A New TBX5 Loss-of-Function Mutation Contributes to Congenital Heart Defect and Atrioventricular Block

Yan Zhang,1* MD, Yu-Min Sun,1* MD, Ying-Jia Xu,2,4* MD, Cui-Mei Zhao,5 MD, Fang Yuan,6 MD, Xiao-Juan Guo,2,3,4 MD, Yu-Han Guo,2,3,4 MD, Chen-Xi Yang,2,3,4 MD, Jia-Ning Gu,2,3,4 MD, Qi Qiao,2,3,4 MD, Jun Wang,1 MD and Yi-Qing Yang,2,3,4* MD

Summary
Congenital heart defect (CHD) represents the most common birth deformity, afflicting 1% of all births worldwide, and accounts for substantial morbidity and mortality. Increasing evidence highlights the pivotal roles of genetic etiologies in the pathogenesis of CHD, and pathogenic mutations in multiple genes, including TBX5 encoding a cardiac core transcription factor key to cardiovascular morphogenesis, have been involved in CHD. However, due to pronounced genetic heterogeneity of CHD, the genetic determinants underlying CHD in most cases remain obscure. In this investigation, by sequencing analysis of the coding exons and flanking introns of the TBX5 gene in 198 unrelated patients affected with CHD, a novel heterozygous mutation, NM_000192.3:c.692C>T; p.(Pro231Leu), was identified in an index patient with familial double outlet right ventricle (DORV), ventricular septal defect (VSD), and atrioventricular block (AVB). Genetic analysis of the proband’s pedigree showed that the mutation co-segregated with the diseases. The missense mutation, which altered the amino acid conserved evolutionarily, was absent from 266 unrelated healthy subjects. Functional analyses with a dual-luciferase reporter assay system unveiled that the Pro231Leu-mutant TBX5 was associated with significantly reduced transcriptional activity on its target genes MYH6 and NPPA. Furthermore, the mutation disrupted the synergistic transactivation between TBX5 and NKX2-5 as well as GATA4, two other transcription factors causally linked to CHD. This study firstly links TBX5 loss-of-function mutation to familial DORV, VSD, and AVB, which provides novel insight into the mechanism underpinning CHD and AVB, suggesting potential implications for genetic evaluation and individualized treatment of patients affected by CHD and AVB.

Key words: Bicuspid aortic valve, Molecular genetics, Transcription factor, Arrhythmia, Reporter gene analysis

C ongenital heart defect (CHD), characterized by structural abnormality of the heart and endothoracic great vessels during embryogenesis, is the most common type of birth malformation in humans, afflicting approximately 1% of all live births.1,2 It accounts for about one-third of all major congenital deformities.2 It is estimated that every year there are 1.35 million neonates born with CHD worldwide.3 According to anatomic and hemodynamic lesions, CHD is clinically categorized into at least 25 different subtypes, such as ventricular septal defect (VSD), atrial septal defect, double outlet right ventricle (DORV), patent ductus arteriosus, tetralogy of Fallot, and transposition of the great arteries.1,4,5 Although minor CHD often resolves spontaneously,6 many serious kinds of CHD, if not treated surgically in the first year of life, may result in degraded health-related quality of life,9 decreased exercise capacity,13–15 delayed central nervous development or brain injury,16–19 cerebral stroke,20–22 pulmonary hypertension,23–27 renal injury or malfunction,28–30 infective endocarditis,31–34 heart fail-
Cardiovascular morphogenesis undergoes a complex biological process, and both heritable and environmental pathogenic factors may disrupt the process, leading to the pathogenesis of CHD. Nevertheless, a growing body of evidence underscores the genetic determinants for CHD, and a long list of causative mutations in more than 60 genes has been linked to CHD in humans, including those encoding cardiac transcription factors, sarcomeric proteins, and signaling molecules. Among these established CHD-related genes, most code for cardiac transcription factors, including GATA4, GATA5, TBX1, GATA6, TBX5, MEF2C, TBX20, NR2F2, HAND2, NKX2-5, and HAND1. However, CHD is a genetically heterogeneous malady, and the genetic components underpinning CHD in most patients remain obscure.

As a member of the T-box transcription factor family, TBX5 plays a critical role in the development of heart and forelimbs. In humans, mutations in TBX5 are mainly reported to cause Holt-Oram syndrome (HOS), showing defects of the heart, cardiac conduction system, and the anterior forelimbs. In animal models with deletion of Tbx5, similar defects are observed. A wide range of cardiovascular defects associated with TBX5 mutations in both humans and animals suggests multiple roles for TBX5 in cardiac development and function, which justifies screening TBX5 for mutations in more patients with various forms of CHD to comprehensively understand the integral roles of TBX5 throughout heart development and adult life.

Methods

Study population: The current study participants consisted of 198 unrelated patients with various kinds of CHD and 266 unrelated healthy individuals, who were enrolled between January 2014 and December 2018 from the Chinese Han population in the same geographic area. The available family members of the index patients were also recruited. The healthy control individuals were matched to the CHD-affected cases in ethnicity, sex, and age. All the study subjects experienced comprehensive clinical evaluation, including thorough review of familial and medical histories, detailed physical examination, echocardiogram with color Doppler, standard 12-lead electrocardiogram, and routine laboratory test. This research was performed in conformity with the ethical principles outlined in the Declaration of Helsinki. The study protocol was approved by the Medical Ethics Committee of the Shanghai Jing’an District Central Hospital, Fudan University, Shanghai, China. Written informed consent was obtained from patients or legal guardians prior to commencement of the research.

Genetic analyses: Peripheral venous whole blood specimens were collected from every study participant. Genomic DNA was extracted from blood leukocyte with the PureLink® Genomic DNA Mini Kit (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s manual. The entire coding exons and flanking introns of TBX5 were amplified by polymerase chain reaction (PCR) with HotStar Taq DNA Polymerase (TaKaRa, Dalian, Liaoning, China) on a Veriti® 96-Well Thermal Cycler (Applied Biosystems, Foster, CA, USA) with standard concentrations of reagents. The primers for PCR amplification were designed as described elsewhere. The amplified fragments were purified with the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and were then subjected to PCR sequencing under an ABI 3730 XL DNA Analyzer (Applied Biosystems) with the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), according to the manufacturer’s protocol. An identified TBX5 mutation was verified by bidirectional sequencing of an independent PCR-generated amplicon using the mutation carrier’s DNA sample. For each identified TBX5 variation, the Genome Aggregation Database (https://gnomad.broadinstitute.org), the 1000 Genomes Project database (http://www.1000genomes.org), and the Single Nucleotide Polymorphism database (http://www.ncbi.nlm.nih.gov/snp) were retrieved to check its novelty.

Alignment of multiple TBX5 protein sequences across species: To estimate whether an altered amino acid was conserved evolutionarily, the amino acid sequences of TBX5 from human were aligned with those from chimpanzee, monkey, dog, cattle, mouse, rat, fowl, zebrafish, and frog, using the online MUSCLE program (https://www.ebi.ac.uk/Tools/msa/muscle/).

Prediction of the pathogenic potential of a TBX5 sequence variant: The causative potential of a TBX5 sequence variant was predicted by the online software of MutationTaster (http://www.mutationtaster.org), PROVEAN (http://provean.jcvi.org/index.php), and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2).

Expression plasmids and site-directed mutagenesis: The wild-type expression plasmid TBX5-pcDNA3.1 was constructed as previously described. The mutant-type TBX5 5-pcDNA3.1 was generated by site-directed mutagenesis with a complimentary pair of primers (forward primer: 5'-AGATTGAGAATAATCTTGGCAAGATTGAGAAGATATTG-3'; reverse primer: 5'-ATCCCTGTGGCAGAAGAGATTATCTTCATCTCT-3') and the QuickChange II XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA), following the manufacturer’s product instructions, and was confirmed by sequencing. The expression plasmids of NXX2-5-pEFa and GATA4-pSSRa, as well as the reporter plasmid of natriuretic peptide precursor A-luciferase (NPPA-luc), which expresses the Firefly luciferase, were described previously.

Cell transfection and reporter gene assay: COS-7 cells were cultured and transfected with various plasmids by using the Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA) as previously described. The internal control plasmid pGL4.75 (Promega, Madison, WI, USA), which expresses the Renilla luciferase, was used to normalize transfection efficiency. Briefly, COS-7 cells were transfected with 1.0 μg of empty pcDNA3.1, 1.0 μg...
Statistics: Statistical analysis was made with the SPSS software package (SPSS, Chicago, IL, USA). Continuous variables were compared between two groups with Student’s unpaired t-test. Comparison of the categorical variables between two groups was made using Pearson’s χ² test or Fisher’s exact test, when appropriate. A two-sided P-value of < 0.05 indicated significant difference.

Results

Baseline clinical and demographic characteristics of the study population: In the present investigation, a cohort of 198 unrelated patients with CHD (116 males and 82 females, with a mean age of 24 years) was clinically investigated in contrast to a total of 266 unrelated control persons (157 males and 109 females, with an average age of 24 years). All patients had echocardiogram-documented CHD, while the control people had normal echocardiograms, with no evidence of cardiac diseases. Among the 198 cases, 62 had positive family history of CHD, whereas among the 266 controls, none had positive family history of CHD. There were no significant differences in ethnicity, gender, age, and geographical area between case and control groups. The baseline clinical and demographic features of the 198 patients affected with CHD are summarized in Table I.

Identification of a pathogenic TBX5 mutation: By sequencing analysis of the whole coding regions and splicing junction sites of the TBX5 gene, a heterozygous mutation, NM_000192.3: c.692C>T; p.(Pro231Leu), was identified in one female index patient with familial DORV, VSD, and atrioventricular block (AVB). Genetic analysis of the proband’s pedigree showed that the mutation co-segregated with the diseases, which were transmitted in an autosomal dominant pattern, with complete penetrance. The missense mutation, which altered the amino acid conserved evolutionarily, was absent from 266 unrelated healthy subjects. The sequence chromatograms illustrating the heterozygous TBX5 mutation of c.692C>T and its wild-type control sequence are shown in Figure 1A. The schematic diagram exhibiting the structural domains of the TBX5 protein and the location of the identified mutation is given in Figure 1B. The pedigree structure of the family with CHD and AVB is shown in Figure 1C. The phenotypic characteristics and TBX5 mutation status of the affected pedigree members are shown in Table II. The missense mutation was neither detected in 266 control individuals nor found in the Genome Aggregation Database, the 1000 Genomes Project database, and the Single Nucleotide Polymorphism database (accessed again on December 2, 2019), indicating its novelty. In addition, as shown in Table I, there were 30 patients with VSD + DORV, of whom five other patients with VSD + DORV had also AVB except for the index patient. Among the five patients with VSD + DORV + AVB who did not have TBX5 mutation, there were two patients with the positive family history of CHD.

Multiple alignments of TBX5 proteins from various species: As shown in Figure 2, alignment of TBX5 proteins across species displayed that the altered proline at amino acid position 231 was completely conserved evolutionarily.

Disease-causing potential of TBX5 variation: The c.692 C>T mutation in TBX5 was predicted to be disease-causing by MutationTaster, with a P-value of approximately 1.000. The amino acid substitution p.Pro231Leu in TBX5 was predicted to be probably damaging by

Table 1. Demographic and Baseline Clinical Features of the Patients Suffering from Congenital Heart Defect (n = 198)

Variable	n or mean with SD	% or range
Demographics		
Male	116	59
Age (years)	24 ± 11	1-45
Positive family history of CHD	62	31
Distribution of various types of CHD		
Isolated CHD	92	46
ASD	38	19
VSD	36	18
PDA	16	8
DORV	2	1
Complex CHD	106	54
TOF	32	16
VSD + DORV	30	15
VSD + ASD	21	11
VSD + PDA	18	9
VSD + TGA	5	3
Incidence of cardiac arrhythmias		
Atrioventricular block	29	15
Atrial fibrillation	14	7
Medical treatment		
Cardiac surgery	118	60
Catheter-based repair	62	31
Follow-up	18	9

SD indicates standard deviation; CHD, congenital heart defect; ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patent ductus arteriosus; DORV, double outlet right ventricle; TOF, tetralogy of Fallot; and TGA, transposition of the great arteries.
Reduced transcriptional activity of the mutant TBX5 protein: As shown in Figure 3, wild-type and Pro231Leu-mutant TBX5 plasmids (each 1.0 μg) transcriptionally activated the MYH6 promoter by ~13 folds and ~2 folds, respectively (wild type versus mutant: $t = 8.09854$, $P = 0.00126$). When the same amount of wild-type and Pro231Leu-mutant TBX5 plasmids (each 0.5 μg) were used in combination, the induced transcriptional activity was ~5-fold (wild type + empty plasmid versus wild type + mutant: $t = 5.36215$, $P = 0.00584$).

Diminished synergistic transactivation between mutant TBX5 and NKKX2-5 as well as GATA4: As shown in Figure 4, the same amount of wild-type and Pro231Leu-mutant TBX5 plasmids transcriptionally activated the NPPA promoter by ~8 folds and ~2 folds, respectively (wild type versus mutant: $t = 9.25716$, $P = 0.00076$). In the presence of wild-type NKKX2-5, the same amount of wild-type and Pro231Leu-mutant TBX5 plasmids transcriptionally activated the NPPA promoter by ~28 folds and ~10 folds, respectively (wild type versus mutant: $t = 6.12604$, $P = 0.00360$), while in the presence of wild-type GATA4, the same amount of wild-type and Pro231Leu-mutant TBX5 plasmids transcriptionally activated the NPPA promoter by ~21 folds and ~7 folds, respectively (wild type versus mutant: $t = 7.09868$, $P = 0.00208$).

Discussion

In this study, a novel heterozygous TBX5 mutation, NM_000192.3: c.692C>T; p.(Pro231Leu), was identified in a family with DORV, VSD, and AVB. The mutation, which co-segregated with the diseases in the family, was neither observed in the 532 reference chromosomes nor PolyPhen-2, with a score of 1.000 (sensitivity, 0.00; specificity, 1.00) and was predicted to be deleterious by PROVEAN, with a PROVEAN score of ~9.607.

In this study, a novel heterozygous TBX5 mutation, NM_000192.3: c.692C>T; p.(Pro231Leu), was identified in a family with DORV, VSD, and AVB. The mutation, which co-segregated with the diseases in the family, was neither observed in the 532 reference chromosomes nor
I n t H e a r tJ
July 2020 NEW
TBX5 MUTATION IN CHD AND AVB
765

Table II. Phenotypic Characteristics and TBX5 Mutation Status of the Family Members with Congenital Heart Defect and Atrioventricular Block

Individuals	Gender	Age (years)	Cardiac phenotype	TBX5 mutation
Family 1				
I-1	M	61*	DORV, VSD, III° AVB	NA
II-1	M	49*	DORV, VSD, III° AVB	NA
II-3	M	47	DORV, VSD, II° AVB	+/-
II-8	F	41	DORV, VSD, II° AVB	+/-
III-1	M	25	DORV, VSD, F° AVB	+/-
III-4	F	23	DORV, VSD, F° AVB	+/-
IV-2	M	1	DORV, VSD, F° AVB	+/-

M indicates male; F, female; DORV, double outlet right ventricle; VSD, ventricular septal defect; ASD, atrial septal defect; AVB, atrioventricular block; III°, third-degree; II°, second-degree; I°, first-degree; and NA, not available; and +/-, heterozygote.
* Age at death.

The human TBX5 gene maps on chromosome 12q 24.1, coding for a transcription factor protein consisting of 518 amino acids. The TBX5 protein possesses four functionally important structural domains: a T-box domain, a transcriptional activation domain, and two nuclear localization signal domains. The T-box domain is responsible for target DNA binding and protein-protein interactions, while the transcriptional activation domain functions to transactivate target genes, and nuclear localization signals serve to drive nuclear localization. Previous investigations have substantiated that TBX5 is amply expressed in the hearts of vertebrates and humans, encompassing the endocardium, myocardium, epicardium, and conduction system of embryonic and adult hearts, where it plays a crucial role in cardiovascular development and postnatal cardiac remodeling. Recent researches have validated that TBX5 transcriptionally mediates expression of multiple target genes key to cardiac structure and function, encompassing MYH6, NPPA, SCN5A, and GJA1, alone or in synergy with GATA4, NKX2-5, MEF2C, GATA6, and TBX20, and mutations in TBX5 and its target genes and transcriptionally cooperative partners have been associated with CHD and/or AVB in humans. In the present study, the mutation identified in patients with familial CHD and AVB was located in the T-box domain, and functional analyses demonstrated that the mutant was associated with significantly diminished transactivation of target genes, alone or synergistically with NKX2-5 or GATA4. These findings indicate that TBX5 haploinsuffi-
Figure 3. Functional impairment of TBX5 resulted from the mutation. Analysis of the activation of the MYH6 promoter-driven luciferase in COS-7 cells by wild-type or Pro231Leu-mutant TBX5, alone or in combination, unveiled that the Pro231Leu-mutant TBX5 protein had significantly reduced transcriptional activity on the MYH6 promoter. Experiments were conducted in triplicates and the results are given as means with standard deviations. Here ** and * indicate $P = 0.00126$ and $P = 0.00584$, respectively, when compared with the same amount of wild-type TBX5.

Figure 4. Diminished synergistic transactivation between mutant TBX5 and NKX2-5 as well as GATA4. Measurement of the NPPA promoter-driven luciferase in COS-7 cells by TBX5 plus NKX2-5 or TBX5 plus GATA4 revealed that the Pro231Leu mutation disrupted the synergistic transactivation between TBX5 and NKX2-5 as well as GATA4. Experiments were done in triplicates. Here *, **, and *** indicate $P = 0.00076$, $P = 0.00360$, and $P = 0.00208$, respectively, in comparison with their wild-type counterparts.

ciency is an alternative molecular mechanism underlying CHD and AVB in a subgroup of patients.

It may be attributable to aberrant cardiovascular development that genetically compromised TBX5 predisposes to CHD and AVB. During murine embryogenesis, TBX5 is highly expressed throughout the cardiac crescent and linear heart tube, in the left ventricle and ventricular septum, and in trabeculae, common atrium, as well as cardiac conduction system, including atrioventricular bundle and Purkinje fibers. In mice, homozygous disruption of Tbx5 resulted in embryonic death because of failure to undergo cardiac looping and left ventricular and sinoatrial hypoplasia, while heterozygous ablation of Tbx5 led to VSD, ASD, endocardial cushion defect, left ventricular hypoplasia, and morphological and functional abnormalities in the conduction system, including atrioventricular and bundle branch blocks. In humans, TBX5 is abundantly expressed in embryonic and postnatal hearts, and an increasing number of TBX5 mutations have been associated with HOS, including CHD and AVB. Taken collectively, these results indicate that functionally abnormal TBX5 confers increased susceptibility to CHD and AVB in humans.

In conclusion, this investigation firstly links TBX5 loss-of-function mutation to familial DORV and AVB, which provides new insight into the molecular pathogenesis of DORV and AVB, suggesting potential implications for genetic evaluation personalized management of patients affected with CHD and AVB.
Disclosure

Conflicts of interest: None.

References

1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 2019; 139: e56-528.

2. Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res 2017; 120: 923-40.

3. Li YJ, Yang YQ. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn 2017; 17: 393-401.

4. Enomoto Y, Hashimoto G, Sahara N, et al. Congenital absence of left atrial appendage diagnosed by multimodality imaging. Int Heart J 2018; 59: 439-42.

5. Liu S, Ren W, Ma C, Yang J. Congenital double-orifice mitral valve in asymptomatic patients. Int Heart J 2018; 59: 213-5.

6. Steele JM, Zahka KG. Endocardial coronary artery: a rare congenital coronary anomaly. Pediatr Cardiol 2019; 40: 219-20.

7. Wrobel G, Spałek M, Kuder T. Double posterior descending artery arising from a right coronary artery. Int Heart J 2019; 60: 1226-9.

8. Matsumoto T, Tamiya E, Kanoh T, et al. Atrial septal defect of the ostium secundum type in a 101-year-old patient. Int Heart J 2019; 60: 489-91.

9. Ko JM, Tecson KM, Rashida VA, et al. Clinical and psychological drivers of perceived health status in adults with congenital heart disease. Am J Cardiol 2018; 121: 377-81.

10. Ko JM, White KS, Kovacs AH, et al. Physical activity-related drivers of perceived health status in adults with congenital heart disease. Am J Cardiol 2018; 122: 1437-42.

11. Amedro P, Gavotto A, Legendre A, et al. Impact of a centre and home-based cardiac rehabilitation program on the quality of life of teenagers and young adults with congenital heart disease: the QUALI-REHAB study rationale, design and methods. Int J Cardiol 2019; 283: 112-8.

12. Boukvala M, Müller J, Ewert P, Hager A. Effects of congenital heart disease treatment on quality of life. Am J Cardiol 2019; 123: 1163-8.

13. Müller J, Ewert P, Hager A. Number of thoracotomies predicts impairment in lung function and exercise capacity in patients with congenital heart disease. J Cardiol 2018; 71: 88-92.

14. Das BB, Young ML, Niu J, Mendoza LE, Chan KC, Roth T. Relation between New York Heart Association functional class and objective measures of cardiopulmonary exercise in adults with congenital heart disease. Am J Cardiol 2019; 123: 1868-73.

15. Abassi H, Gavotto A, Picot MC, et al. Impaired pulmonary function and its association with clinical outcomes, exercise capacity and quality of life in children with congenital heart disease. Int J Cardiol 2019; 285: 86-92.

16. Peyvandi S, Chau V, Guo T, et al. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol 2018; 71: 1986-96.

17. Khanna AD, Duca LM, Kay JD, Shore J, Kelly SL, Crume T. Prevalence of mental illness in adolescents and adults with congenital heart disease from the Colorado Congenital Heart Defect Surveillance System. Am J Cardiol 2019; 124: 618-26.

18. Huntley GD, Tecson KM, Sodhi S, et al. Cardiac denial and expectations associated with depression in adults with congenital heart disease. Am J Cardiol 2019; 123: 2003-7.

19. Peyvandi S, Latal B, Miller SP, McQuillen PS. The neonatal brain in critical congenital heart disease: insights and future directions. Neuroimage 2019; 185: 776-82.

20. Bokma JP, Zegstroo I, Kuipers JM, et al. Factors associated with coronary artery disease and stroke in adults with congenital heart disease. Heart 2018; 104: 574-80.

21. Giang KW, Mandalenakis Z, Dellosp B, et al. Long-term risk of hemorrhagic stroke in young patients with congenital heart disease. Stroke 2018; 49: 1155-62.

22. Pedersen MGB, Olsen MS, Schmidt M, et al. Incidental stroke in adults with congenital heart disease: a population-based cohort study. J Am Heart Assoc 2019; 8: e011870.

23. Dimopoulos K, Condiliffe R, Tulloh RMR, et al. Echocardiographic screening for pulmonary hypertension in congenital heart disease: JACC review topic of the week. J Am Coll Cardiol 2018; 72: 2778-88.

24. Pascale E, Tulloh RM. Pulmonary hypertension in congenital heart disease. Future Cardiol 2018; 14: 343-53.

25. Brida M, Gatzioulis MA. Pulmonary arterial hypertension in adult congenital heart disease. Heart 2018; 104: 1568-74.

26. Kaemmerer H, Apitz C, Brockmeier K, et al. Pulmonary hypertension in adults with congenital heart disease: updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2019; 272S: 79-88.

27. van der Feen DE, Bartelds B, de Boer RA, Berger RMF. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease. Heart 2019; 105: 276-82.

28. Lui GK, Saeid A, Bhatt AB, et al. Diagnosis and management of noncardiac complications in adults with congenital heart disease: a scientific statement from the American Heart Association. Circulation 2017; 136: e348-92.

29. Gist KM, Kwiatkowski DM, Cooper DS. Acute kidney injury in congenital heart disease. Curr Opin Cardiol 2018; 33: 101-7.

30. Scholes GB, Zannino D, Kausman JY, Cheung MMH. Altered in utero kidney development in newborns with congenital heart disease. Pediatr Res 2019; 85: 644-9.

31. Jortveit J, Klovansky J, Eskedal L, Birkeland S, Dahlen G, Holmstrom H. Endocarditis in children and adolescents with congenital heart defects: a Norwegian nationwide register-based cohort study. Arch Dis Child 2019; 103: 670-4.

32. Tutarel O, Alonso-Gonzalez R, Montanaro C, et al. Infective endocarditis in adults with congenital heart disease remains a lethal disease. Heart 2018; 104: 161-5.

33. Kubota K, Soma K, Uehara M, et al. Combined surgical and medical therapy for candida prosthetic endocarditis in a patient with repaired tetralogy of Fallot. Int J Heart J 2018; 59: 877-80.

34. Cuhill TJ, Jewell PD, Denne L, et al. Contemporary epidemiology of infective endocarditis in patients with congenital heart disease: a UK prospective study. Am Heart J 2019; 215: 70-7.

35. Gilbert K, Forsch N, Hegde S, et al. Atlas-based computational analysis of heart shape and function in congenital heart disease. J Cardiovasc Transl Res 2018; 11: 123-32.

36. Soma K, Yao A, Saito A, et al. Regular treatment strategy with a large amount of carvedilol for heart failure improves biventricular systolic failure in a patient with repaired tetralogy of Fallot. Int J Heart J 2018; 59: 1169-73.

37. Wang F, Harel-Sterling L, Cohen S, et al. Heart failure risk predictions in adult patients with congenital heart disease: a systematic review. Heart 2019; 105: 1661-9.

38. Givertz MM, DeFilipps EM, Landzberg MJ, Pinney SP, Woods RK, Valente AM. Advanced heart failure therapies for adults with congenital heart disease: JACC state-of-the-art review. J Am Coll Cardiol 2019; 74: 2295-312.

39. Hernández-Madrid A, Paul T, Abrams D, et al. Arrhythmias in congenital heart disease: a position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAEC. Europace 2018; 20: 1719-53.

40. Hock CA, Remijan TTK, Yaks A, et al. Intraoperative arrhythmias in children with congenital heart disease: transient, innocent events? Europace 2018; 20: e115-23.

41. Roca-Luque I, Rivas Gándara N, Dos Subirá L, et al. Intra-atral re-entrant tachycardia in patients with congenital heart disease: factors associated with disease severity. Europace 2018; 20:
1343-51.
42. Roca-Luque I, Rivas-Gándara N, Subirà LD, et al. Mechanisms of intra-atrial re-entrant tachycardias in congenital heart disease: types and predictors. Am J Cardiol 2018; 122: 672-82.
43. Roca-Luque I, Rivas Gándara N, Dos Subirà L, et al. Intra-atrial re-entrant tachycardia in congenital heart disease: types and relation of isthms to atrial voltage. Europace 2018; 20: 353-61.
44. Teuwen CP, Korevaar TIM, Coolen RL, et al. Frequent atrial extrastolic beats predict atrial fibrillation in patients with congenital heart defects. Europace 2018; 20: 25-32.
45. Waldmann V, Laredo M, Abadir S, Mondésert B, Khairly P. Atrial fibrillation in adults with congenital heart disease. Int J Cardiol 2019; 287: 148-54.
46. Fuchs SR, Smith AH, Van Driest SL, Crum KF, Edwards TL, et al. β-catenin signaling. Genes Dev 2018; 32: 1311.
47. Gonzalez Corcías MC, Walsh EP, Emani S. Long-term results of atrial maze surgery in patients with congenital heart disease. Europace 2019; 21: 1345-52.
48. Krause U, Müller MJ, Wilberg Y, et al. Transvenous and non-transvenous implantable cardioverter-defibrillators in children, adolescents, and adults with congenital heart disease: who is at risk for inappropriate and inappropriate shocks? Europace 2019; 21: 106-13.
49. Moore B, Yu C, Kotchekova I, Cordina R, Celermajer DS. Incidence and clinical characteristics of sudden cardiac death in adults with congenital heart disease. Int J Cardiol 2018; 254: 101-6.
50. Lynghe TH, Jeppesen AG, Winkel BG, et al. Nationwide study of sudden cardiac death in people with congenital heart defects aged 0-35 years. Circ Arrhythm Electrophysiol 2018; 11: e005757.
51. Vehmeijer JT, Koyak Z, Bokma JP, et al. A novel MEF2C mutation predisposes to congenital double outlet right ventricle. Pediatr Cardiol 2019; 40: 770-80.
52. Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatri Cardiol 2013; 34: 1535-55.
53. Pierpont ME, Brueckner M, Chung WK, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation 2018; 138: e653-711.
54. Cheng H, Dharmadhikari AV, Varland S, et al. Truncating variants in NAA15 are associated with variable levels of intellectual disability, autism spectrum disorder, and congenital anomalies. Am J Hum Genet 2018; 103: 985-94.
55. Tokita MJ, Chen CA, Chitayat D, et al. De novo missense variants in TRAF7 cause developmental delay, congenital anomalies, and dysmorphic features. Am J Hum Genet 2018; 103: 154-62.
56. Stephen J, Maddirevula S, Nampoothiri S, et al. Bi-allelic TMEM94 truncating variants are associated with neurodevelopmental delay, congenital heart defects, and distinct facial dysmorphism. Am J Hum Genet 2018; 103: 948-97.
57. Cantú C, Felker A, Zimmerli D, et al. Mutations in Bc9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev 2018; 32: 1443-58.
58. Qiao XH, Wang Q, Wang J, et al. A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. Eur J Med Genet 2018; 61: 197-203.
59. Li RG, Xu YJ, Wang J, et al. GATA4 loss-of-function mutation and the congenitally bicuspid aortic valve. Am J Cardiol 2018; 121: 469-74.
60. Gharibeh L, Komati H, Bossé Y, et al. GATA6 regulates aortic valve remodeling, and its haploinsufficiency leads to right-left type bicuspid aortic valve. Circulation 2018; 138: 1025-38.
61. Xu YJ, Di RM, Qiao O, et al. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene 2018; 663: 115-20.
62. Li X, Shi L, Xu M, Zheng X, Yu Y, Jin J. RCAN1 mutation and functional characterization in children with sporadic congenital heart disease. Pediatr Cardiol 2018; 39: 226-35.
63. Lu CX, Wang W, Wang Q, Liu XY, Yang YQ. A novel MEFL2C loss-of-function mutation associated with congenital double outlet right ventricle. Pediatr Cardiol 2018; 39: 794-804.
64. Zhang M, Li FX, Liu XY, et al. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med 2018; 15: 447-53.
65. Lombardo RC, Porollo A, Cnota JF, Hopkin RJ. Congenital heart disease and aortic arch variants associated with mutation in PHOX2B. Genet Med 2018; 20: 1538-43.
66. Wang J, Abhinav P, Xu YJ, et al. NR2F2 loss-of-function mutation is responsible for congenital bicuspid aortic valve. Int J Mol Med 2019; 43: 1839-46.
67. Zhu MJ, Ma XY, Ding PC, et al. Novel mutations of AXIN2 identified in a Chinese congenital heart disease cohort. J Hum Genet 2019; 64: 427-35.
68. Ma L, Wang J, Li L, et al. ISL1 loss-of-function mutation contributes to congenital heart defects. Heart Vessels 2019; 34: 658-68.
69. Wang Z, Song HM, Wang F, et al. A new ISL1 loss-of-function mutation predisposes to congenital double outlet right ventricle. Int Heart J 2019; 60: 1113-22.
70. Solomonica A, Bagur R, Choudhury T, Lavi S. Familial spontaneous coronary artery dissection and the SMAD-3 mutation. Am J Cardiol 2019; 124: 313-5.
71. Watkins WS, Hernandez EJ, Wesolowski S, et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun 2019; 10: 4722.
72. Steimle JD, Moskowitz IP. TBX5: a key regulator of heart development. Curr Top Dev Biol 2017; 122: 195-221.
73. Al-Qattan MM, Abou Al-Shaar H. Molecular basis of the clinical features of Holt-Oram syndrome resulting from missense and extended protein mutations of the TBX5 gene as well as TBX5 intragenic duplications. Gene 2015; 560: 129-36.
74. Zhang XL, Qiu XB, Yuan F, et al. TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 2015; 459: 166-71.
75. Chen HX, Zhang X, Hou HT, et al. Identification of a novel and functional mutation in the TBX5 gene in a patient by screening from 354 patients with isolated ventricular septal defect. Eur J Med Genet 2017; 60: 385-90.
76. Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 1999; 211: 100-8.
77. Moskowitz IP, Pizard A, Patel VV, et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 2004; 131: 4107-16.
78. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001; 106: 709-21.
79. Hatcher CJ, Goldstein MM, Mah CS, Delia CS, Basson CT. Identification and localization of TBX5 transcription factor during human cardiac morphogenesis. Dev Dyn 2000; 219: 90-5.