Abstract

Active ulcerative colitis (UC) is frequently associated with infiltration of a large number of leukocytes into the bowel mucosa. Leukocytapheresis is a novel nonpharmacologic approach for active UC, in which leukocytes are mechanically removed from the circulatory system. Current data indicate that leukocytapheresis is efficacious in improving response and remission rates with excellent tolerability and safety in patients with UC. Corticosteroid therapy remains a mainstay in the treatment of active UC; however, long-term, high doses of corticosteroids usually produce predictable and potentially serious side effects. If leukocytapheresis can spare patients from exposure to corticosteroids, the risk of steroid-induced adverse events should be minimized. This may be of great benefit to patients because severe side effects of steroids seriously impair health-related quality of life. In this article, we reviewed current evidence on whether leukocytapheresis can avoid or reduce the use of corticosteroids in the management of patients with UC. Several studies have shown that leukocytapheresis was effective for steroid-naive patients with active UC. Furthermore, both short-term and long-term studies have demonstrated the steroid-sparing effects of leukocytapheresis therapy in patients with UC. Although the evidence level is not striking, the available data suggest that leukocytapheresis can avoid or reduce the use of corticosteroids in the management of UC. Large, well-designed clinical trials are necessary to more accurately evaluate the steroid-sparing effects of leukocytapheresis in the management of UC.
The largest randomized, double-blind, sham-controlled study of Adacolumn leukocytapheresis therapy failed to demonstrate efficacy for the induction of clinical remission or response in patients with moderate-to-severe UC. A number of meta-analyses were conducted to assess the safety and efficacy of leukocytapheresis compared with conventional pharmacotherapy in patients with UC. In the trials that compared leukocytapheresis and corticosteroids, side effects were much less frequent in patients treated with leukocytapheresis. Few severe adverse events were observed during leukocytapheresis therapy. Unlike corticosteroids, leukocytapheresis is associated with an excellent safety and tolerability profile. Furthermore, leukocytapheresis induces a clinical remission in a higher proportion of UC patients as compared to conventional medical therapy. However, many of the studies evaluated in the meta-analyses were conducted in Japanese patients, which may limit generalizability. High-quality randomized controlled trials (RCTs) comparing leukocytapheresis with conventional medical treatment or sham procedure in Western populations are required.

CORTICOSTEROIDS

Corticosteroid therapy remains a mainstay in the treatment of active UC. Patients frequently experience improvement in their symptoms within days of starting corticosteroids. During an acute severe exacerbation, approximately two-thirds of patients will respond to intravenous corticosteroid therapy. For steroid-refractory patients, options are limited to surgery or second-line agents, such as cyclosporine or infliximab, in an attempt to avoid colectomy.

In the study by Faubion et al, 63 patients with active UC were treated with corticosteroids. Short-term outcomes (30 d) were complete remission in 54% of patients, partial remission in 30%, and no response in 16%. One-year outcomes were prolonged response in 49% of patients, corticosteroid dependence in 22%, and operation in 29%. This study underlines the fact that most patients with UC initially respond to steroids, but after one year a significant proportion loses the response; this leads to steroid-dependency or the need for surgery, even among those who initially responded to the treatment. The pathophysiology of corticosteroid resistance and dependency in UC is poorly understood. Leukocytapheresis removes from the body blood cells that contribute to UC and, therefore, unlike corticosteroids, it is not expected to induce dependency or refractoriness.

EFFICACY AND SAFETY OF LEUKOCYTAPHERESIS: A SYSTEMATIC REVIEW AND META-ANALYSIS OF CLINICAL TRIALS

The data obtained from uncontrolled studies are generally quite consistent: a high response rate has been achieved in corticosteroid-naive patients and a remission rate of approximately 50% has been achieved in patients with steroid-dependent or steroid-refractory UC. Additionally, leukocytapheresis is safe and well tolerated. The largest randomized, double-blind, sham-controlled study of Adacolumn leukocytapheresis therapy failed to
LEUKOCYTAPHERESIS FOR STEROID-NAIVE UC

Leukocytapheresis has been mainly used for patients with steroid-dependent or steroid-refractory moderate-to-severe UC. About half of patients with steroid-dependent or steroid-refractory UC achieve clinical remission during a course of leukocytapheresis therapy\[^{20-22}\]. So far, five small-scale observational studies\[^{14,15,25-27}\] have evaluated the efficacy and safety of leukocytapheresis for steroid-naive patients with active UC. Of these five studies, one study\[^{21}\] also included steroid-refractory patients, and one study\[^{25}\] steroid-dependent patients. Another study\[^{26}\] compared the outcomes of steroid-naive patients treated with leukocytapheresis and corticosteroid therapy.

A brief summary of the five studies is presented in Table 1. In the short-term, the majority of patients achieved clinical improvement. The remission rate immediately after leukocytapheresis therapy ranged from 33% to 88\(^\%\)\[^{14,15,25,27}\]. Quantitative pooling of data was not feasible due to the diversity of interventions and outcome measures among the studies. In a prospective study by Hanai \textit{et al.}\[^{14}\], 81\% of steroid-refractory and 88\% of steroid-naive patients achieved clinical remission one week after the last apheresis session. At 12 mo, 79\% of patients had maintained their remission. In a prospective study by Suzuki \textit{et al.}\[^{25}\], 85\% of patients achieved clinical remission during a course of leukocytapheresis therapy. At eight months, 60\% of patients had maintained their remission. In the study by Tanaka \textit{et al.}\[^{25}\], the response rate was 85\% in steroid-naive patients and 58\% in steroid-dependent patients. On average, remission was sustained with 5-aminosalicylic acid (5-ASA) for 7.8 mo in the responders. This is the first report showing a striking difference in clinical response to Adacolumn leukocytapheresis between steroid-naive and steroid-dependent patients. In a controlled study by Nishioka \textit{et al.}\[^{26}\], 29 steroid-naive patients were selected to be treated with Cellsorba leukocytapheresis (\(n = 9\)) or steroids (\(n = 20\)). In the steroid group, patients with moderately active disease received 0.5 mg/kg/d of prednisolone and those with severe disease 1.0 mg/kg/d. Eight patients (89\%) in the apheresis group and 16 (80\%) in the steroid group showed clinical improvement, and three (33\%) in the apheresis group and seven (35\%) in the steroid group achieved clinical remission. Three major adverse effects were observed in the steroid group, but none were observed in the apheresis group. The efficacy and safety of leukocytapheresis were equivalent, and in terms of severe adverse effects, superior to those of steroid therapy. In the study by Umehara \textit{et al.}\[^{27}\], 18 steroid-naive patients with moderately active UC received weekly leukocytapheresis therapy with Cellsorba for five consecutive weeks. The remission rates at 8 and 48 wk after the last apheresis session were 61\% and 28\%, respectively. At 48 wk after achieving remission, the relapse rate was 55\%, and the duration to relapse was 8.7 mo. In all studies, leukocytapheresis was well tolerated, and no severe side effects were observed.

Efficacy of Leukocytapheresis Without Concomitant Steroid Therapy

In patients with moderately to severely active UC who failed to respond to optimal doses of 5-ASA compounds, systemic corticosteroids should be used. A few studies\[^{17,28}\] evaluated the efficacy and safety of leukocytapheresis without concomitant steroid therapy for patients who failed to respond to 5-ASA compounds. In our prospective study\[^{29}\], 30 consecutive patients with active distal UC were treated with weekly Adacolumn leukocytapheresis (a total of five sessions). During treatment, corticosteroid was not given. The median disease activity index score significantly decreased from six to two. Clinical remission was achieved in 21 patients (70\%) after the last apheresis session. No serious side effects were observed. Ashida \textit{et al.}\[^{28}\] conducted a multicenter study to investigate the efficacy of leukocytapheresis without concomitant steroid therapy in patients with active UC. Twenty patients were treated with Cellsorba leukocytapheresis (twice a week for three weeks). The Lichtiger's clinical activity index score significantly decreased from 11.7 to 6.6 after the treatment. Of the 20 patients, 15 (75\%) responded, and 7 (35\%) achieved complete remission. No serious adverse reactions were observed. In an RCT by Breuci \textit{et al.}\[^{29}\], 80 patients with active UC were randomly divided into two treatment groups: patients in the apheresis group received a five-session (one session per week) treatment with Adacolumn leukocytapheresis, and those in the steroid group were treated with methylprednisolone. Concomitant therapy with oral

Table 1: Leukocytapheresis for steroid-naive patients with active ulcerative colitis

Ref.	Patients (\(n\))	Leukocytapheresis (sessions/wk)	Remission\(^{1}\) rate (%)
Hanai \textit{et al.}\[^{14}\]	Steroid-naive 8		
(stereoid-refractory 31)	Adacolumn 11/11		
(refractory 81)	Naive 88		
(refractory 81)			
Suzuki \textit{et al.}\[^{25}\]	20		
(steroid-dependent 19)	Adacolumn 5-10/2.5-5	85	
Tanaka \textit{et al.}\[^{25}\]	Steroid-naive 26		
(steroid-dependent 19)	Adacolumn 11/12		
(dependent 58)	Naive 85		
(dependent 58)			
Nishioka \textit{et al.}\[^{26}\]	9		
(Cellsorba)	10/10		
(89 improved)	33		
Umehara \textit{et al.}\[^{27}\]	18		
(Cellsorba)	5/5		
61			

\(^{1}\) Remission was defined as a clinical activity index (CAI) decrease to 4 or less and mucosal vascular patterns became at least partly visible in the studies by Hanai \textit{et al.}\[^{14}\], Suzuki \textit{et al.}\[^{25}\], and Nishioka \textit{et al.}\[^{26}\], a CAI decrease to 4 or less in the study by Tanaka \textit{et al.}\[^{25}\], and a CAI decrease to less than 4 in the study by Umehara \textit{et al.}\[^{27}\].
5-ASA (2.4 g/d) was maintained in both groups. Patients who achieved remission were clinically and endoscopically followed for 12 mo after the end of leukocytapheresis or methylprednisolone therapy. Remission was achieved in 73% of patients in the apheresis group vs 50% in the steroid group. Leukocytapheresis was superior to methylprednisolone for the treatment of active UC, even though no statistically significant difference was observed. After a 12-mo follow up, a sustained remission was recorded in 40% of patients in the apheresis group vs 25% in the steroid group. Patients who had obtained remission after a course of leukocytapheresis showed fewer relapses during the follow up compared to those treated with methylprednisolone. During leukocytapheresis, only a transient mild headache was recorded in 10% of patients, whereas side effects were observed in 50% of those treated with methylprednisolone. The incidence of side effects in the apheresis group was significantly lower than that in the steroid group. Leukocytapheresis therapy seems able to maintain the condition of remission for a longer time after a flare.

STEROID-SPARING EFFECTS OF LEUKOCYTAPHERESIS

Leukocytapheresis could be an alternative treatment for steroid-dependent UC. A number of clinical trials evaluated the steroid-sparing effects of leukocytapheresis in patients with UC. Quantitative pooling of data was not feasible due to the diversity of interventions and outcome measures among the studies.

In an RCT by Hanai et al, 69 patients with steroid-dependent UC were assigned to receive Adacolumn leukocytapheresis in addition to standard drug therapy (apheresis group, n = 46) or prednisolone (steroid group, n = 23). At week 12, 83% of patients in the apheresis group achieved remission vs 65% in the steroid group. During the 12 wk of treatment, the cumulative amount of prednisolone received per patient was significantly lower in the apheresis group than in the steroid group (1157 mg vs 1938 mg). Adacolumn leukocytapheresis therapy appeared to be an effective adjunct to standard drug therapy of moderately severe UC by promoting remission and sparing steroids.

The therapeutic benefit of leukocytapheresis in the maintenance of remission was additionally elucidated in a randomized pilot trial by Emmrich et al. Twenty patients with chronic active UC were treated weekly with Cellsorba leukocytapheresis for five weeks. A significant decrease in the activity index was observed. Fourteen patients achieved clinical remission, and mucosal healing was observed endoscopically in six patients. After randomization these 14 patients in remission entered a second period of either monthly leukocytapheresis (n = 8) or no further treatment (n = 6). In both groups, steroids were tapered down. After six months, five patients (63%) in the apheresis group remained in remission vs one patient (17%) in the control group. These results suggest leukocytapheresis offers a therapeutic option in the induction and the maintenance of remission in chronic active UC.

In a prospective study by Cabriada et al, 18 patients with steroid-dependent UC were treated with leukocytapheresis plus steroids after failure or intolerance to immunomodulators. Clinical and endoscopic examinations were conducted at one month after the last apheresis session and at 12 mo. The clinical, endoscopic remission and the relapse during the one-year follow-up were evaluated. Clinical remission was achieved in 10 patients (55%) after the treatment. At one year, sustained steroid-free clinical remission was observed in nine patients (50%). A tendency for sustained remission at one year was observed when initial endoscopic remission was achieved. These results suggest that initial remission can be maintained at one year in half of the patients without the need for additional steroids. Complete remission and endoscopic mucosal healing is proposed as an objective for achieving a lasting response.

Cabriada et al conducted a cohort study using a nationwide database in order to investigate short-term and long-term efficacies of leukocytapheresis for the management of steroid-dependent UC. One hundred and forty-two patients with steroid-dependent UC were treated with Adacolumn leukocytapheresis therapy. At one month after the last scheduled apheresis session, 68% of patients achieved clinical response, including 37% with steroid-free clinical remission. In the long-term, at six and 12 mo, 41% and 36% of patients were in clinical remission, respectively. Although this large-scale observational trial is uncontrolled, it clearly shows that Adacolumn leukocytapheresis allows long-term steroid-free clinical remission in up to one third of steroid-dependent UC patients.

Our recent study was conducted to determine if the introduction of Adacolumn leukocytapheresis at an early stage reduces corticosteroid administration and steroid dependency in the long-term. Twenty patients were treated with Adacolumn leukocytapheresis, with or without corticosteroids (apheresis group), and 20 patients were given corticosteroids without leukocytapheresis (steroid group). During a five-year follow-up period, five patients in the apheresis group did not require corticosteroids. The mean dose of steroid administered during the five years was significantly lower in the apheresis group than in the steroid group (2141 mg vs 5443 mg). Furthermore, the incidence of steroid-dependence was significantly lower in the apheresis group at the end of the study (5% vs 35%). In patients with first UC episode, Adacolumn leukocytapheresis therapy at an early stage significantly reduces steroid administration and steroid-dependency in the long-term.

TREATMENT COST OF LEUKOCYTAPHERESIS

When selecting a treatment option, the cost must be an
CONCLUSION

Although the evidence level is not striking, the available data suggest that leukocytapheresis can avoid or reduce the use of corticosteroids in the management of UC. Large, well-designed clinical trials are necessary to more accurately evaluate the steroid-sparing effects of leukocytapheresis in the management of UC.

REFERENCES

1. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med 2011; 365: 1713-1725
2. Roberts-Thomson IC, Fon J, Uylakoi W, Cummins AG, Barry S. Cells, cytokines and inflammatory bowel disease: a clinical perspective. Expert Rev Gastroenterol Hepatol 2011; 5: 703-716
3. Strober W, Fuss J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140: 1756-1767
4. Yamamoto T, Umegae S, Matsumoto K. Safety and clinical efficacy of granulocyte and monocyte adsorptive apheresis therapy for ulcerative colitis. World J Gastroenterol 2006; 12: 520-525
5. Kanai T, Hibi T, Watanabe M. The logics of leukocytapheresis as a natural biological therapy for inflammatory bowel disease. Expert Opin Biol Ther 2006; 6: 453-466
6. Sigurbjörnsson FT, Bjarnason I. Leukocytapheresis for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol 2008; 5: 509-516
7. Hanai H, Takeda Y, Eberhardson M, Gruber R, Sianiabadi AR, Winqvist O, Lofberg R. The mode of actions of the Adacolumn therapeutic leukocytapheresis in patients with inflammatory bowel disease: a concise review. Clin Exp Immunol 2011; 163: 50-58
8. Meier J, Sturm A. Current treatment of ulcerative colitis. World J Gastroenterol 2011; 17: 3204-3212
9. Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011; 140: 1827-1837.e2
10. Ford AC, Bernstein CN, Khan KJ, Abreu MT, Marshall JK, Talley NJ, Moayyedi P. Glucocorticoid therapy in inflammatory bowel disease: systematic review and meta-analysis. Am J Gastroenterol 2011; 106: 590-599; quiz 600
11. Peyrin-Biroulet L, Lémann M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther 2011; 33: 870-879
12. Faubion WA, Loftus EV, Harmsen WS, Zinsmeister AR, Sandborn WJ. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology 2001; 121: 255-260
13. Farrell RJ, Kelleher D. Glucocorticoid resistance in inflammatory bowel disease. J Endocrinol 2003; 178: 339-346
14. Hanai H, Watanabe F, Takeuchi K, Iida T, Yamada M, Iwaoa Y, Sianiabadi A, Matsushita I, Sato Y, Tozawa K, Arai H, Furuta T, Sugimoto K, Bjarnason I. Leukocyte adsorptive apheresis for the treatment of active ulcerative colitis: a prospective, uncontrolled, pilot study. Clin Gastroenterol Hepatol 2003; 1: 28-35
15. Suzuki Y, Yoshimura N, Sianiabadi AR, Saito Y. Selective granulocyte and monocyte adsorptive apheresis as a first-line treatment for steroid naive patients with active ulcerative colitis: a prospective uncontrolled study. Dig Dis Sci 2004; 49: 565-571
16. Nagamura M, Funakoshi S, Sakuraba A, Takagi H, Inoue N, Ogata H, Iwao Y, Ishi H, Hibi T. Granulocytapheresis is useful as an alternative therapy in patients with steroid-refractory or -dependent ulcerative colitis. Inflamm Bowel Dis 2004; 10: 251-257
17. Yamamoto T, Umegae S, Kitagawa T, Yasuda Y, Yamada Y, Takahashi D, Mukumoto M, Nishimura N, Yasue K, Matsumoto K. Granulocyte and monocyte adsorptive apheresis in the treatment of active distal ulcerative colitis: a prospective, pilot study. Aliment Pharmacol Ther 2004; 20: 783-792
18. Domenech E, Hinojosa J, Esteve-Comas M, Gomollon F, Herrera JM, Bastida G, Obador A, Ruiz R, Saro C, Gassull MA. Granulocytapheresis in steroid-dependent inflammatory bowel disease: a prospective, open, pilot study. Aliment Pharmacol Ther 2004; 20: 1347-1352
19. Sands BE, Sandborn WJ, Feagan B, Lofberg R, Hibi T, Wang T, Gustafson LM, Wong CJ, Vandervoot MK, Hanauer S. A randomized, double-blind, sham-controlled study of granulocyte/monocyte apheresis for active ulcerative colitis. Gastroenterology 2008; 135: 400-409
20. Habermalz B, Sauerland S. Clinical effectiveness of selective granulocyte, monocyte adsorptive apheresis with the Adacolumn device in ulcerative colitis. Dig Dis Sci 2010; 55: 1421-1428
21. Thanara S, Hamlin PJ, Ford AC. Systematic review: granulocyte/monocyte adsorptive apheresis for ulcerative colitis. Aliment Pharmacol Ther 2010; 32: 1297-1306
22. Zhu M, Xu X, Nie F, Tong J, Xiao S, Ran Z. The efficacy and safety of selective leukocytapheresis in the treatment of ulcerative colitis: a meta-analysis. Int J Colorectal Dis 2011; 26: 999-1007
23. Yamamoto T, Saniabadi AR, Maruyama Y, Umegae S, Matsumoto K. Factors affecting clinical and endoscopic efficacies of selective leukocytapheresis for ulcerative colitis. Dig Liver Dis 2007; 39: 626-633
24. Suzuki Y, Yoshimura N, Fukuda K, Shirai K, Saito Y, Saniabadi AR. A retrospective search for predictors of clinical response to selective granulocyte and monocyte apheresis in patients with ulcerative colitis. Dig Dis Sci 2006; 51: 2031-2038
25. Tanaka T, Okanobu H, Yoshimi S, Murakami E, Kogame A, Imagawa H, Numata Y, Kuga Y, Moriya T, Ohya T, Kajiyama G. In patients with ulcerative colitis, adsorptive depletion of granulocytes and monocytes impacts mucosal level of neutrophils and clinically is most effective in steroid naive patients. Dig Liver Dis 2008; 40: 721-726
26. Nishioka C, Aoyama N, Maekawa S, Shirasaka D, Nakahara T, Tamura T, Fukagawa M, Umezum A, Abe T, Kasuga M. Leukocytapheresis therapy for steroid-naive patients with active ulcerative colitis: its clinical efficacy and adverse effects compared with those of conventional steroid therapy. J Gastroenterol Hepatol 2005; 20: 1567-1571
27. Umehara Y, Kudo M, Kawasaki M. Endoscopic findings can predict the efficacy of leukocytapheresis for steroid-naive patients with moderately active ulcerative colitis. World J Gastroenterol 2008; 14: 5316-5321
28. Ashida T, Kohgo Y, Munakata A, Noguchi M, Iizuka B, Endo Y, Hanai H, Yoshikawa T, Matsumoto T, Aoyama N, Matsui T, Mitsuyama K, Hibi T. A multicenter study of the efficacy and safety of leukocytapheresis therapy without concomitant systemic steroid treatment in patients with active ulcerative colitis. Transfus Apher Sci 2011; 44: 113-117
29. Bresci G, Parisi G, Mazzoni F, Scatena F, Capria A. Granulocytapheresis versus methylprednisolone in patients with acute ulcerative colitis: 12-month follow up. J Gastroenterol Hepatol 2008; 23: 1678-1682
Shiraki M et al. Steroid-sparing effects of leukocytapheresis

30 Hanai H, Watanabe F, Yamada M, Sato Y, Takeuchi K, Iida T, Tozawa K, Tanaka T, Maruyama Y, Matsushita I, Iwaoka Y, Kikuch K, Sanabadi AR. Adsorptive granulocyte and monocyte apheresis versus prednisolone in patients with corticosteroid-dependent moderately severe ulcerative colitis. *Digestion* 2004; 70: 36-44

31 Emmrich J, Petermann S, Nowak D, Beutner I, Brock P, Klingel R, Mausfeld-Lafdhiya P, Liebe S, Ramlow W. Leukocytapheresis (LCAP) in the management of chronic active ulcerative colitis--results of a randomized pilot trial. *Dig Dis Sci* 2007; 52: 2044-2053

32 Cabriada JL, Ibargoyen N, Hernández V, Bernal A, Castiella A. Sustained remission after steroids and leukocytapheresis induced response in steroid-dependent ulcerative colitis: results at 1 year. *Dig Liver Dis* 2010; 42: 432-435

33 Cabriada JL, Doménech E, Ibargoyen N, Hernández V, Clofent J, Ginard D, Gutiérrez-Ibarluzea I, Hinojosa J. Leukocytapheresis for steroid-dependent ulcerative colitis in clinical practice: results of a nationwide Spanish registry. *J Gastroenterol* 2012; 47: 359-365

34 Yamamoto T, Umegae S, Matsumoto K. Long-term clinical impact of early introduction of granulocyte and monocyte adsorptive apheresis in new onset, moderately active, extensive ulcerative colitis. *J Crohns Colitis* 2012; 6: 750-755

S- Editor Gou SX L- Editor Webster JR E- Editor Zhang DN