Ethnotaxonomy of food plants in Gayo People: a case study in the Jabodetabek community

S Hidayati¹, A Sunkar¹, N I Suansa², A S Fuadah¹, A P P Hartoyo³

¹Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, PO Box 168, Bogor 16001, Indonesia
²Jaga Rimba Nusantara Foundation, Indonesia
³Department of Silviculture, Faculty of Forestry and Environment, IPB University, PO Box 168, Bogor 16001, Indonesia
E-mail: syafitrihidayati@apps.ipb.ac.id

Abstract. Traditional knowledge (TK) of indigenous people is of utmost importance for the conservation of many plant species at the grassroots level, in particular food plants, as the main resource for human survival. For the past two decades, a novel path of research has emerged justifying the focus of linguistic ethnobiology on ethnotaxonomy, used by the local communities to symbolize biodiversity. The co-occurrence of linguistic, cultural, and biological diversities at a global level, are recognizable as evidence for a mutually dependent relationship known as biocultural diversity. Traditional knowledge and language come together to provide an ethnotaxonomical system of biodiversity. This study focuses on the ethnotaxonomy of food plants to document the TK of the Gayo ethnic group residing in Jabodetabek. Using Focus Group Discussion and in-depth interviews, this study found 218 species of food plants encoding TK related to morphology (80), ecology (35), utility (11), and quality (9) of the taxa. Our study indicated that ethnotaxonomy showed a remarkable ability to encode TK of multiple taxa. However, 83 documented taxa were unanalysable, suggesting the possibility of TK erosion within the community. Anyone wanting to conserve biocultural diversity should take into account the potentials of folk names as condensed biocultural knowledge.

1. Introduction
Ethnotaxonomy simply means the naming system embedded in traditional culture [1,2,3,4]. This indigenous knowledge is sourced from the empirical experience of local people for a long period of time. Two things can be reflected in ethnotaxonomical knowledge. On one hand, it may reveal how an organism can be described by the local people. On the other hand, it also may uncover how the organism relates to the local culture [5]. Hence, this TK is important at least for two stages of ethnobiological research. At the beginning stage, researchers usually record the native names of plants from the local people that contain biocultural expression [6]. Here, the ethnotaxonomical knowledge acts as a gate to segregate the plant's diversity through local recognition and symbolism that has been proven as the historical backbone of systematic biology [7]. Then, it can be used for multidisciplinary subjects at the succeeding stage, extending from basic to applied sciences [8]. For example, Brown [5] had presented that folk taxonomy is highly correlated with social and botanical aspects. He stated that the amount of folk botanical life-form vocabularies is positively correlated with societal complexity and species diversity. The other studies have expanded the subject at a more specific concern, such as folk taxonomy for assessing intraspecific variation and for revealing the status of cryptic species supported by DNA barcoding, phylogenetic, and metabolomic analyses [9,10,11].
Unfortunately, the studies relating to the ethnotaxonomy subjects in Indonesia are still lacking. During the last two decades, the number of international publications (indexed by Web of Science and Scopus) related to this subject was only 4 articles [12]. Several good results had been reported in Tobelo [13] dan Baduy [4]. Whereas the number of ethnic groups in this country is more than 600 groups [14]. Therefore, a lot of efforts will be needed in documenting at least for some major ethnic groups, before they may lose their TK. As researchers have revealed and as mentioned in The Declaration of Bélém, that any loss of TK is inextricably linked to loss of biological diversity and vice versa [15,16,17]. Consequently, this cultural diversity must be recognized and protected as valuable resources for further giving benefits for biodiversity conservation.

Gayo ethnic is one of the local communities in Indonesia who are living in the Gayo Highland. The Gayonese are territorially concentrated in the central highlands of Nanggroe Aceh Darussalam, particularly Gayo Luks, Bener Meriah, Aceh Tengah, and Aceh Timur. These regencies are home to the Gayonese subgroups, *i.e.* Gayo Luks, Gayo Lot, Gayo Lokop Serbajadi, and Gayo Linge [18]. Their presence around the Leuser Area, historically, had been intertwined for thousands of years. Formally, they have an important role in establishing the Leuser Protected Area through the Declaration of Tapaktuan (1934), which was the forerunner of the Mount Leuser National Park as the first five national parks in Indonesia [19,20]. However, the status of their local language, one of the cultural diversity components, is categorized as endangered by Ethnologue [21]. This status might be triggered by the pressure from other languages, globalization, destruction of land and livelihoods, economic activities, formal schooling, and so on, which at a certain level leads to a decline in the number of local people who are speaking their local language [22,23]. Hence, we can assume that some of their biodiversity may be lost due to the loss of cultural diversity [15,16,17]. Such conditions are already reported elsewhere. In Zapotec communities, the engagement of heads of family in economic and services activities resulted in the less competent of the people to identify the plant name and uses [22]. At the global level, shifting towards a monoculture system (mind, people, and land) leads to a rapid jeopardization of the local system [24].

Considering the aforementioned facts, this study was aimed to collect the ethnotaxonomy of food plants in the Gayo people. Food plants are the basic knowledge that is generally owned by every individual in a community. Thus, it is used as a focus of the present study. However, due to the Covid-19 pandemic, the setting of the study was restricted only to the Gayo community residing in Jabodetabek. With an intention as a preliminary study for next to be applied in the local site.

2. Methods
The study was applied by using both qualitative and quantitative methods; such methodology can answer the weaknesses of using a single method alone [25,26,27]. The mixed-method approach also becomes more relevant when multiple disciplines such as linguistics, traditional knowledge, and conservation are involved. The data was collected through literature review, Focus Group Discussion (FGD), and an in-depth interview. A literature review was used to generate the baseline data of Gayo food plants. There were five key publications that mentioned the Gayo food plants were used as the sources:
1. “Tumbuhan Obat dan Pemanfaatannya oleh Masyarakat Sekitar Hutan Hujan Tropis Kedah Kabupaten Gayo Luks” [28].
2. “Pengobatan Tradisional Gayo Untuk Ibu Nifas” [29].
3. “Cintronella agroforestry in Gayo Luks Regency of Indonesia” [30].
4. “Analysis of taste quality of Coffea arabica in several altitudes at Gayo Luks District” [31].
5. “Pemanfaatan tumbuhan dalam kehidupan komunitas Gayo dan Hubungannya dengan kelestarian keanekaragaman hayati” In Bintang and Gayo Linge (Central of Aceh) [32].

Constructed on the baseline information collected, the ethnotaxonomic system of the Gayo food plant was drafted through Focus Group Discussion (FGD) and in-depth interview. FGD is a form of interview that was able to construct a wealth of data [33]. The FGD was conducted in August 2020 collaborated with 11 Gayo people residing in Jakarta, Bogor, Depok, Tangerang, and Bekasi (Jabodetabek). A series of in-depth interviews were conducted with Mr. Hamid Hakim to interpret and generate the ethnotaxonomical system in Gayo Food Plants. Then, the generated data was compared with the general
template proposed by Berlin [34]. According to the model, there are nine general principles of classification and nomenclature in folk biology. The mechanism of naming was also compared with Kakudidi [35] and guided by Newmaster [36] which are in a particular case could not be general. The data was gathered then analysed by using statistical description to pronounce patterns and relationships that describe the key concepts of the phenomenon.

3. Results and discussion

Table 1 shows that the Gayo Community who are residing in Jabodetabek can recall about 218 food plants that used to utilize for their daily needs. In this initial study, there were about 135 (62%) taxa had been identified, while about 83 (38%) taxa still unanalysable. However, in further analysis, the number of unanalysable primary lexemes is calculated about 78% (figure 2).

Tabel 1. List and Meaning of Food Plants in Gayo Community Residing in Jabodetabek.

No.	Name	Description	Mechanism
1.	Agor (Solamum sp.)	(Unidentified)	Unidentified
2.	Anar (Rubus cuneifolius Pursh)	(Unidentified)	Unidentified
3.	Anar buyung (Unidentified)	(Unidentified)	Unidentified
4.	Anggur uten (Causonis trifolia (L.) Mabb. & J.Wen)	The plant found in the forest	Ekologi
5.	Asam Bali (Citrus sp.)	Balinese orange	Ekologi
6.	Asam Genensa (Citrus sp.)	Good quality orange	Quality
7.	Asam gerah giri (Citrus sp.)	Could be fresher when consumed	Utility
8.	Asam jantar (Citrus sp.)	The orange is used for cooking	Utility
9.	Asam jering (Citrus sp.)	The orange has liquid on its skin	Morfologi
10.	Asam jewe (Citrus sp.)	Javanese orange	Ekologi
11.	Asam Kelele (Citrus sp.)	The orange has a round shape	Morfologi
12.	Asam kelele Gayo (Citrus sp.)	The orange fruit is round and could be rolled over	Morfologi
13.	Asam kenyaran (Citrus sp.)	Orange from Kenyaran village	Ekologi
14.	Asam keprok (Citrus sp.)	Beat softly to peel the orange	Utility
15.	Asam kincit (Citrus sp.)	The small orange-like small feces	Morfologi
16.	Asam kuyun (Citrus sp.)	Orange from Kuyun village	Ekologi
17.	Asam leda (Citrus sp.)	(Unidentified)	Morfologi
18.	Asam pepok (Citrus sp.)	The orange is used as a toy or children’s game	Utility
19.	Asam perege (Citrus sp.)	The species can be used as roof	Ekologi
20.	Asam tai kurik (Citrus sp.)	Fruit with the smell of chicken shit	Morfologi
21.	Asam weh (Citrus sp.)	Juicer	Morfologi
22.	Awal (Pisang) Abu (Musa × paradisiaca L.)	The banana that has a darker color than other bananas	Morfologi
23.	Awal (Pisang) beret (Musa × paradisiaca L.)	Banana with a long and much fruit, so the one who picked it up was reluctant	Morfologi
24.	Awal (pisang) cangang (Musa × paradisiaca L.)	a long and crooked banana	Morfologi
25.	Awal (pisang) kapal (Musa × paradisiaca L.)	Banana carried in a boat and shape like a boat	Morfologi
26.	Awal (Pisang) keken (Musa × paradisiaca L.)	(Unidentified)	Unidentified
27.	Awal (Pisang) keris (Musa × paradisiaca L.)	This banana shape like a ceremonial knife (Keris)	Morfologi
28.	Awal (pisang) mas (Musa × paradisiaca L.)	Golden banana	Morfologi
29.	Awal (pisang) nut (Musa × paradisiaca L.)	Shiny banana	Morfologi
30.	Awal (pisang) oak (Musa balbisiana Colla)	The Banana from Oak village	Ekologi
No.	Name	Description	Mechanism
-----	--	--	-----------
31	Awal (pisang) reje (Musa × paradisiaca L.)	King (delicious) banana	Quality
32	Bako (Nicotiana tabacum Linn.)	(Unidentified)	Unidentified
33	Banitan (Mitrephora maingayi Hook.f. & Thomson)	(Unidentified)	Unidentified
34	Beke (Melastoma malabathricum L.)	(Unidentified)	Unidentified
35	Belo pedeh (Piper betle L.)	The real Piper sp.	Ekologi
36	Benalu kupi (Scurrula ferruginea (Roxb. ex Jack) Danser)	(Unidentified)	Unidentified
37	Bernol (Unidentified)	(Unidentified)	Unidentified
38	Beuing gajah (Zingiber sp.)	Elephant (big) ginger	Morfologi
39	Beuing ilang (Zingiber zerumbet Sm.)	Red ginger	Morfologi
40	Beuing/ging (Zingiber officinale Roscoe)	The real ginger	Ekologi
41	Beyem (Amaranthus hybridus Linn.)	(Unidentified)	Unidentified
42	Biwa (Eriobotrya japonica (Thunb.) Lindl)	(Unidentified)	Unidentified
43	Bunge Lawang (Myrcianthes fragrans (Sw.) McVaugh)	A species introduced by Indian	Ekologi
44	Bunge Lawang Kling (Illicium verum Hook.f.)	(Unidentified)	Unidentified
45	Cempedak (Artocarpus integer (Thumb.) Merr.)	(Unidentified)	Unidentified
46	Cerme (Phyllanthus acidus (L.) Skeels)	(Unidentified)	Unidentified
47	Dededok (Phyllanthus angulata Linn.)	(Unidentified)	Unidentified
48	Deren (Phyllanthus angulata Linn.)	(Unidentified)	Unidentified
49	Duku (Lansium domesticum Corr.)	(Unidentified)	Unidentified
50	Durin (Durio zibethinus L)	Thorny fruit	Morfologi
51	Empan (Zanthoxylum acaanthopodium DC)	Release more saliva	Utility
52	Gadung (Manihot esculenta Crantz)	(Unidentified)	Unidentified
53	Gadung karet (Manihot carthagenensis subsp. glaziovii (Müll.Arg.) Allem)	Planted with Hevea brasiliensis	Ekologi
54	Gadung ugu (Ipomoea batatas (L.) Lam.)	Purple tuber	Morfologi
55	Gadung uten (Dioscorea hispida Dennst)	Found in forest	Ekologi
56	Gantang (Solanum tuberosum Linn.)	(Unidentified)	Unidentified
57	Gantang granola (Solanum tuberosum Linn.)	Big potato	Morfologi
58	Gantang mentega (Solanum tuberosum Linn.)	Smooth and butter potato	Morfologi
59	Gantang sayur (Solanum tuberosum Linn.)	The potato is used for cooking	Utility
60	Ganyong (Canna indica L.)	(Unidentified)	Unidentified
61	Gegarang (Mentha x villosa Huds.)	(Unidentified)	Unidentified
62	Gele (Unidentified)	The species found in Gele	Ekologi
63	Gelime (Psidium guajava Linn.)	(Unidentified)	Unidentified
64	Gelime ilang (Psidium guajava Linn.)	Red guava	Morfologi
65	Gelime kapas (Citrus sp.)	Soft Orange	Morfologi
66	Gelime Mekah (Punica granatum Linn.)	a species introduced from Mecca	Ekologi
67	Gelime tai (Psidium guajava Linn.)	A species with many seeds and freckles	Morfologi
68	Genye (Cannabis sativa L.)	(Unidentified)	Unidentified
69	Genyer (Limmocharis flava (L.) Buchenau)	(Unidentified)	Unidentified
70	Geseng tanduk (Lithocarpus walllichianus (Lindl. ex Hance) Rehder)	(Unidentified)	Unidentified
71	Gunur (Benincasa hispida (Thunb.) Cogn.)	(Unidentified)	Unidentified
72	Jagong (Zea mays Linn.)	(Unidentified)	Unidentified
73	Jagong lungi (Zea mays Linn.)	Sweet corn	Quality
74	Jagong pulut (Zea mays Linn.)	Sticky corn	Morfologi

No.	Name	Description	Mechanism
75.	Jamu bol (Syzygium malaccense (L.) Merr. & L.M. Perry)	(Unidentified)	Unidentified
76.	Jamu ijo (Syzygium aqueum (Burm.f.) Alston)	Green guava	Morfologi
77.	Jamu ilang (Syzygium aqueum (Burm.f.) Alston)	Juicy guava	Morfologi
78.	Jamu kecek (Syzygium aqueum (Burm.f.) Alston)	Small guava	Morfologi
79.	Jamu keling (Syzygium aqueum (Burm.f.) Alston)	Black guava	Morfologi
80.	Jeh (Imperata cylindrica (L.) P.Beauv.)	(Unidentified)	Unidentified
81.	Jepang (Syzygium aqueum (Burm.f.) Alston)	Green guava	Morfologi
82.	Jire alus (Unidentified)	Smooth cumin	Morfologi
83.	Jire Item (Nigella sativa Linn.)	Black cumin	Morfologi
84.	Jire kul (Unidentified)	Big cumin	Morfologi
85.	Jire Putih (Cuminum cyminum Linn.)	White cumin	Morfologi
86.	Jombang (Nasturtium officinale W.T.Aiton)	(Unidentified)	Unidentified
87.	Kacang bogor (Vigna subterranea (L.) Verdc.)	Peanut from Bogor	Ekologi
88.	Kacang gelise (Psophocarpus tetragonolobus (L.) DC.)	An obscure fruit like a nervous person	Morfologi
89.	Kacang jio (Vigna radiata (L.) R.Wilczek)	Green bean	Morfologi
90.	Kacang Ilang (Vigna unguiculata (L.) Walp.)	Red bean	Morfologi
91.	Kacang kapri (Foeniculum vulgare Mill.)	(Unidentified)	Unidentified
92.	Kacang Koro (Canavalia ensiformis (L.) DC.)	The seed is larger than others	Morfologi
93.	Kacang kuning (Glycine max (L.) Merr.)	Yellow bean	Morfologi
94.	Kacang Ranting (Vigna unguiculata (L.) Walp.)	Long bean	Morfologi
95.	Kacang Tanah (Arachis hypogaea L.)	Bean collected by digging the ground	Ekologi
96.	Kanis (Garcinia parvifolia Miq.)	(Unidentified)	Unidentified
97.	Kasemah (Diospyros kaki L.f.)	(Unidentified)	Unidentified
98.	Kedondong biasa (Spondias dulcis (L.) Parkinson)	Abundant Spondias dulcis	Ekologi
99.	Kedondong uten (Spondias dulcis (L.) Parkinson)	Found in the forest	Ekologi
100.	Keloang (Diplazium esculentum Swartz.)	(Unidentified)	Unidentified
101.	Keloang gajah (Unidentified)	Elephant (big) fern	Morfologi
102.	Keloang jantan (Unidentified)	(Unidentified)	Unidentified
103.	Kemili (Aleurites moluccanus (L.) Wild.)	(Unidentified)	Unidentified
104.	Kepile (Ipomoea batatas (L.) Lam.)	(Unidentified)	Unidentified
105.	Kepile koneng (Ipomoea batatas (L.) Lam.)	Yellow yam	Morfologi
106.	Kepile padang (Ipomoea batatas (L.) Lam.)	Shiny yam	Morfologi
107.	Kepile rujak (Unidentified)	This species is used as rujak	Utility
108.	Kepile ungu (Ipomoea batatas (L.) Lam.)	Purple yam	Morfologi
109.	Keramil (Cocos nucifera Linn.)	(Unidentified)	Unidentified
110.	Keramil gading (Cocos nucifera Linn.)	The coconut has a white-yellowish color like a horn	Morfologi
111.	Keramil hibrida (Cocos nucifera Linn.)	The big coconut	Morfologi
112.	Keramil ijo (Cocos nucifera Linn.)	Green coconut	Morfologi
113.	Kerto (Morus alba Linn.)	(Unidentified)	Unidentified
114.	Murbei gunung	The plant found in the forest	Ekologi
No.	Name	Description	Mechanism
------	--	---	-----------------
115	Ketuner (Coriandrum sativum Linn.)	(Unidentified)	Unidentified
116	Kincit Manuk (Unidentified)	The leaf smells like a bird shit	Morfologi
117	Kulit manis (Cinnamomum burmanni (Nees & T.Nees) Blume)	The bark has a sweet taste	Quality
118	Kuning (Carcuma longa L.)	Yellow	Morfologi
119	Kupi (Coffeea sp.)	(Unidentified)	Unidentified
120	Labu kekal (Unidentified)	Tough squash	Morfologi
121	Labu manis (Unidentified)	Sweet squash	Quality
122	Labu pit (Unidentified)	Bitter squash	Quality
123	Langsat (Lansium domesticum Corr.)	(Unidentified)	Unidentified
124	Lansat (Diocxyllum parasiticum (Osbeck) Kosterm.)	(Unidentified)	Unidentified
125	Lasun Ilang (Allium cepa Linn.)	Red onion	Morfologi
126	Lasun Potih (Allium sativum Linn.)	White onion	Morfologi
127	Lasun prei (Allium tuberosum Rottler ex Spreng.)	(Unidentified)	Unidentified
128	Lasun ulung (Allium fistulosum L.)	Leaf onion	Utility
129	Lekap (Syzygium cumini (L.) Skeels)	Rough	Quality
130	Lengkueus (Alpinia galanga (L.) Willd.)	(Unidentified)	Unidentified
131	Lentoro (Leucaena glauca)	(Unidentified)	Unidentified
132	Lentoro gung (Unidentified)	Big Leucaena glauca	Morfologi
133	Leude ijo (Capsicum sp.)	Green chili	Morfologi
134	Leude ilang (Capsicum sp.)	Red chili	Morfologi
135	Leude keriting (Capsicum sp.)	Curly chili	Morfologi
136	Leude kul (Capsicum annuum Lin)	Big chili	Morfologi
137	Leude pedeh (Piper nigrum Linn.)	The real lede	Ekologi
138	Leude pentek (Capsinum frustescens Linn.)	Small chili	Morfologi
139	Lukup (Unidentified)	(Unidentified)	Unidentified
140	Lukup cange (Unidentified)	Lukup from Cange village	Ekologi
141	Lukup sabun (Unidentified)	(Unidentified)	Unidentified
142	Lumu (Colocasia esculenta (L.) Schott)	(Unidentified)	Unidentified
143	Lumu birah (Colocasia sp.)	The Colocasia sp. has a reddish color	Morfologi
144	Lumu ijo (Colocasia sp.)	Green yam	Morfologi
145	Lumu payah (Colocasia sp.)	It grows in the brackish region	Ekologi
146	Mancang (Mangifera foetida Lour.)	(Unidentified)	Unidentified
147	Manggis (Garcinia mangostana Linn.)	(Unidentified)	Unidentified
148	Manggis hutan (Garcinia bancana Miq.)	Plant found in the forest	Ekologi
149	Manggis hutan 2 (Garcinia celebica L.)	Plant found in the forest	Ekologi
150	Nangka (Artocarpus integer (Thunb.) Merr.)	(Unidentified)	Unidentified
151	Nas (Ananas comusus (L.) Merr.)	(Unidentified)	Unidentified
152	Nenggeri (Passiflora quadrangularis Linn.)	(Unidentified)	Unidentified
153	Nenggeri uten (Passiflora foetida L.)	Plant found in the forest	Ekologi
154	Pala (Myristica argentea Warb.)	(Unidentified)	Unidentified
155	Pangoh (Arenga pinnata (Wurmb) Merr.)	(Unidentified)	Unidentified
156	Peking (Dalbergia pinnata (Lour.) Prain)	(Unidentified)	Unidentified
157	Periye (Momordica charantia Linn.)	(Unidentified)	Unidentified
158	Pertik (Carica papaya Linn.)	(Unidentified)	Unidentified
159	Pertik banan (Carica papaya Linn.)	Female carica (round)	Morfologi
160	Pertik rawan (Carica papaya Linn.)	Male carica (ovale)	Morfologi
161	Peterle (Luffa acutangtula (L.) Roxb.)	(Unidentified)	Unidentified
162	Peterle halus (Luffa aegyptiaca Mill.)	Smooth Luffa	Morfologi
163	Petukel (Cucurbita moschata Duch.)	(Unidentified)	Unidentified
164	Petukel halus (Cucurbita moschata Duch.)	Smooth pumpkin	Morfologi
165	Petukel kasar (Cucurbita moschata Duch.)	Fibrous pumpkin	Morfologi
No.	Name	Description	Mechanism
------	---	--	----------------------
166.	Pokat (Persea americana Mill.)	(Unidentified)	Unidentified
167.	Pokat dedamar (Persea americana Mill.)	Plant found in Dedamar village	Ekologi
168.	Pokat mentega (Persea americana Mill.)	Buttery avocado	Morfologi
169.	Pokol (Ellingera sp.)	Beater	Morfologi
170.	Rambai (Baccaurea motleyana (Müll.Arg.)	(Unidentified)	Unidentified
171.	Rampelam (Mangifera laurina Blume)	(Unidentified)	Unidentified
172.	Rempelam gadung (Mangifera sp.)	The fruit shape like gadung	Morfologi
173.	Rempelam golek (Mangifera sp.)	This mango fruit is curved such lying down	Morfologi
174.	Rempelam kuwini (Mangifera odorata Griff.)	(Unidentified)	Unidentified
175.	Rengkernil (Unidentified)	(Unidentified)	Unidentified
176.	Rom alas (Oryza sativa Linn.)	The paddy grows in the open fields	Ekologi
177.	Rom bontok (Oryza sativa Linn.)	This paddy is big resembling the	Morfologi
		Xiphophorus spp.	
178.	Rom ilang (Oryza sativa Linn.)	Red paddy	Morfologi
179.	Rom kuring (Oryza sativa Linn.)	The dark and brown paddy	Morfologi
180.	Rom lambu (Oryza sativa Linn.)	Not native paddy	Ekologi
181.	Rom padang (Oryza sativa Linn.)	The paddy can grow in the open land	Ekologi
182.	Rom pedeh/Rom alas (Oryza sativa Linn.)	The real paddy	Ekologi
183.	Rom pulut (Oryza sativa Linn.)	Sticky paddy	Morfologi
184.	Rom rempak (Oryza sativa Linn.)	This species is planted and harvested at its cycle	Ekologi
185.	Rom tajuk (Oryza sativa Linn.)	Paddy smells like flowers	Quality
186.	Rukut (Solanum nigrum Linn.)	The fruit has a small black rounded shape	Morfologi
		and is packed in a bunch	
187.	Rukut Cipluk (Physalis angulata L.)	The grass small and rounded	Morfologi
188.	Rukut Leunca (Physalis sp.)	The fruit has a small black rounded shape	Morfologi
		and is packed in a bunch	
189.	Salam (Syzygium polyanthum.Wight.)	(Unidentified)	Unidentified
190.	Sarami (Unidentified)	(Unidentified)	Unidentified
191.	Sawi (Brassica rugosa Prain.)	(Unidentified)	Unidentified
192.	Sawi asin (Brassica sp.)	(Unidentified)	Utility
193.	Sawi cina (Brassica sp.)	This plant comes from China	Ekologi
194.	Sawi potih (Brassica sp.)	White Brassica sp.	Morfologi
195.	Seliming (Averrhoa bilimbi Linn.)	Stimulant to release more saliva	Utility
196.	Seliming segi (Averrhoa carambola L.)	Stimulant to release more saliva	Utility
197.	Sepang (Biancaea sappan (L.) Tod.)	(Unidentified)	Unidentified
198.	Sere (Cymbopogon cytratus Stapf.)	(Unidentified)	Unidentified
199.	Serule (Unidentified)	(Unidentified)	Unidentified
200.	Tamok (Amaranthus sp.)	Harvesting species is easy	Morfologi
201.	Tangi (Unidentified)	(Unidentified)	Unidentified
202.	Teh (Camellia sinensis (L.) Kuntze)	(Unidentified)	Unidentified
203.	Tempil (Unidentified)	(Unidentified)	Unidentified
204.	Terong (Solanum melongena L.)	(Unidentified)	Unidentified
205.	Terong Padol (Solanum sp.)	(Unidentified)	Unidentified
206.	Terpuk (Ellingera elatior (Jack) R.M.Sm.)	(Unidentified)	Unidentified
207.	Terujak (Unidentified)	(Unidentified)	Unidentified
208.	Timun kul (Cucumis sp.)	Big cucumber	Morfologi
209.	Timun bireun (Cucumis sativus Linn.)	The cucumber comes from Bireun district	Ekologi
210.	Timun dike (Cucumis sp.)	(Unidentified)	Unidentified
211.	Timun karo (Cucumis sp.)	The cucumber comes from Karo district	Ekologi
212.	Timun taiwan (Cucumis sp.)	Cucumber from Taiwan	Ekologi
213.	Timun tikus (Cucumis sp.)	Small (Mouse) cucumber	Morfologi
214.	Tomat (Solanum lycopersicum Linn.)	(Unidentified)	Unidentified
Results showed that the traditional knowledge of the Gayo Indigenous Peoples in identifying plant taxa can be categorized into 4 mechanisms, namely morphology (37%), ecology (16%), utility (5%), and quality (4%) (figure 1). This classification group is in line with various studies that have been conducted by researchers [1,10,37,38]. For example, [10] stated that ethnotaxonomy includes several mechanisms such as morphology, sensory perception, ecology, and utility. The high number of taxa identified by local people through morphological mechanisms shows that this method is indeed the fastest and easiest mechanism that can be captured by the human senses. Stated that morphology such as the form of growth/habitus, fruit, flowers, or leaves is the most important criterion for classifying plants [39]. Besides, shape and colour can also be parameters of morphological identification [40].

The Gayo community distinguishes the morphology of plant forms into big/fat (kul, gong), small (kecek, kincit, pentek), hollow (utung), curly (keriting). There are also taxa identified based on textures such as fine (halus), soft (kapas), and fibrous (kasar). Other groups are also identified based on colour differences, there are at least six basic colour terms in their food plants viz. ilang (red), potih (white), koneng (yellow), item (black), ijo (green), and ungu (purple). The people also use kul (big), kecek/kucak (small), and resemble with six of another thing such as kincit (small feces). The people also denote the texture of the fruit or particular area of the plant by using the term kasar (rough/fibrous). The example of morphological character embedded in Gayo food plants could be seen in lasun ilang (Allium cepa), lasun potih (Allium sativum), lede kul (Capsicum annum), asam kincit (Citrus sp), petukel kasar (Luffa acutangula).

No.	Name	Description	Mechanism
215	Uluh (Bamboo sp.)	Long and cylindrical	Morphologi
216	Uluh utung (Bamboo sp.)	Big bamboo	Morphologi
217	Ungke pit (Solanum sp.)	Bitter Solanum sp.	Quality
218	Ungke rimang (Solanum stramonifolium Jacq.)	Medicinal Solanum sp.	Utility

![Figure 1. Ethnotaxonomical systems of food plants in the Gayo people.](image)

In ecological mechanisms, the Gayo community uses several identification groups, including plant origin, habitat, and place-names [41]. Some documented sources of plant origin are Java, Bali, Bogor, Japan, Mecca, Taiwan, Keling / India. The habitat which is the place where people commonly find the plants in question is forest (uten), field / large area (alas), brackish (payah), land (tanoh). Other groups identified based on place names around the Gayo Plain are Dedamar, Kenyaran, Cange, Kuyun, Gele, Oak. The example of ecological character embedded in Gayo food plants could be seen in gelime mekah (Punica granatum), asam kuyun (Citrus sp.), asam kenyaran (Citrus sp.), rom alas (Oryza sativa), kedondong uten (Spondias dulcis), nenggeri uten (Passiflora foetida L.). The ecological or habitat
category plays an important role in whether the biotic category will be culturally recognized by the local people or not [36].

Furthermore, utility mechanisms that indicate the identification of plants can be grouped by use, method of use, and parts used. Food plants are understood as a utilization group of food plant diversity, however utilitarian characteristics might diverse and in many cases could reflect the importance of the species into the community [42,43]. Based on its use, some plants are given the name *jantar* because it is an ingredient for vegetables, given the name *rajak* because it’s used to make a salad, they are given the name *empan* to increase appetite, and *seliming* which means a way to stimulate the release of more saliva. There are also groups of plants that are given names related to the parts used, such as *ulang* which means leaf. Furthermore, several ways of use can also be identified from the names given, such as *pepok* which means to be hit, and *tangerine* which means how to strip the skin of plants by beating them. The example of utility character embedded in Gayo food plants could be seen in *asam jantar* (*Citrus* sp.), *kepile rujak* (*Pachyrhizus erosus*), *rom tajuk* (*Oryza sativa*), *lasun ulang* (*Allium fistulosum*). Gayo people also use *empan* (*Zanthoxylum acanthopodium*) and *seliming* (*Averrhoa bilimbi*) to gain more appetite. *Empan* means a condition that releases more saliva when one’s appetite increases, whereas *seliming* means a way to stimulate the release of more saliva. *Empan* is endemic and culturally important for people in Aceh and North Sumatera, it is known by *andaliman* which have a great number of phytochemicals as potential bioprospecting commodity [44].

The last mechanism is the classification of plants based on quality. The Gayo community attaches the term *genensa* to something that has premium quality, the most superior, the tastiest, the sweetest, for example, *asam ganensa* (*Citrus* sp.). Genensa is normally used to denote the great/premium quality, the duck flesh with premium quality comes from *bebek genensa*. Genensa is also used to denote people with praiseworthy behavior. Human influence to name the biodiversity to reveal and indicate constricted human-environment interactions [3,4,41]. Besides, there are also groupings based on taste, such as the taste of sepat (*lekap*) and sweet (*manis*).

These complex examples in the ethnotaxonomical system of Gayo food plants consist of generic, specific, and varietal taxa. Based on Table 1 not all of the lexemes could be analysed by the Gayo people residing in Jabodetabek. A total of 170 out of 218 primary lexemes given as names were of an un-analysable nature (78%), referring only to the generic taxa. Only 10 specific taxa could not be analysed out of 139 (7%) and only 2 varietal taxa could not be analysed out of 14 (14%).

![Figure 2. Un-analysable lexeme on each taxa.](image-url)

In this condition, we could realize that there is a loss of traditional knowledge among the Gayo People, especially the Gayo People residing in Jabodetabek. A similar result found in the Tsimane’ community, where the adults experienced a net decrease in the report of plant uses ranging from 9% (for the female subsample) to 26% (for the subsample of people living close to towns), equivalent to a 1 to 3 % per year.
Changes were more acute for men than women and informants living in villages close to market towns than informants settled in remote villages [45]. However, considering these situations there will be an opportunity to revitalize the language as well as traditional knowledge by documenting and sharing this research with the younger generation.

4. Conclusion

Results showed that the traditional knowledge of the Gayo indigenous peoples in identifying plant taxa can be categorized into 4 mechanisms, namely morphology (37%), ecology (14%), utility (5%), and quality (3%) out of the number of taxa. As much as 47.3% of unidentified and unanalysable lexemes of Gayo food plants indicate loss of traditional knowledge among Gayonese residing in Jabodetabek. Future research might answer the gap of this study by collaborating with Gayo people in their origin ecosystem.

References

[1] Berlin B 1973 Folk Systematics in Relation to Biological Classification and Nomenclature *Annu. Rev. Ecol. Syst.* 4 259–71
[2] Jinxiu W, Hongmao L, Zaifu X, Dezhi F and Lei G 2003 Folk plant taxonomic system and rapid assessment of regional plant diversity—A case study in Xishuangbanna *Guangxi Zhiwu* 23 523—527
[3] Hidayati S, Ghani B A A, Giridharan B, Hassan M Z and Franco F M 2018 Using Ethnotaxonomy to Assess Traditional Knowledge and Language Vitality: A Case Study with the Vaie People of Sarawak, Malaysia *Ethnobiol. Lett.* 9 33–47
[4] Hidayati S, Suansa N I, Samin and Franco F M 2017 Using Ethnotaxonomy to assess Traditional Knowledge and Language vitality: A case study with the Urang Kanekes (Baduy) of Banten, Indonesia 16 576–82
[5] Brown C H 1977 Folk Botanical Life-Forms: Their Universality and Growth *Am. Anthropol.* 79 317–42
[6] Ford R I 2001 Introduction: Ethnobiology at the Crossroads *Ethnobiology at the Millennium Past Promise and Future Prospects* (United States of America: The University of Michigan Museum of Anthropology) pp 1–9
[7] Atran S 1998 Folk Biology and the Anthropology of Science: Cognitive Universals and Cultural Particulars *Behav. Brain Sci.* 21 547–69; discussion 569
[8] Albuquerque U P, de Medeiros P M and Casas A 2015 *Evolutionary Ethnobiology* (Switzerland: Springer International)
[9] Cheng Z, Shu H, Zhang S, Luo B, Gu R, Zhang R, Ji Y, Li F and Long C 2020 From Folk Taxonomy to Species Confirmation of Acorus (Acoraceae): Evidences Based on Phylogenetic and Metabolomic Analyses *Front. Plant Sci.* 11 965
[10] Ragupathy S, Newmaster S G, Murugesan M and Balasubramaniam V 2009 DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India *Mol. Ecol. Resour.* 9 164–71
[11] Mekbib F 2007 Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification, and criteria *J. Ethnobiol. Ethnomedicine* 3 38
[12] Hidayati S, Franco F M and Bussmann R W 2015 Ready for phase 5 - current status of ethnobiology in Southeast Asia *J. Ethnobiol. Ethnomedicine* 11 17–17
[13] Taylor P M 1990 *Folk Biology of the Tobelo People: A Study in Folk Classification* (Washington DC: Smithsonian Institution Press)
[14] Arifin E N, Ananta A, Wilujeng Wahyu Utami D R, Budi Handayani N and Pramono A 2015 Quantifying Indonesia’s Ethnic Diversity *Asian Popul. Stud.* 11 233–56
[15] International Society of Ethnobiology 1988 Declaration of Bele’m
[16] Posey D A and Dutfield G 1996 Beyond *Intellectual Property: Toward Traditional Resource Rights for Indigenous Peoples and Local Communities* (Ottawa, Canada: International Development Research Centre)
[17] Maffi L 2005 Linguistic, Cultural, and Biological Diversity Annu. Rev. Anthropol 34 599–617
[18] McCulloch L 2005 Acheh: then and now (London, UK: Minority Rights Group International)
[19] Soehartono T and Mardiastuti A 2014 National Park Governance in Indonesia: Lessons Learned from Seven National Parks
[20] Kusumasumantri P Y 2016 Sejarah Lima Taman Nasional Pertama (Jakarta: Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem, Kementerian Lingkungan Hidup dan Kehutanan)
[21] Eberhard D M, Simons G F and Fennig C D 2020 Ethnologue: Languages of the World (Dallas, Texas: SIL International)
[22] Saynes-Vásquez A, Caballero J, Meave J A and Chiang F 2013 Cultural change and loss of ethnoecological knowledge among the Isthmus Zapotecs of Mexico J. Ethnobiol. Ethnomedicine 9 40
[23] Crawford J 1995 Endangered Native American Languages: What is to be done, and Why? Biling. Res. J. 19 17–38
[24] Pilgrim S and Pretty J 2010 Nature and Culture: An Introduction Nature and culture: rebuilding lost connections ed S Pilgrim and J Pretty (London, UK: Earthscan) 1–20
[25] Hesse-Biber S 2010 Mixed methods research: Merging theory with practice (New York, NY: Guilford)
[26] Roberto C 2000 A Conceptual Framework for Quantitative Text Analysis Qual. Quant. 34
[27] Sandelowski M Combining Qualitative and Quantitative Sampling, Data Collection, and Analysis Techniques in Mixed-Methods Studies Res. Nurs. Health 23 246–255
[28] Kasrin K, Moulana R and Iqbar I 2020 Tumbuhan Obat dan Pemanfaatannya oleh Masyarakat Sekitar Hutan HujanTropis Kedah Kabupaten Gayo Lues J. Ilm. Mhs. Pertan. 5 626–8
[29] Fitrianti Y and Angkasawati T J 2015 Pengobatan Tradisional Gayo Untuk Ibu Nifas Bul. Penelit. Sist. Kesehat. 18 111–9
[30] Safri F, Humam H and Romano 2019 Citronella agroforestry in Gayo Lues Regency of Indonesia Russ. J. Agric. Socio-Econ. Sci. 3 290–7
[31] Izzati R, Karim A, Arabia T, Hifnalisa, Manfarizah, Syakur and Hafid I 2019 Analysis of taste quality of Coffea arabica in several altitudes at Gayo Lues District. Int. J. Adv. Res. 7 461–8
[32] Puspitawati 2001 Pemanfaatan tumbuhan dalam kehidupan komunitas Gayo dan Hubungannya dengan kelestarian keanekaragaman hayati Master’s Thesis (Medan, Indonesia: Universitas Sumatera Utara)
[33] Alexiades M 1996 Collecting ethnobotanical data: An introduction to basic concepts and techniques Selected Guidelines for Ethnobotanical Research: A Field Manual 53–94
[34] Berlin B 1992 Ethnobiological classification: Principles of categorization of plants and animals in traditional societies (New Jersey: Princeton University Press)
[35] Kakudidi E 2004 Folk plant classification by communities around Kibale National Park, Western Uganda Afr. J. Ecol. 42 57–63
[36] Newmaster S G, Ragupathy S, Ivanoff R and Nirmala C 2006 Mechanisms of Ethnobiological Classification Ethnobotany 18 2
[37] Begossi A, Clauzet M, Figueiredo J L, Garuana L, Lima R V, Lopes P F, Ramires M, Silva A L and Silvano R A M 2008 Are Biological Species and Higher-Ranking Categories Real? Fish Folk Taxonomy on Brazil’s Atlantic Forest Coast and in the Amazon Curr. Anthropol. 49 291–306
[38] Lampman A M 2007 General Principles of Ethnornycological Classification Among the Tzeltal Maya of Chiapas, Mexico J. Ethnobiol. Ethnomedicine 11 13
[39] Poncet A, Vogl C R and Weckerle C S 2015 Folkbotanical classification: morphological, ecological and utilitarian characterization of plants in the Napf region, Switzerland J. Ethnobiol. Ethnomedicine 11 13
[40] Reijers M 2014 African heritage in Maroon agriculture: Multiple uses of Old World crops among Aucans and Saramaccans Master’s Thesis (Leiden, Netherlands: Wageningen University)
[41] Hidayati S 2017 The relationship between indigenous languages, traditional knowledge and biodiversity: A case study with the Ba’ie Segen people of Sarawak, Malaysia. PhD Dissertation (Malaysia: Curtin University)

[42] Hunn E S 1982 The Utilitarian Factor in Folk Biological Classification Am. Anthropol. 84 830–42

[43] Ellen R 1993 The cultural relations of classification: An analysis of Nuaulu categories from central Seram (Cambridge: Cambridge University Press)

[44] Saragih D and Arsita E 2019 The phytochemical content of Zanthoxylum acanthopodium and its potential as a medicinal plant in the regions of Toba Samosir and North Tapanuli, North Sumatra Pros. Semin. Nas. Masy. Biodiversitas Indones. 5 71–6

[45] Reyes-García V, Gueze M, Luz A, Paneque-Gálvez J, Macía M, Orta-Martinez M, Pino J and Rubio-Campillo X 2013 Evidence of Traditional Knowledge Loss among a Contemporary Indigenous Society Evol. Hum. Behav. Off. J. Hum. Behav. Evol. Soc. 34

[46] Hunn E S 2002 Traditional environmental knowledge: Alienable or inalienable intellectual property Ethnobiology and Biocultural Diversity ed J R Stepp, R S Wyndham and R K Zarger (Athens, Georgia: ISE/University of Georgia Press) 3–10

Acknowledgement

We would like to thank Ikatan Musara Gayo Jabodetabek for your valuable knowledge sharing and facilitate the FGD. The key person from Gayo Lut (Takengon) Pak Hamid Hakim for his kindness and patient on my never-ending questions. Kementerian Riset dan Teknologi-BRIN, the Republic of Indonesia for your support through Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) scheme.