Co-community Structure in Time-Varying Networks

Shihua Zhang, Junfei Zhao, and Xiang-Sun Zhang

1 National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

(Dated: January 19, 2012)

In this report, we introduce the concept of co-community structure in time-varying networks. We propose a novel optimization algorithm to rapidly detect co-community structure in these networks. Both theoretical and numerical results show that the proposed method not only can resolve detailed co-communities, but also can effectively identify the dynamical phenomena in these networks.

PACS numbers: Valid PACS appear here

Networks consisting of vertices and edges connecting some pairs of vertices are powerful abstractions of relational data, hence have become very popular tools in many fields including sociology, biology and physics [1]. The characteristic of community structure in networks, i.e., networks are naturally divided into modules or communities, has attracted huge attention in the past decade which can provide insights into the structure and dynamic formation of networks. Many methods for community detection in one network have been developed and studied even including the fuzzy community structure identification problem [2] and the more challenging community detection problem in directed networks [3] (see Ref. [4] for recent comprehensive reviews).

However, previous studies have concentrated on uncovering community structure in a static network which only represents a summarized picture of all possible relations. A typical example is the protein interaction network in biology which represent all proteins of an organism and all interactions regardless of the conditions and time under which interactions may take place [5]. In reality, most of relationships modeled by networks evolve with time or conditions [6].

Several recent studies have touched on the analysis of dynamic networks including analyzing changes of global properties, detecting anomalous changes, mining dynamic frequent subnets, and discovering similar evolving regions in evolving networks [7] and even the dynamic communities by combining the information of communities in each network using traditional community detection methods. However, the community structure in two or more slices of a series of time-varying networks has not been well addressed directly [8, 9].

In this report, we propose the concept of co-community structure in two or more networks of a series of time-varying networks. The basic assumption is that an essential and common community structure may exist in two or more networks, and local dynamic changes may happen. This is very realistic in time-varying networks of many robust systems.

Suppose that we are given the structure of two or more networks of the same vertices, we aim to determine whether there exists any co-community structure, or say similar groups or communities in these networks. Moreover, along this goal, we attempt to uncover the dynamic characteristics of some vertices. Mathematically, the co-community structure and dynamical characteristic are stored in matrices which can be determined by an efficient optimization procedure.

Let us focus initially on the problem in two networks that will be more useful in analyzing time-varying networks. To formulate the problem easily, we consider the common notation of clustering or community structure detection problems. The objective of classical community detection in networks is to partition the vertex set of the graph \(G(V, E) \) where \(|V| = N \) into \(K \) distinct subsets in a way that puts densely connected groups of vertices in the same community. In this case, a convenient representation of a given partition is the partition matrix \(U = [u_{ik}] \) (or \([u_i], u_i \) is a membership vector) with size of \(N \times K \) [10]. And \(u_{ik} = 1 \) if and only if vertex \(i \) belongs to the \(k \)th subset in the partition, otherwise it is zero. From the definition of the partition, it clearly follows that \(\sum_{k=1}^{K} u_{ik} = 1 \) for all \(i \). The generalization of the hard partition follows by allowing \(u_{ik} \) to attain any real value from the interval \([0, 1]\), and the corresponding matrix is also called membership matrix.

In the following, we adopt the popular membership matrix representation to formulate the problem. Like Nepusz et al. [10] have suggested that an edge between vertex \(v_1 \) and \(v_2 \) implies the similarity of \(v_1 \) and \(v_2 \), and likewise, the absence of an edge implies dissimilarity, i.e, \(a_{ij} \approx u_i u_j^T \) or \(\tilde{A} \approx UU^T \), where \(\tilde{A} = (a_{ij}) \) is the adjacency matrix of a network. At the same time, the same vertices in two networks should have similar membership vectors. These considerations can be formulated as:

\[
\min \sum_{g=1}^{2} \|A_g - H_g H_g^T\|_F^2 + \lambda_1 \sum_{g=1}^{2} \|H_g - \bar{H}\|_1 + \lambda_2 \|H\|_1
\]

\[s.t.\{ \sum_{k=1}^{K} (H_g)_{ik} = 1; (H_g)_{ik}, H_{ik} \geq 0; \]

\[g = 1, 2, i = 1, \ldots, N, k = 1, \ldots, K. \]

where \(A_g \) is the adjacency matrix of network \(G(V, E_g) \), \(H_g \) is the membership matrix of network \(G(V, E_g) \), \(H \) is the
virtual co-membership matrix representing the membership of nodes reflected in all networks, \(|| \cdot ||_F \) and \(|| \cdot ||_1 \) are the entrywise matrix norm (\(|| \cdot ||_F \) is known as the Frobenius norm). To solve the problem easily, we remove the constraints \(\sum_{k=1}^{K}(H_g)_{ik} = 1 \) (\(g = 1, 2; \ i = 1, \ldots, N \)). Then the magnitude of \((H_g)_{ik}\) reflect the intensity of vertex \(i \) belonging to the community \(k \) in the network \(G(V,E_g) \). This formulation allows us to map the communities of two networks as well as their co-communities.

The non-convexity and the non-smoothness of the objective function of Eq.(1) make it a more challenging mathematical programming problem. To practically solve the problem (Eq.[1]), we employ a decomposition technique. We can easily find that, given the co-communities matrix \(H \), the technique leads to two symmetrical non-negative factorization matrix (SNMF) problems [11] coupled with a penalty term as follows:

\[
\min_{g=1}^2 \|A_g - H_g H_g^T\|_F^2 + \lambda_1 \sum_{g=1}^2 \|H_g - H\|_1. \tag{2}
\]

Fortunately, it can be divided into two independent subproblems which can be solved in a symmetric NMF manner with the following updating rule:

\[
(H_g)_{ik} \leftarrow (\tilde{H}_g)_{ik} \left(1 - \beta + \beta \frac{(A_g, \tilde{H}_g)_{ik}}{(H_g, \tilde{H}_g, H_g)_{ik}} \right), \tag{3}
\]

where \(\tilde{H}_g = H_g + \Delta(H_g - H) \), and \(0 < \beta \leq 1 \) (we find \(\beta = 1/2 \) is a good choice). The first term of Eq. (2) may dominate the optimization procedure, then the columns of the two decomposition matrices may be inconsistent in terms of their membership profiles. So we reorder their columns by maximizing their corresponding correlations to facilitate the optimization procedure.

While given the community matrix \(H_g \) of each network, it leads to the following problem:

\[
\min \lambda_1 \sum_{g=1}^2 \|H_g - H\|_1 + \lambda_2 \|H\|_1. \tag{4}
\]

This formulation with positive combination of \(L_1 \) norm of variables, can be transformed into a large-scale linear programming problem through a well-known procedure. More interestingly, it can be solved efficiently by a further decomposition technique [12]. We should note, owing to \(L_1 \) norm, generally the optimal solution has an excellent property, i.e., there are as many zeros for \(\|H_g - H\|_1 \) and \(\|H\|_1 \) as possible. This point exactly serves the final goal, i.e., consistency and sparseness of the membership of each vertex.

Therefore, we have the following algorithm for discovering co-communities in two undirected networks. We first set the parameters \(\lambda_1, \lambda_2, \beta \) and \(K \); and initialize the membership matrices \(H_1 \) and \(H_2 \), and set \(H = H_1 + H_2 \). For the subproblem Eq.(2), we use the update rule Eq.(3) to update \(H_1 \) and \(H_2 \) respectively. Then using the new \(H_1 \) and \(H_2 \) we solve the subproblem Eq.(4) to obtain the new \(H \), by subdividing it into \(N \times K \) one-dimensional optimization subproblem. We iteratively solve the subproblem Eq.(2) and Eq.(4) until \(H \) doesn’t change too much (e.g., \(\frac{\|H_{new} - H_{old}\|_F}{\|H_{old}\|_F} < 10^{-5} \), where \(H_{new} \) and \(H_{old} \) are the \(H \) in current step and last step respectively). The final \(H, H_1 \) and \(H_2 \) store the co-communities and dynamical information. The \(H \) \((H_1 \) and \(H_2) \) can be considered as a fuzzy partition of the network(s) directly [13]. It can also be employed to determine a hard partition by assigning a node into a single community according to the maximum value in each row of \(H \) \((H_1 \) and \(H_2) \) [14].

The time complexity of the proposed algorithm is \(O(TKN^2) \), where \(T \) is the number of iterations. The efficiency of the method can also be seen in its application to networks with size of 10000 (see Appendix). Note that the method can be applied onto a single network by minimizing the criterion: \(\|A_g - H_g H_g^T\|_F^2 \) and it shows competitive performance with two popular algorithms (see Appendix).

The formulation for two networks can be easily extended to more than two networks as follows:

\[
\min \sum_{g=1}^G \|A_g - H_g H_g^T\|_F^2 \tag{5}
\]

where all the \(H_g \) and \(H \) are non-negative matrices. The algorithm can also be easily extended.

The key issue in community detection is the proper choice of \(K \). Here, we employ the stochastic nature of the proposed algorithm to achieve this. We should note that a similar strategy has been used to determine the number of clusters in gene expression studies [14]. The differences and similarities of these realizations is employed to evaluate the robustness of a partition of given \(K \). Specially, for each run, the vertices assignment can be defined by a connectivity matrix \(C \) of size \(N \times N \), with entry \(c_{ij} \) if vertices \(i \) and \(j \) belong to the same com-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The co-community entropy for each testing network system in the following analysis: (A) The simulated networks; (B) The karate club networks; (C) The U.S. senate networks.}
\end{figure}
with many trials. The dynamic index shows the dynamic properties of vertices, of which with high values affecting the community structure. The horizontal line was drawn to indicate several distinct S values, whose corresponding nodes have been marked in (B). Similar line has been drawn in Figure 3C.

From a more global point of view, we adopt the entropy as a measure of the stability of the co-community structure. We assume that the c_{ij} are independent of each other and we define the average Co-Community Entropy (CCE) score as:

$$CCE = -\frac{2}{N(N-1)} \sum_{(i,j)} [c_{ij}\log_2 c_{ij} + (1 - c_{ij})\log_2 (1 - c_{ij})],$$

where the sum is taken over all edges and m is the total number of edges in the network. If the network is totally unstable (i.e., in the most extreme case $c_{ij} = 0.5$ for all pairs), $CCE = 1$, while if the edges are perfectly stable under noise ($c_{ij} = 0$ or 1), $CCE = 0$. We have demonstrated that the CCE score can help to select the number of communities in the time-varying networks (Figure 1). For example, the CCE score for the simulated networks corresponds to very small value for $K = 3$ which indicate that the system have three distinct communities. We should note that the parameters λ_1, λ_2 and β can also be evaluated with the CCE score by running the method with many trials.

The membership matrix H_p for each network represents the community structure of each network, and the features of H can be employed to describe the dynamic structure of these networks. For each run, we can define the following index S for vertex i as the ratio between the second maximal value and the maximal value of row i of H. The ratio is a positive value less than one. In reality there is no rigid threshold for significant S-score due to the diversity of networks, but we can select top ones based on the popular Z-score (i.e., $Z = \frac{S - \mu(S)}{\sigma(S)}$, where $\mu(S)$ is the mean of S and $\sigma(S)$ is the standard deviation of S). By removing the active dynamic vertices according to this index, we can define the stable co-communities of these networks.

We first test the proposed method using a pair simulated toy networks representing a time-varying system under two time points with 16 links’ difference (Figure 1A and B). In the system, there are three clear communities, however, in the two conditions, the links of some vertices have changed due to some perturbation. We aim to identify these communities, and at the same time, uncover those link dynamics that can affect the community structure. We note that the link dynamics happened within and between communities. The dynamics happened within a community doesn’t affect the community structure, while that between communities can affect it. For example, the absence of links (15,11) and (15,20) and the emerging links (15,28) and (15,26) make the vertex 15 move to another community. Our method can not only well identify the community structure, but also can accurately distinguish the link dynamics that affect the community structure (Figure 2C).

We next apply our method to the karate club network and its variants with 12 links’ difference compared with the network in (A). (C) The dynamic index shows the dynamic properties of vertices.
FIG. 4: (A) The U.S. Senate networks at different time points: (A) $t = 1$, (B) $t = 5$, and five vertices show distinct dynamic characteristics. (C) The dynamic indexes show the dynamic properties of vertices. Vertex shape show the two political paries: square means Democrat and circle means Republican.

Our method can well identify the two co-communities which perfectly capture party affiliations - Republican senators are almost always in community 1, while Democratic senators are almost always in community 2. More interestingly, we can also identify the dynamic changing of some vertices which reflect the changes of political opinions of some senators (Figure 4C). For example, the votes of Democrat Nelson were unaligned with either Democrats or Republicans at $t = 1$, while his votes were gradually shifting towards Republican which can be found by the index.

In this report, we investigate the common community structure in time-varying networks. Rather than treating each slice of a series of time-varying networks independently, we consider them simultaneously by defining a common community structure among them. We have proposed a new framework for recovering the common community structure and exploring the dynamic changes in these networks by solving an elaborate mathematical programming problem via existing decomposition techniques. We have applied the method to both real and simulated networks, demonstrating that it is able to recover known co-community structure and reveal dynamic changes among them. The nondeterministic characteristic of the method allows it for the selection of number of communities and quantification of the stability of the community structure. We should note that our framework can shed lights on the situation that dramatic changes appear in time-varying networks. Specifically, by applying our method on each network respectively, we can detect the community structure of the two networks. And by calculating the consistency of the two community structure with a measure like normalized mutual information (NMI) index, we can see how similar the community structure are in the two networks.

In summary, the main purpose of this report is to propose the new concept and theoretical framework to analyze the common community structure of multiple slices of a series of time-varying networks which shed lights on the network's dynamics and stability. Hope it can become a promising method to analyze real-world networks. We need to point out that the adjacency matrix A used in this framework can be replaced by some similarity matrix based on the connectivity like kernel matrix.

This work was partially supported by the National Natural Science Foundation of China, No. 11001256, 11131009, 60873205, the ‘Special Presidential Prize - Scientific Research Foundation of the CAS, and the Special Foundation of President of AMSS at CAS for ‘Chen Jing-Run’ Future Star Program (to S.Z.). The authors thank Professor Eric P. Xing for providing the network data.

[1] Freeman, L.C. (1992) Am J Sociol 98:152; Eriksen, K., Simonsen, I., Maslov, S., Sneppen, K. (2003) Phys. Rev. Lett. 90, 148701; Zhang, S., Jin, G., Zhang, X.-S., Chen, L. (2007) Proteomics, 7(16), 2856.
[2] Reichardt, J. and Bornholdt, S. (2004) Phys. Rev. Lett. 93, 218701; Palla, G., Derényi, I., Farkas, I. and Vicsek,
T. (2005) Nature 435, 814; Zhang, S., Wang, R.S. and Zhang, X.S. (2007) Physica A, 374(1), 483.
[3] Leicht, E.A., Newman, M.E.J. (2008) Phys. Rev. Lett. 100, 118703.
[4] Newman, M.E.J. (2004) Eur. Phys. J. B 38, 321; Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A. (2005) J Stat Mech, P09008. Fortunato S (2010) Phys Rep 486:75-174.
[5] Rachlin, J., Cohen, D.D., Cantor, C., Kasif, S. (2008) Mol Syst Biol. 2, 66.
[6] J. Leskovec, J. Kleinberg, and C. Faloutsos. In ACM SIGKDD, 2005; G. Palla, A. Barabasi, and T. Vicsek. (2007) Nature 446, 664-667.
[7] Chan, J., Bailey, J., Leckie, C. (2008) Knowl. Inf. Syst., 16, 53-96.
[8] Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P. (2010) Science, 328, 876-878.
[9] Rosvall, M. and Bergstrom, C.T (2010) PLoS ONE, 5, e8694.
[10] Nepusz, T., Petrócz, A., Négyessy, L., Bázsó, F., (2008) Phys. Rev. E 77, 016107.
[11] Ding, C., He, X., and Simon, H.D., Proc. SIAM Int’l Conf. Data Mining (SDM’05), 606-610, 2005.
[12] Note that each element of H in Eq. (4) is an independent variable, so this problem can be decomposed into $N \times K$ one dimensional subproblem which can be expressed as minimization of $\lambda_1 \sum_{g=1}^{2} (|g_{ij} - (H)_{ij}| + \lambda_2 |(H)_{ij}|$. The optimal solution of this one-dimentional subsection function subproblem can be easily obtained by considering the value of each interval.
[13] Zhang, S., Wang, R.S. and Zhang, X.S. (2007) Phys. Rev. E 76, 046103.
[14] Brunet, J. P., Tamayo, P., Golub, T. R. and Mesirov, J. P. (2004) Proc. Natl. Acad. Sci. USA 101, 4164-4169.
[15] Kolar, M., L. Song, A. Ahmed, and E. P. Xing (2010) Ann. Appl. Stat., 4, 94-123.
[16] Ho, Q., Song, L. and Xing, E.P. (2011) Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS’11).

A. Appendix

We have applied the reduced formulation onto simulated networks with multiple trials. The networks have been simulated based on the principle suggested in Lancichinetti et al (Phys Rev E 2004, 78, 046110). We found that our method can obtain reasonable results for many different simulation settings assessed with normalized mutual information (NMI) index (Figure 5). We also compared it with other typical community methods which have shown our method has competitive performance with them. These analyses partially show that our criterion for multiple networks is reasonable.

The computational efficiency of the proposed method can also be seen in the simulation study where we have applied the reduced formulation onto a single network with 10000 nodes. Both of the theoretic and experimental analyses have shown that our method can scale well (Figure 6).

FIG. 5: Tests of our method on single network using the benchmark suggested in Lancichinetti et al (2008). We also compared it with two modularity optimization algorithms: the fast greedy modularity optimization method (Q_{FG}) (Phys. Rev. E 2004, 70, 066111) and the spin-glass model and simulated annealing method (SGSA) (Phys. Rev. E 2006, 74, 016110). Each point corresponds to an average over 25 network realizations. Detailed parameter settings of the simulated networks can be seen in Lancichinetti et al (2008).

FIG. 6: The computation time (in seconds) with network size of n=1000 to 10000. Each bar corresponds to an average over 25 network realizations.
