BMS current algebra in the context of the Newman–Penrose formalism

Glenn Barnich1 ©, Pujian Mao2,3 © and Romain Ruzziconi1 ©

1 Physique Théorique et Mathématique, Université libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium
2 Center for Joint Quantum Studies and Department of Physics School of Science, Tianjin University 135 Yaguan Road, Tianjin 300350, People’s Republic of China
3 Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, People’s Republic of China

Received 14 November 2019, revised 13 February 2020
Accepted for publication 3 March 2020
Published 9 April 2020

Abstract
Starting from an action principle adapted to the Newman–Penrose formalism, we provide a self-contained derivation of BMS current algebra, which includes the generalization of the Bondi mass loss formula to all BMS generators. In the spirit of the Newman–Penrose approach, infinitesimal diffeomorphisms are expressed in terms of four scalars rather than a vector field. In this framework, the on-shell closed co-dimension two forms of the linearized theory associated with Killing vectors of the background are constructed from a standard algorithm. The explicit expression for the breaking that occurs when using residual gauge transformations instead of exact Killing vectors is worked out and related to the presymplectic flux.

Keywords: BMS algebra, Newman–Penrose formalism, Bondi mass loss formula

1. Introduction
The importance of the Bondi mass loss formula \cite{1,2} in the context of early research on gravitational waves has recently been stressed (see e.g. \cite{3–5}). Since the (retarded) time translation generator is but one of the generators of the BMS group \cite{6}, a natural problem is to generalize this formula for all generators (see e.g. \cite{7–10}).

Starting from classification results \cite{11–13} on conserved co-dimension 2 forms in gauge field theories, a BMS charge algebra \cite{14} has been constructed in the metric formulation in terms of which the non-conservation of BMS charges can be understood as a particular case.

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
A local formulation in terms of currents that satisfy a broken continuity equation then allows one to accommodate both the global and the local version of the algebra, including superrotations [15–17]. Even though expressions have been worked out in the metric formulation, they have been translated to the Newman–Penrose (NP) formalism [18–20] (see e.g. [21–25] for reviews) in [26, 27] because the structure of the results and the interpretation is particularly transparent in this framework (see also [28–32] for recent related work.)

The purpose of the present paper is to give a self-contained derivation, rather than a translation, of BMS current algebra in the NP formalism by starting from a suitable first order action principle. The variant we are using here is tensorial (rather than spinorial as in [33, 34]). It is a first order action principle of Cartan type that uses as variables vielbeins, the Lorentz connection in a non-holonomic frame, and a suitable set of auxiliary fields. In four dimensions, it can be directly expressed in terms of the quantities of the NP formalism. The associated Euler–Lagrange equations then impose vanishing of torsion, the definition of the Riemann tensor in terms of vielbeins and connection components as well as the Einstein equations, and thus encode all NP equations.

Related work on conserved quantities in first order formulations of general relativity includes for instance [35–43].

The paper is organized as follows. We start by reviewing the construction of closed co-dimension 2 forms of the linearized theory associated with reducibility parameters of the background, including a discussion of the breaking that occurs when using residual gauge transformations rather than exact reducibility parameters. Standard examples, for instance in the simple case of electromagnetism and Yang–Mills theories, have already been discussed in [13]. Instead, in this paper, we work out all details in the case of a generic first order gauge theory. In this case, a full understanding of the appropriate homotopy operators is not needed because the main statement on (non-)conservation of the constructed co-dimension 2 forms will be checked by explicit computation. What makes the paper self-contained is that Einstein gravity in the Cartan or the NP formulation are gauge theories of first order.

We then turn to the action principle adapted to the NP formalism and to the construction of the conserved co-dimension 2 forms in this context. As an application, we work out the BMS current algebra for asymptotically flat spacetimes at null infinity. In particular, the results of [27] are generalized to the case of an arbitrary time-dependent conformal factor.

2. Closed co-dimension 2 forms in gauge theories

2.1. Covariantized Hamiltonian formulations

Let us start by illustrating the general considerations in the case of a first order theory which depends at most linearly on the derivatives of the fields,

\[L = a^{ij}_{\mu} \partial_{\mu} \phi^i \phi^j - h, \]

with a generating set of gauge transformations that depends at most on first order derivatives of the gauge parameters,

\[\delta f^i = R_{\alpha}^{i} [f^\alpha] = R_{\alpha}^{i} f^\alpha + R_{\alpha}^{i} \partial_{\mu} f^\alpha, \]

and where the derivatives of the fields occur at most linearly in the term that does not contain derivatives of gauge parameters,

\[R_{\alpha}^{i} = R_{\alpha}^{i 0} + R_{\alpha}^{i \mu} \partial_{\mu} \phi^i. \]
We thus assume that $a_i^j[x, \phi]$, $h[x, \phi]$, $R^0_\mu[x, \phi]$, $R^1_\mu[x, \phi]$, $R^2_\mu[x, \phi]$ do not depend on derivatives of the fields. Note that in most applications, and in particular the one of interest to us here, these functions do not explicitly depend on x^μ either and formulas below simplify accordingly.

As the notation indicates, this is a covariantized version of first order Hamiltonian actions, where ϕ' contains both the canonical variables and the Lagrange multipliers, while h includes both the canonical Hamiltonian and the constraints. For instance, for a first class Hamiltonian system, we have

$$L[z, u] = a_s(z)z^A - H(z) - u^a\gamma_a(z).$$

(2.4)

Here z^A are the phase-space variables and $a_s(Z)$ are the components of the symplectic potential.

In the case of Darboux coordinates for instance, $z^A = (q^I, p_I)$ and $a_s = (p_1, \ldots, p_n, 0, \ldots, 0)$. Furthermore, H is the Hamiltonian, γ_a are the first-class constraints and u^a are the associated Lagrange multipliers. The symplectic 2-form $\sigma_{AB} = \partial_Aa_B - \partial_Ba_A$ is assumed to be invertible, $\sigma^{CA}\sigma_{AB} = \delta_B^a$ with associated Poisson bracket $\{F, G\} = \frac{\partial F}{\partial a_B}\frac{\partial G}{\partial a^A}$ and

$$\{\gamma_a, \gamma_b\} = C_{ab}^c(z)\gamma_c, \quad \{H, \gamma_a\} = V_a^b(z)\gamma_b.$$

(5.5)

For such systems, a generating set of gauge symmetries is given by

$$\delta I z^A = \{z^A, \gamma_a\} f^a, \quad \delta I u^a = j^a - C^a_b u^b f^c - V_b^a f^b.$$

(6.6)

see e.g. [44] for more details.

More generally, by using suitable sets of auxiliary and generalized auxiliary fields, the class of gauge theories described by (2.1) and (2.2) is relevant for gravity in the standard Cartan formulation or the one adapted to the Newman–Penrose formalism discussed below. Indeed, the Cartan Lagrangian is at most linear and homogeneous in first order derivatives, and so is the Lagrangian adapted to the Newman–Penrose formulation in equation (3.17). Furthermore, the gauge transformations, both in the forms (3.34) and (3.36) are of the required type. Other simpler examples include Chern–Simons theory, which is directly of this type, while Yang–Mills theories are of this type when using the curvatures as auxiliary fields (see e.g. [45] for the case of Maxwell’s theory). Finally, gravity in the Palatini formulation is not of this type because the transformation of the connection involves second order derivatives of the vector field characterizing infinitesimal diffeomorphisms.

For a Lagrangian of the form (2.1), the Euler–Lagrange operator $\frac{\delta L}{\delta \phi} = \frac{\partial L}{\partial \phi} - \frac{\partial}{\partial x^\mu} \frac{\partial L}{\partial (\partial_\mu \phi)}$ is explicitly given by

$$\frac{\delta L}{\delta \phi} = \sigma_i^j \partial_\mu \phi^j - \partial_\mu h - \frac{\partial}{\partial x^\mu} a^\mu, \quad \sigma^\mu_i = \partial_\mu a^i - \partial_\mu \rho_i^\mu \Rightarrow \partial_\mu \sigma^\mu_i = 0,$$

(7.7)

where $\partial_\mu = \frac{\partial}{\partial x^\mu}$, while $\partial_\mu = \frac{\partial}{\partial x^\mu} + \partial_\mu \phi^j \frac{\partial}{\partial \phi^j} + \ldots$. For a global symmetry $\delta Q = Q^i$, it follows that $\delta Q = \partial_\mu b^\mu_Q$ and the usual integrations by parts argument to go to the form

$$Q^i \frac{\delta L}{\delta \phi} = \partial_\mu f^\mu_Q.$$

(8.8)

yields a canonical representative for the associated Noether current given by

$$f^\mu_Q = b^\mu_Q - \frac{\partial L}{\partial \partial_\mu \phi} Q^i.$$

(9.9)
When inserting the generating set of gauge symmetries given in (2.2) into (2.8), one obtains on the one hand
\[R^i_\alpha [f^\alpha] \frac{\delta L}{\delta \phi^i} = \partial_\mu j^\mu. \tag{2.10} \]

Doing integrations by parts on the expression on the left hand side so as to make the undifferentiated gauge parameters appear, one obtains on the other hand
\[R^i_\alpha [f^\alpha] \frac{\delta L}{\delta \phi^i} = f^\alpha \left[R^i_\alpha \frac{\delta L}{\delta \phi^i} - \partial_\mu (R^i_\alpha \frac{\delta L}{\delta \phi^\mu}) \right] + \partial_\mu S^\mu_j = f^\alpha R^i_\alpha \frac{\delta L}{\delta \phi^i}. \tag{2.11} \]

Subtracting these two equations gives
\[f^\alpha \left[R^i_\alpha \frac{\delta L}{\delta \phi^i} - \partial_\mu (R^i_\alpha \frac{\delta L}{\delta \phi^\mu}) \right] = \partial_\mu (j^\mu - S^\mu_j). \tag{2.12} \]

Since this is an off-shell identity that has to hold for all \(f^\alpha[x] \), one concludes not only that the Noether identities
\[R^i_\alpha \frac{\delta L}{\delta \phi^i} - \partial_\mu \left(R^i_\alpha \frac{\delta L}{\delta \phi^\mu} \right) = 0, \tag{2.13} \]
hold, but also that
\[\partial_\mu (j^\mu - S^\mu_j) = 0. \tag{2.14} \]

There are two ways of seeing this. Either one integrates equation (2.12) with gauge parameters that vanish on the boundary. One then uses Stokes’ theorem and the fact that the parameters are still arbitrary in the bulk to conclude that the Noether identities must hold, and then that the right hand side must be zero as well. Alternatively, in a more algebraic approach, the fact that the gauge parameters are arbitrary allows one to consider them as new fields with respect to which one can take Euler–Lagrange derivatives. If Euler–Lagrange derivatives with respect to the gauge parameters are applied to equation (2.12), the right hand side vanishes identically because Euler–Lagrange derivatives annihilate total divergences. One then remains with the Noether identities as the result of the application of Euler–Lagrange derivatives with respect to the gauge parameters on the left hand side.

When using these Noether identities, it then also follows from (2.11) that
\[R^i_\alpha [f^\alpha] \frac{\delta L}{\delta \phi^i} = \partial_\mu S^\mu_j. \tag{2.15} \]

This means that \(S^\mu_j \) is a representative for the Noether current associated to gauge symmetries that is trivial in the sense that it vanishes on-shell. This is Noether’s second theorem. Furthermore, it also follows from the so-called algebraic Poincaré lemma (or in other words, the local exactness of the horizontal part of the variational bicomplex in form degrees less than the spacetime dimension, see e.g. [46, 47]) applied to (2.14) that every other representative \(p^\mu_j \) differs from \(S^\mu_j \) at most by the divergence of an arbitrary superpotential \(\partial_\nu \eta_{\mu\nu} \) (in the absence of non-trivial topology).

Equation (2.15) provides a way to associate (lower-dimensional) conservation laws with particular gauge symmetries: indeed, for reducibility parameters, i.e., gauge parameters \(\bar{f}^\alpha \) that satisfy
\[R^i_\alpha [\bar{f}^\alpha] = 0, \tag{2.16} \]
the local exactness of the horizontal part of the variational bicomplex in form degree \(n - 1 \) then implies the existence of a superpotential \(k_{\mu}^{\nu} \) that is constructed out of the fields and a finite number of their derivatives such that

$$ \partial_\gamma k_{\mu}^{\nu} = S_{\mu\nu}^{\gamma}. \tag{2.17} $$

Since the right hand side vanishes on all solutions of the field equations, this is a conservation law whose associated co-dimension 2-form should be integrated over co-dimension 2 surfaces.

The point is that equation (2.16) does not in general admit non-trivial solutions in truly interacting gauge theories. Indeed, in the case of semi-simple Yang–Mills theories or general relativity in metric formulation, this equation reads explicitly

$$ D_\mu \bar{\epsilon}^a = 0, \quad L_{\xi\bar{g}_{\mu\nu}} = 0. \tag{2.18} $$

Since this equation has to hold for all gauge potentials or metrics, it turns out however that there are no non trivial solutions to these equations. In the latter case, this is because a generic metric does not have Killing vectors.

This is where the linearized theory comes in. Consider the linearization around a particular background solution \(\phi^i, \) with \(\phi^i = \bar{\phi}^i + \varphi^i \) and where \(\varphi^i \) denotes the fluctuations.

Two facts about linearized gauge theories around a solution are important. The first is that the linearized equations of motion are variational and derive from the quadratic part \(L^{(2)}[\bar{\phi}, \varphi] \) of the Lagrangian in the fluctuations. The second is that gauge symmetries of this linearized gauge theory are obtained by evaluation of the gauge transformations of the full theory in the background, \(\delta \gamma \varphi^i = R_i^a[f^a]_{\bar{\phi} = \bar{\phi}}. \) This follows by expanding equation (2.15) to first order in the fluctuations. Furthermore, by expanding this equation to second order and using reducibility parameters, it follows that the transformations \(\delta \gamma \varphi^i = R_i^a[f^a] \) define global symmetries of the linearized theory.

In the case of general relativity in the metric formulation, this is the statement that the gauge symmetries of the quadratic Lagrangian for fluctuations around a fixed background are given by \(\delta_\xi h_{\mu\nu} = L_\xi g_{\mu\nu}. \) This then means that there are as many conserved co-dimension 2 forms as there are Killing vectors of the background solution. In the simplest case of linearization around flat space, one recovers in this way the gauge symmetries \(\delta_\xi h_{\mu\nu} = \partial_\mu \xi_\nu + \partial_\nu \xi_\mu \) of the Pauli–Fierz Lagrangian. The reducibility parameters are the Killing vectors of the background, and thus given \(\xi_\mu = a_\mu + \omega_{\mu\nu} x^\nu \) in the case of Pauli–Fierz theory for instance. In this case, the associated global symmetries \(\delta_\xi h_{\mu\nu} = L_\xi g_{\mu\nu} \) describe the invariance of Pauli–Fierz theory under Poincaré transformations.

The remaining problem is then to explicitly construct \(k_{\mu}^{\nu} \) of the linearized theory out of the weakly vanishing Noether current \(S_{\mu}^{\nu} \) of the full theory. This is done with a suitable homotopy operator of the variational bicomplex. The point is that this operator is quite complicated in case \(S_{\mu}^{\nu} \) contains derivatives of the fields of higher order than one because it involves higher order Euler–Lagrange derivatives.

In a first order gauge theory however, \(S_{\mu}^{\nu} \) depends at most linearly on first order derivatives by assumption. In this case, the homotopy operator becomes quite simple and the expression of the superpotential simplifies to

$$ k_{\mu}^{\nu} = \frac{1}{2} \varphi^i \frac{\partial}{\partial \partial_\mu \varphi^i} S_{\nu}^{\gamma} = (\mu \longleftrightarrow \nu). \tag{2.19} $$
When using the explicit expression for S^μ_f in (2.11) and for the left hand sides of the field equations in (2.7), this gives
\[
k^\mu = R^{\mu\nu\sigma\epsilon}_{ij} \phi^j f^\alpha.
\]
(2.20)

In this case, one can avoid a detailed discussion of the homotopy operator and its properties and limit oneself to simply verify that this superpotential is indeed conserved on all solutions of the linearized field equations around a background solution of the full theory, when using reducibility parameters. Furthermore, one may explicitly work out the breaking of this conservation law in case one does not use such reducibility parameters. For this purpose, one introduces the presymplectic current,
\[
W^\mu_{\delta L/\delta \phi} [\phi_1, \phi_2] = -\sigma^\mu_{ij} \phi^i_1 \phi^j_2.
\]
(2.21)

By using the detailed form of the Noether identities, one may then check by a direct computation that
\[
\partial_\nu k^{\mu} = -W^\mu_{\delta L/\delta \phi} [\phi, R_f] \text{ when } \frac{\delta L}{\delta \phi^i} = 0 = \frac{\delta L^{(2)}[\phi, \phi]}{\delta \phi^i}.
\]
(2.22)

All details are provided in appendix A. This means that these superpotentials are indeed conserved on all solutions of the linearized equations of motion around a given background solution ϕ when using reducibility parameters \bar{f}_α satisfying (2.16). It also means that non-conservation in case one uses more general gauge parameters is controlled by the symplectic flux $W^\mu_{\delta L/\delta \phi} [\phi, R_f[f^\alpha]]$.

In terms of 1-forms $d\phi^\mu, d\phi^i, \partial_\mu d\phi^i, \ldots$ generating the variational bicomplex (see e.g. [46, 47]), one may write
\[
\star k_f = R^{\mu\nu\sigma_{ij}} \phi^j f^\alpha \frac{1}{2} \star (d\phi^\mu d\phi^i),
\]
(2.23)

where
\[
d(\star k_f) = -W_{\delta L/\delta \phi} [\phi, R_f] \text{ when } \frac{\delta L}{\delta \phi^i} = 0 = \frac{\delta L^{(2)}[\phi, \phi]}{\delta \phi^i}.
\]
(2.24)

with
\[
W_{\delta L/\delta \phi} = -\frac{1}{2} \sigma^\mu_{ij} d\phi^j d\phi^i \star (d\phi^\mu).
\]
(2.25)

where the vertical exterior derivative $d\phi^j$ can be considered as the dual 1-form to an infinitesimal field variation that commutes with the total derivative, and we have used the conventions for the Hodge dual of appendix B, with $\star e^\mu = \delta^\mu_\nu e^\nu$.

Defining the presymplectic 1 form potential through
\[
a = a^\mu d\phi^i \star (d\phi^\mu),
\]
(2.26)

we have
\[
\Omega_L = d_a = -W_{\delta L/\delta \phi}
\]
(2.27)
and equation (2.23) can be expressed in terms of a as

$$\ast k_f = \frac{1}{2} \left(\varphi^i \frac{\partial}{\partial \varphi^i} \right) \left(f^\mu R^\alpha_{\mu \nu} \frac{\partial}{\partial \varphi^\nu} \right) \frac{\partial}{\partial \varphi^\alpha} dV. \tag{2.28}$$

For instance, in the standard Cartan formulation, the variables are the vielbein and the Lorentz connection, $\phi' = (e_a^\mu, \Gamma^{ab}_\mu)$, with

$$\delta \xi \omega_a^\mu = \xi^\rho \partial_\rho e_a^\mu - \partial_\rho \xi^\rho e_a^\mu + \omega_b^\mu e_b^\alpha,$$

$$\delta \xi \Gamma^{ab}_\mu = - D_\mu \omega^{ab} + \xi^\rho \partial_\rho \Gamma^{ab}_\mu + \partial_\mu \xi^\rho \Gamma^{ab}_\rho. \tag{2.29}$$

From

$$L_C = e (R^{ab}_\mu e_a^\mu e_b^\nu - 2 \Lambda \mathcal{L}), \tag{2.30}$$

it then follows that

$$a = 2e e_a^\mu e_b^\nu d^V \Gamma^{ab}_\rho \ast (dx^\mu). \tag{2.31}$$

Applying equation (2.28) for the construction of $\ast k_f$ then yields quickly equation (3.49) of [48] when using that $(d^{n-2}x)_{\mu \nu} = \frac{1}{2} \ast (dx^\mu dx^\nu)$.

We now turn to a more systematic discussion of the construction of these superpotentials, with no assumptions on the number of derivatives except for locality, i.e., the requirement that all functions contain a finite number of derivatives. This discussion may be skipped if one is merely interested in the application to the NP formalism.

2.2. General construction

We continue to use the collective notation ϕ' for all fields and $f^\alpha [x, \phi]$ for the gauge parameters of the theory. The latter may depend on the fields and (a finite number of) their derivatives. Infinitesimal gauge transformations are written as $\delta \phi' = R^i_\alpha f^\alpha \equiv R^i_\alpha [\phi]$, where the second notation is used when we want to emphasize the dependence on the fields. More explicitly, they involve field dependent operators acting on the gauge parameters,

$$R^i_\alpha [f^\alpha] \equiv R^i_\alpha [\phi] = R^i_\alpha [x, \phi] f^\alpha + R^\mu_{\alpha \nu} [x, \phi] \partial_\mu f^\alpha + \ldots, \tag{2.32}$$

which may now depend on the fields and a finite number of their derivatives. Furthermore, there may be terms with higher order derivatives on the gauge parameters.

In the case of general relativity (or higher derivative gravitational theories) in metric formulation for instance, the fields ϕ' correspond to the metric components $g_{\mu \nu}$, while the gauge parameters are vector fields $\xi^\alpha [x, g]$, with $\delta g_{\mu \nu} = - \mathcal{L}_\xi g_{\mu \nu}$.

Isolating the undifferentiated gauge parameters in the contraction of the gauge transformations with the Euler–Lagrange derivatives of the Lagrangian and keeping the total derivative terms gives rise to

$$\delta \phi' \frac{\partial L}{\partial \phi'} = R^\alpha_i \left(\frac{\partial L}{\partial \phi^\alpha} \right) + d \ast S_f, \tag{2.33}$$

where $\mathcal{L} = \ast L$ is the Lagrangian n-form and

$$R^\alpha_i \left(\frac{\partial L}{\partial \phi^\alpha} \right) = R^\mu_\alpha \frac{\partial L}{\partial \phi^\mu} - \partial_\mu \left(R^\nu_{\mu \nu} \frac{\partial L}{\partial \phi^\nu} \right) + \ldots, \ast S_f = f^\alpha R^\mu_\alpha \frac{\partial}{\partial d^x \partial \phi^\mu} \frac{\partial L}{\partial \phi^\alpha} + \ldots. \tag{2.34}$$
Because the f^α are arbitrary, one deduces on the one hand the Noether identities
\[
R^\alpha_\mu \left(\frac{\delta L}{\delta \phi^\mu} \right) = 0,
\]
(2.35)
and on the other hand that the 1 form S_f encodes the on-shell vanishing Noether current associated to gauge symmetries,
\[
S_f \approx 0.
\]
(2.36)

Closed co-dimension 2 forms are then constructed as follows. Consider an infinitesimal field variation
\[
\delta V = \phi^j \frac{\partial}{\partial \phi^j} + \partial_\mu \phi^j \frac{\partial}{\partial \phi^\mu} + \ldots.
\]
(2.37)
Acting on (2.33) (with (2.35) taken into account) gives
\[
\delta V \left(\delta f \phi^i \right) \delta L \delta \phi^i + \delta f \phi^i \delta V \left(\delta f \phi^i \right) = d \left[\delta V \left(\star S_f \right) \right].
\]
(2.38)
Let $L^{(2)}[\phi, \varphi]$ denote the quadratic terms in an expansion of $L[\phi + \varphi]$ in ϕ^i and their derivatives. The equations of motion of the linearized theory are the Euler–Lagrange equations for $L^{(2)}$ since
\[
\delta V \frac{\delta L}{\delta \phi^j} = \frac{\delta L^{(2)}}{\delta \phi^j}.
\]
(2.39)
If the expansion is done around any solution $\bar{\phi}$ of the full theory associated to $L[\phi]$,
\[
\frac{\delta L}{\delta \phi^i} \big|_{\bar{\phi}} = 0,
\]
(2.40)
it follows in particular that, when evaluated on solutions of the full theory, $\delta V S_f$ vanishes on all solutions to the linearized equations of motion,
\[
\left(\delta V S_f \right) \big|_{\bar{\phi}} \approx_{\text{lin}} 0.
\]
(2.41)
If furthermore the parameters \bar{f}^α are ‘reducibility parameters’ of this solution,
\[
\delta f \phi^i \approx_{\text{null}} 0,
\]
(2.42)
the left hand side of (2.38) vanishes. When using that closed co-dimension 1 forms are exact in this context (see appendix C), one finds
\[
\delta V \left(\star S_f \right) \big|_{\bar{\phi}, \bar{f}} = d \left(\star k^f_{\bar{f}} \right) \big|_{\bar{\varphi}, \bar{\phi}}, \quad \star k^f_{\bar{f}} \left[\varphi, \phi \right] = I^{-1}_{\bar{\varphi}} \left(\star S_f \right),
\]
(2.43)
with $I^{-1}_{\bar{\varphi}}$ given in (C.4) and (C.5). This equation means that $\star k^f_{\bar{f}} \left[\bar{\varphi}, \bar{\phi} \right]$ are local co-dimension 2 forms that are closed if (i) $\bar{\phi}$ is a solution to the full theory, (ii) \bar{f} are reducibility parameters of this solution, and (iii) $\bar{\varphi}$ are solutions of the linearized theory around $\bar{\phi}$,
\[
d \left(\star k^f_{\bar{f}} \left[\bar{\varphi}, \bar{\phi} \right] \right) = 0.
\]
(2.44)
Finally, note that these co-dimension 2 forms may be computed as if the gauge parameters were field independent,
\[*k_f = T^{\alpha}_{\phi}^{-1}[*S_f(\phi)]|_{\phi=f}, \]
(2.45)

because, as shown in appendix C,
\[*k_{\bar{f}}[\bar{\phi}, \phi] = *k'_{\bar{f}}[\bar{\phi}, \phi] \]
(2.46)

for all solutions $\bar{\phi}$.

Applying (2.45) together with the homotopy formula in the form of (C.5) with $*e^a = \delta^a_\mu \, dx^\mu$ to the weakly vanishing current (2.11) of a covariantized first order Hamiltonian theory then yields the simple expression (2.23).

2.3. Application in different contexts

2.3.1. Linearized gauge theories. Different cases can be considered. The first is to fix a background solution $\bar{\phi}$ with its reducibility parameters \bar{f}, for instance maximally symmetric backgrounds in general relativity with its Killing vectors. The second is to fix a priori a set of reducibility parameters and to restrict to classes of solutions ϕ that admit these reducibility parameters (stationary and/or axisymmetric backgrounds in general relativity). In both cases $*k_{\bar{f}}[\phi, \bar{\phi}]$ are co-dimension 2 forms that are closed for all solutions ϕ of the linearized theory,
\[d(*k_{\bar{f}}[\phi, \bar{\phi}]) \approx 0. \]
(2.47)

Equivalent closed co-dimension 2 forms have been derived by a variety of methods (in the case of diffeomorphism invariant theories, see e.g. [49–52]) and used to provide a derivation of the first law of black hole mechanics [53] valid for arbitrary perturbations.

An advantage of the approach of [11] (see also [12] and [13, 48, 54–56] for further developments) is that it can be used for any gauge theory and that there is complete control on the number of solutions and on the ambiguities of the construction: under suitable regularity conditions, the $*k_{\bar{f}}[\phi, \bar{\phi}]$ associated to distinct equivalence classes of possibly field dependent \bar{f}^α’s satisfying (2.42), with two sets of reducibility parameters considered equivalent if their difference are reducibility parameters that vanish on-shell, $\bar{f}^\alpha \approx 0$, exhaust the local co-dimension 2 forms that are closed on all solutions to the linearized equations, up to trivial ones. The latter correspond to local co-dimension 2 forms that are d exact or vanish on all solutions of the linearized theory. Furthermore, the equivalence classes do not depend on the formulation, in the sense that they are invariant under elimination or introduction of (generalized) auxiliary fields, which allows one to directly connect results in the Cartan and metric formulations for instance.

In the linearized theory, reducibility parameters give rise in addition to global symmetries with standard Noether currents, i.e., closed forms of co-dimension 1. The gauge algebra of the full theory then induces Lie algebra structures on reducibility parameters and on the closed co-dimension 1 and 2 forms (see e.g. section 7.4 of [13] or proposition 4 and corollary 5 of [56]).

The method can usually not be directly used to construct closed co-dimension 2 forms for generic background solutions in interacting theories, such as semi-simple Yang–Mills theories or general relativity in spacetime dimension greater than 3 because the equation determining the reducibility parameters f^α in (2.42) admits no non-trivial solutions, not even when allowing the gauge parameters to be field dependent. This is where asymptotic considerations come in. We will not discuss this here, but take a slightly different viewpoint below.
2.3.2. Residual gauge transformations and breaking. Another important case, that is the one that is relevant for us here, is to fix from the outset a sub-class of solutions \(\phi \). This can be done not only through gauge fixing conditions, like asking for certain components of the metric or the vielbein/spin-connection to vanish, but also through fall-off conditions. The role of these conditions is then to restrict the arbitrary functions that appear in the general solution to the equations of motion. These conditions may be imposed anywhere, and are not limited to conditions imposed at ‘infinity’. We assume that these conditions are such that one may find the general solution to the equations of motion in terms of functions \(a^A(x) \) (which could reduce to constants), \(\phi = \phi[x,A] \). The functions \(a^A(x) \) thus parametrize this solution space, and infinitesimal variations of these functions lead to tangent vectors of this solution space, i.e., to perturbations \(\phi \) that are solutions of the linearized equations of motion.

One is then interested in (infinitesimal) gauge transformations that preserve this class of solutions. They are determined by asking that the gauge transformations preserve the conditions fixing the solution space. We assume that this constrains the parameters to depend on arbitrary functions \(b^M(x) \), \(f = f[x,b,A] \). The associated infinitesimal gauge transformations, loosely referred to as residual gauge transformations below, no longer satisfy \(\delta_j \phi^i|_\phi = R^i_j[\phi] = 0 \). Instead they describe particular tangent vectors to the subspace of solutions and correspond to particular variations \(\delta \sigma^A \). This action of residual gauge transformations on solution space is thus determined through

\[
R^i_j[\phi] = -\delta_b \hat{\phi}^i[x,A].
\]

(2.48)

As a consequence, the co-dimension 2 forms are no longer closed. There is however precise control on the breaking, i.e., on non-conservation: it is proportional to \(R^i_j[\phi] \), and furthermore, it follows from (2.38) and (C.7) that

\[
d(\star k_j[\hat{\phi}, \hat{\phi}]) = \star b[\hat{\phi}, R^i_j, \hat{\phi}], \quad \star b[\varphi, R^i_j; \phi] = -T^i_j(R^j_i, \delta \frac{\delta L}{\delta \phi}),
\]

(2.49)

with \(T^i_j \) defined in (C.2). This allows one for instance to control both non-conservation in (retarded-)time or the radial dependence of charges by using

\[
\int_{\partial N^{n-1}} \star k_j[\hat{\phi}, \hat{\phi}] = \int_{N^{n-1}} \star b[\hat{\phi}, R^i_j; \hat{\phi}].
\]

(2.50)

More concretely for instance, in terms of coordinates \(u, r, y^A \), with \(y^A \) parametrizing an \(n - 2 \) dimensional sphere, the time-dependence of the charges

\[
(\delta Q^i_j)[\hat{\phi}, \hat{\phi}] = \int d^{n-2} \Omega k^i_j[y^A, \hat{\phi}]
\]

(2.51)

is controlled by

\[
\partial_t k^i_j[\hat{\phi}, \hat{\phi}] + \partial_A k^i_A[k^A_j[\hat{\phi}, \hat{\phi}] = b^i[\hat{\phi}, R^i_j; \hat{\phi}]
\]

(2.52)

while the radial dependence is controlled by

\[
\partial_r k^i_r[\hat{\phi}, \hat{\phi}] + \partial_A k^i_A[k^A_r[\hat{\phi}, \hat{\phi}] = b^i[\hat{\phi}, R^i_j; \hat{\phi}].
\]

(2.53)

where the second terms on the left hand side vanish when integrating over the sphere.
Let us recall some properties of $\star b[R_f, \varphi; \phi]$. A non trivial property, which follows because the contracting homotopy is applied to an Euler–Lagrange derivative, is skew-symmetry in the exchange of the infinitesimal gauge transformation and the field variation,

$$\star b[\varphi, R_f; \phi] = - \star b[R_f, \varphi; \phi].$$ \hspace{1cm} (2.54)

For first order theories, this has been shown in [38], while for general theories, the proof follows from that of proposition 13, and more precisely from equation (A59), of [56].

The link to covariant phase space methods is as follows. If we consider anti-commuting infinitesimal field variations, $\delta V\phi_i$, and the associated vertical differential

$$dV = dV\phi_i \partial_{\phi_i} + \partial_\mu dV\phi_i \partial_{\partial_\mu\phi_i} + \ldots$$ \hspace{1cm} (see e.g. [46, 47] for more details), one may define two $(n - 1, 2)$ forms. The first is the standard presymplectic one of variational calculus,

$$\Omega_L = dV^\mu dV_{\phi_i} L, \quad d\Omega_L = 0, \quad d\Omega_L = dV\phi_i \delta L / \delta \phi_i,$$ \hspace{1cm} (2.55)

with all wedge products omitted. When using the main property of the homotopy operators (cf equation (A30) of [56]), it follows that for $\mathcal{L}' = \mathcal{L} + d\theta^{n-1}$,

$$\Omega_{L'} = \Omega_L + d(dV^\mu dV_{\phi_i} \theta^{n-1}).$$ \hspace{1cm} (2.56)

Note that the ambiguity does not affect the presymplectic form in the restricted class of first order Lagrangians, where θ^{n-1} may depend on undifferentiated fields only, so that the last term in the previous equation vanishes.

The second 'invariant' presymplectic $(n - 1, 2)$ form [38, 56] is defined through,

$$W_{\delta L/\delta \phi} = -\frac{1}{2} dV^\mu dV_{\phi_i} \left(dV\phi_i \frac{\delta L}{\delta \phi_i} \right).$$ \hspace{1cm} (2.57)

It depends only on the Euler–Lagrange derivatives of the Lagrangian and is thus free of the ambiguity related to adding a total derivative to the Lagrangian.

By using proposition 13 of appendix A5 of [56], it follows that the breaking is determined by the invariant presymplectic form according to

$$\star b[R_f, \varphi; \phi] = W_{\delta L/\delta \phi}[\varphi, R_f].$$ \hspace{1cm} (2.58)

Up to a sign, both $(n - 1, 2)$ forms differ by the exterior derivative of an $(n - 2, 2)$-form,

$$-W_{\delta L/\delta \phi} = \Omega_L + dE_L, \quad E_L = \frac{1}{2} dV^\mu dV_{\phi_i} \delta L / \delta \phi_i.$$ \hspace{1cm} (2.59)

In the particular case of first order theories where \mathcal{L} depends at most linearly on the first order derivatives, the explicit expression in terms of homotopy operators shows that

$$E_L = 0.$$ \hspace{1cm} (2.60)

It may happen that $W_{\delta L/\delta \phi}[\varphi, R_f]_{\hat{\phi}}$ vanishes. Examples include for instance asymptotically flat or anti-de Sitter spacetimes in three dimensions in Fefferman–Graham or BMS gauge with fixed conformal factor. In this case, the co-dimension 2 forms are closed for all residual gauge transformations, they are conserved and r-independent (see for instance [57, 58]), so that they may be computed at any finite r. It also follows from (2.53) and (2.58) that subleading charges recently considered for instance in [31, 59, 60] are controlled by $W^0_{\delta L/\delta \phi}[\varphi, R_f]_{\hat{\phi}}$.

11
2.4. Integrability and algebra

When E_L vanishes, it has been shown in [56] that integrability of charges

$$\langle \delta Q_f | \hat{\phi} \rangle = \delta Q_f [\hat{\phi}], \tag{2.61}$$

implies that there is well-defined algebra of charges obtained by acting with residual gauge transformations, $-\delta_{\hat{f}} Q_f$. In the non-integrable case, this action has to be modified by suitably taking the non-integrable part of the charges into account. Even though it would be desirable to have a derivation from first principles of this modified charge or current algebra, this is not the objective of this paper. At this stage, we just refer to the discussion in section 3.2 of [14] or in sections 4.2 and 4.3 of [27] and concentrate on a self-contained derivation of $\star k_f$ and of the breaking in the context of the NP formalism.

3. Cartan formalism in non-holonomic frame

3.1. Connection, torsion and curvature

Besides the non-holonomic frame and the pseudo-Riemannian metric discussed in appendix B, we now furthermore assume that there exists an affine connection whose components in the non-holonomic basis are

$$D_a e_b = \Gamma^c_{ba} e_c \iff \Gamma^{\nu}_{bc} = e^\alpha_\mu D_\alpha e^\nu_\mu = -e^\mu_b D_\mu e^\nu_c. \tag{3.1}$$

It follows that torsion and curvature components are given by (see appendix B for notations and conventions)

$$T^a_{bc} = 2\Gamma^a_{[cb]} + D^a_{cb} = 2(\Gamma^a_{[cb]} + d^a_{[cb]}), \tag{3.2}$$

$$R^a_{bcd} = \partial_c \Gamma^a_{bd} - \partial_d \Gamma^a_{bc} + \Gamma^a_{fc} \Gamma^f_{bd} - \Gamma^a_{fd} \Gamma^f_{bc} - \Gamma^a_{bf} D_f^a c d,$$

and

$$[D_a, D_b] v_c = -R^d_{cab} v_d - T^d_{ab} D_d v_c. \tag{3.3}$$

The reason torsion has to be included in the discussion is that it will vanish only for solutions of the field equations. In off-shell considerations based on the action principle proposed below, non-vanishing torsion terms have to be taken into account.

The Bianchi identities are

$$R^a_{[bcd]} = D_b \{ T^a_{[cd]} + T^a_{[f]b} T^f_{cd} \}, \quad D_{[a} R^f_{|b|cd]} = -R^f_{b[|a|b]} T^a_{cd}, \tag{3.4}$$

where a bar encloses indices that are not involved in the (anti)-symmetrization. The Ricci tensor is defined by $R_{ab} = R^c_{abc}$, while $S_{ab} = R^c_{cab}$. Various contraction of the Bianchi identities give

$$R_{ab} = R_{ba} = S_{ab} - D_c T^c_{ab} - 2D_{[a} T^c_{b]c} T^f_{fc} T^f_{ab}, \tag{3.5}$$

$$2D_{[a} R_{b|c]} + D_c R^d_{c[a} = R_{bd} T^d_{ca} - 2R^d_{b[a} T^f_{ca} T^f_{b]d}, \tag{3.6}$$

$$D_{[a} S_{bc]} = -S_{d[a} T^d_{bc]}.$$

12
The connection is assumed to be a Lorentz connection, i.e., metricity holds,

\[D_c \eta^{ab} = 0, \]

so that \(\Gamma_{abc} = \eta_{ad} \Gamma^{d}_{bc} = -\Gamma_{bac} \) and

\[\Gamma_{abc} = K_{abc} + r_{abc}, \]

where

\[K_{abc} = \frac{1}{2}(T_{bac} + T_{cab} - T_{abc}) = -K_{bac} \]

is the contorsion tensor, and

\[r_{abc} = \frac{1}{2}(D_{bac} + D_{cab} - D_{abc}) = -r_{bac} \]

the torsion-free Levi-Civita connection. Furthermore,

\[R_{abcd} = -R_{bacd}, \quad S_{ab} = 0 \]

and

\[R_{abcd} - R_{cdab} = \frac{3}{2} \left(D_{[b} T_{a][cd]} + T_{a[f} T^{f}_{cd]} - D_{[a} T_{b][cd]} - T_{b[f} T^{f}_{a]cd} \right) - D_{d} T_{[a]b} - T_{c[f}(T^{f}_{d} ab) + D_{[a} T_{d][b]c} + T_{c} d T^{d}_{ab}) \].

The curvature scalar is defined by \(R = \eta^{ab} R_{ab} \), the Einstein tensor by

\[G_{ab} = R_{(ab)} - \frac{1}{2} \eta_{ab} R. \]

Contracting (3.6) with \(\eta^{bd} \) gives the contracted Bianchi identities

\[D_b G_a^b = \frac{1}{2} \eta^{bc} d_{a} T^{d}_{bc} + R^b_{c} T^c_{ab} - \frac{1}{2} D^b (D_{a} T^c_{ab} + 2D_{[a} T^c_{b]c} + T^c_{d} T^{d}_{ab}). \]

3.2. Variational principle for Einstein gravity

The inclusion of torsion in the previous considerations allows one to formulate a convenient action principle with Euler–Lagrange equations that impose vanishing of torsion together with all NP equations. The action is first order and of Cartan type. It involves as dynamical variables \(\phi \) the vielbein components \(e_i^\mu \), the Lorentz connection components in the non-holonomic frame \(\Gamma_{abc} \), together with a suitable set of auxiliary fields \(R_{abcd} = R_{[ab][cd]} \), \(\lambda^{abcd} = \lambda_{[ab][cd]} \).

\[S[\Gamma_{abc}, e_i^\mu, R_{abcd}, \lambda^{abcd}] = k \int \mathcal{L}, \]

with \(k^{-1} = -16\pi G \), where the minus sign is required for the \((+−−−)\) convention adopted here and

\[\mathcal{L} = * \mathcal{L}, \quad L = R_{abcd} (\eta^{bc} \eta^{bd} - \lambda_{abcd}) + \lambda^{abcd} R_{abcd} + 2\Lambda C, \]
where $R_{abcd} = \eta_{ae} R^e_{bcd}$ is explicitly given in (3.2) as a function of the variables $e_{a \mu}$, Γ_{abc} and their first order derivatives, and Λ_C denotes the cosmological constant. For simplicity, we put $k = 1$ for the remainder of this section.

The equations of motion for the auxiliary fields follow from equating to zero the Euler–Lagrange derivatives of the n-forms

$$\frac{\delta L}{\delta R_{abcd}} = - \ast \left[\chi_{abcd} - \frac{1}{2} (\eta^{ac} \eta^{bd} - \eta^{ad} \eta^{bc}) \right],$$

$$\frac{\delta L}{\delta \chi_{abcd}} = - \ast [R_{abcd} - R_{abc}].$$

They thus fix the auxiliary λ fields in terms of the Minkowski metric,

$$\chi_{abcd} = \frac{1}{2} (\eta^{ac} \eta^{bd} - \eta^{ad} \eta^{bc}) \equiv \lambda_{\eta}^{abcd},$$

and impose the definition of the Riemann tensor in terms of vielbein and connection components as on-shell relations, $R_{abcd} = R_{abc}$. which is desirable from the viewpoint of the NP formalism. They can be eliminated by solving inside the action. The resulting reduced action coincides with the standard action associated to the Cartan formalism, up to an invertible change of variables. More explicitly,

$$L_C [e_{a \mu}, \Gamma_{abc}] = (R_{abcd} \eta^{ac} \eta^{bd} + 2 \Lambda_C).$$

If we denote by a prime a function on which we perform the invertible change of variables $\Gamma_{abc} = \Gamma_{abc}^{\prime}$, the reduced action is

$$S_{\prime} [e_{a \mu}, \Gamma_{abc}^{\prime}] = \int \ast L_C'$$

with

$$L_C' = \star L_C, \quad L_C = (R_{abcd} \eta^{ac} \eta^{bd} + 2 \Lambda_C).$$

The next equations of motion follow from the vanishing of

$$\frac{\delta L}{\delta \Gamma_{abc}} = 2 \ast \left[D_f \chi_{abcdef} + \chi_{abcd} (T^b_{\rho d} \delta^c_{\rho} + \frac{1}{2} T^c_{\rho d}) \right].$$

When putting λ_{η}^{abcd} on-shell, they are equivalent to vanishing of torsion, $T^a_{\mu \nu} = 0$. It follows that $\Gamma_{abc} = \Gamma_{abc}^{\prime}$, or equivalently that $\Gamma^{\prime \mu}_{abc} = e^\rho_a e_{a \mu} \nabla_\rho e_\nu e^\nu_{\mu}$, where ∇_μ denotes the Christoffel connection. In other words, the connection components are also auxiliary fields that can be expressed in terms of vielbein components and eliminated by their own equations of motion.

The last equations of motion follow from the vanishing of

$$\frac{\delta L}{\delta e_{a \mu}} = e^b_{\mu} \left[2 \ast (\chi^{cdf} R_{def}) - \frac{\delta L}{\delta \Gamma_{cda}} \Gamma_{edb} \right] = e^a_{\mu} \left[\ast (\mathbf{R} + 2 \Lambda \mathbf{e}^c_{\mu}) + \chi_{bcd} \frac{\delta L}{\delta \chi_{bcd}} \frac{\delta L}{\delta \chi_{bcd}} \right].$$

On-shell for the auxiliary fields, we have

$$\frac{\delta L}{\delta e_{a \mu}} \bigg|_{\text{aux on-shell}} = 2 \ast e^b_{\mu} (G^a_{b} - \Lambda \delta^a_{b}),$$

which imply the standard Einstein equations.

Finally, let us also note that the equations of motion in the Cartan formalism with spin coefficients Γ_{abc} as variables are determined by
\[
\frac{\delta \mathcal{L}'}{\delta \Gamma_{bca}} = - \star (T_h^{a} \eta_h^{bc} - T_h^{b} \eta_h^{ac} - T_h^{c} \eta_h^{ab}),
\]
\[
\frac{\delta \mathcal{L}'}{\delta e_{a}^{\mu}} = e^{\bar{c}}_{\mu} \left[2 \star R_{\bar{c}a}^{b} - \frac{\delta \mathcal{L}'}{\delta \Gamma_{cda}} \right] - e^{a}_{\mu} \star (R + 2 \Lambda^C),
\]

and that they are explicitly related to the standard ones through
\[
\frac{\delta \mathcal{L}'}{\delta \Gamma_{abc}} = e^{c}_{\mu} \left(\frac{\delta \mathcal{L}'}{\delta \Gamma_{ab\mu}} \right)'; \quad \frac{\delta \mathcal{L}'}{\delta e_{a}^{\mu}} = \left(\frac{\delta \mathcal{L}'}{\delta e_{a}^{\mu}} \right)' - \Gamma_{bcd} e_{d}^{\mu} e^{a}_{\nu} \left(\frac{\delta \mathcal{L}'}{\delta \Gamma_{bc\nu}} \right)'.
\]

3.3. Relation to Newman–Penrose formalism in 3 dimensions

The vacuum Einstein equations \(G_{ab} - \Lambda^C \eta_{ab} \approx 0 \) imply that
\[
R \approx - \frac{2d}{d - 2} \Lambda^C, \quad R_{(ab)} \approx - \frac{2}{d - 2} \Lambda^C \eta_{ab}.
\]

In three dimensions, in the absence of torsion (where in particular \(R_{(ab)} = R_{ab} \)), one may show that
\[
R_{abcd} = \eta_{ac} R_{bd} - \eta_{ad} R_{bc} - \eta_{bc} R_{ad} + \eta_{bd} R_{ac} - \frac{1}{2} (\eta_{ac} \eta_{bd} - \eta_{ad} \eta_{bc}) R,
\]
so that, (3.26) implies
\[
R_{abcd} \approx - \Lambda^C (\eta_{ac} \eta_{bd} - \eta_{ad} \eta_{bc}).
\]

In applications, we choose
\[
\eta_{ab} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0
\end{pmatrix},
\]

as in a version of the Newman–Penrose formalism adapted to three dimensions [61, 62].

3.4. Relation to Newman–Penrose formalism in 4 dimensions

In four spacetime dimensions, the tetrads \(e_1 = l, e_2 = n, e_3 = m, e_4 = \bar{m} \) in the NP formalism are chosen as null vectors, \(e_a \cdot e_b = \eta_{ab} \) with
\[
\eta_{ab} = \eta_{ab}^{\mu} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]
The components of the Lorentz connection are traded for the spin coefficients,

\[\kappa = \Gamma_{311}, \quad \pi = -\Gamma_{421}, \quad \epsilon = \frac{1}{2}(\Gamma_{211} - \Gamma_{431}), \]

\[\tau = \Gamma_{312}, \quad \nu = -\Gamma_{422}, \quad \gamma = \frac{1}{2}(\Gamma_{212} - \Gamma_{432}), \]

\[\sigma = \Gamma_{313}, \quad \mu = -\Gamma_{423}, \quad \beta = \frac{1}{2}(\Gamma_{213} - \Gamma_{433}), \]

\[\rho = \Gamma_{314}, \quad \lambda = -\Gamma_{424}, \quad \alpha = \frac{1}{2}(\Gamma_{214} - \Gamma_{434}). \]

(3.31)

The other half of the spin coefficients are denoted with a bar on the symbols of the left hand sides and obtained by exchanging the index 3 and 4 on the right hand sides. The Weyl tensor \(C_{abcd} \) is encoded in terms of

\[\Psi_0 = -C_{1313}, \quad \Psi_1 = -C_{1213}, \quad \Psi_2 = -C_{1342}, \quad \Psi_3 = -C_{1242}, \quad \Psi_4 = -C_{2324}, \]

(3.32)

with the same rule as above for \(\bar{\Psi}_i, i = 0, \ldots, 4 \), while the Ricci tensor is organized as

\[\Phi_{00} = -\frac{1}{2} R_{11}, \quad \Phi_{11} = \frac{1}{2} (R_{12} + R_{34}), \quad \Phi_{22} = -\frac{1}{2} R_{22}, \]

\[\Phi_{02} = -\frac{1}{2} R_{33}, \quad \Phi_{01} = -\frac{1}{2} R_{13}, \quad \Phi_{12} = -\frac{1}{2} R_{23}, \]

\[\Phi_{20} = -\frac{1}{2} R_{44}, \quad \Phi_{10} = -\frac{1}{2} R_{14}, \quad \Phi_{21} = -\frac{1}{2} R_{24}, \]

(3.33)

\[\Lambda = \frac{1}{24} R = \frac{1}{12} (R_{12} - R_{34}). \]

There is no torsion in the NP approach, \(T^a_{bc} = 0 \). In this case, the vacuum Einstein equations in flat space are equivalent to the vanishing of the \(\Phi \)'s. The equations governing the NP quantities can then be interpreted as follows. (i) The metric equations express commutators of tetrads in terms of spin coefficients. This is the first of (B.2) when taking into account that \(D^a_{[bc]} = 2\Gamma^a_{[cb]} \) in the absence of torsion. (ii) The spin coefficient equations express directional derivatives of spin coefficients in terms of spin coefficients and the Weyl and Ricci tensors. In the torsion-free case, they are equivalent to the definition of \(R_{abcd} \) in the second of (3.2). (iii) The Bianchi identities express directional derivatives of the \(\Psi \)'s and \(\Phi \)'s in terms of spin coefficients and \(\Psi \)'s and \(\Phi \)'s. They are equivalent to the second of (3.4) in the absence of torsion\(^1\).

3.5. Improved gauge transformations and Noether identities

Diffeomorphisms and local Lorentz transformations are extended in a natural way to the auxiliary fields. If \(\xi^\mu, \omega^a_\mu = -\omega^a_\nu \) denote parameters for the infinitesimal transformations, they

\(^1\)The parametrization of class III rotations after equation (6.9) of [62] should be corrected to \(l' = e^{i\xi l}, n' = e^{-i\xi n} \).
sets are equivalent. We can thus concentrate on this second set. For later use, note that identities. Since the change of gauge parameters is invertible, the identities associated to both act on the fields as

$$\delta \xi^\gamma e^a_{\mu} = \xi^{\mu} \partial_\mu e^a_{\nu} - \partial_\mu \xi^{\gamma} e^a_{\nu} + \omega^a_{\mu} e^b_{\nu},$$

$$\delta \xi^\gamma \Gamma_{abc} = \xi^{\mu} \partial_\mu \Gamma_{abc} - D_\nu \omega^\nu_{ab} + \omega^\gamma_{abc},$$

$$\delta \xi^\gamma R_{abcd} = \xi^{\mu} \partial_\mu R_{abcd} + \omega_{a}^{f} R_{fbcda} + \omega_{b}^{f} R_{fcad} + \omega_{c}^{f} R_{afbd} + \omega_{d}^{f} R_{abcf},$$

$$\delta \xi^\gamma \lambda_{abcd} = \xi^{\mu} \partial_\mu \lambda_{abcd} + \omega^a_{\mu} \lambda_{bced} + \omega^b_{\mu} \lambda_{acfd} + \omega^c_{\mu} \lambda_{abfd} + \omega^d_{\mu} \lambda_{abcf}.$$

(3.34)

In terms of the redefined gauge parameters, which are now spacetime scalars, and thus in agreement with the general strategy of the NP approach,

$$\xi^a = e^a_{\mu} \xi^\mu, \quad \omega^a_{\mu} = \omega^a_{\mu} + \epsilon_{\mu}^{\nu} \Gamma_{a}^{\nu} e^c_{\mu},$$

(3.35)

these gauge transformations become

$$\delta \xi^\gamma e^a_{\mu} = (\xi^{\mu} T_{ab}^c - D_\mu \omega^c_{ab}) e^a_{\mu},$$

$$\delta \xi^\gamma \Gamma_{abc} = -\epsilon_{\mu}^{\nu} R_{abcd} + (\xi^{\mu} T_{cf} - D_\mu \omega^c_{ab}) \Gamma_{abcd} - D_\nu \omega_{ab},$$

$$\delta \xi^\gamma R_{abcd} = \xi^{\mu} D_f R_{abcd} + \omega^a_{\mu} R_{fbcda} + \omega^b_{\mu} R_{fcad} + \omega^c_{\mu} R_{afbd} + \omega^d_{\mu} R_{abcf},$$

$$\delta \xi^\gamma \lambda_{abcd} = \xi^{\mu} D_f \lambda_{abcd} + \omega^a_{\mu} \lambda_{bced} + \omega^b_{\mu} \lambda_{acfd} + \omega^c_{\mu} \lambda_{abfd} + \omega^d_{\mu} \lambda_{abcf}. $$

(3.36)

We refer to the latter as ‘improved gauge transformations’ since they involve the derivatives of the objects that are being transformed only in the form of tensors.

Isolating the undifferentiated gauge parameters by dropping the exterior derivative of an $n - 1$ form, the invariance of action (3.16) under these transformations leads to the Noether identities. Since the change of gauge parameters is invertible, the identities associated to both sets are equivalent. We can thus concentrate on this second set. For later use, note that

$$\delta \xi^\gamma \Gamma_{abc} = \delta \xi^\gamma e^a_{\mu} \epsilon^f_{\mu} \Gamma_{abc} = -\xi^{\mu} R_{abcd} - D_\mu \omega_{ab}.$$

(3.37)

When using (B.26), the Noether identities associated to the Lorentz parameters ω_{ab} become

$$2 \frac{\delta L}{\delta R_{[abcdef]}} R_{b[|cdf|]} + 2 \frac{\delta L}{\delta R_{|a|cdef}} R_{a[def]} + 2 \frac{\delta L}{\delta \lambda_{abcd}} \eta^{f(a} \lambda_{bced} \eta^{c) d} + 2 \frac{\delta L}{\delta \lambda_{cdef}} \eta^{f(a} \lambda_{abcd} \eta^{c) d} + \frac{\delta L}{\delta e_{\mu}^{b}} \epsilon^{b}_{\mu} + \frac{\delta L}{\delta \Gamma_{cd[a]} \epsilon^{b}_{\mu}} \Gamma_{cd[b]} + * \left(\frac{Df + T^{cf}}{T^{cf}} \right) \left(-\frac{1}{\delta \Gamma_{abc}} \right) = 0.$$

(3.38)

while the Noether identities for the vector fields ξ^a read

$$\frac{\delta L}{\delta R_{abcd}} D_f R_{abcd} + \frac{\delta L}{\delta \lambda_{abcd}} D_f \lambda_{abcd} + \frac{\delta L}{\delta e_{\mu}^{b}} T_{af} e_{\mu}^{b} + \frac{\delta L}{\delta \Gamma_{abc}} (T_{cf} \Gamma_{abc} - R_{abcf}) + * \left(Dc + T^{b}_{ch} \right) \left(-\frac{1}{\delta \Gamma_{abc}} \right) \left(-\frac{1}{\delta \Gamma_{abc}} \right) = 0.$$

(3.39)

It follows from general results on auxiliary fields that these Noether identities are equivalent to those of the standard Cartan formulation, which have been investigated and related
to the Bianchi identities in [48]. More explicitly, we have \(L = L' \) with \(A = [(R_{abcd} - R_{abcd})(\eta^{ae}r^{bd} - \chi^{abcd})] \). Identity (3.38) for \(L \) replaced by \(A \) is equivalent to (3.5). This then implies that (3.38) reduces to

\[
\frac{\delta L'}{\delta e^a} + \frac{\delta L'}{\delta \Gamma_{cd}^a} + \frac{\delta L}{\delta \Gamma_{abc}^f} (D_c + T^f_{\ e}) \left(\star^{-1} \frac{\delta L'}{\delta \Gamma_{abc}^f} \right) = 0, \tag{3.40}
\]

which in turn is equivalent to (3.5).

Identity (3.39) for \(L \) replaced by \(A \) is equivalent to the second of (3.4). This then implies that (3.39) reduces to

\[
\frac{\delta L'}{\delta e^a} T^a_{\ b} e^b + \frac{\delta L'}{\delta \Gamma_{abc}^f} (D_c + T^f_{\ e}) \left(\star^{-1} \frac{\delta L'}{\delta \Gamma_{abc}^f} \right) = 0, \tag{3.41}
\]

which in turn is equivalent to (3.15).

3.6. Closed co-dimension 2 forms

Presymplectic 1 form potential. The presymplectic 1 form potential associated to the action (3.17) is given by

\[
a = 2 e^{ab} e^c d \Gamma_{abc} e^d \star (dx), \tag{3.42}
\]

where \(d \Gamma_{abc} e^d = d \Gamma_{abc} - \Gamma_{abf} e^f d \Gamma_{def} e^d \).

Weakly vanishing Noether current. In the non-holonomic version of the Cartan formulation with auxiliary fields, we have \(\phi = (R_{abcd}, \lambda^{abcd}, \Gamma_{abc}, e^d) \) and \(f^\alpha = (\omega_{ab}, \xi^f) \), while the weakly vanishing Noether currents are encoded in the 1-form

\[
S_{\alpha} = -\star^{-1} \left[\frac{\delta L}{\delta \phi} (\omega_{ab} + \Gamma_{abf} \xi^f) + \frac{\delta L}{\delta e^d} \epsilon^d \right] e^c, \tag{3.43}
\]

where

\[
K_{\alpha} = \frac{1}{4} \omega_{ab} \lambda^{cd} e^c e^d, \quad S_{\xi^f} = -\star^{-1} \left[\lambda^{abcd} R_{abc} \delta^f_{\ r} - \frac{1}{2} R_{abcd} \delta^f_{\ r} + \Lambda_{cd} \delta^f_{\ r} \right] \xi^s e_s \tag{3.44}
\]

Co-dimension 2 form. Using (B.17) and (C.1) in form degree \(n - 2 \) gives

\[
P^{n-1}_\phi (\star K_{\alpha}) = \delta^\nu (\star K_{\alpha}) - d \left(I^{n-2}_\phi (\star K_{\alpha}) \right), \tag{3.45}
\]

where \(I^{n-2}_\phi (\star K_{\alpha}) = 0 \) since \(K_{\alpha} \) involves no derivatives. When using (C.5), we also have

\[
P^{n-1}_\phi (\star S_{\xi^f}) = \star \left[\left(\delta \Gamma_{ab} \right) e^a \left(\lambda^{abcd} \xi^f (\xi^c e^f) + 2 \lambda^{abc} \xi^f (\epsilon^d e^f) \right) \right], \tag{3.46}
\]
with the understanding that
\[\delta \Gamma_{\alpha \beta \gamma} e^\mu = \delta \Gamma_{\alpha \beta \gamma} - \Gamma_{\alpha \beta \gamma} \delta e^\mu, \] (3.47)
in terms of the fundamental variables \(\Gamma_{\alpha \beta \gamma}, e^\mu \) used here.

When putting everything together, we get
\[*k_{\omega, \xi} = \omega_{ab} \delta K^a + K^b_{\alpha \beta \gamma} + K^c_{\alpha \beta \gamma} - (\xi^b \frac{\partial}{\partial \xi^c}) \Theta, \]
(3.50)
where
\[K^a_{\alpha \beta \gamma} + K^b_{\alpha \beta \gamma} + K^c_{\alpha \beta \gamma} - (\xi^b \frac{\partial}{\partial \xi^c}) \Theta = \star \left[(\delta \omega_{ab} + \delta \Gamma_{\alpha \beta \gamma} \delta^a \theta - 2 \Gamma^a_{\mu \nu} e^\mu \xi^b) \right] e^\nu \]
(3.51)

Breaking. Using (C.9), the breaking is explicitly given by
\[b_{\omega, \xi} = 2 \left[\delta_{\omega, \xi} \lambda^{ab, c} + (2 \lambda^{ab, d} e^f)_{\mu} + \lambda^{ab, c} e^f \right] \delta_{\omega, \xi} e^\mu \]
(3.52)
On-shell, \(\delta_{\omega, \xi} \lambda^{ab, c} = 0 \), so that the breaking reduces to
\[b_{\omega, \xi} = 2 \left[\delta_{\omega, \xi} e^\mu \Gamma^{ab, c} e^\nu \right] e^\mu + \delta_{\omega, \xi} e^\nu \delta^{ac} \mu - \delta_{\omega, \xi} \ln e \delta^{ac} \mu \]
(3.53)

Note that the RHS of (3.49) and (3.53) need to be multiplied by \(k = -(16\pi G)^{-1} \).

Exact reducibility parameters. General considerations on (generalized) auxiliary fields imply that, on-shell, reducibility parameters should be given by Killing vectors \(\xi^a \) of the metric. Let us see how this comes about here.

Merely the first of (3.36) encodes gauge transformations of fields that are not auxiliary. The associated equation \(\delta_{\omega, \xi} e^a \approx 0 \) is equivalent to
\[D_{(a} \xi_{b)} - \xi^c T_{(ba)c} \approx 0, \]
(3.54)
On-shell when torsion vanishes, the first indeed requires \(\bar{\xi}^a \) to be a Killing vector, while the second uniquely fixes the Lorentz parameters in terms of it. In particular,

\[
\bar{\omega}_{ab} \approx D_a \bar{\xi}_b \approx -D_b \bar{\xi}_a.
\]

(3.55)

The other equations impose no additional constraints. Indeed, \(\delta_{\bar{\omega}} \Lambda^{abcd} \approx 0 \) is satisfied identically on account of the skew-symmetry of \(\bar{\omega}_{ab} \). Instead of \(\delta_{\bar{\xi}} \Omega^{abc} \approx 0 \) we can consider the combination (3.37). Requiring this to vanish on-shell amounts to

\[
D_a \bar{\omega}_{ab} \approx -\bar{\xi}^d R_{abcd},
\]

(3.56)

which holds as a consequence of the second equation in (3.54), when using that

\[
D_a D_b \bar{\xi}_c \approx -\bar{\xi}^d R_{abc} \approx 0.
\]

(3.57)

This equation holds because one can show that, on-shell, the left hand side is equal to its opposite when using the previous relations (3.55), (3.57) together with the Bianchi identities (3.4) and the on-shell symmetries of the Riemann tensor.

4. Application to asymptotically flat 4d gravity

4.1. Solution space

Four-dimensional asymptotically flat spacetimes at null infinity in the NP formalism have been studied in [18–20] (see [62] for a summary and conventions appropriate to the current context). One uses standard coordinates \(x^\mu = (u, r, x^A) \), \(x^A = (\zeta, \bar{\zeta}) \), where \(u \) labels null hypersurfaces, \(r \) is an affine parameter along the generating null geodesics and \(x^A \) are stereographic coordinates in the simplest case when future null infinity is a sphere. In the notations of section 3.4, the Newman–Unti solution space is entirely determined by the conditions

\[
\kappa = \epsilon = \pi = 0, \quad \rho = \bar{\rho}, \quad \tau = \bar{\alpha} + \beta,
\]

\[
l = \frac{\partial}{\partial r}, \quad n = \frac{\partial}{\partial u} + U \frac{\partial}{\partial r} + x^A \frac{\partial}{\partial x^A}, \quad m = \omega \frac{\partial}{\partial r} + L^A \frac{\partial}{\partial x^A},
\]

(4.1)

where \(U, x^A, \omega \) and \(L^A \) are arbitrary functions of the coordinates, together with the fall-off conditions

\[
x^A = O(r^{-1}), \quad \Psi_0 = \Psi_0^0 r^{-5} + O(r^{-6}), \quad \rho = -\frac{1}{r} + O(r^{-3}), \quad \tau = O(r^{-2}),
\]

\[
g_{AB} dx^A dx^B = -2r^2 \frac{d\zeta d\bar{\zeta}}{PP} + O(r).
\]

(4.2)

Here \(\Psi_0^0 \) and \(P \) are arbitrary complex functions of \((u, \zeta, \bar{\zeta}) \). Below we will also use the real function \(\varphi(u, \zeta, \bar{\zeta}) \) defined by \(PP = 2e^{-2\varphi} \). The associated asymptotic expansion of the solution space in terms of \(\Psi_0(u_0, r, \zeta, \bar{\zeta}), (\Psi_0^0 + \Psi_0^1)(u_0, \zeta, \bar{\zeta}), \Psi_1^0(u_0, \zeta, \bar{\zeta}) \) at fixed \(u_0 \) and of the
asymptotic shear $\sigma^0(u, \zeta, \bar{\zeta})$ and the conformal factor $P(u, \zeta, \bar{\zeta})$ is summarized in appendix D. This data characterizing solution space is collectively denoted by χ. On a space-like cut of \mathcal{I}^+, we use coordinates $\zeta, \bar{\zeta}$, and the (rescaled) induced metric

$$
dx^2 = -\bar{\gamma}^{AB} \, dx^A \, dx^B = -2(PP)^{-1} \, d\zeta d\bar{\zeta},$$

with $PP > 0$. For the unit sphere, we have $\zeta = \cot \frac{x}{2} e^{i\phi}$ in terms of standard spherical coordinates and

$$P_{s}(\zeta, \bar{\zeta}) = \frac{1}{\sqrt{2}}(1 + \zeta \bar{\zeta}).$$

The covariant derivative on the 2 surface is encoded in the operators

$$\partial \eta^i = PP^{-1} \partial(PP \eta^i) = P \partial \eta^i + sP \partial \ln P \eta^i = \bar{P} \partial \bar{\eta}^i + 2s\bar{\alpha}^{0} \eta^i,$$

$$\bar{\partial} \bar{\eta}^i = P \partial \eta^i - sP \partial \ln P \eta^i = \bar{P} \partial \eta^i - 2s\bar{\alpha}^{0} \eta^i,$$

(4.5)

where s is the spin weight of the field η and $\partial = \partial_\zeta, \bar{\partial} = \partial_{\bar{\zeta}}$. The spin and conformal weights of relevant fields (see appendix D and section 4.4) are listed in table 1. Complex conjugation raises respectively lower the spin weight by one unit. The Laplacian is $\bar{\Delta} = 4e^{-2x} \partial \bar{\partial} = 2\partial \bar{\partial}$. Note that P is of spin weight 1 and ‘holomorphic’, $\bar{P} = 0$ and that

$$[\partial, \partial] \eta^i = \frac{s}{2} R \eta^i,$$

(4.6)

with $R = -4\bar{\tau}^0 = \bar{\Delta} \ln(PP), R_3 = 2$. We also have

$$[\partial_\zeta, \partial] \eta^i = -2(s \eta^0 + s\bar{\alpha}^{0}) \eta^i, \quad [\partial_\zeta, \bar{\partial}] \eta^i = -2(s \eta^0 - \bar{\alpha}^{0}) \eta^i.$$

(4.7)

The components of the inverse metric associated to the tetrad given in (4.1) is

$$g^{\mu\nu} = \delta_\mu^\nu, \quad g^{rt} = 2(U - \omega\bar{\omega}), \quad g^{rA} = x^A - (\omega L^A + \bar{\omega} \bar{L}^A), \quad g^{AB} = -(L^A \bar{L}^B + L^B \bar{L}^A).$$

(4.1)

Note furthermore that if $L_A = g_{AB} \bar{L}^B$ with g_{AB} the two dimensional metric inverse to g^{AB}, then $L^A \bar{L}_A = -1, L^A \bar{L}_A = 0 = \bar{L}^A L_A$. The co-tetrad is given by

$$^*e^1 = -[U + x^A(\omega L_A + \bar{\omega} \bar{L}_A)] \, du + dr + (\omega \bar{L}_A + \bar{\omega} L_A) \, dx^A,$$

$$^*e^2 = du, \quad ^*e^3 = x^A \bar{L}_A \, du - \bar{L}_A \, dx^A, \quad ^*e^4 = x^A L_A \, du - L_A \, dx^A.$$

(4.8)

∂	∂_ζ	γ^0	ν^0	μ^0	σ^0	χ^0	ψ_0^μ	ψ_0^1	ψ_0^2	ψ_0^3	ψ_0^4	χ	
s	1	0	0	-1	0	2	-2	-2	-1	0	1	2	-1
w	-1	-1	-1	-2	-2	-1	-2	-3	-3	-3	-3	-3	1
4.2. Residual gauge transformations

The parameters of residual gauge transformations that preserve the solution space are entirely determined by asking that conditions (4.1) and (4.2) be preserved on-shell. This is worked out in detail in appendix E where it is shown that these parameters are given by

\[f(u, \zeta, \bar{\zeta}), \quad Y^\xi = Y(\zeta), \quad Y^\bar{\zeta} = \bar{Y}(\bar{\zeta}), \quad \omega^{ij}_0(u, \zeta, \bar{\zeta}). \]

(4.9)

The associated residual gauge transformations are explicitly determined by the gauge parameters,

\[\xi^u = f(u, \zeta, \bar{\zeta}), \quad \xi^A = Y^A(x^A) - \partial_B f \int_r^{+\infty} dr [L^A L^B + \bar{L}^A \bar{L}^B], \]

\[\xi^r = -\partial_u f + \frac{1}{2} \Delta f - \partial_u f \int_r^{+\infty} dr [\omega L^A + \bar{\omega} \bar{L}^A + x^A], \]

(4.10)

and

\[\omega^{12} = \partial_u f + x^A \partial_A f, \quad \omega^{23} = L^A \partial_A f, \quad \omega^{24} = \bar{L}^A \partial_A f, \]

\[\omega^{13} = (\gamma^0 + \bar{\gamma}^0) \bar{\partial} \partial f - \bar{\partial} \partial \partial f + \partial_A f \int_r^{+\infty} dr [\lambda^A + \mu^A], \]

\[\omega^{14} = (\gamma^0 + \bar{\gamma}^0) \bar{\partial} \partial f - \bar{\partial} \partial \partial f + \partial_A f \int_r^{+\infty} dr [\lambda^A + \mu^A], \]

\[\omega^{34} = \omega^{34}_0(u, \zeta, \bar{\zeta}) - \partial_A f \int_r^{+\infty} dr [(\alpha - \beta)L^A + (\bar{\beta} - \alpha)\bar{L}^A]. \]

(4.11)

For the computations below, the leading orders of their asymptotic on-shell expansions are also useful. When the solutions discussed in appendix D are inserted, one obtains

\[\xi^u = f, \quad \xi^C = Y - \frac{P \partial f}{r} + \frac{\sigma^0 \bar{\partial} \partial f}{r^2} + O(r^{-3}), \quad \xi^{\bar{C}} = \bar{\xi}^C, \]

(4.12)

\[\xi^r = -r \partial_u f + \frac{1}{2} \Delta f - \frac{\bar{\partial} \sigma^0 \partial f + \partial^0 \bar{\partial} \partial f}{r} + O(r^{-2}), \]

and

\[\omega^{12} = \partial_u f + O(r^{-3}), \quad \omega^{23} = \frac{\bar{\partial} f}{r} - \frac{\sigma^0 \bar{\partial} \partial f}{r^2} + \frac{\sigma^0 \partial^0 \bar{\partial} \partial f}{r^3} + O(r^{-4}), \]

\[\omega^{13} = (\gamma^0 + \bar{\gamma}^0) \bar{\partial} \partial f - \bar{\partial} \partial \partial f + \frac{\lambda^0 \bar{\partial} \partial f + \mu^0 \partial \bar{\partial} \partial f}{r} \]

\[\quad - \frac{\bar{\partial} \sigma^0 \partial f + \sigma^0 \lambda^0 \partial f}{r^2} + O(r^{-3}), \]

\[\omega^{14} = \omega^{34}_0 + \frac{P \partial \ln P \partial f - P \bar{\partial} \ln P \bar{\partial f}}{r} \]

\[\quad + \frac{P \partial \ln P \sigma^0 \bar{\partial} \partial f - P \bar{\partial} \ln P \sigma^0 \partial f}{r^2} + O(r^{-3}), \]

(4.13)

with \(\omega^{24} = \omega^{24}_0, \omega^{14} = \omega^{14}_0, \omega^{34} = -\omega^{34}_0. \)
4.3. Residual symmetry algebra

A direct application of the procedure outlined in section 2.3.2 then gives the variation of the free data parametrizing solution space under residual gauge transformation in terms of the parametrization provided by (4.9). In particular, one finds

$$-\delta_{f, Y, \omega_0} P = P \partial_u f + f \partial_u P + Y \partial P + \bar{Y} \partial \bar{P} - P \partial \bar{Y} + P \omega_0 \omega^\text{34},$$

(4.14)

together with the variation of the rest of the free data and derived quantities that is given in appendix F.

In order to make these variations more transparent, it is useful to re-parametrize residual gauge symmetries through field dependent redefinitions. In a first step, one trades the real function \(\partial_u f(u, \zeta, \bar{\zeta}) \) and the imaginary \(\omega_0 \omega^\text{34}(u, \zeta, \bar{\zeta}) \) for a complex \(\Omega(u, \zeta, \bar{\zeta}) \) according to

$$\partial_u f = \frac{1}{2} (\partial \bar{Y} - Y \partial \ln PP) + \partial Y - Y \partial \ln PP f(\gamma^0 + \gamma^0) + \frac{1}{2}(\Omega + \bar{\Omega}),$$

$$\omega_0 \omega^\text{34} = \frac{1}{2} (\partial \bar{Y} - Y \partial \ln P + \bar{Y} \partial P + \partial \bar{Y} + Y \partial \ln P)$$

(4.15)

$$+ f(\gamma^0 - \gamma^0) + \frac{1}{2}(\Omega - \bar{\Omega}).$$

It then follows that the first of (4.15) can be solved for \(f \) in terms of an integration function \(T_\Omega(\zeta, \bar{\zeta}) \), (called \(\bar{T} \) in [14, 16, 64])

$$f(u, \zeta, \bar{\zeta}) = \frac{1}{\sqrt{PP}} \left[T_\Omega(\zeta, \bar{\zeta}) + \bar{u} \left(\partial \bar{Y} + \partial \bar{Y} - Y \partial \bar{u} - \bar{Y} \partial u + \frac{1}{2}(\Omega + \bar{\Omega})\right)\right],$$

(4.16)

where

$$\bar{u} = \int_{u_0}^u du' \sqrt{PP}, \quad \bar{\Omega} = \int_{u_0}^u du' \sqrt{PP} \Omega.$$

(4.17)

This redefinition of parameters is such that

$$-\delta_{\bar{Y}, \bar{T}_\Omega} \bar{P} = \Omega \bar{P},$$

(4.18)

together with the complex conjugate relation \(-\delta_{Y, T_\Omega} P = \bar{\Omega} \bar{P}\).

Denoting by \(\phi^a \) the fields \((e_{\rho}^a, \Gamma_{\alpha \beta}^a) \) (together with the auxiliary fields \(R_{abcd}, \lambda_{abcd} \) if useful), it follows from (3.34) that

$$[\delta_{\xi}, \omega] \phi^a = -\tilde{\delta}_{\xi} \tilde{\omega}^a \phi^a,$$

(4.19)

$$\tilde{\xi}^a = [\xi_1, \xi_2] \phi^a, \quad (\tilde{\omega})^a_b = \xi_1^b \partial \omega^b + \omega^b_a \omega^a_b - (1 \leftrightarrow 2),$$

when the gauge parameters \(\xi, \omega \) are field-independent. In case gauge parameters do depend on the fields, one finds instead

$$[\delta_{\xi_1}, \omega] \phi^a = -\tilde{\delta}_{\xi_1 \omega} \tilde{\omega}^a \phi^a,$$

$$\tilde{\xi}_M^a = [\xi_1, \xi_2] \phi^a - \delta_{\xi_1 \omega} \xi^a_{\omega} + \delta_{\xi_1 \omega} \xi^a_{\tilde{\omega}}$$

(4.20)

$$\tilde{\omega}^a = \xi_1^a \partial \omega^a + \omega^a_a \omega^a_b - \delta_{\xi_1 \omega} \omega^a_b - (1 \leftrightarrow 2).$$
We now have the following result:

The gauge parameters \(\xi [Y, T, \Omega], \omega [Y, T, \Omega]\) equipped with the modified commutator for field dependent gauge transformations realize the direct sum of the abelian ideal of complex Weyl rescalings with the (extended) \(\text{bms}_4\) algebra everywhere in the bulk spacetime,

\[
\begin{align*}
\hat{\xi}^A_M &= \xi [\hat{Y}, \hat{T}, \hat{\Omega}], \\
\hat{\omega}^A_M &= \omega [\hat{Y}, \hat{T}, \hat{\Omega}], \\
\hat{Y}^A &= Y_1^A \partial_R Y_2^A - Y_2^A \partial_R Y_1^A, \\
\hat{T}_R &= Y_1^A \partial_A T_R + \frac{1}{2} T_R \partial_A Y_2^A - (1 \leftrightarrow 2), \\
\hat{\Omega} &= 0.
\end{align*}
\]

The proof follows by adapting the ones provided in \([16, 64, 65]\) to the current set-up.

4.4. Action of symmetries on solutions

A further field-dependent redefinition consists in defining

\[
Y = P \hat{Y}, \quad \hat{Y} = P Y,
\]

where the spin weights of \(\hat{Y}\) and \(Y\) are given in table 1. These quantities are more convenient when using the operators \(\partial\) and \(\bar{\partial}\). The action of asymptotic symmetries on solutions is given in the original parametrization in appendix F. In terms of the redefined parameters, the transformations (F.1) then become

\[
\begin{align*}
-\delta_s \sigma^0 &= \left[Y \partial + \bar{Y} \bar{\partial} + \frac{3}{2} \sigma \partial Y + \frac{1}{2} \bar{\partial} \bar{\partial} Y - \frac{3}{2} \Omega, \Omega \right] \sigma^0 + f \chi^0 - \bar{\partial}^2 f, \\
-\delta_s \Psi_0^0 &= \left[Y \partial + \bar{Y} \bar{\partial} + \frac{9}{2} \sigma \partial Y + \frac{5}{2} \bar{\partial} \bar{\partial} Y + \frac{5}{2} \Omega, \Omega \right] \Psi_0^0 + f \bar{\partial} \Psi_0^0 + 3 f \sigma^0 \Psi_0^0 + 4 \Psi_0^0 \partial f, \\
-\delta_s \Psi_0^1 &= \left[Y \partial + \bar{Y} \bar{\partial} + 2 \sigma \partial Y + 2 \Omega + \Omega \right] \Psi_0^1 + f \bar{\partial} \Psi_0^1 + 2 f \sigma^0 \Psi_0^1 + 3 \Psi_0^1 \partial f, \\
-\delta_s \frac{\left(\Psi_0^1 + \Psi_0^1 \right)}{2} &= \left[Y \partial + \bar{Y} \bar{\partial} + \frac{3}{2} \sigma \partial Y + \frac{3}{2} \bar{\partial} \bar{\partial} Y + \frac{3}{2} \Omega, \Omega \right] \left(\Psi_0^1 + \Psi_0^1 \right) \\
&\quad + \frac{1}{2} (f \bar{\partial} \Psi_0^1 + f \sigma^0 \Psi_0^1 + 2 \Psi_0^1 \partial f + (c.c.)),
\end{align*}
\]

while (F.2)–(F.4) read as

\[
\begin{align*}
-\delta_s \Psi_0^1 &= \left[Y \partial + \bar{Y} \bar{\partial} + 3 \sigma \partial Y + 3 \Omega + \Omega \right] \Psi_0^1 \\
&\quad - \bar{\partial} \left[3 \bar{\partial} f \Psi_0^0 + f \bar{\partial} \Psi_0^0 + 4 f \Psi_0^0 \sigma^0 \right], \\
-\delta_s \Psi_0^0 &= \left[Y \partial + \bar{Y} \bar{\partial} + \frac{7}{2} \sigma \partial Y + \frac{3}{2} \bar{\partial} \bar{\partial} Y + \frac{7}{2} \Omega, \Omega \right] \Psi_0^0 \\
&\quad + \left[-3 \Delta f - \bar{\partial} f \bar{\partial} - 3 \bar{\partial} f \bar{\partial} - \frac{1}{2} f \bar{\partial} \bar{\partial} - \frac{5}{4} f R \right] \Psi_0^0
\end{align*}
\]

(4.23)

(4.24)
standard choice is to fix the conformal factor

\[P \]

presymplectic (3, 2) form) can be computed using equation (3.53),

Under this additional constraint on solution space, the breaking (and thus also the invariant

4.6. Breaking and co-dimension 2 form

Besides conditions (4.1) and (4.2), additional constraints may be imposed on solution space. A

and, by induction,

Finally, the variations (F.5) are given by

\[-\delta \lambda^0 = [\lambda \bar{\partial} + \bar{\partial} \bar{\lambda}] - f \Psi_4^0 - \frac{1}{2} \bar{\partial}^2 (\bar{\partial} \bar{\lambda} + \bar{\partial} \bar{\lambda}), \]

\[-\delta \Psi_2^0 = \left[\bar{\partial} \bar{\partial} \bar{\lambda} + \frac{3}{2} \bar{\partial} \bar{\lambda} + \frac{3}{2} \bar{\partial} \bar{\lambda} + \frac{3}{2} \Omega + \frac{3}{2} \Omega \right] \Psi_2^0 \]

+ \frac{1}{2} \bar{\partial}^2 (\bar{\partial} \bar{\lambda} + \bar{\partial} \bar{\lambda}), \]

\[-\delta \Psi_3^0 = [\lambda \bar{\partial} + \bar{\partial} \bar{\lambda}] + f \Psi_4^0 + 2 \Psi_4^0 \bar{\partial} f, \]

\[-\delta \Psi_4^0 = \left[\bar{\partial} \bar{\partial} \bar{\lambda} + \frac{1}{2} \bar{\partial} \bar{\lambda} + \frac{5}{2} \bar{\partial} \bar{\lambda} + \frac{1}{2} \Omega + \frac{5}{2} \Omega \right] \Psi_4^0 \]

+ f \bar{\partial} \Psi_4^0 + 2 (\bar{\partial} \partial + \bar{\partial} \partial) \Psi_4^0. \]

4.5. Reduction of solution space

Besides conditions (4.1) and (4.2), additional constraints may be imposed on solution space. A

standard choice is to fix the conformal factor \(P \) to be equal to \(P_5 \) given in (4.4). We will also fix

\(P \) here, without committing to a specific value. In other words, we consider \(P \) to be part of the

background structure. As a consequence, infinitesimal complex Weyl rescalings (whose finite

counterparts have been discussed in [62]) are frozen and \(\Omega = 0 \) in the formulas above, while

in the formulas below, \(s \) stands for (\(\bar{Y}^s, \bar{\bar{Y}}^s, T^s_0, 0 \)). The main reason why we do not perform

the analysis below while keeping \(P(u, \zeta, \bar{\zeta}) \) arbitrary is computational simplicity. We will return

elsewhere to a detailed discussion of the current algebra and its interpretation when complex

Weyl rescalings are allowed.

4.6. Breaking and co-dimension 2 form

Under this additional constraint on solution space, the breaking (and thus also the invariant

presymplectic (3, 2) form) can be computed using equation (3.53),

\[* b_1 = -b_{a(0)} \, du \, d\zeta \, d\bar{\zeta} + O(r^{-1}), \]

(4.28)
where

\[
b'^r_{(0)} = \frac{1}{8\pi G P P} \left(\delta \sigma^0 \delta_\lambda^0 + \delta \sigma^0 \delta_\lambda^0 - \delta \lambda^0 \delta_\sigma^0 - \delta \lambda^0 \delta_\sigma^0 \right). \tag{4.29}
\]

Since the breaking contains the information about the non-conservation of the currents, it should not come as a surprise that it depends on the news functions encoded in \(\lambda^0 \) and \(\lambda^0 \).

Furthermore, the co-dimension 2 form \((3.50)\) takes the form

\[
\ast k_s = k'_{(0)\sigma} d\zeta \delta_\zeta - k^{r\sigma}_{(0)\sigma} d\zeta \delta_\zeta + k^{s\sigma}_{(0)\sigma} \delta_\zeta + \mathcal{O}(r^{-1}) \tag{4.30}
\]

where

\[
k^{r\sigma}_{(0)} = -\frac{1}{PP8\pi G} \left(\delta \left[f(\Psi^0_2 + \sigma^0 \lambda^0) + \mathcal{Y}(\sigma^0 \partial \sigma^0) + \frac{1}{2} \partial(\sigma^0 \sigma^0) + \Psi_0^0 \right]
- \frac{1}{2} \partial(\mathcal{Y} \sigma^0 \sigma^0) - r\partial(\mathcal{Y} \sigma^0) - \mathcal{F}(\delta \sigma^0 + \lambda^0 \delta \sigma^0) \right), \tag{4.31}
\]

and \(k^{s\sigma}_{(0)} \) given by the complex conjugate. By construction

\[
\partial_x k^{r\sigma}_{(0)} + \partial_x k^{s\sigma}_{(0)} + \partial_x \bar{\eta}^{r\sigma}_{(0)} = -b'^r_{(0)}, \tag{4.33}
\]

which may also be checked by direct computation. Note that \(k^{r\sigma}_{(0)}, k^{s\sigma}_{(0)}, k^{s\sigma}_{(0)} \) contain, besides a finite contribution, also linearly divergent terms when \(r \to \infty \). Following \([27]\), the latter can be removed through an exact 2-form \(\partial_\lambda \bar{\eta}^{r\sigma}_{(0)} \). Defining

\[
\eta^{[r\sigma]}_t = \mathcal{N}^t_\sigma = -r \mathcal{Y} \sigma^0 - \frac{1}{2} \mathcal{Y} \sigma^0 \sigma^0, \quad \eta^{[s\sigma]}_t = \mathcal{N}_t^\sigma = 0, \tag{4.34}
\]

and splitting into an integrable part

\[
\mathcal{J}^{\sigma} = \frac{1}{8\pi G} \left[f(\Psi_2^0 + \sigma^0 \lambda^0) + \mathcal{Y}(\sigma^0 \partial \sigma^0) + \Psi_0^0 + \frac{1}{2} \partial(\sigma^0 \sigma^0) \right] + \text{c.c.} \tag{4.35}
\]

\[
\mathcal{J}^{\sigma} = \frac{1}{8\pi G} \left[\mathcal{Y} \Psi_2^0 + f \Psi_3^0 + \frac{1}{2} \mathcal{Y}(\lambda^0 \sigma^0 - \chi^0 \sigma^0) + \frac{1}{2} \partial \sigma^0 \partial(\mathcal{Y} - \mathcal{Y})
- \frac{1}{2} \sigma^0 \partial(\mathcal{Y} - \mathcal{Y}) + \bar{\chi}^0 \partial f \right], \tag{4.36}
\]

and a non-integrable one
\[\Theta^\gamma_\delta(\delta \chi) = \frac{1}{8\pi G} (\partial_+ \delta \sigma^0 + \text{c.c.}), \quad \Theta^\gamma_\delta(\delta \chi) = \frac{1}{8\pi G} \bar{\partial}(\lambda^0 \delta \sigma^0 + \bar{\lambda}^0 \delta \sigma^0), \] (4.37)

one finally arrives at

\[\begin{align*}
\delta J^\gamma_\delta &= PP[k_{\gamma\delta}^{\omega} - \bar{\partial}h_{\omega}^{[\gamma\delta]} - \partial h_{\omega}^{[\gamma\delta]}] \Theta^\gamma_\delta, \\
\delta \bar{J}^\gamma_\delta &= PP[k_{\gamma\delta}^{C}\bar{\omega} + \bar{\partial}h_{\omega}^{[\gamma\delta]} + \partial h_{\omega}^{[\gamma\delta]}] - \Theta^\gamma_\delta,
\end{align*} \] (4.38)

where \(J^\gamma_\delta, \Theta^\gamma_\delta \) are the complex conjugates of \(J^\gamma_\delta, \Theta^\gamma_\delta \). Expressions (4.35), (4.36) and (4.37) are the final results for the BMS currents. Notice that the split between integrable and non-integrable part is ambiguous and, as shown in the next subsection, it is crucial to keep track of both parts. The results of [27] are recovered when taking \(P \) to be \(\mu \)-independent, which implies \(\gamma^0 = \bar{\gamma}^0 = 0 \) and \(\lambda^0 = \bar{\lambda}^0 \). Note that the associated forms are given by

\[\begin{align*}
J_\gamma &= (PP)^{-1} J_\gamma d\zeta d\bar{\zeta} - P^{-1} J_\gamma d\bar{\zeta} d\zeta, \\
\bar{\theta}_\gamma &= (PP)^{-1} \bar{\theta}_\gamma d\zeta d\bar{\zeta} - P^{-1} \bar{\theta}_\gamma d\bar{\zeta} d\zeta.
\end{align*} \] (4.39)

4.7. Current algebra

Even if the co-dimension 2 form derived in the previous subsection leads to non-integrable expressions, one can still define a consistent current algebra whose general structure does not depend on the particular split between integrable and non-integrable pieces [14, 27]. As briefly recalled in section 5, this algebra contains important information on physical properties of the system. Using the relations of appendix G, the first independent component of the current algebra can be written as

\[-\delta_{i2} J^\mu_{12} + \Theta^\mu_{12} (-\delta_{i1} \chi) \approx J^\mu_{11,22} + \bar{\mathcal{L}}_{11,22} + \bar{\delta} \mathcal{L}^{-1}_{11,22}, \] (4.40)

where

\[\mathcal{K}^\mu_{11,22} = \frac{1}{8\pi G} \left[\left(\frac{1}{2} \sigma^0 \left[f_1 \bar{\partial}^2 (\partial \bar{Y}^0_2 + \bar{\partial}Y^0_2) \right] - f_1 \bar{\partial} f_2 \bar{\partial} \lambda^0 \right) - (1 \leftrightarrow 2) \right] + \text{c.c.}, \] (4.41)

and

\[\begin{align*}
\mathcal{L}_{11,22} &= \mathcal{J}_{11} - f_2 J_2 - \frac{1}{8\pi G} \left[\left(\frac{1}{2} \partial Y_1 + \partial \bar{Y}_1 \right) \partial f_2 - \frac{1}{2} Y_1 \bar{\partial}^2 f_2 - \bar{Y}_1 \partial \partial \bar{f}_2 \right] \sigma^0 \\
&- \frac{1}{2} Y_1 \bar{\partial}^2 f_2 \sigma^0 - Y_1 \partial f_2 \partial \sigma^0 - \bar{Y}_1 \partial f_2 \partial \sigma^0 - f_1 \bar{\partial} f_2 \lambda^0 \right].
\] (4.42)

The second independent component of the current algebra is

\[-\delta_{i2} \bar{J}^\gamma_{12} + \bar{\Theta}^\gamma_{12} (-\delta_{i1} \chi) \approx \bar{J}^\gamma_{11,22} + \bar{\mathcal{K}}^\gamma_{11,22} - \bar{\delta} \mathcal{L}_{11,22} - 2 \gamma^0 \mathcal{L}_{11,22} + \bar{\delta} \mathcal{M}_{11,22}, \] (4.43)
where
\[
\mathcal{K}_{s_1,s_2} = -\frac{1}{8\pi G} \left[f_2 \partial f_1 \delta \nu^0 + \frac{1}{2} \partial f_1 \delta^3 \bar{Y}_2 + \gamma_1 \partial f_2 \delta \mu^0 + f_1 \gamma_2 \sigma^0 \delta \nu^0 + \sigma^0 \delta \nu^0 \right] + \frac{1}{2} \gamma_2 \delta^2 (\delta \gamma_1 + \bar{\delta} \bar{\gamma}_1) \sigma^0 + \frac{1}{2} \gamma_2 \delta^2 (\delta \gamma_1 + \bar{\delta} \bar{\gamma}_1) \sigma^0 - (1 \leftrightarrow 2),
\]
and
\[
\mathcal{M}_{s_1,s_2} = \bar{\gamma}_2 \bar{J}_{s_1} - \frac{1}{8\pi G} \left[\frac{1}{2} \bar{\delta} (\partial \gamma_1 - \bar{\partial} \bar{\gamma}_1) \bar{\partial} f_2 + \frac{1}{2} \bar{\partial} \gamma_1 \bar{\partial} \bar{\partial} f_2 \right] - \text{c.c.}
\]

4.8. Cocycle condition

The components of \(\mathcal{K}_{s_1,s_2} \) satisfy the 2-cocycle conditions
\[
\mathcal{K}_{[s_1,s_2],s_3} = \delta_{s_1} \mathcal{K}_{s_1,s_2} + \text{cyclic}(1,2,3) = \partial \mathcal{N}_{s_1,s_2,s_3} + \bar{\partial} \bar{\mathcal{N}}_{s_1,s_2,s_3},
\]
where
\[
\mathcal{N}_{s_1,s_2,s_1} = -f_3 \mathcal{K}_{s_1,s_2} + \text{cyclic}(1,2,3),
\]
and
\[
\mathcal{K}_{[s_1,s_2],s_3} = \delta_{s_1} \mathcal{K}_{s_1,s_2} + \text{cyclic}(1,2,3) = -\partial \mathcal{N}_{s_1,s_2,s_3} - 2 \gamma_0 \mathcal{N}_{s_1,s_2,s_3} + \bar{\partial} \bar{\mathcal{N}}_{s_1,s_2,s_3},
\]
where
\[
\mathcal{U}_{s_1,s_2,s_3} = -\frac{1}{8\pi G} \gamma_3 \left[(f_1 \gamma_2 - f_2 \gamma_1) \sigma^0 \delta \nu^0 + \frac{1}{2} \sigma^0 (\gamma_3 \bar{\delta}^3 \bar{Y}_1 - \bar{\gamma}_1 \bar{\delta}^3 \bar{Y}_2) \right] + \frac{1}{2} (\partial f_1 \bar{\delta}^3 \bar{Y}_2 - \bar{\partial} f_2 \bar{\delta}^3 \bar{Y}_1) + (f_2 \bar{\partial} f_1 - f_1 \bar{\partial} f_2) \delta \nu^0 \right] - \text{c.c.} + \text{cyclic}(1,2,3).
\]

A situation where this 2-cocycle is relevant is discussed in [66].

5. Discussion

Let us briefly recall the discussion in [14, 27] on the physical interpretation of BMS charge and current algebras.

When one restricts to globally well-defined quantities on the sphere, with \(P = P_S = \frac{1}{\sqrt{2}}(1 + \zeta \bar{\zeta}) \), there are no superrotations and \(\mathcal{K}_{s_1,s_2}^\mu = 0 = \mathcal{K}_{s_1,s_2}^\zeta \). In this case, BMS charges are defined by integrating the forms (4.39) at fixed retarded time over the celestial sphere,
\[
Q_\zeta = \int_{u=\text{cte}} J_\zeta = \int_{u=\text{cte}} (P_3 P_\zeta)^{-1} J_\zeta^\mu d\zeta d\bar{\zeta}.
\]

If one also defines
\[
\Theta_\zeta = \int_{u=\text{cte}} \theta_\zeta = \int_{u=\text{cte}} (P_3 P_\zeta)^{-1} \Theta_\zeta^\mu d\zeta d\bar{\zeta},
\]

\(Q_\zeta \) and \(\Theta_\zeta \) are related by
\[
Q_\zeta = \int_{u=\text{cte}} J_\zeta = \int_{u=\text{cte}} (P_3 P_\zeta)^{-1} J_\zeta^\mu d\zeta d\bar{\zeta}.
\]
and the bracket
\[\{Q_{s_1}, Q_{s_2}\}^* = -\delta_{s_2} Q_{s_1} + \Theta_{s_2} \{ -\delta_{s_1} \chi \}, \]
(5.3)
the integrated version of equation (4.40), becomes
\[\{Q_{s_1}, Q_{s_2}\}^* = Q_{(s_1, s_2)}, \]
(5.4)
This charge algebra contains for instance the information on non-conservation of BMS charges. Indeed, let us take for \(s_2 = \partial_u \) by which we mean that \(T_R = \sqrt{P_s \bar{P}_s}, Y = 0 = \bar{Y} \). In this case, equation (5.4) together with the definition of the left hand side in (5.3) becomes
\[-\delta_{\partial_u} Q_s + \Theta_{\partial_u} \{ -\delta_s \chi \} = Q_{(s, \partial_u)}. \]
(5.5)
When using that
\[\frac{d}{du} Q_s = -\delta_{\partial_u} Q_s + \frac{\partial}{\partial u} Q_s, \]
(5.6)
and \(\frac{\partial}{\partial u} Q_s = Q_{\partial_u / \partial u} = -Q_{(s, \partial_u)} \), it follows that
\[\frac{d}{du} Q_s = \Theta_{\partial_u} \{ \delta_s \chi \}. \]
(5.7)
If one now chooses \(s = \partial_u \), one recovers the Bondi mass loss formula.

More generally, equation (4.40) is the local version of (5.4) where superrotations and arbitrary fixed \(P(u, \zeta, \bar{\zeta}) \) are allowed. When choosing \(s_2 = \partial_u \) in that equation, it encodes the non-conservation of BMS currents (cf equation (4.22) of [27]). For particular choices of \(s_1 \), it controls the time evolution of the Bondi mass and angular momentum aspects.

Even though we concentrated here on the case of standard Einstein gravity, all the kinematics is in place to generalize the constructions to gravitational theories with higher derivatives and/or dynamical torsion.

For most part of the paper, the standard discussion has been extended so as to include an arbitrary \(u \)-dependent conformal factor \(P \). This has been done so as to manifestly include the Robinson–Trautman solution [67, 68] in solution space. The application of the current set-up to these solutions requires the inclusion of a dynamical conformal factor in the derivation of the current algebra. We plan to address this question elsewhere.

Acknowledgments

The work of G B and of R R is supported by the F R S-FNRS Belgium, convention FRFC PDR T.1025.14 and convention ISIN 4.4503.15. The work of P Mao is supported in part by the China Postdoctoral Science Foundation under Grant No. 2017M620908 and the National Natural Science Foundation of China under Grant Nos. 11905156, 11935009, and 11575202.

Appendix A. (Non)-conservation of codimension 2 forms in first order gauge theories

In order to prove equation (2.22), we need in a first step to work out all consequences of the Noether identities (2.13) for first order gauge theories.
In the context of variational calculus, off-shell identities between the fields and their derivatives have to hold for all possible values of these variables. In other words, the fields and their derivatives are considered as independent coordinates on a suitable space, the so-called jet-space. It thus follows that the Noether identities give rise to separate identities when considering terms involving $\partial_\mu \partial_\nu \phi^i$, $\partial_\mu \phi^i \partial_\nu \phi^i$, $\partial_\nu \phi^i$ or no derivatives. The Noether identities are thus equivalent to

$$R^\mu_\alpha \sigma^i_j = 0,$$

$$\partial_\mu [R^\mu_\alpha \sigma^i_j] + \partial_\nu [R^\mu_\alpha \sigma^i_j] + R^\mu_\nu \sigma^i_j + R^\mu_\sigma \sigma^i_j = 0,$$

$$R^\mu_\alpha \sigma^i_j + \partial_\nu [R^\mu_\alpha \sigma^i_j] - R^\mu_\nu \sigma^i_j + \partial_\nu [\sigma^i_j] = 0,$$

$$R^\mu_\alpha [\sigma^i_j + \partial_\nu [\sigma^i_j]] = 0.$$

(A.1)

As discussed above, the linearized equations of motion derive from the action

$$L^{(2)}[\varphi, \phi] = \partial_\mu \alpha \varphi^i \partial_\nu \varphi^j + \frac{1}{2} \partial_\mu \partial_\nu \varphi^i \varphi^j \partial_\alpha \varphi^k - \frac{1}{2} \partial_\mu \partial_\nu \varphi^i \varphi^j,$$

(A.2)

so that the left hand sides of the linearized equations of motion are given by

$$\frac{\delta L^{(2)}[\varphi, \phi]}{\delta \varphi^i} = [\sigma^i_j \partial_\nu + \partial_\nu \sigma^i_j \partial_\mu \phi^j - \partial_\mu (\partial_\nu + \partial_\nu \partial_\sigma \sigma^i_j)] \varphi^i.$$

(A.3)

Let us then explicitly work out $\partial_\nu k^{(\mu \nu)}$ with $k^{(\mu \nu)}$ given in (2.20) by controlling the derivatives of the fields and the gauge parameters that appear. By using the first of (A.1), it follows that

$$\partial_\nu k^{(\mu \nu)} = R^\mu_\nu \sigma^i_j \partial_\nu \varphi^j f^\alpha - R^\mu_\nu \sigma^i_j \varphi^j \partial_\nu f^\alpha + \partial_\nu (R^\mu_\nu \sigma^i_j) \varphi^j f^\alpha.$$

(A.4)

In the first term, we eliminate $\sigma^i_j \partial_\nu \varphi^j$ in terms of undifferentiated φ^j by using the linearized equations of motion. In the second term, we write $-R^\mu_\nu \partial_\nu f^\alpha$ as $-R^\mu_\nu \varphi^j f^\alpha$. In the last term, we have $\partial_\nu (R^\mu_\nu \sigma^i_j) = \frac{\partial}{\partial \sigma^i_j} (R^\mu_\nu \sigma^i_j) + \partial_\nu (R^\mu_\nu \sigma^i_j) \partial_\nu \varphi^j$, and we then use the second of (A.1) to re-write the last term of this expression. We then have

$$\partial_\nu k^{(\mu \nu)} + W^{\mu \nu \alpha \beta \nu}[\varphi, R_\nu f^\alpha] = \left(R^\mu_\nu [-\partial_\nu \sigma^i_j \partial_\nu \phi^k + \partial_\nu (\partial_\nu + \partial_\nu \partial_\sigma \sigma^i_j)] + R^\mu_\nu \sigma^i_j \right) \varphi^j f^\alpha + \frac{\partial}{\partial \sigma^i_j} (R^\mu_\nu \sigma^i_j) \varphi^j f^\alpha + R^\mu_\nu \alpha \beta \nu \partial_\nu \sigma^i_j \varphi^j f^\alpha.$$

(A.5)

In the 2nd term on the last line, we may write $-\partial_\nu (R^\mu_\nu \sigma^i_j) \partial_\nu \phi^k = \partial_\nu (R^\mu_\nu \sigma^i_j \partial_\nu \phi^k) + R^\mu_\nu \partial_\nu \sigma^i_j \partial_\nu \phi^k$ by using again the first of (A.1). The last of these terms then vanishes with the first one on the right hand side of (A.5), whereas for the first of these terms, we may use the full equations of motion (2.7) to eliminate $\sigma^i_j \partial_\nu \phi^j$. When using in addition (2.3) to simplify the last term of the first line and the last term of the last line of (A.5), the right hand side of (A.5) reduces to

$$[R^\mu_\nu \partial_\nu (\partial_\nu + \partial_\nu \partial_\sigma \sigma^i_j)] + \partial_\nu [R^\mu_\nu \sigma^i_j] + \partial_\nu [R^\mu_\nu \sigma^i_j] - R^\mu_\nu \sigma^i_j \partial_\nu \phi^k] \varphi^j f^\alpha$$
When using the first of (A.1) for the term $\frac{\partial}{\partial x^\nu} (R^\nu_{\mu} \sigma^i_j)$ and the full equations of motion to eliminate $\sigma^i_j \partial_{\nu} \phi^k$ in the last term, this expression reduces to the left hand side of the third of (A.1) and thus vanishes identically.

Appendix B. Frames and forms

B.1. Frames and directional derivatives

Consider an n-dimensional spacetime with a moving frame $e_a^\mu \partial_\mu$, $e_a^\mu e_b^\mu = \delta^a_b$. Let

$$ e_a = e_a^\mu \partial_\mu, \quad *e^a = e^\mu \mu d\mu, $$

and $\partial_\mu f = e_a^\mu \partial_\mu f$. The structure functions are defined by

$$ [e_a, e_b] = D_{c}^a b c \iff d^\nu * e^a = -\frac{1}{2} D^c_{b c} * e^b * e^c. $$

If one defines

$$ d^\mu_{c d} = e^\nu \nu \partial_\nu e^\mu, $$

then

$$ d^\mu_{c d} = -e^\nu \nu \partial_\nu e^\mu, \quad D^\mu_{c d} = 2 d^\nu_{[b c]}, $$

where it is understood that tangent space indices a, b, \ldots and world-indices μ, ν, \ldots are transformed into each other by using the vielbeins and their inverse. For later use, note that if $e = \det e^a_\mu$, then

$$ \partial_\mu (e e^a_\mu) = e D^b_{b a}. $$

B.2. Horizontal complex

The differential forms $\omega = \sum_{k=0}^n k! \omega_{1 k} \ast e^{a_1} \ast \ldots \ast e^{a_k}$ that are useful for our purpose are ‘local forms’. They can be considered as polynomials in the independent, anticommuting variables $\ast e^a$ (i.e., the wedge product is omitted), with coefficients that depend on x^μ, and the fields ϕ^i (that include e^a_μ together with the other relevant fields), and a finite number of their derivatives, considered as independent variables. In this context, $\partial_\mu = \frac{\partial}{\partial x^\mu} + \phi^j \frac{\partial}{\partial x^\mu} \phi^j + \ldots$ is the horizontal derivative of the variational bicomplex (see e.g. [46, 47, 69] for reviews). We will use the odd operator

$$ \frac{\partial}{\partial x^a}, $$

satisfying

$$ [\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b}] = 0 = [\ast e^a, \ast e^b], \quad [\frac{\partial}{\partial x^a}, \ast e^b] = \delta^b_a, $$

where $[\cdot, \cdot]$ denotes the graded commutator, and thus for the odd variables above the anticommutator. In these terms, the differential d acts from the left as

$$ d = \ast e^a \delta_a - \frac{1}{2} D^c_{a b} \ast e^a \ast e^b \frac{\partial}{\partial x^a}. $$
or

\[d : \omega_{a_1 \ldots a_k} \mapsto (k + 1) \partial_{[a_0} \omega_{a_1 \ldots a_k]} - \frac{k(k + 1)}{2} D^c [a_0 \omega_{c|a_2 \ldots a_k]} \] \hspace{1cm} (B.9)

B.3. Hodge dual and co-differential

We also assume that there is a pseudo-Riemannian metric,

\[g_{\mu \nu} = e^a_{\mu} \eta_{ab} e^b_{\nu} \] \hspace{1cm} (B.10)

where \(\eta_{ab} \) is constant. As usual, tangent space indices \(a, b, \ldots \) and world indices \(\mu, \nu, \ldots \) are lowered and raised with \(\eta_{ab}, g_{\mu \nu} \) and their inverses \(\eta^{ab}, g^{\mu \nu} \).

We take \(\epsilon_{a_1 \ldots a_n} = \epsilon^{[a_1 \ldots a_n]} \) completely antisymmetric with \(\epsilon^1_{\ldots n} = 1 \). The Hodge dual can then be defined as the operator acting from the right,

\[\ast \ast \omega_{a_1 \ldots a_k} \mapsto \frac{1}{k!} \omega_{b_1 \ldots b_k} \epsilon_{b_1 \ldots b_k a_1 \ldots a_k} \] \hspace{1cm} (B.11)

where \(\partial R \partial^* e^a \) is a derivative from the right. In components, or in an abstract index notation, this gives

\[\ast \ast : \omega_{a_1 \ldots a_k} \mapsto \frac{1}{k!} \omega_{b_1 \ldots b_k} \epsilon_{b_1 \ldots b_k a_1 \ldots a_k} \] \hspace{1cm} (B.12)

It follows that

\[\ast (\ast \omega^k) = (-y^{+1+n-k}) \omega^k, \quad \partial \partial^* \epsilon^a \omega = \ast (\omega^* e^a), \] \hspace{1cm} (B.13)

where \((-y)^{+} \) is the sign of \(\text{det} \eta_{ab} \), and, for a variation,

\[\delta V \ast \omega = \ast (\delta^V \omega) + (\delta^V \epsilon^a) \ast (\omega^* e_a). \] \hspace{1cm} (B.14)

The operator acting from the right

\[\delta^R = \frac{\partial R}{\partial^* e^a} \partial^a - \frac{1}{2} \epsilon^a D_a^{bc} \frac{\partial R}{\partial^* e^c} \frac{\partial R}{\partial^* e^b}. \] \hspace{1cm} (B.15)

or

\[\delta^R : \omega_{a_1 \ldots a_k} \mapsto \partial^R \omega_{a_1 \ldots a_k} - \omega_{a_1 \ldots a_k} D^b a_k \frac{k - 1}{2} \epsilon^{[a_1 a_2 \ldots a_k] |a_k | |b | |C | D_{a_1 \ldots a_k}^{b c}}, \] \hspace{1cm} (B.16)

satisfies

\[d(\ast \omega^k) = \ast (\delta^R \omega^k). \] \hspace{1cm} (B.17)

It is related to the standard co-differential \(\delta^L \) acting from the left through \(\delta^R \omega^k = (-y)^{+} \delta^L \omega^k \), with
When there exists an affine Lorentz connection, with curvature and torsion defined as in section 3.1, one may write
\[
d = \star e^a D_a + \frac{1}{2} T_{ab} \star e^b \frac{\partial}{\partial e^c}.
\]
(B.19)

or
\[
d : \omega_{a_1 \ldots a_k} \mapsto (k + 1) D_{[a_0} \omega_{a_1 \ldots a_k]} + \frac{k(k + 1)}{2} T_{[a_0 a_1 \ldots a_k]} \omega^{a_0 [a_1 \ldots a_k]},
\]
(B.20)

and also
\[
\delta^R = \frac{\partial^R}{\partial e^a} D^a + \frac{1}{2} \star e^a T^b_{ab} \frac{\partial^R}{\partial e^b} \frac{\partial^R}{\partial e^c},
\]
(B.21)

or
\[
\delta^R : \omega_{a_1 \ldots a_k} \mapsto D^a \omega_{a_1 \ldots a_k - a_1} + \omega_{a_1 \ldots a_k - a_1} T^b_{ab} + \frac{k - 1}{2} \omega_{a_1 a_2 \ldots a_{k-2} b} T_{a_{k-1}}^{bc}.
\]
(B.22)

Finally,
\[
\delta^L = - \left[\frac{\partial}{\partial e^a} D^a + T^b_{ac} \frac{\partial}{\partial e^b} + \frac{1}{2} T^b_{ab} \star e^c \frac{\partial}{\partial e^b} \frac{\partial}{\partial e^c} \right].
\]
(B.23)

In components, \(\delta \) is given by (B.22), with an additional overall sign of \((-)^k\).

In particular, for our purpose, it is convenient to write \(n, n - 1 \) and \(n - 2 \)-forms in terms of duals of 0, 1 and 2-forms, \(\omega^n = \star f = e f dx^0 \ldots dx^{n-1} \), with \(e = \det e^a_{\mu} \).

\[
\omega^{n-1} = \star (j_a e^a) \implies d \omega^{n-1} = \star (D_a f^b + T^b_{ab} f^b),
\]
(B.24)

\[
\omega^{n-2} = \star (\frac{1}{2} k_{ab} \star e^b) \implies d \omega^{n-2} = \star \left((D_b k^b_{ab} + k_{ab} T^c_{bc} + \frac{1}{2} T^b_{abc} k^b_{ac}) \star e^c \right),
\]
(B.25)

and to use covariant ‘integration by parts’ inside \(n \)-forms,
\[
\star (v^{ab_1 \ldots b_m} D_a w_{b_1 \ldots b_m}) = d [\star (v^{ab_1 \ldots b_m} w_{b_1 \ldots b_m} e_a)] = \star [(D_a + T^c_{ac}) v^{ab_1 \ldots b_m} w_{b_1 \ldots b_m}].
\]
(B.26)
Appendix C. Homotopy operators for the Euler–Lagrange complex

On account of the (global) exactness of the horizontal part of the variational bicomplex in vertical degree 1, the variation of any local form can be decomposed in terms of local forms as

\[
\delta^V(\ast \omega^0) = \varphi^i \frac{\delta [\delta^V(\ast \omega^0)]}{\delta \varphi^i} + d(T^\alpha_i [\delta^V(\ast \omega^0)]),
\]

\[
\delta^V(\ast \omega^k) = d(T^\alpha_i [\delta^V(\ast \omega^k)]) + T^\alpha_i [d(\delta^V(\ast \omega^k))], \quad \text{for } k > 0,
\]

for suitably defined ‘homotopy’ operators of the variational bi-complex,

\[
T^\alpha_i [\delta^V(\ast \omega^k)] = \sum_{l=0}^{l+1} \frac{l+1}{k+1} \partial_{\lambda_1 \ldots \lambda_l} \left(\varphi^i \frac{\delta}{\delta \partial_{\lambda_1 \ldots \partial_{\lambda_l} \varphi^i}} \right) e_a \rho \partial \left[\delta^V(\ast \omega^k) \right] \partial^\ast e^a,
\]

where the \(\frac{\delta}{\delta \partial_{\lambda_1 \ldots \partial_{\lambda_l} \varphi^i}} \) are higher order Euler–Lagrange derivatives, see e.g. [46, 47, 69] for more details.

In order to simplify computations, note that

\[
\frac{\delta [\delta^V(\ast \omega^0)]}{\delta \varphi^i} = \frac{\delta (\ast \omega^0)}{\delta \varphi^i}, \quad T^\alpha_i [\delta^V(\ast \omega^k)] = T^\alpha_i (\ast \omega^k),
\]

with

\[
T^\alpha_i (\ast \omega^k) = \sum_{l=0}^{l+1} \frac{l+1}{k+1} \partial_{\lambda_1 \ldots \lambda_l} \left(\varphi^i \frac{\delta}{\delta \partial_{\lambda_1 \ldots \partial_{\lambda_l} \varphi^i}} \right) e_a \rho \partial (\ast \omega^k) \partial^\ast e^a,
\]

Note also that, if \(\omega^k_1 \) is of first order in derivatives, this simplifies to

\[
T^\alpha_i (\ast \omega^k_1) = \left[\frac{1}{k+1} \varphi^i \frac{\partial \omega^k_1}{\partial \partial_{\varphi^i}} \ast e_a \right].
\]

In order to prove equation (2.46), note that \(T^\alpha_i (\ast S_{\delta^V f}) \) produces on-shell vanishing terms for the full theory,

\[
T^\alpha_i (\ast S_{\delta^V f}) \approx 0.
\]

It follows that

\[
\delta^V (\ast S_f) - \ast S_{\delta^V f} = d(\ast k_f) + T^\alpha_i (d(\delta^V (\ast S_f) - \ast S_{\delta^V f})),
\]

with

\[
\ast k_f = T^\alpha_i (\delta^V (\ast S_f) - \ast S_{\delta^V f}) = T^\alpha_i (\ast S_f) \big|_{f(j) = f}. \quad (C.7)
\]

Finally, for first order equations of motion, the breaking defined in (2.49) reduces to

\[
b_f (\varphi, \phi) = -\delta_f \phi^i \varphi^j \frac{\partial}{\partial \partial_{\phi^i} \phi^j} \frac{\delta L}{\delta \phi} \ast e_a.
\]

with

\[
\ast k_f = T^\alpha_i (\delta^V (\ast S_f) - \ast S_{\delta^V f}) = T^\alpha_i (\ast S_f) \big|_{f(j) = f}. \quad (C.8)
\]
Appendix D. Newman–Unti solution space

When conditions (4.1) supplemented by the fall-off conditions (4.2) are imposed, the asymptotic expansion of on-shell spin coefficients, tetrads and the associated components of the Weyl tensor can be determined. All the coefficients in the expansions are functions of the three coordinates u, ζ, ζ. In this approach to the characteristic initial value problem, freely specifiable initial data at fixed u_0 is given by $\Psi_0(u_0, r, \zeta, \bar{\zeta})$ in the bulk with the fall-offs given below and by $(\Psi_2 + \bar{\Psi}_2)(u_0, \zeta, \bar{\zeta}), \Psi_3(u_0, \zeta, \bar{\zeta})$ at \mathcal{I}^+. The asymptotic shear $\sigma^0(u, \zeta, \bar{\zeta})$ and the conformal factor $P(u, \zeta, \bar{\zeta})$ are free data at \mathcal{I}^+ for all u.

Explicitly,

\[\Psi_0 = \frac{\Psi_0^0}{r^3} + \frac{\Psi_1^1}{r^3} + \frac{\Psi_2^2}{r^3} + \mathcal{O}(r^{-8}); \]
\[\Psi_1 = \frac{\Psi_1^0}{r^3} + \frac{\Psi_1^1}{r^3} + \frac{2\sigma^0\partial^0\Psi_1^0}{r^3} + \frac{2\bar{\omega}^0\partial^0\Psi_1^0}{r^3} + \mathcal{O}(r^{-1}); \]
\[\Psi_2 = \frac{\Psi_2^0}{r^3} + \frac{\Psi_2^1}{r^3} + \frac{2\sigma^0\partial^0\Psi_2^0}{r^3} + \frac{2\bar{\omega}^0\partial^0\Psi_2^0}{r^3} + \mathcal{O}(r^{-6}); \]
\[\Psi_3 = \frac{\Psi_3^0}{r^3} + \frac{\Psi_3^1}{r^3} + \mathcal{O}(r^{-4}); \]
\[\Psi_4 = \frac{\Psi_4^0}{r^3} + \frac{\Psi_4^1}{r^3} + \mathcal{O}(r^{-3}); \]

\[\rho = -\frac{1}{r^3} \sigma^0\sigma^0 + \mathcal{O}(r^{-5}), \]
\[\tau = -\frac{\Psi_0^0}{2r} + \frac{\Psi_0^0}{3r^3} + \mathcal{O}(r^{-5}); \]
\[\alpha = \frac{\sigma^0\alpha^0}{r^2} + \frac{\bar{\omega}^0\alpha^0}{r^2} + \mathcal{O}(r^{-4}); \]
\[\beta = -\frac{\Psi_0^0}{2r} + \frac{\Psi_0^0}{3r^3} + \mathcal{O}(r^{-5}); \]
\[\gamma = \frac{\Psi_2^0}{2r} + \frac{\Psi_2^0}{2r^3} + \mathcal{O}(r^{-4}); \]
\[\nu = \frac{\Psi_3^0}{2r} + \frac{\Psi_3^0}{6r^3} + \mathcal{O}(r^{-3}); \]
\[\lambda = \frac{\Psi_4^0}{2r} + \frac{\Psi_4^0}{6r^3} + \mathcal{O}(r^{-4}); \]

\[X^i = \frac{P}{r^3} + \mathcal{O}(r^{-3}); \]
\[U = \frac{\Psi_2^0}{2r} + \frac{\Psi_2^0}{2r^3} + \mathcal{O}(r^{-4}); \]
\[L^\iota = \frac{\Psi_3^0}{2r} + \frac{\Psi_3^0}{6r^3} + \mathcal{O}(r^{-3}); \]

where

\[\alpha^0 = \frac{1}{2} \partial_\mu \ln P; \quad \gamma^0 = \frac{1}{2} \partial_\mu \ln \bar{P}; \quad \nu^0 = \bar{\partial} (\gamma^0 + \bar{\gamma}^0); \]
\[\lambda^0 = -\frac{1}{2} \partial_\mu \ln PP; \quad \bar{\lambda}^0 = \bar{\partial} (3\gamma^0 - \bar{\gamma}^0); \]
\[\Psi_0^0 = \bar{\partial} \sigma^0 - \partial^0 \bar{\omega}^0 + \bar{\omega}^0 \bar{\sigma}^0 - \sigma^0 \bar{\sigma}^0; \]
\[\Psi_2^0 = \Psi_2^0 + \Psi_2^0 + \bar{\omega}^0 \bar{\partial} + \bar{\partial} \bar{\partial} \sigma^0 - \sigma^0 \bar{\sigma}^0; \]
\[\Psi_3^0 = \bar{\partial} \lambda^0 + \bar{\partial} \mu^0; \]
\[\Psi_4^0 = \bar{\partial} \nu^0 - (\partial_\mu + 4\gamma^0) \lambda^0. \]
and
\[
\begin{align*}
\partial_a \psi^0_0 + (\gamma^0 + 5\gamma^0) \psi^0_0 &= \partial_\xi^0 + 3\sigma^0 \psi^0_0, \\
\partial_a \psi^0_1 + 2(\gamma^0 + 2\gamma^0) \psi^1_1 &= \partial_\xi^0 + 2\sigma^0 \psi^0_1, \\
\partial_a \psi^2_0 + 3(\gamma^0 + \gamma^0) \psi^2_0 &= \partial_\xi^0 + \sigma^0 \psi^0_2, \\
\partial_a \psi^2_1 + 2(2\gamma^0 + \gamma^0) \psi^2_1 &= \partial_\xi^0, \\
\partial_a \mu^0 &= -2(\gamma^0 + \gamma^0)\mu^0 + \partial\delta(\gamma^0 + \gamma^0), \\
\partial_a \alpha^0 &= -2(\gamma^0 + \gamma^0)\alpha^0 - \partial\gamma^0, \\
\partial_a \psi^1_0 + (2\gamma^0 + 6\gamma^0) \psi^1_0 &= -\partial(\partial_0^0 + 4\sigma^0 \psi^0_0), \\
\partial_a \psi^1_2 + (3\gamma^0 + 7\gamma^0) \psi^1_2 &= -\left(\frac{1}{3} \partial\delta \psi^0_1 + 3\mu^0 \psi^0_0 + 5 \left(\psi^0_2 \psi^0_0 - \psi^0_0 \psi^0_2 - \frac{1}{2} \psi^0_0 \psi^0_1 \right) \right), \\
+ & 5\partial\delta \psi^0_0 + 3\partial\delta \psi^0_0 + 5 \left(\psi^0_1 \psi^0_0 - \psi^0_0 \psi^0_1 + \frac{1}{2} \sigma^0 \psi^2_0 \right) + \frac{9}{2} \sigma^0 \psi^0_1 + \frac{5}{2} \sigma^0 \psi^0_0, \\
&+ 12\sigma^0 \sigma^0 \psi^1_0 + 2\sigma^0 \sigma^0 \psi^1_0 + \frac{15}{2} \sigma^0 (\sigma^0)^2 \psi^0_2 + \frac{5}{2} \sigma^0 \lambda^0 \psi^0_0.
\end{align*}
\]

Appendix E. Parameters of residual gauge transformations

For computational purposes, it turns out to be more convenient to determine the parameters of residual gauge transformations by using the generating set given in (3.34) rather than the one in (3.36).

Asking that conditions (4.1) be preserved on-shell yields

- 0 = δ_ε^cut ε^0_a = -∂_a ξ^u \Rightarrow ξ^u = f(u, ω, ξ).
- 0 = δ_δ^cut ε^1_a = -ε^0_a ∂_a f + ω^12 \Rightarrow ω^12 = ∂_a f + x^A ∂_a f.
- 0 = δ_ε^cut ε^2_a = -ε^0_a ∂_a f + ω^24 \Rightarrow L^A ∂_a f.
- 0 = δ_δ^cut ε^3_a = -ε^0_a ∂_a f + ω^32 \Rightarrow L^A ∂_a f.
- 0 = δ_δ^cut ε^4_a = -ε^0_a ∂_a ξ^r + ω^24 ε^2_a \Rightarrow ξ^r = -∂_a f + Z(u, ω, ξ) + ∂_a f \int_0^\infty dr[O^A + O^A + x^A].
- 0 = δ_δ^cut ε^1_a = -ε^0_a ∂_a ξ^r + ω^24 ε^2_a \Rightarrow ξ^r = -∂_a f + Z(u, ω, ξ) + ∂_a f \int_0^\infty dr[O^A + O^A + x^A].
- 0 = δ_δ^cut π = 0 \iff 0 = δ_δ^cut ϵ \Gamma_{231} = \epsilon^0 \epsilon^0 + \epsilon^0 \epsilon^0 \Rightarrow ω^14 = ω^14(u, ω, ξ) + ∂_a f \int_0^\infty dr[O^A + O^A + x^A].
- 0 = δ_δ^cut π = 0 \iff 0 = δ_δ^cut ϵ \Gamma_{231} = \epsilon^0 \epsilon^0 + \epsilon^0 \epsilon^0 \Rightarrow ω^14 = ω^14(u, ω, ξ) + ∂_a f \int_0^\infty dr[O^A + O^A + x^A].
- 0 = δ_δ^cut (ε - ε) = 0 \iff 0 = δ_δ^cut ϵ \Gamma_{431} = \epsilon^0 \epsilon^0 + \epsilon^0 \epsilon^0 \Rightarrow ω^14 = ω^14(u, ω, ξ) - ∂_a f \int_0^\infty dr[O^A + O^A + x^A].
- 0 = δ_δ^cut (ε - ε) = 0 \iff 0 = δ_δ^cut ϵ \Gamma_{431} = \epsilon^0 \epsilon^0 + \epsilon^0 \epsilon^0 \Rightarrow ω^14 = ω^14(u, ω, ξ) - ∂_a f \int_0^\infty dr[O^A + O^A + x^A].

On-shell, i.e., in the absence of torsion, these conditions on spin coefficients hold as a consequence of the tetrad conditions imposed in (4.1). It follows that requiring these conditions to be preserved on-shell by gauge transformations does not give rise to new conditions on the parameters.

This can also be checked by direct computation.

36
Asking that the fall-off conditions (4.2) be preserved on-shell yields

- \(\delta \zeta \epsilon^\alpha = O(r^{-1}) \implies \partial_\alpha Y^\alpha = 0 \).
- \(\delta \zeta \zeta = O(r^{-1}) \implies \partial Y^\zeta = 0 \implies Y^\zeta = Y(\zeta) \).
- \(\delta \zeta \zeta \zeta = O(r^{-1}) \implies \partial Y^\zeta = 0 \implies Y^\zeta = Y(\zeta) \).
- \(\delta \zeta \zeta \zeta \Gamma_{314} = O(r^{-3}) \implies Z = \frac{1}{2} \Delta f \).
- \(\delta \zeta \zeta \zeta \Gamma_{132} = O(r^{-2}) \implies \omega_0^{03} = (\gamma^0 + \gamma^3) \bar{P} \bar{\xi} f - P \partial_0 \bar{\xi} f \).
- \(\delta \zeta \zeta \zeta \zeta \Psi_0 = O(r^{-5}) \) does not impose further constraints.

Appendix F. Action on solution space: original parametrization

Besides (4.14), if \(s_0 = (Y, \bar{Y}, f, \omega_0) \), one finds

\[
- \delta \omega_0 \sigma^0 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 4 \omega_0^{03} \right] \sigma^0 - \bar{\sigma}^2 f,
\]
\[
- \delta \omega_0 \Psi^0 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \omega_0^{03} \right] \Psi^0 + 4 \Psi^0 \bar{\sigma} f,
\]
\[
- \delta \omega_0 \Psi^1 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \omega_0^{03} \right] \Psi^1 + 3 \Psi^0 \bar{\sigma} f,
\]
\[
- \delta \omega_0 \left(\frac{\Psi^0 + \Psi^1}{2} \right) = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \omega_0^{03} \right] \left(\frac{\Psi^0 + \Psi^1}{2} \right) + \Psi^0 \bar{\sigma} f + \Psi^0 \bar{\sigma} f.
\]

When \(\Psi_0 \) can be expanded in powers of \(1/r \), \(\Psi_0 = \sum_{n=0}^{\infty} \psi_n^0 \), one also has

\[
- \delta \omega_0 \Psi^0 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 4 \omega_0^{03} \right] \Psi^0 + \left[-\frac{\Delta}{2} f - 5 \bar{\sigma} f \right] \Psi^0 - 4 \sigma^0 \bar{\sigma} f \Psi^0,
\]
\[
- \delta \omega_0 \Psi^1 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 5 \omega_0^{03} \right] \Psi^1 + \left[-3 \Delta f - 3 \bar{\sigma} f \bar{\sigma} - 2 \bar{\sigma} f \right] \Psi^0 + 12 \sigma f \Psi^0.
\]

By induction, we deduce

\[
- \delta \omega_0 \Psi^n = \left[Y \partial + \bar{Y} \partial + f \partial_0 + (n + 3) \partial_0 f + 2 \omega_0^{03} \right] \Psi^n + (\text{inhomogeneous terms}).
\]

For later purposes, we also give the variations of composite quantities in terms of free data,

\[
- \delta \omega_0 \lambda^0 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 2 \omega_0^{03} \right] \lambda^0 - \partial_0 \bar{\sigma}^2 f + (\gamma^0 - 3 \gamma^0) \bar{\sigma}^2 f,
\]
\[
- \delta \omega_0 \Psi^0 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \omega_0^{03} \right] \Psi^0 + 2 \Psi^0 \bar{\sigma} f,
\]
\[
- \delta \omega_0 \Psi^1 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \omega_0^{03} \right] \Psi^1 + \Psi^0 \bar{\sigma} f,
\]
\[
- \delta \omega_0 \Psi^2 = \left[Y \partial + \bar{Y} \partial + f \partial_0 + 3 \partial_0 f - 2 \omega_0^{03} \right] \Psi^0.
\]
Appendix G. Useful relations

Some useful relations for the computation of the current algebra are summarized here.

\[
\partial_{\alpha} f = \frac{1}{2} (\partial \gamma^0 + \overline{\gamma}^0) + f(\gamma^0 + \overline{\gamma}^0),
\]
\[
\bar{f} = \frac{1}{2} f_i (\partial \gamma^2 + \overline{\partial} \overline{\gamma}^2) + \gamma_1 \delta f_2 + \bar{\gamma}_1 \delta \bar{f}_2 - (1 \leftrightarrow 2),
\]
\[
\dot{\gamma} = \gamma_1 \bar{\delta} \gamma^2_2 - \overline{\gamma}_2 \delta^2 \gamma_1,
\]
\[
\delta^3 \gamma = \partial \gamma_1 \delta^2 \gamma^2_2 + \gamma_1 \delta^3 \gamma^2_2 - (1 \leftrightarrow 2),
\]
\[
\partial \gamma^3 = 2 \partial \gamma^2 \mu^0 + 4 \delta \gamma^0 \partial \gamma^0 - \delta \gamma^0 \delta \partial \gamma^0,
\]
\[
\bar{\gamma} \dot{f} = \frac{1}{2} f_i (\partial \gamma^2 + \overline{\partial} \gamma^2) + \gamma_1 \delta f_2 + \bar{\gamma}_1 \delta \bar{f}_2 + \frac{1}{2} (\partial \gamma^1_1 - \overline{\partial} \gamma^1_1) \delta f_2 - (1 \leftrightarrow 2),
\]
\[
\partial \overline{\partial} \gamma = 2 \mu^0 \partial \gamma_1,
\]
\[
\dot{\partial} \gamma = 2 \mu^0 \partial \gamma_1,
\]
\[
\partial \chi \overline{\partial} \gamma = 2 \mu^0 \overline{\partial} \gamma,
\]
\[
\partial \mu \partial \gamma = 2 \overline{\partial} \gamma_1,
\]
\[
\partial \chi \overline{\partial} \gamma = 2 \mu^0 \overline{\partial} \gamma,
\]
\[
\partial \chi \overline{\partial} \gamma = 2 \overline{\partial} \gamma_1,
\]
\[
\partial \mu \partial \gamma = 2 \overline{\partial} \gamma,
\]

In case one wants to compute the current algebra from the expressions derived in the standard Cartan formalism [48], one needs to transform the spin coefficients into a Lorentz connection with a space-time index in NU gauge. Using the notations of section 3.4, together with the gauge choice for the tetrads (4.1) (and thus also (4.8)), we have

\[
\Gamma_{12A} = -(\gamma + \bar{\gamma}) - \tau X^4 L_A - \bar{\tau} X^4 L_A,
\]
\[
\Gamma_{13A} = -\tau - \sigma X^4 L_A - \rho X^4 L_A,
\]
\[
\Gamma_{14A} = -\bar{\tau} - \bar{\sigma} X^4 L_A - \bar{\rho} X^4 L_A,
\]
\[
\Gamma_{23A} = \bar{\nu} + \bar{\lambda} X^4 L_A + \mu X^4 L_A,
\]
\[
\Gamma_{24A} = \nu + \mu X^4 L_A + \lambda X^4 L_A,
\]
\[
\Gamma_{34A} = (\gamma - \bar{\gamma}) + (\beta - \bar{\alpha}) X^4 L_A + (\alpha - \bar{\beta}) X^4 L_A,
\]
\[
\Gamma_{ab} = 0,
\]
ORCID iDs

Glenn Barnich https://orcid.org/0000-0002-2526-8594
Pujian Mao https://orcid.org/0000-0002-5880-1535
Romain Ruzziconi https://orcid.org/0000-0002-4359-7586

References

[1] Bondi H, van der Burg M G and Metzner A W 1962 Gravitational waves in general relativity: 7. Waves from axi-symmetric isolated systems Proc. R. Soc. A 269 21
[2] Sachs R K 1962 Gravitational waves in general relativity: 8. Waves in asymptotically flat space-time Proc. R. Soc. A 270 103
[3] Mädler T and Winicour J 2016 Bondi-Sachs Formalism Scholarpedia 11 33528
[4] Robinson D 2017 Gravity at King’s - a brief history Modern Developments in General Relativity and Their Historical Roots (London: King’s College London) http://grkcl.org/slides/2_3.pdf
[5] Kennefick D 2017 King’s College and the story of how gravitational waves became real Modern Developments in General Relativity and Their Historical Roots (London: King’s College London) http://grkcl.org/slides/4_2.pdf
[6] Sachs R K 1962 Asymptotic symmetries in gravitational theory Phys. Rev. 128 2851–64
[7] Tamburino L A and Winicour J H 1966 Gravitational fields in finite and conformal Bondi frames Phys. Rev. 150 1039
[8] Geroch R and Winicour J Linkages in general relativity J. Math. Phys. 22 803–12
[9] Ashtekar A and Stuefnel M 1981 Symplectic geometry of radiative modes and conserved quantities at null infinity Proc. R. Soc. A 376 585–607
[10] Wald R M and Zoupas A 2000 A general definition of conserved quantities in general relativity and other theories of gravity Phys. Rev. D 61 084027
[11] Barnich G, Brandt F and Henneaux M 1995 Local BRST cohomology in the antifield formalism. I. General theorems Commun. Math. Phys. 174 57–92
[12] Anderson I M and Torre C G 1996 Asymptotic conservation laws in field theory Phys. Rev. Lett. 77 4109–13
[13] Barnich G and Brandt F 2002 Covariant theory of asymptotic symmetries, conservation laws and central charges Nucl. Phys. B 633 3–82
[14] Barnich G and Troessaert C 2011 BMS charge algebra J. High Energy Phys. JHEP12(2011)105
[15] Barnich G and Troessaert C 2010 Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited Phys. Rev. Lett. 105 111103
[16] Barnich G and Troessaert C 2010 Aspects of the BMS/CFT correspondence J. High Energy Phys. JHEP05(2010)062
[17] Barnich G and Troessaert C 2010 Supertranslations call for superrotations PoS CNCFG2010 010 arXiv:1102.4632 [gr-qc]
[18] Newman E and Penrose R 1962 An approach to gravitational radiation by a method of spin coefficients J. Math. Phys. 3 566–78
[19] Newman E T and Unti T W J 1962 Behavior of asymptotically flat empty spaces J. Math. Phys. 3 891
[20] Exton A, Newman E and Penrose R 1969 Conserved quantities in the Einstein-Maxwell theory J. Math. Phys. 10 1566–70
[21] Newman E P and Tod K P 1980 Asymptotically flat space-times General Relativity and Gravitation. 100 Years after the Birth of Albert Einstein (New York: Plenum Press) vol 2 pp 1–36
[22] Penrose R and Rindler W 1984 Spinors and Space-Time (Two-Spinor Calculus and Relativistic Fields vol 1) (Cambridge: Cambridge University Press)
[23] Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford: Oxford University Press)
[24] Stewart J 1991 Advanced General Relativity (Cambridge: Cambridge University Press)
[25] Newman E and Penrose R 2009 Spin-coefficient formalism Scholarpedia 4 7445
[26] Barnich G and Lambert P-H 2012 A note on the Newman-Unti group and the BMS charge algebra in terms of Newman-Penrose coefficients Adv. Math. Phys. 16 197385
[27] Barnich G and Troessaert C 2013 Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity J. High Energy Phys. JHEP11(2013)003
[28] He T, Lyson V, Mitra P and Strominger A 2015 BMS supertranslations and Weinberg’s soft graviton theorem J. High Energy Phys. JHEP05(2015)151
[29] He T, Kac F, Raclariu A-M and Strominger A 2017 Loop-corrected Virasoro symmetry of 4D quantum gravity J. High Energy Phys. JHEP08(2017)050
[30] Strominger A 2017 Lectures on the infrared structure of gravity and gauge theory (arXiv:1703.05448 [hep-th])
[31] Godazgar H, Godazgar M and Pope C N 2019 Subleading BMS charges and fake news near null infinity J. High Energy Phys. JHEP01(2019)143
[32] Alessio F and Arzano M 2019 Note on the symplectic structure of asymptotically flat gravity and BMS symmetries Phys. Rev. D 100 044028
[33] Robinson D 1996 Spinor-valued forms and a variational principle for Einstein’s vacuum equations Class. Quantum Grav. 13 307
[34] Robinson D C 1998 Chiral actions and Einstein’s vacuum equations Int. J. Theor. Phys. 37 2067–78
[35] Hehl F W, McCrea J D, Mielke E W and Neeman Y 1995 Metric affine gauge theory of gravity: Field equations, noether identities, world spinors, and breaking of dilation invariance Phys. Rept. 258 1–171
[36] Julia B and Silva S 1998 Currents and superpotentials in classical gauge invariant theories, I. Local results with applications to perfect fluids and general relativity Class. Quant. Grav. 15 2173–215
[37] Julia B and Silva S 2000 Currents and superpotentials in classical gauge theories, II: Global aspects and the example of affine gravity Class. Quant. Grav. 17 4733–44
[38] Julia B and Silva S 2002 On covariant phase space methods (arXiv:hep-th/0205072)
[39] Ashtekar A, Engle J and Sloan D 2008 Asymptotics and Hamiltonians in a first order formalism Class. Quant. Grav. 25 095020
[40] Jacobson T and Mohd A 2015 Black hole entropy and Lorentz-diffeomorphism Noether charge Phys. Rev. D 92 124010
[41] Corichi A, Rubalcava I and Vukasinac T 2014 Hamiltonian and Noether charges in first order gravity Gen. Rel. Grav. 46 1813
[42] Lehner L, Myers R C, Poisson E and Sorkin R D 2016 Gravitational action with null boundaries Phys. Rev. D 94 084046
[43] De Paoli E and Speciale S 2018 A gauge-invariant symplectic potential for tetrad general relativity J. High Energy Phys. JHEP07(2018)040
[44] Henneaux M and Teitelboim C 1992 Quantization of Gauge Systems (Princeton, NJ: Princeton University Press)
[45] Arnowitt R, Deser S and Misner C 1962 Gravitation, an introduction to current research The Dynamics of General Relativity ch 7 (New York: Wiley) pp 227–65
[46] Anderson I 1989 The Variational Bicomplex Tech. rep., Formal Geometry and Mathematical Physics (Utah: Utah State University)
[47] Olver P 1986 Applications of Lie Groups to Differential Equations 1st edn (New York: Springer)
[48] Barnich G, Mao P and Ruzziconi R 2016 Conserved currents in the Cartan formulation of general relativity About Various Kinds of Interactions: Workshop in Honour of Professor Philippe Spindel arXiv:1611.01777 [gr-qc]
[49] Wald R M 1990 On identically closed forms locally constructed from a field J. Math. Phys. 31 2378–84
[50] Lee J and Wald R M 1990 Local symmetries and constraints J. Math. Phys. 31 725–43
[51] Iyer V and Wald R M 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846–64
[52] Iyer V and Wald R M 1995 A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes Phys. Rev. D 52 4430–39
[53] Bardeen J M, Carter B and Hawking S W 1973 The four laws of black hole mechanics Commun. Math. Phys. 31 161–70
[54] Barnich G, Brandt F and Henneaux M 2000 Local BRST cohomology in gauge theories Phys. Rept. 338 439–569
[55] Barnich G 2003 ‘Boundary charges in gauge theories: using Stokes theorem in the bulk’ Class. Quant. Grav. 20 3685–98
[56] Barnich G and Compère G 2008 Surface charge algebra in gauge theories and thermodynamic integrability J. Math. Phys. 49 042901
[57] Compère G, Donnay L, Lambert P-H and Schulgin W 2015 Liouville theory beyond the cosmological horizon J. High Energy Phys. JHEP03(2015)158
[58] Compère G, Mao P, Seraj A and Sheikh-Jabbari M M 2016 Symplectic and killing symmetries of AdS3 gravity: holographic vs boundary gravitons J. High Energy Phys. JHEP01(2016)080
[59] Conde E and Mao P 2017 Remarks on asymptotic symmetries and the subleading soft photon theorem Phys. Rev. D 95 021701
[60] Conde E and Mao P 2017 BMS supertranslations and not so soft gravitons J. High Energy Phys. JHEP05(2017)060
[61] Milson R and Wylleman L 2013 Three-dimensional spacetimes of maximal order Class. Quant. Grav. 30 095004
[62] Barnich G and Troessaert C 2016 Finite BMS transformations J. High Energy Phys. JHEP03(2016)167
[63] Wald R 1984 General Relativity (Chicago, IL: The University of Chicago Press)
[64] Barnich G and Lambert P-H 2013 A note on the Newman-Unti group and the BMS charge algebra in terms of Newman-Penrose coefficients J. Phys. Conf. Ser. 410 012142
[65] Barnich G and Lambert P-H 2013 Einstein-Yang-Mills theory: asymptotic symmetries Phys. Rev. D 88 103006
[66] Barnich G 2017 Centrally extended BMS4 Lie algebroid J. High Energy Phys. JHEP06(2017)007
[67] Robinson I and Trautman A 1960 Spherical Gravitational Waves Phys. Rev. Lett. 4 431–2
[68] Robinson I and Trautman A 1962 Some spherical gravitational waves in general relativity Proc. R. Soc. A 265 463–73
[69] Anderson I 1992 Introduction to the variational bicomplex Mathematical Aspects of Classical Field Theory (Contemporary Mathematics vol 132) M Gotay, J Marsden and V Moncrief (Washington, DC: American Chemical Society) pp 51–73