A study protocol for an observational cohort investigating cardiac transthyretin amyloidosis flow reserve before and after Tafamidis treatment: The AMYTRE study

Bastien Vançon¹, Arnaud Bisson²,³,⁴, Maxime Courtehoux⁵, Anne Bernard³,⁴ and Matthieu Bailly ¹,6

¹Nuclear Medicine Department, CHR Orleans, Orléans, France, ²Cardiology Department, CHR Orleans, Orléans, France, ³Cardiology Department, CHRU Tours, Tours, France, ⁴EA4245 T2i, Tours University, Tours, France, ⁵Nuclear Medicine Department, CHRU Tours, Tours, France, ⁶UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

Introduction: Anginal symptoms and signs of ischemia have been reported in some patients with cardiac transthyretin amyloidosis (ATTR) without obstructive epicardial coronary artery disease (CAD). Few studies found that coronary microvascular dysfunction was highly prevalent in subjects with cardiac amyloidosis, even in the absence of epicardial CAD. The purpose of this study is to confirm the coronary microvascular dysfunction, and to go further with evaluation of the effect of Tafamidis on microvascular dysfunction after 24 months of treatment.

Methods and analysis: This study is a multicentric, prospective, observational cohort study. Adult patients with confirmed ATTR cardiomyopathy seen in the nuclear medicine departments of three large referral centers and treated with Tafamidis will be included. At baseline, patients will have a clinical and echocardiography evaluation. They will undergo a dynamic rest/stress cardiac scintigraphy with flow and reserve measurements before and 24 months after Tafamidis introduction. The primary outcome of this study will be the variation of stress and rest myocardial blood flow and flow reserve between baseline and 24 months after treatment. The effect of Tafamidis will be assessed by an intention to treat analysis.

Ethics and dissemination: The study has received the following approvals: Orleans Hospital Research Committee (CHRO-2021-05) and Sud-Méditerranée IV Regional Ethics Committee (21 06 02). Results will be made available to physicians, the funders, and other researchers.

Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT05103943], identifier [NCT05103943].

KEYWORDS
myocardial blood flow, myocardial flow reserve, CZT SPECT, amyloidosis, Tafamidis
Introduction

Context

Systemic amyloidosis represents rare conditions in which the gradual extracellular accumulation of insoluble fibrillar proteins disrupts the structure of the affected tissues and causes organ impairment. Transthyretin amyloidosis (ATTR) commonly affects the heart. The amyloid deposits cause an increase in ventricular wall thickness and result in restrictive cardiomyopathy presenting primarily as biventricular congestive heart failure. Ischemia signs and anginal symptoms have been described in some individuals with cardiac amyloidosis and without obstructive epicardial coronary disease (CAD) (1–3).

Current knowledge

Dorbala et al. found that coronary microvascular dysfunction was highly prevalent in patients with cardiac amyloidosis, even in the absence of epicardial CAD, and might explain their anginal symptoms. They found lower stress and rest myocardial blood flow (MBF) and lower myocardial flow reserve (MFR) in their cardiac PET study (using 13N), including 21 patients with definite cardiac amyloidosis without epicardial CAD (4). Moreover, reduction of MFR during cardiac amyloidosis has also been described using myocardial contrast echocardiography (5).

The use of cadmium zinc telluride (CZT) detectors in SPECT technology allows acquisition in a non-rotating mode and therefore acquisition of time–activity curves, and improves sensitivity and temporal resolution (6). Thus, absolute MBF and MFR estimation by SPECT becomes possible as shown in experimental animal models (7) and also in clinical studies with comparison to PET (8–11), with a good correlation between those two techniques. SPECT myocardial perfusion imaging (MPI) showed, in a recent sub-study of the PACIFIC trial, a low per-vessel sensitivity [42%, confidence interval (CI): 34–50%] in comparison to PET (81% CI: 72–87%) and a low per-patient sensitivity for detection of CAD: 61% (CI: 48–72%) vs. 90% (CI: 80–96%), respectively, for SPECT and PET. However, specificity was 93% (CI: 85–97%) and 87% (CI: 78–93%) for SPECT and PET. Using the entire cohort of patients and vessels, and regarding the diagnostic performances of imaging modalities for significant CAD with an intention-to-diagnose, per-patient area under the receiver operating characteristic curve and diagnostic accuracy were outperformed by PET (0.90 and 86%; $p = 0.005$ and $p < 0.001$, respectively) in comparison to SPECT (0.74 and 76%, $p = 0.087$ and $p = 0.266$, respectively) (12). Moreover, PET imaging enables higher spatial resolution and enhanced image quality (13). Thus, PET has become a reference, also thanks to added parameters in PET in comparison with SPECT: dynamic PET and systematic CT that enables calcium scoring. MBF and MFR incrementally improve diagnostic and prognostic accuracy over MPI alone. 82-Rubidium or 13N-Ammonia PET imaging with pharmacological stress MPI, MBF, and MFR can be acquired simultaneously without incremental cost, radiation exposure, or significant processing time (14).

Nuclear cardiology clinics with PET access have incorporated MBF quantification into clinical routine, but this is not the case for conventional SPECT MPI. However, especially in Europe, cardiac PET remains of difficult access in comparison to SPECT and now CZT SPECT.

New therapeutic options are arising in cardiac ATTR. In a multicentric, international, double-blind, placebo-controlled, phase 3 trial, including 441 patients with ATTR cardiomyopathy, Maurer et al. showed that Tafamidis (80 mg and 20 mg) was associated with reductions in all-cause mortality (78 of 264 [29.5%] vs. 76 of 177 [42.9%]; hazard ratio, 0.70; 95% confidence interval [CI], 0.51–0.96) and cardiovascular-related hospitalizations after 18 months [relative risk ratio of 0.68 (0.48 per year vs. 0.70 per year; 95% CI, 0.56–0.81)], and reduced the decline in functional capacity and quality of life after 6 months as compared with placebo in patients with transthyretin amyloid cardiomyopathy (15). Tafamidis has now been approved for patients with ATTR cardiomyopathy and is recommended class I in the latest European guidelines on heart failure (16).

In APPOLO trial (international, randomized, double-blind, placebo-controlled phase 3 trial with hereditary ATTR amyloidosis), Patisaran, by stopping the synthesis of TTR through gene silencing, decreased mean left ventricular wall thickness, global longitudinal strain, N-terminal prohormone of brain natriuretic peptide, and adverse cardiac outcomes compared with placebo at month 18 (17). Authors used Patisaran 0.3 mg/kg IV once every 3 weeks in 225 ATTR-FAP patients. Others pharmacological trials explored Inotersen treatment (gene silencer too), but they focused on neurological disease: NEURO-TTR phase 3 trial (18).

About others tetramer stabilizers, no beneficial cardiac effect has been shown in Diflunisal treatment, and a randomized double-blind, placebo-controlled Phase 2 trial has been initiated, as mentioned in a recent mini review (19).

To our knowledge, no study focused on the effect of cardiac amyloidosis treatment on microvascular dysfunction.

Study and aims

We hypothesize that Tafamidis could improve microvascular dysfunction in patients suffering from ATTR cardiomyopathy, quantifiable with MBF and MFR. This could result into a MBF and MFR improvement at the evaluation after 24 months of treatment, in comparison with baseline. The second minor objective is to confirm the
TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria	
• Patients aged from 18 to 90 years	• Other heart failure cause (not ATTR)	
• Understanding and speaking French	• New York Heart Association (NYHA) class IV heart failure.	
• With TTR amyloid cardiomyopathy (ATTRxt or ATTRm) confirmed by the association of:	• Light-chain amyloidosis	
o clinical heart failure (NYHA I-III)	• Liver or heart transplantation history	
o with echocardiogram and/or magnetic resonance imaging suggesting/indicating cardiac amyloidosis,	• Glomerular filtration rate below 25 mL per minute per 1.73 m² of body surface area (Cockcroft)	
o grade 2 or 3 ⁹⁹mTc-PYP or bone scintigraphy,	• High liver transaminase levels (two times the upper limit of the normal range)	
o and negative biological findings (i.e., serum immunofixation, urine immunofixation, serum free light chain assay),	• Severe malnutrition defined by a modified body mass index (mBMI: serum albumin level in grams per liter multiplied by the conventional BMI) of less than 600;	
or, if one of those criteria is not met, amyloid deposits on biopsy specimens (from cardiac and non-cardiac sites),	• Concurrent treatment with non-steroidal anti-inflammatory drugs, tauroursodeoxycholate, doxycycline, calcium-channel blockers, digitalis, or ticagrelor	
• Intention to treat (Tafamadis)	• Previous treatment with tafamidis or patisaran	
	• Previous CAD, severe epicardial stenosis with recanalization or ticagrelor treatment, coronary artery bypass grafting, myocardial infarction	
	• Contra-indications to pharmacological stress testing MPI: severe hypotension (<90 mmHg of Systolic arterial pressure), atrioventricular block 2nd or 3rd grade, carotid stenosis (unilateral > 70%, bilateral > 50%)	
	• Pregnancy	
	• Breastfeeding	
	• Protected adults	

Methods and analysis

Study protocol

This is a multicentric, prospective, observational cohort study involving three French academic hospitals (University Hospital of Angers, University Hospital of Tours and Regional Hospital of Orleans). Study patients will enter the cohort after they have been diagnosed with cardiac ATTR, including ⁹⁹mTc-PYP scintigraphy (grade 2 or 3) (20–22), according to the diagnostic algorithm for cardiac ATTR proposed by Gillmore et al., after they meet inclusion/exclusion criteria (Table 1).

Inclusion and exclusion criteria

Criteria are summarized in Table 1.

Consent

Patients who meet all inclusion criteria and none of the exclusion criteria will be offered the opportunity to participate in the study and provided with all the relevant information verbally and in writing.

The free and informed consent, in writing, of the potential participant will be obtained by the investigator before the inclusion of this person in the research.

Interventions and participant timeline

The schedule of participants’ enrolment, interventions and assessments are presented in Figure 1.

Potential participants referred for ATTR bone or PYP scan will be pre-screened by the nuclear medicine physician. After confirmation of TTR cardiac amyloidosis diagnosis, including ⁹⁹mTc-HDP or ⁹⁹mTc-PYP scintigraphy (grade 2 or 3) (20,
The primary outcome is the variation of stress and rest MBF and MFR assessed by dynamic SPECT, between baseline and 24 months after Tafamidis treatment.

The secondary outcomes are:

- Results from baseline dynamic SPECT, confirming the stress and rest MBF and MFR reduction in cardiac ATTR patients,
- Results from echo/MRI.

Statistical analysis plan

Interim analysis is planned after all inclusions for MBF and MFR baseline evaluation. Final analysis is planned after completion of study. A subgroup with patients suffering from CAD, assessed by invasive coronary angiography or cardiac-CT after baseline SPECT will be analyzed apart.

All MBF and MFR values will be described as mean ± SD. Normal distribution of the value will be evaluated. Comparisons between continuous variables will be performed using two-tailed paired t-test. Non-parametric variables will be listed as medians and compared using the Mann–Whitney U test. Discrete variables will be described as proportions and compared with the chi-square test. Correlations will be performed using Pearson R or non-parametric methods (Spearman rho) as indicated. Multivariable linear regression analyses will be performed to study the independent contributions of various parameters on stress MBF and MFR.

The total number of patients expected in this “proof of concept” study is 50 patients. In the context of a pilot study, the workforce calculation is not applicable, as frequently in the case of exploratory studies on innovative technologies (24). This number of patients is also compatible with the recruitment capacities of the three investigative centers.

Data management

Data will be collected electronically including eligibility, baseline clinical, biological and imaging characteristics, treatment and outcome details. Every site will have access to the electronic case report forms via a web-based data collection system created using EOL (developed by Medsharing). Investigators will be given instructions for using this tool.

All trial documents will be archived and securely kept for 15 years after study completion.

Trial organization structure

The Centre Hospitalier d’Orléans will be the sole sponsor of this multi-center study and will ensure the safety and respect of individuals who have agreed to participate in the trial. The sponsor has a quality assurance system in place to monitor the implementation of the study at the research centers.
FIGURE 2
Dynamic scintigraphy protocol.

Clinical Research Associates (CRA) will be appointed by the sponsor. After an initial visit, their main role will be to make regular follow-up visits at the different study sites.

The purpose of study monitoring, as defined in the Good Clinical Practices (GCP section 5.18.1), is to verify that:

- Research subjects are safe, protected, and their rights are respected.
- The data recorded are accurate, complete, and consistent with the source documents.
- The study is conducted in accordance with the current version of the protocol, GCP and all legal and regulatory requirements.

For this study, the appropriate monitoring level was determined based on the complexity, impact, and budget for the study. Therefore, the sponsor, in agreement with the coordinating investigator, agreed on a logistical score and impact and the corresponding study monitoring level of: A level. A CRA assigned by the sponsor will oversee the proper conduct of the study, the collection, documentation, recording, and reporting all handwritten data, in accordance with the Standard Operating Procedures applied within the research center and in accordance with Good Clinical Practice and legal and regulatory requirements.

The investigator and his/her team agree to be available for regular Quality Control visits by the CRA. During these visits, the following points will be examined: written consent, compliance with the study protocol and its procedures, quality of the data collected in the case report forms: accuracy, missing data, consistency of the data with the "source" documents (medical files, appointment books, original copies of laboratory results, etc.), management of the treatments used.

Confidentiality statement

Confidential trial data will be stored in accordance with the General Data Protection Regulation 2018. Patients will only be identified using only their date of birth and unique trial ID number.

The processing of personal data for this research falls under the scope of the provisions of Articles 53–61 of the Law of January 6, 1978 relating to information technology, data files and privacy, modified by Law No. 0204-801 of August 6, 2004.

All personal data for this trial will be processed in accordance with Chapter IX of the amended French Data Protection Act of January 6, 1978 (articles 53–61).

Trial status

Recruitment for the trial has been opened in February 2022.

Discussion

AMYTRE study aims to evaluate a potential effect of Tafamidis treatment on microvascular dysfunction in patients with cardiac ATTR, assessed by dynamic SPECT.
As we previously described, microvascular dysfunction has been found using PET (4), but never confirmed with dynamic SPECT. Dynamic CZT myocardial SPECT has now become a more available tool, showing similar results to PET in terms of MFR evaluation (8–11).

A potential bias in this study will be the finding of authentical CAD after initial SPECT. In this case, as described, patients will undergo coronary angiography or cardiac CT. If an epicardial stenosis is found, and requires treatment, patient will be analyzed in a subgroup. Indeed, MFR might be affected by revascularization or ticagrelor. Aikawa et al. reported in a prospective multicentric observational PET 15O-water study a significant improvement of PET MFR 6 months after percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) in patients with abnormal baseline MFR (<2.0), but no significant effect of optimal medical therapy alone (25). Driessen et al. also confirmed a significant improvement of stress MBF assessed by 15O-water PET in patients with PCI, even superior compared with CABG (1/2). Other studies showed an increase of global and regional MBF and MFR in CAB patients treated with ticagrelor when compared to clopidogrel (26, 27).

The other potential bias are diabetic patients. It has been extensively reported that diabetic patients can have microvascular dysfunction, resulting in reduced stress MBF and MFR (28, 29). Clinical informations about diabetic patients (time of evolution, known complications such as diabetic nephropathy, retinopathy...) will be collected, to better rule out any potential confounding factor.

With this study, we aim to demonstrate an impact of Tafamidis on microvascular dysfunction. Regarding our secondary endpoint, various perspectives can be seen. Firstly, the absence or low proportion of microcirculatory dysfunction in patients with cardiac amyloidosis. However, the sample size remains small, and the evaluation may be too early compared with the diagnosis (although often late); this is therefore a possible limitation of our study, which may explain the failure to find this microcirculatory dysfunction. The second option is a high proportion of microcirculatory dysfunction in patients with cardiac amyloidosis. Our hypothesis would then be confirmed and will therefore be in line with the study of Dorbala et al. performed in PET (4). Other studies also found microcirculatory dysfunction in these patients, as well as in other infiltrative heart diseases such as sarcoidosis (30), which reinforces the probability of this option.

Regarding the variation in MFR values after treatment, the first possibility is a significant decrease of MFR. In this case, the primary hypothesis of an improvement in microcirculatory dysfunction after treatment with Tafamidis would then not be verified. Thus, the lack of effect of Tafamidis on microcirculatory damage would be considered, and the benefits on overall survival, quality of life and cardiovascular events mentioned in the previous studies would probably be due to another pathophysiological process. However, an aggravating factor of Tafamidis on microcirculatory function could not be raised in our study in the absence of a “control” population (untreated or benefiting from another treatment), so another study with this objective could be envisaged, in order to distinguish the natural evolution of the pathology from a treatment effect.

We might also consider a significant improvement of MFR after treatment. This would confirm a potential pathophysiological mechanism of the clinical improvement obtained by Tafamidis. It would then be interesting, in a second study, to evaluate whether this improvement in coronary microcirculation occurs early, within the first 12 months. Indeed, there is a need for biomarkers to predict the response to Tafamidis. Some will not respond to therapy; Monteiro et al. built a model to predict responsiveness to Tafamidis (31). They identified that disease severity, sex, and native TTR concentration at the outset of treatment were the most relevant predictors of response to Tafamidis. Plasma Tafamidis concentration after 12 months of therapy was also a predictor of response for male patients. Falk et al. suggested that measurement of TTR level change post-Tafamidis might be a surrogate for stabilization and could be an accurate measure of drug efficacy (32). Other treatments such as RNA interference therapeutics are developing rapidly in this indication with, it seems for the moment, great efficacy (17). So, the idea of a biomarker, possibly early, of efficacy would make it possible to quickly orient patients labeled as non-responders toward a switch to another therapy or to an association (combo RNAi and Tafamidis).

Finally, we might also envisage a lack of significant change in MFR values between 0 and 24 months. Our primary hypothesis would be untested. The potential limitations of our study would be a too short follow-up, or a too small sample.

Ethics and dissemination

The trial will be performed in accordance with the recommendations guiding physicians in biomedical research involving human subjects, adopted by the 18th World Medical Association General Assembly, Helsinki, Finland and stated in the respective participating countries laws governing human research, and Good Clinical Practice. The protocol was approved by Orleans Hospital Research Committee (CHRO-2021-05) and by Sud-Méditerranée IV Regional Ethics Committee (21 06 02); current version in use is 3.0.

After the end of the trial, the collaborators will discuss the main results prior to publication. The scientific communications and reports corresponding to this study will be produced under the responsibility of the principal investigator coordinating the study with the agreement of the responsible investigators and will be submitted for publication in peer-reviewed
journals. Manuscripts will be prepared, and authorship will be determined by mutual agreement.

Ethics statement

The studies involving human participants were reviewed and approved by Sud-Mediterrane IV Regional Ethics Committee. The patients/participants provide their written informed consent to participate in this study.

Author contributions

BV drafted the manuscript. MB, ABi, and ABe revised the manuscript critically for important intellectual content. All authors have contributed to the work and have read and approved the manuscript.

Funding

This study was funded by CHR Orleans. Centre Hospitalier d’Orléans received financial support from Pfizer. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication.

References

1. Al Suwaidi J, Velianou JL, Gertz MA, Cannon RO III, Higano ST, Holmes DR Jr., et al. Systemic amyloidosis presenting with angina pectoris. Ann Intern Med. (1999) 131:838–41. doi: 10.7326/0003-4819-131-11-19991207-00007
2. Ogawa H, Mizuno Y, Okahara S, Tujita K, Ando Y, Yoshinaga M, et al. Cardiac amyloidosis presenting as microvascular angina—a case report. Angiology. (2001) 52:273–8. doi: 10.1177/000331970105200407
3. Whittaker DC, Tungekar ME, Dussek JE. Angina with a normal coronary angiogram caused by amyloidosis. Heart. (2004) 90:e54. doi: 10.1136/hrt.2004.038984
4. Dorbala S, Vangala D, Bruyere J Jr., Quarta C, Kruger J, Padera R, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail. (2014) 2:358–67. doi: 10.1016/j.jchf.2014.03.009
5. Nam MC, Nel K, Senior R, Greaves K. Abnormal myocardial blood flow reserve observed in cardiac amyloidosis. J Cardiovasc Ultrasound. (2016) 24:64–7. doi: 10.4250/jcu.2014.03.009
6. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging. (2014) 37:1887–902. doi: 10.1007/s00259-014-1488-z
7. Wells RG, Timmins R, Klein R, Lockwood I, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. (2014) 55:1685–91. doi: 10.2967/jnumed.114.139782
8. Agostini D, Routé V, Ngaoua C, Roth N, Baourou R, Patients JJ, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: Head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging. (2018) 45:1079–90. doi: 10.1007/s00259-018-3958-7
9. de Souza A, Goncalves BKD, Tedeschi AL, Lima RSL. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol. (2019) 28:876–84. doi: 10.1016/j.jncardio.2019.01.077
10. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, et al. Comparison between N(13)NH3-PET and (99m)Tc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol. (2019) 28:1906–18. doi: 10.1007/s12350-019-01939-x
11. Bailly M, Ribeiro MJ, Angoulvant D. Combining flow and reserve measurement during myocardial perfusion imaging: A new era for myocardial perfusion scintigraphy? Arch Cardiovasc Dis. (2021) 114:818–27. doi: 10.1016/j.acvd.2021.10.006
12. Driessen RS, Danad I, Stuijfzand WJ, Rajmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. (2019) 73:161–73. doi: 10.1016/j.jacc.2018.10.056
13. Lee JS, Kovalski G, Shariat Y, Lee DS. Advances in imaging instrumentation for nuclear cardiology. J Nucl Cardiol. (2019) 26:543–56. doi: 10.1007/s12350-017-0979-8
14. Klein R, Celiker-Galer E, Rösten BH, deKemp RA. PET and SPECT tracers for myocardial perfusion imaging. Semin Nucl Med. (2020) 50:208–18. doi: 10.1053/j.semnuclmed.2020.02.016
15. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlina G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. (2018) 379:1007–16. doi: 10.1056/NEJMoa1803689

Acknowledgments

We express our deepest gratitude to the research teams, the cardiologists, the technical and radiopharmaceutical staff from CHR of Orleans, CHRU of Tours, and CIC-IT for contributions to the manuscript. This study is part of the French network of University Hospitals HUGO (“Hôpitaux Universitaires du Grand Ouest”).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
16. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumback A, Bohm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur Heart J.* (2021) 42:3599–726. doi: 10.1093/eurheartj/ehab368

17. Solomon SD, Adams D, Kristen A, Grogan M, Gonzalezt-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. *Circulation.* (2019) 139:431–43. doi: 10.1161/CIRCULATIONAHA.118.035831

18. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. *N Engl J Med.* (2018) 379:22–31. doi: 10.1056/NEJMoa1716793

19. Yamamoto H, Yokochi T. Transthyretin cardiac amyloidosis: An update on diagnosis and treatment. *ESC Heart Fail.* (2019) 6:1128–39. doi: 10.1002/ehf2.12518

20. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. *J Am Coll Cardiol.* (2005) 46:1076–84. doi: 10.1016/j.jacc.2005.05.073

21. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. *J Card Fail.* (2019) 25:e1–39. doi: 10.1016/j.cardfail.2019.08.001

22. Gillmore JD, Maurer MS, Falk RH, Merlino G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. *Circulation.* (2016) 133:2404–12. doi: 10.1161/CIRCULATIONAHA.116.021612

23. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-diagnostic criteria and appropriate utilization. *J Card Fail.* (2019) 25:854–65. doi: 10.1016/j.cardfail.2019.08.002

24. Bacchetti P, Deeks SG, McCune JM. Breaking free of sample size dogma to perform innovative translational research. *Sci Transl Med.* (2011) 3:87rs24. doi: 10.1126/scitranslmed.300

25. Aikawa T, Naya M, Obara M, Manabe O, Magota K, Konagawa K, et al. Effects of coronary revascularization on global coronary flow reserve in stable coronary artery disease. *Cardiovasc Res.* (2019) 115:119–29. doi: 10.1093/cvr/cvy169

26. Choi WG, Kim GC, Lee CH, Kim HY, Kim DW. The effect of antiplatelet drug on coronary endothelial and microvascular function. Comparison with ticagrelor and clopidogrel. *Korean J Intern Med.* (2021) 36:352–61. doi: 10.3904/kjim.2019.293

27. Jeong YJ, Park K, Kim YD. Comparison between ticagrelor and clopidogrel on myocardial blood flow in patients with acute coronary syndrome, using 13 N-ammonia positron emission tomography. *Am Heart J.* (2020) 222:121–30. doi: 10.1016/j.ahj.2020.01.013

28. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. *Circulation.* (2012) 126:1858–68. doi: 10.1161/CIRCULATIONAHA.112.120402

29. Potier L, Chequer R, Roussel R,Mohammed K, Sismail S, Hartemann A, et al. Relationship between cardiac microvascular dysfunction measured with 82Rubidium-PET and albuminuria in patients with diabetes mellitus. *Cardiovasc Diabetol.* (2018) 17:11. doi: 10.1186/s12933-017-0652-1

30. Rimoldi O, Maranta F. Microvascular dysfunction in infiltrative cardiomyopathies. *J Nucl Cardiol.* (2019) 26:200–7. doi: 10.1007/s12350-017-0991-z

31. Monteiro C, Mesgarezhad S, Anselmo J, Fernandes J, Novais M, Rodrigues C, et al. Predictive model of response to tafamidis in hereditary ATTR cardiomyopathy. *JCI Insight.* (2019) 4:e126526. doi: 10.1172/jci.insight.126526

32. Falk RH, Haddad M, Walker CR, Dorbala S, Cuddy SAM. Effect of tafamidis on serum transthyretin levels in non-trial patients with transthyretin amyloid cardiomyopathy. *JACC CardioOncol.* (2021) 3:580–6. doi: 10.1016/j.jacco.2021.08.007