A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness

Guo, Zhaojiang, Guo, Le, Qin, Jianying, Ye, Fan, Sun, Dan, Wu, Qingjun, Wang, Shaoli, Crickmore, Neil, Zhou, Xuguo, Bravo, Alejandra, Soberón, Mario and Zhang, Youjun (2022) A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness. Nature Communications, 13. 6024 1-15. ISSN 2041-1723

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/108567/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A single transcription factor facilitates an insect host combating *Bacillus thuringiensis* infection while maintaining fitness

Zhaojiang Guo 1,2,6, Le Guo 1,6, Jianying Qin 1,6, Fan Ye 1,6, Dan Sun 1,6, Qingjun Wu 1, Shaoli Wang 1, Neil Crickmore 3, Xuguo Zhou 4, Alejandra Bravo 5, Mario Soberón 5 & Youjun Zhang 1

Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium *Bacillus thuringiensis* (Bt), which delay the evolution of resistance to this pathogen. The insect pest *Plutella xylostella* has evolved a mechanism to resist Bt toxins without incurring significant fitness costs. Here, we reveal that non-phosphorylated and phosphorylated forms of a MAPK-modulated transcription factor *fushi tarazu factor 1* (FTZ-F1) can respectively orchestrate down-regulation of Bt Cry1Ac toxin receptors and up-regulation of non-receptor paralogs via two distinct binding sites, thereby presenting Bt toxin resistance without growth penalty. Our findings reveal how host organisms can co-opt a master molecular switch to overcome pathogen invasion with low cost, and contribute to understanding the underlying mechanism of growth-defense tradeoffs during host-pathogen interactions in *P. xylostella*.

Microbes, including bacteria, virus, and fungi, are the most abundant (over 10^{30}) living beings on this planet. While some microbes are beneficial, many others are pathogens, which colonize and shape the environmental adaptability of their host organisms. Microbial pathogens and their hosts have developed a delicate and complex relationship during millions of years of co-evolution. During host–pathogen interactions, pathogens can deploy diverse virulence factors (toxins, effectors, etc.) as biochemical weapons to subdue their plant and animal hosts, while host organisms have also evolved sophisticated defense strategies to counter pathogen infection. Nonetheless, enhanced immune defenses to pathogens in plant and animal hosts frequently compromise growth, development, and reproduction, leading to the need for growth-defense tradeoffs.

Coordinating growth-defense tradeoffs to minimize fitness costs when coping with pathogens is vital for the well-being and survival of plant and animal hosts. In recent decades, tremendous advances have been made in dissecting the role of gene regulation, signaling pathways, and immunity networks underlying growth and defense, which are poised to deliver a greatly improved understanding of tradeoff tactics.
alkaline phosphatase (ALP), aminopeptidase N (APN), and ATP-binding cassette (ABC) transporters \(^{29,30}\). The diamondback moth, *Plutella xylostella* (L.), a most destructive and globally distributed agricultural pest, was the first insect documented as developing high-level resistance to Bt sprays in the field.\(^{31}\) As with resistance to other xenobiotics, insect resistance to Bt toxins is generally accompanied by fitness costs (growth retardation, low survival rate, decreased fecundity, etc.)\(^{22-24}\). However, no obvious fitness costs have been observed in many resistant *P. xylostella* strains.\(^{22,25}\) rendering it an excellent model insect to study the underlying molecular mechanisms of how insect hosts can efficiently overcome Bt toxicity. Recently, we have established that altered expression of various midgut expressed genes, trans-regulated by a hormone-activated mitogen-activated protein kinase (MAPK) signaling pathway, is linked to Bt resistance in different *P. xylostella* strains.\(^{42,46}\) In these strains, genes encoding proteins that can act as Bt toxin receptors (ABCB1, ABCC2, ABCC3, ABCG1, ALP, APN, and APN3a) are downregulated, whereas non-receptor paralogs (ABCC1, APN5, and APN6) are up-regulated and are believed to compensate physiologically for the loss of the proteins acting as midgut receptors. The precise mechanism by which the differential expression of these midgut proteins is achieved has remained unresolved.

Here, we reveal the regulatory framework adopted by the host insect to tackle the effect of Bt toxins. The transcription factor (TF) *fushi tarazu* factor 1 (FTZ-F1) promotes the expression of multiple receptor-encoding genes, whereas a phosphorylated form, activated by the MAPK signaling pathway, promotes the expression of the non-receptor paralogs. The MAPK-induced phosphorylation of FTZ-F1 reduces the cellular pool of non-phosphorylated TF, thus simultaneously reducing the expression of the receptors and increasing the expression of the non-receptor paralogs. This elegant strategy uses a single, pivotal, TF to protect the host insect from the effect of the pathogen whilst maintaining physiological fitness.

Results

FTZ-F1 activates the expression of diverse midgut genes

MAPK cascades typically activate downstream TFs via phosphorylation in order to control gene transcription.\(^{32}\) Our recent quantitative phosphoproteomics data\(^{33}\) showed that three TF proteins: nuclear receptor *fushi tarazu* factor 1 (FTZ-F1), prolactin regulatory element-bonding protein (PREB), and RB1-inducible coiled-coil protein 1 (RBIC1C1), displayed differential phosphorylation levels in the midgut of a susceptible strain (DBM1Ac-S) of *P. xylostella*.\(^{34,35}\) These strains, genes encoding proteins that can act as Bt toxin receptors (ABCB1, ABCC2, ABCC3, ABCC1, ALP, APN, and APN3a) are downregulated, whereas non-receptor paralogs (ABCC1, APN5, and APN6) are up-regulated and are believed to compensate physiologically for the loss of the proteins acting as midgut receptors. The precise mechanism by which the differential expression of these midgut proteins is achieved has remained unresolved.

Here, we reveal the regulatory framework adopted by the host insect to tackle the effect of Bt toxins. The transcription factor (TF) *fushi tarazu* factor 1 (FTZ-F1) promotes the expression of multiple receptor-encoding genes, whereas a phosphorylated form, activated by the MAPK signaling pathway, promotes the expression of the non-receptor paralogs. The MAPK-induced phosphorylation of FTZ-F1 reduces the cellular pool of non-phosphorylated TF, thus simultaneously reducing the expression of the receptors and increasing the expression of the non-receptor paralogs. This elegant strategy uses a single, pivotal, TF to protect the host insect from the effect of the pathogen whilst maintaining physiological fitness.

Identification of functional FBSs in midgut gene promoters

To support the concept that FTZ-F1 could regulate the midgut genes, we searched for FTZ-F1 binding sites (FBSs) in the promoter regions of these genes using bioinformatic analyses. Putative FBSs were found associated with all these midgut genes, including those whose expression was not affected by FTZ-F1 (Supplementary Fig. 3 and Supplementary Note 1). In order to further identify the functional FBSs in these midgut genes, we utilized a reporter assay combined with gene promoter truncations. By creating a series of gene deletions, removing one FBS at a time, in each of the FTZ-F1 responsive midgut genes, we were able to identify functional sites by observing at which point the enhancement effect of FTZ-F1 was lost. Functional FBSs were preliminarily identified by this approach for all of the receptor-encoding genes: FBS2 between −500 and −469 in the APN1 promoter (Fig. 1b), FBS4 between −1130 and −1091 in the APN3a promoter (Fig. 1c), FBS5 between −100 to −70 in the ABC2C2 promoter (Fig. 1d), FBS5 between −150 and −130 in the ABC2C3 promoter (Fig. 1e) and FBS4 between −222 and −152 in the ABCG1 promoter (Fig. 1f). All these FBSs were similar to the canonical FTZ-F1 binding motif (5′-YCAAGGYCR-3′) found in mammals and *Drosophila*\(^{32,33}\). Intriguingly, there was no correlation between any putative FBS and expression for any of the non-receptor genes, despite their expression being controlled by FTZ-F1. For *ABCI*, it appeared that FTZ-F1 interacted with a region between −1095 and −785 since the enhancement effect was lost when this region was deleted, however, no FBS had been identified in this region (Fig. 1g). For *APN5* and *APN6*, the deletion of regions upstream of −1100 and downstream of −380 respectively resulted in the loss of enhancement and also lacked any FBSs (Fig. 1h, i). To hone in further, two more sets of deletions were made in these regions. In the first set of deletions, the putative binding sites were narrowed to a sequence of 100 bp or less. In the second set of deletions, these sub-regions were split into 3 or 4 to further narrow down the regions to less than 30-bp sections [APN5-P(−1200/−1170), APN6-P(−266/−244), and ABCCI-P(−839/−823)] that we hypothesized could contain the potential binding sites for FTZ-F1 (Fig. 2a–c). TF binding sites (TBFSs) are usually small (about 6–12 bases) and can vary in sequence, which can make identification difficult\(^{34}\). To functionally pinpoint the binding sites in these non-receptor genes, we constructed reporter plasmids with 5–6 nucleotide mutations within the identified regions and examined their responses to FTZ-F1 in reporter assays. Mutations in M4 and M5 reduced the effect of FTZ-F1 on the APN3 gene (Fig. 2d). Mutations in M2 and M3 lead to reduced FTZ-F1 induced promoter activity of APN6 (Fig. 2e). For *ABCI*, the effect was observed after mutations in M3 and M4 (Fig. 2f). Thus, the functional FBSs in non-receptor genes were associated with APN5-P(5′-TAAAGTCGTTT-3′), APN6-P(5′-CATA-CGTCCT-3′), and ABCCI-P(5′-GTACAGTCCAC-3′). Based on these results, a putative FBS was identified as 5′-T(A/C)AGTC-3′.
Fig. 1 | FTZ-F1 regulates the expression of multiple midgut Cry toxin receptors and non-receptor paralogous genes. a Effects of four TFs on the promoter activity of Bt receptor genes and non-receptor paralogous genes. Each pAc5.1 vector was co-transfected with a pGL4.10-promoter reporter plasmid into S2 cells to detect luciferase activity. An empty pAc5.1 vector was used as a control. The relative luciferase activity (fold) was calculated based on the value of the control, which was assigned an arbitrary value of 1. Differences between control and TF-ion vector was co-transfected with a pGL4.10-promoter reporter plasmid into S2 cells to detect luciferase activity. An empty pAc5.1 vector was used as a control. The relative luciferase activity (fold) was calculated based on the value of the control, which was assigned an arbitrary value of 1. Differences between control and TF- treated groups were tested by one-way ANOVA with Tukey’s test. Data were presented as mean values ± SEM (n = 3), ns, not significant, p values are shown. b–i Preliminary identification of functional FBSs in the promoters of midgut genes by dual-luciferase reporter assays. The FTZ-F1 expression vector was co-transfected with various truncated constructs of midgut gene promoters to identify functional FBSs. The empty pAc5.1 vector was used as a control. The data of relative luciferase activity (fold) represent the mean value and was calculated based on the value of the control (n = 3), which was assigned an arbitrary value of 1. The results are presented as fish-like shapes. The head shows the target gene, and the orange ellipse by the mouth denotes the TF FTZ-F1. The horizontal red fishbone represents the promoter region, and the numbered ellipses represent the predicted FBSs, where present the purple ellipse represents the potential functional FBS. The height of the vertical orange fishbone represents the relative luciferase activity (fold) of the different truncations of a given promoter (the specific values are represented by vertical black Arabic numerals). The horizontal numbers represent the nucleotide position of the different truncations relative to the start codon. Source data are provided as a Source Data file.

Different forms of FTZ-F1 bind to distinct DNA motifs
Preliminary identification of the functional FBSs indicated that FTZ-F1 appeared to regulate receptor genes and non-receptor paralogous genes by binding to distinct motifs. Given that in our phosphoproteomic analysis, we observed that FTZ-F1 phosphorylation was increased in the resistant strain27, we considered the hypothesis that phosphorylation influences the regulatory role of FTZ-F1. To confirm phosphorylation, an EGFP-FTZ-F1 fusion protein was heterogeneously expressed in S9 cells and immunoprecipitated in order to perform mass spectrometry (MS) (Fig. 3a). The resulting MS data indicated the possibility of four phosphorylation sites of threonine (T): T288 (Fig. 3b), T361, T538 and T544 (Supplementary Fig. 4 and Supplementary Data 1). We predicted the phosphorylation of FTZ-F1 computationally by disorder-enhanced phosphorylation predictor (DEPP), which highlighted T288 as having the highest score (Fig. 3c). In general, an alanine (A) substitution at the phosphorylation site can mimic the
non-phosphorylated form of a protein, whereas an aspartic acid (D) can imitate the phosphorylated form. We therefore created various mutated FTZ-F1 proteins, FTZ-F1^T288A(P), FTZ-F1^T344A(P), FTZ-F1^T544A(P), and FTZ-F1^T344A-FBS(P) to abolish phosphorylation capacity, and FTZ-F1^T288D(P), FTZ-F1^T344D(P), and FTZ-F1^T544D(P) to mimic phosphorylation. In reporter gene assays, FTZ-F1^T288D(P) activated the receptor genes but did not affect the non-receptor ones. In contrast, FTZ-F1^T344D(P) induced the non-receptor genes but had little effect on the receptor gene promoters (Fig. 3d). However, neither form of the T361, T338, and T544 FTZ-F1 mutant proteins showed any significant regulatory activity changes to these midgut genes (Supplementary Fig. 5). Although four sites on FTZ-F1 were found to be phosphorylated in vivo, not all four post-translational modifications are necessarily important. The results indicated T288 as the most likely functional phosphorylation site at which they would be expected to act as activating enhancers. Further support for this hypothesis was provided by the observation that both the non-phosphorylated and phosphorylated FTZ-F1 proteins are located in the nucleus (Fig. 4a), implying that the PTAF motif is weakly bound to the canonical FBS motif, whereas the phosphorylated form binds to the variant motif (5'-TA(A/C)AGTCT-3') hereafter named as FBS'.

An electrophoretic mobility shift assay (EMSA) and a yeast one-hybrid assay (Y1H) were then conducted to further confirm the direct binding of the phosphorylated FTZ-F1 to one of these motifs. In the EMSA assay, the non-phosphorylated FTZ-F1^T288D(P), but not the phosphorylated FTZ-F1^T288D(P), specifically bound to the canonical FBS probe (Fig. 4a). Phosphorylated FTZ-F1^T288D(P), but not the non-phosphorylated form, showed specific binding to the FBS' probe (Fig. 4b). In the Y1H assays, the yeast strains that were co-transformed with FTZ-F1^T288D(P) and the canonical FBS or with FTZ-F1^T288D(P) and FBS' grew normally in the selective medium, whereas strains containing the prey proteins and mutated motifs did not grow (Fig. 4c). These studies further supported the hypothesis that non-phosphorylated FTZ-F1 activates midgut receptor genes via the FBS, while phosphorylated FTZ-F1 regulates midgut non-receptor genes via FBS'. Since altering the phosphorylation status of other TFs has previously been shown to relocate the protein out of the nucleus, a subcellular localization study was performed and confirmed that both non-phosphorylated and phosphorylated FTZ-F1 proteins are located in the nucleus—the site at which they would be expected to act as TFs (Fig. 4d).
FTZ-F1 phosphorylation is associated with Cry1Ac resistance
To verify whether FTZ-F1’s hypothesized mode of action associates with the Cry1Ac resistance phenotype in P. xylostella, we detected the transcript and protein levels of FTZ-F1 in the midgut tissue of different Cry1Ac-susceptible and resistant larvae. The data showed similar mRNA and protein levels of FTZ-F1 among the different strains (Fig. 5a, b), while the level of phosphorylated FTZ-F1 was observed to be higher in all four resistant strains compared to the susceptible DBM1Ac-S strain (Fig. 5b). These data were consistent with the hypothesis that the differential phosphorylation of FTZ-F1 in vivo might be associated with Cry1Ac resistance in P. xylostella.

To establish whether FTZ-F1 does actually modulate midgut gene expression in vivo, an RNAi assay was carried out. Silencing of FTZ-F1 in larvae of the resistant strain NIL-R was accompanied by reduction in both phosphorylated and non-phosphorylated FTZ-F1 (Fig. 5c), as well as a decrease in the transcripts of all the midgut genes except ABCB1 and ALP (Fig. 5d). Additionally, the susceptibility of FTZ-F1-silenced NIL-R larvae to Cry1Ac was significantly decreased compared to the untreated controls (Fig. 5e). When similar experiments were performed with the susceptible strain DBM1Ac-S, FTZ-F1 silencing was again accompanied by a decrease in FTZ-F1 protein (Fig. 5f) and downregulation of receptor gene expression (Fig. 5g). Since very little phosphorylated FTZ-F1 was naturally present in the susceptible strain, the reduction in this form was less significant as a result of RNAi (Fig. 5f) and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The MAPK cascade regulates the phosphorylation of FTZ-F1
We have previously shown that the activated MAPK signaling pathway can induce Bt resistance without significant fitness costs in P. xylostella and is initiated by increased expression of MAP4K426,27. Generally, TFs downstream of the MAPK cascade are responsible for transmitting the signal to functional genes26. Moreover, the identified functional phosphorylation site T288 in FTZ-F1 is within a MAPK consensus target sequence (Supplementary Fig. 7)36. To explore whether the transcriptional activity of FTZ-F1 is controlled by MAPK-mediated phosphorylation, we investigated the effect of phospho-FTZ-F1 on the activity of receptor promoters with either a wild-type or a mutant FBSP. For clarity, only the functional FBSPs are shown. The empty pAc5.i vector was used as a control (d, g, h), and the relative luciferase activity (fold) was calculated based on the value of the control, which was assigned an arbitrary value of 1. Data were presented as mean values ± SEM (n = 3), ns, not significant, p values are shown. One-way ANOVA with Tukey's test was used for comparison. Source data are provided as a Source Data file.

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).

The MAPK cascade regulates the phosphorylation of FTZ-F1
Phosphorylation of FTZ-F1 was associated with Cry1Ac resistance (Fig. 5h), and this would explain the negligible effect of RNAi on non-phosphorylated FTZ-F1 (Fig. 5g). The downregulation of receptor genes in DBM1Ac-S associated well with susceptibility to toxin as dsFTZ-F1-treated larvae presented a significant reduction in Cry1Ac-induced mortality (Fig. 5h).
MAPK cascades typically regulate downstream TFs through the p38, JNK, or ERK pathways\(^9\). To probe the pathway responsible for phosphorylating FTZ-F1, resistant NIL-R larvae were fed specific inhibitors of p38, ERK, and JNK, respectively. As with \(\text{MAP4K4}\) silencing, the inhibitor treatments had little effect on the mRNA or protein levels of FTZ-F1 (Fig. 6d, e). Compared to the control, however, phosphorylated FTZ-F1 was decreased in larvae treated with the p38 inhibitor, with possible downregulation also seen in larvae treated with ERK or JNK inhibitors (Fig. 6e). Moreover, silencing of \(\text{MAP4K4}\) or inhibitor treatment significantly recovered larval susceptibility in the resistant NIL-R strain (Fig. 6c, f).

The importance of non-receptor genes for maintaining fitness FTZ-F1 can modulate both receptor and non-receptor expression, the role of non-receptor genes, however, has not yet been experimentally tested, thus, we wanted to directly test the hypothesis that expression of the non-receptor paralogs is important for maintaining fitness. To ascertain the contribution of non-receptor genes, a series of homozygous mutant strains were generated using CRISPR/Cas9 (Supplementary Fig. 8a). PCR amplification using four gene-specific primers spanning \(\text{APN5}\) and \(\text{APN6}\) indicated successful mutagenesis (Supplementary Fig. 9b). A homozygous double-mutant strain (NI6-5KO) with an approximately 13-kb deletion (Fig. 7a middle and Supplementary Fig. 8b) was created. Finally, we generated a homozygous \(\text{ABCC1}/\text{APN6}/\text{APN5}\) triple knock-out strain (C1/N6/SKO) by introducing a mutation (5-bp deletion) in the \(\text{ABCC1}\) gene to the aforementioned N6-SKO strain (Fig. 7a bottom, Supplementary Fig. 8c, and Supplementary Table 1). Bioassays were subsequently conducted to detect any susceptibility differences to \(\text{Bt Cry1Ac protoxin}\) between the newly established strains along with DBM1Ac-S and NIL-R strains as control (Supplementary Table 3). These results showed that there were no significant differences in resistance level between the newly-built mutant strains (C1KO: 5108-fold, N6-SKO: 5034-fold, and C1/N6/SKO: 4967-fold) and the parental resistant strain (NIL-R: 5169-fold) compared to the susceptible strain.

We had previously demonstrated that \(\text{Cry1Ac}\) was unable to bind to the non-receptor paralogs \(\text{ANP5}\) and \(\text{APN6}\) (but could to \(\text{ANP1}\) or \(\text{ANP3a}\)) when these proteins were ectopically expressed in Sf9 cells\(^14\). We now also show that in contrast to \(\text{ABCC2}\) or \(\text{ABCC3}\), \(\text{Cry1Ac}\) cannot bind to, nor affect the susceptibility of, S9 cells ectopically expressing \(\text{ABCC1}\) (Supplementary Fig. 10). These data indicated that \(\text{ABCC1}\), \(\text{APN5}\), and \(\text{APN6}\) play little or no role in determining the level of resistance. To determine whether the non-receptor paralogous compensate physiologically for the loss of receptors, a series of life-history traits were measured in the resistant strain (in which the receptor proteins are constitutively downregulated) and in the mutants where the non-receptor paralogs had been knocked out. Pupal morphology, pupation percentage, pupal weight, pupal duration, and hatching rate were assessed, and we observed that the single C1KO and double N6-
SKO mutant strains had significant differences when compared to both the susceptible DBM1Ac-S and resistant NIL-R strains. The differences were even more pronounced in the triple knockout strain C1/N6/N5KO, which showed extremely significant fitness costs in all of the tested parameters (Fig. 7b–f). These results indicated that the increased expression of non-receptor paralogs is responsible for diminishing the fitness costs of Cry1Ac resistance.

Discussion

Insects are constantly jeopardized by pathogens in their natural habitats and thus must hold an efficient immunity weapon on the battlefield of pathogen invasion. An ideal evolutionary model for the host is to employ a key gene(s) to balance growth and defense with high efficacy and low cost. In this study, we uncovered a single TF (FTZ-F1) as a key modulator of a response allowing the host insect *P. xylostella* to defend against the invasion of *Bt* pathogens without significant fitness costs (Fig. 8). Phosphorylation of FTZ-F1 reduces the cellular levels of non-phosphorylated FTZ-F1, which, since this form activates their expression, results in the downregulation of physiologically important proteins that *Bt* toxins used as receptors. To compensate for the loss of these proteins, the phosphorylated form of FTZ-F1 then induces the expression of non-receptor paralogs. This response can be considered similar in essence to the Chinese traditional martial art “Tai Chi Chuans,” “four ounces can move 1000 pounds,” which means “accomplish a great task with little effort by clever maneuvers.”

We had previously speculated that the expression of the non-receptor paralogs could compensate physiologically for the loss of the midgut proteins acting as receptors for the *Bt* Cry1Ac toxin in *P. xylostella* larvae to Cry1Ac toxin. a FTZ-F1 transcript level in the larval midgut of a susceptible DBM1Ac-S strain and four resistant *P. xylostella* strains. The relative expression level was quantitated and normalized to the expression level of the RPL32 gene and the value in the DBM1Ac-S strain was set as 1. b Protein expression and phosphorylation levels of FTZ-F1 in the larval midgut of the same five *P. xylostella* strains. Phosphorylated and non-phosphorylated FTZ-F1 proteins were separated on a Phos-tag SDS-PAGE gel, detected by anti-FTZ-F1, and quantitated by densitometry using the ImageJ LSI software and normalized to the β-actin.

In most cases, the host must reassign energy from growth to defense in response to stress factors in their environment, including pathogens or xenobiotics, provoking a fitness penalty. Host insects refractory to pathogens can also have decreased fecundity or prolonged development time. Genetic resistance or tolerance to microbe transmission in mammals, like COVID-19 and SARS-CoV, rendered by innate or adaptive immune responses aggravates fitness costs in the form of extra energy demands, affiliated damage to host tissues and severe multiple organ dysfunction, even reproductive deficiency. Additionally, the evolution of resistance to phages and parasites carries fitness costs for bacteria, such as sacrificing growth rate and reduced fecundity. Immune defense is like a double-edged sword, with the ability to either support survival or cause autoimmune syndromes. Thus, hunting a dominant driver of adaptive evolution for the host is of preeminent importance. TFs are crucial for a host to acclimatize to adversity created by biotic and abiotic factors. TFs often act as sites of signal convergence and concomitantly, signal-regulated TFs exhibited significant fitness costs. In subsequent work, we together knocked out the four midgut receptors ABCC2, ABCC3, APN1, and APN3a in the susceptible strain, which resulted in a high level of resistance to Cry1Ac. The knockouts did not result in any increase in expression in the non-receptor paralogs ABCC1, APN5, or APN6 and the quadruple knockout strain showed significant fitness costs. While these two results provided indirect evidence that the non-receptor paralogs could compensate physiologically for the loss of the receptors in the susceptible strain, we provide direct evidence for the fitness costs in the resistant strain by knocking out these genes.

Fig. 5 Elevated phosphorylation of FTZ-F1 in vivo enhances resistance of *P. xylostella* larvae to Cry1Ac toxin. a FTZ-F1 transcript level in the larval midgut of a susceptible DBM1Ac-S strain and four resistant *P. xylostella* strains. b Protein expression and phosphorylation levels of FTZ-F1 in the larval midgut of the same five *P. xylostella* strains. Phosphorylated and non-phosphorylated FTZ-F1 proteins were separated on a Phos-tag SDS-PAGE gel, detected by anti-FTZ-F1, and quantitated by densitometry using the ImageJ LSI software and normalized to the β-actin.
previously been described, a recent study has linked FTZ-F1 to resistance. The established roles of FTZ-F1 in insect growth and development—larval molting, metamorphosis, and pupal development—are conserved across species. This study provides evidence for the involvement of FTZ-F1 in pathogen defense via regulating different target genes in disparate biological processes. The MAPK cascade regulation of FTZ-F1 phosphorylation was investigated in the resistant strain *P. xylostella*, which differ only in their N-terminal features (such as chromatin accessibility and epigenetic context (including DNA motif changes (such as phosphorylation as found in this study), DNA motif complexity, including interactions between TFs and other factors, TF DNA binding specificity, and protein-protein interactions). The MAPK cascade effect on FTZ-F1 phosphorylation was found to be essential in regulating pathogen defense.

In insects, FTZ-F1 was first identified in *Drosophila* three decades ago, encoding two protein isoforms: αFTZ-F1 and βFTZ-F1. αFTZ-F1 is maternally supplied and acts as a cofactor of the homeodomain protein fushi tarazu (FTZ) to control embryonic pattern formation during early embryogenesis. On the other hand, βFTZ-F1 is identified as a competence factor for stage-specific responses to ecdysone pulses and controls larval molting, metamorphosis, and pupal development. Similar to the *Drosophila FTZ-F1* gene, we also identified two protein isoforms of the *FTZ-F1* gene in *P. xylostella*, which differ only in their N-terminal sequences. Although a role for FTZ-F1 in pathogen defense has not previously been described, a recent study has linked FTZ-F1 to resistance to a chemical insecticide in *P. xylostella*. In response to pathogen attacks, hosts activate immune systems that are mediated through multifarious signaling pathways and hormone crosstalk, and it is an effective way to orchestrate physiological tradeoffs in a wide variety of organisms. FTZ-F1 has been linked with stage-specific responses to ecdysone signaling, and recently, the power of 20E in resisting infection of Bt pathogens was consolidated in *P. xylostella*. Combined with our previous observation, αFTZ-F1 and βFTZ-F1 display similar titers patterns to 20E during the feeding intermolt stage but differ at metamorphosis. Potentially, both forms of FTZ-F1 could provide the defense against Bt, but each is acting at different stages of development. The established roles of FTZ-F1 in insect growth and development provide a hint about how this versatile host TF has been recruited into a pathogen response pathway that is linked to maintaining growth and development.

The precise determination of the binding site to the target protein is a prerequisite to deciphering the complex regulatory networks of TFs. DNA binding motifs for many TFs in various species have been characterized during recent decades with the development of technologies such as ChIP-seq and ATAC-seq. However, studies using these approaches mainly concentrate on TF binding to the primary target motifs and rarely characterize alternative ones. Multiple studies have demonstrated that FTZ-F1 binds DNA with high affinity to 5′-YCAAGYCR-3′, whereas little attention is known about functional non-canonical response elements. The aforementioned TF IPA1 in rice is an excellent example of where different forms regulate different genes. Phosphorylated IPA1 activates immune-related genes via a novel binding site distinct from the bound by non-phosphorylated IPA1, indicating that TFs with or without post-translational modifications, binding to different motifs, might be a more widespread phenomenon. Although the amino acid phosphorylation in FTZ-F1 does not form part of the conserved DNA binding motif, this does not preclude it from influencing binding as other studies have shown that this post-translational modification can alter the structure of distal parts of a DNA-binding protein. TF-DNA binding specificity can be affected by additional layers of complexity, including interactions between TFs and other factors, TF changes (such as phosphorylation as found in this study), DNA motif context (including flanking sequences and DNA shape), and genomic features (such as chromatin accessibility and epigenetic information). The current atlas of binding motifs for FTZ-F1 and other TFs is still rather incomplete, identifying more targets and
specific TFBSs remain a priority for decoding the complex regulatory action and new functions of TFs.

Based on the data gathered in this study, the MAPK-responsive FTZ-F1 is a key regulatory factor in the differential expression of receptors and non-receptor paralogs in *P. xylostella* (Fig. 8). Within the insect midgut, APN enzymes are primarily involved in the digestion process, and the fact that development-associated control of expression of different APNs has been observed suggests that different forms may have distinct roles in digestion. We have also previously observed differences in the expression of various APNs between larval stages, suggesting that a mechanism for the differential expression of insecticidal APN genes exists. ABC transporter proteins have many transport and non-transport functions, although these remain unclear, particularly in arthropods. The *P. xylostella* genes that we have demonstrated to be under the control of FTZ-F1 don’t exactly match those that are differentially expressed in the resistant strain, upon Bt intoxication or following MAP4K4 silencing. In particular, no effect was seen on the two receptor-encoding genes ALP and ABCBI. Our recent studies have identified cis-acting mutations and trans-factors that regulate these two genes. In both cases, trans-acting TFs were identified that were under the control of MAP4K4, as FTZ-F1 was. By acting via a partially independent pathway, allows some degree of protection against Bt if the primary FTZ-F1 pathway is not available for whatever reason.

Although the midgut protein-encoding genes investigated here are likely to be under normal homeostatic control, it is difficult to conceive a physiological process that would involve the pattern of differential expression observed in the resistant strain. The observed process, however, is a complex, but elegant solution for overcoming the pathogenic effect of Bt toxins. The fact that the Bt Cry1Ac toxin has evolved to be able to target multiple proteins as receptors represents one side of the arms race that required the host to develop a sophisticated response mechanism. We conclude, therefore, that the pathogen response observed is not due to the co-option of an existing process but a specific mechanism that has arisen as a result of a long period of co-evolution between insects and Bt.

Methods

Insect strains and cell lines

Five *P. xylostella* strains, including one Bt-susceptible strain DBM1Ac-S and four Bt-resistant strains DBM1Ac-R, NIL-R, SZ-R, and SH-R were used in this study. The susceptible DBM1Ac-S and field-evolved Bt-resistant DBM1Ac-R strains were provided by Drs. Jianzhou Zhao and Anthony (Tony) Shelton (Cornell University, USA) in 2003. Then, the near-isogenic Cry1Ac-resistant NIL-R strain was constructed in our laboratory in 2015 by six-time backcrossing between DBM1Ac-S and DBM1Ac-R along with Cry1Ac toxin selection. The lab-selected Cry1Ac-resistant SZ-R strain was collected in Shenzhen, China, in 2003 and generated by continuous selection with Cry1Ac protoxin. The lab-selected Bt-resistant SH-R strain was collected in Shanghai in 2005 and was treated with a Bt var. *kurstaki* (Btk) formulation (WP with a potency of 16,000 IU/mg, provided by Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, China). The DBM1Ac-S, NIL-R and SZ-R larvae present around 4500-, 5000-, and 500-fold resistance to Cry1Ac protoxin, while the SH-R strain presents approximately 2000-fold resistance to Btk formulation compared to...
The susceptible DBM1Ac-S strain. Larvae were fed with Jing Feng No. 1 cabbage (Brassica oleracea var. capitata) at 25 °C with 65% relative humidity (RH) and a 16:8 (light:dark) photoperiod, and adults were supplied with a 10% honey/water solution.

The DBM strain HD-73 and was purified, subcloned into pEASY-T1 vectors (TransGen), and sequenced. The full-length cDNA sequences of both αFTZ-F1 and βFTZ-F1 genes from our P. xylostella strains have been deposited in the GenBank database (accession nos. MZ962431 and MZ962432). In addition, the cDNA sequences of FTZ-F1T288A(-P) and FTZ-F1T288D(P) were generated by gene synthesis (TsingKe) (Supplementary Table 5).

The amino acid sequences of TFs were deduced using the ExPASy translate tool (https://web.expasy.org/translate/). Analysis and alignment of DNA and protein sequences were performed using DNAMAN 9.0 (Lynnon BioSoft). Multiple sequence alignment was carried out using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), and the results were further formatted using the GeneDoc 2.7 software (http://genedoc.software.informer.com/2.7/). Putative TFBSs in promoters were predicted using the JASPAR database (http://jaspar.genereg.net) and PROMO (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TT_8.3). The DNA binding motifs of FTZ-F1 were displayed using Weblogo 3 (http://weblogo.threeus.com/). The conserved domains of FTZ-F1 protein were analyzed by the Conserved Domain Database (CDD) at NCBI (https://www.ncbi.nlm.nih.gov/cdd/). The phylogenetic tree of FTZ-F1 proteins in various insects (Supplementary Table 6) was generated using MEGA 7.0 software with the neighbor-joining (N) method following the p-distance model, and 1000 bootstrap replicates. The scores of predicted phosphorylation sites were calculated by the disorder-enhanced phosphorylation predictor (DEPP) (http://www.pondr.com/cgi-bin/depp.cgi).
empty pAc5.1 plasmid was used as a control. At 48 h post-transfection, luciferase activity was measured on a GloMax 96 Microplate Luminometer (Promega) by a Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer's protocol. The relative luciferase activity (firefly luciferase activity/Renilla luciferase activity) of each construct was normalized to that of the control group. Each experiment was performed with three independent replicates.

YIH assay

The yeast one-hybrid (YIH) assay was performed. Briefly, bait plasmids were generated by inserting three tandem repeats of the wild-type FBSP from the ABC2 promoter (5′-CTGCTCTGTAAG-3′), its mutant FBSP (FBSP-M) (5′-GCCACACGCT-3′), wild-type FBSP from ABC1 promoter (5′-CTGACGTCA-3′), or its mutant FBSPs (5′-GCCACACGCT-3′) into the pAbAi vector, the plasmids were then integrated into YHGold yeast. Subsequently, the minimum inhibitory concentrations of auronebasidin A (AbA) for normal growth of the bait strains were determined on the Tanon-5200 Chemiluminescent Imaging System (Tanon). The DNA fragment and purified proteins by their band shift differences using a general antibody, simultaneously detection of phosphorylated and non-phosphorylated FTZ-F1T288D(P) were expressed in E. coli strain BL21 and purified with the Bradford assay, using a His-tag Protein Purification Kit (Beyotime Biotechnology). Oligonucleotide probes for the wild-type FBSP and FBSP', mutant FBSP, and FBSP' that were labeled with biotin at the 5′-terminus were prepared by gene synthesis (Tsingke) (Supplementary Table S1). Before electrophoresis, the DNA fragment and purified proteins were incubated at 25°C for 30 min. The DNA-protein complexes were then electro-transferred and detected with a LightShift Chemiluminescent EMSA Kit (Thermo Fisher Scientific) following the manufacturer's instructions. Blots were detected on the Tanon-5200 Chemiluminescent Imaging System (Tanon).

RNA interference

RNA-induced silencing of MAP4K4 and FTZ-F1 were performed to explore the in vivo regulatory relationships among the MAP4K4, FTZ-F1, and multiple midgut genes in P. xylostella. The specific dsRNA was synthesized using the T7 Ribonex Express RNAi System (Promega). The gene-specific primers (Supplementary Table 4) for dsRNA synthesis were designed for the gene-specific region to avoid potential off-target effects, and no specific hit to other homologous genes was detected by BLASTN searches of GenBank and the P. xylostella genome database, further validating the specificity of the selected dsRNA fragments. Then, microinjection of a sub-lethal dose of dsRNA (100 ng for dsFTZ-F1, 300 ng for dsMAP4K4) was carried out in newly molted third-instar P. xylostella larvae using the Nanoliter 2000 microinjection system (World Precision Instruments). Silencing effects were tested at 48 h post-injection by qPCR and a subsequent 72 h leaf-dip bioassay.

Subcellular localization

The recombinant EGFP-FTZ-F1 fusion (with EGFP fused to the N-terminus of FTZ-F1) coding plasmid was transfected into S2 cells using FuGENE HD (Promega) at a ratio of 1:3 (plasmids to FuGENE). The transfected cells were fixed with 4% paraformaldehyde (w/v, PFA) for 15 min at 48 h post-transfection, and then permeabilized with 0.5% Triton X-100 for 20 min. After three washes with PBS, the nuclei were stained with 5 μM DAPI (Abcam) for 15 min at room temperature. Non-transfected cells were used as a negative control and cells transfected with the Pie-EGFP-NI vector were used as a positive control. Images without the need to prepare an anti-phospho antibody. Western blot analysis with Phos-tag gels to separate phosphorylated from non-phosphorylated FTZ-F1 was performed following the handbook supplied by WaKo Co., Ltd. The Phos-tag SDS-PAGE gel was prepared by adding an additional 100 μM MnCl2 and 50 μM Phos-tag (Wako) to the 10% SDS-PAGE. After loading the samples, the specific gel was run at 40 V overnight on ice and was washed twice by gently shaking in transfer buffer containing 1 μmol/L EDTA (CWBio) for 10 min, and was then incubated in transfer buffer for another 20 min. The subsequent western blot analysis of the Phos-tag gel was performed as described above. Both the β-actin (1:2000, Abcam) and the Histone 3 (1:2000, AbClonal) were used as internal loading controls.

MAPK inhibitor assays

To explore the effect of p38, JNK, and ERK on FTZ-F1, the resistant NIL-R larvae were treated with 30 μM of the specific inhibitors: SB203580 (Merck Millipore) for p38, SP600125 (Merck Millipore) for JNK and PD0325901 (TargetMol) for MEK1/2. The optimal inhibitors and their treatment concentrations and time had been optimized. Inhibitor assays were conducted by a leaf-dip method similar to the toxicity bioassay. The inhibitors were dissolved in DMSO (Sigma-Aldrich) as stock solutions, which were then mixed with 0.05% (v/v) Triton X-100 solvent. Leaf disks (10 cm in diameter) were soaked in the dissolved inhibitors or DMSO solution alone (as control). Thirty fourth-instar NIL-R larvae were fed on these leaf disks after air-drying. Midgut tissue was dissected at 6 h post-treatment to prepare RNA samples for qPCR analysis and protein samples for western blot.

qPCR analysis

Gene expression levels were detected by real-time quantitative PCR (qPCR) analysis using the specific primers listed in Supplementary Table 4. Briefly, the detection was conducted on the QuantStudio 3 Real-Time PCR System (Applied Biosystems) using FastFire qPCR Premix (SYBR Green) (TIANGEN) according to the manufacturer's instructions. Relative expression levels were calculated using the 2^-ΔΔCt method and normalized to the level of the internal control ribosomal protein L32 (APL32) gene (GenBank accession no. AB180441).

Protein extraction and western blot

Midgut tissues were dissected from fourth-instar larvae in different strains. The tissues were homogenized in Cellytic M Cell Lysis Reagent (Sigma-Aldrich) supplemented with the EDTA-Free Complete Protease Inhibitor Cocktail (Roche) and the PhosSTOP Phosphatase Inhibitor Cocktail (Roche), and then were centrifuged to collect the supernatants. Protein extraction and western blot analysis and protein samples for western blot.
were visualized with a Leica laser scanning confocal microscope (Leica, TCS SP8, Wetzlar, Germany).

Immunoprecipitation and LC-MS/MS assay

Sf9 cells transfected with EGFP-F2-F1 fusion protein were harvested and lysed in lysis buffer (20 mM Tris-HCl [pH 7.5], 100 mM KCl, 2 mM MgCl₂, 0.3% IGEPAL CA-630, 1 mM protease inhibitor cocktail and 1 mM phosphatase inhibitor cocktail (Roche)) on ice. Lysed total protein samples were precibinated with protein A/G beads on a rotating wheel at 4 °C for 1 h. The beads were removed, and the protein was mixed with 5 μg anti-GFP (Abcam) or 4 μg anti-IgG (Sigma-Aldrich) overnight at 4 °C, and subsequently incubated with protein A/G beads again for 3 h at 4 °C. Beads were pelleted on a magnetic stand and the supernatant was discarded. The beads were then washed five times with lysis buffer. Elution was performed by adding SDS loading buffer followed by incubation at 95 °C for 10 min. Immunoprecipitation was applied for western blot and LC-MS/MS assays.

The eluent was digested with trypsin enzyme (Promega) following the filter-aided sample preparation (FASP) protein digestion protocol. LC-MS/MS experiments were carried out with an Orbitrap Fusion Lumos Trilob mass spectrometer (Thermo Fisher Scientific) coupled to an EASY-nLC 1200 system (Thermo Fisher Scientific). The analytical columns (75 μm × 25 cm, 5 μm, 100 Å, C18) were equilibrated in buffer A (0.1% formic acid). The digested peptides were automatically injected onto the EASY trap column (100 μm × 2 cm, 3 μm, 100 Å, C18) (Thermo Fisher Scientific) and then separated using the following gradient of buffer B (0.1% formic acid acetonitrile) at a 200 nL/min flow rate: 0–40 min, 5–28% buffer B, 40–42 min, 28–90%, 42–60 min, hold at 90%.

The hydrolysates were desalted and separated by capillary high-performance liquid chromatography and analyzed by an Orbitrap Fusion Lumos Trilob mass spectrometer. The scan analysis lasted 60 min and the master scans were acquired at a resolution of 120,000 at m/z 200, the scan range of 375–1900 m/z; top speed, AGC target of 4e5, maximum IT of 50 ms, number of scan ranges of 1, dynamic exclusion of 100 s. The data-dependent mode was cycle time and the time between the master scan was 3 s. MS2 scan was performed by HCD fragmentation with a resolution of 50,000 at m/z 200, maximum IT of 105 ms, AGC target of 1e6, microscans of 1. All results were analyzed by applying Proteome Discoverer 2.4 software (Thermo Fisher Scientific). The search parameters were as follows: trypsin digestion with two missed cleavages was permitted, charge states 1+, 2+, 3+ for precursor ion. The mass errors of precursor ion and fragment ions were 10 ppm and 0.05 Da.

CRISPR/Cas9 experiment

CRISPR/Cas9-mediated single knockout of ABCCI, a double mutant of APNS and APN6, as well as the triple mutations of ABCCI, APNS, and APN6 were performed to elaborate the in vivo important roles of non-receptor genes and their interactions, as reported elsewhere. Briefly, three optimal sgRNAs targeting ABCCI, APN5, and APN6 genomic sequences were designed (Supplementary Table 4) and the potential off-target effects of all the sgRNAs were eliminated. For double-gene knockout, about 1 nl mixture of two sgRNAs and Cas9 protein (the final concentration of each sgRNA and Cas9 protein was 100 ng/μl) were simultaneously microinjected into individual eggs from the resistant NIL-R strain. According to the adjacent structure of the APNS and APN6 genes in the DBM genome, four gene-specific primer pairs were designed to determine the mutagenesis of the double-gene regions according to PCR banding pattern of the resultant amplicons and DNA direct sequencing (Supplementary Table 4). For single or triple mutations, a mixture of Cas9 protein (200 ng/μl) and sgRNA (150 ng/μl) was injected into individual eggs from the resistant NIL-R or double-mutant strain (N6-SKO), respectively. In addition, a nondestructive genotyping method was applied to all mutation types, i.e., the gDNA samples were extracted from exuviates of individual fourth-instar *P. xylostella* larvae as templates to amplify the DNA fragment surrounding the sgRNA target site for DNA sequencing. Subsequently, the stable homozygous mutant strains were constructed by mutation screening and germline transformation strategy (Supplementary Tables 1, 2).

Heterologous expression

Heterologous expression of ABCCI-3 genes was performed. The full-length cDNA sequences of ABCCI-3 genes were cloned from the susceptible DBM1Ac-S *P. xylostella* larvae and inserted into the pie2-EGFP-NI expression vector to generate three recombinant plasmids (pie2-EGFP-ABCCI1/ABCCI2/ABCCI3) (Supplementary Table 4). All the recombinant plasmids containing the pie2 promoter and the EGFP-ABCC fusion proteins with the plasmid which only expressed EGFP protein as a control. Subsequently, the recombinant ABCCI-3 proteins were transiently expressed in vitro in Sf9 cells. The specific interaction between all the recombinant proteins and CryAc toxin was determined by immunolocalization in Sf9 cells after transfection. The transfected Sf9 cells were incubated with trypsin-activated CryAc toxin (100 ng/L) and fixed in 4% paraformaldehyde. After blocking, the cells were respectively incubated with primary rabbit polyclonal anti-CryAc antibody (I:100, produced in our lab) and goat anti-rabbit secondary antibody conjugated with Alexa Fluor 555 (I:500, Abcam). The treated cells were observed under the LSM 700 confocal microscope (Carl Zeiss) equipped with the ZEN 2012 software (Carl Zeiss). A CCK-8 (WST-8 in the Cell Counting Kit-8, Dojindo) assay was performed to detect cytotoxicity. The absorbance was measured at 450 nm after 24 h incubation with CryAc toxin, and the proportion of viable cells (single or combined transfection) was measured relative to untreated Sf9 cells, which was set as 100%.

Fitness cost analysis

A series of physiological parameters in *P. xylostella* mutant strains were compared to analyze the fitness cost induced by the CRISPR knock-outs, the susceptible DBM1Ac-S and the parental NIL-R resistant strains were used as controls. The biological parameters measured were pupal morphology, puation percentage, pupal weight, puation duration, and hatching rate. Ten second-instar larvae from each strain were kept on fresh cabbage leaves without exposure to any Bt toxin, and each test was replicated five times.

Statistical analyses and data visualization

For dual-luciferase assays, qPCR, western blot, bioassay data, and fitness costs, significant differences between different groups were evaluated by one-way ANOVAs with Tukey's test using IBM SPSS Statistics 23.0 (https://www.ibm.com/support/docview.wss?uid=swg24038592). Graphs were constructed by Microsoft Office 2010 (https://www.microsoft.com/en-us/microsoft-365/previous-versions/officer-2010). SigmaPlot 12.5 (https://systatsoftware.com/products/sigmaplot/), or GraphPad Prism 8.3 (https://www.graphpad.com/scientific-software/prism/).

Data availability

The full-length cDNA sequences of all the cloned genes in this study have been deposited in the GenBank database under accession numbers MZ962431 and MZ962432. The gene or genome databases including DBM-DB (http://i16.62.11.144/DBM/), LepBase (http://ensembl.lepbase.org/Plutella_xylostella_pabiov1/), and GenBank (https://www.ncbi.nlm.nih.gov/) were used to obtain sequences of target genes and their promoters. The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. The source data underlying Figs. 1, 2,
3a, c, d, g, h, 4a, b, 5, 6, 7c–f and Supplementary Figs. 2, 5, 6, 9b, 10b are provided as a Source Data file. Source data are provided with this paper.

Code availability

No custom code or algorithms were used in this study.

References

1. Bisen, P. S., Deb Nath, M. & Prasad, G. B. Microbes: Concepts and Applications (John Wiley & Sons, 2012).
2. Bertrand, J. C. et al. Environmental Microbiology: Fundamentals and Applications (Microbial Ecology (Springer, 2015).
3. Jones, J. D., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science **354**, aaf6395 (2016).
4. Cory, S. J. Evolution of host resistance to insect pathogens. Curr. Opin. Insect Sci. **21**, 54–59 (2017).
5. Lopes Fischer, N., Naseer, N., Shin, S. & Brodsky, I. E. Effector-triggered immunity and pathogen sensing in metazoans. Nat. Microbiol. **5**, 14–26 (2020).
6. Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos. Trans. R. Soc. B **363**, 321–339 (2008).
7. Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. **43**, 385–406 (2012).
8. Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant **7**, 1267–1287 (2014).
9. Ning, Y., Liu, W. & Wang, G. L. Balancing immunity and yield in crop plants. Trends Plant Sci. **22**, 1069–1079 (2017).
10. Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science **355**, 962–965 (2017).
11. Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science **361**, 1026–1028 (2018).
12. Martins, R. et al. Disease tolerance as an inherent component of immunity. Annu. Rev. Immunol. **37**, 405–437 (2019).
13. Ke, Y. G. et al. The versatile functions of OsALDH2B1 provide a genetic basis for growth-defense trade-offs in rice. Proc. Natl. Acad. Sci. USA **117**, 3867–3873 (2020).
14. Guo, Z. et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nat. Commun. **11**, 3003 (2020).
15. Gao, M. et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell **184**, S391–S404 (2021).
16. Li, S. et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature **602**, 455–460 (2022).
17. Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D. & Givaudan, A. How the insect pathogen bacteria Bacillus thuringiensis and Xenohabdus/Photobacterium occupy their hosts. Curr. Opin. Microbiol. **15**, 220–231 (2012).
18. Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. **37**, 3–22 (2013).
19. Jurat-Fuentes, J. L., Heckel, D. G. & Ferré, J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Entomol. **66**, 121–140 (2021).
20. Pinos, D., Andrés-Garrido, A., Ferré, J. & Hernández-Martínez, P. Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins. Microbiol. Mol. Biol. Rev. **85**, e00007–20 (2021).
Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

55. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epi-genomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

56. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor-DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).

57. Leonard, P. G., Golemi-Kotra, D. & Stock, A. M. Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc. Natl. Acad. Sci. USA 110, 8525–8530 (2013).

58. Siggers, T. & Gordán, R. Protein-DNA binding: complexities and multi-protein codes. Nucleic Acids Res. 42, 2099–2111 (2014).

59. Adang, M. J. Insect aminopeptidase N in Handbook of Proteolytic Enzymes 3rd edn (eds Rawlings, N. D. & Salvesen, G.) Ch. 81, 405–409 (Academic Press, 2013).

60. Wu, C., Chakrabarty, S., Jin, M., Liu, K. & Xiao, Y. Insect ATP-binding cassette (ABC) transporters: roles in xenobiotic detoxification and Bt insecticidal activity. Int. J. Mol. Sci. 20, 2829 (2019).

61. Qin, J. et al. A cis-acting mutation in the PxABC1 promoter is associated with Cry1Ac resistance in Plutella xylostella (L.). Int. J. Mol. Sci. 22, 6106 (2021).

62. Qin, J. et al. MAPK-activated transcription factor PxJun suppresses PxABC1 expression and confers resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). Appl. Environ. Microbiol. 87, e00466–21 (2021).

63. Guo, L. et al. MAPK-mediated transcription factor GATA contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet. 18, e1001037 (2022).

64. Xu, L. et al. MAPK-mediated transcription factor POUM1 regulates PxABC1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). Pestic. Biochem. Physiol. 182, 105053 (2022).
