基于级联9电平技术的大功率超声波电源

周持衡 张长征† 张维尧

摘要: 为了提高超声波电源的输出功率, 该文提出了一种基于级联9电平技术的大功率超声波电源。电源逆变部分由两个H桥单元级联组成, 经过一定的控制策略实现输出电压为9电平波形, 可以显著提高超声波电源的输出功率, 改善输出电压的波形质量。提出一种电压差法跟踪换能器的谐振频率, 只需采样3个电压, 根据3个电压之间的数值差调节输出频率。通过分析该超声波电源的系统结构、工作原理及控制策略, 并进行仿真实验, 验证了该方案的可行性和有效性。

关键词: 超声波电源; 频率自动跟踪; 电压差法; 9电平

High power ultrasonic power supply based on cascaded 9 level technology

ZHOU Chiheng ZHANG Changzheng ZHANG Weiyao

Abstract: In order to improve the output power of the ultrasonic power supply, this paper proposes a high-power ultrasonic power supply based on cascaded 9-level technology. The power inverter part is composed of two H-bridge units cascaded. After a certain control strategy, the output voltage is 9-level waveform, which can significantly increase the output power of the ultrasonic power supply and improve the waveform quality of the output voltage. A voltage difference method is proposed to track the resonant frequency of the transducer, which only needs to sample three voltages and change the output frequency according to the numerical difference between the three voltages. By analyzing the system structure, working principle and control strategy of the ultrasonic power supply, and simulation experiments to verify the feasibility and effectiveness of the scheme.

Keywords: Ultrasonic power supply; Automatic frequency tracking; Voltage difference method; 9 level
0 引言

随着超声技术在工业领域的深入研究和广泛应用，人们对于超声波电源的需求也越来越广泛。目前功率超声波技术主要应用于超声波焊接、超声波清洗和超声波电机等领域[1,2]。传统的超声波电源功率多为几百瓦、几千瓦，对于某些大功率场合的应用远远不够。超声系统属于谐振系统，要求超声波电源输出的信号频率必须与换能器谐振频率相同，才能保证换能器在稳定状态工作[3,4]。然而系统在加工过程中，随着负载及换能器工作温度的变化，元件暴露在空气中逐渐老化等问题，会导致换能器谐振频率发生漂移，引起整个系统在失谐状态下工作甚至导致系统无法正常工作[5-7]，因此必须使超声换能器在谐振状态工作。

文献[8]通过工业应用、清洗技术的发展、水处理应用以及测量技术全面介绍了大功率超声波电源的工业应用、发展及应用。文献[9]采用锁相环对谐振频率进行检测，采样换能器两端的电压电流信号，分析计算电压电流信号的相位关系，调节电源输出频率实现频率自动跟踪，该方法在负载变化较大时容易造成相位失锁。文献[10]采用基于电流和相位差的方法对超声换能器频率进行自动跟踪，将最小电流法用于换能器空载阶段，相位差法运用在带载阶段，该方法跟踪频率范围较小，换能器受到外界环境影响较大时无法保持超声波电源在最佳频率状态工作。

考虑到传统超声波电源输出功率不够，本文提出一种基于级联9电平技术的大功率超声波电源，该技术可以显著提高超声波电源的输出功率，并且可以提高输出电压的波形质量，减小匹配网络中滤波所需的电感和电容，加入光伏电源可实现节能减排；提出一种电压差法跟踪换能器的谐振频率。本文首先分析了该超声波电源的系统结构与工作原理，其次简要说明频率自动跟踪算法的控制策略，最后通过仿真实验证了该方案的可行性和有效性。

1 系统结构与工作原理

1.1 系统结构

图1为基于级联9电平技术的大功率超声波电源电路结构。Buck电路左侧输入为直流电，光照充足时由光伏电源提供，大功率超声波电源常用于油田解堵采油，户外阳光充足，可实现节能减排；光照不充足时由市电经过AC/DC整流电路补充能量。超声波电源不工作时可实现光伏发电。Buck电路可调节直流电压大小，用于调整超声波电源的输出功率。9电平变换器由两个H桥单元级联组成，输出9电平电压波形，经过匹配网络通入换能器。

图1 超声波电源系统电路结构
Fig. 1 Circuit configuration of ultrasonic power supply system

1.2 工作原理

1.2.1 9电平变换器工作原理

9电平变换器由两个H桥单元级联组成，两个变压器的变比从上到下依次为1：3k, 1：k (k为变压器变比系数)。采用适当的调制策略就可以产生一个9电平的电压，相关电平的组合方式见表1。
表1 9电平合成方法

合成电平	电平1	电平2	电平3
4	1	1	0
3	1	0	0
2	1	1	0
1	0	0	0

图2 9电平输出电压波形与各H桥输出电压波形

Fig. 2 Output waveforms of 9 level and each H-bridge

正弦波Us从9电平电压每个阶梯纵向的中点穿过，每个阶梯的电压值为kUd，Us的幅值为4.5kUd，可得到输出电压的基波幅值Um与直流侧电压Ud的关系为

\[U_m = 4.5kU_d. \]

由图2可知，Us一个周期T中可划分为18个时间段，根据对称性只需计算出1/4周期内的4个开关时间，即可推导出一个周期的开关时刻ti+1 (i = 0, 1, 2, ⋯, 17) 为

\[t_{i+1} = T\alpha_i, \]

\[\alpha_i = \begin{cases} 0, & i = 0, \\ \frac{2\pi}{9}\arcsin\left(\frac{2i-1}{9}\right), & i = 1, 2, 3, 4, \\ 0.5 - \alpha_{9-i}, & i = 5, 6, 7, 8, \\ 0.5 + \alpha_{17-i}, & i = 9, 10, 11, 12, \\ 1 - \alpha_{17-i}, & i = 13, 14, 15, 16, \\ 1, & i = 17. \end{cases} \]

结合表1及式(2)～(3)，通过设置每个开关管的导通时间，可以使得输出的9电平电压波形接近正弦波。结合图1及图2，9电平变换器与传统方波逆变器相比有如下优势：

(1) 输出相同功率时，9电平变换器中开关管两端承受的电压低，电压应力小，在开关管选择上有较大优势；

(2) 9电平变换器输出的9电平电压波形高，谐波畸变率小。

1.2.2 换能器及匹配网络

超声换能器的等效电路如图3(a)所示，其中C0为换能器的静态电容，L1为换能器的动力电感，C1为换能器的动力电容，R1为换能器的动力电阻。发生串联谐振时电路可等效为图3(b)，对应的谐振频率 fs 为

\[f_s = \frac{1}{2\pi\sqrt{L_1C_1}}. \]

由图3(b)的阻抗可得

\[Z = \frac{R_1 - jw_sR_2^2C_0}{1 + (w_sR_1C_0)^2}. \]

由于静态电容的存在，若超声波电源直接通入换能器，会产生大量的无功功率，必须加入匹配网络抵消静态电容。另一方面，匹配网络还可以对通入换能器的电压波形进行滤波，减少对换能器的损伤。虽然超声波电源产生的9电平电压波形畸变率较低，考虑到单个串联电感很难实现较好的滤波效果，加入较小的电容组成LC滤波，滤波效果会显著增加。LC匹配网络等效电路如图4(a)所示，电路可以进一步简化如图4(b)所示，发生串联谐振时的等效电路如图4(c)所示。
由式(5)可知，图4(c)可等效为
\[Z_m = jw_s L + \frac{R_1 - jw_s R_1^2 C'}{1 + (w_s R_1 C')^2}. \] (6)

若使电路等效为纯阻性，应使式(6)虚部为0，
电感应满足
\[L = \frac{R_1^2 C'}{1 + (w_s R_1 C')^2}. \] (7)

2 频率自动跟踪原理及系统控制策略

当系统的环境、温度等发生变化时，换能器固有的谐振频率会发生漂移，因此必须对谐振频率进行实时跟踪。常用的频率跟踪算法有最大电流法和锁相环法。系统频率在换能器谐振频率时，换能器呈纯阻性，负载电流最大，最大电流法容易实现，但跟踪灵敏度不高，稳定性差；锁相环法跟踪范围小，由于外界环境的复杂性，使得换能器谐振频率变化较大，采用锁相环法易造成误跟踪。本文提出一种电压差法，只需采样3个电压，可以有效地跟踪换能器的串联谐振频率，解决串联谐振点漂移对换能器性能产生巨大影响的问题。

2.1 电压差法原理

如图5所示，匹配网络中的电容由若干个电容串联组成，在匹配网络和换能器之间串联一个较大的电容C₂，对系统影响可忽略不计。采样如图5所示的电压有效值V₁₂、V₂₃、V₁₃，通过判断V₁₃与V₁₂、V₂₃之间的数值关系判断超声波电源频率的变化情况，无需计算相位。

下面进一步说明其原理，发生串联谐振时，换能器两端的电压U和通过换能器的电流I同相位。由于电容C₂两端的电流超前电压90°，此时V₁₂超前V₂₃ 90°，如图6(a)所示，并且可以得到
\[V_{13} = \sqrt{V_{12}^2 + V_{23}^2}. \]

如图6(b)所示，V₁₂ 和V₂₃之间相位差小于90°，换能器呈容性，应增大频率，此时V₁₃ > \sqrt{V_{12}^2 + V_{23}^2}。

如图6(c)所示，V₁₂ 和V₂₃之间相位差大于90°，换能器呈感性，应减小频率，此时V₁₃ < \sqrt{V_{12}^2 + V_{23}^2}。

令 \(\Delta V \) 为V₁₃与V₁₂、V₂₃之间的电压差，且 \(\Delta V \) 足满关系式
\[\Delta V = \sqrt{V_{12}^2 + V_{23}^2} - V_{13}. \] (8)

通过判断 \(\Delta V \) 的大小即可改变超声波电源的
频率，当 ΔV > 0 时，减小频率；当 ΔV = 0 时，频率保持不变；当 ΔV < 0 时，增大频率。

2.2 系统控制策略

系统控制策略如图7所示，采集如图5所示的电压有效值 V_{12}、V_{23}、V_{13} 并计算 ΔV，与给定的参考值进行比较，比较后的偏差量作为 PI 控制器的输入，经过 PI 控制后获得需要改变的频率量并与当前频率进行相加，从而获得新的驱动频率，系统程序流程如图8所示。新的驱动频率信号驱动9电平变换器得到换能器所需要的谐振频率，从而实现谐振频率的自动跟踪。

图7 系统控制策略
Fig. 7 System control strategy

表2 换能器参数
Table 2 Transducer parameters

参数	数值
静电电容 C_0/nF	2.3
动态电感 L_1/mH	188.3
动态电容 C_1/nF	0.1763
动态电阻 R_1/Ω	40
串联谐振频率 f_s/Hz	27622.9

3.1 9电平电压输出波形验证

图9为输出的9电平电压波形和快速傅里叶变换（Fast Fourier transformation, FFT）分析结果，9电平电压波形谐波畸变率约为9.35%，对比传统超声波电源输出的方波（总谐波失真约为48.3%），谐波畸变率大大减小，滤波所需要的电感和电容减少，并且9电平变换器很大程度上提高了输出的电压，更容易实现超声波电源大功率输出。

3.2 频率跟踪算法验证

换能器发生串联谐振时的频率为 27622.9 Hz，设置系统的初始频率为 26000 Hz。换能器使用时间过长会导致其老化，对应的等效参数会发生变化，以验证动态电容变化时系统的频率跟踪特性。图10(a)和图10(b)分别给出了动态电容减小和增大时系统的频率跟踪特性。可以得出，系统可以快速
速稳定地进行频率跟踪，并且系统在动态电容变化时仍能保持良好的频率跟踪性能。频率失调时换能器两端的电压电流波形如图11(a)所示，此时电压电流存在相位差; 系统稳定后换能器两端的电压电流波形如图11(b)所示，此时电压电流保持同相位。表明该算法具有良好的频率跟踪性能。

图9 9电平电压波形与FFT分析
Fig. 9 The 9 level voltage waveform and FFT analysis

图10 频率跟踪示意图
Fig. 10 Schematic diagram of frequency tracking

图11 超声波电源输出波形
Fig. 11 Output waveforms of ultrasonic power supply
4 结论

本文提出了基于级联9电平技术的大功率超声波电源, 通过一定的控制策略使得输出为9电平电压波形, 可以显著提高超声波电源的输出功率。9电平电压波形谐波畸变率较低, 可以改善输出电压的波形质量, 并且减少了匹配网络中滤波所需要的电感和电容。此外, 提出了一种电压差法跟踪换能器的串联谐振频率, 其原理简单, 仿真实验表明提出的跟踪策略可以稳定快速地跟踪换能器的谐振频率。

参考文献

[1] Kuang Y, Jin Y, Cochran S, et al. Resonance tracking and vibration stabilization for high power ultrasonic transducers[J]. Ultrasonics, 2014, 54(1): 187–194.
[2] 罗杰. 大功率超声波电源及应用研究 [D]. 广州: 华南理工大学, 2015.
[3] 苏文虎. 一种阻抗匹配可调的变频式超声波电源 [D]. 镇江: 江苏科技大学, 2017.
[4] Cheng L, Kang Y, Chen C. A resonance-frequency tracing method for a current-fed piezoelectric transducer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6031–6040.
[5] 刘丽晨, 杨明, 李世阳, 等. 超声换能器并联谐振频率的复合式跟踪方法研究 [J]. 应用声学, 2015, 34(1): 45–50.
[6] 李夏林, 刘雅娟, 朱武. 超声电源频率自动跟踪的模糊控制算法研究 [J]. 应用声学, 2017, 36(2): 135–141.
[7] Liu Lichen, Yang Ming, Li Shiyang, et al. Parallel resonant frequency composite tracking of piezoelectric transducer[J]. Journal of Applied Acoustics, 2015, 34(1): 45–50.
[8] Harvey G, Gachagan A, Mutasa T. Review of high-power ultrasound-industrial applications and measurement methods[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(3): 481–495.
[9] de Lima Ávila H E, de Andrade G A, de Sousa F R, et al. Modeling and analysis of a PLL-based resonant frequency tracking system using a resonant cavity sensor[J]. IEEE Sensors Journal, 2019, 19(17): 7474–7459.
[10] Zuo Chuanyong, Yang Ming, Li Shiyang. Frequency tracking of piezoelectric transducer based on the current and phase difference[J]. Journal of Applied Acoustics, 2016, 35(3): 189–194.