Search for the Photoexcitation of Exotic Mesons in the $\pi^+\pi^+\pi^-$ System

Citation for published version:
Nozar, M, Salgado, C, Weygand, DP, Guo, L, Adams, G, Li, J, Eugenio, P, Amaryan, MJ, Anghinolfi, M, Asryan, G, Avakian, H, Bagdasaryan, H, Baillie, N, Ball, JP, Baltzell, NA, Barrow, S, Battaglieri, M, Bedilinskiy, I, Beketasoglou, M, Bellis, M, Benmouna, N, Berman, BL, Biselli, AS, Blaszczyk, L, Bonner, BE, Bouchigny, S, Boiarinov, S, Bradford, R, Branford, D, Briscoe, WJ, Brooks, WK, Bueltmann, S, Burket, VD, Butuceanu, C, Calarco, JR, Careccia, SL, Carman, DS, Carnahan, B, Casey, L, Cazes, A, Chen, S, Cheng, L, Cole, PL, Collins, P, Coltharp, P, Cords, D, Corvisiero, P, Crabb, D, Crannell, H, Crede, V, Cummings, JP, Dale, D, Dashyan, N, De Masi, R, De Masi, D, De Sanctis, E, Degtyarenko, PV, Denizli, H, Dennis, L, Deur, A, Dharmaardane, KV, Dhuga, KS, Dickson, R, Djalali, C, Dodge, GE, Doughty, D, Dugger, M, Dytmann, S, Dzyubak, OP, Egiyan, H, Egiyan, KS, El Fassi, L, El oudrhiri, L, Fatemi, R, Fedotov, G, Feuerbach, RJ, Forest, TA, Fradi, A, Funsten, H, Garcon, M, Gavalian, G, Gavalian, N, Gent, V, Hafidi, K, Hakobyan, H, Hanretty, C, Hardie, J, Hassall, N, Heddie, D, Herness, H, Hicks, K, Hleiqawi, I, Holton, M, Hyde-Wright, CE, Ilieva, Y, Ireland, DG, Ishkhano, BS, Isopov, EL, Itlo, MM, Jenkins, D, Jo, HS, Johnstone, JR, Joo, K, Juengst, HG, Kalantarians, N, Kellie, JD, Khandaker, M, Kim, W, Klein, A, Klein, FJ, Kossov, M, Krahn, Z, Kramer, LH, Kubarovsky, V, Kuhn, J, Kuhn, SE, Kuleshov, SV, Kuznetsov, V, Lachniet, J, Laget, JM, Langheinrich, J, Lawrence, D, Livingston, K, Lu, HY, MacCormick, M, Markov, N, Mattione, P, McAuleer, S, McKinnon, B, McNabb, JW, Mecking, BA, Mehra, J, Mestayer, MD, Meyer, CA, Mibe, T, Mikhalov, K, Mirzazadeh, M, Miskimen, R, Mo, M, Moreno, B, Morya, K, Morrow, SA, Moteabbed, M, Mueller, J, Munev, E, Muchler, GS, Nadel-Turonski, P, Nasseripour, R, Niccolai, S, Niculescu, G, Niculescu, I, Niczyporuk, BB, Niroula, MR, Nyman, RA, O'Rielly, GV, Osipenko, M, Ostrovev, AI, Park, K, Pasyuk, E, Paterson, C, Pereira, SA, Philips, SA, Pierce, J, Pivnyuk, N, Pocanic, D, Podgoreiko, O, Polli, E, Popa, I, Podzniakov, S, Prisoc, BM, Price, JW, Prok, Y, Protopopescu, D, Qin, LM, Raue, BA, Riccardi, G, Ricco, G, Ripani, M, Ritchie, BG, Ronchetti, F, Rosner, G, Rossi, P, Rubin, PD, Sabatie, F, Salamanca, J, Santoro, JP, Sapunenko, V, Schumacher, RA, Serov, VS, Sharabian, YG, Sharov, D, Shvedunov, NV, Skabelin, AV, Smith, ES, Smith, SM, Sober, DI, Sokhan, D, Stepanyan, A, Stepanyan, SS, Stepanyan, M, Stokes, BE, Studer, P, Strakovski, IV, Strauch, S, Stolz, M, Tedeschi, DJ, Thoma, U, Tkabladze, A, Tkachenko, S, Tod, L, Ungaro, M, Vineyard, MF, Vlassov, AV, Watts, DP, Weinstein, LB, Williams, M, Wolin, E, Wood, MH, Yegneswaran, A, Zana, L, Zhang, J, Zhao, B & Zhao, ZW 2009, 'Search for the Photoexcitation of Exotic Mesons in the $\pi^+\pi^+\pi^-$ System' Physical Review Letters, vol 102, no. 10, 102002, pp. -. DOI: 10.1103/PhysRevLett.102.102002

Digital Object Identifier (DOI):
10.1103/PhysRevLett.102.102002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review Letters
Search for the Photoexcitation of Exotic Mesons in the $\pi^+\pi^+\pi^-$ System

M. Nozar, C. Salgado, D. P. Weygand, L. Guo, G. Adams, Ji Li, P. Eugenio, M. J. Amaryan, M. Anghinolfi, G. Asryan, H. Avakian, H. Bagdasaryan, N. Baille, J. P. Ball, N. A. Baltzell, S. Barrow, M. Battaglieri, I. Bedlinskiy, M. Bektasoglu, M. Bellis, N. Benmouna, B. L. Berman, A. S. Biselli, L. Blaszczyk, B. E. Bonner, S. Bouchigny, S. Boiarinov, D. Branford, W. J. Briscoe, W. K. Brooks, S. Bultmann, V. D. Burkert, C. Butuceanu, J. R. Calarco, S. L. Careccia, D. S. Carman, B. Carnahan, A. Cazes, L. Cheng, P. Collins, D. Cordes, P. Corvisiero, D. Crabb, H. Crannell, V. Crede, J. P. Cummings, D. Dale, R. De Masi, R. De Vita, E. De Sanctis, L. El Fassi, L. Elouadrhiri, R. Fatemi, G. Fedotov, T. A. Forest, A. Fradi, H. Funsten, M. Garc¸on, G. Gavalian, N. Gevorgyan, K. V. Girod, J. T. Goetz, R. W. Gothe, K. S. Egiyan, L. Egiyan, K. S. Egiyan, L. E. Hersman, I. Hleiqawi, M. Holtrop, C. E. Hyde-Wright, Y. Ilieva, D. G. Ireland, D. Jenkins, H. S. Jo, J. R. Johnstone, K. Joo, H. G. Juengst, N. Kalantarians, M. Kossov, L. H. Kramer, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, V. Kuznetsov, J. M. Laget, D. Lawrence, K. Livingston, H. Y. Lu, M. MacCormick, N. Markov, P. Mattione, S. McAleer, B. McKinnon, J. W. C. McNabb, B. A. Mecking, S. Mehrabyan, M. D. Mestayer, C. A. Meyer, T. Mibe, V. M. Mirz abund, V. Mokeev, B. Moreno, K. Moriya, S. A. Morrow, M. Moteabbed, J. Mueller, E. Muneevar, G. S. Mutchler, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, B. B. Niczyporuk, M. R. Niroula, R. A. Niyazov, G. V. O'Reilly, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, C. Paterson, A. Anefolas Pereira, S. A. Philips, J. Pierce, N. Pivnyuk, D. Pocanic, O. Pogorelko, E. Polli, I. Popa, B. M. Preedom, L. M. Qin, B. A. Niyazov, M. V. O'Rielly, M. Osipenko, A. I. Ostrovidov, V. A. Shvedunov, A. V. Skabelin, E. S. Smith, L. C. Smith, D. I. Sober, D. Sokhan, A. Stavinsky, S. S. Stepanyan, S. A. Storino, D. Watts, L. B. Weinstein, M. Williams, E. Wolin, M. H. Wood, A. V. Yegneswaran, L. Zana, Z. W. Zhao

(CLAS Collaboration)

1Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
2Norfolk State University, Norfolk, Virginia 23504, USA
3Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
4Florida State University, Tallahassee, Florida 32306, USA
5Argonne National Laboratory, Argonne, Illinois 60439, USA
6Arizona State University, Tempe, Arizona 85287-1504, USA
7University of California at Los Angeles, Los Angeles, California 90095-1547, USA
8California State University, Dominguez Hills, Carson, California 90747, USA
9Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
10Catholic University of America, Washington, D.C. 20064, USA
11CEA-Saclay, Service de Physique Nucléaire, 91191 GIF-sur-Yvette, France
12Christopher Newport University, Newport News, Virginia 23606, USA
13University of Connecticut, Storrs, Connecticut 06269, USA
14Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
15Fairfield University, Fairfield, Connecticut 06824, USA
16Florida International University, Miami, Florida 33199, USA
17The George Washington University, Washington, D.C. 20052, USA
A search for exotic mesons in the $\pi^+\pi^+\pi^-$ system photoproduced by the charge exchange reaction $\gamma p \rightarrow \pi^+\pi^+\pi^-(n)$ was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83,000 events, the highest statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic $J^{PC}=1^{-+}$ resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the $a_2(1320)$ and the $\pi_2(1670)$ mesons, but no evidence for the $a_1(1260)$, nor the $\pi_1(1600)$ exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic $\pi_1(1600)$ cross section, less than 2% of the $a_2(1320)$ production.

The self-interacting nature of the gluon within Quantum Chromodynamics (QCD) allows for hybrid resonant states with a $(q\bar{q}g)$ configuration, where the gluonic degree of freedom gives rise to a spectrum of additional states outside the constituent quark model (CQM). The observation of gluonic-hybrid hadrons, with an explicit excitation of this gluonic degree of freedom, will be an important test of the predicting power of QCD at intermediate energies. A signature of states beyond the CQM would be the existence of mesons with quantum numbers that cannot be attained by $(q\bar{q})$ mesons (so-called “exotics”). In particular, the lowest lying $(q\bar{q}g)$ state is predicted to have $J^{PC}=1^{-+}$ [1–4], and mass near 1.9 GeV. A more recent calculation on the lattice using lighter quark masses predicts a mass at 1.74 GeV [5].

Here we report on a search for exotic mesons decaying to three charged pions. This channel was chosen for its simplicity, since only a few decay channels are available to this final state. In addition, although the dominant decay mode of the lightest $J^{PC}=1^{-+}$ state is predicted to be into an S-wave and P-wave meson, such as the $b_1(1235)\pi$ or $f_1(1285)\pi$ [6], the three-pion final state in the ρ decay channel could be non-negligible [7–9].

There is also evidence for an exotic $\pi_1(1600)$ state in the reaction $\pi^-p\rightarrow\pi^+\pi^+\pi^-p$ at 18 GeV by the Brookhaven E852 experiment [10,11]. Furthermore, the existence of the $\pi_1(1600)$ has been confirmed by the same experiment in other channels such as $\eta\pi^-$ [12]. The VES Collaboration also reported an exotic signal in the $\eta\pi^-$ channel in the same mass region [13]. However, a more recent analysis of a higher statistics sample from E852 3π data, claims to find no evidence for $\pi_1(1600)$ production [14]. All these results were obtained by pion beam experiments.

It has long been anticipated that photoproduction may be a better production mechanism for exotic mesons [6,8,15–17]. If the $\pi_1(1600)$ state couples to $\rho\pi$, then this state should also be produced with a photon beam through π exchange via the vector-meson–dominance model [18]. However, the use of photon beams as probes for exotic
Photoproduction of mesons in multipion final states has been reported in three previous experiments: a SLAC 40-in. hydrogen bubble chamber experiment \cite{19} at 4.3 GeV, a CERN hydrogen experiment \cite{20} between 25 and 70 GeV, and a SLAC 1-meter hybrid bubble chamber experiment \cite{21,22} around 19 GeV. All of these experiments lacked the statistics required for a full partial wave analysis (PWA). For example, Condo et al. \cite{22} showed that the three-pion spectrum in the low-mass region (below 1.5 GeV) is dominated by $a_2(1320)$ production, and found no clear evidence for $a_1(1260)$ production. In the high-mass region (1.5 to 2 GeV), based on an angular distribution analysis, this same group claimed evidence for a narrow state at 1.775 GeV with possible $J^{PC} = 1^{-+}$, 2^{-+}, or 3^{++} assignments. From the analysis of four pion events, Ref. \cite{20} reported two peaks, one at the mass of the $a_1(1320)$ and another at around 1.75 GeV, in the $\rho \pi$ state recoiling off the proton and the remaining pion.

The present experiment was performed at Jefferson Laboratory during the 2001 running period of CLAS. Details of the design and operation of CLAS and its components may be found in Ref. \cite{23} and references within. The experiment ran with a fixed electron beam energy of 5.744 GeV. A tagged-photon beam, with a flux of 5×10^7 photons/s produced via bremsstrahlung from a 3×10^4 radiation lengths radiator, was incident on a liquid-hydrogen target contained in a cylindrical cell 18 cm in length. The running conditions were optimized for meson production recoiling off a neutron: the CLAS torus magnet field was reduced to half its maximum current, and the target pulled back 1 m from the nominal center of CLAS position. Only events with tracks coming from the target material that were in time within 1 ns with a beam photon with energy between 4.8 and 5.4 GeV were selected.

The three pions in the reaction $\gamma p \rightarrow \pi^+ \pi^+ \pi^- n$ were identified by the time-of-flight detector, and the neutron was identified through missing mass (Fig. 1). The reconstructed mass of the neutron was 942.2 MeV with a width of 25.1 MeV. As shown in Figs. 2(a) and 2(b), the various $n\pi$ invariant mass spectra show clear production of baryon resonances recoiling off a two-pion system, consistent with the process shown in Fig. 3(b). The $n\pi^-$ invariant mass [Fig. 2(a)] shows a peak at the mass of the $\Delta(1232)$, while the $n\pi^+$ effective mass distribution [Fig. 2(b)] shows enhancements around the mass of $N^*(1520/1535)$ and $N^*(1650/1675/1680)$, with a smaller contribution from $\Delta(1232)$ production.

The observed squared four-momentum transfer distribution $-t$ between the incoming photon beam and the produced three-pion system follows an exponential of the form $\Gamma(t) = \alpha e^{-b|t|}$. This form is consistent with peripheral production of the three-pion system recoiling off the neutron and is consistent with the production mechanism shown in Fig. 3(a). For the exponential slope constant b, we obtained a fitted value of 3.02 GeV$^{-2}$. To enrich the sample of peripheral events, we required $|t| \leq 0.4$ GeV2. To further enhance the mesonic sample relative to the baryonic background, only events with forward-going π^+'s [$\theta_{\text{Lab}}(\pi^+) \leq 30^\circ$] were selected. This requirement, as determined from simulation, is necessary to remove most of the baryonic background without significantly affecting the mesonic sample. After all the former selection criteria were applied, 4160 events were obtained. Figure 3 shows the $n\pi^+\pi^-$ invariant mass distribution for four pion states, $\rho\pi$, $\rho\pi\pi$, $\rho\rho\pi$, and $\rho\rho\rho$, respectively.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Missing mass of the three-pion system. The distribution was fit to a Gaussian plus a linear background (solid curve). The inset shows a wider scale. The region between the vertical lines at 0.884 and 0.992 GeV identified the neutron.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Mass spectra. (a) $n\pi^-$ invariant mass, (b) $n\pi^+$ invariant mass [the left arrow indicates $N^*(1520/1535)$ resonances and the right arrow $N^*(1650/1675/1680)$ resonances], (c) $\pi^+\pi^-\pi^-$ invariant mass, and (d) $\pi^+\pi^+\pi^-$ invariant mass. The hatched areas are the distributions of remaining events after the momentum transfer and π^+ laboratory angle selections. The histograms in (b) and (c) are filled twice for each event, once for each π^+.}
\end{figure}
tions were applied, about 83,000 events remained as input to the PWA.

The \(\pi^+ \pi^- \) invariant mass distribution, Fig. 2(c), shows enhancements at the mass of the \(\rho(770) \) and \(f_2(1270) \). The \(3\pi \) invariant mass spectrum, Fig. 2(d), shows a clear peak around the mass of the \(a_2(1320) \) meson. It also shows a broad enhancement in the 1600–1700 MeV mass region.

A PWA, based on the isobar model, was performed to determine the spin, parity, and charge conjugation \((J^{PC}) \) of the three-pion system. The three-body decay of the meson was described by a sequence of two-body intermediate decays [Fig. 3(a)]. States with definite \(J^{PC} \) of the mesonic system were combined as eigenstates of reflection through the production plane (reflectivity) according to the formalism described in Refs. [24–27]. The expected number of events per mass bin were written as a sum of production and decay amplitudes. To obtain the observed number of events per bin, the acceptance of the detector was determined by normalizing to the Monte Carlo sample. The model used the same \(t \) distribution as determined from the data, and the events were simulated with a geant-based model of the CLAS detector. A maximum likelihood fit to each mass bin was done with a set of input partial waves. Many different sets of waves were tried during the analysis. The meson spin-density matrix was approximated by a rank 2 matrix due to limited statistics and the large number of parameters required for the fit. The rank of the spin-density matrix represents the number of independent spin components in the initial and final states necessary to describe the interaction. Parity conservation reduces the number of independent components to four.

No baryon resonance partial waves were used and an isotropic noninterfering background wave was included, which is appropriate, since the events were dominated by meson production after the kinematic selection cuts. We separated the PWA in two regions (at 1.36 GeV) to account for the different goals in the analysis (the observation of a \(\rho \pi \pi \) decay [Fig. 5(a)]). The \(a_2(1320) \) is observed in the \(\rho \pi \pi \) wave at the expected mass and width. For the \(a_2 \) cross section, we obtained a value of \(0.81 \pm 0.25 \mu \text{b} \). The uncertainty includes both detector systematics and variations of the PWA results estimated using different wave sets and starting parameters. The result is in rough agreement with the previous measurement of \(1.14 \pm 0.57 \mu \text{b} \) obtained at 5.25 GeV by Ballam [29] and \(1.71 \pm 0.86 \mu \text{b} \) obtained at 4.7 to 5.8 GeV by Eisenberg [30].

The \(\pi_2(1670) \) is observed clearly in the \((f_2 \pi) \) decay mode [Fig. 5(b)]. In the remaining \(\pi_2 \) decay modes: \(\rho \pi \pi \) [Fig. 5(a)], and \(f_2 \pi \), the signal looks broad and distorted in the low-mass region. This is most likely due to the incomplete set of waves in the fit, and is indicative of leakage from the \(a_2 \). Similar observations were reported by the E852 Collaboration [11,14]. In addition, due to the two different wave sets used in the two fitting regions (Table I), some instability is observed near the border of 1.36 GeV [Figs. 4(b) and 4(d)]. This should be expected as a result of incomplete wave sets. In order to perform PWA using a larger number of waves and a spin-

TABLE I. Set of partial waves used in the PWA. \(J, P, C \) refers to the spin, parity, charge-conjugation of the three-pion system. \(m, e \) are the spin-projection and reflectivity quantum numbers. \(L \) is the orbital angular momentum of the decay. Isobar is the intermediate meson that decays to two pions. Note: Background ("Bg") refers to an isotropic, noninterfering wave that is meant to accommodate events that are not described by the interfering waves.

\(\pi^+ \pi^- \pi^- \) mass \(\text{JPC} \)	\(m^e \)	\(L \)	Isobar	\# Waves	
1.0–1.36 GeV	1++	1\(^e \)	0, 2	\(\rho(770) \)	4
	2++	1\(^e \), 2\(^e \)	2	\(\rho(770) \)	4
13 waves	1++	1\(^e \)	1	\(\rho(770) \)	2
(48 parameters)	2++	1\(^e \)	1	\(\rho(770) \)	2
	“Bg”				1
1.36–2.0 GeV	1++	1\(^e \)	0, 2	\(\rho(770) \)	4
	1++	1\(^e \)	1	\(f_2(1270) \)	2
31 waves	2++	1\(^e \), 2\(^e \)	2	\(\rho(770) \)	4
(120 parameters)	1++	1\(^e \)	1	\(\rho(770) \)	2
	2++	1\(^e \), 2\(^e \)	1	\(\rho(770) \)	2
	2++	1\(^e \)	1	\(f_2(1270) \)	2
	3++	1\(^e \)	2	\(f_2(1270) \)	2
	“Bg”		1	\(f_2(1270) \)	2
					1
Ref. [12], we estimated an upper limit for the noninterfering, flat background waves [Fig. 4(b)] is likely leakage coming from the \(1^{+}_{0+} \) wave. While no clear resonant structure was observed in the exotic region using the method of Helene [34]. Using the mass of \(\pi(1600)\), future higher statistics experiments are needed [31].

It is important to note that we see no clear evidence for the \(a_{1}(1260)\) in the possible decay mode of the \(\rho \pi \) wave [Fig. 5(c)]. This observation agrees with Condo et al. [21]. The event enhancement observed around 1.3 GeV in the noninterfering, flat background waves [Fig. 4(b)] is likely leakage coming from the \(a_{2}\) and may demonstrate that the rank of the spin-density matrix is larger than 2.

We do not observe resonant structure in the exotic \(1^{+}_{0+}(\rho \pi)_{P,F} \) partial wave [Fig. 5(d)]. To determine if the \(1^{+}_{0+}\) wave was necessary to better fit our data, we compared PWA fits with and without the \(1^{+}_{0+}\) wave using the likelihood ratio (LR) test [32,33]. Using LR statistics, we find that the PWA set of waves including the \(1^{+}_{0+}\) wave fits the data significantly better than a model without the \(1^{+}_{0+}\) wave. While no clear resonant structure was observed in the \(1^{+}\) intensity distribution [Fig. 5(d)], this distribution was used to estimate an upper limit to the \(\pi_{1}(1600)\) cross section using the method of Helene [34]. Using the mass of 1597 MeV and the width of 340 MeV as measured by Ref. [12], we estimated an upper limit for the \(\pi_{1}(1600)\) of 13.5 nb at a 95% confidence level, less than 2% of the \(a_{2}(1320)\). Therefore, our results do not agree with the predicted strengths for photoproduction of a \(1^{+}\) gluonic-hybrid meson [6,8,15–17]. Based on Ref. [8], the \(\pi_{1}(1600)\) is expected to be produced with a strength near 10% of the \(a_{2}(1320)\). Reference [17] predicts a factor of 5–10 larger ratio of exotic meson to \(a_{2}\) in photoproduction than hadroproduction. This would imply the \(\pi_{1}(1600)\) cross section to be on the order of 50% of \(a_{2}\), more than 25 times higher than what we observed. It is possible that the \(\pi_{1}(1600)\) reported by Ref. [10] is not a gluonic-hybrid meson, but rather of other nature. Alternatively, the calculated photoproduction cross section of gluonic exotic mesons might be overestimated.

This work was supported in part by the U.S. Department of Energy, the U.S. National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat à l’Energie Atomique, and the Korean Science and Engineering Foundation. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-060R23177.

*Present address: Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
†Present address: Ohio University, Athens, OH 45701, USA.
‡Present address: University of New Hampshire, Durham, NH 03824-3568, USA.
§Present address: Christopher Newport University, Newport News, VA 23606, USA.
‖Present address: University of South Carolina, Columbia, SC 29208, USA.
Present address: Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.

**Present address: Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany.

††Present address: University of Richmond, Richmond, VA 23173, USA.

‡‡Present address: Edinburgh University, Edinburgh EH9 3JZ, United Kingdom.

University of Massachusetts, Amherst, MA 01003, USA.

Deceased.

[1] C. Bernard et al., Phys. Rev. D 56, 7039 (1997).
[2] K. Juge, J. Kuti, and C. J. Morningstar, Nucl. Phys. B, Proc. Suppl. 63, 326 (1998).
[3] P. Lacock and K. Schilling, Nucl. Phys. B, Proc. Suppl. 73, 261 (1999).
[4] Z. Mei and X. Luo, Int. J. Mod. Phys. A 18, 5713 (2003).
[5] J. N. Hedditch et al., Phys. Rev. D 72, 114507 (2005).
[6] N. Isgur, R. Kokotski, and J. Paton, Phys. Rev. Lett. 54, 869 (1985).
[7] F. E. Close and P. R. Page, Nucl. Phys. B443, 233 (1995).
[8] F. E. Close and P. R. Page, Phys. Rev. D 52, 1706 (1995).
[9] P. R. Page, E. S. Swanson, and A. P. Szczepaniak, Phys. Rev. D 59, 034016 (1999).
[10] G. Adams et al., Phys. Rev. Lett. 81, 5760 (1998).
[11] S. U. Chung et al., Phys. Rev. D 65, 072001 (2002).
[12] E. Ivannov et al., Phys. Rev. Lett. 86, 3977 (2001).
[13] Y. Khokhlov et al., Nucl. Phys. A663, 596 (2000).
[14] A. Dzierba et al., Phys. Rev. D 73, 072001 (2006).
[15] A. Afanasev and P. Page, Phys. Rev. D 57, 6771 (1998).
[16] A. Afanasev and A. Szczepaniak, Phys. Rev. D 61, 114008 (2000).
[17] A. Szczepaniak and M. Swat, Phys. Lett. B 516, 72 (2001).
[18] M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
[19] Y. Eisenberg et al., Phys. Rev. Lett. 23, 1322 (1969).
[20] D. Aston et al., Nucl. Phys. B189, 15 (1981).
[21] G. T. Condo et al., Phys. Rev. D 48, 3045 (1993).
[22] G. T. Condo et al., Phys. Rev. D 43, 2787 (1991).
[23] B. A. Mecking et al., Nucl. Instrum. Methods Phys. Res., Sect. A 503, 513 (2003).
[24] S. U. Chung, Spin Formalism, CERN Yellow Report No. CERN 71-8, 1971; Formulas for Partial Wave Analysis, Version II, BNL report No. QGS-93-05, 1993.
[25] S. U. Chung and T. L. Trueman, Phys. Rev. D 11, 633 (1975).
[26] J. P. Cummings and D. P. Weygand, arXiv:physics/0309052.
[27] P. Eugenio, Int. J. Mod. Phys. A 18, 487 (2003).
[28] M. Nozar et al., arXiv:hep-ex/0312037.
[29] J. Ballam et al., Phys. Lett. 30B, 421 (1969).
[30] Y. Eisenberg et al., Phys. Rev. D 5, 15 (1972).
[31] P. Eugenio et al., CLAS Proposal, Jefferson Laboratory Report No. E-04-005, 2004.
[32] Eadie et al., Statistical Methods in Experimental Physics (North-Holland Pub. Co., Amsterdam, 1982), 2nd ed.
[33] F. James and M. Ross, CERN Tech. Report No. 506, 1992.
[34] O. Helene, Nucl. Instrum. Methods 212, 319 (1983).