This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Engineering surface of perovskite La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} for catalytic activity of CO oxidation

Keke Huang, a Xudefeng Chu, b Long Yuan, a Wenchun Feng, c Xiaofeng Wu, a Xiyang Wang, a Shouhua Feng a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A simple treatment of La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} with diluted HNO\textsubscript{3} creates more B-sites (rich) on the terminated perovskite surface and improves its catalytic activity toward CO oxidation, and the perovskite catalyst possesses higher ratio of Mn4+/Mn3+ and thus enhances O\textsubscript{2} adsorption capability, favorable for CO oxidation and catalytic activity.

Design of efficient catalysts providing better-controlled active sites for fundamental studies of heterogeneous catalysis and developing novel industrial catalysts is the ultimate goal of research on heterogeneous catalysis1. Generally, the size, shape, composition, and interface/surface engineering in catalytic materials are the key parameters that are usually considered in synthesis to exhibit the rule of catalyst dependence2, 3. Since heterogeneous catalysis usually occurs on solid surfaces providing the appropriate electronic and/or geometric environment, design of on surface, requires precise control on atomic scale1-4. As a promising candidate for the replacement of noble metal commonly coming at the expense cost and limited stability, perovskite oxides (especially La(Sr)MnO\textsubscript{3} and La(Sr)CoO\textsubscript{3}) are emerging as automotive exhaust catalyst5, 6. However, T.S. Irvine7 reported that native perovskite surfaces are preferentially A-site (rich), not catalytically active sites, terminated to the detriment of the B sites, which results in the true catalytic properties of many perovskites based on ideal bulk-like terminated surface might have been underestimated due to their fundamental flaw. It is still lack fundamental understanding of perovskite surface catalytic mechanism at the atomic/molecular level. To overcome these disadvantages, clean procedure to create more B-site (rich) terminated perovskite surface and related catalytic property investigations are greatly in need.

Acid/base treatment of catalysts was regarded as one of the most widely accepted method to improve specific performance in porous TiO\textsubscript{2}, zeolites8, layered perovskites9, carbon materials10, and layered perovskite films was also reported11. However, to date no work on the wet-etch treatment of perovskite catalysts was reported for activating the perovskite.

Herein, we developed a method to modulate the perovskite surface of La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} samples, e.g., treatments of dilute HNO\textsubscript{3} solutions with controlled time followed by the evaluation of the corresponding catalytic activity for CO oxidation. Our finding demonstrates that the simple surface treatment shows importance of B-site (rich) terminated perovskite surface control in harnessing the true catalytic potential of perovskite oxides and opens up strategies for the development of the activity for other perovskite transition-metal oxides.

Fig.1 X-ray diffraction patterns of La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} for raw sample without treatment (#1), and samples treated with dilute nitric acid solution for 6 min (#2) and 60 min (#3).

a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
E-mail: shfeng@mail.jlu.edu.cn; Fax: +86-431-85168624; Tel: +86-431-85168661.
b Department of Basic Science, Jilin Jianzhu University, Changchun 130118, PR China
c Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.
Electronic supplementary information (ESI) available: sample preparation, characterization details, catalytic performance evaluation process, and N\textsubscript{2} adsorption-desorption, valence state of Mn and O 1s spectra, Arrhenius activation energy data. See DOI: 10.1039/b000000x
Fig. 2 XPS survey and Mn2p, Sr3d and La4d spectra for the three samples #1, #2 and #3. (Intensity of Sr3d and La4d were adjusted to the normalized Mn2p).

Raw sample was synthesized via a hydrothermal route adapted from previous report with minor modification. The details of sample preparation and acid activation process are given in Supporting Information. By increasing treatment time, the crystal structure keeps the same as the raw sample, which can be indexed to a primitive cubic unit cell (in Fig. 1 space group Pm3m, a = 3.841 Å). Inductively coupled plasma elemental analysis for the raw sample confirmed the energy dispersive spectrometry (EDS) result (inset of Fig. 3a) and indicated that its bulk composition is La0.5Sr0.5MnO3. Usually, the yielded raw La0.5Sr0.5MnO3 particles are La,Sr-enriched on the surface and this phenomenon of A)enriched in other perovskite systems often appears. The surface composition change from La, Sr-rich to Mn-rich by the modification of simple treatment by dilute HNO3 solutions. Surface composition was evaluated by X-ray photoemission spectroscopy (XPS) which are surface sensitive technique in probing the surface composition and electronic structure.

According to XPS quantitative analysis, the surface composition of the raw synthesized La0.5Sr0.5MnO3 is 39.0 atom% of Mn/(La+Sr+Mn) (Fig. 2), which means La, Sr-enrichment on surfaces, in terms of ideal 50 atom% in EDS data. Change of La, Sr and Mn atomic ratio can be easily observed from the intensity variation in XPS survey spectra and detailed narrow scan core-level spectra of normalized Mn 2p and related La 4d and Sr 3d electrons. XPS quantitative result indicated the surface is 46.8 and 67.5 atom % Mn for samples of 6 min and 60 min treatment. In contrast, the corresponding results of sample composition measurements by EDS show that the bulk Mn/(La+Sr+Mn) molar ratio (inset of Fig. 3) were 51.2%, 56.3% and 64.5% for sample #1, #2 and #3, respectively. These results indicated that the A atoms were successfully removed by wet-etch treatment, while EDS results also exhibited quite smaller decrease of A site atom compared to XPS results. It is obvious that La, Sr or Mn enrichment of La0.5Sr0.5MnO3 particles were controlled from surface to bulk process by selective wet-etch treatment time with dilute acid at room temperature.

The scanning electronic microscope images revealed morphological evolution in acidic environment, which improves the surface region from smooth in grinded raw material surface to a bit rough and fully rumpled surface, showing the possible reorganization of surface structure (Fig. 3). The reason of selective removal of A)site atoms is because the longer distance of La)O and Sr)O bonds than Mn)O bonds and relatively higher surface energy of A)O bond. The surface electronic structure after treatment was improved, and the content of Mn3+ decreased and Mn4+ increased on the surface of Mn-rich particles. The ratios of Mn4+/Mn3+ for samples #1, #2 and #3, respectively, as shown in Supporting Information Fig. S3. The additional Mn4+ promoted the formation of the surface oxygen vacancies. The production of Mn4+ at relatively high temperatures is important for the improvement of CO oxidation.

The scanning electronic microscope images revealed morphological evolution in acidic environment, which improves the surface region from smooth in grinded raw material surface to a bit rough and fully rumpled surface, showing the possible reorganization of surface structure (Fig. 3). The reason of selective removal of A)site atoms is because the longer distance of La)O and Sr)O bonds than Mn)O bonds and relatively higher surface energy of A)O bond. The surface electronic structure after treatment was improved, and the content of Mn3+ decreased and Mn4+ increased on the surface of Mn-rich particles. The ratios of Mn4+/Mn3+ for samples #1, #2 and #3, respectively, as shown in Supporting Information Fig. S3. The additional Mn4+ promoted the formation of the surface oxygen vacancies. The production of Mn4+ at relatively high temperatures is important for the improvement of CO oxidation.
The catalytic CO oxidation over as-obtained samples were evaluated in CO/O₂/N₂ stream. As shown in Fig. 4, for the conversion of CO into CO₂, T₁₀ (the temperature of the 10% conversion) for sample #1, #2, #3 are 245, 169 and 158 °C and T₅₀ (the half conversion temperature) are 340, 245 and 230 °C, respectively. To illustrate the relations between enhanced catalytic behavior and the surface electronic structure, we schematically proposed the surface composition change which indicate the elemental compositions, terminated layers on surfaces, the corresponding surface evolution (Fig. 4). This means that the treated samples exhibited much higher activity, which might be attributed to the more presence of active sites for creating B-site (rich) terminated perovskite surface.

To further investigate the origin of different catalytic activity behaviors, temperature programmed reduction (TPR) of H₂ was tested to understand the relative reducibility closely related to its catalytic performance (Fig. S1). For the raw samples (#1), the peak in the range of 700-800°C most likely corresponded to the reduction of the remaining Mn⁴⁺ to Mn²⁺, meanwhile, the peak at about 507°C can be attributed to the reduction of Mn³⁺ to Mn²⁺. The peak shifted to lower temperature, which may resulted from a single-electron reduction of Mn³⁺ located in coordination-unsaturated microenvironment. For sample treated with dilute nitric acid solution for 6 (#2) and 60 min (#3), this situation may be favorable the reduction of Mn⁴⁺ to Mn³⁺ at lower temperature as a result of the surface electronic structure changed on the surface Mn-rich particles. The peak at about 282°C can be assigned to removal of nonstoichimetric excess oxygen accommodated within the lattice. It is obvious that the position shifted to lower temperatures for the treated samples, indicating the better reducibility. The TPR results suggest that high reducibility was achieved after the treatment with acid in this work, which has been generally accepted that good catalytic activity depends on the surface Mn-rich particles. Free oxygen vacancy was produced during whole reaction, which can serve as active sites and can increase the oxygen exchange rate, favoring the interaction with CO. The corresponding concentrations of O₆ ad (adsorbed oxygen species)/O₇ lattice (lattice oxygen species) were obviously elevated (Fig. S3), which was in good accordance with the observed catalytic activities and H₂-TPR results.

In this work the method of acid treatment create B-site (rich) terminated perovskite surface to overcome their fundamental flaw for catalytic activity, meanwhile, leading to an increased surface area (Fig. S2). In order to eliminate the surface area effect, the apparent activation energy (Eₐ) of CO oxidation was calibrated (as shown in Supporting Information Fig. S4). By comparing the Eₐ values of catalysts, one can evaluate their catalytic performance. The lower the Eₐ value is, the easier is the complete oxidation of CO. The results clearly revealed that CO oxidation over three samples exhibits a surface-dependence catalytic activity similar to high-index planes dependence in some binary oxides systems (e.g. Co₃O₄ and Cu₂O), which are supposed to provide more active sites in either environments. However, the facets control for ternary perovskite oxides is much more difficult. Therefore, this method applied here may give an alternative choice for enhancing surface dependent catalytic activities.

In summary, we have developed a reliable and ready method to create B-site (rich) terminated perovskite surface for controllable selective wet-etching of perovskite-type oxides. Our wet-etching method can be applied to other perovskite-type oxides. We thus provide the fundamental understanding of metal oxide surfaces, if properly controlled, one can radically enhance the catalytic activity.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grants 90923034, 21131002, and 21201075) and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP Grant 21100661130005), and Natural Science Foundation of Jilin Province (Grants 20140520080JH).

Notes and references

1 S.-H. Yu, F. Tao, and J. Liu, ChemCatChem, 2012, 4, 1445-1447.
2 C.-H. Cui, and S.-H. Yu, Acc. Chem. Res., 2013, 46, 1427-1437.
3 M. K. Debe, Nature, 2012, 486, 43-51.
4 Y. Li, and W. Shen, Chem. Soc. Rev., 2014, 43,1543-1574.
5 W. F. Libby, Science, 1971, 171, 499-500.
6 S. Royer, and D. Duprez, ChemCatChem, 2011, 3, 24-65.
7 D. Neagu, G. Tsekouras, D. N. Miller, H. Ménard, and J. T. S. Irvine, Nat. Chem., 2013, 5, 916-923.
8 J. D. Tascón, L. G. Tejucua, J. Chem. Soc. Faraday Trans., 1981, 77, 591-602.
9 C.-C. Tsai and H. Teng, Chem. Mater., 2006, 18, 367-373.
10 D. Fodor, L. Pacosová, F. Krumieich, and J. A. von Bokhoven, Chem. Comm., 2014, 50, 76-78.
11 W. Sugimoto, M. Shirata, Y. Sugahara, and K. Kuroda, J. Am. Chem. Soc., 1999, 121, 11601-11602.
12 H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, J. Am. Chem. Soc., 2007, 129, 7758-7759.
13 F. Li, Y. Zhan, T.-H. Lee, X. Liu, A. Chikamatsu, T.-F. Guo, H.-J. Lin,
14. X. Chu, K. Huang, M. Han, and S. Feng, Inorg. Chem., 2013, 52, 4130-4132.
15. K. Huang, X. Chu, W. Feng, C. Zhou, W. Si, X. Wu, L. Yuan, S. Feng, Chem. Eng. J., 2014, 244, 27-32.
16. C. N. Borca, B. Xu, T. Komesu, H.-K. Jeong, M. T. Liu, S. H. Liou, P. A. Dowben, Surf. Sci., 2002, 512, L346-L352.
17. H. Dulli, P. A. Dowben, S. –H. Liou, and E. W. Plummer, Phy. Rev. B, 2000, 62, 629-632.
18. Z. Cai, Y. Kuru, J. W. Han, Y. Chen, and B. Yildiz, J. Am. Chem. Soc., 2011, 133, 17696-17704.
19. F. Teng, W. Han, S. Liang, B. Gageu, R. Zong, Y. Zhu, J. Catal., 2007, 250, 1-11.
20. S. Liang, F. Teng, G. Bulgan, Y. Zhu, J. Phys. Chem. C, 2007, 111, 16742-16749.
21. J. L. Fierro, J. M. Tascón, L. G. Tejeda, J. Catal., 1985, 93, 83-91; P. K. Gallagher, D. W. Johnson, E. M. Vogel, J. Am. Ceram. Soc., 1977, 60, 28-31.
22. T. Nakamura, M. Misono, Y. Yoneda, J. Catal., 1983, 83, 151-159.
23. N. A. Merino, B. P. Barbero, P. Eloy, L. E. Cadú, Appl. Surf. Sci., 2006, 253, 1489-1493.
24. H. Arandiyan, H. Dai, J. Deng, Y. Liu, B. Bai, Y. Wang, X. Li, S. Xie, J. Li, J. Catal., 2013, 307, 327-339.
25. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, and W. Shen, Nature, 2009, 458, 746-749.
26. M. Leng, M. Liu, Y. Zhang, Z. Wang, C. Yu, X. Yang, H. Zhang, and C. Wang, J. Am. Chem. Soc., 2010, 132, 17084-17087.
27. C. Hou, W. Feng, L. Yuan, K. Huang, S. Feng, CrystEngComm, 2014, 16, 2874-2877.