Renal cell carcinoma (RCC) accounts for over 90% of all renal malignancies, and mainly affects the male population. Obesity and smoking are involved in the pathogenesis of several systemic cancers including RCC. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway regulates cell growth, differentiation, migration, survival, angiogenesis, and metabolism. Growth factors, hormones, cytokine and many extracellular cues activate PI3K/AKT/mTOR. Dysregulation of this molecular pathway is frequently reported in human cancers including RCC and is associated with aggressive development and poor survival rate. mTOR is the master regulator of cell metabolism and growth, and is activated in many pathological processes such as tumour formation, insulin resistance and angiogenesis. mTOR inhibitors are used at present as drug therapy for RCC to inhibit cell proliferation, growth, survival, and the cell cycle. Temsirolimus and everolimus are two mTOR inhibitors that are currently used for the treatment of RCC. Drugs targeting the PI3K/AKT/mTOR signalling pathway may be one of the best therapeutic options for RCC.

Contents

1. Introduction
2. PI3K/AKT signalling pathway: Roles, activation, and isoforms
3. Structure and function of the mTOR pathway
4. PI3K/AKT/mTOR in RCC
5. mTOR inhibitors in RCC
6. Conclusions
1. Introduction

In 2012, 143,000 deaths caused by kidney cancer were reported worldwide, with an increased incidence in the Czech Republic, followed by Eastern and Northern Europe, North America and Australia. Africa and South-East Asia had the lowest mortality rates from kidney cancer. RCC accounts for over 90% of all renal malignancies and is characterized histologically by the presence of three cell types: 70% clear cells, between 10 and 15% papillary cells, and only 5% chromophobe cells (1,2). The incidence and mortality of renal cell carcinoma (RCC) in the Czech Republic are among the highest in the world with 27.14 new cases and 11.13 deaths per 100,000 persons per year, while in men, the incidence is 63%, with 40% of cases diagnosed at the advanced or metastatic stage (3).

According to Globocan, in 2018, 403,000 cases of RCC were diagnosed, representing 2.2% of all cancer cases, with 254,000 cases among men and 148,000 among women. In developed countries, the risk of kidney cancer is 0.69% in men and 0.35% in women. In the USA, in 2019, according to published statistics, 74,000 new cases of RCC were reported, representing 4.2% of all cancers (4). Unfortunately, the RCC incidence rate doubled in 2016, being 14.9/100,000 inhabitants, compared to 1975, when the incidence was 7.1/100.00 (4).

In Romania, in 2018, in accordance with results published by Globocan, kidney cancer ranked 12th out of all cancers, representing 2.4%, with a mortality risk of 1.8% and a 5-year survival rate of 2.878% (5). Chronic kidney disease (CKD) and diabetic nephropathy represent other renal pathologies among the adult population worldwide (6-9). The leading cause of death among patients with CKD are cardiovascular diseases, which can be associated with vascular calcification (10-12). Uric acid is a biomarker for the cardiovascular risk, hyperuricemia being associated with endothelial dysfunction, inflammation, and the activation of the renin-angiotensin-aldosterone system (13-15).

Smoking is a risk factor for the development of RCC, the risk increasing by 50% for male smokers, while for female smokers there is an increase of 20%. Obesity is another risk factor for RCC, and a body mass index of 5 kg/m² increases the risk by 24% for men and 34% for women (1). Hypertension increases the risk of kidney cancer, affecting the renal glomeruli and tubular apparatus (4,7). In addition, a higher rate of hypertension is reported for CKD patients (16,17). Moreover, male sex, an increased BMI and smoking represent a few risk factors for diabetic nephropathy (18). In the pathogenesis of RCC, in addition to histological characterization, a molecular evaluation is required, which can provide crucial information for future therapeutic targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of mTOR (mTORC1) complex (Fig. 2) (47,48).

3. Structure and function of the mTOR pathway

mTOR is a component of the AKT signalling pathway, which promotes cell growth and proliferation in eukaryotic cells (42,43).

mTOR is a central regulator of cell metabolism, proliferation, growth, and survival. This protein kinase is activated in various pathological cellular processes such as tumour formation, angiogenesis, adipogenesis, insulin resistance and activation of T lymphocytes (42-45). Overexpression of mTOR signalling pathway has been observed in various systemic pathologies such as type 2 diabetes and multiple neoplasms including RCC (42-45). mTOR protein is a serine threonine kinase belonging to the PI3K kinase family, which exists in two distinct multi-protein complexes: mTOR1 and mTOR2 (46).

Both complexes have certain common protein components: mTOR (serine/threonine kinase), mLST8 (lethal mammalian with sec-13 protein 8) and DEPTOR (DEP-domain containing mTOR-interacting protein). The mTORC1 complex additionally contains scaffold protein Raptor (regulatory-associated protein of TOR) and AKT substrate protein PRAS40 (proline-rich AKT substrate 40-kDa) (47,48). Scaffold protein Rictor (rapamycin insensitive companion of mTOR), mSin1 (stress-activated protein kinase-interacting protein 1) and protein associated with Rictor 1 and 2, named PROTOR1, represent the core components of the mTORC2 complex (Fig. 2) (47,48).
In response to environmental factors such as amino acids, stress and growth factors, mTORC1 maintains a cellular balance between catabolism and anabolism. Several growth factors such as insulin, insulin-like growth factor (IGF) and amino acids activate mTORC1 through signalling PI3K/AKT-Tuberous sclerosis complex 1/2 (TSC1/2)-RHEB. PI3K-AKT pathway phosphorylates and inhibits TSC1, which causes RHEB (the small GTPase Ras homologue enriched in brain) activation, which represents the GTPase-activating protein (47,48). Hypoxia and DNA damage, are also signals for mTORC1 activation through TSC1/2 (48,49).

mTORC1 activation promotes protein synthesis by ribosome biogenesis and mRNA translation. Ribosomal S6 kinase (S6K) and the inhibitory Eif4e-binding proteins (4E-BPs) are the major downstream effectors of mTORC1, activated by phosphorylation, which will further phosphorylate other substrates, such as ribosomal protein S6, and protein synthesis initiation factor 4B (eIF4B) (47,50,51). mTORC1 regulates cell growth and proliferation, through its downstream effectors, S6K and 4E-BP, in response to IGF, amino acids, hypoxia and DNA damage (50,52). Overexpression of eIF4E is implicated in malignant transformation of some specific cells (53,54). mTORC1 promotes synthesis of purine nucleotides, de novo lipogenesis. Moreover, mTORC1 stimulates glycolysis and glucose uptake through transcription factor hypoxia-inducible factor α (HIFα) (55,56).

mTORC1 is implicated in autophagy-lysosome and ubiquitin-proteasome pathways, involved in protein and organelle turnover. In the nutrient state, ULK1, the mammalian autophagy-initiating kinase is phosphorylated by mTORC1, leading to its inhibition, which further blocks autophagy. Adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) activates ULK1 (57,58). mTORC1 activation suppresses the transcription factor EB (TFEB), the most important regulator of the lysosome pathway. mTORC1 inactivation and nutrient deprivation activate TFEB, then its nuclear translocation takes place, leading further to lysosomal and autophagic genes expression (59). Zhao et al and Rousseau and Bertolotti report that the ubiquitin proteasome system (UPS) is increased when mTORC1 is inactivated in mammalian cells (60,61). Moreover, mTORC1 controls the translation of cyclin D, c-Myc, and other key proteins involved in cell proliferation (62). Insulin and IGF activate the mTORC2 signalling pathway. The downstream substrates for this kinase protein are less known. Once activated, mTORC2 phosphorylates members of the AGC kinase family, AKT, SGK and PKCα, which are involved in cellular survival, metabolism, and cytoskeletal remodelling. AKT is the most well characterized substratum for mTORC2, being phosphorylated at serine 473 (41,63). Furthermore, AKT phosphorylates TSC2, which is the upstream inhibitor for mTORC1 (41,63). mTOR may be activated by cAMP-dependent protein kinase (AMP kinase), and TSC1/2. In nutrient and energy depletion states, cAMP and TSC 1/2 suppress mTOR (64).
4. PI3K/AKT/mTOR in RCC

In endothelial cells, there are RTKs to which vascular endothelial growth factor (VEGF) binds (VEGFR1/R2), promoting cell proliferation and migration, by activating the mitogen-activated protein kinases (MAPK) and PI3K/AKT/mTOR signalling pathways (65). Receptors for growth factors, such as VEGF, IGF, epidermal growth factor (EGF), have been identified at the level of clear cell RCC (65). Overexpression of EGF, transforming growth factor (TGF)-β, and IGF leads to RTK activation, which further activates various signalling pathways, such as RAS/mitogen-activated protein (MEK)/extracellular signal-regulated kinases (ERK) or PI3K/AKT/mTOR, leading to the production of hypoxia-inducible factor (HIF)-α, which promotes tumour progression (65). Genetic alterations may activate mTOR, reduce the function of PTEN, which cause abnormal activation of AKT, by increasing the function of the catalytic subunit of PI3K (41,65-67). Sato et al report mutations in the AKT/mTOR signalling pathway in clear cell RCC (68). In RCC tumours, PI3K/AKT/mTOR signalling pathway activation is correlated with aggressive development and poor survival rate (69,70).

Hyperactivity of mTOR may occur through several mechanisms: Over-activation of growth factors, mutations of the PI3K/AKT signalling pathway, decreased expression of TSC1/2, epigenetic suppression of PTEN and Von Hippel-Lindau (VHL) gene inactivation (65,71). Activation of mTOR leads to increased angiogenesis in neighbouring endothelial cells (65,71). In cancer cells, mTOR regulates mRNA translation for HIF1-α, HIF-2α and p70S6 kinase. In the pathogenesis of RCC, overexpression of HIF-1α and HIF-2α, appears to play an important role, together with overexpression of p70S6K (65,72-75). mTOR is involved in upregulation of HIF-α subunits, while VEGF and other molecules increase angiogenesis (65,76). RCC is characterized by alterations of the VHL gene. The loss of VHL function leads to the deregulation of cyclin D1, a cyclin-dependent kinase cofactor important for cell cycle progression (65,77,78). In clear cell RCC tumorigenesis, the accumulation of HIF-1α and HIF-2α represents a critical step, as a result of bi-allelic alteration of the VHL gene. In the presence of phospholipase D, mTOR enhances the expression of HIF-1α and HIF-2α, at the translational level rather than transcriptional (65,79). Chen et al identified the activation of the PI3K/AKT/mTOR signalling pathway in the tissues and cells of patients with RCC. The study reports that inhibition of this pathway may reduce epithelial to mesenchymal cell transition in RCC (21). In 2013, Sato and colleagues published the results of integrated molecular analyses in over 100 cases of clear cell RCC, analysing whole-genome and/or whole-exome and RNA sequencing. VHL gene defect, HIF accumulation, mutations in the PI3K/AKT/mTOR signalling pathway, p53 and DNA methylation were identified in patients with clear cell RCC genetic lesions (68).
5. mTOR inhibitors in RCC

To date, three methods have been proposed for developing therapeutic agents for RCC: VEGF, RTK and mTOR inhibitors. The mechanism of action of rapamycin drug analogues includes both angiogenesis and tumour cell proliferation. Drug resistance may reduce the utility of mTOR inhibitors (80). Temsirolimus and everolimus are two mTOR inhibitors, which are currently utilized for the treatment of certain RCC subtypes (19,81-84). In May 2007, FDA approved temsirolimus as treatment in a phase III trial, which included 626 patients with poor-prognostic metastatic RCC. The patients received temsirolimus (25 mg intravenous weekly), interferon (IFN)-γ (3x10^8 U subcutaneously three-times weekly) or a combination of both (temsirolimus 15 mg weekly and 63x10^8 U of IFN-γ three-times weekly). The survival rate of patients with metastasis RCC treated with temsirolimus was statistically prolonged when compared with patients who received only IFN-γ (P=0.0069; hazard ratio, HR=0.73). The median overall survival time reported in the temsirolimus group was 10.9 months, 7.3 months in the interferon group and 8.4 months in the combination group. Anaemia, nausea, peripheral oedema, rash, asthenia, hyperlipidaemia and hyperglycaemia were the common adverse effects observed in patients who received temsirolimus treatment. Based on the results, temsirolimus is the best therapeutic option for metastatic RCC patients. However, the survival rate was not improved in the interferon group by temsirolimus addition (85).

In 2018, Park and colleagues published the results of a phase II clinical trial that included 40 non-clear-cell recurrent or metastatic RCC patients, who received axitinib or temsirolimus. The results of the 3-year study reported promising effects for axitinib in terms of progression-free survival and objective response rate, but not for temsirolimus (86).

In 2017, Bedke et al published the results of a study which included patients with metastatic RCC, who received inhibitors for RTK, mTOR and VEGF administered in 3 stages. Axitinib, sorafenib, sunitinib and pazopanib were the RTK inhibitors used in the study, while temsirolimus and everolimus were the inhibitors for mTOR. Sunitinib is the first novel drug, which doubles progression-free survival in patients with metastatic RCC. In the first line of treatment, 626 patients with RCC, divided into three groups—namely, 80% with clear RCC cells, 20% with non-clear RCC and 72% with metastatic RCC, received temsirolimus, INF-α or a combination of the two. Survival rates were higher in patients receiving temsirolimus vs. INF-α (10.9 months compared with 7.4 months). RTK and mTOR inhibitors were administered in the second line therapy, the results being unclear as to the best treatment option. In the third line of treatment, VEGF and mTOR inhibitors (everolimus) were administered, with everolimus showing beneficial effects. Everolimus and temsirolimus reduced S6K1 and 4EBP1 activities and increased the synthesis of HIF1-α. These rapamycin analogues inhibit cell proliferation, growth, and survival, blocking the cell cycle in the G1-phase (84). Until 2006, a high dose of interleukin (IL)-2 remained the best therapeutic target for metastatic clear-cell RCC, but the therapy has evolved and currently three therapeutic targets are proposed. They are inhibitors for RTK-VEGF and mTOR, used in phase III trials, which were found to increase the survival rate (87). In RCC, GNE-477 may be a novel and efficacious dual inhibitor for PI3K-mTOR. Ye et al observed, in primary cultured human RCC cells, that GNE-477 inhibited cell growth, viability, proliferation, cell cycle progression, migration, and invasion. GNE-477 inhibited the PI3K-AKT-mTOR signalling pathway in primary RCC cells, by blocking AKT1, p70S6K1, p85 and S6. In vivo studies made on nude mice demonstrated that intraperitoneal injection of GNE-477 suppressed tumour growth. GNE-477 inhibited RCC cell growth in vitro and in vivo (88).

6. Conclusions

Obesity, smoking, and hypertension are risk factors for RCC, representing, in 2018, 2.2% of all cancers worldwide, with a higher incidence in men compared with women. The PI3K/AKT/mTOR signalling pathway is involved in protein and nucleotide synthesis, lipid/glucose metabolism, autophagy, translation, angiogenesis, cell survival and proliferation. Over-activation of the PI3K/AKT/mTOR signalling pathway is crucial for RCC cell survival, proliferation, migration, and metastasis. Drugs or pharmacological inhibitors of this signalling cascade are promising and important targets for RCC. Temsirolimus and everolimus are two mTOR inhibitors that are used for RCC therapy at present, which have been found to increase the patient survival rate.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

All information provided in this review is documented by relevant references.

Authors' contributions

DM, DGB, AT, OS, IAV, DAM, CCP, RIP, ME, NAS, GV, DEG, AEN and CS designed the review, performed the literature search, selected the included studies and wrote the manuscript and. DM, DGB, AT, OS, IDV, DAM, CCP, RIP, ME, NAS, GV, DEG, AEN and CS critically revised the manuscript. All authors read and approved the final manuscript. The contributions of all the authors on this review are greatly valued and appreciated.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.
References

1. Znaor A, Lortet-Tieulent J, Laversanne MA, Jemal A and Bray F: International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67: 519-530, 2015.

2. Saad HM, Gad MM, Al-Husseini MJ, Ruhan IA, Sonbol MB and Ho TH: Traditional and inherited renal cell carcinoma incidence and mortality in the United States in the last 2 decades: A SEER-based study. Clin Genitourin Cancer 17: 46-57.e5, 2019.

3. Poprach A, Bortlček Z, Bůčker T, Melichar B, Lakomy R, Vyzula R, Brabcová P, Svoboda M, Diršek L and Gregor J: Patients with advanced and metastatic renal cell carcinoma treated with targeted therapy in the Czech Republic: Twenty cancer centres, six agents, one database. Med Oncol 29: 3314-3320, 2012.

4. Padala SA, Barsouk A, Thandri KC, Saginla K, Mohammed A, Vakita A, Rawla P and Barsouk A: Epidemiology of renal cell carcinoma in Africa. J Diagn Cancer 11: 960-967, 2011.

5. World Health Organization: Globocan 2020. Cancer Today. Data visualization tools for exploring the global cancer burden in 2020. https://gco.iarc.fr/today/data-factsheets/populations/642-romania-fact-sheets. Accessed August, 2020.

6. Bălan DG, Balcangiu-Stroescu AE, Tănăsescu MD, Diaconescu AC, Răduclu L, Mihai A, Tănase M, Stănescu II and Ionescu D: Nutritional intervention in patients with diabetic renal disease-a brief presentation. Rev Chim Buchar 69: 4078-4082, 2018.

7. Mândătă A, Timofto D, Balcangiu-Stroescu AE, Bălan DG, Răduclu L and Ionescu D: Caloric restriction, PI3K/AKT/mTOR signaling and oxidative stress. Rev Chim Buchar 70: 993-995, 2019.

8. Totan A, Balcangiu-Stroescu AE, Meleascu I, Miriceasa D, Bălan DG, Stanescu II, Ionescu D, Timofto D, Tamrascu N: Impaired mitochondrial respiration and mitochondrial dysfunction in diabetic kidney disease. Rev Chim Buchar 70: 1396-1398, 2019.

9. Aliche RC, Rooney MT and Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 10: 2045-2047, 2015.

10. Dihanbanchong S: Vascular calcification in chronic kidney disease: Pathogenesis and clinical implication. World J Nephrol 6: 43-53, 2012.

11. Timofto D, Ionescu D, Medrithan L, Mândătă A, Răsăină A and Damian L: Vascular calcification and bone disease in hemodialysis patients assessment, association and risk factors. Nephrology Dialysis Transplantation; Oxford Univ Press 22: 325-326, 2007.

12. Timofto D, Dragoş D, Balcangiu-Stroescu A, Tănăsescu M, Bălan SG, Răduclu L, Tulin A, Stiu R and Ionescu D: Abdominal aortic calcification in predialysis patients: Contribution of traditional and uremic risk factors. Exp Nephrol 20: 97-100, 2012.

13. Timofto D, Mândătă A, Balcangiu-Stroescu AE, Bălan DG, Răduclu L, Tănăsescu MD, Diaconescu AC, Dorin D, Coçconel CI and Ionescu D: Hyperuricemia and cardiovascular diseases-clinical and paracranial correlations. Rev Chim Buchar 70: 1045-1049, 2019.

14. Epingac ME, Gaman MA, Diaconu C, Găd M and Gaman AM: The evaluation of oxidative stress in obesity. Rev Chim Buchar 70: 2241-2244, 2019.

15. Diaconu C: Mid-aortic syndrome in a young man. Cor et Vasa 59: e171-e173, 2017.

16. Balcangiu-Stroescu AE, Tănăsescu MD, Diaconescu AC, Răduclu L, Constantin AM, Bălan DG, Timme R, Ionescu D: Cardiovascular comorbidities, inflammation and serum albumin levels in a group of hemodialysis patients. Rev Chim Buchar 69: 926-929, 2019.

17. Dianco C: Treatment of Diabetes in Patients with Heart Failure. The 3rd International Conference on Interdisciplinary Management of Diabetes Mellitus and its Complications-Diabetes Mellitus in Internal Medicine, INTERDIAB 2017 Proceedings. Serafinceanu C, Negoiţa O and Elian V (eds). Niculescu, Bucharest, pp170-177, 2017.

18. Balcangiu-Stroescu AE, Tănăsescu MD, Diaconescu AC, Răduclu L, Bălan DG, Mihai A, Tănase M, Stănescu II and Ionescu D: Diabetic nephropathy: A concise assessment of the causes, risk factors and implications in diabetic patients. Rev Chim Buchar 69: 3118-3121, 2018.

19. Hussein-ezadeh HD and Garcia JA: Therapeutic rationale for mTOR inhibition in advanced renal cell carcinoma. Curr Clin Pharmacol 6: 214-221, 2011.

20. Chen H, Zhu D, Zheng Z, Cai Y, Chen Z and Xie W: CEP55 promotes epithelial-mesenchymal transition in renal cell carcinoma through PI3K/AKT/mTOR pathway. Clin Transl Oncol 21: 939-949, 2019.
Inoki K, Zhu T and Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590, 2003.

50. Yamamoto M, Albert V and Hall MN: mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23: 53-62, 2013.

51. Stallone G, Infante B, Prisciandaro C and Grandaliano G: mTOR and aging: An old fashioned dress. Int J Mol Sci 20: 2774, 2019.

52. Wollschaeger K, Loewith R and Hall EB: TOR signaling in growth and metabolism. Cell 124: 471-484, 2006.

53. Friedrichs RM, Mushynski WE and Sonenberg N: Phosphorylation of translation initiation factor eIF-4E is induced in a Ras-dependent manner during nerve growth factor-mediated PC 12 cell differentiation. Mol Cell Biol 12: 1239-1247, 1992.

54. Martin CK and Borden KL: The oncogene eIF4E: Using biochemical insights to target cancer. J Interferon Cytokine Res 33: 227-232, 2013.

55. Ben-Sahra I, Ho xx J, Ricout SJH, Asara JM and Manning BD: mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351: 728-733, 2016.

56. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafillov E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39: 171-183, 2010.

57. Kim J, Kundu M, Viellet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1. Nat Cell Biol 14: 141, 2012.

58. Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL and Wogan GN: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci USA 110: E2950-E2957, 2013.

59. Settembre C, Zoncu R, Medina DL, Vetrimi F, Erdin S, Erdin S, Huynh T, Mertz F, Karsenty G, Vellard MC, et al: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31: 1095-1108, 2012.

60. Zhao J, Zhai B, Gygi SP and Goldberg AL: mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 112: 15790-15797, 2015.

61. Rousseau A and Bertolotti A: An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536: 184-189, 2016.

62. Tanaka K, Fingar DC, Richardson CJ, Tee AR, Sheahan LM, Tsou C and Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4EBP1/eukaryotic translation factor 4E. Mol Cell Biol 24: 200-216, 2004.

63. Cai H, Dong LQ and Liu F: Recent advances in adipose mTOR signaling and function: Therapeutic prospects. Trends Pharmacol Sci 37: 303-317, 2016.

64. Inoki K and Guan KL: Complexity of the TOR signaling network. Trends Cell Biol 16: 202-212, 2006.

65. Kumar A, Kumari N, Gupta V and Prasad R: Renal cell carcinoma: Molecular aspects. Ind J Clin Biochem 33: 246‑254, 2018.

66. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Petersen R, Frost P, Gibbons JJ, Wu H and Sawyers CL: PI3K/mTOR axis in translocation renal cell carcinoma. Clin Cancer Res 24: 9585-9598, 2018.

67. Ye X, Ruan JW, Huang H, Huang WP, Zhang Y and Zhang F: PI3K-AKT-mTOR inhibition by GNE-477 inhibits renal cell carcinoma cell growth in vitro and in vivo. Aging (Albany NY) 12: 9489-9499, 2020.