Screening of Obstructive Sleep Apnea Syndrome by Electronic-Nose Analysis of Volatile Organic Compounds

Simone Scarlata1, Giorgio Pennazza2, Marco Santonico2, Simona Santangelo1, Isaura Rossi Bartoli1, Chiara Rivera1, Chiara Vernile2, Antonio De Vincentis3 & Raffaele Antonelli Incalzi1,3

Obstructive Sleep Apnea Syndrome (OSAS) carries important social and economic implications. Once the suspicion of OSAS has arisen, Polysomnography (PSG) represents the diagnostic gold standard. However, about 45% of people who have undergone PSG are free from OSAS. Thus, efforts should be made to improve the selection of subjects. We verified whether the pattern of Volatile Organic Compounds (VOCs) helps to select patients amenable to PSG. We studied 136 subjects (20 obese non-OSAS, 20 hypoxic OSAS, 20 non-hypoxic OSAS, and 20 non-hypoxic Chronic Obstructive Pulmonary Disease (COPD) vs 56 healthy controls) without any criteria of exclusion for comorbidity to deal with a real-life population. VOCs patterns were analyzed using electronic-nose (e-nose) technology. A Discriminant Analysis (Partial Least Square-Discriminant Analysis) was performed to predict respiratory functions and PSG parameters. E-nose distinguished controls (100% correct classification) from others and identified 60% of hypoxic, and 35% of non-hypoxic OSAS patients. Similarly, it identified 60% of COPD patients. One-by-one group comparison yielded optimal discrimination of OSAS vs controls and of COPD vs controls (100% correct classification). In conclusion, e-nose technology applied to breath-analysis can discriminate non-respiratory from respiratory diseased populations in real-life multimorbid populations and exclude OSAS. If confirmed, this evidence may become pivotal for screening purposes.

Obstructive Sleep Apnea Syndrome (OSAS) is a highly prevalent condition with important social and economic implications1. In fact, OSAS is associated with cardiovascular, neurological and metabolic problems as well as with car accidents2–4. Most of these problems are fully or largely preventable with nocturnal ventilation through Continuous Positive Airway Pressure (C-PAP)5, at least in the symptomatic patient, since the benefit of treatment in the absence of symptoms is currently debated6. Thus, it is mandatory to recognize and treat OSAS patients in a timely manner. Once clinical suspicion of OSAS has arisen, Polysomnography (PSG) represents the gold standard diagnostic test, but it is cost and time consuming and requires dedicated personnel and setting. Furthermore, up to 45% of people who have undergone PSG are actually free from OSAS7. Thus, efforts should be made to improve the selection of subjects for PSG. Unfortunately, dedicated questionnaires and existing screening instruments could meet this goal only to some extent8–10. Furthermore, aging accounts for changing phenotype and symptoms of OSAS patients: in aged patients, obesity is less prevalent than in young and adult OSAS patients, and the same is true for snoring, whereas nocturia, an important effect of OSAS, may be misattributed to urological problems11,12. This makes the selection for PSG more and more difficult as the average age of the screened population increases. OSAS prevalence is strictly age-related, reaching 15–20% after the age of 7013, although some authors indicate that it may slightly decrease in the oldest patients14. Thus, in this population, the development of a reliable, inexpensive and simple screening instrument would be highly desirable. E-nose technology seems promising in this regard. It is a non-invasive and inexpensive technique oriented to Volatile Organic Compounds (VOCs) profiling in the exhaled breath for diagnostic and prognostic purposes. Indeed, profiling the composition

1Geriatrics, Department of Respiratory Pathophysiology, Campus Bio-Medico University and Teaching Hospital, Rome, Italy. 2Centre for Integrated Research - CIR, Department of Electronics for Sensor Systems, Campus Bio-Medico University, Rome, Italy. 3Department of Hepatology, Chair of Internal Medicine, Campus Bio-Medico University and Teaching Hospital, Rome, Italy. Correspondence and requests for materials should be addressed to S.Sc. (email: s.scarlata@unicampus.it)

Received: 8 March 2017
Accepted: 30 August 2017
Published online: 20 September 2017
and free from any acute exacerbations of chronic diseases at the time of the study recruitment. Similarly, data related to tobacco smoking habits were also recorded. All patients were in stable conditions, systemic inflammation, such as COPD and diabetes, frequently coexist with OSAS 25 and their impact on VOCs cost/effectiveness11. Furthermore, at least in people free from important comorbidity, BP might be used to monitor the response to and the compliance with CPAP. Finally, analysis of BP might shed light on the heterogeneity of OSAS phenotypes19.

Table 1. Anthropometric and demographic characteristics of the study groups. Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease; BMI = Body Mass Index; T90 = Time with Oxygen Saturation below 90%.

	Controls (n = 56)	Obese non-OSAS (n = 20)	Non-hypoxic OSAS (n = 20)	Hypoxic OSAS (n = 20)	COPD (n = 20)	p-value
Age mean (SD)	66.8 (11.0)	59.7 (13.2)	62.7 (13.0)	64.0 (12.9)	64.5 (9.4)	0.55
Males n° (%)	35 (62.5)	12 (60.0)	12 (60.0)	14 (70.0)	14 (70.0)	0.77
BMI mean (SD)	25.6 (3.4)	35.0 (3.7)	30.3 (5.1)	36.7 (6.0)	25.1 (3.3)	0.003
T90 mean (SD)	1.2 (0.5)	3.4 (4.0)	4.8 (3.8)	48.8 (19.7)	14.3 (6.7)	<0.001
Current Smokers n° (%)	8 (14.0)	3 (15)	8 (40)	0	0	0.038
Number of Comorbidities mean (SD)	0.62 (0.6)	1.8 (1.7)	1.9 (1.7)	1.5 (1.5)	1.0 (1.2)	0.61
Hypertension n° (%)	31 (55.1)	10 (50)	14 (70)	13 (65)	5 (25)	0.048
Diabetes Mellitus n° (%)	4 (7.0)	6 (30)	5 (25)	7 (35)	1 (5)	0.73
Chronic Heart Failure n° (%)	0	2 (10)	0	3 (15)	3 (15)	0.07
Renal Failure n° (%)	0	1 (5)	0	1 (5)	0	0.56
Atrial Fibrillation n° (%)	0	3 (15)	2 (10)	3 (15)	1 (5)	0.67

of the exhaled breath, i.e. the pattern of VOCs, through e-nose is a simple, non invasive, rapid and inexpensive procedure. E-nose has been proved to have notable discriminative properties among different respiratory diseases, such as lung tumors, Chronic Obstructive Pulmonary Disease (COPD) and asthma26–29. Breath print (BP) analysis might complement or substitute for the questionnaire in the screening with the aim of improving PSG cost/effectiveness11. Furthermore, at least in people free from important comorbidity, BP might be used to monitor the response to and the compliance with CPAP. Finally, analysis of BP might shed light on the heterogeneity of OSAS phenotypes19.

To our knowledge, it has been tested in OSAS patients only on few occasions19–24. In all these studies, VOC patterns very reliably distinguished OSAS from normal subjects, and in two studies, the patterns dramatically changed in OSAS patients either after a single night or after three months of C-PAP therapy19–22. Interestingly, findings from Greulich et al. in 2013 suggested that e-nose might be used to screen subjects more likely to be diagnosed to have OSAS by PSG25; however, the study compares OSAS patients with healthy subjects, whereas in real life the differential diagnosis could vary depending on the clinical context20. Dragonieri et al. found that VOCs of OSAS and non-OSAS obese subjects largely overlap, and hypothesized that the systemic inflammation accounts for these analogies23. OSAS patients studied by Greulich had a very low prevalence of comorbidity known to influence BP22. Indeed, highly prevalent comorbidities, especially those characterized by a remarkable systemic inflammation, such as COPD and diabetes, frequently coexist with OSAS25 and their impact on VOCs profile is not completely ascertained.

Both COPD and diabetes are known to promote tissue oxidative stress, bloodstream inflammatory cytokine release and systemic inflammation. It is therefore likely that this may impact the VOCs composition26,27 and make the interpretation of VOCs profiles in OSAS more challenging.

The aim of this study is to verify to which extent e-nose technology can effectively distinguish OSAS people from healthy controls, as well as from non-OSAS obese and COPD patients. Assessing the discriminatory power of e-nose accounts for these analogies23. OSAS patients studied by Greulich had a very low prevalence of comorbidity known to influence BP22. Indeed, highly prevalent comorbidities, especially those characterized by a remarkable systemic inflammation, such as COPD and diabetes, frequently coexist with OSAS25 and their impact on VOCs profile is not completely ascertained.

Both COPD and diabetes are known to promote tissue oxidative stress, bloodstream inflammatory cytokine release and systemic inflammation. It is therefore likely that this may impact the VOCs composition26,27 and make the interpretation of VOCs profiles in OSAS more challenging.

The aim of this study is to verify to which extent e-nose technology can effectively distinguish OSAS people from healthy controls, as well as from non-OSAS obese and COPD patients. Assessing the discriminatory power of e-nose in real life conditions would allow for testing the potential usefulness of e-nose as a pre-PSG screening procedure.

Methods

The study was approved by the Campus Bio Medico University Ethical Committee (Protocol no. 47/11 ComEt CBM, Rome, 12/05/2011). All patients signed an informed consent form in order to participate in the study. All methods were performed in accordance with the relevant guidelines and regulations.

Participants. Eighty subjects (20 severely obese non-OSAS; 20 hypoxemic and severely obese OSAS; 20 non hypoxemic, mildly obese, OSAS; and 20 non hypoxemic, non obese COPD in stage A according to the Global initiative for COPD recommendations, GOLD) attending the outpatient clinic for respiratory diseases at Campus Bio-Medico Teaching Hospital were recruited (see Table 1).

The COPD group consisted of non-obese subjects. The fifty-six healthy, non-obese controls, free from both COPD and OSAS, were recruited among people attending the outpatient surgical department of the same hospital for minor surgical procedures. The group of obese, non-OSAS subjects included subjects with clinical features consistent with OSAS, but with a negative PSG. The clinical suspicion of OSAS was based on the presence of any of the following known clinically predictive symptoms and signs: snoring, abnormal sleep duration and schedule, daytime nap habits, excessive daytime sleepiness, increased neck circumference, morbid obesity (BMI > 36), facial or oropharyngeal dysmorphisms (macroglossia, micrognathism, uvulopalatal hypertrophy, or velopharynx collapse), otherwise unexplained nocturia, sleep apneas referred by patients or their partners33,34. COPD diagnosis was oriented by the existence of known risk factors (tobacco smoking, environmental exposure, recurrent acute airways infections in childhood, alpha 1 anti-trypsin deficiency) and of clinical symptoms and signs such as chronic, productive cough, wheezing, dyspnea, chest x-rays supporting the diagnosis, and it was confirmed by pulmonary function tests according to current guidelines35. Comorbid diseases were recorded through a systematic and detailed clinical history report. Similarly, data related to tobacco smoking habits were also recorded. All patients were in stable conditions, and free from any acute exacerbations of chronic diseases at the time of the study recruitment.
Sleep Evaluation. The suspected diagnosis of OSAS was tested through hospital full unattended type 2 PSG (>7 channels) according to current international guidelines[^31,^32], using a dedicated device (produced by SOMNOmedics GmbH of Randersacker, Germany).

'Sleep apnea' was defined as a complete or almost complete cessation of airflow, indicated by a reduction to 25% or less of baseline amplitude for 10 seconds or more, and 'hypopnea' was defined as a clear decrease in airflow to 50% of baseline amplitude for at least 10 seconds. OSAS severity was rated by the frequency of apneic and hypopneic events per hour of sleep (Apnea-Hypopnea Index [AHI]: mild (AHI ≥ 10/h and < 20/h), moderate (AHI ≥ 20/h and < 30/h) and severe (AHI ≥ 30/h)). Hypoxemia in OSAS was defined as an oxygen reduction of over 30% of the total sleep time, with oxy-haemoglobin saturation below 90%[^33).

Pulmonary Function Tests. Respiratory function tests and blood gas analyses were performed in the morning, participants were fasted and smoke free for at least 12 hours[^34]. Forced expiratory volumes were measured using a water-sealed bell spirometer (Biomedin of Padua, Italy) following acceptability and reproducibility criteria proposed by the American Thoracic Society and by the European Respiratory Society (ATS/ERS)[^34]. The maneuver was repeated after salbutamol inhalation and post-bronchodilator data were used to characterize COPD patients[^34], Total Lung Capacity (TLC) and Residual Volume (RV) were obtained using the Helium-rebreathing technique[^35]. Values were expressed as a percentage of the predicted value calculated using standardized reference equations[^36]. ‘Hypoxia’ constituted an exclusion criterion and was defined as a blood gas analysis with an oxygen partial pressure under 80 mmHg.

Breath Collection. Since many environmental and metabolic circadian variables may affect exhaled air composition[^37], breath collection was obtained in the morning. Participants were fasted and tobacco smoke free for at least 12 hours. All patients were requested to wash their mouth, without using toothpaste, before the procedure. Similarly, they were not allowed to receive alcoholic or sweetened beverages, or sleep medications before the breath sampling.

A three minute, tidal volume breathing into a dedicated storage device for direct sampling of exhaled breath on adsorbing cartridge (Pneumopipe® , European patent no. 12425057.2, Rome, Italy), was the simple contribution asked of each patient undergone the e-nose test. A detailed description of the study materials and procedure is available elsewhere[^38].

The mouthpieces used for the sampling apparatus were disposable.

Sensors. The transducers used for the gas sensor array were seven quartz crystals with a resonance frequency of 20 MHz in thickness shear mode, covered with a combination of anthocyanins extracted from three different plant tissues: red rose, red cabbage, blue hortensia. The sensors composing the array were: sensor 1, RR (Red Rose extract 65 mM); sensor 2, BH (Blue Hortensia extract 65 mM); sensor, 3 RC (Red Cabbage extract 65 mM); sensor 4, RRS (Red Rose extract 65 mM + Sucrose 10 mM); sensor 5, RCS (Red Cabbage extract 65 mM + Sucrose 10 mM); sensor 6, BHS (Blue Hortensia extract 65 mM + Sucrose 10 mM); sensor 7, S (Sucrose 10 mM). The electronic board controlling the whole system was based on a STM 32 F303VC, fabricated by ST Microelectronics (Geneva, Switzerland).

A calibration study on this array of biosensors is reported elsewhere[^38]. This multisensory system is able to analyse the volatile and liquid parts of a sample, but for the scope of this work, only the gas sensor array was used. The final dataset is composed of 28 responses resulting from the registration of the 7 sensors behaviour with a sample at four different temperatures (procedure dependent on the exhaled breath sampling on the adsorbent cartridge, explained in detail in the section regarding breath collection and delivery).

Breath Delivery. The following desorption of the cartridge into the sensors chamber was obtained thanks to an interfacing device able to evenly heat the tube from 50 °C to 200 °C, and finally clean the cartridge keeping the temperature at 300 °C for five minutes. The final fingerprint of the exhaled breath (BreathPrint: BP) was a sequence of four n-dimensional patterns, composed of n responses of n-dimensional gas sensors array at four given temperatures (50–100–150–200 °C).

Individual BPs were graphically represented by radar plots. Each radar plot is made of equi-angular radii, with each radius representing one of the 28 sensor responses. The magnitude of each sensor response is given by the radius length. The radar plot “profile” consists of a line connecting the data values of each radius.

Analytical Approach. Data are described as mean (and 95% Confidence Intervals, CI) for continuous variables, and as percentage for categorical variables.

A Partial Least Square Discriminant Analysis (PLS-DA) was performed on the 7-dimensional data array, in order to build a model to predict respiratory function parameters. The PLS-DA model was cross-validated through the leave-one-out criterion and then, the Root Mean Square Error in Cross-Validation (RMSECV) of the model in the prediction of respiratory function indexes was computed. The RMSECV provides a measure for the robustness of the PLS-DA model[^39].

In the attempt to exclude the confounding role of tobacco smoking, we repeated the analysis limited to never smokers.

A summary flow chart of the study design is displayed in Fig. 1.

Data availability. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
Results

Anthropometric and Demographic characteristics, as well as mean numbers and a list of major comorbidities, are included in Table 1. Patients were predominantly males, with a mean age slightly above 60. Groups did not differ in age, sex distribution, number and prevalence of major comorbidities, except for a lower prevalence of hypertension in the COPD group versus the control, obesity and OSAS groups. However, the control and COPD groups had a significantly lower BMI. Moreover, as a consequence of the study design, the mean time with an oxygen saturation below 90% was also higher in the group of hypoxic OSAS.

Finally, the prevalence of current smokers ranged from null in COPD group to 40% in hypoxic OSAS, with figures of 14–15% in controls and hypoxic OSAS and 25% in obese non OSAS groups.

Data displaying e-nose discriminative ability is reported in Table 2. The discriminant analysis substantially failed to correctly differentiate the groups with the only exception of the control group where a 100% correct classification rate was achieved (Table 2). The graphical analysis of radar plots representing the groups BP profiles, clearly confirms the absence of relevant differences in sensor by sensor measures among the groups, except for the distinctive pattern of the control group (Fig. 2).

In the analysis limited to non-smokers (Table 2) the correct classification rate for COPD and obese non-OSAS patients improved, but the correct classification rate for OSAS patients worsened further.

The confounding role of tobacco smoking emerges in the set of multiple comparisons among OSAS, COPD and controls (Table 3), and between OSAS and COPD alone (Table 4), where the rate of correct classification increased after smokers were excluded (Table 4). Interestingly, as already observed in the overall comparison (Table 2), the COPD group showed the largest improvement in classification rating (raising from 40% to 80%), whereas the discrimination of OSAS patients from COPD was excellent even when smokers were considered (92.5% and 92.8%, with and without smokers, respectively) (Table 4).

Table 5 shows the results obtained by a discriminant analysis limiting the number of groups undergoing comparison to two. A very high classificatory capacity is observed, both between the whole OSAS group and the control group (correct classification rate of 100% and 98%, respectively) (Table 5) and within the OSAS group itself (hypoxic vs non-hypoxic) (correct classification rate of 80% and 60%, respectively) (Table 5). A 100% correct classification was finally obtained when control and COPD groups were compared (Table 5). Interestingly, the classification of COPD patients worsened if hypoxemic and non-hypoxemic OSAS groups were merged (Table 4). This suggests that the discriminatory capacity of VOCs vs COPD is enhanced by the variety of potential allocations.

Discussion

The main finding of this study is that the electronic nose can optimally identify healthy subjects and distinguish them from both OSAS and COPD patients. On the contrary, it substantially failed to discriminate OSAS patients from other groups, but resulted fairly able to discriminate COPD patients and hypoxic OSAS patients. Thus, the e-nose can identify people unlikely to benefit from PSG, but it cannot distinguish OSAS from obese and COPD patients. Accordingly, it might limit the access to PSG only to some extent. However, even a small preselection is likely to improve the resource allocation, given that OSAS is highly prevalent and PSG is requested more and more frequently. In fact, excluding healthy subjects from PSG screening would improve the cost/efficacy of PSG. Finally, as requested of an ideal screening test, breath analysis is inexpensive, non-invasive, and easy and quick to use.

The great heterogeneity of OSAS likely explains the partly negative conclusions of this study. OSAS heterogeneity was related to multiple aspects, i.e. anatomical or non-anatomical predisposing conditions, pathogenetic mechanisms and age-dependent phenotypic variability. Several phenotypes may in fact be inferred from PSG.
features in mild to moderate OSAS42,43. Finally, Vavougios and co-workers recently established a clustering among six different comorbidities and OSAS44 and, in another recent paper, the cause-effect relationship between comorbidities and BP heterogeneity in OSAS was clearly shown20. However, the fact that in our patients the e-nose could better discriminate hypoxemic than non-hypoxemic OSAS patients suggests that the metabolic impact of hypoxemia increases BP specificity.

Our study confirms that COPD represents a promising model for the e-nose analysis45,46. Previous VOCs studies could effectively distinguish COPD from normal subjects either through e-nose or gas characterizing methods47–49. The fact that COPD patient classification worsened if hypoxemic and non-hypoxemic OSAS groups were merged, supports the dominant view of COPD as a highly heterogeneous condition (Table 3). In fact, COPD is characterized by systemic and metabolic effects, such as systemic inflammation and oxidative stress, and associated with cardiovascular and metabolic disorders50–53. Interestingly, the level of “systemic” inflammation in COPD strictly parallels that of “local” bronchial inflammation and obstruction (FEV1)54. Furthermore, pulmonary oxidative stress markers spilling over into mainstream, such as the excretion of F2-isoprostanes, stable products of peroxidation of arachidonic acid55, increase in COPD regardless of smoking habits and peak during

	Obese non-OSAS	Non-hypoxic OSAS	Hypoxic OSAS	COPD	Controls	% of correct classification
Obese non-OSAS (n = 20)	9	2	1	5	3	45
Non-hypoxic OSAS (n = 20)	1	12	1	4	3	60
Hypoxic OSAS (n = 20)	5	5	7	6	2	35
COPD (n = 20)	0	4	1	12	3	60
Controls (n = 56)	0	0	0	0	56	100
Sample w/o smokers = 119						
Controls (n = 56)	56	0	0	0	0	100
Non-hypoxic OSAS (n = 11)	2	3	1	3	2	27
Hypoxic OSAS (n = 17)	4	1	4	4	4	23
Obese non-OSAS (n = 15)	2	0	1	11	1	73
COPD (n = 20)	3	0	0	4	13	65

Table 2. Partial least square discriminant analysis of the whole sample with (upper panel) and without smokers (lower panel). Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease.

Figure 2. Radar plot comparing profiles of individual groups.
exacerbations. Thus, a vast array of VOCs variously contributes to shape the BP of COPD and likely make it quite heterogeneous.

To our knowledge, this is the first study testing the discriminative properties of BP obtained through e-nose analysis in a multiple comparison study (Hypoxic and non-Hypoxic OSAS, Non-Hypoxic COPD, Obese non-OSAS) on respiratory patients and healthy controls. Previously published studies, in fact, compared a single pathologic group with controls (i.e. Asthma, COPD, Sarcoidosis, Lung Cancer, OSAS alone vs controls) or two, rarely three, distinct respiratory disease groups versus each other (i.e, Asthma vs COPD, Malignant Mesothelioma vs Benign Pleural Disease vs Controls). Only Dragonieri et al. compared the BP of OSAS, obese non-OSAS and non-obese, non-OSAS subjects. Our findings confirm, through a larger and more articulated comparative analysis, that BP of OSAS and obese patients overlap considerably. Furthermore, in previous studies, the effects of age, gender, tobacco smoking habits and comorbidities were rarely taken into account and the few existing evidences are limited to exhaled nitric oxide only. In our study, groups showed comparable demographic characteristics and comorbidities, and this allowed explore the effects of current smoking habits.

COPD (n = 20)	Non-hypoxic OSAS	Hypoxic OSAS	Controls	% of correct discrimination	
COPD (n = 20)	12	4	1	3	60
Non-hypoxic OSAS (n = 20)	4	12	1	3	60
Hypoxic OSAS (n = 20)	6	5	7	2	35
Controls (n = 56)	0	0	0	56	100

Without Smokers
COPD (n = 20)
Non-hypoxic OSAS (n = 11)
Hypoxic OSAS (n = 17)
Controls (n = 56)

Table 3. Partial least square discriminant analysis among COPD, hypoxic OSAS, non-hypoxic OSAS, and control subgroups in the study sample including (upper panel) and excluding (lower panel) smokers. Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease.

Total sample	All OSAS	COPD	% of correct classification	Without smokers	All OSAS	COPD	% of correct classification
All OSAS (n = 40)	37	3	92	All OSAS (n = 28)	26	2	93
COPD (n = 20)	12	8	40	COPD (n = 20)	4	16	80
*w/o smokers	Hypoxic OSAS	Non-hypoxic OSAS	COPD	All OSAS (n = 28)	26	2	93
Hypoxic OSAS (n = 11)	6	4	1	54			
Non-hypoxic OSAS (n = 17)	0	13	4	76			
COPD (n = 20)	3	6	11	55			

Table 4. Partial least square discriminant analysis among OSAS and COPD with and without smokers (upper panels), and after separating OSAS according to the occurrence of hypoxemia (lower panel). Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease. *In this comparison, the original PLS-DA model was not solid enough to univocally classify all the patients belonging to the Hypoxic, Non-hypoxic OSAS and COPD groups. The reported model was therefore generated after excluding smokers.

All OSAS	Controls	% of correct classification	
All OSAS (n = 40)	40	0	100
Controls (n = 56)	1	55	98
Non-hypoxic OSAS	Hypoxic OSAS	% of correct classification	
Non-hypoxic OSAS (n = 20)	16	4	80
Hypoxic OSAS (n = 20)	8	12	60
Controls	COPD	% of correct classification	
Controls (n = 56)	56	0	100
COPD (n = 20)	0	20	100

Table 5. Partial least square discriminant analysis among OSAS and Controls (upper panel), between Hypoxic and Non-hypoxic OSAS (middle panel), and between Controls and COPD (lower panel). Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease.
on BP. Indeed, cigarette smoking qualified as an important confounder, and this likely explains why, at variance with findings recently reported by Dragonieri et al.23 which pertain to a non smoking population, COPD was frequently misdiagnosed in the OSAS vs COPD comparison (40% correct classification rate only - Table 4).

Limitations of this study deserve consideration. Firstly, we used a direct measure of relevant potential correlates for VOCs prints, such as bronchial inflammation, nitric oxide concentration, etc. Second, we recorded VOCs fingerprints, but we could not identify their components through dedicated analyses, such as gas chromatography or mass spectrometry. Thus, we can conceivably conclude that VOCs significantly distinguish healthy subjects from a pool of people with chronic respiratory conditions, but we ignore which exhaled molecules account for this distinction. However, the objective of the study was to assess the whole breath pattern and not to characterize it analytically. Finally, our data need verification by an external validation set.59

In conclusion, our e-nose technology applied to breath analysis allows identify healthy subjects and subsequently to exclude them very reliably from PSG screening, but it cannot recognize OSAS-specific BP. On the other hand, its classificatory and discriminatory properties seem worthy of further testing on people with hypoxicemic OSAS and on people with COPD.

References
1. Senaratna, C. V. et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med Rev. https://doi.org/10.1016/j.smrv.2016.07.002 (2016).
2. Drager, L. F., Togeiro, S. M., Polotsky, V. Y. & Lorenzi-Filho, G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 62, 569–576 (2013).
3. Sánchez-de-la-Torre, M., Campos-Rodriguez, F. & Barbé, F. Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med. 1, 61–7 (2013).
4. Quan, S. F. et al. Obstructive sleep apnea-hypopnea and neurocognitive functioning in the Sleep Heart Health Study. Sleep Med. 7, 498–507 (2006).
5. Terán-Santos, J., Jimenez-Gomez, A., Cordero-Guevara, J. & Burgos–Santander, C. G. The Association between Sleep Apnea and the Risk of Traffic Accidents. N Engl J Med. 340, 847–851 (1999).
6. Shawon, M. S. et al. Current evidence on prevalence and clinical outcomes of co-morbid obstructive sleep apnea and chronic obstructive pulmonary disease: A systematic review. Sleep Med Rev. 32, 58–68 (2017).
7. Phillips, C. L. et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 187, 879–887 (2013).
8. Batool-Anwar, S. et al. Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA). J Sleep Res. 25, 731–738 (2016).
9. Dixon, J. B., Schachter, L. M. & O’Brien, P. E. Predicting sleep apnea and excessive day sleepiness in the severely obese: indicators for polysomnography. Chest 123, 1134–1141 (2003).
10. Boynton, G., Vahabzadeh, A., Hammoud, S., Ruzicka, D. L. & Chervin, R. D. Validation of the STOP-BANG Questionnaire among Patients Referred for Suspected Obstructive Sleep Apnea. J. Sleep Disord. Treat. Care. 23, 2, https://doi.org/10.4172/2325-9639.1000121 (2013).
11. Scarlata, S. et al. Pre–polysomnographic assessment using the Pittsburgh Sleep Quality Index questionnaire is not useful in identifying people at higher risk for obstructive sleep apnea. J Med Screen. 20, 220–226 (2013).
12. Jonas, D. E. et al. Screening for Obstructive Sleep Apnea in Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 317, 415–433 (2017).
13. Endeshaw, Y. Clinical characteristics of obstructive sleep apnea in community-dwelling older adults. J Am Geriatr Soc. 54, 1740–1744 (2006).
14. Yamamoto, U. et al. Prevalence of Sleep Disordered Breathing among Patients with Nocturia at a Urology Clinic. Intern Med. 55, 901–5 (2016).
15. Young, T. et al. Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med. 162, 893–900 (2002).
16. Hoch, C. C. et al. Comparison of sleep–disordered breathing among healthy elderly in the seventh, eighth, and ninth decades of life. Sleep. 13, 502–511 (1990).
17. Capuano, R. et al. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Sci Rep. 5, 16491, https://doi.org/10.1038/srep16491 (2015).
18. Incalzi, R. A. et al. Reproducibility and respiratory function correlates of exhaled breath fingerprint in chronic obstructive pulmonary disease. PLoS One 7, e45396 (2012).
19. Dragonieri, S. et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 120, 856–862 (2007).
20. Antonelli Incalzi, R. et al. Comorbidity modulates non invasive ventilation-induced changes in breath print of obstructive sleep apnea syndrome patients. Sleep Breath. 19, 623–630 (2015).
21. van de Kant, K. D. G., van der Sande, L. J. T. M., Jöbsis, Q., van Schayck, O. C. P. & Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res 13, 117, https://doi.org/10.1186/1465-9921-13-117 (2012).
22. Greulich, T. et al. Detection of obstructive sleep apnoea by an electronic nose. Eur Respir J. 42, 145–155 (2013).
23. Dragonieri, S., Quaranta, V. N., Carratu, P., Ranieri, T. & Resta, O. Exhaled breath profiling in patients with COPD and OSA overlap syndrome: a pilot study. J Breath Res. 10, 041001 (2016).
24. Dragonieri, S. et al. An electronic nose in the discrimination of obese patients with and without obstructive sleep apnoea. J Breath Res. 9, 026005 (2015).
25. Ucar, Z. Z. et al. Association of Duration of Sleep and Cardiovascular and Metabolic Comorbidities in Sleep Apnea Syndrome, Association of Duration of Sleep and Cardiovacular and Metabolic Comorbidities in Sleep Apnea Syndrome. Sleep Disord 2012, 316232 (2012).
26. Inoue, H. et al. Oxidative stress levels in exhaled breath condensate associated with COPD and smoking. Respir Care. 57, 413–9 (2012).
27. Phillips, M., Cataneo, R. N., Cheema, T. & Greenberg, J. Increased breath biomarkers of oxidative stress in diabetes mellitus. Clin Chim Acta. 344, 189–94 (2004).
28. Sharma, S. K. et al. A stepped approach for prediction of obstructive sleep apnea in overtly asymptomatic obese subjects: a hospital based study. Sleep Med. 5, 351–357 (2004).
29. Zonato, A. I. et al. Association of systematic head and neck physical examination with severity of obstructive sleep apnea-hypopnea syndrome. Laryngoscope 113, 973–980 (2003).
30. Pellegrino, R. et al. Interpretative strategies for lung function tests. Eur Respir J. 26, 948–968 (2005).
31. Standards of Practice Committee of the American Sleep Disorders Association. Practice parameters for the use of portable recording in the assessment of obstructive sleep apnea. Sleep 17, 372–7 (1994).
32. Redline, S. et al. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep Heart Health Research Group. Sleep 21, 759–767 (1998).
33. Berry, R. B. et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med. 8, 597–619 (2012).
34. Miller, M. R. et al. Standardisation of spirometry. Eur Respir J. 26, 319–338 (2005).
35. Wagner, J. et al. Standardisation of the measurement of lung volumes. Eur Respir J. 26, 511–522 (2005).
36. Standardised lung function testing. Report working party. Eur. Respir Physiol. Respir. 5, 1–95 (1983).
37. Kunos, L. et al. Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose. Sleep Breath. 19, 247–253 (2015).
38. Santonico, M., Pennazza, G., Grasso, S., D’Amico, A. & Bizzarri, M. Design and test of a biosensor-based multisensorial system: a proof of concept study. Sensors 13, 16625–16640 (2013).
39. Data Handling in Science and Technology - Elsevier. At https://www.elsevier.com/books/book-series/data-handling-in-science-and-technology.
40. Eckert, D. I., White, D. P., Jordan, A. S., Malhotra, A. & Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 188, 996–1004 (2013).
41. Edwards, B. A. et al. Obstructive sleep apnea in older adults is a distinctly different physiological phenotype. Sleep 37, 1227–1236 (2014).
42. Joosten, S. A. et al. Phenotypes of patients with mild to moderate obstructive sleep apnoea as confirmed by cluster analysis. Respirology. 17, 99–107 (2012).
43. Wang, Q. et al. The association between the phenotype of excessive daytime sleepiness and blood pressure in patients with obstructive sleep apnea-hypopnea syndrome. Int J Med Sci. 11, 713–720 (2014).
44. Vavougios, G.D., Natsios, G., Pastaka, C., Zarogiannis, S.G. & Gourgoulianis, K.I. Phenotypes of comorbidity in OSAS patients: combining categorical principal component analysis with cluster analysis. J Sleep Res. https://doi.org/10.1111/jsr.12344 (2015).
45. Scarlata, S., Pennazza, G., Santonico, M., Pedone, C. & Antonelli Incalzi, R. Exhaled breath analysis by electronic nose in respiratory diseases. Expert Rev Mol Diagn. 15, 933–956 (2015).
46. Incalzi, R. A., Scarlata, S., Pennazza, G., Santonico, M. & Pedone, C. Chronic Obstructive Pulmonary Disease in the elderly. Eur J Intern Med. 25, 320–328 (2014).
47. Van Berkel, J.J. et al. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med. 104, 557–63 (2010).
48. Basanta, M. et al. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir Res. 23;13:72. doihttps://doi.org/10.1186/1465-9921-13-72 (2012).
49. Besa, V. et al. Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. Int J Chron Obstruct Pulmon Dis. 10, 399–406 (2015).
50. Fimognari, F. L., Scarlata, S., Conte, M. E. & Incalzi, R. A. Mechanisms of atherothrombosis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 3, 89–96 (2008).
51. Man, S. F. et al. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax 61, 849–853 (2006).
52. Dekhujine, P. N. et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 154, 813–816 (1996).
53. Boots, A. W., Haenen, G. R. M. M. & Bast, A. Oxidant metabolism in chronic obstructive pulmonary disease. Eur Respir J Suppl. 46, 14s–27s (2003).
54. Pratićo, D. et al. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-III, an index of oxidant stress. Am J Respir Crit Care Med. 158, 1709–1714 (1998).
55. Dragonieri, S. et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer 75, 326–331 (2012).
56. Fens, N. et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 180, 1076–1082 (2009).
57. Haight, R. R., Gordon, R. L. & Brooks, S. M. The effects of age on exhaled breath nitric oxide levels. Lung 184, 113–119 (2006).
58. Tsang, K. W. et al. Exhaled nitric oxide: the effects of age, gender and body size. Lung 179, 83–91 (2001).
59. Leopold, J. H. et al. Comparison of classification methods in breath analysis by electronic nose. J Breath Res. 9, 046002 (2015).

Author Contributions
Sc.Si.: study concept and design, acquisition of subjects and data, analysis and interpretation of data, preparation of manuscript, revision of manuscript for important intellectual content. Study Guarantor. G.P.: acquisition of subjects and data, analysis and interpretation of data, statistical advice, preparation of manuscript. M.S.: acquisition of subjects and data, study concept and design, analysis and interpretation of data, preparation of manuscript. Sa.Si.: acquisition of subjects and data, study concept and design, analysis and interpretation of data, preparation of manuscript. I.R.B.: acquisition of subjects and data. C.R.: acquisition of subjects and data. C.V.: analysis and interpretation of data. A.D.V.: acquisition of subjects and data, analysis and interpretation of data. R.A.I.: study concept and design, analysis and interpretation of data, preparation of manuscript, revision of manuscript for important intellectual content. Study Guarantor.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017