Evaluation of bedside tests and proposal of a model for predicting difficult laryngoscopy: an observational prospective study

Chara Liaskou a,*, Eleftherios Vouzounerakis b, Anastasia Trikoupi c, Chryssoula Staikou d

a General Hospital of Rethymnon, Department of Anesthesiology, Rethymnon, Greece
b Aristotel University of Thessaloniki, Medical School, Laboratory of Primary Health Care, General Practice and Health Services Research, Thessaloniki, Greece
c George Papanikolaou General Hospital, Department of Anesthesiology, Thessaloniki, Greece
d National and Kapodistrian University of Athens, Aretaieion Hospital, Medical School, Department of Anesthesiology, Athens, Greece

Received 14 August 2019; accepted 8 February 2020
Available online 17 May 2020

KEYWORDS
Airway assessment; Difficult laryngoscopy; Predictive tests; Predictive multivariate model; Sensitivity and specificity

Abstract
Background and objectives: The prediction of difficult laryngoscopy is based on tests that assess anatomic characteristics of face and neck. We aimed to identify the most accurate tests and propose a multivariate predictive model.
Methods: This prospective observational study included 1134 patients. Thyromental Distance (TMD), Sternomental Distance (STMD), Ratio of Height-to-Thyromental Distance (R-H/TMD), Neck Circumference (NC), Ratio of Neck Circumference-to-Thyromental Distance (R-NC/TMD), Hyomental Distance with head in Neutral Position (HMD-NP) and at Maximal Extension (HMD-HE), Ratio of Hyomental Distance at Maximal head extension-to-hyomental distance in neutral position (R-HMD), Mallampati Class (MLC), Upper Lip Bite Test (ULBT), Mouth Opening (MO) and Head Extension (HE) were assessed preoperatively. A Cormack-Lehane Grade ≥ 3 was defined as Difficult Laryngoscopy. Sensitivity, specificity, positive and negative predictive values were assessed for all tests. Multivariate analysis with logistic regression was used to create the predictive models.
Results: A model incorporating MLC, ULBT, HE, HMD-HE and R-NC/TMD showed high prognostic accuracy; $x^2(5)=109.12$, $p<0.001$, AUC = 0.86, $p<0.001$. Its sensitivity, specificity and negative predictive value were 82.3%, 74.8% and 97.4%, respectively. A second model including two measurements not requiring patient’s cooperation (R-NC/TMD and HMD-HE) exhibited good prognostic performance; $x^2(2)=63.5$, $p<0.001$, AUC = 0.77, $p<0.001$. Among single tests, HE had the highest sensitivity (78.5%) and negative predictive value (96%).

The study was carried out in two hospitals, General Hospital of Rethymno and George Papanikolaou General Hospital in Thessaloniki.

* Corresponding author.
E-mail: charalialiaskou@gmail.com (C. Liaskou).

https://doi.org/10.1016/j.bjane.2020.04.021
© 2020 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Difficult airway management is one of the main concerns of clinical anesthesiologists, as it may cause serious, even fatal, complications. The reported incidence of difficult laryngoscopy – defined as direct laryngoscopic view of a Cormack-Lehane grade ≥ 3 – in surgical patients without known or obvious airway deformities is estimated to be 5.8%. Although several predictive tests have been developed and used in clinical practice as bedside screening tests, no single predictor is considered to be sufficiently reliable. Thus, anesthesiologists usually rely on the combination of multiple tests for the prediction of difficult airway.

The aim of the present study was to assess the predictive accuracy of anatomic measurements and bedside tests that are used as single predictors of difficult airway and develop a reliable multivariate predictive model.

Conclusion

A five-variable model incorporating MLC, ULBT, HE, HMD-HE and R-NC/TMD showed satisfyingly high predictive value for difficult laryngoscopy. A model including R-NC/TMD and HMD-HE could be useful in incapable patients. The most accurate single predictor was HE.

Methods

One thousand one hundred and thirty four (1134) patients were included in this prospective open cohort study, which was approved by the Institutional Review Boards of the involved hospitals (General Hospital of Rethymno, Greece, 05/03/2013/41, and George Papanikolaou General Hospital, Exohi, Thessaloniki, Greece, 20/09/2013/n thư 878) and was registered on ClinicalTrials.gov (NCT02957084). The Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines were followed for the presentation of the study.

Adult patients, American Society of Anesthesiology (ASA) physical status I–II, scheduled for surgical procedures under general anesthesia with tracheal intubation were assessed for eligibility to be included in the study. Exclusion criteria were known airway malformations, indication for awake intubation, cervical spine pathology.
Table 1 Description of the measured anatomic features: Thyromental Distance (TMD), Sternomental Distance (STMD), Ratio of Height to Thyromental Distance (R-H/TMD), Neck Circumference (NC), Ratio of Neck Circumference to Thyromental Distance (R-NC/TMD), Hyomental Distance with head in Neutral Position (HMD-NP) and at maximal Extension (HMD-HE), Ratio of Hyomental Distance at maximal head extension to hyomental distance in the neutral position (R-HMD), Mallampati Class (MLC), Upper Lip Bite Test (ULBT), Mouth Opening (MO) and Head Extension (HE).

Measured anatomic features	Definition/Measurement	Conditions
TMD (cm)	Defined as the straight-line distance (cm) from the lower border of the thyroid notch to the bony point of the mentum	Head extended
STMD (cm)	Defined as the straight-line distance (cm) from the bony point of the mentum to the upper border of the manubrium sterni	Head extended
NC (cm)	Measured at the level of the thyroid cartilage	Head in neutral position
R-H/TMD	Each patient’s height (cm) was recorded in order to calculate the R-H/TMD	Head in neutral position
R-NC/TMD	Each patient’s NC (cm) was recorded in order to calculate the R-NC/TMD	Head in neutral position
HMD-NP (cm)	Distance (cm) from the tip of the hyoid bone to the anterior part of the mentum	Head in neutral position
HMD-HE (cm)	Distance (cm) from the tip of the hyoid bone to the anterior part of the mentum	Head maximally extended
R-HMD	Defined as the ratio of the HMD at extreme head extension to the HMD measured with the head in the neutral position	Sitting position
MLC	Class 1: soft palate, fauces, entire uvula, anterior and posterior tonsillar pillars visible	Head in neutral position
	Class 2: soft palate, fauces, uvula visible	Head in neutral position
	Class 3: soft palate and base of uvula visible	Without swallowing
	Class 4: only hard palate visible	Without lifting the shoulders
ULBT	Class 1: lower incisors can bite the upper lip above the vermillion line	Sitting position
	Class 2: lower incisors can bite the upper lip below the vermillion line	Siting position
	Class 3: lower incisors cannot bite the upper lip	Siting position
MO (cm)	Measured with the mouth fully open (cm)	Siting position
HE (°)	Reference points: angle of the jaw and upper incisor teeth.	Siting position
	Measuring side of the goniometer moved parallel to the upper incisors, and maximum extension recorded	Head maximally extended

... requiring specific manipulation, severe obesity (Body Mass Index, BMI > 35 kg/m^2) and risk of aspiration requiring rapid sequence intubation/application of cricoid pressure (obstetric cases included). A written informed consent was obtained from all participants.

In order to minimize bias, one investigator (C.L.) performed all the anatomic measurements and tests using a measuring tape and a goniometer, and calculated the derived ratios, preoperatively. This investigator was not further involved in the airway management (i.e. laryngoscopy and intubation). The following 12 parameters were assessed: Thyromental Distance (TMD), Sternomental Distance (STMD), Ratio of Height to Thyromental Distance (R-H/TMD), Neck Circumference (NC), Ratio of Neck Circumference to Thyromental Distance (R-NC/TMD), Hyomental Distance with head in Neutral Position (HMD-NP), Hyomental Distance with the Head at maximal Extension (HMD-HE), Ratio of Hyomental Distance at maximal head extension-to-hyomental distance in the neutral position (R-HMD), Mallampati Class (MLC), Upper Lip Bite Test (ULBT), Mouth Opening (MO) and Head Extension (HE). All parameters are described in Table 1.

In the operating room, standard monitoring was applied to all patients (electrocardiogram, pulse oximeter and non-invasive blood pressure measurement) and a peripheral vein catheter was inserted for administration of drugs and fluids. Anesthesia was induced with propofol 2.5 mg.kg^{-1} and fentanyl 2 μg.kg^{-1} IV. Rocuronium 1 mg.kg^{-1} IV was given to facilitate tracheal intubation (after 90 seconds) with the patient’s head in the “sniffing position”. A senior anesthesiologist, blind to the preoperative measurements, performed a direct laryngoscopy using a Macintosh blade; a n° 3 blade was used for medium sized patients and a n° 4 blade for large sized patients. Sixteen anesthesiologists with a clinical experience of more than 5 years were involved in the airway management of the studied patients. The
laryngoscopic view was classified according to the Cormack-
Lehane grade from 1 to 4: vocal cords completely visible;
arytenoids visible; only epiglottis visible; or only soft palate
visible, respectively. Difficult laryngoscopy was defined as a
Cormack-Lehane grade 3 or 4 under direct vision, by the use
of an appropriate blade size, without application of external
maneuvers.

The sensitivity, specificity, positive and negative predictive
values for difficult laryngoscopy were assessed for all
studied variables. Receiver Operating Characteristic (ROC)
curves were used to identify the optimal cut-off point of
each variable and the Area Under Curve (AUC) was
calculated to assess its prognostic accuracy. Multivariate
analysis with logistic regression, including TMD, STMD, R-H/TMD, NC,
R-NC/TMD, HMD-NP, HMD-HE, R-HMD, MLC, ULBT, MO and HE,
was used to create a model predicting difficult laryngoscopy.
Variables that do not require the patient’s cooperation to be
measured (TMD, STMD, R-H/TMD, NC, R-NC/TMD, HMD-NP, HMD-HE and R-HMD) were included in another multivariate
analysis for the development of a second risk prediction
model.

The primary end-point of the study was the predictive
value of the multivariate model. Secondary end-points were
the accuracy of each single test in the whole sample and
differences between the genders, regarding the optimal cut-
off points and the diagnostic value of the studied tests when
using gender-specific cut-off points.

The sample size of the study was based on the reported
incidence of difficult laryngoscopy in 50,760 patients
without airway malformations 5.8% (4.7%-7.5%)2 and in a
representative sample (387 patients) of the Greek popula-
tion (12.6%).4 A sample size of at least 640 patients would
be necessary, as estimated for a 99% Confidence Interval
(CI) by the use of the Epi info statistical package (version
7.2.2.6). We decided to increase it by about 2-fold in order
to maintain its power to detect the agreement between the
Cormack-Lehane grade and the predictors. The statistical
analysis was performed using SPSS Software (version 22)
and Med Calc (version 11.6). Variables were tested for normality
of distribution with Kolmogorov-Smirnov test. Mann-Whitney
test was used for the comparisons of Cormack-Lehane grade,
TMD, STMD, R-H/TMD, NC, R-NC/TMD, HMD-NP, HMD-HE, R-
HMD, MLC, ULBT, MO and HE between men and women. ROC
analysis was used to assess the optimal cut-off values of pre-
dictors and AUC with 95% CI. Sensitivity, specificity, positive
and negative predictive values were calculated in order to
test the predictive power of each variable. The incidence of Cormack-Lehane grade ≥ 3 among the 16 anesthesiolo-
gists who performed the laryngoscopies was compared using
the χ2 test. The level of statistical significance for the com-
parisons was set at 0.05 (p < 0.05). Results are presented
as mean±SD, 95% CI or as n (%). Logistic regression analysis
was used to produce the multivariate models. The Hosmer-
Lemeshow test was used to assess goodness of fit of the risk
prediction models (p > 0.05).

Results

Data from 1134 patients were analyzed. Demographic char-
acteristics and Cormack-Lehane grades are shown in Table 2.
There was no change of the laryngoscopic blade size in any
patient. The incidence of difficult laryngoscopy (Cormack-
Lehane grade 3 or 4) was 10.5%, without statistically
significant difference among the involved anesthesiologists
(χ2 = 6.884, p = 0.142). In 1091 patients (96.2%), tracheal
intubation was achieved at first attempt and in 34 patients
(3%) at second attempt, after the application of external
pressure/maneuvers, the use of a gum elastic bougie and/or
an endotracheal tube of smaller size. In nine cases (0.8%)
intubation was achieved at third attempt, either by another
anesthesiologist or with the use of extra equipment or other
special devices (i.e. intubating laryngeal mask).

Logistic regression analysis was performed using a for-
ward LR method, which incorporated all the studied
variables. A model including 5 variables, namely MLC, ULBT,
HE, HMD-HE and R-NC/TMD, exhibited high prognostic value;
χ2(5) = 109.12, p < 0.001. The Hosmer–Lemeshow test indi-
cated a good model fit (p = 0.85, p > 0.05). The ROC curve
of the risk model – describing its screening characteristics –
found the AUC to be 0.86 (95% CI 0.83–0.88, p < 0.001),
showing that the model had a statistically signifi-
cant diagnostic accuracy. The sensitivity, specificity, positive
and negative predictive values of the logistic regression
model were 82.3% (95% CI 70.5%–90.8%), 74.8% (95% CI
71.3%–78.1%), 26.6% (95% CI 23.3–30.2%) and 97.4% (95% CI
95.7%–98.5%), respectively (Fig. 1).

A second multivariate analysis was performed using a
forward LR method that included variables which do not
require the patient’s cooperation for their measurement:
TMD, STMD, R-H/TMD, NC, R-NC/TMD, HMD-HE, HMD-NP, R-
HMD. A model incorporating two of the above variables,
namely R-NC/TMD and HMD-HE, exhibited good prognostic
value, χ2(2) = 63.5, p < 0.001. The Hosmer-Lemeshow test
indicated a good logistic regression model fit (p = 0.68 ± 0.05).
The AUC of this model was found to be 0.77 (95% CI 0.74–0.8, p < 0.001). The sensitivity, specificity, positive
and negative predictive values of the model were 75.2% (95% CI
71.8%–78.4%), 70.8% (95% CI 58.2%–81.4%), 22.2% (95% CI
16.3%–29.5%) and 96.2% (95% CI 95.4%–96.9%), respectively
(Fig. 2).

The statistical characteristics of the proposed two mul-
tivariate models with the variables selected to be included
or not in the final equation – on the basis of their statistical
significance – are presented in the Tables 3 and 4.

Patients’ characteristics	Values
Men	560 (49.4%)
Women	574 (50.4%)
Age (years)	49.4±18.4
Weight (kg)	75.8±14.2
Height (cm)	169.4±9
Body Mass Index (BMI, kg·m⁻²)	26.4±4
Cormack-Lehane grade 1	849 (74.9%)
Cormack-Lehane grade 2	166 (14.6%)
Cormack-Lehane grade 3	86 (7.6%)
Cormack-Lehane grade 4	33 (2.9%)

Table 2: Demographic data and the Cormack-Lehane grade
of the laryngoscopic view in the studied sample. Values are
expressed as mean±SD or as n (%).

C. Liaskou et al.
Table 3 Multivariate model characteristics with 5 variables.

Variables included in the equation due to statistical significance	B	S.E.	Odds Ratio	95% C.I.	p-value
MLC	0.56	0.14	1.75	1.32-2.32	< 0.001
ULBT	0.8	0.21	2.22	1.48-3.34	< 0.001
R-NC/TMD	0.7	0.22	2	1.31-3.1	0.01
HE	-0.06	0.02	0.94	0.9-0.98	0.002
HMD-HE	-0.6	0.16	0.55	0.4-0.75	< 0.001
Constant	-2.45	1.8	0.09		0.17

\[x^2(5) = 109.12, \ p < 0.001 \]

AUC

Area 0.86

95% CI 0.82-0.9

p-value < 0.001

Variables not included in the equation due to lack of statistical significance

Score	p-value
MO	3.43
TMD	1.15
STMD	0.002
R-H/TMD	0.3
NC	1.25
HMD-NP	0.72
R-HMD	0.4

Table 4 Multivariate model characteristics with 2 variables that don’t require patient’s cooperation for measurement.

Variables included in the equation due to statistical significance	B	S.E.	Odds Ratio	95% C.I.	p-value
R-NC/TMD	0.81	0.19	2.25	1.56-3.25	< 0.001
HMD-HE	-0.7	0.15	0.5	0.37-0.67	< 0.001
Constant	-2.37	1.37	0.09		0.08

\[x^2 (2) = 63.5, \ p < 0.001 \]

AUC

Area 0.77

95% CI 0.74-0.8

p-value < 0.001

Variables not included in the equation due to lack of statistical significance

Score	p-value
TMD	2.69
STMD	1.56
R-H/TMD	0.05
NC	3.08
HMD-NP	0.87
R-HMD	0.08

TMD, Thyromental Distance; STMD, Sternomental Distance; R-H/TMD, Ratio of Height to Thyromental Distance; NC, Neck Circumference; R-NC/TMD, Ratio of Neck Circumference to Thyromental Distance; HMD-HE, Hyomental Distance with Head at maximal Extension; HMD-NP Hyomental Distance with head in Neutral Position; R-HMD, Ratio of Hyomental Distance at maximal head extension to hyomental distance in the neutral position; MO, Mouth Opening; HE, Head Extension.

The optimal cut-off points, sensitivity, specificity, positive and negative predictive values, and AUC for each test are presented in Table 5. The HE had the highest sensitivity, although NC, HMD-NP, HMD-HE and R-HMD exhibited high sensitivity, too (> 70%). The mean values of all measured variables, except for HE (p = 0.93), differed significantly between genders (p < 0.05) and their optimal cut-off values were also gender dependent, as shown in Table 5.

Discussion

Large scale studies, prospective or retrospective, investigating the accuracy of bed-side tests and multivariate risk
Predictive test	Cut-off value	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	AUC mean (95% CI)	p
TMD (cm)	≤ 7.5	38.7	85	23.2	92.2	0.64 (0.61-0.687)	< 0.001
TMD male	≤ 8	45.7	83.6	24	92.9		
TMD female	< 7	48.9	86.86	30.4	93.6		
STMD (cm)	≤ 17	68.9	54.7	15.1	93.7	0.67 (0.64-0.7)	< 0.001
STMD male	≤ 18.5	81.43	48.98	15.8	95.7		
STMD female	≤ 15	48.98	80.19	22.5	93.1		
R-H/TMD	> 21.25	47.1	81.6	23.1	92.9	0.66 (0.63-0.69)	< 0.001
R-H/TMD male	> 21.25	38.57	85.71	24.1	92.2		
R-H/TMD female	> 21.6	55.1	81.9	26.3	94		
NC (cm)	> 38	70.6	49.6	14.1	93.5	0.61 (0.59-0.64)	< 0.001
NC male	> 40.5	72.86	39.59	12.4	92.6		
NC female	> 38.5	44.9	82.67	23.3	92.7		
R-NC/TMD	> 4.94	52.9	78.7	22.6	93.4	0.69 (0.66-0.72)	< 0.001
R-NC/TMD male	> 4.94	51.43	75.7	19.5	92.9		
R-NC/TMD female	> 4.81	61.2	78.29	24.9	94.5		
HMD-HE (cm)	≤ 5.5	73.8	60.3	17.9	95.2	0.71 (0.68-0.74)	< 0.001
HMD-HE male	≤ 5.5	66.67	67.8	19.5	94.5		
HMD-HE female	≤ 5	84.62	58.56	19.3	97		
HMD-NP (cm)	≤ 4.5	73.8	58	17.1	95	0.7 (0.66-0.73)	< 0.001
HMD-NP male	≤ 4.5	64.1	64.7	17.6	93.9		
HMD-NP female	≤ 4	84.6	57.46	18.9	97		
R-HMD	> 1.2	73.8	54	15.9	94.6	0.66 (0.63-0.7)	< 0.001
R-HMD male	> 1.2	64.1	59.4	15.6	93.4		
R-HMD female	> 1.22	88.46	53.87	18.4	97.5		
MO (cm)	≤ 3.8	53.4	74.7	19.9	93.2	0.69 (0.66-0.72)	< 0.001
MO male	≤ 4.4	77.1	52	15.9	95.1		
MO female	≤ 3.7	51	78.1	21.5	93.1		
HE (°)	≤ 35	78.5	60.4	18.9	96	0.72 (0.69-0.75)	< 0.001

TMD, Thyromental Distance; STMD, Sternomental Distance; R-H/TMD, Ratio of Height to Thyromental Distance; NC, Neck Circumference; R-NC/TMD, Ratio of Neck Circumference to Thyromental Distance; HMD-HE, Hyomental Distance with Head at maximal Extension; HMD-NP, Hyomental Distance with head in Neutral Position; R-HMD, Ratio of Hyomental Distance at maximal head extension to hyomental distance in the neutral position; MO, Mouth Opening; HE, Head Extension; PPV, Positive Predictive Value; NPV, Negative Predictive Value; AUC, Area Under Curve indicating the diagnostic accuracy of each test.

Statistical significance was set at $p < 0.05$.

* The cut-off point for HE was same for males and females.
models of difficult laryngoscopy are lacking.5,6 The present study was prospective observational, included more than 1100 patients, evaluated 12 predictive tests and proposed two multivariate predictive models that could be used in cooperative and uncooperative patients.

Compared to previous research, we found a relatively high incidence of difficult laryngoscopy (10.5%);2 possible explanations include the assessment of laryngoscopic view without external pressure or helpful maneuvers, and also the specific morphological features of the studied sample. However, similarly high prevalence (> 10%) has also been reported by other investigators.4,7-9

The primary end point of our study was the creation of an optimal predictive model. A model incorporating MLC, ULBT, HE, HMD-HE, R-NC/TMD exhibited a satisfyingly high predictive accuracy, significantly improved compared to the single predictive tests and other models that included fewer or other variables. The AUC (0.86), sensitivity, specificity and negative predictive value of this five-variable model demonstrated a high enough accuracy to make it a reliable tool for the prediction of difficult laryngoscopy.

Unfortunately, our results cannot be directly compared to the findings of other similar studies due to differences in the methodology, the definitions of difficult laryngoscopy/intubation, the assessed variables/risk indexes, and the racial characteristics of the studied population.5-11 A study from Nigeria assessed five predictors in 380 West African patients. The authors found that the best combination for this race was MLC, TMD, MO, with sensitivity, specificity and positive predictive value of 84.6%, 94.6% and 35.5% respectively, but they did not report any results about AUC.10 Another similar study from Indonesia included 277 Malay patients; the authors assessed three tests (MLC, TMD, R-HMD) and their combination. The 3 variable model exhibited good accuracy (AUC = 0.83), with sensitivity, specificity and negative predictive value of 60.7%, 88.8% and 69.9%, respectively.11

In the present study, we also assessed and analyzed eight variables that can be measured without the patient’s cooperation; a model incorporating two of these variables, namely R-NC/TMD and HMD-HE, showed good prognostic accuracy (AUC = 0.77). We consider that it could be used in patients with physical or mental impairment, unable to perform other common tests such as MLC and ULBT. In a previous study including 341 Caucasians, four specific anatomic features of the neck that can be measured with minimal patient cooperation, namely TMD, STMD, R-H/TMD and NC, were studied.4 The authors incorporated all four of them in a risk model, but it only achieved a moderate to fair predictive accuracy (AUC = 0.68).

The optimal cut-off points of TMD, R-H/TMD, NC, R-NC/TMD, HMD-HE, HMD-NP, R-HMD and MO in our sample were similar to those reported in previous studies,4,12-19 while the cut-off point of STMD was higher compared to other studies.19 Such measurements may differ among populations with dissimilar physical characteristics.9 Additionally, different ways of measuring and scoring the head and neck extension may affect the results and make direct comparisons between studies difficult.17 In our study we used the method described by Turkan et al.,16 and the values and cut-off points for HE were in accordance with this study.

Similarly to previous research, we found different cut-off points in men and women.21 However, the gender-specific cut-off points did not affect significantly the predictive accuracy of the tests, except for STMD, which became more accurate in men, and for HMD-HE, HMD-NP and R-HMD, that were more accurate in women.

In agreement with other studies we found that all tests are poor single predictors of difficult laryngoscopy, and thus, not reliable if used alone.4,13,15,17-19

Ideally, a predictive test should be both highly sensitive and specific, in order to identify almost all difficult laryngoscopies with the least false positive predictions. False negative predictions can lead to unanticipated difficult airway, inadequately prepared anesthesiologist and unfavorable sequelae for the patient. On the other hand, false positive predictions can cause unnecessary preparation and inconvenience, but no harm to the patient. Thus, the most critical problem in clinical practice is associated with
false negative predictions, which are incorporated in the calculation formula of sensitivity and negative predictive value. Among the studied predictors, HE showed the best combination of high sensitivity and high negative predictive value, and thus, it was the most accurate single predictor. However, it requires the use of a goniometer, as well as patient’s cooperation. The HMD-NP, HMD-HE and R-HMD were also highly ranked compared to the rest of the tests. While in other studies the R-H/TMD and NC were found to be accurate single predictors,8,13,14 that was not the case in our sample.

All tests had a low positive predictive value, in accordance with previous findings.4,10 As Yentis mentions in his editorial,21 positive predictive value will always be low when the outcome of interest (in our case, difficult laryngoscopy) is not common.

A possible limitation of our study is that laryngoscopy was performed by different anesthesiologists; in order to eliminate bias we added the criterion of a more than 5-year clinical experience. Moreover, we performed a statistical analysis which showed that the incidence of difficult laryngoscopies did not differ among them. Another limitation, which cannot be avoided in this type of studies, is that our results are mostly affected by morphological characteristics and possibly do not apply to different racial groups. Therefore, our findings should be regarded carefully and extrapolated with caution to other populations.

Summary

A model including five variables (MLC, ULBT, HE, HMD-HE and R-NC/TMD) showed satisfactorily high accuracy in predicting difficult laryngoscopy. Another model including two variables (R-NC/TMD and HMD-HE) exhibited good prognostic performance and may be more practical in patients unable to cooperate. Among the studied tests, the HE was the most accurate single predictor of difficult laryngoscopy. Gender-specific cut-off points should be used for STMD, as they improved the prognostic accuracy in men and for the HMD-HE, HMD-NP and R-HMD, as they improved the prognostic accuracy in women.

Glossary

Thyromental Distance (TMD), Sternomental Distance (STMD), Ratio of Height to Thyromental Distance (RSTernomental Distance (STMD), Ratio of Height to Thyromental Distance (R-H/TMD), Neck Circumference (NC), Ratio of Neck Circumference to Thyromental Distance (R-NC/TMD), Hyomental Distance with head in Neutral Position (HMD-NP) and at maximal Extension (HMD-HE), Ratio of Hyomental Distance at maximal head extension to hyomental distance in the neutral position (R-HMD), Mallampati Class (MLC), Upper Lip Bite Test (ULBT), Mouth Opening (MO), Head Extension (HE), Area Under Curve (AUC), Confidence Interval (CI).

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

The authors thank Mr Theodoros Sfakianakis, MSc for helping in the statistical analysis of data.

References

1. Nørskov AK, Rosenstock CV, Weterslev J, et al. Diagnostic accuracy of anaesthesiologists’ prediction of difficult airway management in daily clinical practice: a cohort study of 188,064 patients registered in the Danish Anaesthesia Database. Anaesthesia. 2015;70:272–81.
2. Shiga T, Wajima Z, Inoue T, et al. Predicting Difficult intubation in apparently normal patients. Anesthesiology. 2005;103:429–37.
3. Wojtczak JA. Submandibular sonography: assessment of hyomental distances and ratio, tongue size, and floor of the mouth musculature using portable sonography. J Ultrasound Med. 2012;31:523–8.
4. Liaskou C, Vouzounerakis E, Moiragenti M, et al. Anatomic features of neck as predictive markers of difficult direct laryngoscopy in men and women: a prospective study. Indian J Anaesth. 2014;58:176–82.
5. L’Hermite J, Nouvellon E, Cuvillon P, et al. The Simplified Predictive Intubation Difficulty Score: a new weighted score for difficult airway assessment. Eur J Anaesthesiol. 2009;26:1003–9.
6. Cortellazzi P, Minati L, Falcone C, et al. Predictive value of the El-Ganzouri multivariate risk index for difficult tracheal intubation: A comparison of Glidescope videolaryngoscopy and conventional Macintosh laryngoscopy. Br J Anaesth. 2007;99:906–11.
7. Prakash S, Kumar A, Bhandari S, et al. Difficult laryngoscopy and intubation in the Indian population: An assessment of anatomical and clinical risk factors. Indian J Anaesth. 2013;57:569–75.
8. Dhanker S, Gupta SL, Vinayagam S, et al. Diagnostic accuracy of bedside tests for predicting difficult intubation in Indian population: A observational study. Anesth Essays Res. 2016;10:54–8.
9. Balakrishnan KP, Chockalingam PA. Ethnicity and upper airway measurements: A study in South Indian population. Indian J Anaesth. 2017;61:622–8.
10. Merah NA, Wong DT, Foulkes-Crabbe DJ, et al. Modified Mallampati test, thyromental distance and inter-incisor gap are the best predictors of difficult laryngoscopy in West Africans. Can J Anaesth. 2005;52:291–6.
11. Tantri AR, Firdaus R, Salomo ST. Predictors of Difficult Intubation Among Malay Patients in Indonesia. Anesth Pain Med. 2016;6:4–8.
12. Fritschova S, Adamus M, Dostovala K, et al. Can difficult intubation be easily and rapidly predicted? Biomed. Pap. 2011;155:165–72.
13. Kamat HV, Prabandhankam MR, Pathak B, et al. A. Bedside clinical tests as a screening tool for predicting difficult laryngoscopy and intubation: an observational study. Airway. 2018;1:9–12.
14. Kaniyi S, Anandan K, Thomas S. Ratio of height to thyromental distance as a predictor of difficult laryngoscopy: a prospective observational study. J Anaesthesiol Clin Pharmacol. 2018;34:485–9.
15. Huh J, Shin HY, Kim SH, et al. Diagnostic predictor of difficult laryngoscopy: The hyomental distance ratio. Anesth Analg. 2009;108:544–8.
16. Türkan S, Ates Y, Cuhruk H, et al. Should we reevaluate the variables for predicting the difficult airway in anesthesiology? Anesth Analg. 2002;94:1340–4.
17. Rao KVN, Dhatchinamoorthi D, Nandhakumar A, et al. Validity of thyromental height test as a predictor of difficult laryngoscopy: a prospective evaluation comparing modified Mallampati score, interincisor gap, thyromental distance, neck circumference, and neck extension. Indian J Anaesth. 2018;62:603–8.
18. Kim WH, Ahn HJ, Lee CJ, et al. Neck circumference to thyromental distance ratio: A new predictor of difficult intubation in obese patients. Br J Anaesth. 2011;106:743–8.
19. Shah PJ, Dubey KP, Yadav JP. Predictive value of upper lip bite test and ratio of height to thyromental distance compared to other multivariate airway assessment tests for difficult laryngoscopy in apparently normal patients. J Anaesth Clin Pharmacol. 2013;29:191–5.
20. Badheka J, Doshi P, Vyas A, et al. Comparison of upper lip bite test and ratio of height to thyromental distance with other airway assessment tests for predicting difficult endotracheal intubation. Indian J Crit Care Med. 2016;20:3–8.
21. Lasinska-Kowara M, Sulkowski B, Wujtewicz M. Thyromental distance as a predictor of difficult intubation. Anestezjol Intens. 2007;39:8–12.
22. Yentis SM. Predicting difficult intubation – worthwhile exercise or pointless ritual? Anesthesia. 2002;57:105–9.