Intermittent inotropic therapy with levosimendan vs. milrinone in advanced heart failure patients

Assi Milwidsky1*, Shir Frydman1,2, Michal Laufer-Perl1, Ben Sadeh1, Orly Sapir1, Yoav Granot1, Aviram Hochstadt1, Liuba Korotetski1, Liora Ketchker1, Yan Topilsky1, Shmuel Banai1 and Ofer Havakuk1

1Cardiology Department at the Tel-Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and 2Internal Medicine "B" at the Tel-Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

Abstract

Aims Routine, intermittent inotropic therapy (IIT) is still applied in advanced heart failure (HF) patients either as a bridge to definitive treatment or as a mean to improve quality of life (QOL), despite limited evidence to support its’ use. Given recent reports of improved QOL and reduced HF hospitalization, with levosimendan compared with placebo in advanced HF patients, we aimed to assess the effects of switching a small group of milrinone-treated patients to levosimendan. This was performed as part of a protocol for changing our ambulatory HF clinic milrinone-based IIT to levosimendan.

Methods and results Single-centre study of consecutive ambulatory advanced HF patients that received ≥4 cycles of once-weekly milrinone IIT at our HF outpatient clinic, who were switched to levosimendan IIT. All patients had left ventricular ejection fraction ≤35%, elevated B-natriuretic peptide (BNP), and were in New York Heart Association Classes III–IV despite maximally tolerated guideline directed medical therapy. Patients were evaluated using BNP levels, echocardiography, cardio-pulmonary exercise test, and HF QOL questionnaire before and after 4 weeks of levosimendan IIT. The cohort included 11 patients, 10 (91%) were male and the mean age was 76 ± 12 years. After 4 weeks of levosimendan therapy, maximal O2 consumption improved in 8/9 (89%) by a mean of 2.28 mL/kg [95% CI: 0.16–4.14, P = 0.05]. BNP levels decreased in 9/11 (82%) levosimendan treated patients, from a median of 1015 ng/L [261–1035] to 719 ng/L [294–739], (P < 0.01). QOL as measure by the EQ-5D-5L questionnaire improved in 8/11 (82%) patients after levosimendan IIT, by a median of two points [95% CO: 4.14–4.37, P = 0.09]. On echocardiography, peak systolic annular velocity (S’) increased after levosimendan IIT by an average of 3 cm/s [95% CI: 2.10–2.37, P = 0.03].

Conclusions In this small-scale study of ambulatory advanced HF patients, we observed improvements in right ventricular systolic function, maximal O2 consumption, and BNP after switching from milrinone to levosimendan based IIT.

Keywords Advanced heart failure; Inotropic therapy; Levosimendan; Milrinone

© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
We report here the clinical, laboratory, echocardiographic, and functional capacity data [assessed by cardio-pulmonary exercise test (CPET)] of these patients while on milrinone, as compared with those after four weekly cycles of therapy with levosimendan.

The data that support the findings of this study are available from the corresponding author upon reasonable request. This was a single-centre retrospective cohort study of patients who have been treated with once-weekly 6 h intermittent intravenous milrinone 0.25–0.5 mcg/kg/min for >4 consecutive clinic visits. Patients were switched to intravenous levosimendan at 0.1–0.2 mcg/kg/min for a 6 h period to be repeated every week for 4 weeks. All patients had advanced HF with the following characteristics (in line with recent definitions of advanced HF6): left ventricular ejection fraction (LVEF) < 35%, elevated brain natriuretic peptide (BNP) levels, and New York Heart Association (NYHA) Class III–IV despite maximally tolerated guideline-directed medical treatment (GDMT). Seventeen subjects met the above inclusion criteria for the switch. Of these, five were not switched to levosimendan due to: severely reduced blood pressure (n = 1), advanced renal disease (n = 1), frequent non-cardiac hospitalizations (n = 2), and refusal to discontinue milrinone (n = 1). One additional patient was not included in this analysis since he did not complete four cycles of levosimendan. This patient received a single dose of levosimendan and subsequently suffered ventricular tachycardia leading to cardiogenic shock and death (Figure 1).

Eleven patients were included in this analysis, their mean age was 76 ± 12 years, and 10 (91%) were male. Mean baseline blood pressure was 111/61 ± 20/12, 91% had an intra-cardiac defibrillator. All patients received an angiotensin neprilysin inhibitor, beta-blockers, and a loop diuretic, 6 (55%) received mineralocorticoid receptor antagonist, and 2 (18%) received a type 2 sodium-glucose co-transporter inhibitor. During a median follow-up of 83 days [23–140] on milrinone therapy (pre-levosimendan), 3 (30%) of these patients were hospitalized due to HF exacerbation, 2 were hospitalized twice. After 4 cycles of levosimendan therapy, the following changes were observed on CPET: Baseline blood pressure measurements were non-significantly higher on milrinone as compared with on levosimendan (137 ± 74 vs. 128 ± 68, P = 0.780 and 0.493 for systolic and diastolic measurements, respectively). Maximal O2 consumption (VO2) significantly improved in 8/9 (89%) patients by a mean of 2.28 mL/kg/min [95% CI 0.22–3.38, P = 0.05], exercise duration increased in 5/9 patients from a mean of 4.53 ± 1.32 to 5.21 ± 1.35 min (95%CI 0.40–1.35,

Figure 1 Flow chart of patients who met inclusion criteria for the study.
and the ratio of minute ventilation to the volume of exhaled CO₂ (VE/VCO₂) decreased in 7/9 patients from a mean of 41.7 ± 9.2 to 37.0 ± 5.1 (95%CI 10.66–1.26, P = 0.107). There were no significant differences in O₂ pulse or maximal heart rate achieved, (Table 1). On echocardiography, LVEF, systolic pulmonary artery pressure (SPAP), and tricuspid annular systolic excursion (TAPSE) did not change significantly, whereas the tissue Doppler of the tricuspid lateral annulus (S′) improved by an average of 3 cm/s [95% CI 0.16–2.10, P = 0.03]. Average early mitral inflow to mitral annulus velocity ratio (E/e′) improved from 14 ± 5 to 10 ± 8 (P = 0.054) on Levosimendan treatment. BNP levels decreased in 9/11 (82%) from a median of 1015 ng/L [261–1035] to 719 ng/L [294–739], (P < 0.01). Sum scores of EQ-5D-5L QOL questionnaire (i.e. sum of scores of five questions in the EQ-5D-5L questionnaire concerning degree of limitation in different domains of daily living, higher scores meaning greater limitation) improved in 8/11 (82%) by a median of two points [95% CI −4.17–0.37, P = 0.09].

Cyclic adenosine monophosphate (cAMP)-based agents represent the core of inotropic therapy in advanced HF and are delivered either through continuous pumps or as IIT. These drugs are used as IIT for ambulatory HF patients despite substantial limitations, most notably the lack of clear clinical benefit in terms of mortality or HF hospitalization, the association with increased arrhythmic risk and their short half-life (e.g. dobutamine: 2 min). These limitations can be partially mitigated by levosimendan given its unique mechanism of inotropic activation (without increasing myocardial oxygen consumption or intracellular calcium levels) and its prolonged haemodynamic effects. The Levosimendan Intermittent administration in Outpatients: effects on Natriuretic peptides in advanced chronic HEART failure (LION-HEART) study randomized 69 patients in 2:1 fashion to 6 cycles 6 h pulse administration of levosimendan vs placebo. NT-proBNP levels significantly improved in the levosimendan arm; furthermore, hospital admissions were reduced (hazard ratio 0.25; 95% CI 0.11–0.56, P = 0.001).
Advanced HF patients at our facility were routinely treated with milrinone IIT, and we observed a reduction in BNP levels and an improvement in functional capacity in these patients (unpublished data). However, due to the results of the LION-HEART study, we chose to examine the potential beneficial effect of levosimendan IIT in previously milrinone-treated patients. In this small observational study, levosimendan as compared with milrinone IIT, was significantly more effective (i.e. lusitropic effect without increasing oxygen demand accompanied with prolonged afterload reduction). Although no meaningful improvement in LV systolic performance was evident (i.e. O2 pulse and LVEF), markers of congestion (BNP and E/e') along with RV function and load (S' and SPAP) ameliorated, possibly leading to the observed improvement in functional capacity as assessed by CPET. These observations add to the results of recent levosimendan IIT studies and merit further prospective larger scale clinical studies to assess the performance of IIT with levosimendan.

References

1. Nizamic T, Murad MH, Allen LA, McIlvnenam CK, Wordingham SE, Matlock DD, Dunlay SM. Ambulatory inotrope infusions in advanced heart failure: a systematic review and meta-analysis. *JACC: Heart Fail* 2018; 6: 757–767.

2. Chernomordik F, Freiman D, Arad M, Shechter M, Matetzky S, Savir Y, Shlomo N, Peled A, Goldenberg I, Peled Y. Quality of life and long-term mortality in patients with advanced chronic heart failure treated with intermittent low-dose intravenous inotropes in an outpatient setting. *ESC Heart Fail* 2017; 4: 122–129.

3. Guglin M, Kaufman M. Inotropes do not increase mortality in advanced heart failure. *Int J Gen Med* 2014; 7: 237–251.

4. Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure. *Eur J Heart Fail* 2007; 9: 75–82.

5. Comín-Colet J, Manito N, Segovia-Cubero J, Delgado J, García Pinilla JM, Almenar L, Crespo-Leiro MG, Sionis A, Blasco T, ... DOI: 10.1002/ehf2.13807

Table 1 Patients main characteristics before and after 4 weeks of levosimendan treatment

Patient #	Mean ± SD	1	2	3	4	5	6	7	8	9	10	11
VO2 max (mL/kg)	Mil 12.8 ± 3	13.8	13.1	11.3	10.6	18.1	13.9	14.6	10	10	10	10
	Levo 14.5 ± 3	13.9	15.6	15	14.7	20.7	14.2	12.4	10	14		
Exercise duration, min	Mil 4.5 ± 1.3	4.35	6.11	2.31	3.08	7.34	5.35	4.02	5	5.27		
	Levo 5.2 ± 1.4	4.01	6.26	5.51	4.27	7.19	6.29	3.06	3.29	6.58		
Ve/VCO2	Mil 42 ± 9	44	34	37	42	29	32	32	29	38	38	43
	Levo 37 ± 5	43	33	35	29	32	32	32	32	32	32	44
Maximal heart rate, bpm	Mil 105 ± 39	98	87	101	101	148	94	52	77	184		
	Levo 104 ± 33	107	96	98	104	148	94	52	77	184		
O2 pulse, mL/beat	Mil 13 ± 6	15	19	8	7	9	13	23	7	12		
	Levo 12 ± 3	8	14	10	10	11	11	19	12	12		
LVEF, %	Mil 32 ± 6	30	25	35	20	30	35	35	35	30	30	30
	Levo 31 ± 8	25	30	35	20	35	40	25	35	25	35	30
E/e′	Mil 14 ± 5	11	11	11	18	21	14	11	16	13		
	Levo 10 ± 8	3	5	5	5	25	13	13	16	9		
SPAP	Mil 44 ± 17	27	27	70	46	42	49	30	43	70	20	
	Levo 43 ± 17	26	65	27	35	55	41	34	43	73	27	
S′ wave	Mil 9 ± 3	6	7.5	6	9.7	12	13	12	6.5	9.9	8.4	
	Levo 10 ± 3	6	6	8	10	10	13	14.6	6.5	11	9.9	
QOL	Mil 60 ± 24	5	70	60	60	80	75	50	40	65		
	Levo 67 ± 23	50	80	27	98	100	70	50	50	60	65	
Sum of scores	Mil 12 ± 4	17	12	14	13	7	5	11	17	11		
	Levo 10 ± 3	9	11	11	7	6	8	9	11	16	12	11
BNP, pg/mL	Mil 723 [261–1035]	1035	221	4774	1052	377	851	122	511	723	1275	265
	Levo 664 [294–739]	687	69	2799	664	294	739	398	339	723	949	254

BNP, B-type natriuretic peptide; EF, ejection fraction; E/e′, average early mitral inflow to mitral annulus velocity ratio; Levo, levosimendan; Mil, milrinone; QOL, quality of life (0–100); SPAP, systolic pulmonary artery systolic pressure (mm/Hg) assessed by echocardiography; SVI, stroke volume index as assessed on echocardiography by multiplying the velocity time integral through the aortic valve by the aortic valve area, divided by body surface area. Sum of scores—summation of all scores to define degree of limitation in five domains of QOL, with higher scores signifying greater disability.

"Data for BNP is presented as median (interquartile range)."
Pascual-Figal D, Gonzalez-Vilchez F, Lambert-Rodríguez JL, Grau M, Bruguera J. Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: the LION-HEART multicentre randomised trial. Eur J Heart Fail 2018; 20:1128–1136.

6. Mann DL, Greene SJ, Givertz MM, Vader JM, Starling RC, Ambrosy AP, Shah P, McNulty SE, Mahr C, Gupta D, Redfield MM, Lala A, Lewis GD, Mohammed SF, Gilotra NA, DeVore AD, Gorodeski EZ, Desvigne-Nickens P, Hernandez AF, Braunwald E, LIFE Investigators. Sacubitril/valsartan in advanced heart failure with reduced ejection fraction: rationale and design of the LIFE trial. JACC Heart Fail 2020; 8: 789–799. Erratum in: JACC Heart Fail. 2020;8:1059.