Carborane-Containing Folic Acid bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells

Dmitry A. Gruzdev 1,*, Angelina A. Telegina 1, Galina L. Levit 1, Olga I. Solovieva 2,3, Tatiana Ya. Gusel’nikova 3,4, Ivan A. Razumov 2,3, Victor P. Krasnov 1 and Valery N. Charushin 1,5

1 Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
2 Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch), Novosibirsk 630090, Russia
3 Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
4 Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences (Siberian Branch), Novosibirsk 630090, Russia
5 Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia

* Correspondence: gruzdev-da@ios.uran.ru

Abstract: The design of highly selective low-toxic, low-molecular weight agents for boron delivery to tumour cells is of decisive importance for the development of boron neutron capture therapy (BNCT), a modern efficient combined method for cancer treatment. In this work, we developed a simple method for the preparation of new closo- and nido-carborane-containing folic acid bis-amides containing 18–20 boron atoms per molecule. Folic acid derivatives containing nido-carborane residues were characterised by high water solubility, low cytotoxicity, and demonstrated a good ability to deliver boron to tumour cells in in vitro experiments (up to 7.0 µg B/10^6 cells in the case of U87 MG human glioblastoma cells). The results obtained demonstrate the high potential of folic acid–nido-carborane conjugates as boron delivery agents to tumour cells for application in BNCT.

Keywords: folic acid; amides; carboranes; cytotoxicity; MTT assay; tumour cells; boron accumulation; BNCT

1. Introduction

Boron neutron capture therapy (BNCT) is a modern binary approach to tumour treatment. This method involves the combined use of two components: a chemical agent that delivers boron to tumour cells, and irradiation with thermal or epithermal neutrons. Thermal neutrons interact selectively with ^10^B atoms, causing their decay with the emission of high-energy alpha particles and ^7^Li nuclei, and do not have a noticeable effect on cells and tissues consisting of biogenic elements [1–3]. Selective delivery of compounds containing one or more ^10^B atoms to tumour cells makes it possible to selectively damage them under the action of thermal neutrons. The main requirements for boron delivery agents suitable for BNCT include: (i) a tumour/healthy tissue distribution index of at least 3:1; (ii) the ability to deliver 20–50 µg ^10^B per 1 g tumour; (iii) minimal toxicity; (iv) high solubility in biological media [4–6]. To date, only a few compounds are clinically used for BNCT, namely sodium borocaptate (BSH) [7] and 4-boronophenylalanine (BPA) [8], which were first synthesized in the 1950s–1960s and are characterized by low tumour targeting. A number of more selective boron delivery agents have shown high efficiency in in vivo experiments [9–15]. The design of many potential agents for BNCT is based on the introduction of boron-containing groups (fragments of boric acid or polyhedral boranes and carboranes) into the structure of natural compounds that can be selectively absorbed by tumour cells [16,17].
In particular, considerable attention is paid to the preparation of carborane-containing derivatives and analogues of natural amino acids and short peptides [18–25].

Folic acid (vitamin B9) is a vital compound for the growth and division of mammalian cells. Cells of various types of tumours are characterized by active expression of folate receptors (FRs) and are able to accumulate folic acid and its derivatives [26–29]. Modification of xenobiotics [30–35], liposomes [36–40], and nanoparticles [41–46] using folic acid is a common way to obtain targeted agents for the tumour treatment and imaging.

In recent decades, a number of the folic acid derivatives and analogues containing residues of boric acid [47], dodecaborane [48,49], and dicarba-closo-dodecaboranes (closo-carboranes) [50] have been proposed as boron delivery agents for BNCT. Such compounds generally require extensive purification, and their preparative yields are not high. Folic acid amide containing a 4-aminophenylboronic acid residue exhibited high hemotoxicity [47]. In vitro experiments have shown that the derivatives of pteric acid containing dodecaborane residues possess low toxicity and can accumulate in the FR-expressing cells [48,49]. Intratumoural administration (CED, convection-enhanced delivery) made it possible to achieve a significant accumulation of the pteric acid–decaborane conjugate in F98 glioma cells in vivo [51]. Modification of boron-containing liposomes and nanoparticles by folic acid also made it possible to achieve targeted boron delivery to the tumour [52–61].

The purpose of our work is to study the possibility of obtaining water-soluble folic acid derivatives containing two carborane residues and to evaluate their toxicity and ability to deliver boron to cells. We tried to synthesize simple-in-structure folic acid derivatives that contained at least 15 wt.% boron and were soluble in water at a concentration of at least 5 mg/mL at a pH close to neutral. We used primary amines containing the fragments of 7,8-dicarba-nido-undecaborane (nido-carborane) (compounds 1a,b) and closo-carborane (compound 1c) as boron-containing building blocks. Functionalization of both carboxyl groups of folic acid using compounds 1a–c makes it possible to obtain diamides containing two carborane residues (18–20 boron atoms in one molecule); the presence of two negatively charged fragments in the molecules of nido-carborane derivatives ensures the water solubility.

2. Results
2.1. Synthesis

*nido*-Carborane-containing amines 1a and 1b were synthesized from 3-amino-closo-carborane and (closo-carboran-1-yl)acetic acid using the coupling reaction with 6-Boc-aminohexanoic acid and Boc-ethylenediamine, respectively, followed by deboronation using caesium fluoride and removal of the protecting groups [62]. 3-((6-Aminohexanoyl)amino)closo-carborane (1c) was obtained as hydrochloride from the corresponding Boc-derivative 2 (Scheme 1).

![Scheme 1. Synthesis of carborane-containing building blocks 1a–c.](image)

Coupling of amines 1a–c to folic acid by the carbodiimide method in DMSO in the presence of HOBt and an auxiliary base at a folic acid–amine 1a–c-EDCI×HCl molar ratio of 1:2.2:2.5 smoothly led to the corresponding bis-amides 3a–c (Scheme 2). According to TLC, the reaction was completed in 24 h, and there were no monoamides or unreacted folic
acid in the reaction mixture. Previously, a similar approach was used for the synthesis of bis-amides of folic acid [63] and methotrexate [64].

![Scheme 2](image)

Scheme 2. Synthesis of carborane-containing folic acid bis-amides 3a–c. (a) Compound 1a (1b or 1c) (2.2 equiv.), EDCI × HCl (2.5 equiv.), HOBT (2.2 equiv.), NEt$_3$ (6.7 equiv. for 3a,b or 4.7 equiv. for 3c), DMSO, rt, 72 h.

Analytical samples of derivatives 3a and 3b were obtained by precipitation from the reaction mixture with aqueous HCl followed by washing with acetonitrile; flash-chromatography on silica gel was also used for their purification. bis-Amides 3a,b containing nido-carborane fragments were isolated as internal salts (according to elemental analysis data). Their $^1$H NMR spectra contained broad signals in the region of 4.5–8.3 ppm corresponding to protonated secondary and tertiary amino groups in the pteroyl fragment. The characteristic signals of the bridging hydrogen atoms of nido-carborane were observed in the region of –3.2 … –2.4 ppm, while the signals of the CH groups of the carborane fragment of compounds 3a and 3b had a chemical shift of 1.84 and 2.26 ppm, respectively. Compound 3c containing two closo-carborane residues was isolated in pure form after washing the crude reaction product with a 7.3 acetonitrile–water mixture.

While compound 3c was poorly soluble in water and most organic solvents, nido-carborane derivatives 3a and 3b were characterized by significant solubility in MeCN and MeOH, and were soluble in water at alkaline pH. Thus, the solubility of conjugates 3a,b in 0.5% aqueous NaHCO$_3$ was 5.0–6.5 mg/mL, which opens up good prospects for biological testing.

2.2. Toxicity Assay

The toxicity profile of compounds 3a and 3b was studied in the MTT assay [65] on healthy (nontransformed) cells (BJ-5ta human foreskin fibroblasts) and tumour cells (DU 145 human prostate carcinoma, MDA-MB-231 human breast carcinoma, SK-Mel-28 human melanoma, T98G and U87 MG human glioblastomas) (Figure 1). The antitumour agent cisplatin was used as a positive control (at concentrations 10 times lower than those of compounds 3a,b). Cell viability in negative control samples (without tested compounds in growth medium) was 100 ± 11%.
The folic acid conjugates 3a,b were moderately toxic to healthy fibroblasts and tumour cells of various lines. At the same time, compound 3a was slightly more toxic than compound 3b. Incubation of healthy cells (human foreskin fibroblasts) in the presence of 3-amino-nido-carborane derivative 3b led to a decrease in cell viability by 12% and 29% at concentrations of the test compound of 0.50 and 1.0 mg/mL, respectively (Figure 1a). The (nido-carboran-7-yl)acetic acid derivative 3a exhibited slightly less toxicity against BJ-5ta fibroblasts (decrease in cell viability by 4% and 24% at concentrations of 0.50 and 1.0 mg/mL, respectively). The susceptibility of SK-Mel-28 melanoma cells to the toxic effects of conjugates 3a,b was comparable to that of healthy cells (cf. Figure 1a,d).

The highest toxicity of the tested compounds was observed against U87 MG glioblastoma cells. The survival of U87 MG cells decreased by 39–61 and 59–69% when incubated in the presence of conjugates 3a,b at concentrations of 0.25 and 0.50 mg/mL, respectively (Figure 1e).

Figure 1. Effect of compounds 3a and 3b on the viability of various cell lines in vitro within 72 h of co-incubation: (a) BJ-5ta human foreskin fibroblasts, (b) DU 145 human prostate carcinoma, (c) MDA-MB-231 human breast carcinoma, (d) SK-Mel-28 human melanoma, (e) T98G human glioblastoma, and (f) U87 MG human glioblastoma.
2.3. Evaluation of Boron Accumulation by Cells

Evaluation of boron accumulation by tumour and healthy (nontransformed) cells in in vitro experiments is an essential step on the way to the design of BNCT agents. Candidate compounds must be able to penetrate into tumour cells and be retained in them when administered in a nontoxic dose.

The ability of compounds 3a and 3b to deliver boron into cells was tested using the cell lines of BJ-5ta fibroblasts, DU 145 and MDA-MB-231 carcinomas, SK-Mel-28 melanoma, and T98G and U87 MG glioblastomas (Figure 2). In most cases, the tested compounds were used at a concentration of 0.50 mg/mL, which caused the death of no more than 60% of cells in 72 h. In the case of the U87 MG cell line, for which the toxicity of compounds 3a,b was the highest, the compounds were used at a concentration of 0.25 mg/mL. Incubation was carried out for no more than 8 h to minimize the toxic effect of the compounds.

![Figure 2](https://example.com/figure2.png)

**Figure 2.** Cellular uptake of compounds 3a and 3b by various cells in vitro: (a) BJ-5ta human foreskin fibroblasts, (b) DU 145 human prostate carcinoma, (c) MDA-MB-231 human breast carcinoma, (d) SK-Mel-28 human melanoma, (e) T98G human glioblastoma, and (f) U87 MG human glioblastoma.

It has been found that a higher level of boron accumulation by cells is observed during incubation in the presence of 3-amino-nido-carborane derivative 3b compared to (nido-carboran-7-yl)acetic acid derivative 3a. The greatest accumulation of boron was observed in U87 MG glioblastoma cells; moreover, the content of boron in cells during incubation with compound 3b increased with time (up to 7.0 μg B/10^6 cells after 8 h) (Figure 2f).

MDA-MB-231 carcinoma cells accumulated up to 2.5 μg B/10^6 cells when incubated with conjugate 3b for 1 h; the amount of boron accumulated when compound 3a was used did not exceed 0.8 μg B/10^6 cells (Figure 2c). The maximum level of boron accumulation in SK-Mel-28 and T98G cells was the same as in the case of BJ-5ta human foreskin fibroblasts (0.8–0.9 μg B/10^6 cells) (Figure 2a,d,e). The DU 145 prostate carcinoma cells were characterized by the least accumulation of conjugates 3a,b (no more than 0.65 μg B/10^6 cells in the case of conjugate 3a) (Figure 2b).
3. Discussion

New carborane-containing folic acid bis-amides 3a–c were prepared from readily available precursors using easy-to-perform synthetic procedures. Folic acid derivatives 3a,b containing nido-carborane residues and secondary and tertiary nitrogen atoms capable of protonation were isolated as internal salts. The nido-carborane derivatives are able to form salts with bases, therefore the presence of two negatively charged nido-carborane fragments ensured high solubility of compounds 3a,b in 0.5–1% NaHCO$_3$ aqueous solutions. Thus, these derivatives meet the requirements for potential agents for BNCT, namely high boron content and good solubility in biological media.

Another important requirement for promising agents for BNCT is their low cytotoxicity. Low toxicity at doses sufficient for the accumulation of boron in the tumour guarantees the successful implementation of this method.

The results shown in Figure 1 indicate that cell incubation in the presence of compounds 3a and 3b dissolved in 0.5% aqueous NaHCO$_3$ practically does not lead to a decrease in cell survival. Compound 3a containing residues of (nido-carboran-7-yl)acetic acid and ethylenediamine was slightly more toxic than derivative 3b based on 3-amino-nido-carborane and 6-aminohexanoic acid.

The low toxicity of folic acid conjugates against SK-Mel-28 melanoma cells may be due to the low level of accumulation of folic acid derivatives in this cell type. Thus, it is known that melanosomal sequestration and cellular export may underlie the resistance of melanoma cells to the action of methotrexate [66] and cisplatin [67].

Literature data on the level of FR expression in glioma cells are rather contradictory. It has been reported that glioma cells, including U87 MG glioblastoma cells, express folate receptors and are able to capture folic acid conjugates [68–72]. But there is also evidence that the U87 MG cells are not very susceptible to the action of folic acid conjugates [73]. In our case, incubation with folic acid bis-amides 3a,b induced the highest toxic effect on the U87 MG cells. This indicates that folic acid derivatives are able to actively penetrate into tumour cells.

It is known that in some cases, folic acid derivatives functionalized at the $\gamma$-carboxylic group of glutamic acid have a higher affinity for FRs compared to $\alpha$-functionalized derivatives [74–76]. At the same time, in some cases the ability of $\alpha$- and $\gamma$-derivatives of folic acid to bind to FRs and transport into the tumour is comparable [77–80]; folic acid diamides also show high selectivity for tumour targeting [81].

Testing of boron accumulation by cells has shown that incubation in the presence of 3-amino-nido-carborane derivative 3b generally provides a higher concentration of boron in cells compared to (nido-carboran-7-yl)acetic acid derivative 3a. Thus, the observed level of boron accumulation in U87 MG glioblastoma cells (up to 7 µg B/10$^6$ cells) significantly exceeds the reported results of boron accumulation during incubation with standard BNCT agents (not more than 0.2 µg B/10$^6$ cells in the case of BSH, including in the form of targeted liposomes [82,83], and not more than 1.1 µg B/10$^6$ cells in the case of BPA [13,48,84]) and with boron-containing analogues of folic acid (at the level of 1.2–1.8 µg B/10$^6$ cells for U87 MG glioma and KB carcinoma [47,48]).

The U87 MG cells showed the highest capacity for boron accumulation when incubated with folic acid bis-amide 3b. The MDA-MB-231 carcinoma cells actively expressing FR-$\alpha$ [85,86] were characterised by somewhat lower boron accumulation (up to 2.5 µg B/10$^6$ cells). In this case, the amount of boron contained in cells upon incubation with compound 3b reached a maximum after 1 h and then decreased, which may indicate the presence of mechanisms for the active excretion of folic acid derivatives from cells. The low level of accumulation of conjugates 3a,b by DU 145, SK-Mel-28, and T98G cells, as well as by fibroblasts, seems to be associated with a significantly lower amount of the surface FRs-$\alpha$ compared to U87 MG and MDA-MB-231 cells. Thus, it is known that DU 145 prostate carcinoma and T98G glioblastoma cells are characterised by low expression of FRs-$\alpha$ [87,88], while SK-Mel-28 cells are capable of cellular export of folic acid analogues.
Apparently, the degree of boron accumulation by cells during incubation with folic acid bis-amides 3a and 3b correlates with the level of FR-α expression. This indicates that the process of boron accumulation is based on the binding of carborane-containing conjugates 3a,b to surface FRs-α and subsequent internalization into cells.

The results obtained indicate that folic acid bis-amide 3b containing 18 boron atoms per molecule is suitable for targeted delivery of boron and can be considered as a potential agent for BNCT of FR-α-positive tumours. Moderate cytotoxicity and a high level of accumulation of compound 3b by glioblastoma cells in in vitro experiments allows us to count on the possibility of using this derivative even with the natural distribution of boron isotopes for the successful implementation of BNCT. Testing the toxicity and biodistribution of compound 3b and related derivatives in in vivo experiments seems to be a promising direction in the development of new convenient and highly efficient agents for BNCT.

4. Materials and Methods
4.1. Chemistry General Section

[2-(7,8-Dicarba-nido-undecaboran-7-yl)acetylamo]ethylamine (1a) and 3-(6-tert-butoxy carbonylamino)hexanoylamino-1,2-dicarba-closo-dodecaborane (2) were obtained according to procedure published elsewhere [62]. Other reagents are commercially available. Solvents were purified according to traditional methods [89] and used freshly distilled.

Melting points were obtained on a SMP3 apparatus (Barloworld Scientific, Staffordshire, UK) and are uncorrected. Optical rotations were measured on a Perkin Elmer 341 polarimeter (Perkin Elmer, Waltham, MA, USA). The 1H, 11B and 13C NMR spectra of compounds 3a,c and 1H NMR spectra of compounds 1c and 3b were recorded on a Bruker Avance 500 instrument (Bruker, Karlsruhe, Germany) (500, 160, and 126 MHz, respectively) at ambient temperature. The 11B and 13C NMR spectra of compounds 1c and 3b were recorded on a Bruker DRX-400 instrument (Bruker, Karlsruhe, Germany) (128 and 100 MHz, respectively) at ambient temperature. TMS and BF3·Et2O were used as internal and external standards, respectively. NMR spectra of the compounds obtained, see the Supplementary Materials, Figures S1–S12. Microanalyses were carried out using a Perkin Elmer 2400 II automatic analyser (Perkin Elmer, Waltham, MA, USA). Analytical TLC was performed using Sorbil fil plates (Imid, Krasnodar, Russia). Flash chromatography was performed using Silica gel 60 (230–400 mesh) (Alfa Aesar, Heysham, Lancashire, UK) and are uncorrected. Optical rotations were measured on a Perkin Elmer 341 polarimeter (Perkin Elmer, Waltham, MA, USA). The high-resolution mass spectra were obtained on a Bruker maXis Impact HD mass spectrometer (Bruker, Karlsruhe, Germany), electrospray ionization (ESI) in negative (compounds 3a,c) or positive mode (for compound 3c) atmospheric pressure chemical ionization (APCI) in positive mode (compound 1c) with direct sample inlet (4 L/min flow rate).

4.2. Synthesis

3-(6-Aminohexanoyl)aminio-1,2-dicarba-closo-dodecaborane hydrochloride (1c). Concentrated HCl (4 mL, 47.68 mmol) was added to a cooled (0–5 °C) solution of compound 2 (0.76 g, 2.04 mmol) in 1,4-dioxane (18 mL). The reaction mixture was stirred at room temperature for 2.5 h, then evaporated to dryness under reduced pressure. The residue was dried in vacuo over P2O5 and KOH at 60 °C. Yield 0.63 g (100%). Colourless hygroscopic powder. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.27–1.32 (m, 2H, 2 × H-4 hexanoyl), 1.47–1.57 (m, 4H, 2 × H-3 and 2 × H-5 hexanoyl), 2.20 (t, J = 7.4 Hz, 2H, 2 × H-6 hexanoyl), 2.71–2.78 (m, 2H, 2 × H-2 hexanoyl), 1.2–2.8 (br. s, 9H, 9 × BH), 5.08 (s, 2H, 2 × CH carborane), 7.90 (br. s, 3H, NH3+), 8.30 (s, 1H, NH). 11B{H} NMR (160 MHz, DMSO-d6) δ (ppm): 15.1, 13.5, 10.7, –5.5.13C NMR (100 MHz, DMSO-d6) δ (ppm): 24.77, 25.90, 27.17, 36.80, 39.03, 57.66 (2C), 176.89. HRMS (APCI): m/z [M+H]+ calcd for [C8H511B10N2O]+: 275.2892, found: 275.2898.

General Procedure for the Synthesis of Carborane-Containing Folic Acid bis-Amides 3a,b. EDC·HCl (0.37 g, 1.92 mmol) was added to a solution of folic acid dihydrate (0.37 g, 0.77 mmol), amine 1a or 1b (1.69 mmol), HOBt hydrate (0.26 g, 1.69 mmol), and NEt3
(0.72 mL, 5.16 mmol) in DMSO (17 mL). The reaction mixture was stirred at room temperature for 48 h, then poured into H₂O (100 mL). 1N NaOH (15 mL) was added to the resulting suspension, and the resulting solution was extracted with EtOAc (3 × 25 mL) and n-hexane (25 mL). Combined organic layers were washed with 0.5 N NaOH (20 mL). Aqueous layers were combined and acidified with 4N HCl (~8 mL) to pH 1–2 and left at 5–10 °C for 72 h. The precipitate was filtered off, dried, and subjected to flash column chromatography on silica gel (eluents n-BuOH–EtO–H₂O–16% aq. NH₄OH 5:7:3). The fractions containing the fast-eluting component were combined and evaporated to dryness under reduced pressure. The residue was washed with 1N HCl (15 mL), then dried in vacuo over P₂O₅ and KOH. Analytical samples of compounds 3a and 3b were obtained by treatment with MeCN (13 mL per 0.5 g of compound) followed by centrifugation (15,000 rpm at 10 °C, 5 min).

(2S)-2-[(4-[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino]phenyl]-formamido]-N₃,N₅-bis-[2-(1,7,8-dicarba-nido-undecaboran-7-yi)acetylamino]ethylpentanediamide semihydrate (3a). Yield 0.47 g (69%). Dark orange powder m.p. > 350 °C. [α]°D = 4.5 (578 nm), −51.3 (546 nm) (c 0.32, 1N NaOH). ¹H NMR (500 MHz, DMSO-d₆) δ (ppm): −2.75 (br. s, 1H, BH), −2.61 (br. s, 1H, BH), −0.45 . . . 2.30 (br. m, 18H, 18 × BH), 1.69–1.74 (m, 1H, H-3B Glu), 1.84 (s, 2H, 2 × CH carbamone), 1.94–1.99 (m, 2H, H-3A Glu), 2.00–2.05 (m, 2H, 2 × H-2B acetyl), 2.13 (m, 2H, 2 × H-4 Glu), 2.36 (d, J = 14.1 Hz, H-2A acetyl), 2.37 (d, J = 14.3 Hz, H-2A acetyl), 3.00–3.13 (m, 8H, 4 × CH₂ ethylenediamine), 4.25 (br. s, 1H, H-2 Glu), 4.60 (s, 2H, CH₂ pteroyl), 4.75–6.25 (6H, OH, NH⁺, NH₂⁺ pteroyl and H₂O), 6.64 (d, J = 8.1 Hz, 2H, pteroyl), 7.41 (br. s, 1H, NH), 7.43 (br. s, 1H, NH), 7.67 (d, J = 8.1 Hz, 2H, pteroyl), 7.83 (s, 1H, NH), 7.91 (s, 1H, NH), 8.05 (br. s, 1H, NH), 8.18 (br. s, 2H, NH₂⁺ pteroyl), 8.75 (s, 1H, CH pteroyl). ¹³C (H) NMR (160 MHz, DMSO-d₆) δ (ppm): −37.2, −33.4, −22.2, −17.6, −14.2, −10.7. ¹³C NMR (126 MHz, DMSO-d₆) δ (ppm): 27.31, 31.93, 38.07, 38.13, 38.46, 38.49, 40.41, 42.19, 45.26, 45.31, 45.70, 46.41 (br. s), 53.18, 54.58 (br. s), 111.24 (2C), 121.68, 127.96, 129.02 (2C), 147.54, 148.06, 150.36, 151.96, 152.22, 158.78, 166.08, 170.03, 170.07, 171.81, 171.86. Calcd (%) for C₃₁H₅₇B₉N₁₁O₁₅: 42.15, 6.62, N 17.44. Found (%): C 42.36, H 6.53, N 17.19. HRMS (ESI): m/z [M + H]⁺ calcld for [C₃₁H₅₇B₉N₁₁O₁₅]⁺: 899.5993, found: 899.5944.

(2S)-2-[(4-[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino]phenyl]-formamido]-N₅-bis-[5-(1,7,8-dicarba-nido-undecaboran-3-yi)aminocarbonyl]pentylpentanediamide (3b). Yield 0.48 g (67%). Orange powder m.p. 240–245 °C (decomp.) (MeCN). [α]°D = −38.7 (578 nm), −50.3 (546 nm) (c 0.44, 1% NaHCO₃). ¹H NMR (500 MHz, DMSO-d₆) δ (ppm): −2.96 (br. s, 2H, 2 × BH), −0.45 . . . 2.3 (br. m, 18H, 18 × BH), 1.11–1.19 (m, 4H, 4 × H-4 hexanoyl), 1.28–1.42 (m, 4H, 4 × H-3 and 4 × H-5 hexanoyl), 1.81–1.97 (m, 2H, 2 × H-3 Glu), 1.97–2.00 (m, 4H, 4 × H-2 hexanoyl), 2.06–2.15 (m, 2H, 2 × H-4 Glu), 2.26 (s, 4H, 4 × CH carbamone), 2.95–3.03 (m, 4H, 4 × H-6 hexanoyl), 4.24–4.28 (m, 1H, H-2 Glu), 4.59 (s, 2H, CH₂ pteroyl), 4.8–6.2 (4H, OH, NH⁺, NH₂⁺ pteroyl), 6.64 (d, J = 8.5 Hz, 2H, pteroyl), 6.88 (s, 2H, 2 × NH), 7.65 (d, J = 8.5 Hz, 2H, pteroyl), 7.75–7.82 (m, 2H, 2 × NH), 7.97 (br. s, 7.98 (br. s), and 8.02 (br. s) (3H, NH and NH₂⁺ pteroyl), 8.75 (s, 1H, CH pteroyl). ¹³B[H] NMR (128 MHz, DMSO-d₆) δ (ppm): −38.5, −37.5, −22.4, −21.3, −18.6, −17.6, −12.1, −11.6, −9.9. ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 25.58, 25.62, 26.57, 26.67, 28.16, 29.37 (2C), 32.54, 37.33 (2C), 38.95 (2C), 45.09 (br. s, 4C), 46.19, 53.73, 111.78 (2C), 122.27, 128.48, 129.47 (2C), 148.01, 148.05, 150.86, 152.30, 153.01, 159.22, 166.42, 171.99, 172.08, 176.02 (2C). Calcd (%) for C₃₅H₅₅B₉N₁₁O₁₅: 45.18, H 7.04, N 16.56. Found (%): C 44.95, H 6.93, N 16.60. HRMS (ESI): m/z [M + Na]⁺ calcld for [C₃₅H₅₅B₉N₁₁O₁₅Na⁺]: 465.8324, found: 465.8356.

(2S)-2-[(4-[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino]phenyl]-formamido]-N₅-bis-[5-(1,7,8-dicarba-closo-dodecaboran-3-yi)aminocarbonyl]pentylpentanediamide (3c). EDCI × HCl (0.44 g, 2.28 mmol) was added to a solution of folic acid dihydrate (0.44 g, 0.91 mmol), amine 1c (0.62 g, 2.01 mmol), HOBt hydrate (0.31 g, 2.01 mmol), NEt₃ (0.60 mL, 4.29 mmol) in DMSO (16 mL). The reaction mixture was stirred at room temperature for 22 h, then poured into H₂O (170 mL). The precipitate was filtered off, dried in vacuo, then cold (0–5 °C) 0.15N
aqueous NaOH (48 mL) was added, and the reaction mixture was stirred at 5 °C for 30 min. The precipitate was separated by centrifugation (12,000 rpm, 15 min), washed with H2O (50 mL), and centrifuged again (washing was repeated thrice). The precipitate was dried, treated with a MeCN–H2O 7:3 mixture (100 mL) at room temperature, cooled to 5 °C, centrifuged (12,000 rpm, 15 min), washed with a MeCN–H2O 7:3 mixture (2 × 40 mL) and dried in vacuo over P2O5 at 50 °C. Yield 0.44 g (50%). Yellowish powder m.p. 248–253 °C (decomp.). [α]D20 +2.5 (c 0.33, DMSO). 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.19–1.25 (m, 4H, 4 × H-4 hexanoyl), 1.31–1.40 (m, 4H, 4 × H-3 hexanoyl), 1.43–1.51 (m, 4H, 4 × H-5 hexanoyl), 1.55–2.45 (br. m, 18H, 18 × H-NH), 1.79–1.87 (m, 1H, H-3B Glu), 1.91–2.02 (m, 2H, H-3A Glu and H-2B hexanoyl), 2.07–2.14 (m, 1H, H-2B hexanoyl), 2.15–2.17 (m, 4H, 2 × H-4 Glu and 2 × H-2A hexanoyl), 2.97–3.04 (m, 4H, 4 × H-6 hexanoyl), 4.25–4.29 (m, 1H, H-2 Glu), 4.49 (d, J = 5.8 Hz, 2H, CH2 pteroyl), 5.07 (s, 4H, 4 × CH carborane), 6.63 d, J = 8.6 Hz, 2H, pteroyl), 6.81 (br. s, 1H, NH), 6.92–6.94 (m, 2H, NH2 pteroyl), 7.65 (d, J = 8.6 Hz, 2H, pteroyl), 7.77 (t, J = 5.3 Hz, 1H, NH), 7.79 (t, J = 5.5 Hz, 1H, NH), 8.22 (s, 2H, 2 × NH aminocarborane), 8.64 (s, 1H, CH pteroyl), 11.41 (s, OH). 13C NMR (126 MHz, DMSO-d6) δ (ppm): −15.1, −13.5, −10.7, −5.6. 15N NMR (126 MHz, DMSO-d6) δ (ppm): 24.46, 24.49, 25.85, 25.95, 27.68, 28.81 (2C), 32.06, 36.48 (2C), 38.31 (2C), 45.88, 53.17, 57.01 (4C), 111.11 (2C), 121.46, 127.86, 128.91 (2C), 148.43, 148.60, 150.67, 153.63, 156.51, 160.73, 166.02, 171.48, 171.51, 176.47 (2C). Calcd (%) for C35H63B20N11O6: C 44.24, H 6.68, N 16.22. Found (%): C 44.26, H 6.85, N 16.20. HRMS (ESI): m/z [M+Na]+ calcd for [C35H63B20N11NaO6]+: 976.6790, found: 976.6796.

4.3. Cell Lines

The following cell lines were used: BJ-5ta human foreskin fibroblasts (ATCC CRL-4001™), U87 MG human glioblastoma (ATCC HTB-14™), T98G human glioblastoma (ATCC CRL-1690™), SK-Mel-28 human melanoma (ATCC HTB-72™), MDA-MB-231 breast carcinoma (ATCC HTB-103™), CRL-1690™), SK-Mel-28 human melanoma (ATCC HTB-72™), MDA-MB-231 breast carcinoma (ATCC HTB-103™), DU 145 prostate adenocarcinoma (ATCC HTB-81™), stored in the SPF-vivarium cryobank at the Institute of Cytology and Genetics of the Russian Academy of Sciences (Siberian Branch), Novosibirsk. Cells were cultured in 5% CO2 in DMEM/F12 (1:1) nutrient medium (Biolot, St. Petersburg, Russia) supplemented with 10% fetal bovine serum (Invitrogen, Waltham, MA, USA). Cells were counted on a Countess automatic cell counter (Invitrogen, Waltham, MA, USA).

4.4. MTT Cytotoxicity Assay

Cells were seeded in 96-well plates in the amount of 2 × 104 cells per well and cultivated for 24 h. Stock solutions of compounds 3a and 3b in 0.5% aqueous NaHCO3 (concentration 5.0 mg/mL) were prepared under stirring for 10 min, then incubated at 37 °C for 20 min and sonicated on a Sonicator Q700 ultrasonic homogenizer (Qsonica, Newtown, CT, USA) for 30 min. A solution of the commercial anticancer agent Cisplatin (Cisplatin Teva, Pharmachemie B.V., Haarlem, the Netherlands) with an initial concentration of 0.50 mg/mL was used as a positive control. Nutrient medium without additives was used as a negative control. The stock solutions of compounds 3a, b were added to the nutrient medium with cells in a volume of 1/5 of the total volume of the medium in the well, as a result of which the concentration of compounds 3a and 3b in the medium was 1.00 mg/mL; cisplatin concentration was 0.10 mg/mL. Then, a series of twofold dilutions of stock solutions was prepared and added to the nutrient medium with cells in such a way as to obtain nutrient media with the concentration of compounds 3a and 3b of 0.50, 0.25, 0.125, 0.063, 0.031, 0.016, and 0.008 mg/mL. The concentration of cisplatin in the positive control samples was 0.10000, 0.0500, 0.0250, 0.0125, 0.0063, 0.0031, 0.0016, and 0.0008 mg/mL. The duration of cell incubation was 3 days at 37 °C in an atmosphere containing 5% CO2. After that, the culture medium was removed from each well, a solution of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] in DMEM/F12 (1:1) culture medium (MTT concentration 5 mg/mL) was added and incubated for 4 h; then, the supernatant was removed, and the formazan precipitate was dissolved in DMSO...
The optical density of the resulting solutions was determined on a Multiskan Sky High Microplate Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 595 nm. Cell viability was determined based on optical density; cell viability in the negative control was taken as 100%. Experiments were performed in three parallel runs (for detailed information on cell viability of various cell lines, see the Supplementary Materials, Table S1).

4.5. Boron Uptake and Accumulation Assay

Stock solutions of compounds 3a and 3b were prepared in 0.5% aqueous NaHCO₃ (concentration 5.0 mg/mL). BJ-5ta, SK-Mel-28, T98G, DU 145, MDA-MB-231, and U87 MG cells were cultured in 5 mL of nutrient medium at 37 °C in a 5% CO₂ atmosphere until a monolayer was obtained (from 3 × 10⁶ up to 5 × 10⁶ cells). The nutrient medium was removed, a mixture of the nutrient medium (4.75 mL in the case of U87 MG cells or 4.50 mL in other cases) and the stock solution of compound 3a or 3b (0.25 mL in the case of U87 MG cells or 0.50 mL in other cases) was added to the cells and incubated at 37 °C in a 5% CO₂ atmosphere. Cells cultured without the addition of test compounds were used as controls.

After the cells were incubated for various times (10 min, 30 min, 1 h, 3 h, 6 h, and 8 h), the culture medium was separated from the cells, and the cells were removed from the substrate with a trypsin–versene solution (1:1) (Biolot, St. Petersburg, Russia), and the number of cells was counted (for the number of cells used for assay, see the Supplementary Materials, Tables S2–S7). The resulting cell suspension was divided into three equal parts, centrifuged (1000 rpm, 5 min), and the cells were separated from the supernatant. 16M Nitric acid (1.0 mL) was added to the resulting cells, the mixture was kept at 95 ± 1 °C for 30–40 min, then cooled to 20 °C, and deionized water (3.0 mL) was added. The boron content in the obtained solutions was determined on an iCAP 6500 DUO high-resolution atomic emission spectrometer with inductively coupled plasma (Thermo Fisher Scientific, Waltham, MA, USA) according to the procedure described in [90].

5. Patents

Gruzdev, D.A.; Krasnov, V.P.; Telegina, A.A.; Levit, G.L.; Solovieva, O.I.; Razumov, I.A.; Kanygin, V.V.; Guseľnikova, T.Ya.; Charushin, V.N. nido-Carborane-containing folic acid bis-amides for boron delivery to tumour cells, Pat. Appl. RU2022123758A (priority 2022-09-07).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms232213726/s1.

Author Contributions: Conceptualization, D.A.G. and V.P.K.; investigation, D.A.G., A.A.T., O.I.S., T.Y.G. and I.A.R.; writing—original draft preparation, D.A.G.; writing—review and editing, G.L.L., I.A.R., V.P.K. and V.N.C.; visualization, A.A.T., O.I.S. and T.Y.G.; supervision, V.N.C.; funding acquisition, D.A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 21-73-10073.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Equipment of the Centre for Joint Use “Spectroscopy and Analysis of Organic Compounds” at the Postovsky Institute of Organic Synthesis was used.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.
26. Hilgenbrink, A.R.; Low, P.S. Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. J. Pharm. Sci. 2005, 94, 2135-2146. [CrossRef]

27. Kelemen, L.E. The role of folate receptor alpha in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int. J. Cancer 2006, 119, 243–250. [CrossRef]

28. Ebrahimnejad, P.; Taleghani, A.S.; Asare-Addo, K.; Nokhodchi, A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov. Today 2022, 27, 471–489. [CrossRef]

29. Martín-Sabroso, C.; Torres-Suárez, A.I.; Alonso-González, M.; Fernández-Carballeda, A.; Fraguas-Sánchez, A.I. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceuticals 2022, 14, 14. [CrossRef]

30. Leamon, C.P.; Vlahov, I.R.; Reddy, J.A.; Vetzel, M.; Santhapuram, H.K.R.; You, F.; Bloomfield, A.; Dorton, R.; Nelson, M.; Kleindl, P.; et al. Folate-Vinca Alkaloid Conjugates for Cancer Therapy: A Structure-Activity Relationship. Bioconjugate Chem. 2014, 25, 560–568. [CrossRef]

31. Dcona, M.M.; Sheldon, J.E.; Mitra, D.; Hartman, M.C.T. Light induced drug release from a folic acid-drug conjugate. Bioorg. Med. Chem. Lett. 2017, 27, 466–469. [CrossRef] [PubMed]

32. Geersing, A.; de Vries, R.H.; Jansen, G.; Rots, M.G.; Roelfes, G. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorg. Med. Chem. Lett. 2019, 29, 1922–1927. [CrossRef] [PubMed]

33. Zhao, Y.-M.; Lu, Q.-Q.; Yao, S.; Su, H.-F.; Liu, H.-J.; Wang, Z.-J.; Wu, F.-S.; Wang, K. N-Methylpyridylporphyrin tailed with folate conjugate as a potential lysosomal-targeted photosensitizer: Synthesis, DNA interaction, singlet oxygen and subcellular localization. J. Porphyr. Phthalocyanines 2019, 23, 679–684. [CrossRef]

34. Reddy, J.A.; Nelson, M.; Dirksen, C.; Vetzel, M.; Johnson, T.; Cross, V.; Westrick, E.; Qi, L.W.; Hahn, S.; Santhapuram, H.K.; et al. Pre-clinical studies of EC2629, a highly potent folate-receptor-targeted DNA crosslinking. Sci. Rep. 2020, 10, 12772. [CrossRef] [PubMed]

35. Marverti, G.; Marraccini, C.; Martello, A.; D’Arca, D.; Pacifico, S.; Guerrini, R.; Spyrakis, F.; Gozzi, G.; Lauriola, A.; Santucci, M.; et al. Folic Acid–Peptide Conjugates Combine Selective Cancer Cell Internalization with Thymidylate Synthase Dimer Interface Targeting. J. Med. Chem. 2021, 64, 3204–3221. [CrossRef] [PubMed]

36. Christensen, E.; Henriksen, J.R.; Jørgensen, J.T.; Amiaty, Y.; Shmeeda, H.; Gabizon, A.A.; Kjær, A.; Andersen, T.L.; Hansen, A.E. Folate receptor targeting of radiolabeled liposomes reduces intratumoural liposome accumulation in human KB carcinoma xenografts. Int. J. Nanomed. 2018, 13, 7647–7656. [CrossRef]

37. Handali, S.; Moghimipour, E.; Kouchak, M.; Ramezani, Z.; Amini, M.; Angali, K.A.; Saremy, S.; Dorkoosh, F.A.; Rezaei, M. New folic acid receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: Strong implication for enhanced potency and safety. Life Sci. 2019, 227, 39–50. [CrossRef] [PubMed]

38. Kumar, P.; Hoo, P.; Liu, B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceuticals 2019, 11, 381. [CrossRef] [PubMed]

39. Luiz, T.; Dutra, J.A.P.; de Cássia Ribeiro, T.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A 2022, 645, 128935. [CrossRef]

40. Jing, D.; Wu, W.; Chen, X.; Xiao, H.; Zhang, Z.; Chen, F.; Zhang, Z.; Liu, J.; Diao, Z.; Pu, F. Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 via the JAK2-STAT3-PDL1. Pharmacol. Res. 2020, 162, 104661. [CrossRef]

41. Roger, E.; Kalscheuer, S.; Kirtane, A.; Gurum, B.R.; Grill, A.E.; Whittum-Hudson, J.; Panyam, J. Folic Acid Functionalized Nanoparticles for Enhanced Oral Drug Delivery. J. Pharm. Sci. 2019, 108, 2103–2110. [CrossRef] [PubMed]

42. Gayam, S.R.; Wu, S.-P. Redox responsive Pd(II) templated rotaxane nanovalve capped mesoporous silica nanoparticles: A folic acid mediated biocompatible cancer-targeted drug delivery system. J. Mater. Chem. B 2014, 2, 7009–7016. [CrossRef]

43. Brazzale, C.; Canaparo, R.; Racca, L.; Foglietto, F.; Durando, G.; Fantozzi, R.; Caliceti, P.; Serpe, L. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine 2016, 11, 3053–3070. [CrossRef]

44. Koirala, N.; Das, D.; Fayazzadeh, E.; Sen, S.; McClain, A.; Puskas, J.E.; Drazba, J.A.; McLennan, G. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. J. Biomed. Mater. Res. 2019, 107, 2522–2535. [CrossRef] [PubMed]

45. Guo, F.; Yu, N.; Jiao, Y.; Hong, W.; Zhou, K.; Ji, X.; Yuan, H.; Wang, H.; Li, A.; Wang, G.; et al. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin codelivery. Drug Deliv. 2021, 28, 1709–1721. [CrossRef] [PubMed]

46. Mokhtarian, F.; Rastegari, B.; Zeinali, S.; Tohidi, M.; Karbalaei-Heidari, H.R. Theranostic Effect of Folic Acid Functionalized MIL-100(Fe) for Delivery of Prodigiosin and Simultaneous Tracking-Combating Breast Cancer. J. Nanomater. 2022, 2022, 1108865. [CrossRef]

47. Achilli, C.; JadHAV, S.A.; Guidetti, G.F.; Ciana, A.; Abbonante, V.; Malara, A.; Fagnoni, M.; Tortì, M.; Balduini, A.; Balduini, C.; et al. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem. Biol. Drug Des. 2014, 83, 532–540. [CrossRef]

48. Kettenbach, K.; Schieferstein, H.; Grunewald, C.; Ifland, D.; Reffert, L.M.; Hampel, G.; Schütz, C.L.; Bings, N.H.; Ross, T.L. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT). Radiochim. Acta 2015, 103, 799–809. [CrossRef]
72. Elechkalawar, C.K.; Bhatchakary, D.; Ahmed, M.T.; Gora, H.; Sritharan, K.; Chaturbudy, P.; Sinha, S.H.; Jaggarapu, M.M.C.S.; Narayan, K.P.; Chakravarty, S.; et al. Dual targeting of folate receptor-expressing glioma tumour-associated macrophages and epithelial cells in the brain using a carbon nanosphere–cationic folate nanoconjugate. *Nanoscale Adv.* 2019, 1, 3555–3567. [CrossRef]

73. Kucheryavykh, Y.V.; Davila, J.; Ortiz-Rivera, J.; Inyushin, M.; Almodovar, L.; Mayol, M.; Morales-Cruz, M.; Cruz-Montañez, A.; Barcelo-Bovea, V.; Griebenow, K.; et al. Targeted Delivery of Nanoparticulate Cytochrome C into Glioma Cells Through the Proton-Coupled Folate Transporter. *Biomolecules* 2019, 9, 154. [CrossRef] [PubMed]

74. Wang, S.; Lee, R.J.; Mathias, C.J.; Green, M.A.; Low, P.S. Synthesis, Purification, and Tumour Cell Uptake of ⁶⁷Ga-Deferoxamine-Folate, a Potential Radiopharmaceutical for Tumour Imaging. *Bioconjugate Chem.* 1996, 7, 56–62. [CrossRef]

75. Wang, S.; Luo, J.; Lantrip, D.A.; Waters, D.J.; Mathias, C.J.; Green, M.A.; Fuchs, P.S.; Low, P.S. Design and Synthesis of [¹¹¹In]DTPA-Folate for Use as a Tumour-Targeted Radiopharmaceutical. *Bioconjugate Chem.* 1997, 8, 673–679. [CrossRef] [PubMed]

76. Wang, S.; Low, P.S. Folate-mediated targeting of antineoplastic drugs, imaging agents and nucleic acids to cancer cells. *J. Control. Release* 1998, 53, 59–68. [CrossRef]

77. Leamon, C.P.; Deprince, R.B.; Hendren, R.W. Folate-mediated Drug Delivery: Effect of Alternative Conjugation Chemistry. *Drug Targeting* 1999, 7, 157–169. [CrossRef]

78. Müller, C.; Hohn, A.; Schubiger, P.A.; Schibli, R. Preclinical evaluation of novel organometallic ⁹⁰mTc-folate and ⁹⁰mTc-pterotate radiotracers for folate receptor-positive tumour targeting. *Eur. J. Nucl. Med. Mol. Imaging* 2006, 33, 1007–1016. [CrossRef]

79. Bettio, A.; Honer, M.; Müller, C.; Brühlmeier, M.; Müller, U.; Schibli, R.; Groehn, V.; Schubiger, A.P.; Ametamey, S.M. Synthesis and Preclinical Evaluation of a Folic Acid Derivative Labeled with ¹⁸F for PET Imaging of Folate Receptor-Positive Tumours. *J. Nucl. Med.* 2006, 47, 1153–1160.

80. Boss, S.D.; Betzel, T.; Müller, C.; Fischer, C.R.; Haller, S.; Reber, J.; Groehn, V.; Schibli, R.; Ametamey, S.M. Comparative Studies of Three Pairs of α- and γ-Conjugated Folic Acid Derivatives Labeled with Fluorine-18. *Bioconjugate Chem.* 2015, 27, 74–86. [CrossRef]

81. Xie, J.; Zhu, Z.-H. Synthesis and Imaging Study on the FITC Labeled Folic Derivative. *Chem. J. Chin. Univ.* 2011, 32, 1532–1536.

82. Doi, A.; Kawabata, S.; Iida, K.; Yokoyama, K.; Kajimoto, Y.; Kuroiwa, T.; Kirihata, M.; Kasaoka, S.; Maruyama, K.; et al. Tumour-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: A modality for boron neutron capture therapy. *J. Neuro-Oncol.* 2008, 87, 287–294. [CrossRef] [PubMed]

83. Feng, B.; Tomizawa, K.; Michiue, H.; Miyatake, S.; Han, X.-J.; Fujimura, A.; Seno, M.; Kirihata, M.; Matsui, H. Delivery of codiumborocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. *Biomaterials* 2009, 30, 1746–1755. [CrossRef]

84. Wang, P.; Zhen, H.; Jiang, X.; Zhang, W.; Cheng, X.; Guo, G.; Mao, X.; Zhang, X. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax. *BMC Cancer* 2010, 10, 661. [CrossRef] [PubMed]

85. Meier, R.; Henning, T.D.; Boddington, S.; Tavri, S.; Arora, S.; Piontek, G.; Rudelius, M.; Corot, C.; Daldrup-Link, H.E. Breast Cancers: MR Imaging of Folate-Receptor Expression with the Folate-Specific Nanoparticle P1133. *Radiology* 2010, 255, 527–535. [CrossRef] [PubMed]

86. Yang, T.; Xu, F.; Fang, D.; Chen, Y. Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-Based Diagnosis in Breast Cancer. *Sci. Rep.* 2015, 5, 16733. [CrossRef] [PubMed]

87. Godlewksa, M.; Majkowska-Pilip, A.; Chuchurska, A.; Bieretat, J.F.; Gaweł, D.; Nazaruk, E. Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases. *Electrochim. Acta* 2019, 299, 1–11. [CrossRef]

88. Sambi, M.; DeCarlo, A.; Malardier-Jugroot, C.; Szewczuk, M.R. Next-Generation Multimodality of Nanomedicine Therapy: Size and Structure Dependence of Folic Acid Conjugated Copolymers Actively Target Cancer Cells in Disabling Cell Division and Inducing Apoptosis. *Cancers* 2019, 11, 1698. [CrossRef]

89. Armarego, W.L.F.; Chai, C.L.L. *Purification of Laboratory Chemicals*, 6th ed.; Butterworth Heinemann: Burlington, MA, USA, 2009.

90. Tsygankova, A.R.; Kanygin, V.V.; Kasatova, A.I.; Zav'yakov, E.L.; Gusei’nikova, T.Y.; Chigigin, A.I.; Mukhamadiyarov, R.A. Determination of boron by inductively coupled plasma atomic emission spectroscopy. *Biodistribution* of ¹⁰⁹B in tumour-bearing mice. *Russ. Chem. Bull.* 2020, 69, 601–607. [CrossRef]