Supplementary Figures

An ex vivo Vessel Injury Model to Study Remodeling

Mehmet H. Kural, Guohao Dai, Laura Niklason and Liqiong Gui

Supplementary Figure 1. Negative control for IF staining. For negative control (A and C), secondary antibodies were applied without incubating samples with primary antibodies.
Supplementary Figure 2. A. Intact rat aorta. B and C, Vessel injury, including gentle denudation (B) and medial injury (C) successfully removed the native EC layer of intact rat aortas. Neointimal-like cell layer on luminal surface (white arrows) forms after 7 days of culture, and these neointimal cells do not stain vWF (D). Scale bar: 100 µm.

Supplementary Figure 3. Gently denuded rat aortas cultured with high serum, statically, for 4 (A) and 7 (B) days. Unlike medially-injured rat aortas, medial proliferation is not observed even with 30% FBS in culture media. Scale bar: 100 µm.
Supplementary Figure 4. H&E (A) and CD31/αSMA (B) stain in medially-injured and HUVEC-seeded human umbilical arteries after 7 days of static culture. Unlike the HUVEC-seeded umbilical arteries that are cultured with arterial flow, excessive dilation and SMC death is not observed after static culture. Scale bar: 100 μm.
Supplementary Figure 5. Intact rat aorta (A, D, G), gently-denuded and HUVEC-seeded rat aorta (B, E, H), and injured and HUVEC-seeded rat aortas were cultured with 20 cm2/dyne shear stress in bioreactors for 7 days. Ki67 and TUNEL stain shows that combination of ECs and arterial flow causes SMC death only in injured rat aortas. Scale bar: 100 μm.