An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan

Khafsa Malik 1,2,3*, Mushtaq Ahmad 3,4*, Muhammad Zafar 3, Riaz Ullah 5, Hafiz Majid Mahmood 6, Bushra Parveen 1,2, Neelam Rashid 3, Shazia Sultana 3,4, Syed Nasar Shah 3 and Lubna 3

Abstract

Background: Skin diseases are a major health concern especially in association with human immune deficiency syndrome and acquired an immune deficiency. The aim of this study was to document the ethnomedicinal information of plants used to treat skin diseases in Northern Pakistan. This is the first quantitative ethnobotanical study of therapeutic herbs utilized by the indigenous people of Northern Pakistan for skin diseases.

Methods: Interviews were taken to obtain information from 180 participants. Quantitative methods including fidelity level (FL), Frequency of citation (FC), Use-value (UV), Jaccard indices (JI), Family importance value (FIV), Relative frequency of citation (RFC) and Chi-square test were applied. Medicinal plants uses are also compared with 50 national and international publications.

Results: In this study, we recorded 106 plant species belonged to 56 floral families for treatment of skin ailments. The dominant life form reported was herb while the preferred method of utilization was powder, along with leaf as the most used plant part. RFC ranges from 0.07 to 0.25% whereas the highest FIV was recorded for family Pteridaceae. FL values range from 36.8 to 100%. The study reported 88% of new plant reports for the treatment of skin diseases.

Conclusion: The present study revealed the importance of several plants used to treat skin diseases by the local communities of Northern Pakistan. The available literature supported the evidence of plant dermatological properties. Plants having high UV and RFC can be considered for further scientific analysis. There is dire need to create awareness among local, government and scientific communities for the preservation of medicinal species and ethnomedicinal knowledge in Northern Pakistan.

Keywords: Skin diseases, Medicinal plant, Northern Pakistan, Traditional, Ethnomedicines

Background

Skin diseases present a major health concern worldwide [1]. Skin problems significantly affect the quality of health and difficult to treat due to persistence [2]. The skin is an external organ covering the body and serves many important functions including percutaneous absorption, organ protection, fluid preservation, body shape maintenance, temperature regulation and eliminating toxins from the body by sweat excretion [1]. The etiology of skin diseases display a close connection between an individual’s health and socio-cultural environment [3]. Skin diseases affect people of all age groups and gender [4]. Skin ailments or infectious dermatological dermatological diseases are particularly present in tropical areas of Globe [5]. Skin diseases constitute about 34% of all the ailments and supposed to be the most common disease among rural people [6]. Skin diseases have gained attention in recent years due to the association with AIDS/HIV. Greater than 90% of infectious persons of HIV developed mucosal and skin problems at certain phase of disease [1]. Skin ailments such as boils, itching, ringworm, skin disorders, leprosy, wound, dermatitis, eczema, scabies, skin allergy swelling
and psoriasis are caused by a variety of microorganisms [7]. In previous reports, it was found that wound healing, eczema, dermatitis, fungal diseases, pyoderma, scabies, and skin allergies are the largest group of skin diseases that occur in most of the countries. Most of the plants used for treating skin disorders possibly have other additional properties like anti-inflammatory, antimicrobial, anti-viral, cicatrizant, hemostatic, analgesic effects that require pharmacological confirmation [8]. In literature, various plants have been reported to be used against skin infections like wound healing, scabies, swellings, boils, etc. [9–16].

In Pakistan, the number of patients suffering from skin diseases increases every year. The majority suffer from psoriasis, followed by pigment disorder, eczema, urticaria and fungal infection [17]. Climatic conditions like hot and humid weather intensify the prevalence of skin disorders. Although the mortality for skin infection is relatively low, the infection affects the quality of life. Modern skin therapies depend on the cause of the ailment. A skin disease caused by fungal and bacterial infection is medicated using antibiotics such as tolnaftate, clotrimazole, and gentamicin. It is believed that modern therapies have many disadvantages like antibiotic resistance, allergic and adverse reactions in some patients [18]. Modern medicines are very expensive with costly treatments so an alternative approach such as herbal medication in practiced.

Ethno-medicinal studies showed that herbal medicine is an alternative therapy for treatment and control of skin ailments [19]. Herbal anti-skin medicines have many useful properties including low side effects and cost treatment with high significant efficacy [20, 21]. Medicinal flora have shown a pivotal part in management of dermatological conditions [11, 22], particularly communities in developing countries local communities depend on traditional medicine for their health care [23]. The World Health Organization has a deep interest in the documentation of medicinal plant knowledge from from different areas of globe [24]. Currently, the Ministry of Public Health of Pakistan is promoting the usage of therapeutic herbs in health maintenance system [25].

In Pakistan, few previous reports exist the usage of therapeutic flora in skin care [1]. Therapeutic flora usage for treatment of skin ailments are documented in the literature [26], but, no specific study exists treatment of skin diseases. Various medicinal plants are also reported worldwide usage for the cure of skin disorders [7, 27–30]. The ethnobotanical literature on medicinal usage of flora for various ailments in Pakistan were mentioned in literature [31–37], but no systematic ethnomedical study has specifically focused on skin problems in the tribal areas of Northern Pakistan.

The objective of this research work is to document and examine the diversity of therapeutic flora used for treating the skin diseases in Northern Pakistan. This research will facilitate future scientific authentication through antimicrobial, pharmacological and phytochemical studies.

Methods

Description of study area

Northern Pakistan is home to the world’s largest peaks and high mountain ranges i.e., Karakorum, Alai Ranges, Kunlun, Hindukush and Tien Shan [38]. Its topography differs from rock parts in North to green plains and forest in South. These areas are rich in floral variation of therapeutic plant species [39]. This area includes Hazara division, Swat valley, Mansehra, Kaghan and some tribal areas of Northern parts (Fig.1). The area is located at 72°35′ to - 73°31′ E and 33°50′- to 34°23′ N. The province borders Afghanistan to North Western side, Kashmir to East Punjab Islamabad capital territory to East and FATA to South. The average temperature recorded in the past was minimum in January as 1.7 °C while the mean maximum was 32.41 °C in June [40]. The average annual rainfall is about 1125 mm. The major tribes residing in the area include Khattak, Yusufzai, Marwat, Shinwari, Afridi, Orakzai, Mahsud, Mohmand, Abbasies, Wazir, Tareen, Mashwani, Jadoon, Tanolis, Awans, Sardars, Sheikhs and Qureshi [1]. Northern Pakistan is a hilly area and the cultivated land is not enough for sustenance [41]. Medicinal plant collection and other non-timber forest products provide an additional source of income (12%), while daily salaries and wages constitute 20%, transmittals from other areas of Pakistan and overseas (17%), and other occupations (10%) [41]. About 80% population in Pakistan is rural households and has easy access to medicinal plants.

Ethical compliance

The present study was carefully designed with strict compliance of bio-ethics and approved by the Institutional Bioethics Committee (IBC) of Quaid-i-Azam University, Islamabad, Pakistan under the approval No PT-5695. The rules for plant collection and identification were followed according to National Biodiversity Action Plan as per the guidelines of Herbarium of Pakistan (ISL), Quaid-i-Azam University, Islamabad, Pakistan. Prior to data collection, a brief group discussion was held with the participants for agreement, to tell the objectives of research and to guarantee the safety of indigenous knowledge. These practices clear the aim of research and develop confidence in participants so they give reliable knowledge without any hesitation. Initially, 200 participants were selected of them.
were but among them, 20 were hesitant in providing knowledge leaving a total of 180 participants for data collection. While data documentation, all participants were contacted 3 times for the authentication of the knowledge given by informants. Any deviance of the informants idea from authentic knowledge given, the information was excluded and regarded inapplicable. The data quality was ensured through proper training of data collectors, pointing out missing information, duplication of the material, and careful analysis. The data quality was ensured through proper training of data collectors, pointing out missing information, duplication of the material, and careful analysis. The few plants in the MS are listed on the IUCN red list such as Taxus wallichiana (plant #104) is endangered, Colubrina oppositifolia (#84) is critical, Aconitum chasmanthum (#79) is critical and Plantago lanceolata (#69) is vulnerable. All plants listed in this study are authorized by the biodiversity action plan and duly authenticate by ethical committee of Quaid-i-Azam University, Islamabad and then included in the MS. The native communities of the area have knowledge about sustainable use of these plants and use of these plants with care (criteria of IUCN) so that they don’t get vanished and are safe for next generation.

Field study and data collection
This research work focused on the use of traditional plant resources with specific reference to the treatment of skin ailments. Fieldwork was performed between
April 2015 to August 2015. Collectively, 180 participants were interviewed after receiving their prior informed consent. Data was collected from native indigenous health practitioners (THPs) and local participants (female and males of altered groups of age, experiences and education levels). During field surveys, face to face interviews and semi-structured interviews were also conducted. Guided field walks were also conducted [42]. The questionnaire used for data collection includes two parts, (i) part dealing with the demographic data of participants, and (ii) part focusing on information about plants’ local name, mode of administration, preparation and part of the plant used against skin diseases. Documentation of data while field survey was evaluated and organized by usage of quantitative analysis. In addition, data was compared with previously published research articles on ethnomedicinal uses of plants to validate the plants with higher medicinal values for skin diseases.

Collection identification and preservation
In the current study, therapeutic flora documented by participants was identified by their common names [43]. The plant specimens were further authenticated by a Plant Taxonomist, Professor Mir Ajab Khan (Ph.D. in Plant Systematics) at the Herbarium of Pakistan (ISL), QAU Islamabad, Pakistan. All the plants species were further authenticated through available literature [42] and compared with herbarium specimens. In addition, some plants used by the local healers were photographed. Voucher plant specimens were collected in duplicate. Herbarium specimens were deposited in Herbarium of Pakistan (ISL, Registered at Index Herbarium http://sweetgum.nybg.org/science/ih/) and voucher specimens are presented in.

Quantitative data analysis
Use value (UV)
Use value is calculated to assess all probable usage of plant species. UV of plants gives a quantitative analysis for plant citation. UV tells the relative importance of plant flora recognized locally. UV was analysed according to [44].

\[
UV = \frac{u}{N}
\]

Where \(u\) is the total participants stating various uses of a plant and \(N\) is whole number of participants. UV is usually (1) if the number of usages is greater, and (0) if the usage report for plants species is less. UV not deliver data on multiple or single usage of plant flora is considerably low. UV does not deliver any data on the single or multiple uses of plant species.

Frequency of citation (FC) and relative frequency of citation (RFC)
FC is used for evaluating the most preferred plants or more used plant species. RFC was analysed to intrigue the knowledge of traditional flora about usage of therapeutic flora in the study site.

\[
RFC = \frac{FC}{N} (0 < RFC < 1)
\]

Where RFC is denoted by relative frequency citation, FC (Frequency of Citation) is the number of participants who stated the plant flora and \(N\) is whole number of informants [34].

Fidelity level (FL)
To analyse most preferred plant usage for the cure of a specific disease, we used (FL) index adopted by [37]. FFL indicates the importance of one species over other, to cure specific diseases. Fidelity level shows the percentage of participants who reported the use of specific plant species for a particular disease (Skin disease).

\[
FL (\%) = \frac{N_p}{N} \times 100
\]

Where, \(N_p\) is the number of participants that declare the usage of species for definite disease, and \(N\) is total participants that use plants as a medicines for the treatment of any given ailment [45].

Jaccard index (JI)
Jaccard index (JI) is evaluated by comparison of formerly published studies from local, regional and global level by analysing the percentage of cited plant species and medicinal usage, by using the following formula:

\[
JI = \frac{c \times 100}{a + b - c}
\]

where “\(a\)” is the number of species of area A, “\(b\)” is number of species of area B, and “\(c\)” is number of species common in A and B [46].

Chi-square test
The knowledge of medicinal species distributed between male and female participants between two age categories (36–46 and > 60 years of age) was comparatively analyzed by using Chi-square.

Results
Socio-demographic characteristics of participants
Collectively 180 participants were selected from several regions of Northern Pakistan. The majority of professional healers were males (61%). Based on age, the participants were divided into five groups (36–46 (11%), 47–57 (19%), 58–68 (24%), 69–79 (34%) and above 80 years (12%). Participants constitute 24 students, 41
herbalists, 32 physicians, 12 retirees, 46 housewives, 12 professionals, and 13 others. A large number (44%) of local healers also used allopathic medicines. Regarding education, 30% of the participants were illiterate, 35% of the traditional healers had attended primary school, 18% secondary education level, 9% tertiary education and only 8% of participants had attended universities. The majority of professional healers (43%) in the study area were married, followed by single (37%), widowed (16%) and 4% divorced. Most of the participants were living in rural areas (88%) and only 12% living in urban areas (Table 1).

Diversity of medicinal plants used
Therapeutic flora, used to cure skin diseases in Northern Pakistan are documented in Table 2. The study reported 106 medicinal plant species. The main growth habit of the plant flora was herbs 62%, followed by shrubs (20%) and trees (18%). The plants belonged to 56 families. Asteraceae (10 species) and Lamiaceae (7 species) represent the most dominant family in this study site (Fig. 2). The other important families in the study included Polygonaceae (6 species), then Ranunculaceae and Rosaceae (5 species each). The least species (1%) were observed in 37 families (Fig. 2).

Plant parts used in herbal medicines
Leaves (62%) were reported to be the most frequently used plant part to prepare herbal medicine either by singly or mixes by other plant parts. Leaves were followed by roots (19 species), flowers (18 species), seeds (15 species), fruit (11 species), whole plant (8 species) and stem, bulb, latex, aerial parts contributed (1 species each) (Fig. 3). A schematic representation of part used of medicinal plants is shown in (Additional file 1).

Mode of preparation
Mode of administration for herbal remedies used for treating skin diseases include decoction, infusion, powder, poultice, raw, extract, juice, cooked, paste and oil. Among various preparation methods, the powder was the most frequently used (23 species), followed by paste (19 species), decoction (16 species), extract (14 species), raw and poultice (each has 8 species) (Fig. 4). A schematic representation of the mode of utilization of medicinal plants is shown in (Additional file 1).

Used categories in skin diseases
In this study, the skin diseases were assembled into 13 groups. The skin category includes pimples, mumps, measles, wound healing, boils, skin burns, abscesses, inflammation, skin irritation, allergy, burning sensation, skin cleanser and sensation (Table 2). In this study, the maximum figure of plant was used in handling for wound healing (34 species) followed by skin burn (11 species). Other important skin ailments treated by plant flora in the area were boils and pimples (9 species). The lowest citation reports (1%) were recorded for mumps, measles and skin irritations (Fig. 5).

Quantitative ethnobotany
Value of medicinal plant
In addition to the use of questionnaires, various analytical tools were required so it could be possible to do quantification of data by cross verification of indigenous information to treat skin diseases in the study site. Species with the highest use value was Pisum sativum (Fabaceae) (UV 0.143) (Table 2). Other important plants were Cynodon dactylon (UV 0.125) reported by 16 participants and Bergenia ligulata reported by 17

Table 1 Demographic data of participants

Parameters	Participants (N)	N (%)
Gender		
Female	70	39
Male	110	61
Age		
36–46	20	11
47–57	35	19
57–67	43	24
68–78	62	34
80+	20	12
Education		
No formal education	55	30
Primary	63	35
Secondary	32	18
Tertiary	16	9
Others	14	8
Collaboration with modern medicine		
Collaborative	80	44
Non collaborative	100	56
Occupation		
Student	24	13
Herbalists	41	23
Physician	32	18
Retired	12	7
Housewife	46	25
Professional	12	7
Others	13	7
Residence		
Urban	22	12
Rural	158	88
Marital status		
Single	66	37
Married	78	43
Widowed	29	16
Divorced	7	4
Table 2 Medicinal plants used for skin diseases in Northern Pakistan

Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison	
Acanthaceae	Justicia adhatoda L.	Shrub	Leaf	Decoction, powder	Wound healing	Leaf are directly applied on wounds	23	0.13	0.043	73.91		
Amaranthaceae	Carissa spinarum	Herb	Leaf	Paste	Pimples	Juice of plant is given 3 cups daily	29	0.16	0.034	79.31		
Apocynaceae	Calotropis procera	Herb	Whole plant	Decoction	Pimples	Paste of plant is added in different a edibles for pimples	36	0.20	0.028	91.67		
Apocynaceae	Dideospermum brunonis	Herb	Whole plant	Decoction	Pimples	Whole plant as it is or add in different dishes while cooking to cure pimples	32	0.18	0.031	87.50		
Apocynaceae	Erythrina poeppigiana	Herb	Latex	Poulitice	Wound healing	Its poultice is used for wound cure	40	0.22	0.025	92.50		
Apocynaceae	Desi aak	Herb	Flower and branches	Decoction	Inflammation	The decoction of flowers with honey in two ounce is given once a day	18	0.10	0.056	61.11		
Apocynaceae	Apocynopsis spinosa	Shrub	Root, bark, Leaf	Paste	Wound healing, boil	The paste prepared from bark and root is applied on wounds for healing	25	0.14	0.080	80.00		
Family / Scientific name / coll #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison	
----------------------------------	----------------	-------	-----------------	--------------------	-----------------	-------------	-----	-----	-----	-----	------------	
Apocynaceae Rauvolfia serpentina L.	Tilan	Shrub	Leaf	Extract	Skin problem	Extract or paste prepared from flower and leaf is used to cure anemia, skin diseases and blood purification	22	0.12	0.045	86.36		
Asteraceae Anaphalis margaritacea (L.) Benth. & Hook.f.	LI 12	Herb	Whole plant, flowers	Paste	Skin burn	Poultice made of whole plant is useful for skin burns	32	0.18	0.031	81.25		
Asteraceae Artemisia vulgaris L.	Jackay	Herb	Leaf	Powders	boils	Dried leaves are grinded to fine powder and taken 3 spoons in the early morning.	45	0.25	0.022	80.00		
Asteraceae Gerbera gossypina (Royle) Beauverd	Kofe	Herb	Roots	Paste	Wound healing	Paste prepared from roots is applied to newly cut wounds to control the bleeding.	39	0.22	0.026	69.23		
Asteraceae Graphium affine D.Don	Jangli dodal	Herb	Leaf	Decoction	Skin problems	A decoction made from leaves is used to cure sore throat, influenza and weeping pruritus of the skin.	12	0.07	0.083	50.00		
Asteraceae Lauarea medicaulis (L.) Hook.f.	LI 60/	Herb	Leaf	Powder	Wound healing	Dried leaves are powdered and taken with water twice a day.	19	0.11	0.053	78.95		
Asteraceae Sauarea jappa (Decne.) Sch.Bip.	LI 93	Herb	Roots	Extract	Skin problem	Tonic, carminative, used in cholera and in chronic skin problems	39	0.22	0.026	76.92		
Asteraceae Semecarpus chrysanthenoides DC	LI 94	Herb	Leaf	Oil	Skin problem	Oil is used for treatment	36	0.20	0.056	80.56		
Table 2 Medicinal plants used for skin diseases in Northern Pakistan (Continued)

Family / Scientific name / Coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
Asteraceae																																																					
Asteraceae Sonchus asper (L.)			Flower, Leaf	Powder	Skin problem	Dried flowers and leaves are powdered and taken for the treatment of rheumatism.	26	0.14	0.038	100.00	7	9	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Asteraceae						The tea prepared from flowers is used internally to cure pimples and is used cosmetically to clear the skin	35	0.19	0.029	94.29	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Asteraceae						A poultice made from flowers is used for the treatment of a range of skin disorders including ulcers, sores, and inflammations.	27	0.15	0.037	77.78	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Balsaminaceae						The plant paste is used externally for burns	33	0.18	0.030	81.82	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Boraginaceae						The paste prepared from leaves and roots is externally applied on wounds.	21	0.12	0.048	80.95	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Boraginaceae						The flowers are good expectorant, used for wound healing and treating tumors. Flowers are used to cure coughs, sores, and swellings.	28	0.16	0.036	78.57	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Boraginaceae						Leaf poultice are applied on the burn wounds with ghee/oil.	33	0.18	0.030	72.73	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Brassicaceae						Leaf are cooked and used for wound healing	21	0.12	0.048	66.67	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Buxaceae						Oil of Leaf are applied on skin	29	0.16	0.034	79.31	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Family / Scientific name / coll.	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
---------------------------------	----------------	-------	-----------------	-------------------	----------------	-------------	----	-----	----	----	------------																																										
Schneid. LI 21																																																					
Cannabis sativa L	Bhang	Shrub	Flower, fruit, Leaf	Juice, powder	Dandruff, wounds healing	17 0.09 0.118 94.12	1 n, 2 a, 3 l, 4 n, 5 a, 6 c, 7 a, 8 n, 9 L, 10 a, 11 c, 12 a, 13 n, 14 c, 15 a, 16 n, 17 c, 18 a, 19 c, 20 a, 21 c, 22 c, 23 c, 24 c, 25 a, 26 c, 27 a, 28 c, 29 a, 30 c, 31 a, 32 s, 33 s, 34 s, 35 s, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 a, 43 n, 44 a, 45 n, 46 c, 47 n, 48 c, 49 n, 50 c																																														
Caparaceae	Keera	Tree	Seeds	Decoction	Wound healing	Decoction prepared from seeds is taken 3 cups daily to cure wounds.	24 0.13 0.042 91.67	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 n, 14 c, 15 a, 16 n, 17 c, 18 a, 19 c, 20 a, 21 c, 22 c, 23 c, 24 c, 25 n, 26 c, 27 n, 28 c, 29 a, 30 c, 31 n, 32 c, 33 n, 34 a, 35 c, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 , 43 a, 44 c, 45 n, 46 c, 47 n, 48 c, 49 n, 50 c																																													
Caprifoliaceae	Murma	Roots	Juice	Pimples	The root juice is used to cure hystera, pimples, rheumatism, nausea and cholera	22 0.12 0.045 86.36	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 n, 14 a, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 c, 22 c, 23 c, 24 c, 25 n, 26 c, 27 n, 28 c, 29 n, 30 c, 31 n, 32 c, 33 n, 34 a, 35 c, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 a, 43 c, 44 c, 45 n, 46 c, 47 n, 48 c, 49 n, 50 c																																														
Caryophyllaceae	Barks	Powder	Skin problem	Powdered bark along with milk is taken orally at morning to treat skin problems.	38 0.21 0.026 89.47	1 n, 2 c, 3 a, 4 n, 5 c, 6 a, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 c, 14 n, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 c, 22 c, 23 c, 24 c, 25 c, 26 c, 27 n, 28 c, 29 n, 30 c, 31 a, 32 c, 33 c, 34 a, 35 c, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 a, 43 c, 44 c, 45 c, 46 c, 47 a, 48 c, 49 n, 50 c																																															
Commelinaeae	Chora	Herb	Leaf, Fruit	Raw	Whole fruit is used to treat wounds	33 0.18 0.030 84.85	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 c, 14 n, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 c, 22 c, 23 c, 24 c, 25 a, 26 c, 27 a, 28 c, 29 c, 30 n, 31 a, 32 c, 33 c, 34 a, 35 c, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 a, 43 c, 44 c, 45 c, 46 c, 47 a, 48 c, 49 n, 50 c																																														
Convolvulaceae	Neeleharee	Tree	Roots	Decoction	Skin problems	Crushed roots are boiled in water and some sugar is added.	28 0.16 0.036 92.86	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 c, 14 a, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 c, 22 a, 23 c, 24 c, 25 c, 26 c, 27 a, 28 c, 29 a, 30 c, 31 a, 32 c, 33 a, 34 c, 35 c, 36 a, 37 c, 38 n, 39 a, 40 a, 41 c, 42 n, 43 c, 44 c, 45 c, 46 c, 47 n, 48 c, 49 n, 50 c																																													
Cucurbitaceae	Tori	Herb	Fruit	Infusion	Skin burn	Infusion of fruits used to cure skin burns	26 0.14 0.038 92.31	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 c, 14 a, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 a, 22 c, 23 c, 24 c, 25 c, 26 c, 27 a, 28 c, 29 a, 30 c, 31 a, 32 c, 33 c, 34 c, 35 c, 36 n, 37 c, 38 n, 39 a, 40 a, 41 c, 42 a, 43 c, 44 c, 45 c, 46 c, 47 n, 48 c, 49 n, 50 c																																													
Cucurbitaceae	Gya Kadoo	Herb	Leaf, Fruit	Raw	Wound healing, skin burn	Eaten daily as tonic	28 0.16 0.071 57.14	1 n, 2 c, 3 a, 4 n, 5 a, 6 c, 7 a, 8 n, 9 c, 10 a, 11 c, 12 a, 13 c, 14 a, 15 c, 16 a, 17 c, 18 a, 19 c, 20 a, 21 a, 22 c, 23 c, 24 c, 25 c, 26 c, 27 a, 28 c, 29 a, 30 c, 31 a, 32 c, 33 c, 34 c, 35 c, 36 c, 37 c, 38 a, 39 a, 40 a, 41 c, 42 a, 43 c, 44 c, 45 c, 46 c, 47 n, 48 c, 49 n, 50 c																																													
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
-----------------------------------	----------------	-------	-----------------	--------------------	----------------	-------------	-----	-----	-----	-----	------------																																										
Cucurbitaceae Miromordica charantia L. LI 67	Kareela	Herb	Flowers, roots	Paste	Wound healing	Paste of herb is applied for wound healing	19	0.11	0.053	94.74	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Cupressaceae Juniperus communis L. LI 56	Gojar	Tree	Berries	Decoction	Skin problem	An ointment of berries are used in skin problem	25	0.14	0.040	76.00	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Cupressaceae Juniperus excelsa M. Bieb. LI 57	Pencil Cedar	Tree	Bark	Powder	Skin Problem	Powder of the bark is used in certain skin infection areas	11	0.06	0.091	72.73	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Cyperaceae Cyperus difformis L LI 38	Motkopragha	Herb	Whole plant	Paste	Skin problems	Paste prepared from whole plants is applied externally to cure skin infections.	14	0.08	0.071	71.43	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Elaeagnaceae Hippophae rhamnoides L LI 53	Tree	Fruit, seeds	Decoction	Skin problems	A decoction of the fruits are used for skin problems	37	0.21	0.027	83.78	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																											
Equisetaceae Equisetum arvense L LI 43	Chew Shina	Herb	Whole plant	Powder	Skin problems, allergy	Plant material are mixed with different herbs and used on skin troubles and allergy	36	0.20	0.056	86.11	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Euphorbiaceae Euphorbia helioscopia L LI 44	Cat milk	Herb	Leaf	Powder	Wound healing	Dried leaves are mixed in water and taken orally for 4-5 days.	22	0.12	0.045	81.82	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Fabaceae Butzer monosperma (Lam.) Kuntze L LI 14	Chichra	Tree	Root	Decoction	Skin problem	Root decoction is used in skin diseases	36	0.20	0.028	94.44	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50																																										
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
-----------------------------------	----------------	-------	----------------	-------------------	----------------	-------------	----	-----	----	----	------------																																										
Fabaceae																																																					
Delbergia sissoo L.	Shesham	Tree	Leaf	Decoction, infusion	Skin problem, abscesses	Leaves are dried, mixed with water and taken orally for 4-5 days.	40	0.22	0.050	95.00																																											
Fabaceae																																																					
Pisum sativum L.	Matar	Herb	Seed	Extract	Skin burn	Fresh seeds are milled then extract drops being used.	21	0.12	0.143	80.95																																											
Fabaceae																																																					
Trogonella foemina-graecum L.	Jangli	Herb	Leaf, flowers	Decoction	Wound healing	Leaf and flowers are boiled in water used for cure wounds	39	0.22	0.026	82.05																																											
Gentianaceae																																																					
Sewertia abyssinica Hochst.	Cheotla	Shrub	Flower, Leaf	Paste	Skin problems	Plant is crushed into paste and applied on skin.	17	0.09	0.099	94.12																																											
Lamiaceae																																																					
Ajuga integrifolia Buch.-Ham.-ex D. Don	Bootei	Herb	Leaf	Powder	Boils	One table spoon of powdered leaves is taken for boils treatment on daily basis.	22	0.12	0.045	81.82																																											
Lamium rugosum (Wall. ex Benth.)	Spenkey	Shrub	Leaf	Powder	Wound healing	Powdered leaves are taken 3 times a day after each meal.	20	0.11	0.050	90.00																																											
Lamiaceae																																																					
Micromeria biflora (Buch.-Ham.-ex D.Don)	Narayansharmay	Herb	Flowers, Leaf, roots	Paste	Wound healing	Root Leaf and flower paste is used for poultice making to treat wounds.	15	0.08	0.067	60.00																																											
Lamiaceae																																																					
* Nepeta hindostana* (B.Heyne ex Roth)	Indian catnip	Herb	Leaf	Extract	Skin problems	The leaf extract is prepared and one small teaspoon is taken twice a day.	21	0.12	0.048	80.95																																											
Lamiaceae																																																					
Ghawareja	Ghawareja	Shrub	Leaf	Extract	Skin disorders	Leaves extract is taken orally to cure mouth ulcers and skin disorders.	23	0.13	0.043	100.00																																											
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
-----------------------------	----------------	-------	----------------	--------------------	----------------	-------------	-----	------	----	-----	------------																																										
Lamiaceae Salvia fruticosa wall. ex Benth LI 92	Khaar dug, Zarshali	Herb	Leaf	Poultice	Wound healing, skin itching	Poultice of the Leaf are used for external skin itching	17	0.09	0.059	64.71	25, 26, 27, 28, 29, 30																																										
Lamiaceae Teucrium stocksii Borr. LI 101	Kwandi Bootay	Herb	Leaf	Decoction	Wound healing	Decoction of Leaf is employed in wound healing	25	0.14	0.040	88.00	26, 27, 28, 29, 30																																										
Loxanthaceae Loxanthus pulchra Wall LI 62	Parvikh	Shrub	Leaf	Powder	Wound healing	Leaf powder is used for wound healing	32	0.18	0.031	71.88	32, 0.18, 0.031, 65.71																																										
Lythraceae Lawsonia inermis L. LI 61	Mhendi	Shrub	Leaves	Infusion	Skin burn, boils	Crushed leaves are dissolved in water and infusion made is taken for 4-5 days	39	0.22	0.051	61.54	25, 26, 27, 28, 29, 30																																										
Malvaaceae Abelmoschus esculentus (L.) Moench LI 1	Bhindi	Herb	Seeds	Tea	Pimples, Inflammation	Three teaspoons of ground leaves are mixed in three cups of hot water and used twice a day.	29	0.16	0.034	72.41	32, 0.16, 0.034, 65.71																																										
Meliaceae Melia azadarach L. LI 65	Drak	Tree	Leaf	Powder	Pimples, Inflammation	Three teaspoons of ground leaves are mixed in three cups of hot water and used twice a day.	27	0.15	0.074	74.07	30, 0.15, 0.074, 65.71																																										
Mysoreaceae Mysorex africana L. LI 63/	Gugal	Shrub	Leaf	Powder	Skin problems	Leaves are used to cure cough, cold, flu and skin disorders.	35	0.19	0.029	91.43	25, 0.19, 0.029, 65.71																																										
Nitrariaceae Peperomia harmala L. LI 72	Isman	Herb	Leaf	Extract	Skin problems	The aqueous extract of leaves is used thrice a day to treat skin problems.	35	0.19	0.029	65.71	25, 0.19, 0.029, 65.71																																										
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
-----------------------------------	----------------	-------	----------------	-------------------	----------------	-------------	----	-----	----	-----	------------																																										
Nyctaginaceae	Snnati	Herb	Leaf	Infusion	abscesses	Leaves are crushed and added in water, used to cure skin abscession.	27	0.15	0.037	81.48	47 n, 48 c, 49 n, 50 c																																										
Oleaceae	Ghawareja	Shrub	Leaf Seeds	Tea	Skin problems	Leaves are boiled and the tea is taken orally to cure mouth ulcers and skin disorders.	31	0.17	0.032	80.65	1 n, 2 c, 3 n, 4 c, 5 n, 6 c, 7 n, 8 n, 9 c, 10 c, 11 c, 12 c, 13 c, 14 c, 15 c, 16 c, 17 c, 18 c, 19c, 20 c, 21 c, 22 c, 23 c, 24 c, 25 n, 26 c, 27 n, 28 n, 29 n, 30 c, 31 n, 32 n, 33 n, 34 c, 35 n, 36 n, 37 c, 38 a, 39 c, 40 a, 41 c, 42 n, 43 c, 44 c, 45 c, 46 c, 47 n, 48 c, 49 n, 50 c																																										
Papaveraceae	Bhutiana	Herb	Roots	Powder	Skin burn	The powdered root is effective as an antiperiodic, appetizer, diuretic and skin tonic.	34	0.19	0.029	91.18	47 n, 48 c, 49 n, 50 c																																										
Phyllolacmea	Akhok	Shrub	Flower, roots	Powder	Wound healing	Shade dried flowers are powdered and mixed with sugar, is recommended for wound healing.	37	0.21	0.027	83.78	47 n, 48 c, 49 n, 50 c																																										
Pinaceae Crass	Deodar	Tree	Roots	Extracts	Skin problems	Oil extracted from roots is used for skin disorders.	36	0.20	0.028	86.11	47 n, 48 c, 49 n, 50 c																																										
Pinaceae Pinus	Cheerh	Tree	Seed, stem	Juice	Skin problems	Juice of Seed is given 3 cups daily	16	0.09	0.063	56.25	47 n, 48 c, 49 n, 50 c																																										
Pinaceae Pinus	Wollchamza A.B.	Tree	Seed	Powder	Wound infection	The seeds are grinded to flour and few grains of sugar are mixed and taken with tea in the morning.	18	0.10	0.056	44.44	47 n, 48 c, 49 n, 50 c																																										
Plantaginaceae	Kutalasafed	Herb	Roots	Burning sensations	It is useful in the treatment of burning sensation.	39	0.22	0.026	76.92	47 n, 48 c, 49 n, 50 c																																											
Plantaginaceae	Achar	Herb	Seed	Poultice	Skin problems	Poultice of fresh seeds is wrapped around	31	0.17	0.032	83.87	47 n, 48 c, 49 n, 50 c																																										
Table 2	Medicinal plants used for skin diseases in Northern Pakistan (Continued)																																																				
---------	---																																																				
Family / Scientific name / coll. #	**Vernacular Name**	**Habit**	**Plant Part used**	**Mode of utilization**	**Disease treated**	**Preparation**	**FC**	**RFC**	**UV**	**FL**	**Comparison**																																										
LI 78		Herb	Seed, Leaf	Poultice	Wounds	healing, boils	the boils, after three days the pus drains out and the heals up within a week.	33	0.18	0.030	75.76																																										
Plantaginaceae Plantago lanceolata L. LI 79																																																					
Poaceae Cyperus dactylon (L.) Pers. LI 37		Herb	Whole plants	Powder	Wound healing	skin problems	Whole plant is grinded with water to cure skin problem	16	0.09	0.125	68.75																																										
Polygonaceae Fagopyrum acutatum (Lehm.) Mansf. ex Klammer LI 45		Buck wheat	Herb	Leaf	Powder	Wound healing	Powder Leaf mixed with oil is applied over area	26	0.14	0.038	80.77																																										
Polygonaceae Polygonum nepalense Meissn. LI 81		Hulla	Herb	Seeds	Paste	Wounds	A poultice prepared from the roots is used on fresh wounds.	30	0.17	0.033	76.67																																										
Polygonaceae Rumex afriacus Jacq. LI 87		Sar-shing	Roots	Decoction	Skin problems	Decoction of roots is taken with aloe vera to treat skin problems	34	0.19	0.029	76.47																																											
Polygonaceae Rumex dissectus H. Lév. LI 88		Khatimmer	Herb	Leaf, roots	Extract, powder	Wound infections	Fresh Leaf extracts are crushed and used to stop wounds bleeding	29	0.16	0.034	86.21																																										
Polygonaceae Rumex dentatus L. LI 89		Shallkay	Herb	Leaves, seeds	Powder	Boils	2-3 leaves are powdered. Tea made by adding 4-5 grams of powder in 2 cups of water. This can be taken for treating boils.	27	0.15	0.037	88.89																																										
Polygonaceae Fagopyrum tataricum (L.) Gaertn. LI 46		Bio Kho-Bro	Herb	Leaf	Paste	Skin problem	Paste is applied on skin affected areas	35	0.19	0.029	91.43																																										
Family / Scientific name / coll. no.	Vernacular name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	PC	RFC	UV	FL	Comparison																																										
--------------------------------------	----------------	-------	-----------------	--------------------	----------------	-------------	----	------	-----	----	------------																																										
Primulaceae Androsace rotundifolia Lehmann ex Roem. & Schult. LI 9	Marcholla	Herb	Leaf	Extracts	Skin problem	Aqueous leaf extract is prepared and used in treating skin infections.	22	0.12	0.045	72.73	1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																									
Pteridaceae Adiantum vernutatum D. Don ex Holmes LI 4	Pata, kakwa	Herb	Leaf	Paste	Wound healing	The rhizome paste is applied to heal cuts and wounds.	48	0.27	0.021	91.67	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																									
Ranunculaceae Aconitum chasmorrhizum Stapf ex Holmes LI 2	Bishmoulo (Shina) Mori	Herb	Leaf	Decoction	Mumps, measles	Decoction of the leaf is given for 2 weeks to cure diseases	44	0.24	0.023	88.64	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																									
Ranunculaceae Aconitum delphinifolium DC. LI 3	Booma	Herb	Leaf	Decoction	Wound healing, boils	Dried leaves are boiled in water to make decoction and is taken on daily basis to cure boils.	31	0.17	0.065	90.32	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																									
Ranunculaceae Aquilegia pubiflora Wall. ex Royle LI 13	Koo-kuk	Herb, floral parts	Paste	Skin burns and wound healing	Fresh plant parts are crushed in water to prepare paste and applied on affected areas to avoid pain from burns and wounds.	39	0.22	0.051	79.49	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																										
Ranunculaceae Catha alba Cambess LI 25V	Neel kanthi	Leaf	Extract	Skin problems	Leaf extract is used for clearing skin lesions, sores and skin diseases.	21	0.12	0.048	80.95	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																										
Ranunculaceae Nigella sativa L. LI 69	Kalloonggee	Herb	Seed, Leaf	Wound healing	Latex is effective for rheumatic pain.	26	0.14	0.038	61.54	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																										
Rhamnaceae Colubrina oppositifolia Briq. ex H. Marni LI 23	Lansa	Shrub	Leaf	Paste	Wound healing, Skin problem	Leaf paste is applied on wound and bruises	32	0.18	0.063	81.25	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50																																									
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison																																										
----------------------------------	----------------	-------	----------------	-------------------	----------------	-------------	----	-----	----	----	------------																																										
Rosaceae Malus	Manka	Tree	Leaf	Raw, Juice	Boils	Juice extracted from the																																															
Malus																																																					
Medicinal plants used for skin diseases in Northern Pakistan (Continued)																																																					
Table 2																																																					
Rosaceae Prunus	Apricot	Tree	Fruit		Skin problem	32	0.18	0.031	96.88																																												
Prunus armeniaca																																																					
L. Li																																																					
	Zanthoxylum																																																				
Dumbara Shrubs		leaf																																																			
Table 2																																																					
Rosaceae Prunus	Anu	Tree	Fruit and Leaf		Skin problems	18	0.10	0.056	55.56																																												
persica																																																					
(L.) Batsch																																																					
Li																																																					
	Rosaceae Rosa	Gubab	Shrub	Flower	Raw	Skin problem	40	0.22	0.050	95.00																																											
chinensis																																																					
Jaq Li																																																					
85																																																					
	Rosaceae Rubus	Akh ray,	Shrub	Flowers, roots	Decoction	Wound healing, Boils	36	0.20	0.028	75.00																																											
abuchanensis	Karwara																																																				
Sudre																																																					
Rubisia Gollum	Khrhatani	Herb	Leaf	Poul tide	Wound healing	Poul tide prepared from leaves is applied on wounds and used as an antiseptic.	19	0.11	0.053	36.84																																											
abujymese Bobbas																																																					
Li																																																					
48																																																					
	Rubia ceae	Loothar	Herb	Leaf	Poul tide	Wound healing	Leaf are externally used on wounds as antiseptic	21	0.12	0.048	80.95																																										
Galium apanine																																																					
L. Li																																																					
49																																																					
	Rutaceae Zanthoxylum	Dumbara	Shrubs	Leaf, Raw, paste		Skin burn																																															
ammatrun DC. Li																																																					
11																																																					
	Rutaceae Citrus	Lemon	Tree	Fruit	Juice	Skin irritation	Juice of fruit is applied on skin to reduce skin irritation	14	0.08	0.071	78.57																																										
medica																																																					
L. Li																																																					
30																																																					
Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL	Comparison
Rutaceae Citrus sinensis L.	Orange	Tree	Fruit	Raw	Pimples	Fruit as a whole is used to reduce pimples	20	0.11	0.050	80.00	
Salicaceae Salix babaionica L.	Bainsa	Tree	Leaf, roots	Extract	Skin cleanser	The extract of Leaf and root are taken for skin cleanser	20	0.11	0.100	60.00	
Sapindaceae Dodonaea viscosa (L.) Jacq	Ghwaraskay, Samtha	Shrub	Leaf	Powders	Skin burn, wound healing	Grinded leaves are mixed in water to make juice and used for skin problems	33	0.18	0.061	84.85	
Salix babylonica L.	Batseyya	Bark	Paste	Whole plant	Wound healing	Paste of Bark is antibacterial and is used to heal up wounds and cuts	18	0.10	0.056	61.11	
Sapindaceae Bergenia ciliata (Hav.) Stenm.	Zakamlat	Herb	Whole plant	Extracts	Wound healing, boil	Extract of whole dried plant is mixed in hot water and applied externally on, boil, cuts and wounds	17	0.09	0.118	76.47	
Sapindaceae Bergenia lypulata Engl.	Zakham-i- hayat	Herb	Leaf, flower	Powder	Sun strokes, wound healing	Powder of Leaf and flowers are mixed with butter and sun blocking cream	34	0.19	0.059	85.29	
Scrophulariaceae Veronica thapsus L.	Gadikand	Aerial part	Infusion	Pimples, skin problem	Aerial plants are crushed, mixed in water and taken for 4-5 days to cure skin problems	38	0.21	0.053	76.32		
Solanaceae Datura stramonium L.	Dhatura	Shrub	Seeds, Leaf	Paste	Boils	Leaf are applied on boils	21	0.12	0.048	71.43	
participants (UV 0.118) (Table 2). *Adiantum venustum* had very low use value (UV 0.021).

Relative frequency of citation (RFC %)

The RFC represented the prominent species used for skin related diseases based on the ratio between the number of participants (FC) for a plant and the overall number of participants in the research study. RFC ranged from 0.07 to 0.25 and we classified all species into 3 groups: RFC 0.07 to 0.12 (39 species); RFC 0.13 to 0.18 (37 species); RFC 0.19 to 0.27 (30 species) (Table 2). According to pharmacological and ethnobotanical records, the majority of plants in the first group were reported with high medicinal potential. The highest values were recorded for *Adiantum venustum* (0.27) used in the form of paste for wound healing properties. *Artemisia fragrans* (0.25) used in the treatment of boils, similarly *Aconitum chasmanthum* (0.24) used as a decoction for treatment of mumps and measles. Other high RFC species were *Trigonella foenum-graecum, Verbascum thapsus, Aucubia vulgaris, Rosa chinensis, Gerbera gossypina, Helianthus annuus and Aquilegia pubiflora.*

Fidelity level (FL)

FL value is calculated for handling specific ailment in this study site. We examined the disease categories to focus the most significant medicinal plant species in each category of skin ailment in terms of FL. It is analyzed for the plant species which were used to cure the most commonly reported category for

Table 2: Medicinal plants used for skin diseases in Northern Pakistan (Continued)

Family / Scientific name / coll. #	Vernacular Name	Habit	Plant Part used	Mode of utilization	Disease treated	Preparation	FC	RFC	UV	FL				
Solanaceae														
Solorum virgininum L. LI 95	Kandiarli	Fruits	Leaf	Decoction, extract	Skin problem	Fruits are prepared and decoction mixed in water is used for treating boils to cure skin problems. The fruits and leaves extract are applied on body swells to get relief.	28	0.16	0.036	96.43	47	48	49	50
Tamaricaceae														
Tamarix aphylla (L.) H. Karst. LI 98	Ghaz	Herb	Leaf	Decoction	Wounds	The decoction of the plant is given to the patient for 1 week	12	0.07	0.083	58.33	47	48	49	50
Thymelaeaceae		Shrub	Seeds	Raw	Skin problems	Extract of the fruits obtained and is used daily	29	0.16	0.034	72.41	47	48	49	50
Daphne pastichiana Zuk. LI 100	Bichu-butii	Herb	Leaf, Seeds	Paste	Wound healing	Its leaf and seeds are mixed with oil and used on skin for wound.	18	0.10	0.056	83.33	47	48	49	50

Note:
- FC: Frequency of citation
- RFC: Relative frequency of citation
- UV: Used value
- FL: Fidelity level
- Dissimilar plants with previous literature
- Similar plants with previous literature

References:
1 = [47], 2 = [48], 3 = [22], 4 = [29], 5 = [1], 6 = [5], 7 = [49], 8 = [50], 9 = [51], 10 = [26], 11 = [7], 12 = [27], 13 = [5], 14 = [52], 15 = [53], 16 = [54], 17 = [55], 18 = [28], 19 = [56], 20 = [57], 21 = [58], 22 = [59], 23 = [60], 24 = [61], 25 = [17], 26 = [62], 27 = [63], 28 = [64], 29 = [65], 30 = [66], 31 = [67], 32 = [28], 33 = [68], 34 = [69], 35 = [30], 36 = [70], 37 = [71], 38 = [72], 39 = [73], 40 = [11], 41 = [74], 42 = [75], 43 = [76], 44 = [77], 45 = [78], 46 = [79], 47 = [80], 48 = [81], 49 = [82], 50 = [83].
high FL values 100% and lower FL value 36.8%. FL values were classified into four FL classes (Table 2). FL value of class one was 100% (2 species), class two 97 to 89% (18 species), class three 88 to 79% (44 species), class four 78 to 69% (31 species), class five 68 to 33% (11 species). In the present study, *Salix babylonica* and *Sonchus asper* had an FL of 100%, *Prunus armeniaca* 96.8%, and *Momordica charantia* 94.74%. Lowest values were found for *Pinus wallichiana* (44.4) and *Galium abaujense* (36.8).

Family importance value (FIV)
The analysis of family importance value reported to Pteridaceae has the maximum FIV (26.6%), followed by Fabaceae (22.2%), Scrophulariaceae, Thymelaeaceae and Caryophyllaceae (21.6). Lowest values were observed for Cyperaceae 7.7 (Fig. 6). These medicinal plants are explored equally by all the communities on a regular basis and the folk knowledge is constant.
Jaccard index (JI)
A comparison of medicinal uses of plants was made by analyzing 50 research papers from aligned countries (Table 2). The review of the literature showed that 106 reported medicinal plant species share similar uses fluctuated from 0% [29] to 13.2% while nonsimilar usage from 3.77 [64] to 0% [70]. The lowest degree of similarity was found in the studies reported in India and South Africa on skin diseases by [5, 49–51] (Table 3). The comparison was based on skin disease reports in several studies, presenting the usage of therapeutic plants for the cure of skin infections in local communities.

Chi-square test
The male participants reported more medicinal plants than women, and it could be stated that males possess more knowledge about the use of medicinal plants than women (Additional file 1). The chi-square on the number of species of plants reported by the two age categories showed important differences. Table 4 represents the median for a number of medicinal species reported by the participants 36–46 and > 46 years of age. Scattering of knowledge was observed in different age groups. The significantly higher average number of medicinal plants (p <
0.05) were mentioned by participants of 69 to 79 years (37.88) for men and (24.1) for women, respectively. There were no significant variations ($\chi^2 = 13.45; P > 0.05$) in the < 36 year age group. Analysis of variance ($p = 0.05$) was used to elucidate the effect of gender, age, and gender to gender interaction on the traditional knowledge of plants in society.

Previous literature on phytochemicals, pharmacological activities, and toxicity

A large number of plants stated in this study possess skin cure possessions and might have compound that are indirectly or directly active against parasites. These compounds are known as secondary metabolic compounds. Medicinal plants used for skin diseases were investigated for preliminary in vitro studies, essential phytochemicals and toxicity from the previous studies. Some of the plant species used for skin ailments have been reported for numerous secondary metabolites which show the significance of the plants in traditional remedies (Table 4).

Preliminary in vitro screening of some of the most mentioned plants have been mentioned to validate the findings of the present study (Table 5). In spite of the wide application of active metabolic compounds for humans; they also have a health hazardous effect because of much toxins. These substances not only hamper with the growth of parasite also have lethal effects on mammalian cells (Additional file 1: Table S1). It is, therefore, important to validate the toxic effects of medicinal plant products in relation to their anti-nutritional and other side effects.

Comparison with other studies in neighbouring regions

In the present study, some plants were used alone to treat the particular diseases, while in some cases plant parts were mixed to treat diseases. This present study reported 63 novel plants for skin diseases from Northern Pakistan, including *Ajuga integrifolia*, *Anaphalis chitra-lensis*, *Capparis himalayensis*, *Gnaphalium affine*, *Isodon rugosus*, *Tamarix aphylla*, *Nepeta clarkei*, *Launaea nudicaulis*, *Valeriana jatamansi* (Table 2).

Discussion

This study was carried out in the native groups of Northern Pakistan. People use medications for the cure of several diseases. Generally the medicinal plants are used in village parts of the area. The majority of professional healers in this study were males, this finding is similar to the literature [290]. According to an estimate, 84% of the rural population relies on herbal traditional medicinal plants [291]. Different origins of the medicinal plant knowledge were recorded. The inherited knowledge of medicinal plants is transferred through orally a cultural practice common in the rural areas in addition to the divine revelation. Most people inherit traditional knowledge from their elders that passed generation to generation [292].

The most dominant life form uses in the study was herbs. Herbs are easily available and collected from roadsides and farmlands [293–295]. Asteraceae was the most preferred family used. Previous work [3] also reported Asteraceae (6 species), Lamiaceae (6 species) and Fabaceae (5 species) with large figure of medicinal flora. There seems to be a tendency for a few families of plants to stand out in any pharmacopeia [296]. These plant families have been reported with high pharmacological,
S. No	Study Site	Year	Number of plant spp. recorded in aligned areas	Plants reported for similar uses	Plants reported for dissimilar uses	Total plant spp. common in both the areas	%age of plant spp. common in both the areas	Plant species enlisted only in aligned areas	Species enlisted only in study area	%age of plant species enlisted only in the study area	%age of plant species with similar uses	%age of plant species with dissimilar uses	Jaccard index (JI)	Citation
1	Amman, Jordan	2003	58	6	1	7	12.07	51	99	9340	5.6603774	0.94	4.90	[47]
2	Karnataka, India	2003	31	0	1	1	3.23	30	105	9906	0	0.94	0.75	[48]
3	Assamese, India	2006	85	5	2	7	8.24	78	99	9340	4.7169811	1.89	4.12	[22]
4	Central Kenya	2007	57	0	1	1	1.75	56	105	9906	0	0.94	0.63	[29]
5	North-West Frontier Province, Pakistan	2010	66	14	1	15	22.73	51	91	8585	13.207547	0.94	11.81	[1]
6	Central Chaco, Argentina	2010	72	1	1	2	2.78	70	104	9811	0.943962	0.94	11.6	[3]
7	South Africa	2014	117	1	1	2	1.71	115	104	9811	0.943962	0.94	0.92	[49]
8	Eastern Cape, South Africa	2014	106	2	1	3	2.83	103	103	9717	1.8867925	0.94	1.48	[50]
9	Uttarakhand, India	2014	90	5	3	8	8.89	82	98	9245	4.7169811	2.83	46.5	[51]
10	Pakistan	2013	50	3	1	4	8.00	46	102	9623	2.8301887	0.94	2.78	[26]
11	France	2015	1	1	0	1	100.00	0	105	9906	0.943962	0.96	0.06	[7]
12	Kenya	2015	25	1	0	1	4.00	24	105	9906	0.943962	0.00	0.78	[27]
13	South Africa	2013	47	0	0	0	0.00	47	106	100.00	0	0.00	0.00	[5]
14	India	1992	50	0	0	0	0.00	50	106	100.00	0	0.00	0.00	[52]
15	North West Punjab, Pakistan	2012	12	3	0	3	25.00	9	103	9717	2.8301887	0.00	2.75	[53]
16	Saudi Arabia	2015	4	0	0	0	0.00	4	106	100.00	0	0.00	0.00	[54]
17	India	1995	2	1	3	3.16	92	103	9717	1.8867925	0.94	1.56	[55]	
18	Nigeria	2008	41	1	1	2	4.88	39	104	9811	0.943962	0.94	1.42	[28]
19	India	2010	11	0	0	0	0.00	11	106	100.00	0	0.00	0.00	[84]
20	South Africa	1999	9	3	1	4	44.44	5	102	9623	2.8301887	0.94	3.88	[57]
21	Eastern Cape, South Africa	2016	1	0	0	0	0.00	1	106	100.00	0	0.00	0.00	[58]
22	Iran	2014	18	3	1	4	22.22	14	102	9623	2.8301887	0.94	3.57	[59]
23	Haran, India	2012	100	0	0	0	0.00	100	106	100.00	0	0.00	0.00	[60]
24	India	2012	1	0	0	0	0.00	1	106	100.00	0	0.00	0.00	[7]
S. No	Study Site	Year	Number of plant spp. recorded in aligned areas	Plants reported for similar uses	Plants reported for dissimilar uses	Total plant spp. common in both the areas	%age of plant spp. common in both the areas	Plant species enlisted only in aligned areas	%age of plant species enlisted only in the study area	%age of plant species with similar uses	%age of plant species with dissimilar uses	Jaccard index (JI)	Citation	
------	--------------------	------	---	--------------------------------	----------------------------------	---	---	--	---	--------------------------------	--------------------------------	------------------	----------	
25	Thailand	2015	55	0	0	0.00	55	106	100.00	0	0.00	0.00	[17]	
26	Mizoram, India	2014	4	0	0	0.00	4	106	100.00	0	0.00	0.00	[62]	
27	Peru, America	1997	9	0	0	0.00	9	106	100.00	0	0.00	0.00	[63]	
28	Palestine, Israel	2000	165	4	2	6.64	159	100	94.34	3.7735849	1.89	2.37	[64]	
29	Africa	2016	61	2	1	3.92	58	103	97.17	1.8867925	0.94	1.90	[65]	
30	India	2004	23	0	0	0.00	23	106	100.00	0	0.00	0.00	[66]	
31	Chinese	2015	16	0	0	0.00	16	106	100.00	0	0.00	0.00	[67]	
32	Nigeria	2014	41	1	1	2.88	39	104	98.11	0.9433962	0.94	1.42	[28]	
33	Pakistan	2011	47	4	3	7.89	40	99	93.40	3.7735849	2.83	5.30	[68]	
34	Karnataka, India	2014	102	0	2	2.96	100	104	98.11	0	1.89	0.99	[69]	
35	Turkey	2012	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[30]	
36	India	2012	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[70]	
37	Turkey	2012	1	0	0	0.00	0.00	106	100.00	0	0.00	0.00	[71]	
38	India	2011	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[72]	
39	Turkey	2010	1	0	0	0.00	0.00	106	100.00	0	0.00	0.00	[73]	
40	Ethiopia	2006	5	1	1	2.00	3	104	98.11	0.9433962	0.94	1.90	[11]	
41	India	2010	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[74]	
42	Nigeria	2010	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[75]	
43	Brazil	2009	12	0	0	0.00	12	106	100.00	0	0.00	0.00	[76]	
44	India	2007	51	2	1	3.88	48	103	97.17	1.8867925	0.94	2.03	[77]	
45	Jordan	2007	5	0	1	0.80	4	105	99.06	0	0.94	0.93	[78]	
46	China	2006	25	0	1	2.00	24	105	99.06	0	0.94	0.78	[79]	
47	South Africa	2013	45	0	0	0.00	45	106	100.00	0	0.00	0.00	[80]	
48	Ethiopia	2005	8	0	0	0.00	8	106	100.00	0	0.00	0.00	[81]	
49	Italy	2004	70	3	3	6.57	64	100	94.34	2.8301887	2.83	3.80	[82]	
50	Jordan	2003	1	0	0	0.00	1	106	100.00	0	0.00	0.00	[83]	
organoleptic and pharmaceutical properties [297]. The fewer species were observed in 37 families that are similar to previous studies [298, 299].

Among the reported plant part leaves were the most used plant part. In various studies, leaves were reported to be used as powder and paste on the affected skin

S/No	Plant Species	Activity	References
1.	Anethum graveolens	Antibacterial and antimicrobial activity	[85, 86]
2.	Cynodon dactylon	Antibacterial and wound healing activity	[87, 88]
3.	Bergenia ciliata	Antibacterial, antibiotic, anti-inflammatory and antiviral activity	[89, 90]
4.	Adiantum venustum	Antibacterial, antifungal and anti-inflammatory activity	[91]
5.	Gerbera gossypina	Antimicrobial activity	[92]
6.	Aconitum chasmanthum	Antimicrobial activities	[93]
7.	Trigonella foenum-graecum	Anti-inflammatory, antibacterial and antifungal activities	[94]
8.	Verbascum thapsus,	Anti-inflammatory, antimicrobial, antiviral, and anti-hyperlipidemic activity	[95]
9.	Saussurea lappa	Anti-inflammatory activity	[96]
10.	Rosa chinensis,	Antimicrobial activities	[97]
11.	Gerbera gossypina	Antimicrobial activities	[98]
12.	Taxus wallichiana	Antibacterial and antifungal activites	[99]
13.	Aquilegia pubiflora	Antimicrobial activity	[100]
14.	Salix babylonica	Anti-bacterial and anti-fungal activities	[101]
15.	Sonchus asper	Antimicrobial activities	[102]
16.	Prunus armeniaca	Antimicrobial activity	[103]
17.	Momordica charantia	Antibacterial and antifungal activity	[104]
18.	Urtica dioica	Antibacterial and antifungal activity	[105, 106]
19.	Dodonaea viscosa	Antifungal activity	[107]
20.	Bergenia stracheyi	Antifungal activity	[108]
21.	Pisum sativum	Antifungal activity	[109]
22.	Butea monosperma	Antifungal, antibacterial and anti-inflammatory activities	[110]
23.	Commelina benghalensis	Anti-inflammatory and wound healing activities	[111]
24.	Polygonum nepalense	Antimicrobial and antifungal activity	[112]
25.	Valeriana jatamansi	Anti-inflammatory activity	[113]
26.	Cannabis sativa	Antimicrobial activity	[114]
27.	Plantago major	Antibacterial activity	[115]
28.	Berberis lycium	Antibacterial, antifungal and healing properties	[116]
29.	Taraxacum officinale	Antimicrobial activity	[117]
30.	Myrsine Africana	Antimicrobial activity	[1]
31.	Allium sativum	Antimicrobial and wound healing	[118]
32.	Allium cepa	Antimicrobial activities	[119]
33.	Pinus roxburgii	Antibacterial activity	[120]
34.	Senecio chrysanthemoides	Antifungal and antibacterial activities	[121]
35.	Olea europaea	Antimicrobial activity	[122]
36.	Isodon rugosus	Antimicrobial activities	[123]
37.	Micromeria biflora	Antimicrobial activities	[124]
38.	Lawsonia inermis	Antimicrobial and antibacterial activities	[125, 126]
39.	Teucrium stocksianum	Anti-microbial activities	[127]
40.	Delbergia sissoo	Anti-microbial activities	[128]
S/No	Family / Scientific name / coll. #	Phytochemicals	Toxicity
------	----------------------------------	----------------	----------
1.	Acanthaceae Justicia adhatoda L.	Alkaloids, flavonoids, and sterols [129]	Less toxicity [130]
2.	Amaryllidaceae Allium cepa L.	Alkaloids, flavonoids, cardiac glycosides, terpene, steroids and resins [131]	None
3.	Amaryllidaceae Allium sativum L.	Saponin, steroids, tannins, carbohydrates and cardiac glycosides [132]	Excessive use cause toxicity like acute toxicity, burning sensation in the mouth and gastrointestinal tract, nausea, diarrhea, vomiting [133]
4.	Apioseae Anethum graveolens L.	Essential oils, fatty oil, proteins, carbohydrates, fiber and ash [134]	Nontoxic [135]
5.	Apioseae Coriandrum sativum L.	Alkaloids, carbohydrates, volatile oil, tannins, and flavonoids [136]	Acute and sub chronic toxicity [137]
6.	Apioseae Fersula foetida (Bunge)	Terpenoids, Sulfide derivatives, volatile Oil and Phenols [138]	Little toxicity including (including lung metastasis) [139]
7.	Apioseae Pleurospermum brunonis Benth. ex C.B.Clarke	None	None
8.	Apioseae Calotrops procera (Aiton)	Cardenolides, flavonoids, and saponins [132]	Highly toxic [140]
9.	Apioseae Carissa spinarum L.	Alkaloids, tannin, glycoside, steroids and carbohydrates [141]	Acute toxicity (Shamim, 2014)
10.	Apioseae Rauwolfia serpentina L.	Phenolic acids and flavonoids [142]	None
11.	Asteraceae Anaphalis margaritacea (L.) Benth.	Flavonoids, polyacetylenes, and hydroxylactone [143]	
12.	Asteraceae Artemisia vulgaris L.	Carbohydrate, saponins, phytosterol, proteins, amino acid, tannin & phenolic compounds and flavonoids [144]	Genotoxicity [145]
13.	Asteraceae Gerbera gossypina (Royle) Beavuerd	None	Less toxicity [139]
14.	Asteraceae Graphium affine D.Don	Flavonoids, sesquiterpenes, diterpenes, Tritterpenes and phytosterols [146]	Damage oxidative compounds and produce various toxic compound that are harmful for humans [139]
15.	Asteraceae Launaea nudicaulis (L.) Hook.f.	Flavonoids, anthocynadins and flavanones [147]	Nontoxic [148]
16.	Asteraceae Saussurea lappa (Decne)	Alkaloids, glycosides, phenolics, steroids and terpenoids [149]	Acute toxicity [150]
17.	Asteraceae Senecio chrysanthemoides DC	Tritterpe, emodins,polyphenol, reducing sugar and anthcyanosides [151]	Hepatotoxicity [150]
18.	Asteraceae Sonchus asper (L.) Hill	Ascorbic acid, carotenoids and fatty acids [152]	Acute toxicity [153]
19.	Asteraceae Taraxacum officinale agg.	phenolic compounds, flavonoid glycosides [154]	Acute toxicity [155]
20.	Asteraceae Tussilago farfara L.	Terpenes, flavonoids, and alkaloids [156]	Acute toxicity [157]
21.	Balsaminaceae Impatien edgeworthii Hook.	Flavonoids, sugars, alkaloids and saponins [158]	Cytotoxicity [159]
22.	Berberidaceae Berberis lycium Royle	ß-sitosterol, 4,4-dimethylhexadeca-3-ol, Butyl-3-hydroxypropyl phthalate, Butyl-3-hydroxypropyl phthlate and 4-methyl-7-hydroxycoumarin [160]	Acute toxicity and oral toxicity [158]
23.	Boraginaceae Hackelia americana (A.Gray)	Phenols, saponins, and flavonoids [161]	Hepatotoxicity [162]
24.	Boraginaceae Onosma hispida Wall. ex G.	Flavonoid, amines, iridonoids and sesquiterpene [163]	Acute toxicity [164]
25.	Brassicaceae Brassica juncea (L.) Czern.	2,6-dichlorophenol indophenol and HEPES 4-(2-Hydroxyethyl)-1-piperazine-ethane-sulphonic acid [165]	Poisonous [166]
26.	Buxaceae Buxus papillosa C.K. Schneid.	Cyclobuxapaline-C (IV)(+)-cyclopilosine-D (VII) and (+)-buxamine-C [167]	Nonpoisonous [168]
S/No	Family / Scientific name / coll. #	Phytochemicals	Toxicity
------	----------------------------------	----------------	----------
27.	Cannabaceae Cannabis sativa L LI 26	Alkaloids, flavonoids, cardiac glycosides, resins, terpenes and steroids [169].	High doses cause inhibition of hepatic drug and decreased fertilization capacity [170]
28.	Capparaceae Capparis decidua (Forsk) Edgew. LI 27	Alkaloids, phenols, sterols and glycosides [171]	Acute toxicity [172]
29.	Caprifoliaceae Valeriana jatamansi Jones ex Roxb. LI 105	Phenols, flavonoids and tannins [173]	Fumigant toxicity [174]
30.	Caryophyllaceae Cerastium fontanum subsp. vulgare (Hartm.) Greuter & Burdet, LI 29	None	None
31.	Commelinaceae Commelina benghalensis L LI 32	Terpenoids, saponins, tannins, flavonoids, steroids, phenolic compounds, alkalooids and cardiac glycosides [175]	Acute and sub-acute toxicity, male reproductive toxicity [176]
32.	Convolvulaceae Cuscuta reflexa Roxb. LI 35	Flavonoids and tannins [177]	Oral toxicity [178]
33.	Cucurbitaceae Cucumis melo L. LI 36	Alkaloids, terpenoids, carbohydrates, proteins, flavonoids, phytosterols [179]	Metal toxicity [180]
34.	Cucurbitaceae Lagenaria siceraria (Molina) Standl. LI 59	Protein, carbohydrates, flavonoids and saponin [181]	Gastrointestinal toxicity [182]
35.	Cucurbitaceae Momordica charantia L.	Alkaloid, glycoside, aglycone, tannin, sterol, phenol, protein and carbohydrate [183]	Hepatotoxicity [184]
36.	Cupresaceae Juniperus communis L. LI 67	Steroids, alkaloids, phenolics, flavonoids, tannins and terpenoids [185]	Nephrotoxicity [186]
37.	Cupresaceae Juniperus excelsa M. Bieb. LI 57	Alkaloids, flavonoids, phenols, saponins and diterpenes [187]	Cytotoxicity [188]
38.	Cyperaceae Cyperus difformis L LI 38	Flavonoids, coumarins, tannins and sterols [189]	Fumigent toxicity [190] (Chang et al., 2012)
39.	Elaeagnaceae Hippophae rhamnoides L. LI 53	Phenol, Quercetin and Catechin [191]	Non toxic [192]
40.	Equisetaceae Equisetum arvense L. LI 43	Flavonoids, alkaloids, minerals, phenolic petrosins, triterpenoids, saponins, phytosterols [193]	Acute and metal toxicity [194]
41.	Euphorbiaceae Euphorbia helioscopia L. LI 44	Reducing sugars, terpenoids, alkaloids, steroids, tannins, flavanoids and phenolic compounds [195]	Cytotoxicity [196]
42.	Fabaceae Butea monosperma (Lam.) Kuntze LI 14	Sterols, triterpenes, glycosides flavonoids and proteins [197].	Acute and oral toxicity [198]
43.	Fabaceae Delbergia sissoo L. LI 41	Proteins, phyto sterols, tannins, starch, flavonoids and tannins [199].	Acute toxicity [200]
44.	Fabaceae Pisum sativum L. LI 77	Tannins, terpenoids, alkaloids and flavonoids [201]	Cadmium toxicity in human [202]
45.	Fabaceae Trigonella foenum-graecum L LI 102	Alkaloids, cardiac glycosides, and phenols [203]	Acute toxicity [204]
46.	Gentianaceae Swertia abyssinica Hochst. LI 97	None	Hepatic toxicity [205]
47.	Lamiaceae Ajuga integrifolia Buch-Ham-ex D. Don LI 5	Essential oil [206]	Body weakness [205]
48.	Lamiaceae Illecebrum rugosum (Wall. ex Benth.) LI 55	Alkaloids, glycosides, flavonoids, oils, terpenoids, saponins, tannins and anthraquinones [207]	Cytotoxicity [159]
49.	Lamiaceae Micromeria biflora (Buch.-Ham. ex D.Don) Bentham LI 66	None	Membrane toxicity of cell [184]
50.	Lamiaceae Nepeta hindostana (B.Heyne ex Roth) Haines. LI 68	None	Mycotoxin [208]
S/No	Family / Scientific name / coll. #	Phytochemicals	Toxicity
------	----------------------------------	----------------	----------
51.	Lamiaceae *Rydingia limbata* (Benth.) Scheen & V.A. Albert LI 90	None	Cytotoxicity [209]
52.	Lamiaceae *Salvia moorcroftiana* wall. ex Benth LI 92	Flavonoids, diterpenoids and sterols	Nontoxic inhibitor [211]
53.	Lamiaceae *Teucrium stocksianum* Boiss. LI 101	Alkaloids, tannins, flavonoids, saponins, steroid, reducing sugar, terpenoid, anthraquinone, phlobatannin and glycoside	Acute toxicity [213]
54.	Loranthaceae *Loranthus pulverulentus* Wall LI 62	Triterpenoids, alkaloids, carbohydrates, flavanoids, proteins, tannins and glycosides	Low toxicity [148]
55.	Lythraceae *Lawsonia inermis* L. LI 61	Glycosides, phytosterol, steroids, saponins, and tannins	Highly toxic [148]
56.	Malvaceae *Abelmoschus esculentus* (L.) Moench LI 1	Carbohydrate, gums and mucilages, proteins, phytosterols, flavanoids, tannins, phenolic compounds and volatile oil (Saha et al., 2011).	No toxic effect [216]
57.	Meliaceae *Melia azadirach L.* LI 65	Alkaloids, Tannins, Saponins, Phenols	Toxic [218]
58.	Myrsinaceae *Myrsine africana* L. LI 63/	Saponins, tannins, flavonoids, amino acids, steroids and reducing sugar	Acute toxicity [148]
59.	Nitrariaceae *Peganum harmala* L. L 19/	Alkaloids, flavonoids and anthraquinones	Cytotoxicity [221]
60.	Nyctaginaceae *Boerhavia diffusa* L. LI 19/	1,1-diphenyl picrylhydrazyl, phenolic, flavonoid and ascorbic acid	Acute toxicity [223]
61.	Oleaceae *Olea europaea* subsp. cuspidata (Wall. & G.Don) Cif LI 70	Flavonoids, terpenes	Low toxicity [164]
62.	Papaveraceae *Corydalis govaniana* Wall. LI 34	Alkaloids	Acute toxicity (Mukhopadhyay et al., 1987)
63.	Phytolaceae *Phytolacea letsenia* L. LI 73	None	
64.	Pinaceae *Cedrus deodara* (Roxb. ex D.Don). LI 28	Tannins, flavanoids, alkaloids, and terpenoids	Cytotoxicity [172]
65.	Pinaceae *Pinus roxburghii* Sarg LI 75/	Flavonoids and terpenoids	Acute toxicity [228]
66.	Pinaceae *Pinus wallichiana* A.B. Jacks. LI 76	Flavonoid and phenolic	Toxic [228]
67.	Plantaginaceae *Picrorhiza kurrooa* Royle. ex Benth. LI 74	Sterols, glycosides and phenolic compounds	Cytotoxicity [231]
68.	Plantaginaceae *Plantago major* L. LI 78	Alkaloids, flavonoids, saponins, quinones, terpenes, lignans, tannins, polysaccharides, steroidal glycoside, thiosulfimates, proanthocyanidin and proteins	Less toxicity [233]
69.	Plantaginaceae *Plantago lanceolata* L.	Anthraquinone, Glycosides and alkaloids	Not toxic [235]
S/No	Family / Scientific name / coll. #	Phytochemicals	Toxicity
------	-----------------------------------	----------------	----------
70.	Poaceae Cynodon dactylon (L.) Pers. Li 79	Alkaloids, anthroquinone, flavonoids, saponins, steriods, tannins and triterpenoid [190]	Fungal growth, biomass toxicity [236]
71.	Polygonaceae Fagopyrum acutatum (Lehm.) Mansf. ex K.Hammer Li 45	Protein, carbohydrates, fat and rutin [237]	Hepatotoxicity [238]
72.	Polygonaceae Polygonum nepalense Meissn. Li 81	None	Toxic [239]
73.	Polygonaceae Rumex abyssinicus Jacq. Li 87	Tannins, anthraquinones, amino acids flavonoids and carbohydrates [240]	Non toxic in cell [241]
74.	Polygonaceae Rumex dissectus H. Lév. Li 88	B-carotene linoleic acid, has antioxidant activity [242]	Less toxic [243]
75.	Polygonaceae Rumex dentatus L. Li 89	Alkaloids, terpenoids, flavonoids and tannins [244]	Toxic [174]
76.	Polygonaceae Fagopyrum tataricum (L.) Gaertn. Li 46	Flavonoids [245]	Cytotoxicity [246]
77.	Primulaceae Androsace rotundifolia Lehm. ex Roem. & Schult. Li 9	None	Less toxic [247]
78.	Primulaceae Adiantum venustum D. Don Li 4	Adininaneone, adininaonol and Norhopan [248]	Nontoxic (Huxley et al., 1992)
79.	Ranunculaceae Aconitum chasmanthum Stapf ex Holmes Li 2	Alkaloids, benzoylmecasonine and mesaconitine [249]	Some species are highly poisonous [250]
80.	Ranunculaceae Aconitum delphinfolium DC. Li 3	Alkaloids, benzoylmecasonine and mesaconitine [249]	Slightly poisonous when used in access [250]
81.	Ranunculaceae Aquilegia pubiflora Wall. ex Royle Li 13	None	Nontoxic [251]
82.	Ranunculaceae Caltha alba Cambess Li 25/	Alkaloids, flavonoids, glycosides and triterpenoids [252]	Acute toxicity, cytotoxicity [216]
83.	Ranunculaceae Nigella sativa L. Li 69	Flavonoid glycosides quercetin and kaempferol 3-glucosyl [253]	Hepatotoxicity [254]
84.	Rhamnaceae Colubrina oppositifolia Brongn. ex H. Mann Li 23	None	None
85.	Rosaceae Malus pumila Mill. Li 64	Triterpenoids and flavonoids [255]	Hepatotoxic [148]
86.	Rosaceae Prunus armeniaca L. Li 82	Carbohydrates, phenolic compounds and organic acids [256]	Acute and renal toxicity [257]
87.	Rosaceae Prunus persica (L.) Batsch Li 83	Phenolics, anthocyanins and flavonoids [258]	Toxic side effects [259]
88.	Rosaceae Rosa chinensis Jacq	None	None
S/No	Family / Scientific name / coll. #	Phytochemicals	Toxicity
------	-----------------------------------	----------------	----------
89.	Rosaceae Rubus abchaziensis Sudre Li 86	Diterpene glycosides, phenolic glycoside and Lignan glycoside [260]	Cytotoxicity and mitochondrial toxicity [261]
90.	Rubiaceae Galium abaujense Borbás Li 48	None	None
91.	Rubiaceae Galium aparine L. Li 49	None	None
92.	Rutaceae Zanthoxylum armatum DC Li 11	Limonene, linalool, neral [262]	Cytotoxic and Phytotoxic potential [263]
93.	Rutaceae Citrus medica L. Li 30	Carbohydrates, proteins, amino acids and flavonoids [264]	Estrogenic effect [265]
94.	Rutaceae Citrus sinensis L. Li 31	Tannin, alkaloid, saponin, flavonoid, steroid, triperterpenes [266]	Fumigant toxicity [267]
95.	Salicaceae Salix babylonica L. Li 91	Phenolics and saponins [268]	Cytotoxicity [269]
96.	Sapindaceae Dodonaea viscosa (L.) Jacq Li 42	Carbohydrates, flavonoids, proteins, amino acids, saponins, steroids, sterols, tannins, and triterpenoids [270]	Acute toxicity [271]
97.	Saxifragaceae Bergenia ciliata (Haw.) Stemb Li 16	Alkaloids, carbohydrates, cardiac glycosides, saponins, phenols, flavonoids and diterpenes [272]	Acute toxicity [273]
98.	Saxifragaceae Bergenia ligulata Engl. Li 17	Bergenia, catechin, gallicin and gallic acid [274]	Radical toxicity in renal epithelial cell [275]
99.	Saxifragaceae Bergenia stracheyi Hook.f. & Thomson Engl Li 18	Bergenia 2. Tannic acid 3. Gallic acid 4. Stigmasterol 5. β-Sitosterol 6. catechin 7 [276]	Acute toxicity [277]
100.	Scrophulariaceae Verbascum thapsus L. Li 106	Methanolic extract has antiviral activity against the pseudorabies virus [278]	Toxic pyrrolizidine alkaloids [279]
101.	Solanaceae Datura stramonium L. Li 40	Saponins, tannins, alkaloids and glycosides [280]	Poison and hallucinogen [281]
102.	Solanaceae Solanum virginianum L. Li 95	None	Cytotoxicity [282]
103.	Tamaricaceae Tamarix aphylla (L.) H. Karst. Li 98	Flavonoids, alkaloids and tannins [283]	Less toxic [284]
104.	Taxaceae Taxus wallichiana Zucc. Li 100	Diterpenoids, lignans, flavonoids, steroids and sugar derivatives [285]	Hepatotoxicity [286]
105.	Thymelaeaceae Daphne mucronata S Royle Li 39	Coumarins, flavonoids, triterpenoids, lignin, glucosides, daphnine and umbelliferone [287]	Leaf extract is highly toxic [287]
106.	Urticaceae Urtica dioica L. Li 104	Phytosterols, saponins, flavanoids, tannins, hydrolysable tannins, phenolic compounds, proteins and amino acids [288]	Nontoxic [289]
also described the common practices of medicinal activities. Following reports carried out in various areas ally for their phytochemical and pharmacological ac-
cure of skin infections might also be utilized addition-
days, or till the patient was completely cured.
fore breakfast or afterward dinner, for 3-7 successive
times juice extract from fresh parts of plants was
The amount of powder used to make a concoction or a combination of different parts of the same plant. The
used. Treatments were done with single plant parts or a combination of different parts of the same plant.
The drugs were usually prepared from the paste of the
plant part either with water, lime water, rose water, coconut water, milk, ghee, and butter. Sometimes juice extract from fresh parts of plants was used. Treatments were done with single plant parts or a combination of different parts of the same plant. The amount of powder used to make a concoction was defined as a half, full or a quarter of a teaspoon. In the morning, the mixtures were regularly used before breakfast or afterward dinner, for 3-7 successive days, or till the patient was completely cured.

The medicinal plants described in this study for the cure of skin infections might also be utilized additionally for their phytochemical and pharmacological activities. Following reports carried out in various areas also described the common practices of medicinal species usage against the diseases of skin [22, 29, 48].

The overall effectiveness of the mentioned plant species in the context of curing skin ailments was calculated on the basis of the computed index called used value [40]. This species was mentioned by 21 participants. Wounds and skin burns treated by *Pisum sativum* showed an increase in oxygen supply as a result of increased blood pressure flow [302]. In other studies glycoprotein extracted from *Pisum* helped the formation of epidermis tissues [303]. The highest UV for important medicinal plants like *Pisum sativum* and *Cynodon dactylon* might be ascribed to the trends of using herbal drugs for skin diseases in the area. It is also observed that plant species that are using repeatedly are more possibly to be active biologically and have good healing properties [53]. Less available in the study site parallel to small UV e-g in case of *Adiantum venustum* [304].

Relative frequency of citation is applied to choose high potential medicinal plant species for future research anti-skin diseases drug development. The medicinal species that have high RFC should be further analyzed for phytochemical compounds, to recognize their active chemical components for drug discovery [305]. These findings might be considered as of greatest importance for relating and assessing study in associated hypothetical fields for upcoming drug inventory and sustainable utilization of plant species for medicinal purposes [306].

The plant species that were cited only once by a single participant were not considered for the fidelity level study. The high value of FL indicates the choice of participants to treat the specific disease [84]. These plants can be verified as significant medicinal flora on additional estimation by the help of pharmaceutical, phytochemical and biological actions. We have found the species as more significant having 80 FL% or greater.

In [292] the maximum value of FIV was documented for Juglandaceae (45%) followed by Punicaceae (44%) whereas the lowest value was noted for Vitaceae and Rubiaceae (3%) The results of present study vary from previous literature reports due to differences in climate and vegetation of area [307]. The highest percentage of FIV demonstrates that the plants of a particular family are commonly used in curing many diseases as reported by participants.

Jaccard index is used to find out the similarity of medicinal uses with previous studies carried out on skin ailments. The maximum level of resemblance was present in findings carried out in North-West Frontier Province, Pakistan and Gilgit Baltistan Pakistan on skin diseases [1, 73]) with Jaccard index value 11.81 and 5.30, respectively. About 12% average similarity is reported among different areas and the study regions. The recent study represents a high level of novelty index with respect to the use of medicinal species in skin diseases and its significance in old traditional recipes [308] specified in his study work that the medicinal plants repeatedly cited must be utilized as herbal drug development. The comparison of similarities shows the significant authenticity of documented data. Similarly, the medicinal plants which are not cited in previous work should be assessed for pharmacological and phytochemical analysis for drug discovery development.

In this research, the use of medicinal plants against skin diseases were studied for the occurrence of various toxicity and phytochemicals stated in former literature (see Table 5, Additional file 1). Mostly all the species had been described previously for their one or more phytochemical important compound representing their importance in medicinal cures. In the study, phytochemical analysis on genus, Aconitum has directed to the identification of alkaloids, benzoyl mecasonine and mesaconitine [249]. Some species of *Aconitum* are slightly poisonous when used in the excess amount [250]. In other studies, *Bergenia ciliate* was reported to contain active compounds such as alkaloids, carbohydrates, cardiac glycosides, saponins, phenols, flavonoids and diterpenes [272]. *Allium sativum* is rich with saponins, steroids, tannins, carbohydrates, allicin and cardiac glycosides which possess essential skin diseases curing activity [132]. Alkaloids, flavonoids, phenols, saponins and diterpenes compounds of *Juniperus excels* also have reported skin properties [185]. High consumption of flavonoids and phenolics may inhibit enzyme activity and
caused oxidative damage [309]. Some alkaloids can inhibit enzyme activity, block ion channels loss of coordination, convulsions, hallucination and even death [310]. Myrsine Africana reported to have an acute toxic effect and Malus pumila cause hepatotoxicity [148], Rubus fruticosus damage cell activity that was stated by [261]. Discovery of drugs from medicinal plants links a multidisciplinary approach to joining pharmacological, botanical, ethnopharmacological and natural methods. Some natural products of plant derivatives are in the phase of the trial and are in experimental use [311]. Therefore further pharmacological, ethnopharmacological and phytochemical studies should be carried out to authenticate the use of plant species in skin diseases and to discover new drugs.

The root of Butea monosperma was reported for skin diseases in the present study while it is reported as a blood purifier and skin diseases in the work of [312]. Coriandrum sativum was used to control hypertension, joint pain, stomach complaints, and Gastrointestinal tract problems [313], but in the present study, it is reported to treat pimples and skin problems. Fruits of Lagenaria siceraria were reported to treat severe body pain [314], while our study revealed that fruits and seeds can be used for skin problems. The leaves of Justicia adhatoda have been used for muscular pains in a study of [315], but this study documented that the leaves can be used for wound healing. Leaves of Myrsine africana were reported for stomach problems in the previous studies of [313], these results are in accord with the present study. The flowers and leaves of Verbascum thapsus were used for wounds [314], while the current study found that aerial parts of plant’s may be utilized for the cure of blemishes and several skin related problems.

Launaea nudicaulis and Gnaphalium affine were used often for skin ailments. Asteraceae are generally rich in flavonoids, sesquiterpenes, diterpenes, triterpenes, phytosterols [146]. Nepeta clarkei, Ajuga integrifolia, and Isodon rugosus were used for curing of boils, wound healing and skin problems, respectively. Capparis himalayensis was used for wound healing in areas of Northern Pakistan. The medicinal use of species related to wound healing was not reported earlier. Euphorbia helioscopia was reported for the treatment of cholera, jaundice, respiratory diseases, cancer [46], but the present study reported it for wound healing. Brassica juncea was found to treat some skin problems while the literature suggested it for the treatment of ulcers [316]. In this study, Cucumis melo was used to treat skin burn while in a previous study it was used to treat liver diseases [314]. This study showed that Rheum emodi can be used for skin ailments, while in literature it is mostly reported for the treatment of cancer [317]. Our research also found that Svertia alata, as used for skin diseases, while the previous study reported it only as used for rheumatic disorders [314]. Onosma hispida was documented to treat skin burns, compared to use as skin tonic [318]. Verbascum thapsus also served for curing skin ailments, while traditionally it was reported for stomach diseases [319]. Melia azedarach was found as a treatment for pimples and wound healing, but literature reported this species for sexual problems and as skin tonics [320]. The present work therefore suggest that public sector administrator in study area should make policies in order to protect people from health problems and use of medicinal plants by local people for treatment of diseases.

Conclusions
This is the first quantitative ethnopharmacological study that provides information about the use of 106 species that belonging to 90 genera and 56 families for the treatment of skin diseases in Northern Pakistan. Key findings of the study revealed leaves to be the most used plant parts (58%), herb to be dominant life form (63%) and powder to be the most frequent method of administration (22%). The highest skin disease category was recorded for wound healing (40%). RFC ranged from 0.07 to 0.25%, highest use-value reported for Pisum sativum (0.143 UV), highest FIV was observed for Pteridaceae (26.6 FIV) while FL values ranged from 100% to 36.8. The medicinal information documented in this study could be explored in the future for phytochemical and pharmacological investigations which may lead to plant-based nano-medicine drug discovery and development.

Additional file

Additional file 1: Table S1. Chi-square test χ^2 test for gender wise distribution. Figure S1. Schematic representation of medicinal plant parts used prepared by NVivo software for skin diseases in Northern Pakistan. Figure S2. Systematic representation of mode of utilization for skin diseases in Northern Pakistan. (DOCX 615 kb)

Abbreviations
FC: Frequency of citation; FL: Fidelity Level; CBE: Institutional Bio-ethics Committee; ISL: Islamabad; JI: Jaccard index; Pak: Pakistan; RFC: Relative Frequency of citation; THPs: Traditional Health Practitioners; Quaid-i-Azam uni

Acknowledgments
The authors are thankful to all key medicinal plant practitioners and participants for sharing their valuable knowledge on medicinal flora.

Authors’ contributions
KM carried out field surveys and data collection. MZ, SS NR, SNS, helped in analysis of data while MA critically revised the manuscript to its present form. RU, HMM, L and BP helped in revision of the manuscript and helps in checking the consistency of data. All authors read the final manuscript and agreed to its submission.
Funding
The authors extend their appreciation to the Deanship of the scientific Research at King Saud University for funding through research group no (RG-1440-100).

Availability of data and materials
Not Applicable.

Ethics approval and consent to participate
Verbal consent was taken from participants before carrying out the study as most if the participants were illiterate. Present study was carefully designed with strict compliance of bio-ethics and approved by the Institutional Bio-ethics Committee (IBC) of Quaid-i-Azam University, Islamabad, Pakistan under the approval No PT-5695.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan.
2Government Postgraduate College Women, UOG (University of Gujrat) Sub-Campus Rawalpindi, Rawalpindi College, Pakistan.
3Department of Plant Sciences, Quaid-i-Azam University, Islamabad 4520, Pakistan.
4Center for Natural Products Lab, Chengdu Institute of Biology, Sichuan, China.
5Medicinal, Aromatic and Poisonous plant Research Centre (MAPRC), College of Pharmacy, King Saud University, box 2457, Riyadh, PO 11451, Saudi Arabia.
6Department of Pharmacognosy, College of Pharmacy, King Saud University, box 2457, Riyadh, PO 11451, Saudi Arabia.

Received: 25 September 2018 Accepted: 19 July 2019

Published online: 13 August 2019

References
1. Abbasi AM, Khan M, Ahmad M, Zafar M, Jahan S, Sultana S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J Ethnopharmacol. 2010;128(2):322–35.
2. Ashraf M, Hayat MQ, Jabeen S, Shaheen N, Khan MA, Yasmin G. Artemisia L. species recognized by the local community of the northern areas of Pakistan as folk therapeutic plants. J Med Plant Res. 2010;4(2):112-9.
3. Martinez GJ, Barboza GE. Natural pharmacopoeia used in traditional Toba medicine for the treatment of parasitosis and skin disorders (Central Chaco, Argentina). J Ethnopharmacol. 2010;132(1):186–100.
4. Girce EA, Kong HK, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.
5. De Wet H, Nicki S, van Vuuren SF. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland, South Africa. J Ethnobiol Ethnomed. 2013;9(1).
6. Yadav M, Khan KK, Beg M. Ethnobotanical plants used for curing skin diseases by tribals of Rewa district (Madhya Pradesh). Indian Journal of Life Science. 2012;2(1):123–7.
7. Gonzalez-Aspajo G, Belkhelfa H, Haddouli-Hbabi L, Boudry G, Deharo E. Sacha Inchi oil (Plukenetia volubilis L.), effect on adherence of Staphylococcus aureus to human skin explant and keratinocytes in vitro. J Ethnopharmacol. 2015;171:339–4.
8. Barboza GE, Cantero JJ, Nihran C, Pacciarini A, Arta Espinar L. Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native argentina Flora. Kurtztana. 2009;34(1–2):7–365.
9. Anisuzzaman M, Rahman A, Harun-Or-Rashid M, Naderuzzaman A, Islam A. An ethnobotanical study of Madhupur, Tangail. J Appl Sci Res. 2007;3(7):519–30.
10. Houghton P, Hylands P, Mensah A, Hensel A, Deters A. In vitro tests and ethnopharmacological investigations: wound healing as an example. J Ethnopharmacol. 2005;100(1–2):100–7.
11. Gebre-Mariam T, Neubert R, Schmidt R, Wutzke P, Schmidtko M. Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders. J Ethnopharmacol. 2006;104(1–2):182–7.
12. Srinivasan D, Nathan S, Suresh T, Perumalsamy PL. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J Ethnopharmacol. 2001;74(3):217–20.
13. Kumar VP, Chauhan NS, Padh H, Rajani M. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol. 2006;107(2):182–8.
14. Gori S. Antimicrobial activity of some medicinal plants of Muzaffarabad. Hamdard Medicus. 2005;48:27–41.
15. Spiewak R. Occupational skin diseases among farmers. Lublin: Occupational and Para-Occupational Diseases in Agriculture Institute of Agricultural Medicine; 2000. p. 42–52.
16. Mehá A, Fayé G, Ndaiye HT, Ly F, Konare H, Keta S, Traoré A, Hay R. Definition of an algorithm for the management of common skin diseases at primary health care level in sub-Saharan Africa. Trans R Soc Trop Med Hyg. 2006;59(1):39–47.
17. Neamtsuva N, Kama A, Saelemae A, Leesen S, Waedueramae N. A survey of herbal formulas for skin diseases from Thailand’s three southern border provinces. J Herbal Med. 2015;5(4):190–8.
18. Garnatje T, Peñuelas J, Vallés J. Ethnobotany, phylogeny, and ‘orics’ for human health and food security. Trends Plant Sci. 2017;22(3):187–91.
19. Yang L, Ahmed S, Stepp JR, Mi K, Zhao Y, Ma J, Liang C, Pei S, Huai H, Xu G. Comparative homegardening medical ethnobotany of Naii healers and farmers in northwestern Yunnan, China. J Ethnobiol Ethnomed. 2014;10(16).
20. Eddouks M, Bidi A, El Boughali B, Hajji L, Zeggwaag NA. Antidiabetic plants improving insulin sensitivity. J Pharm Pharmacol. 2014;66(6):1197–214.
21. Summorn TO, Alofayan AJ. Evaluation of antidiabetic activity and associated toxicity of Artemisia afra aqueous extract in wistar rats. Evid Based Complement Alternat Med. 2013:1–8.
22. Saikia AP, Ryakala VK, Sharma P, Goswami P, Bora U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J Ethnopharmacol. 2006;106(2):149–57.
23. Van Wyk B-E, Goretlik B. The history and ethnobotany of cape herbal teas. S Afr J Bot. 2017;80:118–38.
24. Nahwashane S, Middleton L, Boaduo N. An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo Province, South Africa. S Afr J Bot. 2013;88:69–75.
25. Choudhary MS, Mishra N, Upadhyay ST, Upadhyay R. Indigenous knowledge of using medicinal plants in treating skin diseases by Tribals in Central Narmanda Valley of Madhya Pradesh (India). Bull Environ Pharmacol Life Sciences. 2011;1(1):60–2.
26. Mughal SB, Arshad N, Shoaib M, Irum N, Hussain N. Ethnobotanical literature survey of plants used to cure skin diseases. World Appl Sci J. 2013;27(4):474–8.
27. Omwenga E, Hensel A, Shitandri A, Goycoolea F. Ethnobotanical survey of traditionally used medicinal plants for infections of skin, gastrointestinal tract, urinary tract and the oral cavity in Borabu sub-county, Nyamira county, Kenya. J Ethnopharmacol. 2015;176:508–14.
28. Egharevba R, Khatua M. Ethnomedical uses of plants in the treatment of various skin diseases in Ovia North east, Edo state, Nigeria. Res J Agric Biol Sci. 2008;4(1):58–64.
29. Njorge GN, Bussmann RW. Ethnotherapeutic management of skin diseases among the kikuyus of Central Kenya. J Ethnopharmacol. 2007;111(2):303–7.
30. Süntar I, Akkol EK, Keles H, Yesilada E, Sarker SD, Baykal T. Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: stepwise isolation of an active component by in vivo bioassay and its mode of activity. J Ethnopharmacol. 2012;143(1):299–309.
31. Ahmad K, Ahmad M, Weckerle C. Ethnoveterinary medicinal plant knowledge and practice among the tribal communities of Thal he-e-Sulaiman Hills, West Pakistan. J Ethnopharmacol. 2015;170:275–83.
32. Ahmad L, Semotuk A, Zafar M, Ahmad M, Sultana S, Liu Q-R, Zada MP, Abidin SZU, Yaseen G. Ethnobotanical documentation of medicinal plants used for hypertension among the local communities of DIR lower, Pakistan. J Ethnopharmacol. 2015;173:138–46.
33. Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman S-U, Sultana S, Zafar M, Yaseen G. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J Ethnopharmacol. 2014;157:79–89.
34. Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, Hussain J, Yaseen G. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Galles–Abbottabad, northern Pakistan. J Ethnopharmacol. 2014;156:47–60.
35. Bano A, Ahmad M, Zafar M, Sultan S, Rashid S, Khan MA. Ethnomedical knowledge of the most commonly used plants from Deosai plateau, Western Himalayas, Gilgit Baltistan, Pakistan. J Ethnopharmacol. 2014;155(2):1046–52.

36. Rashid S, Ahmad M, Zafar M, Sultan S, Ayub M, Khan MA, Yaseen G. Ethnobotanical survey of medicinally important shrubs and trees of Himalayan region of Azad Jammu and Kashmir, Pakistan. J Ethnopharmacol. 2015;166:340–51.

37. Yaseen G, Ahmad M, Sultan S, Alharrasi AS, Hussain J, Zafar M. Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. J Ethnopharmacol. 2015;163:43–59.

38. Shah M, Awan M. Plant biodiversity of mountains of Pakistan. In: Proceedings of International Symposium on Mountains of Pakistan—Protection, Potential and Prospects Organized by Global Change Impact Studies Centre (GCISC), Islamabad; 2002. p. 2002.

39. Rahman IU, Ijaz F, Afzal A, Iqbal Z, Ali N, Khan MA, Afzal M, Muhammad S, Qadir G, Asif M. Graphical dataset on important medicinal plants used for curing dental issues in Manoor Valley, Mianwali, Pakistan. Data Brief. 2016;10:28–33.

40. Malik K, Ahmad M, Zhang G, Rashid N, Zafar M, Sultan S, Shah MN. Traditional plant based medicines used to treat musculoskeletal disorders in northern Pakistan. Eur J Integrative Med. 2018;19:17–64.

41. Akhtar N, Rashid A, Murad W, Bergmeier E. Diversity and use of ethnobotanical plants in the region of swat, North Pakistan. J Ethnobiol Ethnomed. 2013;9(1).

42. Malik K, Ahmad M, Bussmann RW, Tarig A, Ullah R, Aliqatahi AS, Shahat AA, Rashid N, Zafar M, Sultan S. Ethnobotany of antihypertensive plants used by the Thar people in northern Pakistan. Front Pharmacol. 2019;1:1–18.

43. Weckerle CS, de Boer HJ, Furstik W, de Boer JS, Bussmann RW, Leonti M. Recommended standards for conducting and reporting ethnopharmacological field studies. J Ethnopharmacol. 2018;210:125–32.

44. Umar M, Aftab M, Abbasi AM. An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab, Pakistan. PLoS One. 2017;12(6):e0177912.

45. de Oliveira PC, Braga J. Ethnobotany of Borari-Arapiuns indigenous people, Amazon, Brazil. J Medicinal Plants. 2017;5(1):164–70.

46. Kayaan S, Ahmad M, Sultan S, Shafiee A, Zarif A, Zafar M, Yaseen G, Hussain M, Bilal T. Ethnobotany of medicinal plants among the communities of alpine and sub-alpine regions of Pakistan. J Ethnopharmacol. 2015;164:186–202.

47. Aburjai T, Natsheh FM. Plants used in cosmetics. Phytother Res. 2003;17(9):987–1000.

48. Harsha V, Hebbar S, Shripaari V, Hegde G. Ethnomedicobotany of Uttara Kannada District in Karnataka, India—plants in treatment of skin diseases. J Ethnopharmacol. 2003;84(1):37–40.

49. Lall N, Kishore N. Are plants used for skin care in South Africa fully explored? J Ethnopharmacol. 2014;153(1):61–84.

50. Atfolyan AJ, Grierson DS, Mlibeng WO. Ethnobotanical survey of medicinal plants used in the management of skin disorders among the Xhosa communities of the Amathole District, eastern Cape, South Africa. J Ethnopharmacol. 2014;153(1):20–32.

51. Sharma J, Ganoja S, Sharma YP, Gaur R. Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India. J Ethnopharmacol. 2014;158(2):408–14.

52. Iyer SR. Ethnobotany of certain medicinal plants used by Tribals of India against skin infections. Anc Sci Life. 1992;11(3):143.

53. Gul F, Shafiee A, Zarif A, Screening of indigenous knowledge of herbal remedies for skin diseases among local communities of North West Punjab, Pakistan. J Ethnopharmacol. 2012;15:169–70.

54. Zari ST, Zari TA. A review of four common medicinal plants used to treat eczema. Journal of Medicinal Plants Research. 2015;9(24):702–11.

55. Sharma M. Use of plant based medications in treatment of skin diseases. Am J Phytomed Clin Therap. 2014;2:229–41.

56. Chanda S, Baraval Y. Novel leads from herbal drugs for infectious skin diseases. Curr Res Technol Educ Topics Appl Microbiol Microbial Formul. 2010;1:451–6.

57. Girierson D, Afolayan A. Antibacterial activity of some indigenous plants used for the treatment of wounds in the eastern cape, South Africa. J Ethnopharmacol. 1999;66(1):103–6.

58. Orang F, Afolayan A. Antimicrobial and antioxidant efficacy of Citrus limon L. peel extracts used for skin diseases by Xhosa tribe of Amathole District, Eastern Cape, South Africa. S Afr J Bot. 2016;102:46–9.

59. Delfan B, Bahmami M, Effekhari Z, Jelodati S, Saki K, Mohammadi T. Effective herbs on the wound and skin disorders: a ethnobotanical study in Lorestan province, west of Iran. Asian Pac J Tropical Dis. 2014;4:5938–42.

60. Rawat S, Singh R, Thakur P, Kaur S, Semwal A. Wound healing agents from medicinal plants: a review. Asian Pac J Trop Biomed. 2012;2(3):51910–7.

61. Roy SK, Mishra PK, Nandy S, Datta R, Chakraborty B. Potential wound healing activity of the different extract of Typhonium trifolatum in albino rats. Asian Pac J Trop Biomed. 2012;2(3):51477–86.

62. Rajan JP, Singh KB, Kumar S, Mishra RK. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pac J Trop Med. 2014;7(5):140–4.

63. Villegas LF, Fernández ID, Maldonado H, Torres R, Zavaleta A, Vaisberg AJ, Hammond GB. Evaluation of the wound-healing activity of selected traditional medicinal plants from Peru. J Ethnopharmacol. 1997;55(3):193–200.

64. Ali-Shrayteh MS, Yaniz V, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol. 2000;73(1):221–32.

65. Ayagere C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T. Review: African medicinal plants with wound healing properties. J Ethnopharmacol. 2016;177:85–100.

66. Rani AJ, Bhakshu LM, Raju RV. In vitro antimicrobial activity of certain medicinal plants from eastern Ghats, India, used for skin diseases. J Ethnopharmacol. 2004;9(2):355–7.

67. Chen HY, Lin Y-H, Huang J-W, Chen Y-C. Chinese herbal medicine network pharmacology of medicinal plants in the management of skin diseases. J Ethnopharmacol. 2004;84(1):37–43.

68. Chen H-Y, Lin Y-H, Huang J-W, Chen Y-C. Chinese herbal medicine network pharmacology of medicinal plants in the management of skin diseases. J Ethnopharmacol. 2004;84(1):37–43.

69. Chandra S, Varma R, Varma D, Singh S, Singh D, Garg V, Babbar R, Singh SH, Singh K, Singh AK, et al. Antioxidant and wound healing activity of Tithymalus tithymaloides (L.) Poit leaf and its isolated active constituents in topical formulation. J Ethnopharmacol. 2012;142(3):714–22.
healing skin diseases in the inland marches, Central-Eastern Italy. J Ethnopharmacol. 2004;91(2):331–44.

83. Rashed A, Affi F, Dssi A. Simple evaluation of the wound healing activity of a crude extract of Portlanda oleacea L. (growing in Jordan) in Mus musculus JAF. J Ethnopharmacol. 2003;88(2):131–6.

84. Islam MK, Saha S, Mahmud I, Mohamad K, Awang K, Uddin SJ, Rahman MM, Shilpi JA. An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. J Ethnopharmacol. 2014;151(2):921–30.

85. Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Diamandova ST. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (Anethum graveolens L.) seeds from Bulgaria. J Agric Food Chem. 2003;51(13):3854–7.

86. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med. 2009;9(1):30.

87. Suresh K. Antimicrobial and Phytochemical Investigation of the Leaves of Coscinium fenestrale L, Pers., Euphorbia lathyrus L, Melia azedarach L and Pidium guajosa L. Ethnobotanical Leaflets. 2008;2008(1):157.

88. Dande P, Khan A. Evaluation of wound healing potential of Cynodon dactylon. Asian J Pharm Clin Res. 2012;5(3):161–4.

89. Khan UA, Rahman H, Niaz Z, Qasim M, Khan J, Tayyaba, Rehman B: ‘A survey in plants used in indigenous herbal-medicine of south east regions Bergenia sp’. Phytomedicine. 2011;18(04):257.

90. Geshnizjany N, Ramezanian A, Khosh-Khui M. Postharvest life of cut gerbera (Gerbera jamesonii) as affected by nano-silver particles and calcium chloride. Biotechnol Biotechnol Equipment. 2010;24(sup1):512–6

91. Gochev V, Dobreva A, Girova T, Stoyanova A. Antimicrobial activity of essential oil from Rosa alba. Biotechnol Biotechnol Equipment. 2010;24(sup1):512–6.

92. Iqbal A, Zia-Ul-Haq M, Jaafar HZ. Common mullein, pharmacological and pharmaceutical aspects. Rev Bras. 2013;23(6):948–50.

93. Riaz M, Zia-Ul-Haq M, Jaafar HZ. Common mullein, pharmacological and pharmaceutical aspects. Rev Bras. 2013;23(6):948–50.

94. Gochev V, Dobreva A, Girova T, Stoyanova A. Antimicrobial activity of essential oil from Rosa alba. Biotechnol Biotechnol Equipment. 2010;24(sup1):512–6.

95. Riaz M, Zia-Ul-Haq M, Jaafar HZ. Common mullein, pharmacological and pharmaceutical aspects. Rev Bras. 2013;23(6):948–50.

96. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med. 2009;9(1):30.

97. Suresh K. Antimicrobial and Phytochemical Investigation of the Leaves of Coscinium fenestrale L, Pers., Euphorbia lathyrus L, Melia azedarach L and Pidium guajosa L. Ethnobotanical Leaflets. 2008;2008(1):157.

98. Dande P, Khan A. Evaluation of wound healing potential of Cynodon dactylon. Asian J Pharm Clin Res. 2012;5(3):161–4.

99. Khan UA, Rahman H, Niaz Z, Qasim M, Khan J, Tayyaba, Rehman B: ‘A survey in plants used in indigenous herbal-medicine of south east regions Bergenia sp’. Phytomedicine. 2011;18(04):257.

100. Riaz M, Zia-Ul-Haq M, Jaafar HZ. Common mullein, pharmacological and pharmaceutical aspects. Rev Bras. 2013;23(6):948–50.

101. Mubashir S, Shah WA. Phytochemical and pharmacological review profile of Adiantum venustum. Int J Pharm Tech Res. 2011;3:827–30.

102. Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Diamandova ST. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (Anethum graveolens L.) seeds from Bulgaria. J Agric Food Chem. 2003;51(13):3854–7.

103. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med. 2009;9(1):30.
132. Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol. 2001;47(2):113–23.

133. Barnes J, Anderson LA, Phillipson JD. Herbal medicines: a guide for healthcare professionals: pharmaceutical press; 2003.

134. Kaur G, Arora DS. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae-currant status. J Medicinal Plants Res. 2010;4(2):87–94.

135. Akabeli A, Mohammad-Zadeh M, Mirmoosavi Seyed J, Tazari MA, Abarashi A. Effects of the Aqueous Extract of Anethum graveolens Leaves on Seizure Induced by Pentylentetrazole in Mice. Malaysian J Med Sci. 2013;20(5).

136. Sonika G, Manubala R, Deepak P. Comparative studies on anti-inflammatory activity of Coriandrum Sativum, Datura stramonium and Azadirachta Indica. Asian J Exp Biol Sci. 2010;1(1):151–4.

137. Patel D, Desai S, Devkar R, Ramachandran A. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds. EXCLI J. 2012;11:566–75.

138. Kareparamban J, Nikam P, Jadhav A, Kadam V. Ferula foetida – a review. Res J Chin Biol Chem Sci. 2012;3(7):775.

139. Barthomeuf C, Lim S, Iranshahi M, Chollet P. Uربسبينین from ferula sovistiana inhibits the growth of human M4Beut metastatic pigmented malignant melanoma cells through cell-cycle arrest in GI and induction of caspase-dependent apoptosis. Phytomedicine. 2008;15(1):103–11.

140. de Lima JM, de Freitas FJC, Amorim RNL, Câmara ACL, Batista JS, Soto-Medrano J. Effects of the Aqueous Extract of Anethum graveolens leaves on the production of lipids in sheep and rats. Toxicion. 2011;57(1):183–5.

141. Rose BN, Prasad NK. Preliminary phytochemical and pharmacognostical evaluation of Carissa spinarum leaves. Asian J Pharmacy Technol. 2013;3(10):30–3.

142. Matić D, Wedgwood D. The meanings of focus: the significance of an interpretation-based category in cross-linguistic analysis. J Linguistics. 2013; 49(1):127–63.

143. Ren ZY, Wu Q-X, Shi Y-P. Flavonoids and triterpenoids from Anaphalis margaritacea. Chem Nat Compd. 2000;35(5):276–30.

144. Kumar AP, Kumud U. Pharmacognostic and phytochemical investigation of aerial parts of Artemisia pallens wall ex. Dc. Pharcacognosy J. 2010;2(9):285–8.

145. Lukebke W. Pet crematory urn. In: Google Patents; 2000.

146. Zheng X, Wang W, Piao H, Xu W, Shi H, Zhao C. The genus Graphium L. (Compositae): phytochemical and pharmacological characteristics. Molecules. 2013;18(7):2928–318.

147. Mishra GJ, Reddy M, Rana JS. Isolation of flavonoid constituent from L. Malick et al. BMC Complementary and Alternative Medicine 2009;1(3):131.

148. Zheng X, Wang W, Piao H, Xu W, Shi H, Zhao C. The genus Graphium L. (Compositae): phytochemical and pharmacological characteristics. Molecules. 2013;18(7):2928–318.

149. Kubde MS, Khardabadi S, Farooqi I, Desre L. Lagenaria siceraria: phytochemistry, pharmacognosy and pharmacological studies. Rep Opin. 2010;2(3):93–8.
182. Puri R, Srd R, Khaliq A, Kumar M, Jain S. Gastrointestinal toxicity due to bitter bottle gourd (Lagenaria siceraria)— a report of 15 cases. Indian J Gastroenterol. 2011;30(3):233–6.

183. Tofghi Z, Allipour F, Yassa N, Hadjikakhoudi A, Hadavinia H, Goudarzy S, Golestani R. Chemical composition and antioxidative activity of Osotega persea essential oil from Iran. Int J Essential Oil Th. 2009;3:45–9.

184. Kumar A, Gupta R, Mishra RK, Shukla AC, Dikshit A. Pharmacopho-phyllogenetic investigation of Micromeria biflora Benth and Citrus reticulata Blanco. National Academy Science Letters. 2012;25(4):253–7.

185. Kumar P, Kumar M, Ramanathan A, Tsujimura M. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic plain, India: a source identification perspective. Environ Geoch. Health. 2010;32(2):129–46.

186. Craig AM, Karchesy JJ, Blythe LL, del Pilar González-Hernández M. Cytotoxic diterpenoids from Euphorbia helioscopia. J Nat Prod. 2008;71(5):873–7.

187. Rajput A, Kovalenko A, Bogdanov K, Yang S-H, Kang T-B, Kim J-C, Du J. Phytochemical characterization and evaluation of cardiac glycosides from Eurycoma longifolia. J Nat Prod. 2012;75(3):598–611.

188. Saab AM, Guerrini A, Sacchetti G, Maietti S, Zeino M, Arend J, Gambari R. Antioxidant activity and cytotoxicity of a water extract in the rat. J Ethnopharmacol. 2001;75(2):283–9.

189. Dubey S, Deep P, Singh AK. Phytochemical characterization and evaluation of in vitro antioxidative activity and in vitro antioxidant activity of Melia azedarach Linn leaves by DPPH scavenging assay. Int J Pharm Appl. 2012;3(1):271.

190. Faria NR, da Silva Azevedo Rds, Kraemer MU, Souza R, Cunha MS, Hill SC, Theulu J, Bonsall MB, Bowden TA, Rennisan I. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352(6283):345–49.

191. Raju J, Ovais M, Dubey A. Phytochemical screening of the methanol extracts of Euphorbia hirta L. Indian J Pharmacol. 2012;44(9):631–9.

192. Dubey S, Deep P, Singh AK. Phytochemical characterization and evaluation of antitumor activity of seabuckthorn leaf extract. Vet. Ophthalmol. 2016;19(3):144–8.

193. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Chasman DI, Willer CJ. Biological, clinical and epidemiological evidence for contributions of several common variants to risk of type 2 diabetes. Nat Genet. 2010;42(9):767–75.

194. Ali N, Akram U, Shah SWA, Shah J, Junaid M, Ahmed G, Ali W. Ghias M. Antioxidant activity, brine shrimp cytotoxicity, anthelmintic and relaxant potentials of fruits of Rubus fruticosus Agg. BMC Complement Altern Med. 2013;13(1):1.

195. Basma AA, Zakaria Z, Lahy LA, Sasidharan S. Sedative and anticonvulsant effects of hydroalcoholic extract of Equisetum arvense. Fitoterapia. 2005;76(6):508–13.

196. Ali N, Akram U, Shah SWA, Shah J, Junaid M, Ahmed G, Ali W. Ghias M. Antioxidant activity, brine shrimp cytotoxicity, anthelmintic and relaxant potentials of fruits of Rubus fruticosus Agg. BMC Complement Altern Med. 2013;13(1):1.

197. Taha M, Shah HD, Zhang A, Zhang X. In vitro evaluation of nephroprotective potential of Butea monosperma extract and its a-Carboline alkaloids. J Pharm Pharm Sci. 2002;5:19–24.

198. Orisakwe OE, Afonne OJ, Chude MA, Obi E, Dioka CE. Sub-chronic toxicity studies and antioxidant activity of Dalbergia sissoo leaves. Fitoterapia. 2001;72(2):131–3.

199. Ahmed MF, Rao AS, Ahemad SR, Ibrahim M. Phytochemical studies and antioxidant activity of Melia azedarach Linn leaves by DPPH scavenging assay. J Pharm Appl. 2012;3(1):271–6.

200. Al-Ali A, Alm Al, Alm Al, Alm Al, Alm Al. An in vitro evaluation of nephroprotective potential of Butea monosperma extract and its a-Carboline alkaloids. J Pharm Pharm Sci. 2002;5:19–24.

201. Ahmed MF, Rao AS, Ahemad SR, Ibrahim M. Phytochemical studies and antioxidant activity of Melia azedarach Linn leaves by DPPH scavenging assay. J Pharm Appl. 2012;3(1):271–6.

202. Al-Ali A, Alm Al, Alm Al, Alm Al, Alm Al. An in vitro evaluation of nephroprotective potential of Butea monosperma extract and its a-Carboline alkaloids. J Pharm Pharm Sci. 2002;5:19–24.

203. Asgarpanah J, Ramezanloo F. Chemistry, pharmacology and medicinal properties of Peganum harmala L. Afr J Pharm Pharmacol. 2012;6(22):1573–80.

204. Phua DH, Tsai W-J, Ger J, Ding J-F, Yang C-C. Human Melia azedarach (Zyphium) heartwood. J Pharmacognosy Phytochem. 2014;3(1):91–5.

205. Kolhe S, Choudhary M, Kulkarni S, Jadhav S, Suryavanshi J, Solkade D, Khedkar S, Phonomurugan B, Suryawanshi A. Antioxidant activity of Lawsonia inermis leaf extract. Medicine. 2013;6:8.
