Survival of charged ρ condensation at high temperature and density

Hao Liu1, Lang Yu1 and Mei Huang1,2

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China and 2 Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China

The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu–Jona-Lasinio model. We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the ρ meson contains the quark-loop contribution, i.e., the leading order contribution in $1/N_c$ expansion. The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eB_c, which means that the charged vector meson condensation, i.e., the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged ρ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that the charged ρ condensation might occur inside compact stars. At zero density, in the temperature range $0.2 - 0.5$ GeV, the critical magnetic field for charged ρ condensation is in the range of $0.2 - 0.6$ GeV2, which indicates that the high temperature electromagnetic superconductor could be created at LHC.

PACS numbers: 13.40.-f, 25.75.-q, 11.10.Wx

I. INTRODUCTION

Quantum chromodynamics (QCD) is widely accepted as the fundamental theory for strong interaction. Exploring QCD phase structure and properties of QCD matter at extreme conditions is one of the most important topics of high energy nuclear physics. Recently, it becomes more and more attractive to study properties of QCD matter under strong magnetic fields. Strong magnetic fields could exist in various physical systems, e.g., the strength of magnetic fields can reach up to 10^{14} G in magnetars, and the magnitude of 10^{18-23} G of magnetic fields may appear in early universe. Especially, in the laboratory, strong magnetic fields with the strength of 10^{18-20} G (amounts to $eB \sim 0.1 - 1$ GeV2) can be generated in the early stage of non-central heavy ion collisions [1, 2] at the Relativistic Heavy Ion Collider (RHIC) or the LHC. Therefore, heavy ion collisions offer a unique platform to probe properties of QCD vacuum and hot/dense quark matter under strong magnetic fields.

Magnetic fields can modify the spectrum of charged particles, the energy levels of free charged particles in an external magnetic field parallel to z axis are given as $E_{n,s_z}^B(p_z) = p_z^2 + (2n - 2sgn(q)s_z + 1)|qB| + m^2$, where the nonnegative integer n is the Landau level, s_z is the spin projection, and p_z is the particle's momentum in the direction of the magnetic field. Hence, $m_{\rho\pm}^2(B) = m_{\rho\pm}^2(B=0) + eB$ and $m_{\rho\pm}^2(B) = m_{\rho\pm}^2(B=0) - eB$ describe the minimal effective squared masses of charged π and charged ρ, respectively. As the magnetic field increases, the charged π mesons become heavier while the polarized charged ρ mesons become lighter. Chernodub firstly proposed that charged ρ meson can form a superconductor state when magnetic field is stronger than the critical magnetic field $eB_c \approx m_{\rho\pm}^2(B=0) \approx 0.6$ GeV2 [3, 4]. This characterizes a quantum phase transition caused only by the magnetic field, which is a surprising result.

It is still under investigation whether there exists a vacuum superconductor. In Ref. [5], it was argued that the vacuum superconductor phase cannot appear due to the Vafa-Witten theorem. However, the authors in Ref. [2] argued that the Vafa-Witten theorem would not forbid the charged ρ meson condensation in an external magnetic field. More studies on the charged ρ condensation have been done in different frameworks such as the Nambu-Jona-Lasinio (NJL) model [6, 7], lattice QCD [8, 9], the gauge/gravity correspondence [10, 11], the relativistic Hamiltonian technique [12], and the Dyson-Schwinger equations [13]. On one hand, it was observed that masses of charged ρ mesons decrease firstly and then increase with the magnetic field, and cannot drop to zero, as shown by lattice calculations [8], Dyson-Schwinger equations [12] and by solving the meson spectra in a relativistic quark-antiquark system with

*Electronic address: haoliu@mail.ihep.ac.cn
†Electronic address: ylang@mail.ihep.ac.cn
‡Electronic address: huangm@mail.ihep.ac.cn
the relativistic Hamiltonian technique in Ref. [12]. On the other hand, some other results showed that the charged ρ masses indeed decrease with magnetic field and becomes massless at a critical magnetic field as shown in the NJL model [4, 6] and in the holographic QCD model [10].

Furthermore, for charged ρ condensation, the obtained results for the critical magnetic field are quite different in different calculations. For example, the polarized ρ^\pm condensation is expected to occur at the critical magnetic field $eB_c \approx 1 \text{ GeV}^2$ in lattice QCD [8], and $eB_c \approx 1.08m_q^2 (B = 0)$ is given in Ref. [10] in a holographic approach. Even in the framework of the NJL model, the results for the critical magnetic field differ a lot. The critical magnetic field $eB_c > 1 \text{ GeV}^2$ was obtained in Ref. [4] by neglecting the quark-loop contribution, and $eB_c = 0.98M_q^2$ was given in Ref. [3], where M_q is the quark mass. In Ref. [8], we have obtained the critical magnetic field $eB_c \approx 0.2 \text{ GeV}^2$ in the NJL model by calculating the ρ meson polarization function to the leading order of $1/N_c$ expansion.

By taking the quark propagator in the Ritus form as well as the Landau level representation, we have obtained the same results for the critical magnetic field $eB_c \approx 0.2 \text{ GeV}^2$, which is only $1/3$ of the results from the point-particle calculation in Ref. [3]. Our results suggests that the charged ρ condensation can be realized in nature much easier. In this work, we are going to study the charged ρ mesons in a magnetic field at finite temperature and chemical potential in the framework of the NJL model, and investigate the temperature and density region for the survival of charged ρ condensation. This paper is organized as follows: In Sec. II, we give a general description of the two-flavor NJL model including the effective four-quark interaction in the vector channel, and derive the vector meson mass under quark mass matrix of u and d, $\tilde{m} = \text{diag}(m_u, m_d)$ is the current quark mass matrix of u and d quarks, $\tau^a = (I, \bar{\tau})$ with $\bar{\tau} = (\tau^1, \tau^2, \tau^3)$ corresponding to the isospin Pauli matrices, and G_S and G_V are the coupling constants with respect to the scalar (pseudoscalar) and the vector (axial-vector) channels, respectively. The covariant derivative, $D_\mu = \partial_\mu - iq_f A_\mu^{\text{ext}}$, couples quarks to an external magnetic field $B = (0, 0, B)$ along the positive z direction via a background field, for example, $A_\mu^{\text{ext}} = (0, 0, Bx, 0)$. $q_f = (-1/3, 2/3)$ is defined as the electric charge of the quark field. The field strength tensor $F_{\mu\nu}$ is defined as usual by $F_{\mu\nu} = \partial_\mu A_\nu^{\text{ext}} - \partial_\nu A_\mu^{\text{ext}}$, with A_μ^{ext} fixed as above.

The semibosonized Lagrangian which is equivalent to the above Lagrangian is given by

$$\mathcal{L}_{sb} = \bar{\psi}(x) \left(i\gamma_\mu D_\mu - \tilde{m} + \mu \gamma^0 \right) \psi(x) - \bar{\psi}(x) \left(\sigma + i\gamma_5 \bar{\tau} \cdot \vec{\pi} \right) \psi(x) \frac{\sigma^2 + \bar{\tau}^2}{4G_S} + \frac{(V_\mu^a V^{a\mu} + A_\mu^a A^{a\mu})}{4G_V} - \frac{B^2}{2}.$$

where the Euler-Lagrange equation of motion for the auxiliary fields lead to the constraints

$$\sigma(x) = -2G_S < \bar{\psi}(x)\psi(x) >,$$

$$\bar{\tau}(x) = -2G_S < \bar{\psi}(x)i\gamma_5 \bar{\tau} \psi(x) >,$$

$$V_\mu^a(x) = -2G_V < \bar{\psi}(x)\gamma_\mu \tau^a \psi(x) >,$$

$$A_\mu^a(x) = -2G_V < \bar{\psi}(x)\gamma_\mu \gamma_5 \tau^a \psi(x) >.$$

The quarks obtain the dynamical masses by the quark-antiquark condensation, so the constituent quark mass M of u and d is defined by

$$M = m_0 - 2G_S < \bar{\psi} \psi >.$$
where we assume $m_u = m_d = m_0$. To determine the dynamical quark mass, in other words, the σ condensation, we need to minimize the effective potential. The one-loop level effective potential of the model is given by

$$
\Omega = \frac{\sigma^2}{4GS} + \frac{B_1^2}{2} - 3 \sum_{q_f \in \{-1, -1, 2\}} \frac{|q_f eB|}{\beta} \frac{e^{\alpha_p} \int_{-\infty}^{+\infty} dp_3}{4\pi^2} \left\{ \beta E_q + \ln \left[1 + e^{-\beta(E_q + \mu)} \right] - \ln \left[1 + e^{-\beta(E_q - \mu)} \right] \right\},
$$

where $\beta = \frac{1}{T}$ and $\alpha_p = 2 - \delta_{p0}$ is the spin degeneracy factor.

In the NJL model, mesons are constructed by the infinite sum of quark-loop chains by using random phase approximation. We calculate the ρ meson polarization function to the leading order of $1/N_c$ expansion. The propagator of the ρ meson $D_{\mu\nu}^{\rho \rho}(q^2)$ can be obtained from the one quark loop polarization $\Pi_{\mu\nu,ab}(q^2)$ via the Schwinger-Dyson equation and takes the form of

$$
\Pi_{\mu\nu,ab}(q^2) = -i \int d^4x \, e^{iq \cdot x} Tr \left[\gamma^\mu \tau^a S_Q(x,0) \gamma^\nu \tau^b S_Q(0,x) \right].
$$

Here, $S_Q(x, y)$ is the Ritus fermion propagator [20, 21].

arising from the solution of Dirac equation under a uniform magnetic field using Ritus eigenfunction method. In Eq. (11), $\tilde{p} = (p_0, 0, p_2, p_3)$, $D_{\tilde{p}} \equiv \frac{dp_0 dp_2 dp_3}{(2\pi)^3}$, and $P_{\tilde{p}}(x_1)$ is given by

$$
P_{\tilde{p}}(x_1) = \frac{1}{2} \left[f^+_p(s_x(x_1)) + \Pi_p f^{-*}(x_1) \right] + \frac{i}{2} \left[f^+_p(s_x(x_1)) - \Pi_p f^{-*}(x_1) \right] \gamma^2,
$$

where $\Pi_p \equiv 1 - \delta_{p,0}$ considering the spin degeneracy in the LLL, $s_Q \equiv sgn(QeB)$. The functions $f^\pm_p(x_1)$ are defined by

$$
f^{+}_{p}(x_1) = \phi_{p} \left(x_1 - s_Q p_2 f_B^2 \right) , \quad p = 0, 1, 2, \ldots ,
$$

$$
f^{-}_{p}(x_1) = \phi_{p-1} \left(x_1 - s_Q p_2 f_B^2 \right) , \quad p = 1, 2, 3, \ldots ,
$$

where $\phi_p(x)$ is a function of Hermite polynomials $H_p(x)$ in the form

$$
\phi_p(x) \equiv a_p \exp \left(-\frac{x^2}{2f_B^2} \right) H_p \left(\frac{x}{f_B} \right).
$$

Here, $a_p \equiv (2^{p+1} \sqrt{\pi} f_B)^{-1/2}$ is the normalization factor and $f_B \equiv |QeB|^{-1/2}$ is the magnetic length. In Eq. (11), $D_Q(\tilde{p}) = \gamma \cdot \tilde{p} Q - M$ with the Ritus four momentum $\tilde{p} = (p_0, 0, -s_Q \sqrt{2|QeB|} p_3, p_3)$. Note that Q is a 2×2 matrix in the flavor space, but the functions $f^\pm_p(x_1)$ are matrices in the flavor space.

Using the propagator in Eq. (11), the one quark loop polarization function $\Pi_{\mu\nu,ab}(q^2)$ is given by

$$
\Pi_{\mu\nu,ab}(q^2) = i \sum_{p,k=0}^{\infty} \int D\bar{p} \, D\tilde{k} \int d^4x \, e^{-i(\bar{p} - \bar{k} - q)^2 \cdot x} \Lambda_{\mu\nu,ab}^{pq}(\bar{p}, \tilde{k}, x_1),
$$

where

$$
\Lambda_{\mu\nu,ab}^{pq}(\bar{p}, \tilde{k}, x_1) = Tr \left[\gamma^\mu \tau^a P_{\tilde{p}}(x_1) D_Q^{-1}(\tilde{p}) P_{\tilde{p}}(0) \gamma^\nu \tau^b K_{\tilde{k}}(0) D_Q^{-1}(\tilde{k}) K_{\tilde{k}}(x_1) \right].
$$

We can get the boundary conditions $q_i = p_i - k_i$ ($i = 0, 2, 3$) by integrating over x_0, x_2, x_3 and then over p_0, p_2, p_3 components in Eq. (15). So we get

$$
\Pi_{\mu\nu,ab}(q^2) = i \sum_{p,k=0}^{\infty} \int \frac{dk_0dk_3}{(2\pi)^3} \int dk_2dx_1 e^{iq_1 x_1} \Lambda_{\mu\nu,ab}^{pq}(\bar{p}, \tilde{k}, x_1) |_{b.c.}.
$$

In above equation Eq. (17), the $b.c.$ is short for boundary conditions.
B. Charged ρ meson in a magnetic field at nonzero T and μ

In the rest frame of ρ, the Lorentz and flavor structure of the one quark loop polarization allows for the following decomposition

$$\Pi_{\mu\nu}^{ab}(q^2) = [\Pi_{1}^{2}(q^2)P_{1}^{\mu\nu} + \Pi_{2}^{2}(q^2)P_{2}^{\mu\nu} + \Pi_{3}^{2}(q^2)L^{\mu\nu} + \Pi_{4}^{2}(q^2)u^\mu u^\nu] \delta_{ab},$$

(18)

where $u^\mu = (1, 0, 0, 0)$ is the 4-velocity in the rest frame. Here, we define the spin projection operators

$$P_{1}^{\mu\nu} = -\epsilon_1^\mu \epsilon_2^{\nu*}, \ (s_z = -1 \text{ for } \rho),$$

(19)

$$P_{2}^{\mu\nu} = -\epsilon_1^\mu \epsilon_1^{\nu*}, \ (s_z = 1 \text{ for } \rho),$$

(20)

$$L^{\mu\nu} = -b^\mu b^\nu, \ (s_z = 0 \text{ for } \rho),$$

(21)

where $b^\mu = (0, 0, 0, 1)$ corresponds to the external magnetic field direction and $\epsilon_1^\mu, \epsilon_2^\mu$ are the right and left-handed polarization vectors

$$\epsilon_1^\mu = \frac{1}{\sqrt{2}} (0, 1, i, 0),$$

(22)

$$\epsilon_2^\mu = \frac{1}{\sqrt{2}} (0, 1, -i, 0).$$

(23)

As a consequence, we can rewrite the propagator of ρ meson in Eq.(6) as

$$D_{ab}^{\mu\nu}(q^2) = [D_{1}(q^2)P_{1}^{\mu\nu} + D_{2}(q^2)P_{2}^{\mu\nu} + D_{3}(q^2)L^{\mu\nu} + D_{4}(q^2)u^\mu u^\nu] \delta_{ab},$$

(24)

where

$$D_{i}(q^2) = \frac{2G_{V}}{1 + 2G_{V} \Pi_{i}^2}.$$

(25)

At last, we use the following gap equations to determine the masses of ρ meson with different spin projections

$$1 + 2G_{V} \Pi_{i}^2 = 0.$$

(26)

In Eq.(16), the isospin Pauli matrices are $\tau^a = \tau^\pm$ and $\tau^b = \tau^\mp$ for charged ρ^\pm meson, and $\tau^\pm = \frac{1}{\sqrt{2}}(\tau^1 \pm i\tau^2)$. In the rest frame of ρ meson, i.e., $q_\mu = (M_{\rho \pm}, 0)$, the one quark loop polarization function takes the form of

$$\Pi_{\rho^\pm}^{\mu\nu}(q^2) = i \sum_{p,k=0}^{\infty} \int \frac{dk_{0}dk_{3}}{(2\pi)^3} \int dk_{2}dx_{1} \Lambda_{\rho^\pm,pk}^{\mu\nu}(\bar{p}, \tilde{k}, x_{1})_{b,c}.$$

(27)

After calculating the $\Pi_{\rho^\pm}^{\mu\nu}(q^2)$ in the rest frame of ρ meson (the details are given in [6]), we can get the matrix as following:

$$\Pi_{\rho^\pm}^{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Pi^{11} & \Pi^{12} & 0 \\ 0 & \Pi^{21} & \Pi^{22} & 0 \\ 0 & 0 & 0 & \Pi^{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & a & ib & 0 \\ 0 & -ib & a & 0 \\ 0 & 0 & 0 & c \end{pmatrix}. $$

(28)

Here, we define $\Pi^{11} = \Pi^{22} = a$, $\Pi^{12} = -\Pi^{21} = ib$ and $\Pi^{33} = c$. Note that the calculation in [6] was finished in the vacuum. However, in this paper, we are going to investigate the charged ρ condensation at finite temperature and density. Therefore, k_{0} should be replaced by the Matsubara frequency summation, which is given in the Appendix A. The matrix elements $\Pi^{11} = \Pi^{22}, \Pi^{12} = -\Pi^{21}$ and Π^{33} for ρ^+ at finite temperature are given as following:

$$\Pi^{11} = \Pi^{22} = 24 \sum_{p,k=0}^{\infty} \int \frac{dk_{3}}{(2\pi)^2} \int dk_{2}dx_{1} \{A A^{\dagger} + B A^{\dagger} + A^{\dagger} B - A^{\dagger} A\},$$

$$\Pi^{12} = -\Pi^{21} = 24 \sum_{p,k=0}^{\infty} \int \frac{dk_{3}}{(2\pi)^2} \int dk_{2}dx_{1} \{B(-i\sigma_{A} A^{\dagger}) + A(-i\sigma_{A} A^{\dagger})\},$$

$$\Pi^{33} = 24 \sum_{p,k=0}^{\infty} \int \frac{dk_{3}}{(2\pi)^2} \int dk_{2}dx_{1} \{D B^{\dagger} + C B^{\dagger} - C B\}. $$

(29)
The definitions of A, B, C and D are in the Appendix A and A^\pm, α^\pm, B^\pm and β^\pm are represented as follows:

\[
\begin{align*}
A^\pm &= \frac{1}{2} \left[f_p^{+s_+(x_1)} f_k^{+s_d(x_1)} \pm \Pi_p \Pi_k f_p^{-s_-(x_1)} f_k^{-s_d(x_1)} \right], \\
\alpha^\pm &= \frac{1}{2} \left[f_p^{+s_+(0)} f_k^{+s_d(0)} \pm \Pi_p \Pi_k f_p^{-s_-(0)} f_k^{-s_d(0)} \right], \\
B^\pm &= \frac{1}{2} \Pi_p f_k^{+s_d(x_1)} f_p^{-s_-(x_1)} \pm \Pi_k f_p^{+s_+(x_1)} f_k^{-s_-(x_1)} , \\
\beta^\pm &= \frac{1}{2} \Pi_p f_k^{+s_d(0)} f_p^{-s_-(0)} \pm \Pi_k f_p^{+s_+(0)} f_k^{-s_-(0)}. \tag{30}
\end{align*}
\]

where $\{s_u, s_d\} = \{\text{sgn}(q_u eB), \text{sgn}(q_d eB)\}$ and $\{q_u, q_d\} = \{2/3, -1/3\}$.

Combining the expression in Eq. (18) and the matrix in Eq. (28), we can easily find the relation for charged ρ^\pm meson

\[
\begin{align*}
\Pi_1^2 &= -(a + b), \\
\Pi_2^2 &= b - a, \\
\Pi_3^2 &= -c. \tag{31}
\end{align*}
\]

As it has been discussed in [22], Π_2^2 should be zero in the rest frame of ρ mesons, guaranteed by the Ward identity.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Parameters

For numerical calculations, we use the soft cut-off functions in Refs. [6, 24]

\[
\begin{align*}
f_\Lambda &= \sqrt{\frac{\Lambda^{10}}{\Lambda^{10} + k^{2.5}}}, \\
f_{\Lambda,eB}^k &= \sqrt{\frac{\Lambda^{10}}{\Lambda^{10} + (k^2 + 2|QeB|k)^5}}. \tag{33}
\end{align*}
\]

for zero and nonzero magnetic fields, respectively. At finite magnetic field, we sum up to 20 Landau levels, and the results are saturated. Following Refs. [6, 23], the parameters of our model, namely the coupling constants G_S and G_V, the current quark mass m_0, and the three-momentum cut-off Λ, are determined by reproducing the pion decay constant f_π, the quark mass M, the mass of π, and the mass of ρ in the vacuum. We obtain $\Lambda = 582$ MeV, $G_S \Lambda^2 = 2.388$, $G_V \Lambda^2 = 1.73$, and $m_0 = 5$ MeV by choosing $f_\pi = 95$ MeV, $m_\pi = 140$ MeV, $M_\rho = 768$ MeV, the vacuum quark mass $M = 458$ MeV.

B. Numerical results for charged ρ^\pm and discussions

In our numerical calculations, we firstly solve the gap equation Eq. (7) to obtain the quark constituent mass M, and then solve the gap equations of Eq. (29) for charged vector mesons.

Fig. 1 shows the quark mass dependence of magnetic field eB at several fixed temperatures T and chemical potentials μ, and Fig. 2 describes the quark mass dependence of the temperature T at $\mu = 0$ for several different magnetic fields eB. It is noticed that in the current model, there is no mechanism for inverse magnetic catalysis around the critical temperature. Therefore, Fig. 1 and Fig. 2 only show magnetic catalysis behavior of the quark mass.

In Ref. [6], we have observed that there is possible condensation of charged $\rho^+(\rho^-)$ with $s_z = +1(s_z = -1)$ in the vacuum when the magnetic field is stronger than the critical magnetic field $eB_c \simeq 0.2$ GeV2. The main goal of this work is to investigate the melting of the charged ρ condensation at finite temperature and chemical potential.

Fig. 3 shows the mass of charged ρ^\pm as the function of the magnetic field eB at zero temperature for different chemical potentials. It is observed from Fig. 3 that at zero temperature, when μ is smaller than the vacuum constituent quark mass $M_q^0 = 458$ MeV, the behavior of magnetic field dependence of the charged ρ^\pm mass almost does not change for different chemical potentials, and the critical magnetic field remains as $eB_c = 0.2$ GeV2. This indicates that the charged ρ condensation can survive at high baryon density and might occur inside compact stars.
FIG. 1: Quark constituent mass M as a function of magnetic field eB with different temperatures T and chemical potentials μ.

FIG. 2: Quark constituent mass M as a function of the temperature T with different magnetic field eB and zero chemical potential $\mu = 0$.

FIG. 3: The mass of charged $\rho^\pm (\rho^-)$ with $s_z = +1 (s_z = -1)$ in magnetic field with fixed $T = 0$ MeV with different chemical potentials μ.

Fig. 4 shows the mass of charged ρ^\pm as the function of the magnetic field eB at zero chemical potential for different temperatures. It is seen that for different temperatures, the charged ρ^\pm mass decreases with the magnetic field and
drops to zero at the critical magnetic field. With the increase of temperature, the critical magnetic field also increases. This indicates that the charged ρ condensation can survive even at high temperatures.

\[M_{\rho}^2(T) = \text{some function of } T \]

At last, in Fig. 5 we show the critical magnetic field eB_c as a function of the temperature for $\mu = 0, 0.3, 0.46$ GeV, respectively. It can be read that when the temperature increases, the critical magnetic field increases. Furthermore, it is seen that the critical magnetic field increases with the chemical potential at fixed temperature. It is worthy of mentioning that at zero chemical potential, when the temperature is below $T = 250$ MeV, which is almost the critical temperature for the chiral phase transition, we can read that the critical magnetic field does not change so much comparing with its value at zero temperature. However, when the temperature is higher than $T = 250$ MeV, it is found that the critical magnetic field increases linearly with the temperature, and in the temperature range $200 - 500$ MeV, the critical magnetic field for charged ρ condensation is in the range of $0.2 - 0.6$ GeV2, which is just located inside the range of the magnetic field generated in the non-central heavy ion collisions of LHC. It means that high temperature superconductor could be produced at LHC.

\[eB_c(T) = \text{some function of } T \]

FIG. 4: The mass of charged $\rho^+(\rho^-)$ with $s_z = +1$($s_z = -1$) in magnetic field with fixed $\mu = 0$ MeV and different temperatures T.

FIG. 5: The critical magnetic field eB_c as a function of temperature T with different chemical potential μ.

IV. CONCLUSIONS

We have investigated the charged ρ mesons in an external magnetic field at finite temperature and density by using the NJL model. The mesons are constructed by summing up infinite quark-loop chains by using the random phase approximation. In this paper, we calculate the ρ meson polarization tensor to the leading order of $1/N_c$ expansion,
i.e. the one quark loop. In this process, the constituent quark mass is solved self-consistently with magnetic field at
finite temperature and density. It is noticed that in our current framework, there is no inverse magnetic catalysis
mechanism, so the quark mass increases with magnetic field and only shows the magnetic catalysis effect.

The mass of charged ρ meson depending on the magnetic field is calculated at finite temperature and density. It
is found that at fixed temperature and density, the polarized charged ρ meson becomes lighter with the increase of
magnetic fields and drops to massless at the critical magnetic field eB_c, which indicates that there will appear charged
ρ meson condensation when the strength of the magnetic field is greater than the eB_c. Moreover, it is observed that
the critical magnetic field eB_c increases with both the temperature and density. Particularly, at zero density, our
results show that in the temperature region $200 \text{ MeV} < T < 500 \text{ MeV}$, the critical magnetic field eB_c is in the range of
$0.2 - 0.6 \text{ GeV}^2$, which indicates that the high temperature superconductor could be created in the early stage of
LHC.

However, we have to mention that in our current framework, there is no inverse magnetic catalysis for the quark
mass. In the next step, we will investigate how the inverse magnetic catalysis will affect our results on the charge
ρ condensation, especially at high temperatures.

V. ACKNOWLEDGEMENT

We thank J.F. Liao and I. Shovkovy for valuable discussions. This work is supported by the NSFC under Grant Nos.
11275213, and 11261130311(CRC 110 by DFG and NSFC), CAS key project KJCX2-EW-N01, and Youth Innovation
Promotion Association of CAS. L.Yu is partially supported by China Postdoctoral Science Foundation under Grant
No. 2014M550841.

Appendix A: Integrals of k_0

We introduce the notations of the integrals of k_0 for ρ^+ meson as follows:

\[A = i \int \frac{dk_0}{2\pi} \frac{\bar{p}(u) \cdot \vec{k}(d) - M^2}{(p_0^2 - \omega_{\alpha,p}^2)(k_0^2 - \omega_{d,k}^2)} = \frac{1}{2}(iI_1 + iI'_1) \]

\[- \left[\frac{1}{2} \left(M_{\rho^+}^2 - \bar{p}^2(2,u) - \vec{k}^2(2,d) \right) + \bar{p}(2,u)\vec{k}(2,d) \right] iI_2, \]

\[(A1) \]

\[B = i \int \frac{dk_0}{2\pi} \frac{\bar{p}(u) \cdot \vec{k}(d) - M^2 + 2\bar{p}(2,u)\vec{k}(2,d)}{(p_0^2 - \omega_{\alpha,p}^2)(k_0^2 - \omega_{d,k}^2)} = \frac{1}{2}(iI_1 + iI'_1) \]

\[- \left[\frac{1}{2} \left(M_{\rho^+}^2 - \bar{p}^2(2,u) - \vec{k}^2(2,d) \right) - \bar{p}(2,u)\vec{k}(2,d) \right] iI_2, \]

\[(A2) \]

\[C = i \int \frac{dk_0}{2\pi} \frac{p_0k_0 + \bar{p}(2,u)\vec{k}(2,d) + \vec{k}^2 - M^2}{(p_0^2 - \omega_{\alpha,p}^2)(k_0^2 - \omega_{d,k}^2)} = \frac{1}{2}(iI_1 + iI'_1) \]

\[+ \left[2k_3^2 - \frac{1}{2} \left(M_{\rho^+}^2 - \bar{p}^2(2,u) - \vec{k}^2(2,d) \right) + \bar{p}(2,u)\vec{k}(2,d) \right] iI_2, \]

\[(A3) \]

\[D = i \int \frac{dk_0}{2\pi} \frac{p_0k_0 - \bar{p}(2,u)\vec{k}(2,d) + \vec{k}^2 - M^2}{(p_0^2 - \omega_{\alpha,p}^2)(k_0^2 - \omega_{d,k}^2)} = \frac{1}{2}(iI_1 + iI'_1) \]

\[+ \left[2k_3^2 - \frac{1}{2} \left(M_{\rho^+}^2 - \bar{p}^2(2,u) - \vec{k}^2(2,d) \right) - \bar{p}(2,u)\vec{k}(2,d) \right] iI_2. \]

\[(A4) \]
Here, $\omega_{u,p}^2 = 2q_u e B|p + p_3^2 + M^2$, $\tilde{p}(2,u) = -s_u \sqrt{2q_u e B}|p$ and $\tilde{p}(u) = \left(p_0, 0, -s_u \sqrt{2q_u e B}|p, p_3\right)$. We use the similar definition for $\tilde{k}_{(d)}$, $\tilde{k}_{(2,d)}$, $\omega_{d,k}$. Moreover, I_1, I'_1 and I_2 are given by:

\begin{align}
I_1 &= \int \frac{dk_0}{2\pi} \frac{1}{k_0^2 - \omega_{u,p}^2}, \\
I'_1 &= \int \frac{dk_0}{2\pi} \frac{1}{k_0^2 - \omega_{d,k}^2}, \\
I_2 &= \int \frac{dk_0}{2\pi} \frac{1}{((k_0 + q_0)^2 - \omega_{u,p}^2)(k_0^2 - \omega_{d,k}^2)}. \tag{A5}
\end{align}

As in Ref. [25], we replace the integration over k_0 by Matsubara summation according to the prescription

\[
\int \frac{dk_0}{2\pi} (\cdots) \to iT \sum_{m=-\infty}^{\infty} (\cdots)
\]

and obtain

\begin{align}
iI_1 &= -\left\{n_f(\omega_{u,p} - \mu) + n_f(\omega_{u,p} + \mu) - 1 \right\}, \\
iI'_1 &= -\left\{n_f(\omega_{d,k} - \mu) + n_f(\omega_{d,k} + \mu) - 1 \right\}, \\
iI_2 &= -\left[\left\{n_f(\omega_{d,k} - \mu) \frac{1}{2\omega_{d,k}} (\omega_{d,k} + M_{\rho^+})^2 - \omega_{u,p}^2 \right. \\
&\left. - n_f(-\omega_{d,k} - \mu) \frac{1}{2\omega_{d,k}} (-\omega_{d,k} + M_{\rho^+})^2 - \omega_{u,p}^2 \right) \\
&\left. + n_f(\omega_{u,p} - \mu) \frac{1}{2\omega_{u,p}} (-M_{\rho^+} + \omega_{u,p})^2 - \omega_{d,k}^2 \right. \\
&\left. - n_f(-\omega_{u,p} - \mu) \frac{1}{2\omega_{u,p}} (-M_{\rho^+} - \omega_{u,p})^2 - \omega_{d,k}^2 \right]\right] \tag{A6}
\end{align}

with

\[
n_f(x) = \frac{1}{1 + e^{x/T}}. \tag{A7}
\]

Here, the notations are only for ρ^+ meson, and the similar ones can be used for ρ^- meson.

\begin{thebibliography}{99}
\bibitem{1} V. Skokov, A. Y. Illarionov and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009).
\bibitem{2} W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012).
\bibitem{3} M. N. Chernodub, Phys. Rev. D 82, 085011 (2010) [arXiv:1008.1055 [hep-ph]].
\bibitem{4} M. N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011) [arXiv:1101.0117 [hep-ph]].
\bibitem{5} M. Frasca, JHEP 1311, 099 (2013) [arXiv:1309.3966 [hep-ph]].
\bibitem{6} H. Liu, L. Yu and M. Huang, Phys. Rev. D 91, no. 1, 014017 (2015) [arXiv:1408.1318 [hep-ph]].
\bibitem{7} C. Li and Q. Wang, Phys. Lett. B 721, 141 (2013) [arXiv:1301.7099 [hep-th]].
\bibitem{8} Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, no. 9, 094502 (2013) [arXiv:1209.0007 [hep-ph]].
\bibitem{9} O. Larina, E. Luschevskaya, O. Kochetkov and O. V. Teryaev, PoS LATTICE 2014, 120 (2014) [arXiv:1411.0730 [hep-lat]].
\bibitem{10} N. Callebaut, D. Dudal and H. Verschelde, PoS FACESQCD 2014, 046 (2014) [arXiv:1411.2747 [hep-ph]].
\bibitem{11} M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Phys. Lett. B 706, 94 (2011) [arXiv:1106.4551 [hep-th]].
\bibitem{12} M. A. Andreichikov, B. O. Kerbikov, V. D. Orlovsky and Y. A. Simonov, Phys. Rev. D 87, no. 9, 094029 (2013) [arXiv:1304.2553 [hep-ph]].
\bibitem{13} Kunlun Wang, PhD thesis from Peking University.
\bibitem{14} Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
\bibitem{15} Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).
\bibitem{16} S. Klimt, M. F. M. Lutz, U. Vogl and W. Weise, Nucl. Phys. A 516, 429 (1990).
\bibitem{17} U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
\end{thebibliography}
[18] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[19] T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994) [hep-ph/9401310].
[20] S. Fayazbakhsh, S. Sadeghian and N. Sadooghi, Phys. Rev. D 86, 085042 (2012) [arXiv:1206.6051 [hep-ph]].
[21] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Nucl. Phys. A 836, 311 (2010) [arXiv:0912.2961 [hep-ph]].
[22] A. K. Das and M. B. Hott, Mod. Phys. Lett. A 9, 3383 (1994) [hep-ph/9406426].
[23] Y. B. He, J. Hufner, S. P. Klevansky and P. Rehberg, Nucl. Phys. A 630, 719 (1998) [nucl-th/9712051].
[24] M. Frasca and M. Ruggieri, Phys. Rev. D 83, 094024 (2011) [arXiv:1103.1194 [hep-ph]].
[25] P. Rehberg and S. P. Klevansky, Annals Phys. 252, 422 (1996) [hep-ph/9510221].
[26] J. Chao, P. Chu and M. Huang, Phys. Rev. D 88, 054009 (2013); L. Yu, H. Liu and M. Huang, Phys. Rev. D 90, no. 7, 074009 (2014); L. Yu, J. Van Doorselaere and M. Huang, Phys. Rev. D 91, no. 7, 074011 (2015).