Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma

Carmen Martínez1, José A Molina2, Hortensia Alonso-Navarro3,4, Félix J Jiménez-Jiménez3, José AG Agúndez1, Elena García-Martín5*

Abstract

Background: Human serum paraoxonase 1 (PON1) plays a major role in the metabolism of several organophosphorus compounds. The enzyme is encoded by the polymorphic gene PON1, located on chromosome 7q21.3. Aiming to identify genetic variations related to the risk of developing brain tumors, we investigated the putative association between common nonsynonymous PON1 polymorphisms and the risk of developing astrocytoma and meningioma.

Methods: Seventy one consecutive patients with brain tumors (43 with astrocytoma grade II/III and 28 with meningioma) with ages ranging 21 to 76 years, and 220 healthy controls subjects were analyzed for the frequency of the nonsynonymous PON1 genotypes L55M rs854560 and Q192R rs662. All participants were adult Caucasian individuals recruited in the central area of Spain.

Results: The frequencies of the PON1 genotypes and allelic variants of the polymorphisms PON1 L55M and PON1 Q192R did not differ significantly between patients with astrocytoma and meningioma and controls. The minor allele frequencies were as follows: PON1 55L, 0.398, 0.328 and 0.286 for patients with astrocytoma, meningioma and control individuals, respectively; PON1 192R, 0.341, 0.362 and 0.302 for patients with astrocytoma, meningioma and control individuals, respectively. Correction for age, gender, or education, made no difference in odds ratios and the p values remained non-significant. Haplotype association analyses did not identify any significant association with the risk of developing astrocytoma or meningioma.

Conclusions: Common nonsynonymous PON1 polymorphisms are not related with the risk of developing astrocytoma and meningioma.

Background

Primary cancers of the brain and nervous system globally account for nearly 200,000 new cases per year, the highest rates being observed in developed areas [1]. The two most common histologic types of brain tumors in adults are gliomas and meningiomas, and data suggest that gliomas are more common in men, while meningiomas occur more often in women [2].

The etiology of brain tumors is still poorly understood. Despite some studies suggested a possible relationship between the risk for brain tumors and several occupational and environmental exposures, including farming [3-5] and pesticides and/or herbicides [2,5-10], others failed to show this association [11-13]. A recent multicenter case-control study examining incident glioma and meningioma risk associated with occupational exposure to insecticides and herbicides showed increased risk for meningioma in women who reported ever using pesticides, with a trend of increasing risk with increasing years of herbicide exposure [14]. Interestingly, it has been reported that, in experimental models, organophosphorus insecticides and their oxons can affect astroglial cell proliferation in cultures of astrocytoma-glioma cell lines or primary astrocytes [15,16].
Human serum paraoxonase 1 (PON1), a enzyme encoded by the polymorphic gene PON1 on chromosome 7q21.3, is an arylalkylphosphatase, synthesized mainly in the liver, that plays a major role in the metabolism of several organophosphorus compounds, like some insecticides, neurotoxins, and arylesters [17]. The high variability in the activity of PON1 has been attributed to several polymorphisms within the gene, as well as physiological and pathological states, dietary and lifestyle factors and environmental chemicals. Two nonsynonymous polymorphisms, a leucine to methionine substitution at position 55 (L55M, rs854560, c.220 T > A according to the GenBank accession number NM 000446) and a glutamine to arginine substitution at position 192 (Q192R, rs662, c.632 A > G according to the GenBank accession number NM 000446), 8638 bp apart, have been shown to influence PON1 activity [18-20]. The M allele at position 55 causes a decrease in protein stability [21] and the Q allele at position 192 has been associated with decreased metabolic activity for some substrates [22,23]. In the serum, PON1 is associated with high density lipoprotein (HDL), and plays an important role in lipid metabolism as an antioxidant molecule through several mechanisms [24-26]. In addition, PON1 is implicated in the elimination of carcinogenic lipid-soluble radicals from lipid peroxidation [27].

Although astrocytoma and meningioma arise from completely different types of cells, it cannot be ruled out that some similar features may be involved in their etiology. In some cases meningiomas can mimic astrocytomas and vice-versa and some studies reported concurrent occurrence of both tumors in the same patient [28-35]. Moreover, genetic and non-genetic risk factors have been associated with both types of tumors [36,37]. To establish whether PON1 genotype and allelic variants could be related to the risk of developing brain astrocytoma and/or meningioma, we have compared the prevalence of the PON1-L55M and PON1- Q192R polymorphisms in the PON1 gene, in a group of 71 patients with these brain tumors (43 with astrocytoma grade II/III and 28 with meningioma), and 220 healthy controls.

Methods

We studied 43 unrelated patients with brain astrocytoma grade II/III (26 men, 17 women; mean ± SD age 51.7 ± 17.4 years) and 28 with brain meningioma (6 men, 22 women; mean ± SD age 62.1 ± 11.7 years). The age ranges were 21-68 years for astrocytoma and 27-76 years for meningiomas. All consecutive patients attending the participating hospitals (Hospital Universitario “Doce de Octubre” (Madrid, Spain) and the Hospital Universitario Infanta Cristina (Badajoz, Spain)) between 1997 and 1999 that were diagnosed of astrocytoma and/or meningioma, we have compared the prevalence of the PON1-L55M and PON1- Q192R polymorphisms in the PON1 gene, in a group of 71 patients with these brain tumors (43 with astrocytoma grade II/III and 28 with meningioma), and 220 healthy controls.

The intergroup comparison values and the significance of the gene-dose effect were calculated by using the chi-square test or the Fisher’s exact test when appropriate. Logistic regression was performed to verify that age, gender or education did not modify the odds ratios. Statistical analyses were performed using the SPSS 15.0 for Windows (SPSS Inc., Chicago, Illinois, USA). The patient’s sample size was determined from allele frequencies observed for healthy individuals with a genetic model analyzing the frequency for carriers of the disease.
gene. Hardy-Weinberg equilibrium (HWE) was analyzed with the DeFinetti program (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). Haplotype reconstruction was carried out using the program PHASE v2.1.1 with the default model for recombination rate variation [42]. Seven independent runs with 1000 iterations, 500 burn-in iterations and a thinning interval of 1 were performed as described elsewhere [43]. Association tests were carried out with the software package PLINK [44].

Results

No departures from HWE were observed. The p values (Pearson) for HWE departures were as follows: $PON1$ L55M: cases, $p = 0.620$, controls, 0.142; $PON1$ Q192R: cases, $p = 0.962$, controls, $p = 0.544$. The frequencies of $PON1$ genotypes and $PON1$ alleles in patients with brain tumors did not differ significantly from those of controls, both considering astrocytoma plus meningioma cases (Table 1), or astrocytoma and meningioma separately (Table 2). Different genetic models were used to test the genotypic associations. For overall patients the results for association tests for the $PON1$ L55M polymorphism were as follows: Genotypic test, $p = 0.879$; trend test, $p = 0.691$, dominant model, $p = 0.847$, recessive model $p = 0.567$. For astrocytoma patients the results for association tests for the $PON1$ L55M polymorphism were as follows: Genotypic test, $p = 0.989$; trend test, $p = 0.886$, dominant model, $p = 0.884$, recessive model $p = 0.932$. Regarding the $PON1$ Q192R polymorphism, the association test results were: Genotypic test, $p = 0.727$; trend test, $p = 0.465$, dominant model, $p = 0.424$, recessive model $p = 0.778$. For meningioma patients the results for association tests for the $PON1$ L55M polymorphism were as follows: Genotypic test, $p = 0.605$; trend test, $p = 0.386$, dominant model, $p = 0.605$, recessive model $p = 0.323$. Regarding the $PON1$ Q192R polymorphism, the association test results were: Genotypic test, $p = 0.649$; trend test, $p = 0.353$, dominant model, $p = 0.395$, recessive model $p = 0.524$. We tested also the frequencies for haplotypes and the P values for overall patients, astrocytoma patients and meningioma patients, respectively, were as follows: $PON1$ 55L+192Q, 0.648, 0.945 and 0.384; $PON1$ 55L+192R, 0.568, 0.721 and 0.557; $PON1$ 55M+192Q, 0.560, 0.472 and 0.936; $PON1$ 55M+192R, 0.291, 0.515 and 0.318.

Correction for age, gender, or education, made no difference in odds ratios and the p values remained non-significant.

Discussion

The brain is partially protected from chemical insults by a physical barrier mainly formed by the cerebral microvasculature, which prevents penetration of hydrophilic molecules into the cerebral extracellular space [45]. However, several drugs and environmental pollutants, including organophosphorus insecticides or other xenobiotics could reach the brain. This organ possesses an enzymatic equipment able to metabolize xenobiotics, like an entirely functional cytochrome P450 mono-oxygenase system in rodents and humans that would metabolize xenobiotics resulting in the formation of reactive and toxic metabolites in the neuronal cells [46]. Present mainly in the liver and blood, $PON1$ should hypothetically act as a detoxifying enzyme at this level, causing the hydrolysis of the acetylcholinesterase-inhibiting

Table 1 $PON1$ genotype and allelic variants of patients with brain tumor (BT) and healthy volunteers

GENOTYPES	BT PATIENTS (N = 73, 146 chromosomes)	CONTROLS (N = 220, 440 chromosomes)	OR (95% CI); P
$PON1$ 55 Leu/Leu	15 (15.1) [69.23.3]	38 (17.1) [12.3-22.3]	0.85 (0.41-1.75); 0.66²
$PON1$ 55 Leu/Met	32 (43.8) [32.5-55.2]	94 (42.7) [36.2-49.3]	–
$PON1$ 55 Met/Met	30 (41.1) [29.8-52.4]	88 (40.0) [33.5-46.5]	1.05 (0.61-1.79); 0.86⁹
$PON1$ 192 Gln/Gln	31 (42.5) [31.1-53.8]	109 (49.5) [42.9-56.2]	0.75 (0.44-1.28); 0.29⁵
$PON1$ 192 Gln/Arg	33 (45.2) [33.8-56.6]	89 (40.5) [34.0-46.9]	–
$PON1$ 192 Arg/Arg	9 (12.3) [4.8-19.9]	22 (10.0) [6.0-14.0]	1.27 (0.57-2.85); 0.57⁶

ALLELES			
$PON1$ 55 Leu	54 (37.0) [29.2-44.8]	170 (38.6) [34.1-43.2]	0.93 (0.63-1.37); 0.72²
$PON1$ 55 Met	92 (63.0) [55.2-70.8]	270 (61.4) [56.8-65.9]	–
$PON1$ 192 Gln	95 (65.1) [57.3-72.8]	307 (69.8) [65.5-74.1]	–
$PON1$ 192 Arg	51 (34.9) [27.2-42.7]	133 (30.2) [25.9-34.5]	1.24 (0.84-1.84); 0.26⁹

The values in each cell represent number (percentage) and [95% confidence intervals]. ¹The OR was calculated by using the dominant model. ²The OR was calculated by using the recessive model. ³The OR was calculated by using the allelic model. Test for trend with the number of variant alleles: $PON1$ 55 Leu/Met: H = 0.0957 df = 1 $p = 0.7576$; $PON1$ 192 Gln/Arg: H = 1.1416 df = 1 $p = 0.2853$.

Martínez et al. BMC Neurology 2010, 10:71
http://www.biomedcentral.com/1471-2377/10/71
oxons (activated intermediates) of some organophosphorus compounds [47,48], decreasing the possible arrival of these compounds to the brain. Several evidences point to pesticides as risk a factor for brain tumors [49,50]. PON1 plays a prominent role among the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or mitigate damage caused by reactive oxygen species. And hence it is conceivable that the enzymes that prevent or miti...
cases, but it should not influence the findings obtained in the present study. Regarding the geographical origin of the patients and controls, no genetic differences are expected because all participants were Spanish Cauca-
sians living in close areas and because in previous genetic studies we have not detected any genetic differ-
ences between individuals from Extremadura and Madrid [56-60]. Another limitation of this study is the absence of data regarding exposure to chlorpyrifos or diazinon. Nevertheless, it should be stated that a recent study that identified interaction between exposure to insecticide treatment and some polymorphisms of pesti-
cide metabolism genes failed to identify a significant interaction of exposure with the nonsynonymous PON1 polymorphisms analyzed in the present study [53]. Additional limitations are the inability to analyze other functional PON1 SNPs, such as the highly functional C-108T SNP, and the lack of PON1 activity measures-
ments, although this does not invalidate the findings indicating the lack of a major genetic association with the SNPs analyzed in this study. In fact, clinical association of PON1 polymorphisms, but not PON1 enzyme activity, with ischemic stroke has been recently demonstrated [61] and vice-versa, no association between adult brain tumors and PON1 genotype, but positive associa-
tion with PON1 activity has been described [54]. In this regard, Furlong et al. recommend both, genotype deter-
mination and measurement of serum enzyme activity for evaluation of PON1’s role in risk of disease or expo-
sure [62].

Another limitation of this study is the sample size of subgroups of patients according to the histological type of tumor. In this study we cannot exclude a false negative result due to the sample size. Nevertheless, the study is sufficiently powered to rule out a major association of PON1 polymorphisms. For patients with astrocy-
toma the study can rule out an association with OR ≥ 2.1, and for patients with meningioma the study can rule out an association with OR ≥ 2.5. Sporadic disease-genotype associations this strong are extremely rare, particularly with cancer risk [63-65]. Even considering this limitation, this study indicates the absence of a major association of the nonsynonymous PON1 poly-
morphisms studied with brain tumors.

Conclusions
Common nonsynonymous PON1 polymorphisms are not related with the risk of developing astrocytoma and meningioma.

Acknowledgements
We are thankful to Garà Esguevillas for technical assistance. This work was financed by Grants PS09/00943, PS09/00469 and RETICS RD07/0064/0016 from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain and PR07/A005 from Junta de Extremadura, Mérida, Spain.

Author details
1Department of Pharmacology & Psychiatry, Medical School, University of Extremadura, Badajoz, Spain. 2Service of Neurology, Hospital Doce de Octubre, Madrid, Spain. 3Department of Medicine-Neurology, Hospital “Príncipe de Asturias”, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain. 4Section of Neurology, Hospital “La Mancha-Centro”, Alcazar de San Juan, Ciudad Real, Spain. 5Department of Biochemistry and Molecular Biology and Genetics, University of Extremadura, Avda of Elvas s/n, 06071, Badajoz, Spain.

Authors’ contributions
CM: acquisition of the data, critical revision, obtaining funding, administrative, technical and material support. JAM: acquisition of data, critical revision. HAN: conception and design, acquisition of the data, analysis and interpretation of the data, drafting of the submitted material, critical revision, administrative, technical and material support. FJJJ: conception and design, analysis and interpretation of the data, drafting of the submitted material, critical revision, statutory expertise, obtaining funding, and supervision. EGM: conception and design, analysis and interpretation of the data, drafting of the submitted material, critical revision, obtaining funding, and supervision. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 15 December 2009 Accepted: 19 August 2010
Published: 19 August 2010

References
1. Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005, 55(2):74-108.
2. Inskip PD, Linet MS, Heineman EF: Etiology of brain tumors in adults. Epidemiol Rev 1995, 17(2):382-414.
3. De Roos AJ, Stewart PA, Linet MS, Heineman EF, Dosemeci M, Wilcosky T, Shapiro WR, Selker RG, Fine HA, Black PM, et al: Occupation and the risk of adult glioma in the United States. Cancer Causes Control 2003, 14(2):139-150.
4. Rajaraman P, De Roos AJ, Stewart PA, Linet MS, Fine HA, Shapiro WR, Selker RG, Black PM, Inskip PD: Occupation and risk of meningioma.
5. Khuder SA, Mutgi AB, Schauf EA: Meta-analyses of brain cancer and farming. Am J Ind Med 1996, 34(2):252-260.
6. Carreon T, Butler MA, Ruder AM, Waters MA, Davis-King KE, Calvert GM, Schulte PA, Connally LB, Lu J, et al: Brain tumours and exposure to pesticides in farmers. J Neurosurg: Off J Nat Acad Sci 2007, 26(5):509-514.
7. Carreon T, Butler MA, Ruder AM, Waters MA, Davis-King KE, Calvert GM, Schulte PA, Connally LB, Lu J, et al: Brain tumours and exposure to pesticides: a case-control study in southwestern France. Occup Environ Med 2007, 64(8):509-514.
8. Musicco M, Sant M, Molinari S, Filippini G, Gatta G, Berrino F: A case-control study of brain gliomas and occupational exposure to chemical carcinogens: the risk to farmers. Am J Epidemiol 1988, 128(4):778-785.
9. Ruder AM, Waters MA, Carreon T, Butler MA, Davis-King KE, Calvert GM, Schulte PA, Ward EM, Connally LB, Lu J, et al: The Upper Midwest Health Study: a case-control study of primary intracranial gliomas in farm and rural residents. J Agrict Saf Health 2006, 12(4):255-274.
10. Provost D, Cantagrel A, Lebailly P, Jaffre A, Loyant V, Loiseau H, Vital A, Brochard P, Baldi I: Brain tumours and exposure to pesticides: a case-control study in southwestern France. Occup Environ Med 2002, 24(5):260-264.
12. Lee WJ, Colt JS, Heineman EF, McComb R, Weisbencher DD, Lijskwy W, Ward MH: Agricultural pesticide use and risk of glioma in Nebraska, United States. Occup Environ Med 2005, 62(11):786-92.

13. Schlehofer B, Hettenger J, Ryan P, Blettner M, Preston-Martin S, Little J, Arslan A, Abhtom A, Giles GG, Howe GR, et al: Occupational risk factors for low grade and high grade glioma: results from an international case control study of adult brain tumours. Int J Cancer 2005, 113(1):116-25.

14. Samanic CM, De Roos AJ, Stewart PA, Rajaraman P, Waters MA, Inskip PD: Occupational exposure to pesticides and risk of adult brain tumors. Am J Epidemiol 2008, 167(8):965-78.

15. Qiao D, Seidler FJ, Slotkin TA: Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect 2001, 109(9):909-913.

16. Guizzetti M, Pathak S, Giordano C, Costa LG: Effect of organophosphorus insecticides and their metabolites on astrogial cell proliferation. Toxicology 2005, 215(3):182-190.

17. Cowan J, Sinton CM, Varley AW, Wians FH, Haley RW, Munford RS: Gene therapy to prevent organophosphate intoxication. Toxicol Appl Pharmacol 2001, 173(1):1-6.

18. Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE: The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 1993, 3(1):73-76.

19. Adkins S, Gan KN, Mody M, La Du BN: The molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B alleles. Am J Hum Genet 1993, 52(3):598-608.

20. Mackness B, Mackness MI, Arrol S, Turkie W, Julier K, Abuasha B, Miller JE, Boulton AJ: Differential serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis 1998, 139(2):341-349.

21. Leviev I, Deakin S, James RW: Decreased stability of the M54 isoform of paraoxonase as a contributory factor to variations in human serum paraoxonase concentrations. J Lipid Res 2001, 42(4):528-535.

22. Mutch E, Daly AK, Williams FM: The relationship between PON1 phenotype and PON1-192 genotype in detoxification of three oxons by human liver. Drug Metab Dispos 2007, 35(2):315-320.

23. Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE: The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 1996, 14(3):334-336.

24. Mackness MI, Burrelling PN, Connelly PW, Hegele RA: Serum paraoxonase (PON1) 55 and 192 genotypes in schizophrenic patients and their relatives in Turkish population. Psychi atr Genet 2008, 18(6):289-294.

25. Garcia-Martín E, Martínez C, Alonso-Navarro H, Benito-León J, Puertas I, Rubio L, Lopez-Alburquerque T, Agundez JA, Jimenez-Fij: Paraoxonase 1 (PON1) polymorphisms and risk for essential tremor. Eur J Neurol 2009, 16(8):789-81.

26. Kafadar AM, Ergen A, Zeybek U, Agachan B, Kuday C, Isbir T, Adalı D, Alonso-Navarro H, Ayuso-Peralta L, Tomellini D, Agundez JA, Jimenez FJ: Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Multiple Sclerosis. Neuromedical Mol Med 2009.

27. Stephens M, Donnelly P: A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003, 73(1):162-169.

28. Agundez JA, Kolka K, Martinez C, Selinski S, Blazkewicz M, Garcia-Martín E: Unraveling ambiguous NAT2 genotyping data. Clin Chem 2008, 54(8):1390-1394.

29. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

30. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

31. Singh T, Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

32. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

33. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

34. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.

35. Paraoxonase 1 Polymorphisms Are Not Related with the Risk for Alzheimer’s Disease. J Toxicol Environ Health B Crit 2007, 10(1-2):89-99.
56. Martinez C, Garcia-Martin E, Ladero JM, Sastre J, Garcia-Gamito F, Diaz-Rubio M, Agundez JA: Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 2001, 22(8):1323-1326.

57. Martinez C, Martin F, Fernandez JM, Garcia-Martin E, Sastre J, Diaz-Rubio M, Agundez JA, Ladero JM: Glutathione S-transferases mu 1, theta 1, pi 1, alpha 1 and mu 3 genetic polymorphisms and the risk of colorectal and gastric cancers in humans. Pharmacogenomics 2006, 7(5):711-718.

58. Garcia-Martin E, Mendoza JL, Martinez C, Taxonera C, Urcelay E, Ladero JM, de la Concha EG, Diaz-Rubio M, Agundez JA: Severity of ulcerative colitis is associated with a polymorphism at diamine oxidase gene but not at histamine N-methyltransferase gene. World J Gastroenterol 2006, 12(4):615-620.

59. Blanco G, Martinez C, Ladero JM, Garcia-Martin E, Taxonera C, Gamito FG, Diaz-Rubio M, Agundez JA: Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics 2008, 18(1):37-43.

60. Oliver J, Agundez JA, Morales S, Fernandez-Aquero M, Fernandez-Gutierrez B, de la Concha EG, Diaz-Rubio M, Martin J, Ladero JM: Polymorphisms in the transforming growth factor-beta gene (TGF-beta) and the risk of advanced alcoholic liver disease. Liver Int 2005, 25(5):935-939.

61. Demirdogen BC, Demirkaya S, Turkanoglu A, Bek S, Arinc E, Adali O: Analysis of paraoxonase 1 (PON1) genetic polymorphisms and activities as risk factors for ischemic stroke in Turkish population. Cell Biochem Funct 2009, 27(8):558-567.

62. Furlong CE, Suzuki SM, Stevens RC, Marsillach J, Richter RJ, Janvik GP, Checkoway H, Samii A, Costa LG, Griffith A, et al: Human PON1, a biomarker of risk of disease and exposure. Chem Biol Interact 2010.

63. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N: Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004, 96(6):434-442.

64. Agundez JA: Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab 2008, 9(6):520-531.

65. Agundez JA: Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 2004, 5(3):211-224.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2377/10/71/prepub

doi:10.1186/1471-2377-10-71
Cite this article as: Martínez et al.: Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma. BMC Neurology 2010 10:71.

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit