SUPPLEMENTARY MATERIAL

A new sesquiterpene from the gorgonian coral Menella sp.

Qi Peng1a, Fen Liu1a, Huan Suna, Xiao-Jian Liaoa, Mei-Ran Fenga, Ting-Ting Liua, Zheng-Xiong Xua, Jun Zhangb*, Shi-Hai Xua*

aDepartment of Chemistry, Jinan University, Guangzhou 510632, P.R.China

bCollege of science and engineering, Jinan University, Guangzhou 510632, P.R. China

1These authors contributed equally to this work and should be considered as co-first authors

*Corresponding author. E-mail: bri71527152@outlook.com; txush@jnu.edu.cn
A new sesquiterpene from the gorgonian coral *Menella* sp.

A new sesquiterpene named menecubebane B (1) and a known analogue (2) were isolated from the gorgonian coral *Menella* sp.. Their structures were elucidated by the extensive analyses of spectroscopic data, and by the comparison with related literature. Cytotoxic effect against both Eca9706 and HeLa cell lines was evaluated, revealing 1 exhibited moderate cytotoxicity against the two cell lines involved with IC$_{50}$ values being 20.8 and 30.6 μM, respectively.

Keywords: Gorgonian coral; *Menella* sp.; sesquiterpene; cytotoxicity
Table S1: 1H (500 MHz), 13C (125 MHz) data of compound 1 in CD$_3$OD

No.	δC (mult.)	δH (mult., J in Hz)
1	160.5 (C)	
2	63.8 (CH)	4.94 (ddd, $J = 5.0, 4.5, 2.0$ Hz)
3	46.2 (CH$_2$)	2.19 (dd, $J = 14.0, 4.5$ Hz)
4	73.2 (C)	
5	204.1 (C)	
6	136.0 (C)	
7	39.0 (CH)	2.75 (m)
8	19.5 (CH$_2$)	1.74 (m), 1.56 (m)
9	38.4 (CH$_2$)	1.82 (m), 1.58 (m)
10	72.2 (C)	
11	29.9 (CH)	2.06 (m)
12	17.8 (CH$_3$)	0.75 (d, $J = 6.5$ Hz)
13	21.0 (CH$_3$)	0.89 (d, $J = 6.5$ Hz)
14	28.5 (CH$_3$)	1.50 (s)
15	27.5 (CH$_3$)	1.46 (s)
Figure legends

Figure S1. Key 1H-1H COSY and HMBC correlations of 1

Figure S2. Key NOESY correlations of 1

Figure S3. 1H NMR (500 MHz, CD$_3$OD) of 1

Figure S4. 13C NMR (125 MHz, CD$_3$OD) of 1

Figure S5. COSY (500 MHz, CD$_3$OD) of 1

Figure S6. HSQC (500 MHz, CD$_3$OD) of 1

Figure S7. HMBC (500 MHz, CD$_3$OD) of 1

Figure S8. NOESY (500 MHz, CD$_3$OD) of 1

Figure S9. HRMS of 1
Figure S1. Key 1H-1H COSY and HMBC correlations of 1
Figure S2. Key NOESY correlations of 1
Figure S3. 1H NMR (500 MHz, CD$_3$OD) of compound 1.
Figure S4. 13C NMR (125 MHz, CD$_3$OD) of compound 1.
Figure S5. 1H-1H COSY (500 MHz, CD$_3$OD) of compound 1.
Figure S6. HSQC (500 MHz, CD$_3$OD) of compound 1.
Figure S7. HMBC (500 MHz, CD$_3$OD) of compound 1
Figure S8. NOESY (500 MHz, CD$_3$OD) of compound 1
Figure S9. HRMS of compound 1.