ISOCAPACITY ESTIMATES FOR HESSIAN OPERATORS

JIE XIAO AND NING ZHANG

Abstract. Through a new powerful potential-theoretic analysis, this paper is devoted to discovering the geometrically equivalent isocapacity forms of Chou-Wang’s Sobolev type inequality and Tian-Wang’s Moser-Trudinger type inequality for the fully nonlinear $1 \leq k \leq \frac{n}{2}$ Hessian operators.

Contents

1. Hessian Sobolev through isocapacitary inequalities 1
 1.1. Sobolev type inequalities for Hessian operators 1
 1.2. Statement of Theorems 1.2, 1.3 3
2. Four alternatives to $\text{cap}_k(\cdot, \Omega)$ 6
3. Isocapacitary inequalities
 3.1. Proof of Theorem 1.2 (i) 9
 3.2. Proof of Theorem 1.2 (ii) 11
4. Capacitary weak and strong type estimates for $\Phi_k^0(\Omega)$ 12
5. Analytic vs geometric trace inequalities
 5.1. Proof of Theorem 1.3 (i) 15
 5.2. Proof of Theorem 1.3 (ii) 19
References 22

1. HESSIAN SOBOLEV THROUGH ISOCAPACITARY INEQUALITIES

1.1. Sobolev type inequalities for Hessian operators. Unless a special remark is made, from now on, Ω is a bounded smooth domain in the n-dimensional Euclidean space \mathbb{R}^n with $n \geq 2$. Let u be a C^2 real-valued function on Ω. For each integer $k \in [1, n]$, the k-Hessian operator F_k is defined as

$$F_k[u] = S_k(\lambda(D^2u)) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} \lambda_{i_1} \cdots \lambda_{i_k},$$

2010 Mathematics Subject Classification. Primary 35J60, 35J70, 35J96, 31C15, 31C45, 53A40.

Key words and phrases. Hessian operators; Isocapacitary inequalities; Hessian capacities.

Project supported by NSERC of Canada as well as by URP of Memorial University, Canada.
where \(\lambda = (\lambda_1, \ldots, \lambda_n) \) is the vector of the eigenvalues of the real symmetric Hessian matrix \([D^2u]\). In particular, one has:

\[
F_k[u] = \begin{cases}
\Delta u = \text{the Laplace operator} & \text{as } k = 1; \\
a \text{ fully nonlinear operator} & \text{as } 1 < k < n; \\
\det(D^2u) = \text{the Monge-Ampère operator} & \text{as } k = n.
\end{cases}
\]

Here and henceforth, the following facts should be kept in mind: for \(1 < k < n \) each \(F_k[u] \) is degenerate elliptic for any \(k \)-convex or \(k \)-admissible function \(u \), denoted by \(u \in \Phi^k(\Omega) \), namely, any \(C^2(\Omega) \) function \(u \) enjoying

\[
F_j[u] = 0 \quad \text{on } \Omega \quad \forall \quad j = 1, 2, \ldots, k.
\]

Moreover, if \(\Phi^0_0(\Omega) \) stands for the class of all functions \(u \in \Phi^k(\Omega) \) with zero value on the boundary \(\partial \Omega \) of \(\Omega \), then \(\Phi^0_0(\Omega) \neq \emptyset \) amounts to that \(\partial \Omega \) is \((k-1)\)-convex, i.e., the \(j \)-th mean curvature

\[
H_j(\partial \Omega, x) = \sum_{1 \leq i_1 < \ldots < i_j \leq n-1} \kappa_{i_1}(x) \ldots \kappa_{i_j}(x) \quad \forall \quad j = 1, \ldots, k - 1
\]

of the boundary \(\partial \Omega \) at \(x \) is nonnegative, where \(\kappa_1(x), \ldots, \kappa_{n-1}(x) \) are the principal curvatures of \(\partial \Omega \) at the point \(x \); see for example [3, 14, 11, 20, 18, 23, 12].

As a natural generalization of the well-known case \(k = 1 \), the following Sobolev type inequalities indicate that \(\Phi^k_0(\Omega) \) can embed into some integrable function spaces; see Wang [22], Chou [7, 8], and Tian-Wang [18] for details.

Theorem 1.1. Let

\[
\begin{cases}
1 \leq k \leq n; \\
u \in \Phi^k_0(\Omega); \\
\|u\|_{\Phi^k_0(\Omega)} = \left(\int_{\Omega} (-u) F_k[u] \right)^{1/(k+1)}.
\end{cases}
\]

(i) If \(1 \leq k < \frac{n}{2} \) and \(1 \leq q \leq k^* = \frac{n(k+1)}{n-2k} \), then there is a positive constant \(c(n, k, q, |\Omega|) \) depending only on \(n, k, q, \) and the volume \(|\Omega|\) of \(\Omega \) such that the Sobolev type inequality

\[
\|u\|_{L^q(\Omega)} \leq c(n, k, q, |\Omega|) \|u\|_{\Phi^k_0(\Omega)}
\]

holds, where for \(q = k^* \) the best constant in the last estimate is obtained via letting \(\Omega \to \mathbb{R}^n \) by the function

\[
u(x) = (1 + |x|^2)^{\frac{2k-n}{2k}}.
\]

Moreover, for \(k = \frac{n}{2} \) and \(0 < q < \infty \), there is a positive constant \(c(n, q, \text{diam}(\Omega)) \) depending only on \(n, q, \) and the diameter \(\text{diam}(\Omega) \) of \(\Omega \) such that the Sobolev type inequality

\[
\|u\|_{L^q(\Omega)} \leq c(n, q, \text{diam}(\Omega)) \|u\|_{\Phi^k_0(\Omega)}
\]

holds.
(ii) If $k = \frac{n}{2}$, then there is a positive constant $c(n, k, \text{diam}(\Omega))$ depending only on n, k and $\text{diam}(\Omega)$ such that the Moser-Trudinger type inequality
\[
\sup_{0 < \|u\|_{\Phi^k_0(\Omega)} < \infty} \int_{\Omega} \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi^k_0(\Omega)}} \right)^{\beta} \right) \leq c(n, k, \text{diam}(\Omega))
\]
holds, where
\[
\begin{cases}
0 < \alpha \leq \alpha_0 = n \left(\frac{\omega_n}{k} \left(\frac{n-1}{k-1} \right) \right)^{\frac{n}{k}}; \\
1 \leq \beta \leq \beta_0 = 1 + \frac{2}{n}; \\
\omega_n = \text{the surface area of the unit sphere in } \mathbb{R}^{n+1}.
\end{cases}
\]

(iii) If $\frac{n}{2} < k \leq n$, then there is a positive constant $c(n, k, \text{diam}(\Omega))$ depending only on n, k and $\text{diam}(\Omega)$ such that the Morrey-Sobolev type inequality
\[
\|u\|_{L^{\infty}(\Omega)} \leq c(n, k, \text{diam}(\Omega)) \|u\|_{\Phi^k_0(\Omega)}
\]
holds.

1.2. Statement of Theorems 1.2-1.3. Since the Morrey-Sobolev type inequality in Theorem 1.1 (iii) is relatively independent (cf. [17]), a natural question comes up: what is the geometrically equivalent form of Theorem 1.1 (i)-(ii)? To answer this question, we need the so-called k-Hessian capacity that was introduced by Trudinger-Wang [21] in a way similar to the capacity defined by Bedford-Taylor in [2] for the plurisubharmonic functions. To be more precise, if K is a compact subset of Ω, then the $[1, n] \ni k$ Hessian capacity of K with respect to Ω is determined by
\[
cap_k(K, \Omega) = \sup \left\{ \int_K F_k[u] : u \in \Phi^k(\Omega), -1 < u < 0 \right\};
\]
and hence for an open set $O \subset \Omega$ we define
\[
cap_k(O, \Omega) = \sup \left\{ \cap_k(K, \Omega) : \text{compact } K \subset O \right\};
\]
whence giving the definition of $\cap_k(E, \Omega)$ for an arbitrary set $E \subset \Omega$:
\[
cap_k(E, \Omega) = \inf \left\{ \cap_k(O, \Omega) : \text{open } O \text{ with } E \subset O \subset \Omega \right\}.
\]

According to Labutin’s computation in [14] (4.16)-(4.17), we see that if $B_\rho \subset \mathbb{R}^n$ is used to represent an open ball centered at the origin with radius $\rho > 0$ and if $0 < r < R < \infty$, then there is a constant $c(n, k) > 0$ depending only on n, k such that
\[
\cap_k(B_r, B_R) = \begin{cases}
c(n, k) \left(r^{\frac{n}{2}} - R^{\frac{n}{2}} \right)^{-k} \text{ for } 1 \leq k < \frac{n}{2}; \\
c(n, k) \left(\log \frac{R}{r} \right)^{\frac{n}{2}} \text{ for } 1 \leq k = \frac{n}{2}.
\end{cases}
\]
Moreover, $\cap_k(\cdot, \Omega)$ has the following metric properties (cf. [14] Lemma 4.1):
Theorem 1.2. Let (8.8)-(8.9)
for the case
\[k \]
capacitary inequalities for the \(k \) and a nonnegative Randon measure
\[k \]
and a new characterization of
\[k \]
Theorem 1.3. Given an origin-centered Euclidean ball \(\Omega \subset \mathbb{R}^n \), \(1 \leq k \leq \frac{n}{2} \), and a nonnegative Randon measure \(\mu \) on \(\Omega \), let
\[\tau(\mu, \Omega, t) = \inf \{ \text{cap}_k(K, \Omega) : \text{compact } K \subset \Omega \text{ with } \mu(K) \geq t \} \quad \forall \quad t > 0. \]
be the k-Hessian capacitary minimizing function with respect to μ.

(i) If $1 \leq k \leq \frac{n}{2}$, then

$$\sup \left\{ \frac{\|u\|_{L^q(\Omega,\mu)}}{\|u\|_{\Phi_k^0(\Omega)}} : u \in \Phi_k^0(\Omega) \cap C^2(\Omega), \ 0 < \|u\|_{\Phi_k^0(\Omega)} < \infty \right\} < \infty$$

holds when and only when

$$\sup_{t>0} \left(\frac{\|u\|_{L^q(\Omega,\mu)}}{t} \right)^{\frac{k+1}{q}} < \infty \quad \text{for} \quad k + 1 \leq q < \infty;$$

$$\int_0^\infty \left(\frac{\|u\|_{L^q(\Omega,\mu)}}{t} \right)^{\frac{k+1}{q}} dt < \infty \quad \text{for} \quad 1 < q < k + 1.$$

(ii) If $k = \frac{n}{2}$, then

$$\sup \left\{ \frac{\|u\|_{L^q(\Omega,\mu)}}{\|u\|_{\Phi_k^0(\Omega)}} : u \in \Phi_k^0(\Omega) \cap C^2(\Omega), \ 0 < \|u\|_{\Phi_k^0(\Omega)} < \infty \right\} < \infty$$

holds when and only when

$$\sup_{t>0} t \exp \left(\frac{\alpha}{\tau(\mu,\Omega,t)} \right) < \infty,$$

where

$$\|u\|_{L^p(\Omega,\mu)} = \int_\Omega \varphi(u) \, d\mu;$$

$$\varphi(u) = \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_k^0(\Omega)}} \right)^\beta \right);$$

$$0 < \alpha < \alpha_0 = n \left(\frac{n}{2} \left(\frac{n-1}{k-1} \right) \right)^\frac{1}{n};$$

$$1 \leq \beta \leq \beta_0 = 1 + \frac{2}{n};$$

$$\omega_n = \text{the surface area of the unit sphere in } \mathbb{R}^{n+1}.$$

Often referred to as trace estimates (due to the fact that μ lives on Ω and may be the surface measure on a smooth submanifold of Ω), the results in Theorem 1.3 will be proved in §5 through the k-Hessian capacitary weak and strong type estimates for $\|\cdot\|_{\Phi_k^0(\Omega)}$ presented in §4. Here, it is worth pointing out that the case $k = 1$ of Theorem 1.3 can be read off from the case $p = 2$ of Maz’ya’s [16, Theorem 8.5 & Remark 8.7] (related to the Nirenberg-Sobolev inequality [5, Lemma VI.3.1]), and the case $q = k + 1$ of Theorem 1.3 leads to a kind of Cheeger’s inequality - for $k = 1$ see also [6, 5, Theorem VI.1.2], and [24].

Remark 1.4. Two more comments are in order:

(i) Upon adapting the relatively natural capacity of a compact $K \subset \Omega$ for k-Hessian operator below (cf. [2])

$$\operatorname{cap}_{k,3}(K,\Omega) = \inf \left\{ \|u\|_{\Phi_k^0(\Omega)}^{k+1} : u \in \Phi_k^0(\Omega) \cap C^2(\Omega), \ u|_K \leq -1, \ u \leq 0 \right\},$$

$$\text{cap}_{k,3}(K,\Omega) = \frac{1}{\alpha \left(\frac{|u|}{\|u\|_{\Phi_k^0(\Omega)}} \right)^\beta},$$

where

$$\|u\|_{L^p(\Omega,\mu)} = \int_\Omega \varphi(u) \, d\mu;$$

$$\varphi(u) = \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_k^0(\Omega)}} \right)^\beta \right);$$

$$0 < \alpha < \alpha_0 = n \left(\frac{n}{2} \left(\frac{n-1}{k-1} \right) \right)^\frac{1}{n};$$

$$1 \leq \beta \leq \beta_0 = 1 + \frac{2}{n};$$

$$\omega_n = \text{the surface area of the unit sphere in } \mathbb{R}^{n+1}.$$
we can see that Theorem 1.3 without assuming that Ω is an origin-centered Euclidean ball, still hold with $\text{cap}_{k}^{m}(\cdot,\Omega)$ being replaced by $\text{cap}_{k,3}^{m}(\cdot,\Omega)$.

(ii) While going along with demonstrating Theorems 1.2-1.3, we will introduce the required notation. But here, we only write $c(a,b,c,d)$ for different constants (in different lines) depending only on a, b, c, d - for instance - $X \leq c(a,b,c,d) Y \leq \tilde{c}(a,b,c,d) Z$ means that there exist two positive constants $c(a,b,c,d)$ and $\tilde{c}(a,b,c,d)$ depending only on a, b, c, d such that $X \leq c(a,b,c,d) Y \leq \tilde{c}(a,b,c,d) Z$.

2. Four alternatives to $\text{cap}_{k}(\cdot,\Omega)$

The purpose of this section is to define four new types of the k-Hessian capacity with $1 \leq k \leq \frac{n}{2}$ and then to establish their relations with $\text{cap}_{k}(\cdot,\Omega)$.

Definition 2.1. Suppose
\[
\begin{cases}
1 \leq k \leq \frac{n}{2}; \\
1_{E} \text{ stands for the characteristic function of } E \subset \Omega.
\end{cases}
\]
First, for a compact $K \subset \Omega$ let
\[
\begin{align*}
\text{cap}_{k,1}(K,\Omega) & = \sup \left\{ \int_{K} F_{k}[u] : u \in \Phi_{0}^{k}(\Omega) \cap C^{2}(\Omega), \ -1 < u < 0 \right\}; \\
\text{cap}_{k,2}(K,\Omega) & = \inf \left\{ \int_{\Omega} F_{k}[u] : u \in \Phi_{0}^{k}(\Omega) \cap C^{2}(\Omega), \ u \leq -1_{K} \right\}; \\
\text{cap}_{k,3}(K,\Omega) & = \inf \left\{ -\int_{\Omega} u F_{k}[u] : u \in \Phi_{0}^{k}(\Omega) \cap C^{2}(\Omega), \ u \leq -1_{K} \right\}; \\
\text{cap}_{k,4}(K,\Omega) & = \sup \left\{ -\int_{K} u F_{k}[u] : u \in \Phi_{0}^{k}(\Omega) \cap C^{2}(\Omega), \ -1 < u < 0 \right\}.
\end{align*}
\]
Second, for an open set $O \subset \Omega$ and $j = 1, 2, 3, 4$ set
\[\text{cap}_{k,j}(O,\Omega) = \sup \left\{ \text{cap}_{k,j}(K,\Omega) : \text{ compact } K \subset O \right\}.\]
Third, for a general set $E \subset \Omega$ and $j = 1, 2, 3, 4$ put
\[\text{cap}_{k,j}(E,\Omega) = \inf \left\{ \text{cap}_{k,j}(K,\Omega) : \text{ open } O \text{ with } E \subset O \subset \Omega \right\}.\]

Lemma 2.2. Suppose $1 \leq k \leq \frac{n}{2}$. Let Ω be the Euclidean ball B_{r} of radius r centered at the origin. If K is a compact subset of Ω, then
\[
\text{cap}_{k,j}(K,\Omega) = \begin{cases}
\int_{K} F_{k}[R_{k}(K,\Omega)] & \text{ as } j = 1; \\
\int_{K} (-R_{k}(K,\Omega)) F_{k}[R_{k}(K,\Omega)] & \text{ as } j = 4,
\end{cases}
\]
where
\[R_{k}(K,\Omega)(x) = \lim_{y \to x} \sup_{u \in \Phi_{0}^{k}(\Omega)} \left\{ u(y) : u \in \Phi_{0}^{k}(\Omega), \ u \leq -1_{K} \right\}\]
is the regularised relative extremal function associated with $K \subset \Omega$.

Proof. As showed in [14], the function \(x \mapsto R_k(K, \Omega)(x) \) is upper semicontinuous, is of \(C^2(\Omega) \), and is the viscosity solution of the following Dirichlet problem:

\[
\begin{aligned}
F_k[u] &= 0 \quad \text{in } \Omega \setminus K; \\
u &= -1 \quad \text{on } \partial K; \\
u &= 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]

Moreover,

\[
cap_k(K, \Omega) = \int_K F_k[R_k(K, \Omega)].
\]

Note that \(R_k(K, \Omega) \) is in \(\Phi^k_0(\Omega) \cap C^2(\Omega) \). So, from Definition 2.1 it follows that

\[
cap_{k,1}(K, \Omega) = \int_K F_k[R_k(K, \Omega)].
\]

To see the desired formula for \(j = 4 \), let \(u \in \Phi^k_0(\Omega) \cap C^2(\Omega) \). Then, for any \(\epsilon \) there exists a function \(v \in \Phi^k_0(\Omega) \cap C^2(\Omega) \) satisfying \(v = (1 + \epsilon)u \), such that

\[
(1 + \epsilon)^{k+1}cap_{k,4}(K, \Omega) = (1 + \epsilon)^{k+1}\sup \left\{ \int_K (-u)F_k[u] : u \in \Phi^k_0(\Omega) \cap C^2(\Omega), -1 < u < 0 \right\}
\]

\[
= \sup \left\{ \int_K (-v)F_k[v] : v \in \Phi^k_0(\Omega) \cap C^2(\Omega), -1 - \epsilon < v < 0 \right\}.
\]

Since \(R_k(K, \Omega) > -1 - \epsilon \) in \(K \), we have

\[
(1 + \epsilon)^{-(k+1)} \int_K (-R_k(K, \Omega))F_k[R_k(K, \Omega)] \leq cap_{k,4}(K, \Omega).
\]

Letting \(\epsilon \to 0 \), we obtain

\[
\int_K (-R_k(K, \Omega))F_k[R_k(K, \Omega)] \leq cap_{k,4}(K, \Omega).
\]

To reach the reversed one of the last inequality, let \(\{K_i\} \) be a decreasing open set with smooth boundary in \(\Omega \) and provide

\[K_{i+1} \subset K_i \subset \Omega \quad \& \quad \bigcup_{i=1}^{\infty} K_i = K.\]

Then, using the regularity of \(\partial K_i \) we define

\[u_i = R_k(K_i, \Omega) \in C(\Omega).\]

According to [19] Lemma 2.1, we have the following monotonicity: if

\[
\begin{aligned}
u, v &\in \Phi^k(\Omega) \cap C^2(\Omega); \\
u &\geq v \quad \text{in } \Omega; \\
u &= v \quad \text{on } \partial \Omega,
\end{aligned}
\]

then

\[
\int_\Omega F_k[u] \leq \int_\Omega F_k[v],
\]
whence getting
\[\int_K F_k[u] \leq \int_{\{u_i < u\}} F_k[u] \leq \int_{\Omega} F_k[u] \leq \int_{\Omega} F_k[u_i]. \]

Letting \(i \to \infty \) in the last inequality yields that
\[\int_K (-u)F_k[u] \leq \int_K (-R_k(K,\Omega))F_k[R_k(K,\Omega)] \]
holds for any \(u \in \Phi^k_0(\Omega) \cap C^2(\Omega) \) with \(-1 < u < 0\). As a consequence, we get
\[\int_K (-R_k(K,\Omega))F_k[R_k(K,\Omega)] \geq \text{cap}_{k,4}(K,\Omega), \]
thereby completing the argument. \(\square \)

Theorem 2.3. Suppose \(1 \leq k \leq \frac{n}{2} \). Let \(\Omega \) be the Euclidean ball \(B_r \) of radius \(r \) centered at the origin. If \(E \subset \Omega \), then
\[\text{cap}_{k}(E,\Omega) = \text{cap}_{k,j}(E,\Omega) \quad \forall \quad j = 1, 2, 3, 4. \]

Proof. By Definition 2.1 it is enough to prove that if \(E = K \) is a compact subset of \(\Omega \) then
\[\text{cap}_{k,1}(K,\Omega) \leq \text{cap}_{k,2}(K,\Omega) \leq \text{cap}_{k,3}(K,\Omega) \leq \text{cap}_{k,4}(K,\Omega) \leq \text{cap}_{k,1}(K,\Omega). \]

To do so, note first that the inequalities
\[
\begin{cases}
\text{cap}_{k,4}(K,\Omega) \leq \text{cap}_{k,1}(K,\Omega); \\
\text{cap}_{k,2}(K,\Omega) \leq \text{cap}_{k,3}(K,\Omega),
\end{cases}
\]
just follow from Definition 2.1. Next, an application of Lemma 2.2 yields
\[\text{cap}_{k,1}(K,\Omega) = \text{cap}_{k}(K,\Omega) = \int_K F_k[R_k(K,\Omega)] = \int_{\Omega} F_k[R_k(K,\Omega)]. \]

Thus, from the definition of \(R_k(K,\Omega) \) and the monotonicity described in the proof of Lemma 2.2 it follows that for any \(u \in \Phi^k_0(\Omega) \cap C^2(\Omega) \) satisfying \(u|_K \leq -1 \) and \(u < 0 \) one has
\[\int_{\Omega} F_k[R_k(K,\Omega)] \leq \int_{\Omega} F_k[u]. \]

Upon minimizing the right-hand side of the last inequality we obtain
\[\text{cap}_{k,1}(K,\Omega) = \int_{\Omega} F_k[R_k(K,\Omega)] \leq \text{cap}_{k,2}(K,\Omega). \]

Finally, by the definitions of \(R_k(K,\Omega) \) and \(\text{cap}_{k,3}(K,\Omega) \), we achieve
\[\text{cap}_{k,3}(K,\Omega) \]
\[\leq \int_{\Omega} (-R_k(K,\Omega))F_k[R_k(K,\Omega)] \]
\[= \int_K (-R_k(K,\Omega))F_k[R_k(K,\Omega)]. \]
thereby finding
\[\text{cap}_{k,3}(K, \Omega) \leq \text{cap}_{k,4}(K, \Omega). \]

\[\square \]

Corollary 2.4. Let \(\Omega \) be the Euclidean ball \(B_r \) of radius \(r \) centered at the origin. If \(E \subset \Omega \), then
\[\text{cap}_1(E, \Omega) = \inf \left\{ \int_\Omega |Du|^2 : u \in W^{1,2}(\Omega), \ u \geq 1_E \right\} \equiv 2\text{-cap}(E, \Omega), \]
where \(W^{1,2}(\Omega) \) stands for the Sobolev space of all functions whose distributional derivatives are in \(L^2(\Omega) \).

Proof. Thanks to the well-known metric properties of the Wiener capacity \(2\text{-cap}(\cdot, \Omega) \) (cf. [15, Chapter 2]), we only need to check that
\[\text{cap}_1(E, \Omega) = 2\text{-cap}(E, \Omega), \]
for all compact \(E \subset \Omega \).

Since \(F_1[u] = \Delta u \), for any \(u \in \Phi_0^k(\Omega) \cap C^2(\Omega) \) with \(u \leq -1_E \) we apply an integration-by-part to obtain
\[\int_\Omega (-u) F_1[u] = \int_\Omega (-u) \Delta u = \int_\Omega |Du|^2 = \int_\Omega |D(-u)|^2. \]

Upon considering the unique solution of the Dirichlet problem:
\[\begin{cases} F_1[u] = \Delta u = 0 & \text{in } \Omega \setminus E; \\ -u = 1 & \text{on } \partial E; \\ u = 0 & \text{on } \partial \Omega, \end{cases} \]
we get
\[\text{cap}_{1,3}(E, \Omega) = \int_\Omega (-R) F_k[R] = \int_\Omega |D(-R)|^2 = 2\text{-cap}(E, \Omega), \]
whence reaching the conclusion via Theorem 2.3. \[\square \]

3. ISOCAPACITARY INEQUALITIES

3.1. **Proof of Theorem 1.2 (i).** Step (i). We start with proving that if \(E \subset B_r \) and \(1 \leq k < \frac{d}{2} \), then there is a constant \(c(n, k, q, \Omega) > 0 \) depending only on \(n, k, q, \) and \(|\Omega| \) such that
\[|E|^{\frac{1}{k+1}} \leq c(n, k, q, \Omega)(\text{cap}_k(E, B_r)). \]

Without losing generality, we may assume that \(E \) is a compact set in \(B_r \).

Now, by Theorem 1.1 (i), we have that if \(1 \leq q \leq k^* \) then
\[\|u\|_{L^q(B_r)} \leq c(n, k, q, r)\|u\|_{\Phi_0^k(B_r)} \quad \forall \ u \in \Phi_0^k(B_r), \]
where \(c(n, k, q, r) > 0 \) is a constant depending only on \(n, k, q, r \).

Since \(R_k(E, B_r) \in \Phi_0^k(B_r) \), from the definition of \(\|\cdot\|_{\Phi_0^k(B_r)} \) it follows that
\[\|R_k(E, B_r)\|_{L^q(B_r)} \leq c(n, k, q, r) \left(\int_{B_r} (-R_k(E, B_r)) F_k[R_k(E, B_r)] \right)^{\frac{1}{k+1}}. \]
In other words, Theorem 2.3 is employed to derive
\[\|R_k(E, B_r)\|_{L^q(B_r)} \leq c(n, k, q, r) \left(\text{cap}_k(E, B_r) \right)^{\frac{1}{k+1}}. \]

Thus, by the definition of \(R_k(E, B_r) \), we achieve
\[
\frac{|E|}{n} \leq \left(\int_E |R_k(E, B_r)|^q \right)^{\frac{1}{q}} \leq \left(\int_{B_r} |R_k(E, B_r)|^q \right)^{\frac{1}{q}} \leq \|R_k(E, B_r)\|_{L^q(B_r)}^{k+1} \leq \left(c(n, k, q, r) \right)^{k+1} \text{cap}_k(E, B_r).
\]

\textbf{Step (i)2.} Next, we verify that if \(E \subset \Omega \) and \(1 \leq k < \frac{n}{2} \) then there is a constant \(c(n, k, q, |\Omega|) > 0 \) depending only on \(n, k, q \), and \(|\Omega| \) such that
\[
\frac{|E|}{n} \leq c(n, k, q, |\Omega|) \left(\text{cap}_k(E, \Omega) \right)^n.
\]

Without losing generality, we may assume that \(E \) is a compact subset of \(\Omega \) and \(\Omega \) contains the origin. Then there exists a ball \(B_r \) centered at the origin with radius \(\text{diam}(\Omega) \) such that \(\Omega \subset B_r \).

Since \(1 \leq k < \frac{n}{2} \), by \textbf{Step (i)1} and [14, Lemma 4.1(ii)], we obtain
\[
\frac{|E|}{n} \leq c(n, k, q, |\Omega|) \left(\text{cap}_k(E, \Omega) \right)^n,
\]
as desired.

\textbf{Step (i)3.} Particularly, for \(q = \frac{n(k+1)}{n-2k} \) we make the following analysis. Suppose \(E \) is a compact set contained in \(B_r - \) a ball centered at the origin with radius \(r > 0 \). We claim that if \(1 \leq k < \frac{n}{2} \) then there is a constant \(c(n, k) > 0 \) depending only on \(n, k \) such that
\[
\frac{|E|}{n} \leq c(n, k) \text{cap}_k(E, \mathbb{R}^n).
\]

In fact, according to Dai-Bao’s paper [10], there exists a unique viscosity solution to the Dirichlet problem stated in the proof of Lemma 2.2. Such a solution guarantees that there exists a unique \(R_k(E, \mathbb{R}^n) \) satisfying
\[
R_k(E, \mathbb{R}^n) = \lim_{r \to \infty} R_k(E, B_r).
\]

Now, by the previous \textbf{Step (i)1}, we have that if \(q = k^* \) then
\[
\frac{|E|}{n} \leq c(n, k, r) \text{cap}_k(E, B_r),
\]
whence reaching the above claim through letting \(r \to \infty \) in the last estimate.

Now, using the same argument for \textbf{Step (i)2}, we get
\[
\frac{|E|}{n} \leq c(n, k) \text{cap}_k(E, \mathbb{R}^n) \leq c(n, k) \text{cap}_k(E, \Omega).
\]
Step (i). Following the above argument plus applying [14, Lemma 4.1(ii)], Theorem [1.1 (ii)] and Theorem 2.3 we can readily find that

\[|E|^{\frac{k+1}{q}} \leq c(n, k, q, \text{diam}(\Omega)) \text{cap}_k(E, \Omega) \]

holds for \(k = \frac{n}{2} \) and \(1 \leq q < \infty \).

3.2. Proof of Theorem 1.2 (ii). Step (ii). Partially motivated by [1, 9, 25], we begin with a slight improvement of the Moser-Trudinger inequality stated in Theorem 1.1 (ii): if \(k = \frac{n}{2} \) then there is a constant \(c(n) > 0 \) depending only on \(n \) such that

\[\sup_{0 < \|u\|_{\Phi_0^k(\Omega)}} \int_\Omega \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_0^k(\Omega)}} \right)^{\beta} \right) \leq c(n) (\text{diam}(\Omega))^n, \]

where \(\alpha, \beta \) are the constants determined in Theorem 1.1 (ii).

Without loss of generality, we may assume that \(\Omega \) contains the origin. Then there exists a ball \(B_r \) centered at the origin with radius \(\text{diam}(\Omega) \) such that \(\Omega \subset B_r \). Following the argument for [18, Theorem 1.2], we have that for any radial function \(u = u(s) \) in \(\Phi_0^k(B_r) \) there exists a ball \(B_{\hat{r}} \subset \mathbb{R}^{n+1} \) with radius \(\hat{r} = r^{\frac{2n}{n+2}} \) and a radial function \(v(s) = u(s^{\frac{n+2}{2n}}) \) in \(\Phi_0^k(B_{\hat{r}}) \) such that

\[\int_\Omega \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_0^k(\Omega)}} \right)^{\beta} \right) \leq (\frac{n+2}{2n})^{\alpha \beta} \int_{B_{\hat{r}}} \exp \left(\frac{\alpha}{c_0^\beta} \left(\frac{|v|}{\|v\|_{L^{n+1}(B_{\hat{r}})}} \right)^{\beta} \right) \leq c(n) |B_{\hat{r}}| \leq c(n) \hat{r}^{\frac{n}{2}+1} \leq c(n) r^n, \]

where

\[c_0^\beta = \left(\frac{\omega_{n-1}}{k \omega_{n/2}} \right)^{\frac{n-1}{k-1} \left(\frac{2n}{n+2} \right)^{\frac{k}{k+1}}}. \]

Thus, by [18, Lemma 3.2], we achieve

\[\sup \left\{ \int_\Omega \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_0^k(\Omega)}} \right)^{\beta} \right) : u \in \Phi_0^k(\Omega) \& 0 < \|u\|_{\Phi_0^k(\Omega)} < \infty \right\} \leq \sup \left\{ \int_\Omega \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi_0^k(\Omega)}} \right)^{\beta} \right) : u \in \Phi_0^k(\Omega) \text{ is radial} \right\} \leq c(n) (\text{diam}(\Omega))^n, \]

as desired.
Step (ii). We utilize the last step to check the remaining part of Theorem 1.2 (ii). Since $k = \frac{n}{2}$, by Lemmas 2.2, 3.2 and Theorem 2.3 we have

$$|E| \exp \left(\frac{\alpha}{(\text{cap}_k(E, B_r))^\frac{\beta}{k+1}} \right)$$

$$|E| \exp \left(\frac{\alpha}{(\text{cap}_{k,3}(E, B_r))^\frac{\beta}{k+1}} \right)$$

$$\leq \sup \left\{ \int_E \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi^k_0(B_r)}} \right) \beta : u \in \Phi^k_0(B_r) \right) \right\}$$

$$\leq c(n)(\text{diam}(B_r))^n,$$

i.e.,

$$\frac{\alpha}{(\text{cap}_k(E, \Omega))^\frac{\beta}{k+1}} \leq \frac{\alpha}{(\text{cap}_{k,3}(E, B_r))^\frac{\beta}{k+1}} \leq \ln \left(c(n)|E|^{-1}(\text{diam}(\Omega))^n \right).$$

Now, a simple calculation gives the desired inequality.

4. Capacitary weak and strong type estimates for $\Phi^k_0(\Omega)$

In a way different from proving the capacitary weak and strong type estimates for the Wiener capacity $2\text{cap}(\cdot, \Omega)$, we establish the following k-Hessian capacitary weak and strong type inequalities.

Theorem 4.1. Suppose that Ω is an origin-centered Euclidean ball. If $u \in \Phi^k_0(\Omega) \cap C^2(\Omega)$ and $1 \leq k \leq \frac{n}{2}$, then one has:

(i) the capacitary weak type inequality

$$\text{cap}_k \left(\{ x \in \Omega : |u(x)| \geq t \} \right) \leq t^{-(k+1)}\|u\|_{\Phi^k_0(\Omega)}^{k+1} \quad \forall \ t > 0;$$

(ii) the capacitary strong type inequality

$$\int_0^\infty t^k \text{cap}_k \left(\{ x \in \Omega : |u(x)| \geq t \}, \Omega \right) dt \leq c(n, k)\|u\|_{\Phi^k_0(\Omega)}^{k+1},$$

where $c(n, k) > 0$ is a constant depending only on n, k.
Proof. (i) For $t > 0$ let $v = t^{-1}u$. By Theorem 2.3 we obtain

$$
\text{cap}_k(\{x \in \Omega : |v(x)| \geq 1\})
= \sup \left\{ \int_{\{|v| \geq 1\}} (-f)F_k[f] : f \in \Phi_0^k(\Omega) \cap C^2(\bar{\Omega}), -1 < f < 0 \right\}
= \int_{\{|v| \geq 1\}} (-R(|v| \geq 1, \Omega))F_k[R(|v| \geq 1, \Omega)]
\leq \int_{\Omega} (-R(|v| \geq 1, \Omega))F_k[R(|v| \geq 1, \Omega)]
\leq \int_{\Omega} (-v)F_k[R(|v| \geq 1, \Omega)]
\leq \int_{\Omega} (-v)F_k[v],
$$

thereby getting

$$
\text{cap}_k(\{x \in \Omega : |u(x)| \geq t\}) \leq t^{-(k+1)} \int_{\Omega} (-u)F_k[u].
$$

(ii) For $t > 0$ let $M_t = \{x \in \Omega : |u(x)| \geq t\}$. Without loss of generality, we may assume $\|u\|_{\Phi_0^k(\Omega)} < \infty$, and then define a normed set function (cf. [4])

$$
\phi(E) \equiv \phi(E, \Omega) = \frac{\int_E (-u)F_k[u]}{\|u\|_{\Phi_0^k(\Omega)}^{k+1}} \forall \ E \subset \Omega.
$$

Note that

$$
E_1 \cap E_2 = \emptyset \Rightarrow \phi(E_1 \cup E_2) = \phi(E_1) + \phi(E_2).
$$

Applying [13] Theorem 2.2-Corollary 2.3, we can find a non-negative measure ψ defined on Ω and a positive constant c_n depending only on n such that

$$
\begin{cases}
\phi(E) \leq \psi(E) & \forall \ E \subset \Omega; \\
\psi(\Omega) \leq c_n.
\end{cases}
$$
Consequently, for a given constant \(a > 1 \) we estimate

\[
\int_0^\infty \phi(M_t \setminus M_{at}) \frac{dt}{t} \leq \int_0^\infty \psi(M_t \setminus M_{at}) \frac{dt}{t} = \int_0^\infty \int_0^{at} d\psi(M_s) \frac{dt}{t} = -(\ln a) \int_0^\infty d\psi(M_s) = \psi(M_0) \ln a \leq \psi(\Omega) \ln a \leq c_n \ln a,
\]

whence deriving

\[
\int_0^\infty \| u_{1 M_t \setminus M_{at}} \|^{k+1} \frac{dt}{t} \leq c_n (\ln a) \| u \|^{k+1}_{\Phi_0^k(\Omega)}.
\]

Now, if

\[
\tilde{u} = \max \left\{ \frac{t-u}{(a-1)t}, -1 \right\},
\]

then

\[
\begin{aligned}
\tilde{u} &\in \Phi_0^k(M_t); \\
\tilde{u}1_{M_{at}} &\leq -1,
\end{aligned}
\]

and hence

\[
\begin{aligned}
\| \tilde{u} \|^{k+1}_{\Phi_0^k(M_t)} &= \int_{M_t} (-\tilde{u}) F_k[\tilde{u}] \\
&= k^{-1} \int_{M_t} \tilde{u}_i \tilde{u}_j F_k^{ij} [D^2 \tilde{u}] \\
&= k^{-1} \int_{M_t \setminus M_{at}} \left(\frac{u}{(a-1)t} \right)_i \left(\frac{u}{(a-1)t} \right)_j F_k^{ij} \left[D^2 \frac{u}{(a-1)t} \right] \\
&\leq \int_{M_t \setminus M_{at}} \left(-\frac{u}{(a-1)t} \right) F_k \left[\frac{u}{(a-1)t} \right] \\
&= (a-1)^{-k-1} t^{-k-1} \int_{M_t \setminus M_{at}} (-u) F_k[u],
\end{aligned}
\]

where

\[
\begin{aligned}
F_k^{ij}[A] &= \frac{\partial}{\partial a_{ij}} F_k[A]; \\
D^2 f &= A = \{ a_{ij} \}.
\end{aligned}
\]
Using the definition of $\text{cap}_k(\cdot, \Omega)$, we obtain

$$
\int_0^\infty \frac{t^{k+1}\text{cap}_k(M_{at}, M_t)}{t} dt \\
\leq \int_0^\infty \frac{t^{k+1}\|\tilde{u}\|_{\Phi^k_0(M_t)}}{t} dt \\
\leq \int_0^\infty (a-1)^{-(k+1)} \left(\int_{M_t \setminus M_{at}} (\omega)F_k[u] \right) dt \\
\leq c_n (\ln a) (a-1)^{-(k+1)}\|u\|_{\Phi^k_0(\Omega)}^{k+1}.
$$

In particular, if $\lambda = at$, then a combination of $M_t \subset \Omega$, Theorem 2.3 and Theorem 1.1 (ii) derives

$$
\int_0^\infty \lambda^k \text{cap}_k(\{x \in \Omega : |u| > \lambda\}, \Omega) d\lambda \\
\leq \int_0^\infty (at)^k \text{cap}_k(M_{at}, M_t) d(at) \\
\leq c_n a^{k+1} (\ln a) (a-1)^{-(k+1)}\|u\|_{\Phi^k_0(\Omega)}^{k+1}.
$$

\[\Box \]

5. Analytic vs geometric trace inequalities

5.1. **Proof of Theorem 1.3 (i).** In what follows, we always let

\[
\begin{align*}
\{ 1 \leq k &\leq \frac{n}{2}; \\
u &\in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}); \\
M_t = \{ x \in \Omega : |u(x)| \geq t \} \quad &\forall \quad t > 0.
\end{align*}
\]

Step (i)1. For $k+1 \leq q < \infty$ let

\[
C_1 \equiv \sup_{t > 0} \frac{t^{k+1}}{\tau(\mu, \Omega, t)} < \infty.
\]

Then

$$
\mu(K) \frac{1}{q} \leq C_1^{\frac{1}{q}} (\text{cap}_k(K, \Omega))^{\frac{k+1}{q+1}} \quad \forall \quad \text{compact} \quad K \subset \Omega.
$$
An application of Theorem 4.1 (ii) yields that for any $u \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega})$,
\begin{align*}
\int_{\Omega} |u|^q \, d\mu &= \int_0^\infty \mu(M_\lambda) \, d\lambda^q \\
&\leq C_1^{\frac{q}{k+1}} \int_0^\infty \left(\text{cap}_k(M_\lambda, \Omega)\right)^{\frac{q}{k+1}} \, d\lambda^q \\
&\leq q(k+1)^{-1} C_1^{\frac{q}{k+1}} \|u\|_{\Phi^k_0(\Omega)}^{q-k} \int_0^\infty \text{cap}_k(M_\lambda, \Omega) \, d\lambda^{k+1} \\
&\leq q(k+1)^{-1} C_1^{\frac{q}{k+1}} c(n, k) \|u\|_{\Phi^k_0(\Omega)}^q.
\end{align*}
This gives
\[C_2 \equiv \sup \left\{ \frac{\|u\|_{L^q(\Omega, \mu)}}{\|u\|_{\Phi^k_0(\Omega)}} : u \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}) \text{ with } 0 < \|u\|_{\Phi^k_0(\Omega)} < \infty \right\} < \infty. \]

Conversely, assume $C_2 < \infty$. An application of the H"older inequality with $q' = \frac{q}{q-k}$ implies
\begin{align*}
t \mu(M_t) &\leq \int_{M_t} |u| \, d\mu(M_t) \\
&\leq \|u\|_{L_q(\Omega, \mu)} (\mu(M_t))^{\frac{1}{q'}} \\
&\leq C_2 \|u\|_{\Phi^k_0(\Omega)} (\mu(M_t))^{\frac{1}{q'}},
\end{align*}
and thus
\[\sup_{t > 0} t \left(\mu(M_t)\right)^{\frac{1}{q'}} \leq C_2 \|u\|_{\Phi^k_0(\Omega)}. \]

Now, taking
\[\begin{cases} t = 1; \\
u \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}); \\
|u| \geq 1_K \text{ for any compact } K \subset \Omega,
\end{cases} \]
we obtain
\[\left(\mu(K)\right)^{\frac{1}{q'}} \leq C_2 \|u\|_{\Phi^k_0(\Omega)} \leq C_2 (\text{cap}_k(K, \Omega))^{\frac{k}{k+1}}, \]
whence reaching $C_1 \leq C_2^{k+1}$.

Step (i) _2. For $1 < q < k+1$ let
\begin{align*}
I_{k,q}(\mu) &\equiv \int_0^\infty \left(t^{\frac{k+1}{q}} (\tau(\mu, \Omega, t))^{-1} \right)^{\frac{q}{k+1-q}} t^{-1} \, dt; \\
S_{k,q}(\mu, u) &\equiv \sum_{j=-\infty}^\infty \frac{\left(\mu(M_{2j+1}(u)) - \mu(M_{2j+1}(u))\right)^{\frac{k+1}{k+1-q}}}{(\text{cap}_k(M_{2j}(u)))^{\frac{k+1}{k+1-q}}}.
\end{align*}
If $I_{k,q}(\mu) < \infty$, then the elementary inequality

$$a^c + b^c \leq (a + b)^c \quad \forall \quad a, b \geq 0 \quad \& \quad c \geq 1$$

implies

$$S_{k,q}(\mu, u)$$

$$= \sum_{j=0}^{\infty} \left(\mu(M_{2j}(u)) - \mu(M_{2j+1}(u)) \right) \frac{k+1}{k+1-q} \left(\text{cap}_k(M_{2j}(u), \Omega) \right) \frac{q}{k+1-q}$$

$$\leq \sum_{j=0}^{\infty} \left((\mu(M_{2j}(u)) - \mu(M_{2j+1}(u))) \frac{k+1}{k+1-q} \left(\tau(\mu, \Omega, \mu(M_{2j})) \right) \right) \frac{q}{k+1-q}$$

$$\leq \sum_{j=0}^{\infty} \mu(M_{2j}(u)) \frac{k+1}{k+1-q} - \mu(M_{2j+1}(u)) \frac{k+1}{k+1-q} \left(\tau(\mu, \Omega, \mu(M_{2j})) \right) \frac{q}{k+1-q}$$

$$\leq c(n, k, q) \int_0^\infty (\tau(\mu, \Omega, s))^{-\frac{q}{k+1-q}} ds \frac{k+1}{k+1-q}$$

$$\leq c(n, k, q) I_{k,q}(\mu).$$

Therefore, by the Hölder inequality and Theorem 4.1, we have

$$\|u\|_{L^q(\Omega, \mu)}^q = \int_{\Omega} |u|^q d\mu$$

$$= \int_0^\infty t^q d\mu(M_t(u))$$

$$\leq \sum_{j=-\infty}^{\infty} \left(\mu(M_{2j}(u)) - \mu(M_{2j+1}(u)) \right) \frac{2^j}{2^j}$$

$$\leq (S_{k,q}(\mu, u)) \frac{k+1}{k+1-q} \left(\sum_{j=-\infty}^{\infty} 2^{j(k+1)} \text{cap}_k(M_{2j(k+1)}(u)) \right) \frac{q}{k+1-q}$$

$$\leq (S_{k,q}(\mu, u)) \frac{k+1}{k+1-q} \left(\int_0^\infty \text{cap}_k(M_{\lambda}(u), \Omega) d\lambda^{k+1} \right) \frac{q}{k+1-q}$$

$$\leq c(n, k, q)(S_{k,q}(\mu, u)) \frac{k+1-q}{k+1} \|u\|^q_{\Phi^q_{0}(\Omega)}$$

$$\leq c(n, k, q)(I_{k,q}(\mu)) \frac{k+1-q}{k+1} \|u\|^q_{\Phi^q_{0}(\Omega)},$$

whence getting

$$C^q_2 \leq c(n, k, q)(I_{k,q}(\mu)) \frac{k+1-q}{k+1}.$$

Conversely, suppose $C_2 < \infty$. Then

$$\sup_{t>0} t^{\frac{1}{q}} \leq \|u\|_{L^q(\Omega, \mu)} \leq C_2 \|u\|_{\Phi^q_{0}(\Omega)}$$
holds for any \(u \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}) \). According to the definition of \(\tau(\mu, \Omega, t) \), for each integer \(j \) there exist a compact set \(K_j \subset \Omega \) and a function \(u_j \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}) \) such that

\[
\begin{align*}
\text{cap}_k(K_j, \Omega) & \leq 2\tau(\mu, \Omega, 2^j); \\
\mu(K_j) & > 2^j; \\
u_j & \leq -1_{K_j}; \\
2^{-1} \|u_j\|^{k+1}_{\Phi^k_0(\Omega)} & \leq \text{cap}_k(K_j, \Omega).
\end{align*}
\]

Now, for integers \(i, m \) with \(i < m \) let

\[
\begin{align*}
u_{i,m} &= \sup_{i \leq j \leq m} \gamma_j \hat{f}_j; \\
\gamma_j &= \left(\frac{2^j}{\kappa(n, 2^j)} \right)^{\frac{1}{k+1-q}}.
\end{align*}
\]

Then \(u_{i,m} \) is a function in \(\Phi^k_0(\Omega) \cap C^2(\bar{\Omega}) \) – this follows from an induction and the easily-checked fact below

\[
\max\{u_1, u_2\} = \frac{u_1 + u_2 + |u_1 - u_2|}{2} \in \Phi^k_0(\Omega) \cap C^2(\bar{\Omega}).
\]

Consequently,

\[
\|u_{i,m}\|^{k+1}_{\Phi^k_0(\Omega)} \leq c(n, k) \sum_{j=i}^{m} \gamma_j^{k+1} \|u_j\|^{k+1}_{\Phi^k_0(\Omega)} \leq c(n, k) \sum_{j=i}^{m} \gamma_j^{k+1} \tau(\mu, \Omega, 2^j).
\]

Observe that for \(i \leq j \leq m \), one has

\[
u_{i,m}(x) \leq \gamma_j \quad \forall \quad x \in K_j.
\]

Therefore,

\[
2^j < \mu(K_j) \leq \mu \left(M_{\gamma_j}(u_{i,m})\right).
\]
This in turn implies
\[
\| u_{i,m} \|_{\Phi_0^k(\Omega)}^q \geq C_2^{-q} c(n, k, q) \int_\Omega |u_{j,m}|^q d\mu
\]
\[
\geq C_2^{-q} \int_0^\infty \left(\inf \{ t : \mu(M_t(u_{i,m})) \leq s \} \right)^q ds
\]
\[
\geq C_2^{-q} \sum_{j=1}^m \left(\inf \{ t : \mu(M_t(u_{i,m})) \leq 2^j \} \right)^q 2^j
\]
\[
\geq C_2^{-q} \sum_{j=1}^m \gamma_j 2^j
\]
\[
\geq C_2^{-q} c(n, k, q) \left(\frac{\sum_{j=1}^m \gamma_j 2^j}{\sum_{j=1}^m (\gamma_j)^k+1} \right) \| u_{i,m} \|_{\Phi_0^k(\Omega)}^q
\]
\[
\geq C_2^{-q} c(n, k, q) \left(\frac{\sum_{j=1}^m 2^{j(k+1)} (\tau(\mu, \Omega, 2^j))^{-\frac{q}{k+1-q}}}{\sum_{j=1}^m 2^\frac{j(k+1)}{k+1} (\tau(\mu, \Omega, 2^j))^{-\frac{q}{k+1-q}}} \right) \| u_{i,m} \|_{\Phi_0^k(\Omega)}^q
\]
\[
\geq C_2^{-q} c(n, k, q) \left(\sum_{j=1}^m 2^{j(k+1)} (\tau(\mu, \Omega, 2^j))^{-\frac{q}{k+1-q}} \right)^{\frac{k+1-q}{k+1}} \| u_{i,m} \|_{\Phi_0^k(\Omega)}^q.
\]

Consequently,
\[
I_{k,q}(\mu) \leq \lim_{i \to -\infty} \lim_{m \to \infty} \sum_{j=1}^m 2^{j(k+1)(k+1)-q} (\tau(\mu, \Omega, 2^j))^{-\frac{q}{k+1-q}} < \infty.
\]

5.2. Proof of Theorem 1.3 (ii). In the sequel, for
\[
\begin{cases}
 k = \frac{n}{2} ; \\
 u \in \Phi_0^k(\Omega) \cap C^2(\bar{\Omega}) ; \\
 M_t(u) = \{ x \in \Omega : |u(x)| \geq t \} \quad \forall \quad t > 0.
\end{cases}
\]

For convenience, rewrite the previous quantity \(C_1 \) as
\[
C_1(n, k, q, \mu, \Omega) \equiv \sup_{t > 0} \frac{t^{\frac{k+1}{q}}}{\tau(\mu, \Omega, t)}.
\]

If
\[
C_3(n, k, \alpha, \beta, \mu, \Omega) \equiv \sup_{t > 0} t \exp \left(\frac{\alpha}{(\tau(\mu, \Omega, t))^{\frac{1}{k+1}}} \right) < \infty,
\]
then for $\tilde{q} \geq k + 1$,

$$C_1(n, k, \tilde{q}, \mu, \Omega)$$

$$= \sup_{t > 0} \left(\frac{\tilde{q}^\beta}{\alpha \beta} \left(\frac{\alpha}{\tilde{q}^{\beta}} \right) \right)^{k+1}$$

$$= \sup_{t > 0} \left(\frac{\tilde{q}^\beta}{\alpha \beta} \left(\frac{\alpha}{\tilde{q}^{\beta}} \right) \right)^{k+1}$$

$$\leq \left(\frac{\tilde{q}}{\alpha \beta} \right)^{k+1} \sup_{t > 0} \left(t^\beta \exp \left(\frac{\alpha}{\tilde{q}^{\beta}} \right) \right)^{k+1}$$

$$= \left(\frac{\tilde{q}}{\alpha \beta} \right)^{k+1} \left(C_3(n, k, \mu, \Omega) \right)^{k+1}.$$

Also, applying the Hölder inequality for $\tilde{q} \geq k + 1$, we get

$$\int_{\Omega} \exp \left(\alpha \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^\beta \right) d\mu$$

$$= \sum_{i=1}^{\infty} \int_{\Omega} \frac{\alpha^i}{i!} \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^{\beta i} d\mu$$

$$= \sum_{i < \frac{k+1}{\beta}} \int_{\Omega} \frac{\alpha^i}{i!} \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^{\beta i} d\mu + \sum_{i \geq \frac{k+1}{\beta}} \int_{\Omega} \frac{\alpha^i}{i!} \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^{\beta i} d\mu$$

$$\leq S_1 + S_2,$$

where

$$S_1 = \sum_{i < \frac{k+1}{\beta}} \int_{\Omega} \frac{\alpha^i}{i!} \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^{\beta i} d\mu$$

$$S_2 = \sum_{i \geq \frac{k+1}{\beta}} \int_{\Omega} \frac{\alpha^i}{i!} \left(\frac{|u|}{\|u\|_{\Phi^0_k(\Omega)}} \right)^{\beta i} d\mu.$$

Next, we control S_1 and S_2 from above. As in the last subsection, we have that for any $u \in \Phi^0_k(\Omega) \cap C^2(\Omega)$ and integer $m \geq k + 1$,

$$\int_{\Omega} |u|^m d\mu \leq (C_1(n, k, m, \mu, \Omega))^m \frac{m}{\alpha \beta} c(n, k) \|u\|_{\Phi^0_k(\Omega)}^m.$$

This, along with the previously-verified inequality

$$C_1(n, k, \tilde{q}, \mu, \Omega) \leq \left(\frac{\tilde{q}}{\alpha \beta} \right)^{k+1} \left(C_3(n, k, \mu, \Omega) \right)^{k+1} \forall \tilde{q} \geq k + 1,$$
gives

\[
S_1 \leq \sum_{i < \frac{k+1}{\beta}} \frac{\alpha^i}{i!} \left(\mu(\Omega) \right)^{1 - \frac{\beta_i}{\beta}} \left((C_1(n, k, \bar{q}, \mu, \Omega))^{\frac{1}{\beta}} c(n, k) \right)^{\beta_i} < \infty.
\]

Meanwhile, Theorem 4.1 is utilized to derive

\[
S_2 = \sum_{i \geq \frac{k+1}{\beta}} \frac{\alpha^i}{i!} ||u||_{\Phi^k_0(\Omega)}^\beta i \int_\Omega |u|^{\beta_i} d\mu
\]

\[
= \sum_{i \geq \frac{k+1}{\beta}} \frac{\alpha^i}{i!} ||u||_{\Phi^k_0(\Omega)}^\beta i \int_0^\infty \mu(M_t) dt^{\beta_i}
\]

\[
= \sum_{i \geq \frac{k+1}{\beta}} \frac{\alpha^i}{i!} \int_0^\infty \left(\frac{\mu(M_t)}{||u||_{\Phi^k_0(\Omega)}^{\beta_i}} \right) \left(\frac{\mu(M_t)}{(cap_k(M_t, \Omega))^{\beta_i}} \right) dt^{\beta_i}
\]

\[
\leq \sum_{i \geq \frac{k+1}{\beta}} \frac{\alpha^i}{i!} \int_0^\infty \frac{cap_k(M_t, \Omega)}{t^{\beta_i - k - 1}} \left(\frac{\mu(M_t)}{||u||_{\Phi^k_0(\Omega)}^{\beta_i}} \right) \left(\frac{\mu(M_t)}{(cap_k(M_t, \Omega))^{\beta_i}} \right) dt^{\beta_i}
\]

\[
\leq \frac{\alpha \beta}{k+1} \int_0^\infty \sum_{i=0}^\infty \frac{\alpha^i}{i!} \left(\frac{\mu(M_t)}{cap_k(M_t, \Omega)^{\beta_i}} \right) cap_k(M_t, \Omega) ||u||_{\Phi^k_0(\Omega)}^{(k+1)} dt^{k+1}
\]

\[
\leq \frac{\alpha \beta}{k+1} \int_0^\infty \left(\mu(M_t) \exp \left(\frac{\alpha}{cap_k(M_t, \Omega)^{k+1}} \right) \right) \left(\frac{cap_k(M_t, \Omega)}{||u||_{\Phi^k_0(\Omega)}^{k+1}} \right) dt^{k+1}
\]

\[
\leq \alpha \beta (k+1)^{-1} C_3(n, k, \alpha, \beta, \mu, \Omega) ||u||_{\Phi^k_0(\Omega)}^{(k+1)} \int_0^\infty \left(cap_k(M_t, \Omega) \right) dt^{k+1}
\]

\[
\leq \alpha \beta (k+1)^{-1} c(n, k) C_3(n, k, \alpha, \beta, \mu, \Omega).
\]

Now, putting the estimates for S_1 and S_2 together, we obtain

\[
C_4 \equiv \sup \left\{ ||u||_{L^2(\Omega, \mu)} : u \in \Phi^k_0(\Omega) \cap C^2(\Omega) \text{ with } ||u||_{\Phi^k_0(\Omega)} > 0 \right\} < \infty.
\]

Conversely, if $C_4 < \infty$, then for any $u \in \Phi^k_0(\Omega) \cap C^2(\Omega)$ with $||u||_{\Phi^k_0(\Omega)} > 0$ one always has

\[
\int_\Omega \exp \left(\alpha \left(\frac{|u|}{||u||_{\Phi^k_0(\Omega)}} \right)^\beta \right) d\mu \leq C_4.
\]

Note that for any compact set $K \subset \Omega$ there exists a function $R(K, \Omega)$ such that

\[
\begin{cases}
R(K, \Omega) \in \Phi^k_0(\Omega) \cap C^2(\overline{\Omega}); \\
|R(K, \Omega)| \geq 1_K.
\end{cases}
\]
So, we get

\[
\mu(K) \exp \left(\frac{\alpha}{\left(\text{cap}_k(K, \Omega) \right)^{\frac{1}{k+1}}} \right) \\
\leq \int_K \exp \left(\frac{\alpha}{\left(\text{cap}_k(K, \Omega) \right)^{\frac{1}{k+1}}} \right) d\mu \\
\leq \int_\Omega \exp \left(\alpha \left(\frac{|R(K, \Omega)|}{\|R(K, \Omega)\|_{\Phi_k^0(\Omega)}} \right)^\beta \right) d\mu \\
\leq C_4,
\]

whence achieving \(C_3(n, k, \alpha, \beta, \mu, \Omega) \leq C_4 \).

References

[1] D. R. Adams, *A sharp inequality of J. Moser for higher order derivatives*. Ann. Math. 128(1988)385398.
[2] E. Bedford and B. A. Taylor, *A new capacity for plurisubharmonic functions*. Acta Math. 149(1982)1-40.
[3] L. Caffarelli, L. Nirenberg and J. Spruck, *Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian*. Acta Math. 155(1985)261-301.
[4] J. Cerda, J. Martin, and P. Silvestre, *Conductor Sobolev type estimates and isocapacitary inequalities*. http://garf.ub.es/ConductorCMS110516.pdf, 27-2-2013.
[5] I. Chavel, *Isoperimetric Inequalities*. Cambridge Tracts Math. 145, Cambridge Univ. Press, 2001.
[6] J. Cheeger, *A lower bound for the smallest eigenvalue of the Laplacian*. In: Gunning, R. (ed.), Problems in Analysis, pp.195-199. Princeton Univ. Press, Princeton, NJ, 1970.
[7] K. S. Chou, *On symmetrization and Hessian equations*. J. Anal. Math. 52(1989)94-116.
[8] K. S. Chou, *Remarks on the critical exponents for the Hessian operators*. Ann. Inst. H. Poincaré Anal. Non linéaire 7(1990)113-122.
[9] W. S. Cohn and G.-Z. Lu, *Sharp constants for Moser-Trudinger inequalities on spheres in complex space \(C^n \).* Comm. Pure Appl. Math. LVII(2004)1458-1493.
[10] L. Dai and J. Bao, *On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains*. Front. Math. China 6(2011)221-230.
[11] F. Ferrari, *Some relations between fractional Laplace operators and Hessian operators*. http://mathematicalanalysis.unibo.it/article/view/2668/2064.
[12] N. Gavitone, *Isoperimetric estimates for eigenfunctions of Hessian operators*. Ricerche Mat. 58(2009)163-183.
[13] N. J. Kalton and S. J. Montgomery-Smith, *Set-functions and factorization*. Arch. Math. 61(1993)183-200.
[14] D. A. Labutin, *Potential estimates for a class of fully nonlinear elliptic equations*. Duke Math. J. 111(2002)1-49.
[15] V. Maz’ya, *Sobolev Spaces*. Springer-Verlag, 1985.
[16] V. Maz’ya, *Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces*. Contemp. Math. 338(2003)307-340.
[17] G. Talenti, *Inequalities in rearrangement invariant function spaces*. In: M. Krbec, A. Kufner, B. Opic, J. Rákosník (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177-230. Prometheus, Prague, 1994.

[18] G.-J. Tian and X.-J. Wang, *Moser-Trudinger type inequalities for the Hessian equation*. J. Funct. Anal. 259(2010)1974-2002.

[19] N. S. Trudinger and X.-J. Wang, *Hessian measures, I*. Topol. Methods Nonlinear Anal. 10(1997)225-239.

[20] N. S. Trudinger and X.-J. Wang, *Hessian measures, II*. Ann. of Math. 150(1999)579-604.

[21] N. S. Trudinger and X.-J. Wang, *Hessian measures, III*. J. Funct. Anal. 193(2002)1-23.

[22] X.-J. Wang, *A class of fully nonlinear elliptic equations and related functionals*. Indiana Univ. Math. J. 43(1994)25-54.

[23] X.-J. Wang, *The k-Hessian equation*. Lecture Notes in Math. 1977, Springer, 2009, pp. 177-252.

[24] J. Xiao, *The p-Faber-Krahn inequality noted*. A. Laptev (ed.), Around the Research of Vladimir Maz’ya I: Functon Spaces, International Math Ser. 11, DOI 10.1007/978 – 1 – 4419 – 1341 – 8, Springer Sci. + Business Media, LLC2010, 373-390.

[25] J. Xiao and Zh. Zhai, *Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms*. J. Math. Sci. (New York) 45(2010)119-136.

Jie Xiao, DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN’S, NL A1C 5S7, CANADA
E-mail address: jxiao@mun.ca

Ning Zhang, DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN’S, NL A1C 5S7, CANADA
E-mail address: nz7701@mun.ca