Consistent estimation of the critical current density of a superconductor from hysteresis loops

Ratan Lal
Superconductivity Division, National Physical Laboratory, Dr. K. S. Krishnan Road,
New Delhi, India

Abstract

It has been noticed that the critical current density J_c of some of the superconducting samples, calculated on the basis of Bean model, increases with increasing magnetic field H up to a significant range above $H=0$. This is an inconsistent behavior of J_c since the theory of Kim and the theories based on vortex dynamics, all, lead to decreasing J_c with increasing H for $H > 0$. It has been argued that a realistic variation of J_c for low H may be obtained within Bean framework by redefining the width of the hysteresis loop. The new definition of the loop width is guided by the requirement that J_c stays as close to the J_c of the theory of Kim as possible. Illustrative calculations of J_c show its considerable enhancement over the Bean values.

PACS numbers: 74.25.Sv, 74.70.-b

Key Words: critical current density; Bean’s theory; superconducting materials
1. Introduction

In a recent publication Cheng et al have presented values of the critical current density \(J_c \) of various samples of the MgB\(_2\) superconductor [1]. The \(J_c \) of one of these samples, namely that with 8\% nano diamond (ND), decreases at 10 K with decreasing magnetic field \(H \) below about 0.5 T. This is an unexpected behavior of the \(H \)-dependence of \(J_c \). In order to see why it is so, we first consider the lower critical field \((H_{c1}) \) of the MgB\(_2\) superconductor. By using the values of the penetration depth, \(\lambda = 140 \) nm [2], and coherence length, \(\xi = 5.2 \) nm [2] in Eq. 3.56 of de Gennes [3] we find that \(H_{c1} \) turns out to be about 0.03 T, which is practically zero on the scale of the irreversibility field \((H_{\text{irr}} \sim 6 - 10 \) T [1]). Thus, as soon as the magnetic field is applied to the superconductor from \(H = 0 \), vortices will start to enter in the system. The movement of these vortices will increase with increasing magnetic field [4] so that \(J_c \) will decrease with increasing \(H \). This will happen at least for low \(H \) irrespective of the model used for describing the vortex dynamics (cf. Eqs. 6, 7, 13, 16, 25, 31 and 40 of Wordenweber [4]). In fact, in general, this will continue up to higher \(H \) also, but for the case like that of collective pinning [5] \(J_c \) will increase for a portion of \(H \) near \(H_{\text{irr}} \). From the work of Chen and Goldfarb [6] it becomes clear that in the Kim’s theory also \(J_c \) decreases with increasing \(H \).

Vajpayee et al [7] have also made a study of \(J_c \) of ND-doped MgB\(_2\) samples. The 5\% ND and 7\% ND samples of these authors show increasing \(J_c \) with \(H \) at 10 K below about 1.5 T. In fact, this behavior of \(J_c \) has been encountered earlier also, for example, by Niu and Hampshire [8] in the sample numbers 6 and 7 of PbMo\(_6\)S\(_8\) below about 0.5 T. (On the basis of Ref. [8] it may be shown that \(H_{c1} \) of PbMo\(_6\)S\(_8\) will be of order of 0.0002 T, while \(H_{\text{irr}} \) is of order of 25 T.) Many
more references may be found out in literature where J_c increases with H in the low-H regime. However, for specificity, we shall limit to the references [1], [7] and [8] only.

The above-mentioned increasing J_c with increasing H in the low magnetic field regime arises due to the Bean’s formulation [9] since all of the above authors have used this method for estimating J_c from the M-H curves. From Fig. 8 of Chen and Goldfarb it becomes clear that the Bean’s J_c shows increasingly larger deviation from the Kim’s J_c near $H = 0$ when the magnetic moment corresponds to increasingly stronger dependence on H. Since the Bean’s theory is a special case of the Kim’s theory [6], the latter is more realistic than the Bean’s theory. In this sense a deviation of the Bean’s and Kim’s J_c values for low H implies inadequacy of the Bean’s theory for this region of low H. Thus there is a need for a realistic method for estimating J_c from hysteresis loops. It may be noted that knowledge of the realistic J_c is important not only from the view-point of its magnitude, but also from the view-point of pinning mechanism. This is because the pinning mechanism is understood by looking at the variation of the pinning force density

$$F_p = \mu_0 H J_c(H) \propto \left(\frac{H}{H_{c1}}\right)^p \left(1 - \frac{H}{H_{c1}}\right)^q$$

with H [1]. (Here μ_0 is free space permeability.) If $J_c(H)$ is not realistic, the values of p and q may be unrealistic too, leading to a misleading interpretation of the vortex dynamics. Thus a realistic way for estimating J_c from hysteresis loops is highly desired.

This task has been performed in the present article. We suggest a method for extracting values of the critical current density by redefining the width of the hysteresis loop at a particular H such that the resulting J_c stays as close to the Kim’s J_c as possible.
2. Formalism

Let $M^+(H)$ and $M^-(H)$ denote respectively the positive and negative parts of the magnetic moment of a hysteresis loop. Then, according to Bean’s formulation, J_c is given by [6]

$$J_c(H) = G[M^+(H) - M^-(H)].$$

(1)

Here G is a geometric factor.

In order to see why Bean’s formula results in an inconsistent behavior of J_c for low H, we proceed as follows. In the Bean’s theory the critical current density is considered to be independent of the magnetic field [6]. In the sense of Eq. (1) this means

$$\frac{dM^+(H)}{dH} \approx 0; \quad \frac{dM^-(H)}{dH} \approx 0$$

(2)

On the other hand, the magnetic moment of MgB$_2$ and PbMo$_6$S$_8$ superconductors changes rapidly with H. That is to say,

$$\frac{dM^+(H)}{dH} \gg 0; \quad \frac{dM^-(H)}{dH} \gg 0$$

(3)

This can be seen, for example, from Fig. 2 of Vajpayee et al [7] and from the inset of Fig. 9 of Niu and Hampshire [8].

The situation of Eq. (3) enhances the possibility of the variation of the right-hand side of Eq. (1) with H to be positive. That is to say, for

$$\frac{dM^+(H)}{dH} - \frac{dM^-(H)}{dH} \gg 0$$

(4)
to be satisfied for low H. When this occurs, Eq. (1) will lead to a J_c which increases with H for low H. Thus, the inadequacy of the Bean’s formalism at low H arises due to fast variation of the moments $M^+(H)$ and $M^-(H)$ with H.

In order to clarify Eq. (4) we consider the positions of the maximum (minimum) of the moment M^+ (M^-). The maximum of $M^+(H)$ lies in the negative-H side, while that of $M^-(H)$ lies on the positive-H side such that both are equidistance from $H=0$. (cf. Fig. 6e of Chen and Goldfarb.) In this sense let $-H_{\text{max}} (H_{\text{max}} \geq 0)$ be the position of the maximum of $M^+(H)$, then H_{max} will be the position of the minimum of $M^-(H)$. If $H_{\text{max}} = 0$, condition of Eq. (4) will never be satisfied because the left-hand side of this equation will be essentially negative. In fact, for $H_{\text{max}} = 0$, $\frac{dM^+(H)}{dH}$ will be negative, while $\frac{dM^-(H)}{dH}$ will be positive. When H_{max} increases beyond 0, $\frac{dM^+(H)}{dH}$ will remain negative, but $\frac{dM^-(H)}{dH}$ will change sign from positive to negative between $H=0$ and $H= H_{\text{max}}$. Thus if H_{max} is sufficiently away from $H=0$, a situation will arise when $|\frac{dM^-(H)}{dH}|$ will become larger than $|\frac{dM^+(H)}{dH}|$. When it happens so, Eq. (4) will be satisfied and, according to Eq. (1), J_c will increase with H up to $H = H_{\text{max}}$.

Thus it is the value of H_{max}, which leads to values of J_c as found by Cheng et al [1], Vajpayee et al [7], and Niu and Hampshire [8] for low H for some of the superconducting samples. The value of H_{max} is $0.083 H_{\text{MPP}}$ for the Fig. 6e of Chen and Goldfarb [6]. Cheng et al [1], Vajpayee et al [7], and Niu and Hampshire [8] have not given hysteresis loops for the above-mentioned samples. So, it is difficult to estimate accurate values of H_{max} for these samples. However, on the basis of the variation of J_c of these samples a rough estimate can be made. We find $H_{\text{max}} = 0.5$ T,
1.5 T, 1.5 T, 0.5 T and 0.5 T respectively for the 8%ND sample [1], 5% ND sample [7], 7%ND sample [7], sample number 6 [8] and sample number 7 [8].

Let us see what the Kim’s theory, of which Bean’s theory is a special case [6], say about the behavior of J_c for the situation of Eq. (3). Looking at the various parts of Fig. 6 of Chen and Goldfarb [6] we find that the condition of Eq. (3) is most satisfied for Fig. 6e. Fig. 8e shows the values of J_c corresponding to this figure. We see that there is perfect agreement between the Bean’s J_c and Kim’s J_c for $H > 0$, where H_p is full penetration field. Below H_p the difference between these two theories become increasingly larger with decreasing H. While the Bean’s J_c changes curvature below H_p so that it bends downward near $H=0$, the Kim’s J_c continues the same curvature down to $H=0$ tending to infinity for $H=0$. In fact, for the situation of Fig. 8e Kim’s J_c behaves like $1/H$.

The above comparison of the Bean’s J_c and Kim’s J_c makes it clear that for the situation of Eq. (3) these two critical currents move in opposite directions. Because of the change in curvature the Bean’s J_c becomes lower than the realistic J_c near $H=0$. On the other hand, because of the fact that $J_c \to \infty$ for $H \to 0$, the Kim’s J_c will be larger than the realistic J_c near $H=0$. So the realistic J_c will lie in between the Bean’s J_c and Kim’s J_c. Below we describe a method to estimate this realistic J_c.

We take the magnetic moments $M^+(H)$ and $M^-(H)$ as input, but redefine the width of the hysteresis loop, $\Delta M(H)$, at the magnetic field H. For this purpose we, first of all, note that for $H > H_p$ Bean’s J_c and Kim’s J_c lead to the same set of values [6]. So, we take

$$\Delta M(H > H_p) = M^+(H) - M^-(H).$$

(5)
We now consider the $H=0$ point. Since the sought-for J_c is required to have positive curvature for all H, it will be maximum at $H=0$. Moreover, we require that the sought-for J_c remains as close to the Kim’s J_c as possible. The maximum possible value of $\Delta M(H=0)$ from the moments $M^+(H)$ and $M^-(H)$ is given by

$$\Delta M(H=0) = M^+(-H_{\text{max}}) - M^-(+H_{\text{max}}). \quad (6)$$

We are now left with the values of $\Delta M(H)$ for $0 < H < H_p$. For this purpose we compress the values of $M^+(H)$ from a range of width $H_{\text{max}} + H_p$ ($-H_{\text{max}} \leq H \leq H_p$) to a shorter range of width H_p ($0 \leq H \leq H_p$). Such a task is performed in a practically convenient way by the function

$$s(H) = \exp \left(-\frac{H}{H_p} \right) \quad (7)$$

such that

$$e^{-\mu} \approx 0. \quad (8)$$

From Eq. (8) we can see that $s(0)=1$ and $s(H > H_p) \approx 0$. Using the function $s(H)$ we can stretch the moment values M^- from the shorter range of width H_p ($H_{\text{max}} \leq H \leq H_p$) to a range of width H_p ($0 \leq H \leq H_p$). The loop width $\Delta M(H)$ for $0 < H < H_p$ is now expressed in terms of the compressed moment M^+ and stretched moment M^- as given by

$$\Delta M(H) = M^+(H - H_{\text{max}}) - M^-(H + H_{\text{max}}). \quad (9)$$
This equation tends to Eq. (6) for $H=0$, and to Eq. (5) for $H \gg H_p$. We replace the Bean’s loop width by this new width so that Eq. (1) for the critical current density is modified to

$$I_c(H) = G\Delta M(H).$$ \hspace{1cm} (10)

For $H_{\text{mean}} \approx 0$ this equation tends to the Bean’s formula (Eq. 1).

3. Results and discussion

In order to clarify the importance of Eqs. (9) and (10) we have calculated $I_c(H)$ using the hysteresis loop of Fig. 6e of Chen and Goldfarb [6]. The results are shown in the third column of Table 1 for various values of H/H_p. In the calculations we have taken $u=7$, which guarantees that Eq. (5) gets satisfied to within an error of 0.001. The second (fourth) column of this table corresponds to the Bean’s (Kim’s) I_c read from Fig. 8e of Chen and Goldfarb. From table 1 we see that the present values of I_c matches with that of Kim’s I_c down to $H = 0.6H_p$, while that of the Bean’s I_c matches with the Kim’s I_c down to $H = H_p$ only. This shows that the present method leads to indeed more realistic I_c than the Bean’s I_c. The deviation of the present I_c from Kim’s I_c below $H = 0.6H_p$ occurs because the latter diverges at $H=0$, while the present I_c is limited to a finite value by the width of the hysteresis loop.

The value of I_c obtained by using Eqs. (9) and (10) for $H=0$ is $4.40I_c(H_p)$ (cf. Table 1). This is significantly larger than the corresponding Bean’s value, $3.21I_c(H_p)$.

Apart from this quantitative difference, the main difference lies in the qualitative sense. While the present I_c
continues increasing for decreasing H down to $H=0$, the Bean’s I_c changes curvature at $H = 0.8 H_p$ (cf. Fig. 6e of Ref. [6]). We emphasize that this change of curvature in the Bean’s method is responsible for lower I_c values near $H=0$. The value of H_{max} for Fig. 6e of Chen and Goldfarb, as mentioned above, is $0.083 H_{\text{prv}}$. If the value of H_{max} increases further then after some stage we expect that Eq. (4) gets satisfied. When it happens so, I_c will decrease for decreasing H near $H=0$ in the Beans model, but according to the present estimation (Eqs. 9 and 10) I_c will continue increasing for decreasing H. An important result of this illustration is that Bean’s I_c will need modification if $H_{\text{max}} > 0$, irrespective of how I_c varies near $H=0$. Moreover, near $H=0$ the present method will be more realistic than the Kim’s method also because the latter gives diverging I_c at $H=0$. In fact, a superconductor can never support an infinite I_c. The upper limit of I_c will be $I_{c,\text{max}} = n^* e^2 h / m^*$ where n^* is superfluid density, e is magnitude of electron’s charge, h is reduced Planck’s constant, and m is electron’s mass. For the MgB$_2$ superconductor $I_{c,\text{max}}$ will be of the order of 10^8 A/cm2.

Hysteresis loops are not available in the articles of Cheng et al [1], Vajpayee et al [7] and Niu and Hampshire [8]. So, we are not in a position to present values like those in table 1 for the samples considered in these references. However, from the variation of I_c we can get rough idea about H_{max} and variations of the magnetic moments with H near $H=0$. Such values of H_{max} and $I_c(H)$ are given in table 2. It is clear from this table that the present method modifies $I_c(H)$ considerably.
It may be noted that the enhancement of $J_c(H)$ in the present method will shift the critical force density F_p towards $H = 0$. This will lower the peak position, $p/(p+q)$, of F_p versus H/H_{c2} curve, thereby affecting the nature of pinning mechanism.

4. Conclusions

In the present paper we have pointed out cases where the critical current density of some samples of MgB$_2$ and PbMo$_6$S$_8$ increases with magnetic field for low H. Since in these systems the values of the lower critical field are practically zero on the scale of the irreversible field, this trend of $J_c(H)$ is unrealistic. We have identified the origin of this behavior of $J_c(H)$ for low H in the sharp variation of the magnetic moment with H (Eq. 3) combined with significantly larger values of H_{c2}. For a consistent extraction of the critical current density from the hysteresis loops we have suggested a method, Eq. (9) and (10), which is governed by the condition that the new values of $J_c(H)$ stay as close to the Kim’s values as possible. Although the present method is motivated by increasing $J_c(H)$ with H, it has a larger range of applicability in that it is suitable for any superconductor satisfying Eq. (3) and having sufficient value of H_{c2} irrespective of whether $J_c(H)$ increases or decreases with H for low H.
REFERENCES

1. C. H. Cheng, Y. Yang, P. Munroe and Y. Zhao, Supercond. Sci. Technol. 20 (2007) 296.

2. D. K. Finnemore, J. E. Ostenson, S. L. Budko, G. Lapertot and P. C. Canfield, Phys. Rev. Lett. 86 (2001) 2420.

3. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966), p.66.

4. R. Wordenweber, Rep. Prog. Phys. 62 (1999) 187.

5. P. H. Kes and C. C. Tsuei, Phys. Rev. Lett. 47 (1981) 1930.

6. D. –X. Chen and R. B. Goldfarb, J. Appl. Phys. 66 (1989) 2489.

7. A. Vajpayee, V. P. S. Awana, H. Kishan, A. V. Narlikar, G. L. Bhalla, and X. L. Wang, J. Appl. Phys. 103 (2008) 07C708.

8. H. J. Niu D. P. Hampshire, Phys. Rev. B 69 (2004) 174503.

9. C. P. Bean, Rev. Mod. Phys. 36 (1964) 31.
Table 1: Values of the relative critical current density $J_c(H)/J_c(H_p)$ for various values of H/H_p in the present case, Bean’s formalism and Kim’s theory. The latter two sets of values are read from the Fig. 8e of Chen and Goldfarb [6], while the present values are obtained on the basis of the hysteresis loop of Fig. 6e of Ref. [6].

H/H_p	$J_c(H)/J_c(H_p)$		
	Bean	Present	Kim
0.0	3.21	4.40	∞
0.2	3.13	3.13	5.18
0.4	2.90	2.23	2.45
0.6	2.18	1.67	1.67
0.8	1.45	1.18	1.18
1.0	1.00	1.00	1.00
Table 2: Values of H_{max} and $I_c(H)$ for different superconducting samples. The Bean’s values are read from the respective references.

Sample	Ref.	$\mu_0 H_{\text{max}}$ (T)	$\mu_0 H$ (T)	(10^5 A/cm^2)	
8%ND MgB$_2$	1	0.5	0.0	3.98	5.75
5%ND MgB$_2$	7	1.5	1.0	2.01	3.19
7%ND MgB$_2$	7	1.5	1.0	0.60	1.59
No. 6 PbMo$_6$S$_8$	8	0.5	0.0	2.03	2.54
No. 7 PbMo$_6$S$_8$	8	0.5	0.0	1.04	1.30