Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO₃ film

Tae Hwa Jeon¹,⁷, Damián Monllor-Satoca¹,⁶,⁷, Gun-hee Moon¹, Wooyul Kim², Hyoung-il Kim³, Detlef W. Bahnemann⁴, Hyunwoong Park⁵,✉ & Wonyong Choi¹,✉

Ag(I) is commonly employed as an electron scavenger to promote water oxidation. In addition to its straightforward role as an electron acceptor, Ag(I) can also capture holes to generate the high-valent silver species. Herein, we demonstrate photoelectrocatalytic (PEC) water oxidation and concurrent dioxygen evolution by the silver redox cycle where Ag(I) acts as a hole-transfer mediator. Ag(I) enhances the PEC performance of WO₃ electrodes at 1.23 V vs. RHE with increasing O₂ evolution, while forming Ag(II) complexes (AgIINO₃⁺). Upon turning off both light and potential bias, the photocurrent immediately drops to zero, whereas O₂ evolution continues over ~10 h with gradual bleaching of the colored complexes. This phenomenon is observed neither in the Ag(I)-free PEC reactions nor in the photocatalytic (i.e., bias-free) reactions with Ag(I). This study finds that the role of Ag(I) is not limited as an electron scavenger and calls for more thorough studies on the effect of Ag(I).
The selective use of photogenerated charge carriers to induce either substrate oxidation with valence band (VB) holes or reduction with conduction band (CB) electrons on the surface of an irradiated photocatalyst can be generally achieved by suppressing their mutual recombination, mainly through the addition of sacrificial scavengers of electrons or holes and the application of an external potential that depletes one of the carriers from the photocatalyst. For scavenging CB electrons, the former case commonly uses Ag(I) ions as an electron scavenger to promote oxidative reaction pathways, whereas the latter case applies a potential that is more positive than the onset potential to draw electrons out of the photoelectrode.

Regarding the effects of Ag(I), some concerns on its role as a water oxidation promoter through the formation of Ag(II) species (i.e., acting as a hole scavenger) have been raised; yet, to date no direct photo(electro)catalytic evidence has been reported supporting the claims. We have noted a potential role of mediated electrocatalytic oxidation involving Ag(II)/Ag(I) reduct couple in photocalytic (PC) and photoelectrocatyltic (PEC) processes. The mediated electrocatalytic oxidation is based on the electrochemical cycling of highly reactive redox shuttles (e.g., $\text{Ag}^{2+}/\text{Ag}$, $\text{Co}^{3+}/\text{Co}^{2+}$, $\text{Ce}^{4+}/\text{Ce}^{3+}$, and $\text{Mn}^{4+}/\text{Mn}^{2+}$) that can easily oxidize many contaminants in a continuous cycle, yielding minimum byproducts. It has been used for the degradation of a variety of recalcitrant organic and inorganic compounds, as well as for water oxidation as a side process.

Recently, homogeneous Ag(I) complex ions of AgCl$_2$ and AgCl$_2^-$ were further utilized for electrochemical oxidation of chloride to chlorine. Ag(II)/Ag(I) couple is the best candidate for the mediated electrocatalytic oxidation, as its redox potential is very positive in acidic media ($E^° = +1.98 \, \text{V}_{\text{SHE}}$ Supplementary Table 1). However, Ag(II) is so reactive that it needs to be stabilized using nitrate, perchlorate, sulfate, or phosphate as complexing ligands. Nitrate has been frequently used because of its high solubility, low viscosity, and stability; it generates AgIINO$_3^-$, a dark brown complex that can promote homogeneous water oxidation (Eqs. 1–4).

\[
\begin{align*}
\text{Ag}^+ & \rightarrow \text{Ag}^{2+} + e^- \\
\text{Ag}^{2+} + \text{NO}_3^- & \rightarrow \text{AgIINO}_3^+ \\
4\text{AgIINO}_3^+ + 2\text{H}_2\text{O} & \rightarrow 4\text{Ag}^+ + \text{O}_2 + 4\text{H}^+ + 4\text{NO}_3^- \\
2\text{H}_2\text{O} & \rightarrow \text{O}_2 + 4\text{H}^+ + 4e^- 
\end{align*}
\]

As the stability of the complex is paramount for the continuous operation of the above mechanism, rather high concentrations of nitric acid (1–10 M) have been used to prevent the depletion of Ag(II), which is normally generated using electrodes with large overpotentials for water oxidation (Pt, boron-doped diamond, etc.). This limits its practical application, as it requires extreme acidic conditions on the one hand, and high applied potentials on the other.

Here we show an example of successful mediated photoelectrocatalytic oxidation (MPEO) of water using a biased WO$_3$ mesoporous electrode in the presence of Ag$^+$, under the conditions of a mild acidic nitrate solution, zero overpotential, and simulated solar light to photogenerate Ag$^+$ that enhances water oxidation via a reversible homogeneous redox cycle of Ag$^{2+}$/Ag$^-$. WO$_3$ is a common n-type semiconductor that has been actively investigated for the photooxidation of water, owing to its visible light activity (bandgap ca. 2.6–2.7 eV), high oxidation potential of photogenerated holes, and remarkable stability to photocorrosion in acidic conditions (pH < 4). However, the water oxidation efficiency is limited by its sluggish kinetics that renders a partial oxidation of water to adsorbed peroxo species, eventually causing surface deactivation. The presence of Ag$^+$ (as AgIINO$_3^-$) increases the hole lifetime and hence its reactivity, as its reduction potential ($E^° = +0.80 \, \text{V}_{\text{SHE}}$) is positive enough to scavenge the photogenerated CB electrons. The potential contribution of Ag$^+$ reaction with holes (i.e., MPEO) can be investigated by employing a biased WO$_3$ photoanode, since the positive potential bias can suppress the electron transfer to Ag$^+$ (retarding recombination with hole), but maximize the chance of the hole transfer to Ag$^+$. The combined use of a hole acceptor (or shuttle) with an irradiated biased electrode has not been attempted until recently. Although the role of Ag$^+$ as an electron scavenger in promoting water photooxidation has been well recognized, its role as a hole-transfer mediator via Ag$^{2+}$/Ag$^+$ redox shuttle in MPEO of water is newly confirmed in this study.

### Results and discussion

**Photocatalytic performances of WO$_3$ with Ag(I).**

Figure 1a depicts the time-profiled photocurrent and concomitant O$_2$ evolution on an irradiated WO$_3$ electrode in a sealed cell containing aqueous sodium nitrate (0.5 M) at pH 5 in the absence and the presence of AgNO$_3$. The employed WO$_3$ electrode was ~12-μm thick and porous, consisting of micrometric nanostuctured aggregates (Supplementary Fig. 1). The applied potential was fixed at $E^\text{OER}$ (i.e., 1.23 V$_{\text{RHE}}$), ensuring that the photocurrent reached a steady-state value (Supplementary Fig. 2). As shown in Fig. 2, the applied potential of $E^\text{OER}$ minimizes silver deposition by effectively scavenging the photogenerated electrons (electron transfer from the CB edge to the substrate; ET2 > electron transfer to Ag(I); ET1) and prevents the back reduction of photogenerated Ag$^{2+}$ (hollow transfer to Ag(I, II); HT > recombination between electrons in the FTO and Ag(II, III); RE2). In the absence of AgNO$_3$, the photocurrent showed an initial spike followed by a fast decay, caused by the accumulation of peroxy species on the surface, and the poor charge carrier transport in such a thick film. Upon turning off the light, the photocurrent immediately dropped to zero (Supplementary Fig. 3), and the amount of O$_2$ in the headspace remained the same during the dark period (Supplementary Fig. 4). The overall Faradaic efficiency (FE) of O$_2$ evolution was estimated to be maximum 40% (for 3 h, Fig. 1a inset). In the presence of AgNO$_3$, the photocurrent increased and reached a steady-state value that was up to 4 times higher than that in its absence. Small photocurrent spikes appeared in the presence of AgNO$_3$ (Supplementary Fig. 4), likely due to the sudden release of oxygen bubbles from the WO$_3$ surface (heterogeneous O$_2$ evolution). The accompanying O$_2$ evolution increased with irradiation time (over four times higher than that in the absence of AgNO$_3$), leading to the FE of ~75% (for 3 h), while the solution acquired a brown color, likely caused by the formation of AgIINO$_3^-$ complex (see Fig. 1b inset). The catholyte with a counter electrode also had a dark brown coloration likely due to NO$_3^-$ formed via nitrate reduction. The contact of the nitrogen compounds with the anolyte was prevented using glass frits. It is particularly interesting to find that O$_2$ evolution continued over ~10 h even after turning off both electrical bias and light. The gradual bleaching of the electrolyte was accompanied during the unbiased dark period. The O$_2$ amount evolved during the unbiased dark period was ~6 μmol, leading to the overall FE of ~100% for total evolved O$_2$ of ~25.6 μmol (i.e., 19.6 μmol and 6 μmol in the biased oxidation and unbiased dark periods, respectively). Such O$_2$ evolution during the post-PEC period was not observed in the presence of persulfate (Na$_2$S$_2$O$_8$), a well-known electron scavenger (Supplementary Fig. 5), which indicates the unique role of Ag$^+$. The color change of the anolyte was monitored with a UV–Vis spectroscopy during the PEC O$_2$ evolution (Fig. 1b). The clear
tests with a bias-free WO3 potential bias and light off, the amount of O2 in the headspace was of 50 mM AgNO3. Electrolyte: Ar-purged 0.5 M NaNO3, buffereda at pH 5.0. for PEC O2 evolution tests using WO3 electrode. Before the PEC test, the changes in Faradaic ef

The insets show (left) the enlargedabsorption spectrum of the PEC-3 h continuously recorded. For comparison, the photocatalytic (PC) O2 evolution

Gradually disappeared over 24 h. The observations that the O2 evolution concurred with the brown coloration and that both the O2 evolution and brown color persisted for many hours (with gradual decay) even after the turning off the light, suggest that the brown complex can be responsible for the O2 evolution in the post-PEC period. It further implies the existence of an alternative pathway for the O2 evolution mediated by the brown complex in the homogeneous solution phase (homogeneous O2 evolution).

Confirmation of high-valent silver species. To identify the oxidation state of the Ag species in the complex, the EPR analysis was performed on the complex adsorbed on silica gel after the PEC reaction (Ag(PEC)) (Fig. 3). The complex exhibited the strong rhombic symmetric spectrum with two distinct g values of 2.80 (gzz) and 2.16 (gyy). This spectrum was similar to that of AgO power. The absence of the g value close to 1.52 (gxx) in the Ag(PEC) sample (Supplementary Fig. 6) was attributed likely to different structures of Ag(II) (complex vs. oxide). For further comparison, the EPR spectrum of Ag2O powder was examined as well; it was axially symmetric with two distinct g values of 3.43 (gzz) and 2.04 (gyy = gxx) and clearly different from that of the Ag(PEC) sample (Supplementary Fig. 6). No complex was created in the PC reaction; hence the Ag(PEC) sample (i.e., mixed with silica gel and dried) did not show any specific peak (Fig. 3) and it was similar to a control (silica gel only). Considering a negative shift in the g value for oxidized transition metal oxides/complexes (Ag2O vs. Ag(PEC))22,23 and the similarity of the spectra between AgO and Ag(PEC), the brown complex should be primarily composed of Ag(II).

The Ag(II) in the brown complex was further quantified using Fe(II) as a reducing agent according to a well-established chemical redox reaction34. The reduction of Ag(II) to Ag(I) (E° (Ag+e−) = 1.980 V) can lead to a fast oxidation of Fe(II) to Fe(III) (E° (Fe3+/2+)= 0.771 V), whereas a further reduction of Ag(I) to Ag(0) by Fe(II) should be slow due to similar reduction potentials of Ag(I)/Ag(0) (E° (Ag+/Ag0) = 0.7996 V) and Fe(III)/Fe(II) redox couples. No production of Fe(III) in aqueous AgNO3 solutions verifies the insignificant redox reaction in the latter (Supplementary Fig. 7). During the PEC reaction at E° OER, the amount of Ag(II) linearly increased with irradiation time, whereas there was no Ag(II) during the PC reaction (Fig. 4; Supplementary Fig. 8). This indicates that the Ag(II) production essentially required irradiation as well as a potential bias. In other words, the O2 evolution in the PEC reaction accompanies the oxidation of Ag(I) to Ag(II) (i.e., hole-mediated OER), whereas Ag(I) is used only as an electron acceptor in the PC reaction. During the post-PEC period (3–24 h), the amount of Ag(II) produced in the PEC period gradually decreased by 90% at 12 h and ∼95% at 24 h. The FE of Ag(II) production in the PEC period was ∼22%; hence the overall FE became ∼97%, including O2 evolution (FE ∼75%; see Fig. 1a). The simultaneous production of Ag(II) in the PEC reaction was observed at lower and higher potentials than E° OER (1.04 and 1.79 V; respectively; see Supplementary Fig. 9a, b). Both FEs were estimated to be ∼21 and 29%, respectively, leading to the overall FEs of ∼95%, including O2 evolution (Fig. 4 inset).

All experimental evidences indicate the presence of the water oxidation pathway that should be mediated by the in situ formed Ag(II) (Eq. 5; Fig. 5):

\[ \text{Ag}^+ + h^+ \rightarrow \text{Ag}^{2+} \tag{5} \]

Upon stabilization by nitrate complexation, Ag(II) can oxidize water in a homogeneous process (Eqs. 2, 3). Such process should be possible only under positive bias, as the applied positive potential effectively extracts the photogenerated electrons from WO3 particles. However, in the absence of the positive bias, both charge recombination and silver deposition (Eq. 6) can occur predominantly.

\[ \text{Ag}^+ + e^- \rightarrow \text{Ag}^0 \tag{6} \]
condition and processes, respectively, throughout the text. ECB and EVB represent conduction band edge (CB) and valence band edge (VB) respectively. Helmholtz layer potential drop at the interface and the redox energy level broadening caused by thermal fluctuation (i.e., reorganization energy) are not represented. The effect of nitrate complexation on the Ag\(^{2+}/Ag^+\) redox potential is not considered. Colored arrows depict the possible charge transfer steps: (ET1) electron transfer to Ag(I); (ET2) electron transfer from the CB edge to substrate (FTO); (HT) hole transfer to Ag(I, II); (RE1) recombination between electrons in the CB edge and Ag(II, III); (RE2) recombination between electrons in the FTO and Ag(II, III). Thicker arrows indicate more dominant paths.

To examine this possibility, the same experiment was repeated under irradiation without any bias (i.e., PC condition, virtually equivalent to open-circuit condition) and Ag\(^{+}\)NO\(_3\). Not surprisingly, O\(_2\) was not evolved due to the predominant charge recombination on bare WO\(_3\) particles (Fig. 1a). In the presence of Ag\(^{+}\)NO\(_3\), PC process evolved O\(_2\) at a rate of ~7 μmol h\(^{-1}\), which was nearly the same as that of the PEC process with Ag\(^{+}\)NO\(_3\) and yet approximately fivefold that of the PEC without Ag\(^{+}\)NO\(_3\). The latter fact (PC with Ag\(^{+}\)NO\(_3\) vs. PEC without Ag\(^{+}\)NO\(_3\) for O\(_2\) evolution) indicates that the electron-scavenging efficiency of Ag\(^{+}\) in the PC process is higher than that of the potential bias in the PEC process. However, such the electron-scavenging role of Ag\(^{+}\) found in the PEC process should be limited in the PEC process where the electron transfer to Ag\(^{+}\) (Eq. 6) is hindered under the positively biased condition. Nevertheless, the fact that the O\(_2\) evolution in the PC system with Ag\(^{+}\)NO\(_3\) is similar to that in the PEC system with Ag\(^{+}\)NO\(_3\) implies a different role of Ag\(^{+}\) in the PEC process. After the PC reaction for 3 h, as expected, Ag deposition onto WO\(_3\) occurred via the reduction of Ag(I) by photogenerated electrons (Eq. 6). Once deposited, however, silver particles inhibited the photocurrent generation on WO\(_3\) electrode (Fig. 1a). In the presence of Ag\(^{+}\)NO\(_3\), the PEC process evolved O\(_2\) at a rate of ~7 μmol h\(^{-1}\), which was nearly the same as that of the PEC process with Ag\(^{+}\)NO\(_3\) and yet approximately fivefold that of the PEC without Ag\(^{+}\)NO\(_3\). The latter fact (PC with Ag\(^{+}\)NO\(_3\) vs. PEC without Ag\(^{+}\)NO\(_3\) for O\(_2\) evolution) indicates that the electron-scavenging efficiency of Ag\(^{+}\) in the PC process is higher than that of the potential bias in the PEC process. However, such the electron-scavenging role of Ag\(^{+}\) found in the PEC process should be limited in the PEC process where the electron transfer to Ag\(^{+}\) (Eq. 6) is hindered under the positively biased condition. Nevertheless, the fact that the O\(_2\) evolution in the PC system with Ag\(^{+}\)NO\(_3\) is similar to that in the PEC system with Ag\(^{+}\)NO\(_3\) implies a different role of Ag\(^{+}\) in the PEC process. After the PC reaction for 3 h, as expected, Ag deposition onto WO\(_3\) occurred via the reduction of Ag(I) by photogenerated electrons (Eq. 6). Once deposited, however, silver particles inhibited the photocurrent generation on WO\(_3\) electrode (Fig. 1a).

4 NATURE COMMUNICATIONS | (2020) 11:967 | https://doi.org/10.1038/s41467-020-14775-2 | www.nature.com/naturecommunications

Fig. 2 Photoinduced charge transfers occurring on the irradiated WO\(_3\). A simplified band diagram of WO\(_3\) coupled with the electrolyte redox levels and the photoinduced charge transfers occurring on the irradiated WO\(_3\) electrode in the presence of Ag\(^{+}\)NO\(_3\) (pH 5), (a) under open-circuit (i.e., bias-free) condition and (b) biased at +0.74 V vs. Ag/AgCl (equivalent to 1.23 V vs. RHE). They are denoted as photocatalytic (PC) and photoelectrocatalytic (PEC) processes, respectively, throughout the text. ECB and EVB represent conduction band edge (+0.03 V) and valence band edge (+2.73 V), respectively. Helmholtz layer potential drop at the interface and the redox energy level broadening caused by thermal fluctuation (i.e., reorganization energy) are not represented. The effect of nitrate complexation on the Ag\(^{2+}/Ag^+\) redox potential is not considered. Colored arrows depict the possible charge transfer steps: (ET1) electron transfer to Ag(I); (ET2) electron transfer from the CB edge to substrate (FTO); (HT) hole transfer to Ag(I, II); (RE1) recombination between electrons in the CB edge and Ag(II, III); (RE2) recombination between electrons in the FTO and Ag(II, III). Thicker arrows indicate more dominant paths.

Fig. 3 EPR spectra of high-valent silver complexes. Electron paramagnetic resonance (EPR) spectra of silver-containing aliquots after PEC and PC reactions for 3 h (denoted as Ag(PEC) and Ag(PC), respectively). The aliquots were adsorbed onto silica gel. See Fig. 1a for the detailed experiments. For comparison, the EPR spectra of commercial silver powders (AgO and Ag\(_2\)O) and silica gel are shown. See Supplementary Fig. 6 for more detailed comparison of the EPR spectra. Source data are provided as a Source Data file.

Fig. 4 Quantification of Ag\(^{2+}\) species. Ag\(^{2+}\) productions during the irradiation (PC and PEC) periods (0–3 h) and subsequent dark periods (3–24 h) of WO\(_3\) in the presence of Ag\(^{+}\)NO\(_3\) (50 mM). The experimental conditions of PC (i.e., open circuit) and PEC (held at 1.23 V vs. RHE) reactions with Ag\(^{+}\)NO\(_3\) were the same as those in Fig. 1a. No Ag(II) was found in the PC process. The amounts of Ag(II) were estimated with the reaction of Fe(II). See text for more detailed analytical method. The inset shows Faradic efficiencies (FE) for O\(_2\) evolution reaction (OER) and Ag\(^{2+}\) production at various applied potentials. Source data are provided as a Source Data file.
(PEC)/WO₃, respectively) were reused for PEC O₂ evolution tests in Ag(I)-free solutions. Both electrodes exhibited the similar levels of photocurrents and amounts of evolved O₂ (3.5 μmol for 3 h; FE < 20%; see Supplementary Fig. 9c). The photocurrent shapes resembled that of the PEC with AgNO₃ in Fig. 1a (i.e., WO₃ with AgNO₃). However, the PEC O₂ evolution activities of the Ag-contained electrodes were much lower than the PEC with AgNO₃ case and comparable with the PEC without AgNO₃ case (Fig. 1a). In addition, both Ag-contained electrodes exhibited no sign of O₂ evolution in the post-PEC periods, unlike the case of Fig. 1a. Therefore, Ag nanoparticles loaded on WO₃ electrode (via either PC or PEC process) can partially inhibit the charge recombination, but its role in facilitating O₂ evolution is limited. This indicates the markedly enhanced PEC O₂ evolution observed in the case of WO₃ with AgNO₃ in Fig. 1a should not be attributed to the role of in situ photodeposited Ag nanoparticles.

**Structure and characterization of Ag-deposited WO₃.** The XRD measurements of the Ag(PEC)/WO₃ and Ag(PC)/WO₃ samples revealed that the Ag deposits were crystalline (Fig. 6a). Their main components were cubic Ag₀ and Ag₂O, although traces of AgO (2θ = 37.7°) could also be detected. No traces of crystallized AgₓWO₃-x, Ag₂O₂, Ag₃O₄, or Ag₇O₈ NO₃ phases were observed. After deconvolution of the most intense XRD Ag (111) and Ag₂O (200) peaks (Fig. 6a inset), the primary particle sizes of Ag and Ag₂O were estimated to be in the range 110 nm (Ag) to 170 nm (Ag₂O) (Supplementary Table 2) using Scherrer equation. The deposition of the Ag and Ag₂O particles on WO₃ requires the pre-adsorption of Ag(I); WO₃ surface is negatively charged at pH 5 due to a low point-of-zero charge (pHₚzc = 0.3–0.5), which facilitates Ag⁺ adsorption and subsequent reductive deposition (Eq. 6). AgO could be formed from the reaction between Ag(I) and surface oxygen species (e.g., Eq. 7) and then reduced to Ag (Eq. 8). Furthermore, Wang et al. recently suggested that Ag₂O (bandgap 1.2 eV) can be photoreduced to Ag under visible light irradiation (Eq. 9).

\[
2\text{Ag}^+ + \text{O}^{2-} \rightarrow \text{Ag}_2\text{O} \\
\text{Ag}_2\text{O} + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{Ag} + \text{H}_2\text{O} \\
\text{Ag}_2\text{O} + \text{hv} \rightarrow 2\text{Ag} + 1/2\text{O}_2
\]
Ag deposits showed the plate configuration of ~1 μm size, which was in direct contact with WO₃ with lattice fringe spacing of 0.36 nm (200) and 0.38 nm (020). The FFT diffraction patterns of the plate interior (bulk) confirmed Ag⁰ (111, 200, and 220), whereas its edge was covered with an amorphous oxide layer of ~1 nm (Supplementary Fig. 12). The Ag deposits in the PC sample showed the same core–shell structure (Fig. 7c, d; Supplementary Fig. 13). It is noteworthy that the similar XPS surface analysis of Ag(PC)/WO₃ and Ag(PEC)/WO₃ samples indicates the applied bias in the latter was not an optimum condition to prevent the formation of silver deposits. On the other hand, the brown complexes showed the shifted Ag 3d peaks, whereas the binding energy of the silver species after PC reaction was the same as that of Ag(I) (Fig. 6b inset; Supplementary Fig. 14). In contrast to the deposited ones, silver species in the brown complexes existed as a more oxidized state than Ag⁺, which is consistent with the result of the EPR spectrum on the complexes (Fig. 4).

Regardless of the states of the Ag deposits, the pathway in Eq. 9 does not justify such an increased oxygen production as confirmed in Supplementary Fig. 9c. In addition, no suspended particles were observed, precluding the formation of silver deposits. On the other hand, the brown complexes showed the shifted Ag 3d peaks, whereas the binding energy of the silver species after PC reaction was the same as that of Ag(I) (Fig. 6b inset; Supplementary Fig. 14). In contrast to the deposited ones, silver species in the brown complexes existed as a more oxidized state than Ag⁺, which is consistent with the result of the EPR spectrum on the complexes (Fig. 4).

In the absence of potential bias (i.e., photocatalysis), the heterogeneous water oxidation is predominant, whereas the homogeneous pathway should be limited because the electron transfer to the interfacial Ag(I) is significantly faster than the hole transfer, depleting nearby Ag(I) available for holes (Fig. 2). A potential bias can retard the Ag(I) reduction by abstracting electrons from WO₃ to the FTO substrate, increasing the Ag(I) availability for reaction with holes on the surface of WO₃. In addition, nitrate did not show any parallel hole-mediated oxidation, but it can be photoreduced as the CB edge has a potential negative enough (Supplementary Table 1). Nevertheless, any nitrate effect can be ruled out as no significant change (i.e., abnormal current or electrolyte color) was observed neither in the dark nor under irradiation in the voltammetric potential range explored (Supplementary Fig. 2). This is consistent with the reported slow nitrate photoreduction using unmodified semiconductors.

The homogeneous oxygen evolution can proceed through the fast dismutation of Ag(II) (e.g., Ag²⁺NO₃⁻; Eq. 10), followed by water oxidation by Ag(III) (e.g., Ag₃²⁺NO₃⁻) and concurrent Ag(I) regeneration (Eq. 11;

\[
2\text{Ag}^{II}\text{NO}_3^- \rightarrow \text{Ag}^+ + \text{Ag}^{III}\text{NO}_3^+ + \text{NO}_3^- \tag{10}
\]

\[
\text{Ag}^{III}\text{NO}_3^+ + \text{H}_2\text{O} \rightarrow \text{Ag}^+ + 1/2\text{O}_2 + 2\text{H}^+ + \text{NO}_3^- \tag{11}
\]

\[
\text{Ag}^{II}\text{NO}_3^+ + \text{h}^+ \rightarrow \text{Ag}^{III}\text{NO}_3^+ \tag{12}
\]

\[
2\text{Ag}^{III}\text{NO}_3^- + \text{H}_2\text{O} \rightarrow 2\text{Ag}^{II}\text{NO}_3^+ + 1/2\text{O}_2 + 2\text{H}^+ \tag{13}
\]
Although the trivalent Ag species (Ag(III)) was not confirmed in this study, similar reduction potentials of Ag(II) and Ag(III) (E° (Ag²⁺/Ag) = 1.8 V; E° (Ag³⁺/Ag) = 1.9 V; E° (Ag⁴⁺/Ag) = 1.98 V) open up the possibility of the direct Ag(III) formation. For example, Ag(II) can be further oxidized to Ag(III) by the VB holes (Eq. 12) and then the Ag(III) is reduced to Ag(II) and Ag(I) while evolving O₂ (Eqs. 13 and 11, respectively) during the PEC period. A further study is needed.

In this contribution, we demonstrated water photooxidation with employing a positively biased WO₃ mesoporous electrode in the absence of AgNO₃ acting as a less efficient hole scavenger than a neutral Ag⁺. The observed behaviors of the PEC water oxidation with AgNO₃ were contrary to the commonly accepted role of Ag(I) as an electron scavenger in conventional photocatalysis. This is a practical example of mediated PEC oxidation of water that operates with mild acidic nitrate conditions in contrast with the highly acidic and concentrated conditions employed in conventional mediated electrochemical oxidation, the thermodynamic potential for water oxidation without the need of overpotential, and a visible-active photocatalyst under (simulated) solar light irradiation. The photooxidation of water proceeded through parallel mechanistic paths: a homogeneous one mediated by complexed high-valent silver species and a heterogeneous one. Further studies should attempt to elucidate the detailed mechanism of the oxygen evolution reaction, optimize all experimental conditions to obtain higher efficiencies by minimizing Ag deposition, and explore the use of other semiconductors, redox couples, and background electrolytes.

Methods

Materials and electrodes. All chemicals were used as received without further purification. NaNO₃ (Aldrich, 99.99% +) and AgNO₃ (Sigma-Aldrich, ACS Reagent, 99 % +) were used for preparing the electrolyte. Other chemicals used were HClO₄ (Sigma-Aldrich, ACS Reagent, 70%), NaOH (Fuka, Standard Solution, 8 M), Na₂S₂O₈ (Sigma-Aldrich), and polyethylene glycol (PPEG, 20,000) (Samchun Chemical Co., Ltd. South Korea). Polyethylene glycol (15 g) and water (15 mL) were intermittenly extracted 1 mL aliquots from the electrolyte and diluted with deionized water (0.9 mL). The diluted samples (0.3 mL) were mixed with the Mohr salt (0.3 mL), Ferrozine (100 μL), diluted samples (0.3 mL) were mixed with the Mohr’s salt (0.3 mL), Ferrozine (100 μL), buffer solution (15 μL), and deionized water (2.4 mL). The mixture solutions were kept under vigorous stirring for 10 min before measuring the absorbance at 560 nm using a UV–Vis absorption spectrophotometer (Libra S22, Biochrom).

Photocatalytic measurement and analysis. Photocatalytic (PEC) experiments were performed using potentiostat–galvanostat (Gamry Instruments Reference 600) that was connected to a three-electrode electrochemical Pyrex cell. The cell consisted of three compartments, each of which held the working, reference, and counter electrode, respectively. The working electrode compartment had a total volume of 55 mL. All compartments were separated by glass frits to inhibit the direct contact between the reaction products generated on the working electrode (e.g., O₂, H₂O₂, and AgNO₃⁻) and the counter electrode (e.g., H₂, NOₓ, and Ag). The working electrode was a mesoporous WO₃/FTO thin film (geometric exposed area, ~4 cm²), attached from the outside of the cell with the WO₃ side in contact with the electrolyte. A Pt wire was used as a counter electrode. Potentials were measured and referred against an Ag/AgCl/KCl (sat’d) electrode (E° = +0.197 V vs SHE). The electrolyte was 0.5 M NaNO₃ solution, adjusted to pH 5 with concentrated HCl solution, and purged with Ar gas for 1 h prior to any measurement. If necessary, purging was continuously kept above the electrolyte (headspace), and the electrolyte remained unstirred (stagnant condition). The concentration of AgNO₃ was adjusted to 50 mM using 0.5 M stock solution. For comparison, Na₂S₂O₈ (50 mM) was used as an alternative electron scavenger. The used anode was an AM 1.5 standard solar simulator (Abet Technologies LS1-10500), with an in-built ozone-free 150-W Xe arc lamp (model LS150). The electrode was irradiated from the back side (i.e., FTO → WO₃ → solution). The incident light intensity was measured with a thermocouple head (Newport 818P-001-12) connected to an optical power meter (Newport 1918-B), yielding 300±15 mW cm⁻² (ca. 3 suns). For comparison, the aforementioned experiments were performed without any potential bias (i.e., open circuit) to drive photocatalytic (PC) reactions. All experiments were performed at room temperature.

The amount of photogenerated O₂ in the reactor headspace (1.56 ± 0.01 mL) was analyzed using a gas chromatograph (GC, HP 6890A) with a thermal conductivity detector (TCD) and a 5-Å molecular sieve column. Ultrahigh purity argon (Linde Korea, 99.999%) was used as carrier gas. In total, 100 μL of gas samples were intermittently withdrawn from the working electrode headspace with a gastight glass syringe (Hamilton 81030). All cell compartments were thoroughly sealed with rubber septa, glycerine, and paraffin, to prevent any gas leakage. Prior to any measurement, the electrolyte was Ar-purged for 1 h. The Faraday efficiency (FE) for O₂ evolution was estimated by the following equation:

\[ FE = \frac{4\times\text{mol O}_2}{\text{Fe} \times 100\%} \]

where FE is the Faraday constant, n is the measured amount of evolved O₂, and Qₚh is the integrated photocurrent. For the PC tests, unless otherwise specified, the electrolyte was continuously held at +0.74 V vs. Ag/AgCl (equivalent to E°OER = 1.23 V vs RE at pH 5) under irradiation for 3 h, and then both potential bias and irradiation were off. In the PC tests, WO₃ alone was irradiated without the bias for 3 h. The addition of AgNO₃ was performed with the unsealed cell, under vigorous stirring for 3 h. The photooxidation of water was performed by an initial small background O₂ level (0.27±0.09 μmol) that cannot be removed by Ar purging. The initial background O₂ level did not increase over 12 h in the dark control condition, which indicates a negligible air leaking. All experiments were performed more than twice at room temperature.

The amount of produced Ag(II) in the solution was estimated with the oxidation of Fe(II) to Fe(III) in Fe(II)₄⁺ was analyzed by the Ferrozine method. In brief, 0.01 M Ferrozine (3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p-p'-disulfonic acid monosodium salt hydrate; Sigma-Aldrich, 97%), 100 ppm Mohr’s salt (Na₄[Fe(NO₃)₆]·6H₂O; Sigma-Aldrich, 99%), and 7 M ammonium acetate (CH₃COONH₄; Sigma-Aldrich, 97%) buffer (pH 9.5 adjusted by concentrated NH₄OH) solutions were prepared in advance. Aliquots (0.1 mL) were intermittently withdrawn from the working electrode compartment during irradiated and dark periods, and then diluted with deionized water (0.9 mL). The diluted samples (0.5 mL) were mixed with the Mohr’s salt (0.3 mL), Ferrozine (100 μL), buffer solution (15 μL), and deionized water (2.4 mL). The mixed solutions were kept under vigorous stirring for 10 min before measuring the absorbance at λ = 560 nm using a UV–Vis absorption spectrophotometer (Libra S22, Biochrom).

Surface characterization. The light absorption of the photogenerated AgNO₃⁺ complex was monitored using an Agilent 8453 spectrophotometer. The cell optical path length was 1 cm, and its sample volume was 3 mL. Samples were prepared by the following procedure: extracting 1 mL of the electrolyte from the reactor headspace to 3 mL with fresh background electrolyte (0.5 M NaNO₃). The sample extraction was intermittently performed during the irradiation and the dark period under Ar purging. All spectra were referenced against the background electrolyte without AgNO₃. The surface morphologies of the bare WO₃ and silver-deposited WO₃ samples were analyzed using high-resolution field-emission scanning electron microscopy (FE-SEM, JOEL JSM-7800F PRIME) with dual-energy dispersive X-ray spectroscopy (EDS) and high-resolution field-emission transmission electron microscopy (HR-TEM, JOEL JEM-2100FS) with image Cs-corrected at the National Institute for Nanomaterials Technology (Pohang, Korea). X-ray diffraction (XRD) patterns of the samples were measured using Cu Ka radiation (RIGAKU D/MAX 2500). X-ray photoelectron spectroscopy (XPS) was analyzed using monochromated Al Ka radiation as an X-ray source (1486.6 eV) at Korea Basic Science Institute (Busan Center, Korea). Electron paramagnetic resonance (EPR) spectroscopy was analyzed using Bruker EMX/Plus spectrometer equipped with X-band cavity (EPR) at Korea Basic Science Institute (Western Seoul Center, Korea). EPR data were obtained under the following conditions: microwave frequency of 9.64 GHz, a modulation amplitude of 10 G, a modulation frequency of 100 kHz, microwave power of 0.92 mW, and a temperature of 298 K.

Data availability

All relevant data are available within the Article, Supplementary Information, Source Data file or available from the corresponding authors upon reasonable request. The source data underlying Figs. 1, 3, 4, 5, 6a–c, 7a–d, 9a–c, and 14 are provided as a Source Data file.

Received: 6 November 2019; Accepted: 31 January 2020; Published online: 19 February 2020.
References

1. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

2. Park, H., Kim, H.-i, Moon, G.-h & Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 9, 411–433 (2016).

3. Yang, J., Wang, D., Han, H. & Li, C. Roles of photocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

4. Hara, K., Sayama, K. & Arakawa, H. Photocatalytic hydrogen and oxygen formation over SiO2-supported RuO2 in the presence of sacrificial donor and acceptor. Appl. Catal. A 189, 127–137 (1999).

5. Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villarreal, T. & Gómez, R. The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 13, 2824–2827 (2012).

6. Schneider, J. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 4, 3479–3483 (2013).

7. Matheswaran, M., Balaji, S., Chung, S. J. & Moon, I. S. Silver-mediated electrochemical oxidation: production of silver(II) in nitric acid medium and in situ deactivation of phenol in semi-batch process. J. Ind. Eng. Chem. 13, 231–236 (2007).

8. Pillai, K. C., Chung, S. J. & Moon, I.-S. Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process. Chemosphere 73, 1505–1511 (2008).

9. Bocarsly, A. B., Gillia, G., Galla, U. & Sherrick, E. H. Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV). J. Appl. Electrochem. 25, 846–851 (1995).

10. Du, J., Chen, Z., Chen, C. & Meyer, T. J. A half-reaction alternative to water oxidation: chlorine oxidation to chlorine catalyzed by silver ion. J. Am. Chem. Soc. 137, 3193–3196 (2015).

11. Fang, J. C. et al. Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver(II). J. Electrochem. Soc. 139, 654–662 (1992).

12. Lehmani, A., Turq, P. & Simonin, J. P. Oxidation kinetics of water and organic compounds by silver(II) using a potentiostatic method. J. Electrochem. Soc. 143, 1860–1866 (1996).

13. Bard, A., Parsons, R. & Jordan, J. Standard Potentials in Aqueous Solution (Mc. Dekker, New York, 1985).

14. Fleischmann, M., Fletcher, D. & Rafainski, A. The kinetics of the silver(I)/silver (II) couple at a platinum electrode in perchloric and nitric acids. J. Appl. Electrochem. 1, 1–7 (1971).

15. Paniza, M., Dao, L., Michaud, P., Cerisola, G. & Connellis, C. Electrochemical generation of silver(II) at boron-doped diamond electrodes. Electrochem. Solid-State Lett. 3, 550–551 (2000).

16. Pillai, K. C., Matheswaran, M., Chung, S. J. & Moon, I.-S. Studies on promising cell performance with H2SO4 as the catholyte for electrogeneration of Ag2O. Chem. Rev. 103, 120–130 (2013).

17. Kim, D.-M., Lee, D.-K., Jung, H.-W., Lee, J.-J. & Park, H. Stand-alone photocatalytic carbon dioxide on copper oxide wire arrays powered by tungsten trioxide-dye sensitized solar cell dual absorbers. Nano Energy 25, 51–59 (2016).

18. Sebold, J. A. & Choi, K-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

19. Pesci, F. M., Cowan, A. J., Alexander, B. D., Durrant, J. R. & Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2, 1900–1903 (2011).

20. Erbs, W., Deslêverto, J., Borgarello, E. & Graetzel, M. Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J. Phys. Chem. 88, 4001–4006 (1984).

21. Lana-Villarreal, T., Monllor-Satoca, D., Gómez, R. & Salvador, P. Determination of electron diffusion lengths in nanostructured oxide electrodes from phototransient and photoelectric maps obtained with the scanning microscope for semiconductor characterization. Electrochem. Commun. 8, 1784–1790 (2006).

22. Dondun, R. W. & Gygys, J. W. The kinetics of the silver(II)-thallium(I) reaction in nitric acid. Inorg. Chem. 5, 986–989 (1966).

23. Po, H. N., Swanenha, J. H. & Allen, T. L. Kinetics and mechanism of the oxidation of water by silver(II) in concentrated nitric acid solution. Inorg. Chem. 7, 244–249 (1968).

24. Magez, Z. et al. The first example of a mixed valence ternary compound of silver with random distribution of Ag(I) and Ag(II) cations. Dalton Trans. 44, 10957–10968 (2015).

25. Manoors, H., Herrigan, W. L., Lehuta, K. A. & Kulltvedt, K. R. Reversible control of the Mn oxidation state in SrTiO3 bulk powders. Front. Chem. 7, 353 (2019).

26. Noyes, A. A., Coryell, C. D., Stitt, F. & Kossiakoff, A. Argentic salts in acid solution. IV. The kinetics of the reduction by water and the formation by chlorination of argentous silver in nitric acid solution. J. Am. Chem. Soc. 59, 1316–1325 (1937).

27. Sun, S., Wang, W., Zeng, S., Zhang, M. & Zhang, L. Preparation of ordered mesoporous Ag2WO4 and its highly efficient degradation of acetamide under visible-light irradiation. J. Hazard. Mater. 178, 427–433 (2010).

28. Gürges, E. & del Pino, A. P. Tunable optical and nano-scale electrical properties of Ag2O and Ag2WO4 nanocomposite thin films. J. Mater. Sci. 46, 3560–3567 (2011).

29. Li, Y. et al. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/Ag2O photocatalyst. Langmuir 24, 8351–8357 (2008).

30. Fathi, F., Schlitt, M., Pedersen, D. B. & Kraatz, H.-B. Chemical behavior of electrochemically generated nanostructured silver surfaces. Langmuir 27, 12098–12101 (2011).

31. Zhang, W., Li, S., Yu, H., Yu, J. & Liu, S. Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chem. Eur. J. 17, 7777–7780 (2011).

32. Baccourt, C. et al. Ag induced modifications on WO3 films studied by AFM, Raman and X-ray photoelectron spectroscopy. J. Phys. D. Appl. Phys. 37, 3383–3391 (2004).

33. Fanning, J. C. The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 199, 159–179 (2000).

34. Kudo, A., Domen, K., Muraya, K.-i & Onishi, T. Reduction of nitrate ions into nitrite and ammonia over some photocatalysts. J. Catal. 135, 300–303 (1992).
