Inflamação e lesão renal atenuadas pela ingestão prévia de castanha-do-brasil no processo de isquemia e reperfusão

Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion

Autores
Maria Fernanda Ribeiro Cury¹
Estéfany Queiroz Olivares ¹
Renata Correia Garças ¹
Giovana Queda Toledo ¹
Natassia Alberici Anselmo ¹
Leticia Colombo Paskakulis ¹
Fernanda Fortucí Resende Botelho ¹
Natiene Zanardo Carvalho ¹
Analice Andreoli da Silva ¹
Camila Agren ¹
Carla Patricia Carlos ¹

¹ Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil.

Resumo
Introdução: Isquemia e reperfusão (IR) é um processo inerente aos procedimentos envolvidos no transplante de órgãos, que causa inflamação, morte celular e lesão, podendo levar à rejeição do enxerto. É possível que a castanha-do-brasil (CB), por suas propriedades anti-inflamatórias, possa atenuar a lesão renal causada pela IR. Objetivo: Investigar se a ingestão prévia de CB reduz a expressão de marcadores renais de inflamação, lesão e morte celular após a IR. Métodos: Ratos Wistar machos foram distribuídos em seis grupos (N = 6/grupo): SHAM (controle), SHAM tratado com 75 ou 150 mg de CB, IR, e IR tratado com 75 ou 150 mg de CB. O procedimento de IR consistiu na nefrectomia à direita e oclusão da artéria renal esquerda por 30 minutos. A castanha foi administrada diariamente por sete dias antes da cirurgia (SHAM ou IR), e mantida até o sacrifício (48 horas pós-cirurgia). A inflamação foi avaliada pela expressão renal de COX-2 e TGF-β; a lesão pela expressão de vimentina, e a morte celular por apoptose pela expressão de caspase-3, por imuno-histoquímica. Resultados: O pré-tratamento com 75 mg de CB reduziu a expressão renal de COX-2, de TGF-β, de vimentina e de caspase-3. A dose de 150 mg causou elevação da expressão de COX-2. Conclusão: No modelo experimental de IR renal, os danos podem ser minimizados com a ingestão prévia de baixas doses de CB, melhorando a inflamação, a lesão e a morte celular.

Palavras-chave: Isquemia; Reperfusão; Lesão Renal Aguda; Inflamação; Bertholletia; Ratos.

Abstract
Introduction: Ischemia and reperfusion (IR) is a process inherent to the procedures involved in the transplantation of organs that causes inflammation, cell death and cell injury, and may lead to rejection of the graft. It is possible that the anti-inflammatory properties of the Brazil nuts (BN) can mitigate the renal injury caused by IR. Objective: To investigate whether the previous intake of BN reduces the expression of markers of inflammation, injury, and cell death after renal IR. Methods: Male Wistar rats were distributed into six groups (N = 6/group): SHAM (control), SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75 or 150 mg of BN. The IR procedure consisted of right nephrectomy and occlusion of the left renal artery with a non-traumatic vascular clamp for 30 min. BN was given daily from day 1 to 7 before surgery (SHAM or IR), and maintained until sacrifice (48 h after surgery). Inflammation was evaluated by renal expression of COX-2 and TGF-β, injury by the expression of vimentin, and cell death by apoptosis through caspase-3 expression (immunohistochemistry). Results: Pretreatment with 75 mg of BN reduced renal expression of the COX-2, TGF-β, vimentin, and caspase-3. The dose of 150 mg caused increased expression of COX-2. Conclusion: In experimental IR, the damage can be minimized with a prior low-dose intake of BN, improving inflammation, injury, and cell death.

Keywords: Ischemia; Reperfusion; Acute Kidney Injury; Inflammation; Bertholletia; Rats.

Introdução
A isquemia e reperfusão (IR) é a maior causa de insuficiência renal aguda e rejeição de enxerto. Essa condição ocorre durante os procedimentos envolvidos no transplante de órgãos, e os danos no rim
estão associados às espécies reativas de oxigênio produzidas após a reperfusão sanguínea. Uma cascata de respostas celulares leva à inflamação, morte celular e insuficiência do órgão. Portanto, a compreensão dos mecanismos envolvidos nessa lesão é essencial para minimizar as consequências durante os procedimentos envolvidos no transplante renal. Nesse sentido, nosso estudo propôs uma investigação da ação protetora da castanha-do-brasil (CB), *Bertholletia excelsa*, na inflamação e morte celular causadas pela lesão renal aguda durante a IR experimental em ratos.

Sabe-se que o consumo regular de CB melhora o perfil lipídico e a função microvascular, além de reduzir o estresse oxidativo em adolescentes obesas, minimizando o risco aterogênico em mulheres obesas, com aumento da atividade da glutatiana-peroxidase. Voluntários saudáveis apresentam redução de marcadores inflamatórios como IL-1, IL-6, TNF-α (fator alfa de necrose tumoral) e IFN-γ (interferon gama), melhorando o perfil lipídico por um período superior a 30 dias. Assim, é evidente que a CB exerce um efeito protetor nas doenças relacionadas ao estresse oxidativo e à inflamação. Além disso, esse efeito benéfico pode estar relacionado aos seus componentes bioativos: selênio, tocoferol, compostos fenólicos, folato, magnésio e ácidos graxos mono/polinsaturados.

Devido ao risco aumentado de mortalidade na insuficiência renal aguda e ao fato de que a atividade anti-inflamatória da CB tem sido pouco explorada na lesão renal causada pela IR, o objetivo do presente estudo foi investigar se a ingestão prévia dessa castanha reduz a expressão de marcadores de inflamação, lesão e morte celular após a IR.

MÉTODOS

ÉTICA

Todos os procedimentos realizados neste estudo estão de acordo com os padrões éticos e foram aprovados pelo Comitê de Ética em Pesquisa em Animais (CEUA) da FACERES Faculdade de Medicina (número 001/2015).

ANIMais e PROCEDIMENTOS

Ratos Wistar machos (200-220 g) foram aleatoriamente distribuídos em seis grupos (*N*=6/grupo): SHAM (controle), SHAM tratado com 75 ou 150 mg de CB (SHAM+CB), IR, e IR tratado com 75 ou 150 mg de CB (IR+CB). Os animais foram alojados em ambiente com ciclo controlado de claro-escuro de 12 horas, com acesso à água e comida *ad libitum*.

O procedimento de IR consistiu de nefrectomia à direita e oclusão da artéria renal esquerda com um clampe vascular não traumático por 30 minutos sob anestesia (10 mg/kg xilazina + 85 mg/kg cetamina). A CB (75 ou 150 mg/animal, Belém do Pará, Brasil) foi administrada diariamente e individualmente, de 1 a 7 dias, antes da cirurgia ou IR, e mantida até o sacrifício dos animais (48 horas após a cirurgia). As doses foram estabelecidas com base em estudos prévios em humanos, que indicaram que a castanha em doses que não causaram efeitos nefrotóxicos e hepatotóxicos. A quantidade de CB ingerida foi ajustada diariamente de acordo com o peso corporal do animal. Cada rato foi colocado em uma caixa individual e a CB foi oferecida separadamente. Como é muito palatável, não houve rejeição; foi consumida quase que imediatamente pelos animais, mesmo no período pós-operatório.

Os animais dos grupos SHAM foram submetidos às mesmas condições de anestesia e procedimento cirúrgico descrito, mas sem o clampeamento da artéria renal. Todos os animais foram sacrificados 48 horas após a cirurgia sob overdose de anestésico. No fim da cirurgia, todos receberam 2 mg/kg de tramadol por gavagem para o controle da dor pós-operatória, sendo mantidos em caixas individuais e recebendo água e ração *ad libitum* por 48 horas. A ingestão da castanha foi mantida (de acordo com o grupo) até o momento do sacrifício.

Marcadores renais de inflamação, lesão e morte celular

Após dois dias da IR ou procedimento SHAM, os ratos foram sacrificados e coletados os rins, fixados em tampão fosfato 4% a 4°C por 24 horas, e embebidos em parafina. O estudo foi realizado por imuno-histoquímica, conforme descrito anteriormente, por reação de imunoperoxidase. Os fragmentos de tecido foram incubados *overnight* a 4°C com anticorpos anti-COX-2 (1:500, ab62331, ABCAM, Cambridge, UK) e anti-TGF-β (1:80, SC-7892 policlonal, Santa Cruz, CA, USA). Os marcadores de células apoptóticas e de lesão foram anti-caspase-3 (1:1000, 9662, Cell
Ingestão de castanha-do-brasil e lesão renal por isquemia e reperfusão

Signaling Technology, Danvers, MA, USA) e anti-vimentina (1:500, M0725, Dako, Dinamarca). Vinte e cinco campos da região justamedular foram avaliados em uma lâmina de cada animal para obtenção da média dos scores atribuídos, conforme descrito previamente.14-16

ANÁLISE ESTATÍSTICA

Os resultados foram previamente submetidos à análise descritiva e determinação da normalidade pelo teste de Kolmogorov-Smirnov. A análise de variância (ANOVA), seguida do pós-teste de Tukey para múltiplas comparações, foi utilizada para as amostras com distribuição normal. O teste de Kruskal-Wallis, seguido do teste de Dunn, foi usado para as amostras com distribuição não normal. O valor \(p \leq 0,05 \) foi considerado significante.

RESULTADOS

A castanha-do-brasil reduz a expressão de marcadores de apoptose e de lesão renal induzida por IR

Os animais do grupo IR exibiram aumento da expressão de caspase-3 (Figura 1 D/H), comparados ao grupo IR+CB75 (Figura 1 E/H). Resultado similar foi observado quanto à expressão de vimentina no grupo IR (Figura 1 L/O), comparado aos grupos IR tratados com 75 (Figura 1 M/O) ou 150 mg de CB (Figura 1 N/O).

A ingestão prévia de baixa dose de CB reduz a expressão de TGF-\(\beta \) e a alta dose aumenta COX-2

O grupo IR apresentou elevação da COX-2 (Figura 2 D/H), comparado ao grupo SHAM (Figura 2 A/H); e esse marcador foi maior no grupo IR tratado com 150 mg de CB (Figura 2 F/H), comparado aos demais grupos. Já a expressão de TGF-\(\beta \) foi maior no grupo IR (Figura 2 L/O), comparado aos grupos IR tratados com 75 (Figura 2 M/O) ou 150 mg de CB (Figura 2 N/O).

DISCUSSÃO

A lesão renal induzida por IR causa a liberação de espécies reativas de oxigênio (EROS) e mediadores pró-inflamatórios, moléculas de adesão e recrutamento de leucócitos; fatores que, juntos, induzem disfunção renal e mortalidade.1,4,17-18 Em estudo anterior, foi verificado que o tratamento com 75 mg de CB, sete dias antes do processo de IR, atenuou os efeitos deletérios da IR na função renal, como redução da ureia plasmática e da proteinúria e aumento da depuração de creatinina e do volume urinário. Essa melhora foi relacionada à inibição da infiltração de macrófagos e do estresse oxidativo. Entretanto, a lesão renal não diferiu entre os grupos IR, tratados ou não com 75 mg e 150 mg de CB.14 Assim, no presente estudo, foi testado se a ingestão dessa castanha reduz a expressão de marcadores de inflamação, lesão e morte celular após a IR.

Neste sentido, foi estudada a expressão de vimentina na região justamedular dos rins dos ratos IR. Sob condições fisiológicas, a vimentina renal é observada nas células musculares lisas arteriais e nos glomérulos, mas não em células tubulares.15-16,19 A lesão renal causa alterações na expressão de vimentina. Células epiteliais tubulares renais podem modificar seu fenótipo, adotando características de células mesenquimais, como os fibroblastos, que estão envolvidos na deposição de matriz extracelular e desenvolvimento de fibrose. Esse processo é denominado transição epitélio-mesenquimal, ou EMT;20-21 e é mediado por TGF-\(\beta \)1,20-23 A EMT tem sido descrita na IR, e pode contribuir para a gênese da fibrose tardia observada nessa condição.24-27 A vimentina é útil para marcar a lesão renal e o desenvolvimento de EMT, e alteração no padrão de sua expressão indica lesão proximal tubular.15-16,19,28 Este estudo, consistente com dados publicados previamente,24-27,29-30 evidencia o aumento da expressão de vimentina induzida por IR no túbulo renal e no interstício na região justamedular, sugerindo dano nas células proximais tubulares. Ambos os tratamentos, 75 e 150 mg de CB, sete dias antes do procedimento de IR, reduziram a lesão tubular com menor expressão de vimentina. Essas alterações atenuadas pela CB corroboram o efeito protetor da CB observado anteriormente.14

Como reportado anteriormente, a condição de IR causa elevação do influxo de macrófagos no rim.14 Foi verificado que a IR causa elevação na expressão de COX-2, confirmando a inflamação renal. Uma das citocinas liberadas por macrófagos é o TGF-\(\beta \),31 e sua secreção pode ser induzida pela condição de IR;24,26,30 também evidenciada no nosso estudo. O TGF-\(\beta \) está amplamente envolvido no desenvolvimento da fibrose intersticial e progressão da doença renal crônica.24,26,31-32 Como reportado, está relacionado ao processo de EMT.20-23 O influxo renal de macrófagos14 e a expressão de TGF-\(\beta \) após a IR são reduzidos...
Figura 1. Lesão e morte celular no tecido renal após isquemia e reperfusão (IR) e pré-tratamento com castanha-do-brasil (CB): expressão de caspase-3 (A-H) e vimentina (I-O). Os grupos IR apresentam aumento da expressão de caspase-3 (setas pretas, D/H) e vimentina (L/O) nos túbulos e interstício. Os pré-tratamentos com 75 mg (M/O) e 150 mg de CB (N/O) reduzem a lesão celular. [L] Detalhe da expressão de vimentina no grupo IR. Setas vermelhas indicam expressão de vimentina normalmente visualizada nos vasos sanguíneos e glomérulos. A morte celular também foi atenuada pela dose de 75 mg de CB (E/H), mas não com a de 150 mg (F/H). [G] Controle da reação (CR). [H/O] Score médio. Contracoloração: Hematoxílica. Barras: 100 μm. *p<0,05, IR vs. IR+CB75; +p<0,05 IR vs. IR+CB150 (ANOVA + pós-teste de Tukey). Dados apresentados como medianas, quartis 25-75%, valores mínimos e máximos.

pelo tratamento prévio com ambas as doses de CB de 75 e 150 mg. Esses resultados são corroborados pela ação anti-inflamatória demonstrada em estudos com consumo de CB por seres humanos saudáveis e com doença renal, e indicam que a ingestão de pequena quantidade de CB é uma alternativa promissora durante o procedimento de IR. É interessante verificar seu efeito na progressão da doença renal crônica. Já a dose de 150 mg de CB elevou a expressão renal de COX-2 após a IR, e confirma os achados reportados anteriormente que mostram que a alta dose de CB é prejudicial no processo de IR.

Adicionalmente aos mediadores inflamatórios, foi estudada a morte de células renais por apoptose após a IR e o tratamento com CB pela verificação da expressão de caspase-3. Os rins do grupo IR apresentaram elevação da apoptose, o que está de acordo com o observado previamente por outros pesquisadores. O processo de IR induz a expressão de óxido nítrico nas células tubulares, gerando EROS. As EROS causam dano tubular proximal pela oxidação de proteínas, peroxidação de lipídeos, dano ao DNA, e indução de apoptose. Conforme proposto por Devarajan, há evidências de que a apoptose é o...
Figura 2. Inflamação no tecido renal após a isquemia e reperfusão (IR) e pré-tratamento com castanha-do-brasil (CB): expressão de ciclooxigenase-2 (COX-2, A-H) e TGF-β (I-O). O tratamento com 150 mg de CB (F/H) sete dias antes da cirurgia de IR aumenta a expressão de COX-2, comparado aos demais grupos. O grupo IR mostra expressão aumentada de COX-2 (D/H) e TGF-β (L/O), mas o tratamento com 75 mg de CB (E/H e M/O) atenua esse efeito. [G] Controle da reação (CR). [H/O] Score médio. Contracoloração: Hematoxilina. Barras: 100 μm. *p<0,05, IR vs. SHAM, e *p<0,05, IR+CB150 vs. demais grupos (Kruskal-Wallis + pós-teste de Dunn); +p<0,05 IR vs. IR+CB75 e IR+CB150 (ANOVA + pós-teste de Tukey). Dados apresentados como medianas, quartis 25-75%, valores mínimos e máximos.

principal mecanismo na morte precoce das células tubulares ao tempo da insuficiência renal aguda, e a inibição da apoptose e da inflamação nesse estágio pode representar uma poderosa abordagem terapêutica. De fato, este estudo demonstra que o tratamento prévio com 75 mg de CB reduz a expressão de caspase-3 no rim após a IR, confirmando seu efeito protetor contra a morte celular.

Dessa forma, os dados apresentados neste estudo evidenciam que a CB exerce efeito benéfico na lesão e inflamação renal, e, por outro lado, esse efeito melhora a função prejudicada pela IR, como demonstrado previamente.14

Entretanto, diferente do tratamento com 75 mg de CB, a expressão renal de COX-2 foi maior no grupo IR+CB150. Corroborando esses dados, a função renal dos animais IR piora com a ingestão dessa dosagem de CB. A creatinina plasmática, ureia e fósforo foram maiores comparados aos demais grupos.14 Como explicado, esse efeito pode estar relacionado ao elevado conteúdo de fósforo e aminoácidos na CB.11 Distúrbios eletrolíticos são comumente observados nas doenças renais, e o suporte nutricional é frequentemente necessário,38 demandando baixa ingestão de proteínas,39-40 de forma que o consumo de castanhas pode prejudicar esse manejo nutricional. De fato, sugere-se o consumo de apenas
uma castanha-do-brasil por dia por pacientes em hemodiálise, para se obter o efeito protetor anti-inflamatório e antioxidante. Nosso estudo reforça essa recomendação diária máxima por pacientes com doenças renais. E mais, evidencia um possível efeito pró-inflamatório com a dose de 150 mg de CB. Assim, o mecanismo envolvido nesse efeito pró-inflamatório necessita ser melhor investigado, bem como é interessante verificar o efeito da CB na doença renal crônica para averiguar seu efeito protetor na lesão renal causada pela IR a longo prazo.

Conclusão

Em resumo, os resultados evidenciam um efeito benéfico da ingestão prévia de baixas doses de CB no dano causado pela IR no rim, melhorando a inflamação, a lesão e a morte celular.

Agradeimentos

Este estudo foi apoiado pela FAPESP (Fundaçôa de Amparo à Pesquisa do Estado de São Paulo, processos 2015/25616-0 e 2017/07138-9).

Referências

1. Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury. Nephron Exp Nephrol 2008;108:e102-7.
2. Rubinstein I, Abassi Z, Milman F, Ovcharenko E, Coleman R, Winaver J, et al. Hyperbaric oxygen treatment improves GFR in rats with ischaemia/reperfusion injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrol Dial Transplant 2009;24:428-36.
3. Kleikers PW, Wingler K, Hermans Jj, Diebold I, Altenhöfer S, Rademacher KA, et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 2012;90:1391-1406.
4. Malek M, Nemarabakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 2015;4:20-7.
5. Maranhão PA, Kraemer-Aguair LG, de Oliveira CI, Kuschnir MC, Vieira YR, Souza MG, et al. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial. Nutr Metab (Lond) 2011;8:32.
6. López-Uriarte P, Nogueiro R, Saiq D, Bulló M, Rupérez P, et al. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury. J Bras Nefrol 2018;40(1):10-17.
7. Pereira BJ, Castro I, Burtmann EA, Malheiros DM, Yu L. Effects of sirolimus alone or in combination with cyclosporine A on renal ischemia/reperfusion injury. Braz J Med Biol Res 2010;43:737-44.
8. Faccio FN Jr, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MA, et al. Annexin I mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med (Berl) 2011;89:51-63.
9. Comimetti C, de Bortoli MC, Garrido AB Jr, Cozzolino SM. Effects of sirolimus alone or in combination with cyclosporine A on renal ischemia/reperfusion injury. Braz J Med Biol Res 2010;43:737-44.
30. Abassi Z, Hamoud S, Hassan A, Khamaysi I, Nativ O, Heyman SN, et al. Involvement of heparanase in the pathogenesis of acute kidney injury: nephroprotective effect of PG545. Oncotarget 2017;8:34191-204.
31. Burdmann EA, Bennett WM. Nephrotoxicity of calcineurin and mTOR inhibitors. In: De Broe MF, Porter GA, eds. Clinical Nephrotoxins - Renal Injury from Drugs and Chemicals. New York: Springer US; 2008. p. 617-82.
32. López-Hernández FJ, López-Novoa JM. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 2012;347:141-54.
33. Stockler-Pinto MB, Mafra D, Moraes C, Lobo J, Boaventura GT, Farage NE, et al. Brazil nut (Bertholletia excelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol Trace Elem Res 2014;158:105-12.
34. Stockler-Pinto MB, Malin O, Moraes C, Farage NE, Silva WS, Cozzolino SM, et al. A follow-up study of the chronic kidney disease patients treated with Brazil nut: focus on inflammation and oxidative stress. Biol Trace Elem Res 2015;163:67-72.
35. Cardozo LF, Stockler-Pinto MB, Mafra D. Brazil nut consumption modulates Nrf2 expression in hemodialysis patients: A pilot study. Mol Nutr Food Res 2016;60:1719-24.
36. Devarajan P. Update on mechanisms of ischemic acute kidney injury. Clin J Am Soc Nephrol 2006;17:1503-20.
37. Liu F, Ni W, Zhang J, Wang G, Li F, Ren W. Administration of Curcumin Protects Kidney Tubules Against Renal Ischemia-Reperfusion Injury (RIRI) by Modulating Nitric Oxide (NO) Signaling Pathway. Cell Physiol Biochem 2017;44:401-11.
38. Langston C. Managing Fluid and Electrolyte Disorders in Kidney Disease. Vet Clin North Am Small Anim Pract 2017;47:471-90.
39. Robertson LT, Treviño-Villarreal JH, Mejía P, Grondin Y, Harpurlugil E, Hine C, et al. Protein and Calorie Restriction Contribute Additively to Protection from Renal Ischemia Reperfusion Injury Partly via Leptin Reduction in Male Mice. J Nutr 2015;145:1717-27.
40. Shah SR, Tunio SA, Arshad MH, Mozamm Z, Noorani K, Ferroze AM, et al. Acute Kidney Injury Recognition and Management: A Review of the Literature and Current Evidence. Glob J Health Sci 2015;8:120-4.