Biological evaluation of phytoconstituents from *Markhamia tomentosa* ethanolic leaf extract

M.B. Ibrahim, A.A. Sowemimo, L. Venables, N.A. Koorbanally, G.V. Awolola, M.O. Sofidiya, O.A. Odukoya, T. Koekemoer, M. van de Venter

Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, Kwara, Nigeria
Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine campus, Idi-araba, Lagos, Nigeria
School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
Department of Chemistry and Physics, University of Ibadan, Ibadan, Nigeria

Abstract

Phytochemicals are increasingly being used in cancer treatment due to affordability and potential anticancer effect with minimal adverse reactions compared to chemotherapy. *Markhamia tomentosa* is a medicinal plant used traditionally to treat cancer. In this study, the antiproliferative compounds from *M. tomentosa* were isolated using bioactivity-guided approach and characterized using various spectroscopic techniques. Through bioassay-guided fractionation of the crude ethanolic leaf extract, the dichloromethane (Mdf) and ethyl-acetate (Mef) fractions exhibited potent cytotoxicity activity against HeLa cells with IC₅₀ values of 83.26 and 104.5 μg/ml respectively in the MTT assay. Trypan blue assay and cell cycle analysis showed that Mdf fraction demonstrated cytotoxic effect with more extensive cell death and induced G₀/G₁ phase cell cycle arrest with concomitant decrease in S phase. Mef fraction showed reduced percentage of stained dead cells as compared to Mdf fraction and induced G₂/M phase with increase in the size of sub-G₁ phase, corresponding to apoptosis. From the isolation and purification of Mdf and Mef fractions by repeated column chromatography, followed by identification by 1D and 2D NMR spectroscopy and by comparison of the NMR data with values reported in literature, sitosterol, mollic acid, phytol and oleanolic acid were isolated for the first time from *M. tomentosa*. Mollic acid exhibited more potent cytotoxic activity compared to compounds 1, 3 and 4. The results from these findings suggest that mollic acid isolated from Mef which exhibited apoptotic cell death may be responsible for the earlier reported apoptosis induction capability of *M. tomentosa* against cervical cancer cell line HeLa.

© 2017 SAAB. Published by Elsevier B.V. All rights reserved.

Keywords: Apoptosis, Antiproliferative, *Markhamia tomentosa*, Mollic acid, Sitosterol, Phytol, Oleanolic acid, HeLa cells

1. Introduction

Several bioactive compounds, particularly the secondary metabolites isolated from medicinal plants have potential therapeutic effects on a myriad of diseases (Ghani, 2003). Based on ethnopharmacological data which provides a significantly increased chance of finding active plants rather than a random approach, many pharmaceutical drugs have been discovered by screening natural products from plants (Reddy et al., 2012). The increasing cost and undesirable side effects of conventional treatments have encouraged people to depend more on traditional treatments. In this study, the antiproliferative compounds from *M. tomentosa* showed the presence of major classes of bioactive compounds such as terpenes, steroids, saponins and flavonoids (Ugbabe et al., 2010). Pentacyclic triterpenoids including pomolic acid, oleanolic acid, tormentic acid and β-sitosterol have been reportedly isolated from the stem bark of *Markhamia tomentosa* (Tantangmo et al., 2010). Ajugol, tormentic acid, carnasol and oxopomolic acid were identified by LC-ESI-MS analysis in the ethyl acetate fraction of the leaf extract of *M. tomentosa* (Sofidiya et al., 2014).

Previously, we have demonstrated the cytotoxic effect of the crude extract of the leaves of *Markhamia tomentosa* against brine shrimp larvae and HeLa cervical cancer cells, chromosomal aberrations induction on *Allium* root cells and non-toxic effect in the liver and kidney function parameters in rats (Ibrahim et al., 2013, 2014, 2016).
In this study, the isolation and characterization of the bioactive compounds of *Markhamia tomentosa* as well as antiproliferative activity of the isolated compounds are discussed.

2. Materials and methods

2.1. General experimental procedure

The 1D (1H and 13C) and 2D (COSY, HSQC and HMBC) NMR spectroscopy were recorded on a Bruker Avance 400 spectrometer in deuterated chloroform (CDCl3) and methanol (CD3OD) at room temperature with tetramethylsilane (TMS) as internal standard. The designations of the isolated compounds are discussed.

The samples were analysed by the (TBE) method and finally with ionization energy of 70 eV. The GC-MSD apparatus was equipped with a DB-5SIL MS (30 m × 0.25 mm i.d., 0.25 μm film thickness) fused silica capillary column and helium - at a flow rate of 2 ml/min was used as the carrier gas.

2.2. Plant collection and extraction

Fresh leaves of *Markhamia tomentosa* (Benth) K. Schum ex Engl. collected from Oke-Igbo, Ondo state, Nigeria in February 2015 were used in the taxonomic identification and authentication in the Herbarium of Department of Botany and Microbiology, University of Lagos. A herbarium specimen was deposited and a voucher number LUH 5535 was obtained. The collected leaves were air dried at room temperature (23 °C) to afford the Hex (Mhf; 19.56 g), DCM (Mdf; 53.07 g), EtOAc (Mef; 9.80 g) BuOH (Mbf; 6.27 g) and aqueous (Maf; 14.97 g) residues. The dried, deep brown crude extract (128.98 g) was dissolved in 100 ml of water and partitioned with solvents of increasing polarity: hexane (HEX; 3 × 500 ml), dichloromethane (DCM; 4 × 500 ml), ethylacetate (EtOAc; 3 × 500 ml) and n-butanol (BuOH; 2 × 500 ml). The resulting fractions were evaporated to dryness using a rotary evaporator (40 °C) to afford the Hex (Mhf; 19.56 g), DCM (Mdf; 53.07 g), EtOAc (Mef; 9.80 g) BuOH (Mbf; 6.27 g) and aqueous (Maf; 14.97 g) residues.

2.3. Cytotoxicity assay

The cytotoxic effect of the crude extract (Mcr), solvent fractions (Mhf, Mdf, Mef, Maf and Mbf) and isolated compounds from *M. tomentosa* in HeLa cells was investigated using the MTT assay as earlier described by Ibrahim et al. (2013). The cells were treated with the compounds in the final concentrations ranging from 25 to 100 μM for 48 h. IC50 values for the fractions and compounds were calculated from dose–response curves using GraphPad Prism 4 software package.

2.4. Evaluation of cell viability

Viability of cells was determined by the trypan blue dye exclusion (TBE) method and analysed by flow cytometry 48 h after initiation. Cells were treated with 100 μg/ml Mef and 80 μg/ml Mdf. Spent tissue culture media containing detached cells, and all wash solutions, were combined and added to the cells obtained from trypsinisation of the remaining adherent monolayer. After centrifugation, the cells were stained with trypan blue (0.4%) and immediately analysed by flow cytometry on a Beckman-Coulter FC500.A minimum of 10,000 events were recorded per sample in FL3 (red fluorescence), using a 488 nm Argon ion laser for excitation.

2.5. Cell cycle analysis

As earlier described by Ibrahim et al. (2013), cell cycle analysis of Mef (100 μg/ml) and Mdf (80 μg/ml) fractions was performed using the Coulter® DNA Prep™ Reagents Kit (Beckman Coulter CA, USA).

2.6. Isolation by column chromatography (CC)

The MeF and Mdf fractions were subjected to column chromatography (silica gel 60; 0.040–0.063 mm; Merck, Germany) on suitably sized columns and the collected fractions were monitored by TLC (Merck 20 cm × 20 cm silica gel 60 F254 aluminium plates) which was visualized under UV (254 and 366 nm) and the plates were sprayed with a 10% sulphuric acid in methanol solution and heated for 30 s. The MeF fraction (7.46 g), a gradient elution of hexane: ethylacetate was used on a 4 cm diameter column starting with 10% EtOAc in Hex as eluent. This was followed by a gradient of increasing EtOAc percentage, and finally with 100% MeOH. The collected fractions (100 μl each) were combined based on TLC analysis to afford four main fractions E- 1 to E- 4. Fraction E- 2 (280 mg) was re-chromatographed over silica gel in a 2 cm column with Hex:EtOAc (9:1) as solvent system to yield sitosterol 1 (10 mg). Fraction E- 4 (1.23 g) was purified by silica gel CC with EtOAc:MeOH gradient (9.5:0.5) to yield a colourless amorphous solid: mollic acid 2 (230 mg).

Similarly, 30.5 g of Mdf fraction was separated by CC using Hex: DCM and DCM: EtOAc gradient starting with 100% Hex stepped to 50 and 100% DCM. This was followed by 20 and 40% increase of EtOAc every 250 ml to afford seven main fractions D- 1 to D- 7. With Hex:DCM (1:9), yellow thick viscous oil, phytol 3 (850 mg) was obtained as fraction D- 4. Fraction D- 6 (5.13 g) was re-chromatographed over a silica gel column with a Hex:EtOAc step gradient as eluent to give six sub-fractions d- 1 to d- 6. Sub fraction d- 4 (770 mg) was purified further by silica gel CC eluted with Hex:EtOAC (9:1) gradient to afford oleanolic acid 4 (90 mg).

3. Results and discussion

This present study is a continuation of our previous study that demonstrated the cytotoxic activity of *Markhamia tomentosa* leaf extract against HeLa (cervical cancer) cells through the induction of intrinsic pathway of apoptosis (Ibrahim et al., 2013).

Table 1

Fractions/compounds	HeLa cells IC50 μg/m (μM)
Crude extract	182.0 ± 8.9 (ND)
Hexane	>250
Dichloromethane	83.26 ± 13.8 (ND)
Ethyl-acetate	104.50 ± 5.1 (ND)
n-Butanol	>250
Aqueous	>500
Sitosterol 1	>100
Mollic acid 2	34.74 ± 5.4 (73.93 ± 11.5)
Phytol 3	>100
Oleanolic acid 4	>100
Melphalan	40 μM ± 2.3

ND: Not determined.
3.1. Cytotoxicity assay

In an attempt to determine the compounds responsible for the cytotoxic effect, the different solvent fractions: Hex (Mhf), DCM (Mdf), EtOAc (Mef) BuOH (Mbf) and aqueous (Maf) fractions obtained from the ethanolic leaf extract were investigated for cytotoxic effect on HeLa cells. The results showed that the Mhf, Mbf and Maf fractions did not exhibit cytotoxic effect as IC50 values greater than 250 μg/ml were obtained. On the other hand, Mdf and Mef fractions were cytotoxic against HeLa cells with IC50 values of 83.26 μg/ml and 104.5 μg/ml respectively (Table 1).

3.2. Cell viability and cell cycle analysis

The cytotoxic effect of the Mdf and Mef was further substantiated by the cell viability assay and cell cycle analysis. The TBE assay measures the cell membrane integrity as the dye enters dead cells through their compromised cell membranes and colours them blue (Wong et al., 2011). The dye also fluoresces when bound to protein and can therefore be detected using flow cytometry (Avelar-Freitas et al., 2014). As shown in Fig. 1, the untreated control cells were not permeable to the trypan blue dye compared to the treated cells which demonstrated an increased percentage of stained dead cells.

According to Ibrahim et al. (2013), incubation of HeLa cells with M. tomentosa crude extract showed cell cycle arrest in the G0/G1 phase after 12 h with a large increase in the size of the sub G1 peak and a significant increase in the Annexin V stained positive cells, confirming apoptosis induction. The cell cycle phase-specific arrest of the cell growth inhibitory activity of the fractions from M. tomentosa showed that Mef fraction induced G2/M phase arrest with increase in the size of sub-G1 phase, corresponding to apoptosis (Fig. 2) while the Mdf fraction induced a small increase in percentage cells in G0/G1 phase with concomitant decrease in S phase (Fig. 2), but without nuclear fragmentation. The increase in size of sub-G1 phase of the cell cycle shown by the Mef fraction correlate with the results obtained from M. tomentosa crude extract. Our results suggest that the cytotoxic effect of Mef fraction may be due to apoptosis induction while Mdf fraction exhibited a necrotic cell death.

3.3. Structural elucidation

Following the successful evaluation of the cytotoxicity potential of the fractions, isolation of the phyto-constituents responsible for the cytotoxic activity of Mdf and Mef fractions was carried out by column chromatographic technique. The isolated compounds were identified and structurally determined by 1D (1H and 13C) and 2D (COSY, HSQC and HMBC) NMR spectroscopy. The dichloromethane (Mdf) and ethylacetate (Mef) fractions from the leaves of Markhamia tomentosa yielded four terpenoids: three triterpenoids and one diterpenoid (Fig. 3). As shown in Tables 2 and 3, sitosterol (Lee et al., 2013; Awolola et al., 2014) and mollic acid (Facundo et al., 1993 and 2008) were isolated and identified from the Mef fraction whilst phytol (Arigoni et al., 1999) and oleanolic acid (Mahato and Kundu, 1994) were obtained from the Mdf fraction.

Compounds 1 to 4 (Tables 2 and 3) are known secondary metabolites isolated from natural sources but this is the first report on the isolation and identification of these compounds from the leaf extract of Markhamia tomentosa. Compound 1 was identified as sitosterol by comparison of chemical shifts from the 1H and 13C NMR (Table 2; Suppl. 1) with data in literature. Sitosterol is ubiquitous to many plant species, and it has been reportedly isolated from the stem bark of Markhamia stipulata and M. tomentosa and from the leaf extract of Markhamia lutea (Joshi et al., 1978; Kernan et al., 1998; Tantangmo et al., 2010). To the best of our knowledge, this is the first report on the isolation and identification of mollic acid 2, a cycloartane triterpenoid from the genus Markhamia. Mollic acid has however been reported from Combretum leprosum (Facundo et al., 2008). A total of 30 carbons were resolved in the 13C-NMR spectrum (Fig. 3). As shown in Suppl. 2, the 1H-NMR displayed a pair of doublets at 0.48 and 0.68 (J = 4.16 Hz), a characteristic of the cyclopropane ring of a cycloartane triterpenes. Table 2 shows a full NMR structural elucidation of compound 2. Compound 3 was obtained as a thick yellow viscous oil and its HR-ESI-MS indicated by the molecular ion peak, M+ at m/z 296 corresponding to the formula, C20H40O matched with phytol MS data from the MS library. A
shows the cytotoxic effect of the compounds with their IC50 values. As shown in Suppl. 3, the doublet at δH 4.11 (d, 1H, J = 6.88 Hz, H-1) indicating the presence of oxygenated methylene group (-OCH2-) and a doublet of doublet of doublets at δH 5.37 (ddd, 1H, J = 6.76, 0.92 Hz, H-2) indicating the presence of double bond compared well with the data in the literature for phytol (Arigoni et al., 1999). The 13C-NMR (Suppl. 4) and DEPT spectra for compound 4 had the required methyl, methylene, methine and quaternary carbon resonances for oleanolic acid with the molecular ion peak observed at m/z 439.45. The C-12 and C-13 resonances occurred at δC 122.6 and δC 143.6 respectively, a characteristic of oleanene triterpenes (Moodley et al., 2011). The H-NMR spectrum (Suppl. 4) showed characteristic resonances with a doublet at δH 3.22 (ddd, J = 10.72, 4.24 Hz, H-3) and a doublet of doublets at δH 1.88 (d, J = 6.88 Hz, H-1) indicating the presence of double bond compared well with the data in literature for oleanolic acid (Mahato and Kundu, 1994; Barreiros et al., 2002).

3.4. Biological activity of isolated compounds

Secondary metabolites present in medicinal plants could be responsible for the observed pharmacological effects. According to Soffidi et al. (2014), characterization of the chemical constituents of ethyl-acetate fraction of *M. tomentosa* by electrospray ionization mass spectrometry (LC-MS) led to the identification of phenolic, iridoid and terpenoid compounds. This present study however, reports the isolation and identification of four terpenoid compounds: three triterpenoids (sitosterol 1, mollic acid 2, oleanolic acid 4) and one diterpenoid (phytol 3) from the bioactive ethyl-acetate and dichloromethane fractions of the leaves of *M. tomentosa*. The compounds 1 to 4 (Fig. 3) were evaluated for their cytotoxic effect on HeLa cervical cancer cells using MTT assay. Table 1 shows the cytotoxic effect of the compounds with their IC50 values. Mollic acid 2 exhibited effective cytotoxic effect with an IC50 value of 34.74 μg/ml (73.93 μM) while sitosterol 1, phytol 3 and oleanolic acid 4 showed minimal cytotoxic effect against HeLa cells. Phytosterols are among the subclass of terpenoids, which are derived from tetracyclic triterpenes and exist in several forms in plants including stigmasterol, β-sitosterol and cycloartenol (Abumweis et al., 2008). Several in-vitro cytotoxic effects of these terpenic compounds isolated from different

Table 2

Compound	Sitosterol (300 MHz, CDCl3)	Compound 1 (600 MHz, CDCl3)	Compound 2 (500 MHz, CD2OD)
C	δC (300 MHz, CDCl3)	δC (600 MHz, CDCl3)	δC (500 MHz, CD2OD)
1	37.4 —	73.1 —	73.7 3.53 (br. s)
2	31.8 —	39.3 —	37.8 —
3	71.9 3.52 (m)	23.3 (dd, 12.8, 2.6)	71.5 4.54 (dd, 11.52; 4.7)
4	42.4 2.37 (m)	71.3 5.60 (dd, 12.1, 4.4)	55.9 —
5	141.0 —	56.3 —	—
6	121.9 5.35 (s)	38.3 3.46 (dd, 12.1, 4.4)	24.1 —
7	32.0 —	23.9 1.75; 1.25	26.6 —
8	32.0 —	26.4 2.15; 1.52	50.2 1.50
9	50.3 —	48.7 1.60	22.2 —
10	36.7 —	21.4 —	30.2 —
11	21.2 1.99 (m)	30.9 —	26.6 —
12	39.8 —	26.8 2.78; 1.25	34.0 —
13	42.4 —	33.8 1.67; 1.45	46.4 —
14	57.0 —	46.1 —	49.9 —
15	24.5 —	49.7 —	37.0 —
16	28.4 —	36.4 —	29.2 —
17	56.1 —	28.9 —	53.7 1.61
18	12.0 —	53.1 1.60	18.9 0.95 (s)
19	19.1 —	19.0 1.07 (s)	31.1 0.68 (d, 4.16)
20	26.0 —	30.5 0.85 (d, 4.0)	37.1 —
21	18.9 —	0.57 (d, 4.0)	18.9 —
22	34.1 —	36.7 1.28	37.5 —
23	26.2 —	18.9 0.97 (d, 6.2)	25.9 —
24	46.0 —	37.2 1.75; 1.48	126.2 5.10 (t, 7.0)
25	29.1 —	25.8 2.10; 1.92	131.8 —
26	19.1 0.81 (d, 6.3)	126.4 5.24 (t, 7.0)	17.8 1.61 (s)
27	19.6 0.86 (d, 4.2)	131.3 —	26.0 1.68 (s)
28	23.2 —	18.2 1.65 (s)	180.8 —
29	21.2 0.8 (t, 5.8)	26.3 1.71 (s)	2.2 1.08 (s)
30	— —	— —	19.9 0.96
plants against various cancer cell lines including cervical cancer cells are well documented in literature. The cytotoxic effect of sitosterol in human leukemia U937 cells, mouse fibrosarcoma, prostate (PC-3) and breast (MDA-MB-231) cancer cells have been reported in literature (Awad et al., 2001, 2005; Park et al., 2007; Moon et al., 2008). Phytol, a diterpene alcohol produced from chlorophyll, has demonstrated apoptosis inducing activity against human gastric adenocarcinoma (AGS) cells (Song and Cho, 2015). George et al. (2012) reported the apoptosis induction capability of oleanolic acid in HACAT (keratinocyte) cell line at relatively low cytotoxicity that points to the potential anticancer properties of this compound. Although the cytotoxic effect of these phytosterol and terpenoids in different cell lines have been reported, the results obtained from this study showed a non-cytotoxic effect of sitosterol and terpenoids in different cell lines have been reported, the relative low cytotoxicity that points to the potential anticancer properties of this compound. Although the cytotoxic effect of these phytosterol and terpenoids in different cell lines have been reported, the results obtained from this study showed a non-cytotoxic effect of sitosterol, phytol and oleanolic acid against HeLa (cervical cancer) cells. Amidst the isolated compounds from M. tomentosa leaf extract, mollic acid exhibited effective antiproliferative activity. The antiproliferative effect of this cycloartenol triterpenoid against HeLa (cervical cancer) cells is consistent with the report of the apoptotic inducing effects of two cycloartane triterpene glycosides, mollic acid arabinoside and mollic acid fucose. A study by Lee et al. (2014) also reported the antiproliferative activity of mollic acid against cervical cancer cells.

Conclusion

Sitosterol 1, mollic acid 2, phytol 3 and oleanolic acid 4 were isolated from the leaf extract of Markhamia tomentosa. To the best of our understanding, this study reports for the first time the isolation, structural identification and pharmacological study of compounds 1 to 4 from the plant. The cytotoxic cycloartenol triterpene: mollic acid 2, isolated from the ethyl-acetate fraction which exhibited apoptotic cell death associated with G2/M phase arrest and increased size of sub-G1 phase may be responsible for the apoptosis inducing capability of M. tomentosa against HeLa cells. The results obtained from this study contribute to the pharmacological validation and support the use of Markhamia tomentosa in traditional medicine.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.sajb.2017.12.014.

Acknowledgements

The authors are grateful to the School of Chemistry and Physics, University of KwaZulu-Natal, South Africa for providing the required reagents and facilities for the isolation and structural elucidation.

Funding

This research was also supported by African Laser Centre (Project number LHEAB01).

References

Abumweis, S.S., Barake, R., Jones, P.J., 2008. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res.:52 https://doi.org/10.3402/fnr.v52i0.1811.

Aigner, D., Eisenreich, W., Latzel, C., Sagner, S., Radykewicz, T., Zenk, M.H., Bacher, A., Arigoni, D., 1999. Dimethylallyl pyrophosphate is not the committed precursor of isopentyl pyrophosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proc. Natl. Acad. Sci. 96, 1309–1314.

Awad, A.B., Fink, C.S., Williams, H., Kim, U., 2001. In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur. J. Cancer Prev. 10, 507–513.

Awad, A.B., Fink, C.S., 2005. Effect of resveratrol and β-sitosterol in combination on reactive oxygen species and prostaglandins release by PC-3 cells. Prostaglandins Leukot. Essent. Fat. Acids 72, 219–226.

Awolola, G.V., Koobanally, N.A., Shode, F.O., Bajnath, H., 2014. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. Subsp. Sansibarica (Moraceae) extracts. Afr. J. Tradit. Complement. Altern. Med. 11, 124–131.

Table 3

C	Phytol (400 MHz, CDCl3)	Compound 3 (600 MHz, CDCl3)	Oleanolic acid (400 MHz, CDCl3)	Compound 4 (600 MHz, CDCl3)				
C	δC	δH	δC	δH	δC	δH	δC	δH
1	59.39	4.14 (d)	59.3	4.11 (d, 6.88)	38.5	–	38.4	–
2	123.09	5.39 (t)	123.2	5.37 (dd, d, 6.76, 0.92)	27.4	–	27.4	–
3	140.0	–	140.0	–	78.7	–	79.0	3.22 (dd, d, 10.72, 4.24)
4	39.85	1.97 (m)	39.9	1.96 (t, 15.16, 7.48)	38.7	–	38.7	–
5	25.12	1.40 (m)	25.1	–	55.2	–	55.2	–
6	36.65	1.24(m), 1.05(m)	36.7	–	18.3	–	18.3	–
7	32.67	1.36 (m)	32.7	–	32.6	–	32.4	–
8	37.35	1.23(m), 1.03(m)	37.4	–	39.3	–	39.3	–
9	24.45	1.29, 1.15 (m)	24.5	–	47.6	–	47.6	–
10	37.41	1.23(m), 1.03(m)	37.4	–	37.0	–	37.1	–
11	32.77	1.35 (m)	32.8	–	23.1	–	23.4	1.88 (d, 3.12)
12	32.78	1.23(m), 1.03(m)	37.3	–	122.1	–	122.6	–
13	24.79	1.25 (m)	24.8	–	143.4	–	143.6	–
14	39.35	1.11, 1.03(m)	39.4	–	41.6	–	46.5	–
15	27.95	150 (m)	28.0	–	27.7	–	27.7	–
16	22.60	0.74 (d)	22.6	–	23.4	–	22.9	–
17	22.69	0.84 (d)	22.7	–	46.6	–	41.6	–
18	19.69	0.83 (d)	19.7	–	41.3	–	41.0	2.82 (dd, d, 13.52, 3.72)
19	19.72	0.82 (d)	19.7	–	45.8	–	45.9	–
20	16.14	1.65 (s)	16.14	–	30.6	–	30.7	–
21	–	–	–	–	33.8	–	33.8	–
22	–	–	–	–	32.3	–	32.6	–
23	–	–	–	–	28.1	–	28.1	–
24	–	–	–	–	15.6	–	15.3	–
25	–	–	–	–	15.3	–	15.5	–
26	–	–	–	–	16.8	–	17.1	–
27	–	–	–	–	26.0	–	25.9	–
28	–	–	–	–	181.0	–	183.4	–
29	–	–	–	–	33.1	–	33.1	–
30	–	–	–	–	23.6	–	23.6	–
Barreiros, M.L., Pereira, P.A., Guedes, M.L.S., David, J.P., 2002. Fatty acid esters of triterpenes from *Erythroxylum paeferatum*. J. Braz. Chem. Soc. 13, 669–673.

Facundo, V.A., Rios, K.A., Moreira, L.S., Militao, J.S.L.T., Stabelli, R.G., Filho, R.B., Silveira, E.R., Facundo, V.A., Andrade, C.H.S., Silveira, E., Hufford, C.D., 1993. Triterpenes and flavonoids from *Combretum leprosum*. *Phytochemistry* 32, 411–415.

Facundo, V.A., Rios, K.A., Moreira, L.S., Militao, J.S.L.T., Stabelli, R.G., Filho, R.B., Silveira, E.R., 2008. Two new cycloartanes from *Combretum leprosum* Mar. (Combretaceae). *Rev. Latinoam. Quim.* 36, 77–82.

George, V.C., Kumar, D.R., Hastak, K., Ahmad, N., Lewin, J.S., Mukhtar, H., 2001. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. *Proc. Natl. Acad. Sci. U. S. A.* 98, 1665–1671.

Lee, J.M., Lee, D.G., Lee, K.H., Cho, S.H., Nam, K., Lee, S., 2013. Isolation and identification of antiviral phenylpropanoid glycosides from the medicinal plant *Carissa macrocarpa*. *J. Nat. Prod.* 76, 715–720.

Lacroix, D., Prado, S., Deville, A., Krief, S., Dumontet, V., Kasenene, J., Mouray, E., Bories, C., 2009. Hydroperoxy-cycloartane triterpenoids from the leaves of *Hemsleya amabilis*. *Planta Med.* 34, 219–221.

Leea indica (Bignoniaceae). *Ann. Trop. Med. Parasitol.* 104, 391–398.

Liu, J.N., Grant, D., Hanson, C., Wang, H., Ma, X., Liu, Z., et al., 2010. Phenolic content and antioxidant effect of *Leea indica* leaves. *BMC Complement. Altern. Med.* 12, 128.

Mahato, S.B., Khandu, A.P., 1994. 13C NMR spectra of pentacyclic triterpenoids– A compilation and some salient features. *Phytochemistry* 37, 1517–1575.

Moodley, R., Chesià, H., Jomlagadda, S.B., Koornanally, N., 2011. Antibacterial and anti-inflammatory activity of the pentacyclic triterpenoids isolated from the leaves and edible fruits of *Carissa macrocarpa*. *J. Med. Plant. Res.* 5, 4851–4858.

Moon, D.O., Kim, M.O., Choi, Y.H., Kim, C.Y., 2008. β-sitosterol induces G2/M arrest, endoreduplication and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. *Cancer Lett.* 264, 181–191.

Park, C., Moon, D., Rhu, C., Choi, B.T., Lee, W.H., Kim, G., Choi, Y.H., 2007. β-sitosterol induces anti-proliferation and apoptosis in human leukaemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. *Biol. Pharm. Bull.* 30, 1317–1323.

Reddy, N.S., Navanesan, S., Sinniah, S.K., Abdul Wahab, N., Sim, K.S., 2012. Phenolic content and some salient features of *Leea indica* leaves. *BMC Complement. Altern. Med.* 12, 128.

Ugbabe, G.E., Ayodele, A.E., Ajoku, G.A., Kunle, O.F., Kolo, I., Okogun, J.I., 2010. Preliminary phytochemical and antimicrobial analyses of the leaves of *Nigerian Bignoniaceae* Juss. *Glob. Res. J.* 1, 1–5.

Wong, Y.H., Abdul Kadir, H., 2012. Induction of mitochondria-mediated apoptosis in Ca Ski human cervical cancer cells triggered by molic acid arabinoside isolated from *Leea indica*. *Evid. Based Complement. Alternat. Med.* 2012, 1–11.

Wong, Y.H., Abdul, Kadir, Ling, S.K., 2011. Bioassay-guided isolation of cytotoxic cycloartenol triterpenoids from the traditionally used medicinal plant *Leea indica*. *Evid. Based Complement. Alternat. Med.* 10, 881–888.

Wu, J., Wu, Y., Yang, B.B., 2002. Anticancer activity of *Hemsleya amabilis* extract. *Life Sci.* 71, 2161–2170.