Non-adiabatic few-femtosecond dynamics of excited methanol with super-resolution time-resolved photoelectron spectroscopy

Elio G. Champenois,1,2 Loren Greenman,1,3,4 Niranjan Shivaram,1 James P. Cryan,5 Kirk A. Larsen,1,2 Thomas N. Rescigno,1 C. William McCurdy,1,3 Ali Belkacem,1 and Daniel S. Slaughter1,a)

1) Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2) Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720, USA
3) Department of Chemistry, University of California, Davis, CA 95616, USA
4) Department of Physics, Kansas State University, Manhattan, KS 66506, USA
5) Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

(Dated: 8 May 2018)

We report a novel approach to tracking nuclear motion and non-adiabatic dynamics in molecular systems, on sub-10 fs timescales, by combining a detailed analysis of the onset and decay times of the features in time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The approach is applied to photoexcitation of methanol at 156 nm, followed by delayed photoionization at 260 nm, using 20 fs laser pulses. Energy-resolved signal onset times are extracted from the measured photoelectron spectra to achieve high temporal resolution, beyond the pump and probe pulse duration. When combined with ab initio calculations of selected cuts through the excited state potential energy surfaces, this information allows the dynamics of the transient excited molecule, which include multiple nuclear and electronic degrees of freedom, to be tracked on their intrinsic femtosecond timescale. Within 15 fs of photoexcitation, we observe nuclear motion on the initially excited bound state, through a region of non-adiabatic coupling, and along different dissociative coordinates.
I. INTRODUCTION

Molecules excited by light can evolve by coupled nuclear and electronic motion over ultrafast timescales. In many photochemical reactions, the products and their relative yields depend sensitively on the details of these coupled molecular dynamics and processes that occur within a few femtoseconds. For example, near a conical intersection, where the evolving molecular geometry finds two or more electronic states of equal potential energy, non-adiabatic transitions can occur, enabling important relaxation mechanisms, such as competing isomerization or dissociation pathways, and non-radiative electronic relaxation. Considerable interest in investigating such dynamics on their natural femtosecond timescales has driven recent developments of time-resolved spectroscopic methods employing few-cycle infrared lasers and broadband attosecond pulses.

Time-resolved photoelectron spectroscopy (TRPES) has arguably become the gold standard to study ultrafast non-adiabatic dynamics in neutral excited molecules. A measurement of the instantaneous photoelectron binding energy of the excited wavepacket can be parsed into contributions from each state involved in the electronic relaxation process, allowing kinetic models to be constructed. Photoelectron spectra are also sensitive to excited vibrational wavepacket dynamics due to the dependence of the binding energy on the evolving molecular geometry. Signatures of such dynamics have been observed in TRPES as shifts in the measured photoelectron kinetic energy as the probe pulse delay is increased. Such shifts are a direct result of the wavepacket motion on the excited state potential energy surface (PES), due to the configuration dependent ionization potential.

A few techniques are available to exceed the apparent instrument resolution limit of an experiment. For example, ultrafast excited state decay lifetimes may be extracted by measuring a slightly broadened or delayed pump-probe cross-correlation. We draw an analogy between the present work and hyperspectral super-resolution imaging, where multiple images are captured with sub-pixel shifts at various wavelengths. These images can be combined to obtain a hyperspectral image with spatial resolution beyond conventional hyperspectral imaging. In the present experiments, photoelectron energy dependent spectra obtained with sub-pulse duration pump-probe time-delay steps spectra reveal nuclear motion, with a temporal resolution beyond the instrument response, if the characteristic onset and decay times of spectral features are appropriately mapped as functions of photoelectron kinetic energy.

We temporally and spectrally resolve photodissociation dynamics of methanol following excitation to the 21A′′ (S2) electronic state at 156 nm, in a demonstration of super-resolution TRPES to identify and follow the photochemical reaction. Using a 260 nm single-photon probe, we measure dynamical spectral features in the photoelectron spectrum as a function of the pump-probe time delay, and quantify them to extract signatures of the nuclear motion that emerges in the first 10 fs following excitation. Measurements of the photoelectron kinetic energy Eγ- allow the determination of the transient binding energy $E(R)$ of the system,

$$E_i(R) = \hbar \omega_{pump} - \hbar \omega_{probe} - E_{c-} = \hbar \omega_{pump} + E_c(R) - E_i(R),$$

where the potential energies of the cation $E_c(R)$ and the neutral excited state $E_i(R)$ depend on the nuclear coordinates R, and $E_c(R) - E_i(R)$ is the coordinate-dependent ionization potential. The pump and probe photon energies are $h\omega_{pump}$ and $h\omega_{probe}$, respectively. When interpreted with the aid of electronic structure calculations, which assist in reducing the dimensionality of the dynamics through the identification of a characteristic reaction coordinate, this technique enables the nuclear wavepacket to be tracked as it evolves on the PES.

Methanol plays an important role in atmospheric chemistry, fuels and energy transport, and the excited state dynamics of methanol are highly relevant to each of these applications. Direct investigation of excited state dynamics of methanol in the time domain has been challenging, in part due to the high electronic excitation energies, the ultrafast internuclear motion on the excited states, and the relative complexity of the molecule involving two fundamental functional groups. Methanol can therefore be employed as a model polyatomic system to develop valence-sensitive time-resolved experimental techniques and excited state electronic structure theory to address each of these challenges.

In previous studies, several neutral dissociation channels were observed following photoexcitation of the 21A′′ (S2) state in methanol. Among these, the dominant two-body breakup processes produce either CH3O+H or CH3+OH, while CH3OH+H and CH3O+H2 are also produced with lower yields. The S2 excited state is bound along the O–H and C–O coordinates, while the 1A′′ (S1) state is dissociative in the same coordinates. Previous calculations revealed avoided crossings between the S1 and S2 states along each of these coordinates, which suggested that the observed dissociation occurs after a non-adiabatic transition to the lower of these two 1A′′ states. Analysis of the fragment kinetic energy distributions for the O–H and C–O dissociation channels revealed that most of the available energy is channeled into translational kinetic energy, which also supports the possible mechanism of prompt fragmentation on the S1 PES, which connects asymptotically to the CH3O + H and CH3 + OH thermodynamic limits.

In the valence isoelectronic system CH3SH, the S1 and S2 surfaces were previously explored by neutral fragment velocity map imaging and ab initio theory. In CH3SH, a conical intersection between the S2 and S1 PESs, involving C–S bond stretch and S–H motion, enables dissociation. In the present investigation we ex-
II. RESULTS AND DISCUSSION

A. Signal Onset Times and Resolving a Fast Dissociative Reaction Pathway.

The experimental time-resolved photoelectron spectra, for excitation at 156 nm and ionization by a delayed 260 nm probe pulse, are shown in Fig. 1. The pump and probe pulses, each having 20 fs duration, are generated by focusing 780 nm laser pulses in argon to generate high order harmonics through the non-linear process of high harmonic generation. The high harmonic beam is split into two parallel beams containing the 3rd and the 5th harmonics by using filters and a split mirror setup. One half of the split mirror is mounted on a linear translation stage to vary the pump-probe time delay (see Methods). The overall photoelectron yield decays within ~200 fs. We observe features in the photoelectron spectra that shift as the time delay is increased, with a peak first appearing near the binding energy of 10.85 eV (the ionization potential, corresponding to a photoelectron kinetic energy of 1.87 eV) and extending towards higher binding energies (lower kinetic energies) with longer time delays.

To quantify the measured photoelectron spectra, we use a global fitting algorithm that fits each energy-slice, $I(E,t)$, with a function parameterized by the energy-dependent signal onset time $t_0(E)$ and exponential decay time $\tau(E)$, convolved with a global Gaussian function g of width σ:

$$I(E,t) = A(E) \left[H(t - t_0(E)) \times \exp\left(-\frac{t - t_0(E)}{\tau(E)}\right) \right] \otimes g(t - t_0(E); \sigma),$$ \hspace{1cm} (2)

where $H(t)$ is the Heaviside step function. More information on this fitting procedure is available in the supplementary materials. The retrieved signal onset times, $t_0(E)$, and signal decay times, $\tau(E)$, are shown in Fig. 2. Eq. (2) adds an energy-dependent framework to the TR-PES technique to allow access to dynamics with time resolution beyond the duration of pump and probe pulses.

The retrieved onset times can be interpreted as the time it takes for the wavepacket to arrive at a region of the PES with a specified binding energy. Following photoexcitation, the excited state wavepacket rapidly moves away from Franck-Condon geometries to a region of increased binding energy. Over the first ~10 fs, the binding energy increases smoothly at 0.05 eV/fs. Above 11.3 eV, there is an abrupt change in this rate to 0.3 eV/fs, which continues for the remainder of the measurable binding energies up to 12.72 eV, suggesting neutral dissociation. Thus, by analyzing the time-dependence of the excited state binding energies (see onset times of Fig. 2), the
initial motion of the excited molecule can be accessed on timescales significantly shorter than the ∼20 fs pulse widths of the pump and probe pulses.

In methanol, there are 3N − 6 = 12 nuclear degrees of freedom. While this number is small relative to other alcohols, examining excited state dynamics in methanol is challenging due to the high dimensionality of its PESs. In the present work, we use equation-of-motion coupled-cluster theory (see Methods) to examine cuts of the PESs of the involved excited states. We define two 1-dimensional coordinates to significantly reduce the dimensionality of the system. To explain the measured photoelectron spectral shifts, we explored the simultaneous stretching of the C–O bond and the opening of the C–O–H bond angle. A reaction coordinate, representative of the general shape of this surface, was identified and is shown in Fig. 3. The initial excited wavepacket will advance on the S2 PES along this coordinate until it reaches a crossing point between this surface and that of S3 (1^1 A'). At and in the neighborhood of this geometry, internal conversion to S3 becomes possible. Starting at this geometry on S3, the same fragments, specifically those due to C–O and O–H cleavage, can be reached as previously considered. The S3 and S1 surfaces become degenerate at linear C–O–H geometries, however crossing to S1 is not required for dissociation, in contrast to the valence isoelectronic system CH3SH, and previous assumptions about methanol.

The calculations along this reaction coordinate agree well with the features of the signal onset time measurement. The abrupt increase in the rate of change of the measured binding energy discussed above is explained by the transition from the initially excited S2 to S3, where the binding energy depends more strongly on the nuclear geometry. The energetic location of this transition near \(E(R) = 11.3 \) eV is also in agreement with the calculated crossing geometry of these two states, as seen in Fig. 3. After the internal conversion to the dissociative state, the other coordinates begin to play a role. Notably, the O–H bond breaking on S1 will lead to measured binding energy shifts faster than the other dissociation channel.

The measured signal decay times of Fig. 2 characterize the timescale for the excited state wavepacket to exit a region of the PES at a specified binding energy. For binding energies associated with S2, the decay times are between 25 and 30 fs, which is consistent with the ∼26 fs lifetime that can be extracted from the ∼100 meV wide vibrational structure seen in the S2 absorption spectrum at 156 nm. In this case, the measurements reveal the time needed to completely depopulate the Franck-Condon region, augmenting the information provided by the signal onset times.

The previous studies of this excited state of methanol consider only the crossing between the two A'' states S1 and S2. A calculation on CH3SH suggests that an analogous conical intersection could be arrived at largely through C–S (analogous to C–O) bond stretch. We performed a search for a conical intersection between S1 and S2 in methanol, and only found one in a region of the PES that is energetically inaccessible for the present experiments. The importance of the A' state S3 in the dissociation of methanol underlines the weak correspondence in the excited state dynamics of the two isoelectronic molecules. The previously ignored S3 state appears to be responsible for the rapid relaxation within 15 fs observed in the present experiments, and is also consistent with previous measurements.
Fig. 4. Pump-probe time dependence of the yield of the various ion and photoelectron channels. In this analysis, only the total ion and photoelectron yields were normalized. The two electron regions correspond to 10.85 to 11.6 eV (red, fast decay) and 11.6 to 12.25 eV (cyan, slow decay), as labeled in Fig. 1.

B. Correlating Delayed-Onset Photoelectrons with Methyl Deprotonation.

Excited methanol fragments through multiple dissociation channels following photoexcitation. Both the CH$_3$OH$^+$+H channel and the CH$_2$O$^++$H$_2$ channel, with appearance energies of 11.6 eV and 12.45 eV, respectively, are energetically accessible for the photon energies of the present experiments. We measured the time-dependent ion yields for the species associated with these H and H$_2$ elimination channels along with the bound ionic methanol channel using the same experimental apparatus and the same 156 nm pump, 260 nm probe scheme. The results are shown in Fig. 4. A fast rise in the CH$_3$OH$^+$ yield near t_0 with a fast decay, and a slightly delayed rise in the CH$_2$O$^+$ yield with a slower decay, are observed. Hydrogen loss in the latter channel was confirmed to occur exclusively from the methyl site of methanol by performing the same experiment with its deuterated isotopologues CD$_3$OH and CH$_3$OD. There was no significant yield of CH$_2$O$^+$ measured in the present experiments.

Fitting the time-dependent ion yields with the ansatz of Eq. 2 gives a 7 fs delay for the fragment signal relative to that of the parent ion and a 30 fs and 45 fs 1/e lifetime for the parent and fragmented ion, respectively. Although these ion yield measurements were not made in coincidence with the photoelectron measurements, the faster CH$_3$OH$^+$ yield correlates well with that of photoelectrons with binding energies between the ionization potential and 11.6 eV (region 1 in Fig. 1), as shown in Fig. 4, and the slower CH$_2$OH$^+$ yield correlates with that of photoelectrons between 11.6 eV and 12.25 eV (region 2 in Fig. 1), where the signal takes longer to decay (see also Fig. 3). Note that the time dependence in each ion yield and the correlated photoelectron yield exhibits earlier (later) onset times followed by shorter (longer) decay times. The fitted signal decay lifetimes for the fragment and parent ion yields, along with the corresponding photoelectrons yields from each of the binding energy bands described above, are summarized in Table I for each target species. Although C–H fragmentation occurs on the methyl site of the molecule, the signal decay timescales were greatly affected by hydroxyl deuteration and less so by fully deuterating the methyl functional group, indicating that hydroxyl motion in the excited state plays an important role in facilitating the methyl hydrogen elimination, which was previously determined to occur on the cationic state. Deuteration did not strongly affect the appearance time of the fragment ion, relative to the parent ion, nor the photoelectron signal onset times, indicating that stretching of the C–O bond, rather than hydrogen motion, limits the rate of the initial dynamics.

To gain insight into the dynamics leading to methyl hydrogen loss in the present experiments, we turn to the computed 2-dimensional cuts, along the C–H stretch and C–O–H angle coordinates, of the S$_2$ and S$_3$ excited states and the lowest cation state D$_0$, which are shown in Fig. 5. The cuts reveal a path for a fraction of the cation wavepacket on D$_0$ to dissociate by C–H bond cleavage. The pathway is reached following ionization by the probe photon for C–O–H angles $\geq 140^\circ$, which are accessed through a conical intersection between the S$_2$ and S$_3$ states. A low barrier (< 400 meV) on S$_2$ to angle opening is consistent with the delayed onset of the CH$_2$OH$^+$ fragment ion and the correlated lower-energy photoelectrons in the present measurements on CH$_3$OH. Such a barrier also provides a possible explanation for the longer CH$_2$OD$^+$ fragment ion and photoelectron decay times observed in the present measurements on deuterated methanol CH$_3$OD. Significant potential energy barriers around 1.7 Å on both of the S$_2$ and S$_3$ cuts may inhibit direct C–H dissociation by 156 nm photoexcitation, as observed in previous experimental investigations, however motion along other coordinates reduce the barriers (see the Supplementary Material for details).

Table I. Fitted exponential decay times, in femtoseconds, of the ion and electron channels presented in Fig. 1 and in the text, for methanol and its deuterated isotopologues, with uncertainties representing one standard deviation. The two electron regions are illustrated in Fig. 1. NM indicates a channel that was not measured.

Channel	CH$_3$OH	CH$_3$OD	CD$_2$OH
Parent ion	30±3	43±6	36±6
e$^-$ region 1	29±2	39±9	NM
Fragment ion	45±4	91±8	56±6
e$^-$ region 2	48±4	97±16	NM
We have measured and described the ultrafast dynamics of methanol after 156 nm photoexcitation, and demonstrated sensitivity to the coupled electronic and nuclear motion immediately following electronic excitation, through super-resolution TRPES. By calculating cuts through the potential energy surfaces of the electronic excited states, we find mechanisms to explain the measured dissociation processes, invoking a previously unexplored A' electronic state. This state is accessed non-adiabatically through a conical intersection, and dissociates rapidly along the C–O bond. The non-adiabatic transition to the dissociative S_3 state occurs within 15 fs of excitation. C–H dissociation was observed to be delayed relative to the C–O fragmentation process in the experiments and was determined to occur on the ground electronic state of the methanol cation, following significant C–O–H angle opening, facilitated by a conical intersection between the neutral states S_3 and S_2.

Comparison of the time-resolved measurements with the computed PES cuts enables the identification of reaction coordinates and a reduction in dimensionality of the dynamics. Resolving nuclear motion in higher dimensions through this procedure could be possible in further experiments involving photoionization to multiple electronic continua, given that the valence electron binding energies have unique dependencies on molecular configuration. These approaches could enable a more detailed understanding of non-adiabatic dynamics in electronically excited polyatomic molecules, and may also be useful in studying highly coupled electronic nuclear motion, even on sub-10 fs timescales.

IV. METHODS

A. Experimental Details

The experimental setup is described in detail elsewhere. Briefly, light from a 25 mJ, 25 fs, 1 kHz Ti:sapphire laser system generates vacuum and extreme ultraviolet light via high harmonic generation at a 6 m focus in 25 Torr of argon in a 10 cm-long gas cell. Using a set of D-shaped filters and a split mirror interferometer, the output frequency comb is separated spectrally and temporally into a pump arm at the fifth harmonic (156 nm, 7.95 eV) and a probe arm at the third harmonic (260 nm, 4.77 eV) of the fundamental infrared light. The experiment was conducted with the pulse energy splitting between pump and probe beams at the interferometer chosen to optimize the rate of counts at the pump-probe time overlap relative to the rate when the probe arrived early, but was repeated at a different splitting to dismiss the presence of unwanted nonlinear effects. The two beams are focused into a velocity map imaging spectrometer, which records the kinetic energy spectra of either the electrons or ions resulting from the photoionization of target molecules. A set of microchannel plates and a CCD camera are used to record the projected electron and ion momentum distributions, and the pBASEX algorithm is used to recover the kinetic energy distributions. For ions, a fast voltage pulse applied to the detector, at specific times relative to the ionizing laser pulse, allowed different ion fragments to be isolated by their mass-to-charge ratio. Methanol vapor from a container held at room temperature flows through a variable leak valve and enters the interaction region through a long 100 μm-diameter capillary.

B. Theoretical Calculations

We used equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD) and an aug-cc-pVTZ basis set to calculate the PES of the ground and first few excited states of neutral methanol. The ground state of the cation was calculated using RHF-RCCSD. Since methanol’s excited states have significant Rydberg character, it is necessary to use augmented functions in the basis set. At geometries with stretched methanol bonds, we used unrestricted reference functions (UHF-EOM-CCSD) to ensure that the EOM-CCSD results were reliable and the presence of multireference correlation did not significantly change the results. The EOM-CCSD calculations were performed using the MOLPRO electronic structure suite, while those with an unrestricted reference were
performed using the NWChem package. Calculations of the two-dimensional potentials in Fig. 5 were performed by optimizing the energy on the cation surface with respect to the other internal coordinates. The geometry optimizations used multireference Rayleigh-Schrödinger perturbation theory, using an active space of 3 electrons in 5 orbitals. Loose geometry convergence parameters were used for some of the geometries far from equilibrium. A single-point energy calculation was performed by optimizing the energy on the cation surfaces of the two-dimensional potentials in Fig. 5 were performed using the NWChem package.

ACKNOWLEDGMENTS

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy, and was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, and under Contract No. DE-AC02-05CH11231.

1A. H. Zewail, “Laser femtochemistry,” Science 242, 1645–1653 (1988).
2D. R. Yarkony, “Diabatical conical intersections,” Reviews of Modern Physics 68, 985–1013 (1996).
3B. G. Levine and T. J. Martinez, “Isomerization Through Conical Intersections,” Annual Review of Physical Chemistry 58, 613–634 (2007).
4P. Erger, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ulbrich, “Spatiotemporal imaging of ultrafast molecular motion: Collapse and revival of the D_{2u}^+ nuclear wave packet,” Physical Review Letters 97, 193001 (2006).
5Y. Nabeikawa, Y. Furukawa, T. Okino, A. A. Eitanou, E. J. Takahashi, K. Yamanouchi, and K. Midorikawa, “Sub-10-fs control of dissociation pathways in the hydrogen molecular ion with a few-pulse attosecond pulse train,” Nature Communications 7, 12835 (2016).
6P. Sándor, V. Tagliamonti, A. Zhao, T. Rozgonyi, M. Ruckenbauer, P. Marquetand, and T. Weinacht, “Strong field molecular dissociation Dynamics of Methanol and Ethanol at 157 nm,” The Journal of Physical Chemistry A 119, 9518–9523 (2015).
7P. G. Champenois, A. H. Zewail, T. W. Wright, C.-S. Yang, A. Belkacem, and J. P. Cryan, “Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene,” The Journal of Chemical Physics 144, 014303 (2016).
8T. Horio, R. Spesyvtsev, K. Nagashima, R. A. Ingle, Y.-i. Suzuki, and T. Suzuki, “Full observation of ultrafast cascaded radiationless transitions from S_{2}(\pi\pi^*) state of pyrazine using vacuum ultraviolet photoelectron imaging,” The Journal of Chemical Physics 145, 044306 (2016).
9P. Farmanara, O. Steinzelner, M. T. Wick, M. Wittmann, G. Korn, V. Stort, and W. Radloff, “Ultrafast internal conversion and photodissociation of molecules excited by femtosecond 155 nm laser pulses,” The Journal of Chemical Physics 111, 6264–6270 (1999).
10P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and A. Plaza, “Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art,” IEEE Geoscience and Remote Sensing Magazine 5, 57–78 (2017).
11Q. Dai, E. Pouyet, O. Cossairt, M. Walton, and A. K. Katsaggelos, “Spatial-Spectral Representation for X-Ray Fluorescence Image Super-Resolution,” IEEE Transactions on Computational Imaging 3, 432–444 (2017).
12G. A. Olah, “Beyond Oil and Gas: The Methanol Economy,” Angewandte Chemie International Edition 44, 2636–2639 (2005).
13J. Kothandaraman, A. Goepert, M. Czaun, G. A. Olah, and G. K. S. Prakash, “Conversion of CO_{2} from air into methanol using a polyamine and a homogeneous ruthenium catalyst,” Journal of the American Chemical Society 138, 778–781 (2016).
14S. Harich, J. J. Lin, Y. T. Lee, and X. Yang, “Photodissociation Dynamics of Methanol at 157 nm,” The Journal of Physical Chemistry A 103, 10324–10332 (1999).
15B.-M. Cheng, M. Bahou, W.-C. Chen, C.-h. Yui, Y.-P. Lee, and L. C. Lee, “Experimental and theoretical studies on vacuum ultraviolet absorption cross sections and photodissociation of CH_{3}OH, CH_{2}OD, CD_{2}OH, and CD_{3}OD,” The Journal of Chemical Physics 117, 1633–1640 (2002).
16R. J. Buenker, G. Olbrich, H. P. Schuchmann, B. L. Schuerger, and C. Von Sonntag, “Photolysis of methanol at 185 nm. Quantum-mechanical calculations and product study,” Journal of the American Chemical Society 106, 4362–4368 (1984).
17K.-j. Yuan, Y. Cheng, F.-y. Wang, and X.-m. Yang, “Photodissociation Dynamics of Methanol and Ethanol at 157 nm,” Chinese Journal of Chemical Physics 21, 301 (2008).
18C. G. Philis, “Resonance-enhanced multiphoton ionization spectra of jet-cooled methanol and ethanol,” Chemical Physics Letters 449, 291–295 (2007).
L. Bañares, “Velocity map imaging study of the photodissocia-
tion of CH₃SH: Internal energy distribution of the SH fragment,”
ChemPhysChem 7, 1682–1686 (2006).

J. E. Stevens, H. W. Jang, L. J. Butler, and J. C. Light, “An
adiabatic model for the photodissociation of CH₃SH in the first
ultraviolet absorption band,” The Journal of Chemical Physics
102, 7059–7069 (1995).

D. R. Yarkony, “On the role of conical intersections of two poten-
tial energy surfaces of the same symmetry in photodissociation.
I. CH₂SH → CH₃S+H and CH₂+SH,” The Journal of Chemical
Physics 100, 3639–3644 (1994).

C. C. Marston, K. Weide, R. Schinke, and H. U. Suter, “Product
selectivity of vibrationally mediated photofragmentation of
methanol,” The Journal of Chemical Physics 98, 4718–4727
(1993).

E. Sominska and A. Gedanken, “The absorption spectrum of a
superconically expanded beam of methanol in the vacuum ultra-
 violet region,” Journal of Molecular Spectroscopy 175, 234–239
(1996).

K. Varela, L. R. Hargreaves, K. Ralphs, M. A. Khakoo, C. Win-
stead, V. McCoy, T. N. Rescigno, and A. E. Orel, “Excitation of the 4
lowest electronic transitions in methanol by low-energy electrons,”
Journal of Physics B: Atomic, Molecular and Optical
Physics 48, 115208 (2015).

W. K. Peters, D. E. Couch, B. Mignolet, X. Shi, Q. L. Nguyen,
R. C. Fortenberry, H. B. Schlegel, F. Remacle, H. C. Kapteyn,
M. M. Murnane, and W. Li, “Ultrafast 25-fs relaxation in highly
excited states of methyl azide mediated by strong nonadiabatic
coupling,” Proceedings of the National Academy of Sciences
201712566 (2017).

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. D. Camil-
lis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Deleva,
J. B. Greenwood, F. Martin, and M. Nisoli, “Ultrafast electron
dynamics in phenylalanine initiated by attosecond pulses,” Science
346, 336–339 (2014).

M. Vacher, M. J. Bearpark, L. Poletto, A. Palacios, P. Deleva,
“Electron dynamics upon ionization of polyatomic molecules:
Coupling to quantum nuclear motion and decoherence,” Physical
Review Letters 118, 083001 (2017).

N. Shivaram, E. G. Champenois, J. P. Cryan, T. Wright,
T. Wingard, and A. Belkacem, “Focal overlap gating in velocity
map imaging to achieve high signal-to-noise ratio in photo-ion
pump-probe experiments,” Applied Physics Letters 109, 251401
(2016).

G. A. García, L. Nahon, and I. Powis, “Two-dimensional charged
particle image inversion using a polar basis function expansion,”
Review of Scientific Instruments 75, 4989–4996 (2004)

T. Korona and H.-J. Werner, “Local treatment of electron exci-
tations in the EOM-CCSD method,” The Journal of Chemical
Physics 118, 3006–3019 (2003)

H. J. Monkhorst, “Calculation of properties with the coupled-
cluster method,” International Journal of Quantum Chemistry
12, 421–432 (1977)

T. H. Dunning, “Gaussian basis sets for use in correlated molecu-
lar calculations. I. The atoms boron through neon and hydrogen,”
The Journal of Chemical Physics 90, 1007–1023 (1989)

P. J. Knowles, C. Hampel, and H. Werner, “Coupled cluster
theory for high spin, open shell reference wave functions,” The
Journal of Chemical Physics 99, 5219–5227 (1993)

P. J. Knowles, C. Hampel, and H.-J. Werner, “Erratum: “Cou-
pled cluster theory for high spin, open shell reference wave func-
tions” [J. Chem. Phys. 99, 5219 (1993)],” The Journal of Chem-
ical Physics 112, 3106–3107 (2000)

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P.
Straitsm, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra,
T. L. Windsor, and W. A. de Jong, “NWChem: A comprehensive
and scalable open-source solution for large scale molecular sim-
ulations,” Computer Physics Communications 181, 1477–1489
(2010).

S. Hirata, “Symbolic algebra in quantum chemistry,” Theoretical
Chemistry Accounts 116, 2–17 (2006).

D. C. Comeau and R. J. Bartlett, “The equation-of-motion clus-
tered-cluster method. Applications to open- and closed-shell reference states,” Chemical Physics Letters 207, 414–423 (1993).

J. Bartlett and G. D. Purvis, “Many-body perturbation the-
ory, coupled-pair many-electron theory, and the importance of
quadruple excitations for the correlation problem,” International
Journal of Quantum Chemistry 14, 561–581 (1978).

J. Bartlett and G. D. P. III, “Molecular applications of coupled
cluster and many-body perturbation methods,” Physica Scripta
21, 255 (1980).

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz,
P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut,
K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhard-
son, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobryn,
P. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hre-
nar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J.
May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P.
O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher,
T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson,
and M. Wang, “MOLPRO, version 2012.1, a package of ab initio
programs,” (2012), see http://www.molpro.net/.

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and
M. Schütz, “Molpro: a general-purpose quantum chemistry pro-
gram package,” Wiley Interdisciplinary Reviews: Computational
Molecular Science 2, 242–253 (2012).

H.-J. Werner, “Third-order multireference perturbation theory
The CASPT3 method,” Molecular Physics 89, 645–661 (1996).

P. Celani and H.-J. Werner, “Multireference perturbation theory
for large restricted and selected active space reference wave func-
tions,” The Journal of Chemical Physics 112, 5546–5557 (2000).

H. Werner and P. J. Knowles, “A second order multiconfigu-
ration SCF procedure with optimum convergence,” The Journal
of Chemical Physics 82, 5053–5063 (1985).

P. J. Knowles and H.-J. Werner, “An efficient second-order MC
SCF method for long configuration expansions,” Chemical
Physics Letters 115, 259–267 (1985).