INTRODUCTION

Teenage pregnancy is regarded as a serious public health problem and often occurs in the context of poor social support and maternal well-being. Maternal and child health programmes in South Africa are located within the framework of general development policies, which focus on meeting the basic needs of rural and urban communities, maximising human resources potential, enlarging the economy and spreading its benefits, as well as democratising society and its institutions. To comply with these policies, free health care services for pregnant mothers and children under the age of 6 years in public health facilities were introduced in 1998.7 Teenage mothers enjoy a similar degree of care to their older peers in public health facilities and, recently, a child support grant was also introduced for mothers.7 Teenage pregnancy is known to be associated with adverse pregnancy outcomes, such as preterm births, low birth-weight deliveries, foetal growth retardation and perinatal mortality.8,9,10 Teenage pregnancy is also linked with the increased risk of assisted delivery and caesarean section, although a study has suggested that these effects are related with some other confounders.7 A high rate of teenage pregnancy also indicates problems with the sexual and reproductive health of a country’s young population, which, again, poses serious implications for other health issues such as the spread of sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). It has been reported that a teenager’s first pregnancy results in a greater frequency of adverse perinatal outcomes than the second or subsequent pregnancies.5-8 Studies in the United States of America and the Netherlands have found that younger teenage mothers are more likely to deliver preterm babies than women in their twenties.9,10 These studies have focused on the role of infection and severe psychosocial stress factors – such as social isolation, homelessness and violence – which are more common in teenage mothers worldwide.11,12 It is also evident that preterm deliveries are common in teenagers who experience social trauma such as family violence.13

In South Africa, teenage pregnancies are seen to occur within the context of unstable relationships with the father of the baby and are often unplanned or unwanted.14 Studies have reported that unplanned pregnancy predisposes women to unsafe abortion and even premature and preventable deaths.15,16 However, the extent of the negative outcome of teenage pregnancy in South Africa is not known, particularly within the rural areas of KwaZulu-Natal Province (KZN). This study was conducted with the objectives of estimating the prevalence of teenage pregnancy and comparing the obstetric and perinatal outcomes of these teenagers with older women who delivered at the rural Empangeni Hospital in KZN over the same study period. This study also attempts to identify the highest risk group for pregnant women in order to improve perinatal outcomes in line with achieving the Millennium Developmental Goals.
ETHICAL CONSIDERATIONS

Prior permission for utilising hospital data to conduct this study was obtained from the Empangeni Hospital Ethics Committee. No identification of patients or staff was required to present the results.

METHODS

Setting and population

Empangeni Hospital is situated in the health district of Uthungulu (one of 11 districts) in KZN and provides maternal and neonatal health services to the residents of the district. According to the 2001 census, the total population of the district is greater than 450,000, of which more than 93% are rural, Black and speak isiZulu, the local language. The district is situated in the eastern and northern part of the province on the Indian Ocean coast and is approximately 170 km north of the province’s commercial capital and primary port city of Durban. The district comprises two hospitals and 14 primary health care (PHC) clinics run by the public sector, which serve mainly the rural and poorer people of the district. There are also two private hospitals, predominantly run by private specialists, as well as over 40 general practitioners’ services available mainly in urban areas. The specialists and medical practitioners of this public (Empangeni) hospital visit all clinics to support and train staff and manage complicated maternity cases on a weekly basis.

Antenatal care is provided at all 14 PHC clinics in the district by nurses and midwives, and these clinics cover 70% of the antenatal population in the district. Empangeni Hospital covers only 30% of the antenatal population and almost all (over 95%) of the district deliveries (i.e. deliveries at public health institutions). Antenatal care at all public health facilities in South Africa (including Uthungulu) is provided according to the national protocol and guidelines. In addition, voluntary counselling and testing for HIV are offered to all pregnant mothers for prevention of mother-to-child transmission of HIV infection. Every mother attending a public health care facility receives a supply of ferrous sulphate (200 mg daily) and folic acid (150 mg daily) for supplementation until the next appointment. To prevent neonatal tetanus, tetanus toxoid immunisation is administered in three doses (0.5 ml intramuscular): the first is given at the booking visit, followed by a second dose 4 weeks later and a third dose 6 months after that. At the first visit, health education on, (1) danger signs and symptoms, (2) self-care in pregnancy, (3) delivery plan and (4) newborn and infant care are given to all pregnant women. Based on the findings of the above examinations and investigations, a final assessment on risk status and a plan for further antenatal care, management of any problems and delivery are made. Once risk factors and/or conditions are identified at any visit, the pregnant mother is referred to the Empangeni Hospital Antenatal Clinic. However, all pregnant women who have received their antenatal care at the public health facilities in this district are admitted to Empangeni Hospital for delivery.

Study design and data collection

A retrospective comparative study was undertaken that targeted the cohort of teenage pregnant mothers (aged < 19 years) who delivered at Empangeni Hospital from April to December 2005, and compared their obstetric and perinatal outcomes with all these women who delivered at Empangeni Hospital. This period was considered appropriate for the collection of the following obstetric information: presentation of foetus during labour, plurality, time of delivery (recorded in hours and minutes), mode of delivery (normal vaginal, vaginal delivery using an operative procedure, such as vacuum or forceps, and caesarean section) and complications of delivery (e.g. perineal and/or cervical tear). Perinatal information included were birth weight, birth outcome of babies (live birth, stillbirth, Apgar score in 1 min and 5 min), post-partum bleeding and so on. The attending midwives recorded all the above-mentioned obstetric and perinatal variables. Haemoglobin estimation was done either at week 36 routinely or at the labour ward during admission by using a portable haemoglobinometer. All midwives working at the labour ward were orientated and received in-service training on filling the labour ward register and compilation of weekly and monthly summary presentations at the weekly and monthly perinatal mortality meetings; thus this data source was considered complete and correct.

Data analysis

The predetermined data to measure specific objectives were entered into Microsoft Excel 2003 and exported to SPSS 12.0.1 for analysis. Frequency tables and cross-tabulations with Pearson chi-square tests were performed to measure the level of significance (5%) for association amongst variables. Standard deviation (SD) and 95% confidence interval (CI) were also used for different rates (where applicable). The student t-test was used to find the significant difference between two proportions, and binary logistic regression was carried out to find the significant predictor for the outcome variables. Obstetric outcomes were measured using rates of low birth-weight delivery, preterm delivery, types of deliveries (e.g. vaginal or operative deliveries), per 100 deliveries, foetald presentations (e.g. vertex, breech), multiple pregnancy rates, delivery complications (e.g. third-degree perineal and cervical tear) and Apgar score. The perinatal outcomes were measured using stillbirth (death of the baby in the uterus) and neonatal deaths (death within 7 days of births).

Definition of terms

All definitions of term used in this study were taken from the Department of Health’s Guidelines for maternity care in South Africa. As such, ‘preterm delivery’ was considered when mothers delivered babies between week 28 and week 36 of gestational age. ‘Term delivery’ was considered when babies were born between week 37 and week 41 of gestation. Any delivery that occurred at or after week 42 of gestation was considered ‘post-term delivery’.

‘Stillbirth’ referred to birth of a dead foetus weighing more than 1000 g or a dead foetus born after 28 weeks of gestational age. It was conventionally divided into two categories, ante-partum stillbirths, when a foetus died before the onset of labour, which is often referred to as a ‘macerated stillbirth’ (MSB) and intra-partum stillbirths, when foetal death occurred during labour; this is referred to as a ‘fresh stillbirth’ (FSB).

In accordance with the national definition of anaemia in pregnancy, the pregnant women who had haemoglobin level < 10 g/dL were considered as suffering from anaemia.

RESULTS

There were 7836 deliveries during the study period, of which 1236 (16%) were from teenage girls. Amongst the teenagers, 1156 (93.5%) were primiparous (had not previously been pregnant) compared to 37% in the older women (p < 0.05). The mean age of the teenagers was 17.08 years (SD = 1.014 and range 13–18 years), and 25.30 years (SD = 5.289 and range 19–46 years) for the older women, and the difference was statistically significant (p < 0.05). As such, ‘preterm delivery’ was considered when...
TABLE 1

| Variables                        | Per cent | p-value |
|----------------------------------|----------|---------|
| Mean Age                         |          |         |
| Older mothers (n = 6590)         | 17.08 (SD = 1.014) | 25.5 (SD = 5.289) | p = 0.001 |
| Antenatal booking                | 96.98    | 0.057   |
| Mean antenatal visits            | 6.0      | 0.576   |
| Prevalence of anaemia            | 12.4     | 0.213   |
| Parity                           |          |         |
| Null                             | 93.2     | 0.001   |
| One or more                      | 6.5      | 0.001   |
| Multiple pregnancies             | 1.5      | 0.091   |
| Foetal presentation at labour    |          |         |
| Vertex                           | 94.6     | 0.081   |
| Breech                           | 3.4      | 0.310   |
| Other                            | 0.2      | 0.209   |

SD, standard deviation.
Values are given as means (p = 0.0).

TABLE 2

| Variables                        | Per cent | p-value |
|----------------------------------|----------|---------|
| Gestational age at delivery      |          |         |
| Preterm delivery                 | 12.1     | 0.962   |
| Term delivery                    | 85.7     | 0.766   |
| Post-term delivery               | 1.6      | 0.651   |
| Mode of delivery                 |          |         |
| Normal (vaginal)                 | 74.9     | 0.057   |
| Vacuum                           | 4.4      | 0.001   |
| Forceps                          | 0.7      | 0.063   |
| Caesarean                        | 20.0     | 0.001   |
| Episiotomy required              | 43.6     | 0.001   |
| Third-degree perineal tear       | 0.3      | 0.166   |
| Birth weight                     |          |         |
| Mean birth weight                | 2918 g   | 0.001   |
| Low birth-weight rate            | 14.3     | 0.560   |
| Perinatal outcomes               |          |         |
| Live birth                       | 97.5     | 0.145   |
| FSB                              | 1.1      | 0.848   |
| MSB                              | 1.1      | 0.023   |
| Mean Apgar score                 |          |         |
| In 1 min                         | 7.97     | 0.846   |
| In 5 min                         | 9.48     | 0.923   |

| Values are given as means (p = 0.0). |

TABLE 3

| Dependent variables | Regression coefficient | p-value | OR | Lower | Upper |
|---------------------|------------------------|---------|----|-------|-------|
| Caesarean delivery  | -0.201                 | 0.066   | 0.818 | 0.660 | 1.013 |
| Macerated stillbirth| -0.939                 | 0.007   | 0.391 | 0.197 | 0.778 |
| Low birth weight    | -0.019                 | 0.897   | 0.981 | 0.738 | 1.304 |

| Values are given as means (p = 0.0). |

DISCUSSION

The rate of teenage pregnancy (16%) in this community is higher compared with the national rate of 12% (estimated from the South African demographic and health surveys 2003) and with the data from developed countries, for example, Sweden (0.7%), France (0.9%) Canada (2%) and USA (4.9%). This could have been due to change in teenagers’ sexual behaviours and activities. It has been observed that girls of younger ages in South Africa are involved in sexual activities. A similar rate of teenage pregnancy was also observed from another district of KZN. A study has shown that because teenagers frequently have sex without reliable contraceptive protection and are often the victims of forced sexual initiation, there is a high rate of teenage pregnancy. Conditions and behaviours that produce high levels of teenage pregnancy are also likely to bear

0.05. Virtually all (> 97%) in both groups had received antenatal care during pregnancy and, on average, made six antenatal visits before delivery (Table 1). The gestational age (preterm, term and post-term) at the time of delivery between the groups was not different. There was no significant difference in the prevalence of anaemia at the time of delivery for the teenage group (12.4%) or older group (13.7%).

Foetal presentations (e.g. vertex, breech), multiple pregnancy rates, delivery complications (e.g. third-degree perineal and cervical tear) at the time of delivery were similar in both groups. A significantly higher rate (p < 0.05) of episiotomy (44%) was given to teenage mothers during delivery compared to older mothers (20.4%). The caesarean delivery rate was the second highest mode of delivery in both groups, but was significantly higher (p < 0.05) in older women (26%) compared to teenage mothers (20%). The assisted delivery (vacuum delivery) rate was significantly higher (p = 0.001) in teenage mothers (4.5%) compared to older mothers (2.7%).

Although the mean birth weights of the babies for the groups were significantly different, the low birth-weight delivery rates were similar at 14.3% and 13.7%, respectively, for teenagers and older mothers (p > 0.05). There was no difference in the FSB rate between the groups, but a significantly lower (p < 0.05) of MSB was observed for the teenagers (1.1%) than for the older women (2.1%). Similarly, the Apgar scores of babies at 1 min and 5 min were similar for those born to teenagers and older mothers (Table 2).

Applying the Chi-square test of association, we found that multiple pregnancy (p = 0.001), breech presentation (p = 0.001) and stillbirths (p = 0.001) were statistically associated with the low birth-weight of infants. The occurrences of FSB and MSB were significantly associated with the parity of the pregnant women (p = 0.001), breech presentation at delivery (p = 0.001), forceps delivery (p = 0.002) and low birth-weight (p = 0.001) deliveries. Applying binary logistic regression, the study did not find teenage pregnancy as a significant predictor for negative pregnancy outcomes, such as preterm delivery, low birth weight and MSB (Table 3).
upon the risk of acquiring HIV. The need to reduce the risk of teenage pregnancy has thus warranted an urgent strategy to be introduced because of the concomitant risk of contracting HIV. There was no significant difference between the prevalence of anaemia in both groups. Iron deficiency anaemia is the most well-known prevalent nutritional deficiency problem affecting pregnant women. Iron deficiencies develop during pregnancy because of the increased iron requirements to supply the expanding blood volume of the mother and the rapidly growing foetus. Every mother attending a public health care facility received a supply of ferrous sulphate (200 mg daily) and folic acid (150 mg daily) as supplementation (prophylaxis), from the first antenatal visit. This was part of standard management of all pregnant women during the antenatal period. Haemodilution is considered an important physiological adaptation to normal pregnancy. Women who do not haemodilute have higher incidence of pre-eclampsia, although the prevalence of this condition was found to be lower in other studies. It is therefore not unlikely that teenage mothers could adapt and fulfill the requirements of iron deficiency during pregnancy.

This study has demonstrated that the obstetric risks of pregnancy in teenage women are generally at the same level as that of older women, except for a higher rate of assisted delivery (e.g. use of vacuum and episiotomy). A probable reason for this could be the poor maternal effort to push the baby out during delivery. It is also logical that teenage mothers would be at different stages of their physical strength and immaturity, and lack previous experience of delivery. On the other hand, assistance to teenage mothers during delivery by episiotomy is recommended as a routine practice in South Africa, therefore a higher rate of episiotomy was expected.

The caesarean delivery rate was significantly lower amongst teenagers, a finding that contrasts with other studies. This lower rate of caesarean delivery was unexpected and one possible explanation could be the reluctance of obstetricians to perform elective caesarean delivery on teenagers, especially those who were unmarried or without a stable relationship. Teenage mothers also want to avoid a scar that would forever remind them of this pregnancy and jeopardise any future reproductive performance. On the other hand, the higher rate of caesarean delivery amongst older women could be due to the indications of performing such procedure in their previous caesarean deliveries and thus a higher rate could be expected. The decision to undergo caesarean section for delivery was made on the basis of obstetric reasons only. The main reason for the protocol in Empangeni Hospital is that pregnant women with two or more previous caesarean deliveries would have elective caesarean delivery for subsequent pregnancies at term (between week 37 and 38 of gestation). However, we did not know the rate of previous caesarean deliveries amongst older women and so this should be considered as a limitation of the study. The main reasons for caesarean delivery (e.g. cephalo-pelvic disproportion, foetal distress, etc.) amongst the groups were not known from this study; however, the conventional belief is that teenage mothers are less mature physically and the size of the pelvis in teenage mothers might be significantly smaller than in the older mothers. One would therefore expect that, given the same foetal size, teenage mothers should have a higher rate of caesarean delivery compared to older mothers. One would therefore expect that, given the same foetal size, teenage mothers should have a higher rate of caesarean delivery compared to older mothers. This study has demonstrated that the obstetric outcome of teenage pregnancies was not different from that of older women. There were no differences in the rate of maternal complications (e.g. eclampsia, pre-eclampsia, ante-partum haemorrhage, etc.) or in the rate of stillbirths. The analysis of the rate of perinatal deaths showed a lower rate amongst teenagers (9%), a country with the similar level of economy. We have demonstrated that the obstetric outcome of teenage pregnancies in this hospital or population was similar to older mothers. There was also no difference in the extent of prenatal, delivery and post-natal delivery care. A comparison between teenage and older women could provide a reasonable and clear picture of whether teenage mothers have different obstetric outcomes. A previous study has shown that preterm delivery is more than twice as likely in women with iron deficiency anaemia. Iron has an important metabolic effect on the function of coenzymes and so the association between anaemia and preterm labour might be caused by iron deficiency rather than anaemia per se. Unlike other studies, we found similar low birth-weight deliveries in teenagers and older mothers. We found that teenage mothers were not at a greater risk of having a stillbirth than women of older age.

A standard package of services and care for all pregnant women was formulated and implemented by dedicated and trained midwives at PHCs. This is done with the aid of necessary antenatal and delivery service provisions and would have made possible a better pregnancy, obstetric and perinatal outcome for teenage mothers in this population. Our data showed that pregnancy in teenage women was generally associated with small changes in obstetric risk. It is important to emphasise that many confounding variables such as a maternal habit of smoking, drinking alcohol, diabetes, pre-eclampsia, chest or urinary tract infections, were not included in this study. The age-related obstetric and perinatal risks for teenage women are low and we believe that pregnancy is associated with considerable socio-economic problems, perhaps leading to social exclusion reducing educational, career and economic prospects. The consequences of teenage pregnancy can be detrimental to the health of women and children. Society thus requires paying the cost of teenage pregnancy in welfare support for young mothers caught in a poverty trap.

Given appropriate antenatal care, the pregnancy outcome of teenage mothers was comparable to that of older women. The results of this study highlighted that teenage pregnancy does not carry any extra risk of obstetric and pregnancy outcome, such as low birth weight babies, preterm deliveries and stillbirths, but socio-economic problems may still exist. Thus, strategies are urgently needed to delay conception and improve the socio-economic development of this group.

ACKNOWLEDGEMENTS

We wish to acknowledge the contributions made by the midwives of Empangeni Hospital in retrieving data from the hospital register, and the hospital management team for supporting the study.
REFERENCES

1. Cunningham PW, Boulit BE. Black teenage pregnancy in South Africa: Some considerations. Adolescence. 1996;31:294–299.
2. Department of Health. A national health plan for South Africa. African National Congress (ANC), WHO and UNICEF. 1994. c2010 [cited 2010 May 25]. Available from: http://www.anc.org.za/ancdocs/policy
3. ANC. The reconstruction and development programme: A policy framework. Johannesburg: ANC; 1994.
4. Zhang B, Chenn A. Teenage pregnancy in South Australia, 1986–1998. Aust New Zeal J Obstet Gynaecol. 1991;31:29–298.
5. Fraser AM, Brokert J, Wad RH. Association of young maternal age with adverse reproductive outcomes. New Engl J Med. 1995;332:1113–1117.
6. Khwaja SS, Al-Sabai MH, Al-Suleiman AS, et al. Obstetric implications of pregnancy in adolescence. Acta Obstet Gynecol Scand. 1986;65:57–61.
7. Moerman ML. Growth of the birth canal in teenage girls. Am J Obstet Gynecol. 1982;143:528–532.
8. Olausson PO, Cnattingius S, Haglund B. Teenage pregnancy and risk of late fetal death and infant mortality. Br J Obstet Gynaecol. 1999;106:116–117.
9. DuPlessis HM, Bell R, Richards T. Adolescent pregnancy: Understanding the impact of age and race on outcomes. J Adolesc Health. 1997;20:187–197.
10. Van Enk WJ, Gorissen WH, Van Enk A. Teenage pregnancy and ethnicity in the Netherlands: Frequency and obstetric outcome. Eur J Contracept Reprod Healthcare. 2000;5:77–84.
11. Quinlivan JA, Evans SF. The impact of domestic violence in teenage pregnancy – A prospective cohort study. J Pediatr Adolesc Gynecol. 2001;14:17–23.
12. Maskey S. Teenage pregnancy: Doubts, uncertainties and psychiatric disturbance. J R Soc Med. 1991;84:723–725.
13. Covington DL, Justason BJ, Wright LN. Severity, manifestations and consequences of violence among pregnant adolescents. J Adolesc Health. 2001;28:55–61.
14. Jewkes R, Vundule C, Maforah F, Jordaan E. Relationship dynamics and teenage pregnancy in South Africa. Soc Sci Med. 2001;52:733–744.
15. Mbizvo MT, Bounduelle MMJ, Chadzuka S, et al. Unplanned pregnancies in Harare. What are the social and sexual determinants? Soc Sci Med. 1997;45:937–942.
16. Kost K, Landry DJ, Darroch JE. The effects of pregnancy planning status on birth outcomes and infant care. Fam Plann Perspect. 1998;30(5):223–230.
17. Department of Health. Guidelines for maternity care in South Africa: A manual for clinics, community health centres and district hospitals. 2nd ed. Pretoria: Department of Health; 2002.
18. Department of Health, Medical Research Council, OrcMacro. South African demographic and health survey 2003. Pretoria: Department of Health; 2007.
19. Darroch JE, Singh S, Frost JJ. Differences in teenage pregnancy rates among five developed countries: The roles of sexual activity and contraceptive use. Fam Plann Perspect. 2001;33(6):244–250, 281.
20. Hoque AKM, Kader SB, Hoque E. Prevalence of anemia in pregnancy at Greytown, South Africa. Trop J Obstet Gynaecol. 2006;23:3–7.
21. Vundule C, Maforah F, Jeeves R, et al. Risk factors for teenage pregnancy among sexually active black adolescents in Cape Town. A case control study. S Afr Med J. 2001;91:73–80.
22. Allen LH. Pregnancy and iron deficiency: Unresolved issues. Nutr Rev. 1997;55(5):91–103.
23. British Nutrition Foundation. Iron: Nutritional and physiological significance. London: Chapman and Hall; 1995.
24. Hays PM, Crikshank DP, Dunn LJ. Plasma volume determination in normal and preeclamptic pregnancies. Br J Obstet Gynaecol. 1985;151:958–966.
25. Jolly MC, Selvire NJ, Harris J, et al. Obstetric risks of pregnancy in women less than 18 years old. Br J Obstet Gynaecol. 2000;96:962–966.
26. Lao TT, Ho LF. The obstetric implications of teenage pregnancy. Hum Reprod. 1997;12:2303–2305.
27. Scholl TO, Hediger ML, Anesig IC, et al. Growth during early teenage pregnancies. Lancet. 1986;1:710–711.
28. Bile JR, Stoll BJ, Lucas AO, editors. Improving birth outcomes: meeting the challenge in the developing world. Washington, DC: The National Academic Press; 2003.
29. Scholl TO, Hediger ML, Fischer RL, et al. Anaemia vs. iron deficiency: Increased risk of preterm delivery in a prospective study. Am J Clin Nutr. 1992;55:985–988.
30. Brown HL, Fan YD, Gonsoulin WJ. Obstetric complications in young teenagers. S Afr Med J. 1991;84:46–48.