Asymmetric transmission through a flux-controlled non-Hermitian scattering center

X. Q. Li,¹ X. Z. Zhang,² G. Zhang,¹ and Z. Song¹
¹School of Physics, Nankai University, Tianjin 300071, China
²College of Physics and Materials Science, Tianjin Normal University, Tianjin 300087, China

We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the aim of realizing quantum diode in a non-Hermitian system. It is shown that a \mathcal{PT} symmetric non-Hermitian scattering center always has symmetric transmission although the dynamics within the isolated center can be unidirectional, especially at its exceptional point. We propose a concrete scheme based on a flux-controlled non-Hermitian scattering center, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux. The analytical solution shows that such a complex scattering center acts as a diode at the resonant energy level of the spectral singularity, exhibiting perfect unidirectionality of the transmission. The connections between the phenomena of the asymmetric transmission and reflectionless absorption are also discussed.

PACS numbers: 03.65.Nk, 05.60.Gg, 11.30.Er, 42.25.Bs

I. INTRODUCTION

Asymmetric transmission is of significant interest in the quantum analogues of electronic devices, such as quantum diode device, which is the key to quantum information processing in integrated circuits [1]. It is characterized by the non-reciprocal particle transport along the opposite directions. Recently, it has been reported that the unidirectional transport can be realized in practice systems [2,3]. A non-Hermitian Hamiltonian can possess peculiar features that have no Hermitian counterpart. A typical one is the non-reciprocal dynamics, which has been observed in experiments [3]. However, it has not been paid due attention by the physics community until the discovery of non-Hermitian Hamiltonians with parity-time symmetry, which have a real spectrum [4]. It has boosted the research on the complex extension of quantum mechanics on a fundamental level [5,18]. Recently, the concept of spectral singularity of a non-Hermitian system has gained a lot of attention [19,23,25,28], motivated by the possible physical relevance of this since the pioneer work of Mostafazadeh [29]. The majority of previous works focus on the non-Hermitian system in the absence of an external magnetic field [21,24,30,35,42,44].

The aim of this work is to study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the recent investigation on the physical relevance of a spectral singularity. It is shown that a \mathcal{PT}-symmetric non-Hermitian scattering center always has symmetric transmission although the non-reciprocal dynamics within the isolated center is allowed, especially at its exceptional point [37,38]. We consider a \mathcal{PF}-symmetric non-Hermitian scattering center, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux, where \mathcal{F} is the action of flipping the flux. We show that such a complex scattering center acts as a diode, which is characterized by the different performances of transmission coefficients along the opposite directions. Furthermore, it is found that the perfect unidirectionality of the transmission is a signature of the existence of a spectral singularity. And the criterion for spectral singularity by transfer matrix is not applicable to the present system due to the presence of the magnetic field.

This paper is organized as follows. In Section II, we present a general formalism for the scattering problem. In Section III, the Hamiltonian for asymmetric transmission is constructed and the analytical scattering solution is obtained. In Section IV, we study the connection between the perfect unidirectionality and the spectral singularity. Finally, we give a summary and discussion in Section V.

II. SYMMETRIC TRANSMISSION

In this section, we present a general formalism for one-dimensional scattering process of several types of scattering centers [39,40]. We will show that the asymmetric transmission, which is the base of a quantum diode, cannot be realized via \mathcal{P}, \mathcal{T}, and \mathcal{PT}-symmetric non-Hermitian scattering centers. However, it may be possible for the non-Hermitian scattering center with an internal degree of freedom.

This term “one-dimensional” refers to the space domain of incident, reflected and transmitted waves, rather than that of scattering center. This constraint requires the asymptotic eigenfunctions to be one-dimensional plane waves. Consider a scattering problem for an arbitrary scattering center, which is schematically illustrated in Fig. II(a). According to the above analysis, for the left
time-reversal operator \mathcal{T} has the function $\mathcal{T}i\mathcal{T}^{-1} = -i$, the \mathcal{T} symmetry brings up additional constraints for the coefficients. One can obtain the following relations

$$
(r_{L})^{*}t_{R} + (r_{R})^{*}t_{L} = 1, \quad (t_{L})^{*}r_{R} + (t_{R})^{*}r_{L} = 0,
$$

(5) (6)
due to the fact that the conjugations of Eq. (11) and (2) are still the asymptotic eigenfunctions of the system. Together with the continuity of probability currents

$$
|t_{L,R}|^{2} + |r_{L,R}|^{2} = 1,
$$

(7)
we have the symmetry relations

$$
t_{R} = t_{L}, r_{R} = r_{L}.
$$

(8)

It indicates that for a Hermitian scattering center, the asymmetry potential cannot lead to transmission asymmetry.

A natural question is whether a non-Hermitian scattering center can lead to the asymmetrical transmission. Before we answer this question we would like to point that several types of non-Hermitian scattering center cannot be the candidate. This may provide a guidance for the diode design. To begin with, a parity symmetric non-Hermitian scattering center should exhibit symmetric reflection and transmission. Here the parity operator \mathcal{P} has the function $\mathcal{P}x\mathcal{P}^{-1} = -x$. In addition to that, we will show that a \mathcal{PT}-symmetric non-Hermitian scattering center also possesses the transmission symmetry. For a \mathcal{PT}-symmetric scattering center, wave functions obtained by the \mathcal{PT} action on the Eqs. (1) and (2) are still the asymptotic eigenfunctions.

Comparing $\mathcal{PT}\psi_{L}^{k}(x)$ (\mathcal{PT}^{-1}) and $\psi_{L}^{k}(x)$, we have

$$
(r_{R})^{*} = r_{L}^{*}, \quad (t_{R})^{*} = t_{L}^{*},
$$

(9)

which still holds if we take $L \leftrightarrow R$ or $k \rightarrow -k$. Together with Eq. (3), we have

$$
(t_{L})^{*}t_{R} + (r_{R})^{*}r_{L} = 1,
$$

(10)

and

$$
(t_{R})^{*}t_{L} + (r_{L})^{*}r_{R} = 1,
$$

(11)

which lead to

$$
|t_{L}| = |t_{R}|.
$$

(12)

This result indicates that it is impossible to construct a diode, a scattering center allowing unidirectional flow, by a \mathcal{PT}-symmetric non-Hermitian scattering center in the framework of this paper, although it cannot tell us which type of structure meets the demand.

Now we consider the case where the scattering center has an internal degree of freedom ϕ as illustrated in Fig. 1(a). The Hamiltonian has the \mathcal{PF}-symmetry, i.e.,

$$
\mathcal{PF}H(\mathcal{PF})^{-1} = H,
$$

(13)
where \mathcal{F} is the ϕ-flip operator, defined as $\mathcal{F} H (\phi) \mathcal{F}^{-1} = H (-\phi)$. Applying the \mathcal{PF}-operator on the Eqs. (1) and (2), we obtain the new solutions of the Hamiltonian, which exhibits perfect unidirectionality.

In contrast to the systems with \mathcal{P}, \mathcal{T}, and \mathcal{PT}-symmetry respectively, one cannot get the conclusion of the symmetric transmission. It opens the possibility of $t^k_L (\phi) \neq t^k_R (\phi)$, and a perfect diode for the specific k_c and ϕ_c, i.e.,

$$\left| t^k_R (\phi_c) \right|^2 = 1, \quad t^k_L (\phi_c) = 0, \quad \left(\mathcal{P} \right)^{\phi_c} (\phi_c) = 0, \quad \left(\mathcal{P} \right)^{\phi_c} (\phi_c) = 0,$$

which correspond to the Bethe Ansatz wave function. Employing Bethe Ansatz technique, we have

$$t^k_L = t^k_R = -\cos \phi + \cos k \frac{\sin k}{\Omega (k, \phi, \gamma)}, \quad (22)$$

and

$$t^k_L = i e^{-i \phi/3} \sin k \frac{e^{i \phi} + 2 \cos k - e^{-i \gamma}}{\Omega (k, \phi, \gamma)}, \quad (23)$$

with

$$\Omega (k, \phi, \gamma) = e^{ik} \left[i \sin k (2 \cos k - e^{i \gamma}) + e^{ik} \cos \phi + 1 \right]. \quad (25)$$

The threading flux and single on-site complex potential can destroy the \mathcal{P} symmetry as well as the \mathcal{PT} symmetry. However, it possesses \mathcal{PF}-symmetry with the internal degree of freedom being the threading flux.

The Hamiltonian of the concerned scattering tight-binding network has the form

$$H = H_L + H_R + H_{\text{Tri}}, \quad (16)$$

where

$$H_L = -J \sum_{j=0}^{\infty} (a_j^\dagger a_j + H.c), \quad (17)$$

$$H_R = -J \sum_{j=1}^{\infty} (a_j^\dagger a_j + H.c), \quad (18)$$

represent the left (HL) and right (HR) waveguides with real J and

$$H_{\text{Tri}} = -e^{i \phi/3} J \left(a_0^\dagger a_{-1} + a_1^\dagger a_0 + a_{-1}^\dagger a_1 + H.c + V a_0^\dagger a_0, \right) \quad (19)$$

describes a non-Hermitian scattering center, with the non-Hermiticity arising from the complex potential $V \neq V^*$. It is a triangular lattice threaded by a magnetic flux ϕ, which satisfies the Eq. (13) and is schematically illustrated in Fig. 1b. We note that zero ϕ leads to \mathcal{P} symmetry, real V leads to \mathcal{PT} symmetry, both of which are the obstacles for the transmission asymmetry as shown in above section. In this paper, we consider the case with complex potential $V = -Je^{i \gamma}$ ($\gamma \in (0, \pi)$).

We consider the left and right incident scattering processes. We focus our study on single-particle subspace spanned by the basis $\left\{ \left| j \right> = a_j^\dagger \left| 0 \right> \right\}$. The discrete version of Eqs. (1) and (2) has the form

$$\psi^k_L (j) = \left\{ \begin{array}{ll} e^{ikj} + t^k_L e^{-ikj}, & (j \ll 0) \\ t^k_L e^{ikj}, & (j \gg 0) \end{array} \right., \quad (20)$$

and

$$\psi^k_R (j) = \left\{ \begin{array}{ll} t^k_R e^{-ikj}, & (j \ll 0) \\ e^{-ikj} + r^k_R e^{ikj}, & (j \gg 0) \end{array} \right., \quad (21)$$

III. PERFECT UNIDIRECTIONALITY

Inspired by the previous work [14] and the analysis in above section, we start our design of diode scattering center by a simplest geometry, a three-site cluster.
FIG. 3. (Color online) Plots of the transmission amplitudes from Eq. (22) with \(k = \gamma = \pi/6 \). It shows that real and imaginary parts of the amplitudes are discontinuous and divergent at \(\phi = 5\pi/6 \) and \(\phi = 7\pi/6 \), respectively.

For an incident wave with momentum \(k_c = \gamma \) from left or right, from Eq. (22) we have

\[
\begin{align*}
 r_L^{k_c} &= r_R^{k_c} = 0, \\
 t_L^{k_c} &= e^{i\pi/3}e^{-ik\gamma/3}, \\
 t_R^{k_c} &= 0,
\end{align*}
\]

which exhibits perfect unidirectionality, when the flux \(\phi \) takes the value \(\phi_c = \pi - \gamma \). In order to illustrate the asymmetric transmission effect we consider the case with \(\gamma = 2\pi/3 \) and \(\phi = \pi/3 \). Fig. 2 shows transmission and reflection profiles as a function of the wave number \(k \). The perfect asymmetric behavior with \(|r_L^{k_c}| = |t_L^{k_c}| = 0.0 \) and \(|t_R^{k_c}| = 1.0 \) at \(k_c = 2\pi/3 \), as expected, is observed. It shows that there is a relative wider region around \(k_c \), within which the system still exhibits the diode characteristic approximately.

IV. SPECTRAL SINGULARITY

In this section, we will show that the occurrence of perfect unidirectionality is related to the presence of a spectral singularity. To this end, we consider the solution of the Hamiltonian

\[
H_\text{Tri} = H_L + H_R + H_\text{Tri}^4
\]

where

\[
H_\text{Tri}^4 = -e^{i\phi/3}J \left(a_0^\dagger a_{-1} + a_1^\dagger a_0 + a_{-1}^\dagger a_1 \right)
\]

\[
+ H.c - J e^{-i\gamma}a_0^\dagger a_0,
\]

which is Hermitian conjugation of \(H \). According to the pseudo-Hermitian quantum mechanics [45]. The eigenfunctions of \(H \) and \(H^\dagger \) can construct the complete biorthogonal basis except the case of spectral singularity, at which the complete biorthonormal set is spoiled. By the same procedure, the scattering wavefunctions can be obtained in the form

\[
\psi_L^k(j) = \begin{cases} e^{ikj} + \tau_L^k e^{-ikj}, & (j \ll 0) \\ \tau_L^k e^{ikj}, & (j \gg 0) \end{cases},
\]

and

\[
\psi_R^k(j) = \begin{cases} e^{-ikj} + \tau_R^k e^{ikj}, & (j \ll 0) \\ \tau_R^k e^{-ikj}, & (j \gg 0) \end{cases},
\]

where

\[
\tau_L^k = \tau_R^k = \tau_L^k (\gamma \rightarrow -\gamma),
\]

\[
\tau_{L,R}^k = t_{L,R}^k (\gamma \rightarrow -\gamma).
\]

However, it becomes a little complicated when we consider the solution for \(k = k_c \). We find that the eigenfunctions with \(k_c \) does not exist when the flux \(\phi \) takes the value \(\phi_c = \pi - \gamma \). We investigate the limit of \(\tau_{L,R}^k \) and \(t_{L,R}^k \) as \((k, \phi) \rightarrow (\gamma, \pi - \gamma) \) along the following two paths: (I) \(\phi = \pi - k, k \rightarrow \gamma^+ \) and (II) \(\phi = \pi - k, k \rightarrow \gamma^- \), respectively. A straightforward calculation shows that two different paths gives unequal limits, i.e.,

\[
\begin{align*}
 \lim_{k \rightarrow \gamma^\pm} \tau_{L,R}^k &= 0 \\
 \lim_{k \rightarrow \gamma^\pm} t_{L,R}^k &= e^{i\pi/3}e^{-i\gamma\gamma/3}.
\end{align*}
\]

We see that the transmission amplitude \(t_{L,R}^k \) has a singularity at the point \(k = k_c = \gamma \), which indicates that the Bathe Ansatz solution in Eqs (29) and (30) do not exist. Then the complete biorthogonality of the eigenfunctions of \(H \) and \(H^\dagger \) is destroyed at this point. We can also investigate this point from other way, taking the limits of \(\tau_{L,R}^k \) and \(t_{L,R}^k \) as \((k, \phi) \rightarrow (\gamma, \pi - \gamma) \) along the following two paths: (I) \(k = \gamma, \phi \rightarrow \pi - \gamma^+ \) and (II) \(k = \gamma, \phi \rightarrow \pi - \gamma^- \), respectively. To demonstrate the singularity, we plot \(t_{L,R}^k \) as functions of \(\phi \) for \(k_c = \gamma = \pi/6 \) in Fig. 3. The profiles of the plots show clearly that the one-sided limits from the left and from the right for the real and imaginary parts are discontinuous and divergent at \(\phi = 5\pi/6 \) and \(\phi = 7\pi/6 \), respectively. Therefore we conclude that the perfect asymmetric transmission corresponds to the existence of the spectral singularity of the non-Hermitian diode model.
Now we consider the case with $\phi = 0$, which represents the non-Hermitian scattering center arising from complex on-site potentials. Straightforward derivation shows that when the momentum $k = k_c$, with
\[
\sin k_c = -\frac{\cos \gamma + 1}{2 \sin \gamma},
\] we have
\[
(M_{k_c})_{22} = \frac{1}{t_{R}^{k_c}} = 0.
\]
It identifies a spectral singularity at k_c, which also corresponds to $|t_{R,L}^{k_c}| = |e_{R,L}^{k_c}| = \infty$. This result accords with the theorems proposed in Ref. [29]. Furthermore, the corresponding eigenfunctions can be written as
\[
\psi_{\pm}^{k_c}(j) = \begin{cases} e^{-ik_c j}, & (j < 0) \\ e^{ik_c j}, & (j > 0) \end{cases},
\]
due to the fact
\[
\lim_{k \rightarrow k_c} r_{L}^{k}/r_{R}^{k} = \lim_{k \rightarrow k_c} r_{R}^{k}/t_{R}^{k} = 1.
\]
Obviously, the physics of the solution in Eq. (42) corresponds to the unidirectional plane wave, which has been proposed in Refs. [23]. It can be seen from the following analysis. The group velocities of the incident plane waves from left and right are denoted as $v_{L} = v_{L}^{k_c}$ and $v_{R} = v_{R}^{k_c}$, where
\[
v_{k_c}^{\pm} = \left(\frac{\partial E_k}{\partial k}\right)_{\pm k_c} = \pm 2J \sin k_c.
\]
For the center loss potential $V = -J e^{i\gamma}$ with $\gamma \in (0, \pi)$, we have $\sin k_c < 0$ according to Eq. (20) and then yields $v_{L} > 0$, $v_{R} < 0$. It indicates that the solution in Eq. (42) represents the current flow from both sides to the center. It corresponds to reflectionless absorption with \mathcal{P} symmetry, which is schematically illustrated in Fig. 1(c).

On the other hand, when we consider the nonzero ϕ case, we will find that such a criterion is invalid for the spectral singularity under the condition of the perfect asymmetric transmission. From Eq. (20), the corresponding transfer matrix can be written as
\[
M_{k_c} = \begin{pmatrix} 0 & 0 \\ 0 & e^{i(4k_c - \pi)/3} \end{pmatrix},
\]
which indicates $M_{22} \neq 0$. It implies that the criterion for the existence of spectral singularity is not necessary when the magnetic field is involved.

Finally, we would like to discuss the asymmetric transmission from other perspective. It has been turned out that, there is another peculiar phenomenon, reflectionless absorption, in the semi-infinite non-Hermitian system [23]. We have shown in above section that, such
a phenomenon in its symmetrized version, can occur in the present system with zero ϕ. Now we will show the connection between the perfect unidirectionality and reflectionless absorption. In contrast to the previous study, we consider the system in the presence of a magnetic flux. One can see this connection simply by disconnecting one of two leads in the system with the Hamiltonian in Eq. (16). Figure 4(a) and (b) schematically illustrates this geometry, which are obtained by cutting off the right and left leads, respectively. Then we can conclude that a perfect diode scattering center can always be reduced to a setup of reflectionless absorption. However, the latter is not sufficient to construct a diode device.

V. SUMMARY AND DISCUSSION

In summary, we have studied the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide. We have shown that the non-Hermiticity of a scattering center is not sufficient for the asymmetric transmission, while it is forbidden for a Hermitian scattering center. We have constructed a concrete setup possessing the perfect unidirectionality of the transmission, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux. It seems to imply that a magnetic flux is crucial for such a phenomenon. Furthermore, the analytical solution shows the connection between the perfect unidirectionality and spectral singularity. We have also showed that the criterion for spectral singularity associated with the transfer matrix is invalid when the magnetic field is involved.

ACKNOWLEDGMENTS

We acknowledge the support of the National Basic Research Program (973 Program) of China under Grant No. 2012CB921900 and CNSF (Grant No. 11374163).

[1] H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
[2] Z. F. Yu, and S. H. Fan, Nat. Photon. 3, 91 (2009).
[3] L. Bi, J. J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nat. Photon. 5, 758 (2011).
[4] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, Science 335, 447 (2012).
[5] H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, Phys. Rev. Lett. 109, 033901 (2012).
[6] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
[7] C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[8] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Ann. Phys. (NY) 213, 74 (1992).
[9] C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys. 40, 2201 (1999).
[10] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270404 (2002).
[11] A. de Souza Dutra, M. B. Hott, and V. G. C. S. dos Santos, J. Phys. A 34, L 391 (2001).
[12] P. Dorey, C. Dunning, and R. Tateo, J. Phys. A 34, 5679 (2001).
[13] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[14] A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002).
[15] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
[16] A. Mostafazadeh, and A. Batal, J. Phys. A 36, 7081 (2003).
[17] A. Mostafazadeh, and A. Batal, J. Phys. A 37, 11645 (2004).
[18] H. F. Jones, J. Phys. A 38, 1741 (2005).
[19] A. Mostafazadeh, Phys. Rev. A 80, 032711 (2009).
[20] A. Mostafazadeh, Phys. Rev. A 84, 023809 (2011).
[21] A. Mostafazadeh, Phys. Rev. Lett. 110, 260402 (2013).
[22] A. Mostafazadeh, and M. Sarisaman, Phys. Rev. A 87, 063834 (2013).
[23] A. Mostafazadeh, and M. Sarisaman, Phys. Rev. A 88, 033810 (2013).
[24] X. Z. Zhang, and Z. Song, Ann. Phys. 339, 109 (2013).
[25] S. Longhi, Phys. Rev. B 80, 165125 (2009).
[26] A. A. Andrianov, F. Cannata, and A. V. Sokolov, J. Math. Phys. 51, 052104 (2010).
[27] F. Correa, and M. S. Plyushchay, Phys. Rev. D 86, 085028 (2012).
[28] L. Chaos-Cador, and G. Garcia-Caldem, Phys. Rev. A 87, 042114 (2013).
[29] A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009).
[30] H. F. Jones, Phys. Rev. D 76, 125003 (2007).
[31] H. F. Jones, Phys. Rev. D 78, 065032 (2008).
[32] M. Znojil, Phys. Rev. D 78, 025026 (2008).
[33] M. Znojil, Phys. Rev. D 80, 045009 (2009).
[34] M. Znojil, Phys. Rev. D 80, 045022 (2009).
[35] M. Znojil, Phys. Rev. D 80, 105004 (2009).
[36] C. M. Bender, and P. D. Mannheim, Phys. Rev. D 78, 025022 (2008).
[37] L. Jin, and Z. Song, Phys. Rev. A 80, 052107 (2009).
[38] X. Z. Zhang, L. Jin, and Z. Song, Phys. Rev. A 87, 042118 (2013).
[39] J. G. Muga, J. P. Palao, B. Navarroa, and I. L. Egusquiza, Phys. Rep. 395, 357 (2004).
[40] F. Cannata, J-P. Dedonder, and A. Ventura, Ann. Phys. 322, 397 (2007).
[41] S. Yang, Z. Song, and C. P. Sun, Gao 0912.0324.
[42] S. Longhi, Phys. Rev. A 81, 022102 (2010).
[43] A. Ghatak, J. A. Nathan, B. P. Mandal, and Z. Ahmed, J. Phys. A: Math. Theor. 45, 465035 (2012).
[44] A. Mostafazadeh, Phys. Rev. A 87, 063838 (2013).
[45] A. Mostafazadeh, and H. Mehri-Dehnavi, J. Phys. A: Math. Theor. 42, 125303 (2009).
[46] A. Mostafazadeh, J. Phys. A: Math. Gen. 39, 13495 (2006).