Measurement of dijet azimuthal decorrelation in pp collisions at $\sqrt{s} = 8$ TeV

CMS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 13 February 2016 / Accepted: 31 August 2016 / Published online: 30 September 2016

© CERN for the benefit of the CMS collaboration 2016. This article is published with open access at Springerlink.com

Abstract A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

1 Introduction

Hadronic jets with large transverse momenta p_T are produced in high-energy proton-proton collisions when two partons interact with high momentum transfer via the strong force. At leading order (LO) in perturbative quantum chromodynamics (pQCD), two final-state partons are produced back-to-back in the transverse plane. For this case, the azimuthal angular separation between the two leading p_T jets in the transverse plane, $\Delta \phi_{\text{dijet}} = |\phi_{\text{jet1}} - \phi_{\text{jet2}}|$, equals π. The nonperturbative effects of multiparton interactions or hadronization disturb this correlation only mildly, and $\Delta \phi_{\text{dijet}} \approx \pi$ still holds. However, the production of a third high-p_T jet leads to a decorrelation in azimuthal angle. The smallest achievable value of $\Delta \phi_{\text{dijet}} = 2\pi/3$ occurs in a symmetric star-shaped 3-jet configuration. Fixed-order calculations in pQCD for 3-jet production with up to four outgoing partons provide next-to-leading-order (NLO) predictions for the region of $2\pi/3 \leq \Delta \phi_{\text{dijet}} < \pi$. If more than three jets are produced, the azimuthal angle between the two leading jets can approach zero, although very small angular separations are suppressed because of the finite jet sizes for a particular jet algorithm. The measurement of the dijet azimuthal angular decorrelation is an interesting tool to gain insight into multijet production processes without measuring jets beyond the leading two.

This paper reports the measurement of the normalized dijet differential cross section as a function of the dijet azimuthal angular separation,

$$\frac{1}{\sigma_{\text{dijet}}} \frac{d\sigma_{\text{dijet}}}{d\Delta \phi_{\text{dijet}}}$$

(1)

for seven regions of the leading jet p_T, p_T^{max}, within a rapidity region of $|y| < 2.5$. Experimental and theoretical uncertainties are reduced by normalizing the $\Delta \phi_{\text{dijet}}$ distribution to the total dijet cross section σ_{dijet} within each region of p_T^{max}. For the first time, azimuthal angular separations $\Delta \phi_{\text{dijet}}$ over the full phase space from 0 to π are covered. Comparisons are made to fixed-order predictions up to NLO for 3-jet production, and to NLO and LO dijet as well as to tree-level multijet production, each matched with parton showers and complemented with multiparton interactions and hadronization.

The measurement is performed using data collected during 2012 with the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 8$ TeV. Previous measurements of dijet azimuthal decorrelation were reported by the D0 Collaboration in pp collisions at $\sqrt{s} = 1.96$ TeV at the Tevatron [1,2], and by the CMS and ATLAS Collaborations in pp collisions at $\sqrt{s} = 7$ TeV at the LHC [3,4].
2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [5]. The central feature of the CMS detector is a superconducting solenoid, 13 m in length and 6 m in inner diameter, providing an axial magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Charged particle trajectories are measured by the tracker with full azimuthal coverage within pseudorapidities $|\eta| < 2.5$. The ECAL, which is equipped with a preshower detector in the endcaps and the HCAL cover the region $|\eta| < 3$. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry, which extends the coverage up to $|\eta| < 5$. Finally, muons are measured up to $|\eta| < 2.4$ by gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

3 Event reconstruction and selection

This measurement uses data samples that were collected with single-jet high-level triggers (HLT) [6]. Four such single-jet HLTs were considered that require at least one jet in the event to have $p_T > 140, 200, 260$, and 320 GeV, respectively. All triggers were prescaled during the 2012 run except the highest-threshold trigger. The integrated luminosity L for the four trigger samples is shown in Table 1. The trigger efficiency is estimated using triggers with lower p_T thresholds. Using these four jet-energy thresholds gives 100% trigger efficiencies in the corresponding four-momentum regions $200 < p_T^{\text{max}} < 300 \text{ GeV}$, $300 < p_T^{\text{max}} < 400 \text{ GeV}$, $400 < p_T^{\text{max}} < 500 \text{ GeV}$, and $p_T^{\text{max}} > 500 \text{ GeV}$.

Particles are reconstructed and identified using a particle-flow (PF) algorithm, which combines the information from the individual subdetectors [7,8]. The four-vectors of particle candidates, reconstructed by the above technique, are used as input to the jet-clustering algorithm. Jets are reconstructed using the infrared- and collinear-safe anti-k_T clustering algorithm with a distance parameter $R = 0.7$ [9]. The clustering is performed with the FASTJET package [10] using four-momentum summation.

Table 1

HLT p_T threshold (GeV)	140	200	260	320
L (fb$^{-1}$)	0.06	0.26	1.06	19.7

The reconstructed jets require small additional energy corrections to account for various reconstruction inefficiencies in tracks and clusters in the PF algorithm. These jet energy corrections [11] are derived using (1) simulated events, generated with PYTHIA 6.4.22 [12] with tune Z2* [13,14] and processed through the CMS detector simulation based on GEANT4 [15], and (2) measurements containing dijet, photon+jet, and Z+jet events. The jet energy corrections, which depend on the η and p_T of the jet, are applied to the jet four-momentum vectors as multiplicative factors [16]. The overall factor is typically 1.2 or smaller, approximately uniform in η, and is 1.05 or smaller for jets having $p_T > 100 \text{ GeV}$. An offset correction is applied to take into account the extra energy clustered into jets from additional proton-proton interactions within the same or neighbouring bunch crossings (in-time and out-of-time pileup) [11]. Pileup effects are important only for jets with low p_T and become negligible for jets with $p_T > 200 \text{ GeV}$. The current measurement is, therefore, insensitive to pileup effects on jet energy calibration.

Each event is required to have at least one vertex reconstructed offline [17] with a position along the beam line that is within 24 cm of the nominal interaction point. To suppress nonphysical jets, i.e. jets resulting from noise in the ECAL and/or HCAL calorimeters, stringent criteria [18] are applied for identifying jets: each jet should contain at least two particles, one of which is a charged hadron, and the jet energy fraction carried by neutral hadrons and photons should be less than 90%. The efficiency for identifying physical jets using these criteria is greater than 99%.

The two leading jets, which define $\Delta \phi_{\text{dijet}}$, are selected by considering all jets in the event with $p_T > 100 \text{ GeV}$ and an absolute rapidity $|y| < 5$. Events are selected in which the leading jet p_T exceeds 200 GeV and the rapidities y_1 and y_2 of the two leading jets lie within the tracker coverage of $|y| < 2.5$.

To reduce the background from $t \bar{t}$ and heavy vector boson production, the variable $E_T/\sum E_T$ is used. The sum of the transverse energies is $\sum E_T = \sum_i E_i \sin \theta_i$, and the missing transverse energy $E_T = \sqrt{\left(\sum_i (E_i \sin \theta_i \cos \phi_i)\right)^2 + \left(\sum_i (E_i \sin \theta_i \sin \phi_i)\right)^2}$, where θ is the polar angle and the sum runs over all PF candidates in the event. A noticeable fraction of high-p_T jet events with large E_T emerges from $t \bar{t}$ production with semileptonically decaying b quarks. In addition, Z/W+jet(s) events with Z decays to neutrinos and W decays into charged leptons with neutrinos have high E_T values. The distributions of the variable $E_T/\sum E_T$ are shown in Fig. 1 for the two regions $\Delta \phi_{\text{dijet}} < \pi/2$ (top) and $\pi/2 < \Delta \phi_{\text{dijet}} < \pi$ (bottom). The data (points) are compared to simulated events (stacked), using MADGRAPH 5.1.3.30 [19] matched to PYTHIA6 [12] for event generation. Although some deviations of the simulation with respect to the data are visible in Fig. 1 (cf. Ref. [20]),

...
the distributions allow a selection criterion to be optimized with respect to the ratio of signal over background. Events with $E_T/\sum E_T > 0.1$ are rejected in both regions of $\Delta \phi_{\text{dijet}} < \pi/2$ (top) and $\pi/2 < \Delta \phi_{\text{dijet}} < \pi$ (bottom). The main contribution of events with large E_T in the final state is caused by processes such as $Z/W + \text{jet(s)}$ with $Z \rightarrow \ell \nu$ and $W \rightarrow \ell \nu$.

4 Measurement of the dijet cross section differential in $\Delta \phi_{\text{dijet}}$

The normalized dijet cross section differential in $\Delta \phi_{\text{dijet}}$ (Eq. 1) is corrected for detector smearing effects and unfolded to the level of stable (decay length $c \tau > 1 \text{ cm}$) final-state particles. In this way, a direct comparison of the measurement with corresponding results from other experiments and with QCD predictions can be made.

The unfolding method is based on the matrix inversion algorithm implemented in the software package ROOUnfold [21]. Unfolding uses a response matrix that maps the distribution at particle-level onto the measured one. The response matrix is derived from a simulation that uses the true dijet cross section distribution from PYTHIA6 with tune Z2* [13] as input, and introduces the smearing effects by taking into account the $\Delta \phi_{\text{dijet}}$ resolution. As a cross-check, the response matrix was filled from event samples that have been passed through a detector simulation. No significant difference was observed. The unfolded distributions differ from the raw distributions by 3–4% for $\Delta \phi_{\text{dijet}} < \pi/2$ and by less than 3% for $\pi/2 < \Delta \phi_{\text{dijet}} < \pi$. A two-dimensional unfolding based on the iterative D’Agostini algorithm [22], which corrects for the smearing effects by taking into account both $\Delta \phi_{\text{dijet}}$ and p_T resolutions, gives almost identical results.

The main systematic uncertainties arise from the estimation of the jet energy scale (JES) calibration, the jet p_T resolution, and the unfolding correction. The JES uncertainty is estimated to be 1.0–2.5% for PF jets, depending on the jet p_T and η [11,16,23]. The resulting uncertainties in the normalized $\Delta \phi_{\text{dijet}}$ distributions range from 7% at $\Delta \phi_{\text{dijet}} \approx 0$ via 3% at $\pi/2$ to 1% at π.

The jet p_T resolution is determined from a full detector simulation using events generated by PYTHIA6 with tune Z2* and is scaled by factors derived from data [11]. The effect of the jet p_T resolution uncertainty is estimated by varying it by one standard deviation up and down, and comparing the $\Delta \phi_{\text{dijet}}$ distributions before and after the changes. This results in a variation in the normalized $\Delta \phi_{\text{dijet}}$ distributions ranging from 5% at $\Delta \phi_{\text{dijet}} \approx 0$ via 3% at $\pi/2$ to 0.5% at π.

The uncertainty in the unfolding correction factors is estimated by checking the dependence of the response matrix on the choice of the Monte Carlo (MC) generator. An alternative response matrix is built using the HERWIG++ 2.5.0 [24] event generator with the default tune of version 2.3. The observed effect is less than 1%. An additional systematic uncertainty obtained by varying the $\Delta \phi_{\text{dijet}}$ resolution by $\pm 10\%$ to determine the unfolding correction factors is estimated to be of the order of 1%. This variation of the $\Delta \phi_{\text{dijet}}$ resolution by $\pm 10\%$ is motivated by the observed difference between data and simulation in the $\Delta \phi_{\text{dijet}}$ resolution. A total systematic unfolding uncertainty of 1% accounts for the choice of the MC generator in building the response matrix and the $\Delta \phi_{\text{dijet}}$ resolution.

The unfolded dijet cross section differential in $\Delta \phi_{\text{dijet}}$ and normalized by the dijet cross section integrated over the entire phase space is shown in Fig. 2 for seven p_T^{max} regions. Each
region is scaled by a multiplicative factor for presentation purposes. The \(\Delta \phi_{\text{dijet}} \) distributions are strongly peaked at \(\pi \) and become steeper with increasing \(p_T^{\text{max}} \). Overlaid on the data for \(\Delta \phi_{\text{dijet}} > \pi/2 \) are predictions from pQCD, presented in more detail in the next section, using parton distribution functions (PDF) of the CT10 PDF set.

5 Comparison to theoretical predictions

5.1 Predictions from fixed-order calculations in pQCD

The theoretical predictions for the normalized dijet cross section differential in \(\Delta \phi_{\text{dijet}} \) are based on a 3-jet calculation at NLO. The correction in nonperturbative (NP) effects, which account for multiparton interactions (MPI) and hadronization, is studied using event samples simulated with the PYTHIA6 (tune Z2*) and HERWIG++ (tune 2.3) event generators. Small NP effects are expected, since this measurement deals with a normalized distribution. These corrections are found to be of the order of 1 %, roughly at the limit of the accuracy of the MC simulations. Therefore NP corrections are considered to be negligible and are not applied.

The fixed-order calculations are performed using the NLOJET++ program version 4.1.3 [25,26] within the framework of the FASTNLO package version 2.3.1 [27]. The differential cross section is calculated for 3-jet production at NLO, i.e. up to terms of order \(\alpha_S^3 \), with three or four partons in the final state. This calculation has LO precision in the region \(\pi/2 \leq \Delta \phi_{\text{dijet}} < 2\pi/3 \) and NLO precision for \(2\pi/3 \leq \Delta \phi_{\text{dijet}} < \pi \). The bin including \(\Delta \phi_{\text{dijet}} = \pi \) is computed from the NLO dijet cross section within this bin. For each region in \(p_T^{\text{max}} \), the differential cross section is normalized to the dijet cross section calculated at LO for \(\pi/2 \leq \Delta \phi_{\text{dijet}} < 2\pi/3 \) and at NLO, i.e. up to terms proportional to \(\alpha_S^3 \), for \(2\pi/3 \leq \Delta \phi_{\text{dijet}} < \pi \). The use of the LO dijet cross section for the normalization in the region \(\pi/2 \leq \Delta \phi_{\text{dijet}} < 2\pi/3 \) leads to an improved description of the data and avoids artificially increased scale uncertainties as described in Refs. [28,29]. Of course, this difference in normalization leads to a discontinuity proportional to \(\alpha_S(\mu) \sigma_{\text{dijet}} / \sigma_{\text{dijet}} \) at \(\Delta \phi_{\text{dijet}} = 2\pi/3 \).

The number of quark flavours that are assumed to be massless is set to five, and the renormalization and factorization scales, \(\mu_r \) and \(\mu_f \), are chosen to be equal to \(p_T^{\text{max}} \). The PDF sets with NLO evolutions used in the calculations are tabulated in Table 2. The ABM11 PDF set utilizes a fixed flavour number scheme. The maximum number of flavours is denoted by \(N_f \).

The uncertainties due to the renormalization and factorization scales are evaluated by varying the default choice of \(\mu_r = \mu_f = p_T^{\text{max}} \) between \(p_T^{\text{max}}/2 \) and \(2p_T^{\text{max}} \), simultaneously in the differential cross section and in the total cross section, in the following six combinations: \((\mu_r/p_T^{\text{max}}, \mu_f/p_T^{\text{max}}) = (1/2, 1/2), (1/2, 1), (1, 1/2), (1, 2), (2, 1), \) and \((2, 2) \). The PDF uncertainties are evaluated according to the prescriptions for the CT10 PDF set in Ref. [35]. The CT10 PDF set employs the eigenvector method with upward and downward variations for each eigenvector. To evaluate the uncertainty due to the value of the strong cou-

Table 2 The PDF sets used to compare the data with expectations, together with the corresponding maximum number of flavours \(N_f \) and the default values of \(\alpha_S(M_Z) \).

Base set	Refs.	\(N_f \)	\(\alpha_S(M_Z) \)
ABM11	[30]	5	0.1180
CT10	[31]	\(\leq 5 \)	0.1180
HERAPDF1.5	[32]	\(\leq 5 \)	0.1176
MSTW2008	[33]	\(\leq 5 \)	0.1202
NNPDF21	[34]	\(\leq 6 \)	0.1190

Fig. 2 Normalized dijet cross section differential in \(\Delta \phi_{\text{dijet}} \) for seven \(p_T^{\text{max}} \) regions, scaled by multiplicative factors for presentation purposes. The error bars on the data points include statistical and systematic uncertainties. Overlaid on the data (points) are predictions from LO (dashed line; \(\pi/2 \leq \Delta \phi_{\text{dijet}} < 2\pi/3 \)) and NLO (solid line; \(2\pi/3 \leq \Delta \phi_{\text{dijet}} \leq \pi \)) calculations using the CT10 NLO PDF set. The PDF, \(\alpha_S \), and scale uncertainties are added in quadrature to give the total theoretical uncertainty, which is indicated by the downwards-diagonally (LO) and upwards-diagonally (NLO) hatched regions around the theory lines.

\(\Delta \phi_{\text{dijet}} \) (rad)
Fig. 3 Ratios of the normalized dijet cross section differential in $\Delta \phi_{\text{dijet}}$ to LO (triangles) and NLO (squares) pQCD predictions using the CT10 PDF set at next-to-leading evolution order for all p_t^{max} regions. The error bars on the data points represent the total experimental uncertainty, which is the quadratic sum of the statistical and systematic uncertainties. The uncertainties of the theoretical predictions are shown as inner band (PDF & α_S) and outer band (scales). The predictions using various other PDF sets relative to CT10 are indicated with different line styles.

The results of fixed-order calculations with the CT10 PDF set are overlaid on the data for $\Delta \phi_{\text{dijet}} > \pi/2$ in Fig. 2. Figure 3 shows the ratio of the normalized dijet cross section differential in $\Delta \phi_{\text{dijet}}$ to theory calculated using the CT10 PDF set, together with the combined PDF and α_S uncertainty (inner band), and the scale uncertainty (outer band). Also shown are the ratios of theory derived with the alternative PDF sets ABM11 (dashed line), HERAPDF1.5 (dashed–three-dotted line), MSTW2008 (dashed-dotted line), and NNPDF2.1 (dotted line) compared to the prediction with the CT10 PDFs.

The fixed-order calculations agree with the data for azimuthal angular separations larger than $5\pi/6$ except for the
highest \(p_T^{\text{max}} \) region, where they exceed the data. For smaller \(\Delta \phi_{\text{dijet}} \) values between \(2\pi/3 \) and \(5\pi/6 \), in particular where the estimate of the theoretical uncertainties becomes small, systematic discrepancies are exhibited that diminish with increasing \(p_T^{\text{max}} \). In the 4-jet LO region with \(\Delta \phi_{\text{dijet}} < 2\pi/3 \), the pattern of increasing deviations towards smaller \(\Delta \phi_{\text{dijet}} \) and decreasing deviations towards larger \(p_T^{\text{max}} \) is repeated, but with less significance because of the larger scale uncertainty. Similar observations were made in the previous CMS measurement [3], which exhibited larger discrepancies in the 4-jet region due to the normalization to the NLO dijet cross section instead of a LO one.

5.2 Predictions from fixed-order calculations matched to parton shower simulations

The \textsc{Pythia}6 [12], \textsc{Pythia}8 [37], and \textsc{Herwig++} [24] event generators complement LO dijet matrix elements with parton showers to simulate higher-order processes. Both \textsc{Pythia} versions, \textsc{Pythia}6 with the Z2* tune [13] and \textsc{Pythia}8 with the CUETM1 tune [14], employ \(p_T \)-ordered parton showers [38,39], while \textsc{Herwig++} with the default tune of version 2.3 uses a coherent-branching algorithm with angular ordering of the showers [40].

The \textsc{MadGraph} program version 5.1.5.7 [19] supplies the results of LO matrix element calculations with two to four outgoing partons that can be matched to the implementations of parton showers, hadronization, and MPI of the event generators. In this analysis, it is interfaced with \textsc{Pythia6} with tune Z2* using the MLM matching procedure [41] to avoid any double counting between tree-level and parton shower generated parton configurations.

The \textsc{Powheg} framework [42–44] provides an NLO dijet calculation [45] that can also be matched via the parton showers to event generators. Here, \textsc{Powheg} is used with the CT10NLO PDF set and is interfaced to \textsc{Pythia8} with the CUET [14] tune, which employs the LO CTEQ6L1 [35] PDF set. Predictions with parton showers matched to a NLO 3-jet calculation using \textsc{Powheg} [46] or \textsc{MadGraph5 AMC@NLO} [47] would be even more relevant for a multijet topology. They could not, however, be included within the timescale of this analysis. Approaching azimuthal angular separations close to \(\pi \), it might also be interesting to compare to predictions employing the technique of \(p_T \) resummation [48].

In Fig. 4 the normalized dijet cross section differential in \(\Delta \phi_{\text{dijet}} \) is compared to the predictions from fixed-order calculations supplemented with parton showers, hadronization, and MPI. The error bars on the data points represent the total experimental uncertainty, which is the quadratic sum of the statistical and systematic uncertainties. Figure 5 shows the ratios of these predictions to the normalized dijet cross section differential in \(\Delta \phi_{\text{dijet}} \), for the seven \(p_T^{\text{max}} \) regions.

![Fig. 4 Normalized dijet cross section differential in \(\Delta \phi_{\text{dijet}} \) for seven \(p_T^{\text{max}} \) regions, scaled by multiplicative factors for presentation purposes. The error bars on the data points include statistical and systematic uncertainties. Overlaid on the data are predictions from the \textsc{Pythia6}, \textsc{Herwig++}, \textsc{Pythia8}, \textsc{MadGraph + Pythia6}, and \textsc{Powheg + Pythia8} event generators.](image)

The solid band indicates the total experimental uncertainty and the error bars on the MC points represent the statistical uncertainties in the simulated data.

Among the LO dijet event generators \textsc{Pythia6}, \textsc{Pythia8}, and \textsc{Herwig++}, \textsc{Pythia8} exhibits the smallest deviations from the measurements. \textsc{Pythia6} and \textsc{Herwig++} systematically overshoot the data, particular around \(\Delta \phi_{\text{dijet}} = 5\pi/6 \). The best description of the measurement is given by the tree-level multiparton event generator \textsc{MadGraph} interfaced with \textsc{Pythia6} for showering, hadronization, and MPI. The \textsc{Powheg} generator (here used only in the NLO dijet mode) matched to \textsc{Pythia8} shows deviations from the data similar to the LO dijet event generators.

6 Summary

A measurement is presented of the normalized dijet cross section differential in the azimuthal angular separation \(\Delta \phi_{\text{dijet}} \) of the two jets leading in \(p_T \) for seven regions in the leading-jet transverse momentum \(p_T^{\text{max}} \). The data set of pp collisions at 8 TeV centre-of-mass energy collected in 2012 by the CMS...
The measured distributions in $\Delta\phi_{\text{dijet}}$ are compared to calculations in perturbative QCD for 3-jet production with up to four outgoing partons that provide NLO predictions for the range of $2\pi/3 \leq \Delta\phi_{\text{dijet}} < \pi$ and LO predictions for $\pi/2 \leq \Delta\phi_{\text{dijet}} < 2\pi/3$. The NLO predictions describe the data down to values of $\Delta\phi_{\text{dijet}} \approx 5\pi/6$, but deviate increasingly when approaching the 4-jet region, starting at $\Delta\phi_{\text{dijet}} = 2\pi/3$, particularly at low p_T^{max}. The pattern of increasing deviations towards smaller $\Delta\phi_{\text{dijet}}$ and decreasing deviations towards larger p_T^{max} is repeated in the 4-jet LO region with $\Delta\phi_{\text{dijet}} < 2\pi/3$, but with less significance because of the larger scale uncertainty.

In a comparison of the normalized $\Delta\phi_{\text{dijet}}$ distributions to the LO dijet event generators PYTHIA6, PYTHIA8, and HERWIG++, PYTHIA8 gives the best agreement. PYTHIA6 and HERWIG++ systematically overshoot the data, particularly for $\Delta\phi_{\text{dijet}} \approx 5\pi/6$. A good overall description of the measurement is provided by the tree-level multijet event generator MADGRAPH in combination with PYTHIA6 for showering, hadronization, and multiparton interactions. The dijet NLO calculations from POWHEG matched to PYTHIA8 exhibit deviations similar to the LO dijet event generators. Improved multijet predictions can be expected from 3-jet NLO calculations matched to parton showers like from POWHEG or MADGRAPH5_AMC@NLO.
Similar observations were reported previously by CMS [3] and ATLAS [4], but with less significance because of the smaller data sets. The extension to $\Delta \phi_{\text{dijet}}$ values below $\pi/2$, the improved LO description in the 4-jet region $\pi/2 \leq \Delta \phi_{\text{dijet}} < 2\pi/3$, and the comparison to dijet NLO calculations matched to parton showers are new results of the present analysis.

Acknowledgments

We acknowledge discussions and comparisons with P. Sun, C. P. Yuan, and F. Yuan following the approach of [48]. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and NSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAEl and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Korea); AFSN and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NWO (The Netherlands); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Centre (Poland); the Compagnia di San Paolo (Torino); MIUR project 2010RT4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academy into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

References

1. D0 Collaboration, Measurement of dijet azimuthal decorrelations at central rapidities in pp collisions at $\sqrt{s} = 1.96$ TeV. Phys. Rev. Lett. 94, 221801 (2005). doi:10.1103/PhysRevLett.94.221801. arXiv:hep-ex/0409040
2. D0 Collaboration, Measurement of the combined rapidity and p_T dependence of dijet azimuthal decorrelations in pp collisions at $\sqrt{s} = 1.96$ TeV. Phys. Rev. Lett. B 721, 212 (2013). doi:10.1016/j.physletb.2013.03.029. arXiv:1212.1842
3. CMS Collaboration, Dijet azimuthal decorrelations in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Rev. Lett. 106, 122003 (2011). doi:10.1103/PhysRevLett.106.122003. arXiv:1101.5029
4. ATLAS Collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Rev. Lett. 106, 172002 (2011). doi:10.1103/PhysRevLett.106.172002. arXiv:1102.2696
5. CMS Collaboration, The CMS experiment at the CERN LHC. JINST 03, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
6. CMS Collaboration, The CMS high level trigger. Eur. Phys. J. C 46, 605 (2006). doi:10.1140/epjc/s2006-02495-8. arXiv:hep-ex/0512077
7. CMS Collaboration, Particle–flow event reconstruction in CMS and performance for jets, taus, and MET. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
8. CMS Collaboration, Commissioning of the Particle–flow Event Reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001 (2010)
9. M. Cacciari, G.P. Salam, G. Soyez, The anti-k_T jet clustering algorithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189
10. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097
11. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002. arXiv:1107.4277
12. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175
13. CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at $\sqrt{s} = 0.9, 2.76,$ and 7 TeV. JHEP 04, 072 (2013). doi:10.1007/JHEP04(2013)072. arXiv:1302.2394
14. CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). doi:10.1140/epjc/s10052-016-3988-x. arXiv:1512.08115
15. GEANT4 Collaboration, Geant4: a simulation tool kit. Nucl. Instrum. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
16. CMS Collaboration, 8 TeV jet energy corrections and uncertainties based on 19.8 fb$^{-1}$ of data in CMS. CMS Detector Performance Summary CMS-DP-2013-033 (2013)
17. CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 09, P10009 (2014). doi:10.1088/1748-0221/9/P10009. arXiv:1405.6569
18. CMS Collaboration, Jet performance in pp collisions at $\sqrt{s} = 7$ TeV. CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010)
19. J. Alwall et al., MadGraph 5: going beyond. JHEP 06, 128 (2011). doi:10.1007/JHEP06(2011)128. arXiv:1106.0522
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Institut de Physique Nuclaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C. A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, F. Lagarde, I. B. Lakhtineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, J. D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
I. Bagaturia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, A. Heister, M. K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J. F. Schulte, T. Verlage, H. Weber, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, P. Krueter, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padelen, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, A. Nehrkorn, A. Nowack, I. M. Nugent, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, K. Borras, A. Burgmeier, A. Campbell, C. Contreras-Campana, F. Costanza, C. Dierlamm, S. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, E. Eckstein, T. Eichhorn, G. Flucke, E. Gallo, J. Garay Garcia, A. Geiser, A. Gribko, P. Gunnellini, J. Hauk, M. Hempel, H. Jung, A. Kalogerospolou, O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A. B. Meyer, G. Mittag, J. Mönch, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M. Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K. D. Trippkewitz, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A. R. Draeger, J. Erfe, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R. S. Höing, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, C. Scharf, P. Schleper, E. Schlieckau, A. Schmidt, S. Schumann, J. Schwandt, V. Sola, H. Stadie, G. Steinbrück, F. M. Stober, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Freisch, R. Friese, M. Giffels, A. Gilbert, D. Hatz, F. Hartmann, S. M. Heindl, U. Husemann, I. Katkov, A. Kornmayer, P. Lobelle Pardo, B. Maier, H. Mildner, M. U. Mozer, T. Müller, H. Müllner, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, G. Sieber, H. J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V. A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

Institute for Particle Physics ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M. T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov, M. Takahashi, V. R. Tavolaro, K. Thoefilatos, R. Wallny

Universität Zürich, Zurich, Switzerland
T. K. Aarrestad, C. Amsler, L. Caminada, M. F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K. H. Chen, T. H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C. M. Kuo, W. Lin, Y. J. Lu, A. Pozdnyakov, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. H. Chang, Y. W. Chang, Y. Chao, K. F. Chen, P. H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y. F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J. f. Tsai, Y. M. Tzeng

Faculty of Science, Department of Physics, Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, K. Kivotanggoon, G. Singh, N. Srivanobhas, N. Suwanjande

Cukurova University, Adana, Turkey
A. Adiguzel, S. Cerci, D. Damarseckin, Z. S. Demiroglu, C. Dozen, I. Dumanoglu, E. Eskut, F. H. Gecit, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E. E. Kangal, A. Kayis Topaksu, G. Onengut, M. Özcan, K. Ozdemir, S. Ozturk, A. Polatoz, C. Zorbilmez

Physics Department, Middle East Technical University, Ankara, Turkey
B. Bilin, B. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, E. A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen, F. I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, UK
R. Aggleton, F. Ball, L. Beck, L. J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G. P. Heath, H. F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D. M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V. J. Smith

Rutherford Appleton Laboratory, Didcot, UK
K. W. Bell, A. Belyaev, C. Brew, R. M. Brown, L. Calligaris, D. Cieri, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, T. Williams, S. D. Worm

Imperial College, London, UK
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Fuytan, G. Hall, G. Iles, R. Lane, R. Lucas, L. Lyons, A. Magnan, S. Malik, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, D. M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, S. C. Zenz
Brunel University, Uxbridge, UK
J. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, D. Leslie, I. D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S. I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
J. Alimena, E. Berry, D. Cutts, A. Ferapontov, A. Garabedian, J. Hakala, U. Heintz, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P. T. Cox, R. Erbacher, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shahhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J. W. Gary, G. Hanson, J. Heilman, M. Ivova Paneva, P. Jandir, E. Kennedy, F. Lacroix, O. R. Long, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J. G. Branson, G. B. Cerati, S. Cittolin, R. T. D’Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech

C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara, Santa Barbara, USA
J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, N. Mccoll, J. Richman, D. Stuart, I. Suarez, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H. B. Newman, C. Pena, M. Spiropulu, J. R. Vlimant, S. Xie, R. Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M. B. Andrews, V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J. P. Cumalat, W. T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, K. Stenson, S. R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J. R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Sofii, W. Sun, S. M. Tan, W. D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, G. Bolla, K. Burket, J. N. Butler, H. W. K. Cheung, F. Chlebana, S. Cihangir, V. D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykke, K. Maeshima, J. M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha,
Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P. R. Dudero, J. Faulkner, S. Kunori, K. Lamichehane, S. W. Lee, T. Libeiro, S. Undleeb, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A. G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M. W. Arenton, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, J. Wood, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P. E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichehane, J. Sturdy

University of Wisconsin—Madison, Madison, WI, USA
D. A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G. A. Pierro, G. Polese, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W. H. Smith, D. Taylor, P. Verwilligen, N. Woods

† Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7: Also at Universidade Estadual de Campinas, Campinas, Brazil
8: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Ain Shams University, Cairo, Egypt
12: Also at Zewail City of Science and Technology, Zewail, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at Ilia State University, Tbilisi, Georgia
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at University of Debrecen, Debrecen, Hungary
23: Also at Wigner Research Centre for Physics, Budapest, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Now at King Abdulaziz University, Jeddah, Saudi Arabia
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Purdue University, West Lafayette, USA
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
42: Also at INFN Sezione di Roma; Università di Roma, Rome, Italy
43: Also at National Technical University of Athens, Athens, Greece
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
47: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
48: Also at Adiyaman University, Adiyaman, Turkey
49: Also at Mersin University, Mersin, Turkey
50: Also at Cag University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey
52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Istanbul Bilgi University, Istanbul, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Hacettepe University, Ankara, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, UK
61: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
62: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
65: Also at Facoltà Ingegneria, Università di Roma, Rome, Italy
66: Also at Argonne National Laboratory, Argonne, USA
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea