A study of quasar proximity in OVI absorbers at z = 2-3
Andrew J. Fox, Jacqueline Bergeron, Patrick Petitjean

To cite this version:
Andrew J. Fox, Jacqueline Bergeron, Patrick Petitjean. A study of quasar proximity in OVI absorbers at z = 2-3. Monthly Notices of the Royal Astronomical Society, 2008, 388, pp.1557-1581. 10.1111/j.1365-2966.2008.13529.x . hal-03646411

HAL Id: hal-03646411
https://hal.science/hal-03646411
Submitted on 3 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A study of quasar proximity in O VI absorbers at $z = 2–3^*$

Andrew J. Fox,1,2† Jacqueline Bergeron2 and Patrick Petitjean2,3

1European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago 19, Chile
2Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Boulevard Arago, 75014 Paris, France
3LERMA, Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France

Accepted 2008 June 2. Received 2008 May 30; in original form 2008 April 18

ABSTRACT

With the goal of investigating the nature of O VI absorbers at high redshifts, we study the effects of proximity to the background quasar. In a sample of 16 quasars at z_{QSO} between 2.14 and 2.87 observed at high signal-to-noise ratio and 6.6 km s$^{-1}$ resolution with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (VLT/UVES), we detect 35 O VI absorption-line systems (comprising over 100 individual O VI components) lying within 8000 km s$^{-1}$ of z_{QSO}. We present component fits to the O VI absorption and the accompanying H I, C IV and N V. The systems can be categorized into nine strong and 26 weak O VI absorbers. The strong (intrinsic) absorbers are defined by the presence of either broad, fully saturated O VI absorption or partial coverage of the continuum source, and in practice all have log N(O VI) \gtrsim 15.0; these systems are interpreted as representing either quasar-driven outflows or gas close to the central engine of the active galactic nuclei. The weak (also known as narrow) systems show no partial coverage or saturation, and are characterized by log N(O VI) < 14.5 and a median total velocity width of only 42 km s$^{-1}$. The incidence dN/dz of weak O VI systems within 2000 km s$^{-1}$ of the quasar down to a limiting equivalent width of 8 mÅ is 42 ± 12. Between 2000 and 8000 km s$^{-1}$, dN/dz falls to 14 \pm 4, equal to the incidence of intervening O VI absorbers measured in the same spectra. Whereas the accompanying H I and C IV column densities are significantly lower (by a mean of ~ 1 dex) in the weak O VI absorbers within 2000 km s$^{-1}$ of z_{QSO} than in those at larger velocities, the O VI column densities display no dependence on proximity. Furthermore, significant offsets between the H I and O VI centroids in ~ 50 per cent of the weak absorbers imply that (at least in these cases) the H I and O VI lines are not formed in the same phase of gas, preventing us from making reliable metallicity determinations and ruling out single-phase photoionization model solutions. In summary, we find no firm evidence that quasar radiation influences the weak O VI absorbers, suggesting they are collisionally ionized rather than photoionized, possibly in the multiphase haloes of foreground galaxies. Non-equilibrium collisional ionization models are needed to explain the low temperatures in the absorbing gas, which are implied by narrow-line widths ($b < 14$ km s$^{-1}$) in over half of the observed O VI components.

Key words: intergalactic medium – quasars: absorption lines – cosmology: observations.

1 INTRODUCTION

Quasars are ideal backlights for absorption-line spectroscopy, thanks to their high luminosities and flat continua. Yet in addition to allowing us to detect foreground absorbers, quasars also create and influence them, through the effects of outflows and ionizing radiation. The enhanced level of ionizing radiation in the vicinity of quasars gives rise to the line-of-sight proximity effect, the observed decrease in the number density of Ly α forest lines (equivalent to a decrease in the mean optical depth, and an increase in the level of hydrogen ionization) at velocities approaching the quasar (Carswell et al. 1982; Murdoch et al. 1986; Tyler 1987; Bajtlik, Duncan & Ostriker 1988; Lu, Wolfe & Turnshek 1991; Bechtold 1994; Rauch 1998; Scott et al. 2000; Guimarães et al. 2007; Faucher-Giguère et al. 2008).

To obtain an unbiased view of absorbing structures in the high-z Universe, one needs to remove the effects of proximity from samples of metal-line systems. The broad absorption-line (BAL)
systems, easy to identify in quasi-stellar object (QSO) spectra because of their optically thick absorption extending over thousands of km s\(^{-1}\), are clearly connected to the quasar. BALs trace high-velocity QSO outflows at the speed of up to 0.1c (e.g. Turnshek 1984, 1988), and are seen in 10–15 per cent of quasar spectra at \(z > 1.5\) (Weymann et al. 1991; Trump et al. 2006). A separate category of mini-BAL systems, with fully saturated absorption profiles and total velocity width <2000 km s\(^{-1}\), has also been identified (Turnshek 1988; Churchill et al. 1999; Yuan et al. 2002; Misawa et al. 2007b). As with BALs, mini-BALs are interpreted as tracing outflows ejected by QSOs. A more difficult task is to decide whether narrow absorbers in quasar spectra are either created or ionized by the QSO. The traditional way to do this employs the displacement velocity from the quasar, \(\delta v = v_{\text{QSO}} - v_{\text{abs}}\). So-called ‘associated’ or ‘\(z_{\text{abs}} \approx z_{\text{QSO}}\)’ or ‘proximate’ absorbers, typically defined as narrow absorbers at \(\delta v < 5000\) km s\(^{-1}\) (Weymann et al. 1979; Foltz et al. 1986; Anderson et al. 1987; Hamann & Ferland 1999) are often removed from intervening samples because of the possibility they may be intrinsic.

Arguments in favour of an intrinsic nature for many proximate absorbers include time-variability of absorption, partial coverage of the continuum source, detection of excited ionic states implying high gas densities, profiles that are smoother than intervening absorbers and supersolar metallicities (Wampler, Bergeron & Petitjean 1993; Möller, Jakobsen & Perryman 1994; Petitjean, Rauch & Carswell 1994; Savaglio, D’Odorico & Möller 1994; Tripp, Lu & Savage 1996; Barlow & Sargent 1997; Hamann 1997; Hamann et al. 1997a,c; Ganguly et al. 1999; Petitjean & Srianand 1999; Srianand & Petitjean 2000; Hamann, Netzer & Shields 2000; Ganguly et al. 2001; Hamann et al. 2001; Narayanan et al. 2004; Ganguly et al. 2006).

Using a velocity cut-off to differentiate intervening and intrinsic absorbers has two main problems: quasar-ejected intrinsic systems can appear at higher \(\delta v\) (Hamann, Barlow & Junkkarinen 1997b; Richards et al. 1999; Richards 2001; Misawa et al. 2007a; Nestor, Hamann & Rodríguez 2008) and intervening systems can appear at lower \(\delta v\) (Möller, Warren & Flynn 1998; Sembach et al. 2004). So are many genuine intervening systems lost when they are excluded from absorber samples just because of their proximity to the quasar? In this paper, we investigate the transition between proximate and intervening absorbers. We focus on O\(\text{VI}\) absorbers, which trace either warm-hot (\(T \gtrsim 10^7\) K) collisionally ionized plasma, or photoionized gas subject to a hard ionizing spectrum extending to energies above 113.9 eV (the ionization potential to create O\(^{17}\)). O\(\text{VI}\) absorbers are of interest for many reasons, including the significant role they play in the baryon and metal budgets, the window they provide on intergalactic metal enrichment and their ability to trace energetic galaxy/Intergalactic Medium (IGM) interactions such as accretion and galactic winds. After the first detection of O\(\text{VI}\) absorbers at \(z = 2–3\) by Lu & Savage (1993), much work has been done in the era of 10-m class telescopes to characterize their properties (Schaye et al. 2000; Bergeron et al. 2002; Carswell, Schaye & Kim 2002; Simcoe, Sargent & Rauch 2002, 2004; Bergeron & Herbert-Fort 2005, hereafter BH05; Simcoe et al. 2006; Lopez et al. 2007; Aguirre et al. 2008; Gonçalves, Steidel & Pettini 2008).

Here, we ask a simple question: is there a proximity effect in O\(\text{VI}\)? In other words, can we see the signature of quasar photoionization, in terms of correlations between the ionization properties of absorbers and their proximity to the quasar? To address this isue, we form a sample of proximate O\(\text{VI}\) absorption systems at \(z = 2–3\) using a homogeneous set of high-resolution Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (VLT/UVES) quasar spectra, and we then compare their properties to a sample of intervening (i.e. non-proximate) O\(\text{VI}\) absorbers observed in the same set of spectra; the intervening sample has been published by BH05, but it has since been enlarged from 10 to 12 sight lines. We also briefly compare our results on O\(\text{VI}\) absorbers at \(z = 2–3\) to those obtained in the low-redshift Universe with space-based ultraviolet spectrographs. This paper is thus a study of both the proximity effect and the nature of O\(\text{VI}\) absorbers in general, and is structured as follows. In Section 2, we describe the data acquisition and reduction, and our absorber identification and measurement processes. In Section 3, we discuss the observational properties of proximate O\(\text{VI}\) absorbers. In Section 4, we discuss the implications of our results, and we then present a summary in Section 5. Throughout this paper, we adopt a Wilkinson Microwave Anisotropy Probe (WMAP) 3-yr cosmology with \(\Omega_m = 0.27, \Omega_{\Lambda} = 0.73\) and \(h_{70} = 1\) (Spergel et al. 2007).

2 DATA ACQUISITION AND HANDLING

2.1 Observations

The ESO–VLT Large Programme The Cosmic Evolution of the IGM has built a homogeneous sample of high resolution, high signal-to-noise ratio quasar spectra for use in studying the high-redshift IGM. Twenty bright quasars (most with \(V < 17\)) in the redshift range 2.1–3.8 (median \(z_{\text{QSO}} = 2.44\)) were selected for observation, deliberately avoiding sight lines that contain high column density damped Ly\(\alpha\) absorbers. The observations were carried out with the UVES spectrograph (Dekker et al. 2000) on VLT UT2 at Paranal, Chile, using a total of 30 nights of service-mode telescope time between 2001 June and 2002 September. The observations were taken in good seeing conditions (<0.8 arcsec) and at airmass <1.4, with both blue and red dichroics (Dic1 346 + 580, Dic1 390 + 564 and Dic2 437 + 860 settings), giving complete spectra from 3000 to 9000 Å. The data reduction was conducted using the midas pipeline described in Ballester et al. (2000), and then continua were fitted using a third-degree spline function interpolated between regions free from absorption. The full details of the reduction process are given in Chand et al. (2004) and Aracil et al. (2004). The 2 × 2 binning mode was used, giving a rebinned pixel size of 2.0–2.4 km s\(^{-1}\). The spectral resolution of the data, \(R \approx 45,000\), corresponds to a velocity resolution of \(\approx 6.6\) km s\(^{-1}\) [full width at half-maximum (FWHM)]. Typical signal-to-noise ratios per pixel in the spectra are \(\approx 35\) at 3500 Å and \(\approx 60\) at 6000 Å. Among the 20 quasars, 16 are at \(z < 3\). These form the basic sample for this paper. The four cases at \(z > 3\) were excluded because the density of the Ly\(\alpha\) forest at these redshifts renders futile searches for O\(\text{VI}\).

The emission-line redshifts of 10 of the 16 quasars in our sample have been carefully determined by Rollinde et al. (2005, and references therein), and we adopt their values. For the remaining six quasars, we take \(z_{\text{QSO}}\) from Scannapieco et al. (2006). Each of these quasar redshifts is based on a combination of the observed H\(\alpha\), Mg\(\text{II}\), C\(\text{IV}\) and Si\(\text{IV}\) emission-line redshifts, allowing for systematic shifts in the displacement velocities of the various lines (e.g. Tyler & Fan 1992). The uncertainty on each \(z_{\text{QSO}}\) is of the order of 500 km s\(^{-1}\) (Rollinde et al. 2005).
2.2 Identification of O\textsc{vi} systems

We searched systematically through the 16 quasar spectra in our sample for O\textsc{vi} absorbers within 8000 km s\(^{-1}\) of the quasar redshift. This velocity range corresponds to redshifts between \(z_{\text{min}} = z_{\text{QSO}} - [(1 + z_{\text{QSO}}) 8000 \text{ km s}^{-1}/c]\) and \(z_{\text{QSO}}\). Our choice of velocities up to 8000 km s\(^{-1}\) from the quasar was made in order to investigate whether a transition occurs at 5000 km s\(^{-1}\), the conventional cut-off between proximate and intervening systems. In practice, we also searched for (and found) O\textsc{vi} absorbers at up to 2500 km s\(^{-1}\) beyond the quasar redshift, indicating the presence of high velocity inflows towards the quasar.

32 O\textsc{vi} absorbers were identified by their presence in both lines of the O\textsc{vi} \(\lambda\lambda 1031.926, 1037.617\) doublet in the correct ratio through the line profile, i.e. \(\tau(v, \lambda 1031)/\tau(v, \lambda 1037) = 2\), where the apparent optical depth \(\tau(v) = \ln [F_{\text{abs}}(v)/F(v)]\), and where \(F(v)\) and \(F_{\text{abs}}(v)\) are the observed flux level and estimated continuum flux level, respectively, as a function of velocity. In addition, three O\textsc{vi} absorbers were identified in one line of the O\textsc{vi} doublet only, with partial blending in the other O\textsc{vi} line, but with corresponding absorption seen in C\textsc{iv} and H\textsc{i} at exactly the same redshift. Together the sample consists of the 35 O\textsc{vi} systems listed in Table 1. We define the system redshift \(z_{\text{abs}}\) by the position of the strongest O\textsc{vi} component in the system, i.e. the wavelength of maximum optical depth. In each system, we looked for accompanying absorption in H\textsc{i} (Ly\textalpha\, Ly\beta, and Ly\gamma), C\textsc{iv} \(\lambda 1548, 1550\) and N\textsc{v} \(\lambda\lambda 1238, 1242\) at the same redshift \(z_{\text{abs}}\).

We denote the velocity displacement of each absorber from the quasar as \(\delta v\equiv c(z_{\text{QSO}} - z_{\text{abs}})/(1 + z_{\text{abs}})\). A negative value corresponds to an absorber moving towards the quasar. The O\textsc{vi}

QSO	\(z_{\text{QSO}}\)	\(z_{\text{abs}}\)	\(\delta v\)	\(\delta v \log N(\text{O}\textsc{vi})\)	\(\log N(\text{O} \textsc{vi})\)	\(\log N(\text{N} \textsc{v})\)	\(\log N(\text{C} \textsc{iv})\)	\(\log N(\text{H} \textsc{i})\)
Strong								
HE 0151–4326	2.789	2.6998	7230	.	14.97 ± 0.04 ‡	14.13 ± 0.01 ‡	13.33 ± 0.10 ‡	12.49 ± 0.25
HE 0151–4326	2.789	2.7134	6100	.	14.81 ± 0.01 ‡	13.95 ± 0.05 ‡	13.39 ± 0.04 ‡	14.58 ± 0.08
HE 1158–1843	2.449	2.4426	560	.	>16.14	14.76 ± 0.50 ‡	14.44 ± 0.01 ‡	14.33 ± 0.20
HE 1341–1020	2.135	2.1169	1740	.	>16.09	14.78 ± 0.16 ‡	14.26 ± 0.03 ‡	14.68 ± 0.03
HE 1341–1020	2.135	2.1473	-1170	.	>15.48	>14.80	>14.81	16.47 ± 0.34
HE 2347–4342	2.871	2.8916	-1590	.	>15.44	14.20 ± 0.01 ‡	13.94 ± 0.01	13.91 ± 0.08
HE 2347–4342	2.871	2.8972	-2020	.	>15.31	>14.66	>14.72	14.45 ± 0.07
HE 2347–4342	2.871	2.9041	-2540	.	>15.86	13.72 ± 0.01	>14.69	16.29 ± 0.05
PKS 0329–255	2.736	2.7089	2190	.	>15.08	13.28 ± 0.01	13.60 ± 0.01	14.89 ± 0.14

Note: Velocities are given in km s\(^{-1}\), and logarithms are given in units of \(10^{12}\) atom cm\(^{-2}\). Absorbers are identified by their presence in both lines of the O\textsc{vi} \(\lambda\lambda 1031.926, 1037.617\) doublet in the correct ratio through the line profile, i.e. \(\tau(\lambda 1031)/\tau(\lambda 1037) = 2\).

Table 1. Proximate O\textsc{vi} absorbers in the UVES large programme.

\(\delta v\) velocity separation between absorber and quasar, in km s\(^{-1}\). A negative value indicates the absorber is at higher redshift than the quasar. Errors are
\(\sim 500\) km s\(^{-1}\), reflecting the uncertainties in \(z_{\text{QSO}}\).

\(\delta v \log N(\text{O}\textsc{vi})\) velocity separation between absorber and quasar, in km s\(^{-1}\). A negative value indicates the absorber is at higher redshift than the quasar. Errors are

\(\delta v \log N(\text{O}\textsc{vi})\) velocity separation between absorber and quasar, in km s\(^{-1}\). A negative value indicates the absorber is at higher redshift than the quasar. Errors are

The column densities in this table (with N in cm\(^{-2}\)) were determined by summing the column densities of the individual components in our Voigt profile fits, with the component errors added in quadrature. For saturated absorbers, we present lower limits on the column density. The symbol ‡ denotes absorbers with evidence for partial coverage of the continuum source; these column densities should be considered lower limits. For non-detections of C\textsc{iv} or N\textsc{v}, we present a 3\(\sigma\) upper limit to \(\log N\), based on the null measurement of the equivalent width. Absorbers marked † are not formally detected at 3\(\sigma\) significance, but a fit was executed none the less because of weak features in the line profiles at exactly the same redshift as O\textsc{vi} (see Fig. 1.)
systems almost always contain multiple components clustered together. We thus define δv both for each absorber and for each individual O VI component. The uncertainties on all velocity displacements are dominated by the $\approx 500 \text{ km s}^{-1}$ uncertainty of the quasar emission redshifts.

2.3 Classification of O VI systems

After identifying 35 proximate O VI systems, we found that they could be classified into the following.

(i) Seven strong O VI systems, which are defined by showing both fully saturated O VI lines extending over tens to hundreds of km s$^{-1}$, and strong (often saturated) N v and C IV absorptions. In practice, we find that these seven systems all show $\log N(\text{O VI}) > 15.0$ and are at $\delta v < 3000 \text{ km s}^{-1}$, with four of the seven at $\delta v < 0$ ($z_{\text{abs}} > z_{\text{QSO}}$), i.e. the strong systems are strongly clustered around z_{QSO}. The strong systems are interpreted as being intrinsic to the quasar. Three of the strong systems are classified as mini-BALs, but no full (classical) BAL systems are present in our sample. Partial coverage of the continuum source is present in many of the strong systems, as evidenced by the failure to find a successful Voigt profile fit to the O VI profiles, even though the velocity structure is common among the two members of the doublet. This confirms an intrinsic origin because partial coverage of the continuum source only occurs when the absorbing gas is physically close to the active galactic nuclei (AGN). The strong systems contain multiple components, with a mean of 5.9 components per system.

(ii) 26 weak O VI systems, also known as narrow systems, which are unsaturated and show no evidence for partial coverage, i.e. we were able to conduct successful Voigt profile fits to the two lines of the O VI doublet. The weak systems all have $12.80 < \log N(\text{O VI}) < 14.50$, clearly separated from the strong systems, but coincident with the range of O VI column densities observed in intervening systems (BH05). Their total line widths are narrow, with a median and standard deviation of $\delta v_{\text{QSO}} = 42 \pm 33 \text{ km s}^{-1}$, where δv_{QSO} is the line width encompassing the central 90 per cent of the integrated optical depth. The weak O VI systems are accompanied by C IV absorption in 24/26 cases and in 9/26 cases by N v. An average of 1.9 components per system is required to fit these weak absorbers.

There were two intermediate cases that presented difficulties in their classification: the systems at $z = 2.6998$ and 2.7134 towards HE 0151+4326. Neither of these systems shows a saturated O VI profile, and their O VI column densities lie in-between the values shown by the strong (> 15.0) and weak (< 14.5) populations. However, differences between the profiles of the two doublet lines of O VI, and between the two lines of N v, in similar velocity ranges are strongly suggestive of partial coverage. This implies they should be classified as intrinsic. For this reason, we place these systems in the strong category, and our final sample consists of nine strong systems and 26 weak systems.

In addition to the different O VI and N v and C IV column densities, there are several lines of evidence that support the notion that the strong and weak samples trace physically different populations. The strong population have velocities (relative to z_{QSO}) that distribute differently, with 4/9 at $z_{\text{abs}} > z_{\text{QSO}}$, whereas 22/26 weak absorbers are at $z_{\text{abs}} < z_{\text{QSO}}$. The strong population shows markedly different H I/O VI ratios than the weak population (see Section 3.5). Finally, absorbers in the strong population frequently show evidence for partial coverage of the continuum source. Whereas the strong absorbers are clearly associated with the quasar (e.g. Turnshek 1984; Weymann et al. 1991; Hamann & Ferland 1999), either tracing QSO outflows or inflows near the central engine of the AGN, the origin of the weak O VI absorbers is less clear. They are often called ‘associated’ because of their proximity in velocity to the quasar, but there is not necessarily any physical connection. In the rest of this paper, we investigate the properties of this weak, proximate sample.

2.4 Component fitting

We used the VPFIT software package3 to determine the column densities, line widths and central velocities of the O VI components in each system. The number of components to be fit was usually self-evident from inspection of the line profiles, but in case of doubt we used the minimum number of components necessary. Our sample of 35 O VI systems comprises 101 components. We also fit, when possible, the H I, N v, C III and C IV absorption, independently of the O VI fits, i.e. we did not fix any component velocity centroids or line widths when fitting the various ions. In the case of the H I lines, we simultaneously fit Lyα with whichever of Lyβ, Lyγ and Lyδ were unblended. The total column densities in each ion in each system were obtained by summing the component column densities, with the individual column density errors added in quadrature to produce the overall error estimate. All the Voigt profile fits are included in Fig. 1 (please see the end of the paper for Fig. 1), which shows the absorption-line spectra for each system in our sample. The total column density of each high ion and H I in each system is given in Table 1. The detailed results of the component fits to O VI, N v, C IV and H I in the weak sample are given in Table 2. All velocities in Table 2 are given on a scale relative to the system redshift z_{abs}.

In addition to the component fits, we measured the total column densities in each system using the apparent optical depth (AOD) method of Savage & Sembach (1991). This method has the advantage of requiring no assumptions about the component structure: it simply requires a choice of minimum and maximum velocities for the integration. It will return accurate column densities so long as saturated structure is not present. Whereas saturation is obvious if resolved, because the flux goes to zero, unresolved saturation can be difficult to detect. In the case of a non-detection of C IV or N v, we measured the (null) equivalent width in this ion over the velocity range in which O VI is detected, and found the 3σ error on this measurement. We then converted this maximum allowed equivalent width into a column density limit using a linear curve-of-growth. For example, if the equivalent width measurement was 0 ± 10 mÅ, we derived a 3σ column density limit N_{lim} using $EW_{\text{lim}} = 30 \text{ mÅ}$ and the relation $N_{\text{lim}} = 1.13 \times 10^{17} \text{ cm}^{-2}$ (with N_{lim} in cm$^{-2}$ and λ in Å). The atomic data were taken from Morton (2003).

In many of the strong absorbers, partial coverage of the continuum source is present. Indeed, we use this as a criterion to classify an absorber as intrinsic. Partial coverage is indicated by a similar velocity structure in the two members of a doublet, but with inconsistent optical depths in each ion. In the case of partial coverage, the equation $F(v) = F_{0}e^{-\tau(v)}$ is no longer valid.

2 The mini-BALs are the absorbers at $z_{\text{abs}} = 2.4426$ towards HE 1158−1843, 2.1169 towards HE 1341−1020 and $z_{\text{abs}} = 2.9041$ towards HE 2347−4342.

3 Available at http://www.ast.cam.ac.uk/~rfs/vpfit.html.
Table 2. Component fit results to weak O VI absorbers.

QSO	zabs	Ion	v0 (km s\(^{-1}\))	b (km s\(^{-1}\))	log (N in cm\(^{-2}\))
HE 0001–2340	2.2571	O VI	-81.0 ± 1.1	16.7 ± 1.2	13.45 ± 0.02
...
HE 1122–1649	2.3518	O VI	-7.5 ± 1.1	26.1 ± 1.2	13.85 ± 0.01
...
HE 1158–1834	2.4279	O VI	-52.6 ± 23.9	33.7 ± 14	13.47 ± 0.40
...
HE 1341–1020	2.0850	O VI	0.5 ± 1.0	10.8 ± 1.0	13.57 ± 0.01
...
HE 1347–2457	2.5727	O VI	1.0 ± 1.2	7.8 ± 1.4	13.19 ± 0.04
...
HE 2347–4342	2.8625	O VI	3.6 ± 1.2	16.8 ± 1.3	13.58 ± 0.02
...

Table 2 – continued

QSO	zabs	Ion	v0 (km s\(^{-1}\))	b (km s\(^{-1}\))	log (N in cm\(^{-2}\))
PKS 0237–23	2.2028	O VI	4.3 ± 1.1	26.5 ± 1.4	13.80 ± 0.02
...
PKS 0329–255	2.6494	O VI	0.0 ± 1.1	8.6 ± 1.2	13.14 ± 0.02
...
PKS 1448–232	2.1660	O VI	-75.8 ± 1.3	10.9 ± 2.3	13.15 ± 0.05
...
Q 0122	380	O VI	-3.1 ± 1.1	7.1 ± 1.3	13.81 ± 0.04
...
Q 0222–380	2.1587	O VI	16.1 ± 1.6	9.4 ± 2.5	13.18 ± 0.08
...

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 388, 1557–1581
3 RESULTS

In this section, we present a discussion of the overall properties of the population of proximate O\textsc{vi} absorbers at $z = 2$–3. Although we discuss ionization processes, a detailed discussion of the physical conditions in the individual systems that make up our sample is beyond the scope of this paper. Some of the systems in our sample are discussed in more detail elsewhere. These include the proximate absorbers towards HE 2347–4342 (Fechner et al. 2004), and towards HE 1158–1843, PKS 0329–255 and Q 0453–423 (D’Odorico et al. 2004).

3.1 Location of absorbers in velocity space

The number of proximate O\textsc{vi} absorption-line systems seen in each quasar spectrum varies between zero and five. There are two quasar spectra in our sample without O\textsc{vi} absorption detected within 8000 km s^{-1} of QSO: HE 2217–2818 ($z_{\text{QSO}} = 2.41$) and Q0002–422 ($z_{\text{QSO}} = 2.77$). There are two quasars with five proximate O\textsc{vi} absorbers in their spectra: PKS 0237–23 ($z_{\text{QSO}} = 2.233$) and HE 1341–1020 ($z_{\text{QSO}} = 2.135$). To illustrate the location in velocity space of the absorbers, we show in Fig. 2 the velocity displacement of all absorbers, strong and weak, for each quasar. Over the whole sample (16 spectra), we find a mean of 0.6 strong proximate O\textsc{vi} systems per sight line, and 1.6 weak proximate O\textsc{vi} absorbers per sight line. However, the O\textsc{vi} sample is incomplete because of regions where O\textsc{vi} systems are missed due to blending by the Lyα forest. As we show in Section 3.7, when we calculate the corrected redshift path for the O\textsc{vi} search, our estimated O\textsc{vi} completeness is 84 per cent down to a limiting equivalent width of 8 mÅ.

As a useful gauge of the velocity interval in which we expect to see proximity effects, we can derive the distance from each quasar at which the flux of extragalactic background (EGB) radiation equals the flux of quasar radiation, i.e. we can derive an estimate of the size of the quasar sphere-of-influence. The monochromatic quasar ionizing luminosities at the Lyman limit have been derived for 10 of the 16 quasars by Rollinde et al. (2005), who calculated $L_{H\beta}$ by extrapolating the QSO B-magnitudes assuming a spectral slope of $\alpha = -0.5$ (where $F_{\nu} \sim \nu^{\alpha}$). The EGB flux at the Lyman limit has been calculated to be $F_{\text{EGB}} \approx 6 \times 10^{-21}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ (Haardt & Madau 1996, corresponding to $J_{\nu} = 10^{-21.3}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ sr$^{-1}$; the values for $z = 2$ and 3 cases are not significantly different). The distance D at which $F_{\text{QSO}} = F_{\text{EGB}}$ is given by $D = \sqrt{L_{H\beta}/4\pi F_{\text{EGB}}}$. In the case where the velocities are Hubble flow-dominated, we can convert our calculated values of D to velocity displacement from the quasar, using a value for the Hubble parameter calculated at the redshift of each quasar using $H(z) = H_0 \Omega_m (1 + z)^3 + \Omega_\Lambda$. With our adopted cosmology, $H(2.5) = 246$ km s$^{-1}$ Mpc$^{-1}$. These results are shown in Table 3, and are included in Fig. 2, where it can be seen that if the velocity displacements from the QSO are due to the Hubble flow, then the proximity effect should only extend to ~ 1000–2500 km s$^{-1}$. While peculiar velocities are to be expected, this is still a useful order of magnitude estimate for the size of the quasars’ ionizing sphere-of-influence.

3.2 Presence of other ions

The presence and strength of absorption in other ionic species in the proximate O\textsc{vi} absorbers provides important information on the ionization conditions. HI absorption is detected in each of the 35 O\textsc{vi} systems, always in Lyα and occasionally up to Lyδ. Higher
VI below 2000 km s$^{-1}$, as well as this $\delta v < \lambda$ (Rollinde et al. 2005).

...profile and low signal-to-noise ratio aggravate components from the intervening sample of BH05. As 8000 km s$^{-1}$ = 388, = = system is strong. Distributions for the samples at column, as shown in the lower panel of Fig. 3. We do note that VI Hz 2000 km s$^{-1}$ VI = VIm... absorbers at N = N ∼ F is a feature of at VI − since this corresponds to the thermal 1557–1581 III VI VI VI < δv = z absorbers in the Lyman forest, as shown in 13/26 weak systems, and 7/9 systems with low O N b > F absorbers with H in gas in collisional ionization equilibrium (CIE) below this temperature (Sutherland & Dopita 1993; Gnat & Sternberg 2007).

3.3 O VI system column densities

A plot of the total O VI column densities in each absorber versus proximity (Fig. 3, top panel) shows the distinction between the strong and weak populations. The strong population all show log $N \gtrsim 15.0$ and are (with two exceptions) clustered around $z_{abs} = z_{QSO}$, whereas the weak population lies between the detection limit of log $N \approx 12.80$ (corresponding to a limiting equivalent width of 8 mA) and 14.5. Once the strong systems have been removed, the underlying weak population shows no dependence of N(O vi) with proximity to the quasar. To investigate this further, we split the sample into O VI absorbers at $\delta v < 2000$ km s$^{-1}$ and those at $2000 < \delta v < 8000$ km s$^{-1}$. This division is motivated by an observed enhancement in dN/dz below 2000 km s$^{-1}$ (Section 3.7), as well as this representing the expected size of the proximity zone (Section 3.1). A two-sided Kolmogorov–Smirnov (KS) test shows that the probability that the distribution of log N(O vi) for absorbers at <2000 km s$^{-1}$ is different from those at >2000 km s$^{-1}$ is only 17 per cent. There is also no clear correlation between the quasar redshift and the total O VI column, as shown in the lower panel of Fig. 3. We do note that the ratio of weak systems to strong systems changes from 6.3 (19/3) at $z < 2.5$ to 1.2 (7/6) at $z > 2.5$, but the statistics are too small for us to investigate this further.

3.4 O VI component column densities and b values

Proximity effects may occur at the component level, as well as the system level. To investigate this, we compare in Fig. 4 the component properties returned by VPFIT (column densities and line widths) of the weak O VI absorbers with δv. We include for comparison the O VI components from the intervening sample of BH05. As with the system column densities, there is no trend for the component O VI column densities to correlate with proximity to the quasar.

The distributions of log N and b for the O VI components in our sample are shown in Fig. 5. We include the following component distributions as separate curves: the components at $\delta v < 2000$ km s$^{-1}$, those at $2000 < \delta v < 8000$ km s$^{-1}$, and the intervening absorbers from BH05. A two-sided KS test finds the probability that the log N distributions for the samples at <2000 km s$^{-1}$ and 2000–8000 km s$^{-1}$ are different (i.e. drawn from distinct parent populations) is only 23 per cent. Comparing the $\delta v < 2000$ km s$^{-1}$ components to the intervening sample, we do not find any difference valid at more than the 1.0σ level, with the intervening sample showing a median log N(O vi) of 13.54, and the $\delta v < 2000$ km s$^{-1}$ sample showing a median of 13.45. This is an important result considering the intervening sample was measured independently in BH05, not in this analysis.

Turning to the component line widths, we find that among the proximate weak sample, 29 out of 48 components (60 per cent) are narrow ($b \leq 14$ km s$^{-1}$). Comparing the b-value distributions, we

Table 3. Size of quasar spheres-of-influence at 912 Å.

QSO	$\log L_{912}^{\alpha}$ (erg s$^{-1}$ Hz$^{-1}$)	D (Mpc)	δv (km s$^{-1}$)
HE 0001–2340	31.65	7.7	1700
HE 2217–2818	31.99	11.4	2600
PKS 0237–23	31.67	7.8	1700
PKS 0329–255	31.58	7.1	1800
PKS 1448–232	31.53	6.7	1400
Q 0002–422	31.72	8.3	2200
Q 0109–3518	31.82	9.3	2200
Q 0122–380	31.63	7.5	1600
Q 0329–385	31.28	5.0	1100
Q 0453–423	31.71	8.2	2100

aMonochromatic luminosity at Lyman limit, derived from the B magnitude and $F_b \sim \lambda^{-0.5}$ (Rollinde et al. 2005).

bDistance at which $F_{QSO} = F_{QSO} = 6 \times 10^{-21}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ at $z = 2.5$ (Haardt & Madau 1996).

cVelocity separation from QSO at D assuming Hubble flow, with $H(z)$ calculated at z_{QSO}, $H(z = 2.5) = 246$ km s$^{-1}$ Mpc$^{-1}$.

Figure 3. Scatter plots comparing the integrated column density (over all components) of the O VI absorbers with their proximity to the background quasar $\delta v \equiv v_{QSO} - v_{abs}$ and with their redshift z_{abs}. An error of 500 km s$^{-1}$ in z_{QSO} is assumed. The strong absorbers are shown in blue (lower limits), with weak absorbers in red. The distinction between the weak and strong populations is evident. The dashed line shows the detection limit. Among the weak absorbers, there is no correlation between N(O vi) and δv, or between N(O vi) and z.

4 We define 'narrow' as $b < 14$ km s$^{-1}$ since this corresponds to the thermal line width of an O VI line in gas at 188 000 K, and negligible O VI is produced in gas in collisional ionization equilibrium (CIE) below this temperature (Sutherland & Dopita 1993; Gnat & Sternberg 2007).
find that the probability that the population at δv < 2000 km s⁻¹ is different from the intervening distribution is less than 50 per cent. The median b-value in the intervening sample is 12.7 km s⁻¹; in the sample at δv < 2000 km s⁻¹, it is 12.3 km s⁻¹. However, an excess of systems with b = 20–30 km s⁻¹ is observed for components in the 2000–8000 km s⁻¹ range, as can be seen in the lower panel of Fig. 4.

Finally, we compare the line width distribution of the O VI components in the weak proximate sample with the C IV and N V line width distributions (in the same sample). The line widths of C IV and N V distribute differently than those of O VI, without the strong tail extending between 10 and 25 km s⁻¹ seen in the O VI distribution. 77 per cent of C IV components and 90 per cent of N V components show b < 14 km s⁻¹. These differences indicate that it cannot be assumed that the C IV, N V and O VI arise in the same volumes of gas.

In summary, among the weak O VI absorbers at z = 2–3, there is no compelling evidence for any difference in the column density and line width distributions between the intervening and proximate O VI populations, but within the proximate sample, the O VI line widths distribute differently than those of N V and C IV.

3.5 H I column density

The median and standard deviation of the logarithmic H I column density in the weak proximate O VI sample is log N(H I) = 14.66 ± 0.95, with a total range covered in log N(H I) of over four decades. The H I/O VI ratio (integrated over all components in each system) varies enormously, taking values between 0.02 and 1500. In Fig. 6 (top panel), we plot the H I/O VI column density ratio against the H I column density. Within both the strong and weak samples, a trend is evident in which H I/O VI rises with increasing N(H I). However, the two populations are clearly distinct, in that the weak systems show much higher H I/O VI ratios at a given N(H I). The clear segregation of the weak and strong systems on this plot supports our contention that they represent two separate populations.

In the lower panels of Fig. 6, we explore whether the H I column density in the weak proximate sample depends on δv. We find that N(H I) distributes very differently at δv < 2000 km s⁻¹ than at δv > 2000 km s⁻¹. The N(H I) distribution for the δv > 2000 km s⁻¹ subsample is strongly clustered around log N(H I) ≈ 15, whereas the distribution for the δv < 2000 km s⁻¹ subsample is centred near log N(H I) ≈ 14 (see the bottom panel). A KS test shows the two distributions differ at the 99.97 per cent level. Consequently, there
is also a difference in the mean \(\text{H} \)/\(\text{O} \) ratio above and below 2000 km s\(^{-1}\), but this is due to the proximity effect in \(\text{N}(\text{H}) \), not in \(\text{N}(\text{O} \text{VI}) \), which shows no correlation with proximity to the quasar. The finding that \(\text{N}(\text{H}) \) correlates with \(\delta v \) has an important implication: it implies that \(\delta v \) does correlate with physical distance to the quasar. If \(\delta v \) was dominated by peculiar motions rather than Hubble flow, and so was uncorrelated to physical proximity to the quasar, then the two \(\text{N}(\text{H}) \) distributions shown in the bottom panel of Fig. 6 would not be distinct. The fact that they are so different allows us to make the general assumption that proximity in velocity does imply proximity in distance.

3.6 C IV and N V column densities

The logarithmic C IV column densities in the proximate O VI sample cover over 2 dex, with a median value and standard deviation of log \(\text{N}(\text{C} \text{IV}) \) = 12.64 ± 0.60. N V is detected in nine weak absorbers, with log \(\text{N}(\text{N} \text{V}) \) between 11.54 and 13.60. Comparisons between the C IV column density and \(\delta v \), and between N V column density and \(\delta v \), as well as the dependence of the high-ion column density ratios with \(\delta v \), are presented in Fig. 7. In a similar fashion to H I, \(\text{N}(\text{C} \text{IV}) \) in the weak O VI absorbers depends strongly on \(\delta v \), with the absorbers at \(\delta v < 2000 \text{ km s}^{-1} \) showing column densities clustered around log \(\text{N}(\text{C} \text{IV}) \) ≈ 12.4, and those at \(\delta v > 2000 \text{ km s}^{-1} \) showing values centred at log \(\text{N}(\text{C} \text{IV}) \) ≈ 13.3. A two-sided KS test shows that the \(\text{N}(\text{C} \text{IV}) \) distributions in the two velocity intervals differ at a significance level of 93 per cent. This leads to a difference in the mean C IV/O VI ratio between the two velocity bins, with lower ratios at lower velocity. There is no indication that either \(\text{N}(\text{N} \text{V}) \) or \(\text{N}(\text{N} \text{V})/(\text{H} \text{I}) \) depends on \(\delta v \), though the smaller sample size of N V (because of the non-detections) prevents us from making statistically meaningful conclusions.

In order to study the high-ion velocity structure more closely, we present in Figs 8(a) and (b) apparent column density profiles as a function of velocity, for each weak proximate O VI absorber. The apparent column density per unit velocity in units of ions cm\(^{-2}\)/(km s\(^{-1}\)) \(^{-1}\) is given by \(N_a(v) = 3.768 \times 10^{14} T_{2000}(v)/\lambda \), where \(\lambda \) is the transition rest wavelength in Å, \(f \) is the oscillator strength (taken from Morton 2003) and \(T_{2000}(v) \) is defined in Section 2.2. These figures allow the O VI, C IV, and H I (in the nine cases where present) N V profiles to be closely compared. Note that for H I, we plot the apparent column density profile of our best-fitting model to the Lyman series absorption lines because several lines are used to derive our best-fitting model. For the high ions, the actual data from one of the two doublet lines are shown, rather than the model.

In 11/24 absorbers where both O VI and C IV are detected, the profiles are similar enough to suggest co-spatiality of the ions C\(^{+3}\) and O\(^{+5}\). In the remaining 13 cases, there are significant differences in the line profiles, indicating that O VI and C IV trace different gas phases. Here, a ‘significant difference’ is either a centroid offset of >10 km s\(^{-1}\), or a case where \(b(\text{C} \text{IV}) < b(\text{O} \text{VI}) \), for which there is no single-phase solution [since an oxygen atom is heavier than a carbon atom, \(b(\text{O} \text{VI}) \) must be less than \(b(\text{C} \text{IV}) \) for lines arising in the same gas]. In only one of the nine cases with N V, its profile is similar in centroid and width to the O VI. However, detailed comparisons of the N V and O VI profiles are complicated by the fact that low-optical depth N V absorption is lost in the noise, even in this high-quality data set, so we do not read into this result any further. Most significantly, offsets of the order of 10–30 km s\(^{-1}\) between the centroid of the H I absorption and the centroid of O VI absorption are seen in 14/26 weak proximate cases. These offsets are highly important, since they imply that the H\(^{2}\) atoms do not live in the same volume of gas as the O\(^{+5}\) ions at least half of the weak O VI absorbers. In other words, at least half of the weak O VI systems are multiphase. Consequently, it is not possible to derive a metallicity estimate in these multiphase cases from the O VI/H I ratio, even with an ionization correction, and single-phase photoionization models cannot be applied. The dangers of treating multiphase quasar absorbers as

\[\text{\textcopyright 2008 The Authors. Journal compilation \textcopyright 2008 RAS, MNRAS 388, 1557–1581} \]
single-phase have been pointed out before (Giroux, Sutherland & Shull 1994; Reimers et al. 2001).

3.7 Calculation of \(\frac{dN}{dz} \) for proximate \(\text{OVI} \)

In this section, we derive the incidence of proximate \(\text{OVI} \) absorption, in terms of the traditional \(\frac{dN}{dz} \), and also in terms of the number of absorbers detected per 2000 \(\text{km s}^{-1} \) interval in \(\delta v \). Note that because we are working at \(z \gg 0 \), relativistic effects cause the relationship between velocity and redshift intervals to be \(dv \approx c \, dz / (1 + z) \). Before calculating the incidence of proximate \(\text{OVI} \) absorption, we correct the redshift path for blending with the Ly\(\alpha \) forest, since \(\text{OVI} \) is only identifiable in unblended regions of the spectrum. To estimate the number of \(\text{OVI} \) absorbers that were missed due to Ly\(\alpha \) forest contamination, we looked for \(\text{CIV} \) absorbers within 8000 \(\text{km s}^{-1} \) of \(z_{\text{QSO}} \) in which the accompanying \(\text{OVI} \) is blended, and found five. These are listed in Table 4. This method should provide a good estimate for the \(\text{OVI} \) incompleteness, since first \(\text{OVI} \) is detected in all proximate \(\text{CIV} \) absorbers in which the \(\text{OVI} \) data are unblended, and secondly \(\text{CIV} \) is unblended by the Ly\(\alpha \) forest, so no \(\text{CIV} \) systems should be missed down to a limiting equivalent width of \(\approx 2 \text{ mÅ} \). The limiting equivalent width for the \(\text{CIV} \) search is smaller than the limiting equivalent width for the \(\text{OVI} \) search because \(\text{CIV} \) lies in a higher S/N region of the spectrum.

The total redshift path within 8000 \(\text{km s}^{-1} \) of 16 quasars (at \(z_{\text{QSO}} = 2.44 \)) is 1.48. Because there are five ‘missing’ \(\text{OVI} \) systems, we estimate our \(\text{OVI} \) completeness to be 35/(35 + 5) = 84 per cent, implying that a path equal to 0.25 is blended near \(\text{OVI} \), so that the corrected redshift interval for the proximate \(\text{OVI} \) search is 1.24. In this path, 26 weak systems (comprising 48 components) are
Figure 8. High ion and H I apparent column density profiles for each weak proximate O VI absorber. The C IV (blue), H I (black) and N V (green, where present) profiles have been scaled to allow their shape to be compared with O VI. For the high ions, the AOD profiles are formed from the data themselves. For H I, we show the AOD profile of the best-fitting model to the Lyman series absorption lines. The green vertical lines show the velocity range over which the AOD measurement is made. Annotated on the top right-hand side of each panel is the proximity to the quasar. In cases where the O VI and C IV profiles show similar line centres and line widths, we add a tick to the C IV label. In cases where the O VI and H I profiles show similar velocity centroids (but not necessarily the same width), we add a tick mark to the H I label. Cross marks next to the C IV and H I labels indicate significant differences between the profiles of these ions and O VI, e.g. centroid offsets of >10 km s\(^{-1}\), indicating that the lines do not form in the same phase of gas as the O VI.

detected. So dN/dz of the weak O VI systems at \(\delta v < 8000\) km s\(^{-1}\) is 21 \(\pm\) 5, where the errors on the counts are assumed to be Poissonian. However, this is an average value, and when we break down the absorbers into those at \(\delta v < 2000\) and 2000–8000 km s\(^{-1}\), we find a marked change in the incidence: dN/dz increases to \(42 \pm 12\). When counting components rather than systems, a similar increase in the incidence is observed within 2000 km s\(^{-1}\) of \(z_{\text{QSO}}\). These results are shown in Fig. 9, and are also summarized in Table 5. Note how the intervening incidence of BH05 is recovered in the range 2000–8000 km s\(^{-1}\).

3.8 Comparison of \(z \approx 2.5\) and 0 absorbers

A considerable amount of work has been invested in studying O VI in the low-redshift IGM using the Far-Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope (HST) orbiting observatories (Bergeron et al. 1994; Burles & Tytler 1996; Tripp, Lu & Savage 1996; Tripp, Savage & Jenkins 2000; Savage et al. 2002;...
Table 4. Proximate C IV with blended O VI.

QSO	z_{QSO}	z_{abs}	\delta v (km s^{-1})
HE 0001−2340	2.2670	2.1870	7530
HE 0151−4326	2.7890	2.6956	7580
HE 1341−1020	2.1350	2.1065	2750
HE 2347−4342	2.8710	2.8781	−550
Q 0122−380	2.2030	2.1472	5320

By comparing our results obtained from proximate O VI absorbers at z = 2−3 with the z ≈ 0 results, we can search for evolution of the highly ionized gas content of the Universe. Since the intensity of the extragalactic ultraviolet (UV) background rises with redshift (Haardt & Madau 1996), one might expect to see higher photoionized O VI column densities at higher redshift. Simultaneously, the fraction of baryons in warm-hot gas is predicted to decrease with increasing redshift (Davé et al. 2001), since at early cosmic epochs there has not been adequate time for gas to accrete and virialize into dark matter-dominated potential wells.

Based on an analysis of low-redshift (0.15 < z < 0.5) O VI absorption-line systems and with a sensitivity limit of W_r > 30 mÅ, Tripp et al. (2008) report that dN/d\delta v is enhanced by a factor of ≈3 at velocities <2 500 km s^{-1} from the quasar compared with blended O VI absorbers at z = 2−3 with the z ≈ 0 results, we can search for evolution of the highly ionized gas content of the Universe. Since the intensity of the extragalactic ultraviolet (UV) background rises with redshift (Haardt & Madau 1996), one might expect to see higher photoionized O VI column densities at higher redshift. Simultaneously, the fraction of baryons in warm-hot gas is predicted to decrease with increasing redshift (Davé et al. 2001), since at early cosmic epochs there has not been adequate time for gas to accrete and virialize into dark matter-dominated potential wells.

Based on an analysis of low-redshift (0.15 < z < 0.5) O VI absorption-line systems and with a sensitivity limit of W_r > 30 mÅ, Tripp et al. (2008) report that dN/d\delta v is enhanced by a factor of ≈3 at velocities <2 500 km s^{-1} from the quasar compared...
Table 5. Weak O\textsc{vi} absorbers at \(z = 2–3\): summary of \(dN/dz\) statistics (8 mÅ sensitivity).

| Category | \(|\delta v| < 2000\) | \(2000 < \delta v < 8000\) | Intervening\(^b\) |
|----------|-----------------|-----------------|-----------------|
| Systems | 42 ± 12 | 14 ± 4 | 14 ± 2 |
| Components | 87 ± 17 | 23 ± 5 | 35 ± 6 |

\(^a\)Range in velocity relative to \(\text{z}_{\text{QSO}}\) (in km s\(^{-1}\)).

\(^b\)Based on BH05; in the updated intervening sample 58 systems are seen over a total \(\delta z\) of 4.09, complete down to \(\log N(\text{O}\text{vi}) = 13.11\).

Category\(^a\)	Sample	\(z = 0–0.5\) \((\text{Gpc}^{-1})\)	\(z = 2–3\) \((\text{Gpc}^{-1})\)
Systems	Proximate (\(\delta v < 2000\))	14\(^b\) ± 6\(^b\)	26 ± 8
	Intervening (\(\delta v > 5000\))	4 ± 1	8 ± 2\(^b\)
Components	Proximate (\(\delta v < 2000\))	30\(^c\) ± 6\(^c\)	71 ± 14
	Intervening (\(\delta v > 5000\))	6 ± 1	21 ± 3\(^c\)

\(^a\)The entries in this table list the incidence of weak O\textsc{vi} absorbers per unit comoving distance, in units of Gpc\(^{-1}\); the entries were derived by correcting \(dN/dz\) for cosmology, and are presented for both proximate and intervening absorbers, at low and high redshift, and for systems and components.

\(^b\)Derived using results from Tripp et al. (2008).

\(^c\)Derived from BH05 result.

to the intervening sample, with \(dN(\text{O}\text{vi})/dz = 16\(^b\) ± 1\(^b\)\) for the intervening systems and \(dN(\text{O}\text{vi})/dz = 3\(_{0.2}^{+1.1}\)\) for those at \(\delta v < 2.500\) km s\(^{-1}\). Our result for weak O\textsc{vi} systems at \(z = 2–3\) with \(W_0 > 30\) mÅ and \(\delta v < 2000\) km s\(^{-1}\) is \(dN/dz\) is \(32 ± 10\), lower than the low-redshift result by a factor of \(\approx 1.6\). However, comparing the high- and low-redshift results for \(dN/dz\) can be misleading, because redshift has a highly non-linear relationship with spatial dimensions, that depends on cosmology. With our adopted cosmology, then in the interval \(z = 0.15–0.5\), \(dN/\text{Gpc} = 3.63\) d\(^{-1}\), whereas for the interval \(z = 2\) to 3, \(dN/\text{Gpc} = 1.22\) d\(^{-1}\), where \(dx\) is the comoving radial distance, and where we have used the online cosmology calculator of Wright (2006). Correcting for these factors to calculate the number density of weak O\textsc{vi} absorbers per unit co-moving distance, a better indicator of the space density of O\textsc{vi}, we derive the results listed in Table 6. Here, we see evidence that the space density of O\textsc{vi} absorbers increases with redshift, by a factor of 2 between \(z = 0.15–0.5\) and 2–3. This increase is observed independently for both the proximate and intervening absorbers.

4 DISCUSSION

The BAL, mini-BAL and intrinsic systems, which together we classify as strong systems based on their fully saturated O\textsc{vi} absorption, strong accompanying O\textsc{vi} and C\textsc{iv} absorption, and frequent evidence for partial coverage, are well understood as being formed in either QSO-driven outflows or inflows in the immediate vicinity of the AGN central engine (see review by Hamann & Ferland 1999). Here, we focus on the weak (narrow) proximate systems, which represent a separate population. Is there any evidence that these weak systems are directly photoionized by the quasar? We report two results that address this question, though their interpretation is not straightforward. First, in our sample of proximate O\textsc{vi} absorbers at \(z = 2–3\), there is an enhancement by a factor of 3 in the incidence \(dN/dz\) of weak O\textsc{vi} absorbers within 2000 km s\(^{-1}\) of the quasar versus those in the interval 2000 to 8000 km s\(^{-1}\). A similar enhancement is seen near low-redshift quasars (Tripp et al. 2008). While at face value this could be interpreted as a proximity effect, in which quasars preferentially ionize nearby clouds more often than they photoionize more distant clouds, this is not the only explanation. The enhancement in \(dN/dz\) could also be explained by an overdensity of galaxies near quasars, and where the O\textsc{vi} absorbers are located in the gaseous haloes of these galaxies (Young, Sargent & Boksenberg 1982). It is well known that quasars are preferentially formed in cluster environments, particularly at high redshift (Croom et al. 2005; Shen et al. 2007). This idea is supported by the observation that the internal properties of the weak O\textsc{vi} absorbers are not dependent on redshift or proximity to the quasar.

Secondly, there are statistically significant differences between the H\textsc{i}/O\textsc{vi} and C\textsc{iv}/O\textsc{vi} ratios measured in the weak O\textsc{vi} populations above and below 2000 km s\(^{-1}\), with the weak absorbers at \(\delta v < 2000\) km s\(^{-1}\) showing a median H\textsc{i}/O\textsc{vi} ratio lower by a factor of \(\approx 10\), and a median C\textsc{iv}/O\textsc{vi} ratio lower by a factor of \(\approx 7\) than those at 2000 < \(\delta v < 8000\) km s\(^{-1}\). Again, at face value, these results could be interpreted as proximity effects, in which gas closer to the quasar shows a higher ionization level than intervening gas. However, closer inspection finds that while N(H\textsc{i}) and N(C\textsc{iv}) show a tendency to decrease as \(\delta v\) decreases, N(O\textsc{vi}) is uncorrelated with \(\delta v\), i.e. it is the behaviour of N(H\textsc{i}) and N(C\textsc{iv}) alone that is driving the trends seen in the column density ratios, not the behaviour of N(O\textsc{vi}). Importantly, the H\textsc{i} and C\textsc{iv} proximity effects imply that proximity in velocity does correlate with proximity in distance, which supports the idea that the velocities of the weak absorbers are dominated by the Hubble flow.

Because O\textsc{vi}-H\textsc{i}-C\textsc{iv} velocity centroid offsets are observed directly in \(\approx 50\) per cent of the weak systems, single-phase photoionization models for the O\textsc{vi}, C\textsc{iv} and H\textsc{i} are inadequate for at least half the absorbers in our sample. Indeed, the non-dependence of N(O\textsc{vi}) on proximity casts doubt on whether photoionization by the background QSO creates the O\textsc{vi} at all. Photoionization by nearby stellar sources of radiation is also unlikely, since such sources do not emit sufficient fluxes of photons above 54 eV (the He\textsc{ii} ionization edge) to produce the observed quantities of O\textsc{vi}. We cannot rule out photoionization by the quasar in every individual case, for example the absorber at \(z = 2.4183\) towards HE 1122–1649, which shows strong O\textsc{vi} but barely detectable C\textsc{iv}, as do several proximate O\textsc{vi} absorbers reported by Gonçalves et al. (2008). None the less, N(O\textsc{vi}) does not depend on proximity in the way that N(H\textsc{i}) and N(C\textsc{iv}) do. Thus, we infer that the sizes of spheres-of-influence around quasars, which are implied the shapes of Gunn–Petersen troughs (Zheng & Daviden 1995; Smette et al. 2002), and from studies of proximate absorption in lower ionization species, such as Mg\textsc{ii} (Vanden Berk et al. 2008; Wild et al. 2008) and C\textsc{iv} (Foltz et al. 1986; Vestergaard 2003; Nestor et al. 2008), are dependent on photon energy, and the presence of a sphere of photons at energies above 113.9 eV (capable of ionizing O\textsc{iv} to O\textsc{v}) has yet to be demonstrated.

Thus, we turn to collisional ionization models. Since the line widths of a significant fraction (\(\approx 60\) per cent) of the components in the weak O\textsc{vi} absorbers are low enough (\(b < 14\) km s\(^{-1}\)) to imply gas temperatures below 188 000 K, collisional ionization equilibrium can be ruled out because essentially no O\textsc{vi} is produced in gas in CIE at these temperatures (Sutherland & Dopita 1993; Gnat & Sternberg 2007). Indeed, the narrow-line widths of many intergalactic O\textsc{vi} absorbers at \(z \approx 2\) have led various authors to conclude that photoionization is the origin mechanism (Bergeron et al. 2002;
Carswell et al. 2002; Levshakov et al. 2003; BH05; Reimers et al. 2006; Lopez et al. 2007). However, non-equilibrium collisional ionization models cannot be ruled out so easily. Indeed one expects that collisionally ionized gas at ‘coronal’ temperatures of a few ×10⁵ K, where OVI is formed through collisions, will be in a non-equilibrium state. This is because the peak of the interstellar cooling curve exists at these temperatures, and so the cooling time-scales are short. When the cooling times are shorter than the recombination time-scales, ‘frozen-in’ ionization can result at temperatures well below those at which the ions exist in equilibrium (Kafatos 1973; Shapiro & Moore 1976; Edgar & Chevalier 1986), provided that there is a source of ∼10⁷ K gas in the first place.

There are at least two physical reasons why collisionally ionized, million-degree regions of interstellar and intergalactic gas could arise in the high-z Universe. The first is the (hot-mode) accretion and shock heating of gas falling into potential wells (Birnboim & Dekel 2003; Keres et al. 2005; Dekel & Birnboim 2006), a process which is incorporated into cosmological hydrodynamical simulations (Cen & Ostriker 1999; Davé et al. 2001; Fang & Bryan 2003; Kang et al. 2005; Cen & Fang 2006), and creates what is referred to as the warm-hot IGM (WHIM). However, these models generically predict that the fraction of all baryons that exist in the WHIM rises from essentially zero at z = 3 to 30–50 per cent at z = 0, so little WHIM is expected at the redshifts under study here. The second reason is the presence of galactic-scale outflows, which due to the energy input from supernovae are likely to contain (or even be dominated by) hot, highly ionized gas (see recent models by Oppenheimer & Davé 2006; Fangano, Ferrara & Richter 2007; Kawata & Rauch 2007; Samui, Subramanian & Srianand 2008). There is strong observational evidence for outflows at redshifts of ≈2–3 (Heckman 2002), including blueshifted absorption in the spectra of Lyman break galaxies (Pettini et al. 2000, 2002; Shapley et al. 2003), the presence of metals in the low density, photoionized IGM (the Lyα forest; e.g. Aracil et al. 2004; Aguirre et al. 2005, 2008), though see Schaye, Carswell & Kim (2007), and the presence of super-escape velocity C IV components in the spectra of damped Lyα (DLA) galaxies (Fox et al. 2007b). In addition, collisionally ionized gas in galactic haloes at high redshift has been seen directly through detections of O VI and N V components in DLA systems (Fox et al. 2007a), albeit with much broader system velocity widths than in the proximate absorbers discussed here. O VI absorbers with lower H I column density may probe the outer reaches of such haloes or ‘feedback zones’ (Simcoe et al. 2002; BH05).

We explore the ability of non-equilibrium collisional ionization models to reproduce the data in our proximate O VI sample in Fig. 10, which shows the C IV/O VI versus N V/O VI ratio–ratio plane. We take the isobaric non-equilibrium model at log T = 5.00 (consistent with the observed O VI component line widths) from Gnat & Sternberg (2007), computed using solar abundances, and then find the values of [N/O] and [C/H] which are required to reproduce the observations. The models for 0.1 and 0.01 solar absolute abundances, and for the isochoric case, predict similar values. The non-equilibrium models are not capable of reproducing the observed ratios when solar relative elemental abundances are used. However, if [N/O] takes values between −1.8 and 0.4, and [C/O] between −1.9 and 0.6, it is possible to explain the observed column densities in each weak proximate system with a non-equilibrium collisional ionization model. Note that we have not corrected these model predictions for the effect of photoionization by the extragalactic background; the model represents the pure collisional ionization case. Hybrid collisional+photoionization models would help in making progress in this area (see discussion in Tripp et al. 2008).

5 SUMMARY

We have presented a study of proximate (∆v < 8000 km s⁻¹) O VI absorbers in the spectra of 16 quasars observed at high signal-to-noise ratio and 6.6 km s⁻¹ resolution with VLT/UVES. The quasars are at redshifts between 2.14 and 2.87. We found 35 proximate O VI absorbers comprising 101 components. We used component fitting software to determine the properties of the absorption, studied the statistical properties of the sample and addressed the ionization conditions in the gas. Our study has produced the following results.

(i) Nine of the 35 O VI systems are strong, with log N(O VI) ≥ 15.0. These absorbers all show detections of C IV and N V, and show either broad, fully saturated, mini-BAL-type O VI absorption troughs extending over tens to hundreds of km s⁻¹, or evidence for partial coverage in the high-ion profiles. A mean of 6.0 O VI components are seen in the strong absorbers. The strong absorbers are formed either in QSO-driven outflows or in the immediate vicinity of the quasar.

(ii) 26 of the 35 O VI systems are weak, and show log N(O VI) < 14.5. These systems are narrow, with a median velocity width ∆v₉₀ of 42 km s⁻¹. The weak systems all contain detectable H I, all but two show C IV and 9/26 show N V. We find a mean of 1.9 O VI components per weak system. Approximately 60 per cent of these O VI components have Doppler b-values < 14 km s⁻¹. The gas in these narrow components is constrained by the line widths to be at T < 188 000 K.

(iii) Among the weak sample there is no correlation between the O VI column density and the proximity to the quasar. This is true when using either the component- or the system-level column densities. Two-sided KS tests confirm that the column density distributions of the intervening and weak proximate O VI samples are
statistically indistinguishable. The \OI column density also does not correlate with redshift.

(iv) Among the weak sample, there are differences between the line width distribution of the \OI components and the distributions of the \CIv and \NV components. The \CIv and \NV distributions are strongly peaked below $b = 10 \text{ km s}^{-1}$ and do not show the tail of absorbers with b-values between 10 and 25 km s$^{-1}$ seen in the \OI distribution.

(v) There is a significantly lower $N(\HI)$ in the weak \OI absorbers with $\delta v < 2000 \text{ km s}^{-1}$ than in those with $\delta v > 2000 \text{ km s}^{-1}$. The difference in the median $N(\HI)$ between these two samples is ~ 1.0 dex. We interpret this as a manifestation of the \HI proximity effect, and it leads to a trend in which the \HI/\OI ratio is lower for absorbers with 2000 km s^{-1} of the QSO than for those at higher δv. An identical trend is observed for \CIv, with the median $N(\CIv)$ lower by ≈ 0.8 dex at $\delta v < 2000 \text{ km s}^{-1}$ than at $\delta v > 2000 \text{ km s}^{-1}$. Thus, \CIv and \HI behave differently than \OI.

(vi) Apparent column density profile comparisons show that \OI and \CIv show significantly different velocity structure in 13 of the 24 weak \OI absorbers where \CIv is detected. Offsets between the centroid of the \HI model and the \OI components are seen in 14/26 weak proximate cases. Therefore, at least half of the weak \OI systems are multiphase.

(vii) Down to a limiting rest equivalent width of 8 mÅ, the number density of weak \OI systems within 2000 km s$^{-1}$ of the background quasar is $dN/dz = 42 \pm 12 (87 \pm 17$ for components). Between 2000 and 8000 km s$^{-1}$ in δv, dN/dz falls to $14 \pm 4 (23 \pm 5$ for components), equal to the incidence of intervening \OI measured by BH05. Thus, an enhancement in dN/dz by a factor of 3 is seen at $\delta v < 2000 \text{ km s}^{-1}$.

(viii) We compare the incidence dN/dz of \OI absorbers at high ($z = 2–3$) and low ($z = 0.5$) redshift. After correcting for cosmology, the incidence of \OI systems with $W_r > 30 \text{ mÅ per unit comoving distance}$ at $z = 2–3$ is twice the value at $z = 0.5$. This increase is seen for both proximate and intervening absorbers.

(ix) Because \OI–\CIv–\HI velocity offsets are observed in half the sample, single-phase photoionization models are (at least for these cases) unable to explain the data. Indeed, the non-dependence of $N(\OI)$ on proximity casts doubt on whether photoionization creates the \OI at all. Instead, we propose that the weak \OI absorbers trace collisionally ionized regions that exist as part of multiphase galactic or protogalactic structures. In order to reconcile the collisional ionization hypothesis with the narrow-line widths measured in approximately 60 per cent of the \OI components, the gas must be out of CIE. This can be explained by a scenario in which initially hot gas is cooling down through the coronal regime at $T \sim 10^5$ K. The observed high-ion column density ratios and line widths in the proximate \OI absorbers can be explained by models of non-equilibrium collisionally ionized gas at $T \sim 10^5$ K, but only if the relative elemental abundances are non-solar: we require [N/O] to be in the range -1.8 to 0.4 and [C/O] between -1.9 and 0.6, to explain the data with these models.

(x) Future \OI surveys do not need to remove absorbers (and thus compromise the sample size) that happen to lie at $2000–8000 \text{ km s}^{-1}$ relative to the quasar. A better approach would be to remove those showing either $N(\OI) \gtrsim 15.0$ or evidence for partial coverage.

ACKNOWLEDGMENTS

AJF gratefully acknowledges the support of a Marie Curie Intra-European Fellowship (contract MEIF-CT-2005-023720) awarded under the European Union’s Sixth Framework Programme, which partially funded his contribution to this paper. We thank Bastien Arcari for his continuum fits to the UVES data, and Bob Carswell for making his \VIPFIT software publicly available. We thank the anonymous referee for useful comments.

REFERENCES

Aguirre A., Schaye J., Hernquist L., Kay S., Springel V., Theuns T., 2005, ApJ, 620, L13

Aguirre A., Dow-Hygellund C., Schaye J., Theuns T., 2008, ApJ, submitted (arXiv:0712.1239)

Anderson S. F., Weymann R. J., Fritz C. B., Chaffee F. H., Jr, 1987, AJ, 94, 278

Aracil B., Petitjean P., Pichon C., Bergeron J., 2004, A&A, 419, 811

Bajtlik S., Duncan R. C., Ostriker J. P., 1988, ApJ, 327, 570

Ballester P., Modigliani A., Boitquin O., Cristiani S., Hanuschik R., Kaufer A., Wolf S., 2000, The Messenger, 101, 31

Barlow T. A., Sargent W. L. W., 1997, AJ, 113, 136

Bechtold J., 1994, ApJS, 91, 1

Bergeron J., Herbert-Fort S., 2005, in Williams P. R., Shu C.-G., Menard B., eds, Proc. IAU Colloq. 199, Probing Galaxies through QSO Absorption Lines. Cambridge Univ. Press, Cambridge, p. 265 (BH05)

Bergeron et al., 1994, ApJ, 436, 33

Bergeron J., Arcalí B., Petitjean P., Pichon C., 2002, A&A, 396, L11

Birnboim Y., Dekel A., 2003, MNRAS, 345, 349

Burles S., Tytler D., 1996, ApJ, 460, 584

Carswell R. F., Whelan J., Smith M., Boksenberg A., Tytler D., 1982, MNRAS, 198, 91

Carswell B., Schaye J., Kim T.-S., 2002, ApJ, 578, 43

Cen R., Ostriker J. P., 1999, ApJ, 514, 1

Cen R., Fang T., 2006, ApJ, 650, 573

Chand H., Srianand R., Petitjean P., Aracil B., 2004, A&A, 417, 853

Churchill C. W., Schneider D. P., Schmidt M., Gunn J. E., 1999, AJ, 117, 2573

Cooksey K. L., Prochaska J. X., Chen H.-W., Mulchaey J. S., Weiner B. J., 2008, ApJ, 676, 262

Croom S. M. et al., 2005, MNRAS, 356, 415

Danforth C. W., Shull J. M., 2005, ApJ, 624, 555

Danforth C. W., Shull J. M., 2008, ApJ, 679, 194

Davé R. et al., 2001, ApJ, 552, 473

Dekel A., Birnboim Y., 2006, MNRAS, 368, 2

Dekker H., D’Odorico S., Kaufner A., Delabre B., Krotkowsky H., 2000, in Masanori I., Moorwood A. F. M., eds, Proc. SPIE Vol. 4008, Optical and IR Telescope Instrumentation and Detectors. SPIE, Bellingham, p. 534

D’Odorico V., Cristiani S., Romano D., Granato G. L., Danese L., 2004, MNRAS, 351, 976

Edgar R. J., Chevalier R. A., 1986, ApJ, 301, L27

Fang T., Bryan G. L., 2003, ApJ, 561, L31

Fangano A. P. M., Ferrara A., Richter P., 2007, MNRAS, 381, 469

Faucher-Giguère C.-A., Lidz A., Zaldarriaga M., Hernquist L., 2008, ApJ, 673, 39

Fechner C., Baade R., Reimers D., 2004, A&A, 418, 857

Foltz C. B., Weymann R. J., Peterson B. M., Sun L., Malkan M. A., Chaffee F. H., 1986, ApJ, 307, 504

Fox A. J., Petitjean P., Ledoux C., Srianand R., 2007a, ApJ, 650, 573

Ganguly R., Eracleous M., Charlton J. C., Churchill C. W., 1999, AJ, 117, 2594

Ganguly R., Bond N. A., Charlton J. C., Eracleous M., Brandt W. N., Churchill C. W., 2001, ApJ, 549, 133

Ganguly R., Sebarch K. R., Tripp T. M., Savage B. D., Wakker B. P., 2006, ApJ, 645, 868

Giroux M. L., Sutherland R. S., Shull J. M., 1994, ApJ, 435, L97

Gnat O., Sternberg A., 2007, ApJS, 168, 213

Gonçalves T. S., Steidel C. E., Pettini M., 2008, ApJ, 676, 816
Figure 1. Absorption-line spectra of all proximate O\textsc{vi} systems in the UVES large programme. Strong absorbers are shown first, followed by the weak absorbers. Our Voigt profile fits are shown in red. In many of the C\textsc{iv} and N\textsc{v} panels, the data are shown over a limited range in the y-axis, for clarity. The green vertical lines indicate the velocity range of the AOD integration. The label ‘PC’ indicates regions where partial coverage of the continuum source affects the line profiles. At the top of each column, we annotate our classification and the proximity of the absorber to the quasar.
Figure 1 – continued
Figure 1 – continued
Figure 1 – continued
Figure 1 – continued
Figure 1 — continued
Figure 1 – continued
Figure 1 – continued
Figure 1 – continued

This paper has been typeset from a TeX/LaTeX file prepared by the author.