L \) independent of \(\epsilon \). By changing the integration variable in (4), we then obtain two coupled equations for \(\phi_\epsilon \) and \(\psi_\epsilon \):

\[
\frac{\partial \phi_\epsilon(y, v, \tau)}{\partial \tau} + v \frac{\partial \phi_\epsilon(y, v, \tau)}{\partial y} - eE^* \frac{\partial \psi_\epsilon}{m} \frac{\partial \psi_\epsilon}{\partial v}
= \epsilon^{-1} \rho \left(\frac{m}{2\pi kT} \right)^{1/2} \int_{-\infty}^{\infty} |v - V| \left[\left(\frac{1 + \epsilon}{1 - \epsilon} \right)^2 \phi_\epsilon \left(y, \frac{(1 + \epsilon)v - 2V}{1 - \epsilon}, \tau \right) - \phi_\epsilon(y, v, \tau) \right] e^{-mV^2/2kT} dV,
\]

(6)
\[
\begin{align*}
\epsilon \frac{\partial \psi_\epsilon(y,v,\tau)}{\partial \tau} + v \frac{\partial \psi_\epsilon}{\partial y} + \frac{eE^*}{m} \frac{\partial \psi_\epsilon}{\partial v} \\
= -\rho \left(\frac{m}{2\pi kT} \right)^{1/2} \int_{-\infty}^{\infty} \left| v - V \right| \left[\left(\frac{1 + \epsilon}{1 - \epsilon} \right)^2 \psi_\epsilon(y, (1 + \epsilon)v - 2V, \tau) \right. \\
\left. \left. + \psi_\epsilon(y, v, \tau) \right] \right] e^{-mV^2/2kT} dV. \quad (7)
\end{align*}
\]

We now assume that the initial distribution is such that \(\phi_\epsilon \) and \(\psi_\epsilon \) have well-defined limits \(\phi(y,v,0) \) and \(\psi(y,v,0) \) as \(\epsilon \to 0 \). Now taking formally the limit \(\epsilon \to 0 \) on both sides of (6) and (7), keeping \(\tau, y \) and \(E^\ast \) fixed, we get the limiting equations

\[
\begin{align*}
\frac{\partial \phi(y,v,\tau)}{\partial \tau} + v \frac{\partial \psi}{\partial y} - \frac{eE^*}{m} \frac{\partial \psi}{\partial v} &= 2 \rho \frac{\partial}{\partial v} \left[\left(\frac{eE^*}{m} \right)^2 \left(\frac{1}{2}\nu + \frac{kT}{m} \partial \phi \right) \right], \quad (8a) \\
v \frac{\partial \phi}{\partial y} - \frac{eE^*}{m} \frac{\partial \phi}{\partial v} &= -2\rho v \psi(y,v,\tau), \quad (8b)
\end{align*}
\]

valid for \(v \geq 0 \). Solving (8b) for \(\psi \) and substituting into (8a), we get the reduced equation for the even part of the distribution \(\phi(y,v,\tau) \), in terms of the scaled space, time and electric field:

\[
\begin{align*}
\frac{\partial \phi(y,v,\tau)}{\partial \tau} + \frac{1}{\rho} \frac{\partial}{\partial y} \left(\frac{eE^*}{m} \frac{\partial \phi}{\partial v} - v \frac{\partial \phi}{\partial y} \right) &= \frac{\partial}{\partial v} \left\{ \left(\frac{eE^*}{m} \right)^2 \frac{1}{2}\nu + \frac{kT}{m} \frac{\partial \phi}{\partial v} + 2\rho v^2 \phi \right\}, \quad (9) \\
& \text{with the boundary condition at } v = 0 \quad \left(\frac{\partial \phi(y,0,\tau)}{\partial y} \right) = \frac{eE^*}{m} \lim_{{v \to 0^+}} \frac{1}{v} \frac{\partial \phi(y,v,\tau)}{\partial v} \quad (10)
\end{align*}
\]

and the normalization

\[
\int_0^L dy \int_0^\infty \phi(y,v,\tau) dv = \frac{1}{2}.
\]

The condition (10) at \(v = 0 \) follows from the (assumed) continuity of the distribution \(f \) at \(v = 0 \).

Let us introduce the rescaled electron density \(n(y,\tau) \), drift \(u(y,\tau) \) and mean speed \(w(y,\tau) \):

\[
\begin{align*}
n(y,\tau) &= 2 \int_0^\infty \phi(y,v,\tau) dv, \quad (11a) \\
n(y,\tau)u(y,\tau) &= 2 \int_0^\infty v\psi(y,v,\tau) dv, \quad (11b) \\
n(y,\tau)w(y,\tau) &= 2 \int_0^\infty v\phi(y,v,\tau) dv. \quad (11c)
\end{align*}
\]

Integrating (9) over velocities, we obtain the continuity equation

\[
\frac{\partial n(y,\tau)}{\partial \tau} + \frac{\partial (nu)}{\partial y} = 0. \quad (12)
\]

To obtain \(u \), we substitute (8b) into (11) and integrate over \(v \):

\[
u = -\frac{e\phi(y,0,\tau)}{m\rho n(y,\tau)} E^* - \frac{w(y,\tau)}{2\rho n(y,\tau)} \frac{\partial}{\partial y} \frac{1}{2\rho} \frac{\partial w(y,\tau)}{\partial y}. \quad (13)
\]
One can identify in (13) the factors in front of E^*, $\partial n/\partial y$ and $\partial w/\partial y$ as respectively the mobility, diffusion coefficient and a parameter related to thermodiffusivity (Golant et al. 1980).

The right-hand side of (9) corresponds to a drift-diffusion in ‘speed space’, with a diffusion coefficient given by the term in the square brackets and with a drift $-2\rho v^2$. The spatially homogeneous stationary solution of (9) has the form

$$\tilde{\phi}(v) = C \exp \left[- \int_0^v \frac{s^3 ds}{(kT/m)s^2 + (eE^*/2m\rho)^2} \right],$$

(14)

similar to the Davydov distribution for $d = 3$, cf. (21). Note that for $E^* = 0$, i.e. no external field, $\tilde{\phi}(v) = F(v; m)$, as it should.

3. Three dimensions

For $d = 3$, the right-hand side of the LBE takes the form

$$\mathcal{K} f = \rho \iint |v - V|\sigma(v - V) \left[f(v', t)F(V'; M) - f(v, t)F(V; M) \right] dV d\hat{\omega}.$$

The angular integration is over the scattering solid angle $\hat{\omega}$ of the electron in the centre-of-mass coordinate system, $\sigma(v)$ is the electron–neutral differential collision cross-section, and we have

$$v' = v + \frac{2}{1+\epsilon} \hat{\omega}[\hat{\omega} \cdot (V - v)],$$

$$V' = V - \frac{2\epsilon}{1+\epsilon} \hat{\omega}[\hat{\omega} \cdot (V - v)].$$

Carrying out a similar analysis as for $d = 1$, we separate f into a spherically symmetric part $\phi_\epsilon(y, v, \tau)$ and a remainder $\psi_\epsilon(y, v, \tau)$, i.e. we set

$$f \left(\frac{y}{\epsilon^{1/2}}, \frac{v}{\epsilon^{1/2}}, \frac{t}{\epsilon^{1/2}} \right) = \epsilon^{3/2} \left[\phi_\epsilon(y, v, \tau) + \epsilon^{1/2} \psi_\epsilon(y, v, \tau) \right],$$

(15)

$$\phi_\epsilon(y, v, \tau) = \frac{e^{-3/2}}{4\pi} \int f \left(\frac{y}{\epsilon^{1/2}}, \frac{v}{\epsilon^{1/2}}, \frac{t}{\epsilon^{1/2}} \right) d\Omega.$$

(16)

In (16) the integration is over the unit sphere specifying the orientation of the vector v/v. Now taking formally the limit $\epsilon \to 0$, we obtain, in terms of the rescaled variables, a set of equations for ϕ and ψ entirely analogous to (8) and (9):

$$\frac{\partial \phi}{\partial \tau} - \frac{v}{3\rho\sigma} \frac{\nabla^2 \phi}{\sigma} + \frac{e}{3m\rho} E^* \cdot \nabla \left[\frac{1}{\sigma} \frac{\partial \phi}{\partial v} + \frac{1}{\sigma} \frac{\partial}{\partial v} \left(\frac{v^2 \phi}{\sigma} \right) \right] = \frac{1}{\rho \sigma(v)v} \left(\frac{eE^*}{m} \right) \frac{\partial \phi}{\partial \tau} + \rho e^l \sigma(v) \left(\phi + \frac{kT}{mv} \frac{\partial \phi}{\partial v} \right),$$

(17)

$$\psi = \frac{1}{\rho \sigma(v)v} \left(\frac{eE^*}{m} \right) \nabla_v \phi - v \cdot \nabla \phi.$$

(18)

We assume the collisions to be spherically symmetric, so $\sigma(v) = 4\pi \sigma(v)$ is the total cross-section.
The spatial density and current are given by
\[n(y, \tau) = 4\pi \int_0^\infty v^2 \phi(y, v, \tau) \, dv, \quad (19a) \]
\[n(y, \tau)u(y, \tau) = \int v \psi(y, v, \tau) \, dv. \quad (19b) \]
They satisfy the equation of continuity
\[\frac{\partial n(y, \tau)}{\partial \tau} + \nabla_y \cdot (nu) = 0. \quad (20) \]
The electron drift \(u \) has the form
\[u = \mu E^* - D \frac{1}{n} \nabla y n - \frac{1}{3\rho} \nabla y \left(\frac{v}{\sigma(v)} \right), \]
\[\mu = \frac{e}{\beta \rho m} \left(\frac{1}{v^2} \frac{d}{dv} \left[\frac{v^2}{\sigma(v)} \right] \right), \quad D = \frac{1}{3\rho} \left(\frac{v}{\sigma(v)} \right), \]
where
\[\langle g(v) \rangle = \frac{4\pi}{n} \int_0^\infty gv^2 \phi(y, v, \tau) \, dv \]
is the average over the velocity distribution. In the spatially homogeneous case, (17) coincides with the usual equation obtained in the two-term approximation, whose stationary solution is
\[\phi(v) = C \exp \left[-\int_0^v \frac{s^3 ds}{(kT/m)s^2 + \frac{1}{2}(eE^*/m\rho)^2} \right], \quad (21) \]
which was given by Davydov (1935). For \(E^* = 0 \), \(\phi(v) \) in (21) is just \(F(v; m) \), while for \(T = 0, \sigma = \text{const} \), it coincides with the Druyvesteyn distribution.

4. Inequalities for moments at arbitrary \(\epsilon \) and \(T = 0 \)
In previous works (Rokhlenko and Lebowitz 1997; Rokhlenko 1998) we established bounds on the first few moments of the stationary distribution function using the approximate equation (3) with a velocity-independent total cross-section \(\sigma_0 \). Here we shall do the same for the LBE (2) when \(T = 0 \). Introducing the dimensionless variables
\[x = \frac{v \cdot E}{\epsilon E}, \quad s = \epsilon^{1/4} \left(\frac{m\rho\sigma_0}{eE} \right)^2, \]
and noting that for \(T = 0, F(V; M) = \delta(V) \), the stationary, spatially homogeneous \(f \) satisfies, for \(d = 3 \), the equation
\[-\epsilon^{1/2} \left(\frac{\partial f}{\partial s} + \frac{1 - x^2}{s} \frac{\partial f}{\partial x} \right) = \frac{(1 + \epsilon)^2}{2\pi} \int f(s') \delta \left[(1 - \epsilon)(s')^2 - 2\epsilon(s \cdot s') - (1 + \epsilon)s^2\right] ds' - sf(s). \quad (22) \]
Following Lorentz (1916), Margenau and Hartman (1948) and Rokhlenko (1991), we expand the distribution function in a Legendre series
\[f(s, x) = \sum_{l=0}^\infty f_l(s) P_l(x), \]
Hydrodynamical equation for electron swarms

substitute it into (22) and obtain a set of coupled equations for the \(f_l \). Let us introduce the moments

\[
M_l(k) = \int_0^\infty s^k f_l(s) \, ds. \tag{23}
\]

We can now use the same technique as in Rokhlenko and Lebowitz (1997) to obtain bounds on the mean energy \(W(\epsilon) \) and drift \(u(\epsilon) \) that are defined in terms of \(M_0(k) \). These inequalities are based on the fact that \(\log M_0(k) \) is a convex function of \(k \). This yields in the present case

\[
\frac{b^{1/2}}{a} \leq \frac{2\rho \sigma \epsilon^{1/2}}{eE} W(\epsilon) \leq \frac{1}{a^{1/2}}, \tag{24a}
\]

\[
\frac{b^{1/4}}{a} \leq \frac{2^{3/4}}{\left(p_0[3, \epsilon]\right)^{3/4}} \left(\frac{m \rho \sigma_0}{eE}\right)^{1/4} u(\epsilon) \leq \frac{1}{a^{3/4}}, \tag{24b}
\]

where

\[
a = \frac{p_0(4, \epsilon)p_1(2, \epsilon)}{3\epsilon}, \tag{25a}
\]

\[
b = \frac{12\epsilon[1 + p_0(3, \epsilon)/p_2(3, \epsilon)]}{p_0(7, \epsilon)p_1(5, \epsilon)}, \tag{25b}
\]

\[
p_l(k, \epsilon) = \frac{(1 + \epsilon)^2}{2\epsilon} \int_{1-\epsilon/1+\epsilon}^1 x^k P_1 \left(\frac{(1 + \epsilon)x^2 + \epsilon - 1}{2\epsilon x} \right) dx - 1. \tag{26}
\]

When \(\epsilon \to \infty \), the lower and upper bounds for \(u \) and \(W \) merge, giving in the limit

\[
u = \left(\frac{eE}{M_{\rho\sigma_0}} \right), \quad W = \frac{1}{2}mu^2. \tag{27}
\]

When \(\epsilon \to 0 \), \(a \to 1 \), \(b \to \frac{1}{2} \) and the inequalities (24) are then satisfied by the Druyvesteyn distribution. We believe that with greater effort it should be possible to obtain upper and lower bounds that, when \(\epsilon \to 0 \), both converge to the values obtained from the Davydov distribution.

Acknowledgement

This work was supported by Air Force Office of Scientific Research Grant AFOSR-95-0159.

References

Allis, W. P. 1956 Handbuch der Physik, Vol. 21, p. 383. Springer-Verlag, Berlin.
Ben Abdallah, N. and Degond, P. 1996 J. Math. Phys. 37, 3306.
Ben Abdallah, N., Degond, P. and Genieys, S. 1996 J. Stat. Phys. 84, 205.
Carron, N. J. 1991 Phys. Rev. A45, 2499.
Davydov, P. 1935 Phys. Z. Sowjetunion 8, 59.
Druyvesteyn, M. J. Physica 10, 61.
Druyvesteyn, M. J. and Penning, E. M. 1940 Rev. Mod. Phys. 12, 87.
Esposito, R., Lebowitz, J. L. and Marra, R. 1995 J. Stat. Phys. 78, 389.
Franklin, R. N. 1976 Plasma Phenomena in Gas Discharges. Clarendon Press, Oxford.
Ginzburg, V. L. and Gurevich, A. V. 1960 Soviet Phys. Usp. 3, 115.
Golant, V. E., Zhylnsky, A. P. and Sakharov, I. E. 1980 Fundamentals of Plasma Physics. Wiley, New York.
Golse, F. and Poupaud, F. 1992 *Asympt. Anal.* 6, 135.
Koura, K. 1987 *J. Phys. Soc. Japan* **56**, 429.
Landau, L. D. and Lifshitz, E. M. 1993 *Physical Kinetics*. Pergamon Press, Oxford.
Lorentz, H. A. 1916 *The Theory of Electrons*. B. G. Taubner, Leipzig.
Margenau, H. and Hartman, L. M. 1948 *Phys. Rev.* **73**, 309.
Rokhlenko, A. 1991 *Phys. Rev.* **A43**, 4438.
Rokhlenko, A. 1998 *Phys. Rev.* **E58**, 976.
Rokhlenko, A. and Lebowitz, J. L. 1997 *Phys. Rev.* **E56**, 1012.
Shkarofsky, I. P., Johnston, T. W. and Bachynski, M. P. 1966 *The Particle Kinetics of Plasma*. Addison-Wesley, Reading, MA.
Sommerfeld, A. 1956 *Thermodynamics and Statistical Mechanics*. Academic Press, New York.
Spohn, H. 1995 *Large Scale Dynamics of Interacting Particles*. Springer-Verlag, Berlin.