Baxter d-permutations and other pattern avoiding classes

Nicolas Bonichon and Pierre-Jean Morel

LaBRI, U-Bordeaux Enseirb-Mathmeca

arXiv:2202.12677

July 4th, 2022
Permutations and diagrams

A permutation $\sigma = \sigma(1), \ldots, \sigma(n) \in S_n$ is a bijection from $[n] := \{1, 2, \ldots, n\}$ to itself.
Permutations and diagrams

A permutation $\sigma = \sigma(1), \ldots, \sigma(n) \in S_n$ is a bijection from $[n] := \{1, 2, \ldots, n\}$ to itself. $P_\sigma := \{(i, \sigma(i)), 1 \leq i \leq n\}$ the diagram of σ.

Example: the diagram of $\sigma = 413526$
Permutations and diagrams

A **permutation** $\sigma = \sigma(1), \ldots, \sigma(n) \in S_n$ is a bijection from $[n] := \{1, 2, \ldots, n\}$ to itself. $P_\sigma := \{(i, \sigma(i)), 1 \leq i \leq n\}$ the diagram of σ.

Example: the diagram of $\sigma = 413526$

A **diagram** (of size n) is a point set on $[n] \times [n]$ with exactly 1 point per row and 1 point per column. S_n the set of permutations of size n. $|S_n| = n!$
The Starting Question

- Permutations ⇔ Diagrams
- Diagrams are 2D objects
- What could be a ”3D” diagram?
- ⇒ ”3D” Permutations?
d-Diagrams and d-Permutations

A **3-diagram** of size \(n\) is a point set on \([n]^3\) such that
A **3-diagram** of size n is a point set on $[n]^3$ such that each plane of the grid (orthogonal to x, y or z) contains exactly 1 point.

Points:
- $(1,2,6)$
- $(2,5,5)$
- $(3,4,4)$
- $(4,1,3)$
- $(5,4,2)$
- $(6,6,1)$

A **d-diagram** is a point set of size n on $[n]^d$ such that each **hyperplane** orthogonal $x_i = j$ with $i \in [d]$ and $j \in [n]$ contains exactly 1 point.
A 3-permutation $\sigma := (\sigma_y, \sigma_z)$ is a pair of permutations. $S_{n}^{2} := \{\text{3-permutations of size } n\}$. $|S_{n}^{2}| = n!^2$.

A d-permutation of size n, $\sigma := (\sigma_1, \ldots, \sigma_{d-1})$ is a sequence of $d-1$ permutations of size n. $S_{n}^{d-1} := \{\text{$d$-permutations of size } n\}$. $|S_{n}^{d-1}| = n!^{d-1}$.

Points:
(1,2,6)
(2,5,5)
(3,4,4)
(4,1,3)
(5,4,2)
(6,6,1)

(253146, 654321)
Projections

\[\text{proj}_{xy}(\sigma) = \sigma_y, \]
\[\text{proj}_{xz}(\sigma) = \sigma_z, \]
\[\text{proj}_{yz}(\sigma) = \sigma_z \sigma_y^{-1}. \]
\[\text{proj}_{yz}((253146, 654321)) = 264251. \]
\[\text{proj}_{y,x}(\sigma) = \sigma_y^{-1}. \]

Let \(\overline{\sigma} := (Id_n, \sigma_1, \ldots, \sigma_{d-1}) \). , the projection on \(i \) of \(d \)-permutation \(\sigma \) is the \(d' \)-permutation \(\text{proj}_i(\sigma) := \overline{\sigma}_{i_2} \overline{\sigma}_{i_1}^{-1}, \overline{\sigma}_{i_3} \overline{\sigma}_{i_1}^{-1}, \ldots, \overline{\sigma}_{i_{d'}} \overline{\sigma}_{i_1}^{-1} \). \(d' \) is the dimension of the projection.
Projections

\[\text{proj}_{xy}(\sigma) = \sigma_y, \]
\[\text{proj}_{xz}(\sigma) = \sigma_z, \]
\[\text{proj}_{yz}(\sigma) = \sigma_z \sigma_y^{-1}. \]
\[\text{proj}_{yz}((253146, 654321)) = 264251. \]
\[\text{proj}_{y,x}(\sigma) = \sigma_y^{-1}. \]

\(i := i_1, \ldots, i_{d'} \in [d]^{d'}, \) the projection \(\text{proj}_i \) is **direct** if \(i_1 < i_2 < \cdots < i_{d'} \).

Let \(\overline{\sigma} := (\text{Id}_n, \sigma_1, \ldots, \sigma_{d-1}). \) , the **projection** on \(i \) of \(d \)-permutation \(\sigma \) is the \(d' \)-permutation \(\text{proj}_i(\sigma) := \overline{\sigma}_{i_2} \overline{\sigma}_{i_1}^{-1} \overline{\sigma}_{i_3} \overline{\sigma}_{i_1}^{-1} \cdots \overline{\sigma}_{i_{d'}} \overline{\sigma}_{i_1}^{-1}. \) \(d' \) is the **dimension** of the projection.
A permutation σ **contains** a permutation (or a **pattern**) $\pi = \pi(1), \ldots, \pi(k) \in S_k$ if there exist indices $c_1 < \cdots < c_k$ such that $\sigma(c_1) \cdots \sigma(c_k)$ is order-isomorphic to π.

The set of points of indices c_1, \cdots, c_k is an **occurrence** of the π.

$\sigma = 413526$ contains [several occurrences of] the pattern $\pi = 213$.

\[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 5 & 2 & 6 & 4 \\
\end{array} \]
Pattern (classic)

A permutation σ **contains** a permutation (or a **pattern**) $\pi = \pi(1), \ldots, \pi(k) \in S_k$ if there exist indices $c_1 < \cdots < c_k$ such that $\sigma(c_1) \cdots \sigma(c_k)$ is order-isomorphic to π.

The set of points of indices c_1, \cdots, c_k is an **occurrence** of the π.

$\sigma = 413526$ contains [several occurrences of] the pattern $\pi = 213$.

$$S_n(\pi) := \text{the set of permutations that avoids } \pi.$$
$$S_n(\pi_1, \ldots, \pi_k) := \text{ ... avoids all } \pi_1, \ldots, \pi_k.$$
Pattern avoidance classes

\[S_n(21) = \{Id_n\} \]
Pattern avoidance classes

\(S_n(21) = \{ Id_n \} \)

[Knuth 73]: \(|S_n(312)| = \frac{1}{n+1} \binom{2n}{n} = 1, 2, 5, 14, 42, 132, \ldots \)
$S_n(21) = \{Id_n\}$

[Knuth 73]: $|S_n(312)| = \frac{1}{n+1} \binom{2n}{n} = 1, 2, 5, 14, 42, 132, \ldots$

π and τ are **Wilf-equivalent** of $|S_n(\pi)| = |S_n(\tau)|$.

$|S_n(21)| = |S_n(12)| = 1$
Pattern avoidance classes

\[S_n(21) = \{Id_n\} \]

[Knuth 73]: \[|S_n(312)| = \frac{1}{n+1} \binom{2n}{n} = 1, 2, 5, 14, 42, 132, \ldots \]

\(\pi \) and \(\tau \) are **Wilf-equivalent** if \(|S_n(\pi)| = |S_n(\tau)| \).

\[|S_n(21)| = |S_n(12)| = 1 \]

\(\pi \) and \(\tau \) are **trivially Wilf-equivalent** if there is a symmetry \(s \) of the square such that \(\forall \sigma, \sigma \in S(\pi) \) iif \(s(\sigma) \in S(s(\tau)) \).
Pattern avoidance classes

Patterns	(1)	Sequence	Comment
12	2	1, 1, 1, 1, 1, 1, 1, 1, 1, ...	
12, 21	1	1, 0, 0, 0, 0, 0, 0, 0, ...	
312	4	$\frac{1}{n+1}\binom{2n}{n} = 1, 2, 5, 14, 42, 132, ...$	[Knuth 73]
123	2	$\frac{1}{n+1}\binom{2n}{n} = 1, 2, 5, 14, 42, 132, ...$	[Knuth 73]
123, 321	1	1, 2, 4, 4, 0, 0, 0, ...	[Simion 85]
213, 321	4	$1 + \frac{n(n-1)}{2} = 1, 2, 4, 7, 11, 16, 22, ...$	[Simion 85]
312, 231	2	$2^{n-1} = 1, 2, 4, 8, 16, 32, 64, ...$	[Simion 85]
231, 132	4	$2^{n-1} = 1, 2, 4, 8, 16, 32, 64, ...$	[Simion 85]
312, 321	4	$2^{n-1} = 1, 2, 4, 8, 16, 32, 64, ...$	[Simion 85]
213, 132, 123	2	1, 2, 3, 5, 8, 13, 21, ...	[Simion 85]
231, 213, 321	8	$n = 1, 2, 3, 4, 5, 6, 7, ...$	[Simion 85]
312, 132, 213	4	$n = 1, 2, 3, 4, 5, 6, 7, ...$	[Simion 85]
312, 321, 123	4	1, 2, 3, 1, 0, 0, 0, ...	
321, 213, 123	4	1, 2, 3, 1, 0, 0, 0, ...	
321, 213, 132	2	$n = 1, 2, 3, 4, 5, 6, 7, ...$	[Simion 85]

(1): Number of trivially Wilf-Equivalent patterns.
patterns and d-permutations

s contains a pattern π if

$(1432, 3124)$ contains the pattern $(132, 213)$.
patterns and d-permutations

\[\sigma \text{ contains a pattern } \pi \text{ if there exists a subset of points of } \sigma \text{ that is equal (once standardized) to } \pi. \]

\[(1432, 3124) \text{ contains the pattern } (132, 213). \]
patterns and d-permutations

σ contains a pattern π if there exists a subset of points of σ that is equal (once standardized) to π.

$\textbf{(1432, 3124)}$ contains the pattern $\textbf{(132, 213)}$.

σ contains a pattern π_1 if $\text{proj}_{xy}, \text{proj}_{xz}$ or proj_{yz} contains π_1.
patterns and d-permutations

Let $\sigma \in S_{n}^{d-1}$ and $\pi \in S_{k}^{d'-1}$ with $k \leq n$. Then σ contains the pattern π, if there exist a direct projection $\sigma' = \text{proj}_{i}(\sigma)$ of dimension d' that contains π.

$(1432, 3124)$ contains the pattern $(132, 213)$ and the pattern 231.

σ contains the pattern π if there are indices $c_1 < \cdots < c_k$ such that $\sigma'_i(c_1) \cdots \sigma'_i(c_k)$ is order-isomorphic to π_i for all $i \in [d']$.
patterns and d-permutations

Let $\sigma \in S_{n}^{d-1}$ and $\pi \in S_{k}^{d'-1}$ with $k \leq n$. Then σ contains the pattern π, if there exist a direct projection $\sigma' = \text{proj}_i(\sigma)$ of dimension d' that contains π.

$(1432, 3124)$ contains the pattern $(132, 213)$ and the pattern 231.

Remark 1: $(132, 312)$ doesn’t contain $(12, 12)$ but 132 and 312 both contain the pattern 12 (but on different positions).

σ contains the pattern π if there are indices $c_1 < \cdots < c_k$ such that $\sigma'_i(c_1) \cdots \sigma'_{i}(c_k)$ is order-isomorphic to π_i for all $i \in [d']$.
3-Pattern avoidance classes

Patterns	(1)	Sequence	Comment
(12, 12)	4	1, 3, 17, 151, 1899, 31711, ⋯	weak-Bruhat intervals
(12, 12), (12, 21)	6	n! = 1, 2, 6, 24, 120 ⋯	σ₁ ⇒ σ₂
(12, 12), (12, 21),	4	1, 1, 1, 1, 1, 1, ⋯	1 diagonal
(21, 12)			
(12, 12), (12, 21),	1	1, 0, 0, 0, 0, 0, ⋯	
(21, 12), (21, 21)			
(123, 123)	4	1, 4, 35, 524, 11774, 366352, 14953983, ⋯	new
(123, 132)	24	1, 4, 35, 524, 11768, 365558, 14871439, ⋯	new
(132, 213)	8	1, 4, 35, 524, 11759, 364372, 14748525, ⋯	new
(12, 12), (132, 312)	48	(n + 1)^{n-1} = 1, 3, 16, 125, 1296 ⋯	[Atkinson et al. 93]
(12, 12), (123, 321)	12	1, 3, 16, 124, 1262, 15898, ⋯	distributive lattice
(12, 12), (231, 312)	8	1, 3, 16, 122, 1188, 13844, ⋯	A295928?

(1): Number of trivially Wilf-Equivalent patterns.
2-Pattern avoidance classes

Patterns	(1)	Sequence	Comment
12	1	1, 0, 0, 0, 0, 0, ···	unavoidable pattern
21	1	1, 1, 1, 1, 1, ···	1 diagonal
123	1	1, 4, 20, 100, 410, 1224, 2232, ···	new
132	2	1, 4, 21, 116, 646, 3596, 19981, ···	new
231	2	1, 4, 21, 123, 767, 4994, 33584, ···	new
321	1	1, 4, 21, 128, 850, 5956, 43235, ···	new
123, 132	2	1, 4, 8, 8, 0, 0, 0, ···	
123, 231	2	1, 4, 9, 6, 0, 0, 0, ···	
123, 321	1	1, 4, 8, 0, 0, 0, 0, ···	
132, 213	1	1, 4, 12, 28, 58, 114, 220, ···	new
132, 231	4	1, 4, 12, 32, 80, 192, 448, ···	A001787?
132, 321	2	1, 4, 12, 27, 51, 86, 134, ···	A047732?
231, 312	1	1, 4, 10, 28, 76, 208, 568, ···	A026150?
231, 321	2	1, 4, 12, 36, 108, 324, 972, ···	A003946?

(1): Number of trivially Wilf-Equivalent patterns.
1— and 2-Patterns avoidance classes

Patterns	(1)	Sequence	Comment
12, (12, 12)	1	1, 0, 0, 0, 0, 0, ...	12
12, (21, 12)	3	1, 0, 0, 0, 0, 0, ...	12
21, (12, 12)	1	1, 0, 0, 0, 0, 0, ...	
21, (21, 12)	3	1, 1, 1, 1, 1, 1, ...	21
123, (12, 12)	1	1, 3, 14, 70, 288, 822, 1260, ...	*new*
123, (12, 21)	3	1, 3, 6, 6, 0, 0, 0, ...	
132, (12, 12)	2	1, 3, 11, 41, 153, 573, 2157, ...	A0281593?
132, (12, 21)	6	1, 3, 11, 43, 173, 707, 2917, ...	A026671?
231, (12, 12)	2	1, 3, 9, 26, 72, 192, 496, ...	A072863?
231, (12, 21)	4	1, 3, 11, 44, 186, 818, 3706, ...	*new*
231, (21, 12)	2	1, 3, 12, 55, 273, 1428, 7752, ...	A001764?
321, (12, 12)	1	1, 3, 2, 0, 0, 0, 0, ...	
321, (12, 21)	3	1, 3, 11, 47, 221, 1113, 5903, ...	A217216?

(1): Number of trivially Wilf-Equivalent patterns.
Separable permutations Sep_n

direct sum $\sigma \oplus \pi$: add π in the top right corner of σ.

skew sum $\sigma \ominus \pi$: add π in the bottom right corner of σ.

separable: size 1 or a direct/skew sum separable permutations.

σ and π two permutations respectively of size n and k.

$\sigma \oplus \pi := \sigma(1), \ldots, \sigma(n), \pi(1) + k, \ldots, \pi(k) + n$ and

$\sigma \ominus \pi := \sigma(1) + k, \ldots, \sigma(n) + k, \pi(1), \ldots, \pi(k)$.

[Brightwell 92]:

$|Sep_n| = n - 1^n - X_{k=0}^{n-1} n - 1^k + 1 \left(1 - \frac{1}{n - k - 1}\right)$.

[Bose Buss Lubiw 98]:

$Sep_n = S_n(2413, 3142)$.
Separable permutations Sep_n

direct sum $\sigma \oplus \pi$: add π in the top right corner of σ.

skew sum $\sigma \ominus \pi$: add π in the bottom right corner of σ.

separable: size 1 or a direct/skew sum separable permutations.

On the left the separable permutation $643512 = 1 \ominus ((1 \ominus 1) \oplus 1) \ominus (1 \oplus 1)$.

[Graphs illustrating separable permutations]
Separable permutations Sep_n

direct sum $\sigma \oplus \pi$: add π in the top right corner of σ.

skew sum $\sigma \ominus \pi$: add π in the bottom right corner of σ.

separable: size 1 or a direct/skew sum separable permutations.

$|Sep_n| = n - 1 \cdot n - 2 \cdot X_{k=0}^{n-1} n - 1 \cdot n - 2 \cdot (n - k - 1)$.

$Sep_n = S_n(2413, 3142)$ \cite{BoseBussLubiw98}
Separable permutations Sep_n

direct sum $\sigma \oplus \pi$: add π in the top right corner of σ.

skew sum $\sigma \ominus \pi$: add π in the bottom right corner of σ.

separable: size 1 or a direct/skew sum separable permutations.

[Brightwell 92]:

$$|Sep_n| = \frac{1}{n-1} \sum_{k=0}^{n-2} \binom{n-1}{k} \binom{n-1}{k+1} (-1)^{n-k-1}.$$
Separable permutations Sep_n

direct sum $\sigma \oplus \pi$: add π in the top right corner of σ.

skew sum $\sigma \ominus \pi$: add π in the bottom right corner of σ.

separable: size 1 or a direct/skew sum separable permutations.

[Brightwell 92]:

$$|Sep_n| = \frac{1}{n-1} \sum_{k=0}^{n-2} \binom{n-1}{k} \binom{n-1}{k+1} (-1)^{n-k-1}.$$

$Sep_n = S_n(2413, 3142)$ [Bose Buss Lubiw 98]
Separable d-permutations [Atkinson Mansour 10]

separable d-permutation: size 1 or a d-sum separable permutations

\[p_1 = (132, 132) = (1, 1) \oplus (++) ((1, 1) \oplus (--) (1, 1)) \]

Let σ and π two d-permutations and $\text{dir} \in \{+, -\}^d$. The d-sum with respect to direction dir is:

\[
\sigma \oplus_{\text{dir}} \pi := \sigma_2 \oplus_{\text{dir}} \pi_2, \ldots, \sigma_d \oplus_{\text{dir}} \pi_d,
\]

where \oplus_{dir}^i is \oplus if $\text{dir}_i = +$ and \ominus if $\text{dir}_i = -$.
Separable d-permutations

\[\begin{align*}
&\text{[[1, 3, 2], [2, 3, 1]]} \\
&\text{[[3, 1, 2], [2, 3, 1]]} \\
&\text{[[2, 1, 3], [1, 3, 2]]} \\
&\text{[[2, 1, 3], [3, 1, 2]]} \\
&\text{[[1, 3, 2], [2, 1, 3]]} \\
&\text{[[3, 1, 2], [2, 1, 3]]} \\
&\text{[[2, 3, 1], [3, 1, 2]]} \\
&\text{[[2, 3, 1], [1, 3, 2]]}
\end{align*}\]
Separable d-permutations

\[Sep_{n-1}^d = S_{n-1}^d(Sym((132, 213)), 2413, 3142) \]
Separable d-permutations

\[Sep_{n}^{d-1} = S_{n}^{d-1}(\text{Sym}((132, 213)), 2413, 3142) \]

\[|Sep_{n}^{d-1}| = \frac{1}{n-1} \sum_{k=0}^{n-2} \binom{n-1}{k} \binom{n-1}{k+1} (2^{d-1} - 1)^{k} (2^{d-1})^{n-k-1}. \]
Vincular Patterns and Baxter permutations

vincular pattern : a pattern where some entries must be consecutive in the permutation (*adjacencies*). Ex: $2413|_2$ and $3142|_2$
Vincular Patterns and Baxter permutations

vincular pattern: a pattern where some entries must be consecutive in the permutation (adjacencies). Ex: $2413|_2$ and $3142|_2$
Vincular Patterns and Baxter permutations

vincular pattern: a pattern where some entries must be consecutive in the permutation (adjacencies). Ex: $2413|_2$ and $3142|_2$

Baxter permutations: $B_n := S_n(2413|_2, 3142|_2)$.
Generalized vincular Patterns

generalized vincular pattern: horizontal and/or vertical adjacencies. Ex: $2413|_{2,2}$ and $3142|_{2,2}$.

\[B_n = S_n(2413|_{2,2}, 3142|_{2,2}) . \]
Generalized vincular Patterns

generalized vincular pattern: horizontal and/or vertical adjacencies. Ex: $2413|_{2,2}$ and $3142|_{2,2}$.

\[
B_n = S_n(2413|_{2,2}, 3142|_{2,2}).
\]

Natural extension of generalized vincular patterns to d-permuations...
Generalized vincular Patterns

generalized vincular pattern: horizontal and/or vertical adjacencies. Ex: $2413\ |_2^2$ and $3142\ |_2^2$.

\[B_n = S_n(2413\ |_2^2, 3142\ |_2^2). \]
Natural extension of generalized vincular patterns to d-permutations...
But what could be a Baxter d-permutation...
Well sliced permutations

A slice is a rectangle defined by two adjacent points. type: horizontal or vertical. The direction of a slice is: $+$ or $-$.
Well sliced permutations

A slice is a rectangle defined by two adjacent points. **type:** horizontal or vertical. The **direction** of a slice is: + or -.

well-sliced: each slice intersects exactly 1 slice of each type and two intersecting slices share the same direction.
Well sliced permutations

A slice is a rectangle defined by two adjacent points. type: horizontal or vertical. The direction of a slice is: + or -.

well-sliced: each slice intersects exactly 1 slice of each type and two intersecting slices share the same direction.

Proposition: Baxter \equiv well-sliced
Well-sliced d-permutations

The **direction** of a slice is: ++, +- , -+, ++. The **type** of a slice is: x, y or z.

A **Baxter d-permutation** is a d-permutation such that each of its $d' \leq d$ projection is well-sliced.
Well-sliced d-permutations vs Baxter d-permutation

well-sliced but not Baxter.
Baxter d-permutation

well-sliced but not Baxter.
Theorem

\[B_{n}^{d-1} = S_{n}^{d-1} (Sym(2413|_{2,2}), Sym((312, 213)|_{1,2,.}), Sym((3412, 1432)|_{2,2,.}), Sym((2143, 1423)|_{2,2,.})). \]
Baxter d-permutation enumeration

$	B_{n}^{d-1}	$		
n/d	2	3	4	5
1	1	1	1	1
2	2	4	8	16
3	6	28	120	496
4	22	260	2440	20816
5	92	2872	59312	1035616
6	422	35620		
7	2074	479508		

open problem: Enumeration formula?
[Bonichon Bousquet Fusy 10] There is a bijection between Baxter permutations and plane bipolar orientations.
Maps ?
conclusion/perspectives

- nice framework
- nice generalisation of Baxter permutation
- lot of open problems.
- implementation available
 plmlab.math.cnrs.fr/bonichon/multipermutation

Have fun!
conclusion/perspectives

- nice framework
- nice generalisation of Baxter permutation
- lot of open problems.
- implementation available
 plmlab.math.cnrs.fr/bonichon/multipermutation

Have fun!