3. Wang C, Fei D, Li X, Zhao M, Yu K. IL-6 may be a good biomarker for Guillhem Beltramo, Marielle Buisson, Bernard Bonnotte, Philip Bielefeld, Jeremy Belaid Bouhemad, Marjolaine Georges, Philippe Bonniaud, Guillaume Andreu, Marie Labruyere, Auguste Dargent, Maxime Nguyen, Pierre-Emmanuel Charles, Francois Aptel, Sebastien Prin, Pascal Bourredjem, Christine Binquet, Lionel Piroth, Jean-Pierre Quenot, Abderrahmane Bourredjem, Christine Binquet, Lionel Piroth, Jean-Pierre Quenot, Pierre-Emmanuel Charles, Francois Aptel, Sebastien Prin, Pascal Andreu, Marie Labrhythm, Auguste Dargent, Maxime Nguyen, Belaid Bouhemad, Marjolaine Georges, Philippe Bonniaud, Guillaume Beltramo, Marie Buisson, Bernard Bonnotte, Philip Bielefeld, Jeremy Barben, Alain Putot, Serge Monier, Audrey Large, Suzanne Mouries-Martin, Herve Devilliers, Pascal Chavane, and Alexandre Guilhem.

Mathieu Blot, M.D., Ph.D.* Infectious Diseases Department University Hospital Dijon, France and LNC INSERM UMR1231 Dijon, France Abderrahmane Bourredjem, M.Eng., M.Sc. INSERM CIC1432 Clinical Epidemiology unit Dijon, France Christine Binquet, M.D., Ph.D. LNC INSERM UMR1231 Dijon, France and INSERM CIC1432 Clinical Epidemiology unit Dijon, France Lionel Piroth, M.D., Ph.D. Infectious Diseases Department University Hospital Dijon, France and INSERM CIC1432 Clinical Epidemiology unit Dijon, France LYMPHONIE Study Group ORCID ID: 0000-0001-6541-2434 (M.B.).

*Corresponding author (e-mail: mathieu.blot@chu-dijon.fr).

LYMPHONIE Study Group: Mathieu Blot, Abderrahmane Bourredjem, Christine Binquet, Lionel Piroth, Jean-Pierre Quenot, Pierre-Emmanuel Charles, François Aptel, Sébastien Prin, Pascal Andreu, Marie Labrhythm, Auguste Dargent, Maxime Nguyen, Belaid Bouhemad, Marjolaine Georges, Philippe Bonnlaud, Guillaume Beltramo, Marie Buisson, Bernard Bonnotte, Philip Bielefeld, Jeremy Barben, Alain Putot, Serge Monier, Audrey Large, Suzanne Mouries-Martin, Hervé Devilliers, Pascal Chavane, and Alexandre Guilhem.

References
1. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 2020;202:812–821.
2. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020;146:110–118.
3. Wang C, Fei D, Li X, Zhao M, Yu K. IL-6 may be a good biomarker for earlier detection of COVID-19 progression. Intensive Care Med 2020;46:1475–1476.
4. Sinha P, Matthey MA, Caffee CS. Is a “cytokine storm” relevant to COVID-19? JAMA Intern Med [online ahead of print] 30 Jun 2020; DOI: 10.1001/jamainternmed.2020.3313.

Copyright © 2021 by the American Thoracic Society

Role of IL-6 in Severe Inflammation

To the Editor:

We read with interest the recent article investigating coronavirus disease (COVID-19) inflammatory cytokine profiles by McElvaney and colleagues, in which, in critically ill patients requiring intensive care, circulatory IL-6 was elevated (1), as recent reports have indicated this cytokine as the strongest predictor of the need for mechanical ventilation (2). However, we would like to raise a potential problem with the authors’ interpretation of the results before discussing the application to IL-6–regulating medicines, as we think that it is not clear that IL-6 is a key molecule of severe inflammation like other proinflammatory cytokines, such as tumor necrosis factor and IL-1. There are several reports advocating both the proinflammatory and antiinflammatory potential of IL-6 against acute inflammatory responses, including acute respiratory distress syndrome and sepsis (3, 4). Using genetically engineered animals (IL-6–deficient B6/J29Sv mouse strain), we previously demonstrated that IL-6 serves as a protector in pulmonary hemorrhagic injury induced by bacterial endotoxins (LPS), at least partly through the regulation of proinflammatory cytokines and chemokines (5). However, in this study, interestingly, we also observed that IL-6–/– mice show devastating lung injury compared with littermate wild-type mice 3 days after intraperitoneal administration of LPS, whereas mortality at Day 7 was higher in wild-type than in IL-6–/– mice (repeated three times; K. Inoue and colleagues, unpublished data), suggesting that IL-6 can have opposite effects depending on the pathological phase of the host. We imagine that IL-6 has multiple roles in the inflammatory pathway, as proposed by Qiu and colleagues (6), although the role may differ according to animal species and strain and inflammation type. Indeed, we have confirmed that this cytokine is not valuable in acute oxidative lung injury induced by diesel exhaust particles in mice with the same genetic background as in the LPS experiments.

Further research is needed to clarify the role of IL-6 in severe inflammatory conditions, including COVID-19–related conditions, and explore novel therapeutic options.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Ken-ichi Inoue, M.D., Ph.D.* University of Shizuoka Shizuoka, Japan

Tomoya Sagawa, M.D. Hirohisa Takano, M.D., Ph.D. Kyoto University Katsura, Kyoto, Japan

ORCID IDs: 0000-0002-9723-5847 (K.-i.I.); 0000-0003-3048-0319 (T.S.).

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Supported by CREST (CE19055-10).

Originally Published in Press as DOI: 10.1164/rccm.202007-3001LE on September 21, 2020.
We thank Blot and colleagues for their interest in our article and for raising an important question regarding the suitability of IL-6 as a therapeutic target in coronavirus disease (COVID-19).

In their correspondence, Blot and colleagues provide data on IL-6 levels measured in patients with a diagnosis of COVID-19 pneumonia. Although we believe the data presented by Blot and colleagues are valid, we suggest that the IL-6 levels depicted are, by virtue of sample timing, processing and data presented by Blot and colleagues are not. Mechanical ventilation influences the PaO₂:FIO₂ ratio, such that patients who are not receiving invasive ventilation have lower PaO₂:FIO₂ ratios and appear sicker than patients who are ventilated with high levels of positive end-expiratory pressure and optimal lung recruitment.

The effects of sample timing and severity of illness are crucial when cytokine levels are being assayed. To illustrate this point, the mean daily difference in IL-6 levels for the COVID-19 group described by Blot and colleagues ranged from 10,000 to 14,000 pg/ml.

The study protocol used by Blot and colleagues allowed up to 4 hours to elapse before samples underwent initial processing. This delay is relevant, as IL-6 and other cytokines are released spontaneously from blood cells over time (3, 4). In contrast, our samples were processed immediately using centrifugation speeds without temperature shifts.

Unlike our study, Blot and colleagues did not match for markers of severity of inflammation, such as C-reactive protein, nor did they account for the diurnal variation in circulating IL-6 levels by standardizing their time of sample collection. Additionally, a large number of the patients with COVID-19 included by Blot and colleagues were already receiving therapies such as corticosteroids that are known to influence cytokine levels. In our study, these patients were excluded.

The non–COVID-19 severe community-acquired pneumonia (CAP) group recruited by Blot and colleagues was also different from ours, with a predominance of atypical pathogens. Indeed, Streptococcus pneumoniae, the most common CAP pathogen, was detected in only 2 of the 36 patients with non–COVID-19 severe CAP described. Furthermore, four of the severe CAP group in the Blot study had positive bacterial blood cultures. Patients with bacteremia or sepsis were therefore excluded from our study because of their high likelihood of generating outlier levels of blood cytokines.

These factors may go some way in explaining the degree of variation in the IL-6 levels reported by Blot and colleagues. The greater than 1,000-fold difference in IL-6 levels within their non–COVID-19 pneumonia group is still unusual, however, and levels approaching or in excess of 100,000 pg/ml in several patients would prompt consideration of alternative or concomitant diagnoses.

We agree strongly with Inoue and colleagues that blanket inhibition of IL-6 in COVID-19 should be approached with caution given the complex biology of this cytokine.

To achieve signal transduction, IL-6 first binds IL-6R (IL-6 receptor, a cell surface receptor). After this binding event, the IL-6/IL-