TORUS ACTIONS ON ORIENTED MANIFOLDS OF
GENERALIZED ODD TYPE

DONGHOON JANG

Abstract. In [LS], Landweber and Stong prove that if a closed spin
manifold M admits a smooth S^1-action of odd type, then its signature
$\text{sign}(M)$ vanishes. In this paper, we extend the result to a torus action
on a closed oriented manifold with generalized odd type.

1. Introduction

The existence of a non-trivial group action on a manifold gives certain
restrictions on the manifold and one of them is a characteristic class. Atiyah
and Hirzebruch prove that if a closed spin manifold admits a non-trivial
circle action, then its \hat{A}-genus vanishes [AH]. Hattori generalizes the result
to spinc-manifolds [Ha]. It is shown later that \hat{A}-genus vanishes if an oriented
manifold with finite second and fourth homotopy groups admits an S^1-action
[HH], [HH3].

In this paper, we discuss the vanishing of L-genus of an oriented manifold,
that is, the signature of the manifold. The L-genus is the characteristic class
belonging to the power series $f(x) = \frac{\sqrt{x}}{\tanh \sqrt{x}}$. The signature of an oriented
manifold M is the index of the signature operator on M. The Atiyah-Singer index theorem states that the L-genus of an oriented manifold M is
equal to the signature of M [AS]. Kawakubo and Uchida prove that if a
closed oriented manifold M admits a semi-free S^1-action with $\dim(M^{S^1}) < \frac{1}{2} \dim M$, then the signature of M vanishes [KU]. Li and Liu generalize
the result to a so-called prime action [LL]. For a vanishing result on the
signature of a manifold with a finite group action, see [E] for instance.

Let M be an orientable manifold. Introduce a Riemannian metric on M.
A spin structure on M is an equivariant lift P (called a principal $Spin(n)$-
bundle) of the oriented orthonormal frame bundle Q (called the principal
$SO(n)$-bundle) over M with respect to the double covering $\pi : Spin(n) \to SO(n)$.

Let the circle act on a spin manifold M. Then the action lifts to an action
on the principal $SO(n)$-bundle Q. The action is called of even type, if it
further lifts to an action on the principal $\text{Spin}(n)$-bundle P. The action is
called of odd type, if it fails to lift to an action on P.

Given an action of a Lie group G on a manifold M, denote M^G by the set of points fixed by the G-action on M, i.e.,
$M^G = \{ p \in M | g \cdot p = p, \forall g \in G \}$. If H is a subgroup of G, then define the set M^H of points fixed by the
H-action in the same way.

Given a circle action on a spin manifold M, as a subgroup of S^1, \mathbb{Z}_2 also acts on M. The S^1-action on M is of even type if and only if each
connected component of the set $M^{\mathbb{Z}_2}$ has codimension congruent to 0 modulo 4. Similarly, the S^1-action on M is of odd type if and only if each connected
component of $M^{\mathbb{Z}_2}$ has codimension congruent to 2 modulo 4. For this, see [AH].

Now consider a circle action on a manifold M. Since M need not allow a
spin structure, we use the latter equivalent definition to define an action of
even type and an action of odd type. The S^1-action is called of even type,
if each connected component of $M^{\mathbb{Z}_2}$ has codimension congruent to 0 modulo 4 and of odd type, if each connected component of $M^{\mathbb{Z}_2}$ has codimension congruent to 2 modulo 4. As before, \mathbb{Z}_2 acts on M as a subgroup of S^1. In [HH2], H. Herrera and R. Herrera adapt these alternative definitions for
circle actions on oriented manifolds.

Landweber and Stong prove that a closed spin manifold admitting a circle
action of odd type must have vanishing L-genus [LS].

Theorem 1.1. [LS] If a closed spin manifold M admits a smooth S^1-action
of odd type, then its signature $\text{sign}(M)$ vanishes.

In this paper, we generalize Theorem 1.1 in three directions:
(1) from spin manifolds to oriented manifolds.
(2) from circle actions to torus actions.
(3) from odd type to generalized odd type.

In this paper, for a torus action on a manifold, we introduce the notion
of an action of generalized odd type.

Definition 1.2. Let a k-torus T^k act on a manifold M. Let S be a closed
subgroup of T^k.

(1) The T^k-action is called of even type with respect to S, if for any
connected component Z of M^S, we have $\dim Z \equiv \dim M \mod 4$. An
action of a torus T^k on a manifold is called of generalized even type,
if it is of even type with respect to some closed subgroup of T^k.

(2) The T^k-action is called of odd type with respect to S, if for any
connected component Z of M^S, we have $\dim Z \equiv \dim M - 2 \mod 4$. An
action of a torus T^k on a manifold is called of generalized odd
type, if it is of odd type with respect to some closed subgroup of T^k.

Therefore, a circle action on a manifold being of odd type is a special of
a torus action of generalized odd type where the torus is the circle, and the
closed subgroup is \mathbb{Z}_2. The main result of this paper is the following:
Theorem 1.3. Let a torus act on a closed oriented manifold \(M \). If the action is of generalized odd type, then the signature of \(M \) vanishes.

In [HH2], H. Herrera and R. Herrera prove vanishing results on characteristic classes of manifolds admitting circle actions. One of them is that if a \(4n \)-dimensional oriented manifold with finite second homotopy group admits a circle action of odd type, then its signature vanishes. As a special case of Theorem 1.3 where a torus group is the circle group and the closed subgroup is \(\mathbb{Z}_2 \), we recover the result without the assumption on the second homotopy group of the manifold.

2. Preliminaries and the proof of the main result

Let the circle act on a closed oriented manifold \(M \). Then the equivariant index of the signature operator is defined for each element of \(S^1 \). In [AS], it is proved that the equivariant index is rigid under the circle action, i.e., is independent of the choice of an element of \(S^1 \), and is equal to the signature of \(M \). Consequently, the signature of \(M \) is equal to the sum of the signatures of the connected components of \(M^{S^1} \).

Now, let a \(k \)-torus \(\mathbb{T}^k \) act on a closed oriented manifold \(M \). Then there exists a circle \(S^1 \) inside \(\mathbb{T}^k \) that has the same fixed point set as \(\mathbb{T}^k \), i.e., \(M^{S^1} = M^{\mathbb{T}^k} \). As for \(S^1 \)-actions, for an action of a torus the signature of \(M \) is equal to the sum of the signatures of the connected components of \(M^{\mathbb{T}^k} \).

It follows from Theorem 6.12 in [AS] and is stated explicitly in [KR].

Theorem 2.1. [AS], [KR] Let a \(k \)-torus \(\mathbb{T}^k \) act on a closed oriented manifold \(M \). Then \(\text{sign}(M) = \text{sign}(M^{\mathbb{T}^k}) \).

By \(\text{sign}(M^{\mathbb{T}^k}) \), it means the sum of the signatures of all connected components of \(M^{\mathbb{T}^k} \), i.e., \(\text{sign}(M^{\mathbb{T}^k}) = \sum_{N \subset M^{\mathbb{T}^k}} \text{sign}(N) \).

In [Ko], Kobayashi proves that the fixed point set of a torus action on an orientable manifold is orientable.

Lemma 2.2. [Ko] Let a torus act on an orientable manifold \(M \). Then the fixed point set is a union of closed orientable manifolds.

Given a circle action on an oriented manifold, H. Herrera and R. Herrera prove the orientability of the set of points fixed by a subgroup of \(S^1 \).

Lemma 2.3. [HH] Let \(M \) be an oriented, \(2n \)-dimensional, smooth manifold endowed with a smooth \(S^1 \)-action. Consider \(\mathbb{Z}_k \subset S^1 \) and its corresponding action on \(M \). If \(k \) is odd then the fixed point set \(M^{\mathbb{Z}_k} \) of the \(\mathbb{Z}_k \)-action is orientable. If \(k \) is even and a connected component \(Z \) of \(M^{\mathbb{Z}_k} \) contains a fixed point of the \(S^1 \)-action, then \(Z \) is orientable.

Let \(S \) be a closed subgroup of \(\mathbb{T}^k \). Then \(S \) is Lie isomorphic to a product of \(S^1 \)'s and \(\mathbb{Z}_a \)'s, i.e., \(S \approx S^1 \times \cdots \times S^1 \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_m} \), where \(a_i \)'s are positive integers bigger than 1. Note that the \(a_i \)'s may have repeated
elements. By using Lemma 2.2 and Lemma 2.3, we extend Lemma 2.3 to torus actions.

Lemma 2.4. Let a k-torus \mathbb{T}^k act on a $2n$-dimensional orientable manifold M and S a closed subgroup of \mathbb{T}^k. Let Z be a connected component of M^S. If Z contains a \mathbb{T}^k-fixed point (i.e., if $Z \cap M^{\mathbb{T}^k} \neq \emptyset$), then Z is orientable.

Proof. Without loss of generality, by choosing an orientation, assume that M is oriented. Since S is a closed subgroup of \mathbb{T}^k, S is isomorphic to

$$S = (S^1)^l \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_m}$$

for some $l \geq 0$ and positive integers $a_i > 1$ for $i = 1, \ldots, m$.

Denote $S_i = (S^1)^l \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_i}$ for $i = 0, 1, \ldots, m$. Also, denote M_i by the set of points fixed by S_i-action, i.e., $M_i = M^{S_i}$. We prove that for any i if Z_i is a connected component of M_i that contains Z, then Z_i is orientable.

Consider the case that $i = 0$. Then $S_0 = (S^1)^l$. By Lemma 2.2, the set $M^{S_0} = M^{(S^1)^l}$ of points fixed by the $(S^1)^l$-action is a union of smaller dimensional closed orientable manifolds.

Suppose that a connected component Z_{i-1} of M_{i-1} is orientable and contains Z. On Z_{i-1}, we have an induced action of $G_i = \mathbb{T}^k/S_i = (S^1)^k/(S^1)^l \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_i} = (S^1)^{k-l} = \mathbb{T}^{k-l}$. Moreover, as a subgroup of G_i, \mathbb{Z}_{a_i} acts on Z_{i-1}. Given a generator b_i of \mathbb{Z}_{a_i}, there exists X_i in the Lie algebra of \mathbb{T}^{k-l} such that $\exp(\frac{1}{a_i}X_i) = b_i$. In other words, X_i generates a circle S^1 such that $\mathbb{Z}_{a_i} \subset S^1$. Denote the circle by H_i.

Therefore, on the orientable manifold Z_{i-1}, we have the action of the circle H_i and the action of \mathbb{Z}_{a_i}, as a subgroup of H_i. A connected component Z_i, the set of points in Z_{i-1} that are fixed by the \mathbb{Z}_{a_i}-action and contains Z, contains a H_i-fixed point, since it contains Z which is fixed by the \mathbb{T}^k-action and H_i is a subgroup of \mathbb{T}^k.

Apply Lemma 2.3 for the action of the circle H_i on Z_{i-1} with its subgroup \mathbb{Z}_{a_i}. Since the connected component Z_i of Z_{i-1} contains a H_i-fixed point, it follows that Z_i is orientable.

Note that $Z_m = Z$. The lemma then follows by inductive argument. \qed

Note that in Lemma 2.4, we can remove the condition that Z contains a \mathbb{T}^k-fixed point, if all a_i are odd. With Lemma 2.4, we are ready to prove our main result.

Proof of Theorem 1.3. If the dimension of M is not divisible by 4, then the signature of M is defined to be 0 and hence the theorem follows. Therefore, from now on, suppose that the dimension of M is divisible by 4.

Let \mathbb{T}^k be the torus which acts on M. Let S be the subgroup of the torus \mathbb{T}^k such that the torus action is of odd type with respect to S. Let Z be a connected component of the set M^S of points fixed by the S-action on
M that contains a \mathbb{T}^k-fixed point, i.e., $Z \cap M^{\mathbb{T}^k} \neq \emptyset$. Then by Lemma 2.4, Z is orientable. Choose an orientation of Z. Since the \mathbb{T}^k-action is of odd type with respect to the closed subgroup S, $\dim Z \equiv \dim M - 2 \mod 4$. Since $\dim M \equiv 0 \mod 4$, we have that $\dim Z \equiv 2 \mod 4$. Therefore, we have that $\text{sign}(Z) = 0$. On Z, there is an induced action of $\mathbb{T}^k/S = \mathbb{T}^{k'}$. Moreover, the set of points in Z that are fixed by the induced $\mathbb{T}^{k'}$-action is precisely the set of points in Z that are fixed by the entire \mathbb{T}^k-action on M, i.e., $Z^{\mathbb{T}^{k'}} = Z \cap M^{\mathbb{T}^k}$. Applying Theorem 2.1 to the induced action of the torus $\mathbb{T}^{k'} = \mathbb{T}^k/S$ on Z, we have that

$$\sum_{N \subset Z^{\mathbb{T}^{k'}}} \text{sign}(N) = \text{sign}(Z) = 0.$$

On the other hand, by directly applying Theorem 2.1 to the action of the k-torus \mathbb{T}^k on M, we have that

$$\text{sign}(M) = \sum_{N \subset M^{\mathbb{T}^k}} \text{sign}(N).$$

Since $M^{\mathbb{T}^k} \subset M^S \subset M$, each connected component N of $M^{\mathbb{T}^k}$ is contained in a unique connected component Z of M^S which contains a \mathbb{T}^k-fixed point, as Z contains the \mathbb{T}^k-fixed component N. Therefore, we have that

$$\text{sign}(M) = \sum_{N \subset M^{\mathbb{T}^k}} \text{sign}(N) = \sum_{Z \subset M^S, Z \cap M^{\mathbb{T}^k} \neq \emptyset} \sum_{N \subset Z \cap M^{\mathbb{T}^k}} \text{sign}(N) = \sum_{Z \subset M^S, Z \cap M^{\mathbb{T}^k} \neq \emptyset} \text{sign}(Z) = 0.$$

□

References

[AH] M. Atiyah and F. Hirzebruch: Spin manifolds and group actions. Essays on Topology and Related Topics, Berlin-Heidelberg, Springer (1969) 18-28.

[AS] M. Atiyah and I. Singer: The index of elliptic operators: III. Ann. Math. 87 (1968) 546-604.

[E] A. Edmonds: Orientability of fixed point sets. P. Amer. Math. Soc. 82 (1981) 120-124.

[Ha] A. Hattori: Spinc-structures and S^1-actions. Invent. Math. 48 (1978) 7-32.

[HH] H. Herrera and R. Herrera: \hat{A}-genus on non-spin manifolds with S^1 actions and the classification of positive quaternion-Kähler 12-manifolds. J. Differential Geometry. 61 (2002) 341-364.

[HH2] Haydee Herrera and Rafael Herrera: The signature and the elliptic genus of π_2-finite manifolds with circle actions. Topology Appl. 136 (2004) 251-259.

[HH3] H. Herrera and R. Herrera: Erratum to “\hat{A}-genus on non-spin manifolds with S^1 actions and the classification of positive quaternion-Kähler 12-manifolds.” J. Differential Geom. 90 (2012) no. 3, 521.

[Ko] S. Kobayashi: Fixed points of isometries. Nagoya Math. J. 13 (1958) 63-68.
[KR] K. Kawakubo and F. Raymond: The Index of Manifolds with Toral Actions and Geometric Interpretations of the $\sigma(\infty,(S^1, M^n))$ Invariant of Atiyah and Singer. Inventiones Math. 15 (1972) 53-66.

[KU] K. Kawakubo and F. Uchida: On the index of a semi-free S^1-action. J. Math. Soc. Japan. 23 (1971) 351-355.

[LS] P. Landweber and R. Stong: Circle actions on spin manifolds and characteristic numbers. Topology 27 (1988) No.2, 145-161.

[LL] P. Li and K. Liu: Circle actions and some vanishing results on manifolds. Int. J. Math. 22 (2011) 1603-1610.

Department of Mathematics, Pusan National University, Pusan, Korea
E-mail address: donghoonjang@pusan.ac.kr