SUPPLEMENTARY MATERIAL

A new hetero dimeric terpenoid derivative, japonicaside C, from the flower buds of *Lonicera japonica*

Hai-Bo Li a,c,1, Yang Yu b,1, Yu-Dan Mei b, Zhao-Qing Meng a,c, Zhen-Zhong Wang a,c,
Wen-Zhe Huang a,c, Wei Xiao a,c, * and Xin-Sheng Yao b,*

a Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, P. R. China

b Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China

c State Key Lab of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, P. R. China

ABSTRACT

A rare hetero dimeric terpenoid derivative, named japonicaside C, together with five known secoiridoid glucosides were isolated from the flower buds of *Lonicera japonica*. The structures of these compounds were established on the basis of spectroscopic analyses. Japonicaside C is the first representative of a novel type of hetero dimeric terpenoid, biogenetically originated from a guaiane-type sesquiterpenoid and a secoiridoid glucoside. Anti-virus activity of the isolated compounds were evaluated *in vitro.*

KEYWORDS

Lonicera japonica, japonicaside C, secoiridoid glucoside, sesquiterpenoid, Anti-virus, RSV
Figure S1 Structure, key HMBC (→) and COSY (▬) correlations of compound 1

Figure S2 Key HMBC (→) and COSY (▬) correlations of Part B of compound 1

Figure S3 Key ROESY (H↔H) correlations of 1
Figure S4 HR-ESI-Q-TOF-MS spectrum of Compound 1

Figure S5 1H-NMR spectrum of Compound 1
Figure S6 13C-NMR spectrum of Compound 1

Figure S7 DEPT-135 spectrum of Compound 1
Figure S8 1H-1H COSY spectrum of Compound 1

Figure S9 HSQC spectrum of Compound 1
Figure S10 HMBC spectrum of Compound 1

Figure S10 ROESY spectrum of Compound 1
Table S1 NMR Spectroscopic Data (CD$_3$OD) of Compound 1

Pos.	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)
1	97.6	5.54, d (6.6)	1"	47.9
3	152.9	7.41, s	2"	38.5
4	112.8		3"	211.5
5	30.2	2.99, d (7.0)	4"	141.9
6	36.2	1.74, m	5"	174.8
7	96.2	5.07, dd (5.4, 3.6)	6"	31.4
8	136.2	5.77, ddd (17.4, 10.8, 8.4)	7"	74.0
9	45.5	2.62, dd (13.2, 7.2)	8"	81.5
10	119.2	5.29, dt (17.4, 1.2)	9"	33.4
		5.24, d (10.2)	10"	31.6
			11"	80.7
11	171.8		12"	20.6
1’	100.1	4.70, d (7.8)	13"	23.9
2’	74.5	3.19, dd (9.0, 7.8)	14"	21.0
3’	78.0	3.37, t (9.0)	15"	8.8
4’	71.6	3.27, m		1.68, d (1.8)
5’	78.4	3.29, m		
6’	62.8	3.67, dd (12.0, 6.0)		
		3.90, dd (12.0, 1.8)		