Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not

Nick Gerrits,* Egidius W. F. Smeets, Stefan Vuckovic, Andrew D. Powell, Katharina Dobhlhoff-Dier, and Geert-Jan Kroes*

ABSTRACT: While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ~7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.

In spite of the above, also many molecule–metal surface systems exist for which SRP-DFs based on GGA exchange DFs do not work because even the most repulsive GGA exchange DFs still obeying the uniform electron gas limit (such as RPBE, a nonempirical functional which describes adsorption on metals with quite high accuracy, but already performs rather poorly at describing solid state properties21,23) are too reactive compared to experiment, even when simulating the effect of energy dissipation to electron–hole pairs and surface phonons.24–29 As a result, the barrier height cannot be “tweaked” to a good value by mixing exchange DFs yielding too high barriers (such as RPBE) and too low barriers (as often the case with PBE or PW91). That is a pity, as a DC transition state (TS) on a metal surface is often the rate-controlling state in industrially important heterogeneously catalyzed processes30–32 like ammonia production33 and steam reforming.34 A further problem is that it is not clear which property of the system determines whether GGA-DFT may yield a reliable barrier height. Reasons to explain the GGA-DFT failure for individual systems have, however, been cited, with an often
example of resorting to hybrid functionals) also works for a prominent barriers are not well-described with GGA functionals (i.e., the solution applicable to the problem that gas-phase reaction corresponding single corresponding criterion stating whether GGA func-
svisorption with chemical accuracy. This allows one to de
whether it should be possible to
surface systems exists on the basis of which one can decide
now show.

Also, a property of the system on the basis of which one could
straightforwardly predict whether GGA-DFT should, at least in
does
DFT to the full range of dissociative chemisorption reactions
for many molecule
metal surface reactions.

The cited reason being that electron transfer occurs from the metal
surface to the molecule.35,36

In this connection, often reference is made to the following
exploration for why GGA-DFT fails at describing gas-phase
reactions: the GGA’s tendency to underestimate gas-phase
barrier heights is caused by the electrons delocalizing over
additional atoms at the TS, artificially lowering the GGA energy of the TS relative to that of the reactants.2,37,38 The
delocalization error finds its origin in what has been called “the
lack of derivative discontinuities of semi-local functionals” or
alternatively the violation of the Perdew−Parr−Levy−Balduz
decision39 by these functionals. According to Yang and co-
workers,40 the delocalization error is similar but not equal to
the self-interaction error (SIE),41 which is also often invoked to
explain the underestimation of gas-phase reaction barrier
highlights. However, the above does not yet explain why GGA-
DFT does work for many molecule−metal surface reactions.

Also, a property of the system on the basis of which one could
straightforwardly predict whether GGA-DFT should, at least in
principle, work is still missing. Fortunately, the “charge transfer” explanation does suggest such a criterion, as we will
now show.

Here, we will show that a single property of molecule−metal
surface systems exists on the basis of which one can decide
whether it should be possible to find a GGA functional with
which one can describe the barrier to dissociative chemisorption with chemical accuracy. This allows one to define a
single corresponding criterion stating whether GGA func-
tionals should be able to deliver chemical accuracy for the
corresponding “easy-to-handle” reactions. We also show that
the solution applicable to the problem that gas-phase reaction
barriers are not well-described with GGA functionals (i.e.,
resorting to hybrid functionals) also works for a prominent
example of “difficult” surface reactions, i.e., that of O2 +
Al(111). Our findings suggest the possibility of extending SRP-
DFT to the full range of dissociative chemisorption reactions
on metals. Such an extension should enable the development of databases for such reactions42 without bias to specific rungs of
fuctionals, similar to databases that already exist for gas-
phase reactions.1,2

Obviously, one would expect the tendency of a system to
display charge transfer to correlate with the difference \(W - \text{Ea}\) between the work function \(W\) of the metal and the
electron affinity \(\text{Ea}\) of the molecule. Systematic evidence is
collected in Figure 1, where we show how the ability to
accurately describe the measured reactivity of molecule−metal
surface systems with DFs containing GGA exchange correlates with \(W - \text{Ea}\). Figure 1 shows that it has been possible to
achieve chemical accuracy in descriptions of sticking experi-
ments with GGA-exchange-based SRP-DFs6,10−12 (in blue) and candidate SRP-DFs6,10−12 (in green) if \(W - \text{Ea}\) exceeds 7 eV. (Candidate SRP-DFs describe a sticking experiment on a specific system with chemical accuracy, but their validity has not (yet) been confirmed through comparison with another
experiment on the same system.) However, for systems with \(W - \text{Ea} < 7\) eV DFs with repulsive RPBE exchange either
overestimate sticking notoriously45,46 (red), or they
show a suspect performance45,46 (orange). In Figure 1 we
also observe a trend that when the difference between \(W\) and
\(\text{Ea}\) decreases, so that one might also expect the amount of
electron transfer to increase, the SRP or GGA DF needs to be
made increasingly repulsive to describe the system’s reactivity
with chemical accuracy. For example, CH4 + Ni(111)47 and
Pt(111)48 are quite well-described with the attractive PBE
functional,48 and this is also true for H2 + Pt(111)49 (here the
PW9144 functional was used, which may be considered
the predecessor to PBE, which was designed to replace it50) and
Ru(0001)51. On the other hand, the SRP DF for H2 +
Cu(111)3 and Cu(100)53 needs to contain about 50% RPBE
exchange, and a good description of N2 + Ru(0001) was
recently obtained with the RPBE DF.10

A caveat with the above comparison between dynamics
based on DFT and experiment is that the difference \(W - \text{Ea}\) has
also been correlated with the extent to which (reactive)
scattering in a system may be affected by energy dissipation
through electron−hole pair excitation.52 Here, the reasoning
could be that (electronically adiabatic) dynamics simulations using repulsive RPBE exchange might overestimate
the DC probability because the dissipation of the molecule’s
incident kinetic energy to electron−hole pairs is not modeled.
However, in this type of analysis evidence for strongly
nonadiabatic molecule−metal surface scattering comes mostly
from experiments on vibrationally inelastic scattering53,54 and
scattering of H atoms from metal surfaces,55 whereas dynamics
calculations only suggested small e
ed effects of electron
−hole pair excitation in some of the hard to model systems in Figure 1, i.e., D2O + Ni(111)54 and HCl + Au(111).56 More definite
evidence that electronically nonadiabatic effects are most likely
not the explanation for the trend observed in Figure 1 comes from a direct comparison between barrier heights obtained with first-principles and RPBE calculations. Barrier heights obtained with diffusion Monte Carlo (DMC) and DFT using the RPBE and PBE DFs are compared for three \(\text{H}_2 + \text{metal} \) surface systems in Table 1. For \(\text{H}_2 + \text{Cu}(111) \) and \(\text{Al}(110) \) the GGA DF (or PW91) with the RPBE DF underestimates the DMC barrier height for \(\text{H}_2 + \text{Mg}(0001) \) \((W - E_a < 7 \text{ eV})\). Note that for \(\text{H}_2 + \text{Cu}(111) \) DMC was shown \(^{36,46} \) to be able to reproduce the best estimate of the barrier height to within 6.7 \(\pm 4.2 \text{ kJ/mol} \). Below we will attempt an explanation of the success of exchange-correlation functionals containing semi-local exchange at describing reaction barrier heights for molecule-metal surface systems with \(W - E_a > 7 \text{ eV} \) and of their failure for systems with \(W - E_a < 7 \text{ eV} \). However, first we will investigate whether and how the problem can be fixed for one of the “difficult” systems described above.

The standard way of dealing with errors in barriers for gas-phase reactions is to ascend the DFT ladder to higher functionals, i.e., to use meta-GGA or hybrid DFs. We will now show that this route can also be successful when dealing with molecule-metal surface reactions. One clear example where DFT tends to overestimate the reactivity is for useful benchmark systems \(^{25,26} \) of activated dissociation of \(\text{O}_2 \) on metal surfaces \(\text{Cu}(111) \) \(^{22,23} \) (see also the Supporting Information), with \(\text{O}_2 + \text{Al}(111) \) being an infamous example. Molecular dynamics (MD) simulations employing GGA DFs predict a nonactivated reaction, \(^{24,43} \) whereas experiments show that the reaction is activated \(^{42,46} \) (see Figure 2a). To date, of the MD simulations that use a GGA DF (or a semiempirical potential energy surface (PES) based on a GGA DF), \(^{24,43,65} \) only calculations that treat the \(\text{O}_2 \)-metal system nonadiabatically have been shown to yield sticking probabilities in semi-quantitative agreement with experiment. On the other hand, electronically adiabiatic simulations that use embedded correlated wave function (ECW) theory for the PES have also yielded quite good agreement with experiment \(^{45} \) (see Figure 2a). The latter results led Carter and co-workers to suggest that modeling electronically nonadiabatic effects should not be necessary for \(\text{O}_2 + \text{Al}(111) \). \(^{36} \) Specifically, electronic structure calculations based not only on ECW theory but also on hybrid DFT yield adiabatic barriers, \(^{36,46,66-71} \) suggesting that an electronically adiabatic approach could well be valid, but that the way the electronic structure is treated is crucial. However, drawbacks of the ECW method are that it is expensive to use and that it is hard to converge the molecule–surface interaction energy with respect to the size of the embedded cluster. \(^{36} \) Consequently, Yin et al.\(^ {63} \) had to base their PES on a limited amount of points, which forced them to adopt a fitting method that is of only medium accuracy (i.e., a flexible periodic London–Eyring–Polanyi–Sato (FPLEPS) function) to represent their ECW data. Additionally, it is not so clear how the ECW method could be used in an SRP approach, whereas this is rather obvious for DFT.

We have investigated the dissociative chemisorption of \(\text{O}_2 \) on a static \(\text{Al}(111) \) surface with the quasi-classical trajectory (QCT) \(^{77} \) method using PESs based on DFs that go beyond the standard GGA. Like Carter and co-workers, we make the static surface approximation and the Born–Oppenheimer approximation, thereby neglecting nonadiabatic effects related to the spin- and charge-states of \(\text{O}_2 \) and to electron–hole pair excitation. For our calculations, we have developed 6D PESs with the meta-GGA MS-RPBEI DF \(^ {74} \) and the screened hybrid HSE03-1/3X DF. \(^ {75,76} \) The MS-RPBEI DF \(^ {74} \) is able to describe both covalent and metallic interactions accurately by relying on a switching function dependent on the kinetic energy density. \(^ {78} \) With this DF the SIE is reduced by ensuring that the exact energy of the free hydrogen atom is reproduced. For the metallic density regime the low-order gradient expansion of the exchange energy of the homogeneous electron gas is reproduced, which ensures a good description of the metal. The HSE03-1/3X DF is based on the HSE03 DF \(^ {75,76} \) with the

![Figure 2](image-url)
only difference being the maximum fraction of exact exchange α, which may be viewed as a semiempirical parameter. Specifically, we use $\alpha = 1/3$ instead of $\alpha = 1/4$, because Cortona and co-workers78,79 have shown that increasing α to 1/3 is also valid according to the standard DFT adiabatic connection75, and that the increase from 1/4 as in PBE0 to 1/3 improves the description of gas-phase reaction barriers.79 More generally, it is known that hybrid functionals with high fractions of exact exchange tend to perform better at describing reaction barrier heights.2 Importantly, the HSE03 DF uses screened exact exchange so that a correct description of the energy threshold in the reaction barrier heights and the anisotropy are lower with the DFs than with PBE0. The DFs yield the MS-RPBEl DF, and the HSE03-1/3X DF. The DFs yield a qualitative improvement over the (R)PBE GGA DF by describing the reaction as activated, but with its low-energy threshold and steep rise with E_i it still overestimates the reactivity considerably. The HSE03-1/3X DF yields considerably better agreement with experiment. The comparison suggests that the minimum barrier height is well-described with the HSE03-1/3X DF, although the slope of the sticking curve is still too steep. In line with the above the latter observation suggests that the anisotropy of the barrier height in θ and ϕ is underestimated and that the energetic corrugation of the barrier height may be too low. The too low anisotropy of the HSE03-1/3X PES also explains why the rotational alignment dependence of the sticking probability is underestimated, even though the calculations qualitatively reproduce the dependence found experimentally (see Figure 2a and Section S2.5 for further discussion).

Table 2 compares several barrier heights and locations (i.e., the distance to the surface Z_{O_2}) obtained with ECW theory,63 the MS-RPBEl DF, and the HSE03-1/3X DF. The DFs yield similar trends as ECW theory, except for the geometries with parallel orientations at the fcc site. Generally, both the barrier heights and the anisotropy are lower with the DFs than with ECW theory, and the discrepancies between MS-RPBEl and ECW theory are greater than between HSE03-1/3X and ECW theory. More specifically, among the barrier heights listed the minimum barriers are 3.4, 11.4, and 18 kJ/mol for the meta-GGA DF, the hybrid GGA DF, and ECW theory, respectively. Furthermore, the difference between the smallest and largest barrier heights listed, which measures how the barrier height varies with impact site (energetic corrugation) and molecular orientation (anisotropy) increases in the same order as 10.9, 17.1, and 46 kJ/mol, respectively. Qualitative predictions regarding the dependence of the sticking (or dissociative chemisorption) probability (S_α) on incidence energy (E_i) can then be made with the hole model.69 This model holds that $S_\alpha(E_i)$ is proportional to the fraction of impact sites and orientations for which E_i exceeds the barrier height. The hole model then predicts that the meta-GGA DF yields the lowest energy threshold in the S_α curve, while the highest threshold should be found for the ECW results, with the HSE03-1/3X threshold being intermediate. Additionally, based on the barrier height variation the model predicts the steepest S_α curve for the meta-GGA DF and the slowest rising curve for the ECW method.

The computed $S_\alpha(E_i)$ curves shown in Figure 2a display the behavior predicted by the hole model on the basis of the barrier heights shown in Table 2. We focus on the overall sticking of O_2 on Al(111) even though this includes contributions from both dissociative chemisorption and abstraction.80 The MS-RPBEl DF yields a qualitative improvement over the (R)PBE GGA DF by describing the reaction as activated, but with its low-energy threshold and steep rise with E_i it still overestimates the reactivity considerably. The HSE03-1/3X DF yields considerably better agreement with experiment. The comparison suggests that the minimum barrier height is well-described with the HSE03-1/3X DF, although the slope of the sticking curve is still too steep. In line with the above the latter observation suggests that the anisotropy of the barrier height in θ and ϕ is underestimated and that the energetic corrugation of the barrier height may be too low. The too low anisotropy of the HSE03-1/3X PES also explains why the rotational alignment dependence of the sticking probability is underestimated, even though the calculations qualitatively reproduce the dependence found experimentally (see Figure 2b and Section S2.5 for further discussion). ECW theory yields the best overall agreement with experiment, especially regarding the slope. However, the reaction threshold appears to be better described with the tested hybrid functional, suggesting that the HSE03-1/3X minimum barrier height is more accurate than the ECW value. We also note that the ECW results are based on an approximately fitted FPLEPS PES whereas our dynamics results are based on PESs accurately interpolating the DFT data with the CRP. Furthermore, the agreement of the ECW results with experiment at low incidence energies may have been improved artificially by simulating the reaction of nonrotating O_2 instead of using the appropriate rotational distribution81 (see Figure S4 and Section S2.4).

The above conclusions are valid provided that the sticking is not much affected by electron–hole pair (ehp) excitation and surface atom motion, the effects of which could lower the energy threshold and the steepness of $S_\alpha(E_i)$. We believe these possible effects to be unimportant for the following reasons: First, experimental results indicate that the surface temperature does not influence S_α.62 Second, according to the local density friction approximation, the probability to excite ehps will be high only if the dynamics sample high electron densities.

Table 2. Barrier Location (Z_{O_2}, Å) and Height (E_i, kJ/mol) of O_2 on Al(111) Obtained from Raw ECW Data63 and the MS-RPBEl and HSE03-1/3X CRP PESs Generated in This Work4

site	orientation	ECW	MS-RPBEl	HSE03-1/3X
fcc	//1	1.9	3.0	2.6
	//2	2.2	3.0	2.7
	//3	2.4	3.0	2.6
	⊥	1.9	3.0	2.8
top	//	2.6	2.8	2.6
	⊥	2.8	3.1	2.8
bridge	//	2.4	2.7	2.5
	⊥	2.7	3.2	2.9

The nomenclature of the different orientations is taken from ref 63. The zero-point energy corrected barriers are provided in the brackets.
However, for O₂ + Al(111), the barrier is early (far away from the surface), so that the electron density sampled by O₂ before it encounters a barrier is low. Third, the location of the barrier far from the surface also suggests small electronic and mechanical couplings with surface atom motion, i.e., the barrier height and location should not vary much with the motion of the nearest surface atom. According to the lattice relaxation sudden model, surface atom motion should then not much affect S₀.

We suggest that the reasonably good description of the minimum barrier obtained with the HSE03-1/3X DF is due to the reduction of the delocalization error (or the SIE) as a fraction of exact exchange energy is included. Furthermore, the HSE03-1/3X DF also qualitatively reproduces experimental alignment and incidence angle-dependent sticking probabilities (see Sections S2.5 and S2.6, respectively). We conclude that the HSE03-1/3X DF already gives a reasonable description of the reaction of O₂ on Al(111), suggesting that an accurate SRP-DF for this system can be developed on the basis of screened hybrid DFs. As further discussed in Section S3.2, we expect that a functional better describing the sticking in O₂ + Al(111) would contain a correlation function approximately describing the van der Waals dispersion interaction, while α should then probably be increased in the hybrid functional.

We now come to a tentative explanation of why semilocal DFT may be quite accurate for barriers to dissociative chemisorption on metals if (W – Eₐ) > 7 eV. One of us along with others has recently suggested a possible reason for this success in terms of the delocalization error of Yang and co-workers. The explanation is necessarily of a hand waving nature, as delocalization errors, like self-interaction errors, are usually hard to quantify for most systems of practical interest. The explanation takes its cue from the explanation of the GGA’s tendency to underestimate gas-phase barrier heights given in the introductory paragraphs of our Letter. The explanation of the GGA’s success in describing molecule–metal surface reactions that may be applied if (W – Eₐ) > 7 eV runs as follows: The electrons coming from the molecule to form new bonds are too delocalized at the TS, and this leads to a delocalization error, but the electrons coming from the metal were already quite delocalized in the metal, and they become more localized at the TS, leading to a localization error. If electron transfer does not occur too easily (i.e., W – Eₐ > 7 eV), then apparently a cancellation of errors occurs, allowing one to tweak the barrier by mixing GGA-exchange-based DFs. Presumably, the cancellation effect disappears once (W – Eₐ) < 7 eV and the electrons coming from the metal start to spill over to the molecule because of charge transfer. The diffuse charge distribution on the negatively charged molecule upsets the balance leading to too much electron delocalization and therefore an underestimation of the TS energy. The explanation finds quantitative support in the high Bader charges found on the molecules in the TSs of the difficult systems (see Table S8 and Section S2.3).

A remaining question concerns the origin of the delocalization error that plagues the accuracy of GGA barrier heights for systems with (W – Eₐ) < 7 eV, which we address here for O₂ + Al(111). There are two possibilities. First, it is possible that the change from reactants to the TS (at which the true electron density will usually be more delocalized) by itself drives the underestimate of the barrier height, i.e., that the error in the barrier height is functional driven. Second, the error may also come about, or be further increased, because semilocal functionals yield self-consistent electron densities at the TS that differ from the true densities to the extent that density driven errors, which may result from over-delocalization, result. The question is relevant: even for stretched H₂+, which is a prototypical case for delocalization error, the error of GGAs is still predominantly functional-driven. In other words, the self-consistent results are not much improved when GGAs are evaluated on the exact density of stretched H₂+. To estimate the RPBE’s density-driven error (DDE) for the barrier height of O₂ + Al(111), we evaluate RPBE on the presumably more accurate HSE03-1/3X DF electron density, i.e., RPBE@HSE03-1/3X. Interestingly, this yields almost the same barrier height as the self-consistent RPBE (see Figure 3).

This shows, at least for the early barrier system investigated here, that the error of RPBE is functional-driven and not density-driven. At the same time, to a good approximation, the HSE03-1/3X@RPBE energy equals the HSE03-1/3X energy in the entrance and barrier region of the O₂ + Al(111) PES (see Figure 3 and Table S6). Our results therefore show that the RPBE error in the barrier height is not due to “spuriously easy charge transfer” as suggested in ref 36 because this should be reflected in the RPBE density to which the HSE03-1/3X is applied in HSE03-1/3X@RPBE. Our result that HSE03-1/3X@RPBE yields similar energies as HSE03-1/3X in the entrance and barrier regions of the O₂ + Al(111) PES suggests that the HSE03-1/3X@RPBE approach might accurately describe the sticking probability for this and other DC on metal systems. This is a potentially useful finding because using the HSE03-1/3X@RPBE approach to compute energies is roughly an order of magnitude less expensive than using the HSE03-1/3X DF, with obvious implications for dynamics studies based on hybrid density functionals. While the DDE has a small contribution to the total RPBE error around the TS, its DDE becomes large when the molecule gets closer to the surface (see Figure 3 and Section S2.2). This finding is consistent with the results of Perdew and co-workers for molecular adsorption of CO on Pt(111), who also find that the DDE of semilocal DFT is large when the molecule is close to the surface.

Figure 3. Potential energy of O₂ + Al(111) as a function of Z, for r = 1.25 Å and the fcc //3 configuration computed self-consistently and nonself-consistently with the RPBE and HSE03-1/3X functionals applied to self-consistent RPBE and HSE03-1/3X electron densities.

https://dx.doi.org/10.1021/acs.jpclett.0c02452
J. Phys. Chem. Lett. 2020, 11, 10552–10560
In conclusion, comparison of experiment and DFT-based theory, and of DMC and RPBE DFT calculations for sticking of molecules on metal surfaces suggests that GGA-DFT starts to fail for molecule–metal surface reaction barriers when $W - E_{\text{opt}} < 7$ eV. Our results obtained for $O_2 + Al(111)$ with the MS-RPBE DF suggest that meta-GGA DFs of the “made simple (MS)” kind can slightly remedy the SIE problem, but not sufficiently for this system. Screened hybrid DFs like HSE03-1/3X, and its much cheaper HSE03-1/3X@RPBE alternative, offer a considerably improved description of $O_2 + Al(111)$ in that they yield sticking probabilities in semiquantitative agreement with experiment, thus offering more promise, as also implied by single-point calculations performed at reaction barrier geometries of two other difficult systems (see Table S7 and Section S2.2). The HSE03-1/3X DF gives a good description of the reaction threshold but still overestimates the slope of the sticking probability curve for $O_2 + Al(111)$. Our results suggest that SRP-DFs can be built on the basis of screened hybrid exchange DFs for DC systems in which ($W - E_{\text{opt}} < 7$ eV), i.e., when electron transfer is facile. Such calculations have the potential to widen the scope of existing databases (now only SBH1022) of barriers for molecule–metal–surface systems. Indeed, it is likely that the choice of systems in this database (SBH10 contains only H$_2$–metal, CH$_4$–metal, and N$_2$–metal systems that are all in the green-blue part of the spectrum made up by Figure 1) has led to systematic bias: The inadvertent choice of systems for which GGA-based exchange works well may actually be responsible for the outcome 22 that the GGA-exchange-based DF performed better than the also tested meta-GGA and hybrid functionals. Even more importantly, the calculations referred to might also increase the range of heterogeneously catalyzed processes that may be simulated reliably based on accurate DFT calculations on the constituent elementary molecule–metal surface reactions.

COMPUTATIONAL METHODS

For the MS-RPBE (HSE03-1/3X) DF a 2 × 2 Al supercell with 4 layers and 15 (10) Å vacuum distance is used. Furthermore, a plane wave kinetic energy cutoff of 600 (400) eV and an 8 × 8 × 1 Γ-centered k-point grid are used. All DFT calculations are performed with the Vienna Ab-initio Simulation Package (VASP version 5.4.4).$^{106–110}$ with a user modification to allow the use of the MS-RPBE DF, using spin polarization when necessary. The core electrons have been represented with the projector augmented wave (PAW) method.110,111 In order to speed up convergence, first-order Methfessel–Paxton smearing112 with a width parameter of 0.2 eV has been employed. Additional information is provided in the Supporting Information.

ASSOCIATED CONTENT

1. **Supporting Information**
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02452.

Description of the DFs used (Section S1.1), the DFT calculations (Section S1.2), how the CRP is applied (Section S1.3), the QCT calculations (Section S1.4), and how work function and electron affinity values are obtained (Section S1.5); discussion of several static DFT calculations (Section S2.1), non-self-consistent DFT calculations (Section S2.2), the correlation between ($W - E_{\text{opt}}$) and charge transfer at the TS (Section S2.3), the dependence of S_0 on the molecular beam conditions (Section S2.4), the alignment of O_2 relative to the surface (Section S2.5), and incidence angle (Section S2.6), on O_2 + metal systems as benchmarks (Section S3.1), and the development of an SRP functional for $O_2 + Al(111)$ (Section S3.2); elbow plot of the MS-RPBE and HSE03-1/3X PESs at its minimum barrier geometry (Figures S1 and S2, respectively); total magnetic moment of the fcc /3 reaction coordinate (Figure S3); S_0 computed for ($v = 0, j = 0$) and for $T_{\text{lab}} = 300$ K, $T_{\text{rot}} = 9$ K (Figure S4), and for its dependence on the angle of incidence (Figure S5); work function and electron affinity values (Tables S1 and S2, respectively); effect of varying the screening length parameter and exact exchange fraction (Table S3); vibrational energies (Tables S4 and S5); HSE03-1/3X@RPBE(-vdW-DF1) barrier heights (Tables S6 and S7); excess charge at the TS for several molecule–metal surface systems (Table S8) (PDF)

Software to obtain energies and forces from the MS-RPBE and HSE03-1/3X PESs developed here (ZIP)

AUTHOR INFORMATION

Corresponding Authors

Nick Gerrits — Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands; orcid.org/0000-0001-5405-7860; Email: n.gerrits@lic.leidenuniv.nl

Geert-Jan Kroes — Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands; orcid.org/0000-0002-4913-4689; Email: g.j.kroes@chem.leidenuniv.nl

Authors

Egidius W. F. Smeets — Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands; orcid.org/0000-0003-0111-087X

Stefan Vuckovic — Department of Chemistry, University of California, Irvine, California 92697, United States

Andrew D. Powell — Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands

Katharina Dobhoff-Dier — Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands; orcid.org/0000-0002-5981-9438

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpclett.0c02452

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been financially supported through a NWO/CW TOP Grant (No. 715.017.001). Furthermore, this work was carried out on the Dutch national supercomputer with the support of NWO-EW. We thank Jörg Meyer for useful discussions.

REFERENCES

1. Peverati, R; Truhlar, D. G. Quest for a Universal Density Functional: The Accuracy of Density Functionals across a Broad
(20) Moiraghi, R.; Lozano, A.; Peterson, E.; Utz, A.; Dong, W.; Busnengo, H. F. Nonthermalized Precursor-Mediated Dissociative Chemisorption at High Catalysis Temperatures. J. Phys. Chem. Lett. 2020, 11, 2211–2218.

(21) Wellendorff, J.; Lundgaard, K. T.; Mogelhøj, A.; Petzold, V.; Landis, D. D.; Norskov, J. K.; Bilgaard, T.; Jacobsen, K. W. Density Functionals for Surface Science: Exchange-Correlation Model Development with Bayesian Error Estimation. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 235149.

(22) Mallikarjun Sharada, S.; Bilgaard, T.; Luntz, A. C.; Kroes, G.; J.; Norskov, J. K. SBH10: A Benchmark Database of Barrier Heights on Transition Metal Surfaces. J. Phys. Chem. C 2017, 121, 19807–19815.

(23) Schimka, L.; Harl, J.; Stroppa, A.; Grünies, A.; Marsman, M.; Mittendorfer, F.; Kresse, G. Accurate Surface and Adsorption Energies from Many-Body Perturbation Theory. Nat. Mater. 2010, 9, 741–744.

(24) Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M. Dissociation of O2 at Al(111): The Role of Spin Selection Rules. Phys. Rev. Lett. 2005, 94, 036104.

(25) Füchsel, G.; del Cueto, M.; Diaz, C.; Kroes, G.-J. Enigmatic HCl + Au(111) Reaction: A Puzzle for Theory and Experiment. J. Phys. Chem. C 2016, 120, 25760–25779.

(26) Ramos, M.; Diaz, C.; Martinez, A. E.; Busnengo, H. F.; Martin, F. Dissociative and Non-Dissociative Adsorption of O2 on Cu(111) and Cu3ML/Ru(0001) Surfaces: Adiabaticity Takes Over. Phys. Chem. Chem. Phys. 2017, 19, 10217–10221.

(27) Hu, X.; Yang, M.; Xie, D.; Guo, H. Vibrational Enhancement in the Dynamics of Ammonia Dissociative Chemisorption on Ru(0001). J. Phys. Chem. B 2018, 149, 044703.

(28) Füchsel, G.; Zhou, X.; Jiang, B.; Juaristi, J. I.; Alducin, M.; Guo, H.; Kroes, G.-J. Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2019, 123, 2287–2299.

(29) Gerrits, N.; Kroes, G.-J. Curious Mechanism of the Dissociative Chemisorption of Ammonia on Ru(0001). J. Phys. Chem. C 2019, 123, 28291–28300.

(30) Ertl, G. Elementary Steps in Heterogeneous Catalysis. Angew. Chem., Int. Ed. Engl. 1990, 29, 1219–1227.

(31) Sabbe, M. K.; Reyniers, M.-F.; Reuter, K. First-Principles Kinetic Modeling in Heterogeneous Catalysis: An Industrial Perspective on Best-Practice, Gaps and Needs. Catal. Sci. Technol. 2012, 2, 2010–2024.

(32) Wolcott, C. A.; Medford, A. J.; Studt, F.; Campbell, C. T. Degree of Rate Control Approach to Computational Catalyst Screening. J. Catal. 2015, 330, 197–207.

(33) Ertl, G. Primary Steps in Catalytic Synthesis of Ammonia. J. Vac. Sci. Technol., A 1983, 1, 1247–1253.

(34) Rostrup-Nielsen, J. R.; Sehested, J.; Norskov, J. K. Adv. Catal.; Academic Press, 2002; Vol. 47; pp 65–139.

(35) Perdew, J. P.; Ruzsinszky, A.; Constantin, L. A.; Sun, J.; Csonka, G. I. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. J. Chem. Theory Comput. 2009, 5, 902–908.

(36) Libisch, F.; Huang, C.; Liao, P.; Pavone, M.; Carter, E. A. Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection. Phys. Rev. Lett. 2012, 109, 198303.

(37) Zhang, Y.; Yang, W. A Challenge for Density Functionals: Self-Interaction Error Increases for Systems with a Noninteger Number of Electrons. J. Phys. Chem. 1998, 109, 2604–2608.

(38) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Insights into Current Limitations of Density Functional Theory. Science 2008, 321, 792–794.

(39) Perdew, J. P.; Parr, R. G.; Levy, M.; Baldzú, J. L. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett. 1982, 49, 1691–1694.

(40) Li, C.; Zheng, X.; Su, N. Q.; Yang, W. Localized Orbital Scaling Correction for Systematic Elimination of Delocalization Error in Density Functional Approximations. Natl. Sci. Rev. 2018, 5, 203–215.
(82) Molotved, K. A.; Kepp, K. P. The Metal Hydride Problem of
Computational Chemistry: Origins and Consequences. J. Phys. Chem. A 2019, 123, 2888–2900.
(83) Zhao, Q.; Kulik, H. J. Stable Surfaces That Bind Too Tightly:
Can Range-Separated Hybrids or DFT+U Improve Paradoxical
Descriptions of Surface Chemistry? J. Phys. Chem. Lett. 2019, 10, 5090–5098.
(84) Laikov, D. N. Simple Exchange Hole Models for Long-Range-
Corrected Density Functionals. J. Chem. Phys. 2019, 151, 094106.
(85) Jana, S.; Patra, A.; Constantin, L. A.; Samal, P. Screened Range-
Separated Hybrid by Balancing the Compact and Slowly Varying
Density Regimes: Satisfaction of Local Density Linear Response. J. Chem. Phys. 2020, 152, 044111.
(86) Busnengo, H. F.; Salin, A.; Dong, W. Representation of the 6D
Potential Energy Surface for a Diatomic Molecule near a Solid
Surface. J. Chem. Phys. 2000, 112, 7641–7651.
(87) Olsen, R. A.; Busnengo, H. F.; Salin, A.; Somers, M. F.; Kroes,
G. J.; Baerends, E. J. Constructing Accurate Potential Energy Surfaces for
a Diatomic Molecule Interacting with a Solid Surface: H₂+Pt(111) and
H₂+Cu(100). J. Chem. Phys. 2002, 116, 3841–3855.
(88) Porter, R. N.; Raff, L. M. In Dynamics of Molecular Collisions:
Part B; Miller, W. H., Ed.; Modern Theoretical Chemistry; Springer
US: Boston, MA, 1976; pp 1–52.
(89) Karikorpi, M.; Holloway, S.; Henriksen, N.; Nørskov, J. K. Dynamics of Molecule-Surface Interactions. Surf. Sci. 1987, 179,
L41–L48.
(90) Binetti, M.; Weiße, O.; Hasselbrink, E.; Katz, G.; Kosloff, R.;
Zeiri, Y. The Role of Nonadiabatic Pathways and Molecular Rotations in the Oxygen Abstraction Reaction on the Al(111) Surface. Chem.
Phys. Lett. 2003, 373, 366–371.
(91) Tiwari, A. K.; Nave, S.; Jackson, B. The Temperature Dependence of Methane Dissociation on Ni(111) and Pt(111):
Mixed Quantum-Classical Studies of the Lattice Response. J. Chem.
Phys. 2010, 132, 134702.
(92) Tiwari, A. K.; Nave, S.; Jackson, B. Methane Dissociation on
Ni(111): A New Understanding of the Lattice Effect. Phys. Rev. Lett.
2009, 103, 253201.
(93) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Many-Electron Self-
Interaction Error in Approximate Density Functionals. J. Chem. Phys.
2006, 125, 201102.
(94) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Localization and
Delocalization Errors in Density Functional Theory and Implications for band-Gap Prediction. Phys. Rev. Lett. 2008, 100, 146401.
(95) Bao, J. L.; Gagliardi, L.; Truhlar, D. G. Self-Interaction Error in
Density Functional Theory: An Appraisal. J. Phys. Chem. Lett. 2018, 9,
2353–2358.
(96) Bartlett, R. J. Adventures in DFT by a Wavefunction Theorist.
J. Chem. Phys. 2019, 151, 160901.
(97) Berland, K.; Jiao, Y.; Lee, J.-H.; Rangel, T.; Neaton, J. B.;
Hyløgaard, P. Assessment of Two Hybrid van der Waals Density
Functionals for Covalent and Non-Covalent Binding of Molecules. J.
Chem. Phys. 2017, 146, 234106.
(98) Jiao, Y.; Schröder, E.; Hyløgaard, P. Extent of Fock-Exchange
Mixing for a Hybrid van Der Waals Density Functional? J. Chem. Phys.
2018, 148, 194115.
(99) Marom, N.; Tkatchenko, A.; Rossi, M.; Gobre, V. V.; Hod, O.;
Schelling, M.; Kronik, L. Dispersion Interactions with Density-
Functional Theory: Benchmarking Semiempirical and Interatomic
Pairwise Corrected Density Functionals. J. Chem. Theory Comput.
2011, 7, 3944–3951.
(100) Lonsdale, D. R.; Goerigk, L. The One-Electron Self-
Interaction Error in 74 Density Functional Approximations: A Case
Study on Hydrogenic Mono- and Dinuclear Systems. Phys. Chem.
Chem. Phys. 2020, 22, 15805–15830.
(101) Kim, M.-C.; Sim, E.; Burke, K. Understanding and Reducing
Errors in Density Functional Calculations. Phys. Rev. Lett. 2013, 111,
073003.