Residual heat comparison for stationary campaigns of WWER-1000 and WWER-1200 reactors after preliminary storage in the spent fuel pool

A Piatrouski, E Rudak, T Korbut and Kravchenko M
Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 220109, Minsk, Belarus

Abstract. In the presented work the residual heat of spent fuel from WWER-1000 and WWER-1200 reactors after preliminary storage in spent fuel pool is investigated. The selection of nuclides with a significant contribution to the residual heat was made. Their absolute and relative contributions depending on time are considered. Comparison of residual heat generation of spent fuel from a WWER-1000 reactor with a burnup of 40 MW·day/kg and a WWER-1200 reactor with a burnout of 70 MW·day/kg after storage in the spent fuel pool was made.

1. Introduction
Residual heat is one of the most serious problems when dealing with a spent fuel. The magnitude of the residual heat release has a maximum value immediately after the reactor shutdown and decreases at a high rate in initial period of time. During that period of time the most short-living nuclides with the highest activity decay.

In the present work the residual heat of spent fuel from WWER-1000 and WWER-1200 reactors with burnout of 40 MWh/kg and 70 MWh/kg respectively after fuel exposure in the spent fuel pool for more than one year is investigated. In the first year, the majority of nuclides will mostly disintegrate. So the task is reduced to considering a relatively small number of them as was made in current work. Calculations of the activities of fission products are made by the analytical method described in [1]. Data on the activities of actinides was taken from [2]. Based on the activities calculated residual heat was obtained. The calculation and the analysis of the results were conducted.

2. Activity of nuclear fission products
Among all fission products (FP) nuclides with half-lives less than 2 months mostly disintegrate after one year preliminary storage in the spent fuel pool. Hence, they can be excluded from consideration except for the $^{95}\text{Zr} \rightarrow ^{95}\text{Nb}$ chain with half-lives of 64 and 35 days respectively because ^{95}Nb appears with a certain delay and can effect on residual heat amount. Based on this, the following nuclides were selected: ^{85}Kr, ^{90}Sr, ^{95}Zr, ^{95}Nb, ^{137}Cs, ^{106}Ru, ^{144}Ce, ^{147}Pm.

The calculation of FP activities was performed by the analytical method described in [1]. This method allows to obtain simple analytical expressions for the activities of interest depending on fuel irradiation time. The accuracy of this method does not inferior to numerical calculations (the difference is up to 3% [3–5]). As a result, activity values were obtained at the end of WWER-1000 and WWER-1200 reactors fuel campaigns. The data obtained is presented in table 1. Table 1 also shows the data on the average
heat release per decay $Q_{\beta,\gamma}$ [6], which takes into account not only the direct decay of this element but also subsequent chains. The information on this chains can be found for example in [7].

Table 1. Initial values of activities and important characteristics of FP in spent fuel of stationary campaigns of WWER-1000 and WWER-1200 reactors.

nuclide	$T_{1/2}$, y	$Q_{\beta,\gamma}$, keV	A_{0}, Bq/t (WWER-1000)	A_{0}, Bq/t (WWER-1200)
95Kr	10.73	252	$3.11 \cdot 10^{15}$	$5.31 \cdot 10^{15}$
90Sr	28.9	1127	$3.23 \cdot 10^{15}$	$5.23 \cdot 10^{15}$
95Zr	0.18	849	$6.44 \cdot 10^{16}$	$7.43 \cdot 10^{16}$
95Nb	0.096	808	$6.44 \cdot 10^{16}$	$7.51 \cdot 10^{16}$
106Ru	1.02	1626	$2.02 \cdot 10^{16}$	$3.77 \cdot 10^{16}$
137Cs	30.08	702	$4.42 \cdot 10^{15}$	$7.93 \cdot 10^{15}$
134Cs	0.78	1338	$4.85 \cdot 10^{16}$	$6.01 \cdot 10^{16}$
147Pm	2.62	62	$1.47 \cdot 10^{16}$	$1.96 \cdot 10^{16}$

The activities of all nuclides listed in Table 1 with the exception of 95Nb change with time according to the law of radioactive decay (1).

$$A = A_{0} \cdot e^{-\lambda t}. \quad (1)$$

To calculate the activity of 95Nb, it is necessary to take into account its formation during the decay of 95Zr. A simple calculation of the radioactive chain of two elements gives

$$A(95\text{Nb},t) = \alpha \cdot A_{0}(95\text{Zr}) \cdot e^{-\lambda(95\text{Zr})t} + \left[A_{0}(95\text{Nb}) - \alpha \cdot A_{0}(95\text{Zr}) \right] \cdot e^{-\lambda(95\text{Nb})t} \quad (2)$$

$$\alpha = \frac{\lambda(95\text{Nb})}{\lambda(95\text{Nb}) - \lambda(95\text{Zr})}.$$

To obtain heat generation per unit time associated with the decay of a particular nuclide its activity must be multiplied by the corresponding value $Q_{\beta,\gamma}$.

3. Actinide and 134Cs activities

Among nuclides having a high contribution to the residual heat generation, 134Cs plays a significant role. This nuclide is not a fission product or a piece of the FP decomposition chain. It is acquired as a result of the reaction 133Cs (n, γ) 134Cs. For this reason 133Cs cannot be calculated according to the procedure described in [1]. The estimation of 134Cs activity in the WWER-1200 reactor was based on the assumption that its yield during operating time in the WWER-1000 and WWER-1200 reactors is approximately the same. The following assumptions will be made for the assessment: the formation rate of 134Cs from 133Cs is proportional to the number of 133Cs, the proportionality coefficient between the rate of operating time and the number is the same for both reactors. Based on these assumptions, the activity value by the end fuel campaign of the WWER-1200 reactor was obtained and equals to $1.53 \cdot 10^{16}$ Bq/t. The activity of 134Cs at the end of the campaign of the WWER-1000 reactor equals to $7.50 \cdot 10^{15}$ Bq/t [8].

The relative contribution of actinides to the total heat release in the early years is small and increases as the FP decay. The main part of the residual heat release of actinides is formed by 241Am, 244Cm, 239Pu, 240Pu and 239Pu heat release. The data on the initial activities by the end of WWER-1000 fuel campaign was taken from [8], for the WWER-1200 reactor – from [2]. All actinides are α-decay with energies of 5-6 MeV. The initial activities and the necessary characteristics of the actinides of interest are presented.
in Table 2. The activities of these nuclides, with the exception of 241Am, vary according to the law of radioactive decay (1). Spent fuel contains a significant amount of 241Pu — about 1.5–2 kg/t. 241Pu is a β-disintegrator, with a half-life of 14.29 years and an insignificant average energy of β-particles — only 5 keV, which can be ignored in the calculations. But as a result, 241Am is gaining, which leads to a gradual increase in its activity and corresponding heat release. The dependence of its activity on time will be similar to (2), since in this case we are dealing with a similar radioactive chain of 2 nuclides.

Activity and the necessary parameters of actinides $^{[2]}$ and 134Cs are presented in Table 2.

Table 2. Initial values of activities and important characteristics of actinides and 134Cs in spent fuel of stationary campaigns of WWER-1000 and WWER-1200 reactors.

nuclide	$T_{1/2}$, y	$Q_{β,γ}$, keV	A_0, Bq/t (WWER-1000)	A_0, Bq/t (WWER-1200)
134Cs	2.06	1711	7.50×10^{15}	1.53×10^{16}
238Pu	88.7	5592	7.97×10^{13}	1.75×10^{14}
239Pu	24110	5246	1.27×10^{13}	1.51×10^{13}
240Pu	6561	5256	2.03×10^{13}	2.80×10^{13}
241Am	433	5624	9.07×10^{12}	2.86×10^{13}
244Cm	18.1	5903	1.36×10^{14}	6.76×10^{14}

Attention should be paid to a strong increase in the contribution of 244Cm to the residual heat release of the WWER-1200 reactor. This isotope is produced from 238U by capturing six neutrons. This leads to a strong dependence of its quantity on the fuel burnup. With a relative increase in burnout value of less than two, the amount of 244Cm increases about 5 times. This issue deserves separate consideration.

4. Compassion of residual heat of WWER-1000 and WWER-1200 reactors

The total residual heat of FP and actinides of the WWER-1000 and WWER-1200 reactors are presented in figures 1a and 1b.

![Figure 1. Total residual heat of FP and actinides of WWER-1000 (a) and WWER-1200 reactors (b)](image)

It is worth noting a significant increase in the relative contribution of long-lived actinides to the residual heat of the reactor WWER-1200.

Figures 2a and 2b show the absolute and relative comparison of the residual heat of spent fuel from both reactor types. Also on graph 2a for comparison, the triangles show the data on the residual heat $^{[8]}$.
Figure 2. Absolute and relative comparison of the residual heat of spent fuel from WWER-1000 (a) and WWER-1200 (b) reactors.

Figures 3 and 4 show the relative contributions of the main nuclides to the WWER-1000 and WWER-1200 reactors’ residual heat release.

Figure 3. Relative contribution of nuclides to the total heat release of WWER-1000
The role of 244Cm and 241Am actinides increases noticeably in WWER-1200. 244Cm deserves special attention when studying the MOX fuel where the chain of plutonium isotopes is presented initially. This can lead to a significant increase in curium production, compared with reactors with fuel based on 235U [9,10].

5. Conclusion
It has been established that the main nuclides having a significant effect on the residual heat of spent fuel in WWER-1000 and WWER-1200 reactors are: 90Sr, 137Cs, 134Cs, 106Ru, 144Ce, 85Kr, 147Pm, 241Am, 244Cm, 238Pu, 249Pu, 239Pu.

The residual heat of spent fuel from stationary fuel campaigns of WWER-1200 and WWER-1000 reactors is significantly different and amounts to 62-96% depending on the storage time.

The difference is due to an increase in the number of fission products and actinides due to a deeper burning out of the fuel in the WWER-1200 reactor.

Special attention should be paid to the 244Cm isotope, the amount of which has a strongly pronounced dependence on a burnout.
References

[1] Petrowskiy A, Rudak E, Korbut T 2017 Analytical methods of determining the activities of the products in the active zone of the vver-1200 reactor and their applications Nuclear Physics and Engineering Moscow v 8 №2 p 118

[2] Korbut T, Kuz’min A, Rudak E 2018 Analytical Calculation Methods for the Specific Masses of 235U and 239Pu for a WWER-1200 Reactor Nuclear Physics and Engineering Moscow v 8 № 2 p 113

[3] Yachnik O 2010 Statistical analysis of the ratios of activities of radionuclides in nuclear fuel PhD dissertation Minsk

[4] Burak A, Napoleau E, Rudak E 2003 The approximation of the dependence concentration nuclides on time with simple analytical functions Nuclear energy Minsk v 94 No 6 p 432

[5] Burak A, Eremina E, Rudak E 2001 Calculation of the masses and activities of nuclides in the core of an RBMK reactor: a phenomenological theory of the accumulation of masses and activities of the products of the activation of fuel nuclei Preprint IF NAN RB Minsk № 732 p 14

[6] JEFF-3.3 Radioactive Decay Data File 2017 Compiled for the NEA Data Bank

[7] Health R 1997 Scintillation spectrometry Gamma-Ray spectrum catalogue Ray spectrometry center Idaho National Engineering & Environmental Laboratory Rev. electronic update

[8] Kolobashkin V 1983 Radiation characteristics of irradiated nuclear fuel Reference book Moscow Energoatomizdat

[9] Je’gou a C, Muzeau a B, Broudic and others 1997 Effect of external gamma irradiation on dissolution of the spent UO2 fuel matrix Journal of Nuclear Materials 341 p 62-82

[10] Pis’menskiy S, Pyshkin V, Rudychev V and others 2007 Evaluation of residual heat of spent fuel WWER-1000 reactor Bulletin of the Kharkov University №794 physical series Cores particles fields p 69