Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP Violation Parameter ϵ_K and ΔM_K

Joachim Brod1 and Martin Gorbahn1,2

1Excellence Cluster Universe, Technische Universität München, Boltzmannstraße 2, D-85748 Garching, Germany
2Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, D-85748 Garching, Germany

The observables ϵ_K and ΔM_K play a prominent role in particle physics due to their sensitivity to new physics at short distances. To take advantage of this potential, a firm theoretical prediction of the standard-model background is essential. The charm-quark contribution is a major source of theoretical uncertainty. We address this issue by performing a next-to-next-to-leading-order QCD analysis of the charm-quark contribution η_{ct} to the effective $|\Delta S| = 2$ Hamiltonian in the standard model. We find a large positive shift of 36%, leading to $\eta_{ct} = 1.87(76)$. This result might cast doubt on the validity of the perturbative expansion; we discuss possible solutions. Finally, we give an updated value of the standard-model prediction for $|\epsilon_K| = 1.81(28) \times 10^{-3}$ and $\Delta M_K^{SD} = 3.1(1.2) \times 10^{-15}$ GeV.

Strangeness-changing neutral-current transitions play an important role in particle physics. The parameter ϵ_K, measuring indirect CP violation in the neutral Kaon system, has received increased attention recently due to the discrepancy between the theoretical prediction and the experimental measurement $|\epsilon_K| < 0.2$. In addition, together with the Kaon mass difference ΔM_K, it provides strong constraints on many models of new physics.

Theoretical predictions for ΔM_K^{SD} and ϵ_K are calculated in the framework of effective field theories, which allow to separate short- and long-distance contributions, and to sum all terms which are enhanced by powers of large logarithms $\log(m_c^2/M_K^2)$ using the renormalisation group. The relevant $|\Delta S| = 2$ effective Hamiltonian in the three-quark theory reads

$$\mathcal{H}_{f=3}^{\Delta S=2} = \frac{G_F^2}{4\pi^2} M_W^2 \lambda_c^2 \eta_{ct} S(x_c) + \lambda_q^2 S(x_t) + 2\lambda_c \lambda_{ct} S(x_c, x_t) b(\mu) \bar{Q}_{S2} + \text{h.c.}$$

where G_F is the Fermi constant, $\lambda_i = V_{id}^* V_{is}$ comprises the Cabibbo-Kobayashi-Maskawa matrix elements, and $\bar{Q}_{S2} = (s_L \gamma_\mu d_L)^2$ is the leading local four-quark operator that induces the $|\Delta S| = 2$ transition, defined in terms of the left-handed s- and d-quark fields. The parameter $b(\mu)$ is factored out such that

$$\hat{B}_K = \frac{3}{2} \frac{b(\mu)}{f_K M_K^2} \mathcal{H}_{f=3}^{\Delta S=2},$$

where f_K is the Kaon decay constant, is a renormalisation-group invariant quantity comprising the hadronic matrix element. It can be calculated on the lattice with high precision $^{[5][9]}$.

The loop functions S can be found, for instance, in $^{[10]}$. The QCD and logarithmic corrections are contained in the η factors and are known at next-to-leading order (NLO) for the dominant top-quark contribution ($\eta_{ct} = 0.5765(65)^{[11]}$). The relative suppression of the top-quark contribution by the small imaginary part of λ_t^2, relevant for ϵ_K, lets the charm-quark contributions compete in size. We have already performed a next-to-next-to-leading-order (NNLO) calculation of the charm-top contribution ($\eta_{ct} = 0.496(47)^{[12]}$). Here, we focus on the charm-quark contribution, known until now at NLO, with a substantial error ($\eta_{ct} = 1.40(35)^{[8][13]}$). It multiplies $S(x_c) = x_c + O(x_c^2)$, where $x_c \equiv m_c^2/M_K^2$ and $m_c = m_c(x_c)$ is the MS charm-quark mass. The Glashow-Iliopoulos-Maiani (GIM) mechanism cancels a potential large logarithm at leading order (LO).

The charm-quark contribution η_{ct} determines the short-distance part of the Kaon mass difference ΔM_K^{SD} and enters ϵ_K with a negative sign. The large remaining scale uncertainty at NLO hints at potentially sizeable NNLO corrections; we confirm this expectation by an explicit calculation in this Letter.

Our calculation proceeds in three steps: determination of the initial conditions of the Wilson coefficients at the electroweak scale, renormalisation-group evolution to the charm-quark scale, and matching onto the effective three-quark theory. The new result is the three-loop matching condition at the charm-quark scale.

The effective Hamiltonian in the five- and four-flavour theory relevant for η_{ct} reads

$$\mathcal{H}_{f=5,4}^{\Delta S=1} = \frac{4G_F}{\sqrt{2}} \sum_{i=+,+} \sum_{q,q'=u,c} C_i \sum_{q,q'=u,c} V_{q,q'} V_{q,s} Q_i^{qq'}. \quad (3)$$

Here the current-current operators are given by $Q_i^{qq'} = (\{\sigma_{\alpha}^\mu q_i^\mu q_j^\mu\} \pm \{\sigma_{\alpha}^\mu q_j^\mu d_i^\mu\}) \pm (\{\sigma_{\alpha}^\mu c_i^\mu q_j^\mu\} \pm \{\sigma_{\alpha}^\mu c_j^\mu d_i^\mu\}) / 2$, where α and β are colour indices, and we define the evanescent operators in such a way that the anomalous dimension matrix is diagonal through NNLO $^{[12][13]}$. The GIM mechanism cancels a contribution of the $|\Delta S| = 2$ Hamiltonian above the charm-quark scale; we verified explicitly that mixing of dimension-six into dimension-eight operators proportional to λ_t^2 does not occur above the charm-
loop matching calculation yields (we use the notation in [12]. Our NLO result confirms the calculation by [13]. Moreover, we expand the charm-quark mass defined at the electroweak scale [15]. The running of \(C_\pm \) to the charm-quark scale can be taken up to NNLO from [14].

At the scale \(\mu_c = \mathcal{O}(m_c) \) the charm quark is removed from the theory as a dynamical degree of freedom. Requiring the equality of the Green’s functions in both theories at \(\mu_c \) leads to the matching condition

\[
\sum_{i,j=+,0} C_i C_j \langle Q_i Q_j \rangle = \frac{1}{8\pi^2} \hat{C}_{cc}^{\text{NNLO}} \langle \bar{Q}_S \bar{Q}_S \rangle ,
\]

which we use to determine the Wilson coefficient \(\hat{C}_{cc}^{\text{NNLO}} \) defined implicitly in [10] below. Here, angle brackets denote operator matrix elements between \(s \)- and \(d \)-quark external states. Writing \(\langle \bar{Q}_S \bar{Q}_S \rangle = r_{S2} \langle Q_S Q_S \rangle^{(0)} \) and \(\langle Q_i Q_j \rangle = m_i^2/(8\pi^2) d_{ij} \langle Q_S Q_S \rangle^{(0)} \), and expanding all quantities in powers of \(\alpha_s/(4\pi) \), we find the following contributions to the matching (a sum over \(i,j = +,- \) is implied):

\[
\begin{align*}
\hat{C}_{S2}^{(0)} &= m_c^2 \langle \bar{Q}_S \bar{Q}_S \rangle^{(0)} C_i^{(0)} C_j^{(0)} d_{ij}^{(0)}, \\
\hat{C}_{S2}^{(1)} &= m_c^2 \langle \bar{Q}_S \bar{Q}_S \rangle^{(0)} \left[C_i^{(0)} C_j^{(0)} (d_{ij}^{(1)} - d_{ij}^{(0)} r_{S2}^{(1)}) + (C_i^{(1)} C_j^{(0)} + C_i^{(0)} C_j^{(1)}) d_{ij}^{(0)} \right], \\
\hat{C}_{S2}^{(2)} &= m_c^2 \langle \bar{Q}_S \bar{Q}_S \rangle^{(0)} \left[C_i^{(0)} C_j^{(0)} (d_{ij}^{(2)} - (d_{ij}^{(1)} - d_{ij}^{(0)} r_{S2}^{(1)}) r_{S2}^{(1)} - d_{ij}^{(0)} r_{S2}^{(1)}) + (C_i^{(1)} C_j^{(0)} + C_i^{(0)} C_j^{(1)}) (d_{ij}^{(1)} - d_{ij}^{(0)} r_{S2}^{(1)}) \right] \\
&+ (C_i^{(2)} C_j^{(0)}) + (C_i^{(0)} C_j^{(2)}) + (C_i^{(0)} C_j^{(2)}) \right]\left[C_i^{(0)} C_j^{(0)} + C_i^{(0)} C_j^{(1)} + C_i^{(0)} C_j^{(0)} \right] d_{ij}^{(0)} + \frac{2}{3} \log \frac{\mu_c^2}{m_c^2} \left(C_i^{(1)} C_j^{(0)} + C_i^{(0)} C_j^{(1)} d_{ij}^{(0)} + C_i^{(0)} C_j^{(0)} \right] d_{ij}^{(0)} \right],
\end{align*}
\]

The strong coupling constant \(\alpha_s \) is defined in the three-quark theory throughout this Letter, and superscripts in brackets denote the order of the expansion in \(\alpha_s \). Furthermore, we expand the charm-quark mass defined at the scale \(\mu_c \), viz. \(m_c(\mu_c) \), about \(m_c(m_c) \), as in Ref. [14].

In order to evaluate the Eqs. [5], we compute the finite parts of one-, two-, and three-loop Feynman diagrams of the type shown in Fig. [4] the evanescent operators in the \[\Delta S \] = 2 sector have been chosen as in [12]. Our NLO result confirms the calculation by Herrlich and Nierste [16] for the first time. The three-loop matching calculation yields (we use the notation \(d_{ij}^{(2)} \equiv d_{ij}^{(2)} - (d_{ij}^{(1)} - d_{ij}^{(0)} r_{S2}^{(1)}) r_{S2}^{(1)} - d_{ij}^{(0)} r_{S2}^{(2)} \); note also that \(d_{ij}^{(2)} = d_{ji}^{(2)} \)):

\[
\begin{align*}
\hat{d}_{ij}^{(2)} &= \frac{1066873233}{8164800} - \frac{1573}{162} B_4 + \frac{133}{72} D_3 + \frac{49}{36} \zeta_2 l_c + \frac{4313}{216} \zeta_2 - \frac{15059}{1296} + \frac{210213}{560} - \frac{1501}{54} \zeta_2
\end{align*}
\]

where we defined \(l_c = \log(\mu_c^2/m_c^2(\mu_c)) \), \(\zeta_n \) denotes Riemann’s zeta function of \(n \), and the remaining constants are defined in [17]. This result is new.

Since the calculation of the NNLO contributions to \(\eta_{cc} \) is quite complex, we checked our results in several ways. First of all the calculation of the \(\mathcal{O}(10000) \) Feynman diagrams, the renormalisation, and the matching calculation, has been performed independently by the two of us, using a completely different set of computer programs, leading to identical results. On the one hand we use

FIG. 1. Sample one-, two-, and three-loop diagrams contributing to the matching at the charm-quark scale. Loopy lines are gluons, and straight lines are quarks. The combination \(c - u \) arises from the GIM mechanism; \(q \) denotes any of the quarks \(u, d, s \).
stemming from the experimental error on $\alpha_{160 \text{ GeV}}$ we find the following numerical value at NNLO, between 1 and 2 GeV (see Fig. 2) and μ_s sorbed into the matrix elements are finite and independent of the scale.

The remaining scale dependence present in (9) is absorbed into the matrix elements are finite and independent of the scale. In order to show that the large scale dependence is cancelled by the corresponding scale dependence of the hadronic matrix element, order by order in perturbation theory. Consequently, our result is independent of μ_c up to and including terms of $O(\alpha_s^2)$.

As a first estimate of the theoretical uncertainty of η_{cc} we study the residual scale dependence, using three different methods to evaluate the running strong coupling constant [14]. Matching at $m_{(m_c)}$ and varying μ_c between 1 and 2 GeV (see Fig. 2) and μ_W between 40 and 160 GeV we find the following numerical value at NNLO,

$$\eta_{cc} = 1.86 \pm 0.53_{\mu_c} \pm 0.07_{\mu_W} \pm 0.06_{\alpha_s} \pm 0.01_{m_c},$$

where we also display the parametric uncertainties stemming from the experimental error on $\alpha_s(M_Z)^2 = 0.1184(7)$ [24] and $m_c(m_c) = 1.279(13) \text{ GeV}$ [25]. The dependence on the scale μ_b and on m_t is completely negligible [26].

Varying μ_c and μ_W in the same range as above, we find at NLO

$$\eta_{cc}^{\text{NLO}} = 1.38 \pm 0.52_{\mu_c} \pm 0.07_{\mu_W} \pm 0.02_{\alpha_s},$$

where the error indicated by the subscript “μ” includes the effect of the three ways of determining α_s. We have included the parametric uncertainty related to α_s; the error resulting from m_c is negligible.

We find a substantial shift from NLO to NNLO for η_{cc}; furthermore, we observe that the NNLO calculation does not reduce the residual scale dependence (see Fig. 2). This reveals a bad convergence behaviour of the expansion of η_{cc} in α_s, even after having summed all terms proportional to $\alpha_s^n \log(m_2^2/M_W^2)^n$ and $\alpha_s^{n+1} \log(m_2^2/M_W^2)$ using the renormalisation group. Some of the higher-order terms leading to the residual scale dependence are scheme dependent. In order to show that the large scale dependence is not artificial and to gain a better understanding of its origin, we expand the full solution of the renormalisation group equation. We find, up to terms cubic in α_s,

$$\eta_{cc}/(\alpha_s(m_c))^{2/9} = 1 + \alpha_s(m_c)(0.25 + 0.32L_c) + (\alpha_s(m_c))^2(1.20 + 0.03L_b + 0.22L_c + 0.27L_c^2),$$

where $L_c = \log(m_2^2/M_W^2) = -8.28$, $L_b = \log(m_b^2/M_W^2) = -5.92$, and $\alpha_s(m_c) = 0.35$ at three-loop accuracy. Here

![Graph showing η_{cc} as a function of μ_c](image)
we neglect the small terms proportional to L_b^2. This result is independent of the renormalisation scale and the definition of the evanescent operators and depends implicitly only on the choice of the renormalisation schemes used to determine \hat{B}_K (cf. Eq. (10)), α_s, and the charm-quark mass. The large logarithmic terms proportional to powers of L_b and L_c are summed to all orders by the renormalisation group in our full result, but the constant term of the NNLO correction is more problematic: it is almost twice as large as its NLO counterpart. Such large constant parts are expected to lead to a large residual scale dependence, as we indeed observe in Fig. 2.

The convergence of the series can be somewhat improved by expanding the square of the charm-quark mass multiplying η_{cc} in Eq. (1) in powers of α_s, noting that the charm-quark mass receives negative corrections, although the effect is not substantial at NNLO.

As a consequence of the discussion above, we propose the following temporary prescription: we take η_{cc} at $\mu_c = m_c$ as the central value, and as the theory uncertainty the absolute size of the NNLO correction and the residual scale dependence, added in quadrature. This leads to

$$\eta_{cc} = 1.87 \pm 0.76.$$

(15)

Compared to the NLO value η_{cc}^{NLO} (14), this corresponds to a positive shift of approximately 30%. The parametric uncertainty is essentially negligible with respect to the theoretical uncertainty.

Finally, we study the impact of η_{cc} at NNLO on the prediction of $|\epsilon_K|$ and ΔM_K^{SD}. We use the input values from [24], in particular $|V_{cb}| = 4.06(13) \times 10^{-2}$, plus $m_b(m_b) = 163.7(1.1) \text{ GeV}$ [28], $m_s(m_b) = 4.163(16) \text{ GeV}$ [25], $\lambda = 0.2255(7)$ [29], $\kappa_c = 0.923(6)$ [30], $\zeta_c = 1.243(28)$ [31], $\mu_\ell = 0.5765(65)$ [11], $\hat{B}_K = 0.737(20)$ [31] [32], $\eta_{ct} = 0.496(47)$ [12], in the following formula (we express $\tilde{\eta}$ and $\tilde{\rho}$ through sin 2β; for a discussion and definitions see [11] [10]):

$$|\epsilon_K| = \kappa_c C_c \hat{B}_K |V_{cb}|^2 \lambda^2 \tilde{\eta}[|V_{cb}|^2 (1 - \tilde{\rho})] \mu_\ell S(x_\ell) + \eta_{ct} S(x_c, x_t) - \eta_{cc} S(x_c) \right] .$$

(16)

Using the numerical values given above, we obtain

$$|\epsilon_K| = (1.81 \pm 0.14_{\eta_{cc}} \pm 0.02_{\eta_{tt}} \pm 0.07_{\eta_{ct}} \pm 0.05_{\text{LD}} \pm 0.23_{\text{parametric}}) \times 10^{-3}.$$

(17)

The first three errors correspond to η_{cc}, η_{tt}, η_{ct}, respectively. The error indicated by LD originates from the long-distance contribution, namely \hat{B}_K and κ_c, which account for 81% and 19% of the long-distance error, respectively. Half of the parametric error stems from $|V_{cb}|$ (49%), while all other contributions are well below 20%. All errors have been added in quadrature.

Compared to the prediction using the NLO value η_{cc}^{NLO}, $|\epsilon_K|^{NLO} = 1.90(27) \times 10^{-3}$, this corresponds to a shift of approximately -5%, and overcompensates the shift of $+3\%$ found in [12]. The large perturbative corrections are thereby partially mitigated in the observable ϵ_K.

Finally we estimate the short-distance contribution to ΔM_K. Using [10]

$$\Delta M_K^{SD} = \frac{G_F}{6\pi^2} f_*^2 B_K M_K M_W^2 \left(\lambda - \frac{\lambda^3}{2} \right)^2 \eta_{cc} x_c$$

(18)

we find $\Delta M_K^{SD} = 3.1(1.2) \times 10^{-15} \text{ GeV}$, where the central value accounts for 89% of the measured value. We neglected the correction due to top quarks, of the order of 1%. The error is dominated by η_{cc} (86%) and B_K (6%). Unfortunately, the LD contributions to ΔM_K are poorly known; the discussion in Ref. [33] hints at a positive contribution. In addition, our calculation shows that also the SD contribution cannot be computed as reliably as thought previously, and thus the prediction of the total Kaon mass difference suffers from large uncertainties.

We have performed the first NNLO QCD analysis of the charm-quark contribution η_{cc} to the $|\Delta S| = 2$ effective Hamiltonian $\mathcal{H}_{|\Delta S| = 2}$. We confirm the analytical results for η_{cc} obtained at NLO in Ref. [10] for the first time.

The discrepancy between our standard-model prediction and the precisely measured experimental value $|\epsilon_K|^{exp} = 2.228(11) \times 10^{-3}$ [21] could be interpreted as a tension within the standard model if we got a better control of the theoretical uncertainty. In view of the considerable residual scale dependence and the large NNLO shift, sizeable corrections beyond NNLO may be expected.

Given the importance of the observable ϵ_K, an effort should be made to circumvent these difficulties. We see at least two possible ways to proceed: in the short run, one could make use of the cancellation of the scheme dependence between the parameter B_K and the effective Hamiltonian. One could utilize this scheme dependence (which would affect the quantities J in Eq. (12)) to achieve a better convergence of η_{cc}. Recently, new lattice renormalisation schemes have been employed in the determination of B_K [6, 34]; they use nonexceptional momentum configurations, leading to better control over lattice uncertainties. Furthermore, they might lead to a better convergence at NNLO, as suggested by the good perturbative behaviour of the continuum matching for the light-quark masses [35, 36]. We encourage the investigation of the effects of these schemes also on the convergence of the series for η_{cc}, in particular, at NNLO. In the long run, the possibility of calculating the effects of a dynamical charm quark on the lattice might seem most promising and should be further studied.

We thank Gerhard Buchalla, Taku Izubuchi, and Ulrich Nierste for helpful discussions and comments on the manuscript, and Matthias Steinhauser for providing us with numerical values of the charm-quark mass at differ-
ent orders in the strong coupling constant. JB thanks Ulrich Nierste for suggesting to work on this topic.

[1] A. J. Buras and D. Guadagnoli, Phys. Rev. D78, 033005 (2008), arXiv:0805.3887 [hep-ph]
[2] E. Lunghi and A. Soni, Phys. Lett. B666, 162 (2008), arXiv:0803.4340 [hep-ph]
[3] A. Lenz et al., Phys. Rev. D83, 036004 (2011), arXiv:1008.1593 [hep-ph]
[4] E. Lunghi and A. Soni, Phys. Lett. B697, 323 (2011), arXiv:1010.6069 [hep-ph]
[5] C. Aubin, J. Laiho, and R. S. Van de Water, Phys.Rev. D81, 014507 (2010), arXiv:0905.3947 [hep-lat]
[6] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., Phys. Lett. B705, 477 (2011), arXiv:1106.3230 [hep-lat]
[7] T. Bae, Y.-C. Jang, C. Jung, H.-J. Kim, J. Kim, et al. (2011), arXiv:1111.5698 [hep-lat]
[8] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996), arXiv:hep-ph/9512380
[9] A. J. Buras, M. Jamin, and P. H. Weisz, Nucl. Phys. B347, 491 (1990)
[10] J. Brod and M. Gorbahn, Phys. Rev. D82, 094026 (2010), arXiv:1007.0684 [hep-ph]
[11] J. Brod and M. Gorbahn, Phys. Rev. D82, 094026 (2010), arXiv:1007.0684 [hep-ph]
[12] M. Battaglia et al. (2003), arXiv:hep-ph/0304132
[13] A. J. Buras, M. Gorbahn, U. Haisch, and U. Nierste, JHEP 11, 002 (2006), arXiv:hep-ph/0603079
[14] E. Witten, Nucl. Phys. B122, 109 (1977)
[15] S. Herrlich and U. Nierste, Nucl. Phys. B419, 292 (1994), arXiv:hep-ph/9310311
[16] M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001), arXiv:hep-ph/0009029
[17] P. Nogueira, J. Comput. Phys. 105, 279 (1993)
[18] R. Harlander, T. Seidensticker, and M. Steinhauser, Phys. Lett. B246, 125 (1990), arXiv:hep-ph/9712228
[19] We thank Matthias Steinhauser for providing us with an updated version of MATAD.
[20] T. Hahn, Comput. Phys. Commun. 140, 418 (2001), arXiv:hep-ph/0012260
[21] A. V. Smirnov, JHEP 10, 107 (2008), arXiv:0807.3243 [hep-ph]
[22] M. Gorbahn and U. Haisch, Nucl. Phys. B713, 291 (2005), arXiv:hep-ph/0411071
[23] K. Nakamura (Particle Data Group), J. Phys. G37, 075021 (2010)
[24] K. G. Chetyrkin et al., Phys. Rev. D80, 074010 (2009), arXiv:0907.2110 [hep-ph]
[25] Note that matching at 3 GeV somewhat decreases the central values, but increases the relative NLO and NNLO corrections, due to the larger logarithms.
[26] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000), arXiv:hep-ph/0004189
[27] T. E. W. Group (CDF and D0)(2010), arXiv:1007.3178 [hep-ex]
[28] M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays)(2008), arXiv:0801.1817 [hep-ph]
[29] T. Blum, P. Boyle, N. Christ, N. Goode, et al. (2011), arXiv:1111.1699 [hep-lat]
[30] J. Laiho, E. Lunghi, and R. S. Van de Water, Phys. Rev. D81, 034503 (2010), arXiv:0910.2928 [hep-ph]
[31] Updates are available at http://latticeaverages.org/.
[32] J. Bijnens, J. M. Gerard, and G. Klein, Phys. Lett. B257, 191 (1991)
[33] Y. Aoki et al., Phys. Rev. D78, 054510 (2008), arXiv:0712.1061 [hep-lat]
[34] M. Gorbahn and S. Jager, Phys. Rev. D82, 114001 (2010), arXiv:1004.3997 [hep-ph]
[35] L. G. Almeida and C. Sturm, Phys. Rev. D82, 054017 (2010), arXiv:1004.4613 [hep-ph]