On irreducible subgroups of simple algebraic groups

Timothy C. Burness¹ · Claude Marion² · Donna M. Testerman²

Abstract Let G be a simple algebraic group over an algebraically closed field K of characteristic $p \geq 0$, let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG-module, which is p-restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples (G, H, V) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples (G, H, V) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG-module.

Mathematics Subject Classification Primary 20G05; Secondary 20E28 · 20E32

Communicated by Andreas Thom.

Burness was supported by EPSRC Grant EP/I019545/1, and he thanks the Section de Mathématiques at EPFL for their generous hospitality. Marion and Testerman were supported by the Fonds National Suisse de la Recherche Scientifique, Grant Number 200021-153543. We thank Paul Levy, Gunter Malle and an anonymous referee for helpful comments.

Timothy C. Burness
t.burness@bristol.ac.uk
Claude Marionclaude.marion@epfl.ch
Donna M. Testermanonna.testerman@epfl.ch

¹ School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
² Section de Mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland
1 Introduction

Let G be a simple algebraic group defined over an algebraically closed field K, let H be a closed positive-dimensional subgroup of G, and let V be a nontrivial rational irreducible KG-module. We say that (G, H, V) is an irreducible triple if V is irreducible as a KH-module. Triples of this form arise naturally in the investigation of maximal subgroups of classical algebraic groups, and their study can be traced back to work of Dynkin [7] in the 1950s, who considered the special case where H is connected and $K = \mathbb{C}$. In the 1980s, Seitz [17] and Testerman [20] extended the analysis to arbitrary algebraically closed fields (still assuming H is connected), and more recent work of Ghandour [10] has completed the classification of irreducible triples for exceptional groups. Therefore, in this paper we focus on classical groups and their disconnected subgroups.

In [8,9], Ford determines the irreducible triples (G, H, V) where G is a classical group, H is disconnected, H^0 is simple and the composition factors of the restriction $V|_{H^0}$ are p-restricted. Our main aim is to extend Ford’s analysis by removing the restrictive conditions on the structure of H^0 and the composition factors of $V|_{H^0}$. The cases for which $V|_{H^0}$ is irreducible are easily deduced from the work of Seitz [17], so we focus on the situation where $V|_{H}$ is irreducible, but $V|_{H^0}$ is reducible. By Clifford theory, the highest weights of the KH^0-composition factors of V are H-conjugate and this severely restricts the possibilities for V. Since the triples with H maximal have recently been determined in [3,4], in this paper we will adopt the following hypothesis:

Hypothesis 1.1 The group G is a simply connected cover of a simple classical algebraic group defined over an algebraically closed field K of characteristic $p \geq 0$, H is a closed positive-dimensional subgroup of G, and V is a nontrivial p-restricted irreducible tensor indecomposable rational KG-module such that the following conditions hold:

H1. $V \neq W^\tau$ for any automorphism τ of G, where W is the natural module;
H2. $HZ(G)/Z(G)$ is disconnected and non-maximal in $G/Z(G)$.

Let G be a classical group as in Hypothesis 1.1, let n denote the rank of G and let $\{\lambda_1, \ldots, \lambda_n\}$ be a set of fundamental dominant weights for G (we adopt the standard labelling given in Bourbaki [2]). We will write $V_G(\lambda)$ for the irreducible KG-module with highest weight λ.

Remark 1.2 Condition H1 in Hypothesis 1.1 is equivalent to assuming $V \neq W, W^*$, and also $V \neq V_G(\lambda_3), V_G(\lambda_4)$ if $G = D_4$. This hypothesis is unavoidable. For example, we cannot feasibly determine all the simple subgroups of G that act irreducibly on W or W^* (indeed, even the dimensions of the irreducible modules for simple groups are not known, in general). In particular, H1 is a condition adopted in [3,17].

Suppose G is of type B_n or D_n, and let $R(W) = R$ be the radical of the corresponding bilinear form on W (recall that either $R = 0$, or $p = 2$, dim W is odd and dim $R = 1$). An orthogonal decomposition of W is a decomposition of the form

$$W = W_1 + \cdots + W_t,$$

\(\copyright\) Springer
where the W_i are pairwise orthogonal subspaces of W. Note that if $W = W_1 + \cdots + W_t$ is such a decomposition, then the W_i are non-degenerate spaces such that $W_i \cap \left(\sum_{j \neq i} W_j \right) \subseteq R$ for each i (in particular, if $p \neq 2$ then $W = W_1 + \cdots + W_t$ is a direct sum). We say that a subgroup H of G normalizes such a decomposition if it permutes the W_i.

Definition 1.3 Let G be a classical group of type B_n or D_n, as in Hypothesis 1.1. A closed subgroup H of G is a **decomposition subgroup** if one of the following holds:

(a) H normalizes an orthogonal decomposition $W = W_1 + \cdots + W_t$; or

(b) $(G, p) = (D_n, 2)$, H stabilizes a 1-dimensional non-singular subspace U of W, and H normalizes an orthogonal decomposition of the natural module for the stabilizer $G_U = B_{n-1}$.

Similarly, if $(G, p) = (C_n, 2)$ then H is a decomposition subgroup of G if it is the image of a decomposition subgroup of the dual group $\widetilde{G} = B_n$ with respect to a bijective morphism $\varphi : \widetilde{G} \to G$.

Theorem 1.4 Suppose G, H and $V = V_G(\lambda)$ satisfy the conditions in Hypothesis 1.1, and assume that $V|_{H^0}$ is reducible. Then $V|_H$ is irreducible only if one of the following holds:

(a) (G, H, V) is one of the cases in Table 1; or

(b) G is of type B_n or D_n (or type C_n if $p = 2$), V is a spin module and H is a decomposition subgroup.

Moreover, if (a) holds then $V|_H$ is irreducible.

Remark 1.5 In case (i) of Table 1, T_n denotes a maximal torus of G. In all cases, H^0 is the connected component of a maximal subgroup of G, with the exception of the cases labelled (ii) and (iii), where H is contained in a subgroup $D_4 < G$. Also note that in cases (iii)–(vi), $W|_{H^0}$ is the tensor product of the natural modules of the simple components of H^0. In case (ii), H is the image of a subgroup $C_4^3. X < C_4$ as in (iii), under an isogeny $\varphi : C_4 \to B_4$. In cases (v) and (vi), we record H and V up to Aut(G)-conjugacy (so in case (vi) for example, if \widetilde{H} is the image of H under a graph automorphism of G, then $V_G(\lambda_8)$ is an irreducible $K\widetilde{H}$-module). Finally, let us note that the situation in part (b) of Theorem 1.4 is very special and we refer the reader to Sect. 7 for further details.

Table 1 The irreducible triples (G, H, V) in Theorem 1.4

G	H	λ	Conditions	
(i)	A_n	$T_n. X$	$\lambda_k, 1 < k < n$	$X < \text{Sym}_{n+1}$ is ℓ-transitive, $\ell = \min\{k, n+1-k\}$
(ii)	B_4	$B_3^1. X$	λ_3	$p = 2$, $X = Z_3$ or Sym$_3$
(iii)	C_4	$C_3^1. X$	λ_3	$p = 2$, $X = Z_3$ or Sym$_3$
(iv)	C_4	$C_3^1. Z_3$	λ_2, λ_3	$p \neq 2 (p \neq 2, 3$ if $\lambda = \lambda_3)$
(v)	D_4	$C_3^1. Z_3$	$\lambda_1 + \lambda_4, \lambda_3 + \lambda_4$	$p = 2$
(vi)	D_8	$C_4^1. X$	λ_7	$p \neq 3, X < \text{Sym}_4$ is transitive
Remark 1.6 If $V|_{H^0}$ is irreducible, then (G, H^0, V) is one of the cases in [17, Table 1] and

$$H^0 \leq H \leq N_G(H^0) \quad \text{and} \quad C_G(H^0) \leq Z(G).$$

More precisely, we are either in the situation described in part (b) of Theorem 1.4, or in terms of Seitz’s notation in [17, Table 1], one of the following holds (modulo scalars):

(a) $N_G(H^0) = H^0$;
(b) $N_G(H^0) = H^0.2$ and (G, H^0, V) is one of the cases labelled I_4, I_5, I_6 (with $n = 3$ in the notation of [17, Table 1]), II_1, S_1, S_7, MR_1, MR_4;
(c) $N_G(H^0) = H^0.\text{Sym}_3 = D_4.\text{Sym}_3$ and (G, H^0, V) is the case labelled S_8.

Here we refer the reader to the proof of [3, Theorem 2.5.1] to see that $N_G(H^0) = H^0$ in the case labelled S_7, and that $N_G(H^0) = H^0.\text{Sym}_3$ in case S_8.

Let us briefly describe our approach to the proof of Theorem 1.4. Suppose $V|_{H^0}$ is reducible. If H is a maximal subgroup of G then (G, H, V) can be read off from the main theorems of [3,4], so let us assume $H < M < G$ with M maximal. Since $V|H$ is irreducible, it follows that $V|M$ is also irreducible and we can consider the possibilities for the irreducible triple (G, M, V), which are determined in [17] (if M is connected) and [3,4] (if M is disconnected). We can then proceed by studying the possible embeddings of H in M.

Our next result is a combination of the main theorems in [3,4,17], together with Theorem 1.4. Note that we assume $n \geq 3$ if $G = B_n$, $n \geq 2$ if $G = C_n$, and $n \geq 4$ if $G = D_n$.

Corollary 1.7 Let G be a simply connected cover of a simple classical algebraic group over an algebraically closed field K of characteristic $p \geq 0$. Let H be a positive-dimensional closed subgroup of G, and let $V = V_G(\lambda)$ be a nontrivial p-restricted irreducible tensor indecomposable rational KG-module such that $V|_{H}$ is irreducible. Then one of the following holds:

(a) $V = W^\tau$ for some automorphism τ of G, where W is the natural module;
(b) G is of type B_n or D_n (or type C_n if $p = 2$) and V is a spin module;
(c) (G, H, V) is recorded in Table 2.

Remark 1.8 Let us make some comments on the cases in Table 2:

(i) In Table 2, we write X for Sym_3 or Z_3, Z for Z_2 or 1, and Y denotes any k-transitive subgroup of Sym_{n+1}.
(ii) For G of type A_n, the highest weight λ is recorded up to conjugacy by a graph automorphism of G (this is consistent with [17, Table 1]). For instance, in the first row of the table, we have $G = A_n, H = T_n, Y$ and $\lambda = \lambda_k$ with $2 \leq k \leq (n+1)/2$. By applying a suitable graph automorphism, we see that $V_G(\lambda_k)|_{H}$ is irreducible for all $2 \leq k \leq n - 1$.

Springer
Table 2 Positive-dimensional irreducible subgroups of classical groups

| G | H | λ | $\lambda|_{H^0}$ | κ | Conditions |
|-----------|-----------|-----------|------------------|----------|-------------------------|
| A_n | $T_n.Y$ | λ_k | $-$ | $\binom{n+1}{k}$ | $2 \leq k \leq (n+1)/2$ |
| A_{2m-1}| C_m | $k\lambda_1$ | $k\omega_1$ | 1 | $m \geq 2, k \geq 2$ |
| A_{2m-1}| C_m | $a\lambda_k + b\lambda_{k+1}$ | $a\omega_k + b\omega_{k+1}$ | 1 | See Remark 1.8(v)(a) |
| A_{2m} | B_m | λ_k | ω_k | 1 | $2 \leq k < m, p \neq 2$|
| A_{2m} | B_m | λ_m | $2\omega_m$ | 1 | $m \geq 2, p \neq 2$ |
| A_{2m-1}| $D_m.Z$ | λ_k | ω_k | 1 | $2 \leq k < m-1, p \neq 2$|
| A_{2m-1}| $D_m.Z$ | λ_{m-1} | $\omega_{m-1} + \omega_m$ | 1 | $m \geq 4, p \neq 2$ |
| A_{2m-1}| $D_m.2$ | λ_m | $2\omega_m$ | 2 | $m \geq 2, p \neq 2$ |
| $A_{m(m+2)}$| A_m^2 | λ_2 | $\omega_2 \otimes 2\omega_1$ | 2 | $m \geq 2, p \neq 2$ |
| $A_{(m^2+m-2)/2}$ | A_m | λ_2 | $\omega_1 + \omega_3$ | 1 | $m \geq 3, p \neq 2$ |
| $A_{m(m+3)/2}$| A_m | λ_2 | $2\omega_1 + \omega_2$ | 1 | $m \geq 2, p \neq 2$ |
| A_{26} | E_6 | λ_2 | ω_3 | 1 | $p \neq 2$ |
| A_{26} | E_6 | λ_3 | ω_4 | 1 | $p \neq 2, 3$ |
| A_{26} | E_6 | λ_4 | $\omega_2 + \omega_5$ | 1 | $p \neq 2, 3$ |
| A_{15} | D_5 | λ_2 | ω_3 | 1 | $p \neq 2$ |
| A_{15} | D_5 | λ_3 | $\omega_2 + \omega_4$ | 1 | $p \neq 2$ |
| B_n | $D_n.Z$ | $\sum_{i=1}^{n-1} a_i \lambda_i$ | $\sum_{i=1}^{n-2} a_i \omega_i + a_{n-1}(\omega_{n-1} + \omega_n)$ | 1 | $n \geq 3, p = 2$ |
| B_n | $D_n.2$ | $\sum_{i=1}^{n} a_i \lambda_i$ | $\sum_{i=1}^{n-1} a_i \omega_i + (a_{n-1} + 1)\omega_n$ | 2 | See Remark 1.8(v)(b) |
| B_{12} | F_4 | $2\lambda_1$ | $2\omega_4$ | 1 | $p = 3$ |
| B_6 | C_3 | $2\lambda_1$ | $2\omega_2$ | 1 | $p = 3$ |
| B_4 | $B_3^1.X$ | λ_3 | $\omega_1 \otimes \omega_1 \otimes 3\omega_1$ | 3 | $p = 2$ |
| B_3 | G_2 | λ_2 | ω_2 | 1 | $p = 2$ |
| B_3 | G_2 | $\lambda_1 + \lambda_2$ | $\omega_1 + \omega_2$ | 1 | $p = 2$ |
| B_3 | G_2 | $k\lambda_1$ | $k\omega_1$ | 1 | $k \geq 2, p \neq 2$ |
| B_3 | G_2 | $a\lambda_2 + b\lambda_3$ | $b\omega_1 + a\omega_2$ | 1 | $ab \neq 0, 2a + b + 2 \equiv 0 (p)$ |
| B_3 | G_2 | $a\lambda_1 + b\lambda_2$ | $a\omega_1 + b\omega_2$ | 1 | $a \geq 2, b \geq 1, a + b + 1 \equiv 0 (p)$ |
| B_3 | $A_2.Z$ | $2\lambda_1$ | $2\omega_1 + 2\omega_2$ | 1 | $p = 3$ |
| C_n | $D_n.Z$ | $\sum_{i=1}^{n-1} a_i \lambda_i$ | $\sum_{i=1}^{n-2} a_i \omega_i + a_{n-1}(\omega_{n-1} + \omega_n)$ | 1 | $n \geq 3, p = 2$ |
| C_{2m} | C_{2m}^2| $\lambda_{2m-1} + a\lambda_{2m}$ | $(a+1)\omega_m \oplus (\omega_{m-1} + a\omega_m)$ | 2 | See Remark 1.8(v)(c) |
| C_{28} | E_7 | λ_2 | ω_6 | 1 | $p \neq 2$ |
| C_{28} | E_7 | λ_3 | ω_5 | 1 | $p \neq 2, 3$ |
| C_{28} | E_7 | λ_4 | ω_4 | 1 | $p \neq 2, 3$ |
| C_{28} | E_7 | λ_5 | $\omega_2 + \omega_3$ | 1 | $p \neq 2, 3, 5$ |
| C_{16} | D_6 | λ_2 | ω_4 | 1 | $p \neq 2$ |
| C_{16} | D_6 | λ_3 | $\omega_3 + \omega_5$ | 1 | $p \neq 2, 3$ |
| C_{10} | $A_5.Z$ | λ_2 | $\omega_2 + \omega_4$ | 1 | $p \neq 2$ |
(iii) In the fourth column, we describe the restriction of λ to a suitable maximal torus of the derived subgroup $[H^0, H^0]$ (this is denoted by $\lambda|_{H^0}$), in terms of highest weights for the simple components. The one exception is the case $(G, H, \lambda) = (A_n, T_n, Y)$, where $H^0 = T_n$ is a maximal torus of G and thus $[H^0, H^0] = 1$.

(iv) In the fifth column, κ denotes the number of $K H^0$-composition factors of $V|_{H^0}$.

(v) In the final column, we record various conditions on G, H and λ that are necessary and sufficient for the irreducibility of $V|_H$. In a few cases, the conditions for irreducibility are rather complicated and so we record them here (the example in case (b) was discovered by Ford in [8]):

(a) $(G, H, \lambda) = (A_{2m-1}, C_m, a\lambda_k + b\lambda_{k+1}): 1 \leq k < m; a + b = p - 1; p \neq 2; a \neq 0$ if $k = m - 1$.

(b) $(G, H, \lambda) = (B_n, D_{n-2}, \sum_i a_i\lambda_i): p \neq 2; a_n = 1; a_j \neq 0, a_k = 0$ for all $i < k < j$, then $a_i + a_j \equiv i - j (\text{mod} p)$; if $i < n$ is maximal such that $a_i \neq 0$, then $2a_j \equiv -2(n - i) - 1 (\text{mod} p)$.

(c) $(G, H, \lambda) = (C_{2m}, C_{m}^2, 2, \lambda_{2m-1} + a\lambda_{2m}): 0 \leq a < p; (m,a) \neq (1,0); 2a + 3 \equiv 0 (\text{mod} p)$.

(d) $(G, H, \lambda) = (D_n, B_{n-1}, a\lambda_k + b\lambda_{n-i}): 1 \leq k \leq n - 2; i \in \{0, 1\}; ab \neq 0; a + b + n - k - 1 \equiv 0 (\text{mod} p)$.

Our final result concerns chains of irreducibly acting subgroups. Let G and V be given as in Hypothesis 1.1 and write $\ell = \ell(G, V)$ for the length of the longest chain of closed positive-dimensional subgroups

$$H_\ell < H_{\ell-1} < \cdots < H_2 < H_1 = G$$

such that $V|_{H_\ell}$ is irreducible. We call such a sequence of subgroups an irreducible chain. If G is an orthogonal group (or a symplectic group with $p = 2$) and V is a spin module, then $\ell(G, V)$ can be arbitrarily large, and it is easy to see that the same is true if $V = W$ or W^*.
Theorem 1.9 Suppose G and V satisfy the conditions in Hypothesis 1.1 and assume V is not a spin module. Then either $\ell(G, V) \leq 5$, or G is of type A_n and

$$\lambda \in \{\lambda_2, \lambda_3, \lambda_{n-2}, \lambda_{n-1}\}.$$

The upper bound in this theorem is best possible. In fact, if we exclude the exceptional cases then either $\ell(G, V) \leq 4$, or $G \in \{B_4, C_4\}$, $\lambda = \lambda_3$, $p = 2$ and

$$A_1^3.Z_3 < A_1^3.Sym_3 < D_4 < D_4.2 < G$$

is an irreducible chain of length 5 (see Theorem 8.1 for a more precise statement). The exceptions with $G = A_n$ are genuine in the strong sense that $\ell(G, V)$ can be arbitrarily large. We refer the reader to Sect. 8 for further details.

2 Preliminaries

2.1 Notation and terminology

Most of our notation is fairly standard. As in Hypothesis 1.1, let G be a simply connected cover of a simple classical algebraic group, which is defined over an algebraically closed field K of characteristic $p \geq 0$. Fix a Borel subgroup $B = UT$ of G, where T is a maximal torus of G and U is the unipotent radical of B. Let $\Pi(G) = \{\alpha_1, \ldots, \alpha_n\}$ be the corresponding base of the root system $\Sigma(G)$ of G, where n denotes the rank of G. Let $\{\lambda_1, \ldots, \lambda_n\}$ be the fundamental dominant weights for T corresponding to $\Pi(G)$.

There is a bijection between the set of dominant weights of G and the set of isomorphism classes of irreducible KG-modules; if λ is a dominant weight then we use $V_G(\lambda)$ to denote the unique irreducible KG-module with highest weight λ. We also recall that if $p > 0$ then a dominant weight $\lambda = \sum a_i \lambda_i$ is p-restricted if $a_i < p$ for all i. By Steinberg’s tensor product theorem, every irreducible KG-module decomposes in a unique way as a tensor product $V_0 \otimes V_1^{\sigma_1} \otimes \cdots \otimes V_r^{\sigma_r}$, where V_i is a p-restricted irreducible KG-module, σ_{p^i} : $G \to G$ is a standard Frobenius morphism (with $\sigma_{p^i} = 1$ if $p = 0$), and $V_i^{\sigma_{p^i}}$ (which we will also denote by $V_i^{(p^i)}$) is the KG-module obtained by preceding the action of G on V_i by the endomorphism σ_{p^i}. It is convenient to say that every dominant weight is p-restricted if $p = 0$.

In addition, $\text{Lie}(G)$ denotes the Lie algebra of G, and $U_\alpha = \{x_\alpha(t) \mid t \in K\}$ is the root subgroup of G corresponding to a root $\alpha \in \Sigma(G)$. If $x \in G$ then $t_x : G \to G$ is the inner automorphism of G induced by conjugation by x, so $t_x(g) = xgx^{-1}$ for all $g \in G$. We write T_i for an i-dimensional torus. If H is a closed positive-dimensional subgroup of G and T_H is a maximal torus of $[H^0, H^0]$ contained in T, then we abuse notation by writing $\mu|_{T_H^0}$ to denote the restriction of a T-weight μ to the subtorus T_H^0. We define a partial order \preceq on the set of weights for T, where $\mu \preceq \nu$ if and only if $\mu = \nu - \sum_{i=1}^n c_i \alpha_i$ for some non-negative integers c_i (in this situation, we say that μ is under ν). Finally, we set $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, we write Sym_n and Alt_n for the symmetric and alternating groups of degree n, and we denote a cyclic group of order m by Z_m (or just m).
Recall that a map \(\varphi : G_1 \to G_2 \) of algebraic groups is a \textit{morphism} if it is a group homomorphism that is also a morphism of the underlying varieties. In particular, it is important to note that an injective morphism does not necessarily induce an isomorphism \(G_1 \cong \varphi(G_1) \) of algebraic groups. If \(G_1 \) is a semisimple algebraic group with root system \(\Phi \), then we will say that \(G_1 \) is of type \(\Phi \) (and we will sometimes denote this by writing \(G_1 = \Phi \)). For example, \(\text{SL}_2(K) \) and \(\text{PGL}_2(K) \) are both simple algebraic groups of type \(A_1 = B_1 = C_1 \), and \(\text{PSp}_4(K) \) and \(\text{SO}_5(K) \) are both of type \(B_2 = C_2 \). Finally, note that if \(H \) is a closed positive-dimensional subgroup of an algebraic group \(G \), and \(\varphi : H \to G \) is the inclusion map, then the differential \(d\varphi : \text{Lie}(H) \to \text{Lie}(G) \) is an injective Lie algebra homomorphism (since \(\varphi : H \to \varphi(H) \) is an isomorphism of algebraic groups).

2.2 Diagonal embeddings

Let \(G/Z \) be a central product, where \(G = G_1 \times \cdots \times G_t \) and \(Z \leq Z(G) \). A subgroup \(H/Z \) of \(G/Z \) is a \textit{subdirect product} if each of the projection maps \(\pi_i : H \to G_i \) is surjective. In the context of algebraic groups, the related notion of a diagonally embedded subgroup is defined as follows:

Definition 2.1 Let \(H \) be a closed subgroup of \(G = G_1 \times \cdots \times G_t \) where the \(G_i \) are isomorphic simply connected simple algebraic groups. We say that \(H \) is \textit{diagonally embedded} in \(G \) if each projection \(\pi_i : H \to G_i \) is a bijective morphism. Note that we do not require each projection map \(\pi_i \) to induce an isomorphism \(H \cong G_i \) of algebraic groups.

The next lemma is a well known result of Steinberg (see [18, Theorem 30] and [19, 10.13]), which describes the bijective endomorphisms of a simple algebraic group. Here \(t_x \) and \(\sigma_q \) are defined as in Sect. 2.1, and we adopt Steinberg’s definition of a \textit{graph automorphism} of a simple algebraic group \(G \) (see [18, Sect. 10]). In particular, a graph automorphism is an isomorphism of algebraic groups unless \((G, p) = (C_2, 2) \), \((G_2, 3) \) or \((F_4, 2) \).

Lemma 2.2 Let \(G \) be a simple algebraic group over an algebraically closed field of characteristic \(p \geq 0 \). Let \(\varphi : G \to G \) be a bijective morphism. Then \(\varphi = t_x\sigma_q\gamma^k \) for some \(x \in G \), \(p \)-power \(q \) and integer \(k \in \{0, 1\} \), where \(\gamma \) is a graph automorphism of \(G \). Moreover, if \(G \) is classical and \((G, p) \neq (C_2, 2) \), then \(\varphi \) is an isomorphism of algebraic groups if and only if \(\sigma_q = 1 \).

Lemma 2.3 Let \(\varphi : H \to G \) be a surjective morphism of algebraic groups and let \(d\varphi : \text{Lie}(H) \to \text{Lie}(G) \) be the corresponding differential map. Then \(d\varphi(\text{Lie}(H)) \) is a \(KG \)-submodule of \(\text{Lie}(G) \), and hence also an ideal of \(\text{Lie}(G) \).

Proof Let \(\text{Ad}_G : G \to \text{GL}(\text{Lie}(G)) \) be the adjoint representation of \(G \). We must consider \(\text{Ad}_G(g)(d\varphi(X)) \), for \(g \in G \) and \(X \in \text{Lie}(H) \). As above, let \(t_g : G \to G \) denote conjugation by \(g \). Then \(\text{Ad}_G(g)(d\varphi(X)) = (dt_g \circ d\varphi)(X) = d(t_g \circ \varphi)(X) \).
Since φ is surjective, $g = \varphi(h)$ for some $h \in H$, so we have

$$\text{Ad}_G(g)(d\varphi(X)) = d(I_{\varphi(h)} \circ \varphi)(X) = d(\varphi \circ I_{h})(X)$$

$$= d\varphi \circ \text{Ad}_H(h)(X) \in d\varphi(\text{Lie}(H)).$$

Therefore, $d\varphi(\text{Lie}(H))$ is Ad_G-invariant and hence a KG-submodule of $\text{Lie}(G)$.

Finally, let V be a KG-module with corresponding representation $\rho : G \to \text{GL}(V)$, and let S be a G-invariant subspace of V. Then S is invariant under the action of $d\rho(\text{Lie}(G))$. We conclude that $d\varphi(\text{Lie}(H))$ is an ideal of $\text{Lie}(G)$. \hfill \square

Recall that a morphism $\varphi : H \to G$ of algebraic groups is an isogeny if it is surjective with finite kernel. If such a map exists, we say that H is isogenous to G (this is not a symmetric relation).

Lemma 2.4 Let G be a simply connected simple classical algebraic group of rank m over an algebraically closed field K of characteristic $p \geq 0$, let H be a connected algebraic group and let $\varphi : H \to G$ be an isogeny. Then φ is a bijection. Moreover, if $d\varphi \neq 0$ then either φ is an isomorphism of algebraic groups, or one of the following holds:

(i) G and H are both of type A_m, with p dividing $m + 1$;
(ii) G and H are both of type B_m, C_m or D_m, with $p = 2$;
(iii) (G, H) is of type (B_m, C_m) or (C_m, B_m), with $p = 2$.

Proof First we claim that H is also a simple group of rank m. Clearly, if N is a proper nontrivial connected normal subgroup of H, then $\varphi(N)$ is a proper nontrivial connected normal subgroup of G, which is not possible since G is simple. Therefore, H is simple. If T_H is a maximal torus of H, then $\varphi(T_H)$ is a maximal torus of G (see [1, Proposition 11.14], for example), and $\dim T_H = \dim \varphi(T_H)$. Therefore, H has rank m. Now, by comparing dimensions, we deduce that G and H have the same root system, unless $(G, H) = (B_m, C_m)$ or (C_m, B_m). Note that if $p \neq 2$ and $G = B_m$ then H is also of type B_m because an isogeny from B_m to C_m only exists when $p = 2$. Similarly, if $p \neq 2$ and $G = C_m$ then H is of type C_m.

To see that φ is a bijection (of abstract groups), first observe that $\ker(\varphi) \leq Z(H)$ since H is simple, so the claim is trivial if $p = 2$ and $H = B_m$ or C_m. Now assume $p \neq 2$ if $H = B_m$ or C_m. As above, G and H have the same root system. In particular, if H_{sc} denotes the simply connected group with the same root system as H, then H_{sc} and G are isomorphic algebraic groups (this follows from the classification of simple algebraic groups over K, using the fact that G is simply connected). Set $\psi = \varphi \circ \pi$, where $\pi : H_{sc} \to H$ is the natural isogeny. Then $\psi : H_{sc} \to G$ is an isogeny with kernel $L \leq Z(H_{sc})$, so $H_{sc}/L \cong G$ as abstract groups. In particular, $Z(H_{sc}/L) \cong Z(G) \cong Z(H_{sc})$, so $L = 1$ is the only possibility. Therefore ψ is injective, and thus φ is also injective. We conclude that φ is a bijection.

To complete the proof, we may assume that $d\varphi \neq 0$ and (G, H, p) is not one of the cases labelled (i)–(iii) in the statement of the lemma. As above, G and H are both simple groups of the same type and rank. Since $\text{Lie}(H)$ is simple (see [11, Table 1]), it follows that $d\varphi$ is an isomorphism of Lie algebras and thus φ is an isomorphism of algebraic groups. \hfill \square
Lemma 2.5 Let J be a closed connected subdirect product of $G_1 \times G_2$, where G_1 and G_2 are isomorphic simply connected simple classical algebraic groups. Then J is diagonally embedded in $G_1 \times G_2$, and either $J = G_1 \times G_2$ or $J \cong G_1$ as algebraic groups.

Proof Let $\pi_i : J \to G_i$ be the i-th projection map and set $L = \ker(d\pi_1) \cap \ker(d\pi_2)$. Note that $L = 0$ since J is a closed positive-dimensional subgroup of $G_1 \times G_2$. Without loss of generality, we will assume that $d\pi_1 \neq 0$.

First assume $\ker(\pi_1)$ is infinite. Since π_2 is injective on $\ker(\pi_1)$, we have $\dim \ker(\pi_1) = \dim \pi_2(\ker(\pi_1))$. Moreover, the surjectivity of π_2 implies that $\pi_2(\ker(\pi_1))$ is an infinite normal subgroup of G_2, so the simplicity of G_2 implies that $\pi_2(\ker(\pi_1)) = G_2$ and thus $\dim \ker(\pi_1) = \dim G_2$. Therefore, $\dim J = \dim G_1 + \dim G_2$ and we conclude that $J = G_1 \times G_2$.

For the remainder, we may assume that $\ker(\pi_1)$ is finite, so π_1 is an isogeny and Lemma 2.4 implies that π_1 is a bijection and either $J \cong G_1$, or (G_1, J) is one of the cases labelled (i)–(iii). In particular, J is simple and $\ker(\pi_2)$ is finite. By a further application of Lemma 2.4, we see that π_2 is also a bijection and thus J is diagonally embedded. To complete the proof it remains to show that $J \cong G_1$ as algebraic groups. Seeking a contradiction, let us assume that $\ker(d\pi_i) \neq 0$ for $i = 1, 2$, so $\im(d\pi_i)$ is a proper non-zero ideal of $\Lie(G_i)$ (see Lemma 2.3).

First assume $p = 2$ and (G_1, J) is of type (B_m, B_m), (C_i, C_i), (B_m, C_m) or (C_m, B_m). For $m \geq 2$, the ideal structure of $\Lie(J)$ is described in [6, Sect. 5]. Excluding the case where $J = C_{m}$ is simply connected and $m \geq 3$ is odd, we observe that $\Lie(J)$ has an irreducible socle S (as a KJ-module), which immediately implies that L contains S. This is a contradiction, since $L = 0$. Now assume $J = C_m$ is simply connected and $m \geq 3$ is odd. If $G_1 = C_m$ then $J \cong G_1$ since G_1 is simply connected, so let us assume $G_1 = B_m$. The socle of $\Lie(J)$ is of the form $Z \oplus M$, where $Z = Z(\Lie(J))$ is 1-dimensional and M is a nontrivial irreducible module. Without loss of generality, we may assume that M is not contained in $\ker(d\pi_1)$, which implies that $\ker(d\pi_1) = Z$. Therefore $\im(d\pi_1)$ is an ideal of $\Lie(G_1)$ of codimension 1, but this is not compatible with the ideal structure described in [6]. Therefore, once again we have reached a contradiction. Finally, if $J = B_1 = C_1$ is adjoint then $\Lie(J)$ has an irreducible socle and we can repeat the argument given above.

Next suppose that G_1 and J are both of type A_m, where p divides $m + 1$. We may assume that $m \geq 2$. Seeking a contradiction, suppose that J is not simply connected. By inspecting [11, Table 1] we deduce that $\im(d\pi_i) = Z(\Lie(G_i))$ and $\ker(d\pi_i)$ is the commutator subalgebra of $\Lie(J)$ for $i = 1, 2$. But this implies that $L \neq 0$, which is a contradiction. To complete the proof, we may assume that G_1 and J are both of type D_m, with $p = 2$. If m is odd then we can repeat the previous argument, using [11, Table 1], so let us assume m is even. If J is not simply connected then $\Lie(J)$ has an irreducible socle S (see [6, Sect. 5]), which must be contained in L. Once again, this is a contradiction.

The next result is a natural generalization of Lemma 2.5.

Proposition 2.6 Let J be a closed connected subdirect product of $G_1 \times \cdots \times G_i$, where the G_i are isomorphic simply connected simple classical algebraic groups. Then the following hold:
(i) J is semisimple.
(ii) There exists a positive integer $r \leq t$ such that $J = J_1 \cdots J_r$, where each J_i is isomorphic to G_1.
(iii) There exist integers $0 = t_0 < t_1 < t_2 < \cdots < t_r = t$ such that J_i is diagonally embedded in $G_{t_{i-1}+1} \times \cdots \times G_t$.

Proof. We use induction on t, noting that the case $t = 1$ is trivial, and Lemma 2.5 handles the case $t = 2$. Let us assume $t \geq 3$, and let $\pi_i : J \to G_i$ be the i-th projection map. As in the proof of the previous lemma, we may assume that $d\pi_1 \neq 0$.

If $\ker(\pi_i)$ is finite for any i, then $\dim J = \dim G_1$ and thus $\ker(\pi_1)$ is also finite. Then by arguing as in the proof of Lemma 2.5, we deduce that J is diagonally embedded in $G_1 \times \cdots \times G_t$ and $J \cong G_1$. For the remainder, we may assume that $\ker(\pi_i)$ is infinite for all i. Since $\pi_i(R_a(J))$ is a proper normal subgroup of $\pi_i(J) = G_i$ for each i, it follows that J is reductive. Similarly, by considering $\pi_i(Z(J))$, we deduce that $Z(J)$ is finite and thus J is semisimple. In particular, we may write

$$J = J_1 \cdots J_r,$$

where each J_i is simple. Note that $\pi_i(J_j)$ is a connected normal subgroup of G_i for all i, j, so $\pi_i(J_j) = 1$ or G_i. Let σ be the projection map

$$\sigma : J \to G_2 \times \cdots \times G_t.$$

We now consider two cases.

Case 1. $\ker(\sigma)$ is infinite.

First assume $\ker(\sigma)$ is infinite, so $\ker(\sigma) \neq 0$ is a connected positive-dimensional normal subgroup of J. By relabelling the J_i, if necessary, we may assume that

$$\ker(\sigma) = J_1 \cdots J_a$$

for some $a \in \{1, \ldots, r\}$ (see [13, Theorem 27.5(c)], for example). Now $\pi_1(J_i) = G_1$ for all $1 \leq i \leq a$, so the injectivity of π_1 on $\ker(\sigma)$, together with the simplicity of G_1, implies that $a = 1$ and J_1 is of type G_1. In particular, $r > 1$ since we are assuming that $\ker(\pi_1)$ is infinite. Also note that $\pi_i(J_2 \cdots J_r) = G_i$ for all $i \geq 2$.

We claim that $\pi_1(J_i) = 1$ for all $2 \leq i \leq r$, so $J_2 \cdots J_r \leq G_2 \times \cdots \times G_t$ is a subdirect product and the result follows by induction. To justify the claim, let $i \in \{2, \ldots, r\}$ and consider $\pi_1|_{J_i J_1} : J_1 J_i \to G_1$. Since $\pi_1(J_1) = G_1$, we have $\pi_1(J_1 J_i) = G_1$. Now $\ker(\pi_1|_{J_1 J_i}) \neq 0$ is a connected normal subgroup of $J_1 J_i$, so $\ker(\pi_1|_{J_1 J_i}) = J_i$. It is easy to see that $\ker(\pi_1|_{J_1 J_i}) = J_i$ is the only possibility, so $\pi_1(J_i) = 1$ as claimed.

Case 2. $\ker(\sigma)$ is finite.

To complete the proof, we may assume that $\ker(\sigma)$ is finite. Now $J/\ker(\sigma)$ is connected and reductive, and it is isomorphic to a subdirect product of $G_2 \times \cdots \times G_t$. By induction, there exists $s \in \{1, \ldots, t-1\}$ such that $J/\ker(\sigma) = L_1 \cdots L_s$ and $L_i \cong G_1$ for each i. But $J = J_1 \cdots J_r$ and the J_i are simple, so $r = s$ and $\dim J_i = \dim G_1$ for
all i (indeed, J_i is isogenous to G_1), hence $\dim J = r \dim G_1$. Note that $r > 1$ since $\ker(\pi_1)$ is infinite.

Since $\pi_1 : J \to G_1$ is surjective, we have $\dim \ker(\pi_1) = (r-1) \dim G_1$. Moreover, by relabelling the J_i if necessary, we may assume that $\ker(\pi_1)^0 = J_2 \cdots J_r$ (see [13, Theorem 27.5(c)]). Therefore, $\pi_1(J_1) = G_1$ and $J_2 \cdots J_r \leq G_2 \times \cdots \times G_t$. By a further relabelling, we may assume that there exists an integer $b \in \{1, \ldots, t\}$ such that $\pi_i(J_1) = G_i$ for $1 \leq i \leq b$, and $\pi_i(J_1) = 1$ if $b < i \leq t$.

First we claim that $b < t$. Seeking a contradiction, suppose that $b = t$, so $\pi_i(J_1) = G_i$ for all i. Let $j \in \{2, \ldots, r\}$ and consider $\pi_i|_{J_1J_j} = J_1J_j \to G_i$. By arguing as above, we deduce that $\ker(\pi_i|_{J_1J_j})^0 = J_j$, so $\pi_i(J_j) = 1$ for all i. Therefore $J_j = 1$ and thus $r = 1$, which is a contradiction.

Since $b < t$ and $J_1 \leq G_1 \times \cdots \times G_b$ is a subdirect product, by induction we deduce that J_1 is diagonally embedded in $G_1 \times \cdots \times G_b$ and $J_1 \cong G_1$. If we fix $i \in \{1, \ldots, b\}$ and $j \in \{2, \ldots, r\}$, then $\ker(\pi_i|_{J_1J_j})^0 = J_j$ and thus $J_2 \cdots J_r \leq \ker(\pi_i)$. Therefore, $J_2 \cdots J_r \leq G_{b+1} \times \cdots \times G_t$ is a subdirect product (since $\pi_i(J) = G_i$ and $\pi_i(J_1) = 1$ for all $i > b$) and the result follows by induction. □

2.3 Irreducible triples

Define G, H and V as in Hypothesis 1.1. The next result records a basic observation (see [4, Remark 2]).

Lemma 2.7 If $V|_H$ is irreducible, then H does not normalize a nontrivial connected unipotent subgroup of G. In particular, H^0 is reductive.

Suppose $V|_H$ is irreducible, but $V|_{H^0}$ is reducible. Then Clifford theory implies that

$$
V|_{H^0} = V_1 \oplus \cdots \oplus V_m,
$$

where $m \geq 2$ and the V_i are irreducible KH^0-modules that are transitively permuted under the induced action of H/H^0.

Remark 2.8 Since the irreducibility of $V|_H$ implies that H^0 is reductive, we have $H^0 = JZ(H^0)$ where $J = [H^0, H^0]$ is the derived subgroup of H^0. Now $Z(H^0)$ acts as scalars on the V_i so that they are also irreducible upon restriction to J. In particular, the irreducibility of $V|_H$ implies that the KJ-composition factors of $V|_J$ are transitively permuted under the induced action of H/H^0.

If the V_i in (1) are isomorphic as KH^0-modules, then $V|_{H^0}$ is said to be homogeneous. For example, $V|_{H^0}$ is homogeneous if $N_G(H^0) = H^0C_G(H^0)$. The following result is [3, Proposition 2.6.2].

Proposition 2.9 If H is a cyclic extension of H^0, then the irreducible KH^0-modules V_i in (1) are pairwise non-isomorphic. In particular, $V|_{H^0}$ is not homogeneous.

We will also need the following lemma.

Lemma 2.10 Let V_1 and V_2 be p-restricted irreducible KG-modules and set $V = V_1 \otimes V_2$. Then one of the following holds:
(i) V is irreducible, $G = B_n$ or C_n, $p = 2$ and V_1 and V_2 can be arranged so that $V_i = V_G(\mu_i)$ and μ_1 (respectively μ_2) has support on the short (respectively, long) roots;

(ii) V has non-isomorphic composition factors.

Proof By [17, (1.6)], V is irreducible if and only if G and V satisfy the conditions in (i), so let us assume V is reducible. Write $V_i = V_G(\mu_i)$ and note that V has a composition factor of highest weight $\mu = \mu_1 + \mu_2$ occurring with multiplicity 1. Then any other composition factor has highest weight $\nu \neq \mu$ and the result follows. □

3 Subgroup structure

3.1 A reduction theorem

Let G be a simple classical algebraic group with natural module W. Following [14, Sect. 1], we introduce six natural, or geometric, collections of closed subgroups, labelled \mathcal{C}_i for $1 \leq i \leq 6$, and we set $\mathcal{C} = \bigcup_i \mathcal{C}_i$. These subgroups are defined in terms of the underlying geometry of W, and a rough description of the subgroups in each \mathcal{C}_i collection is given in Table 3 (note that the subgroups in the collection \mathcal{C}_5 are finite).

There are two types of subgroups in the \mathcal{C}_4 collection (indicated by the two rows in Table 3); following [4], we write $\mathcal{C}_4 = \mathcal{C}_4(i) \cup \mathcal{C}_4(ii)$ accordingly. The following result is [14, Theorem 1] (we use the term non-geometric for the subgroups arising in part (ii)).

Theorem 3.1 Let G be a simple classical algebraic group with natural module W, and let H be a closed subgroup of G. Then one of the following holds:

(i) H is contained in a member of \mathcal{C};

(ii) modulo scalars, H is almost simple and $E(H)$ (the unique quasisimple normal subgroup of H) is irreducible on W. Further, if $G = SL(W)$ then $E(H)$ does not fix a non-degenerate form on W. In addition, if H is infinite then $E(H) = H^0$ is tensor indecomposable on W.

\mathcal{C}_i	Rough description
\mathcal{C}_1	Stabilizers of subspaces of W
\mathcal{C}_2	Stabilizers of orthogonal decompositions $W = \bigoplus_i W_i$, $\dim W_i = a$
\mathcal{C}_3	Stabilizers of totally singular decompositions $W = W_1 \oplus W_2$
\mathcal{C}_4	Stabilizers of tensor product decompositions $W = W_1 \otimes W_2$
	Stabilizers of tensor product decompositions $W = \bigotimes_i W_i$, $\dim W_i = a$
\mathcal{C}_5	Normalizers of symplectic-type r-groups, $r \neq p$ prime
\mathcal{C}_6	Classical subgroups

© Springer
3.2 Geometric subgroups of GO(W)

In our inductive proof of Theorem 1.4, we will need to consider the subgroup structure of $G = \text{GO}(W)$, which is the full isometry group of a non-degenerate quadratic form on W. Here $\dim W = 2n \geq 6$ and thus $G^0 = \text{SO}(W)$ is a simple group of type D_n. The notion of a geometric subgroup extends naturally to G and we can define the subgroup collections C_1, \ldots, C_6 as above. It is straightforward to check that the proof of the main theorem of [14] extends to this slightly more general situation (see [14, Theorem 1′]), and thus Theorem 3.1 holds. In particular, any subgroup of G that is not contained in a geometric subgroup is said to be non-geometric, and these subgroups satisfy the conditions described in part (ii) of Theorem 3.1.

In the proofs of Propositions 5.10 and 5.19, we need information on the maximal non-parabolic geometric subgroups of G. This is given in the following proposition.

Proposition 3.2 Let M be a positive-dimensional non-parabolic geometric subgroup of $G = \text{GO}(W) = D_n.2$, which is not contained in G^0. Then the possibilities for M are recorded in Table 4.

Proof Here M is a disconnected C_i-subgroup of G, where $i \in \{1, 2, 3, 4\}$ (recall that the subgroups in C_5 are finite, and there are no C_6-subgroups in orthogonal groups). The structure of M is easily determined from its geometric description (see [4, Sect. 2.5], for example), and it is straightforward to determine whether or not M is contained in G^0.

For example, if $M \in C_1$ then $M = G_U$ is the stabilizer of a subspace U of W (the natural KG-module), and one of the following holds (recall that M is non-parabolic, so U is not totally singular):

(a) U is non-degenerate and $\dim U$ is even;
(b) U is non-degenerate, $\dim U$ is odd and $p \neq 2$;
(c) U is non-singular, $\dim U = 1$ and $p = 2$.

In (a) and (b), $M = \text{GO}(U) \times \text{GO}(U^\perp)$ is not contained in G^0. Similarly, in (c), $M = B_{n-1} \times 2$ (up to isomorphism) is not in G^0. These are the cases labelled (i), (ii) and (iii) in Table 4.

Table 4

M	Collection	Conditions
(i) $D_l D_{n-l}.2^2$	C_1	$1 \leq l < n/2$
(ii) $B_t B_{n-1} \times 2^2$	C_1	$0 \leq l < n/2, p \neq 2$
(iii) $B_{n-1} \times 2$	C_1	$p = 2$
(iv) $(2^l \times B_t^i).\text{Sym}_t$	C_2	$2n = (2l + 1)t, l \geq 1, t \geq 2$ even, $p \neq 2$
(v) $(D_t^1, 2^t).\text{Sym}_t$	C_2	$n = lt, l \geq 1, t \geq 2$
(vi) $A_{n-1}T_1.2$	C_3	n odd
(vii) $B_a D_b.2$	$C_4(i)$	$n = (2a + 1)b, a \geq 1, b \geq 2, p \neq 2$
Next suppose M is a $C_4(i)$ tensor product subgroup of type $\text{SO}(W_1) \otimes \text{SO}(W_2)$, where $W = W_1 \otimes W_2$, $\dim W_i = a_i$, $a_1 \neq a_2$ and $p \neq 2$. Note that

$$M = \text{GO}(W_1) \circ \text{GO}(W_2) = (\text{SO}(W_1) \circ \text{SO}(W_2)).(x_1, x_2)$$

is a central product and the x_i are certain involutions. More precisely, if a_1 and a_2 are both even, then we may assume that x_1 acts as a reflection on W_1 and centralizes W_2 (and vice versa for x_2). Therefore, $x_1, x_2 \in \text{SO}(W)$ and thus $M < G^0$. On the other hand, if a_1 is odd (so a_2 is even) then we can choose x_1 so that it acts as -1 on W_1 and centralizes W_2, and x_2 is defined as above. Here $x_1 \in G^0$ but $x_2 \notin G^0$, whence M is not contained in G^0. This is the case labelled (vii) in Table 4.

The other cases are similar. For instance, suppose M is a C_3-subgroup. Geometrically, M is the stabilizer of a decomposition $W = U_1 \oplus U_2$, where U_1 and U_2 are maximal totally singular subspaces of W, so $\dim U_1 = n$ and $M = \text{GL}(U_1).2$. Now G^0 contains an element interchanging U_1 and U_2 if and only if n is even, so M is contained in G^0 if and only if n is even, and this explains the parity condition on n recorded in Table 4 (see case (vi)).

Proposition 3.3 Let M be one of the subgroups of $G = D_n.2$ listed in Table 4, and assume $n \geq 3$ and $p \neq 2$. Set $V = V_{G^0}(\lambda)$, where one of the following holds:

(a) $\lambda = \lambda_{n-1} + \lambda_n$;

(b) $\lambda = \lambda_k$, where $1 < k < n - 1$.

Then V extends to a representation of G, and $V|_M$ is reducible.

Proof First observe that λ is fixed under the induced action of an involutory graph automorphism of G^0 on the set of T-weights of G (where T is a maximal torus of G^0), so the representation $V = V_{G^0}(\lambda)$ does indeed extend to a representation of $G = G^0.2$. We will deal in turn with each of the relevant cases in Table 4 (note that case (iii) is not applicable, since we are assuming that $p \neq 2$). Seeking a contradiction, let us assume that $V|_M$ is irreducible. By Clifford theory (see Sect. 2.3), the KM^0-composition factors of V are transitively permuted under the induced action of M/M^0.

Case 1. M is a C_1-subgroup of type $D_l D_{n-l}.2^2$.

Here $1 \leq l < n/2$ and $M^0 = M_1 M_2$, where $M_1 = D_l$ and $M_2 = D_{n-l}$. We will inspect the proof of [4, Lemma 3.2.3]. By [17], $V|_{M^0}$ is reducible and thus Clifford theory implies that there are either two or four KM^0-composition factors (since $|M:M^0| = 4$).

First assume $l = 1$, so $M = M^0(\tau_1, \tau_2)$ where τ_1 is an involution inverting the 1-dimensional torus M_1, and τ_2 is an involutory graph automorphism of $M_2 = D_{n-1}$. We may assume that $M_2 = (U_{\pm \alpha_2}, \ldots, U_{\pm \alpha_n})$. Note that M_1 acts as scalars on the KM^0-composition factors of V, each of which is an irreducible KM_2-module. If there are exactly two KM^0-composition factors of V then the argument in the proof of [4, Lemma 3.2.3] goes through unchanged (the details are given in the proof of [4, Lemma 3.2.2]), and the result follows immediately.

Similar reasoning applies if there are four composition factors. By Clifford theory, if ν is the highest weight of a KM^0-composition factor, then $\nu|_{M_2} = \lambda|_{M_2}$ or $(\tau_2 \cdot \lambda)|_{M_2}$.
(here \(v \mid_{M_2} \) denotes the restriction of \(v \) to a suitable maximal torus of \(M_2 \) contained in \(T \), and similarly for \(\lambda \mid_{M_2} \) and \((\tau_2 \cdot \lambda) \mid_{M_2} \). However, \(\mu = \lambda - \alpha_1 - \alpha_2 - \cdots - \alpha_{n-1} = -\lambda_1 + 2\lambda_n \) affords the highest weight of a \(KM^0 \)-composition factor in case (a), but clearly \(\mu \mid_{M_2} \) is not conjugate to \(\lambda \mid_{M_2} \). Case (b) is entirely similar, using \(\mu = \lambda - \alpha_1 - \cdots - \alpha_k \). Therefore, in both cases we have reached a contradiction.

Now assume \(l \geq 2 \). As noted in the proof of [4, Lemma 3.2.3], up to conjugacy we have

\[
\begin{align*}
M_1 &= \langle U \pm \alpha_1, \ldots, U \pm \alpha_{l-1}, U \pm (\alpha_{l-1}+2(\alpha_{l}+\cdots+\alpha_{n-2})+\alpha_{n-1}+\alpha_n) \rangle \\
M_2 &= \langle U \pm \alpha_{l+1}, \ldots, U \pm \alpha_n \rangle \quad \text{(2)}
\end{align*}
\]

and \(M = M^0 \langle \tau_1, \tau_2 \rangle \), where \(\tau_1 \) and \(\tau_2 \) act as involutory graph automorphisms on \(M_1 \) and \(M_2 \), respectively. Let \(\{\omega_1, \ldots, \omega_1\} \) and \(\{\omega_2, \ldots, \omega_{n-1}\} \) be the fundamental dominant weights corresponding to the above bases of the root systems of \(M_1 \) and \(M_2 \), respectively (here \(\tau_1 \) acts as a transposition on \(\{\omega_1, \ldots, \omega_1\} \), interchanging \(\omega_{1,l-1} \) and \(\omega_{1,l} \), and similarly \(\tau_2 \) acts on \(\{\omega_2, \ldots, \omega_{n-1}\} \) by interchanging the weights \(\omega_{2,n-l-1} \) and \(\omega_{2,n-l} \)). Note that if \(\mu = \sum_{i=1}^{n} b_i \lambda \) is a weight for \(T \) then

\[
\mu \mid_{M^0} = \sum_{i=1}^{l-1} b_i \omega_{1,i} + (b_{l-1} + 2b_{l} + \cdots + 2b_{n-2} + b_{n-1} + b_{n}) \omega_{1,l} + \sum_{i=1}^{n-l} b_i \omega_{2,i} \quad \text{(3)}
\]

Consider case (a). Here \(\mu = \lambda - \alpha_1 - \alpha_1 - \cdots - \alpha_{n-2} - \alpha_{n-1} \) affords the highest weight of a \(KM^0 \)-composition factor (see the proof of [4, Lemma 3.2.3]) and we calculate that

\[
\mu \mid_{M^0} = \omega_{1,l-1} + \omega_{1,l} + 2\omega_{2,n-l}, \quad \lambda \mid_{M^0} = 2\omega_{1,l} + \omega_{2,n-l} + \omega_{2,n-l}.
\]

In particular, we observe that

\[
\mu \mid_{M^0} \notin \{\lambda \mid_{M^0}, (\tau_1 \cdot \lambda) \mid_{M^0}, (\tau_2 \cdot \lambda) \mid_{M^0}, (\tau_1 \tau_2 \cdot \lambda) \mid_{M^0}\},
\]

so \(\mu \mid_{M^0} \) is not \(M \)-conjugate to \(\lambda \mid_{M^0} \). This is a contradiction.

In case (b) we have \(\lambda = \lambda_k \), where \(1 < k < n-1 \), and thus

\[
\lambda \mid_{M^0} = \begin{cases}
\omega_{1,k} & 1 < k < l - 1 \\
\omega_{1,l-1} + \omega_{1,l} & k = l - 1 \\
2\omega_{1,l} & k = l \\
2\omega_{1,l} + \omega_{2,k-l} & l < k < n - 1.
\end{cases}
\]

\(\copyright \) Springer
Set

\[\mu = \begin{cases}
\lambda - \alpha_k - \alpha_{k+1} - \cdots - \alpha_l & 1 < k < l \\
\lambda - \alpha_l & k = l \\
\lambda - \alpha_l - \alpha_{l+1} - \cdots - \alpha_k & l < k < n - 1.
\end{cases}\]

Then \(\mu\) affords the highest weight of a \(KM^0\)-composition factor, and in each case it is easy to check that \(\mu|_{M^0}\) is not \(M\)-conjugate to \(\lambda|_{M^0}\). For example, suppose \(1 < k < l - 1\). Then \(\mu = \lambda_{k-1} - \lambda_l + \lambda_{l+1}\) and thus \(\mu|_{M^0} = \omega_{1,k-1} + \omega_{2,1}\), which is not conjugate to \(\lambda|_{M^0} = \omega_{1,k}\). The other cases are similar.

Case 2. \(M\) is a \(C_1\)-subgroup of type \(B_l B_{n-l-1} \times 2^2\).

Here \(0 \leq l < n/2\) and \(M^0 = M_1 M_2\), where \(M_1 = B_l\) and \(M_2 = B_{n-l-1}\). Let \(\{\beta_1, \ldots, \beta_l\}\) and \(\{\gamma_1, \ldots, \gamma_{n-l-1}\}\) be bases of the root systems of \(M_1\) and \(M_2\), respectively, and let \(\{\eta_1, \ldots, \eta_l\}\) and \(\{v_1, \ldots, v_{n-l-1}\}\) be the corresponding fundamental dominant weights. Then up to conjugacy, we may assume that the simple root elements of \(M_1\) and \(M_2\) are as follows

\[x_{\beta_i}(t) = \begin{cases}
x_{\alpha_i}(t) & 1 \leq i < l \\
x_{\delta}(t)x_\epsilon(t) & i = l
\end{cases}\]

\[x_{\gamma_j}(t) = \begin{cases}
x_{\alpha_{l+j}}(t) & 1 \leq j < n - l - 1 \\
x_{\alpha_{n-1}}(t) x_{\alpha_n}(t) & j = n - l - 1
\end{cases}\]

for all \(t \in K\), where \(\delta = \alpha_l + \alpha_{l+1} + \cdots + \alpha_{n-1}\) and \(\epsilon = \alpha_l + \alpha_{l+1} + \cdots + \alpha_{n-2} + \alpha_n\) (see [21, Claim 8], for example). Note that \(V|_{M^0}\) is homogeneous.

First consider (a). In terms of the above notation, we calculate that \(\lambda|_{M^0} = 2\eta_l + 2v_{n-l-1}\). By considering the restrictions \(\alpha_i|_{M^0}\), we see that \(\lambda - \alpha_{n-1}\) and \(\lambda - \alpha_n\) both restrict to the weight \(\lambda|_{M^0} - \gamma_{n-1}\). This weight has multiplicity 1 in the \(KM^0\)-composition factor of \(V\) afforded by \(\lambda\). Moreover, one checks that \(\lambda\) is the only \(T\)-weight \(\mu\) in \(V\) such that \(\lambda|_{M^0} - \gamma_{n-1} \leq \mu|_{M^0}\) and \(\lambda|_{M^0} - \gamma_{n-1} \neq \mu|_{M^0}\), so there must be a \(KM^0\)-composition factor with highest weight \(\lambda|_{M^0} - \gamma_{n-1}\). However, this contradicts the homogeneity of \(V|_{M^0}\).

Now consider (b). Suppose \(k \leq l\), so \(l > 0\) and \(\lambda|_{M_2}\) is trivial. Now the weight \(\mu = \lambda - \alpha_k - \cdots - \alpha_l\) affords the highest weight of a \(KM^0\)-composition factor of \(V\), but \(\mu|_{M_2}\) is nontrivial and this contradicts the homogeneity of \(V|_{M^0}\). Now assume \(k > l\). Here \(\lambda|_{M^0} = 2\eta_l + v_{k-l-1} + v_{k-l+1}\). However, the weight \(\mu = \lambda - \alpha_l - \alpha_{l+1} - \cdots - \alpha_k\) affords the highest weight of a \(KM^0\)-composition factor of \(V\) and

\[\mu|_{M^0} = \begin{cases}
\eta_{l-1} + v_{k-l+2} & k < n - 2 \\
\eta_{l-1} + 2v_{n-l-1} & k = n - 2
\end{cases}\]

Once again, this contradicts the homogeneity of \(V|_{M^0}\).

Case 3. \(M\) is a \(C_2\)-subgroup of type \((2^t \times B_l^t).\text{Sym}_t\).

Here \(2n = (2l + 1)t\), \(l \geq 1\) and \(t \geq 2\) is even. Note that the conclusion to [4, Lemma 4.2.1] still applies in this situation.
First consider (a). If \(l = 1 \) then the argument in the third paragraph on [4, p. 48] applies, and we reach a contradiction via [4, Lemma 4.2.1]. Next suppose \((l, t) = (2, 2)\), so \(n = 5 \). Here we argue as in the third to last paragraph on [4, p. 50]. (Alternatively, in the notation of [4, Lemma 4.3.8], note that \(\dim V = \dim V_{D_5}(\lambda) = 210 \) and \(\lambda|_{M^0} = 2\omega_{1, 2} + 2\omega_{2, 2} \), so the \(KM^0 \)-composition factor afforded by \(\lambda \) has dimension \(10^2 = 100 \), which does not divide \(\dim V \).) Finally, if \(l \geq 2 \) and \((l, t) \neq (2, 2)\) then we can argue as in the third to last paragraph on [4, p. 52] (again, we get a contradiction via [4, Lemma 4.2.1]). Case (b) is similar and we omit the details.

Case 4. \(M \) is a \(C_2 \)-subgroup of type \((D_1^1.2^l).\Sym_3\).

Here \(n = lt, l \geq 1 \) and \(t \geq 2 \). As in the previous case, note that the conclusion to [4, Lemma 4.2.1] still applies.

If \(l = 1 \) then \(M = N_G(T) \) is the normalizer of a maximal torus and this case is ruled out as in the first paragraph in the proof of [4, Lemma 4.3.8]. Now assume \(l \geq 2 \). Consider case (a). If \(l \geq 3 \) then we can argue as on [4, p. 56] to rule out this case, and as noted in the penultimate paragraph on [4, p. 57], the same argument also applies if \(l = 2 \). Case (b) is very similar: if \(l \geq 3 \) then we argue as on [4, p. 55] (we repeatedly apply [4, Lemma 4.2.1]), and for \(l = 2 \) we note that the argument on [4, p. 57] goes through unchanged.

Case 5. \(M \) is a \(C_3 \)-subgroup of type \(A_{n-1}T_1.2 \).

Here \(n \geq 3 \) is odd. Set \(L = (M^0)' = A_{n-1} \) and note that \(V|_L \) has exactly two composition factors. We may assume that \(L = \langle U_{\pm\alpha_1}, \ldots, U_{\pm\alpha_{n-1}} \rangle \). As in the proof of [4, Lemma 3.2.2], let \(V_j \) be the sum of the \(T \)-weight spaces (\(T \) a maximal torus of \(G^0 = D_n \)) in \(V = V_{G^0}(\lambda) \) of the form \(\lambda - \sum_{i=1}^{n-1} c_i \alpha_i - j \alpha_n, j \in \mathbb{N}_0 \). Since \(V_j \) is \(L \)-stable, every \(T \)-weight of \(V \) is of this form, with \(j = 0 \) or \(1 \) (by [16, Theorem 1] and saturation; see [12, Sect. 13.4]). In particular, \(w_0\lambda = -(\tau \cdot \lambda) \) is of this form (where \(w_0 \) is the longest word in the Weyl group of \(G^0 \) and \(\tau \) is an involution of \(G^0 \) that interchanges the weights \(\lambda_{n-1} \) and \(\lambda_n \)). Therefore, if we write \(\lambda = \sum_{i=1}^{n} a_i \lambda_i \) then

\[2\lambda - (a_{n-1} - a_n)(\lambda_{n-1} - \lambda_n) = \sum_{i=1}^{n} c_i \alpha_i \]

and \(c_n \in \{0, 1\} \). By expressing the \(\lambda_i \) in terms of the \(\alpha_i \), we deduce that either \(\lambda = \lambda_1 \), or \(n = 3 \) and \(\lambda = \lambda_2 \) or \(\lambda_3 \). This immediately eliminates cases (a) and (b).

Case 6. \(M \) is a \(C_4(i) \)-subgroup of type \(B_aD_b.2 \).

Here \(n = (2a + 1)b \) and \(M^0 = M_1M_2 \) is semisimple, where \(M_1 \) is of type \(B_a \) and \(M_2 \) is of type \(D_b \). Note that the embedding of \(M \) in \(G \) is via a tensor product action on the natural \(KG \)-module \(W \). Write \(M = M^0(\sigma) \), where \(\sigma \) induces a graph automorphism on \(M_2 \) and centralizes \(M_1 \).

Let \(\Pi(M_1) = \{ \beta_1, \ldots, \beta_a \} \) and \(\Pi(M_2) = \{ \gamma_1, \ldots, \gamma_b \} \) be bases of the root systems \(\Sigma(M_1) \) and \(\Sigma(M_2) \), respectively. Now \(W \) restricts to \(M_1 \) as \(2b \) copies of the natural module for \(M_1 \), and hence up to conjugacy, we may assume that \(M_1 \) lies in the subgroup

\[\langle U_{\pm\alpha_i} | (2a + 1) j + 1 < i < (2a + 1)(j + 1), 0 \leq j < b \rangle, \]
the derived subgroup of an $A_{2a} \times \cdots \times A_{2a}$ (b copies) Levi subgroup of G. The projection of M_1 into each of the factors of this group is the natural embedding of a group of type B_a in A_{2a}. We may assume that

$$\alpha_{(2a+1)j+i}|_{M^0} = \beta_i \quad \text{for all } 0 \leq j < b, 1 \leq i \leq a$$

and

$$\alpha_{(2a+1)j+a+i}|_{M^0} = \beta_{a-i+1} \quad \text{for all } 0 \leq j < b, 1 \leq i \leq a,$$

where $\alpha|_{M^0}$ denotes the restriction of α to a maximal torus $T_{M^0} < T$ of M^0.

Let P be the parabolic subgroup of M_0, which contains the opposite Borel subgroup, with Levi factor $M_1T_{M^0}$. We may assume that P is contained in the parabolic subgroup of G, which contains the opposite Borel subgroup of G, whose Levi factor has derived subgroup as given above. By comparing the flags of commutator subspaces of W with respect to the two unipotent radicals, we are able to determine the restrictions of sufficiently many T-weights to T_{M^0} in order to deduce the restrictions of the remaining simple roots. We get

$$\alpha_{(2a+1)j}|_{M^0} = \gamma_j - \beta_0, \quad \alpha_{(2a+1)b}|_{M^0} = \gamma_b - \gamma_{b-1} - (\beta_0 - \beta_1),$$

where $1 \leq j < b$ and $\beta_0 = 2 \sum_{i=1}^a \beta_i$.

By [17], $V|_{M^0}$ is reducible, so Clifford theory implies that V has precisely two KM_1-composition factors, with highest weights $\lambda|_{M^0}$ and $(\sigma \cdot \lambda)|_{M^0}$. In particular, if we set $T_{M_1} = T_{M^0} \cap M_1$, then every KM_1-composition factor of V has highest weight $\lambda|M_1$, whence every T_{M_1}-weight of V is of the form

$$\lambda|M_1 - \sum_{j=1}^a n_j \beta_j, \quad \text{for some } n_j \in \mathbb{N}_0.$$ (4)

However, in case (a) we find that the weight $\lambda - \alpha_a$ restricts to $\lambda|M_1 + \beta_0 - \beta_1$, which contradicts (4). In (b), choose $1 \leq i < b$ such that $|(2a+1)i-k|$ is minimal, and set $\mu = \lambda - a_k - \alpha_{k+1} - \cdots - \alpha_{(2a+1)i}$ if $k \leq (2a+1)i$, otherwise set $\mu = \lambda - \alpha_{(2a+1)i} - \alpha_{(2a+1)i+1} - \cdots - \alpha_k$. Then

$$\mu|M_1 = (\lambda - r - (\gamma_i - \beta_0))|_{M_1} = (\lambda - r + \beta_0)|_{M_1},$$

where either $r = 0$ or r is a positive root of M_1. Once again, this contradicts (4).

This completes the proof of Proposition 3.3. \qed

Proposition 3.4 Let M be one of the subgroups of $G = D_n.2$ listed in Table 4, and assume $p = 2$. Set $V = V_{G^0}(\lambda)$, where

$$\lambda = \sum_{i=1}^{n-2} a_i \lambda_i + a_{n-1}(\lambda_{n-1} + \lambda_n)$$
is p-restricted. Assume that \(V \) is nontrivial and \(V \neq W, W^* \). Then \(V \) extends to a representation of \(G \), and \(V|_M \) is reducible.

\[\]

Proof As before, \(\lambda \) is fixed by an involutory graph automorphism of \(G^0 \), so \(V \) extends to a representation of \(G = G^0.2 \). Seeking a contradiction, let us assume that \(V|_M \) is irreducible. There are four cases to consider.

Case 1. \(M \) is a \(C_1 \)-subgroup of type \(D_l D_{n-l}.2^2 \).

Here \(M^0 = M_1 M_2 \), where \(M_1 = D_l \), \(M_2 = D_{n-l} \) and \(1 \leq l < n/2 \). First assume \(l = 1 \). As in the proof of the previous proposition, we may assume that \(M_2 = \{ U_{\pm \alpha_2}, \ldots, U_{\pm \alpha_n} \} \), and by arguing as in the proof of [4, Lemma 3.2.3] we quickly reduce to the case where \(V|_{M^0} \) has exactly four composition factors. Let \(k \) be minimal such that \(a_k \neq 0 \). Then \(\lambda - \alpha_1 - \cdots - \alpha_k \) affords the highest weight of a \(KM_2 \)-composition factor of \(V \), which is not conjugate (via a graph automorphism of \(M_2 \)) to the composition factor afforded by \(\lambda \). This contradiction eliminates the case \(l = 1 \).

Now assume \(l \geq 2 \). As before, \(M = M^0 \langle \gamma_1, \gamma_2 \rangle \), where \(\gamma_1 \) and \(\gamma_2 \) act as involutory graph automorphisms on \(M_1 \) and \(M_2 \), respectively, and we may assume that \(M_1 \) and \(M_2 \) are as given in (2). Let \(\{ \omega_{1,1}, \ldots, \omega_{1,l} \} \) and \(\{ \omega_{2,1}, \ldots, \omega_{2,n-l} \} \) be the fundamental dominant weights corresponding to the bases \(\Pi(M_1) \) and \(\Pi(M_2) \) in (2), respectively. In view of (3), it is easy to see that \(\lambda|_{M^0} = (\gamma_2 \cdot \lambda)|_{M^0} \) and

\[
(\gamma_1 \cdot \lambda)|_{M^0} = (\gamma_1 \gamma_2 \cdot \lambda)|_{M^0} = \lambda|_{M^0} + (2(a_l + \cdots + a_{n-2}) + a_{n-1} + a_n) (\omega_{1,1} - \omega_{1,l}).
\]

Now, by arguing as in the proof of [4, Lemma 3.2.3] we quickly reduce to the case \(\lambda = a_{n-1} (\lambda_{n-1} + \lambda_n) \). By inspecting (2), we see that \(\mu = \lambda - \alpha_l - \alpha_{l+1} - \cdots - \alpha_{n-2} - \alpha_{n-1} \) affords the highest weight of a \(KM_2 \)-composition factor, but this is not conjugate to \(\lambda|_{M^0} \) since \(\mu|_{M^0} = \lambda|_{M^0} + \omega_{1,l-1} - \omega_{1,l} - \omega_{2,n-l-1} + \omega_{2,n-l} \).

Case 2. \(M \) is a \(C_2 \)-subgroup of type \(B_{n-1} \times 2 \).

Write \(M = M^0 \times \langle z \rangle \). By [17], \(V|_{M^0} \) is reducible and thus \(V|_{M^0} = V_1 \oplus V_2 \), where \(V_1 \) and \(V_2 \) are irreducible \(KM_0 \)-modules. Since \(z \) is central, it follows that \(V|_{M^0} \) is homogeneous, but this is ruled out by Proposition 2.9.

Case 3. \(M \) is a \(C_2 \)-subgroup of type \((D_i^j \cdot 2^i).\text{Sym}_t \).

Here \(n = lt \), where \(l \geq 1 \) and \(t \geq 2 \). The case \(l = 1 \) can be ruled out by arguing as in the first paragraph in the proof of [4, Lemma 4.3.8]. If \(l \geq 3 \) then by arguing as in the proof of [4, Lemma 4.3.8] (see [4, p. 55]) we reduce to the case \(\lambda = \lambda_{n-1} + \lambda_n \), and this possibility is ruled out by the argument in the penultimate paragraph on [4, p. 56]. Finally, if \(l = 2 \) then we quickly get down to the cases \(\lambda \in \{ \lambda_1 + \lambda_{n-1} + \lambda_n, \lambda_{n-1} + \lambda_n \} \). The case \(\lambda = \lambda_{n-1} + \lambda_n \) is ruled out as in *loc. cit.*, and the other case is eliminated by arguing as in the final paragraph in the proof of [4, Lemma 4.3.8].

Case 4. \(M \) is a \(C_2 \)-subgroup of type \(A_{n-1} T_1.2 \).

Here \(n \geq 3 \) is odd and the argument given in the analysis of Case 5 in the proof of Proposition 3.3 can be applied.

This completes the proof of Proposition 3.4. □
4 Geometric subgroups: the connected case

Suppose G, H and $V = V_G(\lambda)$ satisfy the conditions in Hypothesis 1.1. In this section and the next, we will establish Theorem 1.4 when H is contained in a geometric maximal subgroup M of G, excluding the special situation described in part (b) of Theorem 1.4. Assume $V|_H$ is irreducible, so H^0 is reductive by Lemma 2.7. Our first task is to determine the possibilities for the irreducible triple (G, M, V). If M is connected then we can read off the relevant cases by applying [17, Theorem 1]; the cases that arise are recorded in Table 5. Similarly, if M is disconnected, we can appeal to the main theorem of [4], which yields the list of cases given in Table 6 (in the first line of the table, T denotes a maximal torus of G).

Remark 4.1 It is worth noting that the cases listed in [17, Table 1] are recorded in terms of the image of the underlying representation $\varphi : G \to GL(V)$, so Seitz’s table gives $(\varphi(G), \varphi(M), V)$, rather than (G, M, V). For instance, at the level of subgroups, the cases labelled S_3 and S_4 in [17, Table 1] correspond to irreducible triples with $(G, M) = (C_3, G_2)$ or (B_3, G_2), but only the former possibility is listed in [17, Table 1] because in both cases the image $\varphi(G)$ is of type C_3. We also observe that there are certain maximal rank configurations arising in [17, Theorem 4.1] which are not listed [17, Table 1]. For example, referring to the case labelled MR1 in [17, Table 1] (so $p = 3$), Theorem 4.1 of [17] implies that the short (respectively, long) root A_2 in G_2 acts irreducibly on any p-restricted G_2-module whose highest weight has support on the short (respectively, long) roots, but only the former is listed in the table. In addition, we also note that the highest weights in [17, Table 1] are only given up to conjugacy by a graph automorphism, and we adopt the same convention in Table 5. Note that if the graph automorphism introduces a Frobenius twist on the module, then we will list the irreducible action on the corresponding p-restricted module.

Remark 4.2 As noted in Remark 1.2, if W denotes the natural $K G$-module then any irreducible triple (G, M, V) with $V = W^\tau$ (for some $\tau \in Aut(G)$) is also excluded in [17, Table 1]. In particular, Seitz does not list the cases $(G, M) = (D_4, A_2)$ (with $p \neq 3$) and (B_2, A_1) (p $\neq 2, 3$), with V a spin module for G. For example, the spin module for B_2 is 4-dimensional, and it corresponds to the natural symplectic representation of C_2.

Remark 4.3 The triples of the form (G, M, V), where $(G, p) = (B_n, 2)$ and M is a disconnected geometric maximal subgroup, are not stated explicitly in [4], but they are easily determined from the relevant list of cases in [4, Table 1] for the corresponding dual group of type C_n. The only possibilities are $M = B_1^t$.Sym $(a C_2$-subgroup) with $\lambda = \lambda_n$, or $M = D_{n,2}$ and $\lambda = \lambda_n$ or $\sum_{i < j} a_i\lambda_j$. Note that G acts reducibly on W, so there are no triples involving non-geometric subgroups.

Remark 4.4 Let us make a few comments on the cases in Tables 5 and 6:

(a) In case (ii) in Table 5 we have $G = A_n$ and $M = C_m$, where $n = 2m - 1$ and $m \geq 2$. Moreover, $\lambda = a\lambda_k + b\lambda_{k+1}$, where $1 \leq k < m$, $a + b = p - 1 > 1$ and $a \neq 0$ if $k = m - 1$. In particular, $p \neq 2$.

\[\text{Springer} \]
Table 5 M is a connected geometric subgroup

G	M	Collection	λ	Conditions	
(i)	A_n	C_m	C_6	$k\lambda_1, k \geq 2$	$n = 2m - 1, m \geq 2, p \neq 2$
(ii)	C_m	C_6		See Remark 4.4(a)	$n = 2m - 1, m \geq 2$
(iii)	B_m	C_6		$\lambda_k, 1 < k < m$	$n = 2m, m \geq 3, p \neq 2$
(iv)	B_m	C_6		λ_m	$n = 2m, m \geq 2, p \neq 2$
(v)	D_n	B_m	C_1	$k\lambda_{n-1}, k\lambda_n, k \geq 2$	$n = m + 1, m \geq 3, p \neq 2$
(vi)	B_m	C_1		See Remark 4.4(c)	$n = m + 1, m \geq 3, p \neq 2$

Table 6 M is a disconnected geometric subgroup

G	M	Collection	λ	Conditions	
(i)	A_n	$N_G(T)$	C_2	$\lambda_k, 1 < k < n$	
(ii)	A_n	C_4		λ_2, λ_{n-1}	$n = m(m + 2), p \neq 2, m \geq 2$
(iii)	D_m	C_6		$\lambda_k, 1 < k < n$	$n = 2m - 1, p \neq 2$
(iv)	B_n	C_4		See Remark 4.4(e)	
(v)	C_n	C_2		$\sum_{i=1}^{n-1} a_i\lambda_i$	$p = 2$
(vi)	D_n	C_2		$\sum_{i=1}^{n-1} a_i\lambda_i$	$p = 2$
(vii)	D_n	C_4		$\lambda_1 + \lambda_{n-1}, \lambda_1 + \lambda_n$	$n = 2m, m \geq 3$ odd, $p = 2$
(ix)	B_4	C_2		λ_4	$p \neq 3$
(x)	C_4	$C_2 \cdot \text{Sym}_3$	C_4	λ_2, λ_3	$p \neq 2$ (if $p \neq 2, 3$ if $\lambda = \lambda_3$)
(xi)	D_4	$C_2 \cdot \text{Sym}_3$	C_4	$\lambda_1 + \lambda_4, \lambda_3 + \lambda_4$	$p = 2$
(xii)	D_8	$C_2 \cdot \text{Sym}_4$	C_4	λ_7	$p \neq 3$
(xiii)	C_2	C_4		λ_7	$p \neq 5$

(b) Note that H is a decomposition subgroup in case (v) of Table 5, so we may assume that $k \geq 2$ (if $k = 1$ then V is a spin module).

(c) In case (vi) in Table 5 we have $G = D_n, M = B_m$ (with $m = m + 1 \geq 4, p \neq 2$) and $\lambda = b\lambda_k + a\lambda_{n-1}$, where $1 \leq k < n - 1, ab \neq 0$ and $a + b + n - 1 - k \equiv 0$(mod$p$).

(d) In Table 5, following [17, Table 1], for G of type A_n we record the highest weight λ up to conjugacy by a graph automorphism.

(e) Consider case (iv) in Table 6, where $G = B_n$ and $M = D_n \cdot 2$ is a C_1-subgroup. Here $p \neq 2$ and the conditions on the highest weight $\lambda = \sum_{i=1}^{n} a_i\lambda_i$ are given in part (b) of Remark 1.8(v). Since H is a decomposition subgroup, we may assume that $a_i \neq 0$ for some $i < n$.

(f) In case (vi) in Table 6 we have $G = C_n$ and $M = C_m \cdot 2$ is a C_2-subgroup, where $n = 2m$. Moreover, $\lambda = \lambda_{n-1} + a\lambda_n$, where $0 \leq a < p$ and $2a + 3 \equiv 0$(modp). In particular, $p \neq 2$.
(g) In cases (xi), (xii) and (xiii) we record M and V up to $\text{Aut}(G)$-conjugacy. For instance, in case (xi), if \tilde{M} denotes the image of M under an appropriate triality graph automorphism of G then $(G, \tilde{M}, V_G(\lambda_1 + \lambda_3))$ is an irreducible triple.

The main result of this section is the following.

Theorem 4.5 Let G, H and V be given as in Hypothesis 1.1, and assume $H < M < G$ where M is a connected geometric maximal subgroup of G. Then $V|_H$ is reducible.

Proof Write $V = V_G(\lambda)$. The possibilities for (G, M, V) are given in Table 5; in each case M is a simple group of rank m. Let $\{\eta_1, \ldots, \eta_m\}$ be a set of fundamental dominant weights for M. Seeking a contradiction, let us assume that $V|_H$ is irreducible.

First consider case (i) in Table 5 (this is the case labelled I1 in [17, Table 1]). Here $G = A_n$ and $M = C_n$ is a C_n-subgroup of G, where $n = 2m - 1$, $m \geq 2$ and $p \neq 2$ (this is the natural embedding $\text{Sp}(W) < \text{SL}(W)$). Let $\lambda = k\lambda_1$, $k \geq 2$ and $V|_M = V_M(k\eta_1)$ (see [17, Table 1]). Let J be a maximal subgroup of M containing H, so

\[H \leq J < M < G. \]

We consider the irreducible triple $(M, J, V_M(k\eta_1))$. If $V|_{J^0}$ is irreducible then the triple $(M, J^0, V_M(k\eta_1))$ has to be in [17, Table 1], but it is easy to check that there are no compatible examples. Therefore J is disconnected and $V|_{J^0}$ is reducible. In this situation, $(M, J, V_M(k\eta_1))$ must be one of the triples arising in the main theorems of [3,4], but once again we find that there are no such triples. We conclude that $V|_H$ is reducible in case (i).

The other cases in Table 5 are very similar, although some extra care is required in case (vi). Here $G = D_n$, $M = B_{n-1}$ is a C_1-subgroup (we can view M as the stabilizer in G of a 1-dimensional non-degenerate subspace of W), and $\lambda = b\lambda_k + a\lambda_{n-1}$ satisfies the following conditions:

\[1 \leq k < n - 1, \quad a, b \neq 0, \quad a + b + n - 1 - k \equiv 0(\text{mod} \ p) \tag{5} \]

(see case IV$'_1$ in [17, Table 1]). We note that $V|_M = V_M(b\eta_k + a\eta_{n-1})$. As before, let J be a maximal subgroup of M containing H, and consider the irreducible triple $(M, J, V_M(b\eta_k + a\eta_{n-1}))$.

If $V|_{J^0}$ is irreducible then by inspecting [17, Table 1] we see that the only possibility is the case labelled III$'_1$, where $M = B_3$ (so $n = 4$), $J = G_2$, $k = 2$ and $a + 2b + 2 \equiv 0(\text{mod} \ p)$. By (5), we also have $a + b + 1 \equiv 0(\text{mod} \ p)$, so p divides $b + 1$, and thus p divides a, which is a contradiction since the highest weight $\lambda = b\lambda_k + a\lambda_{n-1}$ is p-restricted. Therefore J is disconnected and $V|_{J^0}$ is reducible. We are now in a position to apply the main theorems in [3,4]. We deduce that the only possibility is the configuration found by Ford, with $J = D_{n-1,2}$ (see the case labelled U2_2 in [8, Table II]; also see Remark 4.4(e)). Since the highest weight of $V|_M$ is $b\eta_k + a\eta_{n-1}$, we must have $a = 1$ and $2a \equiv -2(n - 1 - k) - 1(\text{mod} \ p)$. But it is easy to see that this congruence condition is incompatible with the congruence condition in (5). □
Table 7 The irreducible triples \((G, H, V)\) in Theorem 5.1

			Conditions
		\(\lambda\)	\(1 < k < n\)
			\(X < \text{Sym}_{n+1}\) \(\ell\)-transitive, \(\ell = \min\{k, n + 1 - k\}\)
\(A_n\)	\(T.X\)	\(\lambda_k\)	\(p = 2, X = Z_3\) or \(\text{Sym}_3\)
\(B_4\)	\(B_1^1.X\)	\(\lambda_3\)	\(p = 2, X = Z_3\) or \(\text{Sym}_3\)
\(C_4\)	\(C_1^1.X\)	\(\lambda_3\)	\(p = 2, X = Z_3\) or \(\text{Sym}_3\)
\(C_4\)	\(C_1^3.Z_3\)	\(\lambda_2, \lambda_3\)	\(p \neq 2 (p \neq 2, 3 \text{ if } \lambda = \lambda_3)\)
\(D_4\)	\(C_1^3.Z_3\)	\(\lambda_1 + \lambda_4, \lambda_3 + \lambda_4\)	\(p = 2\)
\(D_8\)	\(C_1^4.X\)	\(\lambda_7\)	\(p \neq 3, X < \text{Sym}_4\) is transitive

5 Geometric subgroups: the disconnected case

The main result of this section is the following, which completes the proof of Theorem 1.4 when \(H\) is contained in a maximal geometric subgroup of \(G\).

Theorem 5.1 Let \(G, H\) and \(V = V_G(\lambda)\) be given as in the statement of Theorem 1.4, and assume that \(H < M < G\) where \(M\) is a disconnected geometric maximal subgroup of \(G\). Then \(V|_H\) is irreducible if and only if \((G, H, V)\) is one of the cases recorded in Table 7.

Remark 5.2 Suppose that \(H < M < G\), where \((G, M, V)\) is the case labelled (vii) in Table 6, so \(G = C_n, M = D_{n.2}\) and \(p = 2\). In Proposition 5.19 we deduce that \(V|_H\) is irreducible if and only if \((n, p) = (4, 2), \lambda = \lambda_3\) and \(H = C_1^3.X\) with \(X = Z_3\) or \(\text{Sym}_3\), and so this establishes Theorem 5.1 in this situation. The result for case (vii) will be obtained from the result for (v) via an isogeny. That is, \(V|_H\) is irreducible if and only if \((n, p) = (4, 2), \lambda = \lambda_3\) and \(H = B_3^1.Z_3\) or \(B_3^1.\text{Sym}_3\). Therefore, for the remainder of this section we will exclude case (v) in Table 6 from our analysis.

We begin with a couple of preliminary lemmas. Our first result will play an important role in the analysis of cases (vii), (x), (xi) and (xii) in Table 6.

Lemma 5.3 Let \(G\) be a simple classical algebraic group with natural module \(W\), and let \(H\) be a closed positive-dimensional subgroup of \(G\) such that \(W|_H^0\) is reducible. Then there exists a geometric maximal subgroup \(M\) of \(G\) such that:

(i) \(H \leq M\), and

(ii) \(M\) does not normalize any decomposition of the form \(W = W_1 \otimes \cdots \otimes W_t\), where \(t \geq 3\) and the \(W_i\) are equidimensional.

Proof This follows from the proof of [14, Theorem 1’]. In particular, we refer the reader to the proofs of Lemmas 3.1, 3.2 and 3.3 in [14].

We will also need the following lemma when dealing with cases (ii) and (viii) in Table 6.

Lemma 5.4 Let \(G = A_n\) or \(D_n\), and set \(\mu_2 = \gamma \cdot \mu_1\), where \(\mu_1 = \sum_i a_i \lambda_i\) is a \(T\)-weight of \(G\) and \(\gamma\) is an involutory graph automorphism of \(G\). If we write \(\mu_2 - \mu_1 = \sum_i c_i \alpha_i\), then each \(c_i\) is non-negative if and only if \(\mu_1 = \mu_2\).
Proof First assume $G = A_n$. We may assume that γ interchanges the fundamental dominant weights λ_i and λ_{n+1-i} $(1 \leq i \leq n/2)$, so $\mu_2 = \sum_i a_{n+1-i} \lambda_i$. Set $\ell = \lfloor n/2 \rfloor$. Since

$$\lambda_i = \frac{1}{n+1} \left(\sum_{j=1}^{i-1} j(n+1-i)\alpha_j + \sum_{j=i}^{n} i(n+1-j)\alpha_j \right)$$

(see [12, Table 1], for example) it follows that

$$\mu_2 - \mu_1 = \frac{1}{n+1} \sum_{i=1}^{n} (a_{n+1-i} - a_i) \left(\sum_{j=1}^{i-1} j(n+1-i)\alpha_j + \sum_{j=i}^{n} i(n+1-j)\alpha_j \right)$$

$$= \frac{1}{n+1} \left[\sum_{j=1}^{n} (n+1-j)\alpha_j \sum_{i=1}^{j} i(a_{n+1-i} - a_i) + \sum_{j=1}^{n-1} j\alpha_j \sum_{i=j}^{n} (n+1-i)(a_{n+1-i} - a_i) \right];$$

so for $1 \leq j \leq \ell$ we have

$$c_j = \frac{1}{n+1} (n+1-2j) \sum_{i=1}^{j-1} i(a_{n+1-i} - a_i) + \frac{1}{n+1} \sum_{i=j}^{\ell} (n+1-2i)(a_{n+1-i} - a_i)$$

and if $\ell + 1 \leq j \leq n$ then

$$c_j = \frac{1}{n+1} (n+1-2j) \sum_{i=1}^{n-j} i(a_{n+1-i} - a_i) + \frac{1}{n+1} (n+1-j)$$

$$\times \sum_{i=n+1-j}^{\ell} (n+1-2i)(a_i - a_{n+1-i}).$$

We deduce that $c_j + c_{n+1-j} = 0$ for all $1 \leq j \leq \ell$. In addition, if n is odd then $c_{\ell+1} = 0$. The result follows.

The case $G = D_n$ is very similar. Here we may assume that γ interchanges λ_{n-1} and λ_n, so $\mu_2 - \mu_1 = (a_n - a_{n-1})(\lambda_{n-1} - \lambda_n)$ and the desired result follows. \qed

For the remainder of this section, we will assume that (G, H, V) is given as in the statement of Theorem 1.4, so the conditions in Hypothesis 1.1 are satisfied. We will deal with each of the cases in Table 6 in turn, excluding case (v) as explained in Remark 5.2.
5.1 Proof of Theorem 5.1, part I

In this section, we will establish Theorem 5.1 in the case where \(H < M < G \) and \((G, M, V)\) is one of the cases labelled (i), (ii), (iii), (iv), (vi), (viii), (ix) or (xiii) in Table 6. The remaining cases, labelled (vii), (x), (xi) and (xii), will be handled in Sect. 5.2.

Proposition 5.5 Suppose \(H < M < G \) and \((G, M, V)\) is the case labelled (i) in Table 6, so \(G = A_n, M = N_G(T) = T.\operatorname{Sym}_{n+1} \) is the normalizer of a maximal torus \(T \) of \(G \), and \(V = V_G(\lambda_k) \) with \(1 < k < n \). Then \(V|_H \) is irreducible if and only if \(H = T.X \) and \(X < \operatorname{Sym}_{n+1} \) is \(\ell \)-transitive, where \(\ell = \min\{k, n+1-k\} \).

Proof Here \(V = V_G(\lambda_k) = \Lambda^k(W) \) is the \(k \)-th exterior power of the natural \(KG \)-module \(W \), and by duality we may assume that \(1 < k \leq (n+1)/2 \). Let \(\mathcal{W}(G) = N_G(T)/T = \operatorname{Sym}_{n+1} \) be the Weyl group of \(G \).

Set \(S = H^0 \) and note that \(S \leq T \) is a subtorus. Let \(\Lambda_S(W) \) and \(\Lambda_S(V) \) be the set of \(S \)-weights of \(W \) and \(V \), respectively, so

\[
W|_S = \bigoplus_{\mu \in \Lambda_S(W)} W_{\mu}, \quad V|_S = \bigoplus_{\mu \in \Lambda_S(V)} V_{\mu}
\]

where \(W_{\mu} \) is the \(\mu \)-weight space of \(W \), and similarly \(V_{\mu} \) is the \(\mu \)-weight space of \(V \). There is a natural action of \(N_G(S) \) on \(\Lambda_S(W) \) and \(\Lambda_S(V) \) given by \((x \cdot \mu)(s) = \mu(xsx^{-1})\). In particular, \(N_G(S) \) permutes the \(S \)-weight spaces on \(W \) and \(V \).

First assume \(S = T \). Here the \(S \)-weight spaces on \(W \) and \(V \) are 1-dimensional, and \(V|_H \) is irreducible if and only if \(H/T \leq \mathcal{W}(G) \) acts transitively on \(\Lambda_S(V) \). This is equivalent to the condition that \(H/T \) is a \(k \)-transitive subgroup of \(\mathcal{W}(G) = \operatorname{Sym}_{n+1} \).

Indeed, we note that the \(S \)-weight vectors on \(V \) are of the form \(w_{i_1} \wedge \cdots \wedge w_{i_k} \), where \(i_j \) are distinct and \(\{w_1, \ldots, w_{n+1}\} \) is a basis of \(W \) consisting of \(S \)-weight vectors. This gives the desired result when \(S = T \), so for the remainder let us assume that \(S \) is a proper subtorus of \(T \).

Seeking a contradiction, suppose \(V|_H \) is irreducible. Now \(H \leq N_G(S) \) (since \(S = H^0 \)) and thus \(V|_{N_G(S)} \) is irreducible. In particular, \(N_G(S) \) acts irreducibly on \(W \) (otherwise \(N_G(S) \) lies in a parabolic subgroup of \(G \), which would imply \(V|_H \) is reducible), so \(N_G(S) \) must transitively permute the set of \(S \)-weight spaces on \(W \). Therefore, these \(S \)-weight spaces are equidimensional, whence \(N_G(S) \leq J < G \), where \(J \) is a \(C_2 \)-subgroup of \(G \). More precisely, \(J \) is the normalizer in \(G \) of the direct sum decomposition \(\bigoplus_{\mu \in \Lambda_S(W)} W_{\mu} \). If we now consider the irreducible triple \((G, J, V)\) then the main theorem of [4] implies that the \(S \)-weight spaces on \(W \) are 1-dimensional, so \(S \) is a regular torus. In particular,

\[
S \leq C_G(S) = T \leq N_G(S) \leq N_G(T) = M
\]

and we define

\[
\mathcal{W}(S) := N_G(S)/C_G(S) = N_G(S)/T \leq N_G(T)/T = \mathcal{W}(G).
\]
As noted above, $\mathcal{W}(S)$ permutes the S-weight spaces V_μ, and the irreducibility of $V|_{N_G(S)}$ implies that this action is transitive. In particular, the S-weight spaces on V are equidimensional. In fact, we claim that they are 1-dimensional. To see this, let d denote the dimension of S and fix a basis $\{w_1, \ldots, w_{n+1}\}$ of W comprising S-weight vectors. Then there exist integers $c_{i,j}, 1 \leq i \leq d$, $1 \leq j \leq n+1$ such that

$$(s_1, \ldots, s_d) \cdot w_j = \left(s_1^{c_{1,j}} s_2^{c_{2,j}} \cdots s_d^{c_{d,j}}\right) w_j$$

for all $(s_1, \ldots, s_d) \in (K^*)^d \cong S$ and all $1 \leq j \leq n+1$. Without loss of generality, we may assume that the w_j are ordered so that the d-tuples

$$(c_{1,1}, \ldots, c_{1,d}), \ldots, (c_{n+1,1}, \ldots, c_{n+1,d}) \quad (6)$$

are in lexicographic order. (Note that these d-tuples are distinct since the S-weight spaces on W are 1-dimensional.) Then $w_1 \wedge \cdots \wedge w_k \in V$ is an S-weight vector of weight

$$\sum_{i=1}^k s_i^{c_{i,1}} \sum_{i=1}^k s_i^{c_{i,2}} \cdots \sum_{i=1}^k s_i^{c_{i,d}}.$$

In view of the lexicographic ordering of the tuples in (6), it follows that this S-weight has multiplicity 1, and this justifies the claim.

As previously observed, the irreducibility of $V|_{N_G(S)}$ now implies that $\mathcal{W}(S) \leq \text{Sym}_{n+1}$ is k-transitive, so to complete the proof of the proposition, it suffices to show that $\mathcal{W}(S)$ is not 2-transitive.

To see this, first let c be the codimension of S in T and let $X(T) \cong \mathbb{Z}^n$ and $X(S) \cong \mathbb{Z}^{n-c}$ be the corresponding character groups. The sublattice S^\perp is defined by

$$S^\perp = \{\gamma \in X(T) \mid \gamma|_{S} = 1\} \cong \mathbb{Z}^c$$

and we set

$$X(T)_\mathbb{R} = X(T) \otimes \mathbb{Z} \mathbb{R}, \quad S_\mathbb{R}^\perp = S^\perp \otimes \mathbb{Z} \mathbb{R}.$$

Now $\mathcal{W}(G)$ acts faithfully on $X(T)_\mathbb{R}$, and $\mathcal{W}(S) = N_G(S)/T$ stabilizes the c-dimensional subspace $S_\mathbb{R}^\perp$. Let P be the pointwise stabilizer of $S_\mathbb{R}^\perp$ in $\mathcal{W}(G)$. By [15, Corollary A.29], P is a parabolic subgroup of $\mathcal{W}(G) = \text{Sym}_{n+1}$, so it is a direct product of smaller degree symmetric groups. In particular, P is intransitive. Finally, we observe that $\mathcal{W}(S)$ normalizes P (since it stabilizes $S_\mathbb{R}^\perp$), so the intransitivity of P implies that $\mathcal{W}(S)$ is either intransitive, or transitive and imprimitive. In particular, $\mathcal{W}(S)$ is not 2-transitive. \hfill \Box

Proposition 5.6 Suppose $H < M < G$ and (G, M, V) is the case labelled (iv) in Table 6. Then $V|_H$ is reducible.
Proof Here $G = B_n$ and $M = D_{n,2}$, where $n \geq 3$ and $p \neq 2$. We have

$$H < M = D_{n,2} < G = B_n$$

and $V = V_G(\lambda)$, where the highest weight $\lambda = \sum_i a_i \lambda_i$ satisfies the conditions recorded in Remark 4.4(e). This is the case labelled U_2 in [8, Table II]. In particular, we note that $a_n = 1$ and $V|_{M^0}$ has exactly two composition factors, say $V|_{M^0} = V_1 \oplus V_2$, where V_i has highest weight μ_i, and

$$\mu_1 = \sum_{i=1}^{n-2} a_i \eta_i + a_{n-1} \eta_{n-1} + (a_{n-1} + 1) \eta_n,$$

$$\mu_2 = \sum_{i=1}^{n-2} a_i \eta_i + (a_{n-1} + 1) \eta_{n-1} + a_{n-1} \eta_n.$$

(with respect to fundamental dominant weights $\{\eta_1, \ldots, \eta_n\}$ for $M^0 = D_n$). As noted in Remark 4.4(e), we may assume that $a_i \neq 0$ for some $i < n$.

Seeking a contradiction, let us assume that $V|_H$ is irreducible, so $H \nsubseteq M^0$ since $V|_{M^0}$ is reducible. Set $H_1 = H \cap M^0$ and let J be a maximal subgroup of M^0 that contains H_1. Then $H = H_1 \cdot 2$ and the irreducibility of $V|_H$ implies that $V_1|_{H_1}$ and $V_2|_{H_1}$ are irreducible, so $V_1|_J$ and $V_2|_J$ are also irreducible.

We can now consider the irreducible triple (M^0, J, V_1), which must be one of the cases recorded in [3,4,17]. Given the conditions on λ (in particular, the fact that $a_n = 1$ and $a_i \neq 0$ for some $i < n$), it is easy to see that there are no compatible examples in [3,4]. The only possible example in [17, Table I] is the case labelled IV', with $J = B_{n-1}$, $a = 1$ and $b \neq 0$. However, we claim that the conditions in this configuration are incompatible with those that are given in Remark 4.4(e). Indeed, we have $a_{n-1} = 0$ and there is a unique $k < n - 1$ with $a_k \neq 0$. In case IV' we have $a_k + n - k \equiv 0(\text{mod } p)$ and the conditions in Remark 4.4(e) yield $2a_k \equiv -2(n-k) - 1(\text{mod } p)$. If both conditions hold, then p divides $a_k + n - k$ and $1 + 2a_k + 2(n-k)$, so p divides $1 + a_k + n - k$. Clearly, this is impossible. □

Proposition 5.7 Suppose $H < M < G$ and (G, M, V) is the case labelled (vi) in Table 6. Then $V|_H$ is reducible.

Proof Here $G = C_n$, $M = C_{m,2}$ is a C_2-subgroup and $\lambda = \lambda_{n-1} + a \lambda_n$, where $n = 2m$, $0 \leq a < p$ and $2a + 3 \equiv 0(\text{mod } p)$. In particular, note that $p \neq 2$ and $a < p - 1$. Seeking a contradiction, let us assume that $V|_H$ is irreducible. Set $M^0 = C_{m} = M_1 M_2$ (a direct product of two simply connected groups of type C_m) and let $\{\omega_{i,1}, \ldots, \omega_{i,m}\}$ be fundamental dominant weights for M_i.

As recorded in [4, Table 4.2], we have $V|_{M^0} = V_1 \oplus V_2$ where

$$V_1 = V_{M_1}((a + 1) \omega_{1,m}) \otimes V_{M_2}(\omega_{2,m-1} + a \omega_{2,m})$$

$$V_2 = V_{M_1}(\omega_{1,m-1} + a \omega_{1,m}) \otimes V_{M_2}((a + 1) \omega_{2,m}).$$
Set $H_1 = H \cap M^0$ and note that $H_1^0 = H^0$ and $H = H_1.2$. In particular, since $V|_H$ is irreducible it follows that $V|_{H_1}$ has exactly two composition factors, namely

$$V|_{H_1} = V_1|_{H_1} \oplus V_2|_{H_1}.$$

Note that H^0 is a proper subgroup of M^0 since we are assuming that H is disconnected and non-maximal. Let $\pi_i : H_1 \to M_i$ be the i-th projection map and note that $\ker(d\pi_1) \cap \ker(d\pi_2) = 0$ since H_1 is a closed positive-dimensional subgroup of M^0.

Claim. $\pi_1(H_1)$ and $\pi_2(H_1)$ are infinite.

Seeking a contradiction, suppose that $\pi_1(H_1)$ is finite, in which case $\pi_2(H_1)$ is infinite since H is positive-dimensional. The finiteness of $\pi_1(H_1)$ implies that $d\pi_1 = 0$, so $\ker(d\pi_2) = 0$ since $\ker(d\pi_1) \cap \ker(d\pi_2) = 0$. Also note that $\ker(\pi_1)$ is a closed subgroup of finite index in H_1, so $H_1^0 \leq \ker(\pi_1)$ and thus $\pi_2|_{H^0} : H^0 \to M_2$ is injective.

Next we claim that π_2 is surjective. Suppose otherwise. Then there exists a positive-dimensional maximal subgroup J_2 of M_2 such that $\pi_2(H_1) \leq J_2 < M_2$. The irreducibility of $V_1|_{H_1}$ and $V_2|_{H_1}$ implies that $\pi_2(H_1)$ acts irreducibly on the KM_2-modules with highest weights $\omega_{2,m-1} + a\omega_{2,m}$ and $(a + 1)\omega_{2,m}$, so we can consider the irreducible triples

$$(M_2, J_2, V_{M_2}(\omega_{2,m-1} + a\omega_{2,m})), \quad (M_2, J_2, V_{M_2}((a + 1)\omega_{2,m})).$$

By inspecting [17, Table 1] we see that there are no compatible examples with J_2 connected. Similarly, by applying the main theorems in [3,4], there are no examples with J_2 disconnected. This is a contradiction, hence π_2 is surjective.

It follows that $\pi_2(H_1^0) = M_2$, so $\pi_2|_{H^0} : H^0 \to M_2$ is a bijective morphism. Moreover, $\ker(d(\pi_2|_{H^0})) = 0$ since $\ker(d\pi_2) = 0$, so $d(\pi_2|_{H^0})$ is an isomorphism of Lie algebras and thus $\pi_2|_{H^0}$ is an isomorphism of algebraic groups. In particular, H^0 is a simply connected group of type C_m. By Lemma 2.2 we may write $\pi_2|_{H^0} = t_x$ for some $x \in H^0$, where t_x is an inner automorphism (conjugation by x). In addition, note that $H \leq N_G(H^0) = H^0C_G(H^0)$ and thus $V|_{H^0}$ is homogeneous.

Let $\{\eta_1, \ldots, \eta_m\}$ be a set of fundamental dominant weights for H^0. Then $V|_{H^0}$ has composition factors isomorphic to $V_{H^0}(\eta_{m-1} + a\eta_m)$ and $V_{H^0}((a + 1)\eta_m)$, which contradicts the fact that $V|_{H^0}$ is homogeneous. We conclude that $\pi_1(H_1)$ is infinite, and similarly $\pi_2(H_1)$ is also infinite.

Claim. π_1 and π_2 are surjective.

Seeking a contradiction, suppose π_1 is not surjective. Since $\pi_1(H_1)$ is infinite, there exists a positive-dimensional maximal subgroup J_1 of M_1 such that $\pi_1(H_1) \leq J_1 < M_1$ and we can consider the irreducible triples

$$(M_1, J_1, V_{M_1}((a + 1)\omega_{1,m})), \quad (M_1, J_1, V_{M_1}(\omega_{1,m-1} + a\omega_{1,m})).$$

As before, we find that there are no compatible examples, which is a contradiction and thus π_1 is surjective. An entirely similar argument shows that π_2 is also surjective.
By the previous claim, it follows that \(\pi_i(H^0) = M_i \) for \(i = 1, 2 \), so \(H^0 \) is a subdirect product of the direct product \(M^0 = M_1 M_2 \). By applying Lemma 2.5, noting that \(H^0 < M^0 \), we deduce that \(H^0 \cong M_1 \) is diagonally embedded in \(M_1 M_2 \), so we may write

\[
H^0 = \{ (\tau_1(x), \tau_2(x)) \mid x \in \text{Sp}_2m(K) \},
\]

where \(\tau_i : \text{Sp}_2m(K) \to M_i \) is a bijective morphism. By appealing to Lemma 2.2, we may write \(\tau_i = t_{x_i} \sigma_{q_i} \) for some \(x_i \in H^0 \) and \(p \)-power \(q_i \) (where \(\sigma_{q_i} \) is a standard field automorphism), and once again we note that \(V|_{H^0} \) is homogenous. Note that at least one \(q_i \) is equal to 1 (since \(H^0 \) is a closed subgroup \(M^0 \)); without loss of generality we will assume \(q_2 = 1 \).

Let \(\{ \eta_1, \ldots, \eta_m \} \) be a set of fundamental dominant weights for \(H^0 \). Then

\[
V_1|_{H^0} = V_{H^0}(a + 1)\eta_m^{(q_1)} \otimes V_{H^0}(\eta_{m-1} + a\eta_m)
\]

and

\[
V_2|_{H^0} = V_{H^0}(\eta_{m-1} + a\eta_m^{(q_1)} \otimes V_{H^0}(a + 1)\eta_m),
\]

so \(V|_{H^0} \) has composition factors with highest weights

\[
\eta_{m-1} + ((a + 1)q_1 + a)\eta_m, \quad q_1\eta_{m-1} + (aq_1 + a + 1)\eta_m.
\]

Since \(V|_{H^0} \) is homogeneous, these highest weights must be equal and thus \(q_1 = 1 \). Now \(p < a - 1 \) so the modules \(V_{H^0}(a + 1)\eta_m \) and \(V_{H^0}(\eta_{m-1} + a\eta_m) \) are \(p \)-restricted and thus Lemma 2.10 implies that \(V|_{H^0} \) is not homogeneous. This is a contradiction.

\[\square \]

Proposition 5.8 Suppose \(H < M < G \) and \((G, M, V) \) is the case labelled (viii) in Table 6. Then \(V|_H \) is reducible.

Proof Here \(G = D_n \) and \(M = (D^2_m, 2) \) is a \(C_2 \)-subgroup, where \(n = 2m, m \geq 3 \) is odd and \(p = 2 \). Moreover, \(V = V_G(\lambda) \) where \(\lambda = \lambda_1 + \lambda_{n-1} \) or \(\lambda_1 + \lambda_n \) (see Table 6); without loss of generality, we will fix \(\lambda = \lambda_1 + \lambda_{n-1} \). Seeking a contradiction, let us assume that \(V|_H \) is irreducible.

Write \(M^0 = D_m^2 = M_1 M_2 \) and let \(\{ \omega_{i,1}, \ldots, \omega_{i,m} \} \) be fundamental dominant weights for \(M_i \). Then [4, Table 4.2] indicates that \(V|_{M^0} = V_1 \oplus V_2 \oplus V_3 \oplus V_4 \), where

\[
V_1 = V_{M_1}(\omega_{1,1} + \omega_{1,m}) \otimes V_{M_2}(\omega_{2,m-1})
\]

\[
V_2 = V_{M_1}(\omega_{1,1} + \omega_{1,m-1}) \otimes V_{M_2}(\omega_{2,m})
\]

\[
V_3 = V_{M_1}(\omega_{1,m-1}) \otimes V_{M_2}(\omega_{2,1} + \omega_{2,m})
\]

\[
V_4 = V_{M_1}(\omega_{1,m}) \otimes V_{M_2}(\omega_{2,1} + \omega_{2,m-1})
\]

Set \(H_1 = H \cap M^0 \) and note that \(H_1^0 = H^0 \) and \(|H : \text{H}_1| = 4 \). Indeed, \(H/H_1 \) is isomorphic to a subgroup of \(M/M^0 \) and thus \(|H : H_1| \leq 4 \), but \(V|_{H_1} \) has at least
four composition factors and thus the irreducibility of $V|_H$ implies that $|H:H_1| = 4$. Therefore, $V|_{H_1}$ has exactly four composition factors, namely

$$V|_{H_1} = V_1|_{H_1} \oplus V_2|_{H_1} \oplus V_3|_{H_1} \oplus V_4|_{H_1}.$$

In order to proceed as in the proof of the previous proposition, we need to slightly modify our set-up. Indeed, G is the simply connected group of type D_n, so $M^0 = M_1M_2$ is a central product of spin groups of type D_m. Since the KM^0-module W lifts to a representation $\rho: L \rightarrow \text{GL}(W)$, where $L = L_1L_2$ is the direct product of two simply connected groups of type D_m, we have $M^0 = L/Y$ where $Y = \text{ker}(\rho)$. In particular, there exist subgroups $R \leq R_1 \leq L$ such that $H_1 = R_1/Y$ and $H^0 = R/Y$.

Note that $H_1/H^0 \cong R_1/R$ and $R^0 = R_1^0$. Let $\pi_i: R_1 \rightarrow L_i$ be the i-th projection map and note that $\text{ker}(d\pi_1) \cap \text{ker}(d\pi_2) = 0$ since R_1 is a closed positive-dimensional subgroup of L.

The KM^0-module V_i lifts to a representation $\rho_i: L \rightarrow \text{GL}(V_i)$, so we can consider $V_i|_{R_1}$. The irreducibility of $V_i|_{H_1}$ implies that $V_i|_{R_1}$ is also irreducible, whence $\pi_1(R_1)$ is irreducible on each of the KL_1-modules

$$V_{L_1}(\omega_{1,1} + \omega_{1,m}), \quad V_{L_1}(\omega_{1,1} + \omega_{1,m-1}), \quad V_{L_1}(\omega_{1,m-1}), \quad V_{L_1}(\omega_{1,m}) \quad (7)$$

and similarly $\pi_2(R_1)$ is irreducible on the KL_2-modules

$$V_{L_2}(\omega_{2,m-1}), \quad V_{L_2}(\omega_{2,m}), \quad V_{L_2}(\omega_{2,1} + \omega_{2,m}), \quad V_{L_2}(\omega_{2,1} + \omega_{2,m-1}) \quad (8)$$

Claim. $\pi_1(R_1)$ and $\pi_2(R_1)$ are infinite.

We proceed as in the proof of Proposition 5.7. Suppose $\pi_1(R_1)$ is finite. Then $\pi_2(R_1)$ is infinite, $\ker(d\pi_2) = 0$ and $R^0_1 \leq \ker(\pi_1)$, so $\pi_2|_{R^0} : R^0 \rightarrow L_2$ is injective.

Suppose π_2 is not surjective. Then there exists a positive-dimensional maximal subgroup J_2 of L_2 such that $\pi_2(R_1) \leq J_2 < L_2$, and we can consider the irreducible triples (L_2, J_2, U) for the four KL_2-modules U in (8). By applying the main theorems of [3, 4, 17] we find that there are no compatible examples (note that in the case labelled IV'_2 in [17, Table 1], we require the parameters to be $a = b = k = 1$, hence the given congruence condition implies that m is even, which is false). This is a contradiction, hence π_2 is surjective.

It follows that $\pi_2(R^0_1) = L_2$ and $\pi_2|_{R^0} : R^0 \rightarrow L_2$ is a bijective morphism. Furthermore, $\ker(d(\pi_2|_{R^0})) = 0$ so $d(\pi_2|_{R^0})$ is an isomorphism and thus $\pi_2|_{R^0}$ is an isomorphism of algebraic groups. In particular, R^0 is simply connected of type D_m. By Lemma 2.2, we may write $\pi_2|_{R^0} = \tau \gamma^k$ for some $\tau \in R^0$ and integer $k \in \{0, 1\}$, where γ is an involutory graph automorphism (note that $m \neq 4$, so a triality automorphism does not arise here). Now $H \leq N_G(H^0)$ induces algebraic group automorphisms of H^0 that permute the KR^0-composition factors of V, so $V|_{R^0}$ has the following homogeneity property:

Either $V|_{R^0}$ is homogeneous, or the homogeneous components of $V|_{R^0}$ are conjugate under an involutory graph automorphism of R^0. \hfill (9)
Let \(\{\eta_1, \ldots, \eta_m\} \) be fundamental dominant weights for \(R^0 \). Then \(V|_{R^0} \) has composition factors isomorphic to \(V_{R^0}(\eta_{m-1}), V_{R^0}(\eta_m), V_{R^0}(\eta_1 + \eta_m) \) and \(V_{R^0}(\eta_1 + \eta_{m-1}) \), but this is incompatible with (9). Therefore \(\pi_1(R_1) \) is infinite, and similarly \(\pi_2(R_1) \) is also infinite.

Claim. \(\pi_1 \) and \(\pi_2 \) are surjective.

Suppose \(\pi_1 \) is not surjective. Then there exists a positive-dimensional maximal subgroup \(J_1 \) of \(L_1 \) such that \(\pi_1(R_1) \subsetneq J_1 \subsetneq L_1 \) and we can consider the irreducible triples \((L_1, J_1, U) \) for the four \(K L_1 \)-modules \(U \) in (7). We have already noted that there are no compatible examples and thus \(\pi_1 \) is surjective. Similarly, \(\pi_2 \) is surjective.

We have \(\pi_i(R^0) = L_i \) for \(i = 1, 2 \), so \(R^0 \) is a subdirect product of \(L = L_1 L_2 \) and thus Lemma 2.5 implies that either \(R^0 = L \), or \(R^0 \cong L_1 \) is diagonally embedded in \(L_1 L_2 \). If \(R^0 = L \) then \(H^0 = M^0 \) and the irreducibility of \(V|_H \) implies that \(H = M \), which is false. Therefore \(R^0 \) is diagonally embedded, so

\[
R^0 = \{ (\tau_1(x), \tau_2(x)) | x \in \mathrm{Spin}_{2m}(K) \}
\]

and \(\tau_i : \mathrm{Spin}_{2m}(K) \to L_i \) is a bijective morphism. In particular, we may write \(\tau_j = t_{x_j} \sigma_{q_j} \gamma_{k_j} \) for some \(x_j \in R^0 \), \(p \)-power \(q_j \) and \(k_j \in \{0, 1\} \) (see Lemma 2.2). Again, we observe that (9) holds. Since \(R^0 \) is a closed subgroup of \(L \), it follows that at least one \(q_i \) is equal to 1. We may assume \(q_2 = 1 \).

Let \(\{\eta_1, \ldots, \eta_m\} \) be a set of fundamental dominant weights for \(R^0 \). By considering the restriction of \(V \) to \(R^0 \), we deduce that \(V|_{R^0} \) has a composition factor with highest weight \(\mu_i \) as follows:

\((k_1, k_2)\)	\(\mu_1\)	\(\mu_2\)	\(\mu_3\)	\(\mu_4\)
(0, 0)	\(q_1\eta_1 + \eta_{m-1} + q_1\eta_m\)	\(q_1\eta_1 + q_1\eta_{m-1} + \eta_m\)	\(\eta_1 + q_1\eta_{m-1} + \eta_m\)	\(\eta_1 + \eta_{m-1} + q_1\eta_m\)
(1, 0)	\(q_1\eta_1 + (q_1 + 1)\eta_{m-1}\)	\(q_1\eta_1 + (q_1 + 1)\eta_m\)	\(\eta_1 + (q_1 + 1)\eta_{m-1}\)	\(\eta_1 + (q_1 + 1)\eta_m\)
(0, 1)	\(q_1\eta_1 + (q_1 + 1)\eta_m\)	\(q_1\eta_1 + (q_1 + 1)\eta_{m-1}\)	\(\eta_1 + (q_1 + 1)\eta_{m-1}\)	\(\eta_1 + (q_1 + 1)\eta_m\)
(1, 1)	\(q_1\eta_1 + q_1\eta_{m-1} + \eta_m\)	\(q_1\eta_1 + \eta_{m-1} + q_1\eta_m\)	\(\eta_1 + \eta_{m-1} + q_1\eta_m\)	\(\eta_1 + q_1\eta_{m-1} + \eta_m\)

In view of (9), we deduce that \(q_1 = 1 \) in all four cases. By applying Lemma 2.10 it follows that \(V|_{R^0} \) is not homogeneous. More precisely, \(\mu_1 \) affords the highest weight of a composition factor of \(V|_{R^0} \) and if \(v \) is the highest weight of any other composition factor of \(V|_{R^0} \), then \(v \neq \mu_1 \) and \(v \preceq \mu_1 \). However, in view of Lemma 5.4, this is incompatible with (9).

Proposition 5.9 Suppose \(H < M < G \) and \((G, M, V) \) is the case labelled (ii) in Table 6. Then \(V|_H \) is reducible.

Proof Here \(G = A_n \) and \(M = A^2_m \) is a \(C_4(ii) \)-subgroup, where \(n = m(m + 2) \), \(p \neq 2 \) and \(m \geq 2 \). Moreover, \(V = V_G(\lambda) \) and \(\lambda = \lambda_2 \) or \(\lambda_{n-1} \). By duality, we may assume that \(V = V_G(\lambda_2) = \Lambda^2(W) \). Seeking a contradiction, let us assume that \(V|_H \) is irreducible.
Write $M^0 = A_m^2 = M_1 M_2$ and note that this is a central product. Let $\{\omega_1, \ldots, \omega_{i,m}\}$ be fundamental dominant weights for M_i. As recorded in [4, Table 6.2], we have $V|M^0 = V_1 \oplus V_2$, where

$$V_1 = V_{M_1}(2\omega_{2,1}), \quad V_2 = V_{M_1}(2\omega_{1,1}) \otimes V_{M_2}(2\omega_{2,2}).$$

Set $H = H \cap M^0$ and note that $H^0 = H^0_1$ and $H = H_1.2$. Since $V|_H$ is irreducible it follows that $V|_{H_1}$ has exactly two composition factors, namely

$$V|_{H_1} = V_1|_{H_1} \oplus V_2|_{H_1}.$$

Note that $H^0 < M^0$ since H is disconnected and non-maximal.

As in the proof of Proposition 5.8, we need to modify this initial set-up in order to proceed as we did in the proof of Proposition 5.7. Since W is a KM^0-module, it lifts to a representation $\rho : L \rightarrow \text{GL}(W)$, where $L = L_1 L_2$ is the direct product of two simply connected groups $A_m = \text{SL}_{m+1}(K)$. Then $M^0 = L/Y$, where $Y = \ker(\rho)$, and so there exist subgroups $R \leq R_1 \leq L$ such that $H_1 = R_1/Y$ and $H^0 = R/Y$. Note that $H_1/H^0 \cong R_1/R$ is finite, so $R^0 = R^0_1$. Let $\pi_i : R_1 \rightarrow L_i$ be the i-th projection map and observe that $\ker(\rho) = 0$.

Since the KM^0-module V_i lifts to a representation $\rho_i : L \rightarrow \text{GL}(V_i)$, we can consider the restriction of V_i to R_1. The irreducibility of $V_i|_{H_1}$ and $V_2|_{H_1}$ implies that $V_1|_{R_1}$ and $V_2|_{R_1}$ are also irreducible, whence $\pi_1(R_1)$ is irreducible on the $K L_1$-modules $V_{L_1}(\omega_{1,2})$ and $V_{L_1}(2\omega_{1,1})$, and $\pi_2(R_1)$ acts irreducibly on $V_{L_2}(2\omega_{1,2})$ and $V_{L_2}(2\omega_{2,2})$.

Claim. $\pi_1(R_1)$ and $\pi_2(R_1)$ are infinite.

We proceed as in the proof of Proposition 5.7; the details are very similar. Suppose that $\pi_1(R_1)$ is finite, so $\ker(d\pi_2) = 0$. Then $\pi_2(R_1)$ has to be infinite since H (and thus H_1, and also R_1) is infinite. Since $\ker(\pi_1) \leq R_1$ has finite index, it follows that $R_1^0 \leq \ker(\pi_1)$ and thus $\pi_2|_{R^0} : R^0 \rightarrow L_2$ is injective.

Suppose π_2 is not surjective. Then there exists a positive-dimensional maximal subgroup J_2 of L_2 such that $\pi_2(R_1) \leq J_2 < L_2$. As noted above, $\pi_2(R_1)$ acts irreducibly on $V_{\omega_{1,2}}$ and $V_{\omega_{2,2}}$, so we may consider the irreducible triples $(\omega_{1,2}, \omega_{2,1})$ and $(\omega_{2,1}, \omega_{2,2})$. In the usual way, by inspecting [3,4,17], we deduce that there are no compatible examples, whence π_2 is surjective.

Therefore $\pi_2(R_1^0) = L_2$ and thus $\pi_2|_{R^0} : R^0 \rightarrow L_2$ is a bijective morphism. Moreover, $\ker(d(\pi_2|_{R^0})) = 0$ so $d(\pi_2|_{R^0})$ is an isomorphism and thus $\pi_2|_{R^0}$ is an isomorphism of algebraic groups. By Lemma 2.2, we can write $\pi_2|_{R^0} = t_x \gamma^k$ for some $x \in R^0$ and integer $k \in \{0, 1\}$, where γ is a graph automorphism. Note that (9) holds.

Let $\{\eta_1, \ldots, \eta_m\}$ be a set of fundamental dominant weights for R^0. Then $V|_{R^0}$ has composition factors isomorphic to $V_{\omega_{2,1}}(2\eta_1)$ and $V_{\omega_{2,1}}(\eta_2)$ if $k = 0$, and $V_{\omega_{2,2}}(2\eta_m)$ and $V_{\omega_{2,2}}(\eta_{m-1})$ if $k = 1$. But the corresponding highest weights are incompatible with (9), so we have reached a contradiction. We conclude that $\pi_1(R_1)$ is infinite, and similarly $\pi_2(R_1)$ is also infinite.
Claim. \(\pi_1 \) and \(\pi_2 \) are surjective.

Suppose \(\pi_1 \) is not surjective. Then there exists a positive-dimensional maximal subgroup \(J_i \) of \(L_1 \) such that \(\pi_1(R_i) \leq J_i < L_1 \) and we can consider the irreducible triples \((L_1, J_i, V_{L_1}(2\omega_{1,1})) \) and \((L_1, J_i, V_{L_1}(\omega_{1,2})) \). As above, there are no compatible examples and thus \(\pi_1 \) is surjective. An entirely similar argument shows that \(\pi_2 \) is also surjective.

Now \(\pi_i(R^0) = L_i \) for \(i = 1, 2 \), so \(R^0 \) is a subdirect product of \(L = L_1L_2 \) and thus Lemma 2.5 implies that \(R^0 \cong L_1 \) is diagonally embedded in \(L_1L_2 \) (note that \(H^0 < M^0 \), so \(R^0 < L \)). Therefore

\[
R^0 = \{ (\tau_1(x), \tau_2(x)) | x \in SL_{m+1}(K) \},
\]

where \(\tau_i : SL_{m+1}(K) \to L_i \) is a bijective morphism. As before, we may write \(\tau_i = t_i, \sigma_i, \gamma_i^{k_i} \) for some \(t_i \in R^0 \), \(p \)-power \(q_i \) and \(k_i \in \{0, 1\} \). Note that (9) holds. As before, we may assume that \(q_2 = 1 \).

Let \(\{\eta_1, \ldots, \eta_m\} \) be a set of fundamental dominant weights for \(R^0 \). Now \(V|_{R^0} = V_1|_{R^0} \oplus V_2|_{R^0} \) and we calculate that \(V|_{R^0} \) has composition factors with the following highest weights \(\mu_1 \) and \(\mu_2 \):

\((k_1, k_2)\)	\(\mu_1\)	\(\mu_2\)
(0, 0)	\(2\eta_1 + q_1\eta_2\)	\(2q_1\eta_1 + \eta_2\)
(1, 0)	\(2\eta_1 + q_1\eta_{m-1}\)	\(\eta_2 + 2q_1\eta_m\)
(0, 1)	\(q_1\eta_2 + 2\eta_m\)	\(2q_1\eta_1 + \eta_{m-1}\)
(1, 1)	\(q_1\eta_{m-1} + 2\eta_m\)	\(\eta_{m-1} + 2q_1\eta_m\)

In all four cases, (9) implies that \(q_1 = 1 \).

Now \(V|_{R^0} \) is non-homogeneous by Lemma 2.10. More precisely, \(V_1|_{R^0} \) has a composition factor of highest weight \(\mu_1 \) as in the table (with \(q_1 = 1 \)), occurring with multiplicity 1. If \(v \) denotes the highest weight of any other composition factor of \(V_1|_{R^0} \), then \(v \neq \mu_1 \) and \(v < \mu_1 \) (so \(\mu_1 - v = \sum_i c_i \alpha_i \) for some \(c_i \in \mathbb{N}_0 \)). Therefore, Lemma 5.4 implies that \(V|_{R^0} \) does not satisfy the homogeneity condition in (9) and this final contradiction completes the proof of the proposition.

\[\square\]

Proposition 5.10 Suppose \(H < M < G \) and \((G, M, V)\) is the case labelled (iii) in Table 6. Then \(V|_H \) is reducible.

Proof Here \(G = A_n \), \(V = V_G(\lambda_k) \) with \(1 < k < n \), and \(M = D_m.2 \) is a \(C_6 \)-subgroup with \(n = 2m - 1 \), \(m \geq 2 \) and \(p \neq 2 \). Let \(\{\eta_1, \ldots, \eta_m\} \) be a set of fundamental dominant weights for \(M^0 = D_m \). There are three separate cases to deal with here, depending on the value of \(k \) (by duality, we may assume that \(2 \leq k \leq m \)):

(a) \(k = m \): \(V|_{M^0} = V_1 \oplus V_2 \) is reducible, where \(V_1 \) and \(V_2 \) have highest weights \(2\eta_{m-1} \) and \(2\eta_m \), respectively (see [4, Table 3.2]).

(b) \(k = m - 1 \): \(V|_{M^0} \) is irreducible, with highest weight \(\eta_{m-1} + \eta_m \) (see case I_5 in [17, Table 1]). Note that \(m \geq 3 \).

\[\square\]
(c) $2 \leq k < m - 1$: $V|_{M^0}$ is irreducible, with highest weight η_k (see case I$_4$ in [17, Table 1]). Note that $m \geq 4$.

Seeking a contradiction, let us assume that $V|_H$ is irreducible.

First assume that (a) holds. Note that $H \not\subseteq M^0$ since $V|_{M^0}$ is reducible. To begin with, let us assume $m = 2$. Here $G = A_3$ and $H^0 < M^0 = A_1 A_1$, so

$$H^0 \in \{ T_2, A_1, A_1 T_1 \}$$

(recall that H^0 is reductive; see Lemma 2.7). Also note that $V = \Lambda^2(W)$, where W is the natural $K G$-module. We claim that $H^0 = A_1$. To see this, suppose $S \subseteq H^0$ is a central torus. Then $H \leq N_G(S)$ and thus the set of fixed points of S on V is H-invariant. But S lies in a maximal torus of M^0, which has nontrivial fixed points on V, so this contradicts the irreducibility of $V|_H$. This justifies the claim. Therefore

$$H \leq N_G(H^0) = H^0 C_G(H^0)$$

and thus $V|_{H^0}$ is homogeneous.

By considering the possible embeddings of H^0 in M^0, it follows that $W|_{H^0}$ is the two-fold tensor product $U \otimes U$, where U is the natural $K H^0$-module. Hence, $W|_{H^0} = W_1 \oplus W_2$, where $W_1 = V_{H^0}(2 \omega)$ and $W_2 = V_{H^0}(0 \omega)$ is the trivial irreducible $K H^0$-module (here ω is the fundamental dominant weight for H^0). Since $\dim W_1 \neq \dim W_2$ we deduce that $W|_{N_G(H^0)}$ is reducible and thus $N_G(H^0)$ lies in a parabolic subgroup of G. This contradicts the irreducibility of $V|_H$.

Now assume $m \geq 3$. Set $H_1 = H \cap M^0$ and note that $H = H_1 H_2$, so $V|_{H_1}$ has exactly two composition factors, namely $V_1|_{H_1}$ and $V_2|_{H_1}$. Note that $H_1 < M^0$ since we are assuming that H is disconnected and non-maximal. Let J be a maximal subgroup of M^0 that contains H_1, so we have

$$H_1 = H \cap M^0 \leq J < M^0 = D_m.$$

We consider the irreducible triples (M^0, J, V_1) and (M^0, J, V_2), where $V_1 = V_{M^0}(2 \eta_{m-1})$ and $V_2 = V_{M^0}(2 \eta_m)$. By inspecting [17, Table 1], and using the main theorems of [3,4], we deduce that $J = B_{m-1}$ is the only possibility and

$$V_1|_J = V_2|_J = V_{B_{m-1}}(2 \xi_{m-1})$$

(where $\{\xi_1, \ldots, \xi_{m-1}\}$ are fundamental dominant weights for B_{m-1}); see case IV$_1$ in [17, Table 1]. Note that if $H_1 = J = B_{m-1}$ then the two $K H^0$-composition factors of $V|_{H^0}$ (namely $V_1|_{H^0}$ and $V_2|_{H^0}$) are isomorphic, but this is ruled out by Proposition 2.9. Therefore H_1 is a proper subgroup of J, so let L be a maximal subgroup of J that contains H_1, in which case

$$H_1 = H \cap M^0 \leq L < J = B_{m-1} < M^0 = D_m.$$

 Springer
We now consider the irreducible triple \((J, L, V_{B_{m-1}}(2\xi_{m-1}))\). In the usual way, by inspecting \([3,4,17]\), we deduce that there are no compatible configurations and this completes the analysis of case (a).

Next consider case (b). First assume \(H \leq M^0\). Since we are assuming \(H\) is disconnected and non-maximal, it follows that \(H \leq J < M^0\) for some maximal subgroup \(J\) of \(M^0\), and we may consider the irreducible triple \((M^0, J, V_{M^0}(\eta_{m-1} + \eta_m))\). By inspecting \([3,4,17]\), it is easy to check that there are no compatible examples. In the same way, we deduce that \(H \not\leq M^0\) in case (c).

Finally, let us consider cases (b) and (c), with \(H \not\leq M^0\). Let \(J\) be a maximal subgroup of \(M = D_{m.2}\) such that

\[H \leq J < M = D_{m.2} = \text{GO}(W). \]

Note that \(J\) is disconnected, and \(J\) is either geometric or non-geometric (as described in Sect. 3.2). Given the highest weight of \(V|_{M^0}\), we can rule out the latter possibility by applying \([3,\text{Theorem 3}]\), so we may assume \(J\) is geometric. (Note that we can appeal to \([3,\text{Theorem 3}]\) since \(V|_{M^0}\) is irreducible.) The possibilities for \(J\) are determined in Proposition 3.2 and they are listed in Table 4. We now apply Proposition 3.3, which implies that \(V|_J\) is reducible. This final contradiction completes the proof of the proposition.

Proposition 5.11 Suppose \(H < M < G\) and \((G, M, V)\) is one of the cases labelled (ix) or (xiii) in Table 6. Then \(V|_H\) is irreducible.

Proof First consider the case labelled (xiii). Here \(G = D_8, M = C_2^2.2\) is a \(C_4(ii)\)-subgroup, \(p \neq 5\) and \(V = V_G(\lambda_7)\). Seeking a contradiction, let us assume that \(V|_H\) is irreducible. We proceed as in the proof of Proposition 5.8.

Write \(M^0 = M_1 M_2\), which is a central product of two simply connected groups of type \(C_2\), and let \(\{\omega_{1,1}, \omega_{1,2}\}\) and \(\{\omega_{2,1}, \omega_{2,2}\}\) be fundamental dominant weights for \(M_1\) and \(M_2\), respectively. As recorded in \([4,\text{Table 6.2}]\), we have \(V|_{M^0} = V_1 \oplus V_2\), where

\[
V_1 = V_{M_1}(\omega_{1,1}) \otimes V_{M_2}(\omega_{2,1} + \omega_{2,2}), \quad V_2 = V_{M_1}(\omega_{1,1} + \omega_{1,2}) \otimes V_{M_2}(\omega_{2,1}).
\]

Set \(H_1 = H \cap M^0\), so \(H = H_1.2\) and \(H^0_1 = H^0\). Since \(V|_{H_1}\) is irreducible it follows that \(V|_{H_1}\) has exactly two composition factors, namely \(V_1|_{H_1}\) and \(V_2|_{H_1}\).

The \(KM^0\)-module \(W\) lifts to a representation \(\rho : L \to \text{GL}(W)\), where \(L = L_1 L_2\) is a direct product of two simply connected groups of type \(C_2\), so \(M^0 = L/Y\) where \(Y = \ker(\rho)\). Since \(H^0 \leq H_1 \leq M^0\), there exist subgroups \(R \leq R_1 \leq L\) such that \(H_1 = R_1/Y\) and \(H^0 = R/Y\). Note that \(R^0 = R^0_1\). Let \(\pi_i : R_1 \to L_i\) be the \(i\)-th projection map and observe that \(\ker(d_1) \cap \ker(d_2) = 0\). Since the \(KM^0\)-module \(V_1\) lifts to a representation \(\rho_i : L \to \text{GL}(V_i)\), we can consider \(V_i|_{R_1}\). The irreducibility of \(V_i|_{H_1}\) implies that \(V_i|_{R_1}\) is also irreducible, so we deduce that \(\pi_1(R_1)\) acts irreducibly on the \(KL_1\)-modules \(V_{L_1}(\omega_{1,1})\) and \(V_{L_1}(\omega_{1,1} + \omega_{1,2})\), and similarly, \(\pi_2(R_1)\) is irreducible on \(V_{L_2}(\omega_{2,1})\) and \(V_{L_2}(\omega_{2,1} + \omega_{2,2})\).
Claim. \(\pi_1(R_1)\) and \(\pi_2(R_1)\) are infinite.

We proceed as in the previous cases. Suppose \(\pi_1(R_1)\) is finite. Then \(\pi_2(R_1)\) is infinite, \(\ker(d\pi_2) = 0\) and \(R_1^0 \leq \ker(\pi_1)\), so \(\pi_2|_{R_0^0} : R_0^0 \to L_2\) is injective.

Suppose \(\pi_2\) is not surjective. Then there exists a positive-dimensional maximal subgroup \(J_2\) of \(L_2\) such that \(\pi_2(R_1) \leq J_2 < L_2\), and we can consider the irreducible triples \((L_2, J_2, V_{L_2}(\omega_2,1))\) and \((L_2, J_2, V_{L_2}(\omega_2,1 + \omega_2,2))\). By inspecting \([3,4,17]\) we find that there are no compatible examples, which is a contradiction and thus \(\pi_2\) is surjective. Therefore \(\pi_2(R_1^0) = L_2\) and thus \(\pi_2|_{R_0^0} : R_0^0 \to L_2\) is a bijective morphism. Since \(\ker(d(\pi_2|_{R_0^0})) = 0\) we deduce that \(\pi_2|_{R_0^0}\) is an isomorphism of algebraic groups, so by Lemma \(2.2\) we can write \(\pi_2|_{R_0^0} = t_x\) for some \(x \in R_0^0\). If \([\eta_1, \eta_2]\) is a set of fundamental dominant weights for \(R_0^0\), then \(V|_{R_0^0}\) has composition factors isomorphic to \(V_{R_0^0}(\eta_1)\) and \(V_{R_0^0}(\eta_1 + \eta_2)\), but \(V|_{R_0^0}\) is homogeneous since \(N_G(H) = H^0C_G(H^0)\), so this is a contradiction. We conclude that \(\pi_1(R_1)\) is infinite, and similarly \(\pi_2(R_1)\) is infinite.

Claim. \(\pi_1\) and \(\pi_2\) are surjective.

Suppose \(\pi_1\) is not surjective. Then there exists a positive-dimensional maximal subgroup \(J_1\) of \(L_1\) such that \(\pi_1(R_1) \leq J_1 < L_1\), and we can consider the irreducible triples \((L_1, J_1, V_{L_1}(\omega_1,1))\) and \((L_1, J_1, V_{L_1}(\omega_1,1 + \omega_1,2))\). As noted above, there are no compatible examples, so \(\pi_1\) must be surjective and an entirely similar argument shows that \(\pi_2\) is also surjective.

We have \(\pi_i(R_0^0) = L_i\) for \(i = 1, 2\), so \(R_0^0\) is a subdirect product of \(L = L_1L_2\) and thus Lemma \(2.5\) implies that either \(R_0^0 = L_1\) or \(R_0^0 \cong L_1\) is simply connected and diagonally embedded in \(L\). If \(R_0 = L\) then \(H^0 = M_0^0\) and thus \(H = M\) (since \(H\) is disconnected), which is false. Therefore, \(R_0^0 \cong L_1\) is diagonally embedded and thus

\[
R_0^0 = \{(\tau_1(x), \tau_2(x)) | x \in \text{Sp}_4(K)\}
\]

where each \(\tau_i : \text{Sp}_4(K) \to L_i\) is a bijective morphism. By Lemma \(2.2\) we may write \(\tau_i = t_x, \sigma_i, \gamma^k_i\) for some \(x \in R_0^0\), \(p\)-power \(q_i\) and \(k_i \in \{0, 1\}\), where \(\gamma\) is a graph automorphism of \(C_2\) if \(p = 2\), otherwise \(\gamma = 1\). We may assume that \(q_2 = 1\). Since \(N_G(H) = H^0C_G(H^0)\), it follows that \(V|_{R_0^0}\) is homogeneous.

As above, let \([\eta_1, \eta_2]\) be a set of fundamental dominant weights for \(R_0^0\). First assume that \(p \neq 2\), so \((k_1, k_2) = (0, 0)\). Then \(V|_{R_0^0}\) has composition factors with highest weights \((q_1 + 1)\eta_1 + \eta_2\) and \((q_1 + 1)\eta_1 + q_1\eta_2\), and the homogeneity of \(V|_{R_0^0}\) implies that \(q_1 = 1\). But Lemma \(2.10\) implies that \(V|_{R_0^0}\) is non-homogeneous, so we have reached a contradiction.

Now assume \(p = 2\). Here \(V|_{R_0^0}\) has composition factors with highest weights \(\mu_1\) and \(\mu_2\) as follows:

\[
\begin{array}{ccc}
(k_1, k_2) & \mu_1 & \mu_2 \\
(0, 0) & (q_1 + 1)\eta_1 + \eta_2 & (q_1 + 1)\eta_1 + q_1\eta_2 \\
(1, 0) & \eta_1 + 2(q_1 + 1)\eta_2 & (q_1 + 1)\eta_1 + q_1\eta_2 \\
(0, 1) & (q_1 + 1)\eta_1 + \eta_2 & q_1\eta_1 + 2(q_1 + 1)\eta_2 \\
(1, 1) & \eta_1 + 2(q_1 + 1)\eta_2 & q_1\eta_1 + 2(q_1 + 1)\eta_2 \\
\end{array}
\]

Since \(V|_{R_0^0}\) is homogeneous, we deduce that \(k_1 = k_2\) and \(q_1 = 1\).
If \((k_1, k_2) = (0, 0)\) then \(V_1|_R^0 = V_{R^0}^0(\eta_1) \otimes V_{R^0}^0(\eta_1 + \eta_2)\) and thus Lemma 2.10 contradicts the homogeneity of \(V|_R^0\). Similarly, if \((k_1, k_2) = (1, 1)\) then

\[
V_1|_R^0 = V_{R^0}^0(2\eta_2) \otimes V_{R^0}^0(\eta_1 + 2\eta_2) \cong V_{R^0}^0(\eta_2)^{(2)} \otimes V_{R^0}^0(\eta_1) \otimes V_{R^0}^0(\eta_2)^{(2)} \\
\cong (V_{R^0}^0(\eta_2) \otimes V_{R^0}^0(\eta_2))^{(2)} \otimes V_{R^0}^0(\eta_1)
\]

Now \(V_{R^0}^0(\eta_2) \otimes V_{R^0}^0(\eta_2)\) has composition factors with highest weights \(2\eta_2\) and \(2\eta_1\), whence \(V_1|_R^0\) has composition factors with highest weights \(\eta_1 + 4\eta_2\) and \(5\eta_1\). This final contradiction completes the analysis of case (xiii) in Table 6.

The case labelled (ix) is similar (and easier). Here \(G = B_4\), \(V = V_G(\lambda_4)\) and \(M = B_{21}\) is a \(C_4\)(ii)-subgroup, where \(p \neq 2, 3\). The connected component \(M^0 = M_1M_2\) is a central product of two simply connected groups of type \(B_1\), and we note that

\[
V|_{M^0} = V_1 \oplus V_2 = (V_{M_1}(\omega_1) \otimes V_{M_2}(3\omega_2)) \oplus (V_{M_1}(3\omega_1) \otimes V_{M_2}(\omega_2))
\]

(see [4, Table 6.2]), where \(\omega_1\) and \(\omega_2\) are fundamental dominant weights for \(M_1\) and \(M_2\), respectively. We leave the remaining details to the reader. \(\Box\)

5.2 Proof of Theorem 5.1, part II

In order to complete the proof of Theorem 5.1, it remains to deal with the cases labelled (vii), (x), (xi) and (xii) in Table 6.

Remark 5.12 Suppose that \(V|_H\) is irreducible, where \(H < M < G\) and \((G, M, V)\) is one of the cases (x), (xi) or (xii). Here \(M\) is the normalizer of a tensor product decomposition \(W = W_1 \otimes \cdots \otimes W_t\) of the natural \(KG\)-module, with \(t = 3\) or \(4\). Therefore, by combining Lemma 5.3 with our earlier work in Sects. 4 and 5.1, we deduce that \(W|_{H^0}\) is irreducible. Indeed, if \(W|_{H^0}\) is reducible then Lemma 5.3 implies that we may replace \(M\) by some other geometric maximal subgroup of \(G\) that does not normalize such a decomposition, in which case our earlier work implies that \(V|_H\) is reducible.

In order to deal with cases (x) and (xi), we first establish some preliminary reductions.

Lemma 5.13 Let \(G = C_4\) and let \(H < G\) be a closed positive-dimensional subgroup that is contained in a \(C_4\)(ii)-subgroup \(M = C_3^1 \cdot \text{Sym}_3\) of \(G\). Set \(V = V_G(\lambda)\), where \(\lambda = \lambda_2\) and \(p \neq 2\), or \(\lambda = \lambda_3\) and \(p \neq 3\). If \(V|_H\) is irreducible, then \(H^0\) is a subdirect product of \(M^0 = C_3^1\).

Proof Here \(M^0 = C_3^1 = M_1M_2M_3\) is a central product of three simply connected groups of type \(C_1\). Let \(\omega_i\) be the fundamental dominant weight for \(M_i\), and note that

\[
V|_{M^0} = V_1 \oplus V_2 \oplus V_3,
\]

\(\Box\) Springer
where

\[\begin{align*}
V_1 &= V_{M_1}(2\omega_1) \otimes V_{M_2}(2\omega_2) \otimes V_{M_3}(0\omega_3) \\
V_2 &= V_{M_1}(2\omega_1) \otimes V_{M_2}(0\omega_2) \otimes V_{M_3}(2\omega_3) \\
V_3 &= V_{M_1}(0\omega_1) \otimes V_{M_2}(2\omega_2) \otimes V_{M_3}(2\omega_3)
\end{align*} \tag{11} \]

if \(\lambda = \lambda_2 \), and

\[\begin{align*}
V_1 &= V_{M_1}(\omega_1) \otimes V_{M_2}(\omega_2) \otimes V_{M_3}(3\omega_3) \\
V_2 &= V_{M_1}(\omega_1) \otimes V_{M_2}(3\omega_2) \otimes V_{M_3}(\omega_3) \\
V_3 &= V_{M_1}(3\omega_1) \otimes V_{M_2}(\omega_2) \otimes V_{M_3}(\omega_3)
\end{align*} \tag{12} \]

if \(\lambda = \lambda_3 \) (see [4, Table 6.2]). As noted in Remark 5.12, the irreducibility of \(V|_H \) implies that \(W|_{H^0} \) is irreducible, where \(W \) denotes the natural \(KG \)-module.

As a \(KM^0 \)-module, \(W \) lifts to a representation \(\rho : L \to GL(W) \), where \(L = L_1L_2L_3 \) is the direct product of three simply connected groups of type \(C_1 \). Then \(M^0 = L/Y \), where \(Y = \ker(\rho) \), and there exists a subgroup \(R \) of \(L \) such that \(H^0 = R/Y \).

We need to show that \(R^0 \) is a subdirect product of \(L \). Note that the irreducibility of \(W|_{H^0} \) implies that \(W|_{R^0} \) is also irreducible. Set \(J = [R^0, R^0] \) and recall that \(H^0 \) is reductive (see Lemma 2.7), so \(R^0 \) is reductive and thus

\[J \in \{ C_3, C_1^2, C_1, 1 \}. \]

If \(J = C_3 \) then we are done, so assume otherwise. If \(J = 1 \) then \(R^0 \) is a torus, contradicting the irreducibility of \(W|_{R^0} \). Finally, suppose \(J = C_1^2 \) or \(C_1 \). Since \(R^0 \) is the product of \(J \) and a central torus, the irreducibility of \(W|_{R^0} \) implies that \(W|_{J} \) is irreducible. This immediately implies that the projection maps \(\pi_i : J \to L_i \) are surjective, so \(R^0 \) is a subdirect product of \(L \) as required.

Lemma 5.14 Suppose \(H < M < G \) and \((G, M, V) \) is the case labelled (x) in Table 6, where \(V = V_G(\lambda_2) \) and \(p \neq 2 \). If \(V|_H \) is irreducible, then \(H^0 = M^0 \).

Proof As in the previous lemma, \(G = C_4 \) and \(M^0 = C_3 \) is a central product of simply connected groups of type \(C_1 \). Define \(L = L_1L_2L_3 \), \(Y \) and \(R \) as above, so \(Y \leq Z(L) \), \(M^0 = L/Y \) and \(H^0 = R/Y \). Note that \(V|_{M^0} = V_1 \oplus V_2 \oplus V_3 \), where the \(V_i \) are given in (11). Also recall that the irreducibility of \(V|_H \) implies that \(W|_{H^0} \) is also irreducible (see Remark 5.12).

By Lemma 5.13, \(R \) is a subdirect product of \(L_1L_2L_3 \), so Proposition 2.6 implies that \(R^0 \) is isomorphic to a commuting product of simple groups of type \(C_1 \). If \(R^0 \) is of type \(C_3 \) then \(H^0 = M^0 \) and we are done, so let us assume that \(R^0 \) is of type \(C_1 \) or \(C_1^2 \).

Suppose \(R^0 \) is of type \(C_1 \). Let \(\eta_1 \) be the fundamental dominant weight for \(R^0 \). By Proposition 2.6, \(R^0 \cong L_1 \) is simply connected and diagonally embedded in \(L \), so we may write

\[R^0 = \{(\tau_1(x), \tau_2(x), \tau_3(x))| x \in \text{Sp}_2(K)\} \]
where \(\tau_i : \text{Sp}_2(K) \rightarrow L_i \) is a bijective morphism. By Lemma 2.2, \(\tau_i = t_{x_i} \sigma_{q_i} \) for some \(x_i \in R^0 \) and \(p \)-power \(q_i \), and we may assume that \(q_3 = 1 \) (since \(R^0 \) is a closed subgroup of \(L \)). Then \(V|_{R^0} \) has composition factors with highest weights \((2q_1 + 2q_2)\eta_1, (2q_1 + 2)\eta_1 \) and \((2q_2 + 2)\eta_1 \). Since \(V|_{R^0} \) is homogeneous (note that \(N_G(H^0) = H^0C_G(H^0) \)), it follows that \(q_1 = q_2 = 1 \). But now Lemma 2.10 contradicts the homogeneity of \(V|_{R^0} \).

Finally, let us assume that \(R^0 = R_1R_2 \) is of type \(C_1^2 \). Let \(\eta_1, \eta_2 \) be fundamental dominant weights for \(R^0 \). Once again, Proposition 2.6 implies that \(R_1 \) and \(R_2 \) are simply connected groups of type \(C_1 \), and without loss of generality we may assume that

\[
R_1 = \{(\tau_1(x), 1, 1)|x \in \text{Sp}_2(K)\}, \quad R_2 = \{(1, \tau_2(x), \tau_3(x))|x \in \text{Sp}_2(K)\}
\]

where \(\tau_i : \text{Sp}_2(K) \rightarrow L_i \) is a bijective morphism. As before, we may write \(\tau_i = t_{x_i} \sigma_{q_i} \), so \(V|_{R^0} \) has composition factors with highest weights

\[
2q_1\eta_1 + 2q_2\eta_2, \quad 2q_1\eta_1 + 2q_3\eta_2, \quad 2(q_2 + q_3)\eta_2.
\]

Since \(R^0 \) is a closed subgroup of \(L \), at least one \(q_i \) is equal to 1. By considering \(N_G(H^0) \), it follows that \(V|_{R^0} \) is either homogeneous, or the homogeneous components of \(V|_{R^0} \) are conjugate under an involutory automorphism of \(R^0 \) interchanging \(R_1 \) and \(R_2 \). However, this observation is incompatible with the weights recorded in (13). This is a contradiction. \(\square \)

The next lemma gives an analogous reduction for \(V = V_G(\lambda, 3) \) in case (x) in Table 6. Note that we include the additional case \(p = 2 \), which will be needed in Propositions 5.17 and 5.19.

Lemma 5.15 Suppose \(H < M < G \) with \(G = C_4, M = C_3^1, \text{Sym}_3 \) and \(p \neq 3 \). Set \(V = V_G(\lambda, 3) \) and assume that \(V|_H \) is irreducible. Then \(H^0 = M^0 \).

Proof This is entirely similar to the proof of Lemma 5.14, and we omit the details. In particular, we note that there are no additional difficulties when \(p = 2 \). \(\square \)

We are now in a position to settle cases (x) and (xi).

Proposition 5.16 Suppose \(H < M < G \) and \((G, M, V) \) is the case labelled (x) in Table 6, so \(G = C_4, M = C_3^1, \text{Sym}_3 \) and \(V = V_G(\lambda) \), where \(\lambda = \lambda_2 \) or \(\lambda_3 \). Then \(V|_H \) is irreducible if and only if \(H = C_1^1.Z_3 \).

Proof If \(V|_H \) is irreducible, then Lemmas 5.14 and 5.15 imply that \(H^0 = M^0 \). Therefore, \(H \) transitively permutes the \(V_i \) in (10), so \(H/H^0 \leq \text{Sym}_3 \) is transitive. Since \(H < M \), we conclude that \(H = C_1^1.Z_3 \) is the only possibility. \(\square \)

Proposition 5.17 Suppose \(H < M < G \) and \((G, M, V) \) is the case labelled (xi) in Table 6, so \(G = D_4, M = C_3^1, \text{Sym}_3, p = 2 \) and \(V = V_G(\lambda) \), where \(\lambda \in \{\lambda_1 + \lambda_4, \lambda_3 + \lambda_4\} \). Then \(V|_H \) is irreducible if and only if \(H = C_1^1.Z_3 \).
Proof Write $M^0 = C_1^3 = M_1M_2M_3$ and let ω_i be the fundamental dominant weight for M_i. Note that

$$H < M = C_1^3 \cdot \text{Sym}_3 < G = D_4 < N = C_4.$$

Suppose that $V|_H$ is irreducible.

First consider the case $\lambda = \lambda_3 + \lambda_4$. Here $V|_{M^0} = V_1 \oplus V_2 \oplus V_3$ and (12) holds (see [4, Table 6.2]). Let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be fundamental dominant weights for N. Since V is the restriction of the KN-module $V_N(\xi_3)$ to G (see the case labelled MR4 in [17, Table 1]), Lemma 5.15 implies that $H^0 = M^0$ and thus $H = C_1^3 \cdot Z_3$ is the only possibility. An entirely similar argument applies if $\lambda = \lambda_1 + \lambda_4$, and once again we deduce that $H = C_1^3 \cdot Z_3$.

To complete the proof of Theorem 5.1 it remains to consider cases (vii) and (xii) in Table 6. First we establish an important reduction for case (vii).

Lemma 5.18 Suppose $H < M < G$ and (G, M, V) is the case labelled (vii) in Table 6, so $G = C_n$, $M = D_{n-2}$, $p = 2$ and $\lambda = \sum_{i=1}^{n-1} a_i \lambda_i$. If $V|_H$ is irreducible, then $n = 4$, $\lambda = \lambda_3$ and $H < M^0$.

Proof Here $M = D_{n-2}$ is a C_6-subgroup of G, where $G = C_n$, $n \geq 2$ and $p = 2$. Set $V = V_G(\lambda)$ and let $\{\eta_1, \ldots, \eta_n\}$ be a set of fundamental dominant weights for $M^0 = D_n$. We have $\lambda = \sum_{i=1}^{n-1} a_i \lambda_i$, and $V|_{M^0}$ is irreducible with highest weight

$$\mu = \sum_{i=1}^{n-2} a_i \eta_i + a_{n-1}(\eta_{n-1} + \eta_n)$$

(see case MR4 in [17, Table 1]).

Note that $n \geq 3$ since we are assuming that λ is nontrivial, p-restricted and $V \not\cong W$. Suppose that $V|_H$ is irreducible.

First assume $H \not\cong M^0$. As in the proof of Proposition 5.10, let J be a maximal subgroup of $M = D_{n-2} = \text{GO}(W)$ containing H. Then J is disconnected, (M, J, V) is an irreducible triple, and $V|_{M^0} = V_{M^0}(\mu)$. By applying [3, Theorem 3], we deduce that J is a geometric subgroup of M, so the possibilities for J are listed in Table 4. By applying Proposition 3.4, we conclude that $V|_J$ is reducible, which is a contradiction.

Now suppose $H \leq M^0$. Let J be a maximal subgroup of M^0 containing H (note that $H < M^0$ since we are assuming H is disconnected). Then $V|_J$ is irreducible and we can consider the possibilities for the irreducible triple $(M^0, J, V|_{M^0})$. By inspecting [3,4,17], given the highest weight of $V|_{M^0}$, we quickly deduce that $n = 4$ is the only possibility (note that if $n = 3$ then the highest weight of $V|_{M^0}$ has at least two non-zero coefficients and it is easy to check that there are no compatible examples), $J = C_1^3 \cdot \text{Sym}_3$ is a $C_4(\text{ii})$-subgroup of $M^0 = D_4$ and $V|_{M^0} = V_{M^0}(\eta_3 + \eta_4)$, so $\lambda = \lambda_3$.

Proposition 5.19 Suppose $H < M < G$ and (G, M, V) is the case labelled (vii) in Table 6, so $G = C_n$, $M = D_{n-2}$, $p = 2$ and $\lambda = \sum_{i=1}^{n-1} a_i \lambda_i$. Then $V|_H$ is irreducible if and only if $n = 4$, $\lambda = \lambda_3$ and $H = C_1^3 \cdot Z_3$ or $C_1^3 \cdot \text{Sym}_3$.

 Springer
Proof Suppose that $V|_H$ is irreducible. By the proof of the previous lemma, $n = 4$, $\lambda = \lambda_3$ and

$$H \leq J = C_1^3 . \text{Sym}_3 < M^0 = D_4 < G = C_4.$$

In addition, if $\{\eta_1, \ldots, \eta_4\}$ are fundamental dominant weights for $M^0 = D_4$, then $V|_{M^0} = V_{M^0}(\eta_3 + \eta_4)$). Therefore, we have now reduced the problem to the case numbered (xi) in Table 6, which was handled in Proposition 5.17. In particular, we conclude that $H = C_1^3 , Z_3$ or $C_1^3 . \text{Sym}_3$, as required.

Remark 5.20 As noted in Remark 5.2, Proposition 5.19 implies that $V|_H$ is irreducible in case (v) if and only if $G = B_4$, $p = 2$, $\lambda = \lambda_3$ and $H = B_1^3 , Z_3$ or $B_1^3 . \text{Sym}_3$.

To complete the proof of Theorem 5.1, it remains to deal with the case labelled (xii) in Table 6.

Proposition 5.21 Suppose $H < M < G$ and (G, M, V) is the case labelled (xii) in Table 6, so $G = D_8$, $M = C_1^4 . \text{Sym}_4$, $p \neq 3$ and $V = V_G(\lambda)$, where $\lambda = \lambda_7$. Then $V|_H$ is irreducible if and only if $H = C_1^4 , X$, where $X < \text{Sym}_4$ is transitive.

Proof Write $M^0 = C_1^4 = M_1 M_2 M_3 M_4$, which is a central product of simply connected groups of type C_1, and let ω_i be the fundamental dominant weight for M_i. Then [4, Table 6.2] indicates that $V|_{M^0} = V_1 \oplus V_2 \oplus V_3 \oplus V_4$, where

$$
\begin{align*}
V_1 &= V_{M_1}(\omega_1) \otimes V_{M_2}(\omega_2) \otimes V_{M_3}(\omega_3) \otimes V_{M_4}(3\omega_4) \\
V_2 &= V_{M_1}(\omega_1) \otimes V_{M_2}(\omega_2) \otimes V_{M_3}(3\omega_3) \otimes V_{M_4}(\omega_4) \\
V_3 &= V_{M_1}(\omega_1) \otimes V_{M_2}(3\omega_2) \otimes V_{M_3}(\omega_3) \otimes V_{M_4}(\omega_4) \\
V_4 &= V_{M_1}(3\omega_1) \otimes V_{M_2}(\omega_2) \otimes V_{M_3}(\omega_3) \otimes V_{M_4}(\omega_4)
\end{align*}
$$

(14)

Assume that $V|_H$ is irreducible, so $W|_{H^0}$ is also irreducible (see Remark 5.12), where W is the natural $K G$-module.

Since W is a $K M^0$-module, it lifts to a representation $\rho : L \to \text{GL}(W)$, where $L = L_1 L_2 L_3 L_4$ is the direct product of simply connected groups of type C_1. Then $M^0 = L / Y$, where $Y = \ker(\rho)$, and there exists a subgroup R of L such that $H^0 = R / Y$.

Claim. H^0 is a subdirect product of M^0.

We need to show that R^0 is a subdirect product of L. To do this, we proceed as in the proof of Lemma 5.13; the argument is very similar (using the irreducibility of $W|_{H^0}$) and we omit the details.

Claim. $H^0 = M^0$.

Since R^0 is a subdirect product of L, Proposition 2.6 implies that R^0 is isomorphic to a commuting product of simply connected groups of type C_1. If R^0 is of type C_1^4 then $H^0 = M^0$, so we may assume that R^0 is of type C_1^1 , C_1^2 or C_1^3.

Suppose R^0 is of type C_1. Let η be the fundamental dominant weight for R^0. By Proposition 2.6, we may write

$$R^0 = \{ (\tau_1(x), \tau_2(x), \tau_3(x), \tau_4(x)) | x \in \text{Sp}_2(K) \},$$

Springer
where \(\tau_i : \text{Sp}_2(K) \rightarrow L_i \) is a bijective morphism. As before, Lemma 2.2 implies that \(\tau_i = t_x \sigma_{q_i} \) for some \(x \in \mathbb{R}^0 \) and \(p \)-power \(q_i \), and we may assume that \(q_4 = 1 \). Then \(V|_{R^0} \) has composition factors with highest weights

\[
(q_1 + q_2 + q_3 + 3) \eta, \quad (q_1 + q_2 + 3q_3 + 1) \eta,
\]

\[
(q_1 + 3q_2 + q_3 + 1) \eta, \quad (3q_1 + q_2 + q_3 + 1) \eta.
\]

Since \(N_G(H^0) = H^0C_G(H^0) \), it follows that \(V|_{R^0} \) is homogeneous, so \(q_i = 1 \) for all \(i \). But Lemma 2.10 implies that \(V|_{R^0} \) is non-homogeneous, so we have reached a contradiction. Note that if \(p = 2 \) then one of the tensor factors in \(V|_{R^0} \) is non-restricted, but we can still argue as in the proof of Lemma 2.10 by considering the tensor product of the restricted factors.

Next suppose \(R^0 = R_1 R_2 \), where each \(R_i \cong C_1 \) is simply connected. Let \(\{\eta_1, \eta_2\} \) be fundamental dominant weights for \(R^0 \). In view of Proposition 2.6, we may assume that either

\[
R_1 = \{(\tau_1(x), 1, 1, 1)|x \in \text{Sp}_2(K)\},
\]

\[
R_2 = \{(1, \tau_2(x), \tau_3(x), \tau_4(x))|x \in \text{Sp}_2(K)\}
\] \(\text{(15)} \)

or

\[
R_1 = \{(\tau'_1(x), \tau'_2(x), 1, 1)|x \in \text{Sp}_2(K)\},
\]

\[
R_2 = \{(1, 1, \tau'_3(x), \tau'_4(x))|x \in \text{Sp}_2(K)\}
\] \(\text{(16)} \)

where \(\tau_i, \tau'_i \) are bijective morphisms from \(\text{Sp}_2(K) \) to \(L_i \). Note that \(V|_{R^0} \) is either homogeneous, or the homogeneous components of \(V|_{R^0} \) are conjugate under an involutory automorphism of \(R^0 \) that interchanges \(R_1 \) and \(R_2 \).

First assume (15) holds. As above, we may write \(\tau_i = t_x \sigma_{q_i} \), so \(V|_{R^0} \) has composition factors with highest weights \(q_1 \eta_1 + (q_2 + q_3 + 3q_4) \eta_2, q_1 \eta_1 + (q_2 + 3q_3 + q_4) \eta_2, q_1 \eta_1 + (3q_2 + q_3 + q_4) \eta_2 \) and \(3q_1 \eta_1 + (q_2 + q_3 + q_4) \eta_2 \), and at least one \(q_i \) is equal to 1. But this contradicts the above homogeneity properties of \(V|_{R^0} \). Similarly, suppose (16) holds and write \(\tau'_i = t_x \sigma_{q'_i} \), where at least one \(q'_i \) is equal to 1. Then \(V|_{R^0} \) has composition factors with highest weights \(q'_1 + q'_2 \eta_1 + (q'_3 + 3q'_4) \eta_2, (q'_1 + q'_2) \eta_1 + (3q'_3 + q'_4) \eta_2, (q'_1 + 3q'_2) \eta_1 + (q'_3 + q'_4) \eta_2 \) and \(3q'_1 + q'_2 \eta_1 + (q'_3 + 3q'_4) \eta_2 \), and we deduce that \(q'_i = 1 \) for all \(i \). Then \(V|_{R^0} \) has composition factors with highest weights \(2\eta_1 + 4\eta_2 \) and \(2\eta_1 + 2\eta_2 \), but once again this is incompatible with the observed homogeneity properties of \(V|_{R^0} \).

Finally, let us assume \(R^0 = R_1 R_2 R_3 \) is of type \(C^3_3 \). Let \(\{\eta_1, \eta_2, \eta_3\} \) be fundamental dominant weights for \(R^0 \). In view of Proposition 2.6, we may assume that

\[
R_1 = \{(\tau_1(x), \tau_2(x), 1, 1)|x \in \text{Sp}_2(K)\}
\]

\[
R_2 = \{(1, 1, \tau_3(x), 1)|x \in \text{Sp}_2(K)\}
\]

\[
R_3 = \{(1, 1, 1, \tau_4(x))|x \in \text{Sp}_2(K)\}
\]
where \(\tau_i = t_{\chi_i} \sigma_{q_i} \) as above. Note that \(V|_{R^0} \) is either homogeneous, or any two homogeneous components of \(V|_{R^0} \) are conjugate via an automorphism of \(R^0 \) of order 2 or 3, induced by a suitable permutation of the three factors of \(R^0 \). However, \(V|_{R^0} \) has composition factors with highest weights \((q_1 + q_2)\eta_1 + q_3\eta_2 + 3q_4\eta_3, (q_1 + q_2)\eta_1 + 3q_3\eta_2 + q_4\eta_3, (q_1 + 3q_2)\eta_1 + q_3\eta_2 + q_4\eta_3 \) and \((3q_1 + q_2)\eta_1 + q_3\eta_2 + q_4\eta_3 \), so \(V|_{R^0} \) does not have the stated homogeneity property. This is a contradiction.

We have now reduced to the case \(H^0 = M^0 = C_4 \). From the above description of \(V|_{M^0} \) it is clear that \(V|_{H} \) is irreducible if and only if \(H = C_4 \times X \), where \(X < \text{Sym}_4 \) is transitive. The result follows. \(\square \)

This completes the proof of Theorem 5.1.

6 Non-geometric subgroups

In order to complete the proof of Theorem 1.4, it remains to determine the irreducible triples \((G, H, V)\) satisfying Hypothesis 1.1, where \(V|_{H^0} \) is reducible and \(H \) is not contained in a geometric subgroup of \(G \). Here the latter condition implies that \(H \) is one of the non-geometric subgroups that arise in part (ii) of Theorem 3.1 in Sect. 3. In particular, \(W|_{H^0} \) is irreducible and tensor indecomposable, so we can apply the main theorem of [3]. (Note that if \((G, p) = (C_n, 2)\) and \(H \) fixes a non-degenerate quadratic form on \(W \), then \(H \) is contained in a geometric \(C_6 \)-subgroup \(D_n \), which is a situation we dealt with in Proposition 5.19.)

Theorem 6.1 Let \(G, H \) and \(V = V_G(\lambda) \) be given as in Hypothesis 1.1, and assume that \(H \) is not contained in a geometric subgroup of \(G \). Then \(V|_{H} \) is reducible.

Proof By [3, Theorem 1], the only possibility is the case \((G, H, \lambda) = (C_{10}, A_5, 2, \lambda_3)\) with \(p \neq 2, 3 \). However, we claim that \(H \) is a maximal subgroup, so this example does not satisfy the conditions in Hypothesis 1.1. To see this, let \(\{\eta_1, \ldots, \eta_5\} \) be a set of fundamental dominant weights for \(H^0 \) and note that \(W = V_{H^0}(\eta_3) \) (where \(W \) is the natural \(KG \)-module). Suppose \(H \) is non-maximal, say \(H < M < G \) with \(M \) maximal. Then \(M \) is non-geometric, so \(M^0 \) is a simple group that acts irreducibly on \(W \) and thus \((M^0, H^0, W)\) is an irreducible triple. By inspecting [17, Table 1], we see that there are no compatible examples. This is a contradiction, so \(H \) is maximal as claimed. \(\square \)

In view of Theorems 4.5, 5.1 and 6.1, the proof of Theorem 1.4 is complete.

7 Spin modules

In this section, we briefly consider the special case arising in part (b) of Theorem 1.4, where \(G \) is a simply connected group of type \(B_n \) or \(D_n \) (or type \(C_n \) if \(p = 2 \)), \(V \) is a spin module and \(H \) is a decomposition subgroup of \(G \), as defined in the introduction. Recall that \(H \) normalizes an orthogonal decomposition

\[W = W_1 + \cdots + W_t \]
of the natural $K G$-module W, where the W_i are pairwise orthogonal subspaces.

Our goal here is simply to highlight the difference between this very specific situation and the general case we have studied in Sects. 4, 5 and 6. We will do this by establishing a preliminary result (see Proposition 7.4); a detailed analysis of spin modules and decomposition subgroups will be given in a forthcoming paper.

Let G be a simply connected simple algebraic group of type B_n or D_n over an algebraically closed field K of characteristic p. For convenience, we will assume that $p \neq 2$. Let W be the natural $K G$-module. As before, fix a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ and fundamental dominant weights $\{\lambda_1, \ldots, \lambda_n\}$ for G. We will assume that $n \geq 3$ if $G = B_n$ and $n \geq 5$ if $G = D_n$ (note that the spin modules for D_4 are excluded in Hypothesis 1.1; see Remark 1.2). We may write $G = G / Z \cong \text{SO}(W)$, where $Z \leq Z(G)$. Similarly, for a subgroup J of G we set $J = J Z \leq G$.

Let V be a spin module for G. In terms of highest weights, either $V = V_G(\lambda_n)$, or $G = D_n$ and $V = V_G(\lambda_{n-1})$ (in the latter case, note that $V_G(\lambda_{n-1}) = V_G(\lambda_n)^\tau$, where τ is a graph automorphism of G). The next result is well known (see [4, Lemma 2.3.2] for a proof).

Lemma 7.1 $\dim V_G(\lambda_n) = 2^n$ and $\dim V_G(\lambda_{n-1}) = \dim V_G(\lambda_n) = 2^{n-1}$.

Let $W = W_1 \perp W_2$ be an orthogonal decomposition, where W_1 and W_2 are non-degenerate subspaces with $\dim W_i \geq 3$. Let H be the stabilizer in G of this decomposition, so $H = H^0 \cdot 2$ and H^0 is a central product of two simply connected orthogonal groups. More precisely,

$$H = \overline{G}_{W_1} \cap \overline{G}_{W_2} = (\text{GO}(W_1) \times \text{GO}(W_2)) \cap \overline{G} = \overline{H}^0 \cdot 2$$

and $\overline{H}^0 = \text{SO}(W_1) \times \text{SO}(W_2)$ is semisimple.

Proposition 7.2 Let V be a spin module for G and let H be the stabilizer in G of an orthogonal decomposition $W = W_1 \perp W_2$ as above. Then $V|_H$ is irreducible. Moreover, each KH^0-composition factor of V is a tensor product of spin modules for both orthogonal factors of H^0.

Proof If $G = B_n$ then $H/Z(G)$ is a disconnected subgroup in the collection C_1 of geometric maximal subgroups of G, and the result follows immediately from [4, Proposition 3.1.1]. Now assume $G = D_n$. If W_1 is odd-dimensional, then $H/Z(G)$ is connected and Seitz’s main theorem [17, Theorem 1] implies that $V|_H$ is an irreducible tensor product of appropriate spin modules (see the cases labelled IV 1 (with $k = 1$) and IV 2 in [17, Table 1]). Finally, suppose W_1 is even-dimensional. If $\dim W_1 \neq n$, then $H/Z(G)$ is a disconnected C_1-subgroup and [4, Proposition 3.1.1] applies. If $\dim W_1 = n$ is even then H is properly contained in a C_2-subgroup of G (namely, the full normalizer in G of the orthogonal decomposition); the proof of [4, Lemma 3.2.3] goes through unchanged, and the result follows. \square

Now consider an orthogonal decomposition of the form

$$W = W_1 \perp \cdots \perp W_t,$$

(17)
where $t \geq 2$ and each W_i is a non-degenerate subspace with $\dim W_i \geq 3$. Let H be the stabilizer in G of this decomposition, so

$$
H = \bigcap_{i=1}^{t} G_{W_i} = (GO(W_1) \times \cdots \times GO(W_t)) \cap \overline{G} = H^0 \cdot 2^{t-1}
$$

If $t = 2$ then $V|_H$ is irreducible by Proposition 7.2, so let us assume $t \geq 3$. We claim that $V|_H$ is still irreducible. To see this, we first handle the special case where the W_i are equidimensional.

Lemma 7.3 If $\dim W_i = d \geq 3$ for all i, then $V|_H$ is irreducible.

Proof If $d = 2l + 1$ is odd, then $H = 2^{t-1} \times B^t_l$ and $H . \text{Sym}_t$ is a C_2-subgroup of G. Here the proof of [4, Lemma 4.3.2] goes through unchanged (the symmetric group Sym_t in the C_2-subgroup plays no role in the argument) and we deduce that $V|_H$ is irreducible.

Now assume $d = 2l$ is even, so $H = D^t_l \cdot 2^{t-1}$ and we may write $H^0 = X_1 \cdots X_t$, where each $X_i = D_l$ is simply connected. Here the elementary abelian 2-group 2^{t-1} is generated by involutions z_1, \ldots, z_{t-1}, where z_i acts as a graph automorphism on X_i and X_{i+1}, and centralizes the remaining factors of H^0. Now $V_1 \otimes \cdots \otimes V_t$ is a composition factor of $V|_{H^0}$, where each V_i is a spin module for X_i. By repeatedly applying the $z_i \in H$ to conjugate this composition factor, we deduce that $V|_{H^0}$ has at least $2^{t-1} \cdot \dim(V_1 \otimes \cdots \otimes V_t) = 2^{t-1} \cdot 2^{t(l-1)} = 2^{t-1} \cdot 2^{tl} = \dim V$

(see Lemma 7.1) we conclude that $V|_H$ is irreducible. \square

We can now establish our main result for spin modules and decomposition subgroups.

Proposition 7.4 Let H be the stabilizer in G of the decomposition in (17), and assume $\dim W_i \geq 3$ for each i. Then $V|_H$ is irreducible.

Proof Let d_1, \ldots, d_s be the distinct dimensions of the summands in (17), and let a_i be the number of summands of dimension d_i. If $s > 1$ then we may assume that $d_i < d_{i+1}$ for all $1 \leq i < s$. We may re-order and re-label the subspaces in (17) so that

$$
W = (W_{1,1} \perp \cdots \perp W_{1,a_1}) \perp \cdots \perp (W_{s,1} \perp \cdots \perp W_{s,a_s}),
$$

(18)

where $\dim W_{i,j} = d_i$ for all i, j. Then

$$
\overline{H} = (GO(W_{1,1}) \times \cdots \times GO(W_{1,a_1}) \times \cdots \times GO(W_{s,1}) \times \cdots \times GO(W_{s,a_s})) \cap \overline{G}.
$$

We proceed by induction on s.

\(\square \) Springer
The base case $s = 1$ was handled in Lemma 7.3, so let us assume $s > 1$. Set $$U_1 = (W_{1,1} \perp \cdots \perp W_{1,a_1}) \perp \cdots \perp (W_{s-1,1} \perp \cdots \perp W_{s-1,a_{s-1}})$$ and $$U_2 = W_{s,1} \perp \cdots \perp W_{s,a_s},$$ so $W = U_1 \perp U_2$ and $H \leq M$, where $$\overline{M} = (\text{GO}(U_1) \times \text{GO}(U_2)) \cap \overline{G} = M^0.2.$$

Write $M^0 = M_1M_2$, where M_1 and M_2 are simply connected orthogonal groups with natural modules U_1 and U_2, respectively. Let $H_1 = H \cap M^0$ and note that $H = H_12 \not\leq M^0$.

Here $M^0 = M_1M_2$ is a central product. The KM^0-module W lifts to a representation $\rho : L \rightarrow \text{GL}(W)$, where $L = L_1 \times L_2$ is the direct product of two simply connected orthogonal groups with $L_i \cong M_i$, so $M^0 = L/Y$ where $Y = \ker(\rho)$. In particular, there exist subgroups $R \leq R_1 \leq L$ such that $H_1 = R_1/Y$ and $H^0 = R/Y$. Note that $H_1/H^0 \cong R_1/R$ and $R^0 = R^1_0$ (since $H^0 = H^1_0$). Let $\pi_i : R_1 \rightarrow L_i$ be the i-th projection map and note that $R_1 = \pi_1(R_1) \times \pi_2(R_1)$. There are several cases to consider.

First assume U_1 and U_2 are odd-dimensional. Here [17, Table 1] indicates that $V|_{M^0} = V_1 \otimes V_2$ is irreducible, where V_i is the spin module for M_i. The KM^0-module V lifts to a representation $\varphi : L \rightarrow \text{GL}(V)$, so we can consider $V|R_1$. By induction, $V_i|_{\pi_i(R_1)}$ is irreducible for $i = 1, 2$, so $V|_{R_1}$ is irreducible and thus $V|_{H_1}$ is also irreducible. The result follows.

Next suppose $\dim U_1$ is even and $\dim U_2$ is odd, so [4, Proposition 3.1.1] implies that $V|_{M^0}$ has exactly two composition factors, namely $$V|_{M^0} = (V_1 \otimes V_2) \oplus (V'_1 \otimes V_2),$$ where V_1 and V'_1 are the two spin modules for M_1, and V_2 is the spin module for M_2. Here the KM^0-modules $V_1 \otimes V_2$ and $V'_1 \otimes V_2$ lift to representations $\varphi : L \rightarrow \text{GL}(V_1 \otimes V_2)$ and $\varphi' : L \rightarrow \text{GL}(V'_1 \otimes V_2)$, so we can consider $(V_1 \otimes V_2)|_{R_1}$ and $(V'_1 \otimes V_2)|_{R_1}$. By induction, $V_2|_{\pi_2(R_1)}$ is irreducible, and $\pi_1(R_1)$ acts irreducibly on V_1 and V'_1. Therefore, $V|_{R_1}$ has precisely two composition factors, which are interchanged by an element in R_12 that acts as a graph automorphism on L_1 and centralizes L_2. Therefore, $V|_H$ is irreducible. An entirely similar argument applies if $\dim U_1$ is odd and $\dim U_2$ is even.

Finally, suppose U_1 and U_2 are both even-dimensional. Here $$V|_{M^0} = (V_1 \otimes V_2) \oplus (V'_1 \otimes V'_2)$$ where V_i and V'_i are the two spin modules for M_i, and the inductive hypothesis implies that $\pi_i(R_1)$ acts irreducibly on V_i and V'_i, for $i = 1, 2$. As before, it follows that $V|_{R_1}$
has exactly two composition factors, which are interchanged by an element in $R_{1.2}$ that acts simultaneously as a graph automorphism on both L_1 and L_2. Therefore, the two KH_1-composition factors of V are H-conjugate, and thus $V|_H$ is irreducible. \hfill \square

In view of the previous proposition, we can easily construct chains of positive-dimensional closed subgroups

$$H_k < H_{k-1} < \cdots < H_1 < G$$

such that $V|_{H_i}$ is irreducible for all i. For instance, take any sequence of successive refinements of a fixed orthogonal decomposition of W such that each refinement is also an orthogonal decomposition that only contains subspaces of dimension at least three. Then the stabilizers in G of these decompositions form a chain of subgroups with the desired irreducibility property. In particular, such a chain can be arbitrarily long. This is in stark contrast to the general situation, where the length of an irreducible chain is at most five (see Theorem 1.9, which will be proved in the next section).

8 Irreducible chains

In this final section we prove Theorem 1.9. Recall that if G is a simple algebraic group and $V = V_G(\lambda)$ is a nontrivial p-restricted irreducible KG-module, then we write $\ell = \ell(G, V)$ for the length of the longest chain of closed positive-dimensional subgroups

$$H_{\ell} < H_{\ell-1} < \cdots < H_2 < H_1 = G$$

such that $V|_{H_i}$ is irreducible.

As noted in the previous section, if G is an orthogonal group (or a symplectic group with $p = 2$) and V is a spin module, then $\ell(G, V)$ can be arbitrarily large (one can simply take an appropriate chain of decomposition subgroups, for example). Similarly, if $V = W$ or W^* (where W is the natural KG-module) then $\ell(G, V)$ is unbounded. For instance, if $G = \text{Sp}_{2n}(K)$ then set $H_i = \text{Sp}_{2}(K) : X_i$, where $X_i \leq \text{Sym}_n$ is transitive. The transitivity of X_i implies that $W|_{H_i}$ is irreducible, and it is easy to see that if n is sufficiently large then we can find arbitrarily long chains of transitive subgroups

$$X_i < X_{i-1} < \cdots < X_1 = \text{Sym}_n.$$

In fact, if we choose n appropriately, then we may assume that each X_i is 3-transitive (see Remark 8.2 below).

Now let us assume that $V \neq W, W^*$, and also assume that V is not a spin module. In this situation, it is natural to ask whether or not $\ell(G, V)$ is bounded above by an absolute constant. Our main theorem is the following, which immediately yields Theorem 1.9. (Note that in Table 8, T is a maximal torus of G and M_n is the simple Mathieu group of degree n).
Table 8 The irreducible chains in Theorem 8.1

G	V	$\ell(G, V)$	Conditions	Chain
B_4	λ_3	5	$p = 2$	$B_1^3.Z_3 < B_1^3.\text{Sym}_3 < D_4 < D_4.2 < B_4$
C_4	λ_3	5	$p = 2$	$C_1^3.Z_3 < C_1^3.\text{Sym}_3 < D_4 < D_4.2 < C_4$
A_n	λ_4, λ_{n-3}	4	$n \in \{10, 11, 22, 23\}$	$T.\text{M}_{n+1} < T.\text{Alt}_{n+1} < T.\text{Sym}_{n+1} < A_n$
A_{23}	λ_5, λ_{19}	4		$T.\text{M}_{24} < T.\text{Alt}_{24} < T.\text{Sym}_{24} < A_{23}$
B_3	$2\lambda_1$	4	$p = 3$	$A_2 < A_2.2 < G_2 < B_3$

Theorem 8.1 Let G be a simply connected cover of a simple classical algebraic group with natural module W. Let $V = V_G(\lambda)$ be a p-restricted irreducible KG-module, where $V \neq W$, W^* and V is not a spin module. Then either

(i) $\ell(G, V) \leq 3$; or
(ii) $G = A_n$ and $\lambda \in \{\lambda_2, \lambda_3, \lambda_{n-2}, \lambda_{n-1}\}$.

More precisely, excluding the cases in (ii), we have $\ell(G, V) \leq 3$, unless (G, V) is one of the cases listed in Table 8.

Remark 8.2 The cases in part (ii) of Theorem 8.1 are genuine exceptions; for suitable values of n, $\ell(G, V)$ can be arbitrarily large. By duality, we only need to consider the cases $\lambda = \lambda_2$ and λ_3. Recall that if $H = T_n.X < G$, then $V_G(\lambda_3)|_H$ is irreducible if and only if $X \leq \text{Sym}_{n+1}$ is 3-transitive (and similarly, X has to be 2-transitive if $\lambda = \lambda_2$); see Proposition 5.5. Suppose $n = q = 2^e$ for some positive integer $e \geq 2$. The finite simple group $\text{PSL}_2(q)$ has a faithful 3-transitive action on the projective line $\mathbb{F}_q \cup \{\infty\}$, which extends to a faithful action of its automorphism group $\text{PGL}_2(q) = \text{PSL}_2(q).Z_e$. Therefore, $\text{PSL}_2(q).d \leq \text{PGL}_2(q)$ is a 3-transitive subgroup of Sym_{n+1} for every divisor d of e. In particular, by choosing e appropriately we can construct arbitrarily long chains of 3-transitive subgroups of Sym_{n+1}, and each of the corresponding subgroups $T_n.X < G$ acts irreducibly on $V_G(\lambda_2)$ and $V_G(\lambda_3)$.

Proof of Theorem 8.1 The proof is a combination of the main theorems in [3,4,17], together with Theorem 1.4. To illustrate the general approach, we will consider the case $G = A_n$. Set $V = V_G(\lambda)$. In order to prove the theorem, we may assume that

$$\lambda \notin \{\lambda_1, \lambda_2, \lambda_3, \lambda_{n-2}, \lambda_{n-1}, \lambda_n\}$$ \hspace{1cm} (19)

and $\ell(G, V) \geq 4$, so there is an irreducible chain $H_4 < H_3 < H_2 < H_1 = G$.

Consider the irreducible triple (G, H_4, V). First assume that H_4 is disconnected and $V|_{H_4}$ is reducible. Then (G, H_4, V) must be one of the irreducible triples arising in Theorem 1.4, so $H_4 = T.X_4$ and $\lambda = \lambda_k$, where $X_4 < \text{Sym}_{n+1}$ is s-transitive and $s = \max\{k, n+1-k\} \geq 4$. Moreover, $H_3 = T.X_3$ and $H_2 = T.X_2$, where $X_3 < X_2 \leq \text{Sym}_{n+1}$ are also s-transitive groups of degree $n+1$.

Using the classification of finite simple groups, it can be shown that Sym_{n+1} and the alternating group Alt_{n+1} (for $n \geq 5$) are the only 4-transitive groups of degree
n + 1, unless \(n \in \{10, 11, 22, 23\} \) in which case the Mathieu group \(M_{n+1} \) is also 4-transitive (see [5, Theorem 4.11], for example). Similarly, if \(t \geq 5 \) then \(\text{Sym}_{n+1} \) and \(\text{Alt}_{n+1} \) (for \(n \geq t+1 \)) are the only \(t \)-transitive groups of degree \(n + 1 \), with the single exception of \(M_{24} \) when \(t = 5 \) and \(n = 23 \). Since \(s \geq 4 \), it follows that either \(s = 4 \) and \(n \in \{10, 11, 22, 23\} \), or \(s = 5 \) and \(n = 23 \). In each case, \(X_4 = M_{n+1}, X_3 = \text{Alt}_{n+1}, \) \(X_2 = \text{Sym}_{n+1} \) and no proper positive-dimensional subgroup of \(H_4 \) acts irreducibly on \(V \). These special cases are recorded in Table 8.

To complete the proof of Theorem 8.1 for \(G = A_n \), we may assume that \((G, H_4, V)\) is an irreducible triple with \(H_4 \) connected. The possibilities are recorded in [17, Table 1], and in view of (19) we see that the relevant cases therein are labelled

\[
I_1, I'_1, I_2, I_3, I_4, I_5, I_{12}. \tag{20}
\]

Consider the irreducible triple \((G, H_3, V)\). If \(H_3 \) is connected, then \((G, H_3, V)\) also corresponds to one of the cases in (20), but it is routine to check that this collection of cases does not contain a pair of triples \((G, H_4, V)\) and \((G, H_3, V)\) with \(H_4 < H_3 \). Finally, suppose that \(H_3 \) is disconnected. The connectivity of \(H_4 \) implies that \(H_4 \leq H_3^0 \), so \(V|_{H_3^0} \) is irreducible and we have an irreducible chain

\[
H_4 \leq H_3^0 < H_3 < H_2 < H_1 = G.
\]

By the argument above, we have \(H_4 = H_3^0 \) and thus \(H_4 < H_3 \leq N_G(H_4) \). It is now easy to see that \((G, H_4, V)\) must correspond to the case \(I_4 \) or \(I_5 \) in [17, Table 1], so \(n \) is odd, \(H_4 = D_{(n+1)/2} \) and \(H_3 = D_{(n+1)/2}.2 \). But \(D_{(n+1)/2}.2 < A_n \) is a maximal subgroup, so we have reached a contradiction.

This completes the proof of Theorem 8.1 for \(G = A_n \). The other cases are similar, and we leave it to the reader to check the details. \(\square \)

This completes the proof of Theorem 1.9.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Borel, A.: Linear Algebraic Groups (Second Enlarged Edition), Graduate Texts in Math. vol. 126. Springer, New York (1991)
2. Bourbaki, N.: Lie Groups and Lie Algebras (Chapters 4–6). Springer, New York (2002)
3. Burness, T.C., Ghandour, S., Marion, C., Testerman, D.M.: Irreducible almost simple subgroups of classical algebraic groups. Mem. Amer. Math. Soc. vol. 1114 (2015)
4. Burness, T.C., Ghandour, S., Testerman, D.M.: Irreducible geometric subgroups of classical algebraic groups. Mem. Amer. Math. Soc., vol. 1130 (2016)
5. Cameron, P.J.: Permutation Groups. Lond. Math. Soc. Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)
6. Dowd, M., Sin, P.: On representations of algebraic groups in characteristic two. Comm. Algebra 24, 2597–2686 (1996)
7. Dynkin, E.: Maximal subgroups of the classical groups. Amer. Math. Soc. Transl. 6, 245–378 (1957)
8. Ford, B.: Overgroups of irreducible linear groups, I. J. Algebra 181, 26–69 (1996)
9. Ford, B.: Overgroups of irreducible linear groups, II. Trans. Amer. Math. Soc. 351, 3869–3913 (1999)
10. Ghandour, S.: Irreducible disconnected subgroups of exceptional algebraic groups. J. Algebra 323, 2671–2709 (2010)
11. Hogeweij, G.M.D.: Almost-classical Lie algebras, I. Nederl. Akad. Wetensch. Indag. Math. 44, 441–452 (1982)
12. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math. vol. 9. Springer, New York (1972)
13. Humphreys, J.E.: Linear Algebraic Groups, Graduate Texts in Math. vol. 21. Springer, New York (1975)
14. Liebeck, M.W., Seitz, G.M.: On the subgroup structure of the classical groups. Invent. Math. 134, 427–453 (1998)
15. Malle, G., Testerman, D.: Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Advanced Studies in Math. vol. 133. CUP, Cambridge (2011)
16. Premet, A.A.: Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic. Math. USSR Sb. 61, 167–183 (1988)
17. Seitz, G.M.: The maximal subgroups of classical algebraic groups. Mem. Amer. Math. Soc., vol. 365 (1987)
18. Steinberg, R.: Lectures on Chevalley groups. Yale University, New Haven (1968)
19. Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc., vol. 80 (1968)
20. Testerman, D.M.: Irreducible subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc., vol. 390 (1988)
21. Testerman, D.M.: A_1-type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups. J. Algebra 177, 34–76 (1995)