Formation of yield and commodity qualities of potatoes, depending on the varietal characteristics

E V Voronov¹, ², O B Terekhova³, L G Shashkarov³, G A Mefodiev³, L V Eliseeva¹, S V Filippova³ and A A Samarkin³

¹Nizhny Novgorod Engineering and Economic University, Knyaginino, Russia
²Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod, Russia
³Chuvash State Agricultural Academy, Cheboksary, Russia

E-mail: e_voronov@list.ru

Abstract. The article presents data on the study of the effect of varietal characteristics of potatoes on the formation of yield and quality of tubers. The aim of the work was to identify the best varieties of potatoes for cultivation in Nizhny Novgorod region. For conducting research, the following methods were used: experiments at cultivation, storage, use of potatoes, laboratory studies, tasting evaluation, and ranking. The effect of tuber damage by common scab and rhizoctoniosis on the safety of potato tubers was revealed. It had been established that all varieties of potatoes in conditions of highly cultivated sod-podzolic soils form a high yield of tubers. The maximum yield provides cultivation varieties Crystel and Sandrine. Crystel and Sandrine Varieties were characterized by a maximum yield of marketable tubers and weight per tuber. They also had the high starch content in tubers, the maximum tasting and overall assessment of tubers. It was noted that tubers of all varieties were slightly affected by common scab and rhizoctoniosis, which had a positive effect on their ability to work. To a lesser extent, these diseases affected the tubers of the varieties Crystel, Sandrine, and Serafina. The quality of these varieties was at the level of the standard.

1. Introduction

Potatoes are a type of perennial tuberiferous herbaceous plants of the Solanum genus of the Solanaceae family. In our country it is cultivated annually, because the entire life cycle, starting with the germination of the tuber and ending with the formation and formation of mature tubers, took place during one growing season [1].

Potatoes are the most important food, technical and forage crops, which have great economic importance. The diverse food use of potatoes, the wide popularity which it enjoys among the population, gives reason to consider it one of the most important food products – the second is bread, - and for the food industry raw materials for the production of food alcohol, starch and molasses [2, 3].

In Russia potatoes are of great and versatile importance. It is used as a food, technical and forage culture. The tubers contain about 25% dry matter, including 12-22% starch, 1.4-3% protein and 0.8-1% ash. They are composed of various vitamins – C, B, PP, K, and carotenoids. Potatoes have the great importance as a technical culture. It serves as a raw material of starch-treacle, dextrin industry and the production of glucose and alcohol. Potatoes are widely used for forage purposes. It is especially valuable for pigs and dairy cattle. Animals are fed tubers, tops and products of industrial processing of potatoes (Bardu, pulp). As a tilled crop, potatoes serve as a good precursor to spring crops (spring wheat, corn, beet, barley, millet, etc.) [4-7].
Currently, the world knows more than 1,000 varieties of potatoes, different from each other in terms of maturation, dry matter content, taste, and other consumer properties.

A necessary condition for the intensification of potato production is the constant improvement of the quality of the varietal composition. However, many of the zoned domestic potato varieties are not sufficiently adapted to these conditions, which lead to yield losses and wide variability over the years. No less important is the correct choice of the variety most adapted to the soil and climatic conditions of a particular zone of cultivation [8, 9].

In this regard, the issue of identification of new varieties with a high level of productivity and high adaptive capacity to local agroecological conditions is relevant. The optimal selection of assortment for each specific region is one of the main factors determining the increase in yield and quality of both food and seed potatoes. The introduction of new domestic table varieties that can withstand the impact of adverse abiotic and biotic environmental factors, will better meet the needs of the population in quality potatoes [10, 11].

Our research was conducted in Nizhny Novgorod region, one of the largest regions of the Volga Federal district. The most widespread varieties were chosen at evaluating potato tubers.

2. Materials and methods
In 2015-2016 an assessment was carried out on a set of economically valuable attributes of 6 varieties of potato samples: Nevsky, Gloria, Christel, Sandrine, Serafina, and Aspia.

The research was carried out on the experimental field of Gorodetsky variety site, located in the SEC "Kolkhoz Red KrasniyMayak" Gorodetsky district, Nizhny Novgorod region.

The soils of the experimental site were sod-podzolic, highly cultivated, light-loamy in granulometric composition, which are the most common in considered region. All agrotechnical requirements at cultivation of potatoes were fulfilled.

Both years of research were quite favorable for the growth and development of potato plants.

For conducting research, the following methods were used: experiments at cultivation, storage, use of potatoes, laboratory studies, tasting evaluation, and ranking.

3. Results and discussion
One of the main indicators of potato production efficiency is its yield [10]. Analysis of the studied varieties by yield showed significant differences in these indicators as among varieties (table 1).

The average yield on varieties for two years was 33.9 t/ha with variation in varieties within 31.2 – 44.3 t/ha 23.1%.

Variety	2015	2016	Average for 2 years	+ to control t/ha	%
Nevsky	45.3	25.0	35.1	-	-
Gloria	33.7	16.9	25.3	-9.8	-27
Christel	57.0	31.6	44.3	9.2	26
Sandrine	53.8	30.0	41.9	6.8	19
Serafina	54.1	16.8	35.4	3.0	0.1
Aspia	42.6	19.8	31.2	-3.9	-11
Average	47.8	23.4	33.9	-1.2	-3

The control sample was taken from Nevsky variety, as this variety had been a monosort for potato growing in Nizhny Novgorod region for the last decades.

According to the years of research, the maximum yield of 42.6 — 57.0 t / ha in all of varieties was formed in the conditions of 2015, and the minimum - 19.8 – 31.6 t / ha in the conditions of 2016.
In both years of research, the maximum yield was formed by the variety Crystel, and the lowest – by the variety Gloria.

The most unstable in terms of yield formation was the Serafina variety. So, in 2015, the yield (54.1 t/ha) was close to the most productive grade of Crystel (57.0 t/ha), but in 2016 it formed the lowest yield among the studied varieties (16.8 t/ha). And the difference in yields from 2016 was 37.3 t/ha lower than in 2015 and higher than the same difference over the years, in other varieties.

During the study, the analysis of the structure of the crop showed that the average weight of one tuber changed depending on the varietal characteristics of potatoes (table 2).

Table 2. Tuber weight and yield of commodity potato tubers on average for considered period.

Variety	The weight of the tuber (g)	The yield of marketable tubers (%)
Nevsky (st)	73	68
Gloria	92	69
Crystel	96	81
Sandrine	81	80
Serafina	55	52
Aspia	90	74
Average	81	71

One of the indicators of the structure of the crop is the mass of the tuber [11, 12]. In general, it varied from 55 g for the Serafina variety to 96 g for the Crystel variety. All varieties except Serafina were characterized by a higher weight of one tuber compared to the standard – Nevsky variety. Compared to the control, the increase amounted to 8 g in the Sandrine variety, 17 g in the Aspia variety, 19 g in the Gloria variety and 23 g in the Crystel variety.

By weight of tubers, they were divided into large tubers with a mass of more than 80 g, medium tubers with a mass of 50 – 80 g and small tubers with a mass of less than 50 g.

Varieties Gloria, Crystel, Sandrine and Aspia in size formed tubers belonging to the group – large, Nevsky variety and Serafina to the group – medium.

Potatoes tubers are subject to various diseases, some of which affect the commercial quality of tubers are a common scab and Rhizoctoniosis (black scab). Common scab is manifested in the form of ulcers on the surface of the tubers. Rhizoctonia blight (scab black) is manifested in the form of ulcers and cavities in the hot weather – lots with net necrosis. Conidia which are similar to the black lumps of the earth which stuck to a tuber peel [13].

Our studies (table 3) showed that all varieties were not equally affected by common scab and rhizoctoniosis. The affection of tubers with rhizoctoniosis varied in the range of 0 – 8.0%. It was found that the variety of Crystel was not affected by this disease (0 %). The maximum affection – 8 % was noted in the variety of Aspia. Gloria variety was affected at the level of 7 %, Nevsky variety at the level of 4 %, Sandrine and Serafina varieties at the level of 3 %.

Table 3. Potato’s bed capacity depending on tuber disease on average for considered period.

Variety	Common scab	Rhizoctonia blight	Keeping quality
Nevsky (st)	4	6	94
Gloria	6	7	93
Crystel	0	3	94
Sandrine	3	3	92
Serafina	3	3	91
Aspia	8	0	95

The affection of tubers with rhizoctoniosis varied in the range of 0 – 7 %. Aspia variety was not affected by this disease. Potato varieties of Gloria varieties were the most affected by 7 %. Tubers of
the Nevsky variety were affected by 6.0%, and tubers of the varieties Crystel, Sandrin and Serafina – by 3%.

Keeping the quality of potatoes largely depends on the affection of tuber diseases [14].

In our studies, all varieties were characterized by high keeping quality of tubers which varied within 91 – 95 %. The maximum keeping quality – 95 % was characterized by the Aspia variety. The keeping quality was 94 % in the Nevsky and Crystel varieties, in the Gloria varieties – 93 %, Sandrine – 92 % and Serafina – 91 %.

Potatoes serve as a valuable raw material for various products – chips, potato grits, flakes, mashed potatoes, frozen semi-finished products, as well as for the production of starch, alcohol (one ton potatoes contain 17.5 % starch content from which you can get up to 175 kg of pure starch or 112 liters of alcohol). Potato is also important as forage crop [15].

The quality and yield of potatoes vary dramatically depending on climate and soil. Potatoes were grown on light sandy, but fertile soils in central Russia has excellent taste, large and clean tubers, mature starch grains, well-boiled.

With a lack of moisture (southern semi-deserts and steppes) or in areas with excessive moisture (Kola Peninsula) potatoes are tasteless, soap when cooked, suitable only for livestock feed and technical purposes.

Potatoes grown in the Northern regions have a lower starch content than in the Central and southern regions. In the conditions of our country in the transition from the middle latitudes (50-57°) to the North (57-67°) starch decreases by 0.5% for each degree of latitude. In the transition from the middle latitudes to the southern starch often increases, but is constrained by a lack of moisture and the spread of viral diseases. Sugar content increases from South to North [16, 17, 18].

Starch - the main carbohydrate, it is about 20 % crude and 80% dry weight. Distributed unevenly in tubers, at the apex, where there are more eyes, its content is 2-3 % less than at the base. In tubers of medium size (60-100 g), it is more than in large ones. The starch content is directly correlated with the dry matter content and also depends on the maturity of tubers, variety and weather [19].

Starch is deposited in tubers in the form of starch grains with a layered structure of 20-60 microns. The culinary qualities of potatoes depend on the sizes of starch grains; the larger they are, the higher the solubility and viscosity of starch, the variability of tubers.

The starch content determines the nutritional value and digestibility of potato tubers. Depending on the starch content, potato varieties with the low starch content (12 – 15 %), medium (16 – 20 %) and high (over 20%) are distinguished.

All varieties in our studies, all varieties of potatoes belonged to varieties with low starch content (table 4). The starch content in them ranged from 12.4 % in the Crystel variety to 14.7 % in the Sandrine variety. In other varieties, tuber starch content varied between 13.4 – 13.7 %.

Variety	Starch content, %	Degustation evaluation, point	Overall assessment, point
Nevsky (st)	13.7	4.3	3.0
Gloria	14.6	4.0	3.0
Crystel	12.4	5.0	4.0
Sandrine	14.7	4.7	4.0
Serafina	13.6	4.7	3.0
Aspia	13.4	4.7	3.0
Average	13.7	4.6	3.3

Boiled tubers are evaluated by appearance, digestibility, consistency, taste, resistance to darkening [20]. Each indicator and overall assessment is characterized by appropriate quality levels, which are expressed in points.
On the basis of a set of individual indicators, the culinary qualities of potatoes as a whole are estimated as follows in table 5 [21].

Table 5. Culinary qualities of potatoes.

List	Description	Score
excellent	the appearance of boiled potatoes is excellent, the tubers are quite boiled,	
	the consistency is mealy-related, the taste is pleasant, the flesh is	5
	resistant to darkening	
good	good appearance, tubers moderately boiled or decayed to varying degrees,	4
	the consistency of mealy-bound or crumbly, the taste is characteristic, it	
	is permissible weak darkening	
satisfactory	appearance, good or mediocre, the potatoes slightly overcooked, the	3
	texture is dense or densely-bland, mediocre taste, acceptable	
	explicit darkening of flour	
bad and very bad	whole tubers, faded, consistency and taste with signs of watery and	2-1
	soapy, the flesh are very darkening	

Of all the varieties we studied, only the Crystel variety received excellent marks, the other varieties received good marks.

The overall assessment of the varieties as a whole was also quite high. It had different varieties in the range of 3.0 – 4.0 points. Crystel and Sandrine varieties received the maximum overall rating of 4.0 points. Other varieties were estimated at 3.0 points.

4. Conclusion

Crystel variety forming the maximum yield of 41.9 t / and an increase to the standard of 9.2 t / ha, with a maximum mass of tuber 96 g and yield of commercial tubers 81 %, a slight defeat by scab and rhizoctoniosis, breeze 94.0 %, tasting assessment 5.0 points and an overall rating of 4.0 points is recommended for cultivation on highly cultivated sod-podzolic light loamy soils on the left bank of Nizhny Novgorod region.

References

[1] Alekseev V A 2003 The method of tillage, fertilizer and crop Potatoes Veget. 2 p 10
[2] Gusev M I 1994 About removal of nutrients from the soil by high yields of potatoes Chemization 11 p 57
[3] Zakharov V N 1991 Diagnosis of mineral nutrition Potatoes Veget. 1 pp 9–13
[4] Kosyanchuk V P 2000 Potato production in the Bryansk region - an integrated approach Potatoes Veget. 1 p 10
[5] Usanova Z I 2004 The productivity of potato varieties in the conditions of the upper Volga region Achievements of agricultural science – development of the agro-industrial complex. Collection of scientific papers (Tver: TGSH) pp 36–40
[6] Devyatkina L N 2018 Potato production: global and national discourse Bullet. NGIEI 5 (84) pp 122–34
[7] Ivenin V V, Ivenin A V, Sakov A P, Bogomolov V N and Novosadov A A 2017 Optimization of the Dutch system of tillage for potatoes (Nizhny Novgorod: FSBEI of the Nizhny Novgorod State Agricultural Academy)
[8] Smirnov N A 2018 Strengthening of food independence of the region on the basis of increase of efficiency of branch potato Bullet. NGIEI 1(80) pp 111–20
[9] Zaikin V P, Lisin A Yu, Rumyantsev F, Shamin A E and Borisova E E 2015 Efficiency of green fertilizers in crop rotations on loamy soils of the Volga-Vyatka region (Monograph. Knyaginino)
[10] Zaikin V P 2003 Scientific bases of systems of agriculture of the Volga – Vyatka region (N. Novgorod: study guide NGSKHA) p 288

[11] Savel'ev V A 2017 Potato (Monograph. Publ: Lan’)

[12] Lorch A G 1948 Dynamics of accumulation of potato crops (Moscow: Selkhozgiz) p 191

[13] Maltsev V F 2002 System of biologization of agriculture of non-Chernozem zone of Russia vol 2 (Moscow: FGNU Rosinformagrotekh) p 574

[14] Pshechenkov K A 2007 Storage technology of potato (Publishing House “Potato”) p 192

[15] Batsanova N S 1970 Potato (Moscow: Kolos) p 375

[16] The research reports. Stage 17.03.06.01 2005 To develop zonal, resource-and energy-efficient, environmentally safe, cost-effective potato production technologies to ensure high sustainable yields, high-quality products (Moscow) p 94

[17] Tabakov A G 2013 Potato yield, depending on the agrotechnical methods of cultivation ed Tabakov A G, Samarkina M A and Shashkarov L G Bulletin of Kazan State Agrarian University T8 4(30) pp143–145

[18] Efimov V M 2009 Yield of potatoes depending on mineral fertilizers, tripoli and its mixtures with mineral fertilizers ed Efimov V M and Shashkarov L G Bulletin of the Kazan State Agrarian University T4 3(13) pp 100–101

[19] Sokol P F 1963 Storage of potatoes and vegetables (Moscow: Publishing house of agricultural literature, magazines and posters) p 256

[20] Davydenkova O N 2004 Influence of growing and storage conditions of different potato varieties on consumer quality and processed products Diss. of Cand.ofAgr. Sciences (Moscow) p 159

[21] The method of state variety testing of crops (potatoes, vegetables and melons) 2015 (Moscow: FGBU “Gossortkomissiya”) p 61