Carbetocin is a Functional Selective Gq Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing β-Arrestin-Independent Internalisation

I. Passoni*, M. Leonzino†, V. Gigliucci†‡ and M. Busnelli†*
*Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
†CNR, Institute of Neuroscience, Milan, Italy.
‡Humanitas Clinical and Research Institute, Rozzano, Italy.

Correspondence to: Dr Marta Busnelli, CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy (e-mail: m.busnelli@in.cnr.it).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Oxytocin is a small nonapeptide produced by magnocellular and parvocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus; from these sites of synthesis, the peptide is delivered to the periphery by axons projecting to the posterior pituitary and to the central nervous system (CNS) by dendrites and axonal collaterals (1,2). In the periphery, oxytocin has several functions, including the contraction of uterine smooth muscles during labour, an effect that has been extensively exploited for decades to promote contractions during the third stage of labour and to control bleeding after childbirth (3,4). Oxytocin also promotes the contraction of the mammary myoepithelium during lactation (5) and the intranasal use of oxytocin to stimulate lactation in breastfeeding women was approved by the Food and Drug Administration in the USA in 1960, even though it was discontinued in 1997 for commercial reasons.

In the CNS, oxytocin acts as a neurotransmitter/neuromodulator regulating several aspects of social behaviour, learning and memory processes, and stress and anxiety responses (6,7). On the basis of its capability to promote social interactions in all vertebrates, including humans, oxytocin has been proposed as a clinical treatment for relieving social impairments associated with neurodevelopmental and psychiatric disorders (8,9). In the past decade, a number of clinical trials have been performed in autism and schizophrenia but, unfortunately, no consensus on the real efficacy of oxytocin on these conditions has yet been reached (10). Several factors contribute to the limited/controversial efficacy of oxytocin in the clinical practice: (i) oxytocin has a short half-life in the plasma (11) and in the cerebrospinal fluid (12) and, consequently, its pharmacological effects are short lived; (ii) oxytocin does not cross the blood–brain barrier in a significant amount (12) and thus, when given by parenteral administration, it does not reach the brain; (iii) intranasal oxytocin administration, considered as a way of delivering exogenous oxytocin directly into the brain, has not yet been proven to do so (13), leading to very poorly defined pharmacokinetics parameters (doses, intervals,
intracellular trafficking and found that carbetocin promotes OXTR
gated the effects of carbetocin on OXTR internalisation and
way, displaying functional selective properties. Finally, we investi-
gate receptors, and that it specifically activates only the OXTR/Gq path-
mons at the N-terminus, and Cys 5. These modifications resulted in the very effective protection
of carbetocin from aminopeptidase degradation and disulphidase
cleavage (18), thus increasing the half-life of this oxytocin analogue
in the peripheral circulation (carbetocin 85–100 min versus oxytocin
3.4 min) (11, 19). This increase in half-life was accompanied by an
increased efficacy in vivo, as demonstrated by animal studies in
which carbetocin was able to induce prolonged uterine contraction
(20) and milk let-down activity (21). Similarly, in humans, carbetocin
had a prolonged effect on post-partum uterine activity in terms of
both a higher amplitude and frequency of contractions compared to
oxytocin (22). Concerning the central effects of carbetocin, studies
in rodents demonstrated that carbetocin reduced anxiety-like beha-
vours in the elevated plus maze test (23), had antidepressant-like
effects in the forced swimming test (24) and attenuated the nega-
tive emotional consequences of opioid withdrawal (25, 26).

Interestingly, behavioural studies directly comparing carbetocin
and oxytocin have reported different (and in some cases opposite)
effects. By contrast to oxytocin, carbetocin failed to revert deficits
in pre-pulse inhibition (PPI) of the startle reflex in Brown Norway
rats, a rat strain that has naturally low PPI, thus suggesting that
carbetocin does not have antipsychotic-like central effects (27). In
the open field paradigm, although oxytocin induced a reduction in
exploratory activity and increased grooming time, carbetocin had a
slightly increased effect on exploratory activity and no effect on
grooming (28). Moreover, in rats previously exposed to restraint
stress, oxytocin reduced locomotion and increased grooming,
whereas carbetocin increased locomotion and decreased grooming
(29). Finally, carbetocin (but not oxytocin) had long-term ameliorat-
ing effects on restraint stress-induced behavioural changes (30).

The present study investigated in detail the pharmacological
properties of carbetocin on the OXTR and vasopressin V1a and V1b
receptors, aiming to identify the molecular mechanisms that could
account for the differences observed between carbetocin and oxy-
tocin at the behavioural level. We found that carbetocin is highly
selective for the OXTR compared to the vasopressin V1a and V1b
receptors, and that it specifically activates only the OXTR/Gg path-
way, displaying functional selective properties. Finally, we investi-
gated the effects of carbetocin on OXTR internalisation and
intracellular trafficking and found that carbetocin promotes OXTR
internalisation through a previously undescribed \(\beta \)-arrestin-
dependent internalisation pathway, which also negatively influences
OXTR recycling.

Materials and methods

Peptide and reagents

Oxytocin, carbetocin and arginine vasopressin were obtained from Bachem (Bubendorf, Switzerland). Coelenterazine h was obtained from Molecular Probes, Invitrogen (Carlsbad, CA, USA) and coelenterazine 400a (CLz400) was from Biotium (Hayward, CA, USA).

Cell culture

HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 200 U/ml peni-
cillin, 200 mg/ml streptomycin and 2 mM L-glutamine (all purchased from Sigma-Aldrich, St Louis, MO, USA).

cDNA constructs

The expression vectors for G-proteins fused to Renilla luciferase G\(\alpha \)R-97-
Rluc8, G\(\alpha \)R-91-Rluc8, G\(\alpha \)R-91-Rluc8, G\(\alpha \)R-91-Rluc8 and G\(\alpha \)R-91-Rluc8
and the vectors for GFP10-G\(\beta \) and G\(\beta \)i were a gift from Dr Celine Gales (Inserm U858, Toulouse, France) and have been described previously (31). The plas-
mids encoding for the human OXTR (hOXTR) and the hOXTR-Rluc vectors
were also the same as reported previously (15). The plasmids for V1aR and
V1bR were a gift from Professor G. Guillon and Dr B. Mouillac (IGF, CNRS,
Montpellier, France). The expression vectors for \(\beta \)-arrestins-Venus were
kindly provided by Professor M. Locati (Humanitas Research Hospital Roz-
zano, Italy). The hOXTR-RFP construct was generated amplifying the entire
coding sequence of hOXTR by a polymerase chain reaction (PCR) and using the
forward primer 5‘-CAAACTCGAGATGGAGGGCGCGCTCGCAG-3’
and the reverse primer 5’-GTGGATCCGCGCTGGATGGCGACCTGCAG-3’ and the
reverse primer 5’-GTGGATCCGCGCTGGATGGCGACCTGCAG-3’ and the
Pfu DNA polymerase (Promega, Madison, WI, USA). The resulting PCR product was
subcloned into the Tag-RFP plasmid (Evrogen, Moscow, Russia) using the
Xhol and BamHI restriction sites. hOXTR-RFP fusion constructs were
sequenced on both DNA strands (MWG Eurofins, Ebersberg, Germany).

Transfections

For bioluminescence resonance energy transfer (BRET) experiments, cells were seeded at a density of 3.1 x 10^5 cells/well in 100-mm plates and
transfected after 24 h with polyethyleneimine (PEI linear, relative molecular
mass of 25 000; Polysciences, Inc., Warrington, PA, USA) as described previ-
ously (15). Twenty-four hours after transfection, the supplemented DMEM
was removed, and the cells were cultured for a further 24 h before the
experiments. Forty-eight hours after transfection, the cells were washed
twice, harvested and resuspended with phosphate-buffered saline (PBS)
supplemented with 0.1% (w/v) glucose at room temperature.

For imaging experiments, cells were seeded on glass coverslips
(3 x 10^5 cells/coverslip), allowed to grow for 24 h (60% confluence) and
transfected with TurboFect (Thermo Scientific). For each transfection sample,
1 \(\mu \)g of cDNA was mixed with 3 \(\mu \)l of TurboFect in 400 \(\mu \)l of DMEM
supplemented with 2 mM L-glutamine and incubated for 15 min at room tempera-
ture. DNA/TurboFect complexes were gently added to the cells in 3.6 ml of
complete medium supplemented with 10% FBS. Twenty-four hours after
transfection, the supplemented DMEM was renewed and the cells were
cultured for a further 24 h before the experiments.
BRET assays

To screen for the effects of the different ligands on G-protein activation, we performed BRET² assays. Plasmids encoding for GFP10-Gb2, Gb1, and the hOXTR or vasopressin receptors (V1aR and V1bR) were co-transfected together with different Gα-Rluc8 plasmids in HEK293 cells. To study OXTR–β-arrestin interactions, we used kinetic BRET¹ experiments and the cells were co-transfected with hOXTR-Rluc and β-arrestin1-Venus or β-arrestin2-Venus. Forty-eight hours after transfection, cells were washed twice, harvested and resuspended in PBS-glucose 0.1% (w/v) at room temperature. The protein content of cells was determined using the DC Assay (Bio-Rad, Hercules, CA, USA) and cells were resuspended to the final protein concentration of 1 mg/ml. Cells (80 μg of proteins/well) were then distributed in a white 96-well microplate (Optiplate; PerkinElmer Life Sciences, Boston, MA, USA). For the G-protein activation studies, cells were incubated for 2 min with the indicated ligands or PBS (untreated cells) before substrate addition. BRET² energy transfer between Rluc8 and GFP10 was measured immediately after the addition of the Rluc8 substrate coelenterazine 400a (5 μM; Biotium), using an Infinite F500 reader plate (Tecan, Männedorf, Switzerland) that allows the sequential integration of light signals detected with two filter settings [Rluc8 filter, 370–450 nm; GFP10 filter, 510–540 nm]. The data were recorded and the BRET² signal was calculated as the ratio between GFP10 emission and the light emitted by Rluc8. The changes in BRET signal induced by the ligands were expressed on graphs as the ‘ligand-promoted BRET’ signal and the average of the baseline (PBS-treated) induced BRET, the data were recorded as the difference between the zero time point immediately after the addition of the ligand, and the data were analysed by means of nonlinear least-squares fitting to the one-phase exponential association equation.

Fluorescence microscopy, β-arrestin recruitment, internalisation and recycling studies

In β-arrestin recruitment studies, cells were co-transfected with hOXTR-RFP and β-arrestin1- or β-arrestin2-Venus constructs and, after 48 h, were preincubated for 30 min in serum-free medium at 37 °C and treated with oxytocin (10 μM) or carbetocin (10 μM) and readings were registered using an Infinite F500 reader plate (Tecan) and filter set (Rluc filter, 370–480 nm; Venus filter, 520–570 nm). To determine the half-time (t½) of oxytocin- and carbetocin-induced BRET, the data were recorded as the difference between the ‘ligand-promoted BRET’ signal and the average of the baseline (PBS-treated) BRET signal, and the time at which the half-BRET peak was reached was estimated.

Statistical analysis

All data were analysed using Prism, version 5.0 (GraphPad Software Inc., San Diego, CA, USA). BRET data are all expressed as the mean ± SEM, calculated by simultaneous analysis of a minimum of three different experiments performed at least in duplicate. Ligand-induced BRET ratios were analysed with one-way ANOVA followed by Dunnett’s post-hoc test, comparing oxytocin, carbetocin or arginine vasopressin with vehicle within each G-protein subtype, aiming to determine statistically significant differences in treatments (P < 0.05, **P < 0.01, ***P < 0.001). Concentration-response BRET curves were analysed by means of nonlinear curve fitting using the sigmoidal dose–response equation. BRET kinetics data were normalised by setting the zero time point immediately after the addition of the ligand, and the data were analysed by means of nonlinear least-squares fitting to the one-phase exponential association equation.

Results

Carbetocin, in contrast to oxytocin, is a ‘functional selective’ OXTR/Gq agonist

We have previously demonstrated that the native peptide oxytocin can activate OXTR coupling to different G-protein subtypes: Gq, Gi and Go [15].

To investigate the coupling specificity of human OXTR (hOXTR) in response to carbetocin, we employed BRET-based biosensors (Fig. 1A). HEK293 cells were transfected with the hOXTR in combination with different Gα subunits fused to the BRET energy donor Renilla reniformis luciferase (Gα-Rluc8), and with the energy acceptor, a blue-shifted variant of Aequorea victoria green fluorescent protein (GFP10), N-terminally fused to the Gγ2 subunit (GFP10-Gγ2) (31). Ligand-induced OXTR activation of the G-protein leads to GDP release coupled to a conformational rearrangement of the heterotrimeric complex and, consequently, a decrease in the BRET ratio (Fig. 1A). To screen oxytocin and carbetocin for their efficacy to activate OXTR signalling, we used a 10 μM dose, which, for oxytocin, is known to maximally activate all the different G-protein subtypes (15) and, for carbetocin, is 1000-fold greater than its affinity for the OXTR.

For all the G-proteins analysed, one-way ANOVA showed an effect of treatment on OXTR: Gq (F2,51 = 52.57, P < 0.0001); G1 (F2,17 = 10.53, P < 0.01); Gi2 (F2,18 = 204.3, P < 0.0001); Gi3 (F2,19 = 34.55, P < 0.0001); and Go (F2,30 = 17.21, P < 0.0001). As demonstrated previously [15], oxytocin (10 μM) activated Gq, Gi1, Gi2, Gi3 and Go proteins; by contrast, carbetocin (10 μM) activated only the Gq protein, indicating that carbetocin is a OXTR/Gq ‘functional selective’ analogue (Fig. 1A). Notably, for carbetocin, we observed a modest but significant increase in the energy transfer in the presence of Gi1 and Gi3 (Fig. 1A), indicating a particular rearrangement of the receptor associated with a closer organisation of the trimeric G-protein complex, which could indicate inverse agonism [32].

Carbetocin is a partial agonist for the OXTR/Gq coupling

Using the same Gq BRET biosensor (Fig. 1A), we obtained dose–response curves. We found an increased EC50 for carbetocin:
Carbetocin does not activate vasopressin V1α and V1β receptors and acts as a competitive antagonist

A previous study has reported that carbetocin is able to bind to vasopressin receptors in rat myometrial homogenates (34); therefore, we tested the capability of carbetocin with respect to activating human V1α and V1β receptors with the same BRET biosensors used for OXTR (Fig. 1a).

For all of the G-proteins analysed, one-way ANOVA showed an effect of treatment on V1αR: Gq (F3,33 = 1387, P < 0.0001); G1 (F3,36 = 86.23, P < 0.0001); G2 (F3,33 = 129.4, P < 0.0001); G3 (F3,39 = 195.6, P < 0.0001); and G0 (F3,28 = 11.02, P < 0.0001). An effect of treatment was observed also for V1βR: Gq (F3,24 = 358.5, P < 0.0001); G1 (F3,24 = 30.46, P < 0.0001); G2 (F3,24 = 72.92, P < 0.0001); G3 (F3,24 = 95.75, P < 0.0001); and G0 (F3,24 = 22.27, P < 0.0001).

Even when used at a high concentration (10 μM) at least 500-fold greater than its affinity for the vasopressin receptors (34), carbetocin was completely inactive on vasopressin V1αR and V1βR (Fig. 2a,b). By contrast, the same high concentration (10 μM) of oxytocin selectively promoted the activation of V1αR/Gq and V1αR/Gi2, as well as V1βR/Gq. Moreover, the neuropeptide arginine vasopressin significantly promoted the coupling/activation of the vasopressin V1αR and V1βR to all G-protein subtypes. Interestingly, our data for V1βR confirmed the results of the previous study (35) that used an in vitro luciferase-based transcription reporter gene assay and reported no activation of this receptor by carbetocin at a concentration up to 10 μM. However, in contrast to the present study, a partial agonism for V1αR, arbitrarily assigned to < 70%, was reported in the previous study (35). Unfortunately, we cannot make direct comparisons between our BRET studies and the previous studies because, in the latter case, the nature of the responsive elements present in the promoter of their construct was not described, and we cannot therefore establish with certainty which signaling pathway was activated by the peptide.

We then tested the possibility that carbetocin acts as a competitive antagonist on the vasopressin V1α (Fig. 2c) and V1β receptors (Fig. 2d). Accordingly, we obtained dose–response curves for the activation of Gq in the presence of arginine vasopressin and carbetocin. Our results indicated that the simultaneous incubation with carbetocin resulted in a rightward shift of the concentration–response curves of arginine vasopressin without a noticeable change of the maximal response (Fig. 2c,d). Moreover, the right-shift of the arginine vasopressin curve is dose-dependent, indicating that carbetocin behaves as a competitive antagonist on V1αR and V1βR.

Carbetocin induces OXTR internalisation without recruiting β-arrestins

Exposure to oxytocin leads to desensitisation of the OXTR (36). Desensitisation, which protects cells from overstimulation after prolonged agonist exposure, can occur very rapidly, within seconds or minutes, and is observed in the majority of G protein-coupled receptors (GPCRs). It is a multistep phenomenon, in which the
Dunnett's post-hoc test (Fig. 3B), thus indicating a rapid and sustained agonist-induced association between the OXTR and β-arrestins that prevent G-protein activation and promote receptor internalisation (37).

To determine whether carbetocin induced the recruitment of β-arrestins, we used a 'real-time' kinetic BRET assay in which the hOXTR-Rluc construct acted as the energy donor, and the yellow variant of GFP (Venus) fused to the C-terminus of β-arrestin1 and β-arrestin2 (β-arrestin1-Venus and β-arrestin2-Venus) acted as the acceptor (Fig. 3a). In cells co-expressing hOXTR-Rluc and β-arrestin1-Venus, oxytocin at a final concentration of 10 μM (which we previously determined to be able to promote maximal β-arrestin1 and β-arrestin2 recruitment) (15) increased the BRET ratio with a $t_{1/2}$ of 119 ± 18 s; this increase remained stable for at least 5 min (Fig. 3a), thus indicating a rapid and sustained agonist-induced association between the OXTR and β-arrestin1. Similar results were obtained using the β-arrestin2-Venus construct, with a $t_{1/2}$ of 52 ± 8 s (Fig. 3c). By contrast, no variations in the BRET signal were observed in the presence of a high dose of carbetocin (10 μM) (Fig. 3a,c). These data indicate that carbetocin did not promote OXTR–β-arrestin association.

To determine whether the different recruitment of β-arrestins affected OXTR internalisation, we used confocal microscopy studies. We used HEK293 cells transfected with hOXTR-RFP and β-arrestin1-Venus (Fig. 4a) or β-arrestin2-Venus (Fig. 4a). In this experiment, we stimulated cells for 2 min with 100 nM oxytocin, a concentration that is 100-fold greater than its K_i and EC$_{50}$ for OXTR and that was also previously shown to induce the complete internalisation of OXTR without affecting its trafficking (36). Because carbetocin is characterised by K_i and EC$_{50}$ values for OXTR that are 10-fold bigger than those for oxytocin, we used 1 μM carbetocin for the same studies (38). As shown in Fig. 4, before agonist exposure (baseline) the hOXTR-RFPs were localised at the plasma membrane, whereas there was a homogeneous distribution of β-arrestins-Venus in the cytoplasm. Incubation with oxytocin (but not carbetocin) induced β-arrestins accumulation at the plasma membrane that positively colocalised with OXTR, confirming that...
respectively. HEK293 cells co-expressing hOXTR-Rluc and (B) oxytocin (100 nM) (Fig. 5B) or carbetocin (1 μM) (Fig. 5C) for 15 min we treated hOXTR-RFP transfected HEK293 cells (Fig. 5A, basal) with oxytocin (100 nM) (Fig. 5B) or carbetocin (1 μM) (Fig. 5C) for 15 min and we observed fluorescence staining at the plasma membrane and in the cytosol, which presumably represented the OXTR internalised and localised in endocytic vesicles. Altogether, these results indicate that, in contrast to oxytocin, carbetocin promotes OXTR internalisation with a pathway independent of β-arrestins.

OXTR internalised upon carbetocin stimulation does not recycle to the plasma membrane and remains intracellular

We have previously demonstrated that OXTRs endocytosed in response to 100 nM oxytocin are not sorted to the lysosomes for degradation and they are recycled back to the cell surface (36). We treated hOXTR-RFP transfected HEK293 cells (Fig. 5A, basal) with oxytocin (100 nM) (Fig. 5B) or carbetocin (1 μM) (Fig. 5C) for 15 min and we observed no fluorescence staining at the plasma membrane and a great number of intracellular fluorescent puncta, indicating that, at this time, both agonists promoted massive OXTR internalisation (Fig. 5A, basal). For recycling, we treated cells for 15 min, we removed the agonist with an acid wash, and we maintained cells at 37 °C for 4 h. In our experiments, we did not block protein synthesis because we have previously demonstrated that, after 4 h, the OXTR de novo synthesis does not play a major role in the reappearance of the receptor at the cell surface (36). With oxytocin, in agreement with our previous observations (36), the fluorescence staining reappeared at the plasma membrane after 4 h and was as intense as under basal conditions (Fig. 5A). By contrast, after carbetocin, OXTRs remained in intracellular vesicles and did not recycle to the plasma membrane (Fig. 5C).

These results indicate that carbetocin efficiently promotes OXTR internalisation in the absence of the recruitment of β-arrestins, and this process is not coupled to OXTR recycling.

Discussion

In the present study, we report the molecular pharmacology of carbetocin, an analogue of oxytocin originally designed to achieve a long half-life (18). In particular, we investigated: (i) the coupling efficiency and selectivity of carbetocin for the human OXTR; (ii) the agonistic properties of carbetocin for the human OXTR, V1a and V1b receptors; and (iii) the carbetocin-induced OXTR internalisation and recycling. Our data indicate that carbetocin possesses specific and peculiar features in all these aspects, suggesting a pharmacological profile and therapeutic potential different from that of the endogenous neuropeptide oxytocin.

First, we investigated the coupling efficiency and selectivity of carbetocin for the human OXTR. Our data indicate that carbetocin is able to activate Gq and, in the case of G11 and G13, promotes an increase in the energy transfer, which could indicate inverse agonism (32), demonstrating a unique functional selective bias towards Gq.

In addition, compared to oxytocin, carbetocin displays a five-fold right-shifted EC50 value and a 50% reduction in the maximal OXTR/Gq activation value, consistent with a partial agonist profile. These results are in agreement with previous myometrial contractility studies performed in vitro on isolated rat uterine strips reporting an EC50 value of carbetocin (48 nM) approximately ten times higher than that of oxytocin (0.62 nM) and a maximal contractile responsiveness (Emax) of carbetocin approximately 50% lower than that of oxytocin (but not carbetocin) promoted the recruitment of β-arrestins. Moreover, in the presence of carbetocin and oxytocin, we observed fluorescent puncta distributed at the plasma membrane and in the cytosol, which presumably represented the OXTR internalised and localised in endocytic vesicles.
Substitutions that modify the disulphide bond of oxytocin by introducing a dicarba bond were shown not only to significantly decrease the biological activity of the peptide, but also to induce a loss of receptor selectivity or a switch from an agonist to an antagonist profile (39). Because the crystal structure of carbetocin is currently unavailable, we can only speculate about the molecular basis of these peculiar agonistic properties. In particular, we hypothesise that the modification of the disulphide bond generates distortions in carbetocin secondary structure, inducing different interactions between its cyclic part and the cluster of residues located in the transmembrane helices TM3, TM5 and TM6 of OXTR. These interactions stabilise different receptor conformations that influence OXTR activation (40) and G-protein coupling selectivity (41) and could be particularly relevant for determining the functional selectivity and partial agonistic properties of oxytocin analogues. Further experiments aiming to investigate the secondary structure of carbetocin, as well as modelling and mutagenesis studies, will be necessary to address this hypothesis further. The unique functional selective OXTR/Gq coupling of carbetocin could be particularly relevant in neuronal cells, where OXTR coupling to Gq and Gi/Go can result in opposite effects on cell excitability via inhibition or activation of potassium channels (42). In this context, carbetocin could be instrumental in identifying the role played by OXTR/Gq coupling with respect to eliciting specific behavioural and neuroendocrine effects, particularly if combined with DNalOVT and atosiban, respectively a Gi1 and a Gi3 functional selective agonists described previously (15). Such studies would provide the rationale for pharmacological treatments based on ‘functional selective agonists’ characterised by their specific G-protein isoform coupling. We have previously demonstrated that oxytocin has a strong mitogenic effect when OXTRs are localised in plasma membrane domains enriched in caveolin proteins, glycosphingolipids and cholesterol (lipid rafts), whereas it inhibits cell growth when the receptors are...
excluded from these domains [43,44]. Moreover, we found that the inhibition of cell growth is mediated by a pertussis toxin-sensitive G-protein (G\(\alpha\)o), whereas the stimulation of cell growth is mediated by a G\(\alpha\)-independent pathway, likely via Gq activation [43,44]. Because carbetocin proved to be an OXTR/Gq functional selective agonist, it may have positive effects on cell proliferation. Experiments using this analogue are currently under way with the aim of testing this hypothesis.

It has been previously demonstrated that carbetocin binds not only to the OXTR, but also to vasopressin receptors [34]. Competition binding studies performed on rat myometrial and kidney membranes using tritiated oxytocin and arginine vasopressin as radiotracers have reported K\(\text{}_\text{d}\) values of 1.96 nM for the rat OXTR, 7.24 nM for the rat V1 receptors (likely V1aR subtype) and 61.3 nM for the rat V2 receptor [34]. Despite this previously reported high affinity binding, we did not observe any significant activation of hV1a and hV1b receptors with a concentration of carbetocin as high as 10 \(\mu\)M, suggesting that carbetocin can bind to these receptors without inducing any activation. Moreover, we observed that it can act as a competitive antagonist at the vasopressin receptors. This is an important feature that differentiates carbetocin from oxytocin because oxytocin is capable to bind to and activate both the V1a and V1b receptors [16,35]. Previously, a great deal of effort was devoted to the identification of OXTR selective agonists and, more recently, interest in OXTR selective agonists has surged. At present, only one oxytocin peptide analogue, Thr4Gly7OT compound, has proved to be selective for the OXTR, even though its selectivity is limited to mice and rats because Thr4Gly7OT was demonstrated to be rather unsel ective towards the human oxytocin/V1 receptor subtypes [16,45]. Carbetocin, as a selective OXTR agonist potentially capable of blocking the vasopressin V1a and V1b receptors, represents an interesting agonist worthy of careful pharmacological characterisation in vivo, where it may elicit unexpected and presently not fully predictable effects.

Following oxytocin binding, we have previously shown that the OXTR recruited \(\beta\)-arrestin and underwent a rapid (2–10 min) internalisation process followed by receptor recycling to the plasma membrane [36]. We report here that, upon carbetocin exposure, the OXTR is efficiently internalised in the absence of any significant recruitment of either \(\beta\)-arrestin1 or \(\beta\)-arrestin2. Moreover, once internalised in response to carbetocin, the OXTR remains in the intracellular compartments and does not recycle back to the plasma membrane. Other GPCRs were shown to be internalised independently of the recruitment of \(\beta\)-arrestins, such as the ghrelin receptor [46] and the serotonin 5HT-2A receptor [47]. One possible mechanism for such \(\beta\)-arrestin-independent internalisation relies on the direct binding of an adaptor protein, such as AP2, directly to the OXTR; however, the OXTR lacks the polyarginine motif that is required for direct AP2 interaction [37], making this possibility unlikely. GRK2, a kinase that has been demonstrated to interact with the OXTR [48] can also function as an adaptor protein by interacting directly with clathrin via a clathrin box, mediating a \(\beta\)-arrestins-independent internalisation process [49]. Interestingly, although \(\beta\)-arrestins were not required for carbetocin-induced OXTR internalisation, no OXTR recycling was observed in the absence of the recruitment of \(\beta\)-arrestins. \(\beta\)-arrestins are fundamental for regulating not only the internalisation, but also the recycling of a number of GPCRs. Recycling of GPCRs is considered to occur following endosome acidification, \(\beta\)-arrestin dissociation and receptor dephosphorylation, a series of processes that occur as the receptor traffics through the vesicular compartments of the cytoplasm. Because arrestins serve as adaptors for many proteins, it is intriguing to speculate that they can specifically regulate the post-endocytotic intracellular trafficking of GPCRs and/or the activity of phosphatases. In particular, it has been demonstrated that, in the absence of \(\beta\)-arrestins, the N-formyl peptide receptor undergoes ligand-induced internalisation but is trafficked improperly within the cell, resulting in intracellular retention and recycling to the plasma membrane not being possible [50]. Whatever the mechanism involved, it is relevant that carbetocin disclosed a \(\beta\)-arrestin-independent internalisation pathway of the OXTR, which is described here for the first time.

The peculiar effects of carbetocin on receptor recycling should be considered when repeated applications are intended to be used for therapeutic purposes because the absence of receptor recycling could lead to tolerance, a pharmacologically defined phenomenon that consists of a smaller response being observed after repeated exposure to a drug [51]. Tolerance can be a result of a reduction in functional receptor at the plasma membrane, as in the case of an agonist of the motilin receptors, a drug used as a gastrointestinal prokinetic agent [52]. In the case of octreotide, a somatostatin receptor (SST2R) agonist used for controlling hormone-related symptoms of functioning gastroenteropancreatic neuroendocrine tumours, the antiserective potency decreased with long-term treatment as a consequence of the persistent internalisation of SST2R [53]. Finally, a rebound effect can appear after the discontinuation of a drug [54]. There are many classes of medications that produce rebound, including antidepressants, opioids and \(\beta\)-adrenoceptor blockers and, in most cases, the rebound effect is associated with an up-regulation of receptors [54]. Upon these considerations, variations in OXTR expression levels after carbetocin administration should be subject to careful future investigation when planning its use in vivo.

Conclusions

The present study indicates that carbetocin and oxytocin display substantial differences in a number of key molecular pharmacological properties. On the one hand, these differences may lead to interesting new effects of carbetocin compared to oxytocin. On the other hand, caution should be used when employing carbetocin as a substitute for oxytocin because unexpected (and at present unpredictable) effects could be encountered, particularly in vivo. This is especially true for the use of carbetocin in neurodevelopmental and psychiatric conditions, in which the precise role of OXTR and V1 receptors is far from clear. Further translational studies are needed to clarify and fully exploit the therapeutic value of this analogue.
Acknowledgements

This work was supported by the Telethon Foundation (grant GGP12207), CNR Research Project on Aging and Regione Lombardia (Project MboMM-convenzione no. 18099/RCC) to BC. We thank Dr C. Galés (INSERM, France) who provided the BRET biosensor cDNAs. The authors declare that the present study was conducted in the absence of any commercial or financial relationships that could represent a potential conflict of interest. IP and ML performed the fluorescence microscopy experiments. VG analysed the data and wrote the manuscript. BC conceived the project and wrote the manuscript. MB conceived and supervised the project, performed BRET and imaging experiments, performed data analysis, and wrote the manuscript.

Received 6 November 2015, revised 30 December 2015, accepted 7 January 2016

References

1 Knobloch HS, Charlet A, Hoffmann LC, Eliaeva M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012; 73: 553–566.
2 Leng G, Ludwig M. Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol 2008; 586: 5625–5632.
3 Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol 2014; 26: 356–369.
4 Dahlke JD, Mendez-Figueroa H, Maggio L, Hauspurg AK, Sperling JD, Cort N, Einarsson S, Altie`re MF, Bane`res JL, Marie J. Agonism, antagonism, and inverse agonism bias at the ghrelin receptor signaling. J Physiol Pharmacol 2016; 67: 143–149.
5 Crowley WR. Neuroendocrine regulation of lactation and milk production. Compr Physiol 2015; 5: 255–291.
6 Young LJ. Oxytocin, social cognition and psychiatry. Neuropsychopharmacology 2015; 40: 243–244.
7 Churchland PS, Winkelman P. Modulating social behavior with oxytocin: how does it work? What does it mean? Horm Behav 2012; 61: 392–399.
8 Guastella AJ, Hickie IB. Oxytocin treatment, circuitry and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry 2016; 79: 234–242.
9 Feifel D, Shilling PD, MacDonald K. A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 2016; 79: 222–233.
10 Bakermans-Kranenburg MJ, van UJM. Sniffing around oxytocin: review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Transl Psychiatry 2013; 3: e258.
11 Gazis D. Plasma half-lives of vasopressin and oxytocin analogs after iv injection in rats. Proc Soc Exp Biol Med 1978; 158: 663–665.
12 Mens WB, Witter A, van Wimersma Greidanus TB. Penetration of neurohypophysial hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res. 1983; 262: 143–149.
13 Leng G, Ludwig M. Intrasal oxytocin: myths and delusions. Biol Psychiatry 2016; 79: 243–250.
14 Pittman QJ, Spencer SJ. Neurohypophysial peptides: gatekeepers in the amygdala. Trends Endocrinol Metab 2005; 16: 343–344.
15 Busnelli M, Sauliere A, Manning M, Bouvier M, Gales C, Chini B. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 2012; 287: 3617–3629.
16 Busnelli M, Bulgheroni E, Manning M, Kleinau G, Chini B. Selective and potent agonists and antagonists for investigating the role of mouse oxytocin receptors. J Pharmacol Exp Ther 2013; 346: 318–327.
17 Manning M, Misicka A, Olma A, Bankowskii K, Stoep S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 2012; 24: 609–628.
18 Barth T, Krejci I, Vanecova J, Jost K, Rychlik I. Prolonged action of deaminocarba analogues of oxytocin on the rat uterus in vivo. Eur J Pharmacol 1974; 25: 67–70.
19 Cort N, Einarrsson S, Schams D, Vilhardt H. Blood concentrations of oxytocin equivalents after single injections of deaminono-1-monocarba- [2-O-methyltyrosine]-oxytocin in lactating sows. Am J Vet Res 1981; 42: 1804–1806.
20 Cort N, Einarrsson S, Viring S. Actions of oxytocin and a long-acting carba oxytocin analog on the porcine myometrium in vitro and in vivo. Am J Vet Res 1979; 40: 430–432.
21 Cort N, Einarrson S, Astron G. Effect of oxytocin and its long-acting analog on milk let-down and intramammary pressure in healthy lactating sows. Am J Vet Res 1982; 43: 1283–1285.
22 Amsalem H, Aldrich CJ, Oskamp M, Windrim R, Farine D. Postpartum uterine response to oxytocin and carbetocin. J Reprod Med 2014; 59: 167–173.
23 Mak P, Broussard C, Vacy K, Broadbear JH. Modulation of anxiety behavior in the elevated plus maze using peptic oxytocin and vasopressin receptor ligands in the rat. J Psychopharmacol 2012; 26: 532–542.
24 Chaviaras S, Mak P, Ralph D, Krishnan L, Broadbear JH. Assessing the antidepressant-like effects of carbetocin, an oxytocin agonist, using a modification of the forced swimming test. Psychopharmacology 2010; 210: 35–43.
25 Zanos P, Georgiou P, Wright SR, Hounari SM, Kitchen I, Winsky-Sommerer R, Bailey A. The oxytocin analogue carbetocin prevents emotional impairment and stress-induced reinstatement of opioid-seeking in morphine-abstinent mice. Neuropsychopharmacology 2014; 39: 855–865.
26 Georgiou P, Zanos P, Garcia-Carmona JA, Hounari S, Kitchen I, Kieffer BL, Laorden ML, Bailey A. The oxytocin analogue carbetocin prevents priming-induced reinstatement of morphine-seeking: Involvement of dopaminergic, noradrenergic and MOP systems. Eur Neuropsychopharmacol. 2015; 25: 2459–2464.
27 Feifel D, Shilling PD, Bechter AM. The effects of oxytocin and its analog, carbetocin, on genetic deficits in sensorimotor gating. Eur Neuropsychopharmacol 2012; 22: 374–378.
28 Klenereva V, Krejci I, Sida P, Hlinak Z, Hynie S. Oxytocin and carbetocin effects on spontaneous behavior of male rats: modulation by oxytocin receptor antagonists. Neuro Endocrinol Lett 2009; 30: 335–342.
29 Klenereva V, Krejci I, Sida P, Hlinak Z, Hynie S. Modular effects of oxytocin and carbetocin on stress-induced changes in rat behavior in the open-field. J Physiol Pharmacol 2009; 60: 57–62.
30 Klenereva V, Krejci I, Sida P, Hlinak Z, Hynie S. Oxytocin and carbetocin ameliorating effects on restraint stress-induced short- and long-term behavioral changes in rats. Neuro Endocrinol Lett 2010; 31: 622–630.
31 Sauli`ere A, Beilot M, Paris H, Denis C, Finana F, Hansen JT, Al`ef M, Segu`elas MH, Pathak A, Hansen JL, Senard JM, Gales C. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol. 2012; 8: 622–630.
32 M’Kadmi C, Leyris JP, Onfroy L, Gales C, Sauli`ere A, Gagne D, Ramier M, Saingl M, Maingot M, Denoyelle S, Verdie`re P, Fehrentz JA, Martinez J, Bane`res JL, Marie J. Agonism, antagonist, and inverse agonism bias at the ghrelin receptor signaling. J Biol Chem 2015; 290: 27021–27029.
33 Atke A, Vilhardt H. Uterotonc activity and myometrial receptor affinity of 1-deamino-1-carba-2-tyrosine-O-methyl]-oxytocin. Acta Endocrinol (Copenhagen) 1987; 115: 155–160.
34 Engstrom T, Barth T, Melin P, Vilhardt H. Oxytocin receptor binding and uterotonic activity of carbetocin and its metabolites following enzymatic degradation. *Eur J Pharmacol* 1998; 355: 203–210.

35 Wisniewski K, Alagarsamy S, Galayev T, Tariga H, Thompson D, Ly B, Wisniewska H, Qi S, Croston G, Laporte R, Rivière PJ, Schteingart CD. New, potent, and selective peptidoxytocin receptor agonists. *J Med Chem.* 2014; 57: 5306–5317.

36 Conti F, Sertic S, Reversi A, Chini B. Intracellular trafficking of the human oxytocin receptor: evidence of receptor recycling via a Rab4/Rab5 "short cycle". *Am J Physiol Endocrinol Metab* 2009; 296: E532–E542.

37 Wolfe BL, Trejo J. Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. *Traffic* 2007; 8: 462–470.

38 Gimpl G, Postina R, Fahrenholz F, Reinheimer T. Binding domains of the oxytocin receptor for the selective oxytocin receptor antagonist barusi- ban in comparison to the agonists oxytocin and carbetocin. *Eur J Pharmacol* 2005; 510: 9–16.

39 Stymiest JL, Mitchell BF, Wong S, Vederas JC. Synthesis of biologically active dicarba analogues of the peptide hormone oxytocin using ring-closing metathesis. *Org Lett* 2003; 5: 47–49.

40 Chini B, Mouillac B, Baiestre MN, Trumpp-Kallmeyer S, Hoflack J, Hibert M, Andriolo M, Pupier S, Jard S, Barberis C. Two aromatic residues regulate the response of the human oxytocin receptor to the partial agonist arginine vasopressin. *FEBS Lett* 1996; 397: 201–206.

41 Favre N, Fanelli F, Missotten M, Nichols A, Wilson J, di Tiani M, Rommel C, Scheer A. The DRY motif as a molecular switch of the human oxytocin receptor. *Biochemistry* 2005; 44: 9990–10008.

42 Gravati M, Busnelli M, Bulgheroni E, Reversi A, Spaiardi P, Parenti M, Toselli M, Chini B. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. *J Neurochem* 2010; 114: 1424–1435.

43 Guzzi F, Zanchetta D, Cassoni P, Guzzi V, Francolini M, Parenti M, Chini B. Localization of the human oxytocin receptor in caveolin-1 enriched domains turns the receptor-mediated inhibition of cell growth into a proliferative response. *Oncogene* 2002; 21: 1658–1667.

44 Reversi A, Rimoldi V, Brambillasca S, Chini B. Effects of cholesterol manipulation on the signaling of the human oxytocin receptor. *Am J Physiol Regul Integr Comp Physiol* 2006; 291: R861–R869.

45 Guillen G, Derick S, Pena A, Cheng LL, Stoev S, Seyer R, Morgat JL, Barberis C, Gal CS, Wagnon J, Manning M. The discovery of novel vasopressin V1b receptor ligands for pharmacological, functional and structural investigations. *J Neuroendocrinol.* 2004; 16: 356–361.

46 Holliday ND, Holst B, Rodionova EA, Schwartz TW, Cox HM. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. *Mol Endocrinol.* 2007; 21: 3100–3112.

47 Gray JA, Bhatnagar A, Gurevich V, Roth BL. The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. *Mol Pharmacol.* 2003; 63: 961–972.

48 Hasbi A, Devost D, Laporte SA, Zingg HH. Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. *Mol Endocrinol.* 2004; 18: 1277–1286.

49 Shinia T, Araki K, Tanabe S, Yoshida N, Haga T, Nagao T, Kurose H. Clathrin box in G protein-coupled receptor kinase 2. *J Biol Chem.* 2001; 276: 33019–33026.

50 Vines CM, Revankar CM, Maestas DC, LaRusch LL, Cimino DF, Kohout TA, Lefkowitz RJ, Prossnitz ER. N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. *J Biol Chem.* 2003; 278: 41581–41584.

51 Colpaert FC. Drug discrimination: no evidence for tolerance to opiates. *Pharmacol Rev* 1995; 47: 605–629.

52 Lamian V, Rich A, Ma Z, Li J, Seethala R, Gordon D, Dubaque Y. Characterization of agonist-induced motilin receptor trafficking and its implications for tachyphylaxis. *Mol Pharmacol.* 2006; 69: 109–118.

53 Mohamed A, Blanchard MF, Albertelli M, Barbieri F, Bruce T, Niccoli P, Delpero JR, Monges G, Garcia S, Ferone D, Florio T, Enjalbert A, Moutardier V, Schonbrunn A, Gerard C, Barlier A, Saveanu A. Patiseroide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures. *Endocr Relat Cancer.* 2014; 21: 691–704.

54 Reidenberg MM. Drug discontinuation effects are part of the pharmacology of a drug. *J Pharmacol Exp Ther* 2011; 339: 324–328.