Cardiac Manifestations of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 Infection

Alireza Ghodsi 1, Elnaz Mahmoudabadi 1, Sara Ghahremani 2 and Abdolreza Malek 2, *

1 Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
*Corresponding author: Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: malekar@mums.ac.ir

Received 2020 October 04; Revised 2020 December 24; Accepted 2020 December 28.

Abstract

Context: Multisystem inflammatory syndrome in children (MIS-C) is an emerging condition after the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, termed COVID-19. This study aimed to describe the cardiac manifestations of children diagnosed with MIS-C.

Evidence Acquisition: This narrative review was conducted by searching the PubMed, Scopus, and Google Scholar databases to review MIS-C cardiac manifestations up to September 30, 2020. The demographic features, past medical history, clinical signs and symptoms, cardiac involvement, and the type of COVID-19 diagnosis confirmation were extracted.

Results: In many children, MIS-C seems to be a post-infectious complication of the COVID-19 infection. This syndrome affects multiple organs and has various clinical manifestations mimicking Kawasaki disease. Patients frequently present with persistent fever, kidney injury, gastrointestinal (GI) problems, neurologic symptoms, mucosal changes, conjunctivitis, and cardiac involvement. Children with MIS are more likely to present with hypotension, shock, and cardiac dysfunction, rather than coronary artery abnormalities and arrhythmia. Children with MIS need close observation; some need to be hospitalized, and a few may need a Pediatric Intensive Care Unit (PICU) admission. Treatment currently includes anticoagulants, IV immunoglobulin, and anti-inflammatory drugs.

Conclusions: As a novel syndrome associated with SARS-CoV-2 infection, MIS-C is potentially lethal. Cardiac manifestations, including coronary and myocardial involvement, are common and should be carefully identified. With prompt diagnosis and proper treatment, most children will survive, but the outcomes of the disease are unknown, so long-term follow-ups are required.

Keywords: Multisystem Inflammatory Syndrome in Children, COVID-19, SARS-CoV-2, Cardiac Involvement

1. Context

The SARS-CoV-2 infection, termed COVID-19, has spread very quickly and affected all ages, even newborns (1, 2). Initially, there was a misconception among the researchers believing that the virus does not affect children. However, it was then proposed that children are usually asymptomatic or present mild symptoms, but a complete immunity cannot be proposed for this age group (3). Since late April 2020, multiple studies from Europe and the United States showed that 2% - 6% of SARS-CoV-2-infected children exhibited a severe multi-system inflammatory syndrome with similarities to Kawasaki disease (4-6).

As there is no comprehensive testing, the true incidence of this severe condition in pediatrics has remained unclear. This significant hyper-inflammatory response can cause cardiovascular disorders, and some of these children may deteriorate faster and need admission to the Pediatric Intensive Care Unit (PICU) due to cardiogenic shock or acute left ventricular dysfunction (7). Apart from cardiac manifestations, various clinical symptoms have also been reported, including neurological, renal, significant gastrointestinal (GI), and mild respiratory symptoms, as well as rashes and stomatitis (8). Although it is still not fully understood whether this multisystem inflammatory syndrome in children (MIS-C) is a primary complication of COVID-19 infection or a post-infectious complication, a correlation is highly suggestive based on epidemiologic data (7).

There is little information about the cardiac involvement associated with COVID-19 in pediatric cases, and most of the studies on cardiac involvement are case reports or case series. It is also possible that children with an underlying cardiac disease are at a higher risk of experiencing
severe cardiac complications following the COVID-19 infection (9). Reports on MIS-C have shown coronary artery involvement, myocarditis, ventricular dysfunction, hemodynamic instability, and PICU admission, all of which suggest that cardiac dysfunction might be a notable risk factor for severe SARS-CoV-2 infection in pediatrics (10). Therefore, a literature review in this regard would be beneficial. This study aimed to review and summarize the available evidence on the potential cardiac clinical presentations in children with MIS to give a better perspective on management and care for these patients.

It should be noted that different terms have been used to refer to this novel condition, such as multisystem inflammatory syndrome in children (MIS-C), hyperinflammatory shock in children with COVID-19, "Coronasacki", "Kawashocky", Pediatric COVID-19-associated inflammatory disorder (PCAID), and pediatric multisystem inflammatory syndrome (PMIS) (7). In this review article, we continue to use the term MIS-C.

3. Definition of MIS-C

The three definitions of MIS-C, by the World Health Organization (WHO) (12), the Centers for disease control and prevention (CDC) (13), and the Royal College of Pediatrics and Child Health (RCPCH) (14), are presented in Table 1. The presence of fever, multisystem organ involvement without alternative plausible diagnoses, laboratory evidence of inflammation, and recent exposure to a COVID-19 case or evidence of COVID-19 infection are the key elements in all MIS-C cases. But, some signs, including fever duration and organ involvement, vary among these criteria.

4. Clinical Manifestation

The available information regarding the syndrome shows that the age of patients ranged from two months to 20 years, and the majority of cases were previously healthy (15, 16). Almost all affected children had a persistent fever for \(\geq 4 \) days and GI symptoms, including abdominal pain, diarrhea, and vomit. Other common clinical manifestations were mucocutaneous changes resembling Kawasaki disease (skin rash and conjunctivitis), extremity edema, lymphadenopathy, headache, mild respiratory distress, myalgia, fatigue, and cardiac symptoms (Table 2). Some patients presented with shock and hypotension requiring PICU admission (17, 18). The cardiac findings in MIS-C patients are divergent from Kawasaki disease’s manifestations. Children with this syndrome were more likely to present with hypotension, shock, and cardiac dysfunction, rather than coronary artery abnormalities (Figure 1) (19).

5. COVID-19 Infection

Epidemiological information indicates that SARS-CoV-2 is the possible cause of the syndrome, but the causality is unknown (1). Based on the studies mentioned in Table 2, the positivity percentage of the COVID-19 reverse-transcriptase protein chain reaction (RT-PCR) test varies from 0% to 100%. In most reports, it was positive in less than 50% of cases. On the other hand, the majority of the studies had evidence of positive immunoglobulin G (IgG) antibodies. These data suggest that a post-infectious disease is more likely to be responsible for this condition than an active infection (44).

6. Cardiac Involvement

6.1. Cardiac Dysfunction

In most cases diagnosed with MIS-C, left ventricular systolic dysfunction has been reported (Table 2). In the first
Fever

Elevated inflammatory factors (e.g., CRP, C-reactive protein, echocardiography; CXR, chest X-ray; ESR, erythrocyte sedimentation rate; GI, gastrointestinal; IL, interleukin; LDH, lactic acid dehydrogenase; MIS-C, multisystem inflammatory syndrome in children; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PT, prothrombin time; PTT, partial thromboplastin time; SARS-CoV-2 RT-PCR, reverse transcriptase-polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus.

Table 1. Case Definition of Multisystem Inflammatory Syndrome in Children

WHO	CDC	NHS-the Royal College of Pediatrics and Child Health
Age (years)	0 - 19	Children
Fever	Fever ≥ 3 days	Subjective persistent fever ≥ 24 hours or documented fever > 38.0°C for ≥ 24 hours
		Persistent fever > 38.5°C
Clinical findings	Mucocutaneous inflammation signs (e.g., stomatitis), bilateral non-purulent conjunctivitis or rash, shock or hypotension, ventricular dysfunction, valvulitis, pericarditis, or coronary involvement (including an increased level of NT-proBNP (troponin or echo findings), acute Gl manifestations, including abdominal pain, diarrhea, or vomiting	
	Evidence of clinical deterioration requiring hospital admission, in addition to multiple (≥ 2) organ dysfunction (renal, dermatologic, cardiovascular, respiratory, GI, hematologic, or neurologic)	
	Abnormal fibrinogen level, hypoalbuminemia, high D-dimer and ferritin amount Some: acute kidney injury, anemia, coagulopathy, thrombocytopenia, elevated IL-6, elevated IL-10, hypertransaminasemia, proteinuria, high troponin, increased creatine kinase level, elevated triglycerides, high LDH	
Laboratory findings	Elevated inflammatory factors (e.g., CRP, ESR, or procalcitonin) evidence of coagulopathy in laboratory data (PT, PTT, INR, and D-dimer)	
	Elevated ESR, CRP, LDH, procalcitonin, fibrinogen, D-dimer, ferritin, IL-6, hypoalbuminemia neutrophilia; lymphocytopenia	
	Abnormal fibrinogen level, hypoalbuminemia, high D-dimer and ferritin amount Some: acute kidney injury, anemia, coagulopathy, thrombocytopenia, elevated IL-6, elevated IL-10, hypertransaminasemia, proteinuria, high troponin, increased creatine kinase level, elevated triglycerides, high LDH	
Evidence of COVID-19 infection	Positive for SARS-CoV-2 infection by serology, antigen test, or RT-PCR or exposure to patients with COVID-19 infection	
	RT-PCR, or antigen test, or serology positive for COVID-19 or possible contact with COVID-19 patients within a month before the initiation of clinical features	
	SARS-CoV-2 RT-PCR testing may be positive or negative	
Exclusion of other microbial causes	Exclusion of any other infectious causes of inflammation, including toxic shock syndrome, bacterial sepsis, staphylococcal or streptococcal infections	
	Exclusion of alternative plausible diagnoses	
	Exclusion of any other microbial cause, including infectious myocarditis, bacterial sepsis, and staphylococcal/streptococcal toxic shock syndromes	
Additional comments	MIS-C must be considered in children with characteristics of toxic shock syndrome or typical or atypical Kawasaki disease	
	Consider MIS-C in any pediatric death with evidence of COVID-19 infection. It should be considered in children with features of typical or atypical Kawasaki disease who meet the case definition for MIS-C	
	Children may fulfill full or partial criteria for Kawasaki disease	

Ghodsi A et al.

Arch Pediatr Infect Dis. 2021; 9(4):et09915.
6.2. Laboratory Findings

The elevated troponin and B-type natriuretic peptide (BNP)/pro-BNP levels have been reported in many patients with MIS-C. In most studies, the elevated BNP and troponin levels have been assessed as biomarkers to diagnose myocardial injury in the absence of cardiac magnetic resonance imaging (CMRI) or myocardial biopsies (15).

6.3. Coronary Involvement

Most reports have mentioned coronary involvement in 0-40% of cases (Table 2) (16, 21, 24, 26, 41). Mild coronary artery dilation with z-scores of 2 - 2.5 has been reported in most cases. However, large coronary artery aneurysm cases have also been mentioned. Some studies found the late development of coronary artery dilation, which necessitates an ongoing follow-up of MIS-C patients.

6.4. ECG Findings

Some case series reported rhythm abnormalities with variable severity in 4% - 58% of patients (Table 2) (18, 22). The most frequently reported arrhythmic manifestations were QTC prolongation, ST-segment changes, and premature atrial or ventricular beats, which all are non-specific. Whittaker et al. (18) reported first- and second-degree ativoventricular blocks, and two other studies mentioned atrial fibrillation (18, 33). Hemodynamic collapse and the need for extracorporeal membrane oxygenation (ECMO) support due to sustained dysrhythmias have also been reported in these patients (18, 24).

6.5. Management

This syndrome is a newly reported condition, and only a few studies have addressed it so far. Our knowledge about it is, therefore, limited, and the treatment of children with MIS has been based on the experts’ advice and the management of Kawasaki disease. Due to the similarity of the symptoms, the treatment method for adults with COVID-19 and other systemic inflammatory diseases can also be used in pediatrics. Management of these children requires a multidisciplinary care team comprising pediatric specialists in cardiology, infectious disease, critical care, and rheumatology.

Generally, the management is decided based on symptoms and their severity. Due to the potential shortage of drug supplies in a pandemic and considering side effects, pharmacotherapy is not recommended for non-hospitalized children. For children who present with mild symptoms, supportive care, including respiratory support and fluid resuscitation, is, therefore, recommended. However, children with hemodynamic instability and severe illness require PICU admission, mostly for inotropic support, which was reported in 20-100% of the cases (15-18, 20-22, 24-27, 30-35, 37, 38). Some of the PICU-admitted children required a veno-arterial (V-A) support (0% - 28%) (15, 17, 18, 20, 24, 30, 33).

Figure 1. Schematic representation of clinical signs of MIS-C patients (both CDC and WHO criteria are shown)
Various treatments have been suggested, but their effectiveness is still questionable. Furthermore, these treatments are based on experts’ opinions with no evidence to affirm them.

6.6. Cardiac Support

As mentioned above, a large proportion of children presenting with hemodynamic instability required acute resuscitation. Therefore, it is necessary to follow the pediatric resuscitation guidelines (51). Children suspicious of ventricular dysfunction and cardiogenic shock should receive smaller fluid blouses (e.g., 10 mg/kg), with an evaluation of the signs of fluid overload before each administration.

6.7. Immunomodulatory Therapy

The advantages of using immunomodulatory therapy in the treatment of Kawasaki disease, as well as other systemic inflammatory disorders, are well established (52, 53). An anti-inflammatory therapy, including intravenous immunoglobulins (IVIGs) and corticosteroids, was used in most patients, and a few cases also received an anti-inflammatory dosage of aspirin (15, 16, 18, 20-22, 24, 26, 31, 32, 34-38). It is critical to remember that the administration of IVIG in patients with cardiac dysfunction must be slower to reduce the risk of fluid overload. The dosage of corticosteroids is based on clinical judgment, but in more severe patients, using a low dosage is recommended.

The assessment of the pattern of cytokine storm in patients with MIS-C showed that an important component of this disorder is macrophage activation, as it is also observed in Kawasaki disease and other autoimmune disorders such as systemic lupus erythematosus (35, 54). Therefore, corticosteroids are another option in the treatment of MIS-C patients, as they can modulate this condition. However, corticosteroids may cause hypertension that can further exacerbate the underlying cardiac problem (45).

Two treatment protocols with corticosteroids have been proposed. The first method involves an intravenous injection of 0.8 mg/kg methylprednisolone, twice a day for 5 - 7 days or until achieving a normal CRP level and then continuing with oral treatment with 2 mg/kg/day for 2 - 3 weeks. The second protocol includes intravenous methylprednisolone 10 - 30 mg/kg/day for three days, followed by oral prednisone/prednisolone 2 mg/kg/day for four days or until achieving a normal CRP level and then tapering the treatment over 2 - 3 weeks. It is important to know that corticosteroids should not be administered in an active infection phase (1).

In some studies, cytokine blockers have been used as a supplemental therapy, for example, interleukin 1 receptor antagonist (e.g., anakinra), interleukin 6 (IL-6) inhibitors (e.g., tocilizumab), and tumor necrosis factor (TNF)-α inhibitors (e.g., infliximab) (16, 18, 20, 22-25, 27, 29-31, 34). These drugs can be prescribed for children who do not respond to routine treatments.

6.8. Antiplatelet Treatment and Anticoagulation

Hypercoagulable state, blood stasis due to immobilization, possible endothelial injury, and ventricular dysfunction are the proposed reasons for the increased risk of thrombotic complications. As a result, anticoagulant therapy should be considered based on coagulation tests and symptoms (55, 56).

6.9. Antiviral Therapy

The benefits of antiviral therapy, such as remdesivir, for children with this syndrome are still unknown (57, 58). The reports suggest that MIS-C is more likely a post-infectious complication in children rather than an active infection. Nonetheless, antiviral drugs could be considered in patients with a positive RT-PCR test, after consulting an infectious disease specialist.

7. Conclusions

In conclusion, children seem to proceed better with the novel coronavirus infection than adults. On the other hand, some children show signs and symptoms of MIS-C, which is a severe complication of the disease. Pediatricians should be aware of this syndrome and differentiate it from other differential diagnoses, including the Kawasaki disease. These children can quickly deteriorate and should closely be observed. The etiology of MIS-C is not yet fully understood, and treatment is mostly based on experts’ opinions. More studies are, therefore, required to define evidence-based management for this new syndrome, and our study played a part in this literature contribution.

Footnotes

Authors’ Contribution: All authors contributed to the study design, data collection, writing, and preparing this article.

Conflict of Interests: The authors declare no conflict of interest.

Funding/Support: The authors received no specific funding for this work.
associated with Severe Acute Respiratory Syndrome Coronavirus 2 Infection (MIS-C): A Multi-institutional Study from New York City. J Pediatr. 2020;224:24–9. doi: 10.1016/j.jpeds.2020.06.045. [PubMed: 32553861]. [PubMed Central: PMC7297760].

31. Greene AG, Saleh M, Rosenman E, Sinert R. Toxic shock-like syndrome and COVID-19: Multisystem inflammatory syndrome in children (MIS-C). Am J Emerg Med. 2020;38(11):2492.e5-6. doi: 10.1016/j.ajem.2020.05.171. [PubMed: 32523619]. [PubMed Central: PMC7294660].

32. Rauf A, Vijayan A, John ST, Krishnan R, Latheef A. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series. J Pediatr Infect Dis Soc. 2020;9(3):393–8. doi: 10.1093/pjids/piaa061. [PubMed: 32447249]. [PubMed Central: PMC7319414].

33. Deza Leon MP, Redzepi A, McGrath E, Abdel-Haq N, Shaqawleh A, Sethuraman U, et al. COVID-19-Associated Pediatric Multisystem Inflammatory Syndrome. J Pediatric Infect Dis Soc. 2020;9(3):407–8. doi: 10.1093/pjids/piaa061. [PubMed: 32447249]. [PubMed Central: PMC7319414].

34. Chiotos K, Rassiti H, Behrens EM, Blatz AM, Chang J, Diorio C, et al. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series. J Pediatric Infect Dis Soc. 2020;9(3):393–8. doi: 10.1093/pjids/piaa061. [PubMed: 32461092]. [PubMed Central: PMC7339550].

35. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):169. doi: 10.1080/s13634082-000590-8. [PubMed: 32485055]. [PubMed Central: PMC7266282].

36. Jain MK, Sahu SK, Behera JR, Patnaik S. Multisystem Inflammatory Syndrome in Children Associated with COVID 19 Treated with Oral Steroid. Indian J Pediatr. 2021;88(1):106. doi: 10.1007/s12098-020-04397-4. [PubMed: 32930973]. [PubMed Central: PMC7490472].

37. Heidemann SM, Tilford B, Bauerfeld C, Martin A, Garcia RU, Yagiela J, et al. Three Cases of Pediatric Multisystem Inflammatory Syndrome Associated with COVID-19 Due to SARS-CoV-2. Am J Case Rep. 2020;21:e925779. doi: 10.12659/JCR.925779. [PubMed: 32796562]. [PubMed Central: PMC7447294].

38. Grimaud M, Starck J, Levy M, Marais C, Chareyre J, Khraiche D, et al. Acute myocarditis and multisystem inflammatory disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):169. doi: 10.1080/s13634082-000590-8. [PubMed: 32485055]. [PubMed Central: PMC7266282].

39. Torres JP, Izquierdo G, Acuna M, Pavez D, Reyes F, Fritts A, et al. Multisystem inflammatory syndrome in children (MIS-C): Report of the clinical and epidemiological characteristics of cases in Santiago de Chile during the SARS-CoV-2 pandemic. Int J Infect Dis. 2020;100:75–81. doi: 10.1016/j.ijid.2020.08.062. [PubMed: 32888282]. [PubMed Central: PMC7452906].

40. Dolnikoff M, Ferreira Ferranti J, de Almeida Monteiro RA, Duarte Neto AN, Soares Gomes-Gouvea M, Viu Degaspore N, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4(1):790-4. doi: 10.1016/S2352-4642(20)30357-4. [PubMed: 32828177]. [PubMed Central: PMC7440866].

41. McCreindle BW, Manlihot C. SARS-CoV-2-Related Inflammatory Multisystem Syndrome in Children: Different or Shared Etiology and Pathophysiology as Kawasaki Disease? JAMA. 2020;324(2):246–8. doi: 10.1001/jama.2020.10570. [PubMed: 32516676].

42. Rodriguez-Gonzalez M, Castellano-Martinez A, Cascales-Poyatos HM, Perez-Reviron AA. Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World J Clin Cases. 2020;8(21):5250-83. doi: 10.12998/wjcc.v8.i21.5250. [PubMed: 31269266]. [PubMed Central: PMC7674714].

43. Matsubara D, Kauffman HII, Wang Y, Calderon-Anoyas R, Nadaraj S, Elias MD, et al. Echocardiographic Findings in Pediatric Multisystem Inflammatory Syndrome Associated With COVID-19 in the United States. J Am Coll Cardiol. 2020;76(7):1947-61. doi: 10.1016/j.jacc.2020.08.056. [PubMed: 32890666]. [PubMed Central: PMC7467656].

44. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi: 10.1001/jamacardio.2020.0950. [PubMed: 32218161]. [PubMed Central: PMC7097841].

45. Creel-Bulos C, Hockstein M, Amin N, Melhem S, Triuong A, Sharifpour M. Acute Cor Pulmonale in Critically Ill Patients with Covid-19. N Engl J Med. 2020;382(21), e70. doi: 10.1056/NEJMoa2010459. [PubMed: 32749565]. [PubMed Central: PMC7281714].

46. Zheng YY, Ma YT, Zhang JY, Xie K. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):529-60. doi: 10.1038/s41569-020-0360-5. [PubMed: 32199004]. [PubMed Central: PMC7095524].

47. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Card Fail. 2020;26(5):470-5. doi: 10.1016/j.cardfail.2020.04.009. [PubMed: 32157331]. [PubMed Central: PMC7660030].

48. Edelson DP, Sasson C, Chan PS, Atkins DL, Aziz K, Becker LB, et al. Interim Guidance for Basic and Advanced Life Support in Adults, Children, and Neonates With Suspected or Confirmed COVID-19: From the Emergency Cardiovascular Care Committee and Get With The Guidelines-Resuscitation Adult and Pediatric Task Forces of the American Heart Association. Circulation. 2020;141(25):e933–43. doi: 10.1161/CIRCULATIONAHA.120.047463. [PubMed: 32706995]. [PubMed Central: PMC7302067].

49. Pineton de Chambrun M, Luty CE, Beloncle F, Gousséf M, Mauhin W, Argaud L, et al. The Clinical Picture of Severe Systemic Capillary-Leak Syndrome Episodes Requiring ICU Admission. Crit Care Med. 2017;45(7):1216–23. doi: 10.1097/CCM.0000000000002496. [PubMed: 28622226].

50. Thompson PD, Myerburg RJ, Levine BD, Udelson JE, Kovacs RJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 8: coronary artery disease: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(2):e93–43. doi: 10.1161/CIRCOLOGYAHA.112.047463. [PubMed: 32706995]. [PubMed Central: PMC7302067].

51. Ghidisi A et al.
55. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. *J Am Coll Surg*. 2020;231(2):193-203 e1. doi: 10.1016/j.jamcollsurg.2020.05.007. [PubMed: 32422349]. [PubMed Central: PMC7227511].

56. Raval JS, Burnett AE, Rollins-Raval MA, Griggs JR, Rosenbaum L, Nielsen ND, et al. Viscoelastic testing in COVID-19: a possible screening tool for severe disease? *Transfusion*. 2020;60(6):1131-2. doi: 10.1111/trf.15847. [PubMed: 32374920]. [PubMed Central: PMC7267656].

57. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 - Final Report. *N Engl J Med*. 2020;383(19):1813-26. doi: 10.1056/NEJMoa2007764. [PubMed: 32445440]. [PubMed Central: PMC7262788].

58. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. *N Engl J Med*. 2020;383(19):1827-37. doi: 10.1056/NEJMoa2015301. [PubMed: 32453999]. [PubMed Central: PMC7377062].
| Author | Number of Cases | Age, y | Sex | Past Medical History | Ethnicity | Symptoms | Cardiac Involvement | Ventricular Function | Arteritis/ECG Changes | Troponin | PostNP/NSP | HF-PCR | SARS-CoV-2 Test | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Belhadjer et al. | 16 | 1-16 | | Previously healthy (13); asthmatic (2); overweight (BMI > 25) (5) | White (10); Black (1); Hispanic (1); Other (5) | Fever (3); cough (2); sore throat (5); decreased ventilation (3); conjunctivitis (3); rash (3); mouth sores (1); mental changes (1); nausea/vomiting (1); anxiety (2); tremors (1); dizziness (1) | Mild coronary dilatation (a score > 2.5) (4) (6); non-specific ST/T-wave abnormalities (9) | - | Elevated | Elevated | Elevated | Elevated | Elevated | |
| Toubiana et al. | 21 | 4-17 | 9M, 12F | | White (14); Black (3); Hispanic (1); Other (3) | Fever (21); cough (21); gastrointestinal symptoms (21); dilated coronary arteries (16); myocarditis (16); dysrhythmias (16); hypotension/shock (17); rhabdomyolysis (15); pericardial effusion (3); cervical lymphadenopathy (12); neurological features (16); rash (21); conjunctivitis (7) | Elevated | Elevated | Elevated | Elevated | Elevated | |
| Cheung et al. | 17 | 2-16 | 8M, 4F | Mild asthma (3) | White (12); Black (1); Asian (1); Other (3) | Fever (5); cough (4); headache (1); rash (2); mouth sores (1); diarrhea (2); myalgia (5); cervical lymphadenopathy (2); neurological problems (6); limb changes (10); pericardial effusion (3); diffuse ST elevation or diffuse T-wave abnormalities (10) | Elevated | Elevated | Elevated | Elevated | Elevated | Elevated | |
| Whitaker et al. | 30 | 6-14 | 8M, 22F | Congestive heart failure (7); dyspnea (1); rashes (2); rhabdomyolysis (1) | White (2); Black (1); Asian (1); Other (7) | Fever (5); cough (3); headache (1); rash (2); mouth sores (1); diarrhea (2); myalgia (5); cervical lymphadenopathy (2); neurological problems (6); limb changes (10); pericardial effusion (3); diffuse ST elevation or diffuse T-wave abnormalities (10) | Elevated | Elevated | Elevated | Elevated | Elevated | Elevated | |
| Dulingier et al. | 1 | 1-14 | M | Child abuse | Hispanic (1) | Persistent fever; GI symptoms; subarachnoid hemorrhage | - | - | - | - | Positive | - | - |
| Feldstein et al. | 186 | 5-12 | 15M, 31F | Previously healthy (155); comorbidities (1); asthma (1); obesity (1); chronic obstructive pulmonary disease (1); chronic obstructive pulmonary disease (1); bronchitis (1); rashes (1); odynophagia (3); conjunctivitis (3); fatigue (2); rash (2); myalgia (1); cough (2) | White (156); Black (4); Hispanic (5) | Fever (15); cough (15); headache (5); rash (5); odynophagia (3); conjunctivitis (3); fatigue (2); rash (2); myalgia (1); cough (2); no coronary artery aneurysm (3); sputum (2); chest pain (1) | Anomalies (91) | Elevated | Elevated | Elevated | Elevated | Elevated | Elevated | |
| DeSant et al. | 9/9 | 0-20 | 52M, 40F | Previous condition (19/19) | White (29); Black (3); Hispanic (15) | Persistent fever; GI symptoms; subarachnoid hemorrhage | - | - | - | - | Positive | - | - |
| Riphagen et al. | 8 | 4-14 | 5M, 3F | Previously healthy (6); asthma (2); allergic rhinitis (1); atopic dermatitis (1); other (1) | Afro-Caribbean (8) | Fever (5); cough (5); rhinorrhea (15); headache (1); rash (1); myalgia (2); asthenia (1); fever (5); cough (5); rhinorrhea (15); headache (1); rash (1); myalgia (2); asthenia (1) | Elevated | Elevated | Elevated | Elevated | Elevated | Elevated | |
| Weisbuch et al. | 4 | 5-15 | 1E, 3M | Previously healthy (2); hypothyroidism (1); asthma (1) | White (4) | Persistent fever; GI symptoms; subarachnoid hemorrhage | - | - | - | - | IgG positive (1) | - | - |

Table 2. Demographics, Clinical Manifestations, and Cardiac Involvement in Reports of Children WITH Multisystem Inflammatory Syndrome
Authors	Year	Gender	Race	Age Range	Initial Symptoms	Findings	Antibody Status	Cardiac Abnormalities	Other Findings
Licciardi et al. (2)	2021	10 M, 6 F	Caucasian, mixed race	3 - 12	Persistent fever, GI symptoms	Coronary dilation (3), myocarditis (7), LVEF 35% - Elevated (11)	Elevated (11)	11 cases were IgG+ (7/8)	
Borocco et al. (16)	2021	5 - 12 M, 8 F	Previously healthy (10); Persistent fever, GI symptoms	Coronary dilation (3)	Myocarditis (7); LVEF 35% - Elevated (11)	Elevated (11)	-		
Jones et al. (1)	2021	1 F	Latino or Hispanic	-	Persistent fever, respiratory symptoms	Conjunctivitis (1); Pericarditis (4)	Positive cervical lymphadenopathy		
Balasubramanian et al. (29)	2021	5 - 16 M, 2 F	None; Persistent fever, GI symptoms, asthmatic (2); overweight (4); asthma (2); overweight (4); asthma (2); overweight (0.6 kg/m²);	Peripheral edema; conjunctivitis; hypotension; peripheral edema	Rash; Irritability; Respiratory distress; Mucosal changes; Conjunctivitis; Hypotension; Pericarditis (4); Coronary artery (z-score 3.15) (1); Proximal coronary artery (z-score 2.6) (1); Prominent coronary artery (z-score 3.1) (1); Moderate LV dysfunction; reduced LV fractional shortening (8) LVEF < 50% (21); LVEF < 30% (4)	Elevated Positive - Positive	Positive	Positive	
Wolfler et al. (16)	2021	5 - 12 M, 8 F	None; Persistent fever, GI symptoms	Coronary dilation (3)	Myocarditis (7); LVEF 35% - Elevated (11); Elevated (11)	Elevated (11)	Two cases were IgG+ (8)		
Ghodsi A et al. (30)	2021	5 - 12 M, 8 F	None; Persistent fever, GI symptoms, asthmatic (2); overweight (4); asthma (2); overweight (4); asthma (2); overweight (0.6 kg/m²);	Peripheral edema; conjunctivitis; hypotension; peripheral edema	Rash; Irritability; Respiratory distress; Mucosal changes; Conjunctivitis; Hypotension; Pericarditis (4); Coronary artery (z-score 3.15) (1); Proximal coronary artery (z-score 2.6) (1); Prominent coronary artery (z-score 3.1) (1); Moderate LV dysfunction; reduced LV fractional shortening (8) LVEF < 50% (21); LVEF < 30% (4)	Elevated Positive - Positive	Positive	Positive	
Greene et al. (31)	2021	11 F	None	Persistent fever, rash, GI symptoms	Rash; GI symptoms; hypotension; peripheral edema	Elevated	Positive	Positive	
Rauf et al. (1)	2021	15 - 16 M, 5 F	None; Persistent fever, rash, GI symptoms, asthmatic (2); overweight (4); asthma (2); overweight (4); asthma (2); overweight (0.6 kg/m²);	Peripheral edema; conjunctivitis; hypotension; peripheral edema	Rash; Irritability; Respiratory distress; Mucosal changes; Conjunctivitis; Hypotension; Pericarditis (4); Coronary artery (z-score 3.15) (1); Proximal coronary artery (z-score 2.6) (1); Prominent coronary artery (z-score 3.1) (1); Moderate LV dysfunction; reduced LV fractional shortening (8) LVEF < 50% (21); LVEF < 30% (4)	Elevated Positive - Positive	Positive	Positive	
Deza Leon et al. (32)	2021	6 F	None	Persistent fever, rash, GI symptoms	Rash; GI symptoms; hypotension; peripheral edema	Elevated	Positive	Positive	
Chiotos et al. (34)	2021	6 M, 3 F	None	Persistent fever, rash, GI symptoms	Rash; GI symptoms; hypotension; peripheral edema	Elevated	Positive	Positive	
Blondiaux et al. (33)	2021	6 M, 3 F	None	Persistent fever, rash, GI symptoms	Rash; GI symptoms; hypotension; peripheral edema	Elevated	Positive	Positive	

Arch Pediatr Infect Dis. 2021; 9(4):e109915.
Authors	n	Age	Sex	Race	Symptoms	Enzyme Activity	Echocardiographic Findings	Other Lab Findings	Other Findings	
Rivera-Figueroa et al. (13)		20	10 M, 10 F	African-American	Persistent fever, multi-organ failure, shock, conjunctivitis, peripheral edema, mucosal changes	No	Elevated	Normal	-	
Grimaud et al. (38)		20	3-15	None	Fever, abdominal pain, diarrhoea, conjunctivitis, lymphadenopathy, fatigue	No	Elevated	Elevated	No cases were positive	
Raymond et al. (54)		1	F	None	Gastroenteritis, abdominal pain, rash, conjunctivitis, edema of hands and feet	No	Elevated	Positive	-	
Jain et al. (138)		1	M	-	Fever, tachycardia, diarrhea, abdominal pain, rash, conjunctivitis, lymphadenopathy	No	Elevated	Normal	-	
Heidemann et al. (41)		5-7	2 M, 1 F	-	Fever, conjunctivitis, dry and cracked lips, rash, abdominal pain, conjunctivitis	Dilation of the proximal left ventricle, decreased coronary artery size, left ventricular hypertrophy	Normal	Positive (1)		
Alnashri et al. (41)		16	M	-	Fever, diarrhea, vomiting, generalized abdominal pain, abdominal pain, conjunctivitis	No	Hypokinesia of inferior wall with an ejection fraction of 45%	Elevated	-	
Torres et al. (42)		27	14 M, 13 F	-	Fever, abdominal pain, diarrhea, conjunctivitis, lymphadenopathy, fatigue	No	Myocardial dysfunction detected	4.96	-	
Dolhnikoff et al. (43)		1	F	None	African-American	Fever, rash, conjunctivitis, lymphatic edema, fatigue	No	Diffuse lymphopenia with lymphoid hyperplasia and perivascular inflammation	Positive	-

Abbreviations: AV, atrio-ventricular; BiV, biventricular; ECMO, extracorporeal membrane oxygenation; ECG, electrocardiograms; F, female; GI, gastrointestinal; IQR, interquartile range; LVEF, left ventricular ejection fraction; RV, right ventricle; SD, standard deviation; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VT, ventricular tachycardia.