Energy optimization of industrial drive at Sanjivani sugar factory

Dipesh B. Pardeshi¹, Shraddha Maurya², Renuka S. Rasal³, Dhanshri A. Narayane⁴

¹,²,³,⁴Department of Electrical Engineering, Sanjivani College of Engineering, Kopargaon Maharashtra INDIA
Corresponding Author: e-mail: pardeshidipshielect@sanjivani.org.in, Tel +91-8369859009

Abstract

India's power sector is facing an actuate problem of meeting the growing demand of electricity. Improving energy efficiency by employing energy efficient devices would be the better alternative for meeting apart of the new demand. The use of energy efficient motor instead of standard induction motor in agricultural and industrial sector. It will result into substantial saving in electrical energy over a standard motor. The effort taken introduced in this paper analyze use of additional energy in different norm in a cycle plant in addition energize the utilization of energy productive motor over standard Induction Motor with boundary like motor input power (kVA), energy consumed (kWh), apparent power, power factor and efficiency (kW).

Keywords: Motor losses, rewinding, payback period, Electric Efficient motor, Harmonics, Energy Crunch, Induction motor, efficiency.

DOI: http://dx.doi.org/10.4314/ijest.v14i3.4S

Cite this article as:

Pardeshi D.B., Maurya S., Rasal R.S., Narayane D.A. 2022. Energy optimization of industrial drive at Sanjivani sugar factory, International Journal of Engineering, Science and Technology, Vol. 14, No. 3, pp. 29-37. doi: 10.4314/ijest.v14i3.4S

Received: January 14, 2022; Accepted: January 14, 2022; Final acceptance in revised form: January 17, 2022

This paper was earlier presented at the SDCEE-2021: 1st International Online Conference on Sustainable Development in Civil and Electrical Engineering, National Institute of Technology Kurukshetra, Kurukshetra, India, December 17-19, 2021 and substantially improved for this Special Issue. Guest Editors: (i) Dr. Sri Niwas Singh, Professor (HAG), Department of Electrical Engineering, Indian Institute of Technology Kanpur, 208016 (U.P.) India, Director, ABV-Indian Institute of Information Technology & Management Gwalior; (ii) Dr. Ashwani Kumar, SMIEEE, Fellow IE (I), Fellow IETE (I), LMISTE, LMSCIEI, Professor and Head, Department of Electrical Engineering, NIT Kurukshetra Haryana, India. Dr. Kumar has 27 years teaching experience and an industrial experience of 2 years, 8 months.

1. Introduction

In the present power situation, we are confronting a significant power crunch. Step by step hole among request and supply of electric energy is enlarging at the pace of 3%. Overcoming this issue from supply side is a truly challenging and costly extent. The main feasible way in dealing with these emergencies, notwithstanding limit expansion, is the effective utilization of accessible energy, which is conceivable by utilizing energy productive gadgets. Electric motors are fundamental industry's need. Enterprises devour about half of the power created in the nation and electric motors burn-through around 70% of the complete power utilized in the mechanical area. Larger part of the intention loads uses squirrel confines acceptance motor as the driving component.

An enlistment motor is one of the main innovations in present day history. Three stage enlistment motor is the for the most part normally utilized motor for mechanical applications. These motors have come in a variety of ratings and used across wide range of application. The share of electrical energy consumption by motors in MSEB units is subtracted in terms of motor efficiency. In most application conventional motors are used within the efficiency range 70-90% depending on size. Often improper voltage, voltage fluctuation, improper lubrication, damaged bearings etc. lead to rise in motor winding temperature ultimately leading to
failure. These is 1% motor efficiency drop in each rewinding campaign. Thus, the conventional motors lead to significant energy consumption which add on the operational cost of industry, rewinding motor further multiply this cost. The energy efficiency in this field warns us stepping stone to work as a profitable and progressive future.

Energy efficient motor integrates low-loss materials to reduce losses, such as core losses and copper losses. Induction motor has been revealed to have consumed majority of the energy generated. The use of energy efficient motors has been described as one way of mitigating global warming and optimizing energy consumption.

2. Energy Efficient Motor

The motivation behind energy effective motors is to have the option to supply a similar degree of energy administration just utilizing less energy. Effective energy use is accomplished principally through a more proficient innovation or interaction instead of by change in individual conduct. Energy preservation diminish the energy utilization. Additionally, the energy productive motors use worked on motor plan and great materials to decrease motor misfortunes, in this way working on motor efficiency. Performance of EEM is better than STM under full, partial and no-load conditions. Due to higher efficiency, EEM not only save energy in their own and contribute to reduced demand but also energy in the cables and transformer that supply the motor.

Energy efficient motor runs cooler. As thermal stresses are low, cooling requirements are low. EEM orientation runs about 10°C cooler than STM bearing. This duplicates the protection life. EEM windings run 20°C cooler which expands protection life by multiple times. As EEM have lower losses, their slip is smaller than the standard motor. This small slip causes them to have lower starting torque than the standard motor. Produces a similar shaft yield yet utilizes less input power than a standard efficiency motor is a tradeoff between efficiency perseverance, beginning force and starting expense with solid accentuation on introductory expense standard motor for the most part finishes on costs, not efficiency not cost. There are generally three stage acceptance motors are utilized in industry.

3. Type of Induction Motors

3.1 Squirrel cages induction motor: Squirrel cage induction motor is including various slim bars, typically aluminum mounted in a covered chamber in rotor the bars are organized evenly and generally corresponding to rotor shaft. Toward finish of rotor bars be situated associated along using shorting ring.

3.2 Phase wound or slip ring IM: Slip ring induction motor is kind of IM in which slips ring are associated with rotor twisting and, in the motor, there is additionally a copper wire winding is place instead of copper bars staring force of slip rung motor can be expanded by embedding outer opposition in rotor circuit.

It is worthwhile that a motor rating survey is carried out in Sanjivani Sugar Factory and Fig. 1 shows a picture of authentic induction motor for which payback period calculation was done out of total 28 motors. The following methodology can be adopted.

- Select important motors by size and long running hours. Initially, ignore small motors (below 3.7 kW) as well as those running for few hours (less than 3000 hours/annum).
- Measure normal running current and input power. Kindly note that even on no load, motors take
30% to 40% of the rated current. Hence percentage motor load is not given exactly by the ratio of motor input current to rated current.

- Identify motors with loads less than 40%, out of these again categories frequently rewound motors.
- Prepare a list of desired, properly sized motors for all important applications.
- Interchange by properly sized motors (available in the plant) whenever possible.
- After motor burnouts, instead of rewinding, replace with properly sized high efficiency motors.

The process of energy audit flowchart shown in the Fig. 2.

![Energy Audit process flowchart](image)

Table 1: Comparison of motor running cost life cycle costs

	Motor A	Motor B	Motor C	Motor D
Motor rating (kW)	7.5	7.5	37	37
Efficiency, p.u	0.86	0.88	0.92	0.93
Power input(kw)	8.72	8.52	40.22	39.78
Running hours/year	6000	6000	6000	6000
Energy input(kwh/year)	52320	51120	241320	238680
Running cost @Rs.5 per kwh	26,16,000	25,56,000	12,06,600	11,93,400
Running cost for 10 years (Rs.)	26,16,000	25,56,000	12,06,600	11,93,400
First cost (Rs.)	15000	18000	80000	96000
First cost as % of running cost for 10 years	0.6	0.7	0.8	0.9

Table 1 shows importance of motor running cost- life cycle costs by comparison of two motors, i.e. Motor A and Motor B having same rating. A small amount of difference in efficiency play a major role in running cost of motor for a particular period. Similarly, for Motor C and Motor D is having same rating but running cost affects due to slight change in efficiency of the motor. The law of diminishing returns suggests that even a good thing can be overdone, properly applied, life-cycle cost analysis (LCCA) is a decision support tools that will lead to appropriate energy project choices. In many applications it is worthwhile replacing motors even when considerable working life remains. Motors can run without problems for 20 years or more with good protection and routine maintenance. However, if they are running inefficiently, it is worthwhile replacing them as running costs are much more than first costs. Motors can be considered as consumable items and not capital items, considering the current energy prices.

4. Rewinding of A Standard Motor

When the motor winding burns due to overheating old winding is stripped out and replaced with a new one this rewinding is very common which often leads to poor performance and deterioration of efficiency in case of a standard motor for this there are number of reasons which are as follows.

- Every slight damage of core or insulation between the stamping may result into increased losses.
- Overheating prior to rewinding might change the characteristics of stator core which may result in increase in iron losses.
- In addition, if better insulation is not provided or if proper procedure is not followed degradation takes place which is often overloaded so as to minimum the cost but that result into high running charges.
- Fitting of all-inclusive cooling fans, which may possibly nor intend aimed at specific motor, prompts increment in windage misfortunes.

5. Efficiency of EEM

An Energy Efficient Motor (EEM) creates a similar shaft yield power, however utilizes a smaller amount input power than a standard efficiency motor. Energy proficient motors smear less power & preceding more than NEMA motors of a similar size.

\[
\text{EFFICIENCY} = \frac{\text{MECHANICAL POWER OUTPUT}}{\text{ELECTRICAL POWER INPUT}}
\]

Motor productivity is a factor of an assortment of mechanical and electrical defects inside the engine. Whatever input power supplied to the motor or is not converted to output due to the losses taking places in the motor as.
Stator copper loss 40%
Rotor copper loss 20%
Iron loss 25%
Friction and windage loss 10%
Stray loss 5%

5.1 Factor Effecting Motor Efficiency:
A. Effect of harmonics on motor efficiency
Harmonics are distortions in voltage and current waveform which impact greatly on the efficiency of a motor. With the development in power electronics, impact of harmonics in the industrial loads has been significant. These are non-linear in nature and as such, on-sinusoidal currents are drawn by motors.
B. Effect efficiency and the environment
Currently, there is a growing concern of global warming which has driven passion towards designing machines with capacity to conserve the environment. With an improvement in energy efficiency conversion, dangerous gases such as CO2 would be reduced drastically as more energy would be produced, this will also lead to large amount of energy saving
C. Motor efficiency variation with load
Design specification requires that electric motor among 50 percentages to 100 percentage of valued load. Typically, maximum efficiency remains achieved close to 75 percentage of rated load efficiency of motor decreases below 50 percentage of rated load. Nevertheless, efficiency varies with type of motor. Motor appears to be overloaded, efficiency decreases.

6. Design of EEM
Design of EEM to involves addition of more active magnetic and conducting material, optimum design of slots, air gaps winding so as to achieve maximum efficiency points are considered.
1. Core losses
2. Friction and windage losses
3. Copper losses
4. Stray losses
5. Other design aspects
Design aspect air gap between stator and rotor is improved to decrease the magnetizing current and related losses these results addicted to improved power factor.

6.1 Data Analysis: In this project, the data of 25 electric motor are operating in industry have been collected. the data include motor rating, speed, efficiency, current and power factor. following table shows the data of operating motors in industries.

6.2 Data Collection: In this project data of 25 induction motors functioning in a process factory have been considered. Standard induction motor operating in sanjivani sugar factory is ancient in addition to have deprived efficiency. The functioning time for motor is 24hr every day, because of low force factor and high misfortunes, a standard acceptance motor devours more energy. The absolute heap of 8 standard acceptance motor is 597kw, so to decrease industry load and for energy preservation we use energy productive motors. the functioning days are viewed as 300 days. The data were calculated for 25 motors and shown in the table 2.

Sr. No	RPM	KW	HP	Mounting	Efficiency	Current	Voltage	Frequency	Frame Size	Amb	Ins. class	Location	Company
1	1485	110	150	Foot mounted	94.50%	240	415±10	50 Hz	ND-315S	50ºC	F	Mill section crane carrier	NGEF
2	992	400	550	Foot mounted	93.50%	728	415±10	50 Hz	SCXF100XV-T	50ºC	F	Mill section crane carrier	Kirloskar
3	2955	30	40	Flange mounted	91%	50	415±10	50 Hz	SC200L	50ºC	F	Boiler section	Kirloskar
4	2955	200	270	Foot mounted	91%	323	415	50 Hz	315L	50ºC	F	Boiler section	Kirloskar
5	2825	15	20	Foot mounted	90.30%	27	415±10	50 Hz	ND160M	50ºC	F	Centrifugal section	Siemens
6	960	18	25	Foot mounted	85%	32	415±10	50 Hz	SR1808	50ºC	F	Centrifugal section	Apex
7	740	560	750	Foot mounted	86%	992	415	50 Hz	TPR500E	50ºC	F	Mill section	Kirloskar
8	1474	18.5	25	Foot mounted	91.50%	32	415±10	50 Hz	ND180M	50ºC	F	Rack carrier mill section	Crompton
9	1440	125	170	Foot mounted	94.80%	230	415	50 Hz	B160	50ºC	F	Raw juice pump mill section	Crompton

Table 2: Data collection of 25 motors
Payback period calculation for EEM may be carried out for three different cases shown in the table 3. Annual energy saving due to EEM is given by

Simple Payback for new motor purchase or repair versus replace scenario, years

\[\text{Price premium} - \text{Utility rebate} \]

Total annual cost savings

Simple payback period for replacing an operating motor, years

\[\frac{\text{Fresh motor cost} + \text{installation charge} - \text{utility rebate}}{\text{Total annual cost savings}} \]

Annual energy saving in rs,

\[\text{kW} \times P \times H \left[\frac{100}{E_2} - \frac{100}{E_1} \right] \times \text{RS/KVA} \]

\[\text{E1, E2 = Efficiency of EEM and STM} \]
\[\text{KW = Motor rating} \]
\[\text{P = rate of energy Rs/kwh} \]
\[\text{H = On. Of motor operating hours per year} \]

Payback period = \[\frac{\text{extraction of EEM}}{\text{total savings}} \]

For replacement of STM by EEM payback period may vary from 2 to 4 years.

Sample Payback Period Calculations

1. kW consumption for existing motor=110*100/94.50 = 116.4021164
2. kW consumption for IE4 motor=110*100/96.30 = 114.22633759
3. Saving in Kw consumption=116.4021164-114.22633759 = 2.175405
4. Saving in kw-hr (considering 300 day & 24 hr consumption)
5. Energy consumption of existing motor = 110 x 24 x 300 / 0.9450 = 838095.2381
6. Energy consumption for IE4 = 110 x 24 x 300 / 0.9630 = 822429.90
7. Saving in kw-hr = 838095.2381 - 822429.90 = 15665.33
8. Saving in INR considering INR 8 per kw-hr = 8 x 15665 = 125323
9. Invest for IE4 motors = Rs. 523368
10. Payback period = 523368 / 125323 = 4.2 years

8. Results

In this project, the data of 27 electric motor are operating in industry have been collected, analysis and send for implementation. The one operating motor data is selected for analysis shown in table 4 which clearly shows improvement in efficiency 1.80 percentage increment for the same rating, speed and voltage.

S. No	RPM	Rating (kw)	Efficiency	Frame Size	ABB Frame	IE4 Efficieny	Kw consumption for Existing motor	Kw consumption for IE4 motor	Saving in kw consumption	Saving Kwh (considering 300 day for 24hr. per day)	Saving in INR Considering INR 8 per Kwh per year	Invest for IE4 motor	Payback period (Yrs)
1	1485	110	94.50 %	ND-315S	M3BP315S MC4	96.30 %	116.402116	114.226376	2.17570449	15665	125323	523368	4.2
2	2955	30	91 %	SC200L	M2BAX20 OMLA2	94.50 %	32.967033	31.7460317	1.22100122	8791	70330	160720	2.3
3	2955	200	91 %	315L	M3BP315 MLB2	96.50 %	219.78022	207.253886	12.526338	90190	721517	887490	1.2
4	1400	30	83.58 %	LD250S	M3BAX20 OMLA4	94.90 %	35.8937545	31.6122234	4.28153109	30827	246616	147744	0.6
5	980	45	92.70 %	M3BP280S MB6	94.80 %	48.5436893	47.4683544	1.07533489	7742	61939	381510	6.2	
6	1460	30	92.30 %	LC180L	M2BAX20 OMLA4	94.90 %	32.5027086	31.6122234	0.89048517	6411	51292	147744	2.9
7	2980	160	94.80 %	315L	M3BP315 MLA2	96.30 %	168.776371	166.147456	2.62891544	18928	151426	779922	5.2
8	2935	22	91.30 %	LDIBOL MK11	M2BAX18 OMLA2	94.00 %	24.0963855	23.4042553	0.69213022	4983	39867	106624	2.7

Table 3: Payback Period Calculations of Motors

Table 4: Data for one operating motors

Parameter	Standard Induction Motor	Energy Efficient Motor
RPM	1485	1485
Voltage	415	415
Efficiency	94.50 %	96.30 %
Kw(rating)	110	110
Frequency	50Hz	50Hz
Frame size/ ABB Frame	ND-3155	M3BP315SMC4
From the Fig. 3, it has been tracked down that the restitution period for utilizing energy effective motors is reasonable. (for example inside 1 to 3 years). Below Fig. 4 shows study which exposed that a significant measure of energy as more service bills can be saved assuming that high productivity motors are utilized for modern motors. Instruction and data dessimation through mass or broad communications may surely assume significant part in making mindfulness about the advantage of energy efficient products. In the field of sugar factory like this, which are established in era of 1970s and till running, doing production of sugar and byproducts, there is serious need to look in such aspects and increase utilization of energy efficient motors and other advanced energy efficient products to reduce consumption of energy from demand side. In the sugar factory, the old and rewound induction motors of different horsepower are to be studied for different types of losses so as to determine the overall efficiency of the induction motors. Then, these efficiencies are compared with the efficiencies of new induction motors. After that, it has been found that it is better to replace the old and rewound induction motors with the new ones as the payback period is found to be existing in the range of 1 to 4 yrs to as less as 6 months.
Fig. 5. Comparative result of total annual energy consumption of EEM and regular induction motor

Fig. 5 is a figure that shows comparative result of EEM and induction motor and investigation of residual energy productive motors supplanting over standard acceptance motors of same rating should be possible similarly. Also, it is tracked down that the all-out motor heap of energy proficient motors is 499 kW when contrasted with 511 kW of standard motor. The underlying expense of energy proficient motor is high when contrasted with standard motors yet prompts enormous energy saving in measure plant. The restitution time of any remaining rating motors fluctuates from 1.36 to 3.4 year is determined as above and it is affordable for plant. For different motors a lot of energy additionally saves.

9. Conclusion

It has been observed that, within the same frame size, the full load efficiency of the new motor is about 2.5% more than that of the standard motor and the input kVA is 3% less than that of standard motor. The active material cost of the energy efficient motor is up to 15% more than that of the standard motor, but the extra cost is paid back within a reasonable period, which is calculated to be even less than very short period for the prevailing cost structure. Though there are few limitations of EEM over STM, like 15 to 20% increase in the cost, low starting torque etc. EEM should be preferably installed for the application where annual motor running is minimum 1500 hours. The results show that the conditional monitoring to the motor helps to reduce the energy losses as well as to reduce the overall economical parameters of motor.

References

Vaidya G.A. 2010, Energy efficient motor, Pune – 411009, Vol 2, No. 12, June 2010.
Singh N., Brar N.K., Dhingra A., 2015, A case study of energy saving using energy efficient motors in a process plant, International Journal of Engineering and Advanced Technology, Vol. 4, No. 5, pp. 90-92
Ogbogu. N. O., Nzenwa E. C. 2019, Review of energy conservation using energy efficient motor, University of Port Harcourt, River State, Nigeria, Vol.7, No. 11.
Maher Al-Badri, Pragasen Pillay, Pierre Angers, "A Form based Induction Machine Efficiency Estimation Tool", Electric Machines & Drives Conference (IEMDC) 2019 IEEE International, pp. 135-139, 2019.
Noor M. Maricar, Md. Noah Jamal, “Industrial energy audit using data mining model web application”.
S. Buchanan and R. Taylor, “The electricity consumption impacts of commercial energy management systems” IEEE Trans. Power Syst., Vol. 4, pp. 213-219 February 1989.
Jesús Pacheco, José A. Farías, Jaime J. Rodríguez, Mohamed Badaoui, Oscar Carranza, Rubén Ortega, "Interior point method based efficiency optimization for an induction motor drive", Central America and Panama Convention, IEEE 37th, pp. 1-7, 2017.
C. Thanga Raj, S. P. Srivastava, Pramod Agarwal, "Cost minimization and its realization on induction motor design via SPEED/PC-IMD", India Conference 2008. INDICON 2008. Annual IEEE, vol. 1, pp. 46-50, 2008.
Z. Rouabah, F. Zidani, B. Abdelhadi, "Efficiency optimization of induction motor drive using fuzzy logic and genetic algorithms", Industrial Electronics 2008. ISIE 2008. IEEE International Symposium on, pp. 737-742, 2008
R. Alejandro Cabezas, M. Aníbal Valenzuela, "Expected savings using loss-minimizing flux on im drives Part I: Optimum flux and power savings for minimum losses", Pulp and Paper Industry Technical Conference Conference Record of 2014 Annual, pp. 163-173, 2014.
Navneet Kumar, Thanga Raj Chelliah, S. P. Srivastava, "Energy conservation study on induction motors using MATLAB/Simulink for enhancing electric machinery courses", Teaching Assessment and Learning for Engineering (TALE) 2012 IEEE International Conference on, pp. H4B-10-H4B-16, 2012.
Alejandro Andres Cabezas Rebollo, M. Anibal Valenzuela, “Expected Savings Using Loss-Minimizing Flux on IM Drives—Part I: Optimum Flux and Power Savings for Minimum Losses”, Industry Applications IEEE Transactions on, vol. 51, no. 2, pp. 1408-1416, 2015.

R. B. Randall, Vibration-based Condition Monitoring, Willey, John & Sons, Inc., 2011.

P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines, Clarendon Press, Oxford, 1993.

D. E. Bently, C. T. Hatch, B. Grissom, Fundamentals of Rotating Machinery Diagnostics, Bently Pressurized Bearing Press, Technology & Engineering. 2002.

M. Tsyplkin, “Induction Motor Condition Monitoring: Slip Frequency and Pole Pass Frequency – a Clarification of Definitions,” Vibration Institute Proceedings. National Technical Training Symposium and Annual Meeting, Oak Brook Illinois, pp. 75-81, June, 2010.

Tr. Munteanu, E. Rosu, M. Gaiceanu, R. Padurarui, T. Dumitriu, M. Culea, C. Dache, "The optimal control for position drive system with induction machine”, Power Electronics and Applications 2009. EPE ’09. 13th European Conference on, pp. 1-8, 2009.

Mayuri Karpe, Santosh Ghosh, Naveen Shindhe, Ravindra Birajdar, Dilip Bhave, “Optimization of Single-Phase Induction Motor”, Energy Conversion (CENCON) 2019 IEEE Conference on, pp. 115-120, 2019.

Blanusa, Branko. (2010). New Trends in Efficiency Optimization of Induction Motor Drives. 10.5772/10427.

Omorogiuwa, Dr & Christian, Ayor. (2018). Energy Efficiency Optimization Of Three Phase Induction Motor Drives For Industrial Applications. International Journal of Engineering and Applied Sciences (IJEAS). 5. 10.31873/IJEAS.5.8.20.

R. Saidur, T. M. I. Mahilla, “Impacts of energy efficiency standard on motor energy savings and emission reductions”, Clean Techn Environ Policy, Springer Publication, December 2009.

Ramanpreet Singh, Jasvir Singh, RamandipSingh “Pay Back Period of New Motors & Losses Comparison with Rewound Induction Motors Used In Rice Mill”, IOSR Journal of Electrical and Electronics Engineering, Volume 10, Issue 2 Ver. II (Mar – Apr. 2015), PP 47-51

Penrose H. W., “Financial Impact of Electrical Motor System Reliability Programs”, All-Test Division, BJM Corp, 2003.

John S. H., John D. K., “Comparison of Induction Motor Field Efficiency Evaluation Method”, IEEE Transactions on Industrial Applications, Vol. 34, No. 1, Jan/Feb 1998.

Bureau of Energy Efficiency (BEE), Energy Efficiency in Electrical Utilities: Electric Motors, Available at: http://emtindia.com/BEE-Exam/GuideBooks/book3.pdf

Bureau of Energy Efficiency (BEE), Energy Performance Assessment for Equipment & Utility Systems: Electric Motors and Variables Speed Drives, Available at: http://emtindia.com/BEE-Exam/Guide Books/book4.pdf

Bureau of Energy Efficiency (BEE), General Aspect of Energy Management and Energy Audit: Financial Management, Available at: http://emt-india.com/BEE- Exam/ GuideBooks/book1.pdf

Ali Hasanbeigi, Lynn Price, “Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in industrial Facilities” 2010.

Biographical notes

Dipesh B Pardeshi received Bachelor degree in Electrical Engineering from Government College of Engineering, Karad and M.E. from Government College of Engineering, Aurangabad and successfully completed Ph.D. in 2021. He is an Associate Professor and Head of Department of Electrical Engineering at Sanjivani College of Engineering, Kopargaon, Maharashtra, India, having 21 years of vast experience. His research interests include renewable energy, electrical machine, power system and power system problems. He is a Fellow of IE (India), Life Member of ISTE (India), member of IEEE and also Chartered Engineer of IE (India).

Shraddha Maurya received B.Tech degree in Electrical and Electronics from Gautam Buddha Technical University, Lucknow Uttar Pradesh and M.Tech degree from Maharishi Dayanand University, Rohtak Haryana. She is an Assistant Professor in Department of Electrical Engineering at Sanjivani College of Engineering, Kopargaon, Maharashtra, India, having more than 7 years of experience in teaching and research. Her research interests include Electric Motor Drives, electrical machine, Power Converters. She is a Life Member of IAENG.

Renuka Rascal received Bachelor degree in Electrical Engineering and M.E from Government Engineering College, Aurangabad. She is an Assistant Professor in Department of Electrical Engineering at Sanjivani College of Engineering, Kopargaon, Maharashtra, India, having more than 1 years of experience. She has life time Membership of IAENG.

Dhanshi Narayane received Bachelor degree in Electrical Engineering from Amrutvahini College of Engineering, Sangamner and M.Tech from Sandip University, Nashik. She is an Assistant Professor in Department of Electrical Engineering at Sanjivani College of Engineering, Kopargaon, Maharashtra, India, having more than 1 years of experience. She has life time Membership of IAENG.