Geochemical and mineralogical evidence that Rodinian assembly was unique

Chao Liu1, Andrew H. Knoll2 & Robert M. Hazen1

The mineralogy and geochemistry associated with Rodinian assembly (~1.3–0.9 Ga) are significantly different from those of other supercontinents. Compared to other supercontinents, relatively more Nb-bearing minerals, Y-bearing minerals, and zircons formed during Rodinian assembly, with corresponding enrichments of Nb, Y, and Zr concentrations in igneous rocks. By contrast, minerals bearing many other elements (e.g., Ni, Co, Au, Se, and platinum group elements) are significantly less abundant, without corresponding depletion of Ni and Co concentrations in igneous rocks. Here we suggest that the Nb, Y, and Zr enrichments in igneous rocks and relatively more occurrences of corresponding Nb-bearing minerals, Y-bearing minerals, and zircons result from significant non-arc magmatism during the mid-Proterozoic, while fewer occurrences of many other minerals suggest enhanced erosion of Rodinian volcanic arcs and orogens. The prolonged, extrovert assembly of Rodinia from thickened mid-Proterozoic continental crust via two-sided subduction can account for both the prevalence of non-arc magmatism and the enhanced erosion.
Supercontinents have assembled and dispersed repeatedly since the late Archean Eon, recorded most conspicuously by the age frequency distribution of detrital zircons. Episodes of supercontinent amalgamation share a number of tectonic and geochemical features; however, increasing evidence suggests that no two supercontinents formed in quite the same manner. In particular, it has been hypothesized that the supercontinent Rodinia differs distinctly from other supercontinents; Rodinia was assembled through a series of accretionary and collisional events between 1.3 and 0.9 billion years ago; endured through the late stages of Earth’s middle age; and broke apart in association with pronounced perturbations to the carbon cycle, global glaciations, and the rise of complex multicellular life. Similar to those of other supercontinents, Rodinian assembly (RA) is marked by a peak in the abundance of detrital zircons with contemporary ages, archiving an integrated result of crustal generation and preservation, or punctuated crustal growth. Previous studies proposed that Rodinia stands out from other supercontinents in many aspects, such as enhanced anorogenic magmatism, deficiency in continental margins and collisional belts, and dearth in ore deposits and minerals of precious metals, Hg, and other elements. Many of these proposed aspects, however, are based on regional or outdated geologic and geochemical databases with limited data. Recently, rapidly expanding global databases of geochemistry, mineralogy, and stratigraphy have begun to facilitate studies of Earth as a system, with emphasis on our planet’s evolution through time. In this study, we compile and analyze existing global databases of minerals (data from rruff.info/ima) and igneous geochemistry (data from earthchem.org) through time to test the extent to which Rodinia is geochemically and mineralogically distinct from other supercontinents, and to explore possible reasons underlying observed differences.

Our results indicate that niobium (Nb), yttrium (Y), and zirconium (Zr) concentrations in igneous rocks formed during RA are statistically higher, coupled with more abundances of Nb-bearing and Y-bearing minerals, but many other minerals are less abundant during RA than during assembly of other supercontinents. Such anomalies can be explained by prevalence of non-arc magmatism and enhanced erosion during RA.

Results
Mineral data. From rruff.info/ima, we compiled 108,857 age-locality records of high-temperature (high-T, i.e., igneous, metamorphic, and hydrothermal) minerals for which ages are well constrained from radiometric dating of corresponding magmatic, metamorphic, or hydrothermal events. Spatially, these minerals are distributed globally (Supplementary information; Supplementary Fig. 1). Temporally, despite a preservation bias toward deposits of the Phanerozoic Eon, the high-T minerals exhibit ages more commonly associated with supercontinent assembly (Fig. 1), similar to detrital zircons. This similarity, however, breaks down during RA; the abundance of detrital zircons exhibit one of the strongest peaks observed throughout Earth history, but occurrences of high-T minerals in total are much less pronounced (Fig. 1). Analysis of the high-T mineral data based on mineral chemistry reveals that only a few minerals, including Nb-bearing and Y-bearing minerals, are relatively more abundant than zircons during RA, and that most high-T minerals, especially minerals bearing selenium (Se), gold (Au), nickel (Ni), cobalt (Co), and platinum group elements (PGE), are significantly less abundant at the same time (Fig. 1).

Geochemical data. We compiled whole-rock chemical analyses of dated igneous rocks from http://www.earthchem.org/portal, including concentration data on 129,161 samples for Zr, 105,045 for Nb, 121,373 for Y, 77,835 for Co, and 82,611 for Ni—all are associated with SiO₂ content (wt%) and modern geographic
coordinates. Similar to our mineral data, the extracted geochemical data are globally distributed (Supplementary Fig. 1). During RA, multiple statistics of Nb, Y, and Zr concentrations in igneous rocks exhibit the highest values in the last 3.0 Ga (Fig. 2), significantly higher than the values during assembly of any other supercontinent (Table 1). Such geochemical enrichments are statistically significant in both mafic and felsic igneous rocks (Table 1), consistent with previous reports of anomalously high Zr in Laurentian granitoids and igneous samples from a smaller, older-version Earthchem database.

Unlike Nb, Y, and Zr, neither enrichments nor depletions are observed for Ni and Co concentrations in igneous rocks formed during RA (Fig. 2).

**Discussion**

Compared to other supercontinental assemblies, the enrichments of Nb, Y, and Zr in igneous rocks and more abundant Nb-bearing, Y-bearing minerals, and detrital zircons strongly suggest distinctive tectonics during RA, leading to unique patterns of magmatism and mineralization. For both mafic and felsic igneous rocks, tectonic discrimination based on the immobile trace elements (Fig. 3) implies that geochemical signatures of within-

---

**Table 1 Results of two-sample Welch’s t-tests of Zr, Nb, and Y concentrations between igneous rocks formed during Rodinian assembly and those formed during assemblies of other supercontinents**

|          | All          | Mafic       | Felsic      |
|----------|--------------|-------------|-------------|
|          | t-statistic  | p-value     | t-statistic | p-value     | t-statistic | p-value     |
| Zr       |              |             |             |             |             |             |
| Rodinia–Kenorland | 54.86 | 0           | 52.01       | 0           | 13.2        | 3.07E–35    |
| Rodinia–Nuna   | 24.63 | 1.10E–128   | 25.9        | 1.51E–137   | 5.15        | 3.60E–07    |
| Rodinia–Gondwana | 2.12 | 0.03        | 7.38        | 3.02E–13    | 2.42        | 0.02        |
| Rodinia–Pangea | 26.47 | 1.67E–149   | 23.16       | 1.86E–113   | 6.81        | 1.77E–11    |
| Nb       |              |             |             |             |             |             |
| Rodinia–Kenorland | 46.08 | 0           | 22.58       | 2.72E–101   | 19.74       | 6.15E–66    |
| Rodinia–Nuna   | 14.36 | 3.37E–46    | 8.03        | 1.51E–15    | 4.16        | 3.51E–05    |
| Rodinia–Gondwana | 4.33 | 1.52E–05    | –0.13       | 0.88        | 3.88        | 0.0001      |
| Rodinia–Pangea | 15.24 | 7.11E–52    | 2.05        | 0.04        | 1.7         | 0.09        |
| Y        |              |             |             |             |             |             |
| Rodinia–Kenorland | 44.02 | 0           | 40.3        | 5.25E–304   | 23.38       | 1.91E–96    |
| Rodinia–Nuna   | 19.59 | 1.76E–83    | 24.49       | 1.57E–123   | 6.99        | 5.24E–12    |
| Rodinia–Gondwana | 13.35 | 2.59E–40    | 10.62       | 5.03E–25    | 9.83        | 8.69E–22    |
| Rodinia–Pangea | 24.1  | 6.43E–125   | 25.07       | 1.07E–132   | 7.65        | 3.49E–14    |

The t-statistics between Rodinia and another supercontinent are mostly positive with corresponding p-values <0.05, suggesting statistically significant enrichments of Zr, Nb, and Y for Rodinian igneous rocks.
plate” magmatism prevail during RA, whereas island arc and collisional magmatism is more, or at least equally, significant during the assembly of other supercontinents (e.g., Nuna, Gondwana). Unlike “within-plate” magmatic rocks normally discovered in intraplate settings, these rocks formed during RA are associated with not only intracontinental rifting27,28, but also back-arc settings29, and zones of orogenic distension/exhumation during episodic collisional hiatus30–32, as long as the tectonic setting is extensional. Such widespread extensional magmatism can be attributed to enhanced asthenosphere–lithosphere interactions27,30,33,34, possibly involving a warmer mantle35 and/or a thickened continental crust36 during RA. Of all supercontinents, because Rodinia accretion is proposed to have been prolonged, and extrovert60 via two-sided subduction61,62.

with distension intervals6,63, which could facilitate orogenic erosion. Indeed, deep erosion has been observed for the Grenville63,64 and the Sveconorwegian orogens65,66, which constitute the main collisional suture of Rodinia6. Enhanced orogenic erosion is consistent with possible development of large-scale river systems and massive Grenvillian fluvial sediments67,68. Removal of the shallow part of the orogens could account for the absence of Au deposits during RA, which normally occur at <10 km depth16.

In general, the observed mineral enrichments and depletions during RA (Fig. 1) are an integrated result of mineral crystallization and preservation, instead of purely mineral genesis. The interplay of formation and destruction can also account for the
temporal distribution of global detrital zircons. During RA, a unique tectonic setting led to non-arc magmatism and enhanced erosion, which in turn resulted in geochemical, mineral, and ore enrichments and depletions that established Rodinia as distinct among supercontinental events.

Methods

Database description and compilation. Compilation of the data, including data query, data filtering, and data resampling, is performed with Pandas 0.21.0 implemented in Python 2.7.11, in which randomness is simulated with Mersenne Twister pseudo-random number generator.

Data on mineral ages, localities, and coordinates are extracted from rruff.info/ima (as of May 2016), developed at University of Arizona. It is a relational database, with attributes including mineral name, structure, chemical formula, locality name, coordinates, paragenetic mode, and age (if available). Most of the entries are sourced from mindat.org, in which the localities are typically defined on a mine level, distributed at least 5 km apart. In addition, we have added new entries into the rruff database through brute-force search in scientific publications. In this paper, we only include high-temperature (high-T, e.g., igneous, metamorphic, and hydrothermal) minerals, of which the ages are well constrained from dating corresponding magmatic, metamorphic, or hydrothermal events, for a total of 108,857 entries.

The high-T mineral entries are further queried by mineral chemistry to investigate distributions of specific minerals in different geologic time. Queries based on mineral chemistry reveal that the degree of enrichment varies for different species during RA. We compiled the queries of elements to show that Nb and Y minerals are enriched, while most others, especially Se, Ni, Co, Au, and PGE elements are relatively depleted during RA (Fig. 1). Note that we only include elements that make up minerals with at least 20 occurrences during assembly of each supercontinent to be statistically significant.

Geochemical data of igneous rocks are extracted from http://www.earthchem.org/portals (as of April 2017), which is a portal of multiple databases including the Petrological Database (PetDB; http://www.earthchem.org/petdb), North American Volcanic and Intrusive Rock Database (NAVDAT; http://www.naval.org), the Geochemistry of Rocks of the Oceans and Continents database (GEOROC; http://georoc.mpch-mainz.gwdg.de/georoc), and the U.S. Geological Survey database (USGS; https://minerals.usgs.gov/geochm/). It is also a relational database, with attributes including sample ID, rock type, major element concentrations, trace element concentrations, coordinates, ages, etc. We compiled concentrations in igneous rocks of 129,161 Zr; 105,045 Nb; 121,373 Y; 77,885 Co; and 82,611 Ni whole-rock concentrations, all of which are dated, and associated with reported SiO2 content (wt%). We also tried to compile concentrations of PGE and Au, but the sample sizes are usually too small (<5000) to be statistically significant. In addition, we included ~50 data points of Zr, Nb, and Y of igneous rocks missing from EarthChem. The compiled data are further filtered to select only samples of ages between 0 and 3000 Ma, with age uncertainties ±200 Ma, and with legitimate geographic (latitudes within ±90°, longitudes within ±180°).

Resampling. Bootstrap resampling was performed to minimize spatial and temporal sampling bias. Sample weights were assigned to be inversely dependent on spatiotemporal sample density, according to the relationship

\[ W_i \propto \frac{1}{\sum_{i=1}^{n}} \left( \frac{1}{1 + \left( \frac{z_i - z^*}{\sigma} \right)^2} + \frac{1}{1 + \left( \frac{y_i - y^*}{\sigma} \right)^2} \right) \]

where \( n \) is the number of samples in the database, \( z \) is spatial location, \( t \) is age of the rock, and \( a \) and \( b \) are normalization coefficients of 1.8 arc degrees (200 km) and 38 Myr, respectively. After calculation of weight \( W_i \) for each sample \( i \) in the database, bootstrap resampling was carried out by random selection of data points based on their weights, i.e., data with larger weights have higher chance to be selected. For each selected data, the synthetic data were drawn from a Gaussian distribution with a mean equal to the original value of the data point and standard deviation equal to the estimated 1σ uncertainty of the data point. It is shown that the analysis is insensitive to the resampling size. We built the resampling data set to a size identical to the original database.

Statistical test and tectonic discrimination. The resampled data are plotted with a ±100 Ma bin size at a frequency of 100 Ma (Fig. 2). The apparent enrichments of Zr, Nb, and Y concentrations during RA in Fig. 2 are examined as follows. First, trace metal concentrations during the assembly of Nuna, Rodinia, and Gondwana share similar distribution patterns, ruling out the possibility that Rodianian enrichments are caused by outliers. In addition, two-sample Welch’s t-tests (Table 1) demonstrate that average Zr, Nb, and Y concentrations are generally higher during RA than other supercontinents (\( t > 0 \) and \( p < 0.05 \)). What is more, this enrichment is statistically significant for both mafic (SiO2 43–51 wt%) and felsic (SiO2 62–73 wt%) samples in general. The t-test is performed with Scipy 0.19.0 implemented in Python 2.7.11.

Tectonic discrimination diagrams (Fig. 3) are plotted based on immobile trace elements (Zr, Nb, Y) in igneous rocks. Such tectonic discrimination diagrams should be used with caution, especially when the rocks have a small sample size or are of limited spatial and temporal distribution. Nevertheless, rocks in this study are sampled globally, with age ranges of several hundred million years, and sample sizes of several thousand for each supercontinent assembly. Therefore, the difference observed for immobile trace elements of different supercontinent assemblies suggests unequal tectonic settings.

Data availability. All data analyzed in this study are downloaded from open source databases rruff.info/ima and http://www.earthchem.org/portal. Python codes used to analyze these data are available upon request by e-mailing cliu@carnegiescience.edu.

Received: 20 July 2017 Accepted: 6 November 2017
Published online: 05 December 2017

References

1. Campbell, I. H. & Allen, C. M. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1, 554 (2008).
2. Nance, R. D., Murphy, J. B. & Santosh, M. The supercontinent cycle: a retrospective essay. Gondwana Res. 25, 4–29 (2014).
3. Cawood, P. A., Hawkesworth, C. & Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).
4. Spencer, C. J., Hawkesworth, C., Cawood, P. A. & Dhuime, B. Not all supercontinents are created equal: Gondwana-Rodinia case study. Geology 41, 795–798 (2013).
5. Murphy, J. B. & Nance, R. D. Do supercontinents introvert or extort?: Sm-Nd isotope evidence. Geology 31 873–876 (2003).
6. Broganas, S., Pisarevsky, S. & Li, Z.-X. Assembly and breakup of Rodinia (some results of IGCP Project 440). Stratigr. Geol. Corrol. 27, 259 (2009).
7. Cawood, P. A. & Hawkesworth, C. J. Earth’s middle age. Geology 42, 503–506 (2014).
8. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1999).
9. Knoll, A. H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39, 217–239 (2011).
10. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. & Dhuime, B. Geochemistry: a matter of preservation. Science 323, 49–50 (2009).
11. Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998).
12. Kemp, A., Hawkesworth, C., Paterson, B. & Kinny, P. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–583 (2006).
13. Ashwal, L. D. The temporality of anorthosites. Can. Mineral. 48, 711–728 (2010).
14. Bierlein, F. P., Groves, D. I. & Cawood, P. A. Metallogenesis of accretionary orogens—the connection between lithospheric processes and metal endowment. Ore Geol. Rev. 36, 282–292 (2009).
15. Bradley, D. C. Secular trends in the geologic record and the supercontinent cycle. Earth Sci. Rev. 108, 16–33 (2011).
16. Goldfarb, R. J., Bradley, D. & Leach, D. L. Secular variation in economic geology. Econ. Geol. 105, 459–465 (2010).
17. Hazen, R. M. et al. Mercury (Hg) mineral evolution: a mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 97, 1013–1042 (2012).
18. Dickinson, W. R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett. 275, 80–92 (2008).
19. Van Kranendonk, M. J. & Kirkland, C. L. Orogenic climax of Earth: the 1.2–1.1 Ga Grenvillian superevent. Geology 41, 735–738 (2013).
20. Hazen, R. M. et al. Mineral evolution: episodic metallocogenesis, the supercontinent cycle, and the co-evolving geosphere and biosphere. Econ. Geol. 18, 1–15 (2014).
21. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Myr ago. Nature 485, 490–493 (2012).
22. Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).
23. Campbell, I. H. & Allen, C. M. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1, 554–558 (2008).
24. Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircons 1000–120 Ga. J. Geol. Soc. Lond. 162, 401–417 (2005).

25. Pearce, J. A., Harris, N. B. & Tindle, A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983 (1984).

26. Pearce, J. A. & Norry, M. J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33–47 (1979).

27. Erslev, P. M. et al. Deviations in the detail: the 1150–1000Ma magmatic and structural evolution of the Nganyatjarra Rift, west Musgrave Province, Central Australia. Precamb. Res. 183, 572–588 (2010).

28. Iriondo, A. et al. Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwest Sonora, Mexico: implications for the reconstruction of the southwestern margin of Laurentia. Geol. Soc. Am. Bull. 116, 154–170 (2004).

29. Greentree, M. R., Li, Z.-X., Li, X.-H. & Wu, H. Late Mesosporozoic to earliest Neoproterozoic basin record of the Sibao orogeny in western South China and relationship to the assembly of Rodinia. Precamb. Res. 151, 79–100 (2006).

30. Mclelland, J. M., Selleck, B. W. & Bickford, M. Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the melanotite inliers of the Appalachians. Geol. Soc. Am. Mem. 206, 21–49 (2010).

31. Prol-Ledesma, R.-M., Melgarejo, J. C. & Martin, R. F. The El Muerto "NYF" granitic pegmatite, Oaxaca, Mexico, and its striking enrichment in allanite-(Ce) and monazite-(Ce). Can. Mineral. 50, 1055–1076 (2012).

32. Upson, B., Emelchenov, C., Heaman, L., Goodenough, K. & Finch, A. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68, 43–65 (2003).

33. Mosher, S., Levine, J. & Carlson, W. Mesosporozoic plate tectonics: a collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas. Geol. Soc. Am. Bull. 36, 55–58 (2008).

34. Shirey, S. B., Berg, J. H. & Carlson, R. F. Temporal changes in the sources of flood basalts: isotopic and trace element evidence from the 1100 Ma Old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochim. Cosmochim. Acta 58, 4475–4490 (1994).

35. Dijkstra, A. H., Dale, C. W., Oberthür, T., Nowell, G. M. & Pearson, D. G. Osmium isotope compositions of detrital Os-rich alloys from the Rhine river province: evidence of a global late Mesosporozoic mantle depletion event. Earth Planet. Sci. Lett. 452, 115–122 (2016).

36. Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

37. Hanson, R. E., Martin, M. W., Bowring, S. A. & Munyanyiwa, H. U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa–East Antarctica and possible Rodinia correlations. Geology 26, 1143–1146 (1998).

38. Anderson, J. L. & Morrison, J. Ilmenite, magnetite, and peraluminous granitic magmatism of Laurentia and Baltica. Contrib. Mineral. Petrol. 122, 502–519 (2001).

39. Vigneresse, J. L. The speciation of water-saturated haplogranitic melts. Contrib. Mineral. Petrol. 162, 633–646 (2011).

40. Bingen, B., Stein, H. J., Bogaerts, M., Bolle, O. & Mansfeld, J. Molybdenite Re-Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta 69, 2847–2860 (2005).

41. Černý, P., London, D. & Novák, M. Granitic pegmatites as reflections of their sources. Elements 8, 289–294 (2012).

42. McLelland, J. M. & Chiarenzelli, J. The chemistry of quartz in granitic pegmatites of southern China and relationship to the assembly of Rodinia. Precamb. Res. 122, 324–352 (2003).

43. Keppler, H. Influence of fluorine on the enrichment of high field strength trace elements in granite rocks. Contrib. Mineral. Petrol. 114, 479–488 (1993).

44. Veksler, I. V., Dorfman, A. M., Kamenetsky, M., Dulski, P. & Dingwell, D. B. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta 69, 2847–2860 (2005).

45. χ, P. L. Geochronology of the Precambrian. Earth Planet. Sci. Lett. 52, 450–453 (1989).

46. Plavšansky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

47. Evans, D., Li, Z.-X. & Murphy, J. Four-dimensional context of Earth’s supercontinents. Geol. Soc. Lond. Spec. Publ. 424, 1–14 (2016).

48. Cawood, P. A. & Pisarevsky, S. A. Megagranitoids of Laurentia and Baltica: Amazonia relations during Rodinia assembly. Precamb. Res. 292, 386–397 (2017).

49. Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., Gladkochub, D. P. & Murphy, J. B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 449, 118–126 (2016).

50. Cawood, P. A., Lawver, L. A. and Cawood, P. A. Crustal evolution of the Grenville Province—implications for the evolution of large hot long-duration orogens. Precamb. Res. 167, 237–259 (2008).

51. Hoffman, P. F. & Grotzinger, J. P. Organic preservation, eruption, and tectonic style. Geology 21, 195–198 (1993).

52. Bingen, B., Stein, H. J., Bogaerts, M., Bolle, O. & Mansfeld, J. Molybdenite Re-Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta 69, 2847–2860 (2005).

53. Möller, C., Andersson, J., Dyck, B. & Lundin, I. A. Exhumation of an eclogite terrane as a hot magmatic nappe, Siccovernian orogen. Lithos 226, 147–168 (2015).

54. Rainbird, R., Cawood, P. & Gehrels, G. in Tectonics of Sedimentary Basins: Recent Advances (eds Busby, C. & Azor, A.) Ch. 29 (Blackwell Publishing Ltd, UK, 2012).

55. Spencer, C. J., Prave, A. R., Cawood, P. A. & Roberts, N. M. Detrital zircon geochronology of the Grenville/Llano foreland and basin Sauk Sequence in west Texas, USA. Geol. Soc. Am. Bull. 126, 1117–1128 (2014).

56. Payne, J. L., Ferris, G., Barovich, K. M. & Hand, M. Pitfalls of classifying ancient detrital zircon suites with tectonic discrimination diagrams: an example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precamb. Res. 127, 227–240 (2010).

57. Vermeesch, P. Tectonic discrimination diagrams revisited. Geochim. Geophys. Geosyst. 7, Q06017 (2006).

Acknowledgements

We thank Richard Carlson, Simone Runyon, Shaunna Morrison, and Michael Meyer at the Carnegie Institution for Science for valuable discussions and suggestions. We are grateful to Joshua Golden and Robert Downs at University of Arizona for mineral database building and constructive discussions. Thorough reviews from Peter Cawood and constructive discussions. Thorough reviews from Peter Cawood and Peter London were greatly appreciated for improving this manuscript. This work was supported in part by the NASA Astrobiology Institute, the Deep Carbon Observatory, the Alfred P. Sloan Foundation, the W.M. Keck Foundation, a private foundation, and the Carnegie Institution for Science.
Author contributions
The project was designed by C.L., A.H.K. and R.M.H.; Database compilation and statistical analyses was performed by C.L.; C.L., A.H.K. and R.M.H. contributed to the writing of the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-017-02095-x.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017