DECOUPLING INEQUALITIES AND SOME MEAN-VALUE THEOREMS

JEAN BOURGAIN

Abstract. The purpose of this paper is to present some further applications of the general decoupling theory from [B-D1, 2] to certain diophantine issues. In particular, we consider mean value estimates relevant to the Bombieri-Iwaniec approach to exponential sums and arising in the work of Robert and Sargos [R-S]. Our main input is a new mean value theorem.

0. Summary

The aim of this Note is to illustrate how a version of the general decoupling inequality for hypersurfaces established in [B-D] permits to recover certain known mean-value theorems in number theory and establish some new ones. Easy applications in this direction were already pointed out in [B-D] and the material presented here is a further development. Our main emphasis will be on the method rather than the best exponents that can be obtained this way.

In the first section, we state a form of the main decoupling theorem from [B-D] to the situation of smooth hyper surfaces in \mathbb{R}^n with non-degenerate (but not necessarily definite) second fundamental form (a detailed argument appears in [B-D2]). The motivation for this appears in Sections 2 and 3, which aims at proving decoupling inequalities for real analytic curves $\Gamma \subset \mathbb{R}^n$ not contained in a hyperplane. The assumption of real analyticity is purely for convenience (it suffices for the subsequent applications) and a similar result also holds in the smooth category. An $(n-1)$-fold convolution of Γ leads indeed to a hypersurface $S \subset \mathbb{R}^n$ of non-vanishing curvature. The relevant statement is inequality (3.2) below with moment $q = 2(n+1)$, where we consider the multi-linear (i.e. $(n-1)$-linear) setting. The next step is to reformulate this inequality as a mean-value theorem for exponential sums stated as Theorem 1, which is a quite general and optimal result. Our first focus point are certain mean value inequalities arising in the Bombieri-Iwaniec
approach [B-I1, 2] to exponential sums and the subsequent developments of this technique (see [H] for the complete exposition). More specifically, Theorem 1 is relevant to the so-called ‘first spacing problem’ which is analytically captured by mean-value expressions of the type

$$N_8(\delta) = \int_0^1 \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(x_0 n + x_1 n^2 + x_2 \frac{1}{\delta} \left(\frac{n}{N} \right)^\frac{3}{2}) \right|^8 dx_0 dx_1 dx_2 \quad (0.1)$$

$$N_{10}(\delta, N\delta) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(x_0 n + x_1 n^2 + x_2 \frac{1}{\delta} \left(\frac{n}{N} \right)^\frac{3}{2} + x_3 \frac{1}{N\delta} \left(\frac{n}{N} \right)^\frac{1}{2}) \right|^{10} dx_0 dx_1 dx_2 dx_3 \quad (0.2)$$

and

$$N_{12}(\delta, N\delta) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(x_0 n + x_1 n^2 + x_2 \frac{1}{\delta} \left(\frac{n}{N} \right)^{3/2} + x_3 \frac{1}{N\delta} \left(\frac{n}{N} \right)^{1/2}) \right|^{12} dx_0 dx_1 dx_2 dx_3. \quad (0.3)$$

In the application, the most important range of δ is $\delta \sim \frac{1}{N^2}$. As a special case of a more general result, it was proven in [B-I2] that

$$N_8(\delta) \ll \delta N^{5+\varepsilon} + N^{4+\varepsilon} \quad (0.4)$$

and in [H-K] that

$$N_{10}(\delta, N\delta) \ll \delta N^{7+\varepsilon} + N^{5+\varepsilon}. \quad (0.5)$$

Our Fourier analytical approach gives a quite different treatment and unified approach to this problem. In particular, Theorem 9 in Section 4 below shows that in fact

$$N_{10}(\delta, N\delta) \ll N^{5+\varepsilon} \quad \text{for} \quad \delta < N^{-\frac{41}{12}}. \quad (0.6)$$

Since however the main contribution (at least in the treatment [H]) in the exponential sum problem

$$\sum_{m \sim M} e \left(TF \left(\frac{m}{M} \right) \right) \quad (0.7)$$

has $\delta = \frac{1}{N^2}$, the improvement (0.6) does not lead to new results on this matter.

Our next application are certain mean value results in the work of Robert and Sargos [R-S]. It is proven in [R-S] that

$$I_6(N^{-3}) = \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(n^2 x + N^{-3} n^4 y) \right|^6 dx dy \ll N^{3+\varepsilon} \quad (0.11)$$
\[I_8(N^{-\frac{5}{2}}) = \int_0^1 \int_0^1 \left(\sum_{n \sim N} e(n^2x + N^{-\frac{5}{2}}n^4y) \right)^8 dx dy \ll N^{\frac{9}{2}+\varepsilon} \] (0.12)

\[I_{10}(N^{-\frac{17}{8}}) = \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(n^2x + N^{-\frac{17}{8}}n^4y) \right|^{10} dx dy \ll N^{\frac{49}{8}+\varepsilon} \] (0.13)

Inequality (0.11) is the optimal statement for the 6th moment (a different proof using the decoupling theorem for curves appears in [B-D]). While (0.12), (0.13) are essentially sharp, they are not the optimal results for the 8th and 10th moment respectively. Since \(I_p(\lambda) \) is a decreasing function of \(\lambda \) for \(p \) an even integer, (0.13) obviously implies that

\[I_{10} = \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(n^2x + n^4y) \right|^{10} dx dy \ll N^{\frac{42}{8}+\varepsilon}. \] (0.14)

In [R-S] an application of (0.14) to Weyl’s inequality is given, following a method initiated by Heath-Brown. In view of the present state of the art, the relevant statement is the bound

\[|f_8(\alpha; N)| = \left| \sum_{1 \leq n \leq N} e(\alpha n^8) \right| \ll N^{1-3.2-8}(N^4q^{-1} + 1 + qN^{-4}) \frac{1}{\sqrt{q}} \] (0.15)

assuming \(|\alpha - \frac{a}{q}| \leq q^{-2}; q \geq 1, (a, q) = 1 \) (though the exponent \(\sigma(8) = 3.2^{-8} = 0.01171 \cdots \) is superseded by a recent result of Wooley, see Theorem 7.3 in [W2], which gives in particular \(\sigma(8) = \frac{1}{2 \times 8} = \frac{1}{16} = 0.01190 \cdots \)).

More recently, inequality (0.14) has been improved in [P] to

\[I_{10} \ll N^{6+\varepsilon} \] (0.16)

using a different more arithmetical approach. As a consequence the first factor in the r.h.s. of (0.15) is replaced by \(N^{1-\frac{14}{15}2^{-8}} \), i.e. \(\sigma(8) = \frac{1}{15} = 0.0125 \cdots \).

In the final section of this paper, we establish the bounds

\[I_8(N^{-\frac{5}{2}}) \ll N^{\frac{14}{15}+\varepsilon} \] (0.17)

\[I_{10} \leq I_{10}(N^{-\frac{5}{2}}) \ll N^{\frac{17}{15}+\varepsilon} \] (0.18)

implying a corresponding improvement \(\sigma(8) = \frac{56}{15}2^{-8} = 0.0145 \cdots \) in Weyl’s inequality.
1. Decoupling inequality for smooth hypersurfaces with non-vanishing curvature

Let us start by recalling the main result from [B-D], which is the so-called ℓ^2-decoupling theorem for the Fourier transform of distributions carried by hypersurfaces in \mathbb{R}^n of positive curvature. This is a quite general harmonic analysis result with diverse applications, in particular to PDE’s and spectral theory (see [B-D] for some of these).

In order to formulate the result, we need some terminology. Let $S \subset \mathbb{R}^n$ be a compact smooth hypersurface of positive curvature and denote $S_\delta (\delta > 0$ a small parameter) a δ-neighborhood of S. Decompose S_δ as a union of tangent $\sqrt{\delta} \times \cdots \times \sqrt{\delta} \times \delta$ boxes τ with bounded overlap. Denoting $B_R \subset \mathbb{R}^n$ a ball of radius R, the following inequality holds for functions f s.t. $\text{supp} \hat{f} \subset S_\delta$

$$\|f\|_{L^p(B_{\frac{1}{2}})} \ll \delta^{-\varepsilon} \left(\sum_{\tau} \|f_{\tau}\|_{L^p(B_{\frac{1}{2}})}^2 \right)^{\frac{1}{2}} \text{ with } p = \frac{2(n+1)}{n-1} \quad (1.1)$$

and $f_{\tau} = (\hat{f}|_\tau)^\vee$ denoting the Fourier restriction of f to the tile τ.

By interpolation, (1.1) of course also holds for $2 \leq p \leq \frac{2(n+1)}{n-1}$ while for $\frac{2(n+1)}{n-1} \leq p \leq \infty$, the inequality becomes

$$\|f\|_{L^p(B_{\frac{1}{2}})} \ll \delta^{-\varepsilon} \left(\sum_{\tau} \|f_{\tau}\|_{L^p(B_{\frac{1}{2}})}^2 \right)^{\frac{1}{p}} \quad (1.2)$$

Next, let us relax the assumption on S, requiring S to have non-degenerate (but not necessarily definite) second fundamental form. A statement such as (1.1) can not be valid any more. For instance, if $S \subset \mathbb{R}^3$ is a ruled surface, we may take $\text{supp} \hat{f}$ in a $\sqrt{\delta}$-neighborhood of a straight line segment with only the obvious decoupling available. This problem of curvature break-down for lower dimensional sections of S can be bypassed by a suitable reformulation of the decoupling property. Assuming S as above and $\text{supp} \hat{f} \subset S_\delta$, one has for $\frac{2(n+1)}{n-1} \leq p \leq \infty$

$$\|f\|_{L^p(B_{\frac{1}{2}})} \ll \delta^{-\varepsilon} \left(\sum_{\tau} \|f_{\tau}\|_{L^p(B_{\frac{1}{2}})}^p \right)^{\frac{1}{p}} \quad (1.3)$$
This statement is weaker than (1.2) but will perform equally well in what follows because in the applications below \(\text{supp} \hat{f} \) will be uniformly spread out over \(S \).

The proof of (1.3) requires a modification of the argument in [B-D] (for positive curvature). Details appear in [B-D2]. Our next goal is to derive from (1.3) a decoupling inequality for curves \(\Gamma \subset \mathbb{R}^n \) not lying in a hyperplane and which will imply our Theorem 1.

2. Construction of hypersurfaces from curves

Let \(\Gamma \subset \mathbb{R}^n \) be parametrized by \(\Phi : [0,1] \to \mathbb{R}^n : t \to (t, \varphi_1(t), \ldots, \varphi_{n-1}(t)) \) where we assume for simplicity that \(\varphi_1, \ldots, \varphi_{n-1} \) are real analytic and (importantly) that \(t, \varphi_1, \ldots, \varphi_{n-1} \) linearly independent. In particular, \(\Gamma \) does not lie in a hypersurface. Our assumption means non-vanishing of the Wronskian determinant

\[
W(\varphi_1'', \ldots, \varphi_{n-1}'') \neq 0. \tag{2.1}
\]

We build a hypersurface \(S \subset \mathbb{R}^n \) as \((n-1)\)-fold sum set

\[
S = \Gamma_1 + \cdots + \Gamma_{n-1} \tag{2.2}
\]

where \(\Gamma_j = \Phi(I_j) \) and \(I_1, \ldots, I_{n-1} \subset I \subset [0,1] \) are fixed consecutive disjoint subintervals. Hence \(S \) is parametrized by

\[
\begin{align*}
x_0 &= t_1 + \cdots + t_{n-1} \\
x_1 &= \phi_1(t_1) + \cdots + \phi_1(t_{n-1}) \\
& \quad \vdots \\
x_{n-1} &= \phi_{n-1}(t_1) + \cdots + \phi_{n-1}(t_{n-1})
\end{align*} \tag{2.3}
\]

with \(t_j \in I_j \). Our aim is to show that the second fundamental form of \(S \) is non-degenerate (but note that it may be indefinite).
Perturb \(t = (t_1, \ldots, t_{n-1}) \in I_1 \times \cdots \times I_{n-1} \) to \((t_1 + s_1, \ldots, t_{n-1} + s_{n-1}) \), \(|s_j| = o(1)\), obtaining

\[
x_0 - t_1 - \cdots - t_{n-1} = x_0' = s_1 + \cdots + s_{n-1}
\]

\[
\begin{pmatrix}
 x_1 - \phi_1(t_1) - \cdots - \phi_1(t_{n-1}) \\
 \vdots \\
 x_{n-1} - \phi_{n-1}(t_1) - \cdots - \phi_{n-1}(t_{n-1})
\end{pmatrix} =
\begin{pmatrix}
 x_1' \\
 \vdots \\
 x_{n-1}'
\end{pmatrix} = D_1
\begin{pmatrix}
 s_1 \\
 \vdots \\
 s_{n-1}
\end{pmatrix} + \frac{1}{2} D_2 \begin{pmatrix}
 s_1^2 \\
 \vdots \\
 s_{n-1}^2
\end{pmatrix} + O(|s|^3)
\]

(2.4)

with

\[
D_1 = \begin{pmatrix}
 \phi'_1(t_1) \cdots \phi'_1(t_{n-1}) \\
 \vdots \\
 \phi'_{n-1}(t_1) \cdots \phi'_{n-1}(t_{n-1})
\end{pmatrix}
\quad \text{and} \quad
D_2 = \begin{pmatrix}
 \phi''_1(t_1) \cdots \phi''_1(t_{n-1}) \\
 \vdots \\
 \phi''_{n-1}(t_1) \cdots \phi''_{n-1}(t_{n-1})
\end{pmatrix}.
\]

(2.5)

The non-vanishing of \(\det D_1 \) can be derived from the non-vanishing of
\(W(\phi'_1, \ldots, \phi'_{n-1}) \) which is a consequence of our assumption (2.1).

Hence, since \(D_1 \) is invertible and denoting \(\xi = (1, \ldots, 1) \in \mathbb{R}^{n-1} \), the first equation in (2.4) gives

\[
x_0' = \langle D_1^{-1} \begin{pmatrix}
 x'_1 \\
 \vdots \\
 x'_{n-1}
\end{pmatrix}, \xi \rangle - \frac{1}{2} \sum_{j=1}^{n-1} s_j^2 \langle D_1^{-1} D_2 e_j, \xi \rangle + O(|s|^3)
\]

\[
= \langle \begin{pmatrix}
 x''_1 \\
 \vdots \\
 x''_{n-1}
\end{pmatrix}, \xi \rangle - \frac{1}{2} \sum_{j=1}^{n-1} (x''_j)^2 \langle D_1^{-1} D_2 e_j, \xi \rangle + O(|x''|^3)
\]

(2.6)

where

\[
\begin{pmatrix}
 x''_1 \\
 \vdots \\
 x''_{n-1}
\end{pmatrix} = D_1^{-1} \begin{pmatrix}
 x'_1 \\
 \vdots \\
 x'_{n-1}
\end{pmatrix}.
\]

(2.6)

From (2.6), it remains to ensure that

\[
\langle D_1^{-1} D_2 e_j, \xi \rangle \neq 0 \text{ for each } j = 1, \ldots, n-1.
\]

(2.7)

Take \(j = 1 \). Up to a multiplicative factor,
\begin{align*}
\langle D_2 e_1, (D_1^{-1})^* \xi \rangle &= \sum_{k=1}^{n-1} \phi_k''(t_1) \\
&= \sum_{k=1}^{n-1} \phi_k''(t_1) \cdot \phi_k'(t_{n-1})
\end{align*}

By the mean-value theorem, we obtain separated $t_1 < t'_2 < \cdots < t'_{n-1}$ such that

\begin{align*}
&= \sum_{k=1}^{n-1} (-1)^k \phi_k''(t_1) \cdot \phi_k'(t_{n-1}) \\
&= \phi_k''(t_1) \cdot \phi_k'(t_{n-1}) \cdot \phi_k'(t_1) \cdot \phi_k''(t_{n-1})
\end{align*}

and the non-vanishing can again be ensured by (2.1).

3. **Decoupling inequality for curves**

Next, we use (1.3) to derive a decoupling inequality for curves (a variant of this approach appears in [B-D2]).

Let $\Gamma_1, \ldots, \Gamma_{n-1} \subset \Gamma \subset \mathbb{R}^n$ be as in §2. Let $\delta > 0$ and denote by Γ_j^δ a δ-neighborhood of Γ_j.

Assume $\text{supp } \hat{f}_j \subset \Gamma_j^\delta$.

Write with $x = (x_0, x_1, \ldots, x_{n-1}) \in \mathbb{R}^n$ and Φ as above

\begin{align*}
\prod_{j=1}^{n-1} \left[\int_{I_j} \hat{f}_j(t_j) e(\langle \Phi(t_j), x \rangle) dt_j \right] &= \\
\int_{I_1} \cdots \int_{I_{n-1}} \left[\prod_{j=1}^{n-1} \hat{f}_j(t_j) \right] e(\langle \Phi(t_1) + \cdots + \Phi(t_{n-1}), x \rangle) dt_1 \cdots dt_{n-1} &= \\
\int_{S} \left[\prod_{j=1}^{n-1} \hat{f}_j(t_j) \right] e(\xi, x) \Omega(\xi) d\xi
\tag{3.1}
\end{align*}

with Ω some smooth density on S.
Let \(p = \frac{2(n+1)}{n-1} \) and apply the decoupling inequality for \(S \) stated in (1.3) of Section 1. Observe that by the regularity of \(D_1 \) in (2.5), a partition of \(S \) in \(\sqrt{d} \)-caps \(\tau_\alpha \subset S \) is equivalent to a partition of \(I_1 \times \cdots \times I_{n-1} \) in \(\sqrt{d} \)-cubes. Hence, denoting by \(J \subset [0,1] \) \(\sqrt{d} \)-intervals, we obtain

\[
\| (3.1) \|_{L^p(B_1)} \ll \delta^{-\frac{n}{2(n+1)}} \left\{ \sum_{J_1, \ldots, J_{n-1}} \left\| \prod_{j=1}^{n-1} \left[\int_{I_j} \hat{f}_j(t_j) e(t_j x_0 + f_1(t_j) x_1 + \cdots + f_{n-1}(t_j) x_{n-1}) \, dt_j \right] \right\|_{L^p(B_1)} \right\}^{1/p}.
\]

Next take \(N = \frac{1}{\delta} \) and discretize inequality (3.2) by setting \(t = \frac{k}{N}, k \in \{ \frac{N}{2}, \ldots, N \} \).

This leads to the following inequality for separated intervals \(U_1, \ldots, U_{n-1} \subset \{ \frac{N}{2}, \ldots, N \} \)

\[
\left\| \prod_{j=1}^{n-1} \left[\sum_{k \in U_j} a_k e(k x_0 + N \varphi_1 \left(\frac{k}{N} \right) x_1 + \cdots + N \varphi_{n-1} \left(\frac{k}{N} \right) x_{n-1}) \right] \right\|_{L^p([0,1]^n)} \ll \]

\[
N^{-\frac{n}{2(n+1)} + \varepsilon} \left(\sum_{V_1, \ldots, V_{n-1}} \left\| \prod_{j=1}^{n-1} \left[\sum_{k \in V_j} a_k e(\cdots) \right] \right\|_{L^p([0,1]^n)} \right)^{\frac{1}{p}}.
\]

with \(V \subset \{ \frac{N}{2}, \ldots, N \} \) running in a partition in \(\sqrt{N} \)-size intervals.

Note that the domain \([0,1]^n\) may always be replaced by a larger box \(\prod_{j=0}^{n-1} [0, K_j], K_j \geq 1 \). In particular, the function

\[k x_0 + N \varphi_1 \left(\frac{k}{N} \right) x_1 + \cdots + N \varphi_{n-1} \left(\frac{k}{N} \right) x_{n-1} \]

in (3.3) may be replaced by

\[k x_0 + N_1 \varphi_1 \left(\frac{k}{N} \right) x_1 + \cdots + N_{j-1} \varphi_{n-1} \left(\frac{k}{N} \right) x_{n-1} \]

where \(N_1, \ldots, N_{j-1} \geq N \).

Take \(\varphi_1(t) = t^2, N_1 = N^2, N_2 = \cdots = N_{j-1} = N \). We obtain

\[
\left\| \prod_{j=1}^{n-1} \left[\sum_{k \in U_j} e(k x_0 + k^2 x_1 + N \varphi_2 \left(\frac{k}{N} \right) x_2 + \cdots + N \varphi_{n-1} \left(\frac{k}{N} \right) x_{n-1}) \right] \right\|_{L^p([0,1]^n)} \ll \]

\[
N^{-\frac{n}{2(n+1)} + \varepsilon} \left(\sum_{V_1, \ldots, V_{n-1}} \left\| \prod_{j=1}^{n-1} \left[\sum_{k \in V_j} e(\cdots) \right] \right\|_{L^p([0,1]^n)} \right)^{\frac{1}{p}}.
\]
Our next task is to bound the individual summands in (3.4).

Write \(\bar{k} = (k_1, \ldots, k_{n-1}) \in V_1 \times \cdots \times V_{n-1} \) as \(\bar{k} = \bar{\ell} + \bar{m}, \ell_j \) the center of \(V_j \) and \(|m_j| < \sqrt{N}. \) Hence

\[
\sum_{j=1}^{n-1} \left(k_j x_0 + k_j^2 x_1 + N \phi_2 \left(\frac{k_j}{N} \right) x_2 + \cdots + N \phi_{n-1} \left(\frac{k_j}{N} \right) x_{n-1} \right) = \\
m_1 \left(x_0 + 2 \ell_1 x_1 + \phi_2' \left(\frac{\ell_1}{N} \right) x_2 + \cdots + \phi_{n-1}' \left(\frac{\ell_1}{N} \right) x_{n-1} \right) + \\
\vdots \\
+ m_{n-1} \left(x_0 + 2 \ell_{n-1} x_1 + \phi_2' \left(\frac{\ell_{n-1}}{N} \right) x_2 + \cdots + \phi_{n-1}' \left(\frac{\ell_{n-1}}{N} \right) x_{n-1} \right) + \\
(m_1^2 + \cdots + m_{n-1}^2) x_1 + \psi(\bar{m}, x) \\
\tag{3.5}
\]

where \(|\psi(\bar{m}, x)| < o(1) \) and \(|\partial_m \psi(\bar{m}, x)| < O(N^{-\frac{1}{2}}) \) since \(|\bar{m}| < \sqrt{N} \) and \(|x| < 1. \)

Thus \(\psi(\bar{m}, x) \) may be dismissed in (3.4) when evaluating

\[
\| \prod_{j=1}^{n-1} |\sum_{k \in V_j} e(\cdots)| \|_{L^p([0,1]^n)}.
\]

Make an affine change of variables

\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_{n-1}
\end{pmatrix} = A \begin{pmatrix}
 x_0 \\
 x_2 \\
 \vdots \\
 x_{n-1}
\end{pmatrix}
\]

with

\[
A = \begin{bmatrix}
 1 & \phi_2' \left(\frac{\ell_1}{N} \right) & \cdots & \phi_{n-1}' \left(\frac{\ell_1}{N} \right) \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & \phi_2' \left(\frac{\ell_{n-1}}{N} \right) & \cdots & \phi_{n-1}' \left(\frac{\ell_{n-1}}{N} \right)
\end{bmatrix}
\]

in the \((x_0, x_2, \ldots, x_{n-1}) \) variables, noting that this linear coordinate change can be assumed regular provided \(W(\phi_2'', \ldots, \phi_{n-1}'') \neq 0 \) (which is implied by (2.1) for \(\phi_1(t) = t^2 \)).

Next, using periodicity, another coordinate shift leads to

\[
\begin{align*}
\| \prod_{j=1}^{n-1} & \sum_{k \in V_j} e(\cdots) \|_{L^p([0,1]^n)} \sim \\
\| \sum_{m_1, \ldots, m_{n-1} < \sqrt{N}} & e \left(m_1 y_1 + \cdots + m_{n-1} y_{n-1} + (m_1^2 + \cdots + m_{n-1}^2) x_1 \right) \|_{L^p_{y_1, y_2, \ldots, y_{n-1}}([0,1]^n)} \\
& \ll N^{\frac{1}{2} + \varepsilon} \\
\end{align*}
\]

\tag{3.6}
by the Strichartz inequality on \mathbb{T}^n.

Summarizing, we proved the following multi-linear mean value theorem.

Theorem 1. Assume $n \geq 3$ and $\varphi_2, \ldots, \varphi_{n-1}$ satisfying

$$W(\varphi_2, \ldots, \varphi_{n-1}) \neq 0.$$

Let $U_1, \ldots, U_{n-1} \subset \left[\frac{N}{2}, N\right] \cap \mathbb{Z}$ be $O(N)$-separated intervals. Then

$$\left\| \prod_{j=1}^{n-1} \sum_{k \in U_j} e\left(k x_0 + k^2 x_1 + N \varphi_2\left(\frac{k}{N}\right) x_2 + \cdots + N \varphi_{n-1}\left(\frac{k}{N}\right) x_{n-1}\right) \right\|_{L^{2(n+1)}/(\mathbb{R}^n)} \leq N^{n+1/2} + \varepsilon. \quad (3.7)$$

Remarks.

(i) Theorem 1 remains valid (following the same argument) with coefficients a_k, $k \in U_j$ and r.h.s. replaced by $\prod_{j=1}^{n-1} (\sum_{k \in U_j} |a_k|^2)^{1/2}$.

(ii) Note that (3.7) is best possible. Indeed, restricting $|x_0| < \frac{1}{N}$, $|x_1| < \frac{1}{N^2}$, $|x_2| < \frac{1}{N^3}$, ..., $|x_{n-1}| < \frac{1}{N}$, one gets the contribution

$$N^{n-1 - \frac{n-1}{2(n+1)}(n+1)} = N^{\frac{n-1}{2}}.$$

(iii) Also, as we will see shortly, (3.7) is only valid in the above multi-linear form.

4. **Mean values estimates for the 8th and 10th moment**

Note that (3.7) is the multi-linear version of an estimate on

$$\left\| \sum_{k \sim N} e\left(k x_0 + k^2 x_1 + N \varphi_2\left(\frac{k}{N}\right) x_2 + \cdots + N \varphi_{n-1}\left(\frac{k}{N}\right) x_{n-1}\right) \right\|_{L^{2(n+1)}([0,1]^n)}.$$

(4.1)

Denoting $f_I = \sum_{k \in I} e\left(k x_0 + k^2 x_1 + N \varphi_2\left(\frac{k}{N}\right) x_2 + \cdots + N \varphi_{n-1}\left(\frac{k}{N}\right) x_{n-1}\right)$ for $I \subset [1, N]$ a subinterval, one adopts the following argument from [B-G].

Partition $[1, N]$ in intervals I of size $N^{1-\tau}$ ($\tau > 0$ small). Fix a point x and distinguish the following two scenarios. Either we can find $n - 1$ intervals I_1, \ldots, I_{n-1} that are $O(N^{1-\tau})$-separated and such that

$$|f_{I_j}(x)| > N^{-2\tau} |f(x)| \quad \text{for} \quad 1 \leq j \leq n - 1 \quad (4.2)$$

or for some interval I, we have

$$|f_I(x)| > c |f(x)|. \quad (4.3)$$
The contribution of (4.2) is captured by the multi-linear estimate (3.7) and we obtain $N^{1+c}\tau$. For the (4.3)-contribution, bound by

$$\max |f_I| \leq \left[\sum_I |f_I|^{2(n+1)} \right]^{\frac{1}{2(n+1)}}$$

contributing to

$$\left[\sum_I \|f_I\|_{L^2(2(n+1))}^{2(n+1)} \right]^{\frac{1}{2(n+1)}}.$$

(4.4)

One may then repeat the process to each f_I. Note that after a coordinate change in x_0, x_1, we obtain exponential sums of the form

$$F(x) = \sum_{\ell \sim M} e\left(\ell x_0 + \ell^2 x_1 + N\varphi_2\left(\frac{k}{N} + \frac{\ell}{N} \right)x_2 + \cdots + N\varphi_{n-1}\left(\frac{k}{N} + \frac{\ell}{N} \right)x_{n-1} \right)$$

with $M = N^{1-\tau}$, $k \sim N$ fixed. Set for $j = 1, \ldots, n - 1$.

$$N\varphi_j\left(\frac{k}{N} + \frac{\ell}{N} \right) = M\psi_j\left(\frac{\ell}{M} \right)$$

(4.6)

with

$$\psi_j(t) = \frac{N}{M}\varphi\left(\frac{k}{N} + \frac{M}{N}t \right).$$

(4.7)

However the Wronskian condition $W(\psi''_2, \ldots, \psi''_{n-1}) > O(1)$ deteriorated. For $n = 3$ we will nevertheless be able to retrieve easily the expected bound, while for $n \geq 4$, the linear bounds turn out to be weaker than the multi-linear one.

Let $n = 3$. Then $\psi_2''(t) = \frac{M^2}{N^2}\varphi''\left(\frac{k}{N} + \frac{M}{N}t \right) = O\left(\frac{M^2}{N^2} \right)$ and replacing $\psi_2 = \frac{M^2}{N^2}\varphi_2, x'_2 = \frac{M^2}{N^2}x_2$, this leads to

$$\|F\|_{L^8_{x_0, x_1, x'_2 = O(1)}} \sim \left(\frac{N}{M} \right)^{\frac{1}{2}} \left\| \sum_{\ell \sim M} e\left(\ell x_0 + \ell^2 x_1 + M\varphi_2\left(\frac{\ell}{M} \right)x'_2 \right) \right\|_{L^8_{x_0, x_1, x'_2 = O(1)}}$$

$$\leq \left(\frac{N}{M} \right)^{\frac{1}{2}} \cdots \left\| \right\|_{L^8_{x_0, x_1, x'_2 = O(1)}}$$

$$< \left(\frac{N}{M} \right)^{\frac{1}{2}} M^{\frac{3}{4} + \varepsilon}$$

assuming the expected bound at scale M. The bound on (4.4) becomes then

$$\left(\frac{N}{M} \right)^{\frac{3}{8}} M^{\frac{3}{4} + \varepsilon} = \left(\frac{M}{N} \right)^{\frac{1}{8}} N^{\frac{3}{4} + \varepsilon}$$

and summing over dyadic $M < N$ we reproved the main result from [3-12].
Theorem 2. [B-I2].

Assume \(\varphi''' \neq 0 \). Then

\[
\left\| \sum_{k \sim N} e\left(kx_0 + k^2x_1 + N\varphi\left(\frac{k}{N} \right)x_2 \right) \right\|_8 \ll N^{\frac{1}{2} + \varepsilon}.
\] (4.8)

Note that in their application to \(\zeta(\frac{1}{2} + it) \), \(\varphi(t) = t^{3/2} \).

It is interesting to note that unlike in [B-I2], our derivation of (4.8) did not make use of Poisson summation (i.e. Process B).

The work of [B-I1] was extensively refined by Huxley and his collaborators, resulting in his book [H].

The present discussion is relevant to the so called ‘First Spacing Problem’; (4.8) indeed means that the system

\[
\begin{cases}
 k_1 + k_2 + k_3 + k_4 = k_5 + \cdots + k_8 \\
 k_1^2 + \cdots + k_4^2 = k_5^2 + \cdots + k_8^2 \\
 k_1^{3/2} + \cdots + k_4^{3/2} = k_5^{3/2} + \cdots + k_8^{3/2} + O(\sqrt{N}).
\end{cases}
\] (4.9)

has at most \(N^{4 + \varepsilon} \) solutions in integers \(k_1, \ldots, k_8 \sim N \) (the statement is clearly optimal).

Huxley considers the more elaborate problem in 10-variables

\[
\begin{cases}
 k_1 + k_5 = k_6 + \cdots + k_{10} \\
 k_1^2 + \cdots + k_5^2 = k_6^2 + \cdots + k_{10}^2 \\
 k_1^{3/2} + \cdots + k_5^{3/2} = k_6^{3/2} + \cdots + k_{10}^{3/2} + O(\delta N^{3/2}) \\
 k_1^{1/2} + \cdots + k_5^{1/2} = k_6^{1/2} + \cdots + k_{10}^{1/2} + O(\Delta N^{1/2})
\end{cases}
\] (4.10)

(see [H], §11) for which the number \(N_{10}(\delta, \Delta) \) of solutions is given by the 10th moment

\[
\left\| \sum_{k \sim N} e\left(kx_0 + k^2x_1 + \frac{1}{5} \left(\frac{k}{N} \right)^{3/2} x_2 + \frac{1}{\Delta} \left(\frac{k}{N} \right)^{1/2} x_3 \right) \right\|_{L^{10}_{x_0, x_1, x_2, x_3}}. \] (4.11)

In the applications to exponential sums, \(\Delta = \delta N, \frac{1}{N^{1/2}} < \delta < \frac{1}{N} \). In this setting, the following key inequality appears in [H-K].

Theorem 3. [H-K]. With \(\Delta = \delta N, \frac{1}{N^{1/2}} < \delta < \frac{1}{N} \), we have

\[N_{10}(\delta, \delta N) \ll \delta N^{7+\varepsilon}. \] (4.12)
In what follows, we estimate (4.11) using Theorem 7 and will in particular retrieve (4.12) in a stronger form.

Start by observing that, as a consequence of (3.7), for U_1, U_2, U_3 and φ_2, φ_3 as in Theorem 1
\[
\int_0^1 \int_0^1 \int_0^1 \int_0^1 \left\{ \prod_{j=1}^3 \sum_{k \in U_j} e\left(kx_0 + k^2x_1 + \frac{1}{\delta} \varphi_2\left(\frac{k}{N}\right)x_2 + \frac{1}{\Delta} \varphi_3\left(\frac{k}{N}\right)x_3\right) \right\} dx_0 dx_1 dx_2 dx_3 \ll

\left[\min(\delta N, N) + 1 \right] \left[\min(\Delta N, N) + 1 \right] N^{5+\varepsilon} \tag{4.13}
\]

Using the scale reduction described in (4.1)-(4.7), we also need to evaluate the contributions of
\[
M \cdot (4.14) \tag{4.15}
\]
with
\[
(4.14) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \left\{ \prod_{j=1}^3 \sum_{\ell \in U_j} e\left(\ell x_0 + \ell^2 x_1 + \frac{1}{\delta} \varphi_2\left(\frac{k+\ell}{N}\right)x_2 + \frac{1}{\Delta} \varphi_3\left(\frac{k+\ell}{N}\right)x_3\right) \right\}
\]
where $k \in \left[\frac{N}{2}, N \right]$, $I = [k, k+M]$ and U_1, U_2, U_3 are $\sim M$ separated subintervals of size $\sim M$ in I. By a change of variables in x, the phase function in (4.16) may be replaced by
\[
e\left(\ell x_0 + \ell^2 x_1 + \frac{M^3}{\delta N^3} \tilde{\varphi}_2\left(\frac{\ell}{M}\right)x_2 + \frac{M^4}{\Delta N^4} \tilde{\varphi}_3\left(\frac{\ell}{M}\right)x_3\right) \tag{4.16}
\]
where $\tilde{\varphi}_2(t)$ has leading monomial t^3 and $\tilde{\varphi}_3(t)$ leading monomial t^4. Hence $W(\tilde{\varphi}''_2, \tilde{\varphi}''_3) > c$ and (4.13) is applicable to (4.14) with N, δ, Δ replaced by $M, \frac{\delta N^3}{M^2}, \frac{\Delta N^4}{M^4}$. Therefore
\[
(4.15) \ll \left[1 + \min \left(\frac{\delta N^3}{M^2}, M \right) \right] \left[1 + \min \left(\frac{\Delta N^4}{M^3}, M \right) \right] M^4 N^{1+\varepsilon} \tag{4.17}
\]
and (4.17) needs to be summed over dyadic $M < N$. One easily checks that the conclusion is as follows

Theorem 4. Assume $W(\varphi''_2, \varphi''_3) \neq 0$ and $\delta < \Delta$. Then
\[
\left\| \sum_{k \sim N} e\left(kx_0 + k^2x_1 + \frac{1}{\delta} \varphi_2\left(\frac{k}{N}\right)x_2 + \frac{1}{\Delta} \varphi_3\left(\frac{k}{N}\right)x_3\right) \right\|_{10}^{10} \ll

\left[\delta \Delta^{3/4} N^7 + (\delta + \Delta) N^6 + N^5 \right] N^\varepsilon. \tag{4.18}
\]
In particular
\[
N_{10}(\delta, \Delta) < (4.18).
\]
Hence, we are retrieving Theorem 3.

Remark. We make the following comment on the role of the first term in the r.h.s. of (4.18), relevant to the Remark following Theorem 1.

Partition \([\frac{N}{2}^+, N]\) in intervals \(I = [n, n+M]\) of size \(M\). Obviously \(N_{10}(\delta, \Delta)\) is at least \(\frac{N}{M}\) times a lower bound on the number of solutions of

\[
\begin{align*}
\left\{
\begin{array}{l}
m_1 + \ldots + m5 = m6 + \ldots + m10 \\
m1^2 + \ldots + m5^2 = m6^2 + \ldots + m10^2 \\
\left(\frac{n+m1}{N} \right)^2 + \ldots + \left(\frac{n+m5}{N} \right)^2 = \left(\frac{n+m6}{N} \right)^2 + \ldots + \left(\frac{n+m10}{N} \right)^2 + O(\delta) \\
\left(\frac{n+m1}{N} \right)^2 + \ldots + \left(\frac{n+m5}{N} \right)^2 = \left(\frac{n+m6}{N} \right)^2 + \ldots + \left(\frac{n+m10}{N} \right)^2 + O(\Delta)
\end{array}
\right. \\
\end{align*}
\]

(4.19) \quad (4.20)

Since

\[
\left(\frac{n+m}{N} \right)^2 = \left(\frac{n}{N} \right)^2 + \frac{3}{2} \left(\frac{n}{N} \right) \frac{m}{N} + \frac{3}{2} \left(\frac{n}{N} \right) - \frac{7}{16} \left(\frac{n}{N} \right)^2 + \frac{3}{16} \left(\frac{n}{N} \right) - \frac{3}{4} \left(\frac{n}{N} \right)^3 + \ldots
\]

\[
\left(\frac{n+m}{N} \right)^2 = \left(\frac{n}{N} \right)^2 - \frac{1}{2} \left(\frac{n}{N} \right) \frac{m}{N} - \frac{1}{8} \left(\frac{n}{N} \right)^2 + \frac{3}{16} \left(\frac{n}{N} \right) - \frac{7}{4} \left(\frac{n}{N} \right)^3 - \frac{15}{128} \left(\frac{n}{N} \right)^4 + \ldots
\]

the equations (4.20) may be replaced by

\[
\begin{align*}
\left\{ \begin{array}{l}
\varphi \left(\frac{m}{N} \right) + \ldots - \varphi \left(\frac{m10}{N} \right) = O(\delta) \\
\psi \left(\frac{m}{N} \right) + \ldots - \psi \left(\frac{m10}{N} \right) = O(\Delta)
\end{array} \right. \\
\end{align*}
\]

with \(\varphi, \psi\) of the form \(\varphi(t) = a3t^3 + a4t^4 + \ldots\) and \(\psi(t) = b3t^3 + b4t^4 + \ldots\)

and where \(\begin{vmatrix} a3 & b3 \\ a4 & b4 \end{vmatrix} \neq 0\).

Assume \(\delta < \Delta\) and replace \(\psi\) by \(\psi_1 = \psi - \frac{b3}{a3} \varphi = c4t^4 + \ldots\)

Writing \(\frac{m}{N} = \frac{M}{N} \frac{n}{M}\), we obtain conditions of the form

\[
\begin{align*}
\begin{array}{l}
\tilde{\varphi} \left(\frac{m}{M^7} \right) + \ldots - \tilde{\varphi} \left(\frac{m10}{M^7} \right) = O \left(\frac{N^3}{M^7} \delta \right) \\
\tilde{\psi} \left(\frac{m}{M^7} \right) + \ldots - \tilde{\psi} \left(\frac{m10}{M^7} \right) = O \left(\frac{N^4}{M^4} \Delta \right)
\end{array}
\end{align*}
\]

(4.21)

where \(\tilde{\varphi} = t^3 + \ldots, \tilde{\psi}_1 = t^4 + \ldots\). Consider the system (4.19)+(4.21) with \(m_i \leq M\). Clearly the number of solutions is at least

\[
M^7 \min \left(1, \frac{N^3}{M^3} \delta \right) \min \left(1, \frac{N^4}{M^4} \Delta \right).
\]

Taking \(M = \Delta^{1/4}N\), we obtain \(N^7(\delta \Delta)\). The quantity is multiplied further with \(\frac{N}{M}\), leading to a lower bound \(\delta \Delta^{3/4} N^7\) for \(N_{10}(\delta, \Delta)\).
This shows that the first term in (4.18) (apart from the N^ε factor) is also a lower bound.

In our applications, Δ tends to be much larger then δ which makes ΔN the leading term in (4.18). Next, we develop an argument to reduce the weight of ΔN by involving also some ideas and techniques from [II]. It is likely that our presentation can be improved at this point.

We will need the following variant of van der Corput’s exponential sum bound (cf. [Ko], Theorem 2.6).

Lemma 5. Assume f a smooth function on $I = [\frac{N}{2}, N]$ and $f^{(3)} \sim \lambda_3$. Let \{V_j\} denote a partition of I in intervals of size D. Then

$$\sum_j \left| \sum_{n \in V_j} e(f(n)) \right|^2 \lesssim \begin{cases} N + D^\frac{1}{2}\lambda_3^\frac{1}{2} + D^\frac{2}{3}\lambda_3^\frac{2}{3}N & \text{if } D > \lambda_3^{-\frac{2}{3}} \quad (4.22) \\ ND^\frac{1}{2} + D\lambda_3^{-\frac{2}{3}} & \text{if } D \leq \lambda_3^{-\frac{2}{3}} \quad (4.23) \end{cases}$$

We first proceed with a multi-linear bound considering instead of (4.13) 5-linear expressions with $U_j \subset [\frac{N}{2}, N]$ of size $\sim N$ and $\sim N$ separated $(1 \leq j \leq 5)$

$$\int \left\{ \prod_{j=1}^5 \left| \sum_{k \in U_j} e\left(kx_0 + k^2x_1 + \frac{1}{\delta}(\frac{k}{N})^{3/2}x_2 + \frac{1}{\Delta}(\frac{k}{N})^{\frac{1}{2}}x_3\right) \right|^2 \right\} dx_0dx_1dx_2dx_3. \quad (4.24)$$

This quantity will increase by increasing δ and we replace δ by a parameter $\delta_1 > \delta$ to be specified. An application of Hölder’s inequality permits then to bound (4.24) by (4.13) with δ replaced by δ_1.

Assuming $\Delta < 1$, perform a decoupling at scale $N\Delta^\frac{1}{2}$ using (3.2). This gives an estimate on the l.h.s. of (4.13) by

$$\Delta^{-1} \int \prod_{j=1}^3 \left[\sum_{V_j \subset U_j} \left| \sum_{k \in V_j} e(\cdots) \right|^{\frac{10}{3}} \right] dx \quad (4.25)$$

with $V_j \subset U_j$ a partition in $N\Delta^\frac{1}{2}$-intervals. Using again Hölder’s inequality, one may bound

$$\prod_{j=1}^3 \left[\sum_{V_j \subset U_j} \left| \frac{10}{3} \right| \right] \leq \left(\sum_{V \subset [\frac{N}{2}, N]} \left| \frac{2}{3} \right| \right) \prod_{j=1}^2 \left(\sum_{V_j \subset U_j} \left| \frac{4}{3} \right| \right) + \cdots \quad (4.26)$$

where \cdots refers to the pairs U_2, U_3 and U_3, U_1 instead of U_1, U_2.
Specifying in (4.13), with δ replaced by δ_1, a range

$$x_2 \sim X_2 < 1 \text{ assuming } X_2 \Delta > 100 \delta_1$$

(4.27)

an application of (4.22) to the first factor of (4.26) with $D = \Delta^{\frac{1}{2}} N, \lambda_3 \sim \frac{X_2}{\delta_1 N^2}$ gives the bound

$$N + \delta_1^\frac{1}{2} \Delta^{\frac{1}{2}} N^2 X_2^{-\frac{1}{2}} + \delta_1^{-\frac{1}{2}} \Delta^{\frac{3}{2}} N X_2^\frac{1}{2}.$$

(4.28)

We always assume

$$\Delta N > 100$$

(4.29)

(this condition remains clearly preserved at lower scales, cf. (4.17)).

Apply the bilinear estimate (Theorem 1 with $n = 3$) to the second factor of (4.26) considering the variables x_0, x_1, x_2 and restricting $x_2 \sim X_2$. By (4.24), this gives the contribution

$$(1 + \delta_1^{\frac{1}{2}} \Delta^{\frac{1}{2}} N X_2^{-\frac{1}{2}} + \delta_1^{-\frac{1}{2}} \Delta^{\frac{3}{2}} X_2^{\frac{1}{2}}) (X_2 + \delta_1 N)^{5+\epsilon}.$$

Assuming $X_2 > \delta_1 N$, which by (4.29) implies (4.27), gives the bound

$$(1 + \delta_1^{\frac{1}{2}} \Delta^{\frac{1}{2}} N + \delta_1^{-\frac{1}{2}} \Delta^{\frac{3}{2}}) N^{5+\epsilon}.$$

The contribution of $X_2 < \delta_1 N$ is estimated by

$$\Delta^{-1} \int_0^1 \int_0^1 \int_0^{\delta_1 N} \int_0^1 \left\{ \prod_{j=1}^3 \left[\sum_{V_j \subset U_j} \right] \right\} dx_0 dx_1 dx_2 dx_3 \ll \Delta^{-1} \left(\frac{N}{\Delta^{1/2} N} \right)^3 (\Delta N) \delta_1 N (\Delta^{\frac{1}{2}} N)^5 \ll \Delta \delta_1 N^{7+\epsilon}$$

assuming $\delta_1 N < 1$. This gives

$$(1 + \delta_1^{\frac{1}{2}} \Delta^{\frac{1}{2}} + \delta_1^{\frac{3}{2}} \Delta^{\frac{3}{2}} N + \Delta \delta_1 N^2) N^{5+\epsilon}$$

(4.30)

and setting $\delta_1 = \Delta^{\frac{1}{2}} N^{-1}$, assuming $\delta_1 > \delta$ gives

$$((\Delta N)^\frac{1}{2} + \Delta^{3/2} N) N^{5+\epsilon}.$$

If $\delta_1 \leq \delta$, use (4.30) with $\delta_1 = \delta$.

Thus the multi-linear contribution in the 10th moment may be estimated by

$$\left(\delta^{\frac{1}{2}} \Delta^{\frac{1}{2}} N + \Delta \delta N^2 + (\Delta N)^{\frac{1}{2}} + \Delta^{3/2} N \right) N^{5+\epsilon}.$$

(4.31)
Next, consider the lower scale contributions

\[\sum_{I \subseteq \left[\frac{N}{2}, N \right]} \left\| \sum_{n \in I} e(\cdots) \right\|_{10}^{10}. \]

(4.32)

Fixing \(M < N \) and replacing \(\delta \), resp. \(\Delta \), by \(\frac{N^3}{M^2} \delta \), resp. \(\frac{N^4}{M^2} \Delta \), we obtain the bound

\[(\delta^{\frac{1}{2}} \Delta^{\frac{1}{4}} N + (\Delta N)^{\frac{1}{2}}) N^{5+\varepsilon} + (\Delta \Delta N + \Delta^{3/2}) \frac{N^{7+\varepsilon}}{M} \]

for the multi-linear contribution at scale \(M \).

On the other hand, we can also make a crude estimate using the \(L^8 \)-norm, leading to the contribution

\[\frac{N}{M} M^2 \left(1 + \delta \frac{N^3}{M^2} \right) M^{4+\varepsilon} \ll N M^{5+\varepsilon} + \delta N^4 M^{3+\varepsilon} \]

(4.34)

and \((\Delta N)^{\frac{1}{2}} N^{5+\varepsilon} \) for \(M < (\Delta N)^{\frac{1}{10}} N^{4/5} \) and \(\delta < N^{-7/5}(\Delta N)^{\frac{1}{5}} \).

Hence we get

Lemma 6. For \(N \Delta > 1 \) and \(\delta < N^{-7/5}(\Delta N)^{\frac{1}{5}} \)

\[N_{10}(\delta, \Delta) \ll (\delta^{\frac{1}{2}} \Delta^{\frac{1}{4}} N + (\Delta N)^{\frac{1}{2}}) N^{5+\varepsilon} + (\Delta \Delta N + \Delta^{3/2}) (\Delta N)^{\frac{1}{10}} N^{\frac{11}{5}+\varepsilon}. \]

(4.35)

Next, recall Lemma 11, 3.3 in [H].

Lemma 7. Assume \(\frac{1}{N} > \delta > \frac{1}{N^2} \) and \(\frac{1}{N} < \Delta < \delta N \). Letting

\[2 \leq T \leq \frac{1}{\sqrt{\delta N}} \]

be a parameter, the following inequality holds

\[N_{10}(\delta, \Delta) \lesssim \frac{1}{T} N_{10}(T^2 \delta, T \Delta) + N_{10}(\delta, CT \delta). \]

(4.36)

Combining Theorem 4, Lemmas 6 and 7 (applied with \(T = \Delta N \)) gives

Lemma 8. Assume \(\frac{1}{N} > \delta > \frac{1}{N^2}, \frac{1}{N} < \Delta < \delta N \) and \(\Delta \sqrt{\delta N}^{3/2} < 1 \). Then

\[N_{10}(\delta, \Delta) < (1 + \delta (\Delta N)^{\frac{3}{2}} N^{\frac{5}{2}}) \left(1 + \delta^{\frac{1}{2}} (\Delta N)^{\frac{3}{2}} N^{\frac{5}{2}} \right) N^{5+\varepsilon} + (\delta (\Delta N)^{\frac{14}{5}} + (\Delta N)^{\frac{14}{5}} + \Delta^{2}) \frac{N^{\frac{11}{5}+\varepsilon}}{M}. \]

(4.37)

Setting \(\Delta = \delta N \) leads to the following strengthening of Theorem 3

Theorem 9. For \(N^{-\frac{11}{5}} \geq \delta \geq N^{-2} \), we have \(N_{10}(\delta, \delta N) \ll N^{5+\varepsilon} \).
Note that in view of the Remark following Theorem 4, the conclusion of Theorem 9 fails for $\delta > N^{-11/7}$.

5. ON AN INEQUALITY OF ROBERT AND SARGOS

In [R-S] established the inequity

$$I_{10} = \int_0^1 \int_0^1 \left(\sum_{n \sim N} e(n^2 x + n^4 y) \right)^{10} dxdy \ll N^{49/8 + \varepsilon}$$

(5.1)

which they applied to obtain new estimates on Weyl sums. An improvement of (5.1) appears in [P], who obtains

$$I_{10} \ll N^{6+\varepsilon}.$$

(5.2)

Using our methods, we present a further improvement.

Theorem 10.

$$I_{10} \ll N^{17/3 + \varepsilon}$$

(5.3)

The corresponding improvement in Weyl’s inequality following Heath-Brown’s method was recorded in the Introduction.

Note that bounding I_{10} is tantamount to estimating the number of integral solutions $n_i \sim N$ ($1 \leq 1 \leq 10$) of the system

$$\begin{cases}
n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2 = n_6^2 + n_7^2 + n_8^2 + n_9^2 + n_{10}^2 \\
n_1^4 + n_2^4 + n_3^4 + n_4^4 + n_5^4 = n_6^4 + n_7^4 + n_8^4 + n_9^4 + n_{10}^4.
\end{cases}$$

(5.4)

The problem is not shift invariant and therefore as it stands not captured by a Vinogradov mean value theorem of the usual kind. Following Wooley’s approach for (n, n^3) (see [W]), knowledge of the (conjectural) optimal VMVT for $k = 4$ (which would involve the 20th moment) and interpolation with the 6th moment would at the best deliver $I_{10} \ll N^{41/7}$, inferior to (5.3).

A crude summary of our argument. As in [R-S], we need to consider the more general expressions

$$I_p(\lambda) = \int_0^1 \int_0^1 \left| \sum_{n \sim N} e(n^2 x + \lambda n^4 y) \right|^p dxdy$$

(5.5)

with $p \geq 6$ and $0 < \lambda \leq 1$. A first step is an application of the decoupling theorem from [B-D] for planar curves similarly as in [B-D], Theorem 2.18 (where an extension of the result $I_6(N^{-3}) \ll N^{3+\varepsilon}$ from [R-S] is established). At this stage, one gets shorter sums, of length M say, i.e. $n \in [n_0, n_0 + M]$
with \(n_0 \) ranging in \([N, \frac{N}{2}]\). Exploiting \(n_0 \) as an additional variable leads then to mean value expressions of the form
\[
\int_0^1 \int_0^1 \int_0^1 \int_0^1 \left| \sum_{m \sim M} e(xm + ym^2 + \lambda Nz^3 + \lambda w^4) \right|^p dx dy dz dw \quad (5.6)
\]
to which Theorem 1 is applicable. In the above \(\lambda \) plays the role of a parameter, nothing that \(I_p(\lambda) \) decreases with \(\lambda \) for \(p \) an even integer.

5.1. Preliminary decoupling.

Denote \(S = \sum_{n \sim N} e(n^2 x + \lambda n^4 y) \) and \(S_I = \sum_{n \in I} e(n^2 x + \lambda n^4 y) \) for \(I \subset [\frac{N}{2}, N] \) an interval. Assuming
\[
\lambda N^4 > \frac{N^2}{M^2}, \quad \text{i.e.} \quad \lambda N^2 M^2 > 1 \quad (5.7)
\]
the decoupling theorem for curves gives for \(p \geq 6 \)
\[
\|S\|_p \ll N^\varepsilon \left(\frac{N}{M} \right)^{\frac{3}{2} - \frac{3}{p}} \left(\sum_I \|S_I\|_2^2 \right)^{\frac{3}{2}} \quad (5.8)
\]
with \(\{I\} \) a partition of \([\frac{N}{2}, N]\) in \(M \)-intervals. Hence
\[
I_p(\lambda) \ll N^\varepsilon \left(\frac{N}{M} \right)^{p-3} \left(\frac{1}{N} \sum_{n \sim N} \int_0^1 \int_0^1 |S_{[n,n+M]}(x,y)|^p dx dy \right) \quad (5.9)
\]
where
\[
|S_{[n,n+M]}(x,y)| = \left| \sum_{m \sim M} e((2nx + 4\lambda n^3 y)m + (x + 6\lambda n^2 y)m^2 + 4\lambda nm^3 y + \lambda n^4 y) \right|. \quad (5.10)
\]

5.2. Distributional considerations.

In view of (5.9), (5.10) and exploiting the additional average over \(n \), it is natural to analyze the distribution induced by the map
\[
\varphi : [0,1] \times [0,1] \times \{n \sim N\} \to \mathbb{T} \times \mathbb{T} \times [0, 4N] \times [0, 1]
\]
\[(x, y, n) \mapsto (2nx + 4\lambda n^3 y, x + 6\lambda n^2 y, 4ny, y) = (x', y', z', \omega'). \quad (5.11)
\]
For the time, restrict \(y \) to \([\frac{1}{2}, 1]\) and denote \(\mu \) the (normalized) image measure of \(\varphi \). A translation \(x \mapsto x - 2\lambda n^2 y \) (mod 1) clearly permits to replace \(\varphi \) by the map
\[
(x, y, n) \mapsto (2nx, x + 4\lambda n^2 y, 4ny, y)
\]
and we need to analyze the distribution of μ at scale $\frac{1}{M} \times \frac{1}{M^2} \times \frac{1}{M^3} \times \frac{1}{M^4}$.

Hence, let $k, \ell \in \mathbb{Z}, |k| \lesssim M, |\ell| \lesssim M^2$ and $\xi, \eta \in \mathbb{R}, |\xi| \lesssim \lambda M^3, |\eta| < \lambda M^4$.

The Fourier transform $\hat{\mu}$ of μ is given by

$$
\hat{\mu}(k, \ell, \xi, \eta) = \frac{1}{N} \sum_{n \sim N} \int \int dx dy \, e(2nk + (x + 4\lambda n^2 y)\ell + 4ny\xi + y\eta)
$$

implying

$$
|\hat{\mu}(k, \ell, \xi, \eta)| \ll \frac{1}{N} \sum_{n \sim N} 1_{[2nk+\ell=0]} 1_{[|4\lambda n^2 \ell + 4n\xi + \eta| \ll \lambda N^3]}.
$$

It follows from the restrictions on ξ, η that

$$
|\ell| \ll \frac{N^3}{\lambda N^2} + \frac{M^3}{N} = \frac{M^4}{N^2} < \frac{1}{\lambda N^{2-\varepsilon}} + \frac{M^3}{N}
$$

and

$$
|k| \ll \frac{1}{\lambda N^{3-\varepsilon}} + \frac{M^3}{N^2}.
$$

Assume further

$$
\lambda > N^{-3+\varepsilon} \text{ and } M < N^{\frac{3}{2}-\varepsilon}
$$

(5.12)

as to ensure $k = \ell = 0$.

Hence $\mu \ll N^\varepsilon \pi_{x', y'}[\mu]$. Returning to (5.9), we may therefore bound

$$
\frac{1}{N} \sum_{n \sim N} \int_0^1 \int_0^1 dx dy \sum_{m \sim M} e((2nx + 4\lambda n^3 y)m + (x + 6\lambda n^2 y)m^2 + 4\lambda nym^3 + \lambda m^4 y)^p
$$

by

$$
\frac{1}{N^{1-\varepsilon}} \sum_{n \sim N} \int_0^1 \int_0^1 \int_0^1 dx' dy' dy \left(\sum_{m \sim M} e(x'm + y'm^2 + 4\lambda nym^3 + \lambda m^4 y) \right)^p
$$

(5.13)

Since $[\frac{1}{2}, 1] \times \{ n \sim N \} \rightarrow [0, 4N] \times [0, 1] : (y, n) \mapsto (4ny, y)$ induces a measure bounded by the uniform measure at scale $1 \times dw'$, it follows that at scale $\frac{1}{M} \times \frac{1}{M^2} \times \frac{1}{M^3} \times \frac{1}{M^4}$, μ may be majorized by uniform measure up to a factor $N^\varepsilon(1 + \lambda M^3)$. Hence (5.13) may be bounded by

$$
N^\varepsilon(1 + \lambda M^3) \int_0^1 \int_0^1 \int_0^1 \int_0^1 \left| \sum_{m \sim M} e(x'm + y'm^2 + \lambda Nz'm^3 + \lambda w'm^4) \right|^p \, dx' dy' dz' dw'.
$$

(5.14)
One may do better. Assume $\lambda M^3 > 100$ and shift in (5.13) the y-variable by $o(\frac{1}{\lambda M^3})$, i.e. replace y by $y + \frac{z}{\lambda M^3}$, $z = o(1)$. One obtains
\[
\frac{1}{N^{1-\varepsilon}} \sum_{n \sim N} \int_0^1 \int_0^1 \int_0^1 \int_0^1 dx'dy'dyz \left| \sum_{m \sim M} e(x'm + y'm^2 + 4\lambda n(y + \frac{z}{\lambda M^3}) m^3 + \lambda m^4 y) \right|^p.
\]
Assuming
\[
\lambda M^4 < N \tag{5.15}
\]
we note that for fixed $\frac{1}{2} \leq y \leq 1$, the map $(n, z) \mapsto n(y + \frac{z}{\lambda M^3})$ induces a normalized measure essentially bounded by $\frac{1}{N} I[0,2N]$. Consequently, under the condition (5.15), (5.13) is bounded by
\[
N^\varepsilon \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sum_{m \sim M} e(x'm + y'm^2 + \lambda N z'm^3 + \lambda w'm^4 \big| |dx'dy'dz'dw'. \tag{5.16}
\]
Taking $M < N^\frac{2}{5}$, (5.15) will hold for $\lambda < N^{-5/3}$.

5.3. Application of mean value theorems.

Use the 8th moment bound (5.12), or equivalently, Theorem 2 in the paper, we get
\[
\max_{|\omega| \leq 1} \int \int \sum_{m \sim M} e(x'm + y'm^2 + \frac{z'}{M} m^3) |^8 \ll M^{4+\varepsilon} \tag{5.17}
\]
Application of (5.17) to (5.16) with fixed w' and $p = 8$ implies then
\[
\int_0^1 \int_\frac{1}{2}^1 \sum_{n \sim N} e(n^2 x + \lambda n^4 y) |^8 dx dy \ll N^\varepsilon \left(\frac{N}{M} \right)^5 M^4 \left(1 + \frac{1}{\lambda NM^2} \right) \ll N^{4+\frac{1}{4}+\varepsilon} + \frac{N^{2+\varepsilon}}{\lambda} \tag{5.18}
\]
Taking $M = N^{\frac{2}{5}-\varepsilon}$ and $N^{-3+\varepsilon} < \lambda < N^{-2}$.

Braking up the range $y \in [0,1]$ in sub-intervals $[\frac{1}{2}\sigma, \sigma]$, $\sigma = 2^{-s}$ a change of variables and replacement of λ by $N^{-\frac{2}{5}\sigma}$ in (5.18) gives
\[
\int_0^1 \int_{N^{-\frac{2}{5}}}^1 \sum_{n \sim N} e(n^2 x + N^{-\frac{2}{5}} n^4 y) |^8 dx dy \ll N^{4+\frac{1}{5}+\varepsilon}.
\]
The remaining range is simply bounded by
\[
N^{-\frac{2}{5}} I_5 (N^{-3}) \leq N^{\frac{2}{5}} I_6 (N^{-3}) \ll N^{\frac{13}{5}+\varepsilon}.
\]
Hence we establish 0.17.
Theorem 11.

\[I_8 \leq I_8(N^{-\frac{7}{3}}) \ll N^{\frac{14}{3} + \varepsilon} \quad (5.19) \]

Next, one may consider the 10th moment. Setting \(p = 10 \) in \((5.9) \) implies with \(M = N^{\frac{7}{3} - \varepsilon}, N^{-\frac{4}{3}} < \lambda < N^{-\frac{7}{3}} \)

\[
\int_0^1 \int_0^1 \sum_{n \sim N} e(n^2x + \lambda n^4y)^{10} \, dx \, dy \ll \\
N^\varepsilon \left(\frac{N}{M} \right)^7 \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sum_{m \sim M} e(mx + m^2y + \lambda Nm^3z + \lambda m^4w)^{10} \, dx \, dy \, dz \, dw.
\]

(5.20)

Apply Theorem 4 with \(\varphi_2(t) = t^3, \varphi_3(t) = t^4 \) and \(\delta = \lambda^{-1}N^{-1}M^{-3}, \Delta = \lambda^{-1}M^{-4} \)

This gives the bound

\[
N^\varepsilon \left(\frac{N}{M} \right)^7 \{ \delta \Delta^{3/4} M^7 + (\delta + \Delta) M^6 + M^5 \} \ll N^\varepsilon (N^2 \lambda^{-7/4} + N^{14/3} \lambda^{-1} + N^{47/3}) \ll N^{4+\varepsilon} \lambda^{-1}
\]

(5.21)

for \(\lambda \) as above.

Thus

\[
\int_0^1 \int_{N^{-1}}^1 \sum_{n \sim N} e(n^2x + N^{-\frac{7}{3}}n^4y) \, dx \, dy \ll N^{\frac{47}{3} + \varepsilon}.
\]

(5.22)

The remaining range may be captured using \((5.19) \), i.e.

\[
\int_0^1 \int_0^{N^{-2/3}} \sum_{n \sim N} e(n^2x + N^{-\frac{7}{3}}n^4y)^{10} \, dx \, dy \ll N^{-\frac{7}{3}} N^2 I_8(N^{-\frac{7}{3}}) \ll N^{\frac{17}{3} + \varepsilon}.
\]

Hence we establish Theorem 11.

REFERENCES

[B-D] J. Bourgain, C. Demeter, The proof of the \(l^2 \)-decoupling conjecture, arXiv: 1405335.

[B-D2] J. Bourgain, C. Demeter, \(\ell^p \) decouplings for hypersurfaces with nonzero Gaussian curvature, in preparation.

[B-G] J. Bourgain, L. Guth, Bounds on oscillatory integral operators based on multilinear estimates, GAFA 21 (2011), no 6, 1239-1295.

[B-I1] E. Bombieri, H. Iwaniec, On the order of \(\zeta(\frac{1}{2} + it) \), Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 13 (1986), 449–472.

[B-I2] E. Bombieri, H. Iwaniec, Some mean value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 13(1986), 473–486.
[H] M.N. Huxley, *Ares, Lattice Points and Exponential Sums*, LMS monographs, 13 (1996).

[H4] M.N. Huxley, *Exponential sums and the Riemann zeta function, IV*, Proc. London Math. Soc. (3) 66 (1993), 1–40.

[H5] M.N. Huxley, *Exponential sums and the Riemann zeta function, V*, Proc. London Math. Soc (3) 90 (2005), 1–41.

[H-K] M.N. Huxley, G. Kolesnik, *Exponential sums and the Riemann zeta function III*, Proc. London Math. Soc. (3) 62 (1991), 449–468.

[P] S. Parsell, *A note on Weyl’s inequality for eight powers*, (preprint)

[R-S] O. Robert, P. Sargos, *Un théorème de moyenne pour les sommes d’exponentielles. Application à l’inégalité de Weil*, Publ. Inst. math. (Beograd) N.S. 67 (2000), 14–30.

[W] T. Wooley, *Mean value estimates for odd cubic Weyl sums*, arXiv 1401.7152v1, (2014).

[W2] T. Wooley, *Translation invariance, exponential sums and Waring’s problem*, arXiv:1404.3508v1, (2014).

School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540