MANIFOLDS NOT CONTAINING GOMPF NUCLEI

ANDRÁS I. STIPSICZ

Abstract. In this note we show that there are 4-manifolds not containing Gompf nucleus \(N_2 \); in this way we answer Problem 4.98 of Kirby’s problem list (see \([K]\)) in the negative.

1. Introduction

This note is devoted to answer a question in Kirby’s problem list \([K]\) asking whether every simply connected smooth 4-manifold with \(b^+ \geq 3 \) contains a Gompf nucleus \(N_2 \) (Problem 4.98 in \([K]\)). We prove that by doing logarithmic transformations on three linearly independent tori in the \(K3 \)-surface we get a 4-manifold not containing \(N_2 \). To make our statements more precise we need a few definitions.

The hypersurface \(X = \{ [z_0 : z_1 : z_2 : z_3] \in \mathbb{C}P^3 \mid \sum_{i=0}^{3} z_i^4 = 0 \} \subset \mathbb{C}P^3 \) is a simply connected, smooth 4-manifold with \(c_1(X) = 0 \), hence it is a \(K3 \)-surface. It is known that all simply connected complex surfaces with vanishing first Chern class are diffeomorphic, consequently from the differential topological point of view \(X \) is the \(K3 \)-surface. The complex surface \(X \) admits a holomorphic fibration \(\pi: X \rightarrow \mathbb{C}P^1 \) such that the generic fiber is a smooth elliptic curve — a 2-dimensional torus. Such fibrations are called elliptic fibrations. It can be assumed that \(\pi \) has a singular fiber homeomorphic to the 2-dimensional sphere \(S^2 \) — such fibers are called cusp fibers. The fibration also has a section \(\sigma: \mathbb{C}P^1 \rightarrow X \), the image of which is a sphere \(S \subset X \) with square \([S]^2 = -2 \). The Gompf nucleus \(N_2 \) is by definition the tubular neighborhood of the union of a cusp fiber and a section in \(X \). The manifold \(N_2 \) admits a handle decomposition with one 0-handle and two 2-handles, where these two 2-handles are attached to \(S^3 = \partial(0 - \text{handle}) \) according to the Kirby diagram shown in Figure 1.

It can be shown that the \(K3 \)-surface \(X \) contains three disjoint copies of \(N_2 \). If a 4-manifold \(M^4 \) contains a 2-dimensional torus \(T \) with square 0, then we can perform a logarithmic transformation on \(T \): deleting the tubular neighborhood of \(T \) (which is diffeomorphic to \(D^2 \times T^2 \)) and regluing it via a diffeomorphism \(\varphi: \partial(M \setminus D^2 \times T^2) \rightarrow \partial(D^2 \times T^2) \) we get a new manifold \(M_\varphi \). It turns out that if \(T \) is the fiber in a Gompf nucleus \(N_2 \subset M \), then the diffeomorphism type of \(M_\varphi \) will depend only on one nonnegative number \(p \) associated to \(\varphi \). This number is called the multiplicity of the logarithmic transformation. For more about elliptic surfaces, nuclei and logarithmic transformations see \([G]\), \([FS]\) and \([GS]\).
Now perform logarithmic transformations of multiplicity 2 on the three tori contained by the three disjoint nuclei in the \(K3 \)-surface \(X \). The resulting manifold will be denoted by \(X_{2,2,2} \).

Theorem 1.1. The 4-manifold \(X_{2,2,2} \) does not contain a Gompf nucleus \(N_2 \).

Remark 1.2. One of the most interesting questions in 4-manifold theory is whether all 4-manifolds are of simple type or not. (For the definition of simple type see Section 2.) It is known that if \(M^4 \) contains a homologically essential torus with square 0, then \(M \) is of simple type. There is no example of a 4-manifold with \(b^+ \geq 3 \) and not containing a torus with square 0. One can ask whether every 4-manifold contains a cusp neighborhood (a tubular neighborhood of a cusp fiber) — or even a Gompf nucleus \(N_2 \). The above theorem shows an example of a manifold which contains no \(N_2 \); \(X_{2,2,2} \) is still of simple type, however.

One can modify the question by trying to find more general nuclei \(N_n \) in 4-manifolds. The manifold \(N_n \) is described by the Kirby diagram shown in Figure 2 — it can be defined alternatively as the tubular neighborhood of the union of a cusp fiber and a section in a simply connected elliptic surface (admitting a section) with Euler characteristic \(12n \) (see [3]).

Theorem 1.3. For every \(n \) there is a manifold \(Y_n \) such that \(Y_n \) does not contain \(N_n \).
A related question would be to find a 4-manifold M with the property that M does not contain $N_2(p, q)$; here $N_2(p, q)$ denotes the 4-manifold with boundary we get by performing two logarithmic transformations (of multiplicity p and q) along the fiber of the Gompf nucleus N_2. Using a recent construction of Fintushel and Stern [FS3] such M can be found, see [SSZ].

Acknowledgement: The author would like to thank MSRI for their hospitality and support, and Zoltán Szabó for many helpful conversations.

2. Basic classes

In studying differential topological properties of smooth 4-manifolds, Seiberg-Witten basic classes turn out to be very powerful tools. For the definition of these objects see [A], [M] or [GS], here we restrict ourselves to a very short outline.

Assume that M^4 is a smooth, oriented, simply connected, closed 4-manifold with $b_+^2(M) \geq 3$. A cohomology class $K \in H^2(M; \mathbb{Z})$ with $K \equiv w_2(M)$ (mod 2) uniquely determines a spinc structure on M, and for such a structure a certain pair of partial differential equations (the so-called Seiberg-Witten equations) can be described — involving a choice of metric on M, a coupled Dirac operator and a perturbation 2-form. By a delicate ”counting argument” of the solutions of these equations a number $SW_M(K)$ can be associated to the cohomology class K. It turns out that this number (up to sign) is a smooth invariant of the manifold M, more precisely

Theorem 2.1. If $f: M' \rightarrow M$ is an orientation preserving diffeomorphism then $SW_M(K) = \pm SW_{M'}(f^*K)$. Moreover, for a fixed 4-manifold M there are only finitely many classes K with $SW_M(K) \neq 0$, and $SW_M(-K) = \pm SW_M(K)$. \hfill \Box

Definition 2.2. The cohomology class $K \in H^2(M; \mathbb{Z})$ is called a Seiberg-Witten basic class if $SW_M(K) \neq 0$. The 4-manifold M is of simple type if $SW_M(K) \neq 0$ implies that $K^2 = 3\sigma(M) + \chi(M)$; here $\sigma(M)$ and $\chi(M)$ stand for the signature and Euler characteristic of M.

The most important relation between the smooth topology of a 4-manifold M and its basic classes $\{K_i \mid i = 1, \ldots, n\}$ is shown by the generalized adjunction formula:

Theorem 2.3. (Kronheimer-Mrowka) If $\Sigma^2 \subset M^4$ is a smooth, connected 2-dimensional surface of genus $g(\Sigma)$, $[\Sigma] \neq 0$ and $[\Sigma]^2 \geq 0$, then for every basic class K we have

$$2g(\Sigma) - 2 \geq |\Sigma|^2 + |K([\Sigma])|.$$ \hfill \Box

3. Proofs of Theorems 1.1 and 1.3

Assume that T_1, T_2 and T_3 are three tori in the $K3$-surface lying in three disjoint Gompf nuclei. Perform logarithmic transformations of multiplicity 2 on each T_i. The basic classes of the resulting manifold $X_{2,2,2}$ are determined by Fintushel and Stern [FS3].

Proposition 3.1. The basic classes of $X_{2,2,2}$ are the Poincaré duals of the homology classes $\pm[T_1] \pm [T_2] \pm [T_3]$. \hfill \Box
Proof of Theorem 1.1: Assume that $N_2 \subset X_{2,2,2}$. The homology class of the fiber and the section in N_2 will be denoted by f and s respectively; note that f and $g = f + s$ have square 0 and can be represented by tori. Consequently (by the generalized adjunction formula) a basic class K of $X_{2,2,2}$ evaluates trivially on f and g. Now $f \cdot (\frac{T_3}{2} + \frac{T_2}{2} + \frac{T_1}{2}) = 0$ and $f \cdot (-\frac{T_3}{2} + \frac{T_2}{2} + \frac{T_1}{2}) = 0$ ($\{i,j,k\} = \{1,2,3\}$) implies that $f \cdot \frac{T_1}{2} = 0$, similarly $g \cdot \frac{T_1}{2} = 0$ for $i = 1,2,3$. Since the complement of the three disjoint nuclei in X have negative definite intersection form, the above equalities imply that $f = \sum_{i=1}^{3} \alpha_i[T_i]$ and similarly $g = \sum_{i=1}^{3} \beta_j[T_j]$. These two latter equations, however, give a contradiction, since $f \cdot g = 1$ but $(\sum_{i=1}^{3} \alpha_i[T_i]) \cdot (\sum_{i=1}^{3} \beta_j[T_j]) = 0$. Consequently N_2 does not embed in $X_{2,2,2}$.

Proof of Theorem 1.3: Perform logarithmic transformations of multiplicity 2 on T_1, T_2 and T_3 as above; the resulting 4-manifold $X_{2n,2n,2n}$ will be denoted by Y_n. The basic classes of Y_n are determined in [FS2]: these are the Poincaré duals of the homology classes $\alpha_1(\frac{T_1}{2n}) + \beta(\frac{T_2}{2n}) + \gamma(\frac{T_3}{2n})$ where $\alpha, \beta, \gamma \in \{\pm(2j-1) \mid j = 1, \ldots, n\}$. Assume now that $N_n \subset Y_n$. As before, f and s will denote the homology classes of the fiber and the section in N_n respectively. Note that $f^2 = 0$ and $s^2 = -n$. The class f can be represented by a torus, while $g = s + nf$ can be represented by a surface of genus n; moreover $g^2 = n$. The same argument as in the proof of Theorem 1.1 gives that $f = \sum_{i=1}^{3} \alpha_i[T_i]$. To show that every basic class of Y_n evaluates trivially on g involves a little trick: take the basic classes $\pm[\frac{T_1}{2}] \pm[\frac{T_2}{2}] \pm[\frac{T_3}{2}]$ and evaluate them on g. If one of them, say K, evaluates nontrivially on g, then for $L = (2n-1)K$ (which is also a basic class) we have $|L(g)| \geq 2n - 1$, but then L and g would violate the generalized adjunction formula. Consequently $(\pm[\frac{T_1}{2}] \pm[\frac{T_2}{2}] \pm[\frac{T_3}{2}]) \cdot g = 0$ implying that $g \cdot [T_i] = 0$ ($i = 1,2,3$). These latter equations show that $g = \sum_{j=1}^{3} \beta_j[T_j]$, and we have the same contradiction as before.

Remark 3.2. Note that the proof given above also shows that no N_k with $k \leq n$ embeds in $Y_n = X_{2n,2n,2n}$.

References

[A] S. Akbulut, Lectures on Seiberg-Witten invariants, Turkish J. Math. 20 (1996), 95–119.

[FS1] R. Fintushel, R. Stern Surgery in Cusp Neighborhoods and the Geography of Irreducible 4-Manifolds, to appear

[FS2] R. Fintushel and R. Stern, Rational blowdown of smooth 4-manifolds, preprint

[FS3] R. Fintushel and R. Stern, Knots, links and 4-manifolds, MSRI preprint

[G] R. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), 479–511.

[GS] R. Gompf and A. Stipsicz, An introduction to 4-manifolds and Kirby Calculus, book in preparation

[K] R. Kirby, Problems in low-dimensional topology, in Geometric Topology (W. Kazez ed.) AMS/IP 1997.

[M] J. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Math. Notes 44 Princeton University Press, Princeton NJ, 1996.

[SSz] A. Stipsicz and Z. Szabó, in preparation

Department of Analysis, ELTE TTK, Budapest, Hungary

E-mail address: stipsicz@cs.elte.hu