A SPECTRAL MULTIPLIER THEOREM ASSOCIATED WITH A SCHRÖDINGER OPERATOR

YOUNG HUN HONG

Abstract. We establish a spectral multiplier theorem associated with a Schrödinger operator \(H = -\Delta + V(x) \) in \(\mathbb{R}^3 \). We present a new approach employing the Born series expansion for the resolvent. This approach provides an explicit integral representation for the difference between a spectral multiplier and a Fourier multiplier, and it allows us to treat a large class of Schrödinger operators without Gaussian heat kernel estimates. As an application to nonlinear PDEs, we show the local-in-time well-posedness of a 3d quintic nonlinear Schrödinger equation with a potential.

1. Introduction

1.1. Statement of the main theorem. We establish a spectral multiplier theorem associated with a Schrödinger operator \(H = -\Delta + V(x) \) in \(\mathbb{R}^3 \) for a large class of short-range potentials \(V(x) \). Precisely, we assume that \(V \in \mathcal{K}_0 \cap L^{3/2,\infty} \), where \(\mathcal{K}_0 \) is the norm closure of bounded, compactly supported functions with respect to the global Kato norm

\[
\|V\|_{\mathcal{K}} := \sup_{x \in \mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|V(y)|}{|x - y|} dy,
\]

and \(L^{3/2,\infty} \) denotes the standard weak \(L^{3/2} \)-space. We also assume that \(H \) has no eigenvalue or resonance on the positive real-line \([0, +\infty) \). By a resonance, we mean a complex number \(\lambda \) such that the equation \(\psi + (-\Delta - \lambda \pm i0)^{-1} V\psi = 0 \) has a slowly decaying solution \(\psi \in L^{2-s} \) for any \(s > \frac{1}{2} \), where \(L^{2,s} = \{ \langle x \rangle^{s} f \in L^2 \} \).

Under the above assumptions, it is known that \(H \) is self-adjoint on \(L^2 \) and that its spectrum \(\sigma(H) \) is purely absolutely continuous on the positive real-line \([0, +\infty) \) and has at most finitely many negative eigenvalues \([3]\). Moreover, for a bounded Borel function \(m : \sigma(H) \to \mathbb{C} \), one can define an \(L^2 \)-bounded operator \(m(H) \) via the functional calculus.

The main theorem of this paper says that the operator \(m(H) \) extends to an \(L^p \)-bounded operator for all \(1 < p < \infty \) under a suitable regularity assumption on a symbol \(m \). Let \(\chi \in C^\infty_c(\mathbb{R}) \) be a standard dyadic partition of unity function such that \(\chi \) is supported in \([\frac{1}{2}, 2]\) and \(\sum_{N \in 2^\mathbb{Z}} \chi(\frac{y}{2^N}) = 1 \) on \((0, +\infty) \). For \(s > 0 \) and a symbol \(m : \sigma(H) \to \mathbb{C} \), we define

\[
\|m\|_{H(s)} := \sup_{t > 0} \|\chi(t\lambda)m((t\lambda)^2)\|_{W^{s,2}((0, +\infty))} < \infty
\]

where \(W^{s,2} \) is the \(L^2 \)-Sobolev space of order \(s \).

Date: May 3, 2014.
Theorem 1.1 (Spectral multiplier theorem). Let $V \in \mathcal{K}_0 \cap L^{3/2,\infty}$. If $H = -\Delta + V$ has no eigenvalue or resonance on $[0, +\infty)$ and a symbol $m : \sigma(H) \to \mathbb{C}$ satisfies $\|m\|_{\mathcal{H}(0)} < \infty$, then

$$\|m(H)\|_{L^p \to L^p} \lesssim \|m\|_{\mathcal{H}(0)}, \quad 1 < p < \infty.$$

Remark 1.2. When $V = 0$, the spectral multiplier theorem is simply the classical Hörmander-Mikhlin multiplier theorem [5].

Remark 1.3 (Spectral multiplier theorem with the heat kernel estimate). The spectral multiplier theorem has been studied extensively for general positive-definite self-adjoint operators obeying the Gaussian heat kernel estimate (see [6] and references therein). For Schrödinger operators $H = -\Delta + V$ in \mathbb{R}^3, it can be read as follows. Let $V = V_+ - V_-$ with $V_+, V_- \geq 0$. If V_+ is in local Kato class, that is,

$$\lim_{r \to 0^+} \sup_{x \in \mathbb{R}^3} \int_{|x-y| \leq r} \frac{|V(y)|}{|x-y|} dy = 0,$$

$V_- \in \mathcal{K}_0$ and $\|V_-\|_\mathcal{K} < 4\pi$, then the kernel of the semigroup e^{-tH}, denoted by $e^{-tH}(x,y)$, obeys the Gaussian heat kernel estimates, precisely, there exists $c > 0$ such that

$$e^{-tH}(x,y) \leq t^{-3/2} e^{-\frac{|x-y|^2}{ct}}, \quad t > 0.$$

[22, 3]. The spectral multiplier theorem for H then follows from [6] Theorem 3.1]. Note that the heat kernel estimate always fails unless H is positive-definite. Theorem 1.1 improves this result in that it allows H to have negative eigenvalues.

Remark 1.4 (Spectral multiplier theorem with the wave operator). In [25], Yajima proved that the (forward-in-time) wave operator, defined by

$$W := s-lim_{t \to +\infty} e^{-itH} e^{-it(-\Delta)},$$

is bounded on L^p for all $1 \leq p \leq \infty$, provided that $|V(x)| \lesssim \langle x \rangle^{-5-}$ and zero is not an eigenvalue or a resonance of H. Later, in [2], Beceanu extended it to a larger class

$$B := \left\{ V : \sum_{k=-\infty}^{\infty} 2^{k/2} \|V(x)\|_{L^2(2^k \leq |x| < 2^{k+1})} < \infty \right\}.$$

The spectral multiplier theorem then follows from the boundedness and intertwining property of the wave operator. Theorem 1.1 improves this consequence, because the potential class $\mathcal{K}_0 \cap L^{3/2,\infty}$ is larger than B.

In this paper, we present a new approach employing the Born series expansion for the resolvent, which allows us to treat a large class of Schrödinger operators without Gaussian heat kernel estimates. Let P_c be the spectral projection to the continuous spectrum. Considering the spectral multiplier $m(H)P_c$ as a perturbation of the Fourier multiplier $m(-\Delta)$,
we generate formal series expansions for the low, medium and high frequencies of the difference \((m(H)P_c - m(-\Delta))\) whose terms have explicit integral representations via the free resolvent formula

\[(\Delta - z)^{-1} f(x) = \int_{\mathbb{R}^3} \frac{e^{i\sqrt{z}|x-y|}}{4\pi |x-y|} f(y) dy.
\]

We estimate each term, and summing them up, we prove the spectral multiplier theorem. Surprisingly, in spite of the singular integral nature of both \(m(H)P_c\) and \(m(-\Delta)\), their difference is not a singular integral operator. This observation is essential, since it allows us to avoid using the classical Calderon-Zygmund theory for the complicated operator \(m(H)\) (see Remark 4.4).

1.2. **Application to NLS.** The choice of the potential class \(K_0 \cap L^{3/2, \infty}\) in the main theorem is motivated by the following nonlinear application. Let’s recall the following Strichartz estimates:

Proposition 1.5 (Strichartz estimates). If \(V \in K_0\) and \(H\) has no eigenvalue or resonance on \([0, +\infty)\), then

\[
\|e^{-itH}P_c f\|_{L_t^q L_x^r} \lesssim \|f\|_{L^2},
\]

\[
\| \int_0^t e^{-i(t-s)H} P_c F(s) ds \|_{L_t^q L_x^r} \lesssim \| F \|_{L_t^6 L_x^3},
\]

where \(2/q + 3/r = 3/2\) and \(2 \leq q, r \leq \infty\).

Proof. Beceanu-Goldberg [3] proved the dispersive estimate

\[(1.3) \quad \|e^{-itH}P_c\|_{L^1 \rightarrow L^\infty} \lesssim |t|^{-3/2},
\]

Strichartz estimates then follow by the argument of Keel-Tao [18]. \(\Box\)

Remark 1.6. The dispersive estimate of the form \((1.3)\) was first proved by Journé-Soffer-Sogge under suitable assumptions on potentials [17]. The assumptions has been relaxed by Rodnianski-Schlag [19], Goldberg-Schlag [11] and Goldberg [9, 10]. Recently, Beceanu-Goldberg established \((1.3)\) for a scaling-critical potential class \(K_0\) [3, 13].

A natural question is then whether one can use the above Strichartz estimates to show the local-in-time well-posedness (LWP) for a 3d nonlinear Schrödinger equation

\[(NLS_{p}^0) \quad iu_t + \Delta u - Vu \pm |u|^{p-1}u = 0; \ u(0) = u_0,
\]

where \(1 < p \leq 5\), for the potential class \(K_0\). However, if one tries to show LWP by a contraction mapping argument [5, 23], one will realize there is a subtle problem, mainly because the linear propagator \(e^{-itH}\) does not commute with the differential operators from the Sobolev norms.

In the energy-subcritical case \((1 < p < 5)\), this problem can be solved by the norm equivalence between two inhomogeneous Sobolev norms [15, Lemma 3.2]:
Lemma 1.7 (Norm equivalence: inhomogeneous case \cite{15}). If $V \in K_0 \cap L^{3/2,\infty}$, then there exists $\alpha \gg 1$ such that for $0 \leq s \leq 2$ and $1 < r < \frac{3}{\alpha}$,

$$\| (a + H)^{\frac{s}{2}} f \|_{L^r} \sim \| f \|_{W^{s,r}}.$$

Sketch of Proof. Choosing $\alpha \gg 1$, one can make $(a + H)$ satisfy the Gaussian heat kernel estimate, and the spectral multiplier theorem \cite{6} thus implies boundedness of imaginary power operators. The norm equivalence then follows from the argument of \cite{7}. □

By the norm equivalence, one can switch from one norm to another during in a contraction mapping argument, and we thus establish LWP:

Theorem 1.8 (LWP: energy-subcritical case \cite{15}). Let $1 < p < 5$. Suppose that $V \in K_0 \cap L^{3/2,\infty}$ and H has no eigenvalue or resonance on the positive real-line $[0, +\infty)$. Then NLS_V^p is locally well-posed in H^1.

Consider the energy-critical case $p = 5$. Recall that if $V = 0$, the equation is locally well-posed in the homogeneous space \dot{H}^1. One may expect that the same is true in the presence of a potential. Now, we have to make use of Theorem 1.1 since H does not satisfy the Gaussian heat kernel estimate by itself. We then establish the norm equivalence and LWP of an energy-critical equation:

Lemma 1.9 (Norm equivalence). If $V \in K_0 \cap L^{3/2,\infty}$ and H has no eigenvalue or resonance on the positive real-line $[0, +\infty)$, then for $0 \leq s \leq 2$ and $1 < r < \frac{3}{s}$,

$$\| H^{\frac{s}{2}} P_c (\Delta)^{-\frac{s}{2}} f \|_{L^r} \lesssim \| f \|_{L^r}, \| (\Delta)^{\frac{s}{2}} H^{-\frac{s}{2}} P_c f \|_{L^r} \lesssim \| f \|_{L^r}.$$

Theorem 1.10 (LWP: energy-critical case). If $V \in K_0 \cap L^{3/2,\infty}$ and H has no eigenvalue or resonance on the positive real-line $[0, +\infty)$, then NLS_V^5 is locally well-posed in \dot{H}^1.

Remark 1.11. (i) The range of r in the norm equivalence (Lemma 1.7 and 1.9) is sharp. See the counterexample in \cite{21}.

(ii) Throughout the paper, we assume that V is contained in $L^{3/2,\infty}$. This extra assumption is not necessary for Strichartz estimates (Proposition 1.5), but is necessary in the interpolation step in the proof of the norm equivalence.

1.3. **Organization of the paper.** The outline of the proof of Theorem 1.1 is given in §2: we decompose the spectral representation of the difference $(m(H)P_c - m(-\Delta))$ into the low, medium and high frequencies, and then analyze them separately in §4-6. In §7, we establish LWP of a 3d energy quintic nonlinear Schrödinger equation with a potential.

1.4. **Notations.** For an integral operator T, its integral kernel is denoted by $T(x, y)$. We denote by $A^\ast = ^*B$ the formal identity which will be proved later.

1.5. **Acknowledgement.** The author would like to thank his advisor, Justin Holmer, for his help and encouragement. He also would like to thank X. T. Duong for his insightful discussion.
2. Reduction to the Key Lemma

Suppose that $V \in \mathcal{K}_0$ and H has no eigenvalue or resonance on $[0, +\infty)$. For $z \notin \sigma(H)$, we define the resolvent by $R_V(z) := (H - z)^{-1}$, and denote

$$R_V^+(\lambda) := \lim_{\epsilon \to 0^+} R_V(\lambda \pm i\epsilon).$$

By the Stone’s formula, the spectral multiplier operator $m(H)P_c$ is represented by

$$m(H)P_c = \frac{1}{2\pi i} \int_0^\infty m(\lambda)[R_V^+(\lambda) - R_V^-(\lambda)]d\lambda = \frac{1}{\pi} \int_0^\infty m(\lambda) \Im R_V^+(\lambda)d\lambda.$$

Then, by the identity

$$R_V^+(\lambda) = R_0^+(\lambda)(I + VR_0^+(\lambda))^{-1} = R_0^+(\lambda) - R_0^+(\lambda)(I + VR_0^+(\lambda))^{-1}VR_0^+(\lambda),$$

we split $m(H)P_c$ into the pure and the perturbed parts:

$$m(H)P_c = \frac{1}{\pi} \int_0^\infty m(\lambda) \Im R_0^+(\lambda)d\lambda - \frac{1}{\pi} \int_0^\infty m(\lambda) \Im[R_0^+(\lambda)(I + VR_0^+(\lambda))^{-1}VR_0^+(\lambda)]d\lambda,$$

$$= m(-\Delta) + Pb,$$

where

$$Pb := -\frac{1}{\pi} \int_0^\infty m(\lambda) \Im[R_0^+(\lambda)(I + VR_0^+(\lambda))^{-1}VR_0^+(\lambda)]d\lambda.$$

For the pure part $m(-\Delta)$, we apply the classical Hörmander multiplier theorem [16]:

$$\|m(-\Delta)\|_{L^p \to L^p} \lesssim \|m\|_{H^{3/2+}}, 1 < p < \infty.$$

To analyze the perturbed part, we further decompose it into dyadic pieces. Let χ be the smooth dyadic partition of unity function chosen in (1.1), and decompose

$$Pb = \sum_{N \in 2^\mathbb{Z}} Pb_N$$

where

$$(2.1) \quad Pb_N := -\frac{1}{\pi} \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \Im[R_0^+(\lambda)(I + VR_0^+(\lambda))^{-1}VR_0^+(\lambda)]d\lambda.$$

For a small dyadic number N_0 and a large dyadic number N_1 to be chosen later, we denote the low (high, resp) frequency part by

$$Pb_{\leq N_0} := \sum_{N \leq N_0} Pb_N, \quad (Pb_{\geq N_1} := \sum_{N \geq N_1} Pb_N, \text{ resp}).$$

In the next four sections, we will show the following lemma:

Lemma 2.1 (Key lemma). Suppose that $V \in \mathcal{K}_0 \cap L^{3/2, \infty}$ and H has no eigenvalue or resonance on $[0, +\infty)$.

(i) (High frequency) There exists $N_1 = N_1(V) \gg 1$ such that

$$\|Pb_{\geq N_1}\|_{L^p \to L^p, \infty} \lesssim \|m\|_{H(6)}, 1 < p \leq 2.$$

(ii) (Low frequency) For large m, there is $\sigma(m)$ such that

$$\|Pb_{\leq m}\|_{L^p \to L^p, \infty} \lesssim \|m\|_{H(6)}, 1 < p \leq 2.$$
(ii) (Low frequency) There exists \(N_0 = N_0(V) \ll 1 \) such that
\[
\|P_{b \leq N_0}\|_{L^{p,1} \rightarrow L^{p,\infty}} \lesssim \|m\|_{\mathcal{H}(s)}, \quad 1 < p \leq 2.
\]

(iii) (Medium frequency) For \(N_0 < N < N_1 \),
\[
\|P_{b\geq N}\|_{L^{p,1} \rightarrow L^{p,\infty}} \lesssim_{N_0,N_1} \|m\|_{\mathcal{H}(s)}, \quad 1 < p \leq 2.
\]

Here, \(L^{p,1} \) and \(L^{p,\infty} \) are the Lorentz spaces (see Appendix A).

Proof of Theorem 1.1, assuming Lemma 2.1. By Lemma 3.6 (below), it suffices to show the boundedness of \(m(H)P_c \). Indeed, summing the estimates in Lemma 2.1, we obtain that \(P_b \) is bounded from \(L^{p,1} \) to \(L^{p,\infty} \) for \(1 < p \leq 2 \). Hence, by the interpolation theorem (Corollary A.5), \(P_b \) is bounded on \(L^p \) for \(1 < p \leq 2 \), and so is \(m(H)P_c = m(-\Delta) + P_b \). Observe that if \(m \in \mathcal{H}(s) \), then \(m \in \mathcal{H}(s) \). Hence, by duality, \(m(H)P_c = \bar{m}(H)^*P_c \) is bounded on \(L^p \) for \(2 \leq p < \infty \).

3. Preliminaries

3.1. Resolvent estimates. We prove kernel estimates for \(VR_0^+ (\lambda) \), \(V(R_0^+ (\lambda) - R_0^-(\lambda_0)) \), \((VR_0^+(\lambda))^4 \) and \((I + VR_0^+ (\lambda))^{-1} \), all of which will play as building blocks for \(P_{bN} \).

Lemma 3.1. Suppose that \(V \in \mathcal{K}_0 \).

(i) \(\|VR_0^+(\lambda)\|_{L^1 \rightarrow L^1} \leq \frac{|V|_\mathcal{K}}{4\pi} \) for \(\lambda \gg 0 \).

(ii) Define the difference operator by \(B_{\lambda,\lambda_0} := V(R_0^+ (\lambda) - R_0^+(\lambda_0)) \). For \(\epsilon > 0 \), there exist \(\delta > 0 \) and an integral operator \(B = B_\epsilon \in \mathcal{L}(L^1) \) such that \(|B_{\lambda,\lambda_0}(x,y)| \leq B(x,y) \) for \(|\lambda - \lambda_0| \leq \delta \) and \(\lambda, \lambda_0 \gg 0 \), and \(\|B(x,y)\|_{L^\infty_{\xi}L^1_x} \leq \epsilon \).

(iii) For \(\epsilon > 0 \), there exist \(N_1 \gg 1 \) and an integral operator \(D = D_\epsilon \in \mathcal{L}(L^1) \) such that \(\|VR_0^+(\lambda))^4(x,y)\| \leq D(x,y) \) for \(\lambda \geq N_1 \) and \(\|D(x,y)\|_{L^\infty_{\xi}L^1_x} \leq \epsilon \).

Proof. (i) By the free resolvent formula and the Minkowski inequality, we have
\[
\|VR_0^+(\lambda)f\|_{L^1} \leq \int_{\mathbb{R}^3} \left\| \frac{V(x)e^{i\sqrt{\lambda}|x-y|}}{4\pi|x-y|} \right\|_{L^1_x} |f(y)|dy \leq \frac{|V|_\mathcal{K}}{4\pi} \|f\|_{L^1}.
\]

(ii) For \(\epsilon > 0 \), decompose \(V = V_1 + V_2 \) such that \(V_1 \) is bounded and compactly supported and \(\|V_2\|_{\mathcal{K}} \leq \epsilon \). We choose \(\delta > 0 \) such that \(|\sqrt{\lambda} - \sqrt{\lambda_0}| \leq \epsilon \|V_1\|_{L^1} \) for all \(\lambda, \lambda_0 \gg 0 \) with \(|\lambda - \lambda_0| \leq \delta \). By the mean-value theorem,
\[
|B_{\lambda,\lambda_0}(x,y)| \leq \frac{|V_1(x)(e^{i\sqrt{\lambda}|x-y|} - e^{i\sqrt{\lambda_0}|x-y|})|}{4\pi|x-y|} + \frac{|V_2(x)(e^{i\sqrt{\lambda}|x-y|} - e^{i\sqrt{\lambda_0}|x-y|})|}{4\pi|x-y|}
\leq \frac{|V_1(x)||\sqrt{\lambda} - \sqrt{\lambda_0}|}{4\pi} + \frac{|V_2(x)|}{2\pi|x-y|} \leq \frac{\epsilon |V_1(x)|}{4\pi \|V_1\|_{L^1}} + \frac{|V_2(x)|}{2\pi|x-y|} =: B_\epsilon(x,y).
\]

Then,
\[
\|B_\epsilon(x,y)\|_{L^\infty_{\xi}L^1_x} \leq \frac{\epsilon}{4\pi} + \frac{|V_2|_{\mathcal{K}}}{2\pi} \leq \epsilon.
\]
(iii) Similarly, for \(\epsilon > 0 \), decompose \(V = V_1 + V_2 \) such that \(V_1 \) is bounded and compactly supported and \(\|V_2\|_\mathcal{K} \leq \epsilon \|V\|_\mathcal{K}^{-3} \). We then write

\[
\|(VR_0^+)(\lambda))^4(x, y)\| \leq \|(VR_0^+(\lambda))^4(x, y)\| + \|(VR_0^+(\lambda))^4(x, y) - (V_1R_0^+(\lambda))^4(x, y)\|
\]

Observe that, by the fractional integration inequalities, the Hölder inequalities in the Lorentz spaces (Lemma A.2) and the free resolvent estimate \(\|R_0^+(\lambda)\|_{L^{3/2,1}} \leq \langle \lambda \rangle^{-1/4} \) [12, Lemma 2.1], we have

\[
\left\|R_0^+(\lambda)(V_1R_0^+(\lambda))^3f\right\|_{L^\infty} \leq \left\|R_0^+(\lambda)(V_1R_0^+(\lambda))^2f\right\|_{L^{3/2,1}} \leq \left\|V_1\right\|_{L^{3/2,1}} \left\|R_0^+(\lambda)(V_1R_0^+(\lambda))^2f\right\|_{L^{3/2,1}} \leq \langle \lambda \rangle^{-1/4} \left\|V_1\right\|_{L^{3/2,1}} \left\|f\right\|_{L^4} \lesssim \langle \lambda \rangle^{-1/4} \|f\|_{L^4}.
\]

Taking \(f \to \delta(-y) \), we obtain that \(|R_0^+(\lambda)(V_1R_0^+(\lambda))^3(x, y)| \to 0 \) as \(\lambda \to +\infty \). Thus, there exists \(N_1 = N_1(\epsilon, \ell) \) such that if \(\lambda \geq N_1 \), then

\[
\|(V_1R_0^+(\lambda))^4(x, y)\| \leq \frac{\epsilon \|V_1(x)\|}{2\|V\|_{L^1}} =: D_1(x, y).
\]

For the second term, we split

\[
(VR_0^+(\lambda))^4(x, y) - (V_1R_0^+(\lambda))^4(x, y) = (V_2R_0^+(\lambda))(V_1R_0^+(\lambda))^3(x, y) + (V_1R_0^+(\lambda))V_2R_0^+(\lambda)(VR_0^+(\lambda))^2(x, y)
\]

But, since the kernel of \(R_0^+(\lambda) \) is bounded by the kernel of \(R_0^+(0) = (-\Delta)^{-1} \), we have

\[
\left\|(VR_0^+(\lambda))^4(x, y) - (V_1R_0^+(\lambda))^4(x, y)\right\| \leq \|(V_2R_0^+(0))(V_1R_0^+(0))^3\|_{L^\infty} + \|(V_1R_0^+(0))V_2R_0^+(0)(VR_0^+(0))^2\|_{L^\infty} + \|(V_1R_0^+(0))^2V_2R_0^+(0)(VR_0^+(0))^2\|_{L^\infty} + \|(V_1R_0^+(0))^3V_2R_0^+(0)(VR_0^+(0))^2\|_{L^\infty} =: D_2(x, y).
\]

Therefore, we get the upper bound

\[
\|(VR_0^+(\lambda))^4(x, y)\| \leq D(x, y) := D_1(x, y) + D_2(x, y),
\]

and as in (ii), one can check that \(\|D(x, y)\|_{L^\infty L^1} \leq \epsilon \).

By algebra, the resolvent \(R_V^+(\lambda) \) can be written as

\[
R_V^+(\lambda)^{-1} = \left(I + VR_0^+(\lambda) \right)^{-1}.
\]

The following lemmas say that \((I + VR_0^+(\lambda)) \) is invertible in \(\mathcal{L}(L^1) \) for \(\lambda > 0 \), its inverse \((I + VR_0^+(\lambda))^{-1} \) is uniformly bounded in \(\mathcal{L}(L^1) \), and is the sum of the identity map and an integral operators:

Lemma 3.2 (Invertibility of \((I + VR_0^+(\lambda)) \)). If \(V \in \mathcal{K}_0 \) and \(H \) has no eigenvalue or resonance on \([0, +\infty) \), then \((I + VR_0^+(\lambda)) \) is invertible in \(\mathcal{L}(L^1) \) for \(\lambda \geq 0 \).
Proof. If it is not invertible, there exists \(\varphi \in L^1 \) such that \((I + VR_0^+(\lambda))\varphi = 0\). Then, \(\psi := R_0^+(\lambda)\varphi \) solves \(\psi + R_0^+(\lambda)V\psi = 0 \), and
\[
\| \langle x \rangle^{-s} \psi \|_{L^2} = \| \langle x \rangle^{-s} R_0^+(\lambda) \varphi \|_{L^2} \leq \int_{\mathbb{R}^3} \frac{1}{\langle x \rangle^s |x - y|} \| \varphi(y) \| dy \leq \| \varphi \|_{L^1}
\]
for any \(s > \frac{1}{2} \). Hence, \(\lambda \) is an eigenvalue or a resonance (contradiction!).

Lemma 3.3 (Uniform bound for \((I + VR_0^+(\lambda))^{-1}\)). If \(V \in \mathcal{K}_0 \) and \(H \) has no eigenvalue or resonance on \([0, +\infty)\), then \(S_\lambda := (I + VR_0^+(\lambda))^{-1} : [0, +\infty) \to \mathcal{L}(L^1) \) is uniformly bounded.

Proof. Iterating the resolvent identity, we get the formal identity:

\[
(I + VR_0^+(\lambda))^{-1} = (I - VR_0^+(\lambda))^{-1} = \sum_{n=0}^{\infty} (VR_0^+(\lambda))^n.
\]

Indeed, by Lemma 3.1 (iii), \(\| (VR_0^+(\lambda))^4 \|_{L^1 \to L^1} < \frac{1}{2} \) for all sufficiently large \(\lambda \). Hence, the formal identity (3.1) makes sense, and \((I + VR_0^+(\lambda))^{-1}\) is uniformly bounded for all sufficiently large \(\lambda \). Thus, it suffices to show that \((I + VR_0^+(\lambda))^{-1}\) is continuous. To see this, we fix \(\lambda_0 \geq 0 \) and write

\[
(I + VR_0^+(\lambda_0))^{-1} = (I + VR_0^+(\lambda_0))^{-1} - (I + VR_0^+(\lambda_0))^{-1} = \sum_{n=0}^{\infty} (-S_\lambda B_{\lambda, \lambda_0})^n.
\]

Then, by Lemma 3.1 (ii), we have

\[
\| (I + VR_0^+(\lambda))^{-1} - (I + VR_0^+(\lambda_0))^{-1} \|_{L^1 \to L^1} \leq \sum_{n=1}^{\infty} \| S_\lambda \|_{L^1 \to L^1} \| B_{\lambda, \lambda_0} \|_{L^1 \to L^1} \to 0 \text{ as } \lambda \to \lambda_0.
\]

Therefore, the formal identity (3.2) makes sense, and \((I + VR_0^+(\lambda))^{-1}\) is continuous.

Lemma 3.4. If \(V \in \mathcal{K}_0 \) and \(H \) has no eigenvalue or resonance on \([0, +\infty)\), then \(\tilde{S}_\lambda := (S_\lambda - I) = (I + VR_0^+(\lambda))^{-1} - I : [0, +\infty) \to \mathcal{L}(L^1) \) is not only uniformly bounded but also an integral operator with kernel \(\tilde{S}_\lambda(x, y) \):

\[
\tilde{S}_\lambda := \sup_{\lambda \geq 0} \| \tilde{S}_\lambda \|_{L^1 \to L^1} = \sup_{\lambda \geq 0} \| \tilde{S}_\lambda(x, y) \|_{L^\infty_y L^1_x} < \infty.
\]

Proof. By algebra, we have

\[
\tilde{S}_\lambda = (I + VR_0^+(\lambda))^{-1} - I = -(I + VR_0^+(\lambda))^{-1}VR_0^+(\lambda) = -S_\lambda VR_0^+(\lambda).
\]

Consider \(F_V(x; y, \lambda) := V(x) \frac{e^{\sqrt{\lambda} |x - y|}}{4\pi |x - y|} \) as a function of \(x \) with parameters \(y \in \mathbb{R}^3 \) and \(\lambda \in \mathbb{R} \), which is bounded in \(L^1_y \) uniformly in \(y \) and \(\lambda \). Hence, by Lemma 3.3, \(s_0(x; y, \lambda) :=
\]
\[-[S\lambda F_V(x; y, \lambda)](x) \text{ is also a uniformly bounded } L^1 - \text{"function," in other word,} \]
\[\hat{S} := \sup_{\lambda \geq 0} \sup_{y \in \mathbb{R}^3} \| s_0(x; y, \lambda) \|_{L^1_x} < \infty. \]

Then, by the Fubini theorem and the duality, we write
\[
\int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} s_0(x; y, \lambda) f(y) dy \right) g(x) dx = -\int_{\mathbb{R}^3} \langle [S\lambda F_V(x; y, \lambda)], g(x) \rangle_{L^2_x} f(y) dy
\]
\[
= -\int_{\mathbb{R}^3} \langle F_V(x; y, \lambda), (S\lambda^k g)(x) \rangle_{L^2_x} f(y) dy = -\int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} F_V(x; y, \lambda) f(y) dy \right) (S\lambda^k g)(x) dx
\]
\[
= -\langle VR_0^\lambda(\lambda)f, S\lambda g \rangle_{L^2} = -\langle S\lambda VR_0^\lambda(\lambda)f, g \rangle_{L^2} = \langle \hat{S}\lambda f, g \rangle_{L^2}.
\]

We thus conclude that \(\hat{S}\lambda(x, y) \) is an integral operator satisfying (3.3). \(\square \)

3.2. Spectral projections and eigenfunctions.

Let \(\chi \) be the dyadic partition of unity function chosen in (1.1), and let \(\check{c}\lambda N(\lambda) \in C^\infty_c(\mathbb{R}) \) such that \(\check{c}\lambda N(\lambda) = \chi(\frac{\lambda}{2N}) \) if \(\lambda \geq 0 \); \(\check{c}\lambda N(\lambda) = 0 \) if \(\lambda < 0 \). By functional calculus, we define the Littlewood-Paley projections by \(P_N = \check{c}\lambda N(H), P_{\leq N} = \sum_{N < N_0} P_N, P_{N_0 < N_1} = \sum_{N_0 < N < N_1} P_N \) and \(P_{N_1} = \sum_{N \geq N_1} P_N \).

Lemma 3.5. Suppose that \(V \in K_0 \cap L^{3/2,\infty} \) and \(H \) has no eigenvalue or resonance on \([0, +\infty) \). Let \(\mathcal{G} := \{ f \in L^1 \cap L^{\infty} : P_r f = P_{N_0 < N_1} f \text{ for some } N_0, N_1 > 0 \} \). For \(1 < r < \infty \), \(\mathcal{G} \) is dense in \(L^r \).

Proof. \(L^1 \cap L^{\infty} \) is dense in \(L^r \). Fix \(f \in L^1 \cap L^{\infty} \). We claim that \(\lim_{N_0 \to 0} \| P_{N_0} f \|_{L^r} = 0 \). By the spectral theory, \(\lim_{N_0 \to 0} \| P_{N_0} f \|_{L^2} = 0 \). On the other hand, replacing \(\check{c}\lambda N \) by \(\sum_{N < N_0} \check{c}\lambda N \) in the proof of [14] Corollary 1.6], one can show that \(\| P_{N_0} f \|_{L^1} \) and \(\| P_{N_0} f \|_{L^\infty} \) are bounded uniformly in \(N_0 \). Hence the claim follows from the interpolation. By the same argument, one can show that \(\lim_{N_1 \to \infty} \| P_{N_1} f \|_{L^r} = 0 \). Thus, \(\mathcal{G} \) is dense in \(L^r \). \(\square \)

Lemma 3.6 (Boundedness of eigenfunctions). Suppose that \(V \in K_0 \cap L^{3/2,\infty} \) and \(H \) has no eigenvalue or resonance on \([0, +\infty) \). Let \(\psi_j \) be an eigenfunction corresponding to the negative eigenvalue \(\lambda_j \).

(i) For all \(1 < p < \infty \), \(\psi_j \in L^p \) and \(P_{\lambda_j} \) is bounded on \(L^p \), where \(P_{\lambda_j} \) is the spectral projection onto the point \(\{ \lambda_j \} \).

(ii) \(\nabla \psi_j \in L^r \) for \(1 \leq r < 3 \).

Proof. (i) We prove the lemma following the argument of [2]. We decompose \(V = V_1 + V_2 \) such that \(V_1 \) is compactly supported and bounded and \(\| V_2 \|_K \leq 1 \). Then,
\[
\psi_j + R_0(\lambda_j)V\psi_j = \psi_j + R_0(\lambda_j)(V_1 + V_2)\psi_j = 0
\]
\[
\Rightarrow \psi_j = -(I + R_0(\lambda_j)V_2)^{-1}R_0(\lambda_j)V_1\psi_j = -\sum_{n=0}^{\infty} (-R_0(\lambda_j)V_2)^n R_0(\lambda_j)V_1\psi_j.
\]
Observe that, since $V_1 \in C_c^\infty$ and $\lambda_j < 0$, $R_0(\lambda_j)V_1 \psi_j$ is exponentially decreasing. Indeed, for sufficiently small $\epsilon > 0$, by the fractional integration inequality and the Hölder inequality in the Lorentz spaces (Lemma 4.2), we have

$$|e^{\epsilon|x|}(R_0(\lambda_j)V_1 f)(x)| \leq e^{\epsilon|x|} \int_{\mathbb{R}^3} \frac{e^{-\sqrt{-\lambda_j}|x-y|}}{4\pi|x-y|} |V_2(y)||\psi_j(y)|dy$$

$$\leq \int_{\mathbb{R}^3} \frac{e^{-(\sqrt{-\lambda_j}-\epsilon)|x-y|}}{4\pi|x-y|} e^{\epsilon|y|} |V_2(y)||\psi_j(y)|dy \leq \|e^{\epsilon|x|}V_2\psi_j\|_{L^{3/2,1}} \lesssim \|e^{\epsilon|y|}V_2\|_{L^{6,2}} \|\psi_j\|_{L^2}.$$

Similarly, one can check that $e^{\epsilon|y|}R_0(\lambda_j)V_2 e^{-\epsilon|y|}$ is bounded on L^∞ and its operator norm is less then 1. Thus, we prove that

$$\|e^{\epsilon|x|}\psi_j\|_{L^2} \leq \left(\sum_{n=0}^{\infty} \|e^{\epsilon|x|}R_0(\lambda_j)V_2 e^{-\epsilon|y|}\|_{L^\infty \rightarrow L^\infty} \right) \|e^{\epsilon|y|}R_0(\lambda_j)V_1 \psi_j\|_{L^2} < \infty.$$

Therefore, $\psi_j \in L^p$ and $P_\lambda f = \langle \psi_j, f \rangle_{L^2} \psi_j$ is bounded on L^p for all $1 \leq p \leq \infty$.

(ii) Since $\lambda_j < 0$, by the inhomogeneous Sobolev inequality, we get

$$\|\nabla \psi_j\|_{L^1} = \|\nabla R_0^+(\lambda)\psi_j\|_{L^1} \lesssim \|V\psi_j\|_{L^1} \lesssim \|V\|_{L^{3/2,\infty}} \|\psi_j\|_{L^{3,1}} < \infty,$$

$$\|\nabla \psi_j\|_{L^3} = \|\nabla R_0^+(\lambda)\psi_j\|_{L^3} \lesssim \|V\psi_j\|_{W^{-1,3}} \lesssim \|V\psi_j\|_{\dot{W}^{-1,3}} \lesssim \|V\|_{L^{3/2,\infty}} \|\psi_j\|_{L^{6,-3}} < \infty.$$

Thus, interpolation gives (ii).

4. High Frequency Estimate: Proof of Lemma 2.1 (i)

4.1. Construction of the formal series expansion. Let $N_1 > 1$ to be chosen later in Lemma 4.3. For $N \geq N_1$, we construct a formal series expansion of the kernel of Pb_N as follows. Iterating the resolvent identity, we generate a formal series expansion

$$(I + VR_0^+(\lambda))^{-1} = \sum_{n=0}^{\infty} (-VR_0^+(\lambda))^n.$$

Plugging this formal series into (2.1), we write

$$Pb_N = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\pi} \int_0^{\infty} m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}[R_0^+(\lambda)(VR_0^+(\lambda))^n VR_0^+(\lambda)]d\lambda.$$

By the free resolvent formula (1.2) (for the first and the last free resolvents) and Fubini, the kernel of Pb_N is written as

$$Pb_N(x, y) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\pi} \int_0^{\infty} m(\lambda)\chi_N(\sqrt{\lambda})$$

$$\times \text{Im} \left[\iint_{\mathbb{R}^6} \frac{e^{i\sqrt{\lambda}|x-\tilde{x}|}}{4\pi|x-\tilde{x}|} (VR_0^+(\lambda))^n(x, \tilde{y})V(\tilde{y}) e^{i\sqrt{\lambda}|\tilde{y}-y|} \frac{d\tilde{x}d\tilde{y}}{4\pi|x-\tilde{x}|} d\lambda \right]$$

$$= \iint_{\mathbb{R}^6} \frac{V(\tilde{y})}{16\pi^3|x-\tilde{x}|} \left\{ \sum_{n=0}^{\infty} (-1)^{n+1} Pb_N^n(x, x, \tilde{y}, y) \right\} d\tilde{x}d\tilde{y},$$

as
Lemma 4.1 (Decay estimate for $P^N_b(x, \tilde{x}, \tilde{y}, y)$)

\[
P^N_b(x, \tilde{x}, \tilde{y}, y) = \int_0^\infty m(\lambda) \chi_N(\sqrt{\lambda}) \Im \{ e^{i\sqrt{\lambda}|x-\tilde{x}|+|\tilde{y}-y|} (VR^+_0(\lambda))^n(\tilde{x}, \tilde{y}, y) \} d\lambda.
\]

The series expansion (4.1) makes sense only formally at this moment, but it is expected to be absolutely convergent for large N by Lemma 3.1 (iii).

4.2. Kernel estimates for P^N_b. First, we prove that the intermediate kernel $P^N_b(x, \tilde{x}, \tilde{y}, y)$ decays away from $x = \tilde{x}$ and $\tilde{y} = y$:

Lemma 4.1 (Decay estimate for P^N_b). There exists $K^N_{\text{dec}}(\tilde{x}, \tilde{y})$ such that for $s_1, s_2 \geq 0$,

\[
|P^N_b(x, \tilde{x}, \tilde{y}, y)| \leq \frac{N^2 \|m\|_{\mathcal{H}(s_1+s_2)} K^N_{\text{dec}}(\tilde{x}, \tilde{y})}{\langle N(x-x) \rangle^{s_1} \langle N(y-y) \rangle^{s_2}}.
\]

Proof. By abuse of notation, we denote by χ the even extension of itself. By making change of variables $\lambda \mapsto N^2 \lambda^2$, we write the above oscillatory integral as

\[
N^2 \int_0^\infty 2\lambda m(N^2 \lambda^2) \chi(\lambda) \sin(N\lambda\sigma) d\lambda = N^2 \int_{\mathbb{R}} \lambda m(N^2 \lambda^2) \chi(\lambda) e^{i\lambda N\sigma} d\lambda
\]

\[
= N^2 (m(N^2 \lambda^2) \chi(\lambda))^{\vee}(N\sigma) = \frac{N^2}{\langle N\sigma \rangle ^s} (\langle \nabla \rangle ^s (m(N^2 \lambda^2) \chi(\lambda)))^{\vee}(N\sigma).
\]

But, since

\[
\| (\langle \nabla \rangle ^s (m(N^2 \lambda^2) \chi(\lambda)))^{\vee} \|^L^x \leq \| m(N^2 \lambda^2) \chi(\lambda) \|^W^{s,1} \leq \| m(N^2 \lambda^2) \chi(\lambda) \|^W^{s,2} \leq \| m \|_{\mathcal{H}(s)},
\]

we obtain the lemma. \qed

Proof of Lemma 4.1. First, using the free resolvent formula, we write

\[
P^N_b(x, \tilde{x}, \tilde{y}, y)
\]

\[
= \int_0^\infty m(\lambda) \chi_N(\sqrt{\lambda}) \Im \left\{ \int_{\mathbb{R}^{3(n-1)}} \prod_{k=1}^{n} V(x_k) \prod_{k=0}^{n+1} e^{i\sqrt{\lambda}|x_k-x_{k+1}|} d\lambda \right\} d\lambda
\]

\[
= \int_{\mathbb{R}^{3(n-1)}} \prod_{k=1}^{n} V(x_k) \prod_{k=1}^{n+1} \frac{e^{i\sqrt{\lambda}|x_k-x_{k+1}|}}{4\pi|x_k-x_{k+1}|} \left\{ \int_0^\infty m(\lambda) \chi_N(\sqrt{\lambda}) \Im \{ e^{i\sqrt{\lambda}\sigma_n} \} d\lambda \right\} d\lambda,
\]

where $x_0 := x$, $x_1 := \tilde{x}$, $x_{n+1} := \tilde{y}$, $x_{n+2} := y$, $dx_{(2,n)} := dx_2 \cdots dx_n$ and $\sigma_n := \sum_{j=0}^{n} |x_j - x_{j+1}|$. Then, by Lemma 4.2 with $s = s_1 + s_2$ and the trivial inequality

\[
|x_0 - x_1|, |x_{n+1} - x_{n+2}| \leq \sigma_{n+1} = \sum_{j=0}^{n+1} |x_j - x_{j+1}|,
\]

where
we obtain that
\[|\text{Pb}_N(x, \bar{x}, \bar{y}, y)| \leq \frac{N^2 \|m\|_{H(s_1+s_2)}K_{dec}^n(\bar{x}, \bar{y})}{\langle N(x - \bar{x}) \rangle^{s_1} \langle N(y - y) \rangle^{s_2}}, \]
where
\[K_{dec}^n(\bar{x}, \bar{y}) := \int_{\mathbb{R}^{3(n-1)}} \frac{\prod_{k=1}^n |V(x_k)|}{\prod_{k=1}^n 4\pi |x_k - x_{k+1}|} d\mathbf{x}(2n). \]
By Lemma 3.1 (i), we conclude that \(K_{dec}^n(\bar{x}, \bar{y}) \|_{L^2_y L^1_x} \leq (\|K\|_4/4\pi)^n. \)

Next, we prove that the formal series (4.1) is convergent for large \(N \):

Lemma 4.3 (Summability for \(\text{Pb}_N \)). There exist a large number \(N_1 = N_1(V) \gg 1 \) and \(K_{sum}^n(\bar{x}, \bar{y}) \) such that for \(N \geq N_1 \),
\begin{align}
(4.6) & |\text{Pb}_N(x, \bar{x}, \bar{y}, y)| \leq N^2 \|m\|_{H(0)}K_{sum}^n(\bar{x}, \bar{y}), \\
(4.7) & \|K_{sum}^n(\bar{x}, \bar{y})\|_{L^\infty_y L^1_x} \leq \|V\|_{K}^{-n}.
\end{align}

Proof. For \(\epsilon := \|V\|_{K}^{-4} \), choose \(N_1 \gg 1 \) and an operator \(D \) from Lemma 3.1 (iii). Set
\[K_{sum}^n(\bar{x}, \bar{y}) := |(D\frac{1}{2}1(|V|(-\Delta)^{-1})n-4\frac{1}{21}1)(\bar{x}, \bar{y})| \]
where \(|a| \) is the largest integer less than or equal to \(a \). Then, by definition (see (4.2)), it is easy to check (4.6). Moreover, (4.7) follows from Lemma 3.1 (i) and (iii).

4.3. Proof of Lemma 2.1 (i)

Choose \(N_1 \) from Lemma 4.3. We want to show that
\[\|\text{Pb}_{\geq N_1}\|_{L^{\frac{3}{2\gamma - 1}} \rightarrow L^{\frac{3}{2\gamma}}_{\tilde{x}, \tilde{y}}} \lesssim \|m\|_{H(0)}, \ 0 < \epsilon < \frac{3}{7}. \]

Step 1. Kernel estimate for \(\text{Pb}_{\geq N_1} \) We claim that there exists \(K(\bar{x}, \bar{y}) \in L^\infty_y L^1_x \) such that
\[|\text{Pb}_{\geq N_1}(x, y)| \leq \|m\|_{H(0)} \int_{\mathbb{R}^6} \frac{K(\bar{x}, \bar{y})|V(\bar{y})|}{|x - \bar{x}|^{3-\epsilon}|\bar{y} - y|^{1+\epsilon}} d\bar{x} d\bar{y}. \]
Interpolating (4.3) (with \(s_1 = 4 \) and \(s_2 = 2 \)) and (4.6), we get
\[|\text{Pb}_N^\epsilon(x, \bar{x}, \bar{y}, y)| = |\text{Pb}_N^\epsilon(x, \bar{x}, \bar{y}, y)|^{1/2}|\text{Pb}_N(x, \bar{x}, \bar{y}, y)|^{1/2} \lesssim \frac{N^2 \|m\|_{H(0)}}{\langle N(x - \bar{x}) \rangle^{2} \langle N(y - y) \rangle} K_{dec}^n(\bar{x}, \bar{y})^{1/2}K_{sum}^n(\bar{x}, \bar{y})^{1/2}. \]
Define
\[K(\bar{x}, \bar{y}) = \sum_{n=0}^{\infty} K_{dec}^n(\bar{x}, \bar{y})^{1/2}K_{sum}^n(\bar{x}, \bar{y})^{1/2}. \]
Going back to the definition of \(\text{Pb}_N(x, y) \) in (4.2), we see that
\[|\text{Pb}_N(x, y)| \lesssim \int_{\mathbb{R}^6} \frac{N^2 \|m\|_{H(0)} K(\bar{x}, \bar{y})|V(\bar{y})|}{|x - \bar{x}|\langle N(x - \bar{x}) \rangle^{2}|\bar{y} - y|\langle N(\bar{y} - y) \rangle} d\bar{x} d\bar{y}. \]
Summing in N, we get
\[|\mathbf{P}_{b \geq N_1}(x, y)| \leq \int_{\mathbb{R}^6} \frac{\|m\|_{\mathcal{H}(6)}}{|x - \tilde{x}|} \frac{|\tilde{y} - y|}{|\tilde{y} - y|} \left\{ \sum_{N \geq N_1} \frac{N^2}{\langle N(x - \tilde{x})^2 \rangle} \right\} d\tilde{x}d\tilde{y}. \]

Observe that, by the definition (4.9), the Hölder inequality, (4.4) and (4.7), we have
\[\|K(\tilde{x}, \tilde{y})\|_{L^1_x} \leq \sum_{n=0}^{\infty} \left(\frac{\|V\|_K}{4\pi} \right)^{n/2} \|V\|_{K}^{-n/2} = \sum_{n=0}^{\infty} \frac{1}{(4\pi)^{n/2}} < \infty. \]

For (4.8), it suffices to show that
\[\sum_{N \in 2\mathbb{Z}} \frac{N^2}{\langle N^2 \rangle} \leq \frac{1}{|x|^{2-\epsilon}|y|^{\epsilon}}. \]

Fix $x, y \in \mathbb{R}^3$, and consider the following four cases:

(Case 1: $N < \min(|x|^{-1}, |y|^{-1})$)
\[\sum_{\text{Case 1}} \frac{N^2}{\langle N^2 \rangle} \leq \sum_{\text{Case 1}} N^2 \leq \min \left(\frac{1}{|x|}, \frac{1}{|y|} \right)^2 \leq \frac{1}{|x|^{2-\epsilon}|y|^{\epsilon}}. \]

(Case 2: $|x|^{-1} \leq N < |y|^{-1}$)
\[\sum_{\text{Case 2}} \frac{N^2}{\langle N^2 \rangle} \leq \sum_{\text{Case 2}} \frac{N^2}{\langle N^2 \rangle x^2} \leq \sum_{\text{Case 2}} \frac{1}{|x|^{2-\epsilon}} \sum_{\text{Case 2}} N^2 \leq \frac{1}{|x|^{2-\epsilon}|y|^{\epsilon}}. \]

(Case 3: $|y|^{-1} \leq N < |x|^{-1}$)
\[\sum_{\text{Case 3}} \frac{N^2}{\langle N^2 \rangle} \leq \sum_{\text{Case 3}} \frac{N^2}{\langle N^2 \rangle y^2} = \sum_{\text{Case 3}} \frac{N^2}{|y|^2} \leq \frac{1}{|y|^{2-\epsilon}} \sum_{\text{Case 3}} N^{2-\epsilon} \leq \frac{1}{|x|^{2-\epsilon}|y|^{\epsilon}}. \]

(Case 4: $N \geq \max(|x|^{-1}, |y|^{-1})$)
\[\sum_{\text{Case 4}} \frac{N^2}{\langle N^2 \rangle} \leq \frac{1}{|x|^{2}|y|^2} \sum_{\text{Case 4}} \frac{1}{\langle N \rangle} \leq \frac{1}{|x|^{2}|y|^2} \sum_{\text{Case 4}} \frac{1}{|x|^{2}|y|^2} \max \left(\frac{1}{|x|}, \frac{1}{|y|} \right)^{-1} \leq \frac{1}{|x|^{2-\epsilon}|y|^{\epsilon}}. \]

Summing them up, we prove (4.10).

(Step 2. Proof of Lemma 2.1 (ii)) Let T_K be an integral operator with kernel $K(x, y)$ (so, T_K is bounded on L^1). By (4.8), we have
\[\|\mathbf{P}_{b \geq N_1} f\|_{L^1_{\mathbb{R}^6 \times \mathbb{R}^6}} \leq \|m\|_{\mathcal{H}(6)} \|\nabla|^{-\epsilon} T_K(|V|\|\nabla|^{-2-\epsilon})(|f|)\|_{L^1_{\mathbb{R}^6 \times \mathbb{R}^6}}. \]

Thus, by the fractional integration inequality and Hölder inequality in the Lorentz spaces (see Appendix A), we prove
\[\|\nabla|^{-\epsilon} T_K(|V|\|\nabla|^{-2-\epsilon})(|f|)\|_{L^1_{\mathbb{R}^6 \times \mathbb{R}^6}} \leq \|T_K(|V|\|\nabla|^{-2-\epsilon})(|f|)\|_{L^1_{\mathbb{R}^6 \times \mathbb{R}^6}} \]
\[\leq \|V\|\|\nabla|^{-2-\epsilon})(|f|)\|_{L^1_{\mathbb{R}^6 \times \mathbb{R}^6}} \leq \|V\|_{L^{3/2, \infty}}\|\nabla|^{-2-\epsilon})(|f|\|_{L^{3, 1}} \leq \|f\|_{L^{3, 1}}. \]

(4.11)
Remark 4.4. In (4.11), we only used the fractional integration inequality and the Hölder inequality. Note that after applying the fractional integration inequality, we always have the $L^{p,q}$-norm with smaller p on the right hand side, although we want to show the $L^{\frac{3}{2},\infty} - L^{\frac{3}{2},\infty}$ boundedness. Hence, one must have at least one chance to raise the number p to compensate the decease of p caused by the fractional integration inequalities. In (4.11), the potential V plays such a role with the Hölder inequality. This is the main reason we keep one extra potential term V in the spectral representation by considering the perturbation $m(H)P_\epsilon - m(-\Delta)$ instead of $m(H)P_\epsilon$, and introducing intermediated kernels $Pb_N^\epsilon(x,\tilde{x},\tilde{y},y)$, even though they look rather artificial.

5. Low Frequency Estimate: Proof of Lemma 2.1 (ii)

5.1. Construction of the formal series expansion. We prove Lemma 2.1 (ii) by modifying the argument in Section 4. Note that for small N, the formal series expansion (4.1) is not convergent, since $(VR_0^+(\lambda))^4$ in (4.1) is not small anymore. For convergence, we introduce a new series expansion for $(I + VR_0^+(\lambda))^{-1}$:

$$
(I + VR_0^+(\lambda))^{-1} = (I + VR_0^+(\lambda_0) + B_{\lambda,\lambda_0})^{-1} = [(I + B_{\lambda,\lambda_0}S_{\lambda_0})(I + VR_0^+(\lambda_0))^{-1}$$

$$ii = "(I + VR_0^+(\lambda_0))^{-1}(I + B_{\lambda,\lambda_0}S_{\lambda_0})^{-1}" = S_{\lambda_0} \sum_{n=0}^{\infty} (-B_{\lambda,\lambda_0}S_{\lambda_0})^n,$$

where $B_{\lambda,\lambda_0} = V(R_0^+(\lambda) - R_0^+(\lambda_0))$ and $S_{\lambda_0} = (I + VR_0^+(\lambda_0))^{-1}$.

Plugging the formal series (5.1) with $\lambda_0 = 0$ into (2.1), we write

$$
Pb_N^{\epsilon} = " \sum_{n=0}^{\infty} \frac{(-1)^n}{\pi} \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}[R_0^+(\lambda)S_0(B_{\lambda,0}S_0)^nVR_0^+(\lambda)]d\lambda.$$

By the free resolvent formula (1.2) (for the first and the last free resolvents) and Fubini, the kernel of Pb_N is written as

$$
Pb_N(x,y)^{\epsilon} = " \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\pi} \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda})$$

$$\times \text{Im}\left[\int_{\mathbb{R}^6} e^{i\sqrt{\lambda}|x - \bar{x}|} [S_0(B_{\lambda,0}S_0)^n](\bar{x},\bar{y})V(\bar{y}) \frac{e^{i\sqrt{\lambda}|\bar{y} - y|}}{4\pi|\bar{y} - y|} d\bar{x}d\bar{y}\right]d\lambda$$

$$= \int_{\mathbb{R}^6} \int_{\mathbb{R}^6} \frac{V(\bar{y})}{16\pi^3|x - \bar{x}|}\left[\sum_{n=0}^{\infty} (-1)^{n+1}Pb_N^\epsilon(x,\bar{x},\bar{y},y)\right]d\bar{x}d\bar{y},$$

where

$$
Pb_N^\epsilon(x,\bar{x},\bar{y},y) = \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}[e^{i\sqrt{\lambda}(|x - \bar{x}| + |\bar{y} - y|)} [S_0(B_{\lambda,0}S_0)^n](\bar{x},\bar{y})]d\lambda.$$

By Lemma 3.1 (ii), $B_{\lambda,0}$ in (5.2) is small for sufficiently small N. This fact will guarantee the convergence of the formal series.
5.2. Reduction to the kernel estimates for Pb_N^α. We will show the analogues of Lemma 4.1 and 4.3. The proof of Lemma 2.2 will follow from exactly the same argument to show Lemma 2.1. Let \tilde{S} be the positive number given by (3.3).

Lemma 5.1 (Decay estimate for Pb_N^α). There exists $\tilde{K}_{\text{dec}}^n(x, y)$ such that for $s_1, s_2 \geq 0$,

\begin{equation}
|\text{Pb}_N^\alpha(x, \tilde{x}, \tilde{y}, y)| \leq \frac{N^2\|m\|_{H(s_1+s_2)}\tilde{K}_{\text{dec}}^n(x, \tilde{y})}{\langle N(x - \tilde{x}) \rangle^{s_1}\langle N(y - y) \rangle^{s_2}}.
\end{equation}

\begin{equation}
\|\tilde{K}_{\text{dec}}^n(x, \tilde{y})\|_{L_2^\tilde{S} L_2^\tilde{S}} \leq (\tilde{S} + 1)^{n+1}\left(\frac{V}{2\pi}\right)^n.
\end{equation}

Proof. First, splitting $B_{\lambda,0} = VR_0^+(\lambda) - VR_0^+(0)$ in

\begin{equation}
\text{Pb}_N^\alpha(x, \tilde{x}, \tilde{y}, y) = \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}[e^{i\sqrt{\lambda}|x - \tilde{x}| + |\tilde{y} - y|}][S_0(B_{\lambda,0}S_0)^n](\tilde{x}, \tilde{y})d\lambda,
\end{equation}

we write $\text{Pb}_N^\alpha(x, \tilde{x}, \tilde{y}, y)$ as the sum of 2^n copies of

\begin{equation}
\int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}[e^{i\sqrt{\lambda}|x - \tilde{x}| + |\tilde{y} - y|}][S_0 VR_0^+(\alpha_1\lambda)S_0 \cdots VR_0^+(\alpha_n\lambda)S_0](\tilde{x}, \tilde{y})d\lambda
\end{equation}

up to \pm, where $\alpha_k = 0$ or 1 for each $k = 1, \ldots, n$. Next, splitting all S_0 into I and \tilde{S}_0 in (5.6), we further decompose (5.6) into the sum of 2^{n+1} kernels.

Among them, let us consider the two representative terms:

\begin{equation}
\text{Im} \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) e^{i\sqrt{\lambda}|x - \tilde{x}| + |\tilde{y} - y|} [S_0 VR_0^+(\alpha_1\lambda)S_0 \cdots VR_0^+(\alpha_n\lambda)S_0](\tilde{x}, \tilde{y})d\lambda,
\end{equation}

\begin{equation}
\text{Im} \int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) e^{i\sqrt{\lambda}|x - \tilde{x}| + |\tilde{y} - y|} [VR_0^+(\alpha_1\lambda) \cdots VR_0^+(\alpha_n\lambda)](\tilde{x}, \tilde{y})d\lambda.
\end{equation}

For the first term, by the free resolvent formula (1.2), we write (5.7) in the integral form:

\begin{equation}
\text{Im} \int_0^\infty \int_{\mathbb{R}^6n} m(\lambda)\chi_N(\sqrt{\lambda}) \prod_{k=1}^{n+1} \tilde{S}_0(x_{2k-1}, x_{2k}) \prod_{k=1}^{n+1} V(x_{2k}) \prod_{k=1}^{n+1} 4\pi|x_{2k} - x_{2k+1}|d\lambda d\lambda d\lambda d\lambda
\end{equation}

where $x_0 := x$, $x_1 := \tilde{x}$, $x_{2n+2} := \tilde{y}$, $x_{2n+3} := y$, $d\lambda(2n) := dx_2 \cdots dx_n$, $\bar{\sigma}_n := \sum_{k=0}^{n+1} \alpha_k|2\lambda - x_{2k+1}|$ and $\alpha_0 = \alpha_{n+1} = 1$. Then, by Lemma 1.2 with $s = s_1 + s_2$ and $|x_0 - x_1, |x_{2n+2} - x_{2n+3}| \leq \bar{\sigma}_n$, we obtain that

\begin{equation}
\int_0^\infty m(\lambda)\chi_N(\sqrt{\lambda}) \text{Im}(e^{i\sqrt{\lambda}\bar{\sigma}_{n+1}})d\lambda \leq \frac{N^2\|m\|_{H(s_1+s_2)}}{\langle N(x_0 - x_1) \rangle^{s_1}\langle N(x_{2n+2} - x_{2n+3}) \rangle^{s_2}}.
\end{equation}

Applying (5.9) to (5.7), we get the arbitrary polynomial decay away from $x_0 = x_1$:

\begin{equation}
|\text{(5.7)}| \equiv \frac{N^2\|m\|_{H(s_1+s_2)}\tilde{K}_{\text{dec}}^n(x, \tilde{y})}{\langle N(x_0 - x_1) \rangle^{s_1}\langle N(x_{2n+2} - x_{2n+3}) \rangle^{s_2}} = \frac{N^2\|m\|_{H(s_1+s_2)}\tilde{K}_{\text{dec}}^n(x, \tilde{y})}{\langle N(x - \tilde{x}) \rangle^{s_1}\langle N(y - y) \rangle^{s_2}}.
\end{equation}
where

\[
K_{(5.7)}^n(\tilde{x}, \tilde{y}) := \int_{\mathbb{R}^{2n}} \prod_{k=1}^{n+1} |\tilde{S}_0(x_{2k-1}, x_{2k})| \prod_{k=1}^{n} |V(x_{2k})| \, dx_{(2n+1)}
\]

\[
= (4\pi)^{-n} [|\tilde{S}_0|||V|(-\Delta)^{-1}|\tilde{S}_0||]^n(\tilde{x}, \tilde{y})
\]

and $|\tilde{S}_0|$ is the integral operator with kernel $|\tilde{S}_0(x, y)|$. We claim that

\[
\|K_{(5.7)}^n(\tilde{x}, \tilde{y})\|_{L^\infty\rightarrow L^1} \leq \tilde{S}^{n+1}(\|V\|/4\pi)^n.
\]

Indeed, since $\|\tilde{S}_0||(V|(-\Delta)^{-1}|\tilde{S}_0)||^n f\|_{L^1} \leq \tilde{S}^{n+1}(\|V|/4\pi)^n\|f\|_{L^1}$ and $|\tilde{S}_0||(V|(-\Delta)^{-1}|\tilde{S}_0)||^n$ is an integral operator, sending $f \to \delta(\cdot - y)$, we prove the claim.

Similarly, we write (5.8) as

\[
\text{Im} \int_{0}^{\infty} \int_{\mathbb{R}^{2n-3}} m(\lambda) \chi_N(\sqrt{\lambda}) \prod_{k=1}^{n} V(x_k) \left\{ \int_{0}^{\infty} m(\lambda) \chi_N(\sqrt{\lambda}) \text{Im}(e^{i\sqrt{\lambda} x_{k+1}}) \, d\lambda \right\} \, dx_{(2n)}
\]

where $x_0 := x, x_1 := \tilde{x}, x_{n+1} := \tilde{y}$, $x_{n+2} := y$, $\alpha_0 = \alpha_{n+2} = 1$ and $\tilde{\alpha}_n := \sum_{k=0}^{n} \alpha_k |x_k - x_{k+1}|$.

Then, by Lemma 4.2 with $s = s_1 + s_2$ and $|x_0 - x_1|, |x_{n+1} - x_{n+2}| \leq \tilde{\alpha}_n$, we obtain that

\[
|\left\langle (5.8) \right\rangle| \leq \frac{N^2\|m\|_{\mathcal{H}(s_1 + s_2)} K_{(5.8)}^n(\tilde{x}, \tilde{y})}{\left\langle N(x_0 - x_1)^{s_1} N(x_{n+1} - x_{n+2})^{s_2} \right\rangle} = \frac{N^2\|m\|_{\mathcal{H}(s_1 + s_2)} K_{(5.8)}^n(\tilde{x}, \tilde{y})}{\left\langle N(x - \tilde{x})^{s_1} N(\tilde{y} - y)^{s_2} \right\rangle}
\]

where

\[
K_{(5.8)}^n(\tilde{x}, \tilde{y}) := \int_{\mathbb{R}^{2n-3}} \prod_{k=1}^{n} |V(x_k)| \prod_{k=1}^{n} 4\pi |x_k - x_{k+1}| \, dx_{(2n)} = (4\pi)^{-n} [|V|(-\Delta)^{-1}|\tilde{S}_0||]^n(\tilde{x}, \tilde{y}).
\]

Then by the definition of the global Kato norm, we prove that

\[
\|K_{(5.8)}^n(\tilde{x}, \tilde{y})\|_{L^\infty\rightarrow L^1} \leq (\|V\|/4\pi)^n.
\]

Similarly, we estimate other kernels, and define $K_{\text{sum}}^n(\tilde{x}, \tilde{y})$ as the sum of all 2^{2n+1} many upper bounds including $K_{(5,7)}(\tilde{x}, \tilde{y})$ or $K_{(5,8)}(\tilde{x}, \tilde{y})$. Then, $K_{\text{sum}}^n(\tilde{x}, \tilde{y})$ satisfies (5.4) and (5.5).

\[\square\]

Lemma 5.2 (Summability for Pb_N). There exist a small number $N_0 = N_0(V) \ll 1$ and $K_{\text{sum}}^n(\tilde{x}, \tilde{y})$ such that for $N \leq N_0$,

\[
|\text{Pb}_N^n(x, \tilde{x}, \tilde{y}, y)| \leq N^2\|m\|_{\mathcal{H}(6)} K_{\text{sum}}^n(\tilde{x}, \tilde{y}),
\]

\[
\|K_{\text{sum}}^n(\tilde{x}, \tilde{y})\|_{L^\infty\rightarrow L^1} \leq (\tilde{S} + 1)^{-n+1} \|V\|^{-n}.
\]

Proof. Let $\epsilon := ((\tilde{S} + 1)^2 \|\tilde{V}\|)^{-1}$ (see (3.30)). Then from Lemma 3.1 (ii), we get $N_0 := \delta = \delta(\epsilon) > 0$ an integral operator B such that $|B_{\lambda,0}(x, y)| \leq B(x, y)$ for $0 \leq \lambda \leq N_0$, and

\[
\|B\|_{L^1\rightarrow L^1} \leq ((\tilde{S} + 1)^2 \|\tilde{V}\|)^{-1}.
\]

We define

\[
K_{\text{sum}}^n(\tilde{x}, \tilde{y}) := [(I + \tilde{S}_0)(B(I + \tilde{S}_0))]^{n}(\tilde{x}, \tilde{y}),
\]
where \(|\hat{S}_0|\) is the integral operator with \(|\hat{S}_0(x, y)|\). Then, by definitions (see (5.2)), \(\tilde{K}_{\text{sum}}^n(\tilde{x}, \tilde{y})\) satisfies (5.10). For (5.11), splitting \((I + |\hat{S}_0|)\) into \(I\) and \(|\hat{S}_0|\) in \(\tilde{K}_{\text{sum}}^n(\tilde{x}, \tilde{y})\), we get \(2^{n+1}\) terms:

\[
\tilde{K}_{\text{sum}}^n(\tilde{x}, \tilde{y}) = [|\hat{S}_0|(B|\hat{S}_0|)^n](\tilde{x}, \tilde{y}) + \cdots + B^n(\tilde{x}, \tilde{y}).
\]

For example, we consider \(|\hat{S}_0|(B|\hat{S}_0|)^n\) and \(B^n\). Since both \(|\hat{S}_0|\) and \(B\) are integral operators, by Lemma 3.4 and (5.12), we obtain

\[
\|(|\hat{S}_0|(B|\hat{S}_0|)^n)(\tilde{x}, \tilde{y})\|_{L_0^1 L_y^1} = \|(|\hat{S}_0|(B|\hat{S}_0|)^n\|_{L_1^1} \leq \hat{S}^{n+1}(\hat{S} + 1)^2 \|V\|_{\mathcal{K}}^{-n},
\]

\[
\|B^n(\tilde{x}, \tilde{y})\|_{L_0^1 L_y^1} = \|B^n\|_{L_1^1} \leq (\hat{S} + 1)^2 \|V\|_{\mathcal{K}}^{-n}.
\]

Similarly, we estimate other \(2^{n+1} - 2\) terms. Summing them up, we prove (5.11). \(\square\)

6. MEDIUM FREQUENCY ESTIMATE: PROOF OF LEMMA 2.1 (iii)

The proof closely follows from that of Lemma 2.1 (ii), so we only sketch the proof. Let \(\epsilon := ((\hat{S} + 1)^2 \|V\|_{\mathcal{K}})^{-1}\) and take \(\delta = \delta(\epsilon) > 0\) from Lemma 3.1 (ii). We choose a partition of unity function \(\psi \in C^\infty_c\) such that \(\text{supp } \psi \subset [-\delta, \delta]\), \(\psi(\lambda) = 1\) if \(|\lambda| \leq \frac{\delta}{3}\) and \(\sum_{j=1}^{\infty} \psi(-\lambda_j) \equiv 1\) on \((0, +\infty)\), where \(\lambda_j = j\delta\).

Let \(N_0\) and \(N_1\) be dyadic numbers chosen in the previous sections. For \(N_0 \leq N \leq N_1\), we first decompose \(\chi_N(\sqrt{\lambda})\) in \(Pb_N\) (see (2.1)) into \(\chi_N(\sqrt{\lambda}) = \sum_{j=N/2^8}^{2N/\delta} \lambda_j^N(\lambda)\) where \(\lambda_j(\lambda) = \chi_N(\sqrt{\lambda})\psi(\lambda - \lambda_j)\). Plugging the formal series (5.11) with \(\lambda_0 = \lambda_j\) into each integral, we write the kernel of \(Pb_N\) as

\[
(6.1)\quad Pb_N(x, y) = \int_{\mathbb{R}^6} \frac{V(\tilde{y})}{16\pi^3|x - \tilde{x}|} \left|\sum_{n=0}^{\infty} (-1)^{n+1} pb_N(x, \tilde{x}, \tilde{y}, y)\right| d\tilde{x}d\tilde{y},
\]

where

\[
(6.2)\quad pb_N(x, \tilde{x}, \tilde{y}, y) = \sum_{j=N/2^8}^{2N/\delta} \int_0^{\infty} m(\lambda) \lambda_j^N(\sqrt{\lambda}) \text{Im} [e^{i\sqrt{\lambda}(|x - \tilde{x}| + |y - y|)}] S_{\lambda_j}(B_{\lambda_j} S_{\lambda_j})^n(\tilde{x}, \tilde{y}) d\lambda.
\]

By the arguments in the previous sections, for Lemma 2.1 (iii), it suffices to show the following two lemmas:

Lemma 6.1 (Decay estimate for \(pb_N^n\)). For \(N_0 < N < N_1\), there exists \(\tilde{K}_{\text{sum}, \text{dec}}^n(\tilde{x}, \tilde{y})\) such that for \(s_1, s_2 \geq 0\),

\[
(6.3)\quad |pb_N^n(x, \tilde{x}, \tilde{y}, y)| \lesssim \frac{N^2 \|m\|_{\mathcal{H}(s_1 + s_2)} \tilde{K}_{\text{sum}, \text{dec}}^n(\tilde{x}, \tilde{y})}{\langle N(x - \tilde{x}) \rangle^{s_1} \langle N(y - y) \rangle^{s_2}}
\]

\[
(6.4)\quad \|\tilde{K}_{\text{sum}, \text{dec}}^n(\tilde{x}, \tilde{y})\|_{L_0^1 L_y^1} \leq (\hat{S} + 1)^{n+1} \left(\frac{\|V\|_{\mathcal{K}}}{2\pi}\right)^n.
\]
Proof. Consider
\begin{equation}
\int_0^\infty m(\lambda)\chi_N^2(\lambda) \text{Im}[e^{i\sqrt{N}|x-\tilde{x}|+|\tilde{y}-y|} \{S_{\lambda_i}(B_{\lambda,\lambda_i}S_{\lambda_j})^n \}(\tilde{x}, \tilde{y})]d\lambda
\end{equation}
among $O(N)$-many integrals in (6.2). As we did in Lemma 1.2, we show that
\begin{equation}
\left| \int_0^\infty m(\lambda)\chi_N^2(\lambda) \text{Im}(e^{i\sqrt{N}\sigma})d\lambda \right| \leq N_0N_1 \frac{N\|m\|_{H(\sigma)}}{\langle N\sigma \rangle^s}.
\end{equation}
Repeating the proof of Lemma 5.1 (but replacing S_0 and $B_{\lambda,0}$ by S_{λ_j} and B_{λ,λ_j} and applying (6.6) instead of Lemma 4.2), one can find $\tilde{K}_{N,j,dec}(\tilde{x}, \tilde{y})$ such that for $s_1, s_2 \geq 0$,
\begin{equation*}
|\langle x-\tilde{x} \rangle^{s_1} \langle y-\tilde{y} \rangle^{s_2} \tilde{K}_{N,j,dec}(\tilde{x}, \tilde{y}) \rangle \lesssim (\tilde{S} + 1)^{n+1} \left(\frac{\|V\|_K}{2\pi} \right)^n.
\end{equation*}
Define
\begin{equation*}
\tilde{K}_{N,dec}(\tilde{x}, \tilde{y}) := \delta \sum_{j=N/\delta}^{2N/\delta} \tilde{K}_{N,j,dec}(\tilde{x}, \tilde{y}),
\end{equation*}
then it satisfies (6.3) and (6.4). \qed

Lemma 6.2 (Summability for P_{B_n}). For $N_0 < N < N_1$, there exists $\tilde{K}_{N,\text{sum}}(\tilde{x}, \tilde{y})$ such that
\begin{align}
\text{6.7} \quad |P_{B_{\lambda}}(x, \tilde{x}, \tilde{y}, y)| & \leq N^2\|m\|_{H(\sigma)} \tilde{K}_{N,\text{sum}}(\tilde{x}, \tilde{y}), \\
\text{6.8} \quad \|\tilde{K}_{N,\text{sum}}(\tilde{x}, \tilde{y})\|_{L_2^\infty L_2^1} & \leq (\tilde{S} + 1)^{-n+1}\|V\|_K^{-n}.
\end{align}

Proof. Consider (6.5). By the choice of ϵ and δ and Lemma 3.1 (ii), there exists an integral operator B such that $|B_{\lambda,\lambda_j}(x, y)| \leq B(x, y)$ for $|\lambda - \lambda_j| < \delta$, $\lambda, \lambda_j \geq 0$, and $\|B\|_{L^1 \to L^1} \leq ((\tilde{S} + 1)^2\|V\|_K)^{-1}$. Let \tilde{S}_{λ_j} is the integral operator with integral kernel $|\tilde{S}_{\lambda_j}(x, y)|$. Then, we have
\begin{equation*}
|\langle x-\tilde{x} \rangle^{s_1} \langle y-\tilde{y} \rangle^{s_2} \tilde{K}_{N,\text{sum}}(\tilde{x}, \tilde{y}) \rangle \lesssim (\tilde{S} + 1)^{n+1} \left(\frac{\|V\|_K}{2\pi} \right)^n.
\end{equation*}
Define
\begin{equation*}
\tilde{K}_{\text{sum}}(\tilde{x}, \tilde{y}) := \delta \sum_{j=N/\delta}^{2N/\delta} [(I + |\tilde{S}_{\lambda_j}|)(B(I + |\tilde{S}_{\lambda_j}|))^n](\tilde{x}, \tilde{y}),
\end{equation*}
then it satisfies (6.7) and (6.8). \qed

7. Application to the Nonlinear Schrödinger Equation

7.1. Norm equivalence. Following the argument of [7], we begin with the boundedness of the imaginary power operators. For $\alpha \in \mathbb{R}$, the imaginary power operator $H^{i\alpha}P_n$ is defined as a spectral multiplier of symbol $\lambda^{i\alpha}1_{[0, +\infty)}$. We consider $H^{i\alpha}P_n$ instead of $H^{i\alpha}$ just for convenience’s sake. By Lemma 3.6, the boundedness of $H^{i\alpha}P_n$ is equivalent to that of $H^{i\alpha}$.
Lemma 7.1 (Imaginary power operator). If $V \in \mathcal{K}_0 \cap L^{3/2,\infty}$ and H has no eigenvalue or resonance on $[0, +\infty)$, then for $\alpha \in \mathbb{R}$,

$$\|H^{\alpha} P_c\|_{L^r \to L^r} \lesssim \langle \alpha \rangle^6, \; 1 < r < \infty.$$

Proof. Since $\|\lambda^{\alpha}1_{[0, +\infty)}\|_{H(\alpha)} \lesssim \langle \alpha \rangle^6$, the lemma follows from Theorem 1.11 \hfill \Box

Proposition 7.2 (Norm equivalence). If $V \in \mathcal{K}_0 \cap L^{3/2,\infty}$ and H has no eigenvalue or resonance on $[0, +\infty)$, then for $0 \leq s \leq 2$ and $1 < r < \frac{3}{s}$,

$$\|H^s P_c(-\Delta)^{-\frac{s}{2}} f\|_{L^r} \lesssim \|f\|_{L^r}, \quad (7.1)$$

$$\|(-\Delta)^{\frac{s}{2}} H^{-s} P_c f\|_{L^r} \lesssim \|f\|_{L^r}. \quad (7.2)$$

Proof. (7.1): Pick $f, g \in L^1 \cap L^\infty$ such that supp $\hat{f} \subset B(0, R) \setminus B(0, r)$, $P_{n \leq s} N g = P_c g$ for some $R, r, N, n > 0$. Note that by Lemma 3.5, the collection of such f (resp) is dense in L^r (L^r, resp). We define

$$F(z) := \langle H^s P_c(-\Delta)^{-\frac{s}{2}} f, g \rangle_{L^2} = \langle (-\Delta)^{-\Re z - i\Im z} f, H^{-\Re z} g \rangle_{L^2}.$$

Indeed, $F(z)$ is well-defined, since $(-\Delta)^{-\Re z - i\Im z} f, H^{-\Re z} g \in L^2$. Moreover, $F(z)$ is continuous on $S = \{z : 0 \leq \Re z \leq 1\} \subset \mathbb{C}$, and it is analytic in the interior of S. We claim that $H P_c(-\Delta)^{-1}$ is bounded on L^r for $1 < r < \frac{3}{2}$. Indeed, by Lemma 3.6 (i),

$$\|H P_c(-\Delta)^{-1} f\|_{L^r} \lesssim \|(-\Delta + V)(-\Delta)^{-1} f\|_{L^r} \lesssim \|f\|_{L^r} + \|V(-\Delta)^{-1} f\|_{L^r}.$$

By the Hölder inequality (Lemma A.2) and the Sobolev inequality in the Lorentz norms (Corollary A.6), we have

$$\|V(-\Delta)^{-1} f\|_{L^r} \lesssim \|V\|_{L^{3/2,\infty}} \|(\cdot)^{-1} f\|_{L^{\frac{3r}{3-2r}} L^{\frac{3r}{2r}}} \lesssim \|f\|_{L^r}.$$

Hence, by the claim and Proposition 7.1 we get

$$F(1 + i\alpha) \lesssim \|H^{1+i\alpha} P_c(-\Delta)^{-1-i\alpha} f\|_{L^r} \|g\|_{L^{r'}} \lesssim \langle \alpha \rangle^6 \|f\|_{L^r} \|g\|_{L^{r'}}, \quad (1 < r < \frac{3}{2}),$$

$$F(i\alpha) \lesssim \|H^{i\alpha} P_c(-\Delta)^{-i\alpha} f\|_{L^r} \|g\|_{L^{r'}} \lesssim \langle \alpha \rangle^6 \|f\|_{L^r} \|g\|_{L^{r'}}, \quad (1 < r < \infty).$$

Therefore (7.1) follows from the Stein’s complex interpolation theorem.

(7.2): Pick f and g as above, and consider

$$G(z) := \langle (-\Delta)^{\frac{s}{2}} H^{-\frac{s}{2}} P_c, g \rangle_{L^2}.$$

We claim that $(-\Delta) H^{-1} P_c g$ is bounded on L^r for $1 < r < \frac{3}{2}$. By the triangle inequality,

$$\|(-\Delta) H^{-1} P_c g\|_{L^r} = \|(H - V) H^{-1} P_c g\|_{L^r} \lesssim \|P_c g\|_{L^r} + \|V H^{-1} P_c g\|_{L^r}.$$

By Lemma 3.6 (i), $\|P_c g\|_{L^r} \lesssim \|g\|_{L^r}$. By the Hölder inequality in the Lorentz norms (Lemma A.2) and the Sobolev inequality associated with H \hfill \Box

\[\text{Theorem 1.9}], we get

$$\|V H^{-1} P_c g\|_{L^r} \lesssim \|V\|_{L^{3/2,\infty}} \|H^{-1} P_c g\|_{L^{\frac{3r}{3-2r}}} \lesssim \|V\|_{L^{3/2,\infty}} \|g\|_{L^r},$$

Repeating the above argument with the complex interpolation, we complete the proof. \hfill \Box
7.2. **Local well-posedness.** Now we are ready to show the local-in-time well-posedness (LWP) of a 3d quintic nonlinear Schrödinger equation

\[(\text{NLS}_V^5) \quad iu_t + \Delta u - Vu \pm |u|^4u = 0; \quad u(0) = u_0.\]

Theorem 7.3 (LWP). If \(V \in K_0 \cap L^{3/2, \infty}\) and \(H\) has no eigenvalue or resonance on \([0, +\infty)\), then \(\text{NLS}_V^5\) is locally well-posed in \(H^1\): for \(A > 0\), there exists \(\delta = \delta(A) > 0\) such that for an initial data \(u_0 \in H^1\) obeying

\[\|\nabla u_0\|_{L^2} \leq A \text{ and } \|e^{-itH}u_0\|_{L_{t\in[0,T_0]}^{10}L_{x}^{20}} < \delta,\]

\(\text{NLS}_V\) has a unique solution \(u \in C_t(I; \dot{H}^1_x)\), with \(I = [0, T) \subset [0, T_0]\), such that

\[\|\nabla u\|_{L_{t\in I}^{10}L_{x}^{30/13}} < \infty \text{ and } \|u\|_{L_{t\in I}^{10}L_{x}^{12}} < 2\delta.\]

Proof. (Step 1. Contraction mapping argument) Let \(\psi_j\) be the eigenfunction corresponding to the negative eigenvalue \(\lambda_j\) normalized so that \(\|\psi_j\|_{L^2} = 1\). Choose small \(T \in (0, T_0)\) such that \(\|\psi_j\|_{L_{t\in I}^{10}L_{x}^{10}}, \|\psi_j\|_{L_{t\in I}^{2}L_{x}^{2}} \ll 1\) for all \(j\), where \(I = [0, T]\). For notational convenience, we omit the time interval \(I\) in the norm \(\cdot \|_{L_{t\in I}^{p}L_{x}^{q}}\) if there is no confusion. Following a standard contraction mapping argument \([4, 23]\), we aim to show that

\[\Phi_{u_0}(v)(t) := e^{-itH}u_0 \pm i \int_0^t e^{-i(t-s)H}(|v|^4v(s))ds\]

is a contraction map on

\[B_{a,b} := \{v : \|v\|_{L_{t,x}^{10}} \leq a, \; \|\nabla v\|_{L_{t,x}^{10}L_{x}^{30/13}} \leq b,\}\]

where \(a, b\) and \(\delta\) will be chosen later.

We claim that \(\Phi_{u_0}\) maps from \(B_{a,b}\) to itself. We write

\[
\|\Phi_{u_0}(v)\|_{L_{t,x}^{10}} \leq \|e^{-itH}u_0\|_{L_{t,x}^{10}} + \left\| \int_0^t e^{-i(t-s)H}P(|v|^4v(s))ds \right\|_{L_{t,x}^{10}}
\]

\[+ \sum_{j=1}^J \left\| \int_0^t e^{-i(t-s)H}(\langle |v|^4v(s), \psi_j \rangle_{L^2} \psi_j)ds \right\|_{L_{t,x}^{10}} = I + II + \sum_{j=1}^J III_j.\]

By assumption, \(I \leq \delta\). For \(II\), by the Sobolev inequality associated with \(H\) \([14, \text{Theorem } 1.9]\), Strichartz estimates (Proposition 1.5) and the norm equivalence, we get

\[II \leq \left\| \int_0^t e^{-i(t-s)H}P(|v|^4v(s))ds \right\|_{L_{t,x}^{10}L_{x}^{30/13}} \leq \|H^{1/2}P(|v|^4v)\|_{L_{t,x}^{6/5}} \lesssim \|\nabla(|v|^4v)\|_{L_{t,x}^{2}L_{x}^{2/5}} \lesssim \|v\|_{L_{t,x}^{10}}^{4} \|\nabla v\|_{L_{t,x}^{10}L_{x}^{20/13}} \leq a^4b.\]

For the last term, by the Hölder inequality, the choice of \(T\) and (7.3), we obtain

\[III_j = \left\| \int_0^t e^{-i(t-s)\lambda_j}(\langle |v|^4v(s), \psi_j \rangle_{L^2} \psi_j)ds \right\|_{L_{t,x}^{10}} \leq \left(\int_0^T |\langle |v|^4v(s), \psi_j \rangle_{L^2} \psi_j|ds \right) \|\psi_j\|_{L_{t,x}^{10}}
\]

\[\leq \|\nabla(|v|^4v)\|_{L_{t,x}^{2}L_{x}^{2/5}} \|\nabla \psi_j\|_{L_{t,x}^{2}L_{x}^{2}} \leq \|\nabla(|v|^4v)\|_{L_{t,x}^{2}L_{x}^{2/5}} \|\psi_j\|_{L_{t,x}^{2}} \leq a^4b.\]
Therefore, we prove that
\(\| \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} \leq \delta + Ca^4b. \)

Next, we write
\[
\| \nabla \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} \leq \| \nabla P_c \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} + \sum_{j=1}^{J} \| \nabla P_{\lambda_j} \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} = \tilde{I} + \sum_{j=1}^{J} \tilde{I}_j.
\]

For \(\tilde{I} \), by the norm equivalence, Strichartz estimates and (7.3), we obtain
\[
\tilde{I} \leq \| H^{1/2} P_c \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} \leq \| H^{1/2} P_c u_0 \|_{L^2} + \| H^{1/2} P_c (|v|^4 v) \|_{L_{t,x}^{2/5}} \\
\leq \| \nabla u_0 \|_{L^2} + \| H^{1/2} P_c (|v|^4 v) \|_{L_{t,x}^{2/5}} \leq A + a^4b.
\]

For \(\tilde{I}_j \), by the Hölder inequality, (7.4) and Lemma 3.6 we get
\[
\tilde{I}_j \leq \langle \Phi_{u_0}(v), \psi_j \rangle_{L^2} \| \psi_j \|_{L^{30/13}} \leq \| \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} \| \psi_j \|_{L_{t,x}^{10/7}} \leq \delta + a^4b.
\]

Collecting all, we prove that
\(\| \nabla \Phi_{u_0}(v) \|_{L_{t,x}^{10/7}} \leq CA + Ca^4b. \)

Let \(b = 2AC, \ a = \min((2C)^{-\frac{1}{4}}, (2C^3)^{-\frac{1}{4}}) \) and \(\delta = \frac{\theta}{2} (\Rightarrow Ca^4b \leq AC \text{ and } Ca^3b \leq \frac{1}{2}). \)

Then, by (7.4) and (7.5), \(\Phi_{u_0} \) maps from \(B_{a,b} \) to itself. Similarly, one can show that \(\Phi_{u_0} \) is contractive in \(B_{a,b} \). Thus, we conclude that there exists unique \(u \in B_{a,b} \) such that
\[
\Phi_{u_0}(u) = e^{-itH}u_0 + i \int_0^t e^{-i(t-s)H} (|u|^4 u)(s) ds.
\]

(Step 2. Continuity) In order to show that \(u(t) \in C_t(I; \dot{H}^1) \), we write
\[
u(t) = e^{-itH}(P_c u_0 + \sum_{j=1}^{J} P_{\lambda_j} u_0) \pm i \int_0^t e^{-i(t-s)H} (P_c (|u|^4 u)(s) + \sum_{j=1}^{J} P_{\lambda_j} (|u|^4 u)(s)) ds
\]
\[
= e^{-itH} P_c u_0 + \sum_{j=1}^{J} e^{-it\lambda_j} P_{\lambda_j} u_0 \pm i \int_0^t e^{-i(t-s)H} P_c (|u|^4 u)(s) ds
\]
\[
\pm i \sum_{j=1}^{J} \int_0^t e^{-i(t-s)\lambda_j} P_{\lambda_j} (|u|^4 u)(s) ds
\]
\[
=: I(t) + \sum_{j=1}^{J} II_j(t) + III(t) + \sum_{j=1}^{J} IV_j(t).
\]

For \(I(t) \), by the norm equivalence and \(L^2 \)-continuity of \(e^{-itH} \), we have
\[
\| I(t) - I(t_0) \|_{\dot{H}^1} \leq \| (e^{-itH} - e^{-it_0H}) H^{1/2} P_c u_0 \|_{L^2} \to 0 \text{ as } t \to t_0,
\]

since \(\| H^{1/2} P_c u_0 \|_{L^2} \leq \| u \|_{\dot{H}^{1}} < \infty. \) \(II_j(t) \) is continuous in \(\dot{H}^1 \), since
\[
\| P_{\lambda_j} u_0 \|_{\dot{H}^1} = \| \langle u_0, \psi_j \rangle_{L^2} \| \psi_j \|_{\dot{H}^1} \leq \| u_0 \|_{\dot{H}^1} \| \psi_j \|_{\dot{H}^{-1}} \leq \| u_0 \|_{\dot{H}^1} \| \psi_j \|_{L^6} < \infty.
\]
For \(III(t)\), by the norm equivalence, Strichartz estimates and (7.3), we have
\[
\|III(t) - III(t_0)\|_{H^1} \lesssim \|H^{1/2}(III(t) - III(t_0))\|_{L^2} \lesssim \|H^{1/2}p_c(\{|u|^4u\})\|_{L^2_{s[e(t_0,t)]}L^{6/5}} \to 0
\]
as \(t \to t_0\). For \(IV_j(t)\), by the Hölder inequality and (7.3), we write
\[
\|IV_j(t) - IV_j(t_0)\|_{H^1} \lesssim \|\psi_j\|_{H^1} \|\nabla (|u|^4u)(s)\|_{L^2_{s[e(t_0,t)]}L^{6/5}} \|\nabla^{-1}\psi_j\|_{L^2_{s[e(t_0,t)]}L^{6}} \\
\lesssim \|\nabla (|u|^4u)(s)\|_{L^2_{s[e(t_0,t)]}L^{6/5}} \|\psi_j\|_{L^2_{s[e(t_0,t)]}L^{6}} \to 0 \text{ as } t \to t_0.
\]
Collecting all, we conclude that \(u(t)\) is continuous in \(\dot{H}^1\).

\[\square\]

Appendix A. Lorentz Spaces and Interpolation Theorem

Following [23], we summarize some properties of the Lorentz spaces. Let \((X, \mu)\) be a measure space. The Lorentz (quasi) norm is defined by
\[
\|f\|_p,q := \begin{cases} p^{1/q} \lambda\mu(\{|f| \geq \lambda\})^{1/p} L^q((0, +\infty), \frac{d\lambda}{\lambda}) & \text{when } 1 \leq p < \infty \text{ and } 1 \leq q \leq \infty; \\ \|f\|_{L^\infty} & \text{when } p = q = \infty. \end{cases}
\]

Lemma A.1 (Properties of the Lorentz spaces). Let \(1 \leq p \leq \infty\) and \(1 \leq q, q_1, q_2 \leq \infty\).

(i) \(L^{p,q} = L^p\), and \(L^{p,\infty}\) is the standard weak \(L^p\)-space.

(ii) If \(q_1 \leq q_2\), \(L^{p,q_1} \subset L^{p,q_2}\).

Lemma A.2 (Hölder). If \(1 \leq p, p_1, p_2, q, q_1, q_2 \leq \infty\), \(\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}\) and \(\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}\), then
\[
\|fg\|_{L^{p,q}} \lesssim \|f\|_{L^{p_1, q_1}} \|g\|_{L^{p_2, q_2}}.
\]

Lemma A.3 (Dual characterization of \(L^{p,q}\)). If \(1 < p < \infty\) and \(1 \leq q \leq \infty\), then
\[
\|f\|_{L^{p,q}} \sim \sup_{\|g\|_{L^{p', q'}} \leq 1} \left| \int_X fg d\mu \right|.
\]

A measurable function \(f\) is called a *sub-step function* of height \(H\) and width \(W\) if \(f\) is supported on a set \(E\) with measure \(\mu(E) = W\) and \(|f(x)| \lesssim H\) almost everywhere. Let \(T\) be a linear operator that maps the functions on a measure space \((X, \mu_X)\) to functions on another measure space \((Y, \mu_Y)\). We say that \(T\) is *restricted weak-type* \((p, \tilde{p})\) if
\[
\|Tf\|_{L^{p,\infty}} \lesssim HW^{1/p}
\]
for all sub-step functions \(f\) of height \(H\) and width \(W\).

Theorem A.4 (Marcinkiewicz interpolation theorem). Let \(T\) be a linear operator such that
\[
\langle Tf, g \rangle_{L^2} = \int_Y Tf \tilde{g} d\mu_Y
\]
is well-defined for all simple functions \(f\) and \(g\). Let \(1 \leq p_0, p_1, \tilde{p}_0, \tilde{p}_1 \leq \infty\). Suppose that \(T\) is restricted weak-type \((p_i, \tilde{p}_i)\) with constant \(A_i > 0\) for \(i = 0, 1\). Then,
\[
\|Tf\|_{L^{p_0, q}} \lesssim A_0^{-\theta} A_1^\theta \|f\|_{L^{p_0, q}}.
\]
where \(0 < \theta < 1, \frac{1}{p_0} = \frac{1 - \theta}{p_1} + \frac{\theta}{p_1}, \frac{1}{p_0} = \frac{1 - \theta}{p_1} + \frac{\theta}{p_1}, \tilde{p}_0 > 1\) and \(1 \leq q \leq \infty\).

In this paper, we use the interpolation theorem of the following form:

Corollary A.5 (Marcinkiewicz interpolation theorem). Let \(T\) be a linear operator. Let \(1 \leq p_1 < p_2 \leq \infty\). Suppose that for \(i = 0, 1\), \(T\) is bounded from \(L^{p_1,1}\) to \(L^{p_1,\infty}\). Then \(T\) is bounded on \(L^p\) for \(p_1 < p < p_2\).

Proof. The corollary follows from Theorem A.4, since \(T\) is restricted weak-type \(p_1, p\):

\[
\|T\|_{L^p} = p_i \int_0^\infty \mu(|f| \geq \lambda)^{1/p_i} d\lambda \leq p_i \int_0^H W^{1/p_i} d\lambda = p_i H W^{1/p_i},
\]

for a sub-step function \(f\) of height \(H\) and width \(W\). \(\square\)

Corollary A.6 (Fractional integration inequality in the Lorentz spaces).

\[
(A.1) \quad \left\| \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d-s}} dy \right\|_{L^{q,r}(\mathbb{R}^d)} \leq \|f\|_{L^{p,r}},
\]

where \(1 < p < q < \infty, 1 \leq r \leq \infty\) and \(\frac{1}{q} = \frac{1}{r} - \frac{s}{d}\). At the endpoints, we have

\[
(A.2) \quad \left\| \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d-s}} dy \right\|_{L^{q,\infty}(\mathbb{R}^d)} \leq \|f\|_{L^1}, \quad \left\| \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d-s}} dy \right\|_{L^{\infty}(\mathbb{R}^d)} \leq \|f\|_{L^{d/s,1}}.
\]

Proof. (A.2) follows from [20] Theorem 1, p.119] and duality. Corollary A.5 then gives (A.1). \(\square\)

References

[1] M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Mathematical Journal. Volume 159, Number 3 (2011), 417-477.

[2] M. Beceanu, Structure of wave operators in \(\mathbb{R}^3\). arxiv.org/abs/1101.0502.

[3] M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys. 314 (2012), no. 2, 471-481.

[4] T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

[5] M. Christ, \(L^p\) bounds for spectral multipliers on nilpotent groups. Trans. Amer. Math. Soc. 328 (1991), no. 1, 73-81.

[6] X. T. Duong, E. M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), no. 2, 443-485.

[7] P. D’Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258 (2010), no. 10, 3227-3240.

[8] P. D’Ancona and V. Pierfelice, On the wave equation with a large rough potential. J. Funct. Anal. 227 (2005), no. 1, 30-77.

[9] M. Goldberg, Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials. Amer. J. Math. 128 (2006), no. 3, 731-750.

[10] M. Goldberg, Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials. Geom. Funct. Anal. 16 (2006), no. 3, 517-536.
[11] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three. Comm. Math. Phys. 251 (2004), no. 1, 157-178.

[12] M. Goldberg and W. Schlag, A limiting absorption principle for the three-dimensional Schrödinger equation with L^p potentials. Int. Math. Res. Not. 2004, no. 75, 4049-4071.

[13] M. Goldberg, L. Vega and N. Visciglia, Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math. Res. Not. 2006, Art. ID 13927, 16 pp.

[14] Y. Hong, A Remark on the Littlewood-Paley Projection. arxiv.org/abs/1206.4462.

[15] Y. Hong, Local-in-time well-posedness for nonlinear Schrödinger equations with potentials (expository)

[16] L. Hörmander, Estimates for translation invariant operators in L^p spaces. Acta Math. 104 (1960) 93-140.

[17] J.-L. Journe, A. Soffer, and C. Sogge, Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44 (1991), no. 5, 573-604.

[18] M. Keel and T. Tao, Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), no. 5, 955-980.

[19] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155 (2004), no. 3, 451-513.

[20] E. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp.

[21] Z. Shen, L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513-546.

[22] M. Takeda, Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds. Bull. Lond. Math. Soc. 39 (2007), no. 1, 85-94.

[23] T. Tao, Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106; American Mathematical Society, Providence, RI, 2006. xvi+373 pp.

[24] T. Tao, Lecture notes for Math 247A: Fourier analysis. [http://www.math.ucla.edu/~tao/247a.1.06f/]

[25] K. Yajima, The $W^{k,p}$-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47 (1995), no. 3, 551-581.

Brown University

E-mail address: yhhong@math.brown.edu