Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance

Citation
van Dijk, Aimee E., Margreet R. Olthof, Joke C. Meeuse, Elin Seebus, Rob J. Heine, and Rob M. van Dam. 2009. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32(6): 1023-1025.

Published Version
doi:10.2337/dc09-0207

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4592060

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance

Aimée E. van Dijk, MSc1
Margreet R. Olthof, PhD1
Joke C. Meuuse, MSc1
Elin Sebus, MD2
Rob J. Heine, MD, PhD2
Rob M. van Dam, PhD3,4

OBJECTIVE — Coffee consumption has been associated with lower risk of type 2 diabetes. We evaluated the acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance.

RESEARCH DESIGN AND METHODS — We conducted a randomized crossover trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo (1 g mannitol) on glucose and insulin concentrations during a 2-h oral glucose tolerance test (OGTT) in 15 overweight men.

RESULTS — Chlorogenic acid and trigonelline ingestion significantly reduced glucose (−0.7 mmol/l, P = 0.007, and −0.5 mmol/l, P = 0.024, respectively) and insulin (−73 pmol/l, P = 0.038, and −117 pmol/l, P = 0.007) concentrations 15 min following an OGTT compared with placebo. None of the treatments affected insulin or glucose area under the curve values during the OGTT compared with placebo.

CONCLUSIONS — Chlorogenic acid and trigonelline reduced early glucose and insulin responses during an OGTT.

Diabetes Care 32:1023–1025, 2009

From the 1Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, the Netherlands; the 2Department of Endocrinology, VU University Medical Center, Amsterdam, the Netherlands; the 3Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts; and the 4Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.

Corresponding author: Margreet R. Olthof, margreet.olthof@falw.vu.nl.

Received 9 February 2009 and accepted 12 March 2009.

Published ahead of print at http://care.diabetesjournals.org on 24 February 2009. DOI: 10.2337/dc09-0207.

Clinical trial reg. no. NTR1051, www.trialregister.nl.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Coffee components and glucose tolerance

Table 1—Glucose and insulin concentrations during an OGTT following ingestion of chlorogenic acid, decaffeinated coffee, trigonelline, or placebo in 15 healthy overweight men

Component	Glucose (mmol/l)	Insulin (pmol/l)
Placebo	0.2	5.6
Chlorogenic acid	0.2	9.1
Decaffeinated	0.2	9.8
Coffee	0.2	9.9
Trigonelline	0.2	11.5

Data are means ± SE unless otherwise indicated. Baseline values are fasting concentrations and were determined right before supplement ingestion; Time 0 was half an hour after supplement ingestion and right before the start of the OGTT.

CONCLUSIONS—In this randomized crossover trial in healthy men, chlorogenic acid and trigonelline ingestion led to significantly lower glucose and insulin concentrations 15 min after an oral glucose load but did not significantly reduce the OGTT insulin and glucose areas under the curve compared with placebo.

Battram et al. (11) found a significantly lower OGTT glucose area under the curve after decaffeinated coffee compared with that after placebo, but no significant effect was found in the current study or two smaller previous studies (12, 13). Further research is needed to elucidate whether these differences in study results are due to chance or to differences in study methods. Trigonelline (5) and chlorogenic acid (6–8) have been shown to reduce blood glucose concentrations in rats, but data in humans are sparse. In a study of 10 diabetic patients, intake of 500 mg trigonelline had mixed and nonsignificant effects on glucose concentrations (9).

Several mechanisms have been suggested for effects of chlorogenic acid on glucose metabolism. In vitro, chlorogenic acid has been shown to inhibit α-glucosidase and glucose-6-phosphatase, suggesting that it may delay intestinal glucose uptake (8,14). This effect could also reduce postprandial hyperglycemia through improved glucose-induced insulin secretion as a result of increased glucagon-like peptide-1 secretion (12). Inhibition of glucose-6-phosphatase could also reduce hepatic glucose output (15), which may have contributed to the reduction of fasting insulin concentrations that we found for chlorogenic acid.

In our study, the multiple tests conducted for different time points increased the likelihood of chance findings, and confirmation of our results is therefore needed. In addition, the decaffeinated coffee supplement contained substantially less chlorogenic acid and trigonelline than the doses administered in isolation, complicating the comparison of the treatment effects.

In conclusion, chlorogenic acid and trigonelline reduced early glucose and insulin responses during the OGTT. This finding is consistent with the hypothesis that these compounds contribute to the putative beneficial effect of coffee on development of type 2 diabetes.

Acknowledgments—The research for this study was financially supported by the Dutch Diabetes Research Foundation (Stichting Diabetes Fonds Nederland Grant 2006.11.020).

R.J. Heine is currently employed at Eli Lilly and Company, Indianapolis, Indiana. No other potential conflicts of interest relevant to this article were reported.

We thank the participants of the Coffee Study for their participation and the Clinical Research Unit Internal Medicine of the VU University Medical Centre for use of the facilities. We are very grateful to Peter C. Hollman and Dini Venema (RIKILT, Institute of Food Safety, Wageningen, the Netherlands) for the careful measurement of chlorogenic acid and Sandy Slow (Centerbury Health Laboratories, Christchurch, New Zealand) for the careful measurement of trigonelline in the coffee supplement.

References
1. van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005;294:97–104
2. van Dam RM, Willett WC, Manson JE, Hu FB. Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 2006;29:398–403
3. Clifford MN. Chlorogenic acids and other cinnamates: nature, occurrence and di-
etary burden. J Sci Food Agric 1999;79:362–372
4. Minamisawa M, Yoshida S, Takai N. Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal Sci 2004;20:325–328
5. Mishkinsky J, Joseph B, Sulman FG. Hypoglycaemic effect of trigonelline. Lancet 1967;2:1311–1312
6. Andrade-Cetto A, Wiedenfeld H. Hypoglycaemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J Ethnopharmacol 2001;78:145–149
7. Rodriguez de Sotillo DV, Hadley M. Chlorogenic acid modifies plasma and liver concentrations of cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 2002;13:717–726
8. Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigoria CL, Bazotte RB, da Silva RS, de Souza HM. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 2008;26:320–328
9. Trugo LC, Macrae R. Chlorogenic acid composition of instant coffees. Analyst 1984;109:263–266
10. Slow S, Lever M, Lee MB, George PM, Chambers ST. Betaine analogues alter homocysteine metabolism in rats. Int J Biochem Cell Biol 2004;36:870–880
11. Battram DS, Arthur R, Weekes A, Graham TE. The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. J Nutr 2006;136:1276–1280
12. Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003;78:728–733
13. Brand-Miller JC, Louie JC, Atkinson F, Petocz P. Delayed effects of coffee, tea and sucrose on postprandial glycaemia in lean, young, healthy adults. Asia Pac J Clin Nutr 2008;17:657–662
14. Ishikawa A, Yamashita H, Hiemori M, Inagaki E, Kimoto M, Okamoto M, Tsugi H, Memon AN, Mohammadio A, Natori Y. Characterization of inhibitors of postprandial hyperglycaemia from the leaves of Nerium indicum. J Nutr Sci Vitaminol (Tokyo) 2007;53:166–173
15. Arion WJ, Canfield WK, Ramos FC, Schindler PW, Burger HJ, Hemmerle H, Schubert G, Below P, Herling AW. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys 1997;339:315–322