COCENTERS OF HECKE-CLIFFORD AND SPIN HECKE ALGEBRAS

MICHAEL REEKS

Abstract. We determine a basis of the cocenter (i.e., the trace or zeroth Hochschild homology) of the degenerate affine Hecke-Clifford and spin Hecke algebras in classical types.

1. Introduction

The degenerate affine Hecke-Clifford algebra was introduced in type \(A_{n-1}\) in [Naz], and in all classical types in [KW]. These algebras are variations on the degenerate (or graded) affine Hecke algebras, which were introduced independently in [Dr] (to study Yangians) and in [Lu] (to study representations of reductive \(p\)-adic groups). The degenerate affine spin Hecke algebras were introduced in type \(A_{n-1}\) in [W], and in all classical types in [KW]. These are degenerate affine Hecke algebras associated to the spin Weyl groups. Hecke-Clifford algebras and spin Hecke algebras are closely related to the study of the spin representation theory of classical Weyl groups [Joz].

In studying the representation theory of these algebras, it is useful to have a description of the cocenter, or trace: the quotient of the algebra by the linear subspace spanned by the commutators. This space is also the zeroth Hochschild homology of the algebra. In this paper, we determine a linear basis for the cocenter of the degenerate affine Hecke-Clifford and spin Hecke algebras in the classical types, adapting methods used in [CiHe] to solve the corresponding problem for degenerate affine Hecke algebras. The Hochschild homology of the degenerate affine Hecke algebras was computed first in [So], which also provides a description of the cocenter.

Let \(\mathfrak{H}_X\) be the degenerate affine Hecke-Clifford algebra associated to the Weyl group \(W = W_X\) of type \(X\), for \(X = A_{n-1}, B_n,\) or \(D_n\), as constructed in [Naz] (for type \(A\)) and in [KW] (for types \(B\) and \(D\)). As a vector space, \(\mathfrak{H}_X\) is isomorphic to \(S(V) \otimes \mathbb{C}V \otimes \mathbb{C}W\), where \(S(V)\) is the symmetric algebra of the reflection representation of \(W\) and \(\mathbb{C}V\) is the Clifford algebra associated to \(V\).

For certain conjugacy classes of \(W\), we associate a subset \(J_C\) of the root system and pick an element \(w_C \in C \cap W_{J_C}\), where \(W_{J_C}\) is the parabolic subgroup associated to \(J_C\). We then fix a basis \(f_{J_C;i}\) of a certain subspace of \(S(V^2)\), the subspace of the symmetric algebra spanned by the squares of generators, which is determined by the action of \(W_{J_C}\). The first main result of the paper is that the set \(\{w_C f_{J_C;i}\}\), as \(C\) runs over the distinguished conjugacy classes for each type described in Sections 3.3 and 3.4, forms a basis for the cocenter \(\mathfrak{H}_X = (\mathfrak{H}_X/[\mathfrak{H}_X, \mathfrak{H}_X])_\pi\).

The proof that \(\{w_C f_{J_C;i}\}\) is a spanning set for \(\mathfrak{H}_X\) relies on several reduction results. We show that an arbitrary element of \(\mathfrak{H}_X\) can be reduced mod \([\mathfrak{H}_X, \mathfrak{H}_X]\) to an element containing no instances of generators of the Clifford algebra. We then show that Weyl group elements belonging to certain conjugacy classes, which vary between types, vanish.
in the cocenter. Then we take advantage of a filtration of \mathfrak{H}_X to pass to the associated graded object, and use methods developed in [CiHa] to prove that $\{w_C f_{t,ci}\}$ spans in that setting. Finally, we can lift the the spanning set to the ungraded object.

To prove linear independence, we establish a trace formula for parabolically induced \mathfrak{H}_X-modules. This trace formula allows us to separate the w_C’s by their action on subspaces of $S(V^2)$. By applying this trace formula to the action of the w_t’s on a set of irreducible modules of the parabolic subalgebras, we obtain the linear independence result and the first main theorem of the paper, Theorem 5.5.

Next, let \mathfrak{H}^sp_X be the degenerate affine spin Hecke algebra associated to the spin Weyl group W^- of type X, for $X = A_{n-1}$, B_n, or D_n. These algebras were originally constructed in [W] (in type A) and in [KW] (in types B and D). As a vector space, \mathfrak{H}^sp_X is isomorphic to $CW^- \otimes C(b_1, \ldots, b_n)$, where $C(b_1, \ldots, b_n)$ is the skew polynomial algebra. The algebra \mathfrak{H}^sp_X is Morita superequivalent to \mathfrak{H}_X in the sense that $\mathfrak{H}^\text{sp}_X \otimes C_V \cong \mathfrak{H}_X$.

The second main result of the paper is that the set $\{t_C f_{t,ci}\}$, as C runs over the same distinguished conjugacy classes of W as in the Hecke-Clifford case, forms a basis of \mathfrak{H}^sp_X. We prove that this forms a spanning set by following similar reduction procedures as in the Hecke-Clifford case; our approach here does not rely on the Morita superequivalence. Finally, we use the Morita superequivalence to carry the linear independence of the basis for \mathfrak{H}^sp_X over to the spanning set of \mathfrak{H}^sp_X.

The paper is organized as follows. In section 2, we establish notations and describe the degenerate affine Hecke-Clifford algebras in types A, B, and D. In section 3, we prove a series of lemmas to reduce an arbitrary element in the cocenter of \mathfrak{H}_X to a corresponding element with no Clifford algebra generators, and then prove that Weyl group elements not belonging to certain distinguished conjugacy classes vanish in the cocenter. In section 4, we establish a spanning set of the associated graded object \mathfrak{H}^0_X and lift it to \mathfrak{H}_X in each type. We then proceed in section 5 to prove that these spanning sets are linearly independent by establishing a trace formula for parabolically induced module. In section 6, we construct the degenerate spin affine Hecke algebra in each type. Section 7 contains reduction formulas similar to those in section 3, with proofs adapted to the new setting. Finally, in section 8, we establish a spanning set for \mathfrak{H}^sp_X and then take advantage of the Morita superequivalence to prove that it is linearly independent.

Acknowledgements. The author would like to thank Weiqiang Wang for providing guidance and valuable discussions about the topics of the paper.

2. Preliminaries on Hecke-Clifford algebras

We establish basic notations and definitions, and then recall the definition of the degenerate affine Hecke-Clifford algebra in types A, B, and D. We then recall some basic facts about these algebras, including a PBW property and a filtration, and finally define the cocenter.

2.1. Root systems and the Weyl group. Let $\Phi = (V_0, R, V_0^\vee, R^\vee)$ be a semisimple real root system: V_0 and V_0^\vee are finite dimensional real vector spaces, R and R^\vee span V_0 and V_0^\vee respectively and, there is a bijection $R \leftrightarrow R^\vee$ such that $(\alpha, \alpha^\vee) = 2$, and R and R^\vee are preserved by the reflections $s_\alpha : v \mapsto (v - (v, \alpha^\vee)\alpha)$. Set

$$V = \mathbb{C} \otimes_R V_0$$
$$V^\vee = \mathbb{C} \otimes_R V_0^\vee.$$
Let \(W \) be the finite Weyl group of \(\Phi \), the subgroup of \(GL(V) \) generated by \(s_\alpha, \alpha \in R \). Fix a choice of positive roots \(R^+ \) and positive coroots \((R^+)^\vee \), and let \(\Pi = \{ \alpha_1, \ldots, \alpha_r \} \subset R^+ \) be a basis, the set of simple roots. Then \(W \) is a finite Coxeter group with presentation

\[
\langle s_1, \ldots, s_n | (s_i s_j)^{m_{ij}} = 1, \ m_{ii} = 1, \ m_{ij} = m_{ji} \in \mathbb{Z}_{\geq 2}, \text{for } i \neq j \rangle
\]

where \(m_{ij} \in \{1, 2, 3, 4, 6\} \) is specified by the Coxeter-Dynkin diagrams, wherein the vertices correspond to generators of \(W \). Two generators \(s_i \) and \(s_j \), \(i \neq j \), have \(m_{ij} = 2 \) if there is no edge between \(i \) and \(j \), \(m_{ij} = 3 \) if \(i \) and \(j \) are connected by an unmarked edge, and \(m_{ij} = \ell \) if the edge connecting \(i \) and \(j \) is labeled with an \(\ell \geq 4 \).

2.2. The Clifford algebra. The reflection representation \(V \) carries a \(W \)-invariant non-degenerate bilinear form \((-,-)\), which gives rise to an identification \(V^* \cong V \). We identify \(V^* \) with a suitable subspace of \(\mathbb{C}^n \) and choose a standard orthonormal basis \(\{e_i\} \) of \(\mathbb{C}^n \).

Denote by \(C_n \) the Clifford algebra associated to \((\mathbb{C}^n, (-,-)) \). It is an associative \(\mathbb{C} \)-algebra with identity which contains \(\mathbb{C}^n \) as a subspace and is generated by elements of \(\mathbb{C}^n \) subject to the relation

\[
wv + vw = (u, v) \quad u, v \in \mathbb{C}^n.
\]

Set \(c_i = \sqrt{2}e_i \) for each \(i \). Then \(C_V \) is generated by elements \(c_1, \ldots, c_n \) subject to relations

\[
c_i^2 = 1, \quad c_i c_j = -c_j c_i \quad i \neq j.
\]

Let \(C_V \) be the Clifford algebra associated to \((V, (-,-)) \), which is a subalgebra of \(C_n \). The algebra \(C_V \) has generators \(\beta_i \) corresponding to the simple roots \(\alpha_i \) of the Lie algebra corresponding to \(W \); note that, in this paper, we always choose to work with the Lie algebra \(\mathfrak{gl}_n \) in type \(A_{n-1} \), rather than \(\mathfrak{sl}_n \). Note that \(C_V \) is naturally a superalgebra with each \(\beta_i \) odd. The explicit generators are given in the following table for types \(A_{n-1}, B_n, \) and \(D_n \):
Type of W	N	Generators for \mathcal{C}_W
A_{n-1}	n	$\beta_i = \frac{1}{\sqrt{2}}(c_i - c_{i+1})$, $1 \leq i \leq n - 1$
B_n	n	$\beta_i = \frac{1}{\sqrt{2}}(c_i - c_{i+1})$, $1 \leq i \leq n - 1$, $\beta_n = c_n$
D_n	n	$\beta_i = \frac{1}{\sqrt{2}}(c_i - c_{i+1})$, $1 \leq i \leq n - 1$, $\beta_n = \frac{1}{\sqrt{2}}(c_{n-1} + c_n)$

The action of W on V preserves the bilinear form (\cdot, \cdot), so W acts on \mathcal{C}_V by automorphisms. This allows us to form the semidirect product $\mathcal{C}_V \rtimes CW$, which is also naturally a superalgebra with CW even.

2.3. The degenerate affine Hecke-Clifford algebras

We recall the degenerate affine Hecke-Clifford algebras of types A_{n-1}, B_n, and D_n, following the descriptions of [Naz] in type A_{n-1} and [KW] in types B_n and D_n. Let $S(V)$ be the symmetric algebra of V. Then $S(V) \cong \mathbb{C}[x_1, \ldots, x_n]$, where $\{x_1, \ldots, x_n\}$ is a basis of V^*. Let $u \in \mathbb{C}$ and set $W = S_n$, the Weyl group of type A_{n-1}.

The degenerate affine Hecke Clifford algebra of type A_{n-1}, $\mathfrak{H}_{A_{n-1}}$, is the \mathbb{C}-algebra generated by x_1, \ldots, x_n, c_1, \ldots, c_n, and S_n subject to relations making $\mathbb{C}[x_1, \ldots, x_n]$, \mathcal{C}_V, and $\mathbb{C}S_n$ subalgebras, along with the additional relations:

\begin{align*}
(5) & \quad x_ic_i = -c_ix_i, \quad x_ic_j = c_jx_i \quad (i \neq j), \\
(6) & \quad \sigma c_i = c_{\sigma(i)} \sigma \quad (1 \leq i \leq n, \sigma \in S_n), \\
(7) & \quad x_{i+1}s_i - s_ix_i = u(1 - c_{i+1}c_i), \\
(8) & \quad x_js_i = s_ix_j \quad (j \neq i, i + 1).
\end{align*}

Denote the action of S_n on $S(V)$ by $f \mapsto f^\sigma$, $f \in S(V)$, $\sigma \in S_n$.

Next, let $W = W_{B_n}$, the Weyl group of type B_n. It is generated by elements s_1, \ldots, s_n where s_1, \ldots, s_{n-1} are subject to the defining relations of S_n, and there are the additional relations:

\begin{align*}
(9) & \quad s_is_n = s_ns_i \quad (i \neq n - 2), \\
(10) & \quad s_{n-2}s_ns_{n-2} = s_ns_{n-2}s_n, \quad s_n^2 = 1.
\end{align*}

The degenerate affine Hecke-Clifford algebra of type D_n, \mathfrak{H}_{D_n}, is generated by x_i, c_i, s_i, $1 \leq i \leq n$, subject to relations making $\mathbb{C}[x_1, \ldots, x_n]$, \mathcal{C}_V, and $\mathbb{C}W$ subalgebras, along with the relations (9) – (10) and the additional relations:

\begin{align*}
(11) & \quad s_nc_n = -c_{n-1}s_n, \\
& \quad s_n^2 = 1.
\end{align*}

Finally, let $W = W_{B_n}$, the Weyl group of type B_n. It is generated by elements s_1, \ldots, s_n, where s_1, \ldots, s_{n-1} are subject to the defining relations on S_n, and there are the additional relations:

\begin{align*}
(12) & \quad s_is_n = s_ns_i \quad (1 \leq i \leq n - 2), \\
(13) & \quad (s_{n-1}s_n)^4 = 1, \quad s_n^2 = 1.
\end{align*}
The simple reflections of W lie in two different conjugacy classes: s_n is not conjugate to s_1, \ldots, s_{n-1}.

Let $u, v \in \mathbb{C}$. The degenerate affine Hecke-Clifford algebra of type B_n, $\mathfrak{H} \mathcal{c} B_n$, is generated by x_i, c_i, s_i, $1 \leq i \leq n$, subject to relations making $\mathbb{C}[x_1, \ldots, x_n]$, \mathcal{C}_V, and $\mathcal{C}W$ subalgebras, along with the relations 5–8, and the additional relations:

$$s_n c_n = -c_n s_n,$$
$$s_n c_i = c_i s_n \ (i \neq n),$$
$$s_n x_n + x_n s_n = -\sqrt{2} v,$$
$$s_n x_i = x_i s_n \ (i \neq n).$$

The PBW theorems for the degenerate affine Hecke-Clifford algebras in type A_{n-1} were proved in [Naz] and in [KW] using different methods, and in types B_n and D_n in [KW]. The even center of these algebras-the subalgebra of even central elements - was also established in [KW].

Proposition 2.1. Let $X = A_{n-1}, D_n$ or B_n.

1. The multiplication of subalgebras $\mathbb{C}[x_1, \ldots, x_n], \mathcal{C}_V$, and $\mathcal{C}W$ induces a vector space isomorphism

$$\mathbb{C}[x_1, \ldots, x_n] \otimes \mathcal{C}_V \otimes \mathcal{C}W \rightarrow \mathfrak{H} \mathcal{c} X.$$

 Equivalently, the elements $\{x^\alpha c^\epsilon w | \alpha \in \mathbb{Z}_n^+, \epsilon \in \mathbb{Z}_2^n, w \in W\}$ form a linear basis for $\mathfrak{H} \mathcal{c} X$.

2. Let $X = A_{n-1}, B_n$ or D_n. Then

$$Z(\mathfrak{H} \mathcal{c} X)_\pi \cong \mathbb{C}[x_1^2, \ldots, x_n^2]^W_X.$$

Each of these algebras is naturally a superalgebra with even generators from $S(V)$ and $\mathcal{C}W$ and odd generators from \mathcal{C}_V.

Denote by $S(V^2)$ the subspace of $S(V)$ spanned by the squares of the basis elements in $S(V)$. Thus $Z(\mathfrak{H} \mathcal{c} X)_\pi \cong S(V^2)^W_X$.

2.4. A filtration of $\mathfrak{H} \mathcal{c} X$. In any of the algebras defined in Section 2.3, we can define a notion of degree as follows. From the various PBW basis theorems, we see that every $h \in \mathfrak{H} \mathcal{c} X$, for $X = A_{n-1}, B_n$, or D_n, can be written

$$h = \sum_{w \in W} a_w c_w w$$

where $a_w \in S(V)$ and $c_w \in \mathcal{C}_V$. Set

$$|h| = \max_{w \in W} \{|a_w|\}$$

where $|a_w|$ denotes degree in $S(V)$. Set $\mathcal{F}^j \mathfrak{H} \mathcal{c} X = \{h \in \mathfrak{H} \mathcal{c} X | |h| \leq j\}$; then we have a filtration

$$\mathcal{C}_V \rtimes \mathcal{C}W = \mathcal{F}^0 \mathfrak{H} \mathcal{c} X \subset \mathcal{F}^1 \mathfrak{H} \mathcal{c} X \subset \ldots$$

Let $\text{gr}(\mathfrak{H} \mathcal{c} X)$ be the associated graded algebra. It is clear from the defining relations for $\mathfrak{H} \mathcal{c} X$ that $\text{gr}(\mathfrak{H} \mathcal{c} X) \cong \mathfrak{H}^{0} \mathcal{c} X$, the degenerate affine Hecke-Clifford algebra with parameter $u = 0$.
2.5. Parabolic Subalgebras. For any \(J \subset \Pi \), define the parabolic subalgebra \(\mathfrak{h}^J \) to be the subalgebra of \(\mathfrak{h} \) generated by \(W_J \). Let \(\mathfrak{h}^J \cdot \mathfrak{c} \cdot \mathfrak{c}^J \) be the submodule of \(\mathfrak{h} \) generated by all commutators. The cocenter of \(\mathfrak{h} \) is the space

\[
\mathfrak{h}^c := \left(\frac{\mathfrak{h} \otimes \mathfrak{c}_1}{[\mathfrak{h},\mathfrak{c}_1]} \right)_{\mathfrak{c}}.
\]

The main goal of the paper is to find a linear basis for the cocenter.

2.6. The cocenter. For any \(h, h' \in \mathfrak{h}^c \), define the commutator \([h, h'] = hh' - h'h\). Let \([\mathfrak{h}^J, \mathfrak{h}^c] \) be the submodule of \(\mathfrak{h}^c \) generated by all commutators. The cocenter of \(\mathfrak{h}^c \) is the space

\[
\mathfrak{h}^c := \left(\frac{\mathfrak{h}^c}{[\mathfrak{h}^c, \mathfrak{h}^c]} \right)_{\mathfrak{c}}.
\]

The main goal of the paper is to find a linear basis for the cocenter.

Note that we restrict our definition to only the even cocenter. Referring to the example of the cocenter of the finite Hecke-Clifford algebra, as studied in [WW1, Section 4.1], gives intuition as to why this is the correct notion of cocenter.

Wan and Wang study the space of trace functions on the finite Hecke-Clifford algebra \(\mathcal{H}_n \): linear functions \(\phi : \mathcal{H}_n \rightarrow \mathbb{C} \) such that \(\phi([h, h']) = 0 \) for all \(h, h' \in \mathcal{H}_n \), and \(\phi(h) = 0 \) for all \(h \in (\mathcal{H}_n)_1 \). This latter requirement encodes the information that odd elements act with zero trace on any \(\mathbb{Z}_2 \)-graded \(\mathcal{H}_n \)-module (because multiplication by an odd element results in a shift in degree). The space of such trace functions is clearly canonically isomorphic to the dual of the even cocenter, rather than of the full cocenter. Moreover, since the even cocenter of \(\mathcal{H}_n \) has dimension equal to the number of irreducible \(\mathbb{Z}_2 \)-graded representations of \(\mathcal{H}_n \), this restriction sets up the desired linear isomorphism between the space of trace functions and the linear span of the irreducible representations (the matrix of this isomorphism is the character table of the algebra).

In the affine case, we see that the trace of the action of an odd element on any \(\mathfrak{h}^c \)-module is still zero, due to the same degree shift. Hence we deduce that the interesting information about traces of \(\mathfrak{h}^c \) (and, thus, much of the interesting representation-theoretic information about \(\mathfrak{h}^c \)) is contained in the even cocenter.

3. Reduction

The goal of this section is to show that an element \(h = \sum_{w \in W} a_w c_w w \in \mathfrak{h}^c \) is congruent in the cocenter to a (possibly differently indexed) linear combination \(h = \sum_i a_i w_i \) without any Clifford algebra elements, and to show that certain conjugacy classes of Weyl group elements vanish in the cocenter.

3.1. Clifford reduction in type \(A_{n-1} \). We adapt the procedure in [WW1], where similar formulas are developed in the finite and non-degenerate case, with appropriate modifications. Let \(w(n) = s_1 s_2 \ldots s_{n-1} = (1 \ 2 \ldots \ n) \). The following follows directly from the defining relations in \(\mathfrak{h}^c_{A_{n-1}} \).

Lemma 3.1. In \(\mathfrak{h}^c_{A_{n-1}} \), we have

\[
\begin{align*}
 w(n)c_i &= c_{i+1}w(n) & \text{for } 1 \leq i \leq n - 1, \\
 w(n)c_n &= c_1w(n).
\end{align*}
\]

For \(n \in \mathbb{Z}_{>0} \), let \([n] = \{1, 2, \ldots, n\} \). For any subset \(I \subseteq [n] \), let \(c_I = \prod_{i \in I} c_i \). Note that it suffices to consider only elements \(wc_I \) where \(|I|\) is even, since \(|c_i| = 1\) for all \(i \) and we are studying the even cocenter.
Lemma 3.2. For $I \subseteq [n]$ with $|I|$ even, we have

$$w(n)I \equiv \pm w(n) \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}].$$

Proof. Write $I = \{i_1, \ldots, i_k\}$. Then

$$w(n)I = (1 2 \ldots n)c_{i_1} \ldots c_{i_k} = c_{i_1+1}(1 2 \ldots n)c_{i_2} \ldots c_{i_k} \equiv (1 2 \ldots n)c_{i_2} \ldots c_{i_k}c_{i_1+1} \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}]$$

(14)

Now we have either reduced the size of I by two or increased i_1 by one. Since $|I|$ is even, we can continue in this way until no c_i remain. \qed

If $\gamma = (\gamma_1, \ldots, \gamma_k)$ is a sequence of (not necessarily decreasing) positive integers such that $\sum_{i=1}^k \gamma_i = n$, call γ a composition of n. For such a composition γ of n, set $w_\gamma = w_{\gamma_1} \cdots w_{\gamma_k}$.

Lemma 3.3. Let $\gamma = (\gamma_1, \gamma_2)$ be a composition of n with $\gamma_1, \gamma_2 > 0$. Let $I_1 = \{i_1, \ldots, i_a\} \subseteq \{1, \ldots, \gamma_1\}$ and $I_2 = \{j_1, \ldots, j_b\} \subseteq \{\gamma_1 + 1, \ldots, \gamma_2\}$, and assume that $a + b$ is even. Then we have

$$w_\gamma c_{I_1}c_{I_2} \equiv \begin{cases} 0 & a, b \text{ odd} \\ \pm w_\gamma & a, b \text{ even} \end{cases} \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}].$$

Proof. Note that a and b must have the same parity if their sum is even. We have $w_\gamma = w_{\gamma_1}w_{\gamma_2} = w_{\gamma_2}w_{\gamma_1}$.

Suppose that a and b are both odd. Then

$$w_\gamma c_{I_1}c_{I_2} = w_{\gamma_1}c_{I_1}w_{\gamma_2}c_{I_2} \equiv w_{\gamma_2}c_{I_2}w_{\gamma_1}c_{I_1} \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}]$$

$$= w_\gamma c_{I_2}c_{I_1}$$

$$= -w_\gamma c_{I_1}c_{I_2},$$

since commuting c_{I_1} past c_{I_2} yields a sign of $(-1)^{ab}$. Hence $w_\gamma c_{I_1}c_{I_2} \equiv 0 \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}]$.

Next, suppose a and b are even. Note that $\gamma_1 + j_1 \leq n - 1$, so c_{j_1} anticommutes with all c_i. We have

$$w_\gamma c_{I_1}c_{I_2} = w_{\gamma_1}w_{\gamma_2}c_{i_1} \cdots c_{i_a}c_{j_1} \cdots c_{j_b}$$

$$= -w_{\gamma_1}c_{i_1}w_{\gamma_2}c_{j_1}c_{i_2} \cdots c_{i_a}c_{j_2} \cdots c_{j_b}$$

$$= -c_{i_1+1}c_{j_1+1}w_{\gamma_2}c_{i_2} \cdots c_{i_a}c_{j_2} \cdots c_{j_b}$$

$$\equiv w_{\gamma_2}c_{j_2} \cdots c_{i_a}c_{j_2} \cdots c_{j_b}c_{i_1+1}c_{j_1+1} \mod [\mathfrak{F}_{\mathfrak{A}_{n-1}}, \mathfrak{F}_{\mathfrak{A}_{n-1}}].$$

Now, commuting c_{i_1+1} and c_{j_1+1} has four possible results, depending on which of the two (if either) cancels with the second Clifford element in their subset. In particular, we have

$$w_\gamma c_{I_1}c_{I_2} \equiv \begin{cases} w_{\gamma}c_{i_1+1}c_{i_2} \cdots c_{i_a}c_{j_1+1}c_{j_2} \cdots c_{j_b} & i_1 + 1 < i_2, j_1 + 1 < j_2 \\ -w_{\gamma}c_{i_1+1}c_{i_2} \cdots c_{i_a}c_{j_2} \cdots c_{j_b} & i_1 + 1 < i_2, j_1 + 1 = j_2 \\ -w_{\gamma}c_{i_1} \cdots c_{i_a}c_{j_1+1}c_{j_2} \cdots c_{j_b} & i_1 + 1 = i_2, j_1 + 1 < j_2 \\ w_{\gamma}c_{i_1} \cdots c_{i_a}c_{j_2} \cdots c_{j_b} & i_1 + 1 = i_2, j_1 + 1 = j_2. \end{cases}$$
In any case, we have either reduced the length of c_{I_1} or c_{I_2} or increased the index of the first element. Continuing in this manner gives the result.

By induction, we have the following:

Proposition 3.4. If $\gamma = (\gamma_1, \ldots, \gamma_k)$ is a composition of n, $I \subseteq [n]$ is an even subset, and $I_k = I \cap \{\sum_{i=1}^{k-1} \gamma_i + 1, \ldots, \sum_{i=1}^{k} \gamma_i\}$, then we have

\[
(15) \quad w_\gamma c_I \equiv \begin{cases}
 \pm w_\gamma & \text{if every } |I_k| \text{ is even} \\
 0 & \text{else}
\end{cases} \mod [\mathcal{F}_{A_{n-1}}^e, \mathcal{F}_{A_{n-1}}],
\]

The sign is determined by the structure of each subset. Finally, specializing γ to a partition of n, we obtain the desired result.

3.2. Clifford reduction in types B_n and D_n. We can extend Proposition 3.4 to types B and D. The commutation relations between elements of W and elements of C_n in types B_n and D_n differs from that in type A_{n-1} only in that we have the extra relations $s_n c_n = -c_n s_n$ and $s_n c_{n-1} = -c_{n-1} s_n$, respectively. Let $w_{(n)} = s_1 \ldots s_n$. We have the following versions of Lemmas 3.1 and 3.2:

Lemma 3.5. In $\mathcal{F}_{B_n}^e$ and $\mathcal{F}_{D_n}^e$, we have

\[
w_{(n)} c_i = c_{i+1} w_{(n)} \quad \text{for } 1 \leq i \leq n - 1,
\]

\[
w_{(n)} c_n = -c_1 w_{(n)}.
\]

Lemma 3.6. Let $X = B_n$ or D_n. For $I \subseteq [n]$ with $|I|$ even, we have

\[
w_{(n)} c_I \equiv \pm w_{(n)} \mod [\mathcal{F}_X, \mathcal{F}_X].
\]

The proofs are identical, with an additional (-1) added in equation (14) if $n \in I$. We also have

Lemma 3.7. Let $\gamma = (\gamma_1, \gamma_2)$ be a composition of n with $\gamma_1, \gamma_2 > 0$. Let $I_1 = \{i_1, \ldots, i_a\} \subseteq \{1, \ldots, \gamma_1\}$ and $I_2 = \{j_1, \ldots, j_b\} \subseteq \{\gamma_1 + 1, \ldots, \gamma_2\}$, and assume that $a + b$ is even. Then for $X = B_n$ or D_n, we have

\[
w_\gamma c_{I_1} c_{I_2} \equiv \begin{cases}
 0 & a, b \text{ odd} \\
 \pm w_\gamma & a, b \text{ even}
\end{cases} \mod [\mathcal{F}_X, \mathcal{F}_X].
\]

There are only two modifications to the proof. In Lemma 3.3 the only problem occurs if I_2 contains both $n - 1$ and n, so that c_{I_2} ends with $\ldots, c_{n-1} c_n$. Then commuting c_{I_2} past w_{γ_2} gives in type D_n that

\[
w_{\gamma_2} \ldots c_{n-1} c_n = \ldots s_{n-1} (c_n c_{n-1}) s_n = \ldots (c_{n-1} c_n) w_{\gamma_2} = c_{I_2} w_{\gamma_2}
\]

Hence there is no impact on the proof. In type B_n, there is a sign change which cancels out: we have

\[
w_{\gamma_2} \ldots c_{n-1} c_n = \ldots s_{n-1} (-c_{n-1} c_n) s_n = \ldots (c_{n-1} c_n) w_{\gamma_2} = \ldots (c_{n-1} c_n) w_{\gamma_2}
\]

Thus, we have the following proposition.
Proposition 3.8. Let $X = B_n$ or D_n. If $\gamma = (\gamma_1, \ldots, \gamma_k)$ is a composition of n, $I \subset [n]$ is an even subset, and $I_k = I \cap \{\sum_{i=1}^{k-1} \gamma_i + 1, \ldots, \sum_{i=1}^{k} \gamma_i\}$, then we have

$$w_{\gamma, c_I} \equiv \begin{cases} \pm w_{\gamma} & \text{if every } |I_k| \text{ is even} \\ 0 & \text{else} \end{cases} \mod [\mathcal{H}^\ell, \mathcal{H}^\ell].$$

3.3. Conjugacy classes in type A_{n-1}. Though we can apply the reduction formulas from the previous section to remove Clifford algebra generators from our basis elements, they still restrict the Weyl group elements that can appear.

Let \mathcal{OP}_n be the set of partitions of n with all odd parts. It is proved in [BW] that \mathcal{OP}_n parametrizes the even split conjugacy classes of \mathcal{CW} in type A_{n-1}. These are the even conjugacy classes in \mathcal{CW} which split into two separate conjugacy classes in the double cover \mathcal{CW}. It is proved in [Joz2] that the number of even split conjugacy classes is the number of simple \mathcal{CW}^--modules, so we should expect the combinatorics of these classes to play a role in our bases.

Proposition 3.9. If λ is a partition of n with $\lambda \notin \mathcal{OP}_n$ and $w \in S_n$ has cycle type λ, then $w \equiv 0 \mod [\mathcal{H}_{A_{n-1}}, \mathcal{H}_{A_{n-1}}]$.

Proof. Since elements which are conjugate in $\mathcal{H}_{A_{n-1}}$ are congruent in the cocenter, we may take

$$w_{\lambda} = (1 \ldots \lambda_1)(\lambda_1 + 1 \ldots \lambda_1 + \lambda_2) \ldots (\lambda_1 + \ldots + \lambda_{n-1} + 1 \ldots n).$$

Suppose that λ has an even part, and take it without loss of generality to be λ_1. Then

$$w_{\lambda} \equiv c_1 \ldots c_{\lambda_1} w_{\lambda} c_{\lambda_1} \ldots c_1 \mod [\mathcal{H}_{A_{n-1}}, \mathcal{H}_{A_{n-1}}]$$

$$= c_1 \ldots c_{\lambda_1} c_1 c_{\lambda_1} \ldots c_2 w_{\lambda}$$

$$= (-1)^{\lambda_1-1} w_{\lambda}.$$

In the last step, we have commuted one of the c_1's past each other Clifford element (a total of $\lambda_1 - 2$ inversions), after which each c_1 cancels. Hence, we have $w_{\lambda} \equiv -w_{\lambda} \mod [\mathcal{H}_{A_{n-1}}, \mathcal{H}_{A_{n-1}}]$, whence $w_{\lambda} \equiv 0 \mod [\mathcal{H}_{A_{n-1}}, \mathcal{H}_{A_{n-1}}]$. \hfill \square

3.4. Conjugacy classes in types B_n and D_n. Conjugacy classes in the Weyl group in type B_n correspond to bipartitions (λ, μ), $|\lambda| + |\mu| = n$ (cf. [Mac]). For a partition λ, denote by $\ell(\lambda)$ the number of parts of λ. Let \mathcal{OP} denote the set of partitions (of any n) with all odd parts, and \mathcal{EP} denote the set of partitions with all even parts. The even split conjugacy classes of the spin Weyl group of type B_n are parametrized by bipartitions of n $(\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP})$, cf. [BW].

Proposition 3.10. Let (λ, μ) be a bipartition of n and $w \in W_{B_n}$ an element in the conjugacy class corresponding to (λ, μ). If $(\lambda, \mu) \notin (\mathcal{OP}, \mathcal{EP})$, then $w \equiv 0 \mod [\mathcal{H}_{B_n}, \mathcal{H}_{B_n}]$.

Proof. For a bipartition $(\lambda = (\lambda_1, \ldots, \lambda_r), \mu = (\mu_1, \ldots, \mu_s))$, let

$$w_{\lambda, \mu} = (1, \ldots, \lambda_1) \ldots (\sum_{j=1}^{r-1} \lambda_j + 1, \ldots, |\lambda|)(|\lambda| + 1, \ldots, |\lambda| + |\mu_1|) \ldots (|\lambda| + \sum_{j=1}^{s-1} \mu_j + 1, \ldots, n),$$

where the λ-cycles are understood to be positive, and the μ-cycles negative. We claim that unless $(\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP})$ with $\ell(\mu)$ even, $w_{\lambda, \mu} \equiv 0 \mod [\mathcal{H}_{B_n}, \mathcal{H}_{B_n}]$. Indeed, if λ has even part λ_i, let $c = c_{\lambda_i+1} c_{\lambda_i+2} \ldots c_{\lambda_i+1}$. Then, as in type A,

$$cw_{\lambda, \mu} c^{-1} = -w_{\lambda, \mu}.$$
Proposition 3.11. Let \((\lambda, \mu) \) be a bipartition of \(n \) and \(w \in W_{D_n} \) an element in the conjugacy class corresponding to \((\lambda, \mu) \). If \(n \) is odd and \((\lambda, \mu) \notin (\text{OP}, E \text{P}) \) with \(\ell(\mu) \) even, then \(w \equiv 0 \mod \left[\text{OP}^e_{D_n}, \text{OP}_{D_n} \right] \). If \(n \) is even and \((\lambda, \mu) \notin (E \text{P}, \text{OP}) \) with \(\ell(\mu) \) even and \((\lambda, \mu) \notin (\emptyset, \text{SOP}) \), then \(w \equiv 0 \mod \left[\text{OP}^e_{D_n}, \text{OP}_{D_n} \right] \).

Proof. For a bipartition \((\lambda, \mu) \), let \(w_{\lambda, \mu} \) be as above. If \(n \) is odd, we have that \(w_{\lambda, \mu} \equiv 0 \mod \left[\text{OP}^e_{D_n}, \text{OP}_{D_n} \right] \) unless \((\lambda, \mu) \in (\text{OP}, E \text{P}) \) with \(\ell(\mu) \) even by the same arguments as in type \(B \). If \(n \) is even and \((\lambda, \mu) \in (\emptyset, \text{SOP}) \), conjugation by \(c \) as above does not fix \(w_{\lambda, \mu} \) up to sign, so this case does not vanish. \(\square \)

4. Spanning sets of the cocenter in \(\text{OP}^e_X \)

We pass to the associated graded object of the Hecke-Clifford algebra, which is isomorphic to the Hecke-Clifford algebra with parameter identically 0. We establish a spanning set of the cocenter in this case, and then lift it to \(\text{OP}^e_X \) using an algebraic argument.

4.1. Spanning set of \(\text{OP}^0_X \). Let \(C \) be a conjugacy class of \(W_J, J \subseteq I \). We say that \(C \) is elliptic in \(W_J \) if \(W_J \cap C = \emptyset \) for all proper subsets \(J' \subset J \). Any element of \(W_J \) which is a member of an elliptic conjugacy class is called an elliptic element in \(W_J \).

Example. In \(W_{A_n-1} = S_n \), there is a unique elliptic conjugacy class, which corresponds to the partition \((n) \). The elliptic elements are the \(n \)-cycles. For any connected subset \(J \) of the root system, the elliptic elements in \(W_J \) are the \((|J| + 1)\)-cycles.

In \(W_{B_n} \) and \(W_{D_n} \), the unique elliptic conjugacy class corresponds to the bipartition \((\emptyset, (n)) \), and the elliptic elements are the negative \(n \)-cycles.

We say that two subsets \(J_1, J_2 \subset I \) are \(W \)-equivalent, \(J_1 \sim_W J_2 \), if there exists a \(w \in W \) such that \(w(J_1) = J_2 \). Set \(I = 2^{|J|} / \sim_W \), the set of equivalence classes of subsets of \(I \) for the equivalence relation \(\sim_W \). For any conjugacy class \(C \) of \(W \), set \(J_C \) to be the
minimal element (with respect to cardinality) of I such that $\mathcal{C} \cap J_{\mathcal{C}} \neq \emptyset$—since there is exactly one element of I of each cardinality, such a $J_{\mathcal{C}}$ must exist. Note that if \mathcal{C} is an elliptic conjugacy class, $J_{\mathcal{C}} = I$.

Any $w \in \mathcal{C} \cap J_{\mathcal{C}}$ is by definition elliptic in $W_{J_{\mathcal{C}}}$. Fix one such elliptic element, $w_{\mathcal{C}} \in W_{J_{\mathcal{C}}}$, and let $\mathcal{J}^{\mathcal{C}}$ be a set of minimal length representatives for $W_{J}/W_{J_{\mathcal{C}}}$. We have the following result due to [CiHe] linking centralizers of elliptic elements in parabolic subgroups to the normalizers of the parabolic subgroups:

Proposition 4.1. [CiHe, Proposition 2.4.3] Let $J \subseteq I$ and let $w \in W_{J}$ be an elliptic element. Let $Z = \{z \in \mathcal{J}^{\mathcal{C}} \mid z(J) = J\}$. Then we have

$$W_{J}C_{W}(w) = N_{\mathcal{C}}(W_{J}) = W_{J}ZW_{J}.$$

Now we establish spanning sets of the cocenter in each type.

Recall that $S(V^{2})$ is the subspace of $S(V)$ spanned by the squares of basis elements, that \mathcal{F}^{0}_{X} is the affine Hecke-Clifford algebra of type X with parameter identically 0, that $\text{gr}(\mathcal{F}^{0}_{X}) \cong \mathcal{F}^{0}_{X}$. Thus we have $\mathcal{F}^{0}_{X} \cong \mathbb{C}W \ltimes (C_{n} \otimes S(V^{2}))$ as \mathbb{C}-algebras. Hence we certainly have $\mathcal{F}^{0}_{X} \subset \text{span}\{w\alpha S(V^{2})\}$, where $w \in W$ and $\alpha \in \mathbb{Z}_{2}^{n}$.

Proposition 4.2. We have $\mathcal{F}^{0}_{X} = \text{span}\{wS(V^{2})\}$.

Proof. Apply Proposition 3.3 and the corresponding results for types B_{n} and D_{n} to each element in the spanning set. Every element will thus be either congruent to 0 or to an element in $w_{\mathcal{C}}S(V^{2})$ for some \mathcal{C} in the cocenter. \hfill \square

Next, let $x, y \in W$ and $f \in S(V^{2})$. Then

$$xyx^{-1}f \equiv yx^{-1}fx = yf^{x^{-1}} \mod [\mathcal{F}^{0}_{X}, \mathcal{F}^{0}_{X}]$$

where f^{σ} denotes the action of σ on f by conjugation. Hence span $\{wS(V^{2})\} = \{w_{\mathcal{C}}S(V^{2})\}$, where \mathcal{C} is the conjugacy class of w and $w_{\mathcal{C}}$ is a representative.

Now we restrict the conjugacy classes of Weyl group elements which may appear.

Proposition 4.3.

1. We have $\mathcal{F}^{0}_{A_{n-1}} = \text{span}\{w_{\lambda}S(V^{2})\}_{\lambda \in \mathcal{O}_{n}}$.

2. We have $\mathcal{F}^{0}_{B_{n}} = \text{span}\{w_{\lambda,\mu}S(V^{2})\}_{(\lambda,\mu) \in (\mathcal{O}_{n},\mathcal{E}_{n}), \, \ell(\mu) \text{ even}}$.

3. If n is odd, $\mathcal{F}^{0}_{D_{n}} = \text{span}\{w_{\lambda,\mu}S(V^{2})\}_{(\lambda,\mu) \in (\mathcal{O}_{n},\mathcal{E}_{n}), \, \ell(\mu) \text{ even}}$. If n is odd, $\mathcal{F}^{0}_{D_{n}} = \text{span}\{w_{\lambda,\mu}S(V^{2})\}$ with $(\lambda, \mu) \in (\mathcal{O}_{n}, \mathcal{E}_{n})$ or $(\lambda, \mu) \in (\emptyset, \mathcal{S}_{n}\mathcal{O}_{n})$, $\ell(\mu)$ even.

Proof. By Propositions 3.9, 3.10, and 3.11 every element not in these conjugacy classes is congruent to 0 in the cocenter, so removing them from a set does not change the span. \hfill \square

Finally, we restrict to a subspace of the symmetric algebra.

Proposition 4.4. Fix a conjugacy class \mathcal{C} of W, and let $J = J_{\mathcal{C}}$. Then we have

$$w_{\mathcal{C}}S(V^{2}) \equiv w_{\mathcal{C}}S((V^{2})^{W_{J}})^{N_{W}(W_{J})} \mod [\mathcal{F}^{0}_{X}, \mathcal{F}^{0}_{X}].$$

Proof. We follow [CiHe, Section 6]. We have $V^{2} = (V^{2})^{W_{J}} \oplus U$ as a W_{J}-module, where U is spanned by $\{x_{i}^{2} \mid i \in J\}$. Since $w_{\mathcal{C}}$ is elliptic in W_{J}, it acts faithfully on U, so $1 - w_{\mathcal{C}}$ is invertible on U. Let $f \in S(V^{2})$ and $u \in U$. Since $1 - w_{\mathcal{C}}$ has full rank, there exists a $v \in U$ such that $v - w_{\mathcal{C}}(v) = u$. Thus, we see that

$$uw_{\mathcal{C}}f = vw_{\mathcal{C}}f - w_{\mathcal{C}}(v)w_{\mathcal{C}}f = vw_{\mathcal{C}}f - wc_{f}v = [v, w_{\mathcal{C}}f].$$
Hence \(Uw_CS(V^2) \in [\mathfrak{H}_X^0, \mathfrak{H}_X^0] \). Therefore we have
\[
w_CS(V^2) = w_CS(U)S((V^2)^{W_j}) = S(U)w_CS((V^2)^{W_j}) \subset w_CS((V^2)^{W_j}) + [\mathfrak{H}_X^0, \mathfrak{H}_X^0].
\]
Let \(f \in S((V^2)^{W_j}) \) and \(x \in C_W(w_C) \). Then we have
\[
w_Cf \equiv xw_Cfx^{-1} = w_Cxfx^{-1} = w_Cfx \mod [\mathfrak{H}_X^0, \mathfrak{H}_X^0].
\]
Hence we can average over the centralizer of \(w_C \) to obtain that
\[
w_Cf = \frac{1}{|C_W(w_C)|} \sum_{x \in C_W(w_C)} w_Cfx \in w_CS((V^2)^{W_j})^{C_W(w_j)}.
\]
Finally, apply Proposition 4.3 to get
\[
w_Cf \in w_CS((V^2)^{W_j})^{N_W(W_j)}
\]
using the fact that \(S((V^2)^{W_j})^{C_W(w)} = S((V^2)^{W_j})^{W_jC_W(w)} \). \(\square \)

For each \(C \), let \(\{ f_{j;i} \} \) be a basis of the vector space \(S((V^2)^{W_C})^{N_W(W_{j;i})} \). Propositions 4.3 and 4.4 give us the following.

Proposition 4.5.
1. The set \(\{ w_{\lambda}f_{j;i} \} \) spans \(\mathfrak{H}_X^0,_{\lambda} \).
2. The set \(\{ w_{\lambda,\mu}f_{j;i} \} \) spans \(\mathfrak{H}_X^0,_{\lambda,\mu} \).
3. If \(n \) is odd, the set \(\{ w_{\lambda,\mu}f_{j;i} \} \) spans \(\mathfrak{H}_X^0,_{\lambda,\mu} \).

4.2. **Spanning set of \(\mathfrak{H}_X^\infty \).** The goal of this section is to lift the spanning set constructed above for \(\mathfrak{H}_X^0 \) to \(\mathfrak{H}_X^\infty \). The proof is motivated by [ChHe, Section 6.2], with appropriate modifications.

Lemma 4.6. If \(S \) spans \(\mathfrak{H}_X^0 \), then its image in \(\mathfrak{H}_X^\infty \) spans \(\mathfrak{H}_X^\infty \).

Proof. We proceed by induction on degree (the base case being precisely \(\mathfrak{H}_X^0 \)). Commutators preserve degree, and, in particular, if \(f_1 \) and \(f_2 \) are homogenous elements of \(S(V) \) of degree \(k \) and \(j \), respectively and \(\epsilon_1, \epsilon_2 \in \mathbb{Z}_2^* \), then the top degree term of \([w_1^{\epsilon_1}x_1, w_2^{\epsilon_2}x_2] \) is given by
\[
y := \pm w_1w_2w_2^{-1}w_1^{\epsilon_1}w_2^{\epsilon_2} - w_2w_1w_1^{-1}(x_2)x_1w_1^{\epsilon_1}w_2^{\epsilon_2} \in \mathfrak{H}_X^{j+k-1}.
\]
where the signs are determined by the number of nontrivial \(c_i \) crossing over \(x_i \) terms in \(f_1 \) or \(f_2 \). This has degree \(j + k \). Hence we have
\[
[w_1^{\epsilon_1}f_1, w_2^{\epsilon_2}f_2] \in y + \mathfrak{F}^{j+k-1}.
\]
It suffices to show that we can write homogenous elements of \(\mathfrak{H}_X^\infty \) as a linear combination of elements in \(S \), commutators, and elements of lower degree. Let \(h \in \mathfrak{H}_X^k \) be homogenous of degree \(k \), and write \(h = \sum_w a_w w, a_w \in S(V) \). Let \(h_0 = \sum_w a_w w \) be the corresponding element in \(\mathfrak{H}_X^0 \). We have a spanning set for \(\mathfrak{H}_X^0 \), so we may write
\[
h_0 = \sum_{x \in S} c_x x_0
\]
where \(x \) is the element of \(\mathcal{H}_X^\ell \) represented by \(x_0 \). Without loss of generality, we may choose these representatives to have maximal degree in \(\mathcal{H}_X^\ell \). Hence we write

\[
(18) \quad h_0 = \sum_{x \in S} c_x x_0 + \sum_i [a_{0,i}, b_{0,i}] \quad a_{0,i} b_{0,i} \in \mathcal{H}_X^0, [a_{0,i}, b_{0,i}] \in \mathcal{F}^k.
\]

Here \(a_{0,i} \) and \(b_{0,i} \) are representatives of some \(a_i, b_i \in \mathcal{H}_X^\ell \), with \([a_i, b_i] \in \mathcal{F}^k \) for all \(i \).

By \((17)\), we have \([a_i, b_i] - [a_{0,i}, b_{0,i}] \in \mathcal{F}^{k-1} \), i.e. the difference between \(h \) and its corresponding element in \(\mathcal{H}_X^\ell \) has degree less than \(k \).

Thus we can write \(h \) as a linear combination of elements in \(S \) up to an element of \(\mathcal{F}^{k-1} \); by induction, we are done. \(\square \)

The following is an immediate consequence of Lemma \([4,6]\) and Proposition \([4,5]\).

Proposition 4.7.

1. The set \(\{w_{\lambda, \mu} f_{J, \lambda, \mu} \}_{\lambda \in \mathcal{OP}_n} \) spans \(\mathcal{H}^\ell_{A, n-1} \).

2. The set \(\{w_{\lambda, \mu} f_{J, \lambda, \mu} \}_{(\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP})} \) spans \(\mathcal{H}^\ell_{B, n} \).

3. If \(n \) is odd, the set \(\{w_{\lambda, \mu} f_{J, \lambda, \mu} \}_{(\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}), \ell(\mu) \text{ even}} \) spans \(\mathcal{H}^\ell_{D, n} \).

If \(n \) is even, the set \(\{w_{\lambda, \mu} f_{J, \lambda, \mu} \}_{(\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}) \text{ or } (\lambda, \mu) \in (\emptyset, \mathcal{OP}_n)} \) with \(\ell(\mu) \text{ even} \) spans \(\mathcal{H}^\ell_{D, n} \).

5. **Linear independence in \(\mathcal{H}^\ell_X \)**

We now show that our sets from Proposition \([4,7]\) are linearly independent, and hence form bases. We first require some results about induction and restriction functors in \(\mathcal{H}_X \) mod in order to prove a trace formula for parabolically induced \(\mathcal{H}_X^\ell \)-modules. The trace formula will allow us to separate the elements of the spanning sets.

Define the trace pairing \(\text{Tr} : \mathcal{H}_X^\ell \times R(\mathcal{H}_X^\ell) \to \mathbb{C} \) by

\[
\text{Tr}(h, \pi) = \text{tr} \pi(h).
\]

For each \(J \subset I \), let \(i_J : (\mathcal{H}_X^\ell)_J \to \mathcal{H}_X^\ell \) be the inclusion. We define \(r_J \) as in \([\text{CiHe}]\): for \(h \in \mathcal{H}_X^\ell \), let \(\psi_h \) be the right \((\mathcal{H}_X^\ell)_J\)-module morphism given by left multiplication by \(h \).

Set \(r_J(h) = \text{tr}(\psi_h) \) - we can define \(\text{tr} \psi_h \) because \(\mathcal{H}_X^\ell \) is a free right \((\mathcal{H}_X^\ell)_J\)-module with finite basis \(W^J \). We record two results from \([\text{CiHe}]\) needed to prove a trace formula. The following is \([\text{CiHe}] \text{ Lemma 5.5.1} \), and the proof extends easily to the Hecke-Clifford case.

Lemma 5.1. Let \(J \subset I \).

1. For each \(h \in (\mathcal{H}_X^\ell)_J \) and \(\pi \in R(\mathcal{H}_X^\ell) \), we have \(\text{Tr}(i_J(h), \pi) = \text{Tr}(h, r_J(\pi)) \).

2. For each \(h \in \mathcal{H}_X^\ell \) and \(\pi \in R((\mathcal{H}_X^\ell)_J) \), we have \(\text{Tr}(h, i_J(\pi)) = \text{Tr}(r_J(h), \pi) \).

Note that \(i_J \) and \(r_J \) restrict to well-defined maps \(\overline{i}_J \) and \(\overline{r}_J \), respectively, on the cocenter; the lemma holds for these maps as well. We also have the following formula for \(r_J(wf) \).

Lemma 5.2. \([\text{CiHe} \text{ Proposition 6.3.1}]\) Let \(J, J' \subset I \). Let \(w \in W_J \) be elliptic and let \(C \) be the conjugacy class of \(w \) in \(W \). Then, for any \(f \in S((V^2)^{W_J})^{N_W(W_J)} \), we have

\[
\overline{r}_J(wf) = \sum_{x \in W^{J'}, x^{-1}(J) \subset J'} x^{-1} \circ (wf).
\]
Remark 5.3. Note that if $x^{-1}wx \in W_J$ for $x \in W$, we must have that $x \in J W^J$ and that $x^{-1}(J) \subset J'$ since w is an elliptic element. Conversely, if $x \in J W^J$ satisfies $x^{-1}(J) \subset J'$, it must also be true that $xwx^{-1} \in W_J$, again because w is elliptic. Hence, if $C \cap W_J = \emptyset$, the above sum is empty, so $r_J(wf) = 0$ for any f.

Proposition 5.4. Let $J, J' \subset I$, let $w \in W_J$ be elliptic and let C be the conjugacy class of w in W. Let M be an $(\mathfrak{g}_X)_J$-module and $f \in S((V^2)_J)^{N_W(W_J)}$. Then we have

$$\text{Tr}(wf, \text{Ind}_{\mathfrak{g}_X}^{\mathfrak{g}_X}(M)) = \begin{cases} 0 & \text{if } C \cap W_J = \emptyset \\ |N_W(W_J)/W_J| \text{Tr}(wf, M) & \text{else.} \end{cases}$$

Proof. If $C \cap W_J = \emptyset$, the statement follows by Lemma 5.2 and Remark 5.3. Assume $C \cap W_J \neq \emptyset$; since w is elliptic in W_J, J must be J_C. By Remark 5.3, there exists an $x \in J W^J$ such that $x^{-1}(J) \subset J'$, so we must have $|J| \leq |J'|$. Thus $J \sim J'$ by the minimality of J_C with respect to cardinality. By Proposition 4.1, $|\{z \in J W^J | z^{-1}(J) = J'\}| = |\{z \in J W^J | z^{-1}(J) = J\}| = |N_W(W_J)/W_J|$ where the first equality follows because the second set is sent to the first by x^{-1}. The proposition now follows from Lemma 5.2. \hfill \Box

Recall that a conjugacy class C of W, J_C is a minimal subset of I such that $C \cap W_J \neq \emptyset$, w_C is an elliptic element in W_J, and $\{f_{J_C,i}\}$ is a basis of the vector space $S((V^2)_{J_C})^{N_W(W_{J_C})}$. The following is the first main result of the paper.

Theorem 5.5. For $X = A_{n-1}$, B_n, or D_n, the spanning set of \mathfrak{g}_X^{∞} given in Proposition 4.7 is linearly independent, and hence forms a basis of \mathfrak{g}_X^{∞}.

Proof. We proceed by induction on cardinality of subsets $J \subset I$. Our goal is to apply Proposition 5.4 to separate the elements of the spanning set into linearly independent subsets. Suppose that

$$\sum_{C,i} a_{C,i} w_C f_{J_C,i} = 0$$

where $a_{C,i} \in \mathbb{C}$. First, set $J = \emptyset$. We have $(\mathfrak{g}_X^{\infty})_\emptyset = S(V)$, so every character of $(\mathfrak{g}_X^{\infty})_\emptyset$ is parametrized by an element $v \in V^\vee$. Fix such a v and its corresponding character χ_v, and consider $\text{Ind}_{\mathfrak{g}_X^{\infty}}^{\mathfrak{g}_X}(\chi_v)$. Since $W_\emptyset = \{1\}$, by Proposition 5.4,

$$\text{Tr} \left(w_C f_{J_C,i}, \text{Ind}_{\mathfrak{g}_X^{\infty}}^{\mathfrak{g}_X}(\chi_v) \right) = 0$$

for all $C \neq \{1\}$ and all i. Thus, we have

$$\text{Tr} \left(\sum_{C,i} a_{C,i} w_C f_{J_C,i}, \text{Ind}_{\mathfrak{g}_X^{\infty}}^{\mathfrak{g}_X}(\chi_v) \right) = \text{Tr} \left(\sum_i a_{1,i} f_{\emptyset,i}, \text{Ind}_{\mathfrak{g}_X^{\infty}}^{\mathfrak{g}_X}(\chi_v) \right) = |W| \sum_i a_{1,i} (f_{\emptyset,i}, v) = 0.$$

Hence $\sum_i a_{1,i} f_{\emptyset,i}$ vanishes on each W orbit of V^\vee, so the polynomial function $\sum a_{1,i} f_{\emptyset,i}$ vanishes on its entire domain. Thus

$$\sum_i a_{1,i} f_{\emptyset,i} = 0.$$
But \(\{ f_{\theta,i} \} \) was taken to be a basis. Hence we must have \(a_{1,i} = 0 \) for all \(i \).

Now let \(J \subset I \). We assume by induction that \(a_{C,i'} = 0 \) for all \(i' \) and for every \(J_{C'} \subset J \) (up to equivalence with respect to \(\sim \)). For any module \(M \) of \((\tilde{\mathfrak{g}}_X)^{J} \), the nonzero summands of \(\text{Tr} \left(\sum_{C,i} a_{C,i} w_C f_{J_{C,i}}; M \right) \) are parametrized by those \(C \) such that \(J_C \cap J \neq \emptyset \); by the induction hypothesis, we can assume that \(J_C = J \) for all such \(C \). Let \(M \) be an irreducible \((\tilde{\mathfrak{g}}_X)^{J} \)-module, with irreducible character \(\chi_v \) parametrized by \(v \in N_W(W_J)/(V^\vee)^{W_J} \). Then applying \(\text{Tr}(-, \text{Ind}_{(\tilde{\mathfrak{g}}_X)^{J}}^{\mathfrak{g}_X} M) \) to the linear combination gives that

\[
\text{Tr} \left(\sum_{J_C=J,i} a_{C,i} w_C f_{J_{C,i}}; \text{Ind}_{(\tilde{\mathfrak{g}}_X)^{J}}^{\mathfrak{g}_X} M \right) = |N_W(W_J)/W_J| \text{Tr} \left(\sum_{J_C=J,i} a_{C,i} w_C f_{J_{C,i}}; M \right) = |N_W(W_J)/W_J| \sum_{J_C=J,i} a_{C,i} (f_{J_{C,i}}, v),
\]

by Proposition 5.4. By hypothesis, we therefore have

\[
|N_W(W_J)/W_J| \sum_{J_C=J,i} a_{C,i} (f_{J_{C,i}}, v) = 0.
\]

As above, this implies that the polynomial \(\sum a_{C,i} f_{J_{C,i}} \) vanishes on its domain, contradicting the linear independence of \(\{ f_{J_{C,i}} \} \). Hence, \(a_{C,i} = 0 \) for all \(J_C = J \) (up to equivalence with respect to \(\sim \)) and all \(i \). By induction \(a_{C,i} = 0 \) for all \(C \) and all \(i \), as desired.

\[\square\]

6. Degenerate spin affine Hecke algebras

We now aim to develop a result on bases of cocenters analogous to Theorem 5.5 for a closely related class of algebras, the degenerate spin affine Hecke algebras.

6.1. The skew polynomial algebra. Let \(C\langle b_1, \ldots, b_n \rangle \) be the algebra generated by \(b_1, \ldots, b_n \) subject to the relations

\[b_i b_j + b_j b_i = 0 \quad (i \neq j). \]

This is the skew polynomial algebra. It has a subalgebra \(C\langle b_1^2, \ldots, b_n^2 \rangle \); these algebras will take the place of \(S(V) \) and \(S(V^2) \), respectively, in our discussion of spin affine Hecke algebras.

The skew polynomial algebra has a natural superalgebra structure by letting each \(b_i \) be odd.

6.2. Spin Weyl groups. Let \(W \) be a finite Weyl group. There is a distinguished double cover \(\widetilde{W} \) for \(W \):

\[
(19) \quad 1 \longrightarrow \mathbb{Z}_2 \longrightarrow \widetilde{W} \longrightarrow W \longrightarrow 1.
\]

We denote by \(\mathbb{Z}_2 = \{ 1, z \} \), and by \(\tilde{t}_i \) a fixed preimage of the generators \(s_i \) of \(W \) for each \(i \). The group \(\widetilde{W} \) is generated by \(z, \tilde{t}_1, \ldots, \tilde{t}_n \) with relations

\[
z^2 = 1, \quad (\tilde{t}_i \tilde{t}_j)^{m_{ij}} = \left\{ \begin{array}{cl}
1, & \text{if } m_{ij} = 1, 3 \\
z, & \text{if } m_{ij} = 2, 4, 6.
\end{array} \right.
\]
The quotient algebra $CW^- := \mathbb{C}\tilde{W}/(z + 1)$ of $\mathbb{C}\tilde{W}$ by the ideal generated by $z + 1$ is called the spin Weyl group algebra associated to W. Denote by $t_i \in CW^-$ the image of t_i. The spin Weyl group algebra CW^- has the following presentation: CW^- is the algebra generated by $t_i, 1 \leq i \leq n$, subject to the relations

\[(t_it_j)^{(m)}_{ij} = (-1)^{(m)}_{ij} \equiv \begin{cases}
1, & \text{if } m_{ij} = 1, 3 \\
-1, & \text{if } m_{ij} = 2, 4, 6.
\end{cases}\]

The algebra CW^- is naturally a superalgebra by letting each t_i be odd.

In particular, let W be the Weyl group of type A_{n-1}, B_n, or D_n. Then the spin Weyl group algebra CW^- is generated by t_1, \ldots, t_n with the labeling as in the Coxeter-Dynkin diagrams (cf. [2]) and the explicit relations:

Type of W	Defining Relations for CW^-		
A_{n-1}	$t_i^2 = 1, t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1}$, $(t_it_j)^2 = -1$ if $	i - j	> 1$
B_n	t_1, \ldots, t_{n-1} satisfy the relations for $CW^-_{A_{n-1}}$, $t_i^2 = 1, (t_i t_n)^2 = -1$ if $i \neq n-1, n$, $(t_{n-1} t_n)^4 = -1$		
D_n	t_1, \ldots, t_{n-1} satisfy the relations for $CW^-_{A_{n-1}}$, $t_i^2 = 1, (t_i t_n)^2 = -1$ if $i \neq n-2, n$, $t_{n-2} t_n t_{n-2} = t_n t_{n-2} t_n$		

6.3. The degenerate spin affine Hecke algebra. Let $W = W_{A_{n-1}}$. The degenerate spin affine Hecke algebra of type A_{n-1}, $\mathcal{H}_{A_{n-1}}$, was constructed in [W]. It is the \mathbb{C}-algebra generated by $\mathcal{C}\langle b_1, \ldots, b_n \rangle$ and CW^- subject to the additional relations:

\[
\begin{align*}
&b_{i+1} t_i + t_i b_i = 1 \\
&b_i t_j + b_j t_i = 0, \quad (i \neq j, j + 1).
\end{align*}
\]

Note that $\mathcal{H}_{A_{n-1}}$ contains the skew polynomial algebra and CW^- as subalgebras. The algebra $\mathcal{H}_{A_{n-1}}$ has a superalgebra structure with all generators being odd.

The degenerate spin affine Hecke algebras in types B_n and D_n were constructed in [KW]. Let $W = W_{D_n}$. The degenerate spin affine Hecke algebra of type D_n, \mathcal{H}_{D_n}, is is the algebra generated by $\mathcal{C}\langle b_1, \ldots, b_n \rangle$ and CW^- subject to the additional relations:

\[
\begin{align*}
t_i b_i + b_{i+1} t_i &= 1 \quad (1 \leq i \leq n - 1) \\
t_i b_j - b_j t_i &= 0 \quad (j \neq i, i + 1, 1 \leq i \leq n - 1) \\
t_n b_n + b_{n-1} t_n &= 1 \\
t_n b_i - b_i t_n &= 0 \quad (i \neq n - 1, n).
\end{align*}
\]

In particular, the subalgebra generated by t_1, \ldots, t_{n-1} and b_1, \ldots, b_n is isomorphic to $\mathcal{H}_{A_{n-1}}$.

Finally, let \(u \in \mathbb{C} \) and let \(W = W_{B_n} \). Then \(\mathcal{H}_{B_n}^{sp} \) is the algebra generated by \(\mathcal{C}\langle b_1, \ldots, b_n \rangle \) and \(\mathbb{C}W^- \) subject to the following relations:

\[
\begin{align*}
t_i b_i + b_{i+1} t_i &= 1 \quad (1 \leq i \leq n - 1) \\
t_i b_j &= -b_j t_i \quad (j \neq i, i + 1, 1 \leq i \leq n - 1) \\
t_n b_i + b_n t_n &= u \\
t_i b_j &\quad (i \neq n).
\end{align*}
\]

These algebras have a PBW property, and we have a description of their even centers.

Proposition 6.1. [W], [KW]

1. Let \(X = A_{n-1}, D_n, \) or \(B_n \). The multiplication of the subalgebras \(\mathbb{C}W^- \) and \(\mathbb{C}[b_1, \ldots, b_n] \) induces a vector space isomorphism

\[
\mathcal{C}\langle b_1, \ldots, b_n \rangle \otimes \mathbb{C}W^- \xrightarrow{\sim} \mathcal{H}_{X}^{sp}.
\]

2. Let \(X = A_{n-1}, B_n \) or \(D_n \). The even center of \(\mathcal{H}_{X}^{sp} \) is isomorphic to \(\mathcal{C}\langle b_1^2, \ldots, b_n^2 \rangle^{W_X} \).

6.4. A Morita superequivalence. The degenerate spin affine Hecke algebras are closely related to the degenerate affine Hecke-Clifford algebras, via the following isomorphism.

Proposition 6.2. [W], [KW] Let \(X = A_{n-1}, D_n, \) or \(B_n \). Then there exists an isomorphism of superalgebras

\[
\Phi : \mathcal{H}_{X}^{sp} \xrightarrow{\sim} \mathcal{C}_{V} \otimes \mathcal{H}_{X}^{sp}.
\]

Since \(\mathcal{C}_{V} \) is a simple superalgebra, this isomorphism defines a Morita superequivalence in the sense of [W]. In particular, when \(n \) is even, \(\mathcal{C}_{V} \cong M(2^{n-1}|2^{n-1}) \), and we have a usual Morita equivalence. When \(n \) is odd, \(\mathcal{C}_{V} \cong Q(2^{n-1}) \), and the categories \(\mathcal{H}_{X}^{sp}\text{-smod} \) and \(\mathcal{H}_{X}^{ss}\text{-smod} \) are equivalent up to a parity shift.

In the non-\(\mathbb{Z}_2 \) graded setting, a Morita equivalence \(A \rightarrow B \) induces an isomorphism of cocenters \(\overline{A} \xrightarrow{\sim} \overline{B} \), because \(\overline{X} \cong HH_0(X) \) for any algebra \(X \) (where \(HH_s \) is Hochschild homology) and Hochschild homology is Morita-invariant(cf. [Ka]). This result does not extend directly to the superalgebra case - if \(n \) is odd, the Morita superequivalence does not necessarily preserve homology - but the superequivalence of \(\mathcal{H}_{X}^{sp} \) and \(\mathcal{H}_{X}^{sp} \) nonetheless suggests a connection between their cocenters.

We aim to compute a basis of

\[
\overline{\mathcal{H}_{X}^{sp}} = \left(\frac{\mathcal{H}_{X}^{sp}}{[\mathcal{H}_{X}^{sp}, \mathcal{H}_{X}^{sp}]} \right)_\pi.
\]

using methods similar to the Hecke-Clifford case. As a consequence, we will show that the cocenters are in fact isomorphic in this case.

7. Reduction for the spin affine Hecke algebra

This section is analogous to section 3. We prove a variety of reduction results to restrict the types of Weyl group elements that appear in the cocenter.
7. Reduction in type A_{n-1}. We adapt the procedure in [WW1], where a basis for the space of trace functions for the spin Hecke algebra in type A_{n-1} is computed. For $w \in S_n$, fix a reduced expression $w = s_{i_1} \ldots s_{i_n}$. Denote $t_w = t_{i_1} \ldots t_{i_n} \in \mathbb{C} W^-$. As in section 3, set $t_{(n)} = t_1 t_2 \ldots t_{n-1}$, and for $\gamma = (\gamma_1, \ldots, \gamma_\ell)$ a composition of n, let $t_\gamma = t_{\gamma_1} t_{\gamma_2} \ldots t_{\gamma_\ell}$.

Proposition 7.1. Let $\gamma = (\gamma_1, \ldots, \gamma_\ell)$ be a composition of n with $\ell(t_\gamma)$ even and let μ be the partition of n corresponding to γ. Then we have

$$t_\gamma \equiv \begin{cases} 0, & \text{if } \mu \notin \mathcal{O} \mathcal{P}_n \mod [\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}] \\ \pm t_\mu, & \text{if } \mu \in \mathcal{O} \mathcal{P}_n \end{cases}$$

Proof. Suppose $\mu \notin \mathcal{O} \mathcal{P}_n$. Let a be the least integer such that γ_a is even, and let b be the least integer such that $b > a$ and γ_b is even; such a b must exist because $\ell(t_\gamma)$ is even. Set $t_{g,k} = t_{\gamma_1+\ldots+\gamma_{k-1}+1} \ldots t_{\gamma_1+\ldots+\gamma_k}$ (the cycle corresponding to γ_k in t_γ). Thus $t_\gamma = t_{\gamma_1} \ldots t_{\gamma_\ell}$. Commuting $t_{g,k}$ over $t_{\gamma,j}$ results in a sign of $(-1)^{(j-1)(k-1)}$, which is negative only if j and k are both even. Thus we have

$$t_\gamma \equiv t_{\gamma_a} t_{\gamma_1+a+1} \ldots t_{\gamma_1} t_{\gamma_1} \ldots t_{\gamma_a+1}$$

$$= t_{\gamma_a} t_{\gamma_b} t_{\gamma_1+a+1} \ldots t_{\gamma_1}$$

$$= -t_{\gamma_b} t_{\gamma_a} \ldots t_{\gamma_1} a_{-1} t_{\gamma,b}$$

$$= -t_\gamma$$

where the equivalences are mod $[\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}]$. Hence $t_\gamma \equiv 0 \mod [\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}]$.

If $\mu \in \mathcal{O} \mathcal{P}_n$, the images of t_γ and t_{μ} in $\mathfrak{H}^\text{sp}_{A_{n-1}}$ are equal; since the isomorphism Φ restricts to an injective map on $\mathbb{C} W^-$, they must be equal in $\mathfrak{H}^\text{sp}_{A_{n-1}}$ as well. \hfill \square

Proposition 7.2. Let w_C be a minimal length representative of a conjugacy class C corresponding to the cycle type $\mu = (\mu_1, \ldots, \mu_\ell) \vdash n$. Then we have

$$t_{w_C} \equiv \begin{cases} \pm t_\mu, & \text{if } \mu \in \mathcal{O} \mathcal{P}_n \mod [\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}] \\ 0, & \text{otherwise} \end{cases}$$

Proof. The minimal length representative must have the form

$$w_C = (s_{i_1}^{\gamma_1}s_{i_2}^{\gamma_2} \ldots s_{i_{\gamma_1}-1}^{\gamma_1})(s_{i_3}^{\gamma_3}s_{i_4}^{\gamma_4} \ldots s_{i_{\gamma_2}-1}^{\gamma_2}) \ldots (s_{i_\ell}^{\gamma_\ell}s_{i_{\ell+1}}^{\gamma_{\ell+1}})$$

where $\gamma = (\gamma_1, \ldots, \gamma_\ell)$ is a composition of n given by rearranging the parts of μ, and $i_j^k = \gamma_1 + \ldots + \gamma_{k-1} + j$. We claim that $t_{w_C} \equiv \pm t_\gamma \mod [\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}]$; the lemma will then follow from Proposition 7.2.

It suffices to consider the case $\gamma = (n)$ (by dealing with each cycle separately). Thus $w_C = s_i \ldots s_{i_{n-1}}$. If $i_j = j$ for all $1 \leq j \leq n-1$, then $w_C = w_\gamma$. Otherwise, there is at least one a such that $i_a \neq a$; choose the smallest such a (note that we must have $i_a > a$). We proceed by induction on a. Observe that

$$t_{w_C} = (-1)^{a-1} t_{i_a} t_{t_{i_a+1}} \ldots t_{i_{n-1}}$$

$$\equiv (-1)^{a-1} t_{t_{i_a+1}} \ldots t_{i_{n-1}} t_{i_{a+1}} \ldots t_{i_{n-1}} \mod [\mathfrak{H}^\text{sp}_{A_{n-1}}, \mathfrak{H}^\text{sp}_{A_{n-1}}]$$

(21)

Now $t_{i_{a+1}}$ is in the ath position; repeat this process until $t_{i_{a+k}} = t_a$ is in the ath position. Hence

$$t_{w_C} = \pm t_1 t_2 \ldots t_a t_{i_{a+1}} \ldots t_{i_{n-1}}.$$
By the inductive hypothesis, we are done.

\[\square \]

7.2. Reduction in types \(B_n \) and \(D_n \). Set \(t_{(n)} = t_1 t_2 \ldots t_n = t_{(n)}t_n \). For compositions \(\gamma = (\gamma_1, \ldots, \gamma_\ell) \) and \(\nu = (\nu_1, \ldots, \nu_k) \) of \(n \), let \(t_{(\gamma,\nu)} = t_{\gamma_1} \ldots t_{\gamma_\ell} t_{\nu_1} \ldots t_{\nu_k} \).

Proposition 7.3. (1) Let \(\gamma = (\gamma_1, \ldots, \gamma_\ell) \) and \(\nu = (\nu_1, \ldots, \nu_k) \) be compositions of \(n \) with \(\ell(t_\nu) + \ell(t_\nu) \) even and let \((\lambda, \mu) \) be the bipartition of \(n \) corresponding to \((\gamma, \nu) \). Then we have

\[
t_{(\gamma,\nu)} \equiv \begin{cases}
0, & \text{if } (\lambda, \mu) \notin (\mathcal{OP}, \mathcal{EP}) \\
\pm t_{(\lambda,\mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP})
\end{cases} \mod \left[\mathfrak{H}^\text{OP}_{B_n}, \mathfrak{H}^\text{EP}_{B_n} \right].
\]

(2) Let \(\gamma, \nu, \lambda, \) and \(\mu \) be as in the previous part. If \(n \) is odd, we have

\[
t_{(\gamma,\nu)} \equiv \begin{cases}
0, & \text{if } (\lambda, \mu) \notin (\mathcal{OP}, \mathcal{EP}) \\
\pm t_{(\lambda,\mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP})
\end{cases} \mod \left[\mathfrak{H}^\text{OP}_{D_n}, \mathfrak{H}^\text{EP}_{D_n} \right].
\]

If \(n \) is even, we have

\[
t_{(\gamma,\nu)} \equiv \begin{cases}
\pm t_{(\lambda,\mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}) \text{ or } (\lambda, \mu) \in (\emptyset, \mathcal{SOP}_n) \\
0, & \text{otherwise}
\end{cases} \mod \left[\mathfrak{H}^\text{OP}_{D_n}, \mathfrak{H}^\text{EP}_{D_n} \right].
\]

Proof. (1) If \(\lambda \notin \mathcal{OP} \), we can repeat the proof of Proposition 7.1.1 to show that \(t_\gamma \equiv 0 \), and hence \(t_{(\gamma,\nu)} \equiv 0 \). Suppose \(\mu \notin \mathcal{EP} \). Let \(b \) be the smallest integer so that \(v_a \) is odd. If \(\ell(\nu) \) is even, let \(b \) be the smallest integer such that \(b > a \) and \(v_b \) is odd. Then we have, as in Proposition 7.1.1,

\[
t_{\nu} = t_{\nu, a} t_{\nu, a+1} \ldots t_{\nu, k} t_{\nu, 1} \ldots t_{\nu, a-1} = -t_{\nu, b}^{-1} t_{\nu, a} \ldots t_{\nu, a-1} = (-1)^{2(k-1)+1} t_{\nu}^{-1}.
\]

Here the extra signs come from commuting \(t_{\nu, b}^{-1} \) past the \(t_n \) in each term. Hence \(t_{\nu}^{-1} \equiv 0 \mod \left[\mathfrak{H}^\text{OP}_X, \mathfrak{H}^\text{EP}_X \right] \).

If \((\gamma, \nu) \in (\mathcal{OP}, \mathcal{EP}) \) the equality follows as in the type \(A_{n-1} \) case.

(2) If \(n \) is odd or \(n \) is even and \((\lambda, \mu) \notin (\emptyset, \mathcal{SOP}_n) \), the proof follows as in type \(B_n \).

For \((\lambda, \mu) \in \mathcal{SOP}_n \), following the proof as in type \(B_n \) gives

\[
t_{\nu} = t_{\nu, a} t_{\nu, a+1} \ldots t_{\nu, k} t_{\nu, 1} \ldots t_{\nu, a-1} = -t_{\nu, b}^{-1} t_{\nu, a} \ldots t_{\nu, a-1} = (-1)^{k-1+2} t_{\nu, a} \ldots t_{\nu, a-1} = (-1)^{k-b-1+5} t_{\nu}^{-1}.
\]

But since \(\ell(\mu) \) is even, \(k - b - 1 \) is odd, so \(k - b - 1 + 5 \) is even. Hence we have no sign change. Indeed, since the image of \(t_{\nu}^{-1} \) is nonzero and equal to \(t_{\mu} \) in \(\mathfrak{H}^\text{OP}_D \), we must have the same equality in \(\mathfrak{H}^\text{EP}_D \).

\[\square \]

Proposition 7.4. (1) Let \(w_C \) be a minimal length representative of a conjugacy class \(C \) corresponding to the bipartition \((\lambda, \mu) \) in \(W_{B_n} \). Then we have

\[
t_{w_C} \equiv \begin{cases}
\pm t_{(\lambda,\mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}) \\
0, & \text{otherwise}
\end{cases} \mod \left[\mathfrak{H}^\text{OP}_{B_n}, \mathfrak{H}^\text{EP}_{B_n} \right].
\]
Let \(w_C \) be a minimal length representative of a conjugacy class \(C \) corresponding to the bipartition \((\lambda, \mu)\) in \(W_{D_n} \). Then if \(n \) is odd we have
\[
t_{w_C} \equiv \begin{cases}
\pm t_{(\lambda, \mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}) \\
0, & \text{otherwise}
\end{cases} \mod [\mathcal{S}^{sp}_{D_n}, \mathcal{S}^{sp}_{J_n}].
\]

If \(n \) is even, we have
\[
t_{w_C} \equiv \begin{cases}
\pm t_{(\lambda, \mu)}, & \text{if } (\lambda, \mu) \in (\mathcal{OP}, \mathcal{EP}) \text{ or } (\lambda, \mu) \in (\emptyset, \mathcal{SO} \mathcal{P}_n) \\
n \equiv 0, & \text{otherwise}
\end{cases} \mod [\mathcal{S}^{sp}_{D_n}, \mathcal{S}^{sp}_{J_n}].
\]

Proof. Both cases follow immediately from the proof of Proposition 7.1.2, using Proposition 7.2.1 in place of 7.1.1 and modifying Equation 21 to use the appropriate relations. \(\square \)

8. Bases for the cocenter of the spin affine Hecke algebra

We establish spanning sets for \(\mathcal{S}^{sp}_X \), and then use the Morita superequivalence to prove that these sets are linearly independent.

8.1. Spanning sets

Let \(C_X \) be the set of conjugacy classes labelled by \(\mathcal{OP}_n \) if \(X = A_{n-1} \), by \((\mathcal{OP}, \mathcal{EP}) \) if \(X = B_n \), and by \((\mathcal{OP}, \mathcal{EP}) \) if \(X = D_n \) with \(n \) odd, or \((\mathcal{OP}, \mathcal{EP}) \cup (\emptyset, \mathcal{SO} \mathcal{P}_n) \) if \(X = D_n \) with \(n \) even. The following is similar to [WW1, Theorem 6.6].

Lemma 8.1. Let \(w \in W_X \) with \(\ell(w) \) even. Then there exist \(f_{w, \mu} \in \mathbb{C} \) such that
\[
t_w = \sum_{\nu \in C_X} f_{w, \nu} t_{\nu}.
\]

Proof. The type \(A_{n-1} \) case is proved in [WW1]. The type \(B_n \) and \(D_n \) cases follow from a similar argument using Proposition 7.2.2. \(\square \)

As before, filter \(\mathcal{S}^{sp}_X \) by degree in \(\mathcal{C}(b_1, \ldots, b_n) \) and let \(\mathcal{S}^{sp, 0}_X \) be the associated graded object, which is isomorphic to the degenerate spin affine Hecke algebra with all parameters identically 0. Now we follow the procedure in Section 4.

Lemma 8.2. For \(X = A_{n-1}, B_n, \) or \(D_n \), we have
\[
\mathcal{S}^{sp, 0}_X \subset \text{span} \{ t_{w_C} \mathbb{C}[b_1^2, \ldots, b_n^2] \} \subset \mathcal{C}_X.
\]

Proof. Apply Propositions 7.1.2 and 7.2.2 to each element in the (trivial) spanning set \(W_X \mathcal{C}(b_1^2, \ldots, b_n^2) \). Thus every element is either congruent to 0 or to \(t_{w_C} \mod [\mathcal{S}^{sp}_X, \mathcal{S}^{sp}_X] \). \(\square \)

For a conjugacy class \(C \) of \(W^- \), define \(J_C \) and \(w_C \) as before, using the natural action of \(W^- \) on \(\{1, 2, \ldots, n\} \). Now, for convenience, denote \(\mathcal{C}(b^2) = \mathcal{C}(b_1^2, \ldots, b_n^2) \).

Lemma 8.3. Fix a conjugacy class \(C \) of \(W \), and let \(J = J_C \). Then we have
\[
t_{w_C} \mathcal{C}(b^2) \equiv t_{w_C} \mathcal{C}(b^2)^{w_J} 1^{w_{W^{-}(W_J)}}.
\]

Proof. The proof of Proposition 4.1.4 extends to this case without modification except possible the addition of signs: it depends only on the action of \(W_X \) on \(S(V) \), which is the same as the action of \(W^- \) on \(\mathcal{C}(b^2) \) with parameter 0 up to a possible change in sign. \(\square \)
For each $C \in C_X$ and W of types A_{n-1}, B_n, or D_n, let $\{f_{-i;C}\}$ be a basis of the vector space $\mathcal{C}(b^2)^{W_{-1}}$. Combining Lemmae 8.0.2 and 8.0.3 gives:

Proposition 8.4. For $X = A_{n-1}$, B_n, or D_n, we have
\[\overline{H}^{0} = \text{span}\{t_{wc} f_{-i;C}\} \in C_X. \]

Finally, we lift the spanning set to the ungraded object, as before.

Proposition 8.5. For $X = A_{n-1}$, B_n, or D_n, we have that
\[\overline{H}_X = \text{span}\{t_{wc} f_{-i;C}\} \in C_X. \]

Proof. Equations 22 and 23 lift to the spin case up to a change in sign; but these equations were already agnostic to sign, so this does not affect the proof. Hence any spanning set of \overline{H}^{0} is also a spanning set of \overline{H}^{0}. \[\square \]

8.2. Linear independence

The following is the second main result of the paper.

Theorem 8.6. For $X = A_{n-1}$, B_n, or D_n, the set $\{t_{wc} f_{-i;C}\} \in C_X$ forms a linear basis of \overline{H}_X.

Proof. It suffices to prove that these sets are linearly independent. We take advantage of Theorem 5.0.2 and the isomorphism in Proposition 6.4.1. The inverse Φ^{-1} of the isomorphism in Proposition 6.4.1 induces an injective map $\overline{H}^{0} \rightarrow \overline{H}_X$. We claim that it restricts to an inclusion \[\Phi^{-1} : \overline{H}^{0} \rightarrow \overline{H}_X. \]

Indeed, by Proposition 8.5, the set $\{t_{wc} f_{-i;C}\} \in C_X$ spans \overline{H}^{0}. The image of an element in this set under Φ^{-1} is \[\Phi^{-1}(t_{wc} f^{-}) = w_C f \]
where $f \in S(V^2)$ is obtained from $f^{-} \in \mathcal{C}(b^2)$ by replacing all b_i's with x_i's. But the images of the elements $w_C f_{-i;C}$ for $C \in C_X$ were shown to be linearly independent in Theorem 5.0.2, so the map Φ^{-1} is an inclusion. But the set $\{t_{wc} f_{-i;C}\} \in C_X$ is then the preimage under an inclusion of a linearly independent set, and must therefore be linearly independent. \[\square \]

References

[BW] C. Baltera and W. Wang, Coinvariant algebras and fake degrees for spin Weyl groups of classical type, Math. Proc. of the Cambridge Philosophical Society 156 (2013), 43-79.

[CaHe] D. Ciubotaru and X. He, The Cocenter of the graded affine Hecke algebra and the density theorem, Journal of Pure and Applied Algebra 220 (2016), 382-410.

[Dr] V.G. Drinfeld, Degenerate affine Hecke algebras and yangians (Russian), Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69-70, Engl. transl.: Functional Anal. Appl. 20 (1986), no. 1, 62-64.

[He] X. He, The cocenter-representation duality, 2014 math.RT/1406.7574.

[Joz] T. Józefiak, Characters of projective representations of symmetric groups, Expositiones Mathematicae, 7 (1988).

[Joz2] T. Józefiak, Semisimple superalgebras, Algebra–Some Current Trends (Varna, 1986), 96-113, Lect. Notes in Math. 1352, Springer-Verlag, Berlin-New York, 1988.

[Ka] C. Kassel, Homology and cohomology of associative algebras. A concise introduction to cyclic homology, École thématique, August 2004 á ICTP, Trieste, 2006.
[KW] T. Khongsap and W. Wang, *Hecke-Clifford algebras and spin Hecke algebras I: The classical affine type*, Transformation Groups 13 (2008), 389-412.

[Lu] G. Lusztig, *Affine Hecke algebras and their graded version*, J. Amer. Math. Soc. 2 (1989), 599-635.

[Mac] I.G. Macdonald, *Symmetric functions and Hall polynomials*, 2nd ed., Clarendon Press, Oxford, 1995.

[Mo] A. Morris, *Projective representations of reflection groups*, Proc. London Math. Soc. 32 (1976), 403-420.

[Naz] M. Nazarov, Young’s symmetrizers for projective representations of the symmetric group, Adv. in Math. 127 (1997), 190-257.

[Re] E.W. Read, *On projective representations of the finite reflection groups of type B_t and D_t*, J. London Math. Soc. 2 (1975), 129-142.

[So] M. Solleveld, *Hochschild homology of affine Hecke algebras*, J. Algebra 323 (2010), 1622-1648.

[W] W. Wang, *Double affine Hecke algebras for the spin symmetric group*, Math. Res. Lett. 16 (2009), 1071-1085.

[WW1] J. Wan and W. Wang, *Frobenius character formula and spin generic degrees for Hecke-Clifford algebra*, Proc. London Math. Soc. (2012), 287-317.

[WW2] J. Wan and W. Wang, *Spin invariant theory for the symmetric group*, J. Pure Appl. Algebra 215 (2011), 1569-1581.

[WW3] J. Wan and W. Wang, *Lectures on spin representation theory of symmetric groups*, Bulletin of Inst. of Math. Academia Sinica (N.S.) 7 (2012), 91-164.

Department of Math., University of Virginia, Charlottesville, VA 22904

E-mail address: mar3nf@virginia.edu