Review

Role of biogas technology adoption in forest conservations: evidence from Ethiopia

Yadeta Bekele Bekere1*, Guta Regasa Megerssa2

1 Department of Agricultural Economics and Agribusiness Management, College of Agriculture and Veterinary Medicine, Jimma University, Ethiopia
2 Department of Rural Development and Agricultural Extensions, College of Agriculture and Veterinary Medicine Jimma University, Ethiopia

*corresponding author: yadeta11@gmail.com

Received 8 August 2019, Accepted 3 December 2019

Abstract: Almost all developing countries satisfy their energy requirements from firewood. In Ethiopia majority of the rural population relies on biomass energy sources for every energy necessities. Fuelwood accounts for about 78 % of the total energy needs, whereas animal dung and crop residue share 12 % and nine percent, respectively. Almost all of the firewoods are collected from natural forests and few of them from homestead trees. Chronic drought, land degradation, and loss of soil fertility that are positively correlated with low livestock and crop productivity are extensions of deforestation for firewood. Heavy dependency on biomass fuel in Ethiopia has resulted in fast deforestation, desertification, climate change, global warming and finally decrease in agricultural productivity. Therefore the adoption of biogas technologies has great potentials to supply low-cost energy and results in less dependency on firewood. To improve such adverse socio-economic and ecological costs, interventions like improved biogas technologies, raising community awareness on deforestation, and utilization of alternative energy technologies are recommended to conserve natural forests.

Keywords: biogas technology, conservation, Ethiopia, forest

To cite this article: Bekere, Y.B. and Megerssa, G.R. 2020. Role of biogas technology adoption in forest conservations: evidence from Ethiopia. J. Degrade. Min. Land Manage. 7(2): 2035-2039, DOI: 10.15243/jdmlm.2020.072.2035.

Introduction

Fuelwood production was estimated to be 3.9 billion m³ globally from which reached 2.3 billion m³ was used as fuel wood (FAO, 2008). More than 43% of the world’s population depends on firewood for cooking (Bonjour et al., 2013). Accordingly, about 60% of the world’s forest removal is used for sources of energy, especially in developing countries. More than 64 % of the world’s deforestation is happening in developing countries for their daily consumptions (Damte et al., 2012).

Nearly all African countries satisfy their energy requirements from firewood (Zenebe et al., 2010). Over 90% of the energy consumption in most Sub-Saharan Africa is generated from firewood (Idiata et al., 2013). In Ethiopia majority of the rural population relies on biomass energy sources for every energy necessities. Fuelwood accounts for about 78% of the total energy needs, whereas animal dung and crop residue share 12% and nine percent, respectively. Almost all of the firewoods are collected from natural forests and few of them from homestead trees.

In Ethiopia, fuelwood is mainly used for cooking, heating, and lighting in both rural and urban areas. Different studies confirm that utilization of firewood has negative environmental implications (Damte et al., 2012). Fuelwood is used as a supply of energy for more than 70% of the population in Africa (Matsika et al., 2013). According to Amankwah (2011), about 90 percent of fuelwood is collected from natural forests. This
high dependency on energy from fuelwood resulted in depletion of natural forest which compounds with the tricky impacts of climate change (Riti and Shu, 2016). On top of this, chronic drought, land degradation, and loss of soil fertility that are positively correlated with low livestock and crop productivity are extensions of deforestation for firewood (Bisu et al., 2016). Therefore, access to modern energy sources got due attention in Africa within a context of sustainable forest conservation and less dependency on natural resources for energy generation (Amare, 2014; Kamp and Bermúdez Forn, 2016).

In some African countries, fuelwood and charcoal are considered as a centre of business besides to power sources. About 76 to 80 percent of the total energy comes from conventional biomass fuels (Kebede et al., 2010). This percentage might be very high in east African countries where almost all households depend on biomass fuel (Gebreegziabher, 2007). According to the International Energy Agency (2014), solid biomass fuels goes for all rural households and 80 percent of urban households in Ethiopia.

Fuelwood has negative effects like forest depletion, carbon emissions, and hence air pollution contributing to climate change (Bluffstone et al., 2013). Theoretically, depending less on fuelwood utilization leads to forest conservation. Studies confirmed the impact of substitutes for fuelwood by the local community (Timko and Kozak, 2016), and the role of forestation on degraded lands to satisfy fuelwood demand (Gruenewald et al., 2007; Khazmina et al., 2012). Other researches assessed the impact of biogas technologies and reported the reduction of fuelwood demand and forest regeneration (Baylis et al., 2016).

Discussion

Biogas technologies have potentials to supply low-cost energy and results in less dependency on firewood (Arthur et al., 2011). Production of biogas from waste materials can lessen the use of fuelwoods from natural forests (Kumar et al., 2015), and hence encourages forest conservations. These technologies highly contribute to global carbon emission reductions and balance the natural climate. Biogas technologies can advance rural livelihoods by minimizing costs for energy and saving time from firewood collection (Agoramoorthy and Hsu, 2008).

According to Bisu et al. (2016), the dissemination of biogas technologies has been considered as one of the significant strategies for safe and sustainable energy supply in many African countries. Subsidizing biogas technology is also considered in Ethiopia (Kamp and Bermúdez Forn, 2016) to reduce deforestation which is tied with land degradation and loss of soil fertility (Mengistu et al., 2015). Consequently, the National Biogas Program (NBP) was practiced to assess the viability of biogas technologies in rural and urban settings. About fourteen thousand biogas technologies were disseminated in four regional states of the country. Ethiopia has a high potential for biogas production. Waste of livestock can be used for biogas production. In Ethiopia, the attempt of making biogas from cattle dung was started before 50 years ago. However, the development of biogas technology has remained very minimal.

Determinants of biogas technology adoption in Ethiopia

Biogas technologies have been installed in Burundi, Ethiopia, Ghana, Namibia, Nigeria, Rwanda, Zimbabwe and Uganda in recent years (Renwick et al., 2007) aiming to install more than two million biogas technologies by 2020 (Rupt et al., 2015).

Adoption of any technology in general and biogas technology, in particular, depends on various factors and varies from place to place. Adoption and dissemination of technologies can be determined by demographic, environmental, institutional setup, and related socioeconomic factors. Technology that is perceived to be more important than the other one is usually adopted earlier (Mengistu et al., 2015).

According to Mwirigi et al. (2014), technology users in rural areas where access to credit and income is low, users go for technologies with minimum cost and continue for a long period of time. The other studies also confirmed that subsidizing biogas technology encourages its adoption and facilitates forest conservation (Rajendran et al., 2012).

Costs of technology, income, land holding, livestock holding, water availability, access to credit facilities are directly determining the adoption rate of biogas technology (Smith, 2005). Availability of manure is also among the major determinants of biogas adoption in developing countries (Winrock International, 2007).

Additionally, education, perception, age and sex of household head were identified to be the determinants of adoption since they can affect once able to get information and assess the advantage of the technology in their livelihood. Education improves information possession talent leading to usage of new technologies (Vien, 2011). Consciousness about technology also plays a major role in technology adoption. Mwirigi et
al. (2014) reported that income is the other factor determining technology adoption to cover costs. Gender role can either directly or indirectly determine the adoption of technology. In Ethiopia, women have a vital role in energy utilization for cooking.

Firewood consumption and deforestation in Ethiopia

Approximately about 50% of the world's population used biomass fuels for cooking and heating. In sub-Saharan Africa, biomass is the central energy source implemented through three stone fire. About five percent of greenhouse gas emissions come from biomass burning in the world.

More than 85% of Ethiopian population lives in rural areas where agriculture remains the backbone of the economy (World Bank, 2010). Currently, over 93 million people in Ethiopia are using firewood as the main source of energy. Such intensive utilization of firewood from forests resulted in environmental disasters including deforestation over the past three decades. On the other hand, farmers spent more time and money on firewood collection and hence which reduces their productivity in agriculture putting them in vicious circle of poverty.

According to FAO (2010), about 11.2 percent of land was covered by forests in Ethiopia. But the country had lost over 2,818,000 hectares of its forest cover within 1990 and 2010. The population pressure in Ethiopia has exacerbated deforestation from forests and fuelwood consumption and traditional agricultural expansion (Mekonnen and Kohlin, 2009). Rough estimations revealed that an additional 250 to 300 million hectares of new land is required in the next 25 years for commercial farming (Dessie and Kleman, 2007).

Firewood consumption has negative environmental, economic and health impacts. They primarily lead to deforestation. Ecological disturbances may happen due to charcoal production and consumption. It is a cause for air pollution due to indoor smokes in rural households (Geissler et al., 2013). Livestock dung, firewood and charcoal generate more than 90 percent of basic energy consumption in Ethiopia (Mekonnen and Kohlin, 2009). Gurmessa (2010) also reported that about 84 percent of urban dwellers and about 99 percent of rural households depend on biomass for cooking fuel. Surprisingly, both urban and rural households shifted from biomass utilization to wood and charcoal (Damte et al., 2012). According to Geissler et al. (2013), Ethiopia uses about 105,172,465 tons of biomass which directly comes from charcoal, tree branches and leaves. Consequently, charcoal consumption in the country jumped annually from 48,581 tons to 4,132,873 tons in 2000 to 2013 years.

Such heavy dependency on fuelwood, leads to carbon dioxide emission, environmental degradation, and deforestation and due attention must be given by the government.

From the following table, the household fuelwood consumption in Ethiopia is increasing at an increasing rate which can be used as an alarm for an environmental crisis like climate change. Ethiopia lost about 796,678,000 m3 of wood from 2008 to 2017. This further implies that the country is missing on average about 79,667,800 m3 per year.

Table 1. Household fuelwood consumption in Ethiopia.

Year	Thousand of m3
2017	82,097
2016	82,190
2015	81,760
2014	80,962
2013	80,183
2012	79,429
2011	78,682
2010	77,944
2009	77,122
2008	76,309

Source: UN data, http://www.factfish.com/statistic.

Ethiopia has about 4.7% of the world share in fuelwood consumption. The following table compares Ethiopia’s fuel consumption by households with different countries.

Table 2. Comparison of countries by fuelwood consumption.

Countries	Household fuelwood consumption (thousands of m3) in 2016
Burma	43,629
Indonesia	175,129
Nepal	38,773
Nigeria	177,996
India	198,277
Ethiopia	**82,190**
Tanzania	47,025
Vietnam	52,823
United states	56,119

Source: UN data, UN data, http://www.factfish.com/statistic.

Ethiopia is one of the most biomass energy-dependent countries in the world sharing about
Role of biogas technology adoption in forest conservations: evidence from Ethiopia.

92% of total national energy consumption in 2010. Children and women are very vulnerable to firewood gathering, especially where biomass is scarce.

According to FAO (2000), about 1.86 billion m3 of firewood in the world comes from forests converted to charcoal where about 28 percent of it is happening in Africa. Therefore, significant emission of greenhouse gases and forest degradation in developing countries is correlated with dependency on firewood as a major source of energy. On the other hand, rapid population growth and inflation were reported as the main drivers of deforestation (Arnold et al., 2003). Environmental harm from firewood collection is much worsened when many people rely on the few forested areas (Specht et al., 2015).

The monopolistic dependency on firewood in developing countries has led to loss of biodiversity, loss of soil fertility, desertification, and high Co2 emission which is a direct cause for global warming and climate change (Ojonigu et al., 2010). In Ethiopia, more than 140,000 hectares of forests are lost per year mainly for firewood (FAO, 2010). This has a direct implication on climate change which further exacerbates food insecurity and poverty. Adoption of biogas technologies has the potential to reduce forest degradation and saves biodiversity. Other alternative sources of energy should be innovated and adopted. Thus it is very important to maintain and promote usage of renewable energy technologies like biogas to conserve natural forests in developing countries.

Conclusions and Recommendations

Fuelwood is being consumed in Ethiopia without tree planting. Deforestation due to firewood collection and agricultural expansion is the main headache for the government and related policy makers. Over utilization of firewood in the country is leading to a shortage in rural communities. This heavy dependency on biomass fuel has resulted in fast deforestation, desertification, climate change, global warming and finally decrease in agricultural productivity. To improve such adverse socio-economic and ecological costs, interventions like improved biogas technologies; community awareness on deforestation, and the utilization of alternative energy technologies are recommended to conserve natural forests.

References

Agoramoorthy, G. and Hsu, M.J. 2008. Biogas plants ease ecological stress in India’s remote villages. Human Ecology 36(3):435–441, doi: 10.1007/s10745-008-9163-8.

Amankwah, E. 2011. Integration of biogas technology into farming system of the three northern regions of Ghana. Journal of Economics and Sustainable Development 2(4):76–85.

Amare, Z.Y. 2014. The role of biogas energy production and use in greenhouse gas emission reduction: the case of Fogera District, Amhara Regional State, Ethiopia. Journal of Multidisciplinary Engineering Science and Technology 1(5):404–410.

Arnold, M., Köhlin, G., Persson, R. and Shepherd, G. 2003. Fuel wood revisited: what has changed in the last decade? CIFOR Occasional Paper No. 39. Jakarta: Center for International Forestry Research.

Arthur, R., Baidoo, M.F. and Antwi, E. 2011. Biogas as a potential renewable energy source: a Ghanaian case study. Renewable Energy 36(5):1510–1516.

Baylis, K., Honey-Roses, J., Borner, J., Corbera, E., Ezzine-de-Blas, D., Ferraro, P.J. and Wunder, S. 2016. Mainstreaming impact evaluation in nature conservation. Conservation Letters 9: 58 e64.

Bisu, D.Y., Kuhe, A. and Lortyer, H.A. 2016. Urban household cooking energy choice: an example of Bauchi metropolis, Nigeria. Energy, Sustainability and Society 6, 15 (2016), doi:10.1186/s13705-016-0080-1.

Bluffstone, R., Robinson, E. and Guthiga, P. 2013. REDD and community-controlled forests in low-income countries: any hope for a linkage? Ecological Economics 87: 43 e52. doi:10.1016/j.ecolecon.2012.12.004.

Boujou, S., Adair-Rohani, H., Wolf, J., Bruce, N.G., Meht, S., Prüss-Ustün, A., Lahiff, M., Rehfuss, E.A., Mishra, V. and Smith, K.R. 2013. Solid fuel use for household cooking: Country and regional estimates for (1980 2010). Environmental Health Prospect 121(7): 784–90, doi: 10.1007/s12098-012-05987.

Damte, A., Koch, S.F. and Mekonnen, A. 2012. Coping with Fuel wood Scarcity: Household Responses in Rural Ethiopia. Discussion Papers dp-12-01-ed, Resources For The Future.

Dessie, G. and Kerman, J. 2007. Pattern and magnitude of deforestation in the South Central Rift Valley Region of Ethiopia. Mountain Research and Development 27(2):162-168.

FAO. 2000. Global Forest Resources Assessment. Forestry paper 140. ISSN 0258- 6150.

FAO. 2008. http://www.fao.org/copyright-en.htm Accessed on 29-7-2015.

FAO. 2010. Global forest resources assessment 2010: Main report, Rome, Italy.

Gebreghiawber, Z. 2007. Household Fuel Consumption and Resource Use in Rural-Urban Ethiopia PhD dissertation. The Netherlands: Department of Social Sciences, Wageningen University; 2007http://library.wur.nl/WebQuery/wurpubs/fulltext/31629/ accessed 17.06.17.

Geissler, S., Haguier, D., Horst, A., Kause, M. and Sutcliffe, P. 2013. Biomass Energy Strategy Ethiopia., AMBERO Consulting Gesellschaft mbH Immanuel-Kant-Str. 41, 61476 Kronberg i. Ts.
Gruenewald, H., Brandt, B.K.V., Schneider, B.U., Bens, O., Kendzia, G. and Reinhard, F.H. 2007. Agroforestry systems for the production of woody biomass for energy transformation purposes. *Ecological Engineering* 9: 319-328, doi: 10.1016/j.ecoleng.2006.09.012.

Gurmessa, F. 2010. Floristic Composition and Structural Analysis of Komto Afromontane Rainforest, East Wollega Zone of Oromia Region, West Ethiopia (Doctoral dissertation, MSc. Thesis, Addis Ababa University, Addis Ababa).

Idiata, D.J., Ebiogbe, M., Oriakhi, H. and Iyalekhue, O.I. 2013. Wood fuel usage and the challenges on the environment. *International Journal of Engineering Sciences* 2(4): 110-114.

International Energy Agency. 2016. World Energy Outlook. 2014. https://www.iea.org/publications/freepublications/publication/WEO2014.pdf/ accessed 19.03.17.

Kamp, L.M. and Bermúdez Forn, E. 2016. Ethiopia’s emerging domestic biogas sector: current status, bottlenecks and drivers. *Renewal and Sustainable Energy Reviews* 60(C):475-488, doi: 10.1016/j.rser.2016.01.068.

Kebede, E., Kagochi, J. and Jolly, C.M. 2010. Energy consumption and economic development in Sub-Saharan Africa. *Energy Economics* 32:532-7.

Khamzina, A., Lamers, J.P.A. and Vlek, P.L.G. 2012. Conversion of degraded cropland to tree plantations for ecosystem and livelihood benefits. In: Martius, C. (Ed.), Cotton, Water, Satls, and Soums: Economic and Ecological Restructuring in Khorezm. Springer, Uzbekistan, pp. 235 e248, doi: 10.1007/978-94-007-1963-7.

Kumar, S., Mishra, B.P., Patel, S.K., Yadavanshi, B.K., Chinchokar, S.S. and Khardiwar, M.S. 2013. Trends of biogas plants’ adoption in Chhattisgarh, India. *Spring* 2(2):10–13.

Matsika, R., Erasmus, B.F.N. and Twine, W.C. 2013. Double jeopardy: the dichotomy of fuelwood use in rural South Africa. *Energy Policy* 52(C):716–725, doi: 10.1016/j.enpol.2015.04.002.

Mekonnen, A. and Köhlin, G. 2009. Determinants of household fuel choice in major cities in Ethiopia. http://www.rff.org/files/sharepoint/WorkImages/Download/EfD-DP-08-18.pdf.

Mengistu, M.G., Simane, B., Estete, G. and Workneh, T.S. 2015. A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia. *Renewable and Sustainable Energy Reviews* 48(C):306–316, doi: 10.1016/j.rser.2015.04.026.

Mwirigi, J., Balana, B., Mugisha, J., Walekha, P., Melamu, R., Nakami, S. and Makenzi, P. 2014. Socio economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review. *Biomass and Bioenergy* 70:17-25, doi:10.1016/j.biombioe.2014.02.018.

Ojonigu F. A., Tabitha S., Innocent A. and Seidu O.M. 2010. Assessing changes in Kangaro Forest, Kaduna State, Nigeria, Using Remote Sensing and GIS. *Research Journal of Applied Sciences, Engineering and Technology* 2(2), 121-132.

Rajendran, K., Aslanzadeh, S. and Taherzadeh, M.J. 2012. Household biogas digesters: a review. *Energies* 5:2911–42.

Renwick, M., Subedi, P.S. and Hutton, G. 2007. A Cost-Benefit Analysis of National and Regional Integrated Biogas and Sanitation Programs in sub-Saharan Africa (Draft / Discussion Paper).

Ritti, J.S. and Shu, Y. 2016. Renewable energy, energy efficiency, and eco-friendly environment (R-E5) in Nigeria. *Energy, Sustainability and Society* 6:13, doi: 10.1186/s13705-016-0072-1.

Ruf, G.V., Bahri, P.A., de Boer, K. and McHenry, M.P. 2015. Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. *Renewable and Sustainable Energy Reviews* 52(C):468-476.

Smith, J. 2005. The potential of small scale biogas digester to alleviate poverty and improve long term sustainability of ecosystem services in sub-Saharan Africa, Final Report, the UK Department for International Development, DFID, 188 p.

Specht, M.J., Pinto, S.R.R., Albuquerque, U.P., Tabarelli, M. and Melo, F.P.L. 2015. Burning biodiversity: Fuelwood harvesting causes forest degradation in human dominated tropical landscapes. *Global Ecology and Conservation*, 3, 200–209.

Timko, J.A. and Kozak, R.A. 2016. The influence of an improved firewood cook stove, Chitezto mbaula, on tree species preference in Malawi. *Energy Sustain.* Dev.33, 53 e60, doi:10.1016/j.esd.2016.04.002.

Vien, T.H. 2011. The linkage between land reform and land use changes: a case of Vietnam. *Journal of Soil Science and Environmental Management* 2: 88-96.

Winrock International. 2007. Africa biogas initiative: potential for growth and models for commercialization. Arkansas, USA: Winrock International.

World Bank. 2010. Energy intensive sectors of the Indian economy: Path to low carbon development.

Zenebe, G., Mekonnen, A., Kassie, M. and Köhlin, G. 2010. Urban energy transition and technology adoption: The case of Tigray, Northern Ethiopia. *Energy, Sustainability and Society* 6:13, doi:10.1186/s13705-016-0072-1.

Zenebe, G., Mekonnen, A., Kassie, M. and Köhlin, G. 2010. Urban energy transition and technology adoption: The case of Tigray, Northern Ethiopia. *Energy, Sustainability and Society* 6:13, doi:10.1186/s13705-016-0072-1.

Zenebe, G., Mekonnen, A., Kassie, M. and Köhlin, G. 2010. Urban energy transition and technology adoption: The case of Tigray, Northern Ethiopia. *Energy, Sustainability and Society* 6:13, doi:10.1186/s13705-016-0072-1.