Combinatorial Hopf algebra of superclass functions of type D

Carolina Benedetti*

Abstract

We provide a Hopf algebra structure on the space of superclass functions on the unipotent upper triangular group of type D over a finite field based on a supercharacter theory constructed by André and Neto in [7, 8]. Also, we make further comments with respect to types B and C. Type A was explored by M. Aguiar et. al (2010), thus this paper is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types.

1 Introduction

The problem of simultaneously reducing to canonical form two linear operators on a finite-dimensional space is a “wild” problem in representation theory. This problem contains all classification matrix problems given by quivers (see [9]). In this sense, the classical representation theory for the type A group $U_n(q)$ of unipotent $n \times n$ upper triangular matrices over a finite field is known to be wild. This makes, in some sense, hopeless any attempt to study the representation theory of the group $U_n(q)$. In his Ph.D. thesis C. André started to develop a theory that approximates the ‘representation theory of $U_n(q)$. Roughly speaking, by using certain linear combinations of irreducible characters and lumping together conjugacy classes under certain conditions, the resulting theory behaves very nicely (see [5, 17]). This gave rise to the concept of “supercharacter theory”. Later on, P. Diaconis and I. M. Isaacs extended this concept to arbitrary algebra groups (see [14]). Supercharacter theory of the group $U_n(q)$ has a rich combinatorics which allows to connect this beautiful theory

*NSERC and CRC (N. Bergeron’s). Partially supported by Beca Mazda para el Arte y la Ciencia.
with classical combinatorial objects. As a matter of fact, in [1] a Hopf algebra structure is provided on the graded vector space \(SC \) of superclass characteristic functions over \(U_n(q) \), for \(n \geq 0 \). Moreover, when \(q = 2 \) this Hopf algebra is a realization of a well-known combinatorial Hopf algebra, namely, the Hopf algebra of symmetric functions in noncommuting variables (see [12,[16]).

The reader familiar with the classical representation theory of the symmetric group \(S_n \) will notice how this resembles the relationship between symmetric functions and the character theory of \(S_n \). Also, supercharacters of \(U_n(2) \) are indexed by set partitions of the set \([n] = \{1, 2, \ldots, n\} \) and by labelled set partitions for general \(q \).

In this paper, we study combinatorially the supercharacter theory corresponding to the other classical Lie types \(B, C \) and \(D \), making emphasis on the latter. This study is based on the supercharacter theory constructed by André and Neto in [6,7]. These groups fail to be algebra groups unlike type \(A \), however, we can regard them as subgroups of the convenient group of type \(A \) and restrict the supercharacter theory of type \(A \) to the respective subgroup.

The paper is organized as follows. In Section 2 we provide the reader with the basic definitions concerning combinatorial Hopf algebras and supercharacters. In Section 3 we give a combinatorial interpretation for the supercharacter theory of the group \(U_{2n}^D(q) \) of even orthogonal unipotent upper triangular matrices with coefficients on the field \(\mathbb{F}_q \) of characteristic \(\geq 3 \). This combinatorial interpretation is using labelled \(D_{2n} \)-partitions of the set \([\pm n] := \{1, \ldots, n, -n, \ldots, -1\} \). More specifically, we use these partitions to index orbit representatives for superclasses and supercharacters of the group \(U_{2n}^D(q) \). Then, we define the analog of \(SC \) for type \(D \) as follows:

\[
SC^D = \bigoplus_{n \geq 0} SC_{2n}^D = \bigoplus_{n \geq 0} \text{span}_\mathbb{C}\{\kappa_\lambda : \lambda \in D_{2n}(q)\}
\]

where \(\kappa_\lambda \) denotes the superclass characteristic function indexed by the labelled \(D_{2n} \)-partition \(\lambda \). Using a change of basis, we prove that the space \(SC^D \) is endowed with a Hopf algebra structure. This Hopf algebra structure is in analogy to the one given for type \(A \) in [1]. However, the product structure on \(SC^D \) is not raised directly from representation theory. Yet, proposition 3.13 suggest that the algebra structure holds a similar connection with representation theory, as in the type \(A \) case. This suggested connection awaits for exploration. The coalgebra structure is raised directly from representation theory by using restriction.

Finally, we discuss briefly the supercharacter theory for types \(B \) and \(C \). Also we make an important remark concerning the Hopf monoid structure that \(SC^D \) carries, following the results in [4].
2 Preliminaries

We start defining supercharacter theory for a finite group G. This definition, which can be stated in different ways, is due to Diaconis and Isaacs [14].

Definition 2.1. A supercharacter theory for G consists of:

- A partition K of G
- A set X of characters of G

such that the following holds:

1. $|K| = |X|$
2. every irreducible character of G is a constituent of a unique $\chi \in X$
3. the characters in X are constant on members of K.

The elements in X can be thought of as scalar multiples of linear combinations of the form $\sum_{\psi \in X} \psi(1)\psi$ where X is a subset of irreducible characters of G.

Remark: Definition 2.1 is equivalent to say that $\text{span}_C \{ \sum_{g \in K} g : K \in K \}$ is a subalgebra of $\mathcal{Z}(\mathbb{C}G)$ with unit 1. Given such a partition K, there exists a unique X, up to isomorphism, with the desired properties.

Examples 2.2.

- Every group is endowed with the trivial supercharacter theory where the set of superclasses K consists of the usual conjugacy classes and the set of supercharacters X is formed by the irreducible representations of G.
- Similarly, the coarsest supercharacter theory of G is such that $K = \{ \{1\}, G - \{1\} \}$ and $\chi = \{1, \rho_G - 1\}$, where ρ_G is the regular representation.
- A less trivial example is given by the cyclic group of order 2^n, where $n \geq 2$. It is not hard to see that lumping together the elements of G by their order, gives us the superclasses K, whose corresponding supercharacters are formed by adding together all the d-primitive roots of unity for each $d|n$.

This paper explores the particular supercharacter theory constructed by André and Neto in [6] of the classical group $U_{2n}^D(q)$ of $2n \times 2n$ unipotent upper triangular matrices of type D. Here, we refer to this construction as the supercharacter theory of type D, since it is the one we are interested on. We regard $U_{2n}^D(q)$ as a subgroup of the group $U_{2n}(q)$ of $2n \times 2n$ unipotent upper triangular matrices, which is an algebra group as defined below (see [14]).
Definition 2.3. Let J be a finite dimensional associative nilpotent F-algebra and let G denote the set consisting of formal objects of the form $1 + a$ where $a \in J$. Then $G = 1 + F$ is a group, where the multiplication is given by $(1+a)(1+b) = 1 + a + b + ab$. The group G is the algebra group based on J.

As an example, denote by u_n the algebra of nilpotent upper triangular matrices associated to the group $U_n(q)$. Then we see that $U_n(q) = I + u_n$, thus $U_n(q)$ is an algebra group.

The supercharacter theory for the group $U_n(q)$ has a very nice combinatorial interpretation. Its superclasses are indexed by labelled set partitions of type A as well as its supercharacters (see [1]). In analogy with type A, in the next section we describe the supercharacter theory for the group $U_{2n}^D(q)$ using labelled D_{2n}-partitions, though as mentioned in the introduction, $U_{2n}^D(q)$ is not an algebra group. Before that, we give a quick intro to combinatorial Hopf algebras. For a further reading on this topic, see [2].

2.1 Combinatorial Hopf algebras

Let $(A, m, 1)$ be an associative algebra over a field \mathbb{K} with unit 1 and multiplication m. The unit can also be associated with a map

$$u: \mathbb{K} \to A$$
$$t \mapsto t \cdot 1$$

On the other hand, a coalgebra is a vector space D over \mathbb{K} with a coproduct $\Delta : D \otimes D \to D$ and a counit $\epsilon : D \to \mathbb{K}$ which are \mathbb{K}-linear maps. The coproduct must be coassociative in the sense that $(\Delta \otimes \text{Id}) \circ \Delta = (\text{Id} \otimes \Delta) \circ \Delta$ and must be compatible with ϵ:

$$(\epsilon \otimes \text{Id}) \circ \Delta = (\text{Id} \otimes \epsilon) \circ \Delta = \text{Id}$$

If an algebra $(A, m, 1)$ has also a coalgebra structure given by Δ, ϵ, we say that A is a bialgebra if Δ, ϵ are algebra homomorphisms.

Definition 2.4. A Hopf algebra A is a bialgebra together with a linear map $S : A \to A$ called antipode. The map S satisfies

$$\sum_k S(a_k)b_k = \epsilon(a) \cdot 1 = \sum_k a_kS(b_k) \quad \text{where} \quad \Delta(a) = \sum_k a_k \otimes b_k$$
An arbitrary Hopf algebra could have different antipodes. However, the Hopf algebras we are interested in have a unique antipode if we add two more ingredients to the bialgebra structure: grading and connectedness.

We say that a bialgebra A is graded if there exists a direct sum decomposition

$$A = \bigoplus_{k \geq 0} A_k$$

such that $A_i \otimes A_j \subseteq A_{i+j}$, $u(\mathbb{K}) \subseteq A_0$, $\Delta(A_i) \subseteq \bigoplus_{i=0}^{n} A_i \otimes A_{n-i}$ and $\epsilon(A_n) = 0$ for $n \geq 1$. Finally, we say that A is connected if $A_0 \cong \mathbb{K}$.

There is no unique definition for combinatorial Hopf algebra, but in this paper, we say that A is a combinatorial Hopf algebra if A is a graded and connected bialgebra with antipode and such that A has a singled out basis with positive structure constants [11], i.e., a distinguished basis that multiplies/comultiplies positively. The advantage of having a graded and connected Hopf algebra is that the uniqueness of the antipode is guaranteed by recursion.

3 Supercharacter theory of type D

The supercharacter theory of type D this paper considers, is due to André and Neto [6, 7]. Here, we give a combinatorial interpretation of their algebra-geometric construction. From now on, \mathbb{F}_q will denote a field of characteristic $p \geq 3$ and order $q = p^r$ for some integer $r \geq 1$. The group $U^D_{2n}(q)$ corresponds to even orthogonal unipotent upper triangular matrices with coefficients in \mathbb{F}_q and can be described as follows (see [13]):

$$U^D_{2n}(q) = \left\{ \begin{pmatrix} P & PQ \\ 0 & JP^{-t}J \end{pmatrix} : P \in U_n(q), Q \in M_n(q), JQ^tJ = -Q \right\}.$$

where $M_n(q)$ is the set of $n \times n$ matrices over \mathbb{F}_q and J is the $n \times n$ matrix with ones in the antidiagonal and zeros elsewhere.

We will drop the subindex $2n$ from the notation, but keeping in mind the size of the matrices. In order to describe the superclasses for this type, we make use of the nilpotent algebra $u^D(q)$ associated to the group $U^D(q)$. The algebra $u^D(q)$ is given by

$$u^D(q) = \left\{ \begin{pmatrix} R & Q \\ 0 & -JR^tJ \end{pmatrix} : R \in U_n(q) - I_n, Q \in M_n(q), JQ^tJ = -Q \right\}.$$
with $M_n(q)$ and J as before. We will make use of the total order
\[1 < \cdots < n < -n < \cdots < -1 \]
to index the columns and rows of matrices in $U^D(q)$ and in $u^D(q)$, from left to right and top to bottom.

A vector space basis for $u^D(q)$ over \mathbb{F}_q is given by the matrices $\{y_\alpha\}$ where α runs over the set of positive roots Φ^+ of type D, given by
\[\Phi^+ = \{e_i \pm e_j : 1 \leq i < j \leq n\} \]
and y_α denotes the matrix
\[y_\alpha = \begin{cases} e_{i,j} - e_{-j,-i} & \text{if } \alpha = e_i - e_j \\ e_{i,-j} - e_{-j,-i} & \text{if } \alpha = e_i + e_j \end{cases} \]
where $e_{i,j} \in u^D(q)$ has 1 in position i,j and zeros elsewhere. Now define the support of y_α by
\[\text{supp}(y_\alpha) = \begin{cases} (i,j), (-j,-i) & \text{if } \alpha = e_i - e_j \\ (i,-j), (j,-i) & \text{if } \alpha = e_i + e_j \end{cases} \]
Notice that this definition can be extended linearly to the whole $u^D(q)$.

Combinatorially, linear combinations of the matrices y_α with at most one nonzero entry in every row and column can be seen as labelled D_{2n}-partitions or simply $D_{2n}(q)$-partitions, which consists of triples (i,j,a) where $i,j \in [\pm n]$ and $a \in \mathbb{F}_q^\ast$. Any triple of this form is called a labelled arc and will be represented as $i \overset{a}{\longrightarrow} j$. Thus, we have the following definition.

Definition 3.1. Let $a, b \in \mathbb{F}_q^\ast$. A $D_{2n}(q)$-partition λ of $[\pm n]$ is a set of labelled arcs in $[\pm n]$ such that for $j \neq -i$:

(a) If $i \overset{a}{\longrightarrow} j \in \lambda$ then $-j \overset{-a}{\longrightarrow} -i \in \lambda$

(b) If $i \overset{a}{\longrightarrow} j \in \lambda$ and $i < k < j$ then $i \overset{b}{\longrightarrow} k, k \overset{b}{\longrightarrow} j \notin \lambda$.

We say that $\lambda \in D_{2n}(q)$.

The number of $D_{2n}(q)$-partitions is given in [15] where the notion of labelled D partitions was independently defined, as well as their analog in type B.

6
For $\lambda \in D_{2n}(q)$, the corresponding matrix $y_\lambda \in u^D(q)$ is then given by

$$y_\lambda = \sum_{i^2j \in \lambda} ae_i,j.$$ \hspace{1cm} (3.1)

This allows us to go back and forth (in a unique way) between set partitions in $D_{2n}(q)$ and matrices in $u^D(q)$ with at most one non zero element in every row and column.

Every $\lambda \in D_{2n}(q)$ can be written uniquely as $\lambda = \lambda^+ \cup \lambda^-$, where:

- $\lambda^+ \cap \lambda^- = \emptyset$
- $i \prec j \in \lambda^+$ if and only if $-j \leq a^{-i} < i \in \lambda^-$ where $i > 0$ and $i < |j|$

In view of this, λ is completely determined by λ^+ (or λ^-). Thus, every arc $i \prec j \in \lambda^+$ can be represented by the triple $\{(i, j, a)\}$. In this case, the triple $\{(-j, -i, -a)\} \in \lambda^-$.

3.1 Superclasses and supercharacters

In this section we describe combinatorially the superclasses and supercharacters of $U_{2n}(q)$ using $D_{2n}(q)$-partitions and keeping in mind that $U_{2n}(q)$ is a subgroup of $U_{2n}(q)$. Using algebraic varieties, André and Neto proved that supercharacters and superclasses of the group $U_{2n}(q)$ are indexed by matrices in $u^D(q)$ with at most one nonzero element in every row and column (see [6]). Thus, they can be indexed using $D_{2n}(q)$-partitions as well. The group $U_{2n}(q)$ acts on its nilpotent algebra $u_{2n}(q)$ by left and right multiplication. It can be shown that when adding the identity matrix I_{2n} to each one of these orbits we get the superclasses of $U_{2n}(q)$ (see [14]). Let $\lambda \in D_{2n}(q)$ and let y_λ as in 3.1. Since $u^D(q) \subset u_{2n}(q)$ we can consider the orbit

$$V_\lambda = U_{2n}(q)y_\lambda U_{2n}(q) \subset u_{2n}(q).$$

Notice that V_λ is not necessarily in $u^D(q)$. However, since $V_\lambda + I_{2n}$ is a superclass in $U_{2n}(q)$ and $U_{2n}^D(q)$ is a subgroup of $U_{2n}(q)$, we define the superclass in $U_{2n}^D(q)$ associated to λ as $K_\lambda := U_{2n}^D(q) \cap (V_\lambda + I_{2n})$.

As mentioned in the introduction $U_{2n}^D(q)$ is not an algebra group, i.e., $U_{2n}^D(q) \neq I_{2n} + u_{2n}^D(q)$. Yet there is a bijective correspondence between $U_{2n}^D(q)$ and $u^D(q)$. This bijection is provided by the following lemma.
Lemma 3.2. \[\text{Lemma 2.3}\] Let \(\lambda\) be a \(D_{2n}\)-partition and let \(I\) denote the identity matrix of the corresponding size. Put \(x\) and \(y\) as

\[
x = \begin{pmatrix} P & PQ \\ 0 & J \end{pmatrix} \in U^P(q) \quad \text{and} \quad y = \begin{pmatrix} P - I & Q \\ 0 & -J(P - I)^tJ \end{pmatrix} \in u^P(q).
\]

Then \(x \in K_\lambda\) if and only if \(y \in V_\lambda\).

To illustrate this lemma, let us consider the following example:

Example 3.3. Let \(n = 5\) and let \(\lambda\) be the \(D_{2n}(q)\)-partition given by

\[
\lambda = \begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 & -4 & -3 & -2 & -1
\end{array}
\]

A natural representative for the orbit \(V_\lambda\) is given by the corresponding \(y_\lambda\). In this example we have

\[
y_\lambda = \begin{pmatrix}
0 & a & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & 0 & -c & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -a
\end{pmatrix}
\quad \text{and} \quad
x_\lambda = \begin{pmatrix}
1 & a & 0 & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & c & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -c & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -a
\end{pmatrix}
\]

where \(x_\lambda\) is the matrix in \(K_\lambda\) given by the lemma 3.2.

Notice that \(x_\lambda \neq y_\lambda + I_{10}\), but the bijection provided by the lemma makes it easier to get a representative \(x_\lambda\) for the superclass \(K_\lambda\) by computing first \(y_\lambda \in V_\lambda\). This is very useful especially when the partition \(\lambda\) is more complicated.

Let \(\theta : \mathbb{F}_q \to \mathbb{C}^*\) be any nontrivial group homomorphism. This homomorphism will be kept fixed from now on. Let \(u\) denote the nilpotent upper triangular matrices of type \(A\). Let \(u^*\) be the vector space dual to \(u\) and let \(e^*_i,j\) be the element in \(u^*\) dual to \(e_{i,j}\) in \(u\) so that \(e^*_i,j(e_{k,l}) = \delta_i,k\delta_{j,l}\). Supercharacters of the group \(U_{2n}(q)\) are given by the orbits of the double action of the group \(U_{2n}(q)\) over the vector space \(u^*\). This double action is given by

\[
(x_\lambda y)(a) = \lambda(x^{-1}ay^{-1})
\]
where $\lambda \in u^*$, $x, y \in U_{2n}(q)$ and $a \in u$. In this way, supercharacters of type D can be obtained by restriction of certain supercharacters of type A (see [6, Proposition 2.2]).

Using [6, Theorem 1.1] and [8, Theorem 3.6, Proposition 4.2], the reader can check that this construction is, in fact, a supercharacter theory for the group $U_{2n}^D(q)$. The following theorem is a combinatorial way of defining supercharacters of type D on superclasses:

Theorem 3.4. [8, Theorem 5.3] Let λ be a $D_{2n}(q)$-partition and let x_μ be the superclass associated to the $D_{2n}(q)$-partition μ. Then

$$
\chi^\lambda(x_\mu) = \begin{cases}
\frac{\chi^\lambda(1)}{q^{\{(k-i)\in \mu^+| i<k<j,j-i\in \lambda^+\}} \prod_{\not\exists j \in \lambda, \not\exists j \in \mu} \theta(ab) & \text{if } i \overset{a}{\sim} k \in \lambda \text{ and } i \prec l \prec k, \\
0 & \text{then } i \overset{b}{\sim} l, l \overset{b}{\sim} k \not\in \mu, \text{ otherwise.}
\end{cases}
$$

(3.2)

A few remarks are worth to mention about some of the combinatorial properties of supercharacters. For an algebraic proof see [6]:

- $\chi^\lambda(1) = \begin{cases}
q^{j-i-1} & \text{if } j \preceq n \\
q^{2n-i-j} & \text{otherwise}
\end{cases}$ when $\lambda^+ = \{(i, j, a)\}$ is a single arc.

- $\chi^\lambda = \prod_{\lambda_{ij} \in \lambda} \chi^{\lambda_{ij}}$ where $\lambda_{ij} = \{i \overset{a}{\sim} j, j \overset{a}{\sim} -i\} \in \lambda$. Thus, χ^λ is one dimensional if and only if $j = i + 1$ for every λ_{ij}.

3.2 Product and coproduct

Let \mathbf{SC}^D_{2n} be the vector space of superclass functions over the group $U_{2n}^D(q)$. This is the space of functions $\alpha : U_{2n}^D(q) \to \mathbb{C}$ that are constant on superclasses. Now that we know how superclasses and supercharacters look like as matrices and as partitions, we will define a product and a coproduct on the graded vector space $\mathbf{SC}^D = \bigoplus_{n \geq 0} \mathbf{SC}^D_{2n}$. By convention, \mathbf{SC}^D_0 is the set of class functions on $U_{2n}^D(q) = \{\}$ and is such that $\mathbf{SC}^D_0 = \text{span}_\mathbb{C}\{1\}$. As proved in [8, Theorem 4.1], the supercharacters of $U_{2n}^D(q)$ form a basis for \mathbf{SC}^D_{2n}.

9
In order to give a nice combinatorial description of the operations we will define, we use the basis of \mathbf{SC}^D given by the superclass characteristic functions κ_λ, i. e.,

$$\mathbf{SC}^D = \text{span}_C\{\kappa_\lambda : \lambda \in D_{2n}(q), n \geq 1\},$$

where

$$\kappa_\lambda(x_\mu) = \begin{cases} 1 & \text{if } x_\mu \text{ is in the superclass of } x_\lambda \\ 0 & \text{otherwise} \end{cases}$$

First, we will endow the vector space \mathbf{SC}^D with a coalgebra structure and thus we want to define a coproduct. Let us define the standardization map st_J on ordered D-set partitions $J = \{J_1, \ldots, J_r\}$ of $[\pm n]$. These are partitions such that $J_i = -J_i$ and $\cup J_i = [\pm n]$ for all i. In fact, for our purposes it is enough to define st_J for ordered D-set partitions $J = (J_1|J_2)$ of size at most 2. To simplify notation, if $J = (\pm A|\pm A^c) = (131|2424)$, we simply write $J = (13|24)$ so that $A = \{1, 3\}$. In this case, $\pm A = \pm \{1, 3\}$ so that $[\pm |A|] = [\pm 2]$.

Let $J = (A|A^c)$ be an ordered D-set partition of $[\pm n]$ and let

$$S_J(q) = \{\lambda \in D_{2n}(q) : i \overset{a}{\dashv} j \in \lambda \text{ implies } i, j \text{ are in the same part of } J\}$$

and define the bijection

$$\text{st}_J : S_J(q) \rightarrow S_{[\pm |A|]}(q) \times S_{[\pm |A^c|]}(q)$$

(3.3)

that relabels the indices of partitions in $S_J(q)$ according to the unique order-preserving map

$$\text{st}_A : \pm A \rightarrow [\pm |A|]$$

(3.4)

where A is a part of J.

As an example, let $J = \{134|25\}$ and let λ be given by

$$\lambda = \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & -5 & -4 & -3 & -2 & -1 \\
\bullet & \bullet \\
a & b & c & -c & -b & -a
\end{array}$$

(3.5)

then

$$\text{st}_J(\lambda) = \begin{array}{cccccccc}
1 & 2 & 3 & -3 & -2 & -1 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
a & c & -c & -a
\end{array} \times \begin{array}{cccccccc}
1 & 2 & -2 & -1 \\
\bullet & \bullet & \bullet & \bullet \\
b & -b
\end{array} \in S_{[\pm 3]}(q) \times S_{[\pm 2]}(q)$$
Definition 3.5. Let J be an ordered D-set partition of $[\pm n]$. Define $U^D_J \subseteq U^D$, where

$$U^D_J = \{ x \in U^D : x_{ij} \neq 0 \text{ implies } i, j \text{ are in the same part of } J \}$$

The map in (3.3) can be extended to produce an isomorphism $\text{st}_J : U^D_J \to U^D_{2|A|}(q) \times U^D_{2|A^c|}(q)$ by reordering the rows and columns as in (3.4).

The restriction map on $\text{SC}^D_{2n}(q)$ is given by

$$\text{Res}_{\text{st}_J(U^D_J)}^{U^D} : \text{SC}^D_{2n}(q) \to \text{SC}^D_{2|A|}(q) \otimes \text{SC}^D_{2|A^c|}(q)$$

(3.6)

where $\text{Res}_{\text{st}_J(U^D_J)}^{U^D}(\zeta_U)(u) = \zeta_{U^D}(\text{st}_J^{-1}(u))$

for some ζ supercharacter of type A such that its restriction ζ_{U^D} to U^D is precisely χ. Also, in [14, Theorem 6.4], Diaconis and Isaacs prove that superclass functions of type A restrict to superclass functions. Putting these facts together we conclude that the restriction map sends superclass functions of type D to superclass functions.

Now, define the coproduct on supercharacters as

$$\Delta(\chi) := \sum_{J = (A|A^c), A \subseteq [\pm n], A = -A} \text{Res}_{\text{st}_J(U^D_J)}^{U^D}(\chi)$$

then we have the following proposition.

Proposition 3.6. Let λ be a $D_{2n}(q)$-partition. Then

$$\Delta(\kappa_\lambda) = \sum_{\mu, \nu} \kappa_{st_A(\mu)} \otimes \kappa_{st_{A^c}(\nu)}$$

summing over μ, ν such that $\lambda|_A = \mu$, $\lambda|_{A^c} = \nu$ for $A \subseteq [\pm n]$ and $A = -A$.

Proof. Let μ, ν be labelled D-partitions of $[\pm k], [\pm (n - k)]$, respectively. Let $x_{\mu \times \nu}$ be the superclass associated. Then for an ordered set partition $J = (A|A^c)$ of $[\pm n]$ and $\lambda \in D_{2n}(q)$ we have

$$\text{Res}_{\text{st}_J(U^D_J)}^{U^D}(\kappa_\lambda)(x_{\mu \times \nu}) = \begin{cases} 1 & \text{if } \lambda|_A = \text{st}_J^{-1}(\mu) \text{ and } \lambda|_{A^c} = \text{st}_J^{-1}(\nu) \\ 0 & \text{otherwise} \end{cases}$$
This means that \(\text{Res}_{st,Y}^U(J)(\kappa_\lambda)(x_\mu \times \nu) \neq 0 \) when \(st(J) = \mu \times \nu \). This concludes the proof.

Example 3.7. Let \(\lambda \in D_{12}(q) \) given by

\[
\lambda: \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & -6 & -5 & -4 & -3 & -2 & -1
\end{array}
\]

Then,

\[
\Delta(\kappa_\lambda) = \kappa_\lambda \otimes \kappa_\emptyset + \kappa_{\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & -6 & -5 & -4 & -3 & -2 & -1
\end{array}} + \kappa_{\begin{array}{cccccccc}
7 & 8 & 9 & 10 & 11 & 12 & -12 & -11 & -10 & -9 & -8 & -7
\end{array}} + \kappa_{\begin{array}{cccccccc}
13 & 14 & 15 & 16 & 17 & 18 & -18 & -17 & -16 & -15 & -14 & -13
\end{array}} + \kappa_{\begin{array}{cccccccc}
19 & 20 & 21 & 22 & 23 & 24 & -24 & -23 & -22 & -21 & -20 & -19
\end{array}} + \kappa_{\begin{array}{cccccccc}
25 & 26 & 27 & 28 & 29 & 30 & -30 & -29 & -28 & -27 & -26 & -25
\end{array}} + \kappa_{\begin{array}{cccccccc}
31 & 32 & 33 & 34 & 35 & 36 & -36 & -35 & -34 & -33 & -32 & -31
\end{array}}
\]

It is not hard to see that the coproduct is coassociative. Also, notice that some of the beauty of this coalgebra structure is that it is directly connected to representation theory, as is the case in type A. We now define a multiplication in the space \(SC^D \) as follows.

Definition 3.8. For \(\lambda, \mu \) labelled \(D \)-partitions of \([\pm k], [\pm (n-k)] \), respectively, define

\[
\kappa_\lambda \cdot \kappa_\mu := \sum_{\nu \in D_{2n}(q)} \kappa_\nu
\]

summing over all \(D_{2n}(q) \)-partitions \(\nu \) such that \(\nu|_{[\pm k]} = \lambda \) and \(\nu|_{[\pm (k+1,\ldots,n)]} = \mu \uparrow^k \)

where, for \(1 \leq i, j \leq n - k \)

\[
\mu \uparrow^k = \begin{cases}
 (k + i) \overset{a}{\overset{\circ}{\overset{\circ}{<}}} (k + j) & \text{if } i \overset{a}{\overset{\circ}{\overset{\circ}{<}}} j \in \mu \\
 (k + i) \overset{a}{\overset{\circ}{\overset{\circ}{<}}} (-k - j) & \text{if } i \overset{a}{\overset{\circ}{\overset{\circ}{<}}} -j \in \mu
\end{cases}
\]

Example 3.9. Denote \(-i\) by \(\overline{i} \), then

\[
\kappa_{\begin{array}{cccccccc}
1 & 2
\end{array}} \cdot \kappa_{\begin{array}{cccccccc}
3 & 4
\end{array}} = \kappa_{\begin{array}{cccccccc}
1 & 2 & 3 & 4
\end{array}} + \sum_{c \in F_q^*} \kappa_{\begin{array}{cccccccc}
5 & 6 & 7 & 8
\end{array}} + \sum_{c \in F_q^*} \kappa_{\begin{array}{cccccccc}
9 & 10 & 11 & 12
\end{array}} + \sum_{c \in F_q^*} \kappa_{\begin{array}{cccccccc}
13 & 14 & 15 & 16
\end{array}}
\]

12
Since we want to induce an algebra structure on SC^D, we need to prove that definition 3.8 is indeed a product in the sense that it should be associative. This will be shown once we introduce the P-basis. In order to motivate somehow this definition of the product, besides being a “natural” way of doing it, in type A the product structure is raised from the inflation map on superclass functions of that type. When trying to obtain the product from representation theory in type D, the analog inflation map in this case failed in the sense that superclass functions are not mapped to superclass functions anymore. For this reason, instead of deducing definition 3.8 from a representation-theory point of view, the product was directly defined in this way. Nevertheless, in proposition 3.13 we will see that the connection with representation theory remains strong. As a final remark, before proving the main result of this paper, this product differs from the one defined for SC in [1]. The difference is that here we do not concatenate λ and μ. Instead, we put μ in between λ^+ and λ^-. This resembles the product defined in [3, Section 3.5] for the Hopf monoid Pal of palindromic set compositions. In section 4.2 we point out that this supercharacter theory of type D, in particular, carries a Hopf monoid structure. Yet this Hopf monoid is different from the Hopf monoid Pal, since their coproduct structures are different. We will give a brief description of the Hopf monoid SC^D in section 4.2.

Next, we define a different basis for SC, in order to make computations easier.

Definition 3.10. Let λ, μ be $D_{2n}(q)$-partitions. We say that $\lambda \leq \mu$ if $\mathcal{A}(\lambda) \subseteq \mathcal{A}(\mu)$ where $\mathcal{A}(\lambda)$ denotes the set of arcs in λ.

Given λ, we denote by P_λ the superclass function defined as

$$P_\lambda := \sum_{\mu \geq \lambda} \kappa_\lambda.$$

From here, we see that $\{P_\lambda\}_{\lambda \in D_{2n}(q)}$ forms a basis for SC^D as $n \geq 0$. This basis is called P-basis.

Proposition 3.11. The P-basis multiplies and comultiplies as follows:

(a) For μ, ν labelled D-partitions of $[\pm k], [\pm (n - k)]$, respectively, we have

$$P_\mu \cdot P_\nu = P_{\mu \sqcup \nu}^{\uparrow k}$$

(b) For $\lambda \in D_{2n}(q)$ we have

$$\Delta(P_\lambda) = \sum_{\lambda=\mu \sqcup \nu} P_{st_A(\mu)} \otimes P_{st_A^c(\nu)}$$

summing over μ, ν such that $\lambda|_A = \mu$, $\lambda|_{A^c} = \nu$ for $A \subseteq [\pm n]$ and $A = -A$.

13
Proof. (a). The left hand side of (3.7) gives us

\[P_\mu \cdot P_\nu = \left(\sum_{\sigma \geq \mu} \kappa_\sigma \right) \cdot \left(\sum_{\delta \geq \nu} \kappa_\delta \right) = \sum_{\sigma \geq \mu} \sum_{\delta \geq \nu} \kappa_\sigma \cdot \kappa_\delta \]

Notice that the minimal element in this last equality corresponds to \(\kappa_{\mu \sqcup \nu} \uparrow^k \), where \(\sqcup \) stands for disjoint union, and every other term in each \(\kappa_\sigma \cdot \kappa_\delta \) is associated to a \(D_{2n}(q) \)-partition \(\tau \) such that \(\tau > \mu \sqcup \nu \uparrow^k \). On the other hand

\[P_{\mu \sqcup \nu} \uparrow^k = \sum_{\tau \geq \mu \sqcup \nu \uparrow^k} \kappa_\tau. \]

This concludes part (a). To prove part (b) notice that from the left hand side of 3.8 we have

\[\Delta(P_{\lambda}) = \Delta \left(\sum_{\delta \geq \lambda} \kappa_\delta \right) = \sum_{\delta \geq \lambda} \sum_{A = \emptyset} \kappa_{st_A(\tau)} \otimes \kappa_{st_A(\sigma)} \]

On the other hand, the right hand side of 3.8 gives us

\[\sum_{\lambda = \mu \sqcup \nu} P_{st_A(\mu)} \otimes P_{st_A(\nu)} = \sum_{\lambda = \mu \sqcup \nu} \sum_{\tau \geq \mu \sqcup \nu \uparrow^k} \kappa_{st_A(\tau)} \otimes \kappa_{st_A(\sigma)} \]

Now, every \(\delta \geq \lambda \) such that \(\delta = \tau \sqcup \sigma \) is such that \(\lambda = (\tau \cap \lambda) \sqcup (\sigma \cap \lambda) \). This last decomposition of \(\lambda \) can be written as \(\lambda = \mu \sqcup \nu \) and we see that \(\tau \geq \mu, \sigma \geq \nu \). Similarly, If \(\lambda = \mu \sqcup \nu \) then \(\delta = \tau \sqcup \sigma \) is such that \(\delta \geq \lambda \), for \(\tau \geq \mu, \sigma \geq \nu \).

The proposition follows.

\[\square \]

Notice that by the simplicity of the multiplication in the \(P \)-basis, we see that the definition 3.8 gives an associative operation. Indeed, for \(\lambda, \nu, \mu \) labelled \(D \)-partitions of \([\pm k], [\pm l], [\pm m] \), respectively, we have

\[(P_\lambda \cdot P_\mu) \cdot P_\nu = P_{\lambda \sqcup \mu \uparrow^k} \cdot P_\nu = P_{\lambda \sqcup \mu \uparrow^k \sqcup \nu \uparrow^k + l} = P_{\lambda \sqcup (\mu \sqcup \nu \uparrow^l \uparrow^k)} = P_\lambda \cdot P_{\mu \sqcup \nu \uparrow^l} = P_\lambda \cdot (P_\mu \cdot P_\nu). \]

Also, it follows that the space \(SC \) is free. The cofreeness is also guaranteed, following arguments analog to the ones exposed in [12], but since this is not too relevant for our main results we skip the details.
We have that SC^D is graded, connected, has a unit $\kappa_0 \in SC_0^D$ and a counit $\epsilon : SC \to \mathbb{C}$ obtained by taking the coefficient of κ_0. In order to get a bialgebra structure, as stated in the preliminaries, most of the compatibilities coming from the requirement on the maps m, u, Δ, ϵ are straightforward to check. The compatibility between the product and the coproduct is less obvious and is what will allow us to conclude the main result of this paper. Namely, we want to prove that $\Delta(P_\mu \cdot P_\nu) = \Delta(P_\mu) \cdot \Delta(P_\nu)$. Also, the uniqueness of the antipode is guaranteed by gradeness and connectedness. Now we are ready to prove the main theorem.

Theorem 3.12. The product and coproduct given in proposition 3.11 provides the space SC^D with a Hopf algebra structure.

Proof. We prove only the compatibility relation between the product and the coproduct as explained in the previous paragraph. Let $\lambda \in D_{2k}(q), \mu \in D_{2(n-k)}(q)$, then

$$\Delta(P_\lambda) \cdot \Delta(P_\mu) = \left(\sum_{\substack{\lambda = \tau_1 \sqcup \sigma_1 \\ B \subseteq [\pm k], B = -B}} P_{stB}(\tau_1) \otimes P_{stBc}(\sigma_1) \right) \left(\sum_{\substack{\mu = \tau_2 \sqcup \sigma_2 \\ C \subseteq [\pm (n-k)], C = -C}} P_{stC}(\tau_2) \otimes P_{stCc}(\sigma_2) \right)$$

$$= \sum_{\lambda = \tau_1 \sqcup \sigma_1} \sum_{\mu = \tau_2 \sqcup \sigma_2} P_{stB}(\tau_1) P_{stC}(\tau_2) \otimes P_{stBc}(\sigma_1) P_{stCc}(\sigma_2)$$

$$= \sum_{\lambda = \tau_1 \sqcup \sigma_1} \sum_{\mu = \tau_2 \sqcup \sigma_2} P_{stB}(\tau_1) P_{stC}(\tau_2) \otimes P_{stBc}(\sigma_1) P_{stCc}(\sigma_2) \quad (3.9)$$

On the other hand, we have

$$\Delta(P_\lambda \cdot P_\mu) = \Delta(P_\gamma)$$

$$= \sum_{\gamma = \tau \sqcup \mu \uparrow^k} P_{stA}(\tau) \otimes P_{stA^c}(\sigma) \quad \text{where } \gamma = \lambda \sqcup \mu \uparrow^k$$

$$= \sum_{\gamma = \tau \sqcup \mu \uparrow^k} P_{stA}(\tau) \otimes P_{stA^c}(\sigma) \quad \text{with } \gamma|_A = \tau, \gamma|_{A^c} = \sigma$$

$$(3.10)$$

Now, since γ is the disjoint union of λ and $\mu \uparrow^k$, then we can decompose τ and sigma so that

$$\tau = \tau_1 \sqcup \tau_2 \quad \sigma = \sigma_1 \sqcup \sigma_2$$

such that τ_1, σ_1 only intersect λ and similarly, τ_1, σ_1 only intersect $\mu \uparrow^k$. This decomposition induces a decomposition on the set $A = B \sqcup C$ with $B = -B$ and $C = -C$,.
so that the last equality in (3.10) becomes

\[\Delta(P_\lambda \cdot P_\mu) = \sum_{\gamma=(\tau_1 \cup \tau_2) \cup (\sigma_1 \cup \sigma_2)} P_{st_{B \cup C}}(\tau_1 \cup \tau_2) \otimes P_{st_{B \cup C \cup C^c}}(\sigma_1 \cup \sigma_2) \]

\[= \sum_{\gamma=(\tau_1 \cup \tau_2) \cup (\sigma_1 \cup \sigma_2)} P_{st_{B}}(\tau_1) \otimes P_{st_{C}}(\tau_2 \cup \sigma_1 \cup \sigma_2) \]

Putting together this last equality with equation (3.9), we can conclude that the desired compatibility holds.

This allows us to conclude that the space \(\mathbf{SC}^D \) is indeed a combinatorial Hopf algebra as defined in the preliminaries.

We want to point out that different definitions for combinatorial Hopf algebra can be given depending on the purposes. An alternative definition is as follows. A Hopf algebra \(\mathcal{A} \) is a combinatorial Hopf algebra if it is graded, connected and has a singled out character \(\zeta : \mathcal{A} \to \mathbb{K} \). This singled out character is given by the trivial character in the case when the Hopf structure on \(\mathcal{A} \) arises from representation theory (see [2]).

As mentioned in the introduction, the product structure on the space \(\mathbf{SC}^D \) has a very interesting behaviour in the supercharacter basis.

Proposition 3.13. Let \(\lambda \in D_{2n}(q) \) and \(\mu \in D_{2m}(q) \). Then,

\[\chi^\lambda \cdot \chi^\mu = \chi^{\lambda \cup \mu \cup n} \]

Proof. Let us consider the following expansions in the \(\kappa \) basis. Let \(\#nest_\mu^\lambda = |\{ k \prec l \in \mu^+ | i \prec k \prec l \prec j, i \prec j \in \lambda^+ \} | \) then by equation (3.2) we have

\[\chi^\lambda = \chi^\lambda(1) \left[\sum_{\alpha} \frac{1}{\#nest_\mu^\lambda} \prod_{i,j \in \lambda, i,j \in \alpha} \theta(ab) \kappa_{i,j} \right] \]
\[\chi'^{\mu} = \chi'^{\mu}(1) \left[\sum_{\beta} \frac{1}{q^{\#nest_\beta}} \prod_{i^e_j \in \mu, i^d_j \in \beta} \theta(cd)\kappa_\beta \right] \]

\[\chi^{\lambda \mu \uparrow^n} = \chi^{\lambda \mu \uparrow^n}(1) \left[\sum_{\gamma} \frac{1}{q^{\#nest_\gamma^{\lambda \mu \uparrow^n}}} \prod_{i^e_j \in \lambda \mu \uparrow^n, i^d_j \in \gamma} \theta(ef)\kappa_\gamma \right] \]

where the sum is over every \(\alpha, \beta, \gamma \) such that \(\chi^\lambda(x_\alpha), \chi^\mu(x_\beta) \chi^{\lambda \mu \uparrow^n}(x_\gamma) \) are non-zero, respectively. Here, \(x_\nu \) is the superclass representative corresponding to the partition \(\nu \), as before.

By using the previous expansions we get

\[\chi^\lambda \cdot \chi'^{\mu} = \chi^\lambda(1) \chi'^{\mu}(1) \left[\sum_{\alpha, \beta} \frac{1}{q^{\#nest_\alpha^{\lambda \mu \uparrow^n} + \#nest_\beta^{\lambda \mu \uparrow^n}}} \prod_{i^e_j \in \lambda \uparrow^n, i^d_j \in \alpha} \theta(ab)\theta(cd)\kappa_\alpha \cdot \kappa_\beta \right] \]

\[= \chi^{\lambda \mu \uparrow^n}(1) \left[\sum_{\gamma} \frac{1}{q^{\#nest_\gamma^{\lambda \mu \uparrow^n}}} \prod_{i^e_j \in \lambda \mu \uparrow^n, i^d_j \in \gamma |\pm n|} \theta(ab)\theta(cd)\kappa_\gamma \right] \]

\[= \chi^{\lambda \mu \uparrow^n}(1) \left[\sum_{\gamma} \frac{1}{q^{\#nest_\gamma^{\lambda \mu \uparrow^n}}} \prod_{i^e_j \in \lambda \mu \uparrow^n, i^d_j \in \gamma} \theta(ef)\kappa_\gamma \right] \]

\[= \chi^{\lambda \mu \uparrow^n} \]

\[\square \]

Although the analog of the inflation map of type \(A \) does not work in this case, in the sense that a similar projection map does not hold the wanted properties, this proposition indicates that certain "inflation" underlines the product structure in the supercharacter basis. This result gives a stronger connection of this combinatorial Hopf algebra with representation theory. Now the question that remains to be explored is, what representation theoretic functor is playing the role of inflation in this type? The author would be happy to hear any answer in this direction.

We finish this paper by giving a brief outline concerning the types \(B \) and \(C \).
4 Final comments

4.1 Type B and type C

Following the construction in [7], supercharacters and superclasses for types B and C are also indexed by labelled partitions of the corresponding type. The unipotent upper triangular matrices of type B is the group of $m \times m$ orthogonal matrices where $m = 2n + 1$ for some $n \in \mathbb{Z}_{\geq 0}$. We define $B_m(q)$-partitions as labelled set partitions on the set $\{1, \ldots, n, 0, -n, \ldots, -1\}$ satisfying the same properties as $D_{2n}(q)$-partitions with the additional property that we allow at most one arc of the form $i \overset{a}{\sim} 0$ together with $0 \overset{a}{\sim} -i$.

Unfortunately, any attempt from the author to construct a product on SC^B fails since dealing with odd-size matrices make impossible an embedding from $SC^B_{2k+1} \times SC^B_{2l+1}$ to $SC^B_{2(k+l)+1}$, although a different grading and suitable changes could make it possible. On the other hand, we have a structure of SC^D-module on SC^B, since it is clear that $SC^D_{2k} \times SC^B_{2l+1}$ embeds into $SC^B_{2(k+l)+1} \in SC^B$.

For unipotent upper triangular matrices of type C the situation is better. This type corresponds to the group of $2n \times 2n$ symplectic matrices and the combinatorial description for its supercharacter theory resembles the one for type D. In this case $C_{2n}(q)$-partitions are defined as in Definition 3.1 but we also allow arcs $i \overset{a}{\sim} -i$. Similar arguments can be used in this case, producing a similar definition for product and coproduct over the graded vector space SC^C endowing it with a Hopf algebra structure.

4.2 Forthcoming work

We remind that this paper has considered only the case when $\text{char}(\mathbb{F}_q) \geq 3$. The case $p = 2$ requires a different description of the elements of the group $U_{2n}^D(q)$. We want to understand this case as well, since this might allow us to have an unlabelled version of what we have done here.

On the other hand, a coarser version of the supercharacter theory of type D as exposed here could have some connection with the case $q = 2$. Namely, by lumping together conjugacy classes in $U_{2n}^D(q)$ through the action $(B_{2n}(q)AB_{2n}(q) + I_{2n}) \cap U_{2n}^D(q)$, where $B_{2n}(q)$ is the Borel subgroup of $GL_{2n}(q)$, $A \in u^D(q)$, gives a coarser superclass theory which does not depend on q (though the supercharacters do). Hence, the unlabelled version of the Hopf algebra constructed here would realize the version given by this super-theory. This is inspired by the work done in [10].

\footnote{Remind that in this paper the superclasses are given by the action $(U_{2n}(q)AU_{2n}(q) + I_{2n}) \cap U_{2n}^D(q)$}
Finally, we want to point out that types C and D not only have a Hopf algebra structure, a Hopf monoid structure can be provided too. Briefly, let the species \mathbf{SC}^D be such that for a finite set K

$$\mathbf{SC}^D[K] = \bigoplus_{\phi \in L[K]} \mathbf{SC}^{(\phi,D)}[K]$$

where $L[K]$ is the set of linear orders on K and $\mathbf{SC}^{(\phi,D)}[K]$ being the set of $D_{2|K|}(q)$-partitions that respect the order given by ϕ. In other words, let the set $K \sqcup \bar{K}$ be ordered by $\phi \cdot \bar{\phi}$ where \cdot denotes concatenation and \bar{K} is a second copy of K with $\bar{\phi}$ being the order of K reversed. Now, after drawing the arcs of λ on top of $K \sqcup \bar{K}$ and putting $\bar{\phi} = \phi \cdot \bar{\phi}$ we ask that if $i \mathrel{\overset{\phi}{\prec}} j \in \lambda$ then $i \leq_{\bar{\phi}} j$; also λ must satisfy the analog of condition (b) in Definition 3.1 replacing \prec by $\leq_{\bar{\phi}}$. Then we can check that for nonintersecting finite sets I, J the following maps

$$m_{I,J} : \mathbf{SC}^{(\phi,D)}[I] \otimes \mathbf{SC}^{(\tau,D)}[J] \to \mathbf{SC}^{(\phi \cdot \tau,D)}[I \sqcup J]$$
$$\Delta_{I,J} : \mathbf{SC}^{(\phi,D)}[I \sqcup J] \to \mathbf{SC}^{(\phi|I,D)}[I] \otimes \mathbf{SC}^{(\phi|J,D)}[J]$$

defined in analogy with the structure presented here, satisfy all the axioms required to make of the species \mathbf{SC}^D a Hopf monoid. All of this is done following [4] and it is part of a future paper by the author.

5 Acknowledgements

I would like to express my gratitude to my supervisor Nantel Bergeron for introducing me into the world of supercharacters and Hopf algebras. Also, I thank to Carlos André and Nat Thiem for fruitful conversations. Finally, many thanks to the reviewers for their significant comments that shed light on my work.

References

[1] M. Aguiar, C. André, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C. Vinroot, N. Yan and M. Zabrocki. Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Adv. Math. 229, Issue 4. (2012).

[2] M. Aguiar, N. Bergeron and F. Sottile. Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compositio Math. 142 Issue 01. (2006).

[3] M. Aguiar and A. Lauve Lagrange’s theorem for Hopf monoids in species. DMTCS Proc. AO, (2011).
[4] M. Aguiar, N. Bergeron and N. Thiem. Hopf monoids from class functions on unitriangular matrices. math.CO/arxiv:1203.1572.

[5] C. André. Basic characters of the unitriangular group. J. Algebra 175 No. 1. (1995).

[6] C. André and A.M. Neto. Supercharacters of the Sylow p-subgroups of the finite symplectic and orthogonal groups. Pacific J. Math. 239 No. 2. (2009).

[7] C. André and A.M. Neto. Supercharacters of finite unipotent groups of types B_n, C_n and D_n. J. Algebra. 305 (1) (2006) 394-429.

[8] C. André and A.M. Neto. A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups. J. Algebra 322 (2009).

[9] G. Belitskii and V. Sergeichuk. Complexity of matrix problems. Linear algebra appl. 361 (2003).

[10] N. Bergeron and N. Thiem. A supercharacter table decomposition via power-sum symmetric functions. math.CO/arxiv:12112.4901.

[11] N. Bergeron, T. Lam and H. Li. Combinatorial Hopf algebras and Towers of Algebras - Dimension, Quantization, and Functoriality. Algebra and Rep. theory. 15 No. 4. (2012) 675-696.

[12] N. Bergeron and M. Zabrocki. The Hopf algebras of symmetric functions and quasi-symmetric functions in non-commutative variables are free and cofree. J. Algebra Appl. 8 No. 4. (2009).

[13] R.W. Carter. Simple groups of Lie type. Pure App. Math. (1972).

[14] P. Diaconis and M. Isaacs. Supercharacters and superclasses for algebra groups. Trans. Amer. Math. Soc. 360 No. 5. (2008).

[15] E. Marberg. Actions and identities on set partitions. Electron. J. Combin. 19 No. 1, Research Paper 28. (2012).

[16] B. Sagan. The symmetric group. Representations, Combinatorial algorithms and symmetric functions. Springer. 2nd edition. (2001).

[17] N. Thiem. Branching rules in the ring of superclass functions of unipotent upper-triangular matrices. J. Algebraic Combin. 31 No. 2. (2010).

[18] N. Yan. Representation theory of the finite unipotent linear groups. Unpublished Ph.D. thesis, Department of Mathematics, University of Pennsylvania (2001).