Novel Proliferative Effect of Phospholipase A₂ in Swiss 3T3 Cells via Specific Binding Site*

(Received for publication, June 7, 1991)

Hitoshi Arita, Koji Hanasaki, Tohru Nakano, Shogo Oka, Hiroshi Teraoka, and Koichi Matsumoto

From the Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

Phospholipase A₂ (PLA₂) EC 3.1.1.4, which catalyzes the release of free fatty acids from the sn-2 position of glycerophospholipids, has been extensively studied from the viewpoint of eicosanoid production (Arita, H., Nakano, T., and Hanasaki, K. (1989) Prog. Lipid Res. 28, 273-301). Several lines of evidence suggest that PLA₂ is pathophysiological related to some disorders, including inflammation, and hyper-sensitivity. Despite this, little is known of the precise mechanism of the pathological processes as well as their intrinsic correlation with dysfunction. Here, we report a novel PLA₂ action on the proliferation of Swiss 3T3 fibroblasts via specific binding sites of approximately 200,000. Pancreatic type PLA₂ in the active form specifically recognized the sites and stimulated thymidine incorporation in DNA. Its inactive zymogen and other PLA₂s from platelets, snake, and bee venoms showed much lesser activities. Although the physiological significance remains to be identified, our finding is the first to offer a new viewpoint on the effect of mammalian extracellular PLA₂ on cellular function.

In several inflammatory regions, levels of extracellular PLA₂ activity are described to be elevated, which has been thought to play an important role in mediating some inflammatory processes (1, 2). Mammalian extracellular 14-kDa PLA₂s described thus far can be classified into two types, group I (PLA₂-I) and group II (PLA₂-II), based on their primary structures (3). Several studies have implicated the correlation of PLA₂-II in the pathogenesis of inflammation (4, 5). We have recently found that some inflammatory factors dramatically increased PLA₂-I secretion from several tissues and stimulated thymidine incorporation in DNA. Its inactive zymogen and other PLA₂s from platelets, snake, and bee venoms showed much lesser activities. Although the physiological significance remains to be identified, our finding is the first to offer a new viewpoint on the effect of mammalian extracellular PLA₂ on cellular function.

*The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

**To whom correspondence should be addressed.

The abbreviations used are: PLA₂, phospholipase A₂; PLA₂-I, group I phospholipase A₂; PLA₂-II, group II phospholipase A₂; DSS, dextran sulfate; SDS, sodium dodecyl sulfate.
RESULTS AND DISCUSSION

When 125I-PLA$_2$-I (porcine) was incubated at 4 °C with Swiss 3T3 fibroblasts, it could bind specifically in a saturable manner. The specific binding of 125I-PLA$_2$-I reached equilibrium after 2 h and was stable for up to 2 h at 4 °C. Although about a two times higher level of binding was detected at 37 °C than at 4 °C, further binding experiments were performed at 4 °C to avoid internalization of the binding site as well as binding to the newly synthesized site.

Fig. 1A shows typical binding results of 125I-PLA$_2$-I to Swiss 3T3 cells. A Scatchard plot of the data yielded a straight line, suggesting the existence of a single class of binding site for PLA$_2$-I, with an equilibrium binding constant (K_d) value of 1.58 nM and a maximum binding capacity (B_{max}) of 8.34 fmol/106 cells (Fig. 1B). The relative inhibitory effects of various phospholipases on 125I-PLA$_2$-I equilibrium binding were examined, and the concentrations which inhibit half of the 125I-PLA$_2$-I specific binding (IC$_{50}$) were summarized in Table I. The IC$_{50}$ value of unlabeled porcine PLA$_2$-I corresponded well to the K_d value. Rat and human PLA$_2$-I showed almost the same IC$_{50}$ values with porcine PLA$_2$-I, whereas the proenzymes of human and rat PLA$_2$-I, PLA$_{8S}$-II purified from rat and rabbit platelets, and toxic PLA$_{8S}$ from snake or bee venoms could not suppress the ligand binding at concentrations greater than 100 nM, demonstrating the specificity of PLA$_2$-I binding to the mature site for PLA$_2$-I derived from mammalian pancreas.

Identification of the binding proteins responsible for 125I-PLA$_2$-I binding was achieved by cross-linking experiments using a bifunctional cross-linker, DSS. 125I-PLA$_2$-I was bound to Swiss 3T3 cells at 4 °C, treated with 0.15 mM DSS, and then analyzed by polyacrylamide gel electrophoresis in the presence of SDS. As shown in Fig. 2, a single band at an apparent M_r of 210,000 was detected only in the treatment with DSS, while formation of the cross-linked complex was completely blocked by the presence of excess unlabeled PLA$_2$-I during the 125I-PLA$_2$-I binding. Under nonreducing conditions, the same M_r position was specifically labeled (data not shown). Assuming that the 125I-labeled complex contains a single molecule of both receptor and PLA$_2$, subtracting the mass of the PLA$_2$-I (14 kDa) suggests that the binding site for PLA$_2$-I has a mass of approximately 200 kDa.

Lambeau et al. (25) have recently reported the specific binding protein in rat synaptic membranes which was recognized by neurotoxic snake venom PLA$_{8S}$s, while mammalian PLA$_2$ does not recognize this binding site. Thus, the PLA$_2$-I binding site we characterized in this study might differ significantly from the neurotoxic PLA$_2$ binding site.

As one of the physiological functions of the PLA$_2$-I binding site in Swiss 3T3 cells, we found the effect of PLA$_2$-I on $[^3H]$thymidine incorporation into acid-insoluble DNA. When quiescent cells were incubated with PLA$_2$-I alone for 24 h, DNA synthesis of 3T3 cells was stimulated in a dose-dependent manner as shown in Fig. 3. This effect of PLA$_2$-I was synergistically enhanced in the presence of 100 nM insulin, which by itself showed weak mitogenic activity. Similar synergistic effects of PLA$_2$-I were observed in the presence of platelet-derived growth factor (2 ng/ml) or endothelin (10 nM). The mitogenic effects of PLA$_2$-I could not be affected by the treatment with indomethacin, demonstrating a direct effect of PLA$_2$-I without any involvement of the growth-promoting prostanoids in Swiss 3T3 cells (36). Similar proliferative effects were observed in the treatment with rat and

Table I

Inhibition of 125I-PLA$_2$-I specific binding to Swiss 3T3 cells

PLA$_2$	IC$_{50}$ (nM)
PLA$_2$-I (porcine)	1.0
PLA$_2$-I (rat)	1.0
PLA$_2$-I (human)	1.4
rPLA$_2$-I (human)a	1.3
proPLA$_2$-I (rat)	>300
proPLA$_2$-I (human)	>300
rproPLA$_2$-I (human)a	>300
PLA$_2$-II (rat)	>100
Bee venom	>1,000
N. naja venom	>1,000
C. adamanteus venom	>1,000

a r, recombinant.
human PLA$_2$-I, whereas pro-PLA$_2$-I (human and rat), PLA$_2$-II (rat and rabbit), and toxic PLA$_2$s (snake and bee venoms) had no measurable effects on DNA synthesis. Treatment of Swiss 3T3 cells with PLA$_2$-I (10 nM) for 2 h at 37°C resulted in stimulation of the 3-O-methyl-d-[1-3H]glucose transport which is known to link the cell proliferation to increase in cell number (insulin only, 5.4 ± 0.38 × 104 cells; PLA$_2$-I treatment, 7.33 ± 0.76 × 104 cells; n = 3). Thus, these findings suggest the occurrence of mitogenic effects of PLA$_2$-I via specific receptors on Swiss 3T3 cells. In order to rule out the possibility that the effect of PLA$_2$-I occurs via liberation of free fatty acids from membrane phospholipids, we examined liberation of fatty acids by porcine PLA$_2$-I or rat PLA$_2$-II from Swiss 3T3 cells labeled with [3H]oleic acid or [3H]arachidonic acid. Neither liberation of free fatty acids nor release of lactate dehydrogenase was detected up to 1 μM concentration of both enzymes treated for 24 h, although 5 μM A23187 liberated a large amount of labeled fatty acids (data not shown). These data demonstrate that binding as well as proliferative effects of PLA$_2$-I can be clearly distinguished from its phospholipid hydrolyzing activity, and the absence of-binding affinity of PLA$_2$-II cannot be attributed to its direct effect on the membrane phospholipids. Other evidence from the binding profile of PLA$_2$-I, showing it not to be affected in the presence of EDTA (10 mM), further supports this specificity, because phospholipid hydrolysis by PLA$_2$-I completely depends on submillimolar amounts of calcium (28). Recently, we found the same PLA$_2$-I binding sites in some tissues of several animal species, especially in vascular function. These findings suggest some role of PLA$_2$-I in vascular function, which is now under further investigation. In conclusion, our finding provides a new aspect of phospholipase A$_2$ in the modulation of cellular functions.

Acknowledgments—We thank A. Kanda and A. Misaki of our laboratory for providing human PLA$_2$-I and its pro-form purified from pancreatic juice. We are also grateful to H. Iwamoto and A. Terawaki for their technical assistance.

REFERENCES

1. Arita, H., Nakano, T., & Hansaaki, K. (1989) *Progr. Lipid Res.* 28, 273–301.
2. Vadás, P. & Pultzanski, W. (1986) *Lab. Invet.* 4, 391–404.
3. Heinrich, R. L., Knopf, E. T. & Keilm, P. S. (1979) *J. Biol. Chem.* 252, 4913–4921.
4. Murakami, M., Kudo, I., Nakamura, H., Yokoyama, Y., Mori, H., & Inoue, K. (1990) *FEBS Lett.* 268, 113–116.
5. Nakano, T. & Arita, H. (1990) *FEBS Lett.* 273, 23–26.
6. Nakano, T., Ohara, O., Teraoka, H. & Arita, H. (1990) *FEBS Lett.* 261, 171–174.
7. Nakano, T., Ohara, O., Teraoka, H., & Arita, H. (1990) *J. Biol. Chem.* 265, 12745–12748.
8. Oka, S. & Arita, H. (1991) *J. Biol. Chem.* 266, 9956–9960.
9. Kurith, H., Nakano, T., Takanas & Arita, H. (1991) *Biochim. Biophys. Acta* 1029, 285–292.
10. de Haas, G. H., Postema, N. M., Nieuwenhuizen, W. & Van Deenen, L. L. M. (1985) *Biochim. Biophys. Acta* 159, 118–129.
11. Sakata, T., Nakamura, E., Tsuruta, Y., Tamaki, M., Teraoka, H., Tojo, H., Ono, T. & Okamoto, M. (1989) *Biochim. Biophys. Acta* 1007, 124–126.
12. Seulhamer, J. J., Randall, T. L., Yamanaka, M. & Johnson, L. K. (1986) *DNA* 5, 519–527.
13. Yasuda, T., Hirohara, J., Okumura, T. & Saito, K. (1990) *Biochim. Biophys. Acta* 1046, 189–194.
14. Tojo, H., Ono, T., Kuramitsu, S., Kagamiyama, H. & Okamoto, M. (1988) *J. Biol. Chem.* 263, 5724–5731.
15. Nishijima, J., Okamoto, M., Ogawa, M., Kosaki, G. & Yamamoto, T. (1983) *J. Biochem. (Tokyo)* 94, 137–147.
16. Fuijik, W. C., Verheij, H. M. W., Weitzes, P. & de Haas, H. (1979) *Biochim. Biophys. Acta* 580, 411–415.
17. Garetroli, R., De Caro, A., Guy, O., Amie, J. & Figarella, C. (1981) *Biochimie* 63, 677–684.
18. Tamaki, M., Takimoto, N., Nakamura, E., Teraoka, H., Ogawa, M., and Matsubara, K. (August 24, 1989) *European Patent Application* 89308634.8.
19. Ono, T., Tojo, H., Inoue, K., Kajiyama, H., Yamanaka, T. & Okamoto, M. (1984) *J. Biochem. (Tokyo)* 96, 785–792.
20. Horigome, K., Hayakawa, M., Inoue, K. & Nijima, S. (1987) *J. Biochem. (Tokyo)* 101, 625–631.
21. Murofushi, K., Kudo, H., Horigome, K., Murakami, M., Hayakawa, M., Kim, D-K., Kondo, E., Tomita, M. & Iwamoto, K. (1989) *J. Biochem. (Tokyo)* 105, 520–526.
22. Kramer, R. M., Hessing, C., Johansen, B., Hayes, G., McGraw, P., Chow, E. P., Tizard, R. & Pepinsky, R. B. (1989) *J. Biol. Chem.* 264, 5768–5775.
23. Hopp, T. P. & Woods, K. R. (1981) *Proc. Natl. Acad. Sci. U. S. A.* 78, 3824–3829.
24. Laemmli, U. K. (1970) *Nature* 227, 680–685.
25. Labbeau, G., Barhanin, J., Schwetz, H., Qas, J. & Landt, M. (1989) *J. Biol. Chem.* 264, 11503–11510.
26. Rozengurt, E. Collins, W. A. & Keenan, M. (1988) *J. Cell. Physiol.* 116, 379–384.
27. Dicker, P. & Rose, P. R. (1990) *Nature* 287, 607–612.
28. Pierson, W. A., Volkwein, J. J. & de Haas, G. H. (1974) *Biochemistry* 13, 1439–1445.
29. Takawa, N., Takawa, Y., Bolleg. W. E. & Rasmussen, H. (1987) *J. Biol. Chem.* 262, 189–198.