NUMERICAL APPROXIMATION FOR STOCHASTIC NONLINEAR FRACTIONAL DIFFUSION EQUATION DRIVEN BY ROUGH NOISE

DAXIN NIE1, JING SUN1 AND WEIHUA DENG1,2,*

Abstract. In this work, we are interested in building the fully discrete scheme for stochastic fractional diffusion equation driven by fractional Brownian sheet which is temporally and spatially fractional with Hurst parameters $H_1, \ldots, H_{d+1} \in (0, \frac{1}{2}]$ and $d = 1, 2$. We first provide the regularity of the solution. Then we employ the Wong–Zakai approximation to regularize the rough noise and discuss the convergence of the approximation. Next, the finite element and backward Euler convolution quadrature methods are used to discretize spatial and temporal operators for the obtained regularized equation, and the detailed error analyses are developed. Finally, some numerical examples are presented to confirm the theory.

Mathematics Subject Classification. 65M60, 65M15, 65C30.

Received October 31, 2022. Accepted November 6, 2024.

1. Introduction

The Brownian motion subordinated by inverse α-stable Lévy process is a powerful model for describing the subdiffusion phenomena \cite{12}. In this paper, we are concerned with the Fokker–Planck equation (governing the probability density function of the subordinated Brownian motion) with nonlinear source term and external noise, i.e., we present and analyze the fully discrete scheme for the following stochastic nonlinear fractional diffusion equation driven by fractional Brownian sheet noise:

\begin{equation}
\begin{cases}
\partial_t u(x, t) - \partial_t^{1-\alpha} \Delta u(x, t) = f(u) + \beta \xi^{H_d+1}(x, t) \quad (x, t) \in D \times (0, T], \\
u(x, 0) = 0, \\
u(x, t) = 0 \quad (x, t) \in \partial D \times (0, T],
\end{cases}
\end{equation}

where $\partial_t^{1-\alpha}$ with $\alpha \in (0, 1)$ is the Riemann–Liouville fractional derivative defined by Podlubny \cite{29}

\[\partial_t^{1-\alpha} u = \frac{1}{\Gamma(\alpha)} \frac{\partial}{\partial t} \left(\int_0^t (t - \xi)^{-\alpha-1} u(\xi) \, d\xi \right); \]

\textit{Keywords and phrases.} Stochastic fractional diffusion equation, fractional Brownian sheet, Wong–Zakai approximation, finite element method, convolution quadrature, error analysis.

1 School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P.R. China.
2 State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, P.R. China.
*Corresponding author: dengwh@lzu.edu.cn

© The authors. Published by EDP Sciences, SMAI 2025
f(u) is a nonlinear term satisfying the following assumptions
\[\|f(u)\|_{L^2(D)} \leq C(1 + \|u\|_{L^2(D)}) \]
\[\|f(u) - f(v)\|_{L^2(D)} \leq C\|u - v\|_{L^2(D)} \] \hspace{1cm} (1.2)
with C being a positive constant; \(\beta \) is a non-zero constant, and without loss of generality, we take \(\beta = 1 \) in our analyses; \(\xi^{H_1, H_{d+1}} \) is defined by
\[\xi^{H_1, H_{d+1}}(x, t) = \frac{\partial^{d+1} W^{H_1, H_{d+1}}(x, t)}{\partial x_1 \cdots \partial x_d \partial t} \] \hspace{1cm} (1.3)
with \(W^{H_1, H_{d+1}}(x, t) \) being a fractional Brownian sheet on a stochastic basis \((\Omega, F, (F_t)_{t \in [0, T]}, \mathbb{P})\) such that
\[\mathbb{E}[W^{H_1, H_{d+1}}(x, t)W^{H_1, H_{d+1}}(y, s)] = R_{H_{d+1}}(s, t) \prod_{k=1}^{d} R_{H_k}(x_k, y_k), \]
where \(H_1 = \{H_1, \cdots, H_d\}, (x, t), (y, s) \in D \times [0, T], x = \{x_1, \cdots, x_d\}, y = \{y_1, \cdots, y_d\} \) and
\[R_H(x, y) = \frac{|x|^{2H} + |y|^{2H} - |x - y|^{2H}}{2} \] \hspace{1cm} (1.4)
Here \(D = (0, l)^d \subset \mathbb{R}^d \) with \(l \) being a bounded constant, \(H_1, \cdots, H_{d+1} \in (0, \frac{1}{2}) \) are Hurst parameters, and \(\mathbb{E} \) denotes the expectation.

As we all know, fractional noises exist widely in the natural world, such as flows in porous media, the rough Hamiltonian systems and so on [6, 11]. In recent years, there have been many discussions about numerically solving stochastic partial differential equations driven by Brownian sheet (it can be called as “smoother noise”) [4,19–22,27,30,32]. But for the fractional Brownian sheet with \(H_i \in (0, \frac{1}{2}) \) and \(\sum_{i=1}^{d+1} H_i < \frac{d+1}{2} \) (called as “rough noise”), the existing discussions seem to be few. In [9], the authors propose the regularity estimates and the corresponding numerical analyses about the stochastic evolution equation driven by fractional Brownian sheet with \(H_1 \in (0, \frac{1}{2}) \) and \(H_2 = \frac{1}{2} \).

In this paper, we focus on the fractional diffusion equation driven by fractional Brownian sheet with Hurst parameters \(H_1, \cdots, H_{d+1} \in (0, \frac{1}{2}) \) numerically, which are both rough in the temporal and spatial directions. Firstly, with the help of the obtained new estimate about stochastic integral with respect to \(\xi^{H_1, H_{d+1}} \) (for the details, see Thms. 2.5 and 5.1), we provide the regularity estimate of the solution, i.e.,
\[\mathbb{E}\|u(t)\|_{H^{2\sigma}(D)}^2 \leq C, \quad 2\sigma \in \left[0, \min \left\{ \frac{2H_{d+1}}{\alpha} + \sum_{k=1}^{d} H_k - d, \sum_{k=1}^{d} H_k + 2 - d \right\} \right], \]
and
\[\mathbb{E}\left\| \frac{u(t) - u(t - \tau)}{\tau^\gamma} \right\|_{L^2(D)}^2 \leq C, \quad 2\gamma \in \left[0, 2H_{d+1} + \left(\sum_{k=1}^{d} H_k - d \right) \alpha \right]. \]
Then the Wong–Zakai approximation [16,17] is used to regularize the fractional Brownian sheet noise \(\xi^{H_1, H_{d+1}} \). To our best knowledge, the existing convergence discussions for regularized solution rely on the Green function; see [9,10,25]. But for equation (1.1), its Green function is composed of Mittag–Leffler function, which makes the corresponding convergence analysis complicated. So, in this paper, a new approach based on approximation theory, operator theory, and the equivalence of different Sobolev spaces is built and the convergence rate of Wong–Zakai approximation is obtained. Next, we use the finite element method and backward Euler convolution quadrature method to build the fully discrete scheme of equation (1.1) and introduce some new techniques to obtain an \(\mathcal{O}(\tau^{2H_{d+1} + (\sum_{k=1}^{d} H_k - d)\alpha - \epsilon}) \) convergence rates in time.
The rest of this paper is organized as follows. In Sections 2–4, we mainly discuss equation (1.1) in one-
dimensional case. To be specific, in Section 2, we first provide some properties about stochastic integral with
respect to $\xi^{H_{1},H_{2}}$, and then discuss the regularity of the solution; next, we consider the Wong–Zakai approxima-
tion of equation (1.1) and discuss its convergence in Section 3; in Section 4, we construct the numerical scheme
for one-dimensional problem by finite element method and backward Euler convolution quadrature method, and
provide the complete error estimates. In Section 5, we extend the corresponding analyses into two-dimensional
case and show the corresponding regularity estimate and error estimate. In Section 6, a variety of numerical
experiments are provided to verify the proposed theoretical results. At last, we conclude the paper with some
discussions. Throughout the paper, C denotes a positive constant, whose value may vary from line to line, $\| \cdot \|$ denotes the operator norms from $L^2(D)$ to $L^2(D)$, $\epsilon, \epsilon_0 > 0$ are arbitrarily small quantities, and E denotes the expectation.

2. REGULARITY OF THE SOLUTION IN ONE-DIMENSIONAL CASE

In this section, we begin by discussing the properties of stochastic integrals with respect to fractional Brownian
sheet noise in equation (1.1) with $d = 1$. Also, the regularity of the solution is provided.

2.1. Some properties of stochastic integrals with respect to fractional Brownian sheet noise $\xi^{H_{1},H_{2}}$

Lemma 2.1 ([23,24]). Let D be a bounded domain in \mathbb{R}^d ($d = 1, 2, 3$) and Λ_k the k-th eigenvalue of the Dirichlet
boundary problem for the Laplace operator $-\Delta$ in D. Then, for all $k \geq 1$,

$$\Lambda_k \geq \frac{C_d d}{d + 2} k^{2/d} |D|^{-2/d},$$

where $C_d = (2\pi)^2 B_d^{-2/d}$, $|D|$ is the volume of D, and B_d means the volume of the unit d-dimensional ball.

Let $A = -\Delta$ be defined in $(0, 1)$ with a zero Dirichlet boundary condition and $\{\lambda_k\}_{k=1}^\infty$ and $\{\phi_k\}_{k=1}^\infty$ be its non-decreasing eigenvalues and L^2-norm normalized eigenfunctions, respectively. Then we present some fractional Sobolev spaces, which can refer to [1,2,7,13]. Introduce the operator A^q with $q \in [0, 1]$ as

$$A^q u = \sum_{k=1}^\infty \Lambda_k^q (u, \phi_k) \phi_k$$

and define $\mathcal{H}^{2q}(D) = \mathbb{D}(A^q)$ with norm $\|u\|_{\mathcal{H}^{2q}(D)} = \|A^q u\|_{L^2(D)}$. Here $\mathbb{D}(A^q)$ denotes the domain of A^q. It is easy to verify

$$\mathcal{H}^0(D) = L^2(D), \quad \mathcal{H}^1(D) = H^1_0(D).$$

For $s \in (0, 1)$, we define the fractional Sobolev space $H^s(D)$ by

$$H^s(D) = \left\{ u \in L^2(D) : \|u\|^2_{H^s(D)} = \int_D \int_D \frac{(u(x) - u(y))^2}{|x - y|^{d+2s}} \, dx \, dy < \infty \right\},$$

and its norm can be written as $\| \cdot \|_{H^s(D)} = \| \cdot \|_{L^2(D)} + | \cdot |_{H^s(D)}$.

Remark 2.2. According to [15], for $s \in (0, 1)$ and $d = 1$, the semi-norm of $H^s(D)$ can also be defined by

$$|u|_{H^s(D)} = \|\partial_x^s u\|_{L^2(D)},$$

and combining the fractional Poincâre inequality [13,15], we can also define the norm of $H^s(D)$ by

$$\|u\|_{H^s(D)} = \|\partial_x^s u\|_{L^2(D)},$$

where $\partial_x^s u$ is the Riemann–Liouville fractional derivative.
Remark 2.3. It is well-known that $H^s(D) = \{ u \in H^s(\mathbb{R}), \ u = 0 \text{ in } D^c \}$ with the norm

$$
\|u\|^2_{H^s(D)} = \|u\|^2_{L^2(D)} + \int_{\mathbb{R}} \frac{(u(x) - u(y))^2}{|x-y|^{d+2s}} \, dx \, dy.
$$

Remark 2.3. It is well-known that $H^{s}(D) = H^{s}_{0}(D)$ for $s \in [0, \frac{1}{2}]$; see [2,7]. From [7], we have $\dot{H}^{s}(D) = H^{s}_{0}(D)$ for $s \in [0, \frac{3}{2})$.

Moreover, for $s \in (0, 1)$, another type of fractional Sobolev space $[1,2,7]$ that we will use can be defined by

$$
H^s_0(D) = \{ u \in H^s(\mathbb{R}), \ u = 0 \text{ in } D^c \}
$$

with the norm

$$
\|u\|^2_{H^s_0(D)} = \|u\|^2_{L^2(D)} + \int_{\mathbb{R}} \frac{(u(x) - u(y))^2}{|x-y|^{d+2s}} \, dx \, dy.
$$

For fractional Brownian sheet noise, we have the following Itô isometry.

Lemma 2.4 ([5]). Let $g_1(x,t) = g_{1,1}(x)g_{1,2}(t)$ and $g_2(x,t) = g_{2,1}(x)g_{2,2}(t)$ satisfying $g_{1,1}(x), g_{2,1}(x) \in H^{1-2H_{1}}_{0}(D)$ and $g_{1,2}(t), g_{2,2}(t) \in H^{1-2H_{2}}_{0}(0,T))$. Then we have

$$
\mathbb{E}\left(\int_{0}^{T} \int_{D} g_1(x,t)\xi^{H_1,H_2}(dx,dt) \int_{0}^{T} \int_{D} g_2(x,t)\xi^{H_1,H_2}(dx,dt) \right) = (\mathcal{L}_{H_1},g_{1,2}(t))_{\mathbb{R}}(\mathcal{L}_{H_1},g_{1,1}(x),g_{2,2}(t))_{\mathbb{R}},
$$

where

$$
\mathcal{L}_{H_{1},x}u(x) = \begin{cases}
2CH_{1}P.V.\int_{\mathbb{R}} \frac{u(x)-u(y)}{|x-y|^{1-2H_{1}}} \, dy & H_{1} \in (0,\frac{1}{2}), \\
u(x) & H_{1} = \frac{1}{2},
\end{cases}
$$

and

$$
\mathcal{L}_{H_{2},t}u(t) = \begin{cases}
2CH_{2}P.V.\int_{\mathbb{R}} \frac{u(t)-u(r)}{|t-r|^{1-2H_{2}}} \, dr & H_{2} \in (0,\frac{1}{2}), \\
u(t) & H_{2} = \frac{1}{2}.
\end{cases}
$$

Here $C_{H_{i}} = \frac{1}{2}H_{i}(1-2H_{i}), \ i = 1,2$ and $P.V.$ means the principal value integral.

Moreover, we can obtain following estimate about the above Itô isometry by the equivalence of different fractional Sobolev spaces.

Theorem 2.5. Let $g_1(x,t) = g_{1,1}(x)g_{1,2}(t)$ and $g_2(x,t) = g_{2,1}(x)g_{2,2}(t)$ satisfying $g_{1,1}(x), g_{2,1}(x) \in H^{1-2H_{1}}_{0}(D)$ and $g_{1,2}(t), g_{2,2}(t) \in H^{1-2H_{2}}_{0}(0,T))$. Then one has

$$
\mathbb{E}\left(\int_{0}^{T} \int_{D} g_1(x,t)\xi^{H_1,H_2}(dx,dt) \int_{0}^{T} \int_{D} g_2(x,t)\xi^{H_1,H_2}(dx,dt) \right) \leq C \left\| g_{1,1}(x) \right\|_{H_{0}^{1-2H_{1}}(D)} \left\| g_{1,2}(t) \right\|_{L^{2}(0,T))} \left\| g_{2,1}(x) \right\|_{H_{0}^{1-2H_{2}}(D)} \left\| g_{2,2}(t) \right\|_{L^{2}(0,T))},
$$

Here $0D^\alpha_t$ is the Riemann–Liouville fractional derivative when $\alpha \in (0,1)$; and when $\alpha = 0$, it denotes an identity operator.

Proof. Here, we mainly prove the case that $H_1, H_2 \in (0,\frac{1}{2})$. As for the other cases, the desired results can be obtained similarly.
According to Lemma 2.4 and the definition of $H_0^2(D)$, after simple calculations, we have

\[
\mathbb{E} \left(\int_0^T \int_D g_1(x, t) \xi^{H_1, H_2}(dx, dt) \int_0^T \int_D g_2(x, t) \xi^H, H(z, dz, dt) \right)
\]

\[
= C_{H_1} C_{H_2} \int \int \frac{(g_{1,1}(x) - g_{1,1}(y))(g_{2,1}(x) - g_{2,1}(y))}{|x - y|^{2 - 2H_1}} \, dx \, dy
\]

\[
\cdot \int \int \frac{(g_{1,2}(t) - g_{1,2}(s))(g_{2,2}(t) - g_{2,2}(s))}{|t - s|^{2 - 2H_2}} \, dt \, ds
\]

\[
\leq C \|g_{1,1}(t)\|_{H_0^{2 - \frac{2H_1}{2}}(D)} \|g_{2,1}(t)\|_{H_0^{2 - \frac{2H_2}{2}}(D)} \cdot \|g_{1,2}(t)\|_{H_0^{2 - \frac{2H_1}{2}}((0, T))} \|g_{2,2}(t)\|_{H_0^{2 - \frac{2H_2}{2}}((0, T))}
\]

Combining further Remarks 2.2 and 2.3, one can arrive at the desired result.

Remark 2.6. According to Lemma 2.4 and Theorem 2.5, we can convert the singular integral with respect to time in Itô isometry into the convolution form, which plays a crucial role in the following analyses.

2.2. Regularity of the solution

Before building the regularity of the solution of equation (1.1), we first give the representation of the solution. Introduce $\mathcal{G}(t, x, y)$ as

\[
\mathcal{G}(t, x, y) = \sum_{k=1}^{\infty} \mathcal{G}_k(t, x, y), \quad (2.1)
\]

where

\[
\mathcal{G}_k(t, x, y) = E_k(t) \phi_k(x) \phi_k(y) \quad (2.2)
\]

and

\[
E_k(t) = \frac{1}{2\pi i} \int_{\Gamma_{\theta, \kappa}} e^{zt} z^{\alpha - 1} (z^\alpha + \lambda_k)^{-1} \, dz. \quad (2.3)
\]

Here $\Gamma_{\theta, \kappa}$ is defined by

\[
\Gamma_{\theta, \kappa} = \{re^{i\theta} : r \geq \kappa\} \cup \{re^{i\psi} : |\psi| \leq \theta\} \cup \{re^{i\theta} : r \geq \kappa\},
\]

where the circular arc is oriented counterclockwise and the two rays are oriented with an increasing imaginary part and $i^2 = -1$.

Thus the solution of equation (1.1) can be written as

\[
u(x, t) = \int_0^t \int_D \mathcal{G}(t - s, x, y) f(u) \, ds \, dy + \int_0^t \int_D \mathcal{G}(t - s, x, y) \xi^H, H(z, dz, ds). \quad (2.4)
\]

For the convenience of analysis, we introduce the operator \mathcal{R}, which is defined by the Laplace transform, i.e.,

\[
\tilde{\mathcal{R}}(z) = z^{\alpha - 1} (z^\alpha + A)^{-1}.
\]

It is easy to verify that

\[
\mathcal{G}_k(t, x, y) = \mathcal{R}(t) \phi_k(x) \phi_k(y)
\]

and

\[
\mathcal{R}(t)u(x) = \int_D \mathcal{G}(t, x, y)u(y) \, dy.
\]
So the solution can also be written as
\[
 u(t) = \int_0^t R(t - s)f(u(s)) \, ds + \int_0^t \int_D G(t - s, x, y)\xi_{H_1, H_2}(dy, ds). \tag{2.5}
\]

Then we provide the spatial regularity estimate of solution.

Theorem 2.7. Let \(u(t) \) be the solution of equation (1.1) with \(d = 1 \) and \(f(u) \) satisfy the assumptions (1.2). Assume \(2H_2 + (H_1 - 1)\alpha > 0 \). Then there holds
\[
 \mathbb{E}\|A^\sigma u(t)\|_{L^2(D)}^2 \leq C,
\]
where \(2\sigma \in [0, \min\{\frac{2H_2}{\alpha} + H_1 - 1, H_1 + 1\}) \).

Proof. According to (2.5), we have
\[
 \mathbb{E}\|A^\sigma u(t)\|_{L^2(D)}^2 \leq C\mathbb{E}\left\| \int_0^t A^\sigma R(t - s)f(u) \, ds \right\|_{L^2(D)}^2 + C\mathbb{E}\left\| \int_0^t \int_D A^\sigma G(t - s, x, y)\xi_{H_1, H_2}(dy, ds) \right\|_{L^2(D)}^2 \leq I + II.
\]
Consider I first. Using the resolvent estimate \(\|(z^\alpha + A)^{-1}\| \leq C|z|^{-\alpha} \) for \(z \in \Sigma_\theta = \{ z \in \mathbb{C} : z \neq 0, |\arg z| \leq \theta \} \), the Cauchy–Schwarz inequality, and the assumptions (1.2), we can obtain
\[
 I \leq C\mathbb{E}\left\| \int_{\Gamma_{\theta, \eta}} e^{zt} A^\sigma z^\alpha - 1(z^\alpha + A)^{-1}\tilde{f}(u) \, dz \right\|_{L^2(D)}^2
 \leq C\mathbb{E}\left\| \int_0^t (t - s)^{-\sigma\alpha}\|f(u(s))\|_{L^2(D)} \, ds \right\|_{L^2(D)}^2
 \leq C\int_0^t (t - s)^{-2\sigma\alpha + 1 - \epsilon}\|f(u(s))\|_{L^2(D)}^2 \, ds
 \leq C\left(1 + \int_0^t (t - s)^{-2\sigma\alpha + 1 - \epsilon}\|u\|_{L^2(D)}^2 \, ds\right),
\]
where \(\tilde{f}(u) \) means the Laplace transform of \(f(u) \) and \(-2\sigma\alpha + 1 > -1 \) needs to be satisfied, i.e., \(\sigma < \min\{\frac{1}{\alpha}, 1 + \epsilon\} \).

According to Theorem 2.5 and the definition of \(G \), one has
\[
 II \leq C\sum_{k=1}^\infty \int_0^t \int_{\Gamma_{\theta, \eta}} e^{zt} \frac{1-2H_2}{2} \lambda_k^\sigma E_k(t) \left\| \phi_k(y) \right\|^2_{H_0^{1-2H_2}(D)} \left\| \phi_k(x) \right\|^2_{L^2(D)} \, dt
 \leq C\sum_{k=1}^\infty \int_0^t \int_{\Gamma_{\theta, \eta}} e^{zt} z^{\alpha-1} \frac{1-2H_2}{2} \lambda_k^\sigma (z^\alpha + \lambda_k)^{-1} \, dz
 \cdot \left\| \phi_k(y) \right\|^2_{H_0^{1-2H_2}(D)} \left\| \phi_k(x) \right\|^2_{L^2(D)} \, dt.
\]
By the resolvent estimate, Remark 2.3, Lemma 2.1, and simple calculations, we have
\[
II \leq C \sum_{k=1}^{\infty} \int_0^t \left(\int_{\Gamma_{e,n}} |e^{zt}| |z|^{\alpha-1} \frac{1-2H_2}{2} |\lambda_k^{\sigma+\frac{1-2H_1}{2}} (z^\alpha + \lambda_k)^{-1} | \, dz \right)^2 \, dt \\
\leq C \sum_{k=1}^{\infty} \lambda_k^{-\frac{1}{2}-2\varepsilon} \int_0^t \left(\int_{\Gamma_{e,n}} |e^{zt}| |z|^{\alpha-1} \frac{1-2H_2}{2} |\lambda_k^{\sigma+\frac{1-2H_1}{2}} (z^\alpha + \lambda_k)^{-1} | \, dz \right)^2 \, dt \\
\leq C \sum_{k=1}^{\infty} \lambda_k^{-\frac{1}{2}-2\varepsilon} \int_0^t \left(\int_{\Gamma_{e,n}} |e^{zt}| |z|^{(\sigma+\frac{1-2H_1}{2})\alpha-1+\frac{1-2H_2}{2}} \, dz \right)^2 \, dt,
\]
where we need to require \((\sigma + \frac{1-H_1}{2} + \varepsilon)\alpha - 1 + \frac{1-2H_2}{2} \leq -\frac{1}{2}\) and \(\sigma + \frac{1-H_1}{2} < 1\), i.e., \(2\sigma < \min\{\frac{2H_2}{\alpha} + H_1 - 1, H_1 + 1\}\).

Combining the Grönwall inequality [14], the desired results can be reached.

Also, the following temporal regularity estimate of solution can be obtained.

Theorem 2.8. Let \(u(t)\) be the solution of equation (1.1) with \(d = 1\) and \(f(u)\) satisfy the assumptions (1.2). Assume \(2H_2 + (H_1 - 1)\alpha > 0\). Then it holds
\[
E \left\| u(t) - u(t - \tau) \right\|_{L^2(D)}^2 \leq C,
\]
where \(2\gamma \in [0, 2H_2 + (H_1 - 1)\alpha)\).

Proof. According to (2.5), we have
\[
E \left\| u(t) - u(t - \tau) \right\|_{L^2(D)}^2 \leq C E \left\| \frac{1}{\tau^\gamma} \left(\int_0^t \mathcal{R}(t-s) f(u) \, ds - \int_0^{t-\tau} \mathcal{R}(t-\tau-s) f(u) \, ds \right) \right\|_{L^2(D)}^2 \\
+ C E \left\| \frac{1}{\tau^\gamma} \left(\int_0^t \int_D \mathcal{G}(t-s, x, y) \xi^{H_1, H_2} (dy, ds) \\
- \int_0^{t-\tau} \int_D \mathcal{G}(t-\tau-s, x, y) \xi^{H_1, H_2} (dy, ds) \right) \right\|_{L^2(D)}^2 \\
\leq \vartheta_1 + \vartheta_2.
\]
As for \(\vartheta_1\), there holds
\[
\vartheta_1 \leq C E \left\| \frac{1}{\tau^\gamma} \int_0^{t-\tau} (\mathcal{R}(t-s) - \mathcal{R}(t-\tau-s)) f(u) \, ds \right\|_{L^2(D)}^2 \\
+ C E \left\| \frac{1}{\tau^\gamma} \int_{t-\tau}^t \mathcal{R}(t-s) f(u) \, ds \right\|_{L^2(D)}^2 \\
\leq \vartheta_{1,1} + \vartheta_{1,2}.
\]
By the fact \(\left| \frac{e^{zt}}{\tau^\gamma} \right| < C |z|^\gamma\) with \(z \in \Gamma_{e,n}\) and \(\gamma \in [0, 1]\) [18] and Theorem 2.7, we have
\[
\vartheta_{1,1} \leq C \left(\int_0^{t-\tau} \left(\int_{\Gamma_{e,n}} e^{(t-s-\tau)} \frac{e^{zt}}{\tau^\gamma} z^{\alpha-1} (z^\alpha + A)^{-1} \, dz \right) E \|f(u)\|_{L^2(D)} \, ds \right)^2 \\
\leq C \left(\int_0^{t-\tau} (t-\tau-s)^{-\gamma} (1 + E \|u\|_{L^2(D)}) \, ds \right)^2 \\
\leq C,
\]
where $\gamma \in [0,1)$. Similarly, for $\gamma \in [0,1)$, one can obtain
\[
\vartheta_{1,2} \leq C \tau^{1-2\gamma} \int_{t-\tau}^{t} \mathbb{E}\|f(u)\|^2_{L^2(D)} \, ds \leq C.
\]

For ϑ_2, we can split it into the following two parts:
\[
\vartheta_2 \leq C \mathbb{E}\left\| \frac{1}{\tau^\gamma} \left(\int_0^{t-\tau} \int_D \left(G(t-s,x,y) - G(t-\tau-s,x,y) \right) \xi^{H_1,H_2}(dy,ds) \right) \right\|^2_{L^2(D)}
+ C \mathbb{E}\left\| \frac{1}{\tau^\gamma} \int_0^{t-\tau} \int_D G(t-s,x,y) \xi^{H_1,H_2}(dy,ds) \right\|^2_{L^2(D)} \leq \vartheta_{2,1} + \vartheta_{2,2}.
\]

Using Theorem 2.5 and Lemma 2.1 yields
\[
\vartheta_{2,1} \leq C \sum_{k=1}^{\infty} \int_0^{t-\tau} \left\| \vartheta_{t-s} \frac{1}{\tau^\gamma} \left(E_k(t-s) - E_k(t-\tau-s) \right) \right\|^2 \|\phi_k(y)\|^2_{H_0^{-2H_2}(D)} \, ds
\leq C \sum_{k=1}^{\infty} \lambda_k^{-1/2-\epsilon} \int_0^{t-\tau} \left(\int_{\Gamma_{e,\kappa}} |e^{\alpha(t-\tau-s)}| |z|^{\gamma+\frac{1-2H_2}{2}} 1_{\frac{1-2H_1}{2}} z^\alpha \right) \, ds
\leq C \sum_{k=1}^{\infty} \lambda_k^{-1/2-\epsilon} \int_0^{t-\tau} s^{(H_1-1)\alpha+2H_2-1-2\gamma-\alpha} \, ds,
\]
where we need to require $2\gamma < 2H_2 + (H_1 - 1)\alpha$. Similarly, for $\vartheta_{2,2}$, one has
\[
\vartheta_{2,2} \leq C \frac{1}{\tau^{2\gamma}} \sum_{k=1}^{\infty} \int_0^{t-\tau} \left(\vartheta_{t-s} \frac{1-2H_2}{2} \lambda_k^{-1-2H_1} E_k(t-s) \right) \, ds
\leq C \frac{1}{\tau^{2\gamma}} \sum_{k=1}^{\infty} \lambda_k^{-1/2-\epsilon} \int_0^{t-\tau} \left(\int_{\Gamma_{e,\kappa}} |e^{\alpha(t-\tau-s)}| |z|^{\frac{1-2H_2}{2}+\frac{1-2H_1}{2}+\frac{1-2\gamma}{2}+\frac{2\gamma}{2}} \right) \, ds
\leq C \frac{1}{\tau^{2\gamma}} \sum_{k=1}^{\infty} \lambda_k^{-1/2-\epsilon} \int_0^{t} s^{(H_1-1)\alpha+2H_2-1-\alpha} \, ds,
\]
where we need to require $2\gamma < 2H_2 + (H_1 - 1)\alpha$. Collecting the above estimates leads to the desired result.

3. Wong–Zakai approximation

In this section, we use the Wong–Zakai approximation [16, 17] to regularize the fractional Brownian sheet noise ξ^{H_1,H_2} and provide a systematic approach to prove the convergence of the Wong–Zakai approximation.

Here, we introduce the Wong–Zakai approximation first. Let $\tau = T/M$ and $h = l/N$. Denote $I_i = (t_i, t_{i+1}]$ and $D_j = (x_j, x_{j+1}]$ with $t_i = i\tau$ ($i = 0, 1, \ldots, M$) and $x_j = jh$ ($j = 0, 1, \ldots, N$). Then Wong–Zakai approximation of $\xi^{H_1,H_2}(x,t)$ can be written as
\[
\xi^{H_1,H_2}_{R}(x,t) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \left(\frac{1}{\tau h} \int_{I_i} \int_{D_j} \xi^{H_1,H_2}(dy,ds) \right) \chi_{I_i \times D_j}(t,x),
\]
where $\chi_{I_i \times D_j}(t, x)$ is the characteristic function on $I_i \times D_j$. Then we introduce $u_R(x, t)$ as the solution of the following regularized equation, i.e.,
\[
\begin{aligned}
\begin{cases}
\partial_t u_R(x, t) + \alpha \partial^{1-\alpha}_t A u_R(x, t) = f(u_R) + \xi^{H_2}(x, t) \\ u_R(x, 0) = 0 \\ u_R(x, t) = 0
\end{cases}
\quad (x, t) \in D \times (0, T],
\end{aligned}
\]
\[
\begin{aligned}
\quad x \in D,
\end{aligned}
\]
\[
\begin{aligned}
\quad (x, t) \in \partial D \times (0, T].
\end{aligned}
\]

Simple calculations lead to
\[
u_R(x, t) = \int_0^t \mathcal{R}(t - s) f(u_R) \, ds + \int_0^t \int_D \mathcal{G}(t, s, x, y) \xi^{H_2}(dy, ds).
\]

Here, $\mathcal{G}(t, r, x, y)$ is defined by
\[
\mathcal{G}(t, r, x, y) = \sum_{k=1}^{\infty} E_{R, k}(t, r) \phi_k(x) \phi_{R, k}(y),
\]
where
\[
E_{R, k}(t, r) = \frac{1}{\tau} \sum_{i=0}^{M-1} \chi_{I_i}(r) \int_{I_i} E_k(t - \bar{r}) \chi_{(0, \iota)}(t - \bar{r}) \, d\bar{r}, \quad \phi_{R, k}(y) = \frac{1}{\nu} \sum_{j=0}^{N-1} \chi_{D_j}(y) \int_{D_j} \phi_k(y) \, dy.
\]

Before showing the regularity and convergence of the regularized solution, we first provide the property of $E_k(t)$.

Lemma 3.1. Let $E_k(t)$ be defined in (2.3). For $k > 0$, $\sigma \in [0, 1]$, and $\gamma \geq 0$, if $\gamma + \sigma \alpha < \frac{1}{2}$, then there exists a uniform constant C such that
\[
\|\lambda_k^\gamma E_k(t)\|_{H^{1/2}((0, T))} = \|\partial_t^{\gamma} \lambda_k^\gamma E_k(t)\|_{L^2((0, T))} \leq C.
\]

Proof. By the definition of $E_k(t)$ and the resolvent estimate [26], we have
\[
\|\partial_t^{\gamma} \lambda_k^\gamma E_k(t)\|_{L^2((0, T))}^2 \leq C \int_0^T \left(\int_{\Gamma_{\theta, \infty}} |e^{\tau t} |\lambda_k^\gamma |z|^{\gamma+\alpha-1}|(z^\alpha + \lambda_k)^{-1}|dz| \right)^2 dt
\]
\[
\leq C \int_0^T \left(\int_{\Gamma_{\theta, \infty}} |e^{\tau t} |z|^{\gamma+\alpha-1}|dz| \right)^2 dt
\]
\[
\leq C \int_0^T t^{-2\gamma - 2\sigma \alpha} dt,
\]
where C is a positive constant independent of k. To preserve the boundedness of $\|\partial_t^{\gamma} \lambda_k^\gamma E_k(t)\|_{L^2((0, T))}^2$, we need to require $\gamma < \frac{1}{2} - \sigma \alpha$. \hfill \square

In the following, we show regularity estimate of the regularized solution.

Theorem 3.2. Let $u_R(t)$ be the solution of equation (3.2) and $f(u)$ satisfy the assumptions (1.2). Assume $2H_2 + (H_1 - 1)\alpha > 0$. Then we have
\[
\mathbb{E} \|A^\sigma u_R(t)\|_{L^2(D)}^2 \leq C,
\]
where $2\sigma \in \{0, \min\{\frac{2H_2}{\alpha}, H_1 - 1, H_1 + 1\}\}$.

Proof. Here we split $\mathbb{E}\|A^\sigma u_R(t)\|_{L^2(D)}^2$ into two parts, i.e.,

$$
\mathbb{E}\|A^\sigma u_R(t)\|_{L^2(D)}^2 \leq C \mathbb{E}\left\| \int_0^t A^\sigma R(t-s)f(u_R) \, ds \right\|_{L^2(D)}^2 + C \mathbb{E}\left\| \int_0^t \int_D A^\sigma \mathcal{G}_R(t, s, x, y) \kappa_{H_1, H_2}(dy, ds) \right\|_{L^2(D)}^2
\leq I + II.
$$

Similar to the proof of Theorem 2.7, one has

$$
I \leq C \left(1 + \int_0^t (t-s)^{-2\sigma+1-\epsilon} \mathbb{E}\|u_R\|_{L^2(D)}^2 \, ds\right).
$$

(3.5)

Using the standard approximation theory (one can refer to Thm. 4.4.4 in [8]) and $H_1, H_2 \in (0, \frac{1}{2})$, we have

$$
\left\| \partial_t^{1-2H_2} E_{R_k}(t, r) \right\|_{L^2((0, t))}^2 \leq C \left\| \partial_t^{1-2H_2} (E_{R_k}(t, r) - E_k(t-r) \chi_{(0,t)}(r)) \right\|_{L^2((0, t))}^2 + C \left\| \partial_t^{1-2H_2} E_k(t-r) \chi_{(0,t)}(r) \right\|_{L^2((0, t))}^2
\leq C \left\| \partial_t^{1-2H_2} E_k(t) \right\|_{L^2((0, T))}^2
$$

and

$$
\left\| \phi_{R_k}(y) \right\|_{H_0^{1-2H_1}(D)}^2 \leq C \left\| \phi_{R_k}(y) - \phi_k(y) \right\|_{H_0^{1-2H_1}(D)}^2 + C \left\| \phi_k(y) \right\|_{H_0^{1-2H_1}(D)}^2
\leq C \left\| \phi_k(y) \right\|_{H_0^{1-2H_1}(D)}^2.
$$

(3.7)

Thus, combining Theorem 2.5, one has

$$
II \leq C \sum_{k=1}^{\infty} \lambda_k^{2\sigma} \left\| \partial_t^{1-2H_2} E_k(t) \right\|_{L^2((0, T))}^2 \left\| \phi_k(y) \right\|_{H_0^{1-2H_1}(D)}^2.
$$

Similar to the proof of Theorem 2.7, we can get

$$
II \leq C
$$

with $2\sigma \in [0, \min\{\frac{2H_2}{\alpha} + H_1 - 1, H_1 + 1\})$. Combining above estimates and using the Grönwall inequality [14,28] lead to the desired result. \hfill \Box

At last, we present the convergence of the regularized solution.

Theorem 3.3. Let $u(t)$ and $u_R(t)$ be the solutions of equations (1.1) and (3.2), respectively. Assume $2H_2 + (H_1 - 1)\alpha > 0$. Then there exists a constant C such that

$$
\mathbb{E}\|u(t) - u_R(t)\|_{L^2(D)}^2 \leq C(h^{2\sigma+2H_1-1} + \tau^{2H_2-\frac{\alpha}{2} - \epsilon} h^{2H_1-1}),
$$

where $\sigma \in \left(\frac{1-2H_1}{\alpha}, \min\{\frac{2H_2}{\alpha} - \frac{1}{2}, 1 + \epsilon\}\right)$.

Proof. According to (2.5) and (3.3), one can get

\[
\mathbb{E}\|u(t) - u_R(t)\|_{L^2(D)}^2 \leq C \mathbb{E} \left\| \int_0^t \mathcal{R}(t-s)(f(u) - f(u_R)) \, ds \right\|_{L^2(D)}^2 \\
+ C \mathbb{E} \left\| \int_0^t \int_D (\mathcal{G}(t-s,x,y) - \mathcal{G}_R(t,s,x,y)) \xi^{H_1,H_2}(dy,ds) \right\|_{L^2(D)}^2
\]

Assumptions (1.2) and the resolvent estimate lead to

\[
I \leq C \mathbb{E} \left(\int_0^t \left| f(u(s)) - f(u_R(s)) \right| ds \right)^2, \\
II \leq C \int_0^t \mathbb{E}\|u - u_R\|_{L^2(D)}^2 ds.
\]

As for II, using the following fact

\[
E_k(t-r)\phi_k(y) - E_{kR}(t-r)\phi_{kR}(y) = (E_k(t-r)\phi_k(y) - E_k(t-r)\phi_{kR}(y)) \\
+ (E_k(t-r)\phi_{kR}(y) - E_{kR}(t-r)\phi_{kR}(y))
\]

and Theorem 2.5, one can get

\[
II \leq C \sum_{k=1}^{\infty} \left\| \partial_t^{1 - 2H_2} E_k(t) \right\|_{L^2((0,T))}^2 \|\phi_k(y) - \phi_{kR}(y)\|_{H^\frac{1 - 2H_2}{2}}^2(D) \\
+ C \sum_{k=1}^{\infty} \left\| \partial_t^{1 - 2H_2} (E_k(t-r) - E_{kR}(t-r)) \right\|_{L^2((0,T))}^2 \|\phi_{kR}(y)\|_{H^\frac{1 - 2H_2}{2}}^2(D)
\]

Combining Lemma 3.1 and standard approximation theory [8], one has

\[
II_1 \leq C \sum_{k=1}^{\infty} \left\| \partial_t^{1 - 2H_2} E_k(t) \right\|_{L^2((0,T))}^2 \|\phi_k(y) - \phi_{kR}(y)\|_{H^\frac{1 - 2H_2}{2}}^2(D) \\
\leq C \sum_{k=1}^{\infty} \lambda_k^{-\frac{2}{\sigma}} \left\| \partial_t^{1 - 2H_2} \lambda_k^{\frac{1+2\alpha}{2}} E_k(t) \right\|_{L^2((0,T))}^2 \|\phi_k(y) - \phi_{kR}(y)\|_{H^\frac{1 - 2H_2}{2}}^2(D) \\
\leq \sum_{k=1}^{\infty} \lambda_k^{-\frac{2}{\sigma}} \left\| \partial_t^{1 - 2H_2} \lambda_k^{\frac{1+2\alpha}{2}} E_k(t) \right\|_{L^2((0,T))}^2 \|\phi_k(y) - \phi_{kR}(y)\|_{H^\frac{1 - 2H_2}{2}}^2(D),
\]

where we need to require \(\frac{1}{2} - \frac{1+2\alpha}{2} > \frac{1 - 2H_2}{2} \) and \(2\alpha + 2H_1 - 1 > 0 \) to preserve the boundedness of \(II_1 \), i.e., \(\sigma \in \left(\frac{1 - 2H_2}{2}, \min\{\frac{2H_2}{\alpha} - \frac{1}{2}, 1 + \epsilon\} \right) \). Similarly, by the inverse estimate and projection theorem [8], we can also...
obtain
\[
\Pi_2 \leq C \sum_{k=1}^{\infty} \left\| \int_0^t \frac{\partial R}{\partial t} (E_k(t) - E_R)(t, r) \right\|_{L^2((0, t))}^2 \| \phi_{R, R_k} \|_{H^0_0}^{1/2} \| \phi_{R, k} \|_{H^1_0}^{1/2} (D)
\]
\[
\leq C h^{2H_1 - 1} \sum_{k=1}^{\infty} \lambda_k^{1/2} \left(\int_0^t \frac{\partial R}{\partial t} \right) \left(E_k(t) - E_R(t, r) \right) \right\|_{L^2((0, t))}^2 \]
\[
\leq C \tau^{2H_2 - 2 - \alpha} h^{2H_1 - 1}.
\]
Thus the desired result can be achieved by the Grönwall inequality directly. \qed

Remark 3.4. When taking \(H_2 = \frac{1}{2} \) and \(\alpha = 1 \) in Theorem 3.3, there holds
\[
\mathbb{E} \left\| u(t) - u_R(t) \right\|_{L^2(D)}^2 \leq C \left(h^{2H_1 - \epsilon} + \tau^{1 - \epsilon} h^{2H_1 - 1} \right),
\]
which can recover the result provided in [9].

4. Numerical scheme and error analysis

In this section, we construct the numerical scheme for the above regularized equation (3.2). Here we use the finite element and backward Euler convolution quadrature methods to discretize the spatial and temporal operators, respectively. At the same time, we provide the corresponding error analysis.

4.1. Numerical scheme

Let \(T_h \) be a shape regular quasi-uniform partition of the domain \(D \). Introduce \(X_h \subset H^1_0(D) \) as the space of continuous piecewise linear function over the \(T_h \). Define the \(L^2 \) orthogonal projection \(P_h : L^2(D) \rightarrow X_h \):
\[
(P_h u, v_h) = (u, v_h) \quad \forall u \in L^2(D) \quad \forall v_h \in X_h.
\]
Denote \(A_h \) as \((A_h u_h, v_h) = (\nabla u_h, \nabla v_h) \) with \(u_h, v_h \in X_h \). The semi-discrete Galerkin scheme for (3.2) can be written as: find \(u_h \in X_h \) such that
\[
(\partial_t u_h, v_h) + (0 \partial_t^{1-\alpha} A_h u_h, v_h) = (f(u_h), v_h) + \left(\xi_R^{H_1, H_2}, v_h \right)
\]
with \(u_h(0) = 0 \). It can also be written as
\[
\partial_t u_h + 0 \partial_t^{1-\alpha} A_h u_h = P_h f(u_h) + P_h \xi_R^{H_1, H_2}.
\]
Then we use the backward Euler convolution quadrature method to discretize the temporal derivative operator, \(i.e. \), the fully discrete scheme can be written as
\[
\frac{u_h^n - u_h^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} A_h u_h^{n-i} = P_h f(u_h^{n-1}) + P_h \xi_R^{H_1, H_2},
\]
where \(\xi_R^{H_1, H_2} = \xi_R^{H_1, H_2}(t_n) \) and
\[
\sum_{i=0}^{\infty} d_i^{(\alpha)} \xi^i = (\delta_\tau(\zeta))^\alpha, \quad \delta_\tau(\zeta) = \frac{1 - \zeta}{\tau}.
\]
Remark 4.1. In fact, when discretizing equation (1.1) directly, the fully discrete scheme can be written as
\[
\frac{u_h^n - u_h^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} A_h u_h^{n-i} = P_h f(u_h^{n-1}) + P_h \frac{e^{H_1, H_2(x, t_n)} - e^{H_1, H_2(x, t_{n-1})}}{\tau}.
\] (4.4)

From (4.4), we can find that the spatial direction of fractional Brownian sheet noise is approximated by the piecewise linear function. But if we discretize the regularization equation (see (4.2)), the spatial direction of noise is approximated by the piecewise constant function, which is the key to obtain the exact representation of solution for the fully discrete scheme. Moreover, it plays an important role in the following error analyses.

Next, we provide the spatial and temporal error analyses, respectively.

4.2. Spatial error analysis

Now, we suppose that \(\bar{u}_h \in X_h \) is the solution of the following equation:
\[
(\partial_t \bar{u}_h, v_h) + (\partial_t^{1-\alpha} A_h \bar{u}_h, v_h) = (f(\bar{u}_h), v_h) + (\xi_{RS}^{H_1, H_2}, v_h)
\] (4.5)
with \(\bar{u}_h(0) = 0 \) and
\[
\xi_{RS}^{H_1, H_2}(t) = \sum_{j=0}^{N-1} \left(\frac{1}{h} \int_{D_j} \xi_{RS}^{H_1, H_2}(dy, t) \right) \chi_{D_j}(x).
\]

Then equation (4.5) can also be written as
\[
\partial_t \bar{u}_h + \partial_t^{1-\alpha} A_h \bar{u}_h = P_h f(\bar{u}_h) + P_h \xi_{RS}^{H_1, H_2}.
\]
Introduce the Laplace transform of the operator \(\mathcal{R}_h \) as
\[
\tilde{\mathcal{R}}_h(z) = z^{\alpha-1}(z^\alpha + A_h)^{-1},
\]
which leads to
\[
\bar{u}_h(t) = \int_0^t \mathcal{R}_h(t-s)P_h f(\bar{u}_h(s)) \, ds + \int_0^t \mathcal{R}_h(t-s)P_h \xi_{RS}^{H_1, H_2}(ds).
\] (4.6)

Let
\[
\mathcal{G}_{R,h}(t, x, y) = \sum_{k=1}^{\infty} \mathcal{G}_{R,h,k}(t, x, y)
\] (4.7)
with
\[
\mathcal{G}_{R,h,k}(t, x, y) = \mathcal{R}_h(t)P_h \phi_k(x) \phi_{R,k}(y).
\] (4.8)
Thus by (4.6), the solution \(\bar{u}_h \) can also be written as
\[
\bar{u}_h(t) = \int_0^t \mathcal{R}_h(t-s)P_h f(\bar{u}_h(s)) \, ds + \int_0^t \int_D \mathcal{G}_{R,h}(t-s, x, y) \xi_{RS}^{H_1, H_2}(dy, ds).
\] (4.9)

Below we first provide the properties of \(\bar{u}_h(t) \).

Theorem 4.2. Let \(\bar{u}_h(t) \) be the solution of equation (4.5) and \(f(u) \) satisfy (1.2). Assume \(2H_2 + (H_1 - 1)\alpha > 0 \).

Then we have
\[
E\|\bar{u}_h(t)\|^2_{L^2(D)} \leq C
\]
and
\[
E\left\| \bar{u}_h(t) - \bar{u}_h(t - \tau) \right\|^2_{L^2(D)} \leq C,
\] (4.10)
where \(\gamma \in (0, 2H_2 + (H_1 - 1)\alpha) \).
Proof. According to (4.9), we have
\[
E\|\bar{u}_h(t)\|_{L^2(D)}^2 \leq C E \left\| \int_0^t \mathcal{R}_h(t-s)P_h f(\bar{u}_h(s)) \, ds \right\|_{L^2(D)}^2 + C E \left\| \int_0^t \int_D G_{R,h}(t-s,x,y)\xi_{H_1,H_2}^r(dy,ds) \right\|_{L^2(D)}^2 \leq I + II.
\]

Similar to the derivations of Theorem 2.7, one has
\[
I \leq C \left(1 + \int_0^t E\|\bar{u}_h(t)\|_{L^2(D)}^2 \, ds \right).
\]

As for II, Theorem 2.7, Lemma 3.1, and equation (3.7) show that
\[
II \leq C \sum_{k=1}^{\infty} \left\| \partial_t^\frac{2H_2}{2} E_k(t) \right\|_{L^2((0,T))}^2 \|\phi_k(y)\|_{H_0^1(D)}^{2+\frac{2H_2}{H_1} + (H_1-1)\alpha} \leq C.
\]
Thus we can get the first desired result by using the Grönwall inequality. As for the second estimate, using the stability of \(P_h \), i.e., \(\|P_h u\|_{L^2(D)} \leq \|u\|_{L^2(D)} \) [31] and the similar arguments in Theorem 2.8, we can obtain the desired result.

Here we begin to show spatial convergence of numerical scheme (4.2).

Theorem 4.3. Let \(u(t) \) and \(\bar{u}_h(t) \) be the solutions of equations (1.1) and (4.5), respectively. Assume that \(f(u) \) satisfies (1.2) and \(2H_2 + (H_1-1)\alpha > 0 \). Then we have
\[
E\|u(t) - \bar{u}_h(t)\|_{L^2(D)}^2 \leq C h^{2\sigma+2H_1-1},
\]
where \(\sigma \in \left(\frac{1-2H_1}{\alpha}, \min\{ \frac{2H_2}{\alpha} - \frac{1}{2}, 1 + \epsilon \} \right) \).

Proof. According to (2.5) and (4.6), one obtains
\[
E\|u(t) - \bar{u}_h(t)\|_{L^2(D)}^2 \leq C E \left\| \int_0^t \mathcal{R}(t-s)f(u(s)) \, ds - \int_0^t \mathcal{R}_h(t-s)P_h f(\bar{u}_h(s)) \, ds \right\|_{L^2(D)}^2 + C E \left\| \int_0^t \int_D (\mathcal{G}(t-s,x,y) - \mathcal{G}_{R,h}(t-s,x,y))\xi_{H_1,H_2}^r(dy,ds) \right\|_{L^2(D)}^2 \leq I + II.
\]
As for I, one has
\[
I \leq E \left\| \int_0^t \mathcal{R}(t-s)f(u(s)) \, ds - \int_0^t \mathcal{R}_h(t-s)P_h f(u(s)) \, ds \right\|_{L^2(D)}^2 + E \left\| \int_0^t \mathcal{R}_h(t-s)P_h f(u(s)) \, ds - \int_0^t \mathcal{R}_h(t-s)P_h f(\bar{u}_h(s)) \, ds \right\|_{L^2(D)}^2 \leq I_1 + I_2.
\]
Using the assumptions (1.2), the fact \(\|(R(t-s) - R_h(t-s)P_h)\| \leq Ch^2(t-s)^{-\alpha} \) with \(\alpha \in (0, 1) \), and Theorem 2.7, we have

\[
I_1 \leq \left(\int_0^t \|(R(t-s) - R_h(t-s)P_h)\|E\|f(u(s))\|_{L^2(D)} \, ds \right)^2 \leq Ch^4 \left(\int_0^t (t-s)^{-\alpha} (1 + E\|u(s)\|_{L^2(D)}) \, ds \right)^2 \leq Ch^4.
\]

As for \(I_2 \), the stability of \(P_h \), the assumptions (1.2), and the Cauchy–Schwarz inequality imply

\[
I_2 \leq CE \left(\int_0^t \|R_h(t-s)\|\|f(u(s)) - f(U_h(s))\|_{L^2(D)} \, ds \right)^2 \leq C \int_0^t E\|u(s) - \bar{u}_h(s)\|^2_{L^2(D)} \, ds.
\]

As for \(II \), one has

\[
II \leq CE \left(\int_0^t \int_D (G(t-s, x, y) - G_R(t-s, x, y))\xi_{H_1,H_2}^L(dy, ds) \right)^2_{L^2(D)} + CE \left(\int_0^t \int_D (G_R(t-s, x, y) - G_R(t-s, x, y))\xi_{H_1,H_2}^L(dy, ds) \right)^2_{L^2(D)} \leq II_1 + II_2,
\]

where

\[
G_R(t, x, y) = \sum_{k=1}^{\infty} R(t)\phi_k(x)\phi_{R,k}(y).
\]

Similar to the derivations of \(II_1 \) in the proof of Theorem 3.3, we have

\[
II_1 \leq Ch^{2\sigma + 2H_1^{-1}},
\]

where \(\sigma \in (\frac{1-2H_1}{2}, \min\{\frac{2H_2}{\alpha} - \frac{1}{2}, 1 + \epsilon\}) \). As for \(II_2 \), the inverse estimate leads to

\[
II_2 \leq C \sum_{k=1}^{\infty} \left\| \partial_t^{\frac{1-2H_2}{2}} (R(t) - R_h(t)P_h)\phi_k(x) \right\|_{L^2(0,t,L^2(D))}^2 \left\| \phi_{R,k}(y) \right\|_{H_{\frac{1-2H_1}{2}}(D)}^2 \leq Ch^{2H_1^{-1} - \epsilon} \sum_{k=1}^{\infty} \lambda_k^{-\frac{1}{2} - \epsilon/2} \left\| \partial_t^{\frac{1-2H_2}{2}} (R(t) - R_h(t)P_h) A^{\frac{1}{2}} \phi_k(x) \right\|_{L^2(0,t,L^2(D))}^2.
\]

Using the fact \(\|((z^\alpha + A)^{-1} - (z^\alpha + A_h)^{-1}P_h)A^s\| \leq Ch^{2-2s} \) for \(s \in [0, \frac{1}{2}] \) [31] and the interpolation property [3], one can obtain

\[
\left\| \partial_t^{\frac{1-2H_2}{2}} (R(t) - R_h(t)P_h) A^{\frac{1}{2}} \phi_k(x) \right\|_{L^2(0,t,L^2(D))}^2 \leq C \int_0^t \int_{\Gamma_{\theta,\kappa}} e^{\gamma t} z^{\frac{1-2H_2}{2} z^{\alpha^{-1}}((z^\alpha + A)^{-1} - (z^\alpha + A_h)^{-1}P_h)A^{\frac{1}{2}} \phi_k(x) \, dz \, dt \leq Ch^{\min\{\frac{4H_2}{\alpha} - 1 - 2\epsilon, 3\}} \int_0^t \left(\int_{\Gamma_{\theta,\kappa}} e^{\gamma t} |z|^{-\frac{1}{2} - \epsilon} \, dz \right)^2 \, dt \leq Ch^{\min\{\frac{4H_2}{\alpha} - 1 - 2\epsilon, 3\}},
\]
which leads to
\[H_2 \leq C h^{\min\{4H_2, 1-2\varepsilon, 3\} + 2H_1 + 1 - \varepsilon}. \]
Therefore, we complete the proof. □

4.3. Temporal error analysis

In this subsection, we consider the temporal convergence of numerical scheme (4.2), that is, the estimate of \(\mathbb{E}\|u_h^n - \tilde{u}_h(t_n)\|_{L^2(D)} \).

In the following, we provide the representation of \(u_h^n \) first. Multiplying \(\zeta^n \) on both sides of equation (4.2) and summing \(n \) from 1 to \(\infty \), we have
\[
\sum_{n=1}^{\infty} \frac{u_h^n - u_h^{n-1}}{\tau} \zeta^n + \sum_{n=1}^{\infty} \sum_{i=0}^{n-1} d_i^{(1-\alpha)} A_h u_h^{n-i} \zeta^n = \sum_{n=1}^{\infty} P_h f(u_h^{n-1}) \zeta^n + \sum_{n=1}^{\infty} P_h \kappa_{R,n}^{H_1,H_2} \zeta^n.
\]
Combining the definition of \(d_i^{(1-\alpha)} \), one has
\[
\sum_{n=1}^{\infty} u_h^n \zeta^n = (\delta_\tau(\zeta))^{n-1}((\delta_\tau(\zeta))^\alpha + A_h)^{-1} P_h \sum_{n=1}^{\infty} f(u_h^{n-1}) \zeta^n
\]
\[+ (\delta_\tau(\zeta))^{n-1}((\delta_\tau(\zeta))^\alpha + A_h)^{-1} P_h \sum_{n=1}^{\infty} \kappa_{R,n}^{H_1,H_2} \zeta^n.\]
Using Cauchy’s integral formula and doing simple calculations lead to
\[
u_h^n = \frac{\tau}{2\pi i} \int_{\Gamma^{\tau,\kappa}} e^{zt_n}(\delta_\tau(e^{-z\tau}))^{\alpha-1}((\delta_\tau(e^{-z\tau}))^\alpha + A_h)^{-1} P_h \sum_{j=1}^{\infty} f(u_h^{j-1}) e^{-zj\tau} \, dz
\]
\[+ \frac{\tau}{2\pi i} \int_{\Gamma^{\tau,\kappa}} e^{zt_n}(\delta_\tau(e^{-z\tau}))^{\alpha-1}((\delta_\tau(e^{-z\tau}))^\alpha + A_h)^{-1} P_h \sum_{j=1}^{\infty} \kappa_{R,j}^{H_1,H_2} e^{-zj\tau} \, dz, \tag{4.11}\]
where \(\Gamma^{\tau,\kappa} = \{ z \in \mathbb{C} : \kappa \leq |z| \leq \frac{\pi}{\tau \sin(\theta)}, \arg z = \theta \} \cup \{ z \in \mathbb{C} : |z| = \kappa, \arg z \leq \theta \} \). According to the definition of \(\kappa_{R}^{H_1,H_2} \), it holds
\[
\sum_{n=1}^{\infty} \kappa_{R,n}^{H_1,H_2} e^{-zt_n} = \frac{z}{e^{z\tau} - 1} \tilde{T}_{R}^{H_1,H_2}. \]
Introduce \(\tilde{F}(t) \) as
\[
\tilde{F}(t) = \begin{cases}
0 & t = t_0, \\
\nu_h^{j-1} & t \in (t_{j-1}, t_j),
\end{cases}
\]
and \(F(t) = f(u_h(t)) \). In what follows, we abbreviate \(P_h F(t) \) and \(P_h \tilde{F}(t) \) as \(F_h(t) \) and \(\tilde{F}_h(t) \).

Simple calculations lead to
\[
\sum_{n=1}^{\infty} \tilde{F}_h(t_n) e^{-zt_n} = \frac{z}{e^{z\tau} - 1} \tilde{F}_h(z).
\]
Thus there holds
\[
u_h^n = \int_0^{t_n} \tilde{R}_h(t_n - s) \tilde{F}_h(s) \, ds
\]
\[+ \int_0^{t_n} \int_D \tilde{G}_{R,h}(t - s, x, y) \kappa_{R}^{H_1,H_2}(dy, s) \, ds,
\]
where
\[\tilde{G}_{R,h}(t,x,y) = \sum_{k=1}^{\infty} \tilde{G}_{R,h,k}(t,x,y), \quad G_{R,h,k}(t,x,y) = \bar{R}_h(t)P_h \phi_k(x) \phi_{R,k}(y), \] (4.12)
and
\[\bar{R}_h(t) = \frac{1}{2\pi i} \int_{\Gamma_{\tilde{g},\alpha}} e^{z(t(e^{-z\tau}))^{\alpha-1}}((\delta_r(e^{-z\tau}))^{\alpha} + A_h)^{-1} \frac{z\tau}{e^{z\tau} - 1} \, dz. \] (4.13)

Let \(\{\lambda_{k,h}\}_{k=1}^{N-1} \) and \(\{\phi_{k,h}\}_{k=1}^{N-1} \) be the non-decreasing eigenvalues and \(L^2 \)-norm normalized eigenfunctions of operator \(A_h \). Then \(\bar{R}_h(t) \) can also be written as, for \(u_h \in X_h \),
\[\bar{R}_h(t)u_h = \sum_{k=1}^{N-1} E_{k,h}(t)(u_h,\phi_{k,h})\phi_{k,h}, \]
where
\[E_{k,h}(t) = \frac{1}{2\pi i} \int_{\Gamma_{\tilde{g},\alpha}} e^{z(t(e^{-z\tau}))^{\alpha-1}}((\delta_r(e^{-z\tau}))^{\alpha} + \lambda_{k,h})^{-1} \frac{z\tau}{e^{z\tau} - 1} \, dz. \] (4.14)

Similar to the proof of Lemma 3.1, one can obtain the following property of \(E_{k,h}(t) \).

Lemma 4.4. Let \(E_{k,h}(t) \) be defined in (4.14). For \(k = 1, 2, \ldots, N - 1 \), \(\sigma \in [0,1] \), and \(\gamma \geq 0 \), if \(\gamma + \sigma \alpha < \frac{1}{2} \), then there exists a uniform constant \(C \) such that
\[\|\lambda_{k,h}^\sigma E_{k,h}(t)\|_{H^\gamma((0,T))} = \|\partial_t^\gamma \lambda_{k,h}^\sigma E_{k,h}(t)\|_{L^2((0,T))} \leq C. \] (4.15)

In the rest of paper, we take \(\kappa \leq \frac{\pi}{t_{n} \sin(\theta)} \). Then we provide the temporal error estimate.

Theorem 4.5. Let \(\bar{u}_h \) and \(u_h^\alpha \) be the solutions of (4.5) and (4.2), respectively. Let \(f(u) \) satisfy the assumptions (1.2). Assume \(2H_2 + (H_1 - 1)\alpha > 0 \). Then we have
\[\mathbb{E}\|\bar{u}_h(t_n) - u_h^\alpha\|_{L^2(D)}^2 \leq C \tau^{2H_2 + (H_1 - 1)\alpha - \epsilon} \]
with \(0 < \epsilon < 2H_2 + (H_1 - 1)\alpha \).

Proof. Subtracting (4.11) from (4.9), we have
\[\mathbb{E}\|\bar{u}_h(t_n) - u_h^\alpha\|_{L^2(D)}^2 \leq CE \left[\int_0^{t_n} \mathbb{E}\|\bar{R}_h(t_n - s)F(s) - \bar{R}_h(t_n - s)\bar{F}_h(s)\|_{L^2(D)}^2 \, ds \right. \]
\[+ CE \left. \int_0^{t_n} \int_D \mathbb{E}\|G_{R,h}(t_n - s, x, y)\xi_{H_1,H_2}(dy, ds) \right. \]
\[- \int_0^{t_n} \int_D \mathbb{E}\|G_{R,h}(t_n - s, x, y)\xi_{R_1,H_2}(dy, ds) \right. \]
\[\leq CE \left[\int_0^{t_n} \mathbb{E}\|\bar{R}_h(t_n - s)F(s) - \bar{R}_h(t_n - s)\bar{F}_h(s)\|_{L^2(D)}^2 \right. \]
\[+ CE \left. \int_0^{t_n} \int_D \mathbb{E}\|G_{R,h}(t_n - s, x, y) - \bar{G}_{R,h}(t_n - s, x, y)\|_{L^2(D)}^2 \right. \]
\[+ CE \left. \int_0^{t_n} \int_D \mathbb{E}\|\bar{G}_{R,h}(t_n - s, x, y) - \tilde{G}_{R,h}(t_n - s, x, y)\|_{L^2(D)}^2 \right. \]
\[\leq \bar{\vartheta}_1 + \bar{\vartheta}_2 + \bar{\vartheta}_3. \]
For \(\vartheta_1 \), one can split it into three parts, \textit{i.e.},

\[
\vartheta_1 \leq C E \left\| \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \mathcal{R}_h(t_n - s)(F_h(s) - F_h(t_{i-1})) \, ds \right\|_{L^2(D)}^2 \\
+ C E \left\| \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} (\mathcal{R}_h(t_n - s) - \bar{\mathcal{R}}_h(t_n - s))F_h(t_{i-1}) \, ds \right\|_{L^2(D)}^2 \\
+ C E \left\| \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \bar{\mathcal{R}}_h(t_n - s)(F_h(t_{i-1}) - \bar{F}_h(s)) \, ds \right\|_{L^2(D)}^2 \\
\leq \vartheta_{1,1} + \vartheta_{1,2} + \vartheta_{1,3}.
\]

Using Theorem 4.2, one has

\[
\vartheta_{1,1} \leq C \tau^{2H_2 + (H_1 - 1)\alpha - \epsilon}.
\]

We first consider the estimate of \(\| \mathcal{R}_h(t_n - s) - \bar{\mathcal{R}}_h(t_n - s) \| \). According to the definitions of \(\mathcal{R}_h(t_n - s) \) and \(\bar{\mathcal{R}}_h(t_n - s) \), there holds

\[
\| \mathcal{R}_h(t_n - s) - \bar{\mathcal{R}}_h(t_n - s) \| \\
\leq C \left\| \int_{\Gamma_{\theta,\kappa}} e^{z(t_n - s)} z^{-1}(z^\alpha + A_h)^{-1} \, dz \\
- \int_{\Gamma_{\theta,\kappa}^+ \setminus \Gamma_{\theta,\kappa}^+} e^{z(t_n - s)} (\delta_r(e^{-z\tau}))^{\alpha-1}(\delta_r(e^{-z\tau}))^\alpha + A_h)^{-1} \frac{2\tau}{e^{z\tau} - 1} \, dz \right\| \\
\leq C \left\| \int_{\Gamma_{\theta,\kappa} \setminus \Gamma_{\theta,\kappa}^+} e^{z(t_n - s)} z^{-1}(z^\alpha + A_h)^{-1} \, dz \right\| \\
+ C \left\| \int_{\Gamma_{\theta,\kappa}^+} e^{z(t_n - s)} \left(z^{-1}(z^\alpha + A_h)^{-1} - (\delta_r(e^{-z\tau}))^{\alpha-1}(\delta_r(e^{-z\tau}))^\alpha + A_h)^{-1} \frac{2\tau}{e^{z\tau} - 1} \right) \, dz \right\|.
\]

By the fact \(|z - \delta_r(e^{-z\tau})| \leq C \tau |z|^2 \) for \(z \in \Gamma_{\theta,\kappa}^+ \) [18], one has

\[
\left\| z^{-1}(z^\alpha + A_h)^{-1} - (\delta_r(e^{-z\tau}))^{\alpha-1}(\delta_r(e^{-z\tau}))^\alpha + A_h)^{-1} \frac{2\tau}{e^{z\tau} - 1} \right\| \leq C \tau,
\]

which yields

\[
\| \mathcal{R}_h(t_n - s) - \bar{\mathcal{R}}_h(t_n - s) \| \leq C \left(\tau^{1-\epsilon} \int_{\Gamma_{\theta,\kappa} \setminus \Gamma_{\theta,\kappa}^+} |e^{z(t_n - s)}||z|^\epsilon \, dz + \tau \int_{\Gamma_{\theta,\kappa}^+} |e^{z(t_n - s)}| \, dz \right).
\]
Thus combining assumptions (1.2) and Theorem 4.2 and using the Cauchy–Schwarz inequality, one can obtain

\[
\vartheta_{1,2} \leq C \tau^{2-2\varepsilon} \int_0^t (t_n - s)^{1-\varepsilon} \left(\int_{\Gamma_{\theta,n}} |e^{z(t_n - s)}||z|^{-\varepsilon} dz \right)^2 E\|u(s)\|_{L^2(D)}^2 ds \\
+ C \tau^2 \int_0^t (t_n - s)^{1-\varepsilon} \left(\int_{\Gamma_{\theta,n}} |e^{z(t_n - s)}| dz \right)^2 E\|u(s)\|_{L^2(D)}^2 ds \\
\leq C \tau^{2-2\varepsilon} \int_0^t (t_n - s)^{1-\varepsilon} ds \\
+ C \tau^2 \int_0^t (t_n - s)^{1-\varepsilon} \int_{\Gamma_{\theta,n}} |e^{z(t_n - s)}||z|^{-1-2\varepsilon} dz \int_{\Gamma_{\theta,n}} |z|^{2\varepsilon-1} dz |dz| ds \\
\leq C \tau^{2-2\varepsilon}.
\]

As for \(\vartheta_{1,3}\), we arrive at

\[
\vartheta_{1,3} \leq C \tau \sum_{i=1}^{n-1} \|\bar{u}_h(t_i) - u^i_h\|_{L^2(D)}^2.
\]

The fact \(\|A_h^{1/2}P_h A^{-s/2}\| \leq C\) for \(s \in [0, 1]\) and Theorem 2.5 lead to

\[
\vartheta_2 \leq C \sum_{k=1}^{\infty} \int_0^t \left\| \partial_t^{1-2H_2} (\mathcal{R}_h(s) - \bar{\mathcal{R}}_h(s)) P_h \phi_k(y) \right\|_{L^2(D)}^2 ds \\
\leq C \sum_{k=1}^{\infty} \lambda_k^{-\varepsilon} \int_0^t \left\| \partial_t^{1-2H_2} (\mathcal{R}_h(s) - \bar{\mathcal{R}}_h(s)) P_h \phi_k \right\|_{L^2(D)}^2 ds \\
\leq C \sum_{k=1}^{\infty} \lambda_k^{-\varepsilon} \int_0^t \left\| \partial_t^{1-2H_2} (\mathcal{R}_h(s) - \bar{\mathcal{R}}_h(s)) P_h A^{1-H_1/2 + \varepsilon} \phi_k \right\|_{L^2(D)}^2 ds \\
\leq C \int_0^t \left\| \partial_t^{1-2H_2} (\mathcal{R}_h(s) - \bar{\mathcal{R}}_h(s)) A_h^{1-H_1/2 + \varepsilon} \right\|_{L^2(D)}^2 ds.
\]

Simple calculations imply

\[
\left\| \partial_t^{1-2H_2} (\mathcal{R}_h(s) - \bar{\mathcal{R}}_h(s)) A_h^{1-H_1/2 + \varepsilon} \right\| \leq C \int_{\Gamma_{\theta,n}} \left| e^{z(s)} z^{1-2H_2} z^{-\alpha-1}(z_\alpha + A_h)^{-1} A_h^{1-H_1/2 + \varepsilon} \right| dz \\
+ C \int_{\Gamma_{\theta,n}} e^{z(s)} z^{1-2H_2} \left(z^{-\alpha-1}(z_\alpha + A_h)^{-1} - (\delta_{z}(e^{-z\tau}))^{-\alpha-1} (\delta_{z}(e^{-z\tau}))^{\alpha} + A_h^{-1} \frac{z\tau}{e^{z\tau} - 1} \right) A_h^{1-H_1/2 + \varepsilon} dz \\
\leq C \int_{\Gamma_{\theta,n}} \left| e^{z(s)} |z|^{1-2H_2} z^{-\alpha-1/2} (1-H_1/2 + \varepsilon)^{-1} \right| dz \\
+ C \tau \int_{\Gamma_{\theta,n}} \left| e^{z(s)} |z|^{1-2H_2} (1-H_1/2 + \varepsilon)^{\alpha} \right| dz,
\]
which yields
\[
\vartheta_2 \leq C \int_0^{t_n} \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| e^{zs} \left| z \right|^{1 - 2H_2 + \left(\frac{1 - H_4 + \varepsilon}{2} \right) \alpha - 1} \right| \, dz \right) \, ds \\
+ C \varpi^2 \int_0^{t_n} \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| e^{zs} \left| z \right|^{1 - 2H_2 + \left(\frac{1 - H_4 + \varepsilon}{2} \right) \alpha} \right| \, dz \right) \, ds \\
\leq C \int_0^{t_n} \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| e^{2zs} \left| z \right|^{- \varepsilon} \right| \, dz \right) \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| z \right|^{1 - 2H_2 + (1 - H_4 + \varepsilon) \alpha - 2 + \varepsilon} \, dz \right) \, ds \\
+ C \varpi^2 \int_0^{t_n} \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| e^{2zs} \left| z \right|^{- \varepsilon} \right| \, dz \right) \left(\int_{\Gamma_{\theta,n} \setminus \Gamma_{\theta,n}^\ast} \left| z \right|^{1 - 2H_2 + (1 - H_4 + \varepsilon) \alpha + \varepsilon} \, dz \right) \, ds \\
\leq C \varpi^{2H_2 + (H_4 - 1) \alpha - \varepsilon}.
\]

Here \(0 < \varepsilon_0 < 2H_2 + (H_4 - 1) \alpha\). As for \(\vartheta_3\), we have
\[
\vartheta_3 \leq C \varpi \left| \sum_{k=1}^{\infty} \int_0^{t_n} \int_D \left(\overline{R}_h(t_n - s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} \overline{R}_h(t_n - r) \, dr \right) \cdot P_h \phi_k(x) \phi_k(y) e^{H_1 H_2} (dy, ds) \right|^{2} \| L^2(D) \]
\[
\leq C \sum_{k=1}^{\infty} \int_0^{t_n} \left| \partial_{s}^{\frac{1}{2} - H_2} \left(\overline{R}_h(s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} \overline{R}_h(r) \, dr \right) P_h \phi_k(x) \right|^{2} \| L^2(D) \]
\[
\leq C \sum_{k=1}^{\infty} \lambda_k^{1 - 2 \varepsilon} \int_0^{t_n} \left| \partial_{s}^{\frac{1}{2} - H_2} \left(\overline{R}_h(s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} \overline{R}_h(r) \, dr \right) A_h^{\frac{1 - H_4}{2}} \phi_k(x) \right|^{2} \| X_h \rightarrow X_h \]
\[
\leq C \int_0^{t_n} \left| \partial_{s}^{\frac{1}{2} - H_2} \left(\overline{R}_h(s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} \overline{R}_h(r) \, dr \right) A_h^{\frac{1 - H_4}{2}} \right|^{2} \| X_h \rightarrow X_h \]
\[
\leq C \sup_{v_h \in X_h, \| v_h \|_{X_h} = 1} \left| \partial_{s}^{\frac{1}{2} - H_2} \left(\overline{R}_h(s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} E_k_h(r) \, dr \right) A_h^{\frac{1 - H_4}{2}} \right|^{2} \| X_h \rightarrow X_h \]
\[
\leq C \sup_{v_h \in X_h, \| v_h \|_{X_h} = 1} \left| \sum_{k=1}^{N - 1} a_k^2 \partial_{s}^{\frac{1}{2} - H_2} \left(E_k_h(s) - \frac{1}{\tau} \sum_{i=1}^{n} \chi_{(t_i - 1, t_i]}(s) \int_{t_i - 1}^{t_i} E_k_h(r) \, dr \right) \lambda_k^{\frac{1 - H_4}{2}} \right|^{2}.
\]

Combining Lemma 4.4 and the similar arguments of Theorem 3.3, we obtain
\[
\vartheta_3 \leq C \varpi^{2H_2 + (H_4 - 1) \alpha - \varepsilon}.
\]
Thus the solution of equation (1.1) with \(\frac{\partial u}{\partial t} = -\Delta u \) reached.

After gathering the above estimates and using the discrete Grönwall inequality [31], the desired result can be reached. \(\square \)

5. Further discussions in two-dimensional case

In this section, we begin to discuss equation (1.1) in two-dimensional case. Here, we first introduce some notations. Let \(A = -\Delta \) be defined on \(D = (0, l)^2 \) with a zero Dirichlet boundary condition. Thus the eigenvalues \(\{\lambda_{k_1,k_2}\}_{k_1,k_2=1}^\infty \) and eigenfunctions \(\{\phi_{k_1,k_2}\}_{k_1,k_2=1}^\infty \) of \(A \) can be represented by

\[\lambda_{k_1,k_2} \phi_{k_1,k_2} \sim \{\lambda_{k_1} + \lambda_{k_2} \phi_{k_1} \phi_{k_2}\}_{k_1,k_2=1}^\infty, \]

where \(\lambda_k \) are the non-decreasing eigenvalues and \(\phi_k \) are the eigenfunctions. Let

\[\{\lambda_{k_1,k_2}\}_{k_1,k_2=1}^\infty \]

\[\lambda_{k_1,k_2} = \{\lambda_{k_1} + \lambda_{k_2} \phi_{k_1} \phi_{k_2}\}_{k_1,k_2=1}^\infty, \]

where \(\lambda_k \) are the non-decreasing eigenvalues and \(\phi_k \) are the eigenfunctions of operator \(A = (-\Delta) \) defined on \((0, l) \) with a zero Dirichlet boundary condition.

5.1. Regularity of solution in two dimensions

Similar to the proof of Theorem 2.5, one can obtain the estimate of Itô isometry for fractional Brownian sheet in two-dimensional case.

Theorem 5.1. Let \(g_1(x,y,t) = g_{1,1}(x)g_{1,2}(y)g_{1,3}(t) \) and \(g_2(x,y,t) = g_{2,1}(x)g_{2,2}(y)g_{2,3}(t) \) satisfying \(g_{1,1}(x), g_{2,1}(x) \) and \(g_{1,3}(t), g_{2,3}(t) \) respectively. Then

\[\mathbb{E}\left(\int_0^T \int_D g_1(x,y,t) \xi^{H_1,H_2,H_3}(dx,dy,dt) \right) \leq C \left(\frac{1}{\partial_t^\alpha} \right) \left(\int_0^T \int_D g_2(x,y,t) \xi^{H_1,H_2,H_3}(dx,dy,dt) \right), \]

where \(\partial_t^\alpha \) is the Riemann–Liouville fractional derivative when \(\alpha \in (0,1) \); and when \(\alpha = 0 \), it denotes an identity operator.

Next, we introduce

\[G(t,x,y,\hat{x},\hat{y}) = \sum_{k_1,k_2=1}^\infty G_{k_1,k_2}(t,x,y,\hat{x},\hat{y}), \]

(5.1)

where

\[G_{k_1,k_2}(t,x,y,\hat{x},\hat{y}) = E_{k_1,k_2}(t) \phi_{k_1}(x) \phi_{k_2}(y) \phi_{k_1}(\hat{x}) \phi_{k_2}(\hat{y}), \]

(5.2)

and

\[E_{k_1,k_2}(t) = \frac{1}{2\pi i} \int_{\Gamma_{\rho,n}} e^{zt} z^{\alpha-1} (z^\alpha + \lambda_{k_1,k_2})^{-1} \, dz. \]

(5.3)

Thus the solution of equation (1.1) with \(d = 2 \) can be written as

\[u(x,y,t) = \int_0^t \int_D G(t-s,x,y,\hat{x},\hat{y}) f(u) \, ds \, d\hat{x} \, d\hat{y} + \int_0^t \int_D G(t-s,x,y,\hat{x},\hat{y}) \xi^{H_1,H_2,H_3}(d\hat{x},d\hat{y},ds). \]

(5.4)

For the convenience of analysis, we introduce the operator \(\mathcal{R} \), which is defined by the Laplace transform, i.e.,

\[\mathcal{R}(z) = z^{\alpha-1} (z^\alpha + A)^{-1}. \]
It is easy to verify
\[G_{k_1, k_2}(t, x, y, \hat{x}, \hat{y}) = R(t)\phi_{k_1}(x)\phi_{k_1}(\hat{x})\phi_{k_2}(y)\phi_{k_2}(\hat{y}) \]
and
\[R(t)u(x, y) = \int_D G(t, x, y, \hat{x}, \hat{y})u(\hat{x}, \hat{y})\,d\hat{x}\,d\hat{y}. \]
Therefore, the solution of equation (1.1) with \(d = 2 \) can also be written as
\[u(t) = \int_0^t R(t-s)f(u(s))\,ds + \int_0^t \int_D G(t-s, x, y, \hat{x}, \hat{y})\xi_{H_1, H_2}^2(d\hat{x}, d\hat{y}, ds). \] (5.5)

Then, we give the regularity estimate of the solution to equation (1.1) with \(d = 2 \).

Theorem 5.2. Let \(u(t) \) be the solution of equation (1.1) with \(d = 2 \) and \(f(u) \) satisfy the assumptions (1.2). Assume \(2H_3 + (H_1 + H_2 - 2)\alpha > 0 \). Then there holds
\[E\|A^\tau u(t)\|_{L^2(D)}^2 \leq C, \]
where \(2\sigma \in [0, \min\{\frac{2H_3}{\alpha} + H_1 + H_2 - 2, H_1 + H_2\}) \). Moreover, one has
\[E\left\| \frac{u(t) - u(t - \tau)}{\tau^\gamma} \right\|_{L^2(D)}^2 \leq C, \]
where \(2\gamma \in [0, 2H_3 + (H_1 + H_2 - 2)\alpha) \).

Proof. According to (5.5), we have
\[E\|A^\tau u(t)\|_{L^2(D)}^2 \leq C\|\int_0^t A^\tau R(t-s) f(u(s))\,ds\|_{L^2(D)}^2 \]
\[+ C\|\int_0^t \int_D A^\tau G(t-s, x, y, \hat{x}, \hat{y})\xi_{H_1, H_2}^2(d\hat{x}, d\hat{y}, ds)\|_{L^2(D)}^2 \]
\[\leq I + II. \]

Similar to the proof of Theorem 2.7, one has
\[I \leq C\left(1 + \int_0^t (t-s)^{-2\sigma\alpha + 1 - \epsilon} E\|u\|_{L^2(D)}^2 \,ds\right)^2, \]
where \(-2\sigma\alpha + 1 > -1\) needs to be satisfied, i.e., \(\sigma < \frac{1}{\alpha} \).

According to Theorem 5.1 and the definition of \(G \), it holds
\[II \leq C \sum_{k_1, k_2=1}^{\infty} \int_0^t \left| e^{\frac{1}{2} t - \frac{1}{2} H_3} E_{k_1, k_2} \right| \left| \phi_{k_1} \right|_{H_0^{\frac{1}{2} - \frac{1}{2} H_3}}^2 \left| \phi_{k_2} \right|_{L^2((0, t))} \,dt \]
\[\leq C \sum_{k_1, k_2=1}^{\infty} \int_0^t \int_{\Gamma_{k_1, k_2}} e^{\frac{1}{2} t z - \frac{1}{2} H_3} \xi_{k_1, k_2}(z^\alpha + \lambda_{k_1, k_2})^{-1} \,dz \left| \phi_{k_1} \right|_{H_0^{\frac{1}{2} - \frac{1}{2} H_1}}^2 \left| \phi_{k_2} \right|_{L^2((0, t))} \,dt. \]
Remark 2.3, Lemma 2.1, and simple calculations, we have the temporal regularity estimate, one can obtain it by using similar techniques of Theorem 2.8.

\[
\begin{align*}
\sum_{k_1, k_2=1}^{\infty} \int_0^t \left(\int \left| e^{zt} \right| |z|^{\alpha-1} \left| \lambda_{k_1, k_2}^{\frac{1-\frac{2H}{1-2H}}{2}} (z^\sigma + \lambda_{k_1, k_2})^{-1} \right| \, dz \right)^2 \, dt
\leq C \sum_{k_1, k_2=1}^{\infty} \lambda_{k_1, k_2}^{1-2\epsilon} \int_0^t \left(\int \left| e^{zt} \right| |z|^{\alpha-1} \left| \lambda_{k_1, k_2}^{\frac{2-\frac{H_2}{1-2H}}{2}} (z^\sigma + \lambda_{k_1, k_2})^{-1} \right| \, dz \right)^2 \, dt,
\end{align*}
\]

where we need to require \((\sigma + 2\frac{H_2}{1-2H} + \epsilon + 1 + \frac{1-2H}{2}) < -\frac{1}{2} \) and \(\sigma + \frac{2H_2}{1-2H} < 1\), i.e., \(2\sigma < \min\left\{\frac{2H_2}{1-2H}, H_1 + H_2 - 2, H_1 + H_2\right\}\). Combining the Grönwall inequality \([14]\), the first desired result can be obtained. As for the temporal regularity estimate, one can obtain it by using similar techniques of Theorem 2.8.

5.2. Numerical scheme and error analyses in two dimensions

To construct the numerical scheme, we introduce the mesh size \(h = 1/N\) first. Denote \(D_{i,j} = (x_i, x_{i+1}) \times (y_j, y_{j+1})\) \((i, j \in \mathbb{N})\) with \(x_i = y_i = ih\). Introduce \(\tau = T/M\) and \(I_k = (t_k, t_{k+1}]\) with \(t_k = k\tau\). Similar to the one-dimensional case, we can discretize equation (1.1) with \(d = 2\) by finite element method and backward Euler method, and the fully discrete scheme can be written as: find \(u^n_h \in X_h\) satisfying

\[
\frac{u^n_h - u^{n-1}_h}{\tau} + \sum_{i=0}^{N-1} d_i^{(1-\alpha)} A_h u^{n-1}_h = P_h f(u^{n-1}_h) + P_h \xi_{R,n}^{H_1, H_2, H_3}, \tag{5.6}
\]

where \(A_h\) is defined by \((A_h u_h, v_h) = (\nabla u_h, \nabla v_h)\) with \(u_h, v_h \in X_h\), \(d_i^{(\alpha)}\) is defined in (4.3), \(\xi_{R,n}^{H_1, H_2, H_3} = \xi_{R}^{H_1, H_2, H_3}(t_n)\) and

\[
\xi_{R}^{H_1, H_2, H_3}(x, y, t) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \left(\frac{1}{\tau h^2} \int_{D_{i,j}} \xi_{H_1, H_2, H_3}(dx, dy, ds) \right) \chi_{D_{i,j}}(x, y, t).
\]

Similar to the derivation of one-dimensional case, one can write the solution of equation (5.6) as

\[
u^n_h = \int_0^{\tau n} \mathcal{R}_h(t - s) P_h \tilde{F}_h(s) \, ds + \int_0^{\tau n} \int_D \mathcal{G}_{R,h}(t - s, x, y, \hat{x}, \hat{y}) \xi_{R}^{H_1, H_2, H_3}(dx, dy, ds), \tag{5.7}
\]

where \(\tilde{F}_h(t)\) is

\[
\tilde{F}_h(t) = \begin{cases}
0 & t = t_0, \\
1 & t \in (t_{j-1}, t_j].
\end{cases}
\]

Here, \(\mathcal{G}_{R,h}(t, x, y, \hat{x}, \hat{y})\) is defined by

\[
\mathcal{G}_{R,h}(t, x, y, \hat{x}, \hat{y}) = \sum_{k_1, k_2=1}^{\infty} \mathcal{G}_{R,h,k_1,k_2}(t, x, y, \hat{x}, \hat{y}), \tag{5.8}
\]

and

\[
\mathcal{R}_h(t) = \frac{1}{2\pi i} \int_{C_{\epsilon, n}} e^{zt} \left(\delta_\tau(e^{-z\tau}) \right)^{1-\alpha} \left(\delta_\tau(e^{-z\tau}) \right)^{\alpha-1} (d_{R\phi_k}(x) \phi_{R,k_1}(\hat{x}) \phi_{R,k_2}(\hat{y}))^{-1} \frac{z^\tau}{e^{z\tau - 1}} \, dz. \tag{5.9}
\]

At last, we show the convergence of numerical scheme (5.6).
Theorem 5.3. Let \(u(t) \) and \(u^n_h \) be the solutions of equations (1.1) and (5.6), respectively. Assume that \(f(u) \) satisfies (1.2) and \(2H_3 + (H_1 + H_2 - 2)\alpha > 0 \). Then we have
\[
E\|u(t) - u^n_h\|_{L^2(D)}^2 \leq C h^4 + C \tau^{2\gamma},
\]
where \(2\sigma \in [0, \min\{\frac{2H_3}{\alpha} + H_1 + H_2 - 2, H_1 + H_2\}] \) and \(2\gamma \in [0, 2H_3 + (H_1 + H_2 - 2)\alpha] \).

Proof. Similar to the one-dimensional case, we introduce \(\bar{u}^n \) as the solution of the following auxiliary equation
\[
\frac{\bar{u}^n - \bar{u}^{n-1}}{\tau} + \sum_{i=0}^{n-1} d_i^{(1-\alpha)} A \bar{u}^{n-i} = f(\bar{u}^{n-1}) + \xi_{RT,n}^{H_1,H_2,H_3}(x,t), \tag{5.10}
\]
with \(\bar{u}_h(0) = 0, \xi_{RT,n}^{H_1,H_2,H_3}(t_n) \), and
\[
\xi_{RT}^{H_1,H_2,H_3}(t) = \sum_{j=0}^{M-1} \left(\frac{1}{\tau} \int_{I_j} \xi_{RT}^{H_1,H_2,H_3}(x,y,dt) \right) \chi_{I_j}(t),
\]
where \(\chi_{I_j}(t) \) is the characteristic function on \(I_j \). Then the solution of equation (5.10) can also be written as
\[
\bar{u}^n = \int_0^{t_n} \mathcal{R}(t_n - s) \bar{F}(s) ds + \int_0^{t_n} \int_D \mathcal{G}_R(t - s, x,y,\hat{x},\hat{y}) \xi_{RT}^{H_1,H_2,H_3}(d\hat{x},d\hat{y},ds), \tag{5.11}
\]
where
\[
\mathcal{R}(t) = \frac{1}{2\pi} \int_{\Gamma_{\delta,\infty}} e^{iz}\left(\delta_r (e^{-iz\tau})^{\alpha-1}\right)(\delta_r (e^{-iz\tau})^\alpha + A)^{-1} \frac{z\tau}{e^{z\tau} - 1} \, dz,
\]
\[
\mathcal{G}_R(t,x,y,\hat{x},\hat{y}) = \sum_{k_1,k_2=1}^{\infty} \mathcal{G}_{R,k_1,k_2}(t,x,y,\hat{x},\hat{y}),
\]
\[
\mathcal{G}_{R,k_1,k_2}(t,x,y,\hat{x},\hat{y}) = \mathcal{R}(t) \phi_{k_1}(x) \phi_{k_2}(\hat{x}) \phi_{k_2}(\hat{y}).
\]
Here, \(\bar{F}(t) \) is
\[
\bar{F}(t) = \begin{cases} 0 & t = t_0, \\ f(\bar{u}^{i-1}) & t \in (t_{j-1},t_j]. \end{cases}
\]

As for temporal error estimate of (5.6), comparing the solutions of equations (1.1) and (5.10) and using similar proof techniques for Theorem 4.5, one can obtain it. Then we begin to show spatial error estimate. According to (5.7) and (5.11), there exists
\[
E\|\bar{u}^n - u^n_h\|_{L^2(D)}^2 \leq CE \left\| \int_0^{t_n} \mathcal{R}(t_n - s) \bar{F}(s) ds - \int_0^{t_n} \mathcal{R}_h(t_n - s) P_h \bar{F}_h(s) ds \right\|_{L^2(D)}^2
+ CE \left\| \int_0^{t_n} \int_D \left(\mathcal{G}_R(t_n - s, x,y,\hat{x},\hat{y}) - \mathcal{G}_{R,h}(t_n - s, x,y,\hat{x},\hat{y}) \right) \xi_{RT}^{H_1,H_2,H_3}(d\hat{x},d\hat{y},ds) \right\|_{L^2(D)}^2
\leq I + II.
\]
By using approximation theory, it holds
\[
I \leq Ch^4 + C \tau \sum_{k=0}^{n-1} E\|u^k - u^k_h\|_{L^2(D)}^2.
\]
As for II, one has

\[
II \leq C E \left\| \int_0^{t_n} \int_D (\mathcal{G}_R(t_n - s, x, y, \ddot{x}, \ddot{y}) - \mathcal{G}_{R_1}(t_n - s, x, y, \ddot{x}, \ddot{y})) \xi^{H_1, H_2, H_3} (dx, dy, ds) \right\|_{L^2(D)}^2 \\
+ C E \left\| \int_0^{t_n} \int_D (\mathcal{G}_{R_1}(t_n - s, x, y, \ddot{x}, \ddot{y}) - \mathcal{G}_{R, h}(t_n - s, x, y, \ddot{x}, \ddot{y})) \xi^{H_1, H_2, H_3} (dx, dy, ds) \right\|_{L^2(D)}^2,
\]

where

\[
\mathcal{G}_{R_1}(t, x, y, \ddot{x}, \ddot{y}) = \sum_{k_1, k_2 = 1}^{\infty} \mathcal{R}(t) \phi_{k_1}(x) \phi_{R, k_1}(\ddot{x}) \phi_{k_2}(y) \phi_{R, k_2}(\ddot{y}).
\]

Using the following fact

\[
\phi_{k_1}(\ddot{x}) \phi_{k_2}(\ddot{y}) - \phi_{R, k_1}(\ddot{x}) \phi_{R, k_2}(\ddot{y}) = (\phi_{k_1}(\ddot{x}) - \phi_{R, k_1}(\ddot{x}))(\phi_{k_2}(\ddot{y}) - \phi_{R, k_2}(\ddot{y}))
+ \phi_{R, k_1}(\ddot{x})(\phi_{k_2}(\ddot{y}) - \phi_{R, k_2}(\ddot{y})) + (\phi_{k_1}(\ddot{x}) - \phi_{R, k_1}(\ddot{x})) \phi_{R, k_2}(\ddot{y})
\]

and doing simple calculations yield

\[
II \leq C \sum_{k_1, k_2 = 1}^{\infty} \left(\left\| \partial_t^{\frac{1-2H_3}{2}} \mathcal{R}(t) \frac{1}{2} \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2 \left\| \phi_{k_1}(\ddot{x}) - \phi_{R, k_1}(\ddot{x}) \right\|_{H^\frac{1-2H_3}{2}(0, t_n)}^2 \\
\right. \\
+ C \sum_{k_1, k_2 = 1}^{\infty} \left\| \partial_t^{\frac{1-2H_3}{2}} \mathcal{R}(t) \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2 \left\| \phi_{R, k_1}(\ddot{x}) \right\|_{H^\frac{1-2H_3}{2}(0, t_n)}^2 \\
+ C \sum_{k_1, k_2 = 1}^{\infty} \left\| \partial_t^{\frac{1-2H_3}{2}} \mathcal{R}(t) \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2 \left\| \phi_{k_1}(\ddot{x}) - \phi_{R, k_1}(\ddot{x}) \right\|_{H^\frac{1-2H_3}{2}(0, t_n)}^2 \\
\leq C h^{1-\sigma} \sum_{k_1, k_2 = 1}^{\infty} \lambda_{\frac{1-2H_3}{2}}^{\left| 2 - H_1 - H_2 \right| + \epsilon} \left(\left\| \mathcal{R}(t) \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2 \\
\right).
\]

where \(2\sigma \in [0, \min\{2H_3 + H_1 + H_2, 2, H_1 + H_2\}]\). As for II, the inverse estimate gives

\[
II \leq C \sum_{k_1, k_2 = 1}^{\infty} \left\| \partial_t^{\frac{1-2H_3}{2}} (\mathcal{R}(t) - \mathcal{R}_h(t) P_h) \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2 \left\| \phi_{R, k_1}(\ddot{x}) \right\|_{H^\frac{1-2H_3}{2}(0, t_n)}^2 \\
\leq C h^{2(H_1 + H_2 - 1) - 2\epsilon} \sum_{k_1, k_2 = 1}^{\infty} \lambda_{\frac{1-2H_3}{2}}^{\left| 2 - H_1 - H_2 \right| + \epsilon} \left\| \partial_t^{\frac{1-2H_3}{2}} (\mathcal{R}(t) - \mathcal{R}_h(t) P_h) A^\frac{1}{2} \phi_{k_1}(x) \phi_{k_2}(y) \right\|_{L^2(0, t_n, L^2(D))}^2.
\]
Using the fact \(\|((z^\alpha + A)^{-1} - (z^\alpha + A_h)^{-1}P_h)A^s\| \leq Ch^{2-2s}\) for \(s \in [0, \frac{1}{2}]\), \(z \in \Gamma_{\theta, \kappa}\) [31], and the interpolation property [3], one obtains
\[
\left\| \partial_t^{1-2H_3} (\mathcal{R}(t) - \mathcal{R}_h(t)P_hA^{\frac{1}{2}}\phi_{k_1}(x)\phi_{k_2}(y)) \right\|_{L^2(0,t_n,L^2(D))}^2
\leq C \int_0^{t_n} \left\| \int_{\Gamma_{\theta, \kappa}} e^{zt} z^{1-2H_3} z^{\alpha-1}((z^\alpha + A)^{-1} - (z^\alpha + A_h)^{-1}P_h)A^{\frac{1}{2}}\phi_{k_1}(x)\phi_{k_2}(y) \, dz \right\|_{L^2(D)}^2 \, dt
\leq Ch^{\min\left\{\frac{4H_3}{\alpha} + 2 - \epsilon, 2\right\}} \int_0^{t_n} \left(\int_{\Gamma_{\theta, \kappa}} |e^{zt}| |z|^{-\frac{1}{2}-\epsilon} |dz| \right)^2 \, dt
\leq Ch^{\min\left\{\frac{4H_3}{\alpha} + 2 - \epsilon, 2\right\}},
\]
which leads to
\[
\Pi_2 \leq Ch^{\min\left\{\frac{4H_3}{\alpha} + 2 - \epsilon, 2\right\} + 2(H_1 + H_2 - 1) - 2\epsilon}.
\]
Therefore, the spatial error estimate of (5.6) can be obtained by using the discrete Grönwall inequality. \(\square\)

6. NUMERICAL EXPERIMENTS

Here we present some numerical examples in one and two dimensions to show the effectiveness of the numerical methods and confirm the theoretical results. We take \(m\) trajectories \(\{\omega_j\}_{j=1}^{m}\) to calculate the solution. Since the exact solutions are unknown in the numerical experiments, we measure the convergence rates by
\[
\text{Rate} = \frac{\ln(e_h/e_{h/2})}{\ln(2)}, \quad \text{Rate} = \frac{\ln(e_\tau/e_{\tau/2})}{\ln(2)},
\]
where
\[
e_h = \left(\frac{1}{m} \sum_{i=1}^{m} \|u^M_h(\omega_i) - u^M_h(\omega_i)\|_{L^2(D)}^2 \right)^{1/2}, \quad e_\tau = \left(\frac{1}{m} \sum_{i=1}^{m} \|u_{\tau}(\omega_i) - u_{\tau/2}(\omega_i)\|_{L^2(D)}^2 \right)^{1/2},
\]
with \(u^M_h\) and \(u_\tau\) being the solutions at time \(T = t_M\) with mesh size \(h\) and time step size \(\tau\), respectively.

Example 6.1 (One-dimensional case). In this example, to show the temporal convergence, we take \(m = 200\), \(\beta = 1\), \(T = 0.5\), \(l = 0.5\), \(f(u) = \sin(u)\), and \(h = 1/512\) to solve equation (1.1) with \(d = 1\). The numerical results with different \(\alpha\), \(H_1\), and \(H_2\) are given in Table 1, where the numbers in the bracket in the last column denote the theoretical rates predicted by Theorem 4.5. As it can be seen, the numerical convergence rates can achieve \(O(\tau^{H_2+(H_1-1)/2})\), which agree well with the theoretical results of Theorem 4.5.

Example 6.2 (One-dimensional case). To show the spatial convergence rates, we choose \(\beta = 10\) and \(f(u) = \frac{1}{50} \sin(u)\) in equation (1.1). Here, we take \(m = 100\), \(T = 0.01\), \(l = 0.1\), and \(\tau = T/2048\). We show the corresponding errors and convergence rates with different \(\alpha\), \(H_1\), and \(H_2\) in Table 2. All the numerical convergence rates well agree with the predicted ones stated in Theorem 4.3, i.e., \(O(h^{\sigma+H_1-1/2})\) with \(\sigma = \min\left\{\frac{2H_2}{\alpha}, \frac{1}{2}, 1 + \epsilon\right\} - \epsilon\).

Example 6.3 (Two-dimensional case). Here we provide a numerical example to verify the temporal convergence rates of (5.6). We take \(f(u) = \sin(u)\), \(m = 200\), \(T = 0.3\), \(D = (0, 0.5)^2\), \(\beta = 1\), and choose \(h = 0.5/128\) to avoid the influence of spatial errors on temporal convergence. The errors and convergences rates with different \(H_1\), \(H_2\), and \(H_3\) are shown in Table 3, where the numbers in the bracket in the last column denote the theoretical rates predicted by Theorem 5.3. It can be noted that all the convergence rates agree with the results provided in Theorem 5.3, i.e., \(O(\tau^{H_3+(H_1+H_2-2)/2})\).
Table 1. Temporal errors and convergence rates.

$(\alpha, H_1, H_2) \backslash T/\tau$	16	32	64	128	Rate
$(0.3, 0.2, 0.2)$	4.002E−05	4.191E−05	4.155E−05	3.478E−05	$\approx 0.0675(0.08)$
$(0.3, 0.3, 0.5)$	1.012E−05	8.111E−06	5.976E−06	4.188E−06	$\approx 0.4243(0.395)$
$(0.5, 0.2, 0.3)$	6.808E−05	5.872E−05	5.805E−05	5.069E−05	$\approx 0.1419(0.1)$
$(0.5, 0.4, 0.3)$	5.808E−05	5.563E−05	4.244E−05	4.497E−05	$\approx 0.1230(0.15)$
$(0.7, 0.4, 0.5)$	3.886E−05	3.354E−05	2.822E−05	2.126E−05	$\approx 0.2901(0.29)$
$(0.7, 0.5, 0.2)$	1.339E−04	1.351E−04	1.482E−04	1.268E−04	$\approx 0.0264(0.025)$

Table 2. Spatial errors and convergence rates.

$(\alpha, H_1, H_2) \backslash l/h$	8	16	32	64	Rate
$(0.3, 0.2, 0.5)$	1.385E−01	7.186E−02	5.079E−02	3.173E−02	$\approx 0.7087(0.7)$
$(0.3, 0.5, 0.5)$	3.188E−02	1.554E−02	7.991E−03	4.002E−03	$\approx 0.9979(1)$
$(0.5, 0.2, 0.3)$	9.038E−01	6.727E−01	4.861E−01	3.072E−01	$\approx 0.5190(0.4)$
$(0.5, 0.5, 0.4)$	1.533E−01	7.697E−02	4.082E−02	2.042E−02	$\approx 0.9695(1)$
$(0.7, 0.4, 0.4)$	4.977E−01	3.482E−01	2.396E−01	1.468E−01	$\approx 0.5871(0.5429)$
$(0.7, 0.3, 0.4)$	7.310E−01	5.083E−01	3.810E−01	2.546E−01	$\approx 0.5073(0.4429)$

Table 3. Temporal errors and convergence rates.

$(\alpha, H_1, H_2, H_3) \backslash T/\tau$	8	16	32	64	Rate
$(0.3, 0.5, 0.4, 0.5)$	3.836E−02	3.050E−02	2.384E−02	1.959E−02	$\approx 0.3233(0.335)$
$(0.4, 0.3, 0.5, 0.5)$	7.303E−02	7.141E−02	6.104E−02	4.166E−02	$\approx 0.2699(0.26)$
$(0.5, 0.5, 0.3, 0.4)$	2.558E−01	2.439E−01	2.121E−01	2.105E−01	$\approx 0.0937(0.1)$
$(0.5, 0.3, 0.5, 0.4)$	2.595E−01	2.265E−01	2.176E−01	2.205E−01	$\approx 0.0783(0.1)$
$(0.6, 0.5, 0.3, 0.5)$	2.620E−01	2.111E−01	1.902E−01	1.865E−01	$\approx 0.1636(0.14)$
$(0.6, 0.4, 0.5, 0.5)$	2.261E−01	1.977E−01	1.857E−01	1.595E−01	$\approx 0.1677(0.17)$

Table 4. Spatial errors and convergence rates.

$(\alpha, H_1, H_2, H_3) \backslash l/h$	8	16	32	64	Rate
$(0.3, 0.4, 0.3, 0.5)$	9.571E−02	6.150E−02	4.260E−02	2.826E−02	$\approx 0.5866(0.7)$
$(0.4, 0.3, 0.3, 0.4)$	2.733E−01	1.947E−01	1.483E−01	1.014E−01	$\approx 0.4769(0.6)$
$(0.5, 0.3, 0.3, 0.4)$	4.384E−01	3.496E−01	2.439E−01	1.745E−01	$\approx 0.4431(0.4)$
$(0.5, 0.4, 0.3, 0.4)$	3.269E−01	2.293E−01	1.640E−01	1.085E−01	$\approx 0.5303(0.6)$
$(0.6, 0.3, 0.3, 0.5)$	4.603E−01	3.219E−01	2.365E−01	1.704E−01	$\approx 0.4179(0.5333)$
$(0.6, 0.5, 0.5, 0.4)$	2.403E−01	1.522E−01	8.644E−02	4.904E−02	$\approx 0.7643(0.6667)$

Example 6.4 (Two-dimensional case). In this example, a numerical example is presented to verify spatial convergence of (5.6). We take $f(u) = \sin(u)$, $m = 200$, $T = 0.1$, $D = (0, 0.5)^2$, and $\beta = 1$. Here we take $\tau = T/256$ to decrease the influence of temporal errors on spatial convergence. The errors and convergence rates with different H_1, H_2, H_3, and α are shown in Table 4. All the convergence rates are consistent with the predicted results in Theorem 5.3, i.e., $O(h^{2\sigma})$ with $2\sigma = \min\{\frac{2H_1}{\alpha} + H_1 + H_2 - 2, H_1 + H_2\} - \epsilon$.

Example 6.5. To verify the feasibility of our numerical scheme, we try to use the scheme (4.2) to capture the transition of the particle’s density function. Here we take $D = (0, 1)$, $\alpha = 0.8$ and

$$u(x, 0) = 0.01x + 2, \quad f(x, u) = \chi_{(0.3, 0.7)}(x)(\max\{-u, \cos(u\pi/2)\}).$$

It’s easy to verify that the solution $u(x, t)$ satisfies

$$u(x, t) \approx 0.4k + 0.1 \quad x \in (0.3, 0.7),$$

where k is an integer. We take $T = 0.5$, $\tau = T/M = T/4096$, $h = 1/512$ and $H_1 = 0.4$, $H_2 = 0.5$ to simulate the solution of equation (1.1) with different β. The corresponding numerical solutions $u^M_h(x)$ are shown in Figure 1.

It’s easy to find that the larger β is, the smaller the solution $u^M_h(x)$ ($x \in (0.3, 0.7)$) will be, which means that the greater the noise intensity, the greater the impact on the solution.

7. Conclusions

Anomalous diffusions are ubiquitous in the nature world. The Brownian motion subordinated by inverse α-stable Lévy process can effectively model the subdiffusion. In this paper, we introduce its Fokker–Planck equation with nonlinear source term and external fractional noise in one- and two-dimensional domains, and put all our efforts on the numerical methods of the equation. That is, we approximate the stochastic nonlinear fractional diffusion equation driven by the fractional Brownian sheet noise. After providing the regularity of the solution and regularizing the rough noise by Wong–Zakai approximation, we build the fully discrete scheme by backward Euler convolution quadrature and finite element methods. Moreover, the complete error analyses are also developed. Finally, the numerical experiments validate the effectiveness of the designed algorithm.

Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 12201270, 12071195, 12225107, and 12301509, the Innovative Groups of Basic Research in Gansu Province under Grant No. 22JR5RA391, the Science and Technology Plan of Gansu Province under Grant No. 22JR5RA535, the Fundamental Research Funds for the Central Universities under Grant Nos. lzujbky-2022-pd04 and lzujbky-2023-pd04, China Postdoctoral Science Foundation under Grant No. 2023M731466, Major Science and Technology Projects in Gansu Province-Leading Talents in Science and Technology under Grant No. 23ZDKA0005, Postdoctoral Fellowship Program of CPSF under Grant No. GZC20231016, and Lanzhou Talent Work Special Fund.
References

[1] G. Acosta and J.P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations. *SIAM J. Numer. Anal.* 55 (2017) 472–495.

[2] G. Acosta, F.M. Berseiche and J.P. Borthagaray, Finite element approximations for fractional evolution problems. *Fract. Calc. Appl. Anal.* 22 (2019) 767–794.

[3] R.A. Adams and J.J.F. Fournier, *Sobolev Spaces*. Pure and Applied Mathematics, 2nd edition. Academic Press, Amsterdam (2003).

[4] R. Anton, D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation. *IMA J. Numer. Anal.* 40 (2020) 247–284.

[5] X. Bardina and M. Jolis, Multiple fractional integral with Hurst parameter less than $\frac{1}{2}$. *Stochastic Process. Appl.* 116 (2006) 463–479.

[6] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, *Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications*. Springer, London (2008).

[7] A. Bonito, W. Lei and J.E. Pasciak, Numerical approximation of the integral fractional Laplacian. *Numer. Math.* 142 (2019) 235–278.

[8] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. *Texts in Applied Mathematics*, 3rd edition. Springer, New York (2008).

[9] Y. Cao, J. Hong and Z. Liu, Approximating stochastic evolution equations with additive white and rough noises. *SIAM J. Numer. Anal.* 55 (2017) 1958–1981.

[10] Y. Cao, J. Hong and Z. Liu, Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. *IMA J. Numer. Anal.* 38 (2018) 184–197.

[11] A. Comegna, A. Coppola, V. Comegna, A. Sommella and C.D. Vitale, Use of a fractional Brownian motion model to mimic spatial horizontal variation of soil physical and hydraulic properties displaying a power-law variogram, in Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and Challenges, Procedia Environmental Sciences. Vol. 19 (2013) 416–425.

[12] W. Deng, R. Hou, W. Wang and P. Xu, Modeling Anomalous Diffusion: From Statistics to Mathematics. World Scientific, Singapore (2020).

[13] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. *Bull. Sci. Math.* 136 (2012) 521–573.

[14] C.M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. *Math. Comp.* 58 (1992) 603–630.

[15] V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. *Numer. Methods Partial Differential Equations* 22 (2006) 558–576.

[16] W. Eugene and Z. Moshe, On the convergence of ordinary integrals to stochastic integrals. *Ann. Math. Statist.* 36 (1965) 1560–1564.

[17] W. Eugene and Z. Moshe, On the relation between ordinary and stochastic differential equations. *Int. J. Eng. Sci.* 3 (1965) 213–229.

[18] M. Gunzburger, B. Li and J. Wang, Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. *Math. Comp.* 88 (2018) 1715–1741.

[19] I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. *Potential Anal.* 9 (1998) 1–25.

[20] I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. *Potential Anal.* 11 (1999) 1–37.

[21] I. Gyöngy and D. Nualart, Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. *Stochastic Process. Appl.* 58 (1995) 57–72.

[22] I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. *Potential Anal.* 7 (1997) 725–757.

[23] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. *J. Funct. Anal.* 151 (1997) 531–545.

[24] P. Li and S.-T. Yau, On the Schrödinger equation and the eigenvalue problem. *Comm. Math. Phys.* 88 (1983) 309–318.

[25] Z. Liu and Z. Qiao, Wong–Zakai approximations of stochastic Allen–Cahn equation. *Int. J. Numer. Anal. Model.* 16 (2019) 681–694.
[26] C. Lubich, I. Sloan and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65 (1996) 1–17.

[27] T. Martinez and M. Sanz-Sole, A lattice scheme for stochastic partial differential equations of elliptic type in dimension $d \geq 4$. Appl. Math. Optim. 54 (2006) 343–368.

[28] D. Nie, J. Sun and W. Deng, Numerical algorithm for the space-time fractional Fokker–Planck system with two internal states. Numer. Math. 146 (2020) 481–511.

[29] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, San Diego (1999).

[30] L. Quer-Sardanyons and M. Sanz-Solé, Space semi-discretisations for a stochastic wave equation. Potential Anal. 24 (2006) 303–332.

[31] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, 2nd edition. Springer, New York (2006).

[32] T. Zhang, Lattice approximations of reflected stochastic partial differential equations driven by space-time white noise. Ann. Appl. Probab. 26 (2016) 3602–3629.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.