Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from *Lactococcus lactis* (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [\(\alpha-D\)-Glcp-(1→3)-D-Glc]. The \(k_{cat}/K_m\) values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.
Although many GH31 enzymes have been characterized to date, there are still many proteins in microbial genomes whose activities are unclear. The diversity of the GH31 family indicates the existence of novel enzymes. Phylogenetic analysis and the subclassification of the enzyme family is a powerful strategy for discovering new enzymes from a large sequence space (27, 28). Recently, some open-source software and servers for protein sequence analysis have been developed for handling a large dataset (28–30). In the present study, we performed a phylogenetic analysis of GH31 proteins and identified new microbial members of the GH31 family, which showed strict α-1,3-glucosidase activities on nigerooligosaccharides. Furthermore, using X-ray crystallography and cryogenic electron microscopy (cryo-EM), the three-dimensional structure of the bacterial members was determined to discuss their substrate recognition mechanism.

Results and discussion

GH31 uncharacterized protein cluster

We performed a phylogenetic analysis using protein sequences classified as the GH31 family on the CAzy database. Protein sequences sharing <70% identity extracted from all GH31 sequences and characterized sequences (1194 sequences) were subjected to the phylogenetic analysis (Fig. 1). A clade of uncharacterized proteins derived from bacteria and...
fungi was detected (Fig. S1). These proteins are classified as GH31_u1 family in National Center for Biotechnology Information Conserved Domain Database and showed <25% amino acid sequence identity with the previously characterized GH31 enzymes, indicating that the activities and substrate specificities of GH31_u1 proteins differed from those of characterized GH31 enzymes. In this study, GH31_u1 proteins from Lactococcus lactis subsp. cremoris MG1363 (named LlGH31_u1) and Cordyceps militaris (named CmGH31_u1) were targeted to clarify the functions and structures of GH31_u1 proteins. LlGH31_u1 is the sole GH31 protein encoded in the genome of L. lactis subsp. cremoris, whereas the C. militaris has three other GH31 proteins (not GH31_u1) compared with CmGH31_u1. LlGH31_u1 and CmGH31_u1 share 37.5% amino acid sequence identity, have no signal peptide, and have no domain annotated in the Conserved Domains Database in addition to the conserved GH31 region, indicating that they possibly function intracellularly.

Enzymatic features of recombinant GH31_u1 proteins

N-terminally His-tagged LlGH31_u1 and CmGH31_u1 were expressed in Escherichia coli and purified to homogeneity. The yields of the purified LlGH31_u1 and CmGH31_u1 were 2 and 0.1 mg from 1 L of culture, respectively. These enzymes were active against only p-nitrophenyl α-D-glucopyranoside (pNP-α-Glc) among the p-nitrophenyl glycosides tested, suggesting that they are α-glucoside hydrolases. The effects of pH and temperature on the hydrolytic activity of LlGH31_u1 were evaluated using pNP-α-Glc as a substrate. LlGH31_u1 showed the highest activity at pH 7.0 for 5-min incubation at 30 °C and maintained >79% of its maximal activity in the pH range of 4.5 to 8.0 after a 20-h incubation at 4 °C. The enzyme showed the highest activity at 35 °C for 5-min incubation at pH 7.0, but it was unstable at temperatures >35 °C (<63%) and approximately 5% of its activity remained after a 30-min incubation at 40 °C (Fig. S2). CmGH31_u1 exhibited the highest activity at pH 6.0 and 40 °C for 5-min incubation in the condition described in Experimental procedures (Fig. S3).

Next, we analyzed hydrolytic activities toward disaccharides, trehalose [α-D-Glc-(1→1)-α-D-Glc], kojibiose [α-D-Glc-(1→2)-D-Glc], nigerose [α-D-Glc-(1→3)-D-Glc], maltose [α-D-Glc-(1→4)-D-Glc], isomaltose [α-D-Glc-(1→6)-D-Glc], and sucrose [β-D-Fru-(2→1)-α-D-Glc] using thin-layer chromatography (TLC). After a 1-h incubation with 0.1 mg/ml LlGH31_u1, only nigerose was completely hydrolyzed; the hydrolysis of kojibiose and maltose was also observed (Fig. 2). Both LlGH31_u1 and CmGH31_u1 exhibited the highest hydrolytic activity toward nigerose, followed by kojibiose, maltose, and isomaltose in that order (Table 1). We detected no hydrolytic activity when either trehalose or sucrose was used as a substrate. The K_m and k_{cat} values of nigerose were 9.2 ± 0.6 mM and 9.7 ± 0.3 s⁻¹, respectively (Table 2). By contrast, the K_m value of kojibiose was almost the same as that of nigerose, and the k_{cat} value was 8.6 times lower than that of nigerose. The higher K_m and lower k_{cat} values were observed when maltose was employed as a substrate. We then analyzed the substrate specificity of LlGH31_u1 for longer oligosaccharides. The K_m values of nigerotetrose and nigerotriose were approximately three times lower than that of nigerose. The K_m values of LlGH31_u1 for nigerose are in the same range (millimolar order) as those of other GH31 α-glycosidases for their preferred substrates (Table S1). However, maltotriose and maltotetraose have higher K_m values than nigerose. LlGH31_u1 did not release glucose from nigeran, an insoluble linear α-glucan with alternating α-1,3- and α-1,4-glucosidic linkages derived from Aspergillus niger.

Based on the CAZY classification, while α-1,4-glicosidases (EC 3.2.1.20) are present in the GH families 4, 13, 31, and 122 (1, 27, 31, 32), the GH31 and GH63 families contain nigerose-active α-glucoside hydrolases (7, 33). However, YgjK, a GH63 enzyme, from E. coli had a high K_m value (approximately 230 mM) for nigerose (33), and its natural substrate was assumed to be another α-glucoside (34, 35). Other than GHs, a nigerose phosphorylase from Lactoclostridium phylotofermentans (formerly Clostridium phytofermentans) (Cphy1874) belonging to the GH65 family displays high specificity against nigerose (Table S1), but it does not catalyze hydrolysis (36). At present, the catalytic α subunit of ER α-glucosidase II, CADE (3, 4), and Lactobacillus johnsonii α-1,3-glucosidase (LJAG31) (8) have been identified as GH31 enzymes that display specificity against α-1,3-glucosidic linkage. ER α-glucosidase II hydrolyzes α-1,3 linkages in the α-Glc-(1→3)-Glc and α-Glc-(1→3)-mannose moieties of N-glycans. Despite its biological role in cleaving α-1,3-linked glucose, ER α-glucosidase II has a significant k_{cat}/K_m value on maltose (27%–50% of that for nigerose, Table S1) (37). As shown in Figure 1, mammalian α-glucosidases, i.e., ER α-glucosidase II, MGAM, sucrase-isomaltase, and lysosomal acid α-glucosidase, are phylogenetically close, and this agrees with the enzymatic feature acting on both the α-1,3 and α-1,4 bonds. LJAG31 displays the highest nigerose hydrolytic activity, although it exhibits a broad substrate specificity; the k_{cat}/K_m values for
The molecule of LlGH31_u1, respectively, in an asymmetric unit.

WT monomers in WT group, and the hexamer assembly is isomorphous with six P groups (procedures). Crystal forms 1 and 2 belong to the space group (named, crystal forms 1 and 2, see Experimental procedures). The monomeric structure of LlGH31_u1 contains four domains that are generally conserved in GH31 enzymes: N-terminal β-sandwich domain (N-domain, residues 1–172); (β/α)8-barrel catalytic domain (A-domain, residues 173–502) with two inserted components insert 1 (residues 232–249) and insert 2 (residues 286–308) located between β3 and α4 and between β4 and α5, respectively; proximal C-domain (residues 503–586); and distal C-domain (residues 587–669). An extra domain consisted of four α-helices (residues 680–739) at the C-terminus connected by a linker polypeptide (residues 670–679) (Fig. 3B). Interactions between insertions in the A-domain and a β-sheet of the N-domain from an adjacent protomer as well as the C-terminal α-helix domain contribute to hexamer formation (Figs. 3A and S5). We performed a structural similarity search on the DALI server (39) using WT_P6322 as a query. An α-xylosidase from Bacteroides ovatus [BoGH31; Protein Data Bank (PDB) 5J0V; Z = 33.1; amino acid sequence identity = 23%] had the highest Z-score, followed by a cycloalternan-degrading enzyme from Treuperella pyogenes (TpCADE; PDB 5I0G; Z = 32.1; identity = 19%) and other structurally identified GH31 enzymes. The DALI results also included ER α-glucosidase II from Chaetomium thermophilum var. thermophilum (CtGII, 5DKY, Z = 28.1; identity = 19%), similarly as other GH31 enzymes. A DALI search using the C-terminal α-helix domain revealed that it has the highest structural similarity with harmonin homology domain 2 of whirlin (PDB 6FDD, Z = 5.8), which is expressed in hair and photoreceptor cells and is essential for sound and light perception, although their amino acid sequence identity was 12%. The harmonin homology domain of cerebral

Crystal structure of LlGH31_u1

WT LlGH31_u1 was crystallized in two different crystal forms (named, crystal forms 1 and 2, see Experimental procedures). Crystal forms 1 and 2 belong to the space groups P21 and P6322, respectively, and comprise six and one molecule of LlGH31_u1, respectively, in an asymmetric unit. The P21 and P6322 structures of unliganded WT (named WT_P21 and WT_P6322, respectively) were determined at 1.75- and 1.85-Å resolutions (Fig. 3A and Table S2). Despite the space group difference, hexamer formation could be generated via the symmetry operations in the P6322 space group, and the hexamer assembly is isomorphous with six monomers in WT_P21. LlGH31_u1 has a theoretical mass of 85.7 kDa and a molecular weight of 453 kDa as determined using gel filtration chromatography. With molecular assembly in the crystal structures, LlGH31_u1 probably forms a hexamer. Two GH31 enzymes, α-xylosidase YicI from E. coli and α-glucosidase MalA from Sulfolobus solfataricus, reportedly formed a hexamer (11, 38); however, the hexameric arrangement of LlGH31_u1 differs from theirs (Fig. S4).

Table 1

Substrate	LlGH31_u1 WT	LlGH31_u1 Y99F	CmGH31_u1
Trehalose	ND^a	ND	ND
Kojibiose	0.34 ± 0.02	5.2	100
Nigerose	6.3 ± 0.5	3.9 ± 0.2	100
Maltose	(10 ± 0.8) × 10⁻³	0.16	0.53
Isomaltose	(2.9 ± 3.5) × 10⁻³	0.045	0.15
Sucrose	ND	ND	ND

^a Each activity for nigerose is taken as 100%.

^b ND, not detected.

Table 2

Enzyme	Substrate	K_m (mM)	k_{cat} (s⁻¹)	k_{cat}/K_m (s⁻¹ mM⁻¹)	Relative k_{cat}/K_m (%)^a
LlGH31_u1 WT	pNP-α-Glc	20 ± 0.8	31 ± 0.7	1.5 ± 0.08	145
	Nigerose	9.2 ± 0.6	9.7 ± 0.3	1.1 ± 0.2	100
	Nigerotriose	3.1 ± 0.4	8.1 ± 0.4	2.6 ± 0.5	246
	Nigerothetraose	2.9 ± 0.2	5.6 ± 0.2	1.9 ± 0.2	182
	Kojibiose	8.2 ± 0.4	1.1 ± 0.02	(1.4 ± 0.05) × 10⁻¹	13
	Maltose	36 ± 1.9	(7.9 ± 0.2) × 10⁻¹	(2.2 ± 0.03) × 10⁻²	2.1
	Maltotriose	39 ± 2.7	(6.2 ± 0.2) × 10⁻¹	(1.6 ± 0.09) × 10⁻²	1.5
	Maltotetraose	82 ± 1.7	(1.5 ± 0.2) × 10⁻¹	(1.8 ± 0.4) × 10⁻³	0.2
LlGH31_u1 Y99F	pNP-α-Glc	28 ± 0.8	59 ± 0.8	2.1 ± 0.02	204
	Nigerose	12 ± 2.0	5.2 ± 0.6	(4.3 ± 0.2) × 10⁻¹	38
	Nigerotriose	2.0 ± 0.2	4.9 ± 0.4	2.3 ± 0.9	221
CmGH31_u1	pNP-α-Glc	4.7 ± 0.8	4.1 ± 0.3	(8.9 ± 2) × 10⁻¹	
	Nigerose	6.3 ± 0.6	(4.5 ± 0.3) × 10⁻¹	(7.2 ± 1) × 10⁻²	
	Nigerotriose	2.0 ± 0.6	(4.7 ± 0.3) × 10⁻¹	(2.3 ± 0.4) × 10⁻¹	

^a k_{cat}/K_m value of LlGH31_u1 WT for nigerose is taken as 100%.
cavernous malformations 2 (PDB 4FQN) was reported to be involved in dimer formation (40). Although these proteins and LlGH31_u1 have no physiological function in common, this α-helix fold may be relevant in oligomer formation.

Comparison of cryo-EM and crystal structures of LlGH31_u1

We determined the cryo-EM structure of LlGH31_u1 at 2.73 Å resolution using single-particle analysis (Fig. 4). Table S3 summarizes the statistics of data collection, image processing, and 3D reconstruction steps. The cryo-EM structure revealed the hexameric state of LlGH31_u1, and the overall cryo-EM structure was similar to the crystal structure (Figs. 4, 5 A and B). The Cα root-mean-square deviation between the cryo-EM and crystal structures is 1.340 Å. In both the cryo-EM and crystal structures, most amino acid residues at the hexamer interface were identical (Figs. 5C and S5). The cryo-EM maps for the side chains of the amino acid residues in the C-terminal α-helix domain were well resolved, and most of their conformations were almost identical to those in the crystal structure (Fig. 5, C and D). At the C-terminal α-helix domain, Val716 and Phe732 hydrophobically interact, and Gln728 forms a hydrogen bond with Lys720 (Fig. S6). By contrast, the local resolutions of insert 1 and insert 2 on A-domain and a loop containing Tyr99 on N-domain (discussed below) are lower than those of the other regions, and the cryo-EM map of these side chains is unclear (Figs. 4C and 5E). Furthermore, slight structural differences between the crystal and cryo-EM structures were observed (Fig. 5F). Although the insertion regions are determined with low B factors in the crystal structure (the average B-factor values of insert 1 and insert 2 were 30.2 Å² and 33.5 Å², respectively, and those of the other structural components was 33.7 Å²), the structural difference may suggest insert 1 and insert 2 flexibility without the crystal packing effect.

Crystal structures of LlGH31_u1 complexed with ligands

First, we determined the crystal structure of WT in complex with glucose (WT-Glc). Asp341 and Asp394, which are located in the active site cleft of the A-domain, interact with glucose. The crystal structure of WT-Glc is similar to the cryo-EM structure of LlGH31_u1 (Fig. 5, C and D). At the C-terminal α-helix domain, Val716 and Phe732 hydrophobically interact, and Gln728 forms a hydrogen bond with Lys720 (Fig. S6). By contrast, the local resolutions of insert 1 and insert 2 on A-domain and a loop containing Tyr99 on N-domain (discussed below) are lower than those of the other regions, and the cryo-EM map of these side chains is unclear (Figs. 4C and 5E). Furthermore, slight structural differences between the crystal and cryo-EM structures were observed (Fig. 5F). Although the insertion regions are determined with low B factors in the crystal structure (the average B-factor values of insert 1 and insert 2 were 30.2 Å² and 33.5 Å², respectively, and those of the other structural components was 33.7 Å²), the structural difference may suggest insert 1 and insert 2 flexibility without the crystal packing effect.

Figure 3. Overall structure of LlGH31_u1 determined using X-ray crystallography. A, hexameric structure of LlGH31_u1 determined using the crystal form 1 in which the space group is P2₁. Each monomer is shown in different colors. B, ribbon model of LlGH31_u1 monomer. Left, view from the front of the active site cleft; right, view rotated to adjust to the same orientation as the monomer colored in red in the right panel of (A). Individual domains are colored as follows: N-domain, yellow; A-domain, red; insert 1, pink; insert 2, blue; proximal C-domain, cyan; distal C-domain, orange; linker, gray; and C-terminal α-helix domain, green.
near the C1 atom of the glucose, are assumed to be catalytic nucleophile and acid/base, respectively, similar to other GH31 enzymes (7). In accordance, the structures of inactive mutant D394A, in which the catalytic acid/base D394 was substituted with alanine, and the structure of complexes with nigerose (D394A-Nig2), nigerotriose (D394A-Nig3), nigerotetraose (D394A-Nig4), and kojibiose (D394A-Koj2) were also determined. At the catalytic site of LlGH31_u1, we observed the electron density maps for all ligands. In D394A-Nig3 and WT-Glc, both the α- and β-anomers of the ligand were modeled, while an electron density map for α-nigerose, α-nigerotetraose, and α-kojibiose was observed in D394A-Nig2, D394A-Nig4, and D394A-Koj2, respectively (Fig. 6A). Hereafter, the glucose residues bound to subsite −1, subsite +1, subsite +2, and subsite +3 (subsite nomenclature is according to literature (41)) are referred to as Glc−1, Glc+1, Glc+2, and Glc+3, respectively.

In the −1 subsite, the Glc−1 of all ligands (glucose, nigerose, nigerotriose, nigerotetraose, and kojibiose) are accommodated in the active site pocket in almost the same manner (Fig. S7) and recognized by surrounding residues via hydrogen bonds and hydrophobic interaction (Fig. 6B). In the subsite +1, in addition to three hydrogen bonds with the catalytic site of A-domain, Tyr99 on the N-domain of an adjacent protomer forms a hydrogen bond with the 4-OH group of Glc+1 of nigerooligosaccharides (Fig. 6B). The electron densities of two distinct rotamers of Ser455 are observed in some monomers of WT_P21 and ligand–complex structures, including D394A-Nig3. One rotamer does not interact with the ligand, but others form hydrogen bonds with the 2-OH of Glc+1 and 4-OH of Glc+2 (Fig. 6B). Ser455 may contribute to substrate recognition at subsite +2, and no other amino acid residue forms a hydrogen bond with Glc+2. In D394-Nig4, the Glc+3 of nigerotetraose protrudes from the catalytic pocket (Fig. 6C). These findings imply that the substrate recognition of LlGH31_u1 in subsites +2 and +3 is less strict than that in subsites −1 and +1.

In the D394A-Koj2 structure, the Glc+1 adopts the same chair 4C1 conformation as in the D394A-Nig2, but its sugar ring is overturned (Fig. 6D). His427 interacts with the 3-OH group of kojibiose Glc+1. Gln343 interacts with the axial 1-OH group of α-kojibiose Glc+1, but Tyr99 on an adjacent

Figure 4. Cryo-EM single-particle analysis of LlGH31_u1. A and B, representative micrograph (A) and two-dimensional class averages of the cryo-EM dataset (B). C, local resolution of final cryo-EM structure. Unit of color bar label is in Å. The diagram is viewed from the same orientation as the ribbon models in Figures 3A and 5A. cryo-EM, cryogenic electron microscopy.
subunit does not interact with kojibiose. However, the superimposition of D394A-Koj2 with WT_P6322 shows that the estimated distance between the Asp394 and 1-OH of kojibiose was 1.2 Å, indicating a steric hindrance. Although it is unclear how kojibiose binds to the WT catalytic site, β-kojibiose may bind to WT enzyme and/or the glycosidic bond of kojibiose may not be in a suitable position for proton acceptance, resulting in a low turnover.

Difference in substrate recognition mechanisms between LlGH31_u1 and GH31 α-glucoside hydrolases

The active site of D394A-Nig2 with WT_P6222 shows that the estimated distance between the Asp394 and 1-OH of kojibiose was 1.2 Å, indicating a steric hindrance. Although it is unclear how kojibiose binds to the WT catalytic site, β-kojibiose may bind to WT enzyme and/or the glycosidic bond of kojibiose may not be in a suitable position for proton acceptance, resulting in a low turnover.

Figure 5. Comparison with cryo-EM and crystal structures of LlGH31_u1. A and B, superimposition of hexamer (A) or monomer (B) of the cryo-EM structure (cyan) and crystal structure (red). C, cryo-EM map (contoured at 5 σ) (right) and 2Fobs – Fcal map (contoured at 1 σ) (left) of the C-terminal α-helix domain. The main and side chains of the domain are shown as stick models. D, superimposition of the side chains (stick model) of the C-terminal α-helix domain in the cryo-EM structure (magenta) and crystal structure (slate blue). The residues located in the interface are labeled. E, cryo-EM map (contoured at 5 σ) (right) and 2Fobs – Fcal map (contoured at 1 σ) (left) of the loop in which Y99 is present. F, superimposition of the loop where Y99 exists in the cryo-EM structure (magenta) and crystal structure (slate blue). cryo-EM, cryogenic electron microscopy.

Because no crystal structure of GH31 maltase complexed with maltoligosaccharide substrates is available, the structure of the N-terminal maltase domain of human maltase-glucoamylase (NtMGAM) complexed with inhibitor acarbose (PDB code 2QMJ) (18) was used for comparison to elucidate why LlGH31_u1 has a low activity for maltooligosaccharides. The residues that interact with Glc−1 and Glc+1 of the substrate are conserved in eukaryotic GH31 α-glucosidases, including ER α-glucosidase II and NtMGAM, whose structures...
have been determined (10, 18) (Fig. 7D). In the NtMGAM–acarbose complex, the \(\alpha \)-D-6-deoxy-glucopyranose residue adopts the same \(\text{C}_1 \) chair conformation as the Glc+1 of nigerose in D394A-Nig2, but the pyranose ring is overturned. If maltose interacts with acarbose, Gln343, and Tyr99 in a similar orientation, residues that form hydrogen bonds with a 4-OH group of Glc+1 of nigerose may not prevent maltose from binding. A space exists surrounding the methyl group of acarbose in the NtMGAM–acarbose complex structure, which is probably capable of accepting the 6-OH group of Glc+1 of maltooligosaccharides (Fig. 8A). However, because LIGH31_u1 lacks additional space surrounding the 2-OH group of Glc+1 of nigerooligosaccharides (Fig. 8B), the 6-OH group of maltose may have difficulty fitting into the catalytic pocket. Moreover, compared with the NtMGAM–acarbose complex, Met122 and Asn429 in LIGH31_u1 may inhibit acarbose binding (Fig. 8, A and B). A similar steric hindrance for acarbose is also observed in the \(\alpha \)-subunit of ER \(\alpha \)-glucosidase II (10). These findings support the result that LIGH31_u1 is substantially less active for maltooligosaccharides.

Function of LIGH31_u1 Tyr99

Structural analysis suggested that the Tyr99 on N-domain is involved in the formation of subsite +1 of an adjacent protomer. However, the cryo-EM structure suggested the flexibility of this residue (Fig. 5E), and this tyrosine residue is not strictly conserved among LIGH31_u1 homologs, including CmGH31_u1 (Fig. S8). Therefore, we constructed a valiant Y99F in which Tyr99 is substituted with phenylalanine to determine whether Tyr99 affects LIGH31_u1 activity. Y99F was expressed in *E. coli* and purified in the same manner as the WT enzyme, and its activities for various substrates were determined. Contrary to our expectations, Y99F exhibits the same substrate preference as the WT enzyme (nigerose >> kojibiose > maltose > isomaltose) but is inactive against trehalose and sucrose (Table 1). The \(K_m \) values of the LIGH31_u1_Y99F mutant for nigerose and nigerotriose were 12 ± 2 mM and 2.0 ± 0.2 mM, respectively, which were nearly identical to those of WT. The \(k_{cat} \) values for nigerose and nigerotriose were 5.2 ± 0.4 s\(^{-1}\) and 4.9 ± 0.4 s\(^{-1}\), respectively, and are approximately two times lower than that of WT. By contrast, the \(k_{cat} \) value for pNP-Glc, 59 ± 0.8 s\(^{-1}\), was two times higher than that of WT (Table 2). Thus, it was proposed that Tyr99 affects the turnover of the hydrolytic reaction rather than the substrate specificity. However, further analysis is required to elucidate the role of Tyr99.

Estimation of the physiological role of LIGH31_u1 and its homologs

Although some bacterial species degrade eukaryotic \(N \)-glycans, mature proteins lack nigerose units on the nonreducing ends of \(N \)-glycans because the \(\alpha \)-1,3-glucosidic moiety is...
cleaved in ER (37, 42). Therefore, eukaryotic N-glycan may not be a natural substrate of LlGH31_u1, unlike ER α-glucosidase II. One possible source of the substrate of LlGH31_u1 is mutan, which is an exopolysaccharide that contains α-1,6 and α-1,3 bonds and is synthesized by three different glucansucrases belonging to the GH70 family in Streptococcus mutans (43). The genome of S. mutans encodes GH31_u1 and may be involved in mutan metabolism. Some lactic acid bacteria also synthesize exopolysaccharides, which contain a major α-1,6 linkage and a minor α-1,3 linkage (44–46). However, there has been no report on the synthesis of glucans with α-1,3 linkage from Lactococcus species, and there is no gene estimated as GH70 glucansucrase in L. lactis genome.

α-1,3-Glucan produced by fungi is another potential natural source of GH31_u1 substrate. The cell wall of filamentous fungi contains α-1,3-glucan, which has an α-1,3-glucosidic linkage and partial α-1,4 linkage as one of the principal components (47). Based on the result that CmGH31_u1 exhibited high substrate specificity to nigerose, fungal GH31_u1 homologs may be involved in the metabolism of α-1,3-glucans. Because the hydrolytic activity of LlGH31_u1 for nigeran was not detected, GH31_u1 may require cooperation with an endo-type enzyme to degrade polysaccharides. GH71 proteins are known as fungal endo-α-1,3-glucanases, and C. millitalis also has a gene encoding a GH71 protein. In addition, Talaromyces verruculosus has a gene for GH31_u1 fused with the GH71 domain (GenBank, KUL90319.1). Therefore, fungal GH31_u1 enzymes may be involved in the degradation of cell wall α-1,3-glucan in cooperation with GH71 enzymes.

Nigerose phosphorylase from L. phytofermentans (Cphy1874), belonging to GH65, has high substrate specificity for nigerose. In the genome of L. phytofermentans, a putative

Figure 7. Comparison of the active sites of LlGH31_u1 with CtGII and NtMGAM. A. Superimposition of CtGII complexed with nigerose (PDB 5DKZ, orange) and D394A-Nig2 (cyan). Side chains of amino acid residues at subsite −1 and nigerose are shown as thick and thin stick models, respectively. Water molecules in CtGII and LlGH31_u1 are shown as red and violet sphere models, respectively. Hydrogen bonds with the O6 of Glc−1 are shown as dashed lines. Asterisks indicate an artificially mutated residue (Asp394→Ala). B. The amino acid sequence alignment of LlGH31_u1 and eukaryotic α-glucosidases in which structure is determined, i.e., CtGII (GenBank ID, EGS17181.1); MmGII, ER α-glucosidase II from Mus musculus (AAC33182.1); hGAA, human lysosomal acid α-glucosidase (CAA68763.1); C-terminal (Ct), and N-terminal (Nt) domains of human MGAM (AAC39568.2); hNtSI, N-terminal sucrase domain of human sucrase-isomaltase (AAT18166.1); SBG, α-glucosidase from sugar beet Beta vulgaris (BAM74081.1). Red triangles indicate the catalytic residues; blue and light blue triangles indicate the residues that interact with Glc−1 and Glc+1, respectively.

Structure of bacterial GH31 α-1,3-glucosidase J. Biol. Chem. (2022) 298(5) 101827

9
GH87 endo-α-1,3-glucanase is located near the GH65 nigerose phosphorylase, and its participation in nigerose degradation is proposed (36). In addition, GH31_u1 (locus tag Cphy_1877) is located in the same gene cluster as nigerose phosphorylase, along with genes for ABC transporter proteins and LacI family transcription regulators (Fig. 9). In the genome of L. lactis, LIGH31_u1 is also surrounded by the genes for ABC transporter proteins and LacI family transcription regulator. S. mutans has a gene cluster similar to that of L. lactis; however, it has the genes for phosphotransferase system instead of the ABC transporter system (48, 49). Other bacterial species harboring GH31_u1 possess various GHs and sugar utilization proteins genes in the vicinity of GH31_u1; therefore, GH31_u1 may be involved in various degradation systems for saccharides in widespread species. L. lactis is isolated from various sources, including dairy products, fermented foods, plants, and soil (50). L. lactis may absorb and use oligosaccharides, which might be derived from polysaccharides produced by other organisms, using LIGH31_u1. However, LIGH31_u1 may require cooperation with other enzymes, at least with an endotype glycoside degradation enzyme, to degrade polysaccharides with α-1,3-glucosidic linkage; therefore, further study is required to clarify the entire pathway in which LIGH31_u1 is involved.

Conclusion
We found that microbial GH31 enzymes displayed more strict specificity to α-1,3-glucosides than other characterized GH31 enzymes. X-ray crystallographic and cryo-EM structural analyses revealed that LIGH31_u1 forms a hexamer, and the C-terminal α-helix domain, which has not been observed in other GH31 enzymes, is involved in hexamer formation. Moreover, the residues forming subsite +1, including the Tyr99 residue on an adjacent protomer, of LIGH31_u1 are different from those of the other GH31 α-glucoside hydrolases and are important for the mechanism of the strict recognition of α-1,3-glucosidic linkages. This study suggests that LIGH31_u1 and its homologs are involved in the degradation of nigerooligosaccharides in various microbial species, and further studies are needed to clarify the entire pathway of polysaccharide degradation in which GH31_u1 enzymes are involved.

Experimental procedures
Chemicals and strains
p-Nitrophenyl α-D-galactopyranoside and GlcNAc-β-1,3-GalNAcα-pNP were purchased from Tokyo Chemical Industry Co, Ltd p-Nitrophenyl α-D-fucopyranoside, pNP-α-Glc, and p-nitrophenyl α-D-mannopyranoside were obtained from Merck. p-Nitrophenyl N-acetyl-α-D-glucopyranoside, p-nitrophenyl α-L-rhamnopyranoside, p-nitrophenyl α-D-xylopyranoside, nigerose, and nigeran were purchased from Carbosynth. GalNAcα-pNP was obtained from Cayman Chemical, and nigerotriose and nigerotetraose were purchased from Megazyme. Maltose, maltotriose, and maltotetraose were obtained from Hayashibara Co E. coli DH5α and BL21 (DE3) were used for DNA manipulation and protein expression, respectively.

Phylogenetic analysis
The extraction of accession numbers registered on the CAZy database, download of the corresponding amino acid sequences from National Center for Biotechnology Information, and pruning of extra domains was performed using the SACCHARIS program (28). These sequences were then clustered at 70% sequence similarity using CD-HIT to remove redundancy (51, 52). The sequence alignment of GH31
catalytic domains was performed using the MUSCLE algorithm, and the phylogenetic tree was built via the maximum likelihood method using MEGA (53). The phylogenetic tree was visualized using iTOL (54).

Plasmid construction and site-directed mutagenesis

The absence of a signal peptide of LlGH31_u1 and CmGH31_u1 was evaluated using SignalP 5.0 (http://www.cbs.dtu.dk/services/SignalP/). The DNA fragment encoding LlGH31_u1 (llmg_1836, GenBank CAL98407.1) was amplified from *L. lactis* subsp. cremoris MG1363 using colony-directed polymerase chain reaction (PCR) with Ex Taq DNA polymerase (TaKaRa). The DNA fragment encoding CmGH31_u1 was amplified from the cDNA of *C. militaris* NBRC 103752 (NITE BioResource Center). The resultant DNA fragments were digested with NdeI and NotI (for LlGH31_u1) or NdeI and HindIII (for CmGH31_u1) and then ligated into a pET28a vector (Merck) digested using the same restriction enzymes. Site-directed mutagenesis was performed via inverse PCR with the desired primers using pET28a expression plasmid harboring DNA encoding LlGH31_u1 as a template. All single amino acid substitution mutants were generated according to literature (55). All primers used are listed in Table S4. All the constructed plasmids were confirmed via DNA sequencing.

Recombinant expression and purification

E. coli BL21 (DE3) harboring the desired plasmid was cultured at 37 °C to an absorbance (600 nm) of 0.8 in 1 L Luria–Bertani medium containing 50 μg/ml kanamycin. After cooling the medium to 20 °C on ice, protein expression was induced by adding 0.05 and 0.5 mM IPTG at 20 °C for 20 h for WT LlGH31_u1 and the other expression constructs, respectively. The cells were harvested via centrifugation for 10 min (4 °C 5000 g) and stored at −20 °C. The cell pellet was resuspended in 50 mM sodium phosphate buffer (pH 8.0) containing 300 mM NaCl and 20 mM imidazole. After resuspension, the cells were disrupted via ultrasonication and then centrifuged to remove insoluble materials. Cell lysate supernatant was loaded onto a Ni-NTA Agarose (Qiagen) column, and the unbound proteins were washed with the same buffer. Proteins were eluted with the same buffer containing 250 mM imidazole and then concentrated via ultrafiltration using 30K Amicon Ultracentrifugal units. Gel filtration chromatography was performed using the ÄKTA explorer 10S system (GE Healthcare). LlGH31_u1 was applied onto Superdex 200 Increase 10/300 column for protein purification or HiLoad 16/60 Superdex 200 prep grade column for molecular weight determination and eluted by 1.5 column volumes of 20 mM sodium phosphate buffer (pH 7.0) containing 300 mM NaCl. Protein purity was confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Enzyme assays

The hydrolytic activity toward various *p*-nitrophenyl (pNP) glycosides was measured in 50 μl reaction mixtures containing 40 μg/ml of LlGH31_u1 or CmGH31_u1, 0.5 mM of a substrate, and 20 mM sodium phosphate buffer (pH 7.0) at 30 °C. To examine the effect of pH on hydrolytic activity, reaction mixtures containing LlGH31_u1 (30 μg/ml) or CmGH31_u1 (34 μg/ml) and 0.5 mM pNP-α-Glc were prepared with McIlvaine (sodium citrate–phosphate) buffer at pH 3.5 to 8.0 or in glycine–HCl buffer at pH 9.0 to 10. The mixtures were...
incubated for 5 min at 30 °C. The effect of temperature on the hydrolytic activity was examined using 50 mM sodium phosphate buffer (pH 7.0) containing 0.5 mM pNP-α-Glc. The mixtures were incubated at temperatures ranging from 25 °C to 55 °C. The pH stability was tested by incubating 500 µg/ml of LlGH31_u1 for 24 h in McIlvaine buffer at pH 3.5 to 8.0 or in glycine–HCl buffer at pH 9.0 to 10. The thermostability was tested by incubating 300 µg/ml of LlGH31_u1 at 4 °C to 45 °C for 30 min. The residual activities for pH stability and thermostability were measured using 30 µg/ml of LlGH31_u1 and 50 mM phosphate buffer (pH 7.0) containing 0.5 mM pNP-α-Glc at 30 °C. All reactions above were terminated by adding 100 µl of 1 M Na₂CO₃, and the amount of released pNP was quantified by measuring absorption at 405 nm.

To examine the activity toward disaccharides, the reaction mixture containing 20 mM sodium phosphate buffer, 10 mM disaccharides (trehalose, kojibiose, nigerose, maltose, isomaltose, or sucrose), and 0.1 mg/ml purified LlGH31_u1 was incubated at 30 °C for 1 h and analyzed by TLC using Silica Gel 60 F₂₅₄ TLC plates (Merck). TLC plates were developed using a solvent with 1-butanol/ethanol/water (10:5:2, vol/vol) and sprayed with 10% sulfuric acid in methanol and then baked. For the quantitative analysis of GH31_u1 enzyme hydrolytic activity against α-glucosides, the reaction was terminated by adding the same amount of 0.5 M sodium carbonate (pH 10.0), and the liberated glucose was quantified by the glucose oxidase–peroxidase method using Glucose CII-test Wako (Wako Pure Chemicals). To determine kinetic parameters, initial velocities at five or six concentrations for each substrate were measured and fitted to the Michaelis–Menten equation using Kaleida Graph software (Synergy Software).

The reaction was performed using various concentrations of LlGH31_u1 (62.0 nM for nigerose and nigerotriose, 32.0 nM for nigerotetraose, 611 nM for maltose, 1.55 × 10³ nM for maltotriose, 3.10 × 10⁴ nM for maltotetraose, 310 nM for kojibiose, and 49.0 nM for pNP-Glc; all concentrations were fitted to the Michaelis–Menten K_M value of 1.6, and V_{max} of 20 μM). The liberated glucose was quantified by the glucose oxidase–peroxidase method using Glucose CII-test Wako (Wako Pure Chemicals). The K_M and V_{max} were determined by nonlinear regression analysis using KaleidaGraph software (Synergy Software).

Cryo-EM sample preparation and data acquisition

A 3 µl sample of LlGH31_u1 (1.13 μM, calculated as a hexamer) in 20 mM sodium phosphate buffer (pH 7.0) containing 300 mM NaCl was applied to a holey carbon grid (Quantifoil, Cu, R1.2/1.3, 300 mesh) rendered hydrophilic by a 30-s glow-discharge in air at 11 mA current with PIB-10. The grid was blotted for 5 s (blot force 15) at 18 °C and 100% humidity and flash-frozen in liquid ethane using Vitrobot Mark IV (FEI).

A total of 995 micrographs were acquired by two cryo-EM sessions of Talos Arctica (FEI) microscope operating at 200 kV in the nanoprobe mode using EPU software for automated data collection. For both sessions, the movie frames were collected by 4 k x 4 k Falcon 3 direct electron detector in electron counting mode at a nominal magnification of 1,200,000 × , which yielded a pixel size of 0.88 Å/pixel. Fifty movie frames were recorded at an exposure of 1.00 e⁻/Å² per frame, corresponding to a total exposure of 50 e⁻/Å². The defocus steps used were −0.8, −1.2, −1.6, and −2.0 μm.

Cryo-EM data processing

Movie frames were aligned, dose-weighted, and averaged using MotionCor2 (62) (the version implemented in RELION3.1 (63)) on 5 x 5 tiled frames with a B-factor of 200 applied to correct for beam-induced specimen motion and account for
radiation damage using an exposure-dependent filter. The micrographs whose total accumulated motions were >60 Å were discarded. The nonweighted movie sums were used for contrast transfer function (CTF) estimation with the program Gcf (64) (512-pixel box size, 30 Å minimum and 4 Å maximum resolution, and 0.10 amplitude contrast), whereas the dose-weighted sums were used for all subsequent steps of image processing. First, the images whose CTF max resolutions were better than 5.5 Å were selected. The particles were collected using SPHIRE cryYLO with a generalized model (65, 66) using a selection threshold of 0.1. The subsequent processes of 2D classification, ab initio reconstruction, 3D classification, 3D refinement, CTF refinement, Bayesian polishing, and local resolution estimation were conducted using RELION3.1. The details of the processes are described in the Supporting information (Supplementary Methods, Figs. S9, and S10).

For calculating the global resolution estimation after each 3D refinement, the gold standard FSC resolution with 0.143 criterion (67) was used, including the phase randomization to account for the possible artifactual resolution enhancement caused by solvent mask (68). The model-to-map FSC resolution with 0.5 criterion was calculated using phenix.mtriage (69). To visualize the output 2D/3D images, UCSF Chimera and e2display.py of EMAN2 (70) were used. The ctffilter function (71) implemented in SPARX/SPHIRE (66, 72) was used to calculate the smallest box size that ensures no CTF aliasing in the reciprocal space up to an expected resolution for the maximum defocus value of the dataset.

Data availability

The nucleotide sequence of CmGH31_u1 was submitted to the DDBJ/EMBL/GenBank databases under the accession number LC660181. The atomic coordinates and structure factors of WT_P21, WT_P6o22, WT-Glc, D394A-Nig2, D394A-Nig3, D394A-Nig4, and D394A-Koj2 have been deposited in the Worldwide Protein Data Bank (wwPDB, http://wwpdb.org/) under the accession codes 7WJ9, 7WJA, 7WJB, 7WJC, 7WJD, 7WJE, and 7WJF, respectively. The cryo-EM map and the atomic coordinate of LlgH31_u1 determined using cryo-EM have been deposited in the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb/) and wwPDB, respectively, with the accession codes EMD-32571 and 7WLG.

Supporting information—This article contains supporting information (8, 30, 36, 37, 53, 54, 73–81).

Acknowledgments—We thank the staff of the Photon Factory for their assistance with X-ray data collection as well as the staff of the cryo-EM facility in KEK for their assistance with cryo-EM data collection. We also thank Dr Ahmad Suparmin for preparing the cDNA of C. militaris, Enago (www.enago.jp) for the English language review and Prof. Toshiya Senda for managing cryo-EM data collections. The X-ray crystallographic study was approved by the Photon Factory Program Advisory Committee (proposals 2019G097 and 2021G013). This research was supported by Platform Project for Supporting Drug Discovery and Life Science Research [Basis of Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under Grant Number JP21am0101071 (support number 2932).

Author contributions—T. Miyazaki conceptualization; M. L, T. Moriya, N. A., M. K., E. Y. P., and T. Miyazaki formal analysis; M. L, T. Moriya, N. A., M. K., and T. Miyazaki investigation; T. Moriya, N. A., M. K., and T. Miyazaki methodology; T. Miyazaki project administration; T. Miyazaki supervision; T. Miyazaki funding acquisition; M. L, T. Moriya, and T. Miyazaki visualization; M. L, T. Moriya, N. A., and T. Miyazaki writing—original draft; M. L, T. Moriya, N. A., E. Y. P. and T. Miyazaki writing—review & editing.

Funding and additional information—This work was supported by the Japan Society for the Promotion of Science KAKENHI (Grant No. 19K15748) to T. Miyazaki.

Conflict of interest—The authors have no conflicts of interest to declare.

Abbreviations—The abbreviations used are: CADE, GH31 cycloalantenar-specific α-1,3-glucosidase; cryo-EM, cryogenic electron microscopy; CTF, contrast transfer function; CgII, α-glucosidase II from Chaetomium thermophilum var. thermophilum; ER, endoplasmic reticulum; GHS, glycoside hydrolases; MGAM, mammalian intestinal maltase-glucoamylase; NtMGAM, N-terminal maltase domain of human maltase-glucoamylase; PDB, Protein Data Bank; pNP-α-Glc, p-nitrophenyl α-D-glucopyranoside.

References

1. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495
2. Drula, E., Garron, M. L., Dogan, S., Lombard, V., Henrissat, B., and Terrapon, N. (2021) The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 50, D571–D577. in press
3. Light, S. H., Cahoon, L. A., Mahasenan, K. V., Lee, M., Bogess, B., Halavaty, A. S., Mobashery, S., Freitag, N. E., and Anderson, W. F. (2017) Transferase versus hydrolase: The role of conformational flexibility in reaction specificity. Structure 25, 295–304
4. Tagami, T., Miyano, E., Sadahiro, J., Okuyama, M., Iwasaki, T., and Kimura, A. (2016) Two novel glycoside hydrolases responsible for the catabolism of cyclodis-(1→6)-α-nigerosyl. J. Biol. Chem. 291, 16438–16447
5. Garron, M. L., and Henrissat, B. (2019) The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 53, 82–87
6. Helbert, W., Poulet, L., Drouillard, S., Mathieu, S., Loiodice, M., Couturier, M., Lombard, V., Terrapon, N., Turchetto, J., Vincentelli, R., and Henrissat, B. (2019) Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc. Natl. Acad. Sci. U. S. A. 116, 6063–6068
7. Okuyama, M., Saburi, W., Mori, H., and Kimura, A. (2016) α-Glucosidases and α-1,4-glucan lyases: Structures, functions, and physiological actions. Cell Mol. Life Sci. 73, 2727–2751
8. Kang, M. S., Okuyama, M., Mori, H., and Kimura, A. (2009) The first α-1,3-glucosidase from bacterial origin belonging to glycoside hydrolase family 31. Biochimie 91, 1434–1442
9. Caputo, A. T., Alonzi, D. S., Marti, L., Rea, I. B., Kiappes, J. L., Struve, W. B., Cross, A., Basu, S., Lowe, E. D., Darlot, B., Santino, A., Roversi, P., and Zitzmann, N. (2016) Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proc. Natl. Acad. Sci. U. S. A. 113, E4630–E4638
10. Satoh, T., Toshimori, T., Yan, G., Yamaguchi, T., and Kato, K. (2016) Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci. Rep. 6, 20575
Structure of bacterial GH31 α-1,3-glucosidase

11. Lowering, A. L., Lee, S. S., Kim, Y. W., Withers, S. G., and Strynadka, N. C. (2005) Mechanistic and structural analysis of a family 31 α-glucosidase and its glycosyl-enzyme intermediate. J. Biol. Chem. 280, 2105–2115

12. Miyazaki, T., Ishizaki, Y., Ichikawa, M., Nishikawa, A., and Tonozuka, T. (2015) Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Biochem. J. 469, 145–158

13. Speciale, G., Jin, Y., Davies, G. J., Williams, S. J., and Goddard-Borger, E. (2016) YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat. Chem. Biol. 12, 215–217

14. Rahfeld, P., Wardman, J. F., Mehr, K., Huff, D., Morgan-Lang, C., Chen, H. M., Hallam, S. J., and Withers, S. G. (2019) Prospecting for microbial α-N-acetylgalactosaminidases yields a new class of GH31 O-glycanase. J. Biol. Chem. 294, 16400–16415

15. Miyazaki, T., and Park, E. Y. (2020) Crystal structure of the Enteroctococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett. 594, 2282–2293

16. Ikegaya, M., Miyazaki, T., and Park, E. Y. (2021) Biochemical characterization of Bombyx mori α-N-acetylgalactosaminidase belonging to the glycoside hydrolase family 31. Insect Mol. Biol. 30, 367–378

17. Rozeboom, H. J., Yu, S., Madrid, S., Kalk, K. H., Zhang, R., and Dijkstra, B. W. (2013) Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. J. Biol. Chem. 288, 26764–26774

18. Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., and Rose, D. R. (2008) Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375, 782–792

19. Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., and Shen, Y. (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2, 827–836

20. Gray, G. M., Lally, B. C., and Conklin, K. A. (1979) Action of intestinal sucrase-isomaltase and its free monomers on an α-limit dextrin. J. Biol. Chem. 254, 6038–6043

21. Kishnani, P. S., and Howell, R. R. (2004) Pompe disease in infants and children. J. Pediatr. 144, 534–543

22. Ma, M., Okuyama, M., Tagami, T., Kikuchi, A., Klahan, P., and Kimura, A. (2019) Novel α-L-α-1,3-α-1,4-glucosidase from Aspergillus niger exhibits unique transglycosylation to generate high levels of nigerose and kojibiose. J. Agric. Food Chem. 67, 3380–3388

23. Ma, M., Okuyama, M., Sato, M., Tagami, T., Klahan, P., Kumagai, Y., Mori, H., and Kimura, A. (2017) Effects of mutation of Asn694 in a glycoside hydrolase family 31 α-limit dextrinase, a member of glycoside hydrolase family 31. J. Mol. Biol. 378, 675–687

24. Tsutsui, K., Gozu, Y., Nishikawa, A., and Tonozuka, T. (2020) Structural insights into polysaccharide recognition by Flavobacterium johnsoniae dextranase, a member of glycoside hydrolase family 31. FEBS J. 287, 1195–1207

25. Gozu, Y., Ishizaki, Y., Hosoyama, Y., Miyazaki, T., Nishikawa, A., and Tonozuka, T. (2016) A glycoside hydrolase family 31 dextranase with high transglycosylation activity from Flavobacterium johnsoniae. Biosci. Biotechnol. Biochem. 80, 1562–1567

26. Larsbrink, J., Izumi, A., Hemsworth, G. R., Davies, G. J., and Brumer, H. (2012) Structural enzymology of Cellobiropast japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J. Biol. Chem. 287, 43288–43299

27. Okuyama, M. (2011) Function and structure studies of GH family 31 and 97 α-glucosidases. Biosci. Biotechnol. Biochem. 75, 2269–2277

28. Jones, D. R., Thomas, D., Alger, N., Ghavidel, A., Inglis, G. D., and Abbott, D. W. (2018) Saccharis: An automated pipeline to streamline discovery of carbohydrate active enzyme activities within polypeptide families and de novo sequence datasets. Biotechnol. Biofuels 11, 27

29. Xu, J., Zhang, H., Zheng, J., Dovledo, P., and Yin, Y. (2020) eCAMI: simultaneous classification and motif identification for enzyme annotation. Bioinformatics 36, 2068–2075

30. Barrett, K., and Lange, L. (2019) Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnol. Biofuels 12, 102
Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb. Biotechnol. 4, 383–402
51. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012) CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152
52. Li, W., and Godzik, A. (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659
53. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549
54. Letunic, I., and Bork, P. (2016) Interactive tree of life (ITOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245
55. Zheng, L., Baumann, U., and Reymond, J. L. (2004) An ef
56. Zhang, K. (2016) Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12
57. Wagner, T., Merino, F., Stabrín, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitel, O., Raisch, T., Prumbach, D., Quentin, D., Roderer, D., Tacke, S., Siebolds, B., Schubert, E., et al. (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218
58. Moriya, T., Saur, M., Stabrín, M., Merino, F., Voicu, H., Huang, Z., Penczek, P. A., Raunser, S., and Gatsogiannis, C. (2017) High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J. Vis. Exp. https://doi.org/10.3791/55448
59. Rosenthal, P. B., and Henderson, R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745
60. Chen, S., McMullan, G., Faruqui, A. R., Murshudov, G. N., Short, J. M., Scheres, S. H., and Henderson, R. (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35
61. Afonine, P. V., Klaholz, B. P., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C., Adams, P. D., and Urzhumtsev, A. (2018) New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840
62. Zhang, K., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., and Ludtke, S. J. (2007) EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46
63. Penczek, P. A., Fang, J., Li, X., Cheng, Y., Loerke, J., and Spahn, C. M. (2014) CTR-rapid estimation of CTF parameters with error assessment. Ultramicroscopy 140, 9–19
64. Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z., Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D., and Ludtke, S. J. (2007) SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55
65. Zivanov, J., Nakane, T., and Scheres, S. H. W. (2020) Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267
66. Zivanov, J., Nakane, T., and Scheres, S. H. W. (2019) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17
67. Kita, A., Matsui, H., Somoto, A., Kimura, A., Takata, M., and Chiba, S. (1991) Substrate specificity and subsite affinities of crystalline α-glucosidase from Aspergillus niger. Agric. Biol. Chem. 55, 2327–2335
68. Matsui, H., Sasaki, M., Takemasa, E., Kaneta, T., and Chiba, S. (1984) Kinetic studies on the substrate specificity and active site of rabbit muscle acid α-glucosidase. J. Biochem. 96, 993–1004
69. Lee, B. H., Rose, D. R., Lin, A. H., Quezada-Calvillo, R., Nichols, B. L., and Hamaker, B. R. (2016) Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J. Agric. Food Chem. 64, 6487–6494
70. Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Papko, T., and Ben-Tal, N. (2005) ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302
71. Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., Papko, T., and Ben-Tal, N. (2013) ConSurf: Using evolutionary data to raise testable hypotheses about protein function. Isr. J. Chem. 53, 199–206
72. Ashkenazy, H., Erez, E., Martz, E., Papko, T., and Ben-Tal, N. (2010) ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W329–W333
73. Tan, Y. Z., Baldwin, P. R., Davis, J. H., Williamson, J. R., Potter, C. S., Carragher, B., and Lyumkis, D. (2017) Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796