Subleading Shape Functions in Inclusive B Decays

Stefan W. Boscha, Matthias Neuberta,b, and Gil Paza

a Institute for High-Energy Phenomenology
Newman Laboratory for Elementary-Particle Physics, Cornell University
Ithaca, NY 14853, U.S.A.

b School of Natural Sciences, Institute for Advanced Study
Princeton, NJ 08540, U.S.A.

Abstract

The contributions of subleading shape functions to inclusive decay distributions of B mesons are derived from a systematic two-step matching of QCD current correlators onto soft-collinear and heavy-quark effective theory. At tree-level, the results can be expressed in terms of forward matrix elements of bi-local light-cone operators. Four-quark operators, which arise at $O(\alpha_s)$, are included. Our results are in disagreement with some previous studies of subleading shape-function effects. A numerical analysis of $B \rightarrow X_u \ell \bar{\nu}$ decay distributions suggests that power corrections are small, with the possible exception of the endpoint region of the charged-lepton energy spectrum.
1 Introduction

Inclusive decays of B mesons into final states containing light particles, such as $\bar{B} \to X_u l^- \bar{\nu}$ and $\bar{B} \to X_s \gamma$, play a prominent role in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{ub}|$ and in searches for physics beyond the Standard Model. Necessary experimental cuts in the analysis of these processes restrict the hadronic final state to have large energy, $E_X \sim m_b$, but only moderate invariant mass, $M_X \sim \sqrt{m_b \Lambda_{QCD}}$. In this region of phase space, the inclusive rates can be calculated using a twist expansion, which resums infinite sets of power corrections into non-perturbative shape functions [1,2,3].

The impressive performance of the BaBar, Belle, and CLEO experiments demands a continuous effort to reduce the theoretical uncertainties affecting extractions of $|V_{ub}|$ using inclusive B decays. Recently, significant progress has been made by systematically incorporating higher-order perturbative corrections [4,5,6]. A careful estimate of the theoretical uncertainty on $|V_{ub}|$, extracted using a cut on $P_+ = E_X - |P_X|$, finds an error of 7% due to variations of the leading shape function [7], which can be reduced significantly using information on the $\bar{B} \to X_s \gamma$ photon spectrum. With a 5% relative theoretical error on $|V_{ub}|$, corrections suppressed by a power of Λ_{QCD}/m_b are considered the second largest source of uncertainty. The present paper is devoted to a more thorough study of power corrections to inclusive B-meson decay distributions in the shape-function region, using the two-step matching procedure developed in [4,5,6]. Subleading shape functions have been investigated first by Bauer, Luke, and Mannel [8], and their effects on various inclusive spectra have been analyzed by several groups [9,10,11,12]. We disagree with the findings of [8] in some important aspects.

The hadronic physics in the inclusive semileptonic decay $\bar{B} \to X_u l^- \bar{\nu}$ is encoded in a hadronic tensor $W^{\mu\nu}$ defined via the discontinuity of the forward B-meson matrix element of a correlator of two flavor-changing weak currents $J^{\mu} = \bar{u} \gamma^{\mu}(1 - \gamma_5) b$. We define

$$W^{\mu\nu} = \frac{1}{\pi} \text{Im} \frac{\langle \bar{B}(v) | T^{\mu\nu} | \bar{B}(v) \rangle}{2m_B}, \quad T^{\mu\nu} = i \int d^4 x e^{i q x} T \{ J^{\dagger (0)} J^{\nu} (x) \}, \quad (1)$$

where v is the B-meson velocity and q the momentum carried by the lepton pair. To be slightly more general, we will consider QCD currents of the type $J_i^\dagger = \bar{b} \Gamma_i q$ and $J_j = \bar{q} \Gamma_j b$, where q is a massless quark, and Γ_i, Γ_j are arbitrary Dirac matrices. The corresponding current correlator T_{ij} and hadronic tensor W_{ij} can then also be applied to study the contribution of the dipole operator $Q_{7\gamma}$ to $\bar{B} \to X_s \gamma$ decay.

The current correlator T_{ij} receives contributions from different energy scales, which can be disentangled using effective field theories. Besides the hard scale m_b and the hadronic scale Λ_{QCD}, an intermediate “hard-collinear” scale $\sqrt{m_b \Lambda_{QCD}}$ set by the typical invariant mass of the hadronic final state is of relevance. Because quantum fluctuations associated with the hard and hard-collinear scales can be treated in perturbation theory, the hadronic tensor trivially factorizes into products of hard functions ($\mu \sim m_b$), jet functions ($\mu \sim \sqrt{m_b \Lambda_{QCD}}$), and shape functions defined in terms of B-meson matrix elements of quark-gluon operators. In a first step, hard fluctuations are integrated out by matching the QCD currents onto soft-collinear effective theory (SCET) [13,14]. The current correlator is then expanded in terms of light-cone operators in heavy-quark effective theory (HQET) [15], thereby integrating out fluctuations at the hard-collinear scale. The fact that the relevant HQET operators live on
the light cone follows from the structure of the multipole expansion of soft fields in SCET. In the present work, we carry out the matching procedure at tree level and to order Λ_{QCD}/m_b in the heavy-quark expansion. We indicate how our results would change if loop corrections were included.

2 Short-distance expansion of the hadronic tensor

We begin by recalling some elements of SCET, referring to [14] for a more detailed discussion (see also [13]). We work in a reference frame where the B meson is at rest, $v^\mu = (1, 0, 0, 0)$, and where the lepton 3-momentum q points in the negative z-direction. We introduce two light-like vectors $n^\mu = (1, 0, 0, 1)$ and $\bar{n}^\mu = (1, 0, 0, -1)$, with $n \cdot \bar{n} = 2$, $n \cdot v = \bar{n} \cdot v = 1$, and $\bar{n} = 2v - n$. Any 4-vector a^μ can be decomposed as

$$a^\mu = \bar{n} \cdot a \frac{n^\mu}{2} + n \cdot a \frac{\bar{n}^\mu}{2} + a_\perp^\mu \equiv a_- + a_+ + a_\perp^\mu. \quad (2)$$

In this basis, $v_\perp = 0$ and $q_\perp = 0$ by construction. In the kinematic region of interest, the hadronic jet has a hard-collinear momentum, which scales like $(P_-, P_+, P_\perp) \sim m_b(1, \lambda, \sqrt{\lambda})$, where $\lambda \sim \Lambda_{\text{QCD}}/m_b$. The momenta of the soft, light constituents of the B meson scale like $p_s^\mu \sim \Lambda_{\text{QCD}} \sim m_b \lambda$.

SCET is the appropriate effective field theory for the description of the interactions among soft and hard-collinear degrees of freedom. Its Lagrangian is organized in an expansion in powers of $\sqrt{\lambda}$. The leading-order Lagrangian is

$$\mathcal{L}_{\text{SCET}}^{(0)} = \bar{\xi} \gamma^\mu \left(i n \cdot D_{hc} + g n \cdot A_s(x_-) + i \bar{D}_{hc} \frac{1}{i \bar{n} \cdot D_{hc}} i \bar{D}_{hc} \right) \xi + \bar{q} i \bar{D}_s q + \bar{h} i v \cdot D_s h + \mathcal{L}_{\text{YM}}^{(0)}, \quad (3)$$

where ξ is a hard-collinear quark field, q is a soft, massless quark field, h is a heavy-quark field defined in HQET, A_s is a soft gluon field, and $i \bar{D}_{hc}^\mu = i \bar{\partial}^\mu + g A_{hc}^\mu$ is the covariant derivative containing a hard-collinear gluon field. All fields in the above Lagrangian are evaluated at point x, except for the soft gluon field in the first term, which is evaluated at $x_- = \frac{1}{2} (\bar{n} \cdot x) n$. The explicit form of the leading-order Yang-Mills Lagrangian can be found in [14].

The terms up to second order in the expansion in $\sqrt{\lambda}$ are

$$\mathcal{L}_{\text{SCET}}^{(1)} = \mathcal{L}_{\xi}^{(1)} + \mathcal{L}_{\xi q}^{(1)} + \mathcal{L}_{\text{YM}}^{(1)},$$

$$\mathcal{L}_{\text{SCET}}^{(2)} = \mathcal{L}_{\xi}^{(2)} + \mathcal{L}_{\xi q}^{(2)} + \mathcal{L}_h^{(2)} + \mathcal{L}_{\text{YM}}^{(2)}, \quad (4)$$

where

$$\mathcal{L}_h^{(2)} = \frac{1}{2m_b} \left[\bar{h} (i D_s) h + \frac{C_{\text{mag}}}{2} \bar{h} \sigma_{\mu\nu} g G_s^{\mu\nu} h \right] \quad (5)$$

is the next-to-leading term in the expansion of the HQET Lagrangian [15]. Expressions for the remaining Lagrangian corrections have been presented in [14].
While it is consistent to apply a perturbative expansion at the hard and hard-collinear scales, the soft-gluon couplings to hard-collinear fields are non-perturbative and must be treated to all orders in the coupling constant. For instance, the hard-collinear quark propagator derived from (3) should be taken to be the propagator in the background of the soft gluon field, summing up arbitrarily many insertions of the field A_s. The most convenient way of achieving this summation is to decouple the leading-order interactions between the soft gluon field and hard-collinear fields in (3) with the help of a field redefinition, under which

$$\xi(x) = S(x_-) \xi^{(0)}(x), \quad A_{hc}^\mu(x) = S(x_-) A_{hc}^{(0)\mu}(x) S^+(x_-),$$

(6)

where

$$S(x) = P \exp \left(ig \int_{-\infty}^{0} dt n \cdot A_s(x + tn) \right)$$

(7)

is a soft Wilson line along the n direction. Introducing the new fields into the Lagrangian yields

$$\mathcal{L}_\xi^{(0)} = \xi^{(0)} \frac{\gamma}{2} \left(in \cdot D_{hc}^{(0)} + i\mathcal{D}_{hc}^{(0)} \frac{1}{in \cdot D_{hc}^{(0)}} i\mathcal{D}_{hc}^{(0)} \right) \xi^{(0)},$$

(8)

and similarly all interactions between soft and hard-collinear gluon fields are removed from the Yang-Mills Lagrangian $\mathcal{L}_{YM}^{(0)}$. The propagator of the new hard-collinear quark field is now given by the simple expression

$$\Delta_\xi(x - y) = \langle 0 | T \left\{ \xi^{(0)}(x) \bar{\xi}^{(0)}(y) \right\} | 0 \rangle = \frac{\gamma}{2} \int \frac{d^4p}{(2\pi)^4} \frac{in \cdot p}{p^2 + i\epsilon} e^{-ip \cdot (x - y)}.$$

(9)

The effect of soft-gluon attachments is taken into account by factors of the Wilson line S in the results below.

We now list the expressions for the subleading corrections to the SCET Lagrangian in terms of the redefined fields, using the formalism of gauge-invariant building blocks [17]. We define

$$\mathcal{X} = W^{\dagger} \xi^{(0)}, \quad A_{hc}^{\mu} = W^{\dagger} (iD_{hc}^{(0)\mu} W),$$

(10)

where

$$W = P \exp \left(ig \int_{-\infty}^{0} dt \bar{n} \cdot A_{hc}^{(0)}(x + t\bar{n}) \right)$$

(11)

is a hard-collinear Wilson line. These “calligraphic” fields are invariant under both hard-collinear and soft gauge transformations. Note that in the light-cone gauge, $\bar{n} \cdot A_{hc}^{(0)\mu} = 0$, we simply have $\mathcal{X} = \xi^{(0)}$ and $A_{hc}^{\mu} = gA_{hc}^{(0)\mu}$. In terms of these fields, the results compiled in [13] take the form

$$\mathcal{L}_\xi^{(1)} = \mathcal{X} \frac{\gamma}{2} \int_{-\infty}^{0} dx_- n^\nu \left(S^gG_{\mu\nu}S \right)_{x_-} \mathcal{X},$$

3
several new Dirac structures appear. The relevant formulae are known at leading \[13\] and

The expressions for the currents beyond tree level are more complicated, primarily because

\[
\mathcal{L}^{(2)}_{\xi} = \bar{\chi} \frac{\gamma^\mu}{2} \left(\frac{n \cdot x}{2} \bar{n} \gamma^\nu (S^\dagger g G_{\mu \nu} S)_{x-} + \frac{x^\mu x^\nu}{2} n^\nu \left(S^\dagger [D_{\rho}, g G_{\mu \nu}] S \right)_{x-} \right) \chi
\]

\[+ \bar{\chi} \frac{\gamma^\mu}{2} \left(i D \parallel_{hc} \frac{1}{i \not{\partial}} \frac{x^\mu}{2} \gamma^\nu \left(S^\dagger g G_{\mu \nu} S \right)_{x-} + \frac{x^\mu}{2} \gamma^\nu \left(S^\dagger g G_{\mu \nu} S \right)_{x-} \frac{1}{i \not{\partial}} \not{i D \parallel_{hc}} \right) \chi ,
\]

\[
\mathcal{L}^{(1)}_{\xi q} = (\bar{q} S)_{x-} i D \parallel_{hc} \chi + \text{h.c.} ,
\]

where \(i D \mu = i \partial^\mu + A_{\mu hc}^\mu \), and we have dropped the subscript “\(s \)” on the soft covariant derivative and field strength. The expression for \(\mathcal{L}^{(2)}_{\xi} \) will not be needed for our analysis. The notation \((\ldots)_{x-}\) indicates that, in interactions with hard-collinear fields, soft fields are multipole expanded and live at position \(x_- \), whereas hard-collinear fields are always evaluated at position \(x \). Because the SCET Lagrangian is not renormalized \[14\], the above expressions are valid to all orders in perturbation theory.

Next, we need the expressions for heavy-light current operators in SCET. In general, a QCD current \(\bar{q} \Gamma b \) matches onto

\[
\bar{q}(x) \Gamma b(x) = e^{-im_b x} \left(J_{A}^{(0)} + J_{A}^{(1)} + J_{A}^{(2)} + J_{B}^{(1)} + J_{B}^{(2)} + \ldots \right),
\]

where we distinguish between type-A “two-particle” operators and type-B “three-particle” operators \[15\]. The operators arising at tree level are \[14\] \[18\] \[19\].

\[
J_{A}^{(0)} = \bar{\chi} \Gamma \left(S^\dagger h \right)_{x-} ,
\]

\[
J_{A}^{(1)} = \bar{\chi} \Gamma x^\mu \left(S^\dagger D_{\mu} h \right)_{x-} + \bar{\chi} \frac{\gamma^\mu}{2} \frac{\not{i D}}{i \not{\partial}} \frac{1}{i \not{\partial}} \Gamma \left(S^\dagger h \right)_{x-} ,
\]

\[
J_{A}^{(2)} = \bar{\chi} \Gamma \left[\frac{n \cdot x}{2} \left(S^\dagger \bar{n} \cdot D h \right)_{x-} + \frac{x^\mu x^\nu}{2} \left(S^\dagger D_{\mu} D_{\nu} h \right)_{x-} + \left(S^\dagger \frac{i D}{2m_b} h \right)_{x-} \right] \frac{1}{i \not{\partial}} \Gamma x^\mu \left(S^\dagger D_{\mu} h \right)_{x-} ,
\]

and

\[
J_{B}^{(1)} = -\bar{\chi} \frac{\gamma^\mu}{2} \mathcal{A}_{\parallel_{hc}} \frac{1}{i \not{\partial}} \Gamma \left(S^\dagger h \right)_{x-} - \bar{\chi} \Gamma \frac{\gamma^\mu}{2m_b} \mathcal{A}_{\parallel_{hc}} \left(S^\dagger h \right)_{x-} ,
\]

\[
J_{B}^{(2)} = -\bar{\chi} \Gamma \left(\frac{1}{i \not{\partial}} + \frac{\gamma^\mu}{2m_b} n \cdot \mathcal{A}_{hc} \left(S^\dagger h \right)_{x-} \right)
\]

\[\bar{\chi} \frac{\gamma^\mu}{2} \mathcal{A}_{\parallel_{hc}} \frac{1}{i \not{\partial}} \Gamma + \bar{\chi} \Gamma \frac{\gamma^\mu}{2m_b} \mathcal{A}_{\parallel_{hc}} \right) x^\mu \left(S^\dagger D_{\mu} h \right)_{x-} \]

\[\bar{\chi} \Gamma \frac{1}{i \not{\partial}} \frac{\left(i D \parallel_{hc} \mathcal{A}_{\parallel_{hc}} \right)}{m_b} \left(S^\dagger h \right)_{x-} + \bar{\chi} \Gamma \frac{i D \parallel_{hc}}{m_b} \frac{1}{i \not{\partial}} \Gamma + \bar{\chi} \Gamma \frac{\gamma^\mu}{2} \mathcal{A}_{\parallel_{hc}} \left(S^\dagger h \right)_{x-} . \]

The expressions for the currents beyond tree level are more complicated, primarily because several new Dirac structures appear. The relevant formulae are known at leading \[13\] and
next-to-leading order \([18]\) in the power expansion. The corresponding results for the currents \(J_{A}^{(2)}\) and \(J_{B}^{(2)}\) have not yet been derived. They would be needed if the analysis in this paper should be extended beyond tree level.

If perturbative corrections at the hard-collinear scale are neglected, the hard-collinear gluon fields can be dropped, and the above expressions for the effective Lagrangians and currents simplify. In this approximation \(X \rightarrow \xi^{(0)}\), \(A_{h}^{\mu} \rightarrow 0\), \(i\mathcal{D}_{h}^{\mu} \rightarrow i\partial^{\mu}\), and \(J_{B}^{(2)} \rightarrow 0\). While this leads to great simplifications in the calculation, we stress that the structures of soft fields that arise do not simplify. We find operators containing \(S S^{\dagger} gG_{\mu\nu} S\), \(S S^{\dagger} [D_{\rho}, gG_{\mu\nu}] S\), \(S^{\dagger} h\), \(S^{\dagger} D_{\mu} h\), and \(S^{\dagger} D_{\mu} D_{\nu} h\), and the same operators would arise if the calculation was extended beyond the tree approximation. The only exception is that we no longer retain Lagrangian corrections containing the soft quark field, because \(L_{\xi q}^{(1)} \rightarrow 0\) in the limit where the hard-collinear gluon field is neglected. (The term \(\bar{q}S i\partial_{\perp} \xi^{(0)}\) is forbidden by momentum conservation.) In Section 5, we analyze the subleading shape functions introduced at \(O(\alpha_{s})\) by two insertions of \(L_{\xi q}^{(1)}\).

With all the definitions in place, we are now ready to evaluate the current correlator \(T_{ij}\) including terms of up to second order in \(\sqrt{\lambda}\), working at lowest order in \(\alpha_{s}\) at the hard and hard-collinear scales. The leading term is readily found to be

\[
T_{ij}^{(0)} = - \int d^{4}x e^{i(q-m_{b}v) \cdot x} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{i\bar{n} \cdot p}{p^{2} + i\epsilon} \left(\bar{h}S\right)_{0}^{\dagger} \Gamma_{i}^{\dagger} \Gamma_{j} \left(S^{\dagger} h\right)_{x}^{-}. \tag{16}
\]

First-order corrections in \(\sqrt{\lambda}\) vanish by rotational invariance in the transverse plane (provided we choose the coordinate system such that \(v_{\perp} = 0\) and \(q_{\perp} = 0\), i.e., \(T_{ij}^{(1)} = 0\)). At second order in the expansion the correlator receives several contributions, which can be represented symbolically as

\[
J_{i}^{(2)} J_{j}^{(0)}, \quad J_{i}^{(1)} J_{j}^{(1)}, \quad J_{i}^{(0)} J_{j}^{(2)}, \tag{17}
\]

and

\[
J_{i}^{(1)} J_{j}^{(0)} \int d^{4}z L_{\xi}^{(1)} \cdot L_{\xi}^{(1)}, \quad J_{i}^{(0)} J_{j}^{(1)} \int d^{4}z L_{\xi}^{(1)} \cdot J_{i}^{(0)} J_{j}^{(0)} \int d^{4}z \left[L_{\xi}^{(2)} + L_{\xi}^{(2)}\right], \tag{18}
\]

and

\[
J_{i}^{(0)} J_{j}^{(0)} \int d^{4}z L_{\xi}^{(1)} \int d^{4}w L_{\xi}^{(1)}, \tag{19}
\]

where at tree level only the type-\(A\) current operators appear. Examples of these time-ordered products are depicted in Figure 1. At \(O(\alpha_{s})\), one must include a tree-level contribution of the form

\[
J_{i}^{(0)} J_{j}^{(0)} \int d^{4}z L_{\xi q}^{(1)} \int d^{4}w L_{\xi q}^{(1)}, \tag{20}
\]

shown by the last diagram in the figure. Beyond tree level, one would also have to include the contributions from the type-\(B\) current operators.

Because the external \(B\)-meson states in the definition of the hadronic tensor contain only soft constituents, and because the hard-collinear fields have been decoupled from the soft fields in the leading-order SCET Lagrangian \([8]\), it is possible to contract all hard-collinear fields in the time-ordered products. At tree level, all we need is the hard-collinear quark propagator \([9]\). Derivatives acting on hard-collinear fields give powers of \(p\) in momentum space,
whereas components of x^μ appearing in the multipole-expanded expressions for the effective Lagrangians and currents can be turned into derivatives $\partial/\partial p$ acting on the momentum-space amplitudes. Each insertion of a SCET Lagrangian correction introduces an integral over soft fields located along the n light-cone. Consequently, the time-ordered products in (17) lead to expressions involving bi-local operators as in (16), while those in (18), (19), and (20) also lead to tri- and quadri-local operators. At first sight, this would seem to require the introduction of complicated subleading shape functions depending on up to three momentum variables ω_i, defined in terms of the Fourier transforms of the matrix elements of the non-local operators. However, the non-localities can be reduced using partial-fraction identities for the resulting hard-collinear quark propagators. At tree level, it suffices to define shape functions of a single variable ω.

To see how this works, consider the effect of an insertion of the Lagrangian $L^{(1)}_\xi$ in (12). Since all hard-collinear fields must be contracted, we may consider without loss of generality the expression

$$L(y_1, y_2) = i \int d^4 z \Delta_\xi(y_1 - z) \frac{\phi}{2} z^\mu_\perp n^\nu \left(S^\dagger gG^{\mu\nu}S\right)_{z-} \Delta_\xi(z - y_2). \quad (21)$$

The fact that the soft fields live at position z_- implies that the two hard-collinear quark propagators carry the same momentum components $\tilde{n} \cdot p$ and p_\perp. In analogy with the definition of the hard-collinear calligraphic gluon field, we now introduce the soft field

$$A_{s\mu}(x) = S^\dagger(x)(iD_\mu S)(x) = -\int_{-\infty}^{0} dt n^\nu \left(S^\dagger gG^{\mu\nu}S\right)(x + tn), \quad (22)$$

which allows us to write $n^\nu \left(S^\dagger gG^{\mu\nu}S\right)_{z-}$ as a derivative, $-n \cdot \partial_z A_{s\mu}(z_-)$. Integrating by parts...
in (21), we find

\[L(y_1, y_2) = i \int d^4z \Delta_\xi(y_1 - z) \frac{g_\parallel}{2} z_\perp \mathcal{A}_{s\mu}(z_-) n \cdot \partial_\perp \Delta_\xi(z - y_2) \]

\[+ i \int d^4z \left[n \cdot \partial_\perp \Delta_\xi(y_1 - z) \right] \frac{g_\parallel}{2} z_\perp \mathcal{A}_{s\mu}(z_-) \Delta_\xi(z - y_2). \]

(23)

The hard-collinear propagator is a Green’s function obeying the differential equation

\[\left(n \cdot \partial + \frac{\partial^2}{n \cdot \partial} \right) \Delta_\xi(x) = \frac{g_\parallel}{2} \delta^{(4)}(x). \]

(24)

This allows us to write

\[L(y_1, y_2) = i \left[y_{2\perp} \cdot \mathcal{A}_s(y_{2-}) - y_{1\perp} \cdot \mathcal{A}_s(y_{1-}) \right] \Delta_\xi(y_1 - y_2) \]

\[- i \int d^4z \Delta_\xi(y_1 - z) \frac{g_\perp}{2} z_{\perp} \mathcal{A}_s(z_-) \frac{\partial^2}{n \cdot \partial} \Delta_\xi(z - y_2) \]

\[- i \int d^4z \left[\frac{\partial^2}{n \cdot \partial} \Delta_\xi(y_1 - z) \right] \frac{g_\perp}{2} z_{\perp} \mathcal{A}_s(z_-) \Delta_\xi(z - y_2). \]

(25)

The terms involving transverse derivatives vanish at tree level, because they provide powers of transverse momenta of external lines, which are zero (recall that \(v_\perp = 0 \) and \(q_\perp = 0 \)). This leaves the terms shown in the first line, in which the \(z \) integral has been eliminated, and in which the product of two propagators has been reduced to a single propagator. In momentum space, these manipulations correspond to the partial-fraction identity

\[\frac{1}{n \cdot p n \cdot p + p_\perp^2} \frac{1}{n \cdot p (n \cdot p + \omega) + p_\perp^2} = \frac{1}{n \cdot p \omega} \left[\frac{1}{n \cdot p n \cdot p + p_\perp^2} - \frac{1}{n \cdot p (n \cdot p + \omega) + p_\perp^2} \right], \]

valid for two momenta that differ only in their \(n \cdot p \) components.

In the sum of all terms many cancellations and simplifications take place, and we find the rather simple result

\[T^{(2)}_{ij} = - \int d^4x e^{i(q-m_\text{b}x) \cdot x} \int \frac{d^4p}{(2\pi)^4} e^{ip \cdot x} \frac{n \cdot p}{p^2 + i\epsilon} \sum_{n=1}^{4} O_n(x_-), \]

(27)

where

\[O_1(x_-) = i \int d^4z T\{ (\bar{h}S)_0 \Gamma_i \frac{g_\parallel}{2} \Gamma_j (S^\dagger h)_{x_-} \mathcal{L}^{(2)}_h(z) \}, \]

\[O_2(x_-) = \frac{1}{2m_b} \left[(\bar{h}S)_0 \Gamma_i \frac{g_\parallel}{2} \Gamma_j (S^\dagger i\cancel{p} h)_{x_-} + (\bar{h}(-i\cancel{p})S)_0 \Gamma_i \frac{g_\parallel}{2} \Gamma_j (S^\dagger h)_{x_-} \right], \]

\[O_3(x_-) = \frac{1}{n \cdot p} \left[(\bar{h}S)_0 \Gamma_i \frac{g_\parallel g_\parallel}{4} \gamma_\mu \Gamma_j (S^\dagger iD^\mu_{\perp} h)_{x_-} + (\bar{h}iD^\mu_{\perp} S)_0 \Gamma_i \gamma_\mu \frac{g_\parallel g_\parallel}{4} \Gamma_j (S^\dagger h)_{x_-} \right], \]

\[O_4(x_-) = \frac{i}{n \cdot p} \int_0^{\bar{n} x/2} dt (\bar{h}S)_0 \Gamma_i \left(S^\dagger i\cancel{p} \frac{g_\parallel}{2} i\cancel{p} \cancel{S} \right)_{t_n} \Gamma_j (S^\dagger h)_{x_-}. \]

(28)
In deriving these expressions, we have made use of the identity \(iD_\mu = S(i\partial_\mu + A_\mu^a)S^\dagger \) with \(A_\mu^a \) as defined in \(^{22}\). Note that on the space of forward matrix elements the result for \(T^{(2)}_{ij} \) is hermitean, because we can integrate by parts and use translational invariance.

In the last step, we can simplify the operator \(O_2 \) by noting that the HQET equation of motion, \(iv \cdot Dh = 0 \), along with \(\psi h = h \), implies

\[
S^\dagger iDh = S^\dagger iD_\perp h + (\psi - \bar{\psi}) i\partial (S^\dagger h).
\] (29)

It follows that all gauge-covariant derivatives of the heavy-quark fields are perpendicular derivatives. This fact restricts the number of subleading shape functions.

3 Definition of subleading shape functions

The Dirac structure of the operators \(O_n \) can be simplified noting that the heavy-quark fields \(h \) of HQET are two-component spinor fields, so that between \(\bar{h} \ldots h \) the Dirac basis collapses to a set of four basis matrices \((1, \sigma)\). In four-component notation, these are the upper-left \(2 \times 2 \) blocks of \((1, \gamma_5)\) (in the Dirac representation). Instead of \(\gamma_5 \), we are free to take the matrices \(\gamma_\perp^\mu \gamma_5 \) and \(\psi \gamma_5 \). It follows that, between the \(P_v = \frac{i}{2}(1 + \psi) \) projectors supplied by the heavy-quark fields, any Dirac matrix \(\Gamma \) can be decomposed as

\[
\Gamma \to \frac{1}{2} \text{tr} (\Gamma P_v) 1 - \frac{1}{2} \text{tr} [\Gamma P_v (\psi - \bar{\psi}) \gamma_5] \psi \gamma_5 - \frac{1}{2} \text{tr} (\Gamma P_v \gamma_\perp \gamma_5) \gamma_\perp \gamma_5.
\] (30)

We denote by

\[
\langle \bar{h} \ldots h \rangle \equiv \frac{\langle B(v) | \bar{h} \ldots h | B(v) \rangle}{2m_B}
\] (31)

the forward \(B \)-meson matrix element of any HQET operator. Rotational invariance in the transverse plane implies that transverse indices can only be contracted using the symmetric and anti-symmetric tensors (we set \(\epsilon_{0123} = 1 \))

\[
g_\perp^{\mu\nu} = g^{\mu\nu} - \frac{n^\mu \bar{n}^\nu + n^\nu \bar{n}^\mu}{2}, \quad \epsilon_\perp^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} v_\alpha n_\beta.
\] (32)

It follows that the only non-vanishing matrix elements are

\[
\langle (\bar{h}S)_0 (S^\dagger h)_{x-} \rangle = \int d\omega \, e^{-\frac{i}{2}\omega n \cdot x} S(\omega),
\]

\[
\langle i \int d^4z \mathcal{T} \{ (\bar{h}S)_0 (S^\dagger h)_{x-} \mathcal{L}_h^{(2)}(z) \} \rangle = \frac{1}{m_B} \int d\omega \, e^{-\frac{i}{2}\omega n \cdot x} s(\omega),
\]

\[
\langle (\bar{h}S)_0 \gamma_\perp^\mu \gamma_5 (S^\dagger iD_\perp^\mu h)_{x-} \rangle = -\frac{i}{2} \epsilon_\perp^{\mu\nu} \int d\omega \, e^{-\frac{i}{2}\omega n \cdot x} t(\omega),
\]

\[
-i \int_0^{\bar{n} \cdot x/2} dt \langle (\bar{h}S)_0 (S^\dagger iD_\perp^\mu iD_\perp^\nu S)_{tn} (S^\dagger h)_{x-} \rangle = \frac{g_\perp^{\mu\nu}}{2} \int d\omega \, e^{-\frac{i}{2}\omega n \cdot x} u(\omega),
\]

\[
-i \int_0^{\bar{n} \cdot x/2} dt \langle (\bar{h}S)_0 \gamma_5 (S^\dagger iD_\perp^\mu iD_\perp^\nu S)_{tn} (S^\dagger h)_{x-} \rangle = -\frac{i}{2} \epsilon_\perp^{\mu\nu} \int d\omega \, e^{-\frac{i}{2}\omega n \cdot x} v(\omega).
\] (33)
If radiative corrections at the hard scale are included, it would be more appropriate to split up \(s(\omega) = s_{\text{kin}}(\omega) + C_{\text{mag}} s_{\text{mag}}(\omega) \), where \(C_{\text{mag}} \) is the Wilson coefficient of the chromo-magnetic operator in the subleading HQET Lagrangian. This ensures that the shape functions remain independent of the heavy-quark mass. The definitions of the functions \(t, u, v \) are chosen such that

\[
\langle \bar{h}(0) \not{\delta} [0, x_\perp] (i D_\perp h)(x_\perp) \rangle = \int d\omega e^{-i \omega \cdot n} t(\omega),
\]

\[
-i \int_0^{\vec{n} \cdot x/2} dt \langle \bar{h}(0) [0, tn] (i D_\perp)^2(tn) [tn, x_\perp] h(x_\perp) \rangle = \int d\omega e^{-i \omega \cdot n} u(\omega),
\]

\[
-i \int_0^{\vec{n} \cdot x/2} dt \langle \bar{h}(0) \not{\partial} [0, tn] \sigma_{\mu\nu} g G^\mu_\perp(tn) [tn, x_\perp] h(x_\perp) \rangle = \int d\omega e^{-i \omega \cdot n} v(\omega),
\]

where \([x, y] \equiv S(x) S^\dagger(y)\) is a product of two infinite-length soft Wilson lines, which on the light cone (i.e., for \(x, y \parallel n \)) collapses to a straight Wilson line of finite length connecting \(x \) and \(y \).

We also need a variation of the first matrix element in (33), in which the derivative is located at position 0. Using hermitean conjugation, translational invariance, and the reality of \(t(\omega) \), which follows from parity and time-reversal invariance of the strong interactions, we find that

\[
\langle (\bar{h} D_\perp)(0) \not{\delta} [0, x_\perp] h(x_\perp) \rangle = \langle \bar{h}(0) \not{\delta} [0, x_\perp] (i D_\perp h)(x_\perp) \rangle,
\]

implying that all terms containing a single insertion of \(D_\perp \) can be related to the function \(t(\omega) \).

From this relation, it follows that

\[
\int d\omega e^{-i \omega \cdot n} t(\omega) = \langle (\bar{h} S)_0 \not{\delta} [0, tn] \left[A_{s\perp}(x_\perp) - A_{s\perp}(0) \right] (S^\dagger h)_{x_\perp} \rangle
\]

\[
= - \int_0^{\vec{n} \cdot x/2} dt \langle \bar{h}(0) \not{\partial} [0, tn] \gamma_\mu n^\nu g G^\mu_\perp(tn) [tn, x_\perp] h(x_\perp) \rangle,
\]

which defines the function \(t(\omega) \) in terms of a matrix element of the field-strength tensor.

It is now straightforward to express the forward matrix element of the current correlator \(T_{ij} \) in terms of shape functions. The resulting traces of Dirac matrices can be simplified using identities for the \(e^\mu_\perp \) tensor derived in [20]. Taking the imaginary part, we obtain for the hadronic tensor

\[
W_{ij}^{(0)} = \int d\omega \delta(n \cdot p + \omega) S(\omega) T_1, \quad W_{ij}^{(1)} = 0, \quad W_{ij}^{(2)} = \int d\omega \delta(n \cdot p + \omega) \left[\frac{\omega S(\omega) + t(\omega)}{m_b} T_2 + \frac{s(\omega)}{m_b} T_1 + \frac{t(\omega)}{n \cdot p} T_3 + \frac{u(\omega)}{n \cdot p} T_1 - \frac{v(\omega)}{n \cdot p} T_4 \right],
\]

9
where now \(p = m_b v - q \), and

\[
T_1 = \frac{1}{4} \text{tr} \left[\Gamma_i \gamma_\mu \Gamma_j \frac{1 + \gamma_5}{2} \right], \quad T_3 = \frac{1}{4} \text{tr} \left[\Gamma_i \gamma_\mu \gamma_5 \Gamma_j \frac{1 + \gamma_5}{2} \right],
\]

\[
T_2 = \frac{1}{8} \text{tr} \left[\Gamma_i \gamma_\mu \Gamma_j (\gamma - \phi) \right], \quad T_4 = \frac{1}{4} \text{tr} \left[\Gamma_i \gamma_\mu \gamma_5 \Gamma_j \frac{1 + \gamma_5}{2} (\gamma - \phi) \gamma_5 \right]. \tag{38}
\]

It follows from (37) that the subleading shape functions \(s(\omega) \) and \(u(\omega) \) always come with the same trace as the leading shape function \(S(\omega) \). However, \(u(\omega) \) is divided by the kinematic variable \(\bar{n} \cdot p \), and so it does not enter in a universal (i.e., process-independent) combination with \(S(\omega) \).

We can now specialize our result to the case of semileptonic decay, for which \(\Gamma_i = \gamma_\mu (1 - \gamma_5) \) and \(\Gamma_j = \gamma_\nu (1 - \gamma_5) \). This yields

\[
W^{\mu\nu} = \int d\omega \delta(n \cdot p + \omega) \left\{ (n^\mu v^\nu + n^\nu v^\mu - g^{\mu\nu} - i\epsilon^{\mu\nu\alpha\beta} n_\alpha v_\beta) \right. \\
\times \left[(1 + \frac{\omega}{m_b}) S(\omega) + \frac{s(\omega) + t(\omega)}{m_b} + \frac{u(\omega) - v(\omega)}{\bar{n} \cdot p} \right] \\
- 2(n^\mu v^\nu + n^\nu v^\mu) \frac{t(\omega)}{\bar{n} \cdot p} + 2n^\mu n^\nu \left[-\frac{\omega S(\omega)}{m_b} - \frac{t(\omega)}{m_b} + \frac{t(\omega) + v(\omega)}{\bar{n} \cdot p} \right] \right\}. \tag{39}
\]

Similarly, for the contribution of the dipole operator \(Q_{7\gamma} \) to \(\bar{B} \to X_s \gamma \) decay, the Dirac structures are (up to prefactors) \(\Gamma_i = \frac{1}{4} \left[\gamma_\mu \gamma_\nu, \gamma_5 \right] (1 - \gamma_5) \) and \(\Gamma_j = \frac{1}{4} \left[\gamma_\mu, \gamma_\nu \gamma_5 \right] (1 + \gamma_5) \), where the indices \(\mu, \nu \) are contracted with the transverse polarization vector of the photon. In this case we obtain

\[
W^{\mu\nu} = (i\epsilon^{\mu\nu} - g^{\mu\nu}) \int d\omega \delta(n \cdot p + \omega) \left[(1 - \frac{\omega}{m_b}) S(\omega) + \frac{s(\omega) - t(\omega)}{m_b} + \frac{u(\omega) - v(\omega)}{\bar{n} \cdot p} \right]. \tag{40}
\]

We stress, however, that while at leading power in \(\Lambda_{QCD} / m_b \) the dipole operator gives the only tree-level contribution to the \(\bar{B} \to X_s \gamma \) decay rate, this is no longer the case when power corrections are included. For instance, interference terms of the dipole operator with current-current operators can lead to new subleading shape functions even at lowest order in perturbation theory. To derive these structures, it would be necessary to match the entire effective weak Hamiltonian for \(\bar{B} \to X_s \gamma \) decay onto SCET operators [10]. This task still has to be completed beyond the leading order in \(\lambda \). Contrary to claims in [9], a complete description of tree-level subleading shape-function effects in \(\bar{B} \to X_s \gamma \) decay is therefore still lacking.

4 Moment relations and comparison with the literature

Moments of the shape functions can be related to forward \(B \)-meson matrix elements of local HQET operators [11]. In particular, setting \(x = 0 \) in the defining relations (33) yields
expressions for the normalization integrals of the shape functions. They are

\[\int d\omega S(\omega) = 1, \quad \int d\omega \{ s(\omega), t(\omega), u(\omega), v(\omega) \} = 0. \tag{41} \]

The vanishing of the norm of all subleading shape functions is a consequence of Luke’s theorem \[21\], and it ensures that there are no first-order \(\Lambda_{\text{QCD}}/m_b \) corrections to total inclusive decay rates. For the functions \(t, u, v \) this is an obvious consequence of the fact that the integration domain in (36) and (34) shrinks to zero in the limit \(x \to 0 \). The interpretation of (41) is that subleading shape functions lead to local distortions of inclusive spectra, which cancel out when the spectra are integrated over a sufficiently large region in phase space. The first moments characterize the strength of the distortions, while higher moments determine their shape.

Taking a derivative \(\ln \cdot \partial_x \) in the definitions (33) brings down a factor of \(\omega \) under the integrals on the right-hand side. Setting then \(x \to 0 \) yields a set of relations for the first moments of the shape functions. The resulting matrix elements can be evaluated by means of the relations \[22\]

\[\langle \bar{h} \Gamma_{\alpha\beta} iD^\alpha iD^\beta h \rangle = \frac{1}{2} \text{tr} \left(\Gamma_{\alpha\beta} \frac{1 + \gamma^5}{2} \left[(g^{\alpha\beta} - v^\alpha v^\beta) \frac{\lambda_1}{3} + i\sigma^{\alpha\beta} \frac{\lambda_2}{2} \right] \right), \tag{42} \]

and \[23\]

\[\langle i \int d^4z T\{ (\bar{h}iD^\mu h)(0) L_h^{(2)}(z) \} \rangle = -v^\mu \langle L_h^{(2)}(0) \rangle = -v^\mu \frac{\lambda_1 + 3C_{\text{mag}} \lambda_2}{2m_b}, \tag{43} \]

where \(\lambda_1 \) and \(\lambda_2 \) are the familiar HQET parameters arising in the parameterization of second-order power corrections to inclusive decay spectra, and \(C_{\text{mag}} = 1 \) at tree level. We obtain

\[\int d\omega \omega s(\omega) = -\frac{\lambda_1 + 3\lambda_2}{2}, \quad \int d\omega \omega u(\omega) = \frac{2\lambda_1}{3}, \]

\[\int d\omega \omega t(\omega) = -\lambda_2, \quad \int d\omega \omega v(\omega) = \lambda_2. \tag{44} \]

We also recall that the first two moments of the leading shape function are \(\int d\omega \omega S(\omega) = 0 \) and \(\int d\omega \omega^2 S(\omega) = -\lambda_1/3 \) \[1\].

It is appropriate at this point to relate our subleading shape functions to those defined by Bauer et al. \[8, 10\]. Using the notations of their second paper, we find \(S(\omega) = f(-\omega) \) at leading order, and

\[s(\omega) = \frac{t(-\omega)}{2}, \quad t(\omega) = -h_1(-\omega), \quad u(\omega) = -G_2(-\omega), \quad v(\omega) = -H_2(-\omega) \tag{45} \]

for the subleading functions. Their first paper uses a dimensionless momentum variable, so the relations are \(S(\omega) = f(-\omega/m_b)/m_b \) etc. (In comparing, one must take note of the fact that we use a different sign convention for the Levi-Civita tensor. Also, we believe there are typographic errors in the definitions of the functions \(g_2 \) and \(h_2 \) in \[8\].)
Comparing our result \((37)\) for the hadronic tensor with the corresponding expressions obtained in \([8, 10]\) we find some sources of disagreement. As mentioned earlier, the function \(u(\omega)\) is divided by \(\bar{n} \cdot p\), whereas Bauer et al. state that it enters in the universal combination \(S(\omega) + u(\omega)/m_b\) with the leading shape function. Also, it appears to us that the term proportional to the trace \(T_3\), which adds a contribution to the last structure function in \((39)\), is missed by these authors.

5 Contributions from four-quark operators

The last diagram in Figure 1 shows a tree-level contribution to the hadronic tensor involving two insertions of the subleading SCET Lagrangian \(\mathcal{L}^{(1)}_{\xi q}\). The exchange of a hard-collinear gluon implies that this graph is of order \(g^2\), and so it vanishes in the limit where \(\alpha_s\) is set to zero. The fact that the suppression factor is \(\pi \alpha_s\) instead of \(\alpha_s/\pi\) reflects the phase-space enhancement of four-quark tree-level graphs compared with loop diagrams \([24]\). One might therefore expect that the four-quark contribution is numerically as important as the other tree-level subleading shape-function contributions.

Applying the partial-fraction identity \((28)\) twice, we find that the resulting contribution to the correlator \(T^{(2)}_{ij}\) can be written as in \((27)\), adding a fifth operator to the sum. It reads

\[
O_5(x_-) = \frac{\pi \alpha_s}{\bar{n} \cdot p} \int_0^{\bar{n} \cdot x/2} dt_1 \int_{t_1}^{\bar{n} \cdot x/2} dt_2 \left(\bar{h} S \right)_0 \Gamma_i \gamma^+_p t_a (S^\dagger q) t_{1n} (\bar{q} S) t_{2n} \gamma^\mu_\perp \Gamma_j t_a (S^\dagger h)_{x_-},
\]

where \(t_a\) are the generators of color \(SU(N_c)\). Note that the field insertions are ordered according to “light-cone time” \(x_-\), just as they appear in the Feynman diagram in Figure 1. This is a general result. Because the minus components \(\bar{n} \cdot p_{hc}\) of hard-collinear momenta are large, of order \(m_b\), hard-collinear fields always propagate forward in light-cone time. Turning, for instance, a forward-moving hard-collinear quark into a backward-moving hard-collinear antiquark would require a hard quantum fluctuation, which is already integrated out in SCET. As a result, Feynman amplitudes in SCET are ordered with respect to light-cone time, and that ordering is preserved in the matching onto HQET. This discussion explains why all our operators have the property that the coordinates \(z_-\) of soft fields range from \(0\) to \(x_-\) in an ordered fashion. The results can therefore always be expressed in terms of bi-local operators depending only on \(0\) and \(x_-\). However, at present we cannot exclude the possibility of non-trivial weight functions under these integrals, which could arise at higher orders in perturbation theory. If present, they may require a generalization of our definitions of subleading shape functions.

Returning to the case of the four-quark operator in \((16)\), we note that its contribution vanishes in the vacuum-insertion approximation due to the color-octet structure of the heavy-light quark bilinears. While this approximation is admittedly naive, phenomenological evidence based on studies of \(B\)-meson lifetimes \([24, 25]\) and theoretical arguments based on lattice calculations \([26, 27]\) and QCD sum rules \([28]\) support the notion that matrix elements which vanish in the vacuum-insertion approximation are numerically suppressed, typically by...
an order of magnitude. It is thus very unlikely that the four-quark operator in (46) could give a larger contribution than loop-suppressed \(O(\alpha_s) \) corrections, which we have neglected. Note also that the contribution of the corresponding local operator to total inclusive rates, which is what remains when the corresponding shape functions are integrated over a sufficiently large domain, is bound to be tiny. The effect is of order \((\Lambda_{\text{QCD}}/m_b)^3 \), and it is \(\alpha_s \)-suppressed with respect to a four-quark contribution discussed by Voloshin [29], whose effect on the total decay rate is believed to be at most 3%.

Nevertheless, it is interesting to study the structure of the operator \(O_5(x_-) \) in more detail and define corresponding subleading shape functions. The decomposition (30) implies that the Dirac structure can be rearranged in the form (omitting factors of \(S, S^\dagger \) and color indices for simplicity)

\[
\Gamma_i \gamma^\perp_\rho \bar{q} \gamma^\rho_\perp \bar{q} \gamma^\perp_\rho \Gamma_j = -\frac{1}{2} \begin{pmatrix} 1 & \gamma^\rho_\perp \gamma^\perp_\rho \Gamma_j \frac{1 + \gamma^\perp_\rho}{2} \end{pmatrix} \begin{pmatrix} 1 \gamma^\perp_\rho \gamma^\rho_\perp \Gamma_j \frac{1 - \gamma^\perp_\rho}{2} \end{pmatrix} \Gamma_i \gamma^\perp_\rho \bar{q} \gamma^\rho_\perp \bar{q}, \tag{47}
\]

where the notation implies a sum over the three rows in the equation. In the next step, we use that between \(\gamma^\perp \ldots \gamma^\perp \) any Dirac matrix can be decomposed as

\[
\Gamma \to \frac{1}{4} \text{tr}(\Gamma \gamma^\perp) \frac{\gamma^\perp}{2} - \frac{1}{4} \text{tr}(\Gamma \gamma^\perp \gamma^\perp) \frac{\gamma^\perp}{2} - \frac{1}{4} \text{tr}(\Gamma \gamma^\perp) \frac{\gamma^\perp}{2} \gamma^\perp - \frac{1}{4} \text{tr}(\Gamma \gamma^\perp) \frac{\gamma^\perp}{2} \gamma^\perp. \tag{48}
\]

Only the first two terms survive after contraction of the index \(\rho \) in (17). At this stage we are left with four-quark operators with Dirac structures

\[
\bar{h} h \bar{q} \gamma^\perp (\gamma_5) q, \quad \bar{h} \gamma^\perp_\rho \bar{q} \gamma^\perp (\gamma_5) q, \quad \bar{h} \gamma^\perp_\rho \gamma^\perp_\rho \bar{q} \gamma^\perp (\gamma_5) q, \quad \bar{h} \gamma^\perp_\rho \gamma^\perp_\rho \bar{q} \gamma^\perp (\gamma_5) q, \quad (49)
\]

where \((\gamma_5) \) means \(1 \) or \(\gamma_5 \). Lorentz and parity invariance imply that only the two Lorentz-scalar structures \(\bar{h} h \bar{q} \gamma^\perp q \) and \(\bar{h} \gamma^\perp_\rho \bar{q} \gamma^\perp (\gamma_5) q \) can have non-zero forward matrix elements between \(B \)-meson states. Putting back color factors and soft Wilson lines, we define the corresponding subleading shape functions

\[
2(-i)^2 \int_0^{\delta^x z/2} dt_1 \int_0^{\delta^x z/2} dt_2 \langle \left[(\bar{h}S)_{0 a} t_a \right]_k [t_a (S^\dagger h)_{x-}]_l [t_a (S^\dagger q)_{t_1 n}]_l [t_a (S^\dagger q)_{t_2 n}]_l \rangle \psi \psi \rangle = \int d\omega e^{-\frac{i}{2} \omega \delta^x z} f_a(\omega),
\]

\[
2(-i)^2 \int_0^{\delta^x z/2} dt_1 \int_0^{\delta^x z/2} dt_2 \langle \left[(\bar{h}S)_{0 a} t_a \right]_k \gamma^\perp_\rho [t_a (S^\dagger h)_{x-}]_l [t_a (S^\dagger q)_{t_1 n}]_l \psi \gamma^\perp_\rho \gamma^\perp_\rho \rangle = \int d\omega e^{-\frac{i}{2} \omega \delta^x z} f_v(\omega), \tag{50}
\]
where k, l are color indices. Using the same notation as in (37), the corresponding contributions to the hadronic tensor are given by

$$W^{(2)}_{ij} \bigg|_{4q} = -\pi\alpha_s \int d\omega \delta(n \cdot p + \omega) \left[\frac{f_u(\omega)}{n \cdot p} T_1 + \frac{f_v(\omega)}{n \cdot p} T_4 \right],$$

(51)

with the same traces as defined in (38). As far as the spin structure is concerned, the four-quark contributions can thus be absorbed into a redefinition of the subleading shape functions u and v, namely

$$\tilde{u}(\omega) \equiv u(\omega) - \pi\alpha_s f_u(\omega), \quad \tilde{v}(\omega) \equiv v(\omega) + \pi\alpha_s f_v(\omega).$$

(52)

Note that the definitions (50) imply that the normalization integrals as well as the first moments of the functions $f_u(\omega)$ and $f_v(\omega)$ vanish (because the integration domain is of second order in $\bar{n} \cdot x$), and therefore the new functions \tilde{u} and \tilde{v} have the same first moments as the original ones, see (44).

While the shape functions S, s, t, u, v are expected to be identical for charged and neutral B mesons up to tiny isospin-breaking corrections, this is no longer the case for the four-quark shape functions f_u and f_v. The values of these functions will depend crucially on whether the light-quark flavor q in the four-quark operators matches that of the B-meson spectator quark. In the semileptonic decay $\bar{B} \to X_u l^- \bar{\nu}$, the difference between the subleading shape functions f_u and f_v for B^- and \bar{B}^0 mesons is likely to be one of the dominant sources of isospin-breaking effects on the decay distributions.

6 Applications

We are now ready to study the phenomenological implications of our results. We absorb the contributions from four-quark operators into the functions $\tilde{u}(\omega)$ and $\tilde{v}(\omega)$ defined in (52). The moment constraints on the shape functions can be summarized by their expansions in distributions Π, which read

$$S(\omega) = \delta(\omega) - \frac{\lambda_1}{6} \delta''(\omega) + \ldots, \quad s(\omega) = \frac{\lambda_1 + 3\lambda_2}{2} \delta'(\omega) + \ldots,$$

$$t(\omega) = \lambda_2 \delta'(\omega) + \ldots, \quad \tilde{u}(\omega) = -\frac{2\lambda_1}{3} \delta'(\omega) + \ldots, \quad \tilde{v}(\omega) = -\lambda_2 \delta'(\omega) + \ldots.$$

(53)

These expressions allow us to test our results against existing predictions for inclusive spectra obtained using a conventional heavy-quark expansion.

The analytic properties of the shape functions are such that they have support for $-\infty < \omega < \bar{\Lambda}_\infty$, where $\bar{\Lambda}_\infty$ is the asymptotic value of the mass difference $(m_B - m_b)_{m_b \to \infty}$ in the heavy-quark limit. This parameter differs from the physical value of $\bar{\Lambda}$ by power-suppressed terms,

$$\bar{\Lambda} \equiv m_B - m_b = \bar{\Lambda}_\infty - \frac{\lambda_1 + 3\lambda_2}{2m_b} + \ldots.$$

(54)

We would like the support in ω to extend over the physical interval $-\infty < \omega < \bar{\Lambda}$, since this will ensure that the kinematic boundaries for decay distributions take their physical values.
set by the true B-meson mass. This can be achieved by shifting the arguments of all shape functions by a small amount $\Delta \omega = \frac{1}{2}(\lambda_1 + 3\lambda_2)/m_b$. For the subleading shape functions this changes nothing to the order we are working, since $t(\omega + \Delta \omega) = t(\omega) + \ldots$ etc., where the dots represent terms of higher order in $1/m_b$. For the leading-order shape function, however, this shift produces a new $1/m_b$ correction: $S(\omega) = S(\omega + \Delta \omega) - \Delta \omega S'(\omega + \Delta \omega) + \ldots$, where the prime denotes a derivative with respect to the argument. Using the fact that $S(\omega)$ and $s(\omega)/m_b$ always appear together, we can absorb the extra term into a redefinition of the subleading-shape function s, defining a new function

$$s_0(\omega) \equiv s(\omega) - \frac{1}{2}(\lambda_1 + 3\lambda_2) S'(\omega).$$

(55)

From (44), it follows that the first moment of the function s_0 vanishes. In terms of these definitions,

$$\tilde{S}(\omega + \Delta \omega) \equiv S(\omega + \Delta \omega) + \frac{s_0(\omega + \Delta \omega)}{m_b} = S(\omega) + \frac{s(\omega)}{m_b} + \ldots.$$

(56)

In other words, our expressions for the hadronic tensors in (39) and (40) remain valid when in all shape functions the argument is shifted from ω to $\omega + \Delta \omega$, except that the subleading shape function s must be replaced with the redefined function s_0, whose norm and first moment vanish. Once this is done, the integrals over ω extend from $-\infty$ up to the physical value of $\bar{\Lambda}$.

It is now convenient to introduce a new variable $P_+ = n \cdot p + \bar{\Lambda} = m_B - n \cdot q = E_X - |P_X|$, which is the plus component of the total momentum of the final-state hadronic jet, and to express the shape functions as functions of $\hat{\omega} \equiv \bar{\Lambda} - \omega$ [4]. They have support in this variable for $0 \leq \hat{\omega} < \infty$. The δ-functions in the tree-level expressions (39) and (40) for the hadronic tensors set $\hat{\omega} = P_+$. We denote functions of $\hat{\omega}$ by a hat, e.g. $\hat{S}(\omega) \equiv \hat{S}(\bar{\Lambda} - \omega + \Delta \omega) = \hat{S}(\bar{\Lambda}_\infty - \hat{\omega})$, $\hat{t}(\hat{\omega}) \equiv t(\bar{\Lambda}_\infty - \hat{\omega})$, and similarly for the other functions. In the equations below, $\bar{\Lambda}$ always refers to the physical parameter defined with the true B-meson mass.

We start by presenting the triple differential rate for the inclusive semileptonic decay $\bar{B} \rightarrow X_u l^- \bar{\nu}$ in terms of the kinematic variables

$$P_+, \quad y = \frac{n \cdot p}{m_b} = 1 - \frac{n \cdot q}{m_b}, \quad \bar{x} = 1 - \frac{2E_l}{m_b}. \quad (57)$$

Using the expression for the hadronic tensor in (39) combined with the rate equations derived in (30), we obtain

$$\frac{1}{\Gamma} \frac{d^3 \Gamma}{d \bar{x} dy dP_+} = 12(y - \bar{x}) \left\{ (1 - y + \bar{x}) \left[1 + \frac{2(\bar{\Lambda} - P_+)}{m_b} \right] \frac{\hat{t}(P_+)}{m_b} + \hat{v}(P_+) \right\} + \left(1 - \frac{2\bar{x}}{y} \right) \frac{\bar{\Lambda} - P_+}{m_b} \frac{\hat{S}(P_+)}{y} \left(\frac{2\bar{x}(1 - 2y)}{m_b} + \frac{2\bar{x}}{y^2} \frac{\hat{v}(P_+)}{m_b} \right).$$

(58)

This expression is exact at tree level and to order Λ_{QCD}/m_b in the heavy-quark expansion. The phase space for these variables is such that

$$0 \leq P_+ \leq m_B - 2E_l = m_b \bar{x} + \bar{\Lambda}, \quad \frac{P_+ - \bar{\Lambda}}{m_b} \leq \bar{x} \leq y \leq 1.$$

(59)
and the hadronic tensor has support only for \(y \geq 0 \). Above we assume that \(\bar{x} \) and \(y \) are of \(O(1) \). The collinear expansion breaks down in the region of small \(y \). A restriction to small \(\bar{x} \) is allowed and corresponds to the so-called “endpoint region” of the charged-lepton energy spectrum. In this case, however, it is necessary for consistency to expand the expression above in powers of \(\bar{x} = O(\Lambda_{\text{QCD}}/m_b) \).

As a first application, we integrate (58) over the lepton energy, finding

\[
\frac{1}{\Gamma} \frac{d^2\Gamma}{dy dP_+} = 2y^2(3 - 2y) \left(1 + \frac{2(\bar{\Lambda} - P_+)}{m_b} \right) \hat{S}(P_+) + \frac{\hat{i}(P_+) + \hat{u}(P_+)}{yb} \]
\[
+ 2y(6 - 5y) \frac{\bar{\Lambda} - P_+}{m_b} \hat{S}(P_+) + 2y(1 - 2y) \frac{2\hat{i}(P_+) - \hat{v}(P_+)}{m_b}.
\]

The variables \(y \) and \(P_+ \) allow us to reconstruct any kinematic quantity characterizing the final-state hadronic system, such as the total hadronic energy, \(2E_X = P_+ + ymb + \bar{\Lambda} \), or the invariant hadronic mass, \(M_X^2 = P_+(ymb + \bar{\Lambda}) \). Of particular interest for a measurement of \(|V_{ub}|\) are the spectra in the variables \(P_+ \) and \(M_X \). For the distribution in \(P_+ \), we obtain

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dP_+} = \left[1 + \frac{14(\bar{\Lambda} - P_+)}{3mb} \right] \hat{S}(P_+) + \frac{\hat{i}(P_+) + 5\hat{u}(P_+) + \hat{v}(P_+)}{3mb}.
\]

Next, denoting \(s_H = M_X^2 \) and \(\Delta_s = s_H/m_b \), we find for the hadronic invariant mass spectrum

\[
\frac{1}{\Gamma} \frac{d\Gamma}{ds_H} = \frac{1}{m_b} \int_{\Delta_s}^{\infty} \frac{dP_+}{P_+} f(P_+, \Delta_s/P_+),
\]

where

\[
f(P_+, r) = 2r^2(3 - 2r) \left(1 + \frac{2(3\bar{\Lambda} - P_+)}{mb} \right) \hat{S}(P_+) + \frac{\hat{i}(P_+) + \frac{\hat{u}(P_+)}{rmb}}{rmb}
- 2r \left[6 - 5r \right] \frac{P_+}{mb} + 2r \frac{\bar{\Lambda}}{mb} \hat{S}(P_+) + 2r(1 - 2r) \frac{2\hat{i}(P_+) - \hat{v}(P_+)}{mb}.
\]

A comment is in order concerning the fact that the integration over \(P_+ \) in (62) is extended to infinity, while kinematically \(P_+ \leq \sqrt{s_0} \). The point is that near its kinematic limit the momentum \(P_+ \sim \sqrt{mb\Lambda_{\text{QCD}}} \) is no longer of order \(\Lambda_{\text{QCD}} \), and hence the collinear expansion breaks down. However, the contribution to the rate resulting from the vicinity of this region is suppressed by more than a single power of \(\Lambda_{\text{QCD}}/mb \). It is therefore required to set the upper limit to infinity so as to avoid spurious higher-order power corrections. Once this is done, it is theoretically consistent to treat \(P_+ \) as a quantity of order \(\Lambda_{\text{QCD}} \).

As a final application, we integrate (58) over the hadronic variables \(y \) and \(P_+ \) to obtain the charged-lepton energy distribution

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dE_l} = 4 \int_0^{m_B - 2E_l} \frac{d\hat{\omega}}{m_B - \hat{\omega}} \left[1 + \frac{6(\bar{\Lambda} - \hat{\omega})}{mb} \right] \hat{S}(\hat{\omega}) + \frac{\hat{i}(\hat{\omega}) + 3\hat{u}(\hat{\omega}) - 3\hat{v}(\hat{\omega})}{mb}.
\]
For purposes of comparison with previous authors, we also give the result for the dipole-operator contribution to the $\bar{B} \to X_s \gamma$ photon spectrum, stressing once again that this does not provide a complete description of all tree-level subleading shape-function effects. Taking into account that the photon spectrum is proportional to the expression in (40) times a factor E_γ^3, we find

$$\frac{1}{2\Gamma} \frac{d\Gamma}{dE_\gamma} = \left[1 + \frac{2(\bar{\Lambda} - P_+)}{m_b} \right] \hat{S}(P_+) + \frac{-\hat{t}(P_+) + \hat{u}(P_+) - \hat{v}(P_+)}{m_b} + \ldots,$$

(65)

where $P_+ = m_B - 2E_\gamma$ in this case.

Despite the discrepancies mentioned earlier, we agree with [8] on the result for the $\bar{B} \to X_s \gamma$ photon spectrum (having, however, added the new contribution from four-quark operators), and we also find complete agreement with a recent calculation of the hadronic invariant mass spectrum for semileptonic $\bar{B} \to X_u l^- \bar{\nu}$ decay by Luke et al. [12]. However, we do not confirm the result for the charged-lepton energy spectrum obtained in [10], when converted to our notation. These authors have (apart from an overall missing factor of 2) a coefficient of 2 instead of our 6 in front of the term proportional to $(\bar{\Lambda} - \hat{\omega})$, and a coefficient of 1 instead of our 3 in front of $\hat{u}(\hat{\omega})$. Our results can be tested against established formulae by using the moment expansions in (53). We find that (61), (64), and (65) are consistent with expressions for the corresponding spectra derived in [7], [23], and [1], respectively. Amusingly, the result for the lepton spectrum found in [10] is also consistent with the moment expansion. The reason is that this spectrum differs from our result by a term involving the combination $4(\omega/m_b) \hat{S}(\omega) + 2\hat{u}(\omega)$, in which the $\delta'(\omega)$ terms from (53) cancel each other.

Of particular phenomenological importance are various fractions of all $\bar{B} \to X_u l^- \bar{\nu}$ decays that pass certain experimental cuts, which are chosen so as to eliminate (or reduce) the background from semileptonic decays with charm hadrons in the final state. The most common cuts are $E_l \geq E_0$ with $\Delta E = m_B - 2E_0 \leq m^2_D/m_B$ ("lepton endpoint"), $s_H \leq s_0$ with $\Delta M = s_0/m_B \leq m^2_D/m_B$ ("low hadronic mass"), and $P_+ \leq \Delta P$ with $\Delta P = m^2_D/m_B$ ("low hadronic plus momentum"). We define corresponding fractions $F_E(\Delta E)$, $F_M(\Delta M)$, and $F_P(\Delta P)$. While the result for $F_P(\Delta P)$ is simply an integral of the spectrum in (61) over the range $0 \leq P_+ \leq \Delta P$, the expressions for the other two event fractions are more complicated, and we quote them here for completeness. We obtain

$$F_E(\Delta E) = \int_0^{\Delta E} d\hat{\omega} \frac{2(\Delta E - \hat{\omega})}{m_B - \hat{\omega}} \left[\left(1 + \frac{6(\bar{\Lambda} - \hat{\omega})}{m_b} \right) \hat{S}(\hat{\omega}) + \frac{\hat{t}(\hat{\omega}) + 3\hat{u}(\hat{\omega}) - 3\hat{v}(\hat{\omega})}{m_b} \right],$$

(66)

and

$$F_M(\Delta M) = \int_0^{\Delta M} dP_+ \left[\left(1 + \frac{14(\bar{\Lambda} - P_+)}{3m_b} \right) \hat{S}(P_+) + \frac{\hat{t}(P_+) + 5\hat{u}(P_+) + \hat{v}(P_+)}{3m_b} \right]$$

$$+ \int_0^{\Delta M} dP_+ g(P_+, \Delta M/P_+),$$

(67)
where $\Delta_M = s_0/m_B$, and

\[
\begin{align*}
 g(P_+, r) &= r^3 (2 - r) \left[\left(1 + \frac{2(3\bar{\Lambda} - P_+)}{m_b} \right) \hat{S}(P_+) + \frac{\hat{i}(P_+)}{m_b} \right] - \frac{2r^2}{3} \left[(9 - 5r) \frac{P_+}{m_b} + 2r \frac{\bar{\Lambda}}{m_b} \right] \hat{S}(P_+)
 + \frac{r^2}{3} (9 - 4r) \frac{\hat{u}(P_+)}{m_b} + \frac{r^2}{3} (3 - 4r) \frac{2\hat{i}(P_+) - \hat{v}(P_+)}{m_b}.
\end{align*}
\]

\((68) \)

In order to illustrate the numerical impact of subleading shape functions, we focus on the single differential spectra in (61), (62), and (64) in semileptonic B decay. For the leading shape function we use the parametrization

\[
\hat{S}_{\text{model}}(\hat{\omega}) = \frac{b^b}{\Gamma(b)} \frac{\hat{\omega}^{b-1}}{\Lambda^b} e^{-b\hat{\omega}/\Lambda}
\]

with $\bar{\Lambda} = 0.63 \text{ GeV}$ and $b = 2.93$, corresponding to the default choice in [11]. We employ two models for the subleading shape functions based on the moment expansion in (53), one where $\delta'(\omega)$ is replaced by a derivative $-\hat{S}'_{\text{model}}(\hat{\omega})$ of the leading shape function, and one where it is replaced by $[3(\bar{\Lambda} - \hat{\omega})/\lambda_1] \hat{S}_{\text{model}}(\hat{\omega})$. Both models satisfy the moment constraints identically, while giving rather different shapes for the subleading structure functions. We take $\lambda_2 = 0.12 \text{ GeV}^2$, $m_b = 4.65 \text{ GeV}$, and determine $\lambda_1 = -0.41 \text{ GeV}^2$ from the second moment of the model function (69).

Results for the three spectra and the corresponding integrated event fractions are presented in Figure 2. In each plot, the dashed-dotted line shows the leading term in the heavy-quark expansion, the dashed gray curve includes the effect of the “kinematic” power corrections proportional to $\hat{S}(\hat{\omega})$, which are predicted model independently, and the two solid lines include the model predictions for the subleading shape-function effects (the lighter of the two lines corresponds to the first model). While the effects are clearly visible on the spectra themselves, the integrated rate fractions with a cut on P_+ or s_H receive only moderate power corrections, which alter the leading-power results by typically 10% or less in the region near the charm threshold (located at $m_{D}^2/m_B \approx 0.66 \text{ GeV}$). Note that the kinematic corrections alone overestimate the effect, especially for the case of the P_+ spectrum.

The situation is rather different for the charged-lepton energy spectrum, where power corrections can have a drastic effect and tend to reduce the event fraction by a large amount. This effect can be traced to the particular weight function under the integral in (66) [11]. Even for large values of $\hat{\omega}$, the effect of subleading shape functions does not diminish, because the linear term in the weight function picks out the first moments of the subleading shape functions. As a result, there is a significant theoretical uncertainty in the prediction for the event fraction $F_E(\Delta E)$ near the charm threshold, which imposes limitations on the precision with which $|V_{ub}|$ can be determined from the charged-lepton endpoint region.

No such large effects are seen for the event fractions with a cut on P_+ or hadronic invariant mass. With $\Delta_{P,M} \approx m_{D}^2/m_B$, about 65–85% of all $\bar{B} \to X_u l^- \bar{\nu}$ events are retained with these cuts, and the corresponding fractions are enhanced further when radiative corrections are included [11]. Once the efficiency is so high, possible uncertainties due to four-quark operator contributions (“weak annihilation”) become negligible. Our analysis supports the study of
Figure 2: Predictions for the P_+, s_H, and E_l spectra (upper plots) and event fractions (lower plots). The dash-dotted curves refer to the heavy-quark limit, while the solid lines include subleading shape-function effects. The gray dashed curves include only those power corrections proportional to the leading-order shape function.

Theoretical uncertainties presented in [7], where the uncertainty due to power corrections in the value of $F_P(\Delta p)$ near the charm threshold was estimated as 10%. It provides further credibility to the strategy of obtaining highly efficient, precise measurements of $|V_{ub}|$ using experimental cuts on P_+ or s_H. We recall at this point that the P_+ spectrum offers the additional advantage that it can be directly related to the $\bar{B} \to X_s \gamma$ photon spectrum, cf. (61) and (65), whereas a prediction of the hadronic invariant mass spectrum requires knowledge of the shape function over a range not accessible in radiative B decay. Note also that the hadronic invariant mass distribution receives fractional power corrections of order $(\Lambda_{QCD}/m_b)^\gamma$ with $\gamma \approx 1.35$ from a region of phase space where the collinear expansion breaks down [4]. While these effects are formally beyond the accuracy of the present work, they introduce an additional theoretical uncertainty that is difficult to quantify (unless they can be shown to cancel).

The smallness of subleading shape-function effects for some observables can be understood based on the moment expansions in (53). For instance, in the P_+ spectrum (61) the first moments of the functions \hat{t} and \hat{v} cancel in the combination $\hat{t} + \hat{v}$, and the first moment of $\frac{2}{3} \hat{u}$ cancels against that of $\frac{4}{9} (\bar{\Lambda} - P_+) \hat{S}$, leaving a small residual term $-\frac{1}{9} \lambda_1 \delta'(P_+ - \bar{\Lambda})$. In weighted integrals over the P_+ spectrum, this can give rise to small second-order power...
corrections. Higher moments may spoil these cancellations, but their effects are only of order \((\Lambda_{\text{QCD}}/m_b)^3\) or higher when the spectrum is integrated over a sufficiently large domain. Similar cancellations occur for the hadronic invariant mass spectrum \((62)\), and for the photon spectrum \((65)\), for which the first moments cancel entirely. In all three cases, we have checked that taking a mix of the two models for the subleading shape functions, in which different higher moments prevent perfect cancellations, does not change the results by a significant amount. The case of the charged-lepton spectrum \((64)\) is again different. The first moment of 3\(\hat{u}\) cancels against that of 6(\(\bar{\Lambda} - \hat{\omega}\))\(\hat{S}\). However, the sum \(\hat{t} - 3\hat{\nu}\) has a rather large first moment given by \(-4\lambda_2 \delta'(\hat{\omega} - \bar{\Lambda})\), which in conjunction with the linear weight factor in \((66)\) gives rise to a significant power correction to the event fraction \(F_E\) \(9, 10, 11\).

7 Conclusions

With the development of soft-collinear effective theory (SCET), theoretical predictions for inclusive \(B\)-meson decay distributions have recently received renewed attention. While these processes had been studied extensively during the past decade, the ever increasing precision of the measurements at the \(B\) factories requires a new level of accuracy. This is an area where SCET is not only a useful conceptual tool, but where it provides concrete means of pushing the limits of theoretical calculations.

Earlier this year, two groups have performed systematic analyses of short-distance corrections in the semileptonic decay \(\bar{B} \rightarrow X_u l^- \bar{\nu}\) \(4, 5\) and radiative decay \(\bar{B} \rightarrow X_s \gamma\) \(6\), including a complete scale separation and resummation of Sudakov logarithms. As a result, the behavior of the leading shape function under renormalization is now well understood. This leaves power corrections to the heavy-quark limit as the principal source of theoretical uncertainties.

In the present work, we have used the formalism of SCET to perform a systematic study of such power-suppressed effects. At tree level, the results can be expressed in terms of a set of subleading shape functions defined via the Fourier transforms of forward matrix elements of bi-local light-cone operators in heavy-quark effective theory. We have identified a new contribution arising from four-quark operators, which was not considered previously. We have shown that, when shape functions appearing in process-independent combinations are combined into single functions, then a total of three subleading shape functions are required to describe arbitrary current-induced decay distributions of \(B\) mesons into light final-state particles. While subleading shape-function effects had been studied in the past, our results do not agree with those found in the original papers \(8, 10\).

In the last part of this work, we have presented analytical expressions for a variety of distributions in \(\bar{B} \rightarrow X_u l^- \bar{\nu}\) decay, which can be used directly for the analysis of experimental data. We have also given a formula for the triple differential rate, which allows for arbitrary cuts on kinematic variables. While this concludes the problem of tree-level power corrections in semileptonic decay, we have stressed that no complete (tree-level) analysis of power-suppressed corrections to the \(\bar{B} \rightarrow X_s \gamma\) decay exists to date. The formalism developed in this work can, however, readily be extended to this case.
Acknowledgments: We are grateful to Martin Beneke, Masahiro Morii, and Ben Pecjak for useful comments. S.W.B. would like to thank Daniel Wyler at the University of Zurich for hospitality during the final stage of this work. This research was supported by the National Science Foundation under Grant PHY-0355005. The research of M.N. is also supported in part by the Department of Energy under Grant DE-FG02-90ER40542.

References

[1] M. Neubert, Phys. Rev. D 49, 3392 (1994) [hep-ph/9311325]; Phys. Rev. D 49, 4623 (1994) [hep-ph/9312311].

[2] I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev and A. I. Vainshtein, Int. J. Mod. Phys. A 9, 2467 (1994) [hep-ph/9312359].

[3] T. Mannel and M. Neubert, Phys. Rev. D 50, 2037 (1994) [hep-ph/9402288].

[4] S. W. Bosch, B. O. Lange, M. Neubert and G. Paz, Nucl. Phys. B 699, 335 (2004) [hep-ph/0402094].

[5] C. W. Bauer and A. V. Manohar, Phys. Rev. D 70, 034024 (2004) [hep-ph/0312109].

[6] M. Neubert, [hep-ph/0408179].

[7] S. W. Bosch, B. O. Lange, M. Neubert and G. Paz, Phys. Rev. Lett. 93, 221801 (2004) [hep-ph/0403223].

[8] C. W. Bauer, M. E. Luke and T. Mannel, Phys. Rev. D 68, 094001 (2003) [hep-ph/0102089].

[9] A. K. Leibovich, Z. Ligeti and M. B. Wise, Phys. Lett. B 539, 242 (2002) [hep-ph/0205148].

[10] C. W. Bauer, M. Luke and T. Mannel, Phys. Lett. B 543, 261 (2002) [hep-ph/0205150].

[11] M. Neubert, Phys. Lett. B 543, 269 (2002) [hep-ph/0207002].

[12] C. N. Burrell, M. E. Luke and A. R. Williamson, Phys. Rev. D 69, 074015 (2004) [hep-ph/0312366].

[13] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001) [hep-ph/0011336]; C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 65, 054022 (2002) [hep-ph/0109045].

[14] M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Nucl. Phys. B 643, 431 (2002) [hep-ph/0206152]; M. Beneke and T. Feldmann, Phys. Lett. B 553, 267 (2003) [hep-ph/0211358].

[15] M. Neubert, Phys. Rept. 245, 259 (1994) [hep-ph/9306320].
[16] T. Becher, R. J. Hill and M. Neubert, Phys. Rev. D 69, 054017 (2004) [hep-ph/0308122].
[17] R. J. Hill and M. Neubert, Nucl. Phys. B 657, 229 (2003) [hep-ph/0211018].
[18] R. J. Hill, T. Becher, S. J. Lee and M. Neubert, JHEP 0407, 081 (2004) [hep-ph/0404217].
[19] D. Pirjol and I. W. Stewart, Phys. Rev. D 67, 094005 (2003) [Erratum-ibid. D 69, 019903 (2004)] [hep-ph/0211251].
[20] B. O. Lange and M. Neubert, Nucl. Phys. B 690, 249 (2004) [hep-ph/0311345].
[21] M. E. Luke, Phys. Lett. B 252, 447 (1990).
[22] A. F. Falk and M. Neubert, Phys. Rev. D 47, 2965 (1993) [hep-ph/9209268].
[23] A. V. Manohar and M. B. Wise, Phys. Rev. D 49, 1310 (1994) [hep-ph/9308246].
[24] M. Neubert and C. T. Sachrajda, Nucl. Phys. B 483, 339 (1997) [hep-ph/9603202].
[25] I. I. Y. Bigi, B. Blok, M. A. Shifman, N. Uraltsev and A. I. Vainshtein, [hep-ph/9401298]
I. I. Y. Bigi, [hep-ph/9508408]
[26] M. Di Pierro and C. T. Sachrajda, Nucl. Phys. B 534, 373 (1998) [hep-lat/9805028].
[27] D. Becirevic, [hep-ph/0110124]
[28] M. S. Baek, J. Lee, C. Liu and H. S. Song, Phys. Rev. D 57, 4091 (1998) [hep-ph/9709386].
[29] M. B. Voloshin, Phys. Lett. B 515, 74 (2001) [hep-ph/0106040].
[30] F. De Fazio and M. Neubert, JHEP 9906, 017 (1999) [hep-ph/9905351].