Bio-Based Smart Materials for Food Packaging and Sensors – A Review

Niina Halonen1*, Petra S. Pálvölgyi1, Andrea Bassani2, Cecilia Fiorentini2, Rakesh Nair3, Giorgia Spigno2 and Krisztian Kordas1

1 Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland, 2 DiSTAS - Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy, 3 Bio Base Europe Pilot Plant, Ghent, Belgium

Food industry must guarantee food safety and seek sustainable solutions for increasing shelf life and decreasing food waste. Bio-based smart packaging is a potential option, where sustainability and real-time monitoring of food quality are combined assuring health safety and providing economic and environmental benefits. In this context, bio-based refers not only to packaging materials that are from renewable sources and biodegradable, but also to the sensor elements. The scope of this review is to explore the state-of-the-art of bio-based polymers used as food contact materials and to highlight the potential of natural compounds for sensing chemical and physical changes of the environment to monitor the food quality. Finally, different sustainability aspects of the bio-based materials are discussed.

Keywords: bio-based, smart packaging, food packaging, food safety, bio-based sensor

INTRODUCTION

Busy lifestyles and growing urban populations mean an increasing demand for food that is fresh, healthy, convenient, and fast. One of the key drivers of this growth is the world's rising population which by the year 2050 will reach 9.7 billion people with increase of 26% (The United Nations, 2019). With the global population rising, wastage of food including 47% of all fruit and vegetables and 12% of meat and animal products, is one of the greatest challenges to achieve food security (Food and Agriculture Organization of the United Nations, 2019a). Although food is our basic necessity, its production, processing, transportation and storage are rather complex from many aspects and need to fulfill a number of criteria to ensure the health and environmental safety and economic feasibility.

Foods pose potential danger of diseases due to bacterial (Salmonella, Campylobacter, Listeria, and Cholera), viral (Norovirus, Hepatitis A), parasite (tapeworms, trematodes, Ascaris, Cryptosporidium, Entamoeba histolytica, and Giardia), fungal (Aspergillus, Candida, ...
and Fusarium) and even prion infections as consequence of inappropriate handling and processing of the products causing foodborne diseases that affect ~10% of global population with a death toll of 420,000 deaths each year. Chemical contaminants, which may even accumulate in various food chains, represent further risks. These include phytochemical residues, mycotoxins, marine toxins from algae, cyanogenic glycosides from plants, and different metabolites from products aging and decaying (ethanol, putrescine, cadaverine, histamine, ethylene etc.) but also environmental and industrial pollutants, e.g., dioxins, polychlorinated biphenyls and heavy metals (Pb, Cd, and Hg) (World Health Organization, 2019). Another issue in the context of food safety is deliberate fraud to counterfeit the origin, content or quality (i.e., expiration dates) of products (Europol, 2015). Just diluting a high-quality wine with cheaper one mainly hurts the wallet and pride but more severe cases may endanger health permanently or cost lives (Branigan, 2008). Furthermore, the flip side of food safety is food waste as 1/3 of all produced food is lost or goes into waste (Food and Agriculture Organization of the United Nations, 2019a) meaning safe and edible food products are thrown away although the “best if used before” dates are only recommendations without information of the true status of the food. This is ethically and practically controversial as still today 820 billion people suffer from undernutrition and agricultural production would need to increase with 50% to feed the growing population by 2050 (Food and Agriculture Organization of the United Nations, 2019b).

As a partial solution to complex problems of food safety and decreasing unnecessary food waste is the selection and development of proper food packaging. The function of the food packages has been the same throughout history: to maintain hygiene, protect the food during transportations and storing, and ultimately to increase shelf life. However, modern technology and materials science have introduced new “smart” functions to food packages, which include advanced packaging materials with improved properties, and sensors that can monitor food quality (Yam et al., 2005; Kuswandi et al., 2011). Over the years, several approaches toward smart packaging have been demonstrated including time-temperature indicators, modified atmosphere packaging sensors for CO\textsubscript{2} and O\textsubscript{2} monitoring, total volatile base nitrogen sensors to detect food decay, fruit ripeness indicators, pathogen sensors, and solutions for food tracking and authentication (RFID tags) (Fuertes et al., 2016; Ghaani et al., 2016; Ahmed et al., 2018; Badia-Melis et al., 2018; Galstyan et al., 2018; Mustafa and Andreescu, 2018; Yousefi et al., 2019).

As of today, plastics (rigid and flexible) have the largest shares of the market in food packaging (37% market), followed by paper and board (34%), glass (11%), and metal (9%) (Muncke, 2012). If we consider the properties of the given food packaging materials, the high market share of paper and board can be explained by the renewable source and recyclability, it is printable, wet and dry food can be stored in paper and board after laminating/covering process and in general paper and board are very suitable for mass production lowering the costs (Kirwan, 2011). Containers made of glass, on the other hand, are among the oldest materials man has used as it can be shaped to practically any form, has high chemical resistance, is impermeable to gasses, absorbs UV and even parts of visible spectrum (amber glass, green and glass partially), is hygienic and reusable, and the consumers associate it to high-quality products (Grayhurst and Girling, 2011). Metal is also an important food packaging material as it is durable withstands packaging conditions in vacuum or under pressure and high temperature stabilization process for long shelf-life foods. Metal is reusable, UV-resistant and the food contact surface may be coated with different coatings in case the interaction between the product and the plain container would downgrade the shelf-life/quality of the product to an unacceptable level due to, e.g., metal surface corrosion or undesired food coloring as a consequence of combination of metal ions with the food components (Oldring and Nehring, 2007). Typically metal containers or cans are made of steel (tin-coated or tin-free) or aluminum (Kraus and Tarulis, 2009; Reingardt and Nieder, 2009; Robertson, 2012).

The most frequently used plastics in food packages in Europe are PP (19.3%), LDPE and LLDPE (17.5%), and PET (7.4%); and in fact, 39.9% of all produced plastics (61.8 million tons in Europe in 2018) goes to packaging in general (PlasticsEurope, 2019a). The success of plastic as packaging material can be explained by low cost, ease of modification from flexible films to rigid containers, strength, stability, light-weight, impermeability with gasses and many solvents, and enabled sterilization without affecting the food quality (PlasticsEurope, 2019b). Despite of numerous benefits, plastics are also problematic: annual global production of plastics is around 350 million tons of which only 1% is bio-based (European Bioplastics e.V., 2020) and the rest is fossil-derived with large carbon footprint [6% of all produced oil goes to plastics, having a carbon footprint equivalent to the aviation sector (World Economic Forum et al., 2016)]. In addition, plastic pollution is alarming, as polymers do not degrade but break down to smaller pieces ending up in the air, soil and water as microplastics, found even in deep-sea amphipods (Jamieson et al., 2019).

As a response to challenges associated with food safety, storage and transportation, there is a huge market need for more sustainable bio-based plastics and sensors that could alleviate the environmental, public health and economic burden caused by traditional materials. The scope of this short review is to collect the contemporary literature on bio-based smart food packages covering not only bio-based food packaging materials but also bio-based sensors for monitoring various physical, chemical and biological conditions of foodstuff.

BIO-BASED PLASTIC PACKAGING MATERIALS

Production data for bio-based and biodegradable plastics are available to a limited extent only, although production capacity data are more readily accessible. Currently the production capacities of bio-based and biodegradable plastics are low (Figure 1), however, the market of some bio-based and/or biodegradable plastics are expected to grow significantly during...
the coming years (Bio-PET, PBS, and PLA) others are expected to consolidate (CA and Bio-PA) (van den Oever et al., 2017). Overall, it is expected that the global bioplastics production capacity is set to increase from around 2.11 million tons in 2019 to approximately 2.43 million tons in 2024 (Figure 2).

A number of different routes have been developed during the past decade to produce bio-based materials [i.e., either made of bio-based source or it is biodegradable or contains both of these features (European Bioplastics e.V., 2019)] with a large variety of properties and applications areas (Table 1). Among these, only a few families are made of renewable biomass and are biodegradable [e.g., cellulose and starch thermoplastics, PHAs, PLA, polyester amides (Avérous, 2008)], viz. bio-based polyethylene, PP, polyamide and polyethylene terephthalate are non-biodegradable, and PCLs and PVAs are from non-renewable resources (Chen and Patel, 2012; Geueke, 2014; van Crevel, 2016). The main production routes are as follows:

1. Direct extraction of biopolymers such as starch and cellulose with subsequent thermopressing/molding to make thermoplastic starch polymers (TSPs) or using additional functionalization, e.g., acetylation, carboxymethylation and phosphorylation to produce CA, carboxymethyl cellulose and cellulose diphenylphosphate, respectively, which are then polymerized further (Sešlija et al., 2018) or used as additives in polymers (Weinmann and Cotton, 1958).
2. Hydrolysis to sugars followed by bacterial synthesis of polyesters, e.g., PHAs including PHB.
3. Conversion into sugars that are fermented to lactic acid followed by its direct polycondensation or by ring-opening condensation of lactide to PLA (Avérous, 2008).
4. Chemical conversion into monomers followed by polymerization, e.g., amino acids obtained by hydrolysis and separation are polymerized with esters of lactonized unsaturated fatty acids in PEA synthesis.

Based on the technical report published by Wageningen Food & Biobased Research in 2017 (van den Oever et al., 2017), it has been shown that the bio-based and biodegradable plastics are currently more expensive than fossil-based plastics on weight basis (Tables 2, 3). However, specific material properties can allow costs reductions in the use or end-of-life phase. Further, the price of fossil-based plastics is dependent on oil prices and fluctuating with it, while in general the price of bio-based plastics depends on biomass prices that are more stable. When the production scale, conversion into final products and logistics become more favorable, it is expected that the prices of bio-based plastics will come down.

In addition, since most bio-based plastics have a higher density, this directly contributes to their higher price. But there are exceptions when prices are compared on a product level. By selecting specific material properties and redesigning can allow material savings. For example, a traditional HIPS-based cup of 0.89 mm wall thickness could be down-gauged using impact modified PLA to 0.66 mm thickness (Schut, 2016).

BIO-BASED SMART FOOD PACKAGES

Many new concepts in food packaging, like the smart functionalities, have been introduced during the last years in response to the increasing demand of ready-to-eat and higher quality foods (Vanderroost et al., 2014).

Smart functionalities of food packages refer to active coatings and physical/chemical sensors combined with the packaging materials. The purpose of smart antimicrobial coatings is to mitigate the proliferation of various microbes thus prolonging the shelf-life of products, whereas sensors play role in monitoring physical and chemical conditions that influence or reflect the quality of the food products. These add-ons have inevitable positive health, environmental and socio-economic effects, which may be amplified even further by accomplishing the smart functions using renewable natural materials and robust technologies (Arroyo et al., 2019).
TABLE 1 | Bio-based plastics in food packaging.

Type	Source and Properties	Applications	References	
Bio-based - biodegradable	Starch-based polymers (polysaccharides)	Sourced from corn or potato	Disposable tableware and cutlery, coffee machine capsules, bottles	Peelman et al., 2013; Niaounakis, 2013; Geueke, 2014
		Thermoplastic starch (TPS) alternative to PS		
		Additive-free TPS has low water vapor barrier, poor mechanical and processing properties, brittle		
	Cellulose-based polymers (polysaccharides)	Sourced from de-lignified wood pulp or cotton linters	Coated cellulose films are used for bread, fruit, meat, and dried product packaging	Geueke, 2014
		Cellophane, cellulose acetates/ethers		
		Additive-free cellulose derivatives have a low water vapor barrier and poor mechanical properties, brittle, expensive		
	PLA (polyester)	Sourced from corn or other carbohydrate rich plants followed by conversion to dextrose and fermentation to lactic acid	Cups, bowls, bottles, bags, jars, and films	Chen and Patel, 2012; Geueke, 2014
		High tensile strength, transparent		
		A potential alternative to LDPE, HDPE, PS, and PET		
	PHA (polyester)	Produced by micro-organisms (such as Cupriavidus necator, Methylobacterium rhodesianum, or Bacillus megaterium) from glucose or starch	As composite can be tuned into different applications	Ackermann et al., 1995; Chen and Patel, 2012; Geueke, 2014
		Brittle, stiff, and thermally unstable		
Bio-based – non-degradable	PP and PE (vinyl polymers)	Mainly based on sugar cane (sugar to ethanol (pentose fermentation), ethanol to propylene via metathesis of ethylene with 2-butene)	Similar to fossil-based PP and PE	Chen and Patel, 2012; Geueke, 2014; Machado et al., 2016
		Identical to fossil-based PP and PE		
	PET (aromatic polyester)	Partially bio-based, synthesized from MEG and terephthalic acid (MEG from a renewable source, TA from fossil-based source)	Bottles	Chen and Patel, 2012; Geueke, 2014
		Identical to fossil-based PP and PE		
	PEF (aromatic polyester)	Synthesized from FDCA and MEG	Bottles, fibers, and films (bio-based alternative to PET)	Koopman et al., 2010a,b; Chen and Patel, 2012; Geueke, 2014
		Precursor can be found in human urine		
		Better barrier properties than PET		
	PA	High-performance polymer	Not common in food contact material	Geueke, 2014
		Sourced from resin-rich wood or vegetable oils		
Fossil-based - biodegradable	PVOH (vinyl polymer)	CO₂ barrier in PET	Coatings, a component of adhesives, paper and board	Chiellini et al., 2003; Geueke, 2014
	PCL (polyester)	Usually blended with biopolymers, eg., starch	Medical applications, food contact material as blends	Packett et al., 2006; Geueke, 2014
	PBS, PES, and PBSA [aliphatic (co)polymers]	Monomers are fossil-based aliphatic dicarboxylic acids and diols, bio-based monomers start emerging	Disposable cutlery	Chen and Patel, 2012; Geueke, 2014
	PBAT, PBST [aliphatic-aromatic (co)polymers]	Condensation of aliphatic diols and dicarboxylic acids and aromatic dicarboxylic esters/acycids	Fast food disposable packaging, films	Geueke, 2014
Antimicrobial Films

As mentioned, active food packaging involves the use of polymeric films that act as a support for various active compounds such as natural extracts that can be incorporated during the manufacturing process of the packaging itself (Kuorwel et al., 2015; Bassani et al., 2019). Antimicrobial incorporation may result in a material with antibacterial activity which can suppress the growth of bacteria on the material surface (according to the international norm ISO 22196:2011 – Measurement of antibacterial activity on plastics and other non-porous surfaces). In the food sector, a greater interest is toward materials enriched with antimicrobials so that the direct use of food additives in products is limited.

Antimicrobial materials act in two different ways. Antimicrobials can be incorporated into the film or coated either on the surface of the film or on the surface of the food (in the form of edible film). In both cases, the substance may migrate partially or completely through gradual diffusion into the food or headspace (which is typical for essential oils, for example) where it exerts its protective action, or it may not migrate, acting only when the food is in contact with the surface of the film and the target microorganism comes into direct contact with the film (Vermeiren et al., 2002; Brockgreitens and Abbas, 2016) (Figure 3).

In both the cases, this kind of packaging is called active packaging [Regulation (EC) No 450/2009 — active and intelligent materials and articles intended to come into contact with food].

Antimicrobial agents used for the preservation of foods are either chemically synthesized or extracted from biomass of plants, animals and microorganisms. Conventional chemical preservatives, including ethanol and other alcohols, organic acids, and their salts (benzoates, propionates, and sorbates) are the predominant food preservatives thanks to their low price and facility to use. However, research has been focusing on replacing them with natural antimicrobial agents such as enzymes, bacteriocins, chitin and its derivative chitosan extracted from crustacean shells, natural extracts, and essential oils (Holley and Patel, 2005; Aider, 2010; Lei et al., 2014; van den Broek et al., 2015; Mlalila et al., 2018). Indeed, natural extracts (e.g., plant extracts or essential oils from different spieces, plants, and fruits) have been recognized as potential antioxidant and antimicrobial agents. Some of the most successful examples of the incorporation of natural substances into films have involved grapefruit seed and green tea extracts, which have shown to be active as antioxidants and against different pathogens (e.g., *Escherichia coli* and *Listeria* spp.) (Wang and Rhim, 2016; Wrona et al., 2017). Cinnamaldehyde, derived from cinnamon, was also studied for its bioactivity against *E. coli* and *Salmonella* spp. (Ma Y. et al., 2018). Moreover, cinnamon oil in the PVA matrix showed repellent effect toward *Plodia interpunctella larvae* (Jo et al., 2015) and in PP film inhibited the formation of molds (Manso et al., 2015). However, clove and cinnamon in cassava starch films failed to show clear antimicrobial effect even though they reduced the water vapor transmission (Kechichian et al., 2010). Another example was provided by Seydim and Sarikus (2006) who tested edible films made of whey protein isolate loaded with rosemary, oregano and garlic essential oils against *E. coli*, *Staphylococcus aureus*, *Salmonella enteritidis*, *Listeria monocytogenes*, and *Lactobacillus plantarum*. Oregano proved to be the most effective against bacteria, while rosemary showed no effect.

Plastic	Price level (euro/kg)	Density (kg/m²)
CA	5	1,200–1,300
Bio-PA	+10–20%	1,040–1,190
Bio-PE	+20–40%	910–970
Bio-PET	No information	1,370–1,390
Bio-PP	+80–100%	900–920
PP (certified bio)	+40–50%	900–920
PBAT	3.5	1,250
Bio-PBS	4	1,260
PHA	5	1,200–1,250
PLA	2	1,250
PTT	4	1,320
Starch blends	2–4	1,250–1,350

Plastic	Price level (euro/1,000 kg)	Density (kg/m²)
LDPE	1,250–1,450	910–940
HDPE	1,200–1,500	930–970
HIPS	1,350–1,525	1,080
PET	850–1,050	1,370–1,390
PP	1,000–1,200	900–920
PS	1,250–1,430	1,040
PVC	800–930	1,100–1,450

TABLE 3 | Price level for fossil-based plastics.

FIGURE 3 | Different ways of incorporation and release of antimicrobial agents into food: (A) direct incorporation into the film before extrusion and migration via gradual diffusion from the material into the headspace; (B) direct incorporation into the film before extrusion and migration via gradual diffusion from the material into the food through direct contact; (C) surface coating on the film and migration via gradual diffusion from the material into the headspace; (D) surface coating on the film and migration via gradual diffusion from the material into the food through direct contact; (E) edible film and migration via gradual diffusion from the material into the food through direct contact.
The most popular technique to include natural extracts into the final film formulation is the extrusion (Gómez-Estaca et al., 2014). This technique involves the incorporation of the bioactive compounds before extrusion so that the high temperatures of extrusion (the exact values depend on the melting temperature of the processed polymer) allow their effective and homogeneous distribution in the film. However, this technique can often result in thermal degradation of the bioactive compounds and decrease in their activity. For instance, Ha et al. (2001) used high-temperature profile 160–190°C to extrude an antimicrobial LLDPE-based film resulting in high loss of grapefruit seed extract functionality up to complete loss of antimicrobial activity. For this reason, heat-sensitive bioactive agents (i.e., natural extracts) are preferably produced by non-heating method (e.g., electrosprining and surface coating). Among these methods, surface coating is a simple process based on low temperatures. However, this technique may suffer from poor adhesion to plastics and, if applied to make an active packaging, needs to be designed to be in direct contact with the food. Examples of antimicrobial-coated films include chitosan/essential oil-coated PP film (Torlak and Nizamlioglu, 2011), cinnamaldehyde, garlic oil and rosemary oil-coated PP/LDPE film (Gamage et al., 2009), oregano essential oil and citral-coated PP/EVOH film (Muriel-Galet et al., 2013), chitosan-coated plastic film (Ye et al., 2008a,b), and thyme and oregano-coated LDPE. Interestingly, as reported by Valderrama Solano and de Rojas Gante (2012), antimicrobial films produced by elevated temperature processes showed better microbial inhibition compared to the ones obtained by the coating method. In particular, they found that antimicrobial films produced by extrusion method are more effective against *E. coli*, *Salmonella typhimurium*, and *L. monocytogenes* compared to ionizing-coated antimicrobial films with the identical amount of agent incorporated antimicrobial. The results suggest that the extrusion method allows a better incorporation of the active compounds on the polymer. Given the number of pros and cons highlighted by the literature for both the techniques, more studies comparing the efficacy of two methodologies will be needed in order to address future researches in this field. Indeed, there isn’t any large scale industrial production of active bio-based films yet. For this reason, an estimation of the cost of active films can be based on an average cost of commercial natural extract (about 100 €/kg even though it can greatly vary with extract type) and of PLA film (2 €/kg, see Table 2). Following the steps of the extrusion process, tested by Bassani et al. (2019), with the inclusion of natural extracts encapsulated with β-cyclodextrins (370 €/kg), an estimation of the final price of active films was done resulting in about 6.4 €/kg. It is useful to point out that this evaluation was made considering an addition of encapsulated extract equal to 2% wt as maximum (Bassani et al., 2019) and that this estimation already includes the costs necessary to encapsulate the extract by spray-drying technique.

Bio-Based Sensors

Bio-based sensors have at least one component from bio-based source which may either be the substrate (i.e., the plastics listed in the previous section) or the sensing element. Most of the sensors related to bio-based materials in food packaging are based on colorimetric detection of analytes.

Many fruits, berries, vegetables and flowers with colors covering practically the entire visible spectrum are dyed by natural compounds such as anthocyanins and curcumin known as natural pH indicators (Yoshida et al., 2009; Silva-Pereira et al., 2015; Choi et al., 2017; Dudnyk et al., 2018; Majdinasab et al., 2018; Saliu and Pergola, 2018; Zhai et al., 2018; Kurek et al., 2019). Upon protonation/deprotonation of these molecules, their delocalized electronic structure rearranges and the change of the total number of resonant electrons as well as their confinement result in a change of their color (Figure 4). For instance, Choi et al. (2017) demonstrated a pH sensor made of agar and potato starch with anthocyanin extracts from purple sweet potato that showed color variations at pH 2.0–10.0. Zhai et al. (2018) used a gelatin-gellan gum matrix with red radish anthocyanin having a slightly broader pH range from 2.0 to 12.0. In Table 4 more examples of bio-based sensors developed for food quality monitoring in recent years are listed.

Although colorimetric pH-sensitive sensors are typically not convenient for selective analysis, it is often sufficient to evaluate the food quality based on the change of the pH, as deteriorating proteins produce alkaline volatile nitrogen compounds (cadaverine, putrescine, histamine, and ammonia) (Bulushi et al., 2009; Prester, 2011). Exploiting this indirect sensing mechanism, curcumin based indicator films, e.g., in gelatin (Musso et al., 2017) and bacterial cellulose membranes (Kuswandi et al., 2012), blueberry and red grape skin pomace in chitosan and carboxymethyl cellulose matrix (Kurek et al., 2019), chitosan-corn starch film with red cabbage extract (Silva-Pereira et al., 2015), alginate beads with red cabbage extract (Majdinasab et al., 2018) as well as red cabbage extract in pectin films (Dudnyk et al., 2018) have been shown as feasible indicators of meat, shrimp and fish spoilage by detecting amines and cyclic N-containing compounds. In a similar way, acidic CO₂ evolves during the metabolism of pathogens in the food thus lowering pH, which may be detected, e.g., by anthocyanin/polylysine in cellulose matrix in a reversible manner as demonstrated by Saliu and Pergola (2018).

Other natural dyes such as chlorophyll and β-carotene might be also relevant for sensing since both structures are highly sensitive to oxidative species. Silva et al. (2017) showed that replacing the coordinated Mg²⁺ with Zn²⁺ in chlorophyll A, the fluorescence of the complex is faded when increasing the concentration of dissolved oxygen in the medium. The mechanism of luminescence suppression is suggested to be caused by an energy transfer to oxygen molecules that collide with the excited moleucle. In the case of carotene, one may exploit several mechanisms for sensing β-carotene is prone to oxidation and subsequent decomposition to shorter cleavage products leading to a gradual disappearance of the orange color (Pénicaud et al., 2011).

Synthetic dyes based on various azo-compounds and polydiacetylenes also hold promise for chemical sensing in...
Halonen et al. Bio-Based Smart Material

FIGURE 4 | (A) Flavylium cation. In naturally occurring anthocyanidins, the terminating chemical groups (–H, –OH, and –OCH₃) in the 3, 5, 6, 7 and the 3′, 4′, and 5′ positions determine the original color of the molecule. pH-sensitivity and color change of (B) pelargonidin and (C) curcumin. [A] Reprinted from Phytochemistry 64(5), Kong et al. (2003), Copyright (2020) with permission from Elsevier. (B) Reprinted with permission from Zhai et al. (2018). Copyright (2020) American Chemical society. Reprinted from Spectrochim. Acta A 226, Chayavanich et al. (2020) Copyright (2020), with permission from Elsevier. (C) Reprinted from Food Hydrocolloid. 83, Liu et al. (2018) Copyright (2020), with permission from Elsevier.

food packages. Azo-anthraquinone based dyes immobilized on paper (cellulose) as pH sensors working either in acidic or alkaline conditions, depending on the selected pigment, were shown by Zhang et al. (2019). Selective amine sensing colorimetric indicators utilizing trifluoroacetyl azobenzene dyes developed by Mohr (2004a; 2004b), Reinert and Mohr (2008); Kirchner et al. (2006) have been exploited in colorimetric and electrochemical detection of ammonia, ethyamine, cadaverine and putrescine (Lin et al., 2015). The carbonyl carbon of the trifluoroacetyl group is highly electron-deficient thus readily reacts with electron donors such as amines or alcohols. In the presence of amines (primary, secondary, or tertiary) it forms a hemiaminal group, i.e., the number of delocalized electrons in the diazobenzene backbone is decreased (so as the confinement length of electrons) resulting in a blue shift of optical absorption. Sensors printed on paper could detect vapors of the analytes having a concentration of 1.0–0.1 vol.%. Furthermore, highly sensitive ammonia sensors that operate even at very low temperatures (down to −20°C) were demonstrated by using polydiacetylenes that were polymerized in self-assembled vesicles stabilized with cellulose nanocrystals in the chitosan matrix. The sensing mechanism is based on a conformational change of the polydiacetylene backbone (from planar to non-planar) upon external stimuli such as pH, mechanical stress or temperature. Films of the sensors could detect 100 ppm ammonia (Nquyen et al., 2019) (Figure 5).

Colorimetric sensors/indicators may be also accomplished by using enzymatic processes, in which the color change is typically a function of temperature and time. Capitalizing on these, Yan et al. (2008) developed a temperature indicator that combines the coloration of iodine-starch clathrates and the influence of temperature on the hydrolysis of starch in the presence of amylase enzyme. From the kinetic reaction rates of hydrolysis (and the corresponding coloration of the clathrates), one may assess the time-temperature history of cooled products. Another example of time-temperature indicator based on enzymatic oxidation of ABTS [2,2′-azino bis-(3-ethyl benzthiazoline-6-sulphonic acid] substrate resulting in green color was demonstrated by Rani and Abraham (2006). By applying a fuse-type melting medium between peroxide and the mixture of the enzyme and substrate, the reaction starts only when the medium is warm enough to melt the separator thus enabling the mixing of the reactants. A similar melting fuse type of color indicator was proposed by Lorite et al. (2017), in which erythrosine B food dye printed on PLA was applied in a microfluidic device in conjunction with a frozen solvent. As soon as the temperature exceeds the melting point, the transparent solvent flows and dissolves the dye producing red staining of the device.

Other potentially viable food packaging sensors include electrical or RFID/NFC based (Lorite et al., 2017; Barandun et al., 2019) and electrochemical devices (Oliveira et al., 2013). Lorite et al. (2017) developed further their solvent melting point based colorimetric temperature sensor by using an electrically...
Function	Matrix	Sensing material (source)	Response range/limit	References	
Starch matrix	Colorimetric sensing, antibacterial	Starch – PVA	Anthocyanin and limonene	pH 1 – 14	Liu et al., 2017
	Colorimetric sensing	Corn starch – glycerol	Anthocyanin (blueberry powder)	pH 1–14	Luchese et al., 2017
	Colorimetric sensing, antioxidant	Cassava starch – glycerol	Chlorophyll and carotenoids (green tea and basil)	pH 3 and pH 12	Medina-Jaramillo et al., 2017
	Colorimetric sensing	Corn starch	Anthocyanin (black bean seed coat or red cabbage)	pH 1 – 10	Prietto et al., 2017
	Colorimetric sensing, NH₃ sensing	Starch – PVA	Anthocyanin (roselle)	pH 2 – 12	Zhai et al., 2017
	Colorimetric sensing	Starch – cellulose	Alizarin	pH 1 – 11	Ezati et al., 2019
	Colorimetric sensing	Corn starch – glycerol	Anthocyanin (blueberry and jaboticaba powder)	pH 2 – 12	Luchese et al., 2019
	Colorimetric sensing	Chitosan	Anthocyanin (red radish)	pH 2 – 12	Chayavanich et al., 2020
	Colorimetric sensing, antioxidant	Chitosan – microcrystalline cellulose – plasticizer	Curcumin	pH 8 – 14	Pereira and Andrade, 2017
	Colorimetric sensing	Chitosan	Anthocyanin (blueberry and blackberry pomace)	pH 2, 4, 5, 6, 7, 10, 12	Kurek et al., 2018
Cellulose matrix	Resistive sensing of H₂S	Cellulose (paper)	Copper acetate	10 ppm of H₂S	Sarfraz et al., 2012
	Colorimetric sensing	Cellulose (filter paper)	Anthocyanin (rose and red cabbage)	N/A	Shukla et al., 2016
	Colorimetric sensing	Bacterial cellulose nanofibers	Anthocyanin (red cabbage)	pH 2 – 10	Pourjahaver et al., 2017
	Resistive sensing of NH₃ at 25°C	Cellulose nanofibrils	Hydroxyapatite	5 ppm (NH₃)	Narwade et al., 2019
Gum matrix	Colorimetric sensing, NH₃ sensing	Tara gum – PVA	Curcumin	N/A	Ma et al., 2017a
	Colorimetric sensing	Tara gum – cellulose	Anthocyanin (Vitis amurensis husk)	pH 1, 2, 4, 6, 8, 10	Ma et al., 2017b
	Colorimetric sensing, NH₃ sensing	Artemisia sphaerocephala Krasch. gum – carboxymethyl cellulose sodium	Anthocyanin (red cabbage)	pH 3 – 10	Liang et al., 2019
	Colorimetric sensing, H₂S sensing	Gelian gum	Ag nanoparticles	0.81 µM (H₂S)	Zhai et al., 2019
Carrageenan matrix	Colorimetric sensing	ι-Carrageenan	Anthocyanin (butterfly pea and red cabbage)	pH 1 – 11	Ahmad et al., 2019
	Colorimetric sensing	κ-Carrageenan	Curcumin	pH 3 – 10	Liu et al., 2018
Other matrices	Resistive sensing of methylamine	TiO₂ thin film	Anthocyanin sensitizer (spinach, red radish, winter jasmine, black rise)	2 ppm of methylamine	Yarvicio et al., 2015
Table 4: Continued

Function	Sensing material (source)	Matrix	Response range/limit	References
Colorimetric sensing	Anthocyanin (rosa chinensis, roselle, camellia japonica, rose, carnation, myosotis sylvatica, zhaoshui plum blossom, lve plum blossom, red plum blossom)	Hydrophobic nanoporous films	pH 1 – 10	Xiaowei et al., 2015
CO₂ sensing by dielectric permittivity and loss	Wheat gluten Amino groups of wheat gluten	40% CO₂	ph 1 – 10	Bibi et al., 2017
Colorimetric sensing	Anthocyanin (mulberry)	PVA – Chitosan nanoparticles	pH 1 – 13	Ma Q. et al., 2018
Colorimetric sensing	Anthocyanin (acai)	Polycaprolactone – polyethylene oxide fibers (electrospun)	pH 1 – 10	da Silva et al., 2019
Colorimetric sensing, antioxidant	Anthocyanin (red cabbage)	PVA mat (electrospun)	pH 2 – 12	Maftoonazad and Ramaswamy, 2019
Colorimetric sensing	Anthocyanin (red cabbage)	Gelatin	pH < 4, pH > 11	Musso et al., 2019

A conductive film of carbon nanotubes being a part of an RFID tag. When the temperature reached the melting point of the solvent, it flowed through a capillary toward the nanotube film, soaked it and increased its resistance detected by the RFID reader. Very recently, an interesting and simple resistive chemical sensor for water-soluble gases was proposed by Barandun et al. (2019) on cellulose substrates. As water is always present on the surface of the hygroscopic cellulose, when it is exposed to water-soluble gas analytes, the surface conductivity increases depending on the chemistry and concentration of the interacting moiety, which can be monitored by electrical measurements using carbon electrodes printed on the surface. The devices were highly sensitive to ammonia (down to 200 ppb) among the gases tested (TMA, H₂S, CO₂, and CO) and were feasible for monitoring the headspace of meat and fish food packages. The sensors could be integrated into RFID tags and read by an NFC enabled smartphone (Figure 6).

The price of the bio-based food packaging sensors is directly connected to the price of foodstuff as many of them originate from natural sources and are edible. For example, the price of curcumin is around 380 €/kg (February 2020) or for the wild blueberries the purchase price is typically between 2.5 and 4 €/kg (in Finland) but may rise up to 6–8 €/kg if the availability is limited due to dry summer, for example like in Finland in 2019. However, as pointed out earlier, edible food should not be used as raw material, but rather side streams should be valorized. Luckily the anthocyanin content is reasonable high in pomaces and seeds, so in principle agro-food waste can be used as source for sensor material lowering the price. If we compare the prices of food to prices of typical gas sensor materials, such as titanium dioxide with bulk price around 2–3 €/kg (2016–2017, Industrial Minerals), the anthocyanin source are competitive, especially because colorimetric sensors do not require complex electronics for the output and the waste management can be expected to be cheaper.

CONCLUSION

Bio-based smart food packaging will be one answer to the global challenges related to the desperate quest for carbon neutrality, food saving and safety, as well as for renewable materials and technologies. In this review, we have collected the contemporary literature on three key components of bio-based smart materials including (i) the packaging materials themselves responsible for providing a safe envelope for the products, (ii) advanced coatings and additives to help preserving foodstuff as well as (iii) renewable sensor materials with enabling technologies that can detect the quality of foods and are potentially feasible for industrial scale-up. Although the corresponding fields of scientific research on bio-based and renewable materials with robust production technologies are becoming more and more relevant today, it is clear that careful life cycle, economic and

1Amazon.co.uk
FIGURE 5 | Reaction mechanisms of (A) anthraquinone and (B) trifluoroacetyl azo dyes and (C) polymerized self-assembled polydiacetylene vesicles and the corresponding color change during analyte sensing as displayed in panels (D–F), respectively. Note, that the normalized color change in panel (F) is the ratio of red and blue components in the RGB coordinates in reference to the original values. [(A,D) Reprinted from Sens. Actuat. B 286, Zhang et al. (2019) Copyright (2020), with permission from Elsevier. (B,E) Reproduced from Lin et al. (2015). (C,F) Reproduced from Nguyen et al. (2019) with permission from The Royal Society of Chemistry.].

FIGURE 6 | (A) Schematic diagram displaying the equilibrium of surface adsorbed water and vapor in the gas phase. Absorbed and then dissociated base increases the concentration of mobile ions in the liquid. (B) Optical images of the printed carbon electrodes on paper (top and cross-sectional views). Relative change of sensor conductance measured for decaying (C) meat and (D) fish at room temperature, and (E) fish at 4°C. The red and gray bands in the graphs correspond to the healthy limit of microbial contamination determined by microbial cultures displayed in panel (F). [Reproduced from Barandun et al. (2019) with permission from American Chemical Society].
even user perception analyses have to be made to assess the real environmental and socioeconomic impact of each potentially viable solution.

AUTHOR CONTRIBUTIONS

NH and KK contributed to the conception and design of the review. NH wrote the first draft of the manuscript. PP contributed with the literature search, illustrations, and writing of the manuscript. AB, CF, RN, and GS wrote sections of the manuscript. All authors contributed to manuscript revision, read and approved the submitted version.

REFERENCES

Abolghasemi, M. M., Sobhi, M., and Piryaei, M. (2016). Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sens. Actuat. B 224, 391–395. doi: 10.1016/j.snb.2015.10.038

Ackermann, J.-U., Müller, S., Löschle, A., Bley, T., and Babel, W. (1995). Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. J. Biotechnol. 39, 9–20. doi: 10.1016/0168-1656(94)00138-3

Ahmad, N. A., Heng, L. Y., Salam, F., Zaid, M. H. M., and Hanifah, S. A. (2019). A colorimetric pH sensor based on Citoria sp and Brasenia sp for monitoring of food spoilage using chromometry. Sensors 19, 4813. doi: 10.3390/s1914813

Ahmed, I., Lin, H., Zou, L., Li, Z., Brody, A. L., Quzi, I. M., et al. (2018). An overview of smart packaging technologies for monitoring safety and quality of meat and meat products. Packag. Technol. Sci. 31, 449–471. doi: 10.1002/pts.2380

Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: review. LWT—Food Sci. Technol. 43, 837–842. doi: 10.1016/j.lwt.2010.01.021

Arroyo, B. J., Santos, A. D. E., Campos, A., Lins, L., and Boyano-Orozco, L. C. (2019). “Chapter 8 – Bioactive compounds and their potential use as ingredients for food and its application in food packaging.” In Bioactive Compounds: Health Benefits and Potential Applications, eds. M. R. S. Campos (Sawston: Woodhead Publishing), 143–156. doi: 10.1016/B978-0-12-814774-0.00008-6

Averous, L. (2008). “Chapter 21 – Polyactic acid: synthesis, properties and applications,” in Monomers, Polymers and Composites from Renewable Resources, eds M. N. Belgacem and A. Gandini (Oxford: Elsevier), 433–450. doi: 10.1016/B978-0-08-045316-3.00021-1

Badia-Melis, R., Mc Carthy, U., Ruiz-Caricia, L., Carcia-Hierro, J., and Robla Villalba, J. I. (2018). New trends in cold chain monitoring applications – a review. Food Control 86, 170–182. doi: 10.1016/j.foodcont.2017.11.022

Barandun, G., Soprani, M., Naficy, S., Grell, M., Kasimatis, M., Chiu, K. L., et al. (2019). Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669. doi: 10.1021/acssensors.9b00555

Bassani, A., Montes, S., Jubete, E., Palenzuela, J., Sanjuan, A. P., and Spigno, G. (2019). Incorporation of waste orange peels extracts into PLA films. Chem. Eng. Trans. 74, 1063–1068. doi: 10.3303/CET1974178

Bibi, F., Guillaume, C., Gontard, N., and Sorli, B. (2017). Wheat gluten, a bioorganic agarose membrane. Sensors 17, 224, 391–395. doi: 10.3390/s17092243

Bulushi, I. A., Poole, S., Deeth, H. C., and Dykes, G. A. (2009). Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation – a review. Crit. Rev. Food Sci. 49, 369–377. doi: 10.1080/10408390802067514

Chen, G. Q., and Patel, M. K. (2012). Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 112, 2082–2099. doi: 10.1021/cr200162z

Chiellini, E., Corti, A., D’Antone, S., and Solaro, B. (2003). Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 28, 963–1014. doi: 10.1016/S0032-3861(03)00019-1

Choi, I., Lee, Y. J., Lacroix, M., and Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 218, 122–128. doi: 10.1016/j.foodchem.2016.09.050

davis Silva, C. K., da Silva, C. K., da Silveira Mastrantonio, D. J., Costa, J. A. V., and de Moraes, M. G. (2019). Innovative pH sensors developed from ultrafine fibers containing acai (Euterpe oleracea) extract. Food Chem. 294, 397–404. doi: 10.1016/j.foodchem.2019.05.059

Dudynk, I., Janeck, E.-R., Vaucher-Josef, J., and Steclacci, F. (2018). Edible sensors for meat and seafood freshness. Sens. Actuat. B 259, 1108–1112. doi: 10.1016/j.snb.2017.12.057

European Bioplastics e.V. (2019). “What are Bioplastics?” Available online at: https://www.european-bioplastics.org/bioplastics/ (accessed December 13, 2019)

European Bioplastics e.V. (2020). Bioplastics Market Data. Available online at: https://www.european-bioplastics.org/market/ (accessed January 20, 2020)

Ezati, P., Tajik, H., Moradi, M., and Molaei, R. (2019). Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int. J. Biol. Macromol. 132, 157–165. doi: 10.1016/j.ijbiomac.2019.03.173

Food and Agriculture Organization of the United Nations (2019a). Food Loss and Food Waste, The United Nations. Available online at: http://www.fao.org/food-loss-and-food-waste/en/ (accessed December 12, 2019)

Food and Agriculture Organization of the United Nations. (2019b). Sustainable Development Goals, 2 Zero Hunger, The United Nations. Available online at: http://www.fao.org/sustainable-development-goals/goals/goal-2/en/ (accessed December 12, 2019)

Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabatkin, J., and Lagos, C. (2016). Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. J. Sensors 2016: 4046061. doi: 10.1155/2016/4046061

Galdstery, V., Bhandari, M. P., Sbervegliero, V., Sbervegliero, G., and Comini, E. (2018). Metal oxide nanostructures in food applications: quality control and packaging. ChemSensors 6,. 16. doi: 10.3390/chemsensors6020016

Gamage, G. R., Park, H. J., and Kim, K. M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Res. Int. 42, 832–839. doi: 10.1016/j.foodres.2009.03.012

Geuzeke, B. (2014). “Dossier – Bioplastics as Food Contact Materials,” Food Packaging Forum. doi: 10.5281/zenodo.33517 Available online at: https://www.foodpackagingforum.org/pdfs/2016/wp-content/uploads/2015/11/PF_Dossier06_Bioplastics.pdf (accessed December 13, 2019)

Ghania, M., Cozzolino, C. A., Castelli, G., and Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Techn. 51, 1–11. doi: 10.1016/j.tifs.2016.02.008

Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., and Gavara, R. (2014). Advances in antioxidant active food packaging. Trends Food Sci. Techn. 35, 42–51. doi: 10.1016/j.tifs.2013.10.008

FUNDING

The authors kindly acknowledge financial support from the EU Horizon 2020 – BBI JU under agreement no. 792261 NewPack, and EU Interreg Nord – Lapin liitto under agreement no. 20201468 Flexible transparent conductive films as electrodes.
Grayhurst, P., and Girling, P. J. (2011). “Packaging of food in glass containers,” in Food and Beverage Packaging Technology, 2nd Edn, eds R. Coles and M. Kirwan (Hoboken, NJ: Blackwell Publishing Ltd), 137–156. doi: 10.1002/9781444392180.ch6

Ha, J. U., Kim, Y. M., and Lee, D. S. (2001). Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packag. Technol. Sci. 14, 55–62. doi: 10.1002/pts.537

Halonen et al. Bio-Based Smart Material

Holley, R. A., and Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292. doi: 10.1016/j.fm.2004.08.006

Jamieson, A. J., Brooks, L. S. R., Reid, W. D. K., Pirtney, S. B., Narayanaswamy, B. E., and Linley, T. D. (2019). Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. Roy. Soc. Open Sci. 6, 180667. doi: 10.1098/rsos.180667

Jo, H.-J., Park, K.-M., Na, J. H., Min, S. C., Park, K. H., Chang, P.-S., et al. (2015). Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. J. Stored Prod. Res. 61, 114–118. doi: 10.1016/j.jspr.2015.01.005

Kechichian, V., Ditchfield, C., Veiga-Santos, P., and Tadini, C. C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT—Food Sci. Technol. 9781444392180.ch6

Kraus, F. J., and Tarulis, G. J. (2009). in Packaging Technology, 2nd Edn, eds R. Coles and M. Kirwan (Hoboken, NJ: Blackwell Publishing Ltd), 137–156. doi: 10.1002/chem.200305524

Kuswandi, B., Jayus, Larasati, T. S., Abdullah, A., and Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using on-package stickier sensor based on natural dye of curcumin. Food Anal. Methods 5, 881–889. doi: 10.1007/s12161-011-9326-x

Kuswandi, B., Wicaksono, Y., Jayus, Abdullah, A., and Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using on-package stickier sensor based on natural dye of curcumin. Food Anal. Methods 5, 881–889. doi: 10.1007/s12161-011-9326-x

Kuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., and Bigger, S. W. (2015). Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr. Rev. Food Sci. Food Saf. 14, 411–430. doi: 10.1111/1541-4337.12139

Liu, J.-F., Kukkola, J., Sipola, T., Raut, D., Samiakunnan, A., Mikkola, J.-P., et al. (2015). Trifluorocyclobenzene for optical and electrochemical detection of amines. J. Mater. Chem. A 3, 4687–4694. doi: 10.1039/C4TA05358C

Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., and Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydr. Polym. 157, 842–849. doi: 10.1016/j.carbpol.2016.10.067

Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., et al. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocoll. 83, 134–142. doi: 10.1016/j.foodhyd.2018.05.012

Lorite, G. S., Selkälä, T., Sipola, T., Palenzuela, J., Jubete, E., Viňuals, A., et al. (2017). Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. J. Food Eng. 193, 20–28. doi: 10.1016/j.jfoodeng.2016.06.016

Luchese, C. L., Pavoni, J. M. F., Spada, J. C., and Tessaro, I. C. (2019). Influence of blueberry and jaboticaba agroindustrial residue particle size on color change of corn starch based films submitted to different pH values solutions. J. Renew. Mater. 7, 235–243. doi: 10.32604/jrm.2019.00033

Luchese, C. L., Serrorto, N., Spada, J. C., and Tessaro, I. C. (2017). Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. Int. J. Biol. Macromol. 104, 11–18. doi: 10.1016/j.ijbiomac.2017.05.149

Ma, Q., Du, L., and Wang, L. (2017a). Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sens. Actuat. B 244, 759–766. doi: 10.1016/j.snb.2017.01.035

Ma, Q., Liang, T., Cao, L., and Wang, L. (2018). Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. Int. J. Biol. Macromol. 108, 576–584. doi: 10.1016/j.ijbiomac.2017.12.049

Ma, Q., Ren, Y., Gu, Z., and Wang, L. (2017b). Developing an intelligent film containing Vitis amurensis husk extracts: the effects of pH value of the film-forming solution. J. Clean. Prod. 166, 851–859. doi: 10.1016/j.jclepro.2017.08.099

Ma, Y., Li, L., and Wang, Y. (2018). Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 31, 739–746. doi: 10.1002/pts.2408

Machado, P. G., Wafter, A., and Cunha, M. (2016). Bio–based propylene production in a sugarcane biorefinery: a techno–economic evaluation for Brazilian conditions. Biofuel. Bioprod. Biobio. 10, 623–633. doi: 10.1016/j.biosta.2017.04.005

Majdinasab, M., Hosseini, S. M. H., Sepidname, M., Negahdarifar, M., and Li, P. (2018). Development of a novel colorimetric sensor based on alginic beads for monitoring rainbow trout spoilage. J. Food Sci. Technol. 55, 1695–1704. doi: 10.1007/s13197-018-3082-5

Manso, S., Becerril, R., Nerín, C., and Gómez-Lus, R. (2015). Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. J. Mater. Chem. A 3, 4687–4694. doi: 10.1039/C4TA05358C
Weinmann, R. C., and Cotton, R. A. (1958). *United States Patent Office Patent Number 2,849,319*. Available online at: https://patentimages.storage.googleapis.com/da/c8/a2/5bacc8e97bef21/US2849319.pdf (accessed December 15, 2019).

World Economic Forum, Ellen MacArthur Foundation and McKinsey Company. (2016). *The New Plastics Economy — Rethinking the Future of Plastics*. Available online at: https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed December 13, 2019)

World Health Organization. (2019). *Food Safety, The United Nations*. Available online at: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed 12 December 12, 2019)

Xiaowei, H., Xiaobo, Z., Jiewen, Z., Jiyong, S., Zhihua, L., and Tingting, S. (2015). Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao—meat) by colorimetric sensor array based on nine natural pigments. *Int. J. Food Sci. Technol.* 50, 203–209. doi: 10.1111/ijfs.12620

Yam, K. L., Takhistrov, P. T., and Miltz, J. (2005). Intelligent packaging: concepts and applications. *J. Food. Sci.* 70, R1–R10. doi: 10.1111/j.1365-2621.2005.tb09052.x

Yan, S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., and Hengtao, Z. (2008). Development and characterization of a new amylose type time-temperature indicator. *Food Control* 19, 315–319. doi: 10.1016/j.foodcont.2007.04.012

Yaxiao, L., Xiao-bo, Z., Xiao-wei, H., Ji-yong, S., Jie-wen, Z., Holmes, M., et al. (2015). A new room temperature gas sensor based on pigment-sensitized TiO2 thin film for amines determination. *Biosens. Bioelectron.* 67, 35–41. doi: 10.1016/j.bios.2014.05.040

Ye, M., Neetoo, H., and Chen, H. (2008a). Control of *Listeria monocytogenes* on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. *Food Microbiol.* 25, 260–268. doi: 10.1016/j.fm.2007.10.014

Ye, M., Neetoo, H., and Chen, H. (2008a2008b). Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of *Listeria monocytogenes* on cold-smoked salmon. *Int. J. Food Microbiol.* 127, 235–240. doi: 10.1016/j.ifm.2008.07.012

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Halonen, Pálvölgyi, Bassani, Fiorentini, Nair, Spigno and Kordas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.