The Occurrence and Risk Assessment of Exposure to Aflatoxin M₁ in Ultra-High Temperature and Pasteurized Milk in Hamadan Province of Iran

Amir Sasan Mozaffari Nejad a, Ali Heshmati b,*, Tayebe Ghiasvand b

a Department of Microbiology, Nutrition Health Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
b Department of Nutrition and Food Safety, Nutrition Health Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran

Objectives: Aflatoxins are a category of poisonous compounds found in most plants, milk and dairy products. The present research was carried out to detect the presence of aflatoxin M₁ (AFM₁) in samples of milk collected from Hamadan province, Iran.

Methods: Twenty-five samples of ultra-high temperature (UHT) and 63 samples of pasteurized milk were collected and the amount of AFM₁ was measured by an Enzyme-Linked Immunosorbent Assay method. In addition, the estimated daily intake (EDI) and hazard index (HI) of AFM₁ was determined by the following equations: (EDI = mean concentration of AFM₁ × daily consumption of milk/body weight; HI = EDI/Tolerance Daily Intake).

Results: AFM₁ was detected in 21 (84%) UHT milk samples and in 55 (87.30%) pasteurized milk samples. Seven (28%) samples of UHT and 21 (33.33%) pasteurized milk samples had higher AFM₁ content than the limit allowed in the European Union and Iranian National Standard Limits (0.05 μg/kg). None of the samples exceeded the US Food and Drug Administration limit (0.5 μg/kg) for AFM₁. EDI and HI for AM₁ through milk were 0.107 ng/kg body weight/day, and 0.535, respectively.

Conclusion: A significant percentage of milk produced by different factories in Iran (84% of UHT and 87.3% of pasteurized milk) was contaminated with AFM₁. Therefore, more control and monitoring of livestock feeding in dairy companies may help reduce milk contamination with AFM₁. As the HI value was lower than 1, it can be assumed that there was no risk of developing liver cancer due to milk consumption.

©2019 Korea Centers for Disease Control and Prevention. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Aflatoxins are a primary class of mycotoxins that are poisonous and cause cancer. They are fungal secondary metabolites that are mainly produced by some Aspergillus species, especially A. flavus, A. nomius and A. parasiticus. These molecules are produced under warm and humid conditions during pre- and post-harvest, during storage and transportation. They can be found in cereal grains (particularly maize, rice, pearl millet, wheat, barley, oats, and sorghum), spices (red pepper, black pepper, turmeric cinnamon, ginger and cumin), oilseeds (sunflower, groundnut, cottonseed, soybean) tree nuts (such as almond, coconut, peanut), Brazil nuts, pistachios, milk (breast and animal), and dairy products.

The main aflatoxins are classified into 4 groups including aflatoxin B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁) and G₂ (AFG₂), that are classified according to their fluorescence under blue or green
light. In addition, aflatoxin M1 (AFM1) and M2 (AFM2), are 2 more additional metabolic products that are derivatives found in the milk of lactating animals that have been fed on aflatoxin containing preparations (AFB1 and AFB2). [4,10,11] According to the International Agency for Research on Cancer, classified AFM1 as a carcinogen hence, modifying its classification from Group 2B to Group 1 [12].

Milk and dairy products are a source of many nutrients including proteins, fatty acids, calcium, vitamins, and minerals essential for human health, especially in infants and children [13]. Several studies have been performed on the incidence of AFM1 in milk products and a permissible limit has been suggested. These regulations differ amongst countries and are usually concerned with economic considerations [3-5,9,10]. The Institute of Standards and Industrial Research of Iran, and the European Commission have set the maximum tolerable level of AFM1 in milk as 0.05 µg/kg [14,15] however, the US Food and Drug Administration set the limit to 500 µg/kg [16].

Risk assessment of exposure to AFM1, through the consumption of contaminated milk and dairy products is useful in the measurement of the risk of liver cancer. This is estimated by the determination of indices such as estimated daily intake [(EDI) expressed as ng/kg body weight (BW)/day] and hazard index (HI) to indicate risk for human [17,18]. A HI value > 1 indicates a risk to consumers [19].

At the present time, AFM1 analysis is performed by different methods [thin-layer chromatography, high-performance liquid chromatography, and enzyme-linked immunosorbent assay (ELISA)]. However, the advantages of using the ELISA technique is that it is simple and less time consuming compared to other methods, and has high specificity and high sensitivity for the detection of aflatoxin groups and numerous samples [3-5,9,10].

The target of this research was to survey the presence of AFM1 and the risk assessment of exposure to AFM1 through the consumption of ultra-high-temperature (UHT) and pasteurized milk in the Hamadan province of Iran.

Materials and Methods

1. Samples

From October 2017 to August 2018, a whole of 88 samples included UHT milk (n = 25) and pasteurized milk (n = 63) were collected and purchased from different markets in Hamadan province, Iran. Eventually, all samples were carried to the lab inside and kept according to the samples. So, for this purpose, the UHT and pasteurized milk samples were kept at room temperature and 4°C before analysis, respectively. All milk samples were analyzed for AFM1 before the expiration date of the samples.

2. AFM1 analysis

The quantitative determination of AFM1 in milk samples were performed using an AFM1 competitive ELISA kit (Ridascreen AFM1 Art. No.: R1121, R-Biopharm, Darmstadt, Germany). Milk sample preparation was performed according to the instructions suggested by the ELISA kit (R-Biopharm, Darmstadt, Germany) [20]. The limit of detection and recovery rate of the ELISA kit was 0.005 µg/kg** and 100%, respectively.

3. Risk assessment of exposure to AFM1

In this current study EDI and HI of AFM1 were calculated to show the presence and concentration of AFM1 and risk of liver cancer for this mycotoxin [17,18]. EDI was determined by the equation: EDI (ng/kg BW/day) = AFM1 average in milk (µg/kg) × daily consumption of milk (kg/day)/BW (kg) × 1,000 (conversion of µg to ng). For the determination of EDI, AFM1 concentrations in samples containing AFM1 below the level of determination of ELISA kit (< 0.005 µg/kg) were considered 0.0025 µg/kg.

It has been reported that per capita consumption of milk in Iran is 70 kg a year, which equates to 0.192 kg/day [21]. In this current study, the average BW of an adult Iranian person was taken as 70 kg. The estimation of HI was carried out according to the method suggested by Kuiper-Goodman [22]. HI was determined by dividing the EDI with the tolerance daily intake (TDI). For AFM1, TDI was 0.2 ng/kg/day, obtained by dividing TD50 (threshold dose per BW) with a variability factor of 5,000.

4. Statistical analysis

Data analysis was carried out using SPSS 16.0 for Windows (SPSS Inc., Chicago, IL, USA). The AFM1 concentration was reported as the mean ± standard deviation. The one-sample T-test was applied to determine the difference between the mean concentration of AFM1 in samples and the permitted amount of this mycotoxin according to the Institute of Standards and Industrial Research of Iran and European Union (EU) regulations which is 0.050 µg/kg. Differences between values were considered as significant at p ≤ 0.05.

Results and Discussion

1. The occurrence of AFM1 in milk

The occurrence and concentration of AFM1 contamination in UHT and pasteurized milk samples are summarized in Table 1. Fifty-five (87.30%) pasteurized milk samples contained AFM1 with a range of concentrations from < 0.005 µg/kg to 0.120 µg/kg. In addition, the AFM1 concentration in 21 (33.33%) of pasteurized samples was higher than the maximum limit of 0.05 µg/kg set by EU regulations [14].
AFM$_1$ was detected in 21 (84%) UHT milk samples, with a range of concentrations from < 0.005 to 0.098 µg/kg. The AFM$_1$ concentration in 7 (28%) UHT samples was higher than 0.05 µg/kg. Collectively, AFM$_1$ contamination was detected in 86.36% of milk samples in the range of < 0.005 to 0.120 µg/kg. Furthermore, none of the milk samples had AFM$_1$ concentrations above the highest tolerance limit (0.5 µg/kg) set by the US Food and Drug Administration. As referred to in previous studies, the occurrence of AFM$_1$ in milk and milk derivatives are due to the effects of feeding livestock with materials that contain aflatoxin B1. Several factors impact the level of aflatoxin B1 in cattle feed such as time and method of harvesting, temperature, and moisture content. Aflatoxin B1 swiftly grows in cattle feed that possess a moisture content of 13% to 18%, and an environmental humidity 50% to 60% [4]. Several studies have reported that milk is a food with a high occurrence of AFM$_1$ contamination although the concentration levels differ from one study to another. It should be noted that the concentration of AFM$_1$ changes according to the season, milk produced in Spring and Summer are contaminated with lower levels of this mycotoxin mainly due to availability of fresh feed [4,5,23,24].

This study was performed in the west of Iran, Hamadan province. In this district, a considerable amount of milk is produced and consumed, although there are few reports about AFM$_1$ in milk samples. The detection of AFM$_1$ contamination in samples in this current study (86.36%) was higher than a previous study (63.97%) by Ghiasian et al [25] carried out in Hamadan province although the mean AFM$_1$ concentration in the samples in this current study was lower (0.039 µg/kg vs 0.043 µg/kg). These results are reflected by other studies across Iran that indicated that the prevalence of aflatoxin in milk samples was still high, although its average concentration decreased [4,26].

In some studies, the prevalence of AFM$_1$ in UHT or pasteurized milk samples was higher than in this study [27-33]. However, a study performed in Kosovo using the ELISA method, reported that 70 (83.3%) samples out of 84 samples of pasteurized milk had AFM$_1$ contamination, and in 18 (21.4%) contaminated samples had concentrations of AFM$_1$ higher than the EU permitted level, similar to this current study [34]. Furthermore, a study performed in Italy showed that of the 43 samples of pasteurized milk that were screened for AFM$_1$, 11 (25.58%) samples were contaminated and 8 (18.6%) of those samples had a concentration of AFM$_1$ above the European Union limit for milk [24]. In other studies conducted in Iran, pasteurized milk samples were identified as being contaminated with AFM$_1$ and in one study where 76 pasteurized milk samples were collected in Sari, 100% were positive for AFM$_1$ and had concentrations of 0.0177 to 0.1066 µg/kg [35]. However, the incidence of AFM$_1$ in milk samples in some previous studies performed in Iran and other countries, was lower than observed in this current study [29,32,36-39]. In a previous study conducted in Pakistan using high-performance liquid chromatography to detect AFM$_1$, Iqbal et al [39] reported that 41.6%, 35 out of 84 UHT milk samples had AFM$_1$ contamination and 23.8% of those had concentrations above the EU recommended limit, but in this current study 21 (84%) samples of UHT milk were contaminated with AFM$_1$, and 7 (28%) of those samples were observed to have AFM$_1$ concentrations above the EU recommended maximum limit. Similarly, in a study conducted in Iran, Fallah [23] reported that contamination with AFM$_1$ in UHT milk (0.000 to 0.516 µg/kg) as detected by ELISA method showed 68 (62.3%) out of 109 samples were contaminated with AFM$_1$, and 19 (17.4%) samples were above the acceptable level.

Similar results reported in China showed 84 (~55%) out of 153 UHT milk samples had contamination with AFM$_1$, and 20.3% of those were above the EU permitted level [40]. A Sicilian study by Santini et al [41] using the ELISA technique observed that 5 (41.7%) out of 12 UHT milk samples were contaminated with AFM$_1$ but no samples above the EU regulations for AFM$_1$ concentration in milk. A Turkish study by
Atasever et al [42] reported that 89 (59%) out of 150 UHT milk samples contained AFM$_1$. Another study carried out in Turkey by Kabak and Ozbey [43] reported less contamination with AFM$_1$ (20%) and where contamination was observed it was at low concentrations in UHT milk samples. However, in a recent survey by Temamogullari and Kanici [44] AFM$_1$ was observed in 100% of the surveyed UHT milk samples from Turkey.

In this current study a high occurrence of AFM$_1$ contamination was observed in UHT and pasteurized milk samples. Table 2 show the compilation of data for the detection of AFM$_1$ from previous studies in several countries that were measured by ELISA and high-performance liquid chromatography methods. Although the presence of aflatoxin in milk and dairy products may endanger human health, this risk may be reduced by implementing 1) Education for producers about planting, harvesting, preserving and transportation, 2) Teaching the principles of good industrial livestock husbandry, 3) Prevention of milk and dairy product contamination during processing and packaging, 4) further studies into the field of detoxification methods to reduce contamination with AFM$_1$ in dairy products [4].

2. The exposure to AFM$_1$ through milk consumption

EDI of AFM$_1$ through milk was 0.107 ng/kg BW/day in this current study. This value was lower than those reported by Zinedine et al [45] in Morocco (3.26 ng/kg BW/day), Cano-Sancho et al [46] in Spain (0.305 ng/kg BW/day) and Bahrami et al [21] in the west of Iran (0.17 and 0.242 ng/kg BW/day during

Table 2. Occurrence and levels of AFM1 in pasteurized and UHT milk samples reported in previous studies.

Location	Samples	No. of samples	Detection method	Positive samples (%)	Range (µg/kg)	Contaminated milk sample (%) > 0.05 µg/kg	Reference
Kenya	PM	53	ELISA	NR	0.0076 - 0.21	26 (49.1%)	Lindahl et al [50]
	UHT	55	ELISA	NR	< LOD - 0.47	16 (29.1%)	
China	PM	131	ELISA	(91.6)	< 0.005 - 0.3523	78 (59.5%)	Xiong et al [29]
	UHT	111	ELISA	(52.3)	< 0.005 - 0.0725	2 (1.80%)	
China	PM	38	ELISA	(47.4)	0.005 - 0.263	0	Li et al [36]
	UHT	193	ELISA	(71.5)	0.007 - 0.040	23 (11.9%)	
Pakistan	UHT	60	HPLC	(70)	LOD - 0.3029	21 (35%)	Iqbal et al [1]
Iran	PM	220	ELISA	(85)	0.00054 - 0.5122	154 (70%)	Tajic et al [28]
	UHT	140	ELISA	(66.4)	0.00058 - 0.5084	76 (54.2%)	
Brazil	PM	30	ELISA	16	ND - 0.064	NR	dos Santos et al [51]
Italy	UHT	31	HPLC	(58.1)	0.009 - 0.026	0	Armorini et al [38]
Iran	PM	20	HPLC	NR	0.008 - 0.231	1 (5%)	Taherabadi et al [52]
Jordan	PM	30	ELISA	(100)	0.0146 - 0.21678	12 (40%)	Omar [31]
Iran	PM	30	ELISA	(13.3)	NR	4 (13.3%)	Rouhi et al [32]
Brazil	PM	7	ELISA	(100)	0.01 - 0.03	2 (28.6%)	Sifuentes dos Santos et al [27]
	UHT	28	ELISA	(100.0)	0.01 - 0.08	5 (71.4%)	
Kosovo	UHT	94	ELISA	(78.7)	0.00502 - 0.06226	4 (4.2%)	Rama et al [34]
Croatia	UHT	706	ELISA	(100)	0.00398 - 0.1835	(9.64%)	Bilandzic et al [30]
Iran	PM	80	ELISA	(96.25)	NR	20 (16%)	Moosavy et al [33]
Pakistan	UHT	84	HPLC	(41.6)	LOD - 0.88	20 (23.8%)	Iqbal et al [39]
India	PM	7	HPLC	(42.9)	0.0018 - 0.0038	3 (42.9%)	Siddappa et al [37]

ELISA = enzyme-linked immunosorbt assay; HPLC = high-performance liquid chromatography; LOD = limit of detection; ND = not detected; NR = not reported; PM = pasteurized milk; UHT = ultra high temperature milk.
summer and winter, and higher than that observed by Leblanc et al [47] in France (0.01 ng/kg BW/day), Shundo et al [48] in Brazil (0.08 ng/kg BW/day) and Duarte et al [49] in Portugal (0.08 ng/kg BW/day).

In the current study, the HI value was 0.535. As the HI value was lower than 1, it can be assumed that there was not a potential risk for liver cancer among Iranian consumers in Hamadan province due to the consumption of milk [17–19]. In a study performed by Milićević et al [19] in Serbia, HI values were calculated for infants aged 1–4 years which were 11.78 and 11.52 for males and females respectively, values which were higher than the observations in this current study.

Conclusion

The results of the current study indicated that a significant percentage of pasteurized and UHT milk samples (86.36%) produced by different factories, are contaminated with AFM1. In addition, 31.82% of contaminated samples had concentrations of AFM1 higher than the limit allowed in the European Union and by the Iranian National Standards Limits (0.05 μg/kg). In this study the EDI of AFM1, through milk for an adult with a BW of 70 kg, was 0.107 ng/kg BW/day. Although this indicated a percentage of pasteurized and UHT milk samples (86.36%) were contaminated with AFM1, higher than the observations in this current study.

Conflicts of Interest

Authors have no conflicts of interest to declare.

Acknowledgments

The authors wish to thank Hamadan University medical science for financial support for this study (Project No.: 9609286051).

References

[1] Iqbal SZ, Asi MR, Malik N. The seasonal variation of aflatoxin M1 in milk and dairy products and assessment of dietary intake in Punjab, Pakistan. Food Control 2017;79:292-6.
[2] Heshmati A, Mozaffari Nejad AS. Ochratoxin A in dried grapes in Hamadan province, Iran. Food Addit Contam B 2015;8(4):255-9.
[3] Mashak Z, Sohi HJ, Heshmati A, et al. Assessment of Aflatoxin M1 Contamination in UHT Flavored Milk Samples in Karaj, Iran. Iran J Pharm Res 2016;15(3):407-11.
[4] Kamkar A, Fallah AA, Mozaffari Nejad AS. The review of aflatoxin M1 contamination in milk and dairy products produced in Iran. Toxin Rev 2014;33(4):160-8.
[5] Kamkar A, Yazdankhah S, Mohammadi Nafchi A, et al. Aflatoxin M1 in raw cow and buffalo milk in Shush city of Iran. Food Addit Contam B 2014;7(1):21-4.
[6] Mozaffari Nejad AS, Sabouri Ghannad M, Kamkar A. Determination of aflatoxin B1 levels in Iranian and Indian spices by ELISA method. Toxin Rev 2014;33(4):151-4.
[7] Mozaffari Nejad AS, Giri A. The measurement of Aflatoxin B1 in chilli and black peppers of qamshahr, Iran. J Kerman Univ Med Sci 2015;22(2):185-9.
[8] Mozaffari Nejad AS, Bayat M, Ahmadi AA. Investigation of Aflatoxin B-1 in Spices Marketed in Hyderabad, India by ELISA Method. J Pure Appl Microbio 2013;7(4):3219-23.
[9] Tavakoli H, Kamkar A, Riazipour M, et al. Assessment of aflatoxin M1 levels by enzyme-linked immunosorbent assay in yoghurt consumed in Tehran, Iran. Asian J Chem 2013;25(5):2830-8.
[10] Tavakoli HR, Riazipour M, Kamkar A, et al. Occurrence of aflatoxin M1 in white cheese samples from Tehran, Iran. Food Control 2012;23(1):293-5.
[11] Campbell K, Cavaclantche ALF, Galvin-King P, et al. Evaluation of an alternative spectroscopic approach for aflatoxin analysis: Comparative analysis of food and feed samples with UPLC–MS/MS. Sensors Actuat B: Chem 2017;239:1087-97.
[12] International Agency for Research on Cancer. Some mycotoxins, naphthalene and styrene in IARC monographs on the evaluation of carcinogenic risk to humans: International Agency for Research on Cancer. 2002.
[13] Pereira PC. Milk nutritional composition and its role in human health. Nutrition 2014;30(6):519-27.
[14] European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 2006;364:5-24.
[15] Institute of Standards and Industrial Research of Iran. Maximum tolerated levels of mycotoxins in foods and feeds. National Standard No. 5925. 2002.
[16] FDA S. 527.400 Whole Milk, Low Fat Milk, Skim Milk–Aflatoxin M1 (CPG 7106.10). FDA/ORA Compliance Policy Guides. 2005.
[17] Shahbazi Y, Nikousefatt Z, Karami N. Occurrence, seasonal variation and risk assessment of exposure to aflatoxin M1 in Iranian traditional cheeses. Food Control 2017;79:356-62.
[18] Škrbić B, Živancev J, Antic I, et al. Levels of aflatoxin M1 in different types of milk collected in Serbia: Assessment of human and animal exposure. Food Control 2014;40:113-9.
[19] Milićević DR, Spircić D, Radišević T, et al. A review of the current situation of aflatoxin M1 in cow’s milk in Serbia: risk assessment and regulatory aspects. Food Addit Contam A 2017;34(9):1617-31.
[20] R-Biopharm GmbH. Enzyme immunoassay for the quantitative analysis of aflatoxin M1. Article No.: R1121. Darmstadt (Germany); 2016.
[21] Bahrani R, Shahbazi Y, Nikousefatt Z. Aflatoxin M1 in milk and traditional dairy products from west part of Iran: Occurrence and seasonal variation with an emphasis on risk assessment of human exposure. Food Control 2016;62:250-6.
[22] Kuiper-Goodman T. Uncertainties in the risk assessment of three mycotoxins: aflatoxin, ochratoxin, and zearalenone. Can J Physiol Pharmacol 1990;68(7):1017-24.
[23] Fallah AA. Assessment of aflatoxin M1 contamination in pasteurized and UHT milk marketed in central part of Iran. Food Chem Toxicol 2010;48(3):988-91.
[24] Campone L, Piccinelli AL, Celano R, et al. Occurrence of aflatoxin M1 in milk samples from Italy analysed by online-SPE UHPLC-MS/MS. Nat Prod Commun 2010;48(3):988-91.
[25] Ghiasian SA, Maghsood AH, Neyestani TR, et al. Occurrence, seasonal variation and risk assessment of exposure to aflatoxin M1 in raw milk during the summer and winter seasons in Hamadan, Iran. J Food Safety 2007;27(2):188-98.
[26] Iqbal SZ, Jinap S, Pirouz A, et al. Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends Food Sci Technol 2015;46(1):110-9.
[27] Sifuentes dos Santos J, França V, Katto S, et al. Aflatoxin M1 in pasteurized, UHT milk and milk powder commercialized in Londrina, Brazil and estimation of exposure. Arch Latinoam Nutr 2015;65(3):181-5.
[28] Tajik H, Moradi M, Razavi Rohani S, et al. Determination of aflatoxin
Aflatoxin M1 in pasteurized and UHT milk in West-Azerbaijan province of Iran. J Food Qual Hazards Control 2016;3(1):37-40.

[29] Xiong J, Xiong L, Zhou H, et al. Occurrence of aflatoxin B1 in dairy cow feedstuff and aflatoxin M1 in UHT and pasteurized milk in central China. Food Control 2018;92:386-90.

[30] Bilandžić N, Božić D, Đokić M, et al. Seasonal effect on aflatoxin M1 contamination in raw and UHT milk from Croatia. Food Control 2014;40:260-4.

[31] Omar SS. Aflatoxin M1 levels in raw milk, pasteurised milk and infant formula. Ital J Food Saf 2016;5(3):578-8.

[32] Rouhi R, Kazemi A, Jahromi A, et al. Levels of aflatoxin M1 in different types of milk collected in Jahrom, Iran, winter-spring 2013. Am J Anim Vet Sci 2015;10(3):193-6.

[33] Moosavy M, Roostae N, Katirae F, et al. Aflatoxin M1 occurrence in pasteurized milk from various dairy factories in Iran. Int Food Res J 2013;20(6):3351-55.

[34] Rama A, Latifi F, Bajraktari D, et al. Assessment of aflatoxin M1 levels in pasteurized and UHT milk consumed in Prishtina, Kosovo. Food Control 2015;57:351-4.

[35] Mohammadi H, Shokrzadeh M, Alibadi Z, et al. Occurrence of aflatoxin M1 in commercial pasteurized milk samples in Sari, Mazandaran province, Iran. Mycotoxin Res 2016;32(2):85-7.

[36] Li S, Min L, Zhang Y, Zheng N, Wang J. Occurrence of aflatoxin M1 in pasteurized and UHT milks in China in 2014–2015. Food Control 2017;78:94-9.

[37] Siddappa V, Nanjegowda DK, Viswanath P. Occurrence of aflatoxin M1 in some samples of UHT, raw & pasteurized milk from Indian states of Karnataka and Tamilnadu. Food Chem Toxicol 2012;50(11):4158-62.

[38] Armorini S, Altafini A, Zaghini A, et al. Occurrence of aflatoxin M1 in conventional and organic milk offered for sale in Italy. Mycotoxin Res 2016;32(4):237-46.

[39] Iqbal SZ, Asif MK, Jinap S. Variation of aflatoxin M1 contamination in milk and milk products collected during winter and summer seasons. Food Control 2013;34(2):714-8.

[40] Zheng N, Sun P, Wang JQ, et al. Occurrence of aflatoxin M1 in UHT milk and pasteurized milk in China market. Food Control 2013;29(1):198-201.

[41] Santini A, Rairo A, Ferrantelli V, et al. Aflatoxin M1 in raw, UHT milk and dairy products in Sicily (Italy). Food Addit Contam B 2013;6(3):181-6.

[42] Atasever M, Adiguzel G, Atasever M, et al. Occurrence of aflatoxin M1 in UHT milk in Erzurum-Turkey. Kafkas Univ Vet Fak Derg 2010;16(suppl):S119-22.

[43] Kalab B, Oz bey F. Aflatoxin M1 in UHT milk consumed in Turkey and first assessment of its bioaccessibility using an in vitro digestion model. Food Control 2012;28(2):338-44.

[44] Temamogullari F, Kanici A. Short communication: Aflatoxin M1 in dairy products sold in Sanliurfa, Turkey. J Dairy Sci 2014;97(1):162-5.

[45] Zinedine A, Gonzalez-Osnaya L, Soriano J, et al. Presence of aflatoxin M1 in pasteurized milk from Morocco. Int J Food Microbiol 2007;114(1):25-9.

[46] Cano-Sancho G, Marin S, Ramos AJ, et al. Occurrence of aflatoxin M1 and exposure assessment in Catalonia (Spain). Rev Iberoam Micol 2010;27(3):130-5.

[47] Leblanc J-C, Tard A, Volatier J-L, et al. Estimated dietary exposure to principal food mycotoxins from the first French Total Diet Study. Food Addit Contam 2005;22(7):652-72.

[48] Shundo L, Navas SA, Lamardo LCA, et al. Estimate of aflatoxin M1 exposure in milk and occurrence in Brazil. Food Control 2009;20(7):655-7.

[49] Duarte SC, Almeida AM, Teixeira AS, et al. Aflatoxin M1 in marketed milk in Portugal: Assessment of human and animal exposure. Food Control 2013;30(2):411-7.

[50] Lindahl JF, Kagera I, Grace D. Aflatoxin M 1 levels in different marketed milk products in Nairobi, Kenya. Mycotoxin Res 2018;34(4):289-95.

[51] dos Santos JS, Granella V, Pigatto GM, et al. Aflatoxin M1 in pasteurized and raw milk from organic and conventional systems. J Verbrauch Lebensm 2016;11(4):299-304.

[52] Taherabadi MS, Charavi MJ, Javadi I, et al. The Level of Aflatoxin M1 in Raw and Pasteurized Milk Produced in Alborz Province, Iran. Jundishapur J Nat Pharm Prod 2016;11(4):e31708.