SUPPORTING INFORMATION

Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics
Ashley C. Campbell¹, Kyle M. Stiers¹, Julia S. Martin Del Campo², Ritcha Mehra-Chaudhary¹, Pablo Sobrado²,*, John J. Tanner¹,3,*

¹Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
²Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
³Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA

*Corresponding Authors
John J. Tanner – E-mail: tannerjj@missouri.edu.
Pablo Sobrado –E-mail: psobrado@vt.edu.

Table of Contents
Table S1. FAD Conformations in ornithine hydroxylase structures………………………… S2
Table S2. X-ray diffraction data collection and refinement statistics……………………………… S3
Table S3. SMILES of the top 10 compounds from docking…………………………………… S4
Table S4. Physicochemical properties of the top 10 compounds from docking……………… S5
Figure S1. Biosynthetic pathway for hydroxamate-containing siderophores………………….. S6
Figure S2. Electron density for the active sites of SidA structures……………………………. S7
Figure S3. Multiple sequence alignment of ornithine hydroxylases………………………… S8
Figure S4. Hydrogen bonding between His91 and the ribityl 4’-OH of SidA………………… S9
Figure S5. Chemical structures of the top 10 compounds from docking to site 1…….. S10
Figure S6. Chemical structures of the top 10 compounds from docking to site 2……….. S11
Figure S7. The top-ranked compound docked to site 2………………………………………. S12
Table S1
FAD conformations in SidA, PvdA, and KtzI ornithine hydroxylase structures

	PDB ID	Active Site Ligands^a	Space Group	Resolution (Å)	Mutation	Flavin Redox State	Flavin Conformation
SidA	4B63	FAD, NAP, ORN	I222	1.90	WT	ox	in
SidA	4B64	FAD, NAP, LYS	I222	2.28	WT	ox	in
SidA	4B65	FAD, NDP	I222	2.32	WT	red	in
SidA	4B66	FAD, NAP, ARG	I222	2.90	WT	red	in
SidA	4B67	FAD, NAP, ORN	I222	2.75	WT	reoxidised	in
SidA	4B68	FAD, NAP, ARG	I222	2.29	WT	reoxidised	in
SidA	4B69	FAD, ORN	I222	2.30	WT	ox	in
SidA	5CKU	FAD, NAP, ORN	I222	2.10	N323A	ox	in
PvdA	3S5W	FAD, NAP, ONH	I4122	1.90	WT	ox	in
PvdA	3S61	FAD, NDP, ORN	I4122	3.03	WT	red	in
KtzI	4TLX	FDA, K, NAP, ORN	P2₁2₁2₁	2.23	WT	red	in
KtzI	4TLZ	FDA, K, NAP, ORN	P2₁2₁2₁	2.41	WT	ox	^{out}
KtzI	4TM0	FAD, K, NAP, ORN	P2₁2₁2₁	2.74	WT	reoxidised	^{out}
KtzI	4TM1	FDA, BR, NAP	P2₁2₁2₁	2.39	WT	red	in
KtzI	4TM3	FAD, BR	P2₁2₁2₁	2.09	WT	ox	^{out}
KtzI	4TM4	FDA, BR, NAP	P2₁2₁2₁	2.63	WT	red	in

^aLists the PDB ligand IDs stated in the entry.
Table S2
X-ray diffraction and data collection statistics

	FAD_{ox}	FAD_{ox} – NADP⁺	FAD_{red} – NADP⁺	FAD_{red} – L-Orn
Beamline	APS (24-ID-C)	ALS (4.2.2)	APS (24-ID-C)	APS (24-ID-E)
Space group	P₂₁	P₂₁	P₂₁	P₂₁
Unit cell	a = 76.8,	a = 80.5,	a = 85.2,	a = 105.9
parameters (Å,°)	b = 156.9,	b = 154.9,	b = 153.0,	b = 155.0
	c = 88.6,	c = 90.5,	c = 91.1,	c = 146.85,
	β = 110.4	β = 109.2	β = 110.9,	β = 91.01
Mols. in asu.	4	4	4	8
Wavelength (Å)	0.97918	1.00000	0.97918	0.97918
Resolution (Å)	156.9 – 2.09	63.2 – 1.95	153.0 – 2.34	155.04 - 2.23
Observations	265666 (10926)	544409 (24487)	374864 (9559)	1006051 (37428)
Unique reflections	114542 (5054)	151085 (7458)	90888 (3292)	225621 (8596)
R_{merge}	0.110 (0.858)	0.092 (0.790)	0.198 (1.372)	0.209 (1.400)
R_{meas}	0.142 (1.113)	0.108 (0.947)	0.227 (1.637)	0.239 (1.583)
R_{pim}	0.088 (0.702)	0.056 (0.516)	0.111 (0.874)	0.113 (0.727)
Mean I/σ	6.0 (1.0)	12.1 (1.5)	8.9 (0.8)	7.8 (1.0)
CC_{1/2}	0.991 (0.416)	0.997 (0.523)	0.984 (0.8)	0.968 (0.399)
Completeness (%)	98.4 (87.4)	99.5 (99.0)	98.5 (71.9)	97.6 (75.2)
Multiplicity	2.3 (2.2)	3.6 (3.3)	4.1 (2.9)	4.5 (4.4)
No. of protein residues	1788	1771	1807	3510
No. of atoms				
Protein	13867	14033	13964	27310
FAD	212	265	212	424
L-Orn	N/A	N/A	36	54
NADP⁺	N/A	192	192	N/A
Water	526	1069	398	383
R_{cryst}	0.1823 (0.2856)	0.1682 (0.2588)	0.1835 (0.2987)	0.2307 (0.3103)
R_{free}^{a,b}	0.2322 (0.3321)	0.2110 (0.2990)	0.2491 (0.3375)	0.2807 (0.3580)
rmsd bonds (Å)	0.007	0.006	0.007	0.008
rmsd angles (°)	0.919	0.869	1.020	1.029
Ramachandran plot				
Favored (%)	96.72	97.14	96.59	97.39
Outliers (%)	0.11	0.00	0.11	0.03
Clashscore (PR)^c	2.13 (99)	1.78 (100)	2.81 (100)	3.73 (99)
MolProbity score (PR)^c	1.34 (99)	1.09 (100)	1.49 (99)	1.48 (99)
Average B (Å²)				
Protein	37.7	30.2	35.0	57.8
FAD	32.6	23.6	28.6	49.4
L-Orn	N/A	N/A	26.1	41.5
NADP⁺	N/A	27.6	30.5	N/A
Water	33.9	31.3	30.0	43.0
Coord. error (Å)^d	0.29	0.21	0.36	0.39
PDB code	6X0H	6X0I	6X0J	6X0K

^aValues for the outer resolution shell of data are given in parenthesis. ^b5% test set. ^cFrom MolProbity. The percentile ranks (PR) for Clashscore and MolProbity score are given in parentheses. ^dMaximum likelihood-based coordinate error estimate from PHENIX.
Table S3
SMILES of the top 10 compounds from docking

Site 1	SMILES
1	O=C1c2cccccc2c2cc([N+])(=O)(O=)cc3cccc1c23
2	Oc1ccc(c2cccccc2)c2cc3c(cc2n1)OCCO3
3	CC(=O)NCCc1c(c2cccccc2)[nH]c2cccccc12
4	Oc1nc2cc(C(F)(F)F)cc(n3cccccc3)c2nc10
5	CCCc1nc2c3ccc(F)cc3c3c(=O)[nH]cc3c3c2[nH]1
6	Cc1ccc(C(O)(c2ccc(C)cc2)c2cccn2)cc1
7	C0c1cccc(c2cccccc3c2CC(=O)C(N)CC3)c1
8	O=C(/C=C/c1cccc(/C=C/C(=O)c2cccccc2)c1)NO
9	Ce1ccc(O)c2[nH]e(Cc3cccc4cccccc34)nc12
10*	O=c1c2cccccc2c2nc3[nH]e(=O)[nH]c(=O)c3cc12

Site 2	SMILES
1	O=c1[nH]c(c2cccccc2)cc2onc(c3cccccc3)c12
2	CC(=O)Oc1cccc(c2cc3cc(C)cccc3oc2=O)c1
3	O=C(Nc1ccc(F)cc1)C(=O)C1C(=O)Nc2cccccc12
4	Cc1ccc2ccce(NC30C(=O)c4cccccc34)c2n1
5*	O=c1c2cccccc2c2nc3[nH]e(=O)[nH]c(=O)c3cc12
6	O=C/C(=C/c2ccc(O)c((N+)/)(=O)[O-])c2)/COc2cccccc12
7	O=C(Nc1nnc(c2ccccc2)s1)c1cccccc1F
8	CC(=O)N1CC2(NC(=O)c3cccccc3N2)c2cccccc12
9	O=C(O)/C(=C/C(=O)c1cccc(c2nnn[nH]2)c1)/O
10	N=c1oc2cccccc2cc1C(=O)Nc1cccc(O)c1

Compound 10 of site 1 and compound 5 of site 2 are the same.
Table S4
Physicochemical properties of the top 10 compounds from docking

	Site 1	Site 2
Molecular weight (g/mol)	284 ± 10	287 ± 14
No. heavy atoms	21.3 ± 0.7	21.3 ± 1.1
No. aromatic atoms	15.7 ± 2.3	15 ± 3.2
Fraction of C atoms in sp³	0.109 ± 0.09	0.052 ± 0.06
No. rotatable bonds	2.4 ± 1.8	2.5 ± 1.4
No. H-bond acceptors	3.2 ± 1.6	4.0 ± 1.3
No. H-bond donors	1.5 ± 0.7	1.6 ± 1.0
Figure S1. Biosynthetic pathway for hydroxamate-containing siderophores. SidA (yellow) catalyzes the first step in the production of hydroxamate-containing siderophores in *Aspergillus fumigatus*. The components of each molecule which originate from L-Orn are shown in blue. SidF and SidL (purple) are N5-acetylases. SidD and SidC (blue) are non-ribosomal peptide synthetases. SidG (green) is an N2-acetylase. An unidentified enzyme (orange) is a hydroxylase.
Figure S2. Electron density maps for the FAD, Tyr324, NADP\(^+\) and L-Orn in SidA structures (polder omit maps contoured at 3.5\(\sigma\)). (A) Oxidized enzyme without ligands bound. (B) Oxidized enzyme complexed with NADP\(^+\). (C) Dithionite-reduced enzyme complexed with L-Orn. (D) Reduced enzyme complexed with NADP\(^+\) and L-Orn.
Multiple sequence alignment of ornithine hydroxylases. The Tyr-loop is highlighted.

Accession	Sequence
KAB8068769.1	KAB8068769.1
XP_026607835.1	XP_026607835.1
SidA	SidA
OKP15176.1	OKP15176.1
PvdA	PvdA
WP_026218888.1	WP_026218888.1
WP_011603723.1	WP_011603723.1
KtzI	KtzI

Figure S3. Multiple sequence alignment of ornithine hydroxylases. The Tyr-loop is highlighted in yellow.
Figure S4. Hydrogen bonding between His91 and the ribityl 4’-OH of SidA in the resting state (green), dithionite-reduced enzyme with L-Orn bound (light orange), oxidized enzyme with NADP⁺ (pale blue), and reduced enzyme with NADP⁺ (pink). Oxidized and reduced FADs are colored yellow and gray, respectively.
Figure S5. Chemical structures of the top 10 compounds from docking to site 1.
Figure S6. Chemical structures of the top 10 compounds from docking to site 2.
Figure S7. The top-ranked compound docked to site 2. The FAD is colored yellow.