Decay of proton-rich nuclei between 39Ti and 49Ni

J. Giovinazzo1, B. Blank1, C. Borcea2, M. Chartier1, S. Czajkowski1, G. de France3, R. Grzywacz4a, Z. Janas4, M. Lewitowicz2, F. de Oliveira Santos3, M. Pfützner3, M.S. Pravikoff1, and J.C. Thomas1

1 Centre d’Etudes Nucléaires de Bordeaux-Gradignan, Le Haut-Vigneau, B.P. 120, F-33175 Gradignan Cedex, France
2 Institute of Atomic Physics, P.O. Box MG6, Bucharest-Margulea, Romania
3 Grand Accélérateur National d’Ions Lourds, B.P. 5027, F-14076 Caen Cedex, France
4 Institute of Experimental Physics, University of Warsaw, PL-00-681 Warsaw, Hoza 69, Poland

Received: date / Revised version: date

Abstract. Decay studies of very neutron-deficient nuclei ranging from 39Ti to 49Ni have been performed during a projectile fragmentation experiment at the GANIL/LISE3 separator. For all nuclei studied in this work, 39,40Ti, 42,43Cr, 45,46,47Fe and 48,49Ni, half-lives and decay spectra have been measured. In a few cases, γ coincidence measurements helped to successfully identify the initial and final states of transitions. In these cases, partial decay scheme are proposed. For the most exotic isotopes, 39Ti, 42Cr, 45Fe and 49Ni, which are candidates for two-proton radioactivity from the ground state, no clear evidence of this process is seen in our spectra and we conclude rather on a delayed particle decay.

PACS. 2 7.40.+z – 2 1.10 Dr – 2 3.50.+z – 2 5.70 Mn

1 Introduction

Up to the $A = 50$ mass region, the proton drip-line has been reached experimentally. The observation of nuclei very close to this limit of existence was possible due to recent developments of projectile fragmentation facilities. Indeed, in the mass region we are interested in here, a recent experiment at the GSI/FRS facility allowed for the observation of 42Cr ($T_z = -3$) as well as of 45Fe and 49Ni ($T_z = -7/2$) [1]. During an experiment at the GANIL/LISE3 separator, the existence of these isotopes has been confirmed with increased statistics and 48Ni has been observed for the first time [2].

When going close to the proton drip-line, the emission of two protons from a nuclear state becomes possible. This decay mode is mainly sequential if the emission of one proton can occur to an intermediate state. This process has first been observed in the β^2p decay of 22Al [3]. Other two-proton emissions from an excited state have been studied, mainly in the region from $A = 20$ to 40 [4] [5] [6], but no evidence of a non-sequential decay could be pointed out.

If there is no accessible intermediate state, the sequential emission is forbidden, and the emission of the two protons is simultaneous. This situation mainly expected to occur from nuclear ground states. Then two cases are possible. Firstly, the decay may proceed via a three-body disintegration as observed for 12O [7] or 6Be [8]. Secondly, the nuclear state may decay via 2He emission and a strong angular and energy correlation between the two resulting protons may be expected. Up to now, this second process has never been observed experimentally.

In the $A \approx 50$ mass region, a specific interest arises for decay studies since several nuclei in this region are candidates for this correlated emission of two protons from the ground state: 39Ti, 42Cr, 45Fe, 48,49Ni [1] [2] [3]. In addition, full shell-model calculations in the fp-shell are now possible [4] and may allow for a valuable comparison with experimental results to improve our understanding of nuclear structure in this region and to deduce effective interactions.

In the present experiment, we have studied the decay of the isotopes 39,40Ti, 42,43Cr, 45,46Mn, 45,46,47Fe and 49Ni, for which only few experimental information was available. The nucleus studied in most detail prior to our experiment is 46Ti [5] [6] which will be used as a reference for calibration. For 39Ti, the half-life and the main decay branches, including the β^2p decay, have been observed previously [7] [8]. Some information, like rough lifetime estimates and a few delayed proton lines, is also available for 43Cr, 46Mn and 46,47Fe [10]. For the most exotic isotopes, 42Cr, 45Fe and 49Ni, only their existence was reported [1].

In the present work, we take advantage of the delayed proton emission to determine a precise half-life of the isotopes of interest. Many transitions by proton emission are observed, but only few of them could be placed in a partial decay scheme. For the most abundantly produced isotopes, some γ lines have been registered in coincidence with protons yielding valuable information on the decay schemes. Clearly identified transitions also allowed us to

* present address: Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
determine the position of the isobaric analog state (IAS) in some daughter nuclei and thus, by means of the isobaric multiplet mass equation (IMME), to get an estimate for the mass excess of the exotic emitter nuclei.

2 Experimental procedure

Neutron deficient nuclei have been produced in the fragmentation reaction of a $^{58}\text{Ni}^{26+}$ primary beam at 74.5 MeV/nucleon from the GANIL facility. The 230.6 mg/cm2 thick natural nickel production target and the 2.7 mg/cm2 carbon stripper were located between the solenoids of the SIS3 separator, including a shaped degrader (10.4 mg/cm2 of beryllium) at the intermediate focal plane and a Wien filter at the end of the LISE3 beam line.

The selected isotopes have been implanted in a silicon telescope. The telescope consisted (see figure 1) in two silicon detectors (ΔE_1 and ΔE_2) for energy-loss measurements (300 μm each, 600 and 30×30 mm2), the second one being position sensitive. The ions were implanted in a third silicon diode, E_3 (600 mm2 surface and 300 μm thickness). Two additional silicon detectors (E_4 with 450 mm2 surface and 700 μm thickness and E_5 with 600 mm2 surface and 6 mm thickness) were used to veto particles which were not stopped in the previous diodes. The use of two veto detectors is usually not required. However, it was initially planned to implant the ions of interest in the fourth detector and to use only the last one as a veto. This procedure had to be changed in order to correctly identify ^{48}Ni with a maximum of parameters (see 3). Therefore, no trigger was properly set up for radioactivity events in the E_3 detector. Radioactivity events were triggered only by β particles in the second and fourth detector leading to an efficiency of $(38 \pm 3)^\%$ (see below). For each of the detectors E_2, E_3, and E_4, two electronic chains with different amplification gains were used for implantation and radioactivity events.

The isotope identification was achieved by energy-loss and residual-energy measurements in the telescope and by time of flight measurements. Details of the identification procedure are given in ref. [2].

This setup was surrounded by three germanium detectors, a single cristal and two four-cristal clovers. The total efficiency was measured to be 1.12% at 1.17 MeV. The γ detectors were only used for coincidences and did not appear in the trigger logic of the acquisition.

3 Data analysis

As described in the paper on the ^{48}Ni observation [2], the identification of isotopes is performed on the basis of a total-energy versus energy-loss matrix. For this purpose, the low-gain electronic chains for the E_1, E_2, and E_3 detectors were calibrated by means of simulations with the LISE [22] program. Additional conditions were imposed on the position in the E_2 detector, the different times of flight, and the signals in the veto detector.

A clock with a 100 μs step was used for time correlations between radioactivity and implantation events. In the analysis, each radioactivity event following an implantation is taken into account as long as no further implantation did occur. Although the implantation rate was about 10 ions per second in the E_3 detector, most of those isotopes lie much closer to stability (with long half-lifes) and do not emit delayed protons. Consequently, the correlation procedure is stopped only after the implantation of a relatively exotic nucleus defined by a large window around nuclei of interest in the $\Delta E - E$ matrix. Simulations have been performed using the experimental time distributions i for all nuclei and ii for the most exotic ones only. They clearly demonstrated that the determination of half-lives lower than 100 ms do not require any correction for the cut introduced by following implantations. A correction would be needed, on the contrary, if this cut were performed by any implantation instead of the most exotic ones only.

In order to reduce the background from the decay of long-lived isotopes accumulated in the implantation detector, we will analyse proton energy distributions with a condition on events above 1 MeV. This cut removes almost all β events that represent the main background, while most of the proton strength is distributed at higher energies.

The fits for half-life determination are performed with the maximum-likelihood method from the PAW/MINUIT software [23]. When the proton emission feeds a nucleus that does not decay by proton emission, i.e. there is no contamination from protons of the daughter decay in the energy spectrum, an exponential function with a constant background is used for the fit. This concerns the decays of $^{40,39}\text{Ti}$, ^{43}Cr, ^{46}Mn and ^{47}Fe. For the other isotopes,
42Cr, 46,45Fe and 49Ni, the delayed proton emission from the daughter nucleus is included in the fitting procedure. The error bars include statistical and systematic errors. The systematic errors are mainly due to the time window used for the fitting procedure and to the proton energy cut. These systematic errors were determined by changing both the time and energy cuts. They vary between 20% and 50% of the total error.

The proton energy calibration is obtained from the peaks at 1702, 2162 and 3733 keV in the decay of 40Ti [16, 17]. Due to the summing of proton and β particles energies, the proton peaks have to be fitted with a Gaussian and an exponential tail plus an exponential background due to lower-energy proton groups. 40Ti together with 43Cr is also used to estimate the trigger efficiency for radioactive events after implantation. This efficiency is estimated from the fit of the decay time distribution: The number of counts for events with an energy above 1 MeV is compared to the number of implantations. With the additional information that, for 40Ti, the total proton branching ratio above 1 MeV is (97 ± 2)% [16], we deduce a detection efficiency $\epsilon_P = (39 ± 2)%$ from the decay of this nucleus. Due to the high Q_{EC} value (∼16 MeV) and the low proton separation energy of only about 200 keV in 43V, we assume that (95 ± 5)% of the decay of 43Cr proceeds by delayed particle emission. The resulting detection efficiency for radioactive events is then $\epsilon_P = (37±2)%$. In the following, we will use a mean value of $\epsilon_P = (38±3)%$ for the trigger efficiency for radioactive events.

4 Results

4.1 The decay of 40Ti

As mentioned above, 40Ti is used as a reference since its decay has already been studied extensively [13, 14]. The proton-energy and decay-time distributions are presented in figure 2a. For energy calibration, peaks 2, 3 and 4 have been fitted. The relative intensities are reported in table 1 and are in good agreement with previous experiments. In the present experiment, the γ detection efficiency was too low to observe the 2469 keV line in 39Ca in coincidence with the 1330 keV proton peak mentioned by Liu et al. [16] and Bhattacharya et al. [13].

The half-life is estimated by fitting the distribution with an exponential decay and a constant background, since there is no contribution from the decay of the daughter nucleus. The resulting value of $T_{1/2} = (53.5 ± 2.5)$ ms is in good agreement with previous measurements and close to theoretical predictions (see table 1).

4.2 The decay of 39Ti

The limited statistics of the present work as well as of the work from Détraz et al. [13] and Moltz et al. [15] does not allow for a detailed comparison of the energy spectra. However, from the proton spectrum in figure 3a, it seems to be likely that the peak at (4880 ± 40) keV (marked as 4) corresponds to the β2p decay to the ground state of 37K as already observed by Détraz et al. and Moltz et al. This energy is 130 keV higher than in the work of Moltz et al. [18] and leads to an excitation energy of the isobaric analogue state (IAS) in 39Sc of (8.96 ± 0.06) MeV. From this result, we deduce a mass excess for this analog state of $\Delta m = (-5210 ± 85)$ keV. Using the mass excess of the 39Cl ground state ($\Delta m = -29799$ keV) and of the 39Ar IAS ($\Delta m = -31334$ keV), the mass excess resulting from the isobaric multiplet mass equation (IMME) for 39Ti is $\Delta m = 1790 ± 90$ keV, with IMME coefficients in agreement with what is expected from a calculation with a uniformly charged sphere [6].

From this result, it follows that 39Ti is unbound by 670 keV with respect to two-proton emission. This is in nice agreement with several theoretical Q_{2p} values given in table 1. When we use the mass excess of the IAS in 39Sc as determined in the present work to calculate the coefficients of the IMME for the $A = 39, T_z = -5/2$ nuclei, we get coefficients which are somewhat closer to the result expected from a uniformly charged sphere (the expected ratio is 1, our value is 1.1 ± 0.2) as when using the result of Moltz et al. (1.2 ± 0.2). However, as the error bars are large, no final conclusion is possible.

Although other proton groups are visible in the spectrum of figure 3a, no further transition can be clearly iden-
Table 1. Branching ratios of main proton lines in the decay of 40Ti. The results of the present work are compared to data from literature.

peak number	E_p (keV)	b_p (%)	E_p (keV)	b_p (%)	E_p (keV)	b_p (%)
1	1332 (25)	5.8 (20)	1322 (25)	4.35 (82)	1325 (7)	3.58 (61)
2	1703 (10)	21.7 (30)	1705 (10)	22.5 (21)	1701 (6)	23.8 (6)
3	2154 (9)	27.4 (36)	2167 (10)	28.5 (19)	2160 (6)	29.8 (7)
4	3736 (14)	23.8 (36)	3731 (10)	22.8 (19)	3734 (7)	21.7 (5)

Table 2. Comparison of two-proton separation energies for 39Ti from the present work with theoretical predictions and with the experimental datum from Moltz et al.

reference	S_{2p} (keV)
this work	-670 ± 100
Moltz et al.	-530 ± 65
Brown	-657
Cole	-798 ± 39
Ormand	-666 ± 107

Table 3. Branching ratios and decay energies of the main proton lines in the decay of 39Ti. Peak 4 is suggested to correspond to the $\beta^2 p$ decay to the ground state in 37K via the IAS in 39Sc.

peak num	energy (keV)	branching (%)
1	2440 (25)	8.0 (50)
2	3575 (30)	6.5 (45)
3	3990 (30)	7.3 (45)
4	4880 (40)	12.5 (65)

4.3 The decay of 43Cr

The proton-energy distribution of the decay of 43Cr is shown in figure 4. Using the mass evaluation of Audi and Wapstra, we assign the charged-particle peak labelled 9 to the $\beta^2 p$ decay via the IAS in 43V to the ground state in 41Sc. This interpretation is supported by the fact that this peak has a somewhat larger width than those for other transitions which might be explained by the different relative angles between the two protons yielding different recoil energies for the heavy fragment. As the energy loss of the heavy recoil is subject to a strong pulse height defect, two-proton lines are usually broadened. From this information, the excitation energy of the IAS in 43V is deduced to be $(8250 \pm 25 \pm 230)$ keV, where the second uncertainty comes from the 43V mass extrapolation.

The γ-energy distribution (see fig. 5) in coincidence with protons shows a strong γ line at (1553.5 ± 1.0) keV. As shown in figure 5, this γ peak shows up in coincidence with all charged-particle peaks all over the decay-energy.
distribution. As this γ ray de-excites the first excited state in 42Ti, we conclude on only a very small proton branching to the ground state of 42Ti.

Another line at (1938 ± 2) keV is seen in coincidence with the charged-particle peak 10 at $E = 4590$ keV (see fig. 5b). Such a γ transition is neither known in 42Ti (β^p daughter) nor in 41Sc (β^{2p} daughter). If we assume that the β feeding above the IAS in 43V is weak, the 4590 keV peak can not originate from a β^{2p} decay, as the Q value for a transition from the IAS to the 41Sc ground state is only about 4 MeV. A consistent picture arises if we assume that the 4590 keV line links the IAS to an excited state in 42Ti at 3492 keV. This state would decay by a γ cascade of the 1938 keV and the 1554 keV γ-rays. Such a level is not known in 42Ti, but this might be explained by the fact that this nucleus is only poorly studied. In the mirror nucleus 42Ca, a $I^\pi = 3^-$ level is known at 3446.96 MeV which indeed decays by a cascade of γ rays of 1922.18 keV and 1524.73 keV. However, if the assumed spins (see figure 6) are correct, such a transition would be a $\ell = 1$ transition and should be suppressed. Nevertheless, such a hypothesis leads to an excitation energy of the IAS in 43V of $(8255 \pm 25 \pm 230)$ keV. With this information, we propose the partial decay scheme shown in figure 6.

The half-life of 43Cr was determined in the usual way with a condition on the charged-particle spectrum to select events with a decay energy above 1 MeV. We deduce a half-life of $T_{1/2} = (21.6 \pm 0.7)$ ms (see fig. 4b). This value is in agreement with but much more precise than the value from Borrel et al. [19] of 27^{+32}_{-10} ms.

4.4 The decay of 42Cr

The isotope 42Cr is a possible candidate for two-proton radioactivity. However, according to all theoretical predictions [11,12,13], its Q_{2p} value is probably too small for
Fig. 6. Partial decay scheme for 43Cr as deduced from the present work.

a detectable two-proton branching ratio. Our experimental results are in agreement with this expectation. When inspecting the charged-particle spectrum in figure 7a, b, the most prominent peak is the line at 1.9 MeV. If this peak were due to two-proton radioactivity, the barrier-penetration half-life of 42Cr would be of the order of 10^{-12} s, orders of magnitude lower than the flight time from the production target to the detector, and this isotope would decay on its flight through the separator (see figure 8). The observation of 42Cr in our experiment and in previous work rejects several models predicting 42Cr highly unbound with Q_{2p} values of 1 MeV and higher.

Another hint against a two-proton decay of 42Cr is the half-life determined for charged-particle events with an energy above 1 MeV (figure 7c). Our experimental data yield a half-life of $T_{1/2} = 13.4^{+3.6}_{-2.4}$ ms. Such a half-life is typical for a β decay in this region. We therefore conclude that 42Cr is decaying mainly by β-delayed charged-particle emission and that a possible two-proton radioactivity is very weak.

Each β decay of 42Cr is followed by a proton emission since the daughter nucleus, 42V, is unbound. In the case of a βp transition, the decay is followed by another βp emission from 41Ti with a half-life of (82 ± 3) ms [13]. In the proton spectrum of figure 7a, b, two cuts at $t = 200$ ms and $t = 27$ ms (corresponding to two half-lives) have been performed in order to discriminate contributions from 41Ti and 42Cr. From this analysis, we conclude that the charged-particle group at 1.9 MeV is due to the decay of 42Cr. However, due to too low statistics and therefore no coincident γ rays, we can not attribute this peak to a well defined transition.

Besides the peak at 1.9 MeV, no other pronounced structure appears in the spectrum. The transition strength located around 4 to 5 MeV is probably due to the daughter decay of 41Ti [14]. According to the structure of the mirror nucleus of 40Sc, the 2490 keV charged-particle line could be the $\ell = 0$ two-proton transition from the IAS to the first excited 0^+ state in 40Sc which, according to its mirror

Fig. 7. a, b) Decay-energy distribution in the decay of 42Cr. The histogram in part a) shows the decay energy for events decaying up to 200 ms after a 42Cr implantation, whereas the histogram in b) is due to events up to 27 ms corresponding to two half-lives. The short time cut favors mainly events from the short-lived 42Cr (see table 5), while the daughter decay contribute to the 200 ms histogram. c) Time distribution of decay events after implantation of 42Cr. The fit includes the contribution of the decay of 41Ti.

peak number	energy (keV)	branching ratio (%)
1	1500 (35)	9.2 (73)
2	1905 (20)	29.2 (100)
3	2490 (30)	9.2 (73)
4	3110 (20)	7.7 (42)
5	3715 (20)	6.2 (40)

Table 5. Branching ratios and decay energies of the main charged-particle groups in the decay of 42Cr. The peak numbers correspond to those used in figure 7b.

40K lies at around 1.6 MeV, but the statistics is too low to observe a coincident γ ray.

4.5 The decay of 46Mn

Fig 3a shows the decay-energy distribution of 46Mn. The expected positions for βp and $\beta 2p$ transitions via the IAS
in 46Cr to the ground states of 45V and 44Ti are indicated as determined from the mass evaluation of Audi and Wapstra [24], but no peak can be clearly identified. The spectrum rather resembles the typical bell-shaped proton distribution which is obtained when a high number of states is populated which then decay by proton emission (see e.g. [23]). Much higher statistics is needed to locate decay-energy peaks linked for example to the decay of the IAS.

For this isotope, the half-life is determined to be $T_{1/2} = 34.0^{+4.5}_{-3.3}$ ms. No subsequent decay by proton emission is expected to contaminate the decay-energy distribution above 1 MeV. This result is in agreement with a previous result from Borrel et al. [12] (see table 1). From the trigger efficiency and the number of counts in the decay-energy distribution, we deduce a total proton branching ratio of $P_p = (58 \pm 9)^\%$.

4.6 The decay of 47Fe

In figure 13a, we present our results for the charged-particle emission from 47Fe. We will analyse this spectrum together with the coincident γ-ray spectrum shown in figure 11. According to the structure of the mirror nucleus of the β-decay daughter 45Mn, we suppose that the transition at $E_p = (5975 \pm 25)$ keV (see fig. 11a) corresponds to the delayed proton emission from the IAS in 47Mn to the first 2^+ state in 46Cr. This assumption is supported by the coincident observation of a γ line at (892±1) keV (see fig. 11b) which most probably correspond to the $2^+ \rightarrow 0^+$ transition in 46Cr. In the mirror nucleus 46Ti, the 2^+ state has an excitation energy of 889.3 keV. Using the ground-state mass excess of 46Cr, we deduce an excitation energy of the IAS of $E^* = (6869 \pm 25 \pm 160)$ keV which is in nice agreement with the result above. We deduce a mean value for the position of this IAS of $E^* = (6868 \pm 35 \pm 160)$ keV. The observation of the two γ rays belonging to the ground-state rotational band of the even-even nucleus 46Cr is in agreement with what is expected from mirror symmetry.

According to the structure of the mirror nucleus of 46Cr, the strong proton transition around (3890 ± 25) keV may correspond to the decay of the IAS to states around 3 MeV excitation energy, where states with spin $J^\pi = 2^+, 3^-, 4^-$ are expected which could be fed by proton emission with low angular momentum ($\ell = 0, 1$) from the IAS. However, this strength can also result from proton emission by low-lying states in 47Mn populated by Gamow-Teller decays of 47Fe.

The βp transition via the IAS ($J^\pi = 7/2^-$) to the ground state of 45V is expected around 1915 keV. Some proton strength is observed at this energy, but no single peak can be clearly resolved. According to calculation by Detraz [7] the ratio between $\beta 2p$ and βp emission from the IAS is rather low (less than 0.05). This prediction is...
Fig. 10. a) Decay-energy spectrum of 47Fe. The arrows indicate the charged-particle groups from the decay of the IAS to the first and second excited state in 46Cr. b) Decay-time distribution of decay events after implantation of 47Fe. The half-life deduced is $T_{1/2} = (21.8 \pm 0.7)$ ms.

Fig. 11. γ-ray energies measured in coincidence with protons. Inserts a and b show the distribution of charged-particle events in coincidence with the 892 and 1095 keV γ lines in comparison to the complete decay-energy distribution.

in agreement with the absence of a strong β^2p peak in our experimental spectrum.

All protons in the charged-particle spectrum of figure 11a are due to the decay of 47Fe. We deduce the half-life in the usual way and obtained a value of $T_{1/2} = (21.8 \pm 0.7)$ ms which is in agreement with but more precise than a previous measurement [13]. As a final result, we determine the proton branching ratio to be $P_p = (87 \pm 6)\%$ for protons above 1 MeV. The resulting decay scheme is shown in figure 12.

4.7 The decay of 46Fe

For the $A=46, T=3$ nuclei, three members of the isobaric mass multiplet are probably known. We will use therefore the ground state of 46Ca, the 5.021 MeV state in 46Sc, and the 14.153 MeV state in 46Ti. For the IMME, we obtain the following mass excess values; (-43.135 ± 3) MeV (46Ca), (-36.738 ± 0.006) MeV (46Sc), and (-29.972 ± 0.007) MeV (46Ti). With these data, we get the mass excess values for 46Fe and for the IAS in 46Mn of (0.769 ± 0.115) MeV and (-7.468 ± 0.072) MeV, respectively. There is a slight uncertainty concerning the state in 46Ti, because there is a neighboring state at 14.300 MeV with a tentative assignment of $I^\pi = 0^+$.

However, whereas the 14.153 MeV state yields parameters close to those expected from a uniformly charged sphere [24] and a 46Fe ground state mass close to the mass evaluation of Audi and Wapstra [27], the 14.300 MeV state gives values far away from both criteria. Using these mass excess values, we expect the β^2p transition via the IAS to the ground state of 45Cr at about 4.65 MeV in the decay-energy spectrum. The β^2p transition to the ground state of 44V is expected at 1.8 MeV.

Figure 13a shows the charged-particle spectrum from the decay of 46Fe. No peak is seen for the β^2p transition to the ground state. This is in agreement with the calcu-
lations of Detraz [17] who predicts a ratio between β2p and βp of less than 10%.

Although we clearly have seen several charged-particle lines in the decay-energy spectrum of figure 13a, we cannot place any of them in a decay scheme. Proton-γ coincidences are necessary to identify the transitions involved.

The βp decay of 46Fe feeds states in 45Cr. The decay of this isotope has been studied by Jackson et al. [33] who identified a delayed proton branch with an energy of 2.1 MeV. This peak is visible in our spectrum. From the intensity of this peak and the known branching ratio for this 2.1 MeV proton group, we deduce a βp branching ratio of (36±20)% for 46Fe. As the expected β2p branching ratio is much smaller [17], more than 50% of the decay of this isotope is β-decaying levels or of the ground state of 46Mn seems to be rather high. From the mirror nucleus, only one I^+ level is expected in 46Mn at around 1 MeV which might not decay by proton emission. Using the mass excess of 46Fe as determined in the preceding paragraph, the mass excess of 46Mn [24] and the half-life of 46Fe (see below), a 50% branching ratio to a state at about 1 MeV corresponds to a log ft value of 3.2, much too small for a Gamow-Teller transition. A possible explanation for this discrepancy might be a much larger β2p strength. However, higher-statistics data are clearly needed to get a consistent picture for the decay of 46Fe.

Taking into account the daughter decay branches in 45Cr and 46Mn, the resulting half-life for 46Fe is $T_{1/2} = 12.0^{+4.2}_{-3.2}$ ms (fig. 13b) where the uncertainty is the quadratic sum of uncertainties coming from the fit, the daughter half-lives and the branching ratios.

4.8 The decay of 45Fe

According to theoretical predictions [11, 2, 3, 34], 45Fe together with 48Ni is the best candidate for two-proton radioactivity, i.e. a correlated emission of two protons from the ground state. In such a case, due to their low energy, the protons may not exit the implantation detector and we would measure only the sum energy of the decay. However, since the acquisition was triggered only by events in the implantation detector, these 2p events are lost and we should, in the case of a 2p radioactivity, only observe the βp decay of the daughter nucleus 44Cr.

In the decay-energy spectra of figure 14a, b, we distinguish again fast decays which occur within 12 ms after a 45Fe implantation and events occurring in a time interval up to 150 ms which should favour the observation of the daughter and grand-daughter decay. However, the very poor statistics prevents any conclusion based on this spectrum. Charged-particle groups would be expected at about 11.3, 8.5 and 8.3 MeV in the case of βp, β2p, or β3p transition via the IAS to the respective ground states. No counts are observed in these regions due to the fact that i) the proton emission might involve excited states in the granddaughter nuclei and ii) the proton peak efficiency decreases drastically for these high proton energies.

The most valuable information is probably contained in the decay-time distribution shown in figure 14c. The value is determined from a fit taking into account different possibilities for the daughter decay. The only contamination of the half-life determination comes from the daughter decay of 44Cr. However, as the decay characteristics of this nucleus are unknown, we assume that it might decay with a branching ratio between 0 and 20% by delayed-proton emission. This hypothesis is based on the decay properties of 52Ni [4] and 48Fe [35]. Our fitting procedure yields a half-life of $T_{1/2} = 6_{-2}^{+3}$ ms (fig. 14c). This rather rough estimate of the half-life may be compared to theoretical β-decay half-lives as shown in table 1. The theoretical values are compatible with our experimental data and indicate therefore that 45Fe might decay mainly by β decay and not by two-proton radioactivity. However, higher-statistics data are clearly needed before concluding on the main decay mode of this isotope.

4.9 The decay of 49Ni

Like 42Cr, 49Ni is a possible candidate for 2p radioactivity. However, similar to 42Cr, theoretical calculations predict
that this isotope should decay mainly or even exclusively by \(\beta \)-delayed charged-particle channels.

Figures 14a and 14b present the decay-energy and -time distribution for \(^{49}\)Ni. Although \(\beta \)-delayed charged-particle emission from the IAS in \(^{49}\)Co is energetically allowed (\(Q_β \sim 10.5 \), \(Q_{2p} \sim 7.3 \), and \(Q_{3p} \sim 7.2 \) MeV \(\left[25\right] \)), only one transition is clearly identified in the energy spectrum. The six events at around 3.7 MeV are clearly not due to 2p radioactivity, because in such a case the barrier-penetration half-life would be as short as \(10^{-16} \) s, many orders of magnitude smaller than the flight time through the LISE3 separator. This peak is rather due to a \(\beta \)-delayed charged-particle branch. However, due to the poor statistics for this nucleus, no coincident \(\gamma \) rays were observed. Therefore, we can not attribute the 3.7 MeV line to any well-defined transition.

To estimate the half-life of \(^{49}\)Ni, our experimental results do not allow to discriminate the different possible decay channels. Détraz \(\left[25\right] \) calculated a \(\beta 2p/\beta p \) ratio of 3 for this nucleus. If the decay proceeds by delayed one-proton emission to \(^{45}\)Fe, we expected a subsequent \(\beta p \) emission in less than 20% of the decays \(\left[24\right] \). The \(\beta 2p \) or \(\beta 3p \) channels are only followed by very weak delayed-particle emission channels. Therefore, taking into account a possible contamination from the \(\beta p \) decay of \(^{48}\)Fe in 0 to 10% of the decays of \(^{49}\)Ni, we obtain a half-life of \(T_{1/2} = 12^{+5}_{-3} \) ms. This value is in reasonable agreement with \(\beta \)-decay half-life calculations (see table 6). From this comparison we conclude, as from the decay-energy spectrum, that \(^{49}\)Ni most probably decays by \(\beta \) emission.

5 Concluding remarks

The present experiment performed at the GANIL/LISE3 facility using the fragmentation of a \(^{58}\)Ni primary beam yielded valuable spectroscopic information concerning the decay of nuclei in the region from titanium to nickel very close to or even beyond the proton drip-line. First half-life values have been determined for \(^{42}\)Cr, \(^{45}\)Fe and \(^{49}\)Ni. In addition, higher-precision values have been obtained for \(^{39}\)Ti, \(^{43}\)Cr, \(^{46}\)Mn and \(^{46,47}\)Fe.

Although only few transitions could be clearly identified, delayed-proton or two-proton emission was used to determine the excitation energy of the IAS in the decay of \(^{48}\)Cr and \(^{47}\)Fe. However, the precision obtained is strongly limited by the lack of precise ground-state mass excess values of isotopes involved in the decays. Despite the low detection efficiency, proton-\(\gamma \) coincidences proved to be a helpful tool to identify transitions in the decays of \(^{43}\)Cr.
and 47Fe and they give valuable information on the decay scheme and the daughter-nucleus structure.

One of the purposes of decay studies in this mass region is to search for two-proton radioactivity, since 39Ti, 42Cr, 45Fe and 48,49Ni are candidates to this decay process. We did not observe this process. However, an improved detection setup optimised for such a search, together with increased statistics should allow to search for such a decay mode especially in the decay of 45Fe, 48Ni, and 54Zn.

Acknowledgements

We would like to acknowledge the continuous effort of the GANIL accelerator staff to provide us with a stable, high-intensity beam. We express our sincere gratitude to the LISE staff for ensuring a smooth running of the LISE3 separator. This work was supported in part by the Polish Committee of Scientific Research under grant KBN 2 P03B 036 15, the contract between IN2P3 and Poland, as well as by the Conseil Régional d’Aquitaine.

References

1. B. Blank, S. Andrlemonje, S. Czajkowski, F. Davi, R. Del Moral, J. P. Dufour, A. Fleury, A. Musquère, M. S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfützner, A. Grewe, A. Heinz, A. Junghans, M. Lewitowicz, J.-E. Sauvestre, and C. Donzaud Phys. Rev. Lett. 74, 4611 (1995).
2. B. Blank, M. Chartier, S. Czajkowski, J. Giovinazzo, M. S. Pravikoff, J.-C. Thomas, G. de France, F. de Oliveira Santos, M. Lewitowicz, C. Borcea, R. Grzywacz, Z. Janas, and M. Pfützner Phys. Rev. Lett. 84, 1116, (2000).
3. M. D. Cable, J. Honkanen, R. F. Parry, S. H. Zhou, Z. Y. Zhou, and J. Cerny Phys. Rev. Lett. 50, 404 (1983).
4. M. D. Cable, J. Honkanen, E. Schloemer, M. Ahmed, J. E. Reiff, Z. Y. Zhou, and J. Cerny Phys. Rev. C 30, 1276 (1984).
5. R. Jahn, R. L. McGrath, D. M. Moltz, J. Reiff, X. J. Xu, J. Ayöstö, and J. Cerny Phys. Rev. C 31, 1576 (1985).
6. L. Axelsson, J. Ayöstö, M. Borge, L. Fraile, H. Fynbo, A. Honkanen, P. Hornshoj, A. Jokinen, B. Jonson, P. Lipas, I. Martel, J. Mukha, N. Nilson, G. Nyman, B. Petersen, K. Rissager, M. Smedberg, and O. Tengblad Nucl. Phys. A 628, 345 (1998).
7. V. Borrel, J. Jacmart, F. Poughnon, A. Richard, R. Anne, D. Bazin, H. Delagrange, C. Detraz, D. Guillemaud-Mueller, A. Mueller, E. Roeckl, M. Saint-Laurent, J. Dufour, F. Hubert, and M. Pravikoff Nucl. Phys. A473, 331 (1987).
8. J. Ayöstö, D. M. Moltz, X. Xu, J. Reiff, and J. Cerny Phys. Rev. Lett. 55, 1384 (1985).
9. R. A. Kryger, A. Azhari, M. Hellström, J. H. Kelley, T. Kubo, R. Pfaff, E. Ramakrishnan, B. M. Sherrill, M. Thoennessen, S. Yokoyama, R. J. Charity, J. Dempsey, A. Kirov, N. Robertson, D. G. Sarantites, L. G. Sobotka, and J. A. Winger Phys. Rev. Lett. 74, 860 (1995).
10. O. V. Bochkarev, A. A. Korsheninnikov, E. A. Kuz’min, I. G. Mukha, L. V. Chulkov, and G. B. Yan’kov Sov. J. Nucl. Phys. 55, 955 (1992).
11. B. A. Brown Phys. Rev. C 43, R1513 (1991).
12. W. E. Ormand Phys. Rev. C 55, 2407 (1997).
13. B. J. Cole Phys. Rev. C 54, 1240 (1996).
14. E. Caurier, A. P. Zuker, A. Poves, and G. Martinez-Pinedo Phys. Rev. C 50, 225 (1994).
15. A. G. M. Bhattacharya, N. I. Kalokamis, E. G. Adelberger, H. E. Swanson, R. Anne, M. Lewitowicz, M. G.
Saint-Laurent, W. Trinder, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A. C. Mueller, F. Pougheon, and O. Sorlin \textit{Phys. Rev. C} 58, 3677 (1998).

16. W. Liu, M. Hellstrom, R. Collatz, J. Benlliure, L. Chulkov, D. Cortina Gil, F. Farget, H. Grawe, Z. Hu, N. Iwasa, M. Pfitzner, A. Piechaczek, R. Raabe, I. Reusen, E. Roeckl, G. Van Craeynest, and A. W"ohr \textit{Phys. Rev. C} 58, 2677 (1998).

17. C. Détraz, R. Anne, P. Bricault, D. Guillemaud-Mueller, M. Lewitowicz, A. C. Mueller, Y. H. Zhang, V. Borrel, J. C. Jacmart, F. Pougheon, A. Richard, D. Bazin, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff \textit{Nucl. Phys. A} 519, 529 (1990).

18. D. M. Moltz, J. C. Batchelder, T. F. Lang, T. J. Ognibene, J. Cerny, P. E. Haustein, and P. L. Reeder \textit{Z. Phys. A} 342, 273 (1992).

19. V. Borrel, R. Anne, D. Bazin, C. Borcea, G. G. Chubarian, R. Del Moral, C. Détraz, S. Dogny, J. P. Dufour, L. Faux, A. Fleury, L. K. Fifield, D. Guillemaud-Mueller, F. Hubert, E. Kashy, M. Lewitowicz, C. Marchand, A. C. Mueller, F. Pougheon, M. S. Pravikoff, M. G. Saint-Laurent, and O. Sorlin \textit{Z. Phys. A} 344, 135 (1992).

20. A. Joubert et al. \textit{Proc. of the Second Conf. of the IEEE Particle Accelerator}, San Francisco, May 1991, 594.

21. A. C. Mueller and R. Anne \textit{Nucl. Instrum. Meth.} B56, 559 (1991).

22. O. Tarasov et al., \textit{Proc. 5th Conf. Radioactive Nuclear Beams}, Divonne, France, to be published \url{http://dnr080.jinr.ru/lise.html}.

23. CN/ASD Group, PAW Users Guide, CERN Program Library Q121, CERN (1993).

24. W. Benenson and E. Kashy \textit{Rev. Mod. Phys.} 51, 527 (1979).

25. W. E. Ormand \textit{Phys. Rev. C} 53, 214 (1996).

26. G. Audi and A. H. Wapstra \textit{Nucl. Phys. A} 625, 1 (1997).

27. A. Ratkowski \textit{Nucl. Instrum. and Meth.} 130, 533 (1975).

28. P. Haustein \textit{At. Data Nucl. Data Tab.} 39, 185 (1988).

29. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki \textit{At. Data Nucl. Data Tab.} 59, 185 (1995).

30. J. Duflou and A. Zuker \textit{Phys. Rev. C} 52, R23 (1995).

31. T. Tachibana, M. Yamada, and Y. Yoshida \textit{Prog. Theor. Phys.} 84, 641 (1990).

32. J. Giovinazzo, P. Dessagne, and C. Miehé \textit{Nucl. Phys. A} 674, 394, (2000).

33. K. P. Jackson, J. C. Hardy, H. Schmeing, R. L. Graham, J. S. Geiger, and K. W. Allen \textit{Phys. Lett. B} 49, 341 (1974).

34. L. Faux, S. Andriamonje, B. Blank, R. Del Moral, J. P. Dufour, A. Fleury, T. Josso, M. S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, K.-H. Schmidt, K. Sümmerer, W. Trinder, M. Weber, T. Brohm, H.-G. Clerc, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Röhl, S. Steinhäuser, B. Voss, and M. Pfitzner \textit{Nucl. Phys. A} 602, 167 (1996).

35. L. Faux, M. S. Pravikoff, S. Andriamonje, B. Blank, R. Del Moral, J.-P. Dufour, A. Fleury, C. Marchand, K.-H. Schmidt, K. Sümmerer, T. Brohm, H.-G. Clerc, A. Grewe, E. Hanelt, B. Voss, and C. Ziegler \textit{Phys. Rev. C} 49, 2440 (1994).

36. C. Détraz \textit{Z. Phys. A} 340, 227 (1991).

37. M. Hirsch, A. Staudt, K. Muto, and H. V. Klapdor-Kleingrothaus \textit{At. Data Nucl. Data Tables} 53, 165 (1993).