Investigation of mechanical properties of thermal coatings obtained during plasma spraying of powder zirconium dioxide

Ibragimov A., Ilinskova T., Shafigullin L., Saifutdinov A.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© Published under licence by IOP Publishing Ltd. Thermal coatings of zirconia partially stabilized with yttrium, deposited by low-temperature plasma, are the basis for the thermal protection of aircraft engine. At the same time there is an actual problem of selection of coating systems "ceramic layer - underlayer" of great thickness, providing better thermal protection, but having low strength characteristics due to the accumulation of internal stresses. To determine the optimal thickness of the test method used in the 4-point bending to allow the surface coating to explore in the elastic-plastic behavior of the field of coatings and strength. Based on the experimental results established the role of underlayer in the formation of the complex mechanical properties of thermal barrier coatings. With a well formed underlayer (PVNH16U6) system becomes sensitive to a change in thickness of the coating, to optimize the response on the strength and deformation criteria. According to the results the optimum ratio of the thickness of the ceramic layer and the underlayer should be regarded as the ratio of 3-5 for which the highest strength values were obtained for all the test coating systems.

http://dx.doi.org/10.1088/1742-6596/789/1/012022

References

[1] Budovskikh E.A., Gromov V.E. and Romanov D.A. 2013 The Formation Mechanism Providing High Adhesion Properties of an Electric-Explosive Coating on a Metal Basis Doklady Physics 58 82-84
[2] Popova M.A., Kuznetsov V.P., Lesnikov V.P., Popov N.A. and Konakova I.P. 2015 The structure and mechanical properties of single-crystal nickel alloys with Re and Ru after high-temperature holds Materials Science & Engineering A 642 304-308
[3] Fayrushin I, Kashapov N and Dautov I 2014 J. Phys.: Conf. Ser. 567 012009
[4] Kashapov L N, Kashapov N F and Kashapov R N 2013 J. Phys.: Conf. Ser. 479 012011
[5] Kashapov L N, Kashapov N F and Kashapov R N 2014 J. Phys.: Conf. Ser. 567 012025
[6] Zaripov R G, Kashapov N F, Tkachenko L A and Shaydullin L R 2016 J. Phys.: Conf. Ser. 669 012053
[7] Denisov D G, Kashapov N F and Kashapov R N 2015 IOP Conference Series: Materials Science and Engineering 86 012005
[8] Galyautdinov R T, Kasparov N F and Luchkin G S 2002 Inzhenerno-Fizicheskii Zhurnal 75 170-173
[9] Saifutdinov A I, Fairushin I I and Kashapov N F 2016 JETP Lett. 104 180-185
[10] Galyautdinov R T and Kashapov N F 2003 Svarochnoe Proizvodstvo 27-31
[11] Kornienko E E, Lapushkina E J, Kuzmin V I, Vaschenko S P, Gulyaev I P, Kartaev E V, Sergachev D S, Kashapov N, Sharifullin S and Fayrushin I 2014 Journal of Physics: Conf. Series 567 012010
[12] Gabdrakhmanov AT, Israfilov IH, Galiakbarov AT and Samigullin AD 2013 Proceedings of the Tula State University 6 The thermal characteristics of the process of pulsed plasma processing of steel 253-260 Part 1