A Case of Maternal Sepsis and Fetal Demise Associated with *Streptococcus pseudoporcinus*
piperacillin/tazobactam and cefazolin in the ED. Intravenous ampicillin and gentamicin were initiated in labor and delivery for a diagnosis of chorioamnionitis. She was also diagnosed with preeclampsia with severe features, and intravenous magnesium for seizure prophylaxis was administered.

Her labor progressed without augmentation, and she underwent spontaneous vaginal delivery of a stillborn infant. The patient declined autopsy and genetic testing for the infant.

After delivery, examination of the infant revealed no gross morphologic abnormalities. Placental pathology showed evidence of acute necrotizing chorioamnionitis and acute umbilical vasculitis, as well as mild decidual vasculopathy, consistent with maternal hypertension.

A beta hemolytic Streptococcus was isolated from the patient's urine, placenta, endometrium, and two blood culture sets. Lancefield grouping for Streptococcus groups A, B, C, F, and G were negative (Streptex, Remel, Lenexa, KS). Biochemical studies included a positive pyrrolidonyl aminopeptidase (PYR) test and a negative catalase reaction. The isolates were resistant to optochin. API (API 20Strep, BioMerieux, Durham, NC) identification revealed Streptococcus agalactiae (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associated laser desorption/ionization time-of-flight (MALDI-ToF; Bruker Daltonics, Billerica, MA) yielded Streptococcus pseudoporcinus, using the research use only (RUO) database (version 3.2.12.2) with log scores for each specimen ranging from 1.86 to 2.07. A blood culture isolate sent to a reference laboratory (biotype number 3063214) with 99.8% confidence at 24 hours. Identification of all isolates by matrix-associ...
occur. Although the exact clinical significance of \textit{S. pseudo-}
porcinus remains to be seen, our case demonstrates that it is a
potential cause of serious puerperal infection. If there are other
reports of puerperal infections with this organism, its signifi-
cance and prevalence in genital tract flora might warrant fur-
ther investigation.

\textbf{Conflicts of Interest}

The authors declare that they have no conflicts of interest.

\textbf{Acknowledgments}

The authors thank the OU Medicine Microbiology Laboratory
for their assistance.

\textbf{References}

[1] J. van Dillen, J. Zwart, J. Schutte, and J. van Roosmalen,
"Maternal sepsis: epidemiology, etiology, and outcome," \textit{Current
Opinion in Infectious Diseases}, vol. 23, no. 3, pp. 249–254, 2010.

[2] S. Bekal, C. Gaudreau, R. A. Laurence, E. Simonneau, and
L. Raynal, "\textit{Streptococcus pseudoporcinus} sp. nov., a novel species
isolated from the genitourinary tract of women," \textit{Journal of
Clinical Microbiology}, vol. 44, no. 7, pp. 2584–2589, 2006.

[3] K. A. Stoner, L. K. Rabe, M. N. Austin, L. A. Meyn, and
S. L. Hillier, "Incidence and epidemiology of \textit{Streptococcus
pseudoporcinus}," \textit{Journal of Clinical Microbiology}, vol. 49,
no. 3, pp. 883–886, 2011.

[4] D. Ratna Harika, J. Sreenivasa Rao, and C. R. Setty, "A case
of postmenopausal pyometra caused by \textit{Streptococcus
pseudoporcinus} – case report," \textit{Journal of Medical and Dental
Science Research}, vol. 3, no. 12, pp. 17–18, 2017.

[5] P. L. Shewmaker, A. G. Steigerwalt, A. M. Whitney et al.,
"Evaluation of methods for the identification and determination
of the taxonomic status of strains belonging to the \textit{Streptococcus
porcinus}-\textit{Streptococcus pseudoporcinus} complex isolated
from animal, human, and dairy sources," \textit{Journal of Clinical
Microbiology}, vol. 50, no. 11, pp. 3591–3597, 2012.

[6] M. Grundy, N. Suwantarat, M. Rubin et al., "Differentiating
\textit{Streptococcus pseudoporcinus} from GBS: could this have
implications in pregnancy?", \textit{American Journal of Obstetrics
and Gynecology}, vol. 220, no. 5, pp. 490.e1–490.e7, 2019.

[7] S. D. Mahlen and J. E. Claridge, "Thumb infection caused by
\textit{Streptococcus pseudoporcinus}," \textit{Journal of Clinical Microbiology},
vol. 47, no. 9, pp. 3041–3042, 2009.

[8] S. Sawamura, D. Niimori, and H. Inh, "A case of leg cellulitis
caused by multidrug-resistant \textit{Streptococcus pseudoporcinus},"
\textit{Intractable & Rare Diseases Research}, vol. 7, no. 4, pp. 280–282,
2018.

[9] J. C. Gullett, L. F. Westblade, D. A. Green, S. Whittier, and E. M.
Burd, "The brief case: too beta to be a “B”," \textit{Journal of Clinical
Microbiology}, vol. 55, no. 6, pp. 1604–1607, 2017.

[10] C. Gaudreau, E. Simonneau, O. Labrecque et al., "Epidemiological,
biochemical and antimicrobial susceptibility characteristics of
\textit{Streptococcus pseudoporcinus} isolated in Quebec, Canada, from
1997 to 2006," \textit{Journal of Medical Microbiology}, vol. 56, no. 12,
pp. 1620–1624, 2007.

[11] C. Martin, V. Fermeaux, J. L. Eyraud, and Y. Aubard,
"\textit{Streptococcus porcinus} as a cause of spontaneous preterm
human stillbirth," \textit{Journal of Clinical Microbiology}, vol. 42,
no. 9, pp. 4396–4398, 2004.