Automated question generation and question answering from Turkish texts

FATİH ÇAĞATAY AKYÖN
ALİ DEVRİM EKİN ÇAVUŞOĞLU
CEMİL CENGİZ
SİNAN ONUR ALTINUĞ
ALPTEKİN TEMİZEL

Follow this and additional works at: https://journals.tubitak.gov.tr/elektrik

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation
AKYÖN, FATİH ÇAĞATAY; ÇAVUŞOĞLU, ALİ DEVRİM EKİN; CENGİZ, CEMİL; ALTINUĞ, SİNAN ONUR; and TEMİZEL, ALPTEKİN (2022) "Automated question generation and question answering from Turkish texts," Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 30: No. 5, Article 17.
https://doi.org/10.55730/1300-0632.3914
Available at: https://journals.tubitak.gov.tr/elektrik/vol30/iss5/17

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Electrical Engineering and Computer Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Automated question generation and question answering from Turkish texts

Fatih Çağatay AKYÖN1,2,∗, Devrim ÇAVUŞOĞLU1,2, Cemil CENGİZ1, Alptekin TEMİZEL2
Sinan Onur ALTINUÇ1,2, Alptekin TEMİZEL2
1OBSS AI, Ankara, Turkey
2Computer Engineering, METU, Ankara, Turkey

Received: 12.11.2021 • Accepted/Published Online: 09.05.2022 • Final Version: 22.07.2022

Abstract: While exam-style questions are a fundamental educational tool serving a variety of purposes, manual construction of questions is a complex process that requires training, experience and resources. Automatic question generation (QG) techniques can be utilized to satisfy the need for a continuous supply of new questions by streamlining their generation. However, compared to automatic question answering (QA), QG is a more challenging task. In this work, we fine-tune a multilingual T5 (mT5) transformer in a multitask setting for QA, QG and answer extraction tasks using Turkish QA datasets. To the best of our knowledge, this is the first academic work that performs automated text-to-text question generation from Turkish texts. Experimental evaluations show that the proposed multitask setting achieves state-of-the-art Turkish question answering and question generation performance on TQuADv1, TQuADv2 datasets and XQuAD Turkish split. The source code and the pretrained models are available at https://github.com/obss/turkish-question-generation.

Key words: Turkish, question answering, question generation, answer extraction, multitask, transformer

1. Introduction

Question generation (QG) is the task of generating questions from a given context and, optionally, some answers. The research on QG has been developing exponentially with the task getting more popular in education [1, 2], commercial applications such as chatbots and dialogue systems [3, 4] and healthcare [5].

Early works in QG were based mainly on human-designed sophisticated syntactic rules to transform a declarative sentence into the corresponding question. These tasks mainly relied on handcrafted feature extraction from documents. A method for generating multiple-choice tests from instructional documents (e.g., textbooks or encyclopedias) was proposed in [6]. In this work, domain-specific terms were extracted using the term frequency approach, and the sentences including the retrieved terms were transformed into questions using the parsed syntactic information of the sentence. In [7], the input text is first simplified with a set of transformations to produce multiple declarative sentences. Then, a declarative sentence is transformed into a set of possible questions by syntactic and lexical transformations. However, being based on rule-based transformations, these methods are not applicable to other languages and question styles. A preliminary work provides an implementation plan for rule-based question generation from Turkish texts using syntactic (constituent or dependency) parsing and semantic role labeling systems [8]. In the QG part, manually generated

∗Correspondence: fatih.akyon@metu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
templates and rules are used. However, the proposed method is not fully automated considering the manual selection of templates and its rule-based nature. Moreover, the paper does not provide sufficient technical details and no follow-up paper giving the details of the planned implementation is available.

Recently, many neural networks based techniques have been proposed for QG. An encoder-decoder architecture of an LSTM-based Seq2Seq model is adopted in [9]. Both the input sentence and the paragraph containing the sentence are encoded via separate bidirectional LSTMs [10] and then concatenated. This representation is then fed into the decoder, which is a left-to-right LSTM, to generate the question. The decoder learns to use the information in more relevant parts of the encoded input representation via an attention layer. Later models included target answer in the input to avoid questions that are too short and/or broadly targeted, such as “What is mentioned?”. Some models have achieved that by either treating the answer’s position as an extra input feature [11, 12] or by encoding the answer using a separate network [13, 14]. Moreover, position embeddings have been used to give more attention to the answer words closer to context words. Some utilized additional decoders to predict the question words (when, how, why, etc.) before generating the question [15]. LSTM-based Seq2Seq models struggle to capture the paragraph-level context that is needed to generate high quality questions. Seq2Seq model was extended with answer tagging, maxout pointer mechanism and a gated self-attention encoder [12]. A multistage attention to link long document context with targeted answer is used in [16].

Transformer based models have been dominating the NLP research in tandem with QG research lately. These models are capable of capturing longer and comprehensive contexts more effectively than their predecessors, mainly LSTM-based Seq2Seq based models. Named entity recognition (NER) is used in [17], as a (preprocessing) task before the application of a transformer based model. In the work, they first extract a variety of named entities from the input text and then replace these entities with named entity tags for better generalization. Superior performances have been reported by applications of QG task that were proposed by those using a large transformer based language model (LM). A pretrained BERTurk for QG was adopted in [18] and three models were proposed using BERTurk for QG, sequential question generation with BERTurk using the previous decoded results, and finally highlighting the answer in the context which yielded a performance improvement. A pretrained GPT-2 for QG is used in [19] in a straightforward way by preparing inputs in a particular format. The model is evaluated in several ways such as context-copying, failures on constructing questions, robustness and answer-awareness.

An example question generation project using transformers in a specific framework is available1 but its sentence tokenization pipeline is specific to English language, presents the results on an English dataset, emphasizes limited input types (highlight and prepend) and does not have a peer reviewed publication.

Moreover, there is a publicly shared work based on fine-tuning mT5-small model [20] on Turkish dataset for question generation task2. However its sentence tokenization pipeline is not adapted to Turkish language, it is not clear whether the validation set is included in the training, does not present any evaluation results, emphasizes limited input types (only highlight) and does not have a peer reviewed publication.

In this work, in order to fully automate the question generation process from Turkish texts using a single model, we propose a multitask fine-tuning of mT5 model [20]. To the best of our knowledge, this is

1question_generation (2020). Neural question generation using transformers [online]. Website https://github.com/patilsuraj/question_generation [accessed 04 07 2021].

2multitask-question-generation (2021). Turkish Multitask MT5 [online]. Website https://github.com/ozcangundes/multitask-question-generation [accessed 04 07 2021]
the first comprehensive academic work that performs automated text-to-text question generation from Turkish texts. The main contributions can be summarized as the adaptation of a sentence tokenization pipeline for the highlight input format and benchmarking of the mT5 model for Turkish question generating and answering on the TQuADv1, TQuADv2 and XQuAD datasets in multitask and single-task settings with different input formats (highlight/prepend/both).

The model we explored, mT5, is a variant of T5 [21], which is a flexible transformer model used in sequence-to-sequence NLP tasks. T5 is an encoder-decoder style language model whose architecture closely follows the original Transformer [22]. It is pretrained on “span-corruption” objective, a special type of masked language modeling. In this scheme, consecutive input token spans are replaced with a mask token and the model is asked to reconstruct the original tokens in the spans as training objective. During fine-tuning, various distinct NLP tasks such as classification and generation are formulated in common text-to-text format in multitask learning setting. The main difference of mT5 is that it was trained on mC4 dataset, comprising natural text in 101 languages collected from the public Common Crawl web scrape. Being trained on multiple tasks and multiple languages, it can readily be fine-tuned on QA, QG and answer extraction tasks in Turkish language after converting the datasets to the common text-to-text format. As shown in Figure (top), QA task uses context and question pair as input and answer as target, QG uses answer highlighted context as input and question as target, answer extraction uses sentence highlighted context as input and answer list with separator as target. This approach does not require an external answer extraction model or human effort to label the answers since the same model is used to extract the answers (corresponding to one of the potential questions) from the context as shown in Figure (bottom).

Figure. Multitask fine-tuning of the multilingual pretrained mT5 model (top). The same fine-tuned model is then used for both answer extraction and question generating task (bottom).
2. Proposed approach

To convey a fully automated question generation pipeline, we assume that answer may not be given in the generation phase, and thus we also train the model to find answer \(a \) (corresponding to one of the potential questions) which is a span in the given context \(c \). The task is formulated as in Eq. 1 where \(q \) denotes the question targeting the answer \(a \) and \(c' \) is the context \(c \) with highlighted tokens for sentences containing answers.

\[
P(q, a | c) = P(a | c') \cdot P(q | a, c)
\]

Answer extraction task is formulated as \(P(a | c') \) where context and answer pairs are used from \{context, question, answer\} triplets from SQuAD style dataset. Context \(c \) is first preprocessed to highlight the target answers, and the preprocessed context \(c' \) is used as an input and answers are used as in training.

Question generation task is formulated as \(P(q | a, c) \) where \{answer, context\} pairs are used as input and, in training, question for the given answer is used as the target. If an answer is provided with the context, the answer extraction step is skipped, otherwise answer extraction is done before question generation.

When providing the inputs to text-to-text transformer, different parts of the input \(c, a, q \) are separated by a separator. In both single-task and multitask QG setting, we apply three different input format styling: prepend, highlight and both. In prepend format, we prepend the base input text with a task specific prefix as in T5 [21]. For example, for QG task we prepend the base input format with “generate question” prefix. In highlight format, we wrap the answer text in the context with a special <hl> (highlight) token similar to [20]. The both input format contains both prepend and highlight input formats.

In the single-task setting, we modify each sample to train separate models for QA and QG tasks. In generation phase, QA task requires a context and a question and QG task requires a context and an answer as input. In the multitask setting, we train the model to perform answer extraction, question generation and question answering tasks simultaneously. For answer extraction task, we put highlight tokens at the start and end of the sentence that contains the answer to be extracted. For the question generation, the answer of the question to be generated is highlighted [20]. Moreover, we prepend “question”, “context”, “generate question”, “extract answer” tokens before each sample to help the model distinguish one task from other. In Figure, the input and target formats of the model during fine-tuning is presented.

In single-task setting, for QG generation task, the answer always needs to be provided along with the context, whereas in multitask setting the answer is not strictly required to be given.

We adopt the answer-aware question generation methodology [15], where the model requires both the context and answer to generate questions. Use of the same model for automatic answer extraction in the multitask setting eliminates the need for manual highlighting of the answer and enables end-to-end question generation from raw text.

Adapting the current schema to another language involves putting highlight tokens between sentences, however, this might not be straightforward due to the language dependent nature of the sentence tokenization part. We needed to carefully design a proper sentence tokenization by manually handling edge cases mostly caused by abbreviations to mark the end of a sentence correctly in a Turkish text. There are wide options for sentence tokenization approaches for English text; however, there is no directly available sentence tokenization tool for Turkish text. We adapted an open-source tool TrTokenizer package\(^3\) for a sentence tokenization step.

\(^3\)TrTokenizer (2020). Sentence and word tokenizers for the Turkish language [online]. https://github.com/apolulayayik/TrTokenizer [accessed 24 08 2021]
as the base tool and adapted it by enhancing the edge cases. These edge cases such as “Ar. Gör.”, “(d. 998 - ö. 1068)”, “Ömer b. Abdülaziz”, etc. are then handled by regular expression based operations. The adapted Turkish sentence tokenization based answer highlighting, together with extended edge cases, have been provided publicly in the project repository.

3. Experimental setup and results

We first fine-tune BERTurk [23] and mT5 models on TQuADv2 training split to have the base models. Then F1 and EM scores are calculated on TQuADv2 validation split and XQuAD Turkish split for experimental evaluation. All the experiments have been performed on Nvidia A100 GPU with 80 GB VRAM using Transformers Trainer [24] on Pytorch [25] backbone.

For the evaluation of QA task performance, widely accepted F1 and exact match (EM) scores [26] are calculated. Although there is no widely accepted automatic evaluation metric for measuring the QG performance [27], most of the previous works used the classical metrics such as BLEU [28], METEOR [29] and ROUGE [30]. METEOR applies stemming and synonym matching (in English). Hence, it has been excluded in our experiments as these processes are not applicable to Turkish. We reported BLEU-1, BLEU-2 and ROUGE-L metrics for evaluating the QG task performance.

3.1. Datasets

TQuAD⁴ (TQuADv1) is a Turkish QA dataset on Turkish & Islamic Science History that was published within the scope of Teknofest 2018 Artificial Intelligence competition. TQuADv2 dataset [31] extended the number of question-answer pairs along with the number of subjects by adding additional paragraphs and question-answer pairs to TQuADv1, i.e. TQuADv1 ⊂ TQuADv2. Both of these datasets have the same structure with SQuAD [26].

XQuAD [32] is a multilingual QA dataset in Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish and Vietnamese languages. It consists of samples professionally translated from the SQuAD 1.1 validation set. The Turkish split of the XQuAD, namely XQuAD.tr, is used to evaluate the fine-tuned models, for brevity we denote it as XQuAD in the remainder of this paper.

The details of these datasets are provided in Table 1, training sets are used for training the models and hyperparameter tuning, validation set is used for performance evaluation only. Some examples are presented in Appendix A.

Name	Training set	Validation set
	Paragraphs	QA-pairs
TQuADv1	2232	8308
TQuADv2	2400	14224
XQuAD	-	-

For the evaluation of QA task performance, widely accepted F1 and exact match (EM) scores [26] are calculated. Although there is no widely accepted automatic evaluation metric for measuring the QG performance [27], most of the previous works used the classical metrics such as BLEU [28], METEOR [29] and ROUGE [30]. METEOR applies stemming and synonym matching (in English). Hence, it has been excluded in our experiments as these processes are not applicable to Turkish. We reported BLEU-1, BLEU-2 and ROUGE-L metrics for evaluating the QG task performance.

3.1. Datasets

TQuAD⁴ (TQuADv1) is a Turkish QA dataset on Turkish & Islamic Science History that was published within the scope of Teknofest 2018 Artificial Intelligence competition. TQuADv2 dataset [31] extended the number of question-answer pairs along with the number of subjects by adding additional paragraphs and question-answer pairs to TQuADv1, i.e. TQuADv1 ⊂ TQuADv2. Both of these datasets have the same structure with SQuAD [26].

XQuAD [32] is a multilingual QA dataset in Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish and Vietnamese languages. It consists of samples professionally translated from the SQuAD 1.1 validation set. The Turkish split of the XQuAD, namely XQuAD.tr, is used to evaluate the fine-tuned models, for brevity we denote it as XQuAD in the remainder of this paper.

The details of these datasets are provided in Table 1, training sets are used for training the models and hyperparameter tuning, validation set is used for performance evaluation only. Some examples are presented in Appendix A.

Name	Training set	Validation set
	Paragraphs	QA-pairs
TQuADv1	2232	8308
TQuADv2	2400	14224
XQuAD	-	-

⁴turkish-nlp-qa-dataset (2019). Turkish NLP Q&A Dataset [online]. Website https://github.com/TQuad/turkish-nlp-qa-dataset [accessed 04.07.2021]
3.2. Hyperparameter tuning

We experimentally evaluated mT5 [20] against BERTurk [23] and, to have a fair comparison, we performed hyperparameter tuning. For both models, we used grid-search to select the best optimizer type (AdaFactor, AdamW), initial learning rate (1e-3, 1e-4, 1e-5) and number of training epochs (1, 3, 5, 8, 10, 15, 20). BERTurk-base language model [23] has been fine-tuned for QA task on TQuADv2 training split, F1 and EM scores have been calculated on TQuADv2 validation split and XQuAD Turkish split. We selected the set of parameters which attain the overall best scores in all metrics: AdamW optimizer with a learning rate of 1e-4 and number of epochs for BERTurk. Similarly, mT5-small language model [23] has been fine-tuned in a multitask setting on TQuADv2 training split. Then F1, EM scores for QA samples and BLEU, ROUGE scores for QG samples have been calculated on TQuADv2 validation split and XQuAD Turkish split. QA and QG results of the best performing combination can be seen in Tables 2 and 3. We selected the set of parameters which attain the overall best scores in all metrics: AdamW optimizer with a learning rate of 1e-3 and 15 epochs. For the remainder of the experiments, these fine-tuned BERTurk and mT5 models with the determined set of parameters have been used.

Table 2. QA scores of the best performing hyperparameter combination for BERTurk and mT5-small using AdamW as optimizer.

Model	Num. Epochs	Initial lr	TQuADv2-val F1	TQuADv2-val EM	XQuAD F1	XQuAD EM
BERTurk	3	1e-4	67.1	50.5	53.0	37.4
mT5-small	15	1e-3	64.8	49.3	48.2	31.1

Table 3. QG scores of the best performing hyperparameter combination for mT5-small: AdamW with initial learning rate of 1e-3 and 15 epochs.

TQuADv2-val	TQuADv2-val	TQuADv2-val	XQuAD	XQuAD	XQuAD
BLEU-1	BLEU-2	ROUGE-L	BLEU-1	BLEU-2	ROUGE-L
39.3	32.8	45.6	21.3	14.0	28.5

3.3. Experimental evaluation

According to the TQuADv2 fine-tuning results in Table 4, the proposed mT5 settings outperform the BERTurk in QA task and multitask setting further increases the QA performance.

To evaluate the question generation performance of the proposed single and multitask settings, we fine-tuned mT5 model on TQuADv2 training split in both settings. Three different input formats explained in Section 2 are used and BLEU-1, ROUGE-L scores are calculated on TQuADv2 validation split and XQuAD Turkish split. According to TQuADv2 fine-tuning results in Table 5, highlight format increases the BLUE-1 scores by up to 1.6 points and ROUGE-L scores by up to 1.7 points compared to prepend format in single-task setting. Moreover, highlight format increases the BLUE-1 scores by up to 1.2 and ROUGE-L scores by up to 0.8 points compared to prepend format in multitask setting. Moreover, combining both techniques increases BLEU-1 scores by up to 2.9 points and ROUGE-L scores by up to 3.8 points compared to prepend format.
Additional experiments have been conducted to evaluate the overall performance of the larger mT5 variants, mT5-base and mT5-large in comparison to BERTurk. QA and QG evaluation results for fine-tuned TQuADv1 and TQuADv2 are provided in Tables 6 and 7 respectively. According to the QA results in Tables 6, all mT5 variants outperform BERTurk for smaller dataset sizes, BERTurk may outperform mT5-small for larger dataset sizes. This indicates that mT5 models are always preferable when the data is scarce whereas regular single-task training may also be used in place of the mT5-small variant when sufficient data is available. A comparative performance evaluation of mT5 variants shows that increasing the model size improves the performance significantly for both datasets, especially when switching from mT5-small to mT5-base. While using an even bigger model, mT5-large, improves the performance, it has a relatively more modest effect. Nevertheless, this trend of obtaining better scores by increasing the model capacity is consistent with the previous works on other transformer based models. Comparison of the results for different versions of the TQuAD datasets in Table 6 and 7 show that, although the TQuADv1 validation scores are higher than TQuADv2 validation scores, the models trained on the TQuADv2 train set are able to generalize better as indicated by the XQuAD Turkish split results. This can be attributed to the larger size and better quality of the TQuADv2 dataset.

Table 4. BERTurk-base and mT5-base QA evaluation results for TQuADv2 fine-tuning.

Setting	TQuADv2-val F1	TQuADv2-val EM	XQuAD F1	XQuAD EM
BERTurk	67.1	50.5	53.0	37.4
Single-task mT5	**71.6**	**55.1**	60.7	40.2
Multitask mT5	71.5	**56.2**	**61.1**	**43.3**

Table 5. mT5-base QG evaluation results for single-task (ST) and multitask (MT) for TQuADv2 fine-tuning.

Setting	TQuADv2-val BLEU-1	TQuADv2-val ROUGE-L	XQuAD BLEU-1	XQuAD ROUGE-L
MT-Both mT5	**47.6**	**53.9**	**27.9**	**35.8**
MT-Highlight mT5	45.9	52.5	26.2	34.8
MT-Prepend mT5	45.5	52.6	25.0	34.0
ST-Both mT5	46.1	52.6	26.2	34.1
ST-Highlight mT5	45.2	52.4	25.8	33.5
ST-Prepend mT5	43.6	50.8	23.4	31.8

For qualitative evaluation, some model outputs from different paragraphs are provided in Appendix B illustrating consistent and inconsistent (that lacks coherence, not addressing the input answer, etc.) generations.

4. Conclusion

By combining the proposed answer extraction and answer-aware QG modules, it is possible to fully automate the QG task without any manual answer extraction labor. Automated evaluation metrics on TQuAD validation set show that the model is capable of generating meaningful question-answer pairs from the context after fine-tuning. Moreover, results show that the proposed multitask approach has better performance on QA, answer
Table 6. TQuADv1 and TQuADv2 fine-tuning QA evaluation results for multitask mT5 variants and BERTurk. MT-Both means, mT5 model is fine-tuned with Both input formats and in a multitask setting.

Setting	TQuADv1-val F1	TQuADv1-val EM	XQuAD F1	XQuAD EM
BERTurk-base	62.5	45.2	42.9	26.6
MT-Both mT5-small	63.8	48.5	43.5	27.0
MT-Both mT5-base	72.1	55.8	54.6	35.9
MT-Both mT5-large	**74.7**	**59.6**	**62.1**	**42.9**

Setting	TQuADv2-val F1	TQuADv2-val EM	XQuAD F1	XQuAD EM
BERTurk-base	67.1	50.5	53.0	37.4
MT-Both mT5-small	65.0	49.3	48.8	32.9
MT-Both mT5-base	71.5	56.2	61.1	43.3
MT-Both mT5-large	**73.3**	**58.4**	**65.0**	**46.7**

Table 7. TQuADv1 and TQuADv2 fine-tuning QG evaluation results for multitask mT5 variants. MT-Both means, mT5 model is fine-tuned with 'Both' input format and in a multitask setting.

Setting	TQuADv1-val BLEU-1	TQuADv1-val BLEU-2	TQuADv1 ROUGE-L	XQuAD BLEU-1	XQuAD BLEU-2	XQuAD ROUGE-L
MT-Both mT5-small	37.3	30.1	44.3	19.8	12.7	26.3
MT-Both mT5-base	48.4	41.7	53.6	21.6	14.1	28.3
MT-Both mT5-large	**49.8**	**43.2**	**55.2**	24.9	16.3	30.2

Setting	TQuADv2-val BLEU-1	TQuADv2-val BLEU-2	TQuADv2 ROUGE-L	XQuAD BLEU-1	XQuAD BLEU-2	XQuAD ROUGE-L
MT-Both mT5-small	39.6	32.9	46.5	21.1	13.8	28.4
MT-Both mT5-base	47.6	41.2	53.9	27.9	20.9	35.8
MT-Both mT5-large	**49.1**	**42.7**	**54.3**	**29.3**	**21.9**	**37.5**

By combining the prepend and highlight input formats, QG performance of an mT5 model can be boosted up to 10%.

In the future, further experiments with the multitask model on the other QG tasks such as multiple choice, true/false, yes/no will be examined and effect of multilingual knowledge in mT5 will be analysed. In addition, human evaluations could be done to provide further insight about the performances of the methods.

References

[1] Kurdi G, Leo J, Parsia B, Sattler U, Al-Emari S. A systematic review of automatic question generation for educational purposes. International Journal of Artificial Intelligence in Education 2020; 30 (1): 121–204. doi: 1938
[2] Lee CH, Chen TY, Chen LP, Yang PC, Tsai RTH. Automatic question generation from children’s stories for companion chatbot. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI); 2018. pp. 491–494.

[3] Laban P, Canny J, Hearst MA. What’s the latest? a question-driven news chatbot. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations; Online; Association for Computational Linguistics; 2020. pp. 380–387.

[4] Sreelakshmi A, Abhinaya S, Nair A, Nirmala SJ. A question answering and quiz generation chatbot for education. In: 2019 Grace Hopper Celebration India (GHCI); 2019. pp. 1–6.

[5] Yue X, Zhang XF, Yao Z, Lin S, Sun H. CliniQG4QA: Generating diverse questions for domain adaptation of clinical question answering. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021. pp. 580–587.

[6] Mitkov R. Computer-aided generation of multiple-choice tests. In: HLT-NAACL 03 workshop on Building educational applications using natural language processing; 2003. pp. 17–22.

[7] Heilman M, Smith NA. Good question! statistical ranking for question generation. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics; 2010. pp. 609–617.

[8] Soleymanzadeh K. Domain specific automatic question generation from text. In: ACL 2017, Student Research Workshop; 2017. pp. 82–88.

[9] Du X, Shao J, Cardie C. Learning to ask: Neural question generation for reading comprehension. In: 55th Annual Meeting of the Association for Computational Linguistics; 2017. pp. 1342–1352.

[10] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation 1997; 9 (8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735

[11] Zhou Q, Yang N, Wei F, Tan C, Bao H et al. Neural question generation from text: A preliminary study. In: National CCF Conference on Natural Language Processing and Chinese Computing; 2017. pp. 662–671.

[12] Zhao Y, Ni X, Ding Y, Ke Q. Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In: 2018 Conference on Empirical Methods in Natural Language Processing; 2018. pp. 3901–3910.

[13] Duan N, Tang D, Chen P, Zhou M. Question generation for question answering. In: 2017 Conference on Empirical Methods in Natural Language Processing; 2017. pp. 866–874.

[14] Kim Y, Lee H, Shin J, Jung K. Improving neural question generation using answer separation. In: AAAI Conference on Artificial Intelligence; 2019. pp. 6602–6609.

[15] Sun X, Liu J, Lyu Y, He W, Ma Y et al. Answer-focused and position-aware neural question generation. In: 2018 Conference on Empirical Methods in Natural Language Processing; Brussels, Belgium; Association for Computational Linguistics; 2018. pp. 3930–3939.

[16] Tuan LA, Shah D, Barzilay R. Capturing greater context for question generation. In: AAAI Conference on Artificial Intelligence; 2020. pp. 9065–9072.

[17] Kriangchaivech K, Wangperawong A. Question generation by transformers. CoRR 2019; abs/1909.05017. doi: 10.48550/arXiv.1909.05017

[18] Chan YH, Fan YC. A recurrent BERT-based model for question generation. In: 2nd Workshop on Machine Reading for Question Answering; 2019. pp. 154–162.

[19] Lopez LE, Cruz DK, Cruz JCB, Cheng C. Transformer-based end-to-end question generation. CoRR 2020; abs/2005.01107.
[20] Xue L, Constant N, Roberts A, Kale M, Al-Rfou R et al. mt5: A massively multilingual pre-trained text-to-text transformer. CoRR 2020; abs/2010.11934. doi: 10.18653/v1/2021.naacl-main.41

[21] Raffel C, Shazeer N, Roberts A, Lee K, Narang S et al. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 2020; 21: 1–67. doi: 10.48550/arXiv.1910.10683

[22] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN et al. Attention is all you need. Advances in neural information processing systems 2017; 30. doi: 10.48550/arXiv.1706.03762

[23] Schweter S. BERTurk - BERT models for turkish 2020. doi: 10.5281/zenodo.3770924

[24] Wolf T, Debut L, Sanh V, Chaumond J, Delangue C et al. Transformers: State-of-the-art natural language processing. In: 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations; 2020. pp. 38–45.

[25] Paszke A, Gross S, Massa F, Lerer A, Bradbury J et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 2019; 32. doi: 10.48550/arXiv.1912.01703

[26] Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100, 000+ questions for machine comprehension of text. In: EMNLP; 2016.

[27] Amidei J, Piwek P, Willis A. Evaluation methodologies in automatic question generation 2013-2018. In: 11th International Natural Language Generation Conference; 2018. pp. 307–317.

[28] Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: a method for automatic evaluation of machine translation. In: 40th annual meeting of the Association for Computational Linguistics; 2002. pp. 311–318.

[29] Banerjee S, Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization; 2005. pp. 65–72.

[30] Lin CY. ROUGE: A package for automatic evaluation of summaries. In: Text summarization branches out; 2004. pp. 74–81.

[31] Soygazi F, Çiftçi O, Kök U, Cengiz S. THQuAD: Turkish historic question answering dataset for reading comprehension. In: 2021 6th International Conference on Computer Science and Engineering (UBMK); 2021. pp. 215–220.

[32] Artetxe M, Ruder S, Yogatama D. On the cross-lingual transferability of monolingual representations. CoRR 2019; abs/1910.11856. doi: 10.48550/arXiv.1910.11856
Appendices

A. Samples from Datasets

Here we provide some samples from datasets for visual inspection. For TQuADv1 (Table 8) and TQuADv2 (Table 9), samples are shown from both training and validation sets, and for XQuAD (Table 10), samples are shown with tag of validation set only as XQuAD is considered a validation set by itself as a whole. The answers are highlighted within the context with green background for ease of reading.

Table 8. Some samples drawn from TQuADv1.

Split	Sample	TQuADv1
Train	context	Constantinus’un yaptığı etkiye gelince, Schipperges şu görüştedir: Avrupa tıbbına bir stratejik etkide bulunamamıştır. Constantinus’un kılıflıydi. Sırkansız bir kılıf olmasa da, Avrupa’da büyük oluklara sadecce hâkimlere etkilebilmiştir. Bu volume(130,436),(968,909)

question | Schipperges’e göre Constantinus’un çalışmaları hangi terim ile nitelendirilemez? |
answer | alışlandırık terim “resepsiyon” ile |

Train | context | İslam dünyasında bilimin 16. yüzyılda hala yüksek seviyede bulunduğunu gösteren çok ilginç bir örneği deskriptif coğrafya ekolünden verebiliriz. Bu örneği, Avrupa’da Afrikalı Leo (Leo Africanus) olarak tanınan el-hasan b. Muhammed el-Vezan (doğumu yaklaşık 888/1483’dr) Fas(Fez) şehrinde büyümüş...Buna göre, Constantinus’un kendine esaslı olduğu eserlerle olan bu aşırınlık birden çok faktöre dayanabilir. |
question | el-Hasan b. Muhammed el-Vezan isimli bilgin Avrupa’da nasıl tanınmaktadır? |
answer | Afrikalı Leo |

Train | context | Pursus için mevcut işletim sistemleri, başta Linux olmak üzere incelendi, açık kaynak yazılım metodolojisi (yöntem bilimi) ve felsefesi ayrıntı olarak çocuk yaşlarıdır. Bu inceleme sonucunda, 2003 yılı sonbaharında, Linux temelli, açık kaynaklı, olanaklı hâlde GPL lisanslama yöntemini kullanan bir işletim sistemini dağıtıma açfavicon olarak karar verildi. Pursus Proje’nin hazırlığı geçmişi, 2004 yılı başında teknik ekiton çektiğinden olayı oluşturmuşunun boşaldığı görülüyordu. Bu aşamada Türkiye’nin Linux geçmişini, mevcut ve planlanan dağıtımlar, açık kaynak ve Linux güncellemeleri ile ilgili bir durum adım adım TÜBİTAK/UEKAE lirasında bir araya gelmiştir. Sonuçta ulusal işletim sistem geliştirmesinde gerek alması en uygun kişiler Türkiye’nin dört bir yanından seçilecektir. TÜBİTAK/UEKAE bünyesinde bir araya gelmiştir. |
question | Pursus’un 2004 yılıyla bağlandığında bu yarım geçmişin projelerinde çıkacaksa en uygun kişiler hangi kuruluşunун çatısı altında toplanacaklardır? |
answer | TÜBİTAK/UEKAE |
Table 9. Some samples drawn from TQuADv2.

Split	Sample			
Train	context	Hünkâr İskelesi Antlaşması ile iki devlet arasında oluşan ittifakın hâlâ olması olayı, Rus askerlerinin orduğunu kurdukları yerine bir anıt diktilmesi (naman adı yaşamav gravürü için bk. Kutluoğlu, m. nr. 7, s. 8). Ancak iki cepheden Türkiye ve Rusça olayı örnek olarak göstermek için bir dikkat çekmek yeterlidir.	answer	Rus askerlerinin orduğunu kurdukları yerine bir anıt diktilmesi (naman adı yaşamav gravürü için bk. Kutluoğlu, m. nr. 7, s. 8). Ancak iki cepheden Türkiye ve Rusça olayı örnek olarak göstermek için bir dikkat çekmek yeterlidir.
	question	Hünkâr İskelesi Antlaşması ile iki devlet arasında oluşan ittifakın hâlâ olması olayı örnek olarak göstermek için bir dikkat çekmek yeterlidir.	answer	Rus askerlerinin orduğunu kurdukları yerine bir anıt diktilmesi (naman adı yaşamav gravürü için bk. Kutluoğlu, m. nr. 7, s. 8). Ancak iki cepheden Türkiye ve Rusça olayı örnek olarak göstermek için bir dikkat çekmek yeterlidir.

Table 10. Some samples drawn from XQuAD.

Split	Sample							
Val	context	Peyton Manning, ikinci takımı çıkanın 24 ve 25 Super Bowls'a gitmesinde liderlik eden ilk kilit oyuncu olma rekorunu daha önce kim elinde bulmuştu?	question	Bir Super Bowl'da oynayan en yaşlı kilit oyuncu kimdi?	answer	John Elway		
	context	Polonya'daki bilgisayar temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır. Itinerant evliliklerin ve genci yasalarının temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken	answer	Polonya'daki bilgisayar temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır.	question	Polonya'daki bilgisayar temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır.	answer	Polonya'daki bilgisayar temel birimi bir komünir (gmina). Bu şehir aynı zamanda bir kent kuruldu - ancak bu şehirlerdeki komünlerden bireysel bir kent kurum ile birleşebilir. Erken dönemlerde bu şehirlerin nüfusu azdır.
B. Model Outputs

Here we provide some sample question generation results from TQuADv2 dataset for visual inspection. For sample consistent (Table 11) and inconsistent (Table 12) question generations, results are shown. The answers are highlighted within the context with green background for ease of reading.

Table 11. Some consistent question generation results from TQuADv2.

Split	Type	Text	context
Val	generated question	Turkcell , Türkiye merkezli teknolojik iletişim operatör şirketidir. GSM, 3G, 4G ve 4.5G operatörüdür. GSM 900, UMTS2100, LTE800, LTE1800, LTE2100, LTE2600 teknolojilerini kullanarak hizmet vermektedir. Kuruluşuna rağmen bir yıla, lisans bedeli de dahil olmak üzere, yurt ve ihracatda. Turkcell ikiliyeye dönük hedefleri içinde 18 milyar Lira yatırım yapmayı hedefliyor ve yüzdenle Türk vatandaşına iş ilanını sağlarak.	Turkcell hangi frekanslar üzerinden hizmet vermektedir?
Val	gold question	Turkcell, Türkiye merkezli teknolojik iletişim operatör şirketi. GSM, 3G, 4G ve 4.5G operatörüdür. GSM 900, UMTS2100, LTE800, LTE1800, LTE2100, LTE2600 teknolojilerini kullanarak hizmet vermektedir. Kuruluşuna rağmen bir yıla, lisans bedeli de dahil olmak üzere, yurt ve ihracatda. Turkcell ikiliyeye dönük hedefleri içinde 18 milyar Lira yatırım yapmayı hedefliyor veyüzbinlerce Türk vatandaşına iş ilanını sağlarak.	Turkcell hangi frekanslar üzerinden hizmet vermektedir?
Val	gold answer	GSM 900, UMTS2100, LTE800, LTE1800, LTE2100, LTE2600.	GSM 900, UMTS2100, LTE800, LTE1800, LTE2100, LTE2600.
Val	generated question	Turkcell **11 Temmuz 2000** yılından itibaren İstanbul borsasında hisselerini satışa çıkarılmıştır. **11 Temmuz 2000** yılından itibaren İstanbul borsasında hisselerini satışa çıkarılmıştır.	Turkcell hisselerini İstanbul borsasında hangi tarih itibariyle satışa çıkarılmıştır?
Val	gold question	Turkcell **11 Temmuz 2000** yılından itibaren İstanbul borsasında hisselerini satışa çıkarılmıştır.	Turkcell hisselerini İstanbul borsasında hangi tarih itibariyle satışa çıkarılmıştır?
Val	gold answer	**11 Temmuz 2000**	**11 Temmuz 2000**
Val	generated question	**Kemaleddin ibn Y unus ya da Musa ibn Y unus (doğum yılı ve yeri: 1156 Musul - ölüm yılı ve yeri: 1241 Musul). Astronom, matematikçi ve İslam bilgini. Tam adı Musa bin Y unus bin Muhammed bin Men’a’dir. Künyesi ise Elu’l-F eth’tir, lakabı Kemaleddin olup ayrıca İbn-i Y unus ve Mewsilî diyede bilinir. İlk eğitimini babası Şeyh Y unus Rızauddin’in yanında fıkıh ve hadis ilimleri öğrendi, ardından Bağdat’taki Nizamiye Medresesi’nde okumaya devam etti. Burada UNSIGNED den matematik desenleri okuyarak, ardından Batlamyus’un Almagest adlı eserini de öğrenir. Arındandan Musul’a döndü, Emir Zeyneddinin Camii’nde dersler verdi. İlk öğretmeni Eşref ve daha sonraki öğretmenleri ile相处. Meme Kemaleddin ile Y unus pek çok çevreden gelen talebele üzerine öğrettirdi.	Musa Kemaleddin ayrıca hangi isimlerle bilinir?
Val	gold question	**Kemaleddin ibn Y unus lakabı dişinda hangi isimlerle bilinir?**	**Kemaleddin ibn Y unus lakabı dişinda hangi isimlerle bilinir?**
Val	gold answer	İbn-i Y unus ve Mewsilî	İbn-i Y unus ve Mewsilî
Table 12. Some inconsistent question generation results from TQuADv2.

Split	Type	Test
	Val	Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarihler arasında Avrupa, Türklerdir savunmaya geçmiştir. Türkler ise netleştirecek kazancı pekala A malarımıza göndermekte. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin Avrupa tarafında fethini engellemek için Avrupa devletleri, Türklerin Balkanlar üzerindeki A malarımıza de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranışa yavaşlamaktadır. Şark Meselesi’nin temel hatlarıyla iki önemli süreçten biri ne zamandır? ‘1071-1683’ yılları arasındaki Şark Mosesi’dir. Şark meselesi temel hatlarıyla biri ne zamandır? Şark meselesi temel hatlarıyla iki önemli süreçten oluşmaktadır. Bunlardan birincisi ‘1071-1683’ yılları arasındaki Şark Meselesi’dir. Bu tarih aralıkları Şark Mosesi’ne de netleştirecek kazancı pekala Türkiye’nin ilk planı davranı...