CONTINUED FRACTIONS AND THE SECOND KEPLER LAW

OLEG KARPENKOV

Abstract. In this paper we introduce a link between geometry of ordinary continued fractions and trajectories of points that moves according to the second Kepler law. We expand geometric interpretation of ordinary continued fractions to the case of continued fractions with arbitrary elements.

Contents

Introduction 1
1. Geometry of ordinary continued fractions 2
2. Continued fractions with arbitrary coefficients 3
2.1. Construction of broken lines from the elements of continued fractions 4
2.2. Inverse problem 5
2.3. On geometric meaning of corresponding continued fractions 6
3. Differentiable curves 8
3.1. Definition of areal and angular densities 8
3.2. Example of curves and their continued fractions 10
3.3. Open problems 11
References 12

Introduction

In classical geometry of numbers the elements of an ordinary continued fraction for a real number $\alpha \geq 1$ are obtained from a sail (i.e. a broken line bounding the convex hull of all points with integer coefficients in certain cone). In present paper we find broken lines generalizing sails to the case of continued fractions with arbitrary elements. This in its turn leads to the definition of “infinitesimal” continued fractions, whose sails would be differentiable curves. Such “infinitesimal” continued fractions are defined by two density functions: areal and angular densities.

The areal density function has a remarkable physical meaning. Consider an observer at the origin and let the body move along the curve with the velocity inverse to the areal
This paper is organized as follows. In the first section we study the classical case of ordinary continued fractions. In Section 2 we expand the notion of the sail to the case of continued fraction with arbitrary elements. Further we show how to write continued fractions starting with broken lines. We generalize the proposed construction of sails to the case of curves, give an analog of continued fractions, and show several examples in Section 3.

For a nice reference to general theory of continued fractions we suggest the book [7]. Several works are devoted to geometry of continued fractions (e.g. [3], [9]) and to their generalizations to multidimensional case ([2], [8], [4], etc). Notice that the case of broken lines with integer edges discussed in [5] is a particular subcase of geometric definitions introduced in Section 2.

The author is grateful to V. I. Arnold for constant attention to this work, and to Technische Universität Graz for hospitality and excellent working conditions.

1. Geometry of ordinary continued fractions

In this section we briefly introduce geometric aspects of ordinary continued fractions.

We start with general notions of continued fractions. For arbitrary sequence of real numbers \((a_0, a_1, \ldots)\) the continued fraction is an expression

\[
a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}
\]
denoted \([a_0, a_1, a_2, \ldots]\). In case of a finite sequence we get some real number (or sometimes \(\infty\)). In case of infinite continued fraction the expression means a limit of a sequence \(([a_0, \ldots, a_n])\) while \(n\) tends to infinity. Notice that such limit does not exist for all sequences. A continued fraction is called ordinary if \(a_0\) is integer and the rest elements are positive integers. A finite continued fraction is odd (even) if it contains odd (even) elements.

Proposition 1.1. A rational number has a unique odd and a unique even continued fractions.

An irrational number has a unique infinite continued fraction. \(\square\)

We continue with several definitions of integer geometry. A point is said to be integer if all its coefficients are integers. The integer length of a segment \(AB\) is the number of integer points inside the segment plus one, denote it by \(l(AB)\). The integer sine of the angle \(ABC\) is the index of the integer sublattice generated by the integer vectors of the segments \(BA\) and \(BC\) in the whole lattice, we denote it by \(l\sin(ABC)\). For more information on lattice (in particularly integer) trigonometry we refer to [5] and to [6].

Let \(C\) be a cone with vertex at the origin. Take the convex hull of all integer points except the origin in \(C\). The boundary of the described convex hull is a broken line together
with one or two rays in case if there are some integer points on the edges of the cone. The broken line in the boundary of the convex hull is called the sail of C. (In some literature the sail is the whole boundary of the convex hull, for us it is more convenient to exclude the rays from the definition of a sail.)

Consider a positive real number α. Denote by C_α the cone with vertex at the origin and edges $\{(t,0)|t \geq 0\}$ and $\{(t,\alpha t)|t \geq 0\}$. The sail for C_α is a finite broken line if α is rational and one-side infinite broken line if α is irrational.

So let the sail be a broken line $A_0A_1\ldots A_n (A_0A_1A_2\ldots)$. Denote $a_{2k-1} = \ell(A_kA_{k+1}),$
$a_{2k} = \ell\sin(A_{k-1}A_kA_{k+1})$
for all admissible k. The sequence $(a_0, a_1,\ldots, a_{2n})$ (or (a_0, a_1, a_2,\ldots)) is called the lattice length-sine sequence for the cone C_α (or LLS-sequence for short).

The connection of geometric and analytic properties of LLS-sequence is introduced by the following theorem.

Theorem 1.2. Let $\alpha \geq 1$ and $(a_0, a_1,\ldots, a_{2n})$ (or (a_0, a_1, a_2,\ldots)) be the LLS-sequence for C_α. Then $\alpha = [a_0, a_1,\ldots, a_{2n}]$ (or respectively $\alpha = [a_0, a_1,\ldots]$).

Proof. This theorem is a reformulation of a Proposition 1.7.a from [5] for finite continued fractions and Theorem 2.7.a from [6] for the infinite continued fractions. Finite case is also a particular case of Corollary 2.6. So we skip the proof here. □

2. **Continued fractions with arbitrary coefficients**

In this section we generalize geometry of ordinary continued fractions to the case of continued fractions with arbitrary elements. We show a relation between odd or infinite continued fractions and broken lines in the plane having a selected point (say, the origin).
We conclude this section with a few words about conditions for a broken line to be closed in terms of elements of the corresponding continued fraction.

Further we use the following notation. For a couple of vectors v and w denote by $|v \times w|$ the oriented volume of the parallelogram spanned by the vectors v and w.

2.1. **Construction of broken lines from the elements of continued fractions.** In this subsection we give a natural geometric interpretation of an odd or infinite continued fraction with arbitrary elements. It would be a broken line defined by the positions of the first vertex and the selected point O, direction of the first edge, and the continued fraction.

So consider a continued fraction $[a_0, \ldots, a_{2n}]$. We are also given by the vertex A_0, selected point O, and the direction v of the first edge. We construct all the rest vertices A_k inductively in k.

Base of induction. For the second vertex we take

$$A_1 = A_0 + \lambda v,$$

where λ is defined from the equation $|OA_0 \times OA_1| = a_1$.

Step of induction. Suppose now we have the points A_0, \ldots, A_k, for $k \geq 1$, Let us get A_{k+1}. Consider a point

$$P = A_k + \frac{a_{2k-1} + 1}{a_{2k-1}} A_{k-1} A_k.$$

In other words P is a point in the line $A_{k-1}A_k$ such that the area $OA_k P$ equals 1. Let

$$Q = P + a_{2k} OA_k.$$

Finally the point A_{k+1} is defined as follows (see on Figure 2)

$$A_{k+1} = A_k + a_{2k+1} A_k Q.$$

Let us now explain a geometric meaning of the elements of continued fractions in terms of characteristics of the corresponding broken line.

Proposition 2.1. The following holds

$$a_{2k+1} = |OA_k \times OA_{k+1}|,$$

$$a_{2k} = \frac{|A_k A_{k-1} \times A_k A_{k+1}|}{a_{2k-1} a_{2k+1}},$$

$k = 0, \ldots, n$.

Figure 2. Construction of A_{k+1}.
Proof. We prove this statement by induction in \(k \).

Base of induction. From the definition of the point \(A_1 \) we get
\[
|OA_0 \times OA_1| = a_1.
\]

Step of induction. Let the statement be true for \(k-1 \), we prove it for \(k \).

First, we verify the formula for \(a_{2k+1} \):
\[
|OA_k \times OA_{k+1}| = a_{2k+1}|OA_k \times OQ| = a_{2k+1}|OA_k \times OP| = \frac{a_{2k+1}}{a_{2k-1}}|OA_{k-1} \times OA_k| = a_{2k+1}.
\]
The last equality holds by induction.

Second, for \(a_{2k} \) we have
\[
|A_k A_{k-1} \times A_k A_{k+1}| = |A_k A_{k-1} \times A_k Q| = |PA_k \times PQ| = a_{2k}|OA_k \times OP| = \frac{a_{2k}}{a_{2k-1}}|OA_{k-1} \times OA_k| = a_{2k}.
\]
The step of induction is completed. \(\square \)

Example 2.2. Let us construct a broken line having the first vector \(A_0 = (1, 0) \), the direction \(v = (1, 0) \), and the continued fraction \([a, b, c]\). Then we have
\[
A_1 = (1, a).
\]

Further we find the corresponding points \(P \) and \(Q \):
\[
P = (1, 1 + a), \quad Q = (1 + b, 1 + a + ab).
\]

Finally we get
\[
A_2 = (1 + bc, a + c + abc).
\]

2.2. **Inverse problem.**

Now suppose we have a point \(O \) and a broken line \(A_0 \ldots A_n \) such that for any \(k \) the points \(O, A_k, \) and \(A_{k+1} \) are not in a line. Let us extend the definition of the LLS-sequence for this data.

We use equalities of Proposition 2.1 to define the elements:
\[
a_{2k+1} = |OA_k \times OA_{k+1}|, \quad k = 0, \ldots, n;
\]
\[
a_{2k} = \frac{|A_k A_{k-1} \times A_k A_{k+1}|}{a_{2k-1} a_{2k+1}}, \quad k = 1, \ldots, n.
\]

We call the sequence \((a_0, \ldots, a_{2n})\) the LLS-sequence of the broken line with respect to the point \(O \), and \([a_0, \ldots, a_{2n}]\) — the corresponding continued fraction.

Proposition 2.3. Let \(A_0 \ldots A_n \) and \(B_0 \ldots B_n \) be two broken lines with LLS-sequences \((a_0, \ldots, a_{2n})\) and \((b_0, \ldots, b_{2n})\) respectively. Suppose the first broken line is taken to the second by some operator in \(SL(2, \mathbb{R}) \) with determinant equals \(\lambda \). Then we have:
\[
\begin{cases}
 a_{2k} = \lambda b_{2k}, & k = 1, \ldots, n \\
 a_{2k+1} = \frac{1}{\lambda} b_{2k+1}, & k = 0, \ldots, n
\end{cases}
\]

Proof. The volume of any parallelogram is multiplied by \(\lambda \), then the statement follows directly from formulas of Proposition 2.1. \(\square \)
2.3. On geometric meaning of corresponding continued fractions. For this subsection we fix the point O to be at the origin.

Consider a continued fraction $[a_0, a_1, \ldots, a_k]$ as a rational function in variables a_0, \ldots, a_k. This rational function is a ratio of two polynomials with non-negative integer coefficients, denote them by P_k and Q_k. Actually the polynomials P_k and Q_k are uniquely defined by the condition

$$\frac{P_k(a_0, a_1, \ldots, a_k)}{Q_k(a_0, a_1, \ldots, a_k)} = [a_0, a_1, \ldots, a_k]$$

and the condition that the coefficients of both polynomials are non-negative integer coefficients.

Remark 2.4. Notice that the last condition is equivalent to the condition that the polynomial $P_k(a_0, a_1, \ldots, a_k)$ contains a monomial $a_0 a_1 \cdots a_k$ with unit coefficient.

Theorem 2.5. Let A_0, \ldots, A_n be a broken line such that $A_0 = (1, 0)$, and $A_1 = (1, a_0)$ is collinear to the vector $(0, 1)$. Suppose its LLS-sequence is $(a_0, a_1, \ldots, a_{2n})$. Then

$$A_n = (Q_{2n+1}(a_0, a_1, \ldots, a_{2n}), P_{2n+1}(a_0, a_1, \ldots, a_{2n})).$$

Proof. We prove this statement by induction in n.

Base of induction. If the broken line is a segment $A_0 A_1$ with LLS-sequence (a_0) then $A_1 = (1, a_0)$.

Step of induction. Suppose the statement holds for all broken lines with k vertices, let us prove it for an arbitrary broken line with $k + 1$ vertex.

Consider a broken line $A_0 \ldots A_k$ with LLS-sequence (a_0, \ldots, a_{2k}). Let us apply a linear transformation with unit determinant taking A_1 to $(1, 0)$ and the line $A_2 A_1$ to the line $x = 1$. This transformation is uniquely defined by all these conditions, it is

$$T = \begin{pmatrix} a_0 a_1 + 1 & -a_1 \\ -a_0 & 1 \end{pmatrix}.$$

Denote the resulting broken line by $B_0 B_1 \ldots B_k$. By Proposition 2.3 all the elements of the LLS-sequence for $B_0 B_1 \ldots B_k$ are the same. By the assumption of induction we have

$$B_k = (Q_{2k-1}(a_2, \ldots, a_{2k}), P_{2k-1}(a_2, \ldots, a_{2k})).$$

Denote the coordinates of B_k by q and p respectively. Then we have

$$A_k = T^{-1}(B_k) = (p + a_1 q, a_0 p + (a_0 a_1 + 1) q).$$

The polynomials satisfy

$$\frac{a_0 p + (a_0 a_1 + 1) q}{p + a_1 q} = a_0 + \frac{1}{a_1 + \frac{p}{q}} = \frac{P_{2k+1}(a_0, a_1, \ldots, a_{2k})}{Q_{2k+1}(a_0, a_1, \ldots, a_{2k})}.$$

Notice that the polynomial $a_0 p + (a_0 a_1 + 1) q$ has a unit coefficient in the monomial $a_0 a_1 \cdots a_{2k}$ coming from $a_0 a_1 q$. Therefore (see Remark 2.4), $a_0 p + (a_0 a_1 + 1) q$ coincides with $P_{2k+1}(a_0, a_1, \ldots, a_{2k})$ and $(p + a_1 q)$ coincides with $Q_{2k+1}(a_0, a_1, \ldots, a_{2k})$. So we are done with the step of induction. This concludes the proof of the theorem. \square
In particular we get the following corollary. In the classical case it forms the basis of geometry of ordinary continued fractions.

Corollary 2.6. Let \(A_0 \ldots A_n \) be a broken line such that \(A_0 = (1, 0) \), and \(A_0 = (1, a_0) \). Suppose that the corresponding continued fraction is \(\alpha = [a_0, a_1, \ldots, a_{2n}] \) and \(A_n = (x, y) \). Then
\[
\frac{y}{x} = \alpha.
\]
(If the corresponding continued fraction has an infinite value, then \(x/y = 0 \).)

This corollary implies the following statement.

Corollary 2.7. Let \(A_0 \ldots A_n \) and \(B_0 \ldots B_m \) be two broken lines with \(B_0 = A_0 \), such that the vector of the first edges either have the same direction if \(a_0/b_0 > 0 \) or opposite otherwise. Suppose the corresponding continued fractions coincide:
\[
[a_0, \ldots, a_{2n}] = [b_0, \ldots, b_{2m}].
\]
Then the points \(A_n, B_m, \) and the origin \(O \) are in a line.

Proof. Consider an \(SL(2, \mathbb{R}) \)-operator taking \(A_0 \) to \((1, 0)\) and \(A_1 \) to the line \(x = 1 \). By Proposition 2.3 the continued fractions for both broken lines are not changed. Hence by Corollary 2.5 the points \(A_n, B_m, \) and the origin are in a line. \(\square \)

Remark 2.8. (On closed curves.) How to find that a certain continued fraction defines a closed curve? From Theorem 2.5 we see that a broken line defined by an LLS-sequence \((a_0, a_1, \ldots, a_{2n})\) with \(A_0 = (1, 0) \) and \(A_0A_1 \) being collinear to \((0, 1)\) is closed if and only if
\[
Q_{2n+1}(a_0, a_1, \ldots, a_{2n}) = 1 \quad \text{and} \quad P_{2n+1}(a_0, a_1, \ldots, a_{2n}) = 0.
\]
So, these two polynomial conditions on the elements of the LLS-sequence are necessary and sufficient conditions for the broken line to be closed.

Notice that the condition \(P_{n+1} = 0 \) can be rewritten in the following nice form
\[
[a_0, a_1, \ldots, a_{2n}] = 0.
\]
The condition \(P_{n+1} = 0 \) was introduced in [5] for certain broken-lines with integer vertices.

Example 2.9. Let us study an example of broken lines consisting of three edges. These curves are defined by continued fractions of type \([a_0, a_1, a_2, a_3, a_4]\). Then the conditions for a broken line to form a triangle are as follows:
\[
\begin{align*}
a_0a_1a_2a_3a_4 + a_0a_1a_2 + a_0a_1a_4 + a_0a_3a_4 + a_2a_3a_4 + a_0 + a_2 + a_4 & = 0 \\
a_1a_2a_3a_4 + a_1a_2 + a_1a_4 + a_3a_4 + 1 & = 1.
\end{align*}
\]
(See on Figure 3.)

There is one problem which is interesting in the frames of this section. Suppose we have a broken line and two distinct points \(O_1 \) and \(O_2 \). Then we have two LLS-sequences for the same curve with respect to \(O_1 \) and \(O_2 \). Study the conditions on the initial data \(\text{(i.e., LLS-sequences, positions of the first points of the broken lines, and direction of the first vector)} \) that define congruent broken lines.
3. Differentiable curves

Now let us study what happens if we consider a curve as a broken line with infinitesimally small segments. It turns out that the LLS-sequence “splits” to a couple of functions which we call areal and angular densities. We introduce the necessary notions and discuss basic properties of these functions. In particular we show that the areal density is inverse to a velocity of a point defined by the second Kepler law.

In this section we suppose that the curves has a natural (unit length) parametrization.

3.1. Definition of areal and angular densities. Consider a curve \(\gamma \) of class \(C^2 \) with an arc-length parameter \(t \). Let us define the areal and the angular elements at a point similar to the discrete case.

Definition 3.1. The **areal density** and the **angular density** at \(t \) are respectively

\[
A(t) = \lim_{\varepsilon \to 0} \frac{|O\gamma(t) \times O\gamma(t + \varepsilon)|}{\varepsilon} = |O\gamma(t) \times \dot{\gamma}(t)|
\]

and

\[
B(t) = \lim_{\varepsilon \to 0} \frac{|\gamma(t)\gamma(t - \varepsilon) \times \gamma(t)\gamma(t + \varepsilon)|}{\varepsilon |O\gamma(t - \varepsilon) \times O\gamma(t)| |O\gamma(t) \times O\gamma(t + \varepsilon)|}.
\]

Let us give geometric interpretations for the functions \(A \) and \(B \). We start with \(A \).

Proposition 3.2. (Relation with the second Kepler law.) Suppose that a body moves by a trajectory of a curve \(\gamma \) with velocity \(1/A \). Then the sector area velocity of a body is constant and equals 1.

Proof. The proof follows directly from the definition. \(\square \)

Instead of giving a geometrical interpretation of \(B \), we prove the following formula for \(A^2B \). For a given curve \(\gamma \) denote by \(\kappa(t) \) the signed curvature at point \(t \).

Proposition 3.3. Consider a point \(\gamma(t) \) of a curve \(\gamma \). Let the vectors \(O\gamma(t) \) and \(\dot{\gamma}(t) \) be non-collinear. Then the following holds.

\[
A^2(t)B(t) = \kappa(t).
\]
Proof. We have the following
\[A^2(t)B(t) = \lim_{\varepsilon \to 0} \left(\left(\frac{|O\gamma(t) \times O\gamma(t+\varepsilon)|}{\varepsilon} \right)^2 \frac{|\gamma(t)\gamma(t-\varepsilon) \times \gamma(t)\gamma(t+\varepsilon)|}{\varepsilon|O\gamma(t-\varepsilon) \times O\gamma(t)||O\gamma(t) \times O\gamma(t+\varepsilon)|} \right) \]
\[= \lim_{\varepsilon \to 0} \left(\frac{|\gamma(t)\gamma(t-\varepsilon) \times \gamma(t)\gamma(t+\varepsilon)|}{\varepsilon^3} \right). \]

Notice that
\[|\gamma(t)\gamma(t-\varepsilon)| = \varepsilon + o(\varepsilon), \]
\[|\gamma(t)\gamma(t+\varepsilon)| = \varepsilon + o(\varepsilon), \]
\[\sin(\gamma(t-\varepsilon)\gamma(t)\gamma(t+\varepsilon)) = \varepsilon \kappa(t) + o(\varepsilon). \]

Therefore, for the volume of the corresponding parallelogram we get
\[|\gamma(t)\gamma(t-\varepsilon) \times \gamma(t)\gamma(t+\varepsilon)| = \varepsilon^3 \kappa(t) + o(\varepsilon). \]

Hence, \(A^2(t)B(t) = \kappa(t). \) \(\square \)

Now we prove the theorem on finite reconstruction of a curve (i.e., in some small neighborhood) knowing the areal density and a starting point. This is analogous to the algorithm that finds a broken line by the elements of the corresponding continued fraction described in Subsection 2.1. The significant difference to the discrete case is that we do not need to know the angular distribution function.

Theorem 3.4. Suppose we are given by the points \(O \) and \(\gamma(t_0) \) and the areal density \(A(t_0) \).

- If \(|A(t_0)| > |O\gamma(t_0)|\), then there is no finite curve with the given data.
- If \(|O\gamma(t_0)| > |A(t_0)| > 0\), then the curve is uniquely defined in some neighborhood of the point \(\gamma(t_0) \).

Remark 3.5. Notice that \(A^2(t)B(t) \) defines the oriented curvature. Therefore, if one knows the functions \(A \) and \(B \) then the curve is uniquely reconstructed until the time \(t_0 \) where the vectors \(O\gamma(t_0) \) and \(\dot{\gamma}(t_0) \) are collinear, or in other words where \(|A(t_0)| = 0\).

Proof. Consider a system of polar coordinates \((r, \varphi)\) with the origin at the point \(O \). To get the curve we should solve the system of differential equations:
\[
\begin{cases}
 r^2 \dot{\varphi} = A \\
 \dot{r}^2 + r^2 \dot{\varphi}^2 = 1
\end{cases}
\]

This system is equivalent to the union of the following two systems:
\[
\begin{cases}
 \dot{\varphi} = \frac{A}{r^2} \\
 \dot{r} = \sqrt{1 - \frac{A^2}{r^2}}
\end{cases}
\quad \text{and} \quad
\begin{cases}
 \dot{\varphi} = \frac{A}{r^2} \\
 \dot{r} = -\sqrt{1 - \frac{A^2}{r^2}}
\end{cases}
\]

By the main theorem of theory of ordinary differential equations (see for instance in [1]) this system has a finite solution if \(|r| > |A| > 0\). This concludes the proof. \(\square \)
Let us say a few words about density functions and their broken line approximations. Let \(\gamma(t) \) be a curve with arclength parameter \(t \in [0,T] \) and densities \(A(t) \) and \(B(t) \). For an integer \(n \) consider a broken line \(\gamma_n = A_{0,n} \ldots A_{n,n} \) such that \(A_{i,n} = \gamma_{i,n T} \). Let the corresponding LLS-sequence be \((a_{0,n}, \ldots, a_{2n,n}) \). Denote by \(A_n \) and \(B_n \) the following functions

\[
A_n(t) = a_{2\lfloor nt/T \rfloor + 1,n} \quad \text{and} \quad B_n(t) = a_{2\lfloor nt/T \rfloor,n}.
\]

Theorem 3.6. Let \(\gamma \) be in \(C^2 \). Then the sequences of functions \((A_n) \) and \((B_n) \) pointwise converge to the functions \(A \) and \(B \) respectively.

Proof. This follows directly from the definition of density functions and Proposition 2.1. \(\square \)

It is interesting to investigate the inverse problem, it is still open now, we formulate it in the last subsection.

3.2. Example of curves and their continued fractions.

In this subsection we calculate the areal and angular densities for straight lines, ellipses, and logarithmic spirals.

Example 3.7. Lines. Let us study the case of lines. Without lose of generality we consider the point \(O \) to be at the origin and take the line \(x = a \). Then the corresponding densities are

\[
A(t) = a \quad \text{and} \quad B(t) = 0.
\]

Example 3.8. Ellipses and their centers. Consider an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \(a \geq b > 0 \). Let \(O \) be at the symmetry center of the ellipse i.e. at the origin. Then the areal and angular densities are as follows

\[
A(t) = \frac{ab}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} \quad \text{and} \quad B(t) = \frac{1}{ab\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}}.
\]

Notice that here we get the constant function for the ratio:

\[
\frac{A(t)}{B(t)} = a^2b^2.
\]

Example 3.9. Ellipses and their foci. As in the previous example we consider an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \(a \geq b > 0 \). Let now \(O \) be at one of the foci, for instance at \((-\sqrt{a^2 - b^2}, 0)\). Then the densities are as follows

\[
A(t) = \frac{ab + b\sqrt{a^2 - b^2} \cos t}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 vt}} \quad \text{and} \quad B(t) = \frac{a}{b\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}(a + \cos t\sqrt{a^2 - b^2})^2}.
\]

Remark on the Kepler planetary motion. If we put the Sun at the chosen focus and consider a planet whose orbit is the ellipse, then according to three Kepler laws the planet will move with velocity \(\lambda/A(t) \) at any \(t \). Here the constant \(\lambda \) is defined from the third
Kepler law: the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit, or in other words

\[\frac{T^2}{a^3} = \frac{T_e^2}{a_e^3}, \]

where \(T \) is the period for our orbit, and \(T_e \) and \(a_e \) are respectively the period and the semi-major axis for the Earth. Denote by \(L \) the length of the ellipse, i.e.,

\[L = 4a \int_0^{\pi/2} \sqrt{1 - \left(1 - \frac{b^2}{a^2}\right) \cos^2 t} \, dt \]

Since \(T = |\lambda| \int_0^L |1/A(t)| dt \), we get

\[\lambda = \pm \frac{T_e}{\int_0^L |1/A(t)| dt} \left(\frac{a}{a_e} \right)^{1/2}. \]

We skip a description for parabolas and hyperbolas, they are similar to the case of ellipses.

Example 3.10. Logarithmic spirals. Consider a logarithmic spiral

\[\{ (ae^{bt} \cos t, ae^{bt} \sin t) \mid t \in \mathbb{R} \}. \]

Then the densities for this spiral are as follows

\[A(t) = \frac{ae^{bt}}{\sqrt{b^2 + 1}} \quad \text{and} \quad B(t) = \frac{e^{-3bt} \sqrt{b^2 + 1}}{a^3}. \]

It is interesting to notice that for the spirals we have

\[A^3(t)B(t) = \frac{1}{b^2 + 1}, \]

i.e., the products are constant functions.

Notice that if \(A^2B \) is a constant function, then the curvature is constant, and hence we get circles. What do we have if \(AB \) (or \(A \)) is constant?

3.3. Open problems. We conclude this section with two open problems concerning the density functions. We start with a question on convergency that is in some sense the inverse problem to Theorem 3.6.

Problem 1. What properties should have the LLS-sequences of broken lines if their sequence converges to certain curve.

The second problem comes from Remark 2.8 on closed broken lines.

Problem 2. What are the conditions on the functions \(A(t) \) and \(B(t) \) for the resulting curve \(\gamma \) to be closed?
References

[1] V. I. Arnold, *Ordinary differential equations*, translated from the Russian by Roger Cooke. Second printing of the 1992 edition. Universitext. Springer-Verlag, Berlin, 2006. ii+334 pp.

[2] V. I. Arnold, *Continued fractions*, M.: Moscow Center of Continuous Mathematical Education, 2002.

[3] M. C. Irwin, *Geometry of Continued Fractions*, The American Mathematical Monthly, vol. 96(1989), no. 8, pp. 696-703.

[4] O. Karpenkov, *On tori decompositions associated with two-dimensional continued fractions of cubic irrationalities*, Func. An. and Appl., vol. 38(2004), no. 2, pp. 28–37.

[5] O. Karpenkov, *Elementary notions of lattice trigonometry*, Math. Scand., vol. 102(2008), no. 2, pp. 161–205.

[6] O. Karpenkov, *On irrational lattice angles*, Funct. Anal. Other Math., vol. 2(2009), no. 2–4, pp. 221–239.

[7] A. Ya. Khinchin, *Continued fractions*, University of Chicago Press, 1964.

[8] E. I. Korkina, *The simplest 2-dimensional continued fraction*, J. Math. Sci., vol. 82(1996), no. 5, pp. 3685–3685.

[9] H. M. Stark, *An introduction to number theory*, Markham, Chicago, 1970.

E-mail address, Oleg N. Karpenkov: karpenkov@tugraz.at

TU Graz /Kopernikusgasse 24, A 8010 Graz, Austria/