IgG4関連疾患における嗅覚障害発症機序の解析

兼田美紗子1, 中西 清香2, 尾崎 ふみ2, 近藤 智2, 吉崎 智一2

1 公立松任石川中央病院耳鼻咽喉科
2 金沢大学医学部耳鼻咽喉科・頭頸部外科

IgG4関連疾患は高IgG4血症、病変組織における多数のIgG4陽性形質細胞浸潤を特徴とし、耳鼻咽喉科領域では特に唾液腺疾患との密接な関連が注目されている全身疾患である。その病因や発症メカニズムは未解明であるが、病変局所におけるTh2優位の免疫応答や制御性T細胞浸潤、そしてこれらの細胞が産生するIL-4やIL-10がIgG4産生を促進していることが示唆されている。近年IgG4関連疾患と副鼻腔炎との関連、ミクリッピ症における嗅覚障害などが報告され、副鼻腔領域における新規病態像に関心が集まっている。我々はIgG4関連疾患患者に嗅覚障害を訴える患者が多いことに注目した。そして嗅覚検査を施行したところIgG4関連疾患患者の約半数に嗅覚障害を認めることが分かった。そこで我々はIgG4関連疾患における嗅覚障害の原因を解明するため、IgG4関連疾患モデルマウスと野生型マウスにおいて嗅刺激性行動実験を行ったところ、モデルマウスでは嗅覚障害を認めることが判明した。次に嗅覚においは組織学的検討を行ったところ、モデルマウスの嗅上皮が有意に稀薄化していることが判明した。さらに免疫学的検討として成熟嗅神経細胞のマーカーであるOMP、幼弱神経細胞のマーカーであるGAP-43などの免疫染色を行い比較したところ、モデルマウスの嗅上皮ではOMP、GAP-43陽性細胞数が減弱しており、嗅覚のターンオーバー障害が嗅覚障害の発症の原因であることが示唆された。

第34回日本耳鼻咽喉科免疫アレルギー学会
プログラム・抄録集より転用

©2016 Japan Society of Immunology & Allergology in Otolaryngology
Transplantation of olfactory stem cells with biodegradable hydrogel accelerates facial nerve regeneration after crush injury

Sachiyo Katsumi¹, Shinichi Esaki¹, ², Fumi Goshima¹, ², Yoshihisa Nakamura¹, Motohiko Suzuki¹, Shingo Murakami¹

¹ Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School
² Department of Virology, Nagoya University Graduate School of Medicine

I. はじめに

末梢性顔面神経麻痺は側頭骨骨折の重大な合併症の一つであるが、神経再生を促進する方法として、幹細胞移植が有効であると考えられている。特に、嗅神経幹細胞（Olfactory Stem Cell: OSC）の移植が顔面神経の再生を促進する可能性があるとされている。しかしながら、 OSCの特性や移植後の神経再生効果に関する詳細な解析が不足している。

II. 対象と方法

1) 嗅神経幹細胞（OSC）の培養と解析

 Guerrini et al. は、嗅神経幹細胞（NSCs: Neural stem cell）を腫瘍モデルで用いた研究で、 OSCの生物学的特性を解析した。OSCsは、nestin, sox-2, nanog, musashi-1の発現をRT-PCR法で解析した。また、neurosphereに免疫染色を行い、神経幹細胞を含む細胞を同定した。

2) 顔面神経麻痺モデルマウスへの神経再生促進効果

Curtis et al. 是、顔面神経麻痺モデルマウスを用いて、神経再生効果を評価した。移植後14日目に神経再生を観察し、顔面神経の再生を促進する効果を示唆した。

3) 顔面神経麻痺の評価

本研究では、移植後の神経再生をRT-PCRで解析した。移植部位に OSC Medgel (OSC/Medgel群), OSCのみ（OSC群）, 同量の培養液含有 Medgel (Medgel群), 培養液のみ（mock群）を用いた検討を行った。

IV. 結果

1) OSCの培養と解析結果

移植後4週目のRT-PCRにて、nestin, sox-2, nanogの発現を観察した。
musashi-1の発現を、免疫染色でNestin, Musashi-1の発現を確認した。分化誘導すると成熟神経マーカーの発現も確認され、培養上清中には神経再生を促進する様々なサイトカインを分泌していることが確認された。

2) 頭面神経麻痺の経過
各群の麻痺スコアの推移を図1に示す。OSC, Medgel, mock群は、ほぼ同じ数で麻痺が回復し14日以内に回復したが、OEC/Medgel群では明らかに回復が促進された。

3) 誘発筋電図による検討
筋電図により筋活動が観察され、電気生理学的神経機能の回復を検討した。14日後にはOSC/Medgel群は他の3群と比較して有意に高い振幅が得られた。

4) 頭面神経再生効果の組織学的検討
処置後7日目、14日に頭面神経のKluver-Barrera染色を行い、再生黒色素の本数から神経の再生効果を検討した。OEC/Medgel群では他の3群と比較して有意に再生神経を増加していた。

考察
今回は、我々は、OECを播種したハイドロゲルスポンジを、頭面神経損傷マウスへ移植し、麻痺の回復が促進されるかを検討した。
まず初めに、培養したOECの性質を、RT-PCR、免疫染色にて検討した。RT-PCRでnestin, sox-2, nanog, musashi-1の神経幹細胞マーカーが認められ、また、免疫染色にてNestin, Musashi-1の発現を認め神経幹細胞であることを確認した。分化誘導すると成熟神経幹細胞マーカーも確認され、採取したOSCは自己複製能、多能性、分化能を有し、培養上清中には神経再生を促進する様々なサイトカインを分泌していることが確認された。

次に、この細胞を顔面神経麻痺モデルラットに移植したところ、OSC/MedGel群は他群に比べて有意に麻痺の回復が促進された。電気生理学的、病理組織学的にも麻痺の回復が確認された。

再生医療、幹細胞移植医療では、拒絶反応や倫理的問題が指摘されているが、鼻粘膜は容易に採取される自己移植材であることからこの点が解決されており、有用な移植源となり得る。しかし、臨床応用の実現に至るまでには、十分な量の幹細胞をいかに得るか等につきさらに検討が必要である。

参考文献
1) Chang CY, Cass SP. Management of facial nerve injury due to temporal bone trauma. Am J Otol. 1999; 20(1): 96–114.
2) Esaki S, Kitoh J, et al. Hepatocyte growth factor incorporated into herpes simplex virus vector accelerates facial nerve regeneration after crush injury. Gene Ther. 2011; 18(11): 1063–9.
3) Eriksson PS, Perfilieva E, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998; 4(11): 1313–7.
4) Grazidei GA, Grazidei PP. Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J Neurocytol. 1979; 8(2): 197–213.
5) Pellitteri R, Spatuzza M, et al. Olfactory ensheathing cells exert a trophic effect on the hypothalamic neurons in vitro. Neurosci Lett. 2007; 417(1): 24–9.
6) Richter MW, Roskams AJ. Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope? Exp Neurol. 2008; 209(2): 353–67.
7) Su Z, Cao L, et al. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci. 2007; 120(Pt 11): 1877–87.
8) Mackay-Sim A, St John JA. Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol. 2011; 229(1): 174–80.
9) Takahashi Y, Yamamoto M, et al. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials. 2005; 26(17): 3587–96.
10) Most SP Facial nerve recovery in bcl2 overexpression mice after crush injury. Arch Facial Plast Surg. 2004; 6(2): 82–7.
頭頸部扁平上皮癌におけるlet-7cの役割とその標的遺伝子

侯波，石永一，中村哲，竹内万彦
三重大学大学院医学系研究科耳鼻咽喉・頭頸部外科

【目的】癌細胞の増殖や抑制にマイクロ RNA（miRNA）が関与している。頭頸部扁平上皮癌（HNSCC）において腫瘍抑制性に働くmiRNAsを見出し、治療への応用を目指すことを目的に検討を行った。

【方法】マイクロアレイおよびqRT-PCRにより、手術にて摘出された癌組織において、その周囲の健常組織とは異なる発現をしているmiRNAsを見出した。このひとつであるlet-7cにつきその標的遺伝子の探索と発現解析を行った。さらに、HNSCCの細胞株にlet-7cをトランスフェクションし機能解析を行った。

【成績】マイクロアレイにて癌組織において発現が変化した63のmiRNAsのうち、発現が上昇した上位7個および低下した上位10個についてqRT-PCRにて発現解析し、癌組織で4miRNAsが上昇、4つは発現低下していることを確認した。let-7cの発現は、癌組織および細胞株で低下していた。let-7cの標的遺伝子として予測されたIGF1R, EZH2, CCNJLの発現は癌組織および癌細胞株で増進しており、細胞株にlet-7cをトランスフェクションすることでIGF1R, EZH2, CCNJLの発現は低下した。また、let-7cのトランスフェクションにより、細胞増殖およびコロニー形成が抑制され、アポトーシスが誘導された。本来、let-7cは腫瘍を抑制する機能を有し、HNSCCではその発現が低下していることが示された。

【結論】let-7cはHNSCCにおいてIGF1R, EZH2, CCNJLを標的遺伝子として腫瘍抑制性に働く可能性が示唆された。

第34回日本耳鼻鼻咽喉科免疫アレルギー学会
プログラム・抄録集より転用

©2016 Japan Society of Immunology & Allergology in Otolaryngology
免疫学的役割

Hideyuki Takahashi, Koichi Sakakura, Kazuaki Chikamatsu

Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine

1. はじめに
癌組織には癌細胞だけでなく線維芽細胞、血管内皮細胞、免疫細胞などの増殖が見られ、はがれの進展に関与している。なかでも癌関連線維芽細胞（Cancer-associated fibroblasts: CAFs）は様々な成長因子や免疫細胞を分泌し、癌細胞の増殖や転移に影響を及ぼしていると報告されている。

一方、自然免疫系・獲得免疫系は共に癌細胞の認識・除去を担っているが、これに対し癌細胞は免疫抑制性サイトカインの分泌や免疫チェックポイントのリガンド発現等を通じて免疫系を抑制し、自己の増殖・転移に有利な環境を構築している。しかし、癌微小環境においてCAFsが免疫系に及ぼす影響については未知の部分が多い。

今回我々は、頭頸部扁平上皮癌においてCAFsがT細胞免疫系およびマクロファージに及ぼす影響、ならびに予後との関連について検討した。

2. 対象と方法
頭頸部扁平上皮癌患者6名の手術切除標本の癌部および非癌部より得た組織試料を細胞・培養し線維芽細胞を分離した。

CAFsおよび非癌部のnormal fibroblasts (NFs)における各種表面抗原およびα-smooth muscle actin（α-SMA）の発現、免疫チェックポイントリガンドの発現、サイトカイン遺伝子の発現をフローサイトメトリー・real time qRT-PCRを用いて解析した。CAFs・NFsがT細胞増殖能に及ぼす影響についてCarboxyfluorescein diacetate succinimidyl ester (CFSE)-based suppression assayにて解析した。CAFs・NFsの培養上清存在下に健全成人の単核球を培養し、CAFs・NFsがT細胞アポトーシス、抑制性T細胞誘導に及ぼす影響を、3. 結果

分けした線維芽細胞の表面抗原の発現を解析すると、CAFs・NFsともにCD11b(-)、CD34(-)、CD45(-)、CD90(+)であり、線維芽細胞として矛盾しない結果であった。一方で、線維芽細胞の活性化の指標であるα-SMAはCAFsにおいて高発現しており、頭頸部扁平上皮癌腫瘍の線維芽細胞が活性化したmyofibroblastであることが確認された。

CAFsではPD-1受容体のリガンドであるPD-L1とPD-L2の発現を認めたが、NFsでは認めなかった。real time qRT-PCRによる解析ではIL6、CXCL8、TNF、TGF-β1、VEGFのmRNA発現がNFsと比較してCAFsで増強していた。単核球との共培養では、CAFsとその培養上清はNFsと比較してT細胞増殖抑制能、制御性T細胞誘導能、T細胞アポトーシス誘導能のいずれも有意に高かった。CAFsとその培養上清下のT細胞増殖能は抗PD-L1抗体・抗PD-L2抗体及び抗TGF-β抗体・抗VEGF抗体存在下に回復した。

CAFsの培養上清下でCD4陽性単核球を培養すると、ARG1・IL6・IL10・TGF-β1のmRNAが増強しCD14・CD63・HLA-Gを高発現するマクロファージが誘導され、コント
ロールと比較し高いT細胞増殖抑制能を示した。T細胞増殖能は抗TGF-β抗体・抗IL-10抗体存在下に回復した。免疫染色ではαSMA発現はリンパ管浸潤、脈管浸潤、リンパ節転移の有無、癌のステージ、再発の有無と有意に相関した。多変量解析にてαSMAの高発現は全生存期間、無増悪生存期間における有意な予後の予測因子であった。

4. 考察

癌微小環境における免疫抑制機構の構築には、癌細胞だけでなくCAFsも大きく関与していることを今回我々は解明した。

頭頸部扁平上皮癌において、CAFsはPD-L1・PD-L2の発現、TGF-β・VEGFの分泌によりT細胞増殖を抑制していると考えられた。TGF-β・VEGFは制御性T細胞の誘導・維持に重要であることが報告されており、CAFsがこれらの分泌を通じて制御性T細胞を誘導していると考えられた。またCAFsでTNFのmRNA発現が亢進していたことから、CAFsより分泌されたTNF-αがT細胞アポトーシスの誘導に関与している可能性が示唆された。

また、CAFsは抗性因子の分泌を通じて免疫抑制性のM2マクロファージを誘導し、T細胞免疫抑制に寄与していると考えられた。こうした抑制機構には誘導されたマクロファージが分泌するTGF-β・VEGFが関与していると推測された。

免疫染色の結果からは、頭頸部扁平上皮癌の微小環境において活性化したmyofibroblastが癌細胞の血行性・リンパ行性転移に関与し、その結果リンパ節転移や遠隔転移を来し予後を不良にしている可能性が示唆された。

以上より、頭頸部扁平上皮癌の癌微小環境では、CAFsはT細胞免疫の抑制、免疫抑制性のM2マクロファージの誘導により癌の免疫逃れに寄与していると考えられた。また癌組織内のCAFsの浸潤は頭頸部扁平上皮癌の有意な予後予測因子であると考えられた。

参考文献
1) Leef G, Thomas SM. Molecular communication between tumor-associated fibroblasts and head and neck squamous cell carcinoma. Oral Oncol. 2013; 49: 381–6.
2) Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6: 392–401.
Efficacy of clarithromycin against avian influenza A virus (H5N1, H7N9) infection in a cynomolgus macaque model

Masahiko Arikata¹, Yasushi Itoh², Kazumasa Ogasawara², Takeshi Shimizu¹

¹ Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science
² Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science

I. はじめに

クラリスロマイシン (clarithromycin: CAM) などの 14 員環マクロライド系抗生物質は抗菌力以外にも、免疫調節作用とともに抗ウイルス作用を有することが注目されている。気道上皮細胞におけるウイルスに対する接着因子の発現抑制とウイルスの増殖抑制が、さらにウイルス感染に対する過剰な生体防御機構を抑制することが知られている。またインフルエンザ感染に対して、CAM と抗ウイルス薬の併用により症状が早期に改善したとする報告があるが、インフルエンザウイルス感染における抗ウイルス薬との併用療法の意義はまだ乏しいと考えられる。しかし、CAM と他の抗薬剤の併用療法が重症看護肺炎や人工呼吸器関連肺炎に有効であったという報告もあり、重症肺炎時における効果を示すために、新たな対象群を作成する必要があると考えられる。一方、H5N1 高病原性鳥インフルエンザウイルスは、1997年に香港でヒトへの感染がはじめて報告された。現在はアジア諸国を中心に広がり、2003年から2016年1月までに WHO に報告された感染者は846人、死者は449人で、致死率は50%を超える。2013年には中国で H7N9 鳥インフルエンザウイルスのヒトへの感染が報告され、2016年1月時点での WHO の報告では感染者は693人、死亡者は277人である。

今回我々はこうした高病原性鳥インフルエンザウイルス (H5N1, H7N9) 感染に対する CAM の有効性を、よりヒトに近いカニクイザルを用いて検証した。

II. 対象と方法

インフルエンザウイルスに対する抗体を保有せず、未感染であることを事前に確認したカニクイザルを用いた。A/Vietnam/UT3040/2004 (H5N1) または A/Anhui/1/2013 (H7N9) を鼻腔・口腔・気管内に投与し、感染させた。同日投与群では感染当日より CAM を15 mg/kg、1日1回内服投与し、予防的投与群では感染3日前より投与を開始し、感染7日目に解剖した。

3. 結果

1) 体温、臨床スコア

H7N9 ではそれほど重症化せず、両群間で差は認めなかったが、H5N1 では、同日投与群で3日目より解熱傾向を認め、5日目からは有意差を認めた。予防投与群では2日目より解熱傾向を認めた（図1）。臨床スコアも H5N1 では予防投与群で2日目から、同日投与群で5日目から早期に改善した。

2) 気管内拭い液のウイルス濃度

気管内より拭い液を毎日採取し、ウイルス濃度を測定した。H5N1, H7N9 とともに CAM 内服6日目に有意にウイルス量の減少を認めた（図2）。

3) 脇組織内のサイトカイン

感染7日目に解剖して得た脇組織内のサイトカイン：IFN-γ, IL(interleukin)-1β, IL-6, IL-8 を測定した。H5N1 ではいずれも CAM 同時投与群で減少傾向を認めた。さらに予防投与群ではより強い減少傾向を認めた。H7N9 においても IFN-γ, IL-8 は CAM 治療群で有意に減少していた（図3）。

©2016 Japan Society of Immunology & Allergology in Otolaryngology
考察
14員環マクロライドは抗ウイルス薬より安価で、島インフルエンザウイルス感染報告の多いアジア諸国で投与可能
な薬剤であり、その併用投与が重症化の抑制さらに死亡率改善に役立つ可能性が考えられた。また将来生じる可能性
あるパンデミック感染時には14員環マクロライドの予
防投与が感染の防止や重症化抑制に有効である可能性が考えられた。

参考文献
1) Yamaya M, Shinya K, et al. Clarithromycin inhibits type a seasonal influenza virus infection in human airway epithelial cells. Pharmacol Exp Ther. 2010; 333(1): 81–90.
2) Sato K, Suga M, et al. Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am J Respir Crit Care Med. 1998; 157: 853–7.
3) Kameya H, Seki M, et al. Efficacy of combination therapy with oseltamivir phosphate and azithromycin for influenza: a multi-
4) Sawabuchi T, Kido H, et al. Boost of mucosal secretory immunoglobulin A response by clarithromycin in paediatric influenza. Respirology. 2009; 14(8): 1173–9.
5) 6) Rodriguez A, Mendia A, et al. Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med. 2007; 35: 1493–8.
7) Giamarellos-Bourboulis EJ, Pechère JC, et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin Infect Dis. 2008; 46: 1157–64.
8) Influenza at the human-animal interface, Summary and assessment as of 20 January 2016, WHO.
シラカバ花粉症の病態形成における血液濁胞ヘルパー T 細胞の役割

1. はじめに
シラカバ花粉症は北海道を中心に多くみられる疾患で、高頻度で合併する口腔アレルギー症候群との関連で近年注目されている。その治療法は現在、抗ヒスタミン薬等による対症療法に限られており、新規治療法の開発が求められている。

アレルギー性鼻炎や気管支喘息に代表されるアレルギー疾患では 2 型ヘルパー T（Th2）細胞が病態形成に関与するとされるが、抗原特異的IgEの産生機構の本態など未だ不明な点が多く残されている。近年、液性免疫を制御するヘルパー T 細胞サブセットの 1 つである濁胞ヘルパー T（Th）細胞の異常が自己免疫疾患やアレルギー疾患の発症に関与しているという報告が散見され、特に血液 Th1 細胞サブセットの 1 つである Th2 細胞は IL-4 を産生し、B 細胞に対して IgE の産生を誘導するなどアレルギー疾患への関与が推察される。我々も最近、アレルギー性鼻炎患者の末梢血中では Th2 細胞の割合が増加していることを（Th2 ）をフローサイトメーターで解析した。

そこで今回は我々、シラカバ花粉症の病態形成における血清 Th1 細胞の役割について検討した。

2. 対象と方法
シラカバ花粉非飛散期 1、飛散期、非飛散期 2 の 3 期における健常者（n=21）とシラカバ花粉症患者（n=26）の末梢血リンパ球中の total Th1 細胞、Th2 細胞、PD-1、ICOS 陽性 Th2 細胞の分割をフローサイトメーターで解析した。

3. 結果
シラカバ花粉症患者群が健常者群と比較して total Th2 細胞（CD3+CD4+CXCR5+）に占める Th2 細胞（CD3+CD4+CXCR5+CCR6 CXCR3+）の割合が増加していた。しかし、患者群の total Th1 細胞、Th2 細胞の割合は、花粉非飛散期 1、飛散期、非飛散期 2 の 3 期で有意な変化を認めなかった。そこで我々は、シラカバ花粉症の病態では、Th1 細胞の割合や数の変化ではなく、活性化の程度が変化しているという仮説を立て、活性化 T 細胞のマーカーとして知られる PD-1 と ICOS に着目し、血液 Th1 細胞において解析を行った。その結果、花粉飛散期に患者群が健常者群と比較して ICOS 陽性 Th1 細胞（CD3+CD4+CXCR5+ICOS+）の割合が増加しており、ICOS 陽性 Th1 細胞の割合は飛散期で増加し、非飛散期には減少していた。さらには、ICOS 陽性 Th1 細胞の割合は患者群において、症状スコア（total symptom score）、シラカバ特異的IgE 値と正の相関を認めた。一方 PD-1 陽性 Th1 細胞はそのような傾向を認めなかった。

4. 考察
花粉非飛散期の段階で患者群の Th2 細胞の増加が健常者群に比べて増加していることから、Th2 細胞はアレルギー性活性化 Th2 細胞の割合をフローサイトメーターで解析した。解析結果と臨床パラメータとの関連について検討した。
耳鼻咽喉アレルギー (JIAO) 2016; 34(2) 49

參考文献

1) Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014; 41(4): 529–42.

2) Ballesteros-Tato A, Randall TD, et al. T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite. Immunity. 2016; 44(2): 259–73.

3) Morita R, Schmitt N, et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011; 34(1): 108–21.

4) Kamekura R, Shigehara K, et al. Alteration of circulating type 2 follicular helper T cells and regulatory B cells underlies the comorbid association of allergic rhinitis with bronchial asthma. Clin Immunol. 2015; 158(2): 204–11.
ORMDL3 が肥満細胞にもたらす影響について

Kazuhiro Ogi, Tetsuji Takabayashi, Takechiyo Yamada, Dai Susuki, Masafumi Sakashita, Shigeharu Fujieda
Division of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Science, University of Fukui

1. はじめに
アレルギー性鼻炎および好酸球性鼻副鼻腔炎などの好酸球性疾患は世界規模で増加傾向にあり、その発症機序の解明には肥満細胞の研究が重要であると考えられる。肥満細胞は1型アレルギー反応において即時反応を惹起するエフェクター細胞としての働きだけでなく、炎症性サイトカインの産生を通じてインフィルター細胞としての役割を担っていると考えられており、好酸球とはポジティブフィードバックループを形成しているからである。小児気管支喘息症患者において、疾患関連遺伝子として染色体17q21領域のOrosomucoid like 3（ORMDL3）の関与が報告されている5。我々はこの17q21のsingle nucleotide polymorphism（SNP）とアレルギー性鼻炎発症の関連を検討し有意な相関（p=0.0012）があることを報告した3。そしてアレルギー性鼻炎のリスクアレルの遺伝子型ではORMDL3の発現量が高かった。

ORMDL3は小胞体の膜に存在する膜貫通型の蛋白質であり、筋小胞体カルシンボンと結合しこれを抑制することにより小胞体ストレス反応を促進する5。またORMDL3はセリンパルミチン酸移動酵素と複合体を形成し、脂質二重層の構成成分であるスフィンゴミリンからスフィンゴシン1リン酸の産生を調節しているといわれている5。ORMDL3を上皮細胞などに強制発現させた実験系では様々な結果が報告されているが、肥満細胞におけるORMDL3の影響はいまだに不明である。

2. 対象と方法
ORMDL3の機能解析として、ORMDL3のcDNAを組み込んだプラスミドをネオマイシン耐性遺伝子が組み込まれたベクターに挿入した。これを肥満細胞株（RBL-2H3細胞）にトランスフェクションし、ネオマイシンを添加した培地でセレクションをおこない、ORMDL3を安定発現させた細胞をORMDL3安定発現細胞株として樹立した。数種類のクローンが樹立され、以下の実験では複数のクローンについて同様の結果が得られたことを確認した。

代表的な炎症性サイトカイン3種類（TNFα, IL-4, MCP1）の産生についてリアルタイムPCRを用いて測定した。細胞の刺激は高濃度抗原刺激（30 ng/mL）、低濃度抗原刺激（3 ng/mL）、単体量IgE刺激（IgEのみ添加し抗原は加えない）と強弱を分けておこなった。また細胞内シグナル伝達への影響を確認するために、MAPキナーゼのひとつであるExtracellular Signal-regulated Kinase（ERK）のリン酸化についてウェスタンブロットで調べた。

もうひとつ重要な肥満細胞の機能である脱顆粒反応について調べるために、β-hexosaminidase assayをおこなった。IgEで肥満細胞を感作させた後に、抗原を加え脱顆粒させ、培養上清を採取した。この上清に基質蛋白質と発色試薬を加え、吸光度を測定した。

3. 結果
ORMDL3安定発現細胞では、高濃度抗原刺激、低濃度抗原刺激、単体量IgE刺激において3種類のサイトカイン（TNFα, IL-4, MCP1）産生の亢進が確認された。また特に単体量IgE刺激においてTNFαの産生は抗原反応反応を上回る亢進が確認された。

同様にORMDL3安定発現細胞では、単体量IgE刺激でも抗原反応反応でも、ERKのリン酸化の亢進が確認された。脱顆粒反応の至適抗原濃度と考えられる10～1000 ng/mLの抗原刺激では脱顆粒反応に差は認められなかったが、通常は脱顆粒反応がありおきらないような低濃度の抗原刺激（1 ng/mL）ではORMDL3安定発現細胞において脱顆粒反応の亢進を認めた。カルシウムイオンフォアに対する反応ではparental cellsとの差は確認されなかった。
4. 考察
ORMDL3 安定発現細胞株は刺激の強さに関わらず炎症性サイトカイン産生の亢進を認めた。また脱顆粒反応の最大値に対する影響は確認されなかったが、低濃度の抗原刺激でも脱顆粒をおこしやすいと考えられた。
これらの結果から ORMDL3 のリスクアレルを持つ人は肥満細胞活性化の閾値が低く、この遺伝的要因がアレルギー性鼻炎の発症に影響を与えている可能性が示唆された。

図 1 サイトカイン産生への影響。ベクターのみをトランスフェクションした細胞 (Vec) と ORMDL3 を強制発現させた細胞 (ORMDL3) でサイトカイン産生に対する影響を比較した。

図 2 脱顆粒反応への影響。ベクターのみをトランスフェクションした細胞 (Vec) と ORMDL3 を強制発現させた細胞 (ORMDL3) で抗原 (DNP-BSA) に対する脱顆粒反応への影響を比較した。

参考文献
1) Moffatt MF, Kabesch M, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007; 448: 470–3.
2) Tomita K, Sakashita M, et al. Variants in the 17q21 asthma susceptibility locus are associated with allergic rhinitis in the Japanese population. Allergy. 2013; 68: 92–100.
3) Cantero-Recasens G, Fandos C, et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010; 19(1): 111–21.
4) Breslow DK, Collins SR, Orm family proteins mediate sphingolipid homeostasis. Nature. 2010; 463: 1048–53.
スギ花粉症モデルマウスを用いた舌下免疫療法（SLIT）クロノセラピーの検討

五十嵐 賢, 鈴木 啓介, 中村 勇規, 石丸かよ子, 深野 千陽, 増山 敬祐, 土井雅津代, 中尾 篤人

1 山梨大学医学部医学科総合研究部耳鼻咽喉科・頭頸部外科学教室
2 島居製薬株式会社研究所
3 山梨大学医学部免疫学講座

【背景と目的】アレルゲン免疫療法は花粉症の根治が期待できる治療法で、これまでアレルギー性鼻炎に対してハウスダストやスギ花粉に対する皮下免疫療法（SCIT）が広く行われてきた。2014年にスギ花粉症に対する舌下免疫療法（SLIT）が保険適応になり、安全性、利便性の観点から注目されている。SLIT は、患者が自宅で授与することが可能である一方で、添付文書上において授与の時間帯に制限がないため、授与の時間帯の差異が治療効果に及ぼす影響は明らかとなっていない。そこで我々は、スギ花粉症モデルマウスを用いて予防的 SLIT を休息期と活動期に行い、血清 IgE 検値やくしゃみの回数などを測定し、SLIT の治療効果を検討した。

【結果】血清の Cry j 1 特異的 IgE 値と総 IgE 値は陽性コントロール群に対して休息期授与群、活動期授与群ともに有意に抑制された。特に Cry j 1 特異的 IgE 値は休息期授与群の方が活動期授与群よりも有意に抑制された。症状の解析では、くしゃみは陽性コントロール群に対して休息期授与群、活動期授与群ともに有意に抑制されたが、授与時間による有意差はなかった。また鼻かき回数に群間の差はみられなかった。

【結論】スギ花粉症モデルマウスの予防的 SLIT で、Cry j 1 特異的 IgE 値に授与時間による差があり、クロノセラピー適用の可能性が示唆された。
IgE positive mast cells are highly elevated in epithelium and glands in chronic rhinosinusitis with nasal polyps

Shintaro Baba^1,2, Kenji Kondo^1, Tatsuya Yamashita^1

^1 Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo
^2 Department of Otolaryngology, Tokyo Metropolitan Children’s Medical Center

1.はじめに
好酸球性副鼻腔炎は鼻茸の再発を高率に認める難治性の副鼻腔炎である。その病態生理は依然不明な点が多いが、局所におけるIgEの過剰産生が好酸球の遊走と活性化、およびこれによる粘膜傷害の惹起に関与することが近年示唆されている。我々は局所でのIgE産生に関与するサイトカインであるIL-13およびgermline gene transcripts (βGLT)が好酸球性副鼻腔炎ポリープ中で増多していることを報告し、これにより好酸球性副鼻腔炎症例において局所でのIgEクラススイッチの促進が示唆された。Mast cell中のIgE陽性率は好酸球性副鼻腔炎で高率となっており、IgEはMast cellに作用していることが示唆される。

今回我々は副鼻腔炎ポリープ中のIgEおよびMast cellの分布について詳細に検討した。ヒトのMast cellはTryptase (T)のみをもつMCTとTryptase Chymase (C)をもつMCTCとに分類され、両者は各組織に混在しているが、粘膜表層にはMCTが粘膜深層や皮膚、血管、結合組織にはMCTCが多いとされている。我々は鼻観音組織中のMast cellのサブタイプについても検討した。

2.対象と方法
東京大学耳鼻咽喉科で内視鏡下鼻内手術を施行した好酸球性副鼻腔炎患者（14例）と非好酸球性慢性副鼻腔炎患者（14例）、コントロールとしての非副鼻腔炎症例8症例について手術時に採取した炎症性ポリープ、コントロール症例では摘出後、ポルマリン固定、パラフィン包埋し組織染色、免疫組織化学的に検討した。Mast cell trypatase, chymaseとIgEについて免疫染色（単染色），及びMast cell trypatase-chymaseとMast cell trypatase-IgEの二重染色を施行、400倍1視野当たりの陽性細胞数を5か所ずつ観察し、平均値。

各ポリープ組織からRNAを抽出し、定量PCRにてMast cell trypatase, chymaseのmRNA発現量を検討した。

好酸球性副鼻腔炎患者の選別基準はJESREC Studyに基づきポリープの組織中好酸球数が400倍1視野あたり70個以上を満たす症例を好酸球性副鼻腔炎とし、この基準に該当しないポリープ形成を伴った副鼻腔炎を非好酸球性副鼻腔炎とした。また、全ての症例で最低術前1か月以内には経点、点鼻ステロイドを使用していない。

3.結果
IgE陽性細胞の染色パターンはMast cellと類似しており、好酸球性副鼻腔炎においてIgE陽性細胞は主に上皮と腺に分布していた。非好酸球性副鼻腔炎では上皮、腺においてIgE陽性細胞は少なかった（図1,2）。IgEとMast cell trypataseの二重染色を行うと、好酸球性副鼻腔炎ポリープにおいて上皮内、腺組織内に浸調したTryptase陽性Mast cellの大部分がIgE陽性であった。

各群のMast cell subtypeを検討するため、Mast cell chymase, Tryptaseについて定量PCRと酵素抗体法による二重染色を行った。各群のMast cell chymaseの定量PCRによるmRNA発現は非好酸球性群で好酸球性群よりも増多していた。Mast cell trypataseではmRNAレベルで好酸球性群、非好酸球性群ともにコントロールより高発現していた。二重染色により各群のMCT, MCTCの細胞数を上皮、腺、粘膜下組織と部位別に検討した。各群のMCT細胞数は上皮、腺、粘膜下組織ともに好酸球性群で増多しており。
特に上皮と腺での増多が顕著であった。MCTC 細胞数は非好酸球性群で腺、粘膜下組織での増多を認めていた。

4. 考察

Takabayashiらはポリープを伴う慢性副鼻腔炎において腺組織での MCT の増加を報告している。我々の研究では好酸球性副鼻腔炎症例ではポリープ中の上皮内、腺組織での MCT 増多を認めた。好酸球性副鼻腔炎において上皮での全Mast cellのIgE 陽性率は 7割強、MCT 率は 8 割強であったため、上皮での IgE は主に MCT に分布し、作用していることが示唆された。以下より好酸球性副鼻腔炎の病態形成に IgE と MCT が関わっていることが示唆された。

参考文献
1) Bachert C, Gevaert P, et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol. 2001; 107: 607–14.
2) Baba S, Kondo K, et al. Local increase of IgE and class switch recombination to IgE in nasal polyps in chronic rhinosinusitis. Clin Exp Allergy. 2014; 44: 701–12.
3) Tokunaga T, Sakashita M, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015; 70: 995–1003.
4) Takabayashi T, Kato A, et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012; 130: 410–20 e415.
慢性副鼻腔炎における IL-22 の作用
―MUC1 を介した抗炎症作用機序の検討―

野山 和廉 1), 岡野 光博 1), 假谷 伸 1), 檜垣 貴成 1), 春名 咲範 1), 小山 貴久 1),
神田 晃 4), 石戸谷淳一 4), 友田 幸一 4), 西崎 和則 1) 4)

1) 岡山大学大学院医学部総合研究科耳鼻咽喉頭頸部外科
2) 岡山大学総合病院耳鼻咽喉科
3) 岡山赤十字病院耳鼻咽喉科
4) 岡山医科大学附属病院耳鼻咽喉科・頭頸部外科
5) 石戸谷耳鼻咽喉科

【はじめに】IL-22 は炎症に対して多面的役割があると報告されており、気道炎症において IL-22 の抗炎症効果が報告されている。鼻副鼻腔領域では IL-22 受容体が抗炎症に関与している報告がある。我々は IL-22 の慢性副鼻腔炎における炎症制御メカニズムについて、MUC1 のミクチンの作用を検討した。消化管や下気道領域における MUC1 の抗炎症効果が報告されているが、慢性副鼻腔炎における役割は十分解析されていない。過去の本学会で我々は IL-22 について報告してきた。今回 IL-22 の MUC1 発現を介した炎症制御メカニズムについて検討したので報告する。

【方法】鼻粘膜および鈍状突起（慢性副鼻腔炎例、非慢性副鼻腔炎例）における MUC1 の mRNA を real-time PCR にて定量し、検討・解析した。さらに IL-22 や IL-22 受容体との相関、末梢血好塩球数などの臨床所見との相関についても追加検討した。

【結果】MUC1 は非慢性副鼻腔炎の鈍状突起に比較して鼻茸群で有意に低下していた。MUC1 は IL-22 との有意な相関は認められなかったが、IL-22 受容体と有意な正の相関を認めた。

【考察】IL-22 受容体発現に依存して MUC1 は誘導され、その発現が慢性副鼻腔炎の病態に関与し、counter regulator として働いている可能性が示唆された。現在 Beads-2B 細胞を用いた機能解析を進めており、併せて発表する。
グルココルチコイドによる鼻粘膜末梢時計の調整：
PER2 発光リズムを指標とした解析

Aya Honma1,2, Yui Nakamaru1, Dai Takagi1, Masanobu Suzuki1, Ken-ichi Honma1, Sato Honma1, Satoshi Fukuda1

1 Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine
2 Department of Chronomedicine, Hokkaido University Graduate School of Medicine

1. はじめに
哺乳類の眠りリズムは、中枢時計である視床下部視交叉上核と全身の組織に存在する末梢時計により制御されている1)。アレルギー性鼻炎の症状には日内変動があり、早朝に増悪する2)。これには、内分泌系や自律神経系の相関リズムの関与が考えられているが、鼻粘膜組織そのものに抗原反応におけるリズムが存在すると推測される。しかし、鼻粘膜末梢時計の存在は未だ報告されていない。また、グルココルチコイドは末梢時計のリズムを同期させる同調因子として知られている3)。したがって、アレルギー性鼻炎の治療法である鼻噴霧用ステロイド薬が、鼻粘膜末梢時計に対して影響を及ぼす可能性も考えられる。

本実験では、マウス鼻粘膜組織における時計遺伝子 *Per2* の発現を観察し、発光リレーファラーゼレポーターを用いて解析し、その相関リズム特性を明らかにした。また、グルココルチコイド投与時間による *Per2* 発光リズムの変化をより、グルココルチコイドによる鼻粘膜末梢時計への影響を検討した。

2. 方法
実験には、PER2と生物発光酵素ルシフェラーゼの融合タンパクを合成するC57BL/6を背景とするPER2::LUCノックインマウスおよび野生型の雄性成績マウスを用いた。全てのマウスは6時から18時を明期とする明暗サイクル下で飼育した。始めに、6時および18時より野生型マウスの鼻粘膜組織を採取し、抗PER2抗体による免疫染色にて組織学的評価を施行した。次に、PER2::LUCノックインマウスの鼻粘膜組織をルシフェリン含有培地にて培養し、組織発光を光電子増倍管にて経時的に測定した。PER2レベルの検出パターンを解析した。さらに、培養5日目の異なるリズム位相でdexamethasone（DEX）を最終濃度10^{-7} M）を投与し、鼻粘膜PER2発光リズムの位相反応を観察した。DEX投与後12時間のサーカディアン時間（Circadian Time：CT）にて表示される。なお、対照群には同量の滅菌水を使用した。

3. 結果
PER2陽性シグナルは上皮細胞に発現し、18時に特に強い発現を認めた。また、18時には血管内皮や神経終末においてもPER2陽性シグナルを認めた（図1）。

培養鼻粘膜におけるPER2リズムには、20時よりピーク値をもつ安定した既日リズムが観察され、リズム周期は約23時間であった（図2）。この結果より、鼻粘膜末梢時計の存在が初めて明らかとなった。PER2発光リズムはDEX投与により位相依存性の位相反応を示し、ピーク値が位相CT12）にDEXを投与すると約11時間の位相後進を示した。最も低値（CT0）における投与では位相変化を示さず、両者の中間（CT18）では約7時間の位相前進を示した（図3）。

4. 考察
免疫応答や炎症メディエータ活性にも既日リズムがあり、生体防御の上で重要な役割を果たしていると考えられる4)。鼻粘膜上皮は上気道において環境刺激に対し最前線に位置するため、鼻粘膜末梢時計が存在するのでは、生体が環境の周期性を予知して適切に生体防御を行うのに、
図1 マウス鼻粘膜組織PER2陽性細胞。スケールは100μm。

図2 マウス培養鼻粘膜組織のPER2リズム（n=8）。培養日数を縦軸に示した。

図3 DEXによる位相反応。横軸はDEX投与時間をサーカディアン時間で示した。縦軸は位相反応を、プラスが位相前進、マイナスが位相後退を示す（one-way ANOVA with a post hoc Bonferroni test, *, p<0.01, n=4-5 各時）。

参考文献
1) Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418 (6901): 935-41.
2) Reinberg A, Gervais P, et al. Circadian and circannual rhythms of allergic rhinitis: an epidemiologic study involving chronobiologic methods. J Allergy Clin Immunol. 1998; 81(1): 51-62.
3) Balsalobre A, Brown SA, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000; 289(5488): 2344-47.
4) Silver AC, Arjona A, et al. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012; 36(2): 251-61.
5) Nakao A, Nakamura Y, et al. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015; 70(5): 467-73.