Physical and Geometrical Parameters of CVBS. XII. FIN 350 (HIP 64838)*

M. A. Al-Wardat**, J. A. Docobo², A. A. Abushattal², and P. P. Campo²

¹Al al-Bayt University, Mafraq, 25113 Jordan
²Astronomical Observatory Ramón María Aller, Santiago de Compostela University, Santiago de Compostela, 15782 Spain

Received October 24, 2016; in final form, January 10, 2017

Abstract—A complete astrophysical and dynamical study of the close visual binary system (CVBS) Finsen 350 (A7V + F0V), is presented. Beginning with the entire observational spectral energy distribution (SED) and the magnitude difference between the subcomponents, Al-Wardat’s complex method for analyzing CVBS was applied as a reverse method of building the individual and entire synthetic SEDs of the system. This was combined with Docobo’s analytic method to calculate the new orbits. Although possible short (approximately 9 years) and long period (of about 18 years) orbits could be considered taking into account the similar results of the stellar masses obtained for each of them (3.07 and 3.41 M☉, respectively), we confirmed that the short solution is correct. In addition, other physical, geometrical and dynamical parameters of this system such as the effective temperatures, surface gravity accelerations, absolute magnitudes, radii, the dynamical parallax, etc., are reported. The Main Sequence phase of both components with age around 0.79 Gyr is approved.

DOI: 10.1134/S1990341317030038

Key words: stars: binaries: visual—stars: interferometric binaries—stars: photometry

1. INTRODUCTION

Most of what look like single stars in the sky are, actually, binary or multiple systems, as revealed by HIPPARCOS mission [1, 2]. In general, stellar binary systems represent the key source of stellar parameters especially masses and distances. As for subgiant stars and the lower part of the Main Sequence, they practically define our understanding of stellar physical properties [3].

Except for eclipsing binary stars, there is no direct way to measure the physical and geometrical parameters of stellar binary systems, even with the aid of modern techniques of observation, such as speckle interferometry and adaptive optics. The situation is a bit complicated in the case of the close visual binary stars (CVBS), especially subgiants, which represent a small stellar category due to their short evolutionary phase [4].

This difficulty was overcome by applying Al-Wardat’s complex method for analyzing CVBS, which combines different observational results and analytical techniques such as speckle interferometry, spectrophotometry, atmospheric modelling, and dynamical analysis. This method yields an accurate determination of the complete set of physical and geometrical parameters which include effective temperatures, gravity accelerations, radii, masses, orbital parameters, absolute magnitudes, densities, spectral types, and luminosity classes of the components of the CVBS. First devised by [5, 6], the method was applied to several Main Sequence CVBS such as ADS 11061, COU 1289, COU 1291, HIP 11352, HIP 11253, HIP 70973, and HIP 72479 [5–9] as well as to the subgiant CVBS, HD 25811 [10], HD 375 [11] and HD 6009 [12]. It was also applied to the spectroscopic CVBS Gliese 762.1 (Paper X in this series).

As a consequence of the previous work, this paper (the XII in its series) presents the analysis of the CVBS FIN 350 ≡ HIP 64838, HD 115488, Tych 4958-1448-1. It was reported as a double star in the Bright Star Catalogue and in the Index Catalogue of Visual Double Stars [13]. Table 1 contains basic data of this system from SIMBAD, NASA/IPAC, HIPPARCOS and Tycho Catalogues (ESA) [14–17]. This star was observed for the first time in 1959.47 by Finsen who established it as a binary and measured a separation, ρ, of 0″.1, with a position angle, θ, of 27°. He also determined that both components were of the same brightness, 7m1, where he
used an eyepiece interferometer developed by himself at that time for his observations.

It is not clear yet whether the components of the system belong to the Main Sequence or to the subgiant phase. Malaroda [18] assigned the system to the F0V MK spectral type, while Cowley [19] assigned it to A7IV (or mild A7m). So, it seems to be an interesting system, and the parameters estimated in this work will enhance our knowledge of binary systems in general, and will consequently help to understand the formation and evolution mechanisms of such systems.

Previous orbits for this system were calculated by
Baize [20]: \(P = 8.989\) yr, \(a = 86\) mas; Hartkopf et al. [21]: \(P = 9.046\) yr, \(a = 79.7\) mas; and more recently by Horch et al. [22]: \(P = 9.156\) yr, \(a = 80.8\) mas.

The latest speckle observations suggested a revision of the earlier solutions and, taking into account the small difference of magnitude between the components, we decided to calculate not only the short-period orbit (approximately 9 yr) but also the long-period orbit (of about 18 yr) twisting several measurements by 180° (see Fig. 1 and 2). Concretely, the orbit of Horch et al. [22] provides the following residuals in θ for the measurements of 2007.329, 2009.260, and 2009.446 (three observations in this last epoch), which are near the periastron passage: +5°7, +3°0, +3°0, +3°0, +5°8, and +5°4. Moreover, Horch himself provided us with the unpublished observations performed in 2013.4026. Docobo’s analytic method [23, 24] was used to calculate the new orbits.

The first column in Table 2 indicates the date of observation. Columns 2, 3, 4, and 5 give the values of the position angle and the separation with their corresponding standard errors. Columns 6 and 7 show the observed difference of magnitude between the components, while columns 8 and 9 include the wavelength and the standard error used in the observations. The size of the telescope utilized to perform the measurements is indicated in column 10. Finally, columns 11, 12, and 13 contain the reference of the publication where the measurements were announced, the technique used, and the weight assigned to the observation, respectively.

Table 2. Observational data of Finsen 350

Date	θ, deg	σθ, deg	ρ, arcsec	σρ, arcsec	δm, mag	σδm, mag	Filter λ, nm	Δλ	Telescope size, m	Ref.*	Method*	Weight*
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
1959.47	27.1	0.131	0.0	-	-	-	0.7	Fin1959b	J	5		
1960.55	29.2	0.126	0.1	-	-	-	0.7	Fin1961	J	5		
1964.530	162.5	0.104	0.0	-	-	-	0.7	Fin1965a	J	5		
1965.545	186.3	0.126	0.0	-	-	-	0.7	Fin1966a	J	5		
1966.520	201.5	-	-	-	-	-	0.7	Fin1967a	J	0		
1966.527	203.2	0.134	0.0	-	-	-	0.7	Fin1967a	J	5		
Table 2. (Cont.)

Date	θ, deg	σ_{θ}, deg	ρ, arcsec	σ_{ρ}, arcsec	δ_{m}, mag	$\sigma_{\delta_{m}}$	Filter λ, nm	δ_{λ}, nm	Telescope size, m	Ref.*	Method*	Weight*
1967.5447	208.4	-0.140	-	0.0	-	-	0.7	Fin1969a	J	5		
1968.545	200.8	-0.137	-	0.0	-	-	0.7	Fin1969a	J	5		
1976.2959	12.5	0.131	0.001	-	-	-	552	20	3.8	McA1978b	Sc	15
1976.3697	13.9	-0.114	-	-	-	-	552	20	2.1	McA1982b	Sc	10
1976.4570	15.0	0.129	0.001	-	-	-	552	20	3.8	McA1978b	Sc	15
1977.0877	18.6	0.131	0.001	-	-	-	552	20	3.8	McA1979a	Sc	15
1977.1751	15.9	-0.120	-	-	-	-	552	20	2.1	McA1982b	Sc	10
1977.3280	19.9	-0.119	-	-	-	-	552	20	2.1	McA1982b	Sc	10
1978.1499	26.9	0.118	0.001	-	-	-	470	-	3.8	McA1980b	Sc	15
1978.3109	32.3	-0.112	-	-	-	-	470	-	2.1	McA1984b	Sc	10
1979.3622	38.3	-0.085	-	-	-	-	470	-	3.8	McA1982d	Sc	15
1983.0701	350.3	-0.080	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1983.4332	355.4	-0.093	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1984.0532	1.1	-0.125	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1984.3752	5.6	-0.115	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1984.3807	5.3	-0.116	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1984.3835	5.9	-0.116	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1985.1805	13.0	-0.117	-	-	-	-	600	14	6.0	Bag1987	S	20
1985.2438	14.0	0.126	0.013	-	-	-	625	75	1.9	Bnu1986	S	10
1985.3389	10.5	-0.129	-	-	-	-	549	22	3.0	Hrt2000a	Sc	15
1985.4840	13.8	-0.126	-	-	-	-	549	22	3.8	McA1987b	Sc	15
1986.4067	20.3	-0.127	-	-	-	-	549	22	3.8	McA1989	Sc	15
1987.2642	26.2	-0.117	-	-	-	-	549	22	3.8	McA1989	Sc	15
1987.3800	27.5	-0.108	-	-	-	-	-	-	6.0	Bag1989a	S	20
1987.3800	27.5	-0.108	-	-	-	-	-	-	6.0	Bag1991b	S	20
1988.1655	35.5	0.088	-	-	-	-	549	22	3.6	McA1993	Sc	15
1988.2524	36.8	0.080	-	-	-	-	549	22	3.8	McA1989	Sc	15
1990.2759	33.8	0.053	-	-	-	-	467	16	3.8	Hrt1992b	Sc	15
1991.3186	331.0	-0.059	-	-	-	-	549	22	3.8	Hrt1994	Sc	15
1992.3098	352.8	-0.085	-	-	-	-	549	22	3.8	Hrt1994	Sc	15
1992.4572	353.9	-0.093	-	-	-	-	549	22	4.0	Hrt1996a	Sc	15
1993.0905	1.5	-0.105	-	-	-	-	549	22	4.0	Hrt1996a	Sc	15

ASTROPHYSICAL BULLETIN Vol. 72 No. 1 2017
Table 2. (Cont.)

Date	\(\theta\), deg	\(\sigma\theta\), deg	\(\rho\), arcsec	\(\sigma\rho\), arcsec	\(\delta m\), mag	\(\sigma\delta m\), mag	Filter \(\lambda\), nm	\(\delta\lambda\), nm	Telescope size, m	Ref.	Method	Weight
1993.1973	1.6	0.114	-	-	549	22	3.8	Hrt1994	Sc	15		
1995.1495	17.8	0.120	-	-	549	22	2.5	Hrt1997	Sc	10		
1995.3109	17.2	0.121	-	-	549	22	2.5	Hrt1997	Sc	10		
1996.1840	24.2	0.116	-	-	549	22	4.0	Hrt2000a	Sc	15		
2001.2708	350.3	0.8	0.078	0.003	550	14	6.0	Bag2006b	S	20		
2001.2708	350.2	0.6	0.079	0.003	600	30	6.0	Bag2006b	S	20		
2001.2708	350.3	0.7	0.078	0.003	750	35	6.0	Bag2006b	S	20		
2002.3224	1.8	0.100	-	0.62	550	40	3.5	Hor2008	S	15		
2002.3224	3.1	0.106	-	0.48	754	44	3.5	Hor2008	S	15		
2004.1960	11.8	0.141	0.002	-	550	24	1.55	Hrt2008	Su	10		
2006.1915	32.1	-	0.092	-	550	24	4.0	Msn2009	Su	15		
2007.0105	222.2	0.0716	-	0.99	550	40	3.5	Hor2011b	S	15		
2007.3286	238.8	0.0456	-	0.58	550	40	3.5	Hor2011b	S	15		
2007.3286	-	-	-	1.63	698	40	3.5	Hor2011b	S	0		
2009.2601	305.5	0.0383	0.0002	0.4	551	22	4.1	Tok2010	S	15		
2009.4462	320.8	0.0318	-	0.46	562	40	3.5	Hor2011b	S	15		
2009.4462	-	-	-	0.31	692	40	3.5	Hor2011b	S	0		
2009.4462	322.6	3.2	0.044	0.003	562	40	3.5	Hor2012a	S	15		
2009.4462	322.2	3.2	0.044	0.003	692	40	3.5	Hor2012a	S	15		
2012.1843	8.0	0.1214	0.0002	0.6	543	22	4.1	Tok2012b	S	15		
2013.4026	16.5	0.1258	-	0.36	692	40	3.5	Hor**	S	15		
2013.4026	16.7	0.1264	-	0.35	880	50	3.5	Hor**	S	15		
2014.3005	23.0	0.1204	0.0002	0.6	534	22	4.2	Tok2015c	St	15		

* The abbreviations and weights are given as in the Fourth Catalog of Interferometric Measurements of Binary Stars [25]
(http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/int4).

** Unpublished measurements.

The orbital elements and the masses determined in the present work together with their estimated standard errors are included in Table 3.

Table 4 lists the RMS residuals and mean arithmetic residuals of the position angles and separations for the orbits calculated in this work as well as for previously determined orbits. Table 5 presents the ephemerides for each orbit for the period between 2014 and 2020. Keeping in mind the ephemerides of both solutions, it will be possible to discriminate between the two calculated orbits in the very near future.

The similarity between the value of the HIPPARCOS parallax (12.28 ± 0.77 mas) with the dynamical parallaxes obtained for each orbit (short period: 13.12 ± 0.31 mas, and long period: 13.38 ± 0.46 mas), demonstrates the robustness of the first as well as its use as a referent value in this work.
Fig. 1. The apparent short period orbit ($P \sim 9$ yr). Stars represent the measurements made by Finsen; open circles, dots, and rectangles are the measurements carried out with $1–2$, $3–4$, and 6-m telescope class respectively. Dates of several observations (rounded to the nearest integer) are included.

Fig. 2. The apparent long period orbit ($P \sim 18$ yr). Stars represent the measurements made by Finsen; open circles, dots, and rectangles are the measurements carried out with $1–2$, $3–4$, and 6-m telescope class respectively. Dates of several observations (rounded to the nearest integer) are included.

We concluded that the true orbit is that of the short-period because the long-period orbit gives unacceptable residuals in the position angle regarding the observations of 1990.2759 and 2007.0105. Even if we give 0 weight to those observations, the rms in the position angle is worse in the long-period orbit (see Table 6).

3. ATMOSPHERIC MODELING

In order to estimate the physical and geometrical parameters of the individual components of the system, we follow Al-Wardat’s complex method for analyzing CVBS [8]. The method makes use of the measured magnitude difference Δm between the subcomponents, their composite visual magnitude m_V and the parallax of the system to calculate preliminary input parameters to model atmospheres of the individual components. Model atmospheres are then used to calculate their spectral energy distributions (SEDs), which then combined together (according to specific criteria) to build the entire synthetic SED of the system. The observational SED is used as a reference guide to the synthetic one in an iterated way of the aforementioned steps by changing the input parameters until the best fit between them achieved.

The magnitude difference between the two components $\Delta m = m_B - m_A = 0^m59$ was taken as the average value of all measurements under the filters 550/40, 551/22, 562/40, 543/22 and 534/22 (given in Table 2), which are the closest to the V-band filter.
Table 3. Calculated orbital elements and masses of the system with standard errors

Parameters	Short period	Long period
Period P, yr	9.130 ± 0.030	18.442 ± 0.200
Periastron epoch T_0	2017.487 ± 0.050	2009.328 ± 0.900
Eccentricity e	0.622 ± 0.007	0.021 ± 0.007
Semi-major axis a, arcsec	0.0795 ± 0.002	0.129 ± 0.002
Inclination i, deg	57.0 ± 0.5	73.5 ± 0.5
Position angle of nodes Ω, deg	18.8 ± 1.5	15.8 ± 1.0
Argument of periastron ω, deg	170.8 ± 3.5	279.3 ± 18.0
Mass sum* $\sum M_{A,B}, M_\odot$	3.255 ± 0.332	3.408 ± 0.311
Mass sum** $\sum M_{A,B}, M_\odot$	3.173 ± 0.152	3.146 ± 0.149
Mass sum*** $\sum M_{A,B}, M_\odot$	2.665 ± 0.125	2.637 ± 0.122

* Using HIPPARCOS parallax: 12.28 mas.
** Using dynamical parallaxes: 12.39 ± 0.31 mas (short period) and 12.61 ± 0.36 mas (long period), and the calibration for main sequence stars.
*** Using dynamical parallaxes: 13.13 ± 0.43 mas (short period) and 13.38 ± 0.46 mas (long period), and the calibration for subgiants given in [26].

Table 4. RMS and mean arithmetic residuals for the new and old orbits

Epoch	Short period	Long period		
$\Delta \theta$	$\Delta \rho$	$\Delta \theta$	$\Delta \rho$	Source
2016.0	42.6	0.070	35.4	0.087
2017.0	110.6	0.024	54.1	0.057
2018.0	259.6	0.027	102.3	0.037
2019.0	338.9	0.059	154.2	0.054
2020.0	357.1	0.095	174.8	0.084

This magnitude difference, along with the composite photometry of the system $m_V = 6^m358$ (Table 1), was used as an input to the equations:

$$m_A = m_V + 2.5 \log (1 + 10^{-0.4 \Delta m}),$$

$$m_B = m_A + \Delta m,$$

to calculate the apparent magnitudes of the individual components as: $m_A = 6^m87$ and $m_B = 7^m42$.

These individual apparent magnitudes, along with the corresponding Main Sequence relations and standard values [14, 27]:

$$M_V = m_V + 5 - 5 \log d - A_V,$$

$$\log (R/R_\odot) = 0.5 \log (L/L_\odot) - 2 \log (T/T_\odot),$$

$$\log g = \log (M/M_\odot) - 2 \log (R/R_\odot) + 4.43$$

were used to calculate the preliminary input parameters (effective temperatures and surface gravity accelerations) needed to build model atmospheres for the individual components. We used bolometric corrections of [14] as well as $T_\odot = 5777$ K and extinction A_V given in Table I by NASA/IPAC.
Table 6. Residuals of the orbits

Date	Long period	Short period	Date	Long period	Short period
	$\Delta \theta$, $\Delta \rho$, deg	$\Delta \theta$, $\Delta \rho$, arcsec		$\Delta \theta$, $\Delta \rho$, deg	$\Delta \theta$, $\Delta \rho$, arcsec
1959.47	2.5 0.015 4.4 0.011	1987.3800	2.9 -0.006 0.7 -0.003		
1960.55	-4.8 0.036 -3.2 0.030	1988.1655	4.2 -0.007 0.3 -0.000		
1964.530	-10.4 0.025 -4.2 0.032	1988.2524	4.6 -0.012 0.4 -0.005		
1965.545	2.5 0.019 5.6 0.022	1990.2759	-61.2 0.017 -0.8 0.023		
1966.520	11.1 -0.124 12.8 -0.122	1991.3186	-3.8 0.007 2.8 0.011		
1966.527	12.7 0.010 14.4 0.012	1992.3098	-3.2 0.002 -0.5 -0.001		
1967.5447	12.2 0.011 12.8 0.012	1992.4572	-4.0 0.005 -1.4 0.002		
1968.545	-1.2 0.016 -1.5 0.016	1993.0905	-2.7 0.000 -0.6 -0.003		
1976.2959	-2.4 0.003 -0.6 0.004	1993.1973	-3.4 0.007 -1.5 0.004		
1976.3697	-1.5 -0.014 0.3 -0.014	1995.1495	0.6 -0.008 0.9 -0.008		
1976.4570	-0.8 0.000 0.8 0.001	1995.3109	-0.9 -0.007 -0.8 -0.006		
1977.0877	-0.8 0.005 0.3 0.004	1996.1840	0.8 -0.003 0.1 -0.001		
1977.1751	-4.0 -0.006 -2.9 -0.006	2001.2708	-0.3 0.003 -0.4 -0.002		
1977.3280	-0.9 -0.005 0.0 -0.006	2001.2708	-0.4 0.004 -0.5 -0.001		
1978.1499	0.6 0.007 0.9 0.005	2001.2708	-0.3 0.003 -0.4 -0.002		
1978.3109	4.8 0.004 4.9 0.003	2002.3224	-1.0 -0.004 -1.2 -0.010		
1979.3622	-0.4 0.006 -2.1 0.009	2002.3224	0.3 0.002 0.1 -0.004		
1983.0701	-3.9 -0.002 -1.4 -0.002	2004.1960	-3.1 0.012 -4.6 0.013		
1983.4332	-3.2 0.000 -1.3 -0.001	2006.1915	4.7 -0.014 -0.1 -0.004		
1984.0532	-3.2 0.017 -1.9 0.015	2007.0105	6.2 -0.011 -3.8 0.007		
1984.3752	-1.0 0.000 -0.1 -0.001	2007.3286	18.0 -0.027 2.0 -0.003		
1984.3807	-1.4 0.001 -0.4 0.000	2009.2601	-6.4 -0.001 -2.0 0.003		
1984.3835	-0.8 0.001 0.2 0.000	2009.4462	-1.1 -0.012 -0.3 -0.010		
1985.1805	1.3 -0.009 1.5 0.009	2009.4462	0.7 0.001 1.5 0.002		
1985.2438	1.9 -0.001 2.1 0.000	2009.4462	0.3 0.001 1.1 0.002		
1985.3389	-2.1 0.001 -2.0 0.002	2012.1843	-0.9 0.003 -0.8 -0.001		
1985.4840	0.4 -0.002 0.3 -0.002	2013.4026	0.4 -0.003 -0.4 -0.002		
1986.4067	1.8 0.000 0.8 0.001	2013.4026	0.6 -0.002 -0.2 -0.001		
1987.2642	2.4 0.001 0.4 0.004	2014.3005	1.7 -0.003 -0.0 0.001		
1987.3800	2.9 -0.006 0.7 -0.003				
Table 7. Comparison between the observational and synthetic magnitudes of the entire system

	Obs.	Synth. (this work)
V_J	6.36	6.36
B_T	6.66	6.68
V_T	6.38	6.40
$(B-V)_J$	0.26	0.252
Δm	0.543	0.548
$b-y$	0.164*	0.16

* Danziger and Faber [30].

Hence, the calculated parameters were used as input parameters to construction model atmospheres for each component using grids of Kurucz’s 1994 blanketed models (ATLAS9) [28]. Here, we used solar-abundance line-blanketed model atmospheres to build the spectral energy distribution for each component.

The total energy flux received from the binary star is calculated depending on the net luminosity of the components, A and B, located at a distance, d, from the Earth. This is represented by the following equation [5]:

$$F_\lambda d^2 = H_\lambda^A R_\lambda^A + H_\lambda^B R_\lambda^B$$

where H_λ^A and H_λ^B are the fluxes from a unit surface of the corresponding component and F_λ represents the total SED of the system.

Now, the goal is to achieve the best fit between the computed total SED with the observed one. So, in order to achieve that fit, dozens of different sets of parameters were tested by different ways; the first way is the direct correspondence as can be seen in Fig. 3, which includes the maximum values of the absolute flux, the shape of the continuum, and the profiles of the absorption lines. The second way is by comparing synthetic magnitudes and color indices with the observational ones (see Table 7).

It is worthwhile to mention here that two of the input parameters have the same effect on the maximum values of the absolute flux, these are the radii of the components and the parallax of the system according to Equ. (6). Hence, the radii of both components were set subject to change according to the parallaxes of different sources. Table 8 gives these radii using the following atmospheric parameters:

$$T_\text{eff}^A = 7820 \pm 75 \text{ K}, \quad T_\text{eff}^B = 7250 \pm 75 \text{ K},$$

$$\log g_A = 4.10 \pm 0.40, \quad \log g_B = 4.25 \pm 0.40.$$
Fig. 3. Best fit between the entire observational SED of the system taken from [29] and the entire synthetic one of the two components built in this work. The figure also shows the SEDs of the individual components built using the parameters given at the end of Section 3.

Table 8. Estimated radii and luminosities of the individual components according to different parallaxes

Source of Parallax	π, mas	$R_a \pm 0.07$	$R_b \pm 0.07$	L_a/L_\odot	L_b/L_\odot
HIPPARCOS (new) [17]	12.28	1.92	1.71	12.38	7.25
Dynamical parallax					
(short period, MS)	12.39	1.88	1.67	11.87	6.92
(long period, MS)	12.61	1.86	1.65	11.62	6.75
Dynamical parallax					
(short period, Subgiant)	13.13	1.79	1.60	10.76	6.35
(long period, Subgiant)	13.38	1.76	1.57	10.40	6.11
HIPPARCOS (old)	13.45	1.75	1.56	10.28	6.04

$\Sigma M = 2.869 M_\odot \pm 0.684$, $M_A = 1.616 M_\odot \pm 0.422$ and $M_B = 1.253 M_\odot \pm 0.345$ using $\Delta m = 0.010 \pm 0.15$ and $\pi = 12.92 \pm 0.95$ mas.

The estimated mass sum using atmospheric analysis, $\Sigma M = 3.30 M_\odot$, $M_A = 1.75 M_\odot$ and $M_B = 1.55 M_\odot$, (Table 9) supports that of the short period orbit solution as 3.255 M_\odot.

The comparison between the observational and synthetic magnitudes of the entire system (Table 7) gives a good indication about the reliability of Al-Wardat’s complex method in analyzing CVBS.

Figure 4 gives the positions of the two components on the evolutionary tracks and isochrones for low- and intermediate-mass stars of [31]; the error bars in the figure represent the effect of the parallax and radii uncertainty.

Depending on the estimated parameters of the system’s components and their positions on the evolutionary tracks with age around 0.79 Gyr (Fig. 4), fragmentation is the most likely process for the formation of such system. Bonnell [36] concluded that fragmentation of rotating disk around an incipient central protostar is possible, as long as there is continuing infall, and Zinnecker and Mathieu [37] pointed out that hierarchical fragmentation during rotational collapse has been invoked to produce binaries and multiple systems.

5. CONCLUSIONS

Al-Wardat’s complex method along with Do- cobo’s analytical method for orbit calculation were
used to analyze the speckle interferometric close visual binary star FIN 350 (WDS 13175-0041, HIP 64838, HD 115488). The physical and geometrical parameters of the system’s components were estimated depending on the orbital solution of the system and the best fit between the entire observational SED and the synthetic ones built using model atmospheres.

The dynamical parallax ($\pi = 12.39 \pm 0.31$ mas, which lies between the old and new HIPPARCOS measurements) gives the best coincidence between Al-Wardat’s complex analysis and Docobo’s analytical solution for this system, and it was adopted as the parallax of the system.

New orbits (short and long-period) of the system were calculated. The 9.130 yr short-period improves the earlier orbits while the 18.442 yr long-period solution was calculated for the first time. Nevertheless,
in this work it was demonstrated that the short-period is the orbit that better fits the observations.

The synthetic magnitudes and colors of the entire system and individual components were computed in different photometric systems as given in Table 10. In addition to their importance as parameters, these synthetic magnitudes and colors show the accuracy of the method.

The spectral types and luminosity classes of the components of the system were concluded as A7V for the component A and F0V for the component B, which assured the Main Sequence phase of both components.

ACKNOWLEDGMENTS

The authors thank Elliott Horch for providing two unpublished speckle measurements used to confirm the orbit calculated. They also thank Suhail Masdah from Astrophysikalisches Institut und Universität-Sternwarte Jena, Germany for his help in some calculations, the anonymous referee(s) for the valuable comments and Ms. Asmaa Ramadan for her help in the language editing. Also, this research was financed by the AYA2011–26429 project funded by the Spanish Ministerio de Economía y Competitividad. In this work, the authors made use of the Fourth Interferometric Catalogue, SIMBAD database and CHORIZOS code of photometric and spectrophotometric data analysis.

REFERENCES

1. I. I. Balega, Y. Y. Balega, K.-H. Hofmann, et al., Astron. and Astrophys. 385, 87 (2002).
2. N. I. Shatskii and A. A. Tokovinin, Astronomy Letters 24, 673 (1998).
3. J. A. Docobo, V. S. Tamazian, Y. Y. Balega, et al., Astron. and Astrophys. 366, 868 (2001).
4. M. Salaris and S. Cassisi, Evolution of Stars and Stellar Populations (Wiley, Chichester, 2005).
5. M. A. Al-Wardat, Bull. Spec. Astrophys. Obs. 53, 51 (2002).
6. M. A. Al-Wardat, Astronomische Nachrichten 328, 63 (2007).
7. M. A. Al-Wardat, Astronomische Nachrichten 330, 385 (2009).
8. M. A. Al-Wardat, Publ. Astron. Soc. Australia 29, 523 (2012).
9. M. A. Al-Wardat and H. Widyan, Astrophysical Bulletin 64, 365 (2009).
10. M. A. Al-Wardat, H. S. Widyan, and A. Al-thyabat, Publ. Astron. Soc. Australia 31, e005 (2014).
11. M. A. Al-Wardat, Y. Y. Balega, V. V. Leushin, et al., Astrophysical Bulletin 69, 58 (2014).
12. M. A. Al-Wardat, Astrophysical Bulletin 69, 454 (2014).
13. H. M. Jeffers, W. H. van den Bos, and F. M. Greeby, Index Catalogue of Visual Double Stars, 1961.0, Vol. 21 (Lick Observatory, Mount Hamilton, 1963).
14. D. F. Gray, The Observation and Analysis of Stellar Photospheres, 3rd ed. (Cambridge Univ. Press, Cambridge, 2005).
15. M. A. C. Perryman, L. Lindegren, J. Kovalevsky and et al., Astron. and Astrophys. 323, L49 (1997).
16. E. Høeg, C. Fabricius, V. V. Makarov, et al., Astron. and Astrophys. 355, L27 (2000).
17. F. van Leeuwen, Astron. and Astrophys. 474, 653 (2007).
18. S. Malaroda, Astron. J. 80, 637 (1975).
19. A. P. Cowley, Publ. Astron. Soc. Pacific 88, 95 (1976).
20. P. Baize, Astron. and Astrophys. Suppl. 74, 507 (1988).
21. W. I. Hartkopf, B. D. Mason, and H. A. McAlister, Astron. J. 111, 370 (1996).
22. E. P. Horch, W. F. van Altena, S. B. Howell, et al., Astron. J. 141, 180 (2011).
23. J. A. Docobo, Celestial Mechanics 36, 143 (1985).
24. J. A. Docobo, in Proc. Workshop on Orbital Couples: Pas de Deux in the Solar System and the Milky Way, Obs. Paris, 2011, Ed. by F. Arenou and D. Hestroffer (2012), pp. 119–123.
25. W. I. Hartkopf, H. A. McAlister, and B. D. Mason, Astron. J. 122, 3480 (2001).
26. J. Docobo and M. Andrade, Monthly Notices Royal Astron. Soc. 428, 321 (2013).
27. K. R. Lang, Astrophysical Data I. Planets and Stars. (Springer-Verlag, Berlin, Heidelberg, New York, 1992).
28. R. Kurucz CD-ROM No. 19 (Smithsonian Astrophys. Obs., Cambridge, MA, 1994).
29. M. A. Al-Wardat, Bull. Spec. Astrophys. Obs. 53, 58 (2002).
30. I. J. Danziger and S. M. Faber, Astron. and Astrophys. 18, 428 (1972).
31. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi, Astron. and Astrophys. Suppl. 141, 371 (2000).
32. M. P. Fitzgerald, Astron. and Astrophys. 4, 234 (1970).
33. J. M. Apellaniz, Astron. J. 131, 1184 (2006).
34. J. Maiz-Apellániz, ASP Conf. Ser. 364, 227 (2007).
35. C. Martin and F. Mignard, Astron. and Astrophys. 330, 585 (1998).
36. I. A. Bonnell, Monthly Notices Royal Astron. Soc. 269, 837 (1994).
37. H. Zinnecker and R. Mathieu, IAU Symp., 200 (2001).