Unbiased simulation of structural transitions in calmodulin

Daniel M. Zuckerman
Department of Environmental & Occupational Health, Graduate School of Public Health, University of Pittsburgh, and
Center for Computational Biology & Bioinformatics, University of Pittsburgh, Pittsburgh, PA 15213,
dzuckerman@ceoh.pitt.edu

Draft: February 2, 2008
Abstract

We introduce an approach for performing “very long” computer simulations of the dynamics of simplified, folded proteins. Using an alpha-carbon protein model and a fine grid to mimic continuum computations at increased speed, we perform unbiased simulations which exhibit many large-scale conformational transitions at low cost. In the case of the 72-residue N-terminal domain of calmodulin, the approach yields structural transitions between the calcium-free and calcium-bound structures at a rate of roughly one per day on a single Intel processor. Stable intermediates can be clearly characterized. The model employs Gō-like interactions to stabilize two (or more) experimentally-determined structures. The approach is trivially parallelizable and readily generalizes to more complex potentials at minimal cost.

1 Introduction

The biological functions of many proteins result from their folded-state dynamics, and in particular, from conformational changes among meta-stable states. Motor proteins perform their vital functions based upon structural transitions, and additionally, such transitions often accompany ligand-binding and catalysis events: those occurring in calmodulin and in adenylate kinase upon ligand binding are textbook examples [1] among numerous others. However, little is known about the detailed dynamics of these large-scale transitions. How cooperative are the changes? Do meta-stable intermediate states often occur? How many reaction pathways play an important role? Do any generic kinetic or dynamical features appear, especially in light of the expectation that nature tunes barrier heights to a few times the thermal energy scale $k_B T \sim RT$?

Calmodulin (CaM), a 148-residue calcium-binding and signalling protein, is an ideal test system because of its modest size and because it has been the subject of intensive experimental scrutiny (e.g., [2] [3] [4] [5] [6] [7] [8] [9] [10]). CaM undergoes large scale conformational transitions both within and between its two domains. CaM has also been studied computationally, for instance by the García and Kuczera groups [11] [12] [13], but these all-atom molecular dynamics studies have been limited to nsec timescales.

Many approaches have been developed for the general problem of determining reaction pathways — including both “static,” “quasi-dynamic,” and “ensemble” approaches. We term “static” those approaches which yield a single, presumably optimal pathway (e.g., [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]). The so-called static picture, by definition, does not account for inherent thermal fluctuations or the possibility of multiple pathways, though Elber and Shalloway modelled the effect of temperature in a static picture [25]. Biased molecular dynamics approaches, like targeted and steered dynamics [26] [27] [28] [29] attempt to include more realistic aspects of the true dynamics; such methods typically generate a small number of potentially dominant dynamical pathways in protein systems, rather than a full ensemble.
“Ensemble” approaches attempt to generate suitably distributed sets of reacting trajectories. The pioneering work of Pratt employing the Metropolis approach was applied by Chandler and coworkers to a variety of problems (e.g., [30]). Elber and coworkers developed the stochastic difference equation approach, which generates approximate reactive trajectories without high-frequency motions [37, 38, 39]. Woolf and Zuckerman pursued a non-Metropolis ensemble approach, as did Mazonka et al. [44]; see also the work of Eastman et al. [45]. A notable, independent approach for studying rare events is the “weighted-ensemble Brownian dynamics” of Huber and Kim [46], which is conceptually related to the earlier work of Harvey and Gabb [26].

One recent study pursued similar goals to the present investigation for a cubic-lattice toy model. Specifically, Borovinskiy and Grosberg studied the design of cubic-lattice “protein” models capable of undergoing conformational transitions [47].

Here we introduce an unbiased methodology to study large-scale structural transitions in folded proteins, and we use it to perform an initial examination of the structural dynamics in the N-terminal domain of calmodulin. The method builds on two existing computational strategies. The first, due to Panagiotopoulos and Kumar, is a general discretization approach which involves the use of a fine grid (with lattice spacing much less than the particle or atom size) to mimic continuum calculations. Atoms or particles are only permitted to occupy grid sites, and interaction energies or forces are
computed in advance for all necessary inter-particle displacements; see Fig. Panagiotopoulos and Kumar found that critical and coexistence properties of fluids could be reproduced very precisely with a speed gain of one to two orders of magnitude [48, 49]. The notion of using a fine grid to simulate biomolecules also conceptually draws from coarse-grained lattice simulations of proteins [50, 51, 52, 53, 54, 55, 56, 57], particularly the high coordination lattice studies by Kolinski, Skolnick, and coworkers.

The second principal computational precursor to the present work is the Gō model [58, 50], which represents proteins in solely a structural way, without reference to the underlying chemistry. In particular, the Gō model employs a chain of residue “beads”, each of which only reacts favorably with other residues which are nearby in the native structure. Non-native contacts are penalized. This simple model was developed to study the dynamics of protein folding and it is still widely used for that end [59, 60, 61]. Note that the Gō model is trivially generalized to other levels of chemical detail — e.g., to all-atom simulation [61].

While the present approach is not restricted to simplified models, we use a highly reduced (residue-level) model both because it is easier to implement and because residue-level models have already provided meaningful bio-macromolecular results. Reduced models of proteins have often been used in the past, particularly to study protein folding dynamics and thermodynamics (e.g., [62, 63, 64, 65, 51, 52, 53, 66, 67, 68, 69, 70, 71, 72, 73, 74, 59, 60, 75, 76, 77]), “ab initio” protein structure prediction (e.g., [78, 79, 80, 81, 82, 83, 84, 85, 86]), and coarse-grained dynamics (e.g., [87]); see also a review of structure-based potentials [88]. Moreover, it has been shown conclusively that even models which do not distinguish among atom or amino acid types can capture intermediate scale (i.e., alpha carbon fluctuations) and large scale motions (i.e., the slowest modes) [89, 90, 91, 92, 93, 94].

The present, unbiased approach should also prove useful in the refinement of the biased “ensemble” methods discussed above. Because the ensemble methods have not been fully vetted in protein systems, the present approach can usefully contribute “perfect” ensembles of unbiased large-molecule transition trajectories which can serve as “gold standards” for comparison with biased methods. In particular, unbiased ensembles can help shift the focus to a number of biologically and methodologically important questions regarding intermediates: (i) can their lifetimes be estimated accurately? (ii) do intermediates introduce a very wide variation in the durations of transition events? (iii) are multiple pathways typically observed?

In outline, the next section 2 describes the simulation approach used here. We emphasize that our method is not tied to the choice of model (i.e., forcefield), which is highly simplified for this initial study and is described in Sec. 3. Sec. 4 presents the simulation results, and highlights the straightforward observation of stable intermediates. Our concluding discussion is given in Sec. 5.
Figure 2: The highly reduced, Gō-like, inter-residue potentials used in the simulations. The “non-native” pair potential is used between residues that are not in contact in the holo or the apo structures of calmodulin. A contact is defined by a distance \(R_{ij} < 8 \text{ Å} \) between alpha-carbon atoms of residues \(i \) and \(j \) in the Protein Data Bank coordinate files. The “single-native” potential applies for residue pairs in contact in only one of the two structures, while “double-native” is for pairs contacting in both.

2 Methodology

2.1 Fine-grid simulation

The fine-grid simulation methodology is adopted directly from Panagiotopoulos and Kumar [48, 49]. The idea is to allow particles (here, residues) to occupy only discrete positions on a grid. Interaction energies are then stored in arrays, rather than computed at each dynamics step.

More specifically, a “fine” grid is used — i.e., one in which the grid spacing is much smaller than the particle size — in an attempt to mimic continuum results. This point bears emphasizing: the grid approach is adopted solely as a means to reproduce continuum results at greater computational speed; the errors or artifacts resulting from using a fine grid are expected to be negligible due to the small size of the grid spacing. Indeed, the central result of Panagiotopoulos and Kumar [48, 49] is that very sensitive liquid-vapor coexistence curves and critical points could be determined quite accurately within the grid approach. A rough rule of thumb from Panagiotopoulos’ work is that a lattice spacing of 1/5 the particle size is sufficient for practical computations.

How fine a grid spacing is necessary in the present context? Owing to the crudeness of the models used here (see Sec. 3), we do not require high precision. However, to implement a dynamic Monte Carlo scheme (see below) with a sufficient acceptance ratio, a small grid spacing is required. In the simulations discussed here, the lattice spacing was 0.13 Å, which may be compared with residue-residue interaction distances of 4 - 8 Å. In other words, a very fine grid is employed here.
2.2 Dynamic Metropolis Monte Carlo

In this initial implementation, we have chosen to use dynamic Monte Carlo (DMC) dynamics, which is a common, current choice for simulations of protein folding dynamics (e.g., [59, 60, 61]). While DMC dynamics were chosen because of the relative ease of implementation, they may be justified on two grounds. (i) Because only small, local trial moves will be considered — see below — and accepted with a Boltzmann-factor-preserving probability, DMC may be considered a variant of overdamped Brownian dynamics. Brownian dynamics have a well-understood physical basis [95]. (ii) Further, due to the highly simplified nature of the models used here (see Sec. 3), one can expect the simulated dynamics — of any kind — only to give a qualitative picture. This qualitative description should not be sacrificed by Brownian-like dynamics embodied in DMC.

The dynamic Monte Carlo is designed to make highly local moves in a trivial way: at every time step, a randomly chosen residue makes a trial move with uniform probability to one of the 26 lattice sites on the surface of the $3 \times 3 \times 3$ cube centered at its present location. The move is accepted or rejected according to the usual Metropolis criterion: accept if and only if the energy decreases or a random number R_u chosen uniformly from the interval $0 < R_u \leq 1$ is less than $\exp \left(-\Delta U / RT \right)$, where ΔU is the change in the total energy (Hamiltonian) of the system.

2.3 Hardware, Software, and Computer Time

The results reported below are based on a computer program written in the C language and compiled with the “gcc” compiler on Linux machines.
Simulations were run on Intel processors of both 2.4 and 2.8 GHz, which permitted approximately $3 - 4 \times 10^8$ Monte Carlo steps per hour. All the trajectories discussed here were obtained in less than one week of processor time.

3 Model

The residue-level model describes a highly reduced protein without any true chemistry, following the spirit of many previous workers \cite{58, 50, 89, 90, 94}. Nevertheless, the model does include the essential topological features of calmodulin: residue connectivity and steric, as well as the attractive interactions found in both apo and holo structures. Only the N-terminal domain was included — specifically the 72 residues numbered 4 - 75 in PDB structures 1cfd (apo, unbound) and 1cll (holo, bound to calcium ions).

The model of the N-terminal domain of calmodulin is specified by covalent, steric, and attractive interactions; see Fig. 2. Consecutive residues are “covalently” connected by an infinitely deep, attractive square well centered on the native-state separation distance of structure 1cfd; the well width was taken to be 10% of the native separation (±5%). Sterically, each residue excludes other residues from its hard-core exclusion zone, a sphere with radius set to 47.5% (i.e., 95%/2) of the minimum distance to other non-consecutive residues in the 1cfd native state. Finally, Gō-like attractive interactions are represented by square wells (of uniform depth ϵ) centered at residue separation distances (±5%) of less than 8 Å from either of the native structures (i.e., PDB codes 1cfd or 1cll). All simulations were performed at a temperature given by $k_B T = 0.6\epsilon$.

The double-well, attractive interactions depicted in Fig. 2 merit further justification. At first glance, such a potential may seem unnatural, particularly to those readers familiar with the distinction between the pair potential energy and potential of mean force (see, e.g., \cite{96}): for a simple fluid consisting of spherical particles, it is well known that a single-well potential gives rise to a multi-well potential of mean force. However, amino acids are not spherical, and if one insists on a point-residue model (as here), the only way to represent direct interactions of differing orientations is for the potential to possess more than one well. A second, perhaps facile, justification comes from the results: the double well potential accomplishes the principal aim of stabilizing two distinct conformational states. Indeed, it requires roughly a day of computer time to generate a fluctuation sufficiently large as to jump to the second state. A third justification is more pragmatic: when more realistic potentials (e.g., \cite{64, 65, 73, 74, 79, 80, 59, 60}) are discretized with the find-grid approach, presumably the “unnatural” double-Gō interactions can be reduced to minimal levels required to stabilize the distinct states.
Figure 4: Two sample structural transitions in the simplified N-terminal domain of calmodulin, monitored by the numbers of native contacts in the apo and holo states. Contacts are defined by inter-C$^\alpha$ distances of less than 8 Å and native contacts are based on comparison to the PDB structures 1cfd (apo) and 1cll (holo). Each of the two trajectories shown required roughly 30 minutes of single-processor (2.8 GHz) computer time, and such transition events occur roughly once per day on a single processor.

4 Results

In this preliminary report, all the results are depicted in Figs. 4 - 7, and described in the figure captions. To summarize, sample transition events are shown (Fig. 4), and traces of the helix angles confirm that the transition are genuine and sustained (Fig. 5). Next, long-lived intermediates are readily visualized using compound variables which simply measured distances between helix ends (Fig. 6), and finally the dynamical evolution of individual residue contacts is examined (Fig. 7).

Figure 5: The two transitions of Fig. 4 confirmed by comparison to the inter-helix angles in the PDB structure 1cll. Helix axes were defined to be the vectors associated with the smallest moment of inertia of the residues present in the native structures.
Figure 6: Long-lived intermediates in the transition events of Fig. 4. The central panel shows parametric traces of two independent transition trajectories, with the axes representing distances between the indicated helix ends; note that the N-terminal “start” of the peptide is the red helix. The surrounding structures are averaged over 10^7 MC steps, but remained localized at the indicated positions. Note that the two trajectories take slightly different pathways in the region where vertical axis ranges between 18 and 25; the lower-right intermediate appears to be “on-pathway” for the orange trajectory but not for the purple.

5 Summary and Conclusions

We have introduced an approach for studying the long-time dynamics of large-scale conformational transitions in proteins. The technique was tested on a highly reduced, residue-level model of the N-terminus of calmodulin, which undergoes a dramatic rearrangement of its four helices upon the (un)-binding of calcium ions. Such rearrangements were observed approximately once per day on a single processor in unbiased dynamic Monte Carlo simulation. The scheme is quite promising because it proved capable of spanning the range of timescales from that for inter-residue vibrations to the “waiting time” between transition events — i.e., the inverse rate.

The approach is readily extendable in two important ways. First, it is embarrassingly parallelizable, so an inexpensive, modest-sized Beowulf cluster can readily improve upon the single-processor output by an order of magni-
Figure 7: Dynamical behavior of residue contacts. The left panel depicts the evolution of the contacts of three residues during the transition event of trajectory 79 (see Fig. 4). The “holo contacts” for residue i is the count of all residues which are both within $R_c = 8\,\text{Å}$ of residue i at the time point shown, and which are also within R_c of i in the holo structure, 1cfd, depicted in Fig. 3. Smoothed versions of the residue contacts evolution are also shown on the left for visual clarity. The right panel shows the average differences in holo contacts before and after the transition point at 8.610^7 MC steps, for every residue in both transition of Fig. 4. Note the similarity of the traces for the two transitions, which — interestingly — are not correlated with contact-count differences based on the static PDB structures.

... or more. Second, the fine-grid discretization approach [48, 49] — which simply mimics continuum calculations — lends itself to more complex potentials: while the addition of particles (e.g., “beads”) to any model entails a cost, the use of a more chemically realistic potential will require minimal additional overhead. Furthermore, other models — reduced or atomistic — can be stabilized in experimentally determined structural states using the same Go-like interactions employed here.

Despite the apparent simplicity of the model employed here, the simulated structural transitions in calmodulin exhibited highly complex behavior. Distinct transition pathways and quasi-stable intermediate states could be readily identified, as could critical residues. The transition details identified in the present study cannot immediately be identified with expectations for experimental outcomes because of the simplicity of the model. Nevertheless, the results should capture those aspects of the dynamics governed by steric and connectivity, in analogy with the success of network-like models in predicting large-scale fluctuations [89, 90, 91, 92, 93, 94].

Future studies with more chemically realistic models (e.g., 61, 65, 86, 73, 74, 79, 80, 59, 60, 76, 70) implemented in the rapid, fine-grid approach should suggest testable experimental hypotheses. Note that the effects on dynamics of varying forcefields have recently been addressed by Freed and coworkers [97]. A related question, which also can be addressed directly in the present scheme, regards the effects of dynamics type — e.g., Metropolis, Langevin, molecular dynamics — on transition events.
The future determination of reaction pathways and dynamics in a hierarchy of models will also address a question both scientifically and methodologically critical: What is the minimal model necessary to capture residue-level features of structural transitions in proteins? From the “scientific” perspective, a minimal model will suggest which interactions govern the transition events, while optimal methods should use that model which is least costly, computationally.

Finally, it is appropriate to ask what the unbiased transitions observed in the present study presage for the use of the biased “ensemble” methods discussed in the introduction. The observation of multiple pathways and widely disparate transition event durations suggests that great care will be required in any biased effort to generate ensembles of transition trajectories. Nevertheless, the present approach should provide critical input for testing biased methods in protein systems — namely, unbiased trajectories to be used for comparison. From a practical standpoint, a set of reduced-model transition events may also provide useful starting points to sidestep the potential for trapping associated with the Pratt approach.

Acknowledgments

The author has benefitted greatly from discussions with many scientists: Ivet Bahar, David Deerfield, Jeffery Evanseck, William Furey, Hagai Meirovitch, Robert Swendsen, Dror Tobi. Special thanks are due Professor Bahar for her invaluable advice, support, and encouragement.

References

[1] J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry (5th ed.). Freeman, New York, 2002.

[2] Y. S. Babu, C. E. Bugg, and W. J. Cook. Structure of calmodulin refined at 2.2 angstroms. J. Molec. Bio., 204:191, 1988.

[3] M. Ikura, G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee, and A. Bax. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science, 256:632–638, 1992.

[4] R. Chattopadhyaya, W. E. Meador, A. R. Means, and F. A. Quiocho. Calmodulin structure refined at 1.7 angstroms. J. Molec. Bio., 228:1177, 1992.

[5] W. E. Meador, A. R. Means, and F. A. Quiocho. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science, 262:1718–1721, 1993.

[6] H. Kuboniwa, N. Tjandra, S. Grzesiek, H. Ren, Klee C.B., and Bax A. Solution structure of calcium-free calmodulin. Nature Struct. Bio, 2:768–776, 1995.
[7] A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien. Fluorescent indicators for Ca-2+ based on green fluorescent proteins and calmodulin. *Nature*, 388:882–887, 1997.

[8] J. Evenäs, S. Forsén, A. Malmendal, and M. Akke. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. *J. Molec. Bio.*, 289:603–617, 1999.

[9] W. S. VanScyoc, B. R. Sorensen, E. Rusinova, W. R. Laws, J. B. A. Ross, and M. A. Shea. Calcium binding to calmodulin mutants monitored by domain-specific phenylalanine and tyrosine fluorescence. *Biophys. J.*, 83:2767–2780, 2002.

[10] A. M. Weljie, A. P. Yamniuk, H. Yoshino, Y. Izumi, and H. J. Vogel. Protein conformational changes studied by diffusion NMR spectroscopy: Application to helix-loop-helix calcium binding proteins. *Protein Sci.*, 12:228–236, 2003.

[11] D. Vigil, S. C. Gallagher, J. Trewhella, and A. E. García. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. *Biophys. J.*, 80:2082–2092, 2001.

[12] C. Yang and K. Kuczera. Molecular dynamics simulations of calcium-free calmodulin in solution. *J. Biomolec. Struct. Dyn.*, 19:801–819, 2002.

[13] G. S. Jas and K. Kuczera. Free-energy simulations of the oxidation of C-terminal methionines in calmodulin. *Proteins*, 48:257–268, 2002.

[14] K. Müller and L. D. Brown. Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. *Theoret. Chim. Acta (Berlin)*, 53:75–93, 1979.

[15] M. Berkowitz, J. D. Morgan, J. A. McCammon, and S. H. Northrup. Diffusion-controlled reactions: A variational formula for the optimum reaction coordinate. *J. Chem. Phys.*, 79:5563–5565, 1983.

[16] J. Janin and S. J. Wodak. Reaction pathway for the quaternary structure change in hemoglobin. *Biopolymers*, 24:509–526, 1985.

[17] R. Czerminski and R. Elber. Reaction path study of conformational transitions and helix formation in a tetrapeptide. *Proc. Nat. Acad. Sci.*, 86:6963–6967, 1989.

[18] R. Czerminski and R. Elber. Reaction-path study of conformational transitions in flexible systems - applications to peptides. *J. Chem. Phys.*, 92:5580–5601, 1990.

[19] C. Choi and R. Elber. Reaction path study of helix formation in tetrapeptides: Effect of side chains. *J. Chem. Phys.*, 94:751–760, 1991.
[20] R. E. Gillilan and K. R. Wilson. Shadowing, rare events, and rubber bands. A variational Verlet algorithm for molecular dynamics. *J. Chem. Phys.*, 97:1757–1772, 1992.

[21] S. Fischer and M. Karplus. Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. *Chem. Phys. Lett.*, 194:252–261, 1992.

[22] E. M. Sevick, A. T. Bell, and D. N. Theodorou. A chain of states method for investigating infrequent event processes occurring in multistate, multidimensional systems. *J. Chem. Phys.*, 98:3196–3212, 1993.

[23] M. K. Kim, G. S. Chirikjian, and R. L. Jernigan. Elastic models of conformational transitions in macromolecules. *J. Molec. Graph. Model.*, 21:151–160, 2002.

[24] M. K. Kim, R. L. Jernigan, and G. S. Chirikjian. Efficient generation of feasible pathways for protein conformational transitions. *Biophys. J.*, 83:1620–1630, 2002.

[25] R. Elber and D. Shalloway. Temperature dependent reaction coordinates. *J. Chem. Phys.*, 112:5539–5545, 2000.

[26] S. C. Harvey and H. A. Gabb. Conformational transitions using molecular dynamics with minimum biasing. *Biopolymers*, 33:1167–1172, 1993.

[27] J. Schlitter, M. Engels, P. Kruger, E. Jacoby, and A. Wollmer. Targeted molecular-dynamics simulation of conformational change – Application to the T ↔ R transition in insulin. *Molec. Sim.*, 10:291–309, 1993.

[28] J. F. Díaz, B. Wroblowski, J. Schlitter, and Y. Engelborghs. Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: Calculations with explicit solvent simulations and comparison with calculations in vacuum. *Proteins*, 28:434–451, 1997.

[29] S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. Molecular dynamics study of unbinding of the Avidin-Biotin complex. *Biophys. J.*, 72:1568–1581, 1997.

[30] L. R. Pratt. A statistical method for identifying transition states in high dimensional problems. *J. Chem. Phys.*, 85:5045–5048, 1986.

[31] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler. Transition path sampling and the calculation of rate constants. *J. Chem. Phys.*, 108:1964–1977, 1998.

[32] C. Dellago, P. G. Bolhuis, and D. Chandler. Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements. *J. Chem. Phys.*, 108:9236–9245, 1998.
[33] F. S. Csajka and D. Chandler. Transition pathways in a many-body system: Application to hydrogen-bond breaking in water. *J. Chem. Phys.*, 109:1125–1133, 1998.

[34] P. G. Bolhuis, C. Dellago, and D. Chandler. Sampling ensembles of deterministic transition pathways. *Faraday Discuss.*, 110:421–436, 1998.

[35] C. Dellago, P. G. Bolhuis, and D. Chandler. On the calculation of reaction rate constants in the transition path ensemble. *J. Chem. Phys.*, 110:6617–6625, 1998.

[36] D. Chandler. Barrier crossings: classical theory of rare but important events. In B.J. Berne, G. Ciccotti, and D.F. Coker, editors, *Classical and Quantum Dynamics in Condensed Phase Simulations*, pages 3–23. World Scientific Press, Singapore, 1998.

[37] R. Olender and R. Elber. Calculation of classical trajectories with a very large time step: Formalism and numerical examples. *J. Chem. Phys.*, 105:9299–9315, 1996.

[38] R. Elber, J. Meller, and R. Olender. Stochastic path approach to compute atomically detailed trajectories: application to the folding of C peptide. *J. Phys. Chem. B*, 103:899–911, 1999.

[39] A. Ghosh, R. Elber, and H. A. Scheraga. An atomically detailed study of the folding pathways of protein a with the stochastic difference equation. *Proc. Nat. Acad. Sci.*, 99:10394–10398, 2002.

[40] T. B. Woolf. Path corrected functionals of stochastic trajectories: towards relative free energy and reaction coordinate calculations. *Chem. Phys. Lett.*, 289:433–441, 1998.

[41] D. M. Zuckerman and T. B. Woolf. Dynamic reaction paths and rates through importance-sampled stochastic dynamics. *J. Chem. Phys.*, 111:9475–9484, 1999.

[42] D. M. Zuckerman and T. B. Woolf. Efficient dynamic importance sampling of rare events in one dimension. *Phys. Rev. E*, 63:016702, 2001.

[43] D. M. Zuckerman and T. B. Woolf. Rapid determination of multiple reaction pathways in molecular systems: The soft ratcheting algorithm. www.arXiv.org: physics/0209098, 2002.

[44] O. Mazonka, C. Jarzyński, and J. Blocki. Computing probabilities of very rare events for Langevin processes: a new method based on importance sampling. *Nuc. Phys. A*, 641:335–354, 1998. Erratum: Nuc. Phys. A, 650, 499-500 (1999).

[45] P. Eastman, N. Grønbech-Jensen, and S. Doniach. Simulation of protein folding by reaction path annealing. (unpublished), 2000.
[46] G. A. Huber and S. Kim. Weighted-ensemble Brownian dynamics simulations for protein association reactions. *Biophys. J.*, 70:97–110, 1996.

[47] A. L. Borovinskiy and A. Y. Grosberg. Design of toy proteins capable to rearrange conformations in a mechanical fashion. www.arXiv.org:cond-mat/0212124 (2002).

[48] A. Z. Panagiotopoulos and S. K. Kumar. Large lattice discretization effects on the phase coexistence of ionic fluids. *Phys. Rev. Lett.*, 83:2981–2984, 1999.

[49] A. Z. Panagiotopoulos. On the equivalence of continuum and lattice models for fluids. *J. Chem. Phys.*, 112:7132–7137, 2000.

[50] Y. Ueda, H. Taketomi, and N. Go. Studies on protein folding, unfolding and fluctuations by computer simulation. II. a three-dimensional lattice model of lysozyme. *Biopolymers*, 17:1531–1548, 1978.

[51] J. Skolnick, A. Kolinski, and R. Yaris. Monte Carlo simulations of the folding of beta-barrel globular proteins. *Proc. Nat. Acad. Sci.*, 85:5057–5061, 1988.

[52] M. Vieth, A. Kolinski, C. L. Brooks, and J. Skolnick. Prediction of the folding pathways and structure of the GCN4 leucine zipper. *J. Molec. Bio.*, 237:361–367, 1994.

[53] A. Kolinski and J. Skolnick. *Lattice models of protein folding, dynamics, and thermodynamics*. Chapman and Hall, New York, 1996.

[54] K. F. Lau and K. A. Dill. A lattice statistical mechanics model of the conformation and sequence spaces of proteins. *Macromolecules*, 22:3986–3997, 1989.

[55] H. S. Chan and K. A. Dill. Intrachain loops in polymers: effects of excluded volume. *J. Chem. Phys.*, 90:492–509, 1989.

[56] K. F. Lau and K. A. Dill. Theory for protein mutability and biogenesis. *Proc. Nat. Acad. Sci.*, 87:638–642, 1990.

[57] D. G. Covell and R. L. Jernigan. Conformations of folded proteins in restricted spaces. *Biochem.*, 29:3287–3294, 1990.

[58] Y. Ueda, H. Taketomi, and N. Go. Studies on protein folding, unfolding and fluctuations by computer simulation. i. the effects of specific amino acid sequences represented by specific inter-unit interactions. *Int. J. Peptide Protein Res.*, 7:445–459, 1975.

[59] C. Clementi, H. Nymeyer, and J. N. Onuchic. Topological and energetic factors: what determines the structural details of the transition state ensemble and “en route” intermediates for protein folding? an investigation for small globular proteins. *J. Molec. Bio.*, 298:937–953, 2000.
[60] C. Clementi, P. A. Jennings, and J. N. Onuchic. How native-state topology affects the folding of dihydrofolate reductase and interleukin-1beta. *P. Nat. Acad. Sci.*, 97:5871–5876, 2000.

[61] J. Shimada and E. I. Shakhnovich. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. *P. Nat. Acad. Sci.*, 99:11175–11180, 2002.

[62] M. Levitt and A. Warshel. Computer simulation of protein folding. *Nature*, 253:694–698, 1975.

[63] M. Levitt. A simplified representation of protein conformations for rapid simulation of protein folding. *J. Molec. Bio.*, 104:59–107, 1976.

[64] S. Miyazawa and R. L. Jernigan. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. *Macromol.*, 18:534–552, 1985.

[65] S. Miyazawa and R. L. Jernigan. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. *J. Molec. Bio.*, 256:623–644, 1996.

[66] C. Wilson and S. Doniach. A computer model to dynamically simulate protein folding. *Proteins*, 6:193–209, 1989.

[67] M. S. Friedrichs and P. G. Wolynes. Toward protein tertiary structure recognition by means of associative memory hamiltonians. *Science*, 246:371–373, 1989.

[68] M. S. Friedrichs, R. A. Goldstein, and P. G. Wolynes. Generalized protein tertiary structure recognition using associative memory hamiltonians. *J. Molec. Bio.*, 222:1013–1034, 1991.

[69] J. D. Honeycutt and D. Thirumalai. Metastability of the folded states of globular proteins. *Proc. Nat. Acad. Sci.*, 87:3526–3529, 1990.

[70] Z. Guo, D. Thirumalai, and J. D. Honeycutt. Folding kinetics of proteins: a model study. *J. Chem. Phys.*, 97:525–535, 1992.

[71] J. D. Honeycutt and D. Thirumalai. The nature of folded states of globular proteins. *Biopolymers*, 32:695–709, 1992.

[72] Y. Zhou, C. K. Hall, and M. Karplus. First-order disorder-to-order transition in an isolated homopolymer model. *Phys. Rev. Lett.*, 77:2822–2825, 1996.

[73] Y. Zhou and M. Karplus. Folding thermodynamics of a model three-helix bundle protein. *P. Nat. Acad. Sci.*, 94:14429–14432, 1997.

[74] Y. Zhou and M. Karplus. Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis. *J. Molec. Bio.*, 293:917–951, 1999.
[75] A. V. Smith and C. K. Hall. Alpha-helix formation: discontinuous molecular dynamics on an intermediate-resolution protein model. *Proteins*, 44:344–360, 2001.

[76] A. V. Smith and C. K. Hall. Assembly of a tetrameric alpha-helical bundle: computer simulations on an intermediate-resolution protein model. *Proteins*, 44:376–391, 2001.

[77] C. Micheletti, J. R. Banavar, and A. Maritan. Conformations of proteins in equilibrium. *Phys. Rev. Lett.*, 87:088102, 2001.

[78] S. Tanaka and H. A. Scheraga. Medium- and long-ranged interaction parameters between amino acids from predicting three-dimensional structures of proteins. *Macromolecules*, 9:945–950, 1976.

[79] A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga. A united-residue force field for off-lattice protein-structure simulations. I. functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. *J. Comp. Chem.*, 18:849–873, 1997.

[80] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Oldziej, and H. A. Scheraga. A united-residue force field for off-lattice protein-structure simulations. II. parameterization of short-range interactions and determination of weights of energy terms by z-score optimization. *J. Comp. Chem.*, 18:874–887, 1997.

[81] A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. *J. Chem. Phys.*, 115:2323–2347, 2001.

[82] A. Monge, R. A. Friesner, and B. Honig. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. *Proc. Nat. Acad. Sci.*, 91:5027–5029, 1994.

[83] J. R. Gunn, A. Monge, R. A. Friesner, and C. H. Marshall. Hierarchical algorithm for computer modeling of protein tertiary structure: folding of myoglobin to 6.2-angstrom resolution. *J. Phys. Chem.*, 98:702–711, 1994.

[84] A. Monge, E. J. P. Lathrop, J. R. Gunn, P. S. Shenkin, and R. A. Friesner. Computer modeling of protein folding: conformational and energetic analysis of reduced and detailed protein models. *J. Molec. Bio.*, 247:995–1012, 1995.

[85] D. Tobi, G. Shafran, N. Linial, and R. Elber. On the design and analysis of protein folding potentials. *Proteins*, 40:71–85, 2000.

[86] R. Srinivasan and G.D. Rose. LINUS: A hierarchic procedure to predict the fold of a protein. *Proteins*, 22:81–99, 1995.
[87] I. Bahar, B. Erman, T. Haliloglu, and R. L. Jernigan. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. *Biochem.*, 36:13512–13523, 1997.

[88] R. L. Jernigan and I. Bahar. Structure-derived potentials and protein simulations. *Curr. Op. Struct. Bio.*, 6:195–209, 1996.

[89] M. M. Tirion. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. *Phys. Rev. Lett.*, 77:1905–1908, 1996.

[90] I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic model. *Fold. Design*, 2:173–181, 1997.

[91] T. Haliloglu, I. Bahar, and B. Erman. Gaussian dynamics of folded proteins. *Phys. Rev. Lett.*, 79:3090–3093, 1997.

[92] I. Bahar, A. R. Atilgan, M. C. Demirel, and B. Erman. Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. *Phys. Rev. Lett.*, 80:2733–2736, 1998.

[93] I. Bahar. Dynamics of proteins and biomolecular complexes: inferring functional motions from structure. *Rev. Chem. Eng.*, 15:319–347, 1999.

[94] K. Hinsen. Analysis of domain motions by approximate normal mode calculations. *Proteins*, 33:417–429, 1998.

[95] M. P. Allen and D. J. Tildesley. *Computer Simulation of Liquids*. Oxford University Press, Oxford, 1987.

[96] D. A. McQuarrie. *Statistical Mechanics*. Harper and Row, New York, New York, 1976.

[97] M. H. Zaman, M. Shen, R. S. Berry, and K. F. Freed. Computer simulation of met-enkephalin using explicit atom and united atom potentials: similarities, differences, and suggestions for improvement. *J. Phys. Chem. B*, 107:1685–1691, 2003.