COMPACT SPACES WITH A \mathbb{P}-DIAGONAL

ALAN DOW AND KLAAS PIETER HART

Abstract. We prove that compact Hausdorff spaces with a \mathbb{P}-diagonal are metrizable. This answers problem 4.1 (and the equivalent problem 4.12) from [2].

Introduction

The purpose of this note is to show that a compact space with a \mathbb{P}-diagonal is metrizable.

To explain the meaning of this statement we need to introduce a bit of notation and define a few notions. For a space M (always assumed to be at least completely regular) we let $K(M)$ denote the family of compact subsets of M. Following [5] we say that a space X is M-dominated if there is a cover $\{C_K : K \in K(M)\}$ of X by compact subsets with the property that $K \subseteq L$ implies $C_K \subseteq C_L$.

In the case that we deal with, namely where M is the space of irrational numbers, we can simplify the cover a bit and make it more amenable to combinatorial treatment. The space of irrationals is homeomorphic to the product space ω^ω, where ω carries the discrete topology. We shall reserve the letter \mathbb{P} for this space.

The set \mathbb{P} is ordered coordinatewise: $f \leq g$ means $(\forall n)(f(n) \leq g(n))$. Using this order we simplify the formulation of \mathbb{P}-dominated as follows. If K is a compact subset of \mathbb{P} then the function f_K, given by $f_K(n) = \max\{g(n) : g \in K\}$, is well-defined. Using this one can easily verify that a space X is \mathbb{P}-dominated iff there is a cover $\{K_f : f \in \mathbb{P}\}$ of X by compact sets such that $f \leq g$ implies $K_f \subseteq K_g$. We shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a \mathbb{P}-diagonal if the complement of the diagonal, Δ, in X^2 is \mathbb{P}-dominated. Problem 4.1 from [2] asks whether a compact space with a \mathbb{P}-diagonal is metrizable. The authors of that paper proved that the answer is positive if X is assumed to have countable tightness, or in general if $\text{MA}(\aleph_1)$ is assumed. The latter proof used that assumption to show that X has a small diagonal, which in turn implies that X has countable tightness so that the first result applies. Thus, Problem 4.12 from [2], which asks if a compact space with a \mathbb{P}-diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The property of \mathbb{P}-domination arose in the study of the geometry of topological vector space; in [1] it was shown that if a locally convex space has a form of \mathbb{P}-domination then its compact sets are metrizable. The paper [2] contains more information and results leading up to its Problem 4.1.
The main result of [4] states that compact spaces with a \mathcal{P}-diagonal are metrizable under the assumption of the Continuum Hypothesis. The proof establishes that a compact space with a \mathcal{P}-diagonal that has uncountable tightness maps onto the Tychonoff cube $[0,1]^{\omega_1}$ and no compact space with a \mathcal{P}-diagonal maps onto the cube $[0,1]^\kappa$.

The principal result of this paper closes the gap between \aleph_1 and ω_1 by establishing that no compact space with a \mathcal{P}-diagonal maps onto $[0,1]^{\omega_1}$.

Furthermore we would like to point out that Lemma 3 establishes a Baire category type property of 2^{ω_1}: in an order-preserving cover by compact sets there are many members with non-empty interior in the G_δ-topology.

Some preliminaries

In the proof of the main lemma, Lemma 3, we need to consider three cases, depending on the values of the familiar cardinals b and δ. These are defined in terms of the mod finite order on \mathcal{P}: we say $f \leq^* g$ if $\{n : g(n) < f(n)\}$ is finite.

Then b is the minimum size of a subset of \mathcal{P} that is uncounctable with respect to \leq^*, and δ is the minimum size of a dominating (i.e., cofinal) set with respect to \leq^*.

Interestingly, δ is also the minimum size of a dominating set with respect to the coordinatewise order \leq_1; we shall use this in the proof of the main lemma. We refer to Van Douwen’s [5] for more information.

Since we shall be working with the Cantor cube 2^{ω_1} we fix a bit of notation. If I is some subset of ω_1 then $\text{Fn}(I,2)$ denotes the set of finite partial functions from I to 2. We let $2^{<\omega_1}$ denote the binary tree of countable sequences of zeros and ones. If $s \in \text{Fn}(\omega_1,2)$ then $[s]$ denotes $\{x \in 2^{\omega_1} : s \subseteq x\}$; the family $\{[s] : s \in \text{Fn}(\omega_1,2)\}$ is the standard base for the product topology of 2^{ω_1}. Similarly, if $\rho \in 2^{<\omega_1}$ then $[\rho] = \{x \in 2^{\omega_1} : \rho \subseteq x\}$, and the family $\{[\rho] : \rho \in 2^{<\omega_1}\}$ is the standard base for what is called the G_δ-topology on 2^{ω_1}; a set dense with respect to this topology will be called G_δ-dense.

When working with powers of the form I^{ω_1}, where $I = \omega$ or $I = 2$, we use π_δ to denote the projection of I^{ω_1} onto $I^{\omega_1 \setminus \delta}$.

In the proof of Lemma 3 we shall need the following result, due to Todorcević.

Lemma 1 ([6] Theorem 1.3). If $b = \aleph_1$ then ω^{ω_1} has a subset, X, of cardinality \aleph_1 such that for every $A \subseteq X^{\aleph_1}$ there are $D \subseteq [A]^{\aleph_0}$ and $\delta \in \omega_1$ such that $\pi_\delta[D] = \{d \in [\omega_1 \setminus \delta] : d \in D\}$ is dense in $\omega^{\omega_1 \setminus \delta}$. □

Theorem 1.3 of [6] is actually formulated as a theorem about b: drop the assumption $b = \aleph_1$ and replace every ω_1 and \aleph_1 by b. As explained in [6] this shows that there are natural versions of the S-space problem that do have ZFC solutions.

The lemma also holds with ω replaced by 2, simply map ω^{ω_1} onto 2^{ω_1} by taking all coordinates modulo 2. In that case the density of $\pi_\delta[D]$ can be expressed by saying that for every $s \in \text{Fn}(\omega_1 \setminus \delta,2)$ the intersection $D \cap [s]$ is nonempty.

BIG sets in 2^{ω_1}

Let us call a subset, Y, of 2^{ω_1} BIG if it is compact and projects onto some final product, that is, there is a $\delta \in \omega_1$ such that $\pi_\delta[Y] = 2^{\omega_1 \setminus \delta}$. The latter condition can be expressed without mentioning projections as follows: there is a $\delta \in \omega_1$ such that for every $s \in \text{Fn}(\omega_1 \setminus \delta,2)$ the intersection $Y \cap [s]$ is nonempty (and a dense set that is closed is equal to the whole space).
BIG sets are also big combinatorially, in the following sense.

Lemma 2. If Y is a BIG subset of $2^{<\omega_1}$ then there is a node ρ in the tree $2^{<\omega_1}$ such that $[\rho] \subseteq Y$.

Proof. Let Y be BIG and fix a δ witnessing this. After reindexing we can assume $\delta = \omega$ and we let $B_t = \{x \in 2^{<\omega_1}: t \subseteq x\}$ and $Y_t = Y \cap B_t$ for $t \in 2^{<\omega}$.

Starting from $t_0 = \langle \rangle$ and $s_0 = \emptyset$ we build a sequence $\langle t_n : n \in \omega \rangle$ in $2^{<\omega}$ and a sequence $\langle s_n : n \in \omega \rangle$ in $\text{Fn}(\omega_1 \setminus \omega, \omega)$ such that $[s_n] \subseteq \pi_\delta[Y_{t_n}]$ for all n.

Given t_n we can choose $i_n < 2$, and set $t_{n+1} = t_n \ast i_n$, such that $[s_n] \cap \pi_\delta[Y_{t_{n+1}}]$ has nonempty interior. Then choose an extension s_{n+1} of s_n such that $[s_{n+1}] \subseteq \pi_\delta[Y_{t_{n+1}}]$. With a bit of bookkeeping one can ensure that $\bigcup_n \text{dom} s_n$ is an initial segment of $\omega_1 \setminus \omega$. Let ρ be the concatenation of $\bigcup_n t_n$ and $\bigcup_n s_n$.

To see that ρ is as required let $x \in [\rho]$. By construction we have $x \in [s_n]$ for all n, so that, again for all n, there is $y_n \in Y_{t_n}$ such that y_n and x agree above $\text{dom} \rho$. If $s \in \text{Fn}(\omega_1, 2)$ determines a basic neighbourhood of x then there is an m such that $\text{dom} s \cap \text{dom} \rho$ is a subset of $\text{dom} t_m \cup \text{dom} s_m$. Then $y_n \in [s]$ for all $n \geq m$, so that the sequence $\langle y_n : n \in \omega \rangle$ converges to x, which shows that $x \in Y$. \qed

Existence of BIG sets

It is clear that a compact space is \mathbb{P}-dominated: simply let K_f be the whole space for all f. However, in our proof we shall encounter \mathbb{P}-dominating covers that may consist of proper subsets. Our next result shows that such a cover of $2^{<\omega_1}$ by compact sets must contain a BIG subset.

Lemma 3. If $\langle K_f : f \in \mathbb{P} \rangle$ is an order-preserving cover of $2^{<\omega_1}$ by compact sets then there is an f such that K_f is BIG.

Proof. We consider three cases.

First we assume $\mathfrak{d} = \aleph_1$. In this case we show outright that there are $\rho \in 2^{<\omega_1}$ and $f \in \mathbb{P}$ such that $[\rho] \subseteq K_f$. Let $\langle f_\alpha : \alpha \in \omega_1 \rangle$ be a sequence that is $\leq^*\text{-dominating}$. Working toward a contradiction we assume no ρ and f, as desired, can be found. This implies that for every ρ and every f the intersection $K_f \cap [\rho]$ is nowhere dense in $[\rho]$. Indeed, if such an intersection has interior then there is $s \in \text{Fn}(\omega_1, 2)$ such that $[s] \cap [\rho]$ is nonempty and contained in K_f. It would then be an easy matter to find $\sigma \in 2^{<\omega_1}$ that extends both ρ and s, and then $[\sigma] \subseteq K_f$.

This allows us to choose an increasing sequence $\langle \rho_\alpha : \alpha \in \omega_1 \rangle$ in $2^{<\omega_1}$ such that $[\rho_\alpha] \cap K_{f_\alpha} = \emptyset$ for all α. Then the point $x = \bigcup_\alpha \rho_\alpha$ does not belong to any K_f because the K_{f_α} are cofinal in the whole family.

Next we assume $\mathfrak{d} > \aleph_1$. We apply $\mathfrak{b} = \aleph_1$ to find a special subset X of $2^{<\omega_1}$ as in the comment after Lemma 1. In what follows, when $t \in \omega^{<\omega}$ we let $K(t)$ denote the union $\bigcup \{K_f : t \subseteq f\}$.

We choose an increasing sequence $\langle t_n : n \in \omega \rangle$ in $\omega^{<\omega}$, together with, for each n, an uncountable subset A_n of X, a countable subset D_n of A_n, and $\delta_n \in \omega_1$ such that $A_n \subseteq K(t_n)$ and for all $s \in \text{Fn}(\omega_1 \setminus \delta_n, 2)$ the intersection $D_n \cap [s]$ is nonempty. Simply use that $K(t) = \bigcup_k K(t \ast k)$ for all t.

Let $\delta = \sup \delta_n$ and enumerate each D_n as $\langle d(n, m) : m \in \omega \rangle$.

For each $s \in \text{Fn}(\omega_1 \setminus \delta, 2)$ each D_n intersects $[s]$ so that we can define $h_s \in \omega^\omega$ by $h_s(n) = \min \{d(n, m) : m \in [s]\}$.

By $\mathfrak{d} > \aleph_1$ there is $g \in \omega^\omega$ such that $\{n : h_s(n) < g(n)\}$ is infinite for all s.
Now let \(E = \{ (d(n, m) : m < g(n), n \in \omega) \} \) and observe that \(E \) meets \([s]\) for every \(s \in \text{Fu}(\omega_1 \setminus \delta, 2) \), so that \(\pi_{\delta}[E] \) is dense in \(2^{\omega_1 \setminus \delta} \).

For each \(n \) there is \(f_n \in \mathbb{P} \) that extends \(t_n \) and is such that \(\{d(n, m) : m < g(n)\} \) is a subset of \(K_{f_n} \). As \(f_m(n) = t_{n+1}(n) \) if \(m > n \) we may define \(f \in \mathbb{P} \) by \(f(n) = \max\{ f_m(n) : m \in \omega \} \) for all \(n \). Thus we find a single \(f \) such that \(E \subseteq K_f \), which immediately implies that \(K_f \) is BIG.

Our last case is when \(b > \aleph_1 \). We let \(A \) be the set of members, \(t \), of \(\omega^{<\omega} \) for which there is a \(\rho \in 2^{\omega_1} \) such that \(K(t) \cap [\rho] \) is \(G_\delta \)-dense in \([\rho]\).

As \(K(\emptyset) = 2^{\omega_1} \) we have \(\emptyset \in A \).

We show that if \(t \in A \), as witnessed by \(\rho \), then there is an \(m_t \) such that \(t * n \in A \) whenever \(n \geq m_t \); as \(K(t * m) \subseteq K(t * n) \) whenever \(m \leq n \) it follows that we need to find just one \(n \) such that \(t * n \in A \). Build, recursively, an increasing sequence \(\rho = \rho_0 \subseteq \rho_1 \subseteq \rho_2 \subseteq \cdots \) in \(2^{\omega_1} \) such that \(\rho_0 = \rho \) and, if possible, \([\rho_{n+1}] \cap K(t * n) = \emptyset \); if such an \(\rho_{n+1} \) cannot be found then \(K(t * n) \cap [\rho_n] \) is \(G_\delta \)-dense in \([\rho_n] \) and we are done. So assume that the recursion does not stop and set \(\bar{\rho} = \bigcup_n \rho_n \); then \([\bar{\rho}] \) is disjoint from \(\bigcup_n K(t * n) \), which is equal to \(K(t) \). This would contradict \(G_\delta \)-density of \(K(t) \) in \([\rho]\).

We can define \(h \in \mathbb{P} \) recursively by \(h(n) = m_{h|n} \), together with an increasing sequence \(\langle n_h : n \in \omega \rangle \) in \(2^{\omega_1} \) such that \(K(h \upharpoonright n) \cap [\rho_n] \) is \(G_\delta \)-dense in \([\rho_n] \). Let \(\rho = \bigcup_n \rho_n \), then \(K(h \upharpoonright n) \cap [\rho] \) is \(G_\delta \)-dense in \([\rho] \) for all \(n \).

Let \(\delta = \text{dom} \rho \) and let \(s \in \text{Fu}(\omega_1 \setminus \delta, 2) \). We know that \(K(h \upharpoonright n) \cap [\rho] \cap [s] \neq \emptyset \) for all \(n \). So for every \(n \) we can take \(h_{s,n} \in \mathbb{P} \) that extends \(h \upharpoonright n \) and is such that \(K_{h_{s,n}} \cap [\rho] \cap [s] \neq \emptyset \). Because \(h_{s,n}(m) = h(m) \) if \(n > m \) we can define \(h_s \in \mathbb{P} \) by \(h_s(m) = \max h_{s,n}(m) \).

As \(b > \aleph_1 \) we can find \(f \geq h \) such that \(h_s \leq^* f \) for all \(s \). We claim that \(K_f \cap [\rho] \cap [s] \neq \emptyset \) for all \(s \), so that \([\rho] \subseteq K_f \) (the closed set \(K_f \cap [\rho] \) is dense in \([\rho]\)).

To see this take an \(s \) and let \(n \) be such that \(f(m) \geq h_{s,n}(m) \) for \(m \geq n \). It follows that \(f(m) \geq h_s(m) = h_{s,n}(m) \) for \(m \leq n \) and \(f(m) \geq h(m) \geq h_{s,n}(m) \) for \(m \geq n \). This implies that \(K_f \) meets \([\rho] \cap [s]\).

\(\square\)

Remark 4. The previous result is valid for all BIG sets: simply work inside \([\rho]\), where \(\rho \) is as in the conclusion of Lemma 2.

Remark 5. Lemma 3 generalises itself to the following situation: let \(X \) be compact, let \(\varphi : X \rightarrow 2^{\omega_1} \) be continuous and onto, and let \(\langle K_f : f \in \mathbb{P} \rangle \) be an order-preserving cover of \(X \) by compact sets. Then there is an \(f \) such that \(\varphi[K_f] \) is BIG.

One can go one step further: take a closed subset \(Y \) of \(X \) such that \(\varphi[Y] \) is BIG and conclude that for some \(f \in \mathbb{P} \) the image \(\varphi[Y \cap K_f] \) is BIG. Simply take \(\rho \) such that \([\rho] \subseteq \varphi[Y] \) and work in the compact space \(Y \cap \varphi^{-*}[\langle [\rho] \rangle] \).

Remark 6. The reader may have pondered the need to consider three cases in the proof of Lemma 3. The cases \(\delta = \aleph_1 \) and \(b > \aleph_1 \) lead to fairly straightforward arguments because each give one a definite handle on things, be it a cofinal set of size \(\aleph_1 \) or the knowledge that all \(\aleph_1 \)-sized sets are bounded. The intermediate case, with just one unbounded set of size \(\aleph_1 \), is saved by Todorčević’s non-trivial translation of such a set into a subset of \(2^{\omega_1} \) that is already quite big.

It would be interesting to see if Lemma 3 can be proved using just one argument.
THE MAIN RESULT

Now we show that that a compact space with a \(\mathbb{P} \)-diagonal does not admit a continuous map onto \([0, 1]^{\omega_1}\) and deduce our main result.

Theorem 7. Assume \(X \) is a compact space that maps onto \(2^{\omega_1} \). Then \(X \) does not have a \(\mathbb{P} \)-diagonal.

Proof. Let \(\varphi : X \to 2^{\omega_1} \) be continuous and onto. We use Remark 5 and say that a closed subset, \(Y \), of \(X \) is BIG if its image \(\varphi[Y] \) is. That is, \(Y \) is BIG if there is a \(\delta \in \omega_1 \) such that \(Y \cap \varphi^{-1}[[s]] \neq \emptyset \) for all \(s \in \text{Fn}(\omega_1 \setminus \delta, 2) \).

We observe the following: if \(Y \) is BIG, as witnessed by \(\delta \), then for every \(s \in \text{Fn}(\omega_1 \setminus \delta, 2) \) the intersection \(Y \cap \varphi^{-1}[[s]] \) is BIG as well; this will be witnessed by any \(\gamma \) that contains the domain of \(s \).

In order to prove our theorem we assume that \(X \) does have a \(\mathbb{P} \)-diagonal, witnessed by \(\langle K_f : F \in \mathbb{P} \rangle \), and reach a contradiction.

In order for the final recursion in the proof to succeed we need some preparation. Enumerate \(\omega^{<\omega} \) in a one-to-one fashion as \(\langle t_n : n \in \omega \rangle \), say in such a way that \(t_m \subseteq t_n \) implies \(m \leq n \) (so that \(t_0 = 1 \)). We set \(Z_0 = X \) and given a BIG set \(Z_n \) we determine a BIG set \(Z_{n+1} \) as follows. We check if there is a BIG subset \(Z \) of \(Z_n \) with the property that for no point \(z \) in \(Z \) there is a BIG subset \(Y \) of \(Z \) and an \(f \in \mathbb{P} \) with \(t_n \subset f \) such that \(\{z\} \times Y \subseteq K_f \). If there is such a \(Z \) then every BIG subset of \(Z_{n+1} \) also has this property so we can pick one that is a proper subset of \(Z_{n+1} \) and let it be \(Z_{n+1} = Z_n \). In the end we set \(Y = \bigcap_n Z_n \). The set \(Y \) is BIG: for each \(n \) we have \(\gamma_n \in \omega_1 \) witnessing BIGness of \(Z_n \), then \(\bar{\delta}_n = \sup \gamma_n \) will witness BIGness of \(Y \).

Pick \(y_0 \in Y \), take \(i_0 \in 2 \) distinct from \(\varphi(y_0)(\bar{\delta}_0) \), let \(s_0 = \{\bar{\delta}_0, i_0\} \), and set \(Y_0 = Y \cap \varphi^{-1}[[s_0]] \). By the observation above, \(Y_0 \) is BIG. Also: \(\varphi(y_0) \notin \varphi[Y_0] \), so that \(\{y_0\} \times Y_0 \) is disjoint from the diagonal, \(\Delta \), of \(X \). By Remark 5 we can find a BIG subset \(Y_1 \) of \(Y_0 \) and \(f_0 \in \mathbb{P} \) such that \(\{y_0\} \times Y_1 \subseteq K_{f_0} \).

The point \(y_0 \) belongs to all \(Z_n \) and for any \(n \) such that \(t_n \supseteq f_0 \) (meaning that \(t_n(i) \supseteq f_0(i) \) for \(i \in \text{dom}(t_n) \)) it, the point \(y_0 \), witnesses that \(Z_{n+1} = Z_n \) in the following sense. The reason for having \(Z_{n+1} \) be a proper subset of \(Z_n \) would be that for all \(z \in Z \) and all BIG \(Z' \subseteq Z \) and all \(f \in \mathbb{P} \) with \(t_n \subset f \) we would have \(\{z\} \times Z' \subseteq K_f \). However, \(y_0 \) and \(Y_1 \) and \(f_0 \) show that this did not happen.

The conclusion therefore is that for every such \(t_n \) we know that every BIG \(Z \subseteq Y \) does have an element \(z \) and a BIG subset \(Z' \) such that \(\{z\} \times Z' \subseteq K_f \) for some \(f \in \mathbb{P} \) that extends \(t_n \).

This allows us to construct sequences \(\langle y_n : n \in \omega \rangle \) (points in \(Y \)), \(\langle Y_n : n \in \omega \rangle \) (BIG subsets of \(Y \)), and \(\langle f_n : n \in \omega \rangle \) (in \(\mathbb{P} \)) such that

1. \(y_n \in Y_n \), except for \(n = 0 \),
2. \(Y_{n+1} \subseteq Y_n \),
3. \(\{y_n\} \times Y_{n+1} \subseteq K_{f_n} \),
4. \(f_{n+1} \supseteq f_n \) and \(f_{n+1} \supseteq f_n | (n+1) \)

As before we note that \(f_m(n) = f_n(n) \) whenever \(m \geq n \), so we can define a function \(f \in \mathbb{P} \) by \(f(n) = \max\{f_m(n) : m \in \omega\} \). Note that \(f \supseteq f_n \) for all \(n \) so that

\[\{y_n\} \times Y_{n+1} \subseteq K_{f_n} \subseteq K_f \]

for all \(n \).
It follows that $\langle y_m, y_n \rangle \in K_f$ whenever $m < n$. This shows that $\langle y_m, y \rangle \in K_f$ whenever $m \in \omega$ and y is a cluster point of $\langle y_n : n \in \omega \rangle$. But then $\langle y, y \rangle \in K_f$ for every cluster point y of $\langle y_n : n \in \omega \rangle$. However, K_f was assumed to be disjoint from the diagonal of X. □

We collect all previous results in the proof of our main theorem.

Theorem 8. Every compact space with a \mathbb{P}-diagonal is metrizable.

Proof. As noted in the introduction the authors of [4] proved that a non-metrizable compact space with a \mathbb{P}-diagonal will map onto the Tychonoff cube $[0, 1]^{\omega_1}$ or, equivalently, that it has a closed subset that maps onto 2^{ω_1}.

However that closed subset would be a compact space with a \mathbb{P}-diagonal that does map onto 2^{ω_1}. Theorem 7 says that this is impossible. □

References

[1] B. Cascales and J. Orihuela, *On compactness in locally convex spaces*, Math. Z. 195 (1987), no. 3, 365–381, DOI 10.1007/BF01161762. MR895307 (88i:46021)

[2] B. Cascales, J. Orihuela, and V. V. Tkachuk, *Domination by second countable spaces and Lindelöf Σ-property*, Topology Appl. 158 (2011), no. 2, 204–214, DOI 10.1016/j.topol.2010.10.014. MR2739891 (2011j:54018)

[3] Eric K. van Douwen, *The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR776622 (87f:54008)

[4] Alan Dow and David Guerrero Sánchez, *Domination conditions under which a compact space is metrisable*, Bull. Aust. Math. Soc. 91 (2015), no. 3, 502–507, DOI 10.1017/S0004972714001130. MR3338973

[5] V. V. Tkachuk, *A space $C_\mu(X)$ is dominated by irrationals if and only if it is K-analytic*, Acta Math. Hungar. 107 (2005), no. 4, 253–265, DOI 10.1007/s10474-005-0194-y. MR2150789 (2006e:54007)

[6] Stevo Todorcević, *Partition problems in topology*, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR980949 (90d:04001)