Jointly Encoding Word Confusion Network and Dialogue Context with BERT for Spoken Language Understanding

Chen Liu*, Su Zhu*, Zijian Zhao, Rui sheng Cao, Lu Chen and Kai Yu

MoE Key Lab of Artificial Intelligence
SpeechLab, Department of Computer Science and Engineering
AI Institute, Shanghai Jiao Tong University, China

Abstract

Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issue, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.

Index Terms: spoken language understanding, word confusion network, dialogue context, Transformer, BERT

1. Introduction

The spoken language understanding (SLU) module is a key component of spoken dialogue system (SDS), parsing user utterances into corresponding semantic representations (e.g., dialogue acts [1]). For example, the utterance “I want a high priced restaurant which serves Chinese food” can be parsed into a set of semantic tuples “inform(price_range=expensive), inform(food=Chinese)”. In this paper, we focus on SLU with word bins [25]. It is commonly considered as a sequence of word bins $B = (b_1, \cdots, b_M)$. The m-th bin can be formal-

* Chen Liu and Su Zhu contributed equally to this work.
ized as \(b_m = \{(w_{i}^{m}, P(w_{i}^{m})), \ldots, (w_{l}^{m}, P(w_{l}^{m}))\} \), where \(l_m \) denotes the number of candidates in \(b_m \), \(w_{i}^{m} \) and \(P(w_{i}^{m}) \) are respectively the \(i \)-th candidate and its posterior probability given by ASR system. The WCN is flattened into a word sequence, \(w_{\text{WCN}} = (w_{1}^{1}, \ldots, w_{l}^{1}, \ldots, w_{l}^{m}, \ldots, w_{l}^{l} \}$.

System acts contain dialogue context in the form of “act-slot-value” triplets. We consider the last system act just before the current turn, \(A = ((a_{1}, s_{1}, v_{1}), \ldots, (a_{K}, s_{K}, v_{K})) \), where \(K \) is the number of triplets, \(a_{k} \), \(s_{k} \) and \(v_{k} \) are the \(k \)-th act, slot, and value, respectively. It is also arranged as a sequence \(w_{SA} = (a_{1}, s_{1}, v_{1}, \ldots, a_{K}, s_{K}, v_{K}) \). Act and slot names are tokenized, e.g., “price-range” is split into “price” and “range”.

To feed WCNs and system acts into BERT together, we denote the input token sequence as \(w = (w_{1}, \ldots, w_{T}) = [\text{CLS}] \oplus \text{Tok}(w_{\text{WCN}}) \oplus [\text{SEP}] \oplus \text{Tok}(w_{SA}) \oplus [\text{SEP}] \), where \(\oplus \) concatenates sequences together, \(\text{Tok}(\cdot) \) is the BERT tokenizer which tokenizes words into sub-words, [CLS] and [SEP] are auxiliary tokens for separation, \(T = [\text{Tok}(w_{\text{WCN}})] + [\text{Tok}(w_{SA})] + 3 \). Considering the structural characteristics of WCN, i.e., multiple words compete in a bin, we define that all words (in fact sub-words after tokenization) in the same bin share the same position ID.

Eventually, the BERT input layer embeds \(w \) into \(d_{x} \)-dimensional continuous representations by summarizing three embeddings \(x \) as follows:

\[
x_{t} = E_{\text{token}}(w_{t}) + E_{\text{pos}}(w_{t}) + E_{\text{seg}}(w_{t}), x_{t} \in \mathbb{R}^{d_{x}}
\]

where \(E_{\text{token}}(\cdot) \), \(E_{\text{pos}}(\cdot) \) and \(E_{\text{seg}}(\cdot) \) stand for WordPiece \(\text{[25]} \), positional and segment embeddings, respectively.

2.2. BERT encoder

BERT consists of a series of bidirectional Transformer encoder layers \(\text{[23]} \), each of which contains a multi-head self-attention module and a feed-forward network with residual connections \(\text{[27]} \). For the \(l \)-th layer, assuming the input is \(x^{l} = (x_{1}^{l}, \ldots, x_{T}^{l}) \), the output is computed via the self-attention

layer (consisting of \(H \) heads):

\[
e_{ij}^{l,h} = \frac{(W_{Q}^{l,h} x_{i}^{l})^\top (W_{K}^{l,h} x_{j}^{l})}{\sqrt{d_{x}/H}} \\
\alpha_{ij}^{l,h} = \exp(e_{ij}^{l,h}) / \sum_{k} \exp(e_{ik}^{l,h}) \\
z_{i}^{l,h} = \sum_{j} \alpha_{ij}^{l,h} (W_{V}^{l,h} x_{j}^{l}) \\
z_{i}^{l+1} = \text{LayerNorm}(z_{i}^{l,h} + FC(z_{i}^{l})) \\
z_{i}^{l+1} = \text{LayerNorm}(z_{i}^{l+1} + FC(\text{ReLU}(FC(z_{i}^{l+1}))))
\]

where \(FC \) is a fully-connected layer, LayerNorm denotes layer normalization \(\text{[28]} \), \(1 \leq h \leq H, W_{Q}^{l,h}, W_{K}^{l,h}, W_{V}^{l,h} \in \mathbb{R}^{(d_{x}/H) \times d_{x}} \).

WCN probability-aware self-attention

We propose an extension to the self-attention mechanism to consider the posterior probabilities of tokens in WCN. Following the notations in section \(\text{[21]} \) for each input token sequence \(w = (w_{1}, \ldots, w_{T}) \), we define its corresponding probability sequence as \(p = (p_{1}, \ldots, p_{T}) \), with

\[
p_{t} = \begin{cases} P(w_{t}) & w_{t} \in \text{Tok}(w_{\text{WCN}}) \\ 1.0 & \text{otherwise} \end{cases}
\]

where \(P(w_{t}) \) denotes the ASR posterior probability of a token. Note that the probability of a sub-word equals that of the original word in WCN. Probabilities of tokens in the system acts are defined as 1.0. Now we inject ASR posterior probabilities into the BERT encoder by changing the computation of \(e_{ij}^{l,h} \):

\[
e_{ij}^{l,h} = \frac{(W_{Q}^{l,h} x_{i}^{l})^\top (W_{K}^{l,h} x_{j}^{l})}{\sqrt{d_{x}/H}} + \lambda_{i,j}^{l,h} \cdot p_{j}
\]

where \(\lambda_{i,j}^{l,h} \) is a trainable parameter.

Finally, token-level representations are produced after the stacked encoder layers, denoted as \(o = (o_{1}, \ldots, o_{T}) \).

2.3. Utterance representation

The output hidden vector corresponding to the [CLS] token, i.e., \(o_{1} \), is usually applied to represent the whole utterance. Ad-
 Firstly, the token-level hidden vectors of the WCN part are aggregated into bin-level through the following two steps: (1) BERT sub-word vectors belong to an input word are averaged to be the word vector; (2) word-level vectors of each bin are then weighted and summed to get a bin vector. An example of the feature aggregation of the WCN part is illustrated in Fig. 3 while the features corresponding to the system acts are unchanged. After aggregation, we get new feature vectors $u = (u_1, \ldots, u_T)$, where $T = M + \lceil \text{TOK}(w) \rceil + 3$ (M is the number of bins) and $T' \leq T$.

Then, we summarize the bin-level features with a self-attentive approach as follows:

$$u' = \sum_{t=2}^{T'} \frac{\exp(\bar{v}^\top \tanh(W_t u_t + b_a)) \cdot u_t}{\sum_{j=2}^{T'} \exp(\bar{v}^\top \tanh(W_t u_j + b_a))}.$$

(4)

where $b_a, \bar{v} \in \mathbb{R}^{d_v}$ and $W_a \in \mathbb{R}^{d_v \times d_v}$ are trainable parameters. The final utterance representation is obtained by concatenating u' with the hidden state of $[\text{CLS}]$, i.e., $r = \text{Concat}(u_1, u')$.

2.4. Output layer

To evaluate the validity and portability of the encoding model, we apply both discriminative (Sec. 2.4.1) and generative (Sec. 2.4.2) approaches for predicting the act-slot-value labels.

2.4.1. Semantic tuple classifier (STC)

Upon the final utterance representation r, we apply a binary classifier for predicting the existence of each act-slot pair, and a multi-class classifier over all possible values existing in the training set for each act-slot pair. Therefore, this method cannot predict values unseen in the training set.

2.4.2. Transformer-based hierarchical decoder (HD)

To improve the generalization capability of value prediction, we follow Zhao et al. [7] to construct a hierarchical decoder consisting of an act classifier, a slot classifier, and a value generator. However, there are two main differences listed as follows:

1. Acts and slots are tokenized and then embedded by the BERT embedding layer as additional features for the slot classifier and the value generator. For each act o or slot s, sub-word level vectors from BERT embedding layer are averaged to get a single feature vector (e_o for o and e_s for s).

2. We replace the LSTM-based value generator with a Transformer-based one [23].

Tokenized values are embedded by the BERT embedding layer and generated at the sub-word level. Therefore, we tie the BERT’s token embeddings with the weight matrix of the linear output layer in the value generator.

3. Experiments

We experiment on the dataset from the second Dialog State Tracking Challenge (DSTC2) [24], which contains 11677, 3934, 9890 utterances for training, validation and testing, respectively. In order to shorten flattened WCN sequences, we prune WCNs by removing interjections and word candidates with probabilities below a certain threshold (0.001 as recommended [19]). The evaluation metrics are F_1 score of act-slot-value triplets and utterance-level accuracy. We do not assume that all value candidates of each slot are known in advance.

In our experiments, we use English uncased BERT-base model, which has 12 layers of 768 hidden units, and 12 attention heads. During training, Adam [29] is used for optimization. We select the initial learning rate from $\{5e^{-5}, 3e^{-5}, 2e^{-5}\}$, with a warm-up rate of 0.1 and an L2 weight decay of 0.01. The maximum norm for gradient clipping is set to 1. The dropout rate is set to 0.1 for the BERT encoder and 0.3 for the utterance representation model and the output layer. The model is trained for 50 epochs and saved according to the best performance on the validation set. Each experimental setting was run five times with different random seeds, and we report the averaged result.

3.1. Main results

As shown in Table 1, different types of inputs are applied for baselines, including manual transcriptions, ASR 1-best, 10-best lists, and WCNs. The baseline model for the first three types (manual, 1-best, and 10-best) is BLSTM with soft-attention [23] and 10-best lists with the model trained on 1-best, we run the model on each hypothesis from the list and average the results weighted by the ASR posterior probabilities.

Table 1: F_1 scores (%) and utterance-level accuracies (%) of baseline models and our proposed model on the test set.

Models	Train→Test	F_1	Acc.		
BLSTM+ Self-Atn	STC	manual→manual	98.56	97.29	
	STC	manual→1-best	83.57	74.91	
	STC	1-best→1-best	84.06	75.26	
	STC	1-best→10-best	84.92	75.70	
	STC	10-best→10-best	85.05	77.07	
Neural ConfNet	STC	WCN→WCN	85.01	77.03	
Lattice-SLU	STC	WCN→WCN	86.09	78.78	
WCN-BERT (ours)	STC	HD	WCN→WCN	87.91	81.14
	STC	HD	WCN→WCN	87.33	80.74

For modeling WCNs, we follow the Neural ConfNet Classification [23] method. WCNs are fed into the model through

1 For act-slot pairs requiring no value (like thankyou, goodbye, request-phone, request-food etc.), the value classification is omitted.

2 Such as ah, oh, etc. according to Jagfeld et al. [19].

3 In these baselines, word embedding is initialized with 100-dim Glove6B [19]. The learning rate is set to 0.001, fixed during training. The maximum norm for gradient clipping is 5, and dropout rate is 0.3.
a simple weighted sum representation method, where all word vectors are weighted by their posterior probabilities and then summed. We also apply the Lattice-SLU method with GPT [15] on WCNs. The output layer of all baselines is STC (Sec. 2.4.1).

By comparing across the baselines, we find that performances become better with larger ASR hypotheses space. The Neural ConfNet Classification method can outperform the system trained and tested with 1-best, and it achieves comparable results to the 10-best system. With powerful pre-trained language models (GPT [21]), the Lattice-SLU beats the other baselines above. The last system act is not exploited in the baselines, which will be analyzed in the following ablation study.

Table 2: Comparison with prior arts on the DSTC2 dataset.

Models	F₁ (%)
SLU2 [31]	82.1
CNN+LSTM_w4 [5]	83.6
CNN [6]	85.3
S2S-ATTN-PTR-NET [6]	85.8
Hierarchical Decoding [7]	86.9
WCN-BERT + STC (ours)	87.9

By joint modeling WCNs and the last system act with powerful pre-trained BERT, our proposed framework outperforms the baselines significantly in F₁ score and utterance-level accuracy, and achieves new state-of-the-art performance on the DSTC2 dataset, as shown in Table 1 and Table 2.

3.2. Ablation study

In this section, we perform ablation experiments of our WCN-BERT SLU with both STC and HD, as presented in Table 3.

Table 3: F₁ scores (%) of ablation study on the test set.

Model variations	STC	HD
(a) WCN-BERT	87.91	87.33
(b) w/o WCN Prob	87.15	86.47
(c) r = u₁	87.75	86.99
(d) w/o BERT	86.12	86.01
(e) w/o system act	86.69	86.18
(f) w/o BERT and system act	85.85	85.06
(g) Replace system act with	88.01	87.28
system utterance		

Row (b) shows the results without considering WCN probabilities in the BERT encoder. In this case, the model lacks prior knowledge of ASR confidences, resulting in a significant performance drop (0.76% for STC and 0.86% for HD). By only considering the hidden state related to [CLS] as the utterance representation (row(c)), i.e., r = u₁, the F₁ scores decrease with both STC and HD, indicating that the structural information of WCN is beneficial for utterance representation.

By removing BERT (row (d)), we utilize vanilla Transformer to jointly encode WCNs and system acts but not fine-tune a pre-trained BERT. We use 100-dim word embeddings, initialized with Glove6B [30]. The results show that removing BERT brings about a remarkable decrease in F₁ score (1.79% for STC and 1.32% for HD).

Besides, we investigate the effect of dialogue context by removing the last system act from the input, as demonstrated in row (e). Results show that jointly encoding the WCN and the last system act improves the performance dramatically. It is a fair comparison with the Lattice-SLU baseline in Table 1 both with pre-trained language models. The result implies that our model is much more effective, owing to (1) the capability of the bidirectional Transformer, which considers the future context, and (2) the different considerations of WCN structures.

In row (f), neither BERT nor the dialogue context is included. This also gives a fair comparison with the Neural ConfNet Classification method [20] at the model level (Transformer v.s. BLSTM). With STC as the output layer, the Transformer with WCN probability-aware self-attention mechanism is shown to have better modeling capability (an improvement of 0.84% in F₁) and higher training efficiency (over 6× faster).

Moreover, we replace the last system act with the last system utterance in the input (row (g)), which only causes a slight change (within 0.1%) in F₁ scores. This indicates that our model is also applicable to datasets with only system utterances, but no system acts.

3.3. Analysis of hierarchical decoder

As we can see from the previous results, models with hierarchical decoder (HD) perform worse than STC. However, the generative approach equips the model with generalization capability, and the pointer-generator network is beneficial to handle out-of-vocabulary (OOV) tokens. To analyze the generalization capability of the proposed model with hierarchical decoders, we randomly select a certain proportion of the training set to train our proposed WCN-BERT SLU with STC or HD. The validation and test set remain unchanged. Furthermore, we evaluate the F₁ scores of seen and unseen act-slot-value triplets, according to whether an act-slot-value triplet is seen in the training set.

Table 4: F₁ scores (%) of our WCN-BERT SLU on the test set with varying training size.

Train size	Models	overall	seen	unseen
1%	+ STC	62.9	67.1	0.0
	+ HD	71.6	77.0	29.7
5%	+ STC	78.7	80.2	0.0
	+ HD	81.5	83.1	35.3
10%	+ STC	81.3	81.9	0.0
	+ HD	82.9	83.8	22.9
100%	+ STC	87.9	88.2	0.0
	+ HD	87.3	87.5	4.8

As shown in Table 4, with the training size getting decreased, the overall performance of HD will not degrade sharply. Moreover, the hierarchical decoder is shown to have better generalization capability in the face of unseen labels.

4. Conclusion

In this paper, we propose to jointly encode WCN and dialogue context with BERT for SLU. To eliminate ambiguity caused by ASR errors, WCNs are utilized for involving ASR hypotheses uncertainties, and dialogue context implied by the last system act is exploited as auxiliary features. In addition, the pre-trained language model BERT is introduced to better encode WCNs and system acts with self-attention. Experimental results show that our method can beat all baselines and achieves new state-of-the-art performance on DSTC2 dataset.
5. References

[1] S. Young, “CUED standard dialogue acts,” Report, Cambridge University Engineering Department, 14th October, 2007.

[2] F. Mairesse, M. Gasic, F. Juricek, S. Keizer, B. Thomson, K. Yu, and S. Young, “Spoken language understanding from unaligned data using discriminative classification models,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 4749–4752.

[3] M. Henderson, M. Gašić, B. Thomson, P. Tsiaoulis, K. Yu, and S. Young, “Discriminative spoken language understanding using word confusion networks,” in 2012 IEEE Spoken Language Technology Workshop (SLT), 2012, pp. 176–181.

[4] S. Zhu, L. Chen, K. Sun, D. Zheng, and K. Yu, “Semantic parser enhancement for dialogue domain extension with little data,” in 2014 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2014, pp. 336–341.

[5] L. M. R. Barahona, M. Gasic, N. Mrksić, P.-H. Su, S. Ultes, T.-H. Wen, and S. Young, “Exploiting sentence and context representations in deep neural models for spoken language understanding,” in Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics, 2016, pp. 258–267.

[6] L. Zhao and Z. Feng, “Improving slot filling in spoken language understanding with joint pointer and attention,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018, pp. 426–431.

[7] Z. Zhao, S. Zhu, and K. Yu, “A hierarchical decoding model for spoken language understanding from unaligned data,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 7305–7309.

[8] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding,” in Fourteenth Annual Conference of the International Speech Communication Association, 2013, pp. 3771–3775.

[9] S. Zhu, O. Lan, and K. Yu, “Robust spoken language understanding with unsupervised asr-error adaptation,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 6179–6183.

[10] H. Li, C. Liu, S. Zhu, and K. Yu, “Robust spoken language understanding with acoustic and domain knowledge,” in 2019 International Conference on Multimodal Interaction, 2019, pp. 531–535.

[11] J.-P. Robichaud, P. A. Crook, P. Xu, O. Z. Khan, and R. Sarikaya, “Hypotheses ranking for robust domain classification and tracking in dialogue systems,” in Fifteenth Annual Conference of the International Speech Communication Association, 2014.

[12] O. Z. Khan, J.-P. Robichaud, P. A. Crook, and R. Sarikaya, “Hypotheses ranking and state tracking for a multi-domain dialog system using multiple ASR alternates,” in Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[13] J. Švec, L. Šmíd, T. Valenta, A. Chýlek, and P. Ircing, “Word-semantic lattices for spoken language understanding,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 5266–5270.

[14] F. Ladhak, A. Gandhe, M. Dreyer, L. Mathias, A. Rastrow, and B. Hoffmeister, “LatticeRm: Recurrent neural networks over lattices,” in Seventeenth Annual Conference of the International Speech Communication Association, 2016, pp. 695–699.

[15] C.-W. Huang and Y.-N. Chen, “Adapting pretrained transformer to lattices for spoken language understanding,” in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019, pp. 845–852.

[16] D. Hakkani-Tür, F. Béchet, G. Riccardi, and G. Tür, “Beyond asr 1-best: Using word confusion networks in spoken language understanding,” Computer Speech & Language, vol. 20, no. 4, pp. 495–514, 2006.

[17] G. Türe, A. Deoras, and D. Hakkani-Tür, “Semantic parsing using word confusion networks with conditional random fields,” in Fourteenth Annual Conference of the International Speech Communication Association, 2013, pp. 2579–2583.

[18] X. Yang and J. Liu, “Using word confusion networks for slot filling in spoken language understanding,” in Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[19] G. Jagfeld and N. T. Vu, “Encoding word confusion networks with recurrent neural networks for dialog state tracking,” in Proceedings of the Workshop on Speech-Centric Natural Language Processing, 2017, pp. 10–17.

[20] R. Masumura, Y. Ijima, T. Asami, H. Masataki, and R. Higashinaka, “Neural context classification: Fully neural network based spoken utterance classification using word confusion networks,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 6039–6043.

[21] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by generative pre-training,” URL https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language-understanding-paper.pdf, 2018.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171–4186.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.

[24] M. Henderson, B. Thomson, and J. D. Williams, “The second dialog state tracking challenge,” in Proceedings of the 15th annual meeting of the special interest group on discourse and dialogue (SIGDIAL), 2014, pp. 263–272.

[25] J. Feng and S. Bangalore, “Effects of word confusion networks on voice search,” in Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), 2009, pp. 238–245.

[26] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging the gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[28] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[30] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[31] J. D. Williams, “Web-style ranking and slu combination for dialog state tracking,” in Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), 2014, pp. 282–291.