Measurement of the t-channel single top quark production cross section in pp collisions at \(\sqrt{s} = 7 \) TeV

CMS Collaboration; Chatrchyan, S; Amsler, C; Chiochia, V

Abstract: Electroweak production of the top quark is measured for the first time in pp collisions at \(\sqrt{s} = 7 \) TeV, using a data set collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 pb\(^{-1}\). With an event selection optimized for t-channel production, two complementary analyses are performed. The first one exploits the special angular properties of the signal, together with background estimates from the data. The second approach uses a multivariate analysis technique to probe the compatibility with signal topology expected from electroweak top-quark production. The combined measurement of the cross section is 83.6\(\pm\)29.8(stat+syst)\(\pm\)3.3(lumi) pb, consistent with the standard model expectation. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. © 2011 CERN, for the CMS Collaboration

DOI: https://doi.org/10.1103/PhysRevLett.107.091802

Other titles: Measurement of the t-channel single top quark production cross section in pp collisions at \(\sqrt{s} = 7 \) TeV

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-58575
Journal Article
Accepted Version

Originally published at:
CMS Collaboration; Chatrchyan, S; Amsler, C; Chiochia, V (2011). Measurement of the t-channel single top quark production cross section in pp collisions at \(\sqrt{s} = 7 \) TeV. Physical Review Letters, 107(9):091802. DOI: https://doi.org/10.1103/PhysRevLett.107.091802
Measurement of the t-channel single top quark production cross section in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

Abstract

Electroweak production of the top quark is measured in pp collisions at $\sqrt{s} = 7$ TeV, using a dataset collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 pb$^{-1}$. With an event selection optimized for t-channel production, two complementary analyses are performed. The first one exploits the special angular properties of the signal, together with background estimates from data. The second approach uses a multivariate analysis technique to probe the compatibility with signal topology expected from electroweak top quark production. The combined measurement of the cross section is 83.6 ± 29.8 (stat. + syst.) ± 3.3 (lumi.) pb, consistent with the standard model expectation.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
Electroweak theory predicts three mechanisms for single top quark production in hadron-hadron collisions: t-channel, s-channel, and tW (or W-associated) production. Single-top events have been observed by the D0 and CDF experiments at the Tevatron $p\bar{p}$ collider [1–3], and first measurements of individual channels have recently been reported [4, 5]. In proton-proton collisions at 7 TeV, t-channel single top quark production, Fig. 1, has the largest cross section and the cleanest final-state topology, because of the presence of a light jet recoiling against the single top quark. Next-to-leading order (NLO) computations with resummation of collinear and soft-gluon corrections at next-to-next-to-leading logarithmic accuracy predict $\sigma_t = 64.3^{+2.1+1.5}_{-2.2-1.7}$ pb [6], for a top mass of $m_t = 173$ GeV/c^2 and with parton distribution functions (PDFs) as given in Ref. [7]. The first uncertainty comes from doubling and halving the renormalization and factorization scales and the second from PDF uncertainty at the 90% confidence level.

This Letter presents the first measurement of the t-channel single top quark production cross section in pp collisions at $\sqrt{s} = 7$ TeV in the decay channels $t \rightarrow e\nu b$, $t \rightarrow \mu\nu b$, and $t \rightarrow \tau\nu b$ with leptonic τ decays. Two complementary measurements are performed. The first analysis exploits two angular observables sensitive to t-channel single top quark production: the non-central pseudorapidity distribution of the light jet, and the cosine of the angle between this jet and the final-state lepton, in the reconstructed top-quark rest frame. A multivariate analysis technique with boosted decision trees (BDT) [8, 9] is used in the second method, which probes the overall compatibility of the signal event candidates with the event topology of electroweak top quark production. Hereafter, these analyses will be referred to as 2D and BDT analysis, respectively.

Both analyses use a data sample corresponding to an integrated luminosity of 35.9 ± 1.4 pb$^{-1}$ [10], collected by the Compact Muon Solenoid (CMS) detector [11] operating at the Large Hadron Collider (LHC). The central feature of the CMS detector is a superconducting solenoid providing a field of 3.8 T. Located within the solenoid are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter and the brass/scintillator hadron calorimeter. Muons are measured in gas-ionisation detectors embedded in the steel return yoke. In addition to the barrel and endcap detectors, a quartz-fiber Cherenkov detector extends the jet acceptance to $|\eta| = 5$, where the pseudorapidity η is defined as $\eta = -\ln \tan \frac{\theta}{2}$, where θ is the polar angle of the particle or jet trajectory with respect to the counterclockwise beam direction.

Events are selected by requiring the presence of at least one muon or electron having high transverse momentum (p_T). The particle flow (PF) algorithm described in [12] performs a global event reconstruction and provides the full list of particles identified as electrons, muons, photons, charged and neutral hadrons. A fully reconstructed isolated muon (electron) candidate originating from the leading primary vertex is required [13] with $p_T > 20$ (30) GeV/c, $|\eta| < 2.1$.
(2.5), and a veto is applied on additional leptons passing lower thresholds.

Jets are reconstructed using the anti-\(k_T\) algorithm [14] with a distance parameter of 0.5, clustering particles identified by the PF algorithm. Jets within the full calorimeter acceptance are considered, with \(p_T > 30\) GeV/c after corrections for the jet energy scale, as determined from simulations and collision data [15]. The BDT analysis first identifies isolated leptons, which are then excluded from the jet clustering step. In the 2D analysis, possible jet-lepton ambiguities are resolved on the basis of the distance \(\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}\) between the reconstructed jet and the nearest lepton. The event is accepted for further analysis only if exactly two jets are reconstructed.

In order to reduce the large background from \(W +\) light partons, we apply a b-tagging algorithm [16] that calculates the signed 3D impact-parameter IP significance (IP/\(\sigma_{\text{IP}}\) of all the tracks associated with the jet passing tight quality criteria. The tracks are ordered decreasingly, following their value of IP/\(\sigma_{\text{IP}}\), and a tight selection threshold is applied on the impact parameter significance of the third track in the list. This threshold corresponds to a b-jet identification efficiency of \(~40\%\) and a misidentification rate of \(~0.1\%\) determined in data as a function of \(p_T\) and \(\eta\) [16]. The 2D analysis exploits the expectation that most of the signal events, even in the \(2 \to 3\) process, have only one b quark inside the tracking acceptance (\(|\eta| < 2.4\)). Events are rejected if the jet failing the tight threshold passes a loose threshold on the IP significance of the second track. The loose threshold corresponds to an efficiency and misidentification rate of about 80\% and 10\%, respectively. The BDT analysis applies no veto on the second b-tagged jet, and rejects events where the jets are back-to-back, which are found to be poorly reproduced by the \(W +\) jets simulation. To further suppress contributions from processes where the muon (electron) does not come from the decay of a \(W\) boson, we require a transverse mass of the \(W\) boson \(M_T > 40\) (50) GeV/c\(^2\), where the transverse missing energy (\(E_{\text{miss}}^T\)) from the PF algorithm is used as a measurement of the \(p_T\) of the undetected neutrino.

The 2D analysis selects 112 (72) events in the muon (electron) decay channel, while the BDT analysis selects 139 (82). In both analyses a signal purity of around 18\% (16\%) is expected in the muon (electron) decay channel. The main backgrounds are \(t\bar{t}, Wb\bar{b}, W +\) light-partons, \(Wc, tW\), and processes where the lepton does not originate from a \(W/Z\), hereafter called QCD events.

The \(t\)-channel events from Monte Carlo simulation used in this study have been generated with the MadGraph 4.4 event generator [17]. To give a fair approximation of the full next-to-leading order properties of the signal, we combine the dominant NLO contribution (2\(\to 3\) diagram \(qg \to q'tb\) and its charge conjugate) with the leading order diagram (2\(\to 2\), \(qb \to q't\)) by a matching procedure based on Ref. [18]. MadGraph is used also for \(t\bar{t}\), single top \(s\) and \(tW\) channels, and \(W/Z +\) jets. The remaining background samples were simulated using Pythia 6.4.22 [19]; these include di-boson production (WW, WZ, ZZ), \(\gamma +\) jets, multi-jet QCD enriched in events with electrons or muons coming from the decay of b and c quarks or muons from the decay of long-lived hadrons, and particles with large probability to leave a high-energy electromagnetic deposit. The CTEQ 6.6 PDF sets [20] are used for all simulated samples. All generated events undergo a full simulation of the detector response based on Geant4 [21].

The NLO theoretical prediction is used to normalize the single-top production in \(s\) and \(tW\) channels [22, 23] and di-boson processes [24]. The \(t\bar{t}\) cross section is normalized to 150 pb, with uncertainty constrained to the result of a dedicated analysis. The same analysis constrains the \(VQ\bar{Q}' (V = W, Z\) and \(Q = b, c\) and \(Wc\) components, obtaining in particular a factor of \(2\pm 1\) for \(Wb\bar{b}\) over the LO prediction.
The QCD yield is estimated from the same data set by a maximum likelihood fit to the M_T distribution after all other selection criteria have been applied. The M_T distribution for QCD events is taken from a control sample obtained by inverting the lepton isolation requirement. The latter requirement rejects most of the signal-like events (single top, W/Z + jets, t£) leaving a QCD-dominated sample. The distribution for the sum of all non-QCD processes is taken from simulation. The uncertainty on this estimate is conservatively estimated such as to cover the differences observed when varying the fit range and the QCD shape.

The BDT analysis normalizes the result of the W + jets simulation to the inclusive W cross section at NNLO [24], while collision data are used in the 2D analysis to extract the normalization of the W + light-partons background. Two control samples are used, orthogonal to the standard selection. Control sample ‘region-A’, dominated by the W + light partons background, is defined by the requirement of one isolated lepton and exactly two jets, one of which is required to be within the tracker acceptance and with at least two tracks satisfying the quality selection of the b-tagging algorithm. Both jets should fail the tight b-tagging selection. A second control sample, ‘region-B’, is defined as a subset of the former where at least one jet passes the loose b-tagging selection although it fails the tight one. In both samples a fit of the M_T distribution is performed, allowing the QCD and W + light-partons background to float, while all other processes, including heavy-flavour contributions and the t-channel signal, are constrained to their expected values. A scale factor of 1.27 in the muon and 1.05 in the electron decay channel is observed between the number of W + light-partons events obtained from the fit in sample region-B and the predictions from simulation. These scale factors are used to obtain the central value of the predicted background. A ±30% (±20%) uncertainty is assigned on the muon (electron) scale factor, covering both the statistical uncertainty from the fit, the difference between the background predictions obtained from the two control samples, region-A and region-B, and between data and simulation results for both samples. The normalization of Z + jets background is rescaled by the same factor as that for the W + light-parton background.

A top-quark candidate is reconstructed in each event by pairing the b-tagged jet with a W-boson candidate. The latter is reconstructed by imposing the W-boson mass as a kinematic constraint, leading to a quadratic equation in the longitudinal neutrino momentum, $p_{z,\nu}$. When two real solutions are found the smallest $|p_{z,\nu}|$ is taken, and for complex solutions the imaginary component is eliminated by modifying $E_{T,x}$ and $E_{T,y}$ independently, such as to give $M_T = M_W$ [25].

In the 2D analysis a two-dimensional maximum likelihood fit is performed. One of the two fit variables is the cosine of the angle θ^* between the direction of the outgoing lepton and the spin axis, approximated by the direction of the untagged jet, in the top-quark rest frame [26, 27]. This observable has a distinct slope in signal events, coming from the almost 100% polarization of the top quark due to the $V - A$ structure of the electroweak interaction [28]. This property holds true also in many theories beyond the standard model (SM) [29]. The other fit variable is the pseudorapidity distribution of the untagged jet, $\eta_{\text{light jet}}$, interpreted as the light quark jet recoiling against the single top, whose characteristic η distribution allows a discrimination against the typically central jets from the main background processes. The distributions in cos θ^* and $\eta_{\text{light jet}}$ are shown in Fig. 2 for events passing the 2D selection.

The inputs to the fit are the distributions for signal and backgrounds in the cos θ^*-$\eta_{\text{light jet}}$ plane, separately in the muon and electron decay channels. The overall background is allowed to float unconstrained in the fit, while its relative components are fixed according to the background estimates. The QCD and W + light-partons shapes are taken from the anti-isolated and region-A control samples described above, respectively, while all others are taken from the simulation.
Figure 2: Cosine of the angle between charged lepton and untagged jet ($\cos \theta^*$, top panel) and pseudorapidity of the untagged jet ($|\eta_{\text{light jet}}|$, bottom panel) after the 2D selection, for both electron and muon decay channels. QCD and $W + $ light-partons events are normalized to data, tt, $tW +$ s ch., $t\bar{t}$, $Wb\bar{b}+Wc\bar{c}$, Wc, $W+ \text{light jets}$, QCD, and Other are normalized to theoretical expectations.
The BDT method combines a given set of observables into one single classifier variable bdt. A total of 37 observables have been chosen. Their selection has been inspired by the D0 analysis [30] and optimised for the LHC kinematics. The most discriminant ones are the lepton momentum, the mass of the system formed by the reconstructed W boson and the two jets, the p_T of the system formed by the two jets, the p_T of the jet passing tight b-tagging requirements, and the reconstructed top-quark mass. The validity of the description of all the input variables in the simulation has been checked using a Kolmogorov-Smirnov test in a W-enriched control sample with no b-tagged jet, shown in Fig. 3 (top). The bdt classifier has been validated both in simulation and in data: negligible differences are found by comparing its distribution for signal events with MadGraph, SingleTop [18], and MC@NLO 3.4 [31], and for $t\bar{t}$ events with MadGraph, Pythia and MC@NLO. In the W-enriched control sample the distribution of bdt from the simulation is statistically compatible with data.

The cross section is extracted from binned bdt distributions using a Bayesian approach. The normalizations of the backgrounds and the other systematic uncertainties are treated as nuisance parameters. The measured distribution of the classifier bdt is shown in Fig. 3 (bottom).

The following sources of systematic uncertainties are common to both analyses: background normalization; jet energy scale [15], propagated coherently to the E_T^{miss} measurement; calibration of the unclustered energy deposits contributing to E_T^{miss}, varied by $\pm10\%$; b-tagging and mistagging efficiencies [16]; modeling of the signal and of the main backgrounds; and a 4% uncertainty on the integrated luminosity [10].

The uncertainty on the signal model is estimated by comparing MadGraph and SingleTop events with different fragmentation models. The uncertainty on the $t\bar{t}$ and $W/Z +$ jets models is determined by comparing simulated samples with varied renormalization and factorization scale (within half and double the nominal value, independently for $t\bar{t}$ and for $W/Z +$ jets), initial- and final-state radiation parameters, and two different fragmentation models.

The impact of pile-up is estimated by comparing the default simulated samples with no pile-up and dedicated samples where minimum bias interactions are superimposed with a probability distribution roughly corresponding to the one observed in the overall 2010 dataset. The shapes of the bdt classifier and of both variables used in the 2D analysis are negligibly affected.

In the 2D analysis a conservative systematic uncertainty is assigned to the degree of correlation between $\eta_{light\ jet}$ and $\cos \theta^*$ (estimated as 6% from simulation) by comparing to the result obtained using the product of uncorrelated one-dimensional distributions for the signal. The $W +$ light-partons background shapes in $\eta_{light\ jet}$ and $\cos \theta^*$ are extracted from data in the 2D analysis, and studies with simulated events show that the shapes extracted from the control sample are statistically consistent with those in the signal region for the same process. Nevertheless, a small difference is observed in the $\eta_{light\ jet}$ shapes in the two selections for the Wc process, and we conservatively consider this difference as a systematic uncertainty on all $W +$ jets processes.

The efficiencies of the muon and electron triggers, identification, and isolation for the 2D selection have been evaluated from data using dilepton events at the Z peak [13]. The uncertainties on these efficiencies have a negligible effect on this analysis.

The impact of each individual source of uncertainty on both analyses has been estimated with an ensemble of pseudoexperiments. The dominant systematic uncertainty on the cross section determination comes from the b-tagging efficiency, known within $\pm15\%$, because of its large effect on the signal acceptance. Nevertheless, this source has a negligible effect on the shapes of the final discriminant variables in both analyses. Other important systematic uncertainties come from the signal model, the factorization/renormalization scale for $W/Z +$ jets, the jet...
Figure 3: Boosted decision tree discriminant (bdt) for both electron and muon decay channels in the W-enriched control sample (top panel), with simulation normalized to data, also shown for W + jets samples with doubled and halved renormalization and factorization scale (Q). Same observable after the complete BDT selection (bottom panel), with signal scaled to the measured cross section and all systematic uncertainties and backgrounds scaled to the medians of their posterior distributions.
Table 1: Cross section measurements by channel and by analysis. The first uncertainty is statistical, the second systematic. An additional 4% uncertainty on the luminosity [10] for each measurement is not included.

Channel	2D analysis	BDT analysis
µ	$104.1 \pm 42.3^{+24.8}_{-28.0}$ pb	$90.4 \pm 35.1^{+19.7}_{-13.7}$ pb
e	$154.2 \pm 56.0^{+40.6}_{-46.6}$ pb	$59.2 \pm 35.1^{+13.1}_{-13.7}$ pb
µ + e	$124.2 \pm 33.8^{+30.0}_{-33.9}$ pb	$78.7 \pm 25.4^{+13.2}_{-14.6}$ pb

energy scale, and the Wc background.

Table 1 shows the cross section measured by both analyses in each decay channel, corrected for acceptance and branching ratios. In the muon + electron combination all systematic uncertainties are considered fully correlated, with the exception of the uncertainty on multi-jet QCD obtained from data. All measurements are consistent among each other and with the SM expectation.

Under the assumption that all uncertainties are Gaussian and symmetric, which is fulfilled by the dominant uncertainties, the 2D and BDT cross section measurements are combined with the BLUE technique [32], taking into account a statistical correlation of 51% estimated with pseudoexperiments, and treating all the systematic uncertainties as fully correlated with the exceptions of those coming from estimates based on data. The combined result is $\sigma_{\text{exp}} = 83.6 \pm 29.8\text{ (stat. + syst.)} \pm 3.3\text{ (lumi.)}$ pb where the BDT analysis contributes with the largest weight (89%).

The expected and observed significances, including systematic uncertainties, are estimated with an ensemble of pseudoexperiments. The probability of the predicted background distributions to fluctuate to the observed data corresponds to 3.7 (3.5) Gaussian standard deviations in the 2D (BDT) analysis, combining the electron and muon decay channels, while $2.1^{+1.0}_{-1.1}$ ($2.9^{+1.0}_{-0.9}$) are expected when assuming SM t-channel production cross section. The combined significance is well approximated by the BDT significance of 3.5 Gaussian standard deviations.

The single-top cross section measurement can be used as a test of the CKM matrix unitarity [33] under the assumption that $|V_{td}|$ and $|V_{ts}|$ are much smaller than $|V_{tb}|$, and therefore $|V_{tb}| = \sqrt{\frac{\sigma_{\text{exp}}}{\sigma_{\text{th}}}}$ where σ_{th} is the SM prediction under the $|V_{tb}| = 1$ assumption. Using the prior knowledge that $0 \leq |V_{tb}|^2 \leq 1$, at the 95% confidence level we infer the lower bound $|V_{tb}| > 0.62 (0.68)$ from the 2D (BDT) analysis, respectively.

In summary, we confirm the Tevatron observation of single top quark production and present the first measurement of the t-channel single top quark production cross section in pp collisions at $\sqrt{s} = 7$ TeV, finding a good agreement with the SM prediction [6].

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS
(Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] D0 Collaboration, “Observation of Single Top-Quark Production”, *Phys. Rev. Lett.* **103** (2009) 092001. doi:10.1103/PhysRevLett.103.092001.

[2] CDF Collaboration, “First Observation of Electroweak Single Top Quark Production”, *Phys. Rev. Lett.* **103** (2009) 092002. doi:10.1103/PhysRevLett.103.092002.

[3] CDF and D0 Collaboration, “Combination of CDF and D0 Measurements of the Single Top Production Cross Section”, (2009). arXiv:0908.2171.

[4] D0 Collaboration, “Measurement of the t-channel single top quark production cross section”, *Phys. Lett. B* **682** (2010) 363. doi:10.1016/j.physletb.2009.11.038.

[5] CDF Collaboration, “Observation of Single Top Quark Production and Measurement of $|V_{tb}|$ with CDF”, *Phys. Rev. D* **82** (2010) 112005. doi:10.1103/PhysRevD.82.112005.

[6] N. Kidonakis, “Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production”, *Phys. Rev. D* **83** (2011). doi:10.1103/PhysRevD.83.091503.

[7] A. D. Martin et al., “Parton distributions for the LHC”, *Eur. Phys. J. D* **63** (2009) 189. doi:10.1140/epjd/e2009-00105-6.

[8] L. Breiman et al., “Classification and Regression Trees”. Wadsworth and Brooks, Monterey, CA, 1984.

[9] Y. Freund and E. Schapire, “Proceedings of the Thirteenth International Conference on Machine Learning”. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[10] CMS Collaboration, “Absolute luminosity normalization”, *CMS Detector Performance Summary CMS-DP-11-002* (2011).

[11] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004. doi:10.1088/1748-0221/3/08/S08004.

[12] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_{T}^{miss}”, *CMS Physics Analysis Summary CMS-PAS-PFT-09-001* (2009).

[13] CMS Collaboration, “Measurement of the Top-antitop Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV using the Kinematic Properties of Events with Leptons and Jets”, (2011). arXiv:1106.0902. Submitted to Eur. Phys. J. C.

[14] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* **04** (2008) 063. doi:10.1088/1126-6708/2008/04/063.

[15] CMS Collaboration, “Determination of the Jet Energy Scale in CMS with pp Collisions at $\sqrt{s} = 7$ TeV”, *CMS Physics Analysis Summary CMS-PAS-JME-10-010* (2010).
[16] CMS Collaboration, “Commissioning of b-jet identification with pp collisions at $\sqrt{s} = 7$ TeV”, *CMS Physics Analysis Summary CMS-PAS-BTV-10-001* (2010).

[17] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph”, *JHEP* 02 (2003) 027. doi:10.1088/1126-6708/2003/02/027.

[18] E. Boos et al., “Method for simulating electroweak top-quark production events in the NLO approximation: SingleTop event generator”, *Phys. Atom. Nucl.* 69 (2006) 1317. doi:10.1134/S1063778806080084.

[19] T. Sjöstrand et al., “PYTHIA 6.4 physics and manual”, *JHEP* 05 (2006) 026. doi:10.1088/1126-6708/2006/05/026.

[20] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, *JHEP* 07 (2002) 012. doi:10.1088/1126-6708/2002/07/012.

[21] J. Allison et al., “GEANT4 developments and applications”, *IEEE Trans. Nucl. Sci.* 53 (2006) 270. doi:10.1109/TNS.2006.869826.

[22] N. Kidonakis, “NNLL resummation for s-channel single top quark production”, *Phys. Rev. D* 81 (2010) 054028. doi:10.1103/PhysRevD.81.054028.

[23] J. Campbell and F. Tramontano, “Next-to-leading order corrections to Wt production and decay”, *Nucl. Phys. B* 726 (2005) 109. doi:10.1016/j.nuclphysb.2005.08.015.

[24] R. Gavin et al., “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order”, (2010). arXiv:1011.3540.

[25] J. Bauer, “Prospects for the Observation of Electroweak Top-Quark Production with the CMS Experiment”. PhD thesis, Karlsruhe, 2010.

[26] G. Mahlon and S. Parke, “Improved Spin Basis for Angular Correlation Studies in Single Top Quark Production at the Tevatron”, *Phys. Rev. D* 55 (1997) 7249. doi:10.1103/PhysRevD.55.7249.

[27] P. Motylinski, “Angular correlations in t-channel single top production at the LHC”, *Phys. Rev. D* 80 (2009) 074015. doi:10.1103/PhysRevD.80.074015.

[28] G. Mahlon and S. J. Parke, “Single top quark production at the LHC: Understanding spin”, *Phys. Lett. B* 476 (2000) 323. doi:10.1016/S0370-2693(00)00149-0.

[29] S. Batebi, S. M. Etessami, and M. Mohammadi-Najafabadi, “The Angular Correlations in Top Quark Decays in Standard Model Extensions”, *Phys. Rev. D* 83 (2011) 057502. doi:10.1103/PhysRevD.83.057502.

[30] D0 Collaboration, “Evidence for production of single top quarks”, *Phys. Rev. D* 78 (2008) 012005. doi:10.1103/PhysRevD.78.012005.

[31] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, *JHEP* 06 (2002) 029. doi:10.1088/1126-6708/2002/06/029.

[32] L. Lyons, D. Gibaut, and P. Clifford, “How to combine correlated estimates of a single physical quantity”, *Nucl. Instrum. Meth. A* 270 (1988) 110. doi:10.1016/0168-9002(88)90018-6.

[33] J. Alwall et al., “Is $V tb \approx 1$?”, *Eur. Phys. J. C* 49 (2007) 791. doi:10.1140/epjc/s10052-006-0137-y.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, L. Benucci, E.A. De Wolf, X. Janssen, J. Maes, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Biek, M. Blyweert, J. D'Hondt, O. Devroede, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, W. Van Doninck, P. Van Mulders, G.P. Van Onse, A. Villello

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, O.P.A. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, L. Ceard, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores, C. Lagana, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov, V. Genchev, I. Iaydziej, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluji, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Siros, C. Thiebaux, B. Wyslouch, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
C. Baty, S. Beaucheron, N. Beaupere, M. Bedjidian, O. Bondou, G. Boudoul, D. Boumediene, H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, E. Dietz-Laursonn, M. Erdmann, R. Fischer, T. Hebbeker, A. Hinzmann, K. Hoepfner, R.S. Höing, T. Klimkovitch, D. Klingebiel, P. Kreuzer, D. Lanske, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teysseier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad, D. Heydhausen, F. Hohle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flosdorff, G. Fluack, A. Geiser, J. Hauk, H. Jung, M. Kasemann, I. Katkov, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, R. Mankel, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, J. Olzem, A. Petruchkin, D. Pitzl, A. Raspereza, A. Raval, M. Rosin, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, M. Görner,
K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, M. Schröder, T. Schum, J. Schwandt, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, J. Berger, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, S. Röcker, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov, E.B. Ziebarth

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioannina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu, P. Hidas, D. Horvath, A. Kapusi, K. Krajczar, F. Sikler, G.I. Veres, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, B.C. Choudhary, P. Gupta, S. Jain, A. Kumar, A. Kumar, M. Naimuddin, K. Ranjan, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, S. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait, A. Gurtu, M. Maity, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad,
A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbore, C. Calabria, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, L. Lusito, G. Maggi, M. Maggi, N. Manna, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, G.A. Pierro, A. Pompiii, G. Pugliese, F. Romano, G. Roselli, G. Selvaggi, L. Silvestris, R. Trentadue, S. Tupputi, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, M. Giunta, C. Grandi, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarra, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G. Siroli, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, P. Lenzi, M. Meschini, S. Paololetti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, D. Di Matteo, S. Gennai, A. Ghezzi, S. Malvezzi, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavallo, A. De Cosa, F. Fabozzi, A.O.M. Iorio, L. Lista, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, P. Bellan, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Fanzago, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, I. Lazzizzera, M. Margoni, M. Mazzucato, A.T. Meneguzzo, M. Nespolo, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzano, S.P. Ratti, C. Riccardi, P. Torre, P. Vitulo, C. Viviani

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponera, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Santocchia, S. Taroni, M. Valdata
INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, A. Kraan, F. Ligabue, T. Lomtadze, L. Martin, A. Messineo, F. Palla, G. Segneri, A.T. Serban, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy
L. Barone, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, E. Di Marco, M. Grassi, E. Longo, P. Meridiani, S. Nourbakhsh, G. Organtini, F. Pandolfi, R. Paramatti, S. Rahatlou, C. Rovelli

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Armeodo, C. Biino, C. Botta, N. Cartiglia, R. Castello, M. Costa, N. Demaria, A. Graziano, C. Mariotti, M. Marone, S. Maselli, E. Migliore, G. Mila, V. Monaco, M. Musich, M.M. Obertino, N. Pastrone, M. Pelliccioni, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, V. Solà, A. Solano, A. Staiano, A. Vilela Pereira

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, F. Cossutti, G. Della Ricca, B. Gobbo, D. Montanino, A. Penzo

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D. Son, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, B. Hong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martišiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vázquez Valencia

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
H.A. Salazar Ibargüen
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Załęski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, A. Nayak, J. Pela, P.Q. Ribeiro, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, I. Belotelov, P. Bunin, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenyev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, V. Kaftanov, M. Kossov, A. Krokhotin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Krpic, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cepeda, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardo, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini²⁵, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jordà, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Muñoz Sanchez, J. Piedra Gomez²⁶, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell²⁷, D. Benedetti, C. Bernet³, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, B. Curé, D. D’Enterria, A. De Roeck, S. Di Guida, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, A. Homma, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, A. Maurisset, F. Meijsers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold¹, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Pippal, G. Polese, R. Racz, W. Reece, J. Rodrigues Antunes, G. Roland²⁸, T. Rommerskirchen, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, M. Simon, P. Sphicas²⁹, M. Spiropulu³³, M. Stoye, P. Tropea, A. Tsirou, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille³², A. Starodumov³¹

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, L. Caminada³², N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Eggster, K. Freudenberg, C. Grab, W. Hintz, P. Lecomte, W. Lustermann, C. Marchica³², P. Martinez Ruiz del Arbol, P. Milenovic³³, F. Moortgat, C. Nägeli³², P. Neg, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, M.-C. Sawley, B. Stieger, L. Tauscher¹, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek
National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, R. Volpe, J.H. Wu, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng, M. Wang

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, D. Uzun, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, D. Demir, E. G"ulmez, B. Isildak, M. Kaya, O. Kaya, M. "Ozbek, S. Ozkorucuklu, N. Sonmez

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, T.L. Cheng, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes, D. Hartley, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill, J.A. Coughlan, K. Harder, Š. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, B.C. MacEvoy, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA
K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, USA
C. Henderson
Boston University, Boston, USA
T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Miceli, M. Nikolic, D. Pellett, J. Robles, S. Salur, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veeken

University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein†, J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA
J. Baber, J. Blinkhorn, K. C. Smith, D. Cline, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, O.R. Long, A. Luthra, H. Nguyen, B.C. Shen†, R. Stringer, J. Sturdy, S. Sumowidadgo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech†, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang

Cornell University, Ithaca, USA
L. Agostino, J. Alexander, D. Cassel, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhunaishvili, B. Kreis, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, A. Ryd, M. Saelim, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, L.A.T. Bauer Dick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, F. Borcherding, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, W. Cooper, D.P. Eartly, V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthoti, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, M. Johnson, U. Joshi, R. Khatiwada, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos, P. Limon, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. Miao, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, R. Pordes, O. Prokofyev, N. Saoulidou, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, L. Up legger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskii, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, K. Matchev, G. Mitselmakher, L. Muniz, C. Prescott, R. Remington, A. Rinkevicius, M. Schmitt, B. Scurlark, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaulin, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, L. Quertenmont, S. Sekmen, V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner, R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khachatryan, G.J. Kunde, F. Lacroix, M. Malek, C. O’Brien, C. Silvestre, A. Smoron, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. Mc Climent, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maxsimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan
Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Enò, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahm, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, E.A. Wenger, R. Wolf, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, P.R. Dudero, G. Franzoni, J. Haupt, K. Klappoetke, Y. Kubota, J. Mans, N. Pastika, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith, J. Zennamo

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Odell, R.A. Oferzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, J. Jones, E. Laird, D. Lopes Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski
University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, M. De Mattia, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA
C. Boukahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzwieg, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Pietillo, W. Sakamoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
O. Atramentov, A. Barker, D. Duggan, Y. Gerstsein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, A. Gurrola, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, J. Pivaraski, A. Safonov, S. Sengupta, A. Tatarinov, D. Toback, M. Weinberger

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, J.N. Bellinger, D. Carlsmith, S. Dasu, J. Efron, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klubbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, F. Palmonari, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg
†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Suez Canal University, Suez, Egypt
5: Also at British University, Cairo, Egypt
6: Also at Fayoum University, El-Fayoum, Egypt
7: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
8: Also at Massachusetts Institute of Technology, Cambridge, USA
9: Also at Université de Haute-Alsace, Mulhouse, France
10: Also at Brandenburg University of Technology, Cottbus, Germany
11: Also at Moscow State University, Moscow, Russia
12: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
13: Also at Eötvös Loránd University, Budapest, Hungary
14: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
15: Also at University of Visva-Bharati, Santiniketan, India
16: Also at Sharif University of Technology, Tehran, Iran
17: Also at Shiraz University, Shiraz, Iran
18: Also at Isfahan University of Technology, Isfahan, Iran
19: Also at Facoltà Ingegneria Università di Roma “La Sapienza”, Roma, Italy
20: Also at Università della Basilicata, Potenza, Italy
21: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
22: Also at Università degli studi di Siena, Siena, Italy
23: Also at California Institute of Technology, Pasadena, USA
24: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
25: Also at University of California, Los Angeles, Los Angeles, USA
26: Also at University of Florida, Gainesville, USA
27: Also at Université de Genève, Geneva, Switzerland
28: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
29: Also at University of Athens, Athens, Greece
30: Also at The University of Kansas, Lawrence, USA
31: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
32: Also at Paul Scherrer Institut, Villigen, Switzerland
33: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
34: Also at Gaziosmanpasa University, Tokat, Turkey
35: Also at Adiyaman University, Adiyaman, Turkey
36: Also at The University of Iowa, Iowa City, USA
37: Also at Mersin University, Mersin, Turkey
38: Also at Izmir Institute of Technology, Izmir, Turkey
39: Also at Kafkas University, Kars, Turkey
40: Also at Suleyman Demirel University, Isparta, Turkey
41: Also at Ege University, Izmir, Turkey
42: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
43: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
44: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
45: Also at Utah Valley University, Orem, USA
46: Also at Institute for Nuclear Research, Moscow, Russia
47: Also at Los Alamos National Laboratory, Los Alamos, USA
48: Also at Erzincan University, Erzincan, Turkey