SUBINTEGRALITY, INVERTIBLE MODULES AND LAURENT POLYNOMIAL EXTENSIONS

VIVEK SADHU

Abstract. Let $A \subseteq B$ be a commutative ring extension. Let $I(A,B)$ be the multiplicative group of invertible A-submodules of B. In this article, we extend Sadhu and Singh result by finding a necessary and sufficient condition on $A \subseteq B$, so that the natural map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ is an isomorphism. We also discuss some properties of the cokernel of the natural map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ in general case.

Keywords: Subintegral extensions, Seminormal rings, Invertible modules

2010 Mathematics Subject Classification: 13B02, 13F45

Introduction

In [3], Roberts and Singh have introduced the group $I(A,B)$ to generalize a result of Dayton. The relation between the group $I(A,B)$ and subintegral extensions has been investigated by Reid, Roberts and Singh in a series of papers. Recently in [4], Sadhu and Singh have proved that A is subintegrally closed in B if and only if the canonical map $I(A,B) \to I(A[X],B[X])$ is an isomorphism. It is easy to see that $I(A[X],B[X]) = I(A,B) \oplus NI(A,B)$. So the result of [4], just mentioned amounts to saying that $NI(A,B) = 0$ if and only if A is subintegrally closed in B.

The primary goal of this paper is to extend Sadhu and Singh result of [4] just mentioned above by finding a necessary and sufficient condition on $A \subseteq B$, so that the natural map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ is an isomorphism. It is easy to see that the map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ is always injective. The secondary goal is to investigate the cokernel of the natural map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ in general case. This cokernel will be denoted by $MI(A,B)$.

In Section 1, we mainly give basic definitions and notations.

In Section 2, we discuss conditions on $A \subseteq B$ under which the map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ is an isomorphism. We show that for an integral, birational one dimensional domain extension $A \subseteq B$, the map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ is an isomorphism if and only if A is subintegrally closed in B and $A \subseteq B$ is anodal. We give an example to show that the map $I(A,B) \to I(A[X,X^{-1}],B[X,X^{-1}])$ need not be
an isomorphism for a 2 dimensional extension even if A is subintegrally closed in B and $A \subseteq B$ is anodal.

In Section 3, we discuss the surjectivity of the natural map $\varphi(A, C, B) : \mathcal{I}(A, B) \to \mathcal{I}(C, B)$ is given by $\varphi(A, C, B)(I) = IC$ for any ring extensions $A \subseteq C \subseteq B$. We show that the map $\varphi(A, C, B)$ is surjective if C is subintegral over A. We show further that if C subintegral over A, then the sequence

$$1 \to M\mathcal{I}(A, C) \to M\mathcal{I}(A, B) \to M\mathcal{I}(C, B) \to 1$$

is exact. We conclude this section by discussing some properties of the group $M\mathcal{I}(A, B)$.

1. Basic definitions and Notations

All of the rings we consider are commutative with 1, and all ring homomorphisms are unitary. Let X, T be indeterminates.

An **elementary subintegral** extension is an extension of the form $A \subseteq B$ with $B = A[b]$ for some $b \in B$ such that $b^2, b^3 \in A$. An extension $A \subseteq B$ is **subintegral** if it is a filtered union of elementary subintegral extensions; that is, for each $b \in B$ there is a finite sequence $A = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_r \subseteq B$ of ring extensions such that $b \in C_r$ and $C_{i-1} \subseteq C_i$ is elementary subintegral for each i, $1 \leq i \leq r$. We say that A is **subintegrally closed** in B if whenever $b \in B$ and $b^2, b^3 \in B$ then $b \in A$. The ring A is **seminormal** if the following condition holds: $b, c \in A$ and $b^3 = c^2$ imply that there exists $a \in A$ with $b = a^2$ and $c = a^3$. A seminormal ring is necessarily reduced and is subintegrally closed in every reduced overring. It is easily seen that if A is subintegrally closed in B with B seminormal then A is seminormal. For details see [6, 7].

For a ring A we denote by:

- $U(A)$: The groups of units of A.
- $H^0(A) = H^0(\text{Spec}A, \mathbb{Z})$: The group of continuous maps from $\text{Spec}(A)$ to \mathbb{Z}.
- $\text{Pic}A$: The Picard group of A.
- $KU(A)$: Cokernel of the natural map $U(A) \to U(A[X])$.
- $MU(A)$: Cokernel of the natural map $U(A) \to U(A[X, X^{-1}])$.
- $NU(A)$: Kernel of the map $U(A[X]) \to U(A)$.
- $K\text{Pic}A$: Cokernel of the natural map $\text{Pic}A \to \text{Pic}A[X]$.
- $M\text{Pic}A$: Cokernel of the natural map $\text{Pic}A \to \text{Pic}A[X, X^{-1}]$.
- $N\text{Pic}A$: Kernel of the map $\text{Pic}A[X] \to \text{Pic}A$.
- $L\text{Pic}A$: Cokernel of the map $\text{Pic}A[X] \times \text{Pic}A[X^{-1}] \to \text{Pic}A[X, X^{-1}]$.

Let $A \subseteq B$ be a ring extension. Then we denote by

- $\mathcal{I}(A, B)$: The group of invertible A-submodules of B.
It is easily seen that \(\mathcal{I} \) is a functor from extensions of rings to abelian groups. Some properties of \(\mathcal{I}(A, B) \) can be found in [3, Section 2].

\(K\mathcal{I}(A, B) \): Cokernel of the natural map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X], B[X]) \).

\(M\mathcal{I}(A, B) \): Cokernel of the natural map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) \).

\(N\mathcal{I}(A, B) \): Kernel of the map \(\mathcal{I}(A[X], B[X]) \to \mathcal{I}(A, B) \) (Here the map is induced by the B-algebra homomorphism \(B[X] \to B \) given by \(X \mapsto 0 \)).

Recall from [3, Section 2] that for any commutative ring extension \(A \subseteq B \), we have the exact sequence

\[
1 \to U(A) \to U(B) \to \mathcal{I}(A, B) \to \text{Pic } A \to \text{Pic } B.
\]

Applying \(M, K \) we obtain the chain complexes:

\[
(1.0) \quad 1 \to MU(A) \to MU(B) \to M\mathcal{I}(A, B) \to MPic A \to MPic B.
\]

and

\[
(1.1) \quad 1 \to KU(A) \to KU(B) \to K\mathcal{I}(A, B) \to K\text{Pic } A \to K\text{Pic } B.
\]

2. **The map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) \)**

In this section we examine some conditions on \(A \subseteq B \) under which the natural map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) \) is an isomorphism (i.e \(M\mathcal{I}(A, B) = 0 \)). For this we consider the notions of quasinormal and anodal extensions.

Let \(A \subseteq B \) be a ring extension. We say that \(A \) is **quasinormal** in \(B \) if the natural map \(MPic A \to MPic B \) is injective. For properties see [2].

The following result is due to Sadhu and Singh [4] which we use frequently throughout this paper:

Lemma 2.1. Let \(A \subseteq B \) be a ring extension. Then \(A \) is subintegrally closed in \(B \) if and only if the canonical map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X], B[X]) \) is an isomorphism.

Proof. See Theorem 1.5 of [4].

One can restate the above result in the following way: \(A \) is subintegrally closed in \(B \) if and only if \(K\mathcal{I}(A, B) = 0 \) if and only if \(N\mathcal{I}(A, B) = 0 \).

The following result is due to Weibel [8]

Lemma 2.2. There is a natural decomposition

\[
\text{Pic } A[X, X^{-1}] \cong \text{Pic } A \oplus \text{NPic } A \oplus \text{NPic } A \oplus \text{LPic } A
\]

for any commutative ring \(A \).

Proof. See Theorem 5.2 of [8].
Remark 2.3. By Swan Theorem \[6\], $\text{NPic} A = 0$ if and only if A_{red} is seminormal. So for a seminormal ring A, $L\text{Pic} A \cong \text{MPic} A$.

Lemma 2.4. There is a natural decomposition

$$U(A[X, X^{-1}]) \cong U(A) \oplus N(U(A)) \oplus N(U(A)) \oplus H^0(A)$$

for any commutative ring A.

Proof. See Exercise 3.17 of [9] in page 30. \qed

Remark 2.5. So for a reduced ring A, $H^0(A) \cong \text{MU}(A)$.

Lemma 2.6. The natural map $\phi : I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$, given by $I \to I[A[X, X^{-1}]]$ is injective.

Proof. Let $I = (b_1, b_2, ..., b_r) A \in \text{Ker} \phi$, where $b_i \in B$. Then $IA[X, X^{-1}] = A[X, X^{-1}]$. This implies that $b_i \in A[X, X^{-1}] \cap B = A$, for all i. So $I \subseteq A$. Similarly $I^{-1} \subseteq A$. Hence $I = A$. \qed

Lemma 2.7. The sequence (1.0) [resp. (1.1)] is exact, except possibly at the place $M\text{Pic} A$ [resp. $K\text{Pic} A$]. It is exact there too if the map $\text{Pic} A \to \text{Pic} B$ is surjective.

Proof. We have the following commutative diagram

where first two rows are exact and each column is exact. Now result follows by chasing this diagram. \qed

Lemma 2.8. Let $A \subseteq B$ be a ring extension. The map $\text{Pic} A \to \text{Pic} B$ is surjective if any one of the following conditions holds

(1) $A \subseteq B$ is subintegral.
(2) $A \subseteq B$ is a birational integral extension of domains, with $\text{dim} A = 1$.

Proof. (1) See Proposition 7 of [1].
(2) Let K be the quotient field of A and B. We have the commutative diagram

$$
\begin{array}{ccc}
\mathcal{I}(A, K) & \longrightarrow & \text{Pic } A \\
\theta(A, B, K) & \downarrow \varphi & \downarrow \\
\mathcal{I}(B, K) & \longrightarrow & \text{Pic } B
\end{array}
$$

where $\theta(A, B, K)$ is surjective by Proposition 2.3 of [4]. Hence φ is surjective.

\[\square\]

Lemma 2.9. Let $A \subseteq B$ be a ring extension with B a domain. Then
(1) If A is quasinormal in B then $M\mathcal{I}(A, B) = 0$.
(2) Suppose the extension $A \subseteq B$ is integral and birational with $\dim A \leq 1$ and $M\mathcal{I}(A, B) = 0$. Then A is quasinormal in B.

Proof. (1) Since A and B are domains, $MU(A) = MU(B) \cong \mathbb{Z}$. By (1.0), $\text{Im} \eta \subseteq \ker \varphi$. As A is quasinormal in B, $\ker \varphi = 0$. This implies that $\text{Im} \eta = 0$. We get $M\mathcal{I}(A, B) = 0$.

(2) By Lemma 2.8(2) and Lemma 2.7, the sequence (1.0) is exact at $M\text{Pic } A$ also. Since $M\mathcal{I}(A, B) = 0$, we get the result.

\[\square\]

Lemma 2.10. (cf. [2], Lemma 1.4.) Let $A \subseteq B$ be a ring extension with B reduced and A quasinormal in B. Then A is subintegrally closed in B.

Proof. We have not assumed B to be a domain. By Lemma 2.1, it is enough to show that $K\mathcal{I}(A, B) = 0$. We have the sequence

$$1 \to KU(A) \to KU(B) \to K\mathcal{I}(A, B) \xrightarrow{\alpha} KPic A \xrightarrow{\beta} KPic B.$$

which is exact except possibly at the place $KPic A$. Since A and B are reduced, $KU(A) = 0$ and $KU(B) = 0$. In the proof of Lemma 1.4 [2], it is shown that the map $KPic A \to KPic B$ is injective i.e $\ker \beta = 0$. We have $\text{im} \alpha \subseteq \ker \beta$. Hence $K\mathcal{I}(A, B) = 0$.

\[\square\]

An inclusion $A \subseteq B$ of rings is called anodal or an anodal extension, if every $b \in B$ such that $(b^2 - b) \in A$ and $(b^3 - b^2) \in A$ belongs to A.

Lemma 2.11. Let $A \subseteq C \subseteq B$ be extensions of rings. Then
(1) If A is anodal in B, then so is A in C.

(2) If A is anodal in C and C is anodal in B, then so is A in B.

Proof. Clear from the definition. \hfill \Box

Proposition 2.12. Let $A \subseteq B$ be a ring extension. If $A \subseteq B$ is subintegral, then it is anodal.

Proof. Assume first that $A \subseteq B$ is an elementary subintegral extension i.e $A \subseteq B = A[b]$ such that $b^2, b^3 \in A$. Let $f \in B$ such that $f^2 - f, f^3 - f^2 \in A$. We have to show that $f \in A$. Clearly f is of the form $a + \lambda b$ where $a, \lambda \in A$. So it is enough to show that $\lambda b \in A$. Since $\lambda b(2a - 1), \lambda b(3a^2 - 1) \in A$, $\lambda b = \lambda b.1 = \lambda b[(6a + 3)(2a - 1) - 4(3a^2 - 1)] \in A$. Hence $f \in A$.

In the general case, for $f \in B$ there exists a finite sequence $A = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_r \subseteq B$ of extensions such that $C_i \subseteq C_{i+1}$ is an elementary subintegral extension for each $i, 0 \leq i \leq r - 1$ and $f \in C_r$. So by the above argument $C_i \subseteq C_{i+1}$ is anodal for each i. Now the result follows from Lemma 2.11(2). \hfill \Box

Lemma 2.13. (1) The diagram

\[
\begin{array}{ccc}
\mathcal{I}(A, B) & \xrightarrow{\theta_1} & \mathcal{I}(A[X], B[X]) \\
\downarrow \theta & & \downarrow \theta_2 \\
\mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) & &
\end{array}
\]

is commutative.

(2) the maps θ, θ_1 and θ_2 are injective.

(3) θ is an isomorphism if and only if θ_1 and θ_2 are isomorphisms.

(4) If θ is an isomorphism i.e $M\mathcal{I}(A, B) = 0$ then A is subintegally closed in B.

Proof. (1) Since the maps are natural, the diagram is commutative.

(2) θ is injective by Lemma 2.6. The injectivity of θ_1 and θ_2 follows by similar argument as Lemma 2.6.

(3) If θ_1 and θ_2 are isomorphisms then clearly θ is an isomorphism. Conversely, suppose θ is an isomorphism. Then by simple diagram chasing we get that θ_1 and θ_2 are isomorphisms.

(4) If θ is an isomorphism then θ_1 is an isomorphism. Hence by Lemma 2.1, A is subintegally closed in B. \hfill \Box

Lemma 2.14. Let \mathfrak{a} be a B-ideal contained in A. Then the homomorphism $M\mathcal{I}(A, B) \rightarrow M\mathcal{I}(A/\mathfrak{a}, B/\mathfrak{a})$ is an isomorphism.
Let Corollary 2.16.

2.9(1).

domains. Then the following are equivalent:
by applying M to the unit-Pic sequence (see Theorem 3.10 , [9]) ,

(1) By Lemma 2.13(4),

Proof. [2], it is enough to show that for every intermediate ring

$A \subseteq C$ is a finite

A module, the map $\text{MPic } A \to \text{MPic } A/\mathfrak{c} \times \text{MPic } C$ is injective, where \mathfrak{c} is the conductor of C in A. We first claim that the map $\phi : M\mathcal{I}(A, C) \to M\mathcal{I}(A, B)$ is injective, where C is any intermediate ring between A and B.

We have the commutative diagram

$$
\begin{array}{ccccccccc}
1 & \longrightarrow & \mathcal{I}(A, C) & \longrightarrow & \mathcal{I}(A[X, X^{-1}], C[X, X^{-1}]) & \longrightarrow & M\mathcal{I}(A, C) & \longrightarrow & 1 \\
 & & \downarrow & & \downarrow & & \downarrow \phi & & \\
1 & \longrightarrow & \mathcal{I}(A, B) & \xrightarrow{\beta} & \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) & \longrightarrow & M\mathcal{I}(A, B) & \longrightarrow & 1 \\
\end{array}
$$

where the first two vertical arrows are natural inclusions (because any invertible A-submodule of C is also an invertible A-submodule of B).

Let $\bar{J} \in \ker \phi$, where $J \in \mathcal{I}(A[X, X^{-1}], C[X, X^{-1}])$. Then $J \in \text{im} \beta$ and there exist $J_1 \in \mathcal{I}(A, B)$ such that $J_1 A[X, X^{-1}] = J$. Let $J_1 = (b_1, b_2, ..., b_r)A$ and $J = (f_1, f_2, ..., f_s)A[X, X^{-1}]$ where $b_i \in B$ and $f_i \in C[X, X^{-1}]$. Then clearly $b_i \in B \cap C[X, X^{-1}] = C$ for all i. So $J_1 \subseteq C$. Also $J_1^{-1} \subseteq C$. This implies that $J_1 \in \mathcal{I}(A, C)$. So $\bar{J} = 0$. This proves the claim.

Since $M\mathcal{I}(A, B) = 0$, $M\mathcal{I}(A, C) = 0$. By Lemma 2.14, $M\mathcal{I}(A/\mathfrak{c}, C/\mathfrak{c}) = 0$, where \mathfrak{c} is the conductor of C in A. By (1.0), we have $MU(A) \cong MU(C)$ and $MU(A/\mathfrak{c}) \cong MU(C/\mathfrak{c})$. Now the result follows from the following exact sequence which we obtain by applying M to the unit-Pic sequence (see Theorem 3.10 , [9]) ,

$$MU(A) \to MU(A/\mathfrak{c}) \times MU(C) \to MU(C/\mathfrak{c}) \to \text{MPic } A \to \text{MPic } A/\mathfrak{c} \times \text{MPic } C$$

(2) By Theorem 1.13 of [2], A is quasinormal in B. Now the result follows from Lemma 2.15(1).

Corollary 2.16. Let $A \subseteq B$ be an integral, birational extension of one dimensional domains. Then the following are equivalent:

(1) A is quasinormal in B.

□
(2) $A \subseteq B$ anodal and A is subintegrally closed in B.

(3) $MI(A, B) = 0$.

Proof. (1) \iff (3) This is Lemma 2.9.
(2) \Rightarrow (3) This is Theorem 2.15(2).
(3) \Rightarrow (2) This is follows from Lemma 2.13(4) and Theorem 2.15(1). □

The statement of Theorem 2.15(2) need not be true for dimension greater than 1. This is seen by considering Example 3.5 of [8]. In that example A is a 2-dimensional noetherian domain whose integral closure is $B = K[X, Y]$, where K is a field. So $A \subseteq B$ is an integral, birational extension. By Proposition 3.5.2 of [8], $A \subseteq B$ is anodal and A is subintegrally closed in B. Since B is a UFD, $\text{Pic } B = \text{Pic } B[T, T^{-1}] = 0$ and we have the exact sequence

$$1 \to MU(A) \to MU(B) \to MI(A, B) \to MPic A \to 0.$$

As A, B are domains, $MU(A) = MU(B) \cong \mathbb{Z}$. So $MI(A, B) \cong MPic A$. By Remark 2.3 $LPic A \cong MPic A$. Hence by Proposition 3.5.2 of [8], $MI(A, B) \neq 0$.

3. **Some observations on** $MI(A, B)$

Recall from [5, Section 3] that for any extensions $A \subseteq C \subseteq B$ of rings, we have the exact sequence

$$1 \to \mathcal{I}(A, C) \to \mathcal{I}(A, B) \xrightarrow{\varphi(A,C,B)} \mathcal{I}(C, B)$$

where the map $\varphi(A, C, B)$ is given by $\varphi(A, C, B)(I) = IC$.

Now it is natural to ask under what conditions on $A \subseteq B$ the map $\varphi(A, C, B)$ is surjective. In [3], Singh has proved that if B is subintegral over A then the map $\varphi(A, C, B)$ is surjective. In the next Proposition we generalize Singh’s result as follows:

Proposition 3.1. For all rings C between A and B such that C is subintegral over A, the map $\varphi(A, C, B)$ is surjective.

Proof. We have the commutative diagram

$$
\begin{array}{ccccccccc}
1 & \to & U(A) & \to & U(B) & \to & \mathcal{I}(A, B) & \to & \text{Pic } A & \to & \text{Pic } B \\
& & \downarrow & & \downarrow \cong & & \downarrow \varphi(A,C,B) & & \downarrow \theta & & \downarrow \cong \\
1 & \to & U(C) & \to & U(B) & \to & \mathcal{I}(C, B) & \to & \text{Pic } C & \to & \text{Pic } B
\end{array}
$$

Since θ is surjective by Lemma 2.8(1), the result follows by chasing the diagram. □
Recall that a local ring A is **hensel** if every finite A- algebra B is a direct product of local rings.

The following result gives another case where the map $\varphi(A, C, B)$ is surjective.

Proposition 3.2. Let $A \subseteq B$ be an integral extension with A hensel local. Then for all rings C with $A \subseteq C \subseteq B$ the map $\varphi(A, C, B)$ is surjective.

Proof. By Lemma 2.2 of [4], it is enough to show that $\varphi(A, D, B)$ is surjective for every subring D of C containing A such that D is finitely generated as an A-algebra. Let such a ring D be given. Since D is integral over A, D is a finite A-algebra. As A is hensel, D is a finite direct product of local rings. Then Pic A and Pic D are both trivial. This implies that $I(A, B) = U(B)/U(A)$, $I(D, B) = U(B)/U(D)$ and clearly $\varphi(A, D, B)$ is surjective. □

Proposition 3.3. Let $A \subseteq C \subseteq B$ be extensions of rings with $A \subseteq C$ subintegral. Then the sequence

$$1 \rightarrow M(I(A, C)) \rightarrow M(I(A, B)) \rightarrow M(I(C, B)) \rightarrow 1$$

is exact.

Proof. Consider the commutative diagram

where the rows are clearly exact. Since $A \subseteq C$ is subintegral, so is $A[X, X^{-1}] \subseteq C[X, X^{-1}]$. Therefore by Proposition 3.1, the first two columns are exact. Hence exactness of the last column follows by chasing the diagram. □

Corollary 3.4. Let $A \subseteq B$ be a ring extension and let ^+A denote the subintegral closure of A in B. Then the sequence

$$1 \rightarrow M(I(A, ^+A)) \rightarrow M(I(A, B)) \rightarrow M(I(^+A, B)) \rightarrow 1$$

is exact.
Proof. We have \(A \subseteq^+ A \subseteq B\) where \(A \subseteq^+ A\) is subintegral and \(^+ A\) is subintegrally closed in \(B\). By Proposition 3.1, we have the exact sequence

\[
1 \rightarrow \mathcal{I}(A, ^+ A) \rightarrow \mathcal{I}(A, B) \xrightarrow{\phi(A, ^+ A, B)} \mathcal{I}(A, B) \rightarrow 1
\]

Applying \(M\) we also get the following exact sequence by Proposition 3.3,

\[
1 \rightarrow M\mathcal{I}(A, ^+ A) \rightarrow M\mathcal{I}(A, B) \rightarrow M\mathcal{I}(A, B) \rightarrow 1
\]

Hence the proof. \(\Box\)

Proposition 3.5. Let \(A \subseteq B\) be a ring extension. Assume that \(A\) is subintegrally closed in \(B\). Then

1. \(M\mathcal{I}(A, B) \cong M\mathcal{I}(A[T], B[T])\).
2. \(M\mathcal{I}(A, B)\) is a torsion free abelian group if \(B\) is a seminormal ring.
3. \(M\mathcal{I}(A, B)\) is a free abelian group if \(B\) is a seminormal ring and \(A\) is hensel local.
4. \(M\mathcal{I}(A, B) = 0\) if \(B\) is a seminormal domain and \(A\) is hensel local.

Proof. (1) Since \(A\) is subintegrally closed in \(B\), \(A[X]\) is subintegrally closed in \(B[X]\) by Corollary 1.6 of [4]. Therefore \(A[X, X^{-1}]\) is subintegrally closed in \(B[X, X^{-1}]\). We have the commutative diagram

\[
\begin{array}{ccccccccc}
1 & \rightarrow & \mathcal{I}(A, B) & \rightarrow & \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) & \rightarrow & M\mathcal{I}(A, B) & \rightarrow & 1 \\
& & \downarrow \beta & & \downarrow \theta & & & & \\
1 & \rightarrow & \mathcal{I}(A[T], B[T]) & \rightarrow & \mathcal{I}(A[T][X, X^{-1}], B[T][X, X^{-1}]) & \rightarrow & M\mathcal{I}(A[T], B[T]) & \rightarrow & 1
\end{array}
\]

where \(\beta\) and \(\theta\) are isomorphisms by Lemma 2.1. Hence we get the result.

(2) As \(A\) is subintegrally closed in \(B\) and \(B\) is a seminormal ring, \(A\) is seminormal. Then by Remark 2.3, \(LPic A \cong MPic A\). Since seminormal ring is reduced, \(MU(A) = H^0(A)\) and \(MU(B) = H^0(B)\) by Remark 2.5. Now, we have the exact sequence

\[
1 \rightarrow H^0(A) \rightarrow H^0(B) \rightarrow M\mathcal{I}(A, B) \rightarrow MPic A
\]

where \(H^0(A)\) and \(H^0(B)\) are always free abelian groups by Construction 1.2.1 of [8] and by Corollary 2.3.1 of [8], \(MPic A\) is a torsion free abelian group. Let \(T = Coker[H^0(A) \rightarrow H^0(B)]\). Then

\[
1 \rightarrow T \rightarrow M\mathcal{I}(A, B) \rightarrow MPic A
\]

is exact and \(T\) is a free abelian group by Proposition 1.3 of [8]. Therefore \(M\mathcal{I}(A, B)\) is a torsion free abelian group.
By Theorem 2.5 of \[8\], \(\text{LPic} \, A = 0\). Since \(A\) is seminormal, \(\text{MPic} \, A = 0\). Then we have the exact sequence
\[
1 \to H^0(A) \to H^0(B) \to \mathcal{M}(A, B) \to 1
\]
and \(\mathcal{M}(A, B) = \text{Coker}[H^0(A) \to H^0(B)]\) is a free abelian group by Proposition 1.3 of \[8\].

Since \(B\) is a domain, \(H^0(A) = H^0(B) \cong \mathbb{Z}\). So \(\mathcal{M}(A, B) = 0\).

\[\square\]

Lemma 3.6. Let \(A \subseteq B\) be a subintegral extension. Then the map \(\text{LPic} \, A \to \text{LPic} \, B\) is surjective.

Proof. Since \(A \subseteq B\) is subintegral, so are \(A[X] \subseteq B[X]\) and \(A[X, X^{-1}] \subseteq B[X, X^{-1}]\). Then the maps \(\text{Pic} \, A[X] \times \text{Pic} \, A[X^{-1}] \to \text{Pic} \, B[X] \times \text{Pic} \, B[X^{-1}]\) and \(\text{Pic} \, A[X, X^{-1}] \to \text{Pic} \, B[X, X^{-1}]\) are surjective by Lemma 2.8(1). Hence we get the result by chasing the following commutative diagram

\[
\begin{array}{ccc}
\text{Pic} \, A[X] \times \text{Pic} \, A[X^{-1}] & \longrightarrow & \text{Pic} \, A[X, X^{-1}] \\
\uparrow & & \uparrow \\
\text{Pic} \, B[X] \times \text{Pic} \, B[X^{-1}] & \longrightarrow & \text{Pic} \, B[X, X^{-1}] \\
\uparrow & & \uparrow \\
1 & & 1 \\
\end{array}
\]

\[\square\]

Theorem 3.7. Let \(A \subseteq B\) be a ring extension with \(A\) hensel local and \(B\) seminormal. Then \(\mathcal{M}(A, B) \cong \mathcal{M}(A, +A) \oplus \mathcal{M}(\bar{A}, B)\) where \(\bar{A}\) is the subintegral closure of \(A\) in \(B\).

Proof. By Lemma 3.6 \(\text{LPic} \, A \to \text{LPic} \, \bar{A}\) is surjective. Since \(A\) is hensel local, \(\text{LPic} \, A = 0\) by Theorem 2.5 of \[8\]. Therefore \(\text{LPic} \, \bar{A} = 0\) and \(\text{MPic} \, \bar{A} = 0\) because \(\bar{A}\) is seminormal. Then by same argument as Proposition 3.5(3), \(\mathcal{M}(\bar{A}, B)\) is a free abelian group. Now the result follows from the exact sequence
\[
1 \to \mathcal{M}(A, +A) \to \mathcal{M}(A, B) \to \mathcal{M}(\bar{A}, B) \to 1
\]

\[\square\]

Acknowledgement: I would like to express my sincere thanks to Prof. Balwant Singh for the many fruitful discussions and his guidance. I would also like to thank CSIR, India for financial support.
References

[1] F. Ischebeck, Subintegral Ring Extensions and Some K-Theoretical Functors, J. Algebra 121, 323-338 (1989).

[2] N. Onoda and K. Yoshida, Remarks On Quasinormal Rings, J.of Pure and Applied Algebra 33 (1984) 59-67.

[3] L. G. Roberts and B. Singh, Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993), 249-279.

[4] V. Sadhu and B. Singh, Subintegrality, invertible modules and Polynomial Extensions, J. Algebra 393, 16-23 (2013)

[5] B. Singh, The Picard group and subintegrality in positive characteristic, Compositio Math. 95 (1995), 309-321.

[6] R. G Swan, On Seminormality, J. Algebra 67 (1980) 210-229.

[7] M. A. Vitulli, Weak normality and seminormality. Commutative algebra-Noetherian and non-Noetherian perspectives, 441480, Springer, New York, 2011.

[8] C. Weibel, Pic is a contracted functor, Invent math. 103, 351-377 (1991)

[9] C. Weibel, The K-Book: An Introduction to Algebraic K Theory. (Graduate Studies in Math. vol. 145, AMS, 2013)

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail address: viveksadhu@math.iitb.ac.in
SUBINTEGRALITY, INVERTIBLE MODULES AND LAURENT POLYNOMIAL EXTENSIONS

VIVEK SADHU

Abstract. Let $A \subseteq B$ be a commutative ring extension. Let $I(A, B)$ be the multiplicative group of invertible A-submodules of B. In this article, we extend a result of Sadhu and Singh by finding a necessary and sufficient condition on an integral birational extension $A \subseteq B$ of integral domains with $\dim A \leq 1$, so that the natural map $I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$ is an isomorphism. In the same situation, we show that if $\dim A \geq 2$ then the condition is necessary but not sufficient. We also discuss some properties of the cokernel of the natural map $I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$ in the general case.

Keywords: Subintegral extensions, Seminormal rings, Invertible modules

2010 Mathematics Subject Classification: 13B02, 13F45

Introduction

In [4], Roberts and Singh have introduced the group $I(A, B)$ to generalize a result of Dayton. The relation between the group $I(A, B)$ and subintegral extensions has been investigated by Reid, Roberts and Singh in a series of papers. Recently in [5], Sadhu and Singh have proved that A is subintegrally closed in B if and only if the canonical map $I(A, B) \to I(A[X], B[X])$ is an isomorphism. It is easy to see that the map is injective and that $I(A[X], B[X]) = I(A, B) \oplus NI(A, B)$, where $NI(A, B)$ denotes the kernel of the map $I(A[X], B[X]) \xrightarrow{X\rightarrow0} I(A, B)$. So the result of [5], just mentioned, amounts to saying that $NI(A, B) = 0$ if and only if A is subintegrally closed in B.

The primary goal of this paper is to extend the result of Sadhu and Singh in [5] just mentioned above by finding a necessary and sufficient condition on $A \subseteq B$, so that the natural map $I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$ is an isomorphism. It is easy to see that the map $I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$ is always injective (see Lemma 2.3). Thus the problem reduces to the investigation of conditions for the cokernel of the above map to be zero. This cokernel will be denoted by $MI(A, B)$. The secondary goal will be to investigate properties of the cokernel $MI(A, B)$ in the general case.

In Section 1, we mainly give basic definitions and notations.

In Section 2, we discuss conditions on $A \subseteq B$ under which the map $I(A, B) \to I(A[X, X^{-1}], B[X, X^{-1}])$ is an isomorphism. We are able to prove some results in the
situation when $A \subseteq B$ is an integral birational extension of domains. First, if $\dim A \leq 1$ then by using a result of Onoda-Yoshida ([3], Theorem 1.13), we prove the following

Theorem 2.14. Let $A \subseteq B$ be an integral, birational extension of domains with $\dim A \leq 1$. Then $MI(A, B) = 0$ if and only if A is subintegrally closed in B and $A \subseteq B$ is anodal.

For higher dimension, we show that the above conditions are necessary but not sufficient. More precisely, we prove the following

Theorem 2.17. Let $A \subseteq B$ be an integral, birational extension of domains. Suppose $MI(A, B) = 0$. Then A is subintegrally closed in B and $A \subseteq B$ is anodal.

That the conditions are not sufficient is shown by an example of C. Weibel (see Remark 2.18). We note that for any ring extension $A \subseteq B$, the condition $MI(A, B) = 0$ implies easily that A is subintegrally closed in B (see Lemma 2.15(4)).

In Section 3, we examine the cokernel $MI(A, B)$ in the general case. In order to do this, we first discuss the surjectivity of the natural map $\varphi(A, C, B) : I(A, B) \rightarrow I(C, B)$ given by $\varphi(A, C, B)(I) = IC$ for any ring extensions $A \subseteq C \subseteq B$. We show that the map $\varphi(A, C, B)$ is surjective in two cases: (1) C is subintegral over A, (2) $A \subseteq B$ is an integral extension with A Hensel local (see Propositions 3.1 and 3.2). We show further that if C is subintegral over A, then the sequence

$$1 \rightarrow MI(A, C) \rightarrow MI(A, B) \rightarrow MI(C, B) \rightarrow 1$$

is exact (see Proposition 3.3). Finally we prove the following

Theorem 3.7. Let $A \subseteq B$ be a ring extension with A Hensel local and B seminormal. Then $MI(A, B) \cong MI(A, 'A) \oplus MI('A, B)$, where $'A$ is the subintegral closure of A in B.

In this section we also observe that if A is subintegrally closed in B with B a seminormal domain and A Hensel local then $MI(A, B) = 0$ (see Proposition 3.5(4)).

1. **Basic definitions and Notations**

All the rings we consider are commutative with 1, and all ring homomorphisms are unitary. Let X, T be indeterminates.

An elementary subintegral extension is an extension of the form $A \subseteq B$ with $B = A[b]$ for some $b \in B$ such that $b^2, b^3 \in A$. An extension $A \subseteq B$ is subintegral if it is a filtered union of elementary subintegral extensions; that is, for each $b \in B$ there is a finite sequence $A = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_r \subseteq B$ of ring extensions such that $b \in C_r$ and $C_{i-1} \subseteq C_i$ is elementary subintegral for each $i, 1 \leq i \leq r$. We say that A is subintegarly closed in B if whenever $b \in B$ and $b^2, b^3 \in B$ then $b \in A$. The ring A
is **seminormal** if the following condition holds: \(b, c \in A \) and \(b^3 = c^2 \) imply that there exists \(a \in A \) with \(b = a^2 \) and \(c = a^3 \). A seminormal ring is necessarily reduced and is subintegribly closed in every reduced overring. It is easily seen that if \(A \) is subintegribly closed in \(B \) with \(B \) seminormal then \(A \) is seminormal. For details see [7, 8].

For a ring \(A \) we denote by:

- \(U(A) \): The groups of units of \(A \).
- \(H^0(A) = H^0(\text{Spec}(A), \mathbb{Z}) \): The group of continuous maps from \(\text{Spec}(A) \) to \(\mathbb{Z} \).
- \(\text{Pic} A \): The Picard group of \(A \).
- \(KU(A) \): Cokernel of the natural map \(U(A) \to U(A[X]) \).
- \(MU(A) \): Cokernel of the natural map \(U(A) \to U(A[X, X^{-1}]) \).
- \(NU(A) \): Kernel of the map \(U(A[X]) \to U(A) \).
- \(K\text{Pic} A \): Cokernel of the natural map \(\text{Pic} A \to \text{Pic} A[X] \).
- \(M\text{Pic} A \): Cokernel of the natural map \(\text{Pic} A \to \text{Pic} A[X, X^{-1}] \).
- \(N\text{Pic} A \): Kernel of the map \(\text{Pic} A[X] \to \text{Pic} A \) (Here the map is induced by the \(B \)-algebra homomorphism \(B[X] \to B \) given by \(X \mapsto 0 \)).
- \(L\text{Pic} A \): Cokernel of the map \(\text{Pic} A[X] \times \text{Pic} A[X^{-1}] \to \text{Pic} A[X, X^{-1}] \).

Let \(A \subseteq B \) be a ring extension. Then we denote by

- \(\mathcal{I}(A, B) \): The group of invertible \(A \)-submodules of \(B \).

It is easily seen that \(\mathcal{I} \) is a functor from extensions of rings to abelian groups. Some properties of \(\mathcal{I}(A, B) \) can be found in [4, Section 2].

- \(K\mathcal{I}(A, B) \): Cokernel of the natural map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X], B[X]) \).
- \(M\mathcal{I}(A, B) \): Cokernel of the natural map \(\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) \).
- \(N\mathcal{I}(A, B) \): Kernel of the map \(\mathcal{I}(A[X], B[X]) \to \mathcal{I}(A, B) \) (Here the map is induced by the \(B \)-algebra homomorphism \(B[X] \to B \) given by \(X \mapsto 0 \)).

Recall from [4, Section 2] that for any commutative ring extension \(A \subseteq B \), we have the exact sequence

\[
1 \to U(A) \to U(B) \to \mathcal{I}(A, B) \to \text{Pic} A \to \text{Pic} B.
\]

Applying \(M, K \) we obtain the chain complexes:

\[(1.0)\quad 1 \to MU(A) \to MU(B) \to M\mathcal{I}(A, B) \xrightarrow{\eta} M\text{Pic} A \xrightarrow{\bar{\beta}} M\text{Pic} B\]

and

\[(1.1)\quad 1 \to KU(A) \to KU(B) \to K\mathcal{I}(A, B) \xrightarrow{\alpha} K\text{Pic} A \xrightarrow{\beta} K\text{Pic} B.\]
2. The map $\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}])$

In this section we examine some conditions on $A \subseteq B$ under which the natural map $\mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}])$ is an isomorphism. For this we consider the notions of quasinormal and anodal extensions (or u-closed).

Let $A \subseteq B$ be a ring extension. We say that A is quasinormal in B if the natural map $M_{\text{Pic}}(A) \to M_{\text{Pic}}(B)$ is injective. For properties of quasinormal extensions see [3].

An inclusion $A \subseteq B$ of rings is called anodal or an anodal extension, if every $b \in B$ such that $(b^2 - b) \in A$ and $(b^3 - b^2) \in A$ belongs to A. This notion was first introduced by Asanuma and Onoda-Yoshida in [3], and they called this notion ‘u-closed’. Some related details can be found in [1, 3, 9].

We first show in Proposition 2.2 below that a subintegral extension is always an anodal extension, which is perhaps a result of independent interest.

Lemma 2.1. Let $A \subseteq C \subseteq B$ be extensions of rings. Then the following statements hold:

1. If A is anodal in B, then so is A in C.
2. If A is anodal in C and C is anodal in B, then so is A in B.

Proof. Clear from the definition. □

Proposition 2.2. Let $A \subseteq B$ be a ring extension. If $A \subseteq B$ is subintegral, then it is anodal.

Proof. Assume first that $A \subseteq B$ is an elementary subintegral extension, i.e., $A \subseteq B = A[b]$ such that $b^2, b^3 \in A$. Let $f \in B$ such that $f^2 - f, f^3 - f^2 \in A$. We have to show that $f \in A$. Clearly f is of the form $a + \lambda b$ where $a, \lambda \in A$. So it is enough to show that $\lambda b \in A$. Since $\lambda b(2a - 1), \lambda b(3a^2 - 1) \in A$, $\lambda b = \lambda b.1 = \lambda b[(6a + 3)(2a - 1) - 4(3a^2 - 1)] \in A$. Hence $f \in A$.

In the general case, for $f \in B$ there exists a finite sequence $A = C_0 \subseteq C_1 \subseteq \ldots \subseteq C_r \subseteq B$ of extensions such that $C_i \subseteq C_{i+1}$ is an elementary subintegral extension for each $i, 0 \leq i \leq r - 1$ and $f \in C_r$. So by the above argument $C_i \subseteq C_{i+1}$ is anodal for each i. Now the result follows from Lemma 2.1(2). □

The following result is due to Sadhu and Singh ([5], Theorem 1.5) which we use frequently throughout this paper:

Lemma 2.3. Let $A \subseteq B$ be a ring extension. Then A is subintegrally closed in B if and only if the canonical map $\mathcal{I}(A, B) \to \mathcal{I}(A[X], B[X])$ is an isomorphism. □

One can restate the above result in the following way: A is subintegrally closed in B $\iff K\mathcal{I}(A, B) = 0 \iff N\mathcal{I}(A, B) = 0$.
The following result is due to Weibel ([9], Theorem 5.2).

Lemma 2.4. There is a natural decomposition
\[
\text{Pic } A[X, X^{-1}] \cong \text{Pic } A \oplus \text{NPic } A \oplus \text{NPic } A \oplus \text{LPic } A
\]
for any commutative ring \(A\).

Remark 2.5. By Swan Theorem [7], \(\text{NPic } A = 0\) if and only if \(A_{red}\) is seminormal. So for a seminormal ring \(A\), \(\text{LPic } A \cong \text{MPic } A\).

The next result is given in ([10], Exercise 3.17, Page 30).

Lemma 2.6. There is a natural decomposition
\[
U(A[X, X^{-1}]) \cong U(A) \oplus Nu(A) \oplus Nu(A) \oplus H^0(A)
\]
for any commutative ring \(A\).

Remark 2.7. It follows that for a reduced ring \(A\), \(H^0(A) \cong MU(A)\).

Lemma 2.8. The natural map \(\phi : \mathcal{I}(A, B) \to \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}])\), given by \(I \to IA[X, X^{-1}]\), is injective. Thus, \(\phi\) is an isomorphism if and only if \(MI(A, B) = 0\).

Proof. Let \(I = (b_1, b_2, \ldots, b_r)A \in \ker \phi\), where \(b_i \in B\). Then \(IA[X, X^{-1}] = A[X, X^{-1}]\). This implies that \(b_i \in A[X, X^{-1}] \cap B = A\), for all \(i\). So \(I \subseteq A\). Similarly \(I^{-1} \subseteq A\). Hence \(I = A\).

Lemma 2.9. The sequence \((1.0)\) [respectively \((1.1)\)] is exact, except possibly at the place \(\text{MPic } A\) [respectively \(K\text{Pic } A]\). It is exact there too if the map \(\text{Pic } A \to \text{Pic } B\) is surjective.

Proof. We have the following commutative diagram
Lemma 2.10. Let $A \subseteq B$ be a ring extension. The map $\text{Pic } A \rightarrow \text{Pic } B$ is surjective if any one of the following conditions holds:

1. $A \subseteq B$ is subintegral.
2. $A \subseteq B$ is an integral, birational extension of domains with $\dim A \leq 1$.

Proof. (1) See Proposition 7 of [2].

(2) Let K be the quotient field of A and B. We have the commutative diagram

\[
\begin{array}{cccccc}
\mathcal{I}(A,K) & \longrightarrow & \text{Pic } A & \longrightarrow & 0 \\
\varphi(A,B,K) \downarrow & & \rho \downarrow & & \\
\mathcal{I}(B,K) & \longrightarrow & \text{Pic } B & \longrightarrow & 0
\end{array}
\]

where $\varphi(A,B,K)$ is surjective by Proposition 2.3 of [3]. Hence ρ is surjective. \qed

Lemma 2.11. (cf. [3], Lemma 1.4.) Let $A \subseteq B$ be a ring extension with B reduced and A quasinormal in B. Then A is subintegrally closed in B.

Proof. We have not assumed B to be a domain. By Lemma 2.13 it is enough to show that $K\mathcal{I}(A,B) = 0$. We have the sequence

\[1 \rightarrow KU(A) \rightarrow KU(B) \rightarrow K\mathcal{I}(A,B) \xrightarrow{\alpha} K\text{Pic } A \xrightarrow{\beta} K\text{Pic } B\]

which is exact except possibly at the place $K\text{Pic } A$. Since A and B are reduced, $KU(A) = 0$ and $KU(B) = 0$. In the proof of Lemma 1.4 of [3], it is shown that the map $K\text{Pic } A \rightarrow K\text{Pic } B$ is injective, i.e., $\ker \beta = 0$. We have $\text{im } \alpha \subseteq \ker \beta$. Hence $K\mathcal{I}(A,B) = 0$. \qed

Remark 2.12. In the above lemma we cannot drop the condition that B is reduced. For example, consider the extension $A = K \not\subseteq B = K[b]$ with $b^2 = 0$, where K is any field. Since $M\text{Pic } K = 0$, clearly A is quasinormal in B. But A is not subintegrally closed in B, because $b^2 = b^3 = 0 \in K$, $b \notin K$.

Lemma 2.13. Let $A \subseteq B$ be a ring extension with B a domain. Then the following statements hold:

1. If A is quasinormal in B then $M\mathcal{I}(A,B) = 0$.
2. Suppose the extension $A \subseteq B$ is integral and birational with $\dim A \leq 1$, and $M\mathcal{I}(A,B) = 0$. Then A is quasinormal in B.

where the first two rows are exact and each column is exact. Now the result follows by chasing this diagram. \qed
Proof. (1) Since A and B are domains, $MU(A) = MU(B) \cong \mathbb{Z}$. By (1.0), $\text{im} \eta \subseteq \ker \varphi$. As A is quasinormal in B, $\ker \varphi = 0$. This implies that $\text{im} \eta = 0$. We get $\mathcal{MI}(A, B) = 0$.

(2) By Lemma 2.10(2) and Lemma 2.9, the sequence (1.0) is exact at $MPic A$ also. Since $\mathcal{MI}(A, B) = 0$, we get the result.

Theorem 2.14. Let $A \subseteq B$ be an integral, birational extension of domains with $\dim A \leq 1$. Then $\mathcal{MI}(A, B) = 0$ if and only if A is subintegrally closed in B and $A \subseteq B$ is anodal.

Proof. If $\dim A = 0$ then $A = B$ and the assertion holds trivially in this case. If $\dim A = 1$ then by Theorem 1.13 of [3], A is quasinormal in B if and only if A is subintegrally closed in B and $A \subseteq B$ is anodal. We also have A is quasinormal in B if and only if $\mathcal{MI}(A, B) = 0$ by Lemma 2.13. Combining these two results we get the assertion.

Next, in Theorem 2.17 and Remark 2.18, we show that in general, the conditions A is subintegrally closed in B and $A \subseteq B$ is anodal are necessary but not sufficient.

Lemma 2.15. (1) The diagram

$$
\begin{array}{c}
\mathcal{I}(A, B) \\
\downarrow \phi \\
\mathcal{I}(A[X], B[X]) \\
\downarrow \theta \\
\mathcal{I}(A[X, X^{-1}], B[X, X^{-1}])
\end{array}
\xrightarrow{\psi} \mathcal{I}(A[X], B[X])
$$

is commutative.

(2) The maps ϕ, ψ and θ are injective.

(3) ϕ is an isomorphism if and only if ψ and θ are isomorphisms.

(4) If ϕ is an isomorphism, i.e., $\mathcal{MI}(A, B) = 0$, then A is subintegrally closed in B.

Proof. (1) Since the maps are natural, the diagram is commutative.

(2) ϕ is injective by Lemma 2.8. The injectivity of ψ and θ follows by a similar argument as in Lemma 2.8.

(3) If ψ and θ are isomorphisms then clearly ϕ is an isomorphism. Conversely, suppose ϕ is an isomorphism. Then by simple diagram chasing we get that ψ and θ are isomorphisms.

(4) If ϕ is an isomorphism then ψ is an isomorphism. Hence by Lemma 2.3, A is subintegrally closed in B.

Lemma 2.16. Let a be a B-ideal contained in A. Then the homomorphism $\mathcal{MI}(A, B) \to \mathcal{MI}(A/a, B/a)$ is an isomorphism.
Proof. Clearly, $a[X, X^{-1}]$ is a $B[X, X^{-1}]$-ideal contained in $A[X, X^{-1}]$. We have $\mathcal{I}(A, B) \cong \mathcal{I}(A/a, B/a)$ and $\mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) \cong \mathcal{I}(A/a[X, X^{-1}], B/a[X, X^{-1}])$ by Proposition 2.6 of [4]. Now by chasing a suitable diagram we get the result. \[\square\]

Theorem 2.17. Let $A \subseteq B$ be an integral, birational extension of domains. Suppose $\mathcal{M}(A, B) = 0$. Then A is subintegrally closed in B and $A \subseteq B$ is anodal.

Proof. By Lemma 2.15(4), A is subintegrally closed in B. To prove $A \subseteq B$ is anodal, by Lemma 1.10 of [3], it is enough to show that for every intermediate ring C between A and B such that C is a finite A-module, the map $\text{MPic} A \to \text{MPic} (A/c) \times \text{MPic} C$ is injective, where c is the conductor of C in A. We first claim that the map $\tau : \mathcal{M}(A, C) \to \mathcal{M}(A, B)$ is injective, where C is any intermediate ring between A and B.

We have the commutative diagram

\[
\begin{array}{cccccc}
1 & \longrightarrow & \mathcal{I}(A, C) & \longrightarrow & \mathcal{I}(A[X, X^{-1}], C[X, X^{-1}]) & \longrightarrow & \mathcal{M}(A, C) & \longrightarrow & 1 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \mathcal{I}(A, B) & \longrightarrow & \mathcal{I}(A[X, X^{-1}], B[X, X^{-1}]) & \longrightarrow & \mathcal{M}(A, B) & \longrightarrow & 1
\end{array}
\]

where the first two vertical arrows are natural inclusions (because any invertible A-submodule of C is also an invertible A-submodule of B).

Let $J \in \ker \tau$, where $J \in \mathcal{I}(A[X, X^{-1}], C[X, X^{-1}])$. Then $J \in \text{im} \phi$ and there exists $J_1 \in \mathcal{I}(A, B)$ such that $J_1 A[X, X^{-1}] = J$. Let $J_1 = (b_1, b_2, ..., b_r)A$ and $J = (f_1, f_2, ..., f_s)A[X, X^{-1}]$ where $b_i \in B$ and $f_i \in C[X, X^{-1}]$. Then clearly $b_i \in B \cap C[X, X^{-1}] = C$ for all i. So $J_1 \subseteq C$. Also $J_1^{-1} \subseteq C$. This implies that $J_1 \in \mathcal{I}(A, C)$. So $J = 0$. This proves the claim.

Since $\mathcal{M}(A, B) = 0$, $\mathcal{M}(A, C) = 0$. By Lemma 2.16, $\mathcal{M}(A/c, C/c) = 0$, where c is the conductor of C in A. By (1.0), we have $\text{MU}(A) \cong \text{MU}(C)$ and $\text{MU}(A/c) \cong \text{MU}(C/c)$. Now the result follows from the following exact sequence which we obtain by applying M to the unit-Pic sequence ([10], Theorem 3.10),

\[\text{MU}(A) \to \text{MU}(A/c) \times \text{MU}(C) \to \text{MU}(C/c) \to \text{MPic} A \to \text{MPic} (A/c) \times \text{MPic} C\]

\[\square\]

Remark 2.18. The converse of the above theorem holds for $\dim A \leq 1$ as seen in Theorem 2.14. In general, the converse does not hold. This is seen by considering Example 3.5 of C. Weibel [9]. In that example A is a 2-dimensional noetherian domain whose integral closure is $B = K[X, Y]$, where K is a field. So $A \subseteq B$ is an integral, birational extension. By Proposition 3.5.2 of [9], $A \subseteq B$ is anodal and A is subintegrally
closed in B. Since B is a UFD, $\text{Pic } B = \text{Pic } B[T, T^{-1}] = 0$. Then we get the exact sequence

$$1 \to MU(A) \to MU(B) \to MI(A, B) \to M\text{Pic } A \to 0.$$ As A, B are domains, $MU(A) = MU(B) \cong \mathbb{Z}$. So $MI(A, B) \cong M\text{Pic } A$. By Remark 2.5, $L\text{Pic } A \cong M\text{Pic } A$. Hence by Proposition 3.5.2 of [9], $MI(A, B) \neq 0$.

3. Some observations on $MI(A, B)$

In this section we discuss some properties of the cokernel $MI(A, B)$ in the general case.

Recall from [6, Section 3] that for any extensions $A \subseteq C \subseteq B$ of rings, we have the exact sequence

$$1 \to I(A, C) \to I(A, B) \xrightarrow{\varphi(A, C, B)} I(C, B)$$

where the map $\varphi(A, C, B)$ is given by $\varphi(A, C, B)(I) = IC$.

Now it is natural to ask under what conditions on $A \subseteq B$ the map $\varphi(A, C, B)$ is surjective. In [4], Singh has proved that if B is subintegral over A then the map $\varphi(A, C, B)$ is surjective. In the next Proposition we generalize Singh’s result as follows:

Proposition 3.1. For all rings C between A and B such that C is subintegral over A, the map $\varphi(A, C, B)$ is surjective.

Proof. We have the commutative diagram

$$
\begin{array}{cccccc}
1 & \to & U(A) & \to & U(B) & \to & I(A, B) & \to & \text{Pic } A & \to & \text{Pic } B \\
\downarrow & & \downarrow= & & \downarrow{\varphi(A, C, B)} & & \downarrow{\rho} & & \downarrow= \\
1 & \to & U(C) & \to & U(B) & \to & I(C, B) & \to & \text{Pic } C & \to & \text{Pic } B \\
\end{array}
$$

Since ρ is surjective by Lemma 2.10(1), the result follows by chasing the diagram. \(\square\)

The following result gives another case where the map $\varphi(A, C, B)$ is surjective.

Recall that a local ring A is **Hensel** if every finite A-algebra B is a direct product of local rings.

Proposition 3.2. Let $A \subseteq B$ be an integral extension with A Hensel local. Then for all rings C with $A \subseteq C \subseteq B$ the map $\varphi(A, C, B)$ is surjective.

Proof. By Lemma 2.2 of [3], it is enough to show that $\varphi(A, D, B)$ is surjective for every subring D of C containing A such that D is finitely generated as an A-algebra. Let such a ring D be given. Since D is integral over A, D is a finite A-algebra. As A is Hensel, D is a finite direct product of local rings. Then $\text{Pic } A$ and $\text{Pic } D$ are both trivial. This
implies that \(\mathcal{I}(A, B) = U(B)/U(A) \), \(\mathcal{I}(D, B) = U(B)/U(D) \) and clearly \(\varphi(A, D, B) \) is surjective. \(\square \)

Proposition 3.3. Let \(A \subseteq C \subseteq B \) be extensions of rings with \(A \subseteq C \) subintegral. Then the sequence

\[
1 \to M\mathcal{I}(A, C) \to M\mathcal{I}(A, B) \to M\mathcal{I}(C, B) \to 1
\]

is exact.

Proof. Consider the commutative diagram

\[
\begin{array}{cccccc}
1 & & 1 & & 1 & \\
\downarrow & & \downarrow & & \downarrow & \\
1 & \to & \mathcal{I}(A, C) & \to & \mathcal{I}[A, X^{-1}, C[X, X^{-1}]] & \to & M\mathcal{I}(A, C) & \to & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
1 & \to & \mathcal{I}(A, B) & \to & \mathcal{I}[A, X^{-1}, B[X, X^{-1}]] & \to & M\mathcal{I}(A, B) & \to & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
1 & \to & \mathcal{I}(C, B) & \to & \mathcal{I}[C, X^{-1}, B[X, X^{-1}]] & \to & M\mathcal{I}(C, B) & \to & 1 \\
\end{array}
\]

where the rows are clearly exact. Since \(A \subseteq C \) is subintegral, so is \(A[X, X^{-1}] \subseteq C[X, X^{-1}] \). Therefore by Proposition 3.1, the first two columns are exact. Hence exactness of the last column follows by chasing the diagram. \(\square \)

Corollary 3.4. Let \(A \subseteq B \) be a ring extension and let \(\text{^+}A \) denote the subintegral closure of \(A \) in \(B \). Then the sequence

\[
1 \to M\mathcal{I}(A, \text{^+}A) \to M\mathcal{I}(A, B) \to M\mathcal{I}(\text{^+}A, B) \to 1
\]

is exact.

Proof. Immediate from Proposition 3.3. \(\square \)

Proposition 3.5. Let \(A \subseteq B \) be a ring extension. Assume that \(A \) is subintegrally closed in \(B \). Then

1. \(M\mathcal{I}(A, B) \cong M\mathcal{I}(A[T], B[T]) \).
2. \(M\mathcal{I}(A, B) \) is a torsion-free abelian group if \(B \) is a seminormal ring.
3. \(M\mathcal{I}(A, B) \) is a free abelian group if \(B \) is a seminormal ring and \(A \) is Hensel local.
4. \(M\mathcal{I}(A, B) = 0 \) if \(B \) is a seminormal domain and \(A \) is Hensel local.
Proof. (1) Since A is subintegrally closed in B, $A[X]$ is subintegrally closed in $B[X]$ by Corollary 1.6 of [5]. Therefore $A[X, X^{-1}]$ is subintegrally closed in $B[X, X^{-1}]$. We have the commutative diagram

$$
\begin{array}{cccccc}
1 & \longrightarrow & I(A, B) & \longrightarrow & I(A[X, X^{-1}], B[X, X^{-1}]) & \longrightarrow & MI(A, B) & \longrightarrow & 1 \\
& & \downarrow \psi & & \downarrow \xi & & & & \\
1 & \longrightarrow & I(A[T], B[T]) & \longrightarrow & I(A[T][X, X^{-1}], B[T][X, X^{-1}]) & \longrightarrow & MI(A[T], B[T]) & \longrightarrow & 1
\end{array}
$$

where ψ and ξ are isomorphisms by Lemma 2.3. Hence we get the result.

(2) As A is subintegrally closed in B and B is a seminormal ring, A is seminormal. Then by Remark 2.5, $LPic A \cong MPic A$. Since any seminormal ring is reduced, $MU(A) = H^0(A)$ and $MU(B) = H^0(B)$ by Remark 2.7. Now, from (1.0), we have the exact sequence

$$
1 \to H^0(A) \to H^0(B) \to MI(A, B) \to MPic A
$$

where $MPic A$ is a torsion-free abelian group by Corollary 2.3.1 of [9]. Let T be the cokernel of the map $H^0(A) \to H^0(B)$. Then

$$
1 \to T \to MI(A, B) \to MPic A
$$

is exact and T is a free abelian group by Proposition 1.3 of [9]. Therefore $MI(A, B)$ is a torsion-free abelian group.

(3) By Theorem 2.5 of [9], $LPic A = 0$. Since A is seminormal, $MPic A = 0$. Then we have the exact sequence

$$
1 \to H^0(A) \to H^0(B) \to MI(A, B) \to 1
$$

and $MI(A, B) = \text{Coker}[H^0(A) \to H^0(B)]$ is a free abelian group by Proposition 1.3 of [9].

(4) Since B is a domain, $H^0(A) = H^0(B) \cong \mathbb{Z}$. So $MI(A, B) = 0$.

Lemma 3.6. Let $A \subseteq B$ be a subintegral extension. Then the map $LPic A \to LPic B$ is surjective.

Proof. Since $A \subseteq B$ is subintegral, so are $A[X] \subseteq B[X]$ and $A[X, X^{-1}] \subseteq B[X, X^{-1}]$. Then the maps $Pic A[X] \times Pic A[X^{-1}] \to Pic B[X] \times Pic B[X^{-1}]$ and $Pic A[X, X^{-1}] \to Pic B[X, X^{-1}]$ are surjective by Lemma 2.10(1). Hence we get the result by chasing the
following commutative diagram

\[
\begin{array}{ccccccccc}
\text{Pic } A[X] \times \text{Pic } A[X^{-1}] & \rightarrow & \text{Pic } A[X, X^{-1}] & \rightarrow & \text{LPic } A & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \\
\text{Pic } B[X] \times \text{Pic } B[X^{-1}] & \rightarrow & \text{Pic } B[X, X^{-1}] & \rightarrow & \text{LPic } B & \rightarrow & 1 \\
1 & & 1 & & \\
\end{array}
\]

Theorem 3.7. Let \(A \subseteq B \) be a ring extension with \(A \) Hensel local and \(B \) seminormal. Then \(M_{\mathcal{I}}(A, B) \cong M_{\mathcal{I}}(\mathring{A}, A) \oplus M_{\mathcal{I}}(\mathring{A}, B) \), where \(\mathring{A} \) is the subintegral closure of \(A \) in \(B \).

Proof. By Lemma 3.6, \(\text{LPic } A \rightarrow \text{LPic } \mathring{A} \) is surjective. Since \(A \) is Hensel local, \(\text{LPic } A = 0 \) by Theorem 2.5 of [9]. Therefore \(\text{LPic } \mathring{A} = 0 \) and \(\text{MPic } \mathring{A} = 0 \) because \(\mathring{A} \) is seminormal. Then by the same argument as Proposition 3.5(3), \(M_{\mathcal{I}}(\mathring{A}, B) \) is a free abelian group. Now the result follows from the following exact sequence (Corollary 3.4)

\[
1 \rightarrow M_{\mathcal{I}}(\mathring{A}, A) \rightarrow M_{\mathcal{I}}(A, B) \rightarrow M_{\mathcal{I}}(\mathring{A}, B) \rightarrow 1
\]

Acknowledgement: I would like to express my sincere thanks to Prof. Balwant Singh for the many fruitful discussions and his guidance. I would also like to thank the referee for making many comments which have improved the exposition. Further, I would like to thank CSIR, India for financial support.

References

[1] T. Asanuma, Pic \(R[X, X^{-1}] \) for \(R \) a one-dimensional reduced noetherian ring, J. Pure and Applied Algebra 71 (1991) 111-128.

[2] F. Ischebeck, Subintegral ring extensions and some K-theoretical functors, J. Algebra 121 (1989) 323-338.

[3] N. Onoda and K. Yoshida, Remarks on quasinormal rings, J. Pure and Applied Algebra 33 (1984) 59-67.

[4] L. G. Roberts and B. Singh, Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993) 249-279.

[5] V. Sadhu and B. Singh, Subintegrality, invertible modules and polynomial extensions, J. Algebra 393 (2013) 16-23.

[6] B. Singh, The Picard group and subintegrality in positive characteristic, Compositio Math. 95 (1995) 309-321.

[7] R. G Swan, On seminormality, J. Algebra 67 (1980) 210-229.
[8] M. A. Vitulli, Weak normality and seminormality. Commutative algebra-Noetherian and non-Noetherian perspectives, 441480, Springer, New York, 2011.
[9] C. Weibel, Pic is a contracted functor, Invent math. 103 (1991) 351-377.
[10] C. Weibel, The K-Book: An Introduction to Algebraic K-Theory. Graduate Studies in Math. vol. 145, AMS, 2013.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400076, INDIA

E-mail address: viveksadhu@math.iitb.ac.in