A ratio of finitely many gamma functions and its properties with applications

Feng Qi\,1,2 · Wen-Hui Li\,3 · Shu-Bin Yu\,1 · Xin-Yu Du\,4 · Bai-Ni Guo\,5

Abstract
In the paper, the authors establish an inequality involving exponential functions and sums, introduce a ratio of finitely many gamma functions, discuss properties, including monotonicity, logarithmic convexity, (logarithmically) complete monotonicity, and the Bernstein function property, of the newly introduced ratio, and construct two inequalities of multinomial coefficients and multivariate beta functions.

Keywords Ratio · Gamma function · Bernstein function · Completely monotonic function · Logarithmically completely monotonic function · Inequality · Multinomial coefficient · Multivariate beta function · Logarithmic derivative · Logarithmic convexity · Integral representation · Open problem

Mathematics Subject Classification Primary 26A48; Secondary 05A20 · 26D07 · 26A51 · 26D15 · 33B15 · 44A10

Contents
1 Preliminaries ... 2
2 Motivation .. 2
3 A new inequality involving exponential functions and sums 3
4 A new ratio of finitely many gamma functions and its properties 4
5 Two inequalities for multinomial coefficients 8
6 Three open problems .. 9
 6.1 First open problem 10
 6.2 Second open problem 10
 6.3 Third open problem 10
7 Remarks ... 11
References .. 12

In memory of the first author’s mother, Ji-Rong Zhang, who passed away in December 1995.

✉ Bai-Ni Guo
 bai.ni.guo@gmail.com; bai.ni.guo@hotmail.com

Extended author information available on the last page of the article
1 Preliminaries

A real-valued function \(F(x) \) defined on a finite or infinite interval \(I \subseteq \mathbb{R} \) is said to be completely monotonic on \(I \) if and only if \((-1)^k F^{(k)}(x) \geq 0 \) for all \(k \in \{0\} \cup \mathbb{N} \) and \(x \in I \). A positive function \(F(x) \) defined on a finite or infinite interval \(I \subseteq \mathbb{R} \) is said to be logarithmically completely monotonic on \(I \) if and only if \((-1)^k [\ln F(x)]^{(k)} \geq 0 \) for all \(k \in \mathbb{N} \) and \(x \in I \). A nonnegative function \(F(x) \) defined on a finite or infinite interval \(I \) is called a Bernstein function if its derivative \(F'(x) \) is completely monotonic on \(I \). In the paper [2] and the monograph [41, pp. 66–68, Comments 5.29], it is pointed out that the terminology “logarithmically completely monotonic function” was explicitly defined in [23, 24] for the first time. The logarithmically complete monotonicity is weaker than the Stieltjes function, but stronger than the complete monotonicity [2, 10, 29]. For more information on this topic, please refer to [22, 41, 43] and closely related references therein.

Recall from [42, p. 51, (3.9)] that the classical Euler gamma function \(\Gamma(z) \) can be defined by

\[
\Gamma(z) = \lim_{n \to \infty} \frac{n! z^n}{(z)_n},
\]

where \(z \neq 0, -1, -2, \ldots \) and

\[
(z)_n = \prod_{\ell=0}^{n-1} (z + \ell) = \begin{cases}
(z + 1) \cdots (z + n - 1), & n \geq 1 \\
1, & n = 0
\end{cases}
\]

for \(z \in \mathbb{C} \) and \(n \in \{0\} \cup \mathbb{N} \) is called the rising factorial. The logarithmic derivative \(\psi(x) = [\ln \Gamma(x)]' = \frac{\Gamma'(x)}{\Gamma(x)} \) of the gamma function \(\Gamma(z) \) and \(\psi^{(k)} \) for \(k \in \mathbb{N} \) are usually called in sequence the digamma function, the trigamma function, the tetragamma function, and the like.

With the help of the gamma function \(\Gamma(z) \), the binomial coefficient \(\binom{m}{n} = \frac{m!}{n!(m-n)!} \) can be generalized as the multinomial coefficient

\[
\binom{\alpha_1 + \alpha_2 + \cdots + \alpha_m}{\alpha_1, \alpha_2, \ldots, \alpha_m} = \frac{\Gamma(1 + \sum_{i=1}^{m} \alpha_i)}{\prod_{i=1}^{m} \Gamma(1 + \alpha_i)} \frac{1}{\prod_{i=1}^{m} \Gamma(\alpha_i)},
\]

and the classical beta function \(B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \) can be generalized as the multivariate beta function

\[
B(\alpha_1, \alpha_2, \ldots, \alpha_m) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_m)}{\Gamma(\alpha_1 + \alpha_2 + \cdots + \alpha_m)},
\]

where \(\mathfrak{M}(\alpha_1), \mathfrak{M}(\alpha_2), \ldots, \mathfrak{M}(\alpha_m) \geq 0 \). See [1, Section 24.1.2] and [9, Section II.2].

2 Motivation

Motivated by the papers [14, 34] and related texts in the survey article [22], by establishing the inequality

\[
\sum_{i=1}^{m} \frac{1}{x^{1/v_i} - 1} + \sum_{j=1}^{n} \frac{1}{x^{1/\tau_j} - 1} > \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{x^{1/\kappa_{ij}} - 1},
\]
where \(x > 1, 0 < \lambda_{ij} \leq 1, \)

\[
v_i = \sum_{j=1}^{n} \lambda_{ij}, \quad \tau_j = \sum_{i=1}^{m} \lambda_{ij}, \quad \sum_{i=1}^{m} v_i = \sum_{j=1}^{n} \tau_j = 1,
\]

Ouimet obtained in [15] that the ratio

\[
g(t) = \frac{\prod_{i=1}^{m} \Gamma(v_i t + 1) \prod_{j=1}^{n} \Gamma(\tau_j t + 1)}{\prod_{i=1}^{m} \prod_{j=1}^{n} \Gamma(\lambda_{ij} t + 1)} \tag{2.2}
\]

is logarithmically completely monotonic function on \((0, \infty)\), where \(m, n \in \mathbb{N}\) and \(0 < \nu_i, \tau_j, \lambda_{ij} \leq 1\) such that

\[
\sum_{j=1}^{n} \lambda_{ij} = v_i, \quad \sum_{i=1}^{m} \lambda_{ij} = \tau_j, \quad \sum_{i=1}^{m} v_i = \sum_{j=1}^{n} \tau_j = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{ij} \leq 1.
\]

We observe that

(1) the proof of the inequality (2.1) is lengthy and complicated;
(2) the inequality (2.1) can be refined and extended;
(3) in the third paragraph on [25, p. 12], Theorem 2.1 in [15] has been demonstrated to be wrong; because the variable \(t\) was missed inside three logarithms in the second line of the equation (8) on page 3 in the arXiv preprint [15], the proof of [15, Theorem 2.1] is wrong.

In this paper, we will

(1) refine and extend the inequality (2.1) and supply a concise proof of the refinement and extension;
(2) motivated by \(g(t)\) in (2.2), formulate a new ratio and prove its properties;
(3) construct inequalities of multinomial coefficients and multivariate beta functions.

3 A new inequality involving exponential functions and sums

Now we present a new inequality which refines and extends the inequality (2.1).

Theorem 3.1 Let \(x > 0 \) and \(\lambda_{ij} > 0 \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \). Then

\[
\sum_{i=1}^{m} \frac{1}{e^{x/v_i} - 1} + \sum_{j=1}^{n} \frac{1}{e^{x/\tau_j} - 1} \geq 2 \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{e^{x/\lambda_{ij}} - 1}, \tag{3.1}
\]

where \(v_i = \sum_{j=1}^{n} \lambda_{ij} \) and \(\tau_j = \sum_{i=1}^{m} \lambda_{ij} \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \).

Proof Recall from [13, p. 650] that

(1) a function \(\varphi : [0, \infty) \to \mathbb{R} \) is said to be star-shaped if \(\varphi(\nu x) \leq \nu \varphi(x) \) for all \(\nu \in [0, 1] \) and \(x \geq 0 \);
(2) a real function \(\varphi \) defined on a set \(S \subset \mathbb{R}^n \) is said to be super-additive if \(x, y \in S \) implies \(x + y \in S \) and \(\varphi(x + y) \geq \varphi(x) + \varphi(y) \);
(3) if \(\varphi : [0, \infty) \to \mathbb{R} \) is star-shaped, then \(\varphi \) is super-additive;
(4) if \(\varphi \) is a real function defined on \([0, \infty), \varphi(0) \leq 0\), and \(\varphi \) is convex, then \(\varphi \) is star-shaped.
Let \(h(x) = \frac{1}{e^x - 1} \) for \(x > 0 \). Then the inequality (3.1) can be rearranged as
\[
\sum_{i=1}^{m} h\left(\frac{x}{\nu_i}\right) + \sum_{j=1}^{n} h\left(\frac{x}{\tau_j}\right) > 2 \sum_{i=1}^{m} \sum_{j=1}^{n} h\left(\frac{x}{\lambda_{ij}}\right).
\] (3.2)

Direct computation gives
\[
\frac{d}{dx} h\left(\frac{1}{x}\right) = \frac{e^{1/x}}{(e^{1/x} - 1)^2 x^2},
\]
\[
\frac{d^2}{dx^2} h\left(\frac{1}{x}\right) = \frac{e^{1/x} \left[e^{1/x} (1 - 2x) + 2x + 1 \right]}{(e^{1/x} - 1)^3 x^4},
\]
\[
\left[e^{1/x} (1 - 2x) + 2x + 1 \right]' = 2 - e^{1/x} \left(\frac{1}{x^2} - \frac{2}{x} + 2 \right) \to 0, \quad x \to \infty,
\]
\[
\left[e^{1/x} (1 - 2x) + 2x + 1 \right]' = \frac{e^{1/x} x^4}{x^4} > 0,
\]
\[
\lim_{x \to \infty} \left[e^{1/x} (1 - 2x) + 2x + 1 \right]' = 0
\]
for \(x > 0 \). Consequently, combining these with \(\lim_{x \to 0^+} h\left(\frac{1}{x}\right) = 0 \) reveals that the function \(h\left(\frac{1}{x}\right) \) is convex, then star-shaped, and then super-additive on \((0, \infty)\). As a result, it follows that
\[
\frac{x}{\nu_i} = \frac{x}{\sum_{j=1}^{n} \lambda_{ij}} \geq \sum_{j=1}^{n} h\left(\frac{x}{\lambda_{ij}}\right)
\]
and
\[
\frac{x}{\tau_j} = \frac{x}{\sum_{i=1}^{m} \lambda_{ij}} \geq \sum_{i=1}^{m} h\left(\frac{x}{\lambda_{ij}}\right).
\]

Substituting these two inequalities into the left hand side of (3.2) results in
\[
\sum_{i=1}^{m} h\left(\frac{x}{\nu_i}\right) + \sum_{j=1}^{n} h\left(\frac{x}{\tau_j}\right) \geq \sum_{i=1}^{m} \sum_{j=1}^{n} h\left(\frac{x}{\lambda_{ij}}\right) + \sum_{j=1}^{n} \sum_{i=1}^{m} h\left(\frac{x}{\lambda_{ij}}\right)
\]
\[
\geq 2 \sum_{i=1}^{m} \sum_{j=1}^{n} h\left(\frac{x}{\lambda_{ij}}\right).
\]

The proof of the inequality (3.1), and then the proof of Theorem 3.1, is thus complete. \(\square \)

4 A new ratio of finitely many gamma functions and its properties

In this section, we formulate a new ratio of finitely many gamma functions and find its properties.

Theorem 4.1 Let \(\rho \in \mathbb{R} \) and \(\lambda_{ij} > 0 \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \), let \(v_i = \sum_{j=1}^{n} \lambda_{ij} \) and \(\tau_j = \sum_{i=1}^{m} \lambda_{ij} \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \), and let
\[
f(t) = \frac{\prod_{i=1}^{m} \Gamma(1 + v_i t) \prod_{j=1}^{n} \Gamma(1 + \tau_j t)}{[\prod_{i=1}^{m} \prod_{j=1}^{n} \Gamma(1 + \lambda_{ij} t)]^\rho}.
\] (4.1)
Then the following conclusions are valid:

(1) when \(\rho \leq 2 \), the second derivative \([\ln f(t)]'' \) is a completely monotonic function of \(t \in (0, \infty) \) and maps from \((0, \infty) \) onto the open interval

\[
\left(0, \frac{\pi^2}{6} \left(\sum_{i=1}^{m} v_i^2 + \sum_{j=1}^{n} \tau_j^2 - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^2 \right) \right);
\]

(2) when \(\rho = 2 \), the logarithmic derivative \([\ln f(t)]' = \frac{f'(t)}{f(t)} \) is a Bernstein function of \(t \in (0, \infty) \) and maps from \((0, \infty) \) onto the open interval

\[
\left(0, \ln \frac{\prod_{i=1}^{m} v_i \prod_{j=1}^{n} \tau_j}{\left(\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{ij}^2 \right)^2} \right);
\]

(3) when \(\rho < 2 \), the logarithmic derivative \([\ln f(t)]' \) is increasing, concave, and from \((0, \infty) \) onto the open interval

\[
\left(-\gamma (2 - \rho) \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}, \infty \right),
\]

where \(\gamma = 0.57721566 \ldots \) is the Euler–Mascheroni constant;

(4) when \(\rho = 2 \), the function \(f(t) \) is increasing, logarithmically convex, and from \((0, \infty) \) onto the open interval \((1, \infty) \);

(5) when \(\rho < 2 \), the function \(f(t) \) has a unique minimum, is logarithmically convex, and satisfies \(\lim_{t \to 0^+} f(t) = 1 \) and \(\lim_{t \to \infty} f(t) = \infty \).

Proof Taking logarithm and differentiating give

\[
\ln f(t) = \sum_{i=1}^{m} \ln \Gamma(1 + v_i t) + \sum_{j=1}^{n} \ln \Gamma(1 + \tau_j t) - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \ln \Gamma(1 + \lambda_{ij} t),
\]

\[
[\ln f(t)]' = \sum_{i=1}^{m} v_i \psi(1 + v_i t) + \sum_{j=1}^{n} \tau_j \psi(1 + \tau_j t) - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} \psi(1 + \lambda_{ij} t),
\]

\[
[\ln f(t)]'' = \sum_{i=1}^{m} v_i^2 \psi'(1 + v_i t) + \sum_{j=1}^{n} \tau_j^2 \psi'(1 + \tau_j t) - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^2 \psi'(1 + \lambda_{ij} t).
\]

It is easy to see that

\[
\lim_{t \to 0^+} [\ln f(t)]'' = \frac{\pi^2}{6} \left(\sum_{i=1}^{m} v_i^2 + \sum_{j=1}^{n} \tau_j^2 - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^2 \right).
\]

Making use of the integral representation

\[
\psi^{(n)}(z) = (-1)^{n+1} \int_{0}^{\infty} \frac{r^n}{1 - e^{-rt}} e^{-zr} dr, \quad \Re(z) > 0
\]

in [1, p. 260, 6.4.1] leads to

\[
[\ln f(t)]'' = \sum_{i=1}^{m} v_i^2 \int_{0}^{\infty} \frac{s}{1 - e^{-s}} e^{-(1 + v_i t)s} ds + \sum_{j=1}^{n} \tau_j^2 \int_{0}^{\infty} \frac{s}{1 - e^{-s}} e^{-(1 + \tau_j t)s} ds.
\]
and completely monotonic with respect to t.

By virtue of Lemma 3.1, when $\rho \leq 2$, we conclude that the second derivative $[\ln f(t)]''$ is completely monotonic with respect to $t \in (0, \infty)$.

Since the second derivative $[\ln f(t)]''$ is completely monotonic with respect to $t \in (0, \infty)$, the logarithmic derivative $[\ln f(t)]'$ is increasing and concave on $(0, \infty)$, with the limits

$$\lim_{t \to 0^+} [\ln f(t)]' = -\gamma(2 - \rho) \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} = \left\{ \begin{array}{ll}
0, & \rho = 2 \\
-\gamma(2 - \rho) \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}, & \rho < 2
\end{array} \right.$$

and

$$\lim_{t \to \infty} [\ln f(t)]' = \lim_{t \to \infty} \left[\sum_{i=1}^{m} v_i \psi(1 + v_i t) + \sum_{j=1}^{n} \tau_j \psi(1 + \tau_j t) - \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} \psi(1 + \lambda_{ij} t) \right]$$

$$= \sum_{i=1}^{m} v_i \lim_{t \to \infty} \left[\psi(1 + v_i t) - \ln(1 + v_i t) \right]$$

$$+ \sum_{j=1}^{n} \tau_j \lim_{t \to \infty} \left[\psi(1 + \tau_j t) - \ln(1 + \tau_j t) \right]$$

$$- \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} \lim_{t \to \infty} \left[\psi(1 + \lambda_{ij} t) - \ln(1 + \lambda_{ij} t) \right]$$

$$+ \ln \lim_{t \to \infty} \frac{\prod_{i=1}^{m} (1 + v_i t)^{\psi} \prod_{j=1}^{n} (1 + \tau_j t)^{\psi}}{\prod_{i=1}^{m} \prod_{j=1}^{n} (1 + \lambda_{ij})^{\psi(\lambda_{ij})}}$$

$$= \ln \lim_{t \to \infty} \frac{\prod_{i=1}^{m} (1/t + v_i)^{\psi} \prod_{j=1}^{n} (1/t + \tau_j)^{\psi}}{\prod_{i=1}^{m} \prod_{j=1}^{n} (1/t + \lambda_{ij})^{\psi(\lambda_{ij})}}$$
A ratio of finitely many gamma functions and its properties...

\[+ \ln \lim_{t \to \infty} t^{\sum_{i=1}^{m} v_i + \sum_{j=1}^{n} \tau_j - \rho \sum_{j=1}^{n} \lambda_{ij}} \]

\[= \ln \left(\frac{\prod_{i=1}^{m} v_i \prod_{j=1}^{n} \tau_j}{\left(\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{ij} \right)^{\rho}} \right) + \ln \lim_{t \to \infty} t^{(2-\rho) \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}} \]

\[= \ln \left(\frac{\prod_{i=1}^{m} v_i \prod_{j=1}^{n} \tau_j}{\left(\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{ij} \right)^{\rho}} \right) \]

\[= \{ 0, \quad \rho = 2; \]

\[\infty, \quad \rho < 2, \]

where we used the limit \(\lim_{x \to \infty} [\psi(x) - \ln x] = 0 \) in [11, Theorem 1] and [12, Section 1.4]. Accordingly,

(1) when \(\rho = 2 \), the logarithmic derivative \([\ln f(t)]' \) is positive and increasing and maps from \((0, \infty)\) onto

\[\left(0, \ln \left(\frac{\prod_{i=1}^{m} v_i \prod_{j=1}^{n} \tau_j}{\left(\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{ij} \right)^{\rho}} \right) \right). \]

(2) when \(\rho < 2 \), the logarithmic derivative \([\ln f(t)]' \) is increasing, does not keep the same sign, and maps from \((0, \infty)\) onto

\[\left(-\gamma(2 - \rho) \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}, \infty \right). \]

In conclusion, the logarithmic derivative \([\ln f(t)]' \) is a Bernstein function and the function \(f(t) \) for \(\rho < 2 \) has a minimum on \((0, \infty)\).

It is easy to see that \(\lim_{t \to 0^+} f(t) = 1. \)

In [42, p. 62, (3.20)], it was given that

\[\ln \Gamma(z + 1) = \left(z + \frac{1}{2} \right) \ln z - z + \frac{1}{2} \ln(2\pi) + \int_{0}^{\infty} \vartheta(s)e^{-zs} ds, \]

where

\[\vartheta(s) = \frac{1}{s} \left(\frac{1}{e^s - 1} - \frac{1}{s} + \frac{1}{2} \right). \]

Then direct computation acquires

\[\lim_{t \to \infty} \ln f(t) = \lim_{t \to \infty} \left(\sum_{i=1}^{m} \left[(v_i t + \frac{1}{2}) \ln(v_i t) - v_i t + \frac{1}{2} \ln(2\pi) \right] \right. \]

\[+ \int_{0}^{\infty} \vartheta(s)e^{-v_i ts} ds \right) + \sum_{j=1}^{n} \left[\left(\tau_j t + \frac{1}{2} \right) \ln(\tau_j t) \right. \]

\[- \tau_j t + \frac{1}{2} \ln(2\pi) + \int_{0}^{\infty} \vartheta(s)e^{-\tau_j ts} ds \left. \right] \]

\[- \rho \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(\lambda_{ij} t + \frac{1}{2}) \ln(\lambda_{ij} t) - \lambda_{ij} t \right. \]

\[+ \frac{1}{2} \ln(2\pi) + \int_{0}^{\infty} \vartheta(s)e^{-(\lambda_{ij} t)s} ds \left. \right) \]
The proof of Theorem 4.1 is complete.

where, when \(\rho = 2 \), we used the fact that

\[
\frac{\prod_{i=1}^{m} \nu_i^{\lambda_{ij}} \prod_{j=1}^{n} \tau_j^{\lambda_{ij}}}{\left(\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{ij}^{2} \right)^{2}} = \prod_{i=1}^{m} \nu_i^{\lambda_{ij}} \prod_{j=1}^{n} \tau_j^{\lambda_{ij}}
\]

\[
= \prod_{i=1}^{m} \nu_i^{\lambda_{ij}} \prod_{j=1}^{n} \frac{\sum_{\ell=1}^{n} \lambda_{i\ell}^{\lambda_{ij}}}{\lambda_{ij}^{\lambda_{ij}}} \prod_{j=1}^{n} \frac{\sum_{\ell=1}^{m} \lambda_{\ell j}^{\lambda_{ij}}}{\lambda_{ij}^{\lambda_{ij}}}
\]

\[
= \prod_{i=1}^{m} \prod_{j=1}^{n} \left(\frac{\sum_{\ell=1}^{n} \lambda_{i\ell}}{\lambda_{ij}} \right)^{\lambda_{ij}} \prod_{j=1}^{n} \prod_{i=1}^{m} \left(\frac{\sum_{\ell=1}^{m} \lambda_{\ell j}}{\lambda_{ij}} \right)^{\lambda_{ij}}
\]

\[
> 1 \times 1
\]

\[
= 1.
\]

The proof of Theorem 4.1 is complete. \(\square \)

5 Two inequalities for multinomial coefficients

In this section, as did in [34, Sections 3 and 4], by applying the fourth conclusion in Theorem 4.1, we derive two inequalities of multinomial coefficients \((a_1 + a_2 + \cdots + a_m)\) and of multivariate beta functions \(B(a_1, a_2, \ldots, a_m)\).

When \(\rho = 2 \), the function \(f(t) \) defined by (4.1) can be rearranged as

\[
f(t) = \prod_{i=1}^{m} \Gamma \left(1 + \sum_{j=1}^{n} \lambda_{ij} t \right) \prod_{j=1}^{n} \Gamma \left(1 + \sum_{i=1}^{m} \lambda_{ij} t \right)
\]

\[
= \prod_{i=1}^{m} \left(\sum_{j=1}^{m} \lambda_{ij} t \right) \prod_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{ij} t \right).
\]
For $a_i > 0$ and $i \in \mathbb{N}$, multinomial coefficients and multivariate beta functions are connected by

\[
\left(\sum_{i=1}^{m} a_i \right) = \frac{\sum_{i=1}^{m} a_i}{\prod_{i=1}^{m} a_i} B(a_1, a_2, \ldots, a_m).
\]

Therefore, we have

\[
f(t) = \frac{1}{t^{2mn-m-n}} \prod_{j=1}^{m} \sum_{i=1}^{n} \lambda_{ij} \prod_{i=1}^{n} \frac{1}{\lambda_{ij}} \prod_{i=1}^{m} B(\lambda_{ij} t, \lambda_{ij} t, \ldots, \lambda_{ij} t).
\]

Let $\ell \in \mathbb{N}$ and $\theta_k \in (0, 1)$ satisfy $\sum_{k=1}^{\ell} \theta_k = 1$. Let $\lambda = (\lambda_{ij})_{1 \leq i \leq m}$ be a matrix such that $\lambda_{ij} > 0$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. By virtue of the fourth conclusion in Theorem 4.1, the function $f(t)$ is logarithmically convex on $(0, \infty)$. Hence,

\[
f\left(\sum_{k=1}^{\ell} \theta_k y_k \right) \leq \prod_{k=1}^{\ell} f^{\theta_k}(y_k).
\]

Accordingly, by simplification, it follows that

\[
\prod_{j=1}^{n} \left(\sum_{k=1}^{\ell} \theta_k y_k \right) \leq \prod_{k=1}^{\ell} \left(\sum_{i=1}^{m} \lambda_{ij} \prod_{j=1}^{n} \left(\sum_{k=1}^{\ell} \theta_k y_k \right)^{\theta_k} \right)^{\frac{\sum_{j=1}^{n} \lambda_{ij} \prod_{i=1}^{m} \sum_{k=1}^{\ell} \theta_k y_k}{\sum_{i=1}^{m} \sum_{k=1}^{\ell} \theta_k y_k}}
\]

and

\[
\prod_{j=1}^{n} B(\lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \ldots, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k) \leq \prod_{i=1}^{m} B(\lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \ldots, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k) \prod_{i=1}^{m} B(\lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k, \ldots, \lambda_{ij} \sum_{k=1}^{\ell} \theta_k y_k)
\]

We note that inequalities for multinomial coefficients are seldom.

6 Three open problems

In this section, we pose three open problems.
6.1 First open problem

The logarithmically complete monotonicity is stronger than the complete monotonicity \[2,10,29\]. This means that a logarithmically completely monotonic function must be completely monotonic. Completely monotonic functions on the infinite interval \((0, \infty)\) have a characterization \[43, p. 161, Theorem 12b\]: a function \(f(t)\) defined on the infinite interval \((0, \infty)\) is completely monotonic if and only if the integral

\[
 f(t) = \int_0^{\infty} e^{-ts} d\sigma(s) \quad (6.1)
\]

converges for \(0 < t < \infty\), where \(\sigma(s)\) is nondecreasing. In other words, a function \(f(t)\) is completely monotonic on \((0, \infty)\) if and only if it is a Laplace transform of a nondecreasing measure \(\sigma(s)\) on \((0, \infty)\).

Under conditions of Theorem 4.1, the second derivative \([\ln f(t)]''\) is completely monotonic with respect to \(t \in (0, \infty)\). Motivated by the integral representation (6.1), we now pose the first open problem: can one find a closed expression of the nondecreasing measure \(\sigma_{m,n;\lambda}(s)\) such that the integral \([\ln f(t)]'' = \int_0^{\infty} e^{-ts} d\sigma_{m,n;\lambda}(s)\) converges for \(0 < t < \infty\)?

6.2 Second open problem

Recall from [41, Theorem 3.2] that a function \(F: (0, \infty) \to [0, \infty)\) is a Bernstein function if and only if it admits the representation

\[
 F(t) = a + bt + \int_0^{\infty} \left(1 - e^{-ts}\right) d\sigma(s), \quad (6.2)
\]

where \(a, b \geq 0\) and \(\sigma(s)\) is a measure on \((0, \infty)\) satisfying \(\int_0^{\infty} \min\{1, s\} d\sigma(s) < \infty\). By Theorem 4.1, the logarithmic derivative \([\ln f(t)]'\) is a Bernstein function on \((0, \infty)\). Motivated by the integral representation (6.2), we now pose the second open problem: can one find the values of \(a, b\) and present a closed expression of the measure \(\sigma_{m,n;\lambda}(s)\) such that

\[
 [\ln f(t)]' = a + bt + \int_0^{\infty} \left(1 - e^{-ts}\right) d\sigma_{m,n;\lambda}(s)
\]

and \(\int_0^{\infty} \min\{1, s\} d\sigma_{m,n;\lambda}(s) < \infty\) hold?

For example, when \(\rho = 2\), since \(\lim_{t \to 0^+} [\ln f(t)]' = 0\) and

\[
 \lim_{t \to \infty} [\ln f(t)]' = \ln \left(\frac{\prod_{i=1}^m v_i \prod_{j=1}^n \tau_j}{\prod_{i=1}^m \prod_{j=1}^n \lambda_{ij}^{\frac{1}{2}}} \right),
\]

we can derive that \(a = b = 0\).

In order to solve the above two open problems, we suggest readers to refer to the papers [2–8,17,20,21,26–28,30,32,35–40] and closely related references therein.

6.3 Third open problem

Is the inequality (3.1) in Theorem 3.1 sharp except for \(m = n = 1\)? Equivalently speaking, can the number 2 in the right hand side of (3.1) be replaced by a larger constant except for \(m = n = 1\)?
7 Remarks

Finally, we list several remarks.

Remark 7.1 An anonymous referee pointed out that, as enriching references as much as possible is very important for readers, the recently published papers [44, 46–48] should be mentioned as follows.

In [44], among other things, Yang and Tian proved that,

(1) for \(a \geq \frac{31}{98} \), the function

\[
fa(x) = \ln \Gamma \left(x + \frac{1}{2} \right) - x \ln x + x - \frac{1}{2} \ln(2\pi) + \frac{x(x^2 + c)}{24(x^4 + ax^2 + b)}
\]

with \(b = \frac{7}{120}(a - \frac{31}{98}) \) and \(c = a - \frac{7}{120} \) is increasing and concave on \((0, \infty)\) if and only if \(a \geq \frac{5281}{6068} \), while \(fa(x) \) is decreasing and convex on \((0, \infty)\) if and only if \(a = \frac{31}{98} \);

(2) the function

\[
F_a(x) = -\left(x^4 + ax^2 + \frac{98a - 31}{1680} \right)fa(x)
\]

is completely monotonic on \((0, \infty)\) if and only if \(a \geq \frac{5281}{6068} \).

In [46], among other things, with the monotonicity rule for the ratio of two Laplace transforms [45, Lemma 4] and other techniques, Yang and Tian determined that the double inequality

\[
\exp\left(-\frac{x}{24x^2 + \beta}\right) < \frac{\Gamma(x + 1/2)}{\sqrt{2\pi}(x/e)^x} < \exp\left(-\frac{x}{24x^2 + \alpha}\right)
\]

holds for \(x > x_0 \geq 0 \) if and only if \(\alpha \geq \frac{7}{5} \) and \(\beta \leq -f(x_0) \), where

\[
f(x) = 24x^2 + \frac{x}{\ln(x + 1/2) - x \ln x + x - \ln \sqrt{2\pi}}
\]

is decreasing from \((0, \infty)\) onto \((-\frac{7}{5}, 0)\).

In [47], three authors obtained an integral, an asymptotic expansion, and a Maclaurin series representation for generalized Gaussian ratio, discovered their various related properties such as complete monotonicity and some inequalities, and derived several simple approximations for the inverse function of generalized Gaussian ratio.

In [48], Zhu established several inequalities for \(A_p(x) = \frac{1}{x} \int_0^x e^{-t^p} \, dt \), \(B_q(x) = 1 - \frac{1 - e^{-qtx}}{q(p+1)} \), and some ratios involving \(A_p(x) \) and \(B_q(x) \).

Remark 7.2 The monotonicity rule for the ratio of two Laplace transforms [45, Lemma 4] reads that, if the ratio \(\frac{A(x)}{B(x)} \) is increasing, then the ratio \(\frac{\int_0^\infty A(x)e^{-xt^q} \, dx}{\int_0^\infty B(x)e^{-xt^q} \, dx} \) is decreasing on \((0, \infty)\). This monotonicity rule for the ratio of two Laplace transforms has been generalized in [19, Lemma 2.7 and Remark 6.3] as follows: when the functions \(U(x) \), \(V(x) > 0 \), and \(W(x, t) > 0 \) are integrable in \(x \in (a, b) \),

(1) if the ratios \(\frac{\bar{W}(x,t)}{W(x,t)} \) and \(\frac{U(x)}{V(x)} \) are both increasing or both decreasing in \(x \in (a, b) \), then the ratio

\[
R(t) = \frac{\int_a^b U(x)W(x,t) \, dx}{\int_a^b V(x)W(x,t) \, dx}
\]

is increasing in \(t \);
(2) if one of the ratios $\frac{\partial W(x,t)}{\partial t}$ and $\frac{U(x)}{V(x)}$ is increasing and the other is decreasing in $x \in (a, b)$, then the ratio $R(t)$ is decreasing in t.

Remark 7.3 This paper is a slightly revised version of the arXiv preprint [31] and a companion of the series of papers [14,16,18,25,33,34] and closely related references therein.

Acknowledgements The authors are thankful to anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

References

1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington (1972)
2. Berg, C.: Integral representation of some functions related to the gamma function. Mediter. J. Math. 1(4), 433–439 (2004). https://doi.org/10.1007/s00009-004-0022-6
3. Berg, C., Massa, E., Peron, A.P.: A family of entire functions connecting the Bessel function J_1 and the Lambert W function. Constr. Approx. (2020). https://doi.org/10.1007/s00365-020-09499-x
4. Berg, C., Pedersen, H.L.: A completely monotone function related to the Gamma function. J. Comput. Appl. Math. 133, 219–230 (2001). https://doi.org/10.1016/S00009-0427(00)00644-0
5. Berg, C., Pedersen, H.L.: A completely monotonic function used in an inequality of Alzer. Comput. Methods Funct. Theory 12(1), 329–341 (2012). https://doi.org/10.1007/BF03321830
6. Berg, C., Pedersen, H.L.: A one-parameter family of Pick functions defined by the Gamma function and related to the volume of the unit ball in n-space. Proc. Am. Math. Soc. 139(6), 2121–2132 (2011). https://doi.org/10.1090/S0002-9939-2010-10636-6
7. Berg, C., Pedersen, H.L.: Pick functions related to the gamma function. Rocky Mtn. J. Math. 32, 507–525 (2002). https://doi.org/10.1216/rmjm/1030539684
8. Besenyei, Á.: On complete monotonicity of some functions related to means. Math. Inequal. Appl. 16(1), 233–239 (2013). https://doi.org/10.7153/mia-16-17
9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511801655
10. Guo, B.-N., Qi, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72(2), 21–30 (2010)
11. Guo, B.-N., Qi, F.: Two new proofs of the complete monotonicity of a function involving the psi function. Bull. Korean Math. Soc. 47(1), 103–111 (2010). https://doi.org/10.4134/bkms.2010.47.1.103
12. Guo, B.-N., Qi, F., Zhao, J.-L., Luo, Q.-M.: Sharp inequalities for polygamma functions. Math. Slovaca 65(1), 103–120 (2015). https://doi.org/10.1515/ms-2015-0010
13. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-0-387-68276-1
14. Ouimet, F.: Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex. J. Math. Anal. Appl. 466(2), 1609–1617 (2018). https://doi.org/10.1016/j.jmaa.2018.06.049
15. Ouimet, F.: Complete Monotonicity of a Ratio of Gamma Functions and Some Combinatorial Inequalities for Multinomial Coefficients, arXiv preprint (2019). arXiv:1907.05262
16. Qi, F.: A logarithmically completely monotonic function involving the q-gamma function, HAL preprint (2018). https://hal.archives-ouvertes.fr/hal-01803352v1. Accessed 3 Dec 2020
17. Qi, F.: An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind. J. Number Theory 144, 244–255 (2014). https://doi.org/10.1016/j.jnt.2014.05.009
18. Qi, F.: Complete monotonicity for a new ratio of finite many gamma functions, HAL preprint (2020). https://hal.archives-ouvertes.fr/hal-02511909v1. Accessed 3 Dec 2020
19. Qi, F.: Decreasing monotonicity of two ratios defined by three or four polygamma functions, HAL preprint (2020). https://hal.archives-ouvertes.fr/hal-02998414. Accessed 3 Dec 2020
20. Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014). https://doi.org/10.1016/j.cam.2014.03.004
21. Qi, F.: Integral representations for multivariate logarithmic polynomials. J. Comput. Appl. Math. 336, 54–62 (2018). https://doi.org/10.1016/j.cam.2017.11.047
22. Qi, F., Agarwal, R.P.: On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. (2019). https://doi.org/10.1186/s13660-019-1976-z
23. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296(2), 603–607 (2004). https://doi.org/10.1016/j.jmaa.2004.04.026
24. Qi, F., Guo, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Coll (2004)
25. Qi, F., Guo, B.-N.: From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions. J. Math. Anal. Appl. (2021). https://doi.org/10.1016/j.jmaa.2020.124478
26. Qi, F., Guo, B.-N.: Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111(2), 425–434 (2017). https://doi.org/10.1007/s13398-016-0302-6
27. Qi, F., Guo, B.-N.: Integral representations of the Catalan numbers and their applications. Mathematics (2017). https://doi.org/10.3390/math5030040
28. Qi, F., Guo, B.-N.: A logarithmically completely monotonic function involving the ratio of gamma functions. J. Ineq. Appl. 21(2), 421–431 (2018). https://doi.org/10.1186/s13660-018-1976-z
29. Qi, F., Li, W.-H.: A logarithmically completely monotonic function involving the ratio of gamma functions. J. Appl. Anal. Comput. 5(4), 626–634 (2015). https://doi.org/10.1186/1687-0200-2015-2049
30. Qi, F., Li, W.-H.: Integral representations and properties of some functions involving the logarithmic mean. Filomat 30(7), 1659–1674 (2016). https://doi.org/10.2298/FIL160759Q
31. Qi, F., Li, W.-H., Yu, S.-B., Du, X.-Y., Guo, B.-N.: A ratio of many gamma functions and its properties with applications, arXiv preprint (2019). arXiv:1911.05833v1
32. Qi, F., Lim, D.: Integral representations of bivariate complex geometric mean and their applications. J. Comput. Appl. Math. 330, 41–58 (2018). https://doi.org/10.1016/j.cam.2017.08.005
33. Qi, F., Lim, D.: Monotonicity properties for a ratio of finite many gamma functions. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02655-4
34. Qi, F., Niu, D.-W., Shi, X.-T., Guo, B.-N.: Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions. Appl. Anal. Discrete Math. 14(2), 512–527 (2020). https://doi.org/10.2298/ADM191111033Q
35. Qi, F., Shi, X.-T., Guo, B.-N.: Integral representations of the large and little Schröder numbers. Indian J. Pure Appl. Math. 49(1), 23–38 (2018). https://doi.org/10.1007/s13226-018-0258-7
36. Qi, F., Shi, X.-T., Liu, F.-F.: An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat 32(2), 575–587 (2018). https://doi.org/10.2298/FIL1802575Q
37. Qi, F., Zhang, X.-J.: An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind. Bull. Korean Math. Soc. 52(3), 987–998 (2015). https://doi.org/10.4134/BKMS.2015.52.3.987
38. Qi, F., Zhang, X.-J., Li, W.-H.: An integral representation for the weighted geometric mean and its applications. Acta Math. Sin. (Engl. Ser.) 30(1), 61–68 (2014). https://doi.org/10.1007/s10114-013-2547-8
39. Qi, F., Zhang, X.-J., Li, W.-H.: Lévy–Khintchine representation of the geometric mean of many positive numbers and applications. Math. Inequal. Appl. 17(2), 719–729 (2014). https://doi.org/10.7153/mia-2014-17-53
40. Qi, F., Zhang, X.-J., Li, W.-H.: Lévy–Khintchine representations of the weighted geometric mean and the logarithmic mean. Mediterr. J. Math. 11(2), 315–327 (2014). https://doi.org/10.1007/s00009-013-0311-z
41. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions, de Gruyter Studies in Mathematics, 2nd edn., vol. 37. Walter de Gruyter, Berlin (2012). https://doi.org/10.1515/9783110269338
42. Temme, N.M.: Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication. Wiley, New York (1996). https://doi.org/10.1002/9781118032572
43. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)
44. Yang, Z.-H., Tian, J.-F.: Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3603–3617 (2019). https://doi.org/10.1007/s13398-019-00719-z
45. Yang, Z.-H., Tian, J.-F.: Monotonicity and inequalities for the gamma function. J. Inequal. Appl. (2017). https://doi.org/10.1186/s13660-017-1591-9
46. Yang, Z.-H., Tian, J.-F.: On Burnside type approximation for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2665–2677 (2019). https://doi.org/10.1007/s13398-019-00651-2
47. Yang, Z.-H., Xi, B.-Y., Zheng, S.-Z.: Some properties of the generalized Gaussian ratio and their applications. Math. Inequal. Appl. 23(1), 177–200 (2020). https://doi.org/10.17153/mia-2020-23-15
48. Zhu, L.: New bounds for the function involving incomplete gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 901–908 (2019). https://doi.org/10.1007/s13398-018-0519-7

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Feng Qi¹,² · Wen-Hui Li³ · Shu-Bin Yu¹ · Xin-Yu Du⁴ · Bai-Ni Guo⁵

Feng Qi
qifeng618@gmail.com; qifeng618@hotmail.com; qifeng618@qq.com
https://qifeng618.wordpress.com/

Wen-Hui Li
wen.hui.li@foxmail.com; wen.hui.li102@gmail.com

Shu-Bin Yu
shubin.yu@qq.com

Xin-Yu Du
xinyu.du3@qq.com

¹ School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
² College of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
³ Department of Fundamental Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, Henan, China
⁴ School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China
⁵ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, Henan, China