Abstract

Let P and T be disjoint sets of prime numbers with T finite. A simple formula is given for the natural density of the set of square-free numbers which are divisible by all of the primes in T and by none of the primes in P. If P is the set of primes congruent to r modulo m (where m and r are relatively prime numbers), then this natural density is shown to be 0 and if P is the set of Mersenne primes (and $T = \emptyset$), then it is approximately 0.3834.

1. Main results

Gegenbauer proved in 1885 that the natural density of the set of square-free integers, i.e., the proportion of natural numbers which are square-free, is $6/\pi^2$ [3, Theorem 333; reference on page 272]. In 2008 J. A. Scott conjectured [8] and in 2010 G. J. O. Jameson proved [5] that the natural density of the set of odd square-free numbers is $4/\pi^2$ (so the proportion of natural numbers which are square-free and even is $2/\pi^2$). Jameson’s argument was adapted from one used to compute the natural density of the set of all square-free numbers. In this note we use the classical result for all square-free numbers to reprove Jameson’s result and indeed to generalize it.

Theorem 1. Let P and T be disjoint sets of prime numbers with T finite. Then the proportion of all numbers which are square-free and divisible by all of the primes in T and by none of the primes in P is

$$
\frac{6}{\pi^2} \prod_{p \in T} \frac{1}{1 + p} \prod_{p \in P} \frac{1}{1 + p}.
$$

As in the above theorem, throughout this paper P and T will be disjoint sets of prime numbers with T finite. The letter p will always denote a prime number. The term *numbers* will always refer to positive integers. Empty products, such as occurs in the first product above when T is empty, are understood to equal 1. If P is infinite, we will argue in Section 4 that the second product above is well-defined.
Examples. 1. Setting $P = \{2\}$ and T equal to the empty set \emptyset in the theorem we see that the natural density of the set of odd square-free numbers is $\frac{6}{\pi^2} \frac{2}{3+1} = \frac{4}{7\pi^2}$; taking $T = \{2\}$ and $P = \emptyset$ we see that the natural density of the set of even square-free numbers is $\frac{6}{\pi^2} \frac{1}{2+1} = \frac{2}{7\pi^2}$. Thus one third of the square-free numbers are even and two thirds are odd. (These are Jameson’s results of course.)

2. Taking $P = \{101\}$ and $T = \emptyset$ in the theorem we see that the set of square-free numbers not divisible by 101 has natural density $\frac{6}{\pi^2} \frac{101}{101+1}$. Thus slightly over 99% of square-free numbers are not divisible by 101.

3. Set $T = \{2, 5\}$ and $P = \{3, 7\}$ in the theorem. Then the theorem says that the natural density of the set of square-free numbers divisible by 10 but not by 3 or 7 is $\frac{6}{\pi^2} \frac{1}{3} \frac{3}{5} \frac{7}{101} = \frac{7}{32\pi^2}$, so the proportion of square-free numbers which are divisible by 10 but not by 3 or 7 is $7/192$.

Our interest in the case that P is infinite arose in part from a question posed by Ed Bertram: what is the natural density of the set of square-free numbers none of which is divisible by a prime congruent to 1 modulo 4? The answer is zero; more generally we have the following.

Theorem 2. Let r and m be relatively prime numbers. Then the natural density of the set of square-free numbers divisible by no prime congruent to r modulo m is zero.

This theorem is a corollary of the previous theorem since, as we shall see in Section 5, for any r and m as above, $\prod_{p \equiv r \pmod{m}} p/(1 + p) = 0$.

By way of contrast with Theorem 2 we will prove in Section 6 a lemma giving a simple condition on an infinite set of primes P which will guarantee that the set of square-free numbers not divisible by any element of P has positive natural density. An immediate corollary is that the set of square-free numbers not divisible by any Mersenne prime has positive natural density; we will also show how to closely approximate the natural density of this set.

2. A Basic Lemma

Notation. For any finite set S of primes we set $d_S = \prod_{p \in S} p$.

For any real number x and set B of numbers, we let $B[x]$ denote the number of elements t of B with $t \leq x$. Recall that if $\lim_{x \to \infty} B[x]/x$ exists, then it is by definition the natural density of B [6, Definition 11.1]. In case it exists we will denote the natural density of B by B^*. We will also let $|B|$ denote the cardinality of B.

Let A denote the set of square-free numbers. Then we let $A(T, P)$ denote the set of elements of A which are divisible by all elements of T and by no element of
The set of square-free numbers analyzed in Theorem 1 is $A(T, P)$.

The above notation is used in the next lemma, which shows how the calculation of the natural density of the sets $A(T, P)$ reduces to the calculation of the natural density of sets of the form $A(\emptyset, S)$ and, when P is finite, also reduces to the calculation of the natural density of sets of the form $A(S, \emptyset)$.

Lemma 1. For any finite set of primes S disjoint from T and from P and for any real number x, we have $A(T, S \cup P)[x] = A(T \cup S, P)[x d_S]$. Moreover, the set $A(T \cup S, P)$ has a natural density if and only if $A(T, P \cup S)$ has a natural density, and if these natural densities exist, then $A(T, P \cup S)^* = d_S A(T \cup S, P)^*$.

This lemma generalizes Lemmas 1 and 2 of [2].

Proof. The first assertion is immediate from the fact that multiplication by d_S gives a bijection from the set of elements of $A(T, S \cup P)$ less than or equal to x to the set of elements of $A(T \cup S, P)$ less than or equal to $x d_S$. This implies that

$$
\frac{A(T, P \cup S)[x]}{x} = d_S \frac{A(T \cup S, P)[x d_S]}{x d_S}.
$$

The lemma follows by taking the limit as x (and hence $x d_S$) goes to infinity.

Remark 1. We might note that if we assume that for all T the sets $A(T, \emptyset)$ have natural densities, then it is easy to compute these natural densities. After all, for any T the set A is the disjoint union over all subsets S of T of the sets $A(T \setminus S, S)$, so by Lemma 1

$$
\frac{6}{\pi^2} = A^* = \sum_{S \subseteq T} A(T \setminus S, S)^* = \sum_{S \subseteq T} d_S A(T, \emptyset)^* = A(T, \emptyset)^* \sum_{S \subseteq T} d_S.
$$

But

$$
\sum_{S \subseteq T} d_S = \sum_{d|d_T} d = \prod_{p \in T} (1 + p)
$$

[6, Theorem 4.5], so indeed

$$
A(T, \emptyset)^* = \frac{6}{\pi^2} \prod_{p \in \mathbb{P}} \frac{1}{1 + p}.
$$

We could now use Lemma 1 to obtain the formula of Theorem 1 in the case that P is finite.
3. Proof of Theorem 1 when P is Finite

The theorem in this case was proved in [2]. For the convenience of the reader we sketch the proof using the notation of this paper.

Lemma 2. Let p be a prime number not in T. If the set $A(T, \emptyset)$ has natural density D, then the set $A(\{p\} \cup T, \emptyset)$ has natural density $\frac{1}{p+1}D$.

Proof. For any real number x we set $E(x) = A(\{p\} \cup T, \emptyset)[x]$. Let $\epsilon > 0$.

Note that $A(T, \emptyset)$ is the disjoint union of $A(\{p\} \cup T, \emptyset)$ and $A(T, \{p\})$. Hence by Lemma 1 (applied to $A(T, \{p\})$) for any real number x,

$$A(T, \emptyset)[x/p] = E(x/p) + E(x)$$

and so by the choice of D there exists a number M such that if $x > M$ then

$$\left| \frac{E(x)}{x/p} + \frac{E(x/p)}{x/p} - D \right| < \epsilon/3.$$

We next pick an even number k such that $\frac{1}{p^k} < \frac{\epsilon}{3}$. Then

$$|E(x/p^k)| \leq x/p^k < \frac{\epsilon x}{3}$$

and also (using the usual formula for summing a geometric series)

$$-Dx \sum_{i=1}^{k} \left(-\frac{1}{p} \right)^i - Dx \frac{1}{p+1} = Dx \left| \frac{(-\frac{1}{p}) - (-\frac{1}{p})^{k+1}}{1 - (-\frac{1}{p})} + \frac{1}{p+1} \right|$$

$$= Dx \left| -1 + \frac{p^x}{p+1} + \frac{1}{p+1} \right| < \frac{1}{p^k}Dx < \frac{\epsilon x}{3}.$$

Now suppose that $x > p^kM$. Then for all $0 \leq i \leq k$ we have $x/p^i > M$ and hence (applying the choice of M above),

$$\left| (-1)^iE \left(\frac{x}{p^i} \right) + (-1)^iE \left(\frac{x}{p^{i+1}} \right) - (-1)^iD \frac{x}{p^{i+1}} \right| < \frac{\epsilon x}{3p^{i+1}}.$$ (3)

Using the triangle inequality to combine the inequalities (1) and (2) and all the inequalities (3) for $0 \leq i < k$ and dividing through by x, we can conclude that

$$\left| \frac{E(x)}{x} - \frac{1}{p+1}D \right| < \frac{\epsilon}{3} \left(\sum_{i=1}^{k} \frac{1}{p^i} \right) + \frac{\epsilon}{3} + \frac{\epsilon}{3} < \epsilon.$$

Hence the natural density of $A(\{p\} \cup T, \emptyset)$ is $\frac{1}{p+1}D$. \qed
Theorem 1 now follows in the case that \(P \) is empty from the above lemma by induction on the number of elements of \(T \). That it is true when \(P \) is finite but not necessarily empty follows from Lemma 1: in the statement of that lemma replace \(P \) by \(\emptyset \) and \(S \) by \(P \); then we see that the natural density of \(\mathcal{A}(T, P) \) is indeed

\[
d_{P, \mathcal{A}(T \cup P, \emptyset)^*} = \frac{6}{\pi^2} \prod_{p \in P} p \prod_{p \in T \cup P} \frac{1}{1 + p} = \frac{6}{\pi^2} \prod_{p \in T} \frac{1}{1 + p} \prod_{p \in P} \frac{1}{1 + p}.
\]

4. Proof of Theorem 1 when \(P \) is Infinite

In this and the next section we will use the simple fact that for all \(x > 1 \) we have

\[
\frac{1}{x} > \log(x + 1) - \log x = \log \frac{x + 1}{x} > \frac{1}{1 + x} > \frac{1}{2x}. \tag{4}
\]

We first show that the expression \(\prod_{p \in P} \frac{p}{1 + p} \) is well-defined when \(P \) is infinite. Let \(p_1, p_2, p_3, \ldots \) be the strictly increasing sequence of elements of \(P \). Since all the quotients \(p_i/(1 + p_i) \) are less than 1, the partial products of the infinite product \(\prod_i p_i/(1 + p_i) \) form a strictly decreasing sequence bounded below by 0; thus the infinite product \(\prod_i p_i/(1 + p_i) \) converges, say to \(\alpha \). Its limit is also unchanged by any rearrangement of its factors; this is easy to check if \(\alpha \) is zero. Otherwise the infinite sum

\[
\sum_i \log \frac{p_i}{1 + p_i} = \sum_i \log(p_i) - \log(1 + p_i)
\]

converges absolutely (to \(\log(\alpha) \)) and therefore its value is unchanged under rearrangements; hence the corresponding fact is also true of the infinite product \(\prod_i p_i/(1 + p_i) \). Thus in all cases the expression \(\prod_{p \in P} \frac{p}{1 + p} \) is well-defined.

We now prove the theorem in the case that \(T \) is empty.

First suppose that \(\alpha \neq 0 \). Then \(\sum_{p \in P} 1/p < \infty \). After all, we have

\[
-\log \alpha = \sum_{p \in P} \log(1 + p) - \log p > \frac{1}{2} \sum_{p \in P} \frac{1}{p}.
\]

Now observe that \(\mathcal{A} \setminus \mathcal{A}(\emptyset, P) \) is the disjoint union

\[
\mathcal{A} \setminus \mathcal{A}(\emptyset, P) = \cup_{k \geq 1} \mathcal{A}(\{p_k\}, \{p_1, \cdots, p_{k-1}\})
\]

since for all \(b \in \mathcal{A} \setminus \mathcal{A}(\emptyset, P) \) there exists a least \(k \geq 1 \) with \(p_k \) dividing \(b \), so that \(b \in \mathcal{A}(\{p_k\}, \{p_1, \cdots, p_{k-1}\}) \).

For all \(n \) and \(k \) we have

\[
\frac{\mathcal{A}(\{p_k\}, \{p_1, \cdots, p_{k-1}\})[n]}{n} \leq \frac{|\{j : 1 \leq j \leq n \text{ and } p_k | j\}|}{n} \leq \frac{1}{p_k}.
\]
Hence by Tannery’s theorem (see [9, p. 292] or [4, p. 199]) the natural density of \(A \setminus A(\emptyset, P) \) is therefore

\[
\lim_{n \to \infty} \frac{(A \setminus A(\emptyset, P))[n]}{n} = \lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{A(\{p_k\}, \{p_1, \ldots, p_{k-1}\})[n]}{n}
\]

\[
= \lim_{k \to \infty} \sum_{n=1}^{\infty} \frac{6}{\pi^2} \frac{1}{1 + p_k} \prod_{i<k} \frac{p_i}{1 + p_i}
\]

by the proof in the previous section of the theorem in the case that \(P \) is finite. Writing \(1/(1 + p_k) = 1 - p_k/(1 + p_k) \) we can see that the natural density of \(A \setminus A(\emptyset, P) \) is therefore a limit of telescoping sums

\[
\frac{6}{\pi^2} \lim_{L \to \infty} \sum_{k=1}^{L} \left(\prod_{i<k} \frac{p_i}{1 + p_i} - \prod_{i<k+1} \frac{p_i}{1 + p_i} \right)
\]

\[
= \frac{6}{\pi^2} \lim_{L \to \infty} \left(1 - \prod_{i \leq L} \frac{p_i}{1 + p_i} \right) = \frac{6}{\pi^2} (1 - \alpha)
\]

and thus

\[
A(\emptyset, P)^* = \frac{6}{\pi^2} - \frac{6}{\pi^2} (1 - \alpha) = \frac{6}{\pi^2} \prod_{p \in P} \frac{p}{1 + p},
\]

which proves the theorem in the case that \(\alpha \neq 0 \) and \(T = \emptyset \).

We next consider the case that \(\alpha = \prod_{p \in P} \frac{p}{1 + p} = 0 \). Suppose that \(\epsilon > 0 \). By hypothesis there exists a number \(M \) with \(\frac{6}{\pi^2} \prod_{i \leq M} \frac{p_i}{1 + p_i} < \epsilon/2 \). Then by our proof of the theorem in the case that \(P \) is finite there exists a number \(L \) such that if \(n > L \) then

\[
A(\emptyset, \{p_1, p_2, \ldots, p_M\})[n] < \frac{\epsilon}{2} + \frac{6}{\pi^2} \prod_{i \leq M} \frac{p_i}{1 + p_i}.
\]

Thus if \(n > L \) we have

\[
0 \leq \frac{A(\emptyset, P)[n]}{n} \leq \frac{A(\emptyset, \{p_1, p_2, \ldots, p_M\})[n]}{n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

Therefore,

\[
\lim_{n \to \infty} \frac{A(\emptyset, P)[n]}{n} = 0 = \frac{6}{\pi^2} \prod_{p \in P} \frac{p}{1 + p},
\]

which proves the theorem if \(\alpha = 0 \) and \(T = \emptyset \).

This completes the proof of the theorem in the case that \(T = \emptyset \). The general case where \(T \) is arbitrary then follows from Lemma 1, applied with \(T \) and \(S \) replaced respectively by \(\emptyset \) and \(T \): \(A(T, P)^* \) equals
$A(\emptyset, P \cup T)^* / d_T = \frac{6}{\pi^2} \prod_{p \in T} \frac{1}{p} \prod_{p \in P} \frac{p}{1 + p} \prod_{p \in P} \frac{p}{1 + p} = \frac{6}{\pi^2} \prod_{p \in T} \frac{1}{1 + p} \prod_{p \in P} \frac{p}{1 + p},$

which completes the proof of Theorem 1.

5. Proof of Theorem 2

Let us set $P = \{p : p \equiv r \ (mod \ m)\}$. It then suffices by Theorem 1 to prove that $\prod_{p \in P} p / (1 + p) = 0$. For any real number $x > 3$ we have

$$\sum_{x > p \in P} \frac{1}{p} - \frac{\log \log x}{\phi(m)} = O(1)$$

(see [1, Exercise 6, page 156]). Hence $\sum_{p \in P} 1/p = \infty$. Theorem 2 now follows from the next lemma, which applies to any infinite set P of primes.

Lemma 3. Let P be an infinite set of primes. Then $\sum_{p \in P} 1/p = \infty$ if and only if $\prod_{p \in P} p / (1 + p) = 0$. Moreover, if $\sum_{p \in P} 1/p \leq S < \infty$ for a real number S, then $\prod_{p \in P} p / (1 + p) \geq e^{-S}$.

Proof. The inequalities of display (4) imply that

$$\frac{1}{2} \sum_{p \in P} \frac{1}{p} \leq - \log \prod_{p \in P} \frac{p}{1 + p} = \sum_{p \in P} \log \frac{p + 1}{p} \leq \sum_{p \in P} \frac{1}{p}.$$

Our conclusions follow easily. \qed

6. Mersenne Primes

Lemma 4. Let d be a number. Let $P = \{p_1, p_2, \cdots\}$ be an infinite set of primes such that for all $i \geq 1$ we have $p_i \geq 2^i - d$. Then the set of square-free numbers not divisible by any element of P has positive natural density.

Proof. The infinite sum $\sum_{p \in P} 1/p$ converges since it is less than or equal to the infinite sum $\sum_{i<\infty} 1/(2^i - d)$, which itself converges by the limit comparison test. Thus by Lemma 3, $\prod_{p \in P} p / (1 + p) > 0$; the lemma now follows from Theorem 1. \qed

An immediate corollary of this lemma (or just of Theorem 1 if the relevant set of primes turns out to be finite) is that the natural density of the set of square-free numbers not divisible by any Fermat prime is positive [3, Section 2.5]. Similarly,
the natural density of the set of square-free numbers not divisible by any Mersenne prime is positive. The next theorem allows us to approximate this natural density closely.

Let \(q_i \) denote the \(i \)-th prime number and let \(P \) denote the set of Mersenne primes. For any number \(M \) let

\[
P_M = \{ p \in P : p = 2^i - 1 \text{ for some } i \leq M \}
\]

(so, for example, \(P_5 = \{3, 7, 31, 127\} \)). Let \(A_M = \prod_{p \in P_M} p/(1+p) \) (so, for example, \(A_5 = \frac{3 \cdot 7 \cdot 31 \cdot 127}{4 \cdot 8 \cdot 32 \cdot 128} \approx .63078 \)). If the number of Mersenne primes is finite, then there exists some \(M \) with \(P = P_M \) and so \(A_M = \prod_{p \in P} \frac{p}{1+p} \). In general, we have the following.

Theorem 3. Whether \(P \) is finite or infinite, we have

\[
A_M \geq \prod_{p \in P} \frac{p}{1+p} \geq A_M \exp \left(-\frac{1}{2M}\right).
\]

Proof. For any number \(i \) we have \(q_i \geq i + 1 \) so

\[
\sum_{p \in P \setminus P_M} \frac{1}{p} \leq \sum_{i > M} \frac{1}{2^{q_i} - 1} \leq \sum_{i > M} \frac{1}{2^i} = \frac{1}{2^M},
\]

so by Lemma 3

\[
A_M \geq \prod_{p \in P} \frac{p}{1+p} = \prod_{p \in P_M} \frac{p}{1+p} \prod_{p \in P \setminus P_M} \frac{p}{1+p} \geq A_M \exp \left(-\frac{1}{2M}\right).
\]

Thus, for example, taking \(M = 5 \) we have

\[
.631 \geq A_5 \geq \prod_{p \in P} \frac{p}{1+p} \geq \exp \left(-\frac{1}{2^5}\right) A_5 \geq .611
\]

so the natural density \(D \) of the set of square-free numbers divisible by no Mersenne prime satisfies

\[
.384 \geq .631 \frac{6}{\pi^2} \geq D \geq .611 \frac{6}{\pi^2} \geq .371.
\]

If we repeat this calculation with \(M = 17 \) (so that now

\[
P_M = \{3, 7, 31, 127, 2^{13} - 1, 2^{17} - 1, 2^{19} - 1, 2^{31} - 1\}\)

[3, Section 2.5], then we find that

\[
.38342 > D > .38341.
\]
Remark 2. An easy induction shows that for $i > 1$, $q_i - 2i$ is an increasing function of i; hence if $i > M > 1$ then $q_i \geq 2i + q_M - 2M$. Using this bound on q_i the argument in the proof of the above theorem can be modified to show that

$$\sum_{p \in P \setminus P_M} \frac{1}{p} \leq 3(2^{q_M} - 1)$$

so that by Lemma 3

$$D \geq \frac{6}{\pi^2} A_M \exp\left(-\frac{1}{3(2^{q_M} - 1)}\right) \geq \frac{6}{\pi^2} A_M \exp\left(-\frac{1}{3(M^{M \log 2} - 1)}\right)$$

where we have used Rosser’s Theorem [7] to deduce the last inequality. Thus, for example, if $M = 5$ (so $q_M = 11$) we can compute that

$$D \geq \frac{6}{\pi^2} A_5 \exp\left(-\frac{1}{3(2^{11} - 1)}\right) > .383403.$$

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1986.
[2] R. Brown, What proportion of square-free numbers are divisible by 2? or by 30 but not by 7?, Math. Gaz., to appear.
[3] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (5th ed.), Oxford Univ. Press, Oxford, 1979.
[4] J. Hofbauer, A simple proof of $1 + 1/22 + 1/32 + \cdots = \pi^2/6$ and related identities, Amer. Math. Monthly 109 (2002), 196 – 200.
[5] G. J. O. Jameson, Even and odd square-free numbers, Math. Gaz. 94 (2010), 123–127.
[6] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers (4th ed.), Wiley, New York, 1980.
[7] J. B. Rosser, The n-th prime is greater than n log n, Proc. Lond. Math. Soc. 45 (1939), 21-44.
[8] J.A. Scott, Square-free integers once again, Math. Gaz. 92 (2008), 70 – 71.
[9] J. Tannery, Introduction à la Théorie des Fonctions d’une Variable, 2 ed., Tome 1, Libraire Scientifique A, Hermann, Paris, 1904.