Photoemission footprints of extrinsic plasmarons

B. Hellsing1,∗ and V.M. Silkin2,3,4

1 Department of Physics, Gothenburg University, S-41296 Gothenburg, Sweden
2 Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
3 Dept. de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
4 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

A prediction how to experimentally distinguish excitations of extrinsic plasmarons from intrinsic plasmarons is presented. In surface systems where excitations of acoustic surface plasmons is possible it is shown that the photo-electron yield in normal photoemission should decay according to an inverse square root dependence with respect to the photon energy. A computational analysis of the system p(2×2)-K/Graphite confirms this prediction.

PACS numbers: 73.21.Fg, 73.20.Mf, 79.60.Dp

INTRODUCTION

In photoemission experiments, photo-electrons carry information of many-body interactions created by the photo-hole and by the escaping photo-electron itself. In the case of strong coupling between the photo-hole or induced density caused by the photo-electron, and plasmon excitations, the quasi particle picture breaks down and new loss peaks appear in the photoemission spectrum. The excitation formed by the photo-hole – plasmon interaction defines the intrinsic plasmaron and the photo-electron – plasmon interaction defines the extrinsic plasmaron [1, 2].

For systems with a surface-state band crossing the Fermi level, a plasmon localized at the surface and characterized by a sound-like dispersion, so-called Acoustic Surface Plasmon (ASP), has been predicted to exist [3, 4]. Later on Electron Energy Loss Spectroscopy experiments have confirmed the presence of the ASP mode at the Be(0001) [5, 6] and noble metal surfaces [7–14] in good agreement with calculations and graphene adsorbed on metal substrates [15–22]. In cases when surface localized quantum well states are formed, e.g. when atomic layers of alkali metals are adsorbed on a metal surface the possibility opens up to design ASP by varying the depth of the quantum well (type of alkali atoms) and the width of the quantum well (number of layers).

A challenge is to find out about the relative occurrence of the intrinsic and extrinsic plasmarons from a photoemission experiment. In this paper we show that for a surface system with ASP, the extrinsic plasmaron excitation channel can be traced by looking at the photon energy dependence of the photo-electron yield. Simple kinematics indicate an inverse square root dependence, while the intrinsic plasmaron is not expected to depend on the photon energy. We will present results from an extension of a previous calculation on the system - a monolayer potassium energy. We will present results from an extension of this calculation on the system - a monolayer potassium energy. We will present results from an extension of this calculation on the system - a monolayer potassium energy.

The intention is to form a theory in order to calculate the yield of extrinsic plasmaron excitations. The energy loss induced by the escaping photo-electron in an ARPES experiment is given by the rate of electronic surface excitations. In first order time dependent perturbation theory, "golden-rule", we have that the rate of extrinsic plasmaron excitation is given by [23]

\[
W(\omega) = -2 \text{Im} \left[\int d\mathbf{r} \phi_{\text{ext}}^* (\mathbf{r}, \omega) \delta n(\mathbf{r}, \omega) \right], \tag{1}
\]

where \(\phi_{\text{ext}} \) is the external potential created by the escaping photo-electron and \(\delta n \) is the induced electron density.

We consider an ARPES experiment and the possibility that an ejected photo-electron will lose part of its energy on its way to the detector. We assume that the electron density "spill-out" from the surface is negligible along the path of the photo-electron. The external potential must then fulfill Laplace equation [24]

\[
\phi_{\text{ext}} (\mathbf{r}_||, z, \omega) = - \frac{1}{A} \sum_{\mathbf{q}_||} \frac{2\pi}{q_||} e^{i q_|| (z - \bar{z})} e^{i q_|| r_|| - \omega t}, \tag{2}
\]

where \(A \) is the surface area, \(q_|| = |\mathbf{q}_|| \) and \(\bar{z} \) is the distance between the surface and the photo-electron. The rate of energy loss can then be expressed in terms of the surface response function \(g(\mathbf{q}_||, \omega) \) [25]

\[
g(\mathbf{q}_||, \omega) = \int dz e^{i q_|| z} \delta n(z, \mathbf{q}_||, \omega) \tag{3}
\]

and, accordingly,

\[
W(\omega, \bar{z}) = \frac{4\pi}{A} \sum_{\mathbf{q}_||} \frac{e^{-q_|| \bar{z}}}{q_||} \text{Im}[g(\mathbf{q}_||, \omega)]. \tag{4}
\]

We consider at this point a general system with an ultra a previous calculation on the system - a monolayer potassium energy. We will present results from an extension of this calculation on the system - a monolayer potassium energy. We will present results from an extension of this calculation on the system - a monolayer potassium energy.
formation of a surface quantum well (QW) hosting a QW-state band and as a result the existence of ASP.

A photo-excited electron with an initial parallel wave vector k_\parallel will with some probability be inelastically scattered to k_\parallel' while exciting an ASP with momentum $q_\parallel = k_\parallel - k_\parallel'$. The photo-electrons with momentum $k_\parallel = k_\parallel'$ will yield the main peak, corresponding to the electrons having absorbed fully the photon energy. The width of this elastic peak reflects the finite lifetime of the photo-hole left behind. In addition a satellite structure might appear at higher binding energies due to scattering from all k_\parallel' and k_\parallel, satisfying $k_\parallel = k_\parallel' + q_\parallel$, having excited an ASP with momentum q_\parallel. If this satellite structure gives rise to a distinct peak an extrinsic plasmaron excitation is realized.

We calculate the k_\parallel-resolved photo-electron energy loss per time unit due to the ASP excitations, which is equivalent to the dispersion of the extrinsic plasmaron excitations. This can be carried out from the expression given in Eq. (4)

$$W(k_\parallel, \epsilon, \tilde{z}) = \frac{2}{\pi} \int_0^{k_F} d\alpha_\parallel \int_0^{2\pi} d\alpha \frac{k_\parallel'}{q_\parallel} e^{-q_\parallel \tilde{z}} \Theta(q_{\max} - q_\parallel) \times \text{Im}[g(q_\parallel, \epsilon - \epsilon_b + \hbar \omega(k_\parallel'))], \quad (5)$$

where k_F is the band Fermi wave vector, $k_\parallel = |k_\parallel|$, $k_\parallel' = |k_\parallel'|$, α the angle between the vectors k_\parallel and k_\parallel', $\Theta(x)$ is the Heaviside step function, ϵ_b the binding energy, $q_\parallel = (k_\parallel^2 + k_\parallel'^2 - 2k_\parallel k_\parallel' \cos \alpha)^{1/2}$, q_{\max} the maximum wave vector up to which the ASP dispersion is well defined and $\hbar \omega(k_\parallel') - \epsilon_b$ is the band dispersion relative the Fermi energy.

The ARPES intensity is given by integrating in time the excitation rate W

$$I(k_\parallel, \epsilon, \hbar \nu) = \int_0^{\infty} W(k_\parallel, \epsilon, \tilde{z}(t)) dt, \quad (6)$$

but as $d\tilde{z} = k_\perp dt$, where k_\perp is the perpendicular momentum of the escaping photo-electron, we can now integrate with respect to \tilde{z}, obtaining the photon energy dependence of the extrinsic plasmaron dispersion. Simple kinematics in terms of photon energy $\hbar \nu$, workfunction ϕ and QW binding energy ϵ_b yields

$$k_\perp^2 = 2(\hbar \nu - \phi - \epsilon_b - \epsilon + \hbar \omega(k_\parallel')) - k_\parallel^2. \quad (7)$$

We then have the photon energy dependent intensity of extrinsic plasmaron

$$I(k_\parallel, \epsilon, \hbar \nu) = \frac{2}{\pi} \int_0^{k_F} d\alpha_\parallel \int_0^{2\pi} d\alpha \frac{k_\parallel'}{k_\parallel} \Theta(q_{\max} - q_\parallel) \times \text{Im}[g(q_\parallel, \epsilon - \epsilon_b + \hbar \omega(k_\parallel'))]. \quad (8)$$

The expression in Eq. (8) forms the footprint of extrinsic plasmaron excitations. In the case of normal photoemission intensity of the extrinsic plasmaron excitations will decrease with photon energy accordingly, $I \sim 1/\sqrt{\hbar \nu}$. This result can be traced back to the exponential decay with respect to \tilde{z} (the time dependent location of the escaping photo-electron) of the external potential penetrating the solid (Eq. (3)). In the next section we illustrate this for a specific system.

CALCULATIONS

With this theoretical background we proceed to a specific system, a monolayer of potassium on graphite, p(2×2)-K/Graphite. According to the first principles calculations by Chis et al. a quasi-2D quantum well (QW) system is formed with an energy band centered at the Γ-point of the Brillouin zone (BZ) (see red colored line in Fig. 1). Another quasi-2D system is formed in the carbon atomic layer below the QW system, marked by blue color. Due to the larger Fermi surface of the QW band this band will contribute the most to the excitations. Thus our analysis is focused on the QW band. It should be noted however, that in the calculation of the surface response function $g(q_\parallel, \omega)$ we include all excitations.

Acoustic surface plasmons

We have previously calculated the surface loss function, $\text{Im} [g(q_\parallel, \omega)]$ within the Time Dependent Density Functional Theory scheme. The surface loss function versus ω and q reveals a linear sound-like dispersion

![Graph of surface plasmons](image-url)
collective excitation in the energy range 0-0.6 eV with a momentum transfer span up to about 0.1 a.u. The extracted dispersion is shown Fig. 2. At larger momentum transfers, where the ASP dispersion is depicted by the dashed lines, this mode becomes strongly damped. Beyond this region for \(q_{\parallel} \gtrsim 0.13 \text{ a.u.} \) it ceases to exist since the coherence of single electron excitations forming the collective plasmon excitation is lost due to incoherent electron-hole pair excitations. In Fig. 2 one can notice that the ASP dispersions along the \(\Gamma-M \) and \(\Gamma-K \) directions are very similar. Based on this observation we will further on assume that the ASP dispersion is isotropic in the surface plane.

The average slope of the ASP dispersion yields a group velocity of \(c \approx 0.22 \text{ a.u.} \), which according to Pitarke et al. \[28\], is set by the Fermi velocity of the 2D carriers. This is consistent with the band structure in Fig. 1 where the slope of the QW band when crossing the Fermi level is similar, \(v_F \approx 0.23 \text{ a.u.} \) \[23\].

Plasmaron excitations

For the system p(2\(\times \) 2)-K/Graphite, we have \(k_F = 0.23 \text{ a.u.} \), \(q_{\text{max}}=0.1 \text{ a.u.} \), \(\epsilon_b = 0.76 \text{ eV} \) and the QW band dispersion approximately parabolic \(\hbar \omega(k_{\parallel}) = \epsilon_b(k_{\parallel}^2/k_F)^2 \). The calculated ARPES intensity according to Eq. \[6\] gives the *extrinsic* plasmaron excitations and is shown as function of parallel momentum and energy in Fig. 3. The peak at \(k_{\parallel}=0 \) appears at about 1.29 eV below the Fermi level which is 0.53 eV below the bottom of the QW band (- \(\epsilon_b \)). It is seen in Fig. 3 that the energy position of the QW band gives rise to a small kink.

SUMMARY AND CONCLUSIONS

For a surface system in which excitation of acoustic surface plasmons is possible the *extrinsic* type of plasmaron excitations and is set by the Fermi velocity of the 2D carriers. This is consistent with the band structure in Fig. 1 where the slope of the QW band when crossing the Fermi level is similar, \(v_F \approx 0.23 \text{ a.u.} \).
FIG. 5: (Color online) Solid line: Calculated photoelectron yield in versus photon energy at the plasmaron peak for normal emission ($k_\parallel=0$). The peak is located 1.29 eV below the Fermi energy. Filled circles: Fitted intensity versus photon energy $h\nu$ with to functional form given in Eq. (9) with $A=1.99$ and $\alpha=0.49$.

Plasmaron excitations are likely to exist. Referring to the photoemission experiment, the predicted footprint of the extrinsic plasmarons, generated by the escaping photoelectron, is the inverse square root dependence of the photon energy. This enables a possibility to distinguish extrinsic from intrinsic plasmarons, where the latter is generated by the photo-hole. Following up a previous theoretical study of the system $p(2\times2)$-K/Graphite [23] shows that this prediction seems reliable.

ACKNOWLEDGMENTS

V. M. S. acknowledges the partial support from the Basque Departamento de Educación, UPV/EHU (Grant No. IT-756-13) and the Spanish Ministry of Economy and Competitiveness MINECO (Grant No. FIS2013-48286-C2-1-P).

* Electronic address: hellsing@physics.gu.se

[1] B. Lundqvist, Phys. Kondens. Mat. 6, 193 (1967).
[2] L. Hedin, B. I. Lundqvist, and S. Lundqvist, Solid State Commun. 5, 237 (1967).
[3] V. M. Silkin, A. García-Lekue, J. M. Pitarke, E. V. Chulkov, E. Zaremba, and P. M. Echenique, Europhys. Lett. 66, 260 (2004); V. M. Silkin, J. M. Pitarke, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B 72, 115435 (2005); J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1 (2007).
[4] V. M. Silkin, B. Hellsing, L. Wallåden, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 81, 113406 (2010).
[5] B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, Ph. Hoffmann, V. M. Silkin, J. M. Pitarke, E. V. Chulkov, P. M. Echenique, D. Farías, and M. Rocca, Nature (London) 448, 57 (2007).
[6] M. Jahn, M. Müller, M. Endlich, N. Neel, J. Kröger, V. Chis, and B. Hellsing, Phys. Rev. B 86, 085453 (2012).
[7] S. J. Park and R. E. Palmer, Phys. Rev. Lett. 105, 016801 (2010).
[8] K. Pohl, B. Diaconescu, G. Vercelli, L. Vattuone, V. M. Silkin, E. V. Chulkov, P. M. Echenique, and M. Rocca, EPL 90, 57006 (2010).
[9] L. Vattuone, G. Vercelli, M. Smerieri, L. Savio, and M. Rocca, Plasmonics 7, 323 (2012).
[10] J. Yan, K. W. Jacobsen, and K. S. Thygesen, Phys. Rev. B 86, 241404(R) (2012).
[11] L. Vattuone, M. Smerieri, T. Langer, C. Tegenkamp, H. Pfünir, V. M. Silkin, E. V. Chulkov, P. M. Echenique, and M. Rocca, Phys. Rev. Lett. 110, 127405 (2013).
[12] J. Pischel, E. Welsch, O. Skibbe, and A. Pucci, J. Phys. Chem. C 117, 26964 (2013).
[13] M. Smerieri, L. Vattuone, L. Savio, T. Langer, C. Tegenkamp, H. Pfünir, V. M. Silkin, and M. Rocca, Phys. Rev. Lett. 113, 186804 (2014).
[14] A. Politano and G. Chiarello, Prog. Surf. Sci. 90, 144 (2015).
[15] Y. Liu, R. F. Willis, K. V. Entsev, and T. Seyller, Phys. Rev. B 78, 201403 (2008).
[16] H. Pfünir, T. Langer, J. Baringhaus, and C. Tegenkamp, J. Phys.: Condens. Matter 23, 112204 (2011).
[17] S. Y. Shin, C. G. Hwang, S. J. Sung, N. D. Kim, H. S. Kim, and J. W. chung, Phys. Rev. B 83, 161403(R) (2011).
[18] T. Langer, D. F. Forster, C. Busse, T. Michely, H. Pfünir, and C. Tegenkamp, New J. Phys. 13, 053006 (2011).
[19] T. Langer, H. Pfünir, C. Tegenkamp, S. Forli, K. Entsev, and U. Starke, New J. Phys. 14, 103045 (2012).
[20] A. Politano, A. R. Marino, V. Formoso, D. Farías, R. Miranda, and M. Rocca, Phys. Rev. B 84, 033401 (2011).
[21] A. Politano, A. R. Marino, and G. Chiarello, Phys. Rev. B 86, 085420 (2012).
[22] A. Cupolillo, A. Politano, N. Lugato, D. M. C. Perez, G. Chiarello, and L. S. Caputi, Surf. Sci. 634, 76 (2015).
[23] V. Chis, V. M. Silkin, and B. Hellsing, Phys. Rev. B 89, 205429 (2014).
[24] A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, London, 1997).
[25] B. N. J. Persson and E. Zaremba, Phys. Rev. B 30, 5669 (1984).
[26] V. Chis and L. Wallåden, Phys. Rev. B 84, 165449 (2011).
[27] M. Petersilka, U. J. Grassman, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
[28] J. M. Pitarke, V. U. Nazarov, V. M. Silkin, E. V. Chulkov, E. Zaremba, and P. M. Echenique, Phys. Rev. B 70, 205403 (2004).
[29] L. Österlund, D. V. Chakarov, and B. Kasemo, Surf. Sci. 420, 174 (1999).
[30] M. Breitholtz, T. Kihlgren, S. Å. Lindgren, and L. Wallåden, Phys. Rev. B 66, 153401 (2002).