Large N Limit in the Quantum Hall Effect

Andrea CAPPELLI*
I.N.F.N.
Largo E. Fermi 2, I-50125 Firenze, Italy

Carlo A. TRUGENBERGER and Guillermo R. ZEMBA
Theory Division, C.E.R.N.**
1211 Geneva 23, Switzerland

ABSTRACT

The Laughlin states for N interacting electrons at the plateaus of the fractional Hall effect are studied in the thermodynamic limit of large N. It is shown that this limit leads to the semiclassical regime for these states, thereby relating their stability to their semiclassical nature. The equivalent problem of two-dimensional plasmas is solved analytically, to leading order for $N \to \infty$, by the saddle-point approximation - a two-dimensional extension of the method used in random matrix models of quantum gravity and gauge theories. To leading order, the Laughlin states describe classical droplets of fluids with uniform density and sharp boundaries, as expected from the Laughlin “plasma analogy”. In this limit, the dynamical W_∞-symmetry of the quantum Hall states expresses the kinematics of the area-preserving deformations of incompressible liquid droplets.

CERN-TH 6810/93

February 1993

* e-mail: cappelli@fi.infn.it, 39331::cappelli.
** e-mails: cat@vxcern.cern.ch and zemba@vxcern.cern.ch.
Introduction

The current theory for the explanation of the plateaus in the fractional quantum Hall effect \[1\] is based on the seminal work of Laughlin \[2\]. The main idea is the existence of incompressible quantum fluids at specific rational values of the electron density. These are very stable, macroscopical quantum states with uniform density \(\rho(x) = \nu eB/hc = \text{const.} \), \(\nu = 1/m, m = 1, 3, 5, \ldots \), which possess an energy gap (here \(B \) is the external magnetic field). Incompressibility accounts for the lack of low-lying conduction modes, which causes the longitudinal conductivity \(\sigma_{xx} \) to vanish, while the overall rigid motion of the uniform droplet of fluid gives the rational values of the Hall conductivity \(\sigma_{xy} = \nu e^2/h \).

In Laughlin’s theory, the incompressible quantum fluid configurations of \(N \) interacting electrons are described by the wave functions

\[
\psi_m(z_1, \ldots, z_N) = C \prod_{i<j=1}^{N} (z_i - z_j)^m e^{-\frac{1}{2\ell^2} \sum_{i=1}^{N} |z_i|^2}, \quad m = 1, 3, 5, \ldots
\]

where \(\ell = \sqrt{2hc/eB} \) is the magnetic length, \(C = \ell^{-N-mN(N-1)/2} \), and \(\{z_i, \bar{z}_j\} \) are the coordinates of the particles in complex notation. The many-body properties of these states are described by expectation values of the form

\[
\langle O \rangle = \frac{1}{Z_m} \int \prod_{i=1}^{N} \frac{d^2z_i}{\pi \ell^2} \ O[z_i] \ |\psi_m|^2,
\]

where

\[
Z_m = \int \prod_{i=1}^{N} \frac{d^2z_i}{\pi \ell^2} \ \exp \left\{ -\sum_{i=1}^{N} \frac{|z_i|^2}{\ell^2} + m \sum_{i<j=1}^{N} \log \frac{|z_i - z_j|^2}{\ell^2} \right\}.
\]

These are interpreted as averages in the reduced statistical problem of a two-dimensional one-component plasma \[3\], characterized by the effective temperature \(T \propto 1/m \). This “plasma analogy” has been an important source of physical insight. For example, the property \(\rho(x) = \text{const.} \) of the electron ground states has been deduced \[2\] from the fact that the plasma is a liquid at high effective temperatures, \(m \ll 70 \) \[4\]. Debye screening, translational invariance of the liquid and numerical results on correlation functions have been used to derive the ground state energy \[3\], and the properties of quasi-particle excitations (like their fractional statistics \[8\] and their energy gaps \[2\]).

A challenging problem is to devise a reliable analytic method for computing the plasma partition function \[3\]. Similar expressions for one-dimensional plasmas are found in the
theory of random matrices [7]. Actually, Laughlin’s plasma (3) has been recently reformulated as a two-dimensional matrix model [8]. Given that matrix models can be solved with the $1/N$-expansion technique [9], we are lead to conclude that the same technique might be successfully applied to Laughlin’s theory. It is the purpose of this letter to set the frame for such a large N expansion in Laughlin’s theory.

We derive the leading term by the saddle-point approximation of the plasma partition function (3). This correctly describes the semiclassical incompressible fluid state of the Laughlin plasma analogy. Our main physical point is to show explicitly that, for the Laughlin states, the thermodynamic limit $N \to \infty$ implies the semiclassical limit $\hbar \to 0$, and vice versa. While this equivalence between limits is well-known in gauge theories and matrix models, it acquires a different physical status in our problem, because N is a not a tunable parameter but, rather, it is naturally forced to take large values. Therefore, the stability of the Laughlin fluid follows from its prominent semiclassical nature*.

In the second part of this letter, we discuss the W_∞-symmetry underlying both Laughlin’s incompressible fluids and the $c = 1$ matrix models. This symmetry has been explicitly shown to account for the incompressibility of the $\nu = 1$ Hall ground state [11] (similar arguments apply also to the $\nu = 1/m$ Laughlin states [11]). Here we show that, in the large N limit, the W_∞ transformations reduce to the classical deformations of liquid droplets which preserve the area. These deformations, called area-preserving diffeomorphisms, satisfy the w_∞-algebra **. This classical droplet picture has been already developed for the $c = 1$ matrix models of string theory in Refs. [14] [15], where the relation to the Landau level problem has been also recognized. By identifying the $\hbar \to 0$ and the $N \to \infty$ limits, we show that this picture nicely fits into Laughlin’s plasma analogy.

Saddle-point approximation

Let us start by recalling some known facts about the plasma partition function Z_m in eq.(3). For $m = 1$, it can be computed exactly by using the orthogonality of the first Landau level wave functions,

$$
\varphi_k(z, \bar{z}) = \frac{1}{\ell \sqrt{\pi k!}} \left(\frac{z}{\ell} \right)^k e^{-|z|^2/2\ell^2},
$$

(4)

* A similar conclusion was reached in [10] by a functional approach.

** See also [13] for a related discussion of classical incompressible fluids.
where k is the angular momentum eigenvalue. The result is

$$
\log Z_1 = \log \left(N! \prod_{n=0}^{N-1} n! \right) \\
= \frac{N^2}{2} \left(\log N - \frac{3}{2} \right) + \log N! + \frac{N}{2} \log 2\pi - \frac{1}{12} \log N + O(1).
$$

We are interested in the observable one-particle density,

$$
\rho_1(x) \equiv \langle \Omega_1 | \Psi^\dagger(x) \Psi(x) | \Omega_1 \rangle,
$$

where $|\Omega_1\rangle$ is the $\nu = 1$ ground state and Ψ the field operator in fermionic Fock space,

$$
\Psi(z, \bar{z}) = \sum_{k=0}^\infty F_k \varphi_k(z, \bar{z}), \quad \{F_k, F_l^\dagger\} = \delta_{k,l}.
$$

The density is easily computed:

$$
\rho_1(z, \bar{z}) = \frac{1}{\ell^2 \pi} e^{-r^2/\ell^2} \sum_{k=0}^{N-1} \frac{1}{k!} \left(\frac{r}{\ell} \right)^{2k}, \quad r \equiv |z|,
$$

and is plotted in Fig. 1 for $N = 50$. It is constant for $r \ll \ell \sqrt{N}$, and drops rapidly to zero around $r \simeq \ell \sqrt{N}$. This is the density profile of a quantum droplet of incompressible fluid. The fluid character is reflected by the uniform value in the interior, and incompressibility follows from the gap for density fluctuations (the cyclotron energy). Quantum behaviour is apparent from the smooth boundary, where the occupation probability is neither zero nor one. In contrast, the density of a classical droplet of liquid has a sharp boundary.

Actually, the large N limit of the quantum density (3) is a classical density. Let us introduce the rescaled coordinate

$$
w = \frac{z}{\sqrt{N}},
$$

and the rescaled density $\rho_1(w) \equiv \rho_1(|z| = \sqrt{N}|w|),$ satisfying $\int d^2w \rho_1(w) = 1$. The rescaled density possesses a finite large N limit,

$$
\lim_{N \to \infty} \rho_1 \left(|z| = \sqrt{N}|w| \right) = \frac{1}{\pi \ell^2} \Theta \left(1 - \frac{|w|^2}{\ell^2} \right),
$$

where Θ is the step-function. The sharpness of the boundary is a first indication of the classical nature of the $N \to \infty$ limit. In eq. (11), ℓ^2 has to be understood as the classical parameter setting the scale for the electron density through

$$
\frac{N}{A} = \nu \frac{B}{\Phi_0} = \nu \frac{B}{(hc/e)} = \nu \frac{1}{\pi \ell^2},
$$
for uniform filling ν and given area A of the sample.

Equation (11) implies that the naive semiclassical limit $\hbar \to 0$ with all the other parameters fixed cannot be taken in our problem. For a given external magnetic field B and type of fluid characterized by ν, the limit $\hbar \to 0$ enforces $N \to \infty$ if the system is to have a finite macroscopical area A. This is another general argument for the advertised equivalence of the $N \to \infty$ and $\hbar \to 0$ limits.

No analytic expression is known for the densities ρ_m, $m = 3, 5, \ldots$, corresponding to the Laughlin states (1). Numerical studies [16] [17] for large number of particles (up to $N = 200$), show a constant density $\rho_m = 1/m\pi\ell^2$ for $r \ll \ell\sqrt{mN}$, followed by an upward bump near the boundary region, where ρ_m drops rapidly to zero. The fact that this bump does not seem to decrease rapidly when the particle number N is increased up to $N = 200$ has led the authors of [17] to conclude that Laughlin’s wave function does not describe a uniform quantum fluid. Actually, we are now going to show that this is not the case. Indeed, the limiting large N form of the densities ρ_m will be shown analytically to be:

$$
\lim_{N \to \infty} \rho_m \left(|z| = \sqrt{N} |w| \right) = \frac{1}{m\pi\ell^2} \Theta \left(m - \frac{|w|^2}{\ell^2} \right). \quad (12)
$$

These describe again classical droplets of incompressible fluid; therefore, the bump seen in ref.[17] has to disappear for $N \to \infty$.

This result can be obtained by extending the saddle-point technique of Brezin, Itzykson, Parisi and Zuber [9] to Z_m in eq.(3)*. We first rewrite:

$$
Z_m = \int \prod_{i=1}^{N} \frac{d^2z_i}{\pi\ell^2} \exp \left(-NH_m[w] \right),
$$

$$
H_m[w] = \sum_{i=1}^{N} \frac{|w_i|^2}{\ell^2} - m \frac{N}{N} \sum_{i<j=1}^{N} \log \left| \frac{w_i - w_j}{\ell^2} \right|^2. \quad (13)
$$

For large N, the particles are driven into a saddle point configuration $\{w_i = w_i^0\}$, determined by the equation

$$
\bar{w}_i = \frac{m}{N} \ell^2 \sum_{j,j \neq i} \frac{1}{w_i - w_j}. \quad (14)
$$

By considering a lattice decomposition of the plane, we can replace the sum over particles with the sum over cells times the characteristic function for cell occupation. For $N \to \infty$,

* See also [18] for a similar approach.
the latter becomes a continuous distribution for the rescaled variable \(w \), which equals the electron density \(\rho_m(w) \) to leading order. Therefore, we perform the replacement
\[
\sum_i \to \int d^2 z \rho_m(z) = N \int d^2 w \rho_m(w) .
\] (15)
The saddle-point equation (14) becomes the integral equation**
\[
\bar{w} = m \ell^2 \int d^2 w' \frac{\rho_m(w')}{w - w'} ,
\] (16)
whose solutions are subjected to the normalization
\[
\int d^2 w \rho_m(w) = 1 .
\] (17)

The double integration makes the integral equation (16) more involved than the corresponding one for one-dimensional matrix models [9] - no general solution is known to us. However, it is easy to check that the rotational invariant density (12) is a solution***. Furthermore, the following argument shows that this solution is stable, i.e., it is a local minimum of \(H_m \) in eq.(13). By scaling the variable \(w = \sqrt{mq} \), one obtains the identity
\[
Z_m = \exp \left(\frac{N(N - 1)}{2} m \log m \right) (Nm)^N \int \prod_i \frac{d^2 q_i}{\pi \ell^2} e^{-mNH_1[q]} ,
\] (18)
which can be approximated semiclassically to second order, yielding
\[
Z_m \sim e^{-NH_m[w^0]} N^N \int \prod_i \frac{d^2 \delta w_i}{\pi \ell^2} \exp \left(-\frac{N}{2} \sum_{i,j} \delta v_i \frac{\partial^2 H_1[w^0]}{\partial v_i \partial v_j} \delta v_j \right) ,
\] (19)
where \(v_i = (w_i, \bar{w}_i) \). This equation shows that quadratic fluctuations are independent of \(m \). Moreover, for \(m = 1 \) the saddle-point solution is clearly quadratically stable, since it agrees with the exact solution (8)(10). Therefore, the solution (12) is stable for any \(m \).

The value of the Hamiltonian at these saddle points can also be easily computed in the continuum approximation and it reads:
\[
\log Z_m = \frac{N^2 m}{2} \left(\log Nm - \frac{3}{2} \right) + \log N! + \ldots ,
\] (20)

** The point \(w = w' \) excluded in the sum (14) causes no harm in the following integral for continuous \(\rho \) functions.

*** To see this, it is easier to perform first the angular integration using the theorem of residues.
which also matches smoothly the exact value for \(m = 1 \) in eq. (1) to leading order.

The occurrence of other stable solutions of lower “energy” than (20) for \(m = 3, 5, \ldots \),
is not excluded by our analysis, but it is very unlikely for small values of \(m \). Numerical
simulations of the two-dimensional plasma [4] indicate a phase transition to a Wigner crystal
only at a large value \(m_{crit} \sim 70 \). It would be very interesting to find the semiclassical
solution with broken rotational invariance corresponding to the Wigner crystal. Let us
also remark that the one-dimensional plasma of matrix models has only one phase [7].

In conclusion, for \(N \to \infty \) we confirm that the Laughlin wave functions (1) describe
droplets of uniform fluid with densities \(\rho_m = 1/m\pi \ell^2 \) and sharp boundaries. The interesting
structure at the boundary of the droplets found by the numerical calculations [17]
might be related to edge excitations [19], which are subleading \(O(1/N) \) boundary effects [20].

Observables to leading order

Some physical information on quasi-particle excitations can be obtained by evaluating observables (2) within the saddle-point approximation. More precisely, all Laughlin’s
results based on the plasma analogy can be rephrased in this approximation. Following
the review article [6] we can, e.g., verify the normalization of the wave function for one
quasi-hole at the point \(z \),

\[
\psi_{QH}(z; z_1, \ldots, z_N) = e^{-|z|^2/2m\ell^2} \prod_{i=1}^{N} (z - z_i) \psi_m(z_1, \ldots, z_N) \equiv S[z, z_i] \psi_m(z_1, \ldots, z_N),
\]

(21)

with \(\psi_m \) the Laughlin wave function (1). Let us compute \(\|\psi_{QH}\|^2 \), i.e. eq.(2) for the operator \(O = S\dagger S \). Repeating the previous steps for the modified plasma with one added
charge, we find that the saddle-point equation (16) is not modified to leading order, and
that the saddle-point value of this observable is indeed unity. Actually, the saddle-point
solution (12) is not modified by the inclusion of any finite number of charges.

The wave function of two quasi-holes [3] can be treated similarly. One finds that the
correlation among them, showing their fractional statistics, is a subleading effect. This
agrees with the result of the theory of edge excitations [19], in which it has been shown
that quasi-particle correlations are of order \(O(1/N) \) [20]. As expected, quasi-particles,
which are quantum effects, are not seen to leading large \(N \) order.
Droplet picture and w_∞ symmetry

So far, we have been considering the large N limit of the density from a computational point of view. Now, we would like to discuss the geometrical interpretation of this limit.

Before doing that, let us recall the W_∞ dynamical quantum symmetry of the $\nu = 1$ ground state recently found in ref. [11]. There, we constructed operators $L_{n,m}$, living in the first Landau level,

$$L_{n,m} = \sum_{i=1}^{N} (b_i^\dagger)^{n+1} b_i^{m+1}, \quad n, m \geq -1,$$

(22)

where b_i, b_i^\dagger are the harmonic oscillators for angular momentum J excitations,

$$b_i = \frac{z_i}{2\ell} + \ell \partial_i, \quad b_i^\dagger = \frac{z_i^*}{2\ell} - \ell \partial_i, \quad [b_i, b_j^\dagger] = \delta_{ij}, \quad J = \sum_i b_i^\dagger b_i .$$

(23)

The $L_{n,m}$ satisfy the W_∞ algebra *

$$[L_{n,m}, L_{k,l}] = \left(\sum_{s=0}^{\text{Min}(m,k)} \frac{(m+1)!(k+1)!}{(m-s)!(k-s)!(s+1)!} L_{n+k-s, m+l-s} \right) - (m \leftrightarrow l, n \leftrightarrow k)$$

$$=((m+1)(k+1)-(n+1)(l+1))L_{n+k,m+l} + (\ldots) L_{n+k-1,m+l-1} + \ldots$$

(24)

In particular, the angular momentum is $J = L_{00}$. The subalgebra

$$[L_{00}, L_{n,m}] = (n-m)L_{n,m} ,$$

(25)

shows that the $L_{n,m}$ are raising ($n > m$) and lowering ($n < m$) operators for angular momentum.

The quantum symmetry of the $\nu = 1$ ground state is encoded in the invariance of the ground state under an infinite (for $N \to \infty$) set of these transformations, i.e., the highest-weight conditions [11]

$$L_{n,m} \psi_1(z_1, \ldots, z_N) = 0, \quad n < m .$$

(26)

These are interpreted as the algebraic conditions of incompressibility, since eq. (26) means that all transitions lowering the angular momentum of the ground state, i.e., compressions, are impossible.

* More precisely, this is a $W_{1+\infty}$ algebra.
Next, we discuss the corresponding classical picture. As shown before, when $N \to \infty$, the quantum density of the Laughlin states at $\nu = 1/m$ reduces to the profile of a classical droplet of liquid with uniform density $\rho_m = 1/m\pi\ell^2$. Consider now a deformation of this droplet. The density cannot change locally, due to incompressibility. Moreover, its space integral gives the particle number N, and is, therefore, constant. Thus, the area occupied by the droplet stays constant, i.e., deformations can only produce droplets of the same area and different shapes. Therefore, the different configurations of the incompressible fluid are related by area-preserving diffeomorphisms, whose generators satisfy the w_∞ algebra \cite{12}. In the following, we give an explicit derivation of the action of W_∞ on the observable density and its classical limit w_∞, thereby confirming this picture.

To this end we use a different basis for the generators of W_∞. By using this new basis, we will stress the analogy to the parallel discussion of the $\hbar \to 0$ limit of the $c=1$ matrix model in (1+1) dimensions, as formulated in \cite{14} \cite{15}, which possesses the same W_∞ symmetry. The basic reason for this analogy is that the Hilbert spaces of the two systems are isomorphic. In the matrix model, one considers the Hamiltonian $H = \frac{1}{2} (p^2 - x^2)$ yielding a real representation of the harmonic Fock space. In the first Landau level, we have the holomorphic representation (23), where angular momentum plays the role of the Hamiltonian. As is well known, in Bargmann space the two coordinates (z, \bar{z}) become conjugate variables of a (1 + 1)-dimensional phase space \cite{21}.

In analogy with \cite{14}, we consider the Wigner phase-space distribution:

$$W(k, \bar{k}) \equiv \int d^2 z \, \Psi^\dagger(z) e^{i \ell (\bar{k} b^\dagger + k b)} \Psi(z) = e^{i^2 k \bar{k}/8} \int d^2 z \, \Psi^\dagger(z) e^{i^{\frac{1}{2}} (\bar{k} z + k \bar{z})} \Psi(z).$$

(27)

This is the generating function for the operators* $L_{n,m}$ in eq.(22),

$$W(k, \bar{k}) = \sum_{n,m=0}^{\infty} \frac{1}{n!m!} \left(\frac{i \ell \bar{k}}{2} \right)^n \left(\frac{i \ell k}{2} \right)^m : L_{n-1,m-1} : ,$$

(28)

where $: :$ denotes Weyl normal ordering \cite{14}, e.g., $(b^\dagger)^2 b : \equiv \frac{1}{3} \left((b^\dagger)^2 b + b^\dagger b b^\dagger + b (b^\dagger)^2 \right)$. This shows that the generating functions $W(k, \bar{k})$ form a different basis for the W_∞ generators. In terms of these new generators, the W_∞ algebra \cite{24} acquires the compact form

$$[W(k, \bar{k}), W(p, \bar{p})] = 2 \sinh \left(\frac{\ell^2}{8} (p \bar{k} - \bar{p} k) \right) W(p + k, \bar{p} + \bar{k}).$$

(29)

* In equation (27), Ψ is the field operator \cite{7}; the $L_{n,m}$ appearing hereafter are, therefore, expressed in the second quantized formulation \cite{11}.
This result is analogous to the $(1 + 1)$-dimensional result of [14], due to the previously
noticed mapping between Hilbert spaces.

The Fourier transform of $W(k, \bar{k})$ is the one-particle density \textit{operator} of eq.(3),

$$
\rho(z, \bar{z}) = \int \frac{d^2k}{(2\pi)^2} e^{-\frac{i}{2}(k\bar{z} + \bar{k}z)} W(k, \bar{k}) \; e^{-\ell^2k\bar{k}/8} = \Psi^\dagger(z)\Psi(z),
$$

(30)
apart from a normal-ordering factor. We recall that, originally [22], Wigner distributions
were introduced as the quantum analogs of phase-space distributions of classical statistical
mechanics. This is because quantum expectation values can be written as classical averages
in phase space with these distributions. In our Landau level problem, the phase space
is given by (z, \bar{z}); thus a phase space distribution is actually a two-dimension space
distribution, as in (30).

The action of a W_∞ transformation generated by $W(k, \bar{k})$, with infinitesimal parameter
$\epsilon(k, \bar{k})$, on the ground state density (3) is given by

$$
\delta_\epsilon \rho_1(z, \bar{z}) = \int d^2k \; \epsilon(k, \bar{k}) \; \delta_{k,\bar{k}} \rho_1(z, \bar{z}),
$$

(31)
where

$$
\delta_{k,\bar{k}} \rho_1(z, \bar{z}) \equiv i\langle \Omega_1 | [\rho_1, W(k, \bar{k})] | \Omega_1 \rangle
= ie \frac{\ell^2k\bar{k}}{8} \left(e^{\frac{i}{2} \ell^2k\frac{\partial}{\partial z}} - e^{\frac{i}{2} \ell^2\bar{k}\frac{\partial}{\partial \bar{z}}} \right) e^{\frac{i}{2}(k\bar{z} + \bar{k}z)} \rho_1(z, \bar{z}).
$$

(32)
This expression becomes more transparent in the large N limit, which is achieved, as before,
by introducing the rescaled coordinate $w = z/\sqrt{N}$, and correspondingly, the rescaled
momentum $\kappa = k\sqrt{N}$. After rescaling, eq. (32) reads,

$$
\delta_{\kappa,\bar{\kappa}} \rho_1(w, \bar{w}) = i\langle \Omega_1 | \left[\rho_1, W \left(\frac{\kappa}{\sqrt{N}}, \frac{\bar{\kappa}}{\sqrt{N}} \right) \right] | \Omega_1 \rangle
= ie \frac{\ell^2\kappa\bar{\kappa}}{N8} \left(e^{\frac{i\ell^2}{2N}\kappa\frac{\partial}{\partial w}} - e^{\frac{i\ell^2}{2N}\bar{\kappa}\frac{\partial}{\partial \bar{w}}} \right) e^{\frac{i}{2}(\kappa\bar{w} + \bar{\kappa}w)} \rho_1(w, \bar{w}),
$$

(33)
where we recall that $\ell^2/N = 2\hbar c/eBN$. In the large N limit, eq. (33) reduces to

$$
\delta^{(cl)}_{\kappa,\bar{\kappa}} \rho_1(w, \bar{w}) = \begin{cases} \rho_1(w, \bar{w}), & -e^{\frac{i}{2}(\kappa\bar{w} + \bar{\kappa}w)} \end{cases}_{PB},
$$

(34)
where \(\delta^{(cl)}_{\kappa,\bar{\kappa}} \equiv \frac{N}{\hbar} \delta_{\kappa,\bar{\kappa}} \), and \(\{ f, g \}_P \equiv -\frac{i}{B} ((\partial f/\partial w)(\partial g/\partial \bar{w}) - (\partial f/\partial \bar{w})(\partial g/\partial w)) \), with \(B \equiv eB/2c \), denotes the correct Poisson bracket with respect to the classical variables \(w \) and \(\bar{w} \). This equation shows that, to leading large \(N \) order, \(W^{(cl)}(\kappa/\sqrt{N}, \bar{\kappa}/\sqrt{N}) \) is the generating function of canonical, and therefore area-preserving, transformations in the two-dimensional phase space \((w, \bar{w})\). Eq. (34) makes manifest the classical nature of a \(W_{\infty} \)-transformation acting on the density, in the large \(N \) limit. As we now show, in this limit the quantum \(W_{\infty} \) algebra reduces to the classical algebra of area-preserving diffeomorphisms \(w_{\infty} \). Our result matches the \(\hbar \to 0 \) limit of Refs. [14][15], thereby further confirming that the \(N \to \infty \) is a semiclassical limit.

We now verify the \(w_{\infty} \) algebra for the classical analogs of the operators \(W(k, \bar{k}) \) and \(L_{n,m} \) acting by Poisson brackets on functions of the holomorphic phase space. To this end, we perform the coordinate and momentum rescalings as before, and we use the correspondence between operators and classical functions, \(N W^{(cl)}(\kappa/\sqrt{N}, \bar{\kappa}/\sqrt{N}) \to W^{(cl)}(\kappa, \bar{\kappa}) \) and \([\ , \] \to i\hbar\{\ , \\}_P \). The classical limit of eq.(29) reads

\[
\{ W^{(cl)}(\kappa, \bar{\kappa}), W^{(cl)}(\lambda, \bar{\lambda}) \}_P = -\frac{i}{4B} \left(\lambda \kappa - \bar{\lambda} \bar{\kappa} \right) W^{(cl)}(\kappa + \lambda, \bar{\kappa} + \bar{\lambda}) ,
\]

which verifies the identification \(W^{(cl)}(\kappa, \bar{\kappa}) = -e^{i(\kappa \bar{w} + \bar{\kappa} w)} \) from eq. (34). This, in turn, identifies the classical limit of the operators \(L_{n,m} \) through eq.(28),

\[
\ell^2 \left(\frac{\ell}{\sqrt{N}} \right)^{n+m} L_{n,m} \to L_{n,m}^{(cl)} = -w^{n+1} \bar{w}^{m+1} .
\]

Their classical algebra is

\[
\{ L_{n,m}^{(cl)}, L_{k,l}^{(cl)} \}_P = -\frac{i}{B} ((m+1)(k+1) - (n+1)(l+1)) L_{n+k,m+l}^{(cl)} ,
\]

which agrees with the classical limit of eq.(24). Equations (33) and (37) are equivalent forms for the \(w_{\infty} \) algebra of area-preserving diffeomorphisms. Note that the classical functions \(L_{n,m}^{(cl)} \) and \(W^{(cl)} \) and their algebras (35) and (37) can be also derived directly from the canonical treatment of the classical theory describing the dynamics of the first Landau level, the “topological quantum mechanics” of refs. [23] (see also [11]).

Having identified the classical \(L_{n,m}^{(cl)} \), we can evaluate their action on the classical density (10) by using eq. (34):

\[
\delta_{n,m}^{(cl)} \rho_1(w, \bar{w}) = \left\{ \rho_1(w, \bar{w}) , w^{n+1} \bar{w}^{m+1} \right\}_P = i(n-m) \frac{\ell^{n+m-2}}{\pi B} e^{i(n-m)\theta} \delta \left(1 - \frac{|w|^2}{\ell^2} \right) ,
\]

which implies that

\[
\delta_{n,m}^{(cl)} \rho_1(w, \bar{w}) = i(n-m) \frac{\ell^{n+m-2}}{\pi B} e^{i(n-m)\theta} \delta \left(1 - \frac{|w|^2}{\ell^2} \right) ,
\]

where \(\delta_{n,m}^{(cl)} \) is the classical delta function.

10
where θ is the angular variable on the circle delimiting the classical droplet. These variations correspond to \textit{density waves localized on the one-dimensional sharp boundary of the classical droplet}. The quantization of these edge waves leads to a $(1+1)$-dimensional $c=1$ conformal field theory \cite{19,20}.

So far, our explicit derivation of the classical w_{∞} algebra referred only to the $\nu=1$ ground state; however, it can be easily extended to the Laughlin states at $\nu=1/m$. Indeed, their classical densities ρ_m are related to ρ_1 by the simple scaling $\rho_m(w) = (1/m)\rho_1(w/\sqrt{m})$. Therefore, we can apply the same scaling in the classical phase space to obtain the corresponding w_{∞} action (34)-(37) for $\nu=1/m$. We can also argue that the dynamical quantum symmetry of the Laughlin states must be the quantum extension W_{∞}. Actually, the analogs of the symmetry conditions (26) were found in Ref.\cite{11}. However, in going from w_{∞} to W_{∞}, one needs the explicit form of the higher order corrections $O(1/N^k), k > 0$ in the algebra W_{∞}, as in eq.(24). These are not unique and their correct form is not presently known to us for $\nu=1/m$.

\textbf{Acknowledgments}

G. R. Z. thanks the partial support by the World Laboratory and the hospitality of the Physics Department of the University of Firenze. A.C. thanks the hospitality of the Theory Group at CERN where this work done.
References

[1] For a review see, e.g., R. E. Prange and S. M. Girvin eds., “The Quantum Hall effect”, Springer, New York, (1990).

[2] R. B. Laughlin, “Elementary Theory: the Incompressible Quantum Fluid”, in [1].

[3] M. Baus and J.-P. Hansen, Phys. Rep. 59 (1980) 2.

[4] J. M. Caillol, D. Levesque, J. J. Weis and J. P. Hansen, Jour. Stat. Phys. 28 (1982) 325.

[5] R. B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.

[6] For a review see, e.g., R. B. Laughlin, “Fractional Statistics in the Quantum Hall effect”, in F. Wilczek ed., “Fractional Statistics and Anyon Superconductivity”, World Scientific, Singapore, (1990).

[7] For a review see, e.g., L. M. Metha, “Random Matrices”, Academic Press, New York, (1967).

[8] D. J. Callaway, Phys. Rev. B43 (1991) 8641.

[9] E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Commun. Math. Phys. 59 (1978) 35.

[10] A. Lopez and E. Fradkin, Phys. Rev. Lett. 69 (1992) 2126.

[11] A. Cappelli, C. A. Trugenberger and G. R. Zemba, “Infinite Symmetry in the Quantum Hall Effect”, preprint CERN-TH 6516/92, to appear in Nucl. Phys. B.

[12] I. Bakas, Phys. Lett. B 228 (1989) 57; C. N. Pope, X. Shen and L. J. Romans, Nucl. Phys. B 339 (1990) 191; for a review see, e.g.: X. Shen, “W-Infinity and String Theory”, preprint CERN-TH 6404/92.

[13] G. A. Goldin, R. Menikoff and D. H. Sharp, Phys. Rev. Lett. 58 (1987) 2162, ibid. 67 (1991) 3499.

[14] A. Dhar, G. Mandal and S. R. Wadia, “Classical Fermi fluid and geometrical action for c=1”, IASSNS-HEP-91/89 preprint.

[15] S. Iso, D. Karabali and B. Sakita, Nucl. Phys. B 388 (1992) 700, Phys. Lett. B 296 (1992) 143.

[16] R. Morf and B. I. Halperin, Phys. Rev. B33 (1986) 2221.

[17] N. Datta and R. Ferrari, Max-Planck Institute preprint MPI-Ph/92-16, March 1992.

[18] I. Kogan, A. M. Perelomov and G. W. Semenoff, Phys. Rev. B45 (1992) 12084.

[19] B. I. Halperin, Phys. Rev. B25 (1982) 2185; X. G. Wen, “Gapless Boundary Excitations in the Quantum Hall States and the Chiral Spin States”, preprint NSF-ITP-89-157, Phys. Rev. Lett. 64 (1990) 2206; M. Stone, Ann. Phys. (NY) 207 (1991) 38; J. Fröhlich and T. Kerler, Nucl. Phys B 354 (1991) 369; for a review see: X. G. Wen, Int. Jour. Mod. Phys. B6 (1992) 1711.
[20] A. Cappelli, G. V. Dunne, C. A. Trugenberger and G. R. Zemba, “Conformal Symmetry and Universal Properties of Quantum Hall States”, preprint CERN-TH 6702/92, *Nucl. Phys. B*, in press.

[21] For a review, see: C. Itzykson, “Interacting electrons in a Magnetic Field”, in “Quantum Field Theory and Quantum Statistics, Essays in Honor of 60th Birthday of E. S. Fradkin”, A. Hilger, Bristol, (1986).

[22] E. P. Wigner, *Phys. Rev.* 40 (1932) 749.

[23] G. V. Dunne, R. Jackiw and C. A. Trugenberger, *Phys. Rev. D* 41 (1990) 661; G. V. Dunne and R. Jackiw, MIT preprint CTP 2123 (June 1992), to appear in Umezawa volume.
Figure caption

Fig. 1
The density profile in units of $1/\pi \ell^2$ for the first Landau level filled up to $L = 50$ as a function of r/ℓ.