Abstract. MMP9 is involved in extracellular matrix degradation during various physiological and pathological conditions, including tumorigenesis. The present study aimed to assess the prognostic role of intratumoral MMP9 and to determine its association with circulating tumor cells (CTCs) in patients with early breast cancer. A total of 318 patients with primary breast cancer (PBC) were enrolled into the present study. Specimens were subjected to immunohistochemistry analysis, using the MMP9 monoclonal antibody. MMP9 expression was scored using a weighted histoscore (WH). The results demonstrated that the mean WH ± SEM for MMP9 expression was significantly higher in breast tumor cells compared with tumor associated stromas (132.0±5.2 vs. 50.8±3.7; P<0.00001). Furthermore, a positive association was observed between MMP9 expression, the hormone positive status and proliferation index of analysed breast cancer tumour cells. Notably, the prognostic role of MMP9 was not observed in tumor cells [hazard ratio (HR) =0.96; 95% confidence interval (CI), 0.58‑1.59; P=0.864] or tumor associated stroma (HR=1.29; 95% CI, 0.60‑2.78; P=0.547). Subgroup analysis demonstrated that patients that were HR negative or triple negative, with low MMP9 expression in tumor cells and stroma had a significantly improved disease‑free survival than patients with high MMP9 expression. Taken together, the results of the present study demonstrated that high MMP9 expression in PBC was associated with favorable tumor characteristics. However, the prognostic value of MMP9 was limited to only the HR negative and CTC epithelial‑to‑mesenchymal transition positive subgroups. Thus, analyzing MMP9 tumor expression may help identify patients with increased risk of disease recurrence in these subgroups.

Introduction

Breast cancer is the most common malignancy in women worldwide, whereby 2,088,849 new cases of invasive breast cancer and 626,679 mortalities were reported in 2018 (1,2). Tumor invasion and metastasis affect >90% of patients with breast cancer, and thus notably contribute to the high mortality rate (3‑5). This metastatic disease remains incurable, and effective treatment for end‑stage metastatic breast cancer are yet to be determined (6‑8). The aggressiveness of a tumor is closely associated with its ability to evade natural barriers, to invade adjacent tissues and metastasize distant sites (9). The metastatic cascade is a multistep process where cancer cells escape from the primary tumor site to distant locations, where they can potentially establish new cancer colonies (10,11). Under optimal conditions, epithelial cancer cells detach from the primary tumor site, penetrate and migrate via peripheral circulation, and invade secondary sites, where they ultimately undergo extravasation and populate distant organs (11,12).
Proteolytic degradation of the basement membrane and extracellular matrix (ECM) is considered a crucial aspect of metastatic growth, which enables low anchorage of neoplastic cells (13-17). Several cell-secreted proteolytic enzymes, including matrix metalloproteinases (MMPs) are implicated in the cleavage of ECM (13,18,19). Matrix metalloproteinase 9 (MMP9) is a member of the gelatinase subfamily of MMPs and is secreted by a variety of cell types in an inactive form that undergoes activation upon cleavage by different types of extracellular proteases (18,20). MMP9 activity is modulated via different biochemical molecules, including growth factors and cytokines (19,21). Notably, MMP9 is actively involved in the degradation of type IV collagen, which is a crucial component of the basement membrane (19,22). In addition, MMP9 facilitates the dissemination machinery, and is particularly involved in tumor invasion, tumor-induced angiogenesis, and immunomodulation of the tumour microenvironment, where it is implicated in the formation of so-called premetastatic niches (23,24). Previous studies have focused on the association between high MMP9 expression and the number of distant metastases in patients with breast cancer (25-27), as well as poor prognosis (28,29). It has been speculated that circulating tumor cells (CTCs), which are responsible for distant metastasis formation, use MMPs to form new metastatic sites (19,30). In addition, a previous study demonstrated that elevated MMP1 expression is significantly associated with the presence of CTC_ epithelial-to-mesenchymal transition (EMT) cells in the peripheral blood of patients with primary breast cancer (PBC), as well as with poor prognostic features of their primary tumors (31). The present study aimed to assess MMP9 expression in tumor cells as well as tumor associated stroma of patients with PBC, and determine its association with the presence of CTCs in the peripheral blood of these patients and other clinicopathological characteristics. The prognostic value of MMP9 in patients with PBC was also assessed.

Patients and methods

Study patients. The present study (Protocol TRU-SK 002; Chair: Michal Mego) enrolled 318 patients with stages I-III PBC who underwent definitive surgery. The samples were collected from the National Cancer Institute (Bratislava, Slovakia) between March 2012 and February 2015. The paraffing embedded tumor tissue and CTCs status in peripheral blood were available for all patients included in the present study. Complete diagnostic evaluation was performed in all patients to exclude the presence of distant metastasis. Patients to exclude the presence of distant metastasis. Patients with concurrent malignancy in the last 5 years, other than non-melanoma skin cancer, were excluded from the present study. The clinicopathological data including age, tumor stage, histology, regional lymph node involvement, hormone receptor status and HER2 status were retrieved and tabulated from the patients' records after obtaining all the relevant ethical approvals. Breast cancer subtypes were identified by immunohistochemical staining (see below) and classified according to the ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up for early breast cancer (32).

The present study was reviewed and approved by the Institutional Review Board of the National Cancer Institute of Slovakia, Bratislava, Slovakia (TRUSK002, 20.6.2011). Written informed consent was provided by all patients prior to the study start.

Tumor pathology. Pathological review was performed at the Department of Pathology, Faculty of Medicine, Comenius University, (Bratislava, Slovakia) by an experienced pathologist (ZC).

Tumor samples and tissue microarray construction. Tumor specimens used in the present study were classified according to the 2019 World Health Organization classification (33). According to the tumor histology results, one or two representative areas containing the most representative part of the hematoxylin and eosin (H&E) stained tumor tissues were observed under a light microscope, original magnification×400. The identified sections were matched to their corresponding wax blocks (donor blocks). The 3-mm diameter cores of the tumors were removed from the donor blocks using the multipurpose sampling tool HarrisUni-Core (Sigma-Aldrich; Merck KGaA) and inserted into the recipient master block. The recipient block was cut into 5-μm-thick sections, which were transferred onto coated slides.

Immunohistochemical (IHC) staining. Deparaffinized slides were rehydrated in phosphate buffered saline solution (10 mM, pH 7.2). Tissue epipettes were demasked using the automated water bath heating process in Dako PT Link (Dako; Agilent Technologies, Inc.) and the slides were incubated in pH 6.0 citrate retrieval buffer at 98°C for 20 min. The slides were subsequently incubated for 1 h at room temperature with primary mouse monoclonal antibody against MMP9 (Abcam; MMP9 (SB15c); cat. no. ab51203) diluted 1:200 in Dako REAL antibody diluent (Dako; Agilent Technologies, Inc.) and immunostained with anti-mouse/anti-rabbit immuno-peroxidase polymer (EnVision FLEX/HRP, Dako; Agilent Technologies, Inc.) for 30 min at room temperature, according to the manufacturer's instructions. The reaction was visualized using diaminobenzidine substrate-chromogen solution (Dako; Agilent Technologies, Inc.) for 5 min, and the slides were counterstained with hematoxylin. The human clone tissue served as the positive control, and colon tissue subjected to the same procedure omitting the primary antibody was used as the negative control.

IHC evaluation. Tumor scores were blindly assessed by a pathologist (ZC). The results of the IHC analyzes were scored using a weighted histoscore (WH), assessing both the percentage of positive cells (PP) and the staining intensity (SI) of the cytoplasm as follows: The proportion of cells with nuclear staining was multiplied by the intensity of staining to provide a histoscore ranging from 0-300. The histoscore was calculated as follows: Score=(0x percentage not stained) + (1x percentage weakly stained) + (2x percentage moderately stained) + (3x percentage strongly stained) (34). The mid-point of WH histoscore was used as the cut-off criterion simillary as previously (35,36). MMP9 expression was stratified as low vs. high, according to the cut-off value of WH histoscore (150).

Detecting CTCs in peripheral blood. CTCs were identified via reverse transcription-quantitative (RT-q)PCR analysis.
Enrichment of CTC from peripheral blood by depleting CD45+ cells was performed using the Rosette Sep™ kit (15162; Stemcell Technologies, Inc.), as previously described (37,38). Briefly, RNA isolated from CD45-depleted peripheral blood samples were transcribed into cDNA, which was subjected to RT-qPCR analysis to assess the expression levels of epithelial-to-mesenchymal transition (EMT-TF) genes, including TWIST1, SNAIL1, SLUG and ZEB1. Compared with healthy donors, patient samples with higher EMT-TF gene transcript levels were classified as CTC EMT positive, based on the preclinical study and human sample testing. The highest expression values in healthy donors were used as a cut-off value to determine CTC positivity (39).

Statistical analysis. Patient characteristics were summarized using the median (range) values for continuous variables and frequency (percentage) for categorical variables. The distribution of MMP9 histoscore was significantly different from the normal distribution (Shapiro-Wilk test), thus non-parametric tests were used for analyses. Mann-Whitney U test was used to compare the differences in distributions of MMP9 expression between two groups of patients with PBC, whereby MMP9 expression was categorized as absent or present. Fisher’s exact test or the χ² test were used where appropriate.

The median follow-up period was estimated as a median observation time among all patients and among those still alive at the time of their last follow-up. Disease-free survival (DFS) was calculated from the date of CTCs measurement to the date of disease recurrence (locoregional or distant), secondary cancer, death or last follow-up. DFS was estimated using the Kaplan-Meier product limit method and log-rank test. Two-sided P<0.05 was considered to indicate a statistically significant difference. Statistical analyses were performed using NCSS 11 statistical software (2016; NCSS, LLC.; ncss.com/software/ncss).

Results

Patient characteristics. The present study enrolled 318 patients with PBC. The median age of the assessed cohort was 60 years (age range, 25-83 years). The majority of patients had node negative (60.1%) and hormone positive (83.6%) tumors; 48/318 patients (15.1%) had a HER-2/neu amplified status. Patient characteristics are summarized in Table I.

CTCs detection. To establish overexpression of the EMT-inducing TF gene transcripts in patients with PBC, the expression levels were compared between patient samples and healthy donors, as previously described (39). Among the patient samples, CTCs were detected in 83 patients (26.1%). CTCs with only epithelial markers were detected in the peripheral blood of 34 patients (10.7%), while CTCs with an EMT phenotype were present in 56 patients (17.6%).

Association between MMP9 expression, and patients/tumor characteristic and CTCs. MMP9 protein expression in tumor cells was assessed in all patients (n=318) (Fig. 1). However, pathologists were unable to detect stromal cells in 9/318 tumor tissues due to the small sample size, which only constituted tumor cells. Thus, MMP9 expression in stroma was only assessed in 309 patients. MMP9 expression intensity at least 1+...
and higher was detected in 255 samples (80.2%) in breast tumor cells and in 307 samples (99.4%) of tumor associated stroma (P<0.00001). The mean WH ± standard error of the mean (SEM) for MMP9 expression was significantly higher in breast tumor cells compared with tumor associated stroma (132.0±5.2 vs. 50.8±3.7, P<0.00001). The association between MMP9 expression in tumor cells and clinicopathological characteristics, as well as its association with CTCs are presented in Table II. The results demonstrated that elevated MMP9 expression was significantly associated with EP/PR positive breast cancer cells (mean WH ± SEM=137.6±5.6 vs. 103.4±12.8, P=0.011) and low proliferating tumors (Ki67 <20%) (mean WH ± SEM=141.1±6.7 vs. 117.9±8.1, P=0.018), while elevated MMP9 expression in tumor associated stroma was associated with hormone receptor (EP/PR) status (mean WH ± SEM=54.6±4.0 vs. 30.7±9.1, P=0.021) (Table III). In our analysis, there was found no association between MMP9 expression in breast cancer cells, or in tumor associated stroma and CTCs.

Prognostic value of MMP9 in PBC. The median follow-up time was 54.9 months (range, 0.2-76.6 months). In the assessed cohort, 61 patients (19.2%) experienced a disease progression during follow-up. Among the subgroup of patients where MMP9 expression in tumor associated stroma was assessed (n=309), the median follow-up time was 55.3 months (range, 0.2-76.6), and 59 patients (19.1%) experienced a DFS event. Due to insufficiency of overall survival data, only DFS data are presented in the present study.

Univariate analysis was performed to determine the prognostic value of MMP9 in PBC cells [hazard ratio (HR)=0.96; 95% confidence interval (CI), 0.58-1.59; P=0.864; Fig. 2A], as well as in tumor associated stroma (HR=1.29; 95% CI, 0.60-2.78; P=0.547; Fig. 2B). Exploratory subgroup analysis was performed to determine a potential subgroup-related prognostic value of MMP9 (Tables IV and V). In addition, also the univariate analysis in group of patients with concomitant high MMP9 expression in tumor and stromal cells was carried out. However, no prognostic value was found using this analysis (HR=1.27, 95% CI 0.59-2.75, P=0.573) (Fig. 2C). The results demonstrated that low MMP9 expression in tumor cells was associated with better DFS in hormone receptor (ER/PR) negative and triple negative patients with PBC (HR=0.33; 95% CI, 0.12-0.93; P=0.025; Fig. 3A) and (HR=0.17; 95% CI, 0.05-0.57; P=0.003; Fig. 3B), respectively. Notably, the prognostic value of MMP9 in tumor cells was also observed in the CTC_EMT-positive subgroup of patients (HR=0.40; 95% CI, 0.16-0.95; P=0.047; Fig. 3C). Among the subgroup of patients where MMP9 expression in tumor associated stroma was assessed, the prognostic value of MMP9 was observed in the hormone receptor (ER/PR) negative subgroup of patients (HR=0.14; 95% CI, 0.00-4.81; P=0.002; Fig. 4A), triple negative (HR=0.12; 95% CI, 0.00-4.89; P=0.001; Fig. 4B). In addition, among the subgroup of CTC_EMT positive patients
was progression of the disease documented in 1 of 2 patients with high MMP9 expression in stromal cells compared to 22 of 51 patients with low MMP9 expression within 4-years follow up. In subgroup of the CTC_EMT positive patients 2 of 4 patient with high MMP9 expression in stromal cells experienced progression of disease compared to 6 of 22 patient with low MMP9 expression after 4-years follow up.

Notably, combinatorial survival analysis of CTC_EMT and MMP9 expression in tumor cells demonstrated that CTC_EMT positive patients with high MMP9 expression had a significantly shorter DFS compared with CTC_EMT negative patients (P<0.00001; Fig. 5).

Discussion
MMPs represent a large family of proteolytic enzymes of the extracellular matrix that are involved in extracellular matrix degradation, tumor cell invasion, metastasis and
Table I. Patient characteristics.

Characteristic	n (%)
All patients	318 (100.0)
Histology	
Invasive ductal carcinoma	272 (85.5)
Invasive lobular carcinoma	32 (10.1)
Other histological subtypes	14 (4.4)
Grade	
Low and intermediate	200 (62.9)
High grade	110 (34.6)
Unknown	8 (2.5)
T stage	
T1	218 (68.6)
T2 and more	100 (31.4)
N stage	
N0	191 (60.1)
N1mi	10 (3.1)
N1	68 (21.4)
N2	27 (8.5)
N3	19 (6.0)
Unknown	3 (0.9)
Hormone receptor status (cut-off 1%)	
Negative for both	52 (16.4)
Positive for either	266 (83.6)
HER2 status	
Negative	270 (84.9)
Positive	48 (15.1)
Ki67 status	
<20%	189 (59.4)
≥20%	128 (40.3)
Unknown	1 (0.3)
Molecular subtype	
Luminal A	166 (52.2)
Luminal B	99 (31.1)
HER2+	13 (4.1)
Triple negative	39 (12.3)
Unknown	1 (0.3)
P53 status	
Negative	193 (60.7)
Positive	124 (39.0)
Unknown	1 (0.3)
BCL-2 status	
Negative	92 (28.9)
Positive	225 (70.8)
Unknown	1 (0.3)
CTC EP	
Negative	235 (73.9)
Positive	27 (8.5)
CTC EMT	
Negative	235 (73.9)
Positive	56 (17.6)
CTC any	
Negative	235 (73.9)
Positive	83 (26.1)

CTC, circulating tumor cells; EMT, epithelial-to-mesenchymal transition; EP, epithelial-positive.

Table II. Association between MMP9 expression in tumour cells, patients, tumour characteristics and circulating tumor cells.

Characteristic	N	Mean	SEM	Median	P-value
MMP9 expression weighted histoscore	318	132.0	5.2	150 NA	
Histology					
Invasive ductal carcinoma	272	136.0	5.6	150	0.081
Other	32	108.6	13.6	150	
T stage					
T1	218	136.4	6.3	150	0.163
T2 and more	100	80.0	32.7	0	
N stage					
N0	191	135.4	6.5	150	0.468
Positive	266	137.6	5.6	150	
Hormone receptor status (cut-off 1%)					
Negative for both	52	103.4	12.8	100	0.011
Positive for either	266	137.6	5.6	150	
HER2 status					
Negative	270	131.4	5.6	150	0.792
Positive	48	135.7	13.4	150	
Ki67 status					
<20%	189	141.0	6.7	170	0.018
≥20%	128	117.9	8.1	110	
Unknown	1	250.0	92.3	250	
Molecular subtype					
Luminal A	166	138.6	7.2	160	0.0711
Luminal B	99	134.8	9.3	150	
HER2+	13	106.2	25.6	100	
Triple negative	39	102.4	14.8	100	
Unknown	1	250.0	92.3	250	
P53 status					
Negative	193	131.1	6.7	150	0.632
Positive	124	134.1	8.3	150	
Unknown	1	50.0	92.9	50	
BCL-2 status					
Negative	92	126.0	9.7	110	0.229
Positive	225	134.0	6.2	150	
Unknown	1	250.0	92.7	250	
CTC EP					
Negative	235	134.1	6.0	150	0.851
Positive	27	138.1	17.5	150	
CTC EMT					
Negative	235	134.1	6.1	150	0.300
Positive	56	120.4	12.4	153	
CTC any					
Negative	235	134.1	6.1	150	0.472
Positive	83	126.1	10.2	150	

CTC, circulating tumor cells; EMT, epithelial-to-mesenchymal transition; EP, epithelial-positive.
angiogenesis (19,40–42). The results of the present study demonstrated that elevated MMP9 expression levels in tumor cells and tumor associated stroma were significantly associated with favorable tumor characteristics. Hormone-positive tumors exhibited significantly higher MMP9 expression in tumor cells, as well as in tumor associated stromal cells. In addition, the results demonstrated an association between increased MMP9 expression and low proliferation index of Ki67. Although the role of MMP9 and its association with breast cancer has been extensively studied, data regarding the prognostic value of MMP9 are inconsistent. On one hand, it has been reported that MMP9 expression is associated with a shorter relapse-free survival time in patients with primary breast tumours (26,29,43,44). The association between upregulated MMP9 expression and an increased risk of overall survival and relapse-free survival in breast cancer has also been confirmed via meta-analyses by Song et al (45) and Ren et al (46). Conversely, some studies have identified MMP-9 as a favourable prognostic marker for breast cancer (9,47).

The results of the present study demonstrated a significant association between high MMP9 expression in tumour cells and poor DFS in hormone receptor negative, triple negative, as well as in the CTC_EMT-positive subgroup of patients with early breast cancer. Analysis of stromal cells exhibited this association in the hormone receptor negative and triple negative subgroups of patients.

These results are in concordance with previous studies, confirming the association between MMP9 expression and a shorter progression time, particularly in patients with basal-like or triple negative breast cancer (48,49). Controversy regarding the association between MMP9 expression and clinical outcomes in different types of malignant tumors, including breast cancer, suggests the presence of active and inactive forms of MMP9. MMPs are secreted in the form of inactive proenzymes, whose activation is mediated via different molecular mechanisms (20,21). Thus, the level of active MMP9 in stromal cells and tumor cells may vary, which will subsequently account for the differences in clinical outcomes (50).

Table III. Association between MMP9 expression in stromal cells, patients, tumour characteristics and circulating tumor cells.

Characteristic	N	Mean	SEM	Median	P-value
MMP9 expression weighted histoscore					
Histology					
Invasive ductal carcinoma	266	51.9	4.0	30	0.434
Other	43	44.2	9.8	20	0.489
Grade					
Low and intermediate	194	50.9	4.6	30	0.469
High grade	108	51.7	6.2	20	
Unknown	7	34.3	24.4	0	
T-stage					
T1	213	52.6	4.4	25	0.536
>T1	96	46.8	6.6	25	
N stage					
N0	197	54.9	4.6	30	0.021
N1	110	43.5	6.1	20	
Unknown	2	50.0	45.6	50	
Hormone receptor status (cut-off 1%)					
Negative for both	49	30.7	9.1	5	0.872
Positive for either	260	54.6	4.0	30	
HER2 status					
Negative	263	50.7	4.0	20	0.137
Positive	46	51.6	9.5	30	
Ki67 status (cut-off 20%)					
<20%	183	56.3	4.8	30	0.094
≥20%	126	42.9	5.7	20	
Molecular subtype					
Luminal A	163	57.0	68.7	30	
Luminal B	97	50.5	62.0	30	
HER2+	12	15	24.3	0	
Triple negative	37	35.8	55.7	5	
P53 status					
Negative	188	48.1	4.7	30	0.537
Positive	120	55.5	5.9	20	
Unknown	1	0.0	64.5	0	
BCL-2					
Negative	88	47.9	6.9	30	0.995
Positive	221	52.0	4.3	20	
CTC EP					
Negative	229	54.4	4.1	30	0.350
Positive	27	41.3	12.8	20	
CTC EMT					
Negative	229	54.4	4.1	30	0.400
Positive	53	40.3	10	10	
CTC any					
Negative	229	54.4	4.1	30	0.168
Positive	80	40.6	7.2	20	

CTC, circulating tumor cells; EP, epithelial; EMT, epithelial-to-mesenchymal transition; NA, not applicable.

Figure 5. Kaplan-Meier DFS analysis for a combination of CTC EMT and MMP9. CTC EMT positive patients with MMP9 expression had a worse DFS than patients that are CTC EMT negative. P<0.00001. DFS, disease-free survival; CTC, circulating tumor cells; EMT, epithelial-to-mesenchymal transition.
ETM is considered a developmental process, facilitating the resistance to apoptosis and increased invasion, and is closely associated with development of a cancer stem cell phenotype (19,51). This machinery can be directly induced by MMPs in the target epithelial cells. Expression of proteases, including MMPs, is upregulated during reorganization of ECM in EMT. In addition, the process of MMP-induced EMT has been best characterized in mammary epithelial cells (52,53). According to the results of the present study, there was no significant association between any subpopulations of CTCs and MMP9 expression. Contrary to MMP1, MMP9 does not actively participate in the release of CTCs into the blood stream of patients with PBC (31). However, these changes may result in the resistance to therapy, and development of a cancer stem cell phenotype closely associated with poor DFS. Given the limited treatment options for these subgroups of patients (triple-negative and CTC_EMT-positive PBC), MMP9 may potentially offer a novel therapeutic target. In addition, the results from the combinatorial survival analysis demonstrated that CTC_EMT

Characteristic	N	HR Low CI	High CI	P-value
Overall		0.96 0.58	1.59	0.864
Low MMP9	156	1.47		
High MMP9	162			
Invasive ductal carcinoma		0.84 0.48	1.47	0.550
Low MMP9	126			
High MMP9	146			
Other histology		2.12 0.55	8.17	0.335
Low MMP9	30			
High MMP9	16			
Intermediate/low grade		0.95 0.44	2.07	0.901
Low MMP9	93			
High MMP9	107			
High grade 5 to NA				
Low MMP9	58	0.80 0.40	1.58	
High MMP9	52			
T1 stage		0.97 0.48	1.98	0.936
Low MMP9	99			
High MMP9	119			
T2 stage and higher		0.77 0.37	1.60	
Low MMP9	57			
High MMP9	43			
N0 stage		0.92 0.41	2.09	0.844
Low MMP9	99			
High MMP9	102			
N+ stage		1.04 0.54	2.00	0.909
Low MMP9	55			
High MMP9	59			
ER/PR positive for either		1.20 0.66	2.18	0.539
Low MMP9	122			
High MMP9	144			
ER/PR negative for both		0.33 0.12	0.93	0.025
Low MMP9	34			
High MMP9	18			
HER positive		1.22 0.42	3.49	0.712
Low MMP9	22			
High MMP9	26			
HER negative		0.91 0.51	1.62	0.741
Low MMP9	134			
High MMP9	136			
Ki67 low (<20%)		1.30 0.57	2.99	0.523
Low MMP9	84			
High MMP9	105			
Ki67 high (≥20%)		0.62 0.33	1.19	0.149
Low MMP9	72			
High MMP9	57			
Triple negative		0.17 0.05	0.57	0.003
Low MMP9	26			
High MMP9	13			
P53 negative		0.90 0.49	1.65	0.735
Low MMP9	96			
High MMP9	97			

Characteristic	N	HR Low CI	High CI	P-value
P53 positive		1.11 0.43	2.82	0.829
Low MMP9	59			
High MMP9	65			
BCL2 negative		0.53 0.24	1.18	0.124
Low MMP9	51			
High MMP9	41			
BCL2 positive		1.29 0.67	2.49	0.445
Low MMP9	105			
High MMP9	120			
CTC EP negative		1.33 0.69	2.57	0.387
Low MMP9	115			
High MMP9	120			
CTC EP positive		1.52 0.20	11.24	0.675
Low MMP9	12			
High MMP9	15			
CTC EMT negative		1.33 0.69	2.47	0.387
Low MMP9	115			
High MMP9	120			
CTC EMT positive		0.40 0.16	0.95	0.047
Low MMP9	29			
High MMP9	27			
CTC any negative		1.33 0.69	2.57	0.387
Low MMP9	115			
High MMP9	120			
CTC any positive		0.51 0.23	1.14	0.113
Low MMP9	41			
High MMP9	42			

aData not available in 8 patients; bdata not available in 3 patients; cdata not available in one patient; ER, estrogen receptor; PR, progesterone receptor; CTC, circulating tumor cells; EMT, epithelial-to-mesenchymal transition; EP, epithelial; HZ, hazard ratio; CI, confidence interval; NA, not applicable.
positive patients with MMP9 expression in tumor cells had a significantly lower DFS compared with CTC_EMT negative patients, suggesting that EMT acts as a negative prognostic marker only in subgroups of patients with high MMP9 expression, while the subgroup of CTC_EMT positive patients, with low MMP9 expression exhibited no effects.

The spectrum of synthetized MMP inhibitors (MMPIs) assessed in clinical trials have demonstrated poor effectiveness and serious side effects (54,55). The limited clinical effect of MMPIs may be due to their poor selectivity. Previous studies have focused on a broad spectrum of MMPs, most of which exert tumorigenic activity. However, it is necessary to take into consideration that some MMPs are characterized by antitumorigenic effects. Another reason for MMPIs inefficacy can be due to their administration to unselected groups of patients (44,56).

In conclusion, this prospective translational study demonstrated the protective role of MMP9 in patients with breast cancer, whereby its increased expression was associated

Characteristic	N	HR	95% CI Low	95% CI High	P-value
Overall					0.547
Low MMP9 expression	276	1.29	0.60 0.60	2.78	
High MMP9 expression	33				
Invasive ductal carcinoma	237	1.41	0.63 0.63	3.18	
Low MMP9 expression	29				
High MMP9 expression					
Other histology					0.825
Low MMP9 expression	39	0.79	0.08 0.08	7.84	
High MMP9 expression	4				
Intermediate/low gradea	174	1.02	0.31 0.31	3.38	
Low MMP9 expression	20				
High MMP9 expression					
High gradea					0.458
Low MMP9 expression	96	1.56	0.57 0.57	4.24	
High MMP9 expression	12				
T1 stage					0.974
Low MMP9 expression	189	1.02	0.36 0.36	2.90	
High MMP9 expression	24				
T2 stage and higher					0.457
Low MMP9 expression	87	1.71	0.54 0.54	5.43	
High MMP9 expression	9				
N0 stageb					0.460
Low MMP9 expression	174	1.71	0.53 0.53	5.55	
High MMP9 expression	23				
N+ stageb					0.871
Low MMP9 expression	100	0.92	0.31 0.31	2.70	
High MMP9 expression	10				
ER/PR positive for either					0.323
Low MMP9 expression	229	1.67	0.71 0.71	3.88	
High MMP9 expression	31				
ER/PR negative for both					0.002
Low MMP9 expression	47	0.14	0.00 0.00	4.81	
High MMP9 expression	2				
HER positive					0.242
Low MMP9 expression	39	3.12	0.83 0.83	11.74	
High MMP9 expression	7				
HER negative					0.900
Low MMP9 expression	237	1.06	0.43 0.43	2.64	
High MMP9 expression	26				
Ki67 low (<20%)					0.486
Low MMP9 expression	159	1.67	0.50 0.50	5.53	
High MMP9 expression	24				
Ki67 high (≥20%)					0.679
Low MMP9 expression	117	0.80	0.26 0.26	2.50	
High MMP9 expression	9				
Triple negative					0.001
Low MMP9 expression	35	0.12	0.00 0.00	4.89	
High MMP9 expression	2				
P53 negativec					0.901
Low MMP9 expression	171	1.07	0.39 0.39	2.92	
High MMP9 expression	17				

Table V. Continued.

Characteristic	N	HR	95% CI Low	95% CI High	P-value
P53 positivec					0.482
Low MMP9 expression	104	1.68	0.50 0.50	5.69	
High MMP9 expression	16				
BCL2 negative					0.078
Low MMP9 expression	83	0.35	0.05 0.05	2.29	
High MMP9 expression	5				
BCL2 positive					0.238
Low MMP9 expression	193	2.00	0.81 0.81	4.96	
High MMP9 expression	28				
CTC EP negative					0.143
Low MMP9 expression	202	2.76	1.08 1.08	7.09	
High MMP9 expression	27				
CTC EP positive					0.053
Low MMP9 expression	23	0.18	0.01 0.01	2.75	
High MMP9 expression	4				
CTC EMT negative					0.143
Low MMP9 expression	202	2.76	1.08 1.08	7.09	
High MMP9 expression	27				
CTC EMT positive					0.168
Low MMP9 expression	51	0.37	0.04 0.04	3.50	
High MMP9 expression	2				
CTC any negative					0.143
Low MMP9 expression	202	2.76	1.08 1.08	7.09	
High MMP9 expression	27				
CTC any positive					0.128
Low MMP9 expression	74	0.44	0.10 0.10	1.91	
High MMP9 expression	6				

aData not available in 7 patients; bdata not available in 2 patients; cdata not available in patient; ER, estrogen receptor; PR, progesterone receptor; CTC, circulating tumor cells; EP, epithelial; EMT, epithelial-to-mesenchymal transition; HZ, hazard ratio; CI, confidence interval; NA, not applicable.
with favourable tumour characteristics. Thus, as it has been proposed by Pozzi et al (57), inhibition of MMP9 antitumori-
genic and antiangiogenic activities may result in a paradoxical increase of tumor angiogenesis and tumor growth. Conversely, the results of the present study demonstrated the association between high MMP9 expression and poor DFS in selected subgroups of patients with PBC, particularly hormone receptor negative and triple negative tumors, as well as in CTC_EMT positive patients. These results suggest that MMP9 exerts different biological roles in HR positive vs. negative tumors, further supporting the concept of different biology of breast cancer subtypes according to their HR status. Thus, assessing MMP9 tumor expression may help identify individuals with increased risk of disease recurrence within the aforementioned subgroups of patients with PBC. However, there were certain limitations to the present study, such as the retrospective design of the study and semi-quantitative IHC analysis used for investigating of MMP9 expression. In addition, the study population represent a homogenous cohort of patients, treatment-naïve, without metastatic disease, in order to avoid the effect of the metastatic site heterogeneity factor on analysed variables.

Further studies are required to develop selective MMPIs against the specific protumorigenic MMPs or protumori-
genic activities of selected MMPs. Another strategy may be anticancer therapy with antitumorigenic MMPs or with their antitumorigenic subparts. An example of this phenomenon involves the MMP8 enzyme, whereby high MMP8 expression supresses metastasis, while MMP8 silencing induces tumour progression and metastasis (58–60).

Acknowledgements

The authors would like to thank Dr Gabriela Sieberova, Dr Jan Macuch, Dr Michal Majercik, Dr Peter Jani and Professor Pavel Babal (all from Department of Pathology, Faculty of Medicine, Comenius University) for their valu-
able input into IHC evaluation. The authors would also like to thank Ms. Zlatica Pekova (2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute) for administrative support, and Ms. Emilia Klinкова and Mr. Ludovit Gaspar (both, Department of Pathology, Faculty of Medicine, Comenius University) for their excellent technical assistance.

Funding

The present study was funded by the Slovak Research and Development Agency (grant no. APVV-16-0010).

Availability of data and materials

All datasets generated and analyzed during the present study are included in this published article.

Authors' contributions

KK, ZC, JM, MM and GM conceived and designed the present study. KK performed statistical analysis. ZC and IM performed immunohistochemical analysis. GM, TS and DK were involved in CTC detection. MK, JB and DP were involved in patient accrual and performed breast surgery. KK and MM drafted the initial manuscript, and all authors reviewed it critically for important intellectual content. All authors participated in the acquisition, analysis and interpretation of data. All authors have read and approved the final version of the manuscript for publication.

Ethics approval and consent to participate

The present study was reviewed and approved by the Institutional Review Board of the National Cancer Institute of Slovakia, Bratislava, Slovakia (approval no. TRU-SK 002; Chair: Professor Michal Mego). Written informed consent was provided by all patients prior to study commencement.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Ghoncheh M, Pournamdar Z and Salehiniya H: Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17: 43–46, 2016.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394-424, 2018.
3. Moreau JE, Anderson K, Mauney JR, Nguyen T, Kaplan DL and Rosenblatt M: Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 67: 10304-10308, 2007.
4. Fagan-Solis KD, Schneider SS, Pentecost BT, Bentley BA, Otis CN, Gierth YF and Arcaro KF: The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. J Cell Biochem 114: 1385-1394, 2013.
5. Malmgren JA, Mayer M, Atwood MK and Kaplan HG: Differential presentation and survival of de novo and recurrent metastatic breast cancer over time: 1990-2010. Breast Cancer Res Treat 167: 579-590, 2018.
6. Fan J, Deng X, Gallagher JW, Huang H, Huang Y, Wen J, Ferrari M, Shen H and Hu Y: Monitoring the progression of metastatic breast cancer on nanoporous silica chips. Philos Trans Royal Soc, Math Phys Eng Sci 370: 2433-2447, 2012.
7. Bottino J, Gelaeli GB, Maschio LB, Jardim-Persassi BV and de Campos Zuccari DA: Immunooxpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem 116: 1567-1373, 2014.
8. Olayide A, Samuel O, Ganiyu R, Moses A, Gafar O, Abiola D, Dapo K and John A: How effective is the treatment of locally advanced metastatic breast cancer in developing centres: A retrospective review. Ethiop J Health Sci 25: 337-344, 2015.
9. Scolari A, Karameris A, Arngiannaki N, Ardavanis A, Bassilopoulos P, Trangas T and Talieri M: Overexpression of matrix-metalloproteinase-9 in human breast cancer: A potential favourable indicator in node-negative patients. Br J Cancer 84: 1488-1496, 2001.
10. Fidler IJ: Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst 45: 773-782, 1970.
11. Lambit AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell 168: 678-691, 2017.
12. Nguyen DX, Bos PD and Massague J: Metastasis: From dissemination to organ-specific colonization. Nat Rev Cancer 9: 274-284, 2009.
13. Hsiao KC, Shih NY, Fang HL, Huang TS, Kuo CC, Chu PY, Hung YM, Chow SW, Yang YY, Chang GC, et al: Surface α-enamele promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PLoS One 8: e69354, 2013.

14. Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J, DiPersio CM, Feustel PJ and Zhao J: KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30: 1901-1911, 2011.

15. Ortíz-López de los Milia-S, Ramírez-Rodríguez G and Benítez-King G: ROCK-regulated cytoskeleton dynamics participate in the inhibitory effect of melatonin on cancer cell migration. J Pineal Res 46: 15-21, 2009.

16. Paolillo M and Schinelli S: Extracellular matrix alterations in metastatic breast cancer. Int J Mol Sci 11: 4947, 2010.

17. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C and Chavrier P: Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu Rev Cell Dev Biol 32: 555-576, 2016.

18. Shag G, Lynch CC and Fingleton B: Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 44-46: 200-206, 2015.

19. González-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, García-Hernandez AA and Faltán-Valencia R: Matrix metalloproteinases participation in the metastatic process and their diagnostic potential: An autochthonous applications in cancer. Crit Rev Oncol Hematol 137: 57-83, 2019.

20. Youself EM, Tahir MR, St-Pierre Y and Gabbour LA: MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14: 609, 2014.

21. Sturzenegger B, Byfield S, Arany PR, Karpova TS, Stepler-Stevenson WG and Roberts AB: Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118: 2143-2153, 2005.

22. Sand JM, Larsen L, Hogaboam C, Martínez F, Han M, Larsen MR, Narwicky A, Zheng Q, Karsdal MA, Lee DM, Leeming DJ: MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis - validation of two novel biomarker assays. PLoS One 8: e49394, 2013.

23. Kessendebroek F, Slaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141: 52-67, 2010.

24. Owoyong M, Chou H, van den Biggaart RJ, Kong N, Efe G, Maynard C, Talmi-Frank D, Solomonov I, Koopman C, Hadler-Olsen E, et al: MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci Alliance 2: e201800226, 2019.

25. Li HC, Cao D, Liu Y, Hou YF, Wu J, Liu JS, Di GH, Liu G, Li FM, Ou ZL, Yang J, Chen SW, et al: MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci Alliance 2: e201800226, 2019.

26. Li HC, Cao D, Liu Y, Hou YF, Wu J, Liu JS, Di GH, Liu G, Li FM, Ou ZL, Yang J, Chen SW, et al: Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 85: 75-85, 2004.

27. Ouyang L, Cao D, Li HC, Li FM, Ou ZL, Yang J, Chen SW, et al: Study of matrix metalloproteinases and their inhibitors in breast cancer patients. Br J Cancer 96: 903-911, 2007.

28. Darlith A, Lamy PJ, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, Thézanes S and Jacot W: Serum NSE, MMP-9 and CD44 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14: 609, 2014.

29. Munro A, Campbell F, Smit VT, Liefers GJ, Kuppen PJ, van de Velde CJ, et al: Expression of SNAIL and TWIST determines prognosis in estrogen receptor-positive early breast cancer patients. Breast Cancer Res Treat 133: 49-59, 2012.

30. Chovancé M, Cierna Z, Miskovská V, Machálekova K, Svetlovska D, Kalavksa K, Rejlekova K, Spanik S, Kajo K, Babal P, et al: Prognostic role of programmed-death ligand 1 (PD-L1) expressing tumor infiltrating lymphocytes in testicular germ cell tumors. Oncotarget 8: 21794-21805, 2017.

31. Chovancé M, Cierna Z, Miskovská V, Machálekova K, Kalavksa K, Rejlekova K, Svetlovska D, Maci S, Spanik S, Kajo K, et al: β-catenin is a marker of poor clinical characteristics and suppressed immune infiltration in testicular germ cell tumors. BMC Cancer 18: 1062, 2018.

32. Mego M, Karaba M, Minarik G, Benca J, Sedláčková T, Tóthova L, Vlkova B, Cierna Z, Janega L, et al: Relationship between circulating tumor cells, blood coagulation, and urokinase-plasminogen-activator system in early breast cancer patients. Breast 21: 155-160, 2015.

33. Mego M, Karaba M, Minarik G, Benca J, Silvia J, Sedláčková T, Manasova D, Kalavksa K, Pindak D, Cristianofilin M, et al: Circulating tumor cells levels and epithelial-to-mesenchymal transition phenotypes associated with inferior outcomes in primary breast cancer. Anticancer Res 39: 1829-1837, 2019.

34. Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EH, Gao H, Jackson SA, Giordano A, Hortobagyi GN, et al: Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: The effect of neoadjuvant therapy. Int J Cancer 130: 808-816, 2012.

35. Yadav L, Pur S, Rastogi V, Satpute P, Ahammad R and Kaur G: Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev 15: 1085-1091, 2014.

36. Westermarck J and Kähäri VM: Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13: 781-792, 1999.

37. Alaseem A, Alhazzani K, Dondapati P, Abidib S, Bishaye A and Rathinavelu A: Matrix metalloproteinases: A challenging paradigm of cancer management. Semin Cancer Biol 56: 100-115, 2019.

38. González LO, Pidal I, Junquera S, Corte MD, Vázquez J, Rodríguez JC, Lamelas ML, Merino AM, García-Muñiz JL and Viziozo FJ: Overexpression of matrix metalloproteinases and their inhibitors in monoclonal inflammatory cells in breast cancer correlates with metastasis-relapse. Br J Cancer 97: 957-963, 2007.

39. Radisky ES, Raeeszadeh-Sarmazdeh M and Radisky DC: Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer: A Review. J Cancer Prev 18: 35-40, 2013.

40. Song J, Su H, Zhou YY and Guo LL: Prognostic value of matrix metalloproteinase 9 expression in breast cancer patients: A meta-analysis. Asian Pac J Cancer Prev 14: 1613-1621, 2013.

41. Ren F, Tang R, Zhang X, Madushi WM, Luo D, Yang J, Li Z, Wei K and Chen G: Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: A systematic review and meta-analysis. PLoS One 10: e0135544, 2015.

42. Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ and Kosma VM: Expression of matrix metalloproteinase (MMP) 9 and MMP-9 by cancer associated fibroblasts: Reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10: 7621-7628, 2004.

43. González LO, Corte MD, Junquera S, González-Fernández R, del Casar JM, García C, Andicoechea A, Vázquez J, Pérez-Fernández R and Vizoso FJ: Overexpression of MMP9 modulates the metastatic cascade and represents a new therapeutic target. PLoS One 8: e69354, 2013.
51. Radisky ES and Radisky DC: Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15: 201-212, 2010.

52. Foroni C, Broggini M, Generali D and Damia G: Epithelial-mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact. Cancer Treat Rev 38: 689-697, 2012.

53. Li W, Li S, Deng L, Yang S, Li M, Long S, Chen S, Lin F and Xiao L: Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol 36: 6883-6889, 2015.

54. Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang YP and Duan JA: Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 13: 75-87, 2018.

55. Arkadash V, Yosef G, Shirian J, Cohen I, Horev Y, Grossman M, Sagi I, Radisky ES, Shifman JM and Papo N: Development of high affinity and high specificity inhibitors of matrix metalloproteinase 14 through computational design and directed evolution. J Biol Chem 292: 3481-3495, 2017.

56. Winer A, Adams S and Mignatti P: Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther 17: 1147-1155, 2018.

57. Pozzi A, LeVine WF and Gardner HA: Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21: 272-281, 2002.

58. Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K and Tarin D: Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64: 1687-1694, 2004.

59. Decock J, Hendrickx W, Thirkettle S, Gutiérrez-Fernández A, Robinson SD and Edwards DR: Pleiotropic functions of the tumor- and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice. Breast Cancer Res 17: 38, 2015.

60. Juurikka K, Butler GS, Salo T, Nyberg P and Åström P: The role of MMP8 in cancer: A systematic review. Int J Mol Sci 20: 4506, 2019.