DOBESILATE AN OLD DRUG AS A POSSIBLE NEW TREATMENT OPTION FOR COVID-19 INFECTION

Pedro Cuevas∗,1, Javier Angulo∗∗, Daniel Zingg△, Antonio Manquillo△△, José Luis Calleja□ and Guillermo Giménez-Gallego□□

∗ Facultad de Medicina. Universidad Alfonso X el Sabio, Madrid., ∗∗ Servicio de Histología, Hospital Universitario Ramón y Cajal, Madrid., △ Medical Affairs Department, OM Pharma Ltd, Geneva, Switzerland., △△ Clínica Centro, Madrid., □ Servicio de Medicina Interna, Hospital Universitario Ramón y Cajal., □□ Real Academia Nacional de Farmacia. Madrid. Spain.

ABSTRACT COVID-19 pandemic is responsible for near to two million deaths worldwide. Because of the lack of any specific treatment option, repurposing of existing drugs continues worldwide to find immediate therapeutic strategies for deadly SARS-CoV-2 infection. We recently demonstrated the efficacy of Dobesilate, an old medicament with a long history of use with proven efficacy and good safety profiles, in a patient suffering from COVID-19 disease. The postulated therapeutic mechanism of Dobesilate in COVID-19 disease may primarily involve the following effects: reducing infection-related pathways, suppressing inflammation-related pathways (cytokine storm), protecting capillary barrier permeability, alleviating thrombosis and perivascular oedema, and ultimately attenuating interstitial fibrosis.

KEYWORDS SARS-CoV-2, COVID-19, Dobesilate, FGF, VEGF

Introduction

The coronavirus (COV), now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the coronavirus disease 2019 (COVID-19). It was first detected in early December in Wuhan City, Hubei Province, China. The disease was initially described as “pneumonia of unknown etiology” with a high fever that was not responding to drug treatment. Approximately 80% of people infected with COVID-19 present with mild to moderate symptoms that may include pneumonia, most of whom recover spontaneously. Some patients (14%) have severe symptoms with blood oxygen saturation (< 93%), and 6% are critical with respiratory failure, septic shock and/or serious multi-organ dysfunction or failure [1]. COVID-19 is a new disease that rapidly became a dominant global health issue. Our current understanding of its pathogenic mechanism is very limited. However, it is evident, according to recent reports, that the disease may evolve in four overlapping phases (Figure 1): Phase I: the host-virus interactions take place, dictating the outcome for the subsequent phases of the disease. Phase II: the hyper-responsiveness of the immune system is characterized by the apparition of a “cytokine storm”. In 20% of patients, the disease may become severe and/or critical. Phase III: corresponds to a state of hypercoagulability. Finally, Phase IV: organ damage and failure occur, related to organ and cell-specific expression of angiotensin-converting enzyme 2 (ACE2) receptors, the intensity of the inflammatory response and the hyper-coagulable state [2,3]. Considering the high mortality rate of COVID-19, the development of effective therapeutics is an urgent issue and requires the identification of quality targets.

1. SARS-CoV-2 interactions with the host cells

The SARS-CoV-2 first predominantly infects airways, mainly ciliated bronchial epithelial cells and type 2 pneumocytes using the angiotensin-converting enzyme 2 (ACE2) as a receptor [4]. SARS-CoV-2 S1 protein contains a receptor to bind to ACE2. The serine-threonine protease (TMPRSS2) uses SARS-CoV-2 to prime the spike S1 protein and facilitate binding to ACE2 and entry into the cell [5,6]. Cathepsin L (CATL) plays an important role in entry into the cell by endocytosis [6-8] (Figures 2 and 3). Cathepsin L is a cysteine protease that mediates the cleavage of the S1 protein of SARS-CoV-2 surface necessary for entry into human host cells [7] that activate fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) signals pathways.
Recent data suggest that another protein/receptor termed neuropilin 1 (NRP1) is also implicated in the SARS-CoV-2 infection [9-12]. NRP-1 has been implicated in COVID-19 by enhancing the entry of SARS-CoV-2 into the brain, originating neurological manifestations in COVID-19 patients [12-14]. Due to the lack of cytosolic protein kinase domain, NRP1 acts primarily as a co-receptor for various extracellular ligands, including FGF and VEGF [11,12,15]. It thus induces a multitude of effects such as cell proliferation, angiogenesis and inflammation [10,11,12,16]. Experimental data support a cardinal role of FGF for virus entry in the host cells [17]. It has been demonstrated that FGF promotes SARS-CoV-2 replication through the interferon (IFN) alpha pathway [18] (Figure 4). Consequently, FGF has a double effect in viral infection: first, it contributes to virus entry, and secondly, it promotes viral replication in the host cell cytoplasm. These results reinforce the notion that inhibition of FGF triggers an antiviral program [19].

Figure 1. Phases of SARS-CoV-2 infection.

Figure 2. Dobesilate would interfere with the interaction of SARS-CoV-2 with the cellular ACE2 target receptor. The binding of spike protein (S-protein) of virus surface to angiotensin-converting enzyme-2 (ACE2) allows for the entry of the virus into the target cell. SARS-CoV-2 uses heparan sulfate to bind the cell and to progress on the cellular surface for reaching its cellular target receptor, ACE2 (left panel). Dobesilate (DOBE) has a high affinity for heparan sulfate. DOBE would impede viral particle binding and progression to the target receptor, inhibiting viral infective capacity (right panel).

Figure 3. Dobesilate would avoid FGF-mediated promotion of SARS-CoV-2 infection of target cells. Transmembrane serine protease 2 (TMPRSS2) activates viral spike protein (S-protein), promoting virus binding to angiotensin-converting enzyme-2 (ACE2). Internalization of ACE2-SARS-CoV-2 complex and target cell infection is promoted by cathepsin-L. Fibroblast growth factor (FGF) induces activation of TMPRSS2 and enhances cathepsin-L, thus favouring viral infection of the target cell (left superior panel and right panel). Dobesilate (DOBE) possesses demonstrated capacity as an FGF inhibitor. By inhibiting FGF activities, the presence of Dobesilate would result in inhibition of viral infection by reducing TMPRSS2 activation and cathepsin-L upregulation (left inferior panel) and avoiding internalization of the viral particles into the target cell.

2. Molecular pathways implicated in phases II, III and IV of COVID-19 disease

Several molecular overlapped hyperactive signals have been reported in COVID-19 disease. These signals produce histopathological alterations, first in the lung and secondly in the organs with ACE2 receptors. Besides lung pathology, tissue disturbance has been observed in the liver, kidneys, intestines, brain, heart and blood vessels [20]. Below, we describe the most important up-regulated signals and molecules which play a cardinal role in the progression of COVID-19.

2.1. Hyperinflammation

SARS-CoV-2 is a potent inducer of inflammatory cytokines during COVID-19. The “cytokine storm” or “cytokine cascade” is originated by a virus which activates immune cells and induces the secretion of several inflammatory cytokines (IFNα, TNFa, IL-1β, IL-8, IL-12, IL-16, IL-18, IL-33 and TGFβ) and chemokines (CCL2, CCL3, CXCL8, CXCL9, CXCL10) [21,22]. “Cytokine storm” is the postulated mechanism for organ damage and is a major contributor to the high mortality rate. Moreover, it also may lead to heart attacks and strokes in COVID-19 patients [20]. As well, nuclear factor Kappa-b (NF-Kb) and signal transducer activator and transcription 3 (STAT-3) pathways hyper-activation play a pivotal role in SARS-CoV-2 infection [23-25].
2.2. Endotheliitis

It has been postulated that COVID-19 is a vascular illness. The systemic leakage and adheriveness of the deregulated vascular endothelium might play a central role in the pathogenesis of COVID-19 disease [5, 26-28]. The endothelium, which forms the inner lining of all blood and lymphatic vessels in the body, is a spatially distributed organ. In adult people, endothelium weighs approximately 1 kg and covers a total surface area of 4000 to 7000 square meters. The endothelium is involved in most, if not all, disease states, either as a primary determinant of pathophysiology or as a victim of collateral damage. The vascular endothelium is an active paracrine, endocrine and autocrine organ that is indispensable for the regulation of vascular tone and maintenance of vascular homeostasis [29]. Inflammation may lead to endothelial dysfunction, which can induce a pro-coagulant state [30]. It has been proposed that alveolar virus damage may trigger an underlying inflammatory reaction, promoting a pulmonary microvascular thrombosis or endothelial thrombo-inflammatory syndrome, affecting microvascular beds beyond the lung (e.g., heart, kidney, brain and other vital organs) [31].

Up-regulation of pro-inflammatory cytokines, proteases, leukotrienes, platelet-activating factor (PAF), and oxidants produced by the neutrophils [32] culminate in the destruction of the lung glycocalyx. This process may increase the permeability of the endothelium, allowing the viruses to pass to the bloodstream and reach other organs that express ACE2. Endothelial hyperpermeability also promotes infiltration of neutrophils and inflammatory monocytes in the pericapillar space. Increased permeability of microvascular barriers also result in protein-rich plasma fluid accumulation in air spaces and decrease blood levels [33]. When vascular permeability and systemic inflammation are too high, vascular dysfunction and inflammation lead to multiple organ failure [34].

When nitric oxide (NO) plays an important role in endothelium physiology [35]. Recently it has been postulated that NO has a crucial role in COVID-19 disease [36]; indeed, restoring NO may attenuate endotheliitis and contribute to pulmonary vasodilation, antithrombotic and direct antiviral activities [37]. Additionally, NO interferes with the interaction between coronavirus S1 protein and ACE2 receptor. NO inhibits the replication cycle of severe acute respiratory syndrome coronavirus [38]. Furthermore, NO-sensitive [39]. Endothelial inflammation (endotheliitis) in COVID-19 patients may occur through multiple mechanisms. This includes cytokine storm, the activation of the complement components in blood neutrophils extracellular traps (NETs), or a direct result of SARS-CoV-2 infection of endothelial cells through the ACE2 receptor [40].

2.3. Neutrophils extracellular traps (NETS)

Neutrophils have primary roles in innate immunity through phagocytosis of microbial pathogens, production of reactive oxygen intermediates and toxic enzymes or by the formation of NETs [41]. Furthermore, NETs play an important role in virus infection [42]. The persistence of NETs may lead to inflammation, tissue damage damage [43,44], small vessel vasculitis [45] and risk of morbidity thrombotic complications [44,46]. It has been reported that NETs have an important role in SARS-CoV-2 infection [47,48].

2.4. Thrombosis

The hypercoagulable state in COVID-19 subjects is emerging as a major pathological occurrence with serious consequences in mortality and morbidity. In this context, the clinical efficacy of tissue plasminogen activator (tPA) has been reported in patients with COVID-19 [49,50].

2.5. Hypercoagulability

Endothelial cell damage causes coagulation activation and hyperfibrinolysis condition, resulting from the inflammatory progression, which may cause small vessel thrombosis, and possibly increasing cardiac load and promoting pulmonary embolism [51].

2.6. Angiogenesis

Inflammation and angiogenesis are interrelated biological processes: inflammation promotes angiogenesis, and angiogenesis maintains inflammation. Angiogenesis is the biological process through which new blood vessels form from pre-existing vessels; up-regulation of this process can be observed in several pathological conditions (angiogenesis-dependent diseases) [52]. Recently, the role of FGF- and VEGF-dependent angiogenesis has been proposed in COVID-19 subjects [53,54]. Anti-angiogenic therapy using Avastin (an anti-VEGF-A165 monoclonal antibody) in severe COVID-19 patients is currently being investigated in a randomized clinical trial (Clinical Trial. Gov-Identifier NCT04305106).
2.7. Fibrosis

Fibrosis is the final stage in many inflammatory diseases and is defined as an abnormal accumulation of extracellular matrix (ECM) components. Fibrosis can affect many tissues, and numerous studies have been conducted to find satisfactory treatments. Interstitial pulmonary fibrosis can develop following inflammation in COVID-19 subjects [55-57].

2.8. Sepsis

Sepsis is a pathological host response to infection leading to vascular barrier breakdown due to elevated level of FGF and VEGF [58]. It has been reported that inhibition of VEGF improves experimental sepsis morbidity and mortality, making it a potential therapeutic agent against sepsis condition [59]. Sepsis is one fatal complication of COVID-19 evolution that correlates with FGF and VEGF up-regulation [60]. Thus, inhibition of FGF and VEGF signalling pathways could represent an attractive therapy for sepsis in COVID-19 pathophysiology.

3. The roles of FGF and VEGF in the pathophysiology of COVID-19 disease

Fibroblast growth factor (FGF) consists of 18 members of secreted proteins critical in controlling cell proliferation, inflammation, angiogenesis and organ repair and regeneration [61]. FGF signals are mediated via the activation of a set of cell surface receptors (FGFRs). FGFRs are single-pass transmembrane proteins with tyrosine kinase activity, and FGF-FGFR interactions are stabilized by heparan sulphate proteoglycans at the cell surface [62]. FGF production is tightly regulated in normal conditions by its sequestration in the cellular matrix (ECM) because it controls several physiological functions [63,64]. In some pathological conditions, proteases liberate ECM-bounded FGF, which participates in the pathophysiology of inflammation and angiogenesis-dependent diseases. Recently, it has been reported that FGF has a key role in viral infection [65,66], suggesting that inhibition of FGF signals represent an attractive new antiviral therapy.

FGF-A length 165 is the most physiologically relevant isoform with a single heparin-bind domain that, in part, is sequestered in the extracellular matrix (ECM) [29]. Experimental and clinical data suggested that both FGF and VEGF have an important role in activating signal pathways in COVID-19 pathophysiology [67-73].

Patients with fragile already impaired endothelium and in particular with chronic comorbidities (such as obesity, hypertension, diabetes, cardiovascular disease, cerebrovascular disease, chronic respiratory disease, malignancy) are at particular risk of severe (defined as a severe disease based on clinical symptoms, ICU (intensive care unit) admission, and death) or fatal COVID-19 disease [74-76]. Indeed, SARS-CoV-2 infection in such patients may exacerbate the underlying endothelial dysfunction [77]. In a French multicenter observational study in people with diabetes hospitalized for COVID-19 (Coronado study), age, microvascular and macrovascular diabetic complications, treated obstructive sleep apnoea, dyspnoea and some biological variables (i.e. increased AST and CRP and decreased eGFR and platelet count on admission) were independently associated with the risk of early death [78].

4. Dobesilate

Intensive research from our team conducted for the synthesis of FGF inhibitors as well as in the screening of old medicaments with pathologic FGF inhibitor activity concluded that the most potent FGF inhibitor was Dobesilate (2,5-dihydroxyphenyl sulfonate). Dobesilate is the most active member of a family of compounds headed by gentisic acid, the catabolite of aspirin, which inhibit FGF and VEGF-A165 induced proliferation, migration and angiogenesis, in distinct biological scenarios, includ-
ing inflammation and angiogenesis-dependent diseases [79-82]. Calcium dobesilate (CaD, Doxium®) [83] is a small synthetic molecule with a good safety profile that has been widely used for more than six decades as a vasoactive and angioprotective drug improving endothelial dysfunction [84-85], to treat multiple diseases, such as microangiopathies (in particular diabetic retinopathy), chronic venous insufficiency and haemorrhoidal disease [86-89]. The principal advantage of Dobesilate is to reduce FGF and VEGF-A165 exaggerated signalling while maintaining the physiological effects of both growth factors and consequently avoiding adverse effects [90]. In several human diseases, Dobesilate has shown clinical efficacy [91-93]. Recently Dobesilate demonstrated therapeutic efficacy in a single COVID-19 patient [66]. Figure 5 shows the capacity of Dobesilate to inhibit several, if not all, signalling pathways implicated in COVID-19 pathophysiology, supporting the use of Dobesilate as a new possible therapy that should be effective in COVID-19 patients.

Conclusion
Up to date, no approved drugs are targeting specifically SARS-CoV-2. Until a treatment is available, repurposing approved drugs could significantly shorten the time and reduce costs compared to “de novo” discovery. The simultaneous inhibition of multiple targets is expected to have higher therapeutic potential than single-target approaches to prevent COVID-19 disease progression. According to its pharmacological activities, Dobesilate is a potential new therapeutic against FGF and VEGF signalling pathways which have a key role in COVID-19 pathophysiology. Due to its long experience on the market, its well-tolerated safety profile and convenient posology (1-2 g/d p.o.) [83,86], as well as the two-axis rationale (Fig. 6A) to dampen both viral infectivity and endothelial inflammation/dysfunction, Dobesilate could represent an interesting alternative (Fig. 6B) for the treatment of Covid-19 disease.

Author’s Contributions
PC wrote the article, JA and DZ draw the graphs, AM, JLC and GGG read the article and gave their approval.

Funding
This work did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest
There are no conflicts of interest to declare by any of the authors of this study.

References
1. World Health Organization 2020. Report of the WHO-China Joint Mission on Coronavirus. Geneva, Switzerland.
2. Zirui Tay M, Chek Meng Poh, Laurent Rénia, Paul A MacAry, Lisa F P Ng The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20:363-374.
3. Quan Du S, Weiming Yuan. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis J Med Virol. 2020; 92:1615-1628.
4. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2.Pros Natl Acad Sci U S A. 2020;117:11727-11734.
5. Hoffmann M, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S Schiergens, Georg Herrler, Nai-Huei Wu, Andreas Nitsche, Marcel A Müller, Christian Drosten, Stefan Pöhlmann. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Cell. 2020;181:271-280.
6. Katopodis P, Vladimir Anikin, Harpal S Randeva, Demetrios A Spandios, Kamaljit Chatha, Joannis Kyrou, Emmanouil Karteris. Pan-cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS-CoV-2 infection leading to COVID-19. Int J Oncol. 2020;57:533-539.
7. Tianxiao Liu, Songyuan Luo, Peter Libby, Guo-Ping Shi. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients Pharmacol Ther. 2020;213:107587.
8. Abdelhadi Rebbaa, Fei Chu, Thangiral Sudha, Christine Gallati, Usawadee Dier, Evgeny Dyskin et al. The anti-angiogenic activity of NSITC, a specific cathepsin L inhibitor Anticancer Res. 2009;29:4473-81.
9. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S et al. Neurupilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856-860.
10. Guo HF, Craig W Vander Kooi. Neurupilin Functions as an Essential Cell Surface Receptor J Biol Chem. 2015;290:29120-6.
11. Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C et al. Neurupilin-1 is a host factor for SARS-CoV-2 infection. Science 2020;370:861-865.
12. Davies J, Randeva HS, Chatha K, Hall M, Spandios DA, Karteris E, Kyrou I. Neurupilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 2020;22:4221-4226.
13. Moutal A, Martin LF, Boinon L, Gomez K, Dongzhi Ran, Yuan Zhou et al. SARS-CoV-2 spike protein co-opts VEGF-A/neurupilin-1 receptor signaling to induce analgesia. Pain. 2021;162:243-252.
14. Perez-Miller S, Marcel Patek, Aubin Moutal, Carly R Cabel, Curtis A Thorne, Samuel K Campos, Rajesh Khanna. Novel Compounds Targeting Neurupilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021;31; acschemneuro.0c00619.
15. West David C, Chris G Rees, Laurence Duchesne, Susannah J Paty, Carla J Terry, Jeremy E Turnbull et al. Interactions of multiple heparin binding growth factors with neurupilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem. 2005;280:13457-64.
16. Liu WJ, Liu XJ, Li L, Li Y, Zhang SH, Zhen YS. Tuftsin-based, EGFR-targeting fusion protein and its endiine-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol Immunother. 2014;63:1261-72.

17. Kaner RJ, Baird A, Mansukhani A, Basilico C, Summers BD, Florkiewicz RZ, Hajjar DP. Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. Science. 1990;248:1410-3.

18. Maddaluno L, Corinne Urwyler, Theresa Rauschdorfer, Michael Meyer, Debora Stefanova, Roman Spörri et al. Antagonism of interferon signaling by fibroblast growth factors promotes viral replication MBO Mol Med. 2020;12:e11793.

19. Baird A, Florkiewicz RZ, Maher PA, Kaner RJ, Hajjar DP. Mediation of virion penetration into vascular cells by association of basic fibroblast growth factor with herpes simplex virus type 1. Nature. 1990;348:344-6.

20. Wadman M, Jennifer Couzin-Frankel, Jocelyn Kaiser, Catherine Matacic. A rampage through the body. Science. 2020;368:356-360.

21. Fajjenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383:2255-2273.

22. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020;133:155151.

23. DeDiego ML, Jose L Nieto-Torres, Jose A Regla-Nava, Jose M Jimenez-Guardaño, Raul Fernandez-Delgado, Craig Fett et al. Inhibition of NF-kB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88:913-24.

24. Matsuyama T, Shawn P Kubli, Steven K Yoshinaga, Klaus Pfeffer, Tak W Mak. An aberrant STAT pathway is central to COVID-19 Cell Death Differ. 2020;27:3209-3225.

25. Meletiadis J, Tsiodras S, Tsigiotis P. Interleukin-6 Blocking vs. JAK-STAT Inhibition for Prevention of Lung Injury in Patients with COVID-19. Infect Dis Ther. 2020;9:707-713.

26. Varga Z, Andreas J Flammer, Peter Steiger, Martina Haberecker, Rea Andermatt, Annelies Zinkernagel et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417-1418.

27. Pons S, Sofiane Fodiil, Elie Azoulay, Lara Zafrani. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24:353.

28. Okada H, Yoshida S, Hara A, Ogura S, Tomita H. Vascular endothelial injury exacerbates coronavirus disease 2019: The role of endothelial glycocalyx protection. Microcirculation. 2020:e12654. doi: 10.1111/micc.12654.

29. Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21:687-90.

30. William CA. Consultive haemostasis and thrombosis 2013: 054-020-03062-7.

31. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108:17-41.

32. Aquino EN, Neves AC, Santos KC, Uribe CE, Souza PE, Correa JR, Castro MS, Fontes W. Proteomic Analysis of Neutrophil Priming by PAF. Protein Pept Lett. 2016;23(2).

33. Peeling RW, Wedderburn CJ, Garcia PJ, Boeras D, Fongwen N, Nkengasong J et al. Serology testing in the COVID-19 pandemic response. Lancet Infect Dis. 2020;20:e245-e249.

34. Polidoro RB, Hagan RS, de Santis Santiago R, Schmidt NW. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19. Front Immunol. 2020;11:1626.

35. S Moncada 1, R M Palmer, E A Higgs. The discovery of nitric oxide as the endogenous nitrovasodilator Hyperension. 1988;12:365-72.

36. Green SJ. Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect. 2020;22:149-150.

37. Reiss AL, Abrams MT, Greenlaw R, Freund L, Denckla MB. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat Med. 1995;1:159-67.

38. Akerström S, Mehrdad Mousavi-Jazi, Jonas Klingström, Mikael Leijon, Ake Lundkvist, Ali Mirazimi. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 2005;79:1966-9.

39. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herring T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-280.

40. Monteil V, Hyesoo Kwon, Patricia Prado, Astrid Hagelkrüys, Reiner A Wimmer, Martin Stahl et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2 Cell. 2020;181:905-913.

41. Kodama T, Yukioka H, Kato T, Kato N, Hato F, Kitagawa S. Neutrophil elastase as a predicting factor for development of acute lung injury. Intern Med. 2007;46:365-72.

42. Wardini AB, Guimarães-Costa AB, Nascimento MT, Ndaes NR, Danelli MG, Mazur C et al. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol. 2010;91:259-64.

43. Tomar B, Anders HJ, Desai J, Mulay SR. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells. 2020;9:1383.

44. Wartha F, Katharina Beiter, Staffan Normark, Birgitta Henriques-Normark. Neutrophil extracellular traps: casting the NET over pathogenesis Curr Opin Microbiol. 2007;10:52-6.
45. Kessenbrock K, Markus Krumbholz, Ulf Schönermarck, Walter Back, Wolfgang I. Gross, Zena Werb et al. Netting neutrophils in autoimmune small-vessel vasculitis Nat Med. 2009;15:623-5.

46. Zuo Y, Zuo M, Yangarsthi S, Gockman K, Madison JA, Shi H, Woodard W, Lezak SP, Lugogo NL, Knight JS, Kanthi Y. Neutrophil extracellular traps and thrombosis in COVID-19. J Thromb Thrombolysis. 2021;51:446-453.

47. Zuo Y, Yangarsthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5:e138999.

48. Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217:e20201129.

49. Wang J, Negin Hajizadeh, Ernest E Moore, Robert C McIntyre, Peter K Moore, Livia A Veness et al. Tissue plasminogen activator (tPA) treatment for COVID-19-associated acute respiratory distress syndrome (ARDS): A case series J Thromb Haemost. 2020;18:1752-1755.

50. Choudhury R, Christopher D Barrett, Hunter B Moore, Ernest E Moore, Robert C McIntyre, Peter K Moore et al. Salvage use of tissue plasminogen activator (tPA) in the setting of acute respiratory distress syndrome (ARDS) due to COVID-19 in the USA: a Markov decision analysis. World J Emerg Surg. 2020;15:29.

51. Bompard F, Monnier H, Saab I, Tordjman M, Abdoul H, Fournier L et al. Pulmonary embolism in patients with COVID-19 pneumonia. Eur Respir Rev. 2020;29:190167.

52. Carmeliet P. VEGF as a key mediator of angiogenesis in Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-128.

53. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-128.

54. Xu YH, Dong JH, An WM, Lv XY, Yin XP, Zhang JZ, Dong L, Ma X, Zhang HJ, Gao BL. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect. 2020;80:394-400.

55. George PM, Athol U Wells, R Gisli Jenkins. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy Lancet Respir Med. 2020;8:807-815.

56. Heshui Shi, Xiaoyu Han, Nanchuan Jiang, Yukun Cao, Osama Alwalid, Jin Gu et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study Lancet Infect Dis. 2020;20:425-434.

57. Hauschildt J, Schrumpf C, Thamm K, Retzlaff J, Idowu TO, von Kaisenberg C ey al. Dual Pharmacological Inhibition of Angiopoietin-2 and VEGF-A in Murine Experimental Sepsis. J Vasc Res. 2020;57:34-45.

58. Besnier E, Brakenhielm E, Richard V, Tamion F. Does anti-VEGF bevacizumab improve survival in experimental sepsis? Crit Care. 2017;21:163.

59. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y ey al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.

60. Fu XB, Shen ZY, Chen YL et al. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second degree burns. Lancet 1998; 352: 1661-4

61. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017; 17:318-332.

62. Cuevas P, Antonio Manquillo, Pedro Guillen and Guillermo Giménez-Gallego. Efficacy of topical application of etamsylate in herpes simplex. JCR; 2018, 2:28.

63. Cuevas P, Javier Angulo, Guillermo Giménez-Gallego. Fibroblast Growth Factors in the Cardiovascular System. 2002, Cuevas P. (ed.) Holzapfel Publishers, Munich, Germany.

64. Bikfalvi A, C Savona, C Perollet, S Javerzat New insights in the biology of fibroblast growth factor-2 Angiogenesis. 1998;1:155-73.

65. Saini S, Avneet Saini, Chander Jyoti Thakur, Varinder Kumar, Rishabh Dilip Gupta, Jogesh Kumar Sharma. Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. Mol Biol Res Commun. 2020;9:83-91.

66. Petrey AC, Fares Qeadan, Elizabeth A Middleton, Irina V Pinchuk, Robert A Campbell, Ellen J Beswick. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol. J Leukoc Biol. 2021;109:55-66.

67. Saini S, Avneet Saini, Chander Jyoti Thakur, Varinder Kumar, Rishabh Dilip Gupta, Jogesh Kumar Sharma. Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. Mol Biol Res Commun. 2020;9:83-91.

68. Yin XX, Xiang-Rong Zheng, Wang Peng, Mao-Lan Wu, Xiao-Yuan Mao. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak ACS Chem Neurosci. 2020;11:1704-1705

69. Kong Y, Junyan Han, Xueying Wu, Hui Zeng, Jingyuan Liu, Henghui Zhang. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care. 2020;24:373.

70. Ying Chi, Yiyue Ge, Bin Wu, Wenshuai Zhang, Tao Wu, Tian Wen et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China J Infect Dis. 2020;222:746-754.
85. Zhou Y, Qing Yang, Jingwei Chi, Bingzi Dong, Wenshan Lv, Liyan Shen, Yangang Wang. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020;99:47-56.

86. Allain H, Albert A Ramelet, Elisabeth Polard, Danièle Bentué-Ferrer. Safety of calcium dobesilate in chronic venous disease, diabetic retinopathy and haemorrhoids. Drug Saf. 2004;27:649-60.

87. Ribeiro ML, Andras I Seres, Angela M Carneiro, Michael Stur, Alain Zourdani, Patricia Caillon, José G Cunha-Vaz, DX-Retinopathy Study Group. Effect of calcium dobesilate on progression of early diabetic retinopathy: a randomised double-blind study. Graefe’s Arch Clin Exp Ophthalmol. 2006;244:1591-600.

88. Rabe E, Ballarini S, Lehr L. Doxium EDX09/01 Study Group. A randomized, double-blind, placebo-controlled, clinical study on the efficacy and safety of calcium dobesilate in the treatment of chronic venous insufficiency. Phlebology 2016; 31: 264-75.

89. Liu J, Li S, Sun D. Calcium Dobsesilate and Micro-vascular diseases. Life Sci. 2019; 221:348-353.

90. Oladipupo SS, Smith C, Santeford A, Park C, Sene A, Wiley LA et al. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Developmental Biology. Proc Natl Acad Sci U S A. 2014; 111: 13379–13384.

91. Cuevas P, Javier Angulo, Guillermo Giménez-Gallego. Topical treatment of contact dermatitis by pine processionary caterpillar. BMJ Case Rep. 2011:bcr0620114351.

92. Cuevas P, Outeiriño L.A, Azanza C, Ángulo J and Giménez-Gallego G. Intravitreal Dobsesilate Treatment of Dry Age-Related Macular Degeneration: 12-Months Results Journal of Ocular Diseases and Therapeutics, 2014, 2: 45-50

93. Cuevas P, L.A. Outeiriño, C. Azanza, J. Angulo and G. Giménez-Gallego. Clinical Efficacy of Intravitreal Injection of Dobsesilate for Reversing Choroidal Angiogenesis in Age-Related Macular Degeneration. Journal of Aging and Gerontology, 2013, 1: 1-8

94. Bogdanov P, Cristina Solà-Adell, Cristina Hernández, Marta García-Ramírez, Joel Sampredo, Olga Simó-Servat et al. Calcium dobesilate prevents the oxidative stress and inflammation induced by diabetes in the retina of db/db mice. J Diabetes Complications. 2017;31:1481-1490.

95. Leal EC, Martins J, Voabil P, Liberal J, Chiavarioli C, Bauer J et al. Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes. Diabetes. 2010;59:2637-2645.

96. Zhou Y, Qi C, Li S, Shao X, Ni Z. Investigation of the Mechanism Underlying Calcium Dobsesilate-Mediated Improvement of Endothelial Dysfunction and Inflammation Caused by High Glucose. Mediators Inflamm. 2019;2019:9893682

97. Suschek C, Kolb H, Kolb-Bachofen V. Dobsesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells. Br J Pharmacol. 1997;122:1502–1508.

98. Zhou Y, Yuan J, Qi C, Shao X, Mou S, Ni Z. Calcium dobesilate may alleviate diabetes-induced endothelial dysfunction and inflammation. Mol Med Rep. 2017;16:8635–8642.
105. Zhang X. Therapeutic effects of calcium dobesilate on diabetic nephropathy. Acta Haematol. 1986; 75:129-40.

106. Guerrini M, Pieragalli D, Acciavatti A, Galigani C, Guideri F, Franchi M et al. Calcium dobesilate, hemorheology, fibrolysis and endothelium. New perspectives on the prevention of diabetic microangiopathy. Clinical pharmacological study. Clinical Trial Clin Ter. 1989;129:271-85.

107. Brunet J, Farine JC, Barbay RS, Hannaert P. In vitro antioxidante properties of calcium dobesilate. Fundam Clin Pharmacol. 1998; 12:205-12.

108. Bussolino F, Biffignandi P, Arese P. Platelet-activating factor–a powerful lipid autacoid possibly involved in microangiopathy. Acta Haematol. 1986; 75:129-40.

109. Wang Y, Zuo B, Wang N, Li S, Liu C, Sun D. Calcium dobesilate mediates renal interstitial fibrosis and delay renal peritubular capillary loss through Sirt1/p53 signaling pathway. Biomed Pharmacother. 2020;132:110798.

110. Li X, Bu X, Yan F, Wang W, Wei D, Yuan J et al. Deletion of discoidin domain receptor 2 attenuates renal interstitial fibrosis in a murine unilateral ureteral obstruction model. Ren Fail. 2019;41:481-488.

111. Liu X, Xinning Liu. Effect of calcium dobesilate on nephropathy in type 2 diabetic rats. J Huazhong Univ Sci Technolog Med Sci. 2005;25:36-38.

112. Zhang L, Li YM, Wang ZF, et al. Protective effect of calcium dobesilate combined with benazepril therapy on renal injury in patients with early diabetic nephropathy and the possible molecular mechanisms. Journal of Hainan Medical University 2017; 23: 48-52.

113. Simsek B, Bayazit A, Gönlüsen G et al. The effect of Ca-Dobesilate over renal scar formation in an experimental pyelonephritis model. Cukurova Med J. 2020;45(4):1653-1662.

114. Zawrotniak M, Kozik A, Rapala-Kozik M. Selected mucolytic, anti-inflammatory and cardiovascular drugs change the ability of neutrophils to form extracellular traps (NETs). Acta Physiol Biochim Pol. 2015;62:465-73.

115. Zawrotniak M, Bartnicka D, Rapala-Kozik M. UVA and UVB radiation induce the formation of neutrophil extracellular traps by human polymorphonuclear cells. J Photodermatol Photobiol B. 2019;196:111511.

116. Iriz E, Vural C, Ereren E, Poyraz A, Erer D, Oktar L et al. Effects of calcium dobesilate and diosmin-hesperidin on apoptosis of venous wall in primary varicose veins. Vasa. 2008;37:233-40.

117. Wu W, Xie Z, Zhang Q, Ma Y, Bi X, Yang X et al. Hyperside Ameliorates Diabetic Retinopathy via Anti-Oxidation, Inhibiting Cell Damage and Apoptosis Induced by High Glucose. Front Pharmacol. 2020;11:797.

118. Wang Y, Zuo B, Wang N Li S , Liu C, Sun D. Calcium dobesilate mediates renal interstitial fibrosis and delay renal peritubular capillary loss through Sirt1/p53 signaling pathway. Biomed Pharmacother. 2020;132:110798.

119. Cai T, Wu XY, Zhang XQ, Shang HX, Zhang ZW, Liao L, Dong JJ. Calcium Dobesilate Prevents Diabetic Kidney Disease by Decreasing Bim and Inhibiting Apoptosis of Renal Proximal Tubular Epithelial Cells. DNA Cell Biol. 2017;36:249-255.

120. Cuevas P, Diaz-González D, Sánchez I. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells. Neurol Res. 2006;28:127-30.

121. Chen M, Lv H, Gan J, Ren J, Liu J : Tang Wang Ming Mu Granule Ameliorates Diabetic Retinopathy in Type 2 Diabetic Rats. Front Physiol. 2017;8:1065.

122. Teuwen L, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol 2020; 20: 389–391.

123. Wu D, Koganti R, Lambe UP, Yadavalli T, Nandi SS, Deepak Shukla D. Vaccines and Therapies in Development for SARS-CoV-2 Infections. J. Clin. Med. 2020;9:1885.

124. Siddiqui HK, Mehra MR. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J Heart Lung Transplant. 2020; 39: 405-407.

125. Lippi G, Sanchis-Gomar F, Henry BM. COVID-19: unravelling the clinical progression of nature’s virtually perfect biological weapon. Ann Transl Med 2020;8:693.

126. Aguilar RB, Hardigan P, Mayi B, Sider D, Piotrkowski J, Mehta JP. Current Understanding of COVID-19 Clinical Course and Investigational Treatments. Front. Med. 2020; 7:555301.