On the Fragmentation of Explosively-driven Plastic/steel Layered Cylinders

EUGEN TRANA, FLORINA BUCUR, ADRIAN N. ROTARIU*
Military Technical Academy Ferdinand I, 39-49 George Cosbuc Av., 040531, Bucharest, Romania

While over the past century fairly extensive work has been carried out on explosively-driven metallic envelope fragmentation, as the development of explosive materials and warhead configurations continued, the issue under consideration is still topical. The current paper aims to investigate the fragmentation characteristics of explosively-driven steel cylinders when double layer envelopes are used. Mott’s approach was modified in order to account for such particular configuration (layered envelope). Several tests in a simplified type procedure were performed aiming to confirm the theoretical approach.

Keywords: layered envelope, detonation, fragmentation

Experimental part

Materials and test configuration

For the experimental approach a simplified procedure built on two test configurations like the ones depicted in figure 1 were set-up.

The tests were run on High Explosive (HE)/Plastic_foil/Steel envelope specimens (fig. 2). For the HE a 37 mm diameter and 65 mm height cylindrical HITEX (plastic explosive with 91% RDX and 9% binder) charge was used. Several 25 μm PVC foil layers with a total mass of 0.009 kg and 3 mm thickness were wrap-up around the explosive. As metallic envelope a 0.275 kg S355J2H (OL 52) steel grade cylinder ($\Phi_i=43$ mm, $\Phi_e=51$ mm, $h=65$ mm) was used for the tested items. According to supplier sheet, S355J2H presented a 396 N/mm2 yield stress point, a 537 N/mm2 ultimate stress value along with a 31% elongation limit.

To initiate HITEX detonations, classic electrical blast caps were used. The test program included three trials for each experimental set-up.

* email: rotariu@mta.ro

Fig. 1. Experimental setup

Fig. 2. Exploded view test specimens geometry
One set of tests involved the use of water recipients at 0.6 m from the detonation site to decelerate and retain the generated steel fragments with a special emphasis on effective fragments (fragments with mass above 1 gram) (fig. 1a). By this manner the time consuming standard test involving huge quantities of sand was replaced. The other set of tests was design to investigate the total number of fragments formed on cylinder detonation by recording for a 60° arch the fragment impact prints on a 1.16 x 2 m wood panel deployed at exactly 1 m (fig. 1b).

Results and discussions

As mentioned previously the proposed test methodology was design to study the double layer cylinder's fragmentation by investigating the total number of fragments and the number of effective fragments.

Typical example of recovered effective fragments and relevant experimental data are synthetized in figure 3 and table 1.

![Fig. 3. Typical examples of recovered effective fragments](image)

Table 1

Test no.	Recovered average effective fragments	Counted average number of impacts for 60° arch
1	63	181
2	60	182
3	63	180
Average	62	181

In order to correlate and extend the experimental findings for the double layer cylinder fragmentation a theoretical approach was considered. As starting point Mott’s model was adopted having in mind that this is the most famous theoretical based model used in shell fragmentation analysis. The mathematical relations used by Mott points to the following equations:

\[M_A = Bt^2 \left(1 + \frac{1}{d} \right) \] \((1) \)

\[N_0 = \frac{M}{m} \] \((2) \)

\[\bar{m} = 3\mu \] \((3) \)

\[\mu = M_A^2 \] \((4) \)

\[N_e = N_0 \left(\frac{e}{M_A} \right)^{v/3} \] \((5) \)

where: \(M_A \) stands for a mass proportionality factor, \(B \) is a constant of the explosive, \(t \) indicates the cylinder thickness, \(d \) is the cylinder interior diameter, \(M \) denotes cylinder metal mass, \(N_0 \) is the total number of fragments, \(\bar{m} \) is distribution mean (fragment average mass), \(\mu \) stands for a distribution factor, \(N_e \) indicates the number of fragments with a mass above \(x \).

The equations refers to the classic single layer cylinder as depicted in figure 4.

![Fig. 4. Standard single layer cylinder cross-section](image)

Considering Mott’s equations, one can conclude that it is entirely based on \(M_A \) expression. As pointed out in [11] the mass proportionality factor (\(M_A \)) was stated for a single layer envelope that assumes a direct contact with the charge. Thereby, any attempt to use equations (1) to (5) for a different type of configuration (double layer envelope - fig. 5) should first deal with the correct amendment of equation (1). Due to the particular studied geometry the effort will be focused on deriving a new expression for the mass proportionality factor that will include the existence of an intermediary layer.

![Fig. 5. Double layered case shell cross-section](image)

As indicated by Mott [11], the basic \(M_A \) form (equation 6) is related to the cylinder cross-section dimension.

\[M_A = K\frac{r}{t} \frac{1}{e} \frac{1}{v} \] \((6) \)

where: \(r \) and \(t \) stand for the casing radius and thickness at the moment of break-up, \(v \) is the radial velocity of the envelope ring at the same moment and \(K \) indicates a constant that includes parameters like density and fracture specific energy.

Basically, the same equation (6) can be applied to the particular case of an extra inert layer placed between charge and case changing accordingly the radial velocity. Additionally to equation (6), the energy conservation law (equation (7)) will also be considered as indicated by Grady [10]:

\[\frac{1}{2} M_0 v^2 (r) + \frac{1}{2} M_i v^2 (r) + \omega U (r) = \omega E \] \((7) \)

where: \(M_0 \) is the outer layer mass (steel mass), \(M_i \) stands for the intermediary layer (plastic or aluminium, for example), \(e \) is the charge mass, \(U (r) \) indicates the specific compressional energy of the expanding explosive products and \(E \) is a material constant that expresses the compressional energy at the initial cylinder radius.
Equation (7) as highlighted by Grady accounts for envelope speed-up but fails to consider the kinetic energy of the expanding explosive products and solid envelope deformation energy requirement. Nevertheless, since equation (7) was the original Mott’s approach one will continue with that particular equation.

Considering the extra layer mass as a percentage of the outer layer ($\varepsilon = M_1/M_0$) one can write:

$$v^2(r) \frac{M_0(1+\varepsilon)}{\omega} = 2E \left(1 - \frac{u(r)}{\omega}\right)$$ \hfill (8)

or

$$v^2(r) \frac{d_1^2-d_2^2}{d_2^3} (1 + \varepsilon) = 2E \left(1 - \frac{u(r)}{\omega}\right) \frac{\rho_c}{\rho_m}$$ \hfill (9)

with ρ and ρ_m charge and outer layer material density.

Using the same assumption as Mott regarding u_0 concept, $u_0 = \sqrt{2E}$ (u_0 is considered to be a property only of the explosive-metal system) equation (9) became:

$$\frac{1}{\nu_0^2} = \frac{8}{\nu_m^2} \frac{\rho_c}{\rho_m} (1 + \varepsilon)$$ \hfill (10)

where: $r = \frac{d_1+d_2}{2}$ and $t = \frac{d_1-d_2}{2}$.

Including r expression and equation (10), equation (6) can be rewritten as follows:

$$M_A = \frac{K}{\nu} \left(\frac{1}{\nu_0^2} (1 + \varepsilon)\right)^{\frac{1}{3}} \frac{1}{\nu_0^2} \frac{\nu_m}{\nu_c}$$ \hfill (11)

or considering Mott’s constant C (0.0531lb$^{1/2}$/in$^{7/6}$ the constant of RDX as indicated in [12] or 2.597 kg$m^{1/2}$/m$^{7/6}$ in international units)

$$M_A = C(1 + \varepsilon) \frac{1}{\nu_0^2} \frac{\nu_m}{\nu_c}$$ \hfill (12)

Since $rt=ct$ as Mott proposed, in equation (12) the initial values for r and t will be used.

Considering equation (12) for Mott’s model, a total number of 1110 fragments with 64 effective fragments is calculated.

Compared against each other, the theoretical and experimental results on total number of fragments and effective fragment number (fig. 6) display a good correlation (1110 vs 1086 respectively 64 vs 62).

The differences observed in figure 6 could be assigned to both a natural data dispersion and to a less perfect effective fragment collecting procedure. In fact, based on the results, the proposed fragment collecting procedure even expedite clearly misses the capability to offer a complete image on fragments mass distribution.

Conclusions

The paper aims to investigate the fragmentation pattern of the exterior metal envelope in a particular double layer configuration (plastic/metal). As underlined in the paper, the fragmentation phenomenon of the particular studied configuration can be investigated both theoretically and experimentally. The theoretical approach can be pursued using Mott’s algorithm.

The decision to use PVC foils was based on the necessity to have an inherit intermediary layer with a higher plasticity than the S355J2H layer.

Although raw, the proposed testing methodology proved itself to be promising. The theoretical and experimental findings are correlated.

Acknowledgement: The current work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2016-0057, within PNCDI III.

References

1. GRADY, D.E., Int.J.Fract. 163, 2010, pp. 85
2. CRANZ, C., Zweiter band - Innere ballistic, Springer-Verlag Berlin Heidelberg GmbH, 1926
3. ROSIN, P., RAMMLER, E., Journal of the Institute of Fuel, 7, 1933, pp. 29
4. LIENAU, C.C., Journal of the Franklin Institute, 221, 1936, pp. 485
5. WEIBULL, W. A., Proceedings of the Ingeniors Vetenskapsakad. Handlingar, 1939, pp. 151
6. SCHUHMANN E.V., AIME Technical Publication, 1189, 1941, pp. 1
7. MOTT, N.F., Proceedings of the Royal Society of London A - Mathematical and Physical Sciences, 189 (1018), 1947, pp. 300
8. GILVARRY, J.J., Journal of Applied Physics, 32(3), 1961, pp. 391
9. SHOCKEY, D.A., CURRAN, D.R., SEAMAN, L., PETERSEN, C.F., International Journal of Rock Mechanics and Geomechanics Abstracts, 11, 1974, pp. 303
10. GRADY, D.E., Fragmentation of rings and shells. The legacy of N.F. Mott, Springer-Verlag Berlin Heidelberg, 2006
11. MOTT, N.F., A.O.R.G. Memorandum no. 24, 1943
12. COOPER, P.W., Explosives Engineering, Wiley-VCH Inc. New-York, 1996

Manuscript received: 13.09.2018