NOTE ON DEDEKIND TYPE DC SUMS

TAEKYUN KIM
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, S. Korea
e-mail: tkkim@kw.ac.kr

Abstract. In this paper we study the Euler polynomials and functions and derive some interesting formulae related to the Euler polynomials and functions. From those formulae we consider Dedekind type DC(Dahee-Changhee)sums and prove reciprocity laws related to DC sums.

1. Introduction/Preliminaries

The Euler numbers are defined as

\[\frac{2}{e^t + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \quad |t| < \pi, \quad (\text{see [1-31]}), \]

and the Euler polynomials are also defined as

\[\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \quad |t| < \pi, \quad (\text{see [4, 5, 6]}). \]

The first few of Euler numbers are 1, \(-\frac{1}{2}, 0, \frac{1}{4}, \) and \(E_{2k} = 0\) for \(k = 1, 2, 3, \ldots\). From (1) and (2), we can easily derive the following.

\[E_n(x) = \sum_{l=0}^{n} \binom{n}{l} E_l x^{n-l}, \quad \text{where} \quad \binom{n}{l} = \frac{n(n-1)\cdots(n-l+1)}{l!}, \quad (\text{see [4, 5, 6]}). \]
In (1), it is easy to see that $E_0 = 1$, $E_n(1) + E_n = 2\delta_{0,n}$, where $\delta_{0,n}$ is the Kronecker symbol. That is, $E_n(1) = -E_n$ for $n = 1, 2, 3, \ldots$, (see [4, 5]). We denote $\bar{E}_n(x)$ the n-th Euler function given by the Fourier expansion.

$$\bar{E}_n(x) = m!2 \sum_{n=-\infty}^{\infty} \frac{e^{(2n+1)\pi ix}}{((2n+1)\pi i)^{m+1}},$$

which, for $0 \leq x < 1$, reduces the n-th Euler polynomials.

By (3), we easily see that

$$\frac{dE_n(x)}{dx} = \frac{d}{dx} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} = nE_{n-1}(x).$$

From (4), we note that

$$\int_0^x E_n(t) \, dt = \frac{1}{n+1}E_{n+1}(x), \text{ (see [4]).}$$

By the definitions of the Euler numbers and the Euler polynomials, we easily see that

$$2 \sum_{k=0}^{n-1} (-1)^k e^{kt} = \sum_{l=0}^{\infty} ((-1)^n E_l(n) + E_l) \frac{t^l}{l!}.$$

Thus, we have

$$2 \sum_{k=0}^{n-1} (-1)^k k^l = (-1)^n E_l(n) + E_l.$$

It is well known that the classical Dedekind sums $S(h, k)$ first arose in the transformation formula of the logarithm of Dedekind eta-function (see [17, 25, 26, 28]). If h and k are relative prime integers with $k > 0$, then Dedekind sum is defined as

$$S(h, k) = \sum_{u=1}^{k-1} (((\frac{u}{k}))(\frac{hu}{k})), \text{ (see [17, 25, 26, 28])}$$

where $((x))$ is defined as

$$((x)) = x - [x] - \frac{1}{2}, \text{ if } x \text{ is not an integer,}$$

$$= 0, \text{ otherwise,}$$
where \([x]\) is the largest integer \(\leq x\), (cf. [17]).

Generalized Dedekind sums \(S_p(h, k)\) are defined as

\[
S_p(h, k) = \sum_{a=1}^{k-1} \frac{a}{k} \bar{B}_p\left(\frac{ah}{k}\right), \tag{9}
\]

where \(h\) and \(k\) are relative prime positive integers and \(\bar{B}_p(x)\) are the \(p\)-th Bernoulli functions, which are defined as

\[
\bar{B}_p(x) = B_p(x - [x]) = -p!(2\pi i)^{-p} \sum_{m=-\infty, m\neq 0}^{\infty} m^{-p} e^{2\pi imx}, \tag{see [17, 25, 26]}
\]

where \(B_p(x)\) are the \(p\)-th ordinary Bernoulli polynomials.

Recently Y. Simsek have studied \(q\)-Dedekind type sums related to \(q\)-zeta function and basic \(L\)-series (see [31, 18]). He also studies \(q\)-Hardy-Berndt type sums associated with \(q\)-Genocchi type zeta and \(q\)-\(l\)-functions related to previous author’s paper (see [18, 31]). In this paper we consider Dedekind type DC(Daehee-Changhee) sums as follows.

\[
T_p(h, k) = 2 \sum_{u=1}^{k-1} (-1)^{u-1} \frac{u}{k} \bar{E}_p\left(\frac{hu}{k}\right), \quad (h \in \mathbb{Z}_+),
\]

where \(\bar{E}_p(x)\) are the \(p\)-the Euler functions. Note that \(T_p(h, k)\) is the similar form of generalized Dedekind type sums. Finally, we prove the following reciprocity law for an odd \(p\):

\[
k^pT_p(h, k) + h^pT_p(k, h)
\]

\[
= 2 \sum_{u=0}^{k-1} \left(kh(E + \frac{u}{k}) + k(E + h - [\frac{hu}{k}]) \right)^p + (hE + kE)^p + (p + 2)E_p,
\]

where \(h, k\) are relative prime positive integers and

\[
(Eh + Ek)^{n+1} = \sum_{l=0}^{n+1} \binom{n+1}{l} E_l h^l E_{n+1-l} k^{n+1-l}.
\]
2. ON THE RECIPROcity LAW FOR DEDEKIND TYPE DC SUMS

In this section, we assume \(p \in \mathbb{N} \) with \(p \equiv 1 \) mod 2. By the definition of the Euler polynomials, we see that

\[
E_p(x + y) = \sum_{s=0}^{p} \binom{p}{s}(x + y)^{p-s}E_s = \sum_{s=0}^{p} \binom{p}{s}E_s \sum_{k=0}^{p-s} \binom{p-s}{k}x^ky^{p-s-k}
\]

\[
= \sum_{s=0}^{p} \binom{p}{s} \sum_{j=0}^{s} \binom{s}{j}E_jx^{s-j}y^{p-s} = \sum_{s=0}^{p} \binom{p}{s}E_s(x)y^{p-s}.
\]

From (2), we can also derive

\[
E_p(mx) = m^p \sum_{s=0}^{m-1} E_p(x + \frac{s}{m})(-1)^s.
\]

By (5), we easily see that

\[
\int_0^1 xE_p(x)dx = \frac{E_{p+1}(1)}{p+1} - \frac{E_{p+1}(1)}{p+1} + \frac{E_{p+1}}{p+1} = 0,
\]

and

\[
\int_0^1 xE_p(x)dx = \sum_{s=0}^{p} \binom{p}{s}E_s \int_0^1 x^{p-s+1}dx = \sum_{s=0}^{p} \binom{p}{s} \frac{E_s}{p-s+2}.
\]

By (12) and (13), we obtain the following lemma.

Lemma 1. For \(p \in \mathbb{N} \) with \(p \equiv 1 \) mod 2, we have

\[
\sum_{s=0}^{p} \binom{p}{s}E_s \frac{1}{p-s+2} = \frac{E_{p+1}}{p+1} = 0.
\]

For \(s \in \mathbb{N} \) with \(s \equiv 0 \) mod 2 and \(s < p \), we have

\[
\frac{d^s(xE_p(x))}{(dx)^s} \bigg|_{x=1} = s! \binom{p}{s}E_{p-s}(1) = -s! \binom{p}{s}E_{p-s},
\]

and, from (3), we note that

\[
\frac{d^s(xE_p(x))}{(dx)^s} \bigg|_{x=1} = s! \sum_{v=0}^{p-s} \binom{p-v+1}{s} \binom{p}{v}E_v
\]

\[
= s! \sum_{v=0}^{p} \binom{p}{v} \binom{p-v+1}{s} E_v.
\]

By (14) and (15), we obtain the following theorem.
Theorem 2. For $s \in \mathbb{N}$ with $s \equiv 0 \mod{2}$ and $s > p$, we have

\begin{equation}
\sum_{v=0}^{p} \binom{p}{v} \binom{p-v+1}{s} E_v = -\binom{p}{s} E_{p-s} = \binom{p}{s} E_{p-s}(1).
\end{equation}

Let us define Dedekind type DC sums as follows.

\begin{equation}
T_p(h, k) = 2 \sum_{u=1}^{k-1} (-1)^{u-1} \frac{u}{k} \overline{E}_p \left(\frac{hu}{k} \right), \quad (h \in \mathbb{Z}^+),
\end{equation}

where $\overline{E}_p(x)$ is the p-th Euler function.

For $m \equiv 1 \mod{2}$, we have

\begin{equation}
T_p(1, m) = 2 \sum_{u=1}^{m-1} (-1)^{u-1} \frac{u}{m} \sum_{v=0}^{p} \binom{p}{v} E_v \left(\frac{u}{m} \right)^{p-v}
\end{equation}

By (7) and (18), we obtain the following theorem.

Theorem 3. For $m \equiv 1 \mod{2}$, we have

\begin{equation}
T_p(1, m) = \sum_{v=0}^{p} \binom{p}{v} E_v m^{-(p+1-v)} \left(E_{p-v+1}(m) - E_{p-v+1} \right).
\end{equation}

From (3) we can also derive

\begin{equation}
E_{p-v+1}(m) - E_{p-v+1} = \sum_{i=0}^{p-v} \binom{p-v+1}{i} m^{p+1-v-i} E_i
\end{equation}

so that we find

\begin{equation}
T_p(1, m) = \sum_{v=0}^{p} \binom{p}{v} m^{-(p+1-v)} E_v \sum_{i=0}^{p-v} \binom{p-v+1}{i} m^{p+1-v-i} E_i
\end{equation}

\begin{equation}
= \frac{1}{m^p} \sum_{v=0}^{p} \binom{p}{v} E_v \sum_{i=0}^{p-v} \binom{p-v+1}{i} E_i m^{p-i}.
\end{equation}

Therefore, we obtain the following corollary.
Corollary 4. For \(m \equiv 1 \pmod{2} \), we have

\[
\begin{align*}
\sum_{v=0}^{p} \binom{p}{v} E_v \sum_{i=0}^{p-v} \binom{p-v+1}{i} E_i m^{p-i}.
\end{align*}
\]

Interchanging the order of summation in (22), we obtain

\[
\begin{align*}
m^p T_p(1, m) &= \sum_{i=0}^{p-2} \binom{p}{v} E_v \sum_{i=0}^{p-v} \binom{p-v+1}{i} E_i m^{p-i} \\
&+ \binom{p+1}{p} E_p + \sum_{v=0}^{p} \binom{p}{v} E_v m^p + \sum_{v=0}^{1} \binom{p}{v} E_v \left(\binom{p-v+1}{p-1} E_{p-1} m \right) \\
&= \sum_{i=1}^{p-2} \sum_{v=0}^{p-i} \binom{p}{v} E_v \left(\binom{p-v+1}{i} E_i m^{p-i} \right) + (p+1) E_p + \sum_{v=0}^{p} \binom{p}{v} E_v m^p.
\end{align*}
\]

Therefore, we obtain the following proposition.

Proposition 5. For \(m \in \mathbb{N} \) with \(m \equiv 1 \pmod{2} \), we have

\[
\begin{align*}
m^p T_p(1, m) &= \sum_{v=0}^{p} \binom{p}{v} E_v m^p + \sum_{i=1}^{p-2} \sum_{v=0}^{p-i} \binom{p}{v} E_v \left(\binom{p-v+1}{i} E_i m^{p-i} \right) + (p+1) E_p.
\end{align*}
\]

In the sum over \(i \), the only non-vanishing terms are those for which the index \(i \) is odd. Hence, since \(i < p \) in this sum we may use (3) and Theorem 2 to obtain

\[
\begin{align*}
&= \sum_{i=0}^{p} \binom{p}{i} E_{p-i} (1) E_i m^{p-i} + p E_p.
\end{align*}
\]

Therefore, we obtain the following theorem.

Theorem 6. For odd \(p \) with \(p > 1 \), \(m \in \mathbb{Z}_+ \) with \(m \equiv 1 \pmod{2} \), we have

\[
\begin{align*}
m^p T_p(1, m) &= \sum_{i=0}^{p} \binom{p}{i} E_{p-i} (1) E_i m^{p-i} + p E_p.
\end{align*}
\]
Now we employ the symbolic notation as $E_n(x) = (E + x)^n$. It is easy to show that
\begin{align*}
\sum_{u=0}^{k-1} (-1)^u \sum_{s=0}^{p} \binom{p}{s} h^s E_s \left(\frac{u}{k} \right) E_{p-s} \left(h - \frac{hu}{k} \right) &= k^p \sum_{u=0}^{k-1} (-1)^u \left((E + \frac{u}{k}) + (E + h - \frac{hu}{k}) \right)^p \\
&= k^p \sum_{u=0}^{k-1} (-1)^u \left(Eh + E + h + \frac{1}{2} - \frac{1}{2} + huk^{-1} - \frac{hu}{k} \right)^p \\
&= k^p \sum_{u=0}^{k-1} (-1)^u \left(Eh + E + h + \frac{1}{2} + \bar{E}_1 \left(\frac{hu}{k} \right) \right)^p.
\end{align*}

Now as the index u range through the values $u = 0, 1, 2, \cdots, k - 1$, the product hu range through a complete residue system modulo k since $(h, k) = 1$ and due to the periodicity of $\bar{E}_1(x)$, the term $\bar{E}_1 \left(\frac{hu}{k} \right)$ may be replaced $\bar{E}_1 \left(\frac{u}{k} \right)$ without alternating the sum over u. For $k \in \mathbb{Z}_+$ with $k \equiv 1 \mod 2$, we have
\begin{align*}
(25) &= k^p \sum_{u=0}^{k-1} (-1)^u \left(E + Eh + h + \frac{1}{2} + \bar{E}_1 \left(\frac{u}{k} \right) \right)^p = k^p \sum_{u=0}^{k-1} (-1)^u \left((E + \frac{u}{k}) + h(E + 1) \right)^p \\
&= k^p \sum_{u=0}^{k-1} (-1)^u \sum_{s=0}^{p} \binom{p}{s} E_s \left(\frac{u}{k} \right) h^{s-p} E_{p-s} \left(1 \right) \\
&= \sum_{s=0}^{p} \binom{p}{s} k^{p-s} \left(k^s \sum_{u=0}^{k-1} (-1)^u E_s \left(\frac{u}{k} \right) \right) h^{s-p} E_{p-s} \left(1 \right) = \sum_{s=0}^{p} \binom{p}{s} k^{p-s} E_s h^{s-p} E_{p-s} \left(1 \right).
\end{align*}

Therefore, we obtain the following theorem.

Theorem 7. Let h, k be natural numbers with $(h, k) = 1$. For odd p with $p > 1$, and $k \equiv 1 \mod 2$, we have
\begin{align*}
\sum_{s=0}^{p} \binom{p}{s} h^{s-p} E_s h^{s-p} E_{p-s} \left(1 \right) = k^p \sum_{u=0}^{k-1} (-1)^u \sum_{s=0}^{p} \binom{p}{s} h^s E_s \left(\frac{u}{k} \right) E_{p-s} \left(h - \frac{hu}{k} \right).
\end{align*}

Let T be the sum of
\begin{align*}
T &= k^p T_p(h, k) + h^p T(k, h) \\
&= 2k^p \sum_{u=1}^{k-1} (-1)^{u-1} \frac{u}{k} \bar{E}_p \left(\frac{hu}{k} \right) + 2h^p \sum_{v=0}^{h-1} (-1)^{v-1} \frac{v}{h} \bar{E}_p \left(\frac{kv}{h} \right).
\end{align*}
We assume first that $p > 1$ and $h, k \in \mathbb{N}$ with $h \equiv 1 \mod 2$, and $k \equiv 1 \mod 2$.

\begin{equation}
\bar{E}_p\left(\frac{h}{k} u\right) = h^p \sum_{v=0}^{h-1} (-1)^v \bar{E}_p\left(\frac{u+v}{k}\right),
\end{equation}

and

\begin{equation}
\bar{E}_p\left(\frac{k}{h} v\right) = k^p \sum_{u=0}^{k-1} (-1)^u \bar{E}_p\left(\frac{v+u}{h}\right).
\end{equation}

From (26) and (27), we can easily derive the following (28).

\begin{equation}
T = (hk)^p \frac{2}{k} \sum_{u=1}^{k-1} (-1)^{u-1} \frac{u}{h} \sum_{v=0}^{h-1} (-1)^v \bar{E}_p\left(\frac{u+v}{k}\right)
+ (hk)^p \frac{2}{h} \sum_{v=1}^{h-1} (-1)^{v-1} \frac{v}{h} \sum_{u=0}^{k-1} (-1)^u \bar{E}_p\left(\frac{v+u}{h}\right)
= (hk)^p \frac{2}{hk} \sum_{u=0}^{k-1} \sum_{v=0}^{h-1} (-1)^{u+v-1} \left(\frac{uh+vk}{hk}\right) E_p\left(\frac{u}{k} + \frac{v}{h}\right).
\end{equation}

Therefore, we obtain the following theorem.

Theorem 8. Let $h, k \in \mathbb{N}$ with $h \equiv 1 \mod 2$ and $k \equiv 1 \mod 2$. For $p > 1$, we have

\[k^p T_p(h, k) + h^p T(k, h) = 2(hk)^p \sum_{u=0}^{k-1} \sum_{v=0}^{h-1} (-1)^{u+v-1}(uh+vk)(hk)^{-1} E_p\left(\frac{u}{k} + \frac{v}{h}\right). \]

Now as the indices u and v run through the range $u = 0, 1, 2, \cdots, k-1$, $v = 0, 1, 2, \cdots, h-1$, respectively, the linear combination $uh+vk$ ranges through a complete residue system modulo hk, and each term $uh+vk$ satisfies the inequalities $0 \leq uh+vk < 2hk$. If we define the sets

\[A = \{uh+vk|0 \leq uh+vk < hk\}, B = \{uh+vk|hk+1 \leq uh+vk < 2hk\}, \]

\[C = \{\lambda|0 \leq \lambda \leq hk-1\}. \]

Let $h, k \in \mathbb{N}$ with $h \equiv 1 \mod 2$ and $k \equiv 1 \mod 2$. From (28), we note that
(29) \[T = (hk)^p \left(2 \sum_{\lambda \in A} \frac{\lambda}{hk} (-1)^{\lambda-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) + 2 \sum_{\lambda \in B} \frac{\lambda}{hk} (-1)^{\lambda-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) \right). \]

Now if \(y \in B \), then \(y = hk + \lambda \), where \(\lambda \in \mathbb{C} \), but \(\lambda \notin A \) (for if \(\lambda \in A \) then we have \(\lambda \equiv y \mod hk \)), but \(A \cup B \) forms a complete residue system modulo \(hk \). Hence, we have

(30) \[2 \sum_{y \in B} \frac{y}{hk} (-1)^{y-1} E_p \left(\frac{y}{hk} \right) = 2 \sum_{\lambda \in C \setminus A} (-1)^{\lambda-1} E_p \left(\frac{\lambda}{hk} \right) + 2 \sum_{\lambda \in C \setminus A} \frac{\lambda}{hk} (-1)^{\lambda-1} E_p \left(\frac{\lambda}{hk} \right). \]

By (29) and (30), we see that

\[
T = (hk)^p \left\{ 2 \sum_{\lambda \in A} \frac{\lambda}{hk} (-1)^{\lambda-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) + 2 \sum_{\lambda \in C \setminus A} (-1)^{\lambda-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) \right. \\
\left. + 2 \sum_{\lambda \in C \setminus A} \frac{\lambda}{hk} (-1)^{\lambda-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) \right\} \\
= (hk)^p \left\{ 2 \sum_{\lambda=0}^{hk-1} (-1)^{\lambda} \frac{\lambda}{hk} \tilde{E}_p \left(\frac{\lambda}{hk} \right) + 2 \sum_{\lambda=0}^{hk-1} (-1)^{\lambda} \tilde{E}_p \left(\frac{\lambda}{hk} \right) \right. \\
\left. - 2 \sum_{u=0}^{h-1} \sum_{0 \leq uh + vk < hk} (-1)^{u+v-1} \tilde{E}_p \left(\frac{uh + vk}{hk} \right) \right\}. \\
\]

It is easy to see that

\[
2 \sum_{\lambda=0}^{hk-1} \tilde{E}_p \left(\frac{\lambda}{hk} \right) (-1)^{\lambda-1} = 2(hk)^{-p} \tilde{E}_p (0) = 2(hk)^{-p} E_p. \\
\]

Hence, we have

(31) \[T = (hk)^p \left(T_p(1, kh) + 2(hk)^{-p} E_p - S \right), \]
where

\[
S = 2 \sum_{0 \leq u \leq k-1} \sum_{0 \leq v \leq h-1} (-1)^{u+v-1} E_p\left(\frac{uh + vk}{hk}\right)
\]

\[
= 2 \sum_{0 \leq u \leq k-1} \sum_{0 \leq v \leq h-1} (-1)^{u+v-1} E_p\left(\frac{u}{k} + \frac{v}{h}\right).
\]

From the definition of \(S \), we note that

\[
S = 2 \sum_{u=0}^{k-1} \sum_{v=0}^{[h - \frac{hu}{k}]} (-1)^{u+v-1} E_p(\frac{u}{k} + \frac{v}{h}) = 2 \sum_{u=0}^{k-1} \sum_{v=0}^{[h - \frac{hu}{k}]} (-1)^{u+v-1} \left(E + \frac{u}{k} + \frac{v}{h} \right)^p
\]

\[
= 2 \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} E_s(\frac{u}{k}) \sum_{v=0}^{[h - \frac{hu}{k}]} (-1)^{v} v^{p-s}
\]

\[
= \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} E_s(\frac{u}{k}) \left(2 \sum_{v=0}^{[h - \frac{hu}{k}]} (-1)^{v} v^{p-s} \right)
\]

\[
= \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} E_s(\frac{u}{k}) \left((1) h - \left[\frac{hu}{k} \right] \right) + \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} E_s(\frac{u}{k}) E_{p-s}
\]

\[
= \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} E_s(\frac{u}{k}) E_{p-s}(h - \left[\frac{hu}{k} \right]) - h^{-p} \sum_{s=0}^{p} \binom{p}{s} h^{s-k-s} E_{p-s} E_s.
\]

Returning to (31), we have

\[
T = (hk)^p \{ T_p(1, kh) + 2(kh)^{-p} E_p - \sum_{s=0}^{p} \binom{p}{s} h^{s-p} \sum_{u=0}^{k-1} (-1)^{u-1} \left[\frac{hu}{k} \right] E_{p-s} \left(\frac{u}{k} \right) \}
\]

\[
+ h^{-p} \sum_{s=0}^{p} \binom{p}{s} h^{s-k-s} E_{p-s} E_s \}.
\]
By Theorem 6 we see that

\[T = \sum_{s=0}^{p} \binom{p}{s} E_s E_{p-s} (1)(hk)^{p-s} - \sum_{s=0}^{p} \binom{p}{s} h^s k^p \sum_{u=0}^{k-1} (-1)^{u-\left[\frac{hu}{k}\right]} E_s \left(\frac{u}{k}\right) E_{p-s} \left(h - \left[\frac{hu}{k}\right]\right) \]

\[+ (p + 2) E_p + \sum_{s=0}^{p} \binom{p}{s} h^s k^{p-s} E_s E_{p-s}. \]

From Theorem 7, we can also derive the following equation (32).

\[T = \sum_{s=0}^{p} \binom{p}{s} k^p h^s \sum_{u=0}^{k-1} E_s \left(\frac{u}{k}\right) E_{p-s} \left(h - \left[\frac{hu}{k}\right]\right) \left(1 - (-1)^{u-\left[\frac{hu}{k}\right]}\right) \]

\[+ \sum_{s=0}^{p} \binom{p}{s} h^s k^{p-s} E_s E_{p-s} + (p + 2) E_p \]

(32)

Therefore, we obtain the following theorem.

Theorem 9. Let \(h, k \in \mathbb{N} \) with \(h \equiv 1 \) mod 2 and \(k \equiv 1 \) mod 2 and let \((h, k) = 1\). For \(p > 1 \), we have

\[k^p T_p(h, k) + h^p T_p(k, h) \]

\[= 2 \sum_{u=0}^{k-1} \left(kh(E + \frac{u}{k}) + k(E + h - \frac{hu}{k}) \right)^p + (hE + kE)^p + (p + 2) E_p, \]

where

\[(hE + kE)^p = \sum_{s=0}^{p} \binom{p}{s} h^s E_s E_{p-s}. \]

References

1. T. M. Apostol, *Generalized Dedekind sums and transformation formulae of certain Lambert series*, Duke Math. J. 17 (1950), 147-157.
2. M. Cenkci, M. Can, V. Kurt, *p-adic interpolation functions and Kummer-type congruences for q-twisted and q-generalized twisted Euler numbers*, Adv. Stud. Contemp. Math. 9 (2004), 203-216.
3. G. Kim, B. Kim, J. Choi, *The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers*, Adv. Stud. Contemp. Math. 17 (2008), 137-145.
4. T. Kim, *Note on the Euler numbers and polynomials*, Adv. Stud. Contemp. Math. **17** (2008), 131-136.

5. T. Kim, *Euler Numbers and Polynomials Associated with Zeta Functions*, Abstract and Applied Analysis **2008** (2008), Article ID 581582, 11 pages.

6. T. Kim, *q-Euler numbers and polynomials associated with p-adic q-integrals*, Journal of Nonlinear Mathematical Physics **14** (2007), 15-27.

7. T. Kim, *q-Volkenborn Integration*, Russian J. Math. Phys. **9** (2002), 288-299.

8. T. Kim, *q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients*, Russian J. Math. Phys. **15** (2008), 51-57.

9. T. Kim, *q-extension of the Euler formula and trigonometric functions*, Russian J. Math. Phys. **14** (2007), 275-278.

10. T. Kim, J. y. Choi, J. Y. Sug, *Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on \(\mathbb{Z}_p \)*, Russian J. Math. Phys. **14** (2007), 160-163.

11. T. Kim, *q-generalized Euler numbers and polynomials*, Russian J. Math. Phys. **13** (2006), 293-298.

12. T. Kim, *Multiple p-adic L-function*, Russian J. Math. Phys. **13** (2006), 151-157.

13. T. Kim, *Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function*, Russian J. Math. Phys. **12** (2005), 186-196.

14. T. Kim, *On a q-analogue of the p-adic log gamma functions and related integrals*, J. Number Theory **76** (1999), 320-329.

15. T. Kim, *On Euler-Barnes multiple zeta functions*, Russian J. Math. Phys. **10** (2003), 261-267.

16. T. Kim, *The modified q-Euler numbers and polynomials*, Adv. Stud. Contemp. Math. **16** (2008), 161-170.

17. Y. Simsek, *Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of \(\log \eta_{g,h}(z) \)*, J. Number Theory **99** (2003), 338-360.

18. Y. Simsek, *q-Dedekind type sums related to q-zeta function and basic L-series*, J. Math. Anal. Appl. **318** (2006), 333-351.

19. H. Ozden, Y. Simsek, S.-H. Rim, I. N. Cangul, *On interpolation functions of the twisted generalized Frobenius-Euler numbers*, Adv. Stud. Contemp. Math. **15** (2007), 187-194.

20. H. Ozden, Y. Simsek, I. N. Cangul, *Multivariate interpolation functions of higher-order q-Euler numbers and their applications*, Abstract and Applied Analysis **2008** (2008), Art. ID 390857, 16 pages.
21. H. Ozden, Y. Simsek, I. N. Cangul, *Euler polynomials associated with p-adic q-Euler measure*, General Mathematics 15 (2007), 24-37.

22. S. H. Rim, K. H. Park, E. J. Moon, *On Genocchi numbers and polynomials*, Abstract and Applied Mathematics 2008, *Article ID 898471* (2008), 7 pages.

23. Y. Simsek, *Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions*, Adv. Stud. Contemp. Math. 16 (2008), 251-278.

24. Y. Simsek, Y. Osman, V. Kurt, *On interpolation functions of the twisted generalized Frobenius-Euler numbers*, Adv. Stud. Contemp. Math. 15 (2007), 187-194.

25. Y. Simsek, *Hardy character sums related to Eisenstein series and theta functions*, Adv. Stud. Contemp. Math. 12 (2006), 39-53.

26. Y. Simsek, *Remarks on reciprocity laws of the Dedekind and Hardy sums*, Adv. Stud. Contemp. Math. 12 (2006), 237-246.

27. Y. Simsek, *Theorems on twisted L-function and twisted Bernoulli numbers*, Adv. Stud. Contemp. Math. 11 (2005), 205-218.

28. Y. Simsek, A. Mehmet, *Remarks on Dedekind eta function, theta functions and Eisenstein series under the Hecke operators*, Adv. Stud. Contemp. Math. 10 (2005), 15-24.

29. Y. Simsek, Y. Sheldon, *Transformation of four Titchmarsh-type infinite integrals and generalized Dedekind sums associated with Lambert series*, Adv. Stud. Contemp. Math. 9 (2004), 195-202.

30. Y. Simsek, *On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers*, Russian J. Math. Phys. 13 (2006), 340-348.

31. Y. Simsek, *q-Hardy-Berndt type sums associated with q-Genocchi type zeta and q-L-functions*, Nonlinear Analysis: Theory, Methods and Applications *Article in press* (2008).