CALCIUM SIGNALING AND AMYLOID TOXICITY IN ALZHEIMER’S DISEASE

Angelo Demuro¹, Ian Parker ¹,² and Grace E. Stutzmann³,⁴

Departments of Neurobiology & Behavior¹ and Physiology & Biophysics², University of California, Irvine, California 92697 and the Department of Neuroscience³, Rosalind Franklin University, The Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064

Running title: Ca²⁺, Aβ and AD

To whom correspondence should be addressed: grace.stutzmann@rosalindfranklin.edu

Intracellular Ca²⁺ signaling is fundamental to neuronal physiology and viability. Due to its ubiquitous roles, disruptions in Ca²⁺ homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer’s disease. A hallmark of AD is the excessive production of beta amyloid (Aβ) and its massive accumulation in amyloid plaques. In this mini-review we highlight the pathogenic interactions between altered cellular Ca²⁺ signaling and Aβ in its different aggregation states, and how these elements coalesce to alter the course of the neurodegenerative disease. Ca²⁺ and Aβ intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca²⁺ pathways and amyloid pathology; altered Ca²⁺ signaling accelerates Aβ formation whereas Aβ peptides, particularly in soluble oligomeric forms, induce Ca²⁺ disruptions. A degenerative feed-forward cycle of toxic Aβ generation and Ca²⁺ perturbations results, which in turn, can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca²⁺ dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for Alzheimer’s disease.

Alzheimer’s disease (AD) is an idiopathic neurodegenerative disease, and little is yet understood of its underlying causes or mechanisms. Certain diagnostic features are central to AD (amyloid plaques, neurofibrillary tangles, elevated levels of soluble amyloids in the brain and CSF), but their roles in the most devastating aspect of the disease, namely memory loss, are unclear. One common factor that underlies AD pathogenesis is neuronal Ca²⁺ dysregulation. In this mini-review we focus specifically on the pathogenic interplay between beta amyloid (Aβ) and Ca²⁺ signaling dysregulation. Ca²⁺ signaling is fundamental to cellular function, involving a multitude of entry and release channels, clearance mechanisms, and intracellular stores. Among these Ca²⁺-regulating entities, Aβ may interact with a critical subset as discussed below, and enable AD progression by altering Ca²⁺ homeostasis and triggering downstream pathogenic signaling cascades (1-3).

Implications of cellular Ca²⁺ dysregulation

Sustained disruptions in Ca²⁺ signaling have significant implications for the health and functionality of neurons over an organism’s lifetime (4), and form the basis of the Ca²⁺ hypothesis of AD (5). Under resting conditions, cytosolic Ca²⁺ is maintained at low nanomolar concentrations by an array of pumps, buffers and transport mechanisms. Ca²⁺ entry into the cytosol is rigorously regulated and originates from one of two major sources; the extracellular fluid via entry across the plasma membrane (through receptor-, voltage-, and store-operated channels and Ca²⁺-exchangers), and from intracellular stores such as the endoplasmic reticulum (ER) and mitochondria (6).

Interactions between Aβ and intracellular Ca²⁺ are particularly relevant to AD pathogenesis, as Ca²⁺ perturbations are a casual factor in excitotoxicity,
synaptic degeneration and cell death, whereas reduced Ca\(^{2+}\) release is neuroprotective (7). Both neuroprotective and pathogenic Ca\(^{2+}\) cascades can be triggered sequentially; the cell attempting to first compensate for metabolic stress by upregulating protective mechanisms and then succumbing to sustained insults and initiating pathogenic and/or apoptotic pathways. For example, excess Ca\(^{2+}\) release initially activates anti-apoptotic transcription factors such as NF\(\kappa\)B (8) which protects cells by inducing genes that promote cell survival and anti-apoptotic proteins (e.g. Bcl-2), and the cAMP response element-binding protein (CREB), which is Ca\(^{2+}\)-dependent and plays a critical role in synaptic plasticity and neuronal survival (9). Among pathogenic responses, expression of C/EBP homologous protein (CHOP) inhibits protective proteins such as Bcl-2. Increased Ca\(^{2+}\) levels through A\(\beta\)-mediated mechanisms can also lead to mitochondrial Ca\(^{2+}\) overload, generation of superoxide radicals, and proapoptotic mitochondrial proteins such as caspases and cytochrome c, which are linked to cell death and neurodegeneration in several AD models (1).

A\(\beta\) physiology and pathophysiology

A\(\beta\) is a 39-42 amino acid peptide produced by the proteolytic cleavage of the amyloid precursor protein (APP), an integral membrane protein involved in signal transduction pathways. Cleavage of APP by \(\alpha\)- or \(\beta\)-secretases forms the C-terminus portion of A\(\beta\), and subsequently the remaining membrane-bound C-terminal fragment is cleaved within its transmembrane domain by the aspartyl protease complex \(\gamma\)-secretase, of which presenilin is a crucial component (10). Mutations in the genes encoding for APP and presenilin are associated with familial forms of AD and lead to increased A\(\beta\) production, suggesting a causal relationship between A\(\beta\) overproduction and AD pathogenesis (11). Moreover, the majority of mutations linked to early-onset AD cause increased production of A\(\beta\)\(_{42}\) (A\(\beta\) ending at position 42) relative to A\(\beta\)\(_{40}\), and A\(\beta\)\(_{32}\) appears to be the more toxic form of the peptide and more prone to undergo aggregation (12,13).

A\(\beta\) aggregation states: which is the toxic species?

A\(\beta\) plaques are the most obvious and characteristic feature of AD. However, increasing evidence suggests that they may not be primarily responsible for the neurological deficits, but rather implicates small, soluble oligomeric aggregation states of A\(\beta\). Protein aggregation is an aberrant self-associating process that can produce macroscopic entities such as the extracellular aggregates of A\(\beta\) peptide found in the brain of many AD patients. This process proceeds, in both \textit{in-vitro} and \textit{in-vivo} settings, through various intermediate aggregation states of A\(\beta\) peptides, ranging from small soluble oligomeric species formed by 2 to 50 peptides, to insoluble filamentous aggregates from which plaques are formed (Figure 1;(14)). Several studies characterize these intermediates, which most likely represent the most toxic forms of A\(\beta\) aggregates (15-18).

The monomeric form of A\(\beta\) (either 1-40 or 1-42) has long been considered to be non-toxic, or even protective, and fails to evoke Ca\(^{2+}\) influx in \textit{in-vitro} experiments (18,19, 20). From these monomers, up to 50 A\(\beta\) subunits can form intermediate aggregates, termed "small oligomers". These low-molecular-weight aggregates are found in the growth medium of A\(\beta\)-secreting cells (21), and in extracts from human brain (17,22). This category also includes A\(\beta\)-derived diffusible ligands (ADDLs), a neurotoxic species of A\(\beta\) aggregate formed by trimers through 24mers secreted in \textit{in-vitro} preparations and found in murine and human brain extracts (16,23-25). Small oligomers are reported to be the most toxic species of A\(\beta\) and potently disrupt cellular Ca\(^{2+}\) homeostasis (16,18,26).

A different approach for classifying A\(\beta\) toxicity has been recently proposed by Glabe, based on the use of conformation-dependent antibodies that recognize generic epitopes associated with distinct aggregation state of peptides, rather than specific amino acid sequence and number of peptides (27).

The final stage of A\(\beta\) peptide aggregation is represented by amyloid plaques in brains of AD patients. Although plaques are a hallmark of AD, their density does not correlate well with the degree of neuronal or cognitive deficits (28). On the contrary, it has been proposed that plaques
may contribute to the removal and inactivation of the smaller soluble toxic species (17,29), rendering the insoluble plaque deposits as potentially neuroprotective, particularly in the early stage of the disease.

As detailed in the following sections, numerous publications studying possible molecular mechanisms of Aβ40/42 oligomers have proposed diverse modalities of action. We believe that many of the apparently contradictory results in the literature may be attributed to different experimental methods and inconsistencies in preparation of Aβ oligomers, resulting in variability in the initial structure and aggregation state of the peptide, the presence of different solvents, heterogeneous nucleation, pH, and starting concentrations of the peptide (30).

Aβ and membrane Ca²⁺ permeability

A major mechanism by which Aβ is believed to alter cellular Ca²⁺ homeostasis involves disruption of membrane Ca²⁺ permeability. It is widely accepted that application of Aβ to cultured cells triggers unregulated flux of Ca²⁺ through the plasma membrane (5,18,26). However, the precise molecular mechanism of Aβ toxicity remains to be determined. Here we outline the three major proposed mechanisms of Aβ interaction with cell membranes, respectively involving interactions with endogenous Ca²⁺-permeable channels; disruption of membrane lipid integrity; and formation of Ca²⁺-permeable channels by Aβ amyloid.

Actions of Aβ on endogenous plasmalemmal ion channels. Interactions of Aβ with various Ca²⁺-permeable channels have been established (31,32) - including voltage gated Ca²⁺ channels (N, P and Q), nicotinic acetylcholine channels (α7 and α4 β2), glutamate receptors (AMPA and NMDA), dopamine receptors, serotonin receptors (5HT₁), and intracellular inositol trisphosphate receptors (IP₃R).

Several lines of evidence point to complex dynamics between Aβ and both the cholinergic and glutamatergic neurotransmitter systems during the progression of AD (33,34). Receptor subtypes within these two receptor families, such as α7 (nAChRs) and AMPA and NMDA glutamate receptors, are all Ca²⁺-permeable and expressed in brain regions supporting higher cognitive functions such as the neocortex and hippocampus (35). Moreover, neuronal loss during the course of the disease occurs predominantly in these brain areas (36). These observations, together with the discovery of substantial neocortical deficits in choline acetyltransferase and reduced choline uptake in AD animal models, led to the “cholinergic hypothesis of AD”, wherein the degeneration of cholinergic neurons and loss of cholinergic neurotransmission significantly contributes to cognitive deterioration (37). This hypothesis has been strengthened by positive correlations between nAChR α7 and α4 subunit expression and neurons that accumulate Aβ, and by the colocalization of α7 nAChRs with plaques (38). However, Aβ affects nAChR functioning, with conflicting results describing Aβ as either an agonist or antagonist of nAChRs (33). Importantly, Aβ has been shown to bind with high affinity to α7 and α4 β2 nAChRs (respective Kᵢ approximately 5 pM and 30 nM) in cortical and hippocampal synaptic membrane preparations, suggesting that Aβ peptide accumulation in the synaptic cleft of cholinergic synapses may promote the formation of Aβ /α₇-nAChR complexes that seed plaque formation (39).

Similar findings have been reported for the glutamatergic system. The NMDA receptor is highly Ca²⁺ permeable (single channel conductance is approximately 60 pS, with >10% of current carried by Ca²⁺) (40) and is, therefore, a highly-studied target of Aβ-Ca²⁺ interactions. Aβ peptides affect neuronal function in brain regions where NMDARs are the principal excitotoxic mediator and underlie cell loss during the disease progression (41). Moreover, Aβ oligomers trigger increases in NMDAR-mediated Ca²⁺ influx which disrupts neuronal transmission. In critical and vulnerable brain regions such as the hippocampus, impaired neurotransmission could further impact learning and memory mechanisms (17,42).

Although several studies have examined the effects of amyloid on NMDA receptor function and Ca²⁺ influx, the results are not consistent. These differences may partially reflect the distinct
effects of different Aβ species on cellular activity, as well as experimental differences in acute vs. chronic exposures. For example, short-term incubation of neuronal cultures with Aβ oligomers has been shown to increase Ca²⁺ influx through NMDA channels. This, in turn, is linked to downstream pathogenic effects, such as dynamin I degradation, increased ROS production and aberrant calpain activation (43), all of which can impair synaptic integrity. Acute treatment studies applying Aβ₁-₄₀ and Aβ₂₅-₃₅ peptides have demonstrated similar patterns of enhanced NMDA currents (44). In contrast, sustained exposure of neurons to Aβ oligomeric peptides reduces NMDA cell surface expression, Ca²⁺ influx, and glutamatergic currents (17,45,46). Spine density loss, reduced AMPA currents, and impaired synaptic plasticity are resulting consequences, and likely involve alterations in calcineurin, a Ca²⁺-sensitive phosphatase, and cofilin, a cytoskeletal-regulating protein that is activated by calcineurin-mediated dephosphorylation (47).

Another major source of cytosolic Ca²⁺ entry in neurons is through voltage-gated plasmalemmal Ca²⁺ channels. Ca²⁺ entry through the high threshold, low conductance N- and T-type channels (8-13 pS) and high conductance (25 pS) L-type channels (48) are thought to be increased by amyloid peptides (Aβ₁-₄₀) (31,49) resulting in increased postsynaptic Ca²⁺ responses. In contrast, the high-threshold, predominantly presynaptic, P/Q type channels (15-17 pS) are suppressed by Aβ oligomers (50), which serves to reduce synaptic vesicle release, neurotransmission and plasticity.

Disruption of membrane lipid integrity. Aβ peptides interact with membrane lipids such as phosphoinositides (51), phosphatidylglycerol (52), phosphatidylcholine (53) and gangliosides (54). A direct interaction of Aβ with cellular membranes was initially proposed by Cotman and co-workers, who showed that D- and L-stereoisomers of a truncated form of Aβ induced similar toxicity levels in cultured hippocampal neurons, suggesting that Aβ toxicity does not involve a specific ligand-receptor interaction (55). Fluorescence spectroscopy measurements indicate that Aβ interaction with the synaptic plasma membrane causes substantial changes in the membrane fluidity, both in the bulk lipid milieu and in proximity to integral membrane proteins. This may account for the effects of Aβ peptides to increase membrane permeability to Ca²⁺, Na⁺ and K⁺ ions as well as larger molecules such as dyes (56,57). However, different groups have shown varying results, reporting increases (58), decreases (59), or no effect (60) of Aβ peptides on membrane fluidity.

More recently, by using uniform preparations of Aβ peptides (in their monomeric, oligomeric and fibrillar forms) Sokolov and co-workers reported increases in conductance of lipid bilayer and patch-clamped mammalian cell membranes exclusively by the oligomeric form of Aβ₁-₄₂ (19,61). Because the Aβ-induced conductance showed no selectivity between anionic or cationic probes and was apparent only in membranes formed from soft, highly compressible lipids, the authors suggested that Aβ oligomers thin the membrane, thereby lowering the dielectric barrier and increasing its conductance. However, this mechanism has been challenged. Capone and coworkers proposed that the membrane thinning was due to the residual solvent (HFIP) used during Aβ oligomer preparation, and was independent of the peptide itself (62).

Aβ pore formation. A different mechanism of action posits that Aβ peptides incorporate into the cell membrane and reorganize to form non-selective, high conductance cation pores (63-65). In electrophysiological recordings using artificial lipid membranes exposed to Aβ, the authors observed cation channels with a permeability sequence: \(P_{\text{Cs}} > P_{\text{Li}} > P_{\text{Ca}} = P_{\text{K}} > P_{\text{Na}} \) (66), which were blocked by Zn²⁺. These Aβ channels exhibit several different conductances, with spontaneous transition between levels ranging from 400 pS up to 5 nS (63). Channel formation has been proposed as a molecular mechanism for Aβ toxicity, since ionic leakages of Na⁺, K⁺ and Ca²⁺ through such high conductance channels could rapidly disrupt cellular homeostasis (63,67). The pore forming mechanism for amyloid proteins has been further supported by studies employing atomic force microscopy (64), electron microscopy (68,69), and theoretical modeling (70,71). Moreover, high resolution transmission electron microscopy has...
revealed the presence of $\alpha\beta$ pores distributed \textit{in situ} in the cell membrane of postmortem brains of AD patients, but not in healthy patients (72).

In a search for a specific blocker, Arispe and coworkers further strengthened the $\alpha\beta$ channel hypothesis by designing short peptides complementary to the putative mouth of the $\alpha\beta$ channel that potently and selectively blocked $\alpha\beta$ channels and inhibited $\alpha\beta$ cytotoxicity (73). More recently, they also showed that two small enantiomeric molecules, MRS2481 and MRS2485, were both blockers of $\alpha\beta$ channels in the micromolar range and exhibited protective behavior against $\alpha\beta$ neurotoxicity in neurons (74).

Intracellular Ca$^{2+}$ sources and $\alpha\beta$

In addition to extracellular Ca$^{2+}$ sources, the endoplasmic reticulum (ER) constitutes a large reservoir of sequestered Ca$^{2+}$ which is liberated via IP$_3$Rs (whose activation requires binding of the second messenger, IP$_3$), and RyRs. Both of these receptor/channel types are activated by Ca$^{2+}$ itself in a regenerative process termed Ca$^{2+}$-induced-Ca$^{2+}$-release. Numerous studies have linked upregulation of ER Ca$^{2+}$ release with presenilin mutations in early stages of AD progression, prior to the onset of $\alpha\beta$ plaques, neurofibrillary tangles, or cognitive impairment (1,75); yet evidence exists for $\alpha\beta$ to also influence intracellular Ca$^{2+}$ signaling at later disease stages subsequent to histopathology onset (6). For example, exposing RyRs to $\alpha\beta$$_{1-42}$ peptides in lipid bilayers increases the channel open probability and alters gating kinetics resulting in increased Ca$^{2+}$ flux (76). Likewise, $\alpha\beta$ exposure enhances the IP$_3$R-evoked Ca$^{2+}$ response in neurons (77). More subtle interactions of $\alpha\beta$ with Ca$^{2+}$-regulating G-protein-coupled membrane proteins have also been uncovered. Pre-incubation with the $\alpha\beta$_{1-40} peptide enhances both the expression of the Gq-coupled mGluR5 receptor, which generates the Ca$^{2+}$-mobilizing messenger IP$_3$, as well as the intracellular Ca$^{2+}$ response to the group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) (78). $\alpha\beta$ also interferes with the interplay between the APP haloprotein and G$_\alpha$, which leads to G-protein coupled Ca$^{2+}$ activation and eventually cell death (79).

New on the neuronal Ca$^{2+}$ channel list is CALHM1, which is highly permeable to Ca$^{2+}$, and localized to ER and plasma membranes. Notably, a CALHM1 polymorphism is associated with AD and leads to increased $\alpha\beta$ formation by interfering with Ca$^{2+}$ permeability (80). In addition to being relevant from a Ca$^{2+}$ signaling/amyloid perspective, the discovery of this polymorphism association to AD adds another possible marker to the short list of genetic risk factors (including ApoE4 allele expression) linked to sporadic AD, thereby permitting early intervention for patients with an otherwise idiopathic neurodegenerative disease.

Functional evidence for $\alpha\beta$ and Ca$^{2+}$ interactions in the brain

Attempts to establish causative links between $\alpha\beta$ histopathology and the AD memory deficits have been tenuous, with little direct correlation between plaque load and cognitive decline (81,82). However, recent evidence demonstrates functional associations between dense core plaques and Ca$^{2+}$ signaling alterations in AD mouse models. A series of \textit{in vivo} imaging studies show that $\alpha\beta$ deposits result in intracellular Ca$^{2+}$ dysregulation in neurons and glia (83,84) and a structural breakdown of dendritic processes in later stages of AD pathology (85). Utilizing fluorescent live cell imaging techniques from plaque-bearing APP transgenic mice, increased resting Ca$^{2+}$ levels have been observed in neurites in close proximity (~20μm) to dense core plaques (83), suggesting that plaques exert a direct pathogenic effect on steady state Ca$^{2+}$ levels in dendrites and spines – regions critical for electrochemical signal transmission. In concert, the compartmentalization of Ca$^{2+}$ signals between spine heads and the neighboring dendritic branch is lost. These alterations would likely have implications for signal transduction and synaptic transmission, which are reliant on precise spatial and temporal Ca$^{2+}$ signaling.

Possibly related to the above findings is the observation of increased spontaneous Ca$^{2+}$ transients in the soma of cells close to plaques, perhaps resulting from reduced inhibitory input through reduced GABAergic tone (86). Alterations
in Ca\(^{2+}\) transients may exert global alterations in intracellular function and affect long-range coordination among cells mediated by intercellular Ca\(^{2+}\) waves. This phenomenon is not limited to neurons, as increased Ca\(^{2+}\) activity and synchronized Ca\(^{2+}\) waves are observed across networks of astrocytes (84). Interestingly, astrocytic Ca\(^{2+}\) signals differ from neurons in that they are independent of proximity to plaques. Although these *in vivo* studies detailed above provide some of the most direct evidence for pathogenic A\(\beta\) and Ca\(^{2+}\) interactions in intact brains, they are limited in their interpretation because only dense core plaques are visualized, and the role and localization of other A\(\beta\) species, notably oligomeric forms, could not be identified in these preparations.

Structural abnormalities in neurites have also been attributed to calcineurin activity—a Ca\(^{2+}\)-sensitive phosphatase whose many functions include regulation of cofilin which maintains neuronal cytoarchitecture. These findings may relate to the breakdown of synapses attributed to fibrillar and oligomeric A\(\beta\) (87) in that aberrant Ca\(^{2+}\) levels can disrupt glutamate receptor trafficking, CamKII and calcineurin activity, and alter spine head geometry (88,89).

A\(\beta\) oligomers have also been found to disrupt synaptic function at the circuit level. Associations between naturally produced A\(\beta\) oligomers and AD pathology were made by Selkoe and colleagues, who identified a naturally secreted species of A\(\beta\) aggregates capable of disrupting neuronal plasticity (90). Soluble A\(\beta\) oligomers extracted from AD patients inhibit long-term potentiation (LTP), enhance long-term depression (LTD), and trigger dendritic spine reduction in rodent hippocampus (17,91). These pathological effects were shown to be specifically attributable to A\(\beta_{1-42}\) dimers.

A vicious spiral in AD: A\(\beta\) and Ca\(^{2+}\) go round and around…

Increased Ca\(^{2+}\) levels are functionally linked to most of the major features and risk factors of AD: presenilin and APP mutations, ApoeE4 expression, CALHM1 mutations, A\(\beta\) plaques, tau hyperphosphorylation, apoptosis, and synaptic dysfunction (1). In many of these interactions, a pathogenic feed-forward cascade evolves, wherein Ca\(^{2+}\) facilitates a pathogenic state which in turn increases Ca\(^{2+}\) levels. For example, Ca\(^{2+}\) can facilitate the formation of pathogenic A\(\beta\) fibril formation (92), and in parallel, A\(\beta\) can form Ca\(^{2+}\)-permeable channels, interfere with existing Ca\(^{2+}\) channels, and increase RyR function (43,93,94). Apoptosis can also be triggered by Ca\(^{2+}\)-sensitive cell death pathways via caspase and calpain activation, and vice-versa. Ca\(^{2+}\) dysregulation may then reflect a lifetime of episodic and slowly accumulating insults which favor the aggregation and deposition of pathogenic A\(\beta\) peptides, trigger apoptosis via ER and mitochondrial stress responses, and impair synaptic morphology and membrane function. The culmination of these downstream Ca\(^{2+}\) -mediated events may ultimately lead to the devastating loss of memory and deteriorating cognitive functions.

Future directions

In light of the ubiquity of Ca\(^{2+}\) signaling in neurons and glia, and its complex, reciprocal interactions with A\(\beta\) in pathogenesis of AD, research is likely to progress in parallel along multiple paths. Below, we highlight just a few areas that we believe most promising.

Consistency of A\(\beta\) preparations. Studies of A\(\beta\) toxicity are confounded by inconsistencies in oligomeric state of the peptide, a factor that likely accounts for widely varying, and sometimes contradictory reports in the literature. There is therefore a clear need to resolve the effects of the various A\(\beta\) species, by systematically examining the effect of uniformly prepared and characterized A\(\beta\) aggregates.

Mechanisms of A\(\beta\) Ca\(^{2+}\) toxicity. Disruption of membrane integrity and resulting unregulated Ca\(^{2+}\) flux are now well established as major factors underlying A\(\beta\) oligomer toxicity. There is strong evidence that A\(\beta\) itself forms cation pores in the membrane, but actions on the lipid bilayer and on endogenous membrane channels may also contribute. Elucidation of the mechanism(s) by which A\(\beta\) acts on surface and intracellular membranes is crucial, as this represents a selective and most attractive therapeutic target. Experiments have thus far been limited largely to *in vitro*
systems, but developments in techniques for optical imaging of single-channel Ca$^{2+}$ flux (95) offer considerable potential for extending these studies to intact cell systems (96).

Ca$^{2+}$ signaling as a therapeutic target. Because Ca$^{2+}$ signaling impinges upon nearly every characteristic feature, genetic cause, and major risk factor in AD, it is an obvious target for potential therapeutic strategies. Compounds that normalize dysregulated Ca$^{2+}$ levels or specifically block Ca$^{2+}$-regulated pathogenic signaling cascades could, in theory, prevent or reduce many of the histopathological and cognitive components of AD. Indeed, the few effective treatments currently available for early-to-mid-stage AD directly or indirectly include some aspect of Ca$^{2+}$ modification. Memantine is a low affinity NMDAR Ca$^{2+}$ channel antagonist which prevents excessive Ca$^{2+}$ influx while maintaining glutamatergic transmission sufficiently to support synaptic transmission and plasticity (97). Another example is dimebon, which has proven in clinical trials to sustain cognitive function in AD patients. Although the mechanism is unclear, dimebon’s neuroprotective effects may lie in its ability to inhibit L-type Ca$^{2+}$ channels and NMDAR and protect against mitochondrial stress (98). Another target, not yet in clinical trials, is the ryanodine receptor (RyR), an intracellular Ca$^{2+}$ release channel that is upregulated in an initially neuroprotective manner in response to Aβ_{1-42} exposure (94), and shows increased expression and Ca$^{2+}$ flux in certain familial forms of AD (99,100). Given the ubiquity of Ca$^{2+}$ signaling, a caveat with these approaches is the potential to disrupt normal neuronal function. The design of novel compounds to block Ca$^{2+}$-permeable pores formed by Aβ thus holds particular promise (73,74).

References

1. Stutzmann, G. E. (2007) *Neuroscientist* **13**, 546-559
2. Bezprozvanny, I., and Mattson, M. P. (2008) *Trends Neurosci* **31**, 454-463
3. Green, K. N., and LaFerla, F. M. (2008) *Neuron* **59**, 190-194
4. Berridge, M. J. (1998) *Neuron* **21**, 13-26
5. Khachaturian, Z. S. (1987) *Neurobiol Aging* **8**, 345-346
6. Berridge, M. J. (2009) *Pflugers Arch*
7. Frandsen, A., and Schousboe, A. (1991) *J Neurochem* **56**, 1075-1078
8. Pahl, H. L., and Bauerle, P. A. (1996) *FEBS Lett* **392**, 129-136
9. Mattson, M. P., and Furukawa, K. (1997) *Apoptosis* **2**, 257-264
10. Thinakaran, G., and Koo, E. H. (2008) *J Biol Chem* **283**, 29615-29619
11. Tanzi, R. E., and Bertram, L. (2001) *Neuron* **32**, 181-184
12. Jarrett, J. T., and Lansbury, P. T., Jr. (1993) *Cell* **73**, 1055-1058
13. Kim, W., and Hecht, M. H. (2005) *J Biol Chem* **280**, 35069-35076
14. Roychaudhuri, R., Yang, M., Hoshi, M. M., and Teplow, D. B. (2009) *J Biol Chem* **284**, 4749-4753
15. Ross, C. A., and Poirier, M. A. (2005) *Nat Rev Mol Cell Biol* **6**, 891-898
16. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., and Glabe, C. G. (2003) *Science* **300**, 486-489
17. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., and Selkoe, D. J. (2008) *Nat Med* **14**, 837-842
18. Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005) *J Biol Chem* **280**, 17294-17300
19. Kayed, R., Sokolov, Y., Edmonds, B., McIntire, T. M., Milton, S. C., Hall, J. E., and Glabe, C. G. (2004) *J Biol Chem* **279**, 46363-46366
20. Giuffrida, M. L., Caracci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Pappalardo, G., Messina, A., Palmigiano, A., Garozzo, D., Nicoletti, F., Rizzarelli, E., and Copani, A. (2009) *J Neurosci* **29**, 10582-10587
21. Xia, W., Zhang, J., Kholodenko, D., Citron, M., Podlisny, M. B., Teplow, D. B., Haass, C., Seubert, P., Koo, E. H., and Selkoe, D. J. (1997) *J Biol Chem* **272**, 7977-7982
22. Kuo, Y. M., Emmerling, M. R., Vigo-Pelfrey, C., Kasunic, T. C., Kirkpatrick, J. B., Murdoch, G. H., Ball, M. J., and Roher, A. E. (1996) *J Biol Chem* **271**, 4077-4081
23. Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., Krafft, G. A., and Klein, W. L. (2003) *Proc Natl Acad Sci U S A* **100**, 10417-10422
24. Haes, A. J., Chang, L., Klein, W. L., and Van Duyne, R. P. (2005) *J Am Chem Soc* **127**, 2264-2271
25. Meyer-Luehmann, M., Coomaraswamy, J., Bolmont, T., Kaeser, S., Schaefer, C., Kilger, E., Neuenschwander, A., Abramowski, T., Frey, P., Jaton, A. L., Vigouret, J. M., Pagani, P., Walsh, D. M., Mathews, P. M., Ghiso, J., Staufenbiel, M., Walker, L. C., and Jucker, M. (2006) *Science* **313**, 1781-1784
26. Deshpande, A., Mina, E., Glabe, C., and Busciglio, J. (2006) *J Neurosci* **26**, 6011-6018
27. Glabe, C. G. (2008) *J Biol Chem* **283**, 29639-29643
28. Goldman, W. P., Price, J. L., Storandt, M., Grant, E. A., McKeel, D. W., Jr., Rubin, E. H., and Morris, J. C. (2001) *Neurology* **56**, 361-367
29. Lansbury, P. T., Jr. (1999) *Proc Natl Acad Sci U S A* **96**, 3342-3344
30. Teplow, D. B. (2006) *Methods Enzymol* **413**, 20-33
31. Rovira, C., Arbez, N., and Mariani, J. (2002) *Biochem Biophys Res Commun* **296**, 1317-1321
32. Buckingham, S. D., Jones, A. K., Brown, L. A., and Sattelle, D. B. (2009) *Pharmacol Rev* **61**, 39-61
33. Geerts, H., and Grossberg, G. T. (2006) *J Clin Pharmacol* **46**, 8S-16S
34. Terry, A. V., Jr., and Buccafusco, J. J. (2003) *J Pharmacol Exp Ther* **306**, 821-827
35. Kadir, A., Almkvist, O., Wall, A., Langstrom, B., and Nordberg, A. (2006) *Psychopharmacology (Berl)* **188**, 509-520
36. Bartus, R. T., Dean, R. L., 3rd, Beer, B., and Lippa, A. S. (1982) *Science* **217**, 408-414
37. Wevers, A., Monteggia, L., Nowacki, S., Bloch, W., Schutz, U., Lindstrom, J., Pereira, E. F., Eisenberg, H., Giacobini, E., de Vos, R. A., Steur, E. N., Maelicke, A., Albuquerque, E. X., and Schroder, H. (1999) *Eur J Neurosci* **11**, 2551-2565
38. Wang, H. Y., Lee, D. H., D'Andrea, M. R., Peterson, P. A., Shank, R. P., and Reitz, A. B. (2000) *J Biol Chem* **275**, 5626-5632
39. Garashchuk, O. M. (2006) *Neurophysiology* **30**, 6
40. Parameshwaran, K., Dhanasekaran, M., and Suppiramaniam, V. (2008) *Exp Neurol* **210**, 7-13
41. Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., and Selkoe, D. (2009) *Neuron* **62**, 788-801
42. Kelly, B. L., and Ferreira, A. (2006) *J Biol Chem* **281**, 28079-28089
43. Carette, B., Poulain, P., and Delacourte, A. (1993) *Neurosci Lett* **151**, 111-114
45. Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C.,
 Salter, M. W., Lombruso, P. J., Gouras, G. K., and Greengard, P. (2005) Nat Neurosci
 8, 1051-1058
46. Dewachter, I., Filipkowski, R. K., Priller, C., Ris, L., Neyton, J., Croes, S., Terwel, D.,
 Gysemans, M., Devijver, H., Borghgraef, P., Godaux, E., Kaczmarek, L., Herms, J., and
 Van Leuven, F. (2009) Neurobiol Aging 30, 241-256
47. Wang, Y., Shibasaki, F., and Mizuno, K. (2005) J Biol Chem 280, 12683-12689
48. Fox, A. P., Nowycky, M. C., and Tsien, R. W. (1987) J Physiol 394, 173-200
49. MacManus, A., Ramsden, M., Murray, M., Henderson, Z., Pearson, H. A., and Campbell,
 V. A. (2000) J Biol Chem 275, 4713-4718
50. Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H.,
 Hillen, H., Gross, G., Ebert, U., and Bruehl, C. (2008) J Neurosci 28, 788-797
51. Decout, A., Labeur, C., Goethals, M., Brasseur, R., Vandekerckhove, J., and Rosseneu,
 M. (1998) Biochim Biophys Acta 1372, 102-116
52. Terzi, E., Holzemmann, G., and Seelig, J. (1995) J Mol Biol 252, 633-642
53. Avdulov, N. A., Chochina, S. V., Igbavboa, U., Warden, C. S., Vassiliev, A. V., and
 Wood, W. G. (1997) J Neurochem 69, 1746-1752
54. McLaurin, J., Franklin, T., Chakrabarty, A., and Fraser, P. E. (1998) J Mol Biol 278,
 183-194
55. Kremer, J. J., Pallitto, M. M., Sklansky, D. J., and Murphy, R. M. (2000) Biochemistry
 39, 10309-10318
56. Muller, W. E., Koch, S., Eckert, A., Hartmann, H., and Scheuer, K. (1995) Brain Res
 674, 133-136
57. McLaurin, J., and Chakrabarty, A. (1996) J Biol Chem 271, 26482-26489
58. Avdulov, N. A., Chochina, S. V., Igbavboa, U., O'Hare, E. O., Schroeder, F., Cleary, J. P.,
 and Wood, W. G. (1997) J Neurochem 69, 1746-1752
59. Sokolov, Y., Kozak, J. A., Kayed, R., Chanturiya, A., Glabe, C., and Hall, J. E. (2006) J
 Gen Physiol 128, 637-647
60. Capone R, Q. F., Prangkio P, Saluja I, Sauer AM, Bautista MR, Turner RS, Yang J,
 Mayer M. (2009) Neurotox Res. 16, 13
61. Arispe, N., Pollard, H. B., and Rojas, E. (1993) Proc Natl Acad Sci U S A 90, 10573-
 10577
62. Lin, H., Bhatia, R., and Lal, R. (2001) FASEB J 15, 2433-2444
63. Quist, A., Doudovski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso,
 J., and Lal, R. (2005) Proc Natl Acad Sci U S A 102, 10427-10432
64. Arispe, N., Rojas, E., and Pollard, H. B. (1993) Proc Natl Acad Sci U S A 90, 567-571
65. Pollard, H. B., Rojas, E., and Arispe, N. (1993) Ann NY Acad Sci 695, 165-168
66. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., and Lansbury, P. T., Jr. (2002) Nature
 418, 291
67. Lashuel, H. A., Hartley, D. M., Petre, B. M., Wall, J. S., Simon, M. N., Walsh, T., and
 Lansbury, P. T., Jr. (2003) J Mol Biol 332, 795-808
70. Durell, S. R., Guy, H. R., Arispe, N., Rojas, E., and Pollard, H. B. (1994) Biophys J 67, 2137-2145
71. Jang, H., Ma, B., Lal, R., and Nussinov, R. (2008) Biophys J 95, 4631-4642
72. Inoue, S. (2008) Amyloid 15, 223-233
73. Arispe, N. (2004) J Membr Biol 197, 33-48
74. Diaz, J. C., Simakova, O., Jacobson, K. A., Arispe, N., and Pollard, H. B. (2009) Proc Natl Acad Sci U S A 106, 3348-3353
75. LaFerla, F. M. (2002) Nat Rev Neurosci 3, 862-872
76. Shtifman, A., Ward, C. W., Laver, D. R., Bannister, M. L., Lopez, J. R., Kitazawa, M., Laferla, F. M., Ikemoto, N., and Querfurth, H. W. (2008) Neurobiol Aging
77. Schapansky, J., Olson, K., Van Der Ploeg, R., and Glazner, G. (2007) Exp Neurol 208, 169-176
78. Casley, C. S., Lakics, V., Lee, H. G., Broad, L. M., Day, T. A., Cluett, T., Smith, M. A., O'Neill, M. J., and Kingston, A. E. (2009) FEBS J 276, 2736-2751
79. Shaked, G. M., Chauv, S., Ubhi, K., Hansen, L. A., and Masliah, E. (2009) Neurobiol Aging 30, 2736-2751
80. Dreses-Werringloer, U., Lambert, J. C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., Pasquier, F., Galimberti, D., Scarpini, E., Mann, D., Lendon, C., Campion, D., Amouyel, P., Davies, P., Foskett, J. K., Campagne, F., and Marambaud, P. (2008) Cell 133, 1149-1161
81. Selkoe, D. J. (2008) Behav Brain Res 192, 106-113
82. Blennow, K., de Leon, M. J., and Zetterberg, H. (2006) Lancet 368, 387-403
83. Kuchibhotla, K. V., Goldman, S. T., Lattarulo, C. R., Wu, H. Y., Hyman, B. T., and Bacsikai, B. J. (2008) Neuron 59, 214-225
84. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., and Bacsikai, B. J. (2009) Science 323, 1211-1215
85. Tsai, S. J., Hong, C. J., Liu, H. C., Liu, T. Y., Hsu, L. E., and Lin, C. H. (2004) Neuropsychobiology 49, 10-12
86. Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., Staufenbiel, M., Konnerth, A., and Garaschuk, O. (2008) Science 321, 1686-1689
87. Kim, D., and Tsai, L. H. (2009) Cell 137, 997-1000
88. Korkotian, E., and Segal, M. (2007) Cell Calcium 42, 41-57
89. Reese, L. C., Zhang, W., Dineley, K. T., Kayed, R., and Taglialatela, G. (2008) Aging Cell 7, 824-835
90. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Nature 416, 535-539
91. Yankner, B. A., and Lu, T. (2009) J Biol Chem 284, 4755-4759
92. Isaacs, A. M., Senn, D. B., Yuan, M., Shine, J. P., and Yankner, B. A. (2006) J Biol Chem 281, 27916-27923
93. Shemer, I., Holmgren, C., Min, R., Fulop, L., Zilberter, M., Sousa, K. M., Farkas, T., Hartig, W., Penke, B., Burnashev, N., Tanila, H., Zilberter, Y., and Harkany, T. (2006) Eur J Neurosci 23, 2035-2047
94. Supnet, C., Grant, J., Kong, H., Westaway, D., and Mayne, M. (2006) J Biol Chem 281, 38440-38447
95. Demuro, A., and Parker, I. (2005) J Gen Physiol 126, 179-192
96. Demuro, A. I. P. (2008) *Biophys J* **94**, 2671-plat
97. Molinuevo, J. L., Llado, A., and Rami, L. (2005) *Am J Alzheimers Dis Other Demen* **20**, 77-85
98. Doody, R. S., Gavrillova, S. I., Sano, M., Thomas, R. G., Aisen, P. S., Bachurin, S. O., Seely, L., and Hung, D. (2008) *Lancet* **372**, 207-215
99. Stutzmann, G. E., Smith, I., Caccamo, A., Oddo, S., Laferla, F. M., and Parker, I. (2006) *J Neurosci* **26**, 5180-5189
100. Chakroborty, S., Goussakov, I., Miller, M. B., and Stutzmann, G. E. (2009) *J Neurosci* **29**, 9458-9470

Acknowledgements
The authors acknowledge support from the NIH (GM48071; I.P.: AG30205; GES: P50-AG16573; A.D.)

Figure legends

Figure 1. Schematic model for Aβ monomers in which misfolding triggers self-aggregation into dimers, trimers, oligomers, fibrils, and fibrillar aggregates or plaques. The Aβ aggregates formed by 2 - 50 monomers are considered the toxics species.

Figure 2. Feedforward Aβ peptide and Ca\(^{2+}\) signaling interactions. Aβ peptides interact with a variety of Ca\(^{2+}\) channels and sources (center, blue), often serving to upregulate or aberrantly generate Ca\(^{2+}\) flux within the cell. This increase in Ca\(^{2+}\) from direct calcium channel alteration or through compromised lipid barriers can then serve to accelerate Aβ generation, thereby sustaining a pathogenic cycle.
Figure 2

Aβ

↑ Ca²⁺

VGCC (except P/Q channels)
NMDA/AMPA
nACh

ER/RyR
mitochondria

pore formation
Ca²⁺ channels
lipid integrity

Fibril formation
Aggregation
Deposition

Aβ
