Inverse Primakoff Scattering for Axionlike Particle Coupling

C.-P. Wu,1 C.-P. Liu,2,3,* Greeshma C.,4,5 L. Singh,4,5 J.-W. Chen,6,3,† H.-C. Chi,2 M.K. Pandey,2,6 and H.T. Wong4,†

1Département de Physique, Université de Montréal, Montréal H3C 3J7, Canada.
2Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
3Physics Division, National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan.
4Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
5Department of Physics, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya 822236, India.
6Department of Physics, CTP and LeCosPA, National Taiwan University, Taipei 10617, Taiwan.

(Dated: August 29, 2023)

Axionlike particles (ALPs) can be produced in the Sun, and are considered viable candidates for the cosmological dark matter (DM). It can decay into two photons or interact with matter. We identify new inelastic channels of inverse Primakoff processes due to atomic excitation and ionization. Their cross sections are derived by incorporating full electromagnetic fields of atomic charge and current densities, and computed by well-benchmarked atomic many-body methods. Complementing data from the underground XENONnT and surfaceTEXONO experiments are analyzed. Event rates and sensitivity reaches are evaluated with respect to solar- and DM-ALPs. New parameter space in ALP couplings with the photons versus ALP masses in (1 eV – 10 keV) not previously accessible to laboratory experiments are probed and excluded with solar-ALPs. However, at regions where DM-ALPs have already decayed, there would be no ALP-flux and hence no interactions at the detectors in direct search experiments. No physics constraints can be derived. Future projects would be able to evade the stability bound and open new observable windows in (100 eV – 1 MeV) for DM-ALPs.

PACS numbers: 14.80.Va, 95.35.+d, 13.85.Hd
Keywords: Axions, Dark Matter, Inelastic Scattering

I. INTRODUCTION

Axions are hypothetical particles first introduced to solve the strong CP problem with the spontaneous breaking of the Peccei-Quinn symmetry [1–4]. Theoretical and experimental studies later evolved from the original “QCD axions” to variants generically called “axionlike particles” (ALPs, denoted as a), whose masses and coupling strengths with matter are no longer related.

Sources of ALPs are diverse: they are well-motivated dark matter (DM) candidates [5–7], and can be produced in astrophysical environments and terrestrial laboratories. Measurable signatures can be made under a wide variety of experimental techniques [8–15], which include micro-wave cavities, solar-ALP helioscopes, indirect searches of anomalous electromagnetic radiations in the universe, as well as production by colliders or strong lasers. Constraints of ALP properties are also derived from cooling of astrophysical objects.

Data from the DM direct search experiments can provide constraints to the ALP-photon coupling $g_{a\gamma\gamma}$ and the ALP-fermion coupling $g_{a\ell f}$. Through the axioelectric effect, competitive bounds on the ALP-electron coupling g_{aee} have been set in the range of ALP masses $40 \, \text{eV} < m_a < \mathcal{O}(1 \, \text{MeV})$ (natural units with $\hbar=c=1$ are used throughout this article unless otherwise stated) for DM-ALPs, and in a smaller mass range with solar-ALPs (see Ref. [15]). Laboratory constraints on $g_{a\gamma\gamma}$, however, are comparatively scarce. So far, they are primarily derived from Bragg scattering of solar-ALPs on crystal targets, and are only applicable to $m_a < \mathcal{O}(1 \, \text{keV})$ [16–20].

The theme of this work is to expand and improve the sensitivities of laboratory experiments in probing the $m_a - g_{a\gamma\gamma}$ parameter space using the inelastic inverse Primakoff (IP) scatterings between ALPs and matter as the detection channels.

This article is structured as follows: Theoretical formulation of ALP interactions with matter via $g_{a\gamma\gamma}$-coupling, as well as the evaluation of the corresponding cross sections are discussed in Sect. II. The observable events on Earth taking solar-ALPs and DM-ALPs as sources are given in Sect. III. Physics results on $g_{a\gamma\gamma}$ by the IP processes from selected laboratory experiments are presented in Sect. IV, and are compared with other experimental, astrophysical and cosmological bounds. It will be shown that new limits are achieved for solar-ALPs. However, the current sensitivity parameter space for DM-ALPs is mostly forbidden for direct detection by the cosmological stability bound, though next generation of experiments would be able to open a new window and study the unexplored parameter space.

* cpliu@mail.ndhu.edu.tw
† jwc@phys.ntu.edu.tw
‡ htwong@phys.sinica.edu.tw
II. FORMALISM

The interaction Lagrangian of an ALP field (a) with the photon field (A^μ) and the Standard-Model fermion fields (Ψ_f with f specifying its flavor) is generally written as [14]

\[\mathcal{L}_I = -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \bar{F}^{\mu\nu} - \sum_f g_{a ff} f \frac{1}{2m_f} (\partial_{\mu} a) \bar{\Psi}_f \gamma^\mu \gamma_5 \Psi_f, \]

where $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$ and $\bar{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ are the photon field tensor and its dual, with $\epsilon^{0123} = 1$; m_f is the fermion mass; and $g_{a\gamma\gamma}$ ($g_{a ff}$) denotes the strength of the ALP-photon (ALP-fermion) coupling. These interaction terms provide the foundation for ALP detection and production. In this work, we will focus only on the processes resulting from a finite $g_{a\gamma\gamma}$.

The coupling $g_{a\gamma\gamma}$ can manifest experimentally in many ways as shown in Fig. 1. The most straightforward channel is where an ALP can have two-photon decay (TPD) in vacuum:

\[a \rightarrow \gamma_1 + \gamma_2 : \Gamma_{a\gamma\gamma}^V = \frac{1}{64\pi} g_{a\gamma\gamma}^2 m_a^3, \]

where $\Gamma_{a\gamma\gamma}^V$ is the decay rate at rest per ALP. When one of the photons becomes virtual in a medium and is absorbed by the target atom A, it gives rise to IP scattering [21–28] with four-momentum transfer $q_\mu = (T, \vec{q})$. There are three IP reaction channels: $a + A \rightarrow$

\[\begin{cases} \gamma + A & \text{IP}_{el}: \text{elastic scattering} \\ \gamma + A^* & \text{IP}_{ex}: \text{atomic excitation} \\ \gamma + A^+ + e^- & \text{IP}_{ion}: \text{atomic ionization} \end{cases} \]

All four channels involve full conversion of the ALPs so that the experimental measurable is the total energy E_a. There is no interference among them, since all have experimentally distinguishable final states — two γ‘s for TPD, a single γ for IP$_{el}$, a γ plus atomic de-excitation photons for IP$_{ex}$, and a γ plus an ionized electron with atomic transition photons for IP$_{ion}$. At m_a much lower than the nuclear mass scales (GeV), the energy depositions at detectors are electromagnetic without complications of nuclear recoil.

A. Differential Cross Sections and Rates

Evaluation of the double differential cross sections of the ALP IP processes builds on our earlier work of incorporating the atomic many-body physics effects to low energy neutrino [29–31] and DM [32,33] interactions with matter:

\[\frac{d\sigma_{IP}}{dT d\Omega} = \frac{\alpha g_{a\gamma\gamma}^2}{16\pi} \left(E_a - T \right) \frac{V_L}{(q^2)^2} \mathcal{R}_L + \frac{V_T}{(Q^2)^2} \mathcal{R}_T, \]

where α is the fine structure constant, v_a is the ALP velocity, $q^2 = T^2 - q^2$ are the three- and four-momentum transfer squared, respectively. The kinematic factors V_L and V_T will be given in Eqs. (7)&(8), respectively. The full unpolarized atomic response consists of the longitudinal and transverse components, \mathcal{R}_L and \mathcal{R}_T, both being functions of T and q^2 given by:

\[\mathcal{R}_{L,T} = \sum_F \sum_I \left| \left\langle F | \bar{\rho} | I \right\rangle \right|^2 \delta (E_I - E_F - T), \]

which arise from the charge ρ and transverse current density j_L, respectively. Note that the longitudinal current density is effectively included in the former by current conservation and also manifest in the change of the photon propagator from $1/q^2$ to $1/q^2$. The initial state I corresponds to the ground state of the target atom, while the choice of final state F depends on the IP interaction channels: the ground, excited and continuum states for IP$_{el}$, IP$_{ex}$ and IP$_{ion}$, respectively. In general, the transverse response is less than the longitudinal response by a factor of $\sim \alpha$ since the atomic current density is suppressed relative to the atomic charge density by the electron velocity.

Experimentally, the observables are the energy of the IP photon (E_γ) and the energy transferred (T) to the scattered atom as atomic recoil, excitation, or ionization. The differential rate recorded by a detector is with respect to the total observable energy E_a of the ALP, which is the sum of E_γ and T. The double differential rate is with respect to E_γ and T simultaneously, where more elaborated analyses are necessary to correlate these two signals. We focus in this work the simplest one: a single differential rate with respect to E_a

\[\frac{dR_{IP}}{dE_a} = N_A \sigma_{IP}(E_a) \frac{d\phi}{dE_a}, \]

where N_A is the total number of target atoms, $\sigma_{IP}(E_a)$ and $d\phi/dE_a$ are the total IP cross section (a double integration of Eq. (4)) and energy spectrum of ALPs with incident energy E_a, respectively.
B. Regularization of Divergences

To fully exhibit the pole structure of the photon propagator, which is crucial in cross section calculations, the corresponding kinematic factors V_L and V_T are cast in powers of q^2 and Q^2:

$$V_L = 2 \left[E_a^2 - m_a^2 + (E_a - T)^2 \right] q^2 - (q^2)^2 - (T^2 - 2E_a T + m_a^2)^2, \tag{7}$$

$$V_T = m_a^4 + \frac{Q^2}{2q^2} \left[(m_a^4 - 4m_a^2 E_a T) + (2m_a^2 + 4E_a^2 - 4E_a T + 2T^2)Q^2 - (Q^2)^2 \right]. \tag{8}$$

The familiar Coulomb pole $q^2=0$ is realized in the longitudinal component only at the forward angle $\theta=0$ along with the condition $T=E_a(1-v_a)$. Since the last term of Eq. (7) vanishes identically as $q^2\to0$, only a single pole in $V_L/(q^2)^2$ is produced. This divergence is usually regulated by Coulomb screening in media (see, for example, Refs. [22, 23, 26, 27, 34]) via changing the longitudinal propagator from $1/q^2$ to $1/(q^2 + \Lambda_L^2)$. The cutoff Λ_L, which is medium-dependent, modifies the infinite-range Coulomb interaction to a Yukawa one with a range of order $1/\Lambda_L$, typically $\sim\Lambda$. We note that this procedure only applies to electrons which are not localized, for example, valence electrons in semiconductors. For a single atom, its neutrality automatically screens its Coulomb field. A manifestation of this fact is the response \mathcal{R}_L starts at the order of $(q^2)^2$, as demonstrated in Eq. (10) and Table 1 of Ref. [28]. (The \mathcal{R}_L responses for IP$_{ex}$ and IP$_{con}$ also start at the order of $(q^2)^2$, but they are due to wave function orthogonality.) Furthermore, the inner-shell electrons experience and contribute to screening at shorter length scales than the size of an atom. As a result, applying a universal screening length $\sim\Lambda$ tends to overestimate the atomic Coulomb field. This is the main reason that previous calculations using Λ screening lengths over-predict IP$_{st}$ cross sections by solar-ALPs, as was first pointed out and corrected through realistic atomic calculations in Ref. [28].

The transverse component $V_T/(Q^2)^2$ does exhibit a double pole structure at $Q^2=0$ for nonzero m_a. The kinematics of the incoming ALP and outgoing photon makes it possible to have

$$Q^2 = m_a^2 - 2E_a(E_a - T)(1 - v_a\cos\theta), \tag{9}$$

vary from time-like to space-like as the scattering angle (θ) increases. Fig. 2 depicts the $Q^2=0$ contours traced by $\cos\theta$ and the fraction of energy transfer (T/E_a) at selected v_a. For ultra-relativistic (UR) ALPs with $v_a\approx1$, such as solar-ALPs, the divergence only happens at the forward angle. As v_a becomes less relativistic, the time-like to space-like transition happens at some intermediate scattering angle. For non-relativistic (NR) DM-ALPs with $v_a\sim10^{-3}$ (where $E_a\approx m_a$), the pole is realized at a tiny range around $T\approx m_a/2$. As the virtual photon is absorbed by the target, the kinematics of the final state of the target further limits the available Q^2-space. In general, Q^2 can be both space-like and time-like for IP$_{ex}$ and IP$_{con}$, while $Q^2\leq0$ for IP$_{st}$.

To regulate the transverse photon pole, at which the virtual photon approaches the real limit, we follow the approach of Ref. [35] and modify the photon propagator according to the complex refractive index of the detector material: $n=n_r+i n_i$, where the real part n_r gives the normal refractive index, and the imaginary part is related to the attenuation coefficient $\Lambda_T=2T n_i$. If the detector consists of only one type of atom with a number density n_A and photo-absorption cross section $\sigma_\gamma(T)$, we can further relate $\Lambda_T=n_A\sigma_\gamma(T)$. As a result, the photon propagator in vacuum should be modified to be

$$\frac{1}{Q^2} = \frac{1}{T^2 - q^2} \to \frac{1}{T^2 n_i^2 - q^2} \to \frac{1}{(Q^2 - \frac{1}{4}\Lambda_T^2) + T^2 n_i^2 - 1 + i T\Lambda_T}. \tag{10}$$

For simplicity, we take $n_i=1$ in this paper, which is a good approximation for X-ray and γ-ray photons, and leave refined treatments for photons of lower or near-resonance energies for future studies. The square of the propagator in Eq. (4), which itself is an absolute value squared, becomes

$$\frac{1}{(Q^2)^2} \to \frac{1}{(Q^2 - \Lambda_T^2/4 + T^2\Lambda_T^2})^2. \tag{11}$$

Typical values are $n_A\sim10^{22}/\text{cm}^2$, and $\sigma_\gamma(T)\lesssim10^6\text{ barn}$ for $T>100\text{ eV}$. As a result, Λ_T is not larger than a few
eV, so the shift in the pole position is not significant, and T\Alp{T} is within the range 10^2\text{eV}^2. We note that the above treatment requires the virtual photon to be absorbed inside the detector, or equivalently the length dimension of the detector has to be substantially bigger than the attenuation length 1/\Alp{T}.

C. Equivalent Photon Approximation

To acquire further insight into the transverse contribution, it is useful to perform an equivalent photon approximation (EPA), similar to the method adopted in Ref. [35], by (i) setting \Alp{L}=0, (ii) keeping the sole \Alp{m}_a^-\text{term in }\Alp{V}_T, and (iii) substituting the transverse response \Alp{R}_T(T,q) by photo-absorption cross section – \Alp{R}_T(T,q) \approx T\sigma_a(T)/(2\pi^2\alpha). The single differential cross section (SDCS) for IP\ion{ion} can then be easily integrated to give

\[
\frac{d\sigma}{dT}\Bigg|_{\text{IP\ion{ion}}}^{\text{EPA}} = \frac{g_{a\gamma\gamma}^2}{32\pi^2} \left(\frac{\sigma_a}{\Alp{T}} \right) \left(\frac{m_a^4}{v_a^2\alpha^2} \right) \times \tan^{-1} \left[\frac{Q^2 - \Lambda^2_T/4}{\Alp{T}} \right] Q_{\text{max}}^2 Q_{\text{min}}^2.
\]

Several important features can be observed: First, the 1/\Alp{T} dependence clearly traces the divergence resulting from the double pole. Together with \sigma_a, it leads to a single-atom cross section suppressed by 1/n_a, due to the fact that the effective interaction range becomes shorter as the medium gets denser. Second, the factor \Alp{m}_a^2/(v_a^2\Alp{E}_a^2)=m_a^2(1-v_a^2)/v_a^2 indicates that this contribution favors NR ALPs with a big mass.

Moreover, when both \Alp{Q}_{\text{max}}^2 and \Alp{Q}_{\text{min}}^2 are much larger than \Alp{T}, the arc-tangent value saturates to \pi. As a result, the SDCS becomes a T-independent constant as long as the kinematics allows \Alp{Q}^2 to change sign when the scattering angle increases. For highly NR cases with v_a \ll 1, this requires T in the range of \Alp{m}_a(1\pm v_a)/2, and, as an approximation, the total cross section can be easily integrated to give:

\[
\sigma_{\text{IP\ion{ion}}NR}^{\text{EPA}} \approx \frac{g_{a\gamma\gamma}^2}{32\pi} \left(\frac{1}{n_A} \right) \left(\frac{m_a^3}{v_a} \right). \tag{13}
\]

Considering a detector of volume V (the number of atoms is thus n_AV) and an ALP number density of n_a (the flux is thus n_av_a), the event rate will be

\[
R_{\text{IP\ion{ion}}NR}^{\text{EPA}} \approx \frac{g_{a\gamma\gamma}^2}{32\pi} n_a^3(n_aV) = 2V \sigma_a(\gamma_a)(n_aV). \tag{14}
\]

Note that n_aV is the total number of ALP inside the detector volume, so this result gives the total IP\ion{ion} event rate twice as much as the two-photon decay (time dilation is negligible because v_a \ll 1). The factor of two can be understood in the context of EPA that either of the decayed photons can play the role of the intermediate state in the

FIG. 3. Total cross sections for the three IP detection channels for the case of a massless ALP scattering off a xenon atom with g_{a\gamma\gamma}=10^{-10}\text{GeV}^{-1}.

IP process. This result might seem surprising as the predicted rate only depends on a detector volume, but not on the target characteristics. However, one should be alert that this approximation is only valid when all the underlying assumptions hold true. For instance, if ALP is not extremely NR, or when the transverse contribution is sub-dominant, the cross sections and rates have to be explicitly computed. We will discuss this in more detail through concrete cases in the next section.

D. Selected Numerical Results

In this subsection, we present numerical results using xenon as the target and assuming g_{a\gamma\gamma}=10^{-10}\text{GeV}^{-1}, to illustrate several key kinematic features when ALPs are either UR or NR.

The scattering cross sections for a massless ALP as a function of \Alp{E}_a are displayed in Fig. 3, where the black, red, blue curves denote the IP\el, IP\ex and IP\ion channels, respectively. At high energy where \Alp{E}_a \gg 2\text{keV}, IP\el dominates the total cross section. On the other hand, IP\ion provides the leading contribution at \Alp{E}_a \ll 1\text{keV}, where IP\el is suppressed due to the large electronic screening in the charge form factor.

Several special cases of massive ALPs are shown in Figs. 4(a)\&(b) for IP\el and IP\ion, respectively. In IP\el, Q^2 can only be space-like. As illustrated in Fig. 4(a), the total cross section is mostly due to the longitudinal response, and approaches the massless limit whenever the ALPs become relativistic. Conversely, the cross section drops quickly to zero near energy thresholds due to the NR suppression of V_L\gamma q^2 and the vanishing of phase space. On the other hand, Fig. 4(b) indicates
that the contributions from IP\textsubscript{ion} are complicated by the enhancement of the double pole in Q^2, which is associated with the transverse response and is proportional to $m_a^2(1 - v_a^2)/v_a^2$. The departures from the massless case are more dramatic near the energy thresholds, and also grow with the mass.

The IP\textsubscript{ion} SDCS for an NR ALP with $v_a = 0.1$ and $m_a = 1$ keV is presented in Fig. 5(a). The full calculation (in black), which is based on the atomic wave functions obtained by the frozen core approximation (FCA) and numerical integration of Eq. (4), is compared with the EPA (in red) as prescribed by Eq. (13). In the energy range where the double pole can be accessed ($450 - 550$ keV), the EPA is indeed an excellent approximation. Outside this region, where there are contributions from the longitudinal and other transverse responses, the corrections to the total cross section are at the $\sim 1\%$ level. Fig. 5(b) shows the total IP\textsubscript{ion} cross section for ALP at $m_a = 100$ eV as a function of v_a. The EPA works well in the NR regime of $v_a \lesssim 0.05$. As v_a approaches the relativistic limit, contributions from the longitudinal responses gradually take over and become dominant.

III. SOURCE-SPECIFIC EVENT RATES

Two ALP sources are considered in this work: one from the Sun, and the other under the assumption that all the galactic dark matter are ALPs.

A. Solar-ALPs

The Sun can produce ALPs through both $g_{a\gamma\gamma}$ and g_{aee} processes. Since only detection channels involving $g_{a\gamma\gamma}$ are considered in this work, we take only the solar-ALP flux generated through the Primakoff process [37]. The resulting detectable event rate is consequently proportional to $g_{a\gamma\gamma}^4$.

With the Primakoff process, thermal photons in the solar interior are converted into ALPs in the Coulomb fields of nuclei and electrons in the solar plasma. The recoil effect is ignored, and the axion energy E_a is identical to the photon energy. The conversion rate is given by [36]:

$$\Gamma_{a\gamma\gamma} = \frac{g_{a\gamma\gamma}^2 T_p \kappa^2}{32\pi} \times \left[\frac{(m_a^2 - \kappa^2)^2 + 4E_a^2\kappa^2}{4E_a p_a \kappa^2} \ln \left(\frac{(E_a + p_a)^2 + \kappa^2}{(E_a - p_a)^2 + \kappa^2} \right) \right] - \frac{m_a^4}{4E_a p_a \kappa^2} \ln \left(\frac{(E_a + p_a)^2}{(E_a - p_a)^2} - 1 \right), (15)$$

where p_a is the ALP momentum. In the UR case where $p_a \approx E_a$, the formula can be simplified to a more popular form [38]:

$$\Gamma_{a\gamma\gamma}^{\text{UR}} = \frac{g_{a\gamma\gamma}^2 T_p \kappa^2}{32\pi} \left[\left(1 + \frac{\kappa^2}{4E_a^2} \right) \ln \left(1 + \frac{4E_a^2}{\kappa^2} \right) - 1 \right]. (16)$$

where T_p is the plasma temperature, and κ is the Debye screening scale given by [39]

$$\kappa^2 = \frac{4\pi a}{T} \left(n_e^{\text{eff}} + \sum_j Z_j Z_j^{\text{eff}} \right), (17)$$

with n_e^{eff} and n_j^{eff} are, respectively, the effective number density of electrons and ions with nuclear charge Z_j. The approximate effective electron number density can
be expressed as

\[n_{e}^{\text{eff}} \simeq \frac{(X + 1)}{2} \left(\frac{\rho}{m_a} \right), \]

(18)

where \(X \) is the hydrogen mass fraction, \(\rho \) is the mass density and \(m_a \) is the atomic mass unit (approximately the proton mass).

The differential flux of solar-ALPs on Earth can be written as

\[\frac{d\phi_a}{dE_a} = \frac{1}{\pi^2 d_{\odot}^2} \int_0^{R_{\odot}} dr \Gamma_{\gamma \rightarrow a} \left[\frac{\gamma^2 E_a^2}{e^{E_a/T_p} - 1} \right] \]

(19)

where \(R_{\odot} \) is the solar radius, \(d_{\odot} = 1.5 \times 10^{13} \text{ cm} \) is the distance to the Sun, and the integration is with respect to the radial distance from the solar center \((r) \). In order to perform the integration, we adopted the BS05-AGSOP solar model \([40]\) for the radial profiles of \(T_p \) and \(\kappa \). The solar-ALP spectra thus derived are depicted in Fig. 6.

Once the solar-ALP spectra \((d\phi_a/dE_a) \) are derived, the event rates of the three IP channels can be evaluated directly by Eq. (6). However, in the derivation of the TPD rate, it is important to take the time dilation factor into account since most solar-ALPs are relativistic, so that the TPD rate

\[\frac{dR_{\text{TPD}}}{dE_a} = (\gamma^{-1} \Gamma_{\gamma \rightarrow a}) \left(\frac{V}{v_a} \right) \frac{d\phi_a}{dE_a} \]

(20)

carries an additional correction factor of \(\gamma^{-1} = m_a/E_a \) to the decay rate at rest.

1. Solar-ALPs at sub-keV mass (ultra-relativistic)

As displayed in Fig. 6, the typical energy of solar-ALP is in the range of a few to tens of keV. Therefore, ALPs produced in the Sun with sub-keV mass are mostly relativistic and, as explained in Sect. IID, the atomic longitudinal response dominates the IP processes. The differential rates expected at a liquid xenon detector with a ton-year exposure for the four observation channels at \(g_{\alpha \gamma \gamma} = 10^{-10} \text{ GeV}^{-1} \) and \(m_a = 0.1 \text{ keV} \) are displayed in Fig. 7(a). The gross feature of the three IP channels is consistent with Figs. 3&4 – in the entire keV range, the IP\(_{el}\) has the largest count rates except when \(E_a \lesssim 2 \text{ keV} \), where IP\(_{\text{ion}}\) starts to play an important role. On the contrary, IP\(_{\text{ex}}\) does not contribute significantly, and TPD is also suppressed by the time dilation factor.
The total event rates of the four channels at different \(m_a \) are presented in Table I. At sub-keV energy (that is, 1 meV, 1 eV, and 1 keV), the \(IP_{el} \) rates dominate and show little mass dependence as \(v_a \to 1 \) in the \(E_a \sim \text{keV} \) energy range. The sub-leading contribution is from \(IP_{ion} \) — still substantial at 10%-20% level. In addition, the \(m_a^2/E_a^2 \times m_a^2 \) factor in the transverse response leads to the NR enhancement in Eq. (13) and provides bigger correction at higher \(m_a \). Unlike \(IP_{ex} \) which is relatively small and almost mass-independent, the TPD sensitively depends on \(m_a^2 \), following Eq. (20). This explains the 12 orders of magnitude increase in the TPD rate when \(m_a \) increases from 1 meV to 1 eV and from 1 eV to 1 keV.

2. Solar-ALPs at keV mass (non-relativistic)

Typical helioscope experiments [41] can place strong bounds on UR solar-ALPs, in particular for \(m_a \leq 10^{-2} \text{ eV} \). The constraints become increasingly weaker in the NR regime as \(m_a \) increases, when the coherence wavelength becomes comparable to the detector dimensions. However, ALPs of \(m_a \sim \text{keV} \) can still be produced in the Sun. Data from experiments on direct DM searches, as we will show in this work, can provide competitive limits from solar-ALPs and complement the ones from helioscopes.

Analytical studies of solar-ALPs cover the entire kinematic regime from NR to relativistic. As a result, the derivations of cross sections and rates is involved and require the incorporation of both atomic longitudinal and transverse responses. The case of \(g_{a\gamma\gamma} = 10^{-10} \text{ GeV}^{-1} \) and \(m_a = 5 \text{ keV} \) is considered in Fig. 7(b). The most interesting feature is that \(IP_{ion} \) dominates over \(IP_{el} \) in the entire energy range, due to the NR enhancement from the transverse response. In addition, since the time dilation effect is not as severe as for the case of sub-keV \(m_a \), the TPD rate is higher than that of \(IP_{el} \). The \(IP_{ex} \) rate remains the least significant. The edge structure of \(IP_{ex} \) at \(E_a = 6.13 \text{ keV} \) is due to the photon double pole when a 2\(p \)-shell electron is excited to a 5\(d \) or 6\(s \) orbital, with excitation energy \(\sim 4.8 \text{ keV} \). The atomic discrete excitations other than the electric-dipole transitions are highly suppressed.

The total event rates for the four detection channels due to NP solar-ALPs at \(m_a = 5 \) and 10 keV are given in Table I. The \(IP_{ion} \) channel dominates the event rates for keV-scale solar-ALPs. The rates would be dramatically suppressed at \(m_a > 10 \text{ keV} \) due to the sharp decrease of the solar-ALP fluxes.

B. DM-ALPs

Under the scenario of DM-ALP [5–7], experimental searches for galactic DM can place constraints on the ALP parameter space [10–14]. IP interactions contribute in probing \(g_{a\gamma\gamma} \) in direct DM search experiments.

![FIG. 7. Differential event rates per ton-year of exposure for solar-ALPs with the four detection channels in liquid xenon, at \(g_{a\gamma\gamma} = 10^{-10} \text{ GeV}^{-1} \) with (a) \(m_a = 100 \text{ eV} \) and (b) \(m_a = 5 \text{ keV} \).](image-url)

Detection Channels	Event Rates (ton\(^{-1}\)year\(^{-1}\))			
\(m_a \)	TPD	\(IP_{el} \)	\(IP_{ex} \)	\(IP_{ion} \)
1 meV	\(O(10^{-27}) \)	6.6 \times 10^{-2}	2.9 \times 10^{-4}	7.8 \times 10^{-3}
1 eV	\(O(10^{-15}) \)	6.6 \times 10^{-2}	2.9 \times 10^{-4}	7.8 \times 10^{-3}
1 keV	2.8 \times 10^{-3}	6.4 \times 10^{-2}	2.6 \times 10^{-4}	1.3 \times 10^{-2}
5 keV	1.8 \times 10^{-1}	2.4 \times 10^{-2}	9.4 \times 10^{-5}	5.1 \times 10^{-1}
10 keV	8.9 \times 10^{-2}	1.9 \times 10^{-3}	7.8 \times 10^{-5}	3.8 \times 10^{-1}

DM-ALP

DM-ALP	Detection Channels	Event Rates (ton\(^{-1}\)year\(^{-1}\))		
1 eV	\(O(10^{-14}) \)	0	0	0
1 keV	250	1.7 \times 10^{-5}	1.6 \times 10^{-3}	500
1 MeV	2.5 \times 10^{8}	9.9 \times 10^{-5}	2.2 \times 10^{-10}	5.0 \times 10^{8}

TABLE I. Event rates of the four detection channels in liquid xenon for solar- and DM-ALPs, at \(g_{a\gamma\gamma} = 10^{-10} \text{ GeV}^{-1} \). For \(IP_{ex} \), only the dominant final states by electric dipole excitations are included.
We first derive the event rates and sensitivity regions under the assumption of DM-ALPs and independent of other constraints. We would then study the implications and results in the presence of the DM-ALP cosmological stability bound in Sect. IV C, and conclude what physics information can be obtained from current and future experiments.

The conventional Maxwellian velocity distribution is adopted for the DM-ALP spectrum:

\[
f(\vec{v}_a) = \frac{1}{K} \exp\left[-\frac{(\vec{v}_a + \vec{v}_E)^2}{v_0^2}\right] \Theta(v_{\text{esc}} - |\vec{v}_a + \vec{v}_E|),
\]

(21)

where \(\vec{v}_a\) is the ALP velocity with respect to Earth and the velocity parameters are \(v_0 = 220\ \text{km/s},\ v_E = 232\ \text{km/s}\) and \(v_{\text{esc}} = 544\ \text{km/s}\), and \(K\) is the normalization factor. The galactic DM density is taken to be \(\rho_\chi = 0.3\ \text{GeV/cm}^3\). After averaging out the seasonal effect, the isotropic differential number density distribution with respect to \(v_a\) is

\[
\frac{dn_a(v_a)}{dv_a} = \frac{\rho_\chi}{m_a} v_a^2 \int d\Omega_a f(\vec{v}_a),
\]

(22)

which leads to the DM differential energy spectra:

\[
\frac{d\phi_a}{dE_a} = \frac{1}{m_a} \frac{dn(v_a)}{dv_a}.
\]

(23)

Evaluation of the differential event rates for the three IP and TPD processes follow Eq. (6) and Eq. (20), respectively. DM-ALPs are NR or, equivalently, \(\gamma \approx 1\). The TPD rate is therefore not suppressed by time dilation. Since the DM-ALP number density is inversely proportional to \(m_a\), the TPD rate scales only as \(m_a^2\) – different from \(m_a^4\) for solar-ALPs. In addition, the flux has no dependence on \(g_{a\gamma\gamma}\). The event rates therefore scale as \(g_{a\gamma\gamma}^2\).

Since DM-ALPs are NR, it can be expected that transverse responses in the IP processes are important due to the double pole of the photon propagator. The differential event rates for the four channels expected at a liquid xenon detector with a ton-year exposure at \(g_{a\gamma\gamma} = 10^{-10}\ \text{GeV}^{-1}\) and \(m_a = 100\ \text{eV}\) as illustration. The IP rates for these two masses are in the 10 eV to 10 keV range. At \(m_a = 1\ \text{keV}\), the DM-ALP flux is larger than \(g_{a\gamma\gamma}\) satisfies the stability requirement) are depicted in Fig. 8. For clarity, the \(x\)-axis is converted to the DM velocity \(v_a \approx \sqrt{2(E_a - m_a)/m_a}\) with a cut-off at the maximum \(v_{\text{esc}} + v_E\). Among the three IP channels, IP\(_{\text{ion}}\) dominates the event rates, while IP\(_{\text{el}}\) is sub-leading. Both are much larger than IP\(_{\text{el}}\) in which there is no enhancement since the elastic scattering is purely space-like. In the NR velocity range, the validity of EPA is justified against the full calculations of selected points. The percentage deviations, shown in the upper panel, are less than 3% – consistent with the discussion in Sect. II D and Fig. 5.

We argue in Sect. II C that, as long as the EPA is a valid approximation, the IP\(_{\text{ion}}\) event rate for NR ALPs in a detector will be twice that of TPD. This is verified in Fig. 8, which implies TPD is as important as IP\(_{\text{ion}}\) to look for DM-ALPs with a nonzero \(g_{a\gamma\gamma}\) coupling. The efficiency aspects of experimentally tagging two photons for the former and one photon plus one electron for the latter will be discussed in Sect. IV.

The total event rates for DM-ALPs at \(m_a = 1\ \text{eV}\), \(1\ \text{keV}\), and \(1\ \text{MeV}\) are given in Table I. At \(m_a = 1\ \text{eV}\), the DM-ALP cannot induce any atomic transitions. Therefore only IP\(_{\text{el}}\) is possible. However, the rate is very small compared to that due to a solar-ALP of the same mass because of the limited phase space. On the other hand, the TPD rate is much bigger than its solar-ALP counterpart because it does not have the extra \(10^3\) time dilation suppression factor, and the DM-ALP flux is larger than the solar-ALP flux by 8 orders of magnitude. This explains the 11-order difference in their TPD rates.

With \(m_a\) at 1 keV and 1 MeV, both IP\(_{\text{ex}}\) and IP\(_{\text{ion}}\) are possible and IP\(_{\text{el}}\) becomes insignificant. As discussed above, IP\(_{\text{ion}}\) and TPD are the most promising channels for direct detectors and their rates only differ by a factor of 2. The \(m_a^2\) dependence of IP\(_{\text{ion}}\) and TPD rates is clearly observed. The rates of IP\(_{\text{ex}}\) for these two masses suggest some irregularity. This is mostly due to the atomic structure where most discrete excitation energies are in the 10 eV to 10 keV range. At \(m_a = 1\ \text{MeV}\), there is no atomic discrete excitation at \(\sim 500\ \text{keV}(=m_a/2)\) to match the double pole kinematics, so there is no enhancement for the transverse response. As a result, its rate is even smaller than IP\(_{\text{el}}\) in which the longitudinal response is larger.

![Fig. 8. Differential event rates per ton-year of exposure for DM-ALPs with the four detection channels in liquid xenon, at \(g_{a\gamma\gamma} = 10^{-10}\ \text{GeV}^{-1}\) and \(m_a = 100\ \text{eV}\) as illustration. The x-axis is in \(v_a \approx \sqrt{2(E_a - m_a)/m_a}\), which is suitable for NR kinematics. The fractional deviation \(\Delta\) between the Full and EPA calculations of IP\(_{\text{ion}}\) is shown at the upper panel.](image-url)
cies of having final-state emissions with full absorption signals from other detector components. Signal efficiencies due to full absorption (FA) are applicable to both experiments, while single-hit (SH) selection applies in addition to XENONnT. Signatures for solar-ALPs are below 20 keVee, and the efficiency is close to unity.

IV. EXPERIMENTAL CONSTRAINTS

A. Selected Data

The following data sets are adopted for analysis to derive constraints on the \((m_a, g_{a\gamma\gamma})\) plane:

1. TEXONO data with (a) point-contact germanium detector at 300 eV\textsubscript{ee}−12 keV\textsubscript{ee} \cite{44}, and (b) high-purity germanium detector at 12 keV\textsubscript{ee} to 3000 keV\textsubscript{ee} \cite{45}, selected for having both low threshold and high energy (MeV\textsubscript{ee}) reach with detectors of excellent energy resolution (1.98 keV\textsubscript{ee} at 1 MeV\textsubscript{ee}) for spectral peak detection.

2. XENONnT data with liquid xenon at 1−140 keV\textsubscript{ee} \cite{42, 43} selected for its large exposure while having low threshold and background. The background is well-modeled and understood, and is subtracted for ALP searches.

The energy dependence of signal efficiencies in both the TPD and IP\textsubscript{ion} channels are depicted in Fig. 9. For solar-ALPs which are relativistic, IP\textsubscript{el} with a one-photon final state is the dominant channel. Signatures are continuous distributions with the ALP spectra convoluted with IP\textsubscript{el} cross sections. Signal efficiency for single-hit data selection is close to unity at this low (<20 keV\textsubscript{ee}) energy. The DM-ALPs are NR and interact pre-dominantly via the TPD and IP\textsubscript{ion} channels, the signatures of which are Gaussian peaks at \(m_a\) on the total energy depositions over the continuum background spectra. Current DM data focuses on “single-hit” events uncorrelated to veto signals from other detector components. Signal efficiencies of having final-state emissions with full absorption (FA) in the detectors and tagged as single-hit (SH) events have to be evaluated. These differ among the two channels with their different final-states: TPD is with both \(\gamma\)'s each having an energy of \(E_{\gamma}/2\); while IP\textsubscript{ion} has an electron and a photon each at \(E_{\gamma}/2\). In the case of liquid xenon detector, this requirement implies that the final states are fully absorbed within a distance corresponding to the spatial resolution (\(\sigma_x, y=0.8\) cm and \(\sigma_z=0.3\) cm at 1 MeV\textsubscript{ee} \cite{43}) away from the vertices.

B. Solar-ALPs

The exclusion regions at 90\% confidence level (CL) from the TEXONO and XENON\textsubscript{nT} data on solar-ALP \(g_{a\gamma\gamma}\) are derived. The signal detection efficiencies are 100\% as noted. The standalone sensitivity regions are presented in Fig. 10a. The relevant mass range for solar-ALPs is \(m_a<10^4\) eV, where the blue and red lines represent the constraints from TEXONO and XENON\textsubscript{nT}, respectively. Also displayed are the upper reaches of the exclusion sensitivity, which are constrained by the solar-ALPs being able to: (a) leave the solar surface, limited by IP\textsubscript{el} in the Sun (green dotted line), and (b) arrive on Earth, limited by TPD in space (black dotted line).

The leading sensitivities are from the IP\textsubscript{el} and IP\textsubscript{ion} channels at the relativistic \((m_a<1\) keV) and NR \((m_a>1\) keV) ranges, respectively. Limits derived from XENON\textsubscript{nT} far exceed that of TEXONO over the entire solar-ALP \(m_a\)-range, due to its large exposure and lower background.

The solar-ALP constraints in the global context are illustrated in Fig. 10b, together with astrophysical and cosmological bounds \cite{11, 46–48} as well as predictions from QCD-axion models \cite{49}. The IP\textsubscript{el} and IP\textsubscript{ion} channels with solar-ALPs significantly improves on \(g_{a\gamma\gamma}\) over the Bragg-scattering constraints from CDMS \cite{19} and EDELWEISS \cite{20}. It also extends the detectable window in \(m_a\) from 1 eV to \(\mathcal{O}(10\) keV) beyond the reach of the CAST helioscope experiment \cite{41}.

C. DM-ALPs

With the detection efficiencies of Fig. 9 taken into account, the standalone sensitivity regions for DM-ALPs analysis independent of other processes are derived. The probed parameter space at 90\% CL of the leading channels TPD and IP\textsubscript{ion} for DM-ALPs by the TEXONO and XENON\textsubscript{nT} data are presented by the blue and red regions, respectively, in Fig. 11a. The relevant mass range for DM-ALPs is \(10^3\) eV\(\leq m_a \leq 10^7\) eV, corresponding to the measurement dynamic range of the experiments. The upper reaches of the sensitivity regions are bounded by terrestrial attenuation by the Earth and its atmosphere before the DM-ALPs can reach the detectors. XENON\textsubscript{nT} provides better sensitivities, at \(m_a \sim 1–100\) keV. TEXONO, being a surface...
FIG. 10. (a) Standalone sensitivity regions at 90% CL in $(m_a, g_{a\gamma\gamma})$ from the TEXONO [44, 45] and XENONnT [42, 43] experiments with solar-ALPs. Contributions from the leading channels of IP$_{el}$ and IP$_{ion}$ are displayed. Upper reaches of the sensitivity regions due to survival of the Sun is shown. (b) Exclusion plot in $(m_a, g_{a\gamma\gamma})$ at 90% CL showing the solar-ALP limits from TEXONO and XENONnT experiments. The astrophysical and cosmological bounds [11, 46–48] are the light shaded regions. The predicted band for QCD axions [49] is in yellow. Superimposed are the current constraints from solar-ALPs with Bragg scattering [19, 20] and helioscope [41] experiments, as well as the sensitivity reaches of the DARWIN project [50] at standard SH-selection and zero-background scenarios.

FIG. 11. (a) Standalone sensitivity regions at 90% CL in $(m_a, g_{a\gamma\gamma})$ from the TEXONO [44, 45] and XENONnT [42, 43] experiments with DM-ALPs. Contributions from the leading channels of IP$_{el}$ and TPD are displayed. Upper reaches of the sensitivity regions due to survival of terrestrial attenuation effects are shown. The cosmological stability bound [46, 51, 52] is denoted by the bold black line. (b) Exclusion plot in $(m_a, g_{a\gamma\gamma})$ at 90% CL which results from the scenario of DM-ALPs. The stability bound (black) dictates that only a small region (red) is excluded by XENONnT [42, 43]. The astrophysical and cosmological constraints [11, 52] which are consequences of DM-ALPs are included. The predictions from QCD axions [49] are displayed as the yellow band. Superimposed are the sensitivity reaches of the DARWIN project [50] at standard SH-selection and zero-background scenarios, indicating that a new detection window is opened and substantial region can be probed.

experiment with larger dynamic range, is sensitive to higher $g_{a\gamma\gamma}$ and can explore an extended mass range of $m_a \sim 300$ eV–3 MeV.

However, it is necessary to place this projected standalone sensitivity in relation to other astrophysical and cosmological constraints. The decay of ALPs with $m_a < 1$ MeV to e^+e^- via g_{free} is not allowed by kinematics, but ALPs of any mass can have TPD via $g_{a\gamma\gamma}$. This places severe requirement on ALP stability – the TPD lifetime ($1/\Gamma_{a\gamma\gamma}$) has to be longer than the age of the Universe [46, 51, 52] in order for the DM-ALP to reach and be observable in terrestrial experiments. This implies part of the $(m_a, g_{a\gamma\gamma})$ parameter space is not accessible by the direct experimental searches of DM-ALPs. As an
FIG. 12. Summary plot of existing constraints on $g_{a\gamma\gamma}$ versus m_a in ALPs. Those in dotted lines only apply under the assumption that ALPs are the cosmological DM [52]. The yellow band are predictions from QCD axion models [49].

The relatively-long-lived ALPs can be studied by other means such as in colliders and from probes of the early Universe. Both results are combined into the summary plot of Fig. 12. The constraints in dotted lines represent those which only apply under the assumption that ALPs are the cosmological DM and are stable relative to the age of the Universe. Though the astrophysical and cosmological constraints are in general more stringent than the laboratory limits, they usually have strong model and parameter dependence. For instance, the “DM-ALP (Thermally Produced)” constraint assumes thermal production of DM-ALP in the early universe such that its density cannot exceed that implied by the DM relic abundance [46]. This bound would be completely evaded under DM-ALP production scenarios with non-thermal processes [52].

Experimentally, the IP$_{\text{ion}}$ channel with NR ALPs offers a very distinct signature: an electron and a photon with equal energy originated from a common vertex. This feature can be used for further background suppression while retaining good signal efficiency. The projected sensitivities of the next generation liquid xenon project DARWIN [50] at 200 ton-year exposure and 50 eVee threshold are superimposed in Figs. 10b&11b, showing one with typical single-hit selection with the projected background subtracted, and another with an idealized zero-background all-multiplicity full-efficiency measurement. In particular, Fig. 11b indicates that the IP$_{\text{ion}}$ sensitivities of future projects would exceed the cosmological stability bound for DM-ALPs. A new detection window would be opened by the IP processes, and an unexplored parameter space can be studied.

Recent works [53, 54] identify that $g_{a\gamma\gamma}$ coupling at the quantum one-loop level can produce experimental signatures which resemble those from $g_{a\gamma\gamma}$ interactions. Accordingly, experimental constraints such as those from IP effects of this work can be translated to bounds on $g_{a\gamma\gamma}$. This will be one of the themes for our future research efforts.

VI. ACKNOWLEDGEMENT

This work was supported in part under Contracts 106-2923-M-001-006-MY5, 110-2112-M-001-029-MY3, 108-2112-002-003-MY3, 109-2112-M-259-001 and 110-2112-M-259-001 from the Ministry of Science and Technology, 2019-20/ECP-2 and 2021-22/TG2.1 from the National Center for Theoretical Sciences, and the Kenda Foundation (J.-W. C.) of Taiwan; Contract F.30-584/2021(BSR), UGC-BSR Research Start Up Grant, India (L.S.); and the Canada First Research Excellence Fund through the Arthur B. McDonald Canadian Astroparticle Physics Research Institute (C.-P. W.).
[1] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38, 1440 (1977).
[2] R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16, 1791 (1977).
[3] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223 (1978).
[4] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).
[5] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Physics Letters B 120, 127 (1983).
[6] L. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Physics Letters B 120, 133 (1983).
[7] M. Dine and W. Fischer, The not-so-harmless axion, Physics Letters B 137 (1983).
[8] G. Raffelt and P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. 52, 941 (1980).
[9] P. Sikivie, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).
[10] K. Choi, S. H. Im, and C. Sub Shin, Recent Progress in Axion Searches with a Small Germanium Detector at the Canfranc Underground Laboratory, Astropart. Phys. 103, 141802 (2009), arXiv:0902.4693 [hep-ex].
[11] C. Gao, J. Liu, L.-T. Wang, X.-P. Wang, X. Yue, and Y.-M. Zhong, Reexamining the Solar Axion Explanation for the XENON1T Excess, Phys. Rev. Lett. 125, 131806 (2020), arXiv:2006.14598 [hep-ph].
[12] T. Abe, K. Hamaguchi, and N. Nagata, Atomic Form Factors and Inverse Primakoff Scattering of Axions, Phys. Rev. Lett. 81, 136174 (2021), arXiv:2012.02508 [hep-ph].
[13] J.-W. Chen, H.-C. Chi, K.-N. Huang, C.-P. Liu, H.-T. Shiao, L. Singh, H. T. Wong, C.-L. Wu, and C.-P. Wu, Atomic ionization of germanium by neutrinos from an ab initio approach, Phys. Lett. B 731, 159 (2014), arXiv:1311.5294 [hep-ph].
[14] J.-W. Chen, H.-C. Chi, H.-B. Li, C.-P. Liu, L. Singh, H. T. Wong, C.-L. Wu, and C.-P. Wu, Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-keV sensitivities, Phys. Rev. D 90, 011301 (2014), arXiv:1405.7168 [hep-ph].
[15] M. K. Pandey, L. Singh, C.-P. Wu, J.-W. Chen, H.-C. Chi, C.-C. Hsieh, C.-P. Liu, and H. T. Wong, Constraining neutrino electromagnetic properties by germanium detectors, Phys. Rev. D 91, 013005 (2015), arXiv:1411.0574 [hep-ph].
[16] M. K. Pandey, L. Singh, C.-P. Wu, J.-W. Chen, H.-C. Chi, C.-C. Hsieh, C.-P. Liu, and H. T. Wong, Constraints from a many-body method on spin-independent dark matter scattering off electrons using data from germanium and xenon detectors, Phys. Rev. D 102, 123025 (2020), arXiv:1812.11759 [hep-ph].
[17] C.-P. Liu, C.-P. Wu, J.-W. Chen, H.-C. Chi, M. K. Pandey, L. Singh, and H. T. Wong, Spin-dependent dark matter-electron interactions, Phys. Rev. D 106, 063003 (2022), arXiv:2106.16214 [hep-ph].
[18] M. C. D. Marsh, The Darkness of Spin-0 Dark Radiation, JCAP 01, 017, arXiv:1407.2501 [hep-ph].
[19] J.-W. Chen, H.-C. Chi, S.-T. Lin, C.-P. Liu, L. Singh, H. T. Wong, C.-L. Wu, and C.-P. Wu, Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors, Phys. Rev. D 93, 093012 (2016), arXiv:1601.07257 [hep-ph].
[hep-ph].

[36] L. Di Lella, A. Pilaftsis, G. Raffelt, and K. Zioutas, Search for solar kaluza-klein axions in theories of low-scale quantum gravity, Phys. Rev. D 62, 125011 (2000).

[37] S. Andrianonije et al. (CAST), An Improved limit on the axion-photon coupling from the CAST experiment, JCAP 04, 010, arXiv:hep-ex/0702006.

[38] G. G. Raffelt, Plasmon decay into low-mass bosons in stars, Phys. Rev. D 37, 1356 (1988).

[39] G. G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev. D 33, 897 (1986).

[40] J. N. Bahcall, A. M. Serenelli, and S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes, The Astrophysical Journal 621, L85 (2005).

[41] V. Anastassopoulos et al. (CAST), New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13, 584 (2017), arXiv:1705.02290 [hep-ex].

[42] E. Aprile et al. (XENON Collaboration), Search for new physics in electronic recoil data from xenonnt, Phys. Rev. Lett. 129, 161805 (2022).

[43] E. Aprile et al. (XENON), XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection, Phys. Rev. D 100, 052014 (2019), arXiv:1906.04717 [physics.ins-det].

[44] L. Singh et al. (TEXONO), Constraints on millicharged particles with low threshold germanium detectors at Kuo-Sheng Reactor Neutrino Laboratory, Phys. Rev. D 99, 032009 (2019), arXiv:1808.02719 [hep-ph].

[45] H. T. Wong et al. (TEXONO), A Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station, Phys. Rev. D 75, 012001 (2007), arXiv:hep-ex/0605006.

[46] D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02, 032, arXiv:1110.2895 [hep-ph].

[47] J. Jaeckel, P. C. Malta, and J. Redondo, Decay photons from the axionlike particles burst of type II supernovae, Phys. Rev. D 98, 055032 (2018), arXiv:1702.02964 [hep-ph].

[48] P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg, Robust cosmological constraints on axion-like particles, JCAP 05, 009, arXiv:2002.08370 [hep-ph].

[49] G. G. Raffelt, Axions: Motivation, limits and searches, J. Phys. A 40, 6607 (2007), arXiv:hep-ph/0611118.

[50] J. Aalbers et al. (DARWIN), DARWIN: towards the ultimate dark matter detector, JCAP 11, 017, arXiv:1606.07001 [astro-ph.IM].

[51] E. Masso and R. Toldra, On a light spinless particle coupled to photons, Phys. Rev. D 52, 1755 (1995), arXiv:hep-ph/9503293.

[52] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, WISPy Cold Dark Matter, JCAP 06, 013, arXiv:1201.5902 [hep-ph].

[53] R. Z. Ferreira, M. C. D. Marsh, and E. Müller, Do direct detection experiments constrain axionlike particles coupled to electrons?, Phys. Rev. Lett. 128, 221302 (2022).

[54] R. Z. Ferreira, M. D. Marsh, and E. Müller, Strong supernovae bounds on alps from quantum loops, Journal of Cosmology and Astroparticle Physics 2022 (11), 057.