Insulin Growth Factor-2 Binding Protein 3 (IGF2BP3) Is a Glioblastoma-specific Marker That Activates Phosphatidylinositol 3-Kinase/Mitogen-activated Protein Kinase (PI3K/MAPK) Pathways by Modulating IGF-2

Received for publication, August 23, 2010, and in revised form, May 24, 2011 Published, JBC Papers in Press, May 25, 2011, DOI 10.1074/jbc.M110.178012

Ramaseswamy Suvasini‡†, Bhargava Shruti‡, Balaram Thota‡, Sridive Vijay Shinde‡, Dinorah Friedmann-Morvinski‡, Zahid Nawaz‡, Krishnarao Venkatesh Prasanna‡, Kannavel Thennarasu‡∗,**, Alangar Sathyaranjandas Hegde‡, Arimappamagan Arivazhagan‡†‡, Bangalore Ashwathanaryanarao Chandramouli‡†‡, Vani Santosh‡‡, and Kumaravel Somasundaram‡‡‡

From the ‡Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India, the Departments of *Biostatistics, **Neurosurgery, and †Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India, the ††Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India, and the ‡‡Laboratory of Genetics, The Salk Institute, La Jolla, California 92037

Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p < 0.0001). IMP3 is an RNA binding protein known to bind to the 5′-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression- and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.

Gliomas, as the name suggests, are tumors of glial origin and are classified histologically depending on their cell type of origin as astrocytomas, oligodendrogliomas, or ependymomas (1). Based on the World Health Organization system of classification, gliomas are classified according to the hypothesized line of differentiation, i.e. whether they display features of astrocytic, oligodendrogial, or ependymal cells. They are further graded on a scale of I to IV according to their degree of malignancy as judged by the various histological features. Astrocytomas, accounting for >60% of the primary brain tumors diagnosed each year, are further classified into four grades based on their histology and immunohistochemical parameters as per the World Health Organization guidelines: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma; DA), grade III (anaplastic astrocytoma; AA), and grade IV (glioblastoma; GBM). Grade III and grade IV tumors are considered as malignant astrocytomas (2). The grade IV tumors present with significant intratumoral heterogeneity and remain to this day one of the most daunting therapeutic challenges due to their refractory responses to conventional therapeutics such as surgery, radiotherapy, and chemotherapy. Despite intensive therapeutic strategies and technical advances, the median survival of GBM patients has remained at a meager 15 months for the past decade (1, 3, 4).

The insulin-like growth factor (IGF) pathway arose early in evolution and has evolved to have key roles in regulating multiple aspects of organismal physiology ranging from energy metabolism, body size, longevity, cellular proliferation, and apoptosis, which has led to great interest in the relevance of this...
regulatory system to neoplasia (5). The IGF family includes the polypeptide ligands IGF-1 and IGF-2, two types of the cell membrane receptors (IGF-1R and IGF-2R), and an increasing number of binding proteins, IGFBPs. There are also a large group of IGFBP proteases, which hydrolyze the IGFBPs and modulate IGF bioavailability. Work done over the past decade or so has also identified novel RNA binding proteins (IGF-2BP s (insulin-like growth factor-2 binding proteins) or IMPs). This family of RNA binding proteins was identified based on their ability to bind to the IGF-2 mRNA and thereby regulate its stability and translation. Thus, the available information about the IGF pathway suggests it to be a complex signaling cascade with multiple layers of regulation. Interestingly, a large number of epidemiological studies have shown high levels of the IGF signaling to be associated with an increased risk for several common cancers, including those of the breast, prostate, lung, and colorectum (5–9). IGF-1 and IGF-2 have also been found to be strong mitogens for a wide variety of cancer cell lines (10, 11).

Upon investigation of the IGF family in glioma development, we identified IGF2BP3/IMP3, a translational activator of the IGF-2 mRNA, as a gene selectively overexpressed in GBMs. In addition to demonstrating a diagnostic and prognostic utility, we also establish a causal role for IMP3 in promoting proliferation, anchorage-independent growth, angiogenesis, and invasion. We also show that these pro-oncogenic roles of IMP3 are mediated through the translational activation of IGF-2, which further leads to the activation of its immediate downstream effectors, the PI3K and the MAPK pathways.

EXPERIMENTAL PROCEDURES

Reagents, Cell Lines, and Plasmids—Temozolomide, adriamycin, cisplatin, taxol, etoposide, and MTT were obtained from Sigma. LY294002 and U0126, the pharmacological inhibitors for the PI3K and the MAPK pathways were obtained from Alomone Biosciences. Purified IGF-2 protein was obtained from Abcam (Ab9575). A neutralizing antibody against human IGF-2 was obtained from Sigma-Aldrich (I-7276). U373, U138, H1299, HaCaT, LN18, U343, LN229, K562, U87-MG, MDA-MB231, Rat C6, B16F10 murine melanoma cells, and SVG cells were cultured in DMEM and minimum essential medium, respectively with 10% fetal bovine serum, penicillin, and streptomycin at 37 °C in a humidified atmosphere with 5% CO2. The cDNA for IGF2BP3/IMP3 (Open Biosystems) was subcloned into the mammalian expression vector pCEP4 with a hygromycin resistance gene.

Additional Methods can be found in the supplemental material.

Tumor Samples—Tumor samples were collected from patients who were operated on at the Sri Sathya Sai Institute of Higher Medical Sciences and National Institute of Mental Health and Neurosciences (Bangalore, India). Normal brain tissue samples (anterior temporal lobe) obtained during surgery for intractable epilepsy were used as control samples. The study has been scrutinized and approved by the ethics committee of the two clinical centers, and patient consent was obtained prior to initiation of the study as per the Institutional Ethics Committee guidelines and approval. Tissues were bisected, and one-half was snap-frozen in liquid nitrogen and stored at −80 °C until RNA isolation. The other half was fixed in formalin and processed for paraffin sections. These were used for histopathological grading of the astrocytoma and immunohistochemical studies. A total of 227 patient samples were used as follows: 121 glioblastoma (GBMs), 31 anaplastic astrocytoma, grade III (AAs); 26 anaplastic oligodendroglioma, grade III (AOs); 22 diffuse astrocytoma, grade II (DAs); seven diffuse oligodendroglioma, grade II (DOs); and 20 normal brain samples have been used in this study, of which a subset was used for the transcript analysis and the immunohistochemical and prognostic studies. The prognostic studies were limited to a subset of the GBM samples (n = 83).

Clinical Cohort for Survival Analysis—Newly diagnosed glioblastoma patients (n = 83) who underwent surgery in the two clinical centers (National Institute of Mental Health and Neurosciences/Sri Sathya Sai Institute of Higher Medical Sciences) were included prospectively. The study was approved by the ethics committee, and patient consent was obtained prior to initiation of the study. Adult patients (ages between 18 to 65 years) with a supratentorial lobar tumor who underwent maximal safe resection of the tumor with minimal residue noted on post-operative MRI scans and those with a post-operative Karnofsky’s performance score of ≥70 were included in the study. All patients were treated uniformly with adjuvant radiotherapy and chemotherapy. Radiotherapy was administered with a total dose of 59.4 gray, given in 33 fractions along with concomitant chemotherapy with temozolomide, administered at the dose of 100 mg/day, which was continued daily for 45 days. Subsequently, five cycles of cyclical chemotherapy with temozolomide (150 mg/m² body surface area for 5 days every 28 days) was administered. The patients were followed up clinically and with MRIs. Additional surgery was offered for those who developed symptomatic recurrences. The maximum follow-up period was 34 months.

RESULTS

IMP3 Is Up-regulated in GBM—To dissect the role of the IGF pathway during glioma development, we analyzed the transcript levels of all the members (ligands, receptors, ligand binding proteins, etc.) of the IGF pathway across the different grades of glioma (supplemental Fig. S1, A–L). Further analysis identified IGF2BP3/IMP3 (insulin-like growth factor-2 binding protein-3/IGF-2 mRNA binding protein-3) as an IGF family member whose transcript levels were dramatically up-regulated only in the GBMs (supplemental Table S1). We further investigated the IMP3 transcript levels in an independent cohort of patient samples and found the transcript levels of IMP3 to be up-regulated to very high levels specifically in the GBMs (median log2 ratio = 6.49) as compared with DA, AA, DO, AO, and normal brain samples (median log2 ratios = −0.52, 0.28, −0.46, 0.78, and 0.30, respectively) (Fig. 1A). Furthermore, cytoplasmic expression of IMP3 protein was present in 87.60% (85/97) of GBMs (Fig. 1B, e and f) compared with AA (14.2%; 3/21), DA (5%; 1/20), and normal brain samples (0.0%; 0/20) with p < 0.0001 (Fig. 1B, a–d). The GBM-specific up-regulation of IMP3 protein is also confirmed by immunoblotting (data not shown). We also found IMP3 to be up-regulated in most glioma and...
non-glioma-derived cell lines (transcript and protein) (Fig. 1, C and D, and data not shown).

IMP3 Induces Cell Proliferation, Anchorage-independent Growth, Invasion, and Chemoresistance—To determine the importance of IMP3 overexpression in GBMs, we developed IMP3 overexpressing U373 stable clones because the parental cell line had relatively low levels of the IMP3 protein. IMP3 stable clones (U373/IMP3#5 and U373/IMP3#17) showed increased IMP3 transcript and protein levels compared with the vector stable (U373/pCEP4#6) clone (Fig. 2A). Also, U373/IMP3#5 and U373/IMP3#17 cells grow significantly faster than the U373/pCEP4#6 clone (Fig. 2B). In addition, IMP3 stable clones formed more colonies in soft agar than the vector stable clone (Fig. 2C, compare lane 1 with lanes 2 and 3). Furthermore, IMP3 stable clones invaded 3.5 to 4.5 times more through a Matrigel matrix than the corresponding vector stable cells (Fig. 2D). IMP3 overexpressing stable cells of H1299, a lung carcinoma cell line with comparatively low levels of IMP3, also showed similar phenotypes (supplemental Fig. S2, A–E). Moreover, adenosine-mediated IMP3 overexpression induced proliferation in immortalized human keratinocytes (HaCaT), immortalized human astrocytes (SVG) and lung carcinoma cells (H1299) (supplemental Fig. S3, A–C, respectively). Thus, IMP3 appears to promote cell proliferation, anchorage-independent growth and tumor cell invasion in multiple cell types.

To confirm these findings, we tested whether the abovementioned properties are reversed upon IMP3 silencing. Transfection with an IMP3-specific siRNA but not a cyclophilin siRNA resulted in an efficient reduction in the IMP3 transcript and protein levels in U138 cells, a glioma cell line with relatively higher IMP3 levels (supplemental Fig. S4, A and B, and Fig. 3A). IMP3 knockdown in U138 cells reduced cell proliferation and viability (Fig. 3B and supplemental Fig. S4C), soft agar colony formation (Fig. 3C), and invasion (Fig. 3D). Furthermore, IMP3 knockdown also made U138 cells more sensitive to taxol, temozolomide, and adriamycin (supplemental Fig. S4, D–F). Thus, these results establish a role for IMP3 in promoting cell proliferation, anchorage-independent growth, invasion, and chemoresistance.

IMP3 Promotes Tumor Growth, Angiogenesis, and Metastasis, Resulting in Poor Survival—To confirm these IMP3 functions in vivo, we used B16F10 murine melanoma cells. The IMP3 stable transfectants of B16F10 cells (B16F10/IMP3) expressed very high levels of the IMP3 transcript and protein (supplemental Fig. S5A). B16F10/IMP3 cells also showed increased proliferation and anchorage-independent growth as compared with the vector stable B16F10 (B16F10/pCEP4) cells (supplemental Fig. S5, B–D). In a subcutaneous tumor model, B16F10/IMP3 tumors grew faster and had more blood vessels than B16F10/pCEP4 tumors (Fig. 4, A and B). Increased expression of the IMP3 protein in B16F10/IMP3-derived tumors was confirmed by immunohistochemistry (supplemental Fig. S5E, compare c and d with a and b). In the same experiment, when the survival of mice was followed, we found that mice bearing IMP3-overexpressing tumors showed shorter survival than the vector stable tumor-bearing mice (Fig. 4C). In a lung metastasis model, tail vein injection of B16F10/IMP3 cells resulted in significantly more tumor nodules compared with the B16F10/pCEP4 cells (Fig. 4D). We have further extended these studies and monitored the effect of IMP3 down-regulation on intracranial glioma tumor growth. For this experiment, U87-MG-Luc cells were transfected with the IMP3 or cyclophilin siRNA (efficacy of knockdown was validated; supplemental Fig. S5F) and injected into the cortex of NIH nude/nude mice, and growth of
IGF2BP3/IMP3 Activates PI3K/MAPK Pathways by Modulating IGF-2

FIGURE 2. Stable overexpression of IMP3 in U373 glioma cells leads to increased proliferation, invasion, and anchorage-independent growth. A, fold change in the IMP3 transcript levels obtained from RT-qPCR analysis of the parent cell line (U373), the vector stable clone (#6), and the IMP3 stable clones (#5, 13 and 17) are plotted. The inset shows the Western blotting analysis for the vector and IMP3 stable clones with the indicated antibodies. B, viability as an indicator of cell proliferation was measured by MTT assay at indicated time points for vector and IMP3 overexpressing U373 stable clones and plotted. C, U373 vector (#6) and IMP3 stable clones (# 5, 17) were subjected to soft agar colony formation assay, and the number of colonies in the soft agar assay are counted and shown. ANOVA for difference in the colony formation abilities of the vector and IMP3 stable clones is significant (p = 0.0133). D, the invasion index of the vector and IMP3 stable U373 cells was determined based on the BD® Matrigel assay as per the manufacturer’s instructions 24 h after seeding. ANOVA for difference in the invasion index of the vector and IMP3 stable clones is significant (p = 0.0249).

the implanted tumor cells was subsequently followed through bioluminescence imaging. Similar to our earlier observations, we found that the tumors with IMP3 knockdown show retarded growth compared with the control tumors (Fig. 4E, compare black bars versus gray bars). These set of data thus validate our in vitro observations and suggest that IMP3 contributes to increased tumor growth, angiogenesis, and metastasis resulting in the poor survival of mice carrying IMP3-overexpressing tumors.

IMP3 Expression and Its Localization, Implications for Invasion and Prognosis—Neoplastic glial cells have been proposed to exhibit perineuronal, perivascular, subpial, and infrafascicular spread as unique mechanisms of invasion adapted for the structure and composition of the CNS (12). Interestingly, among the 83 GBM samples, in addition to the tumor core, a perivascular accumulation of IMP3 stained cells was seen in the infiltrating front of the tumor in 68 cases (81.93%) (supplemental Fig. S6A, c and d). Furthermore, clusters of positively stained cells were noted invading the gray matter and the subpial regions in 83.7% cases (supplemental Fig. S6A, a and b). Also, survival analysis revealed that the median survival of patients positive for IMP3 expression (black line) was lesser than that of the group negative for IMP3 expression (red line) on univariate analysis (supplemental Fig. S6B). However, on multivariate analysis considering the age of patients, IMP3 expression did not sustain its significance.

When tested in a mouse model of glioma (13), we found that the majority of mouse glioma samples showed high IMP3 transcript and protein levels (supplemental Fig. S7, A and B, respectively). In addition to the strong positivity in the tumor core, IMP3 positive cells were seen in the subpial regions (supplemental Fig. S7C, boxes A and B, respectively). Thus, these results establish an association of IMP3 expression with tumor invasion and patient survival.

Involvement of IGF-2 and PI3K/MAPK Pathways in IMP3-induced Cell Proliferation—Because IMP3 has been shown to be a translational activator of IGF-2 mRNA (14), we hypothesized that IGF-2 protein levels may increase in GBMs without a corresponding increase in the IGF-2 mRNA levels as a result of the abundance of IMP3. Indeed, we found that although the IGF-2 transcript levels do not change between normal brain samples and the different grades of astrocytoma (supplemental Fig. S8), there is, however, a substantial significant increase in the IGF-2 protein levels in the GBMs (Fig. 5A, compare panels c and d with a and b) as analyzed by immunohistochemistry. Binding of IGF-1/2 to IGF-1R further activates the oncogenic PI3K and MAPK signaling cascades (5). In good agreement, the increased IGF-2 protein levels in the GBMs also correlated with positive staining for phospho-Akt (active form of Akt) (Fig. 5A, compare panels k and l with i and j), whereas total Akt (Akt2) levels remain unchanged across all grades of astrocytoma (Fig. 5A, e–h). This observed increase in the IGF-2 protein levels in GBMs without a corresponding increase in its transcript levels strongly implicates IMP3 as a possible candidate involved in augmenting IGF-2 signaling in the GBMs.

To further validate our hypothesis, we examined the levels of the IGF-2 mRNA and protein in the IMP3 over expressing stable clones of U373 and found increased IMP3 expression to correlate with increased IGF-2 protein levels without an equivalent change in the IGF-2 transcript levels (Fig. 5B). Additionally, we knocked down IMP3 levels in U138 cells and monitored the effect on IGF-2 levels in the cells. Upon analysis, we found a significant reduction in the IGF-2 protein levels upon siRNA-mediated IMP3 knockdown without a corresponding change in the IGF-2 transcript levels (Fig. 5C). We also carried out RNA immunoprecipitation studies upon adenovirus-mediated overexpression of IMP3 and assayed for enrichment of the IGF-2 mRNA. Real-time RT-qPCR based quantitation of the immunoprecipitates indicates a 3.1-fold enrichment of the IGF-2 mRNA under conditions of IMP3 overexpression (Fig. 5D). To further substantiate the translational activation functions of IMP3 in regulating IGF-2 levels, we have monitored the polysomal and nonpolysomal association of the IGF-2 mRNA under conditions of IMP3 knockdown (supplemental Fig. S9). As shown, IMP3 silencing resulted in a 1.8-fold reduction in polysome-associated IGF-2 mRNA with a concomitant 1.0-fold increase in nonpolysome-associated IGF-2...
mRNA, thereby suggesting reduced translation of the IGF-2 transcript under IMP3 knockdown conditions (Fig. 5E). The IGF-2 protein essentially followed a similar stability pattern upon cycloheximide treatment in both vector and IMP3 stable cells (Fig. 5F), which ruled out the possibility that increased stability is a cause of increased IGF-2 protein in IMP3-stable clones. These data further corroborate well with our observations from the patient samples and establish IMP3 as a translational activator of the IGF-2 mRNA in our model system as well.

Based on this evidence, we next speculated that the proliferative effects of IMP3 could be mediated through the actions of IGF-2 and its downstream effectors. To validate this, we monitored the effect of antibody mediated IGF-2 neutralization on the growth of IMP3 overexpressing clones (H1299). In good agreement, we found that an IGF-2 antibody significantly abrogated the growth of IMP3-overexpressing stable clones and not the vector clones, thereby suggesting that the proliferative effects of IMP3 are indeed mediated through IGF-2 (Fig. 6A). In a converse experiment, we find that exogenously supplied IGF-2 is able to rescue the growth inhibition caused by IMP3 knockdown in U138 glioma cells. We found that although IMP3 knockdown compromises the growth of cells as compared with the mock or cyclophilin siRNA transfection, this inhibition was relieved by the exogenous addition of IGF-2 (Fig. 6B). These studies implicate IGF-2 as one of the primary effectors of IMP3 function.

To further validate the involvement of IGF-2, we have analyzed the role of the PI3K and MAPK pathways, which are the known immediate downstream effectors of IGF-2. Treatment with IMP3 siRNA and not the cyclophilin siRNA, in U138 glioma cells, resulted in a substantial reduction in the activation status of both the PI3K and MAPK arms of IGF signaling. Levels of Ser473 phospho-Akt, Ser2448 phospho-mTOR, Thr37/46 phospho-4EBP1, phospho-MEK1/2, and phospho-ERK1/2 were reduced upon treatment with the IMP3 siRNA without a corresponding change in the levels of the total proteins, respectively (Fig. 6C, compare lane 2 with 1). To further investigate the importance of these pathways in IMP3-induced cell proliferation, we monitored the growth of IMP3 overexpressing cells under conditions wherein either of these pathways was pharmacologically inhibited. As shown above, U373/IMP3 clones (#5 and #17) showed increased proliferation when compared with the U373 vector (#6) clone (Fig. 6D, compare light gray bars). However, when the cells were treated with the PI3K inhibitor (LY294002) or MEK1/2 inhibitor (UO126), the proliferation of IMP3 overexpressing cells was severely abrogated unlike the vector stable cells, which were only modestly affected (Fig. 6D, compare dark gray bars and black bars with corresponding light gray bars). Thus, these results together establish IMP3 as a causal factor involved in the activation of these two major pro-oncogenic pathways through the translational activation of IGF-2 in GBMs, thereby augmenting glioma cell proliferation.

DISCUSSION

In this study, we found IMP3, a novel RNA binding protein, to be specifically up-regulated in GBMs. IMP3, also known as
L523S or KOC (K homologous domain-containing protein overexpressed in cancer), is a member of the IMP family that also consists of IMP1 and -2. Originally identified from a pancreatic tumor cDNA screen, IMP3 has since been found to be expressed in a number of solid tumors and in many fetal tissues wherein the IMP family members have been reported to play a pivotal role in RNA trafficking and stabilization, cell growth, and migration during embryogenesis (15–17). Recent studies have also identified IMP3 to be overexpressed in other human malignancies of thyroid, bladder, pancreas, esophagus, endometrial and cervical carcinoma, melanoma, non-small cell lung carcinoma, osteosarcoma, and etc. (18–26). IMP3/IGF2BP3 has also been found to be associated with aggressive and advanced carcinomas in colon, kidney, neuroendocrine skin, liver, bladder, breast, ovary, and other soft tissue sarcomas (25, 27–39). However, there are no reports of IMP3 involvement in any type of brain cancer, including glioma. In our studies, we find IMP3 to be overexpressed to high levels specifically in the GBMs, potentiating its use as a diagnostic marker, which could be an invaluable aid in the accurate classification of the tumor and subsequently in the treatment protocol to be followed. We could also demonstrate a possible prognostic utility for IMP3 as patients overexpressing the protein have a poor median survival. This GBM-specific expression of IMP3 also suggests that IMP3 may not play a role in the early events of transformation and may instead be essential for the features seen in the more advanced grades of cancer such as neoangiogenesis, invasion, migration, chemoresistance, stress tolerance, etc.

Unlike the previous gene-phenotype association studies (14, 18, 22–40), we have also established a causal role for IMP3 in cancer by overexpression and knockdown based approaches in glioma and non-glioma-derived cell lines. Through in vitro studies, we show that IMP3 leads to increased proliferation, anchorage-independent growth, and invasion. Concordantly, in vivo, we find that overexpression of IMP3 leads to faster tumor growth with greater angiogenesis and a consequent poor prognosis for the mice in an intracranial and a subcutaneous tumor model. IMP3 overexpression also resulted in greater invasive potential in vivo as evidenced by the increased formation of nodules in a lung metastasis model.

Glioma cells have been proposed to have unique mechanisms of invasion as they migrate through the normal parenchyma, collect just below the pial margin (subpial spread), surround neurons and vessels (perineuronal and perivascular satellit-
osis), and migrate through the white matter tracts (intrafascicular spread) (12, 41, 42). The tumor-infiltrating front represents the invading glioma cells and the genes expressed in this region are likely to provide an advantage to the invading tumor cells (43). Indeed, we found IMP3-positive cells in the perivascular areas, the infiltrating front of the tumor, and in the subpial regions. We have further extended our studies to a mouse model of glioma where, similar to the human GBMs, the majority of the tumor samples showed high levels of the IMP3. Also, similar to the patient samples, many tumors derived from this mouse model of glioma showed IMP3 positivity in the subpial regions. Thus, these results collectively establish IMP3 as a protumorigenic gene overexpressed in the more malignant grades of glioma with a role in promoting proliferation, invasion, migration, angiogenesis, and chemoresistance.
IGF2BP3/IMP3 Activates PI3K/MAPK Pathways by Modulating IGF-2

The embryonic expression of IMP3 and its reappearance in malignant cancers may correspond to the reacquisition of the neoplastic cell of primitive migratory behavior, which is seen during development of the central nervous system, leading to the diffuse spread of individual tumor cells over long distances, resulting in the extreme mortality associated with the disease (17, 34, 42–44).

Structurally, studies reveal IMP3 to be an RNA binding protein with two RNA recognition motifs and four KH domains, which bind to the IGF-2 mRNA, thereby activating its translation (14). We therefore hypothesized that the increased levels of IMP3 in the GBMs could lead to greater levels of the IGF-2 protein without an increase in its transcript levels. We also found higher levels of IGF-2 protein in GBMs as compared with the lower grades without a corresponding increase in the IGF-2 transcript levels. Furthermore, through knockdown and overexpression studies, we found IMP3 to play a causal role in increasing the levels of IGF-2 protein in the cells without a corresponding increase in the IGF-2 transcript levels. Through IGF-2 neutralization or exogenous supplementation in the background of IMP3 overexpression or knockdown, we also establish that the proproliferative effects of IMP3 are indeed mediated through the actions of IGF-2. The mitogenic effects of the IGF pathway are known to be mediated through the PI3K and MAPK pathways. We have further established a causal role for IMP3 in the activation of these pathways as the siRNA-mediated knockdown of IMP3 adversely affected these signaling cascades. We also establish their role in mediating the proproliferative effects of IMP3 by the use of pharmacological inhibitors of these pathways, which abrogated IMP3-induced proliferation specifically. This becomes increasingly relevant as activation of the Akt pathway has been identified as a key event responsible for the conversion of the grade III AA to the grade IV GBMs (45). Our studies establish IMP3 as a critical oncogenic factor expressed solely in the GBMs with the potential to activate the PI3K/Akt pathway through the translational activation of IGF-2 levels where it could play a vital role in the progressive conversion from lower grade astrocytomas to GBMs.

Our current understanding suggests a pro-oncogenic role for the IGF pathway in multiple cancers. The IGF pathway is known to be hyperactivated in a number of cancers through diverse mechanisms such as the increased expression of the ligands (IGF-1, IGF-2) and the receptor (IGF-1R); alterations in the IGFBPs; and loss of the negative regulator IGF-2R (10, 11, 46–50). In this light, our work reveals a novel mechanism for...
activation of the IGF pathway at the level of mRNA translation. We find IMP3, a novel RNA binding protein to be dramatically up-regulated in GBMs, wherein this protein exerts its pro-oncogenic functions through the translational activation of the IGF-2 mRNA. However, it is also conceivable that IMP3 has other IGF-2-independent functions in regulating cell physiology and tumorigenesis.

Acknowledgments—We thank professors Inder Verma, M. R. S. Rao, P. Kondaiah, and U. Varshney for help and valuable suggestions. We also thank A. A. Srinivas, Cini Samuel, K. Premkumar, and K. Chandrasekhar. Infrastructure support by funding from Indian Council of Medical Research, Department of Biotechnology, Department of Science, and University Grants Commission to the Department of Microbiology and Cell Biology is acknowledged. The Central Animal Facility of the Indian Institute of Science is acknowledged for animal experiments.

REFERENCES

1. Wen, P. Y., and Kesari, S. (2008) N. Engl. J. Med. 359, 492–507
2. Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., Hahn, W. C., Ligon, K. L., Louis, D. N., Brennan, C., Chin, L., DePinho, R. A., and Cavenee, W. K. (2007) Genes Dev. 21, 2683–2710
3. Meyer, M. A. (2008) N. Engl. J. Med. 359, 1850; author reply 1850
4. Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., Ludwig, S. K., Allgeier, A., Fisher, B., Belanger, K., Hau, P., Brandes, A. A., Giannakakis, J., Marosi, C., Vecht, C. J., Mokhtar, K., Wesseling, P., Villa, S., Eisenhauer, E., Gortla, T., Weller, M., Lacombe, D., Cairncross, J. G., and Mirimanoff, R. O. (2009) Lancet Oncol. 10, 459–466
5. Pollak, M. (2008) Nat. Rev. Cancer 8, 915–928
6. Gennigens, C., Menetrier-Caux, C., and Droz, J. P. (2006) Crit. Rev. Oncol. Hematol. 58, 124–145
7. Lenden, P. E., and Helle, S. I. (2004) Novartis Found. Symp. 262, 205–212
8. Manousos, O., Souglakos, J., Bosetti, C., Tzonou, A., Chatzidakis, V., Trichopoulos, D., Adami, H. O., and Mantzoros, C. (1999) Int. J. Cancer 83, 15–17
9. Moschos, S. J., and Mantzoros, C. S. (2002) Oncology 63, 317–332
10. Baserga, R., Peruzzi, F., and Reiss, K. (2003) Int. J. Cancer 107, 873–877
11. Toretsky, J. A., and Helman, L. J. (1996) J. Endocrinol. Metab. 76, 247–250
12. Holland, E. C. (2000) J. Biol. Chem. 275, 1624–1636
13. Li, D., Yan, D., Tang, H., Zhou, C., Fan, J., Li, S., Wang, X., Xia, J., Huang, F., Qiu, G., and Peng, Z. (2009) Ann. Surg. Oncol. 16, 3499–3506
14. Mueller, F., Bommer, M., Lacher, U., Ruhlhand, C., Stagge, V., Adler, G., Gress, T. M., and Seufferlein, T. (2003) Br. J. Cancer 88, 699–701
15. Noske, A., Faggard, A., Wirtz, R., Darb-Esfahani, S., Sehouli, J., Sinn, B., Nielsen, F. C., Weichert, W., Buckendahl, A. C., Röseke, A., Müller, B., Dietel, M., and Denkert, C. (2009) Int. J. Gynecol. Pathol. 28, 203–210
16. Riener, M. O., Fritzschke, F. R., Clavien, P. A., Pestalozzi, B. C., Probst-Hensch, N., Jochum, W., and Kristiansen, G. (2009) Hum. Pathol. 40, 1377–1383
17. Walter, O., Prasad, M., Lu, S., Quinlan, R. M., Edmiston, K. L., and Khan, A. (2009) Hum. Pathol. 40, 1528–1533
18. Yantiss, R. K., Woda, B. A., Fanger, G. R., Kalos, M., Whalen, G. F., Tada, H., Andersen, D. K., Rock, K. L., and Dresser, K. (2005) J. Am. Surg. Pathol. 29, 188–195
19. Yuan, R. H., Wang, C. C., Chou, C. C., Chang, K. J., Lee, P. H., and Jeng, Y. M. (2009) Ann. Surg. Oncol. 16, 1711–1719
20. Sitnikova, L., Mendese, G., Liu, Q., Woda, B. A., Lu, D., Dresser, K., Mohtar, S., Rock, K. L., and Jiang, Z. (2008) Clin. Cancer Res. 14, 1701–1706
21. Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C., and Van Meir, E. G. (2004) Int. J. Biochem. Cell Biol. 36, 1046–1069
22. Giese, A., Bjerkvig, R., Berens, M. E., and Westphal, M. (2003) J Clin Oncol 21, 1624–1636
23. Giese, A., and Westphal, M. (1996) Neurosurgery 39, 235–250; discussion 250–252
24. Mueller-Pillash, F., Pohl, B., Wilda, M., Lacher, U., Beil, M., Wallrapp, C., Hameister, H., Knöchel, W., Adler, G., and Gress, T. M. (1999) Mech. Dev. 88, 95–99
25. Sonoda, Y., Ozawa, T., Aldape, K. D., Deen, D. F., Berger, M. S., and Pieper, R. O. (2001) Cancer Res. 61, 6674–6678
26. Frasca, F., Pandini, G., Sciacca, L., Pezzino, V., Squatrito, S., Belfiore, A., and Vigneri, R. (2008) Arch. Physiol. Biochem. 114, 33–37
27. Grimmel, A. (2003) Cancer Biol. Ther. 2, 630–635
28. Jerome, L., Shiroy, L., and Leyland-Jones, B. (2003) Endocr. Relat. Cancer 10, 561–578
29. Monzavi, R., and Cohen, P. (2002) Best. Pract. Res. Clin. Endocrinol. Metab. 16, 433–447
30. van Roozendaal, C. E., Gillis, A. J., Klijn, J. G., van Ooijen, B., Claassen, C. J., Eggermont, A. M., Henzen-Logmans, S. C., Oosterhuis, J. W., Foekens, J. A., and Loosjenga, L. H. (1998) FEBS Lett. 437, 107–111

Igf2bp3/Imp3 Activates P3k/MAPk Pathways by Modulating IGF-2