ON THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP

MARTINO GARONZI AND IGOR LIMA

Abstract. Let G be a finite group and let $c(G)$ be the number of cyclic subgroups of G. We study the function $\alpha(G) = c(G)/|G|$. We explore its basic properties and we point out a connection with the probability of commutation. For many families \mathcal{F} of groups we characterize the groups $G \in \mathcal{F}$ for which $\alpha(G)$ is maximal and we classify the groups G for which $\alpha(G) > 3/4$. We also study the number of cyclic subgroups of a direct power of a given group deducing an asymptotic result and we characterize the equality $\alpha(G) = \alpha(G/N)$ when G/N is a symmetric group.

1. Introduction

In this paper all the groups we consider are finite. Let $c(G)$ be the number of cyclic subgroups of a group G and $\alpha(G) := c(G)/|G|$. It is clear that $0 < \alpha(G) \leq 1$.

Observe that every cyclic subgroup $\langle x \rangle$ of G has $\varphi(o(x))$ generators, where φ is Euler’s totient function and $o(x)$ denotes the order of the element x, hence

$$
c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))}.
$$

On a computational level this formula is probably best for computing $c(G)$ for arbitrary G, and it is what we employed to work out small groups using [3]. For d a divisor of $|G| = n$ let $B_G(d)$ be the number of elements $x \in G$ such that $x^d = 1$. Denote by μ the standard M"obius function. In [4] another formula is given (from Lemma 7 (2) choosing $A(d)$ the number of elements of G of order d, $B(d) = B_G(d)$ and $(r, s) = (1, 0)$), which is an easy application of the M"obius inversion formula, the following:

$$
c(G) = \sum_{d|n} \left(\sum_{i|n/d} \frac{\mu(i)}{\varphi(i)} \right) B_G(d).
$$

Using this formula in [4] Corollary 13 it was shown that ciclicity can be detected by the number of cyclic subgroups, more precisely that if $|G| = n$ then $c(G) \geq c(C_n)$ with equality if and only if $G \cong C_n$.

There is a connection between $\alpha(G)$ and the so-called “commuting probability” of G, denoted by $cp(G)$, that is the probability that two random elements of G commute (studied extensively in [5], which we crucially employ in our study). More specifically we prove that if $\alpha(G) \geq 1/2$ then $cp(G) \geq (2\alpha(G) - 1)^2$. This implies that a group with many cyclic subgroups has big solvable radical and, if it is already solvable, it has big Fitting subgroup (see Section 3 for the details).
It is not hard to show that $\alpha(G) \leq \alpha(G/N)$ whenever N is a normal subgroup of G, and if equality holds then N must be an elementary abelian 2-group. It is an interesting question to ask what can we say about G if $\alpha(G) = \alpha(G/N)$ given some information on G/N. In this paper we characterize equality $\alpha(G) = \alpha(G/N)$ when G/N is a symmetric group (Theorem 1).

Given a family \mathcal{F} of groups define
\[\alpha_{\mathcal{F}} := \max \{ \alpha(G) : G \in \mathcal{F} \}, \quad m_{\mathcal{F}} := \{ G \in \mathcal{F} : \alpha(G) = \alpha_{\mathcal{F}} \}. \]

We are interested in computing $\alpha_{\mathcal{F}}$ and $m_{\mathcal{F}}$ for various families \mathcal{F}. In this paper we prove the following results.

1. If \mathcal{F} is the family of all finite groups then $\alpha_{\mathcal{F}} = 1$ and $m_{\mathcal{F}}$ is the family of elementary abelian 2-groups (by 2.2).
2. If \mathcal{F} is the family of non-abelian groups then
 \[\alpha_{\mathcal{F}} = 7/8 = \alpha(D_8) \]
 and $m_{\mathcal{F}}$ is the family of groups of the form $C_2^n \times D_8$ for some $n \geq 0$ (by Corollary 2).
3. If \mathcal{F} is the family of non-nilpotent groups then
 \[\alpha_{\mathcal{F}} = 5/6 = \alpha(S_3) \]
 and $m_{\mathcal{F}}$ is the family of groups of the form $C_2^n \times S_3$ for some $n \geq 0$ (by Corollary 2).
4. If \mathcal{F} is the family of non-solvable groups then
 \[\alpha_{\mathcal{F}} = 67/120 = \alpha(S_5) \]
 and $m_{\mathcal{F}}$ is the family of groups of the form $C_2^n \times S_5$ for some $n \geq 0$ (Theorem 4).
5. If \mathcal{F} is the family of non-supersolvable groups then
 \[\alpha_{\mathcal{F}} = 17/24 = \alpha(S_4) \]
 and $m_{\mathcal{F}}$ is the family of groups of the form $C_2^n \times S_4$ for some $n \geq 0$ (Theorem 6).
6. If p is an odd prime and \mathcal{F} is the family of non-trivial groups of order divisible only by primes at least p then
 \[\alpha_{\mathcal{F}} = 2/p = \alpha(C_p) \]
 and $m_{\mathcal{F}} = \{ C_p \}$ (Proposition 1).
7. If p is an odd prime and \mathcal{F} is the family of groups G with C_p as an epimorphic image then
 \[\alpha_{\mathcal{F}} = 2/p = \alpha(C_p) \]
and $m\mathcal{F}$ is the family of groups which are the direct product of an elementary abelian 2-group and a Frobenius group with 2-elementary abelian Frobenius kernel and Frobenius complements of order p (Proposition 2).

We also classify the groups G with $\alpha(G) > 3/4$ (Theorem 3), proving in particular that $3/4$ is the largest non-trivial accumulation point of the set of numbers of the form $\alpha(G)$. An easy consequence of this (Corollary 3) is that if G is not an elementary abelian 2-group and it has $|G| - n$ cyclic subgroups then $|G| \leq 2n$. This extends and generalizes the results in [11], as we show right after the corollary. We also give a formula for $\alpha(G)$ when G is a nilpotent group (Theorem 2) and we study α of a direct power (Theorem 3) proving that G^n has roughly $|G^n|/\varphi(\exp(G))$ cyclic subgroups.

2. Basic properties of α

In this section we prove some basic properties of the function α.

2.1. If A and B are finite groups of coprime orders then $c(A \times B) = c(A)c(B)$ and hence $\alpha(A \times B) = \alpha(A)\alpha(B)$. The proof of this is straightforward.

2.2. Let $I(G)$ denote the number of elements $g \in G$ such that $g^2 = 1$. Then

$$\alpha(G) \leq \frac{1}{2} + \frac{I(G)}{2|G|}, \quad \frac{I(G)}{|G|} \geq 2\alpha(G) - 1.$$

In particular $\alpha(G) = 1$ if and only if G is an elementary abelian 2-group.

Proof. If $g \in G$ then $g^2 = 1$ if and only if $\varphi(o(g)) = 1$, so

$$c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))} \leq I(G) + \frac{1}{2}(|G| - I(G)) = \frac{1}{2}(I(G) + |G|).$$

This implies the result. \hfill \square

2.3. If $N \leq G$ then $\alpha(G) \leq \alpha(G/N)$. Moreover $\alpha(G) = \alpha(G/N)$ if and only if $\varphi(o(g)) = \varphi(o(gN))$ for every $g \in G$, where $o(gN)$ denotes the order of the element gN in the group G/N.

Proof. If a divides b then $\varphi(a) \leq \varphi(b)$, therefore

$$c(G/N) = \sum_{gN \in G/N} \frac{1}{\varphi(o(gN))} = \sum_{g \in G} \frac{1}{|N|\varphi(o(gN))} \geq \sum_{g \in G} \frac{1}{|N|\varphi(o(g))} = c(G)/|N|.$$

This implies the result. \hfill \square

2.4. If $\alpha(G) = \alpha(G/N)$ then N is an elementary abelian 2-group.

Proof. If $n \in N$ then applying 2.3 we have $\varphi(o(n)) = \varphi(o(nN)) = \varphi(o(N)) = \varphi(1) = 1$ so $n^2 = 1$. \hfill \square

2.5. If G is any finite group then $\alpha(G) = \alpha(G \times C_2^n)$ for all $n \geq 0$.

Proof. Choosing $N = \{1\} \times C_2^n$ gives $\varphi(o(x)) = \varphi(o(xN))$ for all $x \in G \times C_2^n$. The result follows from 2.3. \hfill \square
2.6. If $\alpha(G) = \alpha(G/N)$ and $L \leq G$, $L \subseteq N$ then $\alpha(G) = \alpha(G/L)$.

Proof. Since G/N is a quotient of G/L we have $\alpha(G/N) = \alpha(G) \leq \alpha(G/L) \leq \alpha(G/N)$ by 2.3 and the result follows.

2.7. If $\alpha(G) = \alpha(G/N)$ and $K \leq G$ then $\alpha(K) = \alpha(K/K \cap N)$.

Proof. Let $R := K \cap N$. By 2.3 is enough to show that if $x \in K$ then $o(xR) = o(xN)$ (because then $\varphi(o(xR)) = \varphi(o(xN)) = \varphi(o(x))$). Let $a = o(xR)$ and $b = o(xN)$. Since $R \subseteq N$ we have $x^a \in N$ so $b \leq a$. On the other hand $x^b \in K \cap N = R$ so $a \leq b$. Therefore $a = b$.

2.8. Suppose $\alpha(G) = \alpha(G/N)$. If $a \in G$ has order 2 modulo N then a centralizes N, in particular if G/N can be generated by elements of order 2 then $N \subseteq Z(G)$.

Proof. We have $\varphi(o(a)) = \varphi(o(aN)) = \varphi(2) = 1$ by 2.3 and a has order 2 modulo N, so $o(a) = 2$. If $n \in N$ then $\varphi(o(an)) = \varphi(o(anN)) = \varphi(o(aN)) = 1$ so $(an)^2 = 1$. This together with $a^2 = n^2 = 1$ (by 2.4) implies $an = na$. Recalling that N is abelian (by 2.4) we deduce that if G/N can be generated by elements of order 2 then $N \subseteq Z(G)$.

3. A characterization

Observe that C_3 is a quotient of A_4 and $\alpha(C_3) = \alpha(A_4) = 2/3$, so it is not always the case that $\alpha(G) = \alpha(G/N)$ implies $G \cong N \times G/N$. We can characterize the groups such that $\alpha(G) = \alpha(G/N)$ when G/N is a symmetric group, for the following two reasons: the symmetric groups can be generated by elements of order 2 and their double covers are known.

Theorem 1. Let G be a group and N a normal subgroup of G such that G/N is isomorphic to a symmetric group. If $\alpha(G) = \alpha(G/N)$ then N is an elementary abelian 2-group and it admits a normal complement in G, so that $G \cong N \times G/N$.

Proof. We prove the result by induction on the order of G. By 2.4 N is an elementary abelian 2-group. Since $G/N \cong S_m$ can be generated by elements of order 2, 2.8 implies that N is central in G. If $m = 2$ then the result follows from 2.2 so suppose $m \geq 3$. Let $R \cong C_2^l$ be a minimal normal subgroup of G contained in N. By 2.6 we have $\alpha(G/R) = \alpha(G) = \alpha(S_m)$ so by induction, since G/N is a quotient of G/R, we have $G/R = C_2^l \times S_m$ for some $l \geq 0$. Let $K \trianglelefteq G$ be the (normal) subgroup of G such that $K/R = \{1\} \times S_m$. Observe that $K \cap N$ contains R, so $K \cap N/R$ is a normal 2-subgroup of $K/R \cong S_m$. If $m \neq 4$ this implies that $K \cap N = R$ because S_m in this case does not admit non-trivial normal 2-subgroups (being $m \geq 3$). If $m = 4$ and $K \cap N \neq R$ then $K \cap N/R$ is the Klein group, and $K/K \cap N \cong S_3$. However in this case 2.3 and 2.7 imply that

$$17/24 = \alpha(S_3) = \alpha(K/R) \geq \alpha(K) = \alpha(K/K \cap N) = \alpha(S_3) = 5/6,$$

a contradiction. We deduce that $K \cap N = R$.

If $N \neq R$ then $|K| < |G|$ and $\alpha(K) = \alpha(K/R) = \alpha(S_m)$ by 2.7 (being $K \cap N = R$). By induction we deduce that $K \cong R \times S_m$. Set $M := \{1\} \times S_m \leq K$. Since

$$S_m \cong G/N \geq KN/N \cong K/K \cap N = K/R \cong S_m$$
we obtain $G = KN = MRN = MN$ so being N central in G and $N \cap M = N \cap R \cap M = R \cap M = \{1\}$ we deduce $G = N \times M \cong N \times G/N$. Assume now $N = R$, so N is a minimal normal subgroup of G. Since N is central, $|N| = 2$ and actually $N = (z) = Z(G)$ is the center of G (being $G/N \cong S_m$ with $m \geq 3$).

Suppose by contradiction that G is not a direct product $C_2 \times S_m$. We claim that N is contained in the derived subgroup of G. Indeed G' is contained in the subgroup T of G such that $T \supseteq N$, $T/N \cong A_m$ (being $|G/T| = 2$), so if G' does not contain N then G'/N is a nontrivial normal subgroup of $G/N \cong S_m$ containing the derived subgroup of S_m (that is, A_m) hence $G/N = T$ therefore letting $\varepsilon \in G$ represent a fixed element of order 2 of $G/N \cong S_m$ not belonging to A_m, $\varphi(o(\varepsilon)) = \varphi(2) = 1$ (by (2.3) hence $o(\varepsilon) = 2$ implying that $G'(\varepsilon) \cap N = \{1\}$ (otherwise $G'(\varepsilon) \supseteq N$ implying that $G'(\varepsilon) = G$ so $|G : G'| = 2$ hence $G \cong N \times G'$, a contradiction) therefore $G'(\varepsilon) \cong G'(\varepsilon)/N = G/N \cong S_m$; being N the center of G we deduce $G \cong C_2 \times S_m$, a contradiction. This implies that $N \subseteq G'$ so G is a double cover of S_m (that is, a stem extension of S_m where the base normal subgroup has order 2), and looking at the known presentations of the double covers of the symmetric group (classified by Schur, see for example [9]) we see that z is a square in G, that is there exists $x \in G$ with $x^2 = z$, so that x has order 4 and xN has order 2, contradicting $\varphi(o(x)) = \varphi(o(xN))$ (which is true by (2.3)).

4. Nilpotent groups

Let G be a finite group. For ℓ a divisor of $|G|$ let $B_G(\ell)$ be the number of elements $g \in G$ with the property that $g^\ell = 1$ and let $r_G(\ell)$ be the number of elements of G of order ℓ. It is worth mentioning the famous result by Frobenius that if G is any group and ℓ divides $|G|$ then ℓ divides $B_G(\ell)$. The idea of the following result, which is a reformulation of formula (11) in the nilpotent case, is to give a formula for $c(G)$ when G is a nilpotent group in terms of the numbers $B_G(d)$, that in general are reasonably easy to deal with (consider for example the case in which G is abelian).

Theorem 2. If G is a nilpotent group of order n then $c(G) = \sum_{d|n} B_G(d)/d$.

Proof. Assume first that G is a p-group, $|G| = p^n$. Since $r_G(p^j) = B_G(p^j) - B_G(p^{j-1})$ whenever $j \geq 1$ we see that

$$
c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))} = \sum_{j=0}^{n} \frac{r_G(p^j)}{\varphi(p^j)} = 1 + \sum_{j=1}^{n} \frac{B_G(p^j) - B_G(p^{j-1})}{\varphi(p^j)} = 1 - B_G(1) \frac{1}{\varphi(p)} + \sum_{j=1}^{n-1} \left(\frac{1}{\varphi(p^j)} - \frac{1}{\varphi(p^{j+1})} \right) B_G(p^j) \frac{B_G(p^n)}{\varphi(p^n)} = \sum_{j=0}^{n} \frac{B_G(p^j)}{p^j}.
$$

Now consider the general case, and write the order of G as $n = |G| = p_1^{n_1} \cdots p_t^{n_t}$ with the p_i’s pairwise distinct primes, G is a direct product $\prod_{i=1}^{t} G_{p_i}$, where G_{p_i} is the unique Sylow p_i-subgroup of G. Using (2.1) we obtain

$$
c(G) = \prod_{i=1}^{t} c(G_{p_i}) = \prod_{i=1}^{t} \left(\sum_{j=0}^{n} \frac{B_{G_{p_i}}(p_i^j)}{p_i^j} \right) = \sum_{d|n} B_G(d)/d.
$$

The last equality follows from the fact that since G is nilpotent $B_G(ab)$ equals $B_G(a)B_G(b)$ if a and b are coprime divisors of n.

□
5. An asymptotic result

We want to study $\alpha(G^n)$ where $G^n = G \times G \times \cdots \times G$ (n times) in terms of the functions B_G and r_G defined in the previous section. Recall that the exponent of a group G, denoted $\exp(G)$, is the least common multiple of the orders of the elements of G. It is clear that $\exp(G^n) = \exp(G)$. The following result shows that G^n has roughly $|G^n|/\varphi(\exp(G))$ cyclic subgroups.

Theorem 3. Let G be a finite group. Then $\lim_{n \to \infty} \alpha(G^n) = 1/\varphi(\exp(G))$.

Proof. Observe that $r_{G^n}(\ell) \neq 0$ only if ℓ divides $|G|$, therefore

$$\alpha(G^n) = \frac{1}{|G^n|} \sum_{x \in G^n} \frac{1}{\varphi(\ell(x))} = \sum_{\ell \mid |G|} \frac{r_{G^n}(\ell)}{\varphi(\ell)|G|^n} = \sum_{\ell \mid |G|} \frac{r_{G^n}(\ell)}{\varphi(\ell)|G|^n}$$

so what we need to compute is the limit L_ℓ of $r_{G^n}(\ell)/|G|^n$ when $n \to \infty$, for ℓ a divisor of $|G|$. Clearly $r_{G^n}(\ell) \leq B_G(\ell)$ so $r_{G^n}(\ell)/|G|^n \leq (B_G(\ell)/|G|)^n$ so if $B_G(\ell) < |G|$ then $L_\ell = 0$. Now assume $B_G(\ell) = |G|$, in other words $\exp(G)$ divides ℓ. If $\exp(G) < \ell$ then $r_{G^n}(\ell) = 0$ so $L_\ell = 0$. Now assume $\exp(G) = \ell$. Let p vary in the set of prime divisors of $|G|$, and for every such p define $a_p := B_G(\exp(G)/p)$. Clearly G^n has at least $|G^n| - \sum_p a_p^n$ elements of order $\exp(G)$.

Observe that $a_p < |G|$ by definition of $\exp(G)$, so that $a_p/|G| < 1$, hence $(a_p/|G|)^n$ tends to 0 as $n \to \infty$, implying $L_{\exp(G)} = 1$. The result follows. \(\square\)

6. A connection with the probability of commutation

The probability that two elements in a group G commute is denoted by $cp(G)$ (“commuting probability” of G) and is defined by $|S|/|G \times G|$ where S is the set of pairs $(x, y) \in G \times G$ such that $xy = yx$. It is easy to show that $cp(G) = k(G)/|G|$ where $k(G)$ is the number of conjugacy classes of G. This invariant was studied by many authors, but we refer mostly to [3].

Let $I(G)$ be the size of the set $\{x \in G : x^2 = 1\}$. The following lemma is easily deducible from Theorem 2J of [1]. It can also be proved character-theoretically using the Frobenius-Schur indicator.

Lemma 1. $I(G)^2 \leq k(G)|G|$, in other words $cp(G) \geq (I(G)/|G|)^2$.

This together with [2] implies the following inequality.

Lemma 2. If $\alpha(G) \geq 1/2$ then $cp(G) \geq (2\alpha(G) - 1)^2$.

Let us include some other results from [3] that we will need in the following section.

6.1. If G is a non-solvable group and $sol(G)$ is the maximal normal solvable subgroup of G then $cp(G) \leq |G : sol(G)|^{-1/2}$. This follows from [3] Theorem 9 (which depends on the classification of the finite simple groups), and together with Lemma 2 implies that if $\alpha(G) > 1/2$ then $|G : sol(G)| \leq (2\alpha(G) - 1)^{-4}$.

6.2. If G is a solvable group and $F(G)$ is the Fitting subgroup of G then $cp(G) \leq |G : F(G)|^{-1/2}$. This follows from [3] Theorem 4, and together with Lemma 2 implies that if $\alpha(G) > 1/2$ then $|G : F(G)| \leq (2\alpha(G) - 1)^{-4}$.

ON THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP

| G | $\text{Aut}(G)$ | $|G|$ | $\text{Float}(\alpha(G))$ | $\alpha(G)$ |
|------------|-----------------|--------|----------------------------|-------------|
| $\text{Alt}(5)$ | $\text{Sym}(5)$ | 60 | 0.533333 | 8/15 |
| $\text{Sym}(5)$ | $\text{Sym}(5)$ | 120 | 0.558333 | 67/120 |
| $\text{Alt}(6)$ | $\text{PGL}(2,9)$ | 360 | 0.463889 | 167/360 |
| $\text{PGL}(2,9)$ | $\text{PGL}(2,9)$ | 720 | 0.394444 | 71/180 |
| $\text{Sym}(6)$ | $\text{PGL}(2,9)$ | 720 | 0.502778 | 181/360 |
| M_{10} | $\text{PGL}(2,9)$ | 720 | 0.419444 | 151/360 |
| $\text{PGL}(2,9)$ | $\text{PGL}(2,9)$ | 1440 | 0.426389 | 307/720 |
| $\text{Alt}(7)$ | $\text{Sym}(7)$ | 2520 | 0.375794 | 947/2520 |
| $\text{Sym}(7)$ | $\text{Sym}(7)$ | 5040 | 0.404563 | 2039/5040 |
| $\text{PSL}(3,2)$ | $\text{PGL}(2,7)$ | 168 | 0.470235 | 79/168 |
| $\text{PGL}(2,7)$ | $\text{PGL}(2,7)$ | 336 | 0.464286 | 13/28 |
| $\text{PSL}(2,8)$ | $\text{PGL}(2,8)$ | 504 | 0.309524 | 13/42 |
| $\text{PGL}(2,8)$ | $\text{PGL}(2,8)$ | 1512 | 0.362434 | 137/378 |
| $\text{PSL}(2,11)$ | $\text{PGL}(2,11)$ | 660 | 0.369697 | 61/165 |
| $\text{PGL}(2,11)$ | $\text{PGL}(2,11)$ | 1320 | 0.368182 | 81/220 |
| $\text{PSL}(2,13)$ | $\text{PGL}(2,13)$ | 1092 | 0.335165 | 61/182 |
| $\text{PGL}(2,13)$ | $\text{PGL}(2,13)$ | 2184 | 0.322344 | 88/273 |
| $\text{PSL}(2,17)$ | $\text{PGL}(2,17)$ | 2448 | 0.306373 | 125/408 |
| $\text{PGL}(2,17)$ | $\text{PGL}(2,17)$ | 4896 | 0.267777 | 437/1632 |
| $\text{PSL}(2,19)$ | $\text{PGL}(2,19)$ | 3420 | 0.267251 | 457/1710 |
| $\text{PSL}(2,16)$ | $\text{PGL}(2,16)$ | 4080 | 0.192157 | 49/255 |

Table 1. Almost-simple groups of order at most 5397

7. Non-solvable groups

Theorem 4. Let G be a finite non-solvable group. Then $\alpha(G) \leq \alpha(S_5)$ with equality if and only if $G \cong S_5 \times C_2^n$ for some integer $n \geq 0$.

Proof. Let $\alpha := \alpha(S_5) = 67/120$. We will show that if G is any finite non-solvable group such that $\alpha(G) \geq \alpha$ then $G \cong S_5 \times C_2^n$ for some $n \geq 0$. Assume $\alpha(G) \geq \alpha$, in particular $\alpha(G) > 1/2$. By [6,1] we deduce $|G/\text{sol}(G)| \leq (2\alpha - 1)^{-1} = (60/7)^4 < 5398$ thus $|G/\text{sol}(G)| \leq 5397$. Observe that $G/\text{sol}(G)$ is non-trivial (being G non-solvable), it does not have non-trivial solvable normal subgroups and $\alpha(G/\text{sol}(G)) \geq \alpha(G) \geq \alpha$. If we can show that $G/\text{sol}(G) \cong S_5$ it will follow that $67/120 = \alpha \leq \alpha(G) \leq \alpha(G/\text{sol}(G)) = \alpha(S_5) = 67/120$ therefore $\alpha(G) = \alpha(G/\text{sol}(G))$ and the result follows from Theorem 1.

We are left to show that if G is a group without non-trivial solvable normal subgroups and such that $|G| \leq 5397$ and $\alpha(G) \geq \alpha(S_5) = 67/120$, then $G \cong S_5$. Let N be a minimal normal subgroup of G, then $N = S^t$ with S a non-abelian simple group. If $t \geq 2$ then being $|S| \geq 60$ and $|G| \leq 5397$ we deduce $G = N = A_5 \times A_5$, contradicting the minimality of N. So $t = 1$. We claim that there is no other minimal normal subgroup of G. Indeed if M is a minimal normal subgroup of G distinct from N then M is non-solvable (by assumption) so $|G:MN| = |G|/|MN| \leq 5397/60^2 < 2$ (the smallest order of a non-solvable group is 60) so $G = MN$ and actually $G = M \times N = A_5 \times A_5$ (M is a direct power of a non-abelian simple group, the smallest orders of non-abelian simple groups are 60, 168 and 60·60^2, 60·168 are both larger than 5397) which is a contradiction because
\(\alpha(A_5 \times A_5) = 77/225 < \alpha(S_5). \) We deduce that \(N \) is the unique minimal normal subgroup of \(G \). Since \(N \) is non-solvable, it is non-abelian, so it is not contained in \(C_G(N) \), hence \(C_G(N) \) must be trivial (otherwise it would contain a minimal normal subgroup of \(G \) distinct from \(N \)) therefore \(G \) is almost-simple. Using \([7]\) and \([3]\) we computed the list of almost-simple groups \(G \) of size at most 5397 and for each of them we determined \(\alpha(G) \). The results are summarized in the above table. We deduce that the only almost-simple group \(G \) with \(|G| \leq 5397 \) and \(\alpha(G) \geq 67/120 \) is \(G = S_5 \).

This together with Lemma \([2]\) and \([6.2]\) implies the following.

Corollary 1. If \(\alpha(G) > \alpha(S_5) \) then \(G \) is solvable and the Fitting subgroup of \(G \) has index at most 5397.

8. Groups with many cyclic subgroups

In this section we will study groups with \(\alpha(G) \) “large”, specifically, we will classify all the finite groups \(G \) such that \(\alpha(G) > 3/4 \). This is a natural choice because 3/4 turns out to be the largest non-trivial accumulation point of the set of numbers of the form \(\alpha(G) \). To do such classification the idea is to observe that if \(\alpha(G) > 3/4 \) then \(I(G)/|G| > 1/2 \) and use Wall’s classification \([10]\) Section 7).

Theorem 5. Let \(X \) be a group with \(\alpha(X) > 3/4 \). Then \(X \) is a direct product of an elementary abelian 2-group with a group \(G, \alpha(X) = \alpha(G), \) \(G \) does not have \(C_2 \) as a direct factor, and either \(G \) is trivial (in which case \(\alpha(X) = 1 \)) or one of the following occurs.

1. **Case I.** \(G \cong A \rtimes \langle \varepsilon \rangle \), where \(\langle \varepsilon \rangle = C_2 \) acts on \(A \) by inversion and there exists an integer \(n \geq 1 \) such that one of the following occurs.
 \[
 A = C_3^n, \quad \alpha(G) = \frac{3 \cdot 3^n + 1}{4 \cdot 3^n} \quad \text{or} \quad A = C_4^n, \quad \alpha(G) = \frac{3 \cdot 2^n + 1}{4 \cdot 2^n}.
 \]

2. **Case II.** \(G \cong D_8 \times D_8 \) and \(\alpha(G) = 25/32 \).

3. **Case III.** \(G \) is a quotient \(D_8^r / N \) where \(N = \{(a_1, \ldots, a_r) \in Z(D_8)^r : \alpha_1 \cdots \alpha_r = 1\} \) and
 \[
 \alpha(G) = \frac{3 \cdot 2^r + 1}{4 \cdot 2^r}.
 \]

4. **Case IV.** \(G \) is a semidirect product \(V \rtimes \langle c \rangle \) where \(V = \mathbb{F}_2^{2r} \) has a basis \(\{x_1, y_1, \ldots, x_r, y_r\}, c \) has order 2, it acts trivially on each \(y_i \), \(x_i^c = cx_ic = [c, x_i]x_i = x_iy_i \) for \(i = 1, \ldots, r \), and
 \[
 \alpha(G) = \frac{3 \cdot 2^r + 1}{4 \cdot 2^r}.
 \]

Proof. We know by \([2.3]\) that \(\alpha(X) = \alpha(G) \). Also, we may assume that \(G \) is non-trivial. Since \(\alpha(G) > 3/4 \), by \([2.2]\) we have \(I(G)/|G| \geq 2\alpha(G) - 1 > 1/2 \) so \(G \) appears in Wall’s classification \([10]\) Section 7). Case II is immediate, we will treat cases I, III and IV.

Case I of Wall’s classification. \(G \) is a semidirect product \(A \rtimes \langle \varepsilon \rangle \) with \(A \) an abelian group, \(\langle \varepsilon \rangle \cong C_2 \) and every element of \(G - A \) has order 2. Observe that \(A \) does not admit \(C_2 \) as a direct factor. Indeed if \(a \in A \) then since \(ae \notin A, ae \) has order 2 so \(\varepsilon = a^{-1} \), hence \(\varepsilon \) acts on \(A \) as inversion and a direct factor of order 2 in \(A \) would yield a direct factor of order 2 in \(G \). It follows that \(c(G) = c(A) + |G|/2 \),
so that $3/4 < \alpha(G) = \alpha(A)/2 + 1/2$ implying $\alpha(A) > 1/2$. If the prime p divides the order of A then C_p is a quotient of A so $1/2 < \alpha(A) \leq \alpha(C_p) = 2/p$ whence $p \leq 3$, that is, p is either 2 or 3. Write $A = P_2 \times P_3$ where P_2 is an abelian 2-group and P_3 is an abelian 3-group. Observe that C_3 is not a quotient of A because otherwise $1/2 < \alpha(A) \leq \alpha(C_3) = 1/3$, a contradiction. Therefore if P_2 is trivial then $A \cong C_3^n$ for some $n \geq 1$, an easy computation shows $\alpha(A) = \frac{3^{n+1}}{2^{2n+1}}$, and the result follows. Suppose now that P_2 is non-trivial. If P_3 is non-trivial then since P_2 is not elementary abelian (because A does not have C_2 as a direct factor) there is a quotient of A isomorphic to C_{12}, however $1/2 < \alpha(A) \leq \alpha(C_{12}) = 1/2$ gives a contradiction. So $P_3 = \{1\}$, in other words A is an abelian 2-group and we may write $A = \prod_{i=1}^{\beta} C_{2^n}$. Since A does not have C_2 as a direct factor we deduce $a_i \geq 2$ for all i, on the other hand if one of the a_i’s is at least 3 then C_3 is a quotient of A but $1/2 < \alpha(A) \leq \alpha(C_3) = 1/2$ is a contradiction. So $A \cong C_4^n$ hence an easy computation shows $\alpha(A) = \frac{2^{n+1}}{2^{2n+1}}$, and the result follows.

Case III of Wall’s classification. G is a direct product of D_8’s with the centers amalgamated. $G = G(r)$ has a presentation

$$G(r) = \langle c, x_1, y_1, \ldots, x_r, y_r : c^2 = x_i^2 = y_i^2 = 1, \text{ all pairs of generators commute except } [x_i, y_i] = c \rangle.$$

A more practical description of the group in question is $G = D_8^r/N$ where $N = \{(z_1, \ldots, z_r) \in Z^r : z_1 \cdots z_r = 1\}$ where $Z = \langle z \rangle$ (cyclic of order 2) is the center of D_8. N is a subgroup of $Z(D_8^r) = Z^r$ of index 2, so $|G| = 2 \cdot 4^r$. An element $(a_1, \ldots, a_r)N \in G$ squares to 1 if and only if $(a_1^2, \ldots, a_r^2) \in N$, that is, $a_1^2 \cdots a_r^2 = 1$. Observe that every a_i^2 is either 1 or z, so this condition means that there are an even number of indices i such that $a_i^2 = z$. Since D_8 contains 6 elements that square to 1 and 2 elements that square to z, D_8^r contains exactly $\beta_r = \sum_{k=0}^{[r/2]} \binom{r}{2k} 2^{2k}6^{r-2k}$ elements (a_1, \ldots, a_r) such that $a_1^2 \cdots a_r^2 = 1$. Hence G contains exactly $\beta_r/2^{r-1}$ elements that square to 1. Observe that

$$8^r = (2 + 6)^r = \sum_{h=0}^{r} \binom{r}{h} 2^h 6^{r-h}, \quad 4^r = (-2 + 6)^r = \sum_{h=0}^{r} \binom{r}{h} (-1)^h 2^h 6^{r-h}$$

so adding them together gives exactly $2\beta_r$. This means that $\beta_r = \frac{1}{2}(8^r + 4^r)$, so G has exactly $\beta_r/2^{r-1} = 4^r + 2^r$ elements that square to 1 and exactly $|G| - \beta_r/2^{r-1} = 2 \cdot 4^r - 4^r - 2^r = 4^r - 2^r$ elements of order 4. Therefore

$$\alpha(G) = \frac{1}{2 \cdot 4^r} \left(4^r + 2^r + \frac{1}{2}(4^r - 2^r)\right) = \frac{3 \cdot 2^r + 1}{4 \cdot 2^r}.$$

Case IV of Wall’s classification. $G = G(r)$ has a presentation

$$G(r) = \langle c, x_1, y_1, \ldots, x_r, y_r : c^2 = x_i^2 = y_i^2 = 1, \text{ all pairs of generators commute except } [c, x_i] = [c, y_i] \rangle.$$

A more practical description of the group in question is $G \cong V \rtimes \langle c \rangle$ where $V = C_2^{2r} = \langle x_1, y_1, \ldots, x_r, y_r \rangle$, c has order 2, it acts trivially on each y_i and $x_i^c = cx_i c = [c, x_i]x_i = x_iy_i$ for $i = 1, \ldots, r$. Thinking of V as a vector space over \mathbb{F}_2, if $v \in V$
then vc has order 2 or 4, and it has order 4 exactly when $v^e \neq v$. Observe that with respect to the given basis of V the operator c (acting from the right) has a diagonal block matrix form with $J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on each diagonal block entry. Thus there are precisely 2^r vectors v with $v^e = v$, they are of the form $(0, b_1, 0, b_2, \ldots, 0, b_r)$. Therefore G has $2^{2r} - 2^r$ elements of order 4 and $c(G) = 2^{2r} + 2^r + (2^{2r} - 2^r)/2$. This implies that $\alpha(G) = \frac{3 \cdot 2^{2r} + 1}{2^{2r} + 1}$.

The following corollary is immediate. It implies that if G is a non-nilpotent group then $\alpha(G) \leq 5/6$ with equality if and only if G is a direct product $C_2^n \times S_3$.

Corollary 2. Let G be a group such that $\alpha(G) \geq 5/6 = \alpha(S_3)$. Then either

1. $G \cong C_2^n \times S_3$ for some $n \geq 0$ and $\alpha(G) = 5/6$, or
2. $G \cong C_2^n \times D_8$ for some $n \geq 0$ and $\alpha(G) = 7/8$, or
3. $G \cong C_2^n$ for some $n \geq 0$ and $\alpha(G) = 1$.

We can deduce a bound of $|G|$ in terms of $|G| - c(G)$. The inequality $\alpha(G) \leq 7/8$ can be written as $|G| \leq 8(|G| - c(G))$, so we obtain the following.

Corollary 3. If G is any finite group which is not an elementary abelian 2-group then $|G| \leq 8(|G| - c(G))$ with equality if and only if $G \cong D_8 \times C_2^n$ for some non-negative integer n.

Observe that the above results extend and generalize the results in [11]. As an example of application let us determine the groups G with $|G| = 9$ cyclic subgroups. In this case we have $|G| - c(G) = 9$ so $|G| \leq 72$ and a GAP check yields that G is one of C_{11}, D_{22} and $C_4 \times S_3$.

9. Special families of groups

Proposition 1. Let $p \geq 3$ be a prime number. Let G be a non-trivial group of order divisible only by primes at least p. Then $\alpha(G) \leq 2/p$ with equality if and only if $G \cong C_p$.

In particular if G belongs to the family of groups of odd order then $\alpha(G) \leq 2/3$ with equality if and only if $G \cong C_3$.

Proof. If $1 \neq x \in G$ and q is a prime divisor of the order of x then $p \leq q$ so $\varphi(o(x)) \geq \varphi(q) = q - 1 \geq p - 1$, so since $|G| \geq p$ we have

$$\alpha(G) = \frac{1}{|G|} \sum_{x \in G} \frac{1}{\varphi(o(x))} \leq \frac{1}{|G|} \left(1 + \frac{|G| - 1}{p - 1}\right) = \frac{1}{|G|(p - 1)} + \frac{1}{p - 1} \leq \frac{p - 2}{p(p - 1)} + \frac{1}{p - 1} = \frac{2}{p}.$$

If equality holds the above inequalities are equalities and using $p \geq 3$ it is easy to deduce that $|G| = p$, that is, $G \cong C_p$. \hfill \Box

Proposition 2. Let G be a group and p an odd prime, and suppose G has C_p as epimorphic image (in other words p divides $|G/G'|$). Then $\alpha(G) \leq 2/p$ with equality if and only if G is a direct product of an elementary abelian 2-group with a Frobenius group with 2-elementary abelian kernel and complements of order p.

Observe that a bound of $2/p$ when $p = 2$ would be trivial. This is why we are only considering the odd case.
Proof. Since \(C_p \) is a quotient of \(G \) we have \(\alpha(G) \leq \alpha(C_p) = 2/p \). Now assume equality holds. Then \(\alpha(G) = \alpha(C_p) \) and there exists \(N \leq G \) with \(G/N \cong C_p \), so \(N \) is an elementary abelian 2-group by 2.4, say \(N \cong C_2^m \). If \(G \) has elements of order 2 then it has \(C_2 \) as a direct factor (for example by Maschke’s theorem), so now assume \(G \) does not have elements of order 2. A subgroup of \(G \) of order \(p \) acts fixed point freely on \(N \) so \(G \) is a Frobenius group with Frobenius kernel equal to \(N \) and Frobenius complement of order \(p \). Now assume \(G \) is a Frobenius group with 2-elementary abelian kernel of size \(2^m \) and Frobenius complement of order \(p \). The element orders of \(G \) are 1, 2, and \(p \), and \(G \) has precisely \(2^m - 1 \) elements of order 2 and \(2^m(p - 1) \) elements of order \(p \). We have

\[
\alpha(G) = \frac{1}{|G|} \sum_{x \in G} \frac{1}{\varphi(|x|)} = \frac{1}{2^m \cdot p} \left(2^m + \frac{2^m(p - 1)}{p - 1} \right) = \frac{2}{p}.
\]

This concludes the proof. \(\square \)

10. NON-SUPERSOLVABLE GROUPS

Let \(G \) be a solvable group and let \(F_i \) be normal subgroups of \(G \) defined as follows:

\[
F_0 = \{1\}, \quad F_{i+1}/F_i := F(G/F_i) \quad \forall i \geq 0,
\]

where \(F(G/F_i) \) denotes the Fitting subgroup of \(G/F_i \). In particular \(F_1 \) is the Fitting subgroup of \(G \). Since \(G \) is solvable, there exists a minimal \(h \) such that \(F_h = G \), such \(h \) is called the “Fitting height” of \(G \). Observe that

\[
F(F_i/F_{i-1}) = F_i/F_{i-1} \quad \forall l \geq i \geq 1,
\]

indeed \(F_i/F_{i-1} \) is nilpotent and normal in \(F_i/F_{i-1} \) hence \(F_i/F_{i-1} \subseteq F(F_i/F_{i-1}) \), and \(F(F_i/F_{i-1}) \) is nilpotent and characteristic in \(F_i/F_{i-1} \), which is normal in \(G/F_{i-1} \), so \(F(F_i/F_{i-1}) \) is normal in \(G/F_{i-1} \) hence \(F(F_i/F_{i-1}) \subseteq F(G/F_{i-1}) = F_i/F_{i-1} \). This implies in particular that \(F_i/F_{i-1} \) has Fitting height \(l - i \).

The following consequence of the solution of the \(k(GV) \) problem is proved in [5] Lemma 3, proof of (i) (see also [6]).

Proposition 3. Let \(G \) be a group and let \(F \) be the Fitting subgroup of \(G \). If \(G/F \) is nilpotent (that is, \(G \) has Fitting height 2) then \(k(G) \leq |F| \), so that

\[
\text{cp}(G) \leq \frac{1}{|G:F|}.
\]

The following result shows that \(S_4 \) is a “maximal” non-supersolvable group in terms of \(\alpha(G) \).

Theorem 6. Let \(G \) be a group. If \(G \) is not supersolvable then \(\alpha(G) \leq \alpha(S_4) \) with equality if and only if \(G \cong C_2^n \times S_4 \) for some non-negative integer \(n \).

Proof. We prove that if \(\alpha(G) \geq \alpha(S_4) \) and \(G \) is not supersolvable then \(G \) is isomorphic to \(C_2^n \times S_4 \) for some non-negative integer \(n \). We have \(\alpha(G) \geq \alpha(S_4) = 17/24 > 67/120 \) so \(G \) is solvable by Theorem 4, so the Fitting subgroup \(F \) of \(G \) is non-trivial, and since \(G \) is not supersolvable \(G \neq F \). Since \(2/3 < 17/24 \), Proposition 1 implies that \(G \) does not have non-trivial quotients of odd order. Also, since \(17/24 > 1/2 \) we have \(\text{cp}(G) \geq (2\alpha(G) - 1)^2 \geq 25/144 \) by Lemma 2.
In the following discussion we will use Proposition 3 the inequality \(\text{cp}(G) \leq \text{cp}(N) \cdot \text{cp}(G/N) \) for \(N \leq G \) (see [5, Lemma 1]) and the obvious fact that the commuting probability is always at most 1. Let \(F_i \) be the subgroups defined above and let \(h \) be the Fitting height of \(G \). We distinguish three cases.

1. \(h = 2 \). In this case \(G = F_2 > F_1 > \{1\} \). We have that \(G/F_1 \) is nilpotent so \(25/144 \leq \text{cp}(G) \leq 1/|G : F_1| \) so \(|G : F_1| \leq 5 \). However \(|G : F_1| \notin \{3, 5\} \) because \(G \) does not have non-trivial quotients of odd order, so \(G/F_1 \) is one of \(C_2, C_4 \) and \(C_2 \times C_2 \).

2. \(h = 3 \). In this case \(G = F_3 > F_2 > F_1 > \{1\} \). We have \(25/144 \leq \text{cp}(G) \leq \text{cp}(F_2) \leq 1/|F_2 : F_1| \) and \(25/144 \leq \text{cp}(G) \leq \text{cp}(G/F_1) \leq 1/|G : F_2| \) so \(|F_2 : F_1| \leq 5 \) and \(|G : F_2| \leq 5 \). Also \(G/F_1 \) is not a group of prime power order (because it is not nilpotent) and \(|G : F_2| \) is not 3 or 5 because \(G \) does not have quotients of odd order. Therefore \(G/F_1 \) is a group of order 6, 10, 12 or 20, its Fitting subgroup has order at most 5 and \(\alpha(G/F_1) \geq \alpha(G) \geq 17/24 \). We deduce \(G/F_1 \cong S_3 \) by [3].

3. \(h \geq 4 \). In this case \(G \geq F_4 > F_3 > F_2 > F_1 > \{1\} \). We have \[
\frac{25}{144} \leq \text{cp}(G) \leq \text{cp}(F_2) \cdot \text{cp}(F_4/F_2) \leq \frac{1}{|F_2 : F_1|} \cdot \frac{1}{|F_4 : F_3|}
\]
so \(|F_2 : F_1| \cdot |F_4 : F_3| \leq 5 \) implying that \(|F_2 : F_1| = |F_4 : F_3| = 2 \). But then \(F(F_3/F_1) = F_2/F_1 \subseteq Z(F_3/F_1) \) implying \(F_3/F_1 = F_2/F_1 \) (because the Fitting subgroup contains its own centralizer), a contradiction.

We deduce that \(G/F \) is one of \(C_2, C_4, C_2 \times C_2 \) and \(S_3 \).

Since \(G \) is not supersolvable there exists a maximal subgroup \(M \) of \(G \) whose index \(|G : M| \) is not a prime number (see [8, 9.4.4]). Let \(M_G \) the normal core of \(M \) in \(G \), that is, the intersection of the conjugates of \(M \) in \(G \). Let \(X := G/M_G \), \(K := M/M_G \), so that \(|G : M| = |X : K| \). Then \(\alpha(S_4) \leq \alpha(G) \leq \alpha(X) \). This implies that if \(X \cong S_4 \) then the result follows from Theorem 11 so all we have to prove is that \(X \cong S_4 \). The subgroup \(M/M_G \) of \(X \) is maximal and it has trivial normal core, so \(X \) is a primitive solvable group. We will make use of the known structural properties of primitive solvable groups, see for example [2] Section 15 of Chapter A. \(X \) is a semidirect product \(X = V \rtimes K \) with \(V = C_p^n \), \(p \) a prime, \(V \) is the unique minimal normal subgroup of \(X \) and it equals the Fitting subgroup of \(X \). Since \(|V| = |X : K| \) is not a prime, \(n \geq 2 \), so \(|X| > 6 \geq |G/F| \) hence \(F \not\subseteq M_G \) so \(FM_G/M_G \) is a non-trivial nilpotent normal subgroup of \(X \) so it equals \(V \), hence \[
K \cong X/V = (G/M_G)/(FM_G/M_G) \cong G/FM_G
\]
is a quotient of \(G/F \) so \(K \) is one of \(C_2, C_4, C_2 \times C_2 \) and \(S_3 \).

In what follows we will use the known representation theory of small groups over the field with \(p \) elements. We will think of \(V \) as a vector space of dimension \(n \) over the field \(\mathbb{F}_p \), irreducible when seen as a \(\mathbb{F}_p[K] \)-module.
Suppose \(p \) divides \(|K| \). Observe that being not supersolvable, \(X \) is not a 2-group, hence \(K \) cannot be \(C_2, C_4 \) nor \(C_2 \times C_2 \), so \(K \cong S_3 \). The structure of the group algebras \(\mathbb{F}_2[S_3] \) and \(\mathbb{F}_3[S_3] \) implies that \(n \geq 2 \) forces \(n = p = 2 \) and hence \(X \cong S_4 \).

Suppose now \(p \) does not divide \(|K| \), so that \(|K| \) and \(|V| \) are coprime.

Suppose \(\mathbb{F}_p \) is a splitting field for \(K \). Since \(n \geq 2 \), the only possibility is \(K \cong S_3 \), \(n = 2 \), and the action of \(K \) on \(V \) defining the group structure of \(X = V \rtimes K \) is the following: \(K \cong S_3 \) permutes the coordinates of the vectors in the fully deleted module

\[
V = \{(a, b, c) \in \mathbb{F}_p^3 : a + b + c = 0\}.
\]

The elements of order 2 in \(X \) are of the form \((a, b, c)k \) with \(k \in K \), \(o(k) = 2 \) and the fixed coordinate is zero, so there are 3\(p \) of them. The elements of order 3 in \(X \) are of the form \(vk \) with \(v \in V \) arbitrary and \(k \in K \), \(o(k) = 3 \), so there are 2\(p^2 \) of them. The elements of order \(p \) in \(X \) are the non-trivial elements of \(V \) (being \(p \) coprime to \(|K| = 6 \)) so there are \(p^2 - 1 \) of them. The elements of order \(2p \) in \(X \) are of the form \(vk \) with \(v \in V \), \(k \in K \), \(o(k) = 2 \) and \(o(vk) \neq 2 \) so there are \(3p^2 - 3p \) of them. The exponent of \(X \) is 6\(p \) and \(X \) has no elements of order 6, 3\(p \) or 6\(p \). This implies that

\[
c(X) = \sum_{x \in X} \frac{1}{\varphi(o(x))} = 1 + 3p + \frac{2p^2}{2} + \frac{p^2 - 1}{p - 1} + \frac{3p^2 - 3p}{p - 1} = p^2 + 7p + 2.
\]

Using \(p \geq 5 \) and \(|X| = 6p^2 \) we deduce \(\alpha(X) < 17/24 \), a contradiction.

Suppose \(\mathbb{F}_p \) is not a splitting field for \(K \). Since \(n \geq 2 \), the only possibility is \(K \cong C_4 \), \(n = 2 \), and the polynomial \(t^2 + 1 \) does not split modulo \(p \), that is, \(p \equiv 3 \mod 4 \). Let \(x \) be a generator of the cyclic group \(K \). We may interpret \(x \) as a matrix of order 4, so that by irreducibility the minimal polynomial of \(x \) is \(t^2 + 1 \) (the only irreducible factor of degree 2 of \(t^4 - 1 \)). This implies that \(x^2 = -1 \). Choosing a nonzero vector \(v_1 \in V \) and \(v_2 := v_1^x \), since \(v_1, v_2 \) are linearly independent (otherwise \(v_1 \) would be an eigenvector for \(x \) contradicting irreducibility), and \(v_2^x = v_1 v_2 = -v_1 \), the matrix of \(x \) in the base \(\{v_1, v_2\} \) is

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]

acting by right multiplication. \(X = V \rtimes K \) has \(p^2 - 1 \) elements of order \(p \) (the non-trivial elements of \(V \), being \(p \) coprime to \(|K| = 4 \)), \(p^2 \) elements of order 2 (the elements of the form \(vx^2 \) with \(v \in V \) arbitrary) and \(2p^2 \) elements of order 4 (the elements of the form \(vx \) or \(vx^3 \) with \(v \in V \) arbitrary). The exponent of \(X \) is 4\(p \) and there are no elements of order 2\(p \) or 4\(p \), therefore

\[
c(X) = \sum_{x \in X} \frac{1}{\varphi(o(x))} = 1 + p^2 + \frac{2p^2}{2} + \frac{p^2 - 1}{p - 1} = 2p^2 + p + 2.
\]

Using \(p \geq 3 \) and \(|X| = 4p^2 \) we deduce \(\alpha(X) < 17/24 \), a contradiction.

\[\square\]

11. Acknowledgements

We would like to thank the referee for carefully reading a previous version of this paper and having very useful suggestions.
References

[1] R. Brauer, K. A. Fowler; On groups of even order. Ann. of Math. (2) 62 (1955), 565–583.
[2] K. Doerk and T. Hawkes, Finite Soluble Groups, de Gruyter Expositions in Mathematics 4, de Gruyter (1992).
[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.
[4] Garonzi M., Patassini M.; Inequalities detecting structural properties of a finite group. Comm. Algebra 45 (2017), no. 2, 677–687.
[5] Guralnick R. M., Robinson G. R.; On the commuting probability in finite groups. J. Algebra 300 (2006), no. 2, 509–528.
[6] Knorr R.; On the number of characters in a p-block of a p-solvable group. Illinois J. Math. 28 (1984) 181–210.
[7] D. Leemans, L. Vauthier; An atlas of abstract regular polytopes for small groups. Aequationes Math. 72 (2006), no. 3, 313–320.
[8] D. J. S. Robinson, A course in the theory of groups; Second edition; Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[9] Schur, J; On the representation of the symmetric and alternating groups by fractional linear substitutions. Translated from the German [J. Reine Angew. Math. 139 (1911), 155–250] by Marc-Félix Otto. Internat. J. Theoret. Phys. 40 (2001), no. 1, 413–458.
[10] Wall, C. T. C.; On groups consisting mostly of involutions. Proc. Cambridge Philos. Soc. 67 1970 251–262.
[11] Tarnauceanu, M.; Finite groups with a certain number of cyclic subgroups. Amer. Math. Monthly 122 (2015), no. 3, 275–276.

(Martino Garonzi) Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF, 70910-900, Brazil.
E-mail address: mgaronzi@gmail.com

(Igor Lima) Universidade Federal de Goiás, IMTec - Regional Catalão, Av. Dr. Lamartine P. de Avelar, 1120 Setor Universitário Catalão-GO, 75704-020, Brazil.
E-mail address: igor.matematico@gmail.com