Bakker, EA, van Bakel, BMA, Aengevaeren, WRM, Meindersma, EP, Snoek, JA, Waskowsky, WM, van Kuijk, AA, Jacobs, MMLM, Hopman, MTE, Thijssen, DHJ and Eijsvogels, TMH

Sedentary behaviour in cardiovascular disease patients: Risk group identification and the impact of cardiac rehabilitation.

http://researchonline.ljmu.ac.uk/id/eprint/14366/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Bakker, EA, van Bakel, BMA, Aengevaeren, WRM, Meindersma, EP, Snoek, JA, Waskowsky, WM, van Kuijk, AA, Jacobs, MMLM, Hopman, MTE, Thijssen, DHJ and Eijsvogels, TMH (2020) Sedentary behaviour in cardiovascular disease patients: Risk group identification and the impact of cardiac rehabilitation.

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Sedentary behaviour in cardiovascular disease patients: Risk group identification and the impact of cardiac rehabilitation

Esmée A. Bakker a,b,1, Bram M.A. van Bakel a,1, Wim R.M. Aengevaeren c,2, Esther P. Meindersma d,e,2, Johan A. Snoek e,2, Willem M. Waskowsky e,2, Annette A. van Kuijk f,2, Monique M.L.M. Jacobs g,2, Maria T.E. Hopman a,2, Dick H.J. Thijsse a,b,1, Thijs M.H. Eijsvogels a,⁎

a Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
b Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, UK
c Department of Cardiology, Rijnstate Hospital, The Netherlands
d Radboud Institute for Health Sciences, Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
e Heart Centre, Isala, Zwolle, The Netherlands
f Tolbrug Rehabilitation Centre, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
g Department of Cardiology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands

⁎ Corresponding author at: Dept. of Physiology (392), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
E-mail address: Thijs.Eijsvogels@radboudumc.nl (T.M.H. Eijsvogels).

1 This author takes responsibility for the participant recruitment, interpretation of the data, and critical revision of the manuscript.

ABSTRACT

Background: Sedentary behaviour (SB) is potentially an important target to improve cardiovascular health. This study 1) compared SB between cardiovascular disease (CVD) patients and age-matched controls, 2) identified characteristics associated with high SB levels, and 3) determined the impact of contemporary cardiac rehabilitation (CR) on SB.

Methods: For objective 1, we recruited 131 CVD patients and 117 controls. All participants were asked about their general characteristics and medical history. SB was assessed by an objective accelerometer (activPAL3 micro). For objective 2, 2,584 CVD patients were asked to fill in a questionnaire about their general characteristics, lifestyle, medical history and their SB. For objective 3, 113 CVD patients were followed over time and measured, pre-, directly post- and 2 months post-CR.

Results: Objective 1. CVD patients spent 10.4 h/day (Q25 9.5; Q75 11.2) sedentary which was higher compared to healthy controls (9.4 h/day [Q25 8.4; Q75 10.29]). Objective 2. CVD patients being male, single or divorced, employed, physically inactive, reporting high alcohol consumption, living in an urban environment, having comorbidities and cardiac anxiety demonstrated a greater odds for large amounts of SB. Objective 3. The CR program significantly reduced sedentary time (−0.4 h/day [95%CI −0.7; −0.1]), which remained lower at 2-months post-CR (−0.3 h/day [95%CI −0.6; −0.03]).

Conclusions: CVD patients had greater amounts of objectively measured sedentary time compared to healthy controls. Sedentarism was associated with personal- and lifestyle characteristics, and comorbidities. Participation in a contemporary CR program slightly reduced sedentary time, but tailored interventions are needed to target SB in CVD patients.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A physically inactive lifestyle is increasingly common in the Western world [1] and is characterized by low levels of moderate-to-vigorous intensity physical activity (MVPA) and high levels of sedentary behaviour (SB; i.e. sitting, lying) [2]. Both low MVPA [3,4] and high SB [5–8] have been independently associated with an increased risk for cardiovascular morbidity and mortality. According to large meta-analyses [5–7] including >1,000,000 individuals, the detrimental health effects of an inactive lifestyle are largest for individuals with a combination of low MVPA and high SB.

Cardiovascular disease (CVD) patients typically report low MVPA levels [9], which increases the risk for disease progression and mortality [10–12]. Exercise training is the cornerstone in cardiac rehabilitation (CR) [13,14], but CR-induced increase in MVPA is often temporarily and most patients return to an inactive lifestyle within months [15]. Information about SB in patients with CVD is scarce. A recent study found
high SB levels (9.7 ± 2.0 h/day) among acute coronary syndrome patients at 28 days post-discharge [16]. It is unknown how these SB characteristics differ from age-matched healthy controls, and which patient- and disease-characteristics are associated with high SB levels. Such information is necessary to develop and implement SB interventions for vulnerable patients with CVD. Moreover, CR-induced SB changes should be evaluated to determine the magnitude and sustainability of potential improvements in SB.

We aimed to 1) compare SB between patients with CVD and age-matched controls (objective 1), 2) identify patient- and disease characteristics associated with high SB levels, and 3) determine the impact of CR on SB. We hypothesize that patients with CVD are more sedentary compared to controls. In addition, subject-, lifestyle- and health-related characteristics relate to high SB levels, and SB will not change after CR. Outcomes from this study can be used to identify high-risk patients with CVD and to optimize associated secondary prevention strategies.

2. Methods

2.1. Study population

To compare SB characteristics between patients with CVD and age-matched controls (objective 1), we recruited 131 patients with CVD from two different hospitals; Radboud University Medical Center (Nijmegen, the Netherlands) and Rijnstate Hospital (Arnhem, the Netherlands). Age-matched controls without a history of CVD or CVD(Nijmegen, the Netherlands) and Rijnstate Hospital (Arnhem, the Netherlands) and living environment. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Health-related information contained self-reported CVD diagnosis, CVD treatment, use, comorbidities, pain and limitations of physical movement in daily life circumstances, and cardiac anxiety [24,25]. Cardiac anxiety was assessed with a validated questionnaire and contained heart-focused anxiety, which is the fear of cardiac-related stimuli and sensations because of their perceived negative consequences [24]. Lifestyle factors were the average number of sleeping hours per night, smoking status, alcohol consumption and motives for PA (i.e. doctor's advice, fitness, weight reduction, habit, health, pleasure, and stress reduction) using a 5-point Likert scale. Heavy alcohol drinking was defined as >14 alcoholic drinks per week for men and > 7 for women [26]. Personality was determined on the big-five personality domains (i.e. extraverted, agreeable and warm, conscientious, emotionally stable, and open to new experiences) using the ten-item personality inventory (TIPI) [27]. Finally, patients were asked about their living environment (i.e. urban, transition or rural area) and their satisfaction about possibilities walking and cycling in the neighbourhood using a 5-point Likert scale.

Sedentary time was assessed in nine different settings using the Sedentary Behaviour Questionnaire [28,29]. The nine items were completed for weekdays and weekend days separately, and stratified into three domains; occupation, transportation and leisure time. Leisure time activities included domestic activities. The average amount of sedentary time per day was calculated by multiplying weekdays estimates by 5 and weekend days estimates by 2 and dividing this by 7. Since there are no evidence-based cut-off values for high levels of sedentary time, we dichotomized sedentary time based on the median value (8 h/day).

High levels of sedentary time during transportation, occupation and leisure time sitting were on the 75% percentile (i.e. 1 h/day, 3.5 h/day, and 8 h/day, respectively). PA volumes were determined for different domains (i.e. occupation, transportation, leisure and household) using the Short Questionnaire to Assess Health enhancing physical activity (SQUASH) questionnaire [30]. Weekly PA was converted into METs using the Adult Compendium of Physical Activities [31]. For each activity, the appropriate MET-score was selected (i.e. walking at 5.6 km/h [or 3.5 mph] = 4.3 METs or cycling at moderate effort = 8.0 METs) and multiplied by the number of minutes per week spent on the specific activity. The sum of all activities determined the total METs-minutes per week. These MET-minutes per week values were classified into four quartiles.

2.2. Objective 1: patients with CVD versus healthy controls

Patients and controls were asked to fill in a questionnaire about their general characteristics consisting of age, sex, education level, marital status and employment status. In patients with CVD, characteristics such as weight, height, smoking status, alcohol consumption, index diagnosis, medical treatment, comorbidities, and medication use were retrieved from the electronic patient files. In age-matched controls, characteristics such as weight, height, smoking status, alcohol consumption, comorbidities, and medication use were assessed at the research facility.

SB and PA characteristics (i.e. sedentary, standing and stepping time, and Metabolic Equivalent of Task [MET] values) were measured using the activPAL3 micro (PAL Technologies Ltd., Glasgow, UK). The waterproofed device was attached by trained staff on the midline, one third of the way down on the right thigh using a breathable hypoallergenic dressing. Participants were asked to wear the monitor 24-h/day over an 8-day period. Participants were asked to complete a diary with wake and sleep times. The monitors were initialized and downloaded using the activPAL software 7.2.38 (PAL Technologies Ltd., Glasgow, UK). The raw data was analysed by a modified version of the script of Winkler et al. [19] using the sleep/wake diaries. Sedentary time was defined as any waking behaviour characterised by an energy expenditure ≤1.5 MET [20] while in a seated, reclined or lying posture [21,22]. Light intensity physical activity (LIPA) was defined as stepping time with MET-values <3. Moderate-to-vigorous physical activity (MVPA) was defined as stepping time with MET-values ≥3 [23]. The accumulation of sedentary time was defined as short (<5 consecutive minutes), medium (5–29 consecutive minutes) and prolonged (≥30 consecutive minutes) sedentary bouts.

2.3. Objective 2: characteristics associated with high SB levels

Patients with CVD who participated in CR in the past 3 years were invited to complete a questionnaire. Patients who dropped out of CR were included in the analyses. The questionnaire inquired about age, sex, weight, height, marital status, education level, employment status, income, health, lifestyle factors, CR program characteristics, personality and living environment. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Health-related information contained self-reported CVD diagnosis, CVD treatment, medication use, comorbidities, pain and limitations of physical movements in daily life circumstances, and cardiac anxiety [24,25]. Cardiovascular disease was assessed with a validated questionnaire and contained heart-focused anxiety, which is the fear of cardiac-related stimuli and sensations because of their perceived negative consequences [24]. Lifestyle factors were the average number of sleeping hours per night, smoking status, alcohol consumption and motives for PA (i.e. doctor's advice, fitness, weight reduction, habit, health, pleasure, and stress reduction) using a 5-point Likert scale. Heavy alcohol drinking was defined as >14 alcoholic drinks per week for men and > 7 for women [26]. Personality was determined on the big-five personality domains (i.e. extraverted, agreeable and warm, conscientious, emotionally stable, and open to new experiences) using the ten-item personality inventory (TIPI) [27]. Finally, patients were asked about their living environment (i.e. urban, transition or rural area) and their satisfaction about possibilities walking and cycling in the neighbourhood using a 5-point Likert scale.
2.4. Objective 3: impact of CR on SB characteristics

Patients with CVD enrolled in Objective 1 were followed over time to determine the impact of CR on SB characteristics and to assess whether potential changes were sustainable. The CR program contained a 6-week exercise program of two exercise sessions of 1 h per week optionally combined with 3 additional modules focussing on mental health and stress relief, social health and cardiovascular risk management. All patients followed the exercise program, but participation in the additional modules was based on individual needs and preferences. SB and PA data were collected at baseline (objective 1), directly after and 2 months after the CR program, resulting in a longitudinal database with 3 distinct measurement periods: pre-CR, post-CR and 2 months post-CR.

2.5. Statistical analyses

Baseline characteristics were summarized as mean for normally distributed continuous variables, as median (Q25 - Q75) for not normally distributed continuous variables and as number (%) for categorical variables.

2.5.1. Objective 1

Differences in baseline characteristics between patients with CVD and age-matched controls were tested using a Student’s t-test for normally distributed continuous variables, a Mann-Whitney U test for not normally distributed continuous variables, and a Chi-squared test for categorical variables. Differences in activity patterns (i.e. SB characteristics, MVPA, LIPA, and sleep time) were tested using a Mann-Whitney U test. To correct for potential confounding factors (i.e. age, sex, BMI, education level, employment status, smoking status and season), a multivariate linear regression model was used to examine the difference in sitting time and prolonged sitting bouts between patients with CVD and age-matched controls.

2.5.2. Objective 2

Univariate associations with age, sex, weight, height, marital status, education level, employment status, income, health, lifestyle factors, CR program characteristics, personality and living environment were determined using logistic regression analysis for total sedentary time and each domain of sedentary time. Variables with a P-value < 0.10 were included in the multivariate logistic regression model. Backward selection was used to finalize the multivariate logistic regression model.

2.5.3. Objective 3

Changes in activity patterns before and after CR were analysed with mixed model analyses using random intercepts. Time was described as categorical variables for pre-CR, post-CR and 2 months post-CR. In addition, multivariate mixed model analysis was performed to adjust for potential confounding factors (i.e. age, sex, BMI, education level, employment status, and disease characteristics).

All statistical tests were 2-sided, and significance was set at P < 0.05. All analyses were performed with R version 3.5.2 using packages ‘Ime4’ [32] and ‘ImeRTest’ [33].

3. Results

3.1. Patients with CVD versus healthy controls

In total, 131 patients with CVD and 117 individuals without a history of CVD or CVD risk factors were recruited (Supplemental Fig. 1). Median age of the patients with CVD was 63 years (Q25 56; Q75 69) and did not differ from controls (60 years [Q25 54; Q75 67]). Patients were more frequently male (75% vs 62%), had overweight or were obese (71% vs 44%), had a lower education level (18% vs 6%) and were more often unemployed (71% vs 38%) compared to controls (Table 1). Patients with CVD spent 10.4 h/day (Q25 9.5; Q75 11.2) sedentary, performed LIPA for 3.8 h/day (Q25 3.0; Q75 4.7), MVPA for 0.9 h/day (Q25 0.7; Q75 1.1) and slept for 8.9 h/day (Q25 8.2; Q75 9.6) (Fig. 1 and Supplemental Table 1). Healthy controls were less sedentary (9.4 h/day), more active (LIPA: 4.9 h/day, MVPA: 1.3 h/day, and slept less (8.3 h/day) compared to patients with CVD (Fig. 1 and Supplemental Table 1). After adjustment for potential confounders (i.e. age, sex, BMI, education level, employment status, smoking status and season), sedentary time remained higher in
patients with CVD compared to controls (+1.1 h/day; 95% CI: 0.6; 1.6, \( P < 0.001 \)). Interestingly, patients with CVD had fewer short sedentary bouts (−4.2 bouts/day; 95% CI: −7.8; −0.5, \( P = 0.02 \)), but more prolonged sedentary bouts (+1.0 bouts/day; 95% CI: 0.5; 1.6, \( P < 0.001 \)) compared to controls (Supplemental Fig. 2). Finally, patients with CVD were less physically active at light and at a moderate-to-vigorous intensity compared to controls (LIPA −1.3 h/day [95% CI −1.8; −0.8] and MVPA −0.4 h/day [95% CI −0.6; −0.3]).

3.2. Characteristics associated with high SB levels

2923 Patients with CVD completed our questionnaire. After exclusion for duplicates (\( n = 96 \)), individuals without CVD (\( n = 16 \)), individuals not eligible for CR (\( n = 67 \)) and invalid questionnaires (\( n = 160 \)), 2584 patients with CVD were included for data analyses (Supplemental Fig. 3). Patients with CVD were 64 (SD 10) years of age and were more frequently male (72%), overweight or obese (69%), and unemployed (60%) (Table 2). Sedentary time was most prevalent during leisure time activities (Supplemental Fig. 4), such as watching TV and movies, eating and drinking and using the computer. Based on the multivariate logistic regression model, patients with CVD being male, single or divorced, employed, physically inactive, reporting high alcohol consumption, and living in an urban environment demonstrated a greater odds for high sedentary time (Fig. 2). Weight reduction as motive for PA was associated with lower sedentary time. Furthermore, the presence of comorbidities such as type 2 diabetes, hypercholesterolemia and rheumatoid arthritis and cardiac anxiety also were associated with high SB levels, but not the type of CVD diagnosis. Correlates for high levels of domain-specific SB were roughly comparable with total SB, but some general characteristics, comorbidities and lifestyle factors differed in magnitude and direction (Supplemental Figs. 5, 6 and 7).

3.3. Impact of CR on SB characteristics

Among the 131 patients measured at pre-CR, a total of 17 patients were lost to follow-up and 8 patients had a measurement failure (i.e. technical problems with device, early detachment, device lost in mail) during the post-CR measurements (Supplemental Fig. 1). Patients with CVD spend significantly less time sedentary following CR (−0.4 h/day [95% CI −0.7; −0.1], \( P = 0.005 \)), which remained lower at 2-months post-CR (−0.3 h/day [95% CI −0.6; −0.03], \( P = 0.03 \)) (Fig. 1B). Changes in sedentary time were independent of potential
Table 2
Characteristics of cardiovascular disease patients who completed a questionnaire about general, lifestyle and disease-related characteristics (n = 2584).

| Patient characteristics | N  = 2584 |
|-------------------------|-----------|
| Sex (female)            | 722 (28%) |
| Age                     | 64 (10)   |
| Body mass index         |           |
| Normal                  | 794 (31%) |
| Overweight              | 1231 (48%)|
| Obesity                 | 553 (22%) |
| Marital status          |           |
| Unmarried               | 345 (17%) |
| Married                 | 1958 (76%)|
| Widow(er)               | 125 (5%)  |
| Living together         | 145 (6%)  |
| Education level         |           |
| Low                     | 435 (17%) |
| Middle                  | 1206 (47%)|
| High                    | 934 (36%) |
| Current work status     |           |
| Employed                | 1025 (40%)|
| Unemployed              | 60%       |
| Health problems         | 197 (8%)  |
| Retired                 | 1143 (45%)|
| Other                   | 1535 (6%) |
| Income                  |           |
| ≤1000 euro              | 78 (3%)   |
| 1000–1500 euro          | 252 (10%) |
| 1500–2500 euro          | 872 (35%) |
| ≥2500 euro              | 1265 (51%)|
| Cardiovascular disease  |           |
| Acute coronary syndrome | 1380 (53%)|
| Angina pectoris         | 707 (27%) |
| Congenital heart defect | 25 (1%)   |
| Heart failure           | 343 (13%) |
| Heart rhythm disorder   | 537 (21%) |
| Heart valve disease     | 332 (13%) |
| Other cardiovascular diseases | 151 (6%) |
| Medication use          |           |
| ACE-inhibitor/ACE-inhibitor receptor blockers | 1617 (59%) |
| Antiarrhythmic          | 201 (7%)  |
| Anti-coagulants         | 561 (20%) |
| Beta-blocker            | 1670 (61%)|
| Calcium-antagonists/nitrates/dihydropyridines | 710 (26%) |
| Cholesterol lowering medication | 2013 (73%) |
| Antidiabetic agents and insulin therapy | 300 (11%) |
| Diuretics               | 618 (23%) |
| Platelet aggregation inhibitors | 1952 (71%) |
| Treatment               |           |
| CABG                    | 673 (26%) |
| Electrode/ablation/mini-maze procedure | 209 (8%) |
| Heart valve replacement  | 331 (13%) |
| Medication only         | 312 (12%) |
| Pacemaker or ICD implantation | 255 (10%) |
| PCI                     | 1499 (58%)|
| Other cardiovascular surgery | 14 (1%)  |
| Comorbidities           |           |
| Asthma/bronchitis/COPD  | 304 (12%) |
| Arthritis               | 315 (12%) |
| Cancer                  | 239 (9%)  |
| Depression              | 189 (7%)  |
| Diabetes mellitus       |           |
| Type 1                  | 28 (1%)   |
| Type 2                  | 326 (13%) |
| Hypercholesterolemia    | 896 (35%) |
| Hypertension            | 1043 (40%)|
| Osteoporosis            | 86 (3%)   |
| Rheumatoid arthritis    | 99 (4%)   |
| Thyroid disorder        | 128 (5%)  |
| Transient ischemic attack or stroke | 143 (6%)  |
| Lifestyle               |           |
| Sleeping (hrs/day)      | 7.4 (1.2) |
| Smoking status          |           |
| No, never smoked        | 784 (30%) |
| No, but in the past     | 1617 (63%)|
| Yes, I currently smoke  | 173 (7%)  |
| Packyears               | 2143 [0.00, 64.29] |
| High alcohol consumption | 253 (10%) |

Table 2 (continued)

| Patient characteristics | N = 2584 |
|-------------------------|---------|
| Physical activity       |         |
| Days/week 30 min physically active | 5.00 [4.00, 7.00] |
| MET-minutes per week    | 3447 [1680, 6165] |
| MET-minutes per week, leisure | 2591 [1200, 4854] |
| MET-minutes per week, non-leisure | 0 [0, 800] |
| Cardiac rehabilitation  |         |
| Participation CR        |         |
| Currently following CR  | 84 (3%) |
| Followed CR less than 6 months ago | 398 (15%) |
| Followed CR more than 6 months ago | 1784 (70%) |
| Never followed CR       | 302 (12%) |
| Completed CR (no)       | 113 (5%) |
| Contribution of CR to recovery | 113 (5%) |
| None                    | 109 (5%) |
| Little                  | 232 (10%) |
| Moderate                | 775 (34%) |
| High                    | 1142 (53%) |
| Cardiac anxiety score   | 18 [12, 25] |

ACE-inhibitor, angiotensin-converting-enzyme inhibitors; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; CR, cardiac rehabilitation; ICD, implantable cardioverter-defibrillator; PCI, percutaneous coronary intervention.

confounders at baseline. No changes in short sedentary bouts were observed following CR. Although prolonged sedentary bouts decreased significantly post-CR (−0.4 bouts/day [95% CI 0.1; 0.6]), values normalized to baseline values within 2-months post-CR (−0.2 bouts/day [95% CI 0.5; 0.1], P = 0.2) (Supplemental Fig. 2C). LIPA increased significantly following CR (0.3 h/day [95% CI 0.1; 0.6], P = 0.005) and remained higher 2-months post-CR (0.4 h/day [95% CI 0.1; 0.6], P = 0.002). Finally, MVPA and sleep time did not change following CR or 2-months post-CR. Stratified analyses for weekdays and weekend days revealed similar outcomes of changes in sedentary time, prolonged sedentary bouts, LIPA and MVPA (Supplemental Figs. 8 and 9).

4. Discussion

This study presents novel findings related to the prevalence, correlates and CR-induced changes of sedentary behaviour of patients with CVD. First, patients with CVD show significantly higher sedentary time and lower levels of PA compared to healthy, age-matched controls. Especially the greater accumulation of prolonged, uninterrupted sedentary bouts contributed to higher SB time spent by patients with CVD. Second, general characteristics (i.e. sex, marital status, employment status), lifestyle characteristics (i.e. physical inactivity, alcohol consumption, living environment, motives for PA) and presence of comorbidities (i.e. type 2 diabetes, hypercholesterolemia, rheumatoid arthritis, and cardiac anxiety), but not the type of CVD diagnosis, were associated with higher levels of sedentary time among patients with CVD. Third, patients with CVD demonstrated a small, but significant reduction in sedentary time following a 6-weeks CR program with supervised exercise training sessions. Sedentary time was mostly replaced by LIPA, whereas no changes in MVPA were observed. Taken together, these results highlight the high prevalence of SB in patients with CVD, and provide novel and important information on factors that are related to SB. These insights are relevant in the development of new strategies to stimulate patients with CVD to move more and sit less as CR programs only have small-to-modest effects on SB.

4.1. Patients with CVD versus controls

In line with our hypothesis, patients with CVD demonstrated a significantly higher SB and lower PA compared to age-matched controls, making them vulnerable to adverse outcomes [5]. In addition to total
sedentary time, previous work reported that the pattern of accumulation of sedentary time importantly contributes to the risk for cardiovascular events and mortality [13,34]. We found that patients with CVD demonstrated significantly more prolonged uninterrupted sedentary bouts compared to controls. These prolonged bouts have previously been linked to acute detrimental effects on vascular function, blood pressure and lipids [35], which may contribute to disease progression and long-term outcomes. Given the high prevalence of SB and prolonged uninterrupted sedentary bouts among patients with CVD, identification of factors associated with this unhealthy behaviour facilitates early recognition of individuals at risk.

4.2. Characteristics associated with high SB levels

We found that general characteristics (i.e. sex, marital status, employment status, living environment) and lifestyle-related characteristics (i.e. physical inactivity, alcohol consumption, motives for physical activity) were associated with total sedentary time of patients with CVD. It is interesting to note that these factors largely align with predictors of high SB levels in the general population [36,37], suggesting that SB may be independent of underlying disease. To support this hypothesis, the type of CVD diagnosis was not related to total sedentary time. On the other hand, patients with CVD with type 2 diabetes, hypercholesterolemia, and/or rheumatoid arthritis had higher odds of high SB levels. These findings suggest that existing comorbidities and cardiac anxiety, but not type of CVD diagnosis, impact SB levels of patients with CVD.

Insight into correlates of SB is important to identify patients with CVD with the highest SB levels, whereas it also facilitates development of interventions specifically targeting SB in patients with CVD. For example, modifiable factors as habitual physical activity levels, alcohol consumption, motives for physical activity, cardiac anxiety and optimal therapy for comorbidities should be considered when developing SB interventions. Furthermore, sedentary time was primarily spent during leisure time (Supplemental Fig. 4), suggesting that leisure time sedentary activities should be specifically targeted to achieve the largest reductions in total sedentary time.

4.3. Impact of CR on SB characteristics

CR programs are multidisciplinary, including both supervised exercise training and lifestyle modification, but SB is hardly addressed. Hence, it was no surprise that sedentary time was high and reduced only with 0.4 h/day following CR. A recent meta-analysis of observational studies showed that an objectively measured sedentary time ≥ 9.5 h/day was associated with an increased risk of all-cause mortality [6]. These findings suggest that ±75% of our patients with CVD (pre-CR sedentary time: 10.4 h/day [Q25 9.5; Q75 11.2]) are at risk for the detrimental health effects of SB, making these individuals highly vulnerable for recurrent cardiovascular events and premature death. We also found that the reduction in sedentary time was mainly replaced by LIPA, whereas no changes in MVPA were found post-CR. These results are in line with a recent meta-analysis [38] of randomized clinical trials suggesting no change in both LIPA and MVPA after CR. Although the changes in LIPA and sedentary time were small in our study, replacing sedentary time by LIPA aligns with the contemporary recommendation to ‘move more and sit less’ [39]. It is important to emphasise that these behavioural changes occurred in a CR program focusing on increasing PA levels, rather than reducing SB. This highlights the potency for interventions specifically targeting SB in CR programs, as replacement of

---

Fig. 2. Characteristics associated with high levels of sedentary time (≥8 h/day) in 2584 patients with cardiovascular disease. Data is presented as odds ratios with 95% confidence intervals. Sex, marital status, employment status, comorbidities, physical activity, alcohol consumption, cardiac anxiety, motives for physical activity and living environment were significantly associated with high levels of sedentary time.
30 min sedentary time by 30 min of LIPA is associated with a 17% risk reduction of all-cause mortality [40]. Moreover, it is recommended to frequently break-up prolonged sedentary bouts [13,34,41], but currently no changes in this SB characteristic were observed following CR. In further understanding the role of SR, future should evaluate whether CR-induced changes in other cardiovascular risk factors (e.g. weight, fitness levels, cholesterol levels, blood pressure, medication use) are related to changes in SB. In addition, it would be interesting to explore whether tailoring CR to maximize changes in (long-term) SB could improve CR efficacy to reduce CVD morbidity and mortality.

Taken together, more attention in CR programs is needed to target high SB levels and prolonged uninterrupted sedentary bouts of patients with CVD. In this non-exercising population of patients with CVD, such lifestyle improvements may be more feasible and sustainable compared to MVPA interventions.

4.4. Strengths and limitations

The strengths of this study include the assessment of both objective and subjectively measured SB among two relatively large and independent cohorts of patients with CVD. Furthermore, longitudinal measurements were performed to assess the impact of CR on SB, LIPA and MVPA. Limitations of our study include the lack of a control group of patients with CVD not participating in CR and the limited follow-up time post-CR. Normalization of SB and LIPA may occur across longer time periods, limiting the generalizability of our findings to patients with chronic CVD. In addition, assessment of SB for objective 2 was based on self-reported data, which may result in an underestimation of SB. However, questionnaires provide domain-specific SB which is not available using objectively measured SB.

5. Conclusion

Patients with CVD demonstrate significantly higher amounts of SB compared to healthy controls, which may largely be explained through a more frequent engagement in prolonged, uninterrupted sedentary bouts. SB was most prevalent during leisure time and characteristics associated with high levels of SB in patients with CVD largely overlapped with the general population, except for comorbidities and cardiac anxiety. Furthermore, we found low engagement in MVPA in patients with CVD, which did not change following a CR program with supervised exercise training sessions. Therefore, adding interventions specifically aimed at reducing SB seems an important and feasible target to improve health in patients with CVD. Since reductions of SB will be replaced by LIPA and MVPA, our work enforces the health message to ‘sit less and move more’ in patients with CVD.

Author statement

Bakker contributed to conception, design, methodology, data collection, data analysis, data interpretation, data visualization, drafted the manuscript and critically revised the manuscript. Van Bakel contributed to conception, design, methodology, data curation, interpretation, and critically revised the manuscript. Thijssen and Eijsvogels contributed to conception, design, methodology, data interpretation, project administration and supervision, critically revised the manuscript, and acquired funding and resources. Aengevaeren, Meindersma, Snoek, Wąskowski, van Kuijk, Jacobs and Hopman contributed to the design, interpretation and critically revised the manuscript.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported the Netherlands Heart Foundation [Senior E-Dekker grant #2017T051].

Declaration of Competing Interest

The Authors declare that there is no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijcard.2020.11.014.

References

[1] P.C. Hallal, LB. Andersen, F.C. Bull, et al., Global physical activity levels: surveillance progress, pitfalls, and prospects, Lancet. 380 (9838) (2012) 247–257.
[2] E.N. Ussery, J.E. Fulton, D.A. Galuska, P.T. Katzmyr, S.A. Carlson, Joint prevalence of sitting time and leisure-time physical activity among US adults, 2015-2016, JAMA. 320 (19) (2018) 2036–2038.
[3] J.M. Lee, E.J. Shiroma, F. Lobelo, et al., Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy, Lancet. 380 (9838) (2012) 219–229.
[4] T.M. Eijsvogels, S. Molossi, D.C. Lee, M.S. Emery, P.D. Thompson, Exercise at the extremes: the amount of exercise to reduce cardiovascular events, J. Am. Coll. Cardiol. 67 (3) (2016) 316–329.
[5] U. Ekelund, J. Steene-Johannessen, W.J. Brown, et al., Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women, Lancet. 388 (10051) (2016) 1302–1310.
[6] U. Ekelund, J. Tarp, J. Steene-Johannesen, et al., Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis, BMJ. 366 (2019) 4570.
[7] E. Stamatakis, J. Gale, A. Bauman, et al., Sitting time, physical activity, and risk of mortality in adults, J. Am. Coll. Cardiol. 73 (16) (2019) 2062–2072.
[8] D.B. Young, M.F. Hivert, S. Alhassan, et al., Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association, Circulation. 134 (13) (2016) e262–e279.
[9] J. Barker, K. Smith Byrne, A. Doherty, et al., Physical activity of UK adults with chronic disease: cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK biobank participants, Int. J. Epidemiol. 48 (4) (2019) 1167–1174.
[10] T. Moholdt, U. Wisloff, T.I. Nilsen, S.A. Sordahl, Physical activity and mortality in men and women with coronary heart disease: a prospective population-based cohort study in Norway (the HUNT study), Eur. J. Cardiovasc. Prev. Rehabil. 15 (6) (2008) 639–645.
[11] R.A.H. Stewart, C. Held, N. Hadziosmanovic, et al., Physical activity and mortality in patients with stable coronary heart disease, J. Am. Coll. Cardiol. 70 (14) (2017) 1689–1700.
[12] S.W. Jeong, S.H. Kim, S.H. Kang, et al., Mortality reduction with physical activity in patients with and without cardiovascular disease, Eur. Heart J. 40 (43) (2019) 3547–3555.
[13] J. Belleliere, M.J. LaMonte, K.R. Evenson, et al., Sedentary behavior and cardiovascular disease in older women: the objective physical activity and cardiovascular health (OPACH) study, Circulation. 139 (8) (2019) 1036–1046.
[14] L. Anderson, N. Oldridge, D.R. Thompson, et al., Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis, J. Am. Coll. Cardiol. 67 (1) (2016) 1–12.
[15] N. ter Hoeve, B.M. Huisstede, H.J. Stam, et al., Does cardiac rehabilitation after an acute cardiac syndrome lead to changes in physical activity habits? Systematic review, Phys. Ther. 95 (2) (2015) 167–179.
[16] A.T. Duran, C. Ewing Garber, T. Cornelius, J.E. Schwartz, K.M. Diaz, Patterns of Sedentary behavior in the first month after acute coronary syndrome, J. Am. Heart Assoc. 8 (15) (2019), e011585.
[17] R.J. Thomas, A.L. Beatty, T.M. Beckie, et al., Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology, 2019 26027.
[18] M.F. Piepoli, A.W. Hoes, S. Agewall, et al., 2016 European guidelines on cardiovascular disease prevention in clinical practiceThe Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Disease Prevention &amp; Rehabilitation (EACPR), Eur. Heart J. 37 (2016) 2315–2381.
[19] E.A. Winkler, D.H. Bodicoat, G.N. Healy, et al., Identifying adults with objectively measured sedentary behaviors that are associated with increased mortality and lower levels of physical activity, Lancet. Physiol. Meas. 37 (10) (2016) 1559–1568.
[20] R.H. Eckel, J.M. Jakicic, J.D. Ard, et al., 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/ American Heart Association task force on practice guidelines, Circulation. 129 (25 Suppl 2) (2014) 576–599.
[21] N. Sedentary Behaviour Research, Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”, Appl. Physiol. Nutr. Metab. 37 (3) (2012) 540–542.

[22] M.S. Tremblay, S. Aubert, J.D. Barnes, et al., Sedentary behavior research network (SBRN) - terminology consensus project process and outcome, Int. J. Behav. Nutr. Phys. Act. 14 (1) (2017) 75.

[23] K. Lyden, S.K. Keadle, J. Staudenmayer, P.S. Freedson, The activPALTM accurately classifies activity intensity categories in healthy adults, Med. Sci. Sports Exerc. 49 (5) (2017) 1022–1028.

[24] G.H. Eifert, R.N. Thompson, M.J. Zvolensky, et al., The cardiac anxiety questionnaire: development and preliminary validity, Behav. Res. Ther. 38 (10) (2000) 1039–1053.

[25] M.H. van Beek, R.C. Voshaar, F.M. van Deelen, et al., The cardiac anxiety questionnaire: cross-validation among cardiac inpatients, Int. J. Psychiatry Med. 43 (4) (2012) 349–364.

[26] Alcoholism. NIoAAa. Dietary Guidelines for Americans 2015–2020. U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2015.

[27] S.A. Prince, J.L. Reed, C. McFetridge, M.S. Tremblay, R.D. Reid, Correlates of sedentary behaviour in adults: a systematic review, Obes. Rev. 18 (8) (2017) 915–935.

[28] G.O. Donoghue, C. Perchoux, K. Mensah, et al., A systematic review of correlates of sedentary behaviour in adults aged 18-65 years: a socio-ecological approach, BMC Public Health 16 (2016) 163.

[29] B.E. Ainsworth, W.L. Haskell, S.D. Herrmann, et al., 2011 compendium of physical activities: a second update of codes and MET values, Med. Sci. Sports Exerc. 43 (8) (2011) 1575–1581.

[30] D.M. Bates, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw. 67 (1) (2015) 1–48.

[31] S. Carter, Y. Hartman, S. Holder, D.H. Thijssen, N.D. Hopkins, Sedentary behavior and cardiovascular disease risk: mediating mechanisms, Exerc. Sport Sci. Rev. 45 (2) (2017) 80–86.

[32] K.L. Piercy, R.P. Troiano, R.M. Ballard, et al., The physical activity guidelines for Americans, JAMA. 320 (19) (2018) 2020–2028.

[33] G.O. Dibben, H.M. Dalal, R.S. Taylor, et al., Cardiac rehabilitation and physical activity: systematic review and meta-analysis, Heart. 104 (17) (2018) 1394–1402.

[34] A.B. Kuznetsova, P.B. Brockhoff, R.H.B. Christensen, lmerTest package: tests in linear mixed effects models, J. Stat. Softw. 82 (13) (2017) 1–26.

[35] S. Carter, Y. Hartman, S. Holder, D.H. Thijssen, N.D. Hopkins, Sedentary behavior and cardiovascular disease risk: mediating mechanisms, Exerc. Sport Sci. Rev. 45 (2) (2017) 80–86.

[36] G. O’Donoghue, C. Perchoux, K. Mensah, et al., A systematic review of correlates of sedentary behaviour in adults aged 18-65 years: a socio-ecological approach, BMC Public Health 16 (2016) 163.

[37] S.A. Prince, J.L. Reed, C. McFetridge, M.S. Tremblay, R.D. Reid, Correlates of sedentary behaviour in adults: a systematic review, Obes. Rev. 18 (8) (2017) 915–935.

[38] G.O. Donoghue, C. Perchoux, K. Mensah, et al., A systematic review of correlates of sedentary behaviour in adults aged 18-65 years: a socio-ecological approach, BMC Public Health 16 (2016) 163.

[39] K.L. Piercy, R.P. Troiano, R.M. Ballard, et al., The physical activity guidelines for Americans, JAMA. 320 (19) (2018) 2020–2028.

[40] G.O. Dibben, H.M. Dalal, R.S. Taylor, et al., Cardiac rehabilitation and physical activity: systematic review and meta-analysis, Heart. 104 (17) (2018) 1394–1402.

[41] S. Carter, Y. Hartman, S. Holder, D.H. Thijssen, N.D. Hopkins, Sedentary behavior and cardiovascular disease risk: mediating mechanisms, Exerc. Sport Sci. Rev. 45 (2) (2017) 80–86.

[42] K.L. Piercy, R.P. Troiano, R.M. Ballard, et al., The physical activity guidelines for Americans, JAMA. 320 (19) (2018) 2020–2028.