An Arrangement and Performance Analytics of Elements of Vibration Testing Machine for Taper Roller Bearing

J. V. Chopade1*, K. D. Ganvir2, N. D. Pachkawade3

1Assistant Professor, Mechanical Engineering Department, Pimpri Chinchwad College of Engineering and Research, Ravet, Pune, India
2Assistant Professor, Mechanical Engineering Department, Priyadarshini Bhagwati college of Engineering, Nagpur, India
3Assistant Professor, Mechanical Engineering Department, Priyadarshini Bhagwati college of Engineering, Nagpur, India

*Corresponding author e-mail: chopadejv91@gmail.com

Abstract: The paper addresses the need for automation in production line. A detailed evaluation of various components required for converting a manual bearing vibration testing machine to an automatic one is carried out. Function and Description of each component is studied. The components include conveyor belts, laser Doppler vibro meter, pneumatic system, mechanical probe, timing and control sensors, speed control system, data analysis and storage unit. A method of selecting each component for automatic vibration testing machine is offered. Based on the structure of automated machine the initial set of alternate variants is defined and a formal model of automatic vibration testing machine is developed. Design of conveyor belt, linear drives, pneumatic system, isolation pad, PLC and HMI system is discussed below. Analysis of supporting structure of Vibration Testing Machine is done using ANSYS 18.1 and results are shown.

1. Introduction

The MVU 150A is capable to measure the bearing described above (except HUB-units) and even more. Additional to the standard axial loading unit, it can be equipped with a radial loading unit. For that also cylindrical roller bearings can be tested. The MVU works with vertical high-precision hydrodynamic testing spindle. The driving unit is mechanically separated from the machine frame for an optimum vibration isolation. The thrust test loads and the radial test loads are applied by using the pneumatic loading unit. The evaluation of the noise and the vibrations and the corresponding classification of the test pieces are also carried out via the measuring electronics. Normally the three standard frequency bands are measured, within these bands the tolerance limits are freely programmable and/or are available after calling the appropriate bearing type. Evaluation criteria according to customers’ requirements are possible. Frequency spectrum and detailed analysis of the spectrum is also used to go into depth with the locations and causes of the bearing vibrations. The applicable measurement outcomes are documented and also statistically compressed via a printer. The
machine can also be connected to larger and prominent computer systems, e.g., to introduce the noise test in the company's quality assurance systems.

2. DESIGN OF THE MACHINE COMPONENTS

2.1. Design of Linear Drive:

2.1.1. Selection of Piston Diameter:
- Work piece load = 3.72 kg
- Stroke length = 372.5 mm
- Force \(F = m \times g = 3.72 \times 9.81 = 36.49 \) N
- From FESTO Catalogue:
 - Considering piston diameter of 32 mm.
 - Moving mass = 4042 g = 4.042 kg
 - Theoretical force at 6 bar, advancing = 483 N
 - 50% of theoretical force = 241.5 N
 - Static holding force with 32 mm piston = 500 N
- As the force of bearing is less than the 50% theoretical force selecting piston of = 32mm.

2.1.2. Pusher
- Design parameters needed for selection:
 - Stroke length = 372.5 mm
 - Bearing weight = 3.72 kg
 - Selection of desired linear drive from FESTO catalogue
 - Designation: DFM32-B-400-P-A-G

2.1.3 Positioner
- Design parameters needed for selection:
 - Stroke length = 74 mm
 - Bearing weight = 3.72 kg
 - Selection of desired linear drive from FESTO catalogue
 - Designation: DFM25-B-100-P-A-GF

2.1.4 Push-out
Design parameters needed for selection:
- Stroke length = 372.5mm
- Bearing weight = 3.72kg
- Selection of desired linear drive from FESTO catalogue
- Designation: DNC32-300-Q-PPV-A

3. Bending Strength of holding structure for Loading Cylinder:

![Figure 1. CAD Model of Vibration Testing Machine](image)
W = 143 * 9.81 = 1402.83 N

L = 245 mm

Y = (441/2) = 220.5 mm

\[I = \frac{bd^3}{12} = \frac{245 \times 441^3}{12} = 1751.0583 \times 10^6 \text{ mm}^4 \]

Bending Moment, \(M = \frac{W \times L}{2} = 1402.83 \times (245/2) = 171846.675 \text{ N/mm} \)

Now by Flexure Formula,

\[\frac{M}{T} = \frac{\sigma}{\gamma} \]

\[\frac{171846.675}{1751.0563} = \frac{\sigma}{220.5} \]

\[\sigma = 0.021639 \text{ N/mm}^2 \]

Since bending moment is so small, there will not be effect on machine component failure due to bending of supporting structure.

4. CATIA Model:

![CATIA Model of Vibration Testing Machine](image-url)
Table 1: Properties of Hydraulic Oil

Typical Properties:	
Density, g.cm\(^{-3}\) @ 15.5°C	0.860
Flash Point	205°C
Pour Point	-30°C
Viscosity	
Kinematic, 40°C	32 cSt
Kinematic, 100°C	5.4 cSt
Viscosity Index	100

5. PLC and HMI of the Machine

The MVU Machine is operated with the help of PLC (Programmable Logic Controller) and HMI (Human Machine Interface).

5.1 SIMATIC S7-1500

The PLC used is of Siemens having designation SIMATIC S7-1500. The SIMATIC S7-1500 is an advanced controller that convince the user with their ultimate power, which provides high level of performance for medium-sized to high-end machines with high demands on performance, communication, flexibility, and technology functions. The SIMATIC S7-1500 efficiently increases performance with a fast backplane bus, PROFINET interface, and with shortest reaction times.

Figure 3. SIMATIC S7-1500
1. SIMATIC HMI TP-700 COMFORT
The HMI is human machine interface used for the exchange of data between machine and programmable Logic Controller. SIMATIC HMI TP700 Comfort has a Comfort Panel, Touch operation, 7” widescreen TFT display, 16 million colors, PROFINET interface, MPI/PROFIBUS DP interface, 12 MB configuration memory, Windows CE 6.0, configurable from WinCC Comfort V11, which makes it the reliable interface.

2. Statement List:
Statement List (STL) is a very basic programming language that can produce the code section of logic blocks in a PLC program. Its syntax for statements is analogous to compiler language and consists of programs followed by addresses on which the instructions work.

The Programming Language STL: Amongst all of the programming languages with which a user can program S7 controllers, Statement list language is the nearest to the machine code MC7 of the S7 CPU, thus by using it to program S7 controllers, you can optimize the run time and the use of memory. The programming language STL has all the necessary elements for creating an optimum user program. It contains a comprehensive range of programming instructions. Overall 130 different basic instructions and a wide range of addresses are available and can be effectively utilize. Functions and function blocks allow you to structure your STL program efficiently.

The Programming Package: The STL programming language is an integral part of the STEP 7 Standard Software. This means that following the installation of your STEP 7 software, all the editor functions, compiler functions and test/debug functions for STL are made available for user.

6. PLC Ladder Diagram
Ladder diagrams are schematic diagrams which are commonly used to document industrial control logic systems in a specialized manner. They are called "ladder" diagrams because they resemble a ladder like structure, with two vertical lines (supply power) and as many "rungs" (horizontal lines) as there are control circuits to represent.

![Ladder Circuit for control ON enable](image)

Figure 4. Ladder Circuit for control ON enable
7. **Inductive Proximity sensor**

Benefits of using the inductive proximity sensor for machine operations:
1. Maximum durability with non-contact, maintenance free technology and high environmental protection.
2. Flexibility due to a wide range of functions and programmable measuring and switching range.
3. A variety of housing styles: from compact designs for machine tools (14 mm measurement length) to designs for heavy machinery (960 mm measurement length).
4. High noise immunity ensures process reliability.
5. Increased efficiency with measuring and switching functions in one device.

7.1 **Simulation of Vibration Testing Machine**

![Image of Vibration Testing Machine Simulation]
Figure 7. Meshing of Machine Model

Properties:

Table 2. Properties of Material

Property	Value
Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

Table 3. List of Defined Loads

Object Name	Fixed Support	Force	Moment
State	Fully Defined		
Scope			
Scoping Method			
Geometry	1 Face	2 Faces	
Definition			
Type	Fixed Support		
Suppressed	No		
Define By	Components		
Coordinate System	Global Coordinate System		
8. Total Deformation:

![Figure 8. Total Deformation](image)

Table 4. Solution of Total Deformation

Time [s]	Minimum [m]	Maximum [m]
1.	0.	3.4436e-005

8.1 Equivalent Stresses:

![Figure 9. Equivalent Stresses](image)
Table 5. Solution of Equivalent Stresses

Time [s]	Minimum [Pa]	Maximum [Pa]
1.	51.117	1.1006e+007

8.2 Directional Deformation:

![Directional Deformation Image]

Figure 10. Directional Deformation

Table 6. Solution of Directional Deformation

Time [s]	Minimum [m]	Maximum [m]
1.	-3.3787e-006	3.543e-006

9. Conclusion

The Automated Vibration Testing Machine gives better performance in terms of accuracy, speed and testing time. The minimum human interference is achieved through installation of conveyor belt system, laser vibrometer, proximity sensor, and PLC and HMI systems. Also the operational maintenance of machine is simple and economical. The machine operator is eliminated as line operator can easily handle vibration testing machine. The overall production time of Taper Roller Bearing is reduced to optimum limit. The cycle time of machine is reduced effectively with greater efficiency of machine. The lead time and setup time of machine is reduced considerably. As the operator interference is reduced the accuracy is increased. Overall machine cost is reduced as we have modified on certain parts of machine.

10. References

[1] S. Sanchez-Caballero, M.A. Selles, S. Ferrandiz, M.A. Peydro, B.A. Oliver “Failure analysis of a plastic modular belt in-service”, Engineering Failure Analysis 93 (2018) 13–25.
[2] Gabriel Fedorko, Vladimir Ivan, “Analysis of Force Ratios in Conveyor Belt of Classic Belt Conveyor”, Procedia Engineering 48 (2012) 123 – 128.
[3] Shirong Zhang, Xiaohua Xia, “Modeling and energy efficiency optimization of belt conveyors”, Applied Energy 88 (2011) 3061–3071.
[4] A.M. Goliger”, J.L. Waldeck, “Wind tunnel belt housing structures test of conveyer”, Journal of Wind Engineering and Industrial Aerodynamics 65 (1996) 405-413.
[5] S.C. Fok*, E.K. Ong, “Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning” Robotics and Computer Integrated Manufacturing 15 (1999) 365-371.

[6] C. Cristallia, N. Paoneb, R.M. Rodriguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements”, Mechanical Systems and Signal Processing 20 (2006) 1350–1361.

[7] Ana M. Balasoiu, Mine J. Braun, Stefan I. Moldovanc, “A parametric study of a porous self-circulating hydrodynamic bearing” Tribology International 61 (2013) 176–193.

[8] Hussam Khalil, Dongkyu Kim, Joonsik Nam, Kyihwan Park, “Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer”, Measurement 94 (2016) 883–892.

[9] Lezhin D.S., Falaleev S.V., Safin A.I., Ulanov A.M.*, Vergnano D., “Comparison of different methods of non-contact vibration measurement”, Procedia Engineering 176 (2017) 175 – 183.

[10] Richard Susta “Low cost simulation of PLC programs”, Volume 37, Issue 5, June 2004, Pages 197-202.

[11] Pavel Rej, Christoph Kluser, Roger Bischofberger, Rade S. Popovic “A low-cost inductive proximity sensor for industrial applications”, Sensors and Actuators (2004) 110 93–97.

[12] Ephrem Ryan Alphonse, Mohammad Omar Abdullah “A review on the applications of programmable logic controllers (PLCs)” (2016), Renewable and Sustainable Energy Reviews 60 (2016) 1185–1205.

[13] S.C. Fok, E.K. Ong “Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning”, Robotics and Computer Integrated Manufacturing 15 (1999) 365-371.

[14] Paul Harris*, Sean Nolan, Garret E. O’Donnell “Energy optimisation of pneumatic actuator systems in manufacturing”, Journal of Cleaner Production 72 (2014) 35-45.

[15] Afrim Dushi, Florian Kongoli, Ian McBowie, Musa Rizaj, “Optimization of conveyer belt fire-resistant rubber properties using a mathematical model of desirability functions”, Symposium on Automation in Mining, Mineral and Metal Processing. 16, (2013).

[16] Stanislav Honusa, Peter Bockoc, Tomáš Boudac, Ivica Ristović, Milivoj Vulić, “The effect of the number of conveyor belt carrying idlers on the failure of an impact place” Engineering Failure Analysis (2017).

[17] S.C. Fok*, E.K. Ong “Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning” Robotics and Computer Integrated Manufacturing 15 (1999) 365-371.

[18] Shuhui Cui, Le Gu, Michel Fillon, Liqin Wang, Chuanwei Zhang, “The effects of surface roughness on the transient characteristics of hydrodynamic cylindrical bearings during startup” (2018), Tribology International.

[19] P. Mahesh, Dr. Shannukha Nagaraj, S. Rajeeh “Modular Automated Workstations – Sequential Controlling by Using Programmable Logic Controllers”, International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 150 (ICCOMIM - 2012), 11-13 July, 2012.

[20] Smirnov Vladimir “Numerical estimation of precision equipment vibration isolation system”, Procedia Engineering 176 (2017) 363 – 370.

[21] Alexey A. Bobtsov, Alexander S. Borgul “Human-Machine Interface for Mechatronic Devices Control”, 7th IFAC Conference on Manufacturing Modelling, Management, and Control, International Federation of Automatic Control, June 19-21, 2013.

[22] Koshti Vivek M.*, Joshi Sangeeta M. “Design of Human Machine Interface for PLC Based Automation System” The 4th International Federation of Automatic Control Conference on Management and Control of Production and Logistics, September 27-30, Sibiu – Romania.