Correlation between the curvature and some properties of the neutron star

S. K. Biswal, a H. C. Das, b,c,1 Ankit Kumar, b,c Bharat Kumar, d S. K. Patra b,c

a Department of Engineering Physics, DRIEMS Autonomous Engineering College, India-754022
b Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India.
c Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
d Department of Physics & Astronomy, National Institute of Technology, Rourkela, India

E-mail: subratphy@gmail.com, harish.d@iopb.res.in, ankit.k@iopb.res.in, kumarbh@nitrkl.ac.in, patra@iopb.res.in

Abstract. We calculate neutron star (NS) properties like mass M, radius R, compactness C and surface curvature (SC) using relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. Predictive competence of the various RMF and SHF parameter sets are discussed and compared with the NICER and pulsar observational data. We try to correlate between some properties of the NS like C, R and SC. To calculate the correlations coefficient, we employ the Pearson formula. We substantiate a correlation between the SC and C for canonical NS, and it shows a strong correlation with a coefficient of 0.992. Similarly, we find another correlation between the radius and SC with a coefficient of 0.982 for the canonical star. The three-dimensional correlations are studied for the C, R and SC with varying the masses of the NS. To visualise the correlation between these quantities as mentioned above, both for maximum and canonical mass, a 7×7 heat map is constructed, which gives the correlations between each pair of quantities. We find that there is a strong correlation between these pairs $SC_{1.4}-R_{1.4}$, $SC_{1.4}-C_{1.4}$. The correlations become weaker for the maximum mass NS. To find the correlation between the same quantities but for different masses of the NS, we calculated the correlations coefficients for 1.5-1.8 M_{\odot} NS. There are also we get strong correlations between C, R and SC.

Keywords: equation of state, neutron star, curvature

1Corresponding author.
1 Introduction

Understanding the nature of the fundamental interaction at supra-saturation density is currently considered as a prominent topic in fundamental physics. In the laboratory, we can create the dense matter up to few times of the saturation density [1, 2], which is not enough to understand the nuclear interaction at high degree of density and isospin asymmetry. This experimental inadequacy forces us to use neutron star (NS) as sole ingredient to study the high dense nature of the nuclear interaction [3]. NS is one of the most familiar members of the compact object family of the visible universe, having central density 5–6 times the density of the matter at nuclear centre [3, 4]. Most of the terrestrial experiments and analysis of the finite nuclear data give the information about the nature of the equation of state (EOS) around saturation density, while the higher density region still remains unexplored. Various theoretical models predict diverge behaviour for the EOSs in that region, leading to completely different values for the global properties of the NS. The global properties of the NS like maximum mass, radius, moment of inertia are used as an effective tool to put the strong constraints on the nature of the EOS [3].

In recent years, the tidal deformability from the first binary NS merger event, GW170817 [5, 6] can also spotlight the nature of matter enclosed inside the NS. The composition of the NS is not clear till now. In the conventional models, the NS is populated by the neutron and admixture of the proton and electron are inside the NS to maintain the β-equilibrium and charge neutrality conditions. The extreme conditions inside the NS favor various exotic phenomena to happen like hyperon production [7–9], kaon condensation [8, 10–14], deconfinement of quark [15–19], and presence of DM particle [20–27]. Recently, the Neutron Star Interior Composition Explorer (NICER) data [28–33] can put a strong constraints on the mass and radius of a NS. This simultaneous measurement of the mass and radius of a NS can constraint the nuclear EOS. The correlation between the tidal deformability and the radius of the canonical star is now a settled issue [2, 34–43]. But the value of the correlation coefficient is still a debatable issue, various theoretical formalism give different ranges of the correlation coefficients. Similarly, it is noticed that a correlation exists between the skin thickness of the heavy neutron-rich nuclei (208Pb) and NS properties [44, 45]. It is the consequence of the fact that the slope of the symmetry energy determine the pressure of the neutron-rich skin and radius of the NS. Li et al. have showed that an unique relation between K_{sym} and slope L can constrain the high density behaviour of the E_{sym} [46]. Along the same path Alam et al. have shown that there exist
a strong correlation between the NS radii and slope of the incompressibility of the nuclear matter (NM) [47]. Using Brueckner-Hartree-Fock formalism, Wei et al. found a strong correlation between NS radius, tidal deformability and pressure of the beta stable matter [48]. Therefore, it is a common practice to look for a correlation between the NM and NS properties. In this work, we try to find a new type of correlation between the NS properties, i.e correlation between the surface curvature (SC) and other bulk properties like R and C.

According to the general theory of relativity, the energy and momentum of whatsoever matter or radiation present in the universe is strongly correlated with the curvature of space-time. The strength of the curvature depends on the distortion originated by a massive object in space-time, which mechanically is similar to the functioning of a trampoline. To unfold this unified theory of gravitation in terms of simple geometric algebra, certain mathematical quantities like compactness ($C \equiv M/R$), Riemann tensor, Ricci scalar, Kretschmann scalar have been defined. The more detailed interpretation and derivation of these mathematical quantities which holds a lot of information about the curvature can be found in the Ref. [49]. Among these quantities, the quantities K and W are more prominent to measure the space-time curvature both inside and outside the star. Our previous analysis have calculated all these defined curvatures with and without dark matter (DM) inside the NS. We found that DM has very significant effects on the curvatures and compactness of the NS. Hence, in this present work, we want to explore more on this curvature and correlate with some NS properties because the correlations between curvatures and some bulk properties of the NS gives a comprehensive picture of their nature.

This paper is organised as follow: in Sec. 2, we discuss the theoretical formalism of the relativistic mean-field formalism used to calculate the bulk properties of the NS. The last subsection of the Sec. 2 is dedicated to discuss the theoretical formalism various curvature of the NS. In Sec. 3, we discuss our numerical results. Finally, Sec. 4 is devoted to a concluding remarks of our results and discussion.

2 Framework

This section outlines some quantities to calculate the curvature both inside and outside of the NS for different EOSs. To study the NS properties, we take relativistic mean-field (RMF), Skyrme-Hartree-Fock (SHF) and density-dependent RMF (DDRMF) EOSs. For the last few decades, the assumed models provided a better platform to predict the finite and infinite NM properties. Unlike the non-relativistic model, the RMF model obeys the casual limit up to very high-density [50]. The casual nature of the RMF model provides a natural way to go from finite nuclei to NS, which has a very high density. Moreover, the considered SHF models do not become acausal for masses below $2M_\odot$.

2.1 Mathematical form for different curvature

In this Sub-Sec., we adopt the curvature quantities from the Refs. [49]. The quantities are Ricci scalar, full contraction of Ricci tensor, Kretschmann scalar (full contraction of the Riemann tensor) and the full contraction of the Weyl tensor to measure the curvature of the space-time.

The Ricci scalar

$$\mathcal{R}(r) = 8\pi \left[\mathcal{E}_{NS}(r) - 3P_{NS}(r) \right], \quad (2.1)$$

the full contraction of the Ricci tensor

$$\mathcal{J}(r) \equiv \sqrt{\mathcal{R}_{\mu\nu}} \mathcal{R}^{\mu\nu} = 8\pi \left[\mathcal{E}_{NS}^2(r) + 3P_{NS}^2(r) \right]^{1/2}, \quad (2.2)$$

$$- 2 -$$
the Kretschmann scalar

\[K(r) \equiv \sqrt{R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}} \]

\[= 8\pi \left[\left\{ 3\mathcal{E}_{NS}^2(r) + 3P_{NS}^2(r) + 2P_{NS}(r)\mathcal{E}_{NS}(r) \right\} - \frac{128\mathcal{E}_{NS}(r)m(r)}{r^3} + \frac{48m^2(r)}{r^6} \right]^{1/2} \]

(2.3)

and the full contraction of the Weyl tensor

\[\mathcal{W}(r) \equiv \sqrt{\mathcal{C}_{\mu\nu\rho\sigma}\mathcal{C}^{\mu\nu\rho\sigma}} = \left[\frac{4}{3} \left(\frac{6m(r)}{r^3} - 8\pi\mathcal{E}_{NS}(r) \right) \right]^{1/2} . \]

(2.4)

At the surface \(m \to M \) due to \(r \to R \). The Ricci tensor and Ricci scalar vanish outside the star because they depend on the \(\mathcal{E}_{NS}(r) \), \(P_{NS}(r) \), which are zero outside the star. But, there is a non-vanishing component of the Riemann tensor which does not vanish; \(R^1_{010} = -\frac{2M}{R^3} = -\xi \), even in the outside of the star \([49, 51]\). So the Riemann tensor is the more relevant quantity to measure the curvature of the stars than others. Kretschmann scalar is the square root of the full contraction of the Riemann tensor. The vacuum value for both \(K \) and \(\mathcal{W} \) is \(\frac{4\sqrt{3}M}{R^3} \), one can easily see from Eqs. (2.3) and (2.4). Therefore, one can take \(K \) and \(\mathcal{W} \) as two reasonable measures for the curvature within the star. The SC is defined as the ratio of curvature at the surface of the NS \(K(R) \) to the curvature of the Sun \(K_{\odot} \). \(SC = \frac{K(R)}{K_{\odot}} \). This ratio \(\frac{K(R)}{K_{\odot}} \approx 10^{14} \) i.e the NS curvature is \(10^{14} \) times more than the Sun. Hence, we calculate the correlations between SC and some bulk properties such as \(M \), \(R \) and \(C \) in the following section.

3 Results and Discussions

3.1 Equation of state of the NS

The structure of an NS is divided into the four regions outer crust, inner crust, outer core and inner core. The outer crust consists of nuclei distributed in a solid body-centred-cubic (bcc) lattice filled by a free electron gas. As we go from outer crust to inner crust, the density increases and eventually the nuclei in the crust become so neutron-rich that neutrons start to drip from them. In this situation, the inner crust contains the free electron and neutron gases and formed different types of pasta structure. With the help of nuclear models, the neutron drip density determined the boundary between the outer and inner crust. But, the transition density from the crust to the core is much more uncertain and strongly model-dependent. When the average density reaches a value about half of the NM saturation density, the lattice structure escapes due to energetic reasons and the system changes to a liquid phase.

In Fig. 1, we plot some selected EOSs from RMF and SHF as representative case. The lowest density part of the EOS represents the outer crust of the NS. The inner crust ranges from a density \(\sim 3 \times 10^{-4} \) to \(\sim 8 \times 10^{-2} \) fm-3. The core part starts from a density \(\sim 2 \times 10^{-2} \) fm-3 and it extends up to the centre of the NS, which is 5–6 times the density of the NM. At the lower density part all the EOSs shows almost same in nature but at the higher density part, all shows different behaviour. This is due to that we take same crust EOS (both for outer and inner crust) which is BCPM EOSs [52] for all assumed parameter sets. In the present context, we take 30 well-known parameter sets of the RMF models HS [53], LA [54], H1 [55], LZ [56], NL3 [57], NL3* [58], NL-SH [59], NL1 [60], GM1 [9], GL85 [8], GL97 [61], NL3-II [57], NLD [54], NL-RA1 [62], TM1 [63], TM2 [63], PK1 [64], FSU [65], FSU2 [66], IUFSU [67], IUFSU* [68], SINPA [69], SINPB [69], G1 [70], G2 [70], G3 [71], IOPB-I [72], FSUGarnet [73], FSU2R [74], and FSU2H [74], 15 SHF models such
Figure 1. (color online) Some selected EOSs from RMF, SHF and DD-RMF sets are shown to know its behaviour mainly at the core part.

as BSk20, BSk21 [75], BSk22, BSk23, BSk24, BSk25 [76], KDE0v1 [77], SkI2, SkI3, SkI5 [78], SkI6 [79], SLY2 [80], SLY4 [81], SL230a [82], Rs [83] and 6 DDRMF sets DD2 [84], DD2Y [85], DDME1 [86], DDME2 [87], DDME2Y [85], DDLZ1 [48] to study various properties of the NS and investigate the existing correlation between various quantities. Moreover, one can take unified EOSs as given in Refs. [85]. The main idea to take a large sets of the parameter sets is to cover the wide range of the NM parameter value and establish a correlation with more accuracy.

3.2 Mass-radius of the NS

In Fig. 2, we show the mass-radius relation for RMF EOSs. We also put the masses of pulsar like PSR J1614-2230 [88], PSR J0348+0432 [89] and PSR J0740+6620 [90]. Recently, the secondary components of the GW190814 events left us to speculate whether it is the lowest massive black hole (BH) or a super heavy NS. The observed mass was $2.50 \pm 0.07 M_\odot$. Many authors have claimed that it was a binary BH merger [91, 92], heaviest NS [93, 94], super-fast pulsar [95] etc. The NICER results are also put to constraint both mass-radius from the x-ray study of the millisecond pulsars PSR J0030+0451 [29, 32]. The constraint on mass-radius are found to be $M = 1.44^{+0.15}_{-0.14} M_\odot$ ($M = 1.34^{+0.15}_{-0.16} M_\odot$) and $R = 13.02^{+1.24}_{-1.06}$ km ($R = 12.71^{+1.14}_{-1.15}$ km) by Miller et al. [29] (Riley et al. [32]) which are indicated in two boxes.

Few parameter sets such as GL97, GL85, TM2, FSU2, IFSU*, SINPA, SINPB, G1, G2, G3, IOPB-I, FSUGarnet and FSU2R lie in the range of the observed maximum masses. Most of the RMF parameter sets satisfy the mass-radius constraint from the NICER observation. We can see from Fig. 2 that the NICER data can not discard many EOSs based on the mass-radius measurement. The NICER data is related to the radius measurement of the NS of mass around $1.4 M_\odot$, which has not very high central density. The central density of the canonical NS lies $2-3 \rho_0$. As all the EOSs are fitted to the saturation properties, they show a convergent behaviour up to a few times the saturation density. This is also a fact that the properties of the small NS have a strong correlation with the NM properties due to their low central density [96]. Few parameter sets like HS, LA, LZ, NL-SH, NL1 and IUFSU parameter sets do not obey the NICER mass-radius constraint. However, only eight
parameter sets like GM1, GL85, FSU2, IUFSU*, G1, IOPB-I, FSUGarnet and FSU2R obey both the NICER and recent maximum NS mass constraints.

In the case of SHF and DD-RMF, the mass and radius of the NS are also depicted in Fig. 2. Except for DDLZ1, DDME1, DDME2, DD2, all satisfies the maximum mass constraints given by different PSR measurements. The NICER limit is also satisfied by all parameter sets except the KDE0v1 and SLY family. The maximum mass predicted by DDLZ1, which lies in the limit given by GW190814.

3.3 Radius of the canonical NS

Along with the maximum mass, in recent years, the radius of the canonical star is also used as an important constraint to control the nature of the EOS in the high-density region [67]. It is now a well-known fact that the radius of the canonical NS and the canonical tidal deformability are strongly correlated [34, 97, 98]. Various models give a different form of correlation. Different analysis of tidal deformability data of GW170817 suggest different range of canonical radius [34–43, 98–104]. We plot the ranges of the canonical radius in Fig. 3. In some cases, the analysis gives a very narrow range of the canonical radius, for example, Most et al. [37]. However, in many cases, the acceptable range is too wide, which is not much suitable to constraint the EOS. If we consider the maximum and minimum radius predicted by the RMF parameter sets, we can find the radius range of the canonical star is $\sim 11.4 - 14.3$ km, which entirely lies in the range reported by the NICER results [29] except HS, LA, LZ, NL-SH, NL1 and IUFSU. This shows that RMF formalism is good enough to reproduce the NICER data. If we do not consider the maximum mass limit and stick to the NICER constraint only, then almost all RMF parameter obey the mass-radius constraint except a few. From Fig. 2, it is clear that too soft EOS (low maximum mass) and too stiff EOS (high maximum mass) are discarded by both NICER and maximum mass constraint. Both SHF and DDRMF sets also lie in the limit given by the NICER.
Figure 3. (color online) We compile the ranges of the canonical radius from some refs. [34–43, 98–104]. The left and right arrow represents no fixed lower and upper limit for canonical NS as compare to others. The NICER radius range given by Miller and Riley et al. [29, 32] are depicted with solid green and dark red lines.

In Fig. 3, we compile the canonical radius of the NS predicted from different approaches. We present the NICER results on top of it with solid green and dark red lines. The upper limit of the canonical radius from various approaches lies in the range of NICER results. For Miller et al. limit is fully satisfied by Most et al. and more than 50% limit is satisfied by Malik, Fattoyev, Annala, Radice and Coughlin et al. as shown in Fig. 3. But in case of Riley et al. limit, only Malik and Most et al. approaches are within the range but other approaches also satisfy ≥ 50% limit.

3.4 Correlation between compactness and curvature

The compactness of the NS is defined as the ratio of the mass and the corresponding radius. In Fig. 4, we plot the C with SC for assumed parameter sets for the canonical star. The graph shows that there is a strong correlation between them for the canonical star. The correlation looks cubic and the value of the correlation coefficient 0.992 i.e these are strongly correlated. The three-dimensional correlation between the SC and C at different masses of the NS are also studies. We use the Pearson formula to calculate the three-dimensional correlation between some properties of the NS although it is valid for linear correlation. Therefore, a linear correlation between any two quantities x and y given by formula as [105]

$$
\xi = \frac{\sum_{xy}}{\sqrt{\sum_{xx}\sum_{yy}}},
$$

(3.1)
Figure 4. (color online) Left: We plot the SC with compactness for canonical star for various parameter sets of the RMF model. We find correlation with co-efficient $\zeta = 0.992$. Right: SC with radius and the correlation co-efficient $\xi = 0.982$.

where

$$\Sigma_{xy} = \frac{1}{N} \sum_{i=0}^{N} x_i y_i - \frac{1}{N^2} \left(\sum_{i=0}^{N} x_i \right) \left(\sum_{i=0}^{N} y_i \right),$$ \hspace{1cm} (3.2)

$$\Sigma_{xx} = \frac{1}{N} \sum_{i=0}^{N} x_i^2 - \frac{1}{N^2} \left(\sum_{i=0}^{N} x_i \right)^2,$$ \hspace{1cm} (3.3)

and

$$\Sigma_{yy} = \frac{1}{N} \sum_{i=0}^{N} y_i^2 - \frac{1}{N^2} \left(\sum_{i=0}^{N} y_i \right)^2.$$ \hspace{1cm} (3.4)

and N is total number of models used and i runs over N. The SC and radius of the different parameter set of the RMF model shown in Fig. 4. Here, also exist a strong correlation between them, and it looks to be inverse cubic. The correlation coefficient found to be 0.982. This correlation is comparatively weaker than the SC and compactness.

To show more specifically the mass dependence, we plot the SC, C, and R of the NS for the different parameter sets for different masses of the NS in Fig. 5. One can see that there is correlation at each mass of the NS. We calculated the correlation between a pair of quantities using Eqs. (3.1) and (3.5) and present in Fig. 6. The 7×7 matrix representing the correlations between a pair of quantities, and the correlations coefficient is written inside the box. We find a noticeable correlation between SC with R and C. There is a strong correlation between these pairs $SC_{1.4}-R_{1.4}$, $SC_{1.4}-C_{1.4}$. But the correlation between R_{max} and SC_{max} is around 85% but for C_{max} and SC_{max} is very poor.

In a similar fashion, we also calculate the value of ξ between each pair of quantities such as SC, C and R for 1.4-1.8 M_\odot and depicted in Fig. 7. The value of ξ is $> 85\%$ between each pair for 1.5-1.8 M_\odot NS. Hence we also find a strong correlation between SC, C and R for these masses of
Figure 5. (color online) Left: The correlation between SC and compactness for considered parameter sets is shown for different masses of the NS. Right: Correlation between SC with radius.

Figure 6. (color online) The heat map plot represents the correlation between different quantities like M_{max}, $R_{1.4}$, R_{max}, $SC_{1.4}$, SC_{max}, $C_{1.4}$ and C_{max}. Each number inside the box represents the correlation coefficients calculated using the Pearson formula between that corresponding pair.
The heat map represents the correlation between SC and compactness of the NS with masses 1.4, 1.5, 1.6, 1.7 and 1.8 M_\odot. Right: Heat map for SC and radii of different masses of the NS.

Finally, we have tabulated the calculated properties such as its mass, radius, central density, SC and compactness for both canonical and maximum mass NS as given in Table 1.

4 Conclusions

In summary, we calculate some quantities such as mass, radius, curvatures and compactness of NS obtained from RMF and SHF sets. For the last four decades, the RMF and SHF formalism has been well suited for studying NM and NS properties. To study the correlations, we have taken 30 different RMF, 15 SHF and 6 DDRMF EOSs, which covers a broader range of nuclear saturation properties. We have analysed the range of the canonical radius from different approaches. We have also compared the RMF results with NICER data. We find that the lower limit of the canonical radius from different approaches lies completely, such as Most and Malik et al. data, and more than 50% is inside by other approaches. Also, we see that only a few parameter sets can both the maximum mass and NICER constraints. Fig. 2 shows the none of the parameter sets can satisfy both the constraint from GW170817 and GW190814. Only a few parameters sets satisfy the constraint from NICER, GW190814 and the observed maximum masses of NSs. We can choose the most suitable parameter sets, which obey the constraints from NICER, GW170817 and recent maximum mass limit simultaneously. These parameter sets are SINPB, GL97, FSUGarnet, FSU2R, IOPB-I, G1, GL85. This analysis shows that some parameter sets can reproduce the maximum mass of the supermassive neutron star (not confirmed yet super-massive NS or smallest black hole) but simultaneously unable to reproduce other constraints. So it gives a hint that we can modify these equations of state in the lower density region to satisfy the constraints from the GW170817 and NICER data. We calculate the curvature of the neutron star using RMF and SHF EOSs. The interesting conclusion is that we find a correlation between surface curvature and compactness at different masses of the NS. They follow a cubic correlation between them. Using the Pearson formula, we have calculated the correlation coefficient. We found the correlation coefficient between the curvature and compactness is $\xi = 0.992$ for the canonical star which represents that the correlation is strong enough. Similarly, we find another correlation between the curvature and the neutron star’s radius, having the correlation coefficient,
Table 1. The properties of NS maximum mass M_{max}, radius R, central density ε_c, surface curvature SC and compactness C.

Parameter sets	M_{max} (M_\odot)	R (km)	ε_c (MeV fm$^{-3}$)	SC	C				
	$R_{1.4}$	R_{max}	$\varepsilon_{1.4}$	ε_{max}	$C_{1.4}$	C_{max}			
HS	2.980	14.31	14.03	226	750	1.414	3.183	0.144	0.313
LA	2.981	14.32	14.04	228	755	1.416	3.185	0.144	0.313
H1	2.987	14.23	14.03	226	750	1.431	3.188	0.145	0.314
L1	2.981	14.76	14.16	226	740	1.285	3.095	0.140	0.311
NL3	2.774	14.08	13.16	270	870	1.477	3.584	0.147	0.311
NL3*	2.760	14.56	13.51	254	830	1.492	3.610	0.147	0.311
NL-SH	2.795	14.35	13.42	249	830	1.394	3.141	0.144	0.307
G1	2.370	13.56	11.96	314	1100	1.654	4.085	0.152	0.292
GL85	2.168	14.17	11.93	311	1150	1.449	3.769	0.152	0.292
GS7	2.003	12.70	10.67	440	1440	2.012	4.865	0.162	0.277
HS 2.980 1	14.31	14.03	226	750	1.414	3.183	0.144	0.313	
LA 2.981 1	14.32	14.04	228	755	1.416	3.185	0.144	0.313	
H1 2.987 1	14.23	14.03	226	750	1.431	3.188	0.145	0.314	
L1 2.981 1	14.76	14.16	226	740	1.285	3.095	0.140	0.311	
NL3 2.774 1	14.08	13.16	270	870	1.477	3.584	0.147	0.311	
NL3* 2.760 1	14.56	13.51	254	830	1.492	3.610	0.147	0.311	
NL-SH 2.795 1	14.35	13.42	249	830	1.394	3.141	0.144	0.307	
G1 2.370 1	13.56	11.96	314	1100	1.654	4.085	0.152	0.292	
GL85 2.168 1	14.17	11.93	311	1150	1.449	3.769	0.152	0.292	
GS7 2.003 1	12.70	10.67	440	1440	2.012	4.865	0.162	0.277	

$\xi = 0.982$ for the canonical star. The correlations between surface curvature, compactness and radius are more stronger for 1.5-1.8 M_\odot.

10
References

[1] P. Danielewicz and J. Lee, Symmetry energy ii: Isobaric analog states, Nucl. Phys. A 922 (2014) 1.
[2] A.W. Steiner, J.M. Lattimer and E.F. Brown, THE EQUATION OF STATE FROM OBSERVED MASSES AND RADII OF NEUTRON STARS, The Astrophysical Journal 722 (2010) 33.
[3] J.M. Lattimer, The physics of neutron stars, Science 304 (2004) 536.
[4] G. Baym and C. Pethick, Physics of neutron stars, Annual Review of Astronomy and Astrophysics 17 (1979) 415.
[5] THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION collaboration, Gw170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121 (2018) 161101.
[6] LIGO SCIENTIFIC COLLABORATION AND VIRGO COLLABORATION collaboration, Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101.
[7] V.A. Ambartsumyan and G.S. Saakyan Sov. Astron. 4 (1960).
[8] N.K. Glendenning, Neutron stars are giant hypernuclei?, Astrophys. J. 293 (1985) 470.
[9] N.K. Glendenning and S.A. Moszkowski, Reconciliation of neutron-star masses and binding of the Λ in hypernuclei, Phys. Rev. Lett. 67 (1991) 2414.
[10] N.K. Glendenning and J. Schaffner-Bielich, Kaon condensation and dynamical nucleons in neutron stars, Phys. Rev. Lett. 81 (1998) 4564.
[11] N.K. Glendenning and J. Schaffner-Bielich, First order kaon condensate, Phys. Rev. C 60 (1999) 025803.
[12] M.B. Christiansen, N.K. Glendenning and J. Schaffner-Bielich, Surface tension between a kaon condensate and the normal nuclear matter phase, Phys. Rev. C 62 (2000) 025804.
[13] N. Gupta and P. Arumugam, Role of higher order couplings in the presence of kaons in relativistic mean field description of neutron stars, Phys. Rev. C 85 (2012) 015804.
[14] N. Gupta and P. Arumugam, “pasta phases” in neutron stars studied with extended relativistic mean field models, Phys. Rev. C 87 (2013) 028801.
[15] J.C. Collins and M.J. Perry, Superdense matter: Neutrons or asymptotically free quarks?, Physical Review Letters 34 (1975) 1353.
[16] C.-J. Xia, G.-X. Peng, E.-G. Zhao and S.-G. Zhou, From strangelets to strange stars: a unified description, Science Bulletin 61 (2016) 172.
[17] C.-J. Xia, G.-X. Peng, E.-G. Zhao and S.-G. Zhou, Properties of strange quark matter objects with two types of surface treatments, Phys. Rev. D 93 (2016) 085025.
[18] C.-J. Xia and S.-G. Zhou, Stable strange quark matter objects with running masses and coupling constant, Nucl. Phys. B 916 (2017) 669.
[19] V. Dexheimer, L.T.T. Soethe, J. Roark et al., Phase transitions in neutron stars, International Journal of Modern Physics E 27 (2018) 1830008.
[20] G. Panotopoulos and I. Lopes, Dark matter effect on realistic equation of state in neutron stars, Phys. Rev. D 96 (2017).
[21] A. Das, T. Malik and A.C. Nayak, Confronting nuclear equation of state in the presence of dark matter using gw170817 observation in relativistic mean field theory approach, Phys. Rev. D 99 (2019).
[22] A. Li, F. Huang and R.-X. Xu, Too massive neutron stars: The role of dark matter?, Astroparticle Physics 37 (2012) 70–74.
[23] H.C. Das, A. Kumar, B. Kumar et al., *Effects of dark matter on the nuclear and neutron star matter*, *MNRAS* 495 (2020) 4893.

[24] J. Ellis, G. Hütsi, K. Kannike et al., *Dark matter effects on neutron star properties*, *Phys. Rev. D* 97 (2018).

[25] S.A. Bhat and A. Paul, *Cooling of dark-matter admixed neutron stars with density-dependent equation of state*, *The European Physical Journal C* 80 (2020) 544.

[26] P. Ciarcelluti and F. Sandin, *Have neutron stars a dark matter core?*, *Phys. Lett. B* 695 (2011) 19–21.

[27] S.-C. Leung, M.-C. Chu and L.-M. Lin, *Dark-matter admixed neutron stars*, *Phys. Rev. D* 84 (2011).

[28] G. Raaijmakers, T.E. Riley, A.L. Watts et al., *A NICER view of PSR j0030+0451: Implications for the dense matter equation of state*, *The Astrophysical Journal* 887 (2019) L22.

[29] M.C. Miller, F.K. Lamb, A.J. Dittmann et al., *PSR j0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter*, *The Astrophysical Journal* 887 (2019) L24.

[30] S. Bogdanov, F.K. Lamb, S. Mahmoodifar et al., *Constraining the neutron star mass–radius relation and dense matter equation of state with NICER. II. emission from hot spots on a rapidly rotating neutron star*, *The Astrophysical Journal* 887 (2019) L26.

[31] A.V. Bilous, A.L. Watts, A.K. Harding et al., *A NICER view of PSR j0030+0451: Evidence for a global-scale multipolar magnetic field*, *The Astrophysical Journal* 887 (2019) L23.

[32] T.E. Riley, A.L. Watts, S. Bogdanov et al., *A NICER view of PSR j0030+0451: Millisecond pulsar parameter estimation*, *The Astrophysical Journal* 887 (2019) L21.

[33] S. Guillot, M. Kerr, P.S. Ray et al., *NICER x-ray observations of seven nearby rotation-powered millisecond pulsars*, *The Astrophysical Journal* 887 (2019) L27.

[34] T. Malik, N. Alam, M. Fortin et al., *Gw170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability*, *Phys. Rev. C* 98 (2018) 035804.

[35] K. Hebeler, J.M. Lattimer, C.J. Pethick and A. Schwenk, *Constraints on neutron star radii based on chiral effective field theory interactions*, *Phys. Rev. Lett.* 105 (2010) 161102.

[36] Y. Lim and J.W. Holt, *Neutron star tidal deformabilities constrained by nuclear theory and experiment*, *Phys. Rev. Lett.* 121 (2018) 062701.

[37] E.R. Most, L.R. Weih, L. Rezzolla and J. Schaffner-Bielich, *New constraints on radii and tidal deformabilities of neutron stars from gw170817*, *Phys. Rev. Lett.* 120 (2018) 261103.

[38] F.J. Fattoyev, J. Piekarewicz and C.J. Horowitz, *Neutron skins and neutron stars in the multimessenger era*, *Phys. Rev. Lett.* 120 (2018) 172702.

[39] I. Tews, J. Marqueron and S. Reddy, *Critical examination of constraints on the equation of state of dense matter obtained from gw170817*, *Phys. Rev. C* 98 (2018) 045804.

[40] E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, *Gravitational-wave constraints on the neutron-star-matter equation of state*, *Phys. Rev. Lett.* 120 (2018) 172703.

[41] N.-B. Zhang, B.-A. Li and J. Xu, *Combined constraints on the equation of state of dense neutron-rich matter from terrestrial nuclear experiments and observations of neutron stars*, *The Astrophysical Journal* 859 (2018) 90.

[42] T. Dietrich, M.W. Coughlin et al., *Multimessenger constraints on the neutron-star equation of state and the hubble constant*, *Science* 370 (2020) 1450.

[43] C.D. Capano, I. Tews, S.M. Brown et al., *Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory*, *Nature Astron.* 4 (2020) 625.

[44] F.J. Fattoyev and J. Piekarewicz, *Neutron skins and neutron stars*, *Phys. Rev. C* 86 (2012) 015802.
[45] C.J. Horowitz and J. Piekarewicz, Neutron radii of 208Pb and neutron stars, Phys. Rev. C 64 (2001) 062802.

[46] B.-A. Li and M. Magno, Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius, and tidal deformability of canonical neutron stars, Phys. Rev. C 102 (2020) 045807.

[47] N. Alam, B.K. Agrawal, M. Fortin et al., Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation, Phys. Rev. C 94 (2016) 052801.

[48] B. Wei, Q. Zhao, Z.-H. Wang, J. Geng, B.-Y. Sun, Y.-F. Niu et al., Novel relativistic mean field lagrangian guided by pseudo-spin symmetry restoration, Chinese Physics C 44 (2020) 074107.

[49] K.Y. Eksi, C. Gungör and M.M. Türkoğlu, What does a measurement of mass and/or radius of a neutron star constrain: Equation of state or gravity?, Phys. Rev. D 89 (2014) 063003.

[50] M. Dutra, O. Lourenço, S.S. Avancini et al., Relativistic mean-field hadronic models under nuclear matter constraints, Phys. Rev. C 90 (2014) 055203.

[51] X.-T. He, F.J. Fattoyev, B.-A. Li and W.G. Newton, Impact of the equation-of-state–gravity degeneracy on constraining the nuclear symmetry energy from astrophysical observables, Phys. Rev. C 91 (2015) 015810.

[52] B.K. Sharma, Centelles, M., Viñas, X., Baldo, M. and Burgio, G. F., Unified equation of state for neutron stars on a microscopic basis, A&A 584 (2015) A103.

[53] C.J. Horowitz and B.D. Serot, Self-consistent hartree description of finite nuclei in a relativistic quantum field theory, Nucl. Phys. A 368 (1981) 503.

[54] R.J. Furnstahl, C.E. Price and G.E. Walker, Systematics of light deformed nuclei in relativistic mean-field models, Phys. Rev. C 36 (1987) 2590.

[55] S. Haddad, Density dependence of the nuclear symmetry energy in a relativistic mean-field approach, Europhysics Letters (EPL) 48 (1999) 505.

[56] P.G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Reports on Progress in Physics 52 (1989) 439.

[57] G.A. Lalazissis, J. König and P. Ring, New parametrization for the lagrangian density of relativistic nuclear mean field theory, Phys. Rev. C 55 (1997) 540.

[58] G.A. Lalazissis, S. Karatzikos, R. Fossier et al., The effective force n13 revisited, Physics Letters B 671 (2009) 36.

[59] M. Sharma, M. Nagarajan and P. Ring, Rho meson coupling in the relativistic mean field theory and description of exotic nuclei, Physics Letters B 312 (1993) 377.

[60] P.G. Reinhard, M. Rufa, J. Maruhn, W. Greiner and J. Friedrich, Nuclear ground-state properties in a relativistic meson-field theory, Z. Phys. A Atomic Nuclei 323 (1986) 13.

[61] N.K. Glendenning, Compact Stars: Nuclear Physics, particle Physics, and General Relativity, Springer - Verlag, New York (1997).

[62] M. Rashdan, Structure of exotic nuclei and superheavy elements in a relativistic shell model, Phys. Rev. C 63 (2001) 044303.

[63] Y. Sugahara and H. Toki, Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms, Nucl. Phys. A 579 (1994) 557.

[64] W. Long, J. Meng, N.V. Giai and S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling, Phys. Rev. C 69 (2004) 034319.

[65] B.G. Todd-Rutel and J. Piekarewicz, Neutron-rich nuclei and neutron stars: A new accurately calibrated interaction for the study of neutron-rich matter, Phys. Rev. Lett. 95 (2005) 122501.
[66] W.-C. Chen and J. Piekarewicz, Building relativistic mean field models for finite nuclei and neutron stars, *Phys. Rev. C* 90 (2014) 044305.

[67] F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz and G. Shen, Relativistic effective interaction for nuclei, giant resonances, and neutron stars, *Phys. Rev. C* 82 (2010) 055803.

[68] F.J. Fattoyev and J. Piekarewicz, Relativistic models of the neutron-star matter equation of state, *Phys. Rev. C* 82 (2010) 025805.

[69] C. Mondal, B.K. Agrawal, J.N. De and S.K. Samaddar, Sensitivity of elements of the symmetry energy of nuclear matter to the properties of neutron-rich systems, *Phys. Rev. C* 93 (2016) 044328.

[70] R.J. Furnstahl, B.D. Serot and H.-B. Tang, A chiral effective lagrangian for nuclei, *Nucl. Phys. A* 615 (1997) 441.

[71] B. Kumar, S.K. Biswal and S.K. Patra, Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state, *Phys. Rev. C* 95 (2017) 015801.

[72] B. Kumar, S.K. Patra and B.K. Agrawal, New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars, *Phys. Rev. C* 97 (2018) 045806.

[73] W.-C. Chen and J. Piekarewicz, Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes, *Physics Letters B* 748 (2015) 284.

[74] L. Tolos, M. Centelles and A. Ramos, EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS, *The Astrophysical Journal* 834 (2016) 3.

[75] S. Goriely, N. Chamel and J.M. Pearson, Further explorations of skyrme-hartree-fock-bogoliubov mass formulas. xii. stiffness and stability of neutron-star matter, *Phys. Rev. C* 82 (2010) 035804.

[76] S. Goriely, N. Chamel and J.M. Pearson, Further explorations of skyrme-hartree-fock-bogoliubov mass formulas. xiii. the 2012 atomic mass evaluation and the symmetry coefficient, *Phys. Rev. C* 88 (2013) 024308.

[77] B.K. Agrawal, S. Shlomo and V.K. Au, Determination of the parameters of a skyrme type effective interaction using the simulated annealing approach, *Phys. Rev. C* 72 (2005) 014310.

[78] P.-G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, *Nuclear Physics A* 584 (1995) 467.

[79] W. Nazarewicz, J. Dobaczewski, T.R. Werner, J.A. Maruhn, P.-G. Reinhard, K. Rutz et al., Structure of proton drip-line nuclei around doubly magic 48Ni, *Phys. Rev. C* 53 (1996) 740.

[80] E. Chabanat, Ph.D. thesis, University Claude Bernard Lyon-1, Lyon, France, 1995.

[81] E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer, A skyrme parametrization from subnuclear to neutron star densities part ii. nuclei far from stabilities, *Nuclear Physics A* 635 (1998) 231.

[82] E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer, A skyrme parametrization from subnuclear to neutron star densities, *Nuclear Physics A* 627 (1997) 710.

[83] J. Friedrich and P.-G. Reinhard, Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties, *Phys. Rev. C* 33 (1986) 335.

[84] S. Banik, M. Hempel and D. Bandyopadhyay, NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY, *The Astrophysical Journal Supplement Series* 214 (2014) 22.

[85] M. Fortin, C. Providência, A.R. Raduta, F. Gulminelli, J.L. Zdunik, P. Haensel et al., Neutron star radii and crusts: Uncertainties and unified equations of state, *Phys. Rev. C* 94 (2016) 035804.

[86] T. Niksić, D. Vretenar, P. Finelli and P. Ring, Relativistic hartree-bogoliubov model with density-dependent meson-nucleon couplings, *Phys. Rev. C* 66 (2002) 024306.
[87] G.A. Lalazissis, T. Nikšić, D. Vretenar and P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71 (2005) 024312.

[88] P.B. Demorest et al., A two-solar-mass neutron star measured using shapiro delay, Nature 467 (2010) 1081.

[89] J. Antoniadis et al., A massive pulsar in a compact relativistic binary, Science 340 (2013).

[90] H.T. Cromartie, E. Fonseca, S.M. Ransom, P.B. Demorest, Z. Arzoumanian, H. Blumer et al., Relativistic shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astronomy 4 (2019) 72–76.

[91] F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz and B. Reed, Gw190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state, Phys. Rev. C 102 (2020) 065805.

[92] H.C. Das, A. Kumar, B. Kumar, S.K. Biswal and S.K. Patra, 2020.

[93] H. Tan, J. Noronha-Hostler and N. Yunes, 2020.

[94] K. Huang, J. Hu, Y. Zhang and H. Shen, 2020.

[95] N.-B. Zhang and B.-A. Li, GW190814’s secondary component with mass 2.50–2.67 m⊙ as a superfast pulsar, The Astrophysical Journal 902 (2020) 38.

[96] J. Carriere, C.J. Horowitz and J. Piekarewicz, Low-mass neutron stars and the equation of state of dense matter, The Astrophysical Journal 593 (2003) 463.

[97] R. Nandi, P. Char and S. Pal, Constraining the relativistic mean-field model equations of state with gravitational wave observations, Phys. Rev. C 99 (2019) 052802.

[98] O. Lourenço, M. Bhuyan, C. Lenzi et al., Gw170817 constraints analyzed with gogny forces and momentum-dependent interactions, Physics Letters B 803 (2020) 135306.

[99] S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger and C.M. Biwer, Tidal deformabilities and radii of neutron stars from the observation of gw170817, Phys. Rev. Lett. 121 (2018) 091102.

[100] S. Köppel, L. Bovard and L. Rezzolla, A general-relativistic determination of the threshold mass to prompt collapse in binary neutron star mergers, The Astrophysical Journal 872 (2019) L16.

[101] G. Montaña, L. Tolós, M. Hanauske and L. Rezzolla, Constraining twin stars with gw170817, Phys. Rev. D 99 (2019) 103009.

[102] D. Radice and L. Dai, Multimessenger parameter estimation of gw170817, The European Physical Journal A 55 (2019).

[103] M.W. Coughlin, T. Dietrich, B. Margalit and B.D. Metzger, Multimessenger bayesian parameter inference of a binary neutron star merger, Monthly Notices of the Royal Astronomical Society: Letters 489 (2019) L91–L96.

[104] B. Kumar and P. Landry, Inferring neutron star properties from gw170817 with universal relations, Phys. Rev. D 99 (2019) 123026.

[105] J. Zimmerman, Z. Carson, K. Schumacher, A.W. Steiner and K. Yagi, 2020.