First Complete Genome Sequence of *Pseudomonas aeruginosa* (Schroeter 1872) Migula 1900 (DSM 50071^T^), Determined Using PacBio Single-Molecule Real-Time Technology

Kazuma Nakano, Yasunobu Terabayashi, Akino Shroma, Makiko Shimoji, Hinako Tamotsu, Noriko Ashimine, Shun Ohki, Misuzu Shinzato, Kuniko Teruya, Kazuho Satou, Takashi Hirano

Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan

The first complete genome sequence of the type strain *Pseudomonas aeruginosa* (Schroeter 1872) Migula 1900 (DSM 50071^T^) was determined in a single contig by PacBio RS II. The genome (6,317,050 bp, G+C content of 66.52%) contained 10 sets of >1,000-bp identical sequence pairs and 183 tandem repeats.

Pseudomonas aeruginosa is an aerobic, motile, and Gram-negative rod-shaped bacterium that exists in a wide range of ecological niches (1–4). It is a major opportunistic human pathogen and is also an important causative agent of hospital-acquired nosocomial infections, characteristically in immunocompromised individuals (1–4). The emergence of antibiotic-resistant forms of *P. aeruginosa* is a worldwide problem in clinical medicine (5, 6). For instance, a total of 161 clinical isolates of multidrug-resistant *P. aeruginosa* were obtained between July and September 2011 from 161 hospitals in 30 of 47 prefectures in Japan, where two novel IMP-type metallo-β-lactamase variants were identified (7). *P. aeruginosa* can develop resistance to antibiotics through either acquisition of resistance genes on mobile genetic elements or mutational processes that alter the expression and/or function of chromosomally encoded mechanisms (5).

The type strain of *P. aeruginosa* (Schroeter 1872) Migula 1900 (DSM 50071^T^) was first reported in 1872 by Schroeter (8–11). At present, more than 20 complete genome sequences of *P. aeruginosa* are publicly available (http://www.ncbi.nlm.nih.gov/genome/archives/187). *P. aeruginosa* has a genome size of around 6.3 Mb, with a G+C content of around 66.6% (2). The type strain is usually the first isolated strain of the species and exhibits all of the relevant genotypic and phenotypic properties cited in the species circumscriptions; therefore, the complete genome sequence of the type strain is crucial to analyzing, comparing, and evaluating the characteristics of the species (12). Here, we report the first complete genome sequence of *P. aeruginosa* DSM 50071^T^ determined by single-molecule real-time (SMRT) technology (13).

Genomic DNA obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) was purified using the PowerClean DNA cleanup kit (MO BIO Laboratories, Carlsbad, CA), followed by 20-kb library construction for P5-C3 chemistry without shearing. After size selection of the upper 7 kb by BluePippin (Sage Science, Beverly, MA), 16 SMRT cells of the libraries were sequenced on the PacBio RS II platform (Pacific Biosciences, Menlo Park, CA) with 180-min movies. *De novo* assembly was performed using the hierarchical genome assembly process 3 (HGAP3) workflow (14). A single circular contig representing a chromosome was obtained (6,317,050 bp, average G+C content of 66.52%, and 843× coverage). The genome contained 10 sets of >1,000-bp identical sequence pairs (5,288 bp maximum) and 183 tandem repeats (246 bp × 20.7 copies maximum). On DSM 50071^T^ sequencing, the PacBio RS II platform produced extra-long reads with an average of 6,256 bp and a maximum of 28,135 bp. The SMRT technology provides power for genome sequencing with extra-long multikilobase reads and unbiased G+C coverage (15), thereby resolving these hard-to-sequence regions.

The complete genome sequence of the *P. aeruginosa* type strain reported here can be used as the standard reference for the species and will accelerate the understanding of the pathogenomic characteristics of the species, especially in (antibiotic-resistant) *Pseudomonas* infection.

Nucleotide sequence accession number. The complete genome sequence of *P. aeruginosa* DSM 50071^T^ has been deposited in DDBJ/ENA/GenBank under the accession number CP012001.

ACKNOWLEDGMENT

This work was supported by the Okinawa Prefectural Government.

REFERENCES

1. Chan K-G, Yin W-F, Lim YL. 2014. Complete genome sequence of *Pseudomonas aeruginosa* strain YL84, a quorum-sensing strain isolated from compost. Genome Announc 2(2):e00246-14. http://dx.doi.org/10.1128/genomeA.00246-14.
2. Stover CK, Pham QX, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrook-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV. 2000. Complete genome sequence of *Pseudomonas*...
P. aeruginosa PAO1, an opportunistic pathogen. *Nature* 406:959–964. http://dx.doi.org/10.1038/35023079.

3. Hardalo C, Edberg SC. 1997. *Pseudomonas aeruginosa*: assessment of risk from drinking water. *Crit Rev Microbiol* 23:47–75.

4. Bodey GP, Bolivar R, Fainstein V, Jadeja L. 1983. Infections caused by *Pseudomonas aeruginosa*. *Rev Infect Dis* 5:279–313.

5. Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant *Pseudomonas aeruginosa*: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. *Clin Microbiol Rev* 22:582–610. http://dx.doi.org/10.1128/CMR.00040-09.

6. Pereira SG, Marques M, Pereira J, Cardoso O. 2015. Multidrug and extensive drug resistance in *Pseudomonas aeruginosa* clinical isolates from a Portuguese central hospital: 10-year survey. *Microb Drug Resist* 21:194–200. http://dx.doi.org/10.1089/mdr.2014.0137.

7. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. 2013. IMP-43 and IMP-44 metallo-β-lactamases with increased carbapenemase activities in multidrug-resistant *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* 57:4427–4432. http://dx.doi.org/10.1128/AAC.00716-13.

8. Skerman VBD, McGowan V, Sneath PHA. 1980. Approved lists of bacterial names. *Int J Syst Bacteriol* 30:225–420. http://dx.doi.org/10.1099/00207713-30-1-225.

9. Schroeter J. 1872. Über einige durch Bakterien gebildete Pigmente, p 109–126. In Cohan F (ed), *Beitrage zur Biologie der Pflanzen*. J. U. Kern’s Verlag, Breslau, Berlin, Germany.

10. Migula W. 1900. System der Bakterien, vol 2. Gustav Fischer, Jena, Germany.

11. Hugh R, Leifson E. 1964. The proposed neotype strains of *Pseudomonas aeruginosa* (Schroeter 1872) Migula 1900. *Int J Syst Evol Microbiol* 14:69–84. http://dx.doi.org/10.1099/0096266X-14-2-69.

12. Kim B-S, Yi H, Chun J, Cha C-J. 2014. Genome sequence of type strain of *Staphylococcus aureus* subsp. *aureus*. *Gut Pathog* 6. http://dx.doi.org/10.1186/1757-4749-6-6.

13. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettsman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomayen A, Travers K, Trulson M, Vicceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korchl J, Turner S. 2009. Real-time DNA sequencing from single polymerase molecules. *Science* 323:133–138. http://dx.doi.org/10.1126/science.1162986.

14. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J, 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. *Nat Methods* 10:563–569. http://dx.doi.org/10.1038/nmeth.2474.

15. Shin SC, Ahn do H, Kim SJ, Lee H, Oh T-J, Lee JE, Park H. 2013. Advantages of single-molecule real-time sequencing in high-GC content genomes. *PLoS One* 8:e68824. http://dx.doi.org/10.1371/journal.pone.0068824.