The Cell Cycle Independence of HIV Infections Is Not Determined by Known Karyophilic Viral Elements

Masahiro Yamashita, Michael Emerman*
Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America

Introduction

Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages [4]. However, the ability to productively infect non-dividing cells is not shared by all retroviruses [5]. For example, the gamma retroviruses, such as the murine leukemia virus (MLV) require mitosis for integration [6,7]. Infection and transduction with foamy retroviruses also depends on cell cycle and requires mitosis [8–10]. An alpharetrovirus, the avian sarcoma virus, appears to be able to integrate viral genomes in non-dividing cells [11,12], but fails to produce virus particles, indicating that it requires mitosis for a later stage of the viral life-cycle [13,14].

After entry into the cytoplasm, retroviruses undergo an uncoating and reverse transcription process that yields a large nucleoprotein complex called the preintegration complex (PIC) [15]. Nuclear entry of viral DNA is an essential step in the retroviral life cycle since viral genomic DNA in the PIC must enter the nucleus to be integrated into host cell chromosomes. The prevailing model to explain the ability of lentiviruses to infect cells independent of the cell cycle is that lentiviruses can target their viral genomes into the nucleus of non-dividing cells via active nuclear transport, while gammaretroviruses that cannot infect non-dividing cells gain access to the host chromosomes only when the nuclear membrane breaks down at mitosis [6,7]. Thus, it has been hypothesized that the PIC of lentiviruses contain virally encoded nuclear localization signals (NLS), which allow active nuclear transport independent of the cell cycle, whereas the PIC of gammaretroviruses do not contain virally encoded NLS, and thus can not enter the nucleus until mitosis (reviewed in [16]).

Several lentiviral elements that contain a potential NLS and are present in the PIC have been identified including the matrix (MA) [17], integrase (IN) [18], and Viral Protein R (Vpr) [19] proteins and a cis-acting element called the central polypurine tract (cPPT) [20]. However, the importance of each of these elements is controversial since subsequent studies have shown that HIV lacking one or several mutations in these NLS elements still retains a significant ability to infect non-dividing cells [16,21–27]. The IN protein is a particularly attractive candidate to mediate nuclear import of HIV genomes since it is part of the PIC through all steps of infection until viral integration, and IN is necessary for nuclear localization and transposition of the yeast elements Ty1 and Ty3 [28–30]. Moreover, HIV IN contains nuclear import activity [18,25,31–34], whereas MLV IN lacks such nuclear import activity [35,36]. However, the role of HIV IN within nuclear import of viral genomes has been difficult to definitively address because mutations or deletions within IN often show pleiotropic effects on virus replication, including

Received July 25, 2005; Accepted September 19, 2005; Published November 11, 2005

Copyright: © 2005 Yamashita and Emerman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: CA, capsid protein; cPPT, central polypurine tract; IN, integrase; MA, matrix; MLV, murine leukemia virus; NLS, nuclear localization signal; PIC, preintegration complex; RT, reverse transcriptase; RTI, reverse transcriptase inhibitor; Vpr, Viral Protein R; VSV-G, Vesicular stomatitis virus G protein

* To whom correspondence should be addressed. E-mail: memerman@fhcrc.org
Human immunodeficiency virus can infect many cells irrespective of whether or not they are dividing, whereas some other retroviruses, such as the murine leukemia virus can only infect cells that are proliferating. This property is important for the ability of HIV to establish infections in critical cell types in infected people. Multiple and redundant signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. However, here the authors eliminated all four described nuclear localizing signals from an HIV genome and show that no combination of these virally encoded signals is essential for the ability of HIV to infect non-dividing cells. They suggest that another step of the virus lifecycle, other than nuclear import, is the rate-limiting step that determines the cell cycle dependence/independence of retroviral infections.

Results

Generation of an Infectious Chimeric HIV-1 with MLV IN That Is Integration-Competent

HIV IN localizes to the nucleus when stably expressed in cells, whereas MLV IN does not [36]. Therefore, to determine if the karyophilic property of IN is essential for the infectivity of HIV in non-dividing cells, HIV-1 IN was replaced with MLV IN within an HIV-based provirus, generating the chimeric clone called MHIV-mIN (which encodes MLV IN instead of HIV IN while the rest of the provirus is HIV) (Figure 1). Transfection of this chimeric provirus showed that it produces virus particles as indicated by the presence of virus-specific proteins in culture supernatants of transfected cells (Figure 2). As expected, MLV IN, and not HIV-1 IN, was detected in virions (Figure 2). The amount of virions made by MHIV-mIN was between 3- to 30-fold lower than that made by wild-type HIV-1 as measured by p24 gag ELISA (unpublished data). Nevertheless, processing of reverse transcriptase (RT) and IN appeared normal in virions produced by MHIV-mIN virus (Figure 2).

We tested the infectivity of MHIV-mIN together with wild-type HIV-1 in a single-cycle replication assay [50]. While the titer of MHIV-mIN was about 3-logs lower than that of wild-type HIV-1 when normalized by the amount of p24 gag (Figure 3A), it was still well above the background. Real-time PCR data indicated that MHIV-mIN produces 3- to 5-fold less cDNA than wild-type HIV-1 (Figure 3B). Thus, a decrease of reverse transcription of MHIV-mIN alone cannot explain the reduced infectivity of MHIV-mIN.

The integration reaction requires specific recognition by viral IN of short DNA sequences (~10 bp) at both ends of viral DNA, called the attachment (att) site. A previous report indicated that replacement of HIV att sites with MLV att sites at both ends of the long terminal repeat (LTR) reduced viral titer to 0.5% level of the wild-type level [51], while others have found that the att sequences other than the conserved CA dinucleotide motif are not very important in vivo [52,53]. To test this, we also made a chimeric clone that contains MLV att sequences in both ends of the LTR (Figure 1, called pMHIV-mIN/matt), and examined the infectivity of these chimeras (Figure 3C). We could obtain titers of up to 1 × 10^6 infectious units per ml after concentration of both viruses, but MHIV-mIN/matt did not show any significant increase in infectivity when compared with MHIV-mIN (Figure 3C). The infectivity of MHIV-mIN was also sensitive to reverse transcriptase inhibitors (Figure 3C and Figure S1), and thus depends on de novo genomic DNA synthesis. Therefore, we found that there is not a requirement for an MLV-specific att site in the context of a chimeric HIV with MLV IN.

In mutants of HIV that are defective for integration support low levels of infectivity in the multinuclear activation of galactosidase indicate cell (MAGI) assay, probably due to weak expression of the tat gene products from unintegrated DNA [54–56]. However stable expression of transduced genes usually requires integration of viral DNA into host chromosome [57,58]. Thus, to genetically test for integration, we made use of a reporter virus system in which the puromycin-resistant gene was put in place of the nef gene, and infected cells were selected for puromycin resistance. Compared with HIV, MHIV-mIN exhibits ~4 log decrease of infectivity in the puromycin-based assay (Figure 3D), which is about one log lower than the virus titer difference in MAGI assay (Figure 3A). The difference between the MAGI titer and the puromycin-resistance titer is likely due to expression of Tat from unintegrated DNA [54–56]. Nonetheless, these data show that MHIV-mIN is capable of stable transduction.
To more directly address the question of whether or not the MHIV-mIN virus can carry out bona fide IN-mediated integration, we extracted genomic DNA from the puromycin-resistant colonies to amplify and sequence the junction between viral and host sequences. There are two characteristic features of retroviral integration of viral DNA into the host genome. First, two nucleotides are deleted from both ends of viral DNA. Indeed, we observed the deletion of two nucleotides of both ends of all sequenced clones (Figure 4).

The second characteristic of IN-mediated integration is that the target sequence of the host DNA is duplicated after the integration event. The size of duplication differs among retroviruses [59]; for example, HIV integration yields 5-bp duplication of the target sequence, whereas MLV integration creates 4-bp duplication. In each case, the length of the duplicated sequence was 4-bp, which is consistent with integration of the HIV chimeric virus mediated by the MLV IN. Taken together these findings demonstrate that MHIV-mIN is competent for all of the early steps of virus replication including integration.

HIV IN Is Not Essential for Infection of Non-Dividing Cells

HIV efficiently infects non-dividing cells, whereas MLV infection is restricted in non-dividing cells. To determine if IN plays an essential role in this difference, growth-arrested cells prepared by treatment of HeLa cells with aphidicolin were challenged with the chimeric virus MHIV-mIN along with control viruses, and infectivity was judged by measuring the output of the luciferase gene encoded by reporter virus constructs. As expected from previous studies, wild-type HIV was capable of infecting non-dividing cells as efficiently as dividing cells, while transduction of the luciferase gene by MLV was reduced in non-dividing cells compared with in dividing cells (Figure 5). The phenotype of MHIV-mIN was similar to that with HIV, but not with MLV, in that it was not decreased in non-dividing cells relative to dividing cells (Figure 5). In fact, we saw a slight increase of infectivity by MHIV-mIN on non-dividing cells relative to dividing cells (Figure 5). This increase may be due to expression of the

Figure 1. Schematic Representation of the Genomic Organization of Chimeric HIV/MLV Proviruses

Portions originated from the HIV genome are shown in white, while those from the MLV genome are in gray. The junction between HIV-1 RT and MLV IN within HIV-mIN was created by direct joining of DNA sequences encoding the C-terminus of HIV RT to the N-terminus of MLV IN. Part of the 3' end of the HIV-1 IN encoding sequence is retained in the construct of MHIV-mIN to preserve the overlapping Vif sequence and cis-acting elements such as cPPT and splice acceptor(s). However, no part of HIV IN should be expressed in the chimeric virus because of the presence of two stop codons following the sequence encoding MLV IN (see Materials and Methods). The molecular clone encoding MHIV-mIN/matt has the MLV att sites in 5' U5 and 3' U3. After reverse transcription, both ends of U5 and U3 will have the MLV att sites. MHIV-mMA12CA has been previously described [40]. MHIV-mMA12CA/mIN is similar except it contains MLV IN in addition to the MLV Gag region. A molecular clone of MHIV-mMA12CA/mIN was created by putting the DNA sequence encompassing the MLV IN encoding sequence of the HIV-mIN with a Vpr mutation into the infectious provirus mPMHIV-mMA12CA. HIVANLS contains MLV MA instead of HIV MA, MLV IN instead of HIV IN and mutations in the cPPT and in Vpr.

DOI: 10.1371/journal.ppat.00100018.g010

Figure 2. Western Blot Analysis of Purified Virus Particles of MHIV-mIN Together with HIV-1 and MLV

Polyprotein processing was tested for HIV-1 RT, HIV-1 IN and MLV IN. Because of low protein production by MHIV-mIN, 10-times more virions were loaded for MHIV-mIN than for HIV-1 and MLV in this experiment.

DOI: 10.1371/journal.ppat.00100018.g002
reporter gene from unintegrated DNA in non-dividing cells, as described in the case of infection of non-dividing cells with feline immunodeficiency virus IN mutants [57]. Nonetheless, these results demonstrate that IN is not an essential determinant for the ability of HIV-1 to infect non-dividing cells relative to dividing cells.

We previously showed that replacement of part of the gag gene of HIV with that of MLV would convert HIV into a virus that had lost the ability to infect non-dividing cells [40]. Similarly, we found that we can change the phenotype of the MHIV-mIN by replacing the MA and CA proteins of HIV with the MA, p12, and CA proteins of MLV (MHIV-mMA12CA-mIN in Figure 1). Indeed, addition of Gag proteins of MLV into the HIV provirus that already contains MLV IN increased the infectivity in dividing cells, but specifically lost the ability to infect non-dividing cells (Figure 5: Compare MHIV-mMA12-CA/mIN with MHIV-mIN). These data demonstrate that Gag, rather than IN, is the dominant determinant for the ability of HIV to infect cells independent of cell cycle progression.

Normal Levels of Nuclear Import by MHIV-mIN

A recent report showed that efficient nuclear entry of HIV can occur independently of mitotic nuclear disassembly in cycling cells [60]. Thus, one interpretation of our results is that elimination of an NLS from HIV would result in lack of infectivity both in dividing and non-dividing cell populations. Indeed, we found that we can change the phenotype of the MHIV-mIN by replacing the MA and CA proteins of HIV with the MA, p12, and CA proteins of MLV (MHIV-mMA12CA-mIN in Figure 1). Indeed, addition of Gag proteins of MLV into the HIV provirus that already contains MLV IN increased the infectivity in dividing cells, but specifically lost the ability to infect non-dividing cells (Figure 5: Compare MHIV-mMA12-CA/mIN with MHIV-mIN). These data demonstrate that Gag, rather than IN, is the dominant determinant for the ability of HIV to infect cells independent of cell cycle progression.

Unintegrated Viral DNA

Integrated Proviruses

Figure 4. Integration Sites of MHIV-mIN

A schematic illustration of the unintegrated viral DNA is shown with the detailed structures of both ends of LTR (top). The two terminal base pairs at each end of the linear DNA precursor, which are removed in the integration process, are shown in highlight. Two other DNA sequences confirmed the removal of dinucleotides from one end of viral DNA (unpublished data). DNA sequences flanking integrated proviral DNA are shown (bottom). Junction sequences between the integrated MHIV-mIN genome and human genomic DNA at each end of the provirus were obtained by nested PCR based on the sequence of integration sites that were mapped with human genome sequences as described in the Materials and Methods. The 4-bp sequence duplications that flank the integrated provirus are shown in boxes.

Figure 3. MHIV-mIN Is Infectious

(A) Single-cycle infectivity of MHIV-mIN. VSV-G-pseudotyped HIV and MHIV-mIN were made by transfection of 293T cells with plasmid DNA. Infectivity was measured with the MAGI assay by counting β-galactosidase positive cells 2 d post-infection. Virus titers were normalized by the amount of p24 (μg). Infections were performed in triplicate. Mean values are shown here with standard derivation. The background in the assay is about 10 blue cells.

(B) Copy numbers of late products of reverse transcription were measured by using real-time quantitative PCR. Viral cDNA numbers were normalized by p24. Infections were performed in triplicate. This is a representative experiment of three independent trials.

(C) Infectivity of MHIV-mIN and MHIV-mIN/matt was compared in the MAGI assay. VSV-G-pseudotyped viruses were prepared and concentrated at 100-fold by ultracentrifugation. Infections of MAGI cells were also performed in the presence or absence of reverse transcriptase inhibitors (50 μM 3TC and AZT). Formation of blue cells in this assay must result from retrovirus infection since addition of reverse transcription inhibitors (shown as black bars) eliminated most of positive cells.

(D) Comparison of infectivity between wild-type HIV-1 and MHIV-mIN as judged by the ability to make puromycin-resistant colonies (50 μM 3TC and AZT). Formation of blue cells in this assay must result from retrovirus infection since addition of reverse transcription inhibitors (shown as black bars) eliminated most of positive cells.

To facilitate stable transduction of HIV genomes, a mutation was introduced into the vpr gene in these proviruses because expression of Vpr would preclude formation of colonies due to its cytotoxicity [69,77].

DOI: 10.1371/journal.ppat.0010018.g003

Chimeric HIV and Non-Dividing Cells
HIV Lacking All of the Known Types of NLS Still Infects Non-Dividing Cells as Efficiently as Dividing Cells

As mentioned above, IN is not the sole candidate that potentially encodes a viral NLS. MA, Vpr, and the cPPT have all been described as elements that are important for entry of HIV-1 PIC into the nucleus. To formally address the argument that other described NLSs in HIV as well as the cPPT are redundant for nuclear import with the NLS in HIV IN, a mutant HIV-1 lacking all the NLS candidates was generated. This mutant (HIV-ANLS), carrying MLV MA and IN instead of HIV counterparts, lacks a functional vpr gene, and has a mutated cPPT (Figure 1). We found that HIV-ANLS had reduced infectivity relative to wild-type HIV (Figure 7), but the infectivity of HIV-ANLS is sensitive to reverse transcriptase inhibitors (Figure S1), and thus is not an artifact of the virus concentration. Importantly, the infectivity of HIV-ANLS is independent of cell cycle conditions (Figure 7). It should be noted that our luciferase system can detect reduction even when the activity is low (See reduction of MLV infectivity in 0.08 μl in Figure 7, for example). The phenotype of HIV-ANLS in non-dividing cells is in marked contrast to that of MLV which is dependent on the cell cycle, and in contrast to a previously described chimeric HIV virus containing MLV MA, p12, and CA (MHIV-mMA12CA: Figure 1) [40], which has specifically lost the ability to efficiently infect non-dividing cells (Figure 7). Therefore, these data...
demonstrate that HIV without any of the previously described NLS elements is fully capable of infecting non-dividing cells as well as it infects dividing cells, and suggest that the virally encoded NLS elements are not rate-limiting for this process.

Discussion

In the present study, we created a chimeric HIV-1 in which HIV IN is replaced by its counterpart from MLV and demonstrated that HIV can integrate with a heterologous IN protein. Thus, while inefficient, MLV IN can replace HIV IN within the context of an infectious virus. The infectivity of this chimeric virus having MLV IN was not dependent on the presence of the MLV att sites at the ends of the LTR, yet did result in duplications of genomic DNA that were consistent with MLV IN. We used this chimeric virus as a template to eliminate all previously described viral NLS elements and found that it was still able to infect non-dividing cells as well as it infected dividing cells.

A popular model for lentiviral infection of non-dividing cells is that the karyophilic activity of an HIV-encoded NLS such as IN is important to bring HIV PIC into the nucleus of non-dividing cells, thereby allowing efficient infection in the absence of mitosis. Our experiments using a chimeric HIV-1 with MLV IN showed that the exchange of IN does not cause any phenotypic change of infectivity that is specific to non-dividing cells. This finding indicates that IN is not an essential determinant that governs the infectious phenotype in non-dividing cells. These results are in agreement with some previous studies that examined individual putative NLS elements within HIV IN and argued against a role of an IN NLS in nuclear import of HIV [16,24,25,61]. Indeed, a recent report by Lu et al demonstrated that mutations in a putative NLS of HIV IN results in class II mutations, which are defective at a postnuclear entry step rather than at nuclear import [61]. In contrast, Ikeda et al claimed that nuclear import of viral DNA is affected by reduced binding of IN to viral cDNA [62]. However, the reduction of nuclear import of such IN mutants (with reduced binding ability to viral cDNA) was at most 40% of the wild-type level as judged by nuclear DNA and that amount of reduction does not seem to explain severely reduced infectivity of their mutants (less than 1% of the wild-type level) [62]. Moreover, other studies have shown that HIV IN localizes to the nucleus by virtue of binding LEDGF/p75 [36,38,39]. However, reduction of LEDGF levels by small interfering RNA (siRNA) affected the nuclear localization of HIV IN, but did not affect the ability of HIV to infect non-dividing cells [36]. Therefore, although we cannot completely rule out the possibility that HIV IN is involved in nuclear migration of viral DNA, we believe that its role is minor.

Although other studies have ruled out a role for individual and some combinations of putative karyophilic viral elements in the HIV PIC, it has not been possible up to now to eliminate all of the identified elements at once in order to test the hypothesis that infection of non-dividing cells is reliant on multiple redundant NLS. However, we were able to create an HIV mutant lacking all of the known NLS-encoding elements, and demonstrated that not only IN, but also none of the other NLS-encoding elements have any effect on the ability of HIV-1 to infect non-dividing cells. Thus, our data are not consistent with a previous suggestion that mutation of single (or double) NLS-encoding elements had little phenotypic change because of redundant NLS-encoding elements that are responsible for nuclear transport of HIV PIC and for infection in non-dividing cells. One possible interpretation of our results is that we have not yet found the most important NLS encoded by HIV. While this is still formally possible, the present results along with our previous results that found that CA is a dominant determinant for retrovirus infectivity in non-dividing cells [40], suggest that these virally encoded karyophilic elements are not the major determinants for the infectivity of HIV IN non-dividing cells. Rather, we consider that our data lend support to the alternative hypothesis that nuclear entry is not the rate-limiting step for infection of non-dividing cells. Our hypothesis is also consistent with the findings that the addition of NLS encoding sequences to MLV affects the progress of uncoating, thereby influencing downstream events such as nuclear import and integration. In this model, uncoating of HIV progresses normally in non-dividing cells and functional PIC enter the nucleus where they integrate viral DNA. In contrast, uncoating of MLV is impaired in non-dividing cells, which results in the failure of subsequent steps of the replication cycle. In this scenario, gammaretroviruses may need mitosis to complete uncoating. In fact, in the case of HIV, CA is dissociated from non-
Materials and Methods

Nomenclature and construction of proviruses. Proviruses were named as follows: the MLV IN encoding sequence was introduced into the MLV IN gene of HIV-1 in place of part of the HIV IN gene and by replacing the MLV IN encoding sequence also contains the initiation site of MLV (ggctttcat). Then, the clone HIV-mIN was cloned into the proviral DNA of HIV-1 in place of part of the HIV IN encoding sequence. The 5' end of the MLV IN encoding sequence was preserved in the construct of MHIV-mIN, since it contains several important cis-acting elements such as central polypurine tract (cPPT). The original TAA stop codon for the MLV IN is followed by additional stop codon (TGA) that prevents expression of a possible fusion protein containing MLV Env, since MLV IN encoding sequence also contains the initiation site of MLV Env. Thus, the junction between the MLV IN encoding sequence and HIV sequence is constructed as below: TGAAGAGCTTAAAATGTTGTC (MLV sequence is shown in capital letters; HIV sequence is shown in small letters; two stop codons are shown in underlined).

A molecular clone of HIV-mNatt was constructed by replacing the att sites of HIV with those of MLV in pLai. The 3' U3 att site of HIV-1 (ccgaggacg) was replaced with the U3 att site of MLV (ggctttcat). The 5' U5 att site of HIV-1 (tccctagag) was replaced with the U5 att site of MLV (gggctttcat). Then, the clone HIV-mNatt was used to create the construct encoding MHIV-mNatt by swapping the DNA sequence encompassing the MLV IN encoding sequence in the MLV-mN encoding sequence. An additional chimeric HIV-1 having 1-10 copies of the gag gene and IN of MLV was made by replacing the DNA sequence encoding the HIV MA and CA proteins with the DNA sequence of the MLV MA and CA, resulting in MHIV-m12CA/mIN.

An HIV mutant lacking all of the putative NLS encoding genes was made by mutating the ePPT and the epr gene and by replacing the HIV-1 MA and IN with the MLV MA and IN, respectively. The ePPT-D mutation [99] was introduced into pLai by PCR mutagenesis. Construction of a Vpr mutant (pLai-eVpr) [69] and MHIV having the MLV MA [40] was reported previously. All of these mutations and replacements were combined together with the env-deficient provirus clone pLai-MENV with the DNA sequence of the molecular clones of HIV-1, MHIV-mN, and MHIV-Mma12CA/mIN.

The HIV pyruvmin resistant constructs were created in the same way as the luciferase constructs as described above. The epr mutant pLai-MENV produces an insertion mutation in the epr gene of the pyruvmin resistance constructs.

Western blot analysis. Western blots were probed with the HIV-1 RT antibody (through the AIDS Research and Reference Program, Division of AIDS, NIAID); mouse monoclonal anti-HIV-1 IN antibody (Michael Malim, King’s College, London); rabib anti-MLV IN (Frederick Bushman, University of Pennsylvania, [63]); sheep antibody against LHD 1 (Cortex Biochem, San Leandro, CA); and mouse monoclonal antibody against nuclear pore complex proteins Mabh14 (Covance, Devner, Pennsylvania) [70]. The membranes were washed for 30 min in wash buffer (PBS containing 0.2% Tween 20) and then incubated with a 1:2000 dilution of horseradish peroxidase-conjugated antibody to that match with the primary antibody for 60 min at room temperature. The membranes were washed three times for 30 min, and the bound antibody was detected with ECL. Plus Western blotting detection reagents (Amerham Biosciences, Little Chalfont, United Kingdom). In some cases, membranes were stripped and reprobed with another primary antibody.

Infectivity assays. Vesicular stomatitis virus G protein (VSV-G)- pseudotyped viruses were prepared by transient transfections of 293T cells performed with the FuGene 6 reagent. HIV and MHIV expression plasmids were co-transfected with a VSV-G expression vector (pL-VSV-G) [71] in addition to pCMV-tat to express VSV-G for pL-VSV-G. For the production of VSV-G-pseudotyped MLV, Gag-Pol expression vector (pCS2-mG) [40] were used along with the murine retrovirus-based vectors [72] encoding the luciferase gene (pNLCV) [40] as well as the VSV-G construct. To enhance the infectivity, MHIV-mN and HIV-AMNs were concentrated by ultracentrifugation. Briefly, 25–35 ml of culture supernatant of transfected 293T cells were centrifuged at 300,000 x g for 5 min to remove cell debris and then filtered through a 0.22 µm filter. The supernatant was transferred into ultracentrifuge tubes and centrifuged at 100,000 x g for 90 min with a SW28 rotor (Beckman Instruments, Fullerton, California, United States). The supernatants were carefully removed and 250–350 µl of culture medium was added at 4 °C for 1 hr and finally used for infection.

Single-cycle infectivity of HIV and MHIV was measured by challenging MAGI cells with serial dilution of virus and staining for β-galactosidase expression as basically described previously [50]. HeLa cells were used for infections with the luciferase reporter virus stocks. Luciferase titers were assayed with the luciferase assay kit (Promega, Madison, Wisconsin, United States) and read on a luminometer. Growth-arrested cells were prepared by treatment with 2 µg per ml of aphidicolin (Sigma, St. Louis, Missouri, United States). Virus binding was enhanced by spinoculation [73] and by addition of 20 µg per ml of DEAE-dextran.

Quantification of p24ag and viral cDNA. The p24ag content of the supernatant was determined by an enzymelinked immunosorbent assay (ELISA: Beckman Coulter, Hialeah, Florida, United States). Late products of reverse transcription and 2-LTR circles of HIV-1 were measured by using real-time PCR based on a previously published protocol [74] as described previously [40].

Subcellular fractionation. One day before infection, approximately 5 HeLa cells were seeded onto four 75 cm² flasks. The cells were challenged either by the VSV-G-pseudotyped HIV-1 or MHIV-mN. Cells were infected with virus stocks that can synthesize equivalent amount of viral DNA in target cells. Virus stock of MHIV-mN was concentrated by ultracentrifugation. Both virus stocks were treated with 50 units of Turbo DNase (Ambion, Austin, Texas, United States) per ml at 37 °C for 1 hr. Infected cells were performed with the presence of DEAE-dextran (20 µg per ml).

Subcellular fractions were carried out based on the method described by Yuan et al [75] with minor modifications. One day after infection, cells were washed, tripurized, and washed once again with phosphate-buffered saline. In order to extract cell lysates and DNA from intact cells, 20% of the infected cells were kept for further experiments. All the manipulations after this step were carried out at 4 °C. The remaining 80% cells were resuspended in 3 volumes of hypotonic buffer (10 mM HEPES, [pH 7.9]; 1.5 mM MgCl₂; 10 mM KC; 2 mM diethiothreitol; 20 µg of aprotinin per ml). Resuspended cells were centrifuged at 2,500 g for 5 min. The cell pellet was resuspended in 3 volumes of hypotonic buffer and hypotonic buffer was centrifuged at 13,400 g x 20 min. The remaining 80% were resuspended in 3 volumes of hypotonic buffer containing 0.05% digitonin once and then washed with hypotonic buffer twice. DNA was extracted from half of each fraction using the QIAamp DNA Mini Kit (Qiagen, Valencia, California, United States), and the other half was used for Western
blotting to assess the integrity of the fractionation procedure using antibodies to a cytoplasmic protein or a nuclear pore antigen.

To assess the purity of the fractionation procedure, we examined the contamination of cytoplasmic viral DNA into nuclear fraction by monitoring the presence of LDH I. Intact cells (10% of the infected cells) and nuclei (half of the purified nuclei) were first resuspended in 100 μl of 0.2 mM EDTA and Gag934, 5'-TATCTTGTC-3'. The PCR was carried out in 50 μl solution, which contains 1× PCR buffer, dNTP (0.2 mM), primers (1 μM), 10 units of Taq polymerase (Roche, Basel, Switzerland), and 200 ng of ligated DNA. PCR products were purified and used for cloning by using pGEM-T Vector System (Promega). Positive clones were sequenced by using the T7 primer.

Junction sequences between 3' ends of viral DNA and host DNA were determined for three of the clones by nested PCR with 5' sense primers matching with 5' LTR of proviral DNA and with 3' anti-sense primers matching with host 121 and 123 nucleotides downstream of the viral DNA. The information obtained from 5' junction sequences between host DNA and viral DNA allowed us to map integration sites of these three clones in the human genome sequence deposited in GenBank. Based on these information, 3' primers were designed. Amplified products were cloned into T-vector and sequenced.

Supporting Information

Figure S1. Single-Cycle Infectivity Assay of MHIV-mIN and HIV-AMIN with Reverse Transcriptase Inhibitors

Infections with viruses that encode the luciferase gene in place of nef were performed with the presence (shown in black) or absence (shown in gray) of a reverse transcriptase inhibitor (RTI) (AZT and 3TC; 50 μM each). For details, see the legend to Figure 5. In both cases, the luciferase activity is decreased by RTI which indicates that expression of luciferase relies on de novo RT activity. Also, the presence of aphidicolin does not change the dependence on de novo reverse transcriptase activity for luciferase activity. This is a representative experiment done with different virus stocks with virtually identical results.

Found at DOI: 10.1371/journal.ppat.0010018.sg001 (15 MB TIF).

Acknowledgments

We are grateful to Frederick Bushman, Yegor Voronin, and Tsai-Yu Lin for critical reading of the manuscript. We thank the National Institute of Health AIDS Reagent Program for Antiserum to HIV-1 RT; Frederick Bushman for antiserum to MLV IN; and Michael H. Malim for mouse monoclonal antibody against HIV-1 IN. This work was supported by NIH grants RO1 AI 51153 and R37 AI 50927.

Competing interests. The authors have declared that no competing interests exist.

Author contributions. MY and ME conceived and designed the experiments, MY performed the experiments, and MY and ME analyzed the data. MY contributed reagents, materials, and analysis tools. MY and ME wrote the paper.

References

1. Weinberg JB, Matthews TJ, Callen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174: 1477–1482.

2. Lewis P, Hersel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. Embo J 11: 3053–3058.

3. Desrosiers R (2001) Nonhuman lentiviruses. In: Knipe D, Howley P, Griffin DE, Lamb RA, Martin M, Buchmeier MJ, Roizman B, editors. Fields virology. 4 ed. Philadelphia: Lippincott, Williams, and Wilkins. pp. 2093–2121.

4. Steven JN, Zhong Y, et al. (2003) A new pathogen. Nat Med 9: 853–860.

5. Katz RA, Greger JG, Darby K, Boimel P, Rall GF, et al. (2002) Transduction of nondividing cells. J Virol 76: 2925–2930.

6. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA is present in a nucleoprotein complex or a free-DNA form, and contamination of cytoplasmic viral DNA into purified nuclei. Viral DNA is present in a nucleoprotein complex or a free-DNA form, and contamination of cytoplasmic viral DNA into purified nuclei. The PCR was carried out in 50 μl solution, which contains 1× PCR buffer, dNTP (0.2 mM), primers (1 μM), 10 units of Taq polymerase (Roche, Basel, Switzerland), and 200 ng of digested DNA. PCR products were purified and used for cloning by using pGEM-T Vector System (Promega). Positive clones were sequenced by using the T7 primer.

7. Lewis PF, Emerman M (1994) Passage through mitosis is required for infection of cells arrested in the cell cycle. Embo J 12: 2099–2108.

8. Patton GS, Erlwein O, McClure MO (2005) Cell-cycle dependence of foamy virus infection of cells arrested in the cell cycle. J Virol 10: 82–97.

9. Trobridge G, Russell DW (2004) Cell cycle requirements for transduction of nondividing cells. J Virol 78: 2327–2335.

10. Patton GS, Erlwein O, McClure MO (2005) Cell-cycle dependence of foamy virus infection of cells arrested in the cell cycle. J Virol 10: 82–97.

11. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, et al. (1999) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3: 465–478.

12. Dvorin JD, Malim MH (2003) Intracellular trafficking of HIV-1 cores: Journey to the center of the cell. Curr Top Microbiol Immunol 281: 179–208.

13. Bukinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubei A, et al. (1995) A nuclear localization signal within HIV-1 matrix protein that influences nuclear localization of viral nucleic acids in non-dividing host cells. Proc Natl Acad Sci U S A 94: 9825–9830.

14. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nuclear acids in non-dividing host cells. Proc Natl Acad Sci U S A 91: 7311–7315.

15. Zennou V, Petit G, Guettard D, Nerbhaus U, Montagnier L, et al. (2000) HIV-1 genome import is mediated by a central DNA flap. Cell 101: 173–185.

16. Fouchier RA, Meyer BE, Simon JH, Fischer U, Malim MH (1997) HIV-1 infection of non-dividing cells. Evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. Embo J 16: 4531–4539.
1 replication can occur in the absence of the viral matrix protein. Embry J 17: 2699–2708.

24. Petit C, Schwartz O, Mammano F (2000) The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J Virol 74: 7119–7126.

25. Linon A, Deyoe E, Lu R, Ghory HZ, Silver PA, et al. (2002) Nuclear localization of human immunodeficiency virus type 1 preintegration complexes (PICs): V160A and R166A are pleiotropic integrase mutants primarily defective for integration, not PIC nuclear import. J Virol 76: 10598–10607.

26. Linon A, Nakajima N, Lu R, Ghory HZ, Engelmann A (2002) Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication are correlated with the absence of the central DNA flap. J Virol 76: 12978–12987.

27. Kootstra NA, Schuteimaker H (1999) Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and Vpr is compared to wild-type HIV-1 in primary macrophages. Virology 253: 170–180.

28. Lin SS, Nymark-McMahon MH, Yieh L, Sandmeyer SB (2001) Integrase mediates nuclear localization of Ty3. Mol Cell Biol 21: 7820–7838.

29. Kenna MA, Brachmann CB, Devise SR, Boeke JD (1998) Invading the yeast nucleus: A nuclear localization signal at the C terminus of Tyl integrase is required for transposition in vivo. Mol Cell Biol 18: 1115–1124.

30. Moore SP, Reina-Sanmartin T, Zhang L (1998) A Ty1 integrase nuclear localization signal required for retrotransposition. Mol Cell Biol 18: 1105–1112.

31. Pluymers W, Cherepanov P, Schols D, De CE, Debyser Z (1999) Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein. Virology 258: 327–332.

32. Petit C, Schwartz O, Mammano F (1999) Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase. J Virol 73: 5679–5688.

33. Tsurnani N, Kubo M, Maeda Y, Ohashi T, Yamamoto N, et al. (2000) Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 74: 4795–4806.

34. Depienne C, Mosnier A, Le H, Le RE, Dormont D, et al. (2001) Characterization of the nuclear import pathway for HIV-1 integrase. J Biol Chem 276: 18192–18197.

35. Seamon JA, Jones KS, Miller C, Roth MJ (2002) Inserting a nuclear targeting signal into a replication-competent Moloney murine leukemia virus affects viral export and is not sufficient for cell cycle-independent infection. J Virol 76: 8473–8484.

36. Liano M, Vasquez M, Fregoso O, Saenz D, Chung S, et al. (2004) LEDGF/p75 determines cellular trafficking of divergent lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78: 9524–9537.

37. Engelmann A (1999) In vivo analysis of retroviral integrase structure and function. Adv Virus Res 52: 411–446.

38. Maertens G, Cherepanov P, Deyoe Z, Engelborghs Y, Engelmann A (2004) Identification and characterization of a functional nuclear localization signal in the HIV-1 integrase-interactor LEDGF/p75. J Biol Chem 279: 33421–33429.

39. Maertens G, Cherepanov P, Pluymers W, Bunschots K, De CE, et al. (1999) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase on core particles. J Biol Chem 274: 22313–22319.

40. Yamashita M, Emerman M (2004) Capsid is a dominant determinant of viral export and is not sufficient for cell cycle-independent infection. J Virol 78: 12969–12986.

41. Bukrinskaya AG, Ghorpade A, Heinzinger NK, Smithgall TE, Lewis RE, et al. (1996) Phosphorylation-dependent human immunodeficiency virus type 1 integrase: Effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol 69: 376–386.

42. Amanati-Lari MA, Donehower LA, Gibbs RA (1995) Analysis of human immunodeficiency virus type 1 integrase gene expression. Virology 210: 332–335.

43. Engelmann A, Englund G, Orenstein JM, Martin MA, Craigie R (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69: 2729–2736.

44. Saenz DT, Loewen N, Perez M, Whitlam T, Bararra R, et al. (2004) Unintegrated lentivirus DNA persistence and accessibility to expression in non-dividing cells: Analysis with class I integrase mutants. J Virol 78: 2986–2992.

45. Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 75: 7944–7955.

46. Brown PO (1997) Integration. In: Coffin JM, Hughes SH, Varmus HE (editors) Retroviruses. Cold Spring Harbor Laboratory Press. pp. 161–203.

47. Katz RA, Greger JG, Boiinel P, Skala AM (2003) Human immunodeficiency virus type 1 DNA nuclear import and integration are mitosis-independent in cycling cells. J Virol 77: 13412–13417.

48. Lu R, Liu J, Amanati D, Deyoe E, Silver PA, Cherepanov P, et al. (2004) Class II integrase mutants with changes in putative nuclear localization signals are primarily blocked at a postnuclear entry step of human immunodeficiency virus type 1 replication. J Virol 78: 12715–12746.

49. Ikeda T, Nishisui H, Zhou X, Nara O, Ohashi T, et al. (2004) Evaluation of the functional involvement of human immunodeficiency virus type 1 integrase in nuclear import of viral cDNA during acute infection. J Virol 78: 11563–11573.

50. Dememie CA, Emerman M (1994) Functional exchange of an oncoretovirus and a lentivirus matrix protein. J Virol 68: 4424–4449.

51. Fassati A, Goff SP (1995) Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 73: 8919–8925.

52. Li L, Olivera JM, Yoder KE, Mitchell RS, Butler SL, et al. (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20: 3272–3281.

53. Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of the viral export and is not sufficient for cell cycle-independent infection. J Virol 75: 5657–5672.

54. Peden K, Emerman M, Montagnier L (1991) Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1.LAI, HIV-1.MAL, and HIV-1.VIOL. Virology 185: 661–672.

55. Miller AD, Law MF, Verma IM (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol 5: 431–437.

56. Rogel ME, Wu L, Emerman M (1995) The human immunodeficiency virus type I vpr gene prevents cell proliferation during chronic infection. J Virol 69: 882–888.

57. Davis LI, Blobel G (1986) Identification and characterization of a nuclear pore complex protein. Cell 45: 699–709.

58. Bartz SR, Vodicka MA (1997) Production of high-titer human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 71: 2232–2239.

59. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74: 10974–10980.

60. Butler SL, Hansen MS, Bushman FD (2001) A quantitative assay for HIV-1 integration in vivo. Nat Med 7: 421–424.

61. Yu P, Fassati A, Yueh A, Goff SP (2002) Characterization of Moloney murine leukemia virus pi2 mutants blocked during early events of infection. J Virol 76: 10891–10810.

62. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, et al. (1995) In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to integration. Science 270: 537–540.

63. Planelles V, Bachesie F, Jostett JB, Hatalip A, Xie Y, et al. (1995) Fate of the human immunodeficiency virus type 1 provirus in infected cells: A role for vpr. J Virol 69: 5883–5889.