Chemical Characterization and Antibacterial Efficacy of Essential Oils of Three Lamiaceae Species Growing in Cameroon

Helene Gueaba Mbuntcha¹, Hervet Paulin Dogmo Fogang², Verlaine Woguem¹, Patrick Sonkoue³, Pamela Kenfack³, Kelly Djeuga³, Christine Schippa⁴, Elisabet Dunach⁵, Jackson Armel Seukep⁶, Stephen Tamekou Lacmata⁴, Theophile Fonkou³, Leon Azefack Tapondjou⁷, Hilaire Macaire Womeni¹, *

¹Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
²Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, University of Ngaoundere, Ngaoundere, Cameroon
³Department of Plant Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
⁴Central Analytical Laboratory, Mane Enterprise, Le Bar Sur Loup, France
⁵Institute of Chemistry of Nice, CNRS Faculty of Sciences Parc Valrose, University of Côte d’Azur, Nice, France
⁶Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
⁷Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon

Email address: *womeni@yahoo.fr (H. M. Womeni)
*Corresponding author

To cite this article:
Helene Gueaba Mbuntcha, Hervet Paulin Dogmo Fogang, Verlaine Woguem, Patrick Sonkoue, Pamela Kenfack, Kelly Djeuga, Christine Schippa, Elisabet Dunach, Jackson Armel Seukep, Stephen Tamekou Lacmata, Theophile Fonkou, Leon Azefack Tapondjou, Hilaire Macaire Womeni. Chemical Characterization and Antibacterial Efficacy of Essential Oils of Three Lamiaceae Species Growing in Cameroon. Journal of Diseases and Medicinal Plants. Vol. 7, No. 1, 2021, pp. 14-21. doi: 10.11648/j.jdmp.20210701.13

Received: January 31, 2021; Accepted: February 8, 2021; Published: February 27, 2021

Abstract: Essential oils (EOs) have aroused attention among the naturally-occurring therapeutic compounds with anti-infective properties. This study examined the chemical composition and the antibacterial potential of EOs from three Lamiaceae species including Ocimum gratissimum (leaves), Plectranthus epilithicus (leaves), and Satureja robusta (leaves and flowers). EOs were obtained by hydrodistillation using a Clevenger-type apparatus, followed by characterization by gas chromatography-mass spectrometry (GC-MS) and flame ionization detector (GC/FID). The antibacterial efficacy of EOs was screened using the microdilution method, against a panel of eight foodborne bacteria isolates namely Enterobacter cloacae, Yersinia enterocolitica, Klebsiella pneumoniae, Salmonella typhi, Escherichia coli, Citrobacter freundii, Shigella flexneri, and Enterococcus faecalis. GC-MS and GC/FID analysis led to the identification of 53 components from EOs of P. epilithicus, while around forty compounds have been characterized from the EOs of O. gratissimum (43), leaves of Satureja robusta (43), and flowers of S. robusta (44). The nature of identified compounds varied according to the species. The most prevalent volatile compounds identified in the EOs of P. epilithicus were piperitenone oxide (23.65%) and two isomers piperitone oxide 2/2 (16.15%) and piperitone oxide 1/2 (7.24%). The major constituents in the EOs of leaves of O. gratissimum were elemicin (33.474%) and eugenol (30.258%). Piperitone oxide, piperitone, and germacrene D were identified as major constituents in both the EOs of leaves of S. robusta (28.3%, 15.14%, and 9.42% respectively) and flowers (45.6%, 11.55%, and 3.94% respectively). The oils displayed selective antibacterial potential, with the recorded minimal inhibitory concentration (MIC) values ranging from 0.0156 to 1% (v/v). EOs of P. epilithicus as well as that of the leaves and flowers of S. robusta acted against all studied bacteria. Most of the MIC values were below 0.25% (v/v), indicating a strong inhibitory potential of studied EOs. The present study provides a strong baseline for consideration of the EOs from O. gratissimum, S. robusta, and P. epilithicus in the control of bacterial foodborne infections.
1. Introduction

Numerous investigations showed evidence of the pharmacological properties of medicinal plants and derived products. Indeed, there is an urgent need for alternative medicine due to the upsurge of many diseases resistant to traditional treatments, including infectious diseases. Most of the commonly used antibiotics have lost their effectiveness, due to the multiple drug resistance (MDR) developed by pathogenic bacteria [1]. Another problem facing modern medicine is the toxicity of commonly used synthetic therapies. This explains the rush towards naturally-occurring chemotherapeutic agents, supposedly less toxic. Plants usually produce many molecules called secondary metabolites intended to protect them against the harmful effects of their environment as well as possible diseases; which properties could be transferred to humans for disease controls. Essential oils (EOs) are among the many substances produced by plants, with substantial biological properties. Essential oils are complex mixtures of hydrocarbons and oxygenated hydrocarbons biosynthesizing from the isoprenoid pathways, mainly made of monoterpenes and sesquiterpenes [2]. Regarding the properties of essential oils, they are oily, hydrophobic, aromatic, and volatile liquids or semi-liquids, extracted from plants, usually by steam distillation [3]. Essential oils may be derived from specialized cells or groups within particular regions of the plant, such as stems, leaves, the foliage, bark, wood, fruit, seeds, and rhizomes. During several civilizations, they have been exploited worldwide in folk medicine, owing to their pharmacological properties [4]. Plant essential oils have aroused attention among the naturally-occurring therapeutic agents with anti-infective activity. Several among these secondary plant metabolites exhibit marked antimicrobial effects that have made their use as an antiseptic and/or preservative in food well known, since antiquity [5]. In addition to their antimicrobial properties, numerous investigations documented the therapeutic uses of essential oils including anti-parasitic, analgesic, antioxidant, anti-inflammatory, anti-obesity, anticancer, wound-healing, antispasmodic, allelochemicals properties, and many more [2, 6]. Relative modes of action have been unveiled along with pharmacological targets, though the shortage of human studies restraints the potential of essential as efficient and safe phytotherapeutic agents [6].

The chemical composition of essential oils is influenced by exogenous and endogenous factors, leading to ecotypes or chemotypes in the same plant species. The endogenous factors are allied to anatomical and functional characteristics of the plants and to the biosynthetic pathways of the volatiles, which might change in either the different tissues of the plants or in different seasons, but also could be influenced by DNA adaptation. The exogenous factors (such as light, precipitation, season, altitude, and soil characteristics), over a long period, might affect some of the genes responsible for volatiles formation [7]. The antibacterial activities of essential oils are related to their chemical composition, the proportions of volatile molecules, and their interactions [8]. Some major essential oils constituents namely thymol, eugenol, and carvacrol displayed interesting antimicrobial effects towards a wide spectrum of bacteria comprising Escherichia coli, Bacillus cereus, Listeria monocytogenes, Salmononella enterica, Clostridium jejuni, and Staphylococcus aureus [9]. The bacteria listed are among the major foodborne pathogens causing foodborne illnesses [10]. This suggests the potential of essential oils and derived components against foodborne bacteria. Evenly, other families of essential oil constituents also have noteworthy antibacterial effects; these include alcohols, aldehydes, ketones, monoterpenes (examples of geraniol, linalol, menthol, terpineol, thujanol, myrcenol, citronellal, neral, thujone, carvone, carvone, γ-terpinene, p-cymene, among others), and phenylpropanes (cinnamaldehyde). The Lamiaceae family has been described to be a rich source of essential oils [11]. Essential oils from the Lamiaceae plants have been widely documented to possess marked pharmacological potential. Some examples include rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare), and thyme (Thymus sp.) which have great potential as food preservatives due to their notable antioxidant and antimicrobial activities [12]. Our study focused on three Lamiaceae plant species growing in Cameroon, namely Ocimum gratissimum, Satureja robusta, and Plechthranthus epilithicus.

Ocimum gratissimum is commonly used as spices, especially flowers and leaves. It is used in traditional medicine as sedative (decoction of roots), treatment of epilepsy, fever, diarrhea, management of mental illness (decoction of leaves), fungal infections, cold, catarrh, blocked nostrils, abdominal pains, sore eyes, ear infections, coughs, barrenness, tooth gargle, sunstroke, headache, diaphoresis, inflammation, stomach upset, hemorrhoids, diarrhoea, pneumonia, cough, conjunctivitis [13]. The major constituents present in O. gratissimum essential oils involve eugenol, methyl eugenol, thymol, cis-ocimene, trans-ocimene, α-pinene, camphor [14-17]. Studies highlighted the antibacterial properties of essential oils from O. gratissimum against Staphylococcus aureus, Escherichia coli, Serratia marcescens, Aspergillus niger, Streptococcus faecalis, Pseudomonas aeruginosa, Shigella sp. [17, 18]; the antibiotic resistance-modifying activities [19], as well as the antifungal and antioxidant properties [17].

Satureja robusta is traditionally used to relieve muscle pain, as a tonic and carminative agents, to treat stomach and intestinal disorders (cramps, nausea, indigestion, and diarrhea)
A previous study done by Tchoumbougnang et al. [21] concluded that menthone, geraniol, thymol, germacrene D are major constituents of S. robusta essential oils. The S. robusta essential oils showed antifungal activity against Aspergillus niger [21].

Plectranthus epilithicus is used in folk medicine to manage digestive, skin, infective and respiratory problems [22]. To the best of our knowledge, no chemical composition as well as pharmacological activities of P. epilithicus essential oils has been reported so far in the literature.

The essential oils from the abovementioned Lamiaceae plant species have been investigated for their antibacterial effectiveness against foodborne bacteria in the present study. The gas chromatography-mass spectrometry (GC-MS) coupled to a flame ionization detector (GC/FID) analysis were applied for their chemical characterization.

2. Materials and Methods

2.1. Plant Material, Collection and Authentication

The plants of interest included three Lamiaceae species growing in Cameroon. Satureja robusta (leaves and flowers) and Plectranthus epilithicus (leaves) were harvested in West and Southwest Regions of Cameroon in July 2018, whereas Ocimum gratissimum (leaves) has been collected at the Haut-Nkam Division (West Region-Cameroon) in January 2018. The plant parts have been carefully identified and authenticated at the National Herbarium of Cameroon (HCN) where voucher specimens were deposited under registration numbers (O. gratissimum 23798HNC, P. epilithicus 9729HNC, and S. robusta 12777 SFRCAM).

2.2. Extraction of Essential Oils

The essential oils of the three Lamiaceae species were obtained following hydrodistillation with Clevenger-type apparatus. A mass of 150 g of dried plant material was introduced into a 4-liter flask, then 2.5 liters of water were added and the whole was brought to the boil for 5 hours. The water residues were removed from essential oils collected at the end of the distillation with anhydrous sodium sulfate (Thomas Baker Chemicals, Mumbai, India). The extraction yield has been calculated according to the following equation.

\[
\text{Yield (\%)} = \frac{\text{Mass of extracted oil}}{\text{Mass of dry vegetal}} \times 100
\]

The essential oils obtained were then stored at 4°C in a smoked bottle for further uses.

2.3. GC-MS and GC/FID Analysis of the Chemical Profile of Essential Oils

The essential oils from each plant were analyzed in the apolar mode. Two signals have been recorded corresponding to mass spectrometry (MS) and the flame ionization detector (FID) allowing respectively the identification and quantification of the detected compounds.

An Agilent Technologies chromatographer (model 7890A) coupled to an Agilent 5975C mass selective detector (MSD) was used. The system was controlled by ChemStation software. The injection volume of the essential oils was 0.2 µL under a 150:1 split ratio. Two DB-1 columns (30 m x 250 µm x 0.25 µm, stationary phase film of dimethylpolysiloxane type) were used. The oven operating conditions were: initial temperature 50°C for 2 min, then rising from 50°C to 150°C at 7.5°C/min for 3 min and finally kept isothermal at 250°C for 16 min before post-run (250°C for 5 min). Helium was used as carrier gas at 1.2 mL/min. The injection and transfer line temperatures were 150°C and 250°C, respectively. The detector temperature was maintained at 250°C, the flow of H2 at 40 mL/min, and the flow of air at 400 mL/min. Mass detection was carried out in scanning mode between 32 and 450 Daltons.

The apolar retention indices (RI), as well as the mass spectra, were compared with those compiled in the National Institute of Standards and Technology (NIST 14) library for compounds identification.

2.4. Antibacterial Efficacy Investigation

2.4.1. Selected Bacteria

The study involved eight bacteria isolates, including Enterobacter cloacae, Yersinia enterocolitica, Klebsiella pneumoniae, Salmonella typhi, Escherichia coli, Citrobacter freundii, Shigella flexneri, and Enterococcus faecalis. The bacteria were from a laboratory collection isolated from fishes. The studied bacteria are commonly involved in foodborne infections [10]. Mueller Hinton Agar (MHB) and Mueller Hinton Broth (MHB) were used as culture media for antibacterial testing. MHA and MHB are recommended by CLSI for antibacterial susceptibility testing. They are non-selective, non-differential medium, allowing almost all microorganisms to grow. Before any experiment, studied bacteria were subcultured (37°C, 18–24 h) in MHA. MHB was used for microdilution. Bacteria inoculum was initially prepared in sterile distilled water, the turbidity adjusted with a spectrophotometer to a McFarland standard of 0.5, equivalent to 1.5 × 10⁸ CFU/mL.

2.4.2. Minimum Inhibitory and Minimum Bactericidal Concentrations Determination

The antibacterial testing of essential oils was carried out using the 96-well microplates broth microdilution technique. The iodonitrotetrazolium (INT, Merck, Germany) served as the bacterial growth indicator. The test was based on previously described protocols [23-25]. Briefly, essential oils and a reference antibiotic (ciprofloxacin) were dissolved in Tween 80/MHB to obtain the working solution. The final concentration of Tween 80 in the assay was less than 2.5%, a concentration innocuous to bacterial growth. The solution obtained was added to MHB, followed by a two-fold serial dilution in a 96-wells microplate. Subsequently, bacterial suspension initially prepared at the McFarland standard of 0.5 (1.5 × 10⁸ CFU/mL), as above mentioned, was diluted in MHB, and 100 µL of bacterial inoculum was seeded in the wells of plates containing test samples. The final inoculum...
bacteria reduced the yellow dye to pink. Wells with test preparations, which did not show any growth after incubation, were considered negative controls. The final concentration of the essential oils varied from 0.0078 to 1% (v/v), whereas that of antibiotics ranged from 0.25 to 32 µg/mL. The MIC of test samples was recorded after 18 h of incubation at 37°C, following the addition (40 µL) of INT as abovementioned. The assays (for both MIC and MBC) were performed in triplicate and repeated thrice.

3. Results and Discussion

3.1. Chemical Composition of Essential Oils

The highest extraction yield of essential oils (EOs) was obtained with the leaves of O. gratissimum (0.42%), followed by the flowers of S. robusta (0.40%), leaves of P. epilipthicus (0.35%), and the leaves of S. robusta (0.30%). The identified compounds in the EOs of the studied plant species along with their percentage composition and retention index (RI) are summarized in Table 1.

Table 1. Chemical composition of essential oils of O. gratissimum (leaves), P. epilipthicus (leaves), and S. robusta (leaves and flowers) on the apolar column.

Identified compounds	FID: % of identified compounds	FID: RI
HYDROGENATEDMONOTERPENES		
Alpha pinene	6.525	0.099
Camphene	0.037	
Beta pinene	0.431	0.226
Sabinene	1.495	
Delta-3-carene	0.55	0.085
Myrcene	0.11	
Alpha phellandrene	0.123	0.085
Sylvestrene	0.316	0.143
Limonene	1.098	0.01
(Z) ocimene	0.066	0.12
(E) ocimene	0.129	1.186
P-cymene	0.819	0.047
Terpinolene	1.926	
4,8-dimethyl-1,3,7-noratriene		
Allo ocimene 1/2		0.151
Dehydro p-cymene	0.226	
OXYGENATED MONOTERPENES		
Caryophyllene	59.927	51.509
Eucalyptol	0.056	0.05
Menthone	1.442	0.088
Isomenthone		3.368
Linalool		0.599
Cis p-menth-2-en-1-ol	0.117	
Neomenthyl acetate	/	2.196
Isopulegol acetate	/	0.087
Menthyl acetate	/	0.409
Neoisomenthol	/	
Isomenthol	/	0.325
Pulegone	/	
Myrtenyl acetate	/	0.125
Borneol	0.111	
Piperitone	4.614	15.139
Diosphenol	0.064	
P-cymen-8-ol	1.643	
Isopiperitenone	/	0.081
Piperitenone	1.343	1.083
Oxide piperitone 1/2	7.236	28.3
Oxide piperitone 2/2	16.149	
Oxide piperitoneene	28.65	0.899
Neomenthol	0.264	
Menthol	0.504	

The MBC was considered as the lowest concentration of samples that prevented the color change of the medium after the addition of INT as abovementioned. The assays (for both MIC and MBC) were performed in triplicate and repeated thrice.
Identified compounds	FID: % of identified compounds						
HYDROGENATED SESQUITERPENES	PE	SB (leaves)	SB (flowers)	OG			
Alpha cubebene	0.17	/	/	/	/		
Alpha copaene	2.189	0.6	0.37	0.581	3856-25-5	1376	
Beta bourbonene	0.965	2.362	1.051	0.181	5208-59-3	1384	
Gamma selinene	0.201	0.115	/	/	/	515-17-3	1474
Germacrene D	4.213	9.42	3.944	3.189	23986-74-5	1474	
7-epi-alpha selinene	0.45	/	/	/	/	123123-37-5	1516
Alpha humulene	0.404	/	/	0.05	274	6753-98-6	1446
Beta calamenene	0.066	/	/	/	/	483-77-2	1512
Thymol	0.034	/	/	/	/	30-22-5	1540
Traces of EOs	0.025	/	/	/	/	483-76-1	1513
OXYGENATED SESQUITERPENES	5.595	1.605	1.852	1.663	1486		
Alpha humulene	0.203	0.099	0.08	0.23	39029-41-9	1486	
(E) nerolidol	0.297	/	/	0.092	407166-66-3	1555	
Alpha humulene oxide	/	/	/	0.046	198884-74-7	1606	
Spathulenol	/	/	/	0.333	6750-60-3	1573	
Guai-6,9-dien-4-beta-ol	/	/	/	0.11	1105692-17-8	1572	
Delta cadinol	0.233	0.211	0.2	/	/	01115937	1630
Alpha cadinol	0.196	/	0.126	/	/	19435-97-3	1638
Alpha cadinol	1.316	0.647	0.772	0.694	1139-30-6	1569	
Neointermedeol	1.919	/	/	/	/	5945-72-2	1647
Alismol	0.224	/	/	/	/	87827-55-2	1613
PHENYLPROPANIDS	1.365	0.32	0.269	63.832	1575		
Beta bicyclofenol	0.036	/	/	0.018	10052-77-9	929	
Methyl Eugenol	0.017	/	/	0.072	93-15-2	1376	
Eugenol	0.17	/	/	30.258	97-53-0	1339	
Thymol	1.159	0.32	0.269	/	/	89-83-8	1424
Elemicin	/	/	/	33.474	487-11-6	1535	
Indol	/	/	/	0.005	120-72-9	1262	
Vanillin	/	/	/	0.005	121-33-5	1358	
OTHERS	0.125	2.596	2.291	0.412	1576		
3-ocetyl acetate	/	/	/	0.063	6728-26-3	825	
3-ocetyl acetate	/	/	/	2.4	1776-7	825	
Hexyl alcohol	/	/	/	0.036	110-93-0	964	
Hexyl alcohol	/	/	/	0.012	111-27-3	853	
Ethyl amyl carbinal	/	0.196	0.369	/	/	589-98-0	983
1-ocet-3-ol	0.07	/	/	0.034	928-95-0	850	
Acetic acid	/	/	/	0.199	3391-86-4	966	
2-methyl 2,4-heptadien-6-one	/	/	/	0.025	928-96-1	839	
2-methyl 2,4-heptadien-6-one	/	/	/	0.043	1604-28-0	1081	

*FID: Flame Ionization Detector. RI: Retention Index. CAS: Chemical Abstracts Service. Values in bold: Major constituents. OG: O. gratissimum. PE: P. epilithicus. SB: S. robusta.

Volatile constituents identified in the *O. gratissimum* EOs were 6 hydrogenated monoterpenes (13.723%), 1 oxygenated monoterpene (0.066%), 15 hydrogenated sesquiterpenes (15.876%), 8 oxygenated sesquiterpenes (1.663%), 6

Voilette constituents identified in the *O. gratissimum* EOs were 6 hydrogenated monoterpenes (13.723%), 1 oxygenated monoterpene (0.066%), 15 hydrogenated sesquiterpenes (15.876%), 8 oxygenated sesquiterpenes (1.663%), 6
phenylpropanoids (63.832%), and 7 other components (0.412%) comprising 43 constituents (95.57%) of the total oil. Quantitatively, the major constituents were elemicin (33.474%) and eugenol (30.258%). The other minor compounds were (Z) ocimene (10.329), beta bisabolene (5.601%), germacrene D (3.189%), and caryophyllene (3.13%). The present study reports for the first time the presence of elemicin as the major constituent in *O. gratissimum* oils. Previous investigations on the EOs of *O. gratissimum* have reported the presence of eugenol as the major component [17]. This study is consistent with previous findings. The minor compounds identified have also been documented in previous studies on this plant [14-17], in different proportions (percentages). Similar to the present study, Joshi [17] also showed that the oxygenated monoterpenes were the least class compounds found in *O. gratissimum* EOs.

The most prevalent volatile compounds identified in the EOs of *P. epilithicus* were piperitenone oxide (23.65%) and two isomers pipertone oxide 2/2 (16.15%) and pipertone oxide 1/2 (7.24%). The other minor compounds were pipertone (4.614%) and germacre D (4.213%). The class compositions were 13 hydrogenated monoterpenes (6.525%), 9 oxygenated monoterpenes (59.927%), 17 hydrogenated sesquiterpenes (13.017%), 9 oxygenated sesquiterpenes (5.595%), 3 phenylpropanoids (1.365%), and 2 other components (0.125%) comprising 53 constituents (86.55%) of the total oil. To the best of our knowledge, the present investigation report for the first time the chemical composition of *P. epilithicus* EOs.

The class compositions of the leaves of *S. robusta* EOs were 9 hydrogenated monoterpenes (2.618%), 15 oxygenated monoterpenes (51.599%), 10 hydrogenated sesquiterpenes (16.098%), 6 oxygenated sesquiterpenes (1.605%), 1 phenylpropanoid (0.32%), and 2 other components (2.596%) comprising 43 constituents (74.75%) of the total oil. Constituents identified in the EOs of *S. robusta* flowers were 9 hydrogenated monoterpenes (2.261%), 12 oxygenated monoterpenes (66.901%), 11 hydrogenated sesquiterpenes (7.975%), 7 oxygenated sesquiterpenes (1.852%), 1 phenylpropanoid (0.269%), and 3 other components (2.291%) comprising 44 constituents (81.80%) of the total oil. Piperitone oxide, pipertone, and germacre D were identified as major constituents in both the leaves (28.3%, 15.14%, and 9.42% respectively) and flowers (45.6%, 11.55%, and 3.94% respectively) of *S. robusta* EOs, at different percentages. Another prevalent compound found in *S. robusta* Leaves was isomenthone (3.37%). Investigations by Tchoumboungang et al. [21] reported the presence of menthone, geraniol, thymol, and germacre D as major constituents of *S. robusta* harvested in the Northwest Region (Bamenda) of Cameroon. The discrepancy is notable with our findings. Eleven compounds were found to be common in the studied EOs, which were myrcene, ocimene, p-cymene, alpha copaene, beta bourbonone, beta elemene, caryophyllene, germacre D, delta cadinene, trans murol-5-en-4-alpha-ol, oxide caryophyllene in less quantity.

The chemical composition of EOs depends on the harvesting area of the plant, the climate, and the type of soil where the species are grown [26]. These characteristics would also influence biological activities since major compounds could be altered [27]. The chemical composition of EOs is influenced by exogenous and endogenous factors. The endogenous factors are related to anatomical and physiological characteristics of the plants and to the biosynthetic pathways of the volatiles, which might change in either the different tissues of the plants or in different seasons, but also could be influenced by DNA adaptation. The exogenous factors, over a long period, might affect some of the genes responsible for volatiles formation. Those factors lead to ecotypes or chemotypes in the same plant species [7]. This would justify the variability in the chemical composition of the different studied species of the Lamiales family, as well as the difference in chemical composition between the parts of the same plant.

3.2. Antimicrobial Activities of Essential Oils

Essential oils (EOs) of *P. epilithicus*, *S. robusta*, and *O. gratissimum* were tested on Gram-negative bacteria *Enterobacter cloacae*, *Yersinia enterocolitica*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Escherichia coli*, *Citrobacter freundii*, *Shigella flexneri*, and a Gram-positive bacteria *Enterococcus faecalis*. The results of the antibacterial testing of studied EOs are presented in Table 2. The MIC and MBC are represented in % (v/v). The recorded MIC values ranged from 0.0156 to 1% (v/v). EOs from the leaves of *P. epilithicus*, as well as leaves and flowers of *S. robusta* acted against all studied bacteria. Most of the MIC values were below 0.25% (v/v), indicating the interesting and strong inhibitory potential of studied EOs. MIC ≤ 0.25% (v/v) were obtained with EOs of *P. epilithicus* leaves, as well as leaves and flowers of *S. robusta* against 7 out of 8 studied bacteria isolates, while EOs of *O. gratissimum* displayed similar values against 6 bacteria. The lowest MIC value was obtained with EOs from the flowers of *S. robusta* and *O. gratissimum* leaves (MIC=0.0156%) against *E. coli*. This indicates the significant antibacterial potential of test oils against *E. coli*. Bactericidal effects were obtained with oils from leaves of *P. epilithicus* and flowers of *S. robusta* against *C. freundii*, oils from *S. robusta* leaves against *K. pneumoniae*, and oils from *O. gratissimum* leaves against *E. coli* and *S. flexneri*. Previous findings also documented on the interesting antimicrobial activities against bacteria and fungi [17, 18], as well as antibiotic resistance-modifying activities [19] of *O. gratissimum*. This is consistent with the data obtained in this study. The antifungal action of *S. robusta* EOs against *A. niger* has been reported [21]. The present study also demonstrates its antibacterial potential. To the best of our knowledge, no investigations have been reported on the antimicrobial activities of *P. epilithicus* EOs. Therefore, the present work provides information regarding its antibacterial properties. The tested bacteria were isolated from fishes. These bacteria are generally involved in foodborne infections, which are serious public health
concerns. Indeed, foodborne pathogens are causing a great number of diseases with significant effects on human health and the economy [10]. The marked activities of the test EOs from this study provide important and relevant baselines for their use in the control of foodborne infections.

The variability of the chemical composition and in particular the major compounds identified in the investigated oils would justify their remarkable antibacterial potential. The major compounds would act alone or in interaction with other compounds present in the mixture. Elemicin and eugenol, the two major constituents from *O. gratissimum* are well known to possess interesting antimicrobial potential. Rossi et al. [28] displayed the antibacterial activity of elemicin against the human enteropathogen *Campylobacter jejuni*. Besides, eugenol has shown significant broad-spectrum antimicrobial activities against Gram-positive, Gram-negative, fungi, and virus. Eugenol has also shown synergistic effects with conventional antimicrobials [29]. Documented investigations have demonstrated antibacterial activities of EOs rich in piperitenone oxide and piperitone (major constituents of the *P. epithilicus* and *S. robusta* oils obtained in the present work) [30]. The presence of these compounds may account for the recorded activities.

Table 2. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of studied essential oils.

Bacteria	MIC and MBC of essential oils* from studied plants	ATB								
	MIC	**MBC**								
Enterobacter cloacae	0.0625	>1	0.125	>1	0.125	>1	0.25	0.25	0.25	0.25
Versinia enterocolitica	0.25	>1	0.125	>1	0.25	>1	>1	>1	>1	0.5
Klebsiella pneumoniae	0.0625	>1	0.125	>1	0.125	>1	0.125	>1	0.25	0.25
Salmonella typhi	0.0625	>1	0.125	>1	0.125	>1	0.125	>1	0.25	0.25
Escherichia coli	0.125	>1	0.0312	0.5	0.0156	0.5	0.0156	0.0312	0.25	0.25
Citrobacter freundii	0.0625	>1	0.125	>1	0.125	>1	0.125	>1	0.25	0.25
Shigella flexneri	0.0312	>1	0.125	>1	0.0625	0.5	0.25	1*	1	
Enterococcus faecalis	1*	>1	1	>1	1	>1	>1	>1	0.5	

Essential oils tested at 1% (v/v) and antibiotic tested at 32 µg/mL. MIC: Minimum Inhibitory Concentrations. MBC: Minimum Bactericidal Concentrations. ATB: Antibiotic. CIP: Ciprofloxacin.

4. Conclusion

The present work displayed the chemical composition and antibacterial potential of essential oils of *P. epithilicus*, *S. robusta*, and *O. gratissimum*. All studied essential oils depicted noteworthy antibacterial efficacy against foodborne bacteria tested. *P. epithilicus* appeared as the most active, followed by flowers of *S. robusta*, leaves of *S. robusta*, and finally the leaves of *O. gratissimum*. The major constituents found from these Lamiaceae were piperitenone oxide, piperitone, elemicin, and eugenol. The present study provides a strong baseline for consideration of studied essential oils in the management of bacterial infections and particularly foodborne infections.

Acknowledgements

The authors are grateful to SEP2D Project and Mane Enterprise (France) for providing necessary facilities.

References

[1] Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. *Journal of Pharmaceutical Analysis* 2020a, 10: 277e290.

[2] Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valassi M, et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. *Molecules* 2017, 22: 70.

[3] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. *Food and Chemical Toxicology* 2008, 46 (2): 446-75.

[4] Freires IA, Denny C, Beno T, De Alencar SM, Rosalen PL. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: a systematic review. *Molecules* 2015, 20: 7329–7358.

[5] Wniska K, Maczka W, Lyczko J, Grabarczyk M, Czubaszek A, Szumni A. Essential oils as antimicrobial agents-myth or real alternative? *Molecules* 2019, 24: 2130.

[6] Mancianti F, Ebani VV. Biological activity of essential oils. *Molecules* 2020, 25: 678.
Nascimento MK, Carvalho VRA, Matias EFF. Chemical Gratissimum Journal of Pharmaceutical Sciences pathologica, microbiologica, et immunologica Scand navica Nieto G. Biological activities of three essential oils of the Brazilian Archives of Biology and Technology 2007, 6: 760-5. Graikou K, Chinou I. Chemical composition and antimicrobial activity of the essential oils of four Cavalcante RMB, Matos MNC. Chemical Composition and 2003, 111: 477-82. Agostini F, dos Santos CAA, Rossato M, Pansera MR, dos Santos PL, Serafini LA, et al. Essential oil yield and composition of Lamiaceae species growing in southern Brazil. Brazilian Archives of Biology and Technology 2009, 52 (2). Nieto G. Biological activities of three essential oils of the Lamiaceae family. Medicines (Basel) 2017 3 (3): 529-563. Prabhu KS, Lobo R, Shirwaikar AA, Shirwaikar A. Ocimum gratissimum: a review of its chemical, pharmacological and ethnomedicinal properties. The Open Complementary Medicine Journal 2009, 1: 1-15. Iwalokun BA, Gbenle GO, Adewole TO, Smith SI, Akinsinde KA, Omonigbehin EO. Effects of Ocimum gratissimum L. essential oil at subinhibitory concentrations on virulent and multidrug-resistant Shigella strains from Lagos, Nigeria. Acta pathologica, microbiologica, et immunologica Scandinavica 2003, 111: 477-82. Matasoyh LG, Josphat CM, Francis NW, Miriam GK, Anne WTM, Titus KM. Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. African Journal of Biotechnology 2007, 6: 760-5. D. Runyoro O, Ngassapa K, Vagionas N, Aligiannis N, Graikou K, Chinou I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chemistry 2010, 119 (1): 311–316. Joshi RK. Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Indian Journal of Pharmaceutical Sciences 2013, 75 (4): 457–462. Melo RS, Azevedo AMA, Pereira AMG, Rocha RR, Cavalcante RMB, Matos MNC. Chemical Composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019, 24: 3864. Nascimento MK, Carvalho VRA, Matias EFF. Chemical profile of essential oil of Ocimum gratissimum L. and evaluation of antibacterial and drug resistance-modifying activity by gaseous contact method. Pharmacognosy Journal 2016, 8 (1): 04-09. Tepe B, Cilkiz M. A pharmacological and phytochemical overview on Satureja. Pharmaceutical Biology 2015, 54 (3): 375–412. Tchoumboungang F, Dongmo JPM, Sameza ML, Boyom FF, Mbanjo NEG, Zollo APH, et al. Essential oil analysis and antifungal activity of three satureja species from Cameroon against Aspergillus niger. Journal of Essential Oil Bearing Plant 2009, 12 (4): 404-410. Lukhoba WC, Simmonds SJM, Paton AJ. Plectranthus: a review of ethnobotanical uses. Journal of Ethnopharmacology 2006, 103 (1): 1-24. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica 1998, 64: 711–713. Manekeng HT, Mbaveng AT, Ngueneng GS, Seukep JA, Wamba ENB, Nayim P, et al. Anti-staphylococcal and antibiotic-potentiating activities of seven Cameroonian edible plants against resistant phenotypes. Investigational Medicinal Chemistry and Pharmacology 2018, 1: 7. Seukep JA, Fan M, Sarker SD, Kuete V, Guo M-Q. Plukenetia huayllabambana Fruits: Analysis of Bioactive compounds, antibacterial activity and relative action mechanisms. Plants 2020b, 9: 1111. Pandey AK, Singh P, Tripathi NN. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine 2014, 4: 682–694. Castro JAM, Monteiro OS, Coutinho DF, Rodrigues AAC, da Silva JKR, Maia JGS. Seasonal and circadian study of a thymol/γ-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. Journal of Brazilian Chemical Society 2019, 30: 930–938. Rossi P-G, Bao L, Luciani A, Panighi J, Desjobert J-M, Costa Wamba ENB, Nayim P, et al. Anti-staphylococcal and antibiotic-potentiating activities of seven Cameroonian edible plants against resistant phenotypes. Investigational Medicinal Chemistry and Pharmacology 2018, 1: 7. Seukep JA, Fan M, Sarker SD, Kuete V, Guo M-Q. Plukenetia huayllabambana Fruits: Analysis of Bioactive compounds, antibacterial activity and relative action mechanisms. Plants 2020b, 9: 1111. Pandey AK, Singh P, Tripathi NN. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine 2014, 4: 682–694. Castro JAM, Monteiro OS, Coutinho DF, Rodrigues AAC, da Silva JKR, Maia JGS. Seasonal and circadian study of a thymol/γ-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. Journal of Brazilian Chemical Society 2019, 30: 930–938. Rossi P-G, Bao L, Luciani A, Panighi J, Desjobert J-M, Costa Wamba ENB, Nayim P, et al. Anti-staphylococcal and antibiotic-potentiating activities of seven Cameroonian edible plants against resistant phenotypes. Investigational Medicinal Chemistry and Pharmacology 2018, 1: 7. Seukep JA, Fan M, Sarker SD, Kuete V, Guo M-Q. Plukenetia huayllabambana Fruits: Analysis of Bioactive compounds, antibacterial activity and relative action mechanisms. Plants 2020b, 9: 1111. Pandey AK, Singh P, Tripathi NN. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine 2014, 4: 682–694. Castro JAM, Monteiro OS, Coutinho DF, Rodrigues AAC, da Silva JKR, Maia JGS. Seasonal and circadian study of a thymol/γ-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. Journal of Brazilian Chemical Society 2019, 30: 930–938. Rossi P-G, Bao L, Luciani A, Panighi J, Desjobert J-M, Costa Wamba ENB, Nayim P, et al. Anti-staphylococcal and antibiotic-potentiating activities of seven Cameroonian edible plants against resistant phenotypes. Investigational Medicinal Chemistry and Pharmacology 2018, 1: 7. Seukep JA, Fan M, Sarker SD, Kuete V, Guo M-Q. Plukenetia huayllabambana Fruits: Analysis of Bioactive compounds, antibacterial activity and relative action mechanisms. Plants 2020b, 9: 1111. Pandey AK, Singh P, Tripathi NN. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine 2014, 4: 682–694. Castro JAM, Monteiro OS, Coutinho DF, Rodrigues AAC, da Silva JKR, Maia JGS. Seasonal and circadian study of a thymol/γ-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. Journal of Brazilian Chemical Society 2019, 30: 930–938. Rossi P-G, Bao L, Luciani A, Panighi J, Desjobert J-M, Costa Wamba ENB, Nayim P, et al. Anti-staphylococcal and antibiotic-potentiating activities of seven Cameroonian edible plants against resistant phenotypes. Investigational Medicinal Chemistry and Pharmacology 2018, 1: 7.