RESEARCH COMMUNICATION

Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle

Miguel Godinho Ferreira and Julia Promisel Cooper

Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, UK

Several considerations suggest that levels of the two major modes of double-strand break (DSB) repair, homologous recombination (HR), and nonhomologous end joining (NHEJ), are regulated through the cell cycle. However, this idea has not been explicitly tested. In the absence of the telomere-binding protein Taz1, fission yeast undergo lethal telomere fusions via NHEJ. These fusions occur only during periods of nitrogen starvation and fail to accumulate during logarithmic growth, when the majority of cells are in G2. We show that G1 arrest is the specific nitrogen starvation-induced event that promotes NHEJ between taz1− telomeres. Furthermore, the general levels of NHEJ and HR are reciprocally regulated through the cell cycle, so that NHEJ is 10-fold higher in late G1 than in other cell cycle stages; the reverse is true for HR. Whereas NHEJ is known to be dispensable for survival of DSBs in cycling cells, we find that it is critical for repair and survival of DSBs arising during G1.

Received July 1, 2004; revised version accepted July 27, 2004.

DNA double-strand breaks (DSBs) are among the most deleterious types of damage with which cellular DNA repair systems must contend. If a DSB is left unrepaired in a dividing cell, the portion of the chromosome that is left unconnected to the centromere is unable to segregate to the daughter cell, giving rise to chromosome deletions. If incorrectly repaired, DSBs may lead to chromosome translocations and other aberrations (Pierce et al. 2001). Two major pathways repair DSBs, nonhomologous end joining [NHEJ], and homologous recombination [HR; van Gent et al. 2001]. NHEJ joins two DNA ends irrespective of their sequence, thereby generating errors if the two ends are unrelated or inaccurately processed. Alternatively, DSBs can be joined via HR processes that use homologous DNA sequences [usually in the sister chromatid] as templates for repairing broken ends, thus providing error-free repair. HR is the pathway of choice in budding and fission yeast, as NHEJ mutants are resistant to γ-radiation, whereas HR mutations severely compromise survival of γ-radiation (Siede et al. 1996; Manolis et al. 2001).

Remarkably, although cells can detect and respond to a single DSB generated by DNA damage (Sandell and Zakian 1993), they are perfectly capable of recognizing the numerous ends of chromosomes (e.g., 184 in a G2 human somatic cell) as nondeleterious structures. To conserve genome stability, telomeres have developed the property of being refractory to DNA repair processes. Recent studies have uncovered some of the components underlying this property [Ferreira et al. 2004]. In humans, the TRF2 protein binds telomeres and protects them from inappropriate repair reactions; interfering with TRF2 function leads to chromosome end fusions, cell cycle arrest, and apoptosis (Karlsson et al. 1999).

Taz1 is the fission yeast ortholog of both TRF2 and the other human telomeric DNA-binding protein, TRF1 (Cooper et al. 1997; Li et al. 2000; Ferreira and Cooper 2001). In the absence of Taz1, several telomere functions are disrupted, but cells are still viable in unperturbed cell cycles (Cooper et al. 1997; 1998). We have shown that Taz1 loss renders telomeres vulnerable to the two DSB repair pathways, but that end fusions, which form via NHEJ, only occur as cells arrest in G1 during nitrogen starvation [Ferreira and Cooper 2001]. During logarithmic growth, fission yeast are mainly in G2 and taz1− telomere fusions are absent. However, NHEJ-mediated taz1− telomere fusions arise during logarithmic growth in rad22− HR-deficient cells, suggesting that HR protects dysfunctional [taz1−] telomeres from NHEJ. These results led us to propose that NHEJ becomes prominent in G1-arrested cells, whereas HR dominates during logarithmic [mainly postreplicative] growth.

Several other lines of evidence support the idea that the two major modes of DSB repair are cell cycle regulated. From a teleological standpoint, cells might prefer error-free HR whenever possible, that is, when template copies, preferably sister chromatids, are available. Conversely, during G1, error-prone NHEJ would be necessary, as sister chromatid templates are unavailable. Although diploid cells possess homologous chromosomes during G1, mechanisms exist to disfavor mitotic recombination between homologous chromosomes and the potential ensuing loss of heterozygosity in somatic mammalian cells [Moynahan and Jasin 1997]. In chicken DT40 lymphocytes, NHEJ mutants [ku70−/− and DNA-PK−/−] are particularly sensitive to ionizing radiation during G1, whereas Rad54−/− HR mutants are more sensitive during S and G2 phases (Takata et al. 1998). Furthermore, levels of plasmid recircularization via NHEJ increase during G1 in budding yeast [Karathanasis and Wilson 2002], whereas the formation of DSB-induced Rad52 HR foci is reduced in G1 cells [Lisby et al. 2001].

Here, we demonstrate that HR and NHEJ are reciprocally regulated through the cell cycle. By changing cell cycle profiles, we can modulate the appearance of NHEJ-mediated telomere fusions during both vegetative growth and nitrogen starvation. Furthermore, by directly measuring repair, we show that levels of the two modes of repair vary through the cell cycle by a factor of 10, with NHEJ being higher in G1 and HR being higher in G2.

[Keywords: Cell cycle; DNA repair; HR; NHEJ; Taz1; telomere]

1Corresponding author.

E-MAIL: julie.cooper@cancer.org.uk; FAX 44-20-7269-3258.

Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.315804.
Results and Discussion

Occurrence of pre-START G1 during logarithmic growth induces \textit{taz1}− telomere fusions

Logarithmically growing fission yeast increase in size during the G2 phase of the cell cycle, and upon completion of mitosis, cells generally possess sufficient mass to proceed directly to S phase. Thus, the vegetative cell cycle lacks a pre-START G1 phase. However, nitrogen-starved cells arrest in G1. As fission yeast prefers haploidy, these G1 cells contain only one copy of each chromosome.

\textit{taz1}− cells accumulate telomere fusions when subjected to nitrogen starvation, yet these same cells lack telomere fusions, and indeed show virtually wild-type levels of viability, when grown in rich medium (Ferreira and Cooper 2001). To determine whether the \textit{taz1}− telomere fusions are a consequence of the G1 arrest induced by nitrogen starvation, we investigated cells in which a pre-START G1 phase occurs during vegetative growth. \textit{wee1-50} cells enter mitosis prematurely, forming smaller cells than wild type. These cells cannot initiate replication until sufficient cell mass is attained, and remain in G1 for extended periods with low levels of Cdc2 kinase activity (Russell and Nurse 1987). \textit{wee1-50 taz1}− cultures were grown at the semipermissive temperature of 32°C and divided into halves. One half was starved for nitrogen for 24 h at 32°C, whereas the other was grown in nitrogen-rich medium, aliquots of both were taken for FACS and PFGE analyses. Southern blotting with telomere probes revealed that telomere fusions were present only in the nitrogen-starved culture, but also in vegetatively growing \textit{wee1-50 taz1}− cells [Fig. 1B]. Thus, by recreating pre-START G1 during the vegetative cell cycle, we induce telomere fusions in \textit{taz1}− cells growing in nitrogen-rich medium.

The telomere fusions seen in vegetatively growing \textit{wee1-50 taz1}− cells are primarily intramolecular (i.e., resulting in self-circularization), whereas both inter- and intramolecular fusions are seen in nitrogen-starved \textit{taz1}− cells [Fig. 1B]. Intrachromosomal fusions also predominate in logarithmically growing \textit{taz1}− cells impaired in HR (Ferreira and Cooper 2001). \textit{Schizosaccharomyces pombe} cells possessing circular chromosomes are viable (Naito et al. 1998; Nakamura et al. 1998), whereas intrachromosomal fusions generate lethal dicentric chromosomes and are only maintained in nondividing (i.e., G1-arrested) cultures. Therefore, the predominance of intrachromosomal fusions in \textit{wee1-50 taz1}− cells supports the idea that the fusions occur while the cells are actively dividing in rich medium.

Absence of G1 arrest during nitrogen starvation prevents telomere fusions

If prolonging the G1 period during vegetative growth can induce \textit{taz1}− telomere fusions, then the absence of G1 arrest during nitrogen starvation might prevent telomere fusions. To test this, we generated \textit{taz1}− strains lacking the CDK inhibitor Rum1. Upon nitrogen starvation, \textit{rum1}− cells are unable to restrain S phase and arrest with replicated chromosomes and high levels of Cdc2 kinase activity. Nonetheless, \textit{rum1}− mutants do activate the Ste11 transcription factor and its targets in response to nitrogen starvation (Stern and Nurse 1998). As expected, neither \textit{rum1}− nor \textit{rum1}− \textit{taz1}− strains were able to arrest in G1, even after prolonged nitrogen starvation and maintained 2C DNA content [Fig. 1C]. Remarkably, \textit{rum1}− \textit{taz1}− cells exhibit no telomere fusions during nitrogen starvation, [Fig. 1C] indicating that the Rum1-dependent G1 arrest, and not some event downstream of Ste11 activation, activates the pathway that results in \textit{taz1}− telomere fusions. Thus, by indirectly manipulating the activity of the Cdc2 kinase, we can manipulate the susceptibility of \textit{taz1}− telomeres to undergo NHEJ-induced fusions in a manner independent of nutritional status, with low Cdc2 activity inducing telomere fusions and high Cdc2 activity preventing them.

Telomeric 3’ overhangs persist in G1 cells

\textit{taz1}− telomeres possess extensive 3’ G-strand overhangs during logarithmic growth (Tomita et al. 2003). In principle, such overhangs should promote the strand invasions that initiate HR, whereas NHEJ would require overhang removal. Indeed, upon inhibition of TRF2 function in human cells, NHEJ-dependent telomere fusions are accompanied by a reduction in 3’-overhang signal (van Steensel et al. 1998; Smogorzewska et al. 2002). To investigate whether elevated NHEJ stems from a global loss of 3’ overhangs in G1 \textit{taz1}− cells, we used native in-gel hybridization analysis. Telomeric restriction fragments from asynchronous and nitrogen-starved cultures were electrophoresed under nondenaturing conditions and hybridized to a G-strand telomere probe. Both cycling and G1-blocked \textit{taz1}− cells show intense hybridization [Fig. 2A], whereas no signal is detectable using a complementary C-rich strand probe [data not shown]. The overhang signal also persists in \textit{taz1}− cells lacking

![Figure 1](https://example.com/f1.png)
Logarithmically growing S. pombe cells display a low plasmid end-joining efficiency [Fig. 3A] and, as observed previously, this end-joining is almost entirely dependent on pku70 [Baumann and Cech 2000; Manolis et al. 2001]. Strikingly, end-joining levels were seven- to 10-fold higher in nitrogen-starved G1 cells [Fig. 3A]. However, this elevation of NHEJ was absent in nitrogen-starved rum1− cells that are unable to undergo G1 arrest [Fig. 3A]. Thus, Ku-dependent DSB repair is up-regulated in G1-arrested cells, consistent with our hypothesis that taz1− telomeres fuse during G1 arrest, because NHEJ is generally elevated under these conditions. Moreover, the genetic requirement of rum1+ for elevated NHEJ suggests that Rum1-dependent down-regulation of Cdc2 kinase is a key event in the switch between the two modes of repair.

A straightforward model of direct competition between NHEJ and HR pathways would predict that, in the absence of HR, NHEJ levels would rise during logarithmic growth. However, we did not detect an increase in plasmid end-joining efficiency in logarithmically growing HR-deficient rad22− or rhp51− mutants [Fig. 3A]. This suggests that the two pathways are regulated independently, such that in the absence of one, the other mode of repair is still subject to cell cycle control. Alternatively, DNA ends that attempt HR in the absence of rad22− or rhp51− may be reversed and channeled to NHEJ.

To measure HR during different stages of the cell cycle, we used a plasmid-integration assay in which leu1+ strains are transformed with a plasmid that lacks a replication origin and is linearized within the leu1 auxotrophic marker. These strains must integrate the cells in logarithmically growing cultures exhibit only a 2C DNA peak.

Plasmid-based assays have been used in both fission and budding yeasts to investigate the genetic requirements for NHEJ and HR [Orr-Weaver et al. 1981; Keeney and Boeke 1994; Boulton and Jackson 1996; Muris et al. 1997; Baumann and Cech 2000; Manolis et al. 2001]. To assess NHEJ, a plasmid containing a replication origin is linearized within sequences that lack homology to the yeast genome, and then transformed into yeast cells. The uncut plasmid is transformed in parallel to normalize for differences in transformation efficiencies between strains. Logarithmically growing S. pombe cells display a low plasmid end-joining efficiency [Fig. 3A] and, as observed previously, this end-joining is almost entirely dependent on pku70 [Baumann and Cech 2000; Manolis et al. 2001]. Strikingly, end-joining levels were seven- to 10-fold higher in nitrogen-starved G1 cells [Fig. 3A]. However, this elevation of NHEJ was absent in nitrogen-starved rum1− cells that are unable to undergo G1 arrest [Fig. 3A]. Thus, Ku-dependent DSB repair is up-regulated in G1-arrested cells, consistent with our hypothesis that taz1− telomeres fuse during G1 arrest, because NHEJ is generally elevated under these conditions. Moreover, the genetic requirement of rum1+ for elevated NHEJ suggests that Rum1-dependent down-regulation of Cdc2 kinase is a key event in the switch between the two modes of repair.

A straightforward model of direct competition between NHEJ and HR pathways would predict that, in the absence of HR, NHEJ levels would rise during logarithmic growth. However, we did not detect an increase in plasmid end-joining efficiency in logarithmically growing HR-deficient rad22− or rhp51− mutants [Fig. 3A]. This suggests that the two pathways are regulated independently, such that in the absence of one, the other mode of repair is still subject to cell cycle control. Alternatively, DNA ends that attempt HR in the absence of rad22− or rhp51− may be reversed and channeled to NHEJ.

To measure HR during different stages of the cell cycle, we used a plasmid-integration assay in which leu1+ strains are transformed with a plasmid that lacks a replication origin and is linearized within the leu1 auxotrophic marker. These strains must integrate the

DSB repair pathways are cell cycle regulated

The appearance of telomere fusions in log-phase taz1− rad22− cells suggested that HR precludes NHEJ at dysfunctional telomeres during vegetative growth [Ferreira and Cooper 2000]. Thus, unprotected telomeres may be recipients of whatever DNA repair pathway predominates generally in the cell at a given cell cycle stage. This idea implies that cell cycle regulation of DNA repair would be seen not only at telomeres, but also throughout the genome. To test this, we directly measured the two main modes of DSB repair in different stages of the cell cycle. We used nitrogen-starved cells as representative of the G1 phase and logarithmically growing cells as representative of the S, G2, and M phases. FACs analysis indicated that upon nitrogen starvation, 60%–70% of cells arrest in G1, whereas ~100% of the
plasmid to survive in medium lacking leucine. A circular plasmid carrying an origin of replication and leu1+ was transformed in parallel to normalize for transformation efficiencies. Levels of plasmid integration were high during logarithmic growth and dependent on rhp51+ (Fig. 3B), as previously reported (Muris et al. 1997). Deletion of rad22+, the fission yeast RAD52 homolog, also led to a severe reduction in HR, in agreement with van den Bosch et al. (2001) and in contrast to the modest effect on HR reported for a truncation of rad22+ (Ostermann et al. 1993, Muris et al. 1997). Conversely to NHEJ, plasmid integration levels were reduced 10- to 15-fold in G1-arrested cells (Fig. 3B). Southern blotting demonstrated that ~90% of the integration events occurred at the chromosomal leu1 locus (data not shown), confirming that HR had been the pathway for integration. rum1− cells failed to exhibit reduced HR during nitrogen starvation, suggesting that down-regulation of HR depends upon G1 arrest. In agreement with a gene-targeting transfection assay in mammalian cells (Pierce et al. 2001a), deletion of pku70+ did not lead to an elevation of HR (Fig. 3B).

Sister chromatid cohesion is a candidate regulator of HR through the cell cycle (Jessberger 2002), as cohesion is established during S phase and is required for efficient DSB repair. Coupled with the observed preference for sister chromatids over homologs as substrates for HR (Kadyk and Hartwell 1992, Moynahan and Jasin 1997), these observations suggest that HR dominates in G2 through the availability of a cohesed sister chromatid. Hence, the prevalence of HR at taz1− telomeres during G2 could simply reflect this availability. However, we were unable to promote telomere fusions during logarithmic growth by disrupting the cohesion complex in a rad21ts taz1− double mutant (data not shown). Furthermore, the plasmid recircularization and integration events that we used as measures of NHEJ and HR occur in the absence of cohesion between damaged and undamaged substrates.

Thus, the two major modes of DSB repair are regulated reciprocally, such that during logarithmic growth, when cells harbor two copies of each chromosome, HR dominates over NHEJ. Conversely, in G1-arrested cells that contain only one copy of each chromosome, the levels of these two modes of repair are inverted, with lower HR and higher NHEJ. These patterns of general repair levels mirror the activities that we observe at taz1− telomeres, and support the idea that cell cycle regulation of repair directs the consequences of telomere dysfunction. The telomere fusions that follow expression of dominantly-negative TRF2 in human cells can arise in both G1 and G2 (Smogorzewska et al. 2002), although the latter may reflect a requirement for passage through S phase to allow displacement of wild-type TRF2 by the dominant-negative form. Nonetheless, a relative paucity of fusions between dysfunctional telomeres during G2 in fission yeast versus human cells is consistent with the idea that mammalian cells have generally higher levels of NHEJ than the yeast systems.

NHEJ is required for radiation resistance during G1

Previous studies in yeasts showed that survival following DSB induction depended entirely on HR, whereas NHEJ mutants were insensitive to DSBs (Siede et al. 1996, Manolis et al. 2001). Our observation that NHEJ levels increase during G1 prompted us to test whether NHEJ becomes important for survival of DSBs during G1 arrest. Using wild-type cells and mutants in the HR

Figure 4. NHEJ is required for survival and repair of damage induced by γ-radiation during G1. [A,B] Logarithmic (Log) and nitrogen starved (-N) cultures were treated with varying doses of γ-radiation. NHEJ mutants are only sensitive during the G1 arrest induced by nitrogen starvation. [A] Serial dilution assay. [B] Quantitative survival analysis. [C] Cells were exposed to 100 Gy of γ-radiation and allowed to recover for varying amounts of time. G1-arrested wild-type (wt) cells undergo DSB repair faster than NHEJ mutants, whereas NHEJ is dispensable for repair during log growth. [D] Quantitation of the data in C. Ethidium bromide signals corresponding to broken DNA were normalized to the signal for intact chromosome II for each lane. The value obtained at time 0 was designated as 1.00.
NHEJ mutants were 10-fold more sensitive to type cells (Fig. 4A). During nitrogen starvation, however, radiation (Fig. 4A,B). Whereas logarithmically growing HR/H9253 ways, we analyzed the viability of logarithmic and nitrogen-starved wild-type cells lose viability more severely during G1 than during logarithmic growth (Fig. 4B), perhaps indicating that elevated use of potentially inaccurate NHEJ than wild-type cells, denoting a role for NHEJ in repair during G1 confers some lethality. HR genes are also important for survival of G1-arrested wild-type cells not only to sustain less DNA damage, but also to recover chromosome integrity faster than NHEJ mutants. In IR-treated logarithmic cultures, the ~30% of cells that do not arrest in G1 upon nitrogen starvation, or HR-related processes that occur during G1 arrest.

NHEJ is required for efficient DSB repair in G1

As assessment of survival can only address the success of DSB repair and not when it was undertaken, we directly monitored the recovery of whole chromosomes following breakage by investigating radiation. G1-arrested cells were exposed to 100 Gy of ionizing radiation to induce DSBs, then kept in G1 and analyzed by PFGE to monitor DSB repair as a function of time. Whereas whole chromosomes from untreated cells are visible as three intact bands (Fig. 4C), the irradiated cells accumulate degraded DNA appearing as a smear of higher-mobility DNA fragments. Remarkably, G1-arrested wild-type cells not only sustain less DNA damage, but also recover chromosome integrity faster than pku70− and lig4− mutants [Fig. 4C,D]. This result demonstrates that repair occurs while the cells are blocked in G1, and that efficient repair requires the NHEJ pathway. pku70− and lig4− mutants only started to regain intact chromosomes upon prolonged recovery periods, consistent with the moderate decline of viability of NHEJ mutants. In IR-treated logarithmic cultures, recovery rates were independent of pku70− and lig4− [Fig. 4D], reinforcing the idea that NHEJ is a prominent mode of DSB repair during G1 exclusively.

Perspectives

As manipulating Cdc2 kinase activity can alter the relative levels of NHEJ and HR, we infer that Cdc2 is the ultimate determinant of the choice of repair pathway, with low levels of Cdc2 activity dictating elevated NHEJ and high levels directing HR. Indeed, replication studies have established that levels of Cdc2 kinase activity distinguish cells that have or have not accomplished genome duplication. This same kinase may direct DSBs to error-free repair pathways when sister chromatids are present. These ideas complement a recent report [Caspari et al. 2002] describing a mutation in the B-type cyclin Cdc13 that reduces the formation of Rhp51 foci and impairs a later step in HR in response to DSBs during G2. It will be of great interest to identify the targets of Cdc2 kinase that control the regulation of DNA repair.

Materials and methods

Strains and medium

Strains are listed in Table 1. Cultures were grown at 32°C in standard YES or EMM medium with or without NH4Cl and any required supplements.

Gene disruption strains

Gene disruption was performed using the method of Bahler et al. (1998), and verified by PCR using primers for the integrating constructs and flanking genomic sequences.

Nitrogen starvation and FACS analysis

Cultures were grown to log phase (0.5–1 × 107 cells/mL), washed extensively with EMM-N, resuspended in EMM-N at a density of 1–5 × 106 cells/mL, and starved for 36–72 h. FACS was performed on ethanol-fixed cells on a Becton Dickson FACSscan.

Pulse-field gel electrophoresis, in-gel hybridization, and Southern blotting

Pulsed-field gel electrophoresis was performed as previously described [Ferreira and Cooper 2001]. Telomere overhangs were analyzed as in Tomita et al. (2003). Overhang signals were quantified using Molecular Dynamics ImageQuant software.

Plasmid assays

The NHEJ plasmid assay was essentially as described [Boulton and Jackson 1996]. The plasmid pKan1 [Haering et al. (2000)] was linearized with KpnI and cells transformed in triplicate with 1 μg of linear or circular pKan1. Cells were spread on YES containing 100 μg/mL G418 and colonies counted after 5 d at 32°C. The HR plasmid assay was similar to that previously described (Keeney and Boeke 1994). Strains auxotrophic for leu1+ were transformed in triplicate with 1 μg NdeI-linearized pJK148 as above. To assess the uptake of DNA, an aliquot of competent cells of each strain was transformed with 1 μg of pJK148-ars1 [same as pJK148, but with the EcoRI fragment of ars1 filled in and cloned into the SmaI site of pJK148]. Transformants were selected on EMM lacking leucine, and integration frequencies calculated by dividing the number of pJK148-leu1+ colonies by the number of pJK148-ars1-leu1+ colonies. For each such ratio, the average and standard deviation of at least three replicates of each transformation is presented.

Radiation sensitivity and DSB repair assay

Cultures were either diluted in triplicate to yield 200 colonies per plate or serially diluted 1:5 in 96-well plates and spotted on YES medium. The cells were immediately exposed to γ-rays using an IBL 637 Irradiator.

Table 1. S. pombe strains used in this work

Strain	Genotype	Source
Wild type	h+ ade6-M210 leu1-32 ura4-D18	J.P. Cooper
taz1−	h− taz1::ura4+ ade6-M210 leu1-32 ura4-D18	P. Nurse
wee1−	wee1-50 ura4-D18	This study
wee1− taz1−	wee1-50 taz1::ura4+ ade6-M210 leu1-32 ura4-D18	S. Moreno
rum1−	rum1::ura4+ ade6-M210 leu1-32 ura4-D18	This study
rum1− taz1−	rum1::ura4+ ade6-M210 taz1::kan	This study
rum1− leu1−	h′ rum1::ura4+ ade6-M216 leu1-32 ura4-D18	P. Nurse
pka70− leu1−	pka70− leu1-32 ura4-D18 ade6-M210	P. Baumann
pka70− kan−	h′ pka70− ura4+ ade6-M216 leu1-32 ura4-D18 ade6-M210	This study
rad22− ura4−	h′ rad22−::LEU2 his3-D1 leu1-32 ura4-D18	T. Nakamura
rad22− leu1−	h′ rad22−::ura4+ ade6-M210 leu1-32 ura4-D18	This study
rhp51−	h′ rhp51−::ura4+ ade6-704 leu1-32 ura4-D18	A.M. Carr
Ferreira and Cooper

\(^{137}\text{Cs source at a rate of 3.45 Gy/min.\)

Plates were then incubated for 3–5 d at 32°C. The results are presented as the percentage of survivors of a given dose relative to the viabilities of the same strains unirradiated. Each experiment was repeated three times.

DSB repair assay

Logarithmic and nitrogen-starved cultures were exposed to 100 Gy y-irradiation in liquid medium. Samples were collected at various times and processed for PFGE as described above. Whole chromosomes were separated on a CHEF-DR III apparatus [Bio-Rad] according to the manufacturer’s specifications. Gels were stained with ethidium bromide and digitized using a UVP VisiDoc-IT system without oversaturation. Broken DNA and intact chromosome signals were quantified using NIH Image version 1.63 software.

Acknowledgments

We thank the members of the Cooper lab for discussion and J. Hayles and F. Uhlmann for critically reading the manuscript. We thank the laboratories of T. Carr, T. Cech, S. Moreno, A. Pastink, and P. Nurse for sharing strains and plasmids. This work was supported by the NIH, the Human Frontiers Science Program, the Pew Scholars Program in the Biomedical Sciences, and Cancer Research UK. M.G.F. is a recipient of a Cancer Research UK postdoctoral fellowship.

References

Bahl, J., Wu, J.Q., Longtine, M.S., Shah, N.G., McKenzie III, A., Steever, A.B., Wach, A., Philippen, P., and Pringle, J.R. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in *Schizosaccharomyces pombe*. Yeast 14: 943–951.

Baumann, P. and Cech, T.R. 2000. Protection of telomeres by the Ku protein in fission yeast. Mol. Biol. Cell. 11: 3265–3275.

Boulton, S.J. and Jackson, S.P. 1996. *Saccharomyces cerevisiae* Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15: 5093–5103.

Caspari, T., Murray, J.M., and Carr, A.M. 2002. Cdc2-cyclin B kinase activity links Crb2 and Rgl1-topoisomerase III. Genes & Dev. 16: 1195–1208.

Cooper, J.P., Nimmo, E.R., Allshire, R.C., and Cech, T.R. 1997. Regulation of telomere length and function by a Myb-domain protein in fission yeast [see comments]. Nature 385: 744–747.

Cooper, J.P., Watanabe, Y., and Nurse, P. 1998. Fission yeast Tat1 protein is required for meiotic telomere clustering and recombination [see comments]. Nature 392: 828–831.

Ferreira, M.G. and Cooper, J.P. 2001. The fission yeast Tat1 protein protects chromosomes from KU-dependent end-to-end fusions. Mol. Cell 7: 55–63.

Ferreira, M.G., Miller, K.M., and Cooper, J.P. 2004. Indecent exposure: When telomeres become uncapped. Mol. Cell 13: 7–18.

Haering, C.H., Nakamura, T.M., Baumann, P., and Cech, T.R. 2000. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in *Schizosaccharomyces pombe*. Proc. Natl. Acad. Sci. 97: 6637–6642.

Jessberger, R. 2002. The many functions of SMC proteins in chromosome dynamics. Nat. Rev. Mol. Cell. Biol. 3: 767–776.

Kadk, L.C. and Hartwell, L.H. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in *Saccharomyces cerevisiae*. Genetics 132: 887–402.

Karathanasis, E. and Wilson, T.E. 2002. Enhancement of *Saccharomyces cerevisiae* end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161: 1015–1027.

Karsl, J., Brocchi, D., Dyi, Y., Hardy, S., and de Lange, T. 1999. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283: 1321–1323.

Keeny, J.B. and Boeke, J.D. 1994. Efficient targeted integration at leu1–32 and ura4–294 in *Schizosaccharomyces pombe*. Genetics 136: 849–856.

Li, B., Oestreicher, S., and de Lange, T. 2000. Identification of human Rap1: Implications for telomere evolution. Cell 101: 471–483.

Lisby, M., Rothstein, R., and Mortensen, U.H. 2001. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. 98: 8276–8282.

Manolis, K.G., Nimmo, E.R., Hartsuiker, E., Carr, A.M., Jeggo, P.A., and Allshire, R.C. 2001. Novel functional requirements for non-homologous DNA end joining in *Schizosaccharomyces pombe*. EMBO J. 20: 210–221.

Mojnahan, M.E. and Jas, M. 1997. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl. Acad. Sci. 94: 6988–6993.

Moris, D.F.R., Veenken, K., Schmidt, H., Ostermann, K., Clever, B., Lohman, P.H.M., and Pastink, A. 1997. Homologous recombination in the fission yeast *Schizosaccharomyces pombe*: Different requirements for the rhp51+, rhp54+ and rad22+ genes. Curr. Genet. 31: 248–254.

Naito, T., Matsuura, A., and Ishikawa, F. 1998. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat. Genet. 20: 203–206.

Nakamura, T.M., Cooper, J.P., and Ceci, T.R. 1998. Two modes of survival of fission yeast without telomerase. Science 282: 493–496.

Ort-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. 1981. Yeast transformation: A model system for the study of recombination. Proc. Natl. Acad. Sci. 78: 1321–1325.

Ostermann, K., Lorenz, A., and Schmidt, H. 1993. The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of *Saccharomyces cerevisiae*. Nucleic Acids Res. 21: 5940–5944.

Pierce, A.J., Hu, P., Han, M., Ellis, N., and Jas, M. 2001a. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes & Dev. 15: 3237–3242.

Pierce, A.J., Stark, J.M., Araujo, F.D., Mojnahan, M.E., Berwick, M., and Jas, M. 2001b. Double-strand breaks and tumorigenesis. Trends Cell Biol. 11: S52–S59.

Russell, P. and Nurse, P. 1987. Negative regulation of mitosis by wee-1+, a gene encoding a protein kinase homolog. Cell 49: 559–567.

Sandell, L.L. and Zakian, V.A. 1993. Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell 75: 729–739.

Siede, W., Friedl, A.A., Diaanova, I., Eckardt-Schupp, F., and Friedberg, E.C. 1996. The *Saccharomyces cerevisiae* Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142: 91–102.

Smogorzewska, A., Karlesder, J., Holgret-Gre, E., Hau, A., and de Lange, T. 2002. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12: 1635–1644.

Stem, B. and Nurse, P. 1998. Cyclin B proteolysis and the cyclin-dependent kinase inhibitor runt are required for p53-mediated double-strand break arrest in fission yeast. Mol. Biol. Cell 9: 1309–1321.

Takata, M., Sasaki, M.S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and Takeda, S. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17: 5497–5508.

Tomita, K., Matsuura, A., Caspari, T., Carr, A.M., Akamatsu, Y., Iwasaki, H., Mizuno, K., Ohta, K., Urtani, M., Ushimaru, T., et al. 2003. Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres. Mol. Cell. Biol. 23: 5186–5197.

van den Bosch, M., Veenken, K., Zonneveld, J.B., Brandsma, J.A., Lom- baerts, M., Murray, J.M., Lohman, P.H., and Pastink, A. 2001. Characterization of RAD52 homologs in the fission yeast *Schizosaccharo-myces pombe*. Mutat. Res. 461: 311–323.

van Gent, D.C., Hoeijmakers, J.H., and Kanaar, R. 2001. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2: 196–206.

van Steensel, B., Smogorzewska, A., and de Lange, T. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413.
Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle

Miguel Godinho Ferreira and Julia Promisel Cooper

Genes Dev. 2004, 18:
Access the most recent version at doi:10.1101/gad.315804

References

This article cites 35 articles, 17 of which can be accessed free at:
http://genesdev.cshlp.org/content/18/18/2249.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](#).