PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES

Darin Ragozzine and Aaron S. Wolf

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; darin@gps.caltech.edu, awolf@gps.caltech.edu

Received 2008 July 17; accepted 2009 April 2; published 2009 June 4

ABSTRACT

Accurately understanding the interior structure of extrasolar planets is critical for inferring their formation and evolution. The internal density distribution of a planet has a direct effect on the star-planet orbit through the gravitational quadrupole field created by the rotational and tidal bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love number (k_{2p}, twice the apsidal motion constant), a bulk physical characteristic of the planet that depends on the internal density distribution, including the presence or absence of a massive solid core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal precession for very hot Jupiters ($a \lesssim 0.025$ AU), exceeding the effects of general relativity and the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the planetary interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal precession, we find that changes in transit shapes are much more important than transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler mission can realistically detect apsidal precession with the accuracy necessary to infer the presence or absence of a massive core in very hot Jupiters with orbital eccentricities as low as $e \simeq 0.003$. The signal due to k_{2p} creates unique transit light-curve variations that are generally not degenerate with other parameters or phenomena. We discuss the plausibility of measuring k_{2p} in an effort to directly constrain the interior properties of extrasolar planets.

Key words: planetary systems

1. INTRODUCTION

Whether studying planets within our solar system or planets orbiting other stars, understanding planetary interiors represents our best strategy for determining their bulk composition, internal dynamics, and formation histories. For our closest neighbors, we have had the luxury of sending spacecraft to accurately measure the higher-order gravity fields of these objects, yielding invaluable constraints on their interior density distributions. Using these observations, we have been able, for instance, to infer the presence of large cores, providing support for the core-accretion theory of planet formation (Guillot 2005). The study of planets outside our solar system, however, has necessitated the development and usage of more indirect techniques. Nevertheless, as the number of well-characterized extrasolar planets grows, we gain more clues that help us answer the most fundamental questions about how planets form and evolve.

Guided by our current understanding of planetary physics, we have begun to study the interiors of extrasolar planets. This endeavor has been dominated by a model-based approach, in which the mass and radius of a planet are measured using radial velocity and transit photometry observations, and the interior properties are inferred by finding the model most consistent with those two observations. This strategy clearly requires a set of assumptions, not the least of which is that the physical processes at work in extrasolar planets are just like those that we understand for our own giant planets. While it does seem that this approach is adequate for explaining most of the known transiting planets, there does exist a group of planets for which the usual set of assumptions are not capable of reproducing the observations (e.g., Guillot et al. 2006; Burrows et al. 2007). These are the planets with so-called positive radius anomalies, including the first-discovered transiting planet HD 209458b (Charbonneau et al. 2000). Though most of these planets can be explained by adjusting different pieces of the interior physics in the models (including opacities, equations of state, and heat deposition), it is currently impossible to discern which combination of these possible explanations is actually responsible for their observed sizes (Guillot et al. 2006).

Additional uncertainties also exist for planets at the other end of the size spectrum. For the group of undersized extrasolar planets, such as HD 149026b, the canonical approach is to give the planet a massive highly condensed core of heavy elements in order to match the observed radius. This approach also provides a first-order estimate of the planet’s bulk composition, in terms of its fraction of heavy elements. There is also the added complication of how the assumed state of differentiation affects the inferred composition and predicted structure (Baraffe et al. 2008).

Currently, the most promising approach to modeling the distinctive features of extrasolar planet interiors is to study the known transiting planets as an ensemble. The group can be used either to develop a single consistent model that reproduces all the observations (e.g., Guillot et al. 2006) or to showcase the possible diversity in model parameters (e.g., opacities, as in Burrows et al. 2007). Surely, a model-independent measure of interior structure would be valuable in order to begin disentangling otherwise unconstrained physics.

The idea of obtaining direct structural measurements for distant objects is by no means a new one. For decades, the interiors of eclipsing binary stars have been measured by observing “apsidal motion,” i.e., precession of the orbit due to the nonpoint-mass component of the gravitational field (Russell 1928; Cowling 1938; Sterne 1939a, 1939b). The signal of the changing orbit is encoded in the light curves of these systems by altering the timing of the primary and secondary eclipses. From these eclipse times, it is straightforward to determine the so-called apsidal motion constant which then constrains the allowed interior density distributions. Interior measurements

\[^{1}\] Both authors contributed equally to this work.
inferred from apsidal precession were among the first indications that stars were highly centrally condensed. While it seems nonintuitive, we show in this paper that we can use a similar technique to measure the interior properties of very hot Jupiters. Most surprisingly, the interior structure signal for very hot Jupiters actually dominates over the signal from the star, yielding an unambiguous determination of planetary interior properties.

Our theoretical analysis is also extended to full simulated photometry in order to explore the observability of apsidal precession. We show that this precession is observable by measuring the subtle variations in transit light curves. The photometric analysis is focused on the data expected from NASA’s Kepler mission, which successfully launched on 2009 March 6 (Borucki et al. 2003; Koch et al. 2006). Kepler will obtain exquisite photometry on ~100,000 stars, of which about 30 are expected to host hot Jupiters with periods less than three days (Beatty & Gaudi 2008). Kepler has the potential to measure the gravitational quadrupoles of very hot Jupiters through the technique described below. If successful, this will constitute a major step toward an understanding of the diversity of planetary interiors.

In Section 2, we describe the background theory that connects interior structure and orbital dynamics and explore which effects are most important. Section 3 applies this theory to the observable changes in the transit photometry, including full Kepler simulated light curves. We show in Section 4 that the signal due to the planetary interior has a unique signature. Other methods for inferring planetary interior properties are discussed in Section 5. The final section discusses the important conclusions of our work.

2. BACKGROUND THEORY

2.1. Coordinate System and Notation

The internal structure of very hot Jupiters can be determined by observing changes in the planet’s orbit. These changes can be described in terms of two general types of precession. Apsidal precession refers to rotation of the orbital ellipse within the plane of the orbit. It is characterized by circulation of the line of apsides, which lies along the major axis of the orbit. Nodal precession, on the other hand, occurs out of the plane of the orbit and refers to the orbit normal precessing about the total angular momentum vector of the system. For typical very hot Jupiter systems with no other planets, apsidal precession has a much stronger observable signal than nodal precession (see Section 4.1), so we focus our discussion on the simpler case of a fixed orbital plane.

As is typical for non-Keplerian orbits, the star-planet orbit is described using osculating orbital elements that change in time. We identify the plane of the sky as the reference plane and orient the coordinate axes in the usual way such that the sky lies in the x–z plane with the y-axis pointing at Earth. The intersection of the orbital plane and the reference plane is called the line of nodes, but without directly resolving the system, there is no way to determine the orientation of the line of nodes with respect to astronomical North; thus, the longitude of the ascending node, \(\Omega \), cannot be determined. Given this degeneracy, we simplify the description by orienting the z-axis to lie within the plane spanned by the orbit normal and the line of sight. The angle between the line of sight and the orbit normal is \(i \), the inclination. The x-axis is in the plane of the sky and is the reference line from which the argument of periapse \((\omega) \) is measured (in the standard counterclockwise sense). For this choice of coordinates, the argument of periapse and longitude of periapse \((\sigma) \) are equivalent. Given this coordinate system, transit centers occur when the planet crosses the y–z plane; this point lies 90° past the reference x-axis, and thus primary transits occur when the true anomaly, \(f \), satisfies \(f_0 + \omega_0 \equiv 90° \), where the subscript \(tr \) indicates the value at transit center.\(^2\)

Throughout this paper, we refer to parameters of the star (mass, radius, etc.) with subscripts of “\(\star \)” and parameters of the planet with subscripts of “\(p \)”. For evaluation of various equations, we will take as fiducial values the mass ratio \(M_p/M_\star = 10^{-3} \), the radius ratio \(R_p/R_\star = 0.1 \) (though some low-density planets have radius ratios greater than 1/6), and the semimajor axis in stellar radii \(a/R_\star = 6 \), typical for very hot Jupiters, which we define as planets with semimajor axes \(a \lesssim 0.025 \) AU (see Table 1).\(^3\) In this definition, we deviate from Beatty & Gaudi (2008), who define very hot Jupiters as planets with periods less than three days. These authors estimate that Kepler will find ~30 such planets, of which ~16 will be brighter than \(V = 14 \) (T. Beatty 2009, private communication). Since our definition is more stringent, our technique will be applicable to fewer Kepler planets.

2.2. Rotational and Tidal Potentials

It is well known from classical mechanics, that if stars and planets are considered to be purely spherical masses, then they will obey a simple \(r^{-2} \) force law and, hence, execute closed elliptical orbits. Nonspherical mass effects are caused by the application of external potential(s): the centrifugal potential of spinning bodies causes rotational flattening and the tidal potential of a nearby mass raises tidal bulges. Rotational and tidal bulges create gravitational quadrupole fields \((r^{-3}) \) that lead to orbital precession.

The complex subject of how planets\(^4\) respond to applied potentials is encapsulated in the so-called theory of figures (Zharkov & Trubitsyn 1978). As long as the distortions are small, we can simplify the problem by ignoring the small interaction terms between the tidal and rotational potentials; in this paper, we thus restrict ourselves to the first-order theory, where the two planetary responses simply add. Even in the linear case, the way the fluid planet responds depends on the full radial density structure of the planet. The planetary response is conveniently captured in a single variable \(k_{2p} \), using the definition

\[
V_{2}^{\text{ind}}(R_p) \equiv k_{2p} V_{2}^{\text{app}}(R_p),
\]

where \(k_{2p} \) is the Love number of the planet, which is just a constant of proportionality between the applied second-degree potential field \(V_{2}^{\text{app}} \) and the resulting field that it induces \(V_{2}^{\text{ind}} \) at the surface of the planet. Due to the orthogonality of the Legendre polynomials used to express the gravity field, if the planet is responding to a second-degree harmonic field, then only the second-degree harmonic of the planet’s gravity field is altered, to first-order. Thus, \(k_{2p} \) is a measure of how the redistribution of mass caused by the applied potential actually affects the external gravity field of the planet. In the stellar literature, the symbol \(k_{2} \) is used for the apsidal motion constant,

\(^2\) In elliptical orbits, if the inclination is not 90°, the photometric minima do not exactly coincide with the planetary conjunctions. See Kopal (1959), p. 388 and Section 3.3 below.

\(^3\) Throughout this work, we do not distinguish between \(M_{\text{int}} \) and \(M_\star \), since \(M_{\text{int}} \ll M_\star \).

\(^4\) For clarity, in these sections we focus on the planetary shape, though the derivations are also valid for stars.
which is half of the secular/fluid Love number that we use throughout this paper (Sterne 1939a).

The Love number k_2 is an extremely useful parameterization, as it hides the complex interactions of a planet and an applied potential in just a single number. The process of calculating k_2 of a fluid object (such as stars and gas giants) from the interior density distribution is fairly straightforward and outlined in several places (e.g., Sterne 1939a; Kopal 1959). Objects with most of their mass near their cores, like stars, have very low k_2 values (\sim0.03 for main sequence solar-like stars, Claret 1995) since the distorted outer envelope has little mass and therefore little effect on the gravity field. Planets have much flatter density distributions, and thus distortions of their relatively more massive outer envelopes greatly affect the gravity field. At the upper extreme lies a uniform density sphere, which has $k_2 = 3/2$. In this way, k_2 can be thought of as a measure of the level of central condensation of an object, with stronger central condensation corresponding to smaller k_2.

By examining the variations in k_2 for giant planets within our own solar system, we can gain a feel for its expected values and how sensitive it is to internal structure. The $n = 1$ polytrope is commonly used to approximate the density structure of (cold) gas giant planets; it has $k_2 \approx 0.52$ (Kopal 1959). This can be compared to the value determined from the gravity measurements of Jupiter, where $k_2 \approx 0.49$. Even though Jupiter may have a 10 Earth mass core, it is small in comparison to Jupiter’s total mass, and thus it has minor effect on the value of k_2. Saturn, on the other hand, has a roughly 20 Earth mass core and is less than 1/3 of Jupiter’s mass. As a result, the presence of Saturn’s core is easily seen in the value of its Love number $k_2 \approx 0.32$. From this, we can see that planets with and without significant cores differ in k_2 by about ~ 0.1. This can also be inferred from Barnes & Fortney (2003) by using the Darwin–Radau relation to convert the moment of inertia factor to k_2. Furthermore, Bodenheimer et al. (2001) list the moment of inertia factors of various planet models of HD 209458 b and τ Bootis b, which correspond to a range of k_2 values from ~ 0.1 to ~ 0.6.

Current methods for inferring the internal structures of extrasolar planets combine measurements of the mass and radius with a model to obtain estimates of the planet’s implied composition and core size. Unfortunately, these models require one to make assumptions about the degree of differentiation, among other things (Baraffe et al. 2008). A good measurement of k_2, however, reveals important independent structure information, which can break the degeneracies between bulk composition and the state of differentiation. Given such a wide range of potential k_2 values, even an imprecise measurement of k_2 will be extremely valuable for understanding extrasolar planets. By measuring the k_2 values for extrasolar planets, we can also uncover constraints on the density structure that are independent of the measurement of the planetary radius. This new information may allow us to probe the unknown physics responsible for the currently unexplained radius anomalies.

2.2.1. Induced External Gravity Field

The internal structures of planets in our own solar system are most readily characterized by the zonal harmonics of the planet’s gravity field, e.g., J_2, J_4. It is these high-order harmonics that are directly measured by spacecraft flybys. To better understand the connection between the two, we can relate the k_2 formulation to J_2 by writing out the expression for the induced potential at the surface of the planet in Equation (1) in terms of the definition of J_2, yielding $k_2 p V_2^{\text{grav}} (R_p) = −J_2 \frac{GM_\star}{R_p}$ $P_2 (\cos \theta)$, where P_2 is the usual Legendre polynomial and θ is the planetary colatitude (Murray & Dermott 1999). We can use this equation to obtain expressions for the J_2 field induced by both rotation and tides (discussed in more detail below). The relation relies on dimensionless constants which compare the strength of the acceleration due to gravity with that of the rotational and tidal potentials:

$$q_r = \frac{v_p^2 R_p^3}{GM_p} \quad \text{and} \quad q_t = −3 \left(\frac{R_p}{r}
ight)^3 \left(\frac{M_s}{M_p}\right),$$

where v_p is the angular spin frequency of the planet. For the case where the spin axis and tidal bulge axis are perpendicular (i.e., zero obliquity), the relationship between J_2 and k_2 is, to first order,

$$J_2 = k_2 \left(\frac{q_r - q_t}{2}\right).$$

Note that q_t is a function of the instantaneous orbital separation r, and is thus constantly changing in an eccentric orbit in response to the changing tidal potential. Hence, J_2 for eccentric extrasolar planets is a complex function of time. This is why it is more sensible to analyze the orbital precession in terms of k_2, which is a fixed intrinsic property of the planet, rather than J_2.

As very hot Jupiters are expected to be synchronously locked (denoted by s) with small eccentricities, it can easily be shown that $q_t^s \approx −3 q_r^s$, which simplifies Equation (3) yielding

$$J_2^s \approx \frac{5}{6} k_2 p q_r \approx \frac{5}{6} k_2 p \left(\frac{M_s}{M_p}\right) \left(\frac{R_p}{a}\right)^3.$$

Using a moderate value of $k_2 p = 0.3$, the J_2 of very hot Jupiters reaches as high as 5×10^{-3}, about half of the measured J_2 of Jupiter and Saturn.

2.3. Apsidal Precession

The quadrupole field created by rotational and tidal potentials discussed above induces precession of the star–planet orbit. Both Jupiter and Saturn have rather significant quadrupoles, dominated entirely by their sizeable rotational bulges resulting from rapid rotation periods of less than 10 hr. In contrast, very hot Jupiters are expected to be synchronously rotating, and thus their spin periods are longer by a factor of a few. Since the rotational bulge size grows as the square of the spin frequency, very hot Jupiters should have rotational bulges that are at least an order of magnitude smaller than Jupiter and Saturn, inducing only tiny quadrupole fields. These extrasolar planets are extremely close to their parent stars, however, with semimajor axes of only ~ 6 stellar radii. Very hot Jupiters are thus expected to have large tidal bulges which are shown below to dominate the quadrupole field and resulting apsidal precession.

2.3.1. Precession Induced by Tidal Bulges

The orbital effect of tidal bulges is complicated by their continuously changing size. While tidal bulges always point directly at the tide-raising object, their size is a function of
or orbital distance. Since the height of the tidal bulge depends on the actual separation between the objects, the second-order gravitational potential is time varying in eccentric orbits. Accounting for this dependence (which cannot be captured by using a fixed J2) is critical, as illustrated by Sterne (1939a). The dominant tidal perturbation to the external gravity field of the planet, evaluated at the position of the star, is a second-order potential:

\[V_{\text{tid}}(r) = \frac{1}{2} k_2 G M_p R_p^5 r^{-6}. \]

(5)

The apsidal precession due to the tidal bulge, including the effect of both the star and the planet, is (Sterne 1939a; Eggleton & Kiseleva-Eggleton 2001)

\[\dot{\omega}_{\text{tidal}} = \dot{\omega}_{\text{tidal},*} + \dot{\omega}_{\text{tidal},p} = \frac{15}{2} k_2 s \left(\frac{R_s}{a} \right)^5 \frac{M_p}{M_*} f_2(e)n + \frac{15}{2} k_2 p \left(\frac{R_p}{a} \right)^5 \frac{M_*}{M_p} f_2(e)n, \]

(6)

where \(n \) is the mean motion and \(f_2(e) \) is an eccentricity function:

\[f_2(e) = (1 - e^2)^{-5} \left(1 + \frac{3}{2} e^2 + \frac{1}{8} e^4 \right) \approx 1 + \frac{13}{2} e^2 + \frac{181}{8} e^4 + \cdots. \]

(7)

Note that the factor of 15 does not appear for stationary rotational bulges, as detailed below, and comes through Lagrange’s planetary equations from the higher dependence on radial separation \((r^{-6}) \) in the tidal potential. For this reason, tidal bulges are much more important in producing apsidal precession.

Furthermore, the main factor of importance to extrasolar planets is the mass ratio, which comes in because the height of the tide is proportional to the mass of the tide-raising body. Consider the ratio of the planetary and stellar effects:

\[\frac{\dot{\omega}_{\text{tidal},p}}{\dot{\omega}_{\text{tidal},*}} = \frac{k_2 p}{k_2 s} \left(\frac{R_p}{a} \right)^5 \left(\frac{M_*}{M_p} \right)^2 \approx 100. \]

(8)

For tidal bulges, the apsidal motion due to the planet clearly dominates over the contribution of the star. Even though the planet’s radius is smaller than the star’s by a factor of ten, the star is so much more massive than the planet that it raises a huge tidal bulge, which consequently alters the star-planet orbit. The benefit provided by the inverse square of the small mass ratio is compounded by the order of magnitude increase in \(k_2 \) of the planet over the star.

2.3.2. Precession Induced by Rotational Bulges

The quadrupolar gravitational field due to the planetary rotational bulge, evaluated at the star’s position, is

\[V_{\text{rot}}(r) = \frac{1}{3} k_2 s v_p^2 R_p^5 r^{-3} P_2(\cos \alpha_p), \]

(9)

where \(\alpha_p \) is the planetary obliquity, the angle between the orbit normal and the planetary spin axis. Sterne (1939a) assumes zero obliquity and calculates the secular effect of this perturbation on the osculating Keplerian elements. This final result, including the effect of both the star and the planet, is\(^6\)

\[\dot{\omega}_{\text{rot}} = \dot{\omega}_{\text{rot},*} + \dot{\omega}_{\text{rot},p} = \frac{k_2 s}{2} \left(\frac{R_s}{a} \right)^5 \left(\frac{v_p^2}{G M_p} \right) g_2(e)n + \frac{k_2 p}{2} \left(\frac{R_p}{a} \right)^5 \left(\frac{v_p^2}{G M_p} \right) g_2(e)n, \]

(10)

where \(g_2(e) \) is another eccentricity function:

\[g_2(e) = (1 - e^2)^{-2} \approx 1 + 2e^2 + 3e^4 + \cdots. \]

(11)

Evaluating the importance of this effect requires an understanding of the spin states of very hot Jupiters and their stars. The rotation and spin pole orientation of very hot Jupiters should be tidally damped on timescales \(\lesssim 1 \) Myr (e.g., Dobbs-Dixon et al. 2004; Ferraz-Mello et al. 2008). We therefore assume that all planets have reached the pseudo-synchronous rotation rate derived by Hut (1981). The rotation rate of the star is usually much slower since the tidal stellar spin-up timescale is much longer than \(\sim 1 \) Gyr (Fabrycky et al. 2007).

If both the star and the planet were spinning synchronously, the stellar and planetary rotational bulges would have comparable contributions to apsidal precession. However, since the tidal bulge of the planet is a much more important effect, we find that even fast-spinning stars have a very weak contribution to apsidal precession.

2.3.3. Total Apsidal Precession

The other major contributor to the apsidal precession in extrasolar planetary systems is general relativity. The anomalous apsidal advance of Mercury’s orbit due to its motion near the massive Sun was one of the first confirmations of general relativity. This same apsidal advance is prevalent in very hot Jupiter systems and has been shown to be possibly detectable through long-term transit timing (Miralda-Escudé 2002; Heyl & Gladman 2007; Pál & Kocsis 2008; Jordan & Bakos 2008).

The relativistic advance is given (to lowest order) by

\[\dot{\omega}_{GR} = \frac{3 G M_* n}{a c^2(1 - e^2)}. \]

(12)

One additional effect for nonsynchronous planets is due to thermal tides (Arras & Socrates 2009), which create a bulge on the planet due to temperature-dependent expansion of an unevenly radiated upper atmosphere. The thermal tidal bulge is very small in mass and is not expected to provide a significant contribution to apsidal precession (P. Arras 2009, private communication) and is thus neglected.

Since we are considering only the lowest-order effects, all the apsidal precession rates (rotational/tidal for the star/planet and general relativity) simply add to give the total apsidal precession (roughly in order of importance for very hot Jupiters):

\[\dot{\omega}_{\text{tot}} = \dot{\omega}_{\text{tidal}} + \dot{\omega}_{GR} + \dot{\omega}_{\text{rot},p} + \dot{\omega}_{\text{rot},*} + \dot{\omega}_{\text{rot},s}. \]

(13)

\(^6\) The full equation, including arbitrary obliquities, is given by Kopul (1978), Equation (V.3.18) (see also Sterne 1939a; Eggleton & Kiseleva-Eggleton 2001). Also recall that, unlike these authors, we use the symbol \(k_2 \) to represent the Love number, which is twice the apsidal motion constant called \(k_2 \) in eclipsing binary literature.
We are ignoring the small cross-terms (geodetic precession, quadrupole–quadrupole coupling, Lense-Thirring effect, nutation, etc.) for the purposes of this paper as higher-order corrections.

Calculating each of these contributions to the precession shows that for very hot Jupiters, the dominant term in the total apsidal precession is due to the planetary tidal bulge. For the known transiting planets, the fraction of apsidal precession due to the planet is calculated and illustrated in Figure 1. The precession due to the interiors of very hot Jupiters towers over the other effects. General relativity, the next largest effect, is \(\sim \)10 times slower than the precession caused by the planetary tidal bulge.

The apsidal precession rate of very hot Jupiters due solely to the interior structure of the planet is

\[
\dot{\omega}_p \approx 3.26 \times 10^{-10} \text{ rad/sec} \times \left(\frac{k_{2p}}{0.3} \right) \left(\frac{M_\ast}{M_\odot} \right)^{3/2} \times \left(\frac{M_p}{M_1} \right)^{-1} \left(\frac{R_p}{R_1} \right)^5 \left(\frac{a}{0.025 \text{ AU}} \right)^{-13/2},
\]

which explains why low density very close-in Jupiters are the prime targets for measuring apsidal precession. For these planets, the precession rate can reach a few degrees per year.

The precession due to the planet has generally been neglected in extrasolar planet transit timing work to date (Miralda-Escudé 2002; Heyl & Gladman 2007), which has considered stellar oblateness or general relativity to be the dominant effects (in the absence of other planets) though Jordan & Bakos (2008) have also pointed out that \(\dot{\omega}_\text{tidal,p} \) can be an important source of apsidal precession. We find that the planetary quadrupole is usually 1–2 orders of magnitude more important than effects previously considered for single very hot Jupiters. Hence, measuring apsidal precession essentially gives \(\dot{\omega}_\text{tidal,p} \) which is directly proportional to \(k_{2p} \), implying that transit light-curve variations due to apsidal precession can directly probe the interiors of extrasolar planets.

2.4. Modification of the Mean Motion

Non-Keplerian potentials also modify the mean motion, \(n \), and cause a small deviation from Kepler’s third law. Including the effects described above, the non-Keplerian mean motion, \(n' \), is (dropping second-order corrections)

\[
n' = n \left(1 + \epsilon - \frac{3G M_\ast}{2a c^2} \right),
\]

where \(\epsilon \) is defined as

\[
\epsilon = \frac{k_{2\ast}}{2} q_{r,\ast} \left(\frac{R_\ast}{a} \right)^2 + k_{2p} \left(\frac{R_p}{a} \right)^2 + 3k_{2p} \frac{M_p}{M_\text{tot}} \left(\frac{R_p}{a} \right)^5 + 3k_{2p} \frac{M_p}{M_\text{tot}} \left(\frac{R_p}{a} \right)^5
\]

and \(n^2 \equiv \frac{GM_\ast}{a^3} \). The general relativistic correction to the mean motion is from Soffel (1989). (Throughout this paper, except where noted, the difference between \(n' \) and \(n \) is ignored as a higher-order correction.)

As with apsidal precession, the planetary quadrupole is more important than the stellar quadrupole by about two orders of magnitude. At the largest, the correction to the mean motion is a few times \(10^{-5} \). Iorio (2006) used the fact that quadrupole moments cause deviations to Kepler’s third law to attempt to derive the \(J_2 \) of the star HD 209458 (the quadrupole of the planet was incorrectly ignored).

However, as Iorio (2006) found, this method is feasible only if you know the masses and semimajor axes of the orbit a priori or independently from Kepler’s law. Since the error in stellar masses (from radial velocities and evolutionary codes) is usually \(3\%–10\% \) (e.g., Torres et al. 2008), the propagated error on \(k_{2\ast} \) would be a few times greater than the highest \(k_{2p} \) expected, making this method impractical. It has been proposed that the stellar mass and semimajor axis can be precisely and independently measured via the light-travel time effect described by Loeb (2005). In practice, however, the light-travel time effect is highly degenerate with the unknown transit epoch and/or the orbital eccentricity. We find that a precise independent measurement of \(M_\ast \) from light-travel time is impractical even with the excellent photometry of Kepler.

2.5. Expectations for Planetary Eccentricities

Thus far, we have quantified how planetary interiors affect the orbit through precession. The photometric observability

\[\text{Figure 1. Fraction of apsidal precession due to the planetary quadrupole. The points show the planetary fraction of the total apsidal precession calculated for the known transiting extrasolar planets with properties taken from J. Schneider’s ExtraSolar Planet Encyclopedia (http://www.exoplanet.eu).}

\[\text{assuming the planet has a typical Love number of} \ k_{2p} = 0.3 \text{ (e.g., Saturn-like). The apsidal precession induced by the tidal and rotational bulges of the planet overcomes precession due to general relativity and the star, especially for short-period planets.}

\[\text{The “error bars” show the range of planetary contributions for a 5\% variation in stellar masses (and hence } \omega_\text{GR}) \text{ and the comparatively smaller effect of varying the stellar Love number and rotation rate over all reasonable values.}

\]
of this apsidal precession is highly dependent on the current orbital eccentricity (e). Small eccentricities are the largest limitation to using transit light curves to probe extrasolar planet interiors. Indeed, if eccentricities are very low, measuring apsidal precession from transit light curves may not be possible for any of the Kepler planets.

Nearly all hot Jupiters have eccentricities consistent with zero, though the radial velocity technique has difficulty putting 3-σ upper limits on eccentricities smaller than 0.05 (Laughlin et al. 2005). So far, the strongest constraints are placed by comparing the deviation of the secondary transit time from half the orbital period, which are related by (e.g., Charbonneau et al. 2005)

$$e \cos \omega \simeq \frac{\pi}{2P_{\text{orb}}} \left(t_{\text{sec}} - t_{\text{prim}} - \frac{P_{\text{orb}}}{2} \right). \quad (17)$$

Similarly, by measuring the primary and secondary transit durations (Θ_I and Θ_{II}), an additional constraint can be placed on $e \sin \omega$. The equation commonly quoted in the extrasolar planet literature (Kallrath et al. 1999; Charbonneau 2003; Winn et al. 2006) has a sign error; the correct equation is derived by Kopal (1959), p. 391:

$$e \sin \omega = \frac{\Theta_{II} - \Theta_I}{\Theta_{II} + \Theta_I} \alpha^2 - 2 \cos^2 I,$$ \quad (18)

where $\alpha \equiv \frac{r_{\ast} + R_p}{\alpha e}$. The accuracy of this measurement is typically smaller than for $e \cos \omega$, but we include this equation to note that there is information about both the eccentricity and its orientation in the full transit light curve (see also Bakos et al. 2009).

Combining secondary transit timing information with radial velocity and Rossiter–McLaughlin measurements to help constrain ω, Winn et al. (2005) found that the best-fit eccentricity for HD 209458 was ~ 0.015. Though Winn et al. (2005) argue that the actual eccentricity is probably less than 0.01, it is not necessarily 0 (Mardling 2007). Recently, Joshi et al. (2008) revealed WASP-14b, a young massive hot Jupiter with an eccentricity of 0.1; WASP-10b and WASP-12b also appear to be eccentric (Christian et al. 2009; Hebb et al. 2009), though these eccentricities may be spurious or overestimated.

The most accurate eccentricity constraint is a detection by Knutson et al. (2007a) for the very hot Jupiter HD189733b. They observed continuously and at high cadence (0.4 s) with the Spitzer space telescope and measured a secondary timing offset corresponding to $e \cos \omega = 0.001 \pm 0.0002$, a 5-$\sigma$ result that they could not explain by any other means. (Preliminary analysis of additional data for this planet by Agol et al. 2009 indicates $e \cos \omega \sim 0.0002 \pm 0.0001$.) The constraint on $e \sin \omega$ is much weaker. A nonzero eccentricity of $e \simeq 0.003$ for hot Jupiters is, therefore, consistent with every measurement available in the literature, though the actual values of eccentricities at the 10^{-3} level are essentially unconstrained.

In the absence of excitation, the current eccentricities of these planets depend on the initial eccentricity and the rate of eccentricity decay. Extrapolating from planets in our solar system (Goldreich & Soter 1966) implies short circularization timescales of ≈ 10 Myr, though recent studies have shown that using a fixed eccentricity-damping timescale is an inappropriate simplification of the full tidal evolution (e.g., Jackson et al. 2008; Levrad et al. 2009; Rodríguez & Ferraz-Mello 2009). Even an analysis using the full tidal evolution equations cannot give a compelling case for the present-day eccentricities of these planets, since there are essentially no direct constraints on the tidal dissipation parameter for the planet, Q_p. Various estimates show that Q_p for exoplanets is not known and may be quite large (e.g., Matsumura et al. 2008), implying that nonzero eccentricities are not impossible. Even so, we stress that the best candidates for observing apsidal precession are also those planets that have the fastest eccentricity damping, since the damping timescale and apsidal precession rates are both proportional to $M_p/M_\ast(a/R_p)^3$. Hence, those planets which have the fastest precession rates will also have the lowest eccentricities. The first step in determining if this trade-off allows for apsidal precession to be measured by Kepler is to apply the techniques described in this paper to the data themselves. Furthermore, with the discovery and long-term characterization of more planets using ground and space-based observations, the detectability of apsidal precession will increase dramatically.

We should note that there are several mechanisms that can excite eccentricities and compete with or overwhelm tidal dissipation. The most prevalent is assumed to be eccentricity pumping by an additional companion (Peale et al. 1979; Bodenheimer et al. 2001; Adams & Laughlin 2006). Even very small (Earth mass or less) companions in certain orbits can provide significant eccentricity excitation (Mardling 2007). (In this case, however, our single-planet method for estimating k_{2p} would need to be modified considerably.) Tidal dissipation in rapidly rotating stars tends to increase the eccentricity, potentially prolonging circularization in some systems (Ferraz-Mello et al. 2008). Very distant inclined companions (e.g., a planet orbiting a star in a misaligned binary star system) can induce Kozai oscillations that impart very large eccentricities on secular timescales (e.g., Fabrycky & Tremaine 2007). Arras & Socrates (2009) proposed that thermal tides can significantly affect the orbital and rotational properties of extrasolar planets, though their conclusions appear to be overestimated (Goodman 2009; Gu & Ogilvie 2009). Finally, recent (not necessarily primordial) dynamical instabilities in the planetary system can also be responsible for generating eccentricity which simply has not damped away yet (Ford et al. 2005; Gomes et al. 2005; Chatterjee et al. 2008; Thommes et al. 2008). We, therefore, continue our analysis under the possibility that some very hot Jupiters may have nonzero eccentricities.

3. TRANSIT LIGHT CURVES OF APSIDAL PRECESSION

Previous studies of transit light-curve variability due to non-Keplerian perturbations have focused almost exclusively on transit timing. In contrast, we model the full photometric light curve in order to estimate the detectability of k_{2p}. This will automatically include the effect of changing transit durations, which are very useful for detecting apsidal precession (Pál & Kocsis 2008; Jordan & Bakos 2008). In addition, using full photometry can provide a more direct and realistic estimate of the detectability of k_{2p}. Of course, the drawback is additional computational cost, though we found this to be manageable, requiring less than 20 s to generate the ~ 2 million photometric measurements expected from Kepler’s 1-minute cadence over 3.5 years.

3.1. Our Transit Light-Curve Model

Determining the photometric light curve of a transiting system requires knowing the relative positions of the star and the planet at all times. These can be calculated by describing the motion
of the planet with time-varying osculating orbital elements. When describing the motion of the planet using instantaneous orbital elements, it is usually customary to ignore the periodic terms by averaging, as in Sterne (1939a), and calculate only

the secular terms. These small periodic terms describe how the orbital elements change within a single orbit as a function of the true anomaly, due to the non-Keplerian potential. In precessing systems, the value of the true anomaly at central transit, \(f^\text{tr} \equiv 90^\circ - \omega_{tr} \), changes subtly from one transit to the next, inducing slow variations in the osculating orbital elements at transit. Therefore, we include in our model the dominant periodic changes in orbital elements as a function of orbital phase, using \(M_{osc} \approx f^\text{tr} \), as an appropriate approximation for low eccentricities. Using a direct integration (described in Section 4.1), we verified that ignoring these periodic variations can cause nonnegligible systematic errors in determining transit times. The periodic changes are derived from the same disturbing potentials used above. We follow the method of Kozi (1959) for calculating osculating elements from mean elements, and assume zero obliquity. The correction is similar to the correction to the mean motion, which is also applied in our model. The correction to the semimajor axis, eccentricity, longitude of periastron, and mean anomaly are

\[
\begin{align*}
\Delta a &= \Delta a_{osc} = a_{mean} + \frac{\sin e \cos M}{2e} \cos M \approx 2ae \cos M, \\
\Delta e &= \Delta e_{osc} = e_{mean} + \frac{1}{e^2} \cos M, \\
\Delta \omega &= \Delta \omega_{osc} = \omega_{mean} + \frac{1}{e} \sin M, \\
\Delta M &= \Delta M_{osc} = M_{mean} - \frac{1}{e} \sin M, \quad \text{where } e \text{ is defined in Equation (16).}
\end{align*}
\]

General relativistic periodic corrections are also added; these are taken from Soffel (1989), p. 92 (with \(\alpha = 0, \beta = \gamma = 1 \)). Using our direct integrator (described below), we verified that these corrections reproduced the actual orbit to sufficient accuracy for this analysis as long as \(e \gg e \sim 10^{-5} \). Other corrections are higher order in small parameters and are ignored.

Our model uses these corrected elements to generate astrocentric Cartesian coordinates for a specific system inclination and, for completeness, also includes the effect of light-travel time (Loeb 2005) though we concur with Jordan & Bakos (2008) and Pál & Kocsis (2008) that the light-travel time change due to \(\omega \) is unimportant. The positions are then translated to photometric light curves using the quadratic limb-darkening code\footnote{Available at http://www.astro.washington.edu/~agol/~transit.tar.gz.} described by Mandel & Agol (2002). Kepler data will have enough signal-to-noise (S/N) ratio to justify using nonlinear limb-darkening laws (Knutson et al. 2007b), but we do not expect that this simplification will significantly alter our conclusions.

In addition, we include the photometry of the secondary eclipse. As suggested by López-Morales & Seager (2007), very hot Jupiters can reach temperatures exceeding 2000 K, where their blackbody emission at optical wavelengths is detectable by Kepler. This thermal emission is added to the reflected light of the planet, which appears to be small based on the low upper limit of the albedo of HD 209458b and TrES-3 measured by Rowe et al. (2008) and Winn et al. (2008), respectively. We find that in Kepler’s observing bandpass of 430–890 nm (Koch et al. 2006), thermal emission of very hot Jupiters can dominate over the weak reflected light. We estimate the depth of the secondary eclipse (\(d_{osc} \)) in our simulated Kepler data by assuming that 1% of the light is reflected and the other 99% absorbed and reemitted as processed thermal blackbody emission from the entire planetary surface (day and night sides). To be conservative and to account for unmodeled nonblackbody effects, we divide the resulting planet/star flux ratio by 2 (Hood et al. 2008); the resulting depth of around \(2 \times 10^{-4} \) is consistent with the lower values of Burrows et al. (2008), the tentative measurement of the thermal emission from CoRoT-2b (Alonso et al. 2009), and the detection of secondary eclipse emission from OGLE-TR-56b (Sing & López-Morales 2009). We note that the best candidates for detecting \(k_{2p} \) are those with small semimajor axes and large radii; these same planets have relatively large \(d_{osc} \) values (Table 1). Secondary eclipses are very useful for determining \(e \) and \(\omega \). We will also find that they can be important for observing apsidal precession.

Our model generates accurate photometry for an extrasolar planet undergoing apsidal precession. Several other small photometric effects have been discussed in the literature, which we do not include. Most of these effects are periodic (e.g., the reflected light curve) and therefore will not affect the long-term trend of precession. Care will need to be taken to ensure that slow changes due to parallax and proper motion, which should be quite small for relatively distant stars observed by Kepler (Rafikov 2008; Scharf 2007) or changes in the stellar photosphere (Loeb 2009), are not significant. Non-Gaussian astrophysical noise of the star and other systematic noise should degrade the accuracy with which \(k_{2p} \) can be measured compared to our ideal photometry. The long-term variability of the star can be interpolated away or modeled (Lanza et al. 2009), though it is not clear how short-term variability will affect transit light curves at Kepler’s level of precision. On the other hand, complimentary observations (e.g., warm Spitzer, HST, radial velocities, and James Webb Space Telescope (JWST)) should only enhance our understanding of the systems studied.

3.2. Accuracy of \(k_{2p} \) Measurement

With an accurate photometric model of apsidal precession, one could estimate the measurement accuracy of \(k_{2p} \) from Kepler data by carrying out a full Monte Carlo study of the inversion problem, going from realistic synthetic photometric data sets to a determination of all system parameters. In this work, instead, we carry out a much simpler calculation which cannot provide strict 1-\(\sigma \) error estimates like the Monte Carlo analysis, but does give an indication of how well \(k_{2p} \) can be resolved given a large data set.

We obtain this accuracy estimate by comparing a realistic precessing photometric model with \(k_{2p} = 0 \) to a base model with \(k_{2p} = 0 \). The base model is still undergoing very slow apsidal precession, induced by general relativity and \(k_{2p} \). We calculate the effect of a nonzero \(k_{2p} \) value by subtracting the precessing model from the base model (see Figures 2 and 4). Then, by calculating the root sum square of the residual signal and comparing it to the photometric error on a single data point, we obtain a numerical measure of the relative signal induced by \(k_{2p} \). The S/N for the data set is therefore given by

\[
S/N \sim \sqrt{\frac{\sum_i (y_i - y_i^0)^2}{\sigma}}, \quad (19)
\]

where \(y_i \) and \(y_i^0 \) are the photometry model values for the \(k_{2p} \) test model and the base model, respectively, and \(\sigma \) is the photometric error. We use \(\sigma = 1000 \) parts per million (ppm) flux per 1 min integration, corresponding to the expected noise of Kepler on a faint \(V = 14 \) star (Koch et al. 2006). Of the 30 planets with periods less than three days, 16 are expected to be brighter than \(V \sim 14 \) (T. Beatty 2009, private communication), and we can reasonably expect some fraction of these to have orbits comparable to the planets modeled here.

Since our residual signal changes as a function of time, this is not a true signal-to-noise calculation; the distribution of values
in time matters for a proper interpretation, but any distribution would yield the same effective S/N, and thus this construction is not capturing all of the details. Even so, it does provide a useful and reasonable rough estimate for detectability. In order to identify the resolution on the \(k_{2p} \) measurement, we search for the value of \(k_{2p} \), which yields an S/N of 1. This is reasonable since it represents the threshold value of \(k_{2p} \), below which planetary-induced precession cannot be distinguished in the data with the given errors. The threshold \(k_{2p} \) value can also be loosely thought of as an estimate of the 1-\(\sigma \) expected errors.

This is a realistic estimate only insofar as the residual signal \((y_i - y_i^0)\) is due only to \(k_{2p} \) and cannot be absorbed by any other parameters. Hence, we seek to choose other parameters so as to minimize the residuals without changing \(k_{2p} \). For most system parameters, this is accomplished by referencing the time to the center of the data set, and thus the difference between the signals grows similarly forward and backward in time as seen in Figures 2–5. The transit shapes in both models are equivalent at the center of the data set, as would be expected in an analysis of actual data.

Additionally, a major effect from changing the precession period is to alter the observed average period. When analyzing actual data, this would just be absorbed into a small adjustment to the (unknown) stellar mass, thereby adjusting the period to absorb much of the \(k_{2p} \) signal. It is, therefore, important to correct for the average period change to avoid significantly overestimating the signal due to \(k_{2p} \). Additionally, there is a similar, though less severe, effect for the epoch of the first transit, which is also adjusted to best absorb the signal. This is achieved by using an analytic expression for the transit times (see Equation (22)) which match the transit times of the photometric model to very high accuracy. By fitting a line to these times, we can determine the average period and epoch that absorb the degenerate portions of the \(k_{2p} \) signal, leaving behind the residual only due to \(k_{2p} \). We have not explicitly accounted for degeneracies between the signal from \(k_{2p} \) and the other parameters, such as the radius, limb darkening, and system inclination, but since \(k_{2p} \) induces a time-varying signal while these other parameters are generally constant, there is little expected signal absorption from these parameters.

The only major drawback of this approach is that it does not allow the eccentricity state of the system to change. With real data, the eccentricity and precession phase are not known in advance, and thus must be found by inversion. As detailed in Section 2.5, eccentricity and orbital orientation are primarily constrained by comparing primary and secondary transit pairs, and thus proper inversion is greatly aided by accurate observations in wavelengths more favorable to secondary transit observations, obtained by *Spitzer, HST*, or from the ground (e.g., Knutson et al. 2007a; Swain et al. 2008; Gillon et al. 2008). We also find that binned and folded *Kepler* data have comparable

Figure 2. Photometric difference signal from \(k_{2p} \). As described in the text, we use the difference between two theoretical light curves in the transit photometry to assess the observability of apsidal precession by *Kepler*. For WASP-4b at \(\omega = 0^\circ, e = 0.003 \), and a central impact parameter, the difference between a model with \(k_{2p} = 0 \) and \(k_{2p} = 0.146 \) would yield an effective S/N of 1 on a moderately bright star (\(V \sim 14 \)). Shown is this difference signal; the root sum of squares of the signal is equal to 1000 ppm, the expected photometric difference signal from \(k_{2p} \), and cannot be distinguished in the data with the given errors. The threshold \(k_{2p} \) value can also be loosely thought of as an estimate of the 1-\(\sigma \) expected errors.

Figure 3. Excerpts of photometric difference signal. Examining excerpts of the residual signal shown fully in Figure 2, the effects of both transit timing and “transit shaping” can be seen. The five excerpts are offset for clarity. Transit timing has an asymmetric signal (dotted lines), obtained when subtracting two transit curves slightly offset in time. Transit shaping, which is mostly due to changing transit duration, creates a symmetric signal (dashed lines). The total difference signal (solid lines) is dominated by the effect of transit shaping, which has \(\sim 30 \) times more signal than transit timing alone (see explanation in the text). Both effects are maximized at the beginning (1) and end (5), as expected for a signal that increases with longer baseline. The maximal signal occurs during ingress and egress, when the light curve changes the fastest. The transit shapes are equivalent at the center (3) by construction. The transit timing anomaly of precession is quadratic, which, when fitted with a best-fit straight line corresponding to a nonprecessing signal, yields two intersections when transit timing is minimized (2,4). The transit timing offset at the beginning and end is only 0.085 s, while the center is offset by \(-0.042 \) s.
sensitivity to a single *Spitzer* observation for characterizing the secondary eclipses of very hot Jupiters. In any case, our assessment of the threshold k_{2p} assumes that the eccentricity of the system is very well known, which will likely require additional supporting observations.

3.3. Comparison to Expected Signal

The residual light curves calculated for each planet (Figures 2–5) match the theoretical expectations of the apsidal precession signal (Miralda-Escudé 2002; Heyl & Gladman 2007; Pál & Kocsis 2008; Jordan & Bakos 2008). To interpret the results of our analysis, it will be useful to briefly review the major components of the apsidal precession signal: changes in the times of primary transits, changes in the shape of primary transits, and changes in the primary–secondary offset times (Miralda-Escudé 2002; Heyl & Gladman 2007; Pál & Kocsis 2008; Jordan & Bakos 2008).

The primary transit times, T_N, due to apsidal precession, are well described by a sinusoid for very low eccentricities ($e \ll 0.1$):

$$T_N = T_0 + N P_{\text{obs}} + \frac{e P_{\text{obs}}}{\pi} (\cos\omega_{tr,N} - \cos\omega_{tr,0}),$$

where T_0 is the epoch of the first transit, $\omega_{tr,N} \equiv \dot{\omega}(T_N - T_0) + \omega_{tr,0}$ is the argument of periapse for the Nth transit, and P_{obs} is the observed period between successive transits, which deviates from the actual orbital period since the orbit has precessed a small amount between transits (Batten 1973). For small eccentricities, the amplitude of the transit timing variations due to k_{2p} is

$$\frac{e P_{\text{obs}}}{\pi} \simeq 119 \, \text{s} \times \left(\frac{e}{0.003} \right) \left(\frac{a}{0.025 \, \text{AU}} \right)^{3/2} \left(\frac{M_e}{M_\odot} \right)^{-1/2}.$$

Given that individual transit times can be measured with accuracies of only a few seconds, even tiny eccentricities $e \lesssim 10^{-5}$ can induce detectable transit timing variations on precessional timescales ($\sim \dot{\omega}^{-1})$.

For our analysis, we extended Equation (20) to fifth order in eccentricity allowing accurate determination of transit times for eccentricities up to of order 0.1. We also require a correction for the effect of a noncentral impact parameter ($i < 90^\circ$, $e > 0$). For an inclined eccentric orbit, the apparent path of the planet across the stellar disk is curved. At orientations where the line of sight is not along the major axis of the ellipse, the curved path is also asymmetric. Therefore, the times of photometric minima, T_N, do not correspond exactly to the times of conjunction (when the planet crosses the y–z plane and $f_\tau \equiv 90^\circ - \omega_\mu$).

We follow the correction from Equation (VI.9-21) of Kopal (1959), who find that at photometric minimum, $f_\tau = 90^\circ - \omega_\mu$, where $\omega_\mu' = \omega_\mu + \epsilon \cos\omega_\mu \cot^2(i)(1 - e \sin\omega_\mu \csc^2(i))$; in this corrective term, it is only required to keep terms up to second order in eccentricity. Assuming that i and $\dot{\omega}$ are both held constant, it can be shown that

$$T_N = T_0 + N P_{\text{obs}} + \frac{P_{\text{obs}}}{\pi} \left[e (\cos\omega_{tr,N} - \cos\omega_{tr,0}) \right].$$
This transcendental equation is solved iteratively for \((T_N - T_0)\) to obtain the transit times and has been tested thoroughly against the empirical determination of transit times calculated by our light-curve model described above.

The expected apsidal precession periods (including small contributions from GR and the star) for WASP-12b, CoRoT-1b, OGLE-TR-56b, WASP-4b, and TrES-3b are around 18, 71, 116, 120, and 171 yr, respectively. In other words, they have precession rates induced by the planetary tidal bulge of a few decades-long precession period, utilizing the changing shape of the transits can significantly improve detectability of apsidal precession (Heyl & Gladman 2007). Therefore, detection of the curvature over a small portion of a long-period transit is given simply by
\[
\frac{3}{8} e^2 \sin(2\omega_0 t - N - 2\omega_0 t_0) + \frac{1}{6} e^2 (\cos 3\omega_0 t - N - \cos 3\omega_0 t_0)
\]
\[
- \frac{5}{64} (\sin 4\omega_0 t - N - \sin 4\omega_0 t_0)
\]
\[
+ e^2 \left(\frac{1}{16} (\sin 2\omega_0 t - N - \sin 2\omega_0 t_0)
ight)
\]
\[
- \frac{3}{80} (\cos 5\omega_0 t - N - \cos 5\omega_0 t_0) \right].
\]

\((22)\)

The expected effect of changing transit shapes is fully consistent with the photometric difference signals calculated by our model (Figures 2 and 3). Indeed, our model shows that transit shaping dominates the signal by a factor of \(\gtrsim 30\) (Figure 3). We can also see that changes in the transit shape are maximized at orientations near \(\omega \approx 0, 180^\circ\) (as expected from Equation (18)).

We caution that if \(R_p/a\) for WASP-12b is overestimated due to imprecise data (e.g., Winn et al. 2007), then the precession period would increase accordingly.

Even with such fast precession rates, the duration of observations will generally be much shorter than the precession period. In addition, as discussed above, the linear timing anomalies will be absorbed into the effective period as a small change in the unknown stellar mass (Heyl & Gladman 2007; Pál & Kocsis 2008; Jordan & Bakos 2008). Therefore, detection of apsidal precession from primary transit times alone will require a significant detection of the curvature over a small portion of a long-period sinusoid. Since the curvature in Equation (20) is maximal at \(\omega \approx 0, 180^\circ\), these orientations have the best primary transit timing signal. Even at these orientations, detecting \(k_2p\) from primary transit times alone is difficult, since it can be shown that the signal strength is proportional to \(e\omega_0^2\), due to the need to detect curvature (Heyl & Gladman 2007).

When the observational baseline is much shorter than the decades-long precession period, utilizing the changing shape of the transits can significantly improve detectability of apsidal precession (Pál & Kocsis 2008; Jordan & Bakos 2008). Transit shapes are primarily determined by the orbital speed at transit \(f_d\) and impact parameter \(b\), both of which depend on the precession phase \(\omega_0\). For small eccentricities, the orbital angular speed at transit is given simply by
\[
f_d \approx n \left(1 + 2e \cos \omega_0 \right).
\]
Changes in the impact parameter are somewhat more subtle, since \(b\) is given by
\[
r_a \cos i/R_a,
\]
where \(r_a \approx a (1 - e^2)/(1 + e \sin \omega_0)\) is the star-planet separation. Hence, the apparent impact parameter of the planet can change for noncentral transits, even when the orbital plane remains fixed. The evolving transit shape of precessing orbits is determined by variations in both orbital speed and impact parameter. Simplifying the effect of transit shape by considering only the variations in transit duration as a function of \(\omega_0\), Pál & Kocsis (2008) and Jordan & Bakos (2008) find that these two effects are of comparable magnitude. These authors also show analytically that the two effects exactly cancel when \(b = 1/\sqrt{2}\). At this impact parameter, the transit duration stays constant throughout apsidal precession. The full photometric transit shape, however, still changes detectably in a precessing orbit, though the magnitude of signal is reduced (Figure 7).

The photometric difference signal at \(\omega = 90^\circ\) is shown in Figures 4 and 5. Using the method described in Section 2 to remove degeneracies almost eliminates the primary transit signal entirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-12b, with an expected Kepler secondary transit depth of \(\sim 1830\) ppm, the threshold \(k_{2p}\) is actually lower at \(\omega = 90^\circ\) (Figure 6). For the other planets, the secondaries are not as important.

The photometric difference signal at \(\omega = 90^\circ\) is shown in Figures 4 and 5. Using the method described in Section 2 to remove degeneracies almost eliminates the primary transit signal entirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-12b, with an expected Kepler secondary transit depth of \(\sim 1830\) ppm, the threshold \(k_{2p}\) is actually lower at \(\omega = 90^\circ\) (Figure 6). The photometric difference signal at \(\omega = 90^\circ\) is shown in Figures 4 and 5. Using the method described in Section 2 to remove degeneracies almost eliminates the primary transit signal entirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-12b, with an expected Kepler secondary transit depth of \(\sim 1830\) ppm, the threshold \(k_{2p}\) is actually lower at \(\omega = 90^\circ\) (Figure 6). For the other planets, the secondaries are not as important.

Our estimates of threshold \(k_{2p}\) at \(\omega = 90^\circ\) are based on the unknown secondary transit depth \(d_{sec}\) in the Kepler bandpass (though our estimates of \(d_{sec}\) are consistent with all the measurements in the literature to date). Furthermore, we find that \(S/N \propto d_{sec}\), so that deeper secondary transits improve the accuracy with which \(k_{2p}\) can be measured. It is important to note that combining Kepler primary transit times with precise secondary transit times measured in the near-infrared (e.g., by warm Spitzer, HST, or JWST) is a very powerful way to constrain apsidal precession (Heyl & Gladman 2007) for any orientation. Even a few high-precision secondary eclipse observations are enough to lower the value of threshold \(k_{2p}\), from our predictions, especially when \(\omega \approx 90, 270^\circ\).

By construction, threshold \(k_{2p}\) values vary linearly with the assumed photometric error \(\sigma = 0.001 \times 10^{6/2.5 - 10}\). In addition, reperforming our analysis using a six-year long Kepler mission improved threshold \(k_{2p}\) values by a common factor of \(\sim 2.2\).

3.4. Results for Specific Planets

Using the method described above, we have determined the threshold \(k_{2p}\) for the most favorable known transiting planets
required of these analog planets to detect precession due to a "typical" planetary interior of the star. For values, for a large range of impact parameters. When apsidal precession depends on the impact parameter (Figure 7).

Figure 6. Eccentricities needed to detect interior properties from apsidal precession. The best-known planets for detecting are WASP-12b, WASP-4b, CoRoT-1b, OGLE-TR-56b, TrES-3b, HAT-P-7b, TrES-2b, and WASP-14b. Assuming that analogs to these planets exist in the Kepler field around a $V = 14$ magnitude star, the above graph shows the eccentricities required to detect k_{2p}. Black symbols correspond to calculations with $\omega = 0^\circ$ and gray symbols correspond to $\omega = 90^\circ$; in both cases, $b = 0$. Apsidal precession is much easier to detect for larger eccentricities, so increasing e decreases the detectable k_{2p}. Using our transit light-curve model, we found that threshold k_{2p} values followed a power law $k_{2p} \propto e^{-1}$ (for low eccentricities), which is consistent with the analytical estimates that $S/N \propto e \propto ek_{2p}$ (see Section 2). Interpolating (and sometimes extrapolating) on this power-law relationship, the graph identified the eccentricities required of these analog planets to detect precession due to a "typical" planetary interior of $k_{2p} = 0.3$ (triangles). For example, when $e = 0.00026$ and $\omega = 0^\circ$, the apsidal precession due to an analog of WASP-12b should be just detectable by Kepler. A higher eccentricity (shown in Table 1) would be needed to measure k_{2p} with sufficient accuracy (0.1) to distinguish between a massive core and a core-less model (circles). Systematic errors are expected to become important once high-precision photometry would allow for a powerful probe into their interior structure. HAT-P-7b and TrES-2b are known to lie in the Kepler field, but the values above are not corrected for improved photometric accuracy obtainable on these bright stars. Note that the eccentricities shown above and in Table 1 are computed for $S/N = 1$; 3-σ measurements require eccentricities three times as high.

Figure 7. Effect of impact parameter on precession signal. The detectability of apsidal precession depends on the impact parameter (b) of the orbital track across the star. For $\omega = 0^\circ$ (solid), the signal of primary transits is most important, with transit shaping playing the largest role (see Figure 3). However, the strength of transit shaping is a function of impact parameter with the minimum effect analytically estimated by Jordan & Bakos (2008) and Pál & Kocsis (2008) to be $b = 1/\sqrt{2}$ (the vertical solid line). Using a full photometric model, we see the expected decrease in the shaping signal (i.e., requiring a larger k_{2p} to reach $S/N = 1$). Note that the signal is nearly maximal, with small threshold k_{2p} values, for a large range of impact parameters. When $\omega = 90^\circ$ (dotted), the effect of primary transits is minimal and the offset in secondary transits becomes the determining factor (see Figure 8). At high impact parameters secondary eclipses are grazing, reducing the observable signal. We also show the threshold k_{2p} for an orientation of $\omega = 45^\circ$, which lies, as expected, between the two extremes. The values of threshold k_{2p} shown are for a $V = 14$ CoRoT-1b analog in the Kepler field with an eccentricity of 0.003.

as analogs for the very hot Jupiters to be discovered by Kepler. The threshold k_{2p} for each planet was computed at a range of eccentricities from 0.001 to 0.1 and for $\omega = 0^\circ$ and $\omega = 90^\circ$. Using the relationship discussed above ($k_{2p} \propto e^{-1}$), we interpolated (and sometimes extrapolated) our calculations to determine the eccentricity required to reach threshold k_{2p} values of 0.3, 0.1, and 0.01. These results are summarized in Figure 6 and Table 1.

WASP-12b is the best candidate for observing apsidal precession. With an eccentricity of $e \simeq 0.00026$ and $k_{2p} = 0.3$, the apsidal precession would have an effective S/N of ~ 1 for all of the Kepler data. If e is ~ 0.001, then k_{2p} can be well characterized and not just detected. As the difference in k_2 between Jupiter and Saturn of ~ 0.15 is primarily due to the presence of a massive core, a resolution in k_{2p} of 0.1 is enough to detect whether or not the planet has a core at the $\sim 1-\sigma$ level.

Although WASP-12b does not lie in the Kepler field, it clearly stands out as an excellent candidate for observing apsidal precession. Though the putative eccentricity of 0.049 (Hebb et al. 2009) is probably an overestimate (Laughlin et al. 2005), if it were real, it would cause sinusoidal transit timing deviations with an amplitude of ~ 25 min (using Equation (20)) and a period of ~ 18 yr. Such a large deviation would be readily observed from the ground in either transit times or transit shapes. If apsidal precession is not observed, tight upper limits on the eccentricity can be established.

Analog to the very hot Jupiters WASP-4b, TrES-3b, CoRoT-1b, and OGLE-TR-56b are good candidates for observing apsidal precession if the eccentricities are above ~ 0.003. (Note that CoRoT-1b has only ~ 30 days of observations from the CoRoT satellite (Barge et al. 2008), which is insufficient to observe any of the effects discussed in this paper.) These planets have precession periods of around 100 yr so that the argument
of periapse of these planets changes by $\sim 10^\circ$ during the course of Kepler observations. Though none of these planets lie in the Kepler field, they are all good candidates for observing apsidal precession through precision photometry.

WASP-14b is more massive and has a larger semimajor axis (0.035 instead of 0.025) which is enough to significantly reduce the detectability of apsidal precession which only proceeds at 0.1 yr^{-1}. Unlike the previously mentioned planets, WASP-14b has a known nonzero eccentricity of 0.091 \pm 0.003 (Joshi et al. 2009). Thus, the amplitude of transit timing variations is known to be very large (~ 97 min), but with a ~ 3400 yr precession period.

CoRoT-7b is a very hot super-Earth and has the shortest known orbital period (exceeding the ultra-short period planets of Sahu et al. 2006). We included this planet in our analysis to get a feel for the plausibility of detecting the interior structure of terrestrial extrasolar planets. The small radius reduces the planetary contribution to apsidal precession (Figure 1) and significantly reduces the photometric signal. We note here that in bodies where material strength (rigidity) is more important than self-gravity, k_{2p} is no longer directly related to internal density distribution. The correction factor is typically small for bodies larger than the Earth (Murray & Dermott 1999).

XO-3b is a supermassive eccentric planet that is not in the Kepler field. Even so, it is interesting to note that, using the known eccentricity $e = 0.2884 \pm 0.0035$ (Winn et al. 2009b) and accounting for the brightness of the host star ($V = 9.8$), the Kepler threshold k_{2p} is reduced to only 0.54. As pointed out by Jordan & Bakos (2008) and Pál & Kocsis (2008), XO-3b is a good candidate for observing apsidal precession within the next decade or so. Furthermore, as discussed below, the non-zero obliquity of the stellar spin axis (Winn et al. 2009b) may also result in an observable signal due to nodal precession.

HAT-P-7b and HAT-P-11b are orbiting bright stars in the Kepler field, orbiting a $V = 10.5$ star. The system brightness improves the expected signal-to-noise ratio of the stellar TTVs. The system brightness also improves the expected signal-to-noise ratio of the stellar TTVs. The system brightness, however, is probably not bright enough to detect an observable signal due to nodal precession.
additional leverage needed to detect apsidal precession if the eccentricity is nonzero. Note, however, that detecting changes in transit shapes is more difficult when the observations are made with a variety of telescopes because transit shapes depend on the observing filter used, due to wavelength-dependent limb darkening.

TrES-2b is similar to HAT-P-7b in that it also lies in the Kepler field, has observations dating to 2005, and was observed by NASA’s EPOXI mission. TrES-2b is somewhat fainter than HAT-P-7b (V = 11.4), and, correcting for the system brightness, an eccentricity of 0.021 would result in detectable apsidal precession (threshold $k_{2p} = 0.3$). Observations of the secondary eclipse show no detectable deviations of the orbit from circularity (O’Donovan et al. 2009). Even so, the light curve of this planet is quite sensitive to perturbations as it has a quite high impact parameter $b = 0.854$. Accounting for this impact parameter does not significantly change the required eccentricity.

We conclude that Kepler may detect the cores of very hot Jupiters and probe their interior structure through their evolving transit light curve if eccentricities are above ~ 0.003. As future observations provide longer baselines for these observations, the sensitivity to interior structure measurements will increase dramatically, significantly lowering the eccentricity needed to observe apsidal precession.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary eccentricities. An upper limit on the eccentricity can be inferred by assuming that the planet has the minimal physically plausible value of $k_{2p} \approx 0.1$. Null detections of apsidal motion should, therefore, provide upper limits on eccentricity comparable to the values shown in Table 1 (also shown by circles in Figure 6). Such strong eccentricity constraints are valuable for improving our understanding of these close-in planets.

4. POTENTIAL CONFUSION OF THE APSIDAL PRECESSION SIGNAL

In the above, we have assumed that measuring $\dot{\omega}$ is tantamount to measuring k_{2p}. This is justified by noting that the conversion $\dot{\omega}$ to k_{2p} involves only factors that are very well characterized. In Section 2 and Figure 1, we showed that k_{2p} is usually the dominant source of apsidal precession. The effects of k_{2x} and general relativity are well-understood and can typically be subtracted away without introducing serious uncertainty, even when they dominate the apsidal precession rate. From Equation (6), converting the remaining ω_p to k_{2p} requires only knowing $M_p/M_*, e, R_p/a$, and n. The latter two are very accurately measured with even a few transit light curves (e.g., Torres et al. 2008; Southworth 2008). The eccentricity only enters the equation through the $f_2(e)$ and $g_2(e)$ eccentricity functions (Equations (7) and (11)), and Kepler observations of secondary eclipse are sufficiently accurate to remove any systematic error due to these terms unless the eccentricity is large ($e \gtrsim 0.3$). Determining the mass ratio requires well-sampled radial velocity observations. The systems detected by Kepler are bright enough to get good mass measurements, especially since very hot Jupiters have large radial velocity amplitudes ($K \sim 200$ m s$^{-1}$). The anticipated error in the mass ratio is a few percent (Torres et al. 2008). In all, we estimate that converting from $\dot{\omega}$ to k_{2p} leads to a typical systematic error on k_{2p} of around ~ 0.1. This is a relatively small systematic effect in comparison to the potential range (~ 0.5) of k_{2p} values. For reference, the eccentricity required to reach a threshold k_{2p} of 0.01 is shown in Figure 6 by squares.

Another way to introduce systematic errors on the measurement of k_{2p} is to misinterpret similar transit light-curve variations. To ensure that the method outlined in this paper truly probes the interiors of extrasolar planets, we consider in this section whether the transit light curve resulting from apsidal precession can be confused with any other common circumstances. Although a very specific combination of parameters is required for any particular phenomenon to successfully mimic a signal due to k_{2p}, the effects given below should be reconsidered when actual data are available.

4.1. Testing the Effect of Obliquity

If either the star or planet has a nonzero obliquity, the orbital plane will no longer be fixed as a result of nodal precession. The obliquities of very hot Jupiters rapidly ($\lesssim 1$ MYr) decay to a Cassini state, and recent work has shown that these planets are likely in Cassini state 1 (Winn & Holman 2005; Levin et al. 2007; Fabrycky et al. 2007). Using a model based on the equations of Eggleton & Kiseleva-Eggleton (2001), we found that Cassini obliquities of very hot Jupiters are indeed negligible ($\alpha_p < 0^\circ 01$). Though tidal damping of the stellar obliquity occurs on far longer timescales, several measurements of the projected stellar obliquity through the Rossiter–McLaughlin effect indicate that planet-hosting stars generally have low obliquities $\lesssim 10^\circ$ like the Sun (Fabrycky & Winn 2009). Hence, the general expectation is that both the star and planet will have rather low, but potentially nonzero, obliquities.

Understanding the specific orbital evolution resulting from nonzero obliquities is more complicated than the simple prescription for apsidal precession. To correctly account for non-Keplerian effects, we wrote a direct integrator, following Mardling & Lin (2002), that calculates the Cartesian trajectory (and the direction of the spin axes) of a star-planet system including general relativity and the effects of quadrupolar distortion. This integrator reproduces the orbit-averaged analytic equations of Mardling & Lin (2002), which are the same as those in Eggleton & Kiseleva-Eggleton (2001), Sterne (1939a), and elsewhere.10 We did not include the effects of tidal forces or additional planets which are not relevant to our problem.

Using this direct integrator, we investigated the effect of nonzero obliquities on the transit times, durations, and impact parameters. Integration of several cases with varying stellar and planetary obliquities showed that the largest effect on the photometry was due to changes in the impact parameter, as expected for an orbit with changing orientation (Miralda-Escudé 2002). However, even for large stellar obliquities (\sim 45°) the transit light-curve variations due to obliquity are generally small relative to the effects of purely apsidal precession, even with low eccentricities. One reason for this is that the tidal bulge, which does not contribute to nodal precession, is \gtrsim 15 times more important than the rotational bulge. As with apsidal precession, the planetary contribution to orbital variations is much stronger than the stellar contribution (for equal obliquities). Unless the

\footnote{This involved minor modifications to the “direct integrator” Equations (3) and (5) in Mardling & Lin (2002). In Equation (3), the coefficient 12 should be 6 (R. Mardling 2009, private communication) and Equation (5) was replaced with the nearly equivalent equation from Soffel (1989).}
planetary obliquity is unexpectedly large ($\gtrsim 0.5$), the obliquity-induced nodal precession should have only a minor effect on the transit light curve.

4.2. Transit Timing due to Orbital Decay

Orbital decay generates a small secular trend in transit times. Sasselov (2003) proposed the detectability of the expected ~ 1 ms yr$^{-1}$ period change due to semimajor axis decay of OGLE-TR-56b. The transit timing anomaly solely due to orbital decay (or growth) is the result of constantly accumulating changes in the period:

$$T_N \simeq T_0 + N P_{\text{orb}} + \frac{1}{2} N^2 \delta P,$$

where $\delta P \equiv PP$ is the change in the period during one orbit and N is the number of transits after the initial transit. Equation (23) can be derived by noting that the transit times are basically the integral of the instantaneous period. As before, the transit timing anomaly is composed of the quadratic deviation of T_N from a straight line. The change in period can be due to magnetic stellar breaking (e.g., Lee et al. 2009; Barker & Ogilvie 2009a), the Yarkovsky effect applied to planets (Fabrycky 2008), and/or other effects.

For planets orbiting an asynchronously rotating star, a major source of orbital decay is tidal evolution, which results in a slow change in semimajor axis, according to the formula (Murray & Dermott 1999)

$$\dot{a} = \text{sign}(v_a - n) \frac{3k_{2p} M_p}{Q_a} \frac{R_a}{a}^5 n a,$$

where $\text{sign}(x)$ returns the sign of x or 0 if $x = 0$ and where Q_a is the tidal quality parameter of the star, typically around 10^4 (Dobbs-Dixon et al. 2004). Though δP due to tidal dissipation is only of order 3 micro-seconds, N grows by ~ 300 each year, reaching ~ 1000 during the duration of Kepler for very hot Jupiters. This implies a transit timing signal of about a few seconds.

Calculating the total S/N of tidal evolution, as was done for k_{2p}, we find that reasonable values of Q_a can be measured even for faint stars ($V = 14$; 1000 ppm min$^{-1}$ noise). For a circular orbit with the parameters of OGLE-TR-56b, the effective S/N reaches 1 when P is 1.36 ms yr$^{-1}$ (see Table 1), corresponding to $Q_a \approx 25000$. This implies the detectability of most of the empirically motivated estimates of Sasselov (2003) for the tidal decay of OGLE-TR-56b, which are estimated to be within an order of magnitude of 1 ms yr$^{-1}$. On the other hand, Barker & Ogilvie (2009b) estimate that the tidal damping in F-stars like OGLE-TR-56 and WASP-12 may be very low, which may explain the survival of these short-period planets.

The estimates of the threshold values of P, shown in Table 1, include removing degeneracies in other parameters, except apsidal precession of eccentric orbits, and assume that everything but P is known. Note that the transit light-curve signal due to orbital decay is entirely due to transit timing; the change in a is far too small to observe in transit shaping. As the signal due to apsidal precession includes significant changes to the shapes of the transit, the signal due to k_{2p} is qualitatively different than that of Q_a. The shifting of secondary transits from precession also helps in this regard, as outlined above. However, the primary transit timing signals can be similar: quadratic transit timing anomalies with amplitudes of ~ 1 s.

Kepler analogs of very hot Jupiters WASP-12b, OGLE-TR-56b, CoRoT-1b, WASP-4b, and TrES-3b could have detectable transit timing anomalies due to tidal decay, implying a direct measurement of the current value of Q, for specific stars (Table 1). This is an exciting possibility, providing the first direct measurements (or constraints) of the currently unknown details of tidal dissipation in a variety of individual stars. We also note that interesting orbital decay of eclipsing binary systems seen by Kepler could also be detectable.

4.3. Confusion due to Other Planets

Could the signal due to k_{2p} be confused with additional planets? In considering this issue, it should be noted that all known hot Jupiters (with $a \lesssim 0.05$ AU and $M_p \gtrsim 0.5$ M_{Jup}) have no currently known additional companions. The apparent single nature of these systems could very well be due to observational biases (Fabrycky 2009). However, even for stars that have been observed for many years with radial velocity (e.g., 51 Peg, HD 209458), there appears to be a strong tendency toward hot Jupiters as the only close-in massive planets.

Previous studies of transit timing variations focus on the effects of additional planetary perturbers (e.g., Holman & Murray 2005; Agol et al. 2005; Ford & Holman 2007; Nesvorný & Morbidelli 2008). These authors find that nearby massive planets or even low-mass planets in mean-motion resonances would cause strong transit timing variations that are easily distinguishable from the comparatively long-period timing anomalies due to k_{2p}. Relatively distant companions or nonresonant low-mass planets, however, can induce a linear apsidal precession signal just like k_{2p} (Miralda-Escudé 2002; Heyl & Gladman 2007; Jordan & Bakos 2008). The precession rate induced by a perturbing body is a function of its mass and semimajor axis. The interior structure of very hot Jupiters causes apsidal precession as fast as a few degrees per year. To match this precession rate would require, for example, another Jupiter-mass planet at $\lesssim 0.1$ AU or a solar-mass star at ~ 1 AU. Even perturbers an order of magnitude smaller than these would be readily detectable using radial velocity observations and/or high-frequency transit time variations. When restricted to planets that are undetectable by other means, adding the precession due to the unknown perturbing planet would lead to an insignificant overestimate of k_{2p} for very hot Jupiters.

When observing transiting planets with larger semimajor axes ($a \gtrsim 0.05$ AU), the strength of planetary-induced apsidal precession is reduced to a level comparable to apsidal precession from a low-mass perturbing planet (Jordan & Bakos 2008) and confusion may be possible in these cases.

Since the transit timing signal for apsidal precession is similar to a sinusoid, another potential source of confusion would be light-travel time offsets due to a distant orbiting companion (e.g., Deeg et al. 2008). The transit timing signal due to stellar motion about the barycenter can be distinguished from k_{2p} precession by considering the changes in transit shapes and primary–secondary transit time offsets, which are not affected by distant companions.

We conclude that transit timing effects from other planets can be readily distinguished from the effects of apsidal precession.

--

11 The vanishingly small effect of eccentricity decay is $\sim 1/Q_p$ smaller than apsidal precession, so that direct measurements of Q_p from eccentricity decay are not feasible.

12 Conversely, as a consequence of the fast precession of very hot Jupiters due to their (unknown) interiors, it will be very difficult to detect the presence of additional perturbing planets in these systems from apsidal precession alone.

13 Transit time anomalies due to Q_a (Section 4.2), however, can be confused with barycenter light-travel time shifts due to a distant planet that may be undetectable in radial velocities.
To address the issue of the transit-shaping signal due to additional planets, we wrote a simple three-body integrator (similar to the integrator mentioned above) to investigate the kinds of transit light-curve signals created by additional planets. For the vast majority of additional planet parameters, the transit timing deviations always carry far more signals than the minor deviations due to changes in the angular velocity \(f_\dot{\nu} \) or impact parameter \(b \), which together determine the transit shape as described in Section 3.3. Generally, it is much easier to delay a transit by 5 s than it is to shift the apparent transit plane by an appreciable amount.

However, when the perturbing planet is on a plane highly inclined to the transiting planet, changes in the transit shape can become detectable, even while the transit timing variations are negligible. For example, a perturbing planet of mass \(10^{-5} M_* \) at 0.1 AU with a mutual inclination of 45° caused very hot Jupiter transit durations to change by \(\sim 1 \) s yr\(^{-1} \). This kind of signal is the result of nodal precession induced by the perturbing planet, as originally pointed out by Mira
dalda-Escudé (2002). In our investigation, we found that the three-body nodal precession alters the impact parameter \(b \), but does not significantly affect the orbital angular velocity \(f_\dot{\nu} \). Conversely, the transit-shaping signal due to \(k_{2p} \) is generally produced by changes in both \(b \) and \(f_\dot{\nu} \), but at near-central transits, the effect of changing orbital velocity is dominant (see Section 3.3). In high-precision transit light curves, both the angular velocity and the impact parameter can be independently measured and, hence, the signals of apsidal and nodal precession are usually distinct for all but the most grazing transits.

Given the uniqueness of the apsidal precession signal induced by the planet’s interior, it appears that if additional planets are not detectable in radial velocities, transit timing variations, or nodal precession, then they will not contribute to a misinterpretation of an inferred value of \(k_{2p} \) for very hot Jupiters. Nevertheless, future measurements of \(k_{2p} \) should check that these issues are unimportant within the context of the specific system being studied.

Finally, we estimate that moons or rings with enough mass to bias an inferred \(k_{2p} \) would cause other readily detectable photometric anomalies (e.g., planet-moon barycentric motion Sartoretti & Schneider 1999). In addition, extrasolar moons with any significant mass are tidally unstable, especially around very hot Jupiters (Barnes & O’Brien 2002).

5. OTHER METHODS FOR DETERMINING \(k_{2p} \)

5.1. Secular Evolution of a Two-Planet System

Measuring \(k_2 \) for an extrasolar planet was suggested by Wu & Goldreich (2002) for the inner planet of HD 83443. Unfortunately, later analyses have indicated that the supposed second planet in this system was actually an artifact of the sparse radial velocity data (Mayor et al. 2004). Nevertheless, this technique could be applied to other eccentric planetary systems with similar conditions (Mardling 2007). Wu & Goldreich (2002) showed that in a regime of significant tidal circularization and excitation from an additional planet, the ratio of eccentricities depends on the precession rate, which is dominated by \(k_{2p} \), as shown above (see also Adams & Laughlin 2006, who do not include precession due to the planetary quadrupole). In theory, the current orbital state of such multiplanet systems gives an indirect measurement of the apsidal precession rate.

5.2. Direct Detection of Planetary Asphericity

Another method for determining interior properties of transiting planets would be to directly measure the asphericity due to the rotational or tidal bulge in primary transit photometry. The height of the rotational and tidal bulges is \(q_t h_2 R_p \) and \(q_r h_2 R_p \), respectively, where \(q_t \) and \(q_r \) are the dimensionless small parameters defined in Equation (2) and \(h_2 \) is another Love number which, for fluid bodies, is simply \(k_2 + 1 \) (Sterne 1939a). These bulges cause the disk of the planet to be slightly elliptical, subtly modifying the photometric signal, as discussed for rotational bulges by Seager & Hui (2002) and Barnes & Fortney (2003). However, as discussed by Barnes & Fortney (2003), in real systems with actual observations, the size of the rotational bulge is very difficult to determine as it is highly correlated with stellar and orbital parameters that are not known a priori, e.g., limb-darkening coefficients.

The tidal bulge, whose height is also set by \(k_{2p} \), does not suffer from some of the difficulties involved with measuring the rotational bulge. It has a known orientation (pointing toward the star), so there is no degeneracy from an unknown obliquity (Barnes & Fortney 2003). (Note, however, that for hot Jupiters, the obliquities must be tidally evolved to nearly zero, so this is not really a problem with the rotational bulge.) In addition, the signal due to oblateness is only significant near ingress/egress, but the tidal bulge is continuously changing orientation throughout the entire transit. Though the tidal bulge is typically three times larger than the rotational bulge (Equation (2)), the projection of the tidal bulge that is seen during a transit is small, proportional to \(\sin \theta \) where \(\theta \) is the angle between the planet position and the Earth’s line of sight. For very hot Jupiters that have semimajor axes of only \(\lesssim 6 \) stellar radii, \(\sin \theta \) during transit ingress/egress reaches \(\gtrsim 1/6 \) so that the projected tidal bulge is about half as large as the rotational bulge. The extra dimming due to the tidal bulges (and rotational bulges) is as high as \(2 \times 10^{-4} \) for some planets that are expected to have tides over 2000 km high (e.g., WASP-12b, WASP-4b, Corot-1b, OGLE-TR-56b); this compares very favorably with the photometric accuracy of binned Kepler data at about 10 ppm min\(^{-1} \). However, we expect that, as with the rotational bulge alone, the combined signal from the rotational and tidal bulge will be highly degenerate with the unknown limb-darkening coefficients, as the size of the projection of the tidal bulge also varies as the distance to the center of the star.

We note that using multicolor photometry should significantly improve the prospects of detecting nonspherical planetary transits since it breaks most of these degeneracies. For example, Knutson et al. (2007b) use HST to observe transits of HD 209458b in 10 wavelength bands and measure the planetary radius with a relative accuracy (between bands) of 0.003\(R_J \), of the same level as the change in shape due to oblateness and the tidal bulge. Pont et al. (2007a) made a similar measurement for HD 189733b and reached even higher relative accuracy. Combining such measurements with other data (e.g., primary transits in the infrared, where limb darkening is much smaller) and a stellar photosphere model (to correctly correlate limb-darkening parameters as in Agol & Steffen 2007), could yield detections of planerary asphericity, especially in very hot Jupiters which have the largest bulges.

One possible source of confusion in interpreting planetary asphericity is the thermally induced pressure effects of an
unvariably, the thermal tidal bulge (Arras & Socrates 2009) can shift the level of the photosphere by approximately an atmospheric scale height, about 10^{-2} or 10^{-3} planetary radii (P. Arras 2009, private communication). The orientation of the thermal bulge is significantly different from the tidal or rotational bulges and should be distinguishable. Furthermore, very hot Jupiters should orbit synchronously, reducing the importance of this effect. Nevertheless, the effect of atmospheric phenomena on measurements of planetary asphericity should be considered.

Though difficult to disentangle from other small photometric effects, high-precision multicolor photometry may be another viable method for measuring k_{2p}. This technique is complementary to detecting k_{2p} from apsidal precession since it does not require that the planet is eccentric, nor does it require a long time baseline. On some planets, the two methods could be used together as mutual confirmation of the planetary interior structure.

6. CONCLUSIONS

The planetary mass and radius are the only bulk physical characteristics measured for extrasolar planets to date. In this paper, we find that the planetary Love number (k_{2p}, equivalent to J_2) can also have an observationally detectable signal (quadrupole-induced apsidal precession) which can provide a new and unique probe into the interiors of very hot Jupiters. In particular, k_{2p} is influenced by the size of a solid core and other internal properties. Core sizes can be used to infer the formation and evolution of individual extrasolar planets (e.g., Dodson-Robinson & Bodenheimer 2009; Helled & Schubert 2009).

The presence of a nearby massive star creates a large tidal potential on these planets, raising significant tidal bulges which then induce non-Keplerian effects on the star-planet orbit itself. The resulting apsidal precession accounts for $\sim 95\%$ of the total apsidal precession in the best cases (Figure 1). Hence, we find that the internal density distribution, characterized by k_{2p}, has a large and clear signal, not to be confused with any other parameters or phenomena. We urge those modeling the interior structures of extrasolar planets to tabulate the values of k_{2p} for their various models.

Encouraged by this result, we calculated full photometric light curves like those expected from the Kepler mission to determine the realistic observability of the interior signal. We estimate that Kepler should be able to distinguish between interiors with and without massive cores ($\Delta k_{2p} \approx 0.1$) for very hot Jupiters with eccentricities around $e \sim 0.003$ (Figure 6). Eccentricities this high may occur for some of the very hot Jupiters expected to be found by Kepler, though these planets usually have highly damped eccentricities. Much stronger constraints on apsidal precession can be obtained by combining Kepler photometry with precise secondary transits observed in the infrared. In cases where apsidal precession is not observed, the data can set strong upper limits on planetary eccentricities.

In analyzing Kepler’s photometric signal of apsidal precession, we find that transit timing variations are an almost negligible source of signal, though transit timing has been the focus of many observational and theoretical papers to date. The effect of “transit shaping” has ~ 30 times the photometric signal of transit timing for apsidal precession (see Figure 3, Pál & Kocsis 2008; Jordan & Bakos 2008). At orientations where transit timing and shaping are weakest, the changing offset between primary and secondary transit times can be used to measure k_{2p} (Figure 4). It may also be possible to measure k_{2p} from high-precision multicolor photometry by directly detecting the planetary asphericity in transit. Such a measurement does not require a long baseline or an eccentric orbit.

Very hot Jupiters are also excellent candidates for detecting tidal semimajor axis decay, where we find that relatively small period changes of $P \sim 1$ ms yr$^{-1}$ should be detectable. This could constitute the first measurements (or constraints) on tidal Q_* for a variety of individual stars. We note that Kepler measurements of transit timing and shaping for eclipsing binaries should also provide powerful constraints on stellar interiors through apsidal motion and binary orbital decay (due to tides, if the components are asynchronous).

Accurately measuring the interior structure of distant extrasolar planets seems too good to be true. Nevertheless, the exquisite precision, constant monitoring, and 3.5-year baseline of the Kepler mission combined with the high sensitivity of transit light curves to small changes in the star-planet orbit make this measurement plausible.

Our focus on Kepler data should not be interpreted to mean that other observations will be incapable of measuring k_{2p}. In fact, the opposite is true since the size of the apsidal precession signal increases dramatically with a longer baseline. Combining Kepler measurements with future ground- and space-based observations can create a powerful tool for measuring k_{2p}. In the far future, many planets will have measured apsidal precession rates (like eclipsing binary systems have now) and inferred k_{2p} values. Incorporating these measurements into interior models holds promise for greater understanding of all extrasolar planets.

We thank Dave Stevenson, Mike Brown, Greg Laughlin, Oded Aharonson, Thomas Beatty, Phil Arras, Rosemary Marling, Re’em Sari, Alejandro Soto, Ian McEwen, and Chris Lee for help and useful discussions. We especially thank the referee, Dan Fabrycky, for helpful suggestions and discussions. D. R. is grateful for the support of the Moore Foundation. A. S. W. is grateful for support from the National Science Foundation. This research has made use of NASA’s Astrophysics Data System.

REFERENCES

Adams, F. C., & Laughlin, G. 2006, ApJ, 649, 1004 (arXiv:astro-ph/0606349)
Agol, E., Cowan, N. B., Bushong, J., Knutson, H., Charbonneau, D., Deming, D., & Steffen, J. H. 2009, in IAU Symp. 253, Transiting Planets, ed. F. Pont, D. D. Sasselov, & M. J. Holman (Dordrecht: Kluwer), 299
Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567 (arXiv:astro-ph/0412032)
Agol, E., & Steffen, J. H. 2007, MNRAS, 374, 941 (arXiv:astro-ph/0610159)
Alonso, A., Aigrain, S., Pont, F., Mazeh, T., & The CoRoT Exoplanet Science Team. 2009, in IAU Symp. 253, Transiting Planets, ed. F. Pont, D. D. Sasselov, & M. J. Holman (Dordrecht: Kluwer), 91
Arras, P., & Socrates, A. 2009, arXiv:0901.0735
Bakos, G. Á., et al. 2009, arXiv:0901.0282
Baraffe, I., Chabrier, G., & Barman, T. 2008, A&A, 482, 315
Barge, P., et al. 2008, A&A, 482, L17
Barker, A. J., & Ogilvie, G. I. 2009a, MNRAS, 395, 2268
Barker, A. J., & Ogilvie, G. I. 2009b, in Proc. IAU Symp. 259, Cosmic Magnetic Fields: from Planets, to Stars and Galaxies, ed. K. G. Strassmeier, A. G. Kosovichev, & J. Beckmann (Cambridge: Cambridge Univ. Press), 295
Barnes, J. W., & Fortney, J. J. 2003, ApJ, 588, 545 (arXiv:astro-ph/0301156)
Barnes, J. W., & O’Brien, D. P. 2002, ApJ, 575, 1087 (arXiv:astro-ph/0205035)
Batten, A. H. 1973, in International Series of Monographs in Natural Philosophy 51, Binary and Multiple Systems of Stars, ed. A. H. Batten (New York/Oxford: Pergamon)
Bean, J. J. 2009, arXiv:0903.1845
Beatty, T. G., & Gaudi, B. S. 2008, ApJ, 686, 1302
