Re-visit N/Z Ratio of Free Nucleons from Collisions of Neutron-Rich Nuclei as a Probe of EoS of Asymmetric Nuclear Matter*

LI Qing-Feng,1,† LI Zhu-Xia,1,2,3 ZHAO En-Guang,1 and H. Stöcker4
1Institute of Theoretical Physics, the Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China†
2China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413, China
3Center of Theoretical Nuclear Physics, National Laboratory of Lanzhou Heavy Ion Accelerator, Lanzhou 730000, China
4Institut für Theoretische Physik, Universität Frankfurt, Frankfurt 60054, Germany

(Received July 11, 2003)

Abstract The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.

PACS numbers: 25.70.Pq, 24.10.-i

Key words: symmetry potential, heavy ion collisions, neutron and proton chemical potential

Following the establishment of radioactive beam facilities at many laboratories of different countries, the experimental studies on the equation of state (EoS) for asymmetric nuclear matter become possible. As is well known that the EoS for asymmetric nuclear matter is one of the most important input for astrophysics.

The EoS for asymmetric nuclear matter can be approximately expressed as

$$e(u, \delta) = \frac{e(u, \delta)}{\rho} = e_0(u) + e_{\text{sym}}(u)\delta^2,$$

where

$$u = \rho/\rho_0, \quad \delta = (\rho_n - \rho_p)/\rho,$$

and $e(u, \delta)$ is the energy density, e_0 is the energy per nucleon for symmetric nuclear matter, and e_{sym} is the bulk symmetry energy. There exist large uncertainties for e_{sym}, especially for its density dependence. The symmetry energy at saturated normal density, i.e. the symmetry energy coefficient, is not well constrained.\[1\] The empirical value is 30 MeV ± 4 MeV. The theoretically predicted values are rather different for different approaches, for examples its value is about 27 MeV ~ 38 MeV by non-relativistic Hartree–Fock approach,\[2\] 35 MeV ~ 40 MeV by relativistic mean field approach,\[3-5\] 31 MeV by Brueckner–Hartree–Fock (BHF) theory,\[6\] 28.7 MeV by extended BHF theory,\[7\] 26 MeV ~ 34 MeV by relativistic BHF,\[8-10\] 28.1 MeV by Brueckner–Bethe–Goldstone approach,\[11\] and so on. Furthermore, a recent study has shown that the symmetry energy coefficient increases as the isospin asymmetry increases and the increasing slope is quite different for different versions of Skyrme force.\[12\] At the same time, we find that rather different values are used in the applications, for example, some authors\[13,14\] have adopted values of 29 MeV and 31 MeV in the different IQMD model calculations, whilst others\[15,16\] have used 30 MeV and 35 MeV, respectively, in the framework of the IBUU model. 32 MeV was used in the stochastic Boltzmann–Nordheim–Vislov (BNV) calculations,\[17\] and 23.4 MeV was used in Refs. [18] and [19], etc.

The value of the symmetry energy coefficient a_{sym}, which can be related to the strength of the symmetry potential energy C_S as

$$a_{\text{sym}} = \frac{C_S}{2} + \frac{e_0}{3},$$

if we write the symmetry potential energy part in the form of

$$v_{\text{sym}} = \frac{C_S}{2} F(u),$$

where $F(u)$ gives the density dependence of symmetry potential energy. One can see from expressions (2) and (3) that the divergence of the values of a_{sym} means the uncertainties about the strength of the symmetry potential...

*The project supported by National Natural Science Foundation of China under Grant Nos. 10175093 and 10235030, the Science Foundation of Chinese Nuclear Industry and the State Key Basic Research Development Program under Contract No. G20000774, the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No. KJCX2-SW-N02, and the CASK.C. Wong Post-doctors Research Award Fund.

†Email: liqf@itp.ac.cn

‡Mailing address
energy. We have studied the influence of the different C_S values on the isospin distribution of the emitted nucleons, intermediate mass fragments, and light charged particles, and we have found that this influence is obvious,\cite{20} while the quantity concerning the most for the isospin-dependent part of EoS is its density dependence, which is one of the most important inputs for the astrophysics. This has inspired people to find more sensitive observable to pin down the form of the density dependence of the EoS of the asymmetric nuclear matter. These works usually adopt a fixed value of C_S and then test the sensitivity of the proposed sensitive observable to the different forms of the density dependence of the symmetry potential energy term without checking the influence of the strength of the symmetry potential. The aim of this paper is to study how the existing uncertainties concerned the symmetry potential energy term without checking the influence of the different forms of the density dependence of the symmetry potential. In this work, we mainly concentrate on the momentum distribution of N/Z ratio of emitted nucleons in neutron-rich heavy ion collisions at energies ranging from several tens to one hundred times of A MeV since it has been proposed as a very sensitive observable to the form of the density dependence of the EoS of asymmetric nuclear matter.\cite{21}

Concerning the form of density dependence of the symmetry potential energy, Prakash and Lattimer have proposed\cite{22,23} that

$$F(u) = \begin{cases} u, \\ u^{1/2}, \\ 2u^2/(1 + u). \end{cases}$$

This form can be expressed as a simple one, i.e.,

$$F(u) = \begin{cases} u^\gamma, \\ 2u^\gamma/(1 + u^{-1}). \end{cases}$$

In Fig. 1 we show $F(u)$ as a function of reduced density with $\gamma = 0.5$, 1.0, and 1.5, respectively. The $\gamma = 0.5$ case corresponds to the asy-soft EoS, $\gamma = 1.0$ the asy-stiff EoS, and $\gamma = 1.5$ the asy-super stiff EoS. From Fig. 1, one sees that the type $F(u) = 2u^\gamma/(1 + u^{-1})$ is not too far away from linear density dependence in the densities given in the figure. We then take a simple form, i.e., $F(u) = u^\gamma$, in this work. It has been predicted that γ is about 0.6, based on a many-body theory calculations,\cite{24,25} which seems to be supported by the recent experimental observation.\cite{18}

![Fig. 1 The dependence of $F(u)$ on γ. The γ value is chosen to be 0.5, 1.0, and 1.5, respectively.](image)

In this paper, we take C_S to be 27, 35, and 50 MeV (corresponding to the values of symmetry energy coefficient a_{sym} of 27, 31, and 38 MeV, respectively), which roughly include the range of symmetry energy coefficients predicted by different theories, and γ to be 0.5, 1.0, and 1.5. The results with a reduced range of symmetry energy coefficients $C_S = 37, 40, 45$ (corresponding to $a_{sym} = 32, 34, 36$) are also shown. The other parameters of EoS will be shown in Table 1. A soft EoS ($K = 200$ MeV) is used in the calculations.

Table 1 Parameters used in calculations.

α (MeV)	β (MeV)	γ	ρ_0 (fm$^{-3}$)	K (MeV)	L (fm)	C_{Yak} (MeV)
-356	303	7/6	0.168	200	1.45	-5.5

The compressibility contributed from symmetry potential can be obtained by

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 F_{sym}(u)}{\partial^2 \rho} \bigg|_{\rho = \rho_0} = \frac{9}{2} \gamma (\gamma - 1) C_S - \frac{2}{3} \epsilon_p.$$

Table 2 lists the K_{sym} parameters when $C_S = 27, 35,$ and 50 MeV, and $\gamma = 0.5, 1.0,$ and 1.5. It shows that K_{sym} changes sign from negative to positive when γ increases from 0.5 to 1.5. At the same time, K_{sym} increases for $\gamma = 0.5$ and decreases for $\gamma = 1.5$ without changing sign when C_S decreases from 50 MeV to 27 MeV. And these values are well within the wide range of K_{sym} from about -400 MeV to 466 MeV predicted by many-body theories.\cite{26,27} Available data of giant monopole resonances do not give a stringent constraint on the K_{sym}.\cite{28}
parameter either.\cite{28}

C_s (MeV)	27	35	50	
γ	0.5	55.7	64.7	81.6
K_{sy} (MeV)	1.0	25.3	25.3	25.3
K_{sy} (MeV)	1.5	65.8	92.8	143.4

Fig. 2 μ_n and μ_p as a function of u for $\delta = 16/96$ and $32/132$ with $C_S = 35$ MeV, $\gamma = 0.5$, 1.5, and $C_S = 27$ MeV, $\gamma = 0.5$, respectively.

However, a complementary and perhaps more complete depiction of the isospin dynamics can be obtained from the analysis of the density dependence of the neutron/proton chemical potential,

\[
\mu_{n/p} = \frac{\partial \gamma(u, \delta)}{\partial \rho_{n/p}} = \alpha u + \beta u^\gamma + \epsilon_0 u^{2/3}
\]

\[+ \left[C_S \left(\frac{\gamma - 1}{2} \right) u^\gamma - \frac{1}{9} \epsilon_0 u^{2/3} \right] \delta^2
\]

\[+ \left[C_S u^\gamma + \frac{2}{3} \epsilon_0 u^{2/3} \right] \delta .
\]

From this equation, we find the difference between neutron and proton chemical potential is

\[
\mu_n - \mu_p = 4\epsilon_{sym}\rho\delta.
\]

This expression indicates that the difference between μ_n and μ_p depends on both isospin asymmetry and the density. When a more neutron-rich (or deficient) system is chosen, the difference becomes more obvious. Since in the following we will study reactions of 96Zr$+^{96}$Zr and 132Sn$+^{132}$Sn in Fig. 2 we show μ_n and μ_p versus density with $C_S = 35$ MeV, $\gamma = 0.5$, 1.5, and $C_S = 27$ MeV, $\gamma = 0.5$ for these two reactions, respectively. The left panel is for 96Zr$+^{96}$Zr ($\delta = 16/96$), and the right one for 132Sn$+^{132}$Sn ($\delta = 32/132$), respectively. Figure 2 shows that the larger the C_S is, the larger the difference between μ_n and μ_p is and accordingly the more neutrons are emitted. Concerning the change of the form of density dependence, when the density is higher than the normal density, the difference between μ_n and μ_p for asy-stiff and asy-super stiff is larger than that for asy-soft, while when density is lower than normal density, the tendency is just opposite.

The single particle symmetry potential can be written as

\[
\psi_{sym}^{n/p} = \frac{\partial \gamma(u, \delta)}{\partial \rho_{n/p}}
\]

\[= \frac{1}{2} C_S [\pm 2u^\gamma \delta + (\gamma - 1)u^\gamma \delta^2] ,
\]

where $\psi_{sym}(u, \delta)$ represents the symmetry potential energy per nucleon. One can see from Eq. (9) that the symmetry potential is repulsive for neutrons and attractive for protons. So the effect of the symmetry potential is to make more free neutrons and less free protons. The first term in the bracket gives major contribution. And for the δ^2 term in the bracket, its sign depends on whether γ is less than 1 or not. It reduces the repulsive force for neutrons and increases the attractive force for protons for the $\gamma < 1$ case and opposite for the $\gamma > 1$ case and consequently the δ^2 term may reduce the effect of the first term slightly. Furthermore the tendency of u^γ factor is different for $\gamma < 1$ and for $\gamma > 1$ as density increases from sub-normal to above-normal densities; at the sub-normal density the repulsive force for neutrons is stronger when $\gamma < 1$ than that when $\gamma > 1$ and for the above-normal density, it is just opposite. And therefore one expects that the N/Z ratio of emitted nucleons in collisions of neutron-rich nuclei with $\gamma < 1$ is bigger than that with the $\gamma > 1$ case. As for the change of the strength of C_S, it is simply that the larger the C_S is the higher the N/Z ratio of emitted nucleons is. Our numerical results clearly show all these tendencies.

From Eq. (9) we obtain the time evolution of \vec{v}_i and \vec{p}_i contributed by symmetry potential term

\[
\vec{r}_{i=n/p} = 0 ,
\]

\[
\vec{p}_{i=n/p} = -C_S \left[\pm (\gamma - 1)u^{-1}\delta
\]

\[+ (\gamma - 1)u^{-2}\delta^2u^{-1}\delta \right] \frac{\partial \rho_{n/p}}{}
\]

\[+ [-2 + (\gamma - 1)(\gamma - 2)u^{-2}\delta^2u^{-1}\delta \right] \frac{\partial \rho_{p/n}}{} .
\]
First let us study the influence of the different forms of $F(u)$ on the N/Z ratio when C_S value is taken as a fixed value, i.e., $C_S = 35$ MeV. Figures 3(a) and 3(b) show the ratio of emitted neutron numbers and proton numbers versus their momentum for reactions of 132Sn+132Sn at 50 A MeV (Fig. 3(a)) and 100 A MeV (Fig. 3(b)) calculated with $F(u)$ being the form of $u^{1/2}$, u, and u^2. Different characters denote calculation results obtained with different forms of $F(u)$ and the lines are shown just for guiding the eyes. The case for reactions of 132Sn+132Sn at $E = 50$ A MeV has been calculated in Ref. [21]. Here, for simplicity, the impact parameter $b = 2$ fm is chosen for central collisions. From Fig. 3, the obvious dependence of the N/Z ratio of free nucleons on the form of $F(u)$ is seen, especially for the N/Z ratio of the energetic neutrons from reactions of 132Sn+132Sn at $E = 50$ A MeV case. The N/Z ratio of free nucleons with asy-soft case ($F(u) = u^{1/2}$) is much higher than those with the asy-stiff ($F(u) = u$) and asy-super stiff ($F(u) = u^2$) cases, which is in agreement with our expectations. However, our results are not as pronounced as that obtained in Ref. [21] though the general trend is the same, which may be due to the model dependence.

Fig. 3 The density dependence of N/Z ratio of emitted nucleons versus momentum. The reactions 132Sn+132Sn at 50 A MeV and 100 A MeV are chosen in (a) and (b), respectively. The different line types are drawn only for guiding the eyes, as well as those in the next figures. The ratio of N/Z with $\gamma = 0.5$ and 1.5 is shown in their right-top plots, respectively.

Fig. 4 The dependence of N/Z ratio of emitted nucleons on symmetry potential strength as a function of momentum. (a) 132Sn+132Sn reaction in central collisions; (b) 96Zr+96Zr reaction in peripheral collisions. The ratio of N/Z with $C_S = 50$ MeV and 27 MeV is shown in their right-top plots, respectively.
Figure 3(b) shows that for 100A MeV case the dependence of N/Z ratio of low momentum free nucleons on the form of \(F(u) \) is as strong as that of energetic nucleons, while for 50A MeV case shown in Fig. 3(a) only the N/Z ratio of the energetic nucleons is sensitive to the form of \(F(u) \). The comparison between Figs. 3(a) and 3(b) means that there is an advantage for taking beam energy at 100A MeV to extract the information of the form of \(F(u) \) because the number of low momentum nucleons are much larger than those of energetic nucleons and consequently the value of N/Z ratio can be measured more accurately.

Now let us study the dependence of the N/Z ratio of nucleons on the strength of the symmetry potential energy, which is closely related to the symmetry energy coefficient. Figures 4(a) and 4(b) show the N/Z ratio of emitted nucleons for reactions \(132\text{Sn}+132\text{Sn} \) and \(96\text{Zr}+96\text{Zr} \) at \(E = 50A \text{ MeV} \) calculated with \(F(u) = u \) but different \(C_{S} \) values, namely, with \(C_{S} = 27 \text{ MeV} \) and 50 MeV. In Fig. 4(a) we show the results for central collisions of \(132\text{Sn}+132\text{Sn} \), and in Fig. 4(b) we show the results for peripheral collisions of \(96\text{Zr}+96\text{Zr} \). These results are similar to our previous work on the central collisions of \(96\text{Zr}+96\text{Zr} \) at 400A MeV,\([20]\) in which the sensitivity of the momentum distribution of N/Z ratio of free nucleons to the strength of the symmetry potential energy is also shown but not as pronounced as shown at lower bombarding energies studied in this work. And furthermore, for the case of central collisions of \(132\text{Sn}+132\text{Sn} \) at 50A MeV, the dependence of N/Z ratio of energetic nucleons on \(C_{S} \) is very pronounced, for example, the N/Z ratio of nucleons with momentum of about 300 MeV/c calculated with \(C_{S} = 50 \) MeV is about 1.5 times larger than that with \(C_{S} = 27 \) MeV. Relatively the N/Z ratio for peripheral reactions of \(96\text{Zr}+96\text{Zr} \) at \(E = 50A \text{ MeV} \) is reduced but the ratio of \((N/Z)_{C_{S}=50}/(N/Z)_{C_{S}=27} \) is similar with that for central reactions of \(132\text{Sn}+132\text{Sn} \) at 50A MeV. Figures 4(a) and 4(b) show that the influence of strength of symmetry potential energy on the N/Z ratio of free nucleons is as obvious as that of the form of \(F(u) \) shown in Figs. 3(a) and 3(b).

In order to investigate the most pronounced and the least pronounced sensitivity of N/Z ratio to the density dependence of the symmetry potential energy we study the influences of the different combination of both the strength and the form of the density dependence of symmetry potential. We define ratios

\[
R_{\text{most}} = \frac{N/Z(F(u) = u^{\frac{1}{2}}, C_{S} = 50)}{N/Z(F(u) = u^{\frac{3}{2}}, C_{S} = 27)}
\]

and

\[
R_{\text{least}} = \frac{N/Z(F(u) = u^{\frac{3}{2}}, C_{S} = 50)}{N/Z(F(u) = u^{\frac{1}{2}}, C_{S} = 27)}.
\]

Figure 5 shows the calculation results of the N/Z ratio of emitted nucleons versus their momentum for central collisions of \(96\text{Zr}+96\text{Zr} \) at 50A MeV with \(F(u) = u^{\frac{1}{2}}, C_{S} = 50 \) MeV, and 27 MeV and with \(F(u) = u^{\frac{3}{2}}, C_{S} = 27 \) MeV, and 50 MeV, respectively. The \(R_{\text{most}} \) and \(R_{\text{least}} \) are shown in the right-top plot. One can see that the \(R_{\text{most}} \) is more pronounced, while the \(R_{\text{least}} \) is much less pronounced (about unit), than those shown in Figs. 3 and 4 as well. Figure 5 tells us that under the influence of the uncertainties of symmetry energy coefficient what sensitivity of the N/Z ratio of emitted nucleons in intermediate energy neutron-rich heavy ion collisions to the form of the density dependence of symmetry potential energy can be obtained.

Recently, a much smaller range of 32 MeV \(\leq a_{\text{sym}} \leq 36 \text{ MeV} \) for symmetry energy at saturation (volume asymmetry) is deduced from the isovector GDR in \(^{208}\text{Pb} \) and the available data of differences between neutron and proton radii in Ref. [31]. It is worth while to see how the ratios of \(R_{\text{most}} \) and \(R_{\text{least}} \) look like with 32 MeV \(\leq a_{\text{sym}} \leq 36 \text{ MeV} \). Figure 6 shows the calculation results with \(F(u) = u^{\frac{1}{2}}, C_{S} = 45 \) MeV, and 37 MeV and with \(F(u) = u^{\frac{3}{2}}, C_{S} = 37, \) and 45 MeV, respectively. The corresponding \(R_{\text{most}} \) and \(R_{\text{least}} \) with \(C_{S} = 37 \) MeV and 45 MeV are also shown in the right-top plot. From this figure, one can find that even with this small range the sensitivities of the N/Z ratio of free nucleons to the density dependence of the symmetry energy are still influenced by the uncertainties of \(a_{\text{sym}} \) though the ratio \(R_{\text{least}} \) is now larger than one, which means that the N/Z ratio of free nucleons is enhanced for the \(\gamma = 0.5 \) case. Our study shows that it is urgently needed to have a more precise
value of the a_{sym} in order to get more definite information of the density dependence of the symmetry energy.

![Fig. 6](image)

Fig. 6 The same as in Fig. 5 with different symmetry potentials. Here $C_S = 37$ and 45 MeV are chosen.

To summarize, in this paper we have studied the sensitivity of the N/Z ratio of free nucleons in collisions of neutron-rich nuclei at energies of 50A MeV and 100A MeV to the form of the density dependence of the symmetry potential energy term and the strength of the symmetry potential by using IQMD transport model. We have found that the N/Z ratio of free nucleons are sensitive to both the form of the density dependence of the symmetry potential and the strength of the symmetry potential term as well. The results of the influences of the different combinations of both symmetry potential strength and the form of the density dependence of symmetry potential show that the uncertainties of the symmetry energy coefficient largely reduce the sensitivity of the N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a probe of the form of the density dependence of the symmetric energy part. It is urgently needed to have a more precise value of the a_{sym} in order to get more definite information of the density dependence of the symmetry energy.

Acknowledgments

Z. Li acknowledges the warm hospitality of the Institut für Theoretische Physik, Universität Frankfurt.

References

[1] J. Piekarewicz, Phys. Rev. C66 (2002) 034305.
[2] J.M. Pearson, Y. Aboussir, and A.K. Putt, Nucl. Phys. A528 (1991) 1.
[3] T. Matsui, Nucl. Phys. A370 (1981) 365.
[4] M. Rufa, P.G. Reinhard, J.A. Maruhn, W. Greiner, and M.R. Strayer, Phys. Rev. C38 (1988) 390.
[5] R.J. Furnstahl, H.B. Tang, and B.D. Serot, Phys. Rev. C52 (1995) 1368.
[6] H. Lee, T.T.S. Kuo, G.Q. Li, and G.E. Brown, Phys. Rev. C57 (1998) 3488.
[7] W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C60 (1999) 024605.
[8] B. terHaar and R. Mallfiet, Phys. Rev. Lett. 59 (1987) 1652.
[9] H. Müller, M. Prakash, and T.L. Ainsworth, Phys. Lett. B199 (1987) 469.
[10] H. Huber, F. Weber, and M.K. Weigel, Phys. Lett. B317 (1993) 487.
[11] W.D. Myers and W.J. Swiatecki, Ann. Phys. (N.Y.) 55 (1969) 186.
[12] F.L. Braggin, Nucl. Phys. A696 (2001) 413.
[13] J.Y. Liu, W.J. Guo, Y.Z. Xing, et al., Phys. Lett. B540 (2002) 213.
[14] Qing-Feng Li and Zhu-Xia Li, Phys. Rev. C64 (2001) 064612.
[15] Bao-An Li, Andrew T. Sustich, Matt Tilley, and Bin Zhang, Nucl. Phys. A699 (2002) 493.
[16] Lie-Wen Chen, Vincenzo Greco, Che Ming Ko, and Bao-An Li, Phys. Rev. Lett. 90 (2003) 162701.
[17] V. Baran, M. Colonna, M.Di Toro, V. Greco, M. Zielinska-Pfabe, and H.H. Wolter, Nucl. Phys. A703 (2002) 603.
[18] M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, and H. Xu, Phys. Rev. Lett. 86 (2001) 5023.
[19] A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. II, W.A. Benjamin Inc., Singapore (1998).
[20] Qing-Feng Li and Zhu-Xia Li, Mod. Phys. Lett. A17 (2002) 375.
[21] B.A. Li, C.M. Ko, and Z. Ren, Phys. Rev. Lett. 78 (1997) 1644.
[22] J.M. Lattimer, et al., Phys. Rev. Lett. 66 (1991) 2701.
[23] M. Prakash, et al., Phys. Rev. Lett. 61 (1988) 2518.
[24] H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328 (2000) 237.
[25] A. Akmal and V.R. Pandharipande, Phys. Rev. C56 (1997) 2261.
[26] Bao-An Li, et al., Int. J. Mod. Phys. E7 (1998) 147.
[27] I. Bombaci and U. Lombardo, Phys. Rev. C44 (1991) 1892.
[28] S. Shlomo and D.H. Youngblood, Phys. Rev. C47 (1993) 529.
[29] H. Kruse, et al., Phys. Rev. C31 (1985) 1770.
[30] F.S. Zhang, et al., Phys. Rev. C60 (1999) 064604.
[31] D. Vretenar, T. Nikšić, and P. Ring, Phys. Rev. C68 024310.