Sex Differences in the Association between Liver Fibrosis and Clinical Outcomes in Acute Cardioembolic Stroke Patients with Nonvalvular Atrial Fibrillation

Lei Yang
Xi’an Jiaotong University Medical College First Affiliated Hospital

Ke Gao
Xi’an Jiaotong University Medical College First Affiliated Hospital

Xin-Ye Yao
Xi’an Jiaotong University Medical College First Affiliated Hospital

Yong-lan Tang
Tangdu Hospital Fourth Military Medical University: Air Force Medical University Tangdu Hospital

Wan-Ying Yang
Xi’an Jiaotong University Medical College First Affiliated Hospital

Xiao-Rui Huang
Xi’an Jiaotong University Medical College First Affiliated Hospital

Ya-jie Gao
Xi’an Jiaotong University Medical College First Affiliated Hospital

Xiao-Pu Zheng (✉ zhengxp011@163.com)
The first affiliated hospital of Xi’an Jiaotong University https://orcid.org/0000-0002-0810-6016

Research article

Keywords: Liver fibrosis, Nonvalvular atrial fibrillation, Acute cardioembolic stroke, Short-term outcomes

DOI: https://doi.org/10.21203/rs.3.rs-378462/v1

License: ☇️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Liver cirrhosis is a confirmed risk factor for clinical outcomes of stroke patients. However, the contribution of liver fibrosis to cardioembolic stroke (CES) and its short-term outcomes are poorly understood. This study aimed to investigate the association between liver fibrosis and short-term clinical outcomes of acute CES patients, due to nonvalvular atrial fibrillation (NVAF), as well as the impacts of sex on the association.

Methods: Using data of 522 patients with NVAF admitted within 48 hours after acute symptom of CES onset. We calculated Fibrosis-4 score (FIB-4) and defined liver fibrosis as: likely advanced fibrosis (FIB-4>3.25), indeterminate (FIB-4, 1.45-3.25), unlikely advanced fibrosis (FIB-4<1.45). We investigated the impact of liver fibrosis degree on stroke severity, major disability at discharge and all cause death at 90 days stratified by sex.

Results: Among 522 acute CES patients with NVAF, the mean FIB-4 on admission reflected intermediate fibrosis with largely normal liver enzymes. After adjusting for all confounders, multivariate analyses revealed that likely advanced liver fibrosis was associated with severe stroke (OR=2.21, 95% CI: 1.04-3.54), major disability at discharge (OR=4.59, 95% CI: 1.88-11.18), and 90-days mortality (HR=1.25, 95% CI: 1.10-1.56). Further grouped by sex, these associations were stronger in males but not significant in females.

Conclusions: In patients with largely normal liver enzyme, likely advanced liver fibrosis is associated with severe stroke, major disability and all cause death after acute CES due to NVAF, and the association unfolded more obvious in males, but not for females.

Introduction

Stroke is a common chronic disease, especially the ischemic stroke, which is the second leading cause of death and third leading cause of disability in adults worldwide. (1) Atrial fibrillation (AF) is a major modifiable factor for stroke severity, associated with a more threefold mortality and disability rates than patients without AF. (2) Besides, the severity, treatments effectiveness, outcomes of stroke may differ from sex. (3, 4) Except for sex, liver disease was associated with in-hospital mortality after ischemic stroke. (5) Several studies suggested that liver cirrhosis was not only associated with an increased risk of stroke, but an independent risk factor for poor prognosis of stroke patients. (5, 6)

Liver fibrosis, the commonly clinical feature of chronic liver disease, is often undetected because of no obvious clinical symptoms. (7) Recent studies showed that there was a significant relationship between liver fibrosis and all-cause mortality in patients with cardiovascular disease, (8, 9) intracerebral hemorrhage (10) as well as the ischemic stroke risk, but data are lacking regarding to the contribution of liver fibrosis on short-term outcomes of ischemic stroke. Therefore, we focused on the CES patients with NVAF, and investigated the association between liver fibrosis and CES outcomes among patients without overt liver disease. Furthermore, we also researched effect modification of sex on those associations.

Materials And Methods

Study Population
We performed a retrospective study using data from the First Affiliated Hospital of Xi’an JiaoTong University, a National Advanced Stroke Center which has both an acute stroke treatment center and a stroke rehabilitation center. Thus, all patients suffering acute CES admitted to the stroke center received consistent therapy in the acute and chronic phase during hospitalization. Patients were included in this study if they met the following requirements: (1) 18 years of age or older; (2) has a history of AF or presented symptom onset accompanied by AF; (3) admitted to the stroke center within 48 hours after onset; (4) without any limitation of physical activities before onset; (5) baseline assessment within 48 hours of CES, including symptom, function and imaging assessment; (6) assessment of CES recovery by cerebral imaging during hospitalization; (7) assessment of functional outcome at discharge and all cause death at 90 days after discharge; Exclusive criteria of this study: (1) missing data on liver chemistries, baseline stroke imaging, or important clinical covariates such as cardiac function, renal function, hospital treatment and CES severity; (2) history of viral hepatitis and liver cirrhosis; (3) alcohol use (men, >30 g/day; women, >20 g/day); (4) use of medications that causes liver damage: valproic acid, amiodarone, methotrexate, and tamoxifen; (5) with poor cardiac function (EF < 40%); (6) known malignancy and clinical signs of infection on admission; Over a 6-year period from January 2013 to June 2019, a total of 987 consecutive CES patients were admitted to the center for acute therapy and for further rehabilitation within 7 days of the CES onset. Of these, 522 CES patients with NVAF were included in the current study (Figure 1). The protocol for the research project has been approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiao Tong University (reference number, VL.0 2018-08-11) and that it conforms to the provisions of the Declaration of Helsinki.

Definition

We used a validated liver fibrosis indicator—FIB-4 score(12, 13), which calculated as:

\[
Fib - 4 = \frac{\text{age (years)} \times \text{aspartate aminotransferase (Units/Liter)}}{\text{Platelet count (10^12/Liter)} \times \sqrt{\text{alanine aminotransferase (Units/Liter)}}}
\]

and defined liver fibrosis as FIB-4 >3.25, advanced fibrosis likely; 1.45-3.25, indeterminate level of fibrosis; FIB-4 <1.45, no advanced fibrosis likely.(14, 15) CES was diagnosed according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria.(16) The treatment for all CES patients was performed according to the American Heart Association/American Stroke Association Guideline.(17) The diagnosis of AF was based on at least 1 electrocardiogram obtained before or after admission.(18) Stroke severity was evaluated by the National Institutes of Health Stroke Scale (NIHSS) upon admission. NIHSS score of ≥8 was considered as severe stroke,(19) as well as the consciousness state of those patient assessed by Glasgow Coma Scale (GCS).(20) The modified Rankin Scale (mRS) was used to evaluate functional outcomes at discharge, and major disability was defined as a mRS score of ≥3.(21) The primary outcomes were **major disability** at discharge. Our secondary outcomes were **all-cause death** at 90 days from discharge.

Demographics and CES Characteristics

We collected several demographics, clinical and analytical parameters. All patients included received 12-lead electrocardiogram, transthoracic echocardiography, carotid ultrasonography, and standard blood tests upon admission. The CHA2DS2-VASc score, and HAS-BLED score were measured at prespecified time points, as well as the treatment strategy in hospital and discharge (the use of antiplatelet and anticoagulant medication, intravenous thrombolysis, endovascular revascularization). Several biochemical parameters, including platelet
count, liver chemistries (alanine aminotransferase, aspartate aminotransferase and albumin), N-terminal Pro-B-type Natriuretic Peptide (NT pro-BNP), and international normalized ratio (INR) were measured. The estimated glomerular filtration rate (eGFR) was calculated according to the Chronic Kidney Disease Epidemiology Collaboration equation.(22)

Statistical Analysis

Data are presented as means ± standard deviation or median and interquartile range for continuous variables and percentages for categorical variables. NT pro-BNP were log-transformed to minimize skewness and treated as continuous variables. The population characteristics were described by FIB-4 score classification and stratified by sex to explore the distribution of each interval. Kruskal Wallis test and/or chi-square test were used to compare differences among the three groups, as appropriate. Multivariate logistic regression analyses for stroke severity on admission and major disability at discharge and COX regression analysis for all-cause death at 90 days from discharge were performed after adjusting for general risk factors. Statistical significance was defined as two-tailed $P < 0.05$. All analyses were conducted with SPSS 26.0 (SPSS, Inc., Chicago, IL, USA).

Results

Characteristics of Study Population

The dataset of our study consisted of 522 CES patients with NVAF. Standard liver chemistry tests were generally in normal range of the study sample, with 11.7% of aspartate aminotransferase (AST) > 40 IU/L, 11.1% of alanine aminotransferase (ALT) > 40 IU/L. Among these patients, 109, 280, 133 subjects were classified into unlikely advanced fibrosis group, indeterminate group, likely advanced fibrosis group, respectively. Patients in likely advanced fibrosis group had higher values for age, CHA2DS2-VASc score, HAS-BLED score and higher prevalence of smoking, diabetes mellitus, hyperlipidemia, ischemic heart disease, $P < 0.05$ for both comparisons. No difference was found in sex, BMI, hypertension, prior history of ischemic stroke/TIA, drug use before admission (anticoagulant, antiplatelet and lipid-lowering use) and treatment in hospital (intravenous thrombolysis and endovascular revascularization) among three groups (Table 1).

Table 1. Characteristics of Acute CES Patients with NVAF in Different FIB-4 lever
Characteristics	Study Sample (N=522)	FIB-4 Score ≤1.45 (N=109)	1.45-3.25 (N=280)	FIB-4 Score ≥3.25 (N=133)
Patient characteristics				
Mean age, y, (SD) **	72.61 (9.77)	64.81 (11.21)	73.55 (8.16)	77.03 (7.85)
Male sex	271 (51.9)	58 (53.2)	138 (49.3)	75 (56.4)
Smoker **	111 (21.2)	25 (22.9)	70 (25.0)	16 (12.0)
Risk stratification				
CHA2DS2-VASc score**	3 (2-4)	3 (2-4)	3 (2-4)	3 (3-4)
HAS-BLED score**	1 (1-2)	1 (0-2)	1 (1-2)	2 (1-2)
Diabetes mellitus*	127 (24.3)	28 (25.7)	76 (27.1)	23 (17.3)
Hypertension	343 (65.7)	68 (62.4)	185 (66.1)	90 (67.7)
Hyperlipidemia**	122 (23.4)	35 (32.1)	61 (21.8)	26 (19.5)
Ischemic heart disease**	120 (23.0)	19 (17.4)	63 (22.5)	38 (28.6)
Prior history of Ischemic Stroke/TIA	88 (16.8)	17 (15.6)	54 (19.3)	17 (12.8)
Body Mass Index				
Mean, kg/m², (SD)	22.77 (3.33)	22.54 (3.12)	22.99 (3.40)	22.50 (3.35)
Obese ≥27.5 kg/m²	41 (7.9)	6 (5.5)	26 (9.3)	9 (6.8)
Drug use before admission				
Anticoagulant use	49 (9.4)	14 (12.8)	21 (7.5)	14 (10.5)
Antiplatelet use	173 (33.1)	26 (23.9)	102 (36.6)	45 (34.1)
Lipid-lowering use	119 (22.8)	19 (17.4)	63 (22.5)	37 (27.8)
Admission laboratory data				
Platelet count, x10³ per microliter**	179.00 (136.75-219.00)	233.00 (196.00-286.00)	182.00 (151.25-215.00)	119.00 (102.00-151.00)
INR**	1.09 (1.04-1.17)	1.07 (1.02-1.13)	1.09 (1.03-1.16)	1.13 (1.07-1.21)
AST, units/L**	23.00 (18.00-31.00)	18.00 (15.00-24.35)	22.00 (18.00,28.75)	32.00 (24.00-44.50)
AST >40 units/L**	61 (11.70)	2 (1.8)	21 (7.5)	38 (28.6)

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P≤0.05, ** for P≤0.01, *** for P≤0.001.
ALT, units/L	18.10 (12.15-27.00)	20.00 (13.90-30.87)	18.00 (12.00-25.75)	17.33 (12.00-26.90)
ALT >40 units/L	58 (11.1)	13 (11.9)	28 (10.0)	17 (12.8)
Albumin, g/dL	38.00 (35.20-41.00)	38.30 (35.05-42.00)	38.35 (35.53-40.90)	37.30 (34.45-40.20)
eGFR, ml/min/1.73m²**	90.16 (80.77-104.39)	95.91 (88.17-119.82)	89.74 (80.44-102.06)	85.61 (76.53-97.31)
Lg NT-pro BNP**	2.99 (2.73-3.27)	2.85 (2.62-3.15)	2.95 (2.69-3.25)	3.17 (2.90-3.47)
FIB-4 score***	2.28 (1.60-3.27)	1.18 (0.94-1.30)	2.19 (1.81-2.61)	4.42 (3.68-6.04)

Stroke severity on admission

GCS	15 (11-15)	15 (12-15)	15 (12-15)	13 (9-15)
NIHSS*	8 (3-13)	5 (2-12)	7 (3-13)	8 (3-15)
NIHSS ≥ 8*	227 (43.5)	40 (36.7)	116 (41.4)	71 (53.4)

Treatment in hospital

Antiplatelet use*	230 (44.1)	52 (47.7)	126 (45.0)	52 (39.1)
Anticoagulant use*	292 (57.9)	57 (52.3)	154 (55.0)	81 (70.9)
Intravenous thrombolysis	33 (6.3)	9 (8.3)	16 (5.7)	8 (6.0)
Endovascular revascularization*	71 (13.6)	14 (12.9)	46 (16.4)	11 (8.3)

Outcomes at discharge

mRS*	2 (1-5)	2 (1-4)	4 (1-5)	5 (2-5)
mRS ≥ 3**	208 (39.8)	33 (30.3)	100 (35.7)	75 (56.4)
All-cause death*	39 (7.3)	9 (8.2)	16 (5.7)	14 (12.3)
Period of hospitalization, days*	30 (20-40)	30 (20-35)	28 (20-35)	35 (21-46)

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P < 0.05, ** for P < 0.01, *** for P < 0.001.

The Associations Between FIB-4 Score and Short-term Clinical Outcomes of CES patients with NVAF

Patients with likely advanced fibrosis group had significantly worse outcomes in hospital, such as higher NIHSS score on admission and mRS score at discharge, and they usually had a higher incidence of 90-days mortality, severe stroke, major disability compared with other 2 groups, P < 0.05 for both comparisons. (Table 1).
Multivariate analysis for short-term outcomes showed that FIB-4 score levels were associated with the risk of severe stroke (OR=1.10, 95% CI: 1.07–1.21), major disability (OR=1.20, 95% CI: 1.06–1.37) and 90-days mortality (HR=1.34, 95% CI: 1.08–2.01). Furthermore, compared with no advanced fibrosis likely, likely advanced fibrosis was significantly associated with an increased risk of severe stroke (OR=2.21, 95% CI: 1.04–3.54), major disability (OR=4.59, 95% CI: 1.88–11.18) and 90-days mortality (HR=1.25, 95% CI: 1.10–1.56). Moreover, indeterminate fibrosis was also significantly associated with 90-days mortality (HR=1.16, 95% CI: 1.08–1.34), but not related severe stroke (OR=1.34, 95% CI: 0.80–2.24) and major disability (OR=1.26, 95% CI: 0.59–2.70). (Table 3, 4, 5).

Table 3. Effect Modification of Sex on the Associations Between FIB-4 and Admission Stroke Severity
FIB-4	Model 1	Model 2	Model 3	Model 4				
	OR (95% CI)	P value						
Totality								
Continuous	1.12 (1.04,1.22)	0.006	1.11 (1.02,1.20)	0.013	1.11 (1.01,1.20)	0.022	1.10 (1.07,1.21)	0.013
Categories								
FIB-4<1.45	Reference	Reference	Reference	Reference				
1.45-3.25	1.22 (0.77,1.93)	0.393	1.29 (0.79,2.11)	0.324	1.34 (0.80,2.24)	0.267	1.34 (0.80,2.24)	0.27
FIB-4≥3.25	1.98 (1.17,3.31)	0.008	1.99 (1.09,3.46)	0.025	2.03 (1.11,3.72)	0.022	2.21 (1.04,3.54)	0.036
Male								
Continuous	1.14 (1.01,1.29)	0.033	1.17 (1.03,1.35)	0.019	1.18 (1.02,1.35)	0.024	1.21 (1.10,1.32)	0.000
Categories								
FIB-4<1.45	Reference	Reference	Reference	Reference				
1.45-3.25	1.31 (0.68,2.50)	0.410	1.59 (0.76,3.38)	0.217	1.72 (0.80,3.72)	0.165	1.71 (0.78,3.74)	0.177
FIB-4≥3.25	2.39 (1.08,5.05)	0.031	2.73 (1.15,6.46)	0.023	2.97 (1.19,7.42)	0.020	3.12 (1.16,7.11)	0.030
Female								
Continuous	1.11 (0.99,1.24)	0.079	1.06 (0.95,1.19)	0.264	1.07 (0.95,1.21)	0.245	1.07 (0.96,1.21)	0.277
Categories								
FIB-4<1.45	Reference	Reference	Reference	Reference				
1.45-3.25	1.10 (0.57,2.10)	0.787	1.09 (0.51,2.18)	0.804	1.12 (0.55,2.79)	0.760	1.12 (0.54,2.31)	0.761
FIB-4≥3.25	1.80 (0.88,3.66)	0.107	1.77 (0.78,4.01)	0.175	1.88 (0.81,4.39)	0.145	1.89 (0.79,4.52)	0.151

Data are reported as mean ± SD, median (IQR) or number and percentage. † Model 1: adjusted for none. Model 2: adjusted for age, BMI. Model 3: adjusted for age, BMI, smoker (not for females), lg NT pro-BNP, eGFR, INR, antiplatelet use. Model 4: adjusted for all covariables in model 3 plus adjusted for diabetes mellitus, hypertension, hyperlipidemia, ischemic heart disease, prior history of ischemic stroke/TIA. ‡ FIB-4, fibrosis-4 score; BMI, Body Mass Index; TIA, transient ischemic attacks; INR, international normalized ratio; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; OR, odds ratio; 95% CI, 95% confidence interval.
Table 4. Effect Modification of Sex on the Associations Between FIB-4 and major disability After CES

FIB-4	Model 1	Model 2	Model 3	Model 4
	OR (95% CI)	P value	OR (95% CI)	P value
Totality				
Continuous	1.21 (1.10,1.34)	0.000	1.19 (1.08,1.32)	0.001
Categories				
FIB-4 < 1.45	Reference	Reference	Reference	Reference
1.45-3.25	1.59 (0.93,2.71)	0.088	1.61 (0.91,2.87)	0.104
FIB-4 ≥ 3.25	3.62 (2.01,6.53)	0.000	3.51 (1.82,6.76)	0.000
Male				
Continuous	1.38 (1.17,1.62)	0.000	1.48 (1.22,1.77)	0.000
Categories				
FIB-4 < 1.45	Reference	Reference	Reference	Reference
1.45-3.25	1.59 (0.72,3.48)	0.251	2.67 (1.04,6.85)	0.047
FIB-4 ≥ 3.25	3.75 (1.63,8.63)	0.002	7.97 (2.65,23.94)	0.000
Female				
Continuous	1.10 (0.99,1.25)	0.078	1.07 (0.95,1.20)	0.258
Categories				
FIB-4 < 1.45	Reference	Reference	Reference	Reference
1.45-3.25	1.57 (0.75,3.27)	0.229	1.33 (0.61,2.89)	0.471
FIB-4 ≥ 3.25	3.89 (1.64,9.22)	0.002	3.00 (1.21,7.46)	0.018

Data are reported as mean ± SD, median (IQR) or number and percentage. † Model 1: adjusted for none. Model 2: adjusted for age, BMI. Model 3: adjusted for age, BMI, smoker (not for females), Ig NT pro-BNP, eGFR, diabetes mellitus, hypertension, hyperlipidemia, ischemic heart disease, prior history of ischemic stroke/TIA. Model 4: adjusted for all covariables in model 3 plus adjusted for treatment in hospital, NIHSS on admission. ‡ CES, cardioembolic stroke; FIB-4, fibrosis-4 score; BMI, Body Mass Index; TIA, transient ischemic attacks; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; 95% CI, 95% confidence interval.
Table 5. Effect Modification of Sex on the Associations Between FIB-4 and All-cause Death After CES

FIB-4	Model 1	P value	Model 2	P value
Totality				
Continuous	1.21 (1.10,1.34)	0.001	1.34 (1.08,2.01)	0.003
FIB-4<1.45	Reference		Reference	
1.45-3.25	1.28 (1.12,1.65)	0.003	1.12 (1.04-1.32)	0.000
FIB-4>3.25	1.40 (1.19,1.84)	0.015	1.25 (1.10-1.56)	0.001
Male				
Continuous	1.36 (1.16,1.58)	0.000	1.44 (1.20,1.72)	0.000
Categories				
FIB-4<1.45	Reference		Reference	
1.45-3.25	1.15 (1.05,1.67)	0.03	1.16 (1.08-1.34)	0.000
FIB-4>3.25	1.27 (1.10,1.78)	0.005	1.20 (1.05-1.74)	0.03
Female				
Continuous	1.13 (1.00,1.26)	0.054	1.08 (0.97,1.21)	0.244
FIB-4<1.45	Reference		Reference	
1.45-3.25	1.06 (0.45,1.40)	0.173	1.48 (0.94-1.61)	0.236
FIB-4>3.25	1.01 (0.38-1.86)	0.499	1.13 (1.00-1.88)	0.034

Data are reported as mean ± SD, median (IQR) or number and percentage. † Model 1: adjusted for none. Model 2: adjusted for adjusted for age, BMI, lg NT pro-BNP, eGFR, diabetes mellitus, hypertension, hyperlipidemia, ischemic heart disease, prior history of ischemic stroke/TIA, treatment in hospital, NIHSS on admission. CES, cardioembolic stroke; FIB-4, fibrosis-4 score; BMI, Body Mass Index; TIA, transient ischemic attacks; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; HR, hazard ratio; 95% CI, 95% confidence interval.

Stroke Severity and Short-term Outcomes of Study Population Stratified by Sex

When stratified by sex, the likely advanced fibrosis group had higher value for age and INR both in males and females, but beyond that, the male patients had higher CHA2DS2-VASc score, HAS-BLED score and higher proportion of smoker, hyperlipidemia, intravenous thrombolysis and endovascular revascularization in likely advanced fibrosis group. No differences were observed in sex, BMI, hypertension, prior history of ischemic stroke/TIA, drug use before admission among three groups both for males and females (Table 2).
Both male and female patients in likely advanced fibrosis group had higher NIHSS score, mRS score, more severe stroke, and more major disability than their counterparts (Table 2). For 90-days mortality, 8.0% male patients suffered death in likely advanced fibrosis group, which was higher than other 2 groups, but there was no significant difference among three groups in females (Table 2).

Table 2. Characteristics of Acute CES Patients with NVAF in different FIB-4 lever, Stratified by Sex
Characteristics	Study Sample	FIB-4 Score	FIB-4 Score	FIB-4 Score
Male (N)		1.45	1.45-3.25	3.25
	N=271	N=58	N=138	N=75
Patient characteristics				
Mean age, y, (SD) **	71.65 (10.28)	62.34 (12.02)	72.49 (8.03)	77.32 (7.26)
Smoker **	108 (39.9)	25 (42.9)	68 (49.2)	15 (20.0)
Risk stratification				
CHA2DS2-VASc score*	3 (2-4)	2 (1-3)	3 (2-4)	3 (3-4)
HAS-BLED score*	1 (1-2)	1 (0-1)	1 (1-2)	2(1-2)
Diabetes mellitus	64 (23.6)	14 (24.1)	37 (26.8)	13 (17.3)
Hypertension	164 (60.5)	31 (53.4)	83 (60.1)	50 (66.7)
Hyperlipidemia**	53 (19.6)	17 (29.3)	26 (18.8)	10 (13.3)
Ischemic heart disease	72 (26.6)	12 (20.7)	38 (27.5)	22 (29.3)
Prior history of Ischemic stroke/TIA	45 (16.6)	7 (12.0)	27 (19.5)	11 (17.3)
Body Mass Index				
Mean, kg/m² , (SD)	23.30 (3.06)	22.71 (2.88)	22.63 (3.00)	23.15 (3.27)
Obese≥27.5kg/m2	21 (7.7)	2 (3.4)	13 (9.4)	6 (8.0)
Drug use before admission				
Anticoagulant use	28 (10.3)	9 (12.0)	12 (8.7)	7 (12.1)
Antiplatelet use	91 (33.7)	15 (25.9)	53 (38.4)	23 (31.1)
Lipid-lowering use	72 (26.6)	12 (20.7)	38 (27.5)	22 (29.3)
Admission laboratory data				
Platelet count, ×10³ per microliter**	168.00 (132.00-209.00)	236.00 (191.75-288.75)	170.00 (147.75-203.25)	113.00 (102.00-139.00)
INR*	1.10 (1.05-1.19)	1.06 (1.01-1.14)	1.08 (1.00-1.18)	1.12 (1.07-1.24)
AST, units/L**	22.00 (18.00-39.00)	18.10 (14.95-25.00)	22.00 (17.90,28.00)	27.20 (22.00-38.7)
AST >40 units/L**	26 (9.6)	0 (0.0)	9 (6.5)	17 (22.7)

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P < 0.05, ** for P < 0.01, *** for P < 0.001.
ALT, units/L	18.70 (12.50-28.00)	20.50 (14.50-31.15)	18.00 (12.23-26.25)	17.71 (11.00-28.00)
ALT >40 units/L	28 (10.3)	5 (8.6)	12 (8.7)	11 (14.7)
Albumin, g/dL	37.70 (35.10-40.80)	37.40 (34.60-41.50)	37.90 (35.40-40.70)	37.30 (34.45-40.60)
eGFR, ml/min/1.73m²**	96.51 (79.15-115.60)	110.37 (90.47-136.23)	97.00 (79.02-114.49)	87.13 (67.55-87.13)
Lg NT pro-BNP**	2.95 (2.70-3.21)	2.79 (2.57-3.09)	2.90 (2.56-3.16)	3.13 (2.89-3.47)
FIB-4 score***	2.28 (1.56-3.43)	1.14 (0.93-1.29)	2.17 (1.76-2.59)	4.40 (3.68-5.95)

Stroke severity on admission

GCS	15 (12-15)	15 (12-15)	15 (13-15)	15 (11-15)
NIHSS*	5 (2-13)	4 (2-12)	5 (2-13)	6 (3-15)
NIHSS ≥ 8**	102 (37.6)	19 (32.8)	48 (34.8)	35 (46.7)

Treatment in hospital

Antiplatelet use**	134 (49.4)	34 (58.6)	71 (51.4)	29 (38.7)
Anticoagulant use**	137 (50.6)	24 (41.4)	67 (48.6)	46 (61.3)
Intravenous thrombolysis*	15 (5.5)	5 (8.6)	7 (5.1)	3 (4.0)
Endovascular revascularization*	29 (10.7)	7 (12.0)	16 (11.5)	6 (8.0)

Outcomes at discharge

MRS*	2 (1-5)	2 (1-4)	4 (1-5)	5 (2-5)
MRS ≥ 3***	91 (33.6)	15 (25.9)	39 (28.3)	37 (49.3)
All-cause death*	14 (5.2)	3 (5.2)	5 (3.6)	6 (8.0)
Period of hospitalization, days*	25 (20-37)	22 (20-34)	24.5 (20-37.5)	27.5 (20-42)

Female (N)

| N=251 | N=51 | N=142 | N=58 |

Patient characteristics

| Mean age, y, (SD)** | 73.65 (9.11) | 67.61 (9.51) | 74.59 (8.18) | 76.66 (8.61) |
| Smoker | 3 (1.2) | 0 (0) | 2 (1.4) | 1 (1.7) |

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P < 0.05, ** for P < 0.01, *** for P < 0.001.
Risk stratification	4 (3-4)	3 (2-4)	4 (3-4)	4 (3-4)
CHA2DS2-VASc score	2 (1-2)	1 (1-2)	2 (1-2)	1 (1-2)
HAS-BLED score	63 (25.3)	14 (27.5)	39 (27.5)	10 (17.2)
Diabetes mellitus	179 (71.3)	37 (72.5)	102 (71.8)	40 (69.0)
Hypertension	179 (71.3)	37 (72.5)	102 (71.8)	40 (69.0)
Hyperlipidemia	69 (27.5)	18 (35.3)	35 (24.6)	16 (27.6)
Ischemic heart disease*	19.1 (17.1)	7 (13.7)	25 (17.6)	16 (27.6)
Prior history of Ischemic stroke/TIA	43 (17.1)	10 (19.6)	27 (19.0)	6 (10.3)

Body Mass Index				
Mean, kg/m², (SD)	22.2 (3.52)	22.36 (3.40)	22.37 (3.66)	21.66 (3.29)
Obese≥27.5kg/m²	20 (8.0)	4 (7.8)	13 (9.2)	3 (5.2)

Drug use before admission				
Anticoagulant use	21 (8.4)	7 (13.7)	9 (6.3)	5 (8.6)
Antiplatelet use	82 (32.8)	11 (21.6)	49 (34.8)	22 (37.9)
Lipid-lowering use	47 (18.7)	7 (13.7)	25 (17.6)	15 (25.9)

Admission laboratory data				
Platelet count, x10³ per microliter**	185.00 (147.00-229.00)	233.00 (193.00-285.00)	186.50 (153.00-223.50)	128.00 (102.75-172.50)
INR*	1.08 (1.03-1.17)	1.07 (1.03-1.13)	1.08 (1.02-1.16)	1.13 (1.06-1.21)
AST, units/L**	23.75 (18.00-33.00)	17.00 (15.00-23.00)	22.00 (18.00,29.00)	34.56 (28.65-46.00)
AST >40 units/L**	35 (13.9)	2 (3.9)	12 (8.5)	21 (36.2)
ALT, units/L	18.00 (12.00-26.80)	19.00 (13.00-28.00)	18.00 (11.77-25.25)	17.17 (12.75-26.42)
ALT >40 units/L	30 (12.0)	8 (15.7)	16 (11.3)	6 (10.3)
Albumin, g/dL**	38.60 (35.70-41.50)	39.90 (36.10-42.10)	38.80 (36.07-41.56)	37.35 (34.28-40.00)
eGFR, ml/min/1.73m² **	87.48 (82.03-95.09)	93.78 (87.48-101.24)	86.96 (81.57-94.64)	85.29 (79.27-90.47)

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P<0.05, ** for P<0.01, *** for P<0.001.
Lg NT pro-BNP**	3.05 (2.78-3.35)	2.89 (2.70-3.23)	3.01 (2.73-3.30)	3.25 (2.92-3.52)
FIB-4 score***	2.27 (1.60-3.17)	1.19 (0.94-1.33)	2.24 (1.88-2.63)*	4.60 (3.83-6.26)

Stroke severity on admission

GCS	14 (9-15)	14 (10-15)	14 (10-15)	10 (7-15)**&
NIHSS*	8 (3-15)	7 (2-13)	8 (3-14)	13 (4.75-18)
NIHSS≥8*	125 (49.8)	21 (41.2)	68 (47.9)	36 (62.1)

Treatment in hospital

Antiplatelet use	96 (38.2)	18 (35.3)	55 (38.7)	23 (39.7)
Anticoagulant use	155 (61.8)	33 (64.7)	87 (61.3)	35 (60.3)
Intravenous thrombolysis	18 (7.2)	4 (7.8)	9 (6.3)	4 (6.9)
Endovascular revascularization	42 (16.8)	7 (13.7)	30 (21.2)	5 (8.6)

Outcomes at discharge

mRS**	3 (1-5)	2 (1-5)	3 (1-5)	4.5 (2-5)
mRS≥3**	117 (46.6)	18 (35.3)	61 (43.0)	38 (65.5)
All-cause death	25 (10.0)	6 (12.0)	11 (7.7)	8 (13.8)
Period of hospitalization days*	32 (21-43)	32 (21-35)	24.5 (21-35)	42 (24.75-52)

Data are reported as mean ± SD, median (IQR) or number and percentage. † CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; FIB-4, fibrosis-4 score; TIA, transient ischemic attacks; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; NT-pro BNP, N-terminal Pro-B-type Natriuretic Peptide; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ‡ P-values,* for P<0.05, ** for P<0.01, *** for P<0.001.

Modification Effect of Sex on the Associations Between FIB-4 and Clinical Outcomes of CES Patients Due to NVAF

When classified by sex, multivariate analysis showed when each point increased in FIB-4, male patients had an increased risk of severe stroke (OR=1.21, 95% CI: 1.10-1.32), major disability (OR=1.82, 95% CI: 1.38-2.40) and 90-days mortality (HR=1.44, 95% CI: 1.20-1.72). When FIB-4 was converted to a categorical variable, compared to no advanced fibrosis likely, there was a significant increased contribution of likely advanced fibrosis to severe stroke (OR=3.12, 95% CI: 1.16-7.11), major disability (OR=13.21, 95% CI: 2.44-55.22), and 90-days mortality (HR=1.20, 95% CI: 1.05-1.74); Indeterminate fibrosis associated with 90-days mortality (HR=1.16, 95% CI: 1.08-1.34), but not for severe stroke and major disability (Table 3, 4, 5).

Whereas the relationships between FIB-4 and severe stroke, major disability and 90-days mortality was not significant in the female group, no matter FIB-4 as a continuous or a categorical variable (Table 3, 4, 5).

Discussion

In this study, we found that the higher FIB-4 score was independently associated with more severe strokes on admission, poor outcomes at discharge and a higher 90-days death risk among patients with CES due to NAVF. More importantly, our study also suggests that sex can modify this associations, and the association become stronger in male patients, but not significant in females.

FIB-4 score is a validated non-invasive tool to assess liver fibrosis in HIV and chronic hepatitis C virus co-infection, hepatitis C mono-infection and non-alcoholic fatty liver disease (NAFLD) populations.\(^{12, 13}\) NAFLD is the main cause of most clinically covert liver fibrosis, especially after excluding the influence of alcohol consumption.\(^{23}\) FIB-4 have been validated to have good accuracy in the identification of liver fibrosis in patients with NAFLD.\(^{15}\) To our knowledge, there was no evidence to confirm the associations between subclinical liver disease and CES characteristics due to NVAF and clinical outcomes as well as the sex hybrid effect in previous studies. Liver fibrosis was associated with the risk of cardiovascular disease and mortality in the general population.\(^{24}\) Remarkably, in NAFLD, cardiovascular disease is more commonly responsible for death than liver disease.\(^{8}\) Although several previous studies have concluded that the severe abnormal liver enzyme may be significant risk factor for stroke and worse clinical outcomes of stroke patients with non-liver diseases,\(^{5, 25, 26}\) however they only focused on the effects of nonspecific liver enzyme index on stroke and patients with heavy alcohol consumption were not excluded, or they including all subgroups of stroke patients.\(^{5}\) In contrast, a novel association of severe stroke on admission, major disability at discharge and 90-days death after discharge for the recognized liver fibrosis indictor (FIB-4) was observed in the CES patients with NVAF of our study which of different pathogenesis from others. Moreover, this novel finding revealed that liver fibrosis may represent more severe stroke on admission, worse functional outcomes at discharge and a higher 90-days mortality risk, without obvious clinical manifestations of liver disease, abnormal liver enzyme and confirmed liver disease, which share the same conclusion as those observation-studies that liver fibrosis could occur without special attention of many subjects, and almost 75% of subjects with liver fibrosis had normal liver chemistries levels.\(^{23}\) To sum up, our study presented the evidence that FIB-4 index is independently associated to severe stroke, short-term outcome of CES due to NVAF.

Stroke risk, severity, reaction to endovascular therapy and outcomes could be differ from sex. Mounting studies generally suggested that older females suffered from more severe stroke, worse prognosis, and higher mortality than males.\(^{3, 4, 27, 28}\) We also observed the higher NIHSS score, mRS score and more death in women patients (Table S1). Therefore, when we grouped sex to eliminate the hybrid effect, we found that liver fibrosis became a stronger risk factor for server stroke, major disability and 90-days death in males, but not in females. The results of the present study was not consistent with a previous study, which showed that sex would not affect the association between liver disease and stroke mortality among liver fibrosis population.\(^{29}\) Maybe because the patients they researched almost did not suffer from AF, and the NIHSS score which represent stroke severity of those patients included in their study is lower than of the patients in our study (average NIHSS = 3.7 versus 8).

The possible mechanisms in the association between live fibrosis and poor prognosis of CES patients with NVAF may include metabolic pathways, immune-inflammatory and coagulopathy.\(^{29–31}\) Liver involved in a variable degree in the acute ischemic stroke, and is responsible for the synthesis and metabolism of blood coagulation factors and fibrinolytic enzymes associated with pathophysiology of stroke.\(^{30, 32}\) What's more,
liver also can produced enzymes proportional to the injury size, to response signals from cerebral infarction.\(^{(32)}\) But whether these mechanisms can also apply to explain our findings referring to subclinical liver fibrosis remain uncertain and requires further studies to verify.

Our finding about sex can modify the relationship of liver fibrosis and the short-time outcomes of CES patients with NVAF, which share a different view of Baik's study, which suggested the association between liver fibrosis and cerebral infarction prognosis did not change with gender.\(^{(29)}\) The disagreement might be related to discrepancies in several aspects between these two studies, including different study populations, durations of stroke after onset and timings to assess the outcomes. In Baik's study,\(^{(29)}\) all types of acute stroke were investigated, and the patients they included with younger age, little atrial fibrillation, and milder function outcome at discharge. Moreover, their follow-up time was over 3 years. Several studies concluded that traditional cardiovascular risk factors varies by sex.\(^{(33–35)}\) Women have specific risk factors, including gestational hypertension and pre-eclampsia, gestational diabetes, and placental disorders such as intrauterine growth restriction and stillbirth.\(^{(36–38)}\) It is worth noting that females remain an independent poor prognostic factor for CES due to AF. A prospective cohort study revealed the etiological stroke subtypes independently related to unfavorable outcomes at 90 days were CES in women, but large artery atherosclerosis in men. Their results suggested that AF affect females more than males in short-term outcome of stroke.\(^{(39)}\) So in our study, AF maybe display an important role for the stroke outcomes of females, and liver fibrosis also presented sex difference related to the outcome of CES due to AF, which may be explained for the comorbidity affect patients differently classified by sex\(^{(39)}\) and the sex differences in liver function, disease pathogenesis and metabolic genes for maintaining homeostasis in the liver.\(^{(40)}\) But this hypothesis still need further studies to verify.

This is the first study showed that liver fibrosis is associated with stroke severity, outcomes due to NVAF, and sex can modify those relationships. It also confirmed the high burden of liver fibrosis in CES patients with NVAF.

Strengths of our study also include the aimed population with strict inclusion criteria, the availability of standardized outcome assessments, and the exclusion of patients with overt liver disease.

In our study, almost 90% of subjects with liver fibrosis had normal liver chemistries levels, indicating even through the stroke patients with normal liver enzyme levels also need accept live fibrosis evaluation such as the FIB-4 sore, especially for male patients.

There were several limitations in the present study. First, it shares all the limitation of single-center, observational study, so the generalizability of our results may be limited. To minimize the biases caused by an observational study, our study included consecutive patients admitted during the study period thereby. Second, although our use of liver fibrosis indice-FIB-4 is consistent with other studies\(^{(41, 42)}\) to observe how liver fibrosis affect disease processes, we were unable to determine a causal relationship between liver fibrosis and clinical outcomes of CES patients with NVAF.

Conclusion

Among CES patients with NVAF, FIB-4 was associated with admission stroke severity, major disability at discharge, and 90-days mortality, and this associations was more significant in males but not in females. Our work suggests that new risk assessment and therapeutic targets aimed at liver fibrosis, may benefit those who with poor outcomes of CES patients with NVAF.
Abbreviations

Cardioembolic stroke: CES; Nonvalvular atrial fibrillation: NVAF; Fibrosis-4 score: FIB-4; Atrial fibrillation: AF; Trial of Org 10172 in Acute Stroke Treatment: TOAST; National Institutes of Health Stroke Scale: NIHSS; Glasgow Coma Scale: GCS; modified Rankin Scale: mRS; Body mass index: BMI; Transient ischemic attacks: TIA; N-terminal Pro-B-type Natriuretic Peptide: NT pro-BNP; International normalized ratio: INR; estimated glomerular filtration rate: eGFR; Aspartate aminotransferase: AST; Alanine aminotransferase: ALT; non-alcoholic fatty liver disease: NAFLD

Declarations

Ethics approval and consent to participate

The protocol for the research project has been approved by the Ethics Committee of the First Affiliated Hospital of Xi'an Jiao Tong University (reference number, VL.0 2018-08-11) and that it conforms to the provisions of the Declaration of Helsinki. All participants gave their written consent for participation in the study.

Consent for publication

All participants gave their written consent for publication of the anonymous data.

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the Financial Grant from the key project of research and development plan of the Shaanxi province, China (2019ZDLSF01-01-01).

Author contributions

Lei Yang, design of the study, acquisition, analysis and interpretation of data, writing the manuscript. Ke Gao, analysis and interpretation of data, revising the manuscript. Xin-Ye Yao, analysis of data, revising the manuscript. Wan-Ying Yang: acquisition of data; Xiao-Rui Huang: revising the manuscript. Ya-Jie Gao: revising the manuscript; Xiao-Pu Zheng: design of the study, interpretation and analysis of data, revising the manuscript.

Acknowledgements

None.
1. Collaborators GBDLRoS, Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, et al. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37.

2. Wolf PA, Mitchell JB, Baker CS, Kannel WB, Dagostino RB. Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs. JAMA Internal Medicine. 1998;158(3):229–34.

3. Sheth SA, Lee S, Warach S, Gralla J, Jahan R, Goyal M, et al. Sex Differences in Outcome After Endovascular Stroke Therapy for Acute Ischemic Stroke. Stroke. 2019;50(9):2420–7.

4. Phan HT, Blizzard CL, Reeves MJ, Thrift AG, Cadilhac DA, Sturm J, et al. Sex Differences in Long-Term Quality of Life Among Survivors After Stroke in the INSTRUCT. Stroke. 2019;50(9):2299–306.

5. Parikh NS, Merkler AE, Schneider Y, Navi BB, Kamel H. Discharge Disposition After Stroke in Patients With Liver Disease. Stroke. 2017;48(2):476–8.

6. Wu HY, Lin CS, Yeh CC, Hu CJ, Shih CC, Cheng YG, et al. Cirrhosis patients’ stroke risks and adverse outcomes: Two nationwide studies. Atherosclerosis. 2017;263:29–35.

7. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019;65:37–55.

8. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65(3):589–600.

9. Unalparida A, Ruhl CE. Liver fibrosis scores predict liver disease mortality in the United States population. Hepatology. 2017;66(1):84–95.

10. Parikh N, Kamel H, Navi B, Iadecola C, Merkler A, Jesudian A, et al. Liver Fibrosis Indices and Outcomes After Primary Intracerebral Hemorrhage. Stroke. 2020;51(3):830–7.

11. Kabbany MN, Selvakumar PKC, Watt KD, Lopez R, Akras Z, Zein NN, et al. Prevalence of Nonalcoholic Steatohepatitis-Associated Cirrhosis in the United States: An Analysis of National Health and Nutrition Examination Survey Data. The American Journal of Gastroenterology. 2017;112(4):581–7.

12. Loko M, Castera L, Dabis F, Bail BL, Winnock M, Coureau G, et al. Validation and Comparison of Simple Noninvasive Indexes for Predicting Liver Fibrosis in HIV-HCV-Coinfected Patients: ANRS CO3 Aquitaine Cohort. The American Journal of Gastroenterology. 2008;103(8):1973–80.

13. Mcpherson S, Hardy T, Dufour J, Petta S, Romerogomez M, Allison M, et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. The American Journal of Gastroenterology. 2017;112(5):740–51.

14. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner JSG, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–25.

15. Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology. 2017;66(5):1486–501.

16. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.
17. Jauch E, Saver J, Adams H, Bruno A, Connors J, Demaerschalk B, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

18. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. European heart journal. 2016;37(38):2893–962.

19. Tomita H, Hagii J, Metoki N, Saito S, Shiroto H, Hitomi H, et al. Impact of Sex Difference on Severity and Functional Outcome in Patients with Cardiogenic Stroke. Journal of Stroke Cerebrovascular Diseases. 2015;24(11):2613–8.

20. Reith F, Van den Brande R, Synnot A, Gruen R, Maas A. The reliability of the Glasgow Coma Scale: a systematic review. Intensive care medicine. 2016;42(1):3–15.

21. Wu D, Wu L, Chen J, Huber M, He X, Li S, et al. Primate Version of Modified Rankin Scale for Classifying Dysfunction in Rhesus Monkeys. Stroke. 2020;51(5):1620–3.

22. Kirkpantur A, Balci MM, Turkvatan A, Afsar B. Independent association between serum sclerostin levels and carotid artery atherosclerosis in prevalent haemodialysis patients. Ndt Plus. 2015;8(6):737–43.

23. Caballeria L, Pera G, Arteaga I, Rodriguez L, Aluma A, Morillas RM, et al. High Prevalence of Liver Fibrosis Among European Adults With Unknown Liver Disease: A Population-Based Study. Clin Gastroenterol Hepatol. 2018;16(7):1138.

24. Ostovaneh M, Ambale-Venkatesh B, Fuji T, Bakhshi H, Shah R, Murthy V, et al. Association of Liver Fibrosis With Cardiovascular Diseases in the General Population: The Multi-Ethnic Study of Atherosclerosis (MESA). Circulation Cardiovascular imaging. 2018;11(3):e007241.

25. Tziomalos K, Giampatzis V, Bouziana SD, Spanou M, Papadopoulou M, Pavlidis A, et al. Association between nonalcoholic fatty liver disease and acute ischemic stroke severity and outcome. World J Hepatol. 2013;5(11):621–6.

26. Moshyedi H, Ahrabi R, Mardani A, Sadigetegad S, Farhudi M. Association between non-alcoholic fatty liver disease and ischemic stroke. Iranian Journal of Neurology. 2014;13(3):144–8.

27. Lan D, Jiang C, Du X, He L, Guo X, Zuo S, et al. Female Sex as a Risk Factor for Ischemic Stroke and Systemic Embolism in Chinese Patients With Atrial Fibrillation: A Report From the China-AF Study. Journal of the American Heart Association. 2018;7(19).

28. Marzona I, Proietti M, Farcomeni A, Romiti GF, Romanazzi I, Raparelli V, et al. Sex differences in stroke and major adverse clinical events in patients with atrial fibrillation: A systematic review and meta-analysis of 993,600 patients. Int J Cardiol. 2018;269:182–91.

29. Baik M, Kim SU, Kang S, Park HJ, Nam HS, Heo JH, et al. Liver Fibrosis, Not Steatosis, Associates with Long-Term Outcomes in Ischaemic Stroke Patients. Cerebrovasc Dis. 2019;47:32–9.

30. Ma S, Zhao H, Ji X, Luo Y. Peripheral to central: Organ interactions in stroke pathophysiology. Exp Neurol. 2015;272:41–9.

31. Wolahan SM, Hirt D, Glenn TC. Frontiers in Neuroengineering. Translational Metabolomics of Head Injury. Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification. In: Kobeissy FH, editor Brain Neurotrauma: Molecular, Neuropsychological, and
32. Muscari A, Collini A, Fabbri E, Giovagnoli M, Napoli C, Rossi V, et al. Changes of liver enzymes and bilirubin during ischemic stroke: mechanisms and possible significance. BMC Neurology. 2014;14(1):122-.
33. Branyan T, Sohrabji F. Sex differences in stroke co-morbidities. Exp Neurol. 2020;332:113384.
34. Appelman Y, Van Rijn BB, Haaf MET, Boersma E, Peters SAE. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis. 2015;241(1):211–8.
35. Samai A, Martinschild S. Sex differences in predictors of ischemic stroke: current perspectives. Vascular Health Risk Management. 2015;11:427–36.
36. Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloydjones DM, et al. Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update: A Guideline From the American Heart Association. Circulation. 2011;123(11):1243–62.
37. Rosen SE, Henry S, Bond R, Pearte C, Mieres JH. Sex-Specific Disparities in Risk Factors for Coronary Heart Disease. Curr Atheroscler Rep. 2015;17(8):49.
38. Manson JE, Bassuk SS. Biomarkers of cardiovascular disease risk in women. Metabolism-clinical and Experimental. 2015;64(3).
39. Hung K, Lai JC, Hsu K, Hu C, Chang H, Chen C, et al. Gender Gap and Risk Factors for Poor Stroke Outcomes: A Single Hospital-Based Prospective Cohort Study. Journal of Stroke Cerebrovascular Diseases. 2018;27(8):2250–8.
40. Chikada H, Ida K, Ando E, Inagaki Y, Sakamoto A, Kamiya A. Establishment and analysis of a mouse model that regulates sex-related differences in liver drug metabolism. Lab Invest. 2018;98(11):1.
41. Parikh NS, Kamel H, Navi BB, Iadecola C, Merkler AE, Jesudian A, et al. Liver Fibrosis Indices and Outcomes After Primary Intracerebral Hemorrhage. Stroke. 2020;51(3):830–7.
42. Soarmah K, Lim JK, Re VL, Tate JP, Chang CH, Butt AA, et al. FIB-4 stage of liver fibrosis is associated with incident heart failure with preserved, but not reduced, ejection fraction among people with and without HIV or hepatitis C. Progress in Cardiovascular Diseases. 2020.

Figures
987 consecutive CES patients admitted during a 6-year study period

- 178 admitted more than 48 hours after onset
- 97 other than NVAF
- 31 miss laboratory data
- 30 known overt liver disease
 - 15 alcohol use
 - 42 hepatotoxic medication
- 32 EF < 40%
- 22 known malignancy
- 18 infection on admission

522 NVAF patients admitted within 48 hours after onset

Figure 1
Flowchart of the enrollment and analysis of the study population CES, cardioembolic stroke; NVAF, nonvalvular atrial fibrillation; EF, ejection fraction.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.doc