This is the submitted version of the article:
Bars Cortina, Francesc; Dieulefait, Luis. «Galois actions on Q-curves and winding quotients». Mathematische Zeitschrift, Vol. 254, Issue 3 (November 2006), art. 531. DOI 10.1007/s00209-006-0956-4

This version is available at https://ddd.uab.cat/record/240656

under the terms of the © COPYRIGHT license
Galois actions on Q-curves and Winding Quotients

Francesc Bars* and Luis Dieulefait †

December 2, 2003

Abstract

We prove two “large images” results for the Galois representations attached to a degree d Q-curve E over a quadratic field K: if K is arbitrary, we prove maximality of the image for every prime p > 13 not dividing d, provided that d is divisible by q (but d ≠ q) with q = 2 or 3 or 5 or 7 or 13. If K is real we prove maximality of the image for every odd prime p not dividing dD, where D = disc(K), provided that E is a semistable Q-curve. In both cases we make the (standard) assumptions that E does not have potentially good reduction at all primes p ☐ 6 and that d is square-free.

1 Semistable Q-curves over real quadratic fields

Let K be a quadratic field, and let E be a degree d Q-curve defined over K. Let D = disc(K). Assume that E is semistable, i.e., that E has good or semistable reduction at every finite place β of K. Recall that we can attach to E a compatible family of Galois representations {σλ} of the absolute Galois group of Q: these representations can be seen as those attached to the Weil restriction A of E to Q, which is an abelian surface with real multiplication by F := Q(√±d) (cf. [E]). Let us call U the set of primes dividing D. For primes not in U, it is clear that A is also semistable, so in particular for

* supported by BFM2003-06092
† supported by a MECD postdoctoral grant at the Centre de Recerca Matemàtica from Ministerio de Educación y Cultura
every prime λ of F dividing a prime ℓ not in U the residual representation $\overline{\sigma}_\lambda$ will be a representation “semistable outside U”, i.e., it will be semistable (in the sense of [Ri 97]) at ℓ and locally at every prime $q \neq \ell, q \notin U$. This is equivalent to say that its Serre’s weight will be either 2 or $\ell + 1$ and that the restriction to the inertia groups I_q will be unipotent, for every $q \neq \ell, q \notin U$ (cf. [Ri97]).

Imitating the argument of [Ri97], we want to show that in this situation, if the image of $\overline{\sigma}_\ell$ is (irreducible and) contained in the normalizer of a Cartan subgroup, then this Cartan subgroup must correspond to the image of the Galois group of K, i.e., the restriction to K of $\overline{\sigma}_\ell$ must be reducible. More precisely:

Theorem 1.1. Let E be a semistable \mathbb{Q}-curve over a quadratic field K as above. If $\ell \nmid 2dD, \lambda \mid \ell$, and $\overline{\sigma}_\lambda$ is irreducible with image contained in the normalizer of a Cartan subgroup of $\text{GL}(2, \overline{\mathbb{F}}_\ell)$, then the restriction of this residual representation to the Galois group of K is reducible.

Proof. For any number field X, let us denote by G_X its absolute Galois group. We know that if we take $\ell \notin U$ the residual representation $\overline{\sigma}_\lambda$ is semistable outside U. If this representation is irreducible and its image is contained in the normalizer N of a Cartan subgroup, then there is a quadratic field L such that the restriction of $\overline{\sigma}_\lambda$ to G_L is reducible and the quadratic character ψ corresponding to L is a quotient of $\overline{\sigma}_\lambda$ (cf. [Ri 97]).

Using the description of the restriction of $\overline{\sigma}_\lambda$ to the inertia group I_ℓ in terms of fundamental characters, and the fact that the restriction of $\overline{\sigma}_\lambda$ to the inertia groups I_q, for every $q \neq \ell, q \notin U$, is unipotent, we conclude as in [Ri 97] that the quadratic character ψ can only ramify at primes in U, and therefore that the quadratic field L is unramified outside U, the ramification set of K.

On the other hand, we know (by Cebotarev) that the restriction to G_K of $\overline{\sigma}_\lambda$ is isomorphic to $\overline{\sigma}_{E,\ell}$. Let us assume that $\overline{\sigma}_{E,\ell}$ is irreducible (*). Its image is contained in N, and since the restriction of $\overline{\sigma}_\lambda$ to G_L is reducible, it follows that the restriction of $\overline{\sigma}_{E,\ell}$ to $G_{L,K}$ is reducible. We are again in the case of “image contained in the normalizer of a Cartan subgroup” but now for a representation of G_K. Once again, the quadratic character ψ' corresponding to the extension $L \cdot K/K$ is a quotient of the residual representation $\overline{\sigma}_{E,\ell}$. Using the fact that the curve E is semistable we know that the restriction of this residual representation to all inertia subgroups at places relatively primes to ℓ give unipotent groups, and this implies as in [Ri97] that ψ' is unramified outside (places above) ℓ. But ψ' corresponds to the extension $L \cdot K/K$, and
L is unramified outside U, thus ψ' is also unramified outside (places above primes in) U. This two facts entrain that $\ell \in U$, which is contrary to our hypothesis.

This proves that the assumption (*) contradicts the hypothesis of the theorem, i.e., that the restriction to G_K of σ_λ is reducible, as we wanted. □

Keep the hypothesis of the theorem above, and assume furthermore that the field K is real. Then, the conclusion of the theorem together with a standard trick show that the image of σ_λ can not be (irreducible and) contained in the normalizer of a non-split Cartan subgroup: the reason is simply that the representation σ_λ is odd, thus the image of c, the complex conjugation, has eigenvalues 1 and -1. In odd residual characteristic, this gives an elements which is not contained in a non-split Cartan, but if we assume that K is real, we have c contained in the group G_K, and we obtain a contradiction because as a consequence of theorem 1.1 the restriction of σ_λ to G_K must be contained in the Cartan subgroup. This, combined with Ellenberg’s generalizations of the results of Mazur and Momose (cf. [E]), shows that the image has to be large except for very particular primes. In fact, we have the following:

Corollary 1.2. Let E be a semistable \mathbb{Q}-curve over a real quadratic field K of square-free degree d. Assume that E does not have potentially good reduction at all primes not dividing 6. Then, if D is the discriminant of K, for every $\ell \nmid dD$, $\ell > 13$ and $\lambda | \ell$, the image of the projective representation $P(\sigma_\lambda)$ is the full $\text{PGL}(2, \mathbb{F}_\ell)$.

2. **Q-curves of composite degree over quadratic fields**

Let E be a \mathbb{Q}-curve over a quadratic field K of square-free degree d. Let λ be a prime of K and let us consider the projective representation $P(\overline{\sigma}_\lambda)$ coming from E. We can characterize the image in a subgroup of $\text{PGL}_2(\mathbb{F}_l)$ with $\lambda | l$ of the projective representation $P(\overline{\sigma}_\lambda)$ by points of modular curves as follows (proposition 2.2 [E]):

1. $P(\overline{\sigma}_\lambda)$ lies in a Borel subgroup, then E is a point of $X_0(dl)^K(\mathbb{Q})$,

2. $P(\overline{\sigma}_\lambda)$ lies in the normalizer of a split Cartan subgroup then E is a point of $X^*_0(d;l)^K(\mathbb{Q})$.

3
3. \(P(\overline{\sigma}_\lambda) \) lies in the normalizer of a non-split Cartan subgroup, then \(E \) is a point of \(X_{0}^{ns}(d;l)K(\mathbb{Q}) \);

where \(X^K(\mathbb{Q}) \) is the subset of \(P \in X(K) \) such that \(P^\sigma = w_dP \) for \(\sigma \) a generator of \(\text{Gal}(K/\mathbb{Q}) \) where \(w_d \) is the Frickel or Atkin-Lehner involution.

We have the following results ([E], propositions 3.2, 3.4):

Proposition 2.1. Let \(E \) be a \(\mathbb{Q} \)-curve of square-free degree \(d \) over \(K \) a quadratic field. We have:

1. Suppose \(P(\overline{\sigma}_\lambda) \) is reducible for some \(l = 11 \) or \(l > 13 \) with \((p,d) = 1 \) where \(\lambda | l \). Then \(E \) has potentially good reduction at all primes of \(K \) of characteristic greater than 3.

2. Suppose \(P(\overline{\sigma}_\lambda) \) lies in the normalizer of a split Cartan subgroup of \(PGL_2(\mathbb{F}_l) \) where \(\lambda | l \) for \(l = 11 \) or \(l > 13 \) with \((l,d) = 1 \). Then \(E \) has good reduction at all primes of \(K \) not dividing 6.

After this result we need to study what happens when the image lies in the non-split Cartan situation. For this case, Ellenberg obtains for the situation of \(K \) an imaginary quadratic field, that there is a constant depending of the degree \(d \) and the quadratic imaginary field \(K \) such that if the image of \(P(\overline{\sigma}_\lambda) \) lies in a non-split Cartan and \(l > M_{d,K} \) then \(E \) has potentially good reduction at all primes of \(K \), see proposition 3.6 [E]. He centers in the twisted version for \(X^K \) to obtain this result. We obtain a similar result in a non-twisted situation for \(X^K \), and with \(K \) non necessarily imaginary.

We impose once for all that \(d \), the degree, is even. We denote \(d = 2\tilde{d} \). First, let us construct an abelian variety quotient of the Jacobian of \(X_{0}^{ns}(2\tilde{d};l) \) on which \(w_{2\tilde{d}} \) acts as 1 and having \(\mathbb{Q} \)-rang zero. Then using “standard” arguments, that we will reproduce here for reader’s convenience, we obtain our result on the non-split Cartan situation.

By the Chen-Edixhoven theorem, we have an isogeny between \(J_{0}^{ns}(2;l) \) and \(J_{0}(2l^2)/w_{l^2} \). Darmon and Merel [DM, prop.7.1] construct an optimal quotient \(A_f \) with \(\mathbb{Q} \)-rang zero. They construct \(A_f \) as the associated abelian variety to a form \(f \in S_2(\Gamma_0(2l^2)) \) with \(w_{l^2}f = f \) and \(w_{2}f = -f \).

Then, in this situation, we construct now a quotient morphism

\[
\pi_f : J_{0}(2\tilde{d}l^2) \to A'_f
\]
such that the actions of \(w_{2d} \) and \(w_{l2} \) on \(J_0(2d\tilde{l}^2) \) give both the identity on \(A'_f \) if \(\tilde{d} \neq 1 \). Moreover, we can see that \(A'_f \) is preserved by the whole group \(W \) of Atkin-Lehner involutions. We construct \(A'_f \) from \(f \in S_2(\Gamma_0(2l^2)) \) and we go to increase the level.

We denote by \(B_n \) the operator on modular forms of weight 2 that acts as:

\[
f|B_n(\tau) = f(n\tau) = n^{-1}f|_{A_n}, \text{ where } A_n = \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}
\]

from level \(M \) to level \(Mk \) with \(n \mid k \). We denote by

\[
B_n : J_0(M) \to J_0(Mk)
\]

the induced map on jacobians.

Lemma 2.2. With the above notation and supposing that \((\tilde{n}, k) = 1 \) and \(g \) is a modular form which is an eigenform for the Atkin-Lehner involution \(w_{\tilde{n}} \) in \(J_0(M) \), then \(g|_{B_n} \) is also an eigenform for the Atkin-Lehner involution \(w_{\tilde{n}} \) in \(J_0(Mk) \) with the same eigenvalue.

Proof. We only need to show that there exist \(w_{\tilde{n},M} \) and \(w_{\tilde{n},Mk} \), the Atkin-Lehner involution of \(\tilde{n} \) at level \(M \) and \(Mk \) respectively, such that:

\[
A_n w_{\tilde{n},Mk} = w_{\tilde{n},M} A_n
\]

which is easy to check. \(\Box \)

With the above lemma we can rewrite lemma 26 in [AL] as follows

Lemma 2.3 (Atkin-Lehner). Let \(g \) a form in \(\Gamma_0(M) \), eigenform for all the Atkin-Lehner involutions \(w_l \) at this level. Let \(q \) be a prime. Then the form

\[
g|_{B_q^{\alpha}} \pm q^{(\delta-2\alpha)}g|_{B_1=Id}
\]

is a form in \(\Gamma_0(Mq^\alpha) \) which is an eigenform for all Atkin-Lehner involutions at level \(Mq^\alpha \) where \(\delta \) is defined by \(q^{1-\delta}||M \) and \(q^\alpha||Mq^\alpha \). Moreover, let us impose that \(\delta \neq 2\alpha \). Then the eigenvalue of this form for \(w_{q^\alpha(Mq^\alpha)} \) is \(\pm \) the eigenvalue of \(w_{q^\alpha(M)} \) on \(g \).

Remark 2.4 (AL). In the case \(\delta = 2\alpha \) let us take the form \(g|_{B_q^{2\alpha}} \). Then it satisfies the following: it is an eigenform for the Atkin-Lehner involutions at level \(Mq^\alpha \) with eigenvalue for the Atkin-Lehner involution at \(q \) equal to that of the Atkin-Lehner involution at \(q \) on \(g \) (\(g \) of level \(M \)).
Let us remark that if the condition $\delta \neq 2\alpha$ is satisfied we can choose a form in level Mq^α with eigenvalue of the Atkin-Lehner involution at q as one wishes: 1 or -1. This condition is always satisfied if $(M, q) = 1$, situation that we will use in this article. With this remarks the following lemma is clear by induction:

Lemma 2.5. Let g be a modular form of level M which is an eigenvector for all the Atkin-Lehner involutions at level M. Then we can construct by the above lemma a modular form f of level Mk $(k \in \mathbb{N})$ which is an eigenvector for all the Atkin-Lehner involutions at level Mk, and moreover the eigenvalue at the primes $q|M$ with $(q, k) = 1$ is the same that the one for the Atkin-involution of this prime at g at level M, and we can choose (1 or -1) the eigenvalue for the Atkin-Lehner involution at the primes q with $(q, k) \neq 1$ if this prime satisfies the condition $\delta \neq 2\alpha$ of the above lemma.

Let us write a result in the form that will be useful for our exposition, noting here that the even level condition can be removed.

Corollary 2.6. Let us write $\tilde{d} = p_1^{\alpha_1} \ldots p_r^{\alpha_r}$ with $(\tilde{d}, 2p^2) = 1$. We have a map

$$I_{\chi_{p_1}, \ldots, \chi_{p_r}} : J_0(2p^2) \to J_0(2\tilde{d}p^2)$$

whose image is stable under the action of W, and we can choose the action of $w_{2\tilde{d}}$ on the quotient as \pm the action of w_2 for an initial form $g \in S_2(\Gamma_0(2p^2))$ eigenform for the Atkin-Lehner involutions at level $2p^2$.

Proof. From lemma 27 in [AL], we have a base for the modular forms which are eigenforms for the Atkin-Lehner involutions. Applying the lemma of Atkin-Lehner above we have the result for $\tilde{d} = p_1^{\alpha_1}$, we have to consider

$$I_{\chi_{p_1}} = |B_{p_1}^{\alpha_1} + \chi(p_1)p_1^{-\alpha_1}|_{B_{p_1} = Id},$$

where we can choose $\chi(p_1)$ as 1 or -1 depending on how we want the Atkin-Lehner involution at the prime p_1 to act on the quotient. Inductively we obtain the result. \qed

Applying the above corollary with \tilde{d} square-free ($\alpha_i = 1$) in our situation ($\tilde{d} \neq 1$) and choosing $w_{2\tilde{d}} = 1$, we take

$$A_f' := I_{\chi_{p_1}, \ldots, \chi_{p_r}}(A_f),$$

which is by construction a subvariety of $J_0(2\tilde{d}l^2)$ isogenous to A_f which is stable under W (at level $2\tilde{d}l^2$) on which $w_{2\tilde{d}}$ and w_{l^2} acts as identity. In particular the \mathbb{Q}-rank of A_f' is zero (recall that we started with an A_f of \mathbb{Q}-rank
By the Chen-Edixhoven isomorphism, we obtain a quotient map
\[\pi'_f : J_0^{ns}(2\tilde{d}; l) \to A'_f. \]
\(\pi'_f \) is compatible with the Hecke operators \(T_n \) with \((n, 2\tilde{d}) = 1 \) (see for example lemma 17 [AL]) and moreover \(\pi'_f \circ w_{2\tilde{d}} = \pi'_f \). Let us recall that we are interested in points on \(X_0^{ns}(2\tilde{d}; l)^K(\mathbb{Q}) \) (we want to study the non-split Cartan situation). We have the following commutative diagram:

\[
\begin{array}{ccc}
J_0^{ns}(2\tilde{d}; l) & \rightarrow & A'_f \\
\downarrow i & & \downarrow id \\
J := J_0^{ns}(2\tilde{d}; l)^K & \rightarrow & A'_f \\
\end{array}
\]

where \(i \) is an isomorphism such that \(i^\sigma = w_{2\tilde{d}} \circ i \) with \(\sigma \) the non-trivial element of \(Gal(K/\mathbb{Q}) \). Observe that \(\psi_f := \pi'_f \circ i^{-1} : J \to A'_f \) is defined over \(\mathbb{Q} \) because,

\[
\psi_f^\sigma = (\pi'_f)^\sigma \circ (i^{-1})^\sigma = \pi'_f \circ w_{2\tilde{d}} \circ i^{-1} = \pi'_f \circ i^{-1} = \psi_f.
\]

Let \(R_0 \) be the ring of integers of \(K(\zeta_l + \zeta_l^{-1}) \) and \(R = R_0[1/2\tilde{d}] \), then \(X_0^{ns}(2\tilde{d}; l) \) has a smooth model over \(R \) and the cusp \(\infty \) of \(X_0^{ns}(2\tilde{d}; l) \) is defined over \(R \) [DM]. We define

\[
h : X_0^{ns}(2\tilde{d}; l)/R \to J_0^{ns}(2\tilde{d}; l)/R
\]

by \(h(P) = [P] - [\infty] \). Then it follows by lemma 3.8 [E]

Lemma 2.7. Let \(\beta \) be a prime of \(R \). Then the map,

\[
\pi'_f \circ h : X_0^{ns}(2\tilde{d}; l)/R \to A'_f/R
\]

is a formal immersion at the point \(\infty \) of \(X_0^{ns}(2\tilde{d}; l)(\mathbb{F}_\beta) \).

We can prove a result for the non-split Cartan situation with a constant independent of the quadratic field.
Proposition 2.8. Let K be a quadratic field, and E/K be a Q-curve of square-free degree $d = 2\tilde{d}$, with $\tilde{d} > 1$. Suppose that the image of $P(\sigma)$ lies in the normalizer of a non-split Cartan subgroup of $PGL_2(\mathbb{F}_l)$ with $\lambda | l$ for $l > 13$ with $(2d,l) = 1$. Then E has potentially good reduction at all primes of K.

Proof. We can follow closely the proof of prop.3.6 in [E], let us reproduce it here for reader’s convenience. Take β a prime of K where E has potentially multiplicative reduction, if $\beta | l$ then the image of the decomposition group G_β under $P(\sigma)$ lies in a Borel subgroup. By hypothesis this image lies in the normalizer of a non-split Cartan subgroup. We conclude that the size of this image has order at most 2, which means that K_β contains $\mathbb{Q}(\zeta_l + \zeta_l^{-1})$, which is impossible once $l \geq 7$.

Now let us suppose that E has potentially multiplicative reduction over β with $\beta \nmid l$, denote by l' the prime of \mathbb{Q} such that $\beta | l'$. It corresponds to a cusp on $X_0^{ns}(2\tilde{d}; l)$ where we will take reduction modulo β. The cusps of $X_0^{ns}(2\tilde{d}; l)$ have minimal field of definition $\mathbb{Q}(\zeta_l + \zeta_l^{-1})$ [DM, §5], and K is linearly disjoint from $\mathbb{Q}(\zeta_l + \zeta_l^{-1})$; it follows that the cusps of $X_0^{ns}(2\tilde{d}; l)$ which lie over $\infty \in X_0(2d)$ form a single orbit under G_K. If $\tilde{\beta}$ is a prime of $L = K(\zeta_l + \zeta_l^{-1})$ over β, then the point $P \in X_0^{ns}(2\tilde{d}; l)(K)$ parametrizing E reduces mod β to some cusp c. By applying Atkin-Lehner involutions at the primes dividing $2\tilde{d}$, we can ensure that P reduces to a cusp which lies over ∞ in $X_0(2\tilde{d})$. By the transitivity of the Galois action, we can choose $\tilde{\beta}$ so that P actually reduces to the cusp $\infty \bmod \tilde{\beta}$. Using the condition that a K-point of $X_0^{ns}(2\tilde{d}; l)$ reduces to ∞, we have then that the residue field \mathcal{O}_K/β contains $\zeta_l + \zeta_l^{-1}$, and this implies that $(l')^4 \equiv 1 \bmod l$, in particular $l' \neq 2,3$ when $l \geq 7$.

We have constructed a form f and an abelian variety A_f isogenous to the one associated to f with \mathbb{Q}-rank zero and $w_{2\tilde{d}}$ acting as 1 on it, and we have a formal immersion $\phi = \pi_f \circ h$ at ∞

\[X_0^{ns}(d; l) K/R \rightarrow A_f'/R. \]

Let us consider $y = P$ our point from the Q-curve and $x = \infty$ at the curve $X = X_0^{ns}(2\tilde{d}; l)/R_\beta$, we know that they reduce at β to the same cusp if P has multiplicative reduction. Let us consider then $\phi(P)$ the point in $A_f'(L)$ with $L = K(\zeta_l + \zeta_l^{-1})$. Let n be an integer which kills the subgroup of $J_0^{ns}(2\tilde{d}; l)$ generated by cusps, it exists by Drinfeld-Manin, then $nh(P) \in J_0^{ns}(2\tilde{d}; l)$ and let $\tau \in \text{Gal}(L/\mathbb{Q})$ and not fixing K, then $P^\tau = w_{2\tilde{d}}P$ and we obtain that
$n\phi(P)^{\tau} = n\phi(P)$ then lies in $A'_f(\mathbb{Q})$ which is a finite group and then torsion, concluding that $\phi(P)$ is torsion (this is getting a standard argument [DM, lemma 8.3]).

Since $l' > 3$ the absolute ramification index of R_β at l' is at most 2. Then it follows from known properties of integer models (see for example [E, prop.3.1]) that x and y reduce to distinct point of X at β, in contradiction with our hypothesis on E.

Putting together propositions 2.1 and 2.8, we obtain:

Corollary 2.9. Let E be a \mathbb{Q}-curve over a quadratic field K of square-free composite degree $d = 2\tilde{d}$, with $\tilde{d} > 1$. Assume that E does not have potentially good reduction at all primes not dividing 6. Then, for every $\ell \nmid 2\tilde{d}$, $\ell > 13$ and $\lambda | \ell$, the image of the projective representation $P(\bar{\sigma}_\lambda)$ is the full $\text{PGL}(2, \mathbb{F}_\ell)$.

To conclude, observe that if we take a \mathbb{Q}-curve over a quadratic field whose degree d is odd and composite (and square-free), there are more cases where the above result still holds: for example if $3 \mid d$ the result holds because all the required results from [DM] (in particular, the existence of a non-trivial Winding Quotient in $S_2(3p^2)$) are also proved in this case. Moreover, since the only property of the small primes $q = 2$ or 3 required for all the results we need from [DM] to hold is the fact that the modular curve $X_0(q)$ has genus 0, we can apply them to any of $q = 2, 3, 5, 7, 13$, and so we conclude that the above result applies whenever d is composite (and square-free) and divisible by one such prime q.

3 Bibliography

[AL] Atkin, A.O.L., Lehner, J., *Hecke operators on $\Gamma_0(m)$*, Math. Ann., 185 (1970), 134-160.

[DM] Darmon, H., Merel, L., *Winding quotients and some variants of Fermat’s last theorem*, J. Reine Angew. Math., 490 (1997) 81-100.
[E] Ellenberg, J., *Galois representations attached to Q-curves and the generalized Fermat equation* $A^4 + B^2 = C^p$, preprint.

[ES] Ellenberg, J., Skinner, C., *On the modularity of Q-curves*, Duke Math. J., 109 (2001), 97-122.

[Ri97] Ribet, K., *Images of semistable Galois representations*, Pacific J. Math. 181 (1997), 277-297.

Francesc Bars Cortina, Depart. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra. E-mail: francesc@mat.uab.es

Luis Dieulefait, Depart. d’Algebra i Geometria, Facultat Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona. E-mail: luisd@mat.ub.es