The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection

Marielle Cavrois1, Jason Neidleman1, Warner C. Greene1,2,3*

1 Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America, 2 Department of Medicine, University of California, San Francisco, California, United States of America, 3 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America

Abstract: To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the “Trojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the “rise and decline” of the Trojan horse model of HIV-1 trans-infection.

Introduction

Dendritic cells (DCs) play a central role in initiating the adaptive immune response that counters pathogen infection. Immature DCs patrol the peripheral mucosal tissues, searching for unwanted intruders. Once a pathogen is sensed, captured, and internalized, DCs undergo a maturation process and migrate to the regional lymph nodes. Meanwhile, the internalized pathogens are processed into antigenic peptides, and co-stimulatory molecules are expressed on the cell surface, readying these professional antigen-presenting cells for effective T-cell stimulation [1]. To perform their key sentinel function, DCs express a repertoire of pathogen recognition receptors, including Toll-like receptors and C-type lectin receptors. Toll-like receptors relay pathogen alert signals to DCs through intracellular signaling pathways, culminating in both cellular maturation and cytokine production [2,3]. C-type lectin receptors recognize specific carbohydrate structures on these pathogens and internalize them for degradation in lysosomal compartments, thus initiating the process of antigen presentation [4,5].

Pathogens have evolved various means to escape the host immune response by subverting the function of DCs. HIV-1 excels in this capacity. Like many other microbial pathogens, HIV-1 interferes with Toll-like receptor signaling, impairing the secretion of antiviral and inflammatory cytokines needed for the development of an effective immune response [6,7]. HIV-1 also likely uses DCs as a cellular ferry to reach one of its major targets, CD4 T cells, located deep within the mucosa or in lymph nodes. HIV-1 can also directly infect and replicate in Langerhans cells (LCs) and other myeloid DCs [8], although this infective process is much less robust than that in CD4 T cells and seems to require higher viral input [9]. Nevertheless, new virions budding from infected DCs can help provide an “infectious beachhead” for subsequent spread to CD4 T cells. In addition to replicating at low levels in DCs, HIV-1 has been proposed to exploit these cells for a novel form of viral spread involving the initial capture and internalization of intact virions, followed later by the transfer of virions across synapses formed by CD4 T cells scanning the DCs for cognate antigen. This mechanism of viral spread is termed trans-infection.

Although direct evidence of trans-infection in vivo is lacking, numerous in vitro observations suggest that such capture and transfer of virions to permissive cells is advantageous for the virus, in particular when quantities of infectious particles are limiting. In early studies of ex vivo tissue explants, most HIV-1 replication was observed within DC–T-cell conjugates [10,11,12]. DCs added to peripheral blood mononuclear cells also greatly enhance HIV-1 replication. In these cocultures, most virions originate from T cells, suggesting that DCs contribute in an indirect manner to overall viral production [13].

The mechanism underlying this DC-dependent enhancement of HIV infection remained unknown until the discovery of DC-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN) [14]. DC-SIGN is a C-type lectin receptor expressed by mucosal DCs and DCs derived in vitro from monocytes or CD34 stem cells [14,15] and a subset of macrophages [16,17]. DC-SIGN binds with high affinity to the HIV-1 envelope protein gp120 but, unlike CD4, does not trigger viral fusion. Instead, this interaction promotes efficient virion capture [18,19]. These captured virions are subsequently transmitted in trans to interacting CD4 T cells [18]. Thus, DCs facilitate productive infection of CD4 T cells while not serving as hosts for viral replication. Further studies indicated that trans-infection involved internalization of virions into an endocytic compartment [20,21]. Virion-containing vesicles were later exported to the cellular synapses formed...
between interacting CD4 T cells and DCs [21]. These studies gave rise to the widely accepted concept of the “Trojan horse” model of trans-infection in which exocytosis of virion-laden vesicles into the synapse promoted highly efficient infection of CD4 T cells.

Diversity of DC Receptors Involved in trans-Infection

DC-SIGN, the most-studied C-type lectin receptor that captures HIV-1 virions, is a calcium-dependent lectin that binds the HIV envelope with an affinity similar to that of CD4 [19]. The C-terminal domain of DC-SIGN interacts with unknown carbohydrate structures on gp120 [4,22,23,24]. Expression of DC-SIGN in the lymphoblastoid cell line Raji (Raji-DC-SIGN), originally mistaken for the monocyte-type line THP-1, is sufficient to promote trans-infection of T cells [18,25]. However, whether DC-SIGN is important in vivo remains controversial. Some reports indicate that trans-infection of T cells by DCs derived in vitro from monocytes (MDDCs) involves DC-SIGN [9,18,20,26,27], while other studies suggest the involvement of alternative C-type lectin receptors [16,28,29,30]. DC-SIGN is expressed in vivo by some immature DCs located in mucosa within the lamina propria [31]. Nevertheless, further studies are needed to sort out the precise role of DC-SIGN versus other receptors in the capture of HIV-1 virions by these DCs.

Other C-type lectin receptors, such as langerin and mannose receptors, are at least equally important for gp120 binding to epithelial DCs [32,33,34]. In freshly isolated skin LCs, langerin binds gp120. In dermal DCs, binding involves alternative receptors. Interestingly, when dermal DCs migrate out of skin explants, C-type lectin receptors are down-regulated, and gp120 binding occurs predominantly through CD4 [33]. Direct evidence of trans-infection mediated by mannose receptors in DCs is lacking, but in macrophages, these receptors appear to play an important role in the trans-infection of CD4 T cells [35]. Conversely, capture of HIV-1 by langerin-expressing LCs does not lead to CD4 T-cell infection in trans [9]. Instead, langerin-bound virions are rapidly cleared, especially with low viral input. Inhibition of HIV-1 binding to langerin with a newly developed anti-langerin antibody or with mannan, a soluble general inhibitor for C-type lectin receptors, markedly increases viral replication in cocultures of T cells and epithelial LCs. This phenotype sharply contrasts with trans-infection mediated by DC-SIGN on MDDCs, suggesting that langerin and DC-SIGN may, in fact, mediate opposite fates for HIV-1 virions. However, caution is warranted when comparing results from ex vivo LCs and in vitro derived DCs. LCs derived in vitro from CD34-expressing precursor cells, like MDDCs, mediate efficient trans-infection of T cells despite expression of langerin [36]. The use of higher viral inputs in these later experiments might have overwhelmed the apparent protective function of langerin. Interestingly, maturation of LCs with lipopolysaccharide and TNF-α, although only slightly reducing langerin expression, greatly increased the ability of these cells to support trans-infection [36], even at low viral inputs [37]. Further follow-up studies are required to better characterize the intriguing potential “clearing function” of langerin in immature LCs and to understand why this protective activity is diminished during LC maturation.

Some HIV-1 Virions Are Rapidly Internalized by DCs, While Others Remain at the DC Surface

As part of their normal function, DCs internalize pathogens and process proteins from these organisms into small antigenic peptides for subsequent presentation to CD4 T cells on MHC-II receptors. Typically, immature DCs display high levels of endocytic capacity while mature DCs are characterized by efficient antigen processing and presentation. Early in vitro and ex vivo studies supported the notion that DCs internalize structurally intact HIV-1 virions into large vacuolar structures [39,40]. At least some of these structures correspond to internal vesicles based on lack of coating with cationized ferritin [41] or ruthenium red [30], a small membrane-impermeable dye that binds to carbohydrates at the plasma membrane [42,43]. Surprisingly, mature MDDCs harbor many more intact HIV-1 virions than immature MDDCs [41]. Numerous intact virions are found in immature MDDCs within large vesicles adjacent to the nucleus. In immature DCs, only a few virion-laden vesicles are detected, usually at the periphery of the DC. Virion internalization involves clathrin-dependent endocytosis based on visualization of virions within both clathrin-coated pits and internalized clathrin-coated vesicles [41,44]. However, some virions remain detectable at the plasma membrane, notably within deep folds of the plasma membrane [30,44] or between dendrites [45]. Surface-bound virions are also readily observed on LCs emigrating from vaginal epithelia [46]. In LCs isolated from skin biopsies and subsequently loaded with HIV-1, virions colocalize with Langerin at the cell surface and in Birbeck granules [9]. The latter are LC-specific cytoplasmic organelles likely involved in antigen processing [47].

In mature MDDCs, the compartment harboring HIV-1 virions shares certain features with the late endosome or the multivesicular body (MVB), but other features differentiate these structures from classical late endosomes or lysosomes [44,45,48]. Specifically, this compartment contains the tetrascarabin receptors CD81, CD92, and CD9 but contains little CD63 and no LAMP-1, EEA-1, or TGN46, markers for lysosomes, early endosomes, and trans-Golgi networks, respectively [44,49]. Immature MDDCs lack these structures, suggesting that mature and immature MDDCs may exhibit different intracellular trafficking patterns for HIV-1 virions [45]. In this regard, immature DCs may reorganize their endocytic compartments upon interaction with HIV-1 virions [44], perhaps due to triggering of DC maturation via stimulation of Toll-like receptor 8 [7].

Upon interaction with T cells, HIV-1-loaded MDDCs redistribute virion-containing vesicles to the DC-T-cell junctions [21,44,48], and CD4, CXCR4, and CCR5 are similarly recruited to the T-cell face of the synapse [21]. Further evidence of HIV-1 virions localizing within the intracellular space between the contact zone of T cells and MDDCs [30] or emigrant LCs [46] is found in electron microscopic studies. The cell–cell contact zone that facilitates HIV-1 transmission by locally concentrating virions and viral receptors was termed the “infectious synapse” [for review, see [50,51]]. Together, these findings argued in favor of the Trojan horse model, in which HIV-1 virions tap into an endocytic-exocytic process of DCs to mediate trans-infection of CD4 T cells [21,30,44,45,52].

HIV-1 Virions Transmitted in trans to CD4 T Cells Originate from the DC Surface

Seeking to better understand the events involved in HIV-1 trans-infection, we tested the effects of soluble CD4 (sCD4). This agent selectively neutralizes gp120 on surface-bound virions while not altering internalized virions. To our surprise, sCD4 completely inhibited HIV-1 trans-infection [36], raising the possibility that the surface-bound virions, rather than internalized virions, represent the major source of virus for trans-infection. To exclude possible unappreciated effects of sCD4, we also inactivated surface-bound virions with pronase. Again, trans-infection was abrogated by the
The Rise and Decline of the Trojan Horse Model for trans-Infection

The Trojan horse metaphor became popular with the report of Steinman et al., which showed that the potency of DCs in stimulating trans-infection of CD4+ T cells [10]. This metaphor emphasized that DCs, a trusted party in the immune system, could actually carry an infectious agent to CD4+ T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18]. The analogy to the Trojan horse became even more striking when Steinman et al. [10] showed that DC-SIGN cells loaded with R5-tropic HIV-1 virions to trans-infect T cells, leading to their destruction. The mechanism was refined later with the discovery of DC-SIGN as an HIV-1 gp120 binding protein [18].
Figure 1. Models for trans-Infection of CD4 T cells by DCs. After capture by DCs, HIV-1 virions are either internalized or remain at the cell surface, possibly at the tips of dendrites or within extensively folded invaginations of the plasma membrane. A. In the prevailing Trojan horse model of HIV trans-infection, trans-infection is primarily mediated by internalized virions. B. In the new model, surface-bound HIV-1 virions are mainly responsible for trans-infection. Virions possibly surf the surface of the DCs on lipid rafts that collect at the infectious synapse to promote effective delivery to interacting CD4 T cells.

doi:10.1371/journal.ppat.1000051.g001
infection of activated T cells by mature MDDCs [62]. While sCD4 neutralization of surface-bound virions was controlled internally, the effectiveness of antibody neutralization of surface-bound virions was not tested. Rather, neutralization of cell-free virions was presented. At the highest concentration of antibody used, Ganesh et al. achieved only 70% neutralization. Even higher quantities of antibody might be required to neutralize MDDC-bound virions, compared to free virions. Indeed, our preliminary data support this notion. When we have tested higher concentrations of neutralizing antibodies that achieve full inactivation of surface-bound virions, we observe that HIV-1 trans-infection is completely abrogated (unpublished data).

Recently, a twist on the Trojan horse model emerged in a study suggesting that HIV-1 virions in immune complexes may recover their infectivity after capture by immature MDDCs and release of the bound antibodies within the acidified endocytic compartment [63]. However, no data were presented to clearly show that this recovery of infectivity was occurring in an internal acidified compartment rather than at the plasma membrane. More studies are warranted to examine trans-infection in the context of opsonized HIV-1 virions.

Internalization Is Likely a Dead End for trans-Infection

The fact that virions are almost exclusively transmitted from the DC surface implies that virion internalization is chiefly a dead end for infectious virions. Several factors influencing the internalization of HIV-1 virions might affect their likelihood to trans-infect T cells. Such factors include the state of DC activation and maturation, the time elapsing between virion capture by DCs and contact with interacting T cells, and the nature of receptors that mediate binding of HIV-1 virions.

External molecules are taken up in DCs via multiple pathways, including phagocytosis, macropinocytosis, and receptor-mediated endocytosis via clathrin-coated pits and caveolae. DC differentiation and maturation are associated with a decline in endocytic activity, particularly macropinocytosis [1]. This decrease in internalization with maturation might leave more intact virions at the surface of mature DCs and could contribute to the enhanced ability of mature DCs to trans-infect T cells [21,36,37,45,64,65,66]. Increased interactions between mature DCs and T cells may also facilitate virion transfer [21,64]. Finally, differences in the nature of the compartment harboring virions could play a role. Large vesicles filled with intact HIV-1 virions are observed in mature DCs [30,41,48] but not in immature cells [41]. Whether these virus-filled structures are in fact contiguous with the plasma membrane is unknown, but this is certainly possible, given the exceedingly complex 3-D architecture of the DC plasma membrane. In this regard, two recent studies of HIV-1 budding in macrophages indicate that virions accumulating in apparently intracellular vacuolar structures are, in fact, budding from an extensively folded region of the plasma membrane [43,67]. These structures, which are present in infected and uninfected macrophages, seem to be stable and could correspond to specialized compartments of the plasma membrane [67]. In mature MDDCs, images of virus-filled structures in direct continuity with the DC surface [30,41] were initially interpreted as areas of active virion internalization or as extracellular vacuoles releasing captured virions. Such structures might in fact correspond to deep invaginations of the plasma membrane. This possibility is bolstered by the fact that in mature MDDCs ~80% of vacuoles harboring the virions remain accessible to small membrane-impermeable tracer proteins like horseradish peroxidase applied at 4°C [44]. Future studies will likely better define the nature of these virion collection depots and determine whether these virions in fact reside in internal vacuoles or instead represent complex invaginations of the plasma membrane.

The time elapsing between virion capture by DCs and contact with interacting T cells may also affect the efficiency of trans-infection. In initial studies, virions captured by Raji-DC-SIGN and MDDCs retained their infectivity for several days [18,68,69]. However, more recent studies suggest that virions remain active for trans-infection for only a few hours after capture [30,36,48,59,60]. Low levels of direct HIV-1 infection of Raji-DC-SIGN and immature MDDCs could provide an explanation for the early reports of persistent trans-infection [30,48,59]. Currently, virion inactivation/degradation after DC capture is believed to underlie the rapid decline in trans-infection [30,37,48,69]. However, rapid internalization of HIV-1 virions might also contribute to this quick decline in trans-infection, as seen in macrophages [35]. Treatment of macrophages with endocytosis inhibitors, such as cytochalasin D and

Table 1. Variable Effects of Protease Treatment on HIV trans-Infection.

Cells	Inhibition of trans-Infection (% of Untreated)	Treatment	Controls*	Reference
Raji-DC-SIGN	~35%	Trypsin	Internal controls	[20]
	91%	Trypsin	Cleavage of DC-SIGN	[30]
	~90%	Trypsin	Internal controls	[20]
Immature MDDCs	~45%–50%	Trypsin	Cleavage of DC-SIGN	[30]
	40%–50%	Trypsin	Cleavage of DC-SIGN	[30]
	48%–51%	Pronase	Cleavage of DC-SIGN	[30]
	99%	Pronase	Internal controls	[36]
Mature MDDCs	20%	Trypsin	Cleavage of DC-SIGN	[30]
	24%–35%	Pronase	Cleavage of DC-SIGN	[30]
	99%	Pronase	Internal controls	[36]
Immature CD34-derived Lcs	~85%	Trypsin	Not presented	[37]
Mature CD34-derived Lcs	~83%	Trypsin	Not presented	[37]
Cord blood-derived DCs	0%	Pronase	Cleavage of DC-SIGN	[29]

*Controls used to assess the effectiveness of proteolytic digestion in removing surface-bound virions.

[doi:10.1371/journal.ppat.1000051.t001]
chlorpromazine, increases the longevity and transfer of captured virions. These agents have not yet been tested in the context of trans-infection of T cells by DCs. Interestingly, the use of inhibitors that impair intracellular trafficking and/or acidification of the endosomes appear to exert only minimal effects on trans-infection [30,59], although conflicting results have been obtained with the vacuolar ATPase inhibitor concanamycin A [20,59]. Surface molecules other than C-type lectins could also influence the efficiency of trans-infection [61]. For example, expression of CD4 receptors in Raji cells than C-type lectins could also influence the efficiency of ATPase inhibitor concanamycin A [20,59]. Surface molecules other although conflicting results have been obtained with the vacuolar associated with increases in infection [61].

Future Directions

The finding that trans-infection of T cells by DCs involves primarily surface-bounded virions argues that future research should be refocused on how HIV-1 hijacks the plasma membrane rather than the intracellular trafficking pathway as suggested by the original Trojan horse model. Utraulating how these virions are recruited to the infectious synapse is crucial. The presence of C-type lectin receptors in lipid rafts [70] suggests that HIV-1 virions likely reach the infectious synapse by “surfing” the surface of the plasma membrane of DCs on lipid rafts. Further studies to characterize the domain(s) of DC plasma membrane that serves as a source of infectious virions could reveal some similarities with the compartments in which HIV-1 buds in macrophages. Since that internalization seems to be mostly a dead end for infectious virions, elucidating how HIV-1 manages to remain at the cell surface poised for transfer in trans will be important. Finally, our new model suggests that in vivo transmission of virions captured by DCs to T cells is likely to be far more sensitive to attachment inhibitors and neutralizing antibodies than previously anticipated. Only time will tell whether this fact can be therapeutically exploited.

References

1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252.
2. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216.
3. Underhill DM, Ozinsky A (2002) Toll-like receptors: key mediators of immune detection. Curr Opin Immunol 14: 103–110.
4. van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3: 697–709.
5. Fagar G, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2: 77–84.
6. Martelli E, Cicala C, Van Ryk D, Goode JD, Maceod K, et al. (2007) HIV-1 gp120 inhibits TLR9-mediated activation and IFN-[alpha] secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 104: 3396–3401.
7. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529.
8. Steinman RM, Granelli-Piperno A, Pope M, Trumpbeller C, Ignatius R, et al. (2003) The interaction of immunodeficiency viruses with dendritic cells. Top Microbiol Immunol 276: 1–30.
9. de Witte L, Nabafo A, Pion M, Fuijtsma D, de Jong MA, et al. (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13: 367–371.
10. Cameron PU, Freundthals PS, Barker JM, Gezelter S, Inaba K, et al. (1999) Dendritic cells exposed to human immunodeficiency virus type 1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257: 383–387.
11. He J, Miller CJ, O’Doherty U, Marx PA, Pope M (1999) The dendritic cell-T cell milieu of the lymphoid tissue of the tonsil provides a locale in which SIV can vigorous cytopathic infection to CD4+ T cells. Science 257: 383–387.
12. Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, et al. (1994) Human immunodeficiency virus type 1 derived from cocultures of immature dendritic cells to T cells. J Exp Med 200: 1279–1288.
13. Frank I, Kacani L, Stoiber H, Stossel H, Spruth M, et al. (1999) Human immunodeficiency virus type 1 mediated by immature and mature immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA 89: 8356–8360.
14. Geijtenbeek TB, Torrens R, van Vliet SJ, van Duijnhoven GC, Adema GJ, et al. (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575–585.
15. Encabo A, Solves P, Mateu E, Sepulveda P, Carbonell-Uberos F, et al. (2004) Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 78: 1279–1300.
16. Arrighi JF, Pion M, Wiznerowicz M, Geijtenbeek TB, Garcia E, et al. (2004) Lentinus-tus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 78: 10848–10855.
17. Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, et al. (2004) DC-SIGN-mediated infectious synapse formation enhances X1 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200: 1279–1300.
18. Geijtenbeek TB, Kwon DS, Torrens R, van Vliet SJ, van Duijnhoven GC, et al. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597.
19. Curtis BM, Scharowske S, Watson AJ (1992) Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA 89: 8356–8360.
20. Kwon DS, Gregorio G, Bitton N, Hendrickx WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16: 135–144.
21. McDonald D, Wu L, Boks SM, KewalRamani VN, Unutmaz D, et al. (2003) Recruitment of HIV and in receptors to dendritic cell-T cell junctions. Science 300: 1295–1297.
22. Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276: 20939–20945.
23. Hong PW, Hammerlet KB, de Parseval A, Gurney K, Elder JH, et al. (2002) Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 76: 12853–12865.
24. Pohlmann S, Barbaud F, Doms RW (2001) DC-SIGN and DC-SIGNR: helping hands for HIV. Trends Immunol 22: 643–646.
25. Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318: 17–23.
26. Arrighi JF, Pion M, Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 81: 1305–1314.
27. Hong PW, Hammerlet KB, de Parseval A, Gurney K, Elder JH, et al. (2002) Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 76: 12853–12865.
28. Bukbiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81: 2519–2523.
29. Wang JH, Janas AM, Olson WJ, Wu L (2007) Functionally distinct transmission of HIV-1 from dendritic cells to T cells. J Exp Med 200: 1279–1300.
30. Gummuhra S, Rogel M, Stamatatos L, Emerman M (2003) Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 87: 12053–12074.
31. Cascardi A, Camon M, Stamatatos L, Emerman M (2003) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81: 2519–2523.
32. Hong PW, Janas AM, Olson WJ, Wu L (2007) Functionally distinct transmission of HIV-1 from dendritic cells to T cells. J Exp Med 200: 1279–1300.
33. Jameson B, Bariabaud F, Pohlmann S, Ghavimi D, Mortari F, et al. (2002) Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and the mouse. J Virol 76: 1066–1075.
34. Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL (2003) The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol 74: 710–718.
33. Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, et al. (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3: 975–983.
34. Kavanagh DG, Bhawraj N (2002) A division of labor: DC subsets and HIV receptor diversity. Nat Immunol 3: 891–893.
35. Nguyen DG, Hildreth JE (2003) Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol 33: 483–493.
36. Cavouso M, Neidellman J, Kreisberg JF, Greene WC (2007) In vitro derived dendritic cells trans-infect CD4+ T cells primarily with surface-bound HIV-1 virions. PLoS Pathog 3: e4. doi:10.1371/journal.ppat.0030004
37. Fahrbach KM, Barry SM, Ayhanie S, Lamore S, Klaussler M, et al. (2007) Activated CD4+ derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81: 6658–6668.
38. Blauvelt A, Asada H, Saville MW, Klaus-Kovtun V, Altman DJ, et al. (1997) Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest 100: 2043–2053.
39. Cameron PU, Lowe MG, Crowe SM, O’Doherty U, Pope M, et al. (1994) Susceptibility of dendritic cells to HIV-1 infection in vitro. J Leukoc Biol 56: 257–263.
40. Hladik F, Lentz G, Akridge RE, Peterson G, Kelley H, et al. (1999) Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J Virol 73: 5833–5842.
41. Frank I, Flaherty M Jr, Stoessel H, Romani N, Bonnyay D, et al. (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs) differentiated intracellular fate of virions in mature and immature DCs. J Virol 76: 2936–2951.
42. Danke H, Baba T, Warnock DE, Schmidt SI (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915–934.
43. Welsch S, Keppeler OT, Habermann A, Allopauch I, Krijnse-Locker J, et al. (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 3: e36. doi:10.1371/journal.ppat.0030036
44. Garcia E, Pien M, Pelchen-Matthews A, Collinson L, Arrighi JF, et al. (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6: 488–501.
45. Izquierdo-Ureos N, Blanco J, Erazk I, Fernandez-Figueras MT, Borras FE, et al. (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81: 7539–7570.
46. Hladik F, Sakulahlathorn P, Balweber L, Lentz G, Filakov M, et al. (2007) Initial events in establishing vaginal entry and infection by human immunodeficiency virus type 1. Immunity 26: 257–270.
47. Hunger RE, Seling PA, Ochoa MT, Sugama Y, Burbick AE, et al. (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113: 701–708.
48. Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, et al. (2004) Immunodeficiency virus uptake, turnover, and Z-phase transfer in human dendritic cells. Blood 103: 2170–2179.
49. Wiley RD, Gammelrud S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103: 730–735.
50. Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6: 459–468.
51. Piquet V, Varenne J, Zitoune B, Varenne J, Varenne J, et al. (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114: 605–610.
52. Moris A, Papadopoulos D, Kuruvilla F, Samlowski WE, Malizia M, et al. (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108: 1643–1653.
53. VanCompernolle SE, Taylor RJ, Oostad-Richter K, Jiang J, Youree EB, et al. (2003) Antimicrobial peptides from amphibian skin potentially inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 77: 11598–11606.
54. Chang TL, Teleshova N, Rapilla A, Palach M, Anderson RA, et al. (2007) SAMMA, a mandelic acid condensation polymer, inhibits dendritic cell-mediated HIV transmission. FEBS Lett 581: 4596–4602.
55. Meredel RC, Scordi-Bello I, Cheshenko N, Marcelino D, Drauziewski M, et al. (2002) Mandelic acid condensation polymer: novel candidate microbicide for prevention of human immunodeficiency virus and herpes simplex virus entry. J Virol 76: 11236–11244.
56. Bors M, Cermy J, Masoli R, Op den Bossu M, Kirchhausen T, et al. (2002) T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418: 983–986.
57. Lavioie PM, Thibodeaux J, Erazd F, Sekaly RP (1999) Understanding the mechanism of action of bacterial superantigens from a decade of research. Immunol Rev 168: 257–269.
58. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, et al. (2002) HIV preferentially enters HIV-specific CD4+ T cells. Nature 417: 95–98.
59. Nobile C, Petri C, Moris A, Skrahla K, Abastado JP, et al. (2005) Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J Virol 79: 5306–5309.
60. Burleigh L, Loozach PY, Schaffy C, Starepole I, Pezo V, et al. (2006) Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 80: 2949–2957.
61. Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81: 2497–2507.
62. Ganaesh L, Leung K, Lore K, Levin R, Panet A, et al. (2004) Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol 78: 11980–11987.
63. van Montfort T, Nabatov AA, Geirrthoeck TB, Pollakis G, Paxton WA (2007) Efficient capture of antibody neutralized HIV-1 by cells expressing DC-SIGN and transfer to CD4+ T lymphocytes. J Immunol 178: 3177–3183.
64. Sanders RW, de Jong JG, Baldwin CE, Schuttemaker JM, Kapenberg ML, et al. (2002) Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol 76: 7612–7621.
65. Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM (1998) Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 72: 2733–2737.
66. Weissman D, Li Y, Orenstein JM, Fauci AS (1995) Both a precursor and a mature population of dendritic cells express DC-SIGN, a molecule that promotes long-term transmission to lymphocytes. J Immunol 155: 4111–4117.
67. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M (2007) In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177: 329–341.
68. Trumpfeller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 15: 289–298.
69. Moris A, Nobile C, Bassey E, Porrat F, Abastado JP, et al. (2004) DC-SIGN promotes exogenous MHC-II-restricted HIV-1 antigen presentation. Blood 103: 2648–2654.
70. Cambi A, de Lange F, van Maarseveen NM, Nijhuis M, Joosten B, et al. (2004) Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J Cell Biol 164: 145–155.