Trial watch

Immunostimulatory cytokines in cancer therapy

Erika Vacchelli1,2,3,4*, Fernando Aranda1,2,3,4†, Florine Obrist1,2,3,4*, Alexander Eggermont1, Jérôme Galon2,5,6,7, Isabelle Cremer2,6,8, Laurence Zitvogel1,9, Guido Kroemer2,3,5,10,11,‡, and Lorenzo Galluzzi1,3,5,‡

1Gustave Roussy; Villejuif, France; 2INSERM, UMR5138; Paris, France; 3Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France; 4Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France; 5Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France; 6Université Pierre et Marie Curie/Paris VI; Paris, France; 7Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France; 8Equipe 13, Centre de Recherche des Cordeliers; Paris, France; 9INSERM, U1015, CICBTS07; Villejuif, France; 10Pôle de Biologie, Hôpital Événement Georges Pompidou, AP-HP, Paris, France; 11Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France;

*These authors contributed equally to this work.
†These authors share senior co-authorship.

Keywords: chemokines, GM-CSF, IFN, IL-2, TGFβ1, TNFα

Abbreviations: AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; DC, dendritic cell; FDA, Food and Drug Administration; FLT3L, fms-related tyrosine kinase 3 ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma; NHL, non-Hodgkin lymphoma; PDGF, platelet-derived growth factor; RCC, renal cell carcinoma; SCLC, small cell lung carcinoma; SNP, single nucleotide polymorphism; TAA, tumor-associated antigen; TLR, Toll-like receptor; TNFα, tumor necrosis factor α; Treg, regulatory T cell

Tumor-targeting immune responses provide a significant contribution to (when they do not entirely account for) the clinical activity of diverse antineoplastic regimens, encompassing not only a large panel of immunotherapeutic strategies but also conventional cytotoxic molecules, targeted anticancer agents and irradiation. In line with this notion, several approaches have been devised to elicit novel or boost existing anticancer immune responses, including the administration of immunomodulatory cytokines. Such a relatively unspecific intervention suffices to mediate clinical effects in (at least a subset of) patients bearing particularly immunogenic tumors, like melanoma and renal cell carcinoma. More often, however, immunostimulatory cytokines are administered to boost the immunogenic potential of other agents, including (but not limited to) immune checkpoint-blocking antibodies, anticancer vaccines, oncolytic viruses and immunogenic chemotherapeutics. Here, we summarize the latest advances in the clinical development of recombinant cytokines as an immunomodulatory intervention for cancer therapy.

Introduction

The word ‘cytokines’ is commonly employed to refer to a large and heterogeneous group of small and for the most part soluble (glyco)proteins that regulate—in an autocrine, paracrine or endocrine manner—virtually all biological functions, including (but not limited to) proliferative responses, differentiation, chemotaxis, inflammatory reactions, innate and adaptive immunity, and cell death.1,4 The cytokine family nowadays includes more than 140 distinct members, and this number is expected to grow as various cytokine-like molecules are discovered every year.5–7 Several attempts have been made throughout the past 3 decades to classify cytokines based on structural and/or functional considerations, leading to the introduction of relatively unspecific terms like ‘chemokines,’ referring to small cytokines involved in the regulation of chemotaxis, ‘interleukins,’ referring to cytokines that regulate the crosstalk between leukocytes, and ‘colony-stimulating factors,’ referring to cytokines that control hematopoiesis.8–10 Along with the realization of the astonishing pleiotropism of the cytokine system, however, such classifications turned out to be reductionist and relatively imprecise, and thus were abandoned.5,6 This said, terms including interleukins, chemokines and colony-stimulating factors are still largely employed by the scientific community, mainly for historical reasons. Cytokine signaling is highly pleiotropic, at least in part because (1) virtually all cell types throughout the body produce (one or several) cytokines;

©2014 Landes Bioscience. Do not distribute.
(2) the same cytokine can signal via various receptors/receptor isoforms, which are generally characterized by differential binding affinity and expression patterns; (3) cytokines generally participate in signaling cascades that regulate the release of other biologically active molecules, including other cytokines; and (4) the activity of cytokines is heavily influenced by contextual parameters such as local concentration, cell type, receptor isomorphism and the presence of additional cytokines.5,6,8,9

Besides regulating homeostatic hematopoiesis50 and participating in physiological angiogenesis11,12 cytokines are released in response to a wide array of insults, such as traumatic events, infections, and cancer.13-15 In these settings, cytokines are secreted in discrete waves to coordinate (1) the removal of the pathogenic stimulus, and (2) the re-establishment of tissue homeostasis.16-18 When such an adaptive response fails and the initiating stimulus cannot be removed, however, the continuous secretion of specific cytokines may promote chronic inflammation. Of note, patients affected by a chronic inflammatory response, be it systemic or local, exhibit an increased propensity to develop some neoplasms, including colorectal carcinoma.19-21 Most likely, this originates from the increased production of mutagenic reactive oxygen species at sites of inflammation, as well as from the local secretion of mitogenic cytokines. Altogether, these observations lend further support to the notion that the biological activity of several cytokines exhibits a high degree of context dependency.

As soon as it became clear that tumors do not go unnoticed by the immune system, several approaches have been developed to elicit novel (or reinstate pre-existent) tumor-targeting immune responses. These therapeutic strategies include highly specific interventions, such as dendritic cell (DC)-based, peptide-based and DNA-based anticancer vaccines,22-24 as well as relatively non-specific maneuvers, such as the local or systemic administration of Toll-like receptor (TLR) agonists,25,26 immunostimulatory antibodies,27 or cytokines.28 In spite of the fact that cytokines do not actively elicit a tumor-targeting immune response but rather boost the antineoplastic potential of natural, tumor-specific immune effectors, no less than three recombinant cytokines are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use as standalone therapeutic interventions in adult cancer patients. First, interferon (IFN)-α2a (Roferon-A®) is used in subjects with hairy cell leukemia and chronic phase, Philadelphia chromosome-positive chronic myelogenous leukemia (CML), upon minimal pretreatment (within 1 y of diagnosis). Second, IFN-α2b (Intron A®) is employed for the therapy of hairy cell leukemia, AIDS-related Kaposi’s sarcoma, follicular lymphoma, multiple myeloma, melanoma, condyloma acuminata and cervical intraepithelial neoplasms. Third, interleukin (IL)-2 (aldesleukin, Proleukin®) is approved for the treatment of metastatic forms of melanoma and renal cell carcinoma (RCC) (source http://www.fda.gov). The use of recombinant granulocyte colony-stimulating factor (G-CSF, also known as filgrastim, lenograstim or Neupogen®) and recombinant granulocyte monocyte colony-stimulating factor (GM-CSF, also known as molgramostim, sargramostim, Leukomax®, Mielogen® or Leukine®) in cancer patients has also been licensed by the US FDA. However, these cytokines are not (yet) harnessed for their ability to boost antitumor immune responses. Rather, they are employed as mitogenic factors, (1) to favor the reconstitution of the immune system in transplanted patients, who are generally subjected to lymphodepleting/lymphoablating regimens, as well as in patients treated with aggressive antimitotic chemotherapy, who are prone to develop febrile neutropenia;28-30 (2) to recruit bone marrow precursors to the peripheral blood in the context of autologous stem cell transplantation;31,32 (3) to prevent the neutropenia-inducing activity of specific chemotherapeutics;33,34 and (4) to favor the replication of quiescent leukemic cells, thus exposing them to the antineoplastic activity of drugs that preferentially target actively proliferating cells.35 Finally, recombinant tumor necrosis factor α (TNFα) is currently approved by multiple regulatory agencies including the European Medicine Agency (EMA), but not by the US FDA, for use in patients with limb-threatening soft tissue sarcoma and melanoma.36-41 In this setting, TNFα is generally co-administered with melphalan (an alkylating agent) to isolated limbs under mild hyperthermic conditions, a safe and relatively simple procedure that has been associated with consistent rates of objective responses.42-46

Owing to their pleiotropic biological activity, cytokines can be associated with clinically relevant side effects, especially when administered systemically. There are 3 major concerns related to the use of cytokines in (cancer) patients: (1) the elicitation of an acute, sepsis-like, potentially lethal systemic reaction characterized by the massive release into the circulation of pyrogenic and cytotoxic cytokines;47-50 (2) the exacerbation of chronic inflammatory foci that may initiate oncogenesis or accelerate tumor progression;51,52 and (3) the activation of a mitogenic program in otherwise poorly proliferating cells, favoring the accumulation of genetic/epigenetic defects and hence increasing the likelihood of malignant transformation.53-55 In fact, some cytokines including multiple members of the platelet-derived growth factor (PDGF) family cannot be employed as therapeutic interventions owing to their excessive mitogenic (and hence potentially oncogenic) potential.5,6,55

In previous issues of OncolImmunology, we discussed the scientific grounds supporting the use of cytokines as experimental immunostimulatory interventions in cancer patients as well as recent studies assessing the authentic clinical value of this regimen.5,6 Here, we present the newest developments in this exciting area of investigation. Of note, studies assessing the clinical profile of cytokines as immunoreconstituting agents, studies involving FDA-approved immunostimulatory cytokines (i.e., IFN-α2a, IFN-α2b and IL-2) employed as “on-label” interventions (see above), as well as studies investigating the antineoplastic activity of potentially oncotoxic cytokines, such as TNFα, will not be discussed here.
Literature Update

Since the submission of our latest Trial Watch dealing with topic (April 2013),5 the results of at least 10 clinical studies evaluating the therapeutic profile of cytokines as off-label immunostimulatory interventions in cancer patients have been published in peer-reviewed scientific journals (source http://www.ncbi.nlm.nih.gov/pubmed).

Dutchers and colleagues, in collaboration with the Eastern Cooperative Oncology Group, tested the ability of recombinant IL-1α to boost the antineoplastic activity of cyclophosphamide (an immunostimulatory alkylating agent) in patients with advanced solid tumors. In this Phase I clinical study, 3 different IL-1α doses and administration schedules were evaluated. Common side effects included fever, chills, hypotension, nausea/emesis, and elevations in circulating hepatic enzymes. Moreover, the co-administration of IL-1α failed to rescue the neutropenic effects of cyclophosphamide, suggesting that other, comparatively more specific (and hence less toxic) cytokines may be best suitable to provide a hematopoietic support to chemotherapy.61

Vitale and coworkers investigated the therapeutic profile of subcutaneous low-dose IL-2, combined with the somatostatin analog lanreotide, in 6 patients with symptomatic and advanced medullary thyroid carcinoma. The authors observed that a 6-mo regimen of lanreotide plus low-dose IL-2 was well tolerated by all patients, improved their quality of life and elicited some objective responses.75,76 Of note, the tumor rapidly became undetectable by magnetic resonance imaging and computer tomography, and the patient remained in complete remission for at least 6 y after the confirmed diagnosis of unresectable hepatocellular carcinoma.69

Robertson et al. performed a dose-escalation Phase I study to test the safety and therapeutic profile of recombinant human IL-18 in non-Hodgkin lymphoma (NHL) patients treated with the CD20-targeting mAb rituximab.70-73 Rituximab (375 mg/m²) was administered i.v. once weekly for a total of 4 wks, while escalating doses of IL-18 (1, 3, 10, 20, 30, and 100 µg/kg) were given as a 2 h intravenous infusion weekly for 12 consecutive wks. No dose-limiting toxicities were observed. Common side effects were chills, fever, headache and nausea, while abnormal laboratory findings included transient asymptomatic lymphopenia, hyperglycemia, anemia, hypoalbuminemia as well as temporary elevations in circulating bilirubin and hepatic enzymes. Of note, 5 out of 19 patients experienced objective clinical responses. Altogether, these findings suggest that recombinant human IL-18 is well tolerated at doses at which it may improve the therapeutic profile of rituximab in NHL patients.74

Gorin and colleagues tested the ability of G-CSF to boost the therapeutic profile of the anti-CD52 mAb alemtuzumab, which mostly originates from antibody-dependent cell-mediated cytotoxicity, in 12 patients with relapsed or refractory acute lymphoblastic leukemia. In the context of this Phase II clinical study, patients received 5 µg/kg G-CSF per day along with 30 mg alemtuzumab 3 times per wk for a total of 12–18 infusions. Fever/chills, skin rash and bronchospasm were the most common side effects. Four patients achieved a complete response, defined as the disappearance of leukemic blasts from the bone marrow. Nonetheless, all patients progressed within a few months and all but one died. These results indicate that alemtuzumab plus G-CSF may induce robust but temporary clinical responses.77

Cheung and coworkers investigated the ability of GM-CSF to improve the response of 79 patients with persistent osteomедullary neuroblastoma to 3F8, a mAb specific for GD2 ganglioside.78-80 Patients were treated with 3F8 plus GM-CSF for up to 24 mo, or until the development of neutralizing anti-3F8 antibodies. In the context of this Phase II clinical trial, toxicities were generally manageable and 38% of patients achieved an objective response as defined by metaiodobenzyl-guanidine scan. Moreover, the 5-y progression-free survival of patients receiving 3F8 plus subcutaneous GM-CSF was 24 ± 6%, which was significantly better than that of patients treated with 3F8 plus intravenous GM-CSF (11 ± 7%).81,85

Zarogoulidis et al. tested whether IFN-α and IFN-γ, administered alone (3 MIUs) or in combination (1.5 plus 1.5 MIUs) 3 times per wk, would improve the activity of carboplatin, fosfamide- and etoposide-based chemotherapy in a cohort of 164 individuals with small cell lung carcinoma (SCLC). No differences in survival between groups were observed in the context of this Phase II clinical trial when all patients were included in the analysis. However, when only individuals with early disease were considered, IFN-α appeared to provide a survival benefit to SCLC patients treated with chemotherapy.84

Coker and colleagues performed a Phase 1 dose-escalation study of oral temozolomide, an alkylating agent, combined with subcutaneous pegylated IFN-α2b in 19 patients with refractory or advanced solid tumors. The authors identified the maximum tolerated dose of the combination in 100 mg/m² temozolomide on days 1–7 and 15–21 plus 1.5 µg/kg IFN-α2b per wk on 28-d cycles, and reported that the pharmacokinetics of pegylated IFN-α2b are not altered by the co-administration of temozolomide.85

Eto and collaborators prospectively investigated the predictive value of 11 single nucleotide polymorphisms (SNPs) affecting 8 distinct genes linked to immune responses among 203 RCC patients treated with 3 doses per wk of IFN-α (5 MIUs). The authors reported a response rate of 13.8% (9 complete responses, 19 partial responses), which was not influenced by any of the SNPs analyzed in this study. However, when
Table 1. Clinical trials recently launched to evaluate the safety and efficacy of immunostimulatory cytokines in cancer patients*

Cytokine	Indication(s)	Status	Phase	Route	Notes	Ref.
FLT3L	Lymphoma	Recruiting	II	i.t.	Combined with radiotherapy and a TLR3 agonist	NCT01976585
GM-CSF						
	Breast carcinoma	Recruiting	I/II	s.c.	Combined with a FOLR1-targeting vaccine	NCT02019524
	Ovarian carcinoma					
	Follicular B-cell	Completed	II	s.c.	Combined with rituximab	NCT01939730
	lymphoma					
	GBM	Not yet	I/II	n.a.	Combined with multipepptide vaccine and imiquimod	NCT02078648
		recruiting				
	GBM	Not yet	II	s.c.	Combined with a cell-based vaccine, bevacuzumab and cyclophosphamide	NCT01903330
		recruiting				
	Melanoma	Completed	III	s.c.	As single agent or combined with TYR-targeting vaccine	NCT01989572
		Recruiting	I/II	n.a.	Combined with ipilimumab	NCT02009397
	Gastrointestinal	Not yet	III	s.c.	As single agent upon allogenic stem cell transplantation	NCT01860742
	neuroendocrine tumors	recruiting				
	Anal intraepithelial	Recruiting	I/II	s.c.	Combined with a HPV-16-targeting vaccine	NCT01923116
	neoplasia					
	Childhood craniopharyngioma	Recruiting	I/II	s.c.	Combined with a HPV-16-targeting vaccine	NCT01964300
	CML	Not yet	II	n.a.	Combined with dasatinib	NCT01872442
		recruiting				
	Melanoma	Not yet	II	s.c.	Combined with imatinib and nilotinib	NCT02001818
	RCC	Recruiting	I	s.c.	Combined with imatinib	NCT01933906
		Recruiting	II	s.c.	Combined with nilotinib	NCT01866553
	IFN-α	Recruiting	IV	n.a.	As single agent	NCT02027064
	IFN-α2b					
	Gliosarcoma	Not yet	II	s.c.	Combined with anti-PD1 mAb	NCT02089685
		recruiting				
	Soft tissue sarcoma	Recruiting	n.a.	s.c.	As single agent	NCT01957709

Abbreviations: AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen; CML, chronic myeloid leukemia; FLT3L, fms-related tyrosine kinase 3 ligand; FOLR1, folate hydrolyase 1; FOLR1, folate receptor 1; GBM, glioblastoma multiforme; GM-CSF, granulocyte macrophage colony-stimulating factor; HPV-16, human papillomavirus Type 16; IFN, interferon; IL, interleukin; i.t., intra tumorem; i.v., intra venam; mAb, monoclonal antibody; MRD, minimal residual disease; n.a., not available; NHL, non-Hodgkin lymphoma; NK, natural killer; NSCLC, non-small cell lung carcinoma; PBL, peripheral blood lymphocyte; PDCC1, programmed cell death 1; RCC, renal cell carcinoma; SABR, stereotactic ablative body radiotherapy; s.c., sub cutem; TNFα, tumor necrosis factor α; TYR, tyrosinase; WT1, Wilms tumor 1. *Between 2013, May 1st and the date of submission.

disease stabilization for >24 wks was included among clinically favorable outcomes, a SNP affecting signal transducer and activator of transcription 3 (STAT3) was statistically associated with clinical responses, confirming previous observations from the same group.86,87

Harmon and coworkers evaluated potential biomarkers of efficacy among 750 treatment-naive metastatic RCC patients randomized to receive 50 mg/day sunitinib (a multi-targeted receptor tyrosine kinase inhibitor)88-90 on a 4-wk on/2-wk off schedule or 9 MIUs subcutaneous IFN-α 3 times per wk. Circulating IL-8 and VEGF-A levels at baseline were associated with overall survival independent of treatment. However, no independent predictors of IFN-α efficacy were identified by multivariate analysis.91

Among recent translational studies focusing on immunostimulatory cytokines in general, we found of particular interest the works of (1) Guermonprez and colleagues, who discovered a signaling pathway triggered by Plasmodium infection that regulates DC homeostasis and adaptive immune response upon the release of fms-related tyrosine kinase 3 ligand (FLT3L);92 (2) Sim and coworkers, who demonstrated that CD4+CD25+FOXP3+ Tregs accumulating in melanoma patients treated with high-dose IL-2 express inducible T-cell co-stimulator (ICOS).
and exhibit an activated phenotype, as indicated by elevated levels of CD39, CD73 and transforming growth factor β1 (TGFβ1). These latter findings confirm and extend previous results indicating that immune checkpoint-blocking agents such as the cytotoxic T lymphocyte-associated protein 4 (CTLA4)-targeting mAb ipilimumab may significantly ameliorate the therapeutic profile of immunostimulatory cytokines.96

Table 1. Clinical trials recently launched to evaluate the safety and efficacy of immunostimulatory cytokines in cancer patients* (continued)

Cytokine	Indication(s)	Status	Phase	Route	Notes	Ref.
AML	Not yet recruiting	I	s.c.	Combined with adoptively transferred NK cells	NCT01898793	
Breast carcinoma	Recruiting	I/II	s.c.	Combined with adoptively transferred NK cells and trastuzumab	NCT02030561	
Gastric carcinoma	Recruiting	I	i.t.	As an L19-fused immunocytokine combined with L19-TNFα	NCT02076633	
Melanoma	Recruiting	II	i.v.	As an F16-fused immunocytokine combined with paclitaxel	NCT02054884	
Merkel cell carcinoma	Recruiting	II	n.a.	Combined with adoptively transferred NK cells	NCT01884688	
Multiple myeloma	Recruiting	II	s.c.	Coupled to an anti-GD2 mAb, G-CSF and GM-CSF for the treatment of MRD	NCT01857934	
Neuroblastoma	Recruiting	II	i.v.	As a CD20-targeting immunocytokine	NCT01874288	
NSCLC	Not yet recruiting	I	i.v.	As an L19-fused immunocytokine after SABR	NCT02086721	
Prostate cancer	Recruiting	I/II	n.a.	Combined with FOLH1-specific CAR-expressing T cells	NCT01929239	
Solid tumors	Not yet recruiting	I	s.c.	Combined with NY-ESO-1-targeted PBLs and ipilimumab	NCT02070406	
	Recruiting	I	i.v.	As a CEA-targeting immunocytokine	NCT02004106	
	II	n.a.	Combined with NY-ESO-1-targeted PBLs	NCT01967823		
IL-2	Prostate cancer	Not yet recruiting	I	i.v.	Combined with sipuleucel-T	NCT01881867
	Solid tumors	Recruiting	I	s.c.	As single agent	NCT02009449
IL-7	Solid tumors	Recruiting	I	i.v.	Combined with autologous activated NK cells	NCT01875601

Abbreviations: AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen; CML, chronic myeloid leukemia; FLT3L, fms-related tyrosine kinase 3 ligand; FOLH1, folate hydrolase 1; FOLRI, folate receptor 1; GBM, glioblastoma multiforme; GM-CSF, granulocyte macrophage colony-stimulating factor; HPV-16, human papillomavirus Type 16; IFN, interferon; IL, interleukin; i.t., intra tumorum; i.v., intra venam; mAb, monoclonal antibody; MRD, minimal residual disease; n.a., not available; NHL, non-Hodgkin lymphoma; NK, natural killer; NSCLC, non-small cell lung carcinoma; PBL, peripheral blood lymphocyte; PDCD1, programmed cell death 1; RCC, renal cell carcinoma; SABR, stereotactic ablative body radiotherapy; s.c., sub cutem; TNFa, tumor necrosis factor α; TYR, tyrosinase; WT1, Wilms tumor 1. *Between 2013, May 1st and the date of submission.

Table 1. Clinical trials recently launched to evaluate the safety and efficacy of immunostimulatory cytokines in cancer patients* (continued)

Cytokine	Indication(s)	Status	Phase	Route	Notes	Ref.

Recombinant IL-2 is being tested (1) in combination with the adoptive transfer of natural killer (NK) cells in patients with relapsed or refractory acute myeloid leukemia (AML) (NCT01898793), multiple myeloma (MM) (NCT01884688), and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) breast or gastric carcinoma (NCT02030561), in the latter setting coupled to the ERBB2-targeting monoclonal antibody (mAb) trastuzumab. (2) in combination with autologous peripheral blood lymphocytes engineered to express a NY-ESO-1-specific T-cell receptor, alone or coupled to ipilimumab in individuals affected by diverse solid tumors (NCT01967823; NCT02070406); (3) as an adjuvant to

Update on Ongoing Clinical Trials

When this Trial Watch was being redacted (April 2014), official sources listed no less than 88 clinical trials launched after May 1st, 2013 that would evaluate the efficacy and safety of immunostimulatory cytokines in cancer patients (source http://www.clinicaltrials.gov). In 14 of these studies, IL-2 (14 trials), GM-CSF (4 trials), G-CSF (33 trials) and IFN-α (3 trials) were used as on-label interventions. These studies will not be discussed here. In addition, 34 clinical trials have been launched during the last 12 mo to investigate the immunostimulatory potential of various cytokines in off-label settings (Table 1).
T cells expressing a chimeric antigen receptor specific for folate hydrolase 1 (FOLH1, best known as PSMA),108,109 in prostate cancer patients subjected to non-myeloablative conditioning (NCT01929239); and (4) in combination with G-CSF, GM-CSF and a mAb specific for ganglioside GD2,110 for the treatment of minimal residual disease in children with advanced neuroblastoma treated with aggressive induction chemotherapy and stem cell transplantation (NCT01857934). Moreover, various studies have recently been launched to test the clinical profile of IL-2 variants retargeted to cancer cells by means of tumor-associated antigen (TAA)-specific antibodies or antibody fragments, i.e., IL-2-based immunocytokines.111-113 Thus, (1) the safety and therapeutic potential of a carcinoembryonic antigen (CEA)-directed IL-2 variant (RO6895882) of a carcinoembryonic antigen (CEA) are being assessed in patients with advanced and/or metastatic solid tumors (NCT02004106); (2) a fusion between IL-2 and the Fv fragment of a mAb specific for tenasin C (TNC) is being tested, in combination with the micotubular inhibitor paclitaxel, in Merkel cell carcinoma patients (NCT02054884); (3) the therapeutic value of a CD20-retargeted form of IL-2 is being investigated as a standalone intervention in subjects with NHL (NCT01874288); (4) the safety and efficacy of IL-2 fused to the Fv fragment of a mAb specific for the extracellular domain B of fibronectin (L19),114-117 administered i.t. in combination with L19-TNFα, are being evaluated in melanoma patients (NCT02076633); and (5) the therapeutic profile of L19-IL-2 administered as a standalone agent immediately after stereotactic ablative body radiotherapy18 is being investigated in subjects affected by metastatic non-small cell lung carcinoma (NSCLC) (NCT02086721). Moreover, (1) glycosylated recombinant human IL-7 is being tested as adjuvant to sipuleucel-T (an FDA-approved vaccine based on autologous peripheral blood mononuclear cells) in subjects with castration-resistant prostate cancer (NCT01881867); (2) pegylated recombinant human IL-10 administered s.c. is being assessed as a standalone therapeutic intervention in patients with advanced solid tumors (NCT02009449); and (3) the clinical profile of recombinant human IL-15 given i.v. in combination with autologous activated NK cells is under evaluation in children and young adults affected by solid neoplasms (NCT01875601).

The safety and clinical potential of IFN-α2b, invariably administered s.c., are being investigated in cohorts of (1) subjects with gastrointestinal neuroendocrine tumors that failed to respond to somatostatin analogs, who receive IFN-α2b as a standalone agent (NCT01860742); (2) pediatric patients with unresectable recurrent craniopharyngioma, who are treated with a pegylated variant of IFN-α2b (NCT01964300); (3) individuals with advanced melanoma or RCC, receiving pegylated IFN-α2b in combination with a mAb specific for programmed cell death 1 (PD1D1, best-known as PD-1) (NCT02089685); (4) patients with chronic myeloid leukemia, who are treated with normal or pegylated IFN-α2b plus tyrosine kinase inhibitors including imatinib124 (NCT01939306); dasatinib125 (NCT01872442) and nilotinib126 (NCT01866553; NCT02001818); and (5) adults affected by anal intraepithelial neoplasms, who are concurrently vaccinated with a human papillomavirus Type 16 (HPV-16)-targeting peptide-based vaccine24 (NCT0192316). In addition, a not-better defined variant of IFN-α is being tested as standalone intervention for molecular relapse in t(8; 21) AML patients who previously underwent allogeneic stem cell transplantation (NCT02027064); and recombinant IFN-γ is being assessed for its therapeutic efficacy in subjects with soft tissue sarcoma (NCT01957709).

GM-CSF is being intensively investigated for its ability to boost tumor-targeting immune responses elicited by wide panel of immunotherapeutic interventions. In particular, GM-CSF is being tested as an adjuvant to (1) ipilimumab,16,27,28 in subjects with unresectable, Stage IIIC or IV melanoma (NCT02009379); (2) rituximab,70,71 in individuals affected by follicular B-cell lymphoma (NCT01939730); (3) a peptide vaccine directed against folate receptor 1 (FOLR1, also known as FBP),127,128 in patients with breast and ovarian carcinoma (NCT02019524); (4) SL-071, a multipeptide-based vaccine targeting several epitopes overexpressed by glioma cells,129,130 administered to glioblastoma patients in combination with the TLR7 agonist imiquimod131,132 (NCT02078648); (5) a peptide vaccine specific for Wilms tumor 1 (WT1),133,134 in mesothelioma patients who have completed multimodal therapy (NCT01890980); (6) a tyrosinase (TYR)-targeting peptide vaccine,135,137 in melanoma patients who underwent tumor resection (NCT01989572); (7) an autophagosome-based vaccine derived from allogeneic cancer cells,138-140 administered to NSCLC patients in combination with imiquimod (NCT01909752); and (8) cyclophosphamide, the vascular endothelial growth factor (VEGF)-specific mAb bevacizumab70,71,141,142 and a vaccine based on autologous cancer cells, in patients with glioblastoma multiforme or gliosarcoma (NCT01903330). Finally, the intratumoral administration of recombinant FLT3L34-35 to B-cell lymphoma patients is being tested for its capacity to recruit DCs to neoplastic lesions and hence allow low-dose radiation therapy and a TLR3 agonist to induce clinically relevant antitumor immune responses (NCT01976585). This is a novel application for recombinant human FLT3L (also known as CDX-301), which is being developed as an alternative or a support to G-CSF for the mobilization of hematopoietic cell precursors in bone marrow donors, with promising results (source http://www.cellx.com/). Of note, official sources list NCT01989572 and NCT01939730 as “completed,” yet no results are expected to be available at the moment.

As for the clinical trials listed in our previous Trial Watches dealing with this topic,98,146 the following studies have changed status during the past 12 months: NCT00589550, NCT00977145, NCT01096631, NCT01099631, NCT01131364, NCT01337544, which appear as ‘terminated’; NCT00784524, NCT01236573 and NCT01490047, which are listed as ‘suspended’; NCT00631371 and NCT00923351, which show as ‘active, not recruiting’ but are associated...
with results; as well as NCT00601796, NCT00660270, NCT00719264, NCT00891475, NCT01021059, NCT01220648, NCT01404936, NCT01592045, NCT01637532, NCT01639885 and NCT01673217, which have been completed (source http://www.clinicaltrials.gov).

While NCT00977145, NCT00589550, NCT01099631 and NCT01392170 have been terminated owing to slow accrual, NCT01337544 has been halted because the parents of two patients enrolled who died presented a claim against the hospital. The reasons underlying the termination of NCT01131364 are not available. NCT00784524 has been suspended for interim analysis, whereas NCT01256573 has been temporarily halted for final data collection and primary outcome assessment. The reasons behind the suspension of NCT01490047 have not been reported. The results of NCT00660270, NCT00719264, NCT00891475, NCT01021059, NCT01220648, NCT01592045, NCT01637532, NCT01639885 and NCT01673217 have not been disseminated yet.

Conversely results are available for NCT00601796, NCT00631371, NCT00923351 and NCT01404936. In the context of NCT00601796, testing a GM-CSF-involving cell-based vaccine in combination with cyclophosphamide and all-trans retinoic acid in lung cancer patients, 5 immunological responses were observed among 14 evaluable patients, the median time to progression and median overall survival among 24 treated patients being 2.4 and 8 mo, respectively. Preliminary results from NCT00631371, which is still ongoing, revealed that bevazumab plus IFN-α is not inferior to bevacizumab plus the mammalian target of rapamycin (mTOR) inhibitor temsirolimus for the treatment of advanced RCC patients, but associated with lower incidence of serious adverse effects (36.6% vs. 44.3%). NCT00923351 is investigating the ability of recombinant IL-7 to boost the therapeutic activity of a DC-based vaccine in patients with Ewing’s Sarcoma, rhabdomyosarcoma or neuroblastoma. Preliminary results indicate that IL-7 may indeed promote the immunogenic potential of DCs loaded ex vivo with autologous cancer cell lysates but not increase the toxicity of the procedure. The number of patients enrolled and analyzed so far, however, appears to be excessively low for drawing robust conclusions from this study. NCT01404936 evaluated the combination of IFN-α2a with a multi-agent chemotherapeutic regimen in Hodgkin lymphoma patients. In this setting, 23 out of 30 patients achieved a complete response to treatment, while serious side effects affected only 10% of participants. Additional, randomized and comparatively larger clinical studies are required to validate these findings.

Concluding Remarks

The activation of novel or the reactivation of existing immune responses has been shown to underlie the clinical efficacy not only of an increasingly wide panel of immunotherapeutic interventions but also of multiple radiotherapeutic and chemotherapeutic regimens. Along with the realization that the immune system plays a fundamental role in the response of cancer patients to therapy, great interest has gathered around the possibility to harness the immunostimulatory potential of multiple cytokines to drive tumor-targeting immune responses. As discussed above, however, using cytokines as standalone immunostimulatory interventions does not suffice to elicit therapeutically relevant immune responses in a majority of cancer patients, exception made for individuals with melanoma and RCC, which are particularly immunogenic per se. Thus, current efforts focus on the use of immunostimulatory cytokines as adjuvants to other immunotherapeutic paradigms, especially immune checkpoint-blocking mAbs. IL-2 and GM-CSF are perhaps the molecules that have generated the greatest interest in this setting. However, recent preclinical and clinical data indicate that the immunological activity of both IL-2 and GM-CSF may exhibit a significant degree of context dependency. Indeed, high-dose IL-2 has been shown to promote the accumulation of immunosuppressive CD4+CD25+FOXP3+ regulatory T cells (Tregs) in both cancer and HIV-1 patients, while GM-CSF has been involved in the establishment of Treg-mediated oral tolerance by intestinal macrophages. These data suggest that selectively targeting IL-2 or GM-CSF to specific immune effectors may further improve their immunostimulatory activity (and hence their clinical profile). So far, immunocytokines have mostly been designed to deliver immunostimulatory signals the tumor microenvironment in a relatively unspecific manner (i.e., they have been developed based on TAA-specific mAb). However, neoplastic lesions contain high amounts of Tregs, myeloid-derived suppressor cells and tumor-associated macrophages, implying that such a strategy may promote the unwarranted expansion of immunosuppressive cells. Further studies are required to unveil whether targeting immunocytokines to specific populations of immune effector cells results in optimal immunostimulation.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Authors are supported by the Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

References

1. Tao CM, Cua DJ. SnapShot: Cytokines I. Cell 2008; 132:324. e1.
2. Tao CM, Cua DJ. SnapShot: cytokines II. Cell 2008; 132:324. e1.
3. Tao CM, Cua DJ. SnapShot: cytokines III. Cell 2008; 132:900; PMID:18329374.
nco data for 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 1999; 17:2105-16; PMID:10452601; dx.doi.org/10.1093/jnci/10.10.23200

Grünenhagen DJ, de Witte JH, ten Hagen TL, Eggermont AM. Technology insight: Utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat Clin Pract Oncol 2006; 3: 94-103; PMID:16462850; http://dx.doi.org/10.1093/annonc/mdi201

Ahmed AR, Kim JW, Raghavan M, et al. The intestinal microbiota modulates cytokine gene expression and immunity to cerebral malaria. Science 2013; 342:971-6; PMID:24264990; http://dx.doi.org/10.1126/science.1249557

Becker JC, Schrama D. The dark side of cyclophosphamide: cyclophosphamide-mediated ablation of regulatory T cells. J Invest Dermatol 2013; 133: 1462-5; PMID:23765902; http://dx.doi.org/10.1038/jid.2013.67

Connor JP, Coxiec MC, Lewis NL, Lewis LD, Komarnitsky PB, Martiacci MR, Felder M, Stewart S, Harter J, Henslee-Downey J, et al. A phase Ib study of humanized KS-interleukin-2 (huKS-IL2) immunocytokine with cyclophosphamide in patients with EpCAM-expressing advanced solid tumors. BMC Cancer 2013; 13:20; PMID:23230927; http://dx.doi.org/10.1186/1471-2407-13-20

Dutcher JP, Neuberg D, Atkins MB, Tormey D, Hawkins M, et al. A phase II evaluation of Dose and Schedule of Interleukin-1 Alpha and Cyclophosphamide in Patients with Advanced Tumors: An Eastern Cooperative Oncology Group Study (PX990) and Review of IL-I-Based Studies of Hematopoietic Reconstitution. Interferon Cytokine Res 2014; 34: 576-84; PMID:24433038; http://dx.doi.org/10.1016/j.yijicr.2013.04.007

Susini S, Buscal L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol 2012; 17:1333-42; PMID:22601354; http://dx.doi.org/10.1093/annonc/mds100

Fridman C, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Oncoimmunology 2013; 2:e227891; PMID:23884781; http://dx.doi.org/10.4161/onci.2.10.20931

Fridman C, Zitvogel L, Kroemer G. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24665256; http://dx.doi.org/10.4161/onci.27048

Azarida L, Maragkou I, Ritzesmich plus CHOP for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:1830-1; author reply 1830-1; PMID:12050349; http://dx.doi.org/10.1056/NEJM200206063643237

Coiffier B, Lepage E, Briere J, Herbrecht R, Tallì H, Bouabdallah R, Melfi P, Van Den Neste E, Salles G, Gaulard P, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:235-42; PMID:11870147; http://dx.doi.org/10.1056/NEJMoa011795

Robertson MJ, Kline J, Struempfer H, Koch KM, Baume JW, Gardner OS, Murray SC, Germaschewski F, Weissenbach J, Jonak Z, et al. A dose-escalation study of recombinant human interleukin-18 in combination with rituximab in patients with non-Hodgkin lymphoma. J Immunother 2013; 36:331-41; PMID:23799412; http://dx.doi.org/10.1097/JIT.0b013e31829d7e2e

Galuzzi L, Veccheli E, Fridman WH, Galon J, Saint-Frédéric C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1: 298-317; http://dx.doi.org/10.4161/onci.1.1.17938

Hale G, Bright S, Chambly G, Hoang T, Metcalf D, Munro AJ, Waldmann H. Removal of T cells from bone marrow for transplantation: a monoclonal antithymocyte antibody that fixes human complement. Blood 1983; 62:873-82; PMID:6497655

Gorin NC, Icard A, Garderet L, Ikhlef S, Corn S, Queensel B, Legrand O, Cachanado M, Rousseau A, Laporte JP. Administration of alentuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: a phase II study. Leukemia 2012; 26:1546-52; PMID:22607147; http://dx.doi.org/10.1038/jem.2013.022

Heine JP, Miralidi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, Cheung NK. Localization of GD2-specific monoclonal antibody in human osteosarcoma. Cancer Res 1987; 47:5377-81; PMID:3155767

Kusner BH, Cheung NK. GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 1989; 73:1936-41; PMID:2563446

Heine JP, Miralidi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, Cheung NK. GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 1989; 73:1936-41; PMID:2563446

Cheung IY, Hsu K, Cheung NK. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocyte-macrophage colony-stimulating factor. J Clin Oncol 2012; 30:426-32; PMID:22203761; http://dx.doi.org/10.1200/JCO.2011.37.6236
Molecular basis for sunitinib efficacy and future
progression in small cell lung cancer: a phase II, randomized
multicenter study of oral temozolomide and weekly PEG-interferon
in combination with conventional chemotherapy in HER2-positive breast cancer. N Engl J Med 2010; 363:7131; PMID:20529592; http://dx.doi.org/10.1056/NEJMoa1003546

Mavilio D, Laghi E. Inhibiting the inhibitors: Checkpoints blockade in solid tumors. Oncoimmunology 2013; 2:e26355; http://dx.doi.org/10.4161/onci.26355

Rohit S, Thomas L, Bondarenko I, O’Day S, M D’JW, Garbe C, Lebbe C, Bazaria JF, Testori A, Grob JJ, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364:2517-26; PMID:2159810; http://dx.doi.org/10.1056/NEJMoa1006171

Kluss CC, Condolmiles M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2013; 31:71-5; PMID:23242161; http://dx.doi.org/10.1038/nbt.2495

Schroten C, Kraija R, Veldhoven JJ, Berrevoets CA, den Bakker MA, Ma Q, Sadelain M, Bangma CH, Willemens RA, Dehets R T cell activation upon exposure to patient-derived tumor tissue: a functional assay to select patients for adoptive T cell therapy. J Immunol Methods 2010; 359:11-20; PMID:20460126; http://dx.doi.org/10.1016/j.jim.2010.04.006

Modak S, Kushner BH, Kramer K, Vickers A, Cheung IV, Cheung NK. Anti-GD2 antibody 3F8 and barly-derived (1 → 3)(1 → 4)-β-D-glucan: A Phase I study in patients with colorectal neuroblastoma. Oncoimmunology 2013; 2:e234402; PMID:23802080; http://dx.doi.org/10.4161/onci.234402

Govindan SV, Goldenberg DM. Designing immunocjugates for cancer therapy. Expert Opin Biol Ther 2012; 12:873-90; PMID:22679911; http://dx.doi.org/10.1517/17460929.2012.685153

Albertini MR, Hank JA, Gadbad B, Koslevy J, Haldeman J, Schalch H, Gan J, Kim K, Eickhoff J, Gillies SD, et al. Phase II trial of hu14-18.I2 for patients with metastatic melanoma. Cancer Immunol Immunother 2012; 61:2261-71; PMID:22678096; http://dx.doi.org/10.1007/s00262-012-1286-5

Pasche N, Neri D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 2012; 17:583-90; PMID:22828935; http://dx.doi.org/10.1016/j.drudis.2012.01.007

Brack SS, Silacci M, Birchler M, Neri D. Tumor-targeting properties of novel antibodies specific to the large isoform of tenasin-C. Clin Cancer Res 2006; 12:3200-8; PMID:1670621; http://dx.doi.org/10.1158/1078-0432.CCR-05-2804

Guthrode KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W, Berdel WE, Neri D. Antibody-based delivery of interleukin-2 to neovascularization has potent activity against acute myeloid leukemia. Sci Transl Med 2013; 5:121ra18; PMID:24005158; http://dx.doi.org/10.1126/scitranslmed.3006221
Weber JS, et al. (interferon-stromal tumor model and implications in other tumor immunity and inflammatory pathology. Nat Med 2013; 504:S6-8; PMID:24352363; http://dx.doi.org/10.1038/nrd1381

Cunnam MA, Allison JP. Tumor vaccines expressing flt3 ligand synergize with ctsa-4 blockade to reject preimplanted tumors. Cancer Res 2009; 69:7747-55; PMID:19738077; http://dx.doi.org/10.1158/0008-5472.CAN-08-3289

Galluzzi L, Vecchelli E, Eggermont A, Friedman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Novel therapies in phase II and III trials for malignant pleural mesothelioma. J Natl Compr Canc Netw 2012; 10:42-7; PMID:22238686

Krug LM, Dasso T, Brown AB, Maslak P, Travis W, Bekele S, Korontzis T, Zakhavala V, Wolchok J, Yuan J, et al. WTI peptide vaccinations induce CD8+ and CD4+ T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 2010; 59:1467-79; PMID:20352900; http://dx.doi.org/10.1007/s00262-010-0871-8

Tahhini AA, Lee K, Moschos SJ, Yin Y, Sander L, Lin Y, Goodwin WE, Kirkwood JM. Safety and immunogenicity of vaccination with MART-1 (26-35), 27L, gp100 (209-217, 210M), and tyrosinase (668-376, 376D) in adenovirus and polyinosinic-polycytidylic acid stabilized by lysine gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2004; 3: 391-400; PMID:15136787; http://dx.doi.org/10.1186/1479-5876-2-9

Galluzzi L, Vecchelli E, Eggermont A, Friedman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Adoptive cell transfer immunotherapy. Oncology 2012; 32:146-3; PMID:22375066; http://dx.doi.org/10.1007/s11523-012-0328-9

Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, Stoutenburg J, Cheung K, Hesdorffer C, Kim-Schulze S, Kaufman HL. Characterization of CD4+ CD25(high) Foxp3+ regulatory T cells in cancer patients. Blood 2006; 107:2409-14; PMID:16304911; http://dx.doi.org/10.1182/blood-2005-06-2399

119. Kudelka AP, Wharton JT, Ioannides CG. Vaccine immunotherapy for gastric and colorectal carcinomas. Future Oncol 2010; 6:709-24; PMID:20219705; http://dx.doi.org/10.4161/fonc.6.10.14057

Chen LL, Gouw L, Sabirpouri M, Hwu WJ, Benjamin RS. Combining targeted therapy with immunotherapy (anti-cd20) may improve the outcome in systemic stromal tumor model and implications in other malignancies. Oncology 2012; 1:737-6; PMID:22234279; http://dx.doi.org/10.1046/j.0197-2270.2003.00227.x

121. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersley P, Joseph RW, Weber JS, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 368:1348-55; PMID:23312476; http://dx.doi.org/10.1056/NEJMoai1304470

118. Giovannoni L, Tasciotti A, Neri D, et al. The tumor-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 2010; 46:2926-35; PMID:20797845; http://dx.doi.org/10.1016/j.ejca.2010.07.033

120. PD-1 inhibitors raise survival in NSCLC. Cancer Discov 2014; 4:6; http://dx.doi.org/10.1158/2326-727X.CD-13-0754

122. Dranoff G. Immunotherapy at large: Balancing tumor immunity and inflammatory pathology. Nat Med 2013; 19:1100-1; PMID:24017509; http://dx.doi.org/10.1038/nm.3335

123. Kanto PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. IMpACT Study Investigators. Safety, antitumor immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411-22; PMID:20818862; http://dx.doi.org/10.1056/NEJMoa1001294

124. Weintraub K. Drug development: Releasing the brakes. Nature 2013; 504:56-8; PMID:23452363; http://dx.doi.org/10.1038/50456a

125. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Minz AH, Eng JA, Bartlett DL, Brown CK, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with glioma-associated antigen peptides linked to polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29:330-6; PMID:21149657; http://dx.doi.org/10.1200/JCO.2010.28.1377
153. Wei S, Kryczek I, Edwards RP, Zou L, Sziliga W, Banerjee M, Cost M, Cheng P, Chang A, Redman B, et al. Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 2007; 67:7487-94; PMID:17671219; http://dx.doi.org/10.1158/0008-5472.CAN-07-0565

154. Brandenburg S, Takahashi T, de la Rosa M, Janke M, Karsten G, Muzzulin T, Orinska Z, Bullone-Paus S, Scheffold A. IL-2 induces in vivo suppression by CD4+CD25+Foxp3+ regulatory T cells. Eur J Immunol 2008; 38:1643-53; PMID:18493984; http://dx.doi.org/10.1002/eji.200737791

155. Camisaschi C, Filipazzi P, Tazzari M, Casati C, Beretta V, Pilla I, Patuzzo R, Maurichi A, Cova A, Maio M, et al. Effects of cyclophosphamide and IL-2 on regulatory CD4+ T cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T cell response. Cancer Immunol Immunother 2013; 62:897-908; PMID:23589107; http://dx.doi.org/10.1007/s00262-013-1397-7

156. Weiss L, Letimier FA, Carriere M, Maiella S, Donkova-Petrini V, Targat B, Benecke A, Rogge L, Levy Y. In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A 2010; 107:10632-7; PMID:20409804; http://dx.doi.org/10.1073/pnas.1000027107

157. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:323-43; PMID:23243996; http://dx.doi.org/10.4161/onci.22009