Infrared spectroscopy of solid CO–CO$_2$ mixtures and layers

F. A. van Broekhuizen1, I. M. N. Groot1, H. J. Fraser1,*, E. F. van Dishoeck1,2, and S. Schlemmer1

1 Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: ewine@strw.leidenuniv.nl
2 Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands

Received 28 February 2005 / Accepted 7 November 2005

ABSTRACT

The spectra of pure, mixed and layered CO and CO$_2$ ices have been studied systematically under laboratory conditions using Transmission-Absorption Fourier Transform infrared spectroscopy. This work provides improved resolution spectra (0.5 cm$^{-1}$) of the CO$_2$ bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden database of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from the Spitzer Space Telescope. It is shown that mixed and layered CO and CO$_2$ ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO–CO$_2$ ices. CO only affects the CO$_2$ bending mode spectra in mixed ices below 50 K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO$_2$ bending mode shows a double peaked profile, similar to that observed for pure solid CO$_2$. Conversely, CO$_2$ induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm$^{-1}$ in mixed ices, and 2140–2146 cm$^{-1}$ in layered ices. As such, the CO$_2$ bending mode puts clear constraints on the ice morphology below 50 K, whereas beyond this temperature the CO$_2$ stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass young stellar object HH 46, where the laboratory spectra are used to analyse the observed CO and CO$_2$ band profiles and try to constrain the formation scenarios of CO$_2$.

Key words. astrochemistry – molecular data – methods: laboratory

1. Introduction

CO$_2$ is one of the most abundant components of interstellar ice after H$_2$O and CO (Gibb et al. 2004; Boogert et al. 2004; Nummelin et al. 2001; Gerakines et al. 1999; Whittet et al. 1998) and has been observed in the solid-state on lines-of-sight towards a variety of high- and low-mass stars, field stars and galactic centre sources. Surprisingly little variation in abundance exists between these objects, generally ranging from 10 to 23% with respect to H$_2$O-ice, although values of 34 to 37% have been reached for some low- and intermediate mass sources (Nummelin et al. 2001; Boogert et al. 2004; Pontoppidan et al. 2005). In the gas phase, observations imply that the CO$_2$ abundance is a factor of \sim100 less than in the solid state (van Dishoeck et al. 1996; Boonman et al. 2003), indicating that CO$_2$ forms in the solid-phase. The most popular formation mechanism is via energetically mediated reactions such as UV photolysis of mixed H$_2$O–CO ices (Watanabe & Kouchi 2002). However, the fact that CO$_2$ ice is also observed towards the quiescent clouds in front of Elias 16, where there is little if any UV-induced chemistry, suggests that no energetic ice-processing is required for CO$_2$ formation, so surface reactions involving CO must play a key role (Whittet et al. 1998; Roser et al. 2001). Whichever formation route is invoked, a direct link is implied between the location of CO and CO$_2$ within interstellar ices.

Recent high resolution observations of solid CO towards a large sample of embedded objects using the VLT-ISAAC spectrometer show that 60–90% of solid CO in interstellar ices resides in a nearly pure form, and that a significant number of the sources show evidence for CO in a H$_2$O-rich environment, at a minimum abundance of 19% with respect to the pure CO component (Pontoppidan et al. 2003; Boogert et al. 2004; Fraser et al. 2004). Given these constraints, CO$_2$ may form via surface reactions on the pure CO-ice layer, resulting in a bi-layered ice-structure. Alternatively, if CO$_2$ forms from UV- and cosmic ray-induced reactions involving CO in the H$_2$O-rich environment, one can envisage that CO$_2$ will reside in a H$_2$O-rich ice without being in direct contact with CO. The latter situation has been simulated in detail in the laboratory by, for example, Gerakines et al. (1995) and Ehrenfreund et al. (1999), who recorded infrared (IR) spectra of mixed ices.

The key aim of this paper is to establish the influence CO may have on the CO$_2$ spectral features and vice versa. In addition to the spectroscopic features of CO at 2139 and
2136 cm\(^{-1}\) in pure and H\(_2\)O-rich ice environments respectively, a third component of the interstellar CO-ice band has been detected at around 2143 cm\(^{-1}\) along many lines of sight. In the VLT-ISAAC and other surveys, this band was attributed to the TO-component of the pure CO ice feature, which under certain conditions is split into two sharp features (Collings et al. 2003a; Pontoppidan et al. 2003). However, Boogert et al. (2002) assign this band to CO in a CO\(_2\) dominated environment. This paper therefore also analyses the presence or absence of the 2143 cm\(^{-1}\) feature in the spectra of CO–CO\(_2\) laboratory ices, as a function of the morphology (i.e., the configuration of CO and CO\(_2\) in the CO–CO\(_2\) ice system: either mixed or separated in two spatially distinct layers) and temperature, to find the origin of this band.

Solid CO\(_2\) can be observed in interstellar spectra by its 4.3 \(\mu\)m asymmetric stretching (\(\nu_3\)) and 15 \(\mu\)m bending (\(\nu_2\)) modes. The \(\nu_2\) mode is known to be very sensitive to the local ice environment but is weaker than the stretching mode. The higher sensitivity of the recently launched Spitzer Space Telescope, compared to that of its predecessor the Infrared Space Observatory (ISO), has made it possible to conduct a detailed analysis of the \(\nu_2\)(CO\(_2\)) band over a wider range of interstellar objects. First results show that the CO\(_2\) abundances are similar to or higher than those deduced with ISO (Watson et al. 2004; Boogert et al. 2004; Pontoppidan et al. 2005). Thus, there is the possibility to combine the new observational data of solid CO\(_2\) with VLT observations of CO to place constraints on the CO\(_2\) ice environment.

Previous laboratory studies have dealt with mixtures of binary ices composed of CO and CO\(_2\) (Ehrenfreund et al. 1996, 1997; Elsila et al. 1997). These proved very useful for interpreting interstellar ice observations. However, more systematic studies including layered ices are necessary to link the spectral characteristics to the interstellar environments mentioned above. This work therefore presents the effects of CO on the spectroscopy of the CO\(_2\)-bending and stretching modes as well as the influence of thermal annealing in pure, mixed and layered ice systems. The data are taken at an increased spectral resolution of 0.5 cm\(^{-1}\) with respect to the previous laboratory studies, in order to resolve the CO\(_2\)-bending mode and the CO-stretching vibration and meet the accuracy of the VLT-ISAAC and Spitzer data as well as future mid-infrared spectra to be obtained with the James Webb Space Telescope. The experimental details are explained in Sect. 2. The spectroscopic behaviour of CO and CO\(_2\) are presented and discussed in Sects. 3 and 4, respectively, as a function of the temperature and ice composition. In Sect. 5 the astrophysical implications are discussed and one example of a comparison between the new experimental data with observations is given.

2. Experimental procedure

All experiments were conducted in a high vacuum (HV) chamber described in detail elsewhere (Gerakines et al. 1995), at a base-pressure below 2 \(\times\) 10\(^{-7}\) Torr. Ices of 12\(^{16}\)O (Praxair 99.997% purity) and 12\(^{16}\)O\(_2\) (Praxair 99.997% purity) were grown on the surface of a CsI window, pre-cooled to 15 K, via effusive dosing at a growth rate of \(\sim\)10\(^{16}\) molec cm\(^{-2}\) s\(^{-1}\), directed at 45 degrees to the surface normal. Transmission Fourier Transform Infrared spectra of the ice systems were recorded at 0.5 cm\(^{-1}\) resolution at fixed temperatures between 15 to 100 K, using a total of 128 scans between 4000–400 cm\(^{-1}\) and a zero filling factor of 4. Each recording lasted 20 min, and was started directly after the temperature had equilibrated, which took 2 min.

The pure and layered ice structures were grown in situ, via single and sequential dosing from CO and CO\(_2\) gas bulbs, filled to a total pressure of 10 mbar, prepared on a separate glass vacuum manifold, with a base-pressure of \(\sim\)10\(^{-5}\) mbar. Mixed ices were prepared by dosing gas from pre-mixed CO and CO\(_2\) bulbs.

The Full Width at Half Maximum (FWHM) and peak-position of the CO-stretching, CO\(_2\)-bending and CO\(_2\) asymmetric stretching mode were determined using the Levenberg-Marquardt non-linear least square fitting routine within Origin 7.0. Uncertainties in the peak-centre position and FWHM were typically less than 0.05 cm\(^{-1}\), except close to the desorption temperature where uncertainties may be larger.

Previous work on the spectroscopy of CO\(_2\)-ice has indicated that the ice structure (i.e. amorphous or crystalline) influences its spectral profile (Falck 1986), although some uncertainty exists as to the extent of the crystallinity of low temperature vapour deposited CO\(_2\)-ice (Falck 1986; Sandford et al. 1988; Sandford & Allamandola 1990). Consequently, optical constants have not been derived for the ices studied here. Before doing so, a systematic study is required of the degree of crystallinity in pure, vapor-deposited CO\(_2\) ices and the influence of these phases on the CO\(_2\) spectroscopy, which will be the topic of future work.

The range of ices studied here are summarised in Table 1. The relative concentrations of CO and CO\(_2\) range from 0.1 to 2 CO/CO\(_2\), relevant for comparison with observations of high- and low-mass YSO’s, which show CO/CO\(_2\) column density ratios of 0.1–1.3 (Gibb et al. 2004). All of the raw laboratory spectra discussed here have been made available through the Internet at \texttt{http://www.strw.leidenuniv.nl/~lab/mixed_layered_CO_CO2/}.

3. Results

3.1. CO\(_2\)-bending mode

Figure 1 shows the spectra of \(\nu_2\)(CO\(_2\)) at 15 K in pure and some example mixed and layered ices (with CO), together with the thermal evolution of each band. In the pure ice (Fig. 1a), the \(\nu_2\) spectrum at 15 K has two components, peaking at 654.7 and 659.8 cm\(^{-1}\) (marked by grey lines) with FWHM of 1.8 and 3.1 cm\(^{-1}\), respectively, showing a Davidov splitting due to a highly ordered ice structure (e.g., Decius & Hexter 1977; Sandford & Allamandola 1990). This profile changes gradually beyond 40 K as both peak intensities increase while their FWHM decrease until the point at which CO\(_2\) desorbs, in agreement with previous findings of Sandford & Allamandola (1990). The integrated area is observed to increase with temperature, but by no more than 20%. This increase is consistently found in the bending mode spectra during the warm-up
Table 1. Ice compositions.

Ice morphologies	Nomenclature	Conc. ratio	Exposure (s)	Approx. ice thickness (L)
pure CO	1	–	60	600
CO₂	–	1	60	600
layered 1/1 CO/CO₂	1	1	60 + 60	1200
1/1 CO₂/CO	1	1	60 + 60	1200
1/2 CO/CO₂	1	2	60 + 120	1800
2/1 CO₂/CO	2	1	120 + 60	1800
3/1 CO₂/CO	3	1	180 + 60	2400
10/1 CO₂/CO	10	1	600 + 60	6600
mixed CO:CO₂	1	1	120	1200
2:1 CO:CO₂	2	1	180	1800
1:10 CO:CO₂	1	10	660	6600

The nomenclature adopted uses $A:B$ to denote mixtures and A/B to indicate layered structures with A on top of B. a 1 L = 10^{15} molec cm$^{-2}$ \approx 1 mono-layer.

The thermal evolution of the CO$_2$-bending mode for a) pure CO$_2$-ice; b) a 1/1 CO/CO$_2$ layered ice; c) 2:1 CO$_2$:CO$_2$; and d) 1:1 CO:CO$_2$ ice mixtures, from 15–90 K. The two vertical grey lines mark the positions of the two peaks of the bending mode at 15 K in pure CO$_2$-ice.

![Fig. 1](image-url)
A small artifact is occasionally evident in Fig. 1 at 667.8 cm\(^{-1}\), which is clearly not associated with CO or CO\(_2\) since it remains in the spectra after CO\(_2\) desorbs.

3.2. CO\(_2\) asymmetric stretching vibration

Figure 2 shows the thermal evolution of the \(\nu_3\)(CO\(_2\)) for the same four ices as Fig. 1. As with the \(\nu_2\) mode, the trend observed is that almost no spectral differences are seen between the pure and layered ices (Figs. 2a and 2b), whereas peak-position and FWHM differences are observed between the pure and the mixed ices (Figs. 2a and c–d). This indicates that it will be difficult to distinguish between pure and layered ices in interstellar spectra. However, since the thermal evolution of mixed and layered ices are different, the comparison between these two cases can help to unravel the environmental history of interstellar ices.

In pure CO\(_2\)-ices at 15 K, the \(\nu_3\)(CO\(_2\)) band peaks at 2344.0 cm\(^{-1}\) (FWHM of 10.6 cm\(^{-1}\)), independent of temperature. Its FWHM, however, starts to decrease gradually beyond 40 K as the peak intensity increases until CO\(_2\) desorbs. In mixtures (Figs. 2c and 2d, respectively) at least three different spectral components are visible due to the higher resolution used compared to previous studies (e.g., Sandford & Allamandola 1990; Ehrenfreund et al. 1997). At 15 K, the spectral profile is dominated by a broad asymmetric band, peaking at 2339.9 cm\(^{-1}\) (FWHM of 13.3 cm\(^{-1}\)), which exhibits a shoulder at around 2334 cm\(^{-1}\) in the case of 1:1 CO:CO\(_2\). By 22 K, the spectrum has evolved into a pure ice like feature, peaking at 2342.5 cm\(^{-1}\), which beyond 50 K shows the development of a third component at around 2351 cm\(^{-1}\).

3.3. CO-stretching vibration

Figure 3 shows the thermal behaviour of the CO-stretching mode for the same four ices as Fig. 1. The spectrum of pure CO-ice (Fig. 3a) peaks at 2138.7 cm\(^{-1}\) (FWHM of 1.6 cm\(^{-1}\)) and is independent of temperature. This differs from the results of Sandford et al. (1988) who observed a band narrowing with increasing temperature. A shoulder, visible at \(\sim\)2141 cm\(^{-1}\) (black arrow), was observed previously by Sandford et al. (1988) and is discussed in the context of CO trapping in ices by Fraser et al. (in prep., hereafter FR06a). Under the present experimental conditions, pure CO desorbs between 25–30 K.

Again, the CO spectra of layered ices are almost identical to that of pure CO ice. However, beyond 22 K in 1/1 CO/CO\(_2\) (Fig. 3b), the 2141 cm\(^{-1}\) shoulder gets relatively more pronounced. This effect becomes stronger with increasing thickness of the CO\(_2\) layer and is best seen in Fig. 4 for the most extreme case of CO\(_2\)/CO studied here, 10/1. There, the intensity of the main peak (2138.9 cm\(^{-1}\)) clearly decreases from 22 to 30 K while the “shoulder” at 2141 cm\(^{-1}\) becomes more intense and a third feature appears at around 2145.5 cm\(^{-1}\) (both indicated by an arrow). These new features start decreasing in intensity when CO desorbs from 30 K onwards. However, because the 2141 cm\(^{-1}\) feature reduces faster, this leads to a blue-shift of the overall CO band. From 40–60 K, also the 2145.5 cm\(^{-1}\) environment is lost, which shifts the overall band position back to the red before the remaining CO finally desorbs (with the CO\(_2\)) above 80 K.

All mixed ices (Figs. 3c and 3d) show broadened and blue-shifted spectra compared to the pure case, centred between 2140.3 and 2141.6 cm\(^{-1}\), with FWHM extending from 5.6 to 9.0 cm\(^{-1}\) (see also Elsila et al. 1997). Equimolar mixtures induce the strongest blue-shifts. Thermal warming...
The results described in Sect. 3 provide clear evidence that the morphology of CO- and CO$_2$-containing ices affects their spectroscopy. The peak positions and FWHM of all ices studied are summarised in Figs. 5 (CO$_2$-bending mode) and 6 (CO-stretching mode) to simplify the evaluation of the spectral changes as functions of temperature and ice morphology. For a similar evaluation of the CO$_2$-stretching mode, see Appendix A in the online article. The associated uncertainties of these data have been calculated (see Sect. 2) but error bars are omitted from the plots for clarity. The actual ice structure and the physical processes that give rise to these spectra are discussed by Fraser et al. (in prep., hereafter FR06b).

In Figs. 5 and 6, the thermally induced spectroscopic changes appear at 22, 30 and 50 K, related to CO bulk-diffusion, the onset of CO desorption from pure CO ice and the temperature at which pure CO$_2$ ice undergoes major restructuring, respectively (see for further discussion Collings et al. 2003b, FR06a and FR06b).

It is clear from Figs. 5a–c that the ν_2(CO$_2$) spectrum is always split into two fully resolved peaks where CO$_2$ dominates the ice matrix, i.e. in pure and layered ices, in (close to) equimolar mixed ices at $T > 50$ K, and in very dilute CO mixtures (i.e. 1:10 CO:CO$_2$). Despite the very similar band profile of the ν_2(CO$_2$) in all ices beyond 50 K, the ν_2(CO$_2$) spectra (see Fig. 2 and Appendix A) indicate that the line profiles of the vibrational spectra in pure, layered and mixed CO:CO$_2$ ices are distinct from each other, suggesting that each ice morphology evolves a distinct structure on annealing. This shows the importance of observing both the bending and stretching mode vibrations of CO$_2$, to be able to constrain the interstellar ice environment of CO$_2$ and its history.

Figure 6 shows the main positions and FWHM of the CO-stretching mode. The temperature-independent band position of CO in mixtures (Fig. 6c) is consistent with the fact

only narrows the band between 20 and 22 K to a FWHM between 6.5 and 7.6 cm$^{-1}$ (broader than predicted by Ehrenfreund et al. 1997). CO desorption starts around 30 K and continues up to 50–60 K in 2:1 and 1:1 CO:CO$_2$, or 90–100 K in the case of 1:10 CO:CO$_2$ (not shown). None of the data show evidence for an isolated CO-feature centred at 2143 cm$^{-1}$, as suggested for CO–CO$_2$ interactions in interstellar ices by Boogert et al. (2002).

4. Discussion

The results described in Sect. 3 provide clear evidence that
that CO likely remains bound in the CO matrix over the full temperature range, implying the absence of ice segregation. In layered ices, the fraction of CO that remains trapped or bound somehow in the CO$_2$ layer exhibits spectra that are similar to those of mixtures, both in peak position and in FWHM. This suggest that layered ices are thermally mixing. This "mixing" apparently does not affect the CO$_2$ ice structure since the ν_2 (CO$_2$) spectra (Figs. 5b–c) show no detectable peak broadening.

The horizontal lines in Fig. 6 indicate the positions and FWHM of the three phenomenological interstellar CO-ice components (Pontoppidan et al. 2003). The red component (rc) is associated with a CO–H$_2$O environment and will not be further addressed here. The middle component (mc), associated with pure CO-ice, lies close to the peak-centre position of the CO spectrum in pure and layered laboratory ices. The blue component (bc) has been invoked as being indicative of CO:CO$_2$ mixtures in interstellar ice. However, no direct match is found between the position of this bc and the band positions of the ices studied here, although both mixed and layered ices do contain a blue spectral wing. Also, Figs. 6b and 6d show that all ice components between 2141–2146 cm$^{-1}$ have FWHM 1.5 to 3 times larger than that of the bc. Such evidence does question the assignment of a 2143 cm$^{-1}$ feature to CO:CO$_2$ ices but cannot rule it out completely. Further work will be required on LO-TO splitting of the CO-stretching mode (a plausible alternative carrier of the 2143 cm$^{-1}$ feature, see Collings et al. 2003a) on this same subset of ice morphologies in the laboratory. A detailed analysis of high S/N interstellar line profiles is needed of sources that exhibit a strongly pronounced CO blue wing (e.g., L 1489, SVS 4–9, Reipurth 50 and RNO 91, Pontoppidan et al. 2003) and a single-peaked CO$_2$ bending mode profile before the assignment of the CO 2143 cm$^{-1}$ band can be fully resolved.

The power of combining CO- and CO$_2$-observational data to elucidate the local environment of both molecules in interstellar ices is illustrated here for the low-mass object HH46. Its ν_2(CO$_2$) and CO-stretching mode were recently studied in detail by Boogert et al. (2004). Here, these bands are re-analysed to establish the maximum possible contribution from a CO–CO$_2$ ice component.

Figure 7 (I, left) shows the ν_2(CO$_2$) spectrum observed with Spitzer (solid black line; CO$_2$ stretching mode not observed, Boogert et al. 2004). The substructure at ~658 cm$^{-1}$ (15.2 μm) shows a weak doublet profile, but the peaks of the doublet are not narrow enough to originate from the ν_2(CO$_2$) band of pure CO$_2$ ice ($T \geq 10$ K). Instead, the more broad profile of the ν_2(CO$_2$) laboratory spectrum that arises when CO$_2$ is mixed in CO at elevated temperatures provides a much

Fig. 5. The peak-centre positions and FWHM of the main spectral features of the CO$_2$-bending mode, plotted as a function of ice temperature. a) Peak-centre positions in the pure and layered ices with the corresponding FWHM of the feature centred at b) 655 cm$^{-1}$; and c) 660 cm$^{-1}$. d) Peak-centre positions in the mixed ices with the corresponding FWHM of the peak at e) 655 cm$^{-1}$; and f) at 660 cm$^{-1}$. The legend in b) gives the symbol assignment for all three left-hand panels, that in e) for all three right-hand panels. Open symbols indicate the presence of only a single peak, whereas solid symbols mark the presence of the doublet. In each of the panels, spline-fits through the data points guide the eye, except in e) and f) where beyond 50 K peak positions and FWHM are more difficult to assign. The two vertical grey lines enclose the temperature range between 22 and 50 K (see text for details).
better match. Therefore, in Fig. 7(I) the $v_2(\text{CO}_2)$ of HH 46 is matched by combining the laboratory spectrum of $v_2(\text{CO}_2)$ of 2:1 CO:CO$_2$ ice at 40 K (dotted line) and one at 10 K in a 10:1 H$_2$O:CO$_2$ mixed ice (similar to that of Boogert et al. 2004, light grey dashed line). Grain shape effects may affect the interstellar profile of the first spectrum, although the ice is no longer a homogeneous mixture (FR06b). Since no optical constants are available, these effects are not taking into account. The overall match (grey line) reproduces the observed band profile, although the small feature at 662 cm$^{-1}$ and the red-wing beyond 650 cm$^{-1}$ are less well matched than by Boogert et al. (2004). The results are listed in Table 2. As can be seen from Table 2, only 4% of all CO$_2$ is present in the CO ice (an abundance of 1.3% with respect to H$_2$O). The majority of the CO$_2$ (96%) appears to be mixed with the H$_2$O ice. Obviously, this mix and match procedure can only provide a rough estimate of the (maximum) column density of the CO–CO$_2$ ice component contributing to the CO$_2$-bending mode and is only meant to illustrate how laboratory data of binary ices of CO and CO$_2$ can constrain the interstellar ice environment of CO$_2$.

Figure 7(II, right) shows the spectrum of the solid CO-stretching mode observed (solid line) by VLT-ISAAC Pontoppidan et al. (2003). Using the same laboratory spectrum (2:1 CO:CO$_2$ at 40 K, thick solid line in Fig. 7(Ha)) to fit the blue wing of the CO ice, adding in a 1:10 CO:H$_2$O ice at 10 K (dashed line) and a pure CO ice component (the mc of interstellar CO-ice, dotted line), gives an abundance of CO in CO:CO$_2$ of 2.1% with respect to H$_2$O ($\chi^2 = 1.3$; see Table 7). This is 11% of the total CO present. The results in Fig. 7(I) and (IIa) show that the interstellar CO and $v_2(\text{CO}_2)$ bands of HH 46 can be fit consistently with spectra of a single 2:1 CO:CO$_2$ laboratory ice mixture. In comparison the purely phenomenological fit of the CO band in Fig. 7(IIb) ($\chi^2 = 1.2$) gives a bc (representing the CO:CO$_2$ ice or possibly the LO-TO splitting of pure CO ice; see also Sect. 4), which is a smaller fraction of the total CO abundance, only 5% (see Table 7). Further analysis of a much larger sample of sources is needed to distinguish between these cases and find systematic trends with other parameters such as temperature. Such systematic studies can then address the different formation scenarios of CO$_2$ in the presence of CO and/or H$_2$O described in Sect. 1, in particular whether the amount of CO$_2$ formed with CO is generally only a small fraction of the total CO$_2$, as found for HH 46.

6. Conclusion

In summary, the experimental work presented here shows that CO only affects the CO$_2$-bending mode in intimate mixtures.
Fig. 7. (a) The \(v_2(\text{CO}) \) as observed toward HH 46 by Spitzer (black solid line, Boogert et al. 2004), reproduced by a combination of a laboratory spectrum of 10:1 H\(_2\)O:CO\(_2\) at 10 K (light grey dashed line) and a 2:1 CO:CO\(_2\) at 40 K (dotted line). The resulting match is shown by the dark grey line. (b) The CO-stretching mode as observed towards HH 46 by VLT-ISAAC (solid line). Two different fits are shown, adopting (IIa) the laboratory spectrum of 2:1 CO:CO\(_2\) at 40 K (thick solid line) and of 1:10 CO:H\(_2\)O at 10 K (dashed line), and (IIb) the bc, mc, and rc component of solid CO (Boogert et al. 2004). In both plots, the total fit to the CO band is shown in grey, including a Gaussian fit to the XCN band to the blue of the CO stretching mode.

Table 2. Results of the CO–CO\(_2\) fit toward HH 46.

Ice component	\(N \left(10^{17} \right)^a \) molec cm\(^{-2} \)	\(N/N(\text{CO}_2)_{\text{tot}} \)	\(N/N(\text{CO})_{\text{tot}} \)	\(N/N(H_2O) \)^b
(CO\(_2\))_{\text{hot}}	26	0.335		
CO\(_2\) (in CO)	1.0	0.04	0.013	
(CO)_{\text{tot}}	16			0.195
CO (in CO\(_2\))	1.7	0.11	0.021	
CO (bc)	0.8	0.05	0.010	

Maximum amounts in CO:CO\(_2\) mixtures consistent with data.\(^a\) \(A_{\text{w}(\text{CO})} = A_{\text{CO}} = 1.1 \times 10^{-17} \) cm molec\(^{-1} \) (Gerakines et al. 1995).\(^b\) \(N(H_2O) = 8.0 \times 10^{19} \) cm\(^{-2} \) (Boogert et al. 2004).\(^c\) From Boogert et al. (2004). Integrating area of CO bending mode spectrum at 40 K in 2:1 CO:CO\(_2\) is 1.10 cm\(^{-1} \).\(^d\) \(\tau_{467\text{pm}} = 0.27 \pm 0.01, \text{FWHM} \) of 7 cm\(^{-1}\).\(^e\) \(\tau_{467\text{pm}} = 0.30 \pm 0.01, \text{FWHM} \) of 3.0 cm\(^{-1}\).

Below 50 K (under the present experimental conditions), where mixing of CO and CO\(_2\) results in a single asymmetric band profile for the CO\(_2\) bending mode. In all other CO–CO\(_2\) ice morphologies studied here the CO\(_2\)-bending mode shows the same doublet profile. Conversely, the CO-stretching vibration is blue-shifted to a maximum of 2142 cm\(^{-1}\) in intimate mixtures with CO\(_2\) and between 2140 and 2146 cm\(^{-1}\) when CO interacts with a layer of initially pure CO\(_2\). The assignment of an interstellar “2143 cm\(^{-1}\) feature” by CO in layered ices with CO\(_2\), however, is difficult. Further constraints on its assignment require (at least) the analysis of the interstellar CO\(_2\) bending and future observations of CO\(_2\) stretching mode spectra. The laboratory data do indicate that the combined band profiles of CO and CO\(_2\) can be used to distinguish between mixed, layered and thermally annealed CO–CO\(_2\) ices. Ultimately, this can provide important constraints on the formation mechanism of CO\(_2\), one of the most abundant interstellar ices.

Acknowledgements. This research was financially supported by the Netherlands Research School for Astronomy (NOVA) and a NWO Spinoza grant. The authors would like to thank Klaus Pontoppidan for helpful discussions and Adwin Boogert for kindly providing the Spitzer CO\(_2\) data of HH 46.

Appendix A: CO\(_2\) asymmetric stretching mode

In analogy to Figs. 5 and 6, the peak position and FWHM of all ices studied are summarised in Fig. A.1 for the CO\(_2\) asymmetric stretching mode. Section 3.2 describes in detail that the spectral profile of the CO\(_2\) asymmetric stretching mode and its temperature dependence are very similar for pure and layered ices with CO, but are significantly different compared to CO:CO\(_2\) mixtures. This is even more clear from Fig. A.1 if the right and the left hand panels are compared.

From Fig. A.1a, it is clearly seen that the peak position of the CO\(_2\) asymmetric stretching mode does not change with increasing temperature in pure or layered ices, although its FWHM (Fig. A.1b) does show a small decrease. However, in mixtures the peak position shows significant shifts to higher wavenumbers and the appearance of new components as the temperature increases. This behavioural difference between mixed and layered ices with CO indicates that (future)
Fig. A.1. The peak-centre positions and FWHM of the main spectral features of the CO\(_2\) asymmetric stretching vibration, plotted as a function of the ice temperature. a) Peak-centre positions in pure and layered ice with the corresponding FWHM. Note that most of the data points overlap in a) and b). c) Peak-centre positions in mixed ices with d) the corresponding FWHM. The legend in a) gives the symbol assignment for the two left-hand panels, that in c) for the right-hand panels. Open and closed symbols are used to indicate independent peaks present at the same temperature. In each of the panels, spline-fits through the data points guide the eye. In c) and d), the two vertical grey lines enclose the temperature range between 22 and 50 K and the dashed lines connect two separate features that appear in the same spectrum.

observations of the CO\(_2\) asymmetric stretching mode in interstellar ice spectra can provide important additional information on the interstellar ice composition and its evolutionary history. Because the CO:CO\(_2\) environment, spectral information of this band might also contribute to a better understanding of the nature of the bc component of interstellar CO-ice (see Sect. 4).

References

Boogert, A. C. A., Blake, G. A., & Tielens, A. G. G. M. 2002, ApJ, 577, 271
Boogert, A. C. A., Pontoppidan, K. M., Lahuis, F., et al. 2004, ApJS, 154, 359
Boonman, A. M. S., van Dishoeck, E. F., Lahuis, F., & Doty, S. D. 2003, A&A, 399, 1063
Collings, M. P., Dever, J. W., Fraser, H. J., & McCoustra, M. R. S. 2003a, Ap&SS, 285, 633
Collings, M. P., Dever, J. W., Fraser, H. J., McCoustra, M. R. S., & Williams, D. A. 2003b, ApJ, 583, 1058
Decius, J. C., & Hexter, R. M. 1977, Molecular Vibrations in Crystals (McGraw-Hill)
Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., et al. 1996, A&A, 315, L341
Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., Tielens, A. G. G. M., & van Dishoeck, E. F. 1997, A&A, 328, 649
Ehrenfreund, P., Kerkhof, O., Schutte, W. A., et al. 1999, A&A, 350, 240
Elsila, J., Allamandola, L. J., & Sandford, S. A. 1997, ApJ, 479, 818
Falck, M. 1986, J. Chem. Phys., 86, 560
Fraser, H. J., Collings, M. P., Dever, J. W., & McCoustra, M. R. S. 2004, MNRAS, 353, 59
Gerakines, P. A., Schutte, W. A., Greenberg, J. M., & van Dishoeck, E. F. 1995, A&A, 296, 810
Gerakines, P. A., Whittet, D. C. B., Ehrenfreund, P., et al. 1999, ApJ, 522, 357
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35
Nummelin, A., Whittet, D. C. B., Gibb, E. L., Gerakines, P. A., & Chiar, J. E. 2001, ApJ, 558, 185
Pontoppidan, K. M., Fraser, H. J., Dartois, E., et al. 2003, A&A, 408, 981
Pontoppidan, K. M., Dullemound, C. P., van Dishoeck, E. F., et al. 2005, ApJ, 622, 463
Roser, J. E., Vidi, G., Manicó, G., & Pirronello, V. 2001, ApJ, 555, L61
Sandford, S. A., & Allamandola, L. J. 1990, ApJ, 355, 357
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Valero, G. J. 1988, ApJ, 329, 498
van Dishoeck, E. F., Helmich, F. P., de Graauw, T., et al. 1996, A&A, 315, L349
Watana, N., & Kouchi, A. 2002, ApJ, 567, 651
Watson, D. M., Kemper, F., Calvet, N., et al. 2004, ApJS, 154, 391
Whittet, D. C. B., Gerakines, P. A., Tielens, A. G. G. M., et al. 1998, ApJ, 498, L159