Measurement of the inclusive leptonic asymmetry in top-quark pairs that decay to two charged leptons at CDF

CDF Collaboration; Canelli, M F; Kilminster, B; et al

Abstract: We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 fb$^{-1}$, the leptonic forward-backward asymmetry, A_{FB}^{ℓ}, is measured to be 0.072±0.060 and the leptonic pair forward-backward asymmetry, $A_{FB}^{\ell\ell}$, is measured to be 0.076±0.082, compared with the standard model predictions of $A_{FB}^{\ell} = 0.038 \pm 0.003$ and $A_{FB}^{\ell\ell} = 0.048 \pm 0.004$, respectively. Additionally, we combine the A_{FB}^{ℓ} result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{FB}^{\ell} = 0.090^{+0.028}_{-0.026}$.

DOI: https://doi.org/10.1103/PhysRevLett.113.042001
Measurement of the inclusive leptonic asymmetry in top-quark pairs that decay to two charged leptons at CDF

T. Aaltonen,21 S. Amerio22,39 D. Amidei,31 A. Anastassov31,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,52 A. Artikov,13 J. Asaadi,47 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,47 F. Azfar,38 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,43 B.A. Barnett,23 P. Barria44,41 P. Bartos,12 M. Bause39 F. Bedeschi,41 S. Behari,15 G. Belletti41,44 J. Bellinger,54 D. Benjamin,14 A. Beretvas,15 A. Bhatti,45 K.R. Bland,5 B. Blumenfeld,23 A. Bocci,14 A. Bodek,44 D. Bortoletto,43 J. Boudreaux,42 A. Boveia,11 L. Brigliadori41,6 C. Bromberg,32 E. Brucken,21 J. Budagov,13 H.S. Budd,44 K. Burkett,15 G. Busetto39,39 P. Bussey,19 P. Buttik41,41 P. Buzatu,19 A. Calamba,10 S. Camarda,4 M. Campanelli,28 F. Canelli31,11 B. Carls,22 D. Carlsmith,54 R. Carosi,41 S. Carrillo,16 B. Casal15, M. Casarsa,48 A. Castro41,6 P. Catastini,20 D. Cauz41,48 V. Cavaliere22 M. Cavalli-Sforza,4 A. Cerri26 L. Cerrito9,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,41 G. Chlachidze,15 K. Cho,25 D. Chokheli,13 A. Clark,18 C. Clarke,53 M.E. Convery,15 J. Conway,7 M. Corbo15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 M. Cremonesi,41 D. Cruz,47 J. Cuevas4,9 R. Cubertson,15 N. d’Ascanzo15 M. Dutta44 P. de Barbaro,44 L. Demortier,45 M. Deninno,6 M. D’Errico39,39 F. Devoto,21 A. Di Canto44,44 B. Di Ruza44,15 J.R. Dittmann,5 S. Donati44,44 M. D’Onofrio,27 M. Dorigo44,44 A. Druitt41,44 K. Ebina,52 R. Edgar,31 A. Elagin,47 R. Erbacher,7 S. Errede,22 B. Esham,22 S. Farrington,38 J.P. Fernández Ramos,29 R. Field,16 G. Flanagan41,15 R. Forrest,7 M. Franklin,20 J.C. Freeman,15 H. Frisch,11 Y. Funkoski52 C. Galloni41,41 A.F. Garfinkel,43 P. Garosi41 H. Gerberich,22 E. Gerchtein,15 S. Giagu,46 V. Giakoumopoulou,3 K. Gibson,42 C.M. Ginsburg,5 N. Giokaris,5 P. Giromini,17 V. Giorgi,23 V. Glogolicev,13 D. Glenskii,15 M. Gold,34 D. Goldin,47 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos30 M. Goncharov,30 O. González López,29 I. Gorelov,34 A.T. Goshaw,14 K. Goulianos,45 E. Gramellini,6 S. Grinstein,4 C. Grossi-Pilcher,11 R.C. Grisey,15 J. Guimaraes da Costa,25 S.R. Hahn,15 J.Y. Han,44 F. Happacher,17 K. Hara,49 M. Hare,50 R.F. Harr,53 T. Harrington-Taber41,15 K. Hatakeyama,5 C. Hays,38 J. Heinrich,40 M. Herndon,54 A. Hocker,15 Z. Hong,47 W. Hopkins41 S. Hou,14 R.E. Hughes,39 U. Huseneder55 M. Hussein41,32 J. Husted,32 G. Intorzi39,40,41,41 M. Iori44,46 A. Ivanov41 E. James,15 D. Jang,40 B. Jayatilaka,15 E.J. Jeon,25 S. Jindariani,15 M. Jones,43 K.K. Joo,25 S.Y. Jun,10 T.R. Junk,15 M. Kanbeitz,24 T. Kamon,25,47 P.E. Karchin,53 A. Kasumi,5 Y. Kato37 W. Ketchum99,11 J. Keung,40 B. Kilminster15 D.H. Kim,25 H.S. Kim,25 J.E. Kim,25 M.J. Kim,17 S.H. Kim,49 S.B. Kim,25 Y.J. Kim,25 Y.K. Kim,11 N. Kimura,52 M. Kirby,15 K. Knoepfel,15 K. Kondou,52 D.J. Kong,25 J. Koningsberg,16 A.V. Kotwal,14 M. Kreps,24 J. Kroll,40 M. Kruse,14 T. Kuhr,23 M. Kurata,49 A.T. Laasanen,43 S. Lammel,15 M. Lancaster,28 K. Lannon42,35 G. Latino41 H.S. Lee,25 J.S. Lee,25 S. Leo41,41 S. Leone,41 J.D. Lewis,15 A. Limosanii14 E. Lipecs,40 A. Listet9,18 H. Liu,51 Q. Liu,43 T. Liu,15 S. Lockwitz,55 A. Logino,55 D. Lucchesi9,14 A. Loca,13 J. Lueck,24 P. Lujan,26 P. Lukens,15 G. Lungu,45 J. Lys,46 R. Lysack12,12 R. Madrak,15 P. Maestro41,41 S. Malik,15 G. Mana52,27 A. Manousakis-Katsikakis,3 L. Marchese41,46 F. Margaroli,46 P. Marino41,41 M. Martinez,5 K. Matera,22 M.E. Mattson,53 A. Mazzacane,5 P. Mazzanti,6 R. McNulty27 A. Mehta,27 P. Mehtala,21 C. Mesropian,45 T. Miao,15 D. Mietlicki,31 A. Mitra,1 H. Miyake,49 S. Moed,15 N. Moggi,6 C.S. Moon9,15 R. Moore40,15 M.J. Morello41,41 A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussini6,16 J. Nachtman15 Y. Nagai,49 J. Naganoma,52 I. Nakano,36 A. Napier,50 J. Nett,47 C. Neu,51 T. Nugmanov,42 L. Nodulman,42 S.Y. Noh,25 O. Norniella,22 L. Oakes,38 S.H. Oh,14 Y.D. Oh,25 I. Oksuzian,51 T. Okusawa,37 R. Orava,21 L. Ortolan4, C. Pagliarone,48 E. Palencia9,9 P. Palni,34 V. Papadimitriou,15 W. Parker,54 G. Pauletta41,48 M. Paulin41,10 C. Paus,30 T.J. Phillips,14 G. Picentino,41 E. Pianori,40 J. Pilot,7 K. Pitts,22 C. Plager,8 L. Pondrom,54 S. Poprocz,15 K. Potamianos,26 A. Pronko,26 F. Prokoshin,13 F. Ptosh18,17 G. Punzi41,41 N. Ranjan,43 I. Redondo Fernández,29 P. Renton,38 M. Rescigno,46 F. Rimondi,41,41 L. Ristori,41,15 A. Robson,19 T. Rodríguez,40 S. Rolih,40 M. Ronzani31,41,41 R. Roser,15 J.L. Rosner,15 F. Ruffini41,41 A. Ruiz,9 J. Russ,10 V. Rusu,15 W.K. Sakumoto,44 Y. Sakurai,52 L. Santì41,44 K. Sato,49 V. Savilevich55,15 A. Savoy-Navarro41,15 P. Schlabach,15 E.E. Schmidt,15 T. Schwarz,31 L. Scodellaro,9 F. Scru,41 S. Seidel,34 Y. Seiya,15 A. Semenov,13 F. Sforza15,44 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,42 M. Shimomijima,49 M. Shochet,11 I. Shreyber-Tecker,33 A. Simonenko,13 K. Sliva,50 J.R. Smith,7 F.D. Snider,15 H. Song,42 V. Sorin,4 R. St. Denis,19 M. Stancari,15 D. Stentz15, J. Strologas,54 Y. Sudo,49 A. Sukhanov,15 I. Suslov,13 K. Takemasa,49 Y. Takeuchi,49 J. Tang,11 M. Tecchio,31 P.K. Teng,1 J. Thom15 E. Thomson,40 V. Thukral,17 D. Toback,47 S. Tollefson,12 T. Tomura,42 T. Tonelli9,15 S. Torre,17 D. Torretta,15 P. Totaro,39
We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 fb$^{-1}$, the leptonic forward-backward asymmetry, A_{FB}^ℓ, is measured to be 0.072 ± 0.060 and the leptonic pair forward-backward asymmetry, $A_{FB}^{\ell\ell}$, is measured to be 0.076 ± 0.082, compared with the standard model predictions of $A_{FB}^\ell = 0.038 \pm 0.003$ and $A_{FB}^{\ell\ell} = 0.048 \pm 0.004$, respectively. Additionally, we combine the A_{FB}^ℓ result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{FB}^\ell = 0.090 \pm 0.026$.

Recent measurements of the forward-backward asymmetry (A_{FB}) of the rapidity difference of top anti-top (tt) quark pairs (A_{FB}^{tt}) production in proton-antiproton collisions with center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider [1, 2] show deviations from the predictions from the standard model (SM) of particle physics [3]. This is of significant interest as the SM predicts only small asymmetry due to interference among diagrams starting at next-to-leading order (NLO), while non-SM particles or interactions could modify the A_{FB}^{tt} in a larger range [3]. A separate set of useful observables relies on the pseudorapidities of the charged leptons that can originate from the cascade decays of the top quarks. These include the A_{FB}^ℓ in the charge-weighted pseudorapidities of the charged lepton (ℓ, where we only consider electrons and muons), the so-called leptonic A_{FB}^ℓ ($A_{FB}^{\ell\ell}$), and the leptonic pair $A_{FB}^{\ell\ell}$ for the final state with two charged leptons (dilepton final state), defined with the pseudorapidity difference between the two charged leptons [4]. For example, the resonant production of tt pairs via a hypothetical gluon with axial couplings (“axigluon”) could cause the A_{FB}^{tt} to deviate from its SM value; various axigluon couplings to the top quarks could produce the same value of A_{FB}^{tt}, but with very different values of A_{FB}^ℓ and $A_{FB}^{\ell\ell}$ [5]. Measurements of A_{FB}^ℓ of the leptons also have the experimental advantage of exploiting the precisely measured angles of the lepton trajectories, which reduces systematic uncertainties on the final observables [8].

In this Letter, we summarize the measurements of the A_{FB}^ℓ and the A_{FB}^{tt} in the dilepton final state using the data collected by the CDF II detector, corresponding to the full Tevatron Run II data set, which corresponds to an integrated luminosity of 9.1 fb$^{-1}$ [3]. Additionally, we report on the most sensitive measurement of A_{FB}^ℓ from the CDF collaboration by combining the new measurement of the A_{FB}^ℓ with the previous measurement [8] in the final state involving one lepton and jets (lepton+jets final state). All results are inclusive in that they are extrapolated to the full pseudorapidity range.

The CDF II detector, described in detail in Ref. [10], is a general-purpose particle detector employing a large charged-particle tracking volume inside a solenoidal magnetic field coaxial with the beam direction, surrounded by calorimeters and muon detectors. A sample enriched in tt events yielding dilepton final states ($tt \rightarrow \ell^+\ell^-\nu\bar{\nu}bb\bar{b}$) is selected by requiring two oppositely charged leptons with $p_T > 20$ GeV/c, two narrow clusters of energy deposit in the calorimeters, corresponding to collimated clusters of incident hadrons (jets), and an imbalance in the total event transverse momentum (missing transverse energy E_T^miss, or E_T) that is consistent with the presence of two neutrinos. Specifically, we require events to pass the same requirements that were used in the measurement of the tt cross section [12], except for the additional requirement that at least one jet have the signature of originating from b-quark fragmentation. We also raise the minimum dilepton invariant mass requirement from 5 to 10 GeV/c^2 to reduce background modeling uncertainties.

Several physical processes mimic the signature of top-quark pairs in the dilepton final state, such as production of Z boson or a virtual photon in association with jets ($Z/\gamma^{\ast}+$jets), production of W boson with jets ($W+$jets), diboson production (WW, WZ, ZZ and $W\gamma$), and tt production where one of the W bosons from the top-quark pair decays hadronically and one jet is misidentified as a lepton. The estimation of background and SM tt sig-
nal is based on the same method of Ref. [13], which exploits both Monte Carlo (MC) simulations and data-based techniques. For the MC simulations, leading-order event generators are configured to use the CTEQ6.1L set of parton-distribution functions (PDFs), while NLO event generators use CTEQ6.1M. PYTHIA [14] is used for modeling the parton hadronization; a GEANT-based simulation [15,16] is used to model the detector response. A tt sample generated using the POWHEG generator [17,20] serves as the benchmark signal MC sample and is normalized to the theoretical cross section of 7.4 pb for a top-quark mass of $m_t = 172.5$ GeV/c^2 [21]. We include hadronic W-boson decays of tt events, where one jet from bottom-quark hadronization or W boson hadronic decay is misidentified as a charged lepton, in the background categories and estimate the contribution of this process with the POWHEG tt sample with the same normalization as the signal. The expected rates of background processes and the tt signal, together with the observed number of events in the signal region, are listed in Table I. Excellent agreement is observed.

Source	Events
Diboson	31±6
$Z/\gamma^*+\text{jets}$	50±6
$W+\text{jets}$	64±17
tt non-dilepton	14.6±0.8
Total background	160±21
tt ($\sigma = 7.4$ pb)	408±19
Total SM expectation	568±40
Observed	569

TABLE I. Expected number of events in data corresponding to 9.1 fb^{-1} of integrated luminosity along with the observed number of events passing all event selections. The quoted uncertainties in each row are the quadratic sum of the statistical and systematic uncertainties, calculated in the same way as Ref. [13].

Assuming charge-parity symmetry in the strong interaction, the A_{FB}^{tt} is defined as

$$A_{FB}^{tt} = \frac{N(q\ell \eta > 0) - N(q\ell \eta < 0)}{N(q\ell \eta > 0) + N(q\ell \eta < 0)},$$

where N is the number of leptons, $q\ell$ is the lepton electric charge, and $\eta\ell$ is its pseudorapidity. An NLO SM calculation with both quantum-chromodynamics effects and electroweak effects predicts $A_{FB}^{tt} = 0.038 \pm 0.003$ [3]. If the genuine value of A_{FB}^{tt} would be that measured by the CDF collaboration [3], the predicted value for A_{FB}^{tt} for top quarks decaying according to the SM would be $0.070 < A_{FB}^{tt} < 0.076$ [3]. Previous measurements of A_{FB}^{tt} in the lepton+jets final state by the CDF collaboration and in the lepton+jets and dilepton final state by the D0 collaboration yielded 0.094 ± 0.032 [8] and 0.047 ± 0.027 [22,23], respectively. A second observable, A_{FB}^{tt}, can be defined in the dilepton final state analogously to A_{FB}^{tt} as

$$A_{FB}^{tt} = \frac{N(\Delta\eta > 0) - N(\Delta\eta < 0)}{N(\Delta\eta > 0) + N(\Delta\eta < 0)},$$

where $\Delta\eta = \eta_{\ell} - \eta_{\ell}$. The NLO SM prediction is $A_{FB}^{tt} = 0.048\pm0.004$ [3]. A measurement by the D0 collaboration in the dilepton final state is $A_{FB}^{tt} = 0.123 \pm 0.056$ [22].

We simulate tt production and decay in various plausible SM and beyond-SM scenarios to study the expected lepton pseudorapidity spectrum in a large range of A_{FB}^{tt} and A_{FB}^{tt} values. The POWHEG tt MC sample serves as a best estimate of the SM. It gives parton-level inclusive values of $A_{FB}^{tt} = 0.024$ and $A_{FB}^{tt} = 0.030$. These predictions are different from the NLO SM calculation in Ref. [3] since the simulation does not account for the electroweak corrections [21]. Three tt MC samples that include a class of relatively light and wide axigluons (with masses at 200 GeV/c^2 and widths at 50 GeV) with left-handed, right-handed, and axial axigluon couplings to the quarks [4] serve as benchmark simulation samples to model various SM extensions. Each predict an A_{FB}^{tt} value similar to that observed by the CDF collaboration [1], but the polarization of the top quarks results in different values of A_{FB}^{tt} and A_{FB}^{tt}. These samples are generated with MADGRAPH [25] and have A_{FB}^{tt} values of -0.063, 0.050, and 0.151 and A_{FB}^{tt} values of -0.092, 0.066, and 0.218, respectively.

Due to the limited detector coverage ($|\eta\ell| < 2.0$ for electrons and $|\eta\ell| < 1.1$ for muons), imperfect detector acceptance, and contamination from non-tt sources, a correction and extrapolation procedure is needed to determine the inclusive parton-level A_{FB}^{tt} from the data. Simulated samples show that the $q\ell\eta\ell$ distribution of the leptons at the parton level is modeled accurately by the sum of two Gaussian distributions with common means, and widths and proportions independent of the simulated model [26]. The asymmetry in each scenario arises from the shift of the mean of the $q\ell\eta\ell$ distribution. Using this knowledge, we follow a procedure that is similar to that described in Ref. [8] to account for the detector coverage, detector acceptance and contamination from non-tt sources, a correction and extrapolation procedure is needed to determine the inclusive parton-level A_{FB}^{tt} from the data. Simulated samples show that the $q\ell\eta\ell$ distribution of the leptons at the parton level is modeled accurately by the sum of two Gaussian distributions with common means, and widths and proportions independent of the simulated model [26]. The asymmetry in each scenario arises from the shift of the mean of the $q\ell\eta\ell$ distribution. Using this knowledge, we follow a procedure that is similar to that described in Ref. [8] to account for the detector coverage, detector acceptance and contamination from non-tt sources, a correction and extrapolation procedure is needed to determine the inclusive parton-level A_{FB}^{tt} from the data. Simulated samples show that the $q\ell\eta\ell$ distribution of the leptons at the parton level is modeled accurately by the sum of two Gaussian distributions with common means, and widths and proportions independent of the simulated model [26].
and the inclusive A^t_{FB} defined in Eq. (1) is then written as the integral of Eq. (4).

$$A^t_{FB} = \int_0^\infty \frac{d(q_\ell q_t)}{d(q_\ell q_t)} \frac{S(q_\ell q_t)}{S(q_\ell q_t)}.$$ \hfill (5)

The measurement methodology is simplified because the symmetric part of the $q_\ell q_t$ distributions at the parton level is very similar across models as the mean of the $q_\ell q_t$ distribution is always close to zero in all models and small compared to the width, which is always around unity. Hence, using the distribution from any simulated sample only introduces an uncertainty that is tiny compared to the dominant uncertainties. Additionally, the differential asymmetry described in Eq. (3b) is readily measured and allows discrimination among models. We note that for $q_\ell q_t < 2.5$, the differential asymmetry in Eq. (3b) is modeled accurately by the simple functional form

$$A(q_\ell q_t) = a \cdot \tanh \left(\frac{q_\ell q_t}{2} \right)$$ \hfill (6)

where a is a free parameter that is directly related to the asymmetry.

Figure 1 shows the differential contribution to the inclusive A^t_{FB} expected at parton level from the POWHEG simulation, along with comparisons with predictions from the two-Gaussian model and the simple functional form of Eq. (6). Both models describe the distribution accurately. The integral gives the total inclusive asymmetry, and the fraction of the unmeasured asymmetry where $|q_\ell q_t| > 2.0$ is approximately 11%. The distributions for the various simulated samples, including the models listed above as well as those generated with PYTHIA [14] and ALPGEN [27], show that the shapes are very similar, supporting the measurement methodology.

The strategy is to measure the shape of the asymmetric component of the data after background subtraction and use the symmetric component of the parton-level $q_\ell q_t$ distribution from the POWHEG $t\bar{t}$ sample to reproduce the inclusive parton-level value of A^t_{FB}. This method is checked for the wide variety of input A^t_{FB} values using the fully simulated $t\bar{t}$ samples. For both the two-Gaussian model and the simplified functional form of Eq. (6), the method returns A^t_{FB} values that are consistent with the parton-level inclusive values. We include an asymmetric-modeling systematic uncertainty of ±0.006, which covers any possible bias observed.

The observed number of events as a function of $q_\ell q_t$ is shown in Fig. 2 along with the SM expectations from the $t\bar{t}$ signal and backgrounds. Figure 2(b) shows the asymmetric component of the data after background subtraction along with the best fit description, which yields a value of $a = 0.21 \pm 0.15$ (stat). Applying Eq. (5), we find $A^t_{FB} = 0.072 \pm 0.052$ (stat).

The dominant source of systematic uncertainty is due to the background uncertainties and is estimated to be...
±0.029 using pseudoexperiments, which covers both the uncertainties in the background normalizations and the uncertainties in modeling the $A_{FB}^{\ell\ell}$ of the backgrounds. The next most important source of systematic uncertainty is the ±0.006 asymmetric-modeling contribution discussed above. The jet-energy-scale systematic uncertainty is estimated to be ±0.004 by varying the jet energies within their uncertainties. The variations obtained by using the symmetric model from various MC samples are assigned as the asymmetric-modeling systematic uncertainty, which is ±0.001. Other sources of uncertainties due to the uncertainties in the parton showering model, the modeling of color reconnection, the amount of initial-state and final-state radiation, and the uncertainty on the parton distribution functions, are found to be negligible. The total systematic uncertainty, ±0.03, is estimated by summing the individual contributions in quadrature. The final result is $A_{FB}^{\ell\ell} = 0.072 ± 0.052$(stat) ±0.039(syst). This result is consistent with the NLO SM expectation, the measurement in the lepton+jets final state by the D0 collaboration [22, 23].

Identical methodologies are used for measuring $A_{FB}^{\ell\ell}$. The observed number of events as a function of $\Delta \eta$ is shown in Fig. 3. We measure $a = 0.16 ± 0.15$(stat) and $A_{FB}^{\ell\ell} = 0.076 ± 0.072$(stat) ±0.039(syst), where the dominant systematic uncertainty is from backgrounds and has a value of ±0.037. The asymmetric and symmetric-modeling systematic uncertainties are estimated to be ±0.012 and ±0.004, respectively. The jet-energy-scale systematic uncertainty is estimated to be ±0.003. Other systematic uncertainties are negligible. This result is consistent with both the NLO SM calculation [4] and the same measurement in the dilepton final state by the D0 collaboration [22].

In conclusion, we measure the inclusive parton-level leptonic forward-backward asymmetry and leptonic pair asymmetry of top-quark pairs decaying into the dilepton final state using the full CDF Run II data set. The results are $A_{FB}^{\ell\ell} = 0.072 ± 0.060$ and $A_{FB}^{t\bar{t}} = 0.076 ± 0.082$, both consistent with previous determinations and expectations. A combination of the CDF leptonic A_{FB} measurements yields $A_{FB}^{t\bar{t}} = 0.090^{+0.028}_{-0.026}$. This result is about two standard deviations larger than the NLO SM calculation of $A_{FB}^{t\bar{t}} = 0.038 ± 0.003$ [4], but is consistent with the 0.070–0.076 range expected under the assumption of unpolarized top-quark production and SM top-quark decay, given the measured value of $A_{FB}^{\ell\ell}$ in the lepton+jets final state by the CDF collaboration [3]. This result is also consistent with the $A_{FB}^{\ell\ell}$ measured by the D0 collaboration [22, 23].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian

![FIG. 3. The same figures as Fig. 2 but as a function of $\Delta \eta$ instead of $q\bar{q}_{t\bar{t}}$.](image)
Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

*Deceased

1 With visitors from “University of British Columbia, Vancouver, BC V6T 1Z1, Canada,” Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy; “University of California Irvine, Irvine, CA 92697, USA,” Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic, CERN, CH-1211 Geneva, Switzerland, “Cornell University, Ithaca, NY 14853, USA,” University of Cyprus, Nicosia CY-1678, Cyprus, “Office of Science, U.S. Department of Energy, Washington, DC 20585, USA,” University College Dublin, Dublin 4, Ireland, ETH 8092 Zürich, Switzerland, “University of Fukui, Fukui Prefecture, Japan 910-0017,” Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, “University of Iowa, Iowa City, IA 52242, USA,” Kinki University, Higashi-Osaka City, Japan 577-8502, “Kansas State University, Manhattan, KS 66506, USA,” Brookhaven National Laboratory, Upton, NY 11973, USA, “Queen Mary, University of London, London, E1 4NS, United Kingdom,” University of Melbourne, Victoria 3010, Australia, “Muons, Inc., Batavia, IL 60510, USA,” Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan, “National Research Nuclear University, Moscow 115409, Russia,” Northwestern University, Evanston, IL 60208, USA, “University of Notre Dame, Notre Dame, IN 46556, USA,” Universidad de Oviedo, E-33007 Oviedo, Spain, “CNRS-IN2P3, Paris, F-75205 France,” “Universidad Tecnica Federico Santa Maria, 110v Valparaíso, Chile,” “The University of Jordan, Amman 11942, Jordan,” “Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium,” “University of Zürich, 8006 Zürich, Switzerland,” “Massachusetts General Hospital, Boston, MA 02114 USA,” “Harvard Medical School, Boston, MA 02114 USA,” “Hampton University, Hampton, VA 23668, USA,” “Los Alamos National Laboratory, Los Alamos, NM 87544, USA,” “Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy

[1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013).

[2] V. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 112005 (2011).

[3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 111, 182002 (2013).

[4] W. Bernreuther and Z.-G. Si, Phys. Rev. D 86, 034026 (2012).

[5] D.-W. Jung, P. Ko, and J. S. Lee, Phys. Lett. B 701, 248 (2011); D.-W. Jung, P. Ko, J. S. Lee, and S. Iyeon Nam, ibid. 691, 238 (2010); P. H. Frampton, J. Shu, and K. Wang, ibid. 683, 294 (2010); E. Alvarez, L. Rold, and A. Szyrnikman, J. High Energy Phys. 05 (2011) 070; C.-H. Chen, G. Cvejet, and C. Kim, Phys. Lett. B 694, 393 (2011); Y.-k. Wang, B. Xiao, and S.-h. Zhu, Phys. Rev. D 82, 094011 (2010); A. Djouadi, G. Moreau, F. Richard, and R. K. Singh, ibid. 82, 071702 (2010); R. S. Chivukula, E. H. Simmons, and C.-P. Yuan, ibid. 82, 094009 (2010); B. Xiao, Y.-k. Wang, and S.-h. Zhu, ibid. 82, 034026 (2010); Q.-H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy, and C. E. M. Wagner, ibid. 81, 114004 (2010); I. Dorinski, S. Fajfer, J. F. Kamenik, and N. Košnik, ibid. 81, 055009 (2010); S. Jung, H. Moryama, A. Pierce, and J. D. Wells, ibid. 81, 015004 (2010); J. Shu, T. M. P. Tait, and K. Wang, ibid. 81, 034012 (2010); A. Arhrib, R. Benbrik, and C.-H. Chen, ibid. 82, 034034 (2010); J. Cao, Z. Heng, L. Wu, and J. M. Yang, ibid. 81, 014016 (2010); V. Barger, W.-Y. Keung, and C.-T. Yu, ibid. 81, 113009 (2010); P. Ferrario and G. Rodrigo, ibid. 78, 094018 (2008); 80, 051701 (2009); M. Bauer, F. Goertz, U. Haisch, T. Pfoh, and S. Westhoff, J. High Energy Phys. 11 (2010) 039; K. Cheung, W.-Y. Keung, and T.-C. Yuan, Phys. Lett. B 682, 287 (2009).

[6] W. Bernreuther and Z.-G. Si, Nucl. Phys. B837, 90 (2010).

[7] A. Falkowski, M. L. Mangano, A. Martin, G. Perez, and J. Winter, Phys. Rev. D 87, 034039 (2013).

[8] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 88, 072003 (2013).

[9] Z. Hong, Ph.D. thesis, Texas A&M University [Report No. Fermilab-THESIS-2014-05].

[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).

[11] We use a cylindrical coordinate system with the origin at the center of the CDF II detector, \(z \) pointing in the direction of the proton beam, \(\theta \) and \(\phi \) representing the polar and azimuthal angles, respectively, and pseudorapidity defined by \(\eta = -\ln(\tan(\theta/2)) \). The transverse momentum \(p_T \) (transverse energy \(E_T \)) is defined to be \(p \sin \theta \) (\(E \sin \theta \)).

[12] The missing transverse energy \(E_{T,\text{miss}} \) is defined to be \(-\Sigma p_T \), where \(i \) is the calorimeter tower number with \(|\eta| < 3.6 \), \(\hat{n}_i \) is a unit vector perpendicular to the beam axis pointing at the \(i \)-th calorimeter tower.

[13] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 88, 091103 (2013).

[14] T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05 (2006) 026.

[15] E. Gerchtein and M. Paulini, eConf C0303241, TUM005 (2003).

[16] R. Brun, F. Bruyant, M. Mairre, A. McPherson, and F. Zanarini, GEANT3, CERN Report CERN-DD-EE-84-1 (1987).

[17] S. Frixione, P. Nason, and G. Ridolfi, J. High Energy Phys. 01 (1987).

[18] P. Z. Skands, J. High Energy Phys. 03 (2007) 093.
[18] P. Nason, J. High Energy Phys. 11 (2004) 040.
[19] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.
[20] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.
[21] M. Czakon and A. Mitov, [arXiv:1112.5675 [hep-ph]]
[22] V. Abazov et al. (D0 Collaboration), Phys. Rev. D 88, 112002 (2013).
[23] V. Abazov et al. (D0 Collaboration), [arXiv:1403.1294 [hep-ex]]
[24] J. Kuhn and G. Rodrigo, J. High Energy Phys. 01 (2012) 063; A. V. Manohar and M. Trott, Phys. Lett. B 711, 313 (2012); W. Hollik and D. Pagani, Phys. Rev. D 84, 093003 (2011).
[25] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer, J. High Energy Phys. 09 (2007) 028.
[26] Z. Hong, R. Edgar, S. Henry, D. Toback, J. S. Wilson, and D. Amidei, [arXiv:1403.7565 [hep-ph]]
[27] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
[28] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Methods A 270, 110 (1988); L. Lyons, A. J. Martin, and D. H. Saxon, Phys. Rev. D 41, 982 (1990); A. Valassi, Nucl. Instrum. Methods A 500, 391 (2003).
[29] R. Group, C. Ciobanu, K. Lannon, and C. Plager, in Proceedings of the 34th International Conference in High Energy Physics (ICHEP08), Philadelphia, 2008, eConf C080750, arXiv:0809.4670.