Development of *Metarhizium anisopliae* and *Beauveria bassiana* formulations for control of malaria mosquito larvae

Tullu Bukhari*, Willem Takken, Constantianus JM Koenraadt

Abstract

Background: The entomopathogenic fungi *Metarhizium anisopliae* and *Beauveria bassiana* have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of *Metarhizium anisopliae* and *Beauveria bassiana* spores for the control of anopheline larvae, and also improve their persistence under field conditions.

Methods: Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya.

Results: When formulated in a synthetic oil (ShellSol T), fungal spores of both *Metarhizium anisopliae* and *Beauveria bassiana* were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of *An. gambiae* was significantly reduced by 39 - 50% by the ShellSol T-formulated *Metarhizium anisopliae* and *Beauveria bassiana* spores as compared to the effects of the application of unformulated spores.

Conclusions: ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae.

Background

Recently, theoretical and experimental studies have shown the potential of entomopathogenic fungi as next generation agents for the control of malaria mosquitoes [1-5] However, most of this work has focused on targeting adult mosquitoes. Larval control has a convincing history of malaria eradication and recent studies have also shown this approach to be highly effective [6-11]. It is, therefore, worthwhile to investigate the ability of entomopathogenic fungi to control mosquito larvae and the feasibility of their operational use.

Our previous work showed the efficacy of *Metarhizium anisopliae* (ICIPE-30) and *Beauveria bassiana* (IMI-391510) spores in infecting and killing larvae of *Anopheles stephensi* and *An. gambiae* under laboratory conditions [12]. Other isolates of *M. anisopliae* and *B. bassiana* have also been shown to affect culicine and anopheline larvae [13-17]. The main infection sites were the feeding and respiratory apparatus [16]. Most of these studies had been carried out in the laboratory and...
proved the application of dry fungal spores to be more effective than the application of formulated spores [13, 14, 18]. Applying dry spores in the field, however, has certain limitations. Fungal spores are hydrophobic by nature so when applied in an aquatic environment, they clump together, reducing the area that is effectively covered. As a result, massive amounts of fungal spores are required. Contact with water also disrupts the infection process. Attachment of spores to the host is an important step of the infection process. The outer layer of spores has highly organised surface proteins known as rodlets, which are mainly responsible for attachment to the host [19]. For successful infection, germination should follow spore attachment to the host. When dry fungal spores are applied to an aquatic habitat, typical for mosquito larvae, the nutrients in the water are usually sufficient to stimulate germination in the spores following water intake [20, 21]. Once a spore germinates, the outer layer is ruptured reducing the chance of attachment to the host. Water contact, thus, reduces the pathogenicity of the floating spores. In addition, dry unformulated fungal spores are more exposed to UV radiation and high temperatures, which are known to negatively affect spore persistence and germination rate [22, 23].

In addition to strain selection and genetic modification, formulation can have a considerable impact on improving the efficacy of biopesticides. An ideal formulation aids the handling and application of the biopesticides, as well as increases its efficacy by improving contact with the host and protecting the active agent from environmental factors [24]. Considering the surface feeding behaviour of anophele larvae, any formulation intended to infect them should spread the fungal spores over the water surface [25, 26]. The larvae are then most likely to come in contact with spores. The spores should spread uniformly, providing equal coverage, over the entire treated area. In addition, spores should be prevented from germinating before host attachment, and at least to some extent be protected from environmental factors. In this context we developed and tested dry (organic and inorganic), oil (mineral and synthetic) and water-based formulations of M. anisopliae and B. bassiana for their efficacy against anophele larvae.

The objectives of this study were to (a) develop formulations suitable for the positioning (water surface or bottom) and uniform spread of M. anisopliae and B. bassiana spores, (b) assess the efficacy of selected spore formulations in killing anophele larvae, (c) assess the selected formulations for their potential to increase spore persistence, and (d) assess the potential of formulations to suppress populations of mosquito larvae in a field situation.

Methods

Mosquitoes

Anopheles gambiae s.s. (Suakoko strain, courtesy of Prof. M. Coluzzi, reared in laboratory for 23 years) and An. stephensi (Strain STE 2, MR4 no. 128, origin India, reared in laboratory for 2 years after obtaining the eggs from MR4) were reared separately, but under similar conditions, in climate-controlled rooms at Wageningen University, The Netherlands. The temperature was maintained at 27 ± 1°C. Relative humidity was set at 70 ± 5% and the rooms had a 12L:12D photoperiod. Larvae were kept in plastic trays filled with tap water. First instar larvae were fed on Liquifry No. 1 (Interpet Ltd., Surrey, UK) while older instar stages were fed on Tetramin® (Tera, Melle, Germany). The resulting pupae were transferred to holding cages (30 × 30 × 30 cm) in small cups, where they emerged as adults with ad libitum access to 6% glucose water. The female mosquitoes were blood-fed with the Hemotek membrane feeding system. Human blood (Sanquin®, Nijmeg, The Netherlands) was used for this purpose and mosquitoes could feed on it through a Parafilm M® membrane. Eggs were laid on moist filter paper, and were subsequently transferred to the larval trays. For the field bioassays An. gambiae s.s. eggs (Kisumu, strain, reared in laboratory for 8 years) were obtained from the Kenya Medical Research Institute (KEMRI) and reared at the Ahero Multipurpose Development Training Institute (AMDTI), Kenya. Rearing was carried out under local climate conditions (described below) and larvae were fed on Tetramin®.

Fungal spores

Metarhizium anisopliae (ICIPE-30) and Beauveria bassiana (IMI-391510) spores were obtained from the Department of Bioprocess Engineering, Wageningen University, and stored as dry spores in Falcon™ tubes at 4°C. Metarhizium anisopliae spores are olivaceous green, cylindrical and 2.5-3.5 μm long while B. bassiana spores are hyaline, spherical or sub-spherical and have a diameter of 2-3 μm [27].

Carrier materials

Wheat flour, white pepper, WaterSavr™ (WaterSavr™, Sodium bicarbonate version, Flexible Solutions International Ltd., Victoria BC, Canada), 0.1% Tween 80 aqueous solution, Ondina oil 917 (Shell Ondina® Oil 917, Shell, The Netherlands) and ShellSol T (Shellsol T®), Shell, The Netherlands) were tested for their potential as carrier of fungal spores. Wheat flour and white pepper served as organic dry carriers. These were tested because anophele larvae are known to aggregate around and feed on powdered organic materials (wheat flour, alfalfa flour, blood meal and liver powder) even
when a choice of inorganic materials (chalk, charcoal and kaolin) is also available [28]. One inorganic dry powder, known as WaterSavr, was also tested. WaterSavr consists of fine bicarbonate granules that self-spread over the water surface forming a thin layer which has been shown to reduce evaporation [29]. Its biodegradability, safety and surface-spread-features made it a suitable candidate for inclusion in our tests. Surfactants, such as Tween 80, can be used to overcome the hydrophobic nature of fungal spores and form a homogeneous aqueous solution. Fungal spores formulated in Tween 80 have been used in bioassays to test the efficacy of fungal spores against mosquito larvae [13,16,30-34]. ShellSol T is a synthetic isoparaffinic hydrocarbon solvent. Ondina oil 917, slightly denser than ShellSol T, is a highly refined mineral oil. Both ShellSol T and Ondina oil 917 have been successfully used as carrier for fungal spores to target the adult stage of mosquitoes [1,35].

Formulations
The first selection of carriers suitable for formulating entomopathogenic fungal spores consisted of a test in which the carrier material was evaluated for its ability to spread over the water surface. For this purpose, plastic trays (25 x 25 x 8 cm) were filled with 1 L of tap water and the carriers applied on the water surface (441 cm²). The least amount of each carrier required to cover the entire surface was recorded. Once that amount was determined, *M. anisopliae* spores (10 mg, ~ 4.7 x 10⁸ spores) were added to the carriers. The quantity of the carriers was increased to make a consistent suspension or mixture of fungal spores and carriers. The resulting formulations were applied to select the carriers that spread the spores evenly over the water surface evenly. *Metarhizium anisopliae* spores were used because of their colour (olivaceous green) which made it easy to visualize them whilst spreading.

Efficacy of formulations against *Anopheles gambiae* larvae
The next step consisted of testing selected formulations against *An. gambiae* larvae in laboratory bioassays. Bioassays were performed under climatic conditions similar to the mosquito rearing. Plastic trays (25 x 25 x 8 cm) were filled with 1 L of tap water and allowed to acclimatised overnight. Fifty second-instar larvae were added to each tray. Unformulated or formulated spores were applied to the water surface of each tray. The number of larvae that died or pupated was recorded daily for the next eight days. For each treatment, the carrier alone (in the same quantity as in the formulation) served as the control. In the case of unformulated spores, the control was untreated tap water. The larvae were provided with Tetramin®, as food at the rate of 0.2 - 0.3 mg/larva per day. The experiments were replicated three times.

Pathogenicity of floating unformulated spores over time
A third experiment was performed to evaluate how the pathogenicity of fungal spores is affected by being in contact with water over a time period of seven days. At the start, 15 plastic trays (same size as above) were each filled with one liter of water. These trays were kept overnight in a climate-controlled room to acclimatisit. *Metarhizium anisopliae* spores were applied to the water surface in five trays (10 mg per tray). Similarly, 10 mg of *B. bassiana* spores (~ 2 x 10⁹ spores) were applied on the water surface in five other trays. The remaining five trays served as the control. After one day, 50 second-instar *An. stephensi* larvae were added to one of the trays treated with *M. anisopliae* spores, *B. bassiana* spores and one untreated control tray. Similarly larvae were added to remaining trays after either 2, 3, 5 or 7 days after fungal treatment. The mortality and/or pupation was followed for 9 days. The larvae were fed at the same rate as mentioned before. This experiment was replicated three times.

Effect of formulation on persistence of pathogenicity
Based on the results of the formulation experiments, the carriers WaterSavr and ShellSol T were selected and tested further for their ability to increase the persistence of pathogenicity in fungal spores in contact with water. Unformulated and formulated (either with WaterSavr or ShellSol T) *M. anisopliae* and *B. bassiana* spores were applied to plastic trays containing 1 L of acclimatized water. One replicate consisted of 18 trays. A pair of trays was applied with one of the following nine treatments: (1) 10 mg of dry *M. anisopliae* spores, (2) 10 mg of dry *B. bassiana* spores, (3) *M. anisopliae* spores mixed with WaterSavr (10 mg/130 mg), (4) *B. bassiana* spores mixed with WaterSavr (10 mg/130 mg), (5) *M. anisopliae* spores mixed with ShellSol T (10 mg/200 μl), (6) *B. bassiana* spores mixed with ShellSol T (10 mg/200 μl), (7) WaterSavr (130 mg) only, (8) ShellSol (200 μl) only or (9) no treatment. Trays treated with WaterSavr or ShellSol T without fungal spores and the untreated trays served as control for their respective treatments. Fifty second-instar *An. stephensi* larvae were added to one tray of each pair on the same day the fungal spores were applied. The same number of larvae was added to the other tray of the pair on the seventh day (based on the results of the previous experiment). The larvae were checked for mortality or pupation for the following 10 days after being added to the trays. The experiment was replicated three times. The trays were topped up with acclimatised tap water, every other day, to compensate for evaporation.
Field bioassays

To evaluate the efficacy of unformulated and formulated fungal spores in the field, experiments were carried out in Kenya in May and June, 2010. The experiments were conducted in a restricted part of the Ahero Multipurpose Development and Training Institute (AMDTI) compound. This institute is located 24 km southeast of Kisumu, in western Kenya (0°10′S, 34°55′E). Malaria is highly endemic in this region and transmission occurs throughout the year. A mean annual *Plasmodium falciparum* sporozoite inoculation rates (EIR) of 0.4-17 infective bites per year has been shown by recent studies for this region [36]. The region has an annual mean temperature range of 17°C to 32°C, average annual rainfall of 1,000 - 1,800 mm and average relative humidity of 65% [37].

Bioassays were conducted outdoors in 33 plastic containers (0.30 m diameter). The plastic containers had two nylon-screened holes (3 cm²), close to the brim, allowing excess rain water to flow out while retaining the larvae. Dry soil from a rice paddy at the Ahero irrigation scheme (4 km from AMDTI) was softened up by adding water. The softened soil was placed at the bottom of each plastic container to form a 2 cm thick layer. One L of tap water was then added to each plastic container. The water level was 3 cm above soil level and exposed a surface area of 450 cm². Each plastic container was placed in a larger tub that also had a bottom layer of soil but was filled with water to the top. The larger tubs were employed to prevent ants from accessing the plastic container inside. Forty second-instar *An. gambiae* s.s. larvae, were added to each container. The large tubs, with the containers inside, were arranged in three rows 0.5 m apart from each other (Figure 1a).

Dry and ShellSol T formulated spores of both fungal species were tested. ShellSol T was the only formulation that successfully met the criteria investigated in the laboratory studies. Two different concentrations (10 mg spores/200 μl ShellSol T and 20 mg spores/230 μl ShellSol T) of both *M. anisopliae* and *B. bassiana* spores were tested. For the larger amount of spores, 230 μl ShellSol T was required to make a consistent suspension. Each treatment was randomly applied to three plastic containers. The 11 treatments consisted of dry *M. anisopliae* spores (10 mg and 20 mg), dry *B. bassiana* spores (10 mg and 20 mg), ShellSol T formulated *M. anisopliae* spores (10 mg/200 μl and 20 mg/230 μl), ShellSol T formulated *B. bassiana* spores (10 mg/200 μl and 20 mg/230 μl) and only ShellSol T (200 μl and 230 μl) while the one remaining tub was untreated. The ShellSol T (200 μl and 230 μl) and the untreated container served as control for their respective treatments. The number of larvae that died in the containers could not be recorded because it was difficult to recover them in the turbid water and/or bottom soil. Therefore, larval survival was assessed as the number of pupae produced. No food was provided to the larvae after being placed in the container. The plastic containers were checked twice daily (for the following 15 days) and pupae were removed with a dipper. To prevent oviposition or emergence of local mosquitoes in the water of larger tubs in which treated plastic containers were placed, Aquatain (a silicone-based oil) was applied to the water surface [38]. Water (0.5 L, kept outdoors in Jerry cans) was added to every plastic container when the water level had been reduced by evaporation to less than 1 cm.

Figure 1 Field bioassays. (a) Forty *An. gambiae* larvae were placed in plastic containers (with nylon screened holes, indicated by an arrow) with a soil layer (2 cm) at the bottom and a 3 cm layer of water. The screened holes were a precautionary measure to retain larvae in the tubs in case of overflow due to heavy rain. The plastic containers were placed in larger tubs, also filled with soil and water, to prevent ants from access to the bioassays. (b) Unformulated (dry) *Metarhizium anisopliae* (10 mg) spores applied on the water surface. Note the two large clumps just outside the centre of the containers. (c) ShellSol T-formulated *Metarhizium anisopliae* (10 mg) spores applied on the water surface. Note that spores are spread more evenly over the surface by ShellSol T than dry spores (Figure b).
Meteorological data was obtained from the National Irrigation Board (NIB) research station located approximately 4 km from the experimental site. Water surface (5 mm top layer) temperature was measured daily at the same time, in each container, with a digital thermometer (GTH 175/Pt, Greisinger electronics, Germany).

Statistical analysis

Differences in larval survival were analysed using Cox regression [39]. The survival of larvae treated with formulated or unformulated fungal spores were compared with their respective control larvae and the resulting Hazard Ratio (HR) values were used to evaluate differences in mortality rates. The proportional hazard assumption of Cox regression was tested by plotting the cumulative hazard rates against time for the treated and control groups to confirm that the resulting curves did not cross [40].

To test the pathogenicity of fungal spores over time, HR’s were computed for larvae exposed to spores floating on water for different time periods. In addition, the arcsine-square root transformed proportions of dead larvae were compared directly, after being corrected for their respective controls using the Abbott’s formula, by a one-way ANOVA and LSD post-hoc test of the arcsine transformed mortality proportion [41]. Similarly, the persistence of pathogenicity in formulated and unformulated spores was also compared. The arcsine-square root transformed proportions of larvae that pupated in the field trial were compared by one-way ANOVA and LSD post-hoc tests. All the analyses were performed using SPSS version 15 software (SPSS Inc. Chicago, IL, USA).

Results

Formulations

In the case of both ShellSol T and Ondina oil 917, 100 μl of the oil was required to cover a water surface of 441 cm². The amounts could not be determined for 0.1% Tween 80 and wheat flour. Tween 80 solution could not be visualised as it is colourless. The wheat flour formed clumps rather than spreading. White pepper spread across the water surface evenly and 30 mg of it was sufficient to cover the entire surface area. Similarly 130 mg of Watersavr spread and covered the water surface of 441 cm² (Table 1). After determining these amounts, 10 mg of Metarhizium anisopliae spores was added to each of the carriers. The quantity of ShellSol T and Ondina oil 917 had to be doubled (200 μl) to form a homogenous suspension. In case of the 0.1% Tween 80 solution, 4 ml was required to form a consistent suspension. Wheat flour was not tested further because of clumping. The quantity of white pepper and WaterSavr (30 mg and 130 mg respectively) required for covering the water surface (441 cm²) was also enough to form a consistent mixture with 10 mg of fungal spores (Table 1). Formulations, apart from the 0.1% Tween 80 solution which caused the spores to sink, resulted in a fairly uniform spread of fungal spores on the water surface (Table 1). Therefore 0.1% Tween 80 solution was not tested further.

Efficacy of formulations against Anopheles gambiae larvae

Bioassays were conducted with unformulated M. anisopliae spores (10 mg) and M. anisopliae spores formulated in pepper (10 mg/30 mg), WaterSavr (10 mg/130 mg), ShellSol T (10 mg/200 μl) or Ondina oil 917 (10 mg/200 μl) against An. gambiae larvae. Only 2.7 ± 1.8% of the larvae treated with unformulated M. anisopliae spores pupated while 47.6 ± 3.9% pupated in the relevant control. The treated larvae had a nearly two times higher daily risk of mortality as compared to the untreated control larvae (HR (95%CI) = 1.8 (1.4-2.4), Table 2, Figure 2a). WaterSavr formulation reduced the pupation of the larvae from 67.2 ± 10.6% to 1.3 ± 0.6%, exposing the formulation-treated larvae to nearly three times higher daily risk of mortality as compared to the control (Table 2, Figure 2c). With the ShellSol T formulation 1.3 ± 0.6% of the treated larvae pupated while the larvae treated with ShellSol T (without fungal spores) showed 85.4 ± 14.5%

Table 1 Carriers tested for their ability to spread spores and the composition of formulations tested
Carrier

Wheat flour
0.1% Tween 80
White pepper
WaterSavr
Ondina oil 917
ShellSol T

The amount of each carrier required to cover a water surface area of 441 cm², the amount required to form a consistent mixture with 10 mg of Metarhizium anisopliae spores, the ability of the carriers to spread the spores over the water surface and the composition of formulations with suitable carriers.

– Not Tested or could not be determined.
Table 2 Percentage pupation and Hazard ratios of larvae exposed to tested formulations

Formulation	Formulation Control	Treatment	HR(95%CI)	p value
Unformulated	47.6 ± 3.9	27.2 ± 18.8	1.8 (1.4-2.4)	<0.001
White pepper	0	0	0.9 (0.7-1.2)	0.959
WaterSavr	67.2 ± 10.6	13.2 ± 6.6	2.7 (1.9-3.8)	<0.001
Ondina oil 917	0	0	1.0 (0.8-1.2)	0.806
ShellSol T	85.4 ± 14.5	13.2 ± 6.6	3.7 (2.5-5.4)	<0.001

Average percentage pupation (±S.E.) of *An. gambiae* larvae exposed to unformulated spores and formulated *Metarhizium anisopliae* spores (*n* = 3). The carrier in each formulation (White pepper, WaterSavr, Ondina oil 917 or ShellSol T) served as the control. In case of unformulated spores the control was completely untreated. Carrier and *Metarhizium anisopliae* spores together formed the treatment. Hazard ratio’s (HR) indicate the mortality risk in the treatments as compared to their respective controls.

Pathogenicity of floating unformulated spores over time

The pathogenicity of dry *M. anisopliae* and *B. bassiana* spores was substantially reduced over a period of five days (Figure 3). *Anopheles stephensi* larvae exposed to *M. anisopliae* spores, applied to water seven days earlier, showed a similar pupation proportion as their control (Table 3). *Beauveria bassiana* spores lost their effectiveness after being in contact with water for three days. *Metarhizium anisopliae* spores lost their effectiveness after five days (Table 3). After seven days the control mortality was significantly higher than the mortality of larvae exposed to *M. anisopliae* treatment.

Effect of formulation on persistence of pathogenicity

Fungal spores formulated with ShellSol T were more persistent compared to the unformulated spores or spores formulated in WaterSavr. Seven days after application only ShellSol T formulated fungal spores (both *M. anisopliae* and *B. bassiana*) still caused significant mortality in the *An. stephensi* larvae (Table 4). Formulation in WaterSavr seemed to reduce the efficacy of fungal spores. When the *An. stephensi* larvae were exposed to WaterSavr-formulated *M. anisopliae* and *B. bassiana* spores, on the same day the fungal spores were applied, the corrected proportion larval-mortality was significantly lower as compared to larvae exposed to unformulated *M. anisopliae* and *B. bassiana* spores. Larvae exposed to *M. anisopliae* spores formulated with WaterSavr, applied that same day, had a lower mortality risk (HR (95% CI), 8.9 (4.4-18.1)) than those exposed to the unformulated spores (HR (95% CI), 44.6 (10.9-181.7)). There was no significant difference in the corrected proportion mortality of larvae exposed to unformulated and WaterSavr-formulated *M. anisopliae* spores, seven days after their application on water (Figure 4). Similar results were observed for *B. bassiana* spores. There was no significant difference between the corrected larval-mortality proportion due to unformulated and WaterSavr formulated *B. bassiana* spores, applied on water seven days before exposing the larvae. Also, the proportion larval mortality caused by WaterSavr-formulated *B. bassiana* spores was significantly lower than with ShellSol T-formulated *B. bassiana* spores (Figure 4).

Field bioassays

During the experimental period (15 days), the mean minimum and maximum temperatures were 15.7°C and 30.9°C, respectively, with a mean relative humidity of 54% and total rainfall of 19.4 mm. Water surface temperature ranged from 21°C to 38.8°C. Similar to the laboratory observations, unformulated spores clumped together on the water surface (Figure 1b) while ShellSol T-formulated fungal spores were uniformly spread (Figure 1c).

The efficacy of unformulated fungal spores was found to be low under field conditions as compared to laboratory conditions. At dose rates of both 10 mg and 20 mg, the same (p > 0.05) level of pupation was observed in the *An. gambiae* larvae treated with unformulated *M. anisopliae* and *B. bassiana* spores as in the untreated *An. gambiae* larvae (Figure 5). As observed in the laboratory bioassays, ShellSol T on its own had no harmful effect on larval development and pupation. A similar proportion (p > 0.05) of larvae pupated in the containers treated with ShellSol T (200 μl and 230 μl) and the untreated containers (Figure 5).

The percentage pupation observed in *An. gambiae* larvae treated with ShellSol T-formulated *M. anisopliae* spores was 43% (low dose, 10 mg) and 49% (high dose, 20 mg) lower than that of the corresponding unformulated treatments. However for the lower dose (10 mg) the proportion of larvae that pupated was not significantly different (p = 0.08, Figure 5).

The percentage pupation observed in *An. gambiae* larvae treated with ShellSol T-formulated *B. bassiana*
spores was 39% (low dose, 10 mg) and 50% (high dose, 20 mg) lower than that in the corresponding unformulated treatments. At both lower and higher dose the proportion of larvae that pupated was significantly different (p < 0.05, Figure 5).

Discussion

The results of this study show how certain formulations can improve the ability of entomopathogenic fungus spores to spread over a water surface as well as increase their persistence. The results also show that better
Figure 3 Laboratory bioassays to test the persistence of floating unformulated fungal spores. The average percentage corrected mortality (±S.E.) of An. stephensi larvae (n = 3) exposed to spores of Metarhizium anisopliae and Beauveria bassiana that had been floating on the water surface for 1, 2, 3, 5 or 7 days. Bars with letter in common show no significant difference (LSD post hoc test, α = 0.05).

Table 3 Percentage pupation and Hazard ratio’s of larvae exposed to unformulated floating fungal spores

Treatment	Control	Metarhizium anisopliae	Beauveria bassiana	Metarhizium anisopliae	Beauveria bassiana		
Day 1	82.2 ± 13.5	36.1 ± 22.2	54.5 ± 8.4	5.2(3.4-8.0)	<0.001	3.2(2.0-5.0)	<0.001
Day 2	74.6 ± 10.8	46.7 ± 4.9	64.5 ± 5.3	2.5(1.7-3.6)	<0.001	2.0(1.3-3.0)	0.001
Day 3	96.0 ± 2.3	80.7 ± 8.5	92.8 ± 3.4	6.6(2.5-17.2)	<0.001	2.1(0.7-6.0)	0.169
Day 5	96.7 ± 1.7	87.4 ± 2.7	94.0 ± 3.0	4.4(1.6-11.8)	0.003	1.7(0.5-5.0)	0.347
Day 7	84.6 ± 2.6	84.7 ± 3.3	72.7 ± 2.9	0.3(0.2-0.6)	<0.001 a	1.1(0.7-1.9)	0.625

Average percentage pupation (±S.E.) in the control and treated An. stephensi larvae exposed to Metarhizium anisopliae and Beauveria bassiana spores floating on the water surface for 1, 2, 3, 5 and 7 days (n = 3). The controls consisted of untreated trays filled with water at the same time as the treated trays. Hazard ratio’s (HR) indicate the mortality risk of larvae as compared to the controls for both Metarhizium anisopliae and Beauveria bassiana spores.

a. HR lower than 1 represents higher mortality in the control group.
spreading and persistence leads to an enhanced efficacy of fungal spores. The study also demonstrates that both *M. anisopliae* and *B. bassiana* caused a high impact on the survival of *An. gambiae* s.s. larvae under field conditions, when formulated in Shellsol T. *Anopheles stephensi* and *An. gambiae* larvae were found to be equally susceptible to unformulated *M. anisopliae* and *B. bassiana* spores [12]. This suggests that these fungi are likely to also affect other anopheline vector species.

Formulating fungal spores with Tween 80 and wheat flour was found to be unsuitable. Spores formulated with Tween 80 did not spread over the water surface, the primary feeding site of anopheline larvae, but sunk to the bottom [25,28]. Surfactants are known to impair attachment of the spore to the host so even if the spores were spread on the water surface they would not have been effective against anopheline larvae [20,42]. Wheat flour, although due to its organic nature could have served as a bait, did not spread the fungal spores over the water surface [28]. The wheat flour clumped together and sunk. Powdered pepper and Ondina oil caused 100% mortality in anopheline larvae even without the fungal spores. Extracts of fruits of the *Piperaceae* family have been shown to be toxic for *Aedes aegypti* L. larvae [43], but the exact toxicity mechanism remains unclear. Although fungal spores were effectively spread with white pepper, pepper was considered an unsuitable carrier due to its own toxic effect on the anopheline larvae. Ondina oil, in the amount tested (200 μl), formed an oily layer over the water surface causing the larvae to suffocate. As compared to ShellSol T, Ondina oil is denser and evaporates less. This may explain the difference in the mortality observed with Ondina oil and ShellSol T controls. The amount of Ondina oil tested could not be reduced as, in that case, it was not possible to make a homogeneous suspension with the fungal spores.

Dry unformulated *M. anisopliae* and *B. bassiana* spores lost their pathogenicity five days after being applied to the water surface as the survival of larvae exposed to the fungal spores five days after application was similar to that of the controls. Similar results were shown in a study by Alves et al. (2002), where *M. anisopliae* caused no mortality in *Cx. quinquefasciatus* Say larvae introduced four days after the spores were applied [13]. This is in contrast to Pereira et al. (2009), who found *M. anisopliae* spores to cause 50% mortality in *Ae. aegypti* larvae exposed to fungal spores that were applied ten days previously [34]. The studies mentioned here were carried out in controlled climate conditions (25-27°C) in the laboratory. In field conditions the spores are more likely to lose their pathogenicity in less time due to exposure to hight temperatures and UV-radiations. This may explain why unformulated fungal spores did not cause any significant reduction in pupation in the field bioassays, where the water surface temperatures were measured to be as high as 38.8°C. The measured (water surface) temperatures agree with those reported by Paaijmans et al. (2008) for similar sized water-bodies and are known to exhibit high daily fluctuations [44].

When the larvae were exposed to fungal spores on the same day as the spores were applied, unformulated spores and spores formulated in WaterSavr or ShellSol T caused larval mortality over the next few days. However, only fungal spores formulated in ShellSol T caused significantly higher mortality in larvae introduced seven days after the fungal spores had been applied. Fungal spores formulated in ShellSol T remained pathogenic possibly because ShellSol T prevented spores from absorbing the amount of moisture required to stimulate germination [21,31]. ShellSol T was also considered a good carrier of fungal spores in other studies [31,45]. WaterSavr, on the other hand, did not protect fungal spores.

ShellSol T was the only formulation that we tested in the field as the laboratory results showed high persistence of pathogenicity in the fungal spores formulated only with this product. Unformulated *M. anisopliae* and *B. bassiana* did not suppress the larval population effectively in the field. In contrast to the situation in the laboratory, the spores were exposed to sunlight, rain and fluctuating temperatures in the field which might
have reduced spore survival. By contrast, only 10-20% of the larvae treated with spores formulated in ShellSol T, developed into pupae. Both *M. anisopliae* and *B. bassiana* spores were found to be equally effective when formulated in ShellSol T. Oil formulations are known to improve spore survival, improve fungal efficacy against insects and reduce spore sensitivity to UV radiation [31,45].

In the field residual effect of formulated spores could not be tested after a certain number of days because the plastic containers began to harbour *Culex* larvae and thus had to be drained. The presence of *Culex* larvae is an indication that ovipositing female *Culex* mosquitoes were not repelled by the fungus treatment. It is disadvantageous for a larval control agent to have an oviposition-repellent effect because in that case ovipositing
mosquito females are forced to seek and deposit their eggs at alternative untreated sites. This means that the control agent only targets the existing larval population and needs to be reapplied after the site has been inhabited again. Studies specifically designed to establish the response of ovipositing anopheline female mosquitoes to fungal spores and the residual effect of fungal spore treatment are required for a better understanding. Oil-formulated *M. anisopliae* spores have been shown to have an increased ovicidal activity in case of *Ae. aegypti*.

Figure 5 Field bioassays testing the efficacy of fungal spores formulated in ShellSol T. The average percentage pupation of *An. gambiae* larvae (n = 3) exposed to unformulated and ShellSol T formulated *Metarhizium anisopliae* (Ma) or *Beauveria bassiana* (Bb) spores at two doses, 10 mg/200 μl and 20 mg/230 μl. Controls included no treatment at all or treatment with only ShellSol T (200 μl or 230 μl). Letters in common show no significant difference (LSD post hoc test, α = 0.05).
eggs [46]. This might be an added advantage if anophe-
line eggs are also affected by M. anisopliae spores simi-
lar to the Ae. aegypti eggs.

Pathogenicity of control agents in the field is generally
lower than that in the laboratory settings [47]. In the
field bioassays, therefore, a higher dose (20 mg/450 cm²)
of fungal spores was also tested together with the dose
tested in the laboratory (10 mg/441 cm²). The labora-
tory dose, however, showed similar efficacy in the field
by reducing pupation similar to the higher dose. There-
fore doses lower than used in the current study should
be evaluated to establish the lowest effective amount of
fungal spores required to treat a certain area.

ShellSol T was a candidate carrier that not only facil-
titated the application of spores but also improved their
efficacy by providing maximum chance for contact
(spreading the spores on the water surface) with the lar-
vae and increasing spore persistence. The fungal spores
readily suspend in ShellSol T with a slight agitation.
This is advantageous as the spores can be conveniently
mixed in ShellSol T, on the spot, which means that dur-
ing transport and storage only the bio-active agent
would have to be kept at low temperatures rather than
the whole mixture. This can reduce the cooling space
requirement as ShellSol T itself is a stable product and
has no particular storage demands. It has been shown
that the percentage germination of dry spores is gener-
ally higher than that of oil-formulated spores when
stored at the same temperature for the same number of
days ([23]; unpublished data). The fungal spores Metar-
hizium flavoviride had a germination rate of 80% when
stored at 30°C for 90 days as compared to 90% when
stored dry under similar environmental conditions [23].
In this context, it seems more efficient to store fungal
spores separately and only mix them with the oil-com-
ponent shortly before application.

The results of this study show the necessity of a good
formulation for fungal spores when these are to be uti-
ised in the field. The efficacy of unformulated (dry)
spores was so low in the field situation that their appli-
cation, as such, is not justified. While ShellSol T-formu-
lated spores were highly effective in killing anopheline
larvae in the field an important point to consider is the
potential increased risk to the non-target organisms due
to their improved persistence and/or undesirable prop-
e rties of the solvent [33,48-50]. ShellSol T has a low
toxicity effect on fish, aquatic invertebrates and microor-
organisms at concentration higher than 1 g/liter [51].
Considering the volume of ShellSol T that we tested
(200-230 μl on 1 L of water), the concentration of Shell-
Sol T was 0.15 g/L which is nearly seven times lower
than the lowest lethal concentration. ShellSol T evapo-
rates and therefore is less likely to remain in the aquatic
habitats. Detailed safety studies, however, are necessary
to have a better understanding of any adverse effect
ShellSol T might have on the environment and non-tar-
get organisms, at the required doses.

Besides formulation, it is very important to identify
the best delivery method (where, when and how) to
fully utilize the entomopathogenic potential of M. aniso-
pliae and B. bassiana spores. Frequency of re-applica-
tion has to be determined based on the residual effect
of formulated spores in the field. The feasibility of
applying formulated spores at artificial breeding sites,
baited to attract ovipositing females, is also worth test-
ing [52]. A good delivery system will reduce the chances
of non-target organisms coming into contact with fungal
spores.

Conclusions

From a number of candidate products tested for the for-
mulation of entomopathogenic fungi, ShellSol T
emerged as a promising carrier of fungal spores when
targeting anopheline larvae. Spores of B. bassiana and
M. anisopliae formulated in ShellSol T had an increased
efficacy against larvae of An. gambiae s.s. as compared
to unformulated spores and were also more persistent
under field conditions in Kenya. Other oils with physical
properties similar to ShellSol T may also serve as good
carriers. Together with a sound delivery system, these
formulated fungi can be utilised in the field, providing
additional tools for biological control of malaria vectors.

Acknowledgements

We thank MB4 for providing An. stephensi eggs and Léon Westerd, André
Gidding and Frans van Aggelen for rearing the An. gambiae mosquitoes.
Frank van Breukelen and Mgeni Jumbe are acknowledged for providing
Metarhizium and Beauveria spores.

We are grateful to Vince Pascarelli for shipping free samples of WaterSavr. In
Kenya, we are thankful to Dr Andrew Githeko for supplying An. gambiae
eggs, Joel K. Tanui (Research officer, NIB) for access to the meteorological
data and Fred Kisanya (Pincipal, AMDIT) for allowing us to conduct
experiments in the institute premises. We appreciate Daniel Ogwang’s
assistance during the field tests. Tullu Bukhari is funded by HEC, Pakistan,
through NUFFIC (The Netherlands). Financial support for the field study
was received from the UBS Optimus Foundation, Switzerland and the Adessium
Foundation, The Netherlands.

Authors’ contributions

TB designed the study, carried out the experimental work, performed the
statistical analysis and drafted the manuscript. CJMK helped with the study
design, statistical analyses, and drafting the manuscript. WT provided
scientific guidance in interpretation of the findings and drafting the
manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 25 November 2010 Accepted: 22 February 2011
Published: 22 February 2011

References

1. Farenhorst M, Knols BGJ, Thomas M, Howard AFV, Takken W, Rowland M,
N. Guessan R: Synergy in efficacy of fungal entomopathogens and
perrmethrin against west African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 5:e12081.
2. Hancock PA: Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control. PLoS Computational Biology 2009, 5: e1000525.
3. Hancock PA, Thomas MB, Godfray HCJ: An entomopathogenic fungus as the next control agent against malaria mosquitoes. Future Microbiology 5:339-341.
4. Hancock PA, Thomas MB, Godfray HCJ: Advantages of larval control for African malaria vectors: Low mobility and behavioral responsiveness of immature mosquito stages allow high effective coverage. Malar J 2002, 1:8.
5. Scholte EJ, Ng.
6. Fillinger U, Ndenga B, Githenko A, Lindsay SW: Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bulletin of the World Health Organization 2009, 87:655-665.
7. Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ: Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa. Lancet Infect Dis 2002, 2:618-627.
8. Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ: Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J 2002, 1:8.
9. Soper FL: Paris green in the eradication of Anopheles gambiae: Brazil, 1940; Egypt, 1945. Mosquito news 1966, 26:470-476.
10. Utzinger J, Tozan Y, Singer BH: Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health 2001, 6:67-687.
11. Takken W, Snellen WB, Verhave JP, Knols BGJ, Atmosoedoensjo S: Environmental measures for malaria control in Indonesia - an historical review on species sanitation. Wageningen Agricultural University Papers 1990, 90-7.
12. Bukhan T, Middelman A, Koensaad CM, Takken W, Knols BGJ: Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi. Malaria Journal 2010, 9:22.
13. Alves SB, Alves LFA, Lopes RB, Pereira RM, Vieira SA: Potential of some Metarhizium anisopliae isolates for control of Culex quinquefasciatus (Dipt., Culicidae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 2002, 126:504-509.
14. Clark TB, Kellen WR, Fukuda T, Lindgren JE: Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. Journal of Entomological Pathology 1968, 111-7.
15. Daoust RA, Ward MG, Roberts DW: Effect of formulation on the virulence of Metarhizium anisopliae conidia against mosquito larvae. Journal of Entomological Pathology 1986, 40:228-236.
16. Mitranuri G, Ghosh KG, Khachatourians GG: Infection sites of the entomopathogenic fungus Beauveria bassiana in the larvae of the mosquito Aedes aegypti. Entomologia Experimentalis et Applicata 1991, 59:19-27.
17. Sandhu SS, Rajak RC, Sharma M: Bioactivity of Beauveria bassiana and Metarhizium anisopliae as pathogens of Culex tritaeniorhynchus and Aedes aegypti: effect of instar, dosages and time. Indian J Microbiol 1993, 33:191-194.
18. Lacey CM, Lacey LA, Roberts DR: Route of invasion and histopathology of Metarhizium anisopliae in Culex quinquefasciatus. Journal of Invertebrate Pathology 1988, 52:108-118.
19. Boucas DG, Pendland JC, Large JP: Non specific factors involved in attachment of entomopathogenic Deuteromycetes to host insect cuticle. Applied and Environmental Microbiology 1988, 54:1795-1805.
20. Hegedus DD, Khachatourians GG: The impact of biotechnology on hyphomycetous fungal insect biocontrol agents. Biotechnology Advances 1993, 15:435-490.
21. Burgos HD: Formulation of mycotoxicides. In Formulation of microbial biopesticides: Beneficial microorganisms, nematodes and seed treatments. Edited by: Burgos HD. Kluwer, Dordrecht, 1998:131-185.
22. Moore D, Bridge PD, Higgins PM, Bateman RP, Prior C: Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology 1993, 122:603-616.
23. Morley-Davies J, Moore D, Prior C: Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycological Research 1996, 100:31-38.
24. Goett CT, Gilberg J, Clark T, Lawrence IG, Kosatsi I, Sanjaet SG: Entomopathogenic Fungi and their Role in Regulation of Insect Populations. Comprehensive Molecular Insect Science Amsterdam: Elsevier, 2005, 361-406.
25. Merritt RW, Dadd RH, Walker ED: Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology 1992, 37:349-376.
26. Ramoska WA, Watts S, Wamah HA: Effects of sand formulated Metarhizium anisopliae spores on larvae of three mosquito species. Mosquito News 1981, 41:725-728.
27. de Hoog GS, Guarro J, Gené J, Figueras MI: Atlas of Clinical Fungi. 2 edition. Utrecht: Centraalbureau voor Schimmelcultures, 2000.
28. Aly C, Mulla MS: Orientation and ingestion rates of larval Anopheles albimanus in response to floating particles. Entomologia Experimentalis et Applicata 1986, 42:83-90.
29. Gosling RD, Drakeley CJ, Chandramohan D: Effective malaria control: better burden estimates needed. The Lancet 371:724-724.
30. Ezati-Tabrizi R, Talaee-Hassanloui R, Pouran HR: Effect of formulating of Beauveria bassiana conidia on their viability and pathogenicity to the onion thrips, Thrips tabaci lind. (Tyasnothrips: Thripidae). Journal of Plant Protection Research 2009, 49:97-104.
31. Iyany EN, McCarty HA, Oyeyola B, Ibrahim L, Pye BJ, Archer SA, Butt TM: Effect of formulation, application and rain on the persistence of the entomogenous fungus Metarhizium anisopliae on oilseed rape. Mycological Research 2000, 104:653-661.
32. Meyling NJ, Pell JK: Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecological Entomology 2005, 31:162-220.
33. Milner RJ, Lim RP, Hunter DM: Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Management Science 2002, 58:718-723.
34. Pereira CR, de Paula AR, Gomes SA, Pedra PCO, Samuels RI: Potential of oil-based formulations of Metarhizium flavoviride conidia and the protection of Aedes aegypti larvae from the fungus Metarhizium flavoviride. Mycological Research 2010, 114:881-886.
35. Farenhorst M, Farina D, Scholte EJ, Takken W, Hunt RH, Coetzee M, Knols BGJ: African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Aedes funestus. Journal of Tropical Medicine and Hygiene 2008, 78:910-916.
36. Ndenga B, Githenko A, Omukunda E, Munyekenyi G, Atieli H, Wamai P, Mbogo C, Minakawa N, Zhou G, Yan G: Population dynamics of malaria vectors in western Kenya highlands. Journal of Medical Entomology 2006, 43:200-206.
37. Atieli H, Menya D, Githenko A, Scott T: House design modifications reduce indoor resting malaria vector densities in rice irrigation scheme area in western Kenya. Malana Journal 2009, 81:108.
38. Bukhan T, Knols BGJ: Efficacy of Aquatain*, a monomolecular surface film, against the malaria vectors Anopheles stephensi and An. gambiae s. s. in the laboratory. Ann. J Trop Med Hyg 2009, 80:738-763.
39. Cox DR: Regression models and life tables. J Royal Statist Soc 1972, 187-220.
40. Haccou P, Hemenik L: The influence of larval dispersal in the cinnabar moth (Tyria jacobaeae) on predation by the red wood ant (Formica polyctena): an analysis based on the proportional hazards model. J Anim Ecol 1985, 54:755-769.
41. Abbott WS: A method for computing the effectiveness of an insecticide. J Econ Entomol 1925, 18:265-267.
42. Luz C, Batagin I: Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia 2005, 160:51-62.
43. Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS: A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. Journal of Agricultural and Food Chemistry 2002, 50:3765-3767.
44. Paajamai KP, Jacobis AFG, Takken W, Heusinkveld BG, Githenko AK, Dicke M, Holstlag AAM: Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrological Processes 2008, 22:4783-4801.
45. Hong TD, Edgington S, Ellis RH, De Muro MA, Moore D: Saturated salt solutions for humidity control and the survival of dry powder and oil formulations of Beauveria bassiana conidia. Journal of Invertebrate Pathology 2005, 89:136-143.

46. Albernaz DAS, Tai MH-H, Luz C: Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti. Medical and Veterinary Entomology 2009, 23:141-147.

47. Becker N, Rettich F: Protocol for the introduction of new Bacillus thuringiensis israelensis products into the routine mosquito control program in Germany. Journal of the American Mosquito Control Association 1994, 10:527-533.

48. Genthner FJ, Chancy CA, Couch JA, Foss SS, Middaugh DP, George SE, Warren MA, Bantle JA: Toxicity and Pathogenicity Testing of the Insect Pest Control Fungus Metarhizium anisopliae. Arch Environ Contam Toxicol 1998, 35:317-324.

49. Genthner FJ, Foss SS, Fisher WS: Testing of the insect pest-control fungus Beauveria bassiana In grass shrimp Palaemonetes pugio. Dis Aquat Org 1994, 20:49-57.

50. Genthner FJ, Middaugh DP: Non-target testing of an insect control fungus - Effects of Metarhizium anisopliae on developing embryos of the inland silverside fish Menidia beryllina. Dis Aquat Org 1995, 22:163-171.

51. ShellSol T (MSDS). [http://www.ccl.shell.com/MSDS/DownloadRtf?downloadUrl=http://sww.chemicals.shell.com/GSAPEHS/MSDS/00000000879_GB_EN.pdf].

52. Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agrawal OP, Prakash S: Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitology Research 2009, 104:281-286.

doi:10.1186/1756-3305-4-23
Cite this article as: Bukhari et al.: Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasites & Vectors 2011 4:23.