Vaccine-Preventable Disease Incidence Based on Clinically, Radiologically and Etiologically Confirmed Outcomes: Systematic Literature Review and Re-analysis of Pneumococcal Conjugate Vaccine Efficacy Trials

Kaatje Bollaerts¹, Mark A. Fletcher², Jose A. Suaya³, Germaine Hanquet¹, Marc Baay¹, Bradford D. Gessner⁴*

¹ P95 Epidemiology and Pharmacovigilance, Leuven, Belgium
² Pfizer Inc., Emerging Markets Medical Affairs, Paris, France
³ Pfizer Inc., Vaccines Medical Development & Scientific/Clinical Affairs, New York, NY, United States of America
⁴ Pfizer Inc., Scientific Affairs, Collegeville, PA, United States of America

* Corresponding author: Kaatje Bollaerts, P95 Epidemiology & Pharmacovigilance, Koning Leopold III-laan 1, 3001 Leuven, Belgium. Phone: 0032485789657. Email: kaatje.bollaerts@p-95.com

* Alternate author: Marc Baay, P95 Epidemiology & Pharmacovigilance, Koning Leopold III-laan 1, 3001 Leuven, Belgium. Phone: 0031641102755. Email: marc.baay@p-95.com

40 word summary:

We provide quantitative estimates on the degree to which more specific radiologically or etiologically defined outcomes underestimate PCV prevention of more sensitive clinically defined outcomes; these data should help decision-makers estimate the public health value of PCV immunization programs.
Abstract

Background: Vaccine regulatory decision-making is based on vaccine efficacy against etiologically confirmed outcomes; however, these outcomes may underestimate the preventable disease burden. To quantify this underestimation, we compared vaccine-preventable disease incidence (VPDI) of clinically defined outcomes to radiologically/etiologically confirmed outcomes.

Methods: We performed a systematic review of efficacy trials for several vaccines (1997-2019) and report results for pneumococcal conjugate vaccines [CRD42019145268]. Data were extracted for outcomes within a clinical syndrome, organized from most sensitive to most specific. VPDI was determined for each outcome, and VPDI ratios were calculated, with a clinically defined outcome (numerator) and a radiologically/etiologically confirmed outcome (denominator).

Results: Among 9 studies, we calculated 27 VPDI ratios; 24 had a value >1. Among children, VPDI ratios for clinically defined versus vaccine serotype otitis media were 0.6 [95%CI not calculable], 2.1 [95%CI: 1.5;3.0], and 3.7 [95%CI: 1.0;10.2]; the VPDI ratios comparing clinically defined to radiologically confirmed pneumonia ranged from not calculable to 2.7 [95%CI: 1.2;10.4]; the VPDI ratio comparing clinically suspected invasive pneumococcal disease (IPD) to laboratory confirmed IPD was 3.8 [95%CI not calculable]. Among adults, the ratio comparing clinically defined to radiologically confirmed pneumonia was 1.9 [95%CI: -6.0;9.1] and to vaccine serotype confirmed pneumonia was 2.9 [95%CI: 0.5;7.8].

Conclusions: While there is substantial uncertainty around individual point estimates, there is a consistent trend in VPDI ratios, most commonly showing under-ascertainment of 1.5- to 4-fold, indicating that use of clinically defined outcomes is likely to provide a more accurate estimate of a pneumococcal conjugate vaccine’s public health value.

Keywords: pneumococcal conjugate vaccine, vaccine efficacy, vaccine-preventable disease, pneumococcal disease, systematic review

PROSPERO registration number: CRD42019145268
Introduction

Pneumococcal disease is a major cause of morbidity and mortality worldwide and affects predominantly young children and older adults. According to the 2016 Global Burden of Diseases [1], *S. pneumoniae* was the leading cause of lower respiratory infection morbidity and mortality globally, resulting in more deaths than all other etiologies combined in 2016, 1.2 million deaths due to *S. pneumoniae* including 0.34 million deaths in children younger than 5 years old and 0.50 million deaths in elderly adults greater than 70 years old. Pneumococcal conjugate vaccine (PCV) clinical trials have demonstrated vaccine efficacy (VE) against vaccine-serotype (VST) etiologically confirmed outcomes, including those within the category of radiologically confirmed pneumonia [2]. Different PCVs have been licensed since 2000 that have been implemented worldwide in national immunization programs.

When a new vaccine is licensed, policy makers and vaccine technical committees mostly rely on data from efficacy trials to take decisions on clinical recommendations or vaccine introduction. Nevertheless, a vaccine-preventable disease burden that is solely based on etiologically and radiologically confirmed outcomes will always underestimate the full public health impact of a PCV vaccination program. However, the extent of this underestimation, and hence its relevance for policy making, has not been systematically assessed.

First, VE is a relative measure not accounting for background disease incidence, and as such does not quantify the amount of preventable disease. A complementary measure to VE is the vaccine-preventable disease incidence (VPDI), also known as vaccine attributable rate reduction, absolute rate reduction, or incidence rate reduction. VPDI measures the difference in an outcome’s incidence between unvaccinated and vaccinated populations in a given epidemiological context [3] (which is mathematically equivalent to VE * unvaccinated group incidence). Second, etiologically confirmed outcomes, while specific and thus useful
for estimating VE, lack sensitivity due to diagnostic under-ascertainment (e.g., patients may not get a test or the test sensitivity may be low), in turn leading to an underestimation of the true VPDI for the disease syndrome in question.

The objective of this study was to quantitatively assess the degree to which the pneumococcal the PCV-associated VPDI for pneumococcal outcomes is underestimated by using etiologically or radiologically defined outcomes versus clinically defined outcomes, as assessed in phase III or IV RCTs in either children or adults. Our hypothesis was that VDPI would be substantially higher for clinically defined versus etiologically or radiologically confirmed outcomes, and thus should be used to inform decision making in vaccine policy. The current paper reports our findings among non-risk (healthy) subjects.

Methods

We conducted a systematic literature review and re-analysis of Phase III / Phase IV trials for PCVs. We searched for all reported trial outcomes, ranging from more sensitive but less specific outcomes (e.g., all-cause clinically defined disease) to more specific but less sensitive outcomes (e.g., etiologically confirmed disease, such as VST pneumococcal outcome, or radiologically defined outcomes). For each trial, we calculated VPDI ratios within the same clinical syndrome, by comparing the VPDI value of a clinically defined outcome to the VPDI value of an etiologically or radiologically confirmed outcome.

Search strategy

A systematic literature review was performed for Phase III / Phase IV trials for conjugate vaccines against pneumococcus, a subset of the full protocol that has been prospectively registered at PROSPERO [CRD42019145268]. We searched MEDLINE (PubMed), EMBASE and
clinicaltrials.gov for relevant articles published between 1 January 1997 and 31 July 2019. Search terms included those for the organism, study design, the vaccine, and efficacy or effectiveness. Details of the search strategy are provided in the protocol. The systematic literature review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [4]. Citations from eligible articles were also searched to identify other relevant studies. In the present publication, we focus on PCV studies, including PCV candidates that were not subsequently submitted for licensure.

Inclusion criteria

PCV studies had to meet the following PICOTS inclusion criteria: a) Population: persons of any age and gender, participating in Phase III / Phase IV trials, excluding risk groups when possible, to improve homogeneity of study populations; b) Intervention: PCV; c) Comparisons: subjects exposed versus unexposed to PCV (the unexposed group could have been exposed to another vaccine if this vaccine had no expected impact on the outcome of interest); d) Outcomes: clinically defined, radiologically confirmed, or etiologically confirmed outcomes. Publications in the following languages were included: English, French, Spanish, Portuguese, Dutch, German, Italian.

Study selection process and data extraction

A single author (MB) screened studies through the electronic searches based on titles and abstracts, using Rayyan [5]. A second author (GH) conducted a full-text review of the initially selected pneumococcal studies to make a final selection of eligible studies for data extraction. Data were extracted by a single reviewer (GH) and quality control of data extraction was performed by a second reviewer (KB) through re-extraction of 10% of the
papers. Uncertainties were settled through discussion with the entire study team. The reasons for exclusion refer to the PICOTS presented above under “Search strategy”. These were documented (see Figure 1 and Supplementary material) in accordance with PRISMA guidelines [4] and included: a) no original publication, b) inappropriate population, c) inappropriate intervention, d) inappropriate comparator, e) inappropriate outcome, f) inappropriate study design, g) no multiple outcomes, h) no clinically diagnosed outcome, i) incomplete information.

Variables for data extraction were predefined in the protocol and included: clinical trial reference number, first author name, journal, year of publication, country/ies, study period, clinical trial phase, study design, study population description, intervention vaccine, intervention schedule (including age at vaccination), comparator group, case ascertainment, study outcomes, follow-up duration, number of events and person-time in the intervention and comparator groups, and VE with associated 95% CIs. Data corresponding to the intention-to-treat (ITT) analysis were prioritized for extraction but, when not available, per-protocol (PP) analysis data were extracted.

Selection of outcomes

We extracted first and all episode data for outcomes belonging to one of the three clinical syndromes most associated with pneumococcal disease: a) otitis media (OM), b) pneumonia, and c) invasive pneumococcal disease (IPD). Outcomes within the same vaccine trial were then hierarchically organized from most sensitive to most specific within a clinical syndrome.
Exclusion from analysis

Data were subsequently excluded from analysis in case of a) absence of multiple, hierarchically organized outcomes within a clinical syndrome, b) absence of at least one clinically defined outcome and at least one radiologically or etiologically confirmed outcome, or c) insufficient information to obtain person-time by comparison group.

Quality assessment

Quality assessment of the selected trials was done using the revised Cochrane risk-of-bias tool for randomized trials (RoB 2) [6]. This tool is structured into five domains pertinent to the design and conduct of randomized, parallel group trials: randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result. Within each domain, a series of questions (‘signaling questions’) aims to elicit information about features of the trial that are relevant to risk of bias. Based on an algorithm, the risk of bias is then categorized as ‘low risk’, ‘some concerns,’ or ‘high risk’.

Statistical analysis

For each trial and each outcome within the trial, the VPDI (per 1000 person years) was calculated as the incidence in the comparator group minus the incidence in the PCV group. The corresponding 95% confidence intervals (95% CIs) were calculated using the test-based method [7]. For all outcomes within the same trial that could be hierarchically organized within a clinical syndrome from most sensitive to most specific, VPDI ratios were calculated with clinically defined outcomes as numerator and with radiologically or etiologically confirmed outcomes as denominator. A VPDI ratio above 1 indicates that - within the same
clinical syndrome - the VPDI value estimate for the more sensitive outcome is greater than
the VPDI value estimate for the more specific outcome, and thus the VPDI ratio provides the
degree to which a more sensitive outcome identifies more vaccine preventable disease. For
the VPDI ratios, 95% CIs were calculated using a non-parametric bootstrap procedure that
accounted for the hierarchical structure of the data [8]. Starting from the reported number
of cases per outcome, events profiles were created reflecting this hierarchical structure.
These event profiles were then resampled, and for each bootstrap sample the VPDI ratio
was calculated while keeping person-time fixed (because the individual-level data were not
available to us). For each study, we generated 10,000 bootstrap samples, upon which the
95% bootstrap percentile CIs were calculated [8]. All analyses were done with R (version
3.6.1).

Results

Study selection

We identified 371 articles during the selection process (Figure 1). Of the 371 articles, 29
were considered relevant following abstract or full-text review. Of these, 10 articles
reporting on 10 PCV trials had data that could be used for analysis (See Table S1 for studies
excluded, by reason, after full text review). Nine articles reported pediatric outcomes, and
one article reported adult outcomes (Table 1) [9-18]. By clinical syndrome, one article
reported on multiple clinical syndromes, three articles reported on OM, seven on
pneumonia and one on IPD (Table 2). The hierarchical organization of the outcomes
retained for analysis is graphically represented in Figure 2. While we used a common
terminology to describe the different outcomes across studies, the precise outcome
definitions provided in the source manuscripts are summarized in Table S2. For each
outcome within each trial, the number of events, person-time, VE, VPDI and 95% CIs are provided in Table S3.

Quality assessment

The risk of bias due to the selection of the reported result was judged to be not applicable for this systematic review because it concerned a re-analysis of all reported outcomes (Table S4). For the other four domains in our quality assessment, the risk of bias was ‘low’ except for three studies that included PP analysis data only. The PP analysis included only subjects who received all doses. The impact of this on the study results was not considered substantial. As such, these studies were judged as having ‘some concerns’ of bias, due to deviations from the intended interventions but were not judged as ‘high risk’ of bias.

Syndrome specific VPDI ratios

Three pediatric OM studies were included for which we calculated 10 VPDI ratios, for which eight VPDI ratios were ≥1. The three VPDI ratios comparing clinically defined OM (the most sensitive outcome) to VST pneumococcal OM (the most specific outcome) were 0·6 [95% CI not calculable], 2·1 [95% CI: 1·5;3·0], and 3·7 [95% CI: 1.0, 10·2] (Table 2) [11, 16, 17].

Among the six studies reporting pediatric pneumonia outcomes, one study reported a VPDI <0 for clinical pneumonia and thus the VPDI ratio was not calculated. The remaining five studies allowed calculation of 13 VPDI ratios (Table 3) [13]. VPDI ratios comparing clinically defined pneumonia (more sensitive outcome) to radiologically confirmed pneumonia (more specific outcome) had values that ranged from 1·1 [95% CI: 0·3;1·4] to 2·7 [95% CI: 1·2;10·4], with a median of 1·7 [10, 14]. One of the pediatric pneumonia studies reported lower
respiratory tract infection (LRTI) as the most sensitive clinically defined outcome [14]. For this study, the VPDI ratio comparing LRTI to radiologically confirmed pneumonia was 1.7 [95%CI: -0.9;6.6]. Substantially greater VPDI ratios were calculated comparing clinical pneumonia to etiologically confirmed pneumonia (which was based on culture since there is not a validated serotype-specific urinary antigen detection assay for pediatrics, Table 3) [19].

For the single adult study, which measured pneumonia outcomes, three VPDI ratios could be calculated, all >1. The calculated VPDI ratio of clinically defined to radiologically confirmed pneumonia was 1.9 [95%CI: -6.0;9.1] [18]. For adult non-bacteremic pneumonia, a validated serotype-specific urinary antigen detection assay exists; [19] the calculated VPDI ratio for clinically defined versus VST pneumococcal pneumonia was 2.9 [95% CI: 0.5;7.8].

One study reported clinically suspected IPD without laboratory confirmation (based on ICD codes), allowing calculation of one VPDI ratio. The VPDI ratio compared laboratory and non-laboratory confirmed IPD or unspecified sepsis (as defined by the investigators) to laboratory-confirmed IPD, and was 3.8 [95%CI not calculated] [15].

Discussion

We document here that reliance on radiologically or etiologically confirmed outcomes tends to underestimate the public health benefits of PCVs when compared to clinically defined outcomes, and for the first time quantify the extent of this underestimate. A VPDI ratio above 1 indicates that the preventable burden calculated on a specific outcome of a clinical trial of vaccine efficacy, such as an etiologically confirmed disease, underestimates burden reduction relative to the comparator condition in the same efficacy trial, such as the clinical
syndrome that was used to screen subjects for further etiologic testing. Among 10 studies, 9 yielded 27 VPDI ratios (one had a VPDI ratio that could not be calculated); of these 27 VPDI ratios, 24 were >1 and 3 were ≤1 (all from one pediatric OM study). Confidence intervals could be calculated for 23 of the 27 VPDI ratios. While for many individual VPDI ratios, wide confidence intervals prevent definitive conclusions, the consistency of overall results supports the hypothesis that reliance on radiologically or etiologically confirmed outcomes will underestimate in most cases the public health benefits of PCVs when compared to clinically defined outcomes. This consistency in VPDI ratios >1 remained regardless of whether the syndromic outcome was pediatric OM, pediatric or adult pneumonia, or pediatric IPD. Moreover, we have quantified with this re-analysis the degree of underascertainment – most commonly approximately 1.5-fold to 4-fold – which may inform immunization program decision-making as well as economic models.

While we did not evaluate mechanisms for the VPDI ratios being >1, numerous issues likely contributed, most importantly that chest radiographs and biologic tests have limited sensitivity [20]. For pneumonia chest radiography, sensitivity may be reduced because most studies include only a single view, which increases the risk that a lesion behind the heart will be missed [21]; furthermore, dehydration may reduce the radio-opaque nature of an infectious process [22]. Outcome definitions based on specific types of infiltrates – such as WHO outcome consolidation for pediatrics and a consolidation consistent with community acquired pneumonia (CAP) for adults [23, 24] – may not include the full spectrum of infiltrates caused by pneumococcus, particularly when influenced by access to medical care, timing of antibiotic use, and ongoing viral respiratory disease epidemics [25]. Similarly, etiologically defined outcomes depend on test sensitivity, which in turn may be reduced by
early antibiotic use (e.g., cultures for OM or IPD) or by the characteristics of a test, such as the serotype specific urine antigen detection assay that was designed to emphasize specificity over sensitivity [26].

Among the three OM studies, one reported all three VPDI ratios ≤1 including two values <1 [11], and for one pediatric pneumonia study, the VPDI for the clinical outcome was just below 0, which would have yielded a negative VPDI ratio [13]. In the absence of serotype replacement, hierarchically organized outcomes always should provide a VPDI ratio ≥1, since more specific outcomes are logical subsets of more sensitive outcomes. However, PCV-induced pneumococcal serotype replacement, at population and individual levels, might simultaneously reduce VST disease and increase non-VST disease, which could lead to a VPDI ratio <1. The degree of measured replacement in turn may be related to study design. For example, compared to the control group incidence in the two OM studies with a VPDI ratio >1 [16, 17], the OM study with a VPDI ratio <1 had a substantially larger incidence value in the control group (Table S2). Additionally, general practitioners enrolled cases for the study with a VPDI ratio <1 in contrast to ear, nose, and throat specialist referrals for at least one of the two OM studies with VPDI ratio >1 (while for the other study details were not provided). Similarly, the outlying pediatric pneumonia study, where the VPDI ratio could not be calculated, enrolled the majority of children with radiologically confirmed pneumonia from hospitals but most of the clinical pneumonia episodes from outpatient clinics [13]; furthermore, it had a control group clinical pneumonia incidence that was larger than four of the five other pediatric pneumonia studies (Table S3). That both studies (AOM where VPDI ratio <1 and pneumonia where the VPDI ratio was not calculated) enrolled a relatively larger number of cases, many of which were clinically non-severe, raises the possibility that
non-VST replacement disease is more likely to cause mild than severe clinical disease. It is also possible that in one or both studies, the more specific outcomes were not a complete subset of more sensitive outcomes, as this was difficult to confirm from the methods provided in the manuscripts. Regardless, though, 24 of 27 calculated VPDI ratios were >1. This suggests that, to the extent that PCV introduction might cause an increase in clinically defined outcomes due to non-VST disease, this is more than compensated for by reductions in clinically defined outcomes due to reductions in VST disease.

Our study had several strengths such as the systematic nature of the review and inclusion of only RCTs. We also had several limitations. Results were not always consistently reported in the original publications (e.g., person-time information was missing from some studies) meaning that several high-quality trials had to be excluded, and even within included studies, not all outcomes of interest could be calculated. This resulted in the inclusion of only ten trials, which limits the strength of our conclusion. We hope that publication of this review will prompt investigators in the future to include data necessary to calculate VPDI for clinical outcomes. These clinical trials were conducted mostly in high- and medium-income countries (9/10) as only one low-income country was included. As we did not have access to original databases, we relied on the precision of estimates reported in studies, which may have reduced the precision of calculated results, including VPDI ratios. In one study, the sensitive outcome for IPD was based on ICD codes that might involve misclassification of IPD, potentially overestimating the VPDI ratio (e.g., by including non-invasive cases). In addition, our results indicate the additional public health value of considering clinically defined outcomes among directly immunized persons, while a full accounting of PCVs value also should include indirect protection of unimmunized persons [27]. The data described in
this study were mostly obtained from pneumococcal vaccine-naïve populations. As introduction of pneumococcal vaccination into pediatric national immunization programs is becoming more widespread globally, and as expanded valency PCVs further reduce pneumococcal disease, VPDI ratios could increase further or decrease depending on availability of more sensitive and specific diagnostic tests, frequency of CXR use, and other factors. The availability of only one adult study may limit generalizability of our findings in non-pediatric populations. Finally, while inclusion of only RCTs increased methodological rigor, it has the limitation that results may differ from real-world vaccine use, for example, due to inclusion of all persons regardless of underlying diseases or completion of vaccination schedule. Where possible, we also excluded populations at higher risk of pneumococcal disease. The higher underlying pneumococcal disease burden in this group may result in a higher VPDI for the numerator or the denominator that could result in a higher or lower VPDI ratio. Consequently, our conclusions apply mostly to non-immunocompromised persons. Nevertheless, five out of ten trials included any subject, regardless of immune status.

Our results have several implications. We recognize that vaccine efficacy against etiologically or radiologically confirmed outcomes should remain the primary regulatory outcome for vaccine licensure. To better assess the preventable disease burden, vaccine technical committees might also consider VPDI for the most sensitive available outcomes when informing decision-making on immunization policy. As vaccine technical committees need to make decisions based on public health value, vaccine RCTs – whether phase III or IV – should always include sensitive clinical outcomes, even if these are designated as exploratory. To encourage this, regulatory agencies should consider inclusion of broader
clinical outcomes in product labels, as was recently done by the European Medicines Agency for PCV13 and adult CAP [28]. In the future, standardized clinical outcome case definitions should be developed to improve comparison and interpretation of results, and studies should seek to understand the specific mechanisms driving the additional disease reduction for clinical outcomes.
Notes:

Authors contributions:

BDG designed the study with input from all other authors. GH, MB and KB conducted the systematic literature review and data extraction. KB performed all analyses. All authors provided input in the interpretation of the results. KB wrote the first version of the manuscript. All authors critically reviewed the first draft and subsequent revisions and approved the final version.

Acknowledgements

The authors like to thank Ana Goios (P95) for help with figure 2.

Funding:

This study, supported by Pfizer Inc., was a research collaboration between Pfizer Inc. and P95, and as such has co-authors from both organizations, with all co-authors contributing to the conception, design, analysis, and interpretation of the data, the drafting and revising of the manuscript for important intellectual content, the decision to publish, and final approval.

Conflict of interest:

KB, GH and MB are employees of P95 Epidemiology & Pharmacovigilance. P95 received consulting fees from Pfizer Inc. for the work reported in this paper. MAF, JAS and BDG are Pfizer Inc. employees, and as such, they may hold company stock.

Availability of data and materials: The datasets used for the current study are provided as supplemental file.
References

1. Troeger C, Blacker B, Khalil I A, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018; 18(11): 1191-210.

2. Hyde TB, Dentz H, Wang SA, Burchett HE, Mounier-Jack S, Mantel CF. The impact of new vaccine introduction on immunization and health systems: a review of the published literature. Vaccine 2012; 30(45): 6347-58.

3. Gessner BD, Feikin DR. Vaccine preventable disease incidence as a complement to vaccine efficacy for setting vaccine policy. Vaccine 2014; 32(26): 3133-8.

4. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine 2009; 6(7): e1000097.

5. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic Reviews 2016; 5: 210.

6. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed) 2019; 366: l4898.

7. Sahai H, Khurshid A. Statistics in epidemiology: methods, techniques, and applications. Boca Raton, Florida: CRC Press Inc., 1996.

8. Efrom B, Tibshirani R. An introduction to the bootstrap. Boca Raton, Florida: Chapman & Hall/CRC, 1993.
9. Black SB, Shinefield HR, Ling S, et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. The Pediatric infectious disease journal 2002; 21(9): 810-5.

10. Cutts FT, Zaman SM, Enwere G, et al. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet (London, England) 2005; 365(9465): 1139-46.

11. Eskola J, Kilpi T, Palmu A, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. The New England journal of medicine 2001; 344(6): 403-9.

12. Kilpi TM, Jokinen J, Puumalainen T, et al. Effectiveness of pneumococcal Haemophilus influenzae protein D conjugate vaccine against pneumonia in children: A cluster-randomised trial. Vaccine 2018; 36(39): 5891-901.

13. Lucero MG, Nohynek H, Williams G, et al. Efficacy of an 11-valent pneumococcal conjugate vaccine against radiologically confirmed pneumonia among children less than 2 years of age in the Philippines: a randomized, double-blind, placebo-controlled trial. The Pediatric infectious disease journal 2009; 28(6): 455-62.

14. Madhi SA, Kuwanda L, Cutland C, Klugman KP. The impact of a 9-valent pneumococcal conjugate vaccine on the public health burden of pneumonia in HIV-infected and -uninfected children. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005; 40(10): 1511-8.

15. Palmu AA, Jokinen J, Nieminen H, et al. Vaccine-preventable disease incidence of pneumococcal conjugate vaccine in the Finnish invasive pneumococcal disease vaccine trial. Vaccine 2018; 36(14): 1816-22.

16. Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet (London, England) 2006; 367(9512): 740-8.
17. Tregnaghi MW, Saez-Llorens X, Lopez P, et al. Efficacy of pneumococcal nontypable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in young Latin American children: A double-blind randomized controlled trial. PLoS medicine 2014; 11(6): e1001657.

18. Gessner BD, Jiang Q, Van Werkhoven CH, et al. A public health evaluation of 13-valent pneumococcal conjugate vaccine impact on adult disease outcomes from a randomized clinical trial in the Netherlands. Vaccine 2019; 37(38): 5777-87.

19. Pride MW, Huijts SM, Wu K, et al. Validation of an immunodiagnostic assay for detection of 13 Streptococcus pneumoniae serotype-specific polysaccharides in human urine. Clinical and vaccine immunology : CVI 2012; 19(8): 1131-41.

20. Blake A, Njanpop-Lafourcade BM, Telles JN, et al. Evaluation of chest radiography, lytA real-time PCR, and other routine tests for diagnosis of community-acquired pneumonia and estimation of possible attributable fraction of pneumococcus in northern Togo. Epidemiol Infect 2017; 145(3): 583-94.

21. Ferrero F, Nascimento-Carvalho CM, Cardoso MR, et al. Radiographic findings among children hospitalized with severe community-acquired pneumonia. Pediatr Pulmonol 2010; 45(10): 1009-13.

22. Feldman C. Pneumonia in the elderly. Med Clin North Am 2001; 85(6): 1441-59.

23. Fancourt N, Deloria Knoll M, Barger-Kamate B, et al. Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2017; 64(suppl_3): S253-s61.

24. Wortham JM, Gray J, Verani J, et al. Using Standardized Interpretation of Chest Radiographs to Identify Adults with Bacterial Pneumonia--Guatemala, 2007-2012. PloS one 2015; 10(7): e0133257.

25. Izadnegahdar R, Cohen AL, Klugman KP, Qazi SA. Childhood pneumonia in developing countries. The Lancet Respiratory medicine 2013; 1(7): 574-84.
26. Viasus D, Calatayud L, McBrown MV, Ardanuy C, Carratalà J. Urinary antigen testing in community-acquired pneumonia in adults: an update. Expert review of anti-infective therapy 2019; 17(2): 107-15.

27. Klugman KP, Rodgers GL. Population versus individual protection by pneumococcal conjugate vaccination. Lancet (London, England) 2019; 393(10186): 2102-4.

28. European Medicines Agency (EMA). European Public Assessment Report for Prevenar 13. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/prevenar-13.
Table 1. Characterization of randomized placebo-controlled pneumococcal conjugate vaccine trials.

Study	Trial Number	Country (a)	Vaccine Formulation (b)	Schedule	Analysis	Study Period	Pediatric NIP (c)	Study Population
Black, 2002	N.S.	US	PCV7 (Pfizer)	3p+1 (2, 4, 6, 12-15 mo)	ITT	1995-1999	No	Children (< 1yr), healthy
Cutts, 2005	ISRCTN46147225	GM	PCV9 (Pfizer)	3p+0 (6, 10, 14 wks)	PP	2000-2005	No	Children (< 1yr), healthy
Eskola, 2001	NCT00378417	FI	PCV7 (Pfizer)	3p+1 (2, 4, 6, 12 mo)	PP	1995-1999	No	Children (< 1yr)
Gessner, 2019	NCT744263	NL	PCV13 (Pfizer)	1 dose (≥ 65 yr)	ITT	2008-2013	Yes	Adults (≥65 yr), no i.c.
Kilpi, 2018	NCT00861380 / NCT00839254	FI	PCV10 (GSK)	2p+1 or 3p+1 (< 7 mo at d1)	ITT	2009-2011	No	Children (< 1 yr)
Lucero, 2009	ISRCTN62323832	PH	PCV11 (Sanofi)	3p+0 (6, 10, 14 wks)	ITT	2000-2004	No	Children (< 1 yr), healthy
Madhi, 2005	N.S.	ZA	PCV9 (Pfizer)	3p+0 (6, 10, 14 wks)	ITT	1998-2001	No	Children (< 1yr), HIV-
Palmu, 2018	NCT00861380 / NCT00839254	FI	PCV10 (GSK)	2p+1 or 3p+1 (< 7 mo at d1)	ITT	2009-2012	No	Children (< 1yr)
Prymula, 2006	NCT00119743	CZ, SK	PCV11 (GSK)	3p+1 (2, 4, 6, 12-15 mo)	PP	2000-2002	No	Children (< 1yr), healthy
Tregnagli, 2014	NCT00466947	PA, AR, CO	PCV10 (GSK)	3p+1 (2, 4, 6, 12-15 mo)	ITT	2007-2011	No	Children (< 1yr), healthy

Abbreviations: d, dose; i.c., immunocompromized; ITT, intention-to-treat; mo: months; NIP, National Immunization Program; N.S., not specified; PP, per-protocol; p, primary doses; wks, weeks; yr, year

(a) Country: AR, Argentina; CO, Colombia; CZ, Czech Republic; FI, Finland; GM, Gambia; NL, Netherlands; PA, Panama; PH, Philippines; SK, Slovakia; ZA, South Africa

(b) PCV7, PCV9, PCV11, and PCV13 refer to 7-, 9-, 11-, and 13valent pneumococcal conjugate vaccines; Vaccine serotype: PCV7, [4, 6B, 9V, 14, 18C, 19F, 23F]; PCV9 [PCV7 + 1, 5]; PCV10 [PCV9 + 7F]; PCV11 [PCV9 + 3, 7F]; PCV13 [PCV11 + 6A, 19A]

(c) National immunization program (NIP) (PCV7, PCV9) at the time of the study; (d) Studies reporting on the same trial; (e) Vaccines formulations were not licensed; (f) Study involving HIV+ and HIV- subjects. This review reports on HIV- subjects only.

21
Table 2. Outcomes of randomized placebo-controlled pneumococcal conjugate vaccine trials organized by clinical syndromes and outcomes.

Otitis Media (OM)

Outcome (a)	Episodes	OM clinical diagnosis (O-5)	Confirmed by MEF detection (O-4)	Any bacteria identification (O-3)	Sp identification (O-2)	VST Sp identification (O-1)
Eskola, 2001 [10]	All	X	X		X	X
Prymula, 2006 [15]	All	X	X	X	X	X
Tregnaghi, 2014 [16]	All	X		X	X	X

Pediatric Pneumonia or Adult Pneumonia

Outcome (a)	Episodes	LRTI clinical diagnosis (P-5)	Pneumonia clinical diagnosis (P-4)	Confirmed by X-ray (P-3)	Sp identification (P-2)	VST Sp identification (P-1)
Black, 2002 [8]	First	X		X		
Cutts, 2005 [9]	First	X		X		
Gessner, 2019 [17]	All	X	X	X	X	X
Kilpi, 2018 [11]	All	X		X	X	X
Lucero, 2009 [12]	First	X		X		
Madhi, 2005 [13]	First	X	X	X	X	X
Tregnaghi, 2014 [16]	First	X		X		

Invasive Pneumococcal Disease (IPD)

Outcome (a)	Episodes	ICD-defined IPD or uns. sepsis (I-2)	Sp identification (I-1)
Palmu, 2018 [14]	All	X	X

(a) Nomenclature used for levels of outcomes hierarchically organized within clinical syndromes is as follows: O for otitis media, P for pneumonia, and IPD for invasive pneumococcal disease. Numbering varies by clinical syndromes from 1 up to 5, where 1 is most specific outcome; the highest number within the clinical syndrome corresponds to the most sensitive outcome.

Abbreviations: ICD, international classification of disease; IPD, invasive pneumococcal disease; LRTI, lower respiratory tract infection; MEF, middle-ear fluid; OM, otitis media; Sp, Streptococcus pneumoniae; VST, vaccine serotype; uns., unspecified.
Table 3. Vaccine-preventable disease incidence (VPDI) ratios calculated from randomized placebo-controlled pneumococcal conjugate vaccine trials organized by clinical syndromes.

Study	Vaccine, population (a), schedule	Vaccine Group (Level (b))	Control Group (Level (b))	VPDI [95%CI] (/1000py)	VPDI [95%CI] (/1000py)	Ratio VPDI [95%CI]
Otitis Media (OM)						
Eskola, 2001 [10]	PCV7, ped., 3p+1	OM clinical (O-5)		1251 (1078)	1345 (1085)	80.0, [12.3;172.3]
Prymula, 2006 [15]	PCV11, ped., 3p+1	OM clinical (O-5)		333 (3658)	499 (3882)	44.4, [30,58.9]
Trengnaghi, 2014 [16]	PCV10, ped., 3p+1	OM clinical (O-5)		254 (9018)	308 (8835)	6.7, [15.11.9]
Pediatric pneumonia						
Black, 2002 [8]	PCV7, ped., 3p+1	Pneumo clinical (P-4)		1712 (39354)	1804 (39378)	2.3, [-0.5,3.3]
Cutts, 2005 [9]	PCV9, ped., 3p+1	Pneumo clinical (P-4)		2172 (9382)	2284 (9191)	17, [2.9,31.1]
Kili, 2018 [11]	PCV10, ped.	Pneumo clinical (P-4)		197 (40612)	271 (20376)	3.5, [1.7,5.3]
Lucero, 2009 [12]	PCV11, ped., 3p+0	Pneumo clinical (P-4)		1093 (10280)	1080 (10234)	-0.8, [-9.7,8.1]
Madhi, 2005 [13]	PCV9, ped., 3p+0	LRTI clinical (P-5)		1033 (43338)	1106 (43293)	1.7, [-0.4,3.8]
Trengnaghi, 2014 [16]	PCV10, ped., 3p+1	Pneumo clinical (P-4)		2667 (31480)	2880 (31265)	7.4, [2.7,12]
Adult pneumonia						
Gessner, 2019 [17]	PCV13, ad., 1d	Pneumo clinical (P-4)		1375 (167874)	1495 (167748)	0.7, [0.1,1.3]
Palmu, 2018 [14]	PCV10, ped., 2p+1 or 3p+1	Clin. susp. IPD (I-2)		2.9	Confirmed IPD (I-1)	0.8, [0.3,1.2]

(a) Numerator: numerator of vaccine group; Denominator: numerator of control group; VPDI: vaccine-preventable disease incidence; 95%CI: 95% confidence interval; VPDI ratio: ratio of Vaccine Group to Control Group; N.C.: not calculated.

(b) Level of evidence: 1: high level; 2: moderate level; 3: low level.

(c) Enumerated outcomes:
- (P): Pneumo clinical
- (O): Otitis Media clinical
- (Pn): Pneumonia clinical
- (LRTI): LRTI clinical
- (X): Pneumo clinical
- (VST): VST Sp (P
- (Sp): Any bacteria (P
- (VPDI): Vaccine-preventable disease incidence
- (N.): N.C.

(d) Denominator: denominator of vaccine group; Numerator: numerator of control group; VPDI: vaccine-preventable disease incidence; 95%CI: 95% confidence interval; VPDI ratio: ratio of Vaccine Group to Control Group; N.C.: not calculated.

(e) Level of evidence: 1: high level; 2: moderate level; 3: low level.

(f) Enumerated outcomes:
- (P): Pneumo clinical
- (O): Otitis Media clinical
- (Pn): Pneumonia clinical
- (LRTI): LRTI clinical
- (X): Pneumo clinical
- (VST): VST Sp (P
- (Sp): Any bacteria (P
- (VPDI): Vaccine-preventable disease incidence
- (N.): N.C.

(g) Denominator: denominator of vaccine group; Numerator: numerator of control group; VPDI: vaccine-preventable disease incidence; 95%CI: 95% confidence interval; VPDI ratio: ratio of Vaccine Group to Control Group; N.C.: not calculated.

(h) Level of evidence: 1: high level; 2: moderate level; 3: low level.

(i) Enumerated outcomes:
- (P): Pneumo clinical
- (O): Otitis Media clinical
- (Pn): Pneumonia clinical
- (LRTI): LRTI clinical
- (X): Pneumo clinical
- (VST): VST Sp (P
- (Sp): Any bacteria (P
- (VPDI): Vaccine-preventable disease incidence
- (N.): N.C.

(j) Denominator: denominator of vaccine group; Numerator: numerator of control group; VPDI: vaccine-preventable disease incidence; 95%CI: 95% confidence interval; VPDI ratio: ratio of Vaccine Group to Control Group; N.C.: not calculated.

(k) Level of evidence: 1: high level; 2: moderate level; 3: low level.

(l) Enumerated outcomes:
- (P): Pneumo clinical
- (O): Otitis Media clinical
- (Pn): Pneumonia clinical
- (LRTI): LRTI clinical
- (X): Pneumo clinical
- (VST): VST Sp (P
- (Sp): Any bacteria (P
- (VPDI): Vaccine-preventable disease incidence
- (N.): N.C.

(m) Denominator: denominator of vaccine group; Numerator: numerator of control group; VPDI: vaccine-preventable disease incidence; 95%CI: 95% confidence interval; VPDI ratio: ratio of Vaccine Group to Control Group; N.C.: not calculated.

(n) Level of evidence: 1: high level; 2: moderate level; 3: low level.
Abbreviations: ad., adult; CI, confidence interval; IPD, invasive pneumococcal disease; LRTI, lower respiratory tract infection; MEF, middle-ear fluid; N.C., not calculated; OM, otitis media; ped, pediatric; py, person year; Sp, Streptococcus pneumoniae; unsp., unspecified; VPDI, vaccine-preventable disease incidence; VST, vaccine-type

(a) PCV7, PCV9, PCV11, and PCV13 refer to 7-, 9-, 11-, and 13-valent pneumococcal conjugate vaccines; Vaccine serotype: PCV7, [4, 6B, 9V, 14, 18C, 19F, 23F]; PCV9 [PCV7 + 1, 5]; PCV10 [PCV9 + 7F]; PCV11 [PCV9 + 3, 7F]; PCV13 [PCV11 + 6A, 19A]

(b) Levels for ratios are based on illustrations in Figure 2. Numbers of levels vary by clinical syndromes: O for otitis media, P for pneumonia, and IPD for invasive pneumococcal disease. Numbering varies from 1 up to 5, where 1 is most specific outcome; the highest number within the clinical syndrome corresponds to the most sensitive outcome.

(c) Insufficient information to compute confidence intervals.

(d) Ratio not calculated as the vaccine-preventable disease incidence was negative for the numerator and/or denominator.

(e) Confirmed by X-ray plus inflammatory marker/s.

(f) VPDI ratio was derived from incidences provided in the paper.
Figure legends

Figure 1. Prisma diagram

Figure 2. Illustrations of potential levels for outcomes, hierarchically organized within clinical syndromes.

Note. Nomenclature used for potential levels of outcomes hierarchically organized within clinical syndromes is as follows: O for otitis media, P for pneumonia, and I for invasive pneumococcal disease. Numbering varies by clinical syndromes from 1 to 5, where 1 is the least sensitive and most specific outcome. The highest number within the clinical syndrome corresponds to the most sensitive and least specific outcome.

Abbreviations: ICD – International Classification of disease; IPD – invasive pneumococcal disease; LRTI – lower respiratory tract infection; MEF – middle ear fluid; OM – otitis media; SENS – sensitivity; SPE – specificity; Sp – Streptococcus pneumoniae; VT – vaccine-type; uns - unspecified
Figure 1

Identification

Records in PubMed & Embase, n = 427
Number of duplicates, n = 56
Additional records identified, n = 0

Screening

Records screened, n = 371
Records excluded, n = 318

Eligibility

Full text assessed for eligibility, n = 53
Full text excluded, n = 24:
 Not original publication, n = 7
 Inappropriate population, n = 5
 Inappropriate intervention, n = 1
 Inappropriate comparator, n = 2
 Inappropriate outcome, n = 8
 Inappropriate study design, n = 1

Included

Studies included in data extraction, n = 29
Studies excluded, n = 19
 No multiple outcomes, n = 10

Studies included in analysis, n = 10
 No clinically diagnosed outcome, n = 5
 Incomplete information, n = 4
Clinical Syndrome	Levels	Type of Outcome	Outcome	Method or Source
A. Otitis Media	O-5	Clinical	OM clinical diagnoses	Clinical history and examination (including otoscopy)
	O-4	Clinical	Confirmed by MEF detection	Aspiration of MEF
	O-3	Microbiological	Any bacteria identification	Bacteria cultured from MEF or MEF culture
	O-2	Microbiological	Sp identification	Sp cultured from MEF
	O-1	Microbiological	VT/Sp serotype	Serotyping Sp
B. Pneumonia, Invasive and Non-Invasive	P-5	Clinical	LRTI clinical diagnosis	Clinical interview and examination
	P-4	Clinical	Pneumonia clinical diagnosis	Clinical interview and examination
	P-3	Radiological	Confirmed by X-ray	Visual reading of chest X-ray and blood laboratory tests
	P-3a	Radiological	+ Laboratory	Confirmed by X-ray + inflammatory markers
	P-2	Microbiological	Sp identification	Sp immunoassay in urine, d/f cultured from a normally sterile fluid or sputum, or serology
	P-1	Microbiological	VT/Sp identification	Sp VT specific immunoassay in urine or serotyping (Sp cultured from a normally sterile fluid)
C. Invasive Pneumococcal Disease Including Invasive Pneumonia	I-2	Clinical	IPD or unspec. sepsis clinical diagnosis	Laboratory or clinical records (ICD-codes)
	I-1	Microbiological	Sp identification	Sp identified from a normally sterile site

Note: Nomenclature used for potential levels of outcomes hierarchically organized within clinical syndromes is as follows: O for otitis media, P for pneumonia, and I for invasive pneumococcal disease. Numbering varies by clinical syndromes from 1 up to 5, where 1 is least sensitive and most specific outcome, the highest number within the clinical syndrome corresponds to the most sensitive and least specific outcome.

Abbreviations: Sp, Streptococcus pneumoniae; MEF, middle-ear fluid.