Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction

(脱ユビキチン化酵素阻害薬 PR-619 は Smad4 発現を低下させ、片側尿管結紮マウスにおける腎線維化を抑制する)

PLoS One, 13(8):e0202409, 2018.

主指導教員：正木 崇生教授
（広島大学病院 腎臓内科）
副指導教員：茶山 一彰教授
（医歯薬保健学研究科 消化器・代謝内科）
副指導教員：松原 昭郎教授
（医歯薬保健学研究科 腎泌尿器科学）

曽爾 浩太郎
（医歯薬保健学研究科 医歯薬学専攻）
慢性腎臓病は、末期腎不全に至るリスクが高まるのみでなく、心血管疾患も高頻度に合併することから、全身性疾患として全世界的に関心を集めている。慢性腎臓病の原因は様々であるが、すべての腎疾患は、腎尿細管間質の線維化を経て末期腎不全に至る。したがって、腎線維化は慢性腎臓病の治療ターゲットとして注目されているが、未だ有効な治療法は確立されていない。

腎線維化の過程においては、Transforming growth factor(TGF)-β1-Smad シグナルが重要な役割を果たす。TGF-β1 が II 型 TGF-β 受容体に結合すると、I 型 TGF-β 受容体が活性化される。続いて細胞内の Smad2/3 が活性化され、Smad4 と複合体を形成し、核内へ移行して、標的遺伝子の転写調節に関与する。よって、腎線維化を抑制するためには、これらの TGF-β1 シグナル関連蛋白質の発現を抑制することが治療戦略となる。

ユビキチンは、蛋白質に可逆的に結合し、プロテアソームによる蛋白質分解の目印となる翻訳後修飾分子である。したがって、ユビキチンリガーゼによる蛋白質のユビキチン化は、蛋白質の発現を低下させる機構である。脱ユビキチン化酵素(deubiquitinating enzyme : DUB)は、ユビキチンリガーゼとは反対に、蛋白質の発現を維持する作用を有している。がん領域の研究において、DUB が、TGF-β1 シグナル関連蛋白質の発現を保持し、TGF-β1-Smad シグナルを増強させることが示されており、DUB が腎線維化の過程にも重要な役割を果たすことが予想される。

DUB の抑制は、ユビキチン化を保持し、蛋白質の分解を促進することから、DUB を抑制することで、TGF-β1-Smad シグナル関連蛋白質の発現を低下させ、腎線維化を改善させることができる。本研究では、確立された腎線維化モデルである片側尿管結紮(UUO)マウスおよび TGF-β1 刺激を行った腎間質線維芽細胞(NRK-49F)において、pan-DUB 阻害薬である PR-619 が、腎線維化とその主な経路である TGF-β1-Smad シグナルに及ぼす影響を検討した。

（方法）
マウスに UUO を施し、腎線維化モデルマウスを作製した。UUO マウスに対し、PR-619 を投与した群と Vehicle を投与した群において、線維化マーカーおよび TGF-β1-Smad シグナル関与蛋白質の発現を比較検討した。また、TGF-β1 刺激した NRK-49F 細胞においても、PR-619 投与の効果を検討した。

（結果）
1) UUO マウスに PR-619 を投与することで、腎間質の細胞浸潤を減少させ、Masson's Trichrome 染色で青く染まる腎間質の線維化面積を縮小させた。
2) UUO マウスでは、間葉系マーカーである α-SMA と FSP-1 の発現が亢進するが、PR-619 の投与により、これらの発現は抑制された。
3) UUO マウスでは、細胞外マトリックス(ECM)の沈着を認める。ECM 蛋白である collagen 1, collagen 3, fibronectin は、UUO マウスにおいて発現亢進するが、PR-619 の投与により、こ
れらの発現は低下した。
4) UUO マウスにおける腎障害に対する PR-619 投与の効果をさらに検討した。マトリックスプロテアーゼファミリーの MMP2 と MMP9 の発現や、TUNEL 染色で標識されたアポトーシス、CD68 陽性のマクロファージ浸潤は、UUO マウスにおいて亢進したが、PR-619 の投与で軽減した。
5) UUO マウスにおける TGF-β1-Smad シグナルを検討した。UUO マウスでは、sham と比較して、Smad2、Smad3、Smad4、I 型 TGF-β 受容体の発現が亢進し、II 型 TGF-β 受容体の発現は低下した。PR-619 の投与は、Vehicle 投与群と比較して、Smad4 の発現のみ有意に抑制した。
6) NRK-49F に対する TGF-β1 刺激により誘導される α-SMA は、PR-619 投与により抑制された。Smad4 については、TGF-β1 刺激では control と比較して亢進しなかったが、PR-619 投与により抑制された。

（考察）
本研究において、DUB 阻害薬である PR-619 が、腎線維化モデルマウスおよび TGF-β1 刺激を行った腎間質線維芽細胞において、腎線維化を抑制することを明らかにした。また、PR-619 の投与は Smad4 発現も低下させた。Smad4 発現に関わる特異的な DUB を同定できていないことが今後検討すべき課題であるが、DUB 的阻害は、新たな慢性腎臓病の治療の選択肢となる可能性が示された。