Unfoldings of maps, the first results on stable maps, and results of Mather-Yau/Gaffney-Hauser type in arbitrary characteristic.

Dmitry Kerner

Abstract. Consider the (formal/analytic/algebraic) map-germs $\text{Maps}(X, (k^p, o))$. Let \mathcal{G} be the group of right/contact/left-right transformations. I extend the following (classical) results from the real/complex-analytic case to the case of arbitrary field k.

- A separable unfolding is locally trivial iff it is infinitesimally trivial.
- An unfolding is locally versal iff it is infinitesimally versal.
- The criterion of factorization of map-germs in zero characteristic. When is the map $X \to (k^p, o)$ \mathcal{G}-equivalent to the composition $X \to \tilde{X} \to (k^p, o)$ with $X \cong \tilde{X} \times (k^p, o)$?
- Criteria of trivialization of unfoldings over affine base.
- Fibration of X-orbits into \mathcal{G}-orbits.
- A map is locally stable iff it is infinitesimally stable.
- Stable maps are unfoldings of their genotypes.
- Stable maps are determined by their local algebras.
- Results of Mather-Yau/Scherk/Gaffney-Hauser type. How does the module $T^\mathcal{G}f$, or related algebras, determine the \mathcal{G}-equivalence type of f?

1. Introduction

1.1. Let $k \in \mathbb{R}, \mathbb{C}$ and consider k-analytic map-germs $(k^p, o) \to (k^p, o)$. These are studied up to the right (\mathcal{R}), contact (\mathcal{K}), and left-right (\mathcal{A}) equivalences. Among the cornerstones of Singularity Theory are the finite determinacy, the theory of unfoldings and the theory of stable maps. (See e.g. [A.G.V], [A.G.L.V], [Gr.Lo.Sh], [Martinet], [Mo. N.B].) An additional line of research was around the question “How is a map determined by its critical/singular/instability locus?” One way to answer this goes via the classical results of [Mather-Yau], [Gaffney-Hauser], [Scherk].

The classical approach relied heavily on vector fields integration. Initially numerous results could not be extended to the case “k is any field”, not even to the zero characteristic case. The study of \mathcal{R}, \mathcal{K} equivalences over an arbitrary field began in [Gre.Kr.90]. Many results on \mathcal{R}, \mathcal{K} are available by now, see e.g. [B.G.K.22], [B.K.16], [Gr.Ph.19], [Greuel.18] for further references. But the \mathcal{A}-case was untouched.

Let k be any field, let R_X denote the quotient ring of formal power series, $k[[x]]/J$, resp. analytic, $k[x]/J$, resp. algebraic, $k[x]/J$, see [21]. Accordingly we have the (formal/analytic/algebraic) scheme-germ, $X := \text{Spec}(R_X)$. Consider the (formal/analytic/algebraic) map-germs, $\text{Maps}(X, (k^p, o))$. The groups $\mathcal{R}, \mathcal{K}, \mathcal{A}$ act on $\text{Maps}(X, (k^p, o))$. In [Kerner.21] I have studied the group orbits, $\mathcal{G}f$, and their (image) tangent spaces, $T_{\mathcal{G}}f$. I have obtained various “linearization” results of type “$T_{\mathcal{G}}f$ vs $\mathcal{G}f$”.

The current paper is the next step. I construct the theory of unfoldings for $\text{Maps}(X, (k^p, o))$, the beginning of the theory of stable maps, and prove several local Torelli-type theorems (the Mather-Yau/Gaffney-Hauser theorems in zero and positive characteristic).

1.2. The structure/contents of the paper. R_X is one of $k[[x]]/J$, $k[x]/J$, $k[x]/J$ and $\mathcal{G} \in \mathcal{R}, \mathcal{K}, \mathcal{A}$. §2 sets the notations for the rings, maps of spaces, groups and their tangent spaces. For all the other definitions and results I refer to [Kerner.21].

Note: through this paper $T_{\mathcal{G}}f$ denotes the extended tangent space. (Classically one writes $T_{\mathcal{G}^0}f$, $T_{\mathcal{R}}f$, $T_{\mathcal{A}}f$.) The classical tangent space is $T_{\mathcal{G}^0}f$, for the filtration $\mathfrak{m}^n : R_X^{ep}$ on the space of maps. §3 sets the basic notions of unfoldings (over an arbitrary field): the pullback and \mathcal{G}-equivalence, the (infinitesimal) \mathcal{G}-triviality, the (infinitesimal) \mathcal{G}-versality and the (infinitesimal) stability. These are copied verbatim from the classical case.

A remark (to avoid any confusion):

Date: September 13, 2022 filename: A.equivalence.Unfoldings.1.tex.

I was supported by the Israel Science Foundation (grant No. 1910/18).
2.1. Rings and germs.

§ In the unfoldings one deforms only the map, not the source (i.e. \(X \) remains constant), unlike e.g. Mond-Montaldi.\[1\].

§ Except for \[1, 5\] we consider the germs of unfoldings, the unfolding base being \((\mathbb{k}', o)\). Therefore (unlike e.g. [Gr.Ng.16] or [Gr.Lo.Sh] pg.234) we work with versal unfoldings and do not introduce complete unfoldings.

§ treats the triviality of unfoldings.

§.1 gives examples showing that the classical Thom-levine criterion cannot hold in positive characteristic. Such pathological unfoldings are “\(\mathcal{G} \)-inseparable”. The relation to the (in)separability of the group orbit map is explained in \[4\].

§ contains the Thom-levine theorem, “A separable unfolding is locally trivial iff it is infinitesimally-trivial, i.e. \(\partial_t f_t \in T_{\mathcal{G}(t)} f_t \)”. (To repeat, in zero characteristic all unfoldings are separable.)

§ gives an application of this triviality criterion to the factorization, in char\((k) = 0\):

i. If the germ \(X \) admits \(r \) vector fields that are linearly independent at the origin then \(X \cong \tilde{X} \times (\mathbb{k}', o) \).

ii. Moreover, suppose a map \(f : X \to (\mathbb{k}^p, o) \) “does not see” these vector fields, i.e. \(T_{\mathcal{G}} f = T_{\mathcal{X}(o)} f \), resp. \(T_{\mathcal{X}} f = T_{\mathcal{X}(o)} f + T_{\partial} f \). (See \[2,2\].) Then \(f \) factorizes as \(X \to \tilde{X} \to (\mathbb{k}^p, o) \), i.e. is \(\mathcal{G} \)-equivalent to the pullback of a map \(\tilde{X} \to (\mathbb{k}^p, o) \).

Here part a. is well known for \(\mathbb{C} \)-analytic germs, but the algebraic version (over \(k(\langle x \rangle / j) \)) seems new. Part b. seems new in all cases.

§ is about the rank of a map \(f : X \to (\mathbb{k}^p, o) \) and the corresponding “preliminary form”, splitting \(f \) into its linear part and the part of order \(\geq 2 \).

§ The unfolding trivializations of \[1, 2\] are local, they hold over the germ of parameter space \((\mathbb{k}'_!, o)\).

In the \(k \)-analytic case one gets the trivialization over small balls, \(o \in \text{Bal}_r \subseteq \mathbb{k}' \). In the algebraic case \((R_X = k(\langle x \rangle / j))\) one gets the trivialization over étale neighborhoods of \(o \in \mathbb{k}' \). But in some cases one works over a global base, e.g. \(R_X \) is one of \(k[t][\langle x \rangle / j], k[t] / (\langle x \rangle / j), k[t](\langle x \rangle / j) \). Then one wants the global trivialization, over the whole \(k' \). This is possible if one restricts to the filtration-unipotent subgroup \(\mathcal{G}(1) < \mathcal{G} \). In \[1, 5\] we prove: If \(\partial_t f_t \in T_{\mathcal{G}(1)} f_t \) then the (separable) unfolding \((f_t, t)\) is globally trivial.

The weaker condition \(\partial_t f_t \in T_{\mathcal{G}(1)} f_t \) implies the weaker statement: all the fibres are \(\mathcal{G} \)-equivalent.

§ treats the (local) versality of unfoldings.

§ gives the pre-normal form: any unfolding \((f_t, t)\) is formally \(\mathcal{G} \)-equivalent to the unfolding \((f_o + \sum a_j(t) v_j, t)\), where \(\{v_\bullet\} \) go to the generators of the \(k \)-vector space \(T_{\mathcal{G}} f_o \).

§ As a simple corollary one gets: an unfolding is versal iff it is infinitesimally versal.

§ Recall that the orbit of contact group, \(\mathcal{K}f \), is essentially larger than that of the left-right group, \(\mathcal{A}f \). Hence several old questions: “How does a \(\mathcal{A} \)-orbit split into \(\mathcal{A} \)-orbits?”, “When do these orbits coincide?”, “For which maps is \(\mathcal{A}f \subset \mathcal{K}f \) an open dense subset?”. In \[5, 3\] we address the local version: How does a \(\mathcal{K} \)-trivial unfolding split into a family of \(\mathcal{A} \)-unfolding?

§ treats the global version: “How does a \(\mathcal{K} \)-orbit split into a family of \(\mathcal{A} \)-orbits?”.

§ extends several results of Mather on stable maps to the maps \(X \to (\mathbb{k}^p, o) \), in arbitrary characteristic.

§.1 A map is locally stable iff it is infinitesimally stable, i.e. \(T_{\mathcal{A}} f = R_X^{\text{op}} \).

§.2 Stable maps are unfoldings of their genotypes, i.e. each stable map is \(\mathcal{A} \)-equivalent to \((f_o + \sum u_i v_i, u)\), where the elements \(\{v_\bullet\} \) generate the vector space \((x) \cdot T^1 f_o \).

§.3 Stable maps are determined by their local algebras. Namely, two stable maps are \(\mathcal{A} \)-equivalent iff their genotypes are \(\mathcal{A} \)-equivalent.

§ extends the classical results of Mather-Yau, Gaffney-Hauser,\[85\], Scherk,\[83\] to the case of \(k \) of zero characteristic, and establishes the corresponding versions in positive characteristic. For isolated hypersurface singularities \((p = 1, R_X = k[[x]] \) and \(\mathcal{G} \in \mathcal{A} \) this was done in [Gr.Ph.17]. Our versions \((p \geq 1, R_X \) one of \(k[[x]] / j, k(\langle x \rangle / j), k(\langle x \rangle / j) \), and \(\mathcal{G} \in \mathcal{A}, \mathcal{K}, \mathcal{A} \)) do not assume that the singularity is isolated. Moreover, the char\((k) > 0\) version is essentially stronger than that of [Gr.Ph.17].

2. Notations and conventions

Below we recall only the main notions. See [Kerner.21] \$2,3\] for the full exposition.

2.1. Rings and germs.

i. In this paper \(R_X \) is one of the rings \(k[[x]] / j, k(\langle x \rangle / j), k(\langle x \rangle / j) \). Here:

- \(k \) is any field, for \(k(\langle x \rangle / j) \) we assume \(k \) to be normed and complete with respect to its norm.
• $x = (x_1, \ldots, x_n)$ and $J \subseteq (x)^2$.
We denote the images of $\{x_i\}$ in R_X by the same letters, this causes no confusion. E.g. the maximal ideal $m \subset R_X$ is generated by $\{x_i\}$, sometimes we write $m = (x)$.

When $J \neq 0$ we always assume the following jet$_0$-condition. Take a derivation $\xi \in \text{Der}_X(R_X)$, present it as $\sum c_i(x)\partial_{x_i}$. Suppose ξ vanishes at the origin to the second order, i.e. $c_2(x) \in (x)^2 \subset R_X$. If R_X is regular, i.e. $J = 0$, then the map $\Phi : x \to x + \xi(x)$ defines a coordinate change, $\Phi \in \text{Aut}_k(R_X)$. In the non-regular case the map $x \to x + \xi(x)$ is not an automorphism of R_X.

jet$_0$ assumption: any derivation $\xi \in \text{Der}^{(1)}_k(R_X)$ induces an automorphism $x \to x + \xi(x) + h(x)$, where $h(x)$ is a higher order term in the following sense: $(h(x)) \subseteq ((x_1^\\ast(x)))^2 \subset R_X$.

This jet$_0$-assumption holds if $\text{char}(k) = 0$, [B.G.K.22]. But in positive characteristic this is a non-trivial condition.

ii. The source of a map is the scheme-germ $X := \text{Spec}(R_X)$. The target is the germ $(k^p, o) := \text{Spec}(R_Y)$, where R_Y is $k[[y]]$, resp. $k\{y\}$, resp. $k(y)$. Fix some local coordinates in the target (k^p, o), then the space of maps $\text{Maps}(X, (k^p, o))$ is identified with the R_X-module $m \cdot R_X^{\text{pp}}$.

Given a map $f : X \to (k^p, o)$ take its dual $f^* : R_Y \to R_X$ and $f'^* : R_Y^{\text{pp}} \to R_X^{\text{pp}}$. For a submodule $\Lambda_Y \subset R_Y^{\text{pp}}$ we distinguish between the image $f^*(\Lambda_Y) \subset R_X^{\text{pp}}$ and the pullback $f'^*(\Lambda_Y) := R_X \times f'^*(\Lambda_Y) \subset R_X^{\text{pp}}$.

iii. To work with deformations/unfoldings we take \mathbb{K} as one of the rings $k[[t]]$, $k\{t\}$, $k(t)$, here $t = (t_1, \ldots, t_r)$. Accordingly we extend the k-algebras R_X, R_Y to the \mathbb{K}-algebras, R_X, t is one of $\mathbb{K}[[x]]/\langle x \rangle$, $\mathbb{K}\{x\}/\langle x \rangle$, and R_Y, t is one of $\mathbb{K}\{y\}$, $\mathbb{K}\{y\}$, $\mathbb{K}(y)$.

iv. We often use the Nakayama lemma over a local ring: if $M = C + m \cdot M$ (for a finitely generated M-module and its subset C) then $M = C$.

v. The nested version of Artin approximation, [Ronel.18, §5.2].

2.2. **The groups $\mathcal{G} \circ \text{Maps}(X, (k^p, o))$ and tangent spaces $T_{\mathcal{G}}$.**

i. The group of right equivalences consists of the coordinate changes in the source, $\mathcal{B} := \text{Aut}_X := \text{Aut}_k(R_X)$, the action $\mathcal{B} \circ \text{Maps}(X, (k^p, o))$ is given by $f \to \Phi_X(f) := f \circ \Phi_X^{-1}$.

Similarly the group of left equivalences, $\mathcal{L} := \text{Aut}_k(R_Y) \circ \text{Maps}(X, (k^p, o))$, acts by $f \to \Phi_Y(f)$.

Recall that the orbits of the contact group, $\mathcal{K} := \mathcal{G} \times \mathcal{B}$, coincide with the orbits of a much smaller, $\mathcal{K}^\text{fin} := \text{GL}(p, R_X) \times \text{Aut}_X$, see [Kerner.21, §3.2].

When working with families, i.e. $R_{X,t}, R_{Y,t}$, are \mathbb{K}-algebras, we take the \mathbb{K}-linear automorphisms, $\text{Aut}_{X,t} := \text{Aut}_k(R_{X,t}), \text{Aut}_{Y,t} := \text{Aut}_k(R_{Y,t})$.

The tangent spaces to the groups $\mathcal{B}, \mathcal{K}, \mathcal{A}$ are defined (and studied) in [Kerner.21, §3]. As we mentioned in [17,2] $T_{\mathcal{G}}$ denotes the extended tangent space:

$T_{\mathcal{G}} := \text{Der}_X f, \quad T_{\mathcal{L}} := f^*\left(R_Y^{\text{pp}}\right), \quad T_{\mathcal{B}} := f^*\left(R_X^{\text{pp}}\right), \quad T_{\mathcal{A}} := T_{\mathcal{B}} + f^* \cdot R_X^{\text{pp}}, \quad T_{\mathcal{G}} := T_{\mathcal{B}} + T_{\mathcal{L}} + T_{\mathcal{A}}$.

ii. Take the filtration $I^\ast \cdot R_X^{\text{pp}}$ on $\text{Maps}(X, (k^p, o)) \cong m \cdot R_X^{\text{pp}}$. We get the associated filtrations, the submodules $T_{\mathcal{G}} = T_{\mathcal{G}}(-1) \supseteq T_{\mathcal{G}}(-0) \supseteq T_{\mathcal{G}}(1) \supseteq \cdots$ and the submodules $T_{\mathcal{G}} := T_{\mathcal{G}}(0) \supseteq T_{\mathcal{G}}(0) \supseteq T_{\mathcal{G}}(1) \supseteq \cdots$.

Here:

$T_{\mathcal{G}}(0) := \{\xi \in \text{Der}_X \mid \xi(I^\ast) \subseteq I^{i+j} \ast \forall \ast \geq 0\}, \quad T_{\mathcal{A}}(0)sf := f^*((y)^{i+j} \ast R_Y^{\text{pp}}), \quad T_{\mathcal{B}}(0)sf := T_{\mathcal{B}}(0)sf + f^* \cdot R_X^{\text{pp}}$.

E.g. if R_X regular (i.e. $J = 0$), and $I = m$, then the space $T_{\mathcal{G}}(0)$ is the “classical” tangent space.

iii. Take a \mathcal{K}-finite map $f \in m \cdot R_X^{\text{pp}}$. Fix some elements $\{v_i\}$ in $m \cdot R_X^{\text{pp}}$ that go to a basis of the k-vector space $m \cdot T_{\mathcal{G}}(0)sf$. Thus $\text{Span}_k \{v_i\} + T_{\mathcal{G}}sf + f \cdot R_X^{\text{pp}} + k^p = R_X^{\text{pp}}$. The following presentation is used often.

Lemma 2.1. a. $\text{Span}_{\text{R}_X} \{v_i\} + T_{\mathcal{G}}sf = R_X^{\text{pp}}$.

b. If $(f) \subseteq m^2 \subset R_X$ then $\text{Span}_{\text{R}_X} \{v_i\} + T_{\mathcal{G}}sf + T_{\mathcal{G}}sf \cap m = m \cdot R_X^{\text{pp}}$.

Proof. a. We have $(\text{Span}_{\text{R}_X} \{v_i\} + T_{\mathcal{G}}sf + f \cdot R_X^{\text{pp}}) / T_{\mathcal{G}}sf = R_X^{\text{pp}} / T_{\mathcal{G}}sf \subset R_X^{\text{pp}} / T_{\mathcal{G}}sf$. Consider $R_X^{\text{pp}} / T_{\mathcal{G}}sf$ as an R_Y-module. It is finitely generated, because f is \mathcal{K}-finite, [Kerner.21, §3]. Therefore (by Nakayama over R_Y) we get $\text{Span}_{\text{R}_X} \{v_i\} + T_{\mathcal{G}}sf / T_{\mathcal{G}}sf = R_X^{\text{pp}} / T_{\mathcal{G}}sf$. Hence $\text{Span}_{\text{R}_X} \{v_i\} + T_{\mathcal{G}}sf = R_X^{\text{pp}}$.

Now b. follows from a.
2.3. Changing the base field. Let R_X be one of $k[[x]]/J$, $k[x]/J$, $k(x)/J$ and take a (ny) field extension $k \mapsto \bar{K}$. Take the ring extension (in the formal case) $R_{X,K} := \bar{K}[[x]]/J$.

Given $\mathcal{G} \in \mathcal{R}, \mathcal{X}, \mathcal{A}$ we get the group \mathcal{G}_K, e.g. $\mathcal{G}_K := \text{Aut}_K(R_{X,K})$. Take the filtration $M_* := I^* \cdot R_{X,K}^{\mathbb{Z}_p}$.

Lemma 2.2. Let $R_X = k[[x]]/J$ for $\mathcal{G} = \mathcal{A}$ or $R_X = k[x]/J$, $k(x)/J$ for $\mathcal{G} \in \mathcal{R}, \mathcal{X}$. Take two maps $f_0, f_1 \in m \cdot R_{X,K}^{\mathbb{Z}_p}$.

1. Suppose $\text{char}(k) = 0$. Let $j \geq 1$. If $f \not\in \mathcal{G}_k$ then $f \not\sim f_0$.

2. Suppose either the algebraic closure \bar{k} is uncountable or (char$(k) = 0$ and $\sqrt{t} = m$). Let $j \geq 1$.

If $f_0 \not\in \mathcal{G}_k$ then $f_0 \not\sim f_1$.

Proof. It is enough to consider only the case of $R_X = k[[x]]/J$. For the rings $k(x)/J$, $k(x)/J$ and the groups $\mathcal{G} \in \mathcal{R}, \mathcal{X}$ one invokes the Artin approximation, §2.1

1. Suppose $g_k f_0 = f_1$ for some $g_k \in \mathcal{G}_k^{(1)}$. Present this group element as the exponential from the tangent space, $g_k = e^{\xi_k}$, here $\xi_k \in T_{\mathcal{G}_k} := \mathcal{G} \otimes T_{\mathcal{G}_1}$. (See e.g. [B.G.K.22 §3.2].) One has $\text{ord}(\xi_k(f)) = \text{ord}(f) + d$ for some $d \geq 1$. Therefore $e^{\xi_k} f - f = \xi_k f \in \mathcal{G} \otimes M_{\text{ord}(f) + d + 1}$. As $e^{\xi_k} f, f \in R_{X,K}^{\mathbb{Z}_p}$, we get $\xi_k f \in R_{X,K}^{\mathbb{Z}_p} + \mathcal{G} \otimes M_{\text{ord}(f) + d + 1}$. Pass to the quotient vector space, (3)

$$[\xi_k f] \in R_{X,K}^{\mathbb{Z}_p} + \mathcal{G} \otimes M_{\text{ord}(f) + d + 1} \subset \mathcal{G} \otimes R_{X,K}^{\mathbb{Z}_p} / \mathcal{G} \otimes M_{\text{ord}(f) + d + 1}.$$

Recall the general fact: for a vector subspace $V_k \subset W_k$ one has $(\mathcal{G} \otimes V_k) \cap W_k = V_k$. Therefore $\xi_k f = (I_{\mathcal{G}_1} f) + \mathcal{G} \otimes M_{\text{ord}(f) + d + 1}$. Thus we can expand $\xi_k = \xi_d + \xi_{d+1}$, where $\xi_d \in T_{\mathcal{G}_1}, \xi_{d+1} \in \mathcal{G} \otimes T_{\mathcal{G}_1}$, and $\text{ord}(\xi_d f) = \text{ord}(f) + d$, $\text{ord}(\xi_{d+1} f) \geq \text{ord}(f) + d + 1$. Replace f by $e^{-\xi_d} f$ and iterate.

Eventually we get the infinite product $g := \lim_j (e^{\xi_1} \ldots e^{\xi_1}) \in \mathcal{G}^{(1)}$. We claim: this limit exists. Indeed, $\xi_d f \in T_{\mathcal{G}_1} f \cap I^d \cdot R_{X,K}^{\mathbb{Z}_p}$. Then by the Artin-Rees type property, [Kerner 21 §6], we get: $\xi_d f \in T_{\mathcal{G}_1} f$, with $\lim_d j d = \infty$.

Altogether we have $f = g \cdot f$. This proves the statement for $R_X = k[[x]]/J$.

2. (We show only the case of \mathcal{A}-equivalence, the other cases are similar.) We should resolve the condition $\Phi_X \circ f_0 \circ \Phi_X = f_1$. Take the Taylor expansions, $\Phi_X(x) = \sum_{|m| \geq 1} C_m(x)^m$ and $\Phi_Y(y) = \sum_{|y| \geq 1} C_m(y)^m$. Here m is the multi-index, and $\{C_m(x)\}, \{C_m(y)\}$ are unknowns. By comparing the coefficients of the monomials, the condition $\Phi_X \circ f_0 \circ \Phi_X = f_1$ (and $\Phi_X(J) = J \subset k[[x]]$) is transformed into a countable system of polynomials equations, $P_j \{C_m(x)\}, \{C_m(y)\} = 0$.

Each polynomial here is in a finite number of variables.

This system is solvable over \bar{k}. We claim: each finite subsystem of $\{P_j \{C_m(x)\}, \{C_m(y)\} = 0\}$ is solvable over \bar{k}. Indeed, this subsystem defines a subscheme in an affine space over \bar{k}. If this finite subsystem is not solvable then this subscheme has no points over \bar{k}. By Hilbert Nullstellensatz we get: the defining ideal of this subscheme is the whole polynomial ring of the affine space. And then this finite subsystem can have no solutions over \bar{k}.

Finally we apply the assumptions on k.

- Suppose k is uncountable. In this case a countable system of polynomial equations over \bar{k} is solvable iff each finite subsystem is solvable, [Popescu-Rond 19 Theorem 5]. Thus the solvability over \bar{k} implies that over k.

- If char$(k) = 0$ and $\sqrt{t} = m$, then it is enough to take only finite expansions in $\Phi_X(x) = \sum_{|m| \geq 1} C_m(x)^m, \Phi_Y(y) = \sum_{|y| \geq 1} C_m(y)^m$. Resolving the corresponding equations one gets $f \not\sim f_0$ with $f \not\in \mathcal{G}_k$. Now apply part 1.

Remark 2.3. The first statement fails in positive characteristic. For example, let $f(x) = x^p \in k[x]$, where char$(k) = p$. Then $x^p \not\in \mathcal{A} R x^p + ax^{2p}$ for any $a \in k$. On the other hand, suppose the Frobenius morphism is non-surjective (i.e. the field k is non-perfect). Then $x^p \not\in \mathcal{A} x^p + ax^{2p}$ for any $a \in k \setminus k^p$.

3. The basic notions of unfolding

Let R_X be one of $k[[x]]/J, k[x]/J, k(x)/J$, accordingly take k and $R_{X,A}$, see §2.1
3.1.

Definition 3.1. An unfolding of a map \(f : X \to (k^p, o) \) is the map \(F : X \times (k^r, o) \to (k^p, o) \times (k^r, o) \) of the form \(F(x, t) = (f_t(x), t) \), i.e. an element \((f_t, t) \in (m + (t)) \cdot R^{\infty}_{X,t}\), satisfying \(f_0 = f \).

Take the actions \(\mathcal{R}, \mathcal{L} \circ m \cdot R^{\infty}_{X} \). Accordingly we have the actions \(\mathcal{R}_t, \mathcal{L}_t \circ (m + (t)) \cdot R^{\infty}_{X,t} \), where
\[
(4) \quad \mathcal{R}_t := \{ \Phi_{X,t} | \Phi_{X,o} = Id_X \} < \text{Aut}_K(R_{X,t}), \quad \mathcal{L}_t := \{ \Phi_{Y,t} | \Phi_{Y,o} = Id_Y \} < \text{Aut}_K(R_{Y,t}).
\]

Geometrically we have the coordinate changes \(\mathcal{R}_t \circ X \times (k^r, o) \) and \(\mathcal{L}_t \circ (k^{p+r}, o) \) that restrict to identities on the central fibres \(X \times \{ o \}, k^r \times \{ o \} \), and preserve all the \(t = \text{const} \) slices, \(X \times \{ t \}, (k^p, o) \times \{ t \} \).

Equivalently: the elements of \(\mathcal{R}_t, \mathcal{L}_t \) are unfoldings of identity maps, \((x, t) \to (x, t)\) and \((y, t) \to (y, t)\).

Similarly one extends the groups \(\mathcal{A}, \mathcal{K}, \mathcal{A}^{lin}_t = GL(p, R_X) \times \mathcal{R} \) to:
\[
(5) \quad \mathcal{A}_t := \mathcal{X}_t \times \mathcal{R}_t \circ (x, t) \cdot R^{\infty}_{X,t}, \quad \mathcal{K}_t := \mathcal{A}_t \times \mathcal{A}^{lin}_t \circ (x, t) - \text{trivial}. \quad \mathcal{X}_t := GL(p, R_X) \times \mathcal{R}_t \circ (x, t) \cdot R^{\infty}_{X,t}.
\]

These groups act on families of maps, \(\mathcal{G}_t \circ \text{Maps}(X \times (k^r, o), (k^{p+r}, o)) \). Here the groups \(\mathcal{C}_t, GL(p, R_X) \) preserve the origin of \((k^p, o)\) (for each \(t \)). The action \(\mathcal{A}_t \) (resp. \(\mathcal{L}_t \)) does not preserve the origin of \((k^n, o)\) (resp. \((k^p, o)\)), i.e. \(\Phi_{X,t}(x) \notin (x) \) and \(\Phi_{Y,t}(y) \notin (y) \). To preserve the origin(s) one considers the subgroups \(\mathcal{G}_t^{(o)} \) and subspaces \(T^{(o)}_{\mathcal{A}_t} \) for the filtration \((x)^*\), see \([22]\).

The actions of \(\mathcal{A}_t, \mathcal{X}_t \times \mathcal{R}_t \) are t-linear. The actions of \(\mathcal{A}_t, \mathcal{L}_t, \mathcal{A}_t \) are not t-linear (neither additive nor k-multilinear).

For \(R_X = k[x] \) (with \(k \in R, C \)) or \(C^\infty(R^n, o) \), we get the classical unfolding notions. The map is \((k^n, o) \xrightarrow{T} (k^p, o)\) and its t-unfolding is \((k^n \times k^r, o) \xrightarrow{T} (k^p \times k^r, o), (x, t) \to (f_t(x), t)\).

The (extended) tangent spaces to these groups are:
\[
(6) \quad T_{g_t} := \text{Der}_K(R_X, t), \quad T_{g_t} := \text{Der}_K(R_{Y,t}), \quad T_{\mathcal{A}_t} := T_{\mathcal{L}_t} \oplus T_{g_t}, \quad T_{\mathcal{X}_t} := T_{\mathcal{A}_t} \oplus \text{Mat}_{p \times p}(R_X, t).
\]

Accordingly we have the image tangent spaces \(T\mathcal{G}_t f_t \subseteq \mathcal{R}_{X,t}^{\infty} \) and \(T\mathcal{G}_t F \subseteq \mathcal{R}_{X,t}^{\infty} \).

The standard notions of unfoldings are introduced (verbatim) from the classical case, \([A.C.Y.], [A.C.L.V.2], [Mo. N.B. 4,5], [Martinet], Chapter XIV\]. Let \(\mathcal{I} \) be one of \(\mathcal{R}, \mathcal{K}, \mathcal{A} \), accordingly \(\mathcal{G}_t \in \mathcal{R}_t, \mathcal{K}_t, \mathcal{A}_t \).

Definition 3.2. 1. Two unfoldings \(F, \tilde{F} \in (m + (t)) \cdot R_{X,t}^{\infty} \) of \(f \in m \cdot R_X^{\infty} \) are called \(\mathcal{G} \)-equivalent if \(g_t \cdot f_t = \tilde{f}_t \) for some \(g_t \in \mathcal{G}_t \).

2. \(a \) An unfolding \(F \) is called \(\mathcal{G} \)-trivial if it is \(\mathcal{G} \)-equivalent to the constant unfolding, i.e. \(F \sim (f_0, t) \).

3. An unfolding \(F \) is called infinitesimally-\(\mathcal{G} \)-trivial if \(\text{Span}_k(\partial_{t_1} f_t, \ldots, \partial_{t_n} f_t) \subseteq T\mathcal{G}_t f_t \).

4. A map \(f \in \text{Maps}(X, (k^p, o)) \) is called \(\mathcal{A} \)-stable if all its unfoldings are \(\mathcal{A} \)-trivial.

A map \(f \in \text{Maps}(X, (k^p, o)) \) is called infinitesimally-\(\mathcal{G} \)-stable if \(T\mathcal{G} f = R^{\infty}_{X,t} \).

5. The pull-back of an unfolding \((f_t(x), t) \in (m + (t)) \cdot R_{X,t}^{\infty} \) via the map \(\phi : (k^r_t, o) \to (k^r, o) \) is the unfolding \((f_t(x), t) \in (m + (t)) \cdot R_{X,t}^{\infty} \). Here \(t \) is the map \(\phi^\ast \) for the map \(\phi^\ast : k^r_t \to k^r \).

An unfolding \(F \in (m + (t)) \cdot R_{X,t}^{\infty} \) of \(f \) is called \(\mathcal{G} \)-versal if any other unfolding of \(f \) is \(\mathcal{G} \)-equivalent to a pullback of \(F \).

An unfolding \(F \in (m + (t)) \cdot R_{X,t}^{\infty} \) of \(f \) is called infinitesimally-\(\mathcal{G} \)-versal if
\[
\text{Span}_k(\partial_{t_1} f_t|_{t=0}, \ldots, \partial_{t_n} f_t|_{t=0}) + T\mathcal{G} f_0 = R^{\infty}_{X,t}.
\]

Namely, the elements \(\partial_{t_1} f_t|_{t=0}, \ldots, \partial_{t_n} f_t|_{t=0} \) are sent to generators of the vector space \(T^1_{\mathcal{G}} f := R^{\infty}_{X,t} / T\mathcal{G} f_0 \).

Remark 3.3. i. The stability notions (in part 3) are introduced for \(\mathcal{A} \)-equivalence only. They are not useful for \(\mathcal{R}, \mathcal{K} \) equivalences. Indeed, any infinitesimally \(\mathcal{R} \) or \(\mathcal{K} \)-stable map is necessarily equivalent to \(f(x) = (x_1, \ldots, x_p) \). (Thus in particular \(p \leq n \).)

ii. These definitions are over local rings. Geometrically one works in the infinitesimal neighborhood of \(o \in X \). For the ring \(k[x]/j \) one can pass (in the standard way) to small neighborhoods. E.g., suppose the unfolding \(F \) is trivial, i.e. \(F \sim (f_0, t) \). Then there exist small balls, \(Ball_\varepsilon \subseteq X \) and \(o \in Ball_\varepsilon \subseteq k^r \), with \(0 < \delta \ll \varepsilon \), and an analytic family of elements \(\{g_t \in \mathcal{G}_t\}_{t \in Ball_\delta} \), satisfying (in \(Ball_\varepsilon \)): \(g_t f_t = \tilde{f}_t \) for each \(t \in Ball_\delta \).
For the ring $k(x)/j$ the small neighborhoods are the étale covers. If F is \mathcal{G}-trivial then there exists an étale map $U \xrightarrow{\phi} k_{r_1}$, with $\phi(U)$ a Zariski open neighborhood of $o \in k^r$, such that the pullback $\phi^*(F) = (f_t(i), i)$ is (globally) trivial over U.

iii. Take two maps $f_o, f_t \in Maps(X, (k^p, o))$ and their unfoldings F, \tilde{F}. If $F \simeq \tilde{F}$ (as unfoldings) then $f_o \simeq \tilde{f}_o$.

3.2.

Lemma 3.4. The conditions of (infinitesimal) \mathcal{G}-triviality, (infinitesimal) \mathcal{A}-stability, (infinitesimal) \mathcal{G}-versality are preserved under the \mathcal{G}-equivalence of unfoldings.

Namely, if $F \simeq \tilde{F}$, and F has one of these properties, then so does \tilde{F}.

Proof. The invariance of the triviality/stability/versality under \mathcal{G}-equivalence is tautological.

- (infinitesimal \mathcal{G}-triviality) We prove: the condition $\partial_t f_t \in T_{\mathcal{G}_t} f_t$ is preserved under \mathcal{G}_t-transformations, i.e. $\partial_t(g \cdot f_t) \in T_{\mathcal{G}_t}(g \cdot f_t)$ for any $g \in \mathcal{G}_t$.

Suppose $J = 0$. Below f is a power series in x, while f' denotes the x-derivative.

- The R-case. We should prove: $\partial_t(\Phi_{X,t}(f_t)) \in T_{\mathcal{G}_t}(\Phi_{X,t}(f_t))$. First we verify: $\Phi_{X,t}(T_{\mathcal{G}_t} f_t) = T_{\mathcal{G}_t}(\Phi_{X,t}(f_t))$. Then the statement.

- The \mathcal{A}-case. Assuming $\partial_t f_t \in T_{\mathcal{G}_t} f_t$ we have:

\begin{equation}
\partial_t U \cdot (f_t \circ \Phi_{X,t}) = (\partial_t U) \cdot (f_t \circ \Phi_{X,t}) + U \cdot \partial_t f_t \circ \Phi_{X,t} + U \cdot f'_t \circ \Phi_{X,t} \cdot \partial_t \Phi_{X,t} \in T_{\mathcal{A}_t}(U \cdot (f_t \circ \Phi_{X,t})).
\end{equation}

- The \mathcal{G}-case. Assuming $\partial_t f_t \in T_{\mathcal{G}_t} f_t$ we have:

\begin{equation}
\partial_t(\Phi_{Y,t} \circ f_t \circ \Phi_{X,t}) = (\partial_t \Phi_{Y,t})(f_t \circ \Phi_{X,t}) + \Phi'_{Y,t}(f_t \circ \Phi_{X,t}) \cdot \partial_t f_t \circ \Phi_{X,t} + \Phi'_{Y,t}(f_t \circ \Phi_{X,t}) \cdot f'_t \circ \Phi_{X,t} \cdot \partial_t \Phi_{X,t} \in T_{\mathcal{G}_t}(\Phi_{Y,t} \circ f_t \circ \Phi_{X,t}) + T_{\mathcal{G}_t} f_t \circ \Phi_{X,t} \cdot T_{\mathcal{G}_t} \Phi_{X,t} \subset T_{\mathcal{A}_t}(\Phi_{Y,t} \circ f_t \circ \Phi_{X,t}).
\end{equation}

For $J \neq 0$ one repeats these arguments for representatives of $f_t, \Phi_{X,t}$. Namely, let S be one of $k[[x]], k(x)$ and take a representative $f_t \in (x, t) \cdot S^C_{x,t}$ of $f_t \in R^C_{X,t}$. The group $Aut_K(R_t)$ lifts to $Aut_{K,t}(S_{x,t})$, these are automorphisms that preserve the ideal J. The tangent space is now $T_{\mathcal{A}_t} := D_{\log}(J)$.

- (infinitesimal \mathcal{A}-stability) $T_{\mathcal{A}_t} f_t \circ \Phi_{X,t} = f'_t \circ \Phi_{X,t} \cdot T_{\mathcal{A}_t} \Phi_{X,t} = f'_t \circ \Phi_{X,t} \cdot T_{\mathcal{A}_t} f_t \circ \Phi_{X,t} = T_{\mathcal{A}_t} (f_t \circ \Phi_{X,t})$.

- (infinitesimal \mathcal{G}-versality) The verification is again the chain rule, as in the equations (7), (8), (9). □

Take a map $f_o \in (x) \cdot R^p_X$ and its deformation $f_t \in (x, t) \cdot R^p_{X,t}$. Let $\mathcal{G} \in \mathcal{R}, \mathcal{A}, \mathcal{A}'$, accordingly $\mathcal{G}_t \in \mathcal{G}_t, \mathcal{A}_t, \mathcal{A}'_t$. Let $\Lambda \subset R^p_{X,t}$ be a k or R_Y-submodule, finitely generated by $\{v_i\}$. Associate to Λ the submodule $\Lambda_t := K(\{v_i\})$, resp. $R_{Y,t}(v_i)$. □

Lemma 3.5. The “algebraic lemma of unfolding”, e.g. [Martinet pg. 193]

Suppose $T_{\mathcal{G}_t} f_o + \Lambda = R^p_{X,t}$, where $\Lambda \subset R^p_{X,t}$ is a finite-dimensional k-vector subspace or a finitely-generated R_Y-submodule. Then $T_{\mathcal{G}_t} f_t + \Lambda_t = R^p_{X,t}$.

Proof. We have the obvious presentation $R^p_{X,t} = T_{\mathcal{G}_t} f_t + (t) \cdot R^p_{X,t} + \Lambda_t$. Thus $R^p_{X,t}/T_{\mathcal{G}_t} f_t = (t) \cdot R^p_{X,t}/T_{\mathcal{G}_t} f_t + \Lambda_t + T_{\mathcal{G}_t} f_t/T_{\mathcal{G}_t} f_t$. Note: $K[[t]] \otimes R^p_{X,t}/T_{\mathcal{G}_t} f_t \cong R^p_{X,t}/T_{\mathcal{G}_t} f_t$, the later quotient being finitely generated over k (resp. R_Y). Therefore $R^p_{X,t}/T_{\mathcal{G}_t} f_t$ is finitely generated by Weierstraß finiteness, [Kerner 21, §2]. Finally, Nakayama over K (resp. R_Y) gives $R^p_{X,t}/T_{\mathcal{G}_t} f_t = \Lambda_t + T_{\mathcal{G}_t} f_t/T_{\mathcal{G}_t} f_t$. □

4. Triviality of unfolding

4.1. As in the classical case, $R_X = \mathbb{C}(x)$, one wants to establish Thom-Levine’s criterion, “triviality vs infinitesimal triviality”. This does not hold in full generality because of the positive characteristic obstructions.

Example 4.1. Let k be a field of characteristic p and take $R_X = k[[x]], \mathcal{G} = \mathcal{R}$.
i. The unfolding $f_t(x) = x^n + t^p x$ is non-trivial, even though $\partial_t f_t = 0 \in T_{\mathcal{G}_t} f_t$. Note that f_t is obtained by the $t \to t^p$ base-change from $x^n + tx$.

The unfolding $f_t(x) = x^n + t^p x^p + t x^d \in \mathbb{k}[[t, x]]$, for $p < n < d$, is non-trivial, with $\partial_t f_t \in T_{\mathcal{G}_t} f_t$. And this is not a $t \to t^p$ base change of another unfolding. Here one can take $d \gg n$, i.e. to ensure $\partial_t F \in T_{\mathcal{G}_t} F$ for $j \gg 1$.

ii. Consider the unfolding $f_t(x) = x^p + t^p x^p + t x^d \in \mathbb{k}[[t, x]]$, with $gcd(d, p) = 1$. Then $\partial_t f_t \in x \cdot T_{\mathcal{G}_t} f_t$, but f_t is not an \mathcal{G}-trivial unfolding. Indeed, for a coordinate change $x \to x + x \cdot h(t, x)$ one has $f_t(x + x \cdot h(t, x)) = x^p + x^p \cdot h(t, x)^p + x^p \cdot (1 + h(t, x))^p + t x^d$. If this coordinate change trivializes f_t then we must have $ord_x (x^p \cdot h(t, x)^p) > p$. But then necessarily $ord_x (x^p \cdot h(t, x)^p) = ord(x^p + t x^d, t) = p + d$, contradicting the divisibility $p|ord_x (x^p \cdot h(t, x)^p)$.

4.2. Infinitesimal vs local triviality of unfoldings. In view of example 4.1 we introduce:

Definition 4.2. An unfolding of the map $f_o \in \mathfrak{m} \cdot R_X^{\mathcal{G}_t}$ is called \mathcal{G}-inseparable if $f_t(x) \neq f_o(x) + t^d \cdot f_d(x) + (t^{d+1}) \cdot R_X^{\mathcal{G}_t}$, where $char(k) \mid d$ and $f_d \not\in T_{\mathcal{G}_t} f_o$.

Thus in zero characteristic all unfoldings are separable. The name “separable” is due to the relation to separability of group orbit map, see §3.

Theorem 4.3. Let R_X be one of $\mathbb{k}[x]/j, \mathbb{k}[x]/j, \mathbb{k}(x)/j$, see §2.1. Let $\mathcal{G} \in \mathcal{P}, \mathcal{K}, \mathcal{A}$. Take an unfolding $F(x, t) = (f_t(x), t)$, for $t = (t_1, \ldots, t_r) \in (\mathbb{k}^r, o)$.

1. If F is trivial then it is infinitesimally trivial, i.e. $\partial_{t_i} f_1, \ldots, \partial_{t_r} f_t \in T_{\mathcal{G}_t} f_t$.

2. Suppose F is infinitesimally-\mathcal{G}-trivial. For $char(k) > 0$ assume that F is \mathcal{G}-separable. Then:
 • (for $\mathcal{G} = \mathcal{P}, \mathcal{K}$) F is trivial.
 • (for $\mathcal{G} = \mathcal{A}$) F is formally-\mathcal{A}-trivial. Moreover:
 - if $char(k) = 0$ and $R_X = \mathbb{k}(x)/j$, then the unfolding F is \mathcal{A}-trivial.
 - if the map $f_0 \in R_X^{\mathcal{A}_t}$ is \mathcal{A}_t-finitely determined (as an element of $R_X^{\mathcal{A}_t}$), then the unfolding F is \mathcal{A}-trivial.

Proof. First we reduce the cases of r-parameters to the one-parameter unfolding.

• (Part 1.) Consider (f_t, t_r) as a one-parameter unfolding of the map $f_t|_{t_r = 0} \in R_X^{\mathcal{G}_t, t_1, \ldots, t_r-1}$. Here $R_X^{\mathcal{G}_t, t_1, \ldots, t_r-1}$ is the algebra over $\mathbb{K} = \mathbb{k}[[t_1 \ldots t_r-1]]$, resp. $\mathbb{k}\{t_1 \ldots t_{r-1}\}$, resp $\mathbb{k}(t_1 \ldots t_{r-1})$. This unfolding is still trivial, therefore (assuming the case $r = 1$) it is infinitesimally trivial, $\partial_{t_r} f_t \in T_{\mathcal{G}_t} f_t$. Repeating this for all t_i we get the statement.

• (Part 2.) Consider (f_t, t_r) as a one-parameter unfolding of the map $f_t|_{t_r = 0} \in R_X^{\mathcal{G}_t, t_1, \ldots, t_r-1}$. This unfolding is still infinitesimally trivial, $\partial_{t_r} f_t \in T_{\mathcal{G}_t} f_t$. Therefore (assuming the case $r = 1$) it can be trivialized. Namely, $g^{(r)}_t f_t(x)$ depends on the variables $(t_1, \ldots, t_{r-1}, x)$ only, for an element $g^{(r)}_t \in \mathcal{G}_t$ that acts as identity on t_1, \ldots, t_{r-1}. Iterate this argument to get the full trivialization: $(g^{(1)}_t \cdot \cdots \cdot g^{(r)}_t) f_t(x) = f_o(x)$.

Therefore, below we consider only one-parameter unfoldings.

The proof of part 1 is characteristic-free. For part 2 we get an additional proof in $char(k) = 0$ case.

1. **The \mathcal{G}-case.** Take the trivialization: $f_t = \Phi_{X, t}(f_o)$ for $\Phi_{X, t} \in Aut_K(R_X, t)$ with $\Phi_{X, o} = Id$, see §2.1(iii). We should prove: $\partial_t f_t \in T_{\mathcal{G}_t} f_t$.

Define the operator $\xi_X := \partial_t - \Phi_{X, t} \circ \partial_t \circ \Phi_{X, t}^{-1}$. We claim: this is a t-linear derivation, $\xi_X \in Der_K(R_X)$. First observe that the action $\xi_X \circ R_X$ is well defined. Moreover, this action is \mathbb{k}-linear. As $\Phi_{X, t}$ is \mathbb{k}-linear, we get $\xi_X(\mathbb{k}) = 0$. Thus $\xi_X \in End_K(R_X)$. Now we verify the Leibniz rule. For any $a, b \in R_X$ one has $\xi_X(ab) = \partial_t(ab) - \Phi_{X, t} \circ \partial_t \circ \Phi_{X, t}^{-1}(ab) = \xi_X(a)b + a \xi_X(b)$. Thus $\xi_X \in Der_K(R_X) = T_{\mathcal{G}_t}$.

Finally we observe: $T_{\mathcal{G}_t} f_t \ni \xi_X(f_t) = \partial_t f_t - \Phi_{X, t} \circ \partial_t(f_o) = \partial_t f_t$.

The \mathcal{K}-case. (As always, we replace \mathcal{K} by \mathcal{K}^{un}.) Suppose $f_t = (U \cdot f_o) \circ \Phi_{X, t}$ for some $\Phi_{X, t} \in Aut_K(R_X, t)$ with $\Phi_{X, o} = Id$, and $U \in GL(p, R_X)$ with $U|_o = I$. As in the \mathcal{G}-case we define the operator $\xi_X := \partial_t - \Phi_{X, t} \circ \partial_t \circ \Phi_{X, t}^{-1}$. As in the \mathcal{G}-case this is a derivation, $\xi_X \in Der_K(R_X)$.

Now we verify:

$$\xi_X(f_t) = \partial_t f_t - \Phi_{X, t} \circ \partial_t(U \cdot f_o) = \partial_t f_t - \Phi_{X, t}(\partial_t U \cdot U^{-1}) \cdot f_t.$$

Therefore $\partial_t f_t \in T_{\mathcal{G}_t} f_t$.

(10)
• The \mathcal{A}-case. Present the trivial unfolding in the form \(f_t = (\Phi_{Y,t}^{-1}, \Phi_{X,t}^{-1})(f_0) \). Define the operator \(\Psi \circ (m + (l)) \cdot R^{\mathcal{A}}_{X,t} \) as follows:

\[
(11) \quad \Psi(h) := (\Phi_{Y,t}^{-1})^{-1}|_h \cdot \Phi_{X,t}^{-1} \circ \frac{\partial}{\partial t} \circ (\Phi_{Y,t}, \Phi_{X,t})(h).
\]

Here \(\Phi_{Y,t} \) is the derivative operator and \((\Phi_{Y,t})^{-1} \) is its inverse. We observe: \(\Psi(f_t) = 0 \in R^{\mathcal{A}}_{X,t} \).

Now we check the \(\Psi \)-action on \(\mathbb{K} \). Take \(h(t) \in \mathbb{K}^{\mathcal{A}} \) then:

\[
(12) \quad \Psi(h(t)) = (\Phi_{Y,t}^{-1})^{-1}|_{h(t)} \cdot \frac{\partial}{\partial t} \Phi_{Y,t}(h(t)) = (\Phi_{Y,t}^{-1})^{-1}|_{h(t)} \cdot \left[(\partial_t \Phi_{Y,t})_{|h(t)} + \Phi_{Y,t}|_{h(t)} \cdot \frac{\partial h(t)}{\partial t} \right] = \xi_Y(y)|_{h(t)} + \frac{\partial h(t)}{\partial t} \in R^{\mathcal{A}}_{Y,t}.
\]

Here \(\xi_Y := (\Phi_{Y,t}^{-1})^{-1} \cdot \partial_t \Phi_{Y,t} \in T_{\mathcal{A}} \). Therefore \((\Psi - \xi_Y - \frac{\partial}{\partial t})(\mathbb{K}^{\mathcal{A}}) = 0 \). Moreover, for \(h \in (m + (l))R^{\mathcal{A}}_{X,t} \) one has:

\[
(13) \quad (\Psi - \xi_Y - \frac{\partial}{\partial t})h|_{(x,t)} = (\Phi_{Y,t}^{-1})^{-1}|_{h} \cdot \Phi_{X,t}^{-1} \circ \frac{\partial}{\partial t} \Phi_{Y,t} h - \xi_Y(h) - \frac{\partial h}{\partial t} = \Phi_{X,t}^{-1} \circ \frac{\partial}{\partial t} \Phi_{Y,t} h - \frac{\partial}{\partial t} h = h' \cdot (\Phi_{X,t}^{-1} \circ \frac{\partial}{\partial t} \Phi_{Y,t} \in T_{\mathcal{A}} h). \]

We thus get the derivation \(\xi_X := \Psi - \xi_Y - \frac{\partial}{\partial t} \in T_{\mathcal{A}} \). Finally, \(0 = \Psi(f_t) = (\xi_Y + \xi_X + \partial_t)f_t \) gives:

\[
\partial_t f_t = - (\xi_Y + \xi_X)f_t \in T_{\mathcal{A}} f_t.
\]

2. The case \(\text{char}(k) = 0 \), $\mathcal{F} \not\subset \mathcal{A}$. First we establish the statement in the formal case, \(R_{X,t} = k[[x,t]]/j \).

• The \mathcal{A}-case. Suppose \(\partial_t f_t = \xi_X f_t \). Differentiation again in \(\xi_X \) for a derivation \(\xi_X \in \text{Der}_{k[[t]]}(R_{X,t}) \). Then \((\partial_t - \xi_X)f_t = 0 \) for each \(j \geq 1 \).

Extend the ring \(R_{X,t} \) by a new formal variable \(\tilde{t} \) to \(R_{X,t,\tilde{t}} = k[[x,t,\tilde{t}]]/j \). Then this we ring we have:

\[
e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X)}f_t = f_t. \] (Note the derivation \(\tilde{t} \cdot (\partial_{\tilde{t}} - \xi_X) \) is filtration-nilpotent, see [Kerner.21, §2.1]) Therefore one has the identity:

\[
e^{-\tilde{t} \partial_{\tilde{t}}} \cdot e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X)} f_t = e^{-\tilde{t} \partial_{\tilde{t}}} f_t = f_{t-\tilde{t}}.
\]

Now we use the Baker-Campbell-Hausdorff formula, §2.1.ix of [Kerner.21]: \(e^{-\tilde{t} \partial_{\tilde{t}}} \cdot e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X)} \equiv e^{\sum \tilde{t} \cdot p_l(\partial_{\tilde{t}} - \xi_X)} \). Note that the commutator of derivations is a derivation (of first order).

Therefore \(e^{-\tilde{t} \partial_{\tilde{t}}} \cdot e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X)} = e^{\tilde{t} \xi_X} \), for a derivation \(\xi_X \in \text{Der}_{k[[t]]}(R_{X,t,\tilde{t}}) \). In particular, \(\tilde{t} \cdot \xi_X = \tilde{t} \cdot T_{\mathcal{A},t,\tilde{t}} \).

Therefore we get the coordinate change \(e^{\tilde{t} \xi_X} \in \mathcal{B}_{X,t,\tilde{t}} \), which satisfies: \(e^{\tilde{t} \xi_X} f_t = f_{t-\tilde{t}} \). This equality is an identity in \(R_{X,t,\tilde{t}} \). We can restrict this identity to \(\tilde{t} = t \), as \(\xi_X \in k[[t]] \)-linear. We get the trivialization: \(e^{\tilde{t} \xi_X} f_t = f_{t-\tilde{t}} \). Note that \(e^{\tilde{t} \xi_X} \in \mathcal{B}_t \), i.e. is the unfolding of identity Id in \(\mathcal{B}_t \).

• The \mathcal{X}-case. Suppose \(\partial_t f_t = \xi_X f_t + u \cdot f_t \in T_{\mathcal{X},t,\tilde{t}} \), where \(\xi_X \in \text{Der}_{k[[t]]}(R_{X,t,\tilde{t}}) \), \(u \in \text{Mat}_{p \times p}(R_{X,t,\tilde{t}}) \). As in the \(\mathcal{A} \)-case we get \(e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X - u)} f_t = f_{t-\tilde{t}} \) in the ring \(R_{X,t,\tilde{t}} \). Then, as before, we have \(e^{-\tilde{t} \partial_{\tilde{t}} \cdot e^{\tilde{t} (\partial_{\tilde{t}} - \xi_X - u)} f_t = f_{t-\tilde{t}} \). Using the BCH-formula, as before, we get the identity:

\[
e^{\tilde{t} \xi_X} f_t = f_{t-\tilde{t}}, \text{ where } \xi_X \in \text{Der}_{k[[t,\tilde{t}]]}(R_{X,t,\tilde{t}}) \text{ and } u \in \text{Mat}_{p \times p}(R_{X,t,\tilde{t}}).
\]

In particular \(\tilde{t} \cdot (\xi_X - u) \in \tilde{t} \cdot T_{\mathcal{X},t,\tilde{t}} \). As before, one substitutes \(\tilde{t} = t \) to get the trivialization: \(e^{\tilde{t} \xi_X} f_t = f_{t-\tilde{t}} \). Here \(e^{\tilde{t} \xi_X} f_t = f_{t-\tilde{t}} \in \mathcal{X}_t \).

• The \mathcal{A}-case cannot be addressed by verbatim the same argument for various reasons. For example, the condition \(\partial_t f_t = \xi_X f_t + \xi_Y f_t \in T_{\mathcal{A}} f_t \) does not imply \(\partial_t - \xi_X - \xi_Y \) is nilpotent in \(\mathcal{A} \). By the algebraic Thom-Levine property, [Kerner.21, §3.6], we get: \(e^{\tilde{t} \xi_X} f_t = e^{\tilde{t} \xi_X} f_t \). (Note that both \(\tilde{t} \partial_t - \xi_X \) and \(\tilde{t} \xi_Y \) are nilpotent derivations for the filtration \((x,t,\tilde{t}) \in R_{X,t,\tilde{t}} \). Thus \(f_t = e^{-\tilde{t} \xi_X} f_t \). As in the \(\mathcal{A} \)-case we get:

\[
f_{t+\tilde{t}} = e^{\tilde{t} \partial_{\tilde{t}}} \circ e^{-\tilde{t} \xi_X} f_t = e^{\xi_X} f_t, \quad \text{for some } \xi \in \text{Der}_{k[[t,\tilde{t}]]}(R_{X,t,\tilde{t}}).
\]
The identity \(f_{t+i} = e^{t \xi_X} \circ e^{t \xi_Y} f_t \) is a power series in \(t \), \(t \), and does not involve any \(t, t \)-derivatives. Substituting \(t = -t \) we get \(f_o = e^{t \xi_{i=t}} \circ e^{t \xi_Y} f_t \), i.e. the trivialization.

We have constructed the trivializations in the formal case, \(R_{r,t} = \mathcal{K}[x,t]/j \). In the analytic case, \(R_{r,t} = \mathcal{K}[x,t]/j \), it is enough to remark that the BCH formula gives analytic derivations, \(\xi_X, \xi_Y \), see [Kerner,21 §2.1.i]. (Note again, that the derivations \(t(\partial_t - \xi_X), \xi_Y \) are filtration-nilpotent.) Thus the constructed trivializations for \(\mathcal{A}, \mathcal{K}, \mathcal{A} \) are analytic.

If \(r \notin \mathcal{K} \), then \(\mathcal{G} \) is not assumed to have an isolated critical/singular/instability point.

We give a corollary of Mather-Yau/Gaffney-Hauser type.

Remark 4.5.

1. The trivializations in part 2 of the theorem involve the automorphism \(\Phi \).
2. The general case, char \(\mathcal{K} \), \(\mathcal{K} \).

Example 4.4.

If char \(\mathcal{K} = 0 \) then all the unfoldings are \(\mathcal{G} \)-separable.

Remark 4.5.

1. The trivializations in part 2 of the theorem involve the automorphism \(\Phi_{X,t} \in Aut_{\mathcal{T}}(R_{r,t}) \).
2. One can impose various restrictions on the trivializations, accordingly modifying the statements.

We give a corollary of Mather-Yau/Gaffney-Hauser type.

Corollary 4.6.

Let \(\mathcal{G} = \mathcal{K} \) with \(R_{r,t} \in \mathcal{K}[x,t]/j \), \(\mathcal{K}[x,t]/j \), \(\mathcal{K}[x,t]/j \), see [22] i or \(\mathcal{G} = \mathcal{A} \) with \(R_{r,t} = \mathcal{K}[x,t]/j \). For char \(\mathcal{K} > 0 \) suppose the unfolding \(F(x,t) = (f_t(x), t) \) is \(\mathcal{G} \)-separable. If \(T_{\mathcal{G}} f_{t} = T_{\mathcal{G}} f_{o} \subseteq R_{r,t}^{\mathcal{G}} \), then \(F \) is \(\mathcal{G} \)-trivial.

Proof. We have: \(f_t \in T_{\mathcal{G}} f_{t} = T_{\mathcal{G}} f_{o} \). Expand in \(t \)-powers, \(f_t(x) = \sum_{d \geq 0} t^d f_d(x) \). Then one gets: \(f_d \in T_{\mathcal{G}} f_{o} \) for each \(d \geq 0 \). Therefore at the formal level (for \(R_{r,t} = \mathcal{K}[x,t]/j \)) one has: \(\partial_t f_t \in T_{\mathcal{G}} f_{o} = T_{\mathcal{G}} f_{t} \). By part 2 of theorem [4.3] we get: \(F \) is formally \(\mathcal{G} \)-trivial, i.e. \(f_t \in T_{\mathcal{G}} f_{o} \).
For $R_{X,t} = k[x,t]/f$, $k(x,t)/f$ and $\mathcal{G} = \mathcal{X}$ one applies the Artin approximation, §2.11.

4.3. An application: factorization of space-germs and map-germs. The map of spaces $X \overset{f}{\to} Y$ defines the germ of (not locally trivial) fibration \mathcal{F}_f, by $X = \bigsqcup_{y \in Y} f^{-1}(y)$.

Two fibrations are called equivalent, $\mathcal{F}_f \sim \mathcal{F}_g$ if there exist automorphisms $\Phi_X \circ X$, $\Phi_Y \circ Y$ satisfying $\Phi_X(f^{-1}(y)) = f^{-1}(\Phi_Y(y))$. Therefore one gets: $f \sim \tilde{f}$ iff $\mathcal{F}_f \sim \mathcal{F}_{\tilde{f}}$.

Recall the classical factorization statement. Suppose a C-analytic germ admits r vector fields that are linearly independent at the origin. Then $(X,x) \cong (C^r,0) \times (X,z)$. See e.g. [Fischer §2.12].

We establish (in zero characteristic) the \mathcal{R}, \mathcal{X}, \mathcal{A}-versions of this statement.

Definition 4.7. Let (R_X,m) be a local k-algebra, with $k \cong R_x/m$.

1. The value of the derivation $\xi \in \text{Der}_X$ at the origin is the k-linear map $m/\text{m}^2 \overset{\xi}{\to} R_x/m$. (Thus $\xi|_0 \neq 0$ iff $\xi(m) \not\subseteq \text{m}$.)

2. The set of values of vector fields at the origin is the k-vector subspace $\text{Der}_X|_o := \text{Span}_k(\xi|_o, \xi \in \text{Der}_X) \subseteq \text{Hom}_k(m/\text{m}^2, R/m)$. Thus $\dim_k(\text{Der}_X|_o)$ is the maximal number of derivations linearly independent at $o \in X$.

We observe:

- $\text{Der}_X|_o$ is invariant under Aut_X-transformations, i.e. preserved by the coordinate changes with unit linear part.
- $\dim(\text{Der}_X|_o)$ is preserved by any coordinate change, Aut_X.

Theorem 4.8. Let S be one of $k[[x]]$, $k\{x\}$, $k(x)$, where $\text{char}(k) = 0$. Let $R_X = S/j$ with $J \subseteq (x)^2$. Suppose $r := \dim(\text{Der}_X|_o) > 0$.

1. Then $X \cong \tilde{X} \times (k^r,o)$, i.e. the corresponding k-algebras are isomorphic,

\[k[[x]]/j \cong \tilde{R}[[z]], \quad k\{x\}/j \cong \tilde{R}\{z\}, \quad k(x)/j \cong \tilde{R}(z). \]

Here $\tilde{R} = k[[\tilde{x}]]/J_{\tilde{x}}$, resp. $k\{\tilde{x}\}/J_{\tilde{x}}$, resp. $(k(x)/J_{\tilde{x}}$, with $\tilde{x} = (\tilde{x}_1,\ldots,\tilde{x}_n-r)$, $J_{\tilde{x}} \subseteq (\tilde{x})^2$, and $z = (z_1,\ldots,z_r)$.

2. Moreover, take a map $X \overset{f}{\to} (k^p,o)$ and the filtration $m^* \subseteq R_X$.

- (R) If $T_{\mathcal{G}}f = T_{\mathcal{G}(0)}f$ then f factorizes as $X \to \tilde{X} \overset{f|_{\tilde{X}}}{{\sim}} (k^p,o)$. Namely, f is \mathcal{R}-equivalent to a pullback of $f|_{\tilde{X}=o}$.

- (X) If $T_{\mathcal{X}}f = T_{\mathcal{X}(0)}f$ then the subscheme $V(f) \subseteq X$ factors into $V(f|_{\tilde{X}=o}) \times (k^r,o) \subseteq \tilde{X} \times (k^r,o)$. Namely, f is \mathcal{X}-equivalent to a pullback of $f|_{\tilde{X}=o}$.

- (A) Suppose $R_X = k[x]/j$ or f is \mathcal{A}-finitely determined. If $T_{\mathcal{A}}f = T_{\mathcal{A}(0)}f + T_{\mathcal{A}(0)}f$ then the fibration factorizes, $(X,F_f) \cong (\tilde{X},F_f|_{\tilde{X}=o}) \times (k^r,o)$. Namely, f is \mathcal{A}-equivalent to a pullback of $f|_{\tilde{X}=o}$.

Proof.

1. Take a derivation $\xi \in \text{Der}_X$ that does not vanish at the origin, i.e. $\xi|_0 \neq 0$, i.e. $\xi(m) \not\subseteq m$. Applying a coordinate change, i.e. Aut_X, one can assume $\xi(x_n) = 1$. Therefore we have the presentation $\xi = \frac{\partial}{\partial x_n} - \sum_{i=1}^{n-1} a_i(x) \frac{\partial}{\partial x_i}$. Fix some generators $J = (q_1,\ldots,q_l) \subseteq S$. Then for the vector $q \in S^{\otimes l}$ one has $\delta_{x_n}q \in \text{Jac}_{x_1,\ldots,x_{n-1}}(q) + (q_1,\ldots,q_l) \cdot S^{\otimes l}$. By theorem 1.3 $q(x_1,\ldots,x_n)$ is a \mathcal{X}-trivial unfolding of $q(x_1,\ldots,x_n-1,0)$. Namely: $q(x_1,\ldots,x_n) \overset{GL(l,S) \times \text{Aut}_k(S)}{\cong} q(x_1,\ldots,x_n-1,0) \in S^{\otimes l}$. Therefore $R_X \cong (k[[x]]/J_{\tilde{x}})[[z]]$, and similarly for the analytic/algebraic cases.

In the case $r = 1$ this proves the statement. For $r > 1$ one starts from the rectified germ $\tilde{X} \times (k^1,o)$. Then $\text{Der}_{X \times (k^1,o)} \supseteq \frac{\partial}{\partial x_n}$, this vector field does not vanish at o. By the assumption there exist other derivations ξ_1,\ldots,ξ_{r-1}, linearly independent of $\frac{\partial}{\partial x_n}$ at the origin. One can assume: $\xi_j(x_n) = 0$ for $j = 1,\ldots,r$. And then repeat this procedure for \tilde{X}.

2. We start from the factorized germ, $\tilde{X} \times (k^r,o)$. Note that the condition $T_{\mathcal{A}}f = T_{\mathcal{A}(0)}f$ is preserved under the Aut_X-coordinate change, see lemma 3.4.

(\mathcal{R}) The assumption $T_{\mathcal{A}}f = T_{\mathcal{A}(0)}f$ gives:

\[\text{Span}_{R_X}[\partial_{x_1}f,\ldots,\partial_{x_r}f] \subseteq (\tilde{x},z) \cdot \text{Span}_{R_X}[\partial_{x_1}f,\ldots,\partial_{x_r}f] + \text{Der}_{X}^{(0)}(f). \]
By Nakayama we get: \(\text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} \subseteq \text{Der}_{X}^{(0)}(f) \). By theorem 13 the unfolding \(f(\tilde{x}, z) \) of \(f(\tilde{x}, o) \) is \(\mathcal{R} \)-trivial. Its trivialization is a \(z \)-linear automorphism of \(R_X \). Thus it preserves the factorized form \(\tilde{X} \times (k', o) \) and gives the statement.

(\(\mathcal{X} \)) The assumption \(T_{\mathcal{X}} f = T_{\mathcal{X}(0)} f \) is now:

\[
(18) \quad \text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} \subseteq (z, \tilde{x}) \cdot \text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} + \text{Der}_{X}^{(0)}(f) + (f) \cdot R_X^{\oplus}.
\]

By Nakayama we get: \(\text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} \subseteq \text{Der}_{X}^{(0)}(f) + (f) \cdot R_X^{\oplus} \). By theorem 13 the unfolding \(f(\tilde{x}, z) \) of \(f(\tilde{x}, o) \) is \(\mathcal{X} \)-trivial. Its trivialization preserves the factorized form \(\tilde{X} \times (k', o) \) and gives the statement.

(\(\mathcal{A} \)) The assumption is now:

\[
(19) \quad \text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} \subseteq (z, \tilde{x}) \cdot \text{Span}_{R_X}\{\partial_1, \ldots, \partial_r, f\} + \text{Der}_{X}^{(0)}(f) + T_{\mathcal{X}(0)} f.
\]

By Nakayama over \(R_X \), see [21]iv, we get: \(\text{Span}_{k}\{\partial_1, \ldots, \partial_r, f\} \subseteq \text{Der}_{X}^{(0)}(f) + T_{\mathcal{X}(0)} f \). By theorem 13 the unfolding \(f(\tilde{x}, z) \) of \(f(\tilde{x}, o) \) is \(\mathcal{A} \)-trivial. Its trivialization preserves the factorized form \(\tilde{X} \times (k', o) \) and gives the statement.

In part 2 of this theorem we can take the filtration \((\tilde{x}, z_1, \ldots, z_j) \in R_{k' \times (k', o)} \) for some \(j \leq r \). We get (for \(\mathcal{R} \)): if \(T_{\mathcal{R}} f = T_{\mathcal{R}(0)} f \) then \(f \) factorizes as \(X \to \tilde{X} \times (k', o) \to (k', o) \). (And similarly in the \(\mathcal{X}, \mathcal{A} \)-cases.) The proof is the same. We state this explicitly.

Corollary 4.9. If \((\partial_1 - \xi_{2,2,2,\ldots,2}) f = 0 \), where \(\xi_{2,2,2,\ldots,2} \in \text{Der}_{X}^{(0)}(f) + m \cdot \text{Span}_{R_X}\{\partial_{22}, \ldots, \partial_r\} \), then \(f \) is \(\mathcal{A} \)-equivalent to the pullback of a map \(\tilde{X} \to (k', o) \).

This is the classical “geometric lemma of deformations”, e.g. [Martinet] pg.192] (for \(C^\infty \)-case).

4.4. The rank of a map.
Given a map \(F \in m \cdot R_X^{\oplus} \) we evaluate its tangent image \(T_{\mathcal{X}} F \subseteq R_X^{\oplus} \) at the origin, i.e. take the image \(R_X/m \cdot T_{\mathcal{X}} F \subseteq R_X^{\oplus} \) and \(k' \). This is a k-vector subspace.

Definition 4.10. The rank of \(F \) is the dimension \(\text{dim}_k(R_X/m \cdot T_{\mathcal{X}} F) \).

If \(\text{rank}(F) = r \) then, in particular, \(\text{dim}_k(\text{Der}_X|_o) \geq r \). Thus, (assuming \(\text{char}(k) = 0 \)) by theorem 4.8 we get: \(X \cong \tilde{X} \times (k'_o, o) \).

Lemma 4.11.

1. Take a map \(F \in m \cdot R_X^{\oplus(p+r)} \) of rank \(r \). Suppose either \(\text{char}(k) = 0 \) or \(J = 0 \). Then \(F \sim (f(\tilde{x}) + h(\tilde{x}, u), u) \), where \(u = (u_1, \ldots, u_n) \) and \(f(\tilde{x}) \in (\tilde{x})^2 \cdot R_X^{\oplus} \) and \(h(\tilde{x}, u) \in (u) \cdot (\tilde{x}) \cdot R_X^{\oplus} \).

2. Here the \(\mathcal{A} \)-type of \(f \) is not uniquely determined due to the residual \(\mathcal{A} \)-equivalence:

\[
(\text{f + h(x, u), u) \sim (f + h(x, u(\tilde{u} + q(f))), \tilde{u})}
\]

for any element \(q(y) \in (y) \cdot R_Y^{\oplus} \) and the corresponding parameter change \(\tilde{u} = u + q(f) - q(f + h(x, u)) \).

In particular, part 2 gives: \((f + h(x, u), u) \sim (f + h(x, u(q(f))), (x)(\tilde{u}), \tilde{u}) \).

Proof.

1. Using the subgroup \(GL(p, k) \subset \mathcal{L} \) we can ensure: the last \(r \) components of \(F \) are of order 1 (and their linear parts are independent), while the other components of \(F \) are of order \(\geq 2 \). By an \(\mathcal{R} \)-transformation on the last \(r \) components, we get \(F \sim ((u, x)^2, u) \). Then by \(\mathcal{L} \) we achieve the claimed form \(f(\tilde{x}) + (\tilde{x}) \cdot (u, u) \).

2. The relation \(\tilde{u} = u(u) \) is invertible. Rewrite it as \(u(\tilde{u}) = \tilde{u} - q(f) + q(f + h(x, u)) \). Then:

\[
(20) \quad (f + h(x, u), u) = (f + h(x, u(\tilde{u})), u(\tilde{u})) \overset{\mathcal{L}}{\sim} (f + h(x, u(\tilde{u})), \tilde{u} - q(f)) \overset{\mathcal{L}}{\sim} (f + h(x, u(\tilde{u} + q(f)), \tilde{u})).
\]

Example 4.12.

i. Suppose \(p = 1 \), i.e. the map is of corank\(=1 \). By Morse lemma, [Kerner 21] §4], \(F \sim (f(\tilde{x}) + Q_2(z) + h(\tilde{x}, u), u) \), where \(f(\tilde{x}) \in (\tilde{x})^2 \), while \(Q_2(z) \) is a non-degenerate quadratic form.

ii. Suppose \(h(x, u) = h - u \), where \(h \in \text{Mat}_{p \times p}(k) \). Take \(q(y) := y \), where \(q \in \text{Mat}_{p \times p}(k) \). We get \(\tilde{u} = u - q \cdot h \cdot u \). Thus \(u = [I - q \cdot h]^{-1} \cdot \tilde{u} \). Then part 2 gives:

\[
(f + h \cdot u, u) \sim (f + h \cdot [I - q \cdot h]^{-1}(\tilde{u} + q \cdot f), \tilde{u}) = ([I - h \cdot q]^{-1} f + h \cdot [I - q \cdot h]^{-1} \tilde{u}, \tilde{u}).
\]

In particular, if \((h \cdot u \) spans the vector space \((x) \cdot T^1_{\mathcal{X}} f \), then \([I - h \cdot q]^{-1} f - f \) spans \((x) (f) \cdot R_X^{\oplus} \mod T_{\mathcal{X}} f \). Then also \(h \cdot [I - q \cdot h]^{-1} \) spans \((x) \cdot T^1_{\mathcal{X}} f \). Thus any two \(\mathcal{A} \)-stable maps that are \(\mathcal{X} \)-equivalent are also \(\mathcal{A} \)-equivalent.
4.5. Trivializing unfoldings over non-local bases. Suppose an unfolding is infinitesimally trivial. Theorem 4.3 ensures the local triviality of the unfolding over the base \((K^r, o)\). In the analytic case, \(R_X = k[[x]]/J\), one gets the trivialization over a small ball, for \(\|t\| \ll 1\). In the henselian case, \(R_X = k(x)/\mathcal{J}\), one gets the trivialization over an étale neighborhood.

Take an unfolding with the affine base, \(F = (f_t(x), t)\) with \(t \in k^r\). The ring \(R_{X,t}\) is now one of \(k[[t]][x]/J\), \(k[t][x]/J\), \(k[t][x]/J\), i.e. power series in \(x\) whose coefficients are polynomials in \(t\). Take the corresponding group \(\mathcal{G}_t \in \mathcal{R}, \mathcal{K}, \mathcal{A}\). These transformations are \(t\)-global.

Accordingly we want the \(t\)-global trivialization criteria. These are obstructed in two ways.

- The \(\mathcal{G}_t\)-transformations do not preserve the origin. Therefore, e.g. for \(R_X = \mathbb{C}\{x\}\), when taking non-small \(t\), one runs out of the ball of convergence in \(\mathbb{C}^n\). Therefore one should restrict to the subgroup \(\mathcal{G}_t(0) \leq \mathcal{G}_t\) of elements that preserve the origins of \(X\) and \((k^p, o)\).
- The filtered-nilpotent vector fields can be “integrated”, i.e. there exists a map \(T_{\mathcal{G}_t(1)} \to \mathcal{G}_t(1)\) that approximates the classical exponential, \([\text{B.G.K.22}]\) §3. But not every element \(\xi \in T_{\mathcal{G}_t(0)}\) induces an element \(g_\xi \in \mathcal{G}_t(0)\) satisfying: \(\text{ord}(g_\xi - 1d - \xi) > \text{ord}(\xi)\). For example, for \(tx\partial_x \in T_{\mathcal{G}_t(0)}\) the corresponding \(\mathcal{R}\)-transformation would be of the type \(x \to x + tx + (x)^2\). But this is not invertible for \(t = 1\).

Therefore below we restrict to the subgroup \(\mathcal{G}_t^{(1)} < \mathcal{G}_t\). For the subgroup \(\mathcal{G}_t^{(0)} < \mathcal{G}_t\) our results are weaker, we can only compare particular fibres of the family \(\{f_t\}\).

4.5.1. Trivialization for the subgroup \(\mathcal{G}_t^{(1)} < \mathcal{G}_t\).

Lemma 4.13. Let \(R_{X,t} = k[[t]][x]/J\), where \(k\) is a field of zero characteristic. Let \(\mathcal{G} \in \mathcal{R}, \mathcal{K}, \mathcal{A}\). Any infinitesimally \(\mathcal{G}^{(1)}\)-trivial unfolding is \(t\)-globally \(\mathcal{G}^{(1)}\)-trivial.

Proof. We use the trivializations constructed in the proof of theorem 4.3 equations (14), (15), (16). We should only verify: the derivation \(\zeta_X\) constructed via \(e^{-i\partial_t} \circ e^{i(\partial_t + \xi_X)} = e^{i\xi_X}\) belongs to \(T_{\mathcal{G}_t^{(1)}}\). In particular, in its \((t,x)\)-expansion all the coefficients of \(x\)-monomials should be polynomials in \(t\) (rather than just power series).

Indeed, by the BCH formula, \([\text{Kerner.21}]\) §2.1, \(\zeta_X = \sum \partial_t^j p_l(\partial_t, \partial_t - \xi_X)\), where \(p_l\) is a homogeneous polynomial expressible via repeated commutators of \(\partial_t\) and \(\xi_X\). Observe:

- \(T_{\mathcal{G}_t^{(1)}} \leq T_{\mathcal{G}_t^{(1+j)}}\).
- For each \(\eta \in T_{\mathcal{G}_t^{(j)}}\) we have \([\partial_t, [\partial_t, \ldots, [\partial_t, \eta]]]_{T_{\mathcal{G}_t^{(j+1)}}}\), for the \(\partial_t\)-commutator repeated sufficiently many times. This holds because the coefficient of every \(x\)-monomial is a polynomial in \(t\).

Therefore every summand that appears in \(\sum \partial_t^j p_l(\partial_t, \partial_t - \xi_X)\) belongs to \(T_{\mathcal{G}_t^{(j)}}\), and moreover, \(p_l(\partial_t, \partial_t - \xi_X)\) \(T_{\mathcal{G}_t^{(j)}}\) for each \(j\) and a corresponding \(l \gg 1\). Altogether, \(\zeta_X \in T_{\mathcal{G}_t^{(1)}}\).

4.5.2. Comparison of fibres for the subgroup \(\mathcal{G}^{(0)} \leq \mathcal{G}_t\).

Proposition 4.14. Let \(R_X\) be one of \(k[[x]]/J, k(x)/J, k(x)/J\), with \(k\) either \(\mathbb{R}\) or alg.closed field of zero characteristic. For \(\mathcal{G} = \mathcal{A}\) take \(R_X = k[[x]]/J\). Take an unfolding \(F = (f_t(x), t) \in R_X^{\mathbb{P}^*}\). Suppose \(\sqrt{t} = m\). If \(\partial_t f_t \in T_{\mathcal{G}_t^{(0)}} f_t\) then \(f_0 \sim f_t\) for every \(t_0 \in k^r\).

Proof.

Step 1. We prove the statement for \(k \in \mathbb{R}, \mathbb{C}\), and the ring \(k(x)/J\). Take a path \(t \mapsto t_o\) (in \(k\)). Along this path (at every point on it) we have \(\partial_t f_t \in T_{\mathcal{G}_t^{(0)}} f_t\). By theorem 4.3 we get: \(F\) is \(\mathcal{G}\)-trivializable on a small ball \(\mathcal{B}(t')\). More precisely, the trivialization is done by a representative of an element of \(\mathcal{G}\). In fact \(F\) is \(\mathcal{G}^{(0)}\)-trivializable, see remark 4.3ii.

Cover the path \(t \mapsto t_o\) by such balls, and choose a finite subcover. Then we can pass from \(f_{t_0}\) to \(f_{t_o}\) by a finite number of \(\mathcal{G}^{0}\) elements, or rather by their representatives. All these representatives preserve the origin, and are defined on the same (small) balls in \(k^2, k^p\). Thus their product is defined, and we get: \(f_o \sim f_{t_o}\).

Step 2. (The general case, \(k = \bar{k}\).) Let \(\partial_t f_t = \xi(f_t)\) for \(\xi \in T_{\mathcal{G}_t^{(0)}}\) and \(R_{X,t} = k[[t]][x]/J\). Pass to the finite jets \(k[[t]][x]/J + (x)^s\). Note that \(\mathcal{G}_t^{(0)}\) and \(T_{\mathcal{G}_t^{(0)}}\) act on this quotient. We still have the condition \(\partial_t f_t = [\xi([f_t])]\). Let \(\{C_*\}\) be the (finite) collection of \(k\)-coefficients in the Taylor
expansion of $[f_i]$ and $[\xi]$. Then $\mathbb{Q}(C_\bullet) \supseteq \mathbb{Q}$ is a finite extension of fields. Therefore one can embed $j : \mathbb{Q}(C_\bullet) \hookrightarrow \mathbb{C}$.

We still have $\partial_j(f_t) = j(\xi) \cdot j(f_t)$, now over the ring $\mathbb{C}[[t]][j(J)] + (x) \cong \mathbb{C}[t][x]/j(J) + (x)^d$.

Therefore, by part 1, we get $j(f_0) \not\sim j(f_0)$, Consider this as the equivalence $[f_0] \not\sim j(f_0)$ over some field extension of k. By lemma [2.2] we get the equivalence over $k = k$. (Now the polynomial system to resolve is finite, thus we do not need the assumption “k is uncountable”.)

Returning to $k[[t]]/j(J)$, we get (for every $d \geq 1$) an element $g_d \in \mathcal{G}$ satisfying $f_0 \not\sim f_0 \mod (x)^d$. Applying this iteratively, we can present this via the product, $f_{t_n} = g_d \cdot g_1 \cdot f_0$, with $g_j \in \mathcal{G}(j)$. This product converges formally. Therefore $f_0 \sim f_0$ are \mathcal{G}-equivalent.

For \mathcal{B}, \mathcal{X} one applies the Artin approximation.

\textbf{Remark 4.15.} i. In the first part of this proof we needed the normed field k to be connected and locally compact. This forces k to be \mathbb{R} or \mathbb{C}, [Wieslaw].

ii. The statement does not hold over fields that are not \mathbb{R}-closed. Even the t-local version (over $k[[t]][x]$) fails. For example, $f_t := (1 + t)x^d \in k[[t]][x]$ satisfies $\partial_t f_t \in T_\mathcal{G} f_t$. But to achieve $f_0 \sim f_1$, at least for $t \ll 1$, one needs the property $\sqrt{1 + t} \in k$ for $t \ll 1$.

5. THE PRE-NORMAL FORM OF UNFOLDING AND VERACITY

5.1. Let $R_X = k[[x]]/J$, see [2.2] and fix a map $f_0 \in m \cdot R_X^{ep}$, not necessarily \mathcal{G}-finite. We get the k-vector space $T_\mathcal{G} f_0 := R_X^{(p-1)} f_0$, possibly of infinite dimension. Fix (any) elements $\{v_\bullet\} \subset R_X^{ep}$ whose images formally generate the k-vector space $T_\mathcal{G} f_0$. Namely, any element of $T_\mathcal{G} f_0$ is presentable as some elements $c_\bullet v_\bullet$, with $c_\bullet \in k$, and this sum converges in R_X. For $\mathcal{G} = \mathcal{X}$ we always assume $\{v_\bullet\} \subset m \cdot R_X^{ep}$.

\textbf{Definition 5.1.} The \mathcal{G}-pre-normal form of an unfolding of f_0 is the unfolding $(f_0(x) + \sum a_j(t) \cdot v_j(x), t)$, where $a_j(t) \in (t) \cdot k[[t]]$.

\textbf{Lemma 5.2.} Any unfolding $F(t, x) = (f_t(x), t) \in R_X(t, x)$ is (formally) \mathcal{G}-equivalent to its pre-normal form. Moreover, this \mathcal{G}-equivalence preserves the image of $\text{Span}_k[\partial_t f_t | t = 0] \subset T_\mathcal{G} f_0$, i.e.

\begin{equation}
T_\mathcal{G} f_0 + \text{Span}_k[\partial_t f_t | t = 0] \subset T_\mathcal{G} f_0 + \text{Span}_k[\sum \partial_t a_j(t) | t = 0] \subset T_{\mathcal{G}_p} f_0
\end{equation}

\textbf{Proof.} The transition to the pre-normal form is inductive. Using the generators $\{v_\bullet\}$ we can present $F(t, x) = (f_0 + \xi(t) f_0 + \sum a_j(t) v_j(t), t)$. Here $1 \leq d < \infty$ and $0 \neq \xi(t) f_0 \in (t)^4 \cdot T_\mathcal{G} f_0$, and $a_j(t) \in (t) \subset k[[t]]$. Take a group element $g_0 \in G$ of the form $g = 1d - \xi(t) + (t)^d$. This is ensured by the jet$_0$-assumption on R_X, see [2.2]. Then $g_0(F) = (f_0 + \xi(t) f_0 + \sum a_j(t) v_j(t), t)$, for some new power series $\{a_j(t)\}$. Iterate this process. Note: $a_j(t) - a_j(t) \in (t)^d$.

The infinite product limit$_{d \rightarrow \infty}(g_0 \cdot g_1)$ converges (formally) to an element $g \in \mathcal{G}$. Indeed, at d’th step we do not change the td-elements with $i < d$.

Altogether, the unfolding gf_0 is in the pre-normal form. Finally we verify equation [2.1].

\begin{itemize}
 \item g_1 changes $\text{Span}_k[\partial_t f_t | t = 0]$ only by an element of $T_{\mathcal{G}} f_0$. Hence g_1 preserves $T_{\mathcal{G}} f_0 + \text{Span}_k[\partial_t f_t | t = 0]$.
 \item For $d \geq 2$ the element g_d does not affect $\partial_t f_t | t = 0$.
\end{itemize}

\textbf{Remark 5.3.} i. The pre-normal form is usually far from being unique. E.g. suppose $gf_0 = f_0$ for some $1d \neq g \in \mathcal{G}$. Then the (\mathcal{G}-equivalent) unfoldings f_1, g_1 have different pre-normal forms.

ii. Suppose the ring is $R_X = k[[x]]/J$, the group is $\mathcal{G} \in \mathcal{B}, \mathcal{X}$ and f_1 is a \mathcal{G}_f-finite map. Then the pre-normal form can be achieved over R_X, not just formally. Indeed, we should resolve the condition $g \cdot f_1 = f_0 + \sum a_j(t) v_j$, with the unknowns $g, \{a_\bullet\}$. Here g can depend on x, t, but a_\bullet should depend on t only. This is a (finite) system of $k(x, t)$-equations. The lemma ensures a formal solution $\hat{g}, \{\hat{a}_\bullet(t)\}$, over R_X. Apply the nested Artin approximation to achieve an ordinary solution, $g, \{a_\bullet(t)\}$.

iii. In the \mathcal{X}-case another presentation of pre-normal form is often useful. Suppose f is \mathcal{X}-finite. Fix some elements $\{v_\bullet\} \subset m \cdot R_X^{ep}$ that go to a basis of $m \cdot T_{\mathcal{X}} f_0$. Then $R_X^{ep} = \text{Span}_{R_X}(v_\bullet) + T_{\mathcal{X}} f_0$, see lemma [2.1]. And then, lemma [5.2] gives: any unfolding of f_0 is formally \mathcal{X}-equivalent to $(f_0 + \sum a_j(t, f_0) \cdot v_j, t)$, for some $a_j(t, y) \in (t) \subset k[[t, y]]$.

\textbf{Example 5.4.} i. Take a map $f : (k^n, o) \rightarrow (k^n, o)$ of corank one. Present it as an unfolding, $f = (u, f_0(x) + (x)(u))$, here $u = (u_1, \ldots, u_{n-1})$. Then $f \sim (u, x^d + \sum_{i=1}^{d-1} x^i a_i(u))$, with $a_j(u) \in (u)$.

5.2. Versatility vs infinitesimal versatility. Let \(G = \mathcal{A} \) with \(R_X = \mathbb{k}[x]/J \) or \(G \in \mathcal{R}, \mathcal{K} \) with \(R_X \) one of \(\mathbb{k}[x]/J, \mathbb{k}(x)/J, \) or \(\text{char}(\mathbb{k}) = 0 \) with \(G \in \mathcal{R}, \mathcal{K}, \mathcal{A} \) and \(R_X = \mathbb{k}(x)/J \).

Theorem 5.5. 1. Let a (finite) tuple \(\{v_\bullet\} \) in \(R_X^{\mathcal{P}} \) generate \(T_g^o f \). For \(G \in \mathcal{R}, \mathcal{K} \) the unfolding \((f_0 + \sum t_j v_j, t) \) is \(G \)-versal. For \(G = \mathcal{A} \) the unfolding \((f_0 + \sum t_j v_j, t) \) is formally \(\mathcal{A} \)-versal.

2. An unfolding \(F \) is \(G \)-versal if it is infinitesimally \(G \)-versal.

3. \(\dim_g T_g^o f \) is the minimal number of parameters in a \(\mathcal{G} \)-versal unfolding.

Proof.

1. Start from a(ny) unfolding \(F = (f_t(x), t) \in R_X^{\mathcal{P}+} \). We should resolve the condition \(g(f_t) = f_0 + \sum a_j v_j \), with the unknowns \(g \in G_t \) and \(a_j \in \mathbb{k}[t] \), resp. \(\mathbb{k}(t) \). The pre-normal form, lemma 5.2, ensures the formal solution. In the \(\mathcal{R}, \mathcal{K} \)-cases and \(R_X = \mathbb{k}(x)/J \) one uses remark 5.3 and corollary 1.9.

For \(\text{char}(\mathbb{k}) = 0 \) we give another proof for \(R_X = \mathbb{k}[x]/J \), the direct generalization of [Martinet, Chapter XIV]. Extend the ring by a new variable \(\bar{t} \) and extend the unfolding, \(F := (f_{\bar{t}}(x, t), t) \), with \(f_{\bar{t}}(x) := f_t(x) + \sum t_j v_j \). We prove: \(F \) is induced from the unfolding \((f_0 + \sum t_j v_j, t) \). By lemma 3.5 we get: \(\mathcal{R}, \mathcal{K} \)-versal unfolding.

By lemma 3.5, \(\sum a_j v_j \), with the unknowns \(a_j \in \mathbb{k}[t] \), resp. \(\mathbb{k}(t) \). Therefore we have \(\partial_i f_i = \sum \partial_i f_t + \operatorname{Span}_{\mathbb{k}}(\{v_\bullet\}) \). By corollary 1.9, one has \(f_t \sim f_i \).

2. The part \(\Leftarrow \). Let \(\mathbb{K} = \mathbb{k}[t] \) for \(G \in \mathcal{A} \) and \(\mathbb{K} = \mathbb{k}[t], \mathbb{k}(t) \) for \(G \in \mathcal{R}, \mathcal{K} \).

By part 1, \(F \) is \(G \)-equivalent to \(F := (f_0 + \sum a_j v_j, t) \), with some coefficients \(a_j(t) \in \mathbb{K} \).

Moreover, \(F \) is infinitesimally-versal, by lemma 3.4. Thus the elements \(\partial_i(\sum a_j(t)v_j)|_{t_0} \), \(i = 1, \ldots, \omega \), generate the vector space \(T_{f_0} \). Thus then the map \(t \to \{a_j(t)\} \) is full since the unfolding \((f_0 + \sum t_j v_j, t) \) is a pullback of \(F \). Hence \(F \) is versal.

3. For any unfolding \(F = (f_t(x), t) \), the number of parameters is at least \(\dim_g \operatorname{Span}_{\mathbb{K}}(\partial_i f_t, \ldots, \partial_r f_t)|_{t_0} \geq \dim T_{f_0} \).

Example 5.6. i. This theorem holds also for the ring \(\mathbb{k}[x]/J \) in positive characteristic, provided \(f_0 \) is \(\mathcal{A} \)-equivalent to a polynomial map. In this case one chooses \(\{v_\bullet\} \) as polynomials in \(x \) and works in the ring \(\mathbb{k}(x)/J \).

ii. For \(R_X = \mathbb{R}[x], \mathbb{C}[x], C^\infty(\mathbb{R}^n, o) \) this is a classical theorem. See e.g. [Martinet, Chapter XIV] (for \(\mathcal{A} \)-equivalence in \(C^\infty \)-case), [Damon84, Theorem 9.3] (for \(\mathcal{A} \)-equivalence in all cases), pg. 143 of [Mo, N.B., or Theorem 1.16, pg.238 of [Gr,Lo,Sh] (for \(\mathcal{K} \)-equivalence of \(\mathbb{C}[x] \)). We remark: the formal statement is simple, but the \(\mathbb{k}[x] \), \(C^\infty \)-cases are non-trivial.

5.3. Fibration of \(\mathcal{K} \)-trivial unfoldings into \(\mathcal{A} \)-unfoldings. Let \(f_t \) be a \(\mathcal{K} \)-trivial family. To understand the \(\mathcal{A} \)-types appearing in this family we should take a slice transversal to the subspace \(T_{f_0} \cap T_{\mathcal{K}} f_0 \subseteq T_{f_0} \). Take the quotient \(T_{f_0} / T_{f_0} \cap T_{\mathcal{K}} f_0 \). Both parts contain \(T_{f_0} \), hence the standard isomorphism of \(\mathcal{R} \)-modules gives:

\[
T_{f_T f_0} / T_{f_0} \cap T_{f_T f_0} \cong (x) \cdot (f_0) \cdot R_X^{\mathcal{P}} / T_{f_0} \cap (x) \cdot (f_0) \cdot R_X^{\mathcal{P}} = (x) \cdot (f_0) \cdot R_X^{\mathcal{P}} + (y) \cdot T_{f_T f_0} / T_{f_0}.
\]

Assume \(f_0 \) is \(\mathcal{K} \)-finite, and fix some elements \(\{v_\bullet\} \subseteq (x) \cdot (f_0) \cdot R_X^{\mathcal{P}} \) whose images generate the \(\mathcal{R} \)-module \((x) \cdot (f_0) \cdot R_X^{\mathcal{P}} / T f_0 \cap (x) \cdot (f_0) \cdot R_X^{\mathcal{P}} \).

Evidently any unfolding of type \((x_0 + (t) \cdot \operatorname{Span}_{R_X}(v_\bullet), t)\) is \(\mathcal{K} \)-trivial.

Definition 5.7. The \(\mathcal{A} \)-pre-normal form of a \(\mathcal{K} \)-trivial unfolding of the map \(f_0 \in (x) \cdot R_X^{\mathcal{P}} \) is the unfolding of type \((f_0 + (t) \cdot \operatorname{Span}_{R_X}(v_\bullet), t)\).
Lemma 5.8. Let R_X be one of $k[[x]]/J$, $k[x]/J$, $k(x)/J$. If $\text{char}(k) > 0$ then assume $J = 0$. Any \mathcal{X}-trivial unfolding $(f_t(x), t)$ of $f_0 \in (x) \cdot R_{X,u}^{\mathcal{X}}$ is formally-\mathcal{X}-equivalent to its \mathcal{A}-pre-normal form.

Moreover, if the map $f_t \in (x) \cdot R_{X,u}^{\mathcal{X}}$ is \mathcal{A}-finitely determined then the unfolding $(f_t(x), t)$ is \mathcal{A}-equivalent to its pre-normal form.

In this sense the unfolding $(f_0 + \sum \tau_j v_j, t)$ is versal among all the \mathcal{X}-trivial unfoldings.

Proof. As the unfolding $(f_t(x), t)$ is \mathcal{X}-trivial, we can assume (by an \mathcal{A}-transformation): $(f_t(x)) = (f_0(x)) \subset R_{X,t}$. Then $R_{X,t}^{\mathcal{X}} \ni f_t(x) \sim GL(p, R_{X,t})$, we can assume:

$$f_t \sim f_0 \in (t) \cdot (x) \cdot (f_0) \cdot R_{X,t}^{\mathcal{X}}.$$

Therefore $f_t = f_0 - t(\xi_X(x) + \xi_Y(y)|f_0) \in (t) \cdot \text{Span}_{R_{X,t}}\{v_s\}$, for some derivations $\xi_X \in T_{\mathcal{X}}, \xi_Y \in T_{\mathcal{X}}$.

If R_X is regular (i.e. $J = 0$) then define the coordinate change $\Phi_{X,t}$ by $x \to x + t\xi_X(x)$. In the general case define $\Phi_{X,t}$ as the extension $x \to x + t\xi_X(x) + (t)^2$ of the map $x \to x + \xi_X(x)$. (Our assumptions ensure the jet$_0$-condition.) We remark that $\Phi_{X,t}$ does not necessarily preserve the origin of the source, i.e. $\Phi_{X,t}(x) \neq (x) \subset R_{X,t}$.

Define $\Phi_{Y,t} \in L_t$ by $y \to y + t\xi_Y(y)$. It does not necessarily preserve the origin of the target, $\Phi_{Y,t}(y) \neq (y) \subset R_{Y,t}$. Altogether we get: $\Phi_{X,t}^{-1} \circ \Phi_{Y,t}^{-1}(f_t) \sim f_0 \in (t) \cdot \text{Span}_{R_{X,t}}\{v_s\} + (t)^2 \cdot T_{\mathcal{X}} f_0$.

Iterate this process to get the formal \mathcal{A}-equivalence, $(f_t, t) \sim (f_0 + (t) \cdot \text{Span}_{R_{X,t}}\{v_s\}, t)$.

Suppose f_t is \mathcal{A}-finitely determined. We have proved: $f_0 + \text{Span}_{R_{X,t}}\{v_s\} \sim f_t + (t)^d$ for $d \gg 1$. Now invoke the finite determinacy.

Example 5.9. ($p = 1$) Take a map $f_0 : (k^n, o) \to (k^1, o)$, $f(x) \in (x)^2$. Suppose $f \in (x)^2$ is “almost weighted homogeneous” in the following sense: $(x) \cdot f \subseteq \text{Jac}(f) + \text{Span}_{\mathcal{X}}(f^2, \ldots)$. Then in equation 22 one get $T_{\mathcal{X}} f_0 f_t = 0$. Therefore any \mathcal{X}-trivial unfolding of f is also (formally) \mathcal{A}-trivial.

5.4. Fibration of \mathcal{X}-orbits into \mathcal{A}-orbits. Assume $\text{char}(k) = 0$ or $J = 0$. Take a map of rank r, present it as $F = \{f(x, u), \in R_{X,u}^{\mathcal{X}(p+r)}\}$, where $f(x, u) \in (x) \cdot (x, u) \in R_{X,u}^{\mathcal{X}}$ (see lemma 4.1). Here $R_{X,u}$ is one of $k[x, u]/J$, $k[x, u]/J$, $k[x, u]/J$. Accordingly $R_{Y,u}$ is one of $k[y, u], k[y, u], k[y, u]$.

Suppose the map $f_0(x) = f(x, o) \in (x)^2 \cdot R_{X,u}^{\mathcal{X}}$. Fix some elements $\{v_s\} \subset (x) \cdot R_{X,u}^{\mathcal{X}}$ that go to a basis of $(x) \cdot T_{\mathcal{X}} f_0$. By the direct check: these elements go also to the basis of $(x) \cdot T_{\mathcal{X}} F$. By the above, f_0 is finitely determined. Then in equation 22 one get $T_{\mathcal{X}} f_0 f_t = 0$. Therefore any \mathcal{X}-trivial unfolding of f is also (formally) \mathcal{A}-trivial.

Proposition 5.10. Suppose k is an infinite field. Then:

$$\mathcal{X}F \cap (\mathcal{A} \text{-finitely determined}) \subseteq \mathcal{A}(\{f\} + \text{Span}_{R_{Y,u}}((y, u) \cdot \{v_s\}), u).$$

Proof. Suppose a map $\tilde{F} \in \mathcal{X}F$ is \mathcal{A}-finitely determined. Then to bring it to the claimed form it is enough to work over $R_{X,u} = k[x, u]/J$ and $R_{Y,u} = k[y, u]$.

Step 1. By an \mathcal{A}-transformation we can assume $(\tilde{F}) = (F) \subset R_{X,u}$. Then, by lemma 4.11 we can assume $\tilde{F} = \{f(x, u), \in R_{X,u}^{\mathcal{X}(p+r)}\}$, with $f, \tilde{f} \in (x) \cdot (x, u) \cdot R_{X,u}^{\mathcal{X}}$. Here $(f, \tilde{f}, u) \subset R_{X,u}$. Apply $GL(p, k[[u]])$ to get: $\tilde{f} - f \in (x) \cdot (f, u) \cdot R_{X,u}^{\mathcal{X}}$.

By lemma 2.1 we have $(x) \cdot R_{X,u}^{\mathcal{X}} = T_{\mathcal{X}} f_0 + T_{\mathcal{X}(o)} f_0 + \text{Span}_{R_{Y,u}}\{v_s\}$. Therefore

$$\begin{equation}
(x, u) \cdot R_{X,u}^{\mathcal{X}} = T_{\mathcal{X}} f + (y, u) \cdot T_{\mathcal{X}} f + \text{Span}_{R_{Y,u}}\{v_s\}.
\end{equation}$$

Hence $\tilde{f} - f \in \text{Span}_{R_{Y,u}}\{(y, u) \cdot \{v_s\}\} + (f, u) T_{\mathcal{X}} f + (y, u)^2 \cdot T_{\mathcal{X}} f$.

As \tilde{F} is \mathcal{A}-finitely determined, it is enough to prove: $\tilde{F} + h_d \in \mathcal{A}(f + \text{Span}_{R_{Y,u}}\{(y, u) \cdot \{v_s\}), u)$ for some $h_N \in (x, u)^N \cdot R_{X,u}^{\mathcal{X}(p+r)}$, with $N \gg 1$. Therefore it is enough to prove:

$$\begin{equation}
\tilde{F} \in \mathcal{A}(f + \text{Span}_{R_{Y,u}}\{(y, u) \cdot \{v_s\}), u \cdot (x, u)^N \cdot R_{X,u}^{\mathcal{X}(p+r)} \text{ for } N \gg 1.
\end{equation}$$

Step 2. Start from $\tilde{f} = f + t g$, where $g \in (x) \cdot (f, u) \cdot R_{X,u}^{\mathcal{X}}$, and t is an indeterminate. The transition to the form of (23) is done inductively. By equation (23) we can present $g \in \text{Span}_{R_{Y,u}}\{(y, u) \cdot \{v_s\} + (f, u)^d \cdot T_{\mathcal{X}} f + (y, u)^{d+1} \cdot T_{\mathcal{X}} f$ for some $d \geq 1$.
• Inductive step for the case of a regular ring, $R_{X,u} = k[[x,u]]$. Define the coordinate change $\Phi_X \in \mathcal{D}$ by $x \to x + t(f,u)^d \cdot c \cdot \xi(x)$ and $u \to u$. (Here $c \in R_{X,u}$ is an unknown.)

Note: this coordinate change is filtration-unipotent, i.e. $\Phi_X - Id$ is filtration-nilpotent for $(x,u) \in R_{X,u}$. Accordingly

$$\Phi_X(f + tg) - f \in t(f,u)^d(c + c(g))T_{\mathcal{D}} f + t^2 \cdot (f,u)^{d+1} \cdot (c)^2 R_{X,u}^{\text{rep}} + t^2(f,u)^d \cdot (c) \cdot (x) R_{X,u}^{\text{rep}}.$$

Expand $c = \sum c_{m,n} x^m \cdot u^n$, with multi-indices m, n. Here $\{c_{m,n}\} \in k[[t]]$ are unknowns. Then we get:

$$\Phi_X(f + tg) - f \in t(f,u)^d \cdot \sum m, n \left(c_{m,n} + t \cdot H_{m,n}(\{c_s\}) \right) \cdot x^m \cdot u^n \cdot T_{\mathcal{D}} f +$$

$$t^2(\{c_s\})^2 \cdot \text{Span}_{R_Y}(y) \cdot \{q_s\} + t(\{c_s\}) \cdot \text{Span}_{R_Y}(y)^{d+1}\{q_s\}.$$

In the infinite summation $\sum m, n$ we need only the finite part (by the finite determinacy).

Thus we get a finite system of polynomial equations,

$$\{c_{m,n} + t \cdot H_{m,n}(\{c_s\}) = 0\}_{m,n}.$$

Apply IFT$_1$ to get the solution $c_{m,n}(t) \in k[[t]]$. For these coefficients the transformation Φ_X satisfies:

$$\Phi_X(f + tg) - f \in (x,u)^N \cdot R_{X,u}^{\text{rep}} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\} + t(\{y,u\})^{d+1} T_{\mathcal{D}} f.$$

Apply a (filtration-unipotent) \mathcal{L}-transformation to eliminate the term $t(\{y,u\})^{d+1} T_{\mathcal{D}} f$. We get:

$$\Phi_Y \Phi_X(f + tg) - f \in (x,u)^N \cdot R_{X,u}^{\text{rep}} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\} + t(\{y,u\})^{d+1} \cdot (x) R_{X,u}^{\text{rep}}.$$

Now expand $(x) R_{X,u}^{\text{rep}}$ as in Step 1, and iterate. In at most N steps one gets equation (24).

• Inductive step for the the general case, $R_{X,u} = k[x,u]/J$. The previously found transformation, $\Phi_X : x \to x + t(f,u)^d \cdot c \cdot \xi(x)$ and $u \to u$, is not necessarily an automorphism of $R_{X,u}$, as it does not preserve the ideal J. However, using the jet$_0$ assumption, §2.1 we can adjust it to an automorphism: $\Phi_X : x \to x + t(f,u)^d \cdot c \cdot \xi(x) + t^2(f,u)^d+1$ and $u \to u$. Applying this Φ_X we get again equation (29).

This completes the induction step in the general case.

Iterating this induction step one gets

$$\Phi_Y \Phi_X(f + tg) - f \in (x,u)^N R_{X,u}^{\text{rep}} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u \text{ for } N \gg 1.$$

By the finite determinacy we conclude: $\Phi_Y \Phi_X(f + tg) - f \in \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u$.

Step 3. We have proved: $(f + tg, u) \in \mathcal{A}(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u)$ for t an indeterminate. The key step was the solvability of the finite polynomial system (24) in variables $\{c_{m,n}\}$. It defines a closed algebraic subscheme in the (finite dimensional) affine space, $Z \subset \text{Spec}(k[c_s]) \times k_1$. The projection of the algebraic germ $(Z,o) \to (k_1^1, o)$ is submersive. In particular, as k is infinite, the image of Z is an infinite subset of k_1^1.

Therefore $(f + tg, u) \in \mathcal{A}(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u)$ for an infinite set of values of $t \in k_1^1$.

Step 4. Inside the space $	ext{Maps}(X, (k^p, o))$ we study the intersection of the line $(f + tg)_t \in \text{Jet}(\mathcal{A}(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u))$ by the finite determinacy we can pass to the finite jets, $\text{jet}_N(R_{X,u}) := R_{X,u}(u,x)^N$. This is a finite-dimensional affine space. The transformations Φ_X, Φ_Y of Step 2 were unipotent. Thus we have the algebraic, unipotent action of $\mathcal{A}(1)$ on the affine space $(R_{X,u}(u,x)^N)^{(p+r)}$. By Kostant-Rosenlicht theorem (see e.g. [F-S, R. Theorem 2.11]) its orbits are Zariski-closed. Moreover, $(f, u) + (\text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, 0)$ is a linear subspace, and its $\mathcal{A}(1)$-orbit is Zariski closed as well.

By Step 3 the intersection of the line $(f + tg)_t \in \text{Jet}(\mathcal{A}(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u)$ is infinite. Therefore the whole line lies inside $\mathcal{A}(1)(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u)$. Namely, $(f + tg, u) \in \mathcal{A}(1)(\{f\} + \text{Span}_{R_Y,u}(y) \cdot \{y^\bullet\}, u)$ for every $t \in k_1^1$.

6. Stable maps

Let R_X be one of $k[x]/J$, $k(x)/J$, $k(x)/J$, see §2.1.
6.1. Stability vs infinitesimal stability. Take a map \(f : X \to (k^p, o) \).

Proposition 6.1. 1. If \(f \) is stable then it is infinitesimally stable, i.e. \(T_\varphi f = R_X^{\varphi p} \), i.e. \(T_\varphi f = 0 \).

2. (If char\((k) > 0 \) then assume: \(J = 0 \) and \(k \) is infinite.) If \(f \) is infinitesimally stable then it is stable.

Proof.

1. Take a perturbation \(v \in R_X^{\varphi p} \) and the unfolding \(f_t = f_o + t \cdot v \). As \(f \) is stable, this unfolding is trivial. By theorem 4.3 we get: \(v \in T_\varphi f \). The t = 0 part of this condition is \(v \in T_\varphi f \). Therefore \(T_\varphi f = R_X^{\varphi p} \).

2. Take an unfolding \(F(x, t) = (f_t(x), t) \) of \(f = f_o \). As \(T_\varphi f = R_X^{\varphi p} \) one gets \(T_\varphi f = R_X^{\varphi p} \). In particular the unfolding \(F \) is a\(\varphi \)-separable. Moreover, \(f_o \) is a\(\varphi \)-finitely determined as an element of \(R_X^{\varphi p} \), see \([\text{Kerner.21}] \) \S7. By lemma [5.3] we get \(T_\varphi f \in R_X^{\varphi p} \).

Therefore \(f_t \in T_\varphi f \). Now apply theorem [4.3] to conclude: the unfolding \(F \) is a\(\varphi \)-trivial.

Example 6.2. For \(R_X = k[x] \) with \(k \in \mathbb{R}, \mathbb{C} \) and for \(R_X = C^\infty(\mathbb{R}^n, o) \), this is the classical lemma \([\text{Mather}] \), see also Theorem 3.2 (pg. 62) of \([\text{Mo. N.B.}] \).

6.2. Stable maps are unfoldings of their genotypes. Take a map \(F : \tilde{X} \to (k^{p+r}, o) \) of rank \(r \). If \(\text{char}(k) > 0 \) then we assume: \(k \) is infinite and \(J = 0 \) (i.e. the germ \(\tilde{X} \) is smooth). Then (lemma [4.11]) \(\tilde{X} \cong X \times (k^t_t, o) \) and \(F(x, t) = (f(x) + c(x, t), t) \), for some \(f \in (x)^2 \cdot R_X^{\varphi p} \) and \(c(x, t) \in (x) \cdot (t) \cdot R_X^{\varphi p} \).

Theorem 6.3. \(F \) is stable iff \(F \) is a\(\varphi \)-equivalent to the unfolding \((f + \sum_{j=1}^{r'} t_j v_j, t) \), where \(t = (t_1, \ldots, t_r) \), \(r \geq r' \), \(f \in (x)^2 \cdot R_X^{\varphi p} \) is a\(\mathcal{K} \)-finite, and \(\{v_1, \ldots, v_{r'}\} \in (x) \cdot R_X^{\varphi p} \) go to a set of generators of the \(k \)-vector space \((x) \cdot T_{\varphi}^f \).

In this case the map \(f \) is called “the genotype” of \(F \), see e.g. \([\text{AGL.VI}] \) III.1.7.

We emphasize: the generating tuple \(\{v_i\} \) can be chosen arbitrarily, and is not necessarily minimal.

Proof. \(\iff \) By proposition 6.1 it is enough to prove: \(T_\varphi f = R_X^{\varphi p} \). We have \(\text{Span}_{R_r} \{v_i\} + T_\varphi f = R_X^{\varphi p} \), cf. (2.1).

Fix some generators \(\{\xi_j\} \) of \(\text{Der}_k(R_X) \), then the generators of \(\text{Der}_k(R_X, t) \) are \(\{\xi_j\} \) and \(\{\partial_t\} \). The submodule \(T_\varphi f \subseteq R_X^{\varphi p} \) is generated by the matrix with columns \(\{\xi_j F\}, \{\partial_t F\} \). We write these columns (as rows):

\[
\{\xi_j f + \sum t_i \xi_j q_i, 0, \ldots, 0\}^t \in_{j=1,\ldots,n} \{q_{j-p} \cdot e_1 + e_j\} \in_{j=p+1,\ldots,p+r'} \in_{e_p+1,\ldots,e_p+r}.
\]

Here \(\{e_p\} \) is the standard basis of \(k^{p+r} \).

By the direct check: \(R_X^{\varphi p} \oplus 0 \subseteq T_\varphi f \). And then \(0 \oplus R_X^{\varphi p} \subseteq T_\varphi f \). Altogether: \(T_\varphi f \mid_{t=0} = R_X^{\varphi p} \).

Example 6.4. In the C-analytic case, \(R_X = \mathbb{C}[x] \), this is Theorem 7.2 of \([\text{Mo. N.B.}] \), for \(C^\infty \)-case see \([\text{Martinelli}] \) pg.200.

Corollary 6.5. Any \(\mathcal{K} \)-finite map \(f \in R_X^{\varphi p} \) admits a stable unfolding. Moreover, for a fixed number of parameters the stable unfolding is unique up to a\(\varphi \)-equivalence.

For \(R_X = \mathbb{C}[x] \) this is Proposition 7.2 of \([\text{Mo. N.B.}] \).
Given an ideal \(I \subseteq (x)^2 \subset R_X\) fix its generators, \(I = R_X\{g_\bullet\} \subset R_X\). This defines the map \(g : X \to (k^p, o)_f\). Define the Tjurina number of an ideal as \(\tau(I) := \text{codim}_x \mathcal{g} := \dim_k T^1_x \mathcal{g}\). (This number does not depend on the choice of the generators.)

Corollary 6.6. For every ideal \(I \subseteq (x)^2 \subset R_X\) with \(\tau(I) < \infty\) there exists a stable germ \(f \in R^\mathcal{p}_{X,I}\) such that \((I, t) = (f) \subset R_X, t\).

For \(R_X = \mathbb{C}\{x\}\) this Corollary 7.2 of [Mo. N.B.].

6.3. Stable maps are determined by their local algebra.

Proposition 6.7. (If char\((k) > 0\) then assume: \(J = 0\) and \(k\) is an infinite field.) Two stable maps are \(\mathcal{A}\)-equivalent iff they are \(\mathcal{X}\)-equivalent.

Recall, the stable maps are equivalent as maps, not as unfoldings. See example ?? in [Mo. N.B.].

Proof. (We prove the non-trivial direction, \(\Leftarrow\).) Stable maps are finitely determined, [Kerner.21 §], therefore we take \(R_X = \mathbb{k}[x]/j\).

By theorem 6.3 we can take one map in the form \(F = (u, f + \sum u_j v_j)\). Here \(f(x) \in (x)^2 \cdot R^\mathcal{p}_X\) is \(\mathcal{X}\)-finitely determined, \(u = (u_1, \ldots, u_r)\), while \(\{v_\bullet\}\) are sent to generators (not necessarily a basis) of the \(\mathbb{k}\)-vector space \((x) \cdot T^1_x f\).

By proposition 5.10 we can take the second map in the form \(\tilde{F} = (u, f(x) + \sum c_j(f, u)v_j)\), where \(c_j \in (y, u) \cdot \mathbb{k}[y, u]\). As \(\tilde{F}\) is infinitesimally stable, the map \(u \rightarrow \tilde{c}(u, o)\) is invertible. Applying the \(\mathcal{R}_u\)-transformation \(u_j + c_j(f, u) \sim u\) we get: \(\tilde{F} \sim (u + c(f, u), f(x) + \sum u_j v_j(x))\). Then by \(\mathcal{L}\)-transformation we get to \(\tilde{F} \sim (u + q(u, x), f(x) + \sum u_j v_j(x))\), where \(q(u, x) \in (u) \cdot (x) \cdot R^\mathcal{p}_{x,o}\). Now again an \(\mathcal{R}\) transformation on \(u\) gives \(\tilde{F} \sim (u, f(x) + \sum u_j v_j(x) + (u) \cdot (x))\). Therefore \(\tilde{F}\) is an unfolding of \(f\). Finally, bring \(\tilde{F}\) to the pre-normal form, theorem 6.3. \(\blacksquare\)

7. Results of Mather-Yau/Scherk/Gaffney-Hauser type

It is well known that the mapping \(f : (k^n, o) \to (k^p, o)\) is determined (up to \(\mathcal{R}, \mathcal{X}, \mathcal{A}\)-equivalence) by its “behaviour” at the critical/singular/instability locus. One way to obtain a precise statement was given in [Mather-Yau] for \(\mathcal{X}\)-equivalence of functions \((p = 1)\), in [Scherk.83] for \(\mathcal{R}\)-equivalence of functions, and extended in [Gaffney-Hauser.85] to \(\mathcal{X}\) and \(\mathcal{A}\)-equivalences of maps \((p \geq 1)\). The initial proofs were \(\mathbb{C}\)-analytic. The first extension to zero/positive characteristic was done for \(p = 1, \mathcal{R}, \mathcal{X}\) in [Gr.Ph.19] (in the case of isolate critical point). We establish the general statements/strengthen the known results.

7.1. The \(\mathcal{X}\)-version in zero characteristic.

Consider modules over rings, \(M_j \in \text{mod-}R_j\), with the following notion of isomorphism: \(M_1 \sim M_2\) if \(M_1 \cong \phi^* M_2\) for an isomorphism of rings \(\phi : R_1 \to R_2\).

Below we consider the module \(T^1_x f\) up such isomorphisms. For \(p = 1\) the data “\(T^1_x f\) up to isomorphism” is equivalent to the data of \(k\)-algebra \(T^1_x f \cong R^\mathcal{X}/(f) + \text{Jac}(f)\).

Let \(R_X\) be one of \(\mathbb{k}[x]/J, \mathbb{k}\{x\}/J, \mathbb{k}(x)/J\), with char\((k) = 0, k = \mathbb{k}\). Take a map \(f : X \to (k^p, o)\).

Theorem 7.1.

1. The \(\mathcal{X}\)-type of \(f\) is determined by the isomorphism type of \(T^1_{\mathcal{X}_X}(f)\).

2. If \(f\) is \(\mathcal{X}\)-finite then the \(\mathcal{X}\)-type of \(f\) is determined by the isomorphism type of \(T^1_{\mathcal{X}_X} f\).

More precisely, if \(T^1_{\mathcal{X}_X} f_0 \sim T^1_{\mathcal{X}_X} f_1\) (in the sense as above), then \(f_0 \sim f_1\). (And similarly for part 2.)

Proof. The proofs of parts 1,2 are the same except for Step 3i. To simplify notations we work mostly with \(T^1_X\) and \(T^1_{\mathcal{X}_X}\).

Step 1.

i. It is enough to establish the formal case, \(R_X = \mathbb{k}[x]/J\). For the statements over \(\mathbb{k}(x)/J, \mathbb{k}(x)/J\) one applies Artin approximation.

ii. Given an isomorphism \(T^1_{\mathcal{X}_X} f_0 \cong \phi^* T^1_{\mathcal{X}_X} f_1\) coming from an isomorphism \(\phi : R_X \cong R_X\), replace \(f_1\) by \(f_1 \circ \phi^{-1}\) to get an isomorphism of \(R_X\)-modules \(T^1_{\mathcal{X}_X} f_0 \cong T^1_{\mathcal{X}_X} f_1\). After an \(R_X\)-linear automorphism of the module \(R^\mathcal{X}\) we can assume: \(T^1 f_0 = T^1 f_1 \subset R^\mathcal{X}\).

Similarly, in the first part we can assume: \(T^1_{\mathcal{X}_X} f_0 = T^1_{\mathcal{X}_X} f_1 \subset R^\mathcal{X}\).

Step 2. Extend the ring, \(R_X := R_X[t]\), note that \(R_X[t]\) is non-local. Take the unfolding \(f_t := f + t(f_1 - f_0)\). We have the tangent spaces \(T^1_{\mathcal{X}_X}, T^1_{\mathcal{X}_X} f_t\) and \(T^1_{\mathcal{X}_X} f_t\), see 4.10.

We claim: \(\partial_t f_t|_{t_o} \in T^1_{\mathcal{X}_X} f_t|_{t_o}\) for \(t_o \in k^1 \setminus \{finite\ set\}\). (For the first part: \(\partial_t f_t|_{t_o} \in T^1_{\mathcal{X}_X} f_t|_{t_o}\) for \(t_o \in k^1 \setminus \{finite\ set\}\).) More precisely, we claim: \(\partial_t f_t \in T^1_{\mathcal{X}_X} f_t\) over the factor ring \(k[t][g^{-1}]\), for some polynomial \(0 \neq g \in k[t]\).
Obviously $\partial_t f_t = f_1 - f_0 \in T_{X_1} f_1 + T_{X_1} f_0 = T_{X_1} f_0$. Thus it is enough to prove: $T_{X_1} f_0 = T_{X_1} f_{t_0}$ for all $t_0 \in k^1$ except for a finite set.

i. We have: $T_{X_1} f_1 = T_{X_1} f_0 + t (T_{X_1} f_0 + T_{X_1} f_1) = T_{X_1} f_0$.

ii. Similarly: $T_{X_1} f_0 \subseteq T_{X_1} f_1 + t$; $T_{X_1} (f_1 - f_0) \subseteq T_{X_1} f_1 + t \cdot T_{X_1} f_0$. These R_{X_1}-modules are finitely generated. Localize at the ideal (x, t) and apply Nakayama over the local ring $(R_{X_1})_{(x, t)}$. We get: $(T_{X_1} f_0)_{(x, t)} \subseteq (T_{X_1} f_1)_{(x, t)}$.

iii. Similarly one has: $T_{X_1} f_1 \subseteq T_{X_1} f_1 + (1 - t) \cdot T_{X_1} (f_1 - f_0) \subseteq T_{X_1} f_1 + (1 - t) \cdot T_{X_1} f_1$. Therefore $(T_{X_1} f_0)_{(x, t)} = (T_{X_1} f_1)_{(x, t)} \subseteq (T_{X_1} f_0)_{(x, t)}$.

iv. Take the quotient module $M := T_{X_1} f_0 T_{X_1} f_1$. Thus M is finitely generated over $R_X [t]$. Its localizations at two points vanish, $M_{(t, x)} = 0$ and $M_{(1 - t, x)} = 0$. Therefore its support, $\text{Supp}(M) \subseteq \text{Spec}(R_X [t])$, does not contain the points $V(t, x), V(1 - t, x) \in \text{Spec}(R_X [t])$. But $\text{Supp}(M)$ is a Zariski-closed subset. Therefore $\text{Supp}(M) \cap V(x) \subset k_1$ is a finite set of points.

Altogether, we have proved: $\partial_t f_{t_0} \in T_{X_1} f_{t_0}$ (resp. $\partial_t f_{t_0} \in T_{X_1} f_{t_0}$) for $t_0 \in k^1 \setminus \{\text{finite set}\}$.

Step 3. i. (The case $k = \mathbb{C}$.) We have the unfolding f_t over C, and $\partial_t f_{t_0} \in T_{X_1} f_{t_0}$ for $t_0 \in k^1 \setminus \{\text{finite set}\}$. Take a path $\gamma : 0 \sim 1$ in C that avoids this finite set. By theorem 4.3 the unfolding f_t is locally \mathcal{H} (resp. $\mathcal{H}(0)$)-trivial at each point of the path. The $\mathcal{H}(0)$-trivialization (in the first case) preserves the origin of this finite set. The \mathcal{H}-trivialization (in the second case) preserves the origin of X as $V(f_0), V(f_1)$ have isolated singularities.

As the path is compact we take a finite cover $\gamma = \bigcup_i U_i$, such that f_t is trivial on each U_i.

And by the connectedness of the path we get: $f_0 \sim f_1$, resp. $f_0 \sim f_1$.

ii. (The general case, $k = \mathbb{C}$, char$(k) = 0$.) Pass to the finite jets, $\text{jet}_d R_X := R_X / (x)^{d+1}$. Then for $t \in k^1 \setminus \{\text{finite set}\}$ we have: $\partial_t \text{jet}_d f_t = \text{jet}_d \partial_t f_t \in T_{X_1} f_1 \subseteq T_{X_1} (\text{jet}_d R_X) \cdot \text{jet}_d f_t$.

Explicitly, we have $\partial_t \text{jet}_d f_t = \text{jet}_d \xi (\text{jet}_d f_t) + \text{jet}_d (U) \cdot \text{jet}_d f_t$. This holds for almost all $t \in k^1$, i.e. over $k[t][g^{-1}]$.

Taylor-expand the elements $\text{jet}_d \xi, \text{jet}_d U, \text{jet}_d (J)$ up to order d. Let $\{ \mathcal{C}_t \}$ be the (finite) set of the coefficients. Then $Q(\mathcal{C}_t)$ is a finite field extension of Q. Therefore this extension can be (re-)embedded, $\epsilon : Q(\mathcal{C}_t) \hookrightarrow \mathbb{C}$.

Over \mathbb{C} we still have: $\partial_t \text{jet}_d (f_t) \in T_{X_1(\epsilon(\text{jet}_d R_X))} \sim \text{jet}_d (f_t)$ for almost all $t \in k^1$. By part i. we get equivalence over \mathbb{C}: $\text{jet}_d (f_0) \sim \text{jet}_d (f_1)$, resp. $\text{jet}_d (f_0) \sim \mathcal{H}(0)(\epsilon(\text{jet}_d R_X)) \text{jet}_d (f_1)$. Then theorem 2.2 gives equivalence over k: $\text{jet}_d f_0 \sim \mathcal{H}(0)(\epsilon(\text{jet}_d R_X)) \text{jet}_d f_1$.

This holds for each $d \gg 1$. Therefore the condition $f_t \in \mathcal{H}(0)(f_0)$, which is an implicit function equation, has an order-by-order solution. By Pfister-Popescu theorem, [Pfister-Popescu,75], we get the equivalence $f_0 \sim f_1$ over $k[\epsilon]/\mathbb{J}$.

Remark 7.2. i. The statement does not hold if k is not algebraically closed. E.g. suppose $\sqrt[d]{a} \notin k$, for some $d \geq 4$, and compare $x_1^d + x_2^d$ to $x_1^d + a \cdot x_2^d$.

ii. If the singularity is not “of isolated type” then the \mathcal{H}-type of f is not determined by the module $T_{X_1} f$. See [Gaffney-Hauser,85], §4. Recall the standard example. Let $f_t (x, y) = x y (x - y) (x - t - y)$. Here $T_{X_1} f_t = (x^2, x^2 y, y^2)$, independent of t. This family is trivialized by the coordinate change $\phi : (x, y, z) \to (x, y, z + t)$, which does not preserve the origin. Thus ϕ is not an automorphism of the local ring $k[[x, y, z]]$. And no automorphism of $k[[x, y, z]]$ can trivialize this family, as any automorphism will preserve the cross-ratio of the four planes of $V(f_t) \subset (k^3, o)$.

iii. Instead of the module $T_{X_1} f$ we could take the R_X-module $T_{X_1} f$, getting the similar statement.

7.2. The \mathcal{H}-version in zero characteristic.

Below we consider $T_{X_1} f$ as a mixed (R_Y, R_X)-module. We write $T_{X_1} f \sim T_{X_1} f$ if there exists an isomorphism of algebras (Φ_X, Φ_Y) (see the diagram) that induces the isomorphism of R_Y-modules $\Phi_Y : T_{X_1} f \sim T_{X_1} f$.

Example 7.3. i. If $f \sim \tilde{f}$, i.e. $\tilde{f} = \Phi_Y \circ f \circ \Phi_X$, then $T_{X_1} f \sim T_{X_1} \tilde{f}$. Indeed, $T_{X_1} (\tilde{f} \circ \Phi_X^{-1}) = R_{X_1} / T_{X_1} (\Phi_Y f) + T_{X_1} (\Phi_Y f) = R_{X_1} / \Phi_Y T_{X_1} f + T_{X_1} f \sim T_{X_1} f$.

ii. Suppose $T_{X_1} f \sim T_{X_1} \tilde{f}$. Using the corresponding morphism of algebras we get $T_{X_1} (\Phi_Y f \circ \Phi_X) = T_{X_1} \tilde{f}$, i.e. $T_{X_1} (\Phi_Y f \circ \Phi_X) = T_{X_1} \tilde{f} \subset R_{X_1}$.

Theorem 7.4. Let $R_X = k[[x]]/I$, with $k = \bar{k}$ and $\text{char}(k) = 0$. Suppose $\sqrt{I} = m$.

1. The \mathcal{A}-type of f is determined by the mixed module type of $T_{1,0}^{\mathcal{A}(0)} f$.

2. If f is \mathcal{A}-finite and not stable then the \mathcal{A}-type of f is determined by the mixed module type of $T_{1,0}^{\mathcal{A}} f$.

More precisely, if $T_{1,0}^{\mathcal{A}(0)} f_0 \sim T_{1,0}^{\mathcal{A}(0)} f_1$, then $f_0 \sim f_1$. (And similarly in case 2.)

Proof. By the example above we can assume $T_{1,0}^{\mathcal{A}(0)} f_0 = T_{1,0}^{\mathcal{A}(0)} f_1 \subset R_X^{\mathcal{A} \text{-type}}$ (resp. $T_{1,0}^{\mathcal{A}} f_0 = T_{1,0}^{\mathcal{A}} f_1 \subset R_X^{\mathcal{A} \text{-type}}$). The proof is similar to the \mathcal{K}-case and is inductive. We apply a sequence of transformations $g_d \in \mathcal{A}(0)(\text{jet}_d(R_X))$ and verify $\text{jet}_d f^g \sim \text{jet}_d f$. Moreover, the transformation can be chosen to satisfy $\text{jet}_{d-1}(g_d) = 1d$.

Fix any $d \geq 1$ and replace R_X by the Artinian ring R_X/\mathcal{A}^{d+1}. Assume $\text{jet}_{d-1}(f_0) = \text{jet}_{d-1}(f_1)$.

Step 1. As in the \mathcal{K}-case we define $f_t := f_0 + t(f_1 - f_0)$ and $R_{X,t} := R_X \otimes \bar{k}[t]$, $T_{d,t} := T_{d} \otimes \bar{k}[t]$. If $R_{X,t}$ is determined by the \mathcal{A}-type of $\mathcal{A} \text{-type}$ of theorem 4.3 to get: $(T_{d,t}) f_t \subset (1 - t) \cdot T_{d,t} f_0 + t \cdot T_{d,t} f_1 \subset T_{d,t} f_1$. In addition

$$T_{d,t} f_t \subset \{ \sum_{i,j \geq 0} q_0(f_0) \cdot v_j(f_1) \} \subset T_{d,t} f_0 + T_{d,t} f_1 \subset T_{d,t} f_0.$$ (Note that R_X is Artinian now.) And similarly $T_{d,t} f_t \subset T_{d,t} f_1$.

- As in the \mathcal{K}-case we have: $T_{d,t} f_t \subset T_{d,t} f_t + t \cdot T_{d,t} f_0$. These modules are finitely generated over $R_{Y,t}$, because R_X is Artinian. Localize at (y,t) to get: $(T_{d,t} f_0)_{(t,y)} \subset (T_{d,t} f_t)_{(t,y)}$. Similarly one gets $(T_{d,t} f_1)_{(t,y)} \subset (T_{d,t} f_t)_{(t,y)}$.

- As in the \mathcal{K}-case take the quotient $M := T_{d,t} f_0 / T_{d,t} f_1$. This is an $R_{Y,t}$-module. Thus: $M_{(t,y)} = 0$, and $M_{(1-t,y)} = 0$. Hence $\text{Supp}(M) \subset V(y) \subset \text{Spec}(R_{Y,t})$ is a finite subset.

Step 2.

i. **(The case $k = \mathbb{C}$.)** As in the \mathcal{K}-case take a path inside $C_t \cong V(y) \subset (C_y, o) \times (C_t, o)$ avoiding the finite subset $\text{Supp}(M)$. Along this path one has $\partial_i f_t \in T_{d,t} f_t$. Now use part of theorem 4.3 to get $f_0 \sim f_1$. Note that the ring R_X is Artinian, therefore the formal and ordinary equivalence coincide.

For part 2 we remark that the \mathcal{A}-trivialization preserves the origins of (k^n, o), (k^p, o), as f_0, f_1 are \mathcal{A}-finite, i.e. their instability locus is just one point.

ii. **(The general case, $k = \bar{k}, \text{char}(k) = 0$.)** By the same Lefschetz-type arguments (and lemma 2.2) we get $f_0 \sim f_1$.

Now combine these constructed transformations to get the (normal) group element $g := \lim_{d \to \infty} (g_d \cdots g_1) \in \mathcal{A}(0)$ (resp. $g := \lim_{d} (g_d \cdots g_1) \in \mathcal{A}$), satisfying $g f = f$.

7.3. The case of arbitrary characteristic.

Let R_X be one of $k[[x]]/I$, $k(x)/I$, $k(x)/I$, here k is any field. If $\text{char}(k) > 0$ then we assume the jet condition of 2.3. Take a map $f : (k^n, o) \to (k^p, o)$, thus $0 \neq f \in m \cdot R_X^{\mathcal{A} \text{-type}}$. The order of f is the largest $\text{ord}(f) \in \mathbb{N}$ satisfying $(f) \subseteq m^{\text{ord}(f)}$. If $\text{ord}(f) \leq 2$ then we take $m^{\text{ord}(f) - 2} = R_X$.

Theorem 7.5.

1. **(\mathcal{K}-case)** Suppose an ideal $a \subseteq m$ satisfies: $a^2 \cdot m^{\text{ord}(f) - 2} \cdot R_X^{\mathcal{A} \text{-type}} \subseteq m \cdot a \cdot T_{\mathcal{A}} f + \text{m}(f) \cdot R_X^{\mathcal{A} \text{-type}}$. Then the \mathcal{K}-type of f is determined by the \mathcal{K}-algebra $R_X(f) + a \cdot a_{\mathcal{A}}$.

2. **(\mathcal{A}-case, k-finite) ** Suppose an ideal $a \subseteq m$ satisfies: $a^2 \cdot m^{\text{ord}(f) - 2} \cdot R_X^{\mathcal{A} \text{-type}} \subseteq a \cdot T_{\mathcal{A}} f + f^e(y)^2 \cdot T_{\mathcal{A}} f$. Then the \mathcal{A}-type of f is determined by the \mathcal{A}-algebra $R_X f^e(y) + a^2$.

3. **(\mathcal{R}-case)** Suppose an ideal $a \subseteq m$ satisfies: $a^2 \cdot m^{\text{ord}(f) - 2} \cdot R_X^{\mathcal{A} \text{-type}} \subseteq m \cdot a \cdot T_{\mathcal{A}} f$. Then the \mathcal{R}-type of f is determined by the \mathcal{R}-algebra $R_X / a \cdot a_{\mathcal{A}}$.

Here is the explicit form of the statement. Fix some maps $f, \tilde{f} \in \mathfrak{m} \cdot R_X^{\mathbb{Q}_p}$ and ideals $a^f, a^{\tilde{f}} \subseteq \mathfrak{m}^2$.

- \mathcal{E} Suppose $(a^f)^2 \cdot m^{ord(f)} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^f \cdot T_x f + \mathfrak{m} \cdot (f) \cdot R_X^{\mathbb{Q}_p}$ and $(a^{\tilde{f}})^2 \cdot m^{ord(\tilde{f})} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^{\tilde{f}} \cdot T_x \tilde{f} + \mathfrak{m} \cdot (\tilde{f}) \cdot R_X^{\mathbb{Q}_p}$. If the k-algebras are isomorphic, $R_X(f) + a^f \cdot a_{\mathfrak{m}}^f \cong R_X(\tilde{f}) + a^{\tilde{f}} \cdot a_{\mathfrak{m}}^{\tilde{f}}$, then $f \mathrel{\sim} \tilde{f}$.

- \mathcal{A} Suppose $(a^f)^2 \cdot m^{ord(f)} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^f \cdot T_x f + f^#(y)^2 \cdot T_x f$ and $(a^{\tilde{f}})^2 \cdot m^{ord(\tilde{f})} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^{\tilde{f}} \cdot T_x \tilde{f} + f^#(y)^2 \cdot T_x \tilde{f}$. If the k-algebras are isomorphic, $R_X(f^#(y)) + (a^f)^2 \cong R_X(\tilde{f}^#(y)) + (a^{\tilde{f}})^2$, then $f \mathrel{\sim} \tilde{f}$.

- \mathcal{R} Suppose $(a^f)^2 \cdot m^{ord(f)} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^f \cdot T_x f$ and $(a^{\tilde{f}})^2 \cdot m^{ord(\tilde{f})} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^{\tilde{f}} \cdot T_x \tilde{f}$. Suppose the $k[f]$-algebra $R_X[a^f, a_{\mathfrak{m}}^f]$ is isomorphic to the $k[\tilde{f}]$-algebra $R_X[a^{\tilde{f}}, a_{\mathfrak{m}}^{\tilde{f}}]$. Then $f \mathrel{\sim} \tilde{f}$.

We do not assume isolated singularities or that the germ $V(f) \subset X$ is a complete intersection.

Proof.

1. Given an isomorphism of k-algebras $R_X(f) + a^f \cdot a_{\mathfrak{m}}^f \mathrel{\sim} R_X(\tilde{f}) + a^{\tilde{f}} \cdot a_{\mathfrak{m}}^{\tilde{f}}$ take its representative $\phi : R_X \to R_X$. Thus ϕ is invertible (hence an isomorphism of k-algebras) and sends $(f) + a^f \cdot a_{\mathfrak{m}}^f$ to $(\tilde{f}) + a^{\tilde{f}} \cdot a_{\mathfrak{m}}^{\tilde{f}}$. Therefore after a coordinate change (\mathcal{R}-equivalence) we can assume:

$$(33) \quad (f) + a^f \cdot a_{\mathfrak{m}}^f = (\tilde{f}) + a^{\tilde{f}} \cdot a_{\mathfrak{m}}^{\tilde{f}} \subset R_X.$$

Note that the assumption $a^f \cdot m^{ord(f)} - 2 \cdot R_X^{\mathbb{Q}_p} \subseteq \mathfrak{m} \cdot a^f \cdot T_x f + m(f) \cdot R_X^{\mathbb{Q}_p}$ is preserved under \mathcal{E}-equivalence, see [Kerner.21 §5].

By the initial assumption $a^f, a^{\tilde{f}} \subseteq \mathfrak{m}^2$. Then equation (33) gives: $rank(f) = rank(\tilde{f})$. By \mathcal{E}-equivalence we can assume $f = (x_1, \ldots, x_r)$, with $(f) \subseteq (x_{r+1}, \ldots, x_n)$. (And similarly for \tilde{f}.) Therefore the whole question is reduced to the case $(f) = (\tilde{f}) \subseteq \mathfrak{m}^2$.

Now apply $GL(p, R_X)$ transformations to f and \tilde{f} to get: $f - \tilde{f} \in (m(f) + a^f \cdot a_{\mathfrak{m}}^f) \cdot R_X^{\mathbb{Q}_p}$. Finally, by [Kerner.21 §5], we have $\mathcal{E} \supseteq \{ f \} + (m(f) + a^f \cdot a_{\mathfrak{m}}^f) \cdot R_X^{\mathbb{Q}_p}$. In particular, $f \in \mathcal{E}$.

2. As in the \mathcal{E}-case we lift the isomorphism $R_X(f^#(y)) + a^f \cdot a^f \mathrel{\sim} R_X(f^#(y)) + a^{\tilde{f}} \cdot a^{\tilde{f}}$ to an isomorphism of k-algebras $\phi : R_X \mathrel{\sim} R_X$ sending $f^#(y) + (a^f)^2$ to $\tilde{f}^#(y) + (a^{\tilde{f}})^2$. Then by a coordinate change (\mathcal{A})

we can assume $f^#(y) + (a^f)^2 = \tilde{f}^#(y) + (a^{\tilde{f}})^2 \subset R_X$. Therefore $\tilde{f}^#(y) \in f^#(y) + (a^f)^2$. Applying $GL(p, k)$ transformations to f we can assume: $f - \tilde{f} \in f^#(y)^2 T_x f + (a^f)^2 \cdot R_X^{\mathbb{Q}_p}$. Finally, by [Kerner.21 §7], we have $\mathcal{A} \supseteq \{ f \} + (f^#(y)^2 \cdot T_x f + (a^f)^2 \cdot R_X^{\mathbb{Q}_p}$.

In particular, $f \in \mathcal{A}$.

3. We have the isomorphism $R_X[a^f, a_{\mathfrak{m}}^f] \cong R_X[a^{\tilde{f}}, a_{\mathfrak{m}}^{\tilde{f}}]$, compatible with the isomorphism $k[f] \cong k[\tilde{f}]$. The later isomorphism (after an automorphism of $k[\tilde{f}]$) can be taken as $f_i \to \tilde{f}_i$. Then $R_X[a^f, a_{\mathfrak{m}}^f] \cong R_X[a^{\tilde{f}}, a_{\mathfrak{m}}^{\tilde{f}}]$ becomes an isomorphism of $k[f]$-algebras.

Lift it to an isomorphism $R_X \mathrel{\phi} R_X$. Therefore by a coordinate change (\mathcal{R}-equivalence) we can assume: $a^f \cdot a_{\mathfrak{m}}^f = a^{\tilde{f}} \cdot a_{\mathfrak{m}}^{\tilde{f}} \subset R_X$. Moreover, we have: $\tilde{f}_i = \tilde{f}_i \cdot 1 \in f_i + a^f \cdot a_{\mathfrak{m}}^f \cdot R_X^{\mathbb{Q}_p}$. By [Kerner.21 §4] we get $\mathcal{R} \supseteq \{ \tilde{f}_i \} + a^f \cdot a^\tilde{f}_i \cdot R_X^{\mathbb{Q}_p}$. In particular, $\tilde{f} \in \mathcal{R}$.

Example 7.6. Take $p = 1$ and assume $J = 0$, i.e. $X \cong (k^n, o)$.

i. (The \mathcal{E}-case.) Suppose $Jac(f) \cdot \mathfrak{m} \cdot a + m(f) \cdot (f) \geq a^2 \cdot m^{ord(f)} - 2$. Then the \mathcal{E}-type of f is determined by the k-algebra $R_X(f) + a \cdot Jac(f)$. The singularity can be non-isolated, we do not assume $\sqrt{a} = m$.

As a particular case take $a = m^d$ with $d \geq 2$. Suppose $Jac(f) \cdot m^{d+1} + m(f) \cdot (f) \geq m^{2d+ord(f)}$. Then the \mathcal{E}-type of f is determined by the k-algebra $R_X(f) + m^d \cdot Jac(f)$. Compare this to [Gr.Ph.17. Theorem 2.2] for $(R_X = k[[x]])$:

If $Jac(f) \cdot m^d \geq m(f) \cdot (f) \geq m^{2d+ord(f)}$ then \mathcal{E}-type of f is determined by the k-algebra $R_X(f) + m^d \cdot Jac(f)$. Their assumption implies (is stronger than) the condition $Jac(f) \cdot m^{d+1} + m(f) \cdot (f) \geq m^{2d+ord(f)}$, which is much stronger than ours.

ii. (The \mathcal{R}-case.) Suppose $Jac(f) \cdot m \cdot a \geq a^2 \cdot m^{ord(f)} - 2$. Then the \mathcal{R}-type of f is determined by the $k[f]$-algebra $R_X[a, Jac(f)]$. Again, we do not assume $\sqrt{a} = m$.

As a particular case take $a = m^d$ with $d \geq 2$. Suppose $Jac(f) \cdot m^{d+1} \geq m^{2d+ord(f)}$. Then the \mathcal{R}-type of f is determined by the k-algebra $R_X[m^d, Jac(f)]$. This strengthens (and extends) [Gr.Ph.17. Theorem 2.4] for $(R_X = k[[x]])$.
The R, \mathcal{R}-cases for $p > 1$ and the \mathcal{A}-case are new.

Remark 7.7. i. One would like a stronger statement, e.g. for $p = 1$ of the form “the \mathcal{X}-type is determined by the k-algebra $R(f) + m^d \cdot \text{Jac}(f)$, where d depends on k and $\dim(R_X)$, but not on f”.

This is impossible due to the following example:

(34) $\text{char}(k) = p, R_X = k[[x, y]]$ and $f(x, y) = x^{p+1} + y^{2N+1}, \tilde{f}(x, y) = f(x, y) + x^py^pd, \text{ for } N > pd$.

Here $\text{Jac}(f) = \text{Jac}(\tilde{f})$ and $m^d \cdot \text{Jac}(\tilde{f}) \supset m^d \cdot x^p \supset x^py^pd$ for any $j \leq d$. Therefore $(f) + m^d \cdot \text{Jac}(\tilde{f}) = (\tilde{f}) + m^d \cdot \text{Jac}(g)$ for $j \leq d$. But $f \not \cong g$, e.g. because the monomial x^py^pd lies under the Newton diagram of f.

ii. (For $p = 1$) Recall that for $R = \mathbb{C}\{x\}$ the R-type of f is not determined just by the k-algebra structure of $R_f / \text{Jac}(f)$. Moreover, the \mathcal{X}-type is not determined by the k-algebra $R_f / \text{Jac}(f)^d$, for any d.

Indeed, suppose $f \not \cong \tilde{f}$, but $f \cong \tilde{f}$ via $\tilde{f}(x) = c \cdot f(\phi(x))$, with $c \in k$. (An explicit example is $f_{i}(x_1, x_2) = x_1^2 + x_2^5 + t \cdot x_2^2 x_1^3$, see [Gr.Lo.Sh] pg.133.) Then $\text{Jac}(f_{i})^d = \text{Jac}(f_{\tilde{i}})^d$ for all $d \geq 1$.

Appendix A. Separability of unfoldings

Below we assume $k = \bar{k}$.

To an unfolding $F = (f_t(x, u), t)$ we associate the element $[f_t] \in T_{g_{t}}f_t$. Define the group action

$$G := \text{Aut}_{k', o}) := \text{Aut}_{k'}(k \otimes R_{X,t}^{\otimes p}) \text{ by } q(x, t) \rightarrow q(x, \phi(t)).$$

This action preserves the embedding $T_{g_{t}}f_t \subseteq R_{X,t}^{\otimes p}$ and hence descends to the action $G \otimes T_{g_{t}}f_t$. We get the group orbit $[Gf_{t}] \subseteq T_{g_{t}}f_t$ and the orbit map $G \rightarrow T_{g_{t}}f_t$ by $g \rightarrow [gf_{t}]$.

Take an ideal $b \subset R_{X,t}$ satisfying $\sqrt{b} = (x, t)$ and pass to the finite jets, $\text{jet}_b(R_{X,t}) := R_{X,t}/b$. This is a finite-dimensional k-vector space. Similarly one has $\text{jet}_b(R_{X,t}^{\otimes p}), \text{jet}_b(T_{g_{t}}f_t) := R_{X,t}^{\otimes p}/b \cdot R_{X,t}^{\otimes p}$ and $\text{jet}_b(G) := \text{Aut}_{k}(k[[t]][k[[t]]] \otimes b)$. We get the (regular) action of the affine algebraic group on the affine space, $\text{jet}_b(G) \otimes \text{jet}_b(T_{g_{t}}f_t)$.

Definition A.1. (Suppose $k = \bar{k}$.) The orbit map $G \rightarrow T_{g_{t}}f_t$ is called separable if all its finite jets, $\{\text{jet}_b(G) \rightarrow \text{jet}_b(T_{g_{t}}f_t)\}_{b}$, are separable as morphisms onto their images.

(The morphism $\text{jet}_b(f_t)$ is called separable if the corresponding field extensions are separable, see e.g. [E-S.R].)

Take the tangent space, $T_G := (t) \cdot \text{Der}_{k'}(k)$, and its finite jets, $\{\text{jet}_bT_G\}_{b}$. Take the map from the jet(image tangent space) to the tangent space of the jet-orbit, $\text{jet}_b(T_{g_{t}}f_t) \rightarrow T_{g_{t}}\text{jet}_b(Gf_{t})$. We write $T_Gf_t \rightarrow [T(Gf_t)] \subseteq T_{g_{t}}f_t$ if the surjectivity holds for all the finite jets. Recall the general fact: the map $f_t : G \rightarrow T_{g_{t}}f_t$ is separable (as a morphism onto its image) iff $T_Gf_t \rightarrow [TGf_t]$. (Namely, the surjectivity holds for all the finite jets.)

Definition A.2. The unfolding F is called separable if the map $G \rightarrow T_{g_{t}}f_t$ is separable.

If a field k is not algebraically closed then we call F separable if $\bar{k} \otimes F$ is separable.

Example A.3. i. For $\text{char}(k) = 0$ the group orbit map is always separable. Hence any unfolding is separable.

ii. The (in)separability is preserved under the G_t-equivalence. For example, for $G = R$ and any b we have the commutative diagram of algebraic varieties

$$\begin{array}{cccc}
\text{jet}_b(G) \rightarrow & \downarrow & \text{jet}_b(T_{g_{t}}f_t) \\
\downarrow f_t \circ \phi & \rightarrow & \text{jet}_bT_{g_{t}}f_t \circ \phi & = \text{jet}_bT_{g_{t}}f_t
\end{array}$$

iii. A trivial unfolding is separable. Indeed, we can take $F = (f_0, t)$, then $G \rightarrow T_{g_{t}}f_t$ is the zero map. Hence $[T_Gf_t] = 0$. And thus trivially $T_Gf_t \rightarrow [TGf_t]$.

Lemma A.4. An unfolding F is inseparable iff $f_{i} \otimes f_0 + t^d f_d + \cdots$, where $\text{char}(k) \mid d$ and $f_d \not \in T_g f_0$.

Proof. We can assume $f = f_0 + t^d f_d + \cdots$ with $\text{char}(k) \mid d$ and $f_d \not \in T_g f_0$. Then $T_Gf_t \subseteq t^{d+1} \cdot R_{X,t}^{\otimes p}$. Thus for $b = (t^{d+1}, (x)^{N})$ we get $\text{jet}_b(T_Gf_t) = 0$. But $Gf_t \ni f_0 + c t^d f_d + \cdots$ for any $c \in k$. Therefore the subvariety $[\text{jet}_b(Gf_t)] \subseteq \text{jet}_bT_{g_{t}}f_t$ is of positive dimension. Thus $T(\text{jet}_bGf_t) \neq 0$. Therefore the map $T_Gf_t \rightarrow [TGf_t] \subset T_{g_{t}}f_t$ cannot be surjective.
Suppose \(f \sim f_o + t^d f_d + \cdots \) with \(\text{char} (k) \nmid d \) and \(f_d \notin T_{\text{reg}} f_o \). Then \(\text{jet}_b T_G f_t = \text{Span}_{k[[t]]} \{ t^{d-1} f_d + \cdots \} \) and \(T_{\text{jet}_b} (G f_t) = \text{Span}_{k[[t]]} \{ t^{d-1} f_d + \cdots \} \). Hence \(F \) is separable.

Otherwise for each \(d \) we get: \(f \sim f_o + t^d f_d + \cdots \) with \(f_d \in T_{\text{reg}} f_o \). Then \(F \) is formally trivial. Trivialize it to get: \((f_o, t) \) is separable.

References

[A.G.V.] V. I. Arnol’d, S. M. Gusein-Zade, A. N. Varchenko, *Singularities of differentiable maps. Volume 1. Classification of critical points, caustics and wave fronts*. Reprint of the 1985 edition. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2012

[A.G.L.V.] V. I. Arnol’d, V. V. Goryunov, O.V. Lyashko, V.A. Vasil’ev, *Singularity theory. I. Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993; MR1230637].* Springer-Verlag, Berlin, 1998. iv+245 pp.

[Artin] M. Artin, *Algebraic approximation of structures over complete local rings*, Publ. Math. IHES, 36, (1969), 23-58. DOI: 10.1007/BF02684596

[B.K.16] G. Belitski, D. Kern, *Group actions on filtered modules and finite determinacy. Finding large submodules in the orbit by linearization*, C. R. Math. Acad. Sci. Soc. R. Can. 36 (2016), no. 4, 113–153.

[B.G.K.22] A.-F. Boix, G.-M. Greuel, D. Kern, *Pairs of Lie-type and large orbits of group actions on filtered modules. (A characteristic-free approach to finite determinacy.)*, Math. Z. 301 (2022), no. 3, 2415–2463.

[Boubakri] Y. Boubakri, *Hypersurface singularities in positive characteristic*, PhD thesis, 2009.

[Damon] J. Damon, *The unfolding and determinacy theorems for subgroups of \(\mathfrak{sl} \) and \(\mathcal{X} \)*. Mem. Amer. Math. Soc. 50 (1984), no. 306, x+88 pp.

[Ebeling] W. Ebeling, *Functions of several complex variables and their singularities*. Translated from the 2001 German original by Philip G. Spain. Graduate Studies in Mathematics, 83. American Mathematical Society, Providence, RI, 2007. xviii+312 pp.

[Eisenbud] D. Eisenbud, *Commutative algebra. With a view toward algebraic geometry*. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.

[F.-S. R.] W. R. Ferrer Santos, A. Rittatore, *Actions and invariants of algebraic groups*. Second edition. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2017. xx+459 pp.

[Fischer] G. Fischer, *Complex analytic geometry*. Lecture Notes in Mathematics, Vol. 538. Springer-Verlag, Berlin-New York, 1976. vii+201 pp.

[Gabrielov] A. M. Gabrielov, *Formal relations among analytic functions*. Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1056–1090.

[Gaffney-Hauser] T. Gaffney, H. Hauser, *Characterizing singularities of varieties and of mappings*. Invent. Math. 81 (1985), no. 3, 427–447.

[Gaffney-du Plessis] T. Gaffney, A. du Plessis, *More on the determinacy of smooth map-germs*. Invent. Math. 66 (1982), no. 1, 137–163.

[Greuel] G.-M. Greuel, *Singularities in positive characteristic: equisingularity, classification, determinacy. Singularities, algebraic geometry, commutative algebra, and related topics, 37–53*, Springer, Cham, 2018.

[Gre-Krö] G.-M. Greuel, H. Kröning, *Simple singularities in positive characteristic*, Math. Z. 203 (1990), 339–354.

[Gr.Lo.Sh] G.-M. Greuel, C. Lossen, E. Shustin, *Introduction to singularities and deformations*. Springer Monographs in Mathematics. Springer, Berlin, 2007. xii+471 pp.

[Gr.Ng] G.-M. Greuel, H. D. Nguyen, *Right simple singularities in positive characteristic*. J. Reine Angew. Math. 712 (2016), 81–106.

[Gr.Ph.17] G.-M. Greuel, T.H. Pham, *Mather-Yau Theorem in Positive Characteristic*, J. Algebraic Geom. 26 (2017), no. 2, 347–355.

[Gr.Ph.19] G.-M. Greuel, T.H. Pham *Finite determinacy of matrices and ideals in arbitrary characteristics*, J. Algebra 530 (2019), 195–214.

[Jacobsen] N. Jacobsen, *Lie algebras*. Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ix+331 pp.

[Kerner] D. Kerner, *Detecting modules inside the group orbits \(\mathfrak{g}, \mathcal{X}, \mathfrak{a} \). The case of arbitrary characteristic.*, arXiv:2111.02715

[Martinet] J. Martinet, *Déploiements versels des applications différentiables et classification des applications stables*. In Singularités d’applications différentiables (Sémin., Plans-sur-Bex, 1975), volume 535 of Lecture Notes in Math., pages 1–44. Springer, Berlin, 1976.

[Martinet] J. Martinet, *Singularities of smooth functions and maps*, Lecture Note Series 58, Cambridge University Press, 1982, 256 pp.

[Mather] J.N. Mather, *Stability of \(C^\infty \) mappings. I. The division theorem*. Ann. of Math. (2) 87, 1968, 89–104.

*M. Artin, *Singularities of differentiable mappings of the plane*. Mimeographed notes, Harvard University, 1965 (unpublished).*

*M. Artin, *Degenerate singularities of differentiable mappings*. Proceedings of the International Congress of Mathematicians (Nice, 1970), pp. 279–308. Gauthier-Villars, Paris, 1971.*

*J.N. Mather, *Stability of \(C^\infty \) mappings. II. Infinitesimal stability implies stability*. Ann. of Math. (2) 89, 1969, 254–291.*

*J.N. Mather, *Stability of \(C^\infty \) mappings. III. Finitely determined map-germs*. Publ. Inst. Hautes Études Sci. Publ. Math. No. 35, 1968, 279–308.*

*J.N. Mather, *Stability of \(C^\infty \) mappings. IV. Classification of stable germs by \(R \)-algebras*. Publ. Inst. Hautes Études Sci. Publ. Math. No. 37, 1969, 223–248.*

[Mather-Yau] J. N. Mather, S. S. T. Yau, *Classification of isolated hypersurface singularities by their moduli algebras*. Invent. Math. 69 (1982), no. 2, 243–251.
D. Mond, J. Montaldi, Deformations of maps on complete intersections, Damon’s \mathcal{K}-equivalence and bifurcations. Brasselet, Jean-Paul (ed.), Singularities. Papers of the international congress ‘Singularities in geometry and topology’, held in Lille (France), 3-8 June, 1991. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 201, 263–284 (1994).

D. Mond, J.-J. Nuño-Ballesteros, Singularities of Mappings The Local Behaviour of Smooth and Complex Analytic Mappings, 2020.

G. Pfister, D. Popescu, Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math. 30 (1975), no. 2, 145–174.

D. Popescu, G. Rond, Remarks on Artin approximation with constraints. Osaka J. Math. 56 (2019), no. 3, 431–440.

G. Rond, Artin approximation. J. Singul. 17 (2018), 108–192.

M. A. S. Ruas, On the finite C^k-determinacy and applications, PhD thesis, 1983, São Carlos.

M. A. S. Ruas, Old and new results on density of stable mappings, to appear in Handbook of Singularities.II.

J. Scherk, À propos d’un théorème de Mather et Yau. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 12, 513–515.

J.C. Tougeron, Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble) 18 1968 fasc. 1, 177–240.

C.T.C. Wall, Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981), no. 6, 481–539.

C. T. C. Wall, Classification and stability of singularities of smooth maps. Singularity theory (Trieste, 1991), 920-952, World Sci. Publ., River Edge, NJ, 1995.

W. Wieslaw, Topological fields, M. Dekker (1988)

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, P.O.B. 653, BE’ER SHEVA 84105, ISRAEL.

Email address: dmitry.kerner@gmail.com