Two Round Oblivious Transfer from CDH or LPN

TPMPC, 6/17/2019

Nico Döttling Sanjam Garg Mohammad Hajiabadi
Daniel Masny Daniel Wichs

CISPA Helmholtz Center for Information Security

UC Berkeley

Visa Research

Northeastern University
Oblivious Transfer (OT)

Sender S:

\[s_0, s_1 \in \{0, 1\}^* \]

Receiver R:

\[c \in \{0, 1\} \]

Security

- S does not learn \(c \).
- R does not learn \(s_{1-c} \).
Simulation based Security (for Sender S)

For any A,

$$S(s_0, s_1) \approx c_{OT} A$$

$$A$$

$$c$$

$$s_c$$

$$A'(c)$$
Security for Receiver R

Simulation based Security

- Same as for Sender
- A' needs to extract s_0, s_1

Indistinguishability based Security

- weaker than simulation based
- malicious S cannot distinguish $R(0)$ from $R(1)$
Our Results

Sim. Sender, Ind. Receiver Secure OT ($\tilde{\text{OT}}$) \Rightarrow Sim. Secure OT

- $\tilde{\text{OT}} \Rightarrow$ 2-round ZK
- $\tilde{\text{OT}} + 2$-round ZK \Rightarrow Sim. Secure OT

CDH or LPN \Rightarrow $\tilde{\text{OT}}$

- weaker OT security notions for the sender
- CDH or LPN \Rightarrow weaker notions
- generic transformation from weaker notions to $\tilde{\text{OT}}$
Summary

\(\tilde{\text{OT}} \text{ from CDH}\)

1. CDH or LPN \(\Rightarrow\) Elementary OT (eOT)
2. Elementary OT \(\Rightarrow\) Search OT (sOT)
3. Search OT \(\Rightarrow\) Indistinguishable OT (iOT)
4. Indistinguishable OT \(\Rightarrow\) \(\tilde{\text{OT}}\)
CDH \implies eOT \implies sOT \implies iOT \implies $\tilde{O}T$

Elementary OT Security

$$\Pr[(y_0, y_1) = (s_0, s_1)] \leq \text{negl}$$
Bellare, Micali [BM90]:

Sender S:

\[
\begin{align*}
 h_1 &= h_0X \\
 s &\leftarrow \mathbb{Z}_p \\
 S &= g^s
\end{align*}
\]

CRS: $(X = g^x)$

\[
\begin{align*}
 otr &= h_0 \\
 ots &= S
\end{align*}
\]

Receiver $R(c)$:

\[
\begin{align*}
 r &\leftarrow \mathbb{Z}_p \\
 h_0 &= g^r X^{-c} \\
 \text{output } S^r
\end{align*}
\]

Correctness and Security

- $s_c = h_c^s = (h_0X^c)^s = (g^rX^{-c}X^c)^s = S^r$
- $s_{1-c} = h_{1-c}^s = (h_0X^{1-c})^s = X^{(1-2c)s}S^r$
- computing $s_0/s_1 = g^{xs}$ solves CDH for challenge X, S
CDH \Rightarrow eOT \Rightarrow sOT \Rightarrow iOT \Rightarrow $\tilde{O}T$

$S \rightarrow (s_0, s_1)$

$A_1 \rightarrow (st, otr)$
$A_2(st, ots, w) \rightarrow y_w$

Search OT Security

With $1 - negl$ probability over (st, otr),
$\exists w \in \{0, 1\}$ s.t. $Pr_{ots}[A_2(st, ots, w) = s_w] \leq negl$.

Elementary OT \Rightarrow Search OT

Amplify hardness (Canetti, Halevi, Steiner [CHS05]) s.t.
$Pr_{ots}[A_2(st, ots, w) = s_w] > \frac{3}{4}$, i.e.
$Pr_{ots}[\forall w, A_2(st, ots, w) = s_w] > negl$.
CDH ⇒ eOT ⇒ sOT ⇒ iOT ⇒ ˜OT

\[S(otr, m_0, m_1) \rightarrow ots_0 \]
\[S(otr, m_{1-w}, \text{uniform}) \rightarrow ots_1 \]

\[A_1 \rightarrow (st, otr, m_0, m_1) \]
\[A_2(st, ots_b) \rightarrow b' \]

Indistinguishable OT Security

With \(1 - \text{negl} \) probability over \((st, otr)\), \(\exists w \in \{0, 1\} \) s.t.
\[| \text{Pr}_{ots}[A_2(st, ots_0) = 1] - \text{Pr}_{ots}[A_2(st, ots_1) = 1] | \leq \text{negl}. \]

Search OT ⇒ Indistinguishable OT

Goldreich Levin hardcore predicates [GL89], hybrid argument.
CDH \Rightarrow eOT \Rightarrow sOT \Rightarrow iOT \Rightarrow \tilde{O}T

Sender S(m_0, m_1):
C[ct, CRS, m_0, m_1](c, r):
If (ct = Enc(pk, c; r))
Then output \(m_c \)
Else output \(\bot \)
(\(\hat{C}, \{\ell\} \) \(\leftarrow \) Garble(C)

CRS = (CRS_{iOT}, pk)

Receiver R(c):
ct = Enc(pk, c; r)

\(m_c = \hat{C}(\ell_{c,r}) \)

Receiver Ind., Sender Sim. Security

- ct and iOT do not leak c
- Given sk, c can be extracted
- Can iOT and \(\hat{C} \) be simulated without \(m_{1-c} \)?
Sender’s Simulation based Security

Garbled Circuits; Yao [Yao82]

- $\{\ell\}$ and \hat{C} leak m_0 and m_1.
- $\ell_{c,r}$, \hat{C} only leak m_c.

Solution: Use independent $\{\ell\} \setminus \ell_{c,r}$ for \hat{C} and iOT.

Distinguisher Dependent Simulation; Jain, Kalai, Khurana, Rothblum [JKKR17]

- Indistinguishable OT: $\exists w \in \{0,1\}$ s.t. $\ell_w \approx_c$ uniform.
- We test run the adversary to learn $w \in \{0,1\}$.
- In the actual simulation, w is consistent with good probability.
- We can replace $\ell_w \in \{\ell\} \setminus \ell_{c,r}$ with uniform.
Summary

Our Results, eprint.iacr.org/2019/414

1. CDH or LPN \Rightarrow Elementary OT
2. Elementary OT \Rightarrow Search OT
 (Hardness Amplification; Canetti, Halevi, Steiner [CHS05])
3. Search OT \Rightarrow Indistinguishable OT
 (Hardcore Predicates; Goldreich, Levin [GL89])
4. Indistinguishable OT \Rightarrow $\tilde{O}T$
 (Distinguisher Dependent Simulation; Jain, Kalai, Khurana, Rothblum [JKKR17], Garbled Circuits; Yao [Yao82])
5. $\tilde{O}T + 2$-round ZK \Rightarrow Sim. Secure OT
 ($\tilde{O}T \Rightarrow 2$-round ZK)