CPA density of states and conductivity in a double-exchange system containing impurities

Mark Auslender1a and Eugene Kogan2b

1 Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev P.O.B. 653, Beer-Sheva 84105, Israel
2 Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract. We study density of states and conductivity of the doped double-exchange system, treating interaction of charge carriers both with the localized spins and with the impurities in the coherent potential approximation. It is shown that under appropriate conditions there is a gap between the conduction band and the impurity band in paramagnetic phase, while the density of states is gapless in ferromagnetic phase. This can explain metal-insulator transition frequently observed in manganites and magnetic semiconductors. Activated conductivity in the insulator phase is numerically calculated.

PACS. 75.50.Pp Magnetic semiconductors – 75.30.Vn Colossal magnetoresistance – 72.10.-d Theory of electronic transport; scattering mechanisms

1 Introduction

The recent rediscovery of colossal magnetoresistance (CMR) in doped Mn oxides with perovskite structure $\text{R}_{1-x}\text{D}_x\text{MnO}_3$ (R is a rare-earth metal and D is a divalent metal, typically Ba, Sr or Ca)\footnote{e-mail: marka@ee.bgu.ac.il} has generated substantial interest in these materials\footnote{e-mail: kogan@quantum.ph.biu.ac.il}. The doping of parent material RMnO$_3$ by a divalent metal is the source of the holes responsible for the transport properties of these materials. In addition, each divalent atom introduced, is the center of an impurity potential. Many papers analyzed the influence of strong magnetic disorder, inherent in the CMR materials at finite temperature, upon the single-particle states and transport properties. However, the interplay between the magnetic disorder and the doping-induced disorder was studied less. The impurity potential plays double role. First, the potential fluctuations determine the transport at temperatures well below the ferromagnet (FM) - paramagnet (PM) transition point T_c. Second, strong potential may pin the Fermi level either in the conduction band tail (in the Anderson model of disorder\footnote{e-mail: kogan@quantum.ph.biu.ac.il}), or in the emerging impurity band. The analysis of experimental data reveals strong relevance of the latter effect to metal-insulator transition (MIT) near T_c, both in magnetic semiconductors\footnote{e-mail: marka@ee.bgu.ac.il} and manganites\footnote{e-mail: kogan@quantum.ph.biu.ac.il}. However, to the best of our knowledge the impurity-band scenario in the double-exchange (DE) model was not discussed yet.

2 Hamiltonian and Theoretical Formulation

We consider the DE model with the inclusion of the single-site impurity potential. In addition, as it is widely accepted, we apply the quasiclassical adiabatic approximation and consider each Mn spin as a static vector with
where $\hat{\Sigma}(E)$ is to be determined later, and construct a perturbation theory with respect to random potential $\hat{V} = V_{imp} + \hat{V}_{sd}$. To do this let us introduce the T-matrix as the solution of the equation

$$\hat{T} = \hat{V} + \hat{V}\hat{G}_0\hat{T},$$

where

$$\hat{G}_0 = \frac{1}{E - \hat{H}_0}. \quad (4)$$

For the exact Green function we get

$$\hat{G} = \hat{G}_0 + \hat{G}_0\hat{T}\hat{G}_0. \quad (5)$$

The coherent potential approximation (CPA) is expressed by the equation

$$\langle \hat{G} \langle \hat{G} \rangle = \hat{G}_0. \quad (6)$$

This equation can also be presented as

$$\langle \hat{T}_i \rangle = 0, \quad (7)$$

where \hat{T}_i is the solution of the equation

$$\hat{T}_i = \hat{V}_i + \hat{V}_i\hat{g}(E - \hat{\Sigma})\hat{T}_i, \quad (8)$$

and

$$g(E) = (G_0(E))_{ii} = \int \frac{N_0(\varepsilon)}{E - \varepsilon} d\varepsilon, \quad (9)$$

where $N_0(\varepsilon)$ is the bare density of states. The averaging in Eqs. (8,9) should be performed both with respect to random orientations of core spins with respect to random on-site energies. We obtained, in fact, the algebraic equation for the 2×2 matrix $\hat{\Sigma}$

$$\left\langle \left[1 - \hat{V}_i\hat{g}(E - \hat{\Sigma})\right]^{-1} \hat{V}_i \right\rangle = 0. \quad (10)$$

This equation takes into account scattering both due to randomness of the core spins, and due to the impurities. If the impurity potential is negligible ($V = 0$) this equation coincides with the Eq.(20) of Ref. [9] obtained in the dynamical mean field approximation (and also with those obtained for the Falikov-Kimball model [11]).

In the reference frame where the z axis is directed along the magnetization, $\hat{\Sigma}$ is diagonal, and Eq.(10) reduces to the system of two equations for its diagonal matrix elements $\Sigma_{\sigma}(E)$ ($\sigma = \uparrow, \downarrow$). The equations acquire especially simple form at two extreme particular cases, which we will analyze:

(a) $T = 0$. The magnetic state is coherent FM with $n^z = 1$, and Eq. (10) takes the form

$$\left\langle \frac{\varepsilon_i + J - \Sigma_{\uparrow}(E)}{1 - (\varepsilon_i + J - \Sigma_{\uparrow}(E))g(E - \Sigma_{\uparrow}(E))} \right\rangle = 0. \quad (11)$$

(b) $T \geq T_c$ and zero magnetic field. The magnetic state is isotropic PM with $\langle n_i \rangle = 0$, which leads to $\Sigma_{\uparrow} = \Sigma_{\downarrow} = \Sigma$, and Eq. (10) takes the form

$$\left\langle \frac{\varepsilon_i + J - \Sigma}{1 - (\varepsilon_i + J - \Sigma)g(E - \Sigma)} \right\rangle = 0. \quad (12)$$

We will solve these equations Eqs.(11) and (12) in the strong Hund coupling limit ($J \rightarrow \infty$). In this limit we obtain two decoupled spin sub-bands. The equation for the upper sub-band, after shifting the energy by $-J$, for both cases (a) and (b) can be written down in unified form

$$\left\langle \frac{1}{1 - (\varepsilon_i - \Sigma)g(E - \Sigma)} \right\rangle = \alpha, \quad (13)$$

where $\alpha = 1$ for $T = 0$, $\alpha = 2$ for $T \geq T_c$. In the model of substitutional disorder ($\varepsilon_i = 0$ with probability x, and $\varepsilon_i = V$ with probability $1 - x$), Eq.(13) takes the form

$$\frac{1}{1 + \Sigma g(E - \Sigma)} + \frac{x}{1 + (\Sigma - V) g(E - \Sigma)} = \alpha. \quad (14)$$

3 The CPA equations for semi-circular bare density of states

We consider semi-circular (SC) bare DOS

$$N_0(\varepsilon) = \frac{4}{\pi W} \sqrt{1 - \left(\frac{2\varepsilon}{W}\right)^2}, \quad (15)$$

at $|\varepsilon| \leq W/2$ and $N_0(\varepsilon) = 0$ otherwise, for which

$$g(E) = \frac{4}{W} \left[\frac{2E}{W} - \sqrt{\left(\frac{2E}{W}\right)^2 - 1}\right]. \quad (16)$$

Let us introduce the following normalized quantities

$$\lambda = \frac{\Sigma}{W}, \quad \omega = \frac{E}{W}, \quad v = \frac{V}{W}, \quad (17)$$

After simple algebra we obtain from Eq. [4] the cubic equation with respect to
\[
\gamma \equiv W g (E - \Sigma) = 8 \left[\omega - \lambda - \sqrt{(\omega - \lambda)^2 - 1/4} \right],
\]
in the form
\[
\gamma^3 + 16 (v - 2\omega) \gamma^2 + 16 \left[\frac{1}{\alpha} - 16\omega (v - \omega) \right] \gamma
- 256 \frac{\omega}{\alpha} + 256 (1 - x) \frac{v}{\alpha} = 0.
\]
The number of electrons per cite \(n \) is given by
\[
n = \int_{-\infty}^{\infty} f(E)N(E)dE,
\]
where \(f(E) \) is the Fermi distribution function, and
\[
N(E) = \frac{\alpha}{W \pi} \Im \gamma
\]
is the actual density of states. To define the position of \(\mu \), the Fermi level, we must impose the relation between \(n \) and \(x \); the simplest assumption appropriate for manganites is the equation \(n = 1 - x \).

4 Conductivity in CPA

For a disordered one-electron system the static conductivity is given by
\[
\rho^{-1} = \frac{e^2 \pi h}{V} \int \left(\frac{\partial f}{\partial E} \right) \delta \left(E - H \right) \psi_0^\dagger \psi_0 \left(E - H \right) \right] dE,
\]
where \(V \) is the volume and \(\psi_0 \) is a Cartesian component of the velocity operator. To obtain the conductivity in CPA let us express operator delta-function as follows
\[
\frac{\delta \left(E - H \right)}{E - \varepsilon_k} = \frac{1}{2\pi i} \left[\hat{G}(E-) - \hat{G}(E+) \right].
\]
Using Eq. [3] and Eq. [4] in Bloch representation
\[
\langle k\sigma | \hat{G}_0(E) | k'\sigma' \rangle = \frac{\delta_{k,k'} \delta_{\sigma,\sigma'}}{E - \varepsilon_k - \Sigma_\sigma(E)},
\]
we get
\[
\langle \text{Tr} \left[\hat{v}_0 \delta \left(E - H \right) \hat{v}_0 \delta \left(E - H \right) \right] \rangle
= \sum_{k,\sigma} v_{\varepsilon_k}^2 A_\sigma (\varepsilon_k, E),
\]
where
\[
A_\sigma (\varepsilon, E) = \frac{1}{\pi} \frac{\Im \Sigma_\sigma (E)}{|E - \varepsilon - \Re \Sigma_\sigma (E)|^2 + |\Im \Sigma_\sigma (E)|^2}
\]
is the one-particle spectral weight function. On account of the locality of \(T \)-matrix the second term in the trace is equal to
\[
\sum_{s,s'} v_{\varepsilon_k} v_{\varepsilon_{k'}} G_\sigma (\varepsilon_k, E_s) G_{\sigma'} (\varepsilon_{k'}, E_s)
\]
\[
\times G_{\sigma'} (\varepsilon_{k'}, E_{s'}) G_\sigma (\varepsilon_k, E_{s'})
\]
\[
\times \langle T_{\sigma\sigma'} (k - k', E_s) T_{\sigma\sigma'} (k' - k, E_{s'}) \rangle.
\]

In SC DOS model
\[
v_{\varepsilon_k}^2 N_0 (\varepsilon) = -\frac{1}{Nh^2} \sum_{\alpha} \left(\frac{\partial \varepsilon_k}{\partial k_\alpha} \right)^2 \delta (\varepsilon - \varepsilon_k).
\]

Let us assume nearest-neighbor tight binding spectrum on simple \(d \)-hypercubic lattice \((v = a^d) \)
\[
\varepsilon_k = -t \sum_{\alpha=1}^d \cos a k_\alpha,
\]
\[
v_{\varepsilon_k}^2 N_0 (\varepsilon) = -\frac{a^2}{dh^2} \int_{-\infty}^{\varepsilon} \varepsilon N_0 (\varepsilon) d\varepsilon.
\]

Substituting this result into Eq. (28) we obtain
\[
\rho^{-1} = \sigma_0 \int \left(\frac{\partial f}{\partial E} \right) A (E) dE,
\]
with
\[
\sigma_0 = \frac{e^2}{2\pi da^d \cdot \hbar^2}
\]
being the Mott minimal metallic conductivity, and
\[
A (E) = \frac{2W}{3\pi} \int_{-W/2}^{W/2} \left(1 - \frac{4\varepsilon^2}{W^2} \right)^{3/2} d\varepsilon.
\]

For the strong Hund coupling we obtain
\[
A (E) = \frac{4}{3\pi} \int_{-1}^{1} (1 - x^2)^{3/2} \left(\frac{1}{x - z} \right)^2 dx,
\]
where \(z = 2 (\omega - \lambda) \). Eqs. [32], [33] give the conductivity in the framework of bare SC DOS model for arbitrary hole concentration \(x \) and impurity potential strength \(V \).
Fig. 1. DOS at $T = 0$ (full line) and high-temperature (dashed line) in the units of W^{-1} for $x = 0.2$ and $V/W = 0.4$.

5 Influence of the impurity potential

First, consider density of states. It is known, that within CPA for every x there exists critical value of potential-to-bandwidth ratio $v_c(x)$ such that at $v > v_c(x)$ the separate impurity band splits off the conduction band (that is a gap opens in $N(E)$). In our approach we get two different curves $v_c(x, T = 0)$ and $v_c(x, T \geq T_c)$, which present boundaries of metal-insulator and metal-semiconductor 'phase diagrams', respectively, in (v, x) plane. Due to effect of magnetic disorder it appears that $v_c(x, T = 0) > v_c(x, T \geq T_c)$.

For a typical concentration $x = 0.2$ $v_c(0.2, T = 0) \approx 0.49$ and $v_c(0.2, T \geq T_c) \approx 0.35$. So if we choose $v = 0.4$ both $N(E)$ and $A(E)$ must be gapless at $T = 0$ but do have a gap at $T \geq T_c$. Numerical calculations of the DOS performed at $T = 0$ and $T \geq T_c$ for the above x and v clearly demonstrate FM-PM transition induced band splitting (Fig. 1).

Now address the question of conductivity. Consider first the position of μ and conductivity at $T = 0$. We get from Eq. (24) $\mu(T = 0) = 0.3662W$. Note that $\mu(T = 0)$ lies on the neck connecting conduction band and impurity states derived parts of the band. As a result, the residual conductivity (Eq. (22)) $\rho^{-1}(T = 0) = 0.6163\sigma_0$ is less then the Mott limit.

At $T \geq T_c$ DOS and $A(E)$ have the same gap $\Delta = 0.031W$ (see Figs. 1,2), so $\mu(T \geq T_c)$ must lie in the gap. Thus, the model describes a bad metal at $T = 0$, and a semiconductor at $T \geq T_c$. The transition between two types of conduction (FM-PM transition induced MIT) should occur at some temperature below T_c. Such a picture agrees with the recent photoemission experiments showing drastic decrease of DOS at the Fermi level [3] as temperature increases towards T_c.

It is checked numerically that DOS displays square-root like behavior near the top of the conduction band E_c

$$N(E) \approx n_{c}\sqrt{E_c - E},$$

and the bottom of the impurity band E_i

$$N(E) \approx n_{i}\sqrt{E - E_i}. \quad (37)$$

Unlike DOS $A(E)$ behaves linearly near the band edges

$$\begin{align*}
A(E) & \approx W^{-1}\lambda_c(E_c - E), \quad \text{for } E < E_c; \\
A(E) & \approx W^{-1}\lambda_i(E - E_i), \quad \text{for } E > E_i.
\end{align*} \quad (38)$$

The assumption $T < \Delta$ allows us to explicitly obtain $\mu(T \geq T_c)$. Calculating integrals in Eq. (24) with exponential accuracy we obtain

$$\mu \approx \frac{1}{2}\left(E_c + E_i + T \ln \frac{n_c}{n_i} \right). \quad (39)$$

The integral in Eq. (22), calculated with the same accuracy, leads to activation law for conductivity with linear temperature pre-exponent

$$\rho^{-1} \approx \sigma_0 \frac{BT}{W} \exp \left(-\frac{E_A}{T} \right), \quad (40)$$

where $E_A = \Delta/2 \approx 0.015W$ and B is the following numerical constant

$$B = \lambda_c \sqrt{n_i/n_c} + \lambda_i \sqrt{n_c/n_i} \approx 22 \quad (41)$$

for the parameters considered.

Low values of conductivity obtained for the case of spin disorder are an indication of the possibility of Anderson localization [1, 2, 3], which CPA is incapable of accessing. But the present results complement and support the localization based approach. In fact, the results of Ref. [1] were obtained under the assumption of the Fermi level pinning, which is now explained as being due to strong electron-impurities interaction (and the impurity band formation).

In another aspect, the model considered may also explain low-temperature MIT observed in initially metallic manganites $R_{1-x}D_xMnO_3$ upon substitution of R by isovalent atoms (e.g. La by Y [13]). One may speculate that the substitution forms a deep impurity band which can capture holes in $R_{1-x}D_xMnO_3$.

Fig. 2. Energy-dependent conductivity at $T = 0$ (full line) and high-temperature (dashed line) in the units of σ_0 for $x = 0.2$ and $V/W = 0.4$.

Auslender and Kogan: CPA in a double-exchange system
6 Conclusion

To conclude, we derived CPA equations for the one-electron Green function and conductivity of DE system containing impurities. The equations were solved for the SC bare DOS and substitutional disorder model. It was shown that if the electron-impurity interaction is strong enough, there is a gap between the conduction band and the impurity band in PM phase, the density of states being gapless in FM phase. Under appropriate doping conditions the chemical potential is pinned inside the gap. This can explain metal-insulator transition observed in manganites and magnetic semiconductors.

7 Acknowledgments

This research was supported by the Israeli Science Foundation administered by the Israel Academy of Sciences and Humanities.

References

1. R. von Helmolt et al., Phys. Rev. Lett. 71, 2331 (1993); K. Chadra et al., Appl. Phys. Lett. 63, 1990 (1993); S. Jin et al., Science 264, 413 (1994).
2. A.P. Ramirez, and M.A. Subramanian, Science, 277, 546 (1998).
3. L. Sheng, D.Y. Xing et. al, Phys. Rev. B 56, R7053 (1997); Phys. Rev. Lett. 79, 1710 (1998).
4. E. M. Kogan and M. I. Auslender, Phys. Stat. Sol. (b) 147, 613 (1988).
5. N. G. Bebenin, R. I. Zaimullina, V. V. Mashkautsan, V. S. Gaviko, V. V. Ustinov, Y. M. Mukovskii, D. A. Shulyatev, JETP, 90, 1027 (2000).
6. P. Soven, Phys. Rev. 156, 809 (1967); D. Taylor, Phys. Rev. 156, 1017 (1967); J. M. Ziman, Models of Disorder, Cambridge University Press, 1979.
7. A. Rangette, A. Yanase, and J. Kubler, Solid State Comm. 12, 171 (1973); K. Kubo, J. Phys. Soc. Japan 36, 32 (1974).
8. M. Takahashi, Phys. Rev. B 60, 15858 (1999).
9. N. Furukawa, J. Phys. Soc. Jpn. 64, 2734 (1994); N. Furukawa, cond-mat/9812060.
10. G. Moller, A. Ruckenstein, S. Schmitt-Rink, Phys. Rev. B 46, 7427 (1992); Th. Pruschke, D. L. Cox, M. Jarrel, Phys. Rev. B 47, 3553 (1993).
11. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
12. B. Velicky, Phys. Rev. 184, 614 (1969).
13. A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).
14. M. v. Zimmermann, C.S. Nelson, J. P. Hill, Doon Gibbs, M. Blume, D. Casa, B. Keimer, Y. Murakami, C.-C. Kao, C. Venkataraman, T. Gog, Y. Tomioka, Y. Tokura, cond-mat/0007231.
15. Quiming Li, Jun Zang and A.R. Bishop, C.M. Soukoulis, Phys. Rev. B 56, 4541 (1997).
16. E. Kogan, M. Auslender, and M. Kaveh, Eur. Phys. J. B 9, 373 (1999).
17. A. Barman, M. Ghosh, S. Biswas, S.K. De and S. Chatterjee, J. Phys. : Condens. Matter 10, 9799 (1998).