Commemorating a modest, rigorous, and great scientist for Neurorestoratology

——Dr. Stephen D. Skaper, (1948—2018), Department of Pharmaceutical and Pharmacological Sciences University of Padua, Italy

Lin Chen¹ (✉), Hari Sharma²

¹ Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
² International Experimetal Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, University Hospital, Uppsala University, Uppsala, Sweden

Recently, we are devastated to know that Prof. Steven Skaper passed away (22nd June, 2018). He was a great loss to our association. He will always be remembered by those who knew him and of his work.

He was the first and foremost a polite, elderly affectionate great friend. We still clearly remember the invitation of Prof. Hari Sharma to the Amity University in New Delhi after the annual meeting of the International Association for Neuroestoratology (IANR) in Mumbai, India in 2014. The visits to New Delhi and Agra were very harmonious and successful (Fig. 1). We recall his daily life as friendly and humble to everyone including the car drivers, friends, local students, schoolteachers, and colleagues. This is still fresh in our memory.

He was a very devoted and rigorous neuroscientist. In 2003, he published Poly (ADP-Ribose) polymerase-1 in acute neuronal death and inflammation as a strategy for neuroprotection [1]. Then, he showed that glycogen synthase kinase-3 inhibitors protect central neurons against excitotoxicity [2]. In 2004, he found a dimeric version of the short N-cadherin binding motif HAVD1 that promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor-signaling cascade [3]. In 2005, he and his coworkers identified neuroprotective properties of anti-MAG antibody as a novel approach for the treatment of stroke in which he focused on the neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration [4, 5]. In 2006, he reported that amyloid beta-peptide 1-42 alters tight junctional protein distribution and expression in brain microvessel endothelial cells as well as P2X(7) receptors on microglial cells that mediate injury to cortical neurons in vitro [6, 7]. In 2007, he was the first to make a point that the brain was a target for inflammatory processes and neuroprotective strategies [8]. In 2008, his study suggested that signaling pathways with small molecule mimetics and modulators achieved neuroprotection and neuroregeneration [9]. In 2009, he found that oligodendrocytes were a novel source of amyloid peptide generation [10]. In 2010, he suggested the importance of P2X7 purinergic receptor from physiology to neurological disorders and nanoparticles delivery of drugs [11].

He was one of the pioneers of Neuroestoratology. He devoted his life to the rigor of neuroprotection and achieved fruitful results. In 2011, he found that ion channels on microglia were therapeutic targets for neuroprotection [12]. At the same time, he published a commentary on neurotrophic protein therapy in Parkinson disease [13]. In 2012, he published the papers on amyloid β-peptide neurotoxicity assay using cultured rat cortical neurons [14] and rat retina pigmented epithelial cells [15] as well as rat cone photoreceptor cells [16], purified glial cell populations from optic nerve [17], rodent retinal ganglion cell [18], and rat mesencephalic dopaminergic neurons [19]. He focused on the conference workshops on

Address correspondence to Lin Chen, Email: chenlin_china@163.com
“palmotoylethanolamide: biochemistry, pharmacology and therapeutic use of a pleiotropic anti-inflammatory lipid mediator” [20] as well as key topics on “neuroprotection and neuroplasticity” [21]. He said that microglia and mast cells were two tracks on the road to neuroinflammation [22]. He was interested in the research on Huntington disease, Parkinson disease, Alzheimer disease, amyotrophic lateral sclerosis, neuropathic pain, multiple sclerosis and depression [23–27]. He stated that endocannabinoids in nervous system health and disease has a great future for therapeutic use [28]. In 2014, he said that Wnt-signaling was new direction for Alzheimer disease [29]. This year, he and Dr. Sharma Hari, Dr. Huang Hongyun, and Dr. Chen Lin et al. published that regulations, ethics, science, and the need of patients care in neurorestoratology [30]. He published a review on neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders [31]. In 2017, he found that nerve growth factor was a neuroimmune crosstalk mediator for all seasons, including synaptic plasticity, dementia and Alzheimer disease [32].

He was a very friendly and highly responsible editor-in-chief of the prominent neuroscience journal, CNS Neurological Disorders-Drug Targets since its inception. He was a responsible editor and always opens the door to green pathways and displays for important frontiers in neuroscience. He was one of the important editorial board members of Journal of Neurorestoratology.

Prof. Skaper was one of the most involved colleagues in IANR. The expression for loss of such a friend is beyond any words. We would like to express our condolences to the family of Prof. Skaper on behalf of all IANR members.

My dear friends from the world please do not stand at his grave and weep. He is not there and he does not sleep. He is the gentle shower of rain. He is in the morning hush. He is the star warmly gleaming, and does not die. He is alive in our memories forever!
Facci L, Skaper SD. Amyloid-peptide neurotoxicity assay. *Ann NY Acad Sci*. 2003, **993**: 217–228.

Facci L, Stevens DA, Skaper SD. Glycogen synthase kinase-3 inhibitors protect central neurons against excitotoxicity. *Neuroreport*. 2003, **14**(11): 1467–1470.

Skaper SD, Facci L, Williams G, et al. A dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor signalling cascade. *Mol Cell Neurosci*. 2004, **26**(1): 17–23.

Irving EA, Vinson M, Rosin C, et al. Identification of neuroprotective properties of anti-MAG antibody: a novel approach for the treatment of stroke? *J Cereb Blood Flow Metab*. 2005, **25**(1): 98–107.

Skaper SD. Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. *Ann NY Acad Sci*. 2005, **1053**: 376–385.

Skaper SD, Facci L, Culbert AA, et al. P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. *Glia*. 2006, **54**(3): 234–242.

Marco S, Skaper SD. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. *Neurosci Lett*. 2006, **401**(3): 219–224.

Skaper SD. The brain as a target for inflammatory processes and neuroprotective strategies. *Ann NY Acad Sci*. 2007, **1122**: 23–34.

Skaper SD. Signalling pathways with small molecule mimetics and modulators to achieve neuroprotection and regeneration. *CNS Neurol Disord Drug Targets* 2008, **7**(1): 45.

Skaper SD, Evans NA, Evans NA, et al. Oligodendrocytes are a novel source of amyloid peptide generation. *Neurochem Res*. 2009, **34**(12): 2243–2250.

Skaper SD, Debetto P, Giusti P. The P2X7 purinergic receptor: from physiology to neurological disorders. *FASEB J*. 2010, **24**(2): 337–345

Skaper SD. Ion channels on microglia: therapeutic targets for neuroprotection. *CNS Neurol Disord Drug Targets* 2011, **10**(1): 44–56.

Skaper SD. Putting a finger on neurotrophic protein therapy in Parkinson’s disease. *Commentary. CNS Neurol Disord Drug Targets* 2011, **10**(3): 295.

Facci L, Skaper SD. Amyloid β-peptide neurotoxicity assay using cultured rat cortical neurons. *Methods Mol Biol*. 2012, **846**: 57–65.

Skaper SD. Culture of rat retina pigmented epithelial cells. *Methods Mol Biol*. 2012, **846**: 159–166.

Skaper SD. Isolation and culture of rat cone photoreceptor cells. *Methods Mol Biol*. 2012, **846**: 147–158.

Skaper SD. Culture of purified glial cell populations from optic nerve. *Methods Mol Biol*. 2012, **846**: 131–145.

Skaper SD. Rodent retinal ganglion cell cultures. *Methods Mol Biol*. 2012, **846**: 117–129.

Skaper SD, Mercanti G, Facci L. Culture and characterization of rat mesencephalic dopaminergic neurons. *Methods Mol Biol*. 2012, **846**: 91–101.

di Marzo V, Skaper SD. Palmitoylethanolamide: Biochemistry, pharmacology and therapeutic use of a pleiotropic anti-inflammatory lipid mediator. *CNS Neurol Disord Drug Targets* 2013, **12**(1): 4-6.

Skaper SD. Conference report: 8th annual meeting of the society for the study of neuroprotection and neuroplasticity. *CNS Neurol Disord Drug Targets* 2012, **11**(4): 333–334.

Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. *FASEB J*. 2012, **26**(8): 3103–3117.

Skaper SD, Giusti P. Transgenic mouse models of Parkinson’s disease and Huntington’s disease. *CNS Neurol Disord Drug Targets* 2010, **9**(4): 455–470.

Sharma HS, Skaper SD, Sharma A. Conference Report: 10th Clinical Trials on Alzheimer’s Disease (CTAD), Boston MA, USA, November 1–4, 2017. *CNS Neurol Disord Drug Targets* 2018, **16**(10): 1134–1137.

Skaper SD. Amyotrophic lateral sclerosis: targeting the body’s energy engine. *CNS Neurol Disord Drug Targets* 2013, **12**(2): 294.

Skaper SD. Mast cell-glial dialogue in chronic pain and neuropathic pain: Blood-brain barrier implications. *CNS Neurol Disord Drug Targets* 2016, **15**(9): 1072–1078.

Graziottoin A, Skaper SD, Fusco M. Mast cells in chronic inflammation, pelvic pain and depression in women. *Gynecol Endocrinol*. 2014, **30**(7): 472–477.

Skaper SD, Di Marzo V. Endocannabinoids in nervous system health and disease: the big picture in a nutshell. *Philos Trans R Soc Lond B Biol Sci*. 2012, **367**(1607): 3193–3200.

Skaper SD. Wnt-signalling: A new direction for alzheimer disease? *CNS Neurol Disord Drug Targets* 2014, **13**(4): 556.

Chen L, Guo J, Sharma A, et al. Summary report of the International Association of Neurorestoratology VII Conference: Regulations, ethics, science, and the need of patients care in neurorestoratology. *CNS Neurol Disord Drug Targets* 2014, **13**(6): 921–925.

Facci L, Skaper SD, Giusti P, Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: A review. *CNS Neurol Disord Drug Targets* 2014, **13**(10): 1654–1666.

Skaper SD. Nerve growth factor: A neuroimmune crosstalk mediator for all seasons. *Immunology*. 2017, **151**(1): 1–15.