H₂ and its relation to CO in the LMC and other magellanic irregular galaxies

F.P. Israel
Sterrewacht Leiden, P.O. Box 9513, 2300 RA Leiden, the Netherlands

Received ????; accepted ????

Abstract. H₂ column densities towards CO clouds in the LMC and SMC are estimated from their far-infrared surface brightness and HI column density. The newly derived H₂ column densities imply N(H₂)/I(CO) conversion factors (in units of 10²¹ mol cm⁻² (K km s⁻¹)⁻¹) Xₐₐ₉₂₇ = 1.3±0.2 and Xₐ₉₂₇ = 12±2. LMC and SMC contain total (warm) H₂ masses of 1.0±0.3×10⁸ M⊙ and 0.75±0.25×10⁸ M⊙ respectively. Local H₂/HI mass ratios similar to those in LMC and SMC are found in the magellanic irregulars NGC 55, 1569, 4214, 4449 and 6822 and in the extragalactic HII region complexes NGC 604, 595 and 5461 in M 33 and M 101 respectively. In these HII regions and in NGC 4449, we find X = 1–2; in NGC 55, 4214 and 6822 X = 3–6 again in units of 10²¹ mol cm⁻² (K km s⁻¹)⁻¹. The post-starburst galaxy NGC 1569 has a very high value similar to that of the SMC.

The CO–H₂ conversion factor X is found to depend on both the ambient radiation field intensity per nucleon σ_FIR/ N_H and metallicity [O]/[H]: log X ∝ 0.9±0.1 log (σ_FIR/ N_H) - 3.5±0.2 log [O]/[H]. Neglecting dependency on radiation field, a reasonable approximation is also provided by log X ∝ - 2.7±0.3 log [O]/[H]. Milky Way values are consistent with these relations. This result is interpreted as the consequence of selective photodissociation of CO subjected to high radiation field energy densities and poor (self)shielding in low-metallicity environments, and especially the preferential destruction of diffuse CO in ‘interclump’ gas.

Although locally H₂ may be the dominant ISM component, the average global H₂/HI mass ratio is 0.2±0.04 and the average H₂ gas mass fraction is 0.12±0.02. Magellanic irregulars have warm molecular gas fractions very similar to those of our Galaxy, whereas other global properties (mass, luminosity, metallicity, CO luminosity) are very different.

Key words: Galaxies: individual: LMC; SMC – Galaxies: ISM; irregular; Magellanic Clouds – Infrared: ISM: continuum – ISM: molecules

1. Introduction

1.1. H₂ content of galaxies

The existence of molecular hydrogen (H₂) in interstellar space was suggested as early as 60 years ago by Eddington (1937) and Strömgren (1939). Thirty years later, Gould & Sàlpete (1963) and Hollenbach et al. (1971) predicted that it could be a large fraction of all hydrogen. However, H₂ is difficult to observe directly, because it is a symmetrical molecule lacking a dipole moment. Nevertheless, it has been observed in absorption at UV wavelengths and in emission at infrared wavelengths. Because the emission arises mostly in warm or hot molecular gas, it has been virtually impossible to deduce total amounts of H₂ which is expected to be present mostly at low temperatures.

As H₂ is an abundant and important constituent of the interstellar medium in galaxies, there has been great interest in determining its presence and properties. Because it is commonly assumed that star formation requires interstellar clouds to pass through a cool, high-density phase in which most of the hydrogen is in molecular form, studies of star formation in external galaxies also seek to determine H₂ amounts in such galaxies.

Emission from the tracer CO molecule has been and still is widely used to determine the distribution and amount of molecular hydrogen in our own Milky Way and other galaxies. Although the usually optically thick ¹²CO emission does not provide direct information on column densities, empirical relations between CO luminosities and virial masses of molecular clouds in the Galaxy suggest that circumstances nevertheless allow its use in an indirect manner. The underlying thought is that CO is distributed in a very clumpy manner, and that clumps are not self-shadowing. The strength of the signal received from many clumps in a single observing beam thus provides a measure for their total projected area weighted by brightness temperature. If the clumps are statistically similar from one line of sight to the other, we thus have a measure for the number of clumps per beam area, hence for the total amount of molecular material. In fact, the high optical
depth of ^{12}CO emission is then a boon, as it makes such
determinations to first approximation independent of the actual $[\text{CO}]/[\text{H}_2]$ abundance.

1.2. Problems with CO-based methods

The most commonly used methods to estimate molecular hydrogen contents of extragalactic objects are either application of a ‘standard’ CO to H$_2$ conversion factor X (defined as the ratio of molecular hydrogen column density $N(\text{H}_2)$ to velocity-integrated CO intensity $I(\text{CO})$) derived from Milky Way observations, or application of the virial theorem to observed CO clouds. The first method assumes similarity of extragalactic molecular clouds and Galactic clouds, or at least that the effects of different physical conditions cancel one another. In environments that are very different from those in the Galaxy, such as those found in galaxy central regions or in low-metallicity dwarf galaxies, this method must be considered unreliable (cf. Elmegreen et al. 1980; Israel 1988; Maloney & Black 1988; Elmegreen 1989; Maloney 1990a). For instance, application of this method to the very low CO luminosities commonly observed for irregular dwarf galaxies would suggest negligible amounts of H$_2$ (Israel et al. 1995) and consequently unusually high star formation efficiencies (Israel 1997). In contrast, direct evidence for X factors varying by more than an order of magnitude, probably as a function of local conditions, has been presented for Galactic clouds by Magnani & Onello (1995). We thus agree with Roberts & Haynes (1994): ‘values of the molecular hydrogen content in late-type systems derived in this manner are uncertain and possibly too low by up to an order of magnitude’.

The second method frequently used estimates total molecular cloud mass from observed parameters such as CO extent $R(\text{CO})$ and velocity dispersion $dv(\text{CO})$. Although this method, not assuming similarity between Galactic and extragalactic clouds, is preferable, it is likewise beset by problems, as it requires correct determination of the structure and dynamics of the observed clouds. For instance, the value of the virial constant used to convert observed parameters into mass may vary by a factor of four depending on the assumed condition of the system (see e.g. McLaren et al. 1988; McKee & Zweibel 1992), while it is not clear that the virial theorem is in fact relevant. If one considers the morphology of molecular complexes such as the ones in Orion (Bally et al. 1987), Taurus (Ungerechts & Thaddeus 1987) or indeed in the LMC (Israel & de Graauw 1991; Kutner et al. 1997) it is hard to imagine that these very elongated structures with little systematic velocity structure actually represent virialized complexes. Maloney (1990b) has shown that the correlation between CO luminosities and virial masses of Galactic molecular clouds follows directly from the size-linewidth relationship exhibited by molecular clouds and does not require virial equilibrium at all. Molecular hydrogen masses have also been determined applying X-factors scaled from X_{Gal} by $L(\text{CO})$ as a function of dv (e.g. LMC – Cohen et al. 1988; SMC – Rubio et al. 1991).

Especially in the large linear beamsizes typical of extragalactic observations, actually unrelated clouds at somewhat different velocities may blend together, leading to unrealistical values of both cloud complex radius R and velocity dispersion dv. The derived (virial) masses may then either overestimate or underestimate the actual mass, depending on circumstances. For instance, consider an area mapped with a large beam blending together N unrelated clouds, each having a true mass $M_{\text{vir}} = a rv^2$. Here, r_o is the diameter of a single cloud and dv_o its velocity dispersion. The true total mass is thus $N a r_o dv_o^2$. Cloud emission is measured over an area with radius $R = N^{1/2} b r_o$ in which $b r_o$ is the projected separation between cloud centers. Unjustified application of the virial theorem on this observation suggests a total mass $M_{\text{vir}} = a N^{1/2} b r_o dv_1^2$, where dv_1 now is the dispersion derived from the velocity width of the sum profile of all clouds within radius R. The ratio of the derived mass over the true mass is thus:

$$M_{\text{derived}}/M_{\text{true}} = b N^{-1/2} (dv_1/dv_o)^2$$

If $N < b^2$ and $dv_1 > dv_o$, this will result in a potentially large overestimate of the mass. However, if instead the unrelated clouds are at more or less identical radial velocities, $dv_1 \approx dv_o$, the true mass is underestimated if $N > b^2$. Such a situation may occur in low-metallicity dwarf galaxies with relatively small velocity gradients. It occurs if we have a large number of clouds with small projected distances; a more physical equivalent is a very filamentary structure of the molecular material.

A further problem in estimating H$_2$ masses from CO observations is the need to assume virtually identical distributions for both. If CO is significantly depleted, H$_2$ may well occur outside the area delineated by CO emission and its amount is underestimated by the CO measurements. This effect appears to lie at the base of the size dependence of $N(H_2)/I(\text{CO})$ ratio, noted by Rubio et al. (1993) and Verter & Hodge (1995). In low-metallicity galaxies suffering CO depletion, this results in a lack of CO emission in complexes observed on large angular scales. Observations on small angular scales selectively concentrate on the densest molecular components, that have resisted CO depletion most effectively, so that the $N(H_2)/I(\text{CO})$ ratio looks progressively more ‘normal’ notwithstanding the lack of CO in most of the complex.

Thus, in order to estimate H$_2$ content of such galaxies, it is desirable to use a method that does not require specific assumptions on or knowledge of the detailed structure and dynamics of the molecular clouds involved. Use of far-infrared data in principle provides such a method (e.g. Thronson et al. 1987, 1988; Israel 1997).

2. Method and data
2.1. Estimating $N(H_2)$ from σ_{FIR} and $N(HI)$

H_2 column densities are derived in the manner used on NGC 6822 by Israel 1997. At locations well away from star-forming regions and CO clouds, the ratio of neutral hydrogen column density to far-infrared surface brightness ($N(HI)/\sigma_{\text{FIR}}$), is determined. In the absence of molecular gas, ($N(HI)/\sigma_{\text{FIR}}$) equals N_H/σ_{FIR}, which is a measure for the ambient gas-to-dust ratio. The observed σ_{FIR} values at locations that contain H_2, as betrayed by CO emission, reduced to the reference dust temperature T_{d0} and then multiplied by ($N(HI)/\sigma_{\text{FIR}}$), thus provide the total hydrogen column density N_H. The actual gas-to-dust ratio, which depends on poorly known dust particle properties, does not need to be known as long as it does not change from source to reference position. In the small irregular galaxies considered here, abundance gradients are negligible (cf. Vila-Costas & Edmunds 1992), so that we may safely assume no change in gas-to-dust ratio as a function of position in the galaxy. When N_H is known, $N(H_2)$ is found by subtracting the local $N(HI)$ value:

$$2 \, N(H_2) = [(N(HI)/\sigma_{\text{FIR}}) \times f(T) \times \sigma_{\text{FIR}}] - N(HI)$$

In eqn. 2, $f(T)$ is a function which corrects σ_{FIR} for the emissivity difference due to the (generally small) difference of T_4 from T_{d0}; for small temperature differences $f(T)$ is close to $(T_{d0}/T_4)^3$. Temperatures T_4 are derived from the IRAS 60μm/100μm flux ratio assuming a wavelength dependence for emission $I_\lambda \propto \lambda^{-n}B_\lambda$. Here and in the following we will assume $n = 2$. The temperature correction assumes that the number distribution of dust particles emitting at varying temperatures does not differ significantly from one location to another. This is a reasonable assumption for values of $f(T)$ not too far from unity, but may introduce significant errors for very large or very small values of $f(T)$. The CO to H_2 conversion factor X follows from the observed CO strength: $X = N(H_2)/I(CO)$.

This method of estimating H_2 column densities depends on observed quantities independent of the actual spatial or kinematical distribution of the molecular material. It has this property in common with the methods used by Bloemen et al. (1986) and Bloemen et al. (1990) to estimate the same quantities in the Milky Way galaxy. It avoids the major weakness of the virial method discussed above, as there is no need to determine the structure of the molecular cloud complexes, to separate unrelated clouds in the same line of sight, or even to resolve the molecular clouds. It is important to emphasize that in this method, the absolute gas-to-dust ratio plays no role, nor does the actual dust mass. We thus avoid a major uncertainty associated with other infrared-derived H_2 estimates, where the infrared flux is used to calculate a dust mass, which is then converted into a gas mass. Likewise, our results are independent of CO measurements, and as we will show below, the observational uncertainties are no worse than those associated with the traditional methods and probably better.

The column densities $N(H_2)$, and consequently X, determined in this paper are properly lower limits (Israel 1997). (ii). If some H_2 were to be present at the null positions where we assumed none, the total hydrogen column density corresponding to unit infrared luminosity is underestimated, implying higher actual $N(H_2)$ values than derived. (iii). If, unexpectedly, the hotter infrared sources were to be relatively rich in cooler dust, the observed infrared emission does not sample the total amount of gas, hence $N(H_2)$, will be higher than estimated. (iii). If, in regions of bright infrared emission, higher radiation densities would cause increased dust depletion, these regions will be characterized by a higher gas-to-dust ratio than assumed, again leading to higher than derived actual $N(H_2)$ values. This is expected only to be important for HII regions filling a significant fraction of the beam.

Errors in the assumptions would thus cause $N(H_2)$ and X to be higher rather than lower. Although these errors are hard to quantify, we consider it unlikely that their effect will exceed a factor of two. The calculated total hydrogen column densities N_H carried with them the combined uncertainty in the determinations of ($N(HI)/\sigma_{\text{FIR}}$), $f(T)$ and σ_{FIR}. Because these quantities are compared in a relative rather than an absolute sense, the uncertainty ΔN_H is of the order of 20% - 30% for the cases discussed below. The uncertainty in the calculated values of $N(H_2)$ is larger. Since the $N(HI)$ determinations are considered to be rather accurate, it depends on the molecular to atomic hydrogen ratio: $\Delta N(H_2) = \Delta N_H(1 + 0.5 \, N(HI)/N(H_2))$

Thus, for H_2 column densities equal to or higher than those observed in HI, the relative H_2 uncertainty is typically less than 50%. For HI column densities substantially higher than the derived H_2 column density, the relative uncertainty may become considerable. However, this situation almost exclusively occurs at low absolute $N(H_2)$ values where a relatively large uncertainty still corresponds to an acceptable uncertainty in the absolute value. The uncertainty in the derived value of X, in turn, includes both the uncertainty in $N(H_2)$ and in $I(CO)$. Since the latter is usually much smaller than the former, the uncertainty in X is actually dominated by that in $N(H_2)$. The combined effect of uncertainties in the observational values and in the assumptions implies a rough overall uncertainty of about a factor of two for individual determinations.

2.2. Data and results

All data were taken from the literature or existing databases. The CO, HI and far-infrared data included in the comparison are selected to have similar resolutions. This resolution is determined by the lowermost resolution to which the other data are degraded, if necessary.
The far-infrared data are from Schwering 1988, who conveniently produced maps of infrared luminosity over HI mass at 15' resolution (corresponding to 235 pc) and dust temperature at 8' resolution (Fig. 1). The HI data (resolution 15') are from Rohlfis et al. 1984. The average of six positions in the main body of the LMC, well away from CO clouds and bright HII regions is \(\langle N(HI) \rangle = 2.25 \times 10^{27} \text{ cm}^{-2} \) (corresponding to \(L/M = 1.7 L/\odot/M/\odot \)) at a reference temperature \(T_{\text{d0}} = 25.5 \text{ K} \). From the internal variation, we estimate its uncertainty to be about 10%. The uncertainty in \(f(T) \) is about 20% and that in \(\sigma_{\text{FIR}} \) about 10%.

In Table 1 we have listed data for several of the CO cloud complexes detected by Cohen et al. (1988) convolved to a resolution of 15' (e.g. Meinert, 1992). Except for cloud 31, all CO clouds considered have diameters larger than 15'. Weaker CO sources are included only if identification with an HII region complex support their validity. In Table 1, the first column identifies the CO cloud by its number in Table 1 of Cohen et al. (1988). Column 2 lists the far-infrared surface brightness at the peak CO position, column 3 the value of \(f(T) \) based on the dust temperature derived from the \(F_{60}/F_{100} \) flux ratio and column 4 the HI column density. Column 5 gives the molecular hydrogen column densities calculated according to eqn. 2, while columns 6 and 7 give the resulting ratios of molecular hydrogen to atomic hydrogen and total gas (including helium) respectively. Column 8 gives the integrated CO intensity and column 9 the resulting value of \(X = N(H_2)/T_{\text{CO}} \). This ratio is a measure of the ambient radiation field strength per H nucleon. Finally, column 11 lists HII region(s) associated with the molecular cloud. In most cases the HII region extent is much less than the 15' scale relevant to the data used.

Some further comments are in order. Clouds 34, 35 and 36 are located south of the bright HII regions associated with the Doradus complex. Major CO emission...
occurs with little or no optical counterpart. There is relatively strong HI emission, but the far-infrared surface brightness decreases smoothly. The results for N157B and N159 (clouds 32 and 33) are uncertain, as both are at steep far-infrared gradients. N159 is also on a steep CO emission gradient in the opposite direction. Consequently, the resulting value of \(N(H_2) \) depends critically on the precise (within a fraction of the resolution) position used. The mean value of the CO to \(H_2 \) conversion ratio is

\[
X = 13(\pm 2) \times 10^{20} \text{cm}^{-2}.
\]

Its uncertainty is determined by that in \((N(HI)/\sigma_{\text{FIR}})_o \), which does not decrease with increasing sample size, whereas all other errors do.

2.2.2. SMC

The far-infrared data are from Schwering’s (1988) maps of dust temperature and of far-infrared luminosity over HI mass (Fig. 2). The HI data at the same resolution are from McGee & Newton (1981). For the SMC we find an average

\[
(N(HI)/\sigma_{\text{FIR}})_o = 1.65(\pm 0.25) \times 10^{28} \text{ cm}^{-2}/\text{W m}^{-2}\text{sr}^{-1}
\]

(corresponding to \(L/M = 0.23 \text{ L}_\odot/\text{M}_\odot \)) for various positions in and near the bar, at a reference temperature \(T_{do} = 28 \text{ K} \). In Table 2 we list the SMC data for several of the CO cloud complexes detected by Rubio et al. (1991) in the same format as Table 1.

The mean value of the CO to \(H_2 \) conversion ratio is

\[
X = 120(\pm 30) \times 10^{20} \text{cm}^{-2}.
\]

The uncertainty in the null determination again dominates, but less decisively because of the relatively small sample size in Table 2.

2.2.3. NGC 55, NGC 1569, NGC 4214 and NGC 4449

Four other irregular galaxies have far-infrared, HI and CO data at similar resolutions (Table 3). For these galaxies, we used far-infrared data at a resolution of 1.4′ obtained with IRAS CPC instrument at 50μm and 100μm (F. Sloff, unpublished; Van Driel et al. 1993). For consistency, we interpolated the CPC 50μm fluxes to 60μm; as the abso-
Table 2. SMC Data (unit area 0.061 kpc2)

Galaxy	σ_{FIR}	$f(T)$	$N(H\text{I})$	$N(H_2)$	$\frac{2N(H_2)}{N(H\text{I})}$	$\frac{2N(H_2)}{N_{\text{gas}}}$	$I(CO)^a$	$X = \frac{N(H_2)}{I(CO)}$	$\frac{\sigma_{\text{FIR}}}{N_{\text{H}}}^b$	Associated HII Region
SW1	1.5	0.74	7.8	6.3±2.8	1.6	0.46	0.42	15±7	0.7	N16/N17
SW2	1.3	0.67	8.8	3.6±2.1	0.8	0.33	0.36	10±6	0.8	N25/N26
-	1.5	0.55	7.0	4.2±2.1	1.2	0.40	0.20	20±12	1.0	N32/N37
NE1	0.3	0.90	3.0	1.3±0.8	0.9	0.34	0.20	7±4	0.6	N72
NE2	1.3	0.55	4.3	4.4±0.8	2.1	0.50	0.33	13±6	1.0	N66
NE3	0.9	0.67	5.9	2.5±1.5	0.9	0.34	0.30	8±5	0.8	N76
Mean	1.1	0.68	6.1	3.7±0.8	1.3	0.40	0.30	12±2	0.8±0.1	—

Notes: a. Uncertainty in $I(CO)$ is 0.06 Kkms$^{-1}$ (Rubio et al. 1991); b. Uncertainty in $\frac{\sigma_{\text{FIR}}}{N_{\text{H}}}$ is 25%; c. Henize 1956.

Table 3. Other Galaxies

Galaxy	σ_{FIR}	$f(T)$	$N(H\text{I})$	$N(H_2)$	$\frac{2N(H_2)}{N(H\text{I})}$	$\frac{2N(H_2)}{N_{\text{gas}}}$	$I(CO)^a$	$X = \frac{N(H_2)}{I(CO)}$	$\frac{\sigma_{\text{FIR}}}{N_{\text{H}}}^b$	Unit Area kpc2
NGC 55	20	1.0	8.0	6.0±3.0	1.5	0.44	2.0	3.0±1.7	10±2	0.6
NGC 1569	12	1.5	3.5	6.0±3.0	3.4	0.57	0.37	16±8	8±2	0.7
NGC 4214	1.0	1.6	2.3±0.9	2.9	0.55	0.7	3.3±1.5	12±2	4.2	—
NGC 4449	1.6	0.45	1.85	0.7±0.3	0.6	0.28	0.95	8.0±3.0	2.3±0.6	2.1
NGC 6822-HII	0.85	0.7	1.8	2.8±0.9	3.1	0.56	0.50	5.5±1.1	1.1±0.2	0.1
NGC 6822-IR	0.75	0.8	1.5	3.0±0.5	4.0	0.59	0.85	4.7±1.3	1.0±0.2	0.1
NGC 604	2.0	0.6	3.0	2.6±1.0	1.7	0.47	1.2	2.2±0.9	2.4±0.5	0.5
NGC 595	1.1	1.0	1.9	1.0±0.4	1.1	0.38	0.9	1.2±0.9	2.7±0.6	0.5
NGC 5461	6.0	1.0	1.6	2.7±0.9	3.4	0.57	2.5	1.1±0.4	8±2	3.4

Note: a. For CO details, see text.
We may compare this result to that obtained by Cohen et al. (Kkms X X if X (Kkms in the LMC, we find a mean value X given by Becker et al. (1995). On the basis of all available data, we take I(CO) = 0.7(±0.15) Kkms⁻¹ in a 1' beam. HI data at 1' resolution are from Allsop (1979). At two reference positions, we determined (N(HI)/σFIR)_o = 1.2±0.2×10²⁷ cm⁻²/Wm⁻²sr⁻¹.

NGC 4449 was observed in CO by Hunter & Thronson 1996 (65' beam) and by Sasaki et al. 1990 (15' beam). Taking into account beam sizes and efficiencies, the data agree well. HI data at 1' resolution are from the WHISP database (J. Kamphuis, private communication). We obtained reasonably accurate infrared surface brightnesses for Hunter & Thronson's results by Becker et al. (1995). On the basis of all available values, they conclude that on average, X values much higher than the range 0.2-0.4 X, they imply a high value for X_LMC is only 3 X, but at the largest widths it is 10X. The figure exhibits a large scatter around the mean, covering an equivalent range in X_LMC of 2 - 20 X. Part of this scatter is undoubtedly due to the low signal-to-noise ratio of the CO measurements, but part of it is real. For instance, Garay et al. (1993) studied seven CO clouds in the 30 Doradus halo and found those to have L(CO)_G/L(CO)_Dor ratios implying a much higher value. X_Dor = 20 X than the mean found by Cohen et al. (1988). We note that the values tabulated in our Table 2 also define a large range in X, from close to the Galactic value to more than an order of magnitude higher. For 30 Doradus itself we derive an even higher X value. We will discuss this variation in X in sect. 3.2.

In Table 3, we have also included the results obtained for NGC 6822 (Israel 1997). Two sets of entries are given: NGC 6822-HII represents the mean values towards the HII region complexes Hubble I/III, V and X, and NGC 6822-IR those towards the infrared sources 4 and 6 not associated with major HII regions.

We also included data for the bright HII regions NGC 604 and NGC 595 in M 33. The infrared data were taken from Rice et al. (1990), HI data at the same resolution from Deul (1988) and CO data from Blitz (1985). Note that the results for NGC 595 are rather uncertain, as a reliable flux at 100μm is hard to determine; we assumed essentially similar infrared flux distributions for both NGC 604 and NGC 595. Finally, we also included NGC 5461, the brightest HII region in the galaxy M 101. Infrared data were taken from Bontekoe et al. (1994), HI data from van der Hulst & Sancisi (1988) and CO data from Blitz et al. (1981) and Kenney et al. (1991). In this case, we applied a correction factor of 1.3 to allow for the presence of significant amounts of HI; this effect is negligible for the M 33 objects. Because the parent galaxies M 33 and M 101 have radial abundance gradients, we selected null positions adjacent to the HII regions used.

3. Analysis & Discussion

3.1. The CO to H₂ conversion factor

In the sample galaxies, we find CO to H₂ conversion factor X values much higher than the range 0.2-0.4 × 10²¹ cm⁻² (Kkms⁻¹)⁻¹ commonly adopted for Milky Way objects. In the LMC, we find a mean value X = 1.3 × 10²¹ cm⁻² (Kkms⁻¹)⁻¹, or 3 - 7 times higher than in the Milky Way. We may compare this result to that obtained by Cohen et al. (1988). Comparing CO luminosities L(CO) to velocity width ∆v, they conclude that on average X_LMC = 6X_G. They adopt X_G = 0.28 × 10²¹ cm⁻² (Kkms⁻¹)⁻¹ resulting in a value for X_LMC 30% higher than ours. However, if X_G = 0.20 × 10²¹ cm⁻² (Kkms⁻¹)⁻¹ (Bloemen 1989), their result is identical to ours. Satisfactory as this may seem, the situation is more complex.

First, Cohen et al. (1988) estimated their value of X from the mean ratio L(CO)_G/L(CO)_LMC, but their Fig. 2 shows this ratio to be a function of ∆v. At the smallest velocity widths, their implied X_LMC is only 3 X, but at the largest widths it is 10X. The figure exhibits a large scatter around the mean, covering an equivalent range in X_LMC of 2 - 20 X. Part of this scatter is undoubtedly due to the low signal-to-noise ratio of the CO measurements, but part of it is real. For instance, Garay et al. (1993) studied seven CO clouds in the 30 Doradus halo and found those to have L(CO)_G/L(CO)_Dor ratios implying a much higher value. X_Dor = 20 X than the mean found by Cohen et al. (1988). We note that the values tabulated in our Table 2 also define a large range in X, from close to the Galactic value to more than an order of magnitude higher. For 30 Doradus itself we derive an even higher X value. We will discuss this variation in X in sect. 3.2.

Galaxy	X	References
LMC	1.3	This Paper, Literature
SMC	12	1
NGC 55	3	1; 2
NGC 1569	16	3
NGC 4214	3	4
NGC 4449	0.8	5
NGC 6822	5	6
NGC 604	2.2	7
NGC 595	1.2	8
NGC 5461	1.1	9

References for other X values: 1. Cohen et al. (1988); 2. Garay et al. (1993); 3. Rubio et al. (1991); 4. Dettmar & Heithausen (1989); 5. Greve et al. (1996); 6. Thronson et al. (1988); 7. Becker et al. (1995); 8. Estimated from Ohta et al. 1993, after correction for main-beam efficiency; 9. Wilson (1994); 10. Estimated from Blitz (1985); 11. Viallefond et al. (1992); 12. Wilson & Scoville (1992); 13. Israel et al. (1990); 14. Estimated from Blitz et al. (1981).

Second, we differ in individual cases, even though the mean values agree. For instance, Cohen et al. (1988) obtain very high H₂ and virial masses (and their Fig. 2 implies a high value for X) in cloud 35. In this cloud, we find a low X value. The result by Cohen et al. (1988) follows from the high ∆v = 28 km s⁻¹ they found for this cloud. They list similarly large velocity widths for e.g. clouds 13, 19 and 23. Yet, the higher resolution SEST survey yields velocity widths typically a factor of two less (Israel et al. 1993; Kutner et al., 1997). At least in the case of cloud 35, the
anomalously high velocity width appears to be the result of CO clouds at two distinct velocities blended together in the large beam used by Cohen et al. (1988). Reduction of the large velocity widths to the more modest SEST values, yields X values in much better agreement with those in Table 2. Similar comments apply to the SMC results by Rubio et al. (1991), except that here we find a larger value of X, although both results have significant uncertainties associated with them. It is nevertheless clear that X_{SMC} is much higher than either X_{LMC} or X_{G}.

For the objects listed in Table 3, X estimates can be obtained from the literature (Table 4). These are mostly rough estimates based on comparison of CO luminosities and virial masses, and are very uncertain. Nevertheless, we see reasonably good agreement in Table 4 for NGC 55, NGC 4214, NGC 4449 and for NGC 5461. There is also good agreement for NGC 595 and NGC 604 if we disregard the estimates derived from the high resolution observations which apply to individual cloud components rather than whole complexes. It has been noted before (Rubio et al. 1993; Verter & Hodge, 1995) that such observations always yield X values much lower than the global values derived from observations covering the whole complex (see als sect. 1.2). Our results for NGC 6822, and especially for NGC 1569, are higher than the other published estimates.

3.2. Dependence of X on environment

3.2.1. Dependence on radiation field

Compared to the Milky Way, the galaxies studied here have lower metallicities, and are found to have higher X ratios. This is not a new result: several authors have suggested a more or less inverse linear dependence between X and metallicity as measured by the oxygen abundance (cf. Dettmar & Heithausen, 1989; Rubio et al. 1991; Verter & Hodge 1995; Arimoto 1996, Sakamoto 1996). Arnault et al. (1988) found the ratio of CO to HI emission in a sample of 19 late-type galaxies to vary as roughly as [O]/[H]^{2.2}. Sage et al (1992) failed to reproduce such a relation, but our sample suggests the CO to HI ratio to be proportional to [O]/[H]^{2.6}, within the errors identical to the result obtained by Arnault et al. (1988). The latter conclude that CO must be deficient relative to H$_2$ as a function of metallicity, but could not determine a functional dependence for the CO/H$_2$ ratio, hence X, on metallicity. Their result nevertheless suggests a dependence with a coefficient larger than unity, as there is no reason to assume vastly different H$_2$/HI ratios in low-metallicity galaxies.

The present data provide an excellent basis to pursue this question, as they have been obtained in a consistent manner. Much of the previously published discussions were based on a compilation of data (notably X-values) from different sources, and obtained in different manners.

An underabundance of CO with respect to hydrogen is expected to result from low carbon and oxygen abundances. It will be enhanced by photodissociation of CO since low metal abundances imply both lower selfshielding and lower dust shielding of CO against the ambient radiation field. The LMC and SMC samples allow us to first investigate the effect of the radiation field. In Fig. 3 we have plotted the ratio N(H$_2$)/I(CO) = X as a function of the energy available per H nucleon, represented by the quantity σ_{FIR}/N_H. Straight lines indicate the linear regression lines. In case of the LMC, we did not include 30 Doradus in determining the regression line, because its very high values would dominate the result. Nevertheless, extrapolation of the regression line to the σ_{FIR}/N_H value of 30 Doradus predicts it to have $X = 7 \times 10^{20} \text{cm}^{-2} \text{cm}^{-2} (\text{Kkm}^{-1})^{-1}$, or 85% of the value derived directly in Table 1. The SMC sample, although much smaller, shows a similar behaviour. Further analysis suggests that the dependence of X on radiation field is indeed very close to linear: $X \propto (\sigma_{FIR}/N_H)^{0.9\pm0.1}$.

The increase of X, i.e. the decrease of CO relative to $N(H_2)$, as more energy per nucleon is available is the result of two processes, as is illustrated by the SEST results obtained for the LMC. High-resolution maps (linear beamsize corresponding to 10 pc) were obtained of clouds 35/36 (south of 30 Doradus – Kutner et al. 1997), cloud 6 (N11 – see Israel & de Graauw 1991) and cloud 32 (30 Doradus – Johansson et al., in preparation). The map of cloud 35/36 shows numerous clumps embedded in extended interclump gas; the average peak-to-diffuse CO contrast ratio is about 3. Bright clumps (i.e. those having a CO strength of more than 5 Kkm$^{-1}$ per SEST beam area) are numerous, but contribute only about a quarter to a third of the CO luminosity of the whole complex. This is similar to Galactic giant molecular clouds, where e.g. Heyer et al. (1996) find most of the molecular mass to be in extended, low
column-density regions. Cloud 6 is embedded in a four times stronger radiation field (Table 1) and contains a very similar number of clumps per unit area. Two thirds of these are bright with \(I(\text{CO}) > 5 \text{ Kkms}^{-1} \) per SEST beam, but cloud 6 lacks the extended diffuse gas seen in cloud 35/36. In this complex, the contrast ratio is of order ten. Apparently, the fourfold increase in radiation density has resulted in the removal of virtually all the low column density CO gas. As the high column density hydrogen gas will be practically unaffected, the value of \(X \) has increased in cloud 6 more or less commensurate with the increase in radiation density and CO removal.

Cloud 32 experiences a radiation density a factor of three over that in cloud 6, i.e. over an order of magnitude more than that of Cloud 35/36. There is no trace of interclump gas. The number of clumps per unit area is still very similar, but the fraction of bright clumps is only a third, down by more a factor of two from Cloud 6. Many of the weaker clumps are hardly discernible. We conclude that the further increase in radiation density in cloud 32 is eroding even the dense CO clumps that are surviving reasonably well in cloud 6, resulting in a further decrease of the \(I(\text{CO})/N(H_2) \) ratio, i.e. a further increase in \(X \).

It is of interest that the low-excitation clouds south of N 159 have \(X \) values only a few times \(10^{20} \text{ cm}^{-2} \) \text{ cm}^{-2} \) rather similar to the canonical value of \(X \) in the Milky Way. In these clouds, the lack of dissociating radiation apparently allows the CO to fill most of the \(H_2 \) volume, notwithstanding the lower CO abundance.

3.2.2. Dependence on metallicity

The ratio of \(X \) to \(\alpha_{\text{FIR}}/N_H \) for the objects in Tables 1, 2 and 3 can now be compared to the metallicities given in Table 5. We have included the Milky Way by using the \(Y \) and \(\alpha_{\text{FIR}}/N_H \) values tabulated as R2 tot R5 by Bloemen et al. (1990 – their Table 3) and the metallicities from Shaver et al. (1983). We have determined linear regressions with and without the Milky Way points, and for \(X – \alpha_{\text{FIR}}/N_H \) dependences with exponents 0.9 and 1.0. We find:

\[
\log X = 0.9 \pm 0.1 \log \left(\frac{\alpha_{\text{FIR}}}{N_H} \right) - 3.5 \pm 0.2 \log \left(\frac{[\text{O}]}{[\text{H}]} \right) + 34.6 \pm 2.2 \\
(n = 10; \text{regression coefficient } r^2 = 0.78) \tag{3a}
\]

Inclusion of the Milky Way points changes this to:

\[
\log X = 0.9 \pm 0.1 \log \left(\frac{\alpha_{\text{FIR}}}{N_H} \right) - 3.2 \pm 0.1 \log \left(\frac{[\text{O}]}{[\text{H}]} \right) + 34.3 \pm 3.1 \\
(n = 14; r^2 = 0.85) \tag{3b}
\]

This is illustrated in Fig. 4a, which shows the dependence on \([\text{O}]/[\text{H}] \) for a linear (exponent 1.0) dependence of \(X \) on \(\alpha_{\text{FIR}}/N_H \). As is clear from Fig. 4a, there is almost perfect agreement of the Milky Way points with the relation determined for the sample galaxies alone. We have also empirically determined the dependence of \(X \) on metallicity, ignoring any dependence on radiation density. This yields (see also Fig. 4):

\[
\log X = -2.7 \pm 0.3 \log \left(\frac{[\text{O}]}{[\text{H}]} \right) + 11.6 \pm 1.0 \\
(n = 10; r^2 = 0.90) \tag{4}
\]

Here, the nominal global Milky Way \(Y \)-point (Bloemen et al. 1990) is low compared to the relation defined by the sample galaxies, while the commonly used value \(X \approx 2.3 \times 10^{20} \text{ cm}^{-2} (\text{Kkms}^{-1})^{-1} \) provides a very good fit.

The dependence of \(X \) on \([\text{O}]/[\text{H}] \) alone, ignoring \(\alpha_{\text{FIR}}/N_H \) effects, found here is significantly steeper than the result \(\log X \propto 1.5 \log [\text{O}]/[\text{H}] \) found by Sakamoto (1996) from modelling radiative transfer and excitation of CO in clumpy molecular clouds. However, that result did not take into account the full effects of photodissociation of CO especially on the interclump gas.

With respect to steep dependences on metallicity, we note that Garnett et al. (1995) have shown that \([\text{C}]/[\text{O}] \propto [\text{O}]/[\text{H}]^{0.43 \pm 0.09} \), so that \([\text{C}]/[\text{H}] \) should be proportional roughly to \([\text{O}]/[\text{H}]^{1.5} \). If the CO abundance is solely determined by the carbon abundance, \([\text{CO}]/[\text{H}] \) likewise will be
Table 5. Adopted Abundances

Galaxy	[O]/[H] 10^{-4}	References
LMC	2.60±0.40	1, 2, 3, 4
SMC	1.05±0.20	1, 2, 3, 4
NGC 55	2.15±0.25	5, 6, 7
NGC 1569	1.35±0.15	2, 5
NGC 4214	2.05±0.15	2, 7, 8
NGC 4449	3.0±1.0	2, 9, 10
NGC 6822	1.60±0.15	2, 5, 11, 12, 13
NGC 604	2.40±0.30	14, 15, 16
NGC 595	2.40±0.30	14, 16
NGC 5461	3.30±0.40	9, 17, 18

References for abundances: 1. Dufour (1984) and references cited; 2. Skillman et al. (1989a) and references cited; 3. Campbell (1992); 4. Pagel et al. (1992); 5. Talent (1980); 6. Webster & Smith 1983; 7. Stasinska et al. (1986); 8. Kobulnick & Skillman 1996; 9. McCall (1982); 10. Hunter et al. (1982) 11. Skillman et al. (1989b); 12. Kimman et al. (1979) 13. Pagel et al. (1980); 14. Kwiter & Aller (1981); 15. Diaz et al. (1987); 16 Vilchez et al. (1988); 17. Rayo et al. (1982); 18. Evans (1986).

proportional to [O]/[H]^{1.5}; if the oxygen abundance plays a role this may increase to [O]/[H]^{2.5}. The strength of the radiation field experienced by CO is proportional to the photon flux diluted by dust extinction. To first order, we may equate the decrease in dust shielding with the decrease in dust abundance. As the dust-to-gas ratio in galaxies is about proportional to [O]/[H] (see e.g. Issa et al. 1990), we expect photodissociation alone to gain in importance as roughly [O]/[H]^{-3} when metallicity decreases. Because the effects of photo-dissociation are highly non-linear, and depend critically on the balance between ambient radiation field and local column densities, a more quantitative estimate of the effect of metallicity can only be obtained by detailed modelling, which should treat photodissociation more rigorously and take into account the structure and column density distribution of the molecular clouds experiencing the dissociating radiation (cf. Maloney 1990a). This is beyond the scope of this paper.

3.3. \(H_2 \) masses

The results given in Tables 1 and 2 show the presence of significant amounts of molecular hydrogen in both the LMC and the SMC. At the (CO-selected) positions sampled, \(H_2 \) locally dominates the interstellar gas. Table 3 suggests that this is also true in the other galaxies.

Can we extrapolate the results obtained so far to estimate the total amount of \(H_2 \) in the sample galaxies? Application of the mean \(X \) value from Table 1 to the LMC CO results obtained by Cohen et al. (1988) yield \(M(H_2) = 0.8 \times 10^8 M_\odot \). A more detailed treatment, applying the individual \(N(H_2) \) values from Table 1 to the cloud complex sizes given by Cohen et al. (1988) and correcting for their CO sources not included in our Table 1, yields a higher value \(M(H_2) = 1.2 \times 10^8 M_\odot \). This result is very similar to that obtained by Cohen et al. (1988) (but see sect. 3.1). It corresponds to a global mass ratio of molecular-to-atomic hydrogen of 0.2, much lower than the mass ratio of 1.9 found for the individual CO clouds in Table 1. It implies that in the LMC, about 12% of all the interstellar gas, including helium, is in molecular form.

We have also applied eqn. (2) to the total far-infrared emission of the LMC, yielding a total hydrogen mass \(M'_H = 1.1 \times 10^8 M_\odot \), much less than the observed total HI mass \(M(HI) = 5.4 \times 10^8 M_\odot \) (McGee & Milton 1966). Apparently, the LMC contains a significant fraction of relatively cool dust not significantly contributing to the total infrared luminosity. However, we may still estimate the total amount of \(H_2 \) associated with the warm dust by assuming the mean \(H_2/HI \) mass ratio from Table 1 to apply to all sources of warm \(H_2 \): we then find \(M(H_2) = 0.7 \times 10^8 M_\odot \). This rougher method thus underestimates the actual amount of \(H_2 \) by about 30%.

Following the same procedures for the SMC, we find \(M(H_2) = 0.50\pm0.05 \times 10^8 M_\odot \), implying \(M(H_2)/M(HI) = 0.1 \), or 7% of all interstellar gas in molecular form. This is a lower limit, since the CO observations by Rubio et al. (1991) cover only part of the SMC. Indeed, extrapolation to the total infrared luminosity of the SMC yields \(M'_H = 1.75 \times 10^8 M_\odot \) which nevertheless still falls short of the total HI mass \(M(HI) = 5 \times 10^8 M_\odot \) (Hindman 1967). Applying the mean \(H_2/HI \) mass ratio from Table 2, we obtain \(M(H_2) = 1.0 \times 10^8 M_\odot \).

Table 6. Global \(H_2 \) mass estimates

Galaxy	\(M(HI) \)	\(M'_H \) \(10^8 M_\odot \)	\(M(H_2) \)	\(M(H_2)/M(HI) \)	\(M(H_2)/N_{gas} \)
LMC	5.4	1.1	1.0	0.19	0.12
SMC	5.0	1.8	0.75	0.20	0.12
NGC 55	18.6	4.8	2.9	0.16	0.10
NGC 1569	1.4	0.65	0.5	0.35	0.20
NGC 4214	11.2	1.4	1.0	0.09	0.06
NGC 4449	55	21	8.7	0.16	0.10
NGC 6822	1.5	0.5	0.4	0.27	0.16
Mean				0.20	0.12
Milky Way	48	—	12	0.25	0.15
				±0.04	±0.02

The galaxies listed in Table 3 were not sampled extensively in CO, so that we can only extrapolate from the total infrared luminosity. However, the example of the LMC
suggests that this extrapolation is accurate to about 30%. The results are given in Table 6, which also includes the global results for the Milky Way given by Bloemen et al. (1990). Table 6 shows that molecular hydrogen, although dominating the interstellar medium near star formation regions, occurs much less predominantly in irregular dwarf galaxies as a whole. Globally, the total mass of atomic hydrogen is typically five times higher than that of molecular hydrogen. On average, about one eigth of the interstellar gas mass is in molecular form. These fractions are surprisingly close to those of the Milky Way Galaxy as a whole, where the fraction of molecular gas reaches a peak of 0.46 in the ‘molecular ring’ at R = 4 – 8 kpc, and drops to 0.11 in the outer galaxy (Bloemen et al. 1990). If \(X_{\text{Gal}} \) is somewhat lower than assumed by Bloemen et al., as has been suggested by e.g. Bhat et al. (1996), the similarity of the Milky Way and irregular dwarf mean ratio is even more striking. Our result does not reproduce the apparent dependence of global molecular gas fraction on metallicity discussed by Tosi & Díaz (1990) and Villa-Costas & Edmunds (1992). We note that the latter expressed doubts on the physical significance of that result, and suggested that it might be an artifact of the CO to \(H_2 \) conversion used. Our result implies that this is indeed the case.

The molecular hydrogen fraction in this admittedly small sample appears to be uncorrelated with metallicity, hence presumably dust-to-gas ratio. This is somewhat surprising as \(H_2 \) molecules form on dust grain surfaces, so that one would expect less \(H_2 \) in low metallicity environments poor in dust grains. Our result may thus indicate that the formation of \(H_2 \) is so efficient, that it is to first order independent of the dust abundance. Alternatively, it may reflect a selection effect. Higher metallicity environments provide more shielding and therefore may have a larger fraction of cold dust/molecular hydrogen than lower metallicity environments. In the presence of warm dust, IRAS fluxes poorly sample cold dust, so that we may increasingly have underestimated the total amount of \(H_2 \) for the higher metallicity galaxies.

4. Conclusions

1. IRAS far-infrared surface brightnesses and HI column densities are used to independently estimate \(H_2 \) column densities towards CO clouds observed in the LMC and SMC. Generally, in these clouds \(H_2 \) mass surface densities exceed those of HI by a factor of about 1.5 on average. This is in contrast to the global \(H_2 \) to HI mass ratios which are of the order of 20±10%.

2. By combining the newly derived \(H_2 \) column densities with published CO intensities, the CO to \(H_2 \) conversion factors \(X \) are determined to be \(X_{\text{LMC}} = 1.3 \pm 0.2 \times 10^{24} \text{ molecules cm}^{-2} \text{ (Kkms}^{-1})^{-1} \) and \(X_{\text{SMC}} = 12 \pm 2 \times 10^{24} \text{ molecules cm}^{-2} \text{ (Kkms}^{-1})^{-1} \). The global mass of (warm) molecular hydrogen is estimated to be \(M(\text{H}_2) = 1.0 \pm 0.3 \times 10^8 M_\odot \) for both LMC and SMC.

3. On average somewhat higher molecular to atomic hydrogen mass surface densities are found in the irregular dwarf galaxies NGC 55, NGC 1569, NGC 4214, NGC 4449 and NGC 6822, as well as in the extragalactic HII region complexes NGC 604, NGC 895, both in M 33, and NGC 5461 in M 101. The X-values derived for the HII regions and NGC 4449 are comparable to that of the LMC, while the X-values derived for NGC 55, NGC 4214 and NGC 6822 are typically two to four times higher; NGC 1569 has a very high value comparable to that of the SMC.

4. Analysis suggests that the CO to \(H_2 \) conversion factor \(X \) is linearly dependent on the strength of the ambient radiation field per nucleon, and inversely dependent on a steep function of metallicity \([\text{O}]/[\text{H}]: \log X = 0.9 \pm 0.1 \log \frac{\text{H}_2}{\text{HI}} - 3.5 \pm 0.2 \log \frac{[\text{O}]}{[\text{H}]} + 34.6 \pm 2.2 \). If the dependence on radiation field is neglected, the relation \(\log X = -2.7 \pm 0.3 \log \frac{[\text{O}]}{[\text{H}]} + 11.6 \pm 1.0 \) also fits the data. Similarly derived Milky Way values fit these same relations. They are interpreted as the result of selective photodissociation of CO under conditions of high radiation field energy densities and poor shielding and self-shielding in low-metallicity environments. Thus, over the parameter range studied, the CO content of galaxies varies strongly as a function of conditions.

5. Estimates of the global (warm) \(H_2 \) to HI mass ratios and the (warm) \(H_2 \) gas fractions yield very similar results for all galaxies. On average, \(M(\text{H}_2) = 0.20 M(\text{HI}) \), and \(M(\text{H}_2) = 0.12 M_{\text{gas}} \). These ratios are very close to the global Milky Way ratios: the global warm \(H_2 \) fraction in irregular dwarf galaxies appears to be very similar to that of our Galaxy, notwithstanding the large differences in total mass, luminosity, metallicity and observed CO luminosity.

Acknowledgements. It is a pleasure to thank J. Kamphuis, J. Stil and F. Sloff for making their results available in advance of publication, and J.B.G.M. Bloemen for drawing attention to the Galactic results.

References

Allsop N.J., 1979 MNRAS 188, 765

Arimoto N., Sofue Y., Tsujiimoto T., 1996 PASJ 48, 275

Arnault Ph., Casoli F., Combes F., Kunth D., 1988 A&A 205, 11

Bally J., Langer W.D., Stark A.A., Wilson R.D., 1987 ApJL 312, L45

Becker R., Henkel C., Bomans D.J., Wilson T.L., 1995 A&A 295, 302

Bhat C.L., Mayer C.J., Wolfendale A.W., 1986 Phil. Trans. R. Soc. Lond., 319, 249

Blitz L., 1985 ApJ 296, 481

Blitz L., Israel F.P., Neugebauer G., et al. 1981 ApJ 249, 76

Bloemen J.B.G.M., Strong A.W., Blitz L., et al., 1986 A&A 154, 25
