Reliability Evaluation of Generalized Exchanged X-Cubes Based on the Condition of g-Good-Neighbor

Xiaoyan Li,1,2 Hongbin Zhuang,1,2 Shuming Zhou,3,4 Hongju Cheng,1,5 Cheng-Kuan Lin,1 and Wenzhong Guo1

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
2Fujian Provincial Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350108, China
3College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China
4Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou 350007, China
5Key Laboratory of Spatial Data Mining and Information Sharing, Ministry of Education, Fuzhou 350116, China

Correspondence should be addressed to Wenzhong Guo; guowenzhong@fzu.edu.cn

Received 19 February 2020; Accepted 4 May 2020; Published 26 May 2020

Academic Editor: Huaqun Wang

Copyright © 2020 Xiaoyan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the cloud computing environment with massive information services and decision-making resources, the accuracy and reliability of information are more important than previous single closed systems. Therefore, ensuring the reliability of information and the stable operation of the system are the core problems in the research fields such as the Internet Plus and the Internet of Things. The connectivity and diagnosability are two important measures for the fault tolerance of multiprocessor systems. The g-good-neighbor conditional connectivity (R^g-connectivity) is the minimum number of nodes that make the graph disconnected, and each node has at least g neighbors in every remaining component. The g-good-neighbor conditional diagnosability (g-GNCD) is the maximum number of faulty processors that has been correctly identified in a system, and any fault-free processor has no less than g fault-free neighbors. Exchanged X-cubes are a class of irregular networks, obtained by deleting links from hypercubes and some variant networks of hypercubes (X-cubes). They not only combine the advantages of X-cubes but also reduce the interconnection complexity. Exchanged X-cubes classify its nodes into two different classes clusters with a unique connecting rule. In this paper, we propose the generalized exchanged X-cubes framework so that architecture can be constructed by different connecting rules. Furthermore, we study the R^g-connectivity and g-GNCD of generalized exchanged X-cubes under the PMC and MM* models. As applications, the R^g-connectivity and g-GNCD of generalized exchanged hypercubes, dual-cube-like networks, generalized exchanged crossed cubes, and locally generalized exchanged twisted cubes are determined, respectively.

1. Introduction

With the expansion of network scale and the improvement of complexity, the reliability and stability of the system become more and more important. How to ensure the correct and efficient operation of the system is an important research topic for wireless sensor networks and distributed systems. The distributed system disperses the computing tasks which are originally collected on one computer to polymorphic computer for parallel processing. It has many advantages, such as resource sharing, openness, concurrency, scalability, and fault tolerance. In the operation of the multiprocessor system, processor failure is inevitable. It may slow down the communication of information or even lead to paralyze of the system, thereby affecting the normal operation of the multiprocessor system and bringing huge losses. For example, on Google and Amazon systems, the failure of processors (servers) for several hours can bring millions of dollars of losses. Therefore, fault tolerance is very important for the construction and maintenance of systems [1, 2]. In fact, a multiprocessor system can be usually enlightened as a simple connected graph, where each processor represents a node of the graph, and each link between two processors represents an edge between two nodes in the graph. The graph is called the interconnection network of this multiprocessor system. Thus, some parameters of a graph as an interconnection
network can be used to measure the reliability of a multiprocessor system. In the following, we do not distinguish among multiprocessor systems, interconnection networks, and graphs.

An important evaluating parameter for the fault tolerance of a system (modeled by graph G), the connectivity, is denoted by $\kappa(G)$, which is the minimum number of nodes that make the graph disconnected. So far, connectivities for many famous networks have been proven. Nevertheless, there is a shortcoming for using traditional connectivity as a parameter of fault tolerance, which is considered a highly unlikely phenomenon in reality that all nodes adjacent to a node have failed simultaneously. Therefore, Esfahanian and Hakimi [3] proposed a new measure to overcome this shortcoming, the restricted connectivity, which limits that all adjacent nodes of any node cannot fail at the same time. Later, a generalized restricted connectivity concept, the g-restricted connectivity (R^g-connectivity), was proposed by Latifi et al. [4], which defines that each node of any remaining component after deleting all faulty nodes has degree at least g. In recent years, they have attracted much interest of theoretical computer scientists and mathematicians. Xu et al. [5] determined the R^g-connectivity of hierarchical cubic networks and complete cubic networks. Ning [6] studied the R^g-connectivity of exchanged crossed cubes. Yuan et al. [7] explored the R^g-connectivity of k-ary n-cube networks. Lin et al. [8] obtained the R^g-connectivity of (n, k)-arrangement graphs.

Identifying all faulty processors in a multiprocessor system (in brief, system) is called system-level diagnosis. A system is t-diagnosable when all faulty processors can be detected, provided that the number of faulty processors in it does not exceed t. The maximum number of faulty processors that the system can precisely point out is as known as the diagnosability of the system. In system-level diagnosis, there are several well-known models.

The PMC model is the first model, proposed by Preparata et al. [9], which is a test-based model, assumes that the adjacent processors can perform tests on each other. For any adjacent processors in a system, the ordered pair (x, y) is called a test that x diagnoses its neighbor y, where x is a tester and y is a testee. In case x diagnoses y to be faulty (resp., fault-free), the outcome of the test (x, y) is 1 (resp., 0). Moreover, the outcome is reliable in the present of the tester x is fault-free. Another model, the MM model, was proposed by Maeng and Malek [10], which is a comparison-based model. In MM model, a comparator processor z sends the same test to its two neighbors x, y (i.e., comparison nodes) and then compares their responses. Let a labeled edge (x, y), be a comparison performed that two processors x and y are compared by a processor z, where x is adjacent to z and y is also adjacent to z. If the comparator processor z is fault-free, and the responses of x and y are identical, then both comparison processors x and y are fault-free; on the other hand, if the responses of x and y are different, then at least one of x, y is faulty. Furthermore, if both comparison processors x and y are faulty, the responses of x and y are distinct. In addition, the comparison (x, y) is unreliable in the present if the comparator node z is faulty. The MM^* model (proposed by Sengupta and Dahbura) [11] is a special MM model, which is assumed that each processor must compare each pair of its adjacent processors.

Since there is no restrictive condition on the distribution pattern of faulty processors, the classical diagnosability of a system is quite small. In order to increase the diagnosability, Lai et al. [12] proposed a more realistic parameter of diagnosability, conditional diagnosability, which limited that all the neighbors of any processor cannot be faulty at the same time in a system. Recently, Peng et al. [13] proposed the notion of g-good-neighbor conditional diagnosability (g-GNCD), which is the maximum number of faulty processors that can be identified under the condition that every fault-free processor has no less than g fault-free neighbors. Peng et al. [13] (resp., Wang et al. [14]) established the g-GNCD of hypercubes under the PMC model (resp., MM^* model). Li et al. [15] introduced the diagnosability and 1-good-neighbor conditional diagnosability of hypercubes with missing links and broken-down nodes under the PMC model. Yuan et al. [7] studied the g-good-neighbor conditional diagnosabilities of k-ary n-cube networks under the PMC model and the MM^* model. Xu et al. [5] established the g-good-neighbor conditional diagnosabilities of complete cubic networks under the PMC model and the MM^* model. Lin et al. [16] evaluated the g-good-neighbor conditional diagnosabilities of (n, k)-arrangement graphs under the PMC model and the MM^* model. Guo et al. [17] studied the g-good-neighbor conditional diagnosability of the crossed cubes under the PMC model and the MM^* model. Li et al. [18] introduced this concept into a family of data center networks—DCell—and determined the g-good-neighbor conditional diagnosabilities of DCell under the PMC model and the MM^* model.

The R^g-connectivity (or g-GNCD) of different networks are usually determined independently. It is a very worthwhile topic to explore a unified method to get them in different networks. A family of exchanged networks (i.e., exchanged X-cubes) have some common properties, so that their R^g-connectivity (or g-GNCD) can be studied by a uniform method. The family of exchanged X-cubes not only combine the advantages of hypercubes and some variant networks of hypercubes (X-cubes) but also reduce the interconnection complexity. Exchanged X-cubes classify its nodes into two different classes clusters with a unique connecting rule. In this paper, we propose the generalized exchanged X-cubes framework so that architecture can be constructed by different connecting rules. There are some of the better properties in generalized exchanged X-cubes, such as smaller diameter, fewer edges, lower cost factor, and low latency. Based on the fine properties, the network’s hardware and communication costs are reduced, and a greater balance between performance and cost can be achieved. Due to the excellent properties of the generalized exchanged X-cubes, they can be used as the logical topologies in the peer-to-peer environment [19].

In recent years, the research on the relationship between the R^g-connectivity and the g-GNCD of regular networks under certain conditions has been widely developed [20–24], while this paper will study the R^g-connectivity and the g-GNCD of a class of irregular networks (i.e., generalized
exchanged R_β-cubes). We first establish the R_β-connectivity of generalized exchanged X-cubes. Next, we evaluate the g-GNCD of generalized exchanged X-cubes. As applications, we obtain the R_β-connectivity and g-GNCD of generalized exchanged hypercubes, dual-cube-like networks, generalized exchanged twisted cubes, and locally generalized exchanged twisted cubes.

The remainder of this paper is organized as follows. Section 2 provides the terms and notations used throughout the paper. Section 3 evaluates the R_β-connectivity of generalized exchanged X-cubes. Section 4 establishes the g-GNCD of generalized exchanged X-cubes. Section 5 gives some applications based on the results in Section 3 and Section 4. In Section 6, we illustrate the advantages of R_β-connectivity and g-GNCD compared to traditional connectivity and traditional diagnosability, respectively. Finally, we finish the whole paper by concluding in Section 7.

2. Preliminaries

2.1. Terminology and Notations. In this paper, a multiprocessor system is usually represented by a simple undirected graph (in brief, a graph). For terminology and notations not defined in this paper, we follow the reference [25]. We use $G = (V(G), E(G))$ to represent a graph, where $V(G)$ representing a nonempty and finite node set and $E(G) = \{ (u, v) \mid (u, v) \}$ is an unordered pair of $V(G)$ representing an edge set. Two nodes u and v are adjacent, denoted by $(u, v) \in E(G)$. The set of neighbors of node u in G is denoted by $N_{G}(u) = \{ v \in V(G) \mid (u, v) \in E(G) \}$. If $R \subseteq V(G)$, let $G[R]$ denote the subgraph of G induced by the node subset R in G. And we denote $G - R$ as $G[V(G) \setminus R]$. We set $N_{G}(R) = \{ v \in V(G) \setminus R \mid (u, v) \in E(G) \text{ and } u \in R \} = \bigcup_{u \in R} N_{G}(u) \setminus R$ and $N_{G}[R] = N_{G}(R) \cup R$. Two binary strings $u = u_{0}u_{0}$ and $v = v_{1}v_{0}$ are pair related, denoted by $u \sim v$, if and only if $(u, v) \in \{ (00, 00), (01, 11), (10, 10), (11, 01) \}$. The case that u and v are not pair related is denoted by $u \not\sim v$ [26].

The degree of u in G is denoted by $\text{deg}_{G}(u) = |N_{G}(u)|$. Let $\delta(G) = \min \{ \text{deg}_{G}(u) \mid u \in V(G) \}$, $\Delta(G) = \max \{ \text{deg}_{G}(u) \mid u \in V(G) \}$, K_{n} is defined as a complete graph with n nodes. A path P is a sequence of distinct nodes with any two consecutive nodes in P that are adjacent. We use $G_{1} \equiv G_{2}$ to represent the graph G_{1} is isomorphic to the graph G_{2}. A component is defined as a maximally connected subgraph of a graph.

Definition 1 (see [27]). Let $R \subseteq V(G)$. R is called a node-cut if $G - R$ is disconnected. If there exists a node-cut R with $|R| = k$, then R is called a k-node-cut. The connectivity $k(G)$ of G is defined as the minimum k such that G has a k-node-cut.

Definition 2 (see [4]). Let g be a positive integer and $R \subseteq V(G)$. If $G - R$ is disconnected and each remaining component has minimum degree at least g, then R is called an R_β-cut.

Definition 3 (see [4]). The R_β-connectivity of G, denoted by $\kappa_{R}(G)$, is the minimum cardinality over all R_β-cuts of G.

2.2. The g-Good-Neighbor Conditional Diagnosability. Under the PMC model and MM* model, we call the notation Ω as the syndrome of the system, which is defined as the set of all test (comparison) results in a system G, where test results are based on the PMC model and comparison results are based on the MM* model. Define a faulty set F, where $\forall i \in F$, i is a faulty processor. Let $\Omega(F)$ be the set of test (comparison) results which could be produced if F is the faulty node set. We use \hat{F}_{1} and \hat{F}_{2} to represent two distinct faulty sets of $V(G)$. In case $\Omega(\hat{F}_{1}) \cap \Omega(\hat{F}_{2}) = \emptyset$, we call these two distinct faulty sets \hat{F}_{1} and \hat{F}_{2} distinguishable, and $(\hat{F}_{1}, \hat{F}_{2})$ a distinguishable pair; otherwise, \hat{F}_{1} and \hat{F}_{2} are indistinguishable, and $(\hat{F}_{1}, \hat{F}_{2})$ is an indistinguishable pair. Let $\hat{F}_{1} \triangle \hat{F}_{2}$ be the symmetric difference $(\hat{F}_{1} - \hat{F}_{2}) \cup (\hat{F}_{2} - \hat{F}_{1})$ between \hat{F}_{1} and \hat{F}_{2}. In [28], under the PMC model, the sufficient and necessary condition for two different subsets \hat{F}_{1} and \hat{F}_{2} to be a distinguishable pair proposed by Sengupta and Dahbura [11].

Lemma 4 (see [28]). Let $G = (V(G), E(G))$ be a multiprocessor system. For any two distinct sets $\hat{F}_{1}, \hat{F}_{2} \subseteq V(G)$, \hat{F}_{1} and \hat{F}_{2} are distinguishable under the PMC model if and only if there exists at least one test from $V(G) - (\hat{F}_{1} \cup \hat{F}_{2})$ to $\hat{F}_{1} \triangle \hat{F}_{2}$ (see Figure 1(a)).

Lemma 5 (see [11]). Let $G = (V(G), E(G))$ be a multiprocessor system. For any two distinct sets $\hat{F}_{1}, \hat{F}_{2} \subseteq V(G)$, \hat{F}_{1} and \hat{F}_{2} are distinguishable under the MM* model if and only if there is a node $w \in V(G) - (\hat{F}_{1} \cup \hat{F}_{2})$ such that one of the following conditions holds (see Figure 1(b)):

\begin{enumerate}
 \item $|N_{G}(w) - (\hat{F}_{1} \cup \hat{F}_{2})| \geq 1$ and $|N_{G}(w) \cap (\hat{F}_{1} \triangle \hat{F}_{2})| \geq 1$,
 \item $|N_{G}(w) \cap (\hat{F}_{1} - \hat{F}_{2})| \geq 2$,
 \item $|N^{*} G(w) \cap (\hat{F}_{1} \triangle \hat{F}_{2})| \geq 2$.
\end{enumerate}

The concept of g-GNCD of a system was proposed in the literature [13].

Definition 6 (see [13]).

\begin{enumerate}
 \item Let $\hat{F} \subseteq V(G)$ and \hat{F} be a fault-set. If any node of $V(G) - \hat{F}$ has at least g neighbors in $G - \hat{F}$, then \hat{F} is called a g-good-neighbor conditional fault-set.
 \item A system G is g-good-neighbor conditional t- diagnosable if each distinct pair of g-good-neighbor conditional faulty g-GNCF sets \hat{F}_{1} and \hat{F}_{2} of $V(G)$ with $|\hat{F}_{1}| \leq t$ and $|\hat{F}_{2}| \leq t$ are distinguishable.
\end{enumerate}
(3) The g-GNCD, denoted by $t_g(G)$, is defined as the maximum value of t such that G is a g-good-neighbor conditionally t-diagnosable. Let $t_g^e(G)$ and $t_g^m(G)$ be the g-GNCD of G under the PMC model and MM* model, respectively.

2.3. Generalized Exchanged X-Cubes. In this subsection, we give the definition of the family of generalized exchanged networks, denoted by generalized exchanged X-cubes, which have some common properties, so that the their R^S-connectivity (or g-GNCD) can be studied by a uniform method. Since generalized exchanged X-cubes are derived by BC networks (bijective connection networks), we first review the definition of the BC network.

Definition 7 (see [29]). The one-dimensional BC network X_1 contains only two nodes which forms an edge. We use L_1 to represent the family of the one-dimensional BC network with $L_1 = \{X_1\}$. A graph G belongs to the family of n-dimensional BC networks L_n if and only if there exists V_0, $V_1 \subset V(G)$ such that the following two conditions hold:

$$V(G) = V_0 \cup V_1, V_0 \neq \emptyset, V_1 \neq \emptyset, V_0 \cap V_1 = \emptyset, \text{ and } G[V_0], G[V_1] \in L_{n-1}$$

$$E(V_0, V_1)$$ is a perfect matching M between V_0 and V_1 in G.

For any $X_n \in L_n$, by Definition 7, there exist V_0, V_1, M satisfying the conditions. We use X_{n-1}^0, X_{n-1}^1 to denote the induced subgraph $G[V_0], G[V_1]$, respectively. Clearly, they are both $(n-1)$-dimensional BC networks, and $E(X_{n-1}^0), E(X_{n-1}^1)$, M is a decomposition of $E(X_n)$. We define the decomposition as $X_n = G(X_{n-1}^0, X_{n-1}^1; M)$.

BC networks are a class of networks containing a number of famous networks such as hypercubes [13], the Möbius cubes [30], crossed cubes [31], and locally twisted cubes [32] as members. An n-dimensional BC network X_n is n-regular and consisting of 2^n nodes. Figure 2 shows two three-dimensional BC networks.

Lemma 8 (see [33]). For $0 \leq g \leq n$ and $Y \subset V(X_n)$, if $\delta(X_n [Y]) \geq g$, then $|Y| \geq 2^g$.

Lemma 9 (see [34]).

1. (1) For $Y \subset V(X_n)$ and $0 \leq g \leq n$, if $\delta(X_n [Y]) = g$, then $|N_{X_n}(Y)| \geq (n - g)2^g$.

2. (2) For $0 \leq g \leq n - 2$, $\kappa^g(X_n) = (n - g)2^g$.

Lemma 10 (see [35]). For $n \geq 2$, there are at most two common neighbors between any two nodes of X_n.

Next, we introduce the definition of generalized exchanged X-cubes.

Definition 11. The (s, t)-dimensional generalized exchanged X-cubes is defined as a graph $\overline{GEX}(s, t) = (V(\overline{GEX}(s, t)), E(\overline{GEX}(s, t)))$, for $s \geq 1$ and $t \geq 1$. $GEX(s, t)$ consists of two disjoint subgraphs \overline{L}' and \overline{R}'. \overline{L}' consists of 2^s subgraphs, denoted by \overline{L}_j' for $j = 1, 2, \ldots, 2^s$. Similarly, \overline{R}' consists of 2^t subgraphs, denoted by \overline{R}_j' for $j = 1, 2, \ldots, 2^t$. Moreover, $\overline{GEX}(s, t)$ satisfies the following conditions (see Figure 3):

(a) For any integers $1 \leq i \leq 2^s$ and $1 \leq j \leq 2^t$, $\overline{L}_i' \cong X_s$ and $\overline{R}_j' \cong X_t$. Further, $|V(\overline{L}_i')| = 2^s$ and $|V(\overline{R}_j')| = 2^t$.

(b) Each node in $\overline{V}(\overline{L}_i')$ has a sole neighbor in $\overline{V}(\overline{R}_j')$ and vice versa. In addition, for distinct nodes in each \overline{L}_i', their neighbors of \overline{R}_j' lie in different \overline{R}_j'.

(c) For any two different subgraphs \overline{L}_i' and \overline{L}_h' with $i \neq h$, there exists no edge between them. Similar for \overline{R}_j' and \overline{R}_k' with $j \neq k$.

By Definition 11, we can deduce that $|V(\overline{GEX}(s, t))| = 2^{s+t+1}$. Let each of \overline{L}_i' and \overline{R}_j' be a cluster of $GEX(s, t)$. Obviously, $GEX(s, t)$ consists of $2^s + 2^t$ clusters. If we contract each cluster as a node, then $GEX(s, t)$ is contracted into a complete bipartite graph $K_{2^s, 2^t}$. The edges that connect
different clusters are called cross edges. In the following discussion, we consider \(s \leq t \), and thus, \(\delta(GEX(s, t)) = s + 1 \), \(\Delta(GEX(s, t)) = t + 1 \).

3. The \(R^q \)-Connectivity of \(GEX(s, t) \)

In this section, we establish the \(R^q \)-connectivity of \(GEX(s, t) \) with \(1 \leq g \leq s - 2 \). In what follows, we exploit some useful lemmas for our further investigation.

Lemma 12. For any integers \(s \geq 3 \) and \(1 \leq g \leq s \), let \(H \) be a subgraph of \(X \) with \(\delta(H) \geq g \), and let \(T \) be a subgraph of \(X \), such that \(T \equiv X' \). Then \(|N_{X'}[H]| \geq |N_{X'}[T]| = (s - g + 1)2^q \).

Proof. We conduct induction on \(s \).

If \(s = 3 \), by fixing \(g \), the lemma holds obviously. Suppose that the lemma holds for \(s = \tau - 1 \), let \(H \) be a subgraph of \(X_{\tau - 1} \) with \(\delta(H) \geq g \) and \(T \) be a subgraph of \(X_{\tau - 1} \) such that \(T \equiv X' \). Then \(|N_{X_{\tau - 1}}[H]| \geq |N_{X_{\tau - 1}}[T]| = (\tau - g)2^q \) for \(1 \leq g \leq \tau - 1 \) and \(\tau \geq 4 \). In the following, we will prove that the lemma holds for \(s = \tau \). Since \(X_{\tau} \) can be merged through a perfect matching by two \(X_{\tau - 1} \), namely \(X^0_{\tau - 1} \) and \(X^1_{\tau - 1} \), we discuss the two cases below.

Case 1. \(H \cap X^0_{\tau - 1} \neq \emptyset \) and \(H \cap X^1_{\tau - 1} \neq \emptyset \).

Let \(H_1 = H - X^0_{\tau - 1} \) and \(H_2 = H - X^1_{\tau - 1} \). Then \(\delta(H_1) \geq g - 1 \) and \(\delta(H_2) \geq g - 1 \). Let \(T_2 \) and \(T_3 \) be two subgraphs of \(X^0_{\tau - 1} \) and \(X^1_{\tau - 1} \) with \(T_2 \equiv X_{g - 1}^0 \) and \(T_3 \equiv X_{g - 1}^1 \), respectively. Thus, by the induction hypothesis, we have

\[
|N_{X^0_{\tau - 1}}[H_1]| = |N_{X^0_{\tau - 1}}[H_1]| + |N_{X^0_{\tau - 1}}[H_2]|
\geq |N_{X^0_{\tau - 1}}[T_2]| + |N_{X^0_{\tau - 1}}[T_3]|
\geq 2(\tau - g + 1)2^{q+1} = (\tau - g + 1)2^q. \tag{2}
\]

Then, for \(s = \tau \), the lemma holds.

Case 2. \(H \subseteq X^0_{\tau - 1} \) or \(H \subseteq X^1_{\tau - 1} \).
Without loss of generality, we suppose that $H \subseteq X_{g-1}^0$. By Lemma 8, we have $|V(H)| \geq 2^g$. Further, by the induction hypothesis, $|N_{X_{g-1}}[H]| \geq |N_{X_{g-1}}[T_i]| = (\tau - g)2^g$. Then

$$|N_{X_{g-1}}[H]| = |N_{X_{g-1}}[H]| + |V(H)| \geq |N_{X_{g-1}}[T_i]| + |V(H)| \geq (\tau - g)2^g + 2^g = (\tau - g + 1)2^g.$$

(3) Hence, the lemma holds.

Lemma 13. For any integers $s \geq 3$ and $1 \leq g \leq s - 2$, $\kappa^g(\text{GEX}(s, t)) \leq (s - g + 1)2^g$.

Proof. By Definition 11, GEX(s, t) can be decomposed into two disjoint subgraphs L'_i and R'_i, where L'_i can be partitioned into 2^t subgraphs (clusters) and R'_i can be partitioned into 2^t subgraphs (clusters). Without loss of generality, let $A \subseteq \text{V}(L'_i)$ such that GEX$(s, t)[A] \equiv X_g$. Clearly, $|A| = 2^g$. By Definition 7 and Lemma 9, $|N_{-}(A)| = (s - g)2^g$. Further, by Definition 11, each node in V(L'_i) has a sole neighbor in V(R'_i). And, for distinct nodes in each L'_i, their neighbors of R'_i lie in different R'_j. In addition, for any two different subgraphs L'_i and L'_h with $i \neq h$, the edge between them is nonexistent. Thus, each node in L'_i has exactly one neighbor in GEX$(s, t) - L'_i$. Then $|N_{GEX(s,t)-L'_i}(A)| = |A| = 2^g$. Thus, we have

$$|N_{GEX(s,t)-L'_i}(A)| = |N_{-}(A)| + |N_{GEX(s,t)-L'_i}(A)| = (s - g)2^g + 2^g = (s - g + 1)2^g.$$

(4) Since $|N_{GEX(s,t)}[A]| = (s - g + 1)2^g + 2^g = (s - g + 2)2^g$ and $|V(GEX(s,t))| = 2^{s+1} > (s - g + 2)2^g$, GEX$(s, t) - N_{GEX(s,t)}(A)$ is disconnected. Then $N_{GEX(s,t)}(A)$ is a node-cut of GEX(s, t).

In what follows, $N_{GEX(s,t)}(A)$ as an R^g-cut of GEX(s, t) will be proved. That is, $\delta(GEX(s,t) - N_{GEX(s,t)}(A)) \geq g$.

Since $GEX(s, t)[A] \equiv X_g$, $\delta(GEX(s, t)[A]) = g$. By Lemma 9, $N_{-}(A)$ is an R^g-cut of L'_i, where $1 \leq g \leq s - 2$. As a result, $\delta(L'_i - N_{-}(A)) \geq g$ with $1 \leq g \leq s - 2$. Moreover, by Definition 11, each node in L'_i has exactly one neighbor in GEX$(s, t) - L'_i$, and for distinct nodes in L'_i, their neighbors in R'_i lie in different R'_j. Since $\delta(GEX(s, t)) = s + 1$, $\delta(GEX(s, t) - L'_i - N_{GEX(s,t)-L'_i}(A)) \geq s + 1 - 1 > g$ for any node $w \in GEX(s, t) - L'_i - N_{GEX(s,t)-L'_i}(A)$.

Summary of the above discussion, we have $\delta(GEX(s,t) - N_{GEX(s,t)}(A)) \geq g$. Then $N_{GEX(s,t)}(A)$ is a g-good-neighbor cut of GEX(s, t). Hence, $\kappa^g(\text{GEX}(s, t)) \leq (s - g + 1)2^g$ with $1 \leq g \leq s - 2$ and $s \geq 3$, the lemma holds.

Lemma 16. For any integers $s \geq 3$ and $1 \leq g \leq s - 2$, $\kappa^g(\text{GEX}(s, t)) \geq (s - g + 1)2^g$.

Proof. We assume U as a minimum R^g-cut of GEX(s, t). Let $U \cap \text{V}(L'_i) = U_{-i}$ and $U \cap \text{V}(R'_j) = U_{-j}$, where $1 \leq i \leq 2^t$, $1 \leq j \leq 2^t$. Then we will show that $\kappa^g(\text{GEX}(s, t)) = |U| \geq (s - g + 1)2^g$ with $1 \leq g \leq s - 2$ and $s \geq 3$. We consider three cases as follows.

Case 1. $L'_i = U_{-i}$ and $R'_j = U_{-j}$ are connected for each i, j, where $1 \leq i \leq 2^t, 1 \leq j \leq 2^t$.

We prove this case by contradiction. Suppose that $|U| \leq (s - g + 1)2^g - 1$. In the following, we will prove that U is not an R^g-cut of GEX(s, t).

Since U is a minimum R^g-cut of GEX(s, t), GEX$(s, t) - U$ is disconnected. In addition, there must exist a component C with C traverses r clusters, where $1 \leq r \leq 2^{s-1}$. Let $U_i = C_i \cap U$, where C_i be one of these r clusters with $1 \leq i \leq r$. As a result, $C = \bigcup_{i=1}^{\lfloor r/2 \rfloor} (C_i - U_i)$. By Definition 11, for any node in $V(L'_i)$, it has a sole neighbor in $V(R'_i)$. And, for distinct nodes in each L'_i, their neighbors of R'_i lie in different R'_j. In addition, for any two different subgraphs L'_i and L'_h with $i \neq h$, there exists no edge between them. Then there exist at most $r - 1$ cross edges between $C_i - U_i$ and C_{i+1}, where $I = \{1, 2, \ldots, r\}$. Moreover, there are at least $2^r - |U_i| = (r - 1)$ cross edges between $C_i - U_i$ and C_j with $j = \{r + 1, r + 2, \ldots, 2^r + 2^r\}$. Clearly, $C_j = \bigcup_{i=1}^{\lfloor r/2 \rfloor} C_j$ and $U_j = U_j \setminus \bigcup_{i=1}^{\lfloor r/2 \rfloor} C_j$. Since there is no edge between $C_i - U_i$ and $C_j - U_j$, $|U_j| \geq \sum_{i=1}^{\lfloor r/2 \rfloor} (2^r - |U_i| - (r - 1))$. Then, we have

$$|U| = |U_1| + |U_2| + \cdots + |U_s| + |U_j| \geq |U_1| + |U_2| + \cdots + |U_j| + \sum_{i=1}^{\lfloor r/2 \rfloor} (2^r - |U_i| - (r - 1)) = r2^r - r + 1.$$

Let $f(r) = r(2^r - r + 1)$ with $1 \leq r \leq 2^{s-1}$. We obtain $\partial f(r)/\partial r = 2^{r+1} + 1 > 0$. Thus, $f(r)$ is an increasing function. Therefore, $f(r) \geq f(1) = 2^1$ and $|U| \geq f(r) \geq 2^r$. In addition, let $f(g) = 2^{r + (s - g + 1)2^g - 1}$ with $1 \leq g \leq s - 2$. We obtain $\partial f(g)/\partial g = 2^{g+1} |g in 2 + 1 - (s - 1)\ln 2| < 0$. Thus, $f(g)$ is a decreasing function. Therefore, $f(g) \geq f(s - 2) = 2^{s-2} + 1 > 0$. Then $|U| \geq 2^r > (s - g + 1)2^g - 1$, which results in a contradiction with $|U| \leq (s - g + 1)2^g - 1$.

Case 2. Only one of $L'_i = U_{-i}$ and $R'_j = U_{-j}$ is disconnected, where $1 \leq i \leq 2^t, 1 \leq j \leq 2^t$.
Without loss generality, assume that $L_{1}^{t} - U_{r}$ is disconnected. Since U is an R^{t}-cut of $GEX(s,t)$, $\delta(L_{1}^{t} - U_{r}) \geq g - 1$. Then U_{r} is a $(g - 1)$-good-neighbor cut of $GEX(s,t)$.

By Lemma 9, $|U_{r}| \geq (s - g + 1)2^{g-1}$. By contradiction, suppose that $|U| \leq (s - g + 1)2^{g-1} - 1$ with $1 \leq g \leq s - 2$ and $s \geq 3$. Let $U_{r} = U_{1}$ and $U = \bigcup_{i=2}^{s+1} U_{i}$. Then $|U_{i}| = |U - U_{1}| \leq (s - g + 1)2^{g-1} - 1$.

Assume that $GEX(s,t) - L_{1}^{t} - U_{r}$ is disconnected. Then there must exist a component C_{i} such that C_{i} traverses r clusters, where $1 \leq r \leq \lfloor 2^{s-3} \rfloor - 1$. Let C_{i} be one of these r clusters for $2 \leq r \leq r + 1$ and $U_{i} = C_{i} \cap U$. As a result, $C_{i} = \bigcup_{j=r+2}^{r+2} C_{j}$. By Definition 11, for any node in $V(L_{1}^{t})$, it has a sole neighbor in $V(R_{j})$. And for distinct nodes in each L_{i}, their neighbors of R_{j} lie in different R_{j}. In addition, for any two different subgraphs L_{i} and L_{h} with $i \neq h$, the edge between them is nonexistent. Then there exist at most r cross edges between $C_{i} - U_{i}$ and $C_{j} - U_{j}$, where $j = \{r + 2, r + 3, \ldots, 2^{s} - 2\}$. Moreover, there are at least $2^{s} - |U_{i}| - r$ cross edges between $C_{i} - U_{i}$ and C_{j} with $j = \{r + 2, r + 3, \ldots, 2^{s} - 2\}$. Clearly, $C_{i} = \bigcup_{j=r+2}^{r+2} C_{j}$ and $U_{i} = \bigcup_{j=r+2}^{r+2} U_{j}$. Since there is no edge between $C_{i} - U_{i}$ and $C_{j} - U_{j}$, $|U_{i}| \geq \sum_{j=r+2}^{2^{s} - 2} |U_{j}| - r$. Figure 4 shows an illustration for this case. Then, we have

$$|U_{i}| = |U_{2}| + \cdots + |U_{r+1}| + |U_{1}|$$

$$\geq |U_{2}| + \cdots + |U_{r+1}| + \sum_{j=r+2}^{2^{s} - 2} |U_{j}| - r = r(2^{s} - r).$$

Thus, $GEX(s,t) - L_{1}^{t} - U_{1}$ is connected. Since $L_{1}^{t} - U_{1}$ is disconnected, there must exists a component H in $L_{1}^{t} - U_{1}$ such that there is no edge between H and $GEX(s,t) - L_{1}^{t} - U_{1}$. Then $|U_{1}| \geq |V(H)|$. Since $N_{\{h\}}(H) \subseteq U_{1}$, $|U_{1}| = |U_{1}| + |U_{1}| \geq |N_{\{h\}}(H)| + |V(H)| = |N_{\{h\}}(H)|$. Moreover, since U is an R^{t}-cut of $GEX(s,t)$, $\delta(H) \geq g$. By Lemma 8 and $L_{1}^{t} \equiv X_{s}$, we have $|U| = |N_{\{h\}}(H)| \geq (s - g + 1)2^{g-1}$, which results in a contradiction with $|U| \leq (s - g + 1)2^{g-1} - 1$.

Case 3. For any integers $1 \leq i \leq 2^{s}$, $1 \leq j \leq 2^{s}$, there are at least two of $L_{i}^{t} - U_{r}$ and $L_{j}^{t} - U_{r}$ that are disconnected.

Without loss of generality, suppose that $L_{i}^{t} - U_{r}$ and $L_{j}^{t} - U_{r}$ are disconnected. Since U is an R^{t}-cut of $GEX(s,t)$ and by Definition 11, we have $\delta(L_{i}^{t} - U_{r}) \geq g - 1$ and $\delta(L_{j}^{t} - U_{r}) \geq g - 1$. Then U_{r} and U_{r} are two $(g - 1)$-good-neighbor cuts of $GEX(s,t)$. By Lemma 9, $|U_{r}| \geq (s - g + 1)2^{g-1}$ and $|U_{r}| \geq (s - g + 1)2^{g-1}$. Then

$$|U| \geq |U_{r}| + |U_{r}| \geq (s - g + 1)2^{g-1} + (s - g + 1)2^{g-1}.$$

Thus, $\kappa^{g}(GEX(s,t)) = |U| \geq (s - g + 1)2^{g}$. Hence, the lemma holds.

Combining Lemma 13 and Lemma 16, the following theorem holds.

Theorem 14. For any integers $s \geq 3$ and $1 \leq g \leq s - 2$, $\kappa^{g}(GEX(s,t)) = (s - g + 1)2^{g}$.

4. The g-Good-Neighbor Conditional Diagnosability of $GEX(s,t)$

In this section, we will determine the g-GNCD of $GEX(s,t)$ under the PMC model and MM* model, respectively, where $1 \leq g \leq s - 2$.

Figure 4: An illustration for Case 2 of Lemma 16.

Let $f(r) = r(2^{s} - r)$ with $1 \leq r \leq 2^{s-3} - 1$. We obtain that $\partial f(r)/\partial r = 2^{s} - 2r > 0$. Thus, $f(r)$ is an increasing function. Therefore, $f(r) \geq f(1) = 2^{s} - 1$. And $|U| \geq f(r) \geq 2^{s} - 1$. In addition, let $f(g) = 2^{s} - 1 - [(s - g + 1)2^{g-1} - 1]$, with $1 \leq g \leq s - 2$ and $s \geq 3$. We get that $\partial f(g)/\partial g = 2^{g-1}[g \ln 2 + 1 - (s + 1) \ln 2] < 0$. Thus, $f(g)$ is a decreasing function. Therefore, $f(g) \geq f(s - 2) > 0$. Then $|U| \geq 2^{s} - 1 > (s - g + 1)2^{g-1} - 1$, which results in a contradiction with $|U| \leq (s - g + 1)2^{g-1} - 1$.
Theorem 15. For any integers $s \geq 3$ and $1 \leq g \leq s-2$, $t_g^P(GEX X(s, t)) = (s-g+2)2^g - 1$.

Proof. First, we show that $t_g^P(GEX(s, t)) \leq (s-g+2)2^g - 1$ with $1 \leq g \leq s-2$ and $s \geq 3$. Let $A \subseteq V(C_1)$ with $C_1 \cong X_2$, such that $GEX(s, t)|A| \cong X_g$. Clearly, $|A| = 2^g$. Suppose that $\widehat{F_1} = N_{GEX(s,t)}(A)$ and $\widehat{F_2} = N_{GEX(s,t)}[A]$. By Lemma 13, we have $|\widehat{F_1}| = |N_{GEX(s,t)}(A)| = (s-g+2)2^g$, and $|\widehat{F_2}| = |N_{GEX(s,t)}[A]| = (s-g+2)2^g$, where $\delta(GEX(s, t) - \widehat{F_1}) \geq g$. Since $\delta(GEX(s, t) - \widehat{F_1}) \geq g$ and $\delta(GEX(s, t) - \widehat{F_2}) \geq g$, $\widehat{F_1}$ and $\widehat{F_2}$ are two g-GNCF sets of $GEX(s, t)$ with $|\widehat{F_1}| \leq (s-g+2)2^g$ and $|\widehat{F_2}| \leq (s-g+2)2^g$. On the other hand, since $V(A) = \widehat{F_1} \Delta \widehat{F_2}$ and $N_{GEX(s,t)}(A) = \widehat{F_1}$, there is no edge between $\widehat{F_1} \Delta \widehat{F_2}$ and $GEX(s, t) - \widehat{F_1} \cup \widehat{F_2}$. By Lemma 4, $\widehat{F_1}$ and $\widehat{F_2}$ are indistinguishable under the PMC model. By Definition 6 (2), $GEX X(s, t)$ is not g-good-neighbor conditional $(s-g+2)2^g$-diagnosable under the PMC model. That is, $t_g^P(GEX(s, t)) \leq (s-g+2)2^g - 1$ for $1 \leq g \leq s-2$.

Next, we prove that $t_g^P(GEX(s, t)) \geq (s-g+2)2^g - 1$ with $1 \leq g \leq s-2$ and $s \geq 3$. We suppose, to the contrary, that $t_g^P(GEX(s, t)) \leq (s-g+2)2^g - 2$ for $1 \leq g \leq s-2$. And assume that there are two indistinguishable g-GNCF sets $\widehat{F_1}$ and $\widehat{F_2}$ with $|\widehat{F_1}| \leq (s-g+2)2^g - 1$ and $|\widehat{F_2}| \leq (s-g+2)2^g - 1$. In what follows, we consider two cases.

Case 1. $V(GEX(s, t)) = \widehat{F_1} \cup \widehat{F_2}$.

Since $s \leq t$, by Definition 11, we have $|V(GEX(s, t))| = 2^{s+t+1} \geq 2^{s+1}$. Since $|\widehat{F_1} \cup \widehat{F_2}| \leq |\widehat{F_1}| + |\widehat{F_2}| \leq 2[(s-g+2)2^g - 1]$, we have

\[|V(GEX(s, t))| - |\widehat{F_1} \cup \widehat{F_2}| \geq 2^{s+1} - 2[(s-g+2)2^g - 1]. \tag{8} \]

Let $f(g) = 2^{s+1} - (s-g+2)2^g + 2$ with $1 \leq g \leq s-2$ and $s \geq 3$. We obtain that $\partial f(g)/\partial g = [(g-s-2) \ln 2 + 1] 2^{s+1} < 0$. Thus, $f(g)$ is a decreasing function. Therefore, for $1 \leq g \leq s-2$ and $s \geq 3$,

\[f(g) \geq f(s-2) = 2^{s+1} - 2^{s+1} + 2 > 0, \tag{9} \]

which induces a contradiction since $V(GEX(s, t)) = \widehat{F_1} \cup \widehat{F_2}$.

Case 2. $V(GEX(s, t)) \neq \widehat{F_1} \cup \widehat{F_2}$.

Since $\widehat{F_1} \neq \widehat{F_2}$, we may assume that $\widehat{F_1} - \widehat{F_2} \neq \emptyset$. There exists no edge between $V(GEX(s, t)) - \widehat{F_1} \cup \widehat{F_2}$ and $\widehat{F_1} \Delta \widehat{F_2}$ because $\widehat{F_1}$ and $\widehat{F_2}$ are indistinguishable. Moreover, since $\widehat{F_1}$ is a g-good-neighbor conditional faulty set, it is easy to verify that $\delta(GEX(s, t) \mid \widehat{F_1} \setminus \widehat{F_2}) \geq g$. By Lemma 8, $|\widehat{F_2} - \widehat{F_1}| \geq 2^g$. On the other hand, since both $\widehat{F_1}$ and $\widehat{F_2}$ are g-GNCF sets, $\widehat{F_1} \cap \widehat{F_2}$ is also a g-good-neighbor conditional faulty set. Moreover, there is no edge between $V(GEX(s, t) - \widehat{F_1} \cup \widehat{F_2}$ and $\widehat{F_1} \Delta \widehat{F_2}$; thus, $GEX(s, t) - \widehat{F_1} \cap \widehat{F_2}$ is disconnected. Then $\widehat{F_1} \cap \widehat{F_2}$ is an R^g-cut of $GEX(s, t)$. By Theorem 14, $|\widehat{F_1} \cap \widehat{F_2}| \geq (s-g+1)2^g$ with $s \geq 3$ and $1 \leq g \leq s-2$. Hence,

\[|\widehat{F_2}| = |\widehat{F_2} - \widehat{F_1}| + |\widehat{F_1} \cap \widehat{F_2}| \geq 2^g + (s-g+1)2^g \tag{10} \]

which results in a contradiction since $|\widehat{F_2}| \leq (s-g+2)2^g - 1$.

To sum up, we can conclude that $t_g^P(GEX(s, t)) \geq (s-g+2)2^g - 1$ for any integers $1 \leq g \leq s-2$ and $s \geq 3$.

Hence, the theorem holds.

Theorem 24. For any integers $1 \leq g \leq s-2$ and $s \geq 4$, $t_g^M(GEX X(s, t)) = (s-g+2)2^g - 1$.

Proof. The proof of $t_g^M(GEX(s, t)) \leq (s-g+2)2^g - 1$ with $1 \leq g \leq s-2$ and $s \geq 4$ is similar to Theorem 15, so it is omitted.

Next, we prove that $t_g^M(GEX(s, t)) \geq (s-g+2)2^g - 1$ with $s \geq 4$ and $1 \leq g \leq s-2$. We suppose, to the contrary, that $t_g^M(GEX(s, t)) \leq (s-g+2)2^g - 2$ with $s \geq 4$ and $1 \leq g \leq s-2$. Moreover, we assume that there are two indistinguishable g-GNCF sets $\widehat{F_1}$ and $\widehat{F_2}$, where $|\widehat{F_1}| \leq (s-g+2)2^g - 1$ and $|\widehat{F_2}| \leq (s-g+2)2^g - 1$.

Since $s \leq t$, by Definition 11, we have $|V(GEX(s, t))| = 2^{s+t+1} \geq 2^{s+1}$. Furthermore, it is easy to get that $|\widehat{F_1} \cup \widehat{F_2}| \leq |\widehat{F_1}| + |\widehat{F_2}| \leq 2[(s-g+2)2^g - 1]$. Then, we have

\[|V(GEX(s, t))| - |\widehat{F_1} \cup \widehat{F_2}| \geq 2^{s+1} - 2[(s-g+2)2^g - 1]. \tag{11} \]

Let $f(g) = 2^{s+1} - (s-g+2)2^g + 2$ with $s \geq 4$ and $1 \leq g \leq s-2$. We obtain that $\partial f(g)/\partial g = [g \ln 2 + 1 - (s-g-2)] 2^{s+1} < 0$. Thus, $f(g)$ is a decreasing function. Therefore, for $s \geq 4$ and $1 \leq g \leq s-2$,

\[f(g) \geq f(s-2) = 2^{s+1} - 2^{s+1} + 2 > 0, \tag{12} \]

which results in a contradiction since $|\widehat{F_2}| \leq (s-g+2)2^g - 1$.

Thus, $V(GEX(s, t)) \neq \widehat{F_1} \cup \widehat{F_2}$. In addition, an important claim is given as follows.

Claim 25. $GEX(s, t) \neq \widehat{F_1} \cup \widehat{F_2}$ has no isolated node.

By contradiction, suppose that $GEX(s, t) \neq \widehat{F_1} \cup \widehat{F_2}$ has at least one isolated node. Then, we prove that the two cases both contradict the supposition.
Case 1. \(g = 1 \).

Since \(\hat{F}_1 \neq \hat{F}_2 \), without loss of generality, we suppose that \(\hat{F}_2 - \hat{F}_1 \neq \emptyset \). When \(\hat{F}_1 \subset \hat{F}_2 \), since \(\hat{F}_2 \) is a 1-GNCF set, \(GEX(X(s, t)) = \hat{F}_1 \cup \hat{F}_2 \) has no isolated node. Now, we consider an arbitrary node \(\hat{F}_1 \) \(\not\subset \hat{F}_2 \). The given \(W \) is the set of all isolated nodes and \(B = GEX(s, t) \setminus V(GEX(s, t)) - (\hat{F}_1 \cup \hat{F}_2) \). Since \(\hat{F}_1 \) is a 1-GNCF set, \(|N_{GEX(s, t)} - \hat{F}_1 |(w) | \geq 1 \) for any \(w \in W \).

Since \(\hat{F}_1 \) and \(\hat{F}_2 \) are indistinguishable, there exists at most one node \(u \in \hat{F}_2 - \hat{F}_1 \) with \(u \) adjacent to \(w \) by Lemma 5. Therefore, there exists only one node \(v \in \hat{F}_2 - \hat{F}_1 \) with \(v \) adjacent to \(w \). It is easy to see that there is only one node \(w \in \hat{F}_1 \cap \hat{F}_2 \) with \(w \) adjacent to \(u \) and \(v \) in \(\hat{F}_1 \cap \hat{F}_2 \) with any isolated node \(w \in W \). Since \(|\hat{F}_2| \leq (s - g + 2)2^g - 1 \) and \(g = 1 \), \(|\hat{F}_2| \leq 2s + 1 \). Hence,

\[
\sum_{w \in W} |N_{GEX(s, t)}(\hat{F}_1 \cup \hat{F}_2) |(w) | \leq |W|(t - 1) \leq \sum_{x \in \hat{F}_1 \cap \hat{F}_2 \cap W} \text{deg}_{GEX(s, t)}(x) \leq |\hat{F}_1 \cap \hat{F}_2| \leq (|\hat{F}_2| - 1)(t + 1) \leq 2s(t + 1).
\]

It follows that \(|W| \leq 2s(t + 1)/t - 1 \leq 4s \). Thus,

\[
|\hat{F}_1 \cup \hat{F}_2| + |W| = |\hat{F}_1| + |\hat{F}_2| - |\hat{F}_1 \cap \hat{F}_2| + |W| \leq 2(2s + 1) - (s + 1) + |W| \leq 7s + 3.
\]

Let \(f(s) = 2s^2 - 7s - 3 \). We can deduce that \(\partial f(s)/\partial s > 0 \). Then \(f(s) \) is an increasing function. Therefore, \(f(s) \geq f(4) > 0 \), a contradiction. Thus, \(V(B) \neq \emptyset \).

Since the fault-pair \((\hat{F}_1, \hat{F}_2) \) does not satisfy Lemma 5 and any node in \(V(B) \) is not isolated, there exists no edge between \(V(B) \) and \(\hat{F}_1 \Delta \hat{F}_2 \). Moreover, \(\hat{F}_1 \cap \hat{F}_2 \) is also a 1-GNCF set. Thus, \(\hat{F}_1 \cap \hat{F}_2 \) is a 1st -GNCF set. By Theorem 14, \(|\hat{F}_1 \cap \hat{F}_2| \geq 2s \). Since \(|\hat{F}_1| \leq 2s + 1 \) and \(|\hat{F}_2| \leq 2s + 1 \), \(\hat{F}_1 \neq \emptyset \) and \(\hat{F}_2 \neq \emptyset \). But \(\hat{F}_1 \cap \hat{F}_2 \neq \emptyset \). Let \(\hat{F}_1 \cap \hat{F}_2 = \{v\} \) and \(\hat{F}_2 \setminus \hat{F}_1 = \{u\} \). Then \(|N_{GEX(s, t)} - \hat{F}_1 |(w) | = |N_{GEX(s, t)}(\hat{F}_2 - \hat{F}_1) |(w) | = 1 \). Hence, we have \(\{v, w\} \in E(GEX(X(s, t))) \) and \(\{u, w\} \in E(GEX(s, t)) \) for any isolated node \(w \in W \). By Lemma 10, at most two common neighbors between any two nodes in \(V(X_s) \). In addition, by Definition 11, any two cross edges have no common end node. Then we deduce that any two nodes in \(V(GEX(s, t)) \) have at most two common neighbors. Thus, \(|W| \leq 2 \). Since there is no common node between any two cross edges and \(X_s \) is a triangle-free, \(GEX(s, t) \) is triangle-free. Therefore,

\[
|\hat{F}_1 \cap \hat{F}_2| \geq |N_{GEX(s, t)} - \{v\} | - |W| - |\{v\} | = 2s - 1 \geq 2(s + 1) - 2W| - (2 - |W|)
\]

\[
\geq 2s + 3 - 2 = 3s + 3 - 3.
\]

(15)

Therefore, for \(s \geq 4 \), we have

\[
|\hat{F}_2| = |\hat{F}_2 - \hat{F}_1| + |\hat{F}_1 \cap \hat{F}_2| \geq 1 + 3s - 3 = 3s - 2 > 2s + 1,
\]

(16)

which results in a contradiction since \(|\hat{F}_2| \leq 2s + 1 \).

Case 2. \(g \geq 2 \).

Without loss of generality, we suppose that \(\hat{F}_2 - \hat{F}_1 \neq \emptyset \). Since \(\hat{F}_1 \) is a g-GNCF set of \(GEX(s, t) \), \(|N_{GEX(s, t)} - \hat{F}_1 |(x) | \geq g \) with any node \(x \in V(GEX(s, t) - \hat{F}_1) \). For any \(w \in V(GEX(s, t) - \hat{F}_1 \cup \hat{F}_2) \), there exists at most one neighbor in \(\hat{F}_2 \setminus \hat{F}_1 \) because the fault-pair \((\hat{F}_1, \hat{F}_2) \) is indistinguishable by Lemma 5. Therefore, \(|N_{GEX(s, t)} - \hat{F}_1 \cup \hat{F}_2 |(w) | \geq g - 1 \geq 1 \).

Since \(w \in V(GEX(s, t) - \hat{F}_1 \cup \hat{F}_2) \) is arbitrary, every node of \(GEX(s, t) \) is an isolated node.

To sum up, Claim 25 holds.

Since there exists no isolated node in \(GEX(s, t) - \hat{F}_1 \cup \hat{F}_2 \) by Claim 25 we have, for any \(w \in V(GEX(s, t) - \hat{F}_1 \cup \hat{F}_2) \), there exists some node \(v \in GEX(s, t) - \hat{F}_1 \cup \hat{F}_2 \) such that \(\{w, v\} \in E(GEX(s, t)) \). If \(\{u, w\} \in E(GEX(s, t)) \) for any \(u \in \hat{F}_1 \cup \hat{F}_2 \), satisfies condition in Lemma 5. Therefore, the g-GNCF sets \(\hat{F}_1 \) and \(\hat{F}_2 \) are distinguishable, which results in a contradiction. By the arbitrariness of \(w \in GEX(s, t) - \hat{F}_1 \cup \hat{F}_2 \), there exists no edge between \(V(GEX(s, t)) - \hat{F}_1 \cup \hat{F}_2 \) and \(\hat{F}_1 \Delta \hat{F}_2 \).

Since \(\hat{F}_1 \) is a g-GNCF set and \(\hat{F}_2 - \hat{F}_1 \neq \emptyset \), \(\delta(GEX(s, t)) \geq g \). Thus, \(|\hat{F}_2 - \hat{F}_1| \geq g - 1 \). Since \(\hat{F}_1 \) and \(\hat{F}_2 \) are both g-GNCF sets and there exists no edge between \(V(GEX(s, t) - \hat{F}_1 \cup \hat{F}_2 \) and \(\hat{F}_1 \Delta \hat{F}_2 \), \(\hat{F}_1 \cup \hat{F}_2 \) is an \(R^0 \)-cut of \(GEX(s, t) \). By Theorem 14, \(|\hat{F}_1 \cup \hat{F}_2 \geq 2g \). Then \(\hat{F}_2 = \hat{F}_2 - \hat{F}_1 + |\hat{F}_1 \cap \hat{F}_2| \geq (s - g + 1)2^g + 2^g = (s - g + 2)2^g \), which contradicts with \(|\hat{F}_2| \leq (s - g + 2)2^g - 1 \).

Thus, \(t_M(GEX(s, t)) \geq (s - g + 2)2^g - 1 \) for any integers \(1 \leq g \leq s - 2 \) and \(s \geq 4 \).

Hence, the proof of theorem is completed.

5. Applications to a Family of Famous Networks

In Section 2, the definition of the generalized exchanged X-cube GEX(s, t) has been given. Furthermore, we determine the \(R^0 \)-connectivity and g-GNCD of GEX(s, t) in Section 3 and Section 4, respectively. Applying the theorems of
Section 3 and Section 4, we can directly establish the R^g-connectivity and g-GNCD of some generalized exchanged X-cubes, including generalized exchanged hypercubes, dual-cube-like networks, generalized exchanged crossed cubes, and locally generalized exchanged twisted cubes. In this section, we will give the applications to these networks.

5.1. The Generalized Exchanged Hypercube. In 2005, Loh et al. [36] proposed the exchanged hypercube, which obtained by removing edges from a hypercube H_{s+t+1}. We denote $I_s = \{1, 2, \ldots, \kappa\}$, where r is a given position integer. For each $n \in I_s$, the sequence $x_n x_{n-1} \cdots x_1$ is a binary string of length r if $x_n \in \{0, 1\}$. The definition of exchanged hypercubes is presented as follows.

Definition 16 (see [36]). Let $s, t \geq 1$, the exchanged hypercube $EH(s, t)$ consists of the node set $V(EH(s, t))$ and the edge set $E(EH(s, t))$, two nodes $u = u_{s+t} \cdots u_{t+1} u_t \cdots u_0$ and $v = v_{s+t} \cdots v_{t+1} v_t \cdots v_0$ are linked by an edge, called r-dimensional edge, if and only if the following conditions are satisfied:

(i) u and v differ exactly in one bit on the r-th bit or on the last bit.

(ii) if $r \in I_i$, then $u_0 = v_0 = 1$

(iii) $r \in I_{s+t} - I_i$, then $u_0 = v_0 = 0$.

The generalized exchange hypercube was proposed by Cheng et al. [37]. Let $s, t \geq 1$, the generalized exchanged hypercube $GEH(s, t)$ consists of two classes of hypercubes: one class contains $2^r H_s$'s, referred to as the Class-0 clusters; and the other contains $2^r H_{s+t}$'s, referred to as the Class-1 clusters. Class-0 and Class-1 clusters will be referred to as clusters of opposite class of each other, same class otherwise. The function f is a bijection between nodes of Class-0 clusters and those of Class-1 clusters; for two nodes u, v in the same cluster, $f(u)$ and $f(v)$ are in two different clusters, and the edge $(u, f(u))$ is a cross edge. The bijection f ensures the existence of a perfect matching between nodes of Class-0 clusters and those in the Class-1 clusters but ignores the specifics of the perfect matching. Hence, we present the following proposition.

Proposition 17. $GEH(s, t)$ can be decomposed into two subgraphs L'_{s+t} and R'. Further, L'_{s+t} can be partitioned into 2^s subgraphs, denoted by L'_i for $i \in \{1, 2, \cdots, 2^s\}$. Similarly, R' can be partitioned into 2^t subgraphs, denoted by R'_j for $j \in \{1, 2, \cdots, 2^t\}$. $GEH(s, t)$ satisfies the following conditions (Figure 5 shows the $GEH(1, 1)$ and $GEH(1, 2)$):

(a) For any i, j, $|L'_i| = |R'_j| = \frac{2^s}{2^t}$. Further, $|V(L'_i)| = 2^s$ and $|V(R'_j)| = 2^t$.

(b) Each node in $V(L'_i)$ has a sole neighbor in $V(R'_j)$ and vice versa. In addition, for distinct nodes in each L'_i, their neighbors of R'_j lie in different R'_j.

(c) For any two different subgraphs L'_i and L'_h with $i \neq h$, there exists no edge between them. Similar for R'_j and R'_k with $j \neq k$.

The dual-cube is a special case of the exchanged hypercube when $s = t$, proposed by Li and Peng [38]. That is, $EH(n, n) \equiv D_n$. The dual-cube-like network DC_n [39], which is a generalization of dual-cubes, is isomorphic to $EH(n-1, n-1)$, a special case of $GEH(n-1, n-1)$ (see DC_3 in Figure 6).

By Proposition 17, the generalized exchanged hypercube $GEH(s, t)$ is the member of generalized exchanged X-cubes, where the X-cube is a hypercube. Then, the following theorems hold obviously.

Theorem 18.

(1) For any integers $1 \leq g \leq s - 2$ and $3 \leq s \leq t$, $\kappa^0(GEH(s, t)) = (s - g + 1)2^g$.

(2) For any integers $1 \leq g \leq n - 3$ and $n \geq 4$, $\kappa^0(DC_n) = (n - g)2^g$.

Figure 5: (a) $GEH(1, 1)$, (b) $GEH(1, 2)$.

![Diagram of GEH](image-url)
Theorem 19.

(1) For any integers $1 \leq g \leq s - 2$ and $3 \leq s \leq t$, $t^p_g(\text{GEH}(s, t)) = (s - g + 2)2^g - 1$

(2) For any integers $1 \leq g \leq n - 3$ and $n \geq 4$, $t^p_g(DC_n) = (n - g + 1)2^g - 1$.

Theorem 20.

(1) For any integers $1 \leq g \leq s - 2$ and $4 \leq s \leq t$, $t^M_g(\text{GEH}(s, t)) = (s - g + 2)2^g - 1$

(2) For any integers $1 \leq g \leq n - 3$ and $n \geq 5$, $t^M_g(DC_n) = (n - g + 1)2^g - 1$.

5.2. The Generalized Exchanged Crossed Cube. Li et al. [26] give the definition of $ECQ(s, t)$, which is obtained by removing edges from a crossed cube $CQ_{r, r+1}$. In what follows, we review the definition of exchanged crossed cubes.

Definition 21 (see [26]). The (s, t)-dimensional exchanged crossed cube is defined as a graph $ECQ(s, t) = G(V(ECQ(s, t)), E(ECQ(s, t)))$ for $s, t \geq 1$. The node set $V(ECQ(s, t)) = \{a_{s-1} \cdots a_0b_{r-1} \cdots b_0|a_i, b_i \in \{0, 1\}, \text{ where } 0 \leq i \leq t - 1 \text{ and } 0 \leq j \leq s - 1\}$. The edge set $E(ECQ(s, t))$ consisting of three types of disjoint sets E_1, E_2, and E_3 is shown as follows.

$E_1 : |u[0] \neq v[0], u \oplus v = 1$, where \oplus is the exclusive-OR operator.

$E_2 : |v[s + t : t + 1] = v[s + t : t + 1], u[0] = v[0] = 1, u[t : 1]$ is denoted by $b = b_{r-1} \cdots b_0$ and $v[t : 1]$ is denoted by $b' = b'_{r-1} \cdots b'_0$. And u and v are adjacent by the following rule: for any integer $t \geq 1$, if and only if there is an $l(1 \leq l \leq t)$ with $b_{l-1} \cdots b_l = b'_{l-1} \cdots b'_l; b_{l-1} \neq b'_{l-1}, b_{l-2} = b'_{l-2}$ if l is even; $b_{2l-1}b_{2l} \sim b'_{2l-1}b'_{2l}$, where $0 \leq i < \lfloor (l - 1)/2 \rfloor$.

$E_3 : |u[t : 1] = v[t : 1], u[0] = v[0] = 0, u[s + t : t + 1]$ is denoted by $a = a_{s-1} \cdots a_0$ and $y[s + t : t + 1]$ is denoted by $a' = a'_{s-1} \cdots a'_0$. And u and v are adjacent by the following rule: for any integer $s \geq 1$, if and only if there is an $l(1 \leq l \leq s)$ and $a_{s-1} \cdots a_l = a'_{s-1} \cdots a'_l$; $a_l \neq a'_{l-1}, a_{l-2} = a'_{l-2}$ if l is even; $a_{2l-1}a_{2l} \sim a'_{2l-1}a'_{2l}$, where $0 \leq i < \lfloor (l - 1)/2 \rfloor$. $x[u : v]$ is the bit pattern of x from dimension u to dimension v.

Let $s, t \geq 1$, the generalized crossed cube $GECQ(s, t, f)$ comprises two classes of crossed cubes, referred to as the Class-0 clusters and the Class-1 clusters, respectively. The Class-0 clusters contain $2^s CQ_s$’s and the Class-1 clusters contain $2^t CQ_t$’s. They will be referred to as clusters of opposite class of each other, same class otherwise. The function f is a bijection between nodes of Class-0 clusters and those of Class-1 clusters such that, for u, v, two nodes of the same cluster, $f(u)$ and $f(v)$, are in two different clusters, and the edge $(u, f(u))$ is a cross edge. The bijection f ensures the existence of a perfect matching between two nodes in different clusters, but there is no requirement for the specifics of the perfect matching. Therefore, we have the following proposition.

Proposition 22. $GECQ(s, t)$ can be decomposed into two disjoint subgraphs L' and R'. And L' and R' are the subgraphs induced by $V(L')$ and $V(R')$, respectively, where

$$V(L') = \{a_{s-2}a_{s-3} \cdots a_0b_{r-1} \cdots b_0|a_i, b_i \in \{0, 1\}, \text{ (17)}$$
with $0 \leq j \leq s - 1$ and $0 \leq i \leq t - 1$.

$$V(\tilde{R}^i) = \{a_{v-1}a_{v-2} \cdots a_0b_{v-1} \cdots b_0|a_j, b_j \in \{0, 1\},$$

with $0 \leq j \leq s - 1$ and $0 \leq i \leq t - 1$.

By Definition 21, \tilde{L}' can be partitioned into 2^i subgraphs, denoted by L_i^{j} such that for $v_1, v_2 \in L_i^{j}$, $v_1[t : 1] = v_2[t : 1]$, where $i = 1, 2, \cdots, 2^i$. Similarly, \tilde{R} can be partitioned into 2^i subgraphs, denoted by R_j^{i} such that $w_i, w_j \in R_j^{i}$, $w_i[t : 1 : s + t] = w_j[t : 1 : s + t]$, for $j = 1, 2, \cdots, 2^i$. And GECQ(s, t) satisfies the following conditions (see GECQ(1, 3) in Figure 7):

1. For any i, j, $L_i^{j} \equiv CQ_i$ and $R_j^{i} \equiv CQ_i$. Further, $|V(L_i^{j})| = 2^i$ and $|V(R_j^{i})| = 2^i$.

2. Each node in $V(\tilde{L}')$ has a sole neighbor in $V(\tilde{R}')$ and vice versa. In addition, for distinct nodes in each L_i^{j}, their neighbors of \tilde{R}' lie in different R_j^{i}.

3. For any two different subgraphs L_i^{j} and L_i^{k}, with $i \neq h$, there exists no edge between them. Similar for R_j^{i} and R_k^{j} with $j \neq k$.

By Proposition 22, the crossed exchanged cube GECQ(s, t) is an exchanged X-cube, where the X-cube is a crossed cube. Then, the following theorems hold obviously.

Theorem 23. For any integers $1 \leq g \leq s - 2$ and $3 \leq s \leq t$, $\kappa^g(GECQ(s, t)) = (s - g + 1)2^g$.

Theorem 24.

1. For any integers $1 \leq g \leq s - 2$ and $3 \leq s \leq t$, $t_g^3(GECQ(s, t)) = (s - g + 2)2^g - 1$.

2. For any integers $1 \leq g \leq s - 2$ and $4 \leq s \leq t$, $t_g^4(GECQ(s, t)) = (s - g + 2)2^g - 1$.

5.3. The Locally Generalized Exchanged Twisted Cube. The locally exchanged twisted cube proposed by Chang et al. [29], obtained by removing edges from a locally twisted cube LTQ_{s,t+1}. The definition of locally exchanged twisted cube is introduced as follows.

Definition 25 (see [29]). The (s, t)-dimensional locally exchanged twisted cube is defined as a graph LETQ(s, t) = $G(V(LETQ(s, t)), E(LETQ(s, t)))$ for $s, t \geq 1$. The node set $V(LETQ(s, t)) = \{x = x_{t+1} \cdots x_{t+1}x_1 \cdots x_0 | x_j \in \{0, 1\}$ with $0 \leq i \leq t + s\}$. $E(LETQ(s, t))$ is the edge set consisting of the following three types of disjoint sets $E_1, E_2,$ and E_3.

$$E_1 = \{(x, y) \in V \times V : x \oplus y = 2^0\}$$

$$E_2 = \{(x, y) \in V \times V : x_0 = y_0 = 1, x_1 = y_1 = 0 \text{ and } x \oplus y = 2^k \text{ for } k \in [3, t]\} \cup \{(x, y) \in V \times V : x_0 = y_0 = 1 \text{ and } x \oplus y = 2^k \text{ and } y_1 = 1 \text{ for } k \in [3, t]\}$$

$$E_3 = \{(x, y) \in V \times V : x_0 = y_0 = 0, x_{t+1} = y_{t+1} = 1 \text{ and } x \oplus y = 2^{k+1} \text{ for } k \in [3, t]\} \cup \{(x, y) \in V \times V : x_0 = y_0 = 0 \text{ and } x \oplus y = 2^{k+1} \text{ for } k \in [3, t]\}$$

Let $s, t \geq 1$; there are two classes of locally twisted cubes in the locally generalized exchanged twisted cube LGETQ(s, t, f): one class, referred to as the Class-0 clusters, contains 2^i LTQ(s, t)’s; the other, referred to as the Class-1 clusters, contains 2^i LTQ(s, t)’s. They will be referred to as clusters of opposite class of each other, same class otherwise. There exists a bijection function f between nodes of Class-0 clusters and those of Class-1 clusters. For two nodes u, v in the same cluster, $f(u)$ and $f(v)$ belong to two different ones, and the edge $(u, f(u))$ is a cross edge. The bijection f ensures the existence of a perfect matching between nodes of Class-0 clusters and those in the Class-1 clusters, but the specifics of the perfect matching can be ignored. Further, we obtain the proposition as follows.

Proposition 26. LGETQ(s, t) can be decomposed into two disjoint subgraphs \tilde{L}' and \tilde{R}'. \tilde{L}' can be partitioned into 2^i subgraphs, denoted by L_i^{j} for $i = 1, 2, \cdots, 2^i$. Similarly, \tilde{R}' can be partitioned into 2^i subgraphs, denoted by R_j^{i} for $j = 1, 2, \cdots, 2^i$. And LGETQ(s, t) satisfies the following conditions (see LGETQ(1, 3) in Figure 8):

(a) For any i, j, $L_i^{j} \equiv LTQ_i$ and $R_j^{i} \equiv LTQ_i$. Further, $|V(L_i^{j})| = 2^i$ and $|V(R_j^{i})| = 2^i$.

(b) Each node in $V(\tilde{L}')$ has a sole neighbor in $V(\tilde{R}')$ and vice versa. In addition, for distinct nodes in each L_i^{j}, their neighbors of \tilde{R}' lie in different R_j^{i}.

(c) For any two different subgraphs L_i^{j} and L_h^{k}, with $i \neq h$, there exists no edge connects them. Similar for R_j^{i} and R_k^{j} with $j \neq k$.
By Proposition 26, the locally exchanged twisted cube \(L \) \(\text{GETQ}(s, t) \) is a member of generalized exchanged \(X \)-cubes, where the \(X \)-cube is a locally twisted cube. Then, we have the following theorems.

Theorem 27.

1. For any integers \(1 \leq g \leq s - 2 \) and \(3 \leq s \leq t \), \(\kappa^g(L \text{GETQ}(s, t)) = (s - g + 1)2^g \)

2. For any integers \(1 \leq g \leq s - 2 \) and \(3 \leq s \leq t \), \(t^g(L \text{GETQ}(s, t)) = (s - g + 2)2^g - 1 \)

3. For any integers \(1 \leq g \leq s - 2 \) and \(4 \leq s \leq t \), \(t^M(L \text{GETQ}(s, t)) = (s - g + 2)2^g - 1 \)

6. Compare Results

In this section, we will illustrate the advantages of \(R^g \)-connectivity and \(g \)-GNCD compared to traditional connectivity and traditional diagnosability, respectively. Let us review their definition. The *connectivity*, which is less than the minimum degree of graph, is the minimum number of nodes that make the graph disconnected. The maximum number of faulty processors that the system can precisely point out is
as known as the diagnosability of the system, which is equal to the minimum degree of graph in most cases. The \(g\)-good-neighbor conditional connectivity (\(R_g\)-connectivity) is the minimum number of nodes that make the graph disconnected, and each node has at least \(g\) neighbors in every remaining component. The \(g\)-good-neighbor conditional diagnosability (\(g\)-GNCD) is the maximum number of faulty processors that can be identified under the condition that every fault-free processor has no less than \(g\) fault-free neighbors. We have determined that the \(R_g\)-connectivity of \(GEX(s, t)\) is \((s - g + 1)2^g\) and the \(g\)-GNCD of \(GEX(s, t)\) is \((s - g + 2)2^g - 1\). Figure 9 shows that \(R_g\)-connectivity and \(g\)-GNCD are both about \(2\) times the minimum degree of graph. Therefore, we can speculate that \(R_g\)-connectivity is about \(2^g\) times traditional connectivity and \(g\)-GNCD is about \(2^g\) times traditional diagnosability, which means that \(R_g\)-connectivity and \(g\)-GNCD can better evaluate the fault tolerance of network.

7. Conclusion

The \(R_g\)-connectivity and \(g\)-GNCD are two significant metrics for reliability of multiprocessor systems. Exchanged X-cubes are a class of irregular networks, obtained by deleting links from hypercubes and some variant networks of hypercubes (X-cubes). They not only combine the advantages of X-cubes but also reduce the interconnection complexity. Exchanged X-cubes classify its nodes into two different classes clusters with a unique connecting rule. In this paper, we propose the generalized exchanged X-cubes framework so that architecture can be constructed by different connecting rules. We first give the definition of a family of

Figure 9: (a) The minimum degree and \(R_g\)-connectivity of \(GEX(s, t)\). (b) The minimum degree and \(g\)-GNCD of \(GEX(s, t)\).
generalized exchanged X-cubes, including generalized exchanged hypercubes, dual-cube-like networks, generalized exchanged crossed cubes, and locally exchanged twisted cubes as members. Then we determine the R^g-connectivity and g-GNCD of generalized exchanged X-cubes. Finally, the R^g-connectivity and g-GNCD of generalized exchanged hypercubes, dual-cube-like networks, generalized exchanged crossed cubes, and locally exchanged twisted cubes are established directly. As a future research, we attempt to evaluate the R^g-connectivity and g-GNCD of other generalized exchanged X-cubes using methods extended from the proposed method in this paper.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors have declared that no conflict of interest exists.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61872257 and No. 61977016) and the Joint Found of the National Natural Science Foundation of China (No. U1905211).

References

[1] Y. Hong, “Realizability of fault-tolerant graphs,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 39, no. 2, pp. 619–631, 2016.
[2] W. Guo, J. Li, G. Chen, Y. Niu, and C. Chen, “A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3236–3249, 2015.
[3] A.-H. Esfahanian and S. L. Hakimi, “On computing a conditional edge-connectivity of a graph,” Information Processing Letters, vol. 27, no. 4, pp. 195–199, 1988.
[4] S. Latifi, M. Hegde, and M. Naraghi-Pour, “Conditional connectivity measures for large multiprocessor systems,” IEEE Transactions on Computers, vol. 43, no. 2, pp. 218–222, 1994.
[5] X. Xu, S. Zhou, and J. Li, “Reliability of complete cubic networks under the condition of g-good-neighbor,” The Computer Journal, vol. 26, pp. 1165–1177, 2016.
[6] W. Ning, “Erratum and corrections to “The h-connectivity of exchanged crossed cube”,” Theoret. Comput. Sci. 696 (2017) 65–68,” Theoretical Computer Science, vol. 705, pp. 118–121, 2018.
[7] J. Yuan, A. Liu, X. Ma, X. Liu, X. Qin, and J. Zhang, “The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model and MM* model,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 1165–1177, 2015.
[8] L. Lin and S. Zhou, “Conditional connectivity for (n,k)-arrangement graphs,” Journal of Mathematical Study, vol. 45, no. 4, pp. 350–364, 2012.
[9] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment problem of diagnosable systems,” IEEE Transactions on Computers, vol. EC-16, no. 6, pp. 848–854, 1967.
[10] J. Maeng and M. Malek, “A comparison connection assignment for self-diagnosis of multiprocessors systems,” in Proceedings 11th International Symposium. Fault-Tolerant Computing, pp. 173–175, Portland, Maine, June 1981.
[11] A. Sengupta and A. Dahbura, “On self-diagnosable multiprocessor systems: diagnosis by the comparison approach,” IEEE Transactions on Computers, vol. 41, no. 11, pp. 1386–1396, 1992.
[12] P.-L. Lai, J. J. M. Tan, C.-P. Chang, and L.-H. Hsu, “Conditional diagnosability measures for large multiprocessor systems,” IEEE Transactions on Computers, vol. 54, no. 2, pp. 165–175, 2005.
[13] S.-L. Peng, C.-K. Lin, J. J. M. Tan, and L.-H. Hsu, “The g-good-neighbor conditional diagnosability of hypercube under PMC model,” Applied Mathematics and Computation, vol. 218, no. 21, pp. 10406–10412, 2012.
[14] S. Wang and W. Han, “The g-good-neighbor conditional diagnosability of n-dimensional hypercubes under the MM* model,” Information Processing Letters, vol. 116, no. 9, pp. 574–577, 2016.
[15] X. Li, Y.-H. Teng, T.-L. Kung, Q. Chen, and C.-K. Lin, “The diagnosability and 1-good-neighbor conditional diagnosability of hypercubes with missing links and broken-down nodes,” Information Processing Letters, vol. 146, pp. 20–26, 2019.
[16] L. Lin, L. Xu, D. Wang, and S. Zhou, “The g-good-neighbor conditional diagnosability of arrangement graphs,” IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 542–548, 2018.
[17] J. Guo, D. Li, and M. Lu, “The g-good-neighbor conditional diagnosability of the crossed cubes under the PMC and MM* model,” Theoretical Computer Science, vol. 755, pp. 81–88, 2019.
[18] X. Li, J. Fan, C.-K. Lin, and X. Jia, “Diagnosability evaluation of the data center network DCell,” The Computer Journal, vol. 61, no. 1, pp. 129–143, 2018.
[19] J. Xu, A. Kumar, and X. Yu, “On the fundamental tradeoffs between routing table size and network diameter in Peer-to-Peer networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, pp. 151–163, 2004.
[20] Y. Wei and M. Xu, “The 1, 2-good-neighbor conditional diagnosabilities of regular graphs,” Applied Mathematics and Computation, vol. 334, pp. 295–310, 2018.
[21] X. Hu, W. Yang, Y. Tian, and J. Meng, “Equal relation between g-good-neighbor diagnosability under the PMC model and g-good-neighbor diagnosability under the MM* model of a graph,” Discrete Applied Mathematics, vol. 262, pp. 96–103, 2019.
[22] L. Lin, S.-Y. Hsieh, R. Chen, L. Xu, and C.-W. Lee, “The relationship between g-restricted connectivity and g-good-neighbor fault diagnosability of general regular networks,” IEEE Transactions on Reliability, vol. 67, no. 1, pp. 285–296, 2018.
[23] D. Cheng, “A relationship between g-good-neighbour conditional diagnosability and g-good-neighbour connectivity in regular graphs,” International Journal of Computer Mathematics, vol. 3, no. 1, pp. 47–52, 2018.
[24] E. Cheng, K. Qiu, and Z. Shen, “A general approach to deriving the g-good-neighbor conditional diagnosability of...
interconnection networks,” *Theoretical Computer Science*, vol. 757, pp. 56–67, 2019.

[25] L.-H. Hsu and C.-K. Lin, *Graph Theory and Interconnection Networks*, CRC Press, Boca Raton, 2008.

[26] K. Li, Y. Mu, K. Li, and G. Min, “Exchanged crossed cube: a novel interconnection network for parallel computation,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 24, no. 11, pp. 2211–2219, 2013.

[27] M. Fiedler, ”Algebraic connectivity of graphs,” *Czechoslovak Mathematical Journal*, vol. 23, no. 2, pp. 298–305, 1973.

[28] Dahbura and Masson, “An O(n^{2.5}) fault identification algorithm for diagnosable systems,” *IEEE Transactions on Computers*, vol. C-33, no. 6, pp. 486–492, 1984.

[29] J.-M. Chang, X.-R. Chen, J.-S. Yang, and R.-Y. Wu, “Locally exchanged twisted cubes: connectivity and super connectivity,” *Information Processing Letters*, vol. 116, no. 7, pp. 460–466, 2016.

[30] J. Fan, “Diagnosability of the Mobius cubes,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 9, no. 9, pp. 923–928, 1998.

[31] D. Wang, “On embedding hamiltonian cycles in crossed cubes,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 19, no. 3, pp. 334–346, 2008.

[32] X. Yang, D. J. Evans, and G. M. Megson, “The locally twisted cubes,” *International Journal of Computer Mathematics*, vol. 82, no. 4, pp. 401–413, 2005.

[33] X.-J. Li and J.-M. Xu, “Edge-fault tolerance of hypercube-like networks,” *Information Processing Letters*, vol. 113, no. 19-21, pp. 760–763, 2013.

[34] L. Ye and J. Liang, “On conditional h-vertex connectivity of some networks,” *Chinese Journal of Electronics*, vol. 25, no. 3, pp. 556–560, 2016.

[35] Q. Zhu, “On conditional diagnosability and reliability of the BC networks,” *The Journal of Supercomputing*, vol. 45, no. 2, pp. 173–184, 2008.

[36] P. K. K. Loh, W. J. Hsu, and Y. Pan, “The exchanged hypercube,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 16, no. 9, pp. 866–874, 2005.

[37] E. Cheng, K. Qiu, and Z. Shen, “Structural properties of generalized exchanged hypercubes,” in *Emergent Computation*, Emergence, Complexity and Computation, A. Adamatzky, Ed., Springer, Cham, 2017.

[38] Y. Li and S. Peng, ”Dual-cubes: a new interconnection network for high-performance computer clusters,” in *Proceedings of the 2000 international computer symposium, workshop on computer architecture*, pp. 51–57, ChiaYi, Taiwan, December 2000.

[39] A. Angjeli, E. Cheng, and L. Lipták, ”Linearly many faults in dual-cube-like networks,” *Theoretical Computer Science*, vol. 472, pp. 1–8, 2013.

[40] S. Wang and M. Wang, “The g-good-neighbor and g-extra diagnosability of networks,” *Theoretical Computer Science*, vol. 773, pp. 107–114, 2019.