A Position Sensitive X-ray Spectrophotometer using Microwave Kinetic Inductance Detectors

Benjamin A. Mazin, Bruce Bumble, and Peter K. Day
Jet Propulsion Laboratory, California Institute of Technology

Megan E. Eckart, Sunil Golwala, Jonas Zmuidzinas, and Fiona A. Harrison
Physics Department, California Institute of Technology
(Dated: June 7, 2018)

The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. We present results on position sensitive X-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

PACS numbers: 85.25.Oj

Low temperature detectors (LTDs) are the detectors of choice to measure the energy and arrival time of incoming single photons. Arrays of LTDs can determine the location, time, and energy of every incoming photon (imaging spectrophotometry) with no read noise or dark current. Many technologies are being developed, including neutron transmutation doped (NTD) germanium, superconducting tunnel junctions (STJ), transition edge sensors (TES), magnetic microcalorimeters (MMC), and normal-insulator-superconductor (NIS) bolometers. While these technologies have shown promise in single pixel and small array devices, multiplexed readouts remain a significant challenge and have only been demonstrated for TES detectors, using complex superconducting circuitry at 4 K (or colder).

The uses of energy-resolving X-ray detectors are both practical and exotic. High resolution X-ray detectors are used in X-ray microanalysis to investigate semiconductor fabrication problems, but could also be used to learn about the strong gravitational fields around supermassive black holes. The work described here can also be adapted to optical/UV energy-resolved single photon detection by increasing the responsivity of the detector. Imaging optical spectrophotometers have a variety of astronomical applications, including planet detection, optical pulsars, and redshift determination of high-z galaxies.

An energy-resolving detector for photon energies of 0.1 ~ 10 keV can be made using a “strip-detector” architecture (Figure 1), comprising a long strip of a superconducting material with quasiparticle sensors attached at each end. The quasiparticle sensors we use are microwave kinetic inductance detectors (MKIDs), and will be discussed in detail below. STJs have been previously used with this type of detector architecture.

The photon detection process begins when an X-ray with energy $h\nu$ is absorbed in a tantalum strip, producing a number of excitations, called quasiparticles, equal to $N_{qp} = \eta h\nu/\Delta$, where Δ is the gap parameter of the superconductor, and η is an efficiency factor (about 0.6 for our devices). The principle is similar to electron-hole generation by photons in semiconducting X-ray detectors, with the difference that Δ is only tenths of millielectron volts (meV), as opposed to 1 eV or more for a semiconductor. This very low gap energy means that millions of quasiparticle excitations are created for each X-ray photon absorbed. Since some of the energy is lost to phonons, the fundamental energy resolution of the detector is limited by the statistical fluctuation of the number of remaining quasiparticles, given by $\sigma_N = \sqrt{F N_{qp}}$, where F is the Fano factor.

The tantalum absorber strip has a higher superconducting energy gap ($\Delta = 0.67$ meV) than the aluminum MKIDs ($\Delta = 0.18$ meV). The quasiparticles created by photons absorbed in the tantalum strip may diffuse laterally, reaching the MKIDs at the two ends of the strip. Once in the MKIDs, the quasiparticles quickly cool by phonon emission. This energy loss prevents them from returning to the higher gap tantalum absorber, trapping them in the MKID. This trapped quasiparticle population is measured by the MKIDs. The two MKID output signals may be used to simultaneously deduce the position and energy of the event. Noise sources will produce some scatter δE in the energy and δx in position; the fractional resolutions in energy and position are expected to be comparable.

The quasiparticles trapped in the MKIDs are sensed through their effect on the kinetic inductance and surface resistance of the aluminum film comprising the MKID. The MKIDs are microwave resonators made using coplanar waveguide (CPW) transmission lines. The 3 μm wide CPW center strip is separated from the ground plane by slots that are 2 μm wide. The length of the resonator is ~ 5 mm and the thickness of the Al film is 200 nm. An increase in the quasiparticle population in the MKID moves the resonance frequency lower and increases the width of the resonance (lower quality factor Q). Both of these effects are monitored by measuring the...
MKID designs were used, differing in the strength of the coupling-limited quality factor Q_c, which was chosen to be 25,000 and 50,000 for the two MKID designs. All twenty MKID resonators were coupled to a single feedline: the two resonators for a given strip were separated by 10 MHz in frequency, beginning at 6.5 GHz, while a 100 MHz spacing was used to separate the different strip detectors. All the resonators were detected near their design frequencies.

Fabrication of this device is done on an R-plane sapphire wafer to allow epitaxial growth of α-phase (bcc) tantalum. All metal depositions are carried out in a load-locked ultra high vacuum (UHV) sputtering system with a base pressure of 10^{-7} Pa. The Ta film is deposited at 60 nm/minute to a thickness of 600 nm with substrate temperature of 700 C. Our layers are patterned using a Canon 3000 stepping mask aligner with a Cymer 250 nm laser. The tantalum film is reactive ion etched (RIE). Tantalum edge sloping is accomplished by re-flowing the resist for 5 minutes at 130 C, followed by RIE using a gas mixture of 30% O$_2$ in CF$_4$ at a pressure of 27 Pa. The resist is eroded back as the tantalum is removed. After the surface is solvent cleaned, it is argon ion cleaned in-situ before the aluminum for the MKID is blanket deposited to a thickness of 200 nm. RIE of aluminum is done with a mixture of 2:1, BCl$_3$: Cl$_2$ at a pressure of 4 Pa. A water rinse to remove chlorine compounds is followed by a solvent clean.

![Image](image.png)

FIG. 1: The middle panel, Figure 1(b) contains a drawing of the central region of a MKID strip detector. A $200 \times 35 \, \mu m$, 600 nm thick tantalum strip (RRR=22.6) is fabricated on R-plane sapphire and has MKIDs attached to both ends. The 3 μm center strip of the 200 nm thick aluminum (RRR=9.5) CPW resonator that comprises the MKID is flared out where it contacts the tantalum strip to allow lateral trapping of quasiparticles. The top panel, Figure 1(a) shows the superconducting gap Δ of the structure, including a quasiparticle diffusing into the aluminum MKID and being trapped by phonon emission. The bottom panel, Figure 1(c) shows a SEM of the Al-Ta interface from the wafer tested in this paper. A patch of aluminum patterned with a liftoff process is used to bridge the Al-Ta interface to avert a step coverage problem. In this device the tantalum is nicely sloped and the aluminum resonator climbs smoothly over the step.

The device shown in Figure 1 was cooled to 150 mK using an Oxford Kelvinox 25 at the Caltech MKID test facility[21]. The test sample contained eight separate strip detectors, with strip lengths of 100, 200, 400, and 800 μm and strip widths of 35 μm, and four additional test resonators. For each strip length, two different MKID designs were used, differing in the strength of the coupling to a CPW readout line. The coupling strength is specified by the corresponding coupling-limited quality factor Q_c, which was chosen to be 25,000 and 50,000 for the two MKID designs. All twenty MKID resonators were coupled to a single feedline: the two resonators for a given strip were separated by 10 MHz in frequency, beginning at 6.5 GHz, while a 100 MHz spacing was used to separate the different strip detectors. All the resonators...
The aluminum quasiparticle lifetime is 186 ± ±13 ms in the aluminum MKID and 115 ± diffusion length \(l \) values are obtained from other strips. Statistics (Fano noise) in tantalum is 2.8 eV. The dielectric combination (g-r noise) in the aluminum MKID is negligible.

Noise Source	Noise Contribution
G-R Noise at 150 mK	0.2 eV
Fano Noise in Tantalum	2.8 eV
Substrate Noise (best)	12 eV
Substrate Noise (this device)	65 eV

TABLE I: A summary of the noise sources present in our resonator. The noise due to quasiparticle creation and recombination (g-r noise) in the aluminum MKID is negligible. The intrinsic noise of the device from quasiparticle creation statistics (Fano noise) in tantalum is 2.8 eV. The dielectric in our resonators adds phase noise to the measurement, increasing our expected energy width to 65 eV. The excess dielectric noise displayed by this batch of resonators was significantly worse than expected from previous measurements due to the use of a sapphire wafer of poor quality. The best sapphire resonators we have tested, which have the dynamic range to measure 6 keV X-rays, would have given an expected substrate noise contribution of 12 eV.

In addition, a scaling factor accounting for the differing responsivities of the two MKIDs is introduced by allowing a linear prefactor to modify the responsivity of the left MKID. The model also includes a recombination constant (which is the same for both MKIDs) that depends on quasiparticle density in the MKID. This is used to model the enhanced recombination in the aluminum MKID that can occur at the beginning of a pulse if the quasiparticle density is high.

The model starts by placing a gaussian distribution of quasiparticles with a full-width half-maximum (FWHM) of 5 \(\mu m \) in a tantalum strip, which is divided into 200 bins. This initial distribution is propagated forward in time with a time step of 0.1 \(\mu s \) using the Crank-Nicholson method applied to the diffusion equation. At each time step, the number of quasiparticles entering each MKID is recorded. Perfect quasiparticle trapping at the interface is assumed. After the diffusion has been simulated, the quasiparticle pulses are translated into phase pulses using a simple linear model for MKID responsivity, \(\delta \phi \sim d\phi \sim dN_{q} = \frac{1.63 \times 10^{-7} \alpha Q}{V} \) radians per quasiparticle, where \(\alpha \approx 0.07 \) is the kinetic inductance fraction, \(Q \approx 20,000 \) is the resonator quality factor, and \(V \) is the volume of the center strip in \(\mu m^3 \). These simulated pulses are compared with the raw data, and an iterative routine is used to find the parameters that best replicate our data. This process is repeated on ten separate sets of pulses in order to produce error estimates.

Using this model we estimate the diffusion and lifetime parameters of the 800 \(\mu m \) long strip since the long length allows the most accurate determination of the material parameters. At a temperature of 150 mK and a microwave readout power at the device of -73 dBm we measure a tantalum diffusion constant of 13.5 ± 1.8 cm²/sec and a tantalum quasiparticle lifetime of 34.5 ± 5.7 \(\mu s \). The aluminum quasiparticle lifetime is 186 ± 13 \(\mu s \) in the left MKID and 115 ± 8.3 \(\mu s \) in the right MKID. Similar values are obtained from other strips.

These parameters allow us to calculate the tantalum diffusion length \(l_{T_a} = \sqrt{D_{T_a} \tau_{T_a}} = 216 \pm 30 \mu m \) and relative responsivity of the MKIDs, which can be used to correct the pulses for quasiparticle loss in the tantalum strip. If we define the loss factor \(\beta = l_{strip}/l_{T_a} \) using the values from our model, the energy of the photons can be calculated from the pulse heights in each MKID, \(P_1 \) and \(P_2 \), using \(E = \sqrt{P_1 + P_2 + 2P_1P_2 \cosh (\beta)} \). The inset in Figure 2 shows the energy histogram derived with this technique for X-ray data taken at 200 mK. When we consider all pulses with greater than 22 degrees of phase shift in each MKID (the center of the absorber strip) we obtain a FWHM energy width \(\delta E = 62 \) eV at 5.899 keV when we restrict our data to all pulses that show greater than 22 degrees of phase shift in both MKIDs.

FIG. 2: The optimally filtered maximum phase pulse height in degrees observed in an aluminum MKID attached to a 200 \(\mu m \) tantalum strip is shown in Figure 2(a). The pulse height in the left MKID is shown on the x-axis, while the right MKID is shown on the y-axis. The Mn \(K_{\alpha} \) and \(K_{\beta} \) lines from the 55Fe source are clearly visible. This data is fit to determine the diffusion length, and this is used to compute the energy spectrum shown in the inset, Figure 2(b). We calculate a FWHM energy width \(\delta E = 62 \) eV at 5.899 keV when we restrict our data to all pulses that show greater than 22 degrees of phase shift in both MKIDs.

Improving the magnetic shielding should increase the tantalum diffusion length substantially, allowing tantalum absorber strips up to 1 mm long. In this experiment a cryoperm magnetic shield was used, but due to a previous change in the orientation of the experiment it likely did not provide effective shielding.

The responsivity of an MKID can be increased significantly by using thinner aluminum films to make the MKID. Thinner films increase the kinetic inductance...
fraction and decrease the volume, so that film half as thick will have almost four times the responsivity. For a given maximum photon energy we endeavor to tune the response of the detector to the largest X-ray to about 90 degrees of phase shift. Larger phase excursions involve significant heating of the aluminum film in the MKID, and can make the data taking and analysis more complex.

If we can reduce our observed noise to the noise we have seen in our best aluminum on sapphire MKIDs with sufficient dynamic range for 6 keV X-rays, we should be able to get an energy resolution of ∼12 eV, which begins to approach the statistical (Fano) limit in tantalum (3 eV). Further increases in resolution can be expected from a more optimal pulse analysis which includes the amplitude information, and from improvements to MKID design and fabrication suggested by our ongoing detailed study of their noise properties.

These strips can easily be stacked into a near 100% fill factor array, and powerful multiplexing techniques to read out large MKID arrays have already been demonstrated[21]. These strip detectors provide a clear path to large format optical/UV and X-ray focal planes.

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported in part by JPL Research and Technology Development funds and by NASA grant NAG5-5322 to Harrison. We would like to thank Rick LeDuc, Jiansong Gao, Dan Prober, and Luigi Frunzio for useful discussions.

[1] J. Cottam, K. Boyce, G. Brown, E. Figueroa-Feliciano, R. Kelley, V. Ponce, F. Porter, C. Stahle, and W. Tillotson, Proceedings of LTD-10 520, 368 (2004).
[2] H. Kraus, T. Peterreins, F. Probst, F. von Feilitzsch, R. Mossbauer, V. Zacek, and E. Umlauf, Europhys. Lett. 1, 161 (1986).
[3] S. Friedrich, K. Segall, M. Gaidis, C. Wilson, D. Prober, A. Szynkowiak, and S. Moseley, Appl. Phys. Lett. 71, 3901 (1997).
[4] L. Li, L. Frunzio, C. Wilson, and D. Prober, J. Appl. Phys. 93, 1137 (2003).
[5] K. Irwin, G. Hilton, D. Wollman, and J. Martinis, Appl. Phys. Lett. 69, 1945 (1996).
[6] B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, and R. Romani, Appl. Phys. Lett. 73, 735 (1998).
[7] K. Irwin, G. Hilton, J. Martinis, S. Deiker, N. Bergren, S. Nam, D. Rudman, and D. Wollman, Nucl. Instrum. Meth. A444, 184 (2000).
[8] C. Enss, in Low Temperature Detectors, edited by F. Porter, D. McCammon, M. Galeazzi, and C. Stahle (2002), vol. 605 of AIP Conference Proceedings, pp. 5–10.
[9] D. Schmidt, K. Lehnert, A. Clark, W. Duncan, K. Irwin, N. Miller, and J. Ulom, APL 86, Art. No. 053505 (2005).
[10] J. Chervenak, K. Irwin, E. Grossman, J. Martinis, C. Reintsema, and M. Huber, Appl. Phys. Lett. 74, 4043 (1999).
[11] J. Yoon, J. Clarke, J. Gildemeister, A. Lee, M. Myers, P. Richards, and J. Skidmore, Appl. Phys. Lett. 78, 371 (2001).
[12] D. Wollman, K. Irwin, G. Hilton, L. Dulcie, D. Newbury, and J. Martinis, J. Micros.-Oxford 188, 196 (1997).
[13] D. Wollman, S. Nam, D. Newbury, G. Hilton, K. Irwin, N. Bergren, S. Deiker, D. Rudman, and J. Martinis, Nucl. Instrum. Meth. A444, 145 (2000).
[14] K. Weaver, N. White, H. Tananbaum, A. Valinia, F. Marshall, J. Bookbinder, C. Stahle, J. Grady, R. Rasche, L. Van Speybroeck, R. Kelly, S. Kahn, F. Harrison, S. Castles, Astron. & Ap. (Suppl.) #88.03 192 (1999).
[15] R. Romani, A. Miller, B. Cabrera, S. Nam, and J. Martinis, Ap. J. 563, 221 (2001).
[16] B. Mazin and R. Brunner, Astron. J. 120, 2721 (2000).
[17] P. Day, H. Leduc, B. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature 425, 817 (2003).
[18] A. G. Kozorezov, A. F. Volkov, J. K. Wigmore, A. Peacock, A. Poelaert, and R. den Hartog, Phys. Rev. B 61, 11807 (2000).
[19] U. Fano, Phys. Rev. 72, 26 (1947).
[20] B. Mazin, Ph.D. thesis, California Institute of Technology (2004).
[21] K. Segall, Ph.D. thesis, Yale University (2000).
[22] J. Gao, J. Zmuidzinas, B. A. Mazin, P. K. Day, and H. G. Leduc, Nuclear Instruments and Methods in Physics Research A 559, 585 (2006).
[23] H. Kraus, F. Vonfeilitzsch, J. Jochum, R. Mossbauer, T. Peterreins, and F. Robst, Physics Letters B 231, 195 (1989).
[24] J. N. Ullom, P. A. Fischer, and M. Nahum, Appl. Phys. Lett. 73, 2494 (1998).
[25] B. Mazin, P. Day, K. Irwin, C. Reintsema, and J. Zmuidzinas, in Proceeding of LTD-11 (2006), vol. 559 of AIP Conference Proceedings, pp. 799–801.
[26] A. Sergeev and M. Reizer, Intl. J. Mod. Phys. B 10, 635 (1996).