ON THE JOINT SPECTRAL RADIUS OF A NILPOTENT LIE ALGEBRA OF MATRICES

ENRICO BOASSO

ABSTRACT. For a complex nilpotent finite dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.

1. Introduction

Let $T = (T_1, \ldots, T_n)$ be an n-tuple of $d \times d$-complex matrices. A point $\lambda \in \mathbb{C}^n$ is in the joint point spectrum of T, $\sigma_{pt}(T)$, if there exists a nonzero element $x \in \mathbb{C}^d$ with the property $T_i(x) = \lambda_i x$, $1 \leq i \leq n$. Given p such that $1 \leq p \leq \infty$, R. Bhatia and T. Bhattacharyya introduced in [1] the algebraic spectral radius of an n-tuple T, $\varrho_p(T)$, whose definition depends of the usual p-norm of \mathbb{C}^d, and proved that if T is an n-tuple of commuting matrices, then the algebraic spectral radius coincides with the geometrical spectral radius, i.e., $\varrho_p(T) = r_p(T) = \max \{|\lambda|_p : \lambda \in \sigma_{pt}(T)\}$ (see [1] or Section 2 for more details). This is a generalization of the well-known spectral radius formula for a single matrix; for $p = 2$, it was proved by M. Chô and T. Huruya in [6].

M. Chô and M. Takaguchi proved in [7] that if T is a commuting n-tuple of matrices, then $\sigma_{pt}(T) = Sp(T, \mathbb{C}^d)$, where $Sp(T, \mathbb{C}^d)$ denotes the Taylor joint spectrum of T (see [12]). A. McIntosh, A. Pryde and W. Ricker, as a consequence of a more general result which also concerns infinite dimensional spaces, extended in [9] the above identity to many other joint spectra including the commutant, the bicommutant and the Harte joint spectra.

On the other hand, in [4] we defined a joint spectrum, $Sp(L, E)$, for complex solvable finite dimensional Lie algebras L of operators acting on a Banach space E. We proved that $Sp(L, E)$ is a compact nonempty subset of L^* satisfying the projection property for ideals. Moreover, when L is a commutative algebra, $Sp(L, E)$ reduces to the Taylor joint spectrum in the following sense. If dim $L = n$ and $\{T_i\}_{i \leq i \leq n}$ is a basis of L, then $\{(f(T_1), \ldots, f(T_n)) : f \in Sp(L, E)\} = Sp(T, E)$ for $T = (T_1, \ldots, T_n)$ i.e., $Sp(L, E)$ in terms of the basis of L^* dual to $\{T_i\}_{i \leq i \leq n}$ coincides with the Taylor joint spectrum of the n-tuple T. Furthermore, in [3] we also extended to complex solvable finite dimensional Lie algebras the Slodkowski joint spectra $\sigma_{\delta,k}$ and $\sigma_{\pi,k}$, and we proved the most important properties of a spectral theory, i.e., the compactness, nonemptiness and the projection property for ideals.

For E finite dimensional, in [3] we extended the characterization of [7], and partially that of [9], to complex nilpotent Lie algebras acting on E. Indeed, we proved that $Sp(L, E)$, $\sigma_{\delta,k}(L, E)$ and $\sigma_{\pi,k}(L, E)$ coincide with the set of all
weights of the Lie algebra L for the vector space E, which is the intrinsic algebraic
description of the joint point spectrum, and showed that in suitable bases of L and
L^* it reduces to the joint point spectrum of the basis of L (see [3] or Section 2 for
details). This also extended the characterization of [7] and [9] to the Słodkowski
joint spectra of an n-tuple of commuting matrices.

Thus, if L is a complex nilpotent finite dimensional Lie algebra acting on
a complex finite dimensional vector space E, and if instead of considering the
elements of $Sp(L, E)$ as linear functionals on L we work with their coordinates in
a basis of L^*, dual to a suitable basis of L, then, as in the former basis $Sp(L, E)$
reduces to the joint point spectrum of the latter basis, it is possible to compute
the geometrical and the algebraic spectral radii of L with respect to its basis, and
to look for a generalization of the main result of [1]. In this article we extend the
spectral radius formula of R. Bhatia and T. Bhattacharyya for the case under
consideration. The argument is quite elementary, and it furnishes another proof
of the formula for the commutative case.

The paper is organized as follows. In Section 2 we review several definitions and
results which we need. In Section 3, we prove our main theorem and study some
examples in order to show that in the solvable non nilpotent case the spectral
radius formula fails.

2. Preliminaries

We briefly recall several definitions and results related to the spectrum of a
Lie algebra (see [4]). Although in [4] we considered complex solvable finite
dimensional Lie algebras of linear bounded operators acting on a Banach space,
for our purpose we restrict ourselves to the case of complex finite dimensional nilpotent Lie algebras of linear transformations defined on finite dimensional vector spaces. Moreover, as in this case the Słodkowski joint spectra and the Taylor joint spectrum coincide, we concentrate on the latter; for more information about the Słodkowski joint spectra see [11] and [2].

From now on E denotes a complex finite dimensional vector space, $\mathcal{L}(E)$ the
algebra of all linear transformations defined on E, and L a complex nilpotent finite
dimensional Lie subalgebra of $\mathcal{L}(E)^{op}$, the algebra $\mathcal{L}(E)$ with opposite product. Such an algebra is called a nilpotent Lie algebra of linear transformations in E. If dim $L = n$ and f is a character of L, i.e., $f \in L^*$ and $f(L^2) = 0$, where $L^2 = \{[x, y]: x, y \in L\}$, consider the chain complex $(E \otimes \wedge L, d(f))$, where $\wedge L$ denotes the exterior algebra of L and

$$d_p(f): E \otimes \wedge^p L \rightarrow E \otimes \wedge^{p-1} L,$$

$$d_p(f)e(x_1 \wedge \cdots \wedge x_p) = \sum_{k=1}^{p} (-1)^{k+1} e(x_k - f(x_k))\langle x_1 \wedge \cdots \wedge \hat{x}_k \wedge \cdots \wedge x_p \rangle$$

$$+ \sum_{1 \leq k < \ell \leq p} (-1)^{k+1} e([x_k, x_\ell] \wedge x_1 \wedge \cdots \wedge \hat{x}_k \wedge \cdots \wedge \hat{x}_\ell \wedge \cdots \wedge x_p),$$

where $\hat{}$ means deletion. If $p \leq 0$ or $p \geq n + 1$, we define $d_p(f) = 0$.
If we denote by $H_*(E \otimes \Lambda, d(f))$ the homology of the complex $(E \otimes \Lambda, d(f))$, we may state our first definition.

Definition 2.1. With E, L and f as above, the set $\{ f \in L^*: f(L^2) = 0, H_*(E \otimes \Lambda, d(f)) \neq 0 \}$ is the joint spectrum of L acting on E, and it is denoted by $Sp(L, E)$.

As already mentioned, in [4] we proved that $Sp(L, E)$ is a compact nonempty subset of L^*, which reduces, in the sense explained in the Introduction, to the Taylor joint spectrum when L is a commutative algebra. Moreover, if I is an ideal of L, and π denotes the projection map from L^* to I^*, then,

$$Sp(I, E) = \pi(Sp(L, E)),$$

i.e., the projection property for ideals still holds. In this connection, we wish to mention the paper of C. Ott ([10]) who pointed out a gap in [4] in the proof of this result and gave another proof.

We recall the most important results of the theory of weight spaces, essentially Theorem 7 and 12, Chapter II of [8]. For a complete exposition see [8, Chapter II].

Let L and E be as above. A weight of L for E is a mapping, $\alpha: L \to \mathbb{C}$ such that there exists a non zero vector v in E with the following property: for each x in L there is $m_{v,x}$ in \mathbb{N} such that $(x - \alpha(x))^{m_{v,x}}(v) = 0$. The set of vectors, zero included, which satisfy this condition is a subspace of E, denoted by E_α and called the weight space of E corresponding to the weight α.

Under our assumptions we have the following properties (see [8, Chapter II, Theorems 7 and 12]):
(i) the weights are linear functions on L which vanish on L^2, i.e., they are characters of L,
(ii) E has only a finite number of distinct weights; the weight spaces are submodules, and E is the direct sum of them,
(iii) for each weight α, the restriction of any $x \in L$ to E_α has only one characteristic root, $\alpha(x)$, with certain multiplicity,
(iv) there is a basis of E such that for each weight α and each $x \in L$ the matrix of x_α, the restriction of x to E_α, is

$$x_\alpha = \begin{pmatrix} \alpha(x) & * \\ 0 & \alpha(x) \end{pmatrix}.$$

We now recall the following theorem of [3], which will be crucial for our main result.

Theorem A Let E be a complex finite dimensional vector space, and L a complex finite dimensional nilpotent Lie subalgebra of $\mathcal{L}(E)^{op}$. Then,

$$Sp(L, E) = \{ \alpha \in L^*: \alpha \text{ is a weight of } L \text{ for } E \}.$$

We observe that the right hand side set is a generalization of the joint point spectrum. In fact, if we consider a commutative algebra L, and $T = (T_1, \ldots, T_n)$ is an n-tuple of matrices such that $\{T_i\}_{1 \leq i \leq n}$ is a basis of L, then the set of weights of L for E represented in terms of the basis of L^* dual to $\{T_i\}_{1 \leq i \leq n}$ coincides with $\sigma_{pt}(T)$.

As we shall work with the coordinates of elements of $Sp(L, E)$, we need to construct suitable bases for L and L^*.

According to [5, Chapter IV, Section 1, Proposition 1], there is a Jordan-H"{o}lder sequence of ideals, $(L_i)_{0 \leq i \leq n}$, such that:

(i) $\{0\} = L_0 \subseteq L_i \subseteq L_n = L$,

(ii) $\dim L_i = i$,

(iii) there is a k ($0 \leq k \leq n$) such that $L_k = L^2$,

(iv) if $i < j$, then $[L_i, L_j] \subseteq L_{i-1}$.

As a consequence, if $\{x_j\}_{1 \leq j \leq n}$ is a basis of L such that $\{x_j\}_{1 \leq j \leq i}$ is a basis of L_i for each i, then

$$[x_j, x_i] = \sum_{h=1}^{i-1} c^h_{ij} x_h,$$

where $1 \leq i < j \leq n$. Such a basis will be called a Jordan-H"{o}lder basis.

Now, given a Jordan-H"{o}lder basis and an $\alpha \in Sp(L, E)$, we may represent it by its coordinates in the dual basis of L^*, i.e., by $(\alpha(x_1), \ldots, \alpha(x_n))$. The set of all such n-tuples will be denoted by $Sp((x_i)_{1 \leq i \leq n}, E)$, i.e.,

$$Sp((x_i)_{1 \leq i \leq n}, E) = \{ (\alpha(x_1), \ldots, \alpha(x_n)) : \alpha \in Sp(L, E) \}.$$

We observe that $Sp((x_i)_{1 \leq i \leq n}, E) = \sigma_{pt}((x_i)_{1 \leq i \leq n})$.

Recall that when L is a solvable Lie algebra, by [5, Chapter V, Section 1, Proposition 2] we may also construct a sequence $(L_i)_{0 \leq i \leq n}$ of ideals with properties (i), (ii) and (iii), and property (iv)': if $i < j$, $[L_i, L_j] \subseteq L_{i-1}$. Thus, if $\{x_j\}_{1 \leq j \leq n}$ is a basis of L such that $\{x_j\}_{1 \leq j \leq i}$ is a basis of L_i for each i, then

$$[x_j, x_i] = \sum_{h=1}^{i} c^h_{ij} x_h,$$

where $1 \leq i < j \leq n$. As in the nilpotent case, such a basis will be called a Jordan-H"{o}lder basis of the solvable Lie algebra L.

We now review the geometric and the algebraic spectral radius, as defined in [1].

Let E_p, $1 \leq p \leq \infty$, denote the space \mathbb{C}^d provided with the usual p-norm,

$$\| x \|_p = \left(\sum_{i=1}^{d} | x_i |^p \right)^{1/p}, \quad 1 \leq p < \infty,$$

$$\| x \|_\infty = \sup_{1 \leq i \leq d} | x_i |,$$

where $x \in \mathbb{C}^d$.

On the other hand, for $\lambda \in \mathbb{C}^n$, we denote its p-norm by $| \lambda |_p$, $1 \leq p \leq \infty$.

If $T = (T_1, \ldots, T_n)$ is an n-tuple of $d \times d$-complex matrices, then the geometric spectral radius of T is defined as

$$r_p(T) = \max \{ | \lambda |_p : \lambda \in \sigma_{pt}(T) \}.$$
On the other hand, we may identify a matrix M with the associated linear transformation, which we also denote by M. Thus, the n-tuple T induces an operator from E_p to the direct sum of n copies of E_p, considered with its natural p-norm. The norm of this operator, also denoted by T, is

$$
\| T \|_p = \sup_{\| x \|_p \leq 1} \left(\sum_{j=1}^{n} \| T_j(x) \|_p \right)^{1/p}.
$$

Now, given an $m \in \mathbb{N}$, we consider the n^m-tuple whose entries are the products $T_{i_1} \ldots T_{i_m}$, where $1 \leq i_1, \ldots, i_m \leq n$, with repetitions allowed and the indices arranged lexicographically. We denote this n^m-tuple by T^m. Then, the algebraic spectral radius of the n-tuple T is defined as

$$
\sigma_p(T) = \inf \| T^m \|_p^{1/m}, \quad 1 \leq p \leq \infty.
$$

As already mentioned, R. Bhatia and T. Bhattacharyya proved in [1] that for a commuting n-tuple T of matrices the algebraic and the geometrical spectral radius coincide. Now, given a nilpotent Lie algebra L of matrices in $L(\mathbb{C}^d)^{\text{op}}$, and a Jordan-Hölder basis $\{x_i\}_{1 \leq i \leq n}$ of L, where n is dim L, we may consider the n-tuple $(x_i)_{1 \leq i \leq n}$. In the next section we shall see that the geometric and the algebraic spectral radius of $(x_i)_{1 \leq i \leq n}$ also coincide.

3. The Main Result

In this section we prove that the spectral radius formula proved in [1] extends to nilpotent Lie algebras of matrices.

Observe that if $T = (T_1, \ldots, T_n)$ is a commuting n-tuple of matrices, and U is an invertible matrix such that $UTU^{-1} = (UT_1U^{-1}, \ldots, UT_nU^{-1})$ is an n-tuple of commuting upper-triangular matrices, then $\sigma_p(T) = \sigma_p(UTU^{-1})$, $r_p(T) = r_p(UTU^{-1})$ and $\rho_p(T) = \rho_p(UTU^{-1})$; see [1] of Proposition 2 below. If we decompose the matrices $UT_iU^{-1}, 1 \leq i \leq n$, in its diagonal and nilpotent part, we have two new commuting n-tuples of matrices, D and N, respectively. The spectral radii of T coincide with the corresponding radii of D. This suggests that in the computations of the spectral radii the nilpotent parts of the matrices are not of great importance. In this section, in order to prove our main theorem, we consider an n-tuple of upper-triangular matrices with some additional properties, and we give an upper bound for the associated n-tuple N in order to show that the algebraic and the geometrical spectral radii of T coincide. As the nilpotent and the commuting case may be reduced to this situation, we obtain our main result as well as a new proof for commuting case.

Let us begin with two propositions which simplify our work.

Proposition 3.1. Let T be an n-tuple of $d \times d$-matrices. Then

$$
r_\infty(T) = \lim_{p \to \infty} r_p(T), \quad \rho_\infty(T) = \lim_{p \to \infty} \rho_p(T).
$$

Proof. If $x \in \mathbb{C}^q$, $q \in \mathbb{N}$, then,

$$
\| x \|_\infty \leq \| x \|_p \leq q^{1/p} \| x \|_\infty.
$$

In particular, by the definition of $r_p(T)$,
\[r_\infty(T) \leq r_p(T) \leq n^{1/p} r_\infty(T), \]
which gives us the first part of the proposition.

On the other hand, an easy calculation using the above inequality yields
\[\| T \|_p \leq (dn)^{1/p} \| T \|_\infty, \quad \| T \|_\infty \leq \| T \|_p d^{1/p}. \]
Then, if \(m \in \mathbb{N} \), we obtain
\[\| T^m \|_\infty \leq \| T^m \|_p d^{1/p} \leq (d^2 n^m)^{1/p} \| T^m \|_\infty, \]
which implies that,
\[\| T^m \|_\infty \leq \| T^m \|_p^{1/m} d^{1/m} \leq (d^2 n^m)^{1/p} \| T^m \|_\infty. \]
Thus,
\[\varrho_\infty(T) \leq \varrho_p(T) \leq n^{1/p} \| T \|_\infty, \]
which shows that
\[\lim_{p \to \infty} \varrho_p(T) = \varrho_\infty(T). \]
\[\square \]

Thus we may restrict our proof to the case \(1 \leq p < \infty \).

Proposition 3.2. Let \(T \) be an \(n \)-tuple of matrices in \(E_p \), and \(U \) an invertible matrix in \(E_p \). Set \(UTU^{-1} = (UT_1U^{-1}, \ldots, UT_nU^{-1}) \), Then
\[r_p(T) = r_p(UTU^{-1}), \quad \varrho_p(T) = \varrho_p(UTU^{-1}). \]

Proof. As \(\sigma_{pt}(UTU^{-1}) = \sigma_{pt}(T) \), we have \(r_p(UTU^{-1}) = r_p(T) \).

For the algebraic spectral radius, we first observe that \((UTU^{-1})^m = U(T^m)U^{-1} \) for all \(m \in \mathbb{N} \). Thus, if \(k \) is such that \(U^{-1}(B[0,k]) \subseteq B[0,1] \), then, \(\| (UTU^{-1})^m \|_p \leq \| U \|_p \| T^m \|_p \| k^{-1} \), which gives
\[\varrho_p(UTU^{-1}) \leq \varrho_p(T). \]
However, as \(T = U^{-1}(UTU^{-1})U \), we obtain the desired equality.
\[\square \]

From now on we consider an \(n \)-tuple \(T \) of matrices such that \(\mathbb{C}^d \) may be decomposed into a direct sum of linear subspaces, \(\mathbb{C}^d = \oplus_{1 \leq i \leq s} M_i \), such that for each \(i, 1 \leq i \leq n \), the linear transformation associated with \(T_i \) satisfies \(T_i(M_j) \subseteq M_j \), for \(1 \leq j \leq s \). In addition, we assume that for each \(j \) there is a basis of \(M_j \) in which the matrix of \(T_i \mid M_j \) has an upper triangular form for all \(i \). Moreover, we also assume that all the diagonal entries of \(T_i \mid M_j \) coincide. By Proposition 2 we may suppose that the above basis is the canonical one and that each \(M_i \) is generated by elements of the canonical basis of \(\mathbb{C}^d \).

A straightforward calculation shows that for such \(T \) we have
\[\sigma_{pt}(T) = \{(c_j^1, \ldots, c_j^s) : 1 \leq j \leq s \}, \]
where \(c_j^i \) denotes the diagonal entries of \(T_i \mid M_j \) in the above basis of \(M_j \).

On the other hand, by the theory of weight spaces reviewed in Section 2, if \(\{x_i\}_{1 \leq i \leq n} \) is a Jordan-Hölder basis of an \(n \)-dimensional nilpotent Lie algebra of
linear transformations defined on a complex finite dimensional vector space, then the \(n\)-tuple \((x_i)_{1 \leq i \leq n}\) clearly satisfy the above conditions.

Moreover, if \(T = (T_1, \ldots, T_n)\) is a commuting \(n\)-tuple of \(d \times d\)-complex matrices, and if \(\tilde{L}\) is the \(\mathbb{C}\)-vector subspace of \(\mathcal{L}(\mathbb{C}^d)\) generated by \(T_i, 1 \leq i \leq n\), then \(\tilde{L}\) is a commuting Lie subalgebra of \(\mathcal{L}(\mathbb{C}^d)\) and \(\mathcal{L}(\mathbb{C}^d)^{op}\). In particular, \(\tilde{L}\) is a nilpotent Lie subalgebra of \(\mathcal{L}(\mathbb{C}^d)^{op}\). Thus, we may apply the weight space theory to \(\tilde{L}\) and \(\mathbb{C}^d\) to obtain a subspace decomposition and a basis of \(\mathbb{C}^d\) in which the above conditions are satisfied by \(T\). Indeed, as the properties (i)-(iv) of the theory of weight spaces reviewed in Section 2 are satisfied by each \(x\) in \(\tilde{L}\), they are, in particular, satisfied by \(T_i, 1 \leq i \leq n\). This approach gives a more precise description of the joint spectrum of an \(n\)-tuple of commuting matrices, refining those \([1]\), \([7]\) and \([9]\).

Now denote by \(D = (D_1, \ldots, D_n)\), respectively \(N = (N_1, \ldots, N_n)\), the \(n\)-tuple of the diagonal, respectively nilpotent, parts of the matrices \(T_i, 1 \leq i \leq n\). As \(\sigma_{pt}(D) = \sigma_{pt}(T)\), we have \(r_p(D) = r_p(T)\). Furthermore, as \(D\) is an \(n\)-tuple of commuting matrices, by \([1]\) Lemma 6, \(\varrho(D) = r_p(D)\).

If \(s = 1\) and if \(D_i = c_i \text{Id}, 1 \leq i \leq n\), then an easy calculation gives

\[
r_p(D)^m = \|(c^1, \ldots, c^n)\|_p^m = \left(\sum_{(i_1, \ldots, i_m) \in I_m} \prod_{k=1}^m |c_i^k|^{p/p}\right)^{1/p} = \|D^m\|_p,
\]

where \(I_m = \{(i_1, \ldots, i_m) : 1 \leq i_k \leq n \text{ for } 1 \leq k \leq m\}\).

We now start the proof of our main result: for an \(n\)-tuple \(T\) which satisfy the above conditions, \(r_p(T) = \varrho_p(T)\).

Proposition 3.3. Let \(T, D\) and \(N\) be as above. Then,

\[
r_p(T) \leq \varrho_p(T).
\]

Proof. Suppose that \(D_i \mid M_j = c_i^j \text{Id}\), for all \(1 \leq i \leq n\), and \(1 \leq j \leq s\), where \(\text{Id}\) denotes the identity of \(M_j\). Then, as \(r_p(T) = r_p(D)\), and as \(D_i\) is the diagonal part of \(T_i\), if \((c_{j_0}^1, \ldots, c_{j_0}^n)\) is such that \(\|(c_{j_0}^1, \ldots, c_{j_0}^n)\|_p = r_p(D)\), there is an element \(x \in M_{j_0}\) such that \(\|x\|_p = 1\) and, for all \((i_1, \ldots, i_m) \in I_m\),

\[
T_{i_1} \ldots T_{i_m}(x) = D_{i_1} \ldots D_{i_m}(x) = \prod_{1 \leq k \leq m} c_{j_0}^{i_k} x.
\]

Thus, by the previous observation,

\[
r_p(T)^m = r_p(D)^m = \|(c_{j_0}^1, \ldots, c_{j_0}^n)\|_p^m = \left(\sum_{(i_1, \ldots, i_m) \in I_m} \prod_{k=1}^m |c_{j_0}^{i_k}|^{p/p}\right)^{1/p} = \left(\sum_{(i_1, \ldots, i_m) \in I_m} \|T_{i_1} \ldots T_{i_m}(x)\|_p^{p/p}\right)^{1/p} \leq \|T^m\|_p,
\]

which implies that,

\[
r_p(T) \leq \varrho_p(T).
\]

\[\square\]
In order to prove that \(q_p(T) \leq r_p(T) \) we need some preparation. We begin by studying the form of the a product of \(m \) upper triangular matrices with constant diagonal entries.

Let \(T = (T_1, \ldots, T_n) \) be \(n \)-tuple of \(b \times b \) upper triangular matrices whose diagonal entries coincide, i.e., for each \(i \) \((1 \leq i \leq n)\) there is a \(c^i \in \mathbb{C} \) such that \((T_i)_{ii} = c^i\) for all \(1 \leq t \leq b \). Let \(m \in \mathbb{N} \) and \(1 \leq i_k \leq n \) for \(1 \leq k \leq m \). Then \((T_1 \ldots T_m)_{st} = 0 \) if \(1 \leq t < s \leq b \), and \((T_1 \ldots T_m)_{st} = \prod_{k=1}^m c^{i_k} \) if \(s = t \). As \(T_i \) are upper triangular, a straightforward calculation shows that if \(1 \leq s < t \leq b \) then,

\[
(T_i \ldots T_m)_{st} = \sum_{(h_0, \ldots, h_m) \in J} \prod_{1 \leq k \leq m} (T_{ih_k})_{h_k-h_k},
\]

where \(J = \{(h_0, \ldots, h_m) : s = h_0 \leq \ldots \leq h_m = t\} \). Decompose \(J \) as \(\cup_{0 \leq q \leq m-1} J_q \), where \(J_q = \{(h_0, \ldots, h_m) \in J : \text{there are } q \text{-indices } k \text{ with } h_k = h_{k+1}, 0 \leq k \leq m-1\} \). As \(t > s \), there can not be \(m \) such \(k \). Moreover, if \(J_q \neq \emptyset \) there are \(m-q \) pairs \((k, k+1)\), \(0 \leq k \leq m-1 \), such that \(h_k \neq h_{k+1} \), which implies that \(t - s \geq m - q \). Thus, \(J = \cup_{m-t+s \leq q \leq m-1} J_q \).

For if \(1 \leq q \leq t - s \), we may represent \(J_{m-q} \) as,

\[
J_{m-q} = \{(s, \ldots, s, s + l_1, \ldots, s + l_1, s + l_2, \ldots, s + l_2, \ldots, s + l_q-1, \ldots, s + l_q-1, t, \ldots t) : 1 \leq l_1 < \ldots < l_{q-1} \leq t - s - 1\},
\]

where the jumps occur at the index \(k_u, 1 \leq u \leq q \), and \(1 \leq k_1 < \ldots < k_q \leq m-1 \). With this representation is easy to see that \(J_{m-q} \) has \(\binom{m-1}{q} \binom{t-s-1}{q-1} \) elements, and that

\[
(T_i \ldots T_m)_{st} = \sum_{1 \leq q \leq t-s} \sum_{K_q, L_q, k_1, k \neq k_u} \prod_{k=1}^m c^{i_k} \prod_{u=1}^q (T_{ik_u})_{s+l_u-1} y_{s+l_u},
\]

where \(K_q = \{(k_1, \ldots, k_q) : 1 \leq k_1 < \ldots < k_q \leq m-1\} \) and \(L_q = \{(l_1, \ldots, l_q-1) : 1 \leq l_1 < \ldots < l_{q-1} \leq t - s - 1\}, 1 \leq q \leq t - s \).

Now we prove the reverse inequality of Proposition 3.3 for the case under consideration.

If \(\| y \|_p \leq 1 \), then

\[
\| T_{i_1} \ldots T_{i_m}(y) \|_p^p = \| \left(\sum_{v=1}^b (T_{i_1} \ldots T_{i_m})_{uv} y_v \right)_{1 \leq w \leq b} \|_p^p
\leq \left(\sum_{w=1}^b \left(\sum_{v=w}^b \| (T_{i_1} \ldots T_{i_m})_{uv} \|_p \right) \| y \|_p^p \right).
\]

If \(w = v \), we have that \(\| (T_{i_1} \ldots T_{i_m})_{uv} \| = \prod_{k=1}^m | c^{i_k} | \). On the other hand, if \(1 \leq w < v \leq b \), as there is constant \(R_1, R_1 > 1 \), such that \(\| (T_i)_{st} \| \leq R_1 \) for all \(s, \)

\[
\]
t and i with 1 ≤ s, t ≤ b and 1 ≤ i ≤ n, we have

\[|(T_{i_1} \ldots T_{i_m})_{wv}| \leq R_1^{b-1}(b-1)! \sum_{1 \leq q \leq w} \sum_{(k_1, \ldots, k_q) \in K_q} \prod_{k=1}^{m} |c^{i_k}|, \]

Now, if \(w_0 \) and \(v_0 \) are such that \(|T_{i_1} \ldots T_{i_m}|_{wv} \leq |T_{i_1} \ldots T_{i_m}|_{w_0v_0} \) for all \(w, v \) with \(1 \leq w < v \leq b \), we obtain

\[\|T_{i_1} \ldots T_{i_m}(y)\|_p \leq C \|y\|_p \prod_{k=1}^{m} |c^{i_k}|^p + (\sum_{1 \leq q \leq v_0-w_0} \sum_{(k_1, \ldots, k_q) \in K_q} \prod_{k=1}^{m} |c^{i_k}|^p), \]

where \(C = R_1^{p(b-1)} b_1^p \).

Observe that if there are \(l \) indices, \(i_1, \ldots, i_l \) such that \(c^{i_j} = 0 \), and if \(l > v_0 - w_0 \), then \(T_{i_1} \ldots T_{i_m} = 0 \).

Set \(I_m = \bigcup_{0 \leq r \leq b} I_r \), where \(\bar{b} = \min\{b-1, m\} \) and

\[I_r = \{(i_1, \ldots, i_m) \in I_m : \text{there are } r \text{-indices } i \text{ such that } c^{i_l} = 0\}. \]

Then, if \((i_1, \ldots, i_m) \in I_m \), we have

\[\|T_{i_1} \ldots T_{i_m}\|_p \leq C \|y\|_p \prod_{k=1}^{m} |c^{i_k}|^p (1 + (\sum_{1 \leq q \leq v_0-w_0} \sum_{(k_1, \ldots, k_q) \in K_q} \prod_{k=1}^{m} \frac{1}{c^{i_k}})^p). \]

If \(R_2 \geq \max\{R_1, \frac{1}{|c^l|} : c^l \neq 0, 1 \leq i \leq n\} \), then

\[\|T_{i_1} \ldots T_{i_m}(y)\|_p \leq C_0 \|y\|_p \prod_{k=1}^{m} |c^{i_k}|^p, \]

where \(C_0 = 2^p C(b-1)^p(m-1)^{(b-1)p} R_2^2 \).

Moreover, if \((i_1, \ldots, i_m) \in I_r \) \((1 \leq r \leq \bar{b})\), a similar calculation gives

\[\|T_{i_1} \ldots T_{i_m}(y)\|_p \leq C_r \|y\|_p \prod_{k=1, k \neq l}^{m} |c^{i_k}|^p, \]

where \(i_l (1 \leq l \leq r) \) are such that \(c^{i_l} = 0 \), and \(C_r = 2^p C(b-r)^p(m-1)^{(b-1)p} R_2^2 \leq C_0 \), for all \(1 \leq r \leq \bar{b} \).

Now, \(m \geq b \), an easy calculation shows that
\[\| T^m \|_p^p = \sup_{\|y\|_p^p \leq 1} \left(\sum_{(i_1, \ldots, i_m) \in I_m} \| T_{i_1} \ldots T_{i_m}(y) \|_p^p \right) \]

\[= \sup_{\|y\|_p^p \leq 1} \left(\sum_{0 \leq r \leq b-1} \sum_{(i_1, \ldots, i_m) \in I_m^r} \| T_{i_1} \ldots T_{i_m}(y) \|_p^p \right) \]

\[\leq C_0 \sum_{0 \leq r \leq b-1} \sum_{(i_1, \ldots, i_m) \in I_m^r} \prod_{k=1}^m | c_{i_k} |^p \]

\[= C_0 \sum_{0 \leq r \leq b-1} h^r \prod_{j=0}^{r-1} (m - j) \sum_{(i_1, \ldots, i_{m-r}) \in I_{m-r}} \prod_{k=1}^m | c_{i_k} |^p , \]

where \(h = \sharp \{ l : c^l = 0, 1 \leq l \leq n \} \).

By the observation which precedes Proposition 3.3,

\[\| T^m \|_p^p \leq C_0 h^{b-1} m^b r_p(D)^p(m-b+1) \left(\sum_{j=0}^{b-1} r_p(D)^p j \right) . \]

Thus, for \(m \geq b \) there is a constant \(K > 1 \) such that

\[\| T^m \|_p^{1/m} \leq K^{1/m} m^{1/m} 2^b r_p(D)^{(m-b+1)/m} , \]

which implies that

\[\varrho_p(T) \leq r_p(D) = r_p(T) , \]

and by Proposition 3.3 we obtain

\[\varrho_p(T) = r_p(D) = r_p(T) . \]

Let us now return to the general case. For an \(n \)-tuple \(T \) as specified after Proposition 3.2, and for \(s = 1 \), we have just seen that \(\varrho_p(T) = r_p(T) \). We now prove the general case. Let us begin by the following observation. By Proposition 3.2, as we may assume that the subspaces \(M_j (1 \leq j \leq s) \), are generated by elements of the canonical basis of \(\mathbb{C}^d \), if \(y = (y_j)_{1 \leq j \leq s} \in \mathbb{C}^d \) and \(\| y \|_p \leq 1 \), then

\[\| T_{i_1} \ldots T_{i_m}(y) \|_p^p = \sum_{1 \leq j \leq s} T_{i_1} \ldots T_{i_m}(y_j) \|_p^p = \sum_{1 \leq j \leq s} \| T_{i_1} \ldots T_{i_m}(y_j) \|_p^p . \]

Now, as \(\| y_j \|_p \leq \| y \|_p \leq 1 \), for \(1 \leq j \leq s \), we may proceed as follows.
\[\| T^m \|_p = \sup_{\| y \|_p \leq 1} \left(\sum_{(i_1, \ldots, i_m) \in I_m} \| T_{i_1} \ldots T_{i_j}(y) \|_p \right)^{1/p} \]
\[\leq \sup_{\| y \|_p \leq 1} \left(\sum_{(i_1, \ldots, i_m) \in I_m} \sum_{1 \leq j \leq s} \| T_{i_1} \ldots T_{i_m}(y_j) \|_p \right)^{1/p} \]
\[\leq \sum_{1 \leq j \leq s} \| (T^j)^m \|_p \]
\[\leq s \| (T^{j_0})^m \|_p, \]

where \(T^j \) is the \(n \)-tuple defined by \(T^j_i = T_i | M_j \) (1 \(\leq i \leq n \)), and \(j_0 \) is such that \(\| (T^j)^m \|_p \leq \| (T^{j_0})^m \|_p \) for all \(j \).

Thus, if \(d_{j_0} = \text{dim } M_{j_0} \), then, there is a constant \(K_0 \) such that,
\[\| T^m \|_p^{1/m} \leq s^{1/m} K_0^{1/m} (m^{1/m})^{2d_{j_0}} r_p(D^{j_0})^{(m-d_{j_0}+1)/m} \]
\[\leq s^{1/m} K_0^{1/m} (m^{1/m})^{2d_{j_0}} r_p(D)^{(m-d_{j_0}+1)/m}, \]

which implies that,
\[\varrho_p(T) \leq r_p(D) = r_p(T), \]

Thus,
\[\varrho_p(T) = r_p(T). \]

We have thus proved our main theorem.

Theorem 3.4. Let \(L \) be a complex nilpotent Lie algebra of linear transformations in \(\mathcal{L}(\mathbb{C}^d)^{op} \), and \(\{x_i\}_{1 \leq i \leq n} \) a Jordan-Hölder basis of \(L \). Then,
\[\varrho_p((x_i)_{1 \leq i \leq n}) = r_p((x_i)_{1 \leq i \leq n}). \]

Moreover, if \(T = (T_1, \ldots, T_n) \) is an \(n \)-tuple of \(d \times d \)-commuting matrices, then,
\[\varrho_p(T) = r_p(T), \]

where \(1 \leq p \leq \infty. \)

Proof. It is a consequence of Propositions 3.1-3.3 and the above calculations. \(\square \)

Finally, we consider several examples to show that our result fails in the solvable non nilpotent case.

Consider a complex solvable finite dimensional Lie algebra of linear transformations, \(L \), acting on a complex finite dimensional vector space \(E \). By [5, Chapter V, Section 1, Proposition 2], as in the nilpotent case, we may construct a Jordan-Hölder sequence of ideals and a Jordan-Hölder basis for \(L \) (see Section 2). However, in the solvable non nilpotent case, Theorem A is no longer true, i.e., if \(\text{dim } L = n \) and \(\{x_i\}_{1 \leq i \leq n} \) is a Jordan-Hölder basis of \(L \), \(\sigma_p((x_i)_{1 \leq i \leq n}, E) \neq \sigma_{pt}((x_i)_{1 \leq i \leq n}) \). Thus, we may consider \(\max\{ | \lambda |_p : \lambda \in \sigma_p((x_i)_{1 \leq i \leq n}, E) \} \) instead.
of $r_p((x_i)_{1 \leq i \leq n})$, and try to see if $g_p((x_i)_{1 \leq i \leq n}) = \max\{\lambda \mid_p \lambda \in Sp((x_i)_{1 \leq i \leq n}, E)\}$. However, as we shall see, this equality also fails.

In the following examples we consider the space $E = \mathbb{C}^2$, and the solvable non nilpotent algebras we work with are representations in $\mathcal{L}(\mathbb{C}^2)^{op}$ of the two dimensional solvable algebra $L = \langle y > \oplus < x >$, with bracket $[x, y] = y$. Observe that (y, x) is a Jordan-Hölder basis of L.

As our first example consider the algebra $L_1 \subseteq \mathcal{L}(\mathbb{C}^2)^{op}$, with Jordan-Hölder basis,

\begin{align*}
y &= \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, & x &= \begin{pmatrix} -1/2 & 0 \\ 0 & 1/2 \end{pmatrix}.
\end{align*}

Then

\begin{align*}
\sigma_{pt}((y, x)) &= \{(0, -1/2)\}, & Sp((y, x), E) &= \{(0, 1/2), (0, -3/2)\},
\end{align*}

and

\begin{align*}
r_{\infty}((y, x)) &= 1/2 = g_{\infty}((y, x)), \text{ but } \max\{\lambda \mid_\infty \lambda \in Sp((y, x), E)\} = 3/2.
\end{align*}

On the other hand, if $L_2 \subseteq \mathcal{L}(\mathbb{C}^2)^{op}$ is the algebra with Jordan-Hölder basis,

\begin{align*}
y &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, & x &= \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix},
\end{align*}

we obtain

\begin{align*}
\sigma_{pt}((y, x)) &= \{(0, 2)\}, & Sp((y, x), E) &= \{(0, 1), (0, 3)\},
\end{align*}

and

\begin{align*}
r_{\infty}((y, x)) &= 2, \text{ but } g_{\infty}((y, x)) = 3 = \max\{\lambda \mid_\infty \lambda \in Sp((y, x), E)\}.
\end{align*}

Our last example is the algebra $L_3 \subseteq \mathcal{L}(\mathbb{C}^2)^{op}$ generated by,

\begin{align*}
y &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, & x &= \begin{pmatrix} -1/3 & 0 \\ 0 & 2/3 \end{pmatrix}.
\end{align*}

Then

\begin{align*}
\sigma_{pt}((y, x)) &= \{(0, -1/3)\}, & Sp((y, x), E) &= \{(0, -4/3), (0, 2/3)\},
\end{align*}

and

\begin{align*}
r_{\infty}((y, x)) &= 1/3, & g_{\infty}((y, x)) &= 2/3, \text{ but } \max\{\lambda \mid_\infty \lambda \in Sp((y, x), E)\} = 4/3.
\end{align*}

References

1. R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38.
2. E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995), 105-116.
3. E. Boasso, Joint spectra and nilpotent Lie algebras of Linear transformations, Linear Algebra Appl. 263 (1997), 49-62.
4. E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math. 158 (1993), 15-22.
5. N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Algèbres de Lie Fasc. XXVI, 1960.
6. M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91(1991), 39-44.
7. M. Chō and M. Takaguchi, Identity of Taylor’s joint spectrum and Dash’s joint spectrum, Studia Math. 70 (1982), 225-229.
8. N. Jacobson, Lie Algebras, Interscience Publishers, 1962.
9. A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23-36.
10. C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math. 173 (1996), 173-179.
11. Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1973), 239-255.
12. J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.

Enrico Boasso
E-mail address: enrico_bodisseo@yahoo.it