THE p-ADIC CLOSURE OF A SUBGROUP OF RATIONAL POINTS ON
A COMMUTATIVE ALGEBRAIC GROUP

BJORN POONEN

Abstract. Let G be a commutative algebraic group over \mathbb{Q}. Let Γ be a subgroup of $G(\mathbb{Q})$ contained in the union of the compact subgroups of $G(\mathbb{Q}_p)$. We formulate a guess for the dimension of the closure of Γ in $G(\mathbb{Q}_p)$, and show that its correctness for certain tori is equivalent to Leopoldt’s conjecture.

1. Introduction

1.1. Notation. Let \mathbb{Q} be the field of rational numbers. Let p be a prime, and let \mathbb{Q}_p be the corresponding completion of \mathbb{Q}. Let \mathbb{Z}_p be the completion of \mathbb{Z} at p. If K is a number field, then \mathcal{O}_K is the ring of the integers, and for any finite set S of places, $\mathcal{O}_{K,S}$ is the ring of S-integers. If G is a group (or group scheme), then $H \leq G$ means that H is a subgroup (or subgroup scheme) of G. If A is an integral domain with fraction field K, and M is an A-module, then $\text{rk}_A M$ is the dimension of the K-vector space $M \otimes_A K$; we write rk for $\text{rk}_\mathbb{Z}$.

1.2. The logarithm map for a p-adic Lie group. Let G be a finite-dimensional commutative Lie group over \mathbb{Q}_p (see [Bou98, III.§1] for terminology). The Lie algebra $\text{Lie} G$ is the tangent space of G at the identity. So $\text{Lie} G$ is a \mathbb{Q}_p-vector space of dimension $\text{dim} G$. Let G_f be the union of the compact subgroups of G. By [Bou98, III.§7.6], G_f is an open subgroup of G, and there is a canonical homomorphism

$$\log : G_f \to \text{Lie} G,$$

defined first on a sufficiently small compact open subgroup by formally integrating translation-invariant 1-forms, and then extended by linearity. Moreover, \log is a local diffeomorphism, and its kernel is the torsion subgroup of G_f. It behaves functorially in G.

Examples 1.1.

(i) If $G = \mathbb{Q}_p$ (the additive group), then $G_f = \mathbb{Q}_p$, and \log is an isomorphism. In this example, G_f is not compact.

(ii) If $G = \mathbb{Q}_p^\times$, then $G_f = \mathbb{Z}_p^\times$.

(iii) If $G = A(\mathbb{Q}_p)$ for an abelian variety A over \mathbb{Q}_p, then $G_f = G$.
1.3. **Dimension of an analytic subgroup.** Let \(\Gamma \) be a finitely generated subgroup of \(G_f \). Then \(\log \Gamma \subseteq \text{Lie} \ G \) is a finitely generated abelian group of the same rank. The closure \(\overline{\log \Gamma} = \log \Gamma \) with respect to the \(p \)-adic topology equals the \(\mathbb{Z}_p \)-submodule of \(\text{Lie} \ G \) spanned by \(\log \Gamma \), so it is a finitely generated \(\mathbb{Z}_p \)-module. Define
\[
\dim \Gamma := \text{rk}_{\mathbb{Z}_p} \overline{\log \Gamma}.
\]
This agrees with the dimension of \(\Gamma \) viewed as a Lie group over \(\mathbb{Q}_p \).

1.4. **Rational points.** Now let \(G \) be a commutative group scheme of finite type over \(\mathbb{Q} \). Fix a prime \(p \). Define \(G(\mathbb{Q})_f := G(\mathbb{Q}) \cap G(\mathbb{Q}_p)_f \). We specialize the previous sections to the Lie group \(G(\mathbb{Q}_p) \) and to a finitely generated subgroup \(\Gamma \) of \(G(\mathbb{Q})_f \). Our goal is to predict the value of \(\dim \Gamma \).

1.5. **Applications.** The value of \(\dim \Gamma \) is important for a few reasons:

(i) If \(C \) is a curve of genus \(g \geq 2 \) over \(\mathbb{Q} \) embedded in its Jacobian \(J \), then the condition \(\dim J(\mathbb{Q}) < g \) is necessary for the application of Chabauty’s method, which attempts to calculate \(C(k) \) or at least bound its size [Cha41, Col85].

(ii) Leopoldt’s conjecture on \(p \)-adic independence of units in a number field predicts \(\dim \Gamma \) in a special case: see Corollary 5.3 in Section 5. Leopoldt’s conjecture is important because it governs the abelian extensions of \(K \) of \(p \)-power degree.

1.6. **Outline of the paper.** Section 2 axiomatizes some of the properties of \(\dim \Gamma \) in order to identify possible candidates for its value. Section 3 defines a “maximal” function \(d(\Gamma) \) satisfying the same axioms and Question 3.3 asks whether it always equals \(\dim \Gamma \). Section 4 shows that \(\dim \Gamma \) and \(d(\Gamma) \) share many other properties. Section 5 computes \(d(\Gamma) \) for subgroups of integer points on tori, and shows that a positive answer to Question 3.3 for certain tori would imply Leopoldt’s conjectures. We end with further open questions.

2. **Dimension functions**

Let \(\mathcal{G} \) be the set of pairs \((G, \Gamma)\) where \(G \) is a commutative group scheme of finite type over \(\mathbb{Q} \) and \(\Gamma \) is a finitely generated subgroup of \(G(\mathbb{Q})_f \).

Definition 2.1. A **dimension function** is a function \(\partial: \mathcal{G} \to \mathbb{Z}_{\geq 0} \) satisfying

1. If \(\Gamma \leq H(\mathbb{Q})_f \) for some subgroup scheme \(H \leq G \), then \(\partial(H, \Gamma) = \partial(G, \Gamma) \). (Because of this, we generally write \(\partial(\Gamma) \) instead of \(\partial(G, \Gamma) \).)
2. \(\partial(\Gamma) \leq \text{rk} \Gamma \).
3. If \(H \leq G \) and \(\Gamma'' \) is the image of \(\Gamma \) in \((G/H)(\mathbb{Q})_f \), then \(\partial(\Gamma) \leq \dim H + \partial(\Gamma'') \).

Proposition 2.2. The expression \(\dim \Gamma \) is a dimension function.

Proof. Since \(H(\mathbb{Q}_p) \) is closed in \(G(\mathbb{Q}_p) \), the closure of \(\Gamma \) in \(H(\mathbb{Q}_p) \) equals the closure of \(\Gamma \) in \(G(\mathbb{Q}_p) \); therefore (1) holds. The fact that \(\overline{\log \Gamma} \) is the \(\mathbb{Z}_p \)-submodule spanned by \(\log \Gamma \) gives the middle step in
\[
\dim \Gamma = \text{rk}_{\mathbb{Z}_p} \overline{\log \Gamma} \leq \text{rk}(\log \Gamma) \leq \text{rk} \Gamma,
\]
so (2) holds. Finally, by continuity, the image of \(\Gamma \) in \((G/H)(\mathbb{Q}_p) \) equals \(\Gamma'' \), so we have an exact sequence
\[
0 \to \Gamma \cap H \to \Gamma \to \Gamma'' \to 0.
\]
Taking dimensions of \(p\)-adic Lie groups and observing that the group on the left has dimension at most \(\dim H\) yields (3).

3. The guess

With notation as before, define

\[
d(G, \Gamma) := \inf_{H \leq G} (\dim H + \rk \Gamma - \rk(\Gamma \cap H)),
\]

where the infimum is over all subgroup schemes \(H \leq G\).

Proposition 3.1. The function \(d\) is a dimension function, and any dimension function \(\partial\) satisfies \(\partial \leq d\).

Proof. First we check that \(d\) is a dimension function:

1. Suppose \(G' \leq G\) and \(\Gamma \leq G'(\mathbb{Q})\). If \(H \leq G'\) then the subgroup \(H' := H \cap G'\) satisfies \(\dim H' \leq \dim H\) and \(\Gamma \cap H' = \Gamma \cap H\), so
 \[
 \dim H' + \rk \Gamma - \rk(\Gamma \cap H') \leq \dim H + \rk \Gamma - \rk(\Gamma \cap H).
 \]
 Therefore the infimum in the definition of \(d(G, \Gamma)\) is attained for some \(H \leq G'\), so \(d(G, \Gamma) = d(G', \Gamma)\).

2. The \(H = \{0\}\) term in the infimum is \(0 + \rk \Gamma - 0\), so \(d(\Gamma) \leq \rk \Gamma\).

3. Let \(K''\) be the subgroup of \(G/H\) realizing the infimum defining \(d(\Gamma'')\). Let \(K\) be the inverse image of \(K''\) under \(G \to G/H\). Then \(\Gamma'' \cap K''\) is a homomorphic image of \(\Gamma \cap K\), so \(\rk(\Gamma'' \cap K'') \leq \rk(\Gamma \cap K)\) and
 \[
 d(\Gamma) \leq \dim K + \rk \Gamma - \rk(\Gamma \cap K)
 = \dim H + \dim K'' + \rk \Gamma - \rk(\Gamma \cap K)
 \leq \dim H + \dim K'' + \rk \Gamma - \rk(\Gamma'' \cap K'').
 \]
 Therefore \(\dim H + d(\Gamma'')\) is also an upper bound.

Now we check that any dimension function \(\partial\) satisfies \(\partial \leq d\). If \(H \leq G\) and \(\Gamma''\) is the image of \(\Gamma\) in \((G/H)(\mathbb{Q})\), then properties (3) and (2) for \(d\) and the isomorphism \(\Gamma'' \simeq \Gamma/(\Gamma \cap H)\) yield
\[
\partial(\Gamma) \leq \dim H + \partial(\Gamma'') \leq \dim H + \rk \Gamma'' = \dim H + \rk \Gamma - \rk(\Gamma \cap H).
\]
This holds for all \(H\), so \(\partial(\Gamma) \leq d(\Gamma)\).

Corollary 3.2. We have \(\dim \overline{\Gamma} \leq d(\Gamma)\).

Proposition 3.1 shows that the function \(d(\Gamma)\) gives the largest guess for \(\dim \overline{\Gamma}\) compatible with the elementary inequalities based on rank and the dimension of the group. Therefore we ask:

Question 3.3. Does \(\dim \overline{\Gamma} = d(\Gamma)\) always hold?

In other words, are rational points \(p\)-adically independent whenever dependencies are not forced by having a subgroup of too high rank inside an algebraic subgroup?
Proposition 4.1. Let $\partial(\Gamma)$ denote either $\dim \Gamma$ or $d(\Gamma)$. Then

(i) If $\Gamma' \leq \Gamma \leq G(\mathbb{Q})_f$, then $\partial(\Gamma') \leq \partial(\Gamma)$.
(ii) If $G \to G''$ is a homomorphism and $\Gamma \leq G(\mathbb{Q})_f$, then the image Γ'' in $G''(\mathbb{Q})$ is contained in $G''(\mathbb{Q})_f$ and $\partial(\Gamma'') \leq \partial(\Gamma)$.
(iii) If $G \to G''$ has finite kernel and $\Gamma \leq G(\mathbb{Q})$, then Γ is contained in $G(\mathbb{Q})_f$ if and only if its image Γ'' in $G''(\mathbb{Q})$ belongs to $G''(\mathbb{Q})_f$; in this case, $\partial(\Gamma) = \partial(\Gamma'')$.
(iv) Suppose that Γ_1, Γ_2 are commensurable subgroups of $G(\mathbb{Q})$; i.e., $\Gamma_1 \cap \Gamma_2$ has finite index in both Γ_1 and Γ_2. Then $\Gamma_1 \leq G(\mathbb{Q})_f$ if and only if $\Gamma_2 \leq G(\mathbb{Q})_f$; in this case, $\partial(\Gamma_1) = \partial(\Gamma_2)$.
(v) If $\Gamma_i \leq G_i(\mathbb{Q})_f$ for $i = 1, 2$, then $\Gamma_1 \times \Gamma_2 \leq (G_1 \times G_2)(\mathbb{Q})_f$ and $\partial(\Gamma_1 \times \Gamma_2) = \partial(\Gamma_1) + \partial(\Gamma_2)$.
(vi) If $\Gamma_1, \Gamma_2 \leq G(\mathbb{Q})_f$, then $\partial(\Gamma_1 + \Gamma_2) \leq \partial(\Gamma_1) + \partial(\Gamma_2)$.
(vii) If $\text{rk } G = 1$, then $\partial(\Gamma) = 1$.
(viii) If $G \simeq \mathbb{Q}_a^n$, then $\partial(\Gamma) = \text{rk } \Gamma$.

Proof.

(i) For $\partial(\Gamma) := \dim \Gamma$ the result is obvious. For $d(\Gamma)$ it follows since $\text{rk } G - \text{rk } (\Gamma \cap H)$ equals the rank of the image of Γ in G/H.

(ii) We have $\Gamma'' \leq G''(\mathbb{Q})_f$ by functoriality. For $\dim \Gamma$, the inequality follows since $\log \Gamma$ surjects onto $\log \Gamma''$. For $d(\Gamma)$, if $H \leq G$ and H'' is its image in G'', then the subgroup $\Gamma/(\Gamma \cap H)$ of G/H surjects onto the subgroup $\Gamma''/(\Gamma'' \cap H''$) of G''/H'', and this implies the second inequality in

\[d(\Gamma') \leq d H'' + \text{rk } \Gamma'' - \text{rk } (\Gamma'' \cap H'') \]
\[\leq \text{dim } H'' + \text{rk } \Gamma - \text{rk } (\Gamma \cap H) \]
\[\leq \text{dim } H + \text{rk } \Gamma - \text{rk } (\Gamma \cap H). \]

This holds for all $H \leq G$, so $d(\Gamma'') \leq d(\Gamma)$.

(iii) The map of topological spaces $G(\mathbb{Q}_p) \to G''(\mathbb{Q}_p)$ is proper, so the inverse image of $G''(\mathbb{Q}_p)_f$ is contained in $G(\mathbb{Q}_p)_f$; this gives the first statement. To prove $\partial(\Gamma) = \partial(\Gamma'')$, first use (1) to assume that $G \to G''$ is surjective, so $G'' = G/H$ for some finite $H \leq G$. By (ii), $\partial(\Gamma'') \leq \partial(\Gamma)$. By (3), $\partial(\Gamma) \leq \dim H + \partial(\Gamma'') = \partial(\Gamma'')$. Thus $\partial(\Gamma) = \partial(\Gamma'')$.

(iv) We may reduce to the case in which Γ_1 is a finite-index subgroup of Γ_2. Let $n = (\Gamma_2 : \Gamma_1)$, so $n\Gamma_1 \leq \Gamma_2 \leq \Gamma_1$. If $\Gamma_1 \leq G(\mathbb{Q})_f$, then $\Gamma_2 \leq G(\mathbb{Q})_f$. Conversely, if $\Gamma_2 \leq G(\mathbb{Q})_f$, then $n\Gamma_1 \leq G(\mathbb{Q})_f$, so $\Gamma_1 \leq G(\mathbb{Q})_f$ by (iii) applied to $G \to G$. In this case, (iii) gives $\partial(n\Gamma_1) = \partial(\Gamma_1)$, and (ii) implies that both equal $\partial(\Gamma_2)$.

(v) Let $\Gamma := \Gamma_1 \times \Gamma_2$. Since a product of compact open subgroups is a compact open subgroup, we have $G_1(\mathbb{Q}_p)_f \times G_2(\mathbb{Q}_p)_f \leq (G_1 \times G_2)(\mathbb{Q}_p)_f$. (In fact, equality holds.) Thus $\Gamma \leq (G_1 \times G_2)(\mathbb{Q}_p)_f$. The equality $\dim \Gamma = \dim \Gamma_1 \times \dim \Gamma_2$ follows from the definitions. To prove the corresponding equality for d, we must show that the infimum in the definition of $d(\Gamma)$ is realized for an H of the form $H_1 \times H_2$ with $H_i \leq G_i$. Suppose instead that $K \leq G_1 \times G_2$ realizes the infimum. Let $\pi_1 : G_1 \times G_2 \to G_1$ be the first projection. Let $H_1 = \pi_1(K)$. Let $H_2 = \ker(\pi_1|_K)$; view H_2 as a subgroup
scheme of \(G_2\). Let \(H = H_1 \times H_2\). Thus \(\dim K = \dim H\). The exact sequence
\[0 \to \Gamma_2 \cap H_2 \to \Gamma \cap K \xrightarrow{\pi_1} \Gamma_1 \cap H_1\]
shows that \(\text{rk}(\Gamma \cap K) \leq \text{rk}(\Gamma \cap H)\), so
\[\dim H + \text{rk} \Gamma - \text{rk}(\Gamma \cap H) \leq \dim K + \text{rk} \Gamma - \text{rk}(\Gamma \cap K)\]
Thus \(H\) too realizes the infimum in the definition of \(d(\Gamma)\), as desired.

(vi) Apply (ii) to the addition homomorphism \(G \times G \to G\) and \(\Gamma := \Gamma_1 \times \Gamma_2\), and use (v).

(vii) We have \(\partial(\Gamma) \leq 1\) by (2). If \(\dim \Gamma = 0\), then the finitely generated torsion-free \(\mathbb{Z}_p\)-module \(\log \Gamma\) is of rank 0, so it is 0; therefore \(\Gamma \subseteq \ker \log\), so \(\Gamma\) is torsion, contradicting the hypothesis \(\text{rk} \Gamma = 1\). If \(d(\Gamma) = 0\), then there exists \(H \leq G\) with \(\dim H = 0\) and \(\text{rk} \Gamma = \text{rk}(\Gamma \cap H)\); then \(H\) is finite, so \(\text{rk}(\Gamma \cap H) = 0\) and \(\text{rk}(\Gamma) = 0\), contradicting the hypothesis.

(viii) By applying an element of \(\text{GL}_n(\mathbb{Q}) = \text{Aut} \mathbb{G}_a^n\), we may assume that \(\Gamma = \mathbb{G}_r \times \{0\}^{n-r} \leq \mathbb{Q}^n = \mathbb{G}_a^n(\mathbb{Q})\), where \(r := \text{rk} \Gamma\). Using (v), we reduce to the case \(n = 1\). If \(r = 0\), then the result is trivial. If \(r = 1\), use (vii).

\[\square\]

5. Tori

Lemma 5.1. Let \(K\) be a Galois extension of \(\mathbb{Q}\). Let \(G := \text{Gal}(K/\mathbb{Q})\). Then the representation \(O_K^* \otimes \mathbb{C}\) of \(G\) is a subquotient of the regular representation.

Proof. Define the \(G\)-set \(E := \text{Hom}_{\mathbb{Q}}\text{-algebras}(K, \mathbb{C})\) of embeddings and the \(G\)-set \(P\) of archimedean places of \(K\), the difference being that conjugate complex embeddings are identified in \(P\).

Then \(E\) is a principal homogeneous space of \(G\), and there is a natural surjection \(E \to P\).

Therefore \(E\) is the regular representation and the permutation representation \(C_E\) is a quotient of \(C^P\). The proof of the Dirichlet unit theorem gives a \(G\)-equivariant exact sequence
\[0 \to O_K^* \otimes \mathbb{R} \xrightarrow{\log} \mathbb{R}^* \to \mathbb{R} \to 0\]
so \(O_K^* \otimes \mathbb{C}\) is a subrepresentation of \(C^P\). \(\square\)

Proposition 5.2. Let \(T\) be a group scheme of finite type over \(\mathbb{Z}\) whose generic fiber \(T := T \times \mathbb{Q}\) is a torus. Then
(a) \(T(\mathbb{Z})\) is a finitely generated abelian group.
(b) \(\text{rk} \ T(\mathbb{Z}) \leq \dim T\).
(c) If \(\Gamma \leq T(\mathbb{Z})\), then \(d(T, \Gamma) = \text{rk} \Gamma\).

Proof.
(a) For some number field \(K\) and set \(S\) of places of \(K\), we have \(T \times O_{K,S} \simeq (\mathbb{G}_m)^n_{O_{K,S}}\), so \(T(O_{K,S})\) is finitely generated by the Dirichlet \(S\)-unit theorem. Therefore the subgroup \(T(\mathbb{Z})\) is finitely generated.

(b) We may assume that \(K\) is Galois over \(\mathbb{Q}\). Let \(G = \text{Gal}(K/\mathbb{Q})\). Let \(X\) be the character group \(\text{Hom}(T_K, (\mathbb{G}_m)_K)\) of \(T\). Let \(\chi_X\) be the character of the representation \(X \otimes \mathbb{C}\) of \(G\). Let \(\chi_K\) be the character of the representation \(O_K^* \otimes \mathbb{C}\) of \(G\). By Theorem 6.7 and Corollary 6.9 of \cite{Eis03}, \(\text{rk} T(\mathbb{Z}) = (\chi_X, \chi_K)\). On the other hand, \(\dim T = \text{rk} X = (\chi_X, \chi_{\text{reg}})\), where \(\chi_{\text{reg}}\) is the character of the regular representation of \(G\). The result now follows from Lemma 5.1.
(c) First, \(T(\mathbb{Z}) \) is contained in the compact open subgroup \(T(\mathbb{Z}_p) \) of \(T(\mathbb{Q}_p) \), so \(d(T, \Gamma) \) is defined. By (2), \(d(T, \Gamma) \leq \text{rk}\, \Gamma \). To prove the opposite inequality, we must show that for every subgroup scheme \(H \leq T \), we have \(\text{rk}(\Gamma \cap H) \leq \dim H \). By replacing \(H \) by its connected component of the identity, we may assume that \(H \) is a subtorus of \(T \). Let \(\mathcal{H} \) be the Zariski closure of \(H \) in \(T \). Then \(\Gamma \cap H \leq \mathcal{H}(\mathbb{Z}) \), so \(\text{rk}(\Gamma \cap H) \leq \text{rk}\, \mathcal{H}(\mathbb{Z}) \leq \dim H \) by (b).

Corollary 5.3. Let \(K \) be a number field. Let \(T \) be the restriction of scalars \(\text{Res}_{K/\mathbb{Q}} \mathbb{G}_m \). Let \(\Gamma \leq T(\mathbb{Q}) \simeq K^\times \) correspond to \(O_K^\times \). Then Leopoldt’s conjecture is equivalent to a positive answer to Question 5.2 for \(\Gamma \).

Proof. Leopoldt’s conjecture is the statement \(\dim \Gamma = \text{rk}\, \Gamma \). Let \(T = \text{Res}_{O_K/\mathbb{Z}} \mathbb{G}_m \). By Proposition 5.2(c) applied to \(T \), \(d(T, \Gamma) = \text{rk}\, \Gamma \). So Leopoldt’s conjecture is equivalent to \(\dim \Gamma = d(T, \Gamma) \).

Remark 5.4. In effect, we have shown that Leopoldt’s conjecture cannot be disproved simply by finding a subtorus \(H \) of \(\text{Res}_{K/\mathbb{Q}} \mathbb{G}_m \) containing a subgroup of integer points of rank greater than \(\dim H \). This seems to have been known to experts, but we could not find a published proof.

6. Further Questions

Question 6.1. Is \(d(\Gamma) \) computable in terms of \(G \) and generators for \(\Gamma \)?

Question 6.2. If the answer to Question 6.1 is positive, can \(\dim \Gamma = d(\Gamma) \) be verified in each instance where it is true?

Question 6.3. Can one define a plausible generalization of \(d(\Gamma) \) for the analogous situation where \(\mathbb{Q} \) and \(\mathbb{Q}_p \) are replaced a number field \(k \) and some nonarchimedean completion \(k_v \)?

Remark 6.4. Applying restriction of scalars from \(k \) to \(\mathbb{Q} \) and then applying \(d \) does not answer Question 6.3: it would instead predict the dimension of the closure of \(\Gamma \) in the product \(\prod_{v|p} G(k_v) \) instead of in a single \(G(k_v) \).

Remark 6.5. If \(G \) be a commutative group scheme of finite type over \(\mathbb{Q} \), we can consider also \(G(\mathbb{R}) \), and define \(G(\mathbb{R})_f \) and \(G(\mathbb{Q})_f \). The closure \(\overline{\Gamma} \) of any subgroup \(\Gamma \leq G(\mathbb{Q})_f \) in \(G(\mathbb{R}) \) is a real Lie group. The natural guess for \(\dim \overline{\Gamma} \) seems now to be that it equals the dimension of the Zariski closure \(H \) of \(\Gamma \) in \(G \); in other words, \(\overline{\Gamma} \) should be open in \(H(\mathbb{R}) \). See [Maz92, §7] for a discussion of the abelian variety case.

Acknowledgements

I thank Robert Coleman for suggesting the reference [Bou98, III.§7.6].

References

[Bou98] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation.MR1728312 (2001g:17006)

[Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885 (French).MR0004484 (3,14d)
Robert F. Coleman, *Effective Chabauty*, Duke Math. J. 52 (1985), no. 3, 765–770. MR808103 (87f:11043)

Anne Kirsten Eisenträger, *Hilbert’s tenth problem and arithmetic geometry*, May 2003. Ph.D. thesis, University of California at Berkeley.

Barry Mazur, *The topology of rational points*, Experiment. Math. 1 (1992), no. 1, 35–45. MR1181085 (93j:14020)

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

E-mail address: poonen@math.berkeley.edu

URL: http://math.berkeley.edu/~poonen