A MOTIVIC STUDY OF GENERALIZED BURNIAT SURFACES

CHRIS PETERS

ABSTRACT. Generalized Burniat surfaces are surfaces of general type with \(p_g = q \) and Euler number \(e = 6 \) obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced in [3]. This implies that the Chow motives of all of these surfaces are finite–dimensional in the sense of Kimura.

1. INTRODUCTION

Quite recently in [3] I. Bauer et. al. have investigated a generalization of Inoue’s construction [7] of the classical Burniat surfaces [6]. These surfaces are minimal, of general type and have invariants \(p_g = q = 0, 1, 2 \) or 3.

Recall that the Chow group \(CH_k \) is said to be ”trivial”, if the natural cycle class map \(CH_k \hookrightarrow H_{2k} \) is injective. The kernel of the cycle class map \(CH_k^{\hom} \) can be investigated by means of the Abel–Jacobi map \(CH_k^{\hom} \to J^k \), where the target is the \(k \)-th intermediate Jacobian. Its kernel is denoted \(CH_k^{AJ} \). If this vanishes, this has strong consequences. For instance for surfaces this implies \(p_g = 0 \) and the Albanese map is an isomorphism up to torsion. The converse is Bloch’s conjecture [5]. In a follow-up study [4] this conjecture has been verified for the generalized Burniat surfaces, i.e \(CH_0^{\hom} = 0 \).

These generalized Burniat surfaces \(Y = X/G \) are all quotients of \(X \) by a freely acting abelian group \(G \simeq (\mathbb{Z}/2\mathbb{Z})^3 \) and where \((X, G) \) is a so called Burniat hypersurface pair \((X, G) \): \(X \) is a hypersurface in a product \(A \) of three elliptic curves having at most nodes as singularities and \(G \) is an abelian group acting freely on \(A \) and leaving \(X \) invariant. The surface \(X \) is also called Burniat hypersurface. These come in 16 families, enumerated \(S_1 \text{–} S_{16} \). The classical Burniat surface belongs to the 4-parameter family \(S_2 \). Also the family \(S_1 \) is 4-dimensional. The remaining families have only 3 parameters coming from varying the elliptic curve. This implies that the equation of \(X \) in these cases is uniquely determined, contrary to the first two where there is a pencil of hypersurfaces invariant under \(G \). The surfaces \(Y \) have at most nodal singularities. For simplicity I assume in this note that \(Y \), and hence \(X \) is smooth, which is generically the case. However, none of the arguments is influenced by the presence of nodal singularities.

In [10] it has been remarked that the main theorem of loc. cit. yields the Bloch conjecture for the classical Burniat surfaces. The goal of this paper is to apply the same methods to all Burniat
hypersurfaces. In particular, one obtains a short proof of the Bloch conjecture in the appropriate cases.

To state the result, let me recall that the Chow motive $h(X)$ is the pair (X, Δ) where $\Delta \subset X \times X$ is the diagonal considered as a (degree 0) self-correspondence of X. As a self-correspondence it is an idempotent in the ring $\text{Corr}^0(X)$ of degree 0 self-correspondences.

If a finite group G acts on X, any character χ of the group defines an idempotent

$$\pi_\chi = \frac{1}{|G|} \sum_{g \in G} \chi(g) \Gamma_g \in \text{Corr}^0(X),$$

where Γ_g is the graph of the action of g on X. The pair (X, π_χ) is the motive canonically associated to the character χ. Note that the trivial character gives the motive $h(X/G)$ of the Burniat hypersurface. The main result now reads as follows:

Theorem (=Theorem 4.2). With $i : X \hookrightarrow A$ the inclusion, let (X, G) be a Burniat hypersurface pair as before and let $Y = X/G$ be the corresponding generalized Burniat surface. Consider the one-dimensional space $H^0(\Omega^3_{\text{var}})$ as a G-representation space, i.e. as a character χ_{var}. Then

1. For the families S_1, S_2 the involution $j = t_1 t_2 t_3$ belongs to G and the motives $h(X/j)$ for the families S_3, S_4, S_{11}, S_{12}, S_{16} this motive is just $h(Y)$.

2. For all other families, the motive (X, π_{χ_A}) is finite-dimensional. For the families S_3, S_4, S_{11}, S_{12}, S_{16} this means that $\ker(i_* : \text{CH}_0(X) \to \text{CH}_0(A)) = 0$.

As shown in [3] the families S_{11} and S_{12} give two divisors in a component of the 4-dimensional Gieseker moduli space.

The above method applies also to the surfaces in this component, the so-called Sicilian surfaces so that the result for S_{11} and S_{12} is valid for these as well. See Remark 4.3.

Acknowledgements. Thanks to Robert Laterveer for his interest and remarks.

2. **Preliminaries**

2.1. A criterion for finite dimensional motives. The general situation of [10] concerns smooth d-dimensional complete intersections X inside a smooth projective manifold M of dimension $d + r$ for which Lefschetz’ conjecture $B(M)$ holds. This conjecture is known to hold for projective space and for abelian varieties and so in particular for the situation in this note.

Recall also that in this situation, with $i : X \hookrightarrow M$ the inclusion, the fixed and variable cohomology is defined as follows.

$$H^d_{\text{fix}}(X) = \text{Im}(i^* : H^d(M) \to H^d(X)),$$

$$H^d_{\text{var}}(X) = \ker(i_* : H^d(X) \to H^{d+2r}(M)),$$

1As a matter of notation, for any G-module V we set $V^\chi := \{v \in V \mid g(v) = \chi(g) v \text{ for all } g \in G\}$.
2This can also be stated directly in terms of the so-called ”variable motive”. See Theorem 4.2.
and that one has a direct sum decomposition
\[H^d(X) = H^d_{\text{fix}}(X) \oplus H^d_{\text{var}}(X), \]
which is orthogonal with respect to the intersection product. In \[12\] I explained that validity of \(B(M) \) implies the existence of a motive \(h(X)^{\text{var}} = (X, \pi^{\text{var}}) \) such that \(\pi^{\text{var}} \) induces projection onto variable cohomology.

The main input is the special case of \([10, \text{Thm. 6.5 and Cor. 6.6}]) for surfaces inside a threefold. It reads as follows.

Theorem 2.1. Let \(M \) be a smooth projective threefold on which a finite abelian group \(G \) acts. Let \(\mathcal{L} \) be line bundle with \(G \)-action, \(X \subset M \) a \(G \)-invariant section and \(\chi \) a character of \(G \). Suppose that

1. the conjecture \(B(M) \) holds;
2. the sections of \(H^0(M, \mathcal{L})^G \) separates orbits;
3. all characters of \(G \) appear in \(\text{End}(H^2_{\text{var}}(X)) \);
4. the Chow motive \((M, \pi_\chi) \) is finite-dimensional;
5. \(0 \neq H^2(X)^{\text{var}} \) and \(H^2_{\text{var}}(X)_\chi \subset N H^2(X) \).

Then \(\text{CH}^0_{\text{var}}(X)^\chi = 0 \), and the motive \((X, \pi_\chi) \) is finite-dimensional.

2.2. Elliptic curves

Let me recall the relevant facts about theta functions on an elliptic curve \(E \) with period lattice \(\Lambda \) generated by 1 and \(\tau \in \mathfrak{h} \). Points in the elliptic curve referred to by the standard coordinate \(z \in \mathbb{C} \) and the corresponding line bundle by \(\mathcal{L}_z \). It is the bundle with \(H^0(E, \mathcal{L}_z) = \mathbb{C} \vartheta_z \), \(\vartheta_z \) a theta-function with simple zeros in the points \(z + \Lambda \) only. Let \(t_u : z \mapsto z + u \) be a translation of \(E \). Then \(\mathcal{L}_z \simeq t_z^* \mathcal{L}_0 \). If one takes for \(z \) one of the four two-torsion points \(\epsilon \in \{ 0, \frac{1}{2}, \frac{1}{2} + \frac{1}{2} \tau, \frac{1}{2} + \frac{1}{2} \tau \} \) of \(E \), the line corresponding line bundles \(\mathcal{L}_z \) have the four classical theta functions \(\vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4 \) respectively as sections. See e.g. \([11, \text{Appendix A, Table 16}] \) for the definitions.

Set
\[M_E := H^0(E, \mathcal{L}_0^2). \]

Lemma 2.2. i) The bundle \(\mathcal{L}_0^2 \) is a symmetric line bundle and all its sections are symmetric.
ii) The translations \(t_\epsilon \) define a faithful action of \((\mathbb{Z}/2\mathbb{Z})^2 \) on \(\mathcal{L}_0^2 \).
iii) The character decomposition of \(M_E \) for this action is \((+-) \oplus (-+) \).

Proof: i) is clear.
ii) Since \(\mathcal{L}_0^2 \simeq \mathcal{L}_0^2 \) for all two-torsion points \(\epsilon \), the functions \(\vartheta_j \) define sections of the same bundle \(\mathcal{L}_0^2 \). The sections \(\vartheta_j, j = 1, 2, 3, 4 \) are characterized by having a double zero at exactly one of the four 2-torsion points. This shows in particular that the action of the group \(\{ t_\epsilon, \epsilon \text{ a 2-torsion point} \} \) is faithful on \(M_E \).
iii) It follows that there is a basis of two sections of \(\mathcal{L}_0^2 \) consisting of simultaneous eigenvectors for this action. Since the action is faithful, the character decomposition must be \((+-) \oplus (-+) \). \(\square \)

3. Surfaces inside Abelian Threefolds Invariant under Involution

3.1. Products of three elliptic curves
Consider the abelian threefold
\[A := E_1 \times E_2 \times E_3, \quad E_\alpha = \mathbb{C}/\Lambda_\alpha, \quad \text{with} \quad \Lambda_\alpha = \mathbb{Z} \oplus \mathbb{Z} \tau_\alpha, \quad \alpha = 1, 2, 3. \]
Using for a fixed elliptic curve $E = \mathbb{C}Z \oplus \tau \mathbb{Z}$ the involutions

$$
\iota_E : z \mapsto -z, \quad t_E : z \mapsto -z + \frac{1}{2}, \quad \tau_E : z \mapsto -z + \frac{1}{2}\tau,
$$

we obtain three involutions on A

$$(1)\quad \iota_\alpha = \iota_{E_\alpha}, \quad \iota_{\alpha\beta} = t_{E_\alpha} t_{E_\beta}, \quad \iota_{123} = \tau_{E_1} \tau_{E_2} \tau_{E_3}.$$

and we consider the group $(\mathbb{Z}/2\mathbb{Z})^6$ operating on A as

$$G_0 := \langle \iota_1, \iota_2, \iota_3, \iota_{12}, \iota_{13}, \iota_{123} \rangle.$$

Lemma 3.1. The action of G_0 on holomorphic 1-forms of A is given by

form	t_1	t_2	t_3	t_{12}	t_{13}	t_{23}	t_{123}
dz_1	$-$	$+$	$-$	$-$	$-$	$+$	$-$
dz_2	$+$	$-$	$-$	$-$	$-$	$-$	$-$
dz_3	$+$	$-$	$+$	$-$	$-$	$-$	$-$

Consider now the symmetric line bundle \mathcal{L}_A^2 where

$$\mathcal{L}_A := \mathcal{O}_{E_1}(\mathcal{L}_0) \boxtimes \mathcal{O}_{E_2}(\mathcal{L}_0) \boxtimes \mathcal{O}_{E_3}(\mathcal{L}_0),$$

and set

$$H^0(\mathcal{L}_A^2) = M_{E_1} \boxtimes M_{E_2} \boxtimes M_{E_3}.$$

By Lemma 2.2, this is a representation space for G_0 which admits a basis of simultaneous eigenvectors. If $\{\theta_{E_j}^1, \theta_{E_j}^2\}$ denotes the basis of Lemma 2.2 for $M_{E_j}, j = 1, 2, 3$, their products give 8 basis vectors as follows.

$$\theta_{j_1j_2j_3} = \theta_{E_1}^{j_1} \cdot \theta_{E_2}^{j_2} \cdot \theta_{E_3}^{j_3}, \quad j_k \in \{1, 2\}.$$

The next result is a consequence.:

Lemma 3.2. The space $H^0(\mathcal{L}_A^2)$ is the G_0-representation space which on the basis $\{\theta_{j_1j_2j_3}\}, j_1, j_2, j_3 \in \{1, 2\}$, is given as follows

element	t_1	t_2	t_3	t_{12}	t_{13}	t_{23}	t_{123}
θ_{111}	$+$	$+$	$+$	$+$	$+$	$-$	$-$
θ_{211}	$+$	$+$	$+$	$-$	$-$	$+$	$+$
θ_{121}	$+$	$+$	$+$	$-$	$-$	$-$	$-$
θ_{112}	$+$	$+$	$+$	$-$	$-$	$-$	$-$
θ_{122}	$+$	$+$	$+$	$-$	$-$	$-$	$-$
θ_{212}	$+$	$+$	$+$	$-$	$-$	$-$	$-$
θ_{221}	$+$	$+$	$+$	$-$	$-$	$-$	$-$
θ_{222}	$+$	$+$	$+$	$+$	$+$	$+$	$+$
3.2. **Hypersurfaces of abelian threefolds and involutions.** Let A be an abelian variety of dimension three and \mathcal{L} a principal polarization so that $\mathcal{L}^3 = 3! = 6$ and let $i : X \hookrightarrow A$ be a smooth surface given by a section of of $\mathcal{L}^\otimes 2$. The Lefschetz's hyperplane theorem gives:

(2) \[i^* : H^1(A) \xrightarrow{\cong} H^1(X) \]
(3) \[i^* : H^2(A) \xrightarrow{\cong} H^2_{\text{fix}}(X) \subset H^2(X) \]

Lemma 3.3. Suppose that $i : A \rightarrow A$ is an involution which acts on $H^0(\Omega_A^1)$ with p eigenvalues 1 and $n = 3 - p$ eigenvalues -1. Suppose also that i preserves X and acts without fixed points on X. Then we have

\[\text{Tr}(i)|H^2_{\text{var}}(X) = -29 + 8p(4 - p) = \begin{cases} -29 & \text{for } p = 0 \\ -5 & \text{for } p = 1 \\ 3 & \text{for } p = 2 \\ -5 & \text{for } p = 3. \end{cases} \]

Proof: The assumption implies that

\[\text{Tr}(i)|H^1(A) = 4p - 6 = \begin{cases} -6 & \text{for } p = 0 \\ -2 & \text{for } p = 1 \\ 2 & \text{for } p = 2 \\ 6 & \text{for } p = 3, \end{cases} \]

and

\[\text{Tr}(i)|H^2(A) = 8p(p - 3) + 15 = \begin{cases} 15 & \text{for } p = 0 \\ -1 & \text{for } p = 1 \\ 1 & \text{for } p = 2 \\ 15 & \text{for } p = 3. \end{cases} \]

If i preserves X and acts without fixed points on X, Lefschetz’ fixed point theorem gives

\[0 = 2 - 2 \text{Tr}(i)|H^1(X) + \text{Tr}(i)|H^2(X) = 2 - 2 \text{Tr}(i)|H^1(A) + \text{Tr}(i)|H^2(A) + \text{Tr}(i)|H^2_{\text{var}}(X), \]

and so the above calculation immediately gives the desired result. \(\square \)

In order to calculate the invariants on X, let me first consider the holomorphic two-forms in detail.

Lemma 3.4. 1. One has $h^0_{\text{var}}(X) = 7$, $h^0_{\text{fix}}(X) = 3$.

2. If $X = \{ \theta_0 = 0 \}$, the variable holomorphic 2-forms are the Poincaré-residues along X of the meromorphic 3-forms on A given by expressions of the form

\[\frac{\theta}{\theta_0}dz_1 \wedge dz_2 \wedge dz_3 \]

with θ a theta-function on A corresponding to a section of $\mathcal{L}^\otimes 2$, and where z_1, z_2, z_3 are holomorphic coordinates on \mathbb{C}^3.

3. Suppose i acts with the character $\epsilon \in \{ \pm 1 \}$ on holomorphic three forms. Let (p, n) be the
dimensions of the invariant, resp. anti-invariant sections of $\mathcal{L}^\otimes 2$. Then $\dim H^{2,0}_{\text{var},+}(X) = p - 1$ if $\epsilon = 1$ and $= p$ otherwise.

Proof: Consider the Poincaré residue sequence

$$0 \to \Omega^3_A \to \Omega^3_A(X) \xrightarrow{\text{res}} \Omega^2_X \to 0.$$

In cohomology this gives

$$0 \to H^0(\Omega^3_A) \to H^0(\Omega^3_A(X)) \xrightarrow{\text{res}} H^0(\Omega^2_X) \to H^1(\Omega^3_A) \to 0. \tag{4}$$

Since $H^0(\Omega^3_A(X)) = H^0(\mathcal{L}^\otimes 2)$ the assertion 1. follows.

2. This is clear.

3. This follows directly from (4). \hfill \Box

Corollary 3.5. The invariants of X are as follows.

b_1	$b_{\text{var}} = (h^{2,0}_{\text{var}}, h^{1,1}_{\text{var}}, h^{0,2}_{\text{var}})$	$b_{\text{fix}} = (h^{2,0}_{\text{fix}}, h^{1,1}_{\text{fix}}, h^{0,2}_{\text{fix}})$
6	43 = (7, 29, 7)	15 = (3, 9, 3)

Proof: Equation (2) gives $b_1(X) = b_1(A) = 6$. To calculate $b_2(X)$ we observe that $c_1(X) = -2\mathcal{L}|_X$ and $c_2(X) = 4\mathcal{L}^2|_X$ so that

$$c^2_1(X) = c_2(X) = 4\mathcal{L}^2|_X = 8\mathcal{L}^3 = 48.$$

Since $c_2(X) = e(X) = 2 - 2b_1(X) + b_2(X) = 48$, it follows that $b_2(X) = 58$. By (3) one has $b^{\text{fix},+}_{\text{var}}(X) = b_2(A) = 15$ and so $b^{\text{var}}_{\text{var}}(X) = 43$. Since $h^{2,0}_{\text{var}} = 7$, the invariants for X follow. \hfill \Box

3.3. Burniat hypersurfaces

A *Burniat hypersurface* of A is a surface which is invariant under a subgroup $G \subset G_0$ generated by 3 commuting involutions and which acts freely on X. Each of the involutions is a product of the involutions $[1]$. The quotient $Y = X/G$ is called a generalized Burniat surface. In [1] one finds a list of 16 types of such surfaces, denoted S_1, \ldots, S_{16}. All of the surfaces are of general type with $c^2_1 = 6$, $p_g = q$ and $q = 0, 1, 2, 3$ and hence $e = 6 = 2 - 4q + b_2$ so that $b_2 = (p_g, h^{1,1}, p_g) = (q, 4 + 2q, q)$. There are 4 families with $q = 0$ and one of these, S_2 gives the classical Burniat surfaces from [6]. See Table 1. The last column of this table gives the action of the three generators (g_1, g_2, g_3) on $H^0(\Omega^3_A)$. It is calculated using Lemma 3.5.

In Table 2 the character spaces for the action on the forms coming from A is given. It is calculated from the description of the generating involutions as given in Table 1 and the known action of 1-forms as given in Lemma 3.3. From the first column of Table 2 one finds the trace of the action of these generators on $H^0(\Omega^3_A)$, or, alternatively, the dimensions of the eigenspaces for the eigenvalues $+1$ and -1. Writing for example the dimensions of the $(+)$-eigenspaces as a vector according to the group elements written in the order $(1, g_1, g_2, g_3, g_1g_2, g_1g_3, g_2g_3, g_1g_2g_3)$ yields the type $(3, t_1, t_2, t_3, \ldots) \in \mathbb{Z}^8$ of the group action. This gives the first row in Table 3 below. Using Lemma 3.3, this table enables to find the multiplicity of χ_A in $H^2_{\text{var}}(X)$.

Lemma 3.6. For each of the families S_3–S_{16} the multiplicity of the character χ_A inside $H^2_{\text{var}}(X)$ is given in the last column of Table 3 and in particular, is non-zero.\footnote{This is also true for the two remaining families, but this will not be used.}
TABLE 1. Burniat hypersurfaces

type	involution 1	involution 2	involution 3	G-invariant 1-forms	χ_A
S_1	$t_1 t_2 t_3$	$t_2 t_3 t_4$	$t_3 t_2$	none	$- - -$
S_2	$t_1 t_3 t_2$	$t_3 t_1$	$t_2 t_3$	none	$+ - -$
S_3	$t_1 t_3 t_2$	$t_3 t_1$	$t_2 t_3 t_4$	none	$+ - -$
S_4	$t_1 t_3 t_1$	$t_2 t_1$	none	$+ + +$	
S_5	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3$	$d z_3$	$+ + -$
S_6	$t_2 t_3 t_1$	$t_2 t_3 t_1$	$t_3 t_2$	$d z_3$	$- - +$
S_7	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3$	$d z_3$	$+ + -$
S_8	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_3$	$+ - -$
S_9	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_3$	$+ - -$
S_{10}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3$	$d z_3$	$+ - -$
S_{11}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_3$	$+ + +$
S_{12}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_3$	$+ + +$
S_{13}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3$	$d z_2, d z_3$	$- - -$
S_{14}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3$	$d z_2, d z_3$	$- - -$
S_{15}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_2, d z_3$	$+ + -$
S_{16}	$t_1 t_3 t_1$	$t_3 t_1$	$t_2 t_3 t_4$	$d z_3$	$- - +$

TABLE 2. Action on forms and invariants of the generalized Burniat surfaces

type	$U = H^0(A, \Omega_A)$	$H^0(A, \Omega_A) = \Lambda^2 U = W$	$H^1(A, \Omega_A)$	$b^2_1(Y)$	$b^2_2(Y)$
S_1	$(- + +) (- + +) (- + +)$	$(- + +) (+ - +) (+ - -)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(0, 4, 0)$
S_2	$(- + +) (+ - +) (+ + +)$	$(- + -) (- + +) (- + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(0, 4, 0)$
S_3	$(- + -) (- + +) (+ + +)$	$(- + -) (- + +) (+ - +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(0, 4, 0)$
S_4	$(- + +) (- + +) (+ + +)$	$(- + +) (- + +) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(0, 4, 0)$
S_5	$(- + +) (+ - -) + 1$	$(- + +) (+ - -) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_6	$(- + -) (+ - -) + 1$	$(- + +) (+ - -) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_7	$(- + -) (- + +) + 1$	$(- + -) (- + +) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_8	$(- + -) (- + +) + 1$	$(- + -) (- + +) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_9	$(- + -) (- + +) + 1$	$(- + -) (- + +) (+ + +)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_{10}	$(- + -) (+ - -) + 1$	$(- + -) (+ - -) (+ - -)$	$3 \cdot 1 + 2 W$	$(0, 3, 0)$	$(1, 3, 1)$
S_{11}	$2 (- - -) + 1$	$2 (- - -) + 1$	$3 \cdot 1 + 2 W$	$(1, 5, 1)$	$(0, 1, 0)$
S_{12}	$2 (+ - -) + 1$	$2 (+ - -) + 1$	$3 \cdot 1 + 2 W$	$(1, 5, 1)$	$(0, 1, 0)$
S_{13}	$2 (- - -) + 2 \cdot 1$	$2 \cdot (- - -) + 1$	$3 \cdot 1 + 2 W$	$(1, 5, 1)$	$(1, 3, 1)$
S_{14}	$2 (- - -) + 2 \cdot 1$	$2 \cdot (- - -) + 1$	$3 \cdot 1 + 2 W$	$(1, 5, 1)$	$(1, 3, 1)$
S_{15}	$2 (+ - -) + 2 \cdot 1$	$2 \cdot (+ - -) + 1$	$3 \cdot 1 + 2 W$	$(1, 5, 1)$	$(1, 3, 1)$
S_{16}	$3 \cdot 1$	$3 \cdot 1$	$3 \cdot 1 + 2 W$	$(3, 9, 3)$	$(0, 1, 0)$
Proof: For each of the families $\mathcal{S}_3, \mathcal{S}_4, \mathcal{S}_{11}, \mathcal{S}_{12}$ and \mathcal{S}_{16} one has $H^0(A, \Omega^3_A) = \{ \pm \pm \}$ and $H^{1,1}(X) = H^{1,1}_{\text{var}}(X) = 3$ or 1, as one sees from Table 2.

For the other families we argue as follows. In each case, $g \in G$, $g \neq 1$ act freely on X and so one can apply Lemma 3.3 to find $\text{Tr} g H^2_{\text{var}}(X)$, given the dimension $p(g)$ of the (± 1)-eigenspace of $H^0(\Omega^1_A)$. This type is given in Table 3. The next column gives the corresponding trace vector. Then follows the trace vector of χ_A. Now apply the trace formula for the multiplicity of an irreducible representation inside a given representation (see e.g. [13, §2.3]). Let me do this explicitly for the family \mathcal{S}_6. The trace vector for $H^2_{\text{var}}(X)$ is $(43, -5, -5, -5, -5, 3, 3, 3)$, the first number being $\dim H^2_{\text{var}}(X)$. The representation $\chi_A = \{ \pm \pm \}$ has trace vector $(1, 1, 1, -1, 1, -1, -1, -1)$ and the trace formula reads

$$\frac{1}{8}(43 - 5 - 5 + 5 - 3 - 3 - 3) = 3. \quad \square$$

4. The main result

In this section I shall show that the main theorem 4.2 below follows upon application of Theorem 2.1. First an auxiliary result.

Lemma 4.1. Consider for each of the families \mathcal{S}_1--\mathcal{S}_{16} the space of theta-functions $H^0(\mathcal{L}_A^2)$ as G-representation space. This 8-dimensional space is the direct sum for all 8 characters of G except for the families \mathcal{S}_1 and \mathcal{S}_2. For these families we have

- for \mathcal{S}_1 we have $H^0(L^2_A) = 2 \{(\pm \pm \pm) + (\pm \pm \pm) + (\pm \pm \pm)\}$,
- for \mathcal{S}_2 we have $H^0(L^2_A) = 2 \{(\pm \pm \pm) + (\pm \pm \pm) + (\pm \pm \pm)\}$.

Proof: This follows from the G-action on the basis $\theta_{ji,j2j3}$ for $H^0(\mathcal{L}_A^2)$ which can be deduced from Lemma 3.2. I shall work this out for two cases: the family \mathcal{S}_2, and for the family \mathcal{S}_6. For \mathcal{S}_2 we have $g_1 = t_1 t_3 t_{25}$, $g_2 = t_3 t_{13}$ and $g_3 = t_2 t_{23}$ and for \mathcal{S}_6 we have $g_1 = t_2 t_3 t_{123}$, $g_2 = t_2 t_3 t_{13}$ and $g_3 = t_3 t_{23}$, and the action of these involutions is given in the following table.

Type	Trace vector $H^0(A, \Omega^1_A)$	Trace vector $H^2_{\text{var}}(X)$	Mult. χ_A																							
\mathcal{S}_5	$(3	1	3	1	1	2	2	2)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	3	
\mathcal{S}_6	$(3	2	3	2	2	2	2	2)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	6	
\mathcal{S}_7	$(3	2	2	2	2	2	2	1)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	6	
\mathcal{S}_8	$(3	2	2	2	2	2	2	3)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	5	
\mathcal{S}_9	$(3	2	2	2	2	2	2	3)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	5	
\mathcal{S}_{10}	$(3	2	2	2	2	2	2	2	2)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	2
\mathcal{S}_{13}	$(3	3	2	2	2	2	2	2)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	6	
\mathcal{S}_{14}	$(3	3	3	3	3	3	3	3)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	2	
\mathcal{S}_{15}	$(3	3	3	3	3	3	3	3)$	$(43	5	5	5	5	3	3	3)$	$(1	1	1	1	1	1	1	1)$	2	
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\text{element} & $g_1 = \ell_1\ell_3\ell_{23}$ & $g_2 = \ell_3\ell_{12}$ & $g_3 = \ell_2\ell_{23}$ & $g_1 = \ell_2\ell_3\ell_{12}$ & $g_2 = \ell_2\ell_3\ell_{12}$ & $g_3 = \ell_3\ell_{23}$ \\
\hline
θ_{111} & + & + & + & + & + & + \\
θ_{211} & + & - & + & + & - & + \\
θ_{121} & - & + & + & - & - & + \\
θ_{112} & - & + & - & + & - & - \\
θ_{122} & + & - & + & + & - & + \\
θ_{212} & + & - & + & - & + & + \\
θ_{221} & + & - & + & + & - & + \\
θ_{222} & + & + & + & + & + & + \\
\hline
\end{tabular}
\end{table}

Theorem 4.2. Let (X, G) be a Burniat hypersurface pair as before and let $Y = X/G$ be the corresponding generalized Burniat surface. Consider the one-dimensional space $H^0(\Omega^3_A)$ as a G-representation space, i.e. as a character χ_A. Then

1. For the families S_1, S_2 the involution $j = \ell_1\ell_2\ell_3$ belongs to G and the motives $h(X/j)$ and $h(Y)$ are finite dimensional.
2. For all other families, the motive (X, π_{χ_A}) is finite-dimensional. For the families $S_3, S_4,$ S_{11}, S_{12}, S_{16} this motive is just $h(Y)$.
3. The Bloch conjecture holds for the families S_1–S_4. In the remaining cases a variant of Bloch’s conjecture holds, namely $\text{CH}^0_{\text{var}}(X)^{\chi_A} = 0$. For the families S_{10}, S_{11} and S_{16} this means that $\text{CH}^0_{\text{var}}(X) = 0$.

Proof: (1) For the family S_2 this is [10] Example 7.3. The same proof goes through for the family S_1.
(2) The conditions (1), (2) and (4) of Theorem 2.1 are verified. Condition (5) is a consequence of Lemma 3.4.3. Indeed, if all characters in the 8-dimensional space $H^0(A, \mathcal{L}^2)$ appear once, this result implies that there is one character missing in $H^0_{\text{var}}(X)$, namely the character χ_A for the holomorphic three-forms on A. So for this character space condition (5) holds. As to (3), Lemma 4.1 states that in this case all characters appear in $H^2_{\text{var}}(X)$ except maybe this missing character χ_A. But its multiplicity has been calculated in Table 3. It is non-zero and so condition (3) holds as well.
(3) This is one of the assertions of Theorem 2.1 \hfill \square

Remark 4.3. Recall the following definition from [3]: a Sicilian surface is a minimal surface S of general type with numerical invariants $p_g(S) = q(S) = 1, c_1^2(S) = 6$ for which, in addition, there exists an unramified double cover $\hat{S} \rightarrow S$ with $q(\hat{S}) = 3$, and such that the Albanese morphism $\hat{\alpha}: \hat{S} \rightarrow \text{Alb}(\hat{S})$ is birational to its image Z, a divisor in its Albanese variety with $Z^3 = 12$. In loc. cit. one finds the following explicit construction. Let $T = \mathbb{C}^2/\Lambda_2, \Lambda_2 = \mathbb{Z}^2 \oplus \tau_1 \mathbb{Z} \oplus \tau_2 \mathbb{Z}$ be an Abelian surface with a $(1, 2)$-polarization \mathcal{L}_2 and let $E = \mathbb{C}/\Lambda, \Lambda = \mathbb{Z} \oplus \tau \mathbb{Z}$ be an elliptic curve. Consider the sections of the line bundle $\mathcal{L} = \mathcal{L}_0 \otimes \mathcal{L}_2$ on $A := E \times T$ that are invariant under the action of the bi-cyclic group K generated by $(e, a) \mapsto (e + \frac{1}{2} \tau, -a + \frac{1}{2} \tau_1)$ and $(e, a) \mapsto (e + \frac{1}{2} a + \frac{1}{2} \tau_2)$. These sections define hypersurfaces $X \subset A$ and the quotient $Y = X/K$ is a Sicilian surface and all such surfaces are obtained in this way.
Let me consider the invariants. Note that \(p_g(Y) = q(Y) = 1, c_1^2(Y) = 6 \) implies that \(h^{1,1}(Y) = h^{1,1}(X)_{++} = 6 \). In the same manner as for the families \(S_{11} \) and \(S_{12} \) one shows that \(h^{2,0}_{\text{var},++} = 0 \) so that \(N^1 H^2(X)_{\text{var}} = H^2(X)_{\text{var}} \). Moreover, likewise \(h^{1,1}(X)_{\text{var},+++} = 1 \). In the course of the proof of [3, Theorem 6.1] it is remarked that \(H^0(A, \mathcal{L}) = (+) \oplus (--) \oplus (+) \oplus (--) \). Clearly, \(H^0(\Omega^3_A) \) is invariant under \(K \) and the residue calculus (cf. Lemma 3.4) shows that \(H^{2,0}_{\text{var}} = (--) \oplus (--) \oplus (--) \) and so the “missing character” \(\chi_A \) is the trivial character. Since \(h^{1,1}(X)_{\text{var},+++} = 1 \) this missing character is present in \(H^2(X)_{\text{var}} \) and by Theorem 2.1 it follows that for Sicilian surfaces \(Y \), one has \(CH^0_{\text{var}}(Y) = 0 \) and the motive \(h(Y) \) is finite-dimensional.

References

[1] *Encyclopedic dictionary of mathematics*. Vol. I–IV. Translated from the Japanese. Second edition. Edited by Kiyosi Itô. MIT Press, Cambridge, MA, 1987. xx+2148 pp. ISBN: 0-262-09026-000A

[2] Y. André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan,...), Séminaire Bourbaki 2003/2004, Astérisque 299, Exp. No. 929, viii, 115–145.

[3] I. Bauer, F. Catanese and D. Frapporti, Generalized Burniat type surfaces and Bagnera–deFranchis varieties, [arXiv:1409.1285v2](https://arxiv.org/abs/1409.1285v2).

[4] I. Bauer and D. Frapporti, Bloch’s conjecture for generalized Burniat type surfaces with \(p_g = 0 \). *Rend. Circ. Mat. Palermo (2)* 64 (2015), 27–42.

[5] S. Bloch, Lectures on algebraic cycles, Duke Univ. Press Durham 1980, new edition:New Math. Monographs 16, Cambridge Univ. Press (2010).

[6] P. Burniat, Sur les surfaces de genre \(P_{12} > 1 \). *Ann. Mat. Pura Appl.* 71 (1966) 1–24.

[7] M. Inoue, Some new surfaces of general type. *Tokyo J. Math.* 17 (1994), 295–319.

[8] F. Ivorra, Finite dimensional motives and applications (following S.-I. Kimura, P. O’Sullivan and others), available from https://perso.univ-rennes1.fr/florian.ivorra/.

[9] S. Kimura, Chow groups are finite dimensional, in some sense, *Math. Ann.* 331 (2005), 173–201.

[10] R. Laterveer, J. Nagel and C. Peters: On complete intersections in varieties with finite-dimensional motive. Preprint

[11] J. Murre, J. Nagel and C. Peters, *Lectures on the theory of pure motives*, University Lecture Series 61, Amer. Math. Soc., Providence (2013).

[12] C. Peters: A motivic interpretation of primitive, variable and fixed cohomology. Preprint.

[13] J.-P. Serre, *Linear Representations of Finite Groups* Garduate Texts in Math. Springer-Verlag, New York etc. (1977)

[14] C. Vial, Remarks on motives of abelian type. *Tohoku Math. J.* 69 (2017), no. 2, 195–220.

DISCRETE MATHEMATICS, TECHNISCHE UNIVERSITET EINDHOVEN, POSTBUS 513, 5600 MB EINDHOVEN, NETHERLANDS.

E-mail address: c.a.m.peters@tue.nl