Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

Ying Gu, Jun Zhang, Ying-Bing Wang, Shao-Wei Li, Hai-Jie Yang, Wen-Xin Luo, Ning-Shao Xia

INTRODUCTION

Hepatitis E is an acute hepatitis caused by hepatitis E virus (HEV) in developing countries, where it occurs sporadically and in an epidemic form. The causative agent, HEV, is transmitted primarily by the fecal-oral route, and it accounts for about 15-20% sporadic cases of acute hepatitis in China[1,2]. HEV is an isosahedron non-enveloped virus, and its genome is a single-stranded positive-sense, 3'-polyadenylated RNA about 7.5 kb in length. It contains 3 open reading frames (ORFs). ORF1 codes for a polyprotein of 1 693 amino acids and contains domains homologous to a viral methyltransferase, a papanilike cysteine protease, an RNA helicase, and an RNA-dependent RNA polymerase, and the most hypervariable region of HEV genome. ORF2 codes for the viral capsid protein of 660 amino acids, while ORF3 codes for a 123-amino-acid-long polypeptide with unknown function.

It has been proved that the major viral capsid protein encoded by ORF2 contains the protective epitope[3]. We recombined a fragment of HEV ORF2 and expressed the polypeptide named NE2 in E.coli recently[4], and proved it to be a protective antigen[5], which naturally forms homodimer by virtue of its interface domain[6]. Three anti-NE2 neutralization mAbs, 8C11, 8H3 and 13D8 were selected, which could recognize 2 separated neutralization conformational surface epitopes of HEV, 8C11 and 13D8 against one and 8H3 against the other. The 3 mAbs can neutralize HEV in vitro and in vivo test of Rhesus monkey[7-9].

8C11 and 8H3 were used to screen binding peptides from a heptapeptide phage display library, which could mimic the 2 neutralizing epitopes of HEV binding to 8C11 and 8H3 respectively. The obtained dominant peptides’ DNA sequences were then synthesized and cloned into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E.coli. Activity of the recombinant proteins was detected by Western blotting. VLPs of the recombinant proteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.

CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short peptide, which provides a feasible route for subunit vaccine development.

METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4 rounds of panning, mononclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E.coli. Activity of the recombinant proteins was detected by Western blotting. VLPs of the recombinant proteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.

RESULTS: Twenty-one positive monocular phages (10 for 8C11, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N’-His-Pro-Thr-Leu-Leu-Arg-Ile-C’, named 8C11A) and 8H3 (N’-Ser-Ile-Leu-Pro-Thr-Pro-Thr-C’, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E.coli. The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polypeptide could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemo-synthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.

CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short peptide, which provides a feasible route for subunit vaccine development.

MATERIALS AND METHODS

Monoclonal antibodies

8C11 and 8H3 mAbs, which could conformationally bind to neutralizing epitopes of HEV were prepared in our...
laboratory[7,9]. Affinity purified antibody phosphatase labeled goat anti-mouse IgG (H+L) was from Kirkegaard & Perry Laboratory (2 Cessua Court, Gaithersburg Maryland 20879, USA).

Affinity selection and amplification of peptide library

Heptapeptide phage display library and host strain *E.coli ER2738* were purchased from New England BioLabs Company. Anti-HEV mAbs binding phages were isolated from the phage display library by successive cycles of selection and amplification. The biopanning procedure was essentially used as described in the phage display library user manual. Briefly, mAbs 8C11 and 8H3 (100 µg/mL) were coated on 96-well microtiter plates. After blocked with 20 g/L BSA, 100 µL diluted phage (10 µL of the original library) was pipetted onto the coated plate and shaken gently for 1 h at room temperature, the plates were washed for 10 times with PBST (10 g/L Tween 20). The bound phages were eluted with 100 µL 1 mol/L Tris-HCl (pH 9.1). The eluate was added to 20 mL ER2738 culture and incubated at 37°C with vigorous shaking for 4.5 h. The culture was transferred to a centrifuge tube and spun for 10 min at 10 000 g. The supernatant containing the genome of peptide 8C11A (CATCCTACTC TTGCGTATT), which could bind to mAb 8C11 or the genome of peptide 8H3A (TCTATCTGCGTATCTTAT), which could bind to mAb 8H3. Then they were digested with BamHI I and EcoRI I, and the product fragment was linked into the pC149-mut vector to compose the expression vector named pC149-mut-8C11A or pC149-mut-8H3A (Figure 1).

Expression and purification of recombinant polyprotein

Host strain ER2566 was cultured and transformed with the recombinant vector pC149-mut-8C11A or pC149-mut-8H3A in LB culture medium at 37°C in a shaker, till the A\textsubscript{600} reached 0.8-1.0, then the culture was incubated with 0.2 mmol/L IPTG for 6 h at 37°C. The cells were spun to be collected and were disintegrated by an ultrasonic disintegrator (Uilbra-Cell VGX500 of SONICS & MATERIALS Co.). The insoluble protein was spun and collected, then suspended and deposited 2 times into 10 g/L Triton X-200. The pellet was finally suspended into buffer A (4 mol/L Urea, 20 mmol/L Tris-HCl pH 8.5, 5 mmol/L EDTA, 100 mmol/L NaCl), dialysed in PBS overnight. The lysate was spun and collected.

Western blotting

Boiled supernatant of ultrasonic lysate and boiled deposition of ultrasonic lysate and control samples (the expression of pC149-mut could not react with mAbs, and the recombinant polyprotein NE2 was used to select mAbs including 8C11 and 8H3) were dissolved in 120 g/L SDS-PAGE, transferred to nitrocellulose membrane. Each contained one lane of the protein molecular mass mark between 18.3 and 215 ku. The membrane containing proteins with 5 g/L non-fat dry milk as blocking solution was incubated for 90 min and reacted with the test mAb 8H3 or 8C11 diluted in 5 g/L non-fat dry milk. The immunocomplexes were detected by using Ap-labeled goat-anti-mouse IgG, BCIP and NBT as substrates.

Transmission electron microscopy of chimeric VLPs

After renatured by the methods described above, the particles were adsorbed to carbon-coated grids, stained with 2 g/L uranyl acetate, and examined by JEM-100CXII electron microscope at about x100 000 magnification.

Active analysis of recombinant proteins by BIAcore biosensor

Heptapeptide named 8H3A (N’-Ser-Ile-Leu-Pro-Tyr-Pro-Tyr-C’) was synthesized and purified by Xi’an Meilian Ltd (Xi’an, China). Then the biosensor chip was coupled with anti-mouse Fc, which was carried out according to the user manual. Briefly, the sensor chip CMS with CM Dextran on its reaction-surface was activated with EDC and NHS, and then the flow cells were treated with a standard amine-coupling reagent (injecting 10 mm/L NaOAc, pH 4.8, instead of protein) or with amine-coupling reagents and anti-mouse Fc polyclonal antibody. The

Table 1 Primers for expression vector of mimic peptide

Primer ID	Primer sequence
8C11AFP	GGAATCCCATATCTACCCTTTCTTTGCTATATGGGTGGGAGGTTCAGGG
8H3AFP	GGAATCCCTATTTGCGTATCTTATGGGTGGGAGGTTCAGGG
149 mutRP	GAATTCTTAAACAAACAGTAGTTT

The underlined sequences are the insert genes coding the selected peptides.
coupling density of the antibody was 900 RU. Experiments were run at 25 °C. After mAb 8H3 was bound to anti-mouse Fc antibody, peptide 8H3A was injected. The data of association and dissociation indicating the reaction between mAb 8H3 and peptide 8H3A were collected. Biacore X biosensor, CM5 sensor chip and reagent of EDC & NHS were from Amersham Biosciences Company (Uppsala, Sweden).

RESULTS
Sequence characteristics of peptide binding to neutralizing mAb 8C11 or 8H3
After 4 rounds of biopanning, 21 monoclonal phages were selected for sequencing (in which 10 phage could bind to mAb 8C11, and the other 11 could bind to mAb 8H3). According to the DNA sequence, the peptide sequence of the phage displayed was made out (Figure 2). Heptapeptide with amino acid sequence HPTLLRI was dominant (50%) in the 10 monoclones bound to mAb 8C11. While in the 11 monoclones bound to mAb 8H3, the preponderant amino acid sequence was SILPYPY (27.3%). Furthermore, in the heptapeptide binding to mAb 8H3, the amino acid sequence of S*LP, S*P, S*L or LP was also more frequent, indicating that S, L and P would be more important to form the domain binding to mAb 8H3. Likewise, amino acids P, T and L were found to be more important in the interaction between peptide and mAb 8C11.

Figure 1 Expression vector construction of pC149-mut-8C11A and pC149-mut-8H3A. A: Construction of pC149-mut-8C11A, B: Map of pC149-mut-8H3A, which was constructed as pC149-mut-8C11A except using the primer 8H3AFP instead of 8C11AFP.
Expression and western blotting of peptide mimic neutralization epitope

Dominant peptides 8C11A (N’-His-Pro-Thr-Leu-Leu-Arg-Ile-C’) and 8H3A (N’-Ser-Ile-Leu-Pro-Tyr-Pro-Tyr-C’) were cloned into the vector pC149-mut named C8C11A and C8H3A respectively, and expressed. The result of expression was shown in Figure 3. Recombinant polyprotein C8C11A was found in the insoluble cell pellet, and formed dimer (about $M_r 40,000$ in mass) on the SDS-PAGE mainly while the monomer (about $M_r 20,000$) was hard to be seen. As to the Western blotting result, it was the dimer that could interact with mAb 8C11 in the same level as the monomer of NE2 protein (about $M_r 29,000$). C8H3A fusions were also found in the insoluble cell pellet. Beside the dimer, a monomer was in the majority, but only the $M_r 40,000$ dimer was able to bind to mAb 8H3 when tested by Western blotting.

Figure 2 Sequences of peptides selected by monoclonal antibodies. A: Selected by mAb 8C11, B: Selected by mAb 8H3.

Figure 3 Expression and Western blotting of pC149-mut-8C11A and pC149-mut-8H3A. A, C: SDS-PAGE, B, D: Western blotting of mAbs 8C11 and 8H3 respectively, A, B: pC149-mut-8C11A, C, D: pC149-mut-8H3A. 1, Protein molecular weight marker; 2, Supernatant of ultrasonic lysate; 3, Deposition of ultrasonic lysate; 4, C149-mut control; 5, Purified NE2 antigen.

Electron micrograph of VLP

The renatured recombinant polyprotein particles were adsorbed to carbon-coated grids, stained with 20 g/L uranyl acetate, and examined with TEM. The recombinant HBCAg with 8C11A or 8H3A on its surface and HBCAg could form VLPs and VLPs’ diameter was about 20 nm (Figure 4).

Figure 4 Virus like particles assembled by recombinant protein C8C11A, C8H3A or C149 mut (Negative staining electron microscopy, ×100 000).

Figure 5 Binding curve of chemo-synthesized seven peptide 8H3A against monoclonal antibody 8H3 in BIAcore biosensor.
Interaction between chemo-synthesized heptapeptide 8H3A and mAb 8H3

The mAb 8H3 was bound to the anti-mouse Fc polyclonal antibody coupled on the cells of CM5 chip. After mAb 8H3 was bound to the anti-mouse Fc antibody, peptide 8H3A (1 mg/mL) was injected and the data of association and dissociation were collected. Chemo-synthesized heptapeptide 8H3A could bind to mAb 8H3, but not stably (Figure 5).

DISCUSSION

Phage display technique has been widely used in constructing antibody library or biopanning of random peptides according to their biological activities, and in many other fields or sg\[11,12\]. As a new technique, it makes use of the characteristics of the coat protein of the phage, that is, a peptide is expressed as a fusion with the phage coat protein pIII, resulting in the display of fused protein on the surface of virion. Phage display technique allows rapid identification and amplification of the peptide ligands for target molecules by the affinity of their specific-binding. Recently, random peptide libraries displayed on phage have been widely used in many fields, such as identification and analysis of a peptide mimic the epitope of HIV\[13\] and HIV-1-infected cells\[14\], identification of enzyme inhibitors\[17\] and immunodepressants\[18\], and many antigens etc.\[19-22\]. Phage display technique is specially useful to mimic a variety of half-antigens and non-peptide target molecules’ function, which is a very useful way to produce mimic peptide medication. Many reports have been available on the peptides mimicking epitope, which can neutralize Neisseria meningitidis\[23,24\] and many other bacteria to produce bacterial vaccines.

There are still no cell models of HEV, or effective methods to produce HEV artificially. Different sections of HEV capsid protein were expressed, and the structures of the recombinant polyproteins were analysed, which can help us to speculate the crude structure of HEV capsid. We cloned a section of HEV ORF2 (named NE2) and expressed this recombinant protein in E.coli. It was found that NE2 formed polymer spontaneously, from dimer to hexamer concretely. This was very similar to the assemble process of HEV capsid protein\[13,25,26\]. NE2 was used to immunize Rhesus monkey, and induce protective antibodies. The above findings indicate that polyprotein could form VLP, which displayed the foreign protein were expressed, and the structures of the recombinant vector to express the protein, which can form VLP, and using the recombinant vector on the surface of virion. Phage display technique has been widely used in constructing antibody library or biopanning of random peptides according to their biological activities, and in many other fields or sg\[11,12\]. As a new technique, it makes use of the characteristics of the coat protein of the phage, that is, a peptide is expressed as a fusion with the phage coat protein pIII, resulting in the display of fused protein on the surface of virion. Phage display technique allows rapid identification and amplification of the peptide ligands for target molecules by the affinity of their specific-binding. Recently, random peptide libraries displayed on phage have been widely used in many fields, such as identification and analysis of a peptide mimic the epitope of HIV\[13\] and HIV-1-infected cells\[14\], identification of enzyme inhibitors\[17\] and immunodepressants\[18\], and many antigens etc.\[19-22\]. Phage display technique is specially useful to mimic a variety of half-antigens and non-peptide target molecules’ function, which is a very useful way to produce mimic peptide medication. Many reports have been available on the peptides mimicking epitope, which can neutralize Neisseria meningitidis\[23,24\] and many other bacteria to produce bacterial vaccines.

These 3 mAbs were proved to be neutralizing mAb by in vivo neutralization test in rhesus. The 2 epitopes recognized by mAbs (1 bound to 8H3C11 and 13D8, and the other to 8H3E) were tested to be conformational epitopes. We panned the random phage display heptapeptide library, which displayed the linear epitope constructed by heptapeptide, and the peptides could mimic the neutralizing epitope that could bind to the 2 mAbs (8C11 and 8H3). Furthermore, heptapeptides were recombined on HBCAg for expression in E.coli, and their activities were tested by Western blotting. The recombinant polypeptide expressed by plasmid pc149-mut-8C11A appeared to be the dimer of M\[40 000\] on SDS-PAGE, which could bind to mAb 8C11 similar to the monomer of NE2. While the production of dimer of NE2 was tested by Western blotting. The recombinant polyprotein expressed by plasmid pC149-mut-8C11A appeared to be the dimer of M\[40 000\] on SDS-PAGE, which could bind to mAb 8C11 similar to the monomer of NE2. While the production of dimer of NE2 was tested by Western blotting. The recombinant polyprotein could form VLP, which displayed the foreign heptapeptide on their surface and kept its immunogenicity. The known neutralizing epitopes of viruses are almost conformational epitopes, so the genetically engineered vaccine needs the recombinant protein to be in correct conformation, and be able to preserve the immunity. These 2 qualifications could result in a mass of genetically engineered screen. But if using the peptides which mimic the conformational neutralizing epitopes, using the plasmid pc149-mut as a vector to mimic peptide vaccine expression will get VLP antigens, which remains the activation of neutralizing epitopes, and ensure the immunity of the vaccine, at the same time result in protective immunity. On the one hand, this tactics makes it available to unite more than one kind of virus’ s neutralizing epitopes on the VLP antigen. That is to say, it is a way to develop polyclonal vaccines, which shows new direction in the development of new vaccine\[28-31\]. The preventer of polyclonal vaccine is that the neutralizing epitopes are almost conformational, if in term of the routine method the conformational epitope cannot be exactly formed. On the other hand, if the chemo-synthesized peptide is used, the immunity will be influenced because of the low molecular mass of peptide. In a word, using the recombinant vector to express the protein, which can form VLP, and using the linear functional mimic epitope, which is displayed on the surface of VLP antigen instead of the conformational neutralizing epitope, is a new feasible idea to settle the difficulties in polyclonal vaccines.

REFERENCES

1. Zhuang H, Cao XY, Liu CB, Wang GM. Epidemiology of hepatitis E in China. Gastroenterol Jpn 1991; 26 (Suppl 3): 135-138.
2. Huang RT, Li XY, Xia XB, Yuan XT, Liu MX, Li DR. Antibody detection and sequence analysis of sporadic HEV in Xiamen region. World J Gastroenterol 1999; 5: 270-272.
3. Purcell RH, Emerson SU. Hepatitis E virus In: Knipe DM, Howley PM, Griffin DE, eds. Fields virology, 4thed. vol2. Philadelphia: Lippincott Raven Pub 2001: 3051-3051.
4. Li SW, Zhang J, He ZQ, Ge SX, Gu Y, Ling J, Liu RS, Xia NS. The study of aggregate of the ORF2 peptide of hepatitis E virus expressed in Escherichia coli. Shengwu Gongcheng Xibadao 2002; 18: 463-467.
5. Ge SX, Zhang J, Huang GY, Pang SQ, Zhou KJ, Xia NS. The Immuno-protect study of a hepatitis E virus ORF2 peptide expressed in E.coli. Weshingwu Xibadao 2003; 43: 35-42.
6. Li SW, He ZQ, Wang YB, Chen YX, Liu RS, Lin J, Gu Y, Zhang J, Xia NS. Interface domain of hepatitis E virus capsid protein homodimer, Shengwu Gongcheng Xibadao 2004; 20: 90-98.
7. Gu Y, Zhang J, Li SW, Ge SX, He ZQ, Zou ZH, Yan YL, Li YM, Xia NS. Characterization of the anti-HEV ORF2 monoclonal antibodies by biosensor. Xibao Yu Fenzi M ianyixue Zazhi 2002; 18: 617-620.
8 Ge SX, Zhang J, Peng G, Huang GY, He ZQ, Gu Y, Zhu ZH, Ng MH, Xia NS. Development and evaluation of ELISAs for anti-hepatitis E virus IgM and IgG detection based on polymerized recombinant antigen. Bingdu Xuebao 2003; 19: 78-86

9 Gu Y, Ge SX, Huang GY, Li SW, Zhu ZH, He ZQ, Chen YX, Wang YB, Zhang J, Xia NS. Identification of neutralizing monoclonal antibodies to the hepatitis E virus. Bingdu Xuebao 2003; 19: 217-223

10 Bottcher B, Wynne SA, Crowther RA. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 1997; 386: 88-91

11 Ding CL, Yao K, Zhang TT, Zhou F, Xu L, Xu JY. Generation of cytotoxic T cell against HbcAg using retrovirally transduced dendritic cells. Wold J Gastroenterol 2003; 9: 1512-1515

12 Luo WX, Zhang J, Yang HJ, Li SW, Xie XY, Pang SQ, Li SQ, Xia NS. Construction and application of an Escherichia coli high expression vector with an enhancer. Shengwu Gongcheng Xuebao 2000; 16: 578-581

13 Yu ZC, Ding J, Nie YZ, Fan DM, Zhang XY. Preparation of single chain variable fragment of M.G., mAb by phage display technology. World J Gastroenterol 2001; 7: 510-514

14 Wu BP, Xiao B, Wan TM, Zhang YL, Zhang ZS, Zhou DY, Lai ZS, Gao CF. Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer. World J Gastroenterol 2001; 7: 811-815

15 Ferrer M, Sullivan BJ, Godbout KL, Burke E, Stump HS, Godoy J, Golden A, Profy AT, van Schaevveldrij MD. Structural and functional characterization of an epitope in the conserved C-terminal region of HIV-1 gp120. J Pept Res 1999; 54: 32-42

16 MacDonald NJ, Shivers WY, Narum DL, Plum SM, Wingard JN, Fuhrmann SR, Lian H, Holland-Linn J, Chen DH, Sim BK. Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J Biol Chem 2001; 276: 25190-25196

17 Kiczak L, Kasztura M, Koscielecka-Kasprow K, Dadlez M, Mielczewski J. Selection of potent chymotrypsin and elastase inhibitors from M13 phage library of basic pancreatic trypsin inhibitor (BPTI). Biochim Biophys Acta 2001; 1550: 153-163

18 Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A. Affinity-driven peptide selection of an NFAF inhibitor more selective than cyclosporin A. Science 1999; 285: 2129-2133

19 Shchelkunov SN, Nesterov AE, Ryazankin IA, Ignat’ev GM, Sandakhchiev LS. Development of a candidate polyclonal live vaccine against human immunodeficiency, hepatitis B, and orthopox viruses. Dokl Biochem Biophys 2003; 390: 180-183

20 Ragupathi G, Livingston P. The case for polyclonal cancer vaccines that induce antibodies. Expert Rev Vaccines 2002; 1: 193-206

21 Cardo-Vila M, Arap W, Pasqualini R. Alpha v beta 5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol Cell 2003; 11: 1151-1162

22 Xu L, Jin Q, Fan DM. Selection and identification of mimic epitopes for gastric cancer-associated antigen MG7 Ag. Mol Carcer Ther 2003; 2: 301-306

23 Grothaus MC, Srivastava N, Smithson SL, Kiefer-Emmons T, Williams DB, Carlone GM, Westerink MA. Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display library. Vaccine 2000; 18: 1253-1263

24 Prinz DM, Smithson SL, Westerink MA. Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C. J Immunol Methods 2004; 285: 1-14

25 Zhang JZ, Ng MH, Xia NS, Lau SH, Che XY, Chau TN, Lal ST, Im SW. Comformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein. J Med Virol 2001; 64: 125-132

26 Im SW, Zhang JZ, Zhuang H, Che XY, Zhu WF, Xu GM, Li K, Xia NS, Ng MH. A bacterially expressed peptide prevents experimental infection of primates by the hepatitis E virus. Vaccine 2001; 19: 3726-3732

27 Pumpens P, Razanskas R, Pusenko P, Rennhofer R, Gusari S, Skrastina D, Ose V, Borisova G, Sominskaya I, Petrovski I, Jansons J, Sasnauskas K. Evaluation of HBs, HBC, and frCP virus-like particles for expression of human papillomavirus 16 E7 oncoprotein epitopes. Interivirology 2002; 45: 24-32

28 Soppuram SR, Kodela V, Ramanathan H, Wescott C, Radcliffe G, Bogen SA. Synthetic peptides identified from phage-display combinatorial libraries as immunodiagnostic assay surrogate quality-control targets. Clin Chem 2002; 48: 410-420

29 Poloni F, Puddu P, Moretti F, Flego M, Romagnoli G, Tombesi M, Capone I, Chersi A, Felici F, Cianfriglia M. Identification of a LFA-1 region involved in the HIV-1-induced syncytia formation through phage-display technology. Eur J Immunol 2001; 31: 57-63

30 Li BW, Rush A, Zhang SR, Curtis KC, Weil GJ. Antibody responses to Brugia malayi antigens induced by DNA vaccination. Filari J 2004; 3: 1

31 Combedet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McCuple H, Feiberg MB, Braic H, Tangy F. A molecularly cloned Schwartz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 2003; 77: 11546-11554

Edited by Xu FM and Wang XL