Close-to-convexity and Starlikeness of Analytic Functions

See Keong Lee, V. Ravichandran, and Shamani Supramaniam

Abstract. For functions \(f(z) = z^p + a_{n+1}z^{p+1} + \cdots \) defined on the open unit disk, the condition \(\Re\left(f'(z)/z^{p-1} \right) > 0 \) is sufficient for close-to-convexity of \(f \). By making use of this result, several sufficient conditions for close-to-convexity are investigated and relevant connections with previously known results are indicated.

1. Introduction

Let \(D := \{ z \in \mathbb{C} : |z| < 1 \} \) be the open unit disk and \(\mathcal{S}_{p,n} \) be the class of all analytic functions \(f : D \to \mathbb{C} \) of the form

\[
f(z) = z^p + a_{n+1}z^{p+1} + \cdots
\]

with \(\mathcal{S} := \mathcal{S}_{1,1} \). For studies related to multivalent functions, see [5,7,10]. Singh and Singh [15] obtained several interesting conditions for functions \(f \in \mathcal{S} \) satisfying inequalities involving \(f'(z) \) and \(zf''(z) \) to be univalent or starlike in \(D \). Owa et al. [11] generalized the results of Singh and Singh [15] and also obtained several sufficient conditions for close-to-convexity, starlikeness and convexity of functions \(f \in \mathcal{S} \). In fact, they have proved the following theorems.

Theorem 1.1. [11] Theorems 1-3 Let \(0 \leq \alpha < 1 \) and \(\beta, \gamma \geq 0 \). If \(f \in \mathcal{S} \), then

\[
\Re\left(1 + \frac{zf''(z)}{f'(z)} \right) > \frac{1 + 3\alpha}{2(1 + \alpha)} \implies \Re\left(f'(z) \right) > \frac{1 + \alpha}{2},
\]

\[
\Re\left(1 + \frac{zf''(z)}{f'(z)} \right) < \frac{3 + 2\alpha}{2 + \alpha} \implies |f'(z) - 1| < 1 + \alpha,
\]

\[
|f'(z) - 1|^\beta |zf''(z)|^\gamma < \frac{(1 - \alpha)^{\beta + \gamma}}{2^{\beta + 2\gamma}} \implies \Re\left(f'(z) \right) > \frac{1 + \alpha}{2}.
\]

Theorem 1.2. [11] Theorem 4 Let \(1 < \lambda < 3 \). If \(f \in \mathcal{S} \), then

\[
\Re\left(1 + \frac{zf''(z)}{f'(z)} \right) < \begin{cases}
\frac{5\lambda - 1}{2(\lambda + 1)}, & 1 < \lambda \leq 2; \\
\frac{\lambda + 1}{2(\lambda - 1)}, & 2 < \lambda < 3,
\end{cases} \implies zf'(z)/f(z) < \frac{\lambda(1 - z)}{\lambda - z}.
\]
In this present paper, the above results are extended for functions \(f \in \mathcal{A}_{p,n} \) and in particular for functions in \(\mathcal{A}_{1,n} \).

2. Close-to-convexity and Starlikeness

For \(f \in \mathcal{A} \), the condition \(\text{Re} f'(z) > 0 \) implies close-to-convexity and univalence of \(f \). Similarly, for \(f \in \mathcal{A}_{p,1} \), the inequality \(\text{Re}(f'(z)/z^{p-1}) > 0 \) implies \(p \)-valency of \(f \). See [17, 18]. From this result, the functions satisfying the hypothesis of Theorems 2.1–2.3 are \(p \)-valent in \(D \). A function \(f \in \mathcal{A}_{p,1} \) is close-to-convex if there is a \(p \)-valent convex function \(\phi \) such that \(\text{Re}(f'(z)/\phi(z)) > 0 \). Also they are all close-to-convex with respect to \(\phi(z) = z^p \).

Theorem 2.1. If the function \(f \in \mathcal{A}_{p,n} \) satisfies the inequality

\[
\text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \frac{(2p-n) + \alpha(2p+n)}{2(\alpha+1)},
\]

then

\[
\text{Re}\left(\frac{f'(z)}{pz^{p-1}}\right) > \frac{1 + \alpha}{2}.
\]

For the proof of our main results, we need the following lemma.

Lemma 2.1. [6, Lemma 2.2a] Let \(z_0 \in \mathbb{D} \) and \(r_0 = |z_0| \). Let \(f(z) = a_n z^n + a_{n+1} z^{n+1} + \cdots \) be continuous on \(\overline{B}_{r_0} \) and analytic on \(\mathbb{D}_{r_0} \cup \{z_0\} \) with \(f(z) \neq 0 \) and \(n \geq 1 \). If

\[
|f(z_0)| = \max\{|f(z)| : z \in \mathbb{D}_{r_0} \},
\]

then there exists an \(m \geq n \) such that

1. \(\frac{z_0 f'(z_0)}{f(z_0)} = m \), and
2. \(\text{Re}\left(\frac{z_0 f''(z_0)}{f'(z_0)} + 1 \right) \geq m \).

Proof of Theorem 2.1. Let the function \(w \) be defined by

\[
f'(z) = \frac{p}{pz^{p-1}} + \frac{\alpha w(z)}{1 + \alpha w(z)} - \frac{zw'(z)}{1 + w(z)}.
\]

Then clearly \(w \) is analytic in \(\mathbb{D} \) with \(w(0) = 0 \). From (2.2), some computation yields

\[
1 + \frac{zf''(z)}{f'(z)} = p + \frac{\alpha zw'(z)}{1 + \alpha w(z)} - \frac{zw'(z)}{1 + w(z)}.
\]

Suppose there exists a point \(z_0 \in \mathbb{D} \) such that

\[
|w(z_0)| = 1 \text{ and } |w(z)| < 1 \text{ when } |z| < |z_0|.
\]

Then by applying Lemma 2.1 there exists \(m \geq n \) such that

\[
z_0 w'(z_0) = mw(z_0), \quad (w(z_0) = e^{i\theta}; \theta \in \mathbb{R}).
\]
Thus, by using (2.3) and (2.4), it follows that

\[
\Re\left(\frac{1 + \frac{z_0 f''(z_0)}{f''(z_0)}}{p + \Re\left(\frac{\alpha m w(z_0)}{1 + \alpha w(z_0)}\right) - \Re\left(\frac{m w(z_0)}{1 + w(z_0)}\right)}\right)
\]

\[
= p + \Re\left(\frac{\alpha m w(z_0)}{1 + \alpha w(z_0)}\right) - \Re\left(\frac{m e^{i\theta}}{1 + e^{i\theta}}\right)
\]

\[
= p + \alpha m (\alpha + \cos \theta) - \frac{m}{2}
\]

\[
\leq \frac{(2p - n) + \alpha(2p + n)}{2(\alpha + 1)}
\]

which contradicts the hypothesis (2.1). It follows that \(|w(z)| < 1 \), that is

\[
\left|\frac{f'(z)}{p z^{p-1}} - 1\right| < 1.
\]

This evidently completes the proof of Theorem 2.1.

Owa [13] shows that a function \(f \in A_{p,1} \) satisfying \(\Re(1 + z f''(z)/f'(z)) < p + 1/2 \) implies \(f \) is \(p \)-valently starlike. Our next theorem investigates the close-to-convexity of this type of functions. For related results, see [4, 14, 19].

Theorem 2.2. If the function \(f \in A_{p,n} \) satisfies the inequality

\[
\Re\left(1 + \frac{z f''(z)}{f'(z)}\right) < \frac{(p + n) \alpha + (2p + n)}{(\alpha + 2)},
\]

then

\[
\left|\frac{f'(z)}{p z^{p-1}} - 1\right| < 1 + \alpha.
\]

Proof. Consider the function \(w \) defined by

\[
\frac{f'(z)}{p z^{p-1}} = (1 + \alpha) w(z) + 1.
\]

Then clearly \(w \) is analytic in \(\mathbb{D} \) with \(w(0) = 0 \). From (2.6), some computation yields

\[
1 + \frac{z f''(z)}{f'(z)} = p + \frac{(1 + \alpha) z w'(z)}{(1 + \alpha) w(z) + 1}.
\]

Suppose there exists a point \(z_0 \in \mathbb{D} \) such that

\[
|w(z_0)| = 1 \quad \text{and} \quad |w(z)| < 1 \quad \text{when} \quad |z| < |z_0|.
\]

Then by applying Lemma 2.1 there exists \(m \geq n \) such that

\[
z_0 w'(z_0) = mw(z_0), \quad (w(z_0) = e^{i\theta}; \theta \in \mathbb{R}).
\]
Thus, by using (2.7) and (2.8), it follows that
\[
\text{Re} \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} \right) = p + \text{Re} \left(\frac{(1 + \alpha)z_0 w'(z_0)}{(1 + \alpha)w(z_0) + 1} \right)
\]
\[
= p + \text{Re} \left(\frac{(1 + \alpha)me^{i\theta}}{(1 + \alpha)e^{i\theta} + 1} \right)
\]
\[
= p + \frac{m(1 + \alpha)(1 + \alpha + \cos \theta)}{1 + (1 + \alpha)^2 + 2(1 + \alpha)\cos \theta}
\]
\[
\geq \frac{(p + n)\alpha + (2p + n)}{(\alpha + 2)},
\]
which contradicts the hypothesis (2.5). It follows that \(|w(z)| < 1\), that is,
\[
\left| f'(z) \right|_{pz^p - 1} < 1 + \alpha.
\]

This evidently completes the proof of Theorem 2.2. □

Owa [12] has also showed that a function \(f \in A \) satisfying
\[
\left| \frac{f'(z)}{g'(z)} - 1 \right|^{\beta} |zf''(z)/g'(z) - zf'(z)g''(z)/(g'(z))^2|^{\gamma} < (1 + \alpha)^{\beta + \gamma}
\]
for \(0 \leq \alpha < 1, \beta \geq 0, \gamma \geq 0 \) and \(g \) a convex function, is close-to-convex. Also, see [3]. Our next theorem investigates the close-to-convexity of similar class of functions.

Theorem 2.3. If \(f \in A_{p,n} \), then

\[
\left| \frac{f'(z)}{pz^p - 1} - 1 \right|^{\beta} \left| \frac{f''(z)}{z^p - 2} - (p - 1) \frac{f'(z)}{z^p - 1} \right|^{\gamma} < \left(\frac{pn}{(1 - \alpha)^{\beta + \gamma}} \right)
\]

implies
\[
\text{Re} \left(\frac{f'(z)}{pz^p - 1} \right) > \frac{1 + \alpha}{2},
\]
and

\[
\left| \frac{f'(z)}{pz^p - 1} - 1 \right|^{\beta} \left| \frac{f''(z)}{z^p - 2} - (p - 1) \frac{f'(z)}{z^p - 1} \right|^{\gamma} < (pn)^{\gamma}|1 - \alpha|^{\beta + \gamma}
\]

implies
\[
\left| \frac{f'(z)}{pz^p - 1} - 1 \right| < 1 - \alpha.
\]

Proof. For the function \(w \) defined by

\[
\frac{f'(z)}{pz^p - 1} = \frac{1 + \alpha w(z)}{1 + w(z)},
\]
we can rewrite (2.11) to yield
\[
\frac{f'(z)}{pz^p - 1} - 1 = \frac{(\alpha - 1)w(z)}{1 + w(z)}.
\]
For the second implication in the proof, consider the function

\[(2.12) \quad \left| \frac{f'(z)}{p z^{p-1}} - 1 \right|^{\beta} = \frac{|w(z)|^\beta |1 - \alpha|^\beta}{|1 + w(z)|^\beta}. \]

By some computation, it is evident that

\[\frac{f''(z)}{z^{p-2}} - (p-1) \frac{f'(z)}{z^{p-1}} = \frac{p(\alpha - 1)zw'(z)}{(1 + w(z))^2} \]

or

\[(2.13) \quad \left| \frac{f''(z)}{z^{p-2}} - (p-1) \frac{f'(z)}{z^{p-1}} \right|^{\gamma} = \frac{p^\gamma |zw'(z)|^\gamma |1 - \alpha|^\gamma}{|1 + w(z)|^{2\gamma}}. \]

From (2.12) and (2.13), it follows that

\[\left| \frac{f'(z)}{p z^{p-1}} - 1 \right|^{\beta} \left| \frac{f''(z)}{z^{p-2}} - (p-1) \frac{f'(z)}{z^{p-1}} \right|^{\gamma} = \frac{p^\gamma |w(z)|^\beta |1 - \alpha|^\beta + \gamma |zw'(z)|^\gamma}{|1 + w(z)|^{\beta + 2\gamma}}. \]

Suppose there exists a point \(z_0 \in \mathbb{D} \) such that

\[|w(z_0)| = 1 \text{ and } |w(z)| < 1 \text{ when } |z| < |z_0|. \]

Then (2.14) and Lemma 2.1 yield

\[\left| \frac{f'(z_0)}{p z_0^{p-1}} - 1 \right|^{\beta} \left| \frac{f''(z_0)}{z_0^{p-2}} - (p-1) \frac{f'(z_0)}{z_0^{p-1}} \right|^{\gamma} = \frac{p^\gamma (1 - \alpha)^{\beta + \gamma} |w(z_0)|^\beta |mw(z_0)|^\gamma}{|1 + e^{i\theta}|^{\beta + 2\gamma}} \]

\[\geq \frac{p^\gamma n^\gamma (1 - \alpha)^{\beta + \gamma}}{2^{\beta + 2\gamma}}, \]

which contradicts the hypothesis (2.9). Hence \(|w(z)| < 1 \), which implies

\[\left| \frac{1 - f'(z)}{p z^{p-1}} - \alpha \right| < 1, \]

or equivalently

\[\Re \left(\frac{f'(z)}{p z^{p-1}} \right) > \frac{1 + \alpha}{2}. \]

For the second implication in the proof, consider the function \(w \) defined by

\[(2.14) \quad \frac{f'(z)}{p z^{p-1}} = 1 + (1 - \alpha)w(z). \]

Then

\[(2.15) \quad \left| \frac{f'(z)}{p z^{p-1}} - 1 \right|^{\beta} = |1 - \alpha|^\beta |w(z)|^\beta \]

and

\[(2.16) \quad \left| \frac{f''(z)}{z^{p-2}} - (p-1) \frac{f'(z)}{z^{p-1}} \right|^{\gamma} = p^\gamma |zw'(z)|^\gamma |1 - \alpha|^\gamma. \]
From (2.15) and (2.16), it is clear that
\[
\left| \frac{f''(z)}{p^{\beta}z^{p-1}} - 1 \right| = \left| \frac{f''(z)}{p^{\beta}z^{p-1}} - (p - 1) \frac{f'(z)}{p^{\beta}z^{p-1}} \right| = p^\gamma |w(z)| |1 - \alpha|^\gamma |zw'(z)|^\gamma.
\]
Suppose there exists a point \(z_0 \in \mathbb{D}\) such that
\[
|w(z_0)| = 1 \quad \text{and} \quad |w(z)| < 1 \quad \text{when} \quad |z| < |z_0|.
\]
Then by applying Lemma 2.1 and using (2.4), it follows that
\[
\left| \frac{f'(z_0)}{pz_0^{\beta}z_0^{p-1}} - 1 \right| = \left| \frac{f''(z_0)}{p^{\beta+\gamma}z_0^{p-1}} \right| = p^\gamma |w(z_0)| |1 - \alpha|^\gamma |zw'(z_0)|^\gamma
\]
\[
= p^\gamma m^\gamma |1 - \alpha|^\gamma \geq (pm)^\gamma |1 - \alpha|^\gamma,
\]
which contradicts the hypothesis (2.10). Hence \(|w(z)| < 1\) and this implies
\[
\left| \frac{f'(z)}{pz^{\beta}z^{p-1}} - 1 \right| < 1 - \alpha.
\]
Thus the proof is complete. \(\square\)

In next theorem, we need the concept of subordination. Let \(f\) and \(g\) be analytic functions defined on \(\mathbb{D}\). Then \(f\) is subordinate to \(g\), written \(f \prec g\), provided there is an analytic function \(w : \mathbb{D} \to \mathbb{D}\) with \(w(0) = 0\) such that \(f = g \circ w\).

Theorem 2.4. Let \(\lambda_1\) and \(\lambda_2\) be given by
\[
\lambda_1 = \frac{2n + 4(2p - 1)}{4 + n - 2p + \sqrt{16n + n^2 + 32p - 12np - 28p^2}},
\]
\[
\lambda_2 = \frac{2n + 4(2p - 1)}{-n + 2p + \sqrt{16 - 8n + n^2 - 48p + 4np + 36p^2}},
\]
and \(\lambda_1 < \lambda < \lambda_2\). If the function \(f \in \mathcal{A}_{p,n}\) satisfies the inequality
\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)}\right) < \begin{cases}
\frac{2(1-p)\lambda^2 + (2-2p-n)}{2(\lambda + 1)}, & \lambda_1 < \lambda \leq \frac{p+n}{p}; \\
\frac{2(1-p)\lambda^2 + (2+2p+n)}{2(\lambda - 1)}, & \frac{p+n}{p} < \lambda < \lambda_2;
\end{cases}
\]
then
\[
\frac{zf'(z)}{pf(z)} < \frac{\lambda(1-z)}{\lambda - z}.
\]

Proof. Let us define \(w\) by
\[
\frac{zf'(z)}{pf(z)} = \frac{\lambda(1-w(z))}{\lambda - w(z)}.
\]
By doing the logarithmic differentiation on (2.19), we get
\[1 + \frac{zf''(z)}{f'(z)} = \frac{p\lambda(1-w(z))}{\lambda - z} - \frac{zw'(z)}{1-w(z)} + \lambda - w(z). \]

Assume that there exists a point \(z_0 \in \mathbb{D} \) such that \(|w(z_0)| = 1 \) and \(|w(z)| < 1 \) when \(|z| < |z_0| \). By applying Lemma 2.1 as in Theorem 2.1, it follows that
\[
\text{Re} \left(1 + \frac{z_0f''(z_0)}{f'(z_0)} \right) = \text{Re} \left(\frac{p\lambda(1-e^{i\theta})}{\lambda - e^{i\theta}} \right) - \text{Re} \left(\frac{me^{i\theta}}{1-e^{i\theta}} \right) + \text{Re} \left(\frac{me^{i\theta}}{\lambda - e^{i\theta}} \right)
\]
\[
= \frac{p\lambda(\lambda + 1)(1 - \cos \theta)}{\lambda^2 + 1 - 2\lambda \cos \theta} + \frac{m(\lambda \cos \theta - 1)}{\lambda^2 + 1 - 2\lambda \cos \theta}
\]
\[
= \frac{\lambda + 1}{2}(2 - p) + \frac{(\lambda^2 - 1)(p + m) - p\lambda}{2(\lambda^2 + 1 - 2\lambda \cos \theta)},
\]
which yields the inequality
\[
\text{Re} \left(1 + \frac{z_0f''(z_0)}{f'(z_0)} \right) \geq \begin{cases}
\frac{2(1-p)\lambda^2 + (4+n)\lambda + (2-2p-n)}{2(\lambda+1)}, & \lambda_1 < \lambda \leq \frac{p+n}{p}; \\
\frac{2(1-p)\lambda^2 + n\lambda + (2-2p+n)}{2(\lambda-1)}, & \frac{p+n}{p} < \lambda < \lambda_2.
\end{cases}
\]

Since (2.20) obviously contradicts hypothesis (2.17), it follows that \(|w(z)| < 1 \). This proves the subordination (2.18).

Remark 2.1. The subordination (2.18) can be written in equivalent form as
\[
\left| \frac{\lambda(f'(z)/f(z) - 1)}{zf''(z)/f'(z) - \lambda} \right| < 1,
\]
or by further computation, as
\[
\left| \frac{1}{p} \frac{zf''(z)}{f'(z)} - \frac{\lambda}{\lambda + 1} \right| < \frac{\lambda}{\lambda + 1}.
\]
The last inequality shows that \(f \) is starlike in \(\mathbb{D} \).

Remark 2.2. When \(p = 1 \) and \(n = 1 \), Theorems 2.1, 2.4 reduce to Theorems 1.1 and 1.2.

References

[1] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[2] A. W. Goodman, *Univalent Functions*, Mariner, Tampa, FL, 1983.
[3] L. J. Lin and H. M. Srivastava, Some starlikeness conditions for analytic functions, Nihonkai Math. J. 7 (1996), no. 2, 101–112.
[4] J. L. Liu, A remark on certain multivalent functions, Soochow J. Math. 21 (1995), no. 2, 179–181.
[5] A. E. Livingston, \(p \)-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161–179.
[6] S. S. Miller and P. T. Mocanu, *Differential Subordinations*, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[7] M. Nunokawa, S. Owa and H. Saitoh, Notes on multivalent functions, Indian J. Pure Appl. Math. 26 (1995), no. 8, 797–805.
[8] M. Nunokawa, On the multivalent functions, Indian J. Pure Appl. Math. 20 (1989), no. 6, 577–582.
[9] M. Nunokawa and S. Owa, On certain subclass of analytic functions, Indian J. Pure Appl. Math. 19 (1988), no. 1, 51–54.
[10] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), no. 2, 273–286.
[11] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15 (2002), no. 1, 63–69.
[12] S. Owa, On sufficient conditions for close-to-convex functions of order alpha, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 43–51.
[13] S. Owa, On Nunokawa’s conjecture for multivalent functions, Bull. Austral. Math. Soc. 41 (1990), no. 2, 301–305.
[14] S. Owa, M. Nunokawa and H. M. Srivastava, A certain class of multivalent functions, Appl. Math. Lett. 10 (1997), no. 2, 7–10.
[15] R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math. 47 (1982), no. 2, 309–314 (1983).
[16] H. M. Srivastava and S. Owa, Editors, Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ, 1992.
[17] T. Umezawa, On the theory of univalent functions, Tôhoku Math. J. (2) 7 (1955), 212–228.
[18] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869–874.
[19] R. Yamakawa, A proof of Nunokawa’s conjecture for starlikeness of p-valetly analytic functions, in Current topics in analytic function theory, 387–392, World Sci. Publ., River Edge, NJ.

E-mail address: sklee@cs.usm.my

E-mail address: vravi@maths.du.ac.in

E-mail address: sham105@hotmail.com