New Constraints on Radiative Decay of Long-Lived Particles in Big Bang Nucleosynthesis with New 4He Photodisintegration Data

Motohiko Kusakabe$^{1,2,+}$, Toshitaka Kajino1,2,3, Takashi Yoshida1, Tatsushi Shima4, Yasuki Nagai1 and Toshiteru Kii5

1Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
2Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588, Japan
4Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
5Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan

(Dated: June 11, 2009)

A recent measurement of 4He photodisintegration reactions, 4He$(\gamma,p)^3$H and 4He$(\gamma,n)^3$He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at $E_{\gamma} \lesssim 30$ MeV. We study big-bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of 4He as well as previous data. The sensitivity of the yields of all light elements D, T, 3He, 4He, 6Li, 7Li and 7Be to the cross sections is investigated. The change of the cross sections has an influence on the non-thermal yields of D, 4He and 4He. On the other hand, the non-thermal 6Li production is not sensitive to the change of the cross sections at this low energy, since the non-thermal secondary synthesis of 6Li needs energetic photons of $E_{\gamma} \gtrsim 50$ MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of the candidates of the production mechanism of 6Li observed in metal-poor halo stars (MPHSs). In the parameter region of the radiative particle lifetime and the emitted photon energy which satisfies the 6Li production above the abundance level observed in MPHSs, the change of the photodisintegration cross sections at $E_{\gamma} \lesssim 30$ MeV as measured in the recent experiment leads to $\sim 10\%$ reduction of resulting 3He abundance, whereas the 7Li abundance does not change for this change of the cross sections of 4He$(\gamma,p)^3$H and 4He$(\gamma,n)^3$He. The 6Li abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy $E_{\gamma} \gtrsim 50$ MeV is highly required.

PACS numbers: 25.10.+s, 26.35.+c, 98.80.Cq, 98.80.Es

I. INTRODUCTION

In standard cosmology, the universe is thought to have experienced big-bang nucleosynthesis (BBN) at a very early stage. The light nuclides D, T, 3He, 4He and 7Li+7Be are produced in the standard BBN (SBBN) at observable levels, while this model does not make appreciable quantities of 6Li. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite has measured the temperature fluctuations of the cosmic microwave background (CMB) radiation, and parameters characterizing the standard big bang cosmology have been deduced $[1,2]$ from these data. For the baryon-to-photon ratio η_{CMB} deduced from fits to the CMB, the BBN model predicts abundances of the light elements except for 6Li and 7Li which are more-or-less consistent with those inferred from astronomical observations.

Spectroscopic lithium abundances have been detected in the atmospheres of metal-poor stars. Nearly constant abundances of 6Li and 7Li in metal-poor Population II (Pop II) stars have been inferred. There is about a factor of three under-abundance of 7Li in metal-poor halo stars (MPHSs) with respect to the SBBN prediction when using the baryon-to-photon ratio η_{CMB}. This is called the 7Li problem $[3,4,5]$. In addition, spectroscopic measurements obtained with high resolution indicate that MPHSs have a very large abundance of 6Li, i.e. at a level of about 3 orders of magnitude larger than the SBBN prediction of the 6Li abundance, which is called the 6Li problem $[6,7]$. Cayrel et al. $[8]$ studied line asymmetries to be generated by convective Doppler shifts in stellar atmospheres, and found that the convective asymmetry might mimic the presence of 6Li and an error of 6Li/7Li amounts to a few percent that is roughly comparable to the values estimated from MPHSs. The 6Li problem, therefore, may not exist in fact, since the convective asymmetry could give a possible solution to the 6Li problem within the framework of SBBN.

The possibility of 6Li production in non-standard BBN triggered by the decay of unstable relic neutral mass particles X has been studied $[8,9,10,11,12,13,14,15,16]$. Several critical constraints on the properties of X particles were derived from the studies of radiative decay $[10,11,12]$, hadronic decay or annihilation $[13,14,15,16]$ of X particles along with the BBN constraints on the light elements. These particle decay induces electromagnetic and/or hadronic showers triggering the destruction of preexisting nuclei and the production of different nuclear species. A recent de-
tained study of the radiative decay and its influence on the ^6Li production has found a parameter region of lifetime $\tau_X \sim 10^8 - 10^{12}$ s and abundance parameter $\zeta_X \sim 10^{-13} - 10^{-12}$ GeV where the non-thermal nucleosynthesis of ^6Li can explain the observed abundance level in MPHSs. This parameter region satisfies the two observational constraints on the CMB energy spectrum and the primordial light element abundances. Three important characteristics were found for the interesting parameter region. First, ^3He and t are the seeds for ^9Li in the processes $^4\text{He}(^1\text{H},p)^7\text{Li}$ and $^4\text{He}(t,n)^6\text{Li}$. Second, the excess of ^6Li abundance is therefore regulated by the amounts of ^3He and t which are produced by the non-thermal photodisintegration of ^4He, i.e., $^4\text{He}(\gamma,p)^3\text{H}$ and $^4\text{He}(\gamma,n)^3\text{He}$. Hence, the radiative decay model which results in ^6Li-production above the MPHS abundance level is also reflected by an enhancement of the ^3He abundance with respect to the SBBN value. Third, the radiative decay does not resolve the ^7Li problem. It is therefore concluded that other mechanisms such as the stellar depletion of the lithium isotopes in the atmosphere of MPHSs or a new burst of late-time BBN on the exotic X-bound nuclei in the case of negatively-charged leptonic particles $X = [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]$ must operate to lower the ^7Li abundance.

A recent measurement of ^4He photodisintegration reactions, $^4\text{He}(\gamma,p)^3\text{H}$ and $^4\text{He}(\gamma,n)^3\text{He}$ with laser-Compton photons shows much smaller cross sections than those estimated from the other previous experiments and those summarized in Ref. at the photon energies 20 MeV $\lesssim E_\gamma \lesssim 30$ MeV. If these non-thermal photon energies dominate the destruction of ^4He, the production of ^3He and t and also the subsequent production of ^9Li via $^4\text{He}(^3\text{He},p)^7\text{Li}$ and $^4\text{He}(t,n)^6\text{Li}$, this would change the parameter region of τ_X and ζ_X of massive relic particles X so that the resultant non-thermal nucleosynthesis of ^6Li can explain the abundance level observed in MPHSs. The first purpose of this article is to study the sensitivity of non-thermal BBN of all light elements D, T, ^3He, ^4He, ^6Li, ^7Li and ^7Be to the photodisintegration cross sections of ^4He. The second purpose is to infer the uncertainties of the two parameters τ_X and ζ_X of massive relic particles X which would arise from the uncertainties of the measured reaction cross sections.

In Sec. II we present a result of a new measurement of ^4He photodisintegration cross sections. In Sec. III we briefly explain the model of non-thermal nucleosynthesis and the calculated result of the effect of the considered change of the photodisintegration cross sections. In Sec. IV we summarize our conclusion and offer an outlook for measurements of ^4He photodisintegration.

II. $^4\text{He}(\gamma,p)^3\text{H}$ AND $^4\text{He}(\gamma,n)^3\text{He}$ CROSS SECTIONS

So far the cross section data of the photodisintegration of ^4He have been obtained from the direct photodisintegration experiments as well as the inverse radiative capture experiments. Indirect probes such as the (p,p') reaction and the $(^7\text{Li},^7\text{Be})$ reaction have also been applied to investigate the property of the dipole excitations of ^4He.

The direct experiments have been performed by detecting either charged fragments (p, ^3H, ^3He) or neutrons from the photodisintegration reactions. As incident real photon beams, either continuous bremsstrahlung photons or quasi-monochromatic ones generated with various methods such as the photon tagging, the positron annihilation in flight, and the laser Compton-backscattering were used. Since the energies of the emitted particles are small due to high threshold energies of the photodisintegrations of ^4He, many efforts have been devoted to detect those particles clearly from the backgrounds caused by the incident high-energy γ-rays. In the inverse experiments, the reaction cross sections are much smaller than the photodisintegrations because of the difference of the phase space factors, and therefore the measurements have been performed with great care to the influence of the background γ-rays as well as the determinations of the experimental parameters such as the detector efficiency for high-energy capture γ-rays, the effective target thicknesses, the incident beam intensity, and so on.

In spite of the above experimental efforts, there have been large discrepancies in the previous data as shown in Fig. I. Especially in the energy region below ~ 30 MeV, the data show either a pronounced peak at around 25–26 MeV or a rather smooth curve as a function of the excitation energy. In order to determine the cross sections more accurately, Shima et al. recently performed measurements using quasi-monochromatic laser-Compton photons and a time projection chamber (TPC) containing a gas mixture of He and CD$_4$ γ-ray beam, the background due to low-energy γ-rays is very small.

The TPC gas serves as an active target, low-energy charged fragments from the photodisintegrations can be detected simultaneously for $^4\text{He}(\gamma,p)$ and $^4\text{He}(\gamma,n)$ with efficiencies of nearly 100% and a solid angle of 4π. The absolute sensitivity of the measurement can be accurately checked with the $D(\gamma,n)p$ reaction, whose cross section is well known in the energy region of the present interest.

Previously Shima et al. measured the cross sections in the γ-ray energy region from 20 to 30 MeV using the
laser-Compton γ-ray source at the National Institute of Advanced Industrial Science and Technology (AIST) [36].

As shown in Fig. 1 the cross sections from the experiments are found to monotonically increase as a function of the γ-ray energy up to ~ 30 MeV, being quite different from the standard fitting functions previously evaluated by Cyburt et al. [11]. With the above mentioned situation in mind, the sensitivity of the BBN to the photodisintegration cross sections of 4He was studied in the present paper by using the recent experimental results as well as the previously adopted standard fitting functions in Ref. [11].

The present excitation functions were determined as follows. Since no sharp resonance has been observed in the excitation functions of the photodisintegration of 4He in the energy region up to ~ 100 MeV, we assumed the excitation functions can be approximated by a fitting function in Ref. [11], i.e.,

$$
\sigma(E_\gamma) = \sigma_c \left|Q\right|^a \left(E_\gamma - \left|Q\right|\right)^b \frac{1}{E_{\gamma0}^{a+b}}.
$$

Three parameters, σ_c, a and b are determined by fitting this function to the data measured at AIST [36] and the data measured at high energies of $E_\gamma > 30$ MeV [42, 43, 44] by means of the χ^2-minimization method. This function is suitable for use in numerical calculation because it has no discontinuity and no divergence at high energies. In this study we take published values for errors of cross sections at all fitting procedures.

The most probable fitting functions for the cross sections of the 4He($\gamma,p)^3$H and 4He($\gamma,n)^3$He reactions turn out to be

$$
\sigma(E_\gamma) = 128.9 \text{ mb} \left|Q\right|^{4.524} \left(E_\gamma - \left|Q\right|\right)^{2.512} \frac{1}{E_{\gamma0}^{4.524+2.512}},
$$

and

$$
\sigma(E_\gamma) = 31.68 \text{ mb} \left|Q\right|^{3.663} \left(E_\gamma - \left|Q\right|\right)^{1.580} \frac{1}{E_{\gamma0}^{3.663+1.580}},
$$

respectively, and they are plotted in Fig. 1. Reaction Q-values are taken from experiments as $\left|Q\right| = 19.8139$ MeV and $\left|Q\right| = 20.5776$ MeV, respectively. We take these two cross sections as our recommended cross sections in this paper.

The dash-dotted curves are standard expressions from Ref. [11]. Parameter values are given as $\sigma_c = 19.5$ mb, $a = 3.5$ and $b = 1.0$ for 4He($\gamma,p)^3$H reaction, and $\sigma_c = 17.1$ mb, $a = 3.5$ and $b = 1.0$ for 4He($\gamma,n)^3$He reaction.

As another implementation, we fit all data adopted in this study including the data measured at AIST [36] at low energies of $E_\gamma < 30$ MeV and previous ones obtained in other experiment. The fitting parameters turn out to be $\sigma_c = 61.82$ mb, $a = 4.300$, and $b = 1.756$ for 4He($\gamma,p)^3$H reaction, and $\sigma_c = 31.38$ mb, $a = 3.651$, and $b = 1.583$ for 4He($\gamma,n)^3$He reaction. The derived cross sections are displayed in Fig. 2.

One can see in Fig. 1 and Fig. 2 that there is a large dispersion in experimental data at low photon energies of 20 MeV $\lesssim E_\gamma \lesssim 40$ MeV. This dispersion is much larger than $\pm 1\sigma$ deviation of any single fitting function. We therefore adopt the above three functions in BBN calculations and compare the calculated results with one another in order to study the sensitivity of BBN with the radiative particle decay to the 4He photodisintegration reaction cross sections.

III. BBN OF THE LIGHT ELEMENTS

A. Model

We assume the creation of high energy photons from the radiative decay of a massive particle X with a mass M_X and a mean life of $\tau_X = 10^9 - 10^{12}$ s. We represent the emitted photon energy by $E_{\gamma0}$. We assume that the decaying dark particle is non-relativistic, and almost at rest in the expanding universe.

A decay-produced energetic photon interacts with the cosmic background and induces an electromagnetic cascade shower. The faster processes, pair production
through background photons γ_{bg} ($\gamma \gamma_{bg} \rightarrow e^+e^-$) and inverse Compton scattering of produced electrons and positrons through background photons ($e^+\gamma_{bg} \rightarrow e^+\gamma$), produce electromagnetic showers and the non-thermal photon spectrum realizes a quasi-static equilibrium [45, 46]. The attained zeroth generation photon spectrum is [47].

$$p_{\gamma}(E_{\gamma}) \approx \begin{cases} K_0(E_X/E_{\gamma})^{1.5} & \text{for } E_{\gamma} < E_X \\ K_0(E_X/E_{\gamma})^{2.0} & \text{for } E_X \leq E_{\gamma} < E_C \\ 0 & \text{for } E_C \leq E_{\gamma} \end{cases}$$

where $K_0 = E_{\gamma 0}/(E_X^2 [2 + \ln(EC/E_X)])$ is a normalization constant fixed by energy conservation of the injected photon energy. This spectrum has a break in the power law at $E_{\gamma} = E_X$ and an upper cutoff at $E_{\gamma} = E_C$. We take the same energy scaling with the temperature T of the background photons as in [45], i.e. $E_X = m_e^2/80T$ and $E_C = m_e^2/22T$ at the temperature T, where the cascade spectrum was calculated by numerically solving a set of Boltzmann equations. Here m_e is the rest mass of an electron.

Because the rates of electromagnetic interactions are faster than the cosmic expansion rate, the photon spectrum $p_{\gamma}(E_{\gamma})$ is modified into a new quasi-static equilibrium (QSE). This distribution is given by

$$N_{\gamma}^{\text{QSE}}(E_{\gamma}) = \frac{n_X p_{\gamma}(E_{\gamma})}{\Gamma_{\gamma}(E_{\gamma})/\tau_X},$$

where $n_X = n_0 X(1+z)^3 \exp(-t/\tau_X)$ is the number density of the decaying particles at a redshift z. The quantity Γ_{γ} is the energy degradation rate through three slower processes; Compton scattering ($\gamma e_{bg}^+ \rightarrow \gamma e^+$), Bethe-Heitler ordinary pair creation in nuclei ($\gamma N_{bg} \rightarrow e^+e^-N$), and double photon scattering ($\gamma\gamma_{bg} \rightarrow \gamma\gamma$) for the zeroth-generation photons. We use this steady state approximation for the cosmic non-thermal constituent of photons.

The equation for the production and destruction of nuclei by non-thermal photons is given by

$$\frac{dY_A}{dt} = \sum_T N_{AC} [T\gamma]_A Y_T - \sum_p [A\gamma]_p Y_A,$$

where we have defined the reaction rate

$$[T\gamma]_A = \frac{\gamma_0^0 X}{\tau_X} \left(\frac{1}{2H_0 t} \right)^{3/2} \exp(-t/\tau_X)$$

and

$$S_\gamma^{\text{QSE}}(E_{\gamma}) = \frac{\tau_X}{E_0^3 n_X} N_{\gamma}^{\text{QSE}}(E_{\gamma}).$$

$Y_i \equiv n_i/n_B$ is the mole fraction of a particular nuclear species i, and n_i and n_B are number densities of nuclei i and baryons. The first and second term on the right-hand side are the source ($\gamma + T \rightarrow A + C$) and sink ($\gamma + A \rightarrow P + D$) terms for nucleus A. E_γ is a non-thermal photon energy. The cross section of the process $\gamma + T \rightarrow A + C$ is denoted by $\sigma_{\gamma + T \rightarrow A}(E_{\gamma})$. Further we use N_{AC} to represent the number of identical species of nuclei in a production or destruction process; $N_{AC} = 2$ when particles A and C are identical and $N_{AC} = 1$ when they are not. For example, in the process $^4\text{He}(\gamma,d)^1\text{H}$, $N_{DD} = 2$. We defined $H_r \equiv \sqrt{8\pi G\rho_{\text{rad}}/3}$, where the superscript denotes present values ($z = 0$), therefore ρ_0^0 and ρ_{rad}^0 are the present photon number density and present radiation density of the cosmic background radiation (CBR), respectively. We defined $\zeta_X = (n_0^X/n_0^\gamma) E_{\gamma 0}$.

The equation describing the secondary production and destruction is obtained by taking account of the energy loss of nuclear species while propagating through the background. In general, because of the high energy loss rate, the primary particles establish a quasi-static equilibrium. The abundance evolution is then represented by

$$\frac{dY_S}{dt} = \sum_{T',A,T} Y_{T'} Y_{T''} \frac{N_{AX1} N_{SX2}}{N_{AT'}} [T'(A)T'']_S - (\text{sink term}),$$

where $[T'(A)T'']_S$ is the reaction rate for a secondary process $T'(\gamma,X_1)A(T'',X_2)$ with any combination of particles X_1, A, and X_2. For example, $[\alpha (\gamma,n)^4\text{He} + ^3\text{He} + ^3\text{He} + ^3\text{Li}]$ for a secondary process $^4\text{He}(\gamma,n)^7\text{He} + ^3\text{He} + ^3\text{Li}$ is given by

$$[\alpha \alpha]_{^3\text{He} + ^3\text{Li}} = \frac{\eta (n_0^\gamma)^2 \zeta_X}{\tau_X} \left(\frac{1}{2H_0 t} \right)^{3/2} \exp(-t/\tau_X).$$
\[\times \int \frac{\mathcal{E}_{\gamma}(E_{\gamma})}{E_{\gamma}} \frac{\sigma_{3H}\alpha_{\alpha}(p)^{\alpha}Li(E_{3H})}{b_{3H}(E_{3H})} \\frac{dE_{3H}}{dE_{p}} \]

\[\times \int \mathcal{E}_{3H}(E_{3H}) \frac{dE_{3H}}{dE_{3H}} \frac{\sigma_{3H}\alpha_{\alpha}(p)^{\alpha}Li(E_{3H})}{b_{3H}(E_{3H})} \]

\[= \frac{\sigma_{2\gamma}}{\sigma_{2\gamma} + \sigma_{3C}} \times \frac{N_{\gamma}^{QSE}/N_{\gamma}^{QSE}(20\text{MeV})}{2} \]

where \(n_B \) is the baryon-to-photon ratio: \(n_B = n_0^B/n_0^\gamma \), and \(b_A \) is the velocity of the primary particle \(A \). The energy loss rate of the primary particle by Coulomb scattering, \(\mathcal{E}_A(E_{\gamma}) \) is the energy of the nucleon \(A \) produced by the photodisintegration process \(\gamma + T \rightarrow A \), and \(\mathcal{E}_A^{-1}(E_{\gamma}) \) is the energy of the non-thermal photons which produce the primary species \(A \) with energy \(E_{\gamma} \). \(\mathcal{E}_A(E_{\gamma}) \) and \(\mathcal{E}_A^{-1}(E_{\gamma}) \) are derivable in the limit of low energy scattering, where the relevant nuclei are non-relativistic, i.e. \(\mathcal{E}_{3H}(E_{\gamma}) = (E_{\gamma} - E_{\gamma,th})/4 \) and \(\mathcal{E}_{3H}^{-1}(E_{3H}) = 4E_{3H} + E_{\gamma,th} \), where \(E_{\gamma,th} \) is the threshold energy of primary photodisintegration reaction.

B. Constraints on the radiative decay of long-lived particles

We focus on the non-thermal production of mass 3 nuclides, \(^3\text{H}\) and \(^3\text{He}\), and secondary production of \(^6\text{Li}\). In Fig. 3, photodisintegration cross sections of \(^4\text{He}(\gamma,n)^3\text{He}\) and \(^4\text{He}(\gamma,p)^3\text{H}\) are shown as a function of non-thermal photon energy \(E_{\gamma} \) (above threshold energy 20 MeV). These cross sections are fitted with data from the laser-Compton photon experiment (solid curves) and those from Ref. 11 (dotted curves). Dashed line is the energy spectrum of non-thermal photon produced by the radiative decay when the cosmic temperature is 10 eV corresponding to the decay life \(\tau_{\gamma} \sim 10^{10} \text{ s} \). It is normalized with respect to intensity at \(E_{\gamma} = 20 \text{ MeV} \). Since the yield of non-thermally produced mass 3 nuclides is proportional to the integration of the non-thermal photon spectrum times photodisintegration cross sections, the change of photodisintegration cross sections at \(E_{\gamma} \approx 30 \text{ MeV} \) has relatively large influence on the resulting \(^3\text{He}\) abundance.

On the other hand, non-thermal secondary production of \(^6\text{Li}\) is not affected by \(^4\text{He}\) photodisintegration cross sections at low energies. When we consider the non-relativistic limit of nuclear reactions, the center of mass energy \(E_{cm} \) in \(^3\text{He}(\alpha,p)^6\text{Li}\) and \(^3\text{H}(\alpha,n)^6\text{Li}\) reactions is given by

\[E_{cm} = \frac{1}{2} m_{\mu} \left(E_{\mu} - 2 m_3 m_4 v_3^2 \right) \approx \frac{4}{7} E_{3}, \]

where \(\mu \), \(m_3 \) and \(m_4 \) are the reduced mass, the mass of a nucleus \(^3\text{A} \) (\(t \) or \(^3\text{He}\)) and that of \(^4\text{He} \), \(v \) and \(v_3 \) are the relative velocity and the velocity of \(^3\text{A} \), \(E_3 \) is the kinetic energy of \(^3\text{A} \), respectively. The energy of \(^3\text{A} \) generated in primary \(^4\text{He}(\gamma,n)^3\text{He}\) and \(^4\text{He}(\gamma,p)^3\text{H}\) reactions, i.e.,
FIG. 4: Contours in the \((\tau_X, \zeta_X)\) plane corresponding to the adopted constraints for the primordial abundances in the present calculation with smaller cross sections of \(^4\)He photodisintegration Eqs. (2) and (3) (thick lines). Contours for the mass fraction of \(^3\)He \(Y = 0.232\) and the number ratios of \(^3\)He/H\(\approx 3.1 \times 10^{-5}\), \(D/H \approx 5.2 \times 10^{-5}\), \(D/H \approx 1.4 \times 10^{-5}\) (dashed line), and \(^7\)Li/H\(\approx 1.1 \times 10^{-10}\) are shown. The notation “over” and “low” identifies overproduced and underproduced regions, respectively. The same constraints on the result calculated with larger standard cross sections of \(^4\)He photodisintegration \(^{12}\) is shown as dotted lines. The region above the thick solid line is excluded by the consistency requirement of the CMB with a blackbody. The contour of \(^6\)Li/H\(= 6.6 \times 10^{-12}\) is also drawn. The gray region above the contour and below the nucleosynthesis plus CMB constraints is the allowed region where the abundant \(^6\)Li is produced.

1. Effect of uncertainties from low energy reactions

Figure 3 shows contours corresponding to the constraints for the primordial abundance \(^{12}\) for the present result with our recommended smaller cross sections of \(^4\)He photodisintegration Eqs. (2) and (3) (thick lines). For example, a contour of the \(^4\)He mass fraction \(Y > 0.232\) is shown in the \((\tau_X, \zeta_X)\) plane. The region above this contour should be excluded for \(X < 0.232\). The contours of \(^7\)Li/H lower limit, \(^7\)Li/H\(> 1.1 \times 10^{-10}\), \(D/H\) upper and lower limits, \(D/H \leq 5.2 \times 10^{-5}\) and \(D/H \geq 1.4 \times 10^{-5}\) (dashed line), respectively, and \(^3\)He/H upper limit, \(^3\)He/H\(\leq 3.1 \times 10^{-5}\) are also drawn. Dotted lines show contours of the same constraints for the result with larger standard cross sections of \(^4\)He photodisintegration \(^{13}\). The thick solid line shows a constraint from the consistency requirement of the CMB with a blackbody \(^{12}\). The region above the line is excluded. The contour for the MPHSs level of \(^6\)Li/H\(= 6.6 \times 10^{-12}\) is plotted. The gray region above the contour and below the nucleosynthesis plus CMB constraints is allowed and abundant in \(^6\)Li.

For this figure, we use the two sigma upper limit on the observed \(^3\)He/H abundance ratio from Galactic HII region \(^{14}\) as a conservative constraint on primordial abundance. Alternatively a constraint from \(^3\)He/D ratio is often used. Since deuterium is fragile and more easily burned in stars than \(^3\)He, the \(^3\)He/D ratio is thought to increase monotonically as a function of time by stellar processing from the formation of first stars to the solar system formation. The \(^3\)He/D ratio for primordial abundances can, therefore, be constrained by the solar \(^3\)He/D ratio. Since the solar \(^3\)He/D ratio is \((^{3}\text{He}/D)_{\odot} = 0.82\) \(^{15}\), one can obtain a constraint of \(^3\)He/D < 1 for primordial abundances. Although this constraint is slightly stronger than the constraint for the \(^3\)He/H ratio, the contours for both constraints are not distinguishable from each other in Fig. 3.

One can see that \(^7\)Li abundance does not change drastically by the new \(^4\)He photodisintegration cross sections. The contour for the \(^4\)He over-destruction by the non-thermal photons shifts upward by \(\sim 300\%\) at most for \(\tau_X = 10^9 - 10^{10}\) s with respect to that with the larger cross sections (dotted line). Since a destruction rate of \(^4\)He is lowered at low energies when its cross sections are taken to be small, larger energy is necessary to destroy \(^4\)He considerably. The \(^4\)He destruction leads to non-thermal production of \(^3\)He and D. Then, D over-destruction regions, which are above the region of this figure, shift upward reflecting the change of relic abundances of seed nuclide \(^4\)He. The \(^3\)He overproduction region also shifts upward by \(\sim 30\%\). Since the cross sections of \(^4\)He(\(\gamma, p\))\(^3\)He and \(^4\)He(\(\gamma, n\))\(^3\)He are lowered, the amount of produced mass 3 nuclides are lowered. One finds an upward shift of D overproduction region. We confirmed that this change is caused since D is produced by \(p(n, \gamma)D\) using non-thermally produced neutrons by \(^4\)He(\(\gamma, n\))\(^3\)He, whose cross section changed. Figure 4 shows that the contour of \(^6\)Li abundance also changes slightly by \(\sim -20\%\) at most for \(\tau_X = 10^8 - 10^{10}\) s, but this change does not result from the change of photodisintegration cross sections of \(^4\)He at low energy \(E_\gamma \lesssim 30\) MeV. It is due to the difference of excitation functions between our recommended fit and the standard fit \(^{13}\) at higher energy, \(E_\gamma \gtrsim 30\) MeV. (See Fig. 3) The reason has already been explained at the beginning of this section Sec. III B.

We pick up the most interesting parameter region, where \(^6\)Li is produced at the level higher than that of MPHSs. We take a look at the result of nucleosynthesis of the parameters \((\tau_X, \zeta_X) = (10^{10}\) s, \(3 \times 10^{-13}\) GeV) \(^{12}\) for this reason. In Fig. 4 the abundance of X particle \(Y_X\) is shown as a function of the cosmic photon temperature. It is normalized as \(Y_X/Y_X^0\), where \(Y_X^0\) is the initial abundance before the X-decay decreases its abundance. As the indicator of energy amount injected by the X decay at an epoch, we also plot \(|d(Y_X/Y_X^0)/d\ln t| = t \times |d(Y_X/Y_X^0)/dt| = (t/\tau_X) \exp(-t/\tau_X)\). Most of the energy content is injected in the time scale of \(\tau_X\). These lines are for only the case of \(\tau_X = 10^{10}\) s.

Figure 4 shows the \(^3\)He and \(^4\)He abundances as a function of temperature \(T \equiv T_9/(10^9\) K) when parameters are \((\tau_X, \zeta_X) = (10^{10}\) s, \(3 \times 10^{-13}\) GeV) (upper panel). The results with our recommended and the standard cross
sections of 4He photodisintegration correspond to the solid and dashed lines, respectively. An apparent reduction of non-thermally produced 3He abundance is found in our recommended case. The resulting difference of non-thermal yield of 3He is about 10%.

2. Effect of uncertainties from high energy reactions

The measured 4He photodisintegration cross sections are still subject to large uncertainties which depend on the different experimental setup and methods over the wide energy range. The energy dependence of the cross sections is not well understood theoretically. If either cross section of 4He(γ,p)3H or 4He(γ,n)3He in the energy region of $E_\gamma \gtrsim 50$ MeV is different from the adopted cross section, non-thermal BBN abundance of 6Li would change significantly.

It should be noted here that the data below 30 MeV of Shima et al. [30] are significantly smaller than previous ones, and therefore one may expect enhancement of the cross sections in the higher energy range from the well-known Thomas-Reiche-Kuhn (TRK) sum rule, which relates the energy-integrated cross section σ_0 to the ground state property of a target nucleus. The E1 sum rule is expressed by

$$ \sigma_0 = \int_{E_{th}}^\infty \sigma(E_\gamma) dE_\gamma = \sigma_{TRK}(1 + \kappa) $$

where $\sigma_{TRK} = (2\pi^2\alpha/m)(NZ/A)$ with α, m, N, Z and A the fine structure constant, the nucleon mass, the neutron number, the proton number and the nucleon number, respectively. κ is the so-called TRK enhancement factor defined as

$$ \kappa = \frac{mA}{NZ} \langle 0 | [D_z, [V, D_z]] | 0 \rangle, $$

where $|0\rangle$ is the nuclear ground state wave function, D_z is the dipole operator $D_z = \sum_{i=1}^A z_i \tau_i^3/2$ with τ_i^3 and z_i the third component of the isospin operator and the z-coordinate of the ith particle in the center-of-mass frame, respectively, V is the nuclear potential. There is another sum rule, i.e. bremsstrahlung sum rule, which is expressed by

$$ \sigma_B = \int_{E_{th}}^\infty \frac{\sigma(E_\gamma)}{E_\gamma} dE_\gamma = 4\pi^2\alpha(0|D_zD_z|0) $$

$$ = \frac{4\pi^2\alpha}{3} \frac{NZ}{A-1} \left(\langle r_\alpha^2 \rangle - \langle r_\gamma^2 \rangle \right) $$

$$ = 2.60 \pm 0.01 \text{ mb}, $$

where $\langle r_\alpha^2 \rangle^{1/2} = 0.875 \pm 0.007 \text{ fm}$ [50] and $\langle r_\gamma^2 \rangle^{1/2} = 1.673 \pm 0.001 \text{ fm}$ [51] are the root mean square charge radii for proton and 4He, respectively.

Energy-weighted integrals $\int_{E_{th}}^\infty (E_\gamma)^n \sigma(E_\gamma) dE_\gamma$ with $n = 0$ for Eq. (14) and $n = -1$ for Eq. (16) are listed in Table I for the four different models of photodisintegration cross sections of 4He(γ,p)3H and 4He(γ,n)3He. The three models of our recommended fit, i.e., Eqs. (4) and (5), the fit with all data adopted in this study, and the standard fit [11] lead to values smaller than the sum rules, i.e., $\sigma_0 = 59.7(1 + \kappa) \text{ MeV mb}$ with $\kappa \approx 1$ for
the TRK sum rule and $\sigma_R = 2.60 \pm 0.01$ mb for the bremsstrahlung sum rule. We expect that the model using Eqs. 2 and 3 is closer to the lower limit of true cross sections in consideration of two sum rules.

In addition to the three models in the second, third and forth columns in Table I above mentioned, we make another new fitting function of the cross sections so that the energy weighted integrals satisfy the two sum rules: As for low energy cross sections at $E_\gamma \lesssim 30$ MeV, we fit the experimental data [30] measured by using quasi-monochromatic laser-Compton photon beams at AIST. At higher energy $E_\gamma \gtrsim 30$ MeV, we assume a simple energy dependence $\sigma(E_\gamma) = \sigma_C(E_\gamma / 29.8$ MeV$)^{-N/2}$. Resultant parameters are $\sigma_c = 2.65$ mb and $N = 5$. In this new model where we require the sum rules, the constructed cross sections are typically $\gtrsim 2$ times larger than our recommended ones at 50 MeV $\lesssim E_\gamma \lesssim 135$ MeV, where the upper limit is the meson mass. The both TRK sum rule and bremsstrahlung sum rule do not apply to such high energies $E_\gamma \gtrsim 135$ MeV because new degrees of freedom of mesons as well as nucleons play an important role and the above two sum rules break down. We can expect that the constructed cross sections which satisfy the sum rules are close to the upper limits to the realistic cross sections.

We compare the primordial abundance calculated with new cross sections which satisfy the sum rules and that of our recommended cross sections. In Fig. 7 thick solid and dashed lines correspond to the results with our recommended and new cross sections of 4He photodisintegration, respectively. The dark and light gray regions above the solid and dashed contour lines and below the nucleosynthesis plus CMB constraints are the allowed region where the abundant 6Li is produced. The 6Li production occurs more efficiently in the case with larger cross sections than with smaller ones. This is because the 4He destruction is more effective for larger cross sections at higher energies so that the more abundant energetic mass 3 nuclides which synthesize 6Li are produced. For this reason the 6Li abundance produced by using the large 4He-photodisintegration cross sections which satisfy the sum rules are presumed to be a maximum yield from the viewpoint of nuclear structure physics. The allowed region of the properties of relic X particle in the (τ_X, ξ_X) plane, therefore, should not move even below the light gray region in Fig 7 and we expect that the reality is located between the dark and light gray regions.

However, it has been known that σ_0 highly depends on various effects of residual interactions among nucleons such as the meson-exchange currents [56], the tensor correlations [52, 53], the short-range interactions [54], and so on. In the case of 4He, the calculated values of σ_0, which were integrated out to $E_\gamma \sim 135$ MeV, have uncertainty of more than ± 10%, depending on the nucleon-nucleon potentials and the nuclear models for the ground state of 4He [54, 55, 57, 58]. In summary, both the existing experimental data and the theoretical calculations for the 4He photodisintegration cross section in the energy range up to ~ 135 MeV contain large uncertainties, and therefore a precise measurement of the 4He photodisintegration cross section at $E_\gamma \gtrsim 30$ MeV is highly desirable. Comprehensive theoretical study of the nuclear structure and reactions of 4He are also necessary in order to clarify many unresolved nuclear effects and also refine the applicability of an empirical formula such as Eq. 1. These nuclear physics studies would be important to constrain the life time and the abundance of long-lived relic X particle more precisely.

IV. SUMMARY AND OUTLOOK

A recent measurement of 4He photodisintegration reactions, 4He($\gamma,p)^3$H and 4He($\gamma,n)^3$He with laser-Compton photons shows lower cross sections at low energies than those estimated by other previous experiments. We studied the sensitivity of non-thermal BBN of all light elements D, T, 3He, 4He, 6Li, 7Li and 7Be to the photodisintegration cross section of 4He.

The change of cross sections of 4He photodisintegration has an influence on the non-thermal yields of light elements, D, 3He and 4He, which are related to the photodisintegration cross sections at low energy (~ 30 MeV). The upper limit of allowed regions of X-abundance parameter ξ_X for these light nuclei shifts upward by $\sim 300 - 30$ % for $\tau_X = 10^6 - 10^{10}$ s for this change of the cross sections. This arises from the upshift of 3He abundance contour (See Fig. 4). On the other hand, the non-thermal 6Li production is not very sensitive to the change of cross
sections at low energy, since the non-thermal secondary synthesis of 6Li needs energetic photons of $E_\gamma \gtrsim 50$ MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of 6Li observed in MPHSs. In the interesting parameter region of $10^8 \lesssim \tau_X \lesssim 10^{12}$ s and 5×10^{-14} GeV $\lesssim \zeta_X \lesssim 5 \times 10^{-13}$ GeV which satisfies the 6Li production above the abundance level observed in MPHSs, the lowering of the photodisintegration cross sections at low energy $E_\gamma \lesssim 30$ MeV as measured in the recent experiment using laser-Compton photons leads to $\sim 10\%$ reduction of resulting 3He abundance, whereas the 6Li abundance does not change for the change of the cross sections of 4He($\gamma,p)^3$H and 4He($\gamma,n)^3$He.

Let us briefly discuss other impacts of such a precise cross section measurement. Clarifying the effects of photodisintegrations of 4He will affect more strongly the ν-process in core-collapse supernova (SN) explosions through the neutrino-nucleus interactions specifically of $\nu+p$. The weak transition rates for 4He(ν,ν'), 4He(ν_e,e^-), and 4He($\bar{\nu}_e,e^+$) are determined similarly to the giant electric dipole resonance observed in the photodisintegrations with the help of theoretical calculation [51]. In fact, several experiments of measuring the 4He photodisintegration cross sections [36] were carried out for this purpose. The precise knowledge of the 4He($\nu,\nu'p$), ($\nu,\nu'n$), (ν_e,e^-), and ($\bar{\nu}_e,e^+$) cross sections is required to determine the unknown parameters for neutrino oscillations through the MSW effect on the 7Li and 11B production triggered by the $\nu+p$ reactions [61,61]. The energy range $E_\nu = 10 - 25$ MeV is very important for the ν-process nucleosynthesis in SN. The mean neutrino energy of SN neutrinos is presumed to be about $10 - 25$ MeV in numerical simulations of the neutrino transfer in core-collapse SN. The threshold energies for all neutrino-induced spallation reactions of 4He are ~ 20 MeV. Therefore, the difference between the newly measured [36] and previous 4He photodisintegration cross sections at 20 MeV $\lesssim E_\gamma \lesssim 30$ MeV could be critical. As a result, the absolute yields of 7Li and 11B produced in the ν-process in core-collapse SN would be different from one another, depending on the assumed ν-process reaction rates as demonstrated theoretically [59,62] although the ratio of 7Li/11B does not change largely.

Another recent focus of photodisintegration of 4He is on the mechanism of the core-collapse SN. Most SN simulations still do not succeed in the SN explosion in spite of detailed numerical studies of the neutrino transfer calculations inside the core. Haxton [63] proposed that the neutrino-induced excitations of 4He and heavier nuclei could deposit extra-energy to the ejected materials and revive the shock wave, which motivated a recent theoretical study on the role of 4He spallation reactions in the core-collapse SN [64]. His theoretical suggestion also motivated recent experimental studies of photodisintegrations of 4He [36] in order to estimate the neutrino-induced reaction cross sections for 4He(ν,ν'), 4He(ν_e,e^-), and 4He($\bar{\nu}_e,e^+$).

As such, it is important and even critical to study the 4He(γ,p) and 4He(γ,n) reactions precisely for the discussions of the problem of SN-neutrino oscillation and SN explosion as well as the cosmological discussion concerning the BBN with a radiative decay of long-lived relic particles.

Acknowledgments

This work has been supported in part by the Mitsubishi Foundation, the Grant-in-Aid for Scientific Research (17540275, 20244035) of the Ministry of Education, Science, Sports and Culture of Japan, and the JSPS Core-to-Core Program, International Research Network for Exotic Femto Systems (EFES). MK acknowledges the support by Grant-in-Aid for JSPS Fellows (18.11384).

Models for $\sigma(E_\gamma)$	Eqs. [14],[16]	Fit with All Dataa	Cybart et al. [11]b	Sum Rulec
σ_0 [MeV mb]	77.7	79.7	84.4	118.4
σ_B [mb]	1.94	2.08	2.32	2.60

aEq. [1] with $|Q| = 19.8139$ MeV, $\sigma_e = 61.82$ mb, $a = 4.300$, and $b = 1.756$ for 4He($\gamma,p)^3$H, and $|Q| = 20.5776$ MeV, $\sigma_e = 31.38$ mb, $a = 3.651$, and $b = 1.583$ for 4He($\gamma,n)^3$He.

bEq. [1] with $|Q| = 19.8139$ MeV, $\sigma_e = 19.5$ mb, $a = 3.5$, and $b = 1.0$ for 4He($\gamma,p)^3$H, and $|Q| = 20.5776$ MeV, $\sigma_e = 17.1$ mb, $a = 3.5$, and $b = 1.0$ for 4He($\gamma,n)^3$He.

cThe functions derived by fitting Eq. [1] to the data obtained at AIST [36] in $E_\gamma \lesssim 29.8$ MeV are modified at higher energies so that the energy-weighted integrals satisfy two sum rules; Eq. [1] with $\sigma_e = 21.0$ mb, $a = 1.68$, and $b = 1.88$ for 4He($\gamma,p)^3$H, and $\sigma_e = 16.8$ mb, $a = 1.41$, and $b = 1.73$ for 4He($\gamma,n)^3$He (for $E_\gamma \lesssim 29.8$ MeV) and $\sigma(E_\gamma) = 2.65$ mb ($E_\gamma/29.8$ MeV)$^{-5/2}$ (for $E_\gamma > 29.8$ MeV).

dValue derived from $\sigma_0 = 59.7(1 + \kappa)$ with $\kappa \approx 1$.
[1] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003).
[2] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 170, 377 (2007).
[3] S. G. Ryan, T. C. Beers, K. A. Olive, B. D. Fields and J. E. Norris, Astrophys. J. 530, L57 (2000).
[4] J. Melendez and I. Ramirez, Astrophys. J. 615, L33 (2004).
[5] M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas and V. V. Smith, Astrophys. J. 644, 229 (2006).
[6] S. Inoue, W. Aoki, T. K. Suzuki, S. Kawanomoto, T. Kii, T. Shima, T. Baba, and Y. Nagai, Nucl. Instr. Meth. in Phys. Res. A 552, 329 (2005).
[7] T. Shima et al., in preparation (2009).
[8] B. Nilsson et al., Phys. Rev. C 75, 014007 (2007).
[9] A. N. Gorbunov, Phys. Lett. B 27, 436 (1968).
[10] Yu. M. Arkatov et al., Sov. J. Nucl. Phys. 19, 598 (1974).
[11] C. K. Malcom, D. V. Webb, Y. M. Shin and D. M. Skopik, Phys. Lett. B 47, 433 (1973).
[12] M. Kawasaki and T. Moroi, Astrophys. J. 452, 506 (1995).
[13] R. J. Protheroe, T. Stanev and V. S. Berezinsky, Phys. Rev. D 51, 4134 (1995).
[14] V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg and V. S. Ptuskin 1990, Astrophysics of Cosmic Rays, ed. V. S. Verezhinskii and V. L. Ginzburg (New York: North-Holland).
[15] T. M. Bania, R. T. Rood and D. S. Balser, Nature 415, 54 (2002).
[16] K. Lodders, Astrophys. J. 591, 1220 (2003).
[17] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[18] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).
[19] K. Okamoto and K. Hasegawa, Prog. Theor. Phys. 28, 137 (1962).
[20] A. Arima, G. E. Brown, H. Hyuga and M. Ichimura, Nucl. Phys. A 205, 27 (1973).
[21] D. Gazit, N. Barnea, S. Bacca, W. Leidemann and G. Orlando, Phys. Rev. C 74, 061001(R) (2006).
[22] W. T. Weng, T. T. S. Kuo and G. E. Brown, Phys. Lett. B 46, 329 (1973).
[23] M. Gari and H. Hebach, Phys. Lett. B 49, 29 (1974).
[24] M. Fink, M. Gari and H. Hebach, Phys. Lett. B 49, 20 (1974).
[25] I. Elminyawi and J. S. Levinger, Phys. Rev. C 28, 82 (1983).
[26] T. Suzuki, S. Chiba, T. Yoshida, T. Kajino and T. Otsuba, Phys. Rev. C 74, 034307 (2006).
[27] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, Phys. Rev. Lett. 96, 091101 (2006).
[28] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, Astrophys. J. 649, 319 (2006).
[29] T. Yoshida, T. Suzuki, S. Chiba, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, submitted to Astrophys. J.
[30] W. C. Haxton, Phys. Rev. Lett. 60, 1999 (1988).
[31] N. Ohsushi, K. Kotake and S. Yamada, Astrophys. J. 641, 1018 (2006).
[32] T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura and M. Yamanaka, arXiv:0805.3389 [hep-ph].
[33] K. Jedamzik, Phys. Rev. D 77, 063524 (2008).
[34] K. Jedamzik, JCAP 0803, 008 (2008).
[35] M. Pospelov, arXiv:0712.0647 [hep-ph].
[36] M. Pospelov, J. Pradler and F. D. Steffen, arXiv:0804.3745 [hep-ph].
[37] T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura and M. Yamanaka, arXiv:0805.3389 [hep-ph].
[38] K. Jedamzik, Phys. Rev. D 77, 063524 (2008).
[39] M. Pospelov, J. Pradler and F. D. Steffen, arXiv:0804.3745 [hep-ph].
[40] T. Shima et al., Phys. Rev. C 72, 044004 (2005).
[41] S. Nakayama et al., Phys. Rev. C 76, 021305(R) (2007).
[42] T. Yamagata et al., Phys. Rev. C 74, 014309 (2006).
[43] J. R. Ellis, K. A. Olive and E. Vangioni, Phys. Lett. B 49, 29 (2014).
[44] M. Pospelov et al., in preparation (2009).
[45] B. Nilsson et al., Phys. Rev. C 75, 014007 (2007).
[46] A. N. Gorbunov, Phys. Lett. B 27, 436 (1968).
[47] Yu. M. Arkatov et al., Sov. J. Nucl. Phys. 19, 598 (1974).
[48] C. K. Malcom, D. V. Webb, Y. M. Shin and D. M. Skopik, Phys. Lett. B 47, 433 (1973).
[49] M. Kawasaki and T. Moroi, Astrophys. J. 452, 506 (1995).
[50] R. J. Protheroe, T. Stanev and V. S. Berezinsky, Phys. Rev. D 51, 4134 (1995).
[51] V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg and V. S. Ptuskin 1990, Astrophysics of Cosmic Rays, ed. V. S. Berezhinskii and V. L. Ginzburg (New York: North-Holland).
[52] T. M. Bania, R. T. Rood and D. S. Balser, Nature 415, 54 (2002).
[53] K. Lodders, Astrophys. J. 591, 1220 (2003).
[54] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[55] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).
[56] K. Okamoto and K. Hasegawa, Prog. Theor. Phys. 28, 137 (1962).
[57] A. Arima, G. E. Brown, H. Hyuga and M. Ichimura, Nucl. Phys. A 205, 27 (1973).
[58] D. Gazit, N. Barnea, S. Bacca, W. Leidemann and G. Orlando, Phys. Rev. C 74, 061001(R) (2006).
[59] W. T. Weng, T. T. S. Kuo and G. E. Brown, Phys. Lett. B 46, 329 (1973).
[60] M. Gari and H. Hebach, Phys. Lett. B 49, 29 (1974).
[61] M. Fink, M. Gari and H. Hebach, Phys. Lett. B 49, 20 (1974).
[62] I. Elminyawi and J. S. Levinger, Phys. Rev. C 28, 82 (1983).
[63] T. Suzuki, S. Chiba, T. Yoshida, T. Kajino and T. Otsuba, Phys. Rev. C 74, 034307 (2006).
[64] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, Phys. Rev. Lett. 96, 091101 (2006).
[65] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, Astrophys. J. 649, 319 (2006).
[66] T. Yoshida, T. Suzuki, S. Chiba, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura and D. H. Hartmann, submitted to Astrophys. J.
[67] W. C. Haxton, Phys. Rev. Lett. 60, 1999 (1988).
[68] N. Ohsushi, K. Kotake and S. Yamada, Astrophys. J. 641, 1018 (2006).