Human Antiviral Efficacy, Safety and Pharmacokinetics of RV521, an Inhibitor of the RSV-F Protein: A Randomized, Placebo-Controlled, Respiratory Syncytial Virus Challenge Study

John DeVincenzo MD, a,b # Dereck Tait FRCPath, c John Efthimiou MD, d Julie Mori PhD, e
Young-In Kim PhD, a,b Elaine Thomas PhD, c Lynn Wilson PhD, c Rachel Harland PhD, c
Neil Mathews PhD, c Stuart Cockerill PhD, c Kenneth Powell PhD, c Edward Littler PhD c

a University of Tennessee Center for Health Sciences, Memphis, TN, USA
b Children’s Foundation Research Institute at LeBonheur Children’s Hospital, Memphis, TN, USA

ReViral Ltd, Stevenage, Hertfordshire, UK
d Independent Respiratory Specialist, Oxford, UK

hVIVO Services Limited, London, UK

Running Head: Antiviral Efficacy, Safety and PK of RV521

#Address correspondence to John DeVincenzo, jdevince@uthsc.edu

Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Room 400R, 50 North Dunlap Street, Memphis, TN 38103
ABSTRACT Effective treatments for respiratory syncytial virus (RSV) infection are lacking. We report a human proof-of-concept study for RV521, a small-molecule antiviral inhibitor of the RSV-F protein. In this randomized, double-blind, placebo-controlled trial (NCT03258502), healthy adults were challenged with RSV-A Memphis-37b. After infection was confirmed (or 5 days after challenge virus inoculation), subjects received RV521 (350 mg or 200 mg) or placebo, orally every 12 hours for 5 days. Primary endpoint was area under the curve (AUC) for viral load, as assessed by reverse transcriptase quantitative PCR (RT-qPCR), in nasal wash samples. Primary efficacy analysis set included subjects successfully infected with RSV who received ≥1 dose of study drug. Sixty-six subjects were enrolled (n=22 per group); 53 were included in the primary analysis set (RV521 350 mg: n=16; 200 mg: n=18; placebo: n=19). Mean AUC of RT-qPCR-assessed RSV viral load (log_{10} PFUe/mL x hours) was significantly lower with RV521 350 mg (185.26 [SE, 31.17], \(P=0.002\)) and 200 mg (224.35 [76.0], \(P=0.007\)) versus placebo (501.39 [86.57]). Disease severity improved with RV521 350 mg and 200 mg versus placebo \((P=0.002\) and \(P=0.009\), respectively, for AUC total symptom score [score x hours]). Daily nasal mucus weight was significantly reduced \((P=0.010\) and \(P=0.038\) for RV521 350 mg and 200 mg versus placebo). All treatment-emergent adverse events were grade 1–2. No subjects discontinued due to adverse events. There was no evidence of clinically significant viral resistance, with only three variants detected. RV521 effectively reduced RSV viral load and disease severity in humans and was well tolerated.

KEYWORDS antiviral, respiratory syncytial virus, RV521
INTRODUCTION

Respiratory syncytial virus (RSV) is a common cause of respiratory infections across all age groups but has the most severe impact in young children and vulnerable adult populations including the elderly, the immunocompromized and those with chronic obstructive pulmonary disease (1-3). In young children with acute lower respiratory tract infections (LRTIs), RSV is the most commonly identified pathogen, causing significant morbidity and mortality (3, 4). In those aged <1 year, RSV causes approximately 15 times as many hospitalizations (5) and nearly 10 times as many estimated annual respiratory deaths as influenza (6). Worldwide in 2015, RSV was responsible for an estimated 2.7–3.8 million hospital admissions and 48,000–74,500 in-hospital deaths among children under 5 years of age (4). RSV-infected infants are also at increased risk of developing asthma later in childhood or during adolescence (7, 8). In elderly and high-risk adult populations, the disease burden of RSV is comparable to that of influenza (1, 9).

No vaccines to prevent RSV infection are currently available. Palivizumab, an RSV monoclonal antibody, is approved for the prevention of serious RSV LRTI but has limited efficacy and a high cost (10, 11). Furthermore, use of palivizumab is restricted to high-risk infants, including those born prematurely or with underlying conditions, who comprise <3% of the birth cohort (12, 13). An aerosolized formulation of the antiviral agent, ribavirin, is approved in the US for the treatment of severe LRTIs caused by RSV in hospitalized infants and young children (14). However, it has demonstrated limited antiviral potency in vitro (15), and is rarely used in clinical practice due to lack of clinical benefit and concerns regarding toxicity (including bone marrow suppression, and potential oncogenic and teratogenic activity) (11, 14).

RV521 is an orally available, small-molecule inhibitor of the RSV-F protein (Fig S1) that has exhibited potent efficacy against a panel of clinical isolates of RSV-A and -B viruses in vitro.
DeVincenzo et al 2019 01 November 2019

(RC50 [range] 1.4 nM [0.3–10.4] for RSV-A clinical isolates [n=20] and 1.0 nM [0.1–2.1] for RSV-B [n=16]) (16). RV521 has demonstrated a good safety profile in preclinical evaluations, including juvenile toxicology studies (17). In a first-in-human, single- and multiple-ascending dose study conducted in 76 healthy adult males, RV521 was well tolerated, with no discontinuations due to adverse events and displayed a favorable pharmacokinetic (PK) profile (17).

We, therefore, performed a Phase 2a, double-blind, placebo-controlled, clinical study to establish human therapeutic proof-of-concept for the antiviral activity of RV521 in the treatment of an established RSV infection, using a virus challenge model per regulatory guidance (14, 18). Also, the safety, tolerability and PK profile of RV521 was assessed and viral RSV fusion (F) gene sequence analysis was performed to detect any viral variants following RV521 treatment.

RESULTS

Sixty-six subjects were recruited between 27 July 2017 and 28 September 2017. All were inoculated with RSV challenge virus (RSV-A Memphis-37b) and randomly assigned to placebo or RV521 in a 1:2 placebo:RV521 design (Fig. 1). In cohort 1, 33 subjects received RV521 (n=22) or placebo (n=11) dosed at 200 mg. In cohort 2, 33 subjects received RV521 (n=22) or placebo (n=11) dosed at 350 mg. One subject (an RV521 350 mg recipient) withdrew consent for reasons unrelated to treatment after receiving three of 10 planned doses. This subject returned for the day 28 visit but, not fulfilling intent-to-treat infected (ITT-I) criteria, was excluded from this primary efficacy analysis set. Therefore, 32 subjects in cohort 2 were treated according to the protocol-defined dosing regimen. Table 1 shows subject baseline characteristics; no differences were observed across treatment groups.
Viral loads were consistently reduced with RV521. After achieving similar pre-treatment baseline viral loads, significant differences were observed with RV521 recipients compared with placebo (ITT-I; Table 2). The magnitude and dynamics of the antiviral effects of RV521 are shown in Fig. 2. The primary endpoint (mean area under the curve [AUC] of viral load as assessed by reverse transcriptase quantitative PCR [RT-qPCR]; ITT-I) was significantly reduced in the RV521 350 mg (185.26 log_{10} plaque forming unit equivalents [PFUe]/mL x hours \[P=0.002\]) and RV521 200 mg (224.35 log_{10} PFUe/mL x hours \[P=0.007\]) groups compared with placebo (501.39 log_{10} PFUe/mL x hours). The percentage reduction in mean AUC for RV521 350 mg and RV521 200 mg relative to placebo was 63.05% and 55.25%, respectively (98.87% and 99.10% reduction, respectively, when AUC of unlogged RT-qPCR data was compared). There was no significant difference in RT-qPCR AUC between the 200 mg and 350 mg RV521 dose groups \(P=0.429\), Satterthwaite). Significant reductions in AUC of viral load as assessed by quantitative viral culture were also observed with RV521 versus placebo (percentage reduction in mean AUC for RV521 350 mg and RV521 200 mg relative to placebo was 76.42% \[P=0.012\] and 68.60% \[P=0.027\], respectively). Mean peak RT-qPCR-assessed viral load was significantly reduced with both doses of RV521 versus placebo (3.17, 3.47 and 4.77 log_{10} PFUe/mL for RV521 350 mg and 200 mg \[P=0.024\], RV521 200 mg \[P=0.031\] and placebo, respectively). Because peak viral load was lowered, RV521 treatment also significantly reduced the elapsed time until peak viral load occurred (time to peak viral loads were 1.63, 0.95 and 2.68 days for RV521 350 mg and 200 mg \[P=0.024\], RV521 200 mg \(P<0.0001\) and placebo, respectively). Mean peak, but not time to peak, viral load was significantly lower with both doses of RV521 versus placebo when assessed by quantitative culture (mean peak, \(P=0.012\) and \(P=0.016\) for RV521 350 mg and 200 mg, respectively). At the time that peak viral load was occurring in the placebo group, mean RT-qPCR-assessed viral load was 3.16 and 2.61 log_{10} PFUe/mL lower with RV521 350 mg.
mg and 200 mg, respectively, compared with placebo, and mean quantitative culture-assessed viral load was 1.49 and 1.32 log_{10} PFU/mL lower with RV521 350 mg and 200 mg, respectively. The median duration of time to viral load <1 log_{10} assessed by RT-qPCR was significantly shorter with RV521 350 mg (3.5 days; \(P=0.0001 \)) and RV521 200 mg (3.0 days; \(P=0.0003 \)), versus placebo (6.5 days). The median duration of time to undetectable viral load assessed using quantitative culture was significantly shorter in both RV521 groups versus placebo (\(P<0.0001 \) for both) (Table 2; Fig. S2).

Disease severity due to RSV infection was consistently reduced with RV521 compared with placebo (Table 3; Fig. 3). In the ITT-I analysis set, RV521 350 mg and 200 mg significantly reduced AUC total symptom scores (percentage reduction relative to placebo was 78.42% [\(P=0.002 \)] and 70.84% [\(P=0.009 \)], respectively). Both doses of RV521 also significantly reduced the peak total symptom score versus placebo (1.9 [\(P=0.016 \)] and 2.3 [\(P=0.034 \)] for RV521 350 mg and 200 mg, respectively, versus 5.1 with placebo). Nasal mucus weight data were not normally distributed, necessitating post hoc analysis of this endpoint. Least squares mean daily nasal mucus weight was significantly lower with RV521 350 mg and 200 mg versus placebo (0.27 g [\(P=0.010 \)] and 0.33 g [\(P=0.038 \)], versus 0.61 g).

Results of the sensitivity analyses (based on the intent-to-treat infected A [ITT-A] analysis set and a fixed 6.5-day period) did not differ markedly to those of the main analyses with respect to antiviral efficacy and RSV disease-reducing effect (Table 2, Tables S1–S3).

Adverse events (AEs) occurred in 45 of 66 (68%) subjects (both treated and placebo groups). Fourteen AEs in 12 subjects were reported after inoculation with challenge virus but before administration of study treatment. Eighty-five AEs (37 subjects) were treatment-emergent (23 in 11 subjects in the placebo group, 19 in 11 subjects in the RV521 200 mg group and 43 in 10 subjects in the RV521 350 mg group). No treatment-related serious adverse events (SAEs), deaths or discontinuations due to AEs occurred in any treatment.
group. One SAE (acute myocarditis) was reported. An elevated troponin level was detected during a scheduled laboratory safety evaluation in an asymptomatic placebo recipient. Further evaluation revealed a normal electrocardiogram (ECG), and cardiac scan interpreted as consistent with mild myocarditis. The event resolved spontaneously. Fifteen treatment-emergent adverse events (TEAEs) (10 subjects) were grade 2 severity (9 in 5 subjects in the combined placebo group, and 2 in 2 subjects and 4 in 3 subjects in the RV521 200 mg and 350 mg groups, respectively); there were no TEAEs of grade ≥3. The majority of TEAEs were grade 1 gastrointestinal events (nausea and diarrhoea), which occurred more frequently in the RV521 350 mg group than in the RV521 200 mg dose group (59% versus 32% of subjects, respectively). In general, these events did not increase in subjects during the dosing period, were transient and resolved without medication. One subject in the RV521 350 mg group reported grade 2 diarrhoea and abdominal pain following discharge from the unit (onset approximately 4 days after the last dose of RV521), and self-medicated with a single dose of loperamide hydrochloride and hyoscine butylbromide. Table S4 lists all TEAEs; those that occurred in ≥2 subjects in any treatment group are included in Table 4.

No notable differences in clinical or laboratory tests, such as vital signs or liver enzymes, between RV521- and placebo-treated subjects were observed, and there were no clinically significant ECG findings. Spirometry showed that one subject (RV521 350 mg group) had intermittent drops in forced expiratory volume in 1 second (FEV₁) >15%, which began post-inoculation with challenge virus but before commencement of study drug; this was considered clinically significant and possibly related to the challenge virus.

Mean maximum RV521 plasma concentration following a single dose (dose 1) and repeated twice-daily dosing (dose 10) at 200 mg and 350 mg, respectively, was 55.3 ng/mL and 169 ng/mL after dose 1, and 94.9 ng/mL and 294 ng/mL after dose 10. The median time to maximum plasma concentration was 5 to 6 hours post-dose. Target trough levels (3 x
protein-adjusted in vitro 90% effective concentration [EC₉₀]) were achieved for 50% and
73% of subjects treated with RV521 200 mg after the first and second dose, respectively and
trough levels in excess of the target were achieved after the first dose for all subjects treated
with RV521 350 mg. Steady-state plasma levels appeared to be reached by 24 hours after the
first dose of RV521 (200 mg and 350 mg), consistent with an elimination half-life of
approximately 6 hours. Following single (dose 1) and repeated twice-daily dosing (dose 10),
 systemic exposure increased with increasing RV521 dose, at a greater than dose-proportional
rate. The extent of accumulation of RV521 following repeated dosing at either dose level was
consistent with linear kinetic theory. Mean PK parameters of RV521 following single and
repeated twice-daily dosing are shown in Table S5.

Sequence analysis of the entire RSV F gene was performed on nasal wash samples
obtained from all 53 subjects in the ITT-I analysis set. Three variants (amino acid position)
were detected: G453D (present in one sample 6 days post-first dose in a subject treated with
RV521 200 mg), L141F (present in one sample 6 days post-first dose in a subject treated with
RV521 200 mg) and P389L (present in two samples, at 1.5 days and 5 days post-first dose, in
a subject treated with RV521 350 mg). No rebound in viral load or symptoms was observed
after detection of any of these variants. No amino acid changes were detected in the RSV F
gene in samples from placebo-treated subjects. No viable RSV was quantifiable from any of
the samples, in which RSV F protein variants were identified.

DISCUSSION

The primary endpoint of this virus challenge study was met, with RV521 treatment at both
200 mg and 350 mg resulting in a statistically significant reduction in AUC of RT-qPCR-
assessed RSV viral load relative to placebo. RV521 treatment also led to statistically
significant improvements in multiple secondary viral load endpoints.
Other compounds that have been tested using this RSV challenge model include the oral nucleoside analogue pro-drug, ALS-008176 (19) and inhibitors of the RSV-F protein, GS-5806 (12) and JNJ-53718678 (20). Observed reductions in RT-qPCR-assessed AUC viral load relative to placebo in these studies were 73–88% with ALS-008176 (19), 38–67% with GS-5806 (22–77%, as assessed by quantitative culture) (12) and 41–53% with JNJ-53718678 (9–47%, as assessed by quantitative culture) (20). Although not directly comparable, the results arising from these different studies, using the same or very similar RSV challenge study designs, show the magnitude of viral load reduction by RV521 treatment compares favorably with ALS-008176 and suggests an improvement over JNJ-53718678 and the majority of the GS-5806 dosing regimens tested. While ALS-008176 and GS-5806 demonstrated positive results in challenge studies, development of ALS-008176 has since been suspended and GS-5806, which was only evaluated in adult populations, failed to significantly reduce the viral load or improve clinical outcomes in hospitalized RSV-infected adults treated relatively late in their disease course (21).

Safety and tolerability data observed with RV521 in the current study were favorable and consistent with Phase 1 data (unpublished). AEs were generally graded 1 in severity and transient in nature. There were no treatment-related SAEs and no subject discontinuations due to AEs. While gastrointestinal TEAEs occurred more frequently with RV521 than placebo, the majority of these events were transient, mild, resolved without concomitant medication and did not lead to discontinuation in any individual. Although cross-study comparisons of data are inherently limited, the observed safety profile of RV521 seems to compare favorably with that of other anti-RSV agents (19, 20).

PK data from the current study suggest that RV521 200 mg and 350 mg are effective therapeutic doses in adult subjects, both resulting in significant improvements compared with placebo in primary and secondary viral load and disease severity endpoints. No significant
differences in RT-qPCR AUC were observed between the 200 mg and 350 mg dose groups, although it should be noted that the study was not designed to assess differences in treatment effect between the two doses. The terminal half-life of RV521 (8.54 hours to 9.35 hours) is shorter or comparable to that reported for other studied anti-RSV compounds (33 to 35 hours for GS-5806 (12), 63 hours for ALS-008176 (19), and 6.5 to 10.5 hours for JNJ-53718678 (20)), which may offer advantages especially in relation to paediatric dosing, in avoiding accumulation and potential toxicity. The safety and PK of RV521 will be assessed in infants hospitalized with RSV infection in a planned Phase 2a study.

There was no evidence of clinical resistance with only three RSV F genetic variants detected (G453D, P389L and L141F), and no evidence of viral rebound or prolongation of clinical symptoms of RSV was observed in the subjects from whom these samples were taken. L141F is known to confer resistance to inhibitors of the RSV-F protein in vitro (22) although viruses mutated at this point have also been shown to have reduced fitness compared to wild type (23). The detected G453D and P389L RSV F protein variants have not been reported to reduce susceptibility to inhibitors of the RSV-F protein. However, P389L was detected in a placebo-treated RSV-A Memphis-37b-infected subject in another virus challenge study (personal communication) (24), and therefore its occurrence in our study, most likely resulted from natural variation rather than RV521 treatment. Findings from the mutation analysis conducted during our clinical study compare favorably with those reported for GS-5806, in which treatment-emergent mutations conferring reduced susceptibility in vitro to GS-5806 were detected in 14 of 87 subjects treated with the agent and challenged with RSV (and in 0 of 53 placebo-treated subjects) (22). In the virus challenge study of ALS-008176, no mutations known to be associated with in vitro resistance to ALS-008176 were detected, although the study sample size was relatively small (29 subjects: 17 receiving ALS-008176; 12 receiving a placebo) (19). The low frequency of detected mutations following
RV521 treatment suggested in our study is encouraging with respect to the treatment of paediatric patients and immunocompromised individuals, who have a higher potential for resistance to develop due to higher viral loads and longer durations of viral shedding than immunocompetent adults (19, 25). Characterisation of the detected variants introduced synthetically into RSV-F protein is the focus of ongoing studies.

Use of a RSV challenge model is recommended by regulatory authorities and allows potential RSV treatments to be critically evaluated in healthy adults while avoiding undue risk to vulnerable patient groups (14). Of note, AK0529, an inhibitor of the RSV-F protein, is being assessed in a Phase 2 study (NCT02654171) in infants hospitalized with RSV infection, without having undergone prior testing in a challenge model study. The specific virus challenge model used in this study (experimental infection with RSV-A Memphis-37b), features aspects that reflect natural infection (26, 27) and involves commencing treatment after infection has been confirmed and after symptoms have started, as in a clinical setting. However, differences between the virus challenge model and natural infection mean extrapolation of findings should be performed with caution. For example, virus challenge models largely result in upper respiratory tract infection (URTI), rather than the more serious LRTI seen in naturally infected individuals. Naturally occurring LRTI may progress to severe lung disease in vulnerable populations, which would be targeted by effective anti-RSV agents. Furthermore, enrolled subjects are immunocompetent so differ from some potential adult populations (e.g. the immunocompromised or elderly). Also, treatment in our virus challenge model study was typically administered 12 hours after confirmation of RSV infection, significantly earlier than in individuals with natural infection who generally present to a hospital at a later stage of infection, with clinical symptoms and greater disease severity. Of note, early initiation of antivirals for the treatment of influenza in outpatients have shown significant clinical benefit (28). While there are differences compared with natural infection,
the virus challenge model used in our study did result in the development of RSV symptoms, which were evident prior to randomization and continued to increase after treatment in the placebo arm. Our study design enabled a wide range of endpoints to be assessed, establishing the antiviral activity and safety of RV521 in healthy adults.

In conclusion, we demonstrate that therapeutic oral administration of RV521 exceeds target mean trough levels, and significantly reduces RSV viral load and clinical symptoms, at both 200 mg and 350 mg doses. Furthermore, RV521 is well tolerated, showed no evidence of clinical resistance, and compares favorably to other anti-RSV agents tested in other similar challenge studies. These findings provide sound justification for progression to efficacy studies of RV521 in vulnerable, naturally infected, infant and adult target populations.

MATERIALS AND METHODS

Study design. This randomized, double-blind, placebo-controlled trial (ClinicalTrials.gov Identifier: NCT03258502; EudraCT number: 2017-001282-24) was conducted in a purpose-built, specialist viral challenge quarantine unit (hVIVO; London, UK). The study was approved by the North East – Tyne & Wear South Research Ethics Committee, UK, and was conducted by the Declaration of Helsinki and International Conference on Harmonisation Good Clinical Practice guidelines.

Subjects. The study was conducted outside of the natural RSV season in healthy male or female adult volunteers aged 18–45 years. Only subjects with low serum RSV neutralising antibody levels (RSV-A Memphis-37b microneutralization antibody titre ≤810 at screening), were eligible for inclusion to achieve an optimal rate of successful RSV infection after viral challenge. Without such screening for low RSV antibody levels, only around 50% of RSV-A Memphis-37b challenged adults become infected (29). Infection rates are higher (approximately 75%) after RSV-A Memphis-37 challenge if subjects are selected to have low
RSV microneutralization titres (26). Exclusion criteria included a smoking history of ≥10 pack-years; reduced lung function (FEV₁ <80% of predicted normal); significant nose or nasopharynx abnormalities; symptoms of upper respiratory tract infection or LRTI within the previous 6 weeks; rhinitis (including hay fever); and receipt of medication for hay fever, nasal congestion or respiratory tract infections within the 7 days before viral challenge. For complete eligibility criteria, see Table S6. All subjects provided written informed consent.

Randomization and masking. Subjects were randomly assigned 1:1:1 to oral RV521 350 mg, RV521 200 mg or placebo groups (see supplementary methods). All study staff, the study sponsor, the principal investigator, laboratory evaluators and subjects were masked to treatment allocation (RV521 versus placebo). Tamper-evident, sealed, subject-specific envelopes were used. The size, weight and appearance of placebo and RV521 capsules were matched to ensure study masking.

Dose selection. Previous RSV challenge studies achieved antiviral efficacy with peripheral blood trough exposure levels over three-times the protein binding adjusted *in vitro* EC₉₀ (12). Based on the Phase 1 PK data, this level of exposure was predicted to be achieved on or after the first dose in the majority of subjects with a 200 mg dose and to be met or exceeded on or after the first dose in all subjects with a 350 mg dose. The *in vitro* EC₉₀ was determined using a panel of clinical isolates of RSV (Table S7).

Procedures. Subjects were screened for eligibility outside of the RSV season, including measurement of RSV-A Memphis-37b-specific neutralising antibody titres, ≤90 days before virus challenge. Eligible subjects were admitted to the quarantine unit on day –2 or day –1 and were inoculated intranasally on day 0 with the challenge virus, RSV-A Memphis-37b (4 log₁₀ PFU/mL, given as one 0.4 mL installation per naris), as previously described (26). Nasal wash sampling every 12 hours for confirmation of RSV infection by qualitative integrated cycler PCR (12, 19), began on the morning of day 2. Treatment began...
12 hours (±1 hour) after collection of a nasal wash sample confirming RSV infection or on
the evening of day 5 if RSV infection remained unconfirmed by the morning of day 5.

The study comprised two consecutive cohorts: subjects in the first cohort received
200 mg RV521 or placebo; those in the second received 350 mg RV521 or placebo. In each
cohort, subjects were assigned 2:1 to RV521 or placebo and as such, the combination of the
two placebo groups for analysis resulted in a 1:1:1 overall allocation. In each cohort, subjects
received 10 consecutive doses of RV521 or placebo, administered in a fasted state as oral
capsules, approximately 12 hours apart, in the fasted state. Subjects were discharged on day
12, if nasopharyngeal swab samples tested negative by RSV rapid antigen assay (QuickVue
RSV Test, Quidel, San Diego, CA, USA). If such tests were positive or a subject remained
symptomatic, quarantine was extended to allow further observation. All subjects were
evaluated on day 28 (±3 days).

Assessments. Twice-daily collection of nasal wash samples allowed measurement of
viral load via RT-qPCR and quantitative culture. RT-qPCR is reported as PFUe/mL where
the standard curve included in each assay contained a known infectious amount (PFU) of
RSV as described previously (30). Subjects reported the occurrence and severity of
symptoms three-times daily using a 10-item subject symptom diary card, as previously
reported (12) (see supplementary methods). Throughout the quarantine period, used tissues
were collected and weighed daily, and total nasal mucus weight recorded. PK assessments
were based on venous blood samples. Safety assessments included measurement of vital
signs, standard 12-lead ECG recordings, spirometry, a complete physical examination and a
respiratory-directed physical examination. AEs were monitored daily, coded according to the
Medical Dictionary for Regulatory Activities Version 20.0, and graded according to the
National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.0 (see
supplementary methods for further details).
To detect any viral variants following RV521 treatment, mutation detection analyses were performed for all subjects with confirmed RSV infection. Nasal wash samples were selected for RSV F gene sequencing at the time of RT-qPCR viral load peak and at the last timepoint with RT-qPCR viral load >1 log10 PFUe/mL for each subject. All samples were analysed by population sequencing of the entire RSV F gene, which was then compared with the inoculation strain RSV-A Memphis-37b challenge virus F gene sequence (27).

Endpoints. The primary efficacy endpoint was AUC for RSV viral load, as measured by RT-qPCR, in nasal wash samples taken twice-daily from just before the first dose until discharge (day 12). Viral load data were provided as log_{10} PFUe/mL; AUC (log_{10} PFUe/mL x hours) was calculated using the trapezoid rule. Secondary efficacy endpoints related to viral load were AUC of RSV viral load, as assessed by quantitative culture, and the following measures, which were each assessed using both RT-qPCR and quantitative culture: peak viral load, time to peak viral load, and time to <1 log_{10} (for RT-qPCR) or undetectable (for quantitative culture) viral load (considered to occur at the first confirmed undetectable assessment, after which no further virus was detected). Secondary efficacy endpoints related to clinical symptoms included: AUC total symptom score; peak total symptom score; time to peak total symptom score; and the total weight of nasal mucus produced. Other secondary outcomes were safety, PK and sequence detection of viral variants (see supplementary methods).

Statistical analysis. Based on the assumption that there would be a 70% reduction in viral load AUC (as measured by RT-qPCR) with RV521 versus placebo during the post-inoculation period, it was calculated that 11 subjects needed to be evaluable for the primary endpoint, in each of the three treatment groups to achieve 80% power and a two-sided 5% level of significance. However, to account for a lower than expected infection rate and
possible dropouts, 22 subjects were to be inoculated and randomized in each of the three
treatment groups.

The primary efficacy analysis population (the ITT-I analysis set) comprised all
randomized subjects who received challenge virus and at least one dose of study drug and
met the criterion for laboratory-confirmed RSV infection (presence of detectable RSV).
Sensitivity analyses were based on: a subset of the ITT-I population, who had first detectable
RSV infection prior to study drug administration (the ITT-A analysis set); and a fixed time
period of 6.5 days (comprising data for all subjects for 6.5 days of evaluation after the first
dose regardless of the staggered commencement of dosing). The safety analysis set
comprised all subjects who received challenge virus; the PK analysis set comprised all
subjects who received the challenge virus and provided at least one post-dose PK result.

All statistical analyses were performed using two-sided testing. Students t-tests were
performed for normally distributed data with a constant variance, otherwise, the Satterthwaite
t-test or non-parametric tests were used. For the mucus weight analysis, least squares mean
was calculated from a mixed model with repeated measures, adjusted for baseline mucus
weight and treatment group as covariates, and subject as a random effect.

PK parameters were derived by non-compartmental analysis using WinNonlin
Phoenix Version 6.4 1. Statistical analyses were performed using SAS® software version 9.4
or later.

Data availability. The study is registered with EudraCT number 2017-001282-24,
and summary data will be added to the registration.
ACKNOWLEDGMENTS

Medical writing support (including the development of a draft outline and subsequent drafts in consultation with the authors, assembling tables and figures, collating author comments, copy editing, fact checking, and referencing) was provided by Debbie Sherwood, BSc, Aspire Scientific (Bollington, UK), and funded by ReViral, Stevenage, Hertfordshire, UK. This RSV challenge study was conducted by the clinical staff in the quarantine unit of hVIVO Services Limited London, UK.

Funding and role of funding source. This study was funded by ReViral Ltd. The study funder was involved in study conception and design and collection, analysis and interpretation of study data. All authors, including employees of the sponsor, participated in writing this manuscript. The corresponding author had full access to all data in the study and had final responsibility for the decision to submit for publication.

Author contributions. JDV, JE, LW and RH were involved with the study design, data collection, data analysis and data interpretation. JM was involved with data collection. Y-IK was involved with data collection and data analysis. ET, SC and KP were involved with the study design, data analysis and data interpretation. DT, EL and NM were involved with the study design and data interpretation. All authors reviewed and revised drafts of the manuscript and approved the final version.

Declaration of interests. JDV reports grants from Pulmocide, ReViral, and Sobi; grants and personal fees from Alios Biopharma, Janssen, MedImmune/AstraZeneca, and Pfizer; personal fees from Enanta; and grants and stock options from Ark Biosciences, during the conduct of the study. DT reports personal fees from ReViral, outside the submitted work. ET, LW, RH, and EL are employees of ReViral Ltd. NM, SC and KP are employees and shareholders of ReViral Ltd. JE and JM report personal fees from hVIVO, during the conduct of the study. Y-IK has nothing to disclose.
APPENDIX

Supplementary material is provided with this article.
REFERENCES

1. Fleming DM, Taylor RJ, Lustig RL, Schuck-Paim C, Haguinet F, Webb DJ, Logie J, Matias G, Taylor S. 2015. Modelling estimates of the burden of respiratory syncytial virus infection in adults and the elderly in the United Kingdom. BMC Infect Dis 15:443.

2. Falsey AR, Walsh EE. 2000. Respiratory syncytial virus infection in adults. Clin Microbiol Rev 13:371–384.

3. Simoes EA, DeVincenzo JP, Boeckh M, Bont L, Crowe JE, Jr., Griffiths P, Hayden FG, Hodinka RL, Smyth RL, Spencer K, Thirstrup S, Walsh EE, Whitley RJ. 2015. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J Infect Dis 211 Suppl 1:S1–S20.

4. Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, Ali A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor S, Bruce N, Bruden D, Buchy P, Campbell S, Carosone-Link P, Chadha M, Chipeta J, Chou M, Clara W, Cohen C, de Cuellar E, Dang DA, Dash-Yandag B, Deloria-Knoll M, Dherani M, Eap T, Ebruke BE, Echavarria M, de Freitas Lazaro Emediato CC, Fasce RA, Feikin DR, Feng L, et al. 2017. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390:946–958.

5. Zhou H, Thompson WW, Viboud CG, Ringholz CM, Cheng PY, Steiner C, Abedi GR, Anderson LJ, Brammer L, Shay DK. 2012. Hospitalizations associated with
influenza and respiratory syncytial virus in the United States, 1993-2008. Clin Infect Dis 54:1427–1436.

6. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–186.

7. Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 161:1501–1507.

8. Sigurs N, Gustafsson PM, Bjarnason R, Lundberg F, Schmidt S, Sigurbergsson F, Kjellman B. 2005. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med 171:137–141.

9. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. 2005. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 352:1749–1759.

10. American Academy of Pediatrics Committee on Infectious Diseases, American Academy of Pediatrics Bronchiolitis Guidelines Committee. 2014. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134:415–420.

11. Drysdale SB, Green CA, Sande CJ. 2016. Best practice in the prevention and management of paediatric respiratory syncytial virus infection. Ther Adv Infect Dis 3:63–71.

12. DeVincenzo JP, Whitley RJ, Mackman RL, Scaglioni-Weinlich C, Harrison L, Farrell E, McBride S, Lambkin-Williams R, Jordan R, Xin Y, Ramanathan S, O’Riordan T, Lewis SA, Li X, Toback SL, Lin SL, Chien JW. 2014. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med 371:711–722.
13. Martin JA, Osterman MJK. 2018. Describing the increase in preterm births in the United States, 2014–2016. https://www.cdc.gov/nchs/data/databriefs/db312.pdf. Accessed 20 June 2019.

14. US Food and Drug Administration. 2017. Respiratory syncytial virus infection: Developing antiviral drugs for prophylaxis and treatment guidance for industry. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM579756.pdf. Accessed 6 June 2019.

15. Kim YI, Pareek R, Murphy R, Harrison L, Farrell E, Cook R, DeVincenzo J. 2017. The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin. Influenza Other Respir Viruses 11:525–530.

16. Cockerill GS, Bedernjak A, Brookes D, Dowey R, Harland R, Johnson SM, Mathews N, Paradowski M, Peeples M, Scott C, Steadman M, Taylor G, Thom M, Thomas E, Ward SE, Watterson D, Young P, Powell K. 2018. Design, identification and clinical progression of RV521, an inhibitor of respiratory syncytial virus fusion, 255th American Chemical Society National Meeting, New Orleans, LA [Abstract].

17. DeVincenzo J, Tait D, Oluwayi K, Mori J, Thomas E, Mathews N, Harland R, Cockerill S, Powell K, Littler E. 2018. Safety and efficacy of oral RV521 in a human respiratory syncytial virus (RSV) Phase 2a challenge study, American Thoracic Society 2018 International Conference, San Diego, CA [Abstract].

18. European Medicines Agency. 2018. Guideline on the clinical evaluation of medicinal products indicated for the prophylaxis or treatment of respiratory syncytial virus (RSV) disease. https://www.ema.europa.eu/documents/scientific-guideline/guideline-clinical-evaluation-medicinal-products-indicated-prophylaxis-treatment-respiratory_en.pdf. Accessed 6 June 2019.
19. DeVincenzo JP, McClure MW, Symons JA, Fathi H, Westland C, Chanda S, Lambkin-Williams R, Smith P, Zhang Q, Beigelman L, Blatt LM, Fry J. 2015. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N Engl J Med 373:2048–2058.

20. Stevens M, Rusch S, DeVincenzo J, Kim YI, Harrison L, Meals EA, Boyers A, Fok-Seang J, Huntjens D, Lounis N, Mari NK, Remmerie B, Roymans D, Koul A, Verloes R. 2018. Antiviral activity of oral JNJ-53718678 in healthy adult volunteers challenged with respiratory syncytial virus: A placebo-controlled study. J Infect Dis 218:748–756.

21. Hanfelt-Goade D, Maimon N, Nimer A, Riviere F, Catherinot E, Ison M, Jeong SH, Walsh E, Gafter-Gvili A, Nama SR, Napora P, Chowers M, Bergeron A, Zeltser D, Moudgil H, Limaye AP, Couturaud F, Nseir W, McKeivit M, Porter D, Jordan R, Gu Y, German P, Watkins TR, Gossage DL, Chien JW, Falsey AR. 2018. A phase 2b, randomized, double-blind, placebo-controlled trial of presatovir (GS-5806), a novel oral rsv fusion inhibitor, for the treatment of respiratory syncytial virus (RSV) in hospitalized adults. Am J Respir Crit Care Med 197:A4457 [Abstract].

22. Jordan R, Stray K, Anderson F, Perron M, Mackman R, Miller M, Ho M, Svarovskaia E, Martin R, Xin Y, Ramanathan S, O’riordan T, Lewis S, Li X, Toback S, Chien J, Sundy J, Devincenzo J, Cihlar T. 2015. Analysis of GS-5806 resistance emergence in human healthy adult subjects experimentally infected with respiratory syncytial virus (RSV). IDWeek, San Diego, CA [Abstract].

23. Roymans D, Alnajjar SS, Battles MB, Sitthicharoenchai P, Furmanova-Hollenstein P, Rigaux P, Berg JVD, Kwanten L, Ginderen MV, Verheyen N, Vranckx L, Jaensh S, Arnoult E, Voorzaat R, Gallup JM, Larios-Mora A, Crabbe M, Huntjens D, Raboisson P, Langedijk JP, Ackermann MR, McLellan JS, Vendeville S, Koul A. 2017.
Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat Commun 8:167.

24. Lau JW, Kim YI, Murphy R, Newman R, Yang X, Zody M, DeVincenzo J, Grad YH. 2017. Deep sequencing of RSV from an adult challenge study and from naturally infected infants reveals heterogeneous diversification dynamics. Virology 510:289–296.

25. Brint ME, Hughes JM, Shah A, Miller CR, Harrison LG, Meals EA, Blanch J, Thompson CR, Cormier SA, DeVincenzo JP. 2017. Prolonged viral replication and longitudinal viral dynamic differences among respiratory syncytial virus infected infants. Pediatr Res 82:872–880.

26. DeVincenzo JP, Wilkinson T, Vaishnaw A, Cehelsky J, Meyers R, Nochur S, Harrison L, Meeking P, Mann A, Moane E, Oxford J, Pareek R, Moore R, Walsh E, Studholme R, Dorsett P, Alvarez R, Lambkin-Williams R. 2010. Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med 182:1305–1314.

27. Kim YI, DeVincenzo JP, Jones BG, Rudraraju R, Harrison L, Meyers R, Cehelsky J, Alvarez R, Hurwitz JL. 2014. Respiratory syncytial virus human experimental infection model: provenance, production, and sequence of low-passaged memphis-37 challenge virus. PLoS One 9:e113100.

28. Hayden FG, Sugaya N, Hirotsu N, Lee N, de Jong MD, Hurt AC, Ishida T, Sekino H, Yamada K, Portsmouth S, Kawaguchi K, Shishido T, Arai M, Tsuchiya K, Uehara T, Watanabe A, Baloxavir Marboxil Investigators Group. 2018. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 379:913–923.

29. Bagga B, Woods CW, Veldman TH, Gilbert A, Mann A, Balaratnam G, Lambkin-Williams R, Oxford JS, McClain MT, Wilkinson T, Nicholson BP, Ginsburg GS,
Devincenzo JP. 2013. Comparing influenza and RSV viral and disease dynamics in experimentally infected adults predicts clinical effectiveness of RSV antivirals. Antivir Ther 18:785–791.

Perkins SM, Webb DL, Torrance SA, El Saleeby C, Harrison LM, Aitken JA, Patel A, DeVincenzo JP. 2005. Comparison of a real-time reverse transcriptase PCR assay and a culture technique for quantitative assessment of viral load in children naturally infected with respiratory syncytial virus. J Clin Microbiol 43:2356–2362.
TABLE 1 Baseline subject characteristics

	RV521 350 mg	RV521 200 mg	Placebo
	N = 22	N = 22	N = 22
Sex, n (%)			
Male	16 (73)	13 (59)	15 (68)
Ethnicity, n (%)			
Caucasian	18 (82)	21 (95)	21 (95)
South Indian	0	0	1 (5)
Other	4 (18)	1 (5)	0
Age, years			
Mean (SD)	24.5 (5.50)	21.7 (3.09)	24.6 (5.29)
Range	18–40	19–34	19–39
Height, cm			
Mean (SD)	175.24 (8.22)	172.83 (8.11)	176.50 (8.58)
Range	158.2–188.6	161.0–194.5	163.2–190.0
Weight, kg			
Mean (SD)	72.75 (10.38)	70.48 (10.42)	75.25 (10.55)
Range	57.8–92.7	57.9–94.6	61.4–103.6
BMI, kg/m²			
Mean (SD)	23.56 (2.24)	23.53 (2.69)	24.15 (2.60)
Range	20.0–28.2	19.4–28.1	19.4–29.6
Neutralising antibody titre prior to RSV			
RSV neutralising antibody titres were measured during screening, and only subjects with a value ≤810 were enrolled. Titres were measured again prior to RSV inoculation, and these values are reported here.

Median	810	1107	810
Range	156–1403	270–4209	270–4209

BMI, body mass index; RSV, respiratory syncytial virus; SD, standard deviation.
Table 2: Viral load endpoints (ITT-I analysis set)

Parameter	Treatment group			
AUC of viral load (RT-qPCR), log_{10} PFUe/mL x hours	RV521 350 mg N = 16	RV521 200 mg N = 18	Placebo N = 19	
Mean (SE)	185.26 (31.17)	224.35 (37.60)	501.39 (86.57)	
Difference in mean relative to placebo (95% CI)	−316.14 (−506.71, −125.57)	−277.04 (−471.63, −82.46)		
Reduction in mean vs placebo (%)	63.05	55.25		
P value*	0.002	0.007		
AUC of viral load (RT-qPCR), log_{10} PFUe/mL x hours (fixed time period of 6.5 days)				
Mean (SE)	182.59 (30.29)	221.98 (37.05)	435.96 (65.12)	
Reduction in mean vs placebo (95% CI)	−253.37 (−401.21, −105.53)	−213.98 (−367.35, −60.61)		
Reduction in mean vs placebo (%)	58.12	49.08		
P value*	0.002	0.008		
AUC of viral load (RT-qPCR, unlogged), PFUe/mL x hours				
	Mean (SE)	Mean (SE)	Mean (SE)	
---------------------------	--------------------	--------------------	--------------------	
	1,356,521.31 (1,117,131.13)	1,087,294.53 (604,070.11)	120,190,244 (50,659,684.44)	
Reduction in mean vs placebo (%)	98.87	99.10		
P value^o	0.023	0.019		
AUC of viral load (quantitative culture), log₁₀ PFU/mL x hours	38.29 (13.36)	50.98 (14.89)	162.35 (37.77)	
Reduction in mean vs placebo (%)	76.42	68.60		
P value^o	0.012	0.027		
Pre-treatment viral load (RT-qPCR), log₁₀ PFUe/mL	1.60 (0.34)	1.64 (0.26)	1.77 (0.32)	
Peak viral load (RT-qPCR), log₁₀ PFUe/mL	3.17 (0.45)	3.47 (0.30)	4.77 (0.49)	
Difference in mean relative to placebo (95% CI)	-1.59, -2.96, -0.23	-1.30, -2.47, -0.13		
P value^c	0.024	0.031		
Peak viral load (quantitative culture), log₁₀ PFU/mL	1.58 (0.41)	1.72 (0.40)	3.255 (0.46)	
Difference in mean relative to placebo	-1.67	-1.54		
	placebo (95% CI)			
--------------------------	-----------------	--------------------------	--------------------------	
	(–2.95, –0.40)	(–2.77, –0.30)		
\(P \) value\(^c\)	0.012	0.016		
Time to peak viral load (RT-qPCR), days				
Mean (SE)	1.63 (0.34)	0.95 (0.11)	2.68 (0.28)	
Difference in mean relative to placebo (95% CI)	–1.06	–1.74		
	(–1.96, –0.15)	(–2.36, –1.11)		
\(P \) value\(^d\)	0.024	<0.0001		
Time to peak viral load (quantitative culture), days				
Mean (SE)	3.85 (0.80)	3.69 (0.81)	3.34 (0.50)	
\(P \) value\(^e\)	0.895	0.447		
Mean viral load at time of peak viral load in placebo arm (day 3; RT-qPCR), \(\log_{10} \) PFU/mL				
Mean (SE)	0.80 (1.07)	1.35 (0.36)	3.96 (0.57)	
Reduction in mean vs placebo, \(\log_{10} \) PFU/mL (%)	3.16 (79.71)	2.61 (65.96)		
Mean viral load at time of peak viral load in placebo arm (day 2; quantitative culture), \(\log_{10} \) PFU/mL				
Mean (SE)	0.71 (0.32)	0.88 (0.30)	2.20 (0.55)	
Reduction in mean vs placebo,	1.49 (67.90)	1.32 (60.10)		
log_{10} PFU/mL (%)	Time to <1log_{10} viral load, (RT-qPCR), days			
---------------------	---			
	Median (Q1, Q3)			
	(n)			
	(median, IQR)			
	P value \(^d\)			
Time to <1log_{10} viral load, (RT-qPCR), days				
Median (Q1, Q3)	3.5 (3.0, 4.0)			
	(n = 13)			
P value \(^d\)	0.0001			
Time to undetectable viral load, (quantitative culture), days				
Median (Q1, Q3)	2.5 (2.0, 2.5)			
	(n = 9)			
P value \(^d\)	<0.0001			

\(^d\) Satterthwaite test.

\(^b\) Wilcoxon rank-sum test.

\(^t\) t-test.

\(^d\) Kaplan–Meier log-rank test.

AUC, area under the curve; CI, confidence interval; ITT-I, intent-to-treat infected (defined as all randomized subjects who received the challenge virus and at least one dose of study drug and met the criterion for laboratory-confirmed RSV infection [presence of viral shedding]); PFU(e), plaque forming unit (equivalents); RSV, respiratory syncytial virus; RT-qPCR, reverse transcriptase quantitative PCR; SE, standard error.
TABLE 3 Disease severity endpoints (ITT-I analysis set)

Parameter	Treatment group		
	RV521 350 mg		
	(N = 16)		
	RV521 200 mg		
	(N = 18)		
	Placebo		
	(N = 19)		
AUC total symptom score			
(score × hours)	82.41 (24.45)		
	111.35 (33.88)		
	381.82 (111.59)		
Mean (SE)	82.41 (24.45)		
Reduction in mean	78.42		
relative to placebo, %	70.84		
P value	0.002		
	0.009		
Peak total symptom score			
Mean (SE)	1.9 (0.45)		
Difference in mean	–3.12		
relative to placebo (95% CI)	(–5.59, –0.64)		
	–2.72		
	(–5.22, –0.22)		
P value	0.016		
	0.034		
Time to peak total symptom score, days			
Mean (SE)	1.56 (0.57)		
Difference in mean	–0.26		
relative to placebo (95% CI)	(–1.56, 1.03)		
	0.25		
	(–1.24, 1.75)		
P value	0.675		
	0.731		
Daily nasal mucus weight, g			
LS mean^a	0.27	0.33	0.61
---------------------	------	------	------
Difference in LS mean relative to placebo (%)	55.74	45.90	
^aP value^a	0.010	0.038	

^aWilcoxon rank-sum test.

^bSatterthwaite test.

LS mean was calculated from a mixed model with repeated measures, adjusted for baseline mucus weight and treatment group as covariates, and subject as a random effect. The ^aP value represents the LS mean difference between treatment groups.

AUC, area under the curve; CI, confidence interval; ITT-I, intent-to-treat infected (defined as all randomized subjects who received the challenge virus and at least one dose of study drug and met the criterion for laboratory-confirmed RSV infection [presence of viral shedding]); LS, least squares; RSV, respiratory syncytial virus; SE, standard error.
TABLE 4 Treatment-emergent adverse events that occurred in ≥2 subjects in any treatment group (safety analysis set)

Treatment group	RV521 350 mg N = 22	RV521 200 mg N = 22	Placebo N = 22
Abdominal pain	5 (23)	2 (9)	0
Diarrhoea	9 (41)	3 (14)	1 (5)
Nausea	12 (55)	2 (9)	2 (9)
Vomiting	2 (9)	1 (5)	0
Rhinitis	2 (9)	1 (5)	1 (5)
URTI	0	2 (9)	0
Viral URTI	2 (9)	0	0
Headache	0	0	2 (9)
Rash	0	0	2 (9)

Respiratory tract infection symptoms were only captured as an AE if they were unexpected as a result of the virus challenge, met the criteria for an AE and were deemed clinically significant in the opinion of the investigator.

AE, adverse event; TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection.
The ITT analysis set included all randomized subjects who received the challenge virus and at least one dose of study drug. The ITT-I analysis set included all randomized subjects who received challenge virus and at least one dose of study drug and met the criterion for laboratory-confirmed RSV infection (presence of viral shedding). The ITT-A analysis set was a subset of the ITT-I population that included subjects in whom RSV infection was confirmed before administration of study drug. One subject assigned to RV521 350 mg withdrew consent following three doses.

Once RSV infection had been confirmed (i.e. RSV RNA detected by qualitative integrated cycler PCR), subjects were assigned a randomization number; treatment was initiated 12 hours (±1 hour) after the confirmatory RSV-positive nasal wash sample had been collected. Viral load (RT-qPCR) appeared to rebound after day 8.5 in the placebo arm. However, this apparent increase resulted from the staggered randomization of subjects (the mean viral load at day 9 was calculated from just four subjects, three of whom had consistently high viral loads throughout the study).

FIG 1 Subject disposition

FIG 2 Mean viral load, by nasal wash RT-qPCR (A) and by nasal wash quantitative culture (B), by day relative to dosing (ITT-I analysis set)
618 [presence of viral shedding]); PFU(e), plaque forming unit (equivalents); RSV, respiratory
619 syncytial virus; RT-qPCR, reverse transcriptase quantitative PCR; SE, standard error.
620
621 FIG 3 Mean total symptom score (10-item symptom diary card) (A) and mean total nasal
622 mucus weight (B), by day relative to dosing (ITT-I analysis set)
623
624 Once RSV infection had been confirmed (i.e. RSV RNA detected by qualitative integrated
625 cycler PCR), subjects were assigned a randomization number; treatment was initiated 12
626 hours (±1 hour) after the confirmatory nasal wash sample had been taken. The apparent late
627 increase in mucus weight observed in the placebo arm was due to the staggered
628 randomization of subjects.
629 ITT-I, intent-to-treat infected (all randomized subjects who received the challenge virus and
630 at least one dose of study drug and met the criterion for laboratory-confirmed RSV infection
631 [presence of viral shedding]); RSV, respiratory syncytial virus; SE, standard error.
Figure 1

66 inoculated

66 randomised

22 assigned
RV521 350 mg
1 withdrew
21 completed
treatment
22 included
in ITT
16 included
in ITT-I
14 included
in ITT-A

22 assigned
RV521 200 mg
22 completed
treatment
22 included
in ITT
18 included
in ITT-I
17 included
in ITT-A

22 assigned
placebo
22 completed
treatment
22 included
in ITT
19 included
in ITT-I
16 included
in ITT-A
Figure 2

(A) Mean viral load (PFUe/mL) ± SE over days since first dose for dosing periods.

(B) Mean viral load (PFU/mL) ± SE over days since first dose for dosing periods.

- RV521 350 mg (N = 16)
- RV521 200 mg (N = 18)
- Placebo (N = 19)
Figure 3

A

Mean total symptom score (± 1 SE) over days since first dose.

B

Mean nasal mucus weight, grams (± 1 SE) over days since first dose.

Legend:
- RV521 350 mg (N=16)
- RV521 200 mg (N=18)
- Placebo (N=19)