Bayes Factors for Peri-Null Hypotheses

Alexander Ly · Eric-Jan Wagenmakers

Received: date / Accepted: date

Abstract A perennial objection against Bayes factor point-null hypothesis tests is that the point-null hypothesis is known to be false from the outset. We examine the consequences of approximating the sharp point-null hypothesis by a hazy ‘peri-null’ hypothesis instantiated as a narrow prior distribution centered on the point of interest. The peri-null Bayes factor then equals the point-null Bayes factor multiplied by a correction term which is itself a Bayes factor. For moderate sample sizes, the correction term is relatively inconsequential; however, for large sample sizes the correction term becomes influential and causes the peri-null Bayes factor to be inconsistent and approach a limit that depends on the ratio of prior ordinates evaluated at the maximum likelihood estimate. We characterize the asymptotic behavior of the peri-null Bayes factor and briefly discuss suggestions on how to construct peri-null Bayes factor hypothesis tests that are also consistent.

Keywords Consistency · Peri-null correction factor · Asymptotic sampling distribution

Mathematics Subject Classification (2020) 62F03 · 62F15 · 62F05

A. Ly
University of Amsterdam
Centrum Wiskunde & Informatica
E-mail: a.ly@uva.nl

E.–J. Wagenmakers
University of Amsterdam
E-mail: ejwagenmakers@gmail.com
1 Introduction

In the Bayesian paradigm, the support that data $y^n := (y_1, \ldots, y_n)$ provide for an alternative hypothesis H_1 versus a point-null hypothesis H_0 is given by the Bayes factor $BF_{10}(y^n)$:

$$\frac{p(y^n | H_1)}{p(y^n | H_0)} = \frac{P(H_1 | y^n)}{P(H_0 | y^n)} \left/ \frac{P(H_1)}{P(H_0)} \right. $$

where the first line indicates that the Bayes factor quantifies the change from prior to posterior model odds (Wrinch and Jeffreys, 1921), and the second line indicates that this change is given by a ratio of marginal likelihoods, that is, a comparison of prior predictive performance obtained by integrating the parameters θ_j out of the jth model’s likelihood $f(y^n | \theta_j)$ at the observations y^n with respect to the prior density $\pi(\theta_j | H_j)$ (Jeffreys, 1935, 1939; Kass and Raftery, 1995). Although the general framework applies to the comparison of any two models (as long as the models make probabilistic predictions; Dawid, 1984; Shafer and Vovk, 2019), the procedure developed by Harold Jeffreys in the late 1930s was explicitly designed as an improvement on p-value null-hypothesis significance testing.

In the prototypical scenario, a null hypothesis H_0 has p_0 free parameters, whereas an alternative hypothesis H_1 has $p = p_0 + 1$ free parameters; the additional free parameter in H_1 is the one that is test-relevant. For instance, in Jeffreys’s t-test the test-relevant parameter $\delta = \mu/\sigma$ represents standardized effect size; after assigning prior distributions to the models’ parameters we may compute the Bayes factor in favor of $H_0: \delta = 0$ with free parameter $\theta_0 = \sigma \in (0, \infty)$ against $H_1: \theta_1 = (\delta, \sigma) \in \mathbb{R} \times (0, \infty)$ where δ is unrestricted and where σ denotes the common nuisance parameter. When $BF_{01}(y^n) = 1/BF_{10}(y^n)$ is larger than 1, the data provide evidence that the ‘general law’ H_0 can be retained; when $BF_{01}(y^n)$ is smaller than 1, the data provide evidence for H_1, the model that relaxes the general law. The larger the deviation from 1, the stronger the evidence. Importantly, in Jeffreys’s framework the test-relevant parameter is fixed under H_0 and free to vary under H_1. The hypothesis H_0 is generally known as a ‘point-null’ hypothesis.

A perennial objection against point-null hypothesis testing—whether Bayesian or frequentist—is that in most practical applications, the point-null is never
true exactly (e.g., Bakan, 1966; Berkson, 1938; Edwards et al., 1963; Jones and Tukey, 2000; Kruschke and Liddell, 2018; see also Laplace, 1774/1986, p. 375). If this argument is accepted and H_0 is deemed to be false from the outset, then the test merely assesses whether or not the sample size was sufficiently large to detect the non-zero effect. This objection was forcefully made by Tukey:

“Statisticians classically asked the wrong question—and were willing to answer with a lie, one that was often a downright lie. They asked “Are the effects of A and B different?” and they were willing to answer “no.”

All we know about the world teaches us that the effects of A and B are always different—in some decimal place—for any A and B. Thus asking “Are the effects different?” is foolish. (Tukey, 1991, p. 100)

This perennial objection has been rebutted in several ways (e.g., Jeffreys, 1937, 1961; Kass and Raftery, 1995); in the current work we focus on the most common rebuttal, namely that the point-null hypothesis is a mathematically convenient approximation to a more realistic ‘peri-null’ (Tukey, 1995) hypothesis $H_{\tilde{0}}$ that assigns the test-relevant parameter a distribution tightly concentrated around the value specified by the point-null hypothesis (e.g., Good, 1967, p. 416; Berger and Delampady, 1987; Cornfield, 1966, 1969; Dickey, 1976; Edwards et al., 1963; George and McCulloch, 1993; Jeffreys, 1935, 1936; Gallistel, 2009; Rousseau, 2007; Rouder et al., 2009). For instance, in the case of the t-test the peri-null $H_{\tilde{0}}$ could specify $\delta \sim \pi(\delta \mid H_{\tilde{0}}) = N(0, \kappa_0^2)$, where the width κ_0 is set to a small value.

Previous work has suggested that the approximation of a point-null hypothesis by an interval is reasonable when the width of that interval is half a standard error in width (Berger and Delampady, 1987; Rousseau, 2007) or one standard error in width (Jeffreys, 1935). Here we explore the consequences of replacing the point-null hypothesis H_0 by a peri-null hypothesis $H_{\tilde{0}}$ from a different angle. We alter only the specification of the null-hypothesis H_0, which means that the alternative hypothesis H_1 now overlaps with $H_{\tilde{0}}$.

Below we show, first, that the effect on the Bayes factor of replacing H_0 with $H_{\tilde{0}}$ is given by another Bayes factor, namely that between H_0 and $H_{\tilde{0}}$ (cf. Morey and Rouder, 2011, p. 411). This ‘peri-null correction factor’ is usually near 1, unless sample size grows large. For large sample sizes, we demonstrate that the Bayes factor for the peri-null $H_{\tilde{0}}$ versus the alternative H_1 is bounded by the ratio of the prior ordinates evaluated at the maximum likelihood estimate. This proves earlier statements from Morey and Rouder (2011, pp. 411-412) and confirms suggestions in Jeffreys (1961, p. 367) and Jeffreys (1973, p. 39, Eq. 2). In other words, the Bayes factor for the peri-null hypothesis is inconsistent.

Note that there exist several Bayes factor methods that have replaced point-null hypotheses with either peri-null hypotheses (e.g., Stochastic Search.
Variable Selection, George and McCulloch, 1993\cite{George1993} or with other hypotheses that have a continuous prior distribution close to zero (e.g., the sceptical prior proposed by Pawel and Held, in press). As far as evidence from the marginal likelihood is concerned, the results below show that these methods are inconsistent.

We end with a brief discussion on how a consistent method for hypothesis testing can be obtained without fully committing to a point-null hypothesis.

2 The Peri-Null Correction Factor

Consider the three hypotheses discussed earlier: the point-null hypothesis H_0 fixes the test-relevant parameter to a fixed value (e.g., $\delta = 0$); the peri-null hypothesis $H_{\tilde{0}}$ assigns the test-relevant parameter a distribution that is tightly centered around the value of interest (e.g., $\delta \sim \pi(\delta \mid H_{\tilde{0}}) = \mathcal{N}(0, \kappa_0^2)$ with κ_0 small); and the alternative hypothesis H_1 assigns the test-relevant parameter a relatively wide prior distribution, $\delta \sim \pi(\delta \mid H_1)$. The Bayes factor of interest is between H_1 and $H_{\tilde{0}}$, which can be expressed as the product of two Bayes factors involving H_0:

$$
\text{Peri-null BF}_{0\tilde{0}}(y^n) = \frac{p(y^n \mid H_1)}{p(y^n \mid H_{\tilde{0}})} \times \frac{p(y^n \mid H_0)}{p(y^n \mid H_0)} = \text{Point-null BF}_{10}(y^n) \times \text{Correction factor BF}_{0\tilde{0}}(y^n).
$$

In words, the Bayes factor for the alternative hypothesis against the peri-null hypothesis equals the Bayes factor for the alternative hypothesis against the point-null hypothesis, multiplied by a correction factor (cf. Kass and Vaidyanathan, 1992, Kass and Raftery, 1995, Morey and Rouder, 2011, p. 411). This correction factor quantifies the extent to which the point-null hypothesis outpredicts the peri-null hypothesis. With data sets of moderate size, and κ_0 small, the peri-null and point-null hypotheses will make similar predictions, and consequently the correction factor will be close to 1. In such cases, the point-null can indeed be considered a mathematically convenient approximation to the peri-null.

2.1 Example

Consider the hypothesis that “more desired objects are seen as closer” (Balcetis and Dunning, 2011). In the authors’ Study I, 90 participants had to estimate their distance to a bottle of water. Immediately prior to this task, 47 ‘thirsty’ participants had consumed a serving of pretzels, whereas 43 ‘quenched’ participants had drunk as much as they wanted from four 8-oz glasses of water. In line with

\footnote{“A similar setup in this context was considered by Mitchell and Beauchamp (1988), who instead used “spike and slab” mixtures. An important distinction of our approach is that we do not put a probability mass on $\beta_i = 0$.” (George and McCulloch, 1993, p. 883).}
the authors’ predictions, “Thirsty participants perceived the water bottle as
closer ($M = 25.1$ in., $SD = 7.3$) than quenched participants did ($M = 28.0$
in., $SD = 6.2$)” (Balcetis and Dunning, 2011, p. 148), with $t = 2.00$ and
$p = .049$. A Bayesian point-null t-test concerning the test-relevant parameter δ
may contrast $H_0 : \delta = 0$ versus $H_1 : \delta \in \mathbb{R}$ with a Cauchy distribution
with location parameter 0 and scale κ_1, the common default value $\kappa_1 = 1/\sqrt{2}$ (Morey and Rouder, 2018). The resulting point-null Bayes factor
is $BF_{10} = 1.259$, a smidgen of evidence in favor of H_1. We may also compute a
peri-null correction factor by contrasting $H_0 : \delta = 0$ against $H_0 \sim N(0, \kappa_0^2)$,
with $\kappa_0 = 0.01$, say. The resulting peri-null correction factor2 is $BF_{0\tilde{0}} = 0.997$,
which means that, practically, it does not matter if the point-null or the peri-
null is tested. With a larger value of $\kappa_0 = 0.05$, we have $BF_{0\tilde{0}} = 0.927$, thus,
a peri-null Bayes factor of $BF_{1\tilde{0}} = 1.167$. The change from $BF_{10} = 1.259$ to
$BF_{1\tilde{0}} = 1.167$ is utterly inconsequential.

The difference between the peri-null and point-null Bayes factor remains
inconsequential for larger values of t. When we change $t = 2.00$ to $t = 4.00$,
the point-null Bayes factor equals $BF_{10} = 174$, which according to Jeffreys’s
classification of evidence (e.g., Jeffreys, 1961, Appendix B) is considered compelling
evidence for H_1. With $\kappa_0 = 0.01$, the peri-null correction factor equals
$BF_{0\tilde{0}} = 0.986$ and consequently a peri-null Bayes factor equals of about 172
in favor of H_1 over H_0. With $\kappa_0 = 0.05$, the peri-null correction factor equals
$BF_{0\tilde{0}} = 0.713$ and $BF_{1\tilde{0}} \approx 124$. In absolute numbers, the change from 174
to 124 may appear considerable, but with equal prior model probabilities
this translates to a modest difference in posterior probabilities: $P(H_1 | y^n) = 174/175 \approx 0.994$ versus $124/125 = 0.992$.

The peri-null correction factor does become influential when sample size is
large. As we prove in the next section, the peri-null Bayes factor is inconsistent
and converges to the ratio of prior ordinates under H_1 and H_0 at the maximum
likelihood estimate.

3 The Peri-Null Bayes Factor is Inconsistent

Historically, the main motivation for the development of the Bayes factor was
the desire to be able to obtain arbitrarily large evidence for a general law:
“We are looking for a system that will in suitable cases attach probabilities
near 1 to a law.” (Jeffreys, 1977, p. 88; see also Etz and Wagenmakers, 2017;
Ly et al., 2020; Wrinch and Jeffreys, 1921).

Statistically, this desideratum means that we want Bayes factors to be
consistent, which implies that, as sample size increases, (i) $BF_{10}(Y^n)$
tends to zero when the data are generated under the null model, whereas (ii) $BF_{01}(Y^n)$
tends to zero when the data are generated under the alternative model H_1.

2 Calculated using the Summary Stats module in JASP, (e.g., Ly et al., 2018,
jasp-stats.org), and based on Gronau et al. (2020).
that is,
\[\text{BF}_{10}(Y^n) \xrightarrow{P} 0 \text{ if } P_\theta \in H_0, \text{ and } \text{BF}_{01}(Y^n) \xrightarrow{P} 0 \text{ if } P_\theta \in H_1. \]

Thus, regardless of the chosen prior model probabilities \(P(H_0), P(H_1) \in (0,1) \),
\[P(H_0 \mid Y^n) \xrightarrow{P} 1 \text{ if } P_\theta \in H_0, \text{ and } P(H_1 \mid Y^n) \xrightarrow{P} 1 \text{ if } P_\theta \in H_1, \]
(5)
where \(P_\theta \) refers to the data generating distribution, here, \(Y_i \overset{iid}{\sim} P_\theta \), and where \(X_n \xrightarrow{P} X \) denotes convergence in probability, that is, \(\lim_{n \to \infty} P_\theta(|X_n - X| > \epsilon) = 0 \) as usual.

Below we prove that the peri-null Bayes factor \(\text{BF}_{10}(Y^n) \) is inconsistent (cf. suggestions by Jeffreys, 1961, p. 367; Jeffreys, 1973, p. 39, Eq. 2; and the statements by Morey and Rouder, 2011, p. 411-412). The proof relies on the observation that the replacement of the point-null restriction on the test-relevant parameter, i.e., \(H_0 : \delta = 0 \), where \(\theta = (\delta, \theta_0) \) as before, yields a peri-null model that defines the same likelihood function as the alternative model. Consequently, the numerator and the denominator of the peri-null Bayes factor \(\text{BF}_{10}(Y^n) \) only differ in how the priors are specified.

The inconsistency of peri-null Bayes factors then follows quite directly from Laplace’s method (Laplace, 1774/1986) and consistency of the maximum likelihood estimator (MLE). Both Laplace’s method and consistency of the MLE hold under weaker conditions than stated here, namely, for absolute continuous priors (e.g., van der Vaart, 1998, Chapter 10), and regular parametric models (e.g., van der Vaart, 1998, Chapter 7; Ly et al., 2017, Appendix E). These models only need to be one time differentiable with respect to \(\theta \) in quadratic mean and have non-degenerate Fisher information matrices that are continuous in \(\theta \) with determinants that are bounded away from zero and infinity. The inconsistency of the peri-null Bayes factor is therefore expected to hold more generally.

We show that under the stronger conditions of Kass et al. (1990), the asymptotic sampling distribution of peri-null Bayes factors can be easily derived. These stronger conditions imply that the model is regular for which we know that the MLE is not only consistent, but also locally asymptotically normal with a variance equal to the inverse observed Fisher information matrix at \(\hat{\theta} \) with entries

\[[\hat{I}(\hat{\theta})]^{a,b} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial^2}{\partial \theta_a \partial \theta_b} \log f(Y_i \mid \theta) \right) \bigg|_{\theta = \hat{\theta}}, \]
(6)
see for instance Ly et al. (2017) for details.

Theorem 1 (Limit of a peri-null Bayes factor) Let \(Y^n = (Y_1, \ldots, Y_n) \) with \(Y_i \overset{iid}{\sim} P_\theta \in P_\Theta \), where \(P_\Theta \) is an identifiable family of distributions that is Laplace-regular (Kass et al., 1990). This implies that \(P_\Theta \) admits densities \(f(y^n \mid \theta) \) with respect to the Lebesgue measure that are six times continuously
differentiable in θ at the data-governing parameter $\theta \in \Theta \subset \mathbb{R}^p$ and Θ open with non-empty interior. Furthermore, assume that the (peri-null) prior densities $\pi(\theta \mid H_{\tilde{0}})$ and $\pi(\theta \mid H_1)$ assign positive mass to a neighborhood at the data-governing parameter θ and are four times continuously differentiable at θ; then $\text{BF}_{\tilde{0}}(Y^n) \overset{P}{\to} \frac{\pi(\theta \mid H_1)}{\pi(\theta \mid H_{\tilde{0}})}$.

Proof The condition that the model is Laplace-regular allows us to employ the Laplace method to approximate the numerator and the denominator of the peri-null Bayes factor by

$$p(Y^n \mid H_j) = f(Y^n \mid \hat{\theta}) \left(\frac{\pi(\hat{\theta})}{\pi(\hat{\theta} \mid H_j)} \right)^2 \left(\frac{1 + C^1(\hat{\theta} \mid H_j)}{n} + \frac{C^2(\hat{\theta} \mid H_j)}{n^2} + O(n^{-3}) \right),$$

where $C^1(\hat{\theta} \mid H_j)$ and $C^2(\hat{\theta} \mid H_j)$ for $j = \tilde{0}, 1$ are bounded error terms of the Laplace approximation (cf. Kass et al., 1990) and given explicitly by Eq. (32) and Eq. (33) based on the notation introduced in Appendix A.

From the fact that the peri-null and the alternative models define the same likelihood function, thus, have the same maximum likelihood estimator, and only differ in how the priors concentrate on the parameters, we conclude that

$$\text{BF}_{\tilde{0}}(Y^n) = \frac{\pi(\hat{\theta} \mid H_1)}{\pi(\hat{\theta} \mid H_{\tilde{0}})} \left[1 + \frac{C^1(\hat{\theta} \mid H_1)}{n} + O(n^{-2}) \right].$$

Identifiability and the regularity conditions on the model imply that the maximum likelihood estimator is consistent, thus, $\hat{\theta} \overset{P}{\to} \theta$ (e.g., van der Vaart, 1998, Chapter 5). As all functions of $\hat{\theta}$ in Eq. (8) are smooth at θ, the continuous mapping theorem applies and the assertion follows. □

Theorem 1 implies that $\text{BF}_{\tilde{0}}(Y^n)$ is inconsistent; for all data-governing parameter values with a neighborhood that receives positive mass from both priors, the peri-null Bayes factor approaches a limit that is given by the ratio of prior densities evaluated at the data-governing θ as n increases. Note that this holds in particular for the test point of interest, e.g., $\delta = 0$, which has a neighborhood that the peri-null prior assigns positive mass to. This inconsistency result can be intuited as follows. The peri-null Bayes factor compares two marginal likelihoods with the same data-distribution (or sampling) model, but different prior distributions on the same parameter space; hence, the peri-null Bayes factor effectively assesses which prior performs best, and this should not matter asymptotically (i.e., as the data accumulate, the posterior distributions of the two models converge, and consequently the change in the Bayes factor will converge as well).³

From Theorem 1 it follows that the Bayes factor comparing the alternative $H_1 : \delta \in \Delta = \mathbb{R}$ against a directed hypothesis, say, $H_+ : \delta > 0$, is also inconsistent. For data under any $\delta > 0$, the associated Bayes factor $\text{BF}_{1+}(Y^n)$ then

³ We thank the first anonymous reviewer for providing this intuition.
converges in probability to \(H_u(\{\delta > 0\})/H_u(\Delta) \), where \(H_u(B) = \int_B \pi_u(\theta) d\theta \) with \(\pi_u \) the unnormalized prior on \(\delta \).

The limit described in Theorem 1 can also be derived differently. For instance, Theorem 1 (ii) of Dawid (2011) can be applied twice: once to approximate the logarithm of the marginal likelihood of the alternative model, and once for the null model.\(^4\) Another way to derive the limit in Theorem 1 is by using the generalized Savage-Dickey density ratio (Verdinelli and Wasserman, 1995) and by exploiting the transitivity of the Bayes factor. Theorem 1, however, can be more straightforwardly extended to characterize the asymptotic behavior of the peri-null Bayes factor.

The limiting value of the peri-null Bayes factor is not representative when \(n \) is small or moderate. Theorem 2 below shows that the sampling mean of \(\log BF_1^{\tilde{0}}(Y^n) \) is expected to be of smaller magnitude than its limiting value. In other words, the limit in Theorem 1 should be viewed as an upper bound under the alternative and a lower bound under the null.

This theorem exploits the fact that without a point-null hypothesis the gradients of the densities \(\pi(\theta | H_1) \) and \(\pi(\theta | \tilde{H}_0) \) are of the same dimension, which implies that the gradient \(\frac{\partial}{\partial \theta} \log \left(\frac{\pi(\theta | H_1)}{\pi(\theta | \tilde{H}_0)} \right) \) is well-defined. As such, the delta method can be used to show that the peri-null Bayes factor inherits the asymptotic normality property of the MLE.

To state the theorem we write \(D \) for the differential operator with respect to \(\theta \), e.g., \([D^1 \pi(\theta | H_j)] = \frac{\partial}{\partial \theta} \pi(\theta | H_j) \) denotes the gradient, and \([D^2 \pi(\theta | H_j)] = \left[\frac{\partial^2}{\partial \theta \partial \theta} \pi(\theta | H_j) \right] \) denotes the Hessian matrix.

Theorem 2 (Asymptotic sampling distribution of a peri-null Bayes factor) Under the regularity conditions stated in Theorem 1 and for all data-governing parameters \(\theta \) for which

\[
\hat{\psi}(\theta) := [D^1 \log \left(\frac{\pi(\theta | H_1)}{\pi(\theta | \tilde{H}_0)} \right)] \neq 0 \in \mathbb{R}^p,
\]

the asymptotic sampling distribution of the logarithm of the peri-null Bayes factor is normal, that is,

\[
\sqrt{n} \left(\log BF_1^{\tilde{0}}(Y^n) - \log \left(\frac{\pi(\theta | H_1)}{\pi(\theta | \tilde{H}_0)} \right) - E(\theta, n) \right) \xrightarrow{P_\theta} \mathcal{N} \left(0, \hat{\psi}(\theta)^T I^{-1}(\theta) \hat{\psi}(\theta) \right),
\]

where \(P_\theta \) denotes convergence in distribution under \(P_\theta \) and where

\[
E(\theta, n) = \log \left(\frac{1 + C^1(\theta | H_1) / n + C^2(\theta | H_1) / n^2}{1 + C^1(\theta | \tilde{H}_0) / n + C^2(\theta | \tilde{H}_0) / n^2} \right),
\]

\(^4\) We thank the second anonymous reviewer for bringing this reference to our attention. When comparing our Theorem 1 to that of Theorem 1 (ii) of Dawid (2011), it is worth noting that the apparent difference in the order of the remainder term vanishes once the MLE \(\hat{\theta} \) in Eq. (7) is replaced by \(\hat{\theta} = \theta + h/\sqrt{n} \), which holds in probability for large \(n \) for regular models.
is a bias term that is asymptotically negligible, and where $C^2(\theta \mid H_j)$ and $C^2(\theta \mid H_0)$ are given explicitly by Eq. (32) and Eq. (33) based on the notation introduced in Appendix A.

For all θ for which $\dot{v}(\theta) = 0$, but $\ddot{v}(\theta) := [D^2 \log \left(\frac{\pi(\theta \mid H_1)}{\pi(\theta \mid H_0)} \right)] \neq 0 \in \mathbb{R}^{p \times p}$, the asymptotic distribution of $\log BF_{10}(Y^n)$ has a quadratic form, that is,

$$n \left(\log BF_{10}(Y^n) - \log \left(\frac{\pi(\theta \mid H_1)}{\pi(\theta \mid H_0)} \right) - E(\theta, n) \right) \overset{p}{\rightarrow} Z^T I^{-1/2}(\theta) \ddot{v}(\theta) I^{-1/2}(\theta) Z,$$

(12)

where $Z \sim \mathcal{N}(0, I)$ with $I \in \mathbb{R}^{p \times p}$ the identity matrix.

Proof The proof depends on (another) Taylor series expansion, see Appendix A for full details. Firstly, we recall that $\sqrt{n}(\hat{\theta} - \theta) \overset{p}{\rightarrow} \mathcal{N}(0, I^{-1}(\theta))$. To relate this asymptotic distribution to that of $\log BF_{10}(Y^n)$, we note that Eq. (8) is, up to a decreasing error in n, a smooth function of the maximum likelihood estimator. The goal is to ensure that the error terms $1 + C^1(\theta \mid H_j)/n + C^2(\theta \mid H_j)/n^2$ are asymptotically negligible. A Taylor series expansion at the data-governing θ shows that

$$\log BF_{10}(Y^n) = E(\theta, n) + (\hat{\theta} - \theta)^T (\ddot{v}(\theta) + [D^1 E(\theta, n)]) + (\hat{\theta} - \theta) \ddot{E}(\theta) + O_P(n^{-3/2}).$$

The asymptotic normality result follows after rearranging Eq. (13), a multiplication of \sqrt{n} on both sides, and an application of Slutsky’s lemma.

To conclude that the bias term $E(\theta, n)$ is indeed asymptotically negligible, note that $\log(1 + x/n) \approx x/n$ as $n \to \infty$ and therefore $D^k E(\theta, n) = O\left(\frac{1}{n} D^k \{ C^1(\theta \mid H_1) - C^1(\theta \mid H_0) \} \right)$ for all $k \leq 3$. The approximation $\log(1 + x/n) \approx x/n$ requires $C^k(\theta \mid H_j)$ for $k = 1, 2$ and $\delta = 0, 1$ to be of similar magnitude, but this is typically not the case when κ_0 is relatively small compared to κ_1. The bias is, therefore, expected to decay much more slowly.

Similarly, when $\dot{v}(\theta)$ is zero, but $\ddot{v}(\theta)$ not, we have

$$n \log BF_{10}(Y^n) = n \left(\log \left(\frac{\pi(\theta \mid H_1)}{\pi(\theta \mid H_0)} \right) + E(\theta, n) \right) \overset{p}{\rightarrow} \sqrt{n}(\hat{\theta} - \theta)^T \ddot{v}(\theta) \ddot{E}(\theta) + O_P(n^{-1/2}).$$

Since $\sqrt{n}(\hat{\theta} - \theta) \overset{p}{\rightarrow} \mathcal{N}(0, I(\theta)^{-1})$, the second order result follows. \qed

Theorem 2 also shows that under the alternative hypothesis, $\log BF_{10}(Y^n)$ is expected to increase towards the limiting value $\log \left(\frac{\pi(\theta \mid H_1)}{\pi(\theta \mid H_0)} \right)$ as $n \to \infty$ whenever $E(\theta, n) < 0$. The bias is expected to be negative, because if the data-governing parameter δ is far from zero, but the peri-null prior is specified such that it is peaked at zero, the Laplace approximations become less accurate. In other words, for fixed n and $\delta \neq 0$, we typically have $C^1(\theta \mid H_1) \leq C^1(\theta \mid H_0)$
and $C^2(\theta \mid H_1) \leq C^2(\theta \mid H_0)$ and, therefore, $E(\theta, n) < 0$. This intuition can be made rigorous using the explicit formulas for $E(\theta, n)$ provided by Eq. (32) and Eq. (33) from Appendix A, as is shown in the following example.

4 Example

We consider a Bayesian t-test and for the peri-null Bayes factor use the priors

$$
\pi(\delta, \sigma \mid H_1) \propto \text{Cauchy}(\delta ; 0, \kappa_1)\sigma^{-1} \quad \text{and} \quad \pi(\delta, \sigma \mid H_0) \propto \mathcal{N}(\delta ; 0, \kappa_0^2)\sigma^{-1}.
$$

(15)

Note that $\pi(\delta, \sigma \mid H_1)$ is chosen as in the default Bayesian t-test (Jeffreys, 1948; Ly et al., 2016b; Rouder et al., 2009), where $\kappa_1 > 0$ denotes the scale parameter of the Cauchy distribution on standardized effect size $\delta = \mu/\sigma$, and $\sigma \propto \sigma^{-1}$ implies that the standard deviation common in both models is proportional to σ^{-1} (for advantages of this choice see Hendriksen et al., 2021; Grünwald et al., 2019). For data-governing parameters $\theta = (\mu, \sigma)$, where μ is the population mean, Theorem 1 shows that as $n \to \infty$

$$
\log \text{BF}_{10}(Y^n ; \kappa_0, \kappa_1) \overset{p}{\to} \log \left(\frac{\sqrt{2\kappa_0} \exp \left(\frac{\mu^2}{2\kappa_0^2\sigma^2} \right)}{\sqrt{\pi\kappa_1} \left(1 + \left[\frac{\mu}{\kappa_1\sigma} \right]^2 \right)} \right) =: v(\theta).
$$

(16)

Direct calculations show that $\dot{v}(\theta) = 0$ only when $\mu = 0$. Hence, under the alternative $\mu \neq 0$, the logarithm of these peri-null Bayes factor t-tests are asymptotically normal with an approximate variance of

$$
\frac{(\mu^4 + 2\mu^2\sigma^2)(\mu^2 + (\kappa_1^2 - 2\kappa_0^2)\sigma^2)^2}{2\kappa_0^4\sigma^4(\mu^2 + \kappa_1^2\sigma^2)^2n}.
$$

(17)

To characterize the asymptotic mean we also require the bias term $E(\theta, n)$. An application of Eq. (32) and Eq. (33) from Appendix A shows that for the problem at hand the bias term comprises of

$$
C^1(\theta \mid H_1) = \frac{13\mu^4 + (18 + 2\kappa_1^2)\sigma^2\mu^2 + (\kappa_1^2 - 6)\kappa_1^2\sigma^4}{6(\mu^2 + \kappa_1^2\sigma^2)^2},
$$

(18)

$$
C^2(\theta \mid H_1) = \frac{780\mu^6 + (1110 + 3127\kappa_1^2)\sigma^4\mu^4 + (6020 + 4462\kappa_1^2)\kappa_1^2\sigma^6\mu^2 + (5091\kappa_1^2 - 1426)\kappa_1^6\sigma^8}{-96(\mu^2 + \kappa_1^2\sigma^2)^2}.
$$

(19)

$$
C^1(\theta \mid H_0) = \frac{3\mu^4 + 6\sigma^2\mu^2 + \kappa_0^2\sigma^4(2\kappa_0^2 - 6)}{12\kappa_0^4\sigma^4},
$$

(20)

$$
C^2(\theta \mid H_0) = \frac{124\mu^6 + (264 - 2369\kappa_0^2)\sigma^2\mu^4 + (10811\kappa_0^2 - 2218)\kappa_0^2\sigma^6\mu^2 + 2(713 - 5091\kappa_0^2)\kappa_0^4\sigma^8}{192\kappa_0^6\sigma^8}.
$$

(21)

More concretely, under $\mu = 0.167$ and $\sigma = 1$, $\log \text{BF}_{10}(Y^n ; 0.05, 1)$ converges in probability to $\log(10)$. This limit is depicted as the pink dashed horizontal line in the top left subplot of Fig. 1.

This subplot also shows the mean (solid green curve) and the 97.5% and 2.5% quantiles (dotted green curves above and below the solid curve...
Fig. 1: Under the alternative, the logarithm of the peri-null Bayes factor t-test is asymptotically normal with a mean (i.e., the solid curves) that increases to the limit, e.g., log BF$_{1\tilde{0}}$ = log(10) and log BF$_{1\tilde{0}}$ = log(30) in the top and bottom row respectively. The black and green curves correspond to the simulated and asymptotic normal sampling distribution respectively. The dotted curves show the 97.5% and 2.5% quantiles of the respective sampling distribution. Note that the convergence to the upper bound is slower when the peri-null is more concentrated, e.g., compare the left to the right column.

respectively) based on the asymptotic normal result of Theorem 2. The black curves represent the analogous quantities based on simulated normal data with $\mu = 0.167$, $\sigma = 1$ based on 1,000 replications at sample sizes $n = 100, 200, 300, \ldots, 10,000$.

Observe that for small sample sizes, the simulated peri-null Bayes factors are more concentrated on small values. In this regime the concentration of the peri-null prior dominates, and the Laplace approximation of $p(Y^n \mid H_{\tilde{0}})$ is still inaccurate.

As expected, the Laplace approximation becomes accurate sooner, whenever the peri-null prior is less concentrated. The top right subplot depicts results of log BF$_{1\tilde{0}}(Y^n; 0.10, 1)$ under $\mu = 0.314$ and $\sigma = 1$, which converges in probability to log(10).

Similarly, the asymptotic normal distribution becomes adequate at a smaller sample size for larger population means μ. The bottom left subplot corresponds to log BF$_{1\tilde{0}}(Y^n; 0.05, 1)$ under $\mu = 0.182$ and $\sigma = 1$, whereas the bottom right
subplot corresponds to $\log BF_{10}(Y^n; \mu, \sigma)$ under $\mu = 0.348$ and $\sigma = 1$. The logarithms of both peri-null Bayes factors converge in probability to $\log(30)$.

In sum, the plots show that under the alternative hypothesis the asymptotic normal distribution approximates the sampling distribution of the logarithm of the peri-null Bayes factor quite well, and it approximates better when the peri-null prior is less concentrated.

Under the null hypothesis $\mu = 0$, the gradient $\dot{v}(0, \sigma) = 0$, and so is the Hessian, except for the first entry of \ddot{v}, that is,

$$
\frac{\partial^2 v(\mu, \sigma)}{\partial \mu^2} \bigg|_{\mu=0} = \frac{\kappa_1^2 - 2\kappa_0^2}{\kappa_0^2 \kappa_1^2}. \tag{22}
$$

As such, $\log BF_{10}(Y^n)$ has a shifted asymptotically $\chi^2(1)$-distribution, i.e.,

$$
n \left(\log BF_{10}(Y^n; \kappa_0, \kappa_1) - \log \left(\frac{\pi(\theta | H_1)}{\pi(\theta | H_0)} \right) - E(\theta, n) \right) \xrightarrow{\mathbb{P}_{\mu,1}} \frac{\kappa_1^2 - 2\kappa_0^2}{2\kappa_0^2 \kappa_1^2} Z^2, \tag{23}
$$

where $Z \sim \mathcal{N}(0, 1)$.

More concretely, under $\mu = 0$ and $\sigma = 1$, $\log BF_{10}(Y^n; 0.05, 1) \xrightarrow{\mathbb{P}_{0,1}} -3.22$, whereas $\log BF_{10}(Y^n; 0.10, 1)$ converges in probability to -2.53. Both cases yield evidence for the null hypothesis, but the evidence is stronger for the peri-null that is more tightly concentrated around 0. The approximation based on the asymptotic $\chi^2(1)$-distribution (in green) and the simulations (in black) are shown in Fig. 2. In the left subplot, the curves based on the asymptotic $\chi^2(1)$-distribution only start from $n = 185$, because only for $n \geq 185$ does $\log(1 + $
\(C^1(0, 1 \mid \mathcal{H}_0)/n + C^2(0, 1 \mid \mathcal{H}_0)/n^2 \) have a non-negative argument; for \(\kappa_0 = 0.05 \) we have that \(C^1(0, 1 \mid \mathcal{H}_0) = -199.83 \). Note that under the null hypothesis, the Laplace approximations are accurate sooner than under the alternative hypothesis, because the priors are already concentrated at zero. Under the null hypothesis the general observation remains true that for reasonable sample sizes the expected peri-null Bayes factor is far from the limiting value.

Unlike the peri-null Bayes factor, the (default) point-null Bayes factor is consistent. Fig. 3 shows the simulated sampling distribution of the point-null and peri-null Bayes factors in blue and black respectively. As before the 97.5\% quantile (top dotted curve), the average (solid curve), and the 2.5\% quantile (bottom dotted curve) are depicted as well.

\[\kappa_0 = 0.05 \quad \kappa_0 = 0.10 \]

Fig. 3: (Default) point-null Bayes factor \(t \)-tests (depicted in blue) are consistent under both the alternative and null, e.g., top and bottom row respectively, as opposed to peri-null Bayes factors (depicted in black). Note that the peri-null and the default point-null Bayes factors behave similarly when \(n \) is small. The domain where the two types of Bayes factors behave similarly is smaller when the peri-null is less concentrated, e.g., compare the right to the left column.

The top left subplot of Fig. 3 shows that under \(\mu = 0.167 \) and \(\sigma = 1 \) the point-null and peri-null Bayes factor behave similarly up to \(n = 30 \). Furthermore, the average point-null log Bayes factor crosses the peri-null upper bound of \(\log(10) \) at around \(n = 380 \), whereas the peri-null Bayes factor remains bounded even in the limit, and is therefore inconsistent. The top right subplot shows, under \(\mu = 0.348 \) and \(\sigma = 1 \), that the discrepancy between the point-
null and peri-null Bayes factor becomes apparent sooner when the peri-null prior is less concentrated, i.e., $\kappa_0 = 0.10$ instead of $\kappa_0 = 0.05$. Also note that under these alternatives, the logarithm of the point-null Bayes factor grows linearly (e.g., Bahadur and Bickel, 2009; Johnson and Rossell, 2010). Hence, the point-null Bayes factor has a larger power to detect an effect than that afforded by the peri-null Bayes factor.

The bottom row of Fig. 3 paints a similar picture; under the null the point-null Bayes factor accumulates evidence for the null hypothesis without bound as n grows. For $\kappa_0 = 0.05$ the behavior of the peri-null and the point-null Bayes factor is similar up to $n = 200$ and it takes about $n = 1,000$ samples before the average point-null log Bayes factor crosses the peri-null lower bound of -3.22. For $\kappa_1 = 0.10$ only $n = 270$ samples are needed before the log Bayes factor for the point-null hypothesis crosses the peri-null lower bound of -2.53.

5 Towards Consistent Peri-Null Bayes Factors

There are at least three methods to adjust the peri-null Bayes factor in order to avoid inconsistency. The first method changes both the point-null hypothesis H_0 and the alternative hypothesis H_1. Specifically, one may define the hypotheses under test to be non-overlapping (e.g., Berger and Delampady, 1987; Chandramouli and Shiffrin, 2019; Rousseau, 2007). The resulting procedure is usually known as an ‘interval-null hypothesis’, where the interval-null is defined as a (renormalized) slice of the prior distribution for the test-relevant parameter under an alternative hypothesis (e.g., Morey and Rouder, 2011). For instance, in the case of a t-test an encompassing hypothesis H_e may assign effect size δ a Cauchy distribution with location parameter 0 and scale κ_e; from this encompassing hypothesis one may construct two rival hypotheses by restricting the Cauchy prior to particular intervals: the interval-null hypothesis truncates the encompassing Cauchy distribution to an interval centered on $\delta = 0$: $\delta \sim \text{Cauchy}(0, \kappa_e)I(-a, a)$, whereas the interval-alternative hypothesis is the conjunction of the remaining two intervals, $\delta \sim \text{Cauchy}(0, \kappa_e)I(-\infty, -a)$ and $\delta \sim \text{Cauchy}(0, \kappa_e)I(a, \infty)$. As a consequence of Theorem 1, or Theorem 1 (ii) of Dawid (2011), the resulting peri-null Bayes factor is then consistent in accordance to subjective interval belief; for all data-governing parameters δ in the interior of the interval-null, $\lim_{n \to \infty} BF_{10} = 0$, and for δ in the interior of the sliced out alternative $\lim_{n \to \infty} BF_{01} = 0$. In particular, when $a = 1$ and the data-governing $\delta = 0.7$, then this Bayes factor will eventually show unbounded evidence for the interval-null.

One disadvantage of this method is the need to specify the width of the interval (Jeffreys, 1961, p. 367). This disadvantage can be mitigated by reporting a range of non-overlapping interval-null Bayes factors as a function of a; the researcher can then draw their own conclusion. The resulting range of interval-null Bayes factors also respects the uncertainty about the proper

\footnote{For consistency to hold the standard condition is assumed that the interval-null or sliced up prior assigns positive mass to a neighborhood of δ in the respective intervals.}
specification of the interval-null hypothesis and thereby avoids a false sense of precision. A second disadvantage of the non-overlapping interval-null method is that the prior distributions for the rival interval hypotheses are of an unusual shape – a continuous distribution up to the point of truncation, where the prior mass abruptly drops to zero. It is debatable whether such artificial forms would ever result from an elicitation effort. A third disadvantage is that it seems somewhat circuitous to parry the critique “the null hypothesis is never true exactly” by adjusting both the null hypothesis and the alternative hypothesis.

The second method to specify a (partially) consistent peri-null Bayes factor is to change the point-null hypothesis to a peri-null hypothesis by supplementing rather than supplanting the spike with a distribution (Morey and Rouder, 2011). In other words, the point-null hypothesis is upgraded to include a narrow distribution around the spike. This mixture distribution is generally known as a ‘spike-and-slab’ prior, but here the slab represents the peri-null hypothesis and is relatively peaked. This mixture model $H_{0'}$ may be called a ‘hybrid null hypothesis’ (Morey and Rouder, 2011), a ‘mixture null hypothesis’, or a ‘peri-point null hypothesis’. Thus, $H_{0'} = \xi H_0 + (1 - \xi)H_\sim$, with $\xi \in (0, 1)$ the mixture weights and, say, $\xi = \frac{1}{2}$. Because $\xi > 0$, the Bayes factor comparing $H_{0'}$ to H_1 will be consistent when the data come from H_0; and because $H_{0'}$ also has mass away from the point under test, the presence of a tiny true non-zero effect will not lead to the certain rejection of the null hypothesis as n grows large. The data determine which of the two peri-point components receives the most weight. As before, for modest sample sizes and small κ_0, the distinction between point-null, peri-null, and peri-point null is immaterial. The main drawback of the peri-point null hypothesis is that it is consistent only when the data come from H_0; when the data come from H_1 or H_\sim, the Bayes factor remains bounded as before (i.e., Eq. 8).

The third method is to define a peri-null hypothesis whose width κ_0 slowly decreases with sample size (i.e., a ‘shrinking peri-null hypothesis’). For the t-test, one can take $\kappa_0 = c \sigma / \sqrt{n}$ for some constant $c > 0$ as proposed by Berger and Delampady (1987), see also Rousseau (2007), except that their proposal involves a test of non-overlapping hypotheses. More generally, consistency follows by adapting Theorem 1, which depends on the Laplace approximation that becomes invalid if κ_0 shrinks too quickly. The representation Eq. (3) shows that this consistency fix is equivalent to keeping the peri-null correction Bayes factor BF_{00} close to one regardless of the data. Note that this is attainable as $\kappa_0 \to 0$ the peri-null and point-null become indistinguishable. In other words, the consistency of such a shrinking peri-null Bayes factor is essentially driven by the asymptotic behavior of the point-null Bayes factor; arguably, one might as well employ this point-null Bayes factor to begin with. One drawback of the shrinking peri-null hypothesis is that it is incoherent,

We thank the first anonymous reviewer for suggesting this procedure to circumvent a definite choice for a.
because the prior distribution depends on the intended sample size. There could nevertheless be a pragmatic argument for tailoring the definition of the peri-null to the resolving power of an experiment.

6 Concluding Comments

The objection that “the null hypothesis is never true” may be countered by abandoning the point-null hypothesis in favor of a peri-null hypothesis. For moderate sample sizes and relatively narrow peri-nulls, this change leaves the Bayes factor relatively unaffected. For large sample sizes, however, the change exerts a profound influence and causes the Bayes factor to be inconsistent, with a limiting value given by the ratio of prior ordinates evaluated at the maximum likelihood estimate (cf. Jeffreys, 1961, p. 367 and Morey and Rouder, 2011, pp. 411-412). Hence, we believe that as far as Bayes factors are concerned, there is much to lose and little to gain from adopting a peri-null hypothesis in lieu of a point-null hypothesis. Here we also derived the asymptotic sampling distribution of the peri-null Bayes factor and show that its limiting value is essentially an upper bound under the alternative and a lower bound under the null. The asymptotic distributions also provide insights to typical values of the peri-null Bayes factor at a finite n. Inconsistency may not trouble subjective Bayesians: if the peri-null hypothesis truly reflects the belief of a subjective sceptic, and the alternative hypothesis truly reflects the belief of a subjective proponent, then the Bayes factor provides the relative predictive success for the sceptic versus the proponent, and it is irrelevant whether or not this relative success is bounded. Objective Bayesians, however, develop and apply procedures that meet various desiderata (e.g., Bayarri et al., 2012; Consonni et al., 2018), with consistency a prominent example. As indicated above, the desire for consistency was the primary motivation for the development of the Bayesian hypothesis test (Wrinch and Jeffreys, 1921). For objective Bayesians then, it appears the point-null hypothesis is more than just a mathematically convenient approximation to the peri-null hypothesis (Jeffreys, 1961, p. 367). The peri-point mixture model (consistent only under the point-null hypothesis) and the shrinking peri-point model (incoherent because the prior width depends on sample size) may provide acceptable compromise solutions.

Regardless of one’s opinion on the importance of consistency, it is evident that seemingly inconsequential changes in prior specification may asymptotically yield fundamentally different results. Researchers who entertain the use of peri-null hypotheses should be aware of the asymptotic consequences; in addition, it generally appears prudent to apply several tests and establish that the conclusions are relatively robust.

7 We term a Bayes factor incoherent if the result depends on whether the data are analyzed all at once or batch by batch.
Acknowledgements

This research was supported by the Netherlands Organisation for Scientific Research (NWO; grant #016.Vici.170.083). The authors would like to thank Paulo Serra and Muriel Pérez for their enlightening discussions regarding the asymptotics discussed in this paper. We are also grateful for the constructive suggestions for improvement by the editor and two anonymous reviewers.

References

R. R. Bahadur and P. J. Bickel. An optimality property of Bayes’ test statistics. Lecture Notes-Monograph Series, 57:18–30, 2009.
D. Bakan. The test of significance in psychological research. Psychological Bulletin, 66:423–437, 1966.
E. Balcetis and D. Dunning. Wishful seeing: More desired objects are seen as closer. Psychological Science, 21:147–152, 2011.
M. J. Bayarri, J. O. Berger, A. Forte, and G. García-Donato. Criteria for Bayesian model choice with application to variable selection. The Annals of Statistics, 40:1550–1577, 2012.
J. O. Berger and M. Delampady. Testing precise hypotheses. Statistical Science, 2:317–352, 1987.
J. Berkson. Some difficulties of interpretation encountered in the application of the chi-square test. Journal of the American Statistical Association, 33:526–536, 1938.
S. H. Chandramouli and R. M. Shiffrin. Commentary on Gronau and Wagenmakers. Computational Brain & Behavior, 2:12–21, 2019.
G. Consonni, D. Fouskakis, B. Liseo, and I. Ntzoufras. Prior distributions for objective Bayesian analysis. Bayesian Analysis, 13:627–679, 2018.
J. Cornfield. A Bayesian test of some classical hypotheses—with applications to sequential clinical trials. Journal of the American Statistical Association, 61:577–594, 1966.
J. Cornfield. The Bayesian outlook and its application. Biometrics, 25:617–657, 1969.
A. P. Dawid. Present position and potential developments: Some personal views: Statistical theory: The prequential approach (with discussion). Journal of the Royal Statistical Society Series A, 147:278–292, 1984.
A. P. Dawid. Posterior model probabilities. In D. M. Gabbay, P. S. Bandyopadhyay, M. R. Forster, P. Thagard, and J. Woods, editors, Handbook of the Philosophy of Science, volume 7, pages 607–630. Elsevier, North-Holland, 2011.
J. M. Dickey. Approximate posterior distributions. Journal of the American Statistical Association, 71:680–689, 1976.
W. Edwards, H. Lindman, and L. J. Savage. Bayesian statistical inference for psychological research. Psychological Review, 70:193–242, 1963.
A. Etz and E.-J. Wagenmakers. J. B. S. Haldane’s contribution to the Bayes factor hypothesis test. *Statistical Science*, 32:313–329, 2017.

C. R. Gallistel. The importance of proving the null. *Psychological Review*, 116:439–453, 2009.

E. J. George and R. E. McCulloch. Variable selection via Gibbs sampling. *Journal of the American Statistical Association*, 88:881–889, 1993.

I. J. Good. A Bayesian significance test for multinomial distributions. *Journal of the Royal Statistical Society, Series B (Methodological)*, 29:399–431, 1967.

Q. F. Gronau, A. Ly, and E.-J. Wagenmakers. Informed Bayesian t-tests. *The American Statistician*, 74:137–143, 2020.

P. Grünwald, R. de Heide, and W. Koolen. Safe testing. *arXiv preprint arXiv:1906.07801*, 2019.

A. Hendriksen, R. de Heide, and P. Grünwald. Optional stopping with Bayes factors: A categorization and extension of folklore results, with an application to invariant situations. *Bayesian Analysis*, 16(3):961–989, 2021.

L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. *Biometrika*, 12:134–139, 1918.

H. Jeffreys. Some tests of significance, treated by the theory of probability. *Proceedings of the Cambridge Philosophy Society*, 31:203–222, 1935.

H. Jeffreys. Further significance tests. *Mathematical Proceedings of the Cambridge Philosophical Society*, 32:416–445, 1936.

H. Jeffreys. Scientific method, causality, and reality. *Proceedings of the Aristotelian Society*, 37:61–70, 1937.

H. Jeffreys. *Theory of Probability*. Oxford University Press, Oxford, UK, 1 edition, 1939.

H. Jeffreys. *Theory of Probability*. Oxford University Press, Oxford, UK, 2nd edition, 1948.

H. Jeffreys. *Scientific Inference*. Cambridge University Press, Cambridge, UK, 3 edition, 1973.

H. Jeffreys. Probability theory in geophysics. *Journal of the Institute of Mathematics and its Applications*, 19:87–96, 1977.

V. E. Johnson and D. Rossell. On the use of non-local prior densities in Bayesian hypothesis tests. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72:143–170, 2010.

L. V. Jones and J. W. Tukey. A sensible formulation of the significance test. *Psychological Methods*, 5:411–414, 2000.

R. E. Kass and A. E. Raftery. Bayes factors. *Journal of the American Statistical Association*, 90:773–795, 1995.

R. E. Kass and S. Vaidyanathan. Approximate Bayes factors and orthogonal parameters, with application to testing equality of two binomial proportions. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 129–144, 1992.
Bayes Factors for Peri-Null Hypotheses

R. E. Kass, L. Tierney, and J. B. Kadane. The validity of posterior expansions based on Laplace’s method. In S. Geisser, J. S. Hodges, S. J. Press, and A. Zellner, editors, Bayesian and Likelihood Methods in Statistics and Econometrics: Essays in Honor of George A. Barnard, volume 1, pages 473–488. Elsevier, 1990.

J. K. Kruschke and T. M. Liddell. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25:178–206, 2018.

P.-S. Laplace. Memoir on the probability of the causes of events. Statistical Science, 1:364–378, 1774/1986.

A. Ly, A. J. Verhagen, and E.-J. Wagenmakers. An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72:43–55, 2016a.

A. Ly, A. J. Verhagen, and E.-J. Wagenmakers. Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72:19–32, 2016b.

A. Ly, M. Marsman, A. J. Verhagen, R. P. P. Grasman, and E.-J. Wagenmakers. A tutorial on Fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

A. Ly, A. R. Komarlu Narendra Gupta, A. Etz, M. Marsman, Q. F. Gronau, and E.-J. Wagenmakers. Bayesian reanalyses from summary statistics and the strength of statistical evidence. Advances in Methods and Practices in Psychological Science, 1(3):367–374, 2018. doi: 10.1177/2515245918779348.

A. Ly, A. Stefan, J. van Doorn, F. Dablonder, D. van den Bergh, A. Sarafoglou, Š. Kucharský, K. Derks, Q. F. Gronau, A. R. Komarlu Narendra Gupta, U. Boehm, E.-J. van Kesteren, M. Hinme, D. Matzke, M. Marsman, and E.-J. Wagenmakers. The Bayesian methodology of Sir Harold Jeffreys as a practical alternative to the p-value hypothesis test. Computational Brain & Behavior, 3(2):153–161, 2020.

P. McCullagh. Tensor methods in statistics. Courier Dover Publications, 2018.

T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83:1023–1032, 1988.

R. D. Morey and J. N. Rouder. Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16:406–419, 2011.

R. D. Morey and J. N. Rouder. BayesFactor 0.9.12-4.2. Comprehensive R Archive Network, 2018. URL http://cran.r-project.org/web/packages/BayesFactor/index.html.

S. Pawel and L. Held. The sceptical Bayes factor for the assessment of replication success. Journal of the Royal Statistical Society: Series B (Statistical Methodology), in press. doi: https://doi.org/10.1111/rssb.12491. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12491.

J. N. Rouder, P. L. Speckman, D. Sun, R. D. Morey, and G. Iverson. Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16:225–237, 2009.
J. Rousseau. Approximating interval hypothesis: p-values and Bayes factors. In J. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. Smith, and M. West, editors, Bayesian Statistics 8: Proceedings of the Eighth Valencia International Meeting June 2–6, 2006, volume 8, pages 417–452. Oxford University Press, 2007.

G. Shafer and V. Vovk. Game-Theoretic Foundations for Probability and Finance, volume 455. John Wiley & Sons, 2019.

J. W. Tukey. The philosophy of multiple comparisons. Statistical Science, 6: 100–116, 1991.

J. W. Tukey. Controlling the proportion of false discoveries for multiple comparisons: Future directions. In V. S. L. Williams, L. V. Jones, and I. Olkin, editors, Perspectives on Statistics for Educational Research: Proceedings of a Workshop, pages 6–9, Research Triangle Park, NC, 1995. National Institute of Statistical Sciences.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998.

I. Verdinelli and L. Wasserman. Computing Bayes factors using a generalization of the Savage–Dickey density ratio. Journal of the American Statistical Association, 90:614–618, 1995.

D. Wrinch and H. Jeffreys. On certain fundamental principles of scientific inquiry. Philosophical Magazine, 42:369–390, 1921.
A Laplace Approximation

The Laplace approximation uses a (multivariate) Taylor expansion for which we introduce notation. Let \(h : \Theta \subset \mathbb{R}^p \to \mathbb{R} \), i.e., \(h(\theta) = -\frac{1}{2} \sum_{i=1}^{n} \log f(y_i | \theta) \), and we write \(\theta \) for the point in its domain where \(h \) takes its global minimum. Furthermore, we use subscripts to denote partial derivatives, whereas superscripts refer to components of a vector, or more generally an array. For instance, \(\pi_a = \frac{\partial}{\partial \theta_a} \pi(\hat{\theta}) \) refers to the \(a \)-th component of the vector of partial derivatives \(\{D^1 \pi(\hat{\theta})\} \) of the prior \(\pi \) evaluated at the MLE. Similarly, we write \(h_{abc} = \frac{\partial^3}{\partial \theta_a \partial \theta_b \partial \theta_c} h(\hat{\theta}) \) for the \(abc \)-th component of the three-dimensional array \(\{D^3 h(\hat{\theta})\} \).

Hence, the number of indices in the subscript corresponds to the number of derivatives of \(h \) and the indices, each in \(1, 2, \ldots, p \), provide the location of the component.

We use superscripts to refer to the component of a vector. For instance, \(\hat{q}^a = (\theta^a - \hat{\theta}^a) \) represents the \(a \)-th component of the difference vector \(\hat{q} = \theta - \hat{\theta} \), thus, equivalently \(\hat{q}^a := c_{a}^{T} \hat{q} \), where \(e_a \) is the unit (column) vector with entry 1 at index \(a \) and zero elsewhere. Similarly, \(c_{abcd} \) the \(abcd \)-th component of a four dimensional array.

Moreover, we employ Einstein’s summation convention and suppress the sum whenever an index occurs in both the sub and superscript. For instance,

\[
\begin{align*}
 h_{a} \hat{q}^{a} &:= \sum_{a=1}^{p} h_{a} \hat{q}^{a}, \\
 h_{abc} \hat{q}^{a} \hat{q}^{b} \hat{q}^{c} &:= \sum_{a=1}^{p} \sum_{b=1}^{p} \sum_{c=1}^{p} h_{abc} \hat{q}^{a} \hat{q}^{b} \hat{q}^{c},
\end{align*}
\]

The former defines an inner product between the gradient of \(h \) and deviations \(\hat{q} \), whereas the \(h_{abc} = \{D^3 h\}_{abc} \) refers to the \(a \)-th row, \(b \)-th column, and \(c \)-th depth of the three-dimensional array consisting of partial derivatives of \(h \) of order three. Lastly, we use the shorthand notation

\[
 h_{a} h_{b} \hat{q}^{a} \hat{q}^{b} := \sum_{a} \sum_{b} h_{a} h_{b} \hat{q}^{a} \hat{q}^{b},
\]

to denote the nested sum which is needed for Cauchy products \((h_{a} \hat{q}^{a})(h_{b} \hat{q}^{b}) \). For instance, with \(d = 2 \)

\[
(h_{1} \hat{q}^{1} + h_{2} \hat{q}^{2})(h_{1} \hat{q}^{1} + h_{2} \hat{q}^{2}) = h_{1} \hat{q}^{1} h_{1} \hat{q}^{1} + 2 h_{1} \hat{q}^{1} h_{2} \hat{q}^{2} + h_{2} \hat{q}^{2} h_{2} \hat{q}^{2},
\]

which is equivalent to

\[
 h_{1} h_{2} \hat{q}^{1} \hat{q}^{1} + h_{1} h_{2} \hat{q}^{2} \hat{q}^{2} + h_{2} h_{1} \hat{q}^{2} \hat{q}^{1} + h_{2} h_{2} \hat{q}^{2} \hat{q}^{2}.
\]

With these notational conventions a multivariate Taylor approximation is denoted as

\[
 h(\theta) = h(\hat{\theta}) + h_{a} \hat{q}^{a} + \frac{h_{abc} \hat{q}^{a} \hat{q}^{b} \hat{q}^{c}}{1} + h_{abcd} \hat{q}^{a} \hat{q}^{b} \hat{q}^{c} \hat{q}^{d} + \mathcal{O}(|u|^5).
\]

and note the similarity to its one-dimensional counterpart.

Theorem 3 (Laplace expansion with error term) Let \(\mathcal{P}_\Theta \) be a collection of density functions that are \(d \) times continuously differentiable in \(\theta \in \Theta \subset \mathbb{R}^d \), and \(\pi(\theta) \) a prior density that is four times continuously differentiable. Let \(Y \sim_{iid} f(y | \theta) \) for certain \(\theta \), then with \(\hat{\theta} \) the MLE

\[
 p(y^n) = \int_{\Theta} f(y^n | \theta) \pi(\theta) d\theta
\]

\[
 = \left(\frac{2\pi}{p} \right)^{\frac{n}{2}} f(y^n | \hat{\theta}) \pi(\hat{\theta}) \left| \hat{f}(\hat{\theta}) \right|^{-1/2} \left[1 + \frac{C^{(1)}(\hat{\theta})}{n} + \frac{C^{(2)}(\hat{\theta})}{n^2} + \mathcal{O}(n^{-3}) \right].
\]
where $| \cdot |$ denotes the determinant and

\[
C^{(1)}(\hat{\theta}) = \frac{n\hat{\theta}}{2n(\hat{\theta})} \sum_{abcd} \pi_{abcd} \left(\frac{h_{abcd} + \hat{h}_{abcd}}{h_{abcd}} \right) \pi_{abcd} + \frac{h_{abcd} \hat{h}_{abcd}}{h_{abcd}}, \tag{32}
\]

\[
C^{(2)}(\hat{\theta}) = \frac{\pi \hat{\theta}}{2n(\hat{\theta})} \sum_{abcd} \pi_{abcd} \left(\frac{h_{abcd} + \hat{h}_{abcd}}{h_{abcd}} \right) \pi_{abcd} + \frac{h_{abcd} \hat{h}_{abcd}}{h_{abcd}} + \frac{5n(\hat{\theta})h_{abcd}h_{efgh} + 8h_{efgh}h_{abcd} + 40h_{abcd}h_{efgh} + 15h_{abcd} + 20h_{abcd}h_{efgh}}{5760n(\hat{\theta})} \pi_{abcd} \pi_{efgh}, \tag{33}
\]

where π_{abcd}, π_{abcdef}, $\pi_{abcdefghi}$, and $\pi_{abcdefghijkl}$ represent the ab-th component of the second, the $abcd$-th component of the fourth, the $abcdef$-th component of the sixth, the $abdef$-th component of the eigth moment, the $abcdefgh$-th component of the tenth moment, and the $abcdefghijkl$-th component of the twelfth moment, of the p dimensional random vector $Q \sim N_p(0, I(\hat{\theta})^{-1})$, respectively.

\[\Box\]

Proof The proof is based on (i) Taylor-expanding the exponential of the log-likelihood of order five around $\hat{\theta}$, (ii) the definition of the exponential as a series and Taylor-expanding π to third order at the same point $\hat{\theta}$, and (iii) properties of the normal distribution.

Step (i) Let $h(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log f(y_i | \theta)$, then since $h(\theta) \in C^6(\Theta)$ we know that there exists $\delta > 0$ such that in a ball $B_\delta(\hat{\theta}) \subset \mathbb{R}^p$ of radius δ centered at $\hat{\theta}$ the average log-likelihood $h_n(\theta)$ is well-approximated by a Taylor expansion of order 5. This combined with $\tilde{\theta}$ being the mode and the notation $\tilde{q} = \theta - \tilde{\theta}$ yields

\[
p(y^n) = \int_{\Theta} e^{-nh(\theta)} \pi(\theta) d\theta = \int_{B_\delta(\tilde{\theta})} e^{-nh(\tilde{\theta})} \frac{1}{2} e^{-\tilde{\theta}^T R(\tilde{\theta})} \pi(\tilde{\theta}) d\tilde{\theta}, \tag{34}
\]

\[
p(y^n | \hat{\theta}) = f(y^n | \hat{\theta}) \int_{B_\delta(\tilde{\theta})} e^{-nh(\hat{\theta})} \frac{1}{2} e^{-\tilde{\theta}^T R(\tilde{\theta})} \pi(\tilde{\theta}) d\tilde{\theta}, \tag{35}
\]

where

\[
R(\tilde{\theta}) = n_1 \frac{h_{abcd} e^{\delta_{abcd}}}{2} + \frac{1}{4} \frac{h_{abcd} e^{\delta_{abcd}}}{2} \phi^T \phi + \frac{1}{4} \frac{h_{abcd} e^{\delta_{abcd}}}{2} \phi^T \phi + \mathcal{O}(|\tilde{\theta}|^6), \tag{36}
\]

is the bounded remainder term since $h \in C^6(\Theta)$. The replacement of θ by $B_\delta(\tilde{\theta})$ in the integral is justified if the mass is concentrated at $\tilde{\theta}$, thus, whenever the integral with respect to the first order term falls off quadratically, that is, if

\[
|\tilde{\theta}| I(\hat{\theta})^{1/2} e^{-n(\hat{\theta}) - h(\tilde{\theta})} \pi(\tilde{\theta}) = \mathcal{O}(n^{-2}), \tag{37}
\]

which is the case when $\hat{\theta}$ is unimodal. When it is not unimodal, but $\hat{\theta}$ is a global maximum, then the condition implies that the requirement that the contribution of the other maxima is not too big.

Step (ii) After centering the integral at $\tilde{\theta}$ we scale with respect to \sqrt{n}, that is, we apply the change of variable $q = \sqrt{n}\tilde{\theta}$, thus, $\int f^{1/2} dq = \int d\tilde{q}$ and therefore

\[
p(y^n) = \left(\frac{2 \pi}{n} \right)^{p/2} f(y^n | \hat{\theta}) \int_{B_{\delta}(\sqrt{n}\tilde{\theta})} \tilde{\pi}(q) e^{-R(\tilde{\theta})} d\tilde{q}, \tag{38}
\]

where $\tilde{\pi}(q)$ is the density of a multivariate normal distribution centered at $\tilde{\theta}$ and covariance matrix $\Sigma = I^{-1}(\hat{\theta})$, and where $\tilde{\pi}(q)$ is the Taylor approximation of π at the MLE, that is,

\[
\tilde{\pi}(q) = \pi(\tilde{\theta}) + \frac{\pi(\tilde{\theta})}{n^{1/2}} + \frac{\pi(\tilde{\theta})}{2n^{1/2}} + \frac{\pi(\tilde{\theta})}{3!n} |\tilde{\theta}| + \mathcal{O}(n^{-2}), \tag{39}
\]
and where the remainder term is now

\[R(q) = \frac{h_{abcd}a^b_a q^c_c q^d_d}{3!n^{1/2}} + \frac{h_{abcd}a^b_a q^c_c q^d_d}{4!n} + \frac{h_{abcd}a^b_a q^c_c q^d_d q^e_e}{5!n^{3/2}} + \frac{h_{abcd}a^b_a q^c_c q^d_d q^e_e q^f_f}{6!n^2} + \mathcal{O}(n^{-5/2}). \]

To exploit the properties of Gaussian integrals we replace integration domain \(B_R(\sqrt{n}) \) by \(\mathbb{R}^p \), which is justified when \(n \) is large, and because the tails of a normal density fall off exponentially.

By definition of \(e^{-R(q)} \) as a series and without the exponential approximation error

\[
p(y^n) \approx \left(\frac{2\pi}{n} \right)^{p/2} f(y^n | \hat{\theta}, \hat{\theta}) | f(\hat{\theta}) |^{1/2} \times \int_{\mathbb{R}^p} \varphi(q)(1 - R(q) + \frac{R(q)^2}{2} - \frac{R(q)^3}{6} + \mathcal{O}(|R(q)|^4)) \Pi(q) dq.
\]

From here onwards we focus on the integral Eq. (40), which after some straightforward but tedious computations can be shown to be of the form

\[
\int_{\mathbb{R}^p} \varphi(q) \left[A_0 + A_1 n^{-1/2} + A_2 n^{-1} + A_3 n^{-3/2} + A_4 n^{-2} + \mathcal{O}(n^{-3}) \right] dq,
\]

where the \(A_j \) terms are functions of \(q \) and \(\hat{\theta} \) defined by the series representation of \(e^{-R(q)} \) and \(\varphi(q) \).

Step (iii) The terms \(A_j \) are given below. Of the following results only the exact values of \(A_0, A_2 \) and \(A_4 \) matter; what matters for \(A_1 \) and \(A_3 \) is that they only involve odd powers of \(q \):

\[
A_0 = \pi(\hat{\theta})
\]

\[
A_1 = \pi(\hat{\theta}) - \frac{h_{abcd} \pi(\hat{\theta}) q^a_a q^b_b q^c_c}{6}
\]

\[
A_2 = \frac{\pi(\hat{\theta})}{6} q^a_a q^b_b q^c_c q^d_d - \frac{\pi(\hat{\theta}) h_{abcd} \pi(\hat{\theta}) q^a_a q^b_b q^c_c q^d_d}{120} + \frac{\pi(\hat{\theta}) h_{abcd} \pi(\hat{\theta}) q^a_a q^b_b q^c_c q^d_d q^e_e q^f_f}{720}
\]

\[
A_3 = \frac{\pi(\hat{\theta}) h_{abcd} \pi(\hat{\theta}) q^a_a q^b_b q^c_c q^d_d q^e_e q^f_f}{720}
\]

\[
\frac{\pi(\hat{\theta}) h_{abcd} \pi(\hat{\theta}) q^a_a q^b_b q^c_c q^d_d q^e_e q^f_f}{720}
\]

Since for \(k \) odd \(A_k \) only involve odd powers of \(q \) we conclude that their integral with respect to \(\varphi(q) \) vanishes. Hence,

\[
p(y^n) = \left(\frac{2\pi}{n} \right)^{p/2} f(y^n | \hat{\theta}, \hat{\theta}) | f(\hat{\theta}) |^{1/2} \pi(\hat{\theta}) \left[1 + \frac{R(\hat{\theta})}{n^{1/2}} \right] + \mathcal{O}(n^{-3})
\]

where \(E[A_2] \) and \(E[A_4] \) are expectations with respect to \(Q \sim \mathcal{N}(0, I(\hat{\theta})^{-1}) \). This implies that the order \(n^{-1} \) and \(n^{-2} \) terms in the assertion are \(C^{(1)}(\hat{\theta}) = E[A_2] / \pi(\hat{\theta}) \) and \(C^{(2)}(\hat{\theta}) = E[A_4] / \pi(\hat{\theta}) \).

The components of higher moments can be expressed in terms of the covariances \(\varsigma^{ab} = \text{Cov}(Q^a, Q^b) \) using Isserlis’ formula (Isserlis, 1918; McCullagh, 2018). For moments \(\varsigma^{a_1 \ldots a_w} \), that is, a component of the \(w \)th moment of \(Q \) with \(w = 2v \) even, the following holds

\[
\varsigma^{a_1 \ldots a_w} = \sum_{u \in P^+_w} \prod_{i,j \in u} \varsigma^{ij},
\]

Bayes Factors for Peri-Null Hypotheses

23
where \(P_2 \) is the collection of all pairs of which there are \(v \). For instance, for \(w = 4 \), \(\varsigma^{abcd} \) is a sum of 2-products of pairs, for \(w = 6 \) is a sum of 3-products of \(\varsigma^{abcdef} \) and so forth and so on. More specifically,

\[
\varsigma^{abcd} = \varsigma^{ab,cd} + \varsigma^{ac,db} + \varsigma^{ad,bc} \tag{49}
\]

\[
\varsigma^{abcdef} = \varsigma^{ab,cd,ef} + \varsigma^{ac,be,df} + \varsigma^{ad,ce,fe} + \varsigma^{be,ac,df} + \varsigma^{bf,ac,de} + \varsigma^{cd,ab,ef} + \varsigma^{ce,ad,df} + \varsigma^{cf,ad,be} \tag{50}
\]

where all indexes \(a, b, c, d, e, f = 1, 2, \ldots, p \). The expression of \(\varsigma^{ghabcdef} \), \(\varsigma^{ghijabcdef} \), and \(\varsigma^{ghijklabcdef} \) define sums of \(105 = 3 \times 5 \times 7 \), \(945 = 3 \times 5 \times 7 \times 9 \), and \(10,395 = 3 \times 5 \times 7 \times 9 \times 11 \) terms respectively, and due to space restrictions their exact forms are not displayed here.