Ionic gelation synthesis, characterization and adsorption studies of cross-linked chitosan-tripolyphosphate (CS-TPP) nanoparticles for removal of As (V) ions from aqueous solution: kinetic and isotherm studies

Farshad Hamidia, Mojtaba Azadi Aghdamb, Fatemeh Joharc, Mohammad Hadi Mehdinejada and Abbas Norouzian Baghanc

aEnvironmental Health Research Center, Department of Environmental Health Engineering, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran; bDepartment of Chemical and Environmental Engineering, University of Arizona, Tucson, USA; cDepartment of Physics, School of Basic Science, Tarbiat Modares University, Tehran, Iran; dDepartment of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT
The CS-TPP nanoparticles were synthesized and their efficiency for removal of arsenic (V) ions at the optimum conditions was investigated. The optimum conditions for CS-TPP nanoparticles were obtained with the mass ratio of tripolyphosphate to chitosan of 1:2 and pH = 5.0. The experimental data for the adsorption of As (V) ions followed the Freundlich adsorption isotherm and the maximum adsorption capacity was 77 mg/g at pH = 6.0. All isotherm experiments were performed at room temperature (25°C). The crosslinking of sodium tripolyphosphate with the chitosan led to a decrease in crystallinity of the formed particles which then resulted in an improvement in metal ion sorption properties.

1. Introduction
Arsenic is a well-known toxin and carcinogen and its effects on human cells have been studied extensively (Anetor et al. 2007, Stevens et al. 2010, Rostami et al. 2017, Khan et al. 2020). Arsenic is a naturally occurring element found in the environment that originated from natural and anthropogenic sources (Ng et al. 2003, Amaibi et al. 2019, Dousova et al. 2020, Mitra et al. 2020). Acute and chronic exposure to arsenic results in lung cancer, heart attacks, nausea, and gastrointestinal disease (Hopenhayn 2006, WHO, 2010, Abdul et al. 2015, Flora 2020). In natural waters, especially in drinking water, arsenic can be mostly found in trivalent (As³⁺) or pentavalent (As⁵⁺) forms (Boddu et al. 2008). According to WHO and U.S. EPA, the maximum concentration limit (MCL) for As in drinking water is 10 µg/L (Chen and Chung 2006).

The chitosan and chitosan nanoparticles have extensively been used for the removal of heavy metals from contaminated water due to its relatively low cost and availability (Crini and Badot 2008, Abdul et al. 2015, Zafarzadeh and Mehdinejad 2015, Baghanc et al. 2016, Hayatiet al. 2016, Mehdinejad and Bina, 2018, Sanchayanukun and Muncharoen 2019, Salehi et al. 2020, Zubair et al. 2020). Conventional adsorbents used in arsenic removal are activated carbons, alumina, soils, and resins, which can be coated with different materials such as iron or alumina (Adlnasab et al. 2019, Asere et al. 2019, Ghosh et al. 2019, Inchaurreondo et al. 2019, Maghsodi and Adlnasab 2019, Matović et al. 2019). The main disadvantages of those adsorbents being used in water treatment are the difficulty of separating adsorbed contaminants from the adsorbent and formation of the waste stream (Tuutijärvi et al. 2009).

Chitosan is a natural polycationic linear polysaccharide obtained from chitin, which is the principal component of protective cuticles of crustaceans such as crabs, shrimps, prawns, and lobsters (Bina et al. 2009, Cheung et al. 2015, Perini et al. 2020, Zo et al. 2020). It is non-toxic, cost-effective, biodegradable, and bio-compatible adsorbent (Ahmed et al. 2014, Chopra and Ruhi 2016, Bakshi et al. 2020). Chitosan is insoluble in most of the solvents but it is soluble in dilute organic acids such as acetic acid, formic acid, succinic acid, lactic acid, and...
malic acid. This is because chitosan can be considered as a strong base as it possesses primary amino groups with a pKₐ value of 6.3. At low pH values, these amino groups get protonated and become positively charged and that makes chitosan a water-soluble cationic poly-electrolyte. On the other hand, as the pH increases above 6, chitosan’s amino groups become deprotonated and the polymer loses its positive charge and becomes insoluble (Ahmed et al. 2013, Kulkarni et al. 2015). There are several adsorbent synthesis techniques including the ionic gelation technique. This technique has numerous advantages such as (1) use of aqueous media (2) preparation of small and compactly-structured particles; (3) control of colloidal characteristics of the nanoparticles by the variation of formulation and process parameters; (4) the possibility of encapsulation of a wide range of molecules for different intended applications (Hussain and Sahudin 2016).

The mechanism of As (V) removal using chitosan nanoparticles has been studied by a number of researchers; however, the removal of As (V) by nanoparticles of chitosan powder and application to process design is novel. Furthermore, this study uses nanoparticles of chitosan without chelation with other materials while previous studies used it as a composite of nano chitosan with sodium alginate, chitosan-based nanofibers and metals. Using the ionic gelation technique, the mass ratio of sodium tripolyphosphate solution to chitosan was varied from 1 to 2.5 in order to optimize the arsenic removal despite the previous studies that used a limited range of 1 to 1.5.

2. Materials and methods

2.1. Materials

Chitosan powder (deacetylated chitin; poly- [1–4]-β-glucosamine, deacetylation degree of 85%) was purchased from GMA Chemical Company. The standard solution (1000 mg/L) of As (V) was procured from Chem-lab Company. Acetic acid (99%) from Merck (Darmstadt, Germany) and tripolyphosphate (TPP) from Sigma Aldrich were purchased. Additionally, double-distilled deionized water was used throughout the work. The pH values of the experiments were adjusted by the addition of (0.1 M) HCl (Merck company) and (0.1 M) NaOH (Merck company) solutions.

2.2. Synthesis of chitosan nanoparticles (CS-TPP nanoparticles)

The CS-TPP nanoparticles were synthesized based on the ionic gelation technique (Fernández-Urrusuno et al. 1999, Vimal et al. 2012, Saharan et al. 2013, Vimal et al. 2013, Hashad et al. 2016). First, chitosan solution of 2 mg/mL was dissolved at 0.5% [w/v] acetic acid under magnetic stirring at 800 rpm at room temperature (25°C) for 24 h. Then, 2 mL mL of sodium tripolyphosphate solution (Na₅P₃O₁₀· TPP) (0.25% w/v) was added drop by drop to 5 mL of the chitosan solution (ratio 2.5:1 of CS: TPP) under magnetic stirring at 800 rpm using a titration tube, and mixing was continued to obtain a homogenous colloidal solution. Thereafter, the mixture obtained in the previous step was purified by centrifugation (12000 rpm (35000 G) at 10°C for 30 min). The supernatants were discarded, and the CS-TPP was rinsed with distilled deionized water for further freeze-drying (Alpha1-2ldplus, Martin Christ, Germany) under the following conditions: a primary drying step for 48 h at −30°C and a subsequent drying step while the temperature gradually raised to +20°C. Finally, the dried precipitates were crushed using a mortar and pestle (Fernández-Urrusuno et al. 2019, Vimal et al. 2012, Saharan et al. 2013, Vimal et al. 2013, Hashad et al. 2016). These CS-TPP nanoparticles were kept in a glass tube at a dark place and room temperature until being used. The schematic of CS-TPP nanoparticles synthesis is shown in Figure S1.

2.3. Characterizations of CS-TPP nanoparticles

2.3.1. Morphology

The morphological examination of the CS-TPP nanoparticles was performed by SEM (Scanning Electron Microscopy) at 20 kV, T = 25°C, the mass ratio of 2:1 CS: TPP, and pH = 5. Fourier-transform infrared spectroscopy (FT-IR) was taken on the Shimadzu Spectrum model 4800s in a range of 400–4000 cm⁻¹. The X-ray diffraction (XRD) characterization of chitosan and CS-TPP nanoparticles was done by an X-ray scattering Shimadzu XD-DI diffract meter using Ni filter CuKα (λ = 0.154 nm) radiation. Samples were scanned at a scan rate of 5°/per min.

2.3.2. Zero point of charge (pH_zpc)

The surface chemistry of any material is determined by the acidic or basic character of its surface. Therefore, it is of high importance to know the surface charge of the material in the aqueous media, especially in adsorption studies because particles with the high surface area could be produced; however, if the surface charge of the material is repulsing the adsorption due to possessing the same charge as the adsorbate, then the pH modification is required in order to find the pH range that results in optimal adsorption. It
is also required to find the pH at which the surface charge of the material is zero in the aqueous media or in other words the pH_{zpc} (pH point of zero charges) of the adsorbent material. The pH_{zpc} is the point where the curve pH_{final} vs. pH_{initial} crosses the line pH_{initial} = pH_{final} (Faria et al. 2004). The pH_{zpc} of samples were obtained as follows: 50 mL of 0.01 M NaCl solution was placed in a closed Erlenmeyer flask. The pH was adjusted to a value between 2 and 12 by adding 0.1 M HCl or 0.1 M NaOH solutions. Then, 0.15 g of CS-TPP nanoparticles was added, and the final pH values were measured after 48 h under agitation at room temperature by a pH meter (Metrohm 827, Switzerland).

2.4. Batch adsorption experiments

Isotherm experiments and adsorption kinetics were performed by addition of a specific amount of CS-TPP nanoparticles in a series of 250 mL Erlenmeyer flasks containing a known amount of As (V) ions and then flasks were agitated on a laboratory shaker at 150 rpm and room temperature (25°C). The effect of contact time on the sorption capacity of CS-TPP nanoparticles was studied in the range 0 – 150 min. For optimal pH selection, a constant dose of CS-TPP nanoparticles was added to the sample and the jar tests were performed at various pH (4, 5, 6, 7, and 8). Based on the optimal pH, the effect of the initial concentration of As (V) on the adsorption was studied by varying C_0 of As (V) ions from 0.05 to 4 mg/L. Then, the concentration of CS-TPP nanoparticles was varied from 0.1 to 1 mg/mL in order to find the optimal As (V) removal.

At the end of each experiment, the obtained suspensions were centrifuged at 3000 rpm for 15 min in order to separate the insoluble matter from the suspensions. The solution obtained from the centrifuge was then filtered by Whatman paper (45 μm) and analyzed for As (V) using Atomic Absorption Spectrometer 8020. The removal efficiency of As (V) ions (R%) and the amount of adsorbed arsenic (q_e) were calculated according to the equations presented in Table S1.

3. Results and discussion

3.1. Adsorbent characterization

Sodium tripolyphosphate (TPP) is the most widely used ion crosslinking agent owing to its nontoxic properties (Fan et al. 2012). The structure of the chitosan nanoparticles being formed from the cross-linking of chitosan and TPP agent are shown in Figure S2. As shown in Figure S2, cross-linking was induced by electrostatic ad sorption reaction between the protonated amino acid groups in the chitosan and the negative charge on the P-O groups in the TPP. SEM analysis of CS-TPP nanoparticles is shown in Figure 1. As shown in Figure 1, synthesized CS-TPP nanoparticles have a homogeneous morphology and a rough surface that exhibits a well-developed open pore structure (Kalkan et al. 2012).

The particle size of a material is a highly important component in understanding its physiochemical properties. The specific surface area increases as the particle size decrease. It also increases if the particle is porous. So, it is important to acquire the average particle size as well as the specific surface area to evaluate the activity and adsorption capacity of the synthesized material (Ikenyiri and Ukpaka 2016). The mean particle size of CS-TPP nanoparticles (D) was acquired using XRD analysis via Debye–Scherrer’s equation as follows (Kalkan et al. 2012, Baghani et al. 2016):

\[D = \frac{K\lambda}{b\cos \theta} \]

where D is the thickness of CS-TPP nanoparticles (nm), \(\lambda \) is the X-rays wavelength (0.15406 nm), \(\theta \) is the Bragg angle, K is the Debye–Scherrer constant (0.9), and \(b \) is the corrected full width. Applying the Equation (1) to the result of the size distribution illustrated that the size of the synthesized nanoparticles was under 24.9 nm at 2\(\theta \) and \(b \) of 29.359\(^\circ\) and 3.029\(^\circ\), respectively.

The X-ray diffraction profile of chitosan powder and CS-TPP nanoparticles are shown in Figure 2(a,b), respectively. As shown in Figure 2(a), for chitosan powder, the crystalline regions correspond to the peaks at 10.186\(^\circ\) and 20.182\(^\circ\) on the XRD spectrum. Previous studies have also shown the presence of two
strong peaks at the 2θ range of 10 to 22 on the XRD spectrum (Qi et al. 2004, Kwok et al. 2014). These peaks have shown that the chitosan powder has a characteristic peak of an allomorphic crystalline form. Figure 2(b) shows a number of sharp peaks at 2θ of 29.359°, 35.912°, 39.361°, 44.345°, 47.345°, 48.549°, and 57.563° for CS-TPP nanoparticles. The decrease in the chitosan peak and the appearance of less intense peaks in the XRD spectra of the CS-TPP nanoparticles (Figure 2(b)) indicated a decrease in crystallinity of chitosan which is due to the reduction of the polymer chain size that is better suited for the adsorption purposes (highly amorphous nature) (Qi et al. 2004). Furthermore, it could be deduced from Figure 2(b) that the structure of CS-TPP nanoparticles is comprised of a dense network of interconnecting polymer chains cross-linked to each other by the TPP counter ions.

The Fourier Transform Infrared Spectroscopy (FTIR) spectra of chitosan and CS-TPP nanoparticles are shown in Figure 3(a,b), respectively. The peaks at 3395.29 cm$^{-1}$ in chitosan and 3394.24 cm$^{-1}$ in CS-TPP nanoparticles are due to the NH$_2$ and OH stretching vibrations. A shift from 3395.2 to 3394.2 cm$^{-1}$ and a sharper peak in the CS-TPP nanoparticles indicates that the hydrogen bonding is enhanced due to arsenic adsorption. The band at 1608.25 cm$^{-1}$ is attributed to the CONH$_2$ group. The peak at 1516 cm$^{-1}$ for chitosan is sharper than the peak at 1608.2 cm$^{-1}$ for the CS-TPP nanoparticles which shows a high degree of deacetylation of the chitosan. This is in accordance with the findings of a previous study (Boddu et al. 2008). In CS-TPP nanoparticles, two sorption bands appeared at 1607.61 and 1516.88 cm$^{-1}$ which indicates that the ammonium groups were cross-linked with tripolyphosphate molecules (Figure 3(b)). The
absorption bands observed at 1055.3 and 859.98 cm$^{-1}$ for the CS-TPP nanoparticles were due to the stretching vibration of the P=O and P–O of the tripolyphosphate ion, respectively. TPP is a polyfunctional cross-linking agent and can create five ionic cross-linking points with amino groups of chitosan. Chitosan nanoparticles prepared by TPP as an anionic crosslinker are homogeneous, and possess a positive surface charge that makes them suitable for heavy metals adsorption applications.

3.2. Effect of initial pH of the solution

The removal of heavy metals from aqueous solution using adsorption processes depends on the pH of the solution (Baghani et al. 2016, Baimenov et al. 2020,

Figure 3. The FTIR spectra of chitosan (a) and CS-TPP nanoparticles (b).
Kuczajowska-Zadrożna et al. (2020). The effect of pH on the As (V) adsorption is shown in Figure 4(a). According to Figure 4(a), the highest As (V) removal was achieved at pH = 6. The increase in the pH of the solution from 4 to 6 increased the arsenate adsorption and the removal efficiency was increased from 55% to 75%. This could be due to the fact that at low pH values, the amine group and tripolyphosphate group of chitosan nanoparticles are protonated to varying degrees, leading to a reduction in the number of binding sites and therefore, the As ion uptake is low. Because arsenic is an anionic in nature which leads to higher degrees of protonation when the pH is increased above neutral, competitor effect between the chitosan nanoparticles and arsenic ions is decreased leading to electrostatic repulsion, thus when the pH is increased above 6, the precipitation of arsenic trioxide occurs leading to a decrease in sorption of chitosan nanoparticles. Another reason could be due to the positive chitosan charge having a greater tendency to adsorb anions. According to a previous study, this increase in As (V) removal could be due to the release of hydroxide ions (OH\(^-\)) in the protonation process of free amine groups (NH\(_2\)) present in the CS-TPP nanoparticles (Wang et al. 2006). Moreover, the amine groups on chitosan are strongly reactive with arsenate ions due to the free-electron doublets of the nitrogen atoms (Kwok et al. 2014). The pH\(_{zpc}\) of CS-TPP nanoparticles was equal to 6.5, indicating that below this pH value, the CS-TPP nanoparticles have a positive charge whereas the surface of the adsorbent is negatively charged at pH values higher than pH\(_{zpc}\). The adsorption rate decrease at high pH values is due to the repulsive electrostatic forces in the solution (Tuutijärvi et al. 2009).

3.3. Effect of contact time on As (V) removal by CS-TPP nanoparticles

Figure 4(b) shows the effect of contact time on the adsorption of arsenate ions onto the CS-TPP nanoparticles. As shown in Figure 4(b), the arsenate ions
removal rate was increased when the contact time was increased from 30 to 90 min which could be due to the availability of adsorption sites on the adsorbent. The maximum adsorption capacity of arsenate was obtained at 90 min. Moreover, a rapid and high arsenate ions adsorption onto the adsorbent occurred within the first 30 min. This behavior is due to the fact that all the active adsorption sites are unoccupied at the start of the reaction and this results in an initially high adsorption rate which goes down after most of the active sites on the CS-TPP nanoparticles are occupied by arsenate ions (Kwok et al. 2014).

3.4. Effect of initial concentration on As (V) removal by CS-TPP nanoparticles

Figure 4(c) demonstrates the effect of initial concentrations on As (V) on the adsorption of arsenate ions using the CS-TPP nanoparticles. It is shown that the removal percentage was increased from 21 to 61% with increasing the arsenate concentration from 0.05 to 0.5 mg/L, respectively. After that, with increasing the concentrations of As (V) beyond 0.5 mg/L, the removal percentage decreased until dropping down to 33.5% for the initial concentration of 4 mg/L for As (V). The main reason for the reduction in removal percentage is the limited number of active sites on the adsorbent surface due to being saturated by As (V). The results of this work showed that the As (V) removal efficiency decreased with the increase in initial As (V) concentration. In low concentrations, the ratio of the initial number of moles of As (V) ions to the available surface area of adsorbent is large and subsequently, the fractional adsorption becomes independent of initial concentration. Increasing adsorption capacity could be related to the reactions between the metal ion molecules and the adsorbent surface or due to the increased repulsion between the molecules, which is consistent with the results of a previous study conducted by Soltani et al. (2017). However, at higher concentrations, the removal percentage decreases from 61 to 33.5% because the available sites of adsorption become fewer, and hence the percentage removal of metal ions which depends upon the initial concentration, decreases. Our finds were according to the obtained results by Sivakami (Sivakami et al. 2013).

3.5. Effect of CS-TPP nanoparticles dosage on As (V) removal

Figure 4(d) demonstrates the effect of different doses of CS-TPP nanoparticles on As (V) removal. As shown in Figure 4(d), increasing the adsorbent dose from 0.1 to 0.5 g/L increased the removal efficiency from 13 to 57%. This increase in As (V) removal could be explained by the increase in available sites on the surface of adsorbent at higher doses of CS-TPP (Ehrampoush et al. 2015). This finding is in accordance with a previous study that was conducted on arsenic adsorption from aqueous solution using chitosan nanoparticles (Anto and Annadurai 2012).

3.6. Adsorption isotherm and kinetics

The equilibrium data were collected at various initial As (V) concentrations in the range of 0.05 to 4 mg/L. A 0.1 g of adsorbent was added to 100 mL of arsenic solution with different As (V) concentrations and was shaken until equilibrium. Then, the equilibrium concentration of arsenic was determined and fitted to Langmuir, Freundlich, and Temkin isotherms. The Langmuir, Freundlich, and Temkin isotherms are summarized in Table 1. The values of the constants were obtained from the Freundlich, Langmuir and Temkin isotherms linear plots as shown in Figure S3.

Freundlich’s model illustrates adsorption within heterogeneous systems. According to Table 1, where: $q_e = \text{Amount adsorbed per unit weight of adsorbent at equilibrium (mg/g)}$, $C_e = \text{equilibrium concentration of adsorbate in solution after adsorption (ppm)}$, $K_l = \text{empirical Freundlich constant or capacity factor (L/g)}$, $n = \text{Freundlich’s exponent which demonstrates the severity of adsorption}$. The experimental data for the

| Table 1. The parameters of isotherm and kinetic models for Arsenic (V) adsorption using CS-TPP nanoparticles. |
|--|--|----------------------------------|
| Isotherm models | Langmuir | Freundlich | Temkin |
| R^2 | q_{max} (mg/g) | K_l (L/mg) | n | R^2 | b_l | K_t |
| 0.988 | 21.3 | 0.63 | 0.991 | 1.14 | 1.25 | 0.883 | 0.27 | 24.03 |
| Kinetic models | Pseudo-first-order | Pseudo-second-order | |
| K_1 (min⁻¹) | $q_{e, exp}$ (mg/g) | $q_{e, calc}$ (mg/g) | R^2 | K^2 (g/mg) (min⁻¹) | $q_{e, calc}$ (mg/g) | R^2 |
| 0.014 | 0.09 | 0.1 | 0.945 | 0.23 | 0.11 | 0.998 |
adsorption of As (V) on the CS-TPP nanoparticles showed that the process followed the Freundlich isotherm \(R^2 = 0.991 \) and is a better fit for the data acquired from the experiments compared to the Langmuir \(R^2 = 0.988 \) and Temkin \(R^2 = 0.883 \) models. In fact, it showed that both mono-layer and multi-layer adsorptions may have occurred for As (V) adsorption on the CS-TPP nanoparticles. This is consistent with the findings of previous studies (Saha and Sarkar 2012, Sivakami et al. 2013). Furthermore, the maximum sorption capacity of As (V) ions on the CS-TPP nanoparticles was 21.3 mg/g and achieved at pH = 6.

The affinity to the adsorption sites between As (V) and CS-TPP nanoparticles is determined by separation factor \((R_L) \) (Equation (8) in Table S1). The \(R_L \) value above 1 indicates unfavorable adsorption while the \(R_L \) values between 0 and 1 indicate a favorable reaction. \(R_L \) value of zero hints at an irreversible reaction while \(R_L \) value of 1 demonstrates a linear reaction (Baghani et al. 2017, Khouzani et al. 2018, Azari et al. 2019). In the present study, the value of \(R_L \) calculated is less than 1, which means, the adsorption of As (V) on CS-TPP is a favorable process. The Langmuir \(K_L \) constant is a measure of the metal ions' affinity to the adsorption sites. Therefore, the higher value of \(K_L \) indicates better adsorption. The value of \(K_L \) (L/mg) (Langmuir constant) calculated for this study was 0.63. It means that the adsorption process was achieved to equilibrium point in 0.63 L/mg of adsorbent surface.

In the Temkin isotherm model, \(b_1 \) constant is connected to the heat of sorption (J/mol). If the \(b_1 \) exceeds 1 \((b_1 > 1) \), it indicates rapid sorption of adsorbate at the initial stages of the adsorption process (Soori et al. 2016). In this study, the \(b_1 \) value was equal to 0.27 demonstrating an exothermic adsorption process. The obtained results showed that the removal of As (V) ions from aqueous solutions was not achieved in a short contact time which is in accordance with the \(b_1 \) value of lower than 1. Moreover, a low value for \(K_t \) \((K_t \leq 1) \) is related to weak bonding between adsorbate and the medium (Soori et al. 2016). In this study, the \(K_t \) value was calculated to be 24.03 which shows strong bonding between arsenate ions and CS-TPP nanoparticles.

As shown in Table 1, the equilibrium data were fitted onto both kinetic models: pseudo-first-order and pseudo-second-order. The pseudo-second-order (PSO) model had a higher correlation coefficient \(R^2 = 0.998 \) than the pseudo-first-order (PFO) model \(R^2 = 0.945 \). The values of \(K_1 \) and \(K_2 \) were determined from the slope of the linear plots of log \((q_e - q_t) \) versus time and the slope of the linear plot \(q_t \) versus time, respectively. The calculated value of \(q_e \) in pseudo-second-order model \((q_{e \text{cal.}} = 0.11 \text{mg/g}) \) is in agreement with the experimental values \((q_{e \text{exp.}} = 0.09 \text{mg/g}) \).

Table 2 compares the maximum adsorption capacity of arsenic ions \(q_{\text{max}} \) (mg/g), the kinetic and isotherm models this study with other adsorbents.

Adsorbent	pH	Isotherm	Kinetic	\(q_{\text{max}} \) (mg/g)	Ref
Chitosan-red scoria	7	Langmuir	PSO	0.72	(Asere et al. 2017)
Chitosan–pumice blends	7	Langmuir	PSO	0.71	(Asere et al. 2017)
KMnO₄ modified clinoptilolite	7	Langmuir	PSO	0.15	(Massoudinejad et al. 2015)
Iron-oxide coated sands	5	Langmuir	–	0.022	(Hsu et al. 2008)
Chitosan-modified diatomite	7	Langmuir	PSO	11.95	(Yang et al. 2020)
Bituminous iron-modified activated carbon (AC) (CF-MP)	7	Langmuir	–	2.45	(Arcibar-Orozco et al. 2014)
Wood-based activated carbon (AC) (CW-MP)	7	Langmuir	–	2.28	(Arcibar-Orozco et al. 2014)
Activated carbons with iron hydro (oxide) nanoparticles (F400-M)	7	Langmuir	PSO	0.847	(Vitela-Rodriguez and Rangel-Mendez 2013)
Porous iron oxide on activated carbon (AC-3)	7	Langmuir	PSO	15.34	(Yüreğ et al. 2014)
Copper exchange zeolite-a (CEZ)	7	Langmuir	PSO	1.48	(Pillewein et al. 2014)
Magnetite-graphene oxide and magnetite-reduced graphene oxide composite (M-rGO)	4	Freundlich	PSO	12	(Yoon et al. 2016)
Graphene modified by iron–manganese binary oxide (FeMnO x/RGO)	7	Langmuir	PSO	11	(Zhu et al. 2015)
Magnetic biochar	2	Langmuir	PSO	3.1	(Baig et al. 2014)
Chitin-TiO₂	3	Langmuir	Elovich	3.1	(Ramos et al. 2016)
CNT/CuO	5	Langmuir	PSO	2.4	(Singh et al. 2016)
Metal-organic framework2ZrO₂(OH)₄(btc)₂(HCOO)₆ (MOF-808)	–	–	PSO	24.83	(Li et al. 2015)
Chitosan magnetic graphene oxide	7.3	Langmuir	PSO	4.5	(Sherlala et al. 2019)
Nano alumina nanoparticles in chitosan-graftpolyacrylamide (CTS-g-PA)	7.2	Freundlich	–	6.56	(Saha and Sarkar 2012)
CS-TPP nanoparticles	6	Freundlich	PSO	21.3	This study
with other studies using different adsorbents. Comparing the As (V) adsorption capacity of CS-TPP nanoparticles with other adsorbents, it is evident that this process results in a high q_{max} value ($q_{\text{max}} = 21.3 \text{ mg/g at pH } = 6$). As shown in Table 2, the CS-TPP nanoparticles after ZrO_4 (OH)$\text{₄}(\text{btc})_2$(HCOO)₆ (MOF-808) (Li et al. 2015) adsorbent have the highest q_{max} among all the tested adsorbents. However, the synthesis of CS-TPP nanoparticles is simple compared to the adsorbent of that study. In addition, based on Table 2, most of the experimental data for the adsorption of As (V) ions onto different adsorbents demonstrated that the process followed the Langmuir isotherm and PSO model.

4. Conclusion

In this work, the chitosan-tripolyphosphate nanoparticles (CS-TPP nanoparticles) were synthesized based on the ionic gelation technique for removal of As (V) ions from aqueous solution and characterized by SEM, FTIR and XRD. The FT-IR results showed that the larger adsorption capacity of CS-TPP nanoparticles is connected to the decrease of the chitosan crystallinity by the decrease of the polymer chain. The effects of pH, initial concentrations of As (V) ions, contact time, adsorbent dosage and adsorption isotherm were investigated, as well. Using the ionic gelation technique, this study was able to synthesize CS-TPP nanoparticles with an average size of 24.9 nm. The highest adsorption capacity was about 77 mg/mg and obtained at pH = 6. By increasing the adsorbent dosage, the adsorption performance increased and then decreased. This can be attributed to the increased adsorbent surface area and availability of many adsorption sites for the As (V) ions. Among the 3 isotherms investigated in this study, the Freundlich model showed to be the best fit for the experimental data with an R^2 value of 0.991. The adsorption kinetic data for As (V) ions were according to the assumption of a PSO model and the maximum sorption capacity was 21.3 mg/g at pH = 6. Simple preparation and high adsorption capacity of CS-TPP nanoparticles compared to other adsorbents such as chitosan-modified diatomite, porous iron oxide on activated carbon (AC-3) and graphene-modified by iron-manganese binary oxide (FeMnO x/RGO) presents a potential for using these nanoparticles for As (V) removal.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

We are grateful for financial support [research project No. 274143] provided by the Deputy of Research and Technology and Environmental Health Research Center of Golestan University of Medical Sciences in Iran.

ORCID

Mohammad Hadi Mehidinejad http://orcid.org/0000-0001-6298-7144
Abbas Norouzian Baghani http://orcid.org/0000-0001-6614-6158

References

Abdul, K.S.M., et al., 2015. Arsenic and human health effects: a review. Environmental toxicology and pharmacology, 40 (3), 828–846.
Adlnasab, L., Shekari, N., and Maghsodi, A., 2019. Optimization of arsenic removal with Fe3O4@Al2O3@ZnFe LDH as a new magnetic nano adsorbent using Box-Behnken design. Journal of environmental chemical engineering, 7 (2), 102974.
Ahmed, S., Ahmad, M., and Ikram, S., 2014. Chitosan: a natural antimicrobial agent-a review. Journal of applicable chemistry, 3, 493–503.
Ahmed, S., Sheraz, M.A., and Rehman, I.U., 2013. Studies on tolenamic acid-chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight. Aaps pharmscitech, 14, 870–879.
Amaibi, P.M., et al., 2019. Mineralogy, solid-phase fractionation and chemical extraction to assess the mobility and availability of arsenic in an urban environment. Applied geochemistry, 100, 244–257.
Anetor, J.I., Wanibuchi, H., and Fukushima, S., 2007. Arsenic exposure and its health effects and risk of cancer in developing countries: micronutrients as host defence. Asian pacific journal of cancer prevention, 8, 13.
Anto, S.M., and Annadurai, G., 2012. Arsenic adsorption from aqueous solution using chitosan nanoparticle. Res J Nanosci Nanotechnol, 2, 31–45.
Arcibar-Orozco, J.A., et al., 2014. Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chemical Engineering Journal, 249, 201–209.
Asere, T.G., et al., 2017. Removal of arsenic (V) from aqueous solutions using chitosan–red scoria and chitosan–pumice blends. International journal of environmental research and public health, 14 (8), 895.
Asere, T.G., Stevens, C.V., and Du Laing, G., 2019. Use of (modified) natural adsorbents for arsenic remediation: a review. Science of the total environment, 676, 706–720.
Azari, A., et al., 2019. Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan-lutaraldehyde composite. International journal of biological macromolecules, 131, 633–645.
Baghani, A.N., et al., 2016. One-pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions.
from aqueous solution: kinetic, isotherm and thermodynamic studies. Journal of environmental health science and engineering, 14 (1), 11.

Baghani, A.N., et al., 2017. Synthesis and characterization of amino-functionalized magnetic nanocomposite (Fe3O4-NH2) for fluoride removal from aqueous solution. Desalination and water treatment, 65, 367–374.

Baig, S.A., et al., 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass and bioenergy, 71, 299–310.

Baimenov, A., et al., 2020. A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Advances in colloid and interface science, 276, 102088.

Bakshi, P.S., et al., 2020. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules, 150, 1072–1083.

Bina, B., et al., 2009. Effectiveness of chitosan as natural coagulant aid in treating turbid waters. Journal of environmental health science & engineering, 6 (4), 247–252.

Boddu, V.M., et al., 2008. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water research, 42 (3), 633–642.

Chen, C.-C., and Chung, Y.-C., 2006. Arsenic removal using a biopolymer chitosan sorbent. Journal of environmental science and health, part A, 41 (4), 645–658.

Cheung, R.C.F., et al., 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs, 13 (8), 5156–5186.

Chopra, H., and Ruhi, G., 2016. Eco friendly chitosan: an efficient material for water purification. The pharma innovation, 5, 92.

Crini, G., and Badot, P.-M., 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in polymer science, 33 (4), 399–447.

Dousova, B., et al., 2020. Environmental interaction of antimony and arsenic near busy traffic nodes. Science of the total environment, 702, 134642.

Ehrampoush, M.H., et al., 2015. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of environmental health science and engineering, 13 (1), 84.

Fan, W., et al., 2012. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by binary gelation technique. Colloids and surfaces B: biointerfaces, 90, 21–27.

Faria, P.C.C., Orfão, J.J.M., and Pereira, M.F.R., 2004. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water research, 38 (8), 2043–2052.

Fernández-Urrusuno, R., et al., 1999. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical research, 16 (10), 1576–1581.

Flora, S., 2020. Preventive and therapeutic strategies for acute and chronic arsenic exposure. Arsenic in drinking water and food. Singapore: Springer, 341–370.

Ghosh, S., Prabhakar, R., and Samadder, S., 2019. Performance of γ-aluminium oxide nanoparticles for arsenic removal from groundwater. Clean technologies and environmental policy, 21 (1), 121–138.

Hashad, R.A., et al., 2016. Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International journal of biological macromolecules, 86, 50–58.

Hayati, B., et al., 2016. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. Journal of molecular liquids, 224, 1032–1040.

Hopenhayn, C., 2006. Arsenic in drinking water: impact on human health. Elements, 2 (2), 103–107.

Hsu, J.-C., et al., 2008. Removal of As (V) and As (III) by reclaimed iron-oxide coated sands. Journal of hazardous materials, 153 (1–2), 817–826.

Hussain, Z. and Sahudin, S., 2016. Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 297–308.

Ikencyiri, P. and Ukpaka, C., 2016. Overview on the effect of particle size on the performance of wood based adsorbent. Journal of chemical engineering & process technology, 7 (2), 1–4.

Inchaurreondo, N., et al., 2019. Synthesis and adsorption behavior of mesoporous alumina and Fe-doped alumina for the removal of dominant arsenic species in contaminated waters. Journal of environmental chemical engineering, 7 (1), 102901.

Kalkan, N.A., et al., 2012. Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles. Journal of applied polymer science, 124 (1), 576–584.

Khan, K.M., et al., 2020. Health effects of arsenic exposure in Latin America: an overview of the past eight years of research. Science of the total environment, 710, 136071.

Khosravi, R., et al., 2018. Comparative evaluation of nitrile adsorption from aqueous solutions using green and red local montmorillonite adsorbents. Desalination and water treatment, 116, 119–128.

Kuczajowska-Zadróżna, M., Filipkowska, U., and Jóźwiak, T., 2020. Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. Journal of environmental chemical engineering, 8 (4), 103878.

Kulkarni, N., Wakte, P., and Naik, J., 2015. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. International journal of pharmaceutical investigation, 5 (2), 73.

Kwok, K.C., et al., 2014. Mechanism of arsenic removal using chitosan and nanochitosan. Journal of colloid and interface science, 416, 1–10.

Li, Z.-Q., et al., 2015. Facile synthesis of metal-organic framework MOF-808 for arsenic removal. Materials letters, 160, 412–414.

Maghsodi, A. and Adinasab, L., 2019. In-situ chemical deposition as a new method for the preparation of Fe3O4 nanoparticles embedded on anodic aluminium oxide membrane (Fe3O4@AAO): characterization and application for arsenic removal using response surface methodology. Journal of environmental chemical engineering, 7 (5), 103288.
Massoudinejad, M., et al., 2015. A comprehensive study (kinetic, thermodynamic and equilibrium) of arsenic (V) adsorption using KMnO 4 modified clinoptilolite. Korean journal of chemical engineering, 32 (10), 2078–2086.

Matović, L.L., et al., 2019. Mechanochemically improved surface properties of activated carbon cloth for the removal of As (V) from aqueous solutions. Arabian journal of chemistry, 12 (8), 4446–4457.

Mehdinejad, M.H. and Bina, B., 2018. Application of Moringa oleifera coagulant protein as natural coagulant aid with alum for removal of heavy metals from raw water. Desalination and water treatment, 116, 187–194.

Mitra, A., Chatterjee, S., and Gupta, D.K., 2020. Environmental arsenic exposure and human health risk. Arsenic water resources contamination. Cham: Springer,103–129.

Ng, J.C., Wang, J., and Shraim, A., 2003. A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353–1359.

WHO. 2010. Exposure to arsenic: a major public health concern, preventing disease through healthy environments. Geneva: WHO.

Perini, M., et al., 2020. Stable isotope ratio analysis as a fast and simple method for identifying the origin of chitosan. Food hydrocolloids, 101, 105516.

Pillewan, P., et al., 2014. Removal of arsenic (III) and arsenic (V) using copper exchange zeolite-a. Environmental progress & sustainable energy, 33, 1274–1282.

Qi, L., et al., 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 339 (16), 2693–2700.

Ramos, M.L.P., et al., 2016. Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent. Chemical engineering journal, 285, 581–587.

Rostami, I., et al., 2017. Application of nano aluminum oxide and multi-walled carbon nanotube in fluoride removal. Desalination and water treatment, 72, 368–373.

Saha, S. and Sarkar, P., 2012. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of hazardous materials, 227, 68–78.

Saharan, V., et al., 2013. Synthesis of chitosan-based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International journal of biological macromolecules, 62, 677–683.

Salehi, N., Moghimi, A., and Shahbazi, H., 2020. Preparation of cross-linked magnetic chitosan with methionine-glutathione for removal of heavy metals from aqueous solutions. International journal of environmental analytical chemistry, 1(1), 1–17.

Sanchayanukun, P. and Muncharoen, S., 2019. Elimination of Cr (VI) in laboratory wastewater using chitosan coated magnetite nanoparticles (chitosan@Fe3O4). EnvironmentAsia, 12 (2), 32–48.

Sherlala, A., et al., 2019. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. Journal of environmental management, 246, 547–556.

Singh, D.K., et al., 2016. Kinetic, isotherm and thermodynamic studies of adsorption behaviour of CNT/CuO nanocomposite for the removal of As (III) and As (V) from water. RSC advances, 6 (2), 1218–1230.

Sivakami, M., et al., 2013. Preparation and characterization of nano chitosan for treatment wastewaters. International journal of biological macromolecules, 57, 204–212.

Soltani, R.D.C., et al., 2017. Decontamination of arsenic (V)-contained liquid phase utilizing Fe 3 O 4/bone char nano-composite encapsulated in chitosan biopolymer. Environmental science and pollution research, 24 (17), 15157–15166.

Soori, M.M., et al., 2016. Intercalation of tetracycline in nano sheet layered double hydroxide: an insight into UV/VIS spectra analysis. Journal of the Taiwan institute of chemical engineers, 63, 271–285.

Stevens, J.J., et al., 2010. The effects of arsenic trioxide on DNA synthesis and genotoxicity in human colon cancer cells. International journal of environmental research and public health, 7 (5), 2018–2032.

Tuutijärvi, T., et al., 2009. As(V) adsorption on maghemite nanoparticles. Journal of hazardous materials, 166 (2–3), 1415–1420.

Vimal, S., et al., 2012. Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture, 358, 14–22.

Vimal, S., et al., 2013. RETRACTED: chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta tropica, 128, 486–493.

Vitela-Rodriguez, A.V. and Rangel-Mendez, J.R., 2013. Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. Journal of environmental management, 114, 225–231.

Wang, Q.Z., et al., 2006. Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydrate polymers, 65 (2), 194–201.

Yang, Q., et al., 2020. Adsorption of As (V) from aqueous solution on chitosan-modified diatomite. International journal of environmental research and public health, 17 (2), 429.

Yoon, Y., et al., 2016. Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As (III) and As (V) removal. Journal of hazardous materials, 304, 196–204.

Yüüüm, A., et al., 2014. Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical engineering journal, 242, 321–332.

Zafarzadeh, A. and Mehdinejad, M., 2015. Accumulation of heavy metals in agricultural soil irrigated by sewage sludge and industrial effluent (case study: Agh Ghallah industrial estate). Journal of Mazandaran university of medical sciences, 24, 217–226.

Zhu, J., et al., 2015. Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnO x/RGO) from aqueous solutions. RSC advances, 5 (83), 67951–67961.

Zo, S., et al., 2020. Synthesis and characterization of carboxymethyl chitosan scaffolds grafted with waterborne polyurethane. Journal of nanoscience and nanotechnology, 20 (8), 5014–5018.

Zubair, M., Arshad, M., and Ullah, A., 2020. Chitosan-based materials for water and wastewater treatment. Handbook of Chitin and Chitosan. Amsterdam, The Netherlands: Elsevier, 773–809.