Electro-catalytic and photo-catalytic reformation of CO2—reactions and efficiencies processes (Review)

A Knoks, P Lesnicenoks, J Kleperis, L Grinberga, J Hodakovska, J Klavins, G Cikvaidze and I Lukosevics
Institute of solid state physics, University of Latvia, Kengaraga street 8, Riga, LV – 1063, Latvia
E-mail: ainars.knoks@cfi.lu.lv

Abstract. Energy harvesting with lowest environmental impact is one of key elements for cleaner future. Photocatalytic as well as electrocatalytic CO2 reformation processes are considered as prominent methods. Thus, extensive research of CO2 reformation is being done to find the right materials that holds crucial qualities. For photocatalysis that includes pronounced separation of light-generated opposite sign charge carriers, sensitivity to visible light, high quantum yield. In electrocatalysis high CO2 adsorption, chemical stability, multielectron reaction catalysts are necessary. Additionally, materials participating in the reaction process must be provided with charge carriers at proper reduction and oxidation potentials. To meet the set goal of lowering environmental impact and lower CO2 amounts exhausted into the atmosphere by human activities, it is necessary to find right technology for capturing, storing, and reusing carbon dioxide. Various technologies and materials in different levels of readiness are available and under development, such as CuO loaded TiO2 nanotubes for photocatalytic reformation or electrocatalytic reduction on copper. Not only the proof of concept is necessary but estimation and more importantly determination of the efficiency of both electro and photo catalytic reformation of CO2. In this work review of reactions and efficiency of both processes based on existing established technological methods is done.

1. Introduction
It is well known that proactive steps towards pollution reduction and shift from oil based energy are being pursued not only generally by legislation and agreements [1] but also by long term development strategy and research, such as EU climate-neutral plan by 2050. Not only energy harvesting with lowest environmental impact is on of key elements for cleaner future, but also use of accessible resources more efficiently. Electrocatalytic and photocatalytic CO2 reformation are considered as prominent methods for lowering atmospheric pollution and providing possible shift to more sustainable energy production. CO2 can be reformed into various hydrocarbons that can be directly used as fuel or substitute conventional chemical production. Extensive research on CO2 reformation is being done to find the right materials for successful catalytic CO2 reduction. It is known that straightforward CO2 reduction requires substantial amount of energy and special conditions such as high pressure and temperature [2,3]. It is possible to increase efficiency of the process using catalytic reformation under lower temperatures and increase production yields. Materials participating in the reaction must possess adequate CO2 adsorption properties, provide with charge carriers with proper reduction and oxidation potentials for successful reformation of CO2.
Various technologies and catalysts in different technology readiness levels are available or are under development, such as CuO loaded TiO₂ nanotubes for photocatalytic reformation [4] or electrocatalytic reduction on various forms of copper [5,6]. Estimation and more importantly determination of the efficiency of both electrocatalytic and photocatalytic reformation of CO₂ is necessary.

In this work review of reactions and efficiency of both processes based on existing technological methods was done.

2. Electrocatalytic process
CO₂ electrocatalytic reduction has been under investigation for decades, but many uncertainties still remain, such as the reformation pathway from CO₂ to higher hydrocarbons, electrolyte influence, etc. The question has been tackled by deWulf and Bard looking into copper electrode using electrochemical methods [7], Fieret et al. investigation of silver thin films through spectroscopic methods [8], Shen et al. investigating cobalt protoporphyrin immobilized on a pyrolytic graphite [9] or Kuhl et al. investigating various metal surfaces [10]. It has come to classifications of CO₂ reduction products into two categories: 1) gaseous; 2) liquid products, requiring different physical separation and characterization/identification methodologies. On the other hand, the reformation reactions also can be classified by the required number of electrons necessary for a product. Then the reactions can be written as

\[\text{CO}_2(g) + 2\text{H}^+ + 2e^- = \text{HCOOH}(l) \quad E = -250 \text{ mV} \quad \text{(1)} \]
\[\text{CO}_2(g) + \text{H}_2\text{O}(l) + 2e^- = \text{CO}(g) + \text{H}_2\text{O}(l) \quad E = -1078 \text{ mV} \quad \text{(2)} \]
\[\text{CO}_2(g) + 2\text{H}^+ + 2e^- = \text{CO}(g) + \text{H}_2\text{O}(l) \quad E = -110 \text{ mV} \quad \text{(3)} \]
\[\text{CO}_2(g) + 2\text{H}_2\text{O}(l) + 2e^- = \text{CO}(g) + \text{H}_2\text{O}(l) \quad E = -930 \text{ mV} \quad \text{(4)} \]
\[\text{CO}_2(g) + 4\text{H}^+ + 4e^- = \text{CH}_2\text{O}_2(l) + \text{H}_2\text{O}(l) \quad E = -70 \text{ mV} \quad \text{(5)} \]
\[\text{CO}_2(g) + 3\text{H}_2\text{O}(l) + 4e^- = \text{CH}_2\text{O}_2(l) + 4\text{OH}^- \quad E = -900 \text{ mV} \quad \text{(6)} \]
\[\text{CO}_2(g) + 6\text{H}^+ + 6e^- = \text{CH}_3\text{OH}(l) + \text{H}_2\text{O}(l) \quad E = +20 \text{ mV} \quad \text{(7)} \]
\[\text{CO}_2(g) + 5\text{H}_2\text{O}(l) + 6e^- = \text{CH}_3\text{OH}(l) + 6\text{OH}^- \quad E = -810 \text{ mV} \quad \text{(8)} \]
\[\text{CO}_2(g) + 8\text{H}^+ + 8e^- = \text{CH}_4(g) + 2\text{H}_2\text{O}(l) \quad E = +170 \text{ mV} \quad \text{(9)} \]
\[\text{CO}_2(g) + 6\text{H}_2\text{O}(l) + 8e^- = \text{CH}_4(g) + 8\text{OH}^- \quad E = -660 \text{ mV} \quad \text{(10)} \]
\[2\text{CO}_2(g) + 2\text{H}^+ + 2e^- = \text{H}_2\text{C}_2\text{O}_4(aq) \quad E = -500 \text{ mV} \quad \text{(11)} \]
\[2\text{CO}_2(g) + 2e^- = \text{C}_2\text{O}_4^{2-}(aq) \quad E = -590 \text{ mV} \quad \text{(12)} \]
\[2\text{CO}_2(g) + 12\text{H}^+ + 12e^- = \text{CH}_2\text{CH}_2(g) + 4\text{H}_2\text{O}(l) \quad E = +60 \text{ mV} \quad \text{(13)} \]
\[2\text{CO}_2(g) + 12\text{H}^+ + 12e^- = \text{CH}_2\text{CH}_2\text{OH}(l) + 3\text{H}_2\text{O}(l) \quad E = +80 \text{ mV} \quad \text{(14)} \]
\[2\text{CO}_2(g) + 12\text{H}^+ + 12e^- = \text{C}_2\text{H}_4(g) + 4\text{H}_2\text{O}(l) \quad E = +80 \text{ mV} \quad \text{(15)} \]

Here electrode potential E vs standard hydrogen electrode (SHE) in normal conditions [11–14].

We clearly see that hydrocarbons such as ethanol and ethylene reactions require multi-electron transfer. In addition, overpotential plays an important role in the propagation of a reaction, especially involving higher number of electrons. Other parameters, such as electrolyte composition and concentration, pH, temperature, catalyst crystalline facets, dopants, must be considered. For example, majority products on Ag is CO, Cd produces HCOO⁻, on the other hand, various forms of Cu can produce wide variety of products [11,12,15–17]. Let’s assume interest in hydrocarbons, such as C₂H₄, then appropriate catalyst will be selected by majority product, faradaic efficiency (FE), overpotential and catalyst synthesis process.

In early work of Hori et al [18] the reformation of CO to CH₂ and C₂H₄ was discussed. Process was carried out at copper electrode in aqueous electrolyte. It was reported that CO electrocatalytic reduction didn’t proceed as the cathodic currents were on scale of 10^{-5} Acm⁻² [18]. Nowadays the current densities reported are with magnitude of 10^{-2} [19] and up to 10^{1} [13].

In later work of Hori et al. it was pointed out that CO₂ must initially be reduced to CO, which is adsorbed on the catalyst. Only then further reformation to C₂ and C₃ products are possible. Investigation of pH showed that CH₄ production is promoted at low pH and C₂H₄ at high pH, due to increase in electrolyte concentration of KHCO₃. Dependency was explained as ‘OH neutralization by nearby HCO₃⁻’.

2
It is noteworthy that current densities for \(\text{C}_2\text{H}_4 \) and \(\text{C}_2\text{H}_5\text{OH} \) were reported independent of pH level [20].

Electrolyte concentration influence on FE and production of hydrocarbons was investigated by Zhong et al., where they suggested that higher electrolyte concentrations provide with lower overpotentials at the same time increasing \(\text{H}_2 \) production FE [21]. At the same time it was reported that \(\text{C}_2\text{H}_4 \) production is more favourable under low overpotentials [5]. Thus, indicating that if we are interested in \(\text{C}_2\text{H}_4 \) production, a catalyst with low overpotential must be chosen and an electrolyte with high pH level can be used, due to reported current density independence of pH. But high concentration and pH promotes \(\text{H}_2 \) production, that sometimes is considered the rate determining step.

It was proposed as \(\text{H}_2^+ \) (ads) or \(H_{\text{ads}}+H^+ \) in comparison with previously assumed \(H_2^+\text{(ads)}+e^- \rightarrow \text{H}_2 \), where \(\text{H}_2^+ \) (ads) is transition state. If carbon adsorption on electrode followed by OH electronation and not \(\text{H}_2^+ \) (ads) or \(H_{\text{ads}}+H^+ \) is the rate determining step for ethylene, a formation diagram was proposed (See Figure 1) [20].

\[
\begin{align*}
 k\text{CO}_2 + n(H^+ + e^-) & \rightleftharpoons P + m\text{H}_2\text{O} \quad (16) \\
 \text{P is the C1 and C2+ products} & [12].
\end{align*}
\]

In case of pathway depicted in Figure 1, the rate determining step can be CO adsorption and following reformation into \(\text{CH}_4 \) in addition to various intermediates. It is noteworthy that other authors also came to similar conclusions and results for Cu nanoparticles [22,23].

Kortlever et al. suggested that \(\text{CO}_2 \) reduction can be viewed as multiple proton-electron reactions with products C1, C2+ and water, summarizing all probable product equations as equation (16)

\[
k\text{CO}_2 + n(H^+ + e^-) \rightleftharpoons P + m\text{H}_2\text{O}
\]

where P is the C1 and C2+ products [12].

Reaction involving more than 2 electrons (and protons) will involve intermediate steps, thus it will cause catalytic irreversibility. The role of intermediates in the \(\text{CO}_2 \) reduction was discussed. For example, ethylene formation starts with *CO and *CH_2 intermediates, which follows abovementioned pathway [12]. But during investigation three unexplained observations were made. First, formation of methane from CO shows different pH dependency compared to ethylene. Second, often ethylene formation happened at more positive (less negative) potential without methane formation. Third, there is a structure sensitive and pH dependent pathways on Cu. Cu(111) reduction of CO to methane and ethylene is observed simultaneously, but on Cu(100) different pathway is observed, where only ethylene is formed, especially at high pH values [12]. On the electrode surface due to \(\text{CO}_2 \) reduction there is a
pH gradient that influences product selectivity. The pH value and ion presence can stabilize reaction intermediates, thus promoting formation of one or the other product [25]. Due to proton consumption during the reduction process and hydrogen evolution reaction (HER) the local pH at the electrode deviates from bulk, thus CO2 can react with OH- and form bicarbonate or carbonate [12]. On the other hand, Resasco et al. did an extensive investigation on production of CO, HCOO-, C2H4 and CH2OH2OH on Cu electrode, and concluded that the concentration of electrolyte anions has very little influence on production. Attributing it to lack of involvement of hydrogen atoms. At the same time providing with evidence for hydrogen and CH4 production high sensitivity to anion concentration [26].

Malik et al [27] described electrochemical reduction of CO2 process on various Cu morphologies, with FE of 26% at -2.75V. It was reported that grown dendrites on the surface capture some of gaseous products lowering overall efficiency. In addition, the use of Cu nanoparticles increased CO production, with selectivity dependence on size [27,28] attributing it to low-coordination site activity. Similar results concerning increase in CO production was found by Reske et al. decrease in particle size promotes H2 and CO production, at the same time providing with higher current density in comparison with bulk Cu [28].

Authors investigation CO2 reformation on metals as Fe, Au, Zn, Ni, Pt and Ag propose similar reformation pathway [29,30] as seen in Figure 1. Leading to conclusion that first step in CO2 reformation is adsorption of CO2, then CO is formed and desorbed or transformed into *CHO or *CHO species, that later forms into hydrocarbons as methane and methanol. It is noteworthy that metals as Pt, Pd, and Ni were reported to bind CO too strongly, which leads to electrode poisoning by *CO [25,31]. As previously mentioned crystallographic facets show selectivity for production: Cu (111) for CH4 and Cu (100) for C2H4, suggesting that CO adsorption and lower surface energy is the reason of selectivity [27,32,33]. An overview of FE of different materials in various formations is presented in Table 1.

Table 1. FE and major product summary NP – nanoparticle, NW – nanowire, D – dendrite, NR – nanorods, NC – nanocubes, NF – nanoflowers,

Ref	Catalyst	electrolyte	pH	U, V vs RHE	FE	Product	Ref nr
Chen et al	Cu0 - Cu2O	0.1M KHCO3	6.8	-1	32.1	C2H4	[34]
Chen et al	Cu0 - Cu2O	0.1M KHCO3	6.8	-1	16.4	C2H4OH	[34]
Chen et al	Cu0-O-PdClx	0.1M KHCO3	6.8	-1	30.1	C2H4	[34]
Chen et al	Graphite-PdCl2	0.1M KHCO3	6.8	-1	4.7	HCOO-	[34]
Chen et al	Graphite-PdCl2	0.1M KHCO3	6.8	-1	8.1	CO	[34]
Chen et al	Graphite-PdCl2	0.1M KHCO3	6.8	-1	0.2	CH4	[34]
Hori et al	Cu	KCl	5.9	-1.44	47.8	C2H4	[5]
Hori et al	Cu	KHCO3	6.8	-1.41	30.1	C2H4	[5]
Tang et al	Cu NP					CO	[35]
Tang et al	Cu NP					C2H4	[35]
Reske et al	Cu NP	0.1 M KHCO3	6.8	-1.1 V	20/70	CO/H2	[28]
Raciti et al	Cu NW		0.6 V	30.7	HCOOH		[36]
Raciti et al	Cu NW		0.4 V	60.0	CO		[36]
Chen et al	Cu mesocrystal	0.1M KHCO3	-0.99 V	81.0	C2H4		[37]
Roberts et al	Cu NC	0.1M KHCO3	-0.6 V	37.0	HCOOH		[38]
Sen et al	Cu foam	0.5M KHCO3	-0.5 V	26.0	HCOOH		[39]
Sen et al	Cu smooth	0.5M KHCO3	-0.5 V	3.0	HCOOH		[39]
Sen et al	Cu foam	0.5M KHCO3	-0.8 V	37.0	HCOOH		[39]
Kas et al	0.1 M KHCO3	6.8	-1.1 V	40.0	C2H4		[40]
Malik et al	Cu NR	0.5 M KHCO3	-2.75 V	24.5	CO		[27]
Particle size also influence not only selectivity but also FE. CuCo NP showed decrease in HER, with increase of Cu content NP. On the other hand increased Cu content lead to increase in production of CO and HCOOH [44]. Flower like structures were proven to improve production of formate up to 63% FE. From Table 1 we can see that Cu is promising material for CO₂ reformation. Similar results were presented by Zhang et al. not only for Cu, but also for Zn and Sn based catalysts [49].

3. Photocatalytic CO₂ reduction

One of the problems in photocatalytic CO₂ reduction is that hydrogen donors, such as H₂O, CH₄, and alcohols, act as hole scavengers, thus it is necessary to separate reduction products from bulk electrolyte. This correlates with hydrogen production problems. Assuming that the CO₂ reduction reaction can proceed without limits set by charge carrier potentials (valence band (VB) and conduction band (CB) band position) [50].

Electrons are excited into the CB, with that, a hole is created in VB, where these charge carriers could be trapped in shallow or deep sites. In TiO₂ it could be Ti^{III}OH and Ti^{IV}OH' shallow sites. Ti^{III} also could trap electrons in bulk material. If no site is found, charge carriers recombine and create excess heat on the material surface. Hydrocarbons can be produced only if hydride reductants are oxidized simultaneously. Thus, there is a need of oxidizing agents and oxidizing mechanism [50,51].

Direct oxidizing species are holes, but there are additional molecules with similar oxidizing properties: hydroxyl radicals (OH₇free and OH₇ads [52]), superoxide (O₂⁻ [53]), singlet oxygen (O₂ [54]), also some authors report hydrogen peroxide and oxygen [55]. Karamian et al summarizes that OH radicals are mostly product of surface hydroxyl and adsorbed water oxidation process. In this process peroxide can be produced and oxidized as described by equations (17) to (21).

Superoxides are supposed to be a weak oxidizing species as a product of one CB electron reduction of molecular oxygen or oxidizing hydrogen peroxide by VB hole (equation 22 to 24), whereas single oxygen is a strong oxidant and can be a product of O₂⁻ and a trapped hole, though it has a short lifetime 2 µs on the surface, especially compared with hydroxyl radical with lifetime 5 times longer [50,54,55].

\[
\begin{align*}
H_2O_2 + hν &\rightarrow •OH_{free/ads} + •OH_{free/ads} \\
H_2O_2 + e^-_{CB} &\rightarrow •OH_{ads} + OH^- \\
H_2O_2 + •O_2^- &\rightarrow •OH_{free/ads} + OH^- + O_2 \\
H_2O_2 + h^+_{VB} + 2OH^- &\rightarrow •O_2^- + 2H_2O \\
H_2O_2 + •OH + OH^- &\rightarrow •O_2^- + 2H_2O
\end{align*}
\]
\[\text{OH}^- + h_B^+ \rightarrow \cdot \text{OH}_{ads} \quad (22) \]
\[O_2 + e_{CB}^- \rightarrow \cdot O_2^- \quad (23) \]
\[O_2 + 2e_{CB}^- + 2H^+ \rightarrow H_2O_2 \quad (24) \]

It must be remembered that CO\(_2\) is very stable molecule, difference between lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital states is 13.7 eV. Adsorption of CO\(_2\) onto catalyst is the best way to lower its energy due to the bend in LUMO level. One electron transfer initiates the adsorption and following chemical reactions. Electron or proton transfer provides with C-O bond breaking and C-H bond creation. It is believed that capturing electron from CB of photocatalyst is the first step in \(\cdot \text{CO}_2\) anion radical as described in the following equation (25). Additional reductant is necessary, it is supposed that carbon-free reductants such as H\(_2\) or water allow C1 products and carbon containing reductants such as CH\(_4\) can promote C2, C3 products [50].

\[\text{CO}_2 + e_{CB}^- \rightarrow \cdot \text{CO}_2^- \quad (25) \]

P-type photocathodes and earth-abundant n-type anodes such as WO\(_3\), Fe\(_2\)O\(_3\), TiO\(_2\) can be used for photocatalytic CO\(_2\) reduction. By utilizing metallic and composite catalysts as cathodes one can gain high FE and products as CH\(_4\). In a photocatalytic cell using WO\(_3\) and Cu or Sn/SnO\(_2\) electrodes CO\(_2\) reduction potential of -3.0 V and +0.2 V vs Reversible hydrogen electrode (RHE) has been reported. Thus the photocatalytic CO\(_2\) reduction is described by equations (1)-(15) with lower bias potential due to photocatalytic charge carrier generation [56]. FE and necessary bias potentials for photocatalytic CO\(_2\) reduction are provided in Table 2.

Table 2 Summary of FE and bias potentials in photocatalytic CO\(_2\) reduction.

Ref	Catalyst	electrolyte	pH	Potential V vs RHE	FE	Product	Ref nr	\(\lambda\), nm
Magesh et al	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.87	42.3	CH\(_4\)	[57]	>420
	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.65	64.6	CH\(_4\)	[57]	>420
	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.75	67	CH\(_4\)	[57]	>420
	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.87	4	C\(_2\)H\(_4\)	[57]	>420
	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.65	4.5	C\(_2\)H\(_4\)	[57]	>420
	WO\(_3\)-Cu	KHCO\(_3\)	7.5	+0.75	2.7	C\(_2\)H\(_4\)	[57]	>420
	WO\(_3\)-Sn/SnO\(_2\)	KCl	7.5	+0.6	27.5	HCOOH	[57]	>420
	WO\(_3\)-Sn/SnO\(_2\)	KCl	7.5	+0.7	27.5	HCOOH	[57]	>420
	WO\(_3\)-Sn/SnO\(_2\)	KCl	7.5	+0.8	26.8	HCOOH	[57]	>420
Hinogami et al	p-Si	0.1 M KHCO\(_3\)	6.8	-0.62	12	CO	[58]	>420
	Cu/p-Si	0.1 M KHCO\(_3\)	6.8	-0.52	25	CH\(_4\)	[58]	>420
	p-Si	0.1 M KHCO\(_3\)	6.8	-1.026	73.5	H\(_2\)	[58]	>420
	Ag	0.1 M KHCO\(_3\)	6.8	-1.49	75.9	CO	[58]	>420
	part-Ag/p-Si	0.1 M KHCO\(_3\)	6.8	-0.806	50.9	CO	[58]	>420
	Au	0.1 M KHCO\(_3\)	6.8	-0.966	82.2	CO	[58]	>420
	part Au/p-Si	0.1 M KHCO\(_3\)	6.8	-0.496	62.2	CO	[58]	>420
Yoneyama et al	p-CdTe	0.1 M NaKCO\(_3\)	n.a.	-0.55	48.4	HCOOH	[59]	>450
	p-CdTe	0.1 M TEAP	n.a.	-0.55	65.6	CO	[59]	>450
	p-InP	0.1 M TEAP	n.a.	-0.55	17.5	HCOOH	[59]	>450
	p-InP	0.1 M NaKCO\(_3\)	n.a.	-0.55	36.2	HCOOH	[59]	>450
Tan et al	5GO-OTiO\(_2\)	Gaseous CO\(_2\) with H\(_2\)O	n.a.	0	3.45	CH\(_4\)	[60]	>400
7

4. Conclusions
Catalytic CO\(_2\) reformation is yet to be fully understood. The pathways of electrocatalytic and photocatalytic reduction are similar but requires different parameter control and thus have different production efficiency.

In electrocatalytic reduction higher hydrocarbons are produced under more negative overpotentials than -1.3 V vs NHE. Low carbonate and KCl concentrations provide higher FE for C\(_2\)H\(_4\) formation. pH influence is not determined but results suggest that flow of electrolyte should be applied for higher FE.

Electrocatalytic CO\(_2\) reduction in liquid electrolytes is characterized by higher production rates and photocatalytic reduction production volumes are substantially lower. Production of higher hydrocarbons is challenging in photocatalytic reduction, as the majority of products are C1 and C2. In addition, in many cases photocatalytic CO\(_2\) reduction requires bias potential, which increases overall energy consumption. It is necessary to investigate materials that would allow CO\(_2\) reduction without bias potential. Photocatalytic processes are not able to deliver high enough current densities for high volume production.

If the goal is C\(_2\)H\(_4\) then nanostructured Cu should be chosen as catalyst material, higher concentration electrolyte should be used in electrocatalytic CO\(_2\) reformation.

5. Acknowledgement
Funding from European Union’s Horizon 2020 Research and Innovation Program project under grant agreement No 768789 is greatly acknowledged.

References
[1] Anon 2016 Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: a European strategy for low-emission mobility 2016 (Brussels: European Commission)
[2] Alper E and Yuksel Orhan O 2017 CO\(_2\) utilization: Developments in conversion processes Petroleum 3 109–26
[3] Whipple D T and Kenis P J A 2010 Prospects of CO\(_2\) utilization via direct heterogeneous electrochemical reduction J. Phys. Chem. Lett. 1 3451
[4] Razali M H and Yusoff M 2018 Highly efficient CuO incorporated TiO\(_2\) Nanotube photocatalyst for hydrogen production from water Mater. Lett. 168–71
[5] Hori Y, Murata A and Takahashi R 1989 Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 85 2309
[6] Gunasekar G H, Shin J, Jung K-D, Park K and Yoon S 2018 Design Strategy toward Recyclable and Highly Efficient Heterogeneous Catalysts for the Hydrogenation of CO\(_2\) to Formate ACS Catal. 4346–4353
[7] DeWulf D W, Jin T and Bard A J 1989 Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions J. Electrochem. Soc. 136 1686
[8] Firet N J and Smith W A 2017 Probing the Reaction Mechanism of CO\(_2\) Electroreduction over Ag Films via Operando Infrared Spectroscopy ACS Catal. 7 606–12
[9] Shen J, Kortlever R, Kas R, Birdja Y Y, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten K J P, Mul G and Koper M T M 2015 Electrocatalytic reduction of carbon dioxide to carbon
monoxide and methane at an immobilized cobalt protoporphyrin Nat. Commun. 6 1–8
[10] Kuhl K P, Hatsukade T, Cave E R, Abram D N, Kibsgaard J and Jaramillo T F 2014 Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces J. Am. Chem. Soc. 136 14107–13
[11] Qiao J, Liu Y, Hong F and Zhang J 2014 A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels Chem. Soc. Rev. 43 631–75
[12] Kortlever R, Shen J, Schouten K J P, Calle-Vallejo F and Koper M T M 2015 Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide J. Phys. Chem. Lett. 6 4073–82
[13] Francke R, Schille B and Roemelt M 2018 Homogeneously Catalyzed Electroreduction of Carbon Dioxide - Methods, Mechanisms, and Catalysts Chem. Rev. 118 4631–70
[14] Townshend A 1987 Standard potentials in aqueous solutions Anal. Chim. Acta 198 333–4
[15] Hori Y, Kikuchi K and Suzuki S 1985 Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogen carbonate solution Chem. Lett. 14 1695–8
[16] Jitaru M, Lowy D A, Toma M, Toma B C and Oniciu L 1997 Electrochemical reduction of carbon dioxide on flat metallic cathodes J. Appl. Electrochem. 27 875–89
[17] Gattrell M, Gupta N and Co A 2006 A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper J. Electroanal. Chem. 594 1–19
[18] Hori Y, Murata A, Takahashi R and Suzuki S 1987 Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure J. Am. Chem. Soc. 109 5022–3
[19] Zhang Q, Xu W, Xu J, Liu Y and Zhang J 2018 High performing and cost-effective metal/metal oxide/metal alloy catalysts/electrodes for low temperature CO2 electroreduction Catal. Today 0–1
[20] Hori Y, Takahashi R, Yoshinami Y and Murata A 1997 Electrochemical Reduction of CO at a Copper Electrode J. Phys. Chem. B 101 7075–81
[21] Zhong H, Fuji K and Nakano Y 2017 Effect of KHCO3 Concentration on Electrochemical Reduction of CO2 on Copper Electrode J. Electrochem. Soc. 164 F923–7
[22] Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M and Kenis P J A 2016 One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer J. Power Sources 301 219–28
[23] Kuhl K P, Cave E R, Abram D N and Jaramillo T F 2012 New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces Energy Environ. Sci. 5 7050
[24] Hanwell M D, Curtis D E, Lonie D C, Vandermeersch T, Zurek E and Hutchison G R 2012 Avogadro: An advanced semantic chemical editor, visualization, and analysis platform J. Cheminform. 4 17
[25] Hori Y 2008 Electrochemical CO2 Reduction on Metal Electrodes Modern Aspects of Electrochemistry (New York, NY: Springer New York) pp 89–189
[26] Resasco J, Lum Y, Clark E, Zeledon J Z and Bell A T 2018 Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2 ChemElectroChem 5 1064–72
[27] Malik K, Bajaj N K and Verma A 2018 Effect of catalyst layer on electrochemical reduction of carbon dioxide using different morphologies of copper J. CO2 Util. 27 355–65
[28] Reske R, Mistry H, Behafarid F, Roldan Cuenya B and Strasser P 2014 Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles J. Am. Chem. Soc. 136 6978–86
[29] Schouten K J P, Kwon Y, van der Ham C J M, Qin Z and Koper M T M 2011 A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes Chem. Sci. 2 1902
[30] Hatsukade T, Kuhl K P, Cave E R, Abram D N and Jaramillo T F 2014 Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces Phys. Chem. Chem. Phys. 16 13814–9
[31] Hori Y, Wakebe H, Tsukamoto T and Koga O 1994 Electrocatalytic process of CO selectivity in
electrochemical reduction of CO$_2$ at metal electrodes in aqueous media Electrochim. Acta 39 1833–9

[32] Hori Y, Takahashi I, Koga O and Hoshi N 2003 Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes J. Mol. Catal. A Chem. 199 39–47

[33] Huang Y, Handoko A D, Hirunsit P and Yeo B S 2017 Electrochemical Reduction of CO$_2$ Using Copper Single-Crystal Surfaces: Effects of CO$_2$ Coverage on the Selective Formation of Ethylene ACS Catal. 7 1749–56

[34] Chen C S, Wan J H and Yeo B S 2015 Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride J. Phys. Chem. C 119 26875–82

[35] Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Nørskov J K and Chorkendorff I 2012 The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO$_2$ electroreduction Phys. Chem. Chem. Phys. 14 76–81

[36] Raciti D, Livi K J and Wang C 2015 Highly Dense Cu Nanowires for Low-Overpotential CO$_2$ Reduction Nano Lett. 15 6829–35

[37] Chen C S, Handoko A D, Wan J H, Ma L, Ren D and Yeo B S 2015 Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals Catal. Sci. Technol. 5 161–8

[38] Roberts F S, Kuhl K P and Nilsson A 2015 High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts Angew. Chemie - Int. Ed. 54 5179–82

[39] Sen S, Liu D and Palmore G T R 2014 Electrochemical reduction of CO$_2$ at copper nanofoams ACS Catal. 4 3091–5

[40] Kas R, Kortlever R, Milbrat A, Koper M T M, Mul G and Baltrusaitis J 2014 Electrochemical CO$_2$ reduction on Cu$_2$O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons Phys. Chem. Chem. Phys. 16 12194–201

[41] Liu S, Pang F, Zhang Q, Guo R, Wang Z, Wang Y, Zhang W and Ou J 2018 Stable nanoporous Sn/SnO$_2$ composites for efficient electroreduction of CO$_2$ to formate over wide potential range Appl. Mater. Today 13 135–43

[42] Mistry H, Reske R, Strasser P and Roldan Cuenya B 2017 Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO$_2$ electroreduction Catal. Today 288 30–6

[43] Wang C, Cao M, Jiang X, Wang M and Shen Y 2018 A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO$_2$ to CO with high faradaic efficiency Electrochim. Acta 271 544–50

[44] Bernal M, Bagger A, Scholten F, Sinev I, Bergmann A, Ahmadi M, Rossmeisl J and Cuenya B R 2018 CO$_2$ Electroreduction on Copper-Cobalt Nanoparticles: Size and Composition Effect Nano Energy 53 27–36

[45] Yang G, Yu Z, Zhang J and Liang Z 2018 A highly efficient flower-like cobalt catalyst for electroreduction of carbon dioxide Chinese J. Catal. 39 914–9

[46] Ge H, Gu Z, Han P, Shen H, Al-Enizi A M, Zhang L and Zheng G 2018 Mesoporous tin oxide for electrocatalytic CO$_2$ reduction J. Colloid Interface Sci. 531 564–9

[47] Kaneco S, Ueno Y, Katsumata H, Suzuki T and Ohta K 2006 Electrochemical reduction of CO$_2$ in copper particle-suspended methanol Chem. Eng. J. 119 107–12

[48] Cook R L 1990 High Rate Gas Phase CO$_2$ Reduction to Ethylene and Methane Using Gas Diffusion Electrodes J. Electrochem. Soc. 137 607

[49] Zhang Q, Xu W, Xu J, Liu Y and Zhang J 2018 High performing and cost-effective metal/metal oxide/metal alloy catalysts/electrodes for low temperature CO$_2$ electroreduction Catal. Today

[50] Karamian E and Sharifinia S 2016 On the general mechanism of photocatalytic reduction of CO$_2$ J. CO2 Util. 194–203

[51] Li K, An X, Park K H, Khraisheh M and Tang J 2014 A critical review of CO$_2$ photoconversion: Catalysts and reactors Catal. Today 224 3–12

[52] Xiang Q, Yu J and Wong P K 2011 Quantitative characterization of hydroxyl radicals produced
by various photocatalysts J. Colloid Interface Sci. 357 163–7
[53] Hirakawa T, Yawata K and Nosaka Y 2007 Photocatalytic reactivity for O$_2^-$ and OH radical formation in anatase and rutile TiO$_2$ suspension as the effect of H$_2$O$_2$ addition Appl. Catal. A Gen. 325 105–11
[54] Nosaka Y, Daimon T, Nosaka A Y and Murakami Y 2004 Singlet oxygen formation in photocatalytic TiO$_2$ aqueous suspension Phys. Chem. Chem. Phys. 6 2917
[55] Fujishima A, Zhang X and Tryk D 2008 TiO$_2$ photocatalysis and related surface phenomena Surf. Sci. Rep. 63 515–82
[56] Mikkelsen M, Jørgensen M and Krebs F C 2010 The teraton challenge. A review of fixation and transformation of carbon dioxide Energy Environ. Sci. 3 43–81
[57] Magesh G, Kim E S, Kang H J, Banu M, Kim J Y, Kim J H and Lee J S 2014 A versatile photoanode-driven photoelectrochemical system for conversion of CO$_2$ to fuels with high faradaic efficiencies at low bias potentials J. Mater. Chem. A
[58] Hinogami R, Nakamura Y, Yae S and Nakato Y 1998 An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles J. Phys. Chem. B 102 974–80
[59] Yoneyama H, Sugimura K and Kuwabata S 1988 Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions J. Electroanal. Chem. 249 143–53