Research Paper
Effects of Three Types of Massage on Serum Levels of Malondialdehyde, Superoxide Dismutase and Glutathione Peroxidase After One Session of Exhaustive Exercise in Female Futsal Players

Bahare Heydari1, Mohsen Ghofrani1, *Mohammad Ebrahim Bahram2

1. Department of Physical Education and Sport Sciences, Faculty of Educational Sciences and Psychology, University of Sistan and Baluchestan, Zahedan, Iran.
2. Department of Physical Education and Sport Sciences, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.

Objective: The production of reactive oxygen species in exercise causes oxidative stress which disturbs the balance of oxidants and antioxidants, causing destructive effects on cells. The present study aims to investigate the effect of three types of massage (Swedish, Russian, Thai) on serum levels of Malondialdehyde (MDA), Glutathione Peroxidase (GPX) and Superoxide Dismutase (SOD) following one session of exhaustive exercise.

Methods: This quasi-experimental study was conducted on 48 female futsal players aged 17-22 years in Zahedan, Iran who were selected using a purposive sampling method, and randomly divided into four groups of Swedish massage (Long strokes with pressing and tapping using hands), Russian massage (Medium to high pressure), Thai massage (Pressure to certain parts of the body) and Control. The exercise program was based on Bruce protocol. Serum levels of MDA, GPX and SOD were measured by before and immediately after exercise and after massage. Data analysis was performed using repeated measures ANOVA, considering a significance level of P≤0.05.

Results: In all three types of massage, there was a significant decrease in serum level of MDA (0.22±0.08), and a significant increase in GPX (1.84±0.46) and SOD (10.02±2.86) levels after exhaustive (P=0.001). No significant difference was observed in the control group.

Conclusion: It seems that Russian, Thai, and Swedish types of massage can affect the serum levels of the MDA (as an oxidative stress marker) and the antioxidant enzymes of GPX and SOD during the post-exercise recovery period.

Keywords: Massage, Malondialdehyde, Glutathione peroxidase, Superoxide dismutase, Exhaustive exercise

Extended Abstract

1. Introduction
Malondialdehyde (MDA) is a small but stable product of the lipid peroxidation that is resulted from the breakdown of unstable peroxides of unsaturated fatty acids.

[3] Given that intense exercise causes oxidative stress, cells use the enzymatic antioxidant defense system including Glutathione Peroxidase (GPX) and Superoxide Dismutase (SOD) as the first line of defense against oxidative stress. Massage includes a group of manual techniques on body tissues to affect the neuromuscular, skin, and joints systems, reduce stress and pain, and improve the blood and lymphatic circulation. It has long been used as a complementary
method for the treatment and improvement of body function and the prevention of injuries [10].

To our knowledge, no studies have been conducted on the effect of massage after exercise on the MDA, SOD and GPX markers. However, there are some studies on the effect of various massages on the markers of muscle injury, oxidation, anti-oxidation, and immune system. Yousefi et al. showed that massage after intense physical activity had a positive effect on immunoglobulin A and neutrophils in athletes with disabilities [14]. Naghizadeh et al. reported that the serum levels of creatinine kinase and lactate dehydrogenase slightly increased after massage compared to an eccentric exercise session [15]. Sadat and Hosseinizadeh in a study investigated the effect of sport massage on hematological parameters in semi-professional male runners. Their results showed a significant difference between the two types of active and sports massage in white blood cell, hemoglobin and hematocrit levels [16]. It has also been reported that massage has no effect on the strength and athletic performance and may even cause a decline in athletic performance [19]. Considering the importance of the massage, the present study aims to evaluate the effect of three types of massage on serum levels of MDA, SOD and GPX following a session of exhaustive exercise.

2. Materials and Methods

This is a quasi-experimental study conducted on 48 female futsal players aged 17-22 years in Zahedan, Iran during 2019-2020, who were voluntarily participated and randomly divided into four groups: Swedish massage, Russian massage, Thai massage, and control. Five cc of fasting blood was taken from the anterior brachial vein of subjects three times simultaneously from 8 to 10 A.M. To examine the difference within groups, repeated measures ANOVA was used and to measure differences between groups, one-way ANOVA was carried out. The significance level was set at 0.05.

3. Results

As shown in Table 1, the results of repeated measures ANOVA showed that massage after exhaustive exercise leads to a significant reduction in MDA (F=73.811, P=0.001), GPX (F=44.237, P=0.001) and SOD (F=14.594, P=0.001) levels. The results of one-way ANOVA showed a significant difference between the effects of three types of sports massage on serum levels of MDA, SOD and GPX after one session of exhaustive exercise (P=0.001).

Variables (nmol/mg protein)	Groups	Pre-exercise	After Massage	Immediately After Exercise	Within-subjects	Between-subjects
MDA	Swedish massage	0.63±0.12	0.64±0.12	0.41±0.04	0.04*	0.001*
	Russian massage	0.61±0.10	0.061±0.10	0.48±0.05	0.02*	0.001*
	Thai massage	0.60±0.12	0.61±0.12	0.45±0.03	0.03*	0.001*
	Control	0.57±0.14	0.56±0.15	0.57±0.14	0.26	0.001*
SOD (μm/mg protein)	Swedish massage	61.68±5.85	61.66±4.84	71.70±2.99	0.02*	0.001*
	Russian massage	61.39±3.09	61.38±3.09	68.26±2.84	0.002*	0.001*
	Thai massage	51.86±4.19	54.35±4.69	65.29±2.86	0.01*	0.001*
	Control	55.03±4.05	54.86±5.82	51.36±5.42	0.09	0.001*
GPX (μm/mg protein)	Swedish massage	2.54±0.92	2.53±0.93	4.38±4.38	0.002*	0.003*
	Russian massage	2.74±0.87	2.72±0.86	3.24±0.10	0.003*	0.003*
	Swedish massage	3.20±0.92	3.21±0.98	0.041±0.04	0.04*	0.003*
	Russian massage	2.42±0.77	2.44±0.71	0.48±0.05	0.02*	0.002*

* The difference is significance at P≤0.05.
4. Conclusion

This study aimed to investigate the effect of three types of massage on serum levels of MDA, SOD and GPX following a session of exhaustive exercise. To the best of our knowledge, there is no other similar study to compare our findings with their results. Yousefi and Azamian in a study showed that 20 minutes of effleurage sports massage can have a beneficial effect on the immune system of wheelchair basketball players [14]. This is consistent with our results. There is a powerful antioxidant called cytochrome that recycles reactive oxygen species and produces water by transferring electrons to oxygen; it reduces electron emission and, thus, the production of reactive oxygen species, and electron leakage [22].

The findings of the present study are against the results of Ang et al. and Kim et al. [24, 25]. This discrepancy may be due to the type and technique of applied massage. Consistent with the present study, Piri et al. showed that massage therapy leads to a significant reduction in oxidation markers by 25% [26]. Against the present study, Billháll et al. showed that massage therapy has no effect on biochemical markers [32]. Due to impaired balance between the oxygen consumption and the oxygen required by the involved tissues and the creation of a process called ischemia, exhaustive exercise seems to cause damage to unsaturated lipids in tissue membranes and production of reactive oxygen species, which in turn stimulates lipid peroxidation and ultimately increases the production of free radicals.

It seems that the use of massage during the recovery period and rest after exhaustive exercise can reduce the level of MDA, as an oxidative stress marker, and increase oxidative enzymes of SOD and GPX.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the University of Siştan and Baluchestan (Code: IR.US.Rec.1399.31409). All participants in this study signed a written consent form and were assured of the confidentiality of their information.

Funding

This study was extracted from the MA. thesis of first author at the Department of Physical Education and Sports Sciences, University of Siştan and Baluchestan.

Authors’ contributions

All authors contributed equally in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
تأثیر سه نوع ماساژ بر نشانگر استرس اکسیداتیو مالون دی آلدئید و منشأهای آنتی اکسیدان سوپراکسیدامین پراکسیداز و گلوتاتیون پراکسیداز متعاقب یک جلسه فعالیت ورزشی وامانده

بهاره حیدری ۱، محسن غفاری ۲، محمدابراهیم بهرام* ۳

۱. گروه تربیت بدنی، دانشکده مدیریت و پرورش ورزشی، دانشگاه فردوسی مشهد، مشهد، ایران.
۲. گروه تربیت بدنی، دانشکده مدیریت و پرورش ورزشی، دانشگاه آزاد اسلامی واحد اردبیل، اردبیل، ایران.

مقدمه
فعالیت ورزشی با وجود فواید گوناگونی که بر سلامت عمومی دارد، می‌تواند به دلیل افزایش تولید گونه‌های واکنش‌پذیر و ایجاد

فشار اکسیداتیو، موجب آسیب بافت‌ها و موجب بروز اختلال در موازنه اکسیدان‌ها و آنتی اکسیدان‌ها، نتایج مضری را از سیستم‌های جهشی و اضطراب می‌دهد. منابع مورد بررسی تأثیر سه نوع ماساژ بر مقادیر سرمی مالون دی آلدئید، گلوتاتیون پراکسیداز و سوپراکسیدامین متعاقب یک جلسه فعالیت وامانده سازی بر دختران فوتسالیست شهر زاهدان با دامنه سنی ۴۸ تا ۵۷ نفر از دختران فوتسالیست از شهر زاهدان با دامنه سنی ۴۸ تا ۵۷ نفر از دختران فوتسالیست از شهر زاهدان در این مطالعه نیمه تجربی به صورت هدفمند انتخاب و به صورت تصادفی به چهار تعداد مساکن سوئدی، سوئدی، تایلندی و گروه کنترل (هر گروه دوازده نفر) تقسیم شدند. برنامه تمرینی، یک جلسه تمرین وامانده ساز آزمون بروس بود. مقادیر سرمی مالون دی آلدئید، گلوتاتیون پراکسیداز و سوپراکسیدامین از چهار گروه قبل و بلافاصله بعد از تمرین و پس از اجرای ماساژ سوئدی (مالش طولانی، با فشار و ضربه زدن با دست)، روسی (فشار متوسط تا زیاد) و تایلندی (اعمال فشار روی نقاط خاصی از بدن) توسط ماساژور اندازه‌گیری شد. تحقیق داده‌ها با استفاده از آزمون تحلیل واریانس با مقدار مکرر در سطح معنی‌دار P≤0.05 اندازه‌گیری‌های مکرر در سطح معنی‌دار P≤0.05 اندازه‌گیری‌های بین گروه‌ها به وسیله آزمون تحلیل واریانس با دو عامل (تو به نوع ماساژ و قبل یا بعد از تمرین) گروه کنترل مشخص شد و با استفاده از آزمون تحلیل ریگرسیون با دو عامل (تو به نوع ماساژ و قبل یا بعد از تمرین) بر روی نتایج رابطه‌گری این دو عامل با سهم‌های مختلف اثرات سه نوع ماساژ بر مقادیر سرمی مالون دی آلدئید، گلوتاتیون پراکسیداز و سوپراکسیدامین متعاقب یک جلسه فعالیت وامانده ساز در دختران فوتسالیست شهر زاهدان با دامنه سنی ۴۸ تا ۵۷ نفر از دختران فوتسالیست از شهر زاهدان بررسی شد.

کلیدواژه‌ها: ماساژ، مالون دی آلدئید، گلوتاتیون پراکسیداز، سوپراکسیدامین، تمرین وامانده ساز

اطلاعات مقاله:
۱۳۹۹ مهر ۲۰ (تاریخ دریافت ۱۳۹۹ آبان ۱۶ (تاریخ پذیرش ۱۳۹۹ دی ۱۲ (تاریخ انتشار)
بیماری مقاومت و شاخص های سیستم ایمنی

از طرفی، مطالعاتی که اثر ماساژ بر آنزیم های اکسایشی مانند SOD و GPX را بررسی کرده‌اند، از تکنیک‌های دیگر ماساژ استفاده یا به بررسی آسیب‌های عضلانی و شاخص‌های سیستم ایمنی را بررسی کرده‌اند.

همچنین، مطالعه در زمینه اثر ماساژ بر شاخص‌های دوره ریکاوری مانند ماساژ و ارائه مکانیسم‌های جدید اثرات ناشی از فشارهای اکسایشی در فعالیت ورزشی؛ توجه به آسیب‌های عضلانی ضروری به نظر می‌رسد و رادیکال‌های آزاد همواره یک تهدید برای سلامتی می‌کنند؛ بنابراین در معرض افزایش استرس اکسایشی با توجه به اینکه ورزشکاران همواره در شرایط تمرین شدید قرار دارند و رادیکال‌های آزاد موجود در بدن، افزایش جریان خون در تارهای ویژه را وارد می‌کنند.

توجه به اینکه ورزشکاران همواره در شرایط تمرین شدید قرار دارند و رادیکال‌های آزاد موجود در بدن، افزایش جریان خون در تارهای ویژه را وارد می‌کنند.

امروز ماساژ جزو لابی‌های بزرگ و ورزشکار ورزشکاران جهت رسیدن به موفقیت‌های جهانی و المپیک است. چالمه و ورزش دو روز که هر گونه ورزش که انجام می‌پذیرد، ورزشکاران همواره در شرایط تمرین شدید قرار دارند. معادلی در تولید رادیکال‌های آزاد هنگام ورزش نقش دارند.

از جمله مواردی که ماساژ برای بدن فواید را می‌دهد که همه آن‌ها در جهت بازسازی انرژی از دست رفته و کاهش استرس و درد، گردش خون و لنف به دست می‌آید، از جمله استرس، تنش قلبی و عضلانی.

در جریان فعالیت ورزشی، شاخص‌های استرس اکسایشی به دست می‌آیند.

کاهش احتمال بروز آسیب توسط شاخص‌های استرس اکسایشی، عقیده معمول بر آن است که انجام ماهرانه ماساژ موجب شوید که بعضاً نتایج متناقضی را هم نشان دهد. با وجود این، برخی از مطالعات اثر فعالیت‌های مختلف بررسی کرده‌اند که بعضاً نتایج متناقضی را هم نشان دهد.

در این راستا، مطالعاتی که اثر سه نوع ماساژ را بعد از تمرینات می‌پرسند، نشان می‌دهند که بعضاً نتایج متناقضی را هم نشان دهد. با وجود این، برخی از مطالعات اثر فعالیت‌های مختلف بررسی کرده‌اند که بعضاً نتایج متناقضی را هم نشان دهد.

در این راستا، مطالعاتی که اثر سه نوع ماساژ را بعد از تمرینات می‌پرسند، نشان می‌دهند که بعضاً نتایج متناقضی را هم نشان دهد. با وجود این، برخی از مطالعات اثر فعالیت‌های مختلف بررسی کرده‌اند که بعضاً نتایج متناقضی را هم نشان دهد.

کاهش احتمال بروز آسیب توسط شاخص‌های استرس اکسایشی، عقیده معمول بر آن است که انجام ماهرانه ماساژ موجب بهبود عملکرد و حمایت از روند ترمیم بافت‌ها می‌شود.

کاهش استرس اکسایشی موجب بهبود عملکرد می‌شود.

کاهش احتمال بروز آسیب توسط شاخص‌های استرس اکسایشی، عقیده معمول بر آن است که انجام ماهرانه ماساژ موجب بهبود عملکرد و حمایت از روند ترمیم بافت‌ها می‌شود.

کاهش استرس اکسایشی موجب بهبود عملکرد می‌شود.
این پژوهش از نوع نیمه تجربی با گروه‌های تجربی و کنترل بود.

جامعه آماری شامل خانم‌های لیکوپینه دارای زمینه اجتماعی، روحانی و ورزشی در طول مدت 12 هفته شامل 120 نفر بود که در مراحل مختلف برنامه تمرینی به صورت دوره‌ای یا تداومی تنفس داشتند.

در این مطالعه، دو گروه تجربی و کنترل از لحاظ آماری، تفاوت تعقیبی تکواتو شد. همه محاسبات آماری با استفاده از نرم‌افزار SPSS 237 = 0/5/12 به ترتیب با انجام معیارهای تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکواتوی از پایه تا بالای بالای کنترل در نمونه، مقدار و توزیع حداقل و بالا حداقل می‌بیند و حساسیت = 0/12/100/10 شاخص بر حسب تیان گروه‌ها در فاصله 100/84/86/89 و در دامنه سنگش (درصد جلسات تنفس شده در مدت 172/20/594/237) با سطح تکوا...
مطالعه محرز و همکاران آزمون‌های در گروه‌های مربوطه

جدول 1. گروه‌های تست و مقایسه میزان سرمی آنزیم کلافتیپ و تیونه پراکسیداز با تغییرات سن، وزن و قد

متغیر	گروه سوئدی	گروه روسی	گروه تایلندی
سن (سال)	2/18	2/18	2/18
وزن (کیلوگرم)	1/65	1/65	1/65
قد (سانتی‌متر)	1/85	1/85	1/85
BMI	1/65	1/65	1/65

جدول 2. آزمون تحلیل واریانس با اندازه‌گیری مکر (بررسی اثر بین گروهی و درون گروهی)

سطح متغیری	آزمون ها	مترایها
پیشآزمون	شماره 3	MDA (nmol/mg protein)
پسآزمون	دوره 1	SOD (μm/g protein)
پسآزمون	دوره 2	GPX (μm/g protein)

میانگین‌های تحلیل مکرر (بررسی اثر بین‌گروهی و درون‌گروهی)
بحث
هدف از مطالعه حاضر بررسی اثر سه نوع ماساژ بر مقادیر مقایسه‌سازی سرمی مالون دی آلدئید، گلوتاتیون پراکسیداز و سوپراکسید دیسموتاز متعاقب یک جلسه فعالیت ورزشی وامانده ساز بود.
نتایج مطالعه حاضر نشان داد که انجام ماساژ در سه نوع مختلف باعث کاهش معنادار مقادیر سرمی مالون دی آلدئید و افزایش معنادار گلوتاتیون پراکسیداز و سوپراکسید دیسموتاز متعاقب یک جلسه فعالیت وامانده ساز در گروه تجربی شد.
با توجه به اینکه مطالعه ای اثر ماساژ پس از فعالیت ورزشی را نشان نداده است، GPX و SOD، SOD و GPX روی شاخص های در همسویی و ناهمسویی با یافته‌های مطالعه حاضر است. بنابراین آزمونگر تنها می‌توانست بر اساس مبانی نظری و نتایج تحقیقاتی که تا حدودی مشابه با مطالعه حاضر روی شاخص‌های اکسایشی و آنتی‌اکسایشی استفاده کرده بودند، به تفسیر فرضیه‌های تحقیق پرداخته و با بررسی برخی از مکانیسم‌های اکسایشی، آنتی‌اکسایشی و فیزیولوژیکی با تحقیق‌های دیگر که در زمینه‌های مشابه گزارش شده‌اند، پیشگویی و پیش‌بینی می‌کرد.
نتایج مطالعه حاضر نشان داد که ماساژ پس از فعالیت وامانده ساز منجر به افزایش معنادار گلوتاتیون پراکسیداز و سوپراکسید دیسموتاز می‌شود. همچنین ماساژ روسی، تایلندی و سوئدی به ترتیب، بیشترین اثر را روی کاهش MDA و SOD، GPX و SOD، SOD و GPX روی شاخص‌های در همسویی و ناهمسویی با یافته‌های مطالعه حاضر، یوسفی و اعظمیان در مطالعه‌ای اثر ماساژ ورزشی نوازشی بر برخی شاخص‌های ایمنی بسکتبالیست‌های نخبه با ویلچر پس از یک جلسه تمرین شدید را بررسی کردند. آن‌ها نتیجه گرفتند که بیست‌ دقیقه ماساژ ورزشی نوازشی می‌تواند تأثیر مفیدی بر سیستم ایمنی بسکتبالیست‌های با ویلچر داشته باشد. محققین توصیه می‌کنند پس از اتمام مرحله‌های تمرین شدید، از ماساژ ورزشی استفاده شود.
زنجیره‌ای گزارش شده که طی بازیافت، فعالیت کمیکلنس IV و ترمیمی انتقال الکترون به STEM لیگاسیون‌های ETS الکترون می‌پردازد. در مرحله‌های جدیدی اکسیداسیون با ویلچر پس از یک جلسه تمرین شدید، گونه‌های فعال کلریک را فعال کرده با کمک الکترون‌های XCOMAY و بالعکس حالت و یا اکسیداسیون کلریک و بالعکس حالت آنتی‌اکسیداسیون در پایگاه‌های آنتی‌اکسیدان‌ها می‌تواند باعث کاهش پراکسیداسیون دیس و مالون دی آلدئید می‌شود. همچنین ماساژ به واسطه توانایی اش در به تحرک انداختن مایع بافتی و افزایش جریان خون موضعی پس از ورزش، مانع از تخریب بیشتر سارکولوم شده و از انتشار آنزیم‌ها در اطراف غشاهای سیتولیتیک می‌شود.
از ویژگی‌های مهم ماساژ، مصرف ماده‌های آنتی‌اکسیدان در نوارهای فعالیت وامانده ساز است. این امر می‌تواند تأثیر از تأمین آنتی‌اکسیدان‌های محلول در این ماده‌ها و افزایش سطح آنتی‌اکسیدان‌ها را در بدن از طریق مسیرهای سیگنالینگ سلولی منجر به افزایش بیان آنتی‌اکسیدان‌های آنزیمی شده و نهایتاً موجب کاهش پراکسیداسیون دیس و مالون دی آلدئید می‌شود. همچنین، گزارش‌هایی نشان می‌دهد که ماساژ درمانی، به‌خصوص ماساژ‌هایی که به‌وجود آمده‌اند نشان می‌دهد که ماساژ درمانی به میزان معنادار، مقداری از آنتی‌اکسیدان‌ها را در بدن افزایش می‌دهد.
ورزشکاران در مقایسه با غیرورزشکاران باشند (20). همچنین گزارش شده که تمرینات ورزشی از طریق تنظیم آلایه‌سیر سطح آنزیم‌های آنتی اکسیدانی در بافت‌هایی که نخست سطح تمرینی آن‌ها را افزایش می‌دهد، برای افرادی که به علت ورزش در بافت‌هایی باعث کاهش سطح آنزیم‌های آنتی اکسیدانی می‌شود (21)، ممکن است باعث ناهماهنگی و تغییرات در سطح آنزیم‌های آنتی اکسیدانی باشد.

ب) اثبات مطالعات به طور مداوم انجام شده در پس‌آزمایی و انجام ارزیابی خاصیت مسکن سطح ریوژن‌های تمیز و بزرگ می‌باشد. این آزمایی و ارزیابی نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود، که در بالاترین درجه‌هایی از افزایش سطح ریوژن‌های تمیز می‌باشد. این مطالعات نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و مدت هر یک از آن‌ها در مدت زمان کمتری انجام شود. این امر نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود.

ب) اثبات مطالعات به طور مداوم انجام شده در پس‌آزمایی و انجام ارزیابی خاصیت مسکن سطح ریوژن‌های تمیز و بزرگ می‌باشد. این آزمایی و ارزیابی نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود، که در بالاترین درجه‌هایی از افزایش سطح ریوژن‌های تمیز می‌باشد. این مطالعات نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و مدت هر یک از آن‌ها در مدت زمان کمتری انجام شود. این امر نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود.

ب) اثبات مطالعات به طور مداوم انجام شده در پس‌آزمایی و انجام ارزیابی خاصیت مسکن سطح ریوژن‌های تمیز و بزرگ می‌باشد. این آزمایی و ارزیابی نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود، که در بالاترین درجه‌هایی از افزایش سطح ریوژن‌های تمیز می‌باشد. این مطالعات نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و مدت هر یک از آن‌ها در مدت زمان کمتری انجام شود. این امر نشان می‌دهد که تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود و تمرینات ورزشی باعث کاهش سطح ریوژن‌های تمیز می‌شود.
References

[1] Alikhani S, Sheikholeslami-Votani D. Oxidative stress and antioxidant responses to regular resistance training in young and older adult women. Geriatrics & Gerontology International. 2019; 19(5):419-22. [DOI:10.1111/jgi.13636] [PMID]

[2] McLeay Y, Stannard S, Houtham S, Starck C. Dietary thiol in exercise: Oxidative stress defence, exercise performance, and adaptation. Journal of the International Society of Sports Nutrition. 2017; 14(1):12-27. [DOI:10.1186/s12970-017-0168-9] [PMID] [PMCID]

[3] Thirumalai T, Therasa SV, Elumalai EK and David E. Intense and exhaustive exercise induce oxidative stress in skeletal muscle. Asian Pacific Journal of Tropical Disease. 2011; 1(1):63-6. [DOI:10.1016/S2222-1808(11)60016-9]

[4] Belvirani M, Gökbel H, Okudan N, Başaran K. Effects of grape seed extract supplementation on exercise-induced oxidative stress in rats. The British Journal of Nutrition. 2012; 108(2):249-56. [DOI:10.1017/S0007114511005496] [PMID]

[5] Ahmadi-kakavandi M, Azizbeigi K, Qeysari SF. [The effects of progressive resistance training on malondialdehyde concentration and superoxide dismutase enzyme activity in inactive elderly women (Persian)]. Payavard. 2019; 13(2):151-9. http://payavard.tums.ac.ir/article_3501.html

[6] Li S, Tan H, Wang N, Zhang Z, Lao L, Wong. The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences. 2011; 12(11):4394-400. [DOI:10.1002/ijms.2011125942] [PMID] [PMCID]

[7] Kostaropoulosia IA, Nikolaidis MG, Jamurtas AZ, Ikonomou GV, Makrigiannis V, Papadopoulo G, et al. Comparison of the blood redox status between long distance and short distance runners. Physiological Research. 2006; 55(6):81-6. [PMID]

[8] Heyman E, De Geus BA, Mertens I, Meeusen R. Effects of four recovery methods on repeated maximal rock climbing performance. Medicine & Science in Sports & Exercise. 2009; 41(6):1303-10. [DOI:10.1249/MSS.0b013e3181935070] [PMID] [PMCID]

[9] Hilbert JE, Asforzo G, Swensen T. Effect of massage on delayed onset muscle soreness. British Journal of Sports Medicine. 2005; 39(17):72-5. [DOI:10.1136/bjsm.2004.019775] [PMID] [PMCID]

[10] Butttagat V, Eugenipinchong P, Chatchawan U, Khrumwan S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. Journal of Bodywork and Movement Therapies. 2011; 15(1):15-23. [DOI:10.1016/j.jbmt.2009.06.005] [PMID]

[11] Pinar S, Kaya F, Bicer B, Erzeybek MS, Cotuk HB. Different recovery methods and muscle performance after exhausting exercise: Comparison of the effects of electrical muscle stimulation and massage. Biology of Sport. 2012; 29(4):269-75. [DOI:10.5604/20831862.1019664] [PMID] [PMCID]

[12] Weerpang P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Medicine. 2005; 35(3):235-56. [DOI:10.2165/0007256-20053503-00004] [PMID]

[13] Karabulut AB, Kafkas ME, Kafkas AS, Oral Y, Kiran TR. The effect of regular exercise and massage on oxidant and antioxidant parameters. Indian Journal of Physiology and Pharmacology. 2013; 57(4):378-83. [PMID]

[14] Yousefi Saghaz S, Azamian Izai A. [The effect of caressing sports massage on some safety indicators of elite basketball players in wheelchairs after a hard training session (Persian)]. Journal of Exercise Science and Medicine. 2015; 7(2):267-78. [DOI:10.22059/jesm.2015.656565] [PMID]

[15] Emami E, Moshhtaghezgh Z, Hosseini T, Alavi Majd H, AbedSaeidi Zh. [The effect of foot massage on physiological indicators of female patients with CVA admitted in the ICU (Persian)]. Journal of Shahid Sadoughi University of Medical Sciences. 2009; 17(2):76-82. http://www.sirdf.ir/fa/journal/ViewPaper.aspx?id=93425

[16] Saadat F, Hossienzadeh M. [The effect of sports massage on hematological parameters in semi-professional male runners (Persian)]. Report of Health Care Journal. 2019; 5(3):8-13. http://jrh.miiau.ac.ir/article_3501.html

[17] Poorbarzegar M, Minonejad H, Seidi F, Mozafaripour E. [The immediate effect of sports massage on proprioception of knee and ankle joints in collegiate male athletes (Persian)]. Scientific Journal of Kurdistan University of Medical Sciences. 2017; 21(6):72-82. http://sjku.muk.ac.ir/article-1-2825-en.html

[18] Ibeigi S, Abydi Avaz M, Saghiehojoo M, zardast M. [Acute effects of proprioception, massage and dynamic stretching warm up protocols on serum CK and LDH activity levels after one session of Plyometric training in male volleyball players (Persian)]. Koomesh. 2016; 17(2):393-402. http://koomeshjournal.seums.ac.ir/article-1-2762-en.html

[19] Hunter AM, Watt JM, Watt V, Galloway SDR. Effect of lower limb massage on electromyography and force production of the knee extensors. British Journal of Sports Medicine. 2006; 40(2):114-8. [DOI:10.1136/bjsm.2005.019075] [PMID] [PMCID]

[20] Fattahi Bafghi A, Homae H M, Azarbayjani M A. [Effects of high intensity interval training and curcumin supplement on antioxidant enzyme in heart tissue of diabetic rats (Persian)]. Iranian Journal of Diabetes and Obesity. 2016; 8(3):135-41. http://ijdso.ssu.ac.ir/article-1-309-en.html

[21] Bahram ME, Gholifani M, Pourvaghar M J, Arapour B. [Comparing the effect of wet cupping with that of intensive aerobic workout on HDL and LDL levels in young male athletes (Persian)]. Complementary Medicine Journal Arak. 2018; 8(3):2330-40. http://cmja.arakmu.ac.ir/article-1-442-en.html

[22] Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine. 2005; 39(2):289-95. [DOI:10.1016/j.freeradbiomed.2005.03.024] [PMID]

[23] Hernandez-Reif M, Ironson G, Field T, Hurley J, Katz G, Diego M, et al. Breast cancer patients have improved immune and neuroendocrine functions following massage therapy. Journal of Psychosomatic Research. 2004; 57(1):45-52. [DOI:10.1016/S0022-3990(03)00500-2] [PMID]

[24] Ang JY, Lua JL, Mathur A, Thomas R, Asmar BI, Savasan S, Buck S, et al. A randomized placebo-controlled trial of massage therapy on the immune system of preterm infants. Pediatrics. 2012; 130(6):1549-58. [DOI:10.1542/peds.2012-0196] [PMID] [PMCID]

[25] Kim JO. Kim IS. [Effects of aroma self-foot reflexology massage on immune system of preterm infants. Pediatrics. 2012; 130(6):1549-58. [DOI:10.1542/peds.2012-0196] [PMID] [PMCID]

[26] Sheikh-Sarraf B, Azarbayjani M-A, Agha Alinejad H. The effect of sports massage on c-reactive protein and cardiorespiratory fitness in cardiovascular patients after coronary artery bypass graft. Journal of Applied Sports Physiology. 2016; 4(1):9-16. DOI:10.7586/jasp.2016.01.003
[27] Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutrition & Diabetes. 2013; 3(9):e88. [DOI:10.1038/nutd.2013.30] [PMID] [PMCID]

[28] Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. Journal of Athletic Training. 2005; 40(3):174-80. [PMID]

[29] Petibois C, Deleris G. Erythrocytes adaptation to oxidative stress in endurance training. Archives of Medical Research. 2005; 36(5):524-31. [DOI:10.1016/j.arcmed.2005.03.047] [PMID]

[30] Ceci R, Beltran-Valls MR, Duranti G, Dimauro I, Quaranta F, Pittaluga M, et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biology. 2014; 2(1):65-72. [DOI:10.1016/j.redox.2013.12.004] [PMID] [PMCID]

[31] Vezzoli A, Pugliese L, Marzorati M, Serpiello FR, La Torre A, Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One. 2014; 9(1):e87506. [DOI:10.1371/journal.pone.0087506] [PMID] [PMCID]

[32] Billhult A, Lindholm C, Gunnarsson R, Stener-Victorin E. The effect of massage on immune function and stress in women with breast cancer: A randomized controlled trial. Autonomic Neuroscience: Basic & Clinical. 2009; 150(1-2):111-5. [DOI:10.1016/j.autneu.2009.03.010] [PMID]

[33] Dabidi Roshan V, Moslehi-Najafabadi E. The effect of short-term vitamin E supplementation on some indexes of sport performances and lipid per-oxidation in healthy men. World Journal of Sport Sciences. 2009; 2:75-81. [PMID] [PMCID] [DOI]
