Sato-Tate groups of some weight 3 motives

Francesc Fité, Kiran S. Kedlaya, and Andrew V. Sutherland

Abstract. We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers $h_{3,0} = h_{2,1} = h_{1,2} = h_{0,3} = 1$. We then describe families of motives that realize some of these Sato-Tate groups, and provide numerical evidence supporting equidistribution. One of these families arises in the middle cohomology of certain Calabi-Yau threefolds appearing in the Dwork quintic pencil; for motives in this family, our evidence suggests that the Sato-Tate group is always equal to the full unitary symplectic group $USp(4)$.

Contents
1. Introduction
2. Group-theoretic classification
3. Testing the generalized Sato-Tate conjecture
4. Modular forms and Hecke characters
5. Direct sum constructions
6. Tensor product constructions
7. The Dwork pencil
8. More modular constructions
9. Moment statistics
Acknowledgments
References

1. Introduction

For a fixed elliptic curve without complex multiplication defined over a number field, the Sato-Tate conjecture predicts the average distribution of the Frobenius trace at a variable prime. This conjecture may be naturally generalized to an arbitrary motive over a number field in terms of equidistribution of classes within a certain compact Lie group, the Sato-Tate group, as described in [Ser95, §13], [Ser12, Ch. 8], and [FKRS12, §2]. This equidistribution problem reduces naturally (as described in [Ser68, Appendix to Chapter 1]) to establishing analytic...
properties of certain motivic L-functions, but unfortunately this latter problem is generally quite difficult. Besides cases of complex multiplication, one of the few cases where equidistribution is known is elliptic curves over totally real number fields [BLGG11].

However, the problem of classifying the Sato-Tate groups that can arise from a given class of motives is more tractable. This problem splits naturally into two subproblems: the group-theoretic classification problem of identifying those groups consistent with certain group-theoretic restrictions known to apply to Sato-Tate groups in general, and the arithmetic matching problem of correlating the resulting groups with the arithmetic of motives in the family. In the case of 1-motives of abelian surfaces, both subproblems have been solved in [FKRS12]: there turn out to be exactly 52 groups that arise, up to conjugation within the unitary symplectic group USp(4).

In this paper, we consider a different family of motives for which we solve the group-theoretic classification problem, give some partial results towards the arithmetic matching problem, and present numerical evidence supporting the equidistribution conjecture. Before describing the family of motives in question, let us recall the general formulation of the group-theoretic classification problem for self-dual motives with rational coefficients of fixed weight w, dimension d, and Hodge numbers $h_{p,q}$. The problem is to identify groups obeying the Sato-Tate axioms, as formulated in [FKRS12] (modulo one missing condition; see Remark 2.3).

(ST1) The group G is a closed subgroup of USp(d) or O(d), depending on whether w is odd or even (respectively).

(ST2) (Hodge condition) There exists a subgroup H of G, called a Hodge circle, which is the image of a homomorphism $\theta: U(1) \to G^0$ such that $\theta(u)$ has eigenvalues u^{p-q} with multiplicity $h_{p,q}$. Moreover, the Hodge circles generate a dense subgroup of the identity component G^0.

(ST3) (Rationality condition) For each component C of G and each irreducible character χ of GL$_d$(C), the expected value (under the Haar measure) of $\chi(\gamma)$ over $\gamma \in C$ is an integer.

For fixed $w, d, h_{p,q}$, there are only finitely many groups G satisfying (ST1), (ST2), and (ST3), up to conjugation within USp(d) or O(d); see Remark 3.3 in [FKRS12].

Since the group-theoretic classification is known for 1-motives of abelian varieties of dimensions 1 and 2, it is natural to next try the case of abelian threefolds. We are currently working on this classification, but it is likely to be rather complicated, involving many hundreds of groups. In this paper, we instead consider the case where $w = 3$, $d = 4$, and $h_{3,0} = h_{2,1} = h_{1,2} = h_{0,3} = 1$. We have chosen this case because, on the one hand, it is similar enough to the case of abelian surfaces that much of the analysis of [FKRS12] carries over, and, on the other hand, it is of some arithmetic interest due to the multiple ways in which such motives arise. One of these ways is by taking the symmetric cube of the 1-motive associated to an elliptic curve. Another way is to consider a member of the Dwork pencil of Calabi-Yau projective threefolds defined by the equation

\begin{equation}
(1.1) \quad x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = tx_0x_1x_2x_3x_4,
\end{equation}

in which t represents a nonzero parameter, and then extract the 3-motive invariant under the action of the automorphism group $(\mathbb{Z}/5\mathbb{Z})^4$. These two constructions are closely related: for instance, the coincidence between certain mod ℓ Galois...
representations arising from the two constructions is exploited in [HSBT10] to yield one of the key ingredients in the proof of the Sato-Tate conjecture for elliptic curves. Additional constructions can be achieved using direct sums and tensor products of motives associated to elliptic curves and modular forms (the latter case was suggested to us by Serre).

The primary result of this paper is the resolution of the group-theoretic classification problem for motives of the shape we have just described. This turns out to be similar to the classification problem in [FKRS12] but substantially simpler due to the less symmetric shape of the Hodge circle: we end up with only 26 groups up to conjugation. These groups are described in [2] and summarized in Table 1. As in [FKRS12], we compute moment sequences associated to these groups in order to facilitate numerical experiments; these appear in [3].

As a partial result towards the arithmetic matching problem, we describe several constructions yielding motives of the given form and then match examples of these constructions to our list of Sato-Tate groups based on numerical experiments. For example, the symmetric cube construction gives rise to Sato-Tate groups with identity component U(1) or SU(2), depending on whether or not the original elliptic curve has complex multiplication (CM), and we can provisionally identify the exact Sato-Tate group (up to conjugation) by comparing experimentally derived moment statistics with the moment sequences computed in [3]. In the CM case we are actually able to prove equidistribution using the techniques developed in [FS12]; this follows from Lemma 6.5. More generally, using the direct sum of a pair of motives arising from CM modular forms of weights 2 and 4, we obtain examples matching all 10 of the groups in our classification that have identity component U(1), and we are able to prove equidistribution in each of these cases (see Lemma 5.4). Additional cases arise from considering Hilbert modular forms and Hecke characters over CM fields. In total, we exhibit examples that appear to realize 25 of the 26 possible Sato-Tate groups obtained by our classification.

For the Dwork pencil construction, we are able to collect numerical evidence thanks to the work of Candelas, de la Ossa, and Rodriguez Villegas [COR00, COR03], who, motivated by the appearance of the Dwork pencil in the study of mirror symmetry in mathematical physics, described some \(p \)-adic analytic formulas for the \(L \)-function coefficients. The resulting evidence may be a bit surprising on first glance: one might expect (by analogy with abelian varieties) that the group USp(4) arises for most members of the pencil with a sparse but infinite set of exceptions, but in fact we found no exceptions at all other than \(t = 0 \) (the Fermat quintic). A Hodge-theoretic heuristic suggesting the existence of only finitely many exceptions in this family (and also applicable in many other cases) has been proposed by de Jong [dJ02].

For a gentle introduction to motives, we refer the reader to [Mil13].

2. Group-theoretic classification

In this section, we classify, up to conjugation, the groups \(G \subseteq \text{GL}_4(\mathbb{C}) \) that satisfy the Sato-Tate axioms (ST1), (ST2), and (ST3); the list of possible groups (in notation introduced later in this section) can be found in Table 1. As in [FKRS12], we exhibit explicit representatives of each conjugacy class for the purposes of computing moments, which are needed for our numerical experiments (see [3]). This forces us to give an explicit description of the matrix groups we are using.
Let M (resp. S) denote a matrix of $\text{GL}_4(\mathbb{C})$ corresponding to a Hermitian (resp. symplectic) form, that is, a matrix satisfying $M^t = M$ (resp. $S^t = -S$). The unitary symplectic group of degree 4 (relative to the forms M and S) is defined as

$$\text{USp}(4) := \left\{ A \in \text{GL}_4(\mathbb{C}) \mid A^t S A = S, \, \bar{A}^t M A = M \right\}.$$

For the purposes of the classification, it will be convenient to make different choices of S and M according to the different possibilities for the identity component G^0 of G. Unless otherwise specified, we will take M to be the identity matrix Id.

As in [FKRS12, Lemma 3.7], one shows that if G satisfies the Sato-Tate axioms, then G^0 is conjugate to one of $U(1)$, $SU(2)$, $U(2)$, $U(1) \times U(1)$, $U(1) \times SU(2)$, $SU(2) \times SU(2)$, $\text{USp}(4)$. (The case $U(2)$ does not occur in [FKRS12, Lemma 3.7]; see Remark 2.3 for the reason why.) We now proceed by considering each of these options in turn.

2.1. The case $G^0 = U(1)$

To treat the case $G^0 = U(1)$, we assume that the symplectic form preserved by $\text{USp}(4)$ is given by the matrix

$$S := \begin{pmatrix} 0 & \text{Id}_2 \\ -\text{Id}_2 & 0 \end{pmatrix}.$$

In this case G^0 must be equal to a Hodge circle H, which we may take to be the image of the homomorphism

$$\theta: U(1) \to \text{USp}(4), \quad \theta(u) := \begin{pmatrix} U & 0 \\ 0 & \bar{U} \end{pmatrix}, \quad U := \begin{pmatrix} u^3 & 0 \\ 0 & u \end{pmatrix}.$$

Note that the centralizer of G^0 within $\text{GL}(4, \mathbb{C})$ consists of diagonal matrices. For such a matrix to be symplectic and unitary it must be of the form

$$\begin{pmatrix} V_2 & 0 \\ 0 & \bar{V}_2 \end{pmatrix}, \quad V_2 := \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix},$$

where v_1 and v_2 are in $U(1)$. We thus conclude that $Z \simeq U(1) \times U(1)$. The quotient N/Z injects into the continuous automorphisms $\text{Aut}^\text{cont}(G^0)$ of G^0. Since $\text{Aut}^\text{cont}(U(1))$ consists just of the identity and complex conjugation, Z has index 2 in N. Thus N has the form

$$N = Z \cup JZ, \quad J := \begin{pmatrix} 0 & J_2 \\ -J_2 & 0 \end{pmatrix}, \quad J_2 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Conjugation on Z by J corresponds to complex conjugation, thus we have

$$N/G^0 \simeq U(1) \rtimes \mathbb{Z}/2\mathbb{Z},$$

where the nontrivial element of $\mathbb{Z}/2\mathbb{Z}$ acts on $U(1)$ by complex conjugation.

We first enumerate the options for G assuming that $G \subseteq Z$. Any finite subgroup of order n of $Z/G^0 \simeq U(1)$ is cyclic. It lifts to a subgroup C_n of Z, for which we may choose the following presentation:

$$C_n := \left\langle G^0, \zeta_n \right\rangle, \quad \zeta_n := \begin{pmatrix} \Theta_n & 0 \\ 0 & \bar{\Theta}_n \end{pmatrix}, \quad \Theta_n := \begin{pmatrix} e^{2\pi i/n} & 0 \\ 0 & 1 \end{pmatrix}.$$
Lemma 2.1. If the rationality condition (ST3) is satisfied for C_n, then n lies in \{1, 2, 3, 4, 6\}.

Proof. By the rationality condition, the average over $r \in [0, 1]$ of the fourth power of the trace of the matrix
\[
\theta(e^{2\pi i r})\zeta_n
\]
is an integer. It is an elementary but tedious computation to check that this average is equal to
\[
36 + 8 \cos \left(\frac{2\pi}{n}\right).
\]
This implies $\cos \left(\frac{2\pi}{n}\right) = \frac{i}{2}$, for $i \in \{-2, -1, 0, 1, 2\}$, hence $n \in \{1, 2, 3, 4, 6\}$.

We now consider the case $G \not\subseteq Z$. For $n \in \{1, 2, 3, 4, 6\}$, define
\[
J(C_n) := \langle G^0, \zeta_n, J \rangle.
\]

Lemma 2.2. Let G be a subgroup of N satisfying the rationality condition (ST3), and for which $\theta(U(1)) \subseteq G \not\subseteq Z$. Then G is conjugate to $J(C_n)$ for some $n \in \{1, 2, 3, 4, 6\}$.

Proof. By hypothesis, G contains an element of JZ, which is of the form
\[
JV = \begin{pmatrix} 0 & J_2V_2 \\ -J_2V_2 & 0 \end{pmatrix}, \quad \text{where} \quad J_2V_2 = \begin{pmatrix} v_1 & 0 \\ 0 & -v_2 \end{pmatrix},
\]
where v_1 and v_2 are in $U(1)$. The conjugate of JV by the matrix
\[
W := \begin{pmatrix} 0 & W_2 \\ -W_2 & 0 \end{pmatrix}, \quad W_2 := \begin{pmatrix} -v_1 & 0 \\ 0 & \sqrt{v_2} \end{pmatrix}
\]
is J. Thus the conjugate of G by W is of the form $H \rtimes \langle J \rangle$, where H is a subgroup of Z satisfying the rationality condition. As we have already seen, H must be equal to C_n for some $n \in \{1, 2, 3, 4, 6\}$.

2.2. The case $C^0 = SU(2)$. To treat the case $G^0 = SU(2)$, we consider the standard representation of $SU(2)$ on \mathbb{C}^2 and take the embedding of $SU(2)$ in $USp(4)$ corresponding to the representation $\text{Sym}^3(\mathbb{C}^2)$. More explicitly, if $a, b \in \mathbb{C}$ are such that $a\overline{a} + b\overline{b} = 1$, we consider the embedding of $SU(2)$ in $USp(4)$ given by
\[
(\begin{array}{cc} a & b \\ -b & \overline{a} \end{array}) \mapsto \begin{pmatrix} a^3 & a^2b & ab^2 & b^3 \\ -3a^2b & a^2\overline{a} - 2ab\overline{b} & 2a\overline{ab} - b^2\overline{b} & 3ab^2 \\ 3a\overline{b}^2 & b^2\overline{b} - 2a\overline{ab} & a\overline{a}^2 - 2\overline{ab}\overline{b} & 3\overline{a}b^2 \\ -\overline{b}^3 & \overline{a}\overline{b}^2 & -\overline{a}^2\overline{b} & \overline{a}^2b \end{pmatrix}.
\]

In this section, the Hodge circle is the image of the homomorphism
\[
\theta : U(1) \to USp(4), \quad \theta(u) := \begin{pmatrix} U & 0 \\ 0 & \overline{u}^3U \end{pmatrix}, \quad U := \begin{pmatrix} u^3 & 0 \\ 0 & u \end{pmatrix},
\]
and we assume that the symplectic and Hermitian forms preserved by $USp(4)$ are respectively given by the matrices
\[
S := \begin{pmatrix} 0 & 0 & 0 & z \\ 0 & 0 & -1/z & 0 \\ 0 & 1/z & 0 & 0 \\ -z & 0 & 0 & 0 \end{pmatrix}, \quad M := \begin{pmatrix} 1/z & 0 & 0 & 0 \\ 0 & z & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1/z \end{pmatrix}.
\]
where \(z = \sqrt{3} \). Since the embedded \(SU(2) \) contains the embedded \(U(1) \) of the previous section, the centralizer \(Z \) of \(G^0 \) in \(USp(4) \) consists of matrices of the form (2.2). Imposing the condition that conjugation by such a matrix preserves any element of the embedded \(SU(2) \), one finds that \(v_1 = v_2 = \bar{v}_1 = \bar{v}_2 \). Thus \(Z = \{ \pm \text{Id} \} \subseteq G^0 \). The group \(N/G^0 = N/(ZG^0) \) embeds into the group of continuous outer automorphisms \(\text{Out}^\text{cont}(SU(2)) \), which is trivial; consequently, this case yields only the single group \(D : = G^0 \).

2.3. The case \(G^0 = U(2) \). To treat the case \(G^0 = U(2) \), we again assume that the symplectic form preserved by \(USp(4) \) is given by the matrix

\[
S := \begin{pmatrix} 0 & \text{Id}_2 \\ -\text{Id}_2 & 0 \end{pmatrix}.
\]

The group \(U(2) \) embeds into \(USp(4) \) via the map given in block form by

\[
A \mapsto \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix},
\]

as in [FKRS12 (3.1)]. As indicated in [FKRS12 §3], we have \(Z = \{ \pm \text{Id} \} \subseteq G^0 \) and \(N = U(2) \cup J(U(2)) \) for

\[
J := \begin{pmatrix} 0 & J_2 \\ -J_2 & 0 \end{pmatrix}, \quad J_2 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]

We thus obtain two groups: \(U(2) \) and \(N(U(2)) \).

Remark 2.3. Note that \(U(2) \) is missing from [FKRS12 Theorem 3.4] even though it satisfies the Sato-Tate axioms as formulated in [FKRS12 Definition 3.1]. The reason is that axiom (ST2) is stated incorrectly there: it fails to include the condition that the Hodge circles generate a dense subgroup of \(G^0 \); see [Ser12 8.2.3.6(ii)].

Let us see this point more explicitly. Let \(\theta : U(1) \to U(2) \) be a continuous homomorphism. The map \(U(1) \times SU(2) \to U(2) \) taking \(u, A \) to \(uA \) is an isogeny of degree 2 with kernel generated by \((-1, -\text{Id}_2) \). We may thus identify \(U(2)/SU(2) \) with \(U(1)/\{ \pm 1 \} \) and then with \(U(1) \) via the squaring map. There must then exist an integer \(a \) such that for all \(u \in U(1) \), the image of \(\theta(u) \) in \(U(1) \) is \(u^a \). The formula \(u \mapsto u^{-a}\theta(u)^2 \) defines a homomorphism \(U(1) \to SU(2) \), so there must exist an integer \(b \) such that for all \(u \in U(1) \), the image of \(u \in U(1) \) in \(SU(2) \) has eigenvalues \(u^b \) and \(u^{-b} \). The eigenvalues of \(\theta(u^2) \) must then be \(u^{a+2b} \) and \(u^{a-2b} \). If we then embed \(U(2) \) into \(USp(4) \), the image of \(\theta(u^2) \) has eigenvalues \(u^{a+2b}, u^{a-2b}, u^{-a+2b}, u^{-a-2b} \).

In this paper, we get a Hodge circle by taking \(\theta \) as above with \(a = 4, b = 1 \). By contrast, in the setting of [FKRS12], the eigenvalues must be \(u^2, u^2, u^{-2}, u^{-2} \) in some order. We may assume without loss of generality that \(a + 2b = 2 \); we must then have \(a - 2b \in \{-2, 2\} \), implying that either \(a = 0 \) or \(b = 0 \). If \(a = 0 \), then the conjugates of the image of \(\theta \) all lie inside \(SU(2) \), and if \(b = 0 \), then the conjugates all lie inside \(U(1) \). Thus no Hodge circle can exist.

2.4. The remaining cases for \(G^0 \). We now treat the remaining cases for \(G^0 \). These turn out to give exactly the same answers as in [FKRS12 §3.6], modulo the position of the Hodge circle, which we will ignore (see Remark 2.4); it thus suffices to recall these answers briefly. The case \(G^0 = USp(4) \) is trivial, so we focus on the
split cases. As in [FKRS12 §3.6], we assume that the symplectic form preserved by USp(4) is defined by the block matrix

\[S := \begin{pmatrix} S_2 & 0 \\ 0 & S_2 \end{pmatrix}, \quad S_2 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \]

and that product groups are embedded compatibly with this decomposition of the symplectic form.

For \(G^0 = \text{SU}(2) \times \text{SU}(2) \), as in [FKRS12 §3.6] we have the group \(G_{3,3} := G^0 \) itself and its normalizer \(N(G_{3,3}) \), obtained by adjoining to \(G^0 \) the matrix

\[\begin{pmatrix} 0 & S_2 \\ -S_2 & 0 \end{pmatrix}. \]

For \(G^0 = \text{U}(1) \times \text{U}(1) \), the normalizer in USp(4) contains \(\text{U}(1) \times \text{U}(1) \) with index 8, and the quotient is isomorphic to the dihedral group \(D_4 \) and generated by matrices

\[a := \begin{pmatrix} 0 & 0 \\ 0 & \text{Id}_2 \end{pmatrix}, \quad b := \begin{pmatrix} \text{Id}_2 & 0 \\ 0 & S_2 \end{pmatrix}, \quad c := \begin{pmatrix} 0 & \text{Id}_2 \\ -\text{Id}_2 & 0 \end{pmatrix}, \]

each of which defines an involution on the component group. We write \(F_S \) for the group generated by \(G^0 \) and a subset \(S \) of \(\langle a, b, c \rangle \). As in [FKRS12 §3.6], up to conjugation we obtain eight groups

\[F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}. \]

For \(G^0 = \text{U}(1) \times \text{SU}(2) \), we obtain the group \(G_{1,3} := \text{U}(1) \times \text{SU}(2) \) and its normalizer \(N(G_{1,3}) = \langle G_{1,3}, a \rangle \).

Remark 2.4. Note that in some of the cases with \(G^0 = \text{U}(1) \times \text{U}(1) \), there is more than one way to embed the Hodge circle \(H \) into \(G \) up to conjugation. This is irrelevant for questions of equidistribution, but it does matter when one attempts to relate the Sato-Tate group of a motive with the real endomorphism algebra of its Hodge structure (as in [FKRS12 §4]). Since we will not attempt that step in this paper at more than a heuristic level, we have chosen to ignore this ambiguity.

3. Testing the generalized Sato-Tate conjecture

In the sections that follow, we describe various explicit constructions that give rise to self-dual 3-motives with Hodge numbers \(h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1 \) and rational coefficients. For each of these motives \(M \), we then perform numerical tests of the generalized Sato-Tate conjecture by comparing the distribution of the normalized \(L \)-polynomials of \(M \) with the distribution of characteristic polynomials in one of the candidate Sato-Tate groups \(G \) found by the classification in §2. More precisely, we ask whether the normalized \(L \)-polynomials of \(M \) appear to be equidistributed with respect to the image of the Haar measure under the map \(G \to \text{Conj}(\text{USp}(4)) \), where \(\text{Conj} \) denotes the space of conjugacy classes. To make this determination, we compare moment statistics of the motive \(M \) to moment sequences associated to \(G \), as described below.

Table 1 lists invariants that allow us to distinguish the groups \(G \). As in [FKRS12], \(d \) denotes the real dimension of \(G \); \(c \) is the number \(|G/G^0| \) of connected components of \(G \); and \(z_1 \) and \(z_2 \) are defined by

\[z_1 := z_{1,0}, \quad z_2 := [z_{2,-2}, z_{2,-1}, z_{2,0}, z_{2,1}, z_{2,2}], \]
Table 1. Candidate Sato-Tate groups of self-dual motives of weight 3 with Hodge numbers $h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1$ and rational coefficients. The final column indicates where within the article to find explicit constructions that yield matching moment statistics.

d	c	G	$[G/G^0]$	z_1	z_2	Examples		
1	1	C_1	C_1	0,0,0,0,0	5.9	6.4	6.10	
1	2	C_2	C_2	0,0,0,0,0	5.9	6.4	6.10	
1	3	C_3	C_3	0,0,0,0,0	5.9	6.4	6.10	
1	4	C_4	C_4	0,0,0,0,0	5.9	6.4	6.10	
1	6	C_6	C_6	0,0,0,0,0	5.9	6.4	6.10	
1	2	$J(C_1)$	D_1	1,0,0,0,0	5.9	6.4	6.10	
1	4	$J(C_2)$	D_2	2,0,0,0,0	5.9	6.4	6.10	
1	6	$J(C_3)$	D_3	3,0,0,0,0	5.9	6.4	6.10	
1	8	$J(C_4)$	D_4	4,0,0,0,0	5.9	6.4	6.10	
1	12	$J(C_6)$	D_6	6,0,0,0,0	5.9	6.4	6.10	
3	1	D	C_1	0,0,0,0,0	6.7	6.16	6.16	
4	1	$U(2)$	C_1	0,0,0,0,0	6.7	6.16	6.16	
4	2	$N(U(2))$	C_2	1,0,0,0,0	6.7	6.16	6.16	
2	1	F	C_1	0,0,0,0,0	6.7	6.16	6.16	
2	2	F_a	C_2	0,0,0,0,1	6.7	6.16	6.16	
2	2	F_c	C_2	1,0,0,0,0	6.7	6.16	6.16	
2	2	F_{ab}	C_2	1,0,0,0,1	6.7	6.16	6.16	
2	4	F_{ac}	C_4	3,0,0,2,0	6.7	6.16	6.16	
2	4	$F_{ab,b}$	D_2	1,0,0,0,3	6.7	6.16	6.16	
2	4	$F_{ab,c}$	D_2	3,0,0,0,1	6.7	6.16	6.16	
2	8	$F_{ab,c}$	D_4	5,0,0,2,0	None (but see 8.3)	6.7	6.16	6.16
4	1	$G_{1,3}$	C_1	0,0,0,0,0	6.7	6.16	6.16	
4	2	$N(G_{1,3})$	C_2	0,0,0,0,1	6.7	6.16	6.16	
6	1	$G_{3,3}$	C_1	0,0,0,0,0	6.7	6.16	6.16	
6	2	$N(G_{3,3})$	C_2	0,0,0,0,0	6.7	6.16	6.16	
10	1	$USp(4)$	C_1	0,0,0,0,0	6.7	6.16	6.16	

where $z_{i,j}$ is the number of connected components of G for which the ith coefficient a_i of the characteristic polynomial of each of its elements is equal to the integer j. We use $[G/G^0]$ to denote the isomorphism class of the component group of G, and the notations C_n and D_n indicate the cyclic group of n elements and the dihedral group of $2n$ elements, respectively. For each of the motives M constructed in the sections that follow, the nature of the construction allows us to predict the type of identity component and the number of components, as well as the values of the invariants z_1 and z_2, which is enough to uniquely determine a candidate Sato-Tate group G. The last column of Table 1 references the example motives M whose candidate Sato-Tate group is G. For all but one group ($F_{ab,c}$) there is at least one such example, and in many cases there are multiple constructions that lead to the same candidate Sato-Tate group.
3.1. Experimental methodology — moment statistics. All of the motives M/K that we consider have L-polynomials of the form

$$L_p(T) = p^6T^4 + c_1p^3T^3 + c_2pT^2 + c_1T + 1,$$

where p is a prime of K of good reduction for M, $p = N(p)$ is its absolute norm, and c_1 and c_2 are integers satisfying the Weil bounds $|c_1| \leq 4p^{3/2}$ and $|c_2| \leq 6p^2$ (in fact $c_2 \geq -2p^2$). For the purpose of computing moment statistics we may restrict our attention to primes p of degree 1, so we assume that p is prime. Note that c_1 is the negation of the trace of Frobenius, and c_2 is obtained by removing a factor of p from the coefficient of T^2 in $L_p(T)$.

The normalized L-polynomial coefficients of M/K are then defined by

$$a_1(p) := c_1/N(p)^{3/2} \quad \text{and} \quad a_2(p) := c_2/N(p)^2,$$

which are real numbers in the intervals $[-4, 4]$ and $[-2, 6]$, respectively.

Given a norm bound B, we let $S(B)$ denote the set of degree 1 primes of K with norm at most B, and for $i = 1, 2$ we define the nth moment statistic of a_i for the motive M (with respect to B) by

$$M_n[a_i] := \frac{1}{\#S(B)} \sum_{p \in S(B)} a_i(p)^n.$$

Similarly, given a candidate Sato-Tate group G, we let $a_i := a_i(g)$ denote the ith coefficient of the characteristic polynomial of a random element g of G (according to the Haar measure). We then let $M_n[a_i]$ denote the expected value of a_i^n; this is the nth moment of a_i for the group G, which is always an integer (see axiom (ST3) in [FKRS12, Def. 3.1]). In what follows it will be clear from context whether $M_n[a_i]$ refers to a moment statistic of M (with respect to a norm bound B) or a moment of G.

To test for equidistribution with respect to a candidate Sato-Tate group G, for increasing values of B we compare moment statistics $M_n[a_i]$ for the motive M to the corresponding moments $M_n[a_i]$ of the group G and ask whether the former appear to converge to the latter as B increases. As may be seen in the tables of moment statistics listed in [BK15a] in cases where it is computationally feasible to make B sufficiently large (up to 2^{40}), we see very strong evidence for convergence; the moment statistics of M generally agree with the moments of G to within one part in ten thousand.

It should be noted that the correct statement of the generalized Sato-Tate conjecture is somewhat more precise than what we are testing here. It includes both a defined group G attached to the motive (the Sato-Tate group) and a sequence of elements of $\text{Conj}(G)$ that should be equidistributed for the image of the Haar measure, even before projecting to $\text{Conj}(\text{USp}(4))$. The formulation in [FKRS12, §2] is only valid for motives of weight 1; for a reformulation in terms of absolute Hodge cycles that applies to motives of any odd weight, see [BK15a,BK15b].

Since we do not introduce the definition of the Sato-Tate group here, we do not attempt to verify in our examples that the candidate Sato-Tate group we identify actually coincides with the Sato-Tate group of the motive. It is unclear how difficult this is to achieve, especially for the motives appearing in the Dwork pencil. Moreover, we do not claim that our list of constructions is exhaustive. It may (or may not) be that the group $N(G_{3,3})$, which we are unable to match with an explicit construction, can be realized by other methods (compare Remark [S4]).
3.2. Moment sequences of candidate Sato-Tate groups. In this section we compute moment sequences associated to each of the subgroups \(G \) of \(\text{USp}(4) \) encountered in \([2]\) these are listed in Tables \([2,3]\). Let \(G \) be a compact subgroup of \(\text{USp}(4) \). For \(i = 1, 2 \), let \(a_i := a_i(g) \) denote the \(i \)th coefficient of the characteristic polynomial of a random element \(g \) of \(G \) (according to the Haar measure). For a nonnegative integer \(n \), the \(n \)th moment \(M_n[a_i] \) is the expected value of \(a_i^n \).

We note that 13 of the 26 groups encountered in \([2]\) already appeared in the classification of \([FKRS12]\), and we do not need to compute their moments again. We proceed to the computation of the moment sequences for the restriction of \(a_i \) to every connected component of each of the remaining groups. Let \(t \) (resp. \(s \)) denote the trace of a random element in \(\text{U}(1) \) (resp. \(\text{SU}(2) \)). Recall that

\[
M_{2n}[t] = \binom{2n}{n}, \quad M_{2n}[s] = \frac{1}{n+1}\binom{2n}{n},
\]

whereas the odd moments are all zero in both cases.

The group \(D \). In this case we have a single connected component, whose moments can be computed by noting that

\[
M_n[a_1(g) \mid g \in D] = \mathbb{E}[(-s^3 + 2s)^n], \\
M_n[a_2(g) \mid g \in D] = \mathbb{E}[(s^4 - 3s^2 + 2)^n],
\]

and then applying the second equality in \((3.3)\).

The groups \(\text{U}(2) \) and \(\text{N}(\text{U}(2)) \). We can use the isomorphism \(\text{U}(2) \simeq \text{U}(1) \times \text{SU}(2)/\langle -1 \rangle \) to deduce that

\[
M_n[a_1(g) \mid g \in \text{U}(2)] = \mathbb{E}[(\cdot t \cdot s)^n], \\
M_n[a_2(g) \mid g \in \text{U}(2)] = \mathbb{E}[(s^2 + t^2 - 2)^n],
\]

and, if \(J \) is as in \([2,3]\) that

\[
M_n[a_1(g) \mid g \in JU(2)] = 0, \\
M_n[a_2(g) \mid g \in JU(2)] = \mathbb{E}[(-s^2 + 2)^n].
\]

The groups \(C_n \) and \(J(C_n) \). We have \(a_1(g) = 0 \) and \(a_2(g) = 2 \) for any element \(g \) in the connected component of \(\zeta_m^k J \) (where \(\zeta_m \) and \(J \) are as in \([2,1]\)). Let \(C(\zeta_m^k) \) denote the connected component of the matrix \(\zeta_m^k \). Then

\[
M_n[a_1(g) \mid g \in C(\zeta_m^k)] = \frac{2^{n-1}}{\pi} \int_0^{2\pi} \left(\cos \left(3r + \frac{2\pi k}{m} \right) + \cos(r) \right)^n dr, \\
M_n[a_2(g) \mid g \in C(\zeta_m^k)] = \frac{2^{n-1}}{\pi} \int_0^{2\pi} \left(1 + \cos \left(4r + \frac{2\pi k}{m} \right) + \cos \left(2r + \frac{2\pi k}{m} \right) \right)^n dr.
\]
Table 2. Moments $M_n = M_n[a_1]$ for the groups listed in Table 1

G	M_2	M_4	M_6	M_8	M_{10}	M_{12}	M_{14}	M_{16}
C_1	2	4	4	8	11304	127968	25288120	379061020
C_2	2	4	4	8	14956	192832	3576640	5368060
C_3	2	4	4	8	15304	198048	3810240	5530832
C_4	2	4	4	8	15304	198048	3810240	5530832
C_6	2	4	4	8	15304	198048	3810240	5530832
$J(C_1)$	2	2	2	4	1680	20480	393216	5806016
$J(C_2)$	2	2	2	4	1680	20480	393216	5806016
$J(C_3)$	2	2	2	4	1680	20480	393216	5806016
$J(C_4)$	2	2	2	4	1680	20480	393216	5806016
$J(C_6)$	2	2	2	4	1680	20480	393216	5806016
D	2	1	1	4	490	5890	70900	74900
$U(2)$	2	1	1	4	490	5890	70900	74900
$N(U(2))$	1	6	6	50	4892	60984	73164	920205
F	2	1	1	4	490	5890	70900	74900
F_a	3	2	2	4	2225	27832	422444	5772592
F_c	2	2	2	4	2225	27832	422444	5772592
F_{ab}	2	2	2	4	2225	27832	422444	5772592
F_{ac}	1	9	9	100	1225	15876	213444	2944656
$F_{a,b}$	2	12	110	1200	1600	213906	2946372	41415660
$F_{a,b,c}$	1	9	100	1225	15876	213444	2944656	41409225
$F_{a,b,c}$	1	6	55	630	8001	106953	1473186	20707830
$G_{1,3}$	3	20	175	1764	19404	226512	2760615	34763300
$N(G_{1,3})$	2	11	90	889	9723	113322	1380522	17382365
$G_{3,3}$	2	10	70	588	5544	56628	613470	6952660
$N(G_{3,3})$	1	5	35	294	2772	28314	306735	3476330
USp(4)	1	3	14	84	594	4719	40898	379236
Table 3. Moments of $M_n = M_n[a_2]$ for the groups listed in Table 1.

G	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M_9
C_1	2	8	38	196	1052	5774	32146	180772	1024256
C_2	2	8	32	148	712	3614	18916	101700	557384
C_3	2	8	32	148	712	3584	18496	97444	521264
C_4	2	8	32	148	712	3584	18496	97444	521096
C_6	2	8	32	148	712	3584	18496	97444	521096
$J(C_1)$	2	6	23	106	542	2919	16137	90514	512384
$J(C_2)$	2	6	20	82	372	1839	9522	50978	278948
$J(C_3)$	2	6	20	82	372	1824	9312	48850	260888
$J(C_4)$	2	6	20	82	372	1824	9312	48850	260804
$J(C_6)$	2	6	20	82	372	1824	9312	48850	260804
D	1	2	5	16	62	272	1283	6316	31952
$U(2)$	1	4	11	44	172	752	3383	15892	76532
$N(U(2))$	1	3	7	25	91	386	1709	7981	38329
F	2	8	32	148	712	3584	18496	97444	521096
F_a	2	6	20	82	372	1824	9312	48850	260804
F_c	1	5	16	77	356	1802	9248	48757	260548
F_{ab}	2	6	20	82	372	1824	9312	48850	260804
F_{ac}	1	3	10	41	186	912	4656	24425	130402
$F_{a,b}$	2	5	14	49	202	944	4720	24553	130658
$F_{ab,c}$	1	4	10	44	186	922	4656	24460	130402
$F_{a,b,c}$	1	3	7	26	101	477	2360	12294	65329
$G_{1,3}$	2	6	20	76	312	1364	6232	29460	142952
$N(G_{1,3})$	2	5	14	46	172	714	3180	14858	71732
$G_{3,3}$	2	5	14	44	152	569	2270	9524	41576
$N(G_{3,3})$	1	3	7	23	76	287	1135	4769	20788
$USp(4)$	1	2	4	10	27	82	268	940	3476
4. Modular forms and Hecke characters

Modular forms and Hecke characters play a key role in many of our motive constructions. Before giving explicit examples, we first recall some theoretical facts concerning modular forms with complex multiplication (CM), following the exposition given in [Sch06, Chap. II]. These facts allow us to actually prove equidistribution in several cases (see Lemma 5.4), and they facilitate our numerical computations (via Lemma 4.2).

Notation: To avoid potential confusion with the normalized L-polynomial coefficients a_1 and a_2 (and the integer L-polynomial coefficients c_1 and c_2), we generally use b_n (or d_n or e_n) to denote the Fourier coefficients of a modular form $f = f(z) = \sum b_n q^n$, where $q = \exp(2\pi i z)$. Unless otherwise indicated, the symbols ω and i denote, respectively, the third and fourth roots of unity in the upper half plane.

When possible, we identify specific modular forms by their labels in the LMFDB database of L-functions, modular forms, and related objects [LMFDB]. These identifiers are formatted as $N.k.cs$, where N is the level, k is the weight, c is an index indicating the character, and s is an alphabetic string that distinguishes the form from others of the same weight, level, and character. The trivial character is always indexed by the label $c = 1$.

4.1. Newforms with complex multiplication. Let $S_k(\Gamma_1(N))$ denote the complex space of weight k cusp forms for $\Gamma_1(N)$. There is a decomposition

$$S_k(\Gamma_1(N)) = \bigoplus_{\varepsilon} S_k(\Gamma_0(N), \varepsilon),$$

where $\varepsilon: (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$ runs over the characters of $(\mathbb{Z}/N\mathbb{Z})^*$ and $S_k(\Gamma_0(N), \varepsilon)$ denotes the space of weight k cusp forms for $\Gamma_0(N)$ with nebentypus ε. We denote by $S_k^{\text{new}}(\Gamma_1(N))$ the complex subspace generated by the newforms. We say that $f = \sum_{n \geq 1} b_n q^n \in S_k(\Gamma_1(N))$ is a newform if it is an eigenform for all the Hecke operators, it is new at level N, and it is normalized so that $b_1 = 1$.

The newform $f \in S_k(\Gamma_1(N))$ is said to have complex multiplication (CM) by a (quadratic) Dirichlet character χ if $b_p = \chi(p)b_p$ for a set of primes of density 1.

Let K be a quadratic imaginary field, \mathfrak{m} an ideal of K, and $l \in \mathbb{N}$. Let $I_{\mathfrak{m}}$ stand for the group of fractional ideals of K coprime to \mathfrak{m}. A Hecke character of K of modulus \mathfrak{m} and infinite type $(l, 0)$, or simply l, is a homomorphism

$$\psi: I_{\mathfrak{m}} \to \mathbb{C}^*$$

such that $\psi(\alpha \mathcal{O}_K) = \alpha^l$ for all $\alpha \in K^*$ with $\left[\frac{l}{1} \right] \alpha \equiv 1 \pmod{\mathfrak{m}}$. We extend ψ by defining it to be 0 for all fractional ideals of K that are not coprime to \mathfrak{m}. We say that \mathfrak{m} is the conductor of ψ if the following holds: if ψ is defined modulo \mathfrak{m}', then $\mathfrak{m} | \mathfrak{m}'$. The L-function of ψ is then defined by

$$L(\psi, s) := \prod_p (1 - \psi(p)N(p)^{-s})^{-1},$$

\[\footnote{To simplify notation, we will simply write \equiv, but the reader should be aware that in this context we are alluding to multiplicative congruence by this sign.}\]
where the product runs over all prime ideals of K. Let Δ_K denote the absolute value of the discriminant of K and let χ_K denote the Dirichlet character associated to K. By results of Hecke and Shimura, the inverse Mellin transform

$$f_\psi := \sum_{a \leq \mathcal{O}_K} \psi(a)q^{N(a)} =: \sum_{n \geq 1} b_n q^n$$

of $L(\psi, s)$ is an eigenform of weight $l + 1$, level $\Delta_K N(\mathfrak{M})$, and nebentypus $\chi_K \eta$, where

$$\eta(n) = \frac{\psi(n \mathcal{O}_K)}{n^l} \quad \text{if } (n, N(\mathfrak{M})) = 1,$$

and $\eta(n) = 0$, otherwise. Moreover, f_ψ is new at this level if and only if \mathfrak{M} is the conductor of ψ and, by construction, we have $b_n = \chi_K(n)b_n$. Thus the modular form f_ψ has CM by χ_K (we also say that f_ψ has CM by K). It follows from results of Ribet that every CM newform in $S_k(\Gamma_1(N))$ arises in this way; see Proposition 4.4 and Theorem 4.5 in [Rib77].

In this article we only consider newforms with rational coefficients. The following result describes the nebentypus in this case.

Proposition 4.1 ([Sch06], Cor. II.1.2). Let $f \in S_k(\Gamma_1(N))$ be a newform with real coefficients.

i) If k is even then the nebentypus ε is trivial.

ii) If k is odd then the nebentypus ε is quadratic and f has CM by ε.

To ease notation, when the nebentypus is trivial, we simply write $S_k(N)$ in place of $S_k(\Gamma_0(N), \varepsilon_{\text{triv}})$ and we use $S_k^{\text{new}}(N)$ to denote the subspace of $S_k(N)$ generated by newforms.

We now describe two constructions that play a key role in what follows. These involve certain weight 4 newforms with CM by $K = \mathbb{Q}(i)$ or $K = \mathbb{Q}(\omega)$, and twists of these forms by a quartic or sextic character (respectively). We first recall two definitions.

Let $K = \mathbb{Q}(i)$. The biquadratic residue symbol of $\alpha \in \mathcal{O}_K = \mathbb{Z}[i]$ is the homomorphism

$$\left(\frac{\alpha}{-} \right)_4 : I_{(1+i)\alpha} \to \mathcal{O}_K^* = \langle i \rangle$$

uniquely characterized by the property that

$$\alpha^{(N(p)-1)/4} \equiv \left(\frac{\alpha}{p}\right)_4 \quad (\text{mod } p).$$

Using biquadratic reciprocity, one can show that this is a Hecke character of infinite type 0. We define $\left(\frac{\alpha}{-} \right)_4$ to be zero at fractional ideals of K that are not coprime to $(i + 1)\alpha$.

Now let $K = \mathbb{Q}(\omega)$. The sextic residue symbol of $\alpha \in \mathcal{O}_K = \mathbb{Z} \oplus \omega \mathbb{Z}$ is the homomorphism

$$\left(\frac{\alpha}{-} \right)_6 : I_{(2\sqrt{-3}\alpha)} \to \mathcal{O}_K^* = \langle \omega \rangle$$

uniquely characterized by the property that

$$\alpha^{(N(p)-1)/6} \equiv \left(\frac{\alpha}{p}\right)_6 \quad (\text{mod } p).$$
Using cubic reciprocity, one can show that it is also a Hecke character of infinite type 0. We define \((\overline{\chi})_6 \) to be zero at fractional ideals of \(K \) that are not coprime to \(2\sqrt{-3}\alpha \).

4.2. CM newforms of weights 3 and 4 with a quartic twist.

Let \(K = \mathbb{Q}(i) \). For any prime ideal \(p \) of \(K \) there exists \(\alpha_p \in \mathcal{O}_K \) such that \(p = (\alpha_p) \), and if \(p \) is coprime to \(1 + i \), then by multiplying \(\alpha_p \) by an element of \(\mathcal{O}_K^* = \langle i \rangle \), we may assume that \(\alpha_p \equiv 1 \mod (1 + i)^3 \). Moreover, this uniquely determines \(\alpha_p \) (see [IR82, Chap. 9, Lemma 7]). Now define

\[
\psi(p) := \alpha_p.
\]

This is a Hecke character of infinite type 1 and conductor \(\mathfrak{M} = (1 + i)^3 \). By [IR82, Chap. 18, §4], this is the Hecke character attached to the elliptic curve \(y^2 = x^3 - x \). The newform \(f_\psi \in S_2^{\text{new}}(32) \) has rational coefficients and LMFDB identifier \([32.2.1a]\).

The Hecke character \(\psi^3 \) has infinite type 3 and conductor \(\mathfrak{M} = (1 + i)^3 \). Thus \(f_{\psi^3} \) is a newform in \(S_4^{\text{new}}(32) \), and its identifier is \([32.4.1b]\).

Let \(\psi := (\overline{\chi})_4 \). The Hecke character \(\psi^3 \otimes \phi \) has infinite type 3, but we do not necessarily know its conductor \textit{a priori}. However, we may use the above recipe to compute \(\psi \) and the first several Fourier coefficients of \(f_{\psi^3 \otimes \phi} = \sum_{n \geq 1} b_n q^n \); for primes \(p \equiv 1 \mod 4 \) with \(3 < p \leq 97 \), we obtain

\(p \)	5	13	17	29	37	41	53	61	73	89	97
\(b_p \)	4	−18	−104	284	−214	−472	572	−830	−1098	176	−594

Let \(\chi : (\mathbb{Z}/24\mathbb{Z})^* \to \mathbb{C}^* \) denote the quadratic Dirichlet character defined by

\[
\chi(n) := \begin{cases} 1 & \text{if } n \equiv 1, 7, 17, 23 \mod 24; \\ -1 & \text{if } n \equiv 5, 11, 13, 19 \mod 24. \end{cases}
\]

One may verify that that the Fourier coefficients of \(f_{\psi^3 \otimes \phi} \otimes \chi \) coincide with those of a new form of weight 4 and level 288. Moreover, we have

\[
f_{\psi^3 \otimes \phi} \otimes \chi = f_{\psi^3 \otimes (\overline{\chi})_4},
\]

thus it is a quartic twist of \([32.4.1b]\).

The Hecke character \(\psi^2 \) has infinite type 2 and conductor \((1 + i)^2\). Indeed, observe that for \(\alpha \in K^* \) we have

\[
\psi^2(\alpha \mathcal{O}_K) = \psi(\alpha^2 \mathcal{O}_K)
\]

and \(\alpha^2 \equiv 1 \mod (1 + i)^3 \) if \(\alpha \equiv 1 \mod (1 + i)^2 \). Thus \(f_{\psi^2} \) is a newform in \(S_4^{\text{new}}(\Gamma_1(16)) \). Let \(\phi := (\overline{\chi^2})_4 \). Proceeding as in the previous case, one may show that \(f_{\psi^2 \otimes \phi} = \sum_{n \geq 1} b_n q^n \) is new at level 576 and that its first Fourier coefficients, for primes \(p \equiv 1 \mod 4 \) with \(3 < p \leq 97 \), are

\(p \)	5	13	17	29	37	41	53	61	73	89	97
\(b_p \)	−8	−10	16	40	−70	−80	−56	−22	110	160	−130

[2] If \(f \in S_k^{\text{new}}(N) \) is an eigenform and \(\chi : (\mathbb{Z}/M\mathbb{Z})^* \to \mathbb{C}^* \) is a Dirichlet character, then \(f \otimes \chi \) is a (not necessarily new) eigenform of \(S_k(\text{lcm}(N, M^2)) \). The minimal level of \(f_{\psi^2 \otimes \phi} \) should thus be a divisor of 576. Data for this level is not yet available in LMFDB, but one may use Magma or Sage to identify \(f_{\psi^2 \otimes \phi} = f \otimes \chi \) as a newform at level 576.
4.3. A weight 4 CM newform with cubic and sextic twists. Let $K = \mathbb{Q}(\omega)$. Since K has class number 1, for any prime ideal p of K there exists $\alpha_p \in \mathcal{O}_K$ such that $p = (\alpha_p)$. For p coprime to $2\sqrt{-3}$, by multiplying α_p by an element of $\mathcal{O}_K^\ast = (\omega)$, we may assume that $\alpha_p \equiv 1 \mod 3$, and this uniquely determines α_p (see [IR82, Prop. 9.3.5]). We now define

$$\psi(p) := \alpha_p.$$

This is the Hecke character of infinite type 1 and conductor $\mathfrak{M} = (3)$ attached to the elliptic curve $y^2 + y = x^3$. The newform $f_\psi \in S^\text{new}_2(27)$ has rational coefficients and identifier [27,2.1a].

The Hecke character ψ^3 has infinite type 3 and conductor $\mathfrak{M} = (\sqrt{-3})$. Indeed, observe that for $\alpha \in K^\ast$ we have

$$\psi^3(\alpha \mathcal{O}_K) = \psi(\alpha^3 \mathcal{O}_K)$$

and $\alpha^3 \equiv 1 \mod 3$ if $\alpha \equiv 1 \mod \sqrt{-3}$. Thus f_{ψ^3} is a newform in $S^\text{new}_4(9)$, and its identifier is [9.4.1a].

Let $\phi := (\hat{2})_6$. The Hecke character $\psi \otimes \phi$ has infinite type 3. As before we compute ψ and the first several Fourier coefficients of $f_{\psi \otimes \phi} = \sum_{n \geq 1} b_n q^n$; for primes $p \equiv 1 \mod 6$ with $3 < p \leq 97$, we obtain

p	7	13	19	31	37	43	61	67	73	79	97
b_p	17	-89	-107	308	433	520	901	-1007	-271	503	1853

Let $\chi: (\mathbb{Z}/24\mathbb{Z})^\ast \to \mathbb{C}^\ast$ denote the quadratic Dirichlet character defined by

$$\chi(n) := \begin{cases} 1 & \text{if } n \equiv 1, 5, 7, 11 \mod 24; \\ -1 & \text{if } n \equiv 13, 17, 19, 23 \mod 24. \end{cases}$$

One may verify that the Fourier coefficients of $f_{\psi \otimes \phi} \otimes \chi$ coincide with those of a newform of weight 4 and level 108. Moreover, we have

$$f_{\psi \otimes \phi}(\hat{2})_6 \otimes \chi = f_{\psi^3 \otimes \phi}(\hat{2})_6 \otimes (\frac{\pi}{27}) = f_{\psi^3}(\hat{2})_3.$$

Thus $f_{\psi \otimes \phi} \otimes \chi$ (resp. $f_{\psi^3 \otimes \phi}$) is a cubic (resp. sextic) twist of f_{ψ^3}.

In [6.3] we also consider the newform $f_{\psi^2} \in S^\text{new}_3(\Gamma_1(27))$.

4.4. Computing Fourier coefficients of newforms. One of the key advantages of working with CM newforms f_{ψ^2} or f_{ψ^3} is that we can derive their Fourier coefficients from the corresponding coefficients of the weight 2 CM newform f_ψ, which we can compute very quickly.

Lemma 4.2. Let ψ be a Hecke character of an imaginary quadratic field K and suppose that f_ψ has trivial nebentypus. Suppose that we have Fourier q-expansions $f_\psi = \sum b_n q^n$, $f_{\psi^2} = \sum d_n q^n$, and $f_{\psi^3} = \sum e_n q^n$. Then

$$d_p = b_p^2 - 2p \quad \text{and} \quad e_p = b_p^3 - 3pb_p$$

for primes p that split in K. For primes p inert in K, we have $d_p = e_p = 0$.

3Although we will not need it in what follows, we might ask about the minimal level of $f_{\psi^3 \otimes \phi}$. It must be a divisor of lcm(108, 242) = 1728. This is again out of the range of [LMFDB], but one may use [Magma] or [Sage] to determine that $f_{\psi^3 \otimes \phi}$ is new at level 1728.
Fourier coefficients can be computed efficiently using the power series expansion of \(c \) by both of the first two cases we take expect to see the same distribution regardless of which form has CM, and this is multiplication. \(SU(2) \), depending on whether both, one, or neither of the newforms has complex multiplication.

If \(p \) is inert in \(K \), then \(d_p = e_p = 0 \), because \(f_{\psi^2} \) and \(f_{\psi^3} \) have CM by \(K \). \(\square \)

We note that, in particular, the Fourier coefficients \(b_p \) of \(27.2.1a \) (resp. \(32.2.1a \)) and the Fourier coefficients \(d_p \) of \(9.4.1a \) (resp. \(32.4.1b \)) satisfy \(4.1 \).

Efficiently computing the Fourier coefficients of a general \(1 \) weight 4 newform is more difficult. Here we use the modular symbols approach implemented in \texttt{Magma} and \texttt{Sage}, with a running time of \(\tilde{O}(N^2) \). To improve the constant factors in the running time, we use some specialized C code to handle the most computationally intensive steps, a strategy suggested to us by William Stein. This optimization speeds up the computation by more than a factor of 100, making it easy to handle norm bounds as large as \(B = 2^{24} \).

5. Direct sum constructions

Following a suggestion of Serre, in this section we construct \(M = M_1 \oplus M_2 \) as the direct sum of the Tate twist \(M_1 \) of the motive associated to a weight 2 newform \(f_1 \) (with Hodge numbers \(h^{2,1} = h^{1,2} = 1 \)) and the motive \(M_2 \) associated to a weight 4 newform \(f_2 \) (with Hodge numbers \(h^{3,0} = h^{0,3} = 1 \)). We require both \(f_1 \) and \(f_2 \) to have rational Fourier coefficients.

The motive \(M \) is defined over \(\mathbb{Q} \), but we may also consider its base change to a number field \(K \). Let \(f_1 = \sum b_n q^n \) and \(f_2 = \sum d_n q^n \) be the \(q \)-expansions of \(f_1 \) and \(f_2 \). Since \(f_1 \) and \(f_2 \) both have trivial nebentypus (by Proposition \(4.1 \)), the coefficients of the \(L \)-polynomial \(L_p(T) \) of the motive \(M \) at a prime \(p \) of \(K \) are given by

\[
(5.1) \quad c_1 = -(pb_p + d_p) \quad \text{and} \quad c_2 = b_p d_p + 2p^2,
\]

where \(p = N(p) \) and the integer coefficients \(c_1 \) and \(c_2 \) are as defined in \(3.1 \). The normalized coefficients are then \(a_1(p) = c_1/p^{3/2} \) and \(a_2(p) = c_2/p^2 \).

5.1. Direct sums of uncorrelated newforms. We first consider the case where \(f_1 \) and \(f_2 \) have no special relationship; the case where \(f_1 \) and \(f_2 \) are related (for example, by having the same CM field) is addressed in the next section. When \(f_1 \) and \(f_2 \) are unrelated, we expect the identity component of the Sato-Tate group of \(M \) to be one of the three product groups \(U(1) \times U(1), U(1) \times SU(2), \) or \(SU(2) \times SU(2) \), depending on whether both, one, or neither of the newforms has complex multiplication.

In the case where exactly one of the forms has complex multiplication, we expect to see the same distribution regardless of which form has CM, and this is confirmed by our numerical experiments. Thus to facilitate the computations, in both of the first two cases we take \(f_2 \) to be a CM newform to which Lemma \(4.2 \) applies, allowing us to use norm bounds \(B = 2^n \) ranging from \(2^{12} \) to \(2^{40} \). In the third case we cannot choose \(f_2 \) to have CM, which makes the computations more...
difficult; here we only let B range from 2^{12} to 2^{24}. Fortunately there are only two possible Sato-Tate groups in this case and their moments are easily distinguished.

Example 5.1 ($F, F_a, F_{a,b}$). Let f_1 be the weight 2 newform $32.2.1a$, corresponding to (the isogeny class of) the elliptic curve $y^2 = x^3 - x$, which has CM by $\mathbb{Q}(i)$, and let f_2 by the weight 4 newform $9.4.1a$ which has CM by $\mathbb{Q}(\omega)$. Moment statistics for the motive $M = M_1 \oplus M_2$ over the fields $K = \mathbb{Q}(i, \omega), \mathbb{Q}(\omega), \mathbb{Q}$ are listed in Table A along with the corresponding moments for the groups $G = F, F_a, F_{a,b}$. With $K = \mathbb{Q}(i)$ one obtains essentially the same moment statistics as with $K = \mathbb{Q}(\omega)$; this is as expected, since the groups F_a and F_b are conjugate.

Example 5.2 ($G_{1,3}, N(G_{1,3})$). Let f_1 be the weight 2 newform $11.2.1a$ corresponding to the elliptic curve $y^2 + y = x^3 - x^2 - 10x - 20$, which does not have CM, and let f_2 by the weight 4 newform $9.4.1a$ which has CM by $\mathbb{Q}(\omega)$. Moment statistics for the motive $M = M_1 \oplus M_2$ over $K = \mathbb{Q}(\omega), \mathbb{Q}$ are listed in Table B along with the corresponding moments for $G = G_{1,3}, N(G_{1,3})$.

Example 5.3 ($G_{3,3}$). Let f_1 be the weight 2 newform $11.2.1a$, and let f_2 be the weight 4 newform $5.4.1a$, neither of which has complex multiplication. Moment statistics for the motive $M = M_1 \oplus M_2$ over $K = \mathbb{Q}$ are listed in Table B along with the corresponding moments for $G = G_{3,3}$.

5.2. Direct sums of correlated newforms. We now consider motives $M = M_1 \oplus M_2$ where M_1 and M_2 are associated to newforms f_1 and f_2 that bear a special relationship. More specifically, we shall take f_1 to be a weight 2 newform f_ψ with CM by K, where ψ is a Hecke character of K (of infinite type 1), and then take f_2 to be a weight 4 newform $f_{\psi^3 \otimes \phi}$, where ϕ is a finite order Hecke character (of infinite type 0). Using variations of the two constructions given in §4.2 and §4.3 we are able to construct motives whose L-polynomial distributions match all ten of the candidate Sato-Tate groups $G = G_n, J(C_n)$ with identity component $U(1)$, where $n = 1, 2, 3, 4, 6$. Moreover, via arguments analogous to those used in [FS12], we are able to prove equidistribution in each of these cases (alternatively, as we are concerned with a CM construction, equidistribution could be directly deduced from the work of Johansson [Joh14]).

Lemma 5.4. Let ψ be a Hecke character of K of infinite type 1 such that f_ψ has rational coefficients. Let M_1 be the Tate twist of the motive associated to the weight 2 newform f_ψ. Let M_2 be the motive associated to the weight 4 newform $f_{\psi^3 \otimes \phi}$, where ϕ is a finite order Hecke character (of infinite type 0) such that $f_{\psi^3 \otimes \phi}$ has rational coefficients. The distribution of the normalized Frobenius eigenvalues of $M_1 \oplus M_2$ (resp. the extension of scalars $(M_1 \oplus M_2)_K$) coincides with the distribution of the eigenvalues of a random element in the group $J(C_{\text{ord}(\phi)})$ (resp. $C_{\text{ord}(\phi)}$).

Proof. Since f_ψ has rational coefficients, its nebentypus is trivial. Thus, if p is inert in K, then the normalized Frobenius eigenvalues of $M_1 \oplus M_2$ are $i, -i, i, -i$. It is straightforward to check that, for any $n \in \mathbb{N}$, these are precisely the eigenvalues of the matrix

$$
\begin{pmatrix}
\Theta_n & 0 \\
0 & \Theta_n
\end{pmatrix}
J,
$$

where Θ_n and J are as in [27]. If $p = pp$ splits in K, then the Frobenius eigenvalues of $M_1 \oplus M_2$ are

$$
N(p)\psi(p), N(p)\psi(p), \psi(p)^3 \phi(p), \psi(p)^3 \phi(p).
$$

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
Setting \(x_p := \frac{\psi(p)}{N(p)^{1/2}} \), we find that the normalized Frobenius eigenvalues are

\[
x_p, \overline{x}_p, (x_p^2 \phi(p), (\overline{x}_p)^2 \overline{\phi(p)}) .
\]

Now let \(\mathfrak{m} \) be the conductor of \(\phi \), let \(K_\mathfrak{m} \) be the ray class field of \(K \) of modulus \(\mathfrak{m} \), and let \((\cdot, K_\mathfrak{m}/K) : I_{\mathfrak{m}} \to \text{Gal}(K_{\mathfrak{m}}/K) \) denote the Artin map. Since \((\cdot, K_{\mathfrak{m}}/K) \) is surjective, for any \(a \in I_{\mathfrak{m}} \) the equality

\[
\tilde{\phi}((a, K_{\mathfrak{m}}/K)) = \phi(a)
\]

uniquely determines a character \(\tilde{\phi} : \text{Gal}(K_{\mathfrak{m}}/K) \to \mathbb{C}^* \). Since the kernel of \(\phi \) coincides with the kernel of \((\cdot, K_{\mathfrak{m}}/K) \) (consisting of those \(\alpha \mathcal{O}_K \) with \(\alpha \in \mathbb{C}^* \) for which \(\alpha \equiv 1 \mod \mathfrak{m} \)), the map \(\tilde{\phi} \) is well defined. We thus have a commutative diagram

\[
\begin{array}{ccc}
I_{\mathfrak{m}} & \xrightarrow{\phi} & \mathbb{C}^* \\
\downarrow \scriptstyle (\cdot, K_{\mathfrak{m}}/K) & \searrow \scriptstyle \tilde{\phi} & \\
\text{Gal}(K_{\mathfrak{m}}/K) & & \\
\end{array}
\]

with \(\tilde{\phi} \) satisfying \(\tilde{\phi}(\text{Frob}_p) = \phi(p) \) for every prime \(p \) coprime to \(\mathfrak{m} \). The lemma then follows from Proposition 3.6 of [PS12], which asserts that the \(x_p \)'s are equidistributed on \(U(1) \), even when \(p \) is subject to the condition that \(\text{Frob}_p = c \) for some fixed conjugacy class \(c \) of \(\text{Gal}(K_{\mathfrak{m}}/K) \).

Example 5.5 \((C_1, J(C_1))\). Let \(f_1 = f_\psi \) be the weight 2 newform \(27.2.1a \) corresponding to the elliptic curve \(y^2 + y = x^3 \), and let \(f_2 = f_{\psi^3} \) be the weight 4 newform \(9.4.1a \) both \(f_1 \) and \(f_2 \) have CM by \(Q(\omega) \). Moment statistics for the motive \(M = M_1 \oplus M_2 \) over \(K = Q(\omega), Q \) are listed in Table 9 along with the corresponding moments for \(G = C_1, J(C_1) \).

Example 5.6 \((C_2, J(C_2))\). Let \(f_1 = f_\psi \) be the weight 2 newform \(27.2.1a \) and let \(f_2 = f_{\psi^3} \otimes \chi_4 \) be the weight 4 newform, which is the quadratic twist of \(9.4.1a \) by the nontrivial Dirichlet character \(\chi_4 \) of modulus 4; both \(f_1 \) and \(f_2 \) have CM by \(Q(\omega) \). Moment statistics for the motive \(M = M_1 \oplus M_2 \) over \(K = Q(\omega), Q \) are listed in Table 9 along with the corresponding moments for \(G = C_2, J(C_2) \).

Example 5.7 \((C_3, J(C_3))\). Let \(f_1 = f_\psi \) be the weight 2 newform \(27.2.1a \) and let \(f_2 = f_{\psi^3} \otimes (\chi)^{\frac{1}{3}} \otimes \chi \) be the weight 4 newform, which is a cubic twist of \(9.4.1a \) as shown in \(4.3 \) where \(\chi \) is defined; both \(f_1 \) and \(f_2 \) have CM by \(Q(\omega) \). Moment statistics for the motive \(M = M_1 \oplus M_2 \) over \(K = Q(\omega), Q \) are listed in Table 9 along with the corresponding moments for \(G = C_3, J(C_3) \).

Example 5.8 \((C_4, J(C_4))\). In this case we may apply a quartic twist to either \(f_\psi \) or \(f_{\psi^3} \), and it is computationally more convenient to do the former. So let \(f_1 \) be the weight 2 newform, corresponding to the elliptic curve \(y^2 = x^3 - 2x \), which is a quartic twist of the form \(f_\psi = 32.2.1a \). Let \(f_2 = f_{\psi^3} \) be the weight 4 newform \(32.4.1b \) both \(f_1 \) and \(f_2 \) have CM by \(Q(i) \). Moment statistics for the motive \(M = M_1 \oplus M_2 \) over \(K = Q(i), Q \) are listed in Table 9 along with the corresponding moments for \(G = C_4, J(C_4) \).

Example 5.9 \((C_6, J(C_6))\). Let \(f_1 = f_\psi \) be the weight 2 newform \(27.2.1a \) and let \(f_2 = f_{\psi^3} \otimes (\chi)^{\frac{1}{6}} \) be the weight 4 newform of level 576 constructed in \(4.3 \) which
is a sextic twist of [9.4.1a] both \(f_1 \) and \(f_2 \) have CM by \(\mathbb{Q}(\omega) \). Moment statistics for the motive \(M = M_1 \oplus M_2 \) over \(K = \mathbb{Q}(\omega), \mathbb{Q} \) are listed in Table 9, along with the corresponding moments for \(G = C_6, J(C_6) \).

6. Tensor product constructions

We now consider motives of the form \(M = M_1 \otimes M_2 \), in which \(M_1 \) is a 1-motive with Hodge numbers \(h^{1,0} = h^{0,1} = 1 \), and \(M_2 \) is a 2-motive with Hodge numbers \(h^{2,0} = h^{0,2} = 1 \). We also consider the related construction in which \(M \) is the symmetric cube of \(M_1 \).

6.1. Tensor product constructions using elliptic curves. We first consider examples in which \(M_1 \) is the 1-motive of an elliptic curve \(E_1 \) and \(M_2 \) is the complement of the Tate motive in the symmetric square of an elliptic curve \(E_2 \) with complex multiplication defined over \(K \). When \(E_1 \) does not have complex multiplication, the Sato-Tate group should be \(U(2) \). If \(E_1 \) has complex multiplication and is not \(\overline{K} \)-isogenous to \(E_2 \), the Sato-Tate group should be \(F \) or \(F_c \) depending on whether its complex multiplication is defined over \(K \) or not. In the case that \(E_1 \) and \(E_2 \) are \(\overline{K} \)-isogenous, the Sato-Tate group should have identity component \(U(1) \); this case is discussed in further detail below.

For any prime \(p \) of \(K \) where both \(E_1 \) and \(E_2 \) have good reduction, the coefficients of the \(L \)-polynomial \(L_p(T) \) of the motive \(M_1 \otimes M_2 \) can be derived directly from the Frobenius traces \(t_1 \) and \(t_2 \) of \(E_1 \) and \(E_2 \) at \(p \). If \(\alpha_1, \overline{\alpha}_1 \) and \(\alpha_2, \overline{\alpha}_2 \) are the Frobenius eigenvalues of the reductions of \(E_1 \) and \(E_2 \) modulo \(p \) respectively, then the Frobenius eigenvalues of \(M_1 \otimes M_2 \) at \(p \) are \(\alpha_1\overline{\alpha}_2, \alpha_1\overline{\alpha}_2, \alpha_1\overline{\alpha}_2, \) and \(\overline{\alpha}_1\overline{\alpha}_2 \). The \(L \)-polynomial coefficients \(c_1 \) and \(c_2 \) of (3.1) may be computed via

\[
(6.1) \quad c_1 = -t_1(t_1^2 - 2p) \quad \text{and} \quad c_2 = pt_1^2 + (t_2^2 - 2p)^2 - 2p^2,
\]

where \(p = N(p) \), and the normalized coefficients are then \(a_1(p) = c_1/p^{3/2} \) and \(a_2(p) = c_2/p^2 \).

By using the smalljac software [KS08] to compute the sequences of Frobenius traces of \(E_1 \) and \(E_2 \) and applying (6.1) to the results, we can very efficiently compute the moment statistics of \(a_1 \) and \(a_2 \), which allows us to use norm bounds \(B = 2^n \) ranging from \(2^{12} \) to \(2^{40} \).

Example 6.1 (\(U(2) \)). Let \(E_1 \) be the elliptic curve \(y^2 = x^3 + x + 1 \), which does not have CM, and let \(E_2 \) be the elliptic curve \(y^2 = x^3 + 1 \), which has CM by \(\mathbb{Q}(\omega) \). Moment statistics for the motive \(M = M_1 \otimes M_2 \) over \(K = \mathbb{Q}(\omega) \) are listed in Table 9 along with the corresponding moments for the group \(G = U(2) \). (One can also achieve \(N(U(2)) \) by considering this example over \(\mathbb{Q} \); compare Example 6.16.)

Example 6.2 (\(F, F_c \)). Let \(E_1 \) be the elliptic curve \(y^2 = x^3 + x \) with CM by \(\mathbb{Q}(i) \), and let \(E_2 \) be the elliptic curve \(y^2 = x^3 + 1 \) with CM by \(\mathbb{Q}(\omega) \). Moment statistics for the motive \(M = M_1 \otimes M_2 \) over \(K = \mathbb{Q}(i, \omega), \mathbb{Q}(\omega) \) are listed in Table 9 along with the corresponding moments for \(G = F, F_c \). (One can also achieve \(F_{ab} \) and \(F_{ab,c} \) by considering this example over \(\mathbb{Q} \) and \(\mathbb{Q}(\sqrt{3}) \); compare Example 6.15.)

Footnote 5: To see why it must be \(F_c \), as opposed to \(F_a \) or \(F_{ab} \), which also have component groups of order 2, note that [6.1] implies that \(G \) must have invariants \(z_1 = 1 \) and \(z_2 = [0, 0, 0, 0, 0, 0] \).
Remark 6.3. Here we appear to be able to realize the Sato-Tate group F_c, the first of the three groups ruled out in [FKRS12] for weight 1 motives arising from abelian surfaces, and we also appear to realize the second such group, $F_{a,b,c}$; see Example 6.15. It is unclear whether the remaining group $F_{a,b,c}$ ruled out in [FKRS12] can be realized by a weight 3 motive with rational coefficients (but see Example 6.3).

We now consider the case where E_1 and E_2 are K-isogenous. Without loss of generality (for the purpose of realizing groups) we may suppose that E_1 and E_2 are actually K-isomorphic, that is, twists. The case where E_1 and E_2 are K-isomorphic corresponds to taking the symmetric cube of an elliptic curve, which we consider in the next section; here we assume that E_1 and E_2 are twists that are not isomorphic over K.

If E_1 and E_2 are quadratic twists, the Sato-Tate group of $M_1 \otimes M_2$ will be the same as that of $\mathrm{Sym}^3 M_1$; this is evident from (6.1), since multiplying either t_1 or t_2 by $\chi(p) \in \{ \pm 1 \}$ for some quadratic character χ will not change any of the a_1 and a_2 moments, and these moments determine the Sato-Tate group (as can be seen in Tables 2 and 3). However, the situation changes if we take a cubic twist.

Example 6.4 (C_3). Consider the elliptic curves $E_1: y^2 = x^3 + 4$ and $E_2: y^2 = x^3 + 1$, both of which have CM by $K = \mathbb{Q}(\omega)$. Moment statistics for $M = M_1 \otimes M_2$ over $K = \mathbb{Q}(\omega)$ are listed in Table 9 along with the corresponding moments for $G = C_3$. Note that the moment $M_{12}[a_1] = 854216$ distinguishes C_3, and the moment statistics for $M_{12}[a_1]$ obtained by this example are much closer to this value than any of the other $M_{12}[a_1]$ values in Table 2 (One can also achieve $J(C_3)$ by considering this example over \mathbb{Q}; compare Example 6.13).

We also get C_3 if we use a sextic twist, for the same reason that using a quadratic twist yields C_1. One might hope that taking E_1 to be a quartic twist of $E_2: y^2 = x^3 - x$ would yield C_2, but we actually get C_1 instead. All of this behavior is explained by the following lemma and remark.

Lemma 6.5. For $A, B \in K^*$, where $K = \mathbb{Q}(\omega)$, let M_1 be the 1-motive of the elliptic curve $E_A: y^2 = x^3 + A$ over K, and let M_2 be the complement of the Tate motive in the symmetric square of the elliptic curve $E_B: y^2 = x^3 + B$ over K. Let $L = K((A/B)^{1/6})$, let $d = [L : K]$, and let $n = d/(d, 4)$. Then the distribution of the normalized Frobenius eigenvalues of $M_1 \otimes M_2$ coincides with the distribution of the eigenvalues of a random element of the group C_n.

Proof. Let $\mathrm{End}_{\mathbb{Q}}(E_A, E_B)$ denote the ring of endomorphisms from E_A to E_B defined over $\overline{\mathbb{Q}}$. Since E_A and E_B have complex multiplication by K and are isogenous over L, the vector space $\mathrm{End}_{\mathbb{Q}}(E_A, E_B) \otimes \mathbb{Q}$ is endowed with the structure of a $K[\mathrm{Gal}(L/K)]$-module; let χ denote its character. Then for a prime ℓ, as in [FS12] §3.3, we have the following isomorphism of $\mathbb{Q}_\ell[G_K]$-modules

$$V_\ell(E_A) \otimes \mathbb{Q}_\ell \simeq V_\ell(E_B) \otimes \chi \oplus V_\ell(E_B) \otimes \chi.$$

(6.2)

Here $V_\ell(E_A)$ denotes the ℓ-adic Tate module of E_A, σ and σ stand for the two embeddings of M into $\overline{\mathbb{Q}}_\ell$, and

$$V_\ell(E_B) := V_\ell(E_B) \otimes_{M, \sigma} \mathbb{Q}_\ell, \quad V_\ell(E_B) := V_\ell(E_B) \otimes_{M, \sigma} \mathbb{Q}_\ell.$$

Let p be a prime of K of good reduction for E_A and E_B such that Frob_p has order f in $\mathrm{Gal}(L/K)$. Since χ is injective, it follows from (6.2) that if $\{\alpha_p, \overline{\alpha}_p\}$ are the
normalized eigenvalues of the action of \(\text{Frob}_p \) on \(V_\ell(E_B) \), then \(\{ \zeta \alpha_p, \zeta \alpha_p \} \) are the normalized eigenvalues of the action of \(\text{Frob}_p \) on \(V_\ell(E_A) \), where \(\zeta \) is a primitive \(f \)th root of unity. Thus the normalized eigenvalues of the action of \(\text{Frob}_p \) relative to \(M_1 \otimes M_2 \) are

\[
\{ \zeta \alpha_p, \zeta \alpha_p, \zeta \alpha_p, \zeta \alpha_p \}.
\]

By [FS12 Proposition 3.6], the sequence of \(\alpha_p \)'s with \(\text{ord}(\text{Frob}_p) = f \) is equidistributed on \(U(1) \) with respect to the Haar measure. By the translation invariance of the Haar measure, the sequence of \(\beta_p \)'s with \(\text{ord}(\text{Frob}_p) = f \) is also equidistributed, where \(\beta_p := \zeta \alpha_p \). Now (6.3) reads

\[
\{ \zeta \beta_p, \zeta \beta_p, \zeta \beta_p, \zeta \beta_p \}.
\]

Let \(s = f/(f, 4) \). We deduce that the normalized eigenvalues of the action of \(\text{Frob}_p \) relative to \(M_1 \otimes M_2 \) with \(\text{ord}(\text{Frob}_p) = f \) are equidistributed as the eigenvalues of a random matrix in the connected component of the matrix

\[
\begin{pmatrix}
\Theta_s U & 0 \\
0 & \Theta_s U
\end{pmatrix}
\]

(in the notation of (2.1)). The extension \(L/K \) is cyclic of order dividing 6, which implies that the normalized Frobenius eigenvalues of \(M_1 \otimes M_2 \) have the same distribution as the eigenvalues of a random matrix in the group \(C_n \).

\[\square\]

\section*{Remark 6.6.} The same proof works when \(K = \mathbb{Q}(i) \), \(L = K((A/B)^{1/4}) \), \(E_A: y^2 = x^3 + Ax \), and \(E_B: y^2 = x^3 + Bx \). In this case, \(n = d/(4, d) = 1 \), and the distribution of the normalized Frobenius eigenvalues of \(M_1 \otimes M_2 \) is thus always governed by \(C_1 \).

\subsection*{6.2. Symmetric cubes of elliptic curves.} We next consider motives of the form \(M = \text{Sym}^3 M_1 \) over a field \(K \) in which \(M_1 \) is the 1-motive of an elliptic curve \(E_1 \). The Sato-Tate group in this case should be \(C_1, J(C_1) \), or \(D \), depending on whether \(E \) has complex multiplication defined over \(K \), complex multiplication that is not defined over \(K \), or no complex multiplication at all. This is effectively a special case of the product construction \(M_1 \otimes M_2 \) with \(E_1 = E_2 \), except that we do not necessarily require \(E_1 = E_2 \) to have complex multiplication. To compute the \(L \)-polynomial coefficients of \(M \) we simply apply the equations in (6.1) with \(t_1 = t_2 \).

\section*{Example 6.7 (\(C_1, J(C_1), D \)).} See Table\[\text{9}\] for moment statistics of the motive \(M = \text{Sym}^3 M_1 \) in three cases: (1) \(E_1 \) is the elliptic curve \(y^2 = x^3 + 1 \) over \(\mathbb{Q}(\omega) \); (2) \(E_1 \) is the elliptic curve \(y^2 = x^3 + 1 \) over \(\mathbb{Q} \); and (3) \(E_1 \) is the elliptic curve \(y^2 = x^3 + x + 1 \); along with the corresponding moments for \(G = C_1, J(C_1), D \).

\subsection*{6.3. Tensor product constructions using modular forms.} We now consider motives \(M = M_1 \otimes M_2 \) that arise as the tensor product of the motive \(M_1 \) associated to a weight 2 newform \(f_1 \) (with Hodge numbers \(h_1^{1,0} = h_0^{1,1} = 1 \)) and the motive \(M_2 \) associated to a weight 3 newform \(f_2 \) (with Hodge numbers \(h_2^{2,0} = h_0^{2,2} = 1 \)). We assume that both \(f_1 \) and \(f_2 \) have rational Fourier coefficients.

By Proposition\[\text{3.11}\] \(f_1 \) has trivial nebentypus and \(f_2 \) has CM by its (quadratic) nebentypus \(\chi \). The motive \(M \) is defined over \(\mathbb{Q} \), and we consider its base change to a number field \(K \). If the \(q \)-expansions of \(f_1 \) and \(f_2 \) are given by \(f_1 = \sum b_n q^n \) and
\[f_2 = \sum d_n q^n, \] then the coefficients of the \(L \)-polynomial \(L_p(T) \) at a prime \(p \) of \(K \) of good reduction for \(M \) are given by
\[(6.4) \quad c_1 = -b_p d_p \quad \text{and} \quad c_2 = \chi(p) pb_p^2 + d_p^2 - 2\chi(p)p^2, \]
where \(p = N(p) \) and the integer coefficients \(c_1 \) and \(c_2 \) are as defined in (8.1). The normalized coefficients are then \(a_1(p) = c_1/p^{3/2} \) and \(a_2(p) = c_2/p^2 \).

Lemma 6.8. Let \(M_1 \) be the motive associated to a weight 2 newform \(f_1 \) and let \(M_2 \) be the motive associated to a weight 3 newform \(f_2 \). Assume that both \(f_1 \) and \(f_2 \) have rational Fourier coefficients. Then \(M = M_1 \otimes M_2 \) is self-dual.

Proof. It is enough to show that the (normalized) Frobenius eigenvalues of \(M \) at prime of good reduction \(p \) come in conjugate pairs. Let \(\alpha_p \) and \(\overline{\alpha}_p \) denote the normalized Frobenius eigenvalues of \(M_1 \). We have \(\alpha_p \overline{\alpha}_p = 1 \), since the nebentypus of \(f_1 \) is trivial. For the normalized Frobenius eigenvalues of \(M_2 \) we have two cases according to the value of the nebentypus \(\chi \) of \(f_2 \) at \(p \): (1) if \(\chi(p) = -1 \), then they are 1 and \(-1\), since \(f_2 \) has CM by \(\chi \), and (2) if \(\chi(p) = 1 \), then they are \(\beta_p \) and \(\overline{\beta}_p \) with \(\beta_p \overline{\beta}_p = 1 \). In any of the two cases, we readily check that the normalized Frobenius eigenvalues of \(M \) come in conjugate pairs
\[(1) : \{ \alpha_p \beta_p, \alpha_p \overline{\beta}_p, \overline{\alpha}_p \beta_p, \overline{\alpha}_p \overline{\beta}_p \}, \]
\[(2) : \{ \alpha_p, -\alpha_p, \overline{\alpha}_p, -\overline{\alpha}_p \}. \]

Consequently, \(M \) is self-dual. \(\square \)

Remark 6.9. With the hypothesis of the lemma, \(M_2 \) is not self-dual, since the nebentypus of \(f_2 \) is not trivial (and note therefore that this is not an obstruction for \(M_1 \otimes M_2 \) being self-dual). In particular, seen as a motive over \(\mathbb{Q} \), the Sato-Tate group
\[\left\langle \left(\begin{array}{cc} u & 0 \\ 0 & \overline{u} \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) : u \in \mathbb{C}, u \cdot \overline{u} = 1 \right\rangle \]

of \(M_2 \) is a subgroup of \(U(2) \) not contained in \(SU(2) \).

Example 6.10 (\(C_1, J(C_1) \)). Let \(f_1 = f_\psi \) be the weight 2 newform \([27.2.1a] \), corresponding to the elliptic curve \(y^2 + y = x^3 \), and let \(f_2 = f_\psi^2 \), which is a weight 3 newform of level 27; both \(f_1 \) and \(f_2 \) have CM by \(\mathbb{Q}(\omega) \). Moment statistics for the motive \(M = M_1 \otimes M_2 \) over \(K = \mathbb{Q}(\omega) \), \(\mathbb{Q} \) are listed in Table 9 along with the corresponding moments for \(G = C_1, J(C_1) \).

Remark 6.11. The sequence of \(L \)-polynomials of the motive constructed as a tensor product \(M_1 \otimes M_2 \) in Example 6.10 using \(f_1 = [27.2.1a] \) and \(f_2 = f_\psi^2 \), is identical to the sequence of \(L \)-polynomials of the motive constructed as a direct sum \(M_1 \oplus M_2 \) in Example 5.5 using \(f_1 = [27.2.1a] \) and \(f_2 = [9.4.1a] \).

Example 6.12 (\(C_2, J(C_2) \)). Let \(f_1 = f_\psi \) be the weight 2 newform \([32.2.1a] \), corresponding to the elliptic curve \(y^2 = x^3 - x \), and let \(f_2 = f_\psi^2 \otimes \phi \) be the weight 3 newform of level 576 constructed in 4.2, which is a quartic twist of \(f_\psi^2 \); both \(f_1 \) and \(f_2 \) have CM by \(\mathbb{Q}(i) \). Moment statistics for the motive \(M = M_1 \otimes M_2 \) over \(K = \mathbb{Q}(\omega), \mathbb{Q} \) are listed in Table 9 along with the corresponding moments for \(G = C_2, J(C_2) \).
Example 6.13 (C3, J(C3)). Let f1 be the weight 2 newform 36.2.1a, which is
the cubic twist of fψ 27.2.1a corresponding to the elliptic curve y^2 = x^3 + 1, and
let f2 = fψ 2, a weight 3 newform of level 27; both f1 and f2 CM by Q(\omega). Moment
statistics for the motive M = M1 \otimes M2 over K = Q(\omega), Q are listed in Table 9
along with the corresponding moments for G = C3, J(C3).

Remark 6.14. The behavior observed in the above examples can be explained
by means of arguments completely analogous to those of Lemma 5.4. Let ψ be a
Hecke character of a quadratic imaginary field K of infinite type 1 such that fψ has
rational coefficients. Let φ1 (resp. φ2) be a Hecke character of finite order n such
that fφ2\otimes\phi1 (resp. f\phi2\otimes\phi1) has rational coefficients. We then have:

(i) If f1 := f\phi2 and f2 := f\phi\otimes\phi2, then the distribution of the normalized Frobe-
nius eigenvalues of M1 \otimes M2 (resp. of the base change (M1 \otimes M2)K) coincides
with the distribution of the eigenvalues of a random element in J(Ct) (resp.
Ct), where t = n/(n, 2).

(ii) If f1 := f\phi2\otimes\phi1 and f2 := f\phi, then the distribution of the normalized Frobe-
nius eigenvalues of M1 \otimes M2 (resp. of the base change (M1 \otimes M2)K) coincides
with the distribution of the eigenvalues of a random element in J(Ct) (resp.
Ct), where t = n/(n, 4).

Example 6.15 (F, F_{ab}, F_{c}, F_{ab,c}). Let f1 be the weight 2 newform 32.2.1a
which has CM by Q(i), and let f2 := f\phi 2, a weight 3 newform of level 27, which
has CM by Q(\omega). Moment statistics for the motive M = M1 \otimes M2 over the fields
K = Q(i, \omega), Q(\sqrt{3}), Q(i), Q are listed in Table 9 along with the corresponding
moments for G = F, F_{ab}, F_{c}, F_{ab,c}. With K = Q(\omega) one obtains essentially the same
moment statistics as with K = Q(i); this is as expected, since the groups F_{ab,c} and
F_{c} are conjugate.

Example 6.16 (U(2), N(U(2))). Let f1 be the weight 2 newform 11.2.1a,
corresponding to the elliptic curve y^2 + y = x^3 - x^2 - 10x - 20, which does not have
CM, and let f2 := f\phi 2, a weight 3 newform of level 27, which has CM by Q(\omega).
Moment statistics for the motive M = M1 \otimes M2 over K = Q(\omega), Q are listed in
Table 9 along with the corresponding moments for G = U(2), N(U(2)).

7. The Dwork pencil

We next describe a construction that gives rise to motives whose L-polynomial
distributions match the group USp(4), something that cannot be achieved using any
of the preceding methods. To facilitate explicit computations with the Dwork pencil
of threefolds, we work with a family of hypergeometric motives defined by fixed
parameters α = (1/5, 2/5, 3/5, 4/5) and β = (0, 0, 0, 0), and a varying parameter
z = (5/t)^5, where t is the Dwork pencil parameter, as described in [CR12]. We first
summarize the general setup in [CR12] and then specialize to the case of interest.

7.1. Trace formulas and algorithms. For a prime p, let Q(p) denote the
ring of rational numbers with denominators prime to p. For z \in Q(p), we write
Teich(z) to denote the Teichmüller lift of the reduction of z modulo p. Letting \Gamma_p(x)
denote the p-adic gamma function, for each prime power q = p^f, we define \Gamma_q^*(x) :=
\prod_{v=0}^{f-1} \Gamma_p({q^v x}), where {·} denotes the fractional part of a rational number, and
then define a p-adic analogue of the Pochhammer symbol by setting
\[(x)_m^* := \frac{\Gamma_q^*(x + \frac{m}{1-q})}{\Gamma_q^*(x)}. \]

Given vectors $\alpha = (\alpha_1, \ldots, \alpha_r)$ and $\beta = (\beta_1, \ldots, \beta_r)$ in \mathbb{Q}_p^r and $z \in \mathbb{Q}_p$, we define
\[H_q \left(\frac{\alpha}{\beta} \right) := \frac{1}{1-q} \sum_{m=0}^{q-2} (-p)^{\eta_m(\alpha) - \eta_m(\beta)} q^{\xi_m(\beta)} \prod_{j=1}^{r} \left(\frac{\alpha_j}{\beta_j} \right)_m^* \text{Teich}(z)^m, \]
using the notations
\[\eta_m(x_1, \ldots, x_r) := \sum_{j=1}^{r} \sum_{v=0}^{f-1} \left\{ p^v \left(x_j + \frac{m}{1-q} \right) \right\} - \left\{ p^v x_j \right\}, \]
and
\[\xi_m(\beta) := \#\{j : \beta_j = 0\} - \#\left\{ j : \beta_j + \frac{m}{1-q} = 0 \right\}. \]
(with $\beta = (0, 0, 0, 0)$ we have $\xi_m(\beta) = 4$ for all nonzero m and $\xi_0(\beta) = 0$).

Now let X_{ψ} be the quintic threefold given in (1.1),
\[x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = tx_0x_1x_2x_3x_4, \]
with the parameter $t = 5\psi$. Let V_{ψ} be the subspace of $H^3(X_{\psi}, \mathbb{C})$ fixed by the automorphism group
\[\{(\zeta_1, \ldots, \zeta_5)|\zeta_1^5 = 1, \zeta_1 \cdots \zeta_5 = 1\}, \]
acting by $x_i \mapsto \zeta_i x_i$. For primes $p \neq 5$ for which we have $\psi^5 \neq 1 \mod p$ and $\psi \neq \infty \mod p$, the Euler factor of the L-function of V_{ψ} at p has the form (3.1),
\[L_p(T) = p^6T^4 + c_1p^3T^3 + c_2pT^2 + c_1T + 1, \]
where c_1 and c_2 are integers. For $\psi \neq 0 \mod p$, the trace of the geometric Frobenius on V_{ψ} is given by
\[\text{Trace} \left(\text{Frob}_q \mid V_{\psi} \right) = H_q \left(\frac{1}{5} \frac{2}{5} \frac{3}{5} \frac{4}{5} \frac{5}{5} | \psi^{-5} \right). \]
Abbreviating the right-hand side as H_q, we have
\[c_1 = -H_p, \quad \text{and} \quad c_2 = \frac{1}{2p} \left(H_p^2 - H_p^2 \right). \]

The Weil bounds imply that $|c_1| \leq 4p^{3/2}$, so for $p > 64$ it suffices to compute $H_p \mod p^2$. Computing c_2 requires more precision: we have $-4p^3 < 2pc_2 \leq 12p^3$, so for $p > 16$ it is enough to compute H_p and H_p^3 modulo p^4.
Specializing $\alpha = (1/5, 2/5, 3/5, 4/5)$ and $\beta = (0, 0, 0, 0)$ in (4.1) allows us to simplify the formulas. For the sake of brevity (and ease of computation), we focus on the problem of computing $H_p \mod p^2$, so $q = p$ and $f = 1$. We have $\eta_0(x) =$
\(\xi_0(x) = 0 \) and \((\alpha_j)_0 = (\beta_j)_0 = 1\), thus the \(m = 0 \) term in (7.21) is equal to 1. For \(m > 0 \) we have \(\xi_m(\beta) = 4 \), and one finds that

\[
\eta_m(\alpha) - \eta_m(\beta) = \begin{cases}
-4 & \text{if } 0 < m < \left\lceil \frac{p+4}{5} \right\rceil, \\
-3 & \text{if } \left\lfloor \frac{p+4}{5} \right\rfloor \leq m < \left\lfloor \frac{2p+3}{5} \right\rfloor, \\
-2 & \text{if } \left\lfloor \frac{2p+3}{5} \right\rfloor \leq m < \left\lfloor \frac{3p+2}{5} \right\rfloor, \\
-1 & \text{if } \left\lfloor \frac{3p+2}{5} \right\rfloor \leq m < \left\lfloor \frac{4p+1}{5} \right\rfloor, \\
0 & \text{if } m \geq \left\lfloor \frac{4p+1}{5} \right\rfloor.
\end{cases}
\]

When working modulo \(p^2 \), only the first two ranges of \(m \) are relevant (the other terms in the sum are all divisible by \(p^2 \)), and we may write

\[
H_p \left(\frac{z}{p} \right) \equiv \frac{1 + S_1 - pS_2}{1 - p} \mod p^2,
\]

where

\[
S_1 = \sum_{m=1}^{m_1-1} \left(\prod_{j=1}^{4} \frac{(j/5)_m}{(0)_m} \right) \text{Teich}(z)^m, \quad S_2 = \sum_{m=m_1}^{m_2-1} \left(\prod_{j=1}^{4} \frac{(j/5)_m}{(0)_m} \right) \text{Teich}(z)^m,
\]

with \(m_1 = \left\lfloor \frac{p+4}{5} \right\rfloor \) and \(m_2 = \left\lfloor \frac{2p+3}{5} \right\rfloor \).

To compute \(H_p(\alpha) \mod p^2 \), it suffices to compute \(S_1 \mod p^2 \) and \(S_2 \mod p \). Evaluating the Pochhammer symbols \((\cdot)_m^*\) that appear in the formulas for \(S_1 \) and \(S_2 \) thus reduces to computing \(\Gamma_p(x) \mod p^2 \), or modulo \(p \). To compute \(\Gamma_p(x) \mod p^2 \) for \(x \in \mathbb{Q}/p \), we first reduce \(x \) modulo \(p^2 \) and use

\[
\Gamma_p(x + 1) = \begin{cases}
-x\Gamma_p(x) & \text{for } x \in \mathbb{Z}_p^*, \\
\Gamma_p(x) & \text{for } x \in p\mathbb{Z}_p,
\end{cases}
\]

to shift the argument down so that it is divisible by \(p \). We then apply

\[
\Gamma_p(py) \equiv 1 + \left(1 + \frac{1}{(p-1)!} \right) y \mod p^2.
\]

For \(x = x_0 + px_1 \) with \(0 < x_0 < p \), we have

\[
\Gamma_p(x) \equiv (-1)^{x_0}(px_1 + 1) \cdots (px_1 + x_0 - 1) \left(1 + \left(1 + \frac{1}{(p-1)!} \right) x_1 \right) \mod p^2
\]

\[
\equiv (-1)^{x_0} \left(px_1 \sum_{k=1}^{x_0-1} \frac{(x_0 - 1)!}{k} + (x_0 - 1)! \right) \left(1 + \left(1 + \frac{1}{(p-1)!} \right) x_1 \right) \mod p^2.
\]

To compute \(\Gamma_p(x) \mod p \), simply apply the above formula with \(x_1 = 0 \).

Now let \(F_n := n! \) and \(T_n := \sum_{k=1}^{n} \frac{n!}{k} \). We may compute \(F_n \) and \(T_n \) modulo \(p^2 \) for \(0 \leq n < p \) via the recurrences \(F_{n+1} = (n+1)F_n \) and \(T_{n+1} = (n+1)T_n + F_n \), with \(F_0 = 1 \) and \(T_0 = 0 \). Having computed the \(F_n \) and \(T_n \) using \(O(p) \) operations in \(\mathbb{Z}/p^2\mathbb{Z} \), we can use the above formulas to compute \(\Gamma_p(x) \) for any \(x \in \mathbb{Z}/p^2\mathbb{Z} \) using \(O(1) \) operations in \(\mathbb{Z}/p^2\mathbb{Z} \). Noting that \(\text{Teich}(z) \equiv z^p \mod p^2 \), we can compute \(H_p(\alpha) \mod p^2 \) using a total of \(O(p) \) operations in \(\mathbb{Z}/p^2\mathbb{Z} \).

To efficiently compute the moment statistics of \(a_1 \) for a large set \(S \) of parameter values \(z \) in parallel, for each \(p \) up to a given bound \(N \) we compute \(H_p(z) \) as a polynomial in \(\text{Teich}(z) \) with coefficients in \(\mathbb{Z}/p^2\mathbb{Z} \). For \(p < \min(\#S, N) \), we then compute \(H_p(z^p) \mod p^2 \) for every nonzero \(z \in \mathbb{Z}/p\mathbb{Z} \) using fast algorithms for multipoint polynomial evaluation [GG03, Alg. 10.8], and construct a lookup table that
maps values of z in $\mathbb{Z}/p\mathbb{Z}$ to values of a. If $M = \#S$, then we can compute $H_p(z) \mod p^2$ for all primes $p \leq N$ and all $z \in S$ in time

$$O(\pi(N)M(N)M(\log N) \log N + M\pi(N) \log N),$$

where $M(n)$ denotes the cost of multiplication. For $M \geq N$, this corresponds to an average cost of $O((\log N)^{3+o(1)})$ per $H_p(z)$ computation.

Computing the moment statistics of a_2 is substantially more work, since we then also need to compute $H_p(z)$ (modulo p^4), which involves $O(p^2)$ arithmetic operations, compared to the $O(p)$ operations needed to compute $H_p(z)$. To compute $\Gamma_p(x) \mod p^4$ for $x \in \mathbb{Q}^\ast(p)$, we first reduce x modulo p^4 and use Γ_{p^2} to shift the argument down so that it is divisible by p. We then apply the formula

$$\Gamma_p(py) \equiv 1 + a_1y + a_2y^2 + a_3y^3 \mod p^4,$$

with

$$a_2 \equiv -(p-1)!/(p-1)! + 2) / 2 \mod p^4,$$

$$a_1 \equiv -(8(p-1)! + (2p)!/(2p^2) + 4a_2 + 7) / 6 \mod p^4,$$

$$a_3 \equiv -(p-1)! + 1 + a_1 + a_2 \mod p^4.$$

After computing $H_p(z)$ and $H_{p^2}(z)$, one then computes $H_p(z)^2 - H_{p^2} \mod p^4$, lifts this value to an integer that is known to lie in the interval $[-4p^3, 12p^3]$, and then divides by $2p$ to obtain the L-polynomial coefficient c_2, and $a_2 = c_2/p^2$.

Remark 7.1. Given the higher cost of computing moment statistics for a_2, for the purposes of comparison with $\text{USp}(4)$, we choose to mainly focus on a_1. This is reasonable because the a_1 moments of $\text{USp}(4)$ easily distinguish it from any of the other candidate Sato-Tate groups, as can be seen in Table 2.

On the other hand, an ongoing project of the second author with Edgar Costa and David Harvey is expected to yield a computation of a_2 using only $O(p)$ arithmetic operations. The strategy is to view the members of the Dwork pencil as nondegenerate toric hypersurfaces, then make a careful computation in p-adic cohomology in the style of the work of the second author [Ked01] on hyperelliptic curves.

Note that the algorithms described above cannot be used when $t = 0$, because then the condition $\psi \not \equiv 0 \pmod{p}$ is never satisfied. For completeness, we describe this case separately.

Example 7.2 (F_{ac}). Let M be the motive arising from the quintic threefold (1.1) with parameter $t = 0$. The L-polynomials in this case where computed by Weil in terms of Jacobi sums; they coincide with the L-polynomials of the unique algebraic Hecke character over $\mathbb{Q}(\zeta_5)$ of conductor $(1 - \zeta_5)^2$ and infinite type $(3,0), (2,1)$. The latter can be computed efficiently using Magma, as demonstrated to us by Mark Watkins. Moment statistics for the motive M over $K = \mathbb{Q}$ are listed in Table 9 along with the corresponding moments for $G = F_{ac}$.

7.2. Experimental results. Using the algorithms described in the previous section, we computed a_1 moment statistics for the family of hypergeometric motives with rational parameter z of height at most 10^3; the set S of such z has cardinality greater than 10^6. We computed c_1 values for all $z \in S$ and all $p \leq 2^{14}$, and for a subset of the $z \in S$ we continued the computation over $p \leq 2^{20}$. For each value
of z we computed the moment statistic $M_n[a_1]$ for $1 \leq n \leq 12$. In every case the moment statistics appeared to match the a_1 moment sequence of USp(4) listed in Table 2. We note that USp(4) is the only group with $M_4[a_1] = 3$, and its sixth moment $M_6[a_1] = 14$ is less than half any of the other values for $M_6[a_1]$ listed in Table 2; these differences are clearly evident in the moment statistics, even when using a norm bound as small as $B = 2^{14}$.

We then conducted similar experiments for each of the following families:

- $z = (5/t)^5$ for rational t of height at most 1000;
- $z = 1 + 1/n$ for integers n of absolute value at most 10^5;
- $z = (z_3 \zeta^3 + z_2 \zeta^2 + z_1 \zeta + z_0)^{-1}$ for a primitive fifth root of unity ζ and integers z_0, z_1, z_2, and z_3 of absolute value at most 10.

In every case the moment statistics again appeared to match the USp(4) moment sequence; we found no exceptional cases aside from the excluded case $t = 0$ (see Example 7.2).

Example 7.3 (USp(4)). Let M be the motive arising from the quintic threefold (1.1) with parameter $t = -5$ (that is, $z = -1$), as described in §7.1, over the field $K = \mathbb{Q}$. Table 9 lists moment statistics of a_1 as the norm bound $B = 2^n$ varies from 2^{10} to 2^{24}, and moment statistics of a_2 with $B = 2^n$ varying from 2^{10} to 2^{13}. The corresponding moments for the group $G = \text{USp}(4)$ are shown in the last line for comparison.

Remark 7.4. It is worth contrasting the behavior of the Dwork pencil of threefolds with the behavior of a universal family of elliptic curves, in which one always sees infinitely many curves with complex multiplication. It has been suggested by de Jong that the scarcity of special members of the Dwork family may be explained by Hodge-theoretic considerations (unpublished, but see [dJ02]). However, such considerations do not give any indication about the number of exceptional cases. It is entirely possible that there are some unobserved exceptional cases arising at large height and/or over a number field other than \mathbb{Q}.

Remark 7.5. The Dwork pencil is a family of hypergeometric motives, i.e., a family whose Picard-Fuchs equation is a hypergeometric differential equation. One can classify such families for fixed weight and Hodge numbers: for the values we are considering, there are 47 such families (as verified by the Magma command PossibleHypergeometricData). The computation of L-polynomials in these families has recently been implemented by Mark Watkins in Magma, and leads to some other exceptional cases (e.g., example H126E5 in the Magma Handbook).

8. More modular constructions

At this point, all of the groups listed in Table 1 are accounted for except for $\text{F}_{a,b,c}$ and $\text{N}(G_{3,3})$. We conclude with some more exotic uses of modular forms, leading to a realization of $\text{N}(G_{3,3})$ and a tantalizing near-miss for $\text{F}_{a,b,c}$. Thanks to Mark Watkins for suggesting these examples and providing assistance with computations in Magma.

8.1. Hilbert modular forms.

Example 8.1 ($\text{N}(G_{3,3})$). There is a unique normalized Hilbert modular eigenform over $K = \mathbb{Q}(\sqrt{5})$ of level $\Gamma_0(2\sqrt{5})$ and weight $(2, 4)$. This gives rise to a motive
M of the desired form by a procedure described in [BR93] (which gives a motive over K) followed by a base change from K to \mathbb{Q}. Moment statistics for the motive M over \mathbb{Q} are listed in Table 9, along with the corresponding moments for $G = N(G_{3,3})$. Due to computational limitations of [Magma], we were only able to compute a_1, and we were forced to limit the prime bound to 2^{14}, limiting the quality of the numerical evidence. However, note that $M_4[a_1]$ appears to be converging quite rapidly to 5, and that this value occurs for no groups in Table 1 other than $N(G_{3,3})$.

The motive in Example 8.1 is somewhat hard to write down explicitly. However, one expects that a generic example of this form should give the same Sato-Tate group, and there exist other examples where the motive appears much more explicitly.

Example 8.2. Define the two-variable Chebyshev polynomial

$$P(x, y) = x^5 + y^5 - 5xy(x^2 + y^2) + 5xy(x + y) + 5(x^2 + y^2) - 5(x + y).$$

Form the affine threefold

$$\text{Spec} \mathbb{Q}[x_1, x_2, x_3, x_4]/(P(x_1, x_2) - P(x_3, x_4)),$$

then take the Zariski closure in $\mathbb{P}^4_{\mathbb{Q}}$. It was observed by Consani-Scholten [CS01] that the resulting threefold has 120 ordinary double points and no other singularities. Blow up these double points to obtain a smooth threefold, then take middle cohomology to obtain a motive M.

It was conjectured by Consani-Scholten and proved by Dieulefait-Pacetti-Schütt [DPS12] that this is an example of a nonrigid modular Calabi-Yau threefold. More precisely, the L-function of M coincides with that of a certain Hilbert newform over $K = \mathbb{Q}(\sqrt{5})$ of level $\Gamma_0(30)$ (or rather its base change from K to \mathbb{Q}).

8.2. Other Hecke characters. So far we have only considered Hecke characters over quadratic fields. However, algebraic Hecke characters over larger fields also correspond to motives, as described in [Sch88]. We have seen one instance of this in another guise in Example 7.2. It is tempting to try to realize $F_{a,b,c}$ using a variant of that example; this turns out to be possible for motives with coefficients in a real quadratic field, but it remains unclear whether rational coefficients can be achieved.

Example 8.3. Consider the number field $K = \mathbb{Q}[\alpha]/(\alpha^4 - 2\alpha^3 + 5\alpha^2 - 4\alpha + 2)$, labeled 4.0.1088.2 in [LMFDB]; this is a CM field of class number 1 whose Galois group is the dihedral group of order 8. Let p be the unique (ramified) prime of norm 17. There is then a unique algebraic Hecke character ψ of conductor p and infinite type $(3, 0), (1, 2)$. The resulting motive M is defined over \mathbb{Q} but has coefficients in $\mathbb{Q}(\sqrt{17})$; it is thus not covered by our classification. Nonetheless, one can compute L-polynomial coefficients in [Magma] and observe good agreement with moment statistics for the group $F_{a,b,c}$.

Remark 8.4. One can construct similar examples of infinite type $(1, 0), (1, 0)$. One thus obtains motives with the Hodge numbers of an abelian surface, but having Sato-Tate group $F_{a,b,c}$ which is shown not to occur for abelian surfaces in [FKRS12]. In particular, the three groups appearing in the group-theoretic classification of [FKRS12] which are not realized by abelian surfaces appear to be realized by motives with nonrational coefficients.
Remark 8.5. For any example constructed from Hecke characters as above, the connected part of the Sato-Tate group should be a torus. If so, one can prove equidistribution using the work of Johansson [Joh14].

9. Moment statistics

This section lists moment statistics for the various motives constructed in the previous three sections. In each of the tables that follow, the column n indicates the norm bound $B = 2^n$ on the degree 1 primes p of K for which L-polynomials $L_p(T)$ were computed. The remaining columns list various moment statistics $M_n[a_i]$ of the normalized L-polynomial coefficients a_1 and a_2. Following each example, the corresponding moments of the candidate Sato-Tate group G are listed for comparison.
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	3.848	32.096	329.648	3772.44	46139.8	589946	2.025	7.562	28.615	125.379	573.450	2761.95	13699.7
16	4.068	36.349	399.331	4828.99	61695.2	816810	2.043	8.062	32.259	148.124	707.888	3583.35	18071.1
20	3.977	35.643	394.090	4803.74	61964.3	829450	1.991	7.958	31.691	146.135	700.526	3514.70	18079.7
24	3.984	35.765	396.577	4849.68	62756.6	842562	1.994	7.966	31.802	146.893	705.735	3548.37	18292.4
28	3.999	35.978	399.623	4893.66	63499.1	852060	2.000	7.997	31.982	147.884	711.270	3579.48	18468.2
32	4.000	36.005	400.061	4900.72	63512.0	853854	2.000	8.001	32.004	148.022	712.107	3584.53	18498.5
36	4.000	35.998	399.973	4899.58	63497.5	853676	2.000	8.000	31.999	147.991	711.949	3583.70	18494.2
40	4.000	35.999	399.988	4899.82	63501.3	853735	2.000	8.000	31.999	147.997	711.978	3583.87	18495.3

$F^* = M_1 \oplus M_2$ over $K = \mathbb{Q}(i, \omega)$ with $f_1 = 32.2.1a$ and $f_2 = 9.4.1a$ (Example 5.1)

| F_a | 3 | 21 | 210 | 2485 | 31878 | 472350 | 2 | 6 | 20 | 82 | 372 | 1824 | 9312 |

$F_{a,b}$ = $M_1 \oplus M_2$ over $K = \mathbb{Q}$ with $f_1 = 32.2.1a$ and $f_2 = 9.4.1a$ (Example 5.1)
\(n \)	\(M_2[a_1] \)	\(M_4[a_1] \)	\(M_6[a_1] \)	\(M_8[a_1] \)	\(M_{10}[a_1] \)	\(M_{12}[a_1] \)	\(M_1[a_2] \)	\(M_2[a_2] \)	\(M_3[a_2] \)	\(M_4[a_2] \)	\(M_5[a_2] \)	\(M_6[a_2] \)	\(M_7[a_2] \)
12	2.831	18.700	162.998	1653.35	18513.5	222275	1.955	5.772	18.845	70.897	289.489	1269.72	5856.2
16	2.912	18.900	162.111	1606.02	17364.6	199045	1.967	5.823	19.073	71.426	289.045	1247.86	5632.4
20	2.990	19.881	173.341	1739.61	19040.2	221046	1.977	5.982	19.902	75.459	308.989	1346.94	6134.4
24	2.999	19.981	174.808	1762.12	19385.8	226341	2.000	5.997	19.986	75.935	311.725	1362.83	6227.0
28	2.999	19.991	174.872	1761.94	19371.8	226024	2.000	5.999	19.992	75.955	311.735	1362.45	6223.0
32	3.000	19.998	174.956	1763.31	19393.8	226369	2.000	6.000	19.998	75.987	311.919	1363.52	6229.3
36	3.000	20.000	174.993	1763.88	19402.0	226480	2.000	6.000	20.000	75.998	311.988	1363.92	6231.5
40	3.000	20.000	174.999	1763.99	19403.8	226510	2.000	6.000	20.000	76.000	311.998	1363.99	6232.0

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q} \text{ with } f_1 = 11.2.1a \text{ and } f_2 = 9.4.1a \] (Example 5.2)

\(G_{1,3} \)	3	20	175	1764	19404	226512	2	6	20	76	312	1364	6232
12	1.890	10.162	82.694	822.34	9158.8	109806	1.978	4.875	13.355	43.107	159.141	659.35	2956.4
16	1.953	10.421	83.282	807.34	8675.0	99267	1.984	4.908	13.519	43.624	160.110	654.03	2871.4
20	1.994	10.934	89.117	876.26	9535.1	110519	1.998	4.990	13.947	45.710	170.407	705.07	3129.3
24	1.999	10.988	89.877	887.78	9710.7	113199	2.000	4.998	13.991	45.958	171.816	713.20	3176.5
28	1.999	10.995	89.933	887.94	9706.5	113074	2.000	4.999	13.996	45.976	171.863	713.20	3175.4
32	2.000	10.999	89.976	888.64	9717.7	113248	2.000	5.000	13.999	45.999	171.957	713.75	3178.6
36	2.000	11.000	89.996	888.99	9721.9	113305	2.000	5.000	14.000	45.999	171.994	713.96	3179.7
40	2.000	11.000	89.999	888.99	9722.9	113321	2.000	5.000	14.000	46.000	171.999	714.00	3180.0

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q} \text{ with } f_1 = 11.2.1a \text{ and } f_2 = 9.4.1a \] (Example 5.2)

\(N(G_{1,3}) \)	2	11	90	889	9723	113322	2	5	14	46	172	714	3180
12	2.044	9.914	65.414	507.34	4354.5	40032	2.055	5.121	14.257	43.862	146.697	525.70	1990.5
16	2.001	10.005	70.915	613.85	6062.0	65576	2.010	5.003	14.045	44.357	154.995	590.70	2415.8
20	2.004	10.034	70.308	591.59	5604.0	57723	2.008	5.011	14.048	44.208	153.040	574.31	2298.4
24	2.000	10.004	69.991	587.09	5530.5	56125	2.005	5.005	14.016	44.025	152.053	569.03	2270.0

| \(G_{3,3} \) | 2 | 10 | 70 | 588 | 5544 | 56628 | 2 | 5 | 14 | 44 | 152 | 569 | 2270 |

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q} \text{ with } f_1 = 11.2.1a \text{ and } f_2 = 5.4.1a \] (Example 5.3)
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	3.724	39.781	517.581	7140.47	101446.7	1467990	1.908	7.388	34.459	175.801	935.697	5096.06	28152.9
16	3.968	43.330	567.235	7865.66	112441.4	1639111	1.991	7.926	37.448	192.185	1026.865	5613.14	31134.8
20	3.991	43.809	576.712	8037.78	115425.6	1689536	1.997	7.976	37.838	194.976	1045.677	5735.41	31912.2
24	3.995	43.912	578.580	8069.13	115936.1	1697732	1.998	7.988	37.926	195.553	1049.301	5757.72	32047.9
28	4.000	43.991	579.834	8089.14	116256.1	1702843	2.000	7.999	37.993	195.950	1051.676	5771.97	32133.4
32	4.000	43.998	579.954	8091.18	116289.9	1703399	2.000	8.000	37.998	195.986	1051.909	5773.42	32142.3
36	4.000	43.999	579.990	8091.83	116301.1	1703588	2.000	8.000	38.000	195.997	1051.980	5773.88	32145.2
40	4.000	44.000	579.999	8091.98	116303.6	1703628	2.000	8.000	38.000	196.000	1051.997	5773.98	32145.9

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q}(\omega) \text{ with } f_1 = 27.2.1\text{a} \text{ and } f_2 = 9.4.1\text{a} \text{ (Example 5.5)} \]

| C_1 | 4 | 44 | 580 | 8092 | 116304 | 1703636 | 2 | 8 | 38 | 196 | 1052 | 5774 | 32146 |

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q} \text{ with } f_1 = 27.2.1\text{a} \text{ and } f_2 = 9.4.1\text{a} \text{ (Example 5.5)} \]

| $J(C_1)$ | 2 | 22 | 290 | 4046 | 58152 | 851818 | 2 | 6 | 23 | 106 | 542 | 2919 | 16137 |

\[M = M_1 \oplus M_2 \text{ over } K = \mathbb{Q}(\omega) \text{ with } f_1 = 27.2.1\text{a} \text{ and } f_2 = f_{\varphi} \otimes \chi_4 \text{ (Example 5.6)} \]

| C_2 | 4 | 36 | 400 | 4956 | 65904 | 919116 | 2 | 8 | 32 | 148 | 712 | 3614 | 18916 |
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	1.951	16.715	176.479	2086.97	26661.8	359633	2.012	5.901	19.029	74.968	327.057	1561.28	7842.5
16	1.944	17.268	189.198	2309.55	30284.2	417223	1.979	5.891	19.382	78.508	351.613	1718.58	8806.0
20	1.998	17.951	199.147	2463.88	32722.2	455862	2.001	5.994	19.964	81.743	370.402	1829.06	9461.4
24	1.998	17.967	199.398	2467.78	32783.7	456826	2.000	5.997	19.975	81.822	370.853	1831.81	9477.8
28	2.000	17.994	199.879	2475.91	32917.0	459890	2.000	5.999	19.995	81.965	371.768	1837.53	9512.8
32	2.000	17.997	199.963	2477.45	32943.4	459423	2.000	6.000	20.000	81.988	371.392	1838.60	9519.7
36	2.000	18.000	199.994	2477.91	32950.5	459533	2.000	6.000	20.000	81.998	371.989	1838.93	9521.6
40	2.000	18.000	199.999	2477.98	32951.7	459553	2.000	6.000	20.000	82.000	372.000	1838.99	9521.9
$J(C_2)$	2	18	200	2478	32952	459558	2	6	20	82	372	1839	9522
$J(C_3)$	2	18	200	2478	32952	459558	2	6	20	82	372	1839	9522

$M = M_1 \oplus M_2$ over $K = \mathbb{Q}$ with $f_1 = 27.2.1$ and $f_2 = f_{\psi^8} \otimes \chi_4$ (Example 5.7)
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	3.956	35.366	385.901	4597.51	55707.0	741277	1.973	7.859	31.351	143.344	679.870	3357.91	16951.8
16	3.931	34.902	382.691	4623.07	59036.2	781489	1.987	7.838	31.057	142.474	678.992	3385.60	17299.0
20	3.983	35.704	395.127	4820.48	62214.2	832884	1.994	7.959	31.744	146.459	702.647	3527.38	18152.8
24	3.999	35.966	399.280	4887.18	63288.1	850214	2.000	7.998	31.975	147.796	710.614	3575.05	18439.9
28	3.999	35.980	399.691	4895.17	63428.5	852959	2.000	7.998	31.984	147.903	711.419	3580.56	18475.6
32	4.000	35.995	399.924	4898.78	63484.7	853470	2.000	7.999	31.996	147.976	711.855	3583.14	18490.8
36	4.000	35.999	399.997	4899.83	63501.1	853729	2.000	8.000	32.000	147.997	711.981	3583.88	18495.3
40	4.000	36.000	399.997	4899.95	63503.2	853763	2.000	8.000	32.000	147.999	711.994	3583.97	18495.8

$M = M_1 \oplus M_2$ over $K = \mathbb{Q}(i)$ with $f_1 = \text{level 256 quartic twist of 32.2.1a and } f_2 = \text{32.4.1b}$ (Example 5.8)

| C_4 | 4 | 36 | 400 | 4900 | 63504 | 853776 | 2 | 8 | 32 | 148 | 712 | 3584 | 18496 |

$M = M_1 \oplus M_2$ over $K = \mathbb{Q}$ with $f_1 = \text{level 256 quartic twist of 32.2.1a and } f_2 = \text{32.4.1b}$ (Example 5.8)

| $J(C_4)$ | 2 | 18 | 200 | 2450 | 31752 | 426888 | 2 | 6 | 20 | 82 | 372 | 1824 | 3912 |

$M = M_1 \oplus M_2$ over $K = \mathbb{Q}(\omega)$ with $f_1 = \text{27.2.1a and } f_2 = \text{level 576 sextic twist of 9.4.1a (1.3)}$ (Example 5.9)

| C_6 | 4 | 36 | 400 | 4900 | 63504 | 853776 | 2 | 8 | 32 | 148 | 712 | 3584 | 18496 |

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	1.939 18.048 187.881 2293.59 29679.4 398006	2013 5.888 19.305 77.865 350.591 1711.68 8722.4											
16	1.966 17.451 191.507 2318.72 29713.0 395646	1.988 5.925 19.553 79.313 356.215 1730.91 8763.8											
20	1.990 17.854 197.629 2411.09 31114.7 416512	1.998 5.981 19.877 81.242 367.357 1795.75 9140.4											
24	1.999 17.971 199.465 2441.08 31690.9 424650	2.000 5.997 19.976 81.837 370.969 1817.67 9273.9											
28	2.000 17.999 199.882 2449.72 31746.9 426791	2.000 6.000 19.999 81.993 371.964 1823.78 9310.6											
32	2.000 17.999 199.934 2449.03 31737.4 426669	2.000 5.999 19.996 81.979 371.878 1823.30 9308.0											
36	2.000 17.999 199.989 2449.82 31749.1 426842	2.000 6.000 20.000 81.997 371.980 1823.88 9311.2											
40	2.000 18.000 199.988 2449.97 31751.5 426879	2.000 6.000 20.000 81.999 371.997 1823.98 9311.9											

$J(C_6)$

n	$M_1[a_1]$	$M_2[a_1]$	$M_3[a_1]$	$M_4[a_1]$	$M_5[a_2]$	$M_6[a_2]$
12	2.111 13.651 128.743 140.03 16758.8 212823	0.988 4.190 12.480 53.310 226.485 1062.80 5139.9				
16	1.939 11.499 95.025 924.42 9930.1 114111	0.963 3.889 10.519 42.169 163.460 713.49 3195.9				
20	1.984 11.832 98.258 960.44 10348.8 118999	0.995 3.966 10.844 43.318 168.953 737.94 3315.5				
24	2.002 12.031 100.371 984.35 10635.6 122592	1.000 4.005 11.022 44.135 172.659 755.38 3399.8				
28	2.000 11.996 99.964 979.61 10578.9 121894	1.000 3.999 10.997 43.986 171.939 751.71 3381.5				
32	2.000 12.001 100.015 980.18 10585.9 121989	1.000 4.000 11.001 44.005 172.022 752.11 3383.5				
36	2.000 11.999 99.983 979.78 10581.2 121931	1.000 4.000 10.999 43.994 171.970 751.85 3382.2				
40	2.000 12.000 99.996 979.95 10583.3 121959	1.000 4.000 11.000 43.999 171.993 751.96 3382.8				

$U(2)$

n	$M_1[a_1]$	$M_2[a_1]$	$M_3[a_1]$	$M_4[a_1]$	$M_5[a_2]$	$M_6[a_2]$							
12	3.645 30.632 327.151 3829.89 49243.6 648190	1.899 7.140 27.528 123.913 582.112 2871.94 14551.7											
16	3.937 34.821 381.322 4615.95 59193.8 356.215 1730.91 8763.8												
20	3.974 35.548 393.139 4796.22 62932.0 395646	1.998 7.990 31.916 147.85 710.124 3572.81 18428.8											
24	3.999 35.978 399.071 4884.77 63423.9 852548	1.999 7.996 31.980 147.885 711.343 3580.20 18474.0											
28	4.000 35.999 399.958 4899.15 63488.5 853507	2.000 8.000 31.999 147.998 711.913 3583.40 18492.0											
32	4.000 35.998 399.971 4899.51 63495.9 853646	2.000 8.000 31.999 147.998 711.942 3583.65 18493.8											
36	4.000 36.000 399.996 4899.93 63502.8 853756	2.000 8.000 32.000 147.999 711.991 3583.95 18495.7											
40	4.000 36.000 399.996 4899.93 63502.8 853756	2.000 8.000 32.000 147.999 711.991 3583.95 18495.7											
\(n\)	\(M_2\{a_1\}\)	\(M_4\{a_1\}\)	\(M_6\{a_1\}\)	\(M_8\{a_1\}\)	\(M_{10}\{a_1\}\)	\(M_{12}\{a_1\}\)	\(M_1\{a_2\}\)	\(M_2\{a_2\}\)	\(M_3\{a_2\}\)	\(M_4\{a_2\}\)	\(M_5\{a_2\}\)	\(M_6\{a_2\}\)	\(M_7\{a_2\}\)
-----	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
12	1.760	14.792	157.976	1879.81	23778.9	313000	0.889	4.483	13.217	62.888	280.877	1396.83	7026.1
16	1.960	17.338	189.871	2298.41	2947.43	392273	0.979	4.904	15.378	73.561	336.382	1690.81	8612.3
20	1.983	17.741	196.207	2393.69	3090.23	413896	0.995	4.964	15.781	75.780	348.983	1761.96	9017.0
24	1.997	17.960	199.397	2440.70	3160.63	424589	0.998	4.993	15.961	76.791	354.814	1795.18	9280.0
28	1.999	17.988	199.818	2447.25	31710.2	426250	1.000	4.998	15.989	76.939	355.653	1800.00	9236.5
32	2.000	17.999	199.975	2449.52	31743.6	426819	1.000	5.000	15.999	76.993	355.948	1801.66	9245.8
36	2.000	17.999	199.984	2449.73	31747.7	426877	1.000	5.000	15.999	76.995	355.968	1801.81	9246.9
40	2.000	18.000	199.997	2449.96	31751.3	426877	1.000	5.000	16.000	76.995	355.995	1801.97	9247.8
4	3.639	30.654	325.827	3854.12	48328.9	628104	1.879	7.240	27.488	123.398	576.740	2836.28	14308.3
16	3.957	35.065	382.912	4605.55	5857.91	73226	1.982	7.886	31.201	142.825	678.826	3375.60	17201.8
20	3.988	35.776	396.152	4836.03	6245.96	837365	1.997	7.974	31.819	146.821	704.618	3538.42	18217.8
24	3.999	39.962	399.222	4886.11	6326.83	850306	2.000	7.995	31.966	147.759	710.428	3574.03	18433.9
28	3.999	39.988	399.801	4896.72	6349.47	853322	2.000	7.998	31.989	147.936	711.613	3581.65	18481.6
32	4.000	39.997	399.937	4898.92	6346.82	853926	2.000	8.000	31.997	147.981	711.881	3583.25	18491.4
36	4.000	39.999	399.988	4899.80	6350.07	854161	2.000	8.000	31.999	147.996	711.977	3583.86	18495.1
40	4.000	39.999	399.998	4899.96	6350.33	854204	2.000	8.000	32.000	147.999	711.995	3583.97	18495.8

\[
M = M_1 \otimes M_2 \text{ over } K = \mathbb{Q}(i) \text{ with } E_1: y^2 = x^3 - x \text{ and } E_2: y^2 = x^3 + 1 \quad \text{(Example 6.2)}
\]

\(\{a_2\}\): \(C_3\)	\(2\)	\(8\)	\(32\)	\(148\)	\(712\)	\(3584\)	\(18496\)					
\(\{a_1\}\): \(C_3\)	\(36\)	\(1400\)	\(4900\)	\(63504\)	\(854216\)	2	8	32	148	712	3584	18496

\[
M = \text{Sym}^3 M_1 \text{ over } K = \mathbb{Q}(i) \text{ with } E_1: y^2 = x^3 + 1 \quad \text{(Example 6.7)}
\]
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	1.903	20.468	265.599	365.42	51858.3	750843	1.978	5.807	21.758	98.382	495.853	2640.53	14459.8
16	1.966	21.434	280.637	3892.86	55670.0	811858	1.991	5.930	22.538	103.098	524.138	2810.12	15477.0
20	1.991	21.870	288.047	4016.19	57690.7	844625	1.997	5.982	22.892	105.374	538.364	2897.78	16012.6
24	1.998	21.957	289.272	4033.95	57955.0	848620	2.000	5.995	22.966	105.777	540.607	2910.44	16084.8
28	1.999	21.990	289.847	4043.60	58114.3	851225	2.000	5.999	22.992	105.952	541.712	2917.29	16126.9
32	2.000	21.998	289.966	4045.46	58143.4	851681	2.000	6.000	22.998	105.990	541.937	2918.62	16134.7
36	2.000	21.999	289.989	4045.82	58149.1	851771	2.000	6.000	22.999	105.997	541.979	2918.87	16136.2
40	2.000	22.000	289.998	4045.97	58151.5	851811	2.000	6.000	23.000	105.999	541.997	2918.98	16136.9

$M = \text{Sym}^3 M_1$ over $K = \mathbb{Q}$ with $E_1: y^2 = x^3 + 1$ (Example 6.7)

$J(C_1)$	2	22	290	4046	58152	851818	2	6	23	106	542	2919	16137

$M = \text{Sym}^3 M_1$ over $K = \mathbb{Q}$ with $E_1: y^2 = x^3 + 1$ (Example 6.7)

D	1	4	34	364	4269	52844	1	2	5	16	62	272	1283

$M = M_1 \otimes M_2$ over $K = \mathbb{Q}(\omega)$ with $f_1 = \lbrack 27, 21, 1 \rbrack$ and $f_2 = f_{\omega^2}$ (Example 6.10)

| C_1 | 4 | 44 | 580 | 8092 | 116304 | 1703636 | 2 | 8 | 38 | 196 | 1052 | 5774 | 32146 |

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
	$M = M_1 \otimes M_2$ over $K = \mathbb{Q}$ with $f_1 = [27,2.1a]$ and $f_2 = f_{\psi^2}$ (Example 6.10)												
12	1.835 19.607 255.106 3519.41 5001.3 723547	1.955 5.670 21.041 94.763 477.416 2544.22 13941.0											
16	1.977 21.592 282.664 3919.60 56031.6 816799	1.995 5.956 22.675 103.796 527.759 2829.24 15579.2											
20	1.994 21.890 288.170 4016.29 57675.5 844222	1.999 5.987 22.909 105.430 538.511 2897.87 16099.8											
24	1.997 21.949 289.194 4033.23 57948.8 848585	1.999 5.993 22.958 105.747 540.482 2909.92 16082.7											
28	2.000 21.995 289.906 4044.43 58126.0 851391	2.000 5.999 22.996 105.972 541.820 2917.88 16130.1											
32	2.000 21.998 289.971 4045.51 58143.8 851683	2.000 6.000 22.999 105.991 541.944 2918.65 16134.8											
36	2.000 22.000 289.994 4049.90 58150.3 851791	2.000 6.000 23.000 105.998 541.988 2918.93 16136.6											
40	2.000 22.000 289.999 4054.98 58151.7 851813	2.000 6.000 23.000 106.000 541.998 2918.99 16136.9											

$J(C_1)$

n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	3.828 32.989 350.939 4159.81 53066.5 713569	1.908 7.546 29.322 132.113 641.991 3613.78 18914.7											
16	3.930 34.768 380.034 4639.36 60922.4 840944	1.974 7.837 30.966 141.722 674.205 3885.58 17577.0											
20	3.979 35.680 395.497 4891.89 64970.0 905221	1.993 7.954 31.725 146.497 703.659 3567.69 18655.8											
24	3.995 35.911 398.564 4933.20 6544.7 913473	1.998 7.988 31.927 147.556 709.327 3598.01 18820.7											
28	4.000 35.992 399.824 4952.59 65843.2 918709	2.000 7.999 31.993 147.948 711.365 3611.56 18900.2											
32	4.000 35.997 399.944 4955.07 65889.1 918880	2.000 8.000 31.997 147.983 711.894 3613.35 18912.1											
36	4.000 35.999 399.981 4955.69 65899.0 919035	2.000 8.000 31.999 147.994 711.964 3613.78 18914.7											
40	4.000 36.000 399.995 4955.92 65902.7 919095	2.000 8.000 32.000 147.998 711.991 3613.94 18915.7											

C_2

n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	4.000 36.000 399.995 4955.92 65902.7 919116	2.000 8.000 32.000 147.998 711.991 3614 18916											

$J(C_2)$

n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$
12	4.000 36.000 399.995 4955.92 65902.7 919116	2.000 8.000 32.000 147.998 711.991 3614 18916											

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
\[
\begin{array}{cccccccccccccc}
\text{C}_3 & n & M_2[a_1] & M_4[a_1] & M_6[a_1] & M_8[a_1] & M_{10}[a_1] & M_{12}[a_1] & M_1[a_2] & M_2[a_2] & M_3[a_2] & M_4[a_2] & M_5[a_2] & M_6[a_2] & M_7[a_2] \\
\hline
12 & 3.749 & 31.983 & 340.480 & 4006.11 & 49839.4 & 642488 & & & & & & & \\
16 & 3.964 & 35.185 & 384.363 & 4624.51 & 58836.7 & 776721 & & & & & & & \\
20 & 3.987 & 39.540 & 395.657 & 4830.42 & 62399.9 & 836748 & & & & & & & \\
24 & 3.997 & 39.955 & 399.202 & 4866.09 & 63267.7 & 850284 & & & & & & & \\
28 & 3.999 & 39.988 & 399.792 & 4896.57 & 63447.9 & 853300 & & & & & & & \\
32 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 854216 & & & & & & & \\
36 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 854216 & & & & & & & \\
40 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 854216 & & & & & & & \\
\hline
\text{J}(\text{C}_3) & n & M_2[a_1] & M_4[a_1] & M_6[a_1] & M_8[a_1] & M_{10}[a_1] & M_{12}[a_1] & M_1[a_2] & M_2[a_2] & M_3[a_2] & M_4[a_2] & M_5[a_2] & M_6[a_2] & M_7[a_2] \\
\hline
12 & 1.848 & 15.764 & 167.817 & 1974.54 & 24565.0 & 316671 & & & & & & & \\
16 & 1.975 & 17.534 & 191.535 & 2304.48 & 29319.4 & 387054 & & & & & & & \\
20 & 1.992 & 17.858 & 197.701 & 2413.65 & 31179.8 & 418104 & & & & & & & \\
24 & 1.998 & 17.971 & 199.535 & 2442.23 & 31623.4 & 425001 & & & & & & & \\
28 & 2.000 & 17.993 & 199.889 & 2448.20 & 31722.8 & 426364 & & & & & & & \\
32 & 2.000 & 17.998 & 199.964 & 2449.42 & 31742.7 & 426958 & & & & & & & \\
36 & 2.000 & 18.000 & 199.998 & 2449.96 & 31751.1 & 427089 & & & & & & & \\
40 & 2.000 & 18.000 & 199.998 & 2449.97 & 31751.6 & 427101 & & & & & & & \\
\hline
\text{F} & n & M_2[a_1] & M_4[a_1] & M_6[a_1] & M_8[a_1] & M_{10}[a_1] & M_{12}[a_1] & M_1[a_2] & M_2[a_2] & M_3[a_2] & M_4[a_2] & M_5[a_2] & M_6[a_2] & M_7[a_2] \\
\hline
12 & 3.869 & 34.463 & 381.174 & 4669.32 & 60454.8 & 821582 & & & & & & & \\
16 & 3.964 & 35.792 & 398.231 & 4874.93 & 63064.3 & 845872 & & & & & & & \\
20 & 4.016 & 36.184 & 395.657 & 4884.38 & 63269.9 & 850236 & & & & & & & \\
24 & 3.997 & 39.955 & 399.202 & 4866.09 & 63267.7 & 850284 & & & & & & & \\
28 & 3.998 & 39.962 & 399.371 & 4890.17 & 63502.3 & 853735 & & & & & & & \\
32 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 853776 & & & & & & & \\
36 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 853776 & & & & & & & \\
40 & 4.000 & 39.996 & 399.937 & 4900 & 63504 & 853776 & & & & & & & \\
\end{array}
\]

\[M = M_1 \otimes M_2 \text{ over } K = \mathbb{Q}(\omega) \text{ with } f_1 = 36.2.1a \text{ and } f_2 = f_{\psi^2} \quad (\text{Example 6.13}) \]
\(n \)	\(M_2[a_1] \)	\(M_4[a_1] \)	\(M_6[a_1] \)	\(M_8[a_1] \)	\(M_{10}[a_1] \)	\(M_{12}[a_1] \)	\(M_1[a_2] \)	\(M_2[a_2] \)	\(M_3[a_2] \)	\(M_4[a_2] \)	\(M_5[a_2] \)	\(M_6[a_2] \)	\(M_7[a_2] \)
12	1.868	16.641	184.352	2554.74	29192.6	392382	1.930	5.692	18.744	76.066	343.596	1678.10	8546.9
16	1.967	17.762	197.624	2419.20	31295.9	419767	1.976	5.921	19.699	80.773	366.398	1796.05	9162.7
20	2.004	18.054	200.477	2453.21	31758.5	426537	1.999	6.010	20.028	82.165	372.599	1826.24	9318.1
24	1.997	17.956	199.351	2440.60	31614.3	424841	1.999	5.994	19.960	81.776	370.763	1817.17	9274.0
28	1.999	17.980	199.673	2444.93	31674.1	425690	2.000	5.998	19.983	81.896	371.379	1820.35	9290.7
32	2.000	17.996	199.943	2449.13	31738.3	426669	2.000	5.998	19.997	81.981	371.892	1823.37	9308.3
36	2.000	18.000	199.996	2449.93	31750.7	426865	2.000	6.000	20.000	81.999	371.992	1823.95	9311.7
40	2.000	18.000	199.997	2449.96	31751.3	426877	2.000	6.000	20.000	81.999	371.995	1823.97	9311.8

\(F_{ab} \)

| \(F_{ab} \) | 2 | 18 | 200 | 2450 | 31752 | 426888 | 2 | 6 | 20 | 82 | 372 | 1824 | 9312 |

\(F_{c} \)

| \(F_{c} \) | 2 | 18 | 200 | 2450 | 31752 | 426888 | 1 | 5 | 16 | 77 | 356 | 1802 | 9248 |

\(F_{ab,c} \)

| \(F_{ab,c} \) | 1 | 9 | 100 | 1225 | 15876 | 213444 | 1 | 4 | 10 | 44 | 186 | 922 | 4656 |

\(M = M_1 \otimes M_2 \) over \(K = \mathbb{Q}(\sqrt{3}) \) with \(f_1 = \bar{32}.2.1.a \) and \(f_2 = f_{\varphi^2} \) (Example 6.15)
\[M = M_1 \otimes M_2 \text{ over } K = \mathbb{Q}(\omega) \] with \(f_1 = 11.2.1a \) and \(f_2 = f_\psi^2 \) (Example 6.16)

\[M = M_1 \otimes M_2 \text{ over } K = \mathbb{Q}(i) \] with \(f_1 = 32.2.1a \) and \(f_2 = f_\psi^2 \) (Example 6.16)

\[M \text{ is the motive arising from the quintic threefold (1.1) with } t = 0 \] (Example 7.2)

\[F_{ac} \]
n	$M_2[a_1]$	$M_4[a_1]$	$M_6[a_1]$	$M_8[a_1]$	$M_{10}[a_1]$	$M_{12}[a_1]$	$M_1[a_2]$	$M_2[a_2]$	$M_3[a_2]$	$M_4[a_2]$	$M_5[a_2]$	$M_6[a_2]$	$M_7[a_2]$	
10	1.038	2.956	11.783	56.21	304.9	1800	0.999	2.002	3.826	9.221	22.507	61.02	170.2	
13	0.974	2.833	12.281	65.88	404.0	2717	0.989	1.969	3.871	9.498	24.295	69.34	207.7	
16	0.985	2.984	14.371	89.80	659.0	5372								
18	0.986	2.916	13.465	80.05	560.1	4384								
20	1.001	3.021	14.205	85.54	603.1	4740								
22	0.999	2.996	13.968	83.68	590.3	4673								
24	0.999	2.997	13.989	83.91	592.5	4693								
USp(4)	1	3	14	84	594	4719	1	2	4	10	27	82	268	
	10	0.919	4.923	40.085	405.22	4599.98	55704.4	1	2	4	10	27	82	268
	11	0.935	5.067	40.982	404.54	4435.56	51570.9	1	2	4	10	27	82	268
	12	0.975	5.177	39.851	372.63	3898.24	43705.4	1	2	4	10	27	82	268
	13	0.985	5.143	38.553	348.98	3528.31	38283.2	1	2	4	10	27	82	268
	14	0.967	4.907	35.917	318.67	3171.62	34025.7	1	3	7	23	76	287	1135
	15							1	3	7	23	76	287	1135
	16							1	3	7	23	76	287	1135

M is the motive arising from the quintic threefold $[1,1]$ with $t = -5$ (Example 7.3)

M corresponds to a Hilbert modular form over $\mathbb{Q}(\sqrt{5})$ of level $\Gamma_0(2\sqrt{5})$ and weight $(2, 4)$ (Example 8.1)

$N(G_{3,3})$
Acknowledgments

Thanks to Josep González, Joan-C. Lario, Fernando Rodriguez Villegas, and Mark Watkins for helpful discussions. Thanks to Jean-Pierre Serre for suggesting the construction of §5.

References

[BK15a] Grzegorz Banaszak and Kiran S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. Math. J. 64 (2015), no. 1, 245–274, DOI 10.1512/iumj.2015.64.5438. MR3320526

[BK15b] G. Banaszak, K.S. Kedlaya, Motivic Serre group, algebraic Sato-Tate group, and Sato-Tate conjecture, Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures, D. Kohel and I. Shparlinski, eds., Cont. Math. 663 (2016), 11–43.

[BLGG11] Thomas Barnet-Lamb, Toby Gee, and David Geraghty, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), no. 2, 411–469, DOI 10.1090/S0894-0347-2010-00689-3. MR2748398 (2012e:11083)

[BR93] Don Blasius and Jonathan D. Rogawski, Motives for Hilbert modular forms, Invent. Math. 114 (1993), no. 1, 55–87, DOI 10.1007/BF01232663. MR1235020 (94i:11033)

[COR00] P. Candelas, X. de la Ossa, and F. Rodriguez Villegas, Calabi-Yau manifolds over finite fields, I, arXiv:hep-th/0012233v1 (2000).

[COR03] Philip Candelas, Xenia de la Ossa, and Fernando Rodriguez-Villegas, Calabi-Yau manifolds over finite fields. II, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, 2003, pp. 121–157. MR2019149 (2004m:11095)

[CR12] H. Cohen, F. Rodriguez-Villegas, Hypergeometric motives (rough notes), 2012.

[CS01] Caterina Consani and Jasper Scholten, Arithmetic on a quintic threefold, Internat. J. Math. 12 (2001), no. 8, 943–972, DOI 10.1142/S0129167X01001118. MR1863287 (2002h:11058)

[dJ02] A.J. de Jong, Variation of Hodge structures: some examples, 2002 Arizona Winter School lecture notes, available online at http://swc.math.arizona.edu.

[DPS12] Luis Dieulefait, Ariel Pacetti, and Matthias Schütt, Modularity of the Consani-Scholten quintic, Doc. Math. 17 (2012), 953–987. With an appendix by José Burgos Gil and Pacetti. MR3007681

[FKRS12] Francesc Fité, Kiran S. Kedlaya, Victor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390–1442, DOI 10.1112/S0010437X12000279. MR2982436

[FS12] Francesc Fité and Andrew V. Sutherland, Sato-Tate distributions of twists of $y^2 = x^5 - x$ and $y^2 = x^6 + 1$, Algebra Number Theory 8 (2014), no. 3, 543–585, DOI 10.2140/ant.2014.8.543. MR3218892

[GG03] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge University Press, Cambridge, 2003. MR2001757 (2004g:68202)

[GGK12] Mark Green, Phillip Griffiths, and Matt Kerr, Mumford-Tate groups and domains, Annals of Mathematics Studies, vol. 183, Princeton University Press, Princeton, NJ, 2012. Their geometry and arithmetic. MR2918237

[HSBT10] Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813, DOI 10.4007/annals.2010.171.779. MR2630056 (2011g:11106)

[IR82] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, GTM 84, Springer-Verlag, New York, 1982.

[Joh14] C. Johansson, On the Sato-Tate conjecture for non-generic abelian surfaces, to appear in Trans. Amer. Math. Soc.

[Ked01] Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338. MR1877805 (2002m:14019)

[KS08] Kiran S. Kedlaya and Andrew V. Sutherland, Computing L-series of hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011,
SATO-TATE GROUPS OF SOME WEIGHT 3 MOTIVES

[LMFDB] Database of L-functions, modular forms, and related objects, http://www.lmfdb.org/.

[Magma] W. Bosma and J.J. Cannon and C. Fieker and A. Steel (eds.), Handbook of Magma Functions, v2.18, 2012, http://magma.maths.usyd.edu.au/magma/handbook/.

[Mil13] James S. Milne, Motives—Grothendieck’s dream, Open problems and surveys of contemporary mathematics, Surv. Mod. Math., vol. 6, Int. Press, Somerville, MA, 2013, pp. 325–342. MR3204952

[RS09] K. Rubin and A. Silverberg, Choosing the correct elliptic curve in the CM method, Math. Comp. 79 (2010), no. 269, 545–561, DOI 10.1090/S0025-5718-09-02266-2. MR2552240 (2010i:11091)

[Rib77] Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, pp. 17–51. Lecture Notes in Math., Vol. 601. MR0453647

[Sch88] Norbert Schappacher, Periods of Hecke characters, Lecture Notes in Mathematics, vol. 1301, Springer-Verlag, Berlin, 1988. MR0935127 (89h:11020)

[Sch06] M. Schütt, Hecke eigenforms and the arithmetic of singular K3 surfaces, Doctoral Thesis, Universität Hannover, 2006, available at http://www.iag.uni-hannover.de/~schueett/Dissertation.pdf.

[Sch09] Matthias Schütt, CM newforms with rational coefficients, Ramanujan J. 19 (2009), no. 2, 187–205, DOI 10.1007/s11139-008-9147-8. MR2511671 (2010c:11052)

[Ser68] Jean-Pierre Serre, Abelian l-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR0263823 (41 #8422)

[Ser95] Jean-Pierre Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques (French), Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 377–400. MR1265537 (95m:11059)

[Ser12] J.-P. Serre, Lectures on $N_X(p)$, A.K. Peters, 2012. MR2920749

[Sage] W.A. Stein et al., Sage Mathematics Software (Version 5.0.1), The Sage Development Team, 2012, http://www.sagemath.org.

Universität Duisburg-Essen/Institut für Experimentelle Mathematik, Fakultät für Mathematik, D-45127, Essen, Germany

E-mail address: francesc.fite@gmail.com

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093

E-mail address: kedlaya@ucsd.edu

URL: http://kskedlaya.org

Department of Mathematics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, Massachusetts 02139

E-mail address: drew@math.mit.edu

URL: http://math.mit.edu/~drew

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.