Gauge and Yukawa Unification in SUSY with Bilinearly Broken R–Parity

Marco Aurelio Díaz

Facultad de Física, Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile, and
Department of Physics, Florida State University, Tallahassee, Florida 32306, USA.

Talk given at the International Workshop on Particles in Astrophysics and Cosmology: From Theory to Observation, Valencia, Spain, May 3-8, 1999.

In a supersymmetric model where R–Parity and lepton number are violated bilinearly in the superpotential, which can explain the solar and atmospheric neutrino problems, we study the unification of gauge and Yukawa couplings at the GUT scale. We show that bottom–tau Yukawa coupling unification can be achieved at any value of tan β, and that the strong coupling constant prediction from unification of gauge couplings is closer to the experimental value compared with the MSSM. We also study the predictions for V_{cb} in a Yukawa texture ansatz.

Bilinear R–Parity Violation (BRpV) has attracted a lot of attention lately due to its prediction for neutrino masses in connection with the recent results from SuperKamiokande, confirming the deficit of muon neutrinos from atmospheric neutrino data. The simplest interpretation of the data is in terms of ν_μ to ν_τ flavour oscillations with maximal mixing and a mass squared difference of $\Delta m^2_{\text{atm}} \approx 10^{-3} - 10^{-2} \text{eV}^2$. In addition, the solar neutrino experiments imply the existence of another independent neutrino mass squared difference

$$\Delta m^2_{\text{sun}} \approx 10^{-10} \text{eV}^2 \text{ (VO)}$$

$$\Delta m^2_{\text{sun}} \approx 10^{-6} - 10^{-4} \text{eV}^2 \text{ (MSW)}$$

where VO stands for Vacuum Oscillation solution and MSW for the Mikheyev–Smirnov–Wolfenstein solution. The solar effect could be due to ν_e to ν_μ oscillations.

The solar and atmospheric neutrino problems can be solved in the context of BRpV where the superpotential

$$W = W_{\text{Yuk}} - \mu \tilde{H}_d \tilde{H}_u + \epsilon_i \tilde{L}_i \tilde{H}_u$$

contains three terms that mix the three lepton superfields with the Higgs superfield responsible for the up–type quark masses. The three mixing terms violate R–Parity and lepton number and are proportional to parameters ϵ_i with units of mass.

The three neutrinos mix with the four neutralinos, and in a see-saw type of mechanism one of them acquire a mass at tree level and the other two remain degenerate and massless. In the case of $\epsilon_1 \ll \mu, M_1/2$ the tree level neutrino mass can be approximated to

$$m_\nu \approx \frac{g_2^2 M_1 + g'_2 M_2}{4 \text{det}(M_{\chi^0})} |\Lambda|^2,$$

where $\Lambda_i = \mu v_i + v_d \epsilon_i$ and v_i are the vev’s of the sneutrinos. The matrix M_{χ^0} is the 4×4 submatrix corresponding to the original neutralinos. It can be shown that the parameters $\Lambda_i \approx \mu' v'_i$ are directly proportional to the sneutrino vev’s v'_i in the basis where the ϵ_i terms have been removed from the superpotential.

In order to calculate reliable neutrino masses and mixings it is imperative to include one–loop corrections to the three generations. In this way, the degeneracy and masslessness of the lightest two neutrinos is lifted. The renormalized mass matrix has the form

$$M_{ij}^{\text{pole}} = M_{ij}^{\text{DR}}(\mu_R) + \frac{1}{2} \left(\Pi_{ij}(p_i^2) + \Pi_{ij}(p_j^2) - m_{\chi^0_i} \Sigma_{ij}(p_i^2) - m_{\chi^0_j} \Sigma_{ij}(p_j^2) \right).$$
where μ_R is an arbitrary scale and Π_{ij} and Σ_{ij} are self energies. The explicit scale dependence of the self energies is canceled by the implicit scale dependence of the tree level masses in the DR scheme. The averaged form of the renormalized mass matrix is necessary for explicit gauge independence. The loops include:

\[q, F^+, F^0 \]

\[\tilde{q}, S^-, S^0 \]

\[\nu, F^+, F^0 \]

\[W^-, \nu \]

where F^+ are mixtures of charginos and charged leptons, F^0 are neutralinos and neutrinos, S^+ are charged Higgs and charged sleptons, and F^0 are neutral Higgs and sneutrinos.

We work in the general R_ξ gauge, and to achieve explicit gauge invariance we need to include the tadpole graph for the Goldstone bosons into the self energies. There are five tadpole equations associated to the real parts of the two neutral Higgs and three sneutrinos:

\[V_{\text{linear}} = t_u \text{Re}(H_u^0) + t_d \text{Re}(H_d^0) + t_i \text{Re}(\tilde{\nu}_i). \]

(6)

The renormalized tadpoles are

\[t_\alpha = t_\alpha^0 - \delta t_\alpha^{\text{DR}} + T_\alpha(Q) = t_\alpha^0 + T_\alpha^{\text{DR}}(Q) \]

(7)

where $T_\alpha^{\text{DR}}(Q) \equiv -\delta t_\alpha^{\text{DR}} + T_\alpha(Q)$ are the finite one–loop tadpoles without the Goldstone contribution.

The solar mass squared difference $\Delta m_{12}^2 = \Delta m_{12}^2$ is plotted as a function of $\epsilon/|\Lambda|$, where $\epsilon^2 = \sum_i \epsilon_i^2$ and $\Lambda^2 = \sum_i \Lambda_i^2$. Lower values of $\epsilon/|\Lambda|$ leads to VO solutions and large values to solutions with the MSW effect. Maximal of the atmospheric angle is found for $|\Lambda_\mu| \approx |\Lambda_\tau|$, and maximality of the solar angle is obtained if $\epsilon_\tau \approx \epsilon_\mu$, as long as Λ_τ is about a decade smaller than the other two.

An important consequence of the supersymmetric solutions to the neutrino problems is the necessity of $\tan \beta < 10$, implying that the lightest Higgs boson mass satisfy $m_h \lesssim 115$ GeV. In BRpV the neutral Higgs mix with the sneutrinos, and although this mixing does not affect the upper bound on m_h, it can reduce the mass in a few GeV [12]. A large part of the Higgs mass m_h comes from radiative corrections near $\tan \beta = 1$ [13] and therefore it is smaller than at high $\tan \beta$. This is the reason why LEP2 has started to prove this region of parameter space, preliminary ruling out $1 \leq \tan \beta \lesssim 1.8$ [18].

The analysis of BRpV with three massive neutrinos is very involved and for many applications it is enough to consider the one–generation approximation. In the study of gauge and Yukawa unification, the details of neutrino masses and mixing are not relevant, and for simplicity we consider BRpV only in the tau sector. The superpotential is the one in eq. (3) with $\epsilon_1 = \epsilon_2 = 0$ and $\epsilon_3 \neq 0$. In addition, an extra soft parameter B_3 is introduced

\[V_{\text{BRpV}}^{\text{soft}} = V^{\text{MSSM}}_{\text{soft}} + B_3 \epsilon_3 \tilde{L}_3 H_2 + h.c. \]

(8)

In this context, the tau neutrino acquire a mass at tree level given by

\[m_{\nu_\tau} \approx \frac{g^2}{2M} v_{3}^2 \]

(9)

where v_3' is the sneutrino vev in the basis where the ϵ_3 term is removed from the superpotential. The tadpole equations allow us to find an approximated expression for this vev

\[v_3' \approx \frac{\epsilon_3 \mu}{\mu' m_{\nu_\tau}^2} (v_1' \Delta m^2 + \mu' v_2 \Delta B) \]

(10)

where $\Delta m^2 = m_{\nu_1}^2 - m_{\nu_3}^2$ and $\Delta B = B_3 - B$ are evaluated at the weak scale. In models with
universal boundary conditions at the GUT scale, these two differences at the weak scale are radiatively generated and proportional to the bottom Yukawa coupling squared.

The sneutrino vev v_3 contribute to the W boson mass $m_W^2 = \frac{1}{4} g^2 (v_u^2 + v_d^2 + v_3^2)$, therefore the Higgs vevs are smaller compared to the MSSM case. Because of this, although the relation between the quark masses and the Yukawa couplings does not change

$$m_t^2 = \frac{1}{2} h_t^2 v_u^2, \quad m_b^2 = \frac{1}{2} h_b^2 v_d^2,$$

the numerical value of the Yukawas is different compared with the MSSM. The case of the tau Yukawa coupling is different due to the tau mixing with the charginos. The tau mass is

$$m_\tau^2 = \frac{1}{2} h_\tau^2 v_d^2 (1 + \delta)$$

where $\delta \geq 0$ depends on the parameters of the chargino–tau mass matrix [15].

To understand this result, consider the ratio between h_b and h_τ at the weak scale. According to eqs. (11) and (12) this ratio is

$$\frac{h_b}{h_\tau}(m_{weak}) = \frac{m_b}{m_\tau} \sqrt{1 + \delta}$$

with δ increasing when v_3 departs from zero. In addition, solving the RGE’s with bottom–tau unification at the weak scale we get

$$\frac{h_b}{h_\tau}(m_{weak}) \approx \exp \left[\frac{1}{16\pi^2} \left(\frac{16}{3} g_s^2 - 3 h_b^2 - h_\tau^2 \right) \ln \frac{M_{GUT}}{m_{weak}} \right]$$

Comparing eqs. (13) and (14) we infer that the combination $3 h_b^2 + h_\tau^2$ decreases when v_3 departs from zero ($v_3 = 0$ corresponds to the MSSM).

In Fig. 3 we plot the ratio h_b/h_τ as a function of $\tan \beta$ for the MSSM points corresponding to the outer band in Fig. 2. The points with acceptable m_t (within 1σ) and high $\tan \beta$ lie in the region $53 \lesssim \tan \beta \lesssim 60$ and in this region clearly h_b dominates in the combination $3 h_b^2 + h_\tau^2$. If v_3 departs from zero (away from the MSSM) then h_b decreases in order to achieve bottom-tau unification. In order to keep the bottom quark mass constant, the vev v_d increases, and to keep the gauge boson masses constant the vev v_3 decreases, implying that unification is achieved in BRpV at smaller values of $\tan \beta$. In Fig. 4 we have the ratio h_t/h_b as a function of $\tan \beta$ for BRpV with

![Figure 2. Top quark pole mass as a function of $\tan \beta$ for different values of the sneutrino vev v_3. Bottom–tau Yukawa unification in BRpV can be obtained at any value of $\tan \beta$. Top–bottom–tau unification (inclined line) is achieved at high $\tan \beta$ in a slightly wider region compared to the MSSM.](image-url)
$5 < v_3 < 10$ GeV. Looking at the figure we confirm that the region where h_b dominates over h_t in eq. (14) is at smaller values of $\tan \beta$, where $b-\tau$ unification and correct m_t is achieved.

It is clear that bottom–tau unification in BRpV is controlled by the sneutrino vev v_3 and not directly by the neutrino masses. It is perfectly possible to have large effects in bottom–tau unification and a small tau neutrino mass, although the complete case with three neutrinos and masses calculated up to one–loop is under investigation.

Another interesting effect controlled, as we will see below, by the sneutrino vev v_3 are the predictions for α_s from unification of gauge couplings at the GUT scale [15]. The experimental world average of the strong coupling constant $\alpha_s(m_Z)^{W,A} = 0.1189 \pm 0.0015$ [19] is about 2σ lower than the GUT prediction in the MSSM [20], as we illustrate in Fig. 6 where we plot the strong coupling constant as a function of $\sin^2 \theta_W(m_Z)$. Interestingly, there is a 1σ improvement compared to the MSSM. This effect can be understood by noticing that the Yukawa couplings, which contribute to the running of α_s at the two–loop level, make a contribution to α_s that can be approximated by

$$\Delta \alpha_s^{YUK} \approx -\frac{\alpha_s^2}{32\pi^3} \ln \left(\frac{M_U}{M_t} \right) b_3 \left\{ h_t^2 + h_b^2 \right\}, \quad (17)$$

and the difference between BRpV and MSSM is that in the former case the combination $h_t^2 + h_b^2$ can be larger than in the later case. From eq. (13) we get

$$h_t^2 + h_b^2 = 2 \left(\frac{m_t^2}{v_u^2} + \frac{m_b^2}{v_d^2} \right). \quad (18)$$

Figure 3. Ratio between the top and bottom quark Yukawa couplings at the weak scale in the MSSM as a function of $\tan \beta$.

Figure 4. Ratio between the top and bottom quark Yukawa couplings at the weak scale in the BRpV as a function of $\tan \beta$ for $5 < \tan \beta < 10$ GeV.

$$\left(\frac{m_t}{m_t} \right)^{\frac{3}{2} \bar{v}_W} \left(\frac{m_H}{m_H} \right)^{\frac{3}{2}} \left(\frac{m_{\tilde{W}}}{m_{\tilde{H}}} \right)^{\frac{3}{4}}. \quad (16)$$

The 2σ difference is not a real discrepancy, nevertheless, it is interesting to compare it with the predictions for α_s in BRpV.
In the MSSM at high values of $\tan \beta$ both Yukawa couplings are comparable, the vev v_u is very close to 246 GeV, and v_d is just a few GeV. What happens in BRpV is that sneutrino vevs v_3 of only a few GeV (comparable to v_d) can lift the value of the bottom Yukawa coupling to twice as large, since to keep the gauge boson masses constant v_d must decrease.

This effect can be seen in Fig. 7 where we plot the value of $\alpha_s(M_Z)$ as a function of the combination $h^2_t + h^2_b$ for the points in Figs. 5 and 6 that lie in the lower part of each strip (the smallest values of α_s for each value of $\sin^2 \theta_W$). We clearly observe the effect that $h_t^2 + h_b^2$ is larger in BRpV than in the MSSM, reason why the BRpV prediction of α_s is closer to the experimental value.

The prediction of V_{cb} in the simplest Yukawa texture ansätze has also been studied. In this case, in addition to the GUT condition $h_b(M_{GUT}) = h_T(M_{GUT})$ we impose the condition

$$|V_{cb}(M_{GUT})| = \sqrt{\frac{h_c(M_{GUT})}{h_t(M_{GUT})}}$$

which is a prediction of the texture. We look for solutions satisfying the experimental constraint $0.036 < |V_{cb}| < 0.042$ at 90% c.l. [21] . Solutions in the MSSM are in Fig. 8 imposing the two boundary conditions at the GUT scale within the percentage indicated by the figure. With GUT conditions at 5% the large $\tan \beta$ solution for bottom–tau Yukawa unification disappears because it does not predict an acceptable value for V_{cb}. The large $\tan \beta$ solution reappears if we relax the GUT conditions, and it is fully present imposing them at 40%.

In Fig. 9 we present the same analysis but for BRpV. First of all, the allowed region corresponding to GUT conditions at 5% is slightly larger in BRpV. Indeed if we look only the region where m_t is within 2σ of its experimental determination, the BRpV region is twice as large as in the MSSM [15]. More important differences between the two models appear when the GUT relations are relaxed: in BRpV it reappear the whole plane $m_t - \tan \beta$ as an allowed region when we relax the GUT conditions to 40%.

The fact that V_{cb} predictions tend to cut solutions with high values of $\tan \beta$ (observed in the MSSM as well as BRpV) can be understood...
Figure 7. Strong coupling constant as a function of $h_t^2 + h_b^2$ for points with lowest α_s for each value of $\sin^2 \theta_W$ in both the MSSM and BRpV.

considering the RGE for the ratio between $|V_{cb}|$ and $R_{c/t} \equiv h_c/h_t$ \cite{13}. Imposing the relation in eq. (13) at the GUT scale, we obtain at the weak scale

$$\frac{R_{c/t}}{|V_{cb}|^2} (m_w) \approx \exp \left[\frac{1}{16\pi^2} \left(h_t^2 - h_b^2 \right) \ln \frac{M_{GUT}}{m_{weak}} \right]$$

Since the left hand side of eq. (20) is greater than one (approximately equal to 1.5), it is clear that the GUT condition $R_{c/t} = |V_{cb}|^2$ prefers the region of parameter space where the top Yukawa coupling is large while the bottom Yukawa coupling is small. This is obtained at small values of $\tan \beta$.

BRpV has many other important phenomenological consequences. The most crucial one for collider physics is the decay of the lightest supersymmetric particle (LSP). This modifies all search strategies for supersymmetric partners. Here we mention also constraints from the decay mode $b \to s \gamma$. It was shown that the constraints on the charged Higgs mass from the CLEO measurement for $B(b \to s \gamma)$ \cite{23} in the MSSM \cite{24} are relaxed in BRpV \cite{25}.

In summary, BRpV, which provides an explanation for the solar and atmospheric neutrino problems, achieves $b - \tau$ unification at any value of $\tan \beta$, predicts a value for α_s closer to the experimental value, and predicts the value of V_{cb} in a wider region of parameter space, making it a serious alternative to the MSSM.

Acknowledgments

I am grateful to my collaborators A. Akeroyd, M.A. Garcia-Jareño, M. Hirsch, W. Porod, D.A. Restrepo, J.C. Romão, E. Torrente-Lujan, J.W.F. Valle, and specially J. Ferrandis, without whom this work would not have been possible.
REFERENCES

1. O.C.W. Kong, *Mod. Phys. Lett.* **A14**, 903 (1999); B. Mukhopadhyaya, S. Roy, and F. Vissani, *Phys. Lett.* **B 443**, 191 (1998); V. Bednyakov, A. Faessler, and S. Kovalenko, *Phys. Lett.* **B 442**, 203 (1998); E.J. Chun, S.K. Kang, C.W. Kim, and U.W. Lee, *Nucl. Phys. B* **544**, 89 (1999); A. Faessler, S. Kovalenko, and F. Simkovic, *Phys. Rev. D* **58**, 055004 (1998); A.S. Joshipura, S.K. Kang, C.W. Kim, and U.W. Lee, *Nucl. Phys. B* **538**, 3 (1998).

2. M.A. Díaz, D.A. Restrepo, J.W.F. Valle, hep-ph/9908286; J. Ferrandis, hep-ph/9810371; A. Akeroyd, M.A. Díaz, and J.W.F. Valle, *Phys. Lett. B* **441**, 224 (1998); A. Akeroyd et al., *Nucl. Phys. B* **529**, 3 (1998).

3. A. Masiero, J.W.F. Valle, *Phys. Lett. B* **251**, 273, (1990); J.C. Romão, C.A. Santos, J.W.F. Valle, *Phys. Lett. B* **288**, 311 (1992); J.C. Romão, A. Ioannisian and J.W. Valle, *Phys. Rev. D* **55**, 427 (1997); J.C. Romão, J.W.F. Valle, *Nucl. Phys. B* **381**, 87 (1992); M. Shiraiishi, I. Umemura and K. Yamamoto, *Phys. Lett.* **B313**, 89 (1993); D. Comelli, A. Masiero, M. Pietroni and A. Riotto, *Phys. Lett.* **B324**, 397 (1994).

4. G. G. Ross, J.W.F. Valle, *Phys. Lett. B* **151B**, 375 (1985); J. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross, J.W.F. Valle, *Phys. Lett. B* **150B**, 142, 1985; C.S. Aulakh, R.N. Mohapatra, *Phys. Lett. B* **119**, 136 (1982); L.J. Hall and M. Suzuki, *Nucl. Phys. B* **231**, 419 (1984); I.-H. Lee, *Phys. Lett. B* **138**, 121 (1984); *Nucl. Phys. B* **246**, 120 (1984); A. Santamaria, J.W.F. Valle, *Phys. Rev. Lett.* **60** (1988) 397 and *Phys. Lett. B* **195B**, 423, 1987.

5. SuperKamiokande Coll., Y. Fukuda et al., *Phys. Rev. Lett.* **81**, 1562 (1998) and *Phys. Rev. Lett.* **81**, 1158 (1998).

6. IMB Coll., R. Becker-Szendy et al., *Proc. Suppl. Nucl. Phys. B* **38**, 331 (1995); Soudan Coll., W.W.M. Allison et al., *Phys. Lett. B* **449**, 137 (1999); MACRO Coll., M. Ambrosio et al., *Phys. Lett. B* **434**, 451 (1998).

7. Homestake Coll., B.T. Cleveland et al., *Phys. J.* **496**, 505 (1998); GALLEX Coll., W. Hampel et al., *Phys. Lett. B* **447**, 127 (1999); SAGE Coll., J.N. Abdurashitov et al., astro-ph/9907113; SuperK. Coll., Y. Fukuda et al., *Phys. Rev. Lett.* **81**, 1158 (1998).

8. S.P. Mikheyev and A.Yu. Smirnov, *Yad. Fiz.* **42**, 1441 (1985) [Sov. J. Nucl. Phys. **42**, 913 (1985)] and *II Nuovo Cim.* **C9**, 17 (1986); L. Wolfenstein, *Phys. Rev. D* **17**, 2369 (1978).

9. J.C. Romão et al., hep-ph/9907499.

10. M. Hirsch and J.W.F. Valle, hep-ph/9812468.

11. R. Hempfling, *Nucl. Phys. B* **478**, 3 (1996).

12. M.A. Díaz, J. Romão, and J.W.F. Valle, *Nucl. Phys. B* **524**, 23 (1998).

13. M.A. Díaz and H.E. Haber, *Phys. Rev. D* **46**, 3086 (1992).

14. ALEPH Collaboration, hep-ex/9908016.

15. M.A. Díaz, J. Ferrandis, and J.W.F. Valle, hep-ph/9909212.

16. CDF Coll., F. Abe et al., *Phys. Rev. Lett.* **74**, 2626 (1995); D0 Coll., S. Abachi et al., *Phys. Rev. Lett.* **74**, 2632 (1995).

17. M.A. Díaz, J. Ferrandis, J.C. Romão, J.W.F. Valle, *Phys. Lett. B* **453**, 263 (1999).

18. M.A. Díaz, J. Ferrandis, J.C. Romão, J.W.F. Valle, hep-ph/9906343.

19. C. Caso et al., *Eur. Phys. J.* **C3**, 1 (1998).

20. P. Langacker and N. Polonsky, *Phys. Rev. D* **47**, 4028 (1993); M. Carena, S. Pokorski and C.E.M. Wagner, *Nucl. Phys. B* **406**, 59 (1993); P. Langacker and N. Polonsky, *Phys. Rev. D* **52**, 3081 (1995).

21. Rev. Part. Phys., *Eur. Phys. J.* **C3**, 1 (1998).

22. V. Barger, M.S. Berger, and P. Ohmann, *Phys. Rev. D* **47**, 1093 (1993).

23. CLEO Collaboration (M.S. Alam et al.), *Phys. Rev. Lett.* **74**, 2885 (1995).

24. J.L. Hewett, *Phys. Rev. Lett.* **70**, 1045 (1993); M.A. Díaz, *Phys. Lett. B* **304**, 278 (1993) and *Phys. Lett. B* **322**, 207 (1994); K. Chetyrkin, M. Misiak, and M. Münz, *Phys. Lett. B* **400**, 206 (1997); M. Misiak, S. Pokorski, J. Rosiek, hep-ph/9703442.

25. M.A. Díaz, E. Torrente-Lujan, and J.W.F. Valle, *Nucl. Phys. B* **551**, 78 (1999); E. Torrente-Lujan, hep-ph/9907220.