Do the observational data favor a local void?

Rong-Gen Cai1,2,3 †, Jia-Feng Ding1,2 ‡, Zong-Kuan Guo1,2,3 ‡, Shao-Jiang Wang2,4 ¶ and Wang-Wei Yu1,2,3 §

1School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
3School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences, Hangzhou 310024, China
4Quantum Universe Center and School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea

The increasing tension between the different local direct measurements of the Hubble expansion rate and that inferred from the cosmic microwave background observation by the Λ-cold-dark-matter (ΛCDM) model \cite{6–8} as the concordance model with global observations of the cosmic microwave background of the type Ia supernovae (SNe Ia) \cite{1, 2} and the physical matter density profile ρ with the Garcia-Ballido-Haugbølle (GBH) parameterization \cite{47} smoothly connecting two homogeneous parts inside and outside a local underdensity, Hoscheit and Barger \cite{41} have fitted the SNe Ia data in the redshift range $0.023 < z < 0.15$ and then reduced the Hubble tension from 3.4σ to 2.7σ with the GBH parameters fixed by the KBC void configuration.

However, the data analysis of \cite{41} was revised by Kenworthy, Scolnic, and Riess in \cite{48} by using a larger sample of low-redshift SNe from a combined sample of the Pantheon, Foundation, and Carnegie-Supernova-Project (CSP) samples within $z < 0.5$ with fully appreciating for systematic uncertainties in the SNe data, such as uncertainties in the nuisance parameters, calibration uncertainties, and possible redshift evolution of the nuisance parameters. Furthermore, Kenworthy, Scolnic, and Riess \cite{48} also adopted more physically motivated boundary conditions, such as the GBH parameterization for the physical matter density profile $\rho_M(r)$ instead of the dimensionless matter density fraction $\Omega_M(r) = \int_0^r \frac{4\pi}{3} \rho_M(r') r'^2 dr'$ used in \cite{41}, and the treatment of the time since the big bang t_B as a free constant parameter instead of the inappropriate choice $t_B(r) = r$ used in \cite{41}. Nevertheless, the GBH profile in \cite{48} was also fixed by the same KBC void configuration. The conclusion drawn from \cite{48} agrees well with previous studies \cite{48, 49, 50} that the cosmic void for the Hubble constant determination fitted by the Hubble diagram is inadequate to account for the current discrepancy of the Hubble tension. Later in \cite{51} the GBH parameterization was chosen for the spatial curvature in order to achieve a complete analytic determination of the cosmic time in terms of the radial coordinate suitable for fitting the void size from a top-hat profile. Consistent with Kenworthy, Scolnic, and Riess in \cite{48}, the local void fitted by the low-redshift Pantheon SNe data in \cite{51} is also insuf-

I. INTRODUCTION

The precision cosmology from the local observations of the type Ia supernovae (SNe Ia) \cite{11, 2} and the global observations of the cosmic microwave background (CMB) \cite{3, 5} has favored the dubbed Λ-cold-dark-matter (ΛCDM) model \cite{6, 8} as the concordance model withstanding many other data testings in the last two decades but with a notable exception for the increasing tension on the Hubble constant 2.5σ \cite{9}, 3.4σ \cite{10}, 3.7σ \cite{11}, 3.8σ \cite{12}, 4.4σ \cite{13}, 4.7σ \cite{14}, and 5.3σ \cite{15} between the local and global observations \cite{16}, which, if not caused by either systematics errors or local bias, could be the smoking gun of new physics \cite{17} beyond the ΛCDM model either from the early or late Universe \cite{16, 18, 19}. Therefore, it is crucial to rule out the resolution from the possibility of, for example, a local void \cite{20, 21}.

A cosmic void with its matter distribution changing in the radial coordinate could be described by the dubbed Lemaître-Tolman-Bondi (LTB) \cite{25, 27} metric for an inhomogeneous but isotropic Universe we might live in locally \cite{28–32}. However, some constraints from the detection of the secondary CMB effect like kinetic Sunyaev-Zel’dovich (kSZ) effect \cite{33, 34} have ruled out a class of giant local dust void models \cite{35} (see, however, \cite{36} for a recent attempt to ease the Hubble tension but still evading the kSZ limit.). Nevertheless, the LTB model with a cosmological constant, called the ΛLTB model, still seems to be able to relieve \cite{37, 39} or even fully resolve \cite{40, 42} the Hubble tension when using the galaxy survey data. For example, the luminosity density sample \cite{33, 40} is constructed over the redshift range $0.01 < z < 0.2$ for the discovery of the Keenan-Barger-Cowie (KBC) void \cite{21} with a size of ~ 300 Mpc and density contrast of $\sim 30\%$. In particular, by adopting a radial profile for the matter density fraction with the Garcia-Ballido-Haugbølle (GBH) parameterization \cite{47} smoothly connecting two homogeneous parts inside and outside a local underdensity, Hoscheit and Barger \cite{41} have fitted the SNe Ia data in the redshift range $0.023 < z < 0.15$ and then reduced the Hubble tension from 3.4σ to 2.7σ with the GBH parameters fixed by the KBC void configuration.

However, the data analysis of \cite{41} was revised by Kenworthy, Scolnic, and Riess in \cite{48} by using a larger sample of low-redshift SNe from a combined sample of the Pantheon, Foundation, and Carnegie-Supernova-Project (CSP) samples within $z < 0.5$ with fully appreciating for systematic uncertainties in the SNe data, such as uncertainties in the nuisance parameters, calibration uncertainties, and possible redshift evolution of the nuisance parameters. Furthermore, Kenworthy, Scolnic, and Riess \cite{48} also adopted more physically motivated boundary conditions, such as the GBH parameterization for the physical matter density profile $\rho_M(r)$ instead of the dimensionless matter density fraction $\Omega_M(r) = \int_0^r \frac{4\pi}{3} \rho_M(r') r'^2 dr'$ used in \cite{41}, and the treatment of the time since the big bang t_B as a free constant parameter instead of the inappropriate choice $t_B(r) = r$ used in \cite{41}. Nevertheless, the GBH profile in \cite{48} was also fixed by the same KBC void configuration. The conclusion drawn from \cite{48} agrees well with previous studies \cite{48, 49, 50} that the cosmic void for the Hubble constant determination fitted by the Hubble diagram is inadequate to account for the current discrepancy of the Hubble tension. Later in \cite{51} the GBH parameterization was chosen for the spatial curvature in order to achieve a complete analytic determination of the cosmic time in terms of the radial coordinate suitable for fitting the void size from a top-hat profile. Consistent with Kenworthy, Scolnic, and Riess in \cite{48}, the local void fitted by the low-redshift Pantheon SNe data in \cite{51} is also insuf-

†Electronic address: caig@itp.ac.cn
‡Electronic address: dingjiafeng@itp.ac.cn
‡Electronic address: guozk@itp.ac.cn
¶Electronic address: schwang@cosmos.phy.tufts.edu
§Electronic address: yuwangwei@mail.itp.ac.cn
icient to resolve the Hubble tension, in contrast to the luminosity distance data that admit a large local void.

Although [28] has ruled out a local void with a sharp edge and depth $|\Delta \delta| > 20\%$ in the redshift range $0.023 < z < 0.15$ by fitting the GBH matter profile to the combined SNe data sample (Pantheon, Foundation and CSP) within $z < 0.5$, this does not automatically rule out a larger void with a shallower depth and a wider edge in a larger sample of SNe data. The void search from [21] has found the full data of Pantheon sample but the GBH profile has been imposed on the spatial curvature term instead of the matter density fraction. Besides, a mild tension ($2-3\sigma$) was found in [48] in the context of the ΛCDM model (instead of the ΛLTB model) between the best fit value of $\mathcal{M} \equiv M + 5 \log_{10}(c/H_0/\text{Mpc}) + 25$ obtained from low-z SNe data ($0.01 \leq z \leq 0.2$) and the corresponding value obtained from the full Pantheon dataset. Here M is the color and stretch corrected absolute magnitude of SN Ia. Other work like [53] has also used the full data of Pantheon sample but the assumed model is the LTB model instead of the ΛLTB model. We therefore extend the analysis to the ΛLTB model by fitting the full Pantheon SNe data ranging from $0.01 < z < 2.3$ over all three parameters in the GBH parameterization for the matter density fraction. We confirm the previous findings that even in this general setting the local void cannot fully resolve the Hubble tension. The rest of this paper is organized as follows: In Sec. II, we introduce the ΛLTB model with GBH profile function. In Sec. III we use the Pantheon data to constrain the GBH void profile. Section IV is devoted to conclusion and discussions.

II. GBH VOID IN ΛLTB MODEL

A. FLRW equation

As a generalization of the usual Friedman-Lemaitre-Robertson-Walker (FLRW) metric within the framework of general relativity, the LTB metric [25,27] (see also [48]) uses the generalized scale factor $R(r,t)$ and a curvature term $k(r)$ to describe an inhomogeneous but isotropic void by

$$ds^2 = dt^2 - \frac{R^2(r,t)}{1 - k(r)} dr^2 - R^2(r,t) d\Omega^2,$$ \hspace{1cm} (1)

with $R'(r,t) = \partial R(r,t)/\partial r$. Imposing the homogeneous condition $R(r,t) = a(t)r$ and $k(r) = kr^2$ would reduce the LTB metric into the FLRW metric with $a(t)$ acting as the usual cosmic scale factor and thus preserve the homogeneity and Copernican principle of our Universe. The corresponding Friedmann equation for the ΛLTB model reads

$$H^2(r,t) = H_0^2 \left[\Omega_M(r) \left(\frac{R_0(r)}{R(r,t)} \right)^3 + \Omega_k(r) \left(\frac{R_0(r)}{R(r,t)} \right)^2 + \Omega_\Lambda(r) \right],$$ \hspace{1cm} (2)

where

$$H^2(r,t) \equiv \left(\frac{\dot{R}(r,t)}{R(r,t)} \right)^2$$ \hspace{1cm} (3)

is the Hubble parameter, and the dot is taken for the derivative with respect to t. Hence $H_0(r) \equiv H(r,t_0)$ and $R_0(r) \equiv R(r,t_0)$. The Friedmann equation for the ΛLTB model at present time could also be written as $\Omega_M(r) + \Omega_k(r) + \Omega_\Lambda(r) = 1$.

B. GBH profile

If the matter density parameter outside the void $\Omega_{M,\text{out}}$ is assumed to be set by the CMB data, and the matter density parameter in the void interior $\Omega_M(r)$ exhibits explicit radial dependence, the fractional deficit could therefore be defined as

$$\delta(r) \equiv \frac{\Omega_M(r) - \Omega_{M,\text{out}}}{\Omega_{M,\text{out}}},$$ \hspace{1cm} (4)

which could be further parameterized by the dubbed GBH profile function [21,47,48] as

$$\delta(r) = \delta_V \frac{1 - \tanh((r - r_V)/2\Delta_r)}{1 + \tanh(r_V/2\Delta_r)},$$ \hspace{1cm} (5)

with δ_V, r_V, and Δ_r characterizing the depth, radius, and transition width of the void, respectively. An illustration for the GBH profile is shown in Fig. 1. Besides the GBH profile function describing a Universe with two “homogeneous” parts linked by a smooth function, there

FIG. 1: The GBH profile with KBC void parameters $\delta_V = -0.3$, $r_V = 308$ Mpc and $\Delta_r = 18.46$ Mpc.
are many other profiles like those proposed in [54][50]. Therefore, the critical densities of matter, dark energy, and curvature could be obtained by

\[\Omega_M(r) = \Omega_{M,\text{out}}(1 + \delta(r)), \]
\[\Omega_\Lambda(r) = 1 - \Omega_{M,\text{out}}, \]
\[\Omega_k(r) = 1 - \Omega_M(r) - \Omega_\Lambda(r), \]

respectively, where \(\Omega_\Lambda(r) \) is assumed to be a constant since it is not a diluted background parameter.

C. Synchronous comoving gauge

We choose the synchronous comoving gauge \(R_0(r) = r \) for (2):

\[H^2(r, t) = \Omega_{M,\text{out}}(1 + \delta(r))H_0^2(r)\left(\frac{r}{R(r,t)}\right)^3 - \Omega_{M,\text{out}} \]
\[\delta(r)H_0^2(r)\left(\frac{r}{R(r,t)}\right)^2 + (1 - \Omega_{M,\text{out}})H_0^2(r). \]

which, after integrated, gives rise to the age of the Universe of form

\[t_B(r) = \int_0^r d\Delta R^{-1}\left[\Omega_M(r)H_0^2(r)\left(\frac{r}{R}\right)^3 + \Omega_k(r)H_0^2(r) \right. \]
\[\left. + \Omega_\Lambda(r)H_0^2(r) \right]^{-1/2}. \] \hspace{1cm} (10)

For \(r \) at CMB scales with \(\delta(r) = 0 \), every physical parameter is in accordance with its CMB counterpart so that we can dismiss the difference between \(t_B(r) \) and the real cosmic time \(t_0(r) \) and set the universal cosmic time assumption \(t_B(r) = t_B \equiv \text{const.} \) [48], where \(t_B \) is the time at CMB scales:

\[t_B = \int_0^1 \frac{d\Delta a_0(t)}{H_0,\text{out}\left[\Omega_M,\text{out}a_0 + \Omega_\Lambda,\text{out}a_0^2 \right]^{1/2}}. \] \hspace{1cm} (11)

with \(a_0(t) \) playing the role of the scale factor outside the void at CMB scales in accordance with its counterpart in FLRW metric. Now we can combine (10) and (11) to infer \(H_0(r) \) as a function of the radial coordinate \(r \). Furthermore, using the equations for null geodesics in the ALTB model could lead to the redshift \(z \) as a function of the radial coordinate \(r \) and the cosmic time \(t \) [48]:

\[\frac{dt}{dr} = -\frac{R'(r,t)}{\sqrt{1 - k(r)}}, \]
\[\frac{1}{1 + z}\frac{dz}{dr} = \frac{R'(r,t)}{\sqrt{1 - k(r)}}, \] \hspace{1cm} (12)

which could be inverted to rewrite the cosmic time \(t \), the radial coordinate \(r \) and every other parameter within the void in terms of the redshift \(z \) including, for example, the luminosity distance,

\[d_L = (1 + z)^2R(r(z), t(z)). \] \hspace{1cm} (13)

To manifest the difference of using the ALTB model with respect to the \(\Lambda \)CDM model, the luminosity distance from varying one of the GBH parameters but fixing the other two GBH parameters has been presented in Fig. 2 with solid curves compared to the \(\Lambda \)CDM result shown as a black dashed curve.
III. DATA ANALYSIS AND COSMOLOGICAL CONSTRAINT

A. Data analysis

The data we use for analysis in this paper consist of 1048 SNe Ia ranging from 0.01 < z < 2.3, which is summarized in the Pantheon sample [57] combining the following datasets with consistent photometry:

(i) Low-z data. 0.01 < z < 0.1 from CfA1-4 [58, 62] and CSP [63, 65];

(ii) Intermediate-z data. 0.03 ≤ z ≤ 0.68 from PS1 [66, 67], 0.1 ≤ z ≤ 0.4 from SDSS [68, 70], and 0.3 ≤ z ≤ 1.1 from SNLS [71, 72];

(iii) High-z data. z > 1.0 from SCP [73], GOODS [74, 75], and CANDELS/CLASH [76–78].

The above data will be tested for our ALTB model with GBH void profile function in the redshift–distance relation [14], where the luminosity distance is measured as usual by the distance modulus,

\[\mu = m^0_B - M^0_B = 5 \log_{10} \left(\frac{d_L(z)}{\text{Mpc}} \right) + 25, \]

where \(m^0_B \) is the corrected peak magnitude of a SN and \(M^0_B \) is the absolute magnitude of a fiducial counterpart. It is worth noting that, for Pantheon data, it is necessary to consider the heliocentric redshift \(z_{\text{Hel}} \) in

\[\mu = m^0_B - M^0_B = 5 \log_{10} \left(\frac{d_L(z_{\text{CMB}})}{\text{Mpc}} \right) + 5 \log_{10} \left(\frac{1 + z_{\text{Hel}}}{1 + z_{\text{CMB}}} \right) + 25. \]

The test we adopt for data analysis is the usual \(\chi^2 \) test [67]:

\[\chi^2 = (\Delta \mu)^T \cdot C^{-1} \cdot (\Delta \mu), \]

where \(\Delta \mu = \mu - \mu_{\text{ALTB}} \) and \(C \) is the covariance matrix consisting of

\[C = D_{\text{stat}} + C_{\text{sys}}. \]

\(D_{\text{stat}} \) has only diagonal components containing the total distance errors associated with each SN, which include photometric error, mass step correction, distance bias correction, peculiar velocity uncertainty, redshift measurement uncertainty in quadrature, stochastic gravitational lensing and intrinsic scatter. \(C_{\text{sys}} \) is the systematic covariance. The method we use for data analysis is the usual Markov chain Monte Carlo (MCMC) sampling [79] to scan all three parameters \((r_V, \Delta_r, \delta_V)\) of the GBH profile in the ALTB model with respect to the Pantheon data [57] and the ΛCDM model calibrated by the Planck 2018 results \(\Omega_{M, \text{out}} = 0.315 \pm 0.007 \) and \(H_{0, \text{out}} = (67.4 \pm 0.5) \) km/s/Mpc [8] outside the void in order to match the CMB observations at large scales. Since we have no a priori setup for the void, we want to identify by the Pantheon data alone, we therefore choose the following flat prior for all three parameters in the GBH parameterization with three illustrative redshift bins:

(i) \(z < 0.2 - r_V \in [1, 1000] \) Mpc, \(\Delta_r \in [1, 1600] \) Mpc, \(\delta_V \in [-0.5, 0.5] \);

(ii) \(z < 1.0 - r_V \in [1, 5500] \) Mpc, \(\Delta_r \in [1, 3000] \) Mpc, \(\delta_V \in [-0.4, 0.4] \);

(iii) \(z < 2.0 - r_V \in [1, 5500] \) Mpc, \(\Delta_r \in [1, 3000] \) Mpc, \(\delta_V \in [-0.4, 0.4] \).

Note that the shortest distance to a supernova in our data sample is \(\sim 45 \) Mpc (CMB frame) and the local void search is limited within redshift \(z \leq 2 \) since most of SNe data of Pantheon sample are within redshift \(z \leq 2 \) (1047 of 1048 in total) so that the ALTB metric is reduced to the FLRW metric outside \(z > 2 \) with the homogeneous condition and \(k(r) = kr^2 \) automatically preserved.

B. Cosmological constraints

The cosmological constraints are shown in Fig. 3 and summarized in Table I which are marginally consistent with the case of no local void \(\delta_V = 0 \) and there is seemingly no constraint on \(r_V \) and \(\Delta_r \) simply because there is no difference between the inside and outside of the void in the case of \(\delta_V = 0 \). This is not surprising since \(r_V \) and \(\Delta_r \) can only be strongly constrained when there is a strong preference for a large \(\delta_V \). On the other hand, if we want to search for any local void in the full data of Pantheon sample, then we have to allow for a nonzero \(\delta_V \), and there is no reason to fix \(r_V \) and \(\Delta_r \) anymore, nor do we have any prior value for fixing \(r_V \) and \(\Delta_r \); hence, we fit all three GBH parameters in this paper. Since at the limit of \(\delta_V \rightarrow 0 \) the void model reduces to the ΛCDM model and \(R/r \) is a function of \(t \) alone, namely the scale factor in ΛCDM model, the kSZ effect [33, 34], the Rees-Sciama effect [80–82] and baryon acoustic oscillations would be in accordance with the ΛCDM model.

Therefore, our cosmological constraints are consistent with the ΛCDM model instead of the ALTB model with large \(\delta_V \) in GBH parameterization for the void profile within \(z \leq 2 \). At the very least, the ΛCDM model cannot be distinguished from the ALTB model with small \(\delta_V \) constrained by the SNe data alone as shown in Fig. 4. Even if we could live in a void, the radial profile change is too insignificant to modify the concordance model.

Besides the \(\chi^2 \) test, we also provide with the Akaike information criterion (AIC) [83] and Bayesian information criterion (BIC) tests [84], which are defined by

\[\text{AIC} = 2k - 2 \ln \hat{L} \quad \text{and} \quad \text{BIC} = k \ln n - 2 \ln \hat{L}, \]

respectively, where \(k \) is the number of parameters for a given model, \(n \) is the number of data points, and \(\hat{L} \) is the maximized value of the likelihood function. A smaller AIC
TABLE I: The cosmological constraints from fitting over the total Pantheon sample cut at different redshift ranges (first column) with corresponding number of SNe (second column) on the best-fit value (third column), mean value (fourth column), and standard deviation (fifth column) of the void depth \(\delta_V \), the reduced \(\chi^2 \) for the best-fit void radius \(r_V \) (sixth column), the best-fit value of the void transition width \(\Delta_r \) (seventh column), the reduced \(\chi^2 \) for the best-fit \(\Lambda\text{LTB} \) model (eighth column), the reduced \(\chi^2 \) for the \(\Lambda\text{CDM} \) model (ninth column), the comparison to \(\Lambda\text{CDM} \) model using the relative AIC values (tenth column), and the comparison to \(\Lambda\text{CDM} \) model using the relative BIC values (eleventh column).

SNe range	SNe number	\(\delta_V \)	\(r_V \) [Mpc]	\(\Delta_r \) [Mpc]	\(\chi^2_{\Lambda\text{LTB}} \) d.o.f.	\(\chi^2_{\Lambda\text{CDM}} \) d.o.f.	\(\Delta\text{AIC} \)	\(\Delta\text{BIC} \)
\(z \leq 0.2 \)	411	\(-9.1\% \)	334	1.71	0.988	0.988	2.61	17.47
\(z \leq 1.0 \)	1025	\(-5.5\% \)	224	31.03	0.989	0.988	4.21	19.07
\(z \leq 2.0 \)	1047	\(-6.2\% \)	1204	2.02	0.987	0.988	1.90	16.77

or BIC value means a better fitting for the given model. For model selection \([59]\), we use the relative AIC or BIC value of the \(\Lambda\text{LTB} \) model with respect to the \(\Lambda\text{CDM} \) model. Therefore, a larger relative AIC or BIC value means that the \(\Lambda\text{LTB} \) model is more preferred compared to the \(\Lambda\text{CDM} \) model, and a more negative relative AIC or BIC value means that the \(\Lambda\text{LTB} \) model is more favorable. As seen from the last two columns of Table I, there is no strong preference between the \(\Lambda\text{LTB} \) and \(\Lambda\text{CDM} \) models according to the relative AIC values \(\Delta\text{AIC} \). However, all the relative BIC values \(\Delta\text{BIC} \) are larger than 10, which strongly disfavor the \(\Lambda\text{LTB} \) model over the \(\Lambda\text{CDM} \) model. To see how much improvement we can make from fitting all GBH parameters compared to a single parameter (\(\delta_V \)) fitting, we have also fitted the Pantheon SNe data of different redshift ranges to the depth of cosmic void \(\delta_V \) alone while fixing the other two GBH parameters at the KBC void parameters \((r_V = 308 \text{ Mpc}, \Delta_r = 18.46 \text{ Mpc}) \). The relative AIC and BIC values of the \(\Lambda\text{LTB} \) model with respect to the \(\Lambda\text{CDM} \) model are summarized in the last two columns of Table II which admit no preference for the \(\Lambda\text{LTB} \) model over \(\Lambda\text{CDM} \) model. Therefore, global fitting of all GBH parameters could lead to more dramatic disfavor of the \(\Lambda\text{LTB} \) model.
FIG. 4: Comparison of the distance modulus between the ΛLTB model (red solid line) with the best-fitting values constrained from SNe data within $z \leq 2$ and the ΛCDM model (blue dashed line) with values from Planck 2018 constraints. The Pantheon data are shown in gray.

FIG. 5: The required δ_V for given H_0 inside a void described by our ΛLTB model, where “A” and “B” correspond to the Hubble constants from the Planck 2018 constraint and local measurement 13, respectively. The shaded regions are for 2σ uncertainty regions.

over the ΛCDM model.

To see how large δ_V is needed for resolving the Hubble tension, we depict the Hubble constant in local void $H_{0,\text{in}}$ as a function of δ_V assuming the Hubble constant at the CMB scales as $H_{0,\text{out}}$. It is easy to see that δ_V should be less than -30% to moderately resolve the Hubble tension as shown in Fig. 5 which is beyond the uncertainty region of δ_V even if all three GBH parameters are used in the data fitting.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we have constrained the ΛLTB model with GBH parameterization for the local void profile from the MCMC sampling in fitting the Pantheon data within $z \leq 2$. Our fitting results are consistent with the ΛCDM model and have no significant preference for a large local void to fully resolve the Hubble tension. However, the current analysis still merits further improvements to settle down the void issue when addressing the Hubble tension:

First, we have made a compromised choice for our GBH parameterization on the dimensionless matter density fraction instead of the physical matter density profile, the latter of which is quite challenging to implement in the numerical global fitting. The previous studies 48, 51 evade this difficulty by either fixing the GBH parameters as the KBC void parameters 48 or parameterizing the spatial curvature in terms of the GBH profile with top-hat shape 51. A GBH parameterization for the physical matter density profile in the global fitting would lead to the most general conclusion reserved for future study.

Second, we have not explored the global fitting constraint for the luminosity distance data from the galaxy survey that usually leads to the discovery of a large local void. It is unclear whether there is some unidentified systematic in the SNe data or galaxy survey data to reconcile their apparent disagreement when fitting to a local void.

Acknowledgments

We thank Wei-Ming Dai, Chang Liu, De-Yu Wang, Wen-Hong Ruan, Jing Liu and Yong Zhou for the delightful discussions and help with code. This work is supported in part by the National Natural Science Foundation of China Grants No. 11690021, No. 11690022, No. 11851302, No. 11821505, and No. 11947302, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant No. XDB23030100 and No. XDA15020701; the Key Research Program of the CAS Grant No. XDPB15; and by Key Research Program of Frontier Sciences, CAS.

[1] Supernova Search Team Collaboration, A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201 [astro-ph]
[2] Supernova Cosmology Project Collaboration, S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high redshift supernovae,” Astrophys. J. 517 (1999) 565–586, arXiv:astro-ph/9812133 [astro-ph]
[3] COBE Collaboration, G. F. Smoot et al., “Structure in the COBE differential microwave radiometer first year
maps.” Astrophys. J. Lett. 396 (1992) L1–L5

[4] WMAP Collaboration, D. N. Spergel et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters.” Astrophys. J. Suppl. 148 (2003) 175–194. arXiv:astro-ph/0302209 [astro-ph]

[5] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Overview of products and scientific results.” Astron. Astrophys. 571 (2014) A1. arXiv:1303.5062 [astro-ph.CO]

[6] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters.” Astron. Astrophys. 571 (2014) A16. arXiv:1303.5076 [astro-ph.CO]

[7] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters.” Astron. Astrophys. 594 (2016) A13. arXiv:1502.01589 [astro-ph.CO]

[8] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters.” arXiv:1807.06209 [astro-ph.CO]

[9] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, “A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3.” Astrophys. J. 790 (2011) 119. arXiv:1103.2976 [astro-ph.CO] [Erratum: Astrophys. J. 792, 129 (2011)].

[10] A. G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant.” Astrophys. J. 826 no. 1, (2016) 56. arXiv:1604.01424 [astro-ph.CO]

[11] A. G. Riess et al., “New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant.” Astrophys. J. 855 no. 2, (2018) 136. arXiv:1801.01120 [astro-ph.SR]

[12] A. G. Riess et al., “Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant.” Astrophys. J. 861 no. 2, (2018) 126. arXiv:1804.10655 [astro-ph.CO]

[13] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM.” Astrophys. J. 876 no. 1, (2019) 85. arXiv:1903.07603 [astro-ph.CO]

[14] D. Camarena and V. Marra, “Local determination of the Hubble constant and the deceleration parameter.” Phys. Rev. Res. 2 no. 1, (2020) 013028. arXiv:1906.11814 [astro-ph.CO]

[15] K. C. Wong et al., “HOLICOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 3.3σ tension between early- and late-Universe probes.” Mon. Not. Roy. Astron. Soc. 498 no. 1, (2020) 1420–1439. arXiv:1907.04869 [astro-ph.CO]

[16] L. Verde, T. Treu, and A. G. Riess, “Tensions between the Early and the Late Universe.” in Nature Astronomy 2019, vol. 3, p. 891. 2019. arXiv:1907.10625 [astro-ph.CO]

[17] W. L. Freedman, “Cosmology at a Crossroads.” Nature Astron. 1 (2017) 0121. arXiv:1706.02739 [astro-ph.CO]

[18] Y. Park and E. Rozo, “Concordance Cosmology?,” arXiv:1907.06798 [astro-ph.CO]

[19] L. Knox and M. Millea, “Hubble constant hunter’s guide,” Phys. Rev. D101 no. 4, (2020) 043533. arXiv:1908.03663 [astro-ph.CO]

[20] R. C. Keenan, A. J. Barger, L. L. Cowie, W. H. Wang, I. Wold, and L. Trouille, “Testing for a large local void by investigating the Near-Infrared Galaxy Luminosity Function.” Astrophys. J. 754 (2012) 131. arXiv:1207.1588 [astro-ph.CO]

[21] R. C. Keenan, A. J. Barger, and L. L. Cowie, “Evidence for a 300 Megaparsec Scale Under-density in the Local Galaxy Distribution.” Astrophys. J. 775 (2013) 62. arXiv:1304.2884 [astro-ph.CO]

[22] J. R. Whitbourn and T. Shanks, “The Local Hole revealed by galaxy counts and redshifts,” Mon. Not. Roy. Astron. Soc. 437 (2014) 2146–2162. arXiv:1307.4405 [astro-ph.CO]

[23] Extragalactic Astronomy Group, Durham University Collaboration, J. R. Whitbourn and T. Shanks, “The galaxy luminosity function and the Local Hole,” Mon. Not. Roy. Astron. Soc. 459 no. 1, (2016) 496–507. arXiv:1603.02322 [astro-ph.CO]

[24] H. Böhringer, G. Chon, and C. A. Collins, “Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble Constant.” Astron. Astrophys. 633 (2020) A19. arXiv:1907.12462 [astro-ph.CO]

[25] G. Lemaitre, “The expanding universe,” Gen. Rel. Grav. 29 (1997) 641–680.

[26] R. C. Tolman, “Effect of inhomogeneity on cosmological models,” Proc. Nat. Acad. Sci. 20 (1934) 169–176.

[27] H. Bondi, “Spherically symmetrical models in general relativity,” Mon. Not. Roy. Astron. Soc. 107 (1947) 410–425.

[28] M.-N. Celerier, “Do we really see a cosmological constant in the supernovae data?,” Astron. Astrophys. 353 (2000) 63–71. arXiv:astro-ph/9907206.

[29] C.-M. Yoo, K.-i. Nakao, and M. Sasaki, “CMB observations in LTB universes: Part I: Matching peak positions in the CMB spectrum,” JCAP 07 (2010) 012. arXiv:1005.0048 [astro-ph.CO]

[30] V. Marra, E. W. Kolb, S. Matarrese, and A. Riotto, “On cosmological observables in a swiss-cheese universe,” Phys. Rev. D 76 (2007) 123004. arXiv:0708.3622 [astro-ph.CO]

[31] N. Brouzakis, N. Tetradis, and E. Tzava, “Light Propagation and Large-Scale Inhomogeneities,” JCAP 04 (2008) 008. arXiv:astro-ph/0703586.

[32] K. Kainulainen and V. Marra, “SNe observations in a meatball universe with a local void,” Phys. Rev. D 80 (2009) 127301. arXiv:0906.3871 [astro-ph.CO]

[33] R. Sunyaev and Y. Zeldovich, “The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies,” Comments Astrophys. Space Phys. 4 (1972) 173–178.

[34] R. Sunyaev and Y. Zeldovich, “The Velocity of clusters of galaxies relative to the microwave background. The Possibility of its measurement,” Mon. Not. Roy. Astron. Soc. 190 (1980) 413–420.

[35] F. Zhang and A. Stebbins, “Confirmation of the Copernican Principle at Gpc Radial Scale and above from the Kinetic Sunyaev Zel’dovich Effect Power Spectrum,” Phys. Rev. Lett. 107 (2011) 041301.
[36] Q. Ding, T. Nakama, and Y. Wang, “A gigaparsec-scale local void and the Hubble tension,” Sci. China Phys. Mech. Astron. 63 no. 9, (2020) 2904–2043.

[37] V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, “Cosmic variance and the measurement of the local Hubble parameter,” Phys. Rev. Lett. 110 no. 24, (2013) 241305. arXiv:1303.3121 [astro-ph.CO]

[38] H.-Y. Wu and D. Huterer, “Sample variance in the local measurements of the Hubble constant,” Mon. Not. Roy. Astron. Soc. 471 no. 4, (2017) 4946–4955. arXiv:1706.09723 [astro-ph.CO]

[39] D. Camarena and V. Marra, “Impact of the cosmic variance on H_0 on cosmological analyses,” Phys. Rev. D98 no. 2, (2018) 023537. arXiv:1805.09900 [astro-ph.CO]

[40] M. Tokutake, K. Ichiki, and C.-M. Yoo, “Observational Constraint on Spherical Inhomogeneity with CMB and Local Hubble Parameter,” JCAP 1803 (2018) 033. arXiv:1712.04229 [astro-ph.CO]

[41] B. L. Hoscheit and A. J. Barger, “The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a ALTb Model,” Astrophys. J. 854 no. 1, (2018) 46. arXiv:1801.01890 [astro-ph.CO]

[42] T. Shanks, L. Hogarth, and N. Metcalfe, “Gaia Cepheid parallaxes and ‘Local Hole’ relieve H_0 tension,” Mon. Not. Roy. Astron. Soc. 484 no. 1, (2019) L64–L68. arXiv:1810.02959 [astro-ph.CO]

[43] A. Lawrence et al., “The UKIRT Infrared Deep Sky Survey (UKIDSS),” Mon. Not. Roy. Astron. Soc. 379 (2007) 1599–1617. arXiv:astro-ph/0604426 [astro-ph]

[44] S. P. Driver and A. S. G. Roberton, “Quantifying cosmic variance,” Mon. Not. Roy. Astron. Soc. 407 (2010) 2131. arXiv:1005.2538 [astro-ph.CO]

[45] S. P. Driver et al., “Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release,” Mon. Not. Roy. Astron. Soc. 413 (2011) 971. arXiv:1009.0614 [astro-ph.CO]

[46] G. Lavaux and M. J. Hudson, “The 2M++ galaxy redshift catalogue,” Mon. Not. Roy. Astron. Soc. 416 (2011) 2840–2856. arXiv:1105.6107 [astro-ph.CO]

[47] J. Garcia-Bellido and T. Hanbury, “Confronting Lemaitre-Tolman-Bondi models with Observational Cosmology,” JCAP 04 (2008) 003. arXiv:0802.1523 [astro-ph]

[48] W. D. Kenworthy, D. Scolnic, and A. Riess, “The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant,” Astrophys. J. 875 no. 2, (2019) 145. arXiv:1901.08851 [astro-ph.CO]

[49] R. Wojtak, A. Knebe, W. A. Watson, I. T. Iliev, S. Heß, D. Rapetti, G. Yepes, and S. Gottl¨ober, “Cosmic variance of the local Hubble flow in large-scale cosmological simulations,” Mon. Not. Roy. Astron. Soc. 438 no. 2, (2014) 1805–1812. arXiv:1312.0276 [astro-ph.CO]

[50] I. Odderskov, S. Hannestad, and T. Haugbølle, “On the local variation of the Hubble constant,” JCAP 1410 no. 10, (2014) 028. arXiv:1407.7364 [astro-ph.CO]

[51] V. V. Luković, B. S. Haridasu, and N. Vittorio, “Exploring the evidence for a large local void with supernovae Ia data,” Mon. Not. Roy. Astron. Soc. 491 no. 2, (2020) 2075–2087. arXiv:1907.11219 [astro-ph.CO]

[52] L. Kazantzidis and L. Perivolaropoulos, “Hints of a Local Matter Underdensity or Modified Gravity in the Low z Pantheon data,” Phys. Rev. D 102 no. 2, (2020) 023520. arXiv:2004.02155 [astro-ph.CO]

[53] D. Sapone, S. Nesseris, and C. A. P. Bengaly, “Is there any measurable redshift dependence on the SN Ia absolute magnitude?”, arXiv:2006.05461 [astro-ph.CO]

[54] C. Z. Vargas, F. T. Falciano, and R. R. R. Reis, “Constraining LTB models with JLA supernovae and BAO,” arXiv:1512.02571 [astro-ph.CO]

[55] S. February, J. Larena, M. Smith, and C. Clarkson, “Rendering Dark Energy Void,” Mon. Not. Roy. Astron. Soc. 405 (2010) 2231. arXiv:0909.1479 [astro-ph.CO]

[56] K. Engquist and T. Mattsson, “The effect of inhomogeneous expansion on the supernova observations,” JCAP 0702 (2007) 019. arXiv:astro-ph/0609120 [astro-ph]

[57] D. M. Scolnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859 no. 2, (2018) 101. arXiv:1710.08845 [astro-ph.CO]

[58] A. G. Riess et al., “BVRI light curves for 22 type Ia supernovae,” Astron. J. 117 (1999) 707–724. arXiv:astro-ph/9810291 [astro-ph]

[59] S. Jha et al., “Ultraviolet light curves of 44 type iia supernovae,” Astron. J. 131 (2006) 527–554. arXiv:astro-ph/0509234 [astro-ph]

[60] M. Hicken, P. Challis, S. Jha, R. P. Kirsher, T. Matheson, M. Modjaz, A. Rest, and W. M. Wood-Vasey, “CFA3: 185 Type Ia Supernova Light Curves from the CfA,” Astrophys. J. 700 (2009) 331–357. arXiv:0901.4787 [astro-ph.CO]

[61] M. Hicken, W. M. Wood-Vasey, S. Blondin, P. Challis, S. Jha, P. L. Kelly, A. Rest, and R. P. Kirshner, “Improved Dark Energy Constraints from 100 New CfA Supernova Type Ia Light Curves,” Astrophys. J. 700 (2009) 1097–1140. arXiv:0901.4804 [astro-ph.CO]

[62] M. Hicken et al., “CFA4: Light Curves for 94 Type Ia Supernovae,” Astrophys. J. Suppl. 200 (2012) 12. arXiv:1205.4493 [astro-ph.CO]

[63] C. Contreras et al., “The Carnegie Supernova Project: First Photometry Data Release of Low-redshift Type Ia Supernovae,” Astron. J. 139 (2010) 519–539. arXiv:0910.3330 [astro-ph.CO]

[64] G. Fosalba et al., “The Carnegie Supernova Project: Analysis of the First Sample of Low-redshift Type-Ia Supernovae,” Astron. J. 139 (2010) 120–144. arXiv:0910.3317 [astro-ph.CO]

[65] M. D. Stritzinger et al., “The Carnegie Supernova Project: Second Photometry Data Release of Low-redshift Type Ia Supernovae,” Astron. J. 142 (2011) 156. arXiv:1108.3108 [astro-ph.CO]

[66] A. Rest et al., “Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 yr of the Pan-STARRS1 Survey,” Astrophys. J. 795 no. 1, (2014) 44. arXiv:1310.3828 [astro-ph.CO]

[67] D. Scolnic et al., “Systematic Uncertainties Associated
with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample," Astrophys. J. 795 no. 1, (2014) 45 arXiv:1310.3824 [astro-ph.CO]

[68] J. A. Frieman et al., “The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary,” Astron. J. 135 (2008) 338–347 arXiv:0708.2749 [astro-ph]

[69] R. Kessler et al., “First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters,” Astrophys. J. Suppl. 185 (2009) 32–84 arXiv:0908.4274 [astro-ph.CO]

[70] SDSS Collaboration, M. Sako et al., “The Data Release of the Sloan Digital Sky Survey-II Supernova Survey,” Publ. Astron. Soc. Pac. 130 no. 988, (2018) 064002 arXiv:1401.3317 [astro-ph.CO]

[71] SNLS Collaboration, A. Conley et al., “Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey,” Astrophys. J. Suppl. 192 (2011) 1 arXiv:1104.1443 [astro-ph.CO]

[72] SNLS Collaboration, M. Sullivan et al., “SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three Year Data with Other Probes,” Astrophys. J. 737 (2011) 102 arXiv:1104.1444 [astro-ph.CO]

[73] Supernova Cosmology Project Collaboration, N. Suzuki et al., “The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z¿1 and Building an Early-Type-Hosted Supernova Sample,” Astrophys. J. 746 (2012) 85 arXiv:1105.3470 [astro-ph.CO]

[74] Supernova Search Team Collaboration, A. G. Riess et al., “Type Ia supernova discoveries at z¿1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J. 607 (2004) 665–687 arXiv:astro-ph/0402512 [astro-ph]

[75] A. G. Riess et al., “New Hubble Space Telescope Discoveries of Type Ia Supernovae at z¿1: Narrowing Constraints on the Early Behavior of Dark Energy,” Astrophys. J. 659 (2007) 98–121 arXiv:astro-ph/0611572 [astro-ph]

[76] S. A. Rodney et al., “Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS : Searching for Prompt Explosions in the Early Universe,” Astron. J. 148 (2014) 13 arXiv:1401.7978 [astro-ph.CO]

[77] O. Graur et al., “Type-Ia Supernova Rates to Redshift 2.4 from CLASH: the Cluster Lensing And Supernova survey with Hubble,” Astrophys. J. 783 (2014) 28 arXiv:1310.3495 [astro-ph.CO]

[78] A. G. Riess et al., “Type Ia Supernova Distances at Redshift 1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate,” Astrophys. J. 853 no. 2, (2018) 126 arXiv:1710.00844 [astro-ph.CO]

[79] A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A Monte Carlo approach,” Phys. Rev. D 66 (2002) 103511 arXiv:astro-ph/0205436

[80] M. J. Rees and D. W. Sciama, “Large scale Density Inhomogeneities in the Universe,” Nature 217 (1968) 511–516

[81] B. R. Granett, M. C. Neyrinck, and I. Szapudi, “Dark Energy Detected with Supervoids and Superclusters,” arXiv:0805.2974 [astro-ph]

[82] I. Masina and A. Notari, “The Cold Spot as a Large Void: Rees-Sciama effect on CMB Power Spectrum and Bispectrum,” JCAP 0902 (2009) 019 arXiv:0808.1811 [astro-ph]

[83] H. Akaike, “A new look at the statistical model identification,” IEEE transactions on automatic control 19 no. 6, (1974) 716–723.

[84] G. Schwarz, “Estimating the Dimension of a Model,” Annals Statist. 6 (1978) 461–464.

[85] A. R. Liddle, “Information criteria for astrophysical model selection,” Mon. Not. Roy. Astron. Soc. 377 (2007) L74–L78 arXiv:astro-ph/0701113