Short-term recovery of heart rate variability and its relationship with blood pressure after different intensity treadmill exercise

CURRENT STATUS: UNDER REVIEW

Liang Wu
University of Shanghai for Science and Technology

Ping Shi garendon@163.com
Corresponding Author

Jiang Shao
University of Shanghai for Science and Technology

Anan Li
University of Shanghai for Science and Technology

Hongliu Yu
University of Shanghai for Science and Technology

Yang Liu
First Affiliated Hospital, The Second Military Medical College, Shanghai

DOI:
10.21203/rs.2.20167/v1

SUBJECT AREAS
Biomedical Engineering

KEYWORDS
Heart rate variability, autonomic nervous regulation, heart rate asymmetry, electrocardiogram
Abstract

Background: Heart rate variability (HRV) provides an opportunity to capture the tiny but early signs that may predict the future cardiovascular risk in healthy individuals and further, helps understand how well the cardiovascular autonomic system works. Aims of this study were to elucidate short-term recovery of HRV and its relationship with blood pressure recovery after different intensity treadmill exercise. Methods: Fifteen healthy participants performed four different conditions (REST; speed 6km/h; speed 8km/h; speed 10km/h), systolic and diastolic blood pressure per 30s (SBP, DBP) and 5-mins consecutive heart beats intervals were measured after each trial. Autonomic nervous regulation was evaluated using HRV time-frequency domain indices and heart rate asymmetry (HRA) indices. Each index was calculated using 5 mins electrocardiogram (ECG) series and consecutive 30-s windows in 5 mins. Results: the vagally related indices (RMSSD, pNN50 and HF) decreased and the indices representing overall variability (SDNN, LF) had different trends as intensity increasing. The sympathetic-vagal balance parameter LF/HF increased, too. HRV indices had strong correlations with DBP but weak with SBP. Meanwhile, heart rate asymmetry vanished after each trial. Conclusions: The findings suggested a vagal withdrawal as soon as the end of treadmill exercise. It could be concluded that sympathetic modulation was stronger as intensity increasing. During recovery period, DBP was mediated by vagal activation and sympathetic withdrawal. The diminished asymmetry in Poincaré plot was the result of sympathetic acceleration and vagal reduction.

Background

Heart rate variability (HRV) has been studied extensively across a variety of academic areas as it is thought to reflect the complex interaction between the autonomic nervous system...
system and cardiovascular system [1]. Extracted from the electrocardiographic (ECG) signals, HRV provides a non-invasive insight into the interplay between sympathetic and vagal activities of the ANS [2, 3]. The normal variability is due to automatic neural regulation of heart and circulatory system, increased sympathetic activities or diminished vagal activities results in cardio-acceleration; on the contrary, low sympathetic activities or high vagal activities causes cardio-deceleration.

Short-term recovery of HRV during post-exercise period has been considered as an independent indicator for cardiovascular diseases [4]. It is widely believed that abrupt alterations in cardiovascular autonomic tone after dramatical exercise contribute to the increasing risk of cardiac death [5–7]. The result is mainly caused by sympathetic hyperactivity and reduced cardiac vagal tone after acute exercise [8]. Considering the profound influence of exercise on HRV, more and more researchers focus on the application of HRV in exercise. Parekh et al reported that high intensity exercise resulted in a greater shift in sympathetic-vagal balance compared to moderate exercise during post-exercise period [9]. Amano and Oliveira et al supported that monitoring parameters of HRV could be useful for tracking the time course of training adaptation in order to set optimal training loads which lead to improved performances [10–12]. Tulppo et al reported some indices of HRV increased with increasing exercise intensity [13]. The change of cardiovascular autonomic modulation at post-exercise is mainly triggered by parasympathetic reactivation reduction, and it has important physiological and clinical significance as it is a potential factor of cardiovascular events following exercise [14, 15]. It’s considered that three mechanisms are thought to be responsible for the neural cardiovascular modulation during exercise: the activation of higher brain centers, the reflex activity from chemo and mechanoreceptor as well as baroreceptor afferents [16–19]. Each mechanism activates neuronal circuits within the medulla and thus
modulates the balance between sympathetic and vagal nerve. The influence of each mechanism on physiological parameters response to exercise depends on recruited muscle mass, muscle fiber type, exercise mode and exercise intensity [20]. Compared to low exercise intensity, high intensity would elicit a stronger chemoreflex response for blood flow and release of metabolites is limited.

The chemoreflex elevates blood pressure (BP) by a sympathetic vasoconstriction, also affects sympathetic modulation [21]. It is essential to evaluate the relationship between HRV recovery and BP recovery as combined HRV and BP metrics suggests cardiovascular autonomic short-term response to exercise. Unfortunately, few studies have evaluated the correlation between short-term HRV recovery and BP recovery at different intensity post-exercise applied to autonomic modulation.

Therefore, aim of the present study was to examine the cardiovascular autonomic response to different intensity exercises. Also, we identified the correlation between short-term HRV recovery and BP recovery following different treadmill exercises. This work largely focused on the short-term continuous BP recovery and mechanisms that controlled and regulated these outcomes. HRV indices were quantified by time-frequency domain analysis using 5 min ECG series, which was introduced in (2.4). Furthermore, we explored heart rate asymmetry (HRA) by Poincaré plot tool, which was to verified shift of sympathetic-vagal balance in different intensity treadmill exercise.

Results

HRV Recovery of time-domain indices

Time-domain HRV indices (SDNN, RMSSD and pNN50) with interval of 30 s were calculated in Fig. 2. All three indices tended to be stable in resting condition. At 6 km/h post-exercise, SDNN and pNN50 were observed obviously decreased compared to baseline of
resting condition. Significant differences of the two indices were identified between resting condition and 6 km/h post-exercise. The recovery of RMSSD had a distinct float at 6 km/h post-exercise, and there was no significant difference from REST. After other two exercise trials, three indices went further declined in response to higher intensity. Significant differences of three indices were detected between 6 km/h and 8 km/h, 10 km/h post-exercise, but not between 8 km/h and 10 km/h trials.

HRV indices assessed by complete 5 min ECG series were summarized as mean ± standard deviation (SD) in Fig. 3. There were obvious decreased trends for indices as exercise intensity increased. No significant difference was noted only between REST and 6 km/h post-exercise, while among the others had significant differences.

Recovery of frequency-domain HRV indices

The results of frequency-domain HRV indices per 30 s were given in Fig. 4. Compared with REST, the values of LF and LF/HF ratio had no absolute change in 5 min, while HF got slightly decreased at 6 km/h 1 post-exercise. No significant differences were identified between these two trials. With exercise intensity increasing, LF and LF/HF ratio got distinctly augmented, and significant differences were found between REST and 8 km/h, 10 km/h trials. Moreover, at 8 km/h and 10 km/h post-exercise, the values of HF decreased compared to 6 km/h post-exercise, but no differences were identified among three trials for HF.

In Fig. 5, LF and LF/HF ratio assessed by 5 min ECG series were observed increased as intensity increasing, accompanied with decrease in HF. For LF, there was no significant difference between 6 km/h and REST, 8 km/h post-exercise. Differences failed to reach statistical significance between REST and 6 km/h post-exercise for HF and LF/HF either (p = 0.9380, p = 0.1076). Among other trials differences were significant.
BP and its correlation with HRV indices

Simultaneous SBP and DBP were recorded in Fig. 6. Both SBP and DBP got declined trend and were back to resting condition in nearly 3.5 min during recovery period. Notably, different intensity exercise produced different cardiovascular response in DBP recovery. There was a slight reduction in DBP comparing to REST DBP following treadmill exercise, and the reduction trend was more obvious after lower intensity exercise.

Table 2 showed data for significant correlations between HRV indices and BP in different post-exercise periods. Time-domain SDNN, RMSSSD and pNN50 indices of HRV showed positive correlation with SBP only at 8 km/h post-exercise. Instead, at 10 km/h post-exercise, SBP was negatively correlated with frequency-domain LF and LF/HF indices and positive correlation with HF, no correlation with time-domain indices. For DBP, a positive correlation with time-domain SDNN, RMSSSD and pNN50 indices was observed after each trial, as well as a negative correlation with LF and LF/HF ratio. No correlation was found between DBP and HF at 8 km/h post-exercise, but showed a positive correlation during other recovery periods. Therefore, BP correlated with HRV indices at post-exercise period reflected cardiovascular autonomic activities.

Table 2
Spearman’s correlation coefficients between BP and HRV indices

	SBP				DBP			
	rest	6 km/h	8 km/h	10 km/h	rest	6 km/h	8 km/h	10 km/h
SDNN(ms)	-	-	0.286*	-	0.478**	0.428*	0.278*	
RMSSD(ms)	-0.374*	-	0.334**	-	0.455**	0.376**	0.405**	
pNN50(%)	-0.315*	-	0.323*	-	0.438**	0.454**	0.342**	
LF (ms²)	-	-	-0.19*	-0.196*	-0.271**	-0.201*	-0.263**	
HF (ms²)	-0.321*	-	-	0.219*	0.242**	-	0.186*	
LF/HF	0.282*	-	-0.182*	-	-0.263**	-0.205*	-0.255**	

*represents p < 0.05; **represent p < 0.01.

HRA at different intensity post-exercise

Visually, HRA is defined as imbalanced distribution of points above and below the line of identity of Poincaré plot. Figure 7 summarized short-term recovery of HRA indices over
time in 5 min. All four indices stayed in a steady state in resting condition and were larger than 50%. At 6 km/h and 8 km/h post-exercise, these indices had normal fluctuations but did not change too much compared to REST. The indices showed no statistical differences between REST and these two trials. It was notable that indices got absolutely decreased during the first 30 s of recovery period. It was considered as the result of reactivation of vagal drive and a decrease in sympathetic drive that usually occurred immediately after exercise [41]. However, abrupt and obvious fluctuations of HRA indices were observed after the third trial. Indices went down to minimum at 3th min and then increased, but didn’t recover to resting condition until 5 min at 10 km/h post-exercise. HRA indices were significantly different between this trial and others. Furthermore, Fig. 8 showed the mean ± SD of HRA indices assessed by 5 min ECG series. There was obvious difference between rest and exercise. Statistical differences were observed between resting condition and three trials, but not between the exercise trials.

Discussion

Cardiovascular autonomic response to different intensity exercise

The present study investigated the modulation of autonomic system at post-exercise period [42] via HRV indices calculated on consecutive 30-s windows. Meanwhile, the BP recovery was studied and the correlation between short-term recovery of HRV and BP at different exercise intensity was firstly investigated.

The results showed that cardiovascular autonomic modulation was altered in the recovery phase after different intensity exercise. Generally, RMSSD, pNN50 and HF were thought to reflect vagal modulation of sinoatrial (SA) node, while SDNN and LF marked both sympathetic and vagal nerve activities [43]. In recovery phase, sympathetic activity was more active after higher intensity exercise, which could be proved by increasing LF and
LF/HF ratio. At the same time, the decreased RMSSD, pNN50 and HF demonstrated decreased vagal activity as exercise intensity increased. Our results were not entirely consistent with the previous reports, which suggested that the early recovery of HR was mainly mediated by sympathetic withdrawal and vagal reactivation [5, 44, 45]. It was reasonable to explain that vagal withdrawal was remained as soon as the end of exercise, which meant vagal influence on HR was stable in initial early recovery phase. Kannankeril et al examined that heart rate remained stable during 4–10 min in post-exercise phase [5]; Justin et al suggested HRV measured during 5–10 min of recovery would accurately portray vagal response instead of the first min of recovery [46]. The results in present study were in accordance with their researches.

The present findings suggested that the prognostic significance of delayed recovery was attributed to heightened sympathetic effects and attenuated recovery of parasympathetic effects. The similar variation trends and overall results of HRV indices between resting condition and at 6 km/h post-exercise suggested both sympathetic and vagal activation but sympathetic did not achieve dominance. Extreme changes of HRV indices after other two trials indicated that sympathetic nerve activity was greater and achieved dominance over vagal nerves after higher intensity exercise. Buchheit et al [42] and Fisher et al [47] had reported that high-intensity exercise increased contribution of glycolytic metabolism, and metabolites were observed by stimulating the sympathetic activity and delayed parasympathetic reactivation after exercise in their studies [48]. Furthermore, the LF/HF ratio, which was considered as an index of the balance between sympathetic and vagal activity, was increased as exercise intensity increased, indicating a possible shift toward a heightened sympathetic modulation. These findings would highlight further research about autonomic regulation after different intensity treadmill exercise.

The relationship between autonomic modulation and BP
BP was one of the most extensively studied variables evaluating recovery of cardiovascular system after exercise. The process was a dynamic period in which many physiological changes occurred. Treadmill exercise was considered as muscle mass exercise and would impose a volume load on cardiovascular system. Generally, magnitude of the increase in vascular conductance and reduction in vascular resistance was larger than elevations in cardiac output following dynamic exercise, which meant that vasodilation was the driver of BP recovery [49]. An interesting phenomenon was found this study: SBP returned to REST at the 4th min and remained stable after that, DBP recovered to REST at 3.5th mins but further went down to lower level after that, especially after lower-intensity exercise trial. This was mainly caused by venous return stemming from physical vasodilation of the vasculature [50].

Meanwhile, central command mechanism had been proposed to play an important role in cardiovascular regulation, it served as a feed-forward system that was related to post-exercise vasodilation [51]. That was why the relationship between HRV indices and BP appeared during recovery phase. The autonomic system utilized chemo- and baroreceptors to monitor pressure as well as current metabolic status of the body, when chemo- and baroreceptor activities were integrated in the medulla, flow-pressure was constantly monitored and adjusted during exercise. Then, the change was fed back to medulla again, these receptors adjusted flowed- pressure by altering HR and BP [52–55]. A positive correlation between DBP and SDNN, RMSSD, pNN50, HF indicated that DBP was regulated by vagal activation, while a negative correlation between DBP and LF meant reduction in DBP was also influenced by sympathetic withdrawal. The reason of the weak correlations between SBP and HRV indices needed further investigation. To summarize, autonomic system contributed to blood pressure regulation and further investigation about SBP was necessary to provide relevant and significant explanations. This finding gave a new insight
into the interplay between BP regulation and cardiovascular autonomic activities in post-exercise period.

Autonomic modulation reflected by HRA at post-exercise

The nonlinear methods come from the fusion of topology and differential equation theory. As we know, HRV signals has non-linear dynamic characteristics, because heart rate is mainly controlled by the autonomic nervous system, while autonomic nervous activities are mainly affected by brain activity, which is a complex dynamic system containing multiple nonlinear oscillators. It is necessary to use nonlinear methods to analyze the dynamic characteristics of HRV.

Complementary to traditional time and frequency parameters, non-linear indices were able to identify the different patterns of autonomic regulation after different intensity exercise. HRA was described as a visible phenomenon, which quantified imbalance of heart rate acceleration and deceleration using a two-dimension Poincaré plot [39, 40, 56]. It was reported to mostly present in healthy participants under resting condition and decrease with pathology [57, 58]. Indeed, the asymmetry meant that sympathetic and vagal branches of ANS contributed unequally to heartbeat, the velocity and direction of shift changed from time to time in different exercise intensities. Previous studies suggested that elevated exercise intensity was crucial to cause imbalances of sympathetic-vagal activities. Figure 7 indicated that the higher exercise intensity, the greater the HRA indices fluctuation. The greater fluctuation was an indicator of acceleration contribution to magnitude asymmetry in elevated intensity. This was in accordance with the concept that the higher the intensity, the higher sympathetic activity in response to post-exercise excitatory stimulus, as we mentioned before. Furthermore, the results accessed by 5 min ECG series exhibited that HRA phenomenon disappeared at post-exercise period with indices (AI, PI, GI, SI) approaching 50%. This verified the acceleration of sympathetic
modulation and reduction in vagal activity at post-exercise period. Guzik et al had reported that the HRA might be related to the response of the baroreflex to increase or decrease the blood pressure [39]. However, the inner mechanism between HRA and BP was unclear and remained to be investigated.

Limitations in this work included exclusion of younger and older subjects of any age range, so the findings could not be precisely extrapolated for these people. In addition, we performed the relationship between HRV and BP after different intensity treadmill exercise, which should be tested for different exercise modes. Previous investigators have demonstrated that cardiac vagal tone and vascular system had great different response to resistance exercise versus endurance exercise [50, 22]. We are intrigued to do more research in the future work to provide additional information understanding the mechanism involved after different exercise modes.

Conclusions

In conclusion, the present study preliminarily investigated the cardiovascular autonomic responses to different intensity exercise. The results showed that participants had more augmented modulation of sympathetic tone as intensity increased and achieved dominance in high-intensity exercise. Also, the correlation between HRV indices calculated on consecutive 30-s windows and BP recovery indicated that the decrease of DBP was associated with vagal activation and sympathetic withdrawal. The diminished HRA in a Poincaré plot after exercise was influenced by acceleration of sympathetic modulation and reduction in vagal activity.

Methods

Participants

Table 1 gives the basic characteristics of all participants. Fifteen young participants were
invited to take part in this study, including 10 males and 5 females. All participants were physically healthy and none of them had cardiovascular disease history and took medication. One week before the experiment, participants were informed not to smoke or take any exhaustive exercise and any alcohol or caffeine was not allowed for three days prior to the experiment. All participants gave written informed consent to participate in this study.

Selection factor	Values
Total number (M, F)	15 (10, 5)
Age (years)	22.3 ± 1.2
Height (cm)	174.0 ± 8.4
Body mass (kg)	68.4 ± 9.5
BMI (kg/m²)	22.5 ± 1.5

Table 1
Participant characteristics

Experimental protocols

The study was performed in neutral environment as external factors (i.e., noise, temperature, light) could exert influences on HRV indices and caused sympathetic predominance [3]. Participants took three treadmill exercises: speed 6 km/h; speed 8 km/h; speed 10 km/h. All trials were tested on one day to minimize confounding effects on ANS from daily activities and diurnal influences. Kevin et al found that cardiovascular autonomic system was not fully regained to baseline within 30 min of endurance exercise [22]. Parekh et al [9] and Terziotti et al [23] reported that HR remained elevated 30 min and full autonomic recovery may take more than 1 hour after treadmill exercise [15]. Basing on the fact that each trial lasted only 3 min in our study, participants were required to take a 2-hour break to ensure autonomic nervous system could recover to REST. It was believed that effects on autonomic modulation for next trial were excluded. Upon arrival, participants were required to sit quietly to get relaxed. Then 5-mins data of ECG series were collected in sitting position while the participants remained at resting condition. Meanwhile, brachial BP was collected simultaneously during this period. The
participants were then directed to run on a treadmill for each trial. Another 5-mins ECG series were collected immediately after each trial, as well as the simultaneous BP. The experiment procedure was showed in Fig. 1.

Data acquisition system

In the present study, we chose Power-lab/16sp system (Castle Hill AD Instrument, Australia, 2002), which could record, display and analyze ECG signal by combining software and hardware. The ECG signal was recorded at 1 kHz with a pre-amplification and filtered by a 0.13 Hz high-pass filter and a 100 Hz low-pass filter. Brachial BP was measured by using OMEON HEM-7211. Sphygmomanometer was calibrated before the experiment and after each exercise trial. Sampling frequency was set at 1 kHz. After eliminating abnormal R wave peaks, all R wave peaks corresponding to sinus rhythm were detected and NN intervals were calculated.

Assessment via HRV analysis

The prognostic value of HRV has encouraged the development of quantifiable interpretations of HRV by time and frequency-domain analysis and nonlinear methods [24]. As a measure of the fluctuation of heartbeat intervals, HRV is a reliable and quantitative marker of cardiovascular autonomic system activity. Short-term HRV analysis, which was used in this study, has been proved to overcome high non-stationarities problem in long-term HRV analysis [25, 26] and is less influenced by recording conditions and suitable for study of short time ANS response [27, 28]. HRV analysis is a well-recognized tool for estimating cardiac autonomic function [3]. In this study, all HRV indices were calculated using whole 5 min ECG series and at intervals of 30 s in 5 min.

1. Time and frequency-domain analysis

Time domain analysis is a direct method for statistical and geometric analysis of the
collected NN intervals. Time domain indices include: (a) the standard deviation of all NN intervals (SDNN) that reflects the overall autonomic modulation; (b) the root mean square of standard deviation between adjacent NN intervals (RMSSD) and pNN50 which means the percentage of heart beats with the difference of adjacent NN intervals greater than 50 ms in all NN intervals [29], both of them reflect the vagal modulation associated with respiratory sinus arrhythmia.

Frequency domain analysis can provide changes of the activity level and the equilibrium of sympathetic and vagal nerve and is especially suitable for short-time HRV analysis. Fast Fourier transform was used to determine the power spectrum of HRV. The power spectrum was then divided into four parts. It has been generally accepted that high-frequency components (HF: 0.15–0.4 Hz) are mediated entirely by vagal nerve; the low frequency component (LF), which fluctuates between 0.04 and 0.15 Hz, is regulated by pressure receptors of sympathetic and vagal tension; while the very-low frequency (VLF) is probably due to slow mechanisms of regulation such as humoral and thermoregulatory factors [1, 30]; there is no clear physiological explanation about the ultra-low frequency (ULF) so far. The VLF and ULF component were not addressed in the present study. The ratio of LF to HF power is usually used to estimate sympathy-vagal balance. An increased ratio identified a sympathetic predominance during less intensity exercise, while a decreased ratio meant a vagal predominance during relatively more intense exercise [31, 32]. All time and frequency-domain indices were calculated at intervals of 30 s in 5 min.

2. HRA of Poincaré plot

Poincaré plot is one of the quantitative visual tools which gives information on long- or short-term HRV. It is physiologically asymmetric with respect to the line of identity (L: y = x), and the asymmetry usually shifts in the case of physiological change [33–36]. The
conventional indices, SD1 and SD2, which are the standard deviations of data in the X ‘and Y’ directions in the rotated coordinate system, have no essential difference with time-domain indices. That is why we choose HRA indices to assess cardiovascular autonomic modulation in the present study. Many indices have been proposed to assess HRA. Area index (AI) is defined as the cumulative area of the sectors corresponding to the points that are located above the line of identity divided by the cumulative area of sectors corresponding to all points in the Poincaré plot, which is a new index proposed by Yan et al in 2017 [37]. It can be calculated by

\[AI = \frac{\sum_{i=1}^{l}|s_i|}{\sum_{i=1}^{m}|s_i|} \times 100\% \]

(1)

Other indexes include Porta’s index (PI), Guzik’s index (GI) and Slope index (SI) which are respectively defined as the number, the distance and the phase angle of points below L divided by total number, distance and phase angle of points in Poincaré plot except those located on the line [38–40]. Specifically,

\[PI = \frac{a}{m} \times 100\% \]

(2)

\[GI = \frac{\sum_{i=1}^{l}D_i}{m} \times 100\% \]

(3)

\[SI = \frac{\sum_{i=1}^{l}|R\theta_i|}{m} \times 100\% \]

(4)

where a is the number of points below L, m is the total number of points except those on L in (2). Di means the distance of point Pi to L in (3). R\(\theta_i\) is the phase angle of the i-th point in (4).

Statistical analysis

Normal distribution of each index was assessed applying the Kolmogorov-Smirnov test
revealing a normal distribution for all HRV indices. The overall indices calculated using complete 5 min ECG series were summarized as mean ± standard deviation (SD). The between-trial difference (i.e., rest vs 6 km/h, rest vs 8 km/h, rest vs 10 km/h, 6 km/h vs 8 km/h, 6 km/h vs 10 km/h, 8 km/h vs 10 km/h) of time and frequency-domain HRV indices was analyzed by repeated-measures two-way ANOVA. Spearman’s correlation test was employed to verify the relationship between short-term HRV recovery and systolic, diastolic BP recovery. Statistical significance was accepted at p < 0.05. All statistical analyses were performed using the SPSS software (version 24, IBM, New York, USA).

Abbreviations

HRV: Heart rate variability
SBP: systolic blood pressure
DBP: diastolic blood pressure
ECG: electrocardiogram
ANS: autonomic nerves system
HRA: heart rate asymmetry
RMSSD: root-mean-square of difference-value of adjacent RR interval
SDNN: standard deviation of NN intervals
pNN50: The percentage of adjacent NN difference >50ms in total sinus beats
HF: high frequency component
LF: low frequency component
VLF: very-low frequency
ULF: ultra-low frequency
AI: area index
PI: Porta’s index
GI: Guzik’s index
SI: Slope index
SD: standard deviation

Declarations

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgements

This work was supported by Innovation Program of Shanghai Municipal Education Commission.

Funding
This work was supported by The National Key Research and Development Program of China (No. 2019YFC1711800)

Author information

Affiliations
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
Liang Wu, Ping Shi, Jiang Shao, Anan Li & Hongliu Yu
First Affiliated Hospital, The Second Military Medical College, Shanghai 200093, China
Yang Liu

Contributions
Liang Wu and Ping Shi: proposed the idea and designed the method; Jiang Shao and Anan Li performed experiments and analyzed the data. They made discussions and composed the manuscript together with Hongliu Yu and Yang Liu. All authors read and approved the final manuscript.

Corresponding authors
Correspondence to Ping Shi.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the ethics committee of University of Shanghai for Science and Technology, Shanghai, China (Ref. No. 2013-9010-14YZ091).

Consent for publication

All authors gave their consent for publication.

Competing interests

The authors declare that they have no competing interests.

References

1. Mainardi LT (2009) On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Philos Trans A Math Phys Eng Sci 367(1887):255-275

2. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9):1341-1353

3. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart Rate Variability:Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17(3):354-381

4. Okutucu S, Karakulak UN, Aytemir K, Oto A (2011) Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function. Expert Rev Cardiovasc Ther
Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52(6):394-401

Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppanen T, Tiinanen S, Makikallio TH, Huikuri HV (2011) Sympatho-vagal interaction in the recovery phase of exercise. Clin Physiol Funct Imaging 31(4):272-281

Curtis BM, O'Keefe JH, Jr. (2002) Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc 77(1):45-54

Bacaner M, Brietenbucher J, LaBree J (2004) Prevention of ventricular fibrillation, acute myocardial infarction (myocardial necrosis), heart failure, and mortality by bretylium: is ischemic heart disease primarily adrenergic cardiovascular disease? Am J Ther 11(5):366-411

Parekh A, Lee CM (2005) Heart rate variability after isocaloric exercise bouts of different intensities. Med Sci Sports Exerc 37(4):599-605

Hemingway H, Shipley M, Brunner E, Britton A, Malik M, Marmot M (2005) Does autonomic function link social position to coronary risk? The Whitehall II study. Circulation 111(23):3071-3077

Amano M, Kanda T, Ue H, Moritani T (2001) Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc 33(8):1287-1291

Oliveira RS, Leicht AS, Bishop D, Barbero-Alvarez JC, Nakamura FY (2013) Seasonal changes in physical performance and heart rate variability in high level futsal players. Int J Sports Med 34(5):424-430

Tulppo MP, Makikallio TH, Seppanen T, Laukkanen RT, Huikuri HV (1998) Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol 274(2):H424-429
14 Huang PH, Leu HB, Chen JW, Lin SJ (2005) Heart rate recovery after exercise and endothelial function--two important factors to predict cardiovascular events. Prev Cardiol 8(3):167-172
15 Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J (2004) Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 92(4-5):508-517
16 Liang N, Nakamoto T, Mochizuki S, Matsukawa K (2011) Differential contribution of central command to the cardiovascular responses during static exercise of ankle dorsal and plantar flexion in humans. J Appl Physiol (1985) 110(3):670-680
17 Ichinose M, Delliaux S, Watanabe K, Fujii N, Nishiyasu T (2011) Evaluation of muscle metaboreflex function through graded reduction in forearm blood flow during rhythmic handgrip exercise in humans. Am J Physiol Heart Circ Physiol 301(2):H609-616
18 Matsukawa K (2012) Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol 97(1):20-28
19 Iellamo F (2001) Neural mechanisms of cardiovascular regulation during exercise. Auton Neurosci 90(1-2):66-75
20 Leicht AS, Sinclair WH, Spinks WL (2008) Effect of exercise mode on heart rate variability during steady state exercise. Eur J Appl Physiol 102(2):195-204
21 Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999) Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation 100(1):27-32
22 Heffernan KS, Kelly EE, Collier SR, Fernhall B (2006) Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur J Cardiovasc Prev Rehabil 13(1):80-86
23 Terziotti P, Schena F, Gulli G, Cevese A (2001) Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol 84(3):187-194

24 Cerutti S, Esposti F, Ferrario M, Sassi R, Signorini MG (2007) Long-term invariant parameters obtained from 24-h Holter recordings: a comparison between different analysis techniques. Chaos 17(1):015108

25 Carney RM, Blumenthal JA, Stein PK, Watkins L, Catellier D, Berkman LF, Czajkowski SM, O'Connor C, Stone PH, Freedland KE (2001) Depression, heart rate variability, and acute myocardial infarction. Circulation 104(17):2024-2028

26 Speranza G, Nollo G, Ravelli F, Antolini R (1993) Beat-to-beat measurement and analysis of the RT interval in 24 h ECG holter recordings. Medical and Biological Engineering and Computing 31(5):487-494

27 Sandercock GR, Grocott-Mason R, Brodie DA (2007) Changes in short-term measures of heart rate variability after eight weeks of cardiac rehabilitation. Clin Auton Res 17(1):39-45

28 Steeds R, Fletcher J, Smith M, West J, Channer K, Townend J (2004) Prognostic significance of early short-term measurements of heart rate variability following acute myocardial infarction. Am J Cardiol 94(10):1275-1278

29 Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031-1051

30 Bianchi. A M, Mainardi L, Petrucci E SM, Mainardi M, S C (1993) Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Transactions on Bio-medical Engineering 40(2):136-144

31 Cottin F, Medigue C, Lepretre PM, Papelier Y, Koralsztein JP, Billat V (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci
Sports Exerc 36(4):594-600
32 Pichon AP, de Bisschop C, Roulaud M, Denjean A, Papelier Y (2004) Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 36(10):1702-1708

33 Golińska AK (2013) Poincaré Plots in Analysis of Selected Biomedical Signals. Studies in Logic, Grammar and Rhetoric 35(1):117-127

34 Piskorski J, Guzik P (2012) Compensatory properties of heart rate asymmetry. J Electrocardiol 45(3):220-224

35 Guzik P, Piskorski J, Awan K, Krauze T, Fitzpatrick M, Baranchuk A (2013) Obstructive sleep apnea and heart rate asymmetry microstructure during sleep. Clin Auton Res 23(2):91-100

36 Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE, Investigators C (2005) Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electr 16(1):13-20

37 Yan C, Li P, Ji L, Yao L, Karmakar C, Liu C (2017) Area asymmetry of heart rate variability signal. Biomed Eng Online 16(1):112

38 Porta A, Casali KR, Casali AG, Gnecci-Ruscone T, Tobaldini E, Montano N, Lange S, Geue D, Cysarz D, Van Leeuwen P (2008) Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 295(2):R550-557

39 Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H (2006) Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech (Berl) 51(4):272-275

40 Karmakar CK, Khandoker AH, Palaniswami M (2015) Phase asymmetry of heart rate variability signal. Physiol Meas 36(2):303-314

41 Antelmi I, Chuang EY, Grupi CJ, Latorre Mdo R, Mansur AJ (2008) Heart rate recovery
after treadmill electrocardiographic exercise stress test and 24-hour heart rate variability in healthy individuals. Arq Bras Cardiol 90(6):380-385

42 Buchheit M, Laursen PB, Ahmaidi S (2007) Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol 293(1):H133-141

43 Kuo TBJ, Lin T, Yang CCH, Li CL, Chen CF, Chou P (1999) Effect of aging on gender differences in neural control of heart rate. Am J Physiol-Heart C 277(6):H2233-H2239

44 Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, Takeda H, Inoue M, Kamada T (1994) Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. Journal of the American College of Cardiology 24(6):1529-1535

45 Goldberger JJ, Le FK, Lahiri M, Kannankeril PJ, Ng J, Kadish AH (2006) Assessment of parasympathetic reactivation after exercise. Am J Physiol Heart Circ Physiol 290(6):H2446-2452

46 Guilkey JP, Overstreet M, Fernhall B, Mahon AD (2014) Heart rate response and parasympathetic modulation during recovery from exercise in boys and men. Appl Physiol Nutr Metab 39(8):969-975

47 Fisher JP, Seifert T, Hartwich D, Young CN, Secher NH, Fadel PJ (2010) Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans. J Physiol 588(Pt 7):1117-1127

48 Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA (2015) Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol 309(9):H1440-1452

49 Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29(2):65-70

50 Romero SA, Minson CT, Halliwill JR (2017) The cardiovascular system after exercise.
J Appl Physiol (1985) 122(4):925-932

51 Halliwill JR, Taylor JA, Eckberg DL (1996) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495 (Pt 1):279-288

52 Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296(5):R1473-1495

53 Ott MM, Nuding SC, Segers LS, Lindsey BG, Morris KF (2011) Ventrolateral medullary functional connectivity and the respiratory and central chemoreceptor-evoked modulation of retrotrapezoid-parafacial neurons. J Neurophysiol 105(6):2960-2975

54 Schmidt E, Despas F, Le Traon A, Czosnyka M, Pickard J, Rahmouni K, Pathak A, Senard J (2015) Intracranial pressure is a physiological stress that determines sympathetic nervous system activity. Fluids and Barriers of the CNS 12(Suppl 1)

55 Spyer KM, Gourine AV (2009) Chemosensory pathways in the brainstem controlling cardiorepiratory activity. Philos Trans R Soc Lond B Biol Sci 364(1529):2603-2610

56 Piskorski J, Guzik P (2011) Asymmetric properties of long-term and total heart rate variability. Med Biol Eng Comput 49(11):1289-1297

57 Costa M, Goldberger AL, Peng CK (2005) Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys Rev Lett 95(19):98-102

58 Piskorski J, Guzik P (2007) Geometry of the Poincare plot of RR intervals and its asymmetry in healthy adults. Physiol Meas 28(3):287-300

Figures
Figure 1

Timeline in mins of this experiment.

Figure 2

Time-domain indices per 30s at different intensity post-exercise. (a): SDNN; (b): RMSSD; (c): pNN50.
Figure 3

Time domain indices assessed by 5 mins ECG series in different trials.
Figure 4

Frequency-domain indices per 30s at different intensity post-exercise. (a): LF; (b): HF; (c): LF/HF.
Figure 5

Frequency domain indices assessed by 5 mins ECG series in different trials.

Figure 6

SBP and DBP at different intensity post-exercise. (a): SBP; (b): DBP.
Figure 7

HRA indices per 30s at different intensity post-exercise. (a): The change of AI.
(b): The change of GI. (c): The change of PI. (d): The change of SI.
Figure 8

HRA indices assessed by 5 mins ECG series in different trials.