SMASG: Secure Mobile Authentication Scheme for Global Mobility Network

JIHYEON RYU1, HAKJUN LEE2, YOUNGSOOK LEE2, DONGHO WON3

1Department of Software, Sungkyunkwan University, 2066 Seoburo, Suwon, Gyeonggido, 16419, Korea (e-mail: jhryu@security.re.kr)
2Department of IT Software Security, Howon University, 64 Impimyeon, Gunsan, Jeollabukdo, Korea (e-mail: hjlee@security.re.kr, ysooklee@howon.ac.kr)
3Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seoburo, Suwon, Gyeonggido, 16419, Korea (e-mail: dhwon@security.re.kr)

Corresponding author: Dongho Won (e-mail: dhwon@security.re.kr).

This work was supported by an Institute of Information & Communications Technology Planning Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00558, Development of National Statistical Analysis System using Homomorphic Encryption Technology)

ABSTRACT The rapid growth of the Internet of Things (IoT) has enabled prompt services over mobile devices. The Global Mobility Network (GLOMONET) is an important global network that allows mobile users to access the Internet anywhere. Although implementing a secure mechanism in GLOMONET is a difficult and complex task due to the computational and processing limitations of most mobile devices, an authentication system is vital for secure communications among such mobile devices. In 2021, Rahmani et al. proposed an authentication method, called the advanced mobile authentication protocol for GLOMONET (AMAPG). However, we found three serious vulnerabilities in AMAPG. First, the scheme contains large amounts of information on the smart card of the mobile phone. Therefore, they are vulnerable to attacks that steal critical information. Second, it is susceptible to password-guessing attacks. Third, the scheme cannot guarantee the security of future messages because attackers can steal the session key. In this study, we discuss the weaknesses of AMAPG and propose a new three-factor authentication scheme called the secure mobile authentication scheme for GLOMONET (SMASG). We performed informal and formal security analyses using ProVerif and BAN Logic on SMASG. In addition, we analyzed and compared its performance with that of the latest GLOMONET-based authentication schemes. Our scheme saves an average of 93% time in user login and authentication phase.

INDEX TERMS Authentication GLOMONET IoT

I. INTRODUCTION

Advancements in the Internet of Things (IoT) have facilitated global access to networks through mobile devices. Thus, people can operate these devices from any location. Furthermore, the automated exchange of information among devices and information available over a network helps connected users obtain the desired information [1], [2].

A global mobility network (GLOMONET) [3]–[11] provides security to mobile users accessing the network from anywhere. Global roaming services enable legitimate mobile users to use ubiquitous services. However, with the rapid development of this environment, numerous security issues such as user privacy have risen [11]–[14]. Therefore, anonymous mutual authentication in GLOMONET is important. For this purpose, cryptographers worldwide are developing computationally complex processes based on symmetric/asymmetric encryption/decryption or using modular operations to design authentication protocols [15]–[19]. These protocols must handle various security issues such as forgery attacks, known as session-key attacks, reverse and forward secrecy, and smart card loss issues.

In GLOMONET, authentication is generally divided into three categories, authentication for: (1) mobile users (MU), (2) home agents (HA), and (3) foreign agents (FA). In the registration stage, MU registers with HA and is issued a smart card. In the subsequent authentication step, MU enters the login process with its information and the smart card to request a session key. FA receives information from MU, requests authentication from HA including its information, and receives a message from HA. It then generates a session key and sends a message to MU. Then, MU generates a session key using the received message (Figure 1).

In 1998, Horn and Preneel [3] first proposed a mobile pay authentication method. Since then, several studies have been
conducted on mobile pay-related authentication. In 2004, Zhu and Ma [4] first proposed a different GLOMONET authentication method for mobile users, foreign agents, and home agents. However, their proposed method did not satisfy perfect backward secrecy, mutual authentication, or protect against a forgery attack [5]. Lee-Wang-Liao [5] proposed a novel authentication method to address these problems. Chang-Chi-Liu [6] found that Lee-Hwang-Liao’s scheme had a weakness in time synchronization and proposed a new scheme; however, the new scheme faced user anonymity and confidentiality challenges [7]. Zhou and Xu [7] introduced a wireless authentication protocol to address these problems. Unfortunately, Gope and Hwang [8] observed that their scheme was also insecure owing to unsuccessful key agreements, replay attacks, and insider attacks; they then proposed a novel scheme to address these vulnerabilities. Xu et al. proposed mutual authentication and key agreement (MAKA) in 2018 [9] as a new method to prevent the storage consumption, computational burden, and replay attack problems faced by the scheme designed by Gope and Hwang [8]. However, in 2020, Shashidhara et al. [10] analyzed and identified problems such as untraceability, impersonation attacks, denial of service attacks, privileged-insider attacks, clock synchronization, and wrong password detection in this scheme. They presented an efficient protocol to address problems, such as the rapid detection of incorrect passwords. However, in the scheme proposed by Shashidhara et al. [10], Rahmani et al. [11] in 2021 discovered problems such as user impersonation, traceability, forward secrecy contradiction, and stolen smart card attacks; they proposed a new scheme, an advanced mobile authentication protocol for GLOMONET (AMAPG), to resolve these schemes [11].

However, AMAPG [11] has three critical vulnerabilities. First, the scheme stores the information on the smart card of mobile phones. Therefore, it is susceptible to attacks that steal critical information. Second, the scheme can be exposed to password-guessing incidents. Third, their protocol cannot guarantee the security of future messages, as attackers can steal the session key. In the following sections, we explain the weaknesses of AMAPG and propose a new secure mobile authentication scheme for GLOMONET (SMASG) that compensates for these weaknesses. The contributions of this study can be summarized as follows:

- We summarize the security properties required for GLOMONET. The following aspects must be satisfied: user anonymity, low communication cost, computational complexity, single registration, user-friendliness, no password table, security.
- However, the recently proposed AMAPG scheme allows password-guessing attacks. In addition, the AMAPG has a fatal problem in that the session key can be calculated by an external attacker. To solve this problem, we used the user’s biometric information for authentication. Biometrics are included in the authentication phase,

FIGURE 1. Mobile User Authentication Scenarios for GLOMONET.
and our new SMASG method achieves robust security. Our scheme presents a three-factor method, including biometric authentication, in line with the recent mobile authentication trends. The user’s biometric information is randomized using a fuzzy extractor and is used for user authentication.

- We conducted security and performance analyses of SMASG and compared its safety and performance with the latest GLOMONET schemes.

The remainder of this paper is organized as follows. Section II provides a preliminary overview of the basic elements used in this study and describes the threat model and assumptions. Section III provides a review of AMAPG, and Section IV analyzes its security vulnerabilities. Section V proposes a novel three-step authentication scheme called SMASG that compensates for the weaknesses of AMAPG. Sections VI and VII present the security and performance analysis results, respectively. Section VIII discusses the performance, and Section IX concludes the paper.

II. PRELIMINARIES

This section introduces the fuzzy extractor, hash function, and threat model used in the study.

A. FUZZY EXTRACTOR

The fuzzy extractor receives the user’s biometric information and can use the error tolerance to obtain a unique string. This error tolerance can distinguish biometric information from the same individual even if the biometric information is not exactly the same. This character string is easy to use because it allows an error range for recognizing the biometric information. A fuzzy extractor uses two operators [20]–[25].

\[GEN(B) \rightarrow (P, R) \] (1)

\[REP(B^*, P) = R \] (2)

\(GEN \) and \(REP \) are probabilistic and deterministic reproduction functions, respectively. \(Gen \) returns a factored-out string \(P \in \{0, 1\}^k \) for input biometrics \(B \) and a coadjutant string \(R \in \{0, 1\}^* \). \(Rep \) is a function that restores \(R \) to \(P \), and any vector \(B^* \) close to \(B \).

B. THREAT MODEL

Based on previous studies [27]–[29], this study establishes a threat model with the following assumptions:

- An attacker can steal the user’s smart card and identity.
- Attackers can eavesdrop on messages shared on public channels. In other words, attackers can eavesdrop on the interactions between mobile users (\(MU \)) and the foreign agents (\(FA \)) and between foreign and home agents (\(HA \)).
- An attacker can discover information on a smart card through a side-channel attack.

III. REVIEW OF RAHMANI ET AL.’S ADVANCED MOBILE AUTHENTICATION PROTOCOL FOR GLOMONET (AMAPG)

This section describes the AMAPG target scheme. This scheme consists of three phases: registration, login and authentication, and password change. The notations used in these phases are listed in Table 1.

Notations	Description		
\(MU \)	Mobile user		
\(HA \)	Home agent of a mobile user		
\(FA \)	Foreign agent of the network		
\(MU_{id} \)	\(MU \)’s identity		
\(MU_{psw} \)	\(MU \)’s password		
\(HA_{id} \)	\(HA \)’s identity		
\(FA_{id} \)	\(FA \)’s identity		
\(SK \)	Session key of \(MU \) and \(FA \)		
\(SK_{HA} \)	Secret key of \(HA \)		
\(SK_{FA} \)	Secret key of \(FA \), \(SK_{FA} = h(FA_{id}		SK_{HA}) \)
\(SC \)	Smart card or smart device		
\(DB \)	\(HA \)’s database		
\(MU_{r} \)	Random number in \(MU \)’s smart card		
\(h(\cdot) \)	One-way hash function		
\(E(F_p) \)	Group of points on a finite field \(F_p \) elliptic curve		
\(\oplus \)	XOR operation		
\(\| \)	Concatenation operation		
A. REGISTRATION PHASE

In the registration step, a smart card is created when the user enters an identity and password; the card stores the user’s information with the home agent. The details of the registration phase for AMAPG are as follows:

1) **MU** calculates the secret information $RID = h(MU_{id} \parallel (MU_{psw} \oplus MU_{r}))$ using the identity MU_{id} and password MU_{psw} to create a smart card. Subsequently, **MU** sends RID to **HA**.

2) **HA** receives RID from **MU** and calculates the secret information $HID = h(RID \parallel SK_{HA})$. Then, **HA** stores the received information $\{RID\}$ in its database. **HA** then sends HID and hash function $h(\cdot)$ to **MU**.

3) **MU** receives HID and hash function $h(\cdot)$ information from **HA** and calculates the SP = $HID \oplus h(MU_{psw} \parallel (MU_{id} \oplus MU_{r}))$ and PV = $h(MU_{id} \parallel MU_{psw} \parallel MU_{r})$ values. On smart card SC, **MU** stores the random value MU_{r}. SC = $\{SP, PV, MU_{r}, h(\cdot)\}$.

B. LOGIN AND AUTHENTICATION PHASE

In the login and authentication phase, the user logs in with the smart card created by the user and shares the session key between the mobile user and the foreign agent.

1) **MU** requests the reader terminal for login by inputting its smart card SC, identity MU_{id}, and password MU_{psw}.

2) Subsequently, the reader terminal that receives the smart card SC information, identity MU_{id}, and password MU_{psw} calculates $PV^{*} = h(MU_{id} \parallel MU_{psw} \parallel MU_{r})$ and checks whether the value PV^{*} matches the information PV in the smart card SC. If they match, the terminal authenticates MU and generates a random value N_M and a timestamp T_M. Then, it calculates $HID = SP \oplus h(MU_{psw} \parallel (MU_{id} \oplus MU_{r}))$, $A_{M} = h((HID \oplus N_{M}) \parallel T_{M})$, and $V_{1} = h(HID \parallel T_{M} \parallel N_{M})$ and sends the final values $\{A_{M}, V_{1}, H,A_{id},T_{M}\}$ to **FA**.

3) Then, **FA** receives $\{A_{M}, V_{1}, H,A_{id},T_{M}\}$ from **MU** and verifies the timestamp T_{M}. If the verification is confirmed, **FA** generates a random value N_{F} and timestamp T_{F} and calculates $A_{F} = h(A_{M} \parallel T_{F} \parallel SK_{FA}) \oplus N_{F}$ and $V_{2} = h(A_{F} \parallel (T_{F} \parallel N_{F}) \parallel SK_{FA} \parallel (V_{1} \parallel A_{M}))$. Subsequently, **FA** sends $\{TM, T_{F}, FA_{id}, AF_{id}, V_{1}, V_{2}\}$ to **HA**.

4) **HA** receives $\{TM, T_{F}, FA_{id}, AF_{id}, V_{1}, V_{2}\}$ from **FA** and verifies the timestamps T_{M} and T_{F}. Subsequently, it calculates $SK_{FA} = h(FA_{id} \parallel SK_{HA})$ and determines FA_{id}. Then, **HA** calculates $N^{*}_{F} = A_{F} \oplus h(A_{M} \parallel T_{F} \parallel SK_{FA})$, extracts $\{RID\}$ from the database and computes $HID^{*} = h(RID \parallel SK_{HA})$, $N^{*}_{M} = h(HID^{*} \parallel T_{M}) \oplus V_{1}$, $A^{*}_{M} = h((HID^{*} \oplus N^{*}_{M}) \parallel T_{M})$, and $V_{2}^{*} = h(A_{F} \parallel (T_{F} \parallel N_{F}) \parallel SK_{FA} \parallel (V_{1} \parallel A^{*}_{M}))$. Subsequently, it verifies $V_{2}^{*} = V_{2}$, calculates $A_{H} = A_{F} \oplus N^{*}_{F} \oplus N^{*}_{M}$, and sends $V_{3} = h((HA_{id} \oplus N_{H}) \parallel (N^{*}_{F} \oplus A_{H}) \parallel SK_{FA} \parallel T_{H})$, and $V_{4} = h((HID^{*} \oplus N^{*}_{F}) \parallel (HA_{id} \oplus N_{M}) \parallel N_{H} \parallel T_{H})$, and then, sends the information of $\{TH, AH, NH, V_{3}, V_{4}\}$ to **FA**.

5) **FA** receives information about $\{TH, AH, NH, V_{3}, V_{4}\}$ from **HA** and calculates $V_{3}^{*} = h((HA_{id} \parallel NH) \parallel (N_{F} \parallel A_{H}) \parallel SK_{FA} \parallel TH)$. Furthermore, **FA** verifies $V_{3} = V_{3}^{*}$ and authenticates **MU** and **HA**. If they are authenticated, **FA** calculates $N_{M} = A_{M} \parallel N_{M} = = N_{F} \parallel T_{F}$ to determine the session key $SK = h(N_{F} \parallel N_{M} \parallel NH)$. Subsequently, **FA** sends $\{TH, NH, AF, V_{4}\}$ to **MU**.

C. PASSWORD CHANGE PHASE

The password change phase of AMAPG is performed in a secure channel as follows:

1) The mobile user **MU** logs in with the identity MU_{id} and password MU_{psw}, gives smart card information $SC = \{SP, PV, MU_{r}, h(\cdot)\}$ to the reader terminal, and requests a password change.

2) **MU**’s smart card SC calculates $PV^{*} = h(MU_{id} \parallel MU_{psw} \parallel MU_{r})$ and checks the PV = PV^{*} information. If approved, **MU** is verified and the smart card SC provides $HID = SP \oplus h(MU_{psw} \parallel (MU_{id} \parallel MU_{r}))$.

3) When **MU** inputs a new password MU_{psw}^{new} in the reader terminal, the new $PV^{new} = h(MU_{psw} \parallel MU_{r})$ and $SP^{new} = HID \oplus h(MU_{psw} \parallel (MU_{id} \parallel MU_{r}))$ updates the old PV, and SP is replaced with PV^{new} and SP^{new} on the smart card SC = $\{SP^{new}, PV^{new}, MU_{r}, h(\cdot)\}$.

IV. ANALYSIS OF RAHMANI ET AL.’S AMAPG

This section describes the above vulnerabilities in AMAPG step by step.

A. LOSS OF SMART CARD INFORMATION

A side-channel attack can steal information on a smart card. In general, three methods exist for side-channel attacks. We assume that smart-card information can easily be extracted through the following attacks [26]:

1) Timing Attacks: These attacks are calculated by measuring the time taken to perform the unit operation.

2) Power Consumption Analysis Attacks: These attacks depend on power consumption analysis during the encryption operation. These types of attacks are subdivided into simple and co-relation power analysis attacks.

3) Fault Analysis Attacks: Fault analysis attacks are recent and powerful cryptanalysis attacks that induce...
faulty operations, with the expectation that the results of the fault operation will leak information regarding the secret keys involved.

B. PASSWORD GUESSING ATTACK

Using stolen smart card information (Section IV-A) and assuming that the user’s identity is known, an attack that guesses the user’s password can be attempted. The details are as follows.

1) The attacker obtains the PV and MU’s information from the user’s smart card. It is also assumed that MU’s identity is known.
2) As it is a PV = h (MU_id || MU_psw || MU_r), the attacker enters the user’s identity MU_id, MU_r, and PV values, and extracts the password.

C. SESSION KEY DISCLOSURE ATTACK

If an attacker is involved in the registration phase, they can steal session keys of the mobile user and the foreign agent.

1) The attacker steals the HID value in the registration phase.
2) The attacker steals the AM, V1, and T_M, where MU sends A_F, FA sends N_H, and HA sends A_H, respectively.
3) The attacker computes N_M = h (HID || T_M) V1, and N_F = A_F A_M N_M.
4) Finally, the attacker calculates that SK = h (N_F || N_M).

V. SMASG: THE PROPOSED SCHEME

To compensate for the vulnerabilities in AMAPG, we propose a novel scheme, SMASG, that uses a fuzzy extractor to authenticate the user’s biometric information. It consists of three phases: registration, login and authentication, and password changes, as shown in Figure 2. The details are as follows.

A. REGISTRATION PHASE

MU inputs the user information and receives a smart card SC from the home agent HA. HA provides MU the information required for the smart card and stores the user’s information in its database DB. The details are presented in Figure 3.

1) MU inputs identity MU_id, password MU_psw, and the biometric information MU_bio. The fuzzy extractor receives MU_bio and generates (R, P) = GEN (MU_bio). Then, MU calculates x = h (MU_id || MU_psw || R), RID = h (MU_id || R), and PID = h (MU_id || MU_psw) and sends the PID and hash function h (·) to HA.
2) HA receives information {PID, h (·)} sent by MU and calculates HID = h (r || SK_HA). It stores r and PID in the database DB = {r, PID}. In addition, HA stores HID in smart card SC = {HID} and sends it to MU.
3) MU calculates the SP and PV and stores {SP, PV, REP, P, h (·)} in the smart card SC. The registration step is thus completed.

B. LOGIN AND AUTHENTICATION PHASE

MU and FA must undergo authentication and session-key SK sharing processes. The details are presented in Figure 4.

1) MU inputs the information, such as identity MU_id, password MU_psw, and biometric information MU_bio, to its smart card SC = {SP, PV, REP, P, h (·)} to log in. Biometric information MU_bio extracts R = REP (MU_bio, P). MU’s smart card SC calculates x = h (MU_id || MU_psw || R), RID = h (MU_id || R), PID = h (MU_id || MU_psw), HID = SP RID, and PV = h (x || HID). At this time, the mobile user MU is authenticated; the value of PV is verified to be the same as that of PV in the smart card SC. Subsequently, the reader terminal generates the timestamp T_M and random number N_M and calculates V_1 = h (HID || T_M) N_M. Finally, MU sends message V_1, H_A, T_M to FA.
2) Foreign agent FA receives V_1, H_A, T_M from MU and checks whether T_M is valid. If it is valid, FA generates timestamp T_F and random number N_F. Furthermore, FA computes V_2 = h (V_1 || T_M || T_F || SK_F) N_F, and A = h (V_2 || N_F). Finally, FA sends V_1, V_2, T_M, T_F, A to HA.
3) HA receives V_1, V_2, T_M, T_F, A from FA to confirm the validity of T_F. If valid, HA calculates SK_F_A = h (FA_id || SK_F_A) by checking the identity FA_id of FA. After calculating N_F = h (V_1 || T_M || T_F || SK_F_A) V_2 and A = h (V_2 || N_F), we determine whether A matches received message A. HA calculates HID = h (r || SK_HA), where it determines r by mapping PID to the database DB, and N_M = h (HID || T_M) V_1, and generates timestamp T_H and random number N_H. Then, HA calculates V_3 =
Ryu et al.: Preparation of Papers for IEEE ACCESS

VOLUME 4, 2016

Mobile User (MU)

\[\text{MU}_{\text{id}}, \text{MU}_{\text{psw}}, \text{MU}_{\text{bio}} \]
(R, P) = GEN(\text{MU}_{\text{bio}})
\[x = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}} || R) \]
\[\text{RID} = h(\text{MU}_{\text{id}} || R) \]
\[\text{PID} = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}}) \]

SP = HID ⊕ RID
PV = h(x || HID)
SC = {SP, PV, REP, P, h(·)}

\[
N_F \oplus N_H, V_4 = h (V_3 \parallel N_M \parallel N_H \parallel T_H \parallel \text{HID}),
V_5 = h (N_F \parallel T_H), \text{and } V_6 = N_M \oplus N_H, \text{and then,}
\{V_3, V_4, V_5, V_6, T_H\} \text{ to } FA.
\]

4) FA receives \{V_3, V_4, V_5, V_6, T_H\} from HA and verifies the validity of the timestamp \(T_H\). When the timestamp \(T_H\) is validated, FA computes \(V_5 = h(N_F \parallel T_H)\) and checks whether it is equal to the \(V_5\) of the received message. Subsequently, FA calculates \(N_H = V_3 \oplus N_F, N_M = V_6 \oplus N_H, \text{and the session-key}
\]
\(SK = h(N_M \parallel N_F \parallel N_H)\). FA creates timestamp \(T_F\) and sends \{V_3, V_4, V_5, T_F, T_H\} to MU.

5) MU receives \{V_3, V_4, V_5, T_F, T_H\} from FA and checks the timestamp \(T_F\). Then, we calculate \(N_H = V_6 \oplus N_M, N_F = V_3 \oplus N_H, \text{and } V_4 = h(V_3 \parallel N_M \parallel N_H \parallel T_H \parallel \text{HID}),\) and check whether \(V_4\) is the same as the received \(V_4\). If \(V_4\) is confirmed, we calculate the session key \(SK = h(N_M \parallel N_F \parallel N_H)\).

C. PASSWORD CHANGE PHASE

We provide users with the opportunity to change their old passwords. What the user has lost is to prepare an option so that the password can be changed regularly for safety if the password is exposed. In SMASG, when MU changes password \(\text{MU}_{\text{psw}}\), we pursue the following process.

1) MU inputs the original identity \(\text{MU}_{\text{id}}\), password \(\text{MU}_{\text{psw}}^{\text{old}}\), and biometric information \(\text{MU}_{\text{bio}}\) into its smart card.

2) The smart card calculates \(R = REP (\text{MU}_{\text{bio}}, P)\),
\[
x^{\text{old}} = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}}^{\text{old}} || R), \text{RID} = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}}^{\text{old}}),
\]
\(\text{HID} = SP \oplus \text{RID}, \text{and } PV^{\text{old}} = h(x || \text{HID}),\) compares \(PV^{\text{old}} \text{ with } PV^{\text{old}}\) of the smart card \(SC\), and checks whether \(MU\) has correctly entered the user information.

3) MU inputs the new password \(\text{MU}_{\text{psw}}^{\text{new}}\) into the smart card \(SC\).

4) Smart card \(SC\) computes a new \(PID^{\text{new}} = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}}^{\text{new}}), x^{\text{new}} = h(\text{MU}_{\text{id}} || \text{MU}_{\text{psw}}^{\text{new}} || R), \text{and } PV^{\text{new}} = h(x^{\text{new}} || \text{HID}).\) MU’s smart card sends \(PID^{\text{new}}\) along with the original \(PID^{\text{old}}\) to HA on a secure channel, such that HA updates the \(PID^{\text{old}}\) information in its database \(DB\) with \(PID^{\text{new}}\).

5) Smart card \(SC\) finally updates the original \(PV^{\text{old}}\) using the information from the new \(PV^{\text{new}}\).

VI. SECURITY ANALYSIS OF SMASG

In this section, we analyze the security of SMASG in two ways: formal and informal security analyses. We used the formal protocol verification tool called ProVerif and BAN logic in Section VI-A to demonstrate the security of our scheme. We also provide a theoretical security analysis of this protocol in Section VI-B. Through this verification, we demonstrate the safety of the proposed scheme.

A. FORMAL SECURITY ANALYSIS

We verified the protocol using two well-known security-analysis tools. The first method involves verification using ProVerif software. The second method involves verification using the BAN logic. The details are as follows:

1) Security proof through ProVerif

We used ProVerif to analyze the security and correctness of the proposed scheme. ProVerif has been widely used to verify security protocols [30], [31], [35]. This software tool formally verifies the security of cryptographic protocols. We define basic cryptographic primitives, such as hash functions, encryption, digital signatures, and bit commitment.

This tool can systematically prove cryptographic properties such as reachability, secrecy, correspondence, and some observational equivalence properties. ProVerif has two unique design characteristics. First, it uses an extension of pi-calculus with cryptography; thus, it supports various types...
of cryptographic primitives. In addition, ProVerif analyzes protocols after translating them into Horn clauses; therefore, it can verify the security features in an unbounded number of sessions.

We use three channels: a registration channel (mobile user–home agent channel) \((ch_a)\), a mobile user–foreign agent channel \((ch_b)\), and a foreign agent–home agent channel \((ch_c)\). Table 4 lists the variables, constants, secret keys, functions, and events.

The “Registration” and “Login and Authentication” phases for mobile users \((MU)\) are listed in Table 5. The “Registration” and “Authentication” phases for foreign agent \((FA)\) are shown in Table 6. The “Authentication” phase of the home agent \((HA)\) is presented in Table 7. Tables 2 and 3 list the
TABLE 2. Query.

(*)—queries—(*)
query attacker(MUid).
query secret:bitstring; inj-event(endMU(secret)) == inj-event(beginMU(secret)).
query secret:bitstring; inj-event(endFA(secret)) == inj-event(beginFA(secret)).
query secret:bitstring; inj-event(endHA(secret)) == inj-event(beginHA(secret)).

process
(!(MU)!(FA)!(HA))

TABLE 3. Query Results.

RESULT inj-event(endMU(secret)) == inj-event(beginMU(secret)) is true.
RESULT inj-event(endFA(secret)) == inj-event(beginFA(secret)) is true.
RESULT inj-event(endHA(secret)) == inj-event(beginHA(secret)) is true.
RESULT not attacker(MUid[]) is true.

TABLE 4. Define Values and Functions.

(*)—channels—(*)
free cha:channel [private].
free chb:channel.
free chc:channel.

(*)—constants—(*)
free R:bitstring [private].
free MUid:bitstring [private].
free FAid:bitstring [private].
free HAid:bitstring.
free MUpsw:bitstring [private].

(*)—secret key—(*)
free SKHA:bitstring [private].
free SKFA:bitstring [private].

(*)—functions—(*)
fun concat(bitstring, bitstring) : bitstring.
fun xor(bitstring, bitstring) : bitstring.
fun h(bitstring) : bitstring.
equation forall a:bitstring, b:bitstring; xor(xor(a, b), b) = a.

(*)—events—(*)
event beginMU(bitstring).
event endMU(bitstring).

queries and the corresponding results.

When we run the query in Table 2, we obtain the following results:

1) RESULT inj-event(EVENTA) == inj-event(EVENTB) is true.
2) RESULT inj-event(EVENTA) == inj-event(EVENTB) is false.
3) RESULT not attacker(QUERY) is true.
4) RESULT not attacker(QUERY) is false.

"RESULT inj-event (EVENTA) == inj-event (EVENTB) is true." indicates that the process from EVENTA to EVENTB has been authenticated. By contrast, "RESULT inj-event (EVENTA) == inj-event (EVENTB) is false." indicates that the authentication from EVENTA to EVENTB is not successful. "RESULT not attacker (QUERY) is true." implies that an attacker cannot get a free name QUERY, and "RESULT not attacker (QUERY) is false." implies that an attacker can trace the QUERY.

The results for the queries in Table 2 are listed in Table 3. In this case, the authentication process is performed correctly and the attacker cannot obtain MUid.

2) Security proof through BAN Logic

We analyzed SMASG using BAN logic, which was created by Burrows, Abadi, and Needham (BAN) [32], and is used to verify the security of many schemes [1], [11]. BAN logic is one of the methods used to verify the scheme authentication and key establishment. To utilize the BAN logic, idealization, assumption, goal, and derivation processes are required; the
TABLE 5. Mobile User Scheme.

(*—-MU process—-*)

\[
\text{let MU} = \\
\text{let } x = h(\text{concat}(\text{h(\text{concat}(MUid, MUpsw)), R})) \text{ in} \\
\text{let } R\text{ID} = h(\text{concat}(MUid, R)) \text{ in} \\
\text{let } PID = h(\text{concat}(MUid, MUpsw)) \text{ in} \\
\text{out(cha,(PID))}; \\
\text{in(cha,(XHID:bitstring))}; \\
\text{let } SP = \text{xor}(\text{XHID}, \text{RID}) \text{ in} \\
\text{let } PV = h(\text{concat}(x, \text{XHID})) \text{ in} \\
\text{event beginMU(MUid)}; \\
\text{new TM:bitstring}; \\
\text{new NM:bitstring}; \\
\text{let } V1 = \text{xor}(h(\text{concat}(\text{XHID}, \text{TM})), \text{NM}) \text{ in} \\
\text{out(chb, (V1, TM))}; \\
\text{in(chb, (XXV3:bitstring, XXV4:bitstring, XXV6:bitstring, XTF2:bitstring, XXTH:bitstring))}; \\
\text{if } \text{XXXV4} = \text{XXV4} \text{ then} \\
\text{let } SK = h(\text{concat}(\text{h(\text{concat}(\text{NM}, \text{XXNF}), \text{XXNH})}), \text{XXNH}) \text{ in} \\
\text{event endMU(MUid)}. \\
\]

TABLE 6. Foreign Agent Scheme.

(*—-FA process—-*)

\[
\text{let FA} = \\
\text{in(chb, (XV1:bitstring, XTM:bitstring))}; \\
\text{event beginFA(FAid)}; \\
\text{new TF:bitstring}; \\
\text{new NF:bitstring}; \\
\text{let } V2 = \text{xor}(h(\text{concat}(\text{concat}(\text{XV1}, \text{XTM}), \text{concat}(\text{TF}, \text{SKFA}))), \text{NF}) \text{ in} \\
\text{let } A = h(\text{concat}(V2, NF)) \text{ in} \\
\text{out(chc, (XV1, V2, XTM, TF, A))}; \\
\text{in(chc, (XXV3:bitstring, XXV4:bitstring, XXV6:bitstring, XXTH:bitstring))}; \\
\text{if } \text{XXV5} = \text{XXV5} \text{ then} \\
\text{let } XNH = \text{xor}(XV3, NF) \text{ in} \\
\text{let } XNM = \text{xor}(XV6, XNH) \text{ in} \\
\text{let } XSK = h(\text{concat}(\text{h(\text{concat}(\text{XNM}, NF}), \text{XNH})) \text{ in} \\
\text{new TF2:bitstring}; \\
\text{out(chb, (XXV3, XXV4, XXV6, TF2, XTH))}; \\
\text{event endFA(FAid)}. \\
\]

TABLE 7. Home Agent Scheme.

(*—-HA process—-*)

\[
\text{let HA} = \\
\text{in(cha, (XPID:bitstring))}; \\
\text{new r:bitstring}; \\
\text{let } HID = h(\text{concat}(r, \text{SKHA})) \text{ in} \\
\text{out(cha, (HID))}; \\
\text{in(cha, (XXV1:bitstring, XXV2:bitstring, XXTM:bitstring, XTF:bitstring, XA:bitstring))}; \\
\text{event beginHA(HAid)}; \\
\text{let } XNF = \text{xor}(h(\text{concat}(\text{concat}(XXV1, XXTM), \text{concat}(\text{XTF, SKFA}))), XV2) \text{ in} \\
\text{let } XXA = h(\text{concat}(\text{XV2, XNF})) \text{ in} \\
\text{if } \text{XXA} = \text{XA} \text{ then} \\
\text{let } XXNM = \text{xor}(\text{h(\text{concat}(\text{HID}, \text{XXTM}))), \text{XXV1}) \text{ in} \\
\text{new TH:bitstring}; \\
\text{let } V3 = \text{xor}(\text{XNF, NH}) \text{ in} \\
\text{let } V4 = h(\text{concat}(\text{concat}(V3, XXNM), \text{concat}(\text{NH, concat(TH, HID)))) \text{ in} \\
\text{let } V5 = h(\text{concat}(\text{XNF, TH})) \text{ in} \\
\text{let } V6 = \text{xor}(\text{XXNM, NH}) \text{ in} \\
\text{out(chc, (V3, V4, V5, V6, TH))}; \\
\text{event endHA(HAid)}. \\
\]
logic verifies whether the results derived through each process are logically reasonable. The BAN logic notations used in this study are as shown in Table 8.

TABLE 8. BAN Logic Notations

Notations	Description
$P \parallel X$	P believes that X holds
$P \parallel Q$	P sees/holds that X
$P \sim X$	P has once said that X
$P \Rightarrow X$	P has complete control over X
$\#(X)$	X is fresh and recent
$P \stackrel{K}{\leftrightarrow} Q$	P, and Q shares secret key K
$\langle X \rangle_K$	X encrypted with key K
$\langle X \rangle_h$	hashed X

We also use the following BAN logic postulates. Assuming that formulas X_1, X_2, ... X_n are performed and Y is performed, it is written as follows:

$$X_1, X_2, ..., X_n \parallel Y$$ (3)

According to [11, 111, 32], the following rule is applied.

1) P_1 (Message-meaning rule): $P \parallel P \sim Q$, $P \parallel \langle X \rangle_K$

2) P_2 (Nonce-verification rule): $P \parallel \#(X)$, $P \parallel Q \sim X$

3) P_3 (Believe rule 1): $P \parallel P \parallel \langle Y \rangle$

4) P_4 (Believe rule 2): $P \parallel P \parallel \langle Y \rangle$

5) P_5 (Freshness-conjunctatenation rule): $P \parallel Q \Rightarrow X$, $P \parallel Q \parallel X$

6) P_6 (Jurisdiction rule): $P \parallel Q \Rightarrow X$, $P \parallel Q \parallel X$

When the message in the registration phase is completed, the messages exchanged in the login and authentication phases are expressed and idealized as follows:

1) When using $M_1 = \{V_1, HA_{id}, T_m\}$, $MU \rightarrow FA$: $V_1 = h(HID || T_m || N_M)$, this is idealized to I_1:

 $FA \sim (T_m, N_M, HA_{id})_{HID}$

2) When using $M_2 = \{V_1, V_2, T_m, T_f, A\}$, $FA \rightarrow HA$: $V_1 = h(HID || T_m || T_f || SK_{FA})$, N_F, it is idealized as follows: I_{21}: $HA \sim (T_m, N_M, HA_{id})_{HID}$, I_{22}: $HA \sim (V_1, T_m, T_f, N_F, SK_{FA})$

3) When using $M_3 = \{V_3, V_4, V_5, V_6, T_h\}$, $HA \rightarrow FA$: $V_3 = h(T_m || T_f || N_M)$, $V_4 = h(V_3 || N_M, T_h)$, $V_5 = h(V_3 || N_M, T_f)$, $V_6 = N_M + N_H$, it is idealized as follows: I_{31}: $FA \sim (N_F, N_M, N_H, T_h)_{HID}$, I_{32}: $FA \sim (N_F, N_M, N_H, T_f)_{SK_{FA}}$

4) When using $M_4 = \{V_3, V_4, V_6, T_h, T_f\}$, $FA \rightarrow MU$: $V_5 = h(V_3 || N_M)$, $V_6 = h(V_3 || N_M, N_H, T_h)$, it is idealized to: I_4: $MU \sim (N_F, N_M, N_H, T_f)_{HID}$

To derive the goal of our scheme, we make the following assumptions:

1) $A_1: MU \parallel \#(N_M)$
2) $A_2: MU \parallel \#(T_M)$
3) $A_3: FA \parallel \#(N_F)$
4) $A_4: FA \parallel \#(T_F)$
5) $A_5: HA \parallel \#(N_H)$
6) $A_6: HA \parallel \#(T_H)$
7) $A_7 : MU \parallel (MU \rightarrow HA)$
8) $A_8 : HA \parallel (MU \rightarrow HA)$
9) $A_9 : FA \parallel (FA \rightarrow KA || SK_{HA} \rightarrow HA)$
10) $A_{10} : HA \parallel (FA \rightarrow SK)$
11) $A_{11} : MU \parallel HA \rightarrow SK$
12) $A_{12} : FA \parallel HA \rightarrow SK$

SMASG proves that the following two conditions are satisfied, similar to the method using BAN logic in AMAPG.

1) Given I_{32} and A_9, using P_1, we get $D_1 : FA \parallel HA \sim \{N_M, N_H, N_F, T_H\}$
2) When A_3 is applied to P_5, the following result can be obtained: $D_2 : FA \parallel \#(\{N_M, N_H, N_F, T_H\}$
3) Applying D_1 and D_2 to P_2 gives the following: $D_3 : FA \parallel HA \sim \{N_M, N_H, N_F, T_H\}$
4) When D_3 is applied to P_4, D_4, D_5 and D_6 can be obtained as follows: $D_4 : FA \parallel HA \sim \{N_M, D_5 : FA \parallel HA \sim \{N_F, D_6 : FA \parallel HA \sim \{N_H$
5) When D_4, D_5, and D_6 are applied to P_3, it is expressed as follows: $D_7 : FA \parallel \{N_M, N_F, N_H\}$
6) When D_7 is hashed and applied, it is expressed as follows: $D_8 : FA \parallel \{N_M, N_F, N_H\}$, and this value is SK. Therefore, $G_1 : FA \parallel SK$ was proven.

Similarly, to prove that $G_2 : MU \parallel SK$, the following is derived:

1) When I_{4} and A_7 are applied to P_1, the following result appears: $D_9 : MU \parallel HA \sim \{N_F, N_M, N_H, T_H\}$
2) Applying A_1 to P_3, we can get $D_{10} : MU \parallel \#(\{N_F, N_M, N_H, T_H\}$
3) By applying D_9 and D_{10} to P_2, the following can be extracted: $D_{11} : MU \parallel HA \sim \{N_F, N_M, N_H, T_H\}$
4) When D_{11} is applied to P_3, D_{12}, D_{13}, and D_{14} can be obtained as follows: $D_{12} : MU \parallel HA \sim \{N_M, D_{13} : MU \parallel HA \sim \{N_F, D_{14} : MU \parallel HA \sim \{N_H$
5) When D_{12}, D_{13}, and D_{14} are applied to P_3, D_{15} can be induced as follows: $D_{15} : MU \parallel HA \sim \{N_M, N_F, N_H\}$
6) Finally, when D_{15} is hashed and applied, SK can be derived as follows: $D_{15} : MU \parallel SK \sim \{N_M, N_F, N_H\}$

B. INFORMAL SECURITY ANALYSIS

We performed a formal analysis in Section VI-A. However, according to [33, 34], formal analysis is not sufficient to prove security. Therefore, we further analyzed our scheme using an informal analysis.
We present a theoretical analysis of the SMASG. Subsequently, we briefly explain the results of the informal security analysis.

1) Privileged Insider Attack
In the registration phase, the mobile user (MU) sends the value \(PID = h(MU_{id} \parallel MU_{psw}) \), created using identity \(MU_{id} \) and password \(MU_{psw} \) to the home agent (HA). At this time, no information is disclosed, and there is no way to know personal information because \(RID = h(MU_{id} \parallel R) \), \(PID = h(MU_{id} \parallel MU_{psw}) \), \(SP = HID \oplus RID \), and \(PV = h(h(MU_{id} \parallel MU_{psw} \parallel R) \parallel HID) \) are encrypted along with MU’s information. Therefore, it is safe against privileged insider attacks.

2) Outsider Attack
The information contained in smart card \(SC \) is \(\{SP, PV, REP, P, h(\cdot)\} \), and the mobile user (MU) cannot be identified.

3) Offline ID Guessing Attack
MU’s identity is not disclosed in the plain text of the scheme. Although the identity of MU contains information in \(RID, PID \), and \(x \), it is encrypted with the hash functions, \(R \) and \(MU_{psw} \).

4) Online ID Guessing Attack
As mentioned in the offline ID-guessing attack, the identity of MU is not disclosed in plain text. Therefore, this protects the protocol from online ID-guessing attacks.

5) Session Key Disclosure Attack
Session-key information is expressed as \(SK = h(N_M \parallel N_F \parallel N_H) \). At this time, \(N_M \), \(N_F \), and \(N_H \) are not directly disclosed, and an outside intruder cannot determine the session key because they cannot be calculated unless they are involved.

6) Mobile User Impersonation Attack
The information in \(MU \) is authenticated when \(HA \) checks the value of \(A = h(V_2 \parallel N_F) \). Because we calculate the session-key value using the information generated in \(A \) and confirm the information of \(MU \) through \(PID \), the protocol is safe from mobile user-impersonation attacks.

7) Home Agent Impersonation Attack
In SMASG, foreign agents \(FA \) and \(MU \) verify the home agent (HA) in a manner that checks \(V_4 = h(V_3 \parallel N_M \parallel \hat{N_H} \parallel T_H \parallel HID) \) and \(V_5 = h(N_F \parallel T_H) \) values, respectively, to prevent impersonation attacks.

8) Replay Attack
An attacker can send the user MU’s previous login message back to \(FA \). However, because the attacker does not have access to the HID, he/she cannot create a session key \(SK \), and therefore, cannot perform a replay attack.

VII. PERFORMANCE ANALYSIS OF SMASG
The four symbols necessary for performance analysis are as follows [36]–[38]: \(T_{Rep} \) is the time required to check for a match when recognizing a mobile user (MU)’s biometric \(MU_{bio} \). \(T_h \) denotes hash time. \(T_m \) denotes the time of the

TABLE 9. Hardware and Software Conditions.

Specification
CPU
Memory
OS
Hash Function
The Symmetric Encryption Algorithm
The Asymmetric Algorithm

TABLE 10. Comparison of Registration Computation Cost.

	Madhusudhan et al. [13]	Nikooghadama et al. [14]	AMAPG [11]	SMASG
Mobile User MU	\(T_h \)	\(2T_h \)	\(3T_h \)	\(4T_h + T_{Rep} \)
Foreign Agent FA	0		0	0
Home Agent HA	\(2T_h + T_m \)	\(6T_h \)	\(T_h \)	\(T_h \)
Total time cost (ms)	\(51.8 \)	\(54.3 \)	2	3

TABLE 11. Comparison of Login and Authentication Computation Cost.

	Madhusudhan et al. [13]	Nikooghadama et al. [14]	AMAPG [11]	SMASG
Mobile User MU	\(3T_h \)	\(7T_h + 3T_m + 3T_a \)	\(6T_h \)	\(7T_h + T_{Rep} \)
Foreign Agent FA	\(T_h + 2T_a \)	\(4T_h + T_a \)	\(4T_h \)	\(4T_h \)
Home Agent HA	\(2T_h + T_m + 2T_a \)	\(8T_h \)	\(7T_h \)	\(7T_h \)
Total time cost (ms)	\(88.1 \)	\(311.7 \)	9	9.5
multiplicative operation used in the elliptic curve cryptography (ECC). T_{r} denotes the time required for the symmetric encryption or decryption. These values are listed in Table 12. Table 9 lists the computer hardware and software used to calculate the algorithm runtime. We compared our scheme with the state-of-the-art schemes proposed by Madhusudhan et al. [13], Nikooghadama et al. [14], and AMAPG [11].

The costs for the registration phases are listed in Table 10. Table 11 compares the costs of the login and authentication phases.

Table 12. Notations of Time Symbol.

Symbol	Meaning	Time (ms)
T_{Rep}	the Time of REP and GEN	0.5
T_{h}	the Time of Hash Operation	0.5
T_{m}	the Time of Multiplication in ECC	50.3
T_{s}	the Time of Symmetric Encryption or Decryption	8.7

The scheme of Madhusudhan et al. [13] uses ECC cryptography, symmetric cryptography, and hash functions. Therefore, the time taken for the registration phase is 51.8 ms, and the time taken for the login and authentication phase is 88.1 ms. Nikooghadama et al. [14]’s scheme also uses the ECC encryption method, symmetric encryption method, and hash function to consume 54.3 ms for the registration phase and 311.7 ms for the login and authentication phase. AMAPG [11] only uses a hash function. At this time, it takes 2 ms for the registration phase and 9 ms for the login and authentication phases.

In contrast, our proposed scheme, SMASG, uses a hash function and a biometric fuzzy extractor, and consumes 3 ms in the registration phase and 9.5 ms in the login and authentication phases. The registration computation cost is listed in Table 10, and the login and authentication costs are listed in Table 11.

VIII. DISCUSSION OF PERFORMANCE

The proposed scheme, SMASG, is a secure user authentication scheme that overcomes the weaknesses of AMAPG [11] and uses biometric information from mobile users. We used a fuzzy extractor to safely extract biometric information.

Our study compares the performance of three schemes [13], [14], and [11] in Section VII. Compared to Madhusudhan et al.’s scheme [13], SMASG takes 0.058 times longer for the registration phase, 0.108 times longer for the login and authentication phases, respectively, 0.055 and 0.030 compared to [14] and 1.5 times compares to [11], it takes 1.056 times the time. Because SMASG is an improved scheme of [11], it overcomes the small gap in time by fully addressing their vulnerabilities.

Therefore, on average, the time taken for the registration phase was reduced by 91.67%, the time taken for the login and authentication phases was reduced by 93.03%, and the performance was greatly improved to 1101.11% and 1334.39%, respectively.

IX. CONCLUSION

A recent study proposed AMAPG, a GLOMONET-based authentication scheme. It is efficient because it is designed to be lightweight and involves simple operations such as hash function and XOR operation; however, we found a critical vulnerability in this protocol. First, smart cards store vital information; therefore, the information is exposed when the smart card is stolen. In addition, it is vulnerable to password-guessing attacks. Third, because attackers can steal sessionkeys, the security of future messages is not guaranteed.

Three elements were used to solve these AMAPG issues: identity, password, and biometric information. Biometrics is a function used in most mobile devices; therefore, there are no technical problems in its use. SMASG, a new scheme using these three elements, provides security verification of the proposed scheme using ProVerif and shows that it performs better than other proposed schemes.

Our proposed method, SMASG, is a lightweight scheme that can be implemented only with a hash function, XOR operation, and fuzzy extractor. The SMASG assumes that a foreign agent is an honest user. However, in some applications, users may not want to trust the foreign agents. This scenario has not been addressed. Our scheme is not suitable for scenarios in which the mobile user does not trust the foreign agent. Therefore, this case is left for future work.

REFERENCES

[1] H. Lee, D. Kang, J. Ryu, D. Won, H. Kim, Y. Lee, “A three-factor anonymous user authentication scheme for Internet of Things environments,” Journal of Information Security and Applications, Vol. 52, 102494, 2020.

[2] C. Shi, J. Liu, H. Liu, Y. Chen, “Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT,” Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 1–10, 2017.

[3] G. Horn, B. Preneel, “Authentication and Payment in Future Mobile Systems,” European Symposium on Research in Computer Security, vol. 98, pp. 277-293, 1998.

[4] J. Zhu, J. Ma, “A New Authentication Scheme with Anonymity for Wireless Environments,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 231–235, 2004.

[5] C. Lee, M. Hwang, I. Liao, “Security enhancement on a new authentication scheme with anonymity for wireless environments,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1683-1687, 2006.

[6] C. Chang, C. Lee, Y. Chiu, “Enhanced authentication scheme with anonymity for roaming service in global mobility networks,” Computer Communications, vol. 32, no. 4, pp. 611–618, 2009.

[7] T. Zhou and J. Xu, “Provable secure authentication protocol with anonymity for roaming service in global mobility networks,” Computer Networks, vol. 55, no. 1, pp. 205–213, 2011.

[8] P. Gope, T. Hwang, “Lightweight and energy-efficient mutual authentication and key agreement scheme with user anonymity for secure communication in global mobility networks,” IEEE Systems Journal, vol. 10, no. 4, pp. 1370–1379, 2015.

[9] G. Xu, J. Liu, Y. Lu, X. Zeng, Y. Zhang, X. Li, “A novel efficient maka protocol with desynchronization for anonymous roaming service in global mobility networks,” Journal of Network and Computer Applications, vol. 107, pp. 83–92, 2018.

[10] R. Shashidhara, S. Bojjaigan, A. K. Maurya, S. Kumari, H. Xiong, “A robust user authentication protocol with privacy-preserving for roaming service in mobility environments,” Peer-to-Peer Networking and Applications, vol. 13, no. 6, pp. 1943—1966, 2020.

[11] AM. Rahmani, M. Mohammadi, J. Lansky, S. Mildeova, M. Safkhani, S. Kumari, S Karim, M. Hosseinzadeh, “AMAPG: Advanced Mobile Authentication Protocol for GLOMONET,” IEEE Access, 2021.
[12] D. Kang, H. Lee, Y. Lee, D. Won, “Lightweight user authentication scheme for roaming service in GLOMONET with privacy preserving,” PLOS ONE, vol. 16, no. 2, e0247441, 2021.

[13] R. Madhusudhan, R. Shashidhar, “Mobile user authentication protocol with privacy preserving for roaming service in GLOMONET,” Peer-to-Peer Networking and Applications, vol. 13, no. 1, pp. 82–103, 2020.

[14] M. Nakooghadam, H. Aminotossi, S. Kumari, “A provably secure ECC-based roaming authentication scheme for global mobility networks,” Journal of Information Security and Applications, vol. 54, 102588, 2020.

[15] J. Ryu, H. Lee, H. Kim, D. Won, “Secure and efficient three-factor protocol for wireless sensor networks,” Sensors, vol. 18, no. 12, 2018.

[16] J. Ryu, T. Song, J. Moon, H. Kim, D. Won, “Cryptanalysis of improved and provably secure three-factor user authentication scheme for wireless sensor networks,” Computational science and technology, pp. 49–58, 2019.

[17] T. Song, D. Kang, J. Ryu, H. Kim, D. Won, “Cryptanalysis and improvement of an ECC-based authentication protocol for wireless sensor networks,” International Conference on Computational Science and Its Applications, pp. 50–61, 2018.

[18] H. Lee, J. Ryu, Y. Lee, D. Won, “Security Analysis of Blockchain-based User Authentication for Smart Grid Edge Computing Infrastructure,” International Conference on Ubiquitous Information Management and Communication (IMCOM), pp. 1–4, 2021.

[19] J. Ryu, D. Kang, H. Lee, H. Kim, D. Won, “A Secure and Lightweight Three-Factor-Based Authentication Scheme for Smart Healthcare Systems,” Sensors, vol. 20, no. 24, 7136, 2020.

[20] Y. Dodis, L. Reyzin, A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,” International conference on the theory and applications of cryptographic techniques, pp. 523–540, 2004.

[21] J. Jung, D. Kang, D. Lee, D. Won, “An improved and secure anonymous biometric-based user authentication with key agreement scheme for the integrated EPR information system,” PLOS ONE vol. 12, no. 1, e0169414, 2017.

[22] K. Ninuma, U. Park, AK. Jain, “Soft biometric traits for continuous user authentication,” IEEE Transactions on information forensics and security, vol. 5, no. 4, pp. 771–780, 2010.

[23] M. Alotaibi, “An enhanced symmetric cryptosystem and biometric-based anonymous user authentication and session key establishment scheme for WSN,” IEEE Access, vol. 6, pp. 70072–70087, 2018.

[24] Y. Wang, C. Wu, K. Zheng, X. Wang, “Improving reliability: User authentication on smartphones using keystroke biometrics,” IEEE Access, vol. 7, pp. 26218–26228, 2019.

[25] Z. Rui, Z. Yan, “A survey on biometric authentication: Toward secure and privacy-preserving identification,” IEEE Access, vol. 7, pp. 5994–6009, 2019.

[26] M. Devi, A. Majumder, “Side-channel attack in internet of things: a survey,” Applications of Internet of Things, pp. 213–222, 2021.

[27] J. Ryu, H. Kim, Y. Lee, D. Won, “Cryptanalysis of Protocol for Heterogeneous Wireless Sensor Networks for the Internet of Things Environment,” International Conference on Ubiquitous Information Management and Communication (IMCOM), pp. 1–4, 2020.

[28] S. Banerjee, V. Odehu, AK. Das, S. Chattopadhyay, J. Rodrigues, Y. Park, “Physically secure lightweight anonymous user authentication protocol for internet of things using physically unclonable functions,” IEEE Access, vol. 7, pp. 85627–85644, 2019.

[29] D. Dolev, AC. Yao, “On the security of public key protocols,” IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[30] S. Roy, S. Chatterjee, AK. Das, S. Chattopadhyay, S. Jo, “Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing Internet of thing,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2884–2895, 2017.

[31] S. Roy, S. Chatterjee, AK. Das, S. Chattopadhyay, N. Kumar, A. Vasilakos, “On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services,” IEEE Access, vol. 5, pp. 25808–25825, 2017.

[32] M. Burrows, M. Abadi, R. M. Needham, “A logic of authentication,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 426, no. 1871, pp. 233–271, 1989.

[33] M. Bellare, P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,” In Proceedings of the ACM conference on Computers and Communication Security, pp. 62–73, 1993.
DONGHO WON received B.S., M.S. and Ph.D. in Electronic Engineering from Sungkyunkwan University, South Korea. After working in Electronics and Telecommunication Research Institute for two years, he joined Sungkyunkwan University. He also served as a President of Korea Institute of Information Security and Cryptography. His research interests are cryptology and information security.
