Modeling the determinants of dry bulk FFA trading volume from a cross-market perspective of spot and forward

Shiyuan Zheng and Shun Chen

School of Transportation, Shanghai Maritime University, Shanghai, China

Abstract

Purpose – This study aims to propose a theoretical model to characterize the optimal forward freight agreement (FFA) procurement strategies and investigate the determinants of FFA trading activities from a new cross-market perspective.

Findings – A two-step model specification is used to empirically test the theoretical results for the Capesize, Panamax and Supramax sectors. It is found that spot demand has a positive relation with FFA trading volume for all three sectors. Moreover, spot demand volatility has a negative relation, while the correlation between spot demand and spot rate has a positive relation with FFA trading volume for the Capesize and Panamax sectors.

Originality/value – The results show that the expected spot demand is scaled by a “quantity premium,” which is the product of a demand covariance term, a demand riskiness term and a demand volatility term. This can be used by the traders in the FFA market to construct their hedging strategies.

Keywords Trading volume, DCC-GARCH model, Dry bulk, FFA, Fixture demand, Spot price

Paper type Research paper

1. Introduction

Since the past 20 years, the forward freight market has experienced a dramatic change. After reaching a historical peak in 2007, its trading volume sharply decreased in 2008 and 2009, then maintained at a relatively stable level around one million lots in the recent six years (except 2012, see Figure 1). As an important hedging tool, the forward freight agreement (FFA) plays a significant role in risk management in the dry bulk and tanker markets. An FFA is defined as a cash-settled contract between two counterparties to settle a freight rate for a specified quantity of cargo or hire rate type of vessel in one or a basket of the major shipping routes in the dry bulk and tanker shipping sectors at a certain date in the future (Alizadeh et al., 2015a). Because of its remarkable value for the shipping theory and the industrial practice, FFA draws much attention in the academic field. However, the FFA market has long been dominated by financial institutions such as hedge funds and investment banks, which treat the FFA as a speculation tool. In this paper, we aim to investigate the hedging function of FFA and the determinants of the FFA trading volume for the dry bulk shipping sector from a cross-market perspective (the spot market and the future market). Through this study, we examine whether the FFA can play a hedging and risk management role or only as a speculation tool.
There are lots of studies on the dynamics of the FFA market, the relationship between spot rates and FFA prices and risk management issues related to FFA. Kavussanos and Visvikis (2006) make a survey for the literature on shipping derivatives including FFA. For the issue of the dynamics of the FFA market, most studies investigate the volatility of FFA prices or returns and their influencing factors. Koekebakker and Adland (2004) use the weekly time charter rates of a Panamax 65,000 dwt bulk carrier as a sample to investigate the factors governing the dynamics of the forward freight rate curve. Batchelor et al. (2005) explore the interrelationships between the bid-ask spreads and the FFA price volatility. Kavussanos et al. (2010) examine the cross-market linkages and spillover effects between FFAs and futures contracts on the commodities carried by Panamax vessels. Kavussanos et al. (2014) investigate the economic spillovers between the freight derivatives markets of the dry bulk shipping sectors and the derivatives of the commodities carried by the dry bulk vessels.

For the issue of relations between spot rates and FFA prices, Kawssanos and Nomikos (1999) examine the relationship between the futures prices and the realized spot prices in the Baltic International Freight Futures Exchange (BIFFEX) market. Kawssanos and Nomikos (2003) examine the causal relationship between futures and spot prices in the freight futures market. Kavussanos and Visvikis (2004) use the vector error correction model (VECM)-generalized autoregressive conditional heteroskedasticity (GARCH)-X model to examine the lead-lag relationship in both returns and volatilities between spot and FFA prices for four Panamax routes. Kavussanos et al. (2004a) investigate impacts of the introduction of the FFA trading on the spot price volatility. Kavussanos et al. (2004b) use the same four routes as a sample to investigate whether the FFA prices (one, two and three months before maturity) are the unbiased predictors of spot rates. Batchelor et al. (2007) compared the performance of vector auto regression (VAR), VECM and autoregressive integrated moving average models in forecasting spot and FFA rates. The results indicate that FFA prices can improve the forecasting performance of spot rates, but not vice versa. Tezuka et al. (2012) establish an equilibrium price model to derive the spot price and future price formulae. Moreover, they obtain an optimal hedge ratio based on their model. Zhang et al. (2014) explore the lead–lag relationships in freight rates between spot and forward markets. Li et al. (2014) use dynamic conditional correlation (DCC)-GARCH model to investigate the spillover effects and dynamic correlations between spot and forward tanker freight rates returns.

For the issue of FFA hedging and risk management, Tvedt (1998) derives an analytical pricing formula for European futures options in the BIFFEX market. Kawssanos and

![Figure 1. The annual FFA trading volume in the dry bulk shipping market](image-url)
Nomikos (2000a, 2000b) investigate the hedging ratios and hedging efficiency in the BIFFEX market. Dinwoodie and Morris (2003) utilize the questionnaires to study the attitudes of tanker shipowners and charterers toward freight hedging and their risk perceptions of FFAs. Koekebakker et al. (2007) establish theoretical models to value the Asian-style options traded in the freight derivatives market. Nomikos and Doctor (2013) carry out a comprehensive study on the quantitative trading strategies in the FFA market for various contracts and maturities with different trading rules. Alizadeh et al. (2015a) investigate the impact of liquidity risk on FFA returns. Alizadeh et al. (2015b) examine the effectiveness of alternative hedging methods in managing tanker freight rate risk based on Tanker FFAs.

Although there are many studies concerning different aspects of the FFA market, there are very little research examining the relationship between the FFA trading volume and its determinants from a cross-market perspective. Here, we focus our attention on the work of Alizadeh (2013), who investigate the relationship between the FFA trading volume and FFA price volatilities for Capesize, Panamax and Supramax sectors. In our paper, we aim to explore the hedging function of FFA and the determinants of the FFA trading volume from a different cross-market perspective. Although we work on a similar topic, there are still some differences as follows:

- **Different perspectives:** Alizadeh (2013) explores the relation between the FFA trading volume and its price volatility in the FFA market, while we investigate the impacts of the spot demand volatility and the covariance between the spot rate and the spot demand, or the covariance between the earning and the spot demand, on the FFA trading volume. In other words, we mainly focus on the FFA hedging from a cross-market perspective, while Alizadeh (2013) examines the speculation or arbitrage of FFA. To be consistent with the fact that many players in the practice trade FFA for the purposes of speculation or arbitrage, we add the consideration of the speculation or arbitrage function of FFA in our empirical studies. Still, we find that the demand volatility in the spot market has a negative impact on the FFA trading volume, while the covariance between the spot demand and the spot rate can influence positively the FFA trading volume for the Capesize and Panamax sectors.

- **Different theoretical basis:** Alizadeh (2013) uses the theory of the mixture of distribution of Clark (1973) to explain the contemporaneous relationship between volatility and trading activity, while we establish a model on the inventory theory to characterize the equilibrium of the FFA trading activity and its determinants.

- **Different models to estimate the volatility:** Alizadeh (2013) uses the EGARCH-X model to estimate the FFA price volatilities, while we use the DCC-GARCH to estimate the time-dependent spot demand volatility and the covariance between the spot demand and the earning, as well as the covariance between the spot demand and the spot rate. In the DCC-GARCH model, asymmetries are incorporated in a broader fashion than in other types of multivariate GARCH models, i.e. the DCC-MGARCH model does not assume constant correlation coefficients over the sample period. Specifically, it allows for series-specific news shocks and smoothing parameters and takes into account conditional asymmetries in correlation dynamics and corrects for heteroskedasticity directly by using standardized residuals in the estimation of correlation coefficients (Tsouknidis, 2016). Therefore, the dynamic variance and covariance needed to verify our theoretical statements can be better estimated.

Our work contributes to the literature in the following ways.
Theoretically, we investigate the FFA hedging function and the determinants of dry bulk FFA trading activities from a new cross-market perspective. Some existing literature explores the determinants of FFA trading volume from the freight forward market itself, e.g. FFA price volatility and FFA trading volume (Alizadeh, 2013). Others discuss the relationship between prices in the spot and forward markets (Kavussanos and Visvikis, 2004; Kavussanos et al., 2004a, 2004b; Batchelor et al., 2007; Tezuka et al., 2012; Zhang et al., 2014), or the volatility spillovers (Kavussanos et al., 2014; Tsouknidis, 2016), from a cross-market perspective. In our paper, we propose a theoretical model to characterize the optimal FFA procurement strategies to indicate the FFA hedging function. We prove that the optimal FFA procurement quantity is the expected spot demand scaled by a “quantity premium,” which is the product of a demand covariance term, a demand riskiness term and a demand volatility term, from the perspective of hedging. We argue that besides FFA prices, some factors in the spot market, e.g. spot rates, spot demand, spot demand volatility and the covariance between the spot demand and spot rate, have impacts on the FFA trading volume.

Empirically, we link our study with the existing literature which mostly examines the dynamic of the FFA prices. Considering both the hedging and the speculation functions of FFA in the empirical studies, our theoretical conclusions are tested and most of them are verified in the Capesize and Panamax sectors. The empirical study results indicate that our investigation on the FFA hedging from a cross-market perspective is valid. Moreover, our empirical studies illustrate the procedure to obtain the parameters needed to determine the optimal FFA procurement quantity when using the FFA hedging function. The empirical equations between the FFA trading volume and its determinants can be used for the possible applications of the FFA hedging.

The rest of the paper is organized as follows: Section 2 establishes a theoretical model to characterize the optimal FFA procurement strategies for a buyer. Section 3 uses a two-step model specification to empirically test the theoretical statements derived from Section 2. Conclusions and possible directions for future research are summarized in Section 4.

2. Theoretical model
In this section, we establish a theoretical model to analyze the shipping capacity procurement problem when a buyer faces uncertainties in the spot demand, spot rates and shipping revenues. It is worthy pointing out that our theoretical model focuses on the hedging function of FFA[1]. It is well known that shipping capacities cannot be stored. Thus, procurement of shipping supply in the spot and forward markets for delivery on the usage date is important in matching a buyer’s uncertain demand. Our model can characterize the optimal FFA procurement strategies for a buyer. In our model, a buyer is an agent who uses the shipping services, e.g. a shipper. To hedge the risk of the spot rate fluctuation and the uncertain demand in the future, he procures some shipping capacities now by a forward contract with delivery at a future time (of course, in any time before its delivery, he can sell them in the market if it is profitable to do so. This can be considered as the speculation or arbitrage function of FFA). Because the international dry bulk shipping is a perfect competition industry (Pirrong, 1992), the sum of all buyers’ optimal FFA procurement quantities is the market equilibrium volume. Therefore, we can investigate the determinants and their impacts on the FFA trading volume by our model.

We consider a shipping capacity procurement problem in a finite horizon \([0, T]\). To satisfy a shipping demand at time \(T\), the buyer decides to procure \(q\) units of shipping capacity at time 0 in a forward contract with delivery at time \(T\). It could be argued that FFAs are cash-settled instruments without any obligation whatsoever to deliver a transport
service. However, if we consider a FFA’s hedging function, we could relate the FFA’s trade with the transport service. According to the definition of FFA, it settles a freight rate for a specified quantity of cargo at a certain date in the future. That means that the FFA’s trader tries to avoid the future fluctuation of the freight rate using the FFA contract. When he sells the FFA contract, the buyer implicitly undertakes the transfer of the transport services. The FFA contract price is \(F \) at time 0. The shipping demand \(D \) is a random variable at any time before time \(T \), and it becomes known at time \(T \). The spot shipping price \(f \) and the buyer’s marginal revenue \(r \) to fulfill the shipping business at time \(T \) are random variables too. Thus, the buyer faces the following optimization problem:

\[
\max q \pi = E[\min(q, D) + f(q - D)^+ + Fq] \tag{1}
\]

where \((\cdot)^+ = \max(\cdot, 0)\), \(\pi \) is the buyer’s profit and \(E \) is the mathematical expectation.

The first and the second terms in equation (1) are the buyer’s expected revenue from shipping and selling the excess capacity on the spot market, respectively. The third term in equation (1) is the buyer’s forward procurement cost. Therefore, the buyer faces a stochastic optimization problem to determine his best procurement quantity in the forward market. Similar models can be found in the trade of future commodity, e.g. natural gas (Secomandi and Kekre, 2014).

Note that \(F \) is known by the buyer and \(D, f \) and \(r \) are unknown to the buyer when he makes the procurement decision. To solve equation (1), we assume the demand \(D \), the buyer’s marginal revenue \(r \) and the chartering price \(f \) to follow the joint lognormal distribution:

\[
\begin{pmatrix}
\log D \\
\log r \\
\log f
\end{pmatrix} \sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
\log M_D - S_D^2 / 2 \\
\log M_r - S_r^2 / 2 \\
\log M_f - S_f^2 / 2
\end{pmatrix},
\begin{pmatrix}
S_D^2 & \rho_{Dr} S_D S_r & \rho_{Dr} S_D S_f \\
\rho_{Dr} S_D S_r & S_r^2 & \rho_{rf} S_r S_f \\
\rho_{Dr} S_D S_f & \rho_{rf} S_r S_f & S_f^2
\end{pmatrix}
\end{pmatrix}
\tag{2}
\]

where \(M_D, M_r \) and \(M_f \) and \(S_D, S_r \) and \(S_f \) are the mean values and standard deviations of \(D, r \) and \(f \), respectively. \(\rho_{Dr} \) and \(\rho_{Df} \) are the correlation coefficients between \(D \) and \(r \) and \(D \) and \(f \), respectively. \(\begin{pmatrix}
\log M_D - S_D^2 / 2 \\
\log M_r - S_r^2 / 2 \\
\log M_f - S_f^2 / 2
\end{pmatrix} \) is the mean vector, and

\[
\begin{pmatrix}
S_D^2 & \rho_{Dr} S_D S_r & \rho_{Dr} S_D S_f \\
\rho_{Dr} S_D S_r & S_r^2 & \rho_{rf} S_r S_f \\
\rho_{Dr} S_D S_f & \rho_{rf} S_r S_f & S_f^2
\end{pmatrix}
\]

is the covariance matrix for \(\begin{pmatrix}
\log D \\
\log r \\
\log f
\end{pmatrix} \).

Solving equation (1), we obtain the optimal procurement quantity \(q \), which can be implicitly expressed as follows. The detailed proofs are shown in Appendix A.

\[
M_r \Phi \left(\frac{\log q - \log M_D + S_D^2 / 2 - \rho_{Dr} S_D S_r}{S_D} \right) - M_r \Phi \left(\frac{\log q - \log M_D + S_D^2 / 2 - \rho_{Df} S_D S_f}{S_D} \right) = M_r - F \tag{3}
\]

where \(\Phi(\cdot) \) is the standard normal distribution function.
Next, we explain the optimal condition equation (3) for the buyer’s procurement problem. If the buyer procures too much shipping capacity in the forward market, he will have to sell it in the spot market with the expected price M_f and obtain the expected net marginal revenue $M_r - M_f$. Because the revenue and spot price are uncertain, the expected net marginal revenue should be adjusted by their weights, which are related to the variance of the demand, the correlations between the demand and the spot price, as well as the correlations between the demand and the marginal revenue. The LHS of equation (3) is the buyer’s weighted expected marginal overage revenues. On the other hand, if the buyer does not procure enough shipping capacity in the forward market, his expected net marginal revenue is $M_r F$, which is the RHS of equation (3). Therefore, the economic insight of equation (3) is that the buyer’s optimal FFA procurement quantity is to equal the weighted expected marginal overage revenues and the expected marginal underage revenues.

Furthermore, if $\rho_D S_D S_r \approx \rho_D S_D S_f$, i.e. $\text{cov}(D, r) \approx \text{cov}(D, f)$, equation (3) can be simplified as: $\log q = \log M_D - S_D^2/2 + \rho_D S_D S_f + S_D \Phi^{-1}(z)$ or (4)

$$\log q = \log M_D - S_D^2/2 + \rho_D S_D S_r + S_D \Phi^{-1}(z)$$

where $z = \frac{M_r - F}{M_r - M_f}$ and $\Phi^{-1}(\cdot)$ is the inverse function of the standard normal distribution[3].

From equation (4) and (5), we know that the FFA trading volume q is related to the expected spot demand (M_D), the variance of the spot demand (S_D^2), the covariance between the demand and the spot rate ($\rho_D S_D S_f$) or the covariance between the demand and the earning ($\rho_D S_D S_r$), as well as the critical ratio (z). Exponentializing the both sides of equations (4) or (5), we obtain:

$$q = M_D \exp \left(-S_D^2/2 \right) \exp \left(\rho_D S_D S_f \right) \exp \left[S_D \Phi^{-1}(z) \right]$$

or

$$q = M_D \exp \left(-S_D^2/2 \right) \exp \left(\rho_D S_D S_r \right) \exp \left[S_D \Phi^{-1}(z) \right]$$

From equations (6) and (7), we can summarize a buyer’s optimal FFA procurement strategy as follows. The optimal FFA procurement quantity is the expected spot demand scaled by the demand covariance term $\exp (\rho_D S_D S_f)$ and the demand riskiness term $\exp [S_D \Phi^{-1}(z)]$ and descaled by the demand volatility term $\exp (-S_D^2/2)$. The latter three terms consist of a “quantity premium.” Investigating the impacts of these determinants to the optimal trading volume, we can obtain the following properties. The detailed proofs are shown in Appendix A:

- A positive relationship exists between the FFA volume and the expected spot demand.
- A positive relationship exists between the FFA volume and the expected earnings.
- A positive relationship exists between the FFA volume and the expected spot rates.
- A negative relationship exists between the FFA volume and FFA prices.
- A positive relationship exists between the FFA volume and the covariance between the spot demand and the spot rates (or the spot demand and the earnings).
- If the volatility of the spot demand is large, there is a negative relationship between the FFA volume and the volatility of the spot demand; otherwise, there is a positive relationship between the FFA volume and the volatility of the spot demand.
From equations (4) or (5), we know that the impacts of the spot demand volatility to the FFA trading volume come from two sources: the demand riskiness term \(S_D \Phi^{-1}(z)\), which has a positive impact, and the demand volatility term \((-S_D^2/2)\), which has a negative impact. The higher spot demand volatility can bring the possible higher revenue, but at the same time the possible over-procurement and profit loss. The final impacts depend on their interactions. Note that the demand volatility term is a quadratic function of \(S_D\), while the demand riskiness term is a linear function of \(S_D\). Therefore, when the spot demand volatility is large (or small), the demand volatility term dominates (or is dominated by) the demand riskiness term, which causes the negative (or positive) impact to the FFA trading volume finally.

In the next section, we will empirically test these statements.

3. Empirical tests

In this section, we use a two-step model specification. The first step is to measure the variance of the spot demand, the covariance between the spot demand and the earnings and the covariance between the spot demand and the spot rates. The DCC-GARCH (multivariate) model is developed to make the estimation. In the second step, the items derived from the DCC-GARCH model are used to analyze the relationship between the FFA trading volume and the various factors by regressions. Finally, our theoretical statements are examined for the three dry bulk shipping markets: Capesize, Panamax and Supramax. Similar two-step estimation procedure can be found in other studies, e.g. Xu et al. (2011).

3.1 Data

The data set in this study consists of weekly FFA prices\(^{4}\) (FFA), total trading volume (VOL), spot rate indices (SR), fixture demand (FIX) and the earnings (EARNING) for three dry bulk sectors, namely, Capesize, Panamax and Supramax, over the period of July 2009 to February 2016. The FFA prices and trading volume are from the Baltic Exchange. Here, the trading volume series are the total [cleared and over the counter (OTC)] trading activities for all maturity contracts, which are not specific trading activities for first, second, third and fourth nearest quarter FFAs. Weekly FFA prices for first, second, third and fourth nearest quarter (FFA-Q1, FFA-Q2, FFA-Q3, FFA-Q4) are Thursday’s prices\(^{5}\). We choose these four data series because they are considered as the most liquid contracts in the dry FFA market (Alizadeh, 2013). The weekly spot rate indices and the earnings are directly from the Clarkson SIN. The fixture demand is used to represent the spot market demand. The fixture information is obtained from both the Clarkson SIN (2013-2016) and the Baltic Exchange (2009-2012). After filtering the missing values and unusable information, a total of 10,687, 16,872 and 10,050 fixture observations are available for Capesize, Panamax and Supramax dry bulk ships, respectively. Based on these data, we obtained the weekly fixture demand by summing the corresponding “Dwt” or “Quantity” for the three bulk ships. The descriptive statistics of these variables are shown in Table I.

From Table I, we find that the FFA trade volume and the spot demand of the Supramax sector is much smaller than the other two sectors. Meanwhile, the standard deviations of these two variables in the Supramax sector are smaller than the other two sectors. These indicate that the Supramax market has low trading activities and liquidity. Moreover, all variables seem to be normally distributed, and the Supramax FFA trade volume and spot demand have higher skewness and kurtosis. Except these two variables, the others seem to be nonstationary according to the PP test for all sectors.
3.2 Methodology

3.2.1 Dynamic conditional correlation–GARCH models. To test the theoretical statements in Section 2, we need to investigate the time-varying variance of the fixture demand, the time-varying covariance between the fixture demand and the earning and the time-varying covariance between the fixture demand and the spot rate. The DCC-GARCH models, proposed by Engle (2002), are used to characterize the time-dependent conditional covariance of the error terms. These models can detect possible changes in conditional correlations over time, thus allowing for dynamic shocks in response to information. Moreover, the DCC-GARCH model accounts for heteroscedasticity directly by estimating correlation coefficients of the standardized residuals (Tsouknidis, 2016). Therefore, we use the DCC-GARCH(1,1) model in this section.

In our study, the VAR representation is used as the mean equations, which are shown as follows:

\[
\ln(ERN_t) = d_1 + \sum_{i=1}^{n} a_i \ln(ERN_{t-i}) + \sum_{i=1}^{n} b_i \ln(SR_{t-i}) + \sum_{i=1}^{n} c_i \ln(FIX_{t-i}) + \varepsilon_{1,t} \tag{8a}
\]
where $\varepsilon_{i,t}$ is the error term of the conditional mean equation and the error vector conditional covariance matrix of the vector $[\ln(ERN_t), \ln(SR_t), \ln(FIX_t)]^T$. The lag length n can be determined by the Schwarz information criterion (SC).

The conditional covariance matrix H_t can be expressed as:

$$H_t = D_t R_t D_t$$

where $D_t = \text{diag}(h_{11,t}^{1/2}, h_{22,t}^{1/2}, h_{33,t}^{1/2})$ indicates a diagonal matrix with time-varying standard deviation on the diagonal. Here $h_{ii,t}$ can be defined as a univariate GARCH(1,1) process:

$$h_{ii,t} = \omega_i + \alpha_i \varepsilon_{i,t-1}^2 + \beta_i h_{ii,t-1}, \forall i = 1, 2, 3$$

(8e)

where α_i and β_i are non-negative scalars satisfying $\alpha_i + \beta_i < 1$. In addition, the conditional correlation matrix R_t can be specified as:

$$R_t = \text{diag}(q_{11,t}^{-1/2}, q_{22,t}^{-1/2}, q_{33,t}^{-1/2}) Q_t \text{diag}(q_{11,t}^{-1/2}, q_{22,t}^{-1/2}, q_{33,t}^{-1/2})$$

(8f)

where $Q_t = (1 - \theta_1 - \theta_2) Q^{-} + \theta_1 z_{t-1} z_{t-1}^{'} + \theta_2 Q_{t-1}$ (8g)

with Q^{-} being the unconditional variance matrix of the standardized residuals filtered by the univariate GARCH process (8e) and the non-negative scalar θ_1 and θ_2 satisfying $\theta_1 + \theta_2 < 1$.

3.2.2 Linear regression models. After obtaining the variance of the fixture demand (VARF), the covariance between the fixture demand and the earning (COVFE) and the covariance between the fixture demand and the spot rate (COVFS), we establish the regression models for the three dry bulk shipping markets as follows:

$$\ln(\text{VOL}) = A_0 + A_1 \ln(\text{FFA}) + A_2 \ln(\text{FIX}) + A_3 \ln(\text{ERN}) + A_4 \ln(\text{SR}) + A_5 \text{COVFS} + A_6 \text{COVFE} + A_7 \text{VARF} + A_8 FV$$

(9)

Here for each sector, the variable FFA is represented by the weekly average of the FFA daily prices for first, second, third and fourth nearest quarter contracts, i.e. FFA-Q1, FFA-Q2, FFA-Q3 and FFA-Q4, respectively. To investigate the speculation or arbitrage function of FFA and their impacts on the FFA trading volume at the same time, in equation (9), we add the term FV, which is the volatilities of the returns of FFA. Here, the return of FFA is defined as $RT_t = \ln(\text{FFA}_t) - \ln(\text{FFA}_{t-1})$. According to the method proposed by Alizadeh (2013), we use the GARCH model to calculate FV. The estimation results of the GARCH model for the Capsize, Panamax and Supramax sector are presented in Appendix B.

By equation (9), we can investigate the relations between the FFA trading volume and the corresponding factors to verify our theoretical statements in Section 2.
3.3 Empirical results

The estimation results of the DCC-GARCH models for the different dry bulk shipping markets are presented in Table II. The estimated time-varying conditional demand variances and correlations generated from the DCC-GARCH model are illustrated in Figures 2-4. Their descriptive statistics are summarized in Table III. From the results, we can observe that the Capesize sector has the larger volatility of its spot demand and stronger covariance

Mean equation	Capesize	Panamax	Supramax
d_1	-1.785*** (-3.515)	-0.378 (-1.202)	0.218 (1.600)
d_2	-0.567** (-2.011)	-0.353 (-1.126)	0.075 (0.719)
d_3	8.457*** (6.551)	10.490*** (6.692)	3.955*** (5.971)
a_1	0.611 (11.540)	0.839*** (25.004)	0.803*** (24.392)
a_2	-0.179** (-5.852)	-0.105*** (-3.469)	-0.075*** (-2.897)
a_3	0.100 (1.155)	0.017 (0.261)	0.394** (2.822)
b_1	0.474*** (6.639)	0.117*** (4.417)	0.182*** (5.681)
b_2	1.204*** (27.086)	1.065*** (43.107)	1.965*** (38.483)
b_3	-0.241*** (-2.270)	0.113 (1.583)	-0.183*** (-1.468)
c_1	0.123*** (4.222)	0.066*** (3.195)	0.026*** (2.985)
c_2	0.047*** (2.922)	0.055*** (2.678)	0.012*** (1.810)
c_3	0.512*** (6.389)	0.249* (1.894)	0.549*** (9.296)

Variance equation			
ω_1	0.000 (0.296)	0.004 (1.648)	0.002*** (4.025)
α_1	0.011*** (57.011)	0.329** (2.020)	0.241*** (3.007)
β_1	0.989*** (105.582)	0.335 (1.041)	0.381*** (3.322)
ω_2	0.000 (1.478)	0.002* (2.519)	0.001*** (2.801)
α_2	0.129*** (2.930)	0.222*** (3.355)	0.615*** (5.748)
β_2	0.850*** (16.814)	0.562*** (5.113)	0.239*** (2.350)
ω_3	0.998*** (3.372)	0.045* (7.700)	0.003 (0.760)
α_3	0.277 (1.504)	0.325 (1.597)	0.050*** (1.737)
β_3	0.064 (0.482)	0.000*** (2.923)	0.028*** (17.174)
θ_1	0.031*** (67.534)	0.002 (1.000)	0.048 (1.644)
θ_2	0.831*** (61.394)	0.980*** (75.399)	0.759*** (5.370)

Diagnostics

LogL	278.725	755.850	877.219
AIC	0.434	0.507	0.544
SC	0.427	0.487	0.514
ARCH(12) of ERN	0.253 (0.995)	0.314 (0.987)	0.262 (0.820)
ARCH(12) of SR	0.606 (0.837)	0.384 (0.969)	0.121 (0.998)
ARCH(12) of FIX	0.575 (0.862)	0.976 (0.861)	0.483 (0.924)

Notes: ***,** and *mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics is reported in the parenthesis. LogL is the log-likelihood. AIC is the Akaike information criterion. SC is the Schwarz information criterion. ARCH(12) is Engle’s F-test for ARCH effects. Figures in the brackets under the ARCH(12) estimates indicate the significance levels.

$$\ln(ERN_t) = d_1 + a_1 \ln(ERN_{t-1}) + b_1 \ln(SR_{t-1}) + c_1 \ln(FIX_{t-1}) + \varepsilon_{1,t}$$
$$\ln(SR_t) = d_2 + a_2 \ln(ERN_{t-1}) + b_2 \ln(SR_{t-1}) + c_2 \ln(FIX_{t-1}) + \varepsilon_{2,t}$$
$$\ln(FIX_t) = d_3 + a_3 \ln(ERN_{t-1}) + b_3 \ln(SR_{t-1}) + c_3 \ln(FIX_{t-1}) + \varepsilon_{3,t}$$

$$\varepsilon_t \sim N(0, H_t)$$

Table II.

The estimates of DCC-GARCH models for different dry bulk sectors
between its spot demand and spot rate (or earning) than the Panamax and Supramax sectors. Meanwhile, the descriptive statistics of the volatilities of the FFA returns for different sectors are summarized in Table III too. It can also be found that the Capesize sector has the larger volatility of the FFA returns than the other two sectors. The larger volatilities of these variables in the Capesize sector can be explained as follows. The main cargoes carried by the Capesize carriers are iron ore and coal, while the Panamax and Supramax carriers can operate more versatile and transport more types of dry bulk cargoes, such as grain, sulfure and fertilizers (Kavussanos et al., 2014). As the world economy is deeply stuck in recession since 2008, the demand for iron ore and coal slumped in recent years. It is easy to understand that the volatility of the spot demand for the Capesize carriers is larger than other carriers. On

Figure 2. The dynamic covariance between the fixture demand and the earning for different dry bulk sectors

Figure 3. The dynamic covariance between the fixture demand and the spot rate for different dry bulk sectors

Figure 4. The dynamic variance of the fixture demand for different dry bulk sectors

MABR
3,3

266
the other side, the Capesize carriers have more volatile spot rates than other two carriers (Alizadeh and Talley, 2011). Higher volatilities of both spot demand and freight rate mean that the Capesize carriers’ demand is more price elastic and they have stronger covariance between their spot demand and spot rates. Meanwhile, the speculation is more active in the Capesize sector (which can be affected by the larger volatility of the FFA returns) than the other two because of the higher market demand.

The regression results of equation (9) are presented in Table IV, where Q1, Q2, Q3 and Q4 mean the cases that the weekly FFA prices for first, second, third and fourth nearest quarter (FFA-Q1, FFA-Q2, FFA-Q3, FFA-Q4) are used to represent the values of the variable FFA in equation (9), respectively. The columns of Q1, Q2, Q3 and Q4 show the corresponding values of the estimated parameters when the FFA prices in the regression are represented by FFA-Q1, FFA-Q2, FFA-Q3, FFA-Q4, respectively. From Table IV, we can obtain the following observations:

- The spot demand is positively related with the FFA trading volume for all three sectors. This is consistent with our theoretical analysis of Statement (i).
- The spot rate has the positive relation with the FFA trading volume for the Capesize and Supramax sectors. This is consistent with our theoretical analysis of Statement (iii). The reason is obvious that the rising expected spot rate brings more benefits if buyers procure more transport capacity by the FFA trading.

Variable	Mean	Median	Std. Dev.	Skewness	Kurtosis	Normality	PP Test
Capesize							
COVFEQ	0.019	0.018	0.0035	3.247	19.908	4606.23	0.000
COVFS	0.014	0.013	0.0062	1.198	4.557	114.57	0.000
VARFC	0.144	0.122	0.072	5.917	52.284	36072.2	0.000
FV-Q1	0.0055	0.0042	0.0038	4.207	30.100	10601.49	0.000
FV-Q2	0.0089	0.0042	0.0171	6.240	50.168	31344.16	0.000
FV-Q3	0.0062	0.0036	0.0112	6.646	53.613	35598.95	0.000
FV-Q4	0.0106	0.0077	0.0179	9.185	90.362	102939.8	0.000
Panamax							
COVFEQ	0.00196	0.00179	0.0007	1.37	6.093	239.850	0.000
COVFS	0.0056	0.0051	0.0017	1.973	7.758	536.497	0.000
VARFP	0.063	0.051	0.033	5.286	40.651	21474.770	0.000
FV-Q1	0.0028	0.0020	0.0026	4.547	33.353	13093.91	0.000
FV-Q2	0.0038	0.0024	0.0055	5.989	47.174	27581.10	0.000
FV-Q3	0.0033	0.0020	0.0051	5.026	33.710	13576.15	0.000
FV-Q4	0.006	0.005	0.0067	11.845	148.212	279615.0	0.000
Supramax							
COVFES	0.0007	0.0005	0.0021	0.909	8.738	508.740	0.000
COVFSS	0.0023	0.0018	0.0021	1.703	9.907	832.675	0.000
VARFS	0.135	0.116	0.054	1.573	5.482	225.426	0.000
FV-Q1	0.0022	0.0015	0.0029	6.540	55.808	41190.3	0.000
FV-Q2	0.0021	0.0016	0.0017	4.621	28.697	10347.53	0.000
FV-Q3	0.0020	0.0013	0.0033	7.443	66.907	57585.75	0.000
FV-Q4	0.0018	0.0012	0.0024	5.231	32.896	13961.42	0.000

Note: Jarque-Bera is the Jarque and Bera test for normality. PP Stat is the Phillips and Perron test for unit root.

![Table III. Descriptive statistics of the variance of the fixture demand, the covariance between the fixture demand and the spot rate, the covariance between the fixture demand and the earning and the volatilities of the FFA return for different dry bulk sectors](image)
Table IV.

The estimates of the regression models for different dry bulk sectors

	Q1	Q2	Q3	Q4
Capesize				
A_0	2.457*** (2.304)	1.932* (1.910)	0.887 (0.894)	0.977 (1.010)
A_1	-0.335*** (4.392)	-0.266*** (3.582)	-0.168** (2.107)	-0.195*** (2.310)
A_2	0.387*** (7.187)	0.420*** (8.144)	0.456*** (8.839)	0.468*** (9.266)
A_4	0.387*** (7.806)	0.420*** (8.144)	0.456*** (8.839)	0.468*** (9.266)
A_5	13.844*** (2.606)	12.739** (2.450)	13.086** (2.244)	12.712** (2.217)
A_7	-0.979*** (2.928)	-0.723** (2.191)	-0.734** (2.167)	-0.560* (1.668)
A_8	17.630*** (2.869)	––	––	2.724** (2.260)

Diagnostics

Adjusted R^2	LogL	F Statistics	AIC	SC	DW Statistics
Q1	0.326	-133.199	26.076	0.898	1.520
Q2	0.320	-137.005	29.240	0.902	1.478
Q3	0.319	-137.873	28.713	0.919	1.492
Q4	0.298	-132.71	22.891	0.901	1.550

Panamax

A_0	5.617*** (4.755)	5.159*** (4.157)	5.530*** (4.309)	6.244* (5.199)
A_2	0.154* (1.787)	0.135 (1.561)	0.142* (1.618)	0.081 (0.975)
A_3	0.089*** (2.012)	0.291*** (2.857)	0.263*** (2.633)	0.208* (2.733)
A_4	-0.175*** (1.995)	-0.154*** (1.790)	-0.188*** (2.181)	-0.162* (1.933)
A_5	46.654*** (3.981)	61.096*** (4.082)	53.618*** (3.548)	58.729*** (4.059)
A_7	-1.864*** (2.492)	-2.119*** (2.817)	-2.044*** (2.504)	-2.199*** (3.050)
A_8	20.464*** (2.658)	––	13.483*** (3.177)	––

Supramax

A_0	3.021*** (2.923)	2.803*** (2.728)	2.696*** (2.581)	2.805*** (2.739)
A_2	0.181*** (2.490)	0.183*** (2.508)	0.191*** (2.593)	0.183*** (2.513)
A_4	0.253*** (3.970)	0.284*** (4.660)	0.277*** (4.360)	0.284*** (4.672)
A_7	1.642*** (2.687)	1.743*** (2.865)	1.806*** (2.937)	1.742*** (2.860)
A_8	16.209* (1.757)	––	15.684* (1.905)	––

Notes:

***, ** and * mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics is reported in the parenthesis. The variables with insignificant estimates are deleted from the regression equations. LogL is the log-likelihood. AIC is the Akaike information criterion. SC is the Schwarz information criterion. ARCH(12) is Engle’s F-test for ARCH effects. Figures in the brackets under the ARCH(12) estimates indicate the significance levels. \(\text{ln}(\text{VOL}_t) = A_0 + A_1\text{ln}(FFA_t) + A_2\text{ln}(\text{FIX}_{t-1}) + A_3\text{ln}(\text{ERN}_t) + A_4\text{ln}(\text{SR}_t) + A_5\text{COVFS}_t + A_6\text{COVF}_t + A_7\text{VARFS}_t + A_8\text{FV}_t \)
The spot demand volatility has the negative relationship with the FFA trading volume for the Capesize and Panamax sectors. For the Capsize sector, this result is consistent with our theoretical statements because the spot demand volatility of the Capsize sector is the highest among the three sectors. The main cargoes carried by the Capsize carriers, e.g., iron ore and coal, have higher demand volatilities,[6] which means higher risk for procuring more capacity in the forward market. Therefore, buyers are more cautious about the FFA trading, especially when the volatility of the spot demand is higher. This can restrain the FFA trading volume. One possible explanation for the inconsistence of Statement (vi) in the Supramax sector is its relative lower trading activities (Figure 5). The similar phenomenon and explanations can be found in the relationship between the FFA price change and trading volume in the work of Alizadeh (2013).

The covariance between the spot demand and the spot rate displays a positive relationship with the FFA trading volume in the Capesize and Panamax sectors. This is consistent with our theoretical analysis of Statement (v). Higher covariance between the spot demand and the spot rate means that buyers have more chances to sell the excess capacity and obtain more revenues in the spot market. This can encourage their trading enthusiasm in the forward market. Because of its lower trading activities, this Statement is not significant for the Supramax sector too.

FFA prices have a negative impact on the FFA trading volume only for the Capesize sector, which occupies more than 50 per cent of the freight forward market (Figure 5)[7]. This is consistent with our theoretical analysis of Statement (iv).

In the half of all scenarios, the volatilities of FFA returns have significant and positive impacts on the FFA trading volume, which indicates the speculation or arbitrage exist in most players when they trade FFA. This result is consistent with the literature addressing the speculation or arbitrage activities in FFA trade (Alizadeh, 2013).

In summary, we find that in the Capsize sector, we obtain the most reliable results consistent with our theoretical statements. This is mainly due to its more active trading and better liquidity. The reliable results of the empirical studies in the Capsize sector not only partially verify our theoretical statements, but also supply the traders in the FFA market a possible way to construct their hedging strategies. From equations (6) or (7), we know that a buyer's optimal FFA procurement quantity is the expected spot demand multiplied by the quantity premium, which is determined by the demand covariance term, the demand riskiness term and the demand volatility term. Using the approach proposed by our empirical studies, one can estimate the parameters in equations (6) or (7) and then construct the feasible hedging

Figure 5.
The FFA trading volume percentages of the Capsize, Panamax and Supramax sectors.
strategy in practice. Moreover, our study indicates the impacts of the spot demand volatility and the covariance between the spot demand and the spot rate to the FFA trading activities. These impacts are not displayed by the other literature and can supply new insights to FFA traders.

4. Conclusions

In this paper, we analyze the determinants on the FFA trading volume from a cross-market perspective. We establish a theoretical model to characterize the determinants and their impacts on the FFA trading volume in the market equilibrium. Then we use a two-step model specification to empirically test our theoretical statements for the Capesize, Panamax and Supramax sectors. The results indicate that the most reliable results consistent with our theoretical statements are presented in the Capsize sector. Our empirical studies can supply the traders in the FFA market a possible way to construct their hedging strategies: the buyer’s optimal FFA procurement quantity is the expected spot demand multiplied by the quantity premium, which is determined by the demand covariance term, the demand riskiness term and the demand volatility term. In addition, our study indicates the impacts of the spot demand volatility and the covariance between the spot demand and the spot rate to the FFA trading activities. These impacts can also supply new insights to FFA traders.

Some possible extensions could be considered in future research. One could consider adding some constraints, e.g. the budget constraint, for the procurement in the forward freight market in the theoretical model, and investigate their impacts on the FFA trading volume. This can be implemented by adding a constraint in the buyer’s optimization problem. Moreover, cross-market linkages can be reflected from another angle: between forward freight markets and the derivatives markets of the commodities carried by the dry bulk vessels (Kavussanos et al., 2014). Therefore, one can seek other determinants of the FFA trading volume from these derivative markets of the commodities. For instance, the trading volumes and the volatilities of the derivative prices in the derivative markets of the commodities can be included in our model to reveal their impacts on the FFA trading activities.

Notes

1. Here, we isolate the hedging impacts of the FFA on its trading volume by our theoretical model. In the empirical studies, we will add the impacts of the speculation or arbitrage of FFA in the regression equations.

2. There are many empirical studies to demonstrate that the shipping demand and freight rate follow the lognormal distributions, e.g. Berg-Andreassen (1997); Kavssanos and Nomikos (1999).

3. In equation (4) and equation (5), it does not matter what base is used in the log function. The base can be the natural base e, or other bases. In the empirical studies, we use the natural log function.

4. Here, FFA prices are actually BFA (Baltic Forward Assessment) prices from the Baltic Exchange.

5. According to (Alizadeh et al. 2015a), Thursday’s FFA prices are used to represent the weekly prices to avoid the possible bias due to the weekend effects.

6. We use the sample provided by Stopford (2009, p.422, Table 11.2) to justify this statement. By calculating the coefficients of variation (CVs), which equals to the standard deviation divided by the mean of the maritime transport volumes for different dry bulk cargoes, we know that the CVs of iron ore, coal, grain, agribulks, sugar, fertilizer, Metals and minerals, and steel and forest
products are 0.32, 0.40, 0.17, 0.29, 0.21, 0.08, 0.24 and 0.10, respectively. It can be easily found that the iron ore and coal have higher demand volatilities than other dry bulk cargoes.

7. In Figure 5, the FFA trading volume percentage of the Capsize (or Panamax or Supramax) means the percentage of the FFA trading volume of the Capsize (or Panamax or Supramax) sector to the total FFA trading volume.

References
Alizadeh, A.H. (2013), “Trading volume and volatility in the shipping forward freight market”, *Transportation Research Part E*, Vol. 76, pp. 58-75.

Alizadeh, A.H., Huang, C.Y. and van Dellen, S. (2015b), “A regime switching approach for hedging tanker shipping freight rates”, *Energy Policy*, Vol. 49, pp. 44-59.

Alizadeh, A.H., Kappou, K., Tsouknidis, D. and Visvikis, I. (2015a), “Liquidity effects and FFA returns in the international shipping derivatives market”, *Transportation Research Part E*, Vol. 76, pp. 58-75.

Alizadeh, A.H. and Talley, W.K. (2011), “Microeconomic determinants of dry bulk shipping freight rates and contract times”, *Transportation*, Vol. 38 No. 3, pp. 561-579.

Baltic Exchange (2009-2012), available at: www.balticexchange.cn/

Batchelor, R., Alizadeh, A. and Visvikis, I. (2007), “Forecasting spot and forward prices in the international freight market”, *International Journal of Forecasting*, Vol. 23 No. 1, pp. 101-114.

Batchelor, R., Alizadeh, A.H. and Visvikis, I.D. (2005), “The relation between bid-ask spreads and price volatility in forward markets”, *Derivatives Use, Trading and Regulation*, Vol. 11 No. 2, pp. 105-125.

Berg-Andreassen, J.A. (1997), “The relation between period and spot rates in international Maritime markets”, *Maritime Policy and Management*, Vol. 24 No. 4, pp. 381-395.

Clark, P.K. (1973), *A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices*. *Econometrica*, Vol. 41, pp. 135-155.

Dinwoodie, J. and Morris, J. (2003), “Tanker forward freight agreements: the future for freight futures?”, *Maritime Policy and Management*, Vol. 30 No. 1, pp. 45-58.

Engle, R.F. (2002), “Dynamic conditional correlation - A simple class”, *of Multivariate GARCH models*. *Journal of Business and Economic Statistics*, Vol. 20 No. 3, pp. 339-350.

Kavussanos, M.G. and Visvikis, I.D. (2004), “Market interactions in returns and volatilities between spot and forward shipping freight markets”, *Journal of Banking and Finance*, Vol. 28 No. 8, pp. 2015-2049.

Kavussanos, M.G. and Visvikis, I.D. (2006), “Shipping freight derivatives: a survey of recent evidence”, *Maritime Policy and Management*, Vol. 33 No. 3, pp. 233-255.

Kavussanos, M.G., Visvikis, I.D. and Batchelor, R. (2004a), “Over-the counter contracts and spot price volatility in shipping”, *Transportation Research Part E*, Vol. 40 No. 4, pp. 273-296.

Kavussanos, M.G., Visvikis, I.D. and Dimitrakopoulos, D.N. (2010), “Information linkages between panamax freight derivatives and commodity derivatives markets”, *Maritime Economics and Logistics*, Vol. 12 No. 1, pp. 91-110.

Kavussanos, M.G., Visvikis, I.D. and Dimitrakopoulos, D.N. (2014), “Economic spillovers between related derivatives markets: The case of commodity and freight markets”, *Transportation Research Part E*, Vol. 68, pp. 79-102.

Kavussanos, M.G., Visvikis, I.D. and Menachof, D.A. (2004b), “The unbiasedness statement in the freight forward market: evidence from cointegration tests”, *Review of Derivatives Research*, Vol. 7 No. 3, pp. 241-266.

Kawssanos, M.G. and Nomikos, N.K. (1999), “The forward pricing function of the freight futures market”, *Journal of Futures Markets*, Vol. 19 No. 3, pp. 353-376.
Kawssanos, M.G. and Nomikos, N.K. (2000a), “Futures hedging when the structure of the underlying asset changes: the case of the BIFFEX contract”, *Journal of Futures Markets*, Vol. 20 No. 8, pp. 775-801.

Kawssanos, M.G. and Nomikos, N.K. (2000b), “Constant vs. time-varying hedge ratios and hedging efficiency in the BIFFEX market”, *Transportation Research Part E*, Vol. 36 No. 4, pp. 229-248.

Kawssanos, M.G. and Nomikos, N.K. (2003), “Price discovery, causality and forecasting in the freight futures market”, *Review of Derivatives Research*, Vol. 6 No. 3, pp. 203-230.

Koekebakker, S. and Ådland, R.O. (2004), “Modelling forward freight rate dynamics - empirical evidence from time charter rates”, *Maritime Policy and Management*, Vol. 31 No. 4, pp. 319-335.

Koekebakker, S., Adland, R. and Sodal, S. (2007), “Pricing freight rate options”, *Transportation Research Part E*, Vol. 43 No. 5, pp. 535-548.

Li, K.X., Qi, G., Shi, W., Yang, Z., Bang, H.S., Woo, S.H. and Yip, T.L. (2014), “Spillover effects and dynamic correlations between spot and forward tanker freight markets”, *Maritime Policy and Management*, Vol. 41 No. 7, pp. 683-696.

Nomikos, N.N. and Doctor, K. (2013), “Economic significance of market timing rules in the Forward Freight Agreement markets”, *Transportation Research Part E*, Vol. 52, pp. 77-93.

Pirrong, S.C. (1992), “An application of core theory to the analysis of ocean shipping markets”, *Journal of Law and Economics*, Vol. 35 No. 1, p. 89.

Secomandi, N. and Kekre, S. (2014), “Optimal energy procurement in spot and forward markets”, *Manufacturing and Service Operations Management*, Vol. 16 No. 2, pp. 270-282.

Stopford, M. (2009), *Maritime Economics*, 3rd Edition, Routledge, London and New York, NY.

Tezuka, K., Ishii, M. and Ishizaka, M. (2012), “An equilibrium price model of spot and forward shipping freight markets”, *Transportation Research Part E*, Vol. 48 No. 4, pp. 730-742.

Tvedt, J. (1998), “Valuation of a European futures option in the BIFFEX market”, *Journal of Futures Markets*, Vol. 18 No. 2, pp. 167-175.

Tsouknidis, D.A. (2016), “Dynamic volatility spillovers across shipping freight markets”, *Transportation Research Part E*, Vol. 91, pp. 90-111.

Xu, J.J., Yip, T.L. and Marlow, P.B. (2011), “The dynamics between freight volatility and fleet size growth in dry bulk shipping markets”, *Transportation Research Part E*, Vol. 47 No. 6, pp. 983-991.

Zhang, J., Zeng, Q., and Zhao, X. (2014). “Forecasting spot freight rates based on forward freight agreement and time charter contract”. *Applied Economics*, Vol. 46 No. 29, pp. 3639-3648.

Further reading

Chiang, T.C., Jeon, B.N. and Li, H. (2007), “Dynamic correlation analysis of financial contagion: evidence from Asian markets”, *Journal of International Money Financ*, Vol. 26 No. 7, pp. 1206-1228.

Corresponding author

Shun Chen can be contacted at: shunchen@shmtu.edu.cn
Appendix A. Proof of the theoretical statements

Here we use the framework proposed by Secomandi and Kekre (2014) to make the proofs. It is obvious that \(\min(q, D) = q - (q - D)^+ \). Therefore, the buyer’s profit function can be expressed as follows:

\[
\pi = E[rq + (f - r)(q - D)^+ - Fq]
\]

(10)

Then we can obtain the first order condition as follows:

\[
\frac{\partial \pi}{\partial q} = E(r) + E[f \cdot 1(q - D)] - E[r \cdot 1(q - D)] - F = 0
\]

(11)

where \(1(\cdot) \) is the indicator function, i.e.:

\[
1(q - D) = \begin{cases}
q - D & \text{if } q \geq D \\
0 & \text{if } q < D
\end{cases}
\]

From the property of multivariate normal distribution, we know that:

\[
E[\log r | \log D] = \log M_r - \frac{S_r^2}{2} + \frac{\rho_{Dr}S_D S_r}{S_D^2} \left(\log D - \log M_D + \frac{S_D^2}{2} \right)
\]

(12)

\[
\text{var}(\log r | \log D) = \left(1 - \rho_{Dr}^2 \right) S_r^2
\]

(13)

\[
E(r | D) = \exp \left[E[\log r | \log D] + \frac{1}{2} \text{var}(\log r | \log D) \right]
\]

\[
= M_r \left(\frac{D}{M_D} \right)^{\rho_{Dr} S_D / S_D} \exp \left(\frac{\rho_{Dr} S_D S_r - \rho_{Dr}^2 S_r^2}{2} \right)
\]

(14)

Therefore, we have:

\[
E[1(q - D)] \cdot E(r | D) = M_r M_D^{-\rho_{Dr} S_r / S_D} \exp \left(\frac{\rho_{Dr} S_D S_r - \rho_{Dr}^2 S_r^2}{2} \right) E \left[D^{\rho_{Dr} S_r / S_D} \cdot 1(q - D) \right]
\]

(15)

From Secomandi and Kekre (2014)’s Lemma 1, we know that:

\[
E \left[D^{\rho_{Dr} S_r / S_D} \cdot 1(q - D) \right] = \exp \left(\frac{\rho_{Dr}^2 S_r^2 - \rho_{Dr} S_D S_r}{2} \right) M_D^{\rho_{Dr} S_r / S_D} \Phi \\
\times \left(\log q - \log M_D + \frac{S_D^2}{2} - \rho_{Dr} S_D S_r \right)
\]

(16)
Substituting equation (16) into equation (15), we have

\[E[r \cdot 1(q - D)] = E[1(q - D) \cdot E(r|D)] = M_r \Phi \left(\frac{\log q - \log M_D + S_D^2/2 - \rho_D S_D S_f}{S_D} \right) \]

(17)

Using the same logic, we obtain that:

\[E[f \cdot 1(q - D)] = M_f \Phi \left(\frac{\log q - \log M_D + S_D^2/2 - \rho_D S_D S_f}{S_D} \right) \]

(18)

Substituting equations (18) and (17) into equation (11), we can obtain equation (3).

Making the derivations directly based on equations (4) and (5), we can easily obtain:

\[\frac{\partial \log q}{\partial M_D} > 0, \]
\[\frac{\partial \log q}{\partial M_r} > 0, \]
\[\frac{\partial \log q}{\partial M_f} > 0, \]
\[\frac{\partial \log q}{\partial F} < 0, \]
\[\frac{\partial \log q}{\partial (\rho_D S_D S_f)} < 0, \]
\[\frac{\partial \log q}{\partial (\rho_D S_D S_f)} < 0. \]

Moreover, \(\frac{\partial \log q}{\partial S_D} = \frac{\rho_D S_D S_f - S_D^2}{S_D} \). If \(\rho_D S_D S_f > S_D^2 \), i.e. \(\text{Var}(D) < \text{cov}(D,f) \), \(\frac{\partial \log q}{\partial S_D} > 0 \), otherwise, \(\frac{\partial \log q}{\partial S_D} < 0 \).

The same logic can be applied to the case when considering the covariance between the demand and the earning \(\text{cov}(D,r) \).
Appendix B. The estimates of the GARCH models to calculate the volatilities of the FFA returns

Capsize	Q1	Q2	Q3	Q4
\(C_0 \)	\(-0.00463\ (-1.053)\)	\(-0.0043\ (-1.139)\)	\(-0.0037\ (-1.004)\)	\(-0.010\ (-1.556)\)
\(C_1 \)	\(0.276^{***} (3.990)\)	\(0.307^{***} (4.768)\)	\(0.327^{***} (4.857)\)	\(0.179^{**} (2.558)\)
\(\omega \)	\(0.0009^{**} (2.804)\)	\(0.0012^{**} (4.343)\)	\(0.0005^{**} (4.246)\)	\(0.0078^{***} (8.389)\)
\(\alpha \)	\(0.184^{***} (3.055)\)	\(0.654^{***} (6.086)\)	\(0.191^{***} (3.982)\)	\(0.324^{***} (5.610)\)
\(\beta \)	\(0.668^{***} (8.040)\)	\(0.368^{***} (5.490)\)	\(0.692^{***} (14.650)\)	\(-0.062\ (-0.561)\)

Diagnostics

	Adjusted \(R^2 \)	Log-likelihood	DW Statistics	AIC	SC	ARCH(12)
Capesize						
	0.061	389.53	2.014	-2.457	-2.397	0.512 (0.907)
	0.026	378.10	2.127	-2.361	-2.302	0.499 (0.915)
	0.014	406.262	2.210	-2.572	-2.512	0.409 (0.960)
	-0.038	296.04	2.332	-1.878	-1.817	0.072 (1.000)
Panamax						
	0.030	512.508	1.986	-3.243	-3.183	1.572 (0.909)
	0.010	485.79	1.982	-3.043	-2.984	0.221 (0.997)
	0.006	511.05	2.151	-3.244	-3.184	0.266 (0.994)
	-0.032	401.53	2.472	-2.558	-2.498	1.099 (0.361)
Supramax						
	0.030	275	2.050	-3.554	-3.497	1.198 (0.284)
	-0.0068	579.43	2.092	-3.450	-3.393	0.068 (1.000)
	0.017	591.43	1.89	-3.654	-3.595	1.187 (0.291)
	-0.009	628.91	2.141	-3.736	-3.679	1.594 (0.092)

Notes: ***, ** and * mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics is reported in the parenthesis. LogL is the log-likelihood. AIC is the Akaike information criterion. SC is the Schwarz criterion. DW statistics is the Durbin–Watson statistics. ARCH(12) is Engle’s F-test for ARCH effects. Figures in the brackets under the ARCH(12) estimates indicate the significance levels.

\[
RT_t = C_0 + C_1 \cdot RT_{t-1} + \varepsilon_t, \varepsilon_t \sim (0, h_t), h_t = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}
\]