How Does Climate Change Affect Rice Production in Thailand? Assessing the Role of Financial Development

Abbas Ali Chandio (alichandio@sicau.edu.cn)
Sichuan Agricultural University https://orcid.org/0000-0001-8706-9681

Martinson Ankrah Twumasi
Sichuan Agricultural University - Chengdu Campus

Fayyaz Ahmad
Lanzhou University

Ghulam Raza Sargani
Sichuan Agricultural University - Chengdu Campus

Yuansheng Jiang
Sichuan Agricultural University - Chengdu Campus

Research Article

Keywords: Climate change, Financial development, Rice production, ARDL, VECM framework

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1173507/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
How does climate change affect rice production in Thailand? Assessing the role of financial development

Abbas Ali Chandioa,*
aCollege of Economics, Sichuan Agricultural University, Chengdu 611130, China
Email: alichandio@sicau.edu.cn

Martinson Ankrah Twumasia
aCollege of Economics, Sichuan Agricultural University, Chengdu 611130, China
Email: twuma2012@gmail.com

Fayyaz Ahmadb
bSchool of Economics, Lanzhou University, Lanzhou 730000, China
Email: fayyaz@lzu.edu.cn

Ghulam Raza Sargania
aCollege of Economics, Sichuan Agricultural University, Chengdu 611130, China
Email: razasargani@sicau.edu.cn

Yuansheng Jianga
aCollege of Economics, Sichuan Agricultural University, Chengdu 611130, China
Email: yjinag@sicau.edu.cn

*Corresponding Author: Abbas Ali Chandio
Email: alichandio@sicau.edu.cn
Abstract

The study aims to examine the impacts of climate change (CC) and financial development (FD) on rice production (RP) in Thailand from the period 1969 to 2016 by using the ARDL and VECM framework. The empirical results revealed that in the long-run (LR) and short-run (SR) there is a reduction in rice production as temperature increase. The carbon dioxide (CO$_2$) positively affects rice production in the (LR), while this connection is negative in the SR. The empirical results further confirmed that in the LR and SR domestic credit provided by the financial sector positively and significantly improved rice production, while domestic credit to private sector by banks negatively affect rice production. The important input factors including cultivated area, fertilizers use and labor force positively and significantly contributed to rice production in both LR and SR. The LR causal link of all variables with rice production is validated. The SR causal association is unidirectional among temperature, CO$_2$ emissions, financial development, labor force and rice production. Additionally, the IRF and VDM outcomes also confirm that both climate change and socioeconomic development are crucial for rice production in Thailand. The study offers important policy implications to improve rice production with the help of improved financial system and climate controls.

Keywords: Climate change, Financial development, Rice production, ARDL, VECM framework
Introduction

Attention given to the factors aimed at improving economic growth, specifically, agriculture development to enhance food security, is essential. The reason being that without proper measures to alleviate food insecurity, the world will experience severe hunger (FAO 2017, Pickson & Boateng 2021). Agriculture is one of the critical components that can help enhance the world’s food insecurity alleviation agenda (Chandio et al. 2021a, FAO 2013, Issahaku & Abdulai 2020, Pickson et al. 2021). Therefore, interventions and policies to promote agriculture growth need critical thoughtfulness. In Thailand, rice consumption is on the rise, making it a significant contributor of economic development and food security assurance. About 18% of Thailand’s arable land is used for producing rice, i.e., approximately 9.38 million hectares are utilized for rice production (OAE 2018). In 2017, the nation recorded 25.24 million tons of rice, significantly contributing to Thailand’s economic growth (OAE 2018). The largest rice field (63% of the rice field area) in Thailand can be found in the Northeast region. The suitable climate and geographical variations in the Northeast region have made it a favorable place for rice production, including the Thai Jasmine (“Kao Dok Mali 105” or “KDML105”) rice variety, which covers about 66% of the Northeast region rice field area (RD 2016). However, as Thailand’s population grows, demand for food, including rice is likely to increase. Therefore, if serious interventions are not made to curtail some challenges (e.g., climate change) distorting Thailand’s agriculture production (e.g., rice production), the nation will be threatened with food insecurity due to failure to satisfy domestic rice demand (OAE 2018), which may also affect the nation’s economic growth.
Climate change, which means a change in climatic conditions resulting from individual and non-human, has been highlighted as a major element detrimentally affecting the agricultural sector (Ali 2021, Challinor et al. 2007, Chandio et al. 2021b, Limantol et al. 2016). The story is not different in the case of Thailand’s agricultural sector (Arunrat et al. 2017). Changes in climatic conditions can vary rainfall patterns, cause agricultural water reduction, frequent droughts, and overall temperature increment (Chandio et al. 2021a, Chandio et al. 2020a, Roul et al. 2017). Several studies projected that Thailand would continue to experience severe climatic changes due to temperature and rainfall variations in the future which will cause a fall in food production (Boonwichai et al. 2019, Chinvanno et al. 2013). The studies of Shrestha et al. (2017) and Babel et al. (Babel et al. 2011) show that the productivity of rice in northeast Thailand is likely to fall due to the fluctuations in climatic conditions. Due to climatic variations, the lower Makong basin may record variations in rainfed rice production (Mainuddin et al. 2013). Most studies in Thailand have reported a high tendency of rice production reduction in the future as temperature and rainfall fluctuate (Arunrat & Pumijumnong 2015, Boonwichai et al. 2019, Felkner et al. 2009, Shrestha et al. 2017). Again, the demand for crop irrigation water in the nation, which is difficult to come by, increases as rainfall (temperature) reduces (rises); hence, rice production is affected negatively (Chiarawipa & SDOODEE 2020, Mainuddin et al. 2012). According to the IPCC fifth evaluation report, there is a high expectation that the mean surface temperatures will increase up to 4.8°C globally by the close of the 21st century. They also predicted that global precipitation might experience an increase or a decrease depending on latitudes (IPCC 2014). All these reports about climate change above serve as
call to the government and policymakers of the nations around the world to provide several initiatives that can promote the agricultural sector, the hardest hit of climatic variations. Although the adverse effect of climate change on agriculture is highly unacceptable, financial development can be considered an effective tool to remedy this menace to enhance the agriculture sector. Therefore, to improve Thailand’s rice production and the agriculture sector as a whole, financial development must be given the maximum attention (Boonwichai et al. 2019). Saqib et al. (2016) and Raifu and Aminu (2019) studies have argued that credit can be a better element for financial development, implying that financial development through agriculture credit can boost agriculture productivity and encourage farmers’ participation and agriculture transformation. According to prior studies (Churchill &Marisetty 2020, Twumasi et al. 2019a), credit supply and accessibility can strengthen economic growth, improve the adoption of technologies, and reduce poverty. While the study of Chandio et al. (2018), the long-term (LT) and short-term (ST) loans impact on the production of wheat in Pakistan, showed that credit increases wheat productivity, Ahmad et al. (2020) revealed that Pakistan’s agrarian sector rises in both short-and long-term periods through Chinese FDI. Wheat production effect of credit distribution by commercial, financial institutions in Pakistan has been explored by (Bashir &Mehmood 2010). The study documented that wheat production increment is influenced by agricultural credit. Thus, the wheat yield of credit receivers is 1.21 times higher than their counterparts who are did not receive credit. In the context of Thailand, Boonwichai et al. (2019) showed that credit is a crucial element to help rice farmers in their climate change adaptation measures; hence, reducing climate change challenges to empower rice productivity. In the case of Ghana, Twumasi et al. (2019b) studied the influence of saving mobilized on credit
accessibility and farm household productivity. The found that farmers savings played a significant role in their production. Again, the result revealed that savers were more likely to obtained credit, indicating that peasants will be better-off through their savings and credit received from the financial market. Looking at the imperative advantages of financial development on agricultural growth, we analyze its impact on Thailand’s rice production. This present study adds to the current literature by using the annual time-series data and the ARDL model to explore the robust LR and SR impacts of climate change and financial development on Thailand’s rice production from the period, 1969 to 2016. Several studies (Arunrat et al. 2017, Boonwichai et al. 2019, Mainuddin et al. 2012, 2013) have focused on how changes in the climate and its adaptation measures affect rice production in Thailand rather than financial development. To our knowledge, this is first investigation that assess both LR and SR impacts of climate change and financial development on rice production in the context of Thailand. Also, we employed several econometric techniques such as the A.D.F and P.P conventional unit root testing, the ARDL model, the Johansen co-integration testing, and VECM approaches to achieve the study’s main objective. In addition, several diagnostic tests to stabilize the model are applied in this study. The outcomes are particularly significant for policymakers, bringing to the forefront how financial development can improve agricultural productivity (e.g., rice production) in this climate change era as they try to design policies to enhance the nation’s agricultural sector. The study's organization is as follows; literature review of financial development, climate change, and rice production nexus together with the study’s hypotheses are discussed in section 2. Data and methodology of the study are reported in section 3, while section 4 provides the empirical outcomes. Last section provides the conclusion of the study.
Literature review and Hypotheses formulation

This section offers a conceptual analysis of how climate change as well as financial development can potentially influence rice production.

Climate change and rice production nexus

The harmful emission of carbon dioxide resulting from environmental pollution, climate change, and global warming effect on the agricultural-environmental system is significantly positive, according to previous studies. Climate change is causing land degradation (e.g., soil erosion, loss of soil natural fertility and nutrient), flooding, storms, loss of soil biodiversity, reduction in forests and rural land conversion, and health crisis, making future cultivation more vulnerable (Ojo & Baiyegunhi 2020, Okwala et al. 2020).

Many previous empirical studies inspected the effects of climate change on cereal yields/production in agrarian countries. For example, Guntukula (2020) studied the effects of variations in climate on primary food yield (e.g., wheat, rice, groundnut) in India. After using time-series dataset ranging from 1961 to 2017, the study concluded that climate change has a significant adverse association with food crops. The study, therefore, suggested that policies should be provided to mitigate the adverse effects of climatic variations on crop harvests in the nation, which will enhance food and nutritional security.

Also, using temperature patterns, carbon dioxide emissions, and rainfall patterns as a proxy for climate change, Chandio et al. (2020b) investigated how climate change affects the production of cereals in Turkey within the period 1968 to 2014. The study showed that the cereal harvest effect of, carbon dioxide emissions and the yearly mean temperature is negative. However, in the long-run, cereal production increases as the annual mean rainfall increases. The study revealed a prevailing long-run equipoise interconnection among
carbon dioxide emissions, moderate temperature, and rainfall patterns, as well as cereal crop yield. The study suggested that policies related to adaptation strategies should be encouraged to improve the nation’s cereal production.

The study of Yu et al. (2010) established that the Consultative Group for International Agricultural Research (CGIAR) has revealed that Bangladesh agricultural production is likely to reduce due to climate change. This indicates that food insecurity is inevitable, making the country victimize to the high risk of hunger due to poor climatic conditions.

Another study endorsed that Bangladesh rice production will be the hardest hit (reduction in rice production by 7.4% annually with the period of 2005-2050) if climate change adaption strategies are ignored or given less attention (Islam et al. 2020). Moreover, Attiaoui and Boufateh (2019) assessed the climate alteration impact on cereal cultivation in the case of Tunisia from 1975 to 2014, depicted that climate change (low rainfall) has an adverse impact on cereal production. In the case of Thailand, Babel et al. (2011) and Boonwichai et al. (Boonwichai et al. 2019) also showed that temperature rise and shortage in rainfall reduced rice output. Compared to previous years, in 2012/13 cultivated paddy area and production declined by 7.2% and 11.3%, respectively in Nepal due to unfavorable climatic conditions (Khanal et al. 2018). The study furthermore revealed that Nepal’s paddy crop production is suffering from severe drought, and it is essential to provide policies aimed at climate change alleviation and farmers’ production improvement.

In the same manner, Sarkar et al. (2020) used annual average temperature (AAT) as a proxy for climate variation and investigated Malaysian oil palm production and climate change nexus from 1980 to 2010. The result mirrored previous studies’ findings; thus, AAT
detrimentally affects palm oil production. Based on the above literature of climate change and cereal production, the study proposed the following hypothesis.

\[H1: \text{Climate change negatively affects rice production in the case of Thailand.} \]

Financial development and rice production nexus

As revealed in the previous section, the role of financial development in economic development through agriculture growth is undisputed since it may provide opportunities to unblock development prospects for disadvantaged segments of the population and depresses income inequality (Park & MERCADO JR 2018). Poor climate change mitigation and adaptation strategies, pest and disease control, irrigation technology, low-quality seeds, outmoded technology utilization, and many social and economic factors detrimentally affecting agriculture productivity can be curb if farmers are not financially excluded (Bogan et al. 2015). Several empirical scholars have investigated the role of financial development in the rural economy. For example, the study of Shahbaz et al. (2013), which used the Cobb-Douglas function to assess the long-term empirical connections between development in the agrarian sector and financial development from 1971 to 2011 showed that the bidirectional causality between development in the agrarian sector and financial development is profound.

Similarly, Zakaria et al. (2019) investigation of financial growth and agricultural production-nexus in South Asia from 1973 to 2015 showed an inverted U-shaped exist between these two indicators. However, other determinants of agricultural production including per capita income, industrialization and trade openness significantly enhanced agricultural production, while agricultural labor and CO\(_2\) emissions significantly declined agricultural output.
In Pakistan, cereal production impact of climate variation, financial growth, and technical advancement, including fertilizers used and improved seeds, over the period 1977 to 2014 has been examined by Chandio et al. (2021b). The study applied the ARDL methodology to analyze the variables’ long-term interconnections. Outcomes from the study discovered that the production of cereal increases as financial development enhances, which will help in achieving the country’s food security agenda domestically.

Chandio et al. (2018) explored the credit (an attribute of financial development) effect on Pakistan's agricultural growth using primary data. The study reported that credit pushes farmers to adopt modern technologies and empowered them to be resource-efficient. Similarly, Anetor et al. (2016) advocated that policies to encourage the supply of loans at lower interest rates by the commercial banks are essential after a study in Nigeria showed a positive relationship between macro-economic development and commercial bank loans. An empirical study in Ghana also showed that credit accessibility improves youths’ intensity of agriculture participation because credit can improve farm productivity by purchasing required inputs and adopting new technologies (Twumasi et al. 2019a). In terms of rice production, Omoregie et al. (2018) study, which analyzed the credit supply impact of Nigeria’s rice production output from the period 1981 to 2016, reported that rice production output increases as credit supply grows. Given these scenarios of financial development and crop production, we proposed the following hypothesis.

H2: Financial development positively improves rice production in the case of Thailand.

Empirical Strategy and Data

Model Specification
Following the empirical recent works of Ahsan et al. (2020), Ahmad et al. (2020), Pickson et al. (2020) and Warsame et al. (2021), this study examines the short-and long-term (SLT) effects of climate warming (CW) and financial developments (FD) on rice production (RP) in the case of Thailand, the functional form can be expressed as follows:

\[
Rice\ production = f(AT, CO_2, AR, FD1, FD2, FC, LF) \tag{1}
\]

Applying several econometric techniques requires the same order of integration in the dataset. Therefore, we transformed all the study variables such as rice production, average temperature, CO\(_2\) emissions, cultivated area, financial development (i.e., FD1 and FD2), fertilizer consumption, and labour force into logarithm. Hence, Eqn (1) can be rewritten as follows:

\[
LRP_t = Y_0 + Y_1 LAT_t + Y_2 LCO_2t + Y_3 LAR_t + Y_4 LF_D1_t + Y_5 LF_D2_t + Y_6 LFC_t + Y_7 LF_t + \varepsilon_t \tag{2}
\]

where \(LRP, LAT, LCO_2, LAR, LF_D1, LF_D2, LFC\) and \(LF\) represent the natural log of rice production, natural log of average temperature, natural log of CO\(_2\) emissions, natural log of cultivated area, natural log of financial development proxy 1, natural log of financial development proxy 2, natural log of fertilizer use, and natural log of labor force. The parameters \(Y_1, Y_2, Y_3, Y_4, Y_5, Y_6\) and \(Y_7\) denote the long-run (LR) elasticity estimates, \(t\) denotes the time period, and \(\varepsilon_t\) is the white noise error term.

Empirical Model

During the empirical investigation, the empirical analysis’s initial step is to test whether or not all the study variables are stationary. In this regard, we used the Augmented Dickey-Fuller (ADF) and PP unit root testing to discover the stationarity of the variables. After
confirming the order of integration of the selected variables, we applied the ARDL bounds testing methodology established by (Pesaran et al. 2001) to scrutinize the LT co-integration relationships between rice production, temperature, CO₂ emissions, cultivated area, financial developments, fertilizer use, and labor force. The J-J cointegration approach is employed for checking the robustness of co-integration amid the study variables. As compared to conventional cointegration approaches, the ARDL bounds testing approach is more appropriate. This method is appropriate concerning the study variables’ stationary attributes. The ARDL approach turns to be appropriate when the study variables are integrated at the I(1) or I(0). This method also gives effective and efficient scientific backing for inadequate sample size (Pesaran et al. 2001, Shahbaz et al. 2013) as seen in Thailand. The ARDL method instantaneously discovers the SLT parameters. Hence by following (Raifu & Aminu 2019, Yazdi & Khanalizadeh 2014), the present study carry-out the bounds test based on the following equations:

\[\Delta LRP_t = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta LRP_{t-i} + \sum_{i=1}^{q} \Omega_2 \Delta LAT_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta CO_2_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta LAR_{t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta LFD1_{t-i} + \sum_{i=1}^{q} \Omega_6 \Delta LFD2_{t-i} + \sum_{i=1}^{q} \Omega_7 \Delta LFC_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta LFF_{t-i} + \beta_1 LRP_{t-1} + \beta_2 LAT_{t-1} + \beta_3 CO_2_{t-1} + \beta_4 LAR_{t-1} + \beta_5 LFD1_{t-1} + \beta_6 LFD2_{t-1} + \beta_7 LFC_{t-1} + \beta_8 LFF_{t-1} + \epsilon_t \] (3)

\[\Delta LAT_t = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta LAT_{t-i} + \sum_{i=1}^{q} \Omega_2 \Delta LRP_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta CO_2_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta LAR_{t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta LFD1_{t-i} + \sum_{i=1}^{q} \Omega_6 \Delta LFD2_{t-i} + \sum_{i=1}^{q} \Omega_7 \Delta LFC_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta LFF_{t-i} + \beta_1 LAT_{t-1} + \beta_2 LRP_{t-1} + \beta_3 CO_2_{t-1} + \beta_4 LAR_{t-1} + \beta_5 LFD1_{t-1} + \beta_6 LFD2_{t-1} + \beta_7 LFC_{t-1} + \beta_8 LFF_{t-1} + \epsilon_t \] (4)
\[\Delta L C O_{2t} = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta L C O_{2t-i} + \sum_{i=1}^{q} \Omega_2 \Delta L A T_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta L R P_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta L A R_{t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta L F D_{1t-i} + \sum_{i=1}^{q} \Omega_6 \Delta L F D_{2t-i} + \sum_{i=1}^{q} \Omega_7 \Delta L F C_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta L L F_{t-i} \]

\[+ \beta_1 L C O_{2t-1} + \beta_2 L A T_{t-1} + \beta_3 L R P_{t-1} + \beta_4 L A R_{t-1} + \beta_5 L F D_{1t-1} \]

\[+ \beta_6 L F D_{2t-1} + \beta_7 L F C_{t-1} + \beta_8 L L F_{t-1} \]

\[+ \varepsilon_t \]

(5)

\[\Delta L A R_t = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta L A R_{t-i} + \sum_{i=1}^{q} \Omega_2 \Delta L C O_{2t-i} + \sum_{i=1}^{q} \Omega_3 \Delta L A T_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta L R P_{t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta L F D_{1t-i} + \sum_{i=1}^{q} \Omega_6 \Delta L F D_{2t-i} + \sum_{i=1}^{q} \Omega_7 \Delta L F C_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta L L F_{t-i} \]

\[+ \beta_1 L A R_{t-1} + \beta_2 L C O_{2t-1} + \beta_3 L A T_{t-1} + \beta_4 L R P_{t-1} + \beta_5 L F D_{1t-1} \]

\[+ \beta_6 L F D_{2t-1} + \beta_7 L F C_{t-1} + \beta_8 L L F_{t-1} \]

\[+ \varepsilon_t \]

(6)

\[\Delta L F D_{1t} = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta L F D_{1t-i} + \sum_{i=1}^{q} \Omega_2 \Delta L A R_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta L C O_{2t-i} + \sum_{i=1}^{q} \Omega_4 \Delta L A T_{t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta L R P_{t-i} + \sum_{i=1}^{q} \Omega_6 \Delta L F D_{2t-i} + \sum_{i=1}^{q} \Omega_7 \Delta L F C_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta L L F_{t-i} \]

\[+ \beta_1 L F D_{1t-1} + \beta_2 L A R_{t-1} + \beta_3 L C O_{2t-1} + \beta_4 L A T_{t-1} + \beta_5 L R P_{t-1} \]

\[+ \beta_6 L F D_{2t-1} + \beta_7 L F C_{t-1} + \beta_8 L L F_{t-1} \]

\[+ \varepsilon_t \]

(7)

\[\Delta L F D_{2t} = \Omega_0 + \sum_{i=1}^{p} \Omega_1 \Delta L F D_{2t-i} + \sum_{i=1}^{q} \Omega_2 \Delta L F D_{1t-i} + \sum_{i=1}^{q} \Omega_3 \Delta L A R_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta L C O_{2t-i} \]

\[+ \sum_{i=1}^{q} \Omega_5 \Delta L A T_{t-i} + \sum_{i=1}^{q} \Omega_6 \Delta L R P_{t-i} + \sum_{i=1}^{q} \Omega_7 \Delta L F C_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta L L F_{t-i} \]

\[+ \beta_1 L F D_{2t-1} + \beta_2 L F D_{1t-1} + \beta_3 L A R_{t-1} + \beta_4 L C O_{2t-1} + \beta_5 L A T_{t-1} \]

\[+ \beta_6 L R P_{t-1} + \beta_7 L F C_{t-1} + \beta_8 L L F_{t-1} \]

\[+ \varepsilon_t \]

(8)
\[\Delta LFC_t = \Omega_0 + \sum_{i=1}^{q} \Omega_1 \Delta LFC_{t-i} + \sum_{i=1}^{q} \Omega_2 \Delta LFD2_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta LFD1_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta LRA_{t-i} \\
+ \sum_{i=1}^{q} \Omega_5 \Delta LCO_{2t-i} + \sum_{i=1}^{q} \Omega_6 \Delta LAT_{t-i} + \sum_{i=1}^{q} \Omega_7 \Delta LRP_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta LLF_{t-i} \\
+ \beta_1 LFC_{t-1} + \beta_2 LFD2_{t-1} + \beta_3 LFD1_{t-1} + \beta_4 LRA_{t-1} + \beta_5 LCO_{2t-1} \\
+ \beta_6 LAT_{t-1} + \beta_7 LRP_{t-1} + \beta_8 LLF_{t-1} \\
+ \epsilon_t \] (9)

\[\Delta LLF_t = \Omega_0 + \sum_{i=1}^{q} \Omega_1 \Delta LLF_{t-i} + \sum_{i=1}^{q} \Omega_2 \Delta LFC_{t-i} + \sum_{i=1}^{q} \Omega_3 \Delta LFD2_{t-i} + \sum_{i=1}^{q} \Omega_4 \Delta LFD1_{t-i} \\
+ \sum_{i=1}^{q} \Omega_5 \Delta LRA_{t-i} + \sum_{i=1}^{q} \Omega_6 \Delta LCO_{2t-i} + \sum_{i=1}^{q} \Omega_7 \Delta LAT_{t-i} + \sum_{i=1}^{q} \Omega_8 \Delta LRP_{t-i} \\
+ \beta_1 LLF_{t-1} + \beta_2 LFC_{t-1} + \beta_3 LFD2_{t-1} + \beta_4 LFD1_{t-1} + \beta_5 LRA_{t-1} \\
+ \beta_6 LCO_{2t-1} + \beta_7 LAT_{t-1} + \beta_8 LRP_{t-1} \\
+ \epsilon_t \] (10)

The parameters \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \) and \(\beta_8 \) represent the long-run (LR) elasticity estimates while \(\Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \) and \(\Omega_8 \) denote the short-run (SR) dynamics, the 1st differential operator is denoted by \(\Delta \), and \(\epsilon_t \) is the error term. The F-statistics posit by Pesaran et al. (2001) assesses the mutual significant of the lagged level coefficient of the variables. This study investigates the long-term (LT) cointegration relationships among the variables based on the following hypothesis:

\[H_0 = \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = 0 \] (No long-term cointegration)

\[H_0 \neq \beta_1 \neq \beta_2 \neq \beta_3 \neq \beta_4 \neq \beta_5 \neq \beta_6 \neq \beta_7 \neq \beta_8 \neq 0 \] (Exist a long-term cointegration)

Pesaran et al. (2001) provided dual important asymptotic values, including the lower critical bound (LCB) and upper critical bound (UCB). The LCB and UCB help to analyze if there exists a long-term (LT) cointegration relationships between the variables or not. When all the study variables are stationarity and integrated at I(0), the LCB could be
utilized to determine cointegration; then, using the UCB is needed. Where the calculated F-statistic is profound compared to UCB, the long-term (LT) cointegration connections between the series persists. The long-term (LT) cointegration interactions among the variables become meaningless until the computed F-statistic’s LCB is realized. The calculated F-statistic lines in the mist of LCB and UCB, cointegration outcomes are doubtful.

Data Sources

This study used the annual time-series data from the period 1969 to 2016 for Thailand. Table 1 reports a list of selected variables used in our empirical estimations and their measurements. All the study variables are carefully selected based on their usage in the previous literature. Data for rice production, cultivated area, and fertilizer use are sourced from the FAO while data for temperature, CO$_2$ emissions, financial developments, and labor force are sourced from the WDI. Figure 1 presents the trend in LRP, LAT, LCO$_2$, LAR, LFD1, FD2, LFC, and LLF in the case of Thailand over the study period.

Table 1. Measurements of the study variables

Variable(s)	Measurements
RP	Rice production (tons)
AT	Average annual temperature
CO$_2$	CO$_2$ emissions (kt)
AR	Cultivated area (hectares)
FD1	Domestic credit provided by financial sector (% of GDP)
FD2	Domestic credit to private sector by banks (% of GDP)
FC	Fertilizer consumption (tons)
LF	Rural population (% of total population)
Figure 1. Trend of study variables over the period.

Analysis and Discussion

Figure 2 shows the summary statistics of the study variables from 1969 to 2016 through box plots. In Table 2, we report the descriptive statistics and pair-wise correlation. The
outcomes confirmed the normal distribution for the series of rice production, temperature, CO₂ emissions, cultivated area, and FD1. According to the pair-wise correlation results, temperature, CO₂ emissions, cultivated area, financial development (i.e., FD1 and FD2), and fertilizer use have a strong relationship with rice production in a positive way, and labor force has a negative relationship with rice production. Both descriptive statistics and pair-wise correlation provide some preliminary information about the relation amid variables. However, several robustness econometric methods will be applied to obtain more valid findings about the interaction amid study variables.

The stationarity and order of integration of all variables should be tested before proceeding to cointegration investigation. In a time-series study with non-stationary series, false estimation problems arise. In order to apply the A.R.D.L method, the series must be stationary/integrated maximum at the first-order. For this purpose, firstly, the stationarity test was carried out with the help of conventional approaches such as A.D.F and P.P unit root testing. The outcomes of both conventional approaches are given in Table 3. Both tests reveal that all variables have unit roots in their levels. However, after taking first difference all variables become stationary. Since all variables are integrated of same order and findings confirmed that we can apply A.R.D.L approach to explore a long-term (LT) relationship amid the variables.
A: Range vs. LRP

- Max: 17.4558
- 75%: 17.18235
- 25%: 16.66509
- Min: 16.33425
- Mean: 16.8943

B: Range vs. LAT

- Max: 3.31002
- 75%: 3.28726
- 25%: 3.26188
- Min: 3.23041
- Mean: 3.2743

C: Range vs. LCO2

- Max: 12.5406
- 75%: 12.3216
- 25%: 11.44023
- Min: 10.5842
- Mean: 11.3479

D: Range vs. LRA

- Max: 16.29681
- 75%: 16.12397
- 25%: 16.05013
- Min: 15.72949
- Mean: 16.09742
Figure 2: Box-plot summary statistics of A LRP, B LAT, C LCO₂, D LRA, E FD1, F FD2, G LFC, and H LLF.
Table 2. Descriptive statistics and correlation estimates

	LRP	LAT	LCO₂	LRA	LFD1	LFD2	LFC	LLF
Mean	16.8943	3.2742	11.4102	16.0501	4.5066	4.2086	12.9968	4.2146
Median	16.8530	3.2734	11.6632	16.0550	4.6313	4.4807	13.4015	4.2506
Maximum	17.4558	3.3100	12.5680	16.2968	5.1841	5.1150	14.3131	4.3736
Minimum	16.3342	3.2304	9.5861	15.7294	3.2404	2.8250	10.6572	3.9425
Std. Dev.	0.3178	0.0181	0.9548	0.1357	0.5182	0.6163	1.1331	0.1208
Skewness	0.0946	-0.0578	-0.3557	-0.4600	-0.7068	-0.6796	-0.6075	-0.8759
Kurtosis	1.9329	2.6748	1.6698	3.2343	2.4981	2.4586	2.0330	2.6639
Jarque-Bera	2.3491	0.2381	4.5513	1.8031	4.5003	4.8455	4.8223	6.3641
Probability	0.3089	0.8877	0.1027	0.4059	0.1053	0.0886	0.0897	0.0414
Sum	810.9262	157.1662	547.6910	770.4064	216.3175	202.0132	623.8490	202.3050
Sum Sq. Dev.	4.7483	0.0154	42.8486	0.8659	12.6254	17.8544	60.3518	0.6866
Observations	48	48	48	48	48	48	48	48

Note: ***, and ** shows the level of significance at the 1% and 5%.
Table 3. Results of unit root testing

Variable(s)	A.D.F. Level	1st difference	P.P. Level	1st difference
LRP	-2.4314	-9.0042***	-2.6163	-8.9460***
	(0.3594)	(0.0000)	(0.2753)	(0.0000)
LAT	0.739834	-9.1485***	0.2594	-7.9094***
	(0.8708)	(0.0000)	(0.7571)	(0.0000)
LCO2	-1.0206	-4.9111***	-0.2626	-4.8598***
	(0.9309)	(0.0013)	(0.9895)	(0.0015)
LRA	-1.3169	-8.2019***	-1.3169	-8.1035***
	(0.8714)	(0.0000)	(0.8714)	(0.0000)
LFD1	-2.0318	-4.7580***	-2.2395	-4.6412***
	(0.5688)	(0.0020)	(0.4575)	(0.0028)
LFD2	-1.6536	-3.3973*	-1.4449	-3.5076*
	(0.7555)	(0.0642)	(0.8342)	(0.0503)
LFC	-1.1175	-5.8657***	-0.5806	-16.1794
	(0.9151)	(0.0001)	(0.9756)	(0.0000)
LLF	-2.0980	-11.9892***	0.0934	-8.9987***
	(0.5331)	(0.0000)	(0.9963)	(0.0000)

Note: null hypothesis = H0: there is no stationarity. ***, **, and * indicates the level of significance at the 1%, 5%, and, 10%.

Lag order selection and Long-run (LR) equilibrium relationship

After the assessment of integration level of the variables, in the following stage, the LR equilibrium connections amid the variables was evaluated by utilizing the A.R.D.L bounds testing method which is recommended by several authors (Abdul-Rahaman et al., Ahsan et al. 2020, Anh et al. 2020, Zhai et al. 2017). A suitable lag length for the A.R.D.L. bounds testing method was also determined by applying the V.A.R model. The A.I.C., S.I.C., and H.Q.C information criterion were used to determine a suitable lag order. The outcomes of the tests for lag length are reported in Table 4. This study used the optimal lag length 2 based on the A.I.C.

Table 4. Lag order selection criteria

Lags	Log.L.	L.R.	F.P.E.	A.I.C.	H.Q.C.	S.I.C.
Lag = 0	362.9939	NA	5.20e-17	-14.7914	-14.6735	-14.4795
Lag = 1	790.7564	695.1141	1.41e-23	-29.9481	-28.8874	-27.1413*
Lag = 2	883.5668	119.8801*	5.30e-24*	-31.1486*	-29.1450*	-25.8468
Following the determination of a suitable lag order, the long-term cointegration association amid the study variables was explored. Table 5 shows the long-term cointegration test results. As depicted in Table 5, the calculated F statistic value (4.06**) of the model F_{LRP} (LRP/LAT, LCO$_2$, LAR, LFD1, LFD2, LFC, LLF) is prominent compared with the critical of the upper bound I(1) value at the 5% significance level. This means a long-term relationship was found amid the study variables. Likewise, the calculated F statistic values (10.35***, 4.77***) for the models F_{LAT} (LAT/ LRP, LCO$_2$, LAR, LFD1, LFD2, LFC, LLF) and F_{LCO2} (LCO$_2$/LAT, LRP, LAR, LFD1, LFD2, LFC, LLF) are greater than the I(1) critical value bound at the 1% significance level. Suggesting that there exists a long-term interaction between the variables. In contrast, the calculated F statistic values (1.59, 3.09, 1.88) for the models F_{LAR} (LAR/LCO$_2$, LAT, LRP, LFD1, LFD2, LFC, LLF), F_{LFD2} (LFD2/LFD1, LAR, LCO$_2$, LAT, LRP, LFC, LLF), and F_{LFC} (LFC/LFD2, LFD1, LAR, LCO$_2$, LAT, LRP, LLF) are not exceeds the I(1) critical value bound at all levels of significance. Suggesting that no cointegration for these models. In addition, the calculated F statistic values (5.00***, 9.58***) for the models F_{LFD1} (LFD1/LAR, LCO$_2$, LAT, LRP, LFD2, LFC, LLF) and F_{LLF} (LLF/LFC, LFD2, LFD1, LAR, LCO$_2$, LAT, LRP) exceeds the I(1) critical value bound at the 1% significance level.

Table 5. Results of A.R.D.L cointegrating

Estimated model(s)	F value	Cointegration
F_{LRP} (LRP/LAT, LCO$_2$, LAR, LFD1, LFD2, LFC, LLF)	4.06**	Yes
F_{LAT} (LAT/ LRP, LCO$_2$, LAR, LFD1, LFD2, LFC, LLF)	10.35***	Yes
F_{LCO2} (LCO$_2$/LAT, LRP, LAR, LFD1, LFD2, LFC, LLF)	4.77***	Yes
F_{LAR} (LAR/LCO$_2$, LAT, LRP, LFD1, LFD2, LFC, LLF)	1.59	No
F_{LFD1} (LFD1/LAR, LCO$_2$, LAT, LRP, LFD2, LFC, LLF)	5.00***	Yes
F_{LFD2} (LFD2/LFD1, LAR, LCO$_2$, LAT, LRP, LFC, LLF)	3.09	No
Additionally, to verify whether or not there exists a long-term (LT) association amid the study variables, we applied the Johansen’s (1992) cointegration method, examined both trace, and maximum eigen statistics. Based on significant p-values of both statistics such as trace and maximum eigen, we established a long-term (LT) connections between the study variables. The Johansen cointegration test outcomes given in Table 6 confirmed three cointegration for both trace and maximum eigen statistics.

Table 6. Johanson cointegration

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.
None	0.8174	238.6283***	159.5297	0.0000
At most 1	0.7221	160.3862***	125.6154	0.0001
At most 2	0.6152	101.4810***	95.7536	0.0190
At most 3	0.4267	57.54785	69.8188	0.3183
At most 4	0.3055	31.95564	47.8561	0.6146
At most 5	0.2071	15.18392	29.7970	0.7680
At most 6	0.0904	4.508000	15.4947	0.8586
At most 7	0.0032	0.148216	3.8414	0.7002

Maximum Eigenvalue				
None	0.8174	78.2421***	52.3626	0.0000
At most 1	0.7221	58.9051**	46.2314	0.0014
At most 2	0.6152	43.9332**	40.0775	0.0175
At most 3	0.4267	25.5922	33.8768	0.3461
At most 4	0.3055	16.7717	27.5843	0.5996
At most 5	0.2071	10.6759	21.1316	0.6795
At most 6	0.0904	4.3597	14.2646	0.8196
At most 7	0.0032	0.1482	3.8414	0.7002

*Note: null hypothesis = \(H_0: \) there is no long-term cointegration. ***, and ** means 1%, and 5% level of significance.
Table 7 displays the long-and short-run (LSR) results. The findings of long-and short-run (LSR) imply that the interconnection between average temperature and rice production is negative but an insignificant, which indicates a one per cent increase in temperature decreases rice production with -0.0138\% and -0.0111\% in the both cases. This finding mirrors Ahmad et al. (2020) Guntukula (2020), and Pickson et al. (2020) studies, who revealed that maximum temperature declines the cereal production.

The LR results reveal that CO$_2$e has a positive relationship with rice production but an insignificant in the case of Thailand. This means CO$_2$e has no adverse effect on rice production. However, the SR results disclose that CO$_2$e-rice production nexus is negative, where a one per cent increase in atmospheric CO$_2$e concentration decreases rice production with -0.0236. These results mirror past literature (Ahmad et al. 2020, Chandio et al. 2020b, Pickson et al. 2020, Qureshi et al. 2016, Warsame et al. 2021). In the context of Pakistan, evidence provided by Qureshi et al. (2016) reported that CO$_2$e and GHGe affect rice production detrimentally.

The nexus of cultivated area and rice production has exposed a significant positive relationship in the LSR. This relationship suggests that an increase in cultivated area by a per cent improves rice production with 0.6403\% and 1.1694\% in the LSR. The study results are referring to the findings of Bashir and Mehmood (2010); Omoregie et al. (2018); Guntukula (2020); and Rayamajhee et al. (2020), who specified that the increase in the cultivated area had increased rice production.

Similarly, the LSR results indicate that the financial development (FD1) and rice production nexus are significantly positive, suggesting that a one percent increase in
financial development (FD1) enhances rice production 0.5727% and 0.4605%. Rural households in Thailand boost their household income through rice crop cultivation. The present evidence verified that financial development improves the livelihoods of rural households by increasing rice production. The empirical results support the findings of Afrin et al. (2017); Anh et al. (2020); Chandio et al. (2021b); and Zakaria et al. (2019), who found that increase in financial development has improved rice production as well agricultural growth.

When we use financial development (FD2), the results revealed that there is a significant negative association between financial development (FD2) and rice production in the LSR. This provides an indication towards the characteristics of credit supplied by banks in Thailand. Mostly, the lending procedure as well as time periods of formal credit is not flexible compared to informal credit, which can be adjusted to match the crop production progress. This result imples that a one per cent decrease in financial development (FD2) declines rice production with -0.7609% and -0.2403% in both periods. Therefore, banking sector credit process and the ultimate distribution needs substantial improvements for increased rice productivity.

In addition, turning to other an important inputs (fertilizers use and labor force); the results revealed the positive and significant relationship with rice production in the LSR. The contribution of both an important inputs to rice production is boosting and have positive, beneficial impacts. Thus, it declares that a one per cent increase in fertilizers use and labor force helps to increase rice production with 0.2672% and 0.8384% in the LR. The empirical results mirror the results of Rehman et al. (2019); Rayamajhee et al. (2020); and Zhai et al. (2017), Hamid et al (2021), who reported that fertilizers use and labor force, both input
factors significantly contributed to rice production. Lastly, we confirmed the robustness of the ARDL model by testing with various diagnostic assessments including the heteroscedasticity, normality, serial correlation LM, and Ramsey, respectively. The stability of LSR estimations is verified by CUSUM and CUSUMsq techniques. The results of both the CUSUM and CUSUMsq techniques are exhibited in the Figs. 3 and 4 confirmed that the model is stable. The outcomes of the stability test of coefficients are exhibited in the Fig. 5. As we can see from the Fig.5, according to the test results assessed parameters are robustness and stable over the period.

Table 7. Long-run (LR) and Short-run (SR) estimations

Variable(s)	Coefficient	Std. error	t-statistic	Prob.
Long-run estimation				
LAT	-0.0138	0.6025	-0.0229	0.9819
LCO2	0.1687	0.1051	1.6059	0.1181
LRA	0.6403**	0.2347	2.7279	0.0103
LFD1	0.5727***	0.1735	3.2994	0.0024
LFD2	-0.7609***	0.1530	-4.9708	0.0000
LFC	0.2672**	0.0998	2.6758	0.0117
LLF	0.8384**	0.3524	2.3787	0.0235
Constant	-1.5971	5.3598	-0.2979	0.7676
Short-run estimation				
DLRP(-1)	0.1959	0.1404	1.3952	0.1725
DLAT	-0.0111	0.4848	-0.0228	0.9819
DLCO2	-0.0236	0.1294	-0.1828	0.8561
DLCO2(-1)	-0.0446	0.1486	-0.3005	0.7657
DLCO2(-2)	0.2040**	0.0896	2.2771	0.0296
DLRA	1.1694***	0.1401	8.3433	0.0000
DLRA(-1)	-0.3313	0.2484	-1.3333	0.1918
DLRA(-2)	-0.3232*	0.1837	-1.7588	0.0882
DLFD1	0.4605***	0.1373	3.3525	0.0021
DLFD2	-0.2403**	0.1080	-2.2245	0.0333
DLFD2(-1)	-0.3714***	0.1337	-2.7780	0.0091
DLFC	-0.0855	0.0533	-1.6044	0.1184
DLFC(-1)	0.0472	0.0686	0.6878	0.4965
DLFC(-2)	0.2531***	0.0584	4.3292	0.0001
DLLF	0.6741**	0.2867	2.3507	0.0251
CointEq(-1)	-0.8040***	0.1404	-5.7240	0.0000
Diagnostic tests				
R-squared	0.9881			
Test	Value	p-value		
-----------------	-----------	---------		
Adjusted R^2	0.9826			
F-stat	178.1149***			
χ^2 HETERO	2.6432(0.1110)			
χ^2 NORMAL	1.3024(0.5214)			
χ^2 SERIAL	1.0658(0.3571)			
χ^2 RESET	0.7659(0.4495)			

Note: ***, **, and * means 1%, 5% and 10% level of significance.

Figure 3: Outcomes of CUSUM test
Figure 4: Outcomes of CUSUMsq test
Figure 5: Outcomes of stability test of the Model’s coefficients
This study applied the VECM Granger causality approach to explore the direction of causality amid the variables, and this approach is appropriate for vital policy implications. Table 8 reports the VECM estimated findings. The causality connections of all factors with rice production confirm long-run (LR) links of all variables with rice production. The short-run (SR) causal association is unidirectional between temperature and rice production. Furthermore, CO$_2$ emissions, financial development and labor force are also affecting productivity level in the SR. The temperature is also linked with other factors in the LR and CO$_2$ emissions and temperature have a unidirectional link in the SR. Similarly, cultivated areas, financial development and labor also share unidirectional causality with rice production. The CO$_2$ emissions and remaining factors share a LR causal association. The one-way SR causal relationship is valid among rice production, labor, temperature, area, fertilizers, and emissions in the SR. The cultivation area has no LR connection with all factors; however, temperature, CO$_2$ emissions, financial development and labor share a SR relationship with cultivation area. Likewise, both proxies of financial development have a significant LR impact on rice production and cultivation area as well as labor force is also associated with financial development in the SR. All factors are not associated with fertilizers in the LR. The only significant connection in the SR is running from CO$_2$ emissions to fertilizers. Finally, LR association of all factors with labor force is also not significant, but a SR unidirectional link is valid from rice production, area, temperature and financial development to labor force. In short, climatic factors and financial development significantly affects rice production in LSR. The outcomes of Shahbaz et al. showed that the bidirectional causality between agricultural progress and financial improvement is
positive. Omoregie et al. (2018) reported a significant and positive connection between credit supply and paddy crop production. Likewise, Chandio et al. (2020b) confirmed that annual average temperature and CO₂ emissions negatively affects yields of cereal, while the increment in yearly average rainfall positively influence yields of cereal in the LR. Thus, the outcomes are consistent with literature and validate long-run impact of climatic factors on rice productivity.
Table 8. VECM Granger-causality results.

Variables	Wald-statistic (Short-run causality)	Long-run causality							
	LRP	LAT	LCO₂	LRA	LFD1	LFD2	LFC	LLF	ECT(-1)
LRP	2.8689*	2.3383	0.7838	0.0918	1.7866	1.0373	0.5319	-0.6804***	
	(0.0903)	(0.1262)	(0.3760)	(0.7618)	(0.1813)	(0.3084)	(0.4658)	(0.0035)	
LAT	0.0074	4.8855**	0.0009	0.5640	1.1817	1.4912	1.7418	-0.2942***	
	(0.9310)	(0.0271)	(0.9756)	(0.4526)	(0.2770)	(0.2220)	(0.1869)	(0.0014)	
LCO₂	3.8915**	2.7599	-	0.8671	0.2690	0.0002	0.0048	12.0477***	-0.1025***
	(0.0485)	(0.0967)	(0.3517)	(0.6040)	(0.9867)	(0.9444)	(0.0005)	(0.0004)	
LRA	2.5154	5.1900**	6.2871**	-	2.9299	5.9443**	0.0019	1.8423	-0.0816
	(0.1127)	(0.0227)	(0.0122)	(0.0869)	(0.0148)	(0.9648)	(0.1747)	(0.6356)	
LFD1	0.6032	1.8431	0.3416	0.2266	-	8.7624***	0.1508	0.1154	-0.2268*
	(0.4373)	(0.1746)	(0.5589)	(0.6340)	(0.0031)	(0.6977)	(0.7340)	(0.0646)	
LFD2	4.6314**	3.8860**	0.2010	1.6187	17.6060***	-	1.0859	15.3033***	-0.6511*
	(0.0314)	(0.0487)	(0.6539)	(0.2033)	(0.0000)	(0.2974)	(0.0001)	(0.0667)	
LFC	2.2029	0.0063	17.5403***	0.9229	0.4660	0.6639	-	1.7834	0.2483
	(0.1377)	(0.9364)	(0.0000)	(0.3367)	(0.4948)	(0.4152)	-	(0.1817)	(0.3249)
LLF	3.2979*	3.9362**	0.4324	3.8847**	9.6304***	2.3903	0.0084	-	-0.0001
	(0.0694)	(0.0473)	(0.5108)	(0.0487)	(0.0019)	(0.1221)	(0.9266)	-	(0.5180)

Note: ***, **, and * means 1%, 5% and 10% level of significance.
Results of the IRF and VDM

The outcomes are rechecked with Impulse Response Function (IRF) and Variance Decomposition Method (VDM) afar the specified time. The IFR of rice production stated that temperature has negative impact but this impact decreases gradually in long run. The connection between CO₂ emission and rice productivity is relatively stable and positive during all periods. The association between cultivation area and rice production experienced a significant decrease and became stable after few periods. The link between two variables remains positive till end. The association of both financial development proxies with rice production is different. The impact of domestic credit to private sector is positive and the affiliation of banking credit is negative. However, this negative association has been improving with the passage of time and turned positive at the end. The impact of fertilizers on rice productivity is stable and positive in the long run but labor force indicates a negative association that improves as time passes and touches the positive note in the long run (see Figure 6).
Response of LRP to LAT

Response of LRP to LCO2

Response of LRP to LRA

Response of LRP to LFD

Response of LRP to LFD2

Response of LRP to LFC

Response of LRP to LLF

Figure 6: Impulse Response Function

Additionally, the outcomes of VDM in Table 9 indicate that the impact of financial development and climate change factors improves in the long run. The most prominent impact comes from emissions, financial development, fertilizers, and cultivation area. These outcomes also validate the ultimate long-run association of financial development and climatic factors on rice production in the long run. Thus, both climate change and socioeconomic development is crucial for rice production in Thailand, especially in the long-run.
Table 9. Variance Decomposition of LNRP

Period	S.E.	LRP	LAT	LCO₂	LRA	LFD1	LFD2	LFC	LLF
1	0.082	100.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.097	90.578	0.010	1.758	2.366	0.221	3.103	1.942	0.017
3	0.108	82.123	0.094	3.292	3.002	0.229	6.600	4.603	0.053
4	0.118	75.843	0.287	4.393	2.861	0.195	9.378	6.938	0.102
5	0.126	71.352	0.476	5.225	2.571	0.222	11.255	8.737	0.159
6	0.133	68.145	0.612	5.933	2.318	0.311	12.355	10.102	0.221
7	0.139	65.804	0.689	6.603	2.125	0.438	12.867	11.184	0.286
8	0.144	64.029	0.716	7.279	1.982	0.577	12.964	12.094	0.356
9	0.149	62.607	0.707	7.979	1.881	0.714	12.782	12.899	0.428
10	0.152	61.384	0.679	8.705	1.824	0.839	12.430	13.632	0.503
11	0.156	60.248	0.652	9.447	1.820	0.948	11.996	14.304	0.581
12	0.159	59.109	0.645	10.191	1.885	1.040	11.555	14.912	0.660
13	0.161	57.899	0.679	10.916	2.037	1.112	11.170	15.443	0.739
14	0.164	56.567	0.773	11.601	2.296	1.165	10.895	15.882	0.817
15	0.167	55.078	0.943	12.223	2.675	1.199	10.772	16.214	0.892

Conclusion and policy implications

In Thailand, as in many other Asian countries where rice is a staple food crop, and it is major source of income for the vast majority of rural households. Several studies have shown that climate change significantly affected crops yield in developing regions. To address the climate variability issue and financial development nexus, we examined the SR and LR rice production impact of climate change and financial growth using Thailand as a case study. The data used was from the period 1969 to 2016. Other important rice production determinants incorporated in the study include cultivated area, fertilizer use, and agrarian labor force. The ARDL model was employed to explore the LSR dynamics relationship between the study variables. The VECM based Granger causality test was also applied to analyze the data for causal connections.

The ARDL model results show that the study variables are cointegrated; in other words, the variables exhibited a long-term association among themselves. The findings confirmed that average temperature exerts an inverse effect on rice production in both the SR and LR.
CO$_2$e exerts a profound impact on rice production in the LR, while the SR exerts a negative effect indicating that the agricultural sector is extremely vulnerable to climate change, resulting in food insecurity, which directly affects rural households' livelihoods in developing countries. In addition, financial development (FD1) positively and statistically improves rice production in both cases indicating that financial development is crucial for improving the production of cereal crop and ensuring food security and reducing poverty in rural areas of developing nations. In contrast, banks' domestic credit to private sector as proxy of financial development (FD2) negatively influenced rice production in both short and long-run. This shows that domestic credit to the private sector by banks with inappropriate lending procedures may have adverse impacts on rice production and needs further improvements. In addition, cultivated area, fertilizers use and labor force positively and statistically contributed to rice production in the long-and short-run. These findings suggest that cultivated area, fertilizers use and labor force are important determinants of rice production and played a vital role to enhanced rice production in the case of Thailand. The causality connections of all factors with rice production confirm long run links of all variables with rice production. The short-run causal association is unidirectional between temperature and rice production. Furthermore, CO$_2$ emissions, financial development, and labor force are also affecting productivity level in short-run. Finally, the IRF and VDM outcomes also confirmed that both climate change and socioeconomic development are crucial for rice production in Thailand, especially in long-run. The study suggests that Thailand's banking sector should engage with more profound financial activities related to agriculture, especially short and medium-term loans should be provided to the farming community. This will enhance the banking sector's contribution and turn the negative
impact of banking credit into positive in the long run. On the same note, climate change and primary factors of agriculture including fertilizers, cultivation area, and labor should be monitored for increased productivity of rice in both long and short run. Therefore, Thailand Government should reform the financial banking sector and expand the credit supply to farming communities based on flexible procedure. To cope with climate change and improve rice production, there is need to launch climate financing scheme through banking sector and grant credit to farmers’ at easy instalments.

Authors’ contributions
Abbas Ali Chandio has accomplished the conception and design of the study, data collection and analysis, drafting the work, and validation of the outcomes.
Martinson Ankrah Twumasi has contributed to writing the literature section.
Fayyaz Ahmad has contributed to data analysis and interpreted the results.
Ghulam Raza Sargani has reviewed and edited the manuscript.
Yuansheng Jiang has contributed to proofreading and final approval.

Data availability
The data will be available on request.

Conflict of interest
The authors declare that they have no conflict of interest.

Funding
No funding was received from conducting this study.

Ethical Approval
Not applicable

Consent to Participate
Not applicable

Consent to Publish
Not applicable

Reference
Abdul-Rahaman A, Issahaku G, Zereyesus YA Improved rice variety adoption and farm production efficiency: Accounting for unobservable selection bias and technology gaps among smallholder farmers in Ghana. Technology in Society 64, 101471
Afrin S, Haider MZ, Islam MS (2017): Impact of financial inclusion on technical efficiency of paddy farmers in Bangladesh. Agricultural Finance Review

Ahmad S, Tariq M, Hussain T, Abbas Q, Elham H, Haider I, Li X (2020): Does Chinese FDI, Climate Change, and CO2 Emissions Stimulate Agricultural Productivity? An Empirical Evidence from Pakistan. Sustainability 12, 7485

Ahsan F, Chandio AA, Fang W (2020): Climate change impacts on cereal crops production in Pakistan. International Journal of Climate Change Strategies and Management

Ali E (2021): Farm Households’ Adoption of Climate-smart Practices in Subsistence Agriculture: Evidence from Northern Togo. Environmental Management, 1-14

Anetor F, Ogbechie C, Kelikume I, Ikpesu F (2016): Credit supply and agricultural production in Nigeria: a vector autoregressive (VAR) approach. Journal of Economics and Sustainable Development 7

Anh NT, Gan C, Anh DLT (2020): Does credit boost agricultural performance? Evidence from Vietnam. International Journal of Social Economics

Arunrat N, Pumijumnong N (2015): The preliminary study of climate change impact on rice production and economic in Thailand. Asian Social Science 11, 275

Arunrat N, Wang C, Pumijumnong N, Sereenonchai S, Cai W (2017): Farmers' intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. Journal of Cleaner Production 143, 672-685

Attiaoui I, Boufateh T (2019): Impacts of climate change on cereal farming in Tunisia: a panel ARDL–PMG approach. Environmental Science and Pollution Research 26, 13334-13345

Babel MS, Agarwal A, Swain DK, Herath S (2011): Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Northeast Thailand. Climate Research 46, 137-146

Bashir MK, Mehmood Y (2010): Institutional credit and rice productivity: A case study of District Lahore, Pakistan. China Agricultural Economic Review

Bogan VL, Turvey CG, Salazar G (2015): The elasticity of demand for microcredit: evidence from Latin America. Development Policy Review 33, 725-757

Boonwichai S, Shrestha S, Babel MS, Weesakul S, Datta A (2019): Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Science of the Total Environment 652, 189-201

Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007): Assessing the vulnerability of food crop systems in Africa to climate change. Climatic change 83, 381-399

Chandio AA, Jiang Y, Wei F, Guangshun X (2018): Effects of agricultural credit on wheat productivity of small farms in Sindh, Pakistan. Agricultural Finance Review

Chandio AA, Jiang Y, Rauf A, Ahmad F, Amin W, Shehzad K (2020a): Assessment of formal credit and climate change impact on agricultural production in Pakistan: A time series ARDL modeling approach. Sustainability 12, 5241

Chandio AA, Ozturk I, Akram W, Ahmad F, Mirani AA (2020b): Empirical analysis of climate change factors affecting cereal yield: evidence from Turkey. Environmental Science and Pollution Research 27, 11944-11957

Chandio AA, Jiang Y, Ahmad F, Adhikari S, Ain QU (2021a): Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal. Technology in Society 66, 101607

Chandio AA, Jiang Y, Akram W, Adeel S, Irfan M, Jan I (2021b): Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. Journal of Cleaner Production 288, 125637
Chiarawipa R, SDOODEE KTS (2020): Assessing impact of weather variability and changing climate on oil-palm yield in major growing regions of southern Thailand. Journal of Agrometeorology 22, 274-284

Chinvanno S, Boulidam S, Inthavong T, Souvannalath S, Lerupavithnapa B, Kerdsueb V, Thuan N (2013): Climate risks and rice farming in the lower Mekong river basin. Climate Change and Vulnerability: Two Volume Set 333

Churchill SA, Marisetty VB (2020): Financial inclusion and poverty: a tale of forty-five thousand households. Applied Economics 52, 1777-1788

FAO (2013): Edible Insects. Future Prospects for Food and Feed Security, Food and Agriculture Organization of the United Nations, available at: https://doi.org/10.1017/CBO9781107415324.004.

FAO (2017): The Future of Food and Agriculture: Trends and Challenges, Food and Agriculture Organization of the United Nations, Rome, available at: http://www.fao.org/publications/fofa.

Felkner J, Tazhibayeva K, Townsend R (2009): Impact of climate change on rice production in Thailand. American Economic Review 99, 205-10

Guntukula R (2020): Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. Journal of Public Affairs 20, e2040

Hamid F, Yazdanpanah M, Baradaran M, Khalilimoghadam B, Azadi H (2021): Factors affecting farmers' behavior in using nitrogen fertilizers: society vs. farmers' valuation in southwest Iran. Journal of Environmental Planning and Management 64, 1886-1908

IPCC (2014): “Summary for policymakers.”, In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 111, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1–32.

Islam ARMT, Shill BK, Salam R, Siddik MNA, Patwary MA (2020): Insight into farmers’ agricultural adaptive strategy to climate change in northern Bangladesh. Environment, Development and Sustainability, 1-26

Issahaku G, Abdulai A (2020): Can Farm Households Improve Food and Nutrition Security through Adoption of Climate - smart Practices? Empirical Evidence from Northern Ghana. Applied Economic Perspectives and Policy 42, 559-579

Johansen S (1992): Determination of cointegration rank in the presence of a linear trend. Oxford Bulletin of Economics and Statistics 54, 383-397

Khanal U, Wilson C, Hoang V-N, Lee B (2018): Farmers' adaptation to climate change, its determinants and impacts on rice yield in Nepal. Ecological Economics 144, 139-147

Limantol AM, Keith BE, Azabre BA, Lennartz B (2016): Farmers' perception and adaptation practice to climate variability and change: a case study of the Vea catchment in Ghana. SpringerPlus 5, 1-38

Mainuddin M, Kirby M, Hoan CT (2012): Water productivity responses and adaptation to climate change in the lower Mekong basin. Water international 37, 53-74

Mainuddin M, Kirby M, Hoan CT (2013): Impact of climate change on rainfed rice and options for adaptation in the lower Mekong Basin. Natural Hazards 66, 905-938

OAE (2018): Office of Agricultural Economics, M. of A. and C. in T. (2018), “The situation and trends of agricultural products of Thailand in 2018”.

Ojo T, Baiyegunhi L (2020): Impact of climate change adaptation strategies on rice productivity in South-west, Nigeria: An endogeneity corrected stochastic frontier model. Science of The Total Environment 745, 141151
Okwala T, Shrestha S, Ghimire S, Mohanasundaram S, Datta A (2020): Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin, Thailand. Environmental research 186, 109544

Omoriege OK, Ikpesu F, Okpe AE (2018): Credit supply and Rice output in Nigeria: Empirical insight from vector error correction model approach. International Journal of Economics and Financial Issues 8, 68-74

Park C-Y, MERCADO JR R (2018): Financial inclusion, poverty, and income inequality. The Singapore Economic Review 63, 185-206

Pesaran MH, Shin Y, Smith RJ (2001): Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics 16, 289-326

Pickson RB, He G, Ntiamoah EB, Li C (2020): Cereal production in the presence of climate change in China. Environmental Science and Pollution Research 27, 45802-45813

Pickson RB, Boateng E (2021): Climate change: a friend or foe to food security in Africa? Environment, Development and Sustainability, 1-26

Pickson RB, He G, Boateng E (2021): Impacts of climate change on rice production: evidence from 30 Chinese provinces. Environment, Development and Sustainability, 1-19

Qureshi MI, Awan U, Arshad Z, Rasli AM, Zaman K, Khan F (2016): Dynamic linkages among energy consumption, air pollution, greenhouse gas emissions and agricultural production in Pakistan: sustainable agriculture key to policy success. Natural hazards 84, 367-381

Raifu IA, Aminu A (2019): Financial development and agricultural performance in Nigeria: what role do institutions play? Agricultural Finance Review

Rayamajhee V, Guo W, Bohara AK (2020): The Impact of Climate Change on Rice Production in Nepal. Economics of Disasters and Climate Change, 1-24

RD (2016): Rice Department, “Rice cultivation situation 2016/2017”.

Rehman A, Chandio AA, Hussain I, Jingdong L (2019): Fertilizer consumption, water availability and credit distribution: major factors affecting agricultural productivity in Pakistan. Journal of the Saudi Society of Agricultural Sciences 18, 269-274

Roul MK, Mishra R, Das A (2017): IMPACT OF INCREASE IN GREENHOUSE GASES ON GLOBAL WARMING AND ITS REMEDIES. JETIR1712134 Journal of Emerging Technologies and Innovative Research.

Saqib SE, Ahmad MM, Panezai S (2016): Landholding size and farmers’ access to credit and its utilisation in Pakistan. Development in Practice 26, 1060-1071

Sarkar MSK, Begum RA, Pereira JJ (2020): Impacts of climate change on oil palm production in Malaysia. Environmental Science and Pollution Research 27, 9760-9770

Shahbaz M, Shabbir MS, Butt MS (2013): Effect of financial development on agricultural growth in Pakistan. International Journal of Social Economics

Sharma S, Majumdar K (2021): Efficiency of rice production and CO2 emissions: A study of selected Asian countries using DDF and SBM-DEA. Journal of Environmental Planning and Management 64, 2133-2153

Shrestha S, Chapagain R, Babel MS (2017): Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment 599, 689-699

Twumasi MA, Jiang Y, Acheampong MO (2019a): Capital and credit constraints in the engagement of youth in Ghanaian agriculture. Agricultural Finance Review

Twumasi MA, Jiang Y, Danquah FO, Chandio AA, Agbenyo W (2019b): The role of savings mobilization on access to credit: a case study of smallholder farmers in Ghana. Agricultural Finance Review
Warsame AA, Sheik-Ali IA, Ali AO, Sarkodie SA (2021): Climate change and crop production nexus in Somalia: an empirical evidence from ARDL technique. Environmental Science and Pollution Research, 1-13

Yazdi SK, Khanalizadeh B (2014): The financial development and agriculture growth in Iran: ARDL approach, Proceedings of the 5th International Conference on Development, Energy, Environment, Economics „Recent Advances in Energy, Environment and Financial Planning, pp. 335-342

Yu W, Alam M, Hassan A, Khan AS, Ruane A, Rosenzweig C, Major D, Thurlow J (2010): Climate change risks and food security in Bangladesh. Routledge

Zakaria M, Jun W, Khan MF (2019): Impact of financial development on agricultural productivity in South Asia. Agricultural Economics 65, 232-239

Zhai S, Song G, Qin Y, Ye X, Lee J (2017): Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach. PloS one 12, e0184474
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Highlights.docx