Abstract. For an odd prime p and a number field F containing a pth root of unity, we study generalised Tate kernels, $D^{[i,n]}_F$, for $i \in \mathbb{Z}$ and $n \geq 1$, having the properties that if $i \geq 2$ and if either p does not divide i or $\mu_p \subset F$ then there are natural isomorphisms $D^{[i,n]}_F \cong K^{(i-1)}_{2i-1}(\mathcal{O}_F^S)/p^n$, and that they are periodic modulo a power of p which depends on F and n. Our main result is that if the Gross-Jaulent conjecture holds for (F,p) then there is a natural isomorphism $D^{[1,n]}_F \cong \tilde{E}_F/p^n$ where \tilde{E}_F is the Gross kernel. We apply this result to compute lower bounds for capitulation kernels in even étale K-theory.

1. Introduction

Let F be an algebraic number field containing the p-th roots of unity μ_p for some odd prime number p. Let S be the set of p-adic primes of F and let \mathcal{O}_F^S be the ring of S-integers in F.

Let E/F be a Galois extension with group G. The goal of this paper is to better understand and to calculate lower bounds for the K-theory capitulation kernels $\text{Ker}(f_i)$ where $f_i : K^{(i-2)}_{2i-2}(\mathcal{O}_F^S) \to K^{(i-2)}_{2i-2}(\mathcal{O}_E^S)^G$ is the natural functorial map. Our main results apply to the case where G is cyclic of degree p^n.

We follow the strategy established by Assim and Movahhedi in [1]. Generalising a result of Kahn, [13], they observe that, when G is a cyclic p-group, $\text{Ker}(f_i)$ and $\text{Coker}(f_i)$ have the same order and, in the case where $|G| = p$, they describe this cokernel in terms of certain ‘generalised Tate kernels’ $D^{(i)}_F$ which are subgroups of F^\times. $D^{(2)}_F$ is the classical Tate kernel; i.e the group $C_F = \{a \in F^\times | \{a, \zeta_p\} = 0 \text{ in } K_2(F)\}$. Furthermore, Greenberg has shown that if \tilde{F} denotes the compositum of the \mathbb{Z}_p-extensions of F and if $A_F = \{a \in F^\times | \sqrt[p]{a} \in \tilde{F}\}$, then $D^{(0)}_F \subset A_F$ with equality if and only if Leopoldt’s conjecture holds for (F,p).
In this paper we describe ‘Tate kernels’ $D_F^{[i,n]}$ for all $i \in \mathbb{Z}$ with the following
four properties:

1. $D_F^{[i,1]} = D_F^{(i)}(F^\times)^p(i - 1)$ where $M(j)$ denotes the jth Tate twist of
the Galois module M.

2. There are natural isomorphisms

 $D_F^{[i,n]} \cong K^{\text{ét}}_{2i-1}(O_F^S)/p^n$

 for $i \geq 2$ whenever either p does not divide i or F contains the p^nth
roots of unity.

3. If the Gross conjecture holds for (F,p) then

 $D_F^{[1,n]} \cong \tilde{E}_F/p^n$

 where \tilde{E}_F is the Gross kernel of F.

4. The Tate kernels have a natural periodicity property:

 There exists a number $m = m_n(F) \geq 0$ such that

 $D_F^{[j,n]} = D_F^{[i,n]}(j - i)$

 whenever $i \equiv j \pmod{p^m}$. Furthermore $m = 0$ if $\mu_{p^r} \subset F$ for suffi-
ciently large r.

These groups, and variations on them, have been studied in a number of places. The central ideas go back to Tate, [20], and property [2] (at least for $i = 2$) is implicit there. The periodicity property is essentially found in Greenberg’s paper, [8], but see also Assim and Movahhedi, [1], Lemma 2.1 and Vauclair, [21], section 4. The main contribution of the present paper is property [3], although it should be noted that a key step in the proof is Theorem 2.3 of
Kolster, [15]. In particular, [3] implies that if F has only one p-adic prime then
$D_F^{[1]} = U_F^S \cdot (F^\times)^p$. This, in conjunction with property [4], explains the theorem of Kersten, [14], that if $F = \mathbb{Q}(\zeta_{p^r})$ for sufficiently large r, then $A_F = U_F^S \cdot (F^\times)^p = C_F$. Our result in this paper grew out of the attempt to understand this theorem of Kersten.

The layout of the paper is as follows: In section 2 we introduce the Tate
kernels and establish properties [1], [3] and [4]. In section 3 we give a co-
homological description of the Tate kernels and use this to establish property
[2], as well as to prove certain basic algebraic properties which have already
been used section 2.

In section 4 we show how to describe the groups $\text{Coker}(f_i)$, when E/F is a
cyclic p-extension, in terms of the Tate kernels and in the last two sections we
apply these results to give lower bounds for $\text{Ker}(f_i)$. In particular, in section 6
we deal with cyclic p-extensions in which there are no tamely-ramified primes.
We exploit the relationship between the Gross kernel and the logarithmic class
group to show (Theorem 6.8) that if E/F is a finite layer of the p-cyclotomic
extension of F and if the Gross conjecture holds for (E,p), then for infinitely
many i, $|\text{Ker}(f_i)| = |\text{Ker}(f_1)|$ where f_1 is the natural functorial map
$\text{Cl}_F \rightarrow$
$\tilde{\text{Cl}}^G_F$ of logarithmic class groups. We give examples both of cyclotomic and of non-cyclotomic extensions for which the $\text{Ker}(f_i)$ are all non-trivial.

Notation: For an abelian group A, $A[n]$ and A/n denote the kernel and cokernel respectively of multiplication by $n \in \mathbb{N}$. $\text{Div}(A)$ denotes the maximal divisible subgroup of A.

If R is an integral domain and M is an R-module, then $\text{tor}_R(M)$ is the torsion submodule of M and $\text{Fr}_R(M) = M/\text{tor}_R(M)$.

For a field F, G_F denotes its Galois group. The Tate module for (F, p) is the $\mathbb{Z}_p[G_F]$-module $\mathbb{Z}_p(1) := \lim_i \mu_{p^i}$, the (inverse) limit being taken over the natural surjections $\mu_{p^{i+1}} \to \mu_{p^i}$, $\zeta \mapsto \zeta^p$. More generally, for any $i \in \mathbb{Z}$, we have $\mathbb{Z}_p(i) := \mathbb{Z}_p^{\otimes i}$ for $i \geq 0$, $\mathbb{Z}_p(0) := \mathbb{Z}_p$ and $\mathbb{Z}_p(-i) := \text{Hom}_{\mathbb{Z}_p}((\mathbb{Z}_p(i), \mathbb{Z}_p)$ for $i \geq 1$. For any \mathbb{Z}_p-G_F-module M, the ith Tate twist is the \mathbb{Z}_p-G_F-module $M(i) := M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(i)$ (with diagonal Galois action). Since $\mathbb{Z}_p(i)$ is isomorphic to \mathbb{Z}_p as a \mathbb{Z}_p-module, $M(i)$ is isomorphic to M with a twisted Galois-action. Observe that if $M = M[p^n]$, then the natural surjection $\mathbb{Z}_p(i) \to \mu_{p^{i+1}}$ induces an isomorphism $M(i) \cong M \otimes \mu_{p^i}$.

By the Pontryagin dual of the \mathbb{Z}_p-G_F-module M we will mean the module $M^\ast = \text{Hom}_{\mathbb{Z}_p}(M, \mathbb{Q}_p/\mathbb{Z}_p)$.

2. Generalised Tate Kernels

Everywhere below p is an odd prime, F is a number field containing the p-th roots of unity, μ_p, and $S = S_p(F)$ is the set of prime ideals lying over p. Let $F_n = F(\mu_{p^n})$ and let $F_\infty = \bigcup_{n=1}^\infty F_n$. Let $\Gamma = \text{Gal}(F_\infty/F)$. Let $\text{Cl}^S(F)$ denote the S-classgroup of F and let $A^S(F)$ denote the p-Sylow subgroup $\text{Cl}^S(F)\{p\}$. Let also $\mu_\infty(F) = F \cap \mu_\infty = \mu_{p^{\infty}}$ be the group of p-power roots of unity in F. We will let F_S/F be the maximal algebraic extension of F unramified outside the S and we will let $G_F = \text{Gal}(F_S/F)$.

As usual, Λ will denote the Iwasawa algebra $\mathbb{Z}_p[[\Gamma]] := \lim_n \mathbb{Z}_p[\Gamma/p^n]$. If we fix a topological generator, γ_0, of Γ, then we get an isomorphism of topological rings $\Lambda \cong \mathbb{Z}_p[[T]], \gamma_0 \leftrightarrow 1 + T$.

Let K be the maximal abelian pro-p extension of F_∞ and let $\mathcal{K} = F_\infty^\times \otimes \mathbb{Q}_p/\mathbb{Z}_p$. Kummer Theory gives a perfect duality pairing

$$\langle \cdot, \cdot \rangle : \mathcal{K} \times \text{Gal}(K/F_\infty) \to \mu_p\infty$$

determined by the formula

$$g(\sqrt[p^n]{a}) = \left< a \otimes \frac{1}{p^n}, g \right> \sqrt[p^n]{a}$$

for $g \in \text{Gal}(K/F_\infty)$, $a \in F_\infty^\times$ and $n \geq 1$. Furthermore, each term is naturally a Γ-module and this pairing is compatible with the Γ-actions in the sense that $(\gamma(\alpha), \gamma(g)) = \gamma((\alpha, g))$ for all $\gamma \in \Gamma$, $\alpha \in \mathcal{K}$ and $g \in \text{Gal}(K/F_\infty)$.
Observe that for all \(i \in \mathbb{Z}\),
\[
\mathcal{K}(i) = F_\infty^\times \otimes_{\mathbb{Q}_p/\mathbb{Z}_p} (i) = \bigcup_n F_\infty^\times \otimes \mu_{p^n}^\oplus = \bigcup_n F_\infty^\times / (F_\infty^\times)^{p^n} \otimes \mu_{p^n}^\oplus.
\]

Now let \(M\) be the maximal abelian pro-
\(p\) extension of \(F_\infty\) which is unramified outside \(p\). Let \(X = \text{Gal}(M/F_\infty)\) and let \(\mathcal{M}\) be the subgroup of \(\mathcal{K}\) corresponding to \(X\) under the pairing \([\]\) i.e. \(\mathcal{M}\) is the orthogonal complement of \(\text{Gal}(K/M)\) with respect to the pairing. There is thus an induced perfect pairing \(\mathcal{M} \times X \to \mu_{p^\infty}\).

Remark 2.1. In \([1]\), Assim and Movahhedi introduce the groups \(D_F^{(i)}\), \(i \geq 2\), but define them using \(K\) instead of \(N\). However, as they observe, when \(i \geq 2\), this defines the same group. While the \(\Lambda\)-module \(K\) is, at first glance, a more natural object, there are advantages to using \(N\) in the definition of the groups \(D_F^{(i)}\). In the first place, Iwasawa has proved some very strong results on the \(\Lambda\)-module structure of the dual group of \(N\). Furthermore, using \(N\) instead of \(K\), we get a sequence of groups with analogous properties defined for all \(i \in \mathbb{Z}\), including \(i = 1\), which is the main focus of this paper.

Regarding the structure of \(N\), the following is known:

Let \(\hat{X} = \text{Fr}_\Lambda(X) = X/\text{tor}_\Lambda(X)\) be the dual of \(N\) with respect to the Kummer pairing. Iwasawa, \([9]\) Theorem 17, proved that there is a short exact sequence of \(\Lambda\)-modules
\[
0 \to \hat{X} \to \Lambda^{r_2} \to \hat{H}_F \to 0
\]
with \(\hat{H}_F\) finite. Greenberg, \([8]\), pointed out that the arguments of Iwasawa show that \(\hat{H}_F\) is abstractly isomorphic to (in fact, Kummer dual to) the group \(\text{Ker}(A^S(F_n) \to A^S(F_\infty))\) for all sufficiently large \(n\). We will use this fact below. (Coates, \([4]\), also showed that \(\hat{H}_F\) is abstractly isomorphic to \(\text{Ker}(K_2(O_{F^\infty}) \to K_2(O_{F^\infty}^\times))\) for all sufficiently large \(n\). For a more precise assertion about limits, see Kahn, \([13]\), Théorème 6.2.)

We deduce the following well-known fact:

Lemma 2.2. For all \(i \in \mathbb{Z}\),
\[
\text{Div}(N(i)^\Gamma) \cong (\mathbb{Q}_p/\mathbb{Z}_p)^{r_2}.
\]
Proof. Taking the Γ-action into account, the Kummer pairing gives an isomorphism of Λ-modules $\mathcal{N}(i) \cong \tilde{X}(-1-i)^*$. It follows that

$$\mathcal{N}(i)^{\Gamma} \cong (\tilde{X}(-1-i)_{\Gamma})^* = (\tilde{X}(-1-i)/T\tilde{X}(-1-i))^*.$$

Twisting the exact sequence of Iwasawa by $-\Lambda(t)$, and using the fact that $\Lambda(t) \cong \Lambda$ for all $t \in \mathbb{Z}$, gives the exact sequence

$$0 \to \tilde{X}(-1-i) \to \Lambda^{r_2} \to \bar{H}_F(-1-i) \to 0.$$

Thus the natural map $\bar{X}(-1-i)/T\bar{X}(-1-i) \to \Lambda^{r_2}/T\Lambda^{r_2} = \mathbb{Z}_p^{r_2}$ has finite kernel and cokernel. Taking Pontryagin duals again, it follows that there is a map $(\mathbb{Q}_p/\mathbb{Z}_p)^{r_2} \to \mathcal{N}(i)^{\Gamma}$ with finite kernel and cokernel. \qed

Greenberg ([8], p1238) conjectured that $\text{Div}(\mathcal{K}(t)^\Gamma) = \text{Div}(\mathcal{N}(t)^\Gamma)$ for all $t \in \mathbb{Z} \setminus \{0\}$. As he pointed out, the analogous statement for $t = 0$ cannot possibly hold since $\text{Div}(\mathcal{K}^\Gamma) \supset F^\times \otimes \mathbb{Q}_p/\mathbb{Z}_p$ which is a countable direct sum of copies of $\mathbb{Q}_p/\mathbb{Z}_p$. Note that if the conjecture is true for any given $t \in \mathbb{Z}$, then it follows that $D_F(t+1) = \{a \in F^\times \mid a \otimes \chi \in \text{Div}(\mathcal{K}(t)^\Gamma) \text{ for all } \chi \in \mu_p^{\otimes t}\}$. If we interpret the groups $\mathcal{K}(t)^\Gamma$ in terms of Galois cohomology (see section 3 below), Greenberg’s conjecture is equivalent to Schneider’s conjecture in [18] that the groups $\mathcal{H}^2(G_F^S, \mathbb{Q}_p/\mathbb{Z}_p(i))$ vanish for all $i \neq 1$. This latter conjecture was proved by Soulé ([19]) when $i \geq 2$ using Borel’s theorem ([24]) on the finiteness of the groups $K_{2i}(\mathcal{O}_F^S)$. It follows, as remarked above, that for $i \geq 2$ we have

$$D_F(i) = \{a \in F^\times \mid a \otimes \chi \in \text{Div}(\mathcal{K}(i-1)^\Gamma) \text{ for all } \chi \in \mu_p^{\otimes (i-1)}\}.$$

Greenberg showed in [8] that $D_F^{(2)}$ is the classical Tate Kernel of F; the group

$$C_F := \{a \in F^\times \mid \{a, \zeta_p\} = 0 \in K_2(F)\}.$$

Furthermore, when $i = 0$, Greenberg showed that

$$\{a \in F^\times \mid a \otimes \chi \in \text{Div}(\mathcal{K}(-1)^\Gamma) \text{ for all } \chi \in \mu_p^{\otimes (-1)}\} = A_F := \{a \in F^\times \mid \sqrt[p]{a} \in \bar{F}_1\}$$

where \bar{F}_1 is the compositum of the first layers of the \mathbb{Z}_p-extensions of F. Thus, $D_F^{(0)} \subset A_F$ and Greenberg’s conjecture in this case is that equality holds here. This is equivalent to Leopoldt’s conjecture for the pair (F, p) since $\dim_{\mathbb{F}_p}(D_F^{(i)}/(F^\times)^p) = 1 + r_2$ (see below).

Our main interest in the groups $D_F^{(i)}$ in this paper stems from the work of Assim and Movahhedi ([1]) who show that for $i \geq 2$ that there is a natural isomorphism

$$D_F^{(i)}/(F^\times)^p(i-1) \cong K^{\text{ét}}_{2i-1}(\mathcal{O}_F^S)/p$$

(for a generalisation, see Corollary 3.8 below).

Before proceeding, we will introduce some more general ‘Tate kernels’:

For each $n \geq 1$, let $\Gamma_n = \text{Gal}(F_\infty/F_n)$ and let $G_n = \text{Gal}(F_n/F) = \Gamma/\Gamma_n$. Let $Q_{i,n}$ be the natural map

$$\left(F_n^\times/(F_n^\times)^{p^n}(i-1)\right)^{G_n} \to \mathcal{K}(i-1).$$
We define
\[D_F^{[i,n]} := (Q_{i,n})^{-1}(\text{Div}((\mathcal{N}(i - 1)^\Gamma))). \]

Thus if \(F = F_n \) (i.e., if \(\mu_{p^n} \subset F^\times \)) then \(D_F^{[i,n]} \subset F^\times/(F^\times)^{p^n}(i - 1) \) and there exists a subgroup \(D_F^{[i,n]} \) of \(F^\times \) and containing \((F^\times)^{p^n} \) with the property that \(D_F^{[i,n]} = (D_F^{[i,n]}/(F^\times)^{p^n})(i - 1) \). In particular, \(D_F^{[i,1]} = D_F^{[i]} \) for all \(i \in \mathbb{Z} \).

We will prove below (see [3.8]) that there is a natural isomorphism
\[D_F^{[i,n]} \cong K_{2i-1}^\text{et}(\mathcal{O}_F)/p^n \]
when \(i \geq 2 \) and when either \(F = F_n \) or \(i \neq 0 \) (mod \(p \)).

Note that when \(i = 1 \), the natural map \(F^\times/(F^\times)^{p^n} \to (F^\times/(F^\times)^{p^n})^G_n \) is an isomorphism. To see this, one can use the Kummer isomorphism \(F^\times/(F^\times)^{p^n} \cong H^1(F,\mu_{p^n}) \) and the fact that the restriction map \(H^1(F,\mu_{p^n}) \to H^1(F_n,\mu_{p^n})^G_n \) is an isomorphism since \(H^1(G_n,\mu_{p^n}) = H^2(G_n,\mu_{p^n}) = 0 \). Thus, for all \(n \geq 1 \)
\[D_F^{[1,n]} \subset F^\times/(F^\times)^{p^n} \]
and if we let
\[D_F^{[1,n]} := \{ a \in F^\times | a \otimes 1/p^n \in \text{Div}(\mathcal{N}^\Gamma) \} \]
then
\[D_F^{[1,n]} = D_F^{[1,n]}/(F^\times)^{p^n}. \]

We let \(p^e = p^{e_F} \) be the exponent of the group \(\tilde{H}_F \). For all \(n \geq 1 \), we will let \(m_n = m_n(F) = \max(0, e_F + n - n_F) \). Observe that \(m_n = 0 \) if there is an \(e \geq 0 \) with \(p^e \tilde{H}_F = 0 \) and \(\mu_{p^{e+n}} \subset F \).

Observe that \(m_n(F_m) = 0 \) whenever \(m \) is sufficiently large. Below we will also let \(m_F \) denote \(m_1(F) \).

Let \(\kappa : \Gamma \to 1 + p\mathbb{Z}_p \) be the Teichmüller character of \(F_\infty/F \) and observe that, by definition of \(m_n = m_n(F) \), for all \(\gamma \in \Gamma \), \(\kappa(\gamma)^{p^m} \equiv 1 \) (mod \(p^{e+n} \)).

The following theorem is essentially due to Greenberg (see also [1], Lemma 2.1):

Theorem 2.3. For any number field \(F \) containing \(\mu_p \),
\[\text{Div}(\mathcal{N}(t)^\Gamma)[p^n] = (\text{Div}(\mathcal{N}(t')^\Gamma)[p^n]) \ (t - t') \text{ whenever } t \equiv t' \pmod{p^{m_n}}. \]

Proof. The argument we give here is just an adaptation of the proof of [1], Lemma 2.1, which treats the case \(n = 1 \) and \(m_1 = 0 \). That argument in turn is just a more explicit version of the sketch given by Greenberg in [3].

Observe that since \(\Gamma \) acts trivially on \(\text{Div}(\mathcal{N}(t)^\Gamma)[p^n] \), the assertion simply concerns the equality of two subgroups of \(\mathcal{N}(t) \).

As noted above, \(\mathcal{N}(t + 1) \) is Pontryagin-dual to \(\tilde{X}(-t) \), so that \(\mathcal{N}(t + 1)^\Gamma \) is dual to \(\left(\tilde{X}(-t) \right)^\Gamma = \tilde{X}(-t)/T\tilde{X}(-t) \), which is a finitely-generated \(\mathbb{Z}_p \)-module.
Hence Div(\(N(t^2)^F\)) is dual to Fr_{Z_p} \left(\tilde{X}(t)/T \tilde{X}(t) \right) and, finally, Div(\(N(t + 1)^F\))[p^n] is dual to Fr_{Z_p} \left(\tilde{X}(t)/T \tilde{X}(t) \right)/p^n. Therefore, we must prove that

\[
\text{Fr}_{Z_p} \left(\tilde{X}(i)/T \tilde{X}(i) \right)/p^n = \text{Fr}_{Z_p} \left(\tilde{X}(i)/T \tilde{X}(j) \right)/p^n(i-j)
\]
as quotient groups of \(\tilde{X}(i)\) whenever \(i \equiv j \pmod{p^n}\).

Now, by the result of Iwasawa mentioned above there is a short exact sequence of \(\Lambda\)-modules

\[
0 \to \tilde{X}(i) \to \Lambda(i)^{r_2} \to \tilde{H}_F(i) \to 0
\]
for all \(i \in \mathbb{Z}\).

From the commutative exact diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & \tilde{X}(i) & \longrightarrow & \Lambda(i)^{r_2} & \longrightarrow & \tilde{H}_F(i) & \longrightarrow & 0 \\
\downarrow T & & \downarrow T & & \downarrow T & & \\
0 & \longrightarrow & \tilde{X}(i) & \longrightarrow & \Lambda(i)^{r_2} & \longrightarrow & \tilde{H}_F(i) & \longrightarrow & 0
\end{array}
\]

we obtain the exact sequence

\[
0 \longrightarrow \tilde{H}_F(i)[T] \overset{\delta}{\longrightarrow} \tilde{X}(i)/T \tilde{X}(i) \longrightarrow \Lambda(i)^{r_2}/T\Lambda(i)^{r_2} \longrightarrow \tilde{H}_F(i)/T\tilde{H}_F(i) \longrightarrow 0.
\]

The image of \(\delta\) is the group

\[
\tilde{X}(i) \cap T\Lambda(i)^{r_2}/T\tilde{X}(i).
\]

But this is precisely the \(\mathbb{Z}_p\)-torsion subgroup of \(\tilde{X}(i)/T \tilde{X}(i)\), since \(\Lambda(i)^{r_2}/T\Lambda(i)^{r_2} \cong (\Lambda/T\Lambda)^{r_2} \cong \mathbb{Z}_p^{r_2}\). Thus

\[
\text{Fr}_{Z_p} \left(\tilde{X}(i)/T \tilde{X}(i) \right)/p^n = \tilde{X}(i)/Y_i \text{ where } Y_i = \tilde{X}(i) \cap T\Lambda(i)^{r_2} + p^n \tilde{X}(i).
\]

Therefore we must prove that whenever \(i \equiv j \pmod{p^{m_n}}\), then \(Y_j(i-j) = Y_i\) as subgroups of \(\tilde{X}(i)\). Note that \(p^{e+n}\Lambda(i)^{r_2} \subset Y_i\) since \(p^{e}\) annihilates \(\tilde{H}_F(i)\) and \(\tilde{X}(i)/Y_i\) is annihilated by \(p^n\).

Fix a topological generator, \(\gamma_0\), of \(\Gamma\), so that the action of \(\Lambda = \mathbb{Z}_p[[T]]\) on a \(\Gamma\)-module is given by \(Tm := (\gamma_0 - 1)m\).

Suppose now that \(y \in Y_i\) and that \(i \equiv j \pmod{p^{m_n}}\). Let \(\zeta \in \mathbb{Z}_p(i-j)\). We must show that \(y \otimes \zeta \in Y_i\). By definition of \(Y_j\), \(y = T\lambda + p^n x\) where \(\lambda \in \Lambda(j)^{r_2}\).
and \(T_{\lambda, i} \in \tilde{X}(j) \). Let \(\zeta \in \mathbb{Z}_p(i - j) \). Thus
\[
(1 + T)(\lambda \otimes \zeta) = \gamma_0(\lambda \otimes \zeta) = \kappa(\gamma_0)^{i-j}(\gamma_0 \lambda \otimes \zeta)
\]

\[
= \gamma_0 \lambda \otimes \zeta + (\kappa(\gamma_0)^{i-j} - 1)(\gamma_0 \lambda \otimes \zeta)
\]

\[
= \gamma_0 \lambda \otimes \zeta + y'
\]

\[
= (1 + T)\lambda \otimes \zeta + y'
\]

where \(y' \in p^{e+n}\Lambda(i)^\gamma_2 \subset Y_i \). Thus
\[
T(\lambda \otimes \zeta) = T\lambda \otimes \zeta + y'
\]

and hence
\[
y \otimes \zeta = T\lambda \otimes \zeta + p^n(x \otimes \zeta)
\]

\[
= T(\lambda \otimes \zeta) + p^n(x \otimes \zeta) - y'
\]

which belongs to \(Y_i \) since \(y' \in Y_i \) and \(y \otimes \zeta, y', p^n(x \otimes \zeta) \in \tilde{X}(i) \implies T(\lambda \otimes \zeta) \in \tilde{X}(i) \).

Thus, \(Y_j(i - j) \subset Y_i \) and similarly \(Y_i \subset Y_j(i - j) \), proving the result. \(\square \)

Corollary 2.4. \(D_F^{[i,n]}(j - i) = D_F^{[j,n]} \) whenever \(i \equiv j \pmod{p^{m_n}} \).

Proof. Note first that the conditions on \(i \) and \(j \) guarantee that \(G_n \) acts trivially on \(\mu_{p^n}^{\otimes(j-i)} \) since \(p^{m_n} \geq p^{n-n_F} = |G_n| \). The result now follows from the commutative diagram

\[
\begin{array}{ccc}
\left(F_n^\times / (F_n^\times)^{p^n} \right) \left(\begin{array}{c}
(i - 1) \\
(j - 1)
\end{array} \right) & \overset{Q_{i,n}(j-i)}{\longrightarrow} & \text{Div}(\mathcal{N}(i-1)^\Gamma)[p^n](j-i) \\
\downarrow & & \downarrow \\
\left(F_n^\times / (F_n^\times)^{p^n} \right) \left(\begin{array}{c}
(i - 1) \\
(j - 1)
\end{array} \right) & \overset{Q_{j,n}}{\longrightarrow} & \text{Div}(\mathcal{N}(j-1)^\Gamma)[p^n]
\end{array}
\]

\(\square \)

Corollary 2.5. If \(p^e \tilde{H}_F = 0 \) and \(\mu_{p^{e+n}} \subset F \), then \(D_F^{[i,n]}(j - i) = D_F^{[j,n]} \) for all \(i, j \in \mathbb{Z} \).

In section 3 below we will see that if \(p \) does not divide \(i \) or if \(\mu_{p^n} \subset F \) there is a short exact sequence
\[
0 \to \mu \to D_F^{[i,n]} \to \text{Div}(\mathcal{N}(i-1)^\Gamma)[p^n] \to 0.
\]

where \(\mu = \mu_{p^e}(F_i)^{\otimes i}/p^n \) is a nontrivial cyclic group of order dividing \(p^n \).

In particular, \(\dim_{\mathbb{F}_p} \left(D_F^{(i)} / (F_x^\times)^p \right) = 1 + r_2 \) for all \(i \in \mathbb{Z} \).

We now consider the structure of \(D_F^{[1,n]} \).

For general number fields, the identification of \(D_F^{[1,n]} \) is related to the Gross conjecture (as extended by Jaulent).
Let U^S_F be the group of S-units of F. The homomorphism

$$G_F : U^S_F \to \prod_{v|p} \mathbb{Z}_p \cdot v, \ \epsilon \mapsto \sum_{v|p} \log_p [N_{F_v/Q_p} \epsilon] \cdot v$$

extends linearly to a \mathbb{Z}_p-module homomorphism

$$g_F : U^S_F \otimes \mathbb{Z}_p \to \prod_{v|p} \mathbb{Z}_p \cdot v.$$

The image of g_F is free \mathbb{Z}_p-module of rank at most $|S_p(F)| - 1$. Thus the rank of $\text{Im}(g_F)$ is $|S_p(F)| - 1 - \delta_F$ for some $\delta_F \geq 0$. Since the \mathbb{Z}_p-rank of $U^S_F \otimes \mathbb{Z}_p$ is $r_2 + |S_p(F)| - 1$, it follows that $\text{Ker}(g_F)$ has rank $r_2 + \delta_F$. For more details see Sinnott, [6] and Kuzmin, [17].

The conjecture of Gross (as extended by Jaulent) is:

$$\delta_F = 0.$$
Lemma 2.7. Let \(\tilde{\mathcal{E}}_{F_n} = \text{colim}_n \tilde{\mathcal{E}}_{F_n} \). Then there is a short exact sequence
\[
0 \to \tilde{\mathcal{E}}_F \otimes_{Z_p} Q_p/Z_p \to \left(\tilde{\mathcal{E}}_{F_n} \otimes_{Z_p} Q_p/Z_p \right)^\Gamma \to H^1(\Gamma, \tilde{\mathcal{E}}_{F_n}) \to 0
\]
where \(H^1(\Gamma, \tilde{\mathcal{E}}_{F_n}) \) is finite.

Proof. We begin by observing that \((\tilde{\mathcal{E}}_{F_n})^\Gamma = \tilde{\mathcal{E}}_F \) for all \(n \). This can be seen by taking \(\Gamma \)-invariants of the commutative diagram with exact rows
\[
\begin{array}{cccc}
0 & \longrightarrow & \tilde{\mathcal{E}}_F & \longrightarrow & U_F^S \otimes Z_p & \overset{g_F}{\longrightarrow} & \oplus_v \Gamma Z_p \\
& & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \tilde{\mathcal{E}}_{F_n} & \longrightarrow & U_{F_n}^S \otimes Z_p & \overset{g_{F_n}}{\longrightarrow} & \oplus_v (\oplus_{w|v} Z_p)
\end{array}
\]
(where \(\Delta \) is the map \((a_v)_v \mapsto ([F_n : F_v(a_v)]_v)\)) and using the fact that \((U_{F_n}^S \otimes Z_p)^\Gamma = U_F^S \otimes Z_p \) and that the vertical arrows are all injective.

It follows, on taking limits, that \((\tilde{\mathcal{E}}_{F_n})^\Gamma = \tilde{\mathcal{E}}_F \).

Note that the torsion submodule of \(\tilde{\mathcal{E}}_F \) is \(\mu_{p^\infty}(F) = \mu_{p^\infty}(F) \otimes Z_p \). Let \(\mathcal{G}_F = \tilde{\mathcal{E}}_F / \mu_{p^\infty}(F) \). Then \(\mathcal{G}_F \) is a free \(Z_p \)-module and hence \(\mathcal{G}_{F_{F_n}} = \text{colim}_n (\mathcal{G}_{F_n}) \) is \(Z_p \)-flat (in fact, it is easy to verify that it is a free \(Z_p \)-module).

Now apply the exact functor \(\mathcal{G}_{F_{F_n}} \otimes_{Z_p} \) to the short exact sequence
\[
0 \to Z_p \to Q_p \to Q_p/Z_p \to 0
\]
to get the short exact sequence of \(\Gamma \)-modules
\[
0 \to \mathcal{G}_{F_{F_n}} \to \mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p \to \mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p/Z_p \to 0.
\]
Taking \(\Gamma \)-invariants gives the long exact sequence
\[
0 \to \mathcal{G}_F \to \mathcal{G}_F \otimes_{Z_p} Q_p \to (\mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p/Z_p)^\Gamma \to H^1(\Gamma, \mathcal{G}_{F_{F_n}}) \to H^1(\Gamma, \mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p) \cdots
\]
But \(H^1(\Gamma, \mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p) = 0 \) since \((\mathcal{G}_{F_{F_n}} \otimes_{Z_p} Q_p)^\Gamma = \mathcal{G}_{F_n} \otimes_{Z_p} Q_p \) and \(H^1(\Gamma, \mathcal{G}_{F_n} \otimes_{Z_p} Q_p) = 0 \) for all \(n \) (where \(\Gamma_n = \text{Gal}(F_{F_n}/F_n) \) and \(G_n = \Gamma/\Gamma_n \)).

Now observing that \(\mathcal{G}_{F_n} \otimes_{Z_p} Q_p/Z_p = \tilde{\mathcal{E}}_{F_n} \otimes_{Z_p} Q_p/Z_p \) for all \(n \) and that \(H^1(\Gamma, \mathcal{G}_{F_{F_n}}) = H^1(\Gamma, \tilde{\mathcal{E}}_{F_{F_n}}) \) (since \(H^1(\Gamma, \mu_{p^\infty}) = H^2(\Gamma, \mu_{p^\infty}) = 0 \)) gives the short exact sequence we require.

Finally, we must show that \(H^1(\Gamma, \tilde{\mathcal{E}}_{F_{F_n}}) \) is finite. Of course, \(H^1(\Gamma, \tilde{\mathcal{E}}_{F_{F_n}}) = \text{colim}_n H^1(G_n, \tilde{\mathcal{E}}_{F_n}) \) since \(\tilde{\mathcal{E}}_{F_n} = (\tilde{\mathcal{E}}_{F_{F_n}})^\Gamma \). However, by Theorem 2.6
\[
H^1(G_n, \tilde{\mathcal{E}}_{F_n}) = \text{Ker}(\tilde{Cl}_F \to \tilde{Cl}_{F_n}).
\]
Thus \(H^1(\Gamma, \tilde{\mathcal{E}}_{F_{F_n}}) \subset \tilde{Cl}_F \). Since \(H^1(\Gamma, \tilde{\mathcal{E}}_{F_{F_n}}) \) is a torsion \(Z_p \)-module and \(\tilde{Cl}_F \) is a finitely-generated \(Z_p \)-module, the result follows. \(\square \)

As an immediate corollary, we have:
Corollary 2.8.
\[\text{Div}\left(\tilde{E}_{F,\infty} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p\right)^\Gamma = \tilde{E}_F \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p. \]

Theorem 2.9.
\[\text{Div}(\mathcal{N}^T) \subset \tilde{E}_F \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p \text{ with equality if and only if } \delta_F = 0. \]

Proof. M. Kolster has proven ([15], Theorem 2.3) that \(\mathcal{N} \subset \tilde{E}_{F,\infty} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p \) and thus taking \(\Gamma \)-invariants and then maximal divisible subgroups and using the last corollary gives the result. The statement about equality follows from the fact that \(\tilde{E}_F \otimes \mathbb{Q}_p/\mathbb{Z}_p \cong (\mathbb{Q}_p/\mathbb{Z}_p)^{2+\delta_F}. \)

Recall that \(D_F^{(1,n)} = \{ a \in F^\times | a \otimes 1/p^n \in \text{Div}(\mathcal{N}^T) \}. \)

Corollary 2.10. For any number field \(F \) containing \(\mu_p \), \(D_F^{(1,n)} \subset U_F^S \cdot (F^\times)^p^n \) with equality if and only if \(F \) has exactly one \(p \)-adic prime.

Proof. Since \(\tilde{E}_F \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p \subset U_F^S \otimes \mathbb{Q}_p/\mathbb{Z}_p \) with equality if \(F \) has one \(p \)-adic prime, it follows that
\[D_F^{(1,n)} \subset \{ a \in F^\times | a \otimes 1/p^n \in U_F^S \otimes \mathbb{Q}_p/\mathbb{Z}_p \} = U_F^S \cdot (F^\times)^p^n. \]

with equality when \(F \) has one \(p \)-adic prime.

Remark 2.11. In fact, Theorem 17 Iwasawa [9] implies that \(\mathcal{N} \subset U_{F,\infty}^S \otimes \mathbb{Q}_p/\mathbb{Z}_p \) and Lemma 7 of that paper implies that \(\text{Div}((U_{F,\infty}^S \otimes \mathbb{Q}_p/\mathbb{Z}_p)^\Gamma) = U_{F,\infty}^S \otimes \mathbb{Q}_p/\mathbb{Z}_p \), so that this corollary can also be derived directly from the results of Iwasawa.

Corollary 2.12. If the Gross conjecture holds for \((F,p) \), then there is a natural isomorphism
\[D_F^{[1,n]} \cong \tilde{E}_F/p^n. \]

Proof. Since \(\delta_F = 0 \), we have
\[\text{Div}(\mathcal{N}^T)[p^n] = (\tilde{E}_F \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)[p^n] = (\mathcal{G}_F \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)[p^n] = \mathcal{G}_F \otimes_{\mathbb{Z}_p} \left(\frac{1}{p^n} \mathbb{Z}_p/\mathbb{Z}_p \right) = \mathcal{G}_F/p^n \]
since \(\mathcal{G}_F \) is a free \(\mathbb{Z}_p \)-module. Thus there is a natural short exact sequence
\[0 \to \mu_{p^n}(F)/p^n \to D_F^{(1,n)}/(F^\times)^p^n \to \mathcal{G}_F/p^n \to 0. \]

On the other hand, since \((F^\times)^p^n \subset D_F^{(1,n)} \subset U_F^S(F^\times)^p^n \), there is a natural isomorphism
\[D_F^{[1,n]} = D_F^{(1,n)}/(F^\times)^p^n \cong (U_F^S \cap D_F^{(1,n)})/(U_F^S)^p^n. \]

Now let \(\epsilon \in U_F^S \cap D_F^{(1,n)}. \) Let \(\tilde{U}_F = (U_F^S \otimes \mathbb{Z}_p)/\mu_{p^n}(F) \) so that \(\mathcal{G}_F \subset \tilde{U}_F \) as a \(\mathbb{Z}_p \) direct summand. Then
\[\epsilon \otimes \frac{1}{p^n} \in \mathcal{G}_F \otimes_{\mathbb{Z}_p} \left(\frac{1}{p^n} \mathbb{Z}_p/\mathbb{Z}_p \right) \subset \tilde{U}_F \otimes_{\mathbb{Z}_p} \left(\frac{1}{p^n} \mathbb{Z}_p/\mathbb{Z}_p \right) \]
so that the image of $\epsilon \otimes 1$ in \tilde{U}_F/p^n lies in G_F/p^n. It follows that $\epsilon \otimes 1 \in \tilde{E}_F$ since $\mu_{p^n}(F) \otimes \mathbb{Z}_p \subset \tilde{E}_F$. Thus we obtain a natural well-defined homomorphism $\mathcal{D}_{F}^{[1,n]} \to \tilde{E}_F/p^n$ which is an isomorphism in view of the commutative diagram with exact rows

\[
\begin{array}{cccccc}
0 & \to & \mu_{p^n}(F)/p^n & \to & \mathcal{D}_{F}^{[1,n]} & \to & G_F/p^n & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \mu_{p^n}(F)/p^n & \to & \tilde{E}_F/p^n & \to & G_F/p^n & \to & 0 \\
\end{array}
\]

\[\square\]

Remark 2.13. This result (together with Corollary 2.14) implies and clarifies the result of Brauckmann, [3] (see also Kolster and Movahhedi, [16], Theorem 2.15 and Corollary 2.16) that $\mathcal{D}_{F}^{(i)}/(F\times)^p \cong \tilde{E}_{F\setminus p}$ for all $i \geq 2$ when m is sufficiently large and assuming the Gross conjecture for $(F\setminus p)$.

Corollary 2.14. Suppose that F has exactly one p-adic prime. Then $\mathcal{D}_{F}^{(i)} = U_F^S(F\times)^p$ for all $i \equiv 1 \pmod{p^{m_{n}(F)}}$.

If furthermore $m_{F} = 0$, then $U_F^S(F\times)^p \subset A_F$ and Leopoldt’s conjecture holds for the field F if and only if there is equality.

Remark 2.15. Suppose that F has only one prime dividing p. Then $\tilde{H}_F = 0$ if $\text{Cl}(F) \{p\} = 0$, since under these hypotheses, F_n/F is (totally) ramified at the unique p-adic prime and hence $\text{Cl}(F_n) \{p\} = 0$ for all n.

It can be shown furthermore (see Greenberg, [8], p1241) that if F is a CM-field with only one prime dividing p and if $\text{Cl}(F_+) \{p\} = 0$, then $\tilde{H}_F = 0$. If Vandiver’s conjecture holds for the prime p, then this latter condition holds for the cyclotomic field $F = \mathbb{Q}(\zeta_p)$.

Example 2.16. Thus, for example, we can deduce the following theorem of Kersten: ([14])

If n is sufficiently large and $F = \mathbb{Q}(\zeta_{p^n})$, then

$$A_F = U_F^S(F\times)^p = C_F.$$

(These fields have only one p-adic prime, so that $D_{F}^{(1)} = U_F^S \cdot (F\times)^p$ for all n. They are abelian fields and thus the Leopoldt conjecture hold for these fields and $D_{F}^{(0)} = A_F$ for all n. Finally, $m_{F} = 0$ for n sufficiently large.)

Example 2.17. Greenberg ([8]) proves that if $|\tilde{H}_F| = p$ and $\mu_{p^2} \not\subset F\times$ (so that $m = 1$), then $D_{F}^{(i)} = D_{F}^{(j)}$ if and only if $i \equiv j \pmod{p}$.

When $p = 3$, he shows that the field $F = \mathbb{Q}(\sqrt{257}, \sqrt{-3})$ satisfies this condition. There is a unique 3-adic prime in this field. Thus $D_{F}^{(1)} = U_F^S(F\times)^p$. Since F is an abelian number field, Leopoldt’s Conjecture holds for F and thus $A_F = D_{F}^{(0)}$. As observed above, $D_{F}^{(2)} = C_F$, the classical Tate kernel. Thus in
this case we can conclude that the groups A_F, $U^\otimes_F(F^\times)^p$ and C_F are pairwise distinct.

3. COHOMOLOGICAL INTERPRETATION OF THE GENERALISED TATE KERNELS

Let E be any subfield of K which is Galois over F. (We are primarily interested in the two cases $E = K$ and $E = \tilde{N}$.) Let $E \subset K$ be its dual with respect to the Kummer pairing. Let $G = \text{Gal}(E/F)$. Let $Y = \text{Gal}(E/F\infty)$ so that there is a group extension

$$1 \to Y \to G \to \Gamma \to 1. \quad (2)$$

Thus there is a perfect duality pairing $E \times Y \to \mu_{p\infty}$. Taking, the Γ-module structure into account, this gives a perfect pairing

$$E(i - 1) \times Y(-i) \to \mathbb{Q}_p/\mathbb{Z}_p$$

for all $i \in \mathbb{Z}$.

Lemma 3.1. For all $i \in \mathbb{Z}$, there are natural isomorphisms of Γ-modules

$$H^1(Y, \mathbb{Q}_p/\mathbb{Z}_p(i)) \cong E(i - 1).$$

Proof. Since Y acts trivially on $\mu_{p^n} \subset F^\times_\infty$ for all n, we have

$$H^1(Y, \mathbb{Q}_p/\mathbb{Z}_p(i)) = \text{Hom}(Y, \mathbb{Q}_p/\mathbb{Z}_p(i))$$

$$\cong \text{Hom}(Y(-i), \mathbb{Q}_p/\mathbb{Z}_p)$$

$$\cong E(i - 1).$$

□

Lemma 3.2. (a) For $i \neq 0$, there is a natural isomorphism

$$H^1(G, \mathbb{Q}_p/\mathbb{Z}_p(i)) \cong E(i - 1)^\Gamma.$$

(b) There is a (split) short exact sequence

$$0 \to H^1(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p) \to H^1(G, \mathbb{Q}_p/\mathbb{Z}_p) \to E(-1)^\Gamma \to 0.$$

Proof. (a) We begin with the observation (the ‘Lemma of Tate’), that when $i \neq 0$, $H^1(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p(i)) = H^2(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p(i)) = 0$. Thus, the sequence of terms of low degree of the spectral sequence associated to the extension (2) yields a natural isomorphism

$$H^1(G, \mathbb{Q}_p/\mathbb{Z}_p(i)) \cong H^1(Y, \mathbb{Q}_p/\mathbb{Z}_p(i))^\Gamma \cong E(i - 1)^\Gamma.$$

(b) When $i = 0$, we have $H^1(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p) \cong \mathbb{Q}_p/\mathbb{Z}_p$ and $H^2(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p) = 0$. Thus the sequence of terms of low degrees gives the short exact sequence

$$0 \to H^1(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p) \to H^1(G, \mathbb{Q}_p/\mathbb{Z}_p) \to H^1(Y, \mathbb{Q}_p/\mathbb{Z}_p)^\Gamma \to 0$$

which is split since $H^1(\Gamma, \mathbb{Q}_p/\mathbb{Z}_p)$ is divisible. □
Consider now the sequences of coefficient modules

\[
0 \rightarrow \mu_{p^n} \rightarrow \mathbb{Q}_p / \mathbb{Z}_p(i) \rightarrow \mathbb{Q}_p / \mathbb{Z}_p(i) \rightarrow 0
\]

and

\[
0 \rightarrow \mathbb{Z}_p(i) \rightarrow \mathbb{Z}_p(i) \rightarrow \mu_{p^n} \rightarrow 0.
\]

Let \(\alpha^n_G\) be the composite homomorphism

\[
H^1(G, \mu_{p^n}^\otimes i) \rightarrow H^1(G, \mathbb{Q}_p / \mathbb{Z}_p(i))[p^n] \rightarrow \mathcal{E}(i - 1)^\Gamma[p^n]
\]

associated to the sequence (3). Thus \(\alpha^n_G\) is surjective.

Let \(j_n\) be the injective homomorphism

\[
H^1(G, \mathbb{Z}_p(i))/p^n \rightarrow H^1(G, \mu_{p^n}^\otimes i)
\]

associated to the sequence (4).

Theorem 3.3. The image of \(j_n\) is \((\alpha^n_G)^{-1}(\text{Div}(\mathcal{E}(i - 1)^\Gamma)[p^n])\) and there is a natural short exact sequence

\[
0 \rightarrow \mu_{p^\infty}(F_i)^\otimes i/p^n \rightarrow H^0(G, \mathbb{Q}_p / \mathbb{Z}_p(i))/p^n \rightarrow \text{Div}(\mathcal{E}(i - 1)^\Gamma)[p^n] \rightarrow 0
\]

where we define \(F_{-i} = F_i\) for \(i > 0\) and \(\mu_{p^\infty}(F_0)^\otimes 0/p^n := \mathbb{Z}_p/p^n\).

Proof. Bringing the coefficient sequence

\[
0 \rightarrow \mathbb{Z}_p(i) \rightarrow \mathbb{Q}_p(i) \rightarrow \mathbb{Q}_p / \mathbb{Z}_p(i) \rightarrow 0
\]

into play gives us the following commutative diagram with exact rows and columns:

The statement about the image of \(j_n\) follows by diagram-chasing.

For the second statement, observe first that for \(i \neq 0\), \(H^0(G, \mathbb{Q}_p / \mathbb{Z}_p(i)) = \mu_{p^\infty}(F_i)^\otimes i\).
When $i = 0$, $H^0(G, \mathbb{Q}_p/\mathbb{Z}_p)/p^n = 0$ and $H^1(G, \mathbb{Z}/p^n) \cong H^1(G, \mathbb{Q}_p/\mathbb{Z}_p)[p^n]$. However, taking the maximal divisible subgroups and then p^n-torsion subgroups of the split-exact sequence of Lemma 3.2(b), now gives a short exact sequence

$$0 \to \mathbb{Z}/p^n \to H^1(G, \mathbb{Z}/p^n) \to \mathcal{E}(-1)^n[p^n] \to 0.$$

\[\square\]

Lemma 3.4. If either $\mu_{p^n} \subset F$ or $i \not\equiv 0 \pmod{p}$, the restriction map induces an isomorphism

$$H^1(F, \mu_{p^n}^\otimes i) \cong H^1(F_n, \mu_{p^n}^\otimes i)^G_n$$

Proof. If $\mu_{p^n} \subset F$, then $F = F_n$ and $G_n = 0$ and the statement is trivial. Otherwise $G_n \neq 0$.

Let G_F denote the absolute Galois group of F. The sequence of terms of low degree associated to the extension

$$0 \to G_{F_n} \to G_F \to G_n \to 0$$

has the form

$$0 \to H^1(G_n, \mu_{p^n}^\otimes i) \to H^1(F, \mu_{p^n}^\otimes i) \to H^1(F_n, \mu_{p^n}^\otimes i)^G_n \to H^2(G_n, \mu_{p^n}^\otimes i) \ldots$$

Because $i \not\equiv 0 \pmod{p}$ the map $G_n \to \text{Aut}(\mu_{p^n}^\otimes i) = (\mathbb{Z}/p^n)^\times$ is injective. Thus the proof concludes with the observation that if M is cyclic of order p^n and if H is a nonzero subgroup of $(\mathbb{Z}/p^n)^\times = \text{Aut}(M)$ then $H^1(H, M) = H^2(H, M) = 0$. (On the other hand, if $p|i$ then the map $G_n \to \text{Aut}(\mu_{p^n}^\otimes i)$ has a nonzero kernel and it is then easy to see that $H^1(G_n, \mu_{p^n}^\otimes i) \neq 0$.)

Recall that Kummer Theory gives a natural isomorphism $\delta : F^\times/(F^\times)^{p^n} \cong H^1(F, \mu_{p^n})$ and hence for all $i \in \mathbb{Z}$ there are natural isomorphisms $H^1(F_n, \mu_{p^n}^\otimes i) \cong H^1(F_n, \mu_{p^n}) \otimes \mu_{p^n}^\otimes (i - 1) \cong F_n^\times / (F_n^\times)^{p^n} (i - 1)$.

Corollary 3.5. Let $\tilde{H} = \text{Gal}(\tilde{N}/F)$. If either $p \nmid i$ or $\mu_{p^n} \subset F$ the image of the natural injective map

$$H^1(\tilde{H}, \mathbb{Z}_p(i))/p^n \to H^1(\tilde{H}, \mu_{p^n}^\otimes i) \to H^1(F, \mu_{p^n}^\otimes i) \to (F_n^\times / (F_n^\times)^{p^n} (i - 1)$$

is $D_{F, n}^{i,n}$.

Proof. Let $H = \text{Gal}(K/F)$. We begin with the observation that the natural map induces an isomorphism $H^1(H, \mu_{p^n}^\otimes i) \cong H^1(F, \mu_{p^n}^\otimes i) = H^1(G_F, \mu_{p^n}^\otimes i)$. To see this, first note that $H^1(F, \mu_{p^n}^\otimes i) = H^1(F_n, \mu_{p^n}^\otimes i)^G_n$ and $H^1(H_n, \mu_{p^n}^\otimes i) = H^1(H, \mu_{p^n}^\otimes i)^G_n$ (where $H_n = \text{Gal}(K/F_n)$) since $H^1(G_n, \mu_{p^n}^\otimes i) = H^1(G_n, \mu_{p^n}^\otimes i) = 0$. But we have $H_n^\ab/p^n = G_n^\ab/p^n$ and thus $H^1(H_n, \mu_{p^n}^\otimes i) = \text{Hom}(H_n, \mu_{p^n}) = \text{Hom}(H_n^\ab/p^n, \mu_{p^n}^\otimes i) = \text{Hom}(G_n^\ab/p^n, \mu_{p^n}^\otimes i) = H^1(F_n, \mu_{p^n}^\otimes i)$.

The result then follows from the commutative diagram

$$
\begin{array}{cccc}
H^1(\tilde{H}, \mathbb{Z}_p(i))/\rho^n & \xrightarrow{\alpha^\rho_n} & \text{Div}(\mathcal{N}(i - 1)^F)[p^n] \\
\downarrow j_n & & & \downarrow \\
H^1(\tilde{H}, \mu_{p^n}) & \xrightarrow{\alpha^\rho_n} & \mathcal{N}(i - 1) & \downarrow \\
\downarrow & & & \downarrow \\
H^1(H, \mu_{p^n}) & \xrightarrow{\alpha^\rho_n} & K(i - 1) & \downarrow \\
\downarrow \cong & & & \\
H^1(F, \mu_{p^n}) & \xrightarrow{\cong} & (F_n^\times / (F_n^\times)^p(i - 1))^{G_n} \\
\end{array}
$$

Corollary 3.6. If either $i \not\equiv 0 \pmod{p}$ or $\mu_{p^n} \subset F$, there is a natural short exact sequence

$$0 \to \mu_{p^n}(F_i)^\otimes / p^n \to D_F^{[i,n]} \to \text{Div}(\mathcal{N}(i - 1)^F)[p^n] \to 0.$$

Lemma 3.7. Suppose that $\text{Div}(K(i - 1)^F) = \text{Div}(\mathcal{N}(i - 1)^F)$ (i.e. suppose that Schneider’s conjecture holds for i). Let E/F be a Galois extension containing \tilde{N} and let $\tilde{G} = \text{Gal}(\tilde{E}/F)$. Suppose that either $\mu_{p^n} \subset F$ or $p \nmid i$. Then the natural restriction map induces an isomorphism

$$H^1(\tilde{H}, \mathbb{Z}_p(i))/\rho^n \cong H^1(\tilde{G}, \mathbb{Z}_p(i))/\rho^n.$$

Proof. Let E/F be the largest sub-extension of K/F which is contained in \tilde{E}/F. Let $G = \text{Gal}(E/F)$. I claim that the restriction map induces an isomorphism

$$H^1(G, \mathbb{Z}_p(i))/\rho^n \cong H^1(\tilde{G}, \mathbb{Z}_p(i))/\rho^n.$$

To see this observe that in the commutative exact diagram

$$
\begin{array}{cccc}
0 & \to & H^1(G, \mathbb{Z}_p(i))/\rho^n & \xrightarrow{\rho} H^1(G, \mu_{p^n}) \\
\downarrow \text{res} & & & \downarrow \tau \\
0 & \to & H^1(\tilde{G}, \mathbb{Z}_p(i))/\rho^n & \xrightarrow{\psi} H^1(\tilde{G}, \mu_{p^n}) \\
\end{array}
$$

τ is injective and it is therefore sufficient to show that ρ is an isomorphism. Let $K_0 = \ker(\tilde{G} \to G)$. Then ρ fits into the exact sequence

$$0 \to H^1(G, \mu_{p^n}) \xrightarrow{\rho} H^1(\tilde{G}, \mu_{p^n}) \xrightarrow{\psi} H^1(K_0, \mu_{p^n})$$

and it suffices to show that ψ is the zero map. Let $G_0 = \ker(\tilde{G} \to \Gamma)$. Then $K_0 \subset G_0$ and G_0/K_0 is the largest abelian pro-p quotient of G_0. The map ψ factors through $H^1(G_0, \mu_{p^n}) = \text{Hom}(G_0^{ab}/p^n, \mu_{p^n}) \to \text{Hom}(K_0, \mu_{p^n}) = \{0\}.$
H^1(K_0, \mu_p^{\otimes i}) which is the zero map since \(K_0 \subset \text{Ker}(G_0 \to G_0^\ab/p^n)\). This proves the claim.

Let now \(E\) be the dual of \(Y = \text{Gal}(E/F_\infty)\). Thus \(N \subset E \subset K\) and hence \(\text{Div}(\mathcal{N}(i-1)^F) = \text{Div}(\mathcal{E}(i-1)^F) = \text{Div}(\mathcal{N}(i-1)^F)\) so that we get the commutative diagram with exact rows

\[
\begin{array}{ccccccccc}
0 & \to & \mu_p^\infty(F_i)^{\otimes i}/p^n & \to & H^1(\tilde{H}, \mathbb{Z}_p(i))/p^n & \to & \text{Div}(\mathcal{N}(i-1)^F)[p^n] & \to & 0 \\
& & \downarrow & & \downarrow\text{res} & & \downarrow\cong & & \\
0 & \to & \mu_p^\infty(F_i)^{\otimes i}/p^n & \to & H^1(G, \mathbb{Z}_p(i))/p^n & \to & \text{Div}(\mathcal{E}(i-1)^F)[p^n] & \to & 0 \\
\end{array}
\]

Now let \(G^S_F\) denote the Galois group of the maximal algebraic extension of \(F\) which is unramified outside \(S\).

Corollary 3.8. Let \(i \geq 2\) and suppose that either \(\mu_p^n \subset F\) or \(p \nmid i\). There are natural isomorphisms

\[D_F^{[i:n]} \cong K^{\text{ét}}_{2i-1}(\mathcal{O}_F^S)/p^n.\]

Proof. As remarked above, \(\text{Div}(\mathcal{N}(i-1)^F) = \text{Div}(\mathcal{K}(i-1)^F)\) for all \(i \geq 2\). Furthermore, the étale \(K\)-theory groups \(K^{\text{ét}}_{2i-1}(\mathcal{O}_F^S)\) are isomorphic to the groups \(H^1(G_F^S, \mathbb{Z}_p(i))\) (Dwyer and Friedlander, [5], Proposition 5.1).

Compare this last result with the identification of \(D_F^{[1:n]}\) in Corollary 2.12 above.

4. Capitulation Kernels: General Results

Let \(E/F\) be a Galois extension of number fields, with Galois group \(G\). As in [1], \(f_i\) \((i \geq 2)\) denotes the natural functorial homomorphism \(K^{\text{ét}}_{2i-2}(\mathcal{O}_F^S) \to K^{\text{ét}}_{2i-2}(\mathcal{O}_E^S)^G\).

From [1], Propositions 1.1 (which is based on the work of B. Kahn, [13]) and the remarks that follow it, we have:

Theorem 4.1. Let \(E/F\) be cyclic of degree \(p^n\). Then \(|\text{Ker}(f_i)| = |\text{Coker}(f_i)|\) and

\[\text{Coker}(f_i) \cong (K^{\text{ét}}_{2i-1}(\mathcal{O}_F^S)/p^n)/N_{E/F}(K^{\text{ét}}_{2i-1}(\mathcal{O}_E^S)/p^n)\] for all \(i \geq 2\).

Corollary 4.2. Let \(E/F\) be cyclic of degree \(p^n\). Suppose that \(\mu_p^n \subset F\) or that \(p\) does not divide \(i\). Then

\[|\text{Ker}(f_i)| = |\text{Coker}(f_i)| = [D_F^{[n,i]} : N_{E/F}(D_E^{[n,i]})].\]
Proof. We have a commutative diagram

\[
\begin{array}{c}
K^\text{ét}_{2i-1}(\mathcal{O}_E^S)/p^n \xrightarrow{\cong} D_E^{[i,n]} \\
\downarrow N_{E/F} \quad \downarrow N_{E/F}
\end{array}
\]

In particular, we get the following result of Assim and Movahhedi:

Corollary 4.3. Let E/F be cyclic of degree p^n. Then for all $i \geq 2$,

\[
\text{Coker}(f_i) \cong D_F(i)/\left(N_{E/F}D_E^i(F^\times)p\right).
\]

Proof. When $n = 1$, $D_F^{[i,1]} = D_F^i/(F^\times)p$. □

Corollary 4.4. Let E/F be cyclic of degree p^n. Suppose that the Gross conjecture holds for (E,p). Let $m_n = \max(m_n(F), m_n(E))$. Then

\[
|\Ker(f_i)| = |\text{Coker}(f_i)| = [\tilde{E}_F : N_{E/F}(\tilde{E}_E)] \text{ for all } i \equiv 1 \pmod{p^m}.
\]

If E has only one p-adic prime, then

\[
|\Ker(f_i)| = |\text{Coker}(f_i)| = [U^S_F : N_{E/F}(U^S_F)] \text{ for all } i \equiv 1 \pmod{p^m}.
\]

Proof. By Corollary 2.12 we have a commutative diagram

\[
\begin{array}{c}
K^\text{ét}_{2i-1}(\mathcal{O}_E^S)/p^n \xrightarrow{\cong} D_E^{[i,n]} \xrightarrow{\cong} D_E^{[i,n]}(i-1) \xrightarrow{\cong} \tilde{E}_E/p^n(i-1) \\
\downarrow N_{E/F} \quad \downarrow N_{E/F} \quad \downarrow N_{E/F}(i-1) \quad \downarrow N_{E/F}(i-1)
\end{array}
\]

and the result follows since $p^n\tilde{E}_F \subset N_{E/F}(\tilde{E}_E)$ and $\mu_{p^n(i-1)}$ is a trivial Galois-module. □

5. **Capitulation Kernels: Tamely Ramified p-extensions**

For a number field F (containing μ_p) we will set

\[
B_F := \{a \in F^\times | F(\sqrt[p]{a})/F \text{ is unramified outside } p\}.
\]

Thus B_F is a subgroup of F^\times containing $U_F^S \cdot (F^\times)^p$ and A_F. It can also be shown that $C_F \subset B_F$. More generally, we have:

Lemma 5.1. $D_F^i \subset B_F$ for all $i \in \mathbb{Z}$.

Proof. Let $a \in D_F^i$. Let ζ_p be a pth root of unity in F. Then $a \otimes \zeta_p^{\otimes(i-1)} \in \text{Div}(\mathcal{N}(i-1)^\Gamma) \subset \mathcal{M}(i-1)$. Thus

\[
a \otimes \frac{1}{p} \in \mathcal{M}
\]
and hence $\sqrt{a} \in M$. It follows that $F(\sqrt{a})$ is unramified outside p since M/F is ramified only at p-adic primes.

Suppose now that W is any subgroup of B_F containing $(F^\times)^p$. Let $F_W = F(\sqrt[\prime]{W})$ and $G_W = \text{Gal}(F_W/F)$. Thus, Kummer theory gives a perfect pairing of \mathbb{F}_p-vectorspaces:

$$G_W \times W/(F^\times)^p \rightarrow \mu_p$$

$$(\sigma, w) \mapsto \sigma(\sqrt{w})/\sqrt{w}.$$

Let E/F be a cyclic degree p extension. Let $S_{\text{ram}}(E/F)$ be the set of primes of F which ramify in this extension.

Let $H_W = H_W(E/F)$ be the subspace of G_W spanned by the set

$$\{\sigma_v | v \in S_{\text{ram}}(E/F) \setminus S_p(F)\}$$

(where σ_v denotes the Frobenius of v in F_W/F).

Let $t_W = \dim_{\mathbb{F}_p}(H_W)$.

Theorem 5.2. Suppose that E/F is a cyclic extension of degree p and that W is a subgroup of B_F containing $(F^\times)^p$. Then

$$[W : W \cap N_{E/F}(E^\times)] \geq p^{t_W}.$$

with equality if F has exactly one p-adic prime.

Proof. We follow closely the argument of Assim and Movahhedi, (11) which deals with the case $W = A_F$.

In fact we will show that the complement, H_W^\perp, of H_W with respect to the Kummer pairing contains $(W \cap N_{E/F}(E^\times))/(F^\times)^p$ (and hence the dual of H_W is a quotient of $W/W \cap N_{E/F}(E^\times)$). This is equivalent to the statement

$$\sigma(\sqrt{w}) = \sqrt{w}$$

for all $\sigma \in H_W \implies w \in N_{E/F}(E^\times)$

which, in turn, is equivalent to the statement

$$\exists v \in S_{\text{ram}}(E/F) \setminus S_p(F) \text{ with } \sigma_v(\sqrt{w}) \neq \sqrt{w} \implies w \notin N_{E/F}(E^\times)$$

and hence to the statement

$$\exists v \in S_{\text{ram}}(E/F) \setminus S_p(F) \text{ with } v \text{ inert in } F(\sqrt{w})/F \implies w \notin N_{E/F}(E^\times).$$

Suppose, then, that there is a non-p-adic prime v which is inert in $K = F(\sqrt{w})$ and ramified in E/F. By Kummer Theory, $E = F(\sqrt{b})$ for some $b \in F^\times$. Then K_v/F_v is an unramified cyclic extension and hence $N_{K_v/F_v}(K_v^\times) = U_{F_v} \cdot (F^\times)^p$. But $b \notin U_{F_v} \cdot (F^\times)^p$ since $F_v(\sqrt{b})/F_v = E_u/F_v$ is ramified. It follows that the Hilbert symbol $(\frac{u,b}{v})_p$ is nontrivial, and hence $w \notin N_{E_u/F_v}(E_v^\times)$.

Conversely, suppose that $|S_p(F)| = 1$ and that $w \notin N_{E/F}(E^\times)$. We must show that there is a non-p-adic prime ramifying in E but inert in $F(\sqrt{w}) = K$.
By Hasse’s norm theorem, there is a finite prime \(v_0 \) such that \(w \not\in N_{E_{w_0}/F_{w_0}}(E_{w_0}^\times). \) Hence
\[
\left(\frac{w,b}{v_0} \right)_p \neq 1.
\]
By Artin’s reciprocity law (and the fact that \(|S_p| = 1 \)) there exists \(v \not\in S_p \) with
\[
\left(\frac{w,b}{v} \right)_p \neq 1.
\]
Thus \(w \not\in N_{E_u/F_v}(E_u^\times). \) In particular, \(v \) does not split in \(E. \)

Let \(K = F(\sqrt[p]{w}). \) Then \(v \) does not split in \(K \) either. So \(K_v/F_v \) is a cyclic degree \(p \) extension. But since \(w \) is a norm from \(K_v, \) we have \(K_v \neq K_u. \) But \(K_u/F_v \) is an unramified extension since \(v \not\in S_p(F) \) and \(w \in B_F, \) and hence is the unique cyclic degree \(p \) unramified extension of \(F_v. \) It follows that \(E_u/F_v \) is ramified; i.e., \(v \) ramifies in \(E \) but is inert in \(K \) as required.

\(\Box \)

Corollary 5.3. Suppose that \(E/F \) is a cyclic degree \(p \) extension. Let \(m = \max(m_F, m_E). \) Fix \(j \in \mathbb{Z} \) and let \(t_j := t_{D_F^{(j)}}(E/F). \) Then
\[
|\text{Ker}(f_i)| \geq p^{i} \text{ for all } i \equiv j \pmod{p^m} (i \geq 2).
\]

Proof. We have \(D_F^{(i)} = D_F^{(j)} \) for all \(i \) with \(i \equiv j \pmod{p^m}. \) Thus, for \(i \geq 2 \) and \(i \equiv j \pmod{p^m} \) we thus have
\[
|\text{Ker}(f_i)| = [D_F^{(j)} : N_{E/F}(D_E^{(j)})(F^\times)^p] \\
= [D_F^{(j)} : N_{E/F}(D_E^{(j)})(F^\times)] \\
\geq [D_F^{(j)} : D_E^{(j)} \cap N_{E/F}E^\times] \\
\geq p^{i}.
\]

\(\Box \)

Corollary 5.4. Suppose that \(E/F \) is a cyclic degree \(p \) extension and that \(F \) has exactly one \(p \)-adic prime. Let \(m = \max(m_F, m_E). \) Then
\[
|\text{Ker}(f_i)| \geq p^{t} \text{ for all } i \equiv 1 \pmod{p^m} (i \geq 2)
\]
where \(t = t_{U_F^S}(E/F). \)

Remark 5.5. Observe that given a subgroup, \(W, \) of \(B_F, \) containing \((F^\times)^p, \)
\(t_W = t_W(E/F) \) is the maximal size of a set \(\{v_1, \ldots, v_t\} \) of non-\(p \)-adic primes ramifying in \(E \) and such that \(\sigma_{v_1}, \ldots, \sigma_{v_t} \) is linearly independent in \(\text{Gal}(F(\sqrt[p]{W})/F). \)
In the case \(W = A_F, F(\sqrt[p]{W}) = \tilde{F}_1, \) the compositum of the first layers of the \(\mathbb{Z}_p \)-extensions of \(F, \) and the set \(\{v_1, \ldots, v_t\} \cup S_p \) is said to be primitive for \((F, p) \) (see [7]).

For other subgroups \(W \) of \(B_F \) (eg, \(W = U_F^S, W = C_F, W = D_F^{(i)} \) any \(i, \) etc) we can use the term \(W \)-primitive for \((F, p) \). Thus the number \(t \) in the
last corollary is the maximal number of tamely-ramified primes in E/F which belong to a $U_{S_F}^+$-primitive set for (F,p).

Corollary 5.6. Suppose that Leopoldt’s conjecture holds for (F,p). Suppose that E/F is cyclic of degree p. Let $m = \max(m_F, m_E)$. Then

$$|\text{Ker}(f_i)| \geq p^t$$

for all $i \equiv 0 \pmod{p^m}$ ($i \geq 2$)

where t denotes the maximal number of tamely-ramified primes in E/F belonging to a primitive set for (F,p).

Proof. Since Leopoldt’s conjecture holds, we have $D_F^{(0)} = A_F$. □

6. CAPITULATION KERNELS: WILDLY RAMIFIED EXTENSIONS

The results of the last section give no information about the situation in which there are no tamely-ramified primes. The lower bounds obtained depend on the index $[D_F^{(i)} : D_F^{(i)} \cap N_{E/F}(E^\times)]$. However, when there is no tame ramification we have:

Lemma 6.1. Suppose that the field F has exactly one p-adic prime and that E/F is a cyclic degree p extension in which all non-p-adic primes are unramified. Then $B_F \subset N_{E/F}(E^\times)$.

Proof. Taking $W = B_F$ in Theorem 5.2. Then $t_W = 0$ since $S_{\text{ram}}(E/F) \setminus S_p(F) = \emptyset$. Thus $[B_F : B_F \cap N_{E/F}(E^\times)] = 1$. □

Corollary 6.2. Suppose that the field F has exactly one p-adic prime and that E/F is a cyclic degree p extension in which all non-p-adic primes are unramified. Then $D_F^{(i)} \subset N_{E/F}(E^\times)$ for all $i \in \mathbb{Z}$.

Vandiver’s conjecture implies that the groups $K_{2i-2}^G(S_F)$ satisfy Galois descent in the p-cyclotomic tower of Q:

Lemma 6.3. Let p be a prime number for which Vandiver’s conjecture is true. Let $n \geq 1$ and let $F = Q(\zeta_{p^n})$ and $E = Q(\zeta_{p^{n+1}})$. Then

$$\text{Ker}(f_i) = \text{Coker}(f_i) = 1 \text{ for all } i \geq 2.$$

Proof. The assumption (Vandiver’s conjecture) implies that p does not divide $|\text{Cl}^S(F_+)|$ or $|\text{Cl}^S(E_+)|$. It follows that $\tilde{H}_F = \tilde{H}_E = 0$ (see Remark 2.15). Thus $m = \max(m_F, m_E) = 0$.

However, the fact that p does not divide the S-class number of F_+ or E_+ implies that $U_{E_F}^S/(U_{F_F}^S)^p$ and $U_{E_E}^S/(U_{E_E}^S)^p$ are generated by roots of unity and units of the form $1 - \zeta^a$ where ζ is a root of unity (this follows from the fact that $[U_{F_+} : C(F_+)] = |\text{Cl}^S(F_+)|$ where $C(F_+)$ is the subgroup of cyclotomic units; see Washington, [22], Theorem 8.2).

Since $N_{E/F}(\zeta_{p^{n+1}}^a) = \zeta_{p^n}^a$ and $N_{E/F}(1 - \zeta_{p^{n+1}}^a) = 1 - \zeta_{p^n}^a$, it follows that $N_{E/F}(U_{E_E}^S) = U_{F_F}^S$. □
On the other hand, Greenberg’s results easily provide examples of p-cyclo-
tomic extensions for which the kernel and cokernel of the maps f_i are nontrivial
for all i:

Example 6.4. Suppose that $|\tilde{H}_F| = p$ and $\mu_{p^2} \not\subset F^\times$. Thus $m_F = 1$ and,
by Greenberg’s work, $D_F^{(i)} = D_F^{(j)}$ if and only if $i \equiv j \pmod{p}$. Note that it
follows, of course, that $D_F^{(i)} \not\subset D_F^{(j)}$ whenever $i \not\equiv j \pmod{p}$, since $(F^\times)^p \subset D_F^{(i)}$
and $\dim_{\mathbb{F}_p} \left(D_F^{(i)}/(F^\times)^p\right) = 1 + r_2$ for all i.

Now let $E = F(\mu_{p^2})$. Then $\tilde{H}_E = \tilde{H}_F \implies |\tilde{H}_E| = p$, but $\mu_{p^2} \subset E^\times$. Thus,
$m_E = 0$ and so $D_E^{(i)} = D_E^{(j)}$ for all $i, j \in \mathbb{Z}$.

It follows that, for any i, $N_{E/F}(D_E^{(i)}) = N_{E/F}(D_E^{(j)}) \subset D_F^{(j)}$ for all j and hence

$$N_{E/F}(D_E^{(i)}) \subset \cap_{j=0}^{p-1} D_F^{(j)} \neq D_F^{(i)}$$

for all i. Thus, for all $i \geq 2$ we have

$$|\text{Ker}(f_i)| = |\text{Coker}(f_i)| \geq [D_F^{(i)} : \cap_{j=0}^{p-1} D_F^{(j)}] \geq p.$$

Let E/F be a cyclic extension of degree p with Galois group G. Let $H(E/F) = H_{U_F^S}(E/F)$ be the
subspace of $G_{U_F^S} = \text{Gal}(\sqrt[p]{U_F^S}/F)$ spanned by the Frobeni-
us automorphisms of those non-p-adic primes which ramify in E/F. Let
$H(E/F)^*$ be the dual vectorspace.

Let f_1^S denote the natural functorial homomorphism $A^S(F) \to \left(A^S(E)\right)^G$.

Theorem 6.5. Suppose that E has exactly one p-adic prime. Let $m = \max(m_F, m_E)$.
Let t be the number of non-p-adic primes of F which ramify in E.

Then for all $i \equiv 1 \pmod{p^m}$ with $i \geq 2$, there is a exact sequence

$$0 \to \text{Ker}(f_1^S) \to H^1(G, U_F^S) \to (\mathbb{Z}/p\mathbb{Z})^t \to \text{Coker}(f_1^S) \to \text{Coker}(f_i) \to H(E/F)^* \to 0.$$

Proof. Let f_1^t be the functorial homomorphism $\text{Cl}^S(F) \to \left(\text{Cl}^S(E)\right)^G$. Since
E/F has degree p, we have $\text{Ker}(f_1^S) = \text{Ker}(f_1^t)$ and $\text{Coker}(f_1^S) = \text{Coker}(f_1^t)$.

The first part of the sequence is the well-known formula of Chevalley: Let
E/F be a Galois extension of number fields. Let $P_F^S = F^\times/U_F^S$ and let I_E^S be
the group of S-fractional ideals of F. By considering the natural map from
the sequence $1 \to P_F^S \to I_E^S \to \text{Cl}^S(F) \to 1$ to the corresponding sequence for E, by taking G-invariants and then
applying the snake lemma, one obtains an exact sequence

$$0 \to \text{Ker}(f_1^S) \to (P_F^S)^G/P_F^S \to \oplus_{v \in S} \mathbb{Z}/e_v \mathbb{Z} \to \text{Coker}(f_1^S) \to H^1(G, P_F^S) \to 0.$$

The surjectivity of the last map follows from the fact that I_E^S is a permutation
$\mathbb{Z}[G]$-module, and thus $H^1(G, I_E^S) = 0$ by Shapiro’s Lemma. Hilbert’s Theorem
90 gives a natural isomorphism $(P_F^S)^G/P_F^S \cong H^1(G, U_F^S)$.

Now, by Hilbert’s Theorem 90,

$$H^1(G, P_F^S) \cong \text{Ker}(H^2(G, U_F^S) \to H^2(G, E^\times)).$$
Since G is cyclic, the right-hand side is just
\[
\text{Ker}(U_S^F/N_{E/F}(U_S^E)) \to F^\times/N_{E/F}(E^\times) = \frac{U_S^F \cap N_{E/F}(E^\times)}{N_{E/F}(U_S^E)}.
\]
However, by our assumptions on E, F and m, we have $D_F^{(1)} = U_S^F(F^\times)^p$, $D_E^{(i)} = U_S^E(E^\times)^p$ and hence $D_F^{(i)} = U_S^F(F^\times)^p$ and $D_E^{(i)} = U_S^E(E^\times)^p$ whenever $i \equiv 1 \pmod{p^m}$ and thus
\[
\text{Coker}(f_i) \cong D_F^{(i)}/N_{E/F}(D_E^{(i)})(F^\times)^p = U_S^F(F^\times)^p/N_{E/F}(U_S^E)(F^\times)^p \cong U_S^F/N_{E/F}(U_S^E)
\]
whenever $i \equiv 1 \pmod{p^m}$. Finally, by (the proof of) Theorem 5.2 above, the Kummer pairing induces a natural isomorphism
\[
\frac{U_S^F}{U_S^F \cap N_{E/F}(E^\times)} \cong H(E/F)^*.
\]

\[\square\]

Corollary 6.6. Let E/F be cyclic of degree p. Suppose that E has only one p-adic prime and that no non p-adic primes ramify in E/F. Let $m = \max(m_F, m_E)$. Then
\[
\text{Coker}(f_i) \cong \text{Coker}(f_1^S) \quad \text{for all } i \geq 1, \quad i \equiv 1 \pmod{p^m}.
\]

Remark 6.7. If E or F have more than one p-adic prime then we need to replace U_S^F by \tilde{E}_F, of course, and the S-class group $A_S(F)$ should be replaced by the logarithmic class group \tilde{Cl}_F. In these circumstances there is an analogous exact sequence relating the cohomology of the logarithmic units to the kernel and cokernel of the natural functorial homomorphism
\[
f_1 : \tilde{Cl}_F \to \left(\tilde{Cl}_E\right)^G.
\]
For details of this sequence and of the logarithmic class group, see the article of Jaulent, [12]. However, the cohomology of the group \tilde{D}_l_E of logarithmic divisors is somewhat more complicated than the cohomology of the group I_S^E of S-divisors.

However, in the particular case of a finite layer of the p-cyclotomic extension of F we have:

Theorem 6.8. Let $E = F_k$ for some $k \geq 2$. Suppose that the Gross conjecture holds for (E, p). Let $p^n = [F_k : F]$ and let $m = \max(m_n(F), m_n(E))$. Then
\[
|\text{Ker}(f_i)| = |\text{Ker}(f_1^S)| \quad \text{for all } i \equiv 1 \pmod{p^m}.
\]

Proof. Let $G = \text{Gal}(E/F)$. By Corollary 4.4 we have
\[
\text{Coker}(f_i) \cong \tilde{E}_F/N_{E/F}(\tilde{E}_E) = H^2(G, \tilde{E}_E).
\]
Now use Theorem 2.6 \[\square\]

Lemma 6.9. Let E/F be a cyclic extension with Galois group G in which at least one prime ramifies totally. Then $|\text{Coker}(f_1^S)| \geq |\text{Ker}(f_1^S)|$.

Thus μ_p-ramifies at the unique E/F prime ideal p with one prime ideal dividing p.

We consider the following situation: the field E is a CM-field with the property that each p-adic prime is stable under complex conjugation J. Suppose that E/F is cyclic degree p ramified at the p-adic prime and at no other prime. Let $m = \max(m_F, m_E)$. Then

$$|\text{Ker}(f_i)| \geq |\text{Ker}(f_i^S)| = |H^1(G, U_{E}^S)|$$

for all $i \equiv 1 \pmod{p^m}$, $i \geq 2$.

Proof. The first inequality follows from Lemma 6.9 and Corollary 6.6 above. The second equality follows from the proof of Theorem 6.5.

Example 6.11. We consider the following situation: the field F is a CM-field with one prime ideal dividing p. We will assume further that $\text{Cl}(F_+\{p\}) = 0$. Furthermore E/F is cyclic degree p extension of CM-fields which is unramified at all primes not dividing p. (It follows therefore that E/F is cyclic degree p ramified at the unique p-adic prime.) Finally, we will suppose that $\mu_{p^\infty}(E) = \mu_{p^\infty}(F)$; i.e. E/F is not a p-cyclotomic extension.

In this situation $\tilde{H}_F = \tilde{H}_E = 0$, so that $m_F = m_E = 0$ (see Remark 2.15). Thus $|\text{Ker}(f_i)| \geq |\text{Ker}(f_i^S)|$ for all $i \geq 2$.

Let $G = \text{Gal}(E/F)$ and let H be the group of order 2 generated by complex conjugation J. If M is a H-module on which 2 is invertible, let

$$e_+ = \frac{1 + J}{2}, \quad e_- = \frac{1 - J}{2} \in \text{End}(M).$$

So $M = e_+(M) \oplus e_-(M)$.

Now $\text{Ker}(f_i^S) \cong H^1(G, U_{E}^S)$. Now $\text{Cl}(F_+\{p\}) = e_+(\text{Cl}(F)\{p\}) = 0$ so that $e_+(A_S(F)) = 0$ and hence $\text{Ker}(f_i^S) = e_-(\text{Ker}(f_i^S))$. It follows that $H^1(G, U_{E}^S) = e_-(H^1(G, U_{E}^S))$.

However, we observe the following: If E/F is an odd-degree Galois extension of CM-fields with the property that each p-adic prime is stable under complex conjugation then $e_-(H^1(G, U_{E}^S)) = H^1(G, \mu(E)/\mu_{2\infty}(E))$. **Proof:** (cf. Theorème 6 of [10]) For an abelian group A, let $A[1/2] = A \otimes \mathbb{Z}[1/2]$. Thus $e_-(H^1(G, U_{E}^S)) = e_-(H^1(G, U_{E}^S)[1/2]) = e_-(H^1(G, U_{E}^S[1/2])) = H^1(G, e_-(U_{E}^S[1/2]))$ (since the actions of H and G commute). Now if $u \in U_{E}^S[1/2]$, then the hypothesis on the p-adic primes ensures that $(1 - J)(u) \in U_{E}[1/2]$. Thus $e_-(U_{E}^S[1/2]) = e_-(U_{E}[1/2])$. If $u \otimes 1/2^n \in e_-(U_{E}[1/2])$, then $u \otimes 1/2^n = 1$.
and hence $|u| = 1$. The same holds for all conjugates of u since E is a CM-field, and thus $u \otimes 1 \in \mu(E)[1/2]$.

Thus, in our situation, $\text{Ker}(f_i^S) \cong H^1(G, \mu_{p^\infty}(E)) = H^1(G, \mu_{p^\infty}(F)) = \text{Hom}(G, \mu_{p^\infty}(F))$ is a group of order p (and, in particular, $A^S(F) \neq 0$). We conclude that $|\text{Ker}(f_i)| \geq p$ for all $i \geq 2$.

Example 6.12. A special case of the last example is the following:

Let p be an irregular prime for which Vandiver’s conjecture holds. Let $F = \mathbb{Q}(\zeta_p)$. We are supposing that $\text{Cl}(F_+)[p] = 0$, but $\text{Cl}(F)[p] = A^S(F) \neq 0$. Under these hypotheses, there exists a cyclic degree p extension E'/F_+ which is unramified outside p and is not equal to the extension $\mathbb{Q}(\zeta_{p^2})_+/F_+$ (Washington, [22], Proposition 10.13). Let $E = E'(\zeta_p)$ (and thus $E' = E_+$). So the hypotheses of Example 6.11 hold for E/F and $\text{Ker}(f_i) \neq 0$ for all $i \geq 2$.

Acknowledgements: I would like to thank A. Movahhedi for directing my attention towards the questions treated here and for his careful reading of an earlier version of this paper. I would particularly like to thank T. Nguyễn Quang Do for very useful e-mail discussions about Theorem 2.9 (during which he showed me a proof of this theorem different from the one given above) and for drawing my attention to the paper of Vauclair [21].

References

[1] J. Assim and A. Movahhedi. Bounds for étale capitulation kernels. *K-theory*, 33:199–213, 2005.
[2] A. Borel. Stable real cohomology of arithmetic groups. *Ann. Scient. Ec. Norm. Sup.*, 4 Série, 7:235–272, 1974.
[3] B. Brauckmann. Étale K-theory and Iwasawa theory of number fields. *Thesis, McMaster University*, 1993.
[4] J. Coates. On K_2 and some classical conjectures in algebraic number theory. *Ann. Math.*, 95:99–116, 1972.
[5] W. Dwyer and E. Friedlander. Algebraic and étale K-theory. *Trans. Amer. Math. Soc.*, 292:1:247–280, 1985.
[6] L. Federer and B.H. Gross (with an appendix by W. Sinnott). Regulators and Iwasawa modules. *Invent. Math.*, 62:443–457, 1981.
[7] G. Gras and J.-F. Jaulent. Sur les corps de nombres réguliers. *Math. Zeit.*, 202 (3):343–365, 1990.
[8] R. Greenberg. A note on K_2 and the theory of \mathbb{Z}_p-extensions. *Am. Jour. Math.*, 100:1235–1245, 1978.
[9] K. Iwasawa. On \mathbb{Z}_l-extensions of algebraic number fields. *Ann. Math.*, 98:246–326, 1973.
[10] J.-F. Jaulent. L’état actuel du problème de la capitulation. *Sem. Th. Nombres, Bordeaux*, Exp. No. 17:33 pages, 1987-88.
[11] J.-F. Jaulent. Sur le noyau sauvage des corps de nombres. *Acta. Arith.*, 67:335–348, 1994.
[12] J.-F. Jaulent. Classes logarithmiques des corps de nombres. *Jour. Th. Nombres, Bordeaux*, 6:301–325, 1995.
[13] B. Kahn. Descente Galoisienne et K_2 des corps de nombres. *K-Theory*, 7:55–100, 1993.
[14] I. Kersten. K_2 und \mathbb{Z}_p-erweiterungen von $\mathbb{Q}(\zeta_{p^n})$. *Mitt. Math. Ges. Hamburg*, 12(No. 2):347–362, 1991.
[15] M. Kolster. An idèlic approach to the wild kernel. *Invent. Math.*, 103:9–24, 1991.
[16] M. Kolster and A. Movahhedi. Galois co-descent for étale wild kernels and capitulation. *Ann. Inst. Fourier*, 50, 1:35–65, 2000.
[17] L.V. Kuzmin. The Tate module for algebraic number fields. *Math. USSR, Izv* 6., 2:263–321, 1972.
[18] P. Schneider. Über gewisse Galoiscohomologiegruppen. *Math. Zeit.*, 168:181–205, 1979.
[19] C. Soulé. K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. *Invent. Math.*, 55:251–295, 1979.
[20] J. Tate. Relations between K_2 and Galois cohomology. *Invent. Math.*, 36:257–274, 1976.
[21] D. Vauclair. Capitulation, cup-produit et sous-modules finis dans les \mathbb{Z}_p-extensions d’un corps de nombres. *Preprint, Besançon*, 2005.
[22] L. Washington. *Introduction to Cyclotomic Fields (2nd Ed.)*. GTM. Springer, Berlin-Heidelberg, 1997.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE DUBLIN, BELFIELD, DUBLIN 4, IRELAND

E-mail address: kevin.hutchinson@ucd.ie