DESIGNING AN INFORMATION SYSTEM SIMULATION OF PSYCHOLOGICAL TEST QUESTIONS USING THE C4.5 METHOD AT THE WEB-BASED HRC LAVANDA PSYCHOLOGY BUREAU

Rini Wulandari¹, Charles Jhony Manthro Sianturi²

¹Sistem Informasi, ²Informatica
Fakultas Teknik dan Ilmu Komputer
¹,²Universitas Potensi Utama, Medan Indonesia
https://potensi-utama.ac.id/
riwi330@gmail.com¹, 79sianturi@gmail.com²
(*) Corresponding Author

Abstract
Psychological tests or psychological tests are a diagnostic effort with specific measuring tools created by psychologists to reveal a picture of a person's potential or to distinguish one person's behaviour from others through particular problems. Not all psychological tests can be easily computerized, and an accounting application can be easily modelled mathematically. At the very least, it must be admitted that at this time, there are very few psychological tests in Indonesia that are well computerized. It will be troublesome if the test is intended for recruitment purposes, especially if the company concerned needs the test results as quickly and accurately as possible. Seeing this background, the author wants to help and provide easy solutions by utilizing the internet media, a field of information and media that is very useful for everyone. The C4.5 method is applied to classify personality test questions, interest aptitude tests, SPM tests, and arithmetic tests to produce accurate calculations for the classification of psychological test questions. With the information system for the psychological test questions using the C4.5 method, it is hoped that the public can more easily access the simulated psychological test questions easily and quickly.

Keywords: Information System for Psychological Test Questions Simulation Method C4.5.

INTRODUCTION
Psychological tests or psychological tests are a diagnostic effort with specific measuring tools created by psychologists to reveal a picture of a person's potential or to distinguish one person's behaviour from others through particular problems (Sidik et al., 2018). Not all psychological tests are easy to computerize, and accounting applications can be easily modelled mathematically. At the very least, it admitted that at this time, there are very few psychological tests in Indonesia that are well computerized. Most of these tests still have to be assessed and analyzed manually, which will take a
long time if the test takers number in the tens or hundreds of people (Pratama et al., 2019). It will be inconvenient if the test is intended for recruitment purposes, especially if the company requires test results as quickly and accurately as possible. Seeing this background, the author wants to help and provide easy solutions by utilizing the internet media, a field of information and media that is very useful for everyone. Especially for job applicants who want to find, send and register job applications where they want, to design and create a website Development of Web-Based Online Psychological Tests that can determine personality and measure a person’s level of intelligence online (Nugrah et al., 2015).

Therefore, the author wants to design an application that can assist in providing a simulation of psychological test questions using the web-based C4.5 method. One of the clustering techniques in data mining is the clustering method. Understanding scientific clustering in data mining is the grouping of several data or objects into clusters (groups) so that each set will contain data that is as similar as possible and different from other collections (Nasari & Sianturi, 2016).

A web-based information system is a combination of site-based information technology on the internet network, which is equipped with features and is designed in such a way to specify input data, aiming to simplify and accelerate data. Processing even for novice users (Prayogi et al., 2021).

One of the successes of banking is in classifying its customers. Classification activities are closely related to profiling documents (Rusito & Firmansyah, 2016). Proofing is one of the activities of recording guarantee documents which later the data classified according to the provisions set by the management. This activity serves as a collection of customer data as creditors. The method used in this system uses the C4.5 decision tree algorithm and is one of the existing methods of classification in data mining. There are three stages in making this application: the data processing stage, the decision tree stage, and the interpretation stage.

Selection of majors to have the skills to enter the world of work (Sambani & Nuraeni, 2017). A data mining process obtains the direction pattern following the CRIPS-DM steps. However, there are often problems in the process because the school still has difficulty determining policies for determining the majors of prospective students, requires many assessment factors, and limited time to process all data. Therefore, the school needs to know the pattern of student majors based on report cards, medical tests, and sports. Later this pattern will make it easier for the school to determine which major is suitable for the prospective student.

From the results of the previous discussion, the party’s schools can find the pattern of values and interests for selecting majors for prospective student applicants so that the school can provide direction appropriate for students in choosing majors. From calculation results through system calculations and manual results obtained for data, a level of accuracy is 100% and b. Data by 80%, which means that C4.5 recommended processing student data in terms of help give the best decision selection student major (Anestiviya et al., 2021)

One problem in the distribution of scholarship is how to select students who deserve a scholarship. This research uses Decision Tree Method of the C4.5 Algorithm and RapidMiner 5.3 as software to create a model to assist decision-making in the scholarship recipient selection process. (Hijriana & Rasyidan, 2017)

Functional testing of the system and the web browser can run well as expected. While the results of data processing on the system obtained the results of the amount of data with information increased by 20 data, report decreased by 2 data and information remained 5 data or about 74.07% constituted up information that seen on the graph of results. (Rahman et al., 2020)

Knowing the intelligence potential of children is undoubtedly essential for parents. By analyzing the ability of the right and left brain, a child can be directed and developed accordingly with their respective skills. The power of children’s brains at 6 to 12 years old is perfect for making parents and teachers more selective in determining suitable learning methods to apply to children. The system built in this research makes it possible to know the potential of the brain’s intelligence for a child with a classification based on an alternative from the state of intelligence of the right brain or left brain that is provided in the database to determine the potential of children. (Ginting et al., 2021)

Student data increasing from year to year is evidence for developing Data Mining. The number of students processed to find out based on the criteria any student deserves the title of success with several attributes such as gender, attendance, lecture sessions, average NEM and origin school. In this case, the researchers analyzed Amik Tunas Bangsa Jl. Sudirman no. 1,2,3 Pematang Siantar,(Luvia et al., 2017)

In the implementation of the tryout, not all students can solve problems correctly. It impacts the results of the tryout and a lousy value. Therefore, schools need data mining with classification methods to help predict a student’s readiness to face the national exam. The process of processing data
has different attributes into categories according to their organization. The data in the prediction using the Decision Tree algorithm, which is one of the machine learning using probability calculations. Simulations supporting this algorithm were done using the application RapidMiner and scored an accuracy of 99.48%. (Rahma & Setyono, 2018)

UNISAN Faculty of Economics Gorontalo is a favourite faculty at UNISAN Gorontalo, so it has a large number of students, approximately 1000, until 2017. However, the ratio of the number of students graduating and not pass unbalanced. So that the number of Drop Out students is approximately 200 students per year, a new model is proposed using the C4.5 computational method to solve the problem and generate a pattern based on the appropriate classification results in determining students who have the potential to drop out of school. (Nasrullah, 2018)

RESEARCH METHODS

C4.5 algorithm

The C4.5 algorithm is one method for making a decision tree based on the training data provided (Ucha Putri et al., 2021). The C4.5 algorithm is the development of ID3. Some of the actions carried out in C4.5 are, among others being able to overcome missing values, being able to overcome continuous data, and pruning. At this stage, the C4.5 algorithm has two working principles, namely:

1. Decision tree creation. The purpose of the decision tree induction algorithm is to construct a tree data structure used to predict the class of a new case or record that does not yet have a type. C4.5 makes a decision tree using the divide and conquer method. At first, only root nodes were created by applying the range and conquer algorithm. This algorithm chooses the best case solution by calculating and comparing the gain ratio, then the nodes formed at the next level, and the divide and conquer algorithm is applied again until a leaf is formed.

2. They are making rules (rule sets). The laws formed from the decision tree will create a condition in the form of if-then. Determination of rules by tracing the decision tree from root to leaf. Each node and branching condition will form a situation or an if, while the values contained in the leaf will form.

In general, the C4.5 algorithm for building a decision tree is as follows:

a. Select attribute as root.
b. Create a branch for each value.
c. Split cases in departments.
d. Repeat the process for each branch until all cases in the department have the same class.

Selecting the attribute as root based on the highest gain value of the existing qualities. The formula for calculating gain is as shown in equation 1 below:

\[
\text{Gain}(S, A) = \text{Entropy}(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} \times \text{Entropy}(S_i)
\]

Information:
- \(S \): case set
- \(A \): attribute
- \(n \): number of attribute partition \(A \)
- \(|S_i| \): number of cases on partition \(i \)
- \(|S| \): number of cases in \(S \)

Meanwhile, the calculation of the entropy value see in equation 2 below:

\[
\text{Entropy}(S) = \sum_{i=1}^{n} p_i \log_2 p_i = 1
\]

Information:
- \(S \): case set
- \(A \): features
- \(n \): number of partitions \(S \)
- \(p_i \): the proportion of \(S \) to \(S \)

Waterfall Model

Methodologies or techniques used in software development and manufacture include conventional, classical, modern, and post-modern methods (Prasetyo et al., 2018). System development can be in the form of compiling a new system and replacing the old one as a whole or improving an existing one. Each stage is completed first and then forwarded to the next step to avoid the repetition of scenes. The system development methodology can be seen in Figure 1 below:

![Waterfall Diagram](image)

Figure 1. Waterfall Diagram

The activities carried out in each stage of the waterfall diagram are as follows:
1. Planning
 Planning to form a strategic work structure and see the importance of data mining built for system users. System planning is carried out to take into account the resources needed in making the system, including hardware, software and human devices as system users, mencakup perangkat keras, perangkat lunak dan perangkat manusia sebagai pengguna sistem.

2. Requirements analysis
 Requirements analysis is to analyze the requirements of existing systems and add new techniques to the design if needed. The basic needs that must live in making this application are:
 a. This application requires data about psychological tests that use as input in a web-based thesis guidance system.
 b. This application requires a minimum of Processor Core I3 laptop hardware, 4 GB RAM, and 500 Hard drives. Requires Windows Operating System, PHP programming language, and MySQL database.

3. System Design
 It is the stage of interpreting the needs that users analyze more easily by displaying it in Unified Modeling Language (UML), using case diagrams, class diagrams, activity diagrams, and sequence diagrams.

4. Coding Testing
 It is a data translator or troubleshooting software designed in a predefined and used programming language. Application of the C4.5 algorithm in the form of a programming language used to build information systems. The design of this information system uses Visual Studio Code software and Localhost.

5. Testing
 The system testing phase is the software testing phase that was built. This test begins by making a test case for each function in the software for data mining systems which is then continued on the interface to ensure that there are no errors, that everything is going well, and that the input given results are as required.

6. System Maintenance
 The application of the software being tested is placed into a system owned by the user. After everything goes according to plan, system maintenance is performed. It is necessary because the designed system requires changes due to errors or developments in the field of information technology.

Dataset
The data set used in the study is downloaded at the following URL https://github.com/CharlesSianturi/Psikotes/blob/main/Data%20Psikotes.xlsx

RESULTS AND DISCUSSION
When constructing a decision tree, the number of branches may reflect noise or outliers in the training data—pruning trees to identify and remove trunks. Pruned trees will be smaller and easier to grasp. Such trees are usually also faster and better at classifying i.

Case study:

Attribute Value	Amount of data	Number of Sanguine	Number of Cholerics	Total Melancholy	Number of Phlegmatic	Entropy	Gain
jenis_kelamin='L'	50	20	9	6	15	1.862	0.025
jenis_kelamin='P'	50	17	5	12	16	1.882	0.025
usia='13'	56	22	7	12	15	1.89	
usia='14'	32	13	5	4	10	1.846	
usia='15'	12	2	2	2	6	1.792	0.033
sekolah='Negeri'	50	17	8	11	14	1.947	
sekolah='Swasta'	50	20	6	7	17	1.822	0.013
jawaban_b<=10	67	27	0	13	27	1.516	
jawaban_b>10	33	10	14	5	4	1.828	0.278
jawaban_b<=15	98	37	12	18	31	1.876	
jawaban_b>15	2	0	2	0	0	1.059	
jawaban_b<=20	100	37	14	18	31	1.897	
jawaban_b>20	0	0	0	0	0	0.059	
jawaban_d<=10	51	28	10	13	0	1.438	
jawaban_d>10	49	9	4	5	31	1.498	0.43
jawaban_d<=15	85	37	14	17	17	1.88	
jawaban_d>15	96	37	14	18	27	1.903	
jawaban_d<=20	4	0	0	0	4	0.07	

Table 1 information:
Selected attribute = Answer A <=10, with gain value = 0.564
Table 2. Test Data With Selected Attributes

Attribute Value	Amount of data	Number of Sanguine	Number of Choleric	Total Melancholy	Number of Phlegmatic	Entropy	Gain
jenis_kelamin='L'	25	0	7	5	13	1.469	
jenis_kelamin='P'	26	0	3	10	13	1.39	0.047
usia='14'	13	0	2	3	8	1.335	
usia='13'	28	0	6	10	12	1.531	
usia='15'	10	0	2	2	6	1.371	0.026
jawaban_a<=20	51	0	10	15	26	1.476	
jawaban_a>20	0	0	0	0	0	0	
jawaban_bc=5	13	0	0	3	10	0.779	
jawaban_bc=5	38	0	10	12	16	1.557	0.117
jawaban_bc=10	32	0	0	10	22	0.896	
jawaban_bc=10	19	0	10	5	4	1.467	0.367
jawaban_bc=15	50	0	9	15	26	1.457	
jawaban_bc=15	1	0	1	0	0	0.048	
jawaban_bc=20	51	0	10	15	26	1.476	
jawaban_bc=20	0	0	0	0	0	0	
jawaban_b>=20	48	0	9	13	26	1.442	0.065
jawaban_d=10	17	0	6	11	0	0.937	
jawaban_d=10	34	0	4	4	26	1.022	0.482
jawaban_d=15	38	0	10	14	14	1.568	
jawaban_d=15	13	0	0	1	12	0.391	0.208
jawaban_d=20	48	0	10	15	23	1.504	
jawaban_d=20	3	0	0	3	0	0.06	

Table 2 Information:
Selected attribute = Answer C <=10, with gain value = 0.54
(Answer_a<=10) AND (Answer_c<=10)
Total data = 28

Table 3. Test Data With Selected Attributes

Attribute Value	Amount of data	Number of Sanguine	Number of Choleric	Total Melancholy	Number of Phlegmatic	Entropy	Gain
jenis_kelamin='L'	16	0	7	0	9	0.989	
jenis_kelamin='P'	12	0	3	0	9	0.811	0.027
usia='13'	14	0	6	0	8	0.985	
usia='15'	6	0	2	0	4	0.918	
usia='14'	8	0	2	0	6	0.811	0.019
sekolah='Negeri'	14	0	5	0	9	0.94	
sekolah='Swasta'	14	0	5	0	9	0.94	
jawaban_a<=5	2	0	2	0	0	0	
jawaban_a=5	26	0	8	0	18	0.89	0.114
jawaban_a=10	28	0	10	0	18	0.94	
jawaban_a=10	0	0	0	0	0	0	
jawaban_a=15	28	0	10	0	18	0.94	
jawaban_a=15	0	0	0	0	0	0	
jawaban_a=5	1	0	1	0	0	0	
jawaban_a=5	27	0	9	0	18	0.918	0.055
jawaban_a=10	6	0	6	0	0	0	
jawaban_a=10	22	0	4	0	18	0.684	0.403
jawaban_a=15	18	0	10	0	8	0.991	
jawaban_a=15	10	0	0	0	10	0	0.303
jawaban_a=20	25	0	10	0	15	0.971	
jawaban_a=20	3	0	0	0	3	0	0.073
Table 3 Information:
Selected attribute = Answer B <=10, with gain value = 0.578
(answer_a<=10) AND (answer_c<=10) AND (answer_b<=10)
LEAF || Decision = Phlegmatic
Total data = 13
Total Sanguine = 0
Total Choleric = 10
Total Melancholy = 0
Total Phlegmatic = 3
Entropy All = 0.779

Table 4 Information:
Selected attribute = Answer B <=10, with gain value = 0.578
(answer_a<=10) AND (answer_c<=10) AND (answer_b<=10)
LEAF || Decision = Choleric
Total data = 7
Total Sanguine = 0
Total Choleric = 4
Total Melancholy = 0
Total Phlegmatic = 3
Entropy All = 0.985

The system design uses the use case diagram shown in Figure 2.
CONCLUSIONS AND SUGGESTIONS

Conclusion
From the results of the author’s research, several conclusions can be drawn, including the author designing a psychological test simulation information system at the web-based HRC Lavanda Psychology bureau with data processing needed in creating a psychological exam simulation information system in the form of a list of psychological test exam questions. With the information system on psychological test questions using the C4.5 method, the public can more easily access the simulation of psychological test questions easily and quickly. The C4.5 method is applied to classify personality test questions, interest aptitude tests, SPM tests, and arithmetic tests to produce accurate calculations for the classification of psychological test questions.

Suggestion
Several suggestions have been given based on the research results and conclusions described above. The information system for the simulation of psychological test questions was developed using other classification methods. In the future, an information system about psychological tests will be produced by adding other types of psychological test questions. This psychological test simulation information system has a future data backup system feature.

ACKNOWLEDGEMENT
The author would like to thank Potensi Utama University and the supervisors who have provided input and suggestions in completing this research.

REFERENCES
Anestiviya, V., Ferico, A., & Pasaribu, O. (2021). Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus: Sman 1 Natar). Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(1), 80–85. http://jim.teknokrat.ac.id/index.php/JTSI
Ginting, E. F., Ibnuutama, K., & Kusnasari, S. (2021). Aplikasi Cerdas Membantu Orang Tua Meningkatkan Kecerdasan Anak Dalam Pembelajaran Online Pandemi Covid-19 Dengan Algoritma C4. 5. Jurnal Sistem Komputer Dan Informatika (JSON), 3(2), 147–154. https://doi.org/10.30865/json.v3i2.3620
Hijriana, N., & Rasyidan, M. (2017). Penerapan Metode Decision Tree Algoritma C4.5 Untuk Seleksi Calon Penerima Beasiswa Tingkat Universitas. Sains Dan Teknologi, 3(1), 9–13.
Luvia, Y. S., Windarto, A. P., Solikhun, S., & Hartama, D. (2017). Penerapan Algoritma C4.5 Untuk Klasifikasi Predikat Keberhasilan Mahasiswa Di Amik Tunas Bangsa. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 1(1), 75. https://doi.org/10.30645/jurasik.v1i1.12
Nasari, F., & Sianturi, C. J. M. (2016). Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat. CogITo Smart Journal,
Nasrullah, A. H. (2018). Penerapan Metode C4.5 untuk Klasiﬁkasi Mahasiswa Berpotensi Drop Out. *ILKOM Jurnal Ilmiah*, 10(2), 244–250. https://doi.org/10.33096/ilkom.v10i2.300.2

Nugraha, A. P., Dirgantoro, B., & Novianty, A. (2015). Aplikasi Sistem Pakar Untuk Mendiagnosapenyakit Dalam Menggunakan Metode Forwardchaining Dan Certainty Factor Berbasis Web(studi Kasus: Poliklinik Pt Pos Indonesia Bandung). *EProceedings of Engineering*, 2(2), 3676–3683.

Prasetyo, Y., Triandi, B., & Hardianto, H. (2018). Perancangan Aplikasi Pengamanan File Teks dengan Skema Hybrid Menggunakan Algoritma Enigma dan Algoritma RSA. *IT (INFORMATIC TECHNIQUE) JOURNAL*, 6(1), 46–55. https://doi.org/10.22303/IT.6.1.2018.46-55

Pratama, A. Z., Kurniawati, L., Larbona, S., & Haryanti, T. (2019). Algoritma C4.5 Untuk Klasiﬁkasi Nasabah Dalam Memprediksi Kredit Macet. *INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS : Journal of Information System, 3*(2), 121–130.

Prayogi, A., Haryanto, E. V., Sinaga, M. D., & Sembiring, N. (2021). Rancang Bangun Aplikasi Inventaris Barang Berbasis Online (Studi Kasus: SMKS Indonesia Membangun Taruna Marelans). *E-JURNAL JUSITI: Jurnal Sistem Informasi Dan Teknologi Informasi, 10*(2), 126–135.

Rahma, N. Z., & Setyono, A. (2018). Penerapan Algoritma C4.5 Dalam Memprediksi Kesiapan Siswa SMP IT PAPB Semarang Menghadapi Ujian Nasional. *Sisfotenika*, 8(1), 35. https://doi.org/10.30700/jst.v8i1.177

Rahman, F., Zulﬁa Zahro’, H., & Ari Wibisono, F. X. (2020). Penerapan Algoritma C4.5 Dalam Memprediksi Asal Calon Mahasiswa Berbasis Website (Studi Kasus : Fakultas Hukum Universitas Mataram). *JATI (Jurnal Mahasiswa Teknik Informatika), 4*(2), 161–169. https://doi.org/10.36040/jati.v4i2.2654

Rusito, R., & Firmansyah, M. (2016). Implementasi Metode Decision Tree Dan Algoritma C4. 5 Untuk Klasiﬁkasi Data Nasabah Bank. *Jurnal Ilmiah Infokam*, 12(2), 1–12. https://doi.org/10.53845/INFOKAM.V12I2.103

Sambani, E. B., & Nuraeni, F. (2017). Penerapan Algoritma C4.5 Untuk Klasiﬁkasi Pola Penjurusan di Sekolah Menengah Kejuruan (SMK) Kota Tasikmalaya. *CSRID (Computer Science Research and Its Development Journal), 9*(3), 149–157. https://doi.org/10.22303/CSRID.9.3.2017.14.4-152

Sidik, A., Mariana, A. R., & Anggraeny, A. R. (2018). Perancangan Sistem Informasi E-Recruitment Guru Studi Kasus di SMK Kusuma Bangsa. *JURNAL SISFOTEK GLOBAL, 8*(1), 69–74. https://doi.org/10.38101/SISFOTEK.V8I1.173

Ucha Putri, S., Irawan, E., & Risky, F. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. *Kesatria : Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 2*(1), 39–46. https://doi.org/10.30645/KESATRIA.V2I1.56