Robust plasmon waveguides in strongly-interacting nanowire arrays

A. Manjavacas and F. J. García de Abajo
Instituto de Óptica - CSIC, Serrano 121, 28006 Madrid, Spain
(Dated: June 11, 2008)

Arrays of parallel metallic nanowires are shown to provide a tunable, robust, and versatile platform for plasmon interconnects, including high-curvature turns with minimum signal loss. The proposed guiding mechanism relies on gap plasmons existing in the region between adjacent nanowires of dimers and multi-wire arrays. We focus on square and circular silver nanowires in silica, for which excellent agreement between both boundary element method and multiple multipolar expansion calculations is obtained. Our work provides the tools for designing plasmon-based interconnects and achieving high degree of integration with minimum cross talk between adjacent plasmon guides.

PACS numbers: 73.20.Mf,84.40.Az,78.67.-n,42.82.Gw

Electromagnetic modes in metal surfaces known as plasmons can propagate along millimeters in metallic structures at near-infrared frequencies [1], thus providing a plausible substitute for the electrical impulses used in current electronic circuits operating at microwave clock frequencies [2, 3]. Several designs of plasmon interconnects have been prototyped in recent years, including metallic waveguides of finite cross section in symmetric [4, 5] and asymmetric [6] environments, channels cut into flat surfaces [7], plasmon-band-gap structures based upon periodic corrugations [8], and plasmon hopping in arrays of nanoparticles [9, 10]. Plasmon modes can be tuned in frequency, and their spatial distribution molded, by tailoring the geometry of metallic structures on the nanometer scale. In particular, extreme plasmon confinement has been achieved in narrow insulator films buried inside metal [11]. Actually, buried structures provide a natural but technologically challenging approach to compact integration. In contrast to that, open plasmonic geometries involve electromagnetic fields extending significantly away from the metal [3, 4, 7, 8, 9, 10], and consequently producing a substantial degree of cross-talk between neighboring waveguides [12].

In this Letter, arrays of parallel metallic nanowires are shown to provide a versatile and tunable platform for highly-integrated plasmon interconnects. The propagation distance and degree of confinement of the plasmon guided modes depend strongly on the separation between wires. Individual wire modes are recovered at large separations, while mode hybridization is observed when the spacing is reduced. Gap modes are observed at small separations, highly localized in the regions between two adjacent wires. We use both the boundary element method (BEM) [13] and a two-dimensional multiple-elastic-scattering multipolar expansion of the fields for straight cylinders (2D-MESME) [14], with the two approaches resulting in complete agreement on the scale of the plots. These methods provide rigorous solutions of Maxwell’s equations in frequency space for materials described by local dielectric functions and separated by abrupt interfaces. We focus on silver nanowires of circular and square cross sections embedded in silica. The dielectric functions of silver [15] and silica [16] have been taken from optical data. The proposed guiding mechanism is demonstrated to be tolerant to asymmetry in wire dimers and sharp turns of subwavelength radius.

The localized plasmons sustained by our structures can be conveniently characterized using the photonic local density of states (LDOS), defined by analogy to its electronic counterpart as the combined local intensity of all eigenmodes of the system under investigation. We in particular consider the LDOS relative to its value in vacuum, $\omega^2/3\pi^2c^3$. The LDOS is proportional to the radiative decay rate of excited atoms [17], which we in turn obtain using BEM from the imaginary part of the self-induced decay rate of excited atoms [17], which we in turn obtain using BEM from the imaginary part of the self-induced electric field acting back on a dipole [18]. We have double checked our results by comparing with the excess of space-integrated total density of states (DOS) with respect to vacuum, which is directly accessible through 2D-MESME [17].

We start by considering a dimer formed by two 200-nm circular silver wires embedded in silica, as shown in Fig. (a). The contour plots of Fig. (b)-(e) show the DOS resolved in contributions of different momentum $k_\|$, parallel to the wires for various separations between wire surfaces (d). A strongly bound mode is observed at small separation $k_\|$, with $k_{\|}$ well above k_h, the momentum of light in the host silica. The spatial extension of this gap mode is limited to the inter-wire region (see inset), and thus, it is expected to interact very weakly with other structures sitting in the vicinity of the wires but far from the gap. This mode evolves continuously for increasing inter-wire distance to become a hybridized monopole-monopole mode of induced-charge pattern $(+\cdot\cdot\cdot(-))$ aligned with the dimer axis [Fig. (c)-(d)]. This is in contrast to the $(+\cdot\cdot\cdot(+))$ dipole-dipole plasmon in particle dimers [19], which is the lowest-energy mode according to plasmon chemistry arguments [20]. In this sense, wires are distinctly different from particles because charge neutrality is guaranteed by oscillations along the rods for finite $k_\|$, thus making two-dimensional monopoles possible. At sufficiently large
distance, single-wire plasmons of \(m = 0 \) azimuthal symmetry are recovered [cf. Fig. 1(e) and Fig. 2(b); see Ref. [21] for analytical expressions of single-wire plasmons].

Fig. 2 proves that the gap mode is really local. The lowest-frequency plasmon branch of the trimers in Figs. 2(c) and 2(d) follows approximately the dispersion relation of the gap mode in the dimer with the same gap distance \(d = 10\,\text{nm} \) [Fig. 1(c)], although closer examination reveals the splitting of this mode into two very close modes [see lower inset in Fig. 2(d)]. In the infinite wire array of Fig. 2(e) a plasmon branch of gap modes is found for each value of the transverse momentum \(k_t \), parallel to the array plane and perpendicular to the wires \((k_t = 0 \) in the figure). Incidentally, propagation across wires mimics plasmon hopping in particle chains [22].

Nearly-touching trimers can be regarded as dimers formed by two coupled gaps, and similarly, \(N \)-wire arrays behave as structures formed by \(N - 1 \) gaps. The large degree of plasmon localization observed for small \(d \) suggests using a tight-binding model [23], in which an unperturbed Hamiltonian \(H_0 \) describes uncoupled gap modes \(|j\rangle \) at sites \(j \), such that \(\langle j|H_0|j'\rangle = \omega_{k_t} \delta_{jj'} \), where \(\omega_{k_t} \) is the mode energy for fixed \(k_t \). Neighboring gaps can interact in this model via a potential \(V \), with non-zero matrix elements \(\langle j|V|j \pm 1\rangle = \Delta_k \), where \(\Delta_k \) is the hopping energy. Then, the two linear-trimer modes have energies \(\omega_{k_t} \pm \Delta_k / 2 \) [i.e., the dimer band lies halfway between the two trimer bands, which we have verified by comparison of Figs. 1(c) and 2(d)]. Also, the plasmon modes of an infinite, periodic wire array must have the form \(|\psi_k\rangle = \sum_j \exp(ikta) |j\rangle \) in virtue of Bloch’s theorem [23], where \(a \) is the period. These states diagonalize the full Hamiltonian \(H_0 + V \) and have energies \(\omega_{k_t} = \omega_{k_t} \pm \Delta_k \cos(k_t a) \). We have tested this formula in the array of Fig. 2(e), where the lower inset shows \(\omega_{k_t} \) as a function of \(k_t \) for \(k_t = 16\,\mu\text{m}^{-1} \) (solid curve) compared with the actual 2D-MESME calculation of the DOS. The unperturbed gap energy \(\omega_{k_t} = 1.18\text{eV} \) and the hopping parameter \(\Delta_k = 0.01\text{eV} \) have been taken from the dimer [Figs. 1(c)] and trimer [Figs. 2(d)] with the same value of \(d \), respectively. Similar agreement between model and full calculation is observed over the range of \(k_t \) under consideration.
by relatively large mode confinement. The tradeoff between confinement and propagation distance is clearly illustrated in the long-d behavior of the infinite array for $k_t = 0$ and $k_t = \pi/a$, with the former showing longer propagation and smaller phase velocity (see Fig. 3).

Interestingly, these analytical expressions apply to the large d limit as well, in which the tight-binding model is constructed based upon localized plasmons of the wires, showing similar agreement with rigorous DOS calculations. Tight-binding is thus the natural description of both the small and large d limits in the noted continuous evolution from the localized gap mode (small d) to the lowest-energy hybridized (monopole-monopole) wire modes (large d) [19].

The degree of plasmon localization increases with decreasing gap distance d. This is reflected in a reduction of the phase velocity $v_p = c_p k_h / k_i$ relative to the speed of light in silica, c_p, as shown in Fig. 3(a). The group velocity (no shown) is also reduced, so that gap modes become considerably slower than light in silica. The propagation distance is strongly-dependent on inter-wire distance [Fig. 3(b)]; the large confinement observed at small separations increases the relative weight of the electric field intensity inside the metal, where ohmic losses are produced in proportion to that intensity within linear response. Nevertheless, the gap mode involves electric field polarization mainly perpendicular to the wire surfaces near the gap, where light energy is concentrated, and this is beneficial to obtain longer propagation distances because the normal electric field inside the metal is reduced by its large dielectric function to fulfill the continuity of the normal electric displacement. This gives rise to propagation distances of the order of tens of microns for separations of tens of nanometers, accompanied

![FIG. 3: (a) Phase velocity of gap plasmon modes in silver wire dimers and infinite-arrays (for $k_t = 0$ and $k_t = \pi/a$) as a function of separation d for fixed wavelength $\lambda = 1550$ nm. (b) Propagation length L under the same conditions as in (a), obtained from $L = 1/2\text{Im}\{k_i\}$, where $\text{Im}\{k_i\}$ corresponds to the HWHM of the k_i-dependent DOS.](image)

![FIG. 4: Gap mode in co-planar and co-axial bi-tori compared with a straight-wire dimer for a gap distance $d = 10$ nm. Partial contributions to the LDOS are shown as a function of wavelength for a point in the center of the gap, both at fixed azimuthal number in tori ($m = 8$ for radius $b = 750$ nm and $m = 4$ for $b = 375$ nm) and at fixed parallel momentum in the straight dimer ($k_i \approx 10.7 \mu m^{-1}$, such that $k_i = m/b$). The curves are normalized to their maximum value.](image)

We find it convenient to define a figure of merit F for the waveguides expressed as the ratio between the propagation distance and the geometric mean of the mode diameter in the transverse directions. The quantities F^2 and F^3 should be roughly proportional to the number of logical elements that can be integrated using a given waveguiding scheme with two and three dimensional packing, respectively. We obtain $F \approx 540$ for the wire dimer of Fig. 3 at a separation of 10 nm. This has to be compared with values of $F \lesssim 50$ for channel plasmon polaritons [7] and particle arrays [10]. We conclude that wire arrays yield high values of F, also improved with respect to those obtained for single wires (e.g., $F \approx 100$ at 100 nm radius and 1550 nm wavelength). The decrease in propagation length is the price to pay for plasmon confinement, but wire arrays seem to perform optimally with respect to the figure of merit F.

Reliable plasmon waveguides must be robust against fabrication imperfections and sharp turns. Next, we show that gap waveguides satisfy these requirements. In particular, curved waveguide paths produce radiative losses originating in coupling to propagating light waves when translational invariance is broken. We analyze this effect in Fig. 4 both for non-identical co-planar tori and for identical co-axial tori, using the prescription $k_i = m/b$ to compare with straight waveguide modes, where b is the toroidal radius (see insets) and m is the azimuthal momentum number. The calculations are performed using BEM, specialized for axially-symmetric geometries [13].
Radiative losses are still small compared to absorption for \(b = 750 \text{ nm} \) (cf. curves for straight wires and large-radius tori in Fig. 4, showing only \(\sim 5\% \) increase in peak width of curved versus straight wires due to radiative losses in the former), but they become sizable for shaper turns (the width increases by 40\% and 95\% for \(b = 375 \text{ nm} \) in co-axial and co-planar torii, respectively).

FIG. 5: Gap mode against variations of wire radius (a) and shape (from circular to square cross section) (b). The LDOS is represented as a function of \(k/\lambda /2\pi \) for a point at the center of each dimer and a wavelength \(\lambda = 1550 \text{ nm} \). One of the wires in the dimers of (a) has a fixed radius of 100 nm, while various values of the radius are considered for the neighboring wire: 100 nm, 90 nm, and 80 nm, from top to bottom. The distance between wires is \(d = 10 \text{ nm} \) in all cases. The horizontal diameter of the wires in (b) is 200 nm for all cross sections.

Guided gap plasmons are also robust against dimer asymmetries, as shown in Fig. 5(a) for fixed wavelength \(\lambda = 1550 \text{ nm} \) and gap distance \(d = 10 \text{ nm} \). Variations of up to 20\% in the relative radius of neighboring wires produce just a small, tolerable shift in \(k|| \). However, wire shape is a critical parameter, which we study in Fig. 5(b) through the transition from circular to square cross section. This produces a shift of the gap plasmon towards larger \(k|| \), consistent with the higher degree of confinement that occurs when evolving from the line-like contact of the circular wires to the planar waveguide defined by the square wires, the guided modes of which have been the subject of recent experimental investigation [11]. This increase in confinement is accompanied by peak broadening originating in larger overlap of the gap mode with the metal (ohmic losses). The observed extreme sensitivity to shape and separation of the wires imposes severe limits to the precision required in the fabrication of the arrays in order to maintain a homogenous mode wavelength along the waveguide.

In conclusion, we have shown that gap plasmon modes existing in the region defined by two neighboring nanowires are excellent candidates to guide signals over tens of microns. These modes are quite robust against both unintended variations of wire cross section and curvature in short turns, and thus, gap plasmons can be guided with minimum losses over complicated winding paths of micrometer dimensions. Furthermore, gap modes are highly confined to the gap region, so that intermixing between neighboring wire-dimers can be minimized, thus preventing waveguide cross-talk and allowing highly-integrated plasmonic circuits in three dimensional spaces.

* Corresponding author: jga@cfmac.csic.es

[1] D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[2] E. Ozbay, Science 311, 189 (2006).
[3] R. Zia et al., Mater. Today 9, 20 (2006).
[4] J. Takahara et al., Opt. Lett. 22, 475 (1997).
[5] P. Berini, Phys. Rev. B 61, 10484 (2000).
[6] P. Berini, Phys. Rev. B 63, 125417 (2001).
[7] S. I. Bozhevolnyi et al., Nature 440, 508 (2006).
[8] S. I. Bozhevolnyi et al., Phys. Rev. Lett. 86, 3008 (2001).
[9] J. R. Krenn et al., Phys. Rev. Lett. 82, 2590 (1999).
[10] S. A. Maier et al., Nat. Mater. 2, 229 (2003).
[11] H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
[12] J. A. Conway, S. Sahni, and T. Szkopek, Opt. Express 15, 4474 (2007).
[13] F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998); Phys. Rev. B 65, 115418 (2002).
[14] F. J. García de Abajo et al., Phys. Rev. Lett. 91, 143902 (2003); Phys. Rev. B 68, 205105 (2003).
[15] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[16] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
[17] D. P. FusSELL, R. C. McPhedran, and C. Martijn de Sterke, Phys. Rev. E 70, 066608 (2004).
[18] L. A. Blanco and F. J. García de Abajo, Phys. Rev. B 69, 205414 (2004).
[19] I. Romero et al., Opt. Express 14, 9988 (2006).
[20] P. Nordlander et al., Nano Lett. 4, 899 (2004).
[21] J. C. Ashley and L. C. Emerson, Surf. Sci. 41, 615 (1974).
[22] K. J. Webb and J. Li, Phys. Rev. B 72, 201402(R) (2005).
[23] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).