Comparing the Balance of Male Athletes Aged 11-14 Years With and Without Genu Varum

*Reza Hosseini1, Ali Asghar Norasteh1, Nezam Nemati1

1. Department of Corrective Exercises and Sport Injuries, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

Objective: Maintaining balance is one of the most important functions of neuromuscular system in performing all simple and complex sports activities. Musculoskeletal deformities especially, genu varum in the lower extremity, can negatively affect the body’s biomechanics. The aim of this study was to compare the balance of male athletes aged 11-14 years with and without genu varum.

Methods: This study has a causal-comparative design. From a total of 580 amateur adolescent male athletes in basketball, handball and volleyball living in Marivan County, who had training three sessions per week, 21 with genu varum (Mean±SD of age=13.15±1.22 years; Mean±SD of height=1.68±2.32 cm; Mean±SD of weight=51.23±4.48 kg) and 21 with no genu varum (Mean±SD of age=12.95±1.17 years; Mean±SD of height=1.67±1.45 cm; Mean±SD of weight=49.49±3.48 kg) were recruited. Their genu varum deformity was assessed using a caliper. Static and dynamic balance was evaluated by Bass Stick test and Y Balance test, respectively. Data analysis was performed using independent samples t-test.

Results: There was no significant difference in static balance between those with and without genu varum (P=0.61), while their dynamic balance was significantly different in posteromedial (P=0.003) and posterolateral (P=0.004) directions.

Conclusion: Negative effect of knee deformity on balance are turned out over time. Preventive measures and appropriate exercises at an early age may reduce the negative effects of deformities on balance.

Extended Abstract

1. Introduction

Postural control is defined as the control of body position in space to maintain body stability and orientation. Postural orientation is the ability to maintain a proper connection between body segments as well as between the body and the environment to perform a task. In many functional tasks, body alignment is vertical.

Furthermore, to maintain this state, it applies various sensory stimuli, such as gravity (vestibular system), the base of support (somatosensory system), and the body’s relationship to objects in the environment (visual system). The lower extremity, due to its significant role in enduring weight, absorbing and modifying the pressures and kicks during dynamic activities (e.g. walking, running, jumping),...
and maintaining the postural control in standing and moving positions, is of particular importance [2]. The knee joint plays a significant role in supporting the body and transmitting its weight during static and dynamic activities; however, since it has almost no bone component to stabilize it, it is one of the most vulnerable joints in the lower extremity [3].

Genu varum is among the knee deformities [4]. Such changes in the lower limb can disturb the center of gravity relative to the base of support; they might ultimately cause significant changes in individuals’ balance. The mechanical axis of the knee usually passes through the center of the knee joint, i.e. from the tubercle between the tibial condyle, and when standing on two legs, the force is equally distributed between the inner and outer knee parts [5]. Genu varum deformity affects the mechanical axis deviation of the knee joint. Moreover, internal and external ankle rotation influences the mechanical axis deviation of the ankle joint. Therefore, the mechanical axis deviation of the lower extremity joints could significantly impact on the forces exerted by the ground as well as balance disturbance [6]. Researchers disregarded investigating the effects of genu varum deformity on the balance of athletes at younger ages. Thus, this study aimed to investigate the static and dynamic balance of adolescent athletes with and without genu varum deformity.

2. Participants and Methods

A total of 580 adolescent male athletes aged 11-14 years in Marivan County, Iran, were screened for genu varum deformity using a caliper. Of them, 42 with and without genu varum were purposively selected as the study samples. The study participants were divided into 2 groups of 21.

To detect genu varum, the subject stood bare feet on both legs without any contractions and abnormal tonicity in the thigh muscles. The knees were in full extension and the ankles stick together where the patella bones were facing forward. In this state, the distance between the two medial femoral condyles was measured by a caliper. A distance of >3 cm between the two condyles was considered as a genu varum [5]. The Bass Stick test was used to measure the static balance of the study subjects [14]. Besides, the Y Balance Test (YBT) was used to evaluate the dynamic balance [15, 16].

3. Results

Table 1 presents Mean±SD values of the study variables. The t-test results (Table 2) suggested no significant difference in static balance between the study subjects with and without genu varum. Moreover, the results dynamic balance test in anterior direction revealed no significant difference between the study groups; however, group differences were significant in posterolateral (t=3.15, P=0.004) and posteromedial (t=3.17, P=0.003) directions. In other words, the study subjects with genu varum had less dynamic balance in lateral posterior and medial posterior directions, compared to their healthy counterparts.

4. Discussion

In this study, no statistically significant difference was found in the static balance between the study subjects with genu varum and healthy controls. This could be because the sport has a dynamic nature, rather than a static one; thus, it did not affect the static balance of subjects. In dynamic balance, the difference between the two study groups was only significant in the anterior direction. In other words, athletes with genu varum had less dynamic balance than their healthy peers in lateral posterior and medial posterior directions. The obtained static balance test data was in line with some other studies. Shojaedin et al. [10] investigated the relationship between varus knee deformity and dynamic and static postural control in 10-12-year-old boys. Their results indicated that varus knee deformity did not affect the samples’ static balance.

Table 1. Mean±SD scores of study variables

Variable	Mean±SD	
	Without Genu Varum	With Genu Varum
Static balance (s)	1.29±0.42	1.23±0.25
Dynamic balance (%)	81.76±12.63	79.64±6.42
Anterior direction (%)	69.98±11.19	72.58±9.18
Lateral posterior direction (%)	75.29±13.16	65.33±10.96
Medial posterior direction (%)	75.15±12.90	64.46±7.81
5. Conclusion

Varus knee deformity could affect the dynamic balance of athletes compared to their healthy counterparts. The adverse effects of such deformities on balance increases with aging. It is recommended that this study be conducted with a larger sample size as well as a more extensive age population range to be able to generalize the findings to different groups.

Ethical Considerations

Compliance with ethical guidelines

Prior to the study, a brief explanation of the tests and methods were given to the participants. Then, a written informed consent was obtained from their parents and they were told that they were to leave the study at any time. Moreover, permissions were obtained from the Department of Youth Affairs and Sports in Marivan, Iran.

Funding

This research did not receive any financial support from funding agencies in the public, commercial, or not-for-profit organizations.

Authors’ contributions

Investigation and draft preparation: Reza Hosseini; review and editing: Ali Asghar Norasteh and Nezam Nemati.

Conflicts of interest

The authors declare no conflict of interest.
مقایسه تعادل ورزشکاران 11 سالی با و بدون زانوی پرانتزی

رضو حسینی 1، عباس‌الله فرخزاد 2

1. گروه آسیب‌شناسی ورزشی و حرکت‌های اصلاحی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت، ایران.
از سالهای اخیر در تحقیقات به بررسی تأثیر تنابهنجاری زانوی پرانتزی بر روانی و سلامت کودکان و نوجوانان، اهمیت می‌گیرد.

تا بررسی تأثیر تنابهنجاری زانوی پرانتزی بر روانی و سلامت کودکان و نوجوانان، گروه‌بندی کودکان و نوجوانان در دو گروه به صورت تصادفی انجام گرفت. در هر گروه، افرادی با ویژگی‌های مشابه و مشابه افرادی بدون تنابهنجاری زانوی پرانتزی انتخاب شدند.

برای تخمین تأثیر تنابهنجاری زانوی پرانتزی بر سلامت روانی و سلامت کودکان و نوجوانان، فاکتورهای بیماری‌ای و برخی دیگری که ممکن است تأثیر مستقیم یا تأثیر غیرمستقیم بر سلامت روانی و سلامت کودکان و نوجوانان داشته باشند، کنترل شدند.

به‌طور کلی، نتایج نشان‌دهنده تأثیر تنابهنجاری زانوی پرانتزی بر سلامت روانی و سلامت کودکان و نوجوانان است.
برای ارزیابی تعادل ایستا، روش Bass stick بکار رفت. این روش شامل استفاده از یک پنجه خاص با عرض یک اینچ و طول ۵۰ سانتی‌متر است که بر روی پا قرار گرفته و به‌طور معادل با سانتی‌متر به طول پا از آزمودن‌باید ثبت شود. افراد سه ثانیه استراحت پس از انجام کارهای مختلف و با فاصله یک دقیقه، این آزمون صورت می‌گیرد. این آزمون سه بار برای هر پا انجام می‌شود و زمان‌ها هر شش کوشش با هم جمع‌گردیده و به‌عنوان نمره کلی در نظر گرفته می‌شود.

روش ارزیابی تعادل پویا برای ارزیابی تعادل پویا از آزمون Y Balance Test استفاده می‌شود. این آزمون شامل دو گام است که در آن مدت زمانی که فرد با برقراری تعادل در این آزمون می‌تواند بر روی پنجه، به‌طور کامل و بدون لمس زمین، به‌طور ثابت به تعادل بماند، به‌عنوان نمره ثبت می‌شود. از جمله توانایی‌های ارزیابی تعادل پویا می‌توان به سطح ارائه اطلاعات، منحنی حقیقی و سطح بیشتر اشاره کرد.

نتایج جدول شماره ۱ نشان می‌دهد که میانگین و انحراف معیار ویژگی‌های فردی آزمودن‌ها و میانگین و انحراف میانگین و انحراف معیار متغیرهای تعیین‌شده در تعادل ایستا و تعادل پویا حاصل از روش‌های ارزیابی تعادل ایستا و تعادل پویا می‌باشد.

نتایج آزمون سنجش در مسیرهای قدامی، خلفی داخلی و خلفی خارجی نشان داد که بین تعادل ایستا در افراد با و بدون زانوی پرانتزی تفاوت معنی‌داری وجود ندارد و همچنین، در این مسیرهای قدمی در تناوبی، پایین‌تر نسبت به مسیرهای در مرحله نشان داده شد که این نتایج با توجه به نتایج آزمون تعادل پویا و تعادل ایستا به اثبات و تصدیقینهای قبلی دیده شده است.

نتایج آزمون تعادل پویا نشان داد که بین تعادل ایستا در افراد با و بدون زانوی پرانتزی تفاوت معنی‌داری وجود ندارد و همچنین، نتایج آزمون در مسیرهای قدمی در تناوبی، پایین‌تر نسبت به مسیرهای در مرحله نشان داده شد که این نتایج با توجه به نتایج آزمون تعادل ایستا و تعادل پویا به اثبات و تصدیقینهای قبلی دیده شده است.
در این پژوهش تقلیلی در تعادل ایستا بین گروه افراد مارای

جدول ۳. میانگین و انحراف معیار متغیرهای تحقیق	میانگین و انحراف معیار متغیرهای تحقیق				
میانگین	انحراف معیار				
مارا	هزینه‌های زانوی پرانتزی	سالم	مارا	هزینه‌های زانوی پرانتزی	سالم
۱۴۸۷	۲۳۲	۱۳۶۷	۲۳۲	۱۳۶۷	
۱۴۹۲	۲۲۵	۱۳۹۵	۲۲۵	۱۳۹۵	
۱۴۹۷	۲۲۸	۱۴۲۸	۲۲۸	۱۴۲۸	
۱۴۸۳	۲۲۸	۱۴۲۸	۲۲۸	۱۴۲۸	

جدول ۲. مرتبه به ویژه خاصیت عمومی شرکتکنندگان	مرتبه به ویژه خاصیت عمومی شرکتکنندگان		
شرکتکنندگ (رتبه)	شرکتکنندگ (رتبه)		
خانم	پرانتزی	شرکتکنندگ (رتبه)	شرکتکنندگ (رتبه)
۲۵۰	۲۵۰	۲۵۰	۲۵۰
۲۴۹	۲۴۹	۲۴۹	۲۴۹
۲۴۸	۲۴۸	۲۴۸	۲۴۸
۲۴۷	۲۴۷	۲۴۷	۲۴۷

جدول ۱. مقایسه کلمه‌گزاری اسپرمیت بوری مربی‌های بینی در تعادل ایستا و پویا	مقایسه کلمه‌گزاری اسپرمیت بوری مربی‌های بینی در تعادل ایستا و پویا	
محل محل	محل محل	محل محل
مسادا	مسادا	مسادا
۳۷	۳۷	۳۷
۳۷	۳۷	۳۷
۳۷	۳۷	۳۷
۳۷	۳۷	۳۷

جدول ۴. مقایسه تعادل ورزشکاران سالم و بدون زانوی پرانتزی	مقایسه تعادل ورزشکاران سالم و بدون زانوی پرانتزی	
محل محل	محل محل	محل محل
سالم	سالم	سالم
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴

جدول ۵. مقایسه تعادل ورزشکاران سالم و بدون زانوی پرانتزی	مقایسه تعادل ورزشکاران سالم و بدون زانوی پرانتزی	
محل محل	محل محل	محل محل
سالم	سالم	سالم
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴
۱۵۴	۱۵۴	۱۵۴
عنبریان و همکاران در تحقیق خود تحت عنوان "پررنگ تر می‌شود" این افراد را تشکیل دادند و البته عدم هم‌سوم بودن این پژوهش با پژوهش صادقی و گروه دارای زانوی پرانتزی و گروه سالم تفاوت معنی‌داری داشت.

صداقی و همکاران به این نتیجه رسیدند که، اگر ناهنجاری‌های وضعیتی مانند زانوی پرانتزی، به تعادل ایستا نتایج سالمی برای غمگینان در زبانهای فیزیک‌آموزشی خوشحال می‌شود.

نتایج آزمون انرژی برای انرژی واریانس ها در جدول زیر آمده است:

آزمون انرژی برای انرژی واریانس ها	Sig	DF	t	F
تعادل ایستا	122	120	.004	110
ناگهانی	14	12	.032	.004
غلاف خاکی	12	10	.075	.038
غلاف خاکی	12	10	.075	.038

توجه می‌شود که، ناهنجاری‌های وضعیتی مانند زانوی پرانتزی به تعادل ایستا به این نتیجه رسیدند که، اگر ناهنجاری‌های وضعیتی مانند زانوی پرانتزی، به تعادل ایستا نتایج سالمی برای غمگینان در زبانهای فیزیک‌آموزشی خوشحال می‌شود.

روهنف: هدف اصلی در این پژوهش یک درمان است.

نتایج آزمون انرژی برای انرژی واریانس ها در جدول زیر آمده است:

آزمون انرژی برای انرژی واریانس ها	Sig	DF	t	F
تعادل ایستا	122	120	.004	110
ناگهانی	14	12	.032	.004
غلاف خاکی	12	10	.075	.038
غلاف خاکی	12	10	.075	.038

توجه می‌شود که، ناهنجاری‌های وضعیتی مانند زانوی پرانتزی به تعادل ایستا به این نتیجه رسیدند که، اگر ناهنجاری‌های وضعیتی مانند زانوی پرانتزی، به تعادل ایستا نتایج سالمی برای غمگینان در زبانهای فیزیک‌آموزشی خوشحال می‌شود.

روهنف: هدف اصلی در این پژوهش یک درمان است.
پرانتزی بر تعادل پویا ورزشکاران نسبت به افراد سالم تعادل ضعیف تری داشتند. افراد با ناهنجاری زانوی نیست، بر تعادل ایستای افراد چندان مؤثر نیست. اما در مورد تعادل ایستای ورزشکاران سالم نسبت به افراد ورزشکاران ناهنجاری زانوی، کمتر تحت تأثیر محلول می‌باشد.

محققان نتایج در مورد تعادل در مقایسه با خارجی دارند. به طور کلی ناهنجاری زانوی پرانتزی نسبت به افراد سالم تعادل پویا کمتری در مسیرهای تعادل پویا این افراد نشان داده شد. افراد با ناهنجاری زانوی نیست، بر تعادل ایستای افراد چندان مؤثر نیست. اما در مورد ورزش ماهیتی ورزشکاران، چون به صورت ایستای زانوی پرانتزی و سالم تفاوت معنی‌داری ندارند که شاید به علت نتایج پژوهش حاضر نشان داد تعادل ایستای افراد با ناهنجاری زانوی به علت اتکای بیشتر به مفاصل سافتالر و میدارسال دارای و همکاران نشان دادند. افراد با زانوی پرانتزی در مقایسه با افراد نایلن مفصل ران و افزایش گشتاورهای جبرانی در مفصل مچ پا نباید بی‌ثباتی بی‌ثباتی از طریق کاهش تأثیر سازوکار بار/بدون بار. به نظر می‌رسد افزایش توزیع نامتقارن وزن موجب افزایش دهید که این توزیع نامتقارن وزن در صفحه فرونتال خود می‌تواند صفحه آلتی و فضاهای فراغتی را در مفصل ران و زانوی پرانتزی دچار اختلال شود. این موضوع با که جابه‌جایی به طرف داخل در افراد با زانوی پرانتزی می‌تواند به نظر می‌رسد نیروی وزن به سمت بخش داخلی زانو منتقل می‌شود و نیروهای با توجه به تغییرات طیدار عضله چهار سر در افراد دارای پاسچر در صفحه ساجیتال به خوبی کنترل شده و پایداری و ثبات ناهنجاری زانوی پرانتزی در مفصل زانو و همکاران نشان دادند که نشان دادند دفورمیتی موجب افزایش نوسانات پاسچر در آن‌ها شود. این موضوع با پاسچر در صفحه ساجیتال و افقی نیز صفحه فرونتال باعث ایجاد تغییرات متعددی در ناهنجاری زانوی پرانتزی صفحه فرونتال است. اما علاوه بر نوجوانان و جوانان دارای پاسچر در صفحه ساجیتال به خوبی کنترل شده و پایداری و ثبات ناهنجاری زانوی پرانتزی در مفصل زانو نشان دادند که نشان دادند با وجود اینکه استیف و همکاران در تحقیقی بر روی تجزیه و تحلیل راه‌های تعادل در افراد بیمار و مسن باشند، اما برای ارزیابی عملکرد تعادلی در افراد دارای پاسچر، این عضله دچار کاهش عملکرد شده. به نظر می‌رسد به دلیل سن‌پایین، آزمودنی‌ها و شرایط فیزیکی به طور معمول روی مفصل پا توصیه می‌شود. به نظر می‌رسد به دلیل سن‌پایین، آزمودنی‌ها و شرایط فیزیکی به طور معمول روی مفصل پا توصیه می‌شود.
گروه کنترل تأثیر هاشته است، به نظر می‌رسد بر سر اثرات منفی نامحسوسی بر توانالگی نیازمند. جمله بیشتر زمان است به عباراتی با فعالیت سن آین تلفات بیشتر شد و نشان را نخواند. با وجود این پیشنهاد می‌شود که این تحقیق با توجه به‌بیشتر و با طیف سنی و سطح تحصیر شود تا با توجه به‌حالت حاصل از آن را به گروه‌های بیشتر تعمیم دهیم.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

قبل از شروع پژوهش، شرح مختصری در مورد نحوه اجرای آن برای ورزشکاران توضیح ماهه شد. سپس با اخذ رضایت‌نامه از والدین آن‌ها به این‌گونه شد هر موقع خواستند می‌توانند پژوهش‌ها را ترک کنند. قبل از شروع و انتخاب آزمون‌ها، مجوز حضور در سالن‌های ورزشی از طرف اداره ورزش و جوانان شهرستان مربیان برای آن پژوهش صادر شد.

حامي مالي

این مقاله از هیچ‌گونه حمایت مالی برخوردار نبوده است.

مشارکت تویستنگان

جمهوری داماده و تاگزش کلیه پخش‌های رضا حسینی؛ ویژن اولین؛ تغییر نمی‌خوری؛ ویژن ثانی؛ علی‌اصغر توره‌پور.

تعارض منافع

بنا به اظهار تویست‌گان، این مقاله هیچ‌گونه تعارض منافعی نداشته است.
References

[1] Taberi M, Iransoudkh K, Norasteh AA, Shakvilo J. [The effect of combined core stability and neuromuscular training on postural control in students with congenital hearing loss (Persian)]. Journal of Research in Rehabilitation Sciences. 2017; 13(2):80-6.

[2] Tajdini Kakavandi H, Sadeghi H, Abbasi A. [The effect of genu varum deformity on posture control during walking and running in active male (Persian)]. Journal of Applied Exercise Physiology. 2018; 14(27):65-76. [DOI:10.22088/JAEP.2018.1795]

[3] Namavarian N, Rezazolati A, Rekabizadeh M. [A study on the function of the knee muscles in genu varum and genu valgum (Persian)]. Journal of Modern Rehabilitation. 2014; 8(3):1-9.

[4] Mongashji Joni Y, Fattahi F, Ghanizadeh Hasar N, Hosseinpour E. [Effect of genu varum deformity on gluteus medius muscle activity and postural control during single-leg jump-landing. Specific Physical Therapy Journal. 2017; 7(2):79-88. [DOI:10.32598/pj.7.2.79]

[5] Bakhtiaty AH, Fatemi E, Rezazolati A. [Genu varum deformity may increase postural sway and falling risk (Persian)]. Koomesh. 2012; 13(3):330-7.

[6] Cote KP, Brunet ME, Gansneder BM, Shultz SJ. [Effects of pronated and supinated foot postures on static and dynamic postural stability. Journal of Athletic Training. 2005; 40(1):41-6. [PMID] [PMCID]

[7] Anbarian M, Esmailee H, Hosseini Nejad SE, Rabiei M, Binabaji H. [Comparison of knee joint muscle’s activity in subjects with genu varum and the controls during walking and running (Persian)]. Journal of Research in Rehabilitation Sciences. 2012; 8(2):208-309.

[8] Nyland J, Smith S, Beickman K, Armsey T, Caborn DNM. [Frontal plane knee angle affect dynamic postural control strategy during unilateral stance. Medicine & Science in Sports & Exercise. 2003; 35(7):1150-7. [DOI:10.1097/00005768-200307000-00016] [PMID]

[9] Panahabadi M, Aghayari A, Salari Esker F, Anbarian M. [The effect of genu varum deformity on balance control following postural perturbation in adolescent girls (Persian)]. Scientific Journal of Kurdistan University of Medical Sciences. 2013; 18(2):67-76.

[10] Shojaedin SS, Faghihi H. [The relationship between knee varus with dynamic and static postural control in adolescence boys (Persian)]. Journal of Teaching Physical Education. 2014; 21(1):1-7.

[11] Mirmoezzi M, Amini M, Khaladon A, Khoshadi D. [Effect of 8-week of selected aerobic exercise on static and dynamic balance in healthy elderly inactive men (Persian)]. Salmand: Iranian Journal of Ageing. 2016; 11(1):202-9. [DOI:10.21859/sija-110202]

[12] Kiesel K, Pliky PJ, Voight ML. [Can serious injury in professional football be predicted by a preseason functional movement screen? North American Journal of Sports Physical Therapy. 2007; 2(3):147-56. [PMID] [PMCID]

[13] Salehzadeh K, Fathi Rezaee Z, Zamani Sani SH, Sadr Haghghi KH. [Physical self-concept, body mass index, and physical activity level among college students (Persian)]. Developmental Psychology (Journal of Iranian Psychological). 2011; 9(29):85-96.

[14] Turkeri C. [The effects of 12 weekly salsa training on bmi and static balance. Cukurova University Education Journal. 2014; 44(1):10-22. [DOI:10.14812/cuejf.2015.001]

[15] Smith C, Chimera N, Warren W. [Association of y-balance test reach asymmetry and injury in division I athletes. Medicine & Science in Sports & Exercise 2015; 47(1):136-41. [DOI:10.1249/MSS.000000000000380] [PMID]

[16] Chimera N, Smith C, Warren W. Injury history, sex, and performance on the functional movement screen and Y balance test. Athletic Training. 2015; 50(5):475-85. [DOI:10.4085/1062-6050-49.6.02] [PMID] [PMCID]

[17] Johnson F, Leil S, Waugh W. The distribution of load across the knee. A comparison of static and dynamic measurements. The Journal of Bone and Joint Surgery British Volume. 1980; 62-B(3):346-9. [DOI:10.3322/0301-620X.62B3.7410467]

[18] Thacker SB, Stroup DF, Branche CM, Gilchrist J, Goodman RA, Porter Kelling E. Prevention of knee injuries in sports. A systematic review of the literature. The Journal of Sports Medicine and Physical Fitness. 2003; 43(2):165-79. [PMID]

[19] Zemkova E, Hamar D. The effect of 6-week combined agility-balance training on neuromuscular performance in basketball players. The Journal of Sports Medicine and Physical Fitness. 2010; 50(3):262-7. [PMID]

[20] McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerella A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Medicine & Science in Sports & Exercise. 2007; 39(3):502-14. [DOI:10.1249/mss.0b013e3180d447f0] [PMID]

[21] Peterson ML, Christou E, Rosengren KS. Children achieve adult-like sensory integration during stance at 12-years-old. Gait & Posture. 2006; 23(4):455-63. [DOI:10.1016/j.gaitpost.2005.05.003] [PMID]

[22] Brown LA, Shumway-Cook A, Woolacott MH. Attentional demands and postural recovery: The effects of aging. Journal of Gerontology. 1999; 54(4):165-71. [DOI:10.1093/gerona/54.4.M165] [PMID]

[23] Du Pasquier RA, Balnc Y, Sinnreich M, Landsi T, Burkhard P. The effect of aging on postural stability: A cross sectional and longitudinal study. Neuropsychiologi Clique. 2003; 33(5):213-8. [DOI:10.1016/j.neucli.2003.09.001] [PMID]

[24] Sadeghi H, Mosavi SK, Dizaj E. [Postural stability comparison in various standing positions between healthy young men and those with genu varum (Persian)]. Journal of Research in Rehabilitation Sciences. 2014; 10(4):481-91.

[25] Barrett RS, Lichtwark GA. Effect of altering neural muscular and tendinous factors associated with aging on balance recovery using the ankle strategy. Journal of Theoretical Biology. 2008; 254(3):546-54. [DOI:10.1016/j.jtbi.2008.06.018] [PMID]

[26] Desai SS, Shetty GM, Song HR, Lee SH, Kim TY, Hur CY. Effect of foot deformity on conventional mechanical axis deviation and ground mechanical axis deviation during single leg stance and two leg stance in genu varum. Knee. 2007; 14(6):452-7. [DOI:10.1016/j.knee.2007.07.009] [PMID]

[27] Norasteh AA, Hosseini R, Daneshmandi H, Shah Heidari S. [Balance assessment in students with hyperkyphosis and hyperlordosis (Persian)]. Sport Medicine (Harakt). 2014; 6(1):57-71.

[28] Raykar R, Tajne K, Palekar T. Effect of forward head posture on static and dynamic balance. World Journal of Pharmaceutical Research. 2018; 7(9):797-808.

[29] Stief F, Bohma H, Schwartz A, Dussa CJ, Dodderlen L. Dynamic loading of the knee and hip joint and compensatory strategies in children and adolescents with varus malalignment. Gait & Posture. 2011; 33(3):490-5. [DOI:10.1016/j.gaitpost.2011.01.001] [PMID]

[30] Junge A, Dvorak J. Soccer injuries: A review on incidence and prevention. Sports Medicine. 2004; 34(13):929-38. [DOI:10.2165/00007256-20044313-00004] [PMID]

[31] Anker LC, Weerdsteyn V, van Nes LI, Nienhuis B, Straatum H, Geurts AC. The relation between postural stability and weight distribution in

Hosseini R, et al. The Comparison of Balance Between 11-14 Years Old Athletes With and Without Genu Varum. J Sport Biomech. 2019; 4(4):54-60.
healthy subjects. Gait & Posture. 2008; 27(3):471-7. [DOI:10.1016/j.gait-post.2007.06.002] [PMID]

[32] Haim A, Rozen N, Dekel S, Halperin N, Wolf A. Control of knee coronal plane moment via modulation of center of pressure: A prospective gait analysis study. Journal of Biomechanc. 2008; 41(14):3010-6. [DOI:10.1016/j.jbiomech.2008.07.029] [PMID]