The use of contrastive loss for representation learning has become prominent in computer vision, and it is now getting attention in Natural Language Processing (NLP). Here, we explore the idea of using a batch-softmax contrastive loss when fine-tuning large-scale pre-trained transformer models to learn better task-specific sentence embeddings for pairwise sentence scoring tasks. We introduce and study a number of variations in the calculation of the loss as well as in the overall training procedure; in particular, we find that data shuffling can be quite important. Our experimental results show sizable improvements on a number of datasets and pairwise sentence scoring tasks including classification, ranking, and regression. Finally, we offer detailed analysis and discussion, which should be useful for researchers aiming to explore the utility of contrastive loss in NLP.

1 INTRODUCTION

Recent years have seen a revolution in Natural Language Processing (NLP) thanks to the advances in machine learning. While a lot of attention has been paid to the architectures, especially for deep learning, there has been less focus on studying loss functions. At the same time, loss functions based on similar or on the same ideas were reinvented multiple times under different names. This can cause difficulties when solving new problems or when designing new experiments based on previous results. To a greater extent, this applies to “universal” loss functions, which can be applied in different machine learning areas and tasks such as Computer Vision (CV), Recommendation Systems, and NLP. An example of such universal loss function is the batch-softmax contrastive (BSC) loss, which we will discuss below. Our contributions can be summarized as follows:

• We study the use of a batch-softmax contrastive loss for fine-tuning large-scale transformers to learn better task-specific sentence embeddings for pairwise sentence scoring tasks.
• We introduce and study a number of variations in the calculation of the loss such as symmetrization, incorporating labeled negatives, aligning scores on the similarity matrix diagonal, normalizing over the batch axis, as well as in the overall training procedure, e.g., shuffling, trainable temperature, and sequential pre-training.
• We demonstrate sizable improvements for a number of pairwise sentence scoring tasks such as classification, ranking, and regression.
• We offer detailed analysis and discussion, which would be useful for future research.
The contrastive loss was proposed by Hadsell et al. (2006) as metric learning that contrasts Euclidean distances between embeddings of samples from one class and between samples from different classes. Weinberger et al. (2006) suggested the triplet loss, which is based on a similar idea, but uses triplets (anchor, positive, negative), and aims for the difference between the distances for (anchor, positive) and for (anchor, negative) to be larger than a margin. N-pair loss was presented as a generalization of the contrastive and the triplet losses as a way to solve the problem of extensive construction of hard negative pairs and triplets (Sohn, 2016).

To this end, a batch of N pairs of examples from N different classes is sampled, and the first element in each pair is considered to be an anchor. Thus, for each anchor, there are one positive and $N - 1$ negative pairs. The loss contrasts the distances simultaneously using the softmax function over dot-product similarities. The approach was used successfully in computer vision (CV) tasks. The same method of Multiple Negative Ranking for training Dot-Product Scoring Models was applied to ranking natural language responses to emails (Henderson et al., 2017), where the loss uses labeled pairs.

A similar idea, called Negative Sharing, was used to reduce the computational cost when training recommender systems (Chen et al., 2017). Wu et al. (2018) presented an approach with N-pairs like logic, as a Non-Parametric Softmax Classifier, replacing the weights in the softmax with embeddings of samples from such classes. It was also proposed to use L2 normalization and temperature. Yang et al. (2018) proposed to use Multiple Negative Ranking to train general sentence representations on data from Reddit and SNLI. Logeswaran & Lee (2018) presented a Quick-Thoughts approach to learn sentence embeddings, which constructs batches of contiguous sets of sentences, and for each sentence, contrasts the next sentence in the text and all other candidates.

A lot of subsequent work has focused on maximizing Mutual Information (MI). Oord et al. (2018) presented a loss function based on Noise-Contrastive Estimation, called InfoNCE. It models the “similarity” function that estimates the MI between the target (future) and the context (present) signals, and maximizes the MI between temporally nearby signals. If this “similarity” function expresses the dot-product between embeddings, the InfoNCE loss is equivalent to the N-pair loss up to some constants. It was also shown that InfoNCE is equivalent to the Mutual Information Neural Estimator (MINE) up to a constant (Belghazi et al., 2018), whose minimization maximizes a lower bound on MI. Deep InfoMax (DIM) (Hjelm et al., 2019) improves MINE, and can be modified to incorporate some autoregression as InfoNCE. However, Tschannen et al. (2020) pointed out that the effectiveness of loss functions such as DIM and InfoNCE might be primarily connected not to deep metric learning but rather to MI.

The idea gained a lot of popularity in Computer Vision with the advent of SimCLR (a Simple framework for Contrastive Learning of visual Representations), which introduced NT-Xent (normalized temperature-scaled cross-entropy loss) (Chen et al., 2020). It uses self-supervised learning, where augmentations of the same image are considered as positive examples and augmentations of different images are used as negative examples. Thus, the task is as follows: for each example in a batch, find its paired positive augmentation. Here, the N-pairs loss is modified with a temperature parameter and with an L2 normalization of embeddings to the unit hypersphere. The loss was further extended for supervised learning as SupCon loss (Khosla et al., 2020), which aggregates all positive examples (from the same class) in the softmax numerator.

Subsequently, these losses were introduced to the field of Natural Language Processing (NLP). Gunel et al. (2020) combined the SupCon loss with the cross-entropy loss and obtained state-of-the-art results for several downstream NLP tasks using RoBERTa. Giorgi et al. (2020) and Fang & Xie (2020) used NT-Xent to pre-train Transformers, considering spans sampled from the same document and sentences augmented with back-translation as positive examples. Luo et al. (2020) proposed to use NT-Xent in a self-supervised setting to learn noise-invariant sequence representations, where sentences augmented with masking were considered as positive examples. Finally, Gao et al. (2021) introduced the SimCLR loss to NLP under the name SimCSE (Simple Contrastive Learning of Sentence Embeddings), where sentences processed by a neural network with dropout served as augmentations of the original sentences. Here, we explore various ways to use a similar loss function for pairwise sentence scoring tasks.

While the above-described loss functions have different names, they are all based on similar ideas. Below, we will use the name Batch-Softmax Contrastive (BSC) loss, which we believe reflects the
Figure 1: For the set of positives pairs \((q_i, a_i)\), e.g., question–answer, for each \(q_i\), the BSC loss contrasts the scores between \(q_i\) and \(a_i\) (positive examples) vs. between \(q_i\) and \(a_j\) for all \(j \neq i\) (negative examples) using softmax. Here \(\cdot\) denotes the dot-product.

main idea best. In our experiments below, we will use the “modern” variant of the loss: with temperature, normalization, and symmetrization components (described in more detail in Section 3.1). These components were not used for NLP in combination before. We further introduce a number of novel and important modifications in the definition of the loss and in the training procedure, which make it more efficient, and we show that using the resulting loss yields better task-specific sentence embeddings for pairwise sentence scoring tasks.

3 METHOD

3.1 BATCH-SOFTMAX CONTRASTIVE (BSC) LOSS

Pointwise approaches for training models for pairwise sentence scoring tasks, such as mean squared error (MSE), are problematic as the loss does not take the relative order into account. For instance, for two pairs with correct target scores (0.4, 0.5), the loss function would equally penalize answers like (0.3, 0.6) and (0.5, 0.4). However, the first pair is better, as it keeps the correct ranking, while the second one does not. This is addressed in pairwise approaches, e.g., in triplet loss, where the model directly learns an ordering. Yet, there is a problem for constructing pairs or triplets in the training set, as it is hard to find non-trivial negatives examples.

Unlike traditional pairwise loss functions, the BSC loss treats all other possible pairs of examples in the batch as “negatives.” That is, only positive pairs are needed for training. Consider a batch \(X\) of pairs from a question-answering dataset. In general, let \(Q_{m \times n}\) and \(A_{m \times n}\) be the matrices of embeddings produced by a query model and an answer model. We define the loss function as follows:

\[
\mathcal{L}_{BSC}(X) = \mathcal{L}_0(X) + \mathcal{L}_1(X)
\]

\[
= -\text{mean} \left(\log \left(\text{diag} \left(\text{softmax} \left(\frac{Q A^T}{\tau} \right) \right) \right) \right) - \text{mean} \left(\log \left(\text{diag} \left(\text{softmax} \left(\frac{A Q^T}{\tau} \right) \right) \right) \right)
\]

(1)

Here, softmax is applied by rows (Figure 1), and \(\tau\) is the temperature. Both components can be rewritten, e.g., \(\mathcal{L}_0(X)\) can be written as follows:

\[
\mathcal{L}_0(X) = - \frac{1}{m \tau} \sum_{i=1}^{m} q_i^T a_i + \frac{1}{m} \sum_{i=1}^{m} \log \sum_{j=1}^{m} \exp \left(\frac{q_i^T a_j}{\tau} \right)
\]

(2)

Mathematically, this loss function is similar to the one presented in (Chen et al., 2020). The difference is that we do not use augmentations, and we do not compare \(q_i\) to \(q_j\) (or \(a_i\) to \(a_j\)) due to their different nature: we want to compare a question to an answer, not a question to a question or an answer to an answer. Thus, we apply the symmetrization in the formula. Note that, although a frequent short answer may fit multiple questions in a batch, such pairs are considered as “negative” examples in the loss. However, the loss learns Mutual Information (Tschannen et al., 2020), that is \(p(q_i, a_i)/(p(q_i)p(a_i))\), and thus it is robust to this false negatives problem.
Early research has already shown the importance of properly configuring and using some BSC loss settings. For example, low temperatures are equivalent to optimizing for hard positives/negatives (Khosla et al., 2020), while L2 normalization of vectors to the unit hypersphere along with temperature effectively weighs different examples (Chen et al., 2020). We further propose a number of important modifications that can have a major impact on the performance for a number of tasks.

3.2 Batch Construction

In computer vision, it is common to use a batch size of 5,000, which in turn would naturally be very likely to contain some hard negative examples. In NLP, fine-tuning Transformer-based models with large batch sizes requires very large amounts of memory. Thus, much smaller batches are used in practice, and as a result, it becomes important to make sure these batches do contain some hard negative examples. We achieve this by fixing the content of the batches at each epoch of the training process. Note that this is much simpler than mining hard negatives, as we only need to increase the likelihood that there would be a hard negative example present in the batch, but we do not need to know which particular example in the batch would be hard. Inside the batch, this would be controlled by the temperature parameter.

Example-based shuffling The key idea of this method is to batch several groups, so that within each group all pairs are similar based on their first or based on their second elements. In this way, each positive pair would be accompanied by hard negatives from the same group and by simpler negatives from the remaining examples inside the batch (which come from other groups). We use the k-nearest neighbors for an input example to form a group for it, and Faiss (Johnson et al., 2019) to quickly find these nearest neighbors in the embedding space. Let the pairs be grouped by their first elements q_i. Algorithm 1 summarizes the proposed method.

Note that we use two stages in kNN to limit the range of possible candidates and thus to reduce the computational costs (both in terms of time and memory). We first extract the top-n neighbors (for some large n, e.g., 500), and then we take the top-k from them, so that no duplicates appear in the final sequence (for some small $k = 7$). The time complexity of such a check is O(1). If all such neighbors are already used, then only the considered example will be added to the resulting sequence. This case will often arise for the last examples, and thus batches will consist of simple 1-element groups. Therefore, we reverse the sequence to start with these simple batches, as in curriculum learning.

By default, we assume that there should be one positive example for each question/answer (on the diagonal of the matrix), and thus identical neighbors could be optionally filtered. Still, if there are the same q_i in the batch X, the loss definition (eq. [1]) does not change. Indeed, let $P_q = \{ j \mid q_i = q_j, (q_i, a_i) \in X \}$, then $\forall i,j \in P_q : (q_i, a_j)$ form a positive pair. According to Khosla et al. (2020), for each q_i, all $q_j \in P_q$ should be placed in the softmax numerator and then averaging over all such q_j should be performed outside the logarithm. Thus, in $L_0(X)$ (eq. [2]) only the first sum would change:

$$\sum_{i \in P_q} q_i^T a_i \longrightarrow \sum_{i \in P_q} \frac{1}{|P_q|} \sum_{j \in P_q} q_i^T a_j = \sum_{i \in P_q} \frac{1}{|P_q|} \sum_{j \in P_q} q_j a_j$$

(3)

And in $L_1(X)$:

$$\sum_{i \in P_q} q_i^T a_i \longrightarrow \sum_{i \in P_q} \frac{1}{|P_q|} \sum_{j \in P_q} q_j^T a_i = \sum_{i \in P_q} \frac{1}{|P_q|} \sum_{j \in P_q} q_j^T a_i = \sum_{i \in P_q} q_i^T a_i$$

(4)

To select the groups even better, we consider task-specific embeddings. To this end, we apply the current model to encode all pairs at each epoch.

Algorithm 1 Example-based shuffling

- **Input:** sequence D, group size s
- initialize $R \leftarrow []$ (sequence to store the result)
- initialize $U \leftarrow \emptyset$ (set of used examples)
- randomly shuffle D
- for $e \in D$
 - if $e \notin U$
 - find the n nearest neighbors of e from D
 - choose the top $s-1$ that are not in U
 - add them and e to R and also to U
- return reversed R
Fast shuffling For extremely large datasets, example-based shuffling is time-consuming even with Faiss; thus, we propose several effective options to perform a less-thorough shuffling. We choose some attribute by which we will group the examples, that is, we guarantee some closeness of the examples. Thus, the examples are close if they share the same words, the same cluster number or the same nearest neighbors. First, consider the case of words and grouping by the first elements of the pairs (the case of the second elements is the same). Algorithm 2 presents the shuffling process.

Algorithm 2 Shuffling by words

```plaintext
Input: sequence \( D \), group size \( k \), shingle size \( t \)

for \( e \) in \( D \) do
  e.shingle \( \leftarrow \) random subset of \( t \) words of \( e \) (ignoring stop-words)
  sort \( D \) by e.shingle

initialize gID \( \leftarrow \) random uint64 \( \triangleright \) group ID
initialize \( s \leftarrow 0 \) \( \triangleright \) current group size
initialize prev \( \leftarrow \) first element of \( D \)

for \( e \) in \( D \) do
  if e.shingle \( \neq \) prev.shingle then
    gID \( \leftarrow \) random uint64
  if \( s \geq k \) then
    gID \( \leftarrow \) random uint64
    \( s \leftarrow 0 \)
    e.gID \( \leftarrow \) gID
    \( s \leftarrow s + 1 \)
    prev \( \leftarrow \) e
  sort \( D \) by e.gID

return \( D \)
```

To produce a shuffle by clusters, we apply the same algorithm, where each sentence is replaced by its cluster number. Thus, each shingle has size \(t = 1 \). In order to make a shuffle by nearest neighbors, we create shingles by “sentences,” where the words are the positions of the top-\(k \) nearest neighbors in the input sequence (for some small \(k \)). All of these approaches, as well as \(k \)-means clustering, can be effectively implemented using MapReduce and parallel computations.

3.3 Labeled Negatives

Usually, when the data size is small, hard negative examples may be hard to obtain even with data shuffling, e.g., when all examples are semantically distant. Nonetheless, if the dataset contains a labeled negative pair with some anchor, then its elements are semantically close by traditional rules of dataset construction. Thus, using such a pair inside the batch, where this anchor is present, will add the necessary hard negative example.

The only change that is added in the loss function is the masking of negative examples—we have no guarantees that the selected negative example is closer to the anchor than the rest of the examples inside the batch. Let \(y_i \) be a binary label, where \(y_i = 1 \) if the \(i \)-th pair is positive. Then, we have

\[
L_0(X) = -\frac{1}{m^T} \sum_{i=1}^{m} \mathbb{1}[y_i = 1] q_i^T a_i + \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[y_i = 1] \log \sum_{j=1}^{m} \exp \left(\frac{q_j^T a_i}{\tau} \right)
\]

3.4 Combo Loss

Theoretically, it is beneficial to use several loss functions for training if they are calculated on the same batch (and thus do not require additional computations). That is, joint training of BSC and MSE losses combines the advantages of pointwise and of pairwise approaches, thus ensuring that for positives examples, the values on the diagonal of the dot-product matrix are not only greater than the rest, but are also close to 1 or to some target similarity. Note that here \(L_{MSE}(X) = \)
\[\frac{1}{m} \sum_{i=1}^{m} ((q_i^T a_i) - y_i)^2 \] for target positive similarities \(y_i \), and thus we do not force all other similarities to zero. At the same time, the BSC loss adds new examples (“negative” pairs) to the training set.

In order to use the BSC loss when training a model in tasks with non-binary labels, we modify the indicator function in the equation [5] as \(\mathbb{I}[y_i > t] \), where \(t \) is a configurable binarization threshold. Then, we use their convex combination with the configurable hyperparameter \(\mu \in (0, 1) \):

\[
L(X) = \mu L_{BSC}(X) + (1 - \mu) L_{MSE}(X)
\] (6)

3.5 Normalization

L2 normalization of matrices \(A \) and \(B \) means that \(a_i^T b_j \) will be equivalent to cosine similarity. The embeddings can also be normalized by the batch dimension (by coordinates), which can bring additional regularization. In our experiments, we confirm the importance of this, e.g., new representations can be calculated with L2 normalization by coordinates or in a min-max scale.

4 Datasets

NLP tasks that compare pairs of sentences can be divided into regression (predicting a similarity score), classification (e.g., similar vs. dissimilar), and ranking (search for the best matches). They differ only by the quality assessment functions, and thus they all can benefit from the above losses.

Note that it is important to calculate sentence representations in ranking tasks, as when independently calculating the embeddings of the individual elements in the pairs, the inference time of the model becomes linear instead of quadratic. Therefore, we use Sentence-BERT (SBERT), which is trained as a Siamese BERT model, and offers a way to obtain state-of-the-art sentence embeddings, which have been proven useful for a number of tasks [Reimers & Gurevych, 2019; Thakur et al., 2020]. At inference time, we first use SBERT to obtain independently a representation for each sentence in the pair, and then we calculate the cosine similarities between these embeddings.

We use the following English datasets and tasks for the evaluation. Four ranking tasks (ranking answers to non-factoid questions, ranking questions by their similarity with respect to other questions, ranking comments by their similarity to a given question, ranking fact-checked claims by their relevance with respect to an input claim), two binary classification tasks (paraphrases identification, and duplicate question identification), and one regression task (semantic sentence similarity).

Antique The dataset contains 2,626 non-factoid questions with answer choices [Hashemi et al., 2019], asked by users on Yahoo! Answers. There are a total of 34,011 question–answer pairs: 27,422 for training and 6,589 for validation. Each answer is annotated with a relevance score with respect to the question on a scale from 1 to 4, and the task is to rank the answers by their relevance. To model relevance as a cosine similarity, we normalize the scores to the \([0, 1] \) interval. We use Mean Reciprocal Rank (MRR) as the main evaluation measure.

CQA-A This dataset was used in SemEval-2017 Task 3 on Community Question Answering subtask A [Nakov et al., 2017]. The goal is to rank the first ten answers in a question thread on Qatar Living, so that good answers are ranked higher than bad ones. We used the clean part of the dataset, which consists of 14,110 and 2,440 labeled question–answer pairs for training and development, respectively. The evaluation measure is Mean Average Precision (MAP). This dataset contains important metadata, e.g., the date and time of the comment, and sorting the comments by time yields a strong baseline; yet, we only use the text. To train the model with the triplet loss, we group the pairs by the first element (anchor).

CQA-B This dataset was developed for SemEval-2017 Task 3, subtask B [Nakov et al., 2017], whose goal was to rank 10 potentially related questions by their similarity with respect to an input question. These questions are retrieved from the Qatar Living forum using Google and the input question as a query. We use the clean part of the dataset, which consists of 19,990 training and 5,500 development labeled question-question pairs. The main evaluation measure here is MAP. There is additional information, e.g., the rank of the retrieved question in the Google search results, which we do not use.

PFCC-S [Shaar et al., 2020] presented a dataset for detecting Previously Fact-Checked Claims on Snopes (PFCC-S), aimed at facilitating the solution of a fact-checking problem: given an input
To train with the BSC loss, we used min-max normalization by coordinates with we did seed optimization, running each approach five times and selecting the best result (on dev). We selected the best checkpoint on dev. As recommended in (Thakur et al., 2020), due to instability, QQP, MRPC and PFCC-S, and for seven epochs for CQA-B, saving a checkpoint after each one, and for the rest. We trained the model for five epochs for Antique, CQA-A and STSb, for six epochs for used the AdamW optimizer with the bias correction for the CQA tasks, and without bias correction but they would also require much more memory. We experimented with learning rates from \{5e-6, 1e-5, 2e-5, 3e-5\}, and we selected (on dev) 3e-5 for CQA-B and 2e-5 for all other experiments. We used the AdamW optimizer with the bias correction for the CQA tasks, and without bias correction for the rest. We trained the model for five epochs for Antique, CQA-A and STSb, for six epochs for QQP, MRPC and PFCC-S, and for seven epochs for CQA-B, saving a checkpoint after each one, and we selected the best checkpoint on dev. As recommended in (Thakur et al., 2020), due to instability, we did seed optimization, running each approach five times and selecting the best result (on dev).

To train with the BSC loss, we used min-max normalization by coordinates with $\tau = 1.2$ for PFCC-S and QQP, standard L2 normalization with $\tau = 0.055$ for CQA-A, $\tau = 0.07$ for CQA-B, and $\tau = 0.1$ for all other tasks (to find the optimal τ, we made it trainable for one run). We applied example-based shuffling to train with the BSC loss. We used a group size of four in MRPC, of five in CQA-B, and of eight in all other tasks. We iterated over μ values from the set \{0.1, 0.5, 0.9\}, and we chose $\mu = 0.1$ to train the combo approach for CQA-A, MRPC, QQP and STSb tasks, and

The main metric is Spearman's rank correlation. As in the Antique dataset, we normalize the scores with similarity scores on a scale from 0 to 5 (5 indicating complete equivalence). There are a total of 5,749, 1,500 and 1,379 pairs in the training, in the development, and in the testing split, respectively.

Microsoft Research Paraphrase Corpus (MRPC) [Dolan et al. (2004)] contains 5,800 pairs of sentences, extracted from online news sources. Each pair was labeled with a tag indicating whether the sentences are paraphrases (semantically equivalent). There are 3,668, 407, and 1,725 pairs in the training, development, and test subsets. As it is a binary classification task with class imbalance, it is evaluated in terms of F1.

Quora Question Pairs (QQP) Quora presented a dataset containing over 500,000 sentences with over 400,000 lines of potential duplicate questions. Each line has a binary label indicating whether the line truly contains a duplicate pair. Due to the sampling method, which returns mostly positive pairs, the authors supplemented the dataset with negative pairs composed of “related questions.” As in (Thakur et al., 2020), we sample randomly 10,000 examples for training, and we use the F1 score as the main evaluation measure.

Semantic Textual Similarity Benchmark (STSb) The STS benchmark comprises a selection of the English datasets used in the STS tasks organized in the context of SemEval between 2012 and 2017 [Cer et al. (2017)]. The benchmark comprises 8,628 sentence pairs. The pairs were annotated with similarity scores on a scale from 0 to 5 (5 indicating complete equivalence). There are a total of 5,749, 1,500 and 1,379 pairs in the training, in the development, and in the testing split, respectively. The main metric is Spearman’s rank correlation. As in the Antique dataset, we normalize the scores to the $[0, 1]$ interval and then we binarized them based on a threshold of 0.6.

5 Experimental Setup

We used BERT-base uncased in all our experiments to be able to perform direct comparison for tasks such as MRPC, QQP and STS to previous work (Reimers & Gurevych [2019], Thakur et al., 2020).

We set the number of warm-up steps to 10% of the total steps, and we limited the input sequence length to 90 subtokens. We used a batch size of 30 in all tasks, except for Antique and QQP, where we used 50. Note that an order of magnitude larger batch sizes would probably yield better results, but they would also require much more memory. We experimented with learning rates from \{5e-6, 1e-5, 2e-5, 3e-5\}, and we selected (on dev) 3e-5 for CQA-B and 2e-5 for all other experiments. We used the AdamW optimizer with the bias correction for the CQA tasks, and without bias correction for the rest. We trained the model for five epochs for Antique, CQA-A and STSb, for six epochs for QQP, MRPC and PFCC-S, and for seven epochs for CQA-B, saving a checkpoint after each one, and we selected the best checkpoint on dev. As recommended in (Thakur et al., 2020), due to instability, we did seed optimization, running each approach five times and selecting the best result (on dev).
µ = 0.9 for the other experiments. Unless otherwise stated in the results table, BSC denotes using these settings.

We trained the triplet loss variant from (Reimers & Gurevych, 2019) with margin = 0.6 for PFCC-S, and margin = 0.5 for all other tasks. As we have no answers for the test set in MRPC, and no test sets in Antique and PFCC-S, we split the training set into 9:1 to tune the hyper-parameters. The time for training SBERT with the BSC loss (or combo loss) was almost equal to the time for training with the standard MSE loss. We ran all experiments on a GeForce GTX 1080 GPU.

6 Results

Antique The results are shown in Table 1. Our best approach of combo-training MSE and BSC losses outperforms all other variants and the approach proposed in (Hashemi et al., 2019), where specific negative sampling and a triplet loss were used. Besides, the best BSC configuration achieves higher scores than MSE. We can see the importance of using predefined hand-crafted negative examples, which brings additional difficult cases and increases MRR by 0.02.

Approach / Metric	MRR	P@1	nDCG@1
MSE	0.781	0.660	0.769
BSC	0.804	0.680	0.754
BSC - positives	0.784	0.655	0.744
BSC - random shuffle	0.799	0.670	0.754
Combo BSC + MSE	0.822	0.710	0.773
Hashemi et al. (2019)	0.797	0.709	0.713

CQA-A The results for CQA subtask A are shown in Table 2. A comparison with (Nakov et al., 2017) is not very fair, as we did not use the metadata, e.g., the comment position, which was crucial for the best systems. Besides, we use SBERT, which is inferior to a fine-tuned BERT. Nevertheless, our best approach of combo training with MSE and BSC losses yielded competitive results. We further compared different shuffling strategies. The data is ordered by questions, and keeping this order turns out to be best. That is, the model learns to distinguish positive answers for each question from manually selected negative ones and from answers to other questions. Also, note that random shuffling completely eliminates this structure, and MAP drops by 6% absolute. Fast shuffling by 300 clusters, an advanced version of shuffling by words, improves these results. Example-based shuffling finds a data order similar to the initial one, and the quality does not degrade much.

Approach / Metric	MAP	MRR	MAP	MRR
MSE	0.869	0.911	0.471	0.513
BSC	0.801	0.867	0.495	0.534
BSC - clusters shuffle	0.787	0.859	0.493	0.534
BSC - random shuffle	0.763	0.828	0.487	0.530
BSC - w/o shuffle	0.816	0.884	0.481	0.532
Combo BSC + MSE	0.872	0.912	0.496	0.540
Triplet loss	0.857	0.917	0.475	0.529
Hashemi et al. (2017)	0.884	0.928	0.472	0.501

CQA-B The results for CQA-B are shown in Table 2. Again, we did not use the question position, which is a critically important feature for the best systems. We can see that the BSC loss achieved the best score, noticeably outperforming MSE and triplet losses. The experiments also demonstrate the importance of data order when training with the BSC loss. Since the dataset is small, the model overfits when the original data order is fixed.

PFCC-S Table 3 shows the results for PFCC-S (HP@k stands for HasPositives@k). Note that the scores from (Shaar et al., 2020) are for pre-trained SBERT without task-specific fine-tuning. We observed that even when using oversampling to improve the balance of positive examples, MSE performed worse than their results. Here, we used only positive examples to train with BSC, and normalizing by the zero dimension was the best. Overall, the approaches using BSC and triplet losses were comparable. However, the dataset size for training with the BSC loss was much smaller, which is also true for MSE. As a result, the BSC loss is faster, and preferable for this task.

Approach / Metric	HP@1	HP@5	HP@50
MSE	0.362	0.508	0.709
BSC	0.673	0.844	0.899
BSC - 1-dim norm	0.588	0.764	0.899
BSC - no norm	0.608	0.744	0.884
BSC - random shuffle	0.663	0.794	0.915
Triplet loss	0.668	0.794	0.899
Shaar et al. (2020)	0.402	0.653	0.784
Table 4: Results for MRPC and QQP.

Approach / Metric	MRPC (F1)	QQP (F1)
MSE	89.08	74.29
BSC	86.73	73.13
Combo BSC + MSE	89.46	75.07
Thakur et al. (2020)	87.89 (88.55)	74.97 (79.77)

MRPC Table 4 shows the results for MRPC. MSE outperformed the BSC loss, but combo achieved a slightly higher F1 score.

QQP The results for QQP are presented in Table 4. We also show results for SBERT and augmented SBERT (in parentheses) from Thakur et al. (2020). There score was obtained by training SBERT with MSE using another random training sample, but nonetheless, the F1 score is close to ours. The combo approach outperformed separate training with BSC or MSE.

Table 5: Results for STSb: Spearman rank correlation.

Approach / Metric	ρ × 100
MSE	84.80
BSC	83.26
Combo BSC + MSE	84.59
Fine-tuning MSE with BSC	84.95
Fine-tuning BSC with MSE	85.71
Reimers & Gurevych (2019)	84.86

STSb Table 5 shows the results for STS. It is the only task where combo with the BSC loss was worse than MSE. This could be due to hard negatives not appearing in the batch in any of the shuffling procedures. Moreover, we observed only marginal improvement when fine-tuning with a BSC model initially trained with MSE. However, if it was pretrained with BSC up to overfitting, fine-tuning it with MSE yielded sizable improvements.

7 DISCUSSION

We highlight the following observations:

- Combo-training with BSC and MSE losses generally yields the best results (the only exception is STS), and it outperforms the triplet loss with advanced negative sampling.
- The order in which the data is presented for training can be critical, as we have seen in the cases of CQA-A and CQA-B.
- The use of labeled negatives examples generally improves the scores by 1-2% absolute.
- Embedding normalization during training is important. Moreover, it is useful to normalize to the zero dimension (e.g., for PFCC-S).
- Temperature τ of order 0.1 should be used with the standard normalization, and τ of order 1-3 for coordinate normalization.
- An incorrect training setup may hurt the performance by more than 10%, as was demonstrated for (i) filtering out negative examples for which no positives were given in the dataset (Table 1), (ii) using poorly formed batches (highest effect in Table 2), (iii) suboptimal normalization (Table 3), and (iv) wrong temperature value.
- The BSC loss is more suitable for ranking tasks, but it can help for other tasks if applied as pre-training or in joint training with the MSE loss.

Selecting a loss function is important. For instance, if the model optimizes Pearson correlation, it achieves a score of 85.57 on the STS task. Thus, it outperforms almost all considered approaches. Moreover, the combination of such a loss with BSC allows the model to achieve an F1 score of 89.88 in the MRPC task (a classification task).

Finally, we would like to draw a parallel between our work and Augmented SBERT (Thakur et al., 2020). When using the BSC loss, some negatives are implicitly added to the dataset. Augmented SBERT adds new examples too and retrieves them using BM25 or Semantic Search samplings. These methods are comparable to our fast shuffling by words (n-grams) and to example-based shuffling, respectively. Moreover, the task-specific model is used to encode the data in both cases. However, we do not need to label such pairs with another model (cross-encoder) due to the BSC loss definition.
8 Conclusion and Future Work

We explored the idea of using a batch-softmax contrastive loss for fine-tuning large-scale pre-trained transformers to learn better task-specific sentence embeddings for pairwise sentence scoring tasks. We introduced and studied a number of variations in the calculation of the loss as well as in the overall training procedure. Our experimental results have shown sizable improvements on a number of datasets and pairwise sentence scoring tasks including ranking, classification, and regression.

In future work, we want to explore new variations of the loss, and to gain better understanding of when to use which variation. We further plan experiments with a larger set of NLP tasks.

References

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 531–540, Stockholmsmässan, Stockholm Sweden, 2018. PMLR.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017.

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies for neural network-based collaborative filtering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 767–776, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348874.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, pp. 1597–1607. PMLR, 2020.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of the 20th International Conference on Computational Linguistics, COLING ’04, pp. 350–es, USA, 2004. Association for Computational Linguistics.

Hongchao Fang and Pengtao Xie. Cert: Contrastive self-supervised learning for language understanding. CoRR, abs/2005.12766, 2020.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08827, 2021.

John M Giorgi, Osvald Nitski, Gary D. Bader, and Bo Wang. Declutr: Deep contrastive learning for unsupervised textual representations. ArXiv, abs/2006.03659, 2020.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for pre-trained language model fine-tuning. ArXiv, abs/2006.03659, 2020.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pp. 1735–1742, 2006.

Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce Croft. ANTIQUE: A non-factoid question answering benchmark. CoRR, abs/1905.08957, 2019.

Matthew Henderson, Rami Al-Rfou, B. Strope, Yun-Hsuan Sung, L. Lukács, R. Guo, S. Kumar, B. Miklos, and R. Kurzweil. Efficient natural language response suggestion for smart reply. ArXiv, abs/1705.00652, 2017.
Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization. In ICLR 2019. ICLR, 2019.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, pp. 1–1, 2019.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2020.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representations. In International Conference on Learning Representations, 2018.

Fuli Luo, Pengcheng Yang, S. Li, Xuancheng Ren, and X. Sun. Capt: Contrastive pre-training for learning denoised sequence representations. ArXiv, abs/2010.06351, 2020.

Preslav Nakov, Doris Hoogeveen, Lluís Márquez, Alessandro Moschitti, Hamdy Mubarak, Timothy Baldwin, and Karin Verspoor. SemEval-2017 task 3: Community question answering. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 27–48, Vancouver, Canada, 2017. Association for Computational Linguistics.

A. Oord, Y. Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. ArXiv, abs/1807.03748, 2018.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China, 2019. Association for Computational Linguistics.

Shaden Shaa, Nikolay Babulkov, Giovanni Da San Martino, and Preslav Nakov. That is a known lie: Detecting previously fact-checked claims. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3607–3618, Online, 2020. Association for Computational Linguistics.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29, pp. 1857–1865. Curran Associates, Inc., 2016.

Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. Augmented sbert: Data augmentation method for improving bi-encoders for pairwise sentence scoring tasks, 2020.

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual information maximization for representation learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin nearest neighbor classification. In Y. Weiss, B. Schölkopf, and J. Platt (eds.), Advances in Neural Information Processing Systems, volume 18, pp. 1473–1480. MIT Press, 2006.

Zhirong Wu, Yuanjun Xiong, S. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance discrimination. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733–3742, 2018.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Learning semantic textual similarity from conversations. In Proceedings of The Third Workshop on Representation Learning for NLP, pp. 164–174, Melbourne, Australia, 2018. Association for Computational Linguistics.