Arteriosklerose im Hoden: mikrovaskuläre Schäden und Beeinträchtigung der Leydig-Zellen sind assoziiert mit einem Testosterondefizit

von Daniela Beyer und Andrea Mietens
editiert von Markus Kipp (LMU München)

Arteriosklerotische Veränderungen im Hoden haben bislang wenig Beachtung gefunden. So ist zum Beispiel nicht bekannt, ob Gefäßveränderungen im Hoden zu Spermatogenesestörungen oder Testosterondefizienz führen können.

Zur Klärung dieser Frage untersuchten wir das ApoE-/-/LDL-Rezeptor-/- Knockout-Maus-Modell für Arteriosklerose. Bei alten Tieren zeigte sich neben einer Störung der Spermatogenese ein reduzierter Serum-Testosteronspiegel. Wir verglichen daher sowohl das Gefäßsystem des Hodens als auch die Testosteron produzierenden Leydig-Zellen mittels Micro-CT und Stereologie in Knockout- (KO) und Wildtyp-Mäusen (WT) verschiedener Altersstufen (20, 40, 60 und 87 Wochen).

In den KO Tieren fiel in allen Altersstufen ein im Vergleich zum WT reduziertes Serum-Testosteron auf. Zusätzlich war in den KO Tieren ein reduziertes Hoden- und Gefäßvolumen nachweisbar. Interessanterweise konnte in den KO Tieren eine Reduktion von Kapillardichte, -länge und -größe festgestellt werden, obwohl keine offensichtlichen arteriosklerotischen Veränderungen im Gefäßbett des Hodens gefunden werden konnten. Einerseits könnte diese Rarefizierung der Hodenkapillaren und die damit verringerte kapilläre Austauschfläche für den Transfer von Testosteron ins Blut den beobachteten erniedrigten Serum-Testosteronspiegel erklären. Andererseits war in den KO Tieren auch eine reduzierte Leydig-Zellzahl nachweisbar, begleitet von einer Reduktion der Leydig-Zellgröße, beides Hinweise auf eine verringerte Testosteronproduktion dieser Zellen.

Unsere Daten zeigen, dass auch der Hoden ein bislang vernachlässigtes Zielorgan der Arteriosklerose ist. Eine der Hauptfunktionen des Hodens neben der Spermatogenese ist die Versorgung des Körpers mit Testosteron. Diese wird durch die arteriosklerotisch bedingte Ausdünnung des Kapillarnetzes sowie die verminderte Anzahl und Größe der Leydig-Zellen beeinträchtigt und kann so zu Störungen der männlichen Fertilität beitragen. Eine Arteriosklerose stellt somit eine wichtige Ursache der männlichen Unfruchtbarkeit dar.

Weitere Informationen

Institut für Anatomie und Zellbiologie
Aulweg 123
35392 Gießen
Daniela.Beyer@anatomie.med.uni-giessen.de