Abstract—Isomorphic (sparse) collective communication is a form of collective communication in which all involved processes communicate in small, identically structured neighborhoods of other processes. Isomorphic neighborhoods are defined via an embedding of the processes in a regularly structured topology, e.g., d-dimensional torus, which may correspond to the physical communication network of the underlying system. Isomorphic collective communication is useful for implementing stencil and other regular, sparse distributed computations, where the assumption that all processes behave (almost) symmetrically is justified.

In this paper, we show how efficient message-combining communication schedules for isomorphic, sparse collective communication can easily and efficiently be computed by purely local computations. We give schemes for isomorphic all-to-all and allgather communication that reduce the number of communication rounds and thereby the communication latency from s to at most Nd, for neighborhoods consisting of s processes with the (small) factor N depending on the structure of the neighborhood and the capabilities of the communication system. Using these schedules, we give zero-copy implementations of the isomorphic collectives using MPI and its derived datatypes to eliminate explicit, process-local copy operations. By benchmarking the collective communication algorithms against straightforward implementations and against the corresponding MPI neighborhood collectives, we document significant latency improvements of our implementations for block sizes of up to a few kilobytes. We discuss further optimizations for computing even better schedules, some of which have been implemented and benchmarked.

The proposed message-combining schedules are difficult to incorporate as implementations for the MPI neighborhood collectives, since MPI processes lack the necessary information about the global structure of the communication pattern. If this information is externally asserted, our algorithms can be used to improve the performance of the MPI neighborhood collectives for isomorphic communication patterns for latency-sensitive problem sizes.

1. Introduction

Structured, sparse communication patterns appear frequently in parallel numerical applications, notably stencil-patterns in two and higher dimensions [1], [2], [3]. With MPI 3.0 and later versions of the Message-Passing Interface [4], sparse communication patterns can be expressed as so-called neighborhood collective operations. The specific mechanism of MPI relies on virtual process topologies to define communication neighborhoods for the ensuing neighborhood collective operations. In many respects this is undesirable. The neighborhood that is implicit with Cartesian communicators is the set of immediate distance one neighbors along the dimensions, thus collective communication in a standard, 2-dimensional, 9-point (and 3-dimensional, 27-point, etc.) stencil pattern cannot be expressed with Cartesian communicators. The general, distributed graph topology interface allows specification of arbitrary, directed communication graphs, and can thus express any desired stencil communication pattern. However, information about the global, highly regular structure of the communication graph is not conveyed to the MPI library, which makes many types of beneficial optimizations difficult and/or computationally hard.

We address these problems, and examine a restricted form of MPI-like, sparse, collective communication which we term isomorphic, sparse collective communication [5]. Isomorphic, sparse collective communication means that all processes communicate in structurally similar patterns and that this property is asserted to the processes. Concretely, the MPI processes are assumed to be placed in some regular (virtual) topology, like for instance a d-dimensional torus. A sparse process neighborhood is described by a list of relative, d-dimensional vector offsets. In this situation, process neighborhoods are isomorphic if the offset lists are identical (same vector offsets in the same order) over all processes. The proposed interfaces are persistent both in the sense that the same sparse, isomorphic neighborhood can be used in different communication operations, and that operations with the same buffer and datatype parameters can be performed several times. The persistent interfaces provide handles to precompute communication schedules such that the costs of the schedule computation can be amortized.
over several, actual collective communication operations. For the isomorphic collective operations discussed here, the schedule computation is actually very fast, but the setting up of the MPI derived datatypes (that are used to make data blocks move between intermediate and final result buffers) consumes enough time to make persistence worthwhile.

The main contribution of this paper is to show that efficient, deadlock-free, message-combining communication schedules for isomorphic all-to-all and allgather can be easily computed, given the isomorphic assertion that all processes use the exact same, relative neighborhood. The resulting message-combining schedules correspond to communication optimizations typically made for 9- and 27-point stencils in two and three dimensions, respectively, where messages to corner processes piggyback on messages sent along the principal dimensions. However, our algorithms are general, and work for any isomorphic neighborhood, such that also asymmetric patterns can be catered to. For sparse neighborhoods consisting of s neighbors, message-combining reduces the number of communication rounds from s send and receive rounds of a straightforward, linear algorithm to Nd, where the constant N depends on the structure of the neighborhood and on assumptions about the underlying communication system. For instance, the number of rounds in a 27-point stencil pattern in a 3-dimensional mesh or torus is reduced from 26 to only 6, under the assumption of a one-ported communication system. This is achieved by combining messages to different neighbors and sending larger, combined messages along the torus dimensions only. Since some messages are thus sent via several intermediate processes, there is often a tradeoff between number of rounds and total communication volume, as is the case for dense all-to-all communication [6]. Message-combining is implemented using the MPI derived datatype mechanism to specify for each communication round which messages have to be sent and received and from which communication buffers. Allowing space for an intermediate communication buffer, a per-message double-buffering scheme can be implemented in this manner, thereby completely eliminating explicit message copying or packing/unpacking and leading to our resulting zero-copy implementations. We have used similar techniques previously in [7].

Our first all-to-all and allgather algorithms assume a one-ported torus communication network, and are round- and volume-optimal under this assumption. We have implemented these algorithms, both in regular and irregular versions, and present an extensive benchmark evaluation with comparisons to both the current MPI 3.1 neighborhood collective implementations and the straightforward, s-communication round implementations of the isomorphic interfaces. For small message sizes up to a few kilobytes, the experimental results show the expected reduction in communication time. Furthermore, for larger neighborhoods in three and higher dimensions, we observe very substantial improvements.

For our second set of algorithms we relieve the restriction of only immediate torus neighbor communication, and allow direct communication along the torus dimensions. For neighborhoods with long-distance neighbors, this can lead to significant reductions in the number of communication rounds, which now depends only on the number of different coordinate values in each dimension, and not on the magnitude of the coordinates. A second set of experiments illustrates the effects of the fewer communication rounds. Further relieving network assumptions leads to interesting optimization problems for minimizing the number of communication rounds or maximizing the number of ports that can be used per communication round. We discuss some of these problems.

There is a large amount of work on optimizations for stencil computations, see [8], [9], [10], [11], [12] for some that has influenced this work, many of which also discuss communication optimizations [13]. Stencil computations have been used to analyze (implications of) new MPI one-sided communication support by Zhu et al. [14]. General optimization techniques for the MPI neighborhood collectives were proposed by Hoefler and Schneider [15], who do not exploit external assertions about the overall structure of neighborhoods to simplify, e.g., scheduling by coloring. More general, dynamic neighborhood communication on top of MPI is discussed by Ovcharenko et al. [16]. Souravlas and Roumeliotis [17] also considered message-combining optimizations but in a more limited context than done here.

2. Isomorphic, Sparse Collective Communication

We now describe more formally what is meant by isomorphic, sparse collective communication. The notation introduced here will be used for the remainder of the paper. We show the concrete interfaces as implemented in our library.

An isomorphic, sparse collective communication pattern is defined relative to some given, structured organization of the processes. Let p be the number of processes, and assume that they are organized in a d-dimensional torus with dimension sizes $p_0, p_1, \ldots, p_{d-1}$ and $\Pi_{i=0}^{d-1} p_i = p$. Each ranked process $R.0 \leq R < p$ is identified by a coordinate $(r_0, r_1, \ldots, r_{d-1})$ with $0 \leq r_i < p_i$ for $i = 0, \ldots, d-1$. A (sparse) s-neighborhood of a process is a collection of s processes to which the process shall send data. The collection is given as a sequence of s relative-coordinate vectors $C^0, C^1, \ldots, C^{s-1}$. Each C^i has the form $(c_0^i, c_1^i, \ldots, c_{d-1}^i)$ for arbitrary integer offsets c_j^i (positive or negative). A set of identical s-neighborhoods for a set of processes is said to be isomorphic. An isomorphic, sparse collective operation is a collective operation over p processes with isomorphic neighborhoods. Note that an s-neighborhood is allowed to have repetitions of relative coordinates, and that a process can be a neighbor of itself, for instance if relative coordinate $(0, 0, \ldots, 0)$ is in the s-neighborhood. Also note that different coordinates may denote the same neighbor, which can easily happen if p is small.

We define torus vector addition \oplus for vectors R and C in the given torus by $R \oplus C = ((r_0 + c_0) \mod p_0, (r_1 + c_1) \mod p_1, \ldots, (r_{d-1} + c_{d-1}) \mod p_{d-1})$. The main contribution of this paper is to show that...
c_l mod p_1, . . . , (r_{d-1} + c_{d-1}) mod p_{d-1}). Each process \(R = (r_0, r_1, \ldots, r_{d-1}) \) with \(s \)-neighborhood \(C^0, C^1, \ldots, C^{s-1} \) shall send data to the \(s \) target processes \(R \oplus C^i \) for \(i = 0, \ldots, s - 1 \). Since neighborhoods are isomorphic, it follows that the process will need to receive data from \(s \) source processes \(R \ominus C^i \).

The concrete, isomorphic, sparse collective operations we consider here are of the all-to-all and allgatherv type. In an isomorphic all-to-all communication, each process sends an individual, possibly different block of data to each of its target neighbors, and receives a block of data from each of its source neighbors. In an isomorphic allgatherv communication, each process sends the same block of data to each of its target neighbors, and receives a block of data from each of its corresponding sources.

For a library on top of MPI, the corresponding interface functions are as follows. First, the MPI processes need to be organized in a \(d \)-dimensional Cartesian mesh or torus with a suitable \(d \)-dimensional Cartesian communicator (cartcomm) \(\text{[4, Chapter 7]} \). The isomorphic neighborhood set-up function is called on this communicator, and takes a list of neighbor coordinates given as a one-dimensional, flattened array of relative coordinates, and attaches this to a new communicator isocomm. The set-up operation is collective, and a strict requirement is that the calling processes all give the exact same list of relative neighbor coordinates. The function prototype is shown in Listing 1. As an example, assume we want to perform isomorphic all-to-all to the processes in the positive octant of a three-dimensional torus. The relative coordinates are \((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\) (and \((0,0,0)\) if the process has a message to itself). The corresponding call would be

```c
int octant[] = {1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1,1,1,1};
iso_neighborhood_create(cartcomm, 7, octant, &isocomm);
```

Any permutation of the 7 neighbors would specify the same neighborhood (provided that all calling processes give the neighbors in the same order; if not, the outcome of the call and of ensuing communication operations is undefined and either may deadlock), but the order is important and determines the order of the message blocks in the send and receive buffers of the isomorphic communication operations.

The collective interface consists in two parts, namely an init call where a communication schedule can be pre-computed, and an ensuing communication start call. This separation allows the reuse of a communication schedule computed in the init call over a number of collective communication operations with the same buffer and datatype parameters. The idea is similar to the persistent point-to-
point communication operations of MPI [4] Section 3.9].

The interface functions that we have implemented are shown in Listing 2 and have the usual MPI flavor. The data blocks for the target neighbors are stored consecutively at the sendbuf address in the order determined by the order of the neighbors; similarly, blocks from the source neighbors will be stored at the recvbuf address in the same order.

In the regular variants of the isomorphic collectives, all blocks have the same size and structure as determined by the count and MPI datatype arguments. Irregular all-to-all versions, i.e., Iso_neighbor_alltoallw_init and Iso_neighbor_alltoally_init, are defined analogously, and are shown in Listing 3. The requirement for these irregular versions is that all processes specify exactly the same block sizes via count and datatype arguments, and that send and receive block sizes match pairwise. Note that the isomorphic requirement in neither regular nor irregular case means that processes have to use the same datatype arguments; also the datatype for the receive and the send buffers may be different. The regular variants of the collectives only require that blocks all have the same size, whereas the irregular variants require blocksizes to be pairwise equal.

3. Message-Combining Algorithms

We now show how the isomorphic neighborhood assertion makes it easy to precompute good, message-combining communication schedules. First note that the simple scheme in Listing 4 is correct (deadlock free). Each process looks up its rank as a d-dimensional vector R in the underlying torus, and uses the coordinate offsets to compute source and target ranks as explained in the previous section. In the ith of s communication rounds, it sends and receives blocks directly to and from the ith source and target processes.

Although the algorithm is trivial, it is worth pointing out that deadlock freedom follows from the assumption that neighborhoods are isomorphic. In round i when process R is sending block i to target neighbor $R \oplus C_i$, this neighbor expects to receive a block from its ith source process, which is indeed $(R \oplus C_i) \ominus C_i = R$. For neighborhoods defined by unrestricted communication graphs as it is the case with MPI distributed graph communicators, or if the processes had given their list of neighbors in different orders, this would not be the case, and the scheme can deadlock.

The s-round algorithm assumes that messages can be sent directly from a process to its target neighbors, and performs one send and receive operation per communication round. It can trivially be extended to exploit k-ported communication systems also for $k > 1$ by sending and receiving instead k blocks per round. Our first goal is to provide message-combining schemes with fewer communication rounds, and to precompute schedules that for each process tell which (combined) message blocks to send and receive in each communication round. Our schedules will have the property that all processes follow the same steps, and can be computed locally for each process from its list of neighbors.

For the algorithm design, we first assume that the underlying communication network is a bidirectional (send-receive), one-ported, d-dimensional torus, such that communication is allowed only along the d dimensions, and only between immediate neighbors. Only one dimension can be actively communicating at any one instant, but a process can simultaneously send and receive a message in the given dimension. We stress that the torus assumption is made to help the algorithm design, and is not necessarily an assumption about the underlying hardware. The dimensions are processed in some order, and in each iteration all blocks that have to go along one dimension are sent together as one message. This reduces the number of communication operations (and start-up latencies) from s to $O(d)$. The schedules for all-to-all and allgather communication operations are explained and analyzed in more detail below. The key observation is that schedules can be developed from the processes point of view by analyzing the s-neighborhood of relative coordinates. As in Listing 4 processes will follow the same schedule from which deadlock freedom and correctness follow. In each communication round, all processes will have the same (relative) blocks to forward to other processes. Blocks are always routed along shortest paths in the torus network, but may pass through processes that are not in the neighborhood.

3.1. All-to-all Schedule

Define the norm of vector $C = (c_0, c_1, \ldots, c_{d-1})$ by $\|C\| = \sum_{j=0}^{d-1} |c_j|$. This norm counts how many communication steps are needed in the torus to route a block from (any) process R to its target neighbor $R \oplus C$. The block can be (minimally) routed from R to $R \oplus C$ by sending it successively c_j (positive or negative) hops along dimension j for $j = 0, \ldots, d - 1$. All s blocks from process R to its relative neighbors C_i are routed as follows in d rounds. In round j each process will be handling blocks to be passed along dimension j. To route all blocks along dimension j, $\max_{i=0}^{s-1}(\max(c_j^i, 0) + \max(-c_j^i, 0))$ communication steps are necessary. In step h, for each coordinate $|c_j^i| > h$, an old block is sent and a new one received, with all such blocks combined into a single message. By the end of a communication round, all blocks of a process will have

1. There is so far no persistent collectives counterpart in MPI. This is being considered by the MPI Forum.

Listing 4. Straightforward, isomorphic all-to-all communication in s communication rounds. The implementation is deadlock free, since all processes have specified the neighborhood by identical lists of relative coordinates.

```
// R: process rank as d-dimensional vector
// C[i]: i-th offset vector from isocomm
// rank(C): linear MPI rank of vector C
for (i=0; i<s; i++)
  MPI_Sendrecv(sendbuf[i],...,rank(R+C[i]),
               recvbuf[i],...,rank(R-C[i]),
               isocomm);
```
Latency can be easily computed and used to estimate the cost of the for fully connected, bidirectional networks of Listing 4, if combining schedule can be faster than the direct schedule for a given (isomorphic) V process.

The communication steps are required, which is exactly the number of steps performed by the algorithm. Since communication is only done between direct torus neighbors, the shortest path for each block is $\left\|c_i^j\right\|$ hops, such that the total number of blocks sent per process (communication volume) is $V = \sum_{i=0}^{s-1} \left\|c_i^i\right\|$. Also this is achieved by the algorithm. For a given (isomorphic) s-neighborhood, both D and V can be easily computed and used to estimate the cost of the all-to-all communication. In a simple, linear cost model with latency α and cost per unit β, this would be $D\alpha + \beta V m$ for blocks of m units. In this cost model, the message-combining schedule can be faster than the direct schedule for fully connected, bidirectional networks of Listing 4 if $D\alpha + \beta V m < s(\alpha + \beta m)$, that is $m < \frac{s - D}{\beta V} \leq s$ for $s < V$ and $D < s$. We have argued for the following statement.

Proposition 1. In d-dimensional, 1-ported, bidirectional tori, isomorphic all-to-all communication in s-neighborhoods with blocks of size m can be performed round- and volume-optimal in D communication rounds and a total communication volume $V m$. A corresponding schedule can be computed in $O(sD)$ operations.

The schedule computation is described in detail in Section 3.2 from which the stated bound follows. If coordinates of all s neighbors are bounded (each $c_i^j = 0, 1, 2, 3, \ldots, k$ for some small constant k), then $D \leq k d$, and the number of communication rounds will be small.

3.2. Allgather Schedule

We also use dimension-wise routing for the isomorphic allgather operation. The observation here is that for all relative neighbors C_i^j that share a common prefix, i.e., have the same first j coordinates for some $j < d$, the block has to be routed only once to that prefix (recall that the allgather operation communicates the same block to all target neighbors). We construct a prefix-trie as illustrated in Figure 1 in order to ensure that prefixes get as long as possible, we assume that the order in which coordinates are visited is in decreasing number of neighbors having the same coordinate value. Starting from dimension 0 there is an outgoing edge to dimension 1 for each different coordinate at index 0 in the s-neighborhood. From a node at dimension j with prefix P_j (corresponding to the path from the root of the trie), representing a block that has been received at that point from process $R \oplus P_j$, there are outgoing edges to dimension $j + 1$ for each different coordinate at index j of the relative neighbors C_i^j sharing prefix P_j. The leaf nodes of the trie represent the blocks that will have been received after the d rounds. The prefixes corresponding to the nodes in the trie can be found by sorting the s neighbor vectors lexicographically. When routing in round j, the number of nodes at level j is the number of different blocks that have to be sent in that round, and the edges determine the number of hops that each of these blocks have to be sent. As in the all-to-all schedule, in each round j, $\max_{i=0}^{s-1}(\max(c_i^j, 0) + \max(-c_i^j, 0))$ communication steps are necessary, but the communication volume is smaller. The number of different blocks W received per process throughout the algorithm is the sum of all weighted path lengths in the trie from the root to the leaves. Each coordinate value associated with a trie edge determines the number of hops a certain block is sent in some round. Note that $W \leq V$, so for each fixed s-neighborhood, allgather is potentially less costly than all-to-all. Lexicographic sorting can be done by bucket sort in $O(sD)$ operations. We have argued informally for the following statement.

Proposition 2. In d-dimensional, 1-ported, bidirectional tori, isomorphic allgather communication in s-neighborhoods with blocks of size m can be performed round- and volume-optimally in D communication rounds and a total communication volume $W m$. A schedule can be computed in $O(sD)$ operations.

By the same argument as for all-to-all, D communication rounds are necessary; there is some neighbor with jth coordinate $\max(c_i^j, 0)$ and some with $\max(-c_i^j, 0)$, and since communication is one-ported, this many steps are required for each of the j rounds.

3.3. Zero-Copy Implementations

So far we did not describe how the blocks to send and receive are combined in the steps of the communication rounds. We now present the full schedule computation for the all-to-all operation. In each of the D communication steps (see Proposition 1), at least one new block is received and one block one sent. The initial blocks are present in the send buffer given in the $Iso_{neighbor}_{alltoall}$ call (which must not be changed), and eventually all source blocks have to be received into the given receive buffer. Over the communication rounds, the block to the ith neighbor $R \oplus C_i^j$ will traverse $\left\|c_i^i\right\|$ hops. We will let the block alternate between intermediate and receive buffers of the processes that it traverses, such that it ends up in the ith position of the receive buffer at process $R \oplus C_i^j$ in the last round.

![Figure 1. A prefix trie for some s-neighborhood. Weights on edges from dimension level j to dimension level $j + 1$ correspond to the jth coordinate of some neighbor in the s-neighborhood. Each node at level j represents the neighbors that share a common prefix of $j - 1$ coordinates.](image-url)
In each communication step, some blocks are sent from the intermediate buffer and received into the receive buffer, and other blocks are sent from the receive buffer and received into the intermediate buffer. A block will end up in the receive buffer if we receive it into the receive buffer when there are an odd number of hops is remaining. In each step of the schedule, all blocks to be sent in that step are combined into one message; likewise for the blocks received. Instead of doing this explicitly by copying into yet another intermediate buffer, two MPI derived datatypes are constructed, one describing the blocks to be received (whether into receive or intermediate buffer) and one describing the blocks to be sent. These MPI datatypes consist of |k| parts corresponding to the |k| blocks sent and received in that step. Since blocks are located in one of three different buffers (send, receive and intermediate), an MPI structured type is needed and constructed with MPI_Type_create_struct. With these derived datatypes, the MPI send and receive operations directly access the blocks from the corresponding buffers without any need for explicit packing and unpacking from contiguous communication buffers. The same kind of block-by-block double buffering with derived datatypes was used by Träff et al. [7]. This is our final, so-called zero-copy implementation: all data movement operations between buffers are done implicitly by MPI communication operations using the MPI derived datatypes constructed by the schedule without any process-local, explicit copying of blocks to be sent or received. The construction of the alternating buffer schedule is shown as Algorithm 1. The schedule is precomputed at the Iso_neighbor_alltoall_init call, so that data type creation can be amortized over the ensuing Iso_Start calls.

4. Experimental Evaluation, Part One

In order to assess the potential gains of zero-copy message-combining, we compare our isomorphic collective implementations to the MPI neighborhood collectives that express the same communication patterns, namely MPIǸeighbor_alltoall, MPI Neighbor_allgather, and MPI Neighbor_alltoallw.

For our basic comparisons, we use generalizations of the application-relevant, two-dimensional 9-point stencil pattern, so-called Moore neighborhood [18]. A d-dimensional, radius r Moore neighborhood consists of all neighbors \(C^d \) whose largest absolute value coordinate \(c^d_j \) is at most r. Moore neighborhoods have large numbers of neighbors, namely \(s = (2r + 1)^d - 1 \) (excluding the process itself), which can reduce the number of communication rounds from \(s \) down to \(D = 2rd \) for the torus-based message-combining algorithms. Initial experiments were conducted on a small 36 node cluster. We expect the performance to depend mostly on the neighborhood, and less on the number of processes. To corroborate, we repeated

name	hardware	MPI libraries
Jupiter	36 Dual Opteron 6134 @ 2.3 GHz	NECMPI 1.3.1
VSC-3	2000 Dual Xeon E5-2630V2 @ 2.6 GHz	MVAPICH 2.2.2b
ARCHER	4920 Dual Xeon E5-2697V2 @ 2.7 GHz	Cray MPICH 7.2.6
	Cray Dragonfly	

2. See http://mathworld.wolfram.com/MooreNeighborhood.html last visited on April 8, 2016.
the experiments on 70 and 500 nodes of two larger systems using different MPI libraries. The system configurations are summarized in Table 1.

In each experiment we measure the run-time of either all-to-all or allgathershared implementations over different, small block sizes. We perform 100 repetitions of each measurement and synchronize MPI processes before each measurement. We compute the run-time by taking the maximum local run-time across all processes in the collective operation. Each experiment is repeated 10 times to account for run-time variations across individual mpirun’s. Processes are always pinned to specific cores, and the CPU frequency is set as high as possible. We remove outliers with Tukey’s method (using a bound of three times the inter-quartile range), and we compute the median run-time of the remaining measurements. Results are shown as bar plots of the median of the previously obtained medians over the 10 mpirun’s, along with their minimum and maximum values to visualize possible run-time variations.

Our first set of experiments compares our message-combining all-to-all algorithms to the MPI_Neighbor_alltoalllcollective on a series of Moore neighborhoods. This is a regular exchange operation, and all blocks have the same size. The measured run-times are shown for different block sizes. Neighborhoods for the MPI collectives have to be set up in three of the two distributed graph constructors MPI_Dist_graph_create or MPI_Dist_graph_create_adjacent, which can both be rather costly. In Table 2 we compare the set-up times for the full Moore neighborhoods used in the experiments for dimension \(d = 2, 3, 4, 5 \) and radius \(r = 1, 2, 3 \). As expected, the MPI_Dist_graph_create constructor is significantly more expensive than the more specific MPI_Dist_graph_create_adjacent, with an unexplained drop in the MPI set-up times when going from 3 to 4 dimensions. Our Iso_neighborhood_create is faster than or at least in the same ballpark as MPI_Dist_graph_create_adjacent. We also report the time for Iso_neighborhood_alltoall_init, in which the schedule computation of Algorithm 1 is performed, including the creation of the MPI derived datatypes. With our interface, setup and initialization time can be amortized over several Iso_neighborhood_alltoall calls, still it is important that these times be as low as possible.

For the underlying Cartesian communicator of the isomorphic neighborhoods, we use MPI_Dims_create (despite its potential problems [19]) and enable reordering, such that the virtual torus may be aligned with the underlying communication system.

For higher dimensions of the tested neighborhoods, the number of relative neighbors is larger than the number of processes, such that the same process is a neighbor for many different blocks. Our implementations work regardless, and all such block are combined into the same message.

Our communication experiments use small block sizes from 1B to 2kB. Selected results for Moore neighborhoods in dimension \(d = 2, 3, 4, 5 \) with radius \(r = 1, 3 \) are shown in Figure 2(a) to Figure 2(e). For small block sizes, we observe considerable improvements over the MPI neighborhood collectives, close to the ratio of number of neighbors to 2d. It is interesting to note that the performance of the MPI neighborhood collectives sometimes depends on whether the neighborhood was set up with MPI_Dist_graph_create or MPI_Dist_graph_create_adjacent. As block sizes grow, the advantage of message-combining diminishes. Finally, the experiment in Figure 2(f) considers isomorphic all-to-all communication with asymmetric neighborhoods, and shows the benefits of zero-copy message-combining in this situation. We used an incomplete Moore neighborhood in \(d = 3 \) dimensions and radius \(r = 3 \) consisting only of the positive coordinate neighbors, as in Section 2.

Our implementation of the irregular Iso_neighborhood_alltoalll operation, which uses the same schedules as in the regular case, is benchmarked in Figure 3. The plots show the results of the experiment with an irregular data distribution. Here, the block sizes sent to each neighbor depend on the distance of that neighbor \(\| C^i \| \), such that the block sent to neighbor \(i \) is of size \(m^d - \| C^i \| \). This emulates the behavior of many stencil computations, where the messages exchanged with corners are smaller than with edges and hyperplanes. We tested the algorithm with three- and four-dimensional Moore neighborhoods with radius \(r = 1 \), having 26 and 80 neighbors, respectively. The base block size \(m \) is varied between the different experiments and is shown on the x-axis, together with the total size of the send buffer per process. For example, in Figure 3(a) for \(m = 512 \)B, each process sends messages with one of the following sizes to the 26 neighbors: 1B, 5121B, and 5122B, amounting to a total size of 1.5MB for the entire send buffer. In the experiment (see Figure 3), our all-to-alll implementation outperforms the standard MPI collective in most of the cases.
Figure 2. Median run-times of Iso_neighbor_alltoall and MPI_Neighbor_alltoall, Moore neighborhood, row order of neighbors, 30 × 16 processes, NEC MPI 1.3.1, machine: Jupiter.

5. Better Algorithms

The assumption of a one-ported torus network was useful in that it led to easily computable, optimal message-combining schedules. However, most real systems (e.g., as in Table 1) have different, more powerful communication systems. If we relieve the torus assumption, better algorithms for more powerful communication systems may be possible, and interesting optimization problems and trade-offs between the number of communication rounds and volume arise.

Assume that we have—at the other extreme—a fully connected, bidirectional, k-ported communication system. In this case, we could ask: What is the minimal number of communication rounds for a given s-neighborhood? What is the optimal load balance in number of blocks sent per communication round? What is the optimal schedule for an irregular s-neighborhood where blocks to be sent to different neighbors may have different sizes?

To minimize the number of communication rounds in a one-ported, fully-connected system, the following optimization problem has to be solved. Given a set of s vectors \(C \), find a smallest additive basis \(B \) such that each \(C \in C \) can be written as a sum of distinct \(B_i \in B \). Note that it is explicitly not required that \(B \subseteq C \). Our torus algorithms use the additive basis vectors \((1, 0, 0, \ldots), (0, 1, 0, \ldots), (0, 0, 1, \ldots)\), but in general need repetitions (several hops) of the basis vectors. The algorithm that will be sketched below uses distinct basis vectors. Given an additive basis, we claim
that a schedule can be computed easily and similarly to the torus schedules, and both all-to-all and allgather operations will require \(|B|\) rounds. How hard is the problem of finding smallest additive bases for arbitrary \(s\)-neighborhoods? Some \(d = 1\) dimensional examples are illustrative. For \(\mathcal{C} = \{1, 2, 3\}\), a minimal additive basis is \(\{1, 2\}\). For \(\mathcal{C} = \{1, 2, 3, 4, 5, 6, 7\}\), a minimal additive basis is \(\{1, 2, 4\}\), which is the scheme used by logarithmic doubling all-to-all and allgather algorithms \[6\]. For \(\mathcal{C} = \{1, 2, 3, 4, 5, 6, 7, 8\}\), minimal additive bases are \(\{1, 2, 3, 6\}\) or \(\{1, 2, 4, 8\}\).

Let us assume instead a \(d\)-dimensional torus communication system with direct communication along the dimensions, such that it is possible to send a message directly to a neighbor with relative coordinate \(c_j\) in any of the dimensions. We can perform the communication operations using an additive (but not necessarily minimal) basis consisting of all projected vectors \((0, \ldots, c_j, \ldots, 0)\) for the different \(c_j\) in each of the \(d\) dimensions. We can easily modify our schedules to use this basis, namely to send directly to relative neighbor \((0, \ldots, c_j, \ldots, 0)\) instead of via \(c_j\) hops. All blocks going to the same relative neighbor in round \(j\) can be combined. In order to achieve this, in communication round \(j\) the relative neighbors need to be (bucket) sorted for the \(j\)th dimension. For each neighbor, the number of hops to traverse is reduced from \(\|C^s\|\) to the number of non-zero coordinates in \(C^s\), and summing this over all \(s\) neighbors gives the total number of messages sent. The number of rounds needed per dimension is the number of different, non-zero coordinates, and summing over all dimensions gives the total number of rounds. Since the number of rounds is no longer dependent on the magnitude of the coordinates, schedules can now be computed in \(O(sd)\) operations.

We have implemented both \texttt{Iso_neighbor_alltoall} and \texttt{Iso_neighbor_alltoall directed}, row order of neighbors, \(30 \times 16\) processes, NEC MPI 1.3.1, machine: Jupiter.

6. Experimental Evaluation, Part Two

We have benchmarked the torus direct implementations using the same systems and Moore neighborhoods as in Section 4 but the emphasis is on comparing our three implementations, namely the straightforward implementation shown in Listing 4 the optimal torus implementations, and the torus direct algorithms. Selected results for \texttt{Iso_neighbor_alltoall} are shown in Figure 4(a), while
in Figure 4(b) we have used a neighborhood consisting of “shales” of neighbors at the Chebyshev distances $r_1 = 3$ and $r_2 = 7$. As message sizes grow, the smaller number of communication rounds and the smaller total communication volume of the torus direct algorithm make it perform gradually better than the optimal torus algorithm. For the shales neighborhood in Figure 4(b), the number of communication rounds for the torus algorithm is about $2r_2d = 42$ compared to only $(2 + 2)d = 12$ for the direct algorithm, and, more significantly, in the former the number of times blocks are sent further on is proportional to the number of rounds. The torus algorithm becomes slower than the straightforward algorithm already for message sizes of 500 B; in contrast, the direct algorithm stays on par with the straightforward one in the message range shown. The experiments show that exploiting direct communication can lead to better performing message-combining implementations; it is therefore relevant to pursue the optimization problems posed in Section 5.

The Iso_neighbor_allgather collective is investigated in Figure 5(a) with a complete three-dimensional Moore neighborhood and in Figure 5(b) with an asymmetric Moore neighborhood. The run-times of the MPI_Neighbor_allgather operation are similar to those of the MPI_Neighbor_alltoall for the same neighborhood, as can be seen for small message sizes by comparing to Figure 2(e) and Figure 2(f). Thus, Figure 5 suggests that the MPI library we used implements the allgather and all-to-all operations in exactly the same way: each block of data is sent directly to the corresponding neighbor. In contrast, the Iso_neighbor_allgather operation achieves a 80% run-time reduction over MPI_Neighbor_allgather for the tested message sizes, as well as a substantially improved

Figure 5. Median run-times of Iso_neighbor_allgather, Iso_neighbor_alltoall and MPI_Neighbor_allgather, Moore neighborhood, row order of neighbors, 30 × 16 processes, NEC MPI 1.3.1, machine: Jupiter.

Figure 6. Median run-times of Iso_neighbor_alltoall and Iso_neighbor_alltoall_direct (neighborhood set up using Iso_neighborhood_create), Moore neighborhood in $d = 3$ dimensions, radius $r = 3$ (342 neighbors), row order of neighbors, MVAPICH 2.2b, machine: VSC-3.

Figure 7. Median run-times of Iso_neighbor_alltoall and Iso_neighbor_alltoall_direct, Moore neighborhood, row order of neighbors, 70 × 16 processes, MVAPICH 2.2b, machine: VSC-3.
performance over its all-to-all counterpart. This behavior can be explained by the design of the allgather schedule, which reduces the volume of data sent, compared to the all-to-all one. To further highlight the efficiency of the allgather schedule, we compare Iso_neighbor_alltoall with Iso_neighbor_alltoall for an asymmetric Moore neighborhood in Figure 5(b). Here, we can again see that using Iso_neighbor_allgather pays off as the message size increases, as the operation completes three times faster than all-to-all for message sizes of up to 40 kB.

Finally, we have evaluated the proposed torus implementations on the VSC-3 machine, using the MVA-PICH 2-2.2b library, and the ARCHER machine with the Cray MPICH 7.2.6 library. As in this scenario we do not have dedicated access to the entire machine, we have conducted 300 measurements for each collective operation to compensate for the possible variations and we have repeated each experiment 10 times. Figure 6 compares the run-times of the optimal torus all-to-all and the torus direct algorithm with the MPI neighborhood all-to-all implementation and the straightforward algorithm shown in Listing 4 similarly to our previous experiments, this scenario emphasizes the advantage of the direct strategy in the case of a fully-connected hardware topology. While Iso_neighbor_alltoall outperforms the MPI implementation only for smaller message sizes, the direct algorithm achieves the best run-time performance up to 1 kB. For message sizes under 512 B, both implementations outperform the straightforward algorithm in the 70 × 1 processes scenario. When the total data size exchanged increases in Figure 6(b), our implementations show less improvement due to the larger number of processes per node.

Figure 7 compares the torus all-to-all implementations with the straightforward algorithm. Even though the neighborhood size is comparable to the first scenario, the overhead of the optimal torus all-to-all algorithm relative to the direct algorithm is smaller, showing the impact of the size of the neighborhood radius (and therefore of the number of hops along each dimension) on the operation run-time. Nevertheless, for small message sizes both implementations provide better results than the straightforward all-to-all algorithm.

Figure 8 shows our results on ARCHER. The MPI collectives perform much better here than was the case for the other machines, such that our message-combining algorithms for the small r = 1 case show only little advantage. The MPI neighborhood collectives can apparently use the pipelining and multi-ported capabilities of the ARCHER network better than our send and receive based implementations. We have therefore compared our message combining algorithm with the straightforward algorithm of Listing 4 over which we can improve by large factors (as for the other machines). Again, this shows that finding additive bases that allow for many simultaneous communication operations is an important optimization problem (Section 5).

7. Summary

We proposed a specification for isomorphic (sparse) collective communication to derive simple, message-combining algorithms for all-to-all and allgather type of sparse collective communication operations. We outlined two types of algorithms, one assuming a torus communication network that is optimal in both the number of communication rounds and the total number of messages sent, and one assuming a more liberal torus allowing direct communication along the torus dimensions that reduces both the number of rounds and the communication volume. The latter algorithm is an in-between the torus algorithm and an algorithm using direct communication between neighbors. Both types of algorithms were implemented and compared to typical implementations of the corresponding MPI neighborhood collective communication operations, against which our implementations perform significantly better for smaller message sizes. In our experiments we used (also asymmetric) variations of the Moore neighborhoods. The experiments show that there is large room for improvements of current implementations of the MPI neighborhood collectives. Our algorithms could potentially be used to obtain such improvements, but only if it is externally asserted (or can easily be detected) that neighborhoods are indeed isomorphic.

Our isomorphic neighborhoods are embedded in d-dimensional tori, but our schedules can easily be extended...
to non-periodic tori, as can be defined with MPI Cartesian topologies. Furthermore, it would be possible to extend the idea of isomorphic neighborhoods also to other regular underlying virtual topologies. Our experiments were performed on non-torus systems, for which the virtual torus topology used to describe relative neighborhoods is only a convenience. It would be interesting to perform experiments on actual torus systems (Blue Gene or K Computer), where the virtual topology has actually been mapped efficiently onto the hardware topology.

For stencil-type computations, non-blocking communication is natural to potentially overlap parts of the stencil update with neighborhood communication. The proposed, persistent interface has a blocking Iso_Start operation. Similarly to what is currently being discussed in the MPI community, it could be declared non-blocking by adding the following call

```c
Iso_wait(Iso_request *request);
```

at which local completion can be enforced. We think that this is a valuable extension, for which algorithms and implementations should be developed.

References

[1] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, Eds., *Sourcebook of Parallel Computing*. Morgan Kaufmann Publishers, 2003.

[2] J. F. Epperson, *An Introduction to Numerical Methods and Analysis*, 2nd ed. Wiley-Interscience, 2013.

[3] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. K. Panda, A. Chourasia, J. M. Levesque, S. M. Day, and P. Maehling, “Scalable earthquake simulation on petascale supercomputers,” in *Conference on High Performance Computing Networking, Storage and Analysis (SC)*, 2010, pp. 1–20.

[4] MPI Forum, *MPI: A Message-Passing Interface Standard. Version 3.1*, June 4th 2015, www.mpi-forum.org.

[5] J. L. Träff, F. D. Lübbe, A. Rougier, and S. Hunold, “Isomorphic, sparse MPI-like collective communication operations for parallel stencil computations,” in *22nd European MPI Users’ Group Meeting (EuroMPI)*. ACM, 2015.

[6] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient algorithms for all-to-all communications in multiprocessor message-passing systems,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 8, no. 11, pp. 1143–1156, 1997.

[7] J. L. Träff, A. Rougier, and S. Hunold, “Implementing a classic: Zero-copy all-to-all communication with MPI datatypes,” in *28th ACM International Conference on Supercomputing (ICS)*. ACM, 2014, pp. 135–144.

[8] P. Basu, M. W. Hall, S. Williams, B. van Straalen, L. Oliker, and P. Colella, “Compiler-directed transformation for higher-order stencils,” in *2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, 2015, pp. 313–323.

[9] H. Dursun, K. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia, A. Nakano, and P. Vashishta, “A multilevel parallelization framework for high-order stencil computations,” in *15th International Euro-Par Conference*, 2009, pp. 642–653.

[10] H. Dursun, M. Kunaseth, K. Nomura, J. Chame, R. F. Lucas, C. Chen, M. W. Hall, R. K. Kalia, A. Nakano, and P. Vashishta, “Hierarchical parallelization and optimization of high-order stencil computations on multicore clusters,” *The Journal of Supercomputing*, vol. 62, no. 2, pp. 946–966, 2012.

[11] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying performance bottlenecks of stencil computations using the execution-cache-memory model,” in *Proceedings of the 29th ACM on International Conference on Supercomputing (ICS)*, 2015, pp. 207–216.

[12] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C. Luk, and C. E. Leiserson, “The pochoir stencil compiler,” in *Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)*, 2011, pp. 117–128.

[13] R. Bordawekar, A. N. Choudhary, and J. Ramanujam, “Automatic optimization of communication in compiling out-of-core stencil codes,” in *Proceedings of the 10th International Conference on Supercomputing*, 1996, pp. 366–373.

[14] X. Zhu, J. Zhang, K. Yoshii, S. Li, Y. Zhang, and P. Balaji, “Analyzing MPI-3.0 process-level shared memory: A case study with stencil computations,” in *15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)*, 2015, pp. 1099–1106.

[15] T. Hoefler and T. Schneider, “Optimization principles for collective neighborhood communications,” in *IEEE/ACM Conference on High Performance Computing Networking, Storage and Analysis (SC)*, 2012, p. 98.

[16] A. Ovcharenko, D. Ibanez, F. Delalondre, O. Sahni, K. E. Jansen, C. D. Carothers, and M. S. Shephard, “Neighborhood communication paradigm to increase scalability in large-scale dynamic scientific applications,” *Parallel Computing*, vol. 38, no. 3, pp. 140–156, 2012.

[17] S. Souravlas and M. Roumeliotis, “A message passing strategy for array redistributions in a torus network,” *The Journal of Supercomputing*, vol. 46, no. 1, pp. 40–57, 2009.

[18] T. Toffoli and N. Margolus, *Cellular Automata Machines: A New Environment for Modeling*. MIT Press, 1987.

[19] J. L. Träff and F. D. Lübbe, “Specification guideline violations by MPI_Dims_create,” in *22nd European MPI Users’ Group Meeting (EuroMPI)*. ACM, 2015.