Kadir Batçıoğlu*, Battal Yıldırım, Basri Satılmış, Ayşê Burçin Uyumlu, Metin Fikret Genç, Recep Bentli, Mustafa B. A. Djamgoz

Hepatic Arginase - Nitric oxide imbalance: Impact of carcinogenesis and therapeutic effect of sodium channel blockage in an *in vivo* rat model

Hepatic Arginase - nitric oxide imbalance: Impact of carcinogenesis and therapeutic effect of sodium channel blockage in an *in vivo* rat model

DOI 10.1515/tjb-2016-0040
Received October 26, 2015; accepted February 12, 2016; published online August 1, 2016

Abstract: Objective: Nitric oxide synthase and arginase are frequently antagonistic and interactive, although both use L-arginine as common substrate. Their balance is of potential functional importance. How the balance changes in cancer is unknown. Increasing evidence suggests that progression of carcinomas involves functional voltage-gated sodium channel (VGSC) activity.

Methods: The present study extended this study to liver and aimed to determine whether (i) DMBA carcinogenesis would affect the activities of arginase and NOS and (ii) treatment with Na-channel blocker RS100642 would ameliorate the impact of the carcinogen on the arginase-NOS balance.

Results: DMBA application significantly increased arginase activity and, correspondingly, the level of L-ornithine by 25–33%. In contrast, NOS activity decreased by 11%. Importantly, RS100642 treatment completely suppressed the effect on arginase.

Conclusion: It is concluded (i) that DMBA carcinogenesis changes the hepatic arginase-NOS balance, increasing the overall dominance of arginase and (ii) that VGSC inhibition has a protective effect on liver.

Keywords: Liver, Carcinogenesis, Arginase, Nitric oxide synthase, Sodium channels, RS100642

Corresponding author: Kadir Batçıoğlu: İnönü University, Faculty of Pharmacy, Department of Biochemistry, Malatya, Turkey, e-mail: kadir.batcioglu@inonu.edu.tr

Battal Yıldırım: İnönü University, Faculty of Pharmacy, Department of Biochemistry, Malatya, Turkey, e-mail: battal.yildirim@inonu.edu.tr

Basri Satılmış: İnönü University, Faculty of Pharmacy, Department of Biochemistry, Malatya, Turkey, e-mail: basri.satilmis@inonu.edu.tr

Ayşê Burçin Uyumlu: İnönü University, Faculty of Pharmacy, Department of Biochemistry, Malatya, Turkey, e-mail: ayseuyumlu@inonu.edu.tr

Metin Fikret Genç: İnönü University, Faculty of Medicine, Department of Public Health, Malatya, Turkey, e-mail: metin.gen@inonu.edu.tr

Recep Bentli: İnönü University, Faculty of Medicine, Department of Internal Medicine, Malatya, Turkey, e-mail: recep.bentli@inonu.edu.tr

Mustafa B. A. Djamgoz: Imperial College, Department Of Life Sciences, Neuroscience Solutions To Cancer Research Group, Sir Alexander Fleming Building, London, England, e-mail: m.djamgoz@imperial.ac.uk
Sonuç: Sonuç olarak; (i)DMBA ile oluşturulan karsinojenez, hepatik arjinaz-NOS balansını arjinazın tümüyle baskın hale geleceğine sebep artarak değiştirmektedir, (ii) VGSC inhibisyonu koruyucu etkiye sahiptir.

Anahtar Kelimeler: Karaciğer, Karsinojenez, Arjinaz, Nitrik oksit sentaz, Sodyum kanalları, RS100642

1 Introduction

An association between arginine/arginase and cancer has been recognised for many years [1]. In mammalian cells, the semi-essential amino acid L-arginine is involved in protein synthesis but it also serves as a substrate to enzymes such as arginase, arginine decarboxylase, as well as nitric oxide synthase (NOS; E.C. 1.14.13.39 L-arginine,NADPH: oxygen oxidoreductase) and glycine transaminase. Arginase (E.C. 3.5.3.1 L-arginine amidohydrolase) is a key enzyme responsible for nitrogen metabolism and from it forms urea and L-ornithine from arginine. In mammals, there are at least two distinct forms of arginase: Arginase I (AI) and Arginase II (AII). In liver, beside the predominant, cationic arginase AI (pI 9.3), the anionic arginase AII (pI 7.7) form also occurs [2]. It appears that AI plays a fundamental role in the last step of the urea cycle, whilst AII provides a supply of L-ornithine from arginine. In mammals, there are at least two distinct forms of arginase: Arginase I (AI) and Arginase II (AII). In liver, beside the predominant, cationic arginase AI (pI 9.3), the anionic arginase AII (pI 7.7) form also occurs [2]. It appears that AI plays a fundamental role in the last step of the urea cycle, whilst AII provides a supply of L-ornithine, a metabolite crucial for biosynthesis of glutamic acid, proline and polyamines. Since polyamines are vital for cellular proliferation, it is possible that the increased level of L-ornithine, due to the elevated arginase activity, is associated with cell proliferation and tumourigenesis [3].

Nitric oxide (NO) is synthesized from L-arginine by a family of three NOS isoenzymes: endothelial (eNOS), neuronal (nNOS) and inducible (iNOS). In particular, NO produced by iNOS is released for long periods by cells of the immune system, among others and can be cytostatic or cytotoxic to tumour cells [4]. Thus, L-arginine can generate opposing effects on cancer: promotion via production of precursors of polyamines and suppression via NO production, determined by the arginase-NOS imbalance (Figure 1). Similar competition occurs in cells of the immune system. Such competition may involve direct interaction(s) between arginase and NOS [5]. However, how the arginase-NOS balance is controlled, especially in cancer and in vivo, is not well understood.

Recent studies have demonstrated that increased voltage-sensitive sodium channels activity (VGSCs) plays a significant role in progression of various solid cancers [6,7]. Blocking VGSC activity with tetrodotoxin, siRNA or small-molecule inhibitors suppressed invasiveness in vitro [8,9]. More recently, the evidence for the role of VGSC activity in cancer progression has been extended to in vivo model [10].

A common, chemically-induced in vivo model of carcinogenesis is that employing the polycyclic aromatic hydrocarbon, 7,12-dimethylbenz(a)anthracene - DMBA [11]. In a previous study, we have shown that the oxidative stress that accompanies the DMBA-induced carcinogenesis in mammary glands of rats can be the suppressed by the VGSC blocker, RS100642 [10]. The present study extends this work to liver samples from the same DMBA-treated rats. In particular, we aimed to determine (i) the effect of DMBA on the hepatic arginase-NOS balance and (ii) the possible impact on this of RS100642 co-treatment.

2 Materials and Methods

2.1 Animals

A colony of adult (180–210 g) female Sprague Dawley rats was obtained from Inonu University Laboratory Animal Research Centre, Malatya, Turkey. The animals
were maintained and handled according to the regulations of the Institutional Ethic Committee. The present study involved 54 rats housed in a room maintained at 22°C with a 12-h light-dark cycle with free access to foods. Rats were randomized into three groups (18 rats per group): Group I, served as control, were intraperitoneally administrated with a single dose of 0.5 ml corn oil. Rats in groups II (DMBA) and III (DMBA+RS100642) were intraperitoneally administrated with a single dose (20 mg/kg b.w.) of DMBA (Sigma Chemicals). DMBA was dissolved in corn oil and given in a volume of 0.5 ml [10]. The mammary glands were palpated weekly for tumour appearance. The first tumour was detected ~120 days after the DMBA administration. After 150 days, the rats in Group III were intravenously administered with RS100642 (0.25 mg/kg b.w. dissolved in 250 µl of 0.9% NaCl), once a week for four weeks (total dose: 1 mg/kg b.w., at the same time the rats in Group I and II were i.v. administered with 250 µl of 0.9% NaCl, once a week for four weeks. Rats in all groups were sacrificed by cervical dislocation under ether anaesthesia at the end of 178 days. Livers were dissected, washed in 0.9% NaCl and frozen at -80°C.

2.2 Preparation of tissue homogenates
The frozen whole liver tissues were divided into two portions. One portion was stored for measurements of arginase activity and L-ornithine level. The other was cut into small pieces, homogenized in PBS solution (1:5 w:v) and centrifuged at 13,000 g for 15 min at 5°C (5417R, Eppendorf Aktiengesellschaft, Hamburg, Germany). The supernatant was separated and stored at −80°C for measurements of the metabolic by-products of NO (NO₃ and NO₂) in total (NO₂ + NO₃).

2.3 Tissue arginase activity and L-ornithine levels
The frozen tissues were homogenized in 10 volumes of cold 0.05 M Tris/HCl buffer (pH 8.05). Samples then were centrifuged at 11,000 g for 20 minutes at 4°C. For the determination of tissue arginase activity and L-ornithine level, the methods of Geyer & Dabich [12] and Chinar [13] were used, respectively. One unit of arginase activity was expressed as the amount of enzyme catalysing the formation of 1 µmol of urea in an hour at 37°C (Unit/mg protein) and L-ornithine levels were expressed as µmol/mg protein.

2.4 Nitric oxide metabolite assay
The level of NOx (mainly NO₂+NO₃) was measured by the method of Sastry et al. [14]. A calibration standard involving potassium nitrate was used to calculate the total concentrations of nitrates, which were expressed as µmol/mg protein.

2.5 Data analysis
The results are expressed as mean ± standard error. Statistical analysis was carried out using the SPSS 16.0 statistical program (SPSS Inc., Chicago, IL, USA). Data presented a normal distribution with a One-sample Kolmogorov-Smirnov test. The One-way ANOVA and LSD Post Hoc test techniques were performed to test the differences between groups; p<0.05 was considered statistically significant.

3 Results
The raw data obtained and their statistical analyses are shown in Table 1. Data are plotted on a relative scale for direct comparison of the three groups in Figure 2.
In the DMBA group (II), arginase activity and, correspondingly, the L-ornithine level were significantly higher (by 30 and 33%, respectively) compared with the controls (group I) (p<0.05). Both these effects were suppressed completely by the RS100642 co-treatment. There was no difference in the L-ornithine levels between the control and the DMBA+RS100642 groups (p>0.05). In the case of arginase activity, in fact, the value for the DMBA+RS100642 group (III), fell below the control value by 20% on average. This implied that RS100642 also suppressed the basal level of arginase activity that may occur in rat liver. Thus, the NO₃ level in the DMBA-treated rats was significantly lower than the control by an average of 10% (p<0.05). Treatment with RS100642 partially (by some 5%) suppressed this decrease. Although the latter was not statistically significant, the quantitative shift resulted in the disappearance of the difference in the NOx levels between the DMBA+RS100642 and the control groups (p>0.05).

4 Discussion
Polyamines plays critical role in cellular proliferation in tumourgenesis and their levels associated with imbal-
The involvement of NO in carcinogenesis is complex [4]. Here, the DMBA treatment was found here to decrease the level of \(\text{NO}_x \), whilst it enhanced expression of iNOS in hamster buccal-pouch carcinoma and high levels of NO caused death of tumour cells [17]. It is likely that the role of NO in tumorigenesis is concentration-dependent whereby low concentrations promote tumour cell proliferation whilst relatively higher concentrations are inhibitory [4]. A further complexity is the potential competition between AII and NOS, but the arginase pathway appeared more dominant [5,18]. Such 'dominance' would both accelerate tumour development (e.g. via the proliferative effect of polyamines) and protect tumour cells from apoptosis by reducing NO production. However, it is not clear how AII (a mitochondrial enzyme) might compete with NOS for intracellular L-arginine. One possibility is that an increase in mitochondrial L-arginine degradation by AII results in enhanced transport of L-arginine from cytosol into mitochondria, thereby reducing the availability of cytosolic L-arginine for NO synthesis.

Importantly, following treatment with the novel VGSC blocker RS100642, the DMBA-induced changes in arginase activity/L-ornithine level and NO\(_x\) production were eliminated. We showed previously that the RS100642-treated rats lived 26% longer [10]. The mechanism(s) through which VGSC activity could change the arginase-NOS imbalance is not clear at present but the following is one possible scenario: VGSC activity (especially the 'persistent current' component) would raise the intracellular Na\(^+\) concentration which could then slow down (or even reverse) Na\(^+\)-Ca\(^{2+}\) exchange and thus lead to a rise in intracellular Ca\(^{2+}\) concentration [19]. The latter can activate a number of protein kinases which may enhance arginase activity under resting conditions. This could also determine the nature of the NOS(s) involved, iNOS being Ca\(^{2+}\) insensitive. Additional

Table 1: Effects of DMBA treatment and co-treatment with RS100642 on arginase activity and L-ornithine and NO\(_x\) levels in rat liver tissue.

Raw data given as mean±SEM. n is the number of animals in each of the three groups. Note that four animals died in groups II and III.

Group (n)	Arginase (U/mg protein)	L-Ornithine (µmol/mg protein)	\(\text{NO}_x \) (µmol/mg protein)
I. Control (18)	52.46±2.48	0.12±0.01	10.06±0.35
II. DMBA (14)	68.52±3.80	0.16±0.01	8.52±0.36
III. DMBA+RS100642 (14)	42.26±4.07	0.13±0.01	9.66±0.76

| P values |
|-----------|-------------------------|-------------------------------|-----------------------------|
| Group comparisons | Arginase | L-Ornithine | \(\text{NO}_x \) |
| I versus II | 0.01* | 0.001* | 0.032* |
| I versus III | 0.034* | 0.347 | 0.566 |
| II versus III | <0.0001* | 0.003* | 0.136 |

*Statistically significant differences (p<0.05).
effects may occur as a result of acidification of intracellular pH by the slowing down of Na⁺-H⁺ exchange via NHE1 and arginase is well known to be pH dependent [20].

5 Conclusions

Carcinogenesis in rats changes the hepatic arginase-NOS balance in favour of the former and this is controlled, at least in part, by VGSC activity. Thus, VGSC inhibition can counteract the adverse biochemical changes that occur during tumour development/progression and promote survival, consistent with previous in vitro and in vivo findings. More broadly, it seems possible to reverse the metabolic reprogramming that occurs during carcinogenesis using ion channel modulators.

Acknowledgement: This project was supported by a grant from the Scientific Research Coordination Department of Inonu University. The work on ‘ion channels and cancer’ at Imperial College London is supported by the Pro Cancer Research Fund (PCRF).

Conflict of interest: None declared.

6 References

[1] Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, et al. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 2008; 14(11):1049–57.
[2] Zamecka E, Porembska Z. Five forms of arginase in human tissues. Biochem Med Metab Biol 1988; 39(3):258–66.
[3] Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001; 58(2):24–58.
[4] Williams EL, Djamgoz MB. Nitric oxide and metastatic cell behaviour. Bioessays 2005; 27(12):1228–38.
[5] Sousa MS, Latini FR, Monteiro HP, Cerutti JM. Arginase 2 and nitric oxide synthase: Pathways associated with the pathogenesis of thyroid tumors. Free Radic Biol Med 2010; 49(6):997–1007.
[6] Laniado ME, Fraser SP, Djamgoz MB. Voltage-gated K⁺ channel activity in human prostate cancer cell lines of markedly different metastatic potential: distinguishing characteristics of PC-3 and LNCaP cells. Prostate 2001; 46(4):262–74.
[7] Wang XT, Nagaba Y, Cross HS, Wrb a F, Zhang L, Guggino SE. The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am J Pathol 2000; 157(5):1549–62.
[8] Gillet L, Roger S, Besson P, Lecaille F, Gore J, et al. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem 2009; 284(13):8680–91.
[9] Brackenbury WJ, Djamgoz MB. Nerve growth factor enhances voltage-gated Na⁺ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol 2007; 210(3):602–8.
[10] Batcioglu K, Uyumlu AB, Satlimis B, Yildirim B, Yucel N, et al. Oxidative stress in the in vivo DMBA rat model of breast cancer: suppression by a voltage-gated sodium channel inhibitor (RS100642). Basic Clin Pharmacol Toxicol 2012; 111(2):137–41.
[11] Huggins C, Grand LC, Brillantes FP. Mammary cancer induced by a single feeding of polynuclear hydrocarbons, and its suppression. Nature 1961; 189:204–7.
[12] Geyer JW, Dabich D. Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem 1971; 39(2):412–7.
[13] Chinard FP. Photometric estimation of proline and ornithine. J Biol Chem 1952; 199(1):91–5.
[14] Sastry KV, Moudgal RP, Mohan J, Tyagi JS, Rao GS. Spectro-photometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 2002; 306(1):79–82.
[15] Wang X, Feith DJ, Welsh P, Coleman CS, Lopez C, et al. Studies of the mechanism by which increased spermidine/spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis 2007; 28(11):2404–11.
[16] Chaudhary SC, Alam MS, Siddiqui MS, A thicker M. Chemopreventive effect of farnesol on DMBA/TPA-induced skin tumorigenesis: involvement of inflammation, Ras-ERK pathway and apoptosis. Life Sci. 2009; 85(5–6):196–205.
[17] Chen YK, Hsue SS, Lin LM. Correlation between inducible nitric oxide synthase and p53 expression for DMBA-induced hamster buccal-pouch carcinomas. Oral Dis 2003; 9(5):227–34.
[18] Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 1999; 144(3):427–34.
[19] Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart 2006; 92 Suppl 4:v1-v5.
[20] Lee BL, Sykes BD, Fliegel L. Structural and functional insights into the cardiac Na⁺/H⁺ exchanger. J Mol Cell Cardiol 2013; 61:60–7.