Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux

Dmitry Y. Litvinov1 · Eugeny V. Savushkin1 · Alexander D. Dergunov1

Published online: 21 November 2019
© Springer Nature Switzerland AG 2019

Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.

Key Points
We performed a comprehensive analysis of the various substances influencing cholesterol efflux, with pathway enrichment using the Reactome database.
The activators and inhibitors of cholesterol efflux are non-uniformly distributed among different pathways.
The substances influencing biological oxidation activate cholesterol efflux, and the substances influencing signaling by G protein-coupled receptors (GPCR) and non-receptor tyrosine kinase (PTK6) inhibit efflux.

1 Review Cholesterol Transport

High-density lipoprotein (HDL) heterogeneity influences its atheroprotective effect via reverse cholesterol transport from macrophage to the liver [1]. Cholesterol efflux from a macrophage to the extracellular cholesterol acceptor is the first, and rate-limiting, step of reverse cholesterol transport [2, 3]. Four mechanisms of cholesterol efflux, namely aqueous diffusion, facilitated diffusion mediated by the scavenger receptor class B member 1 (SR-B1) receptor, and active unidirectional efflux mediated by the ATP binding cassette subfamily A member 1 (ABCA1) and the ATP binding cassette subfamily G member 1 (ABCG1) transporters are known [4]. ATP hydrolysis with concomitant conformational transition is required for cholesterol efflux by ABCA1 and ABCG1 transporters. The SR-B1 mediates cholesterol efflux by facilitated diffusion via hydrophobic tunnel within the molecule. Various HDL fractions and lipid-free apolipoprotein A1 (apoA-1) are able to accept cell-derived cholesterol with a different efficiency [2]. Cholesterol transport between intracellular compartments proceeds by both energy-dependent and energy-independent processes [5]. The energy-dependent vesicular traffic partly contributes to cholesterol flux between endoplasmic reticulum, plasma membrane (PM) and endocytic vesicles. The membrane contact sites and lipid transfer proteins are involved in non-vesicular lipid traffic [6–11]. Importantly, the PM cholesterol is the cholesterol that participates in the efflux to the extracellular acceptors [12].
Cholesterol efflux from the macrophage is clinically significant for two reasons. First, there is a significant relationship between the cholesterol efflux capacity (CEC) of apolipoprotein B (apoB)-depleted plasma and the manifestations of various cardiovascular events. The predictive significance of CEC for cardiovascular risk is stronger than for HDL cholesterol level [13–16]. The second reason is the positive effect of efflux stimulation on the regression of atherosclerotic plaques [15, 17, 18].

The molecular events in cellular cholesterol efflux, along with the contribution of various pathways, have been extensively studied; however, there is no systematic evaluation of the influence of various low molecular weight substances on cholesterol efflux as a process directed by both donor and acceptor participants. A combined cheminformatic and bioinformatic approach has been applied in the present review to classify and compare the known efflux effectors. Our work may be applicable in the targeted therapy of structural and functional HDL deficiency.

2 Effectors of Cholesterol Efflux

The PubMed database was initially searched using the term ‘cholesterol efflux’, and papers involving the use of low molecular weight substances were selected. This analysis of published data on the influence of low molecular weight substances on cholesterol efflux with various donors and acceptors revealed 191 substances with activating and inhibiting effects (Table 1). These substances were grouped into the following classes by means of small-molecule high-throughput screening (Fig. 1): (1) inhibitors and activators of SR-B1 receptors or ABC transporters, including sulfonylureas (inhibitors of ATP-sensitive K+ channels); (2) cyclic nucleotides, nucleotide triphosphates, ligands of nucleotide-dependent protein kinases; (3) nuclear receptor ligands and their precursors; (4) cytokines and their receptors; (5) hormones, hormone receptor ligands (excluding ligands of nuclear receptors), hormone metabolism and growth factors; (6) lipid metabolism—intracellular and extracellular; (7) fatty acids and lipid membrane-disturbing agents; (8) protein kinase B, mammalian target of rapamycin, phosphati
dylinositol-phospholipase C; (9) ceramide signaling; (10) mitogen-activated protein kinase and non-receptor tyrosine kinase signaling; (11) ion channels and Ca2+ regulation; (12) protein synthesis and degradation; (13) structural and trafficking proteins and their ligands; (14) DNA-dependent processes; (15) other factors; (16) vitamins, coenzymes and metabolites; and (17) extracts, components of plants, and other natural sources. Overall, 153 substances were present in the Chemical Entities of Biological Interest (ChEBI) database [220].

The subsequent Reactome database search [221] identified 67 substances, and 9 substances were excluded due to dual activating and inhibiting properties. Pathway enrichment was then performed for the remaining 58 substances using the standard Reactome tools with a ‘small molecules’ key. The significant (p < 0.05) 93 pathways were selected, including 45 from 58 substances. The number of significant pathways was reduced to 31 by the replacement of pathways of very low level with higher-level (parent) pathways (Table 2). These pathways included the Neuronal System (R-HSA-112316); transcriptional regulation of white adipocyte differentiation (R-HSA-381340); the citric acid (TCA) cycle and respiratory electron transport (R-HSA-1428517); integration of energy metabolism (R-HSA-163685); metabolism of vitamins and cofactors (R-HSA-196854); biological oxidations (R-HSA-211859); fatty acid metabolism (R-HSA-8978868); regulation of lipid metabolism by peroxisome proliferator-activated receptor-α (PPARα; R-HSA-400206); metabolism of steroids (R-HSA-8957322); metabolism of amino acids and derivatives (R-HSA-71291); cell junction organization (R-HSA-446728); signaling by nerve growth factor (R-HSA-166520); signaling by Wnt (R-HSA-195721); visual phototransduction (R-HSA-2187338); signaling by GPCR (R-HSA-372790); signaling by retinoic acid (R-HSA-5362517); death receptor signaling (R-HSA-73887); signaling by PTK6 (R-HSA-8848021); disorders of transmembrane transporters (R-HSA-5619115); diseases of signal transduction (R-HSA-5663202); metabolic disorders of biological oxidation enzymes (R-HSA-5579029); diseases of carbohydrate metabolism (R-HSA-5663084); immune system (R-HSA-168256); plasma lipoprotein assembly, remodeling, and clearance (R-HSA-174824); transport of bile salts and organic acids, metal ions, and amine compounds (R-HSA-425366); transport of vitamins, nucleosides, and related molecules (R-HSA-425397); metabolism of proteins (R-HSA-392499); circadian clock (R-HSA-400253); vesicle-mediated transport (R-HSA-5653656); RNA polymerase II transcription (R-HSA-73857); and digestion and absorption (R-HSA-8963743). Importantly, the energy-dependent processes (R-HSA-1428517, R-HSA-163685, R-HSA-211859, R-HSA-5619115, R-HSA-5579029), lipoprotein metabolism and lipid transport (R-HSA-400206, R-HSA-8957322, R-HSA-174824, R-HSA-5653656) and signaling pathways (R-HSA-166520, R-HSA-195721, R-HSA-372790, R-HSA-5619115, R-HSA-73887, R-HSA-8848021, R-HSA-5663202) are included (Table 2).
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Inhibitors and activators of SR-B1 receptor or ABC transporters including sulfonylureas (inhibitors of ATP-sensitive K⁺ channels)				
Stimulation				
Diphenoquinone	Supposedly an oxidized metabolite of probucol; inhibits calpain-mediated degradation of ABCA1	THP-1, HEK293 expressing ABCA1	ApoA-I	[19]
Glyburide^b (glibenclamide)	A sulfonylurea antidiabetic drug; inhibitor of ATP-sensitive K⁺ channels	RAW 264.7	HDL	[20]
IMB2026791	An xanthone compound that enhances binding of apoA-I to ABCA1	CHO, CHO expressing ABCA1, THP-1 cells	ApoA-I, HDL (CHO expressing ABCA1, THP-1 cells)	[21]
Spiroquinone	Supposedly an oxidized metabolite of probucol; inhibits calpain-mediated degradation of ABCA1	THP-1, HEK293 expressing ABCA1	ApoA-I	[19]
Inhibition				
BLT-1 - BLT-5	Inhibitors of SR-B1; increases binding affinity of SR-B1 for HDL	IdLA-7 cells stably transfected to express SR-B1	HDL	[22]
BLT-1, BLT-4	Inhibitors of SR-B1; increases binding affinity of SR-B1 for HDL	RAW 264.7, 3T3 L-1-derived adipocytes	ApoA-I	[23, 24]
Compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate)	A novel inhibitor of ABCA1	RAW 264.7	ApoA-I, taurocholate, peptide 18A (i.e. 2F)	[25]
Compound 2 (N-[2-((4-nitrophenylaminocarbonyl)amino)ethyl]-N,N-di[2-((4-methylphenylsulfonyl)amino)ethyl]lamine)	A novel inhibitor of ABCA1	RAW 264.7	ApoA-I	[25]
Glyburide^b (glibenclamide)	A sulfonylurea antidiabetic drug; a general inhibitor of ABC transporters, including ABCA1	J774, RAW 264.7, THP-1, fibroblasts, SMC, HEK293 expressing ABCA1, 3T3 L-1-derived adipocytes	ApoA-I	[20, 23, 26, 27]
Wheat germ agglutinin	A lectin; inhibits generation of microparticle by ABCA1	RAW 264.7	No acceptor	[25]
Probucol	An inhibitor of ABCA1-mediated lipid efflux, lipid-lowering drug, an antioxidant, stimulates cellular lipids synthesis	J774, MPM Astrocytes	ApoA-I, ApoA-II (MPM), ApoE (MPM)	[29–31]
		THP-1, WI-38 human fibroblast cells, MAC-T	ApoA-I	[19, 33, 34]
Table 1 (continued)

Substance used for cell treatment	Description of the substance	Cellsa	Acceptor of cholesterol	References
PSC833	Inhibits ABCA1; a non-immunosuppressive cyclosporine not inhibiting calcineurin; an inhibitor of ABCB1 and ABCB4	ABCA1-expressing BHK cells, THP-1	ApoA-I	[35]

Cyclic nucleotides, nucleotide triphosphates, ligands of nucleotide-dependent protein kinases

Stimulation

Substance	Description	Cells	Acceptor of cholesterol	References
8-Br-cAMP	cAMP analog	RAW 264.7, J774, astrocytes	ApoA-I, ApoE2, ApoE3, ApoE4, HDL	[36]
A-769662	Activator of AMPK	THP-1	ApoA-I	[38]
ATP (up to 0.1–1 μM; inhibition over 1–10 μM)	Nucleoside triphosphate	RAW 264.7, ABCA1-expressing BHK cells	ApoA-I	[39]
ATP, 1 mM	Nucleoside triphosphate	Primary mouse type II pneumocytes	No acceptor	[40]
AICAR (5-aminomidazole-4-carboxamide ribonucleoside)	An activator of AMPK	J774	HDL	[41]
cAMP analog		MPM, J774, L-cell	ApoA-I, HDL3 (J774)	[28–30]
CPT-cAMP (8-(4-chlorophenylthio)cAMP)	PKA-anchoring inhibitor	ABCA1-expressing BHK cells, RAW 264.7	No acceptor; also ApoA-I in a separate experiment	[42]

Inhibition

Substance	Description	Cells	Acceptor of cholesterol	References
Apyrase	ATP hydrolysis to AMP	RAW 264.7 and ABCA1-expressing BHK cells	ApoA-I	[39]
MDL-12330A	An inhibitor of adenylyl cyclase	RAW 264.7	ApoA-I	[43]
PKI	A PKA inhibitor	ABCA1-expressing BHK cells	ApoA-I	[44]
Oligomycin	An inhibitor of ATP synthase; inhibits mitochondrial respiration	THP-1	ApoA-I	[45]
Sodium orthovanadate	A specific inhibitor of P-type ATPases and protein phosphotyrosine phosphatases	Fibroblasts, SMC	ApoA-I	[26]

Nuclear receptor ligands and their precursors

Stimulation

Substance	Description	Cells	Acceptor of cholesterol	References
9-cis-retinoic acid	A retinoid that activates RXRs and RARs	Astrocytes	ApoA-I, HDL	[46]
13-cis-retinoic acid	A retinoid that is neither an RAR nor an RXR agonist	Astrocytes	ApoA-I, HDL	[46]
13-hydroxy linoleic acid	Natural PPAR agonist	RAW 264.7	ApoA-I	[47]
22(R)-hydroxycholesterol	An oxysterol, natural LXR activator	hPBMC, mBMDM, RAW 264.7, THP-1	ApoA-I, HDL (THP-1)	[48–51]
22(R)-hydroxycholesterol with 9-cis-retinoic acid	LXR/RXR agonist	J774, MPM, astrocytes, primary mouse type II pneumocytes	ApoA-I, HDL (astrocytes, CaCo-2), no acceptor (CaCo-2)	[32, 40, 52–54]
24(S),25-epoxycholesterol	An oxysterol, natural LXR activator	mBMDM, hPBMC	ApoA-I	[48]
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
--	---	--	-------------------------	-------------
9-cis-β-carotene	A precursor for 9-cis-retinoic acid that stimulates cholesterol efflux	RAW 264.7, MPM	HDL	[55]
Acetyl-podocarpic dimer	LXR agonist	hPBMC, THP-1, primary human fibroblasts	ApoA-I	[51]
All-trans β-carotene	Vitamin A precursor	RAW 264.7	HDL	[55]
All-trans retinoic acid (tretinoin)	A retinoid that activates RARs	Astrocytes	ApoA-I, HDL	[46]
Baicalin	PPARγ agonist	THP-1	HDL2, HDL3	[56]
Bezafibrate	A lipid-lowering fibrate drug, an agonist of PPARα	THP-1	apoB-depleted plasma	[57]
E17110	A novel benzofuran-2-carboxylate derivative with potential LXRβ agonist activity	RAW 264.7	ApoA-I, HDL	[58]
Ethyl 2,4,6-trihydroxybenzoate	An LXR agonist isolated from Celtis biondii	THP-1	HDL	[59]
Fenofibric acid	A fibrate; used for the treatment of dyslipidemia, a PPARα agonist	hPBMC	HDL	[60]
GW1929	PPARγ agonist	THP-1	HDL3, ApoA-I	[61]
GW3965	LXR agonist	MPM, RAW 264.7, THP-1, Huh7.5 (hepatoma cells), 3T3 L-1-derived adipocytes, blastic plasmacytoid dendritic cell neoplasm cell line CAL-1 (a myeloid leukemia cell line)	ApoA-I, HDL2 (THP-1, CAL-1), HDL3 (THP-1)	[23, 62–66]
GW4064	FXR agonist	THP-1	No acceptor	[67]
Isosylibin A	A partial PPARγ agonist	THP-1	ApoA-I	[68]
K-877	Selective PPARβ modulator	hPBMC	HDL	[60]
Methoprene	Synthetic selective RXR agonist	Astrocytes	ApoA-I, HDL	[46]
N-Acylthiadiazoline compound 2	LXRβ agonist	MPM	ApoA-I	[64]
(racemate or R enantiomer)	Pioglitazone^b	THP-1, RAW 264.7	ApoA-I, HDL, HDL2 (THP-1), HDL3 (THP-1), human plasma (THP-1)	[68–71]
Rosiglitazone	Synthetic PPAR agonist	hPBMC, MPM, THP-1	ApoA-I, HDL (THP-1), HDL2 (THP-1), HDL3 (THP-1)	[62, 72–74]
		RAW 264.7	HDL	[75]
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
----------------------------------	-----------------------------	----------------	------------------------	------------
TO-1317 (TO-901317)	LXR agonist	J774, MPM, RAW 264.7, THP-1, CaCo-2, MAC-T (ApoA-I)	ApoA-I, HDL, HDL3 (MPM), no acceptor (THP-1), taurocholate-phosphatidylcholine micelles (CaCo-2)	[34, 54, 59, 76–81]
	Blastic plasmacytoid dendritic cell neoplasm cell line CAL-1 (a myeloid leukemia cell line)			[66]
Telmisartan	Angiotensin II receptor antagonist; also activates PPAR_γ	HepG2, human foreskin fibroblasts	ApoA-I	[82, 83]
Tributyltin chloride	An organotin compound; an RXR activator	RAW 264.7	ApoA-I	[76]
Wy14643	PPAR_α activator	hPBMC	ApoA-I	[72]
Inhibition	PPAR_γ ligand	MPM	ApoA-I	[84]
15d-PGJ2 (15-Deoxy-delta(12,14)-prostaglandin J(2))	PPAR_δ and, to a lesser extent, PPAR_α agonist	MPM	ApoA-I	[84]
Pioglitazone^b	PPAR agonist	MPM	ApoA-I	[84]
Troglitazone	PPAR_γ and, to a lesser extent, PPAR_α agonist	MPM	ApoA-I	[84]
TTNPB (4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid)	Synthetic selective RAR agonist	Astrocytes	ApoA-I, HDL	[46]

Cytokines and their receptors

Stimulation

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Apelin-13	An adipocytokine, a ligand for the cognate G-protein coupled receptor APJ	THP-1	ApoA-I	[85]
CXCL5	A chemokine that signals through the CXCR2 receptor	MPM	ApoA-I	[86]
IL-8-neutralizing antibody	IL-8 is a proinflammatory chemokine that induces chemotaxis and phagocytosis	THP-1	ApoA-I	[87]
IL-10	An anti-inflammatory cytokine	THP-1	ApoA-I, HDL2, serum (FBS)	[88]
IL-12 with IL-18	IL-12 and IL-18 synergize for the production of IFNγ	THP-1	ApoA-I	[89]
IL-27	An anti-inflammatory cytokine	THP-1	ApoA-I	[90]
TGFβ^b	An anti-inflammatory cytokine	MPM from WT or apoE KO mice	ApoA-I, HDL	[91]
TNFα^b	Proinflammatory cytokine	MPM	ApoA-I	[92]
Inhibition	CCL2	HCAEC, HUVEC	ApoA-I (HCAEC), HDL	[93]
	IFNβ	mBMDM	ApoA-I	[94]
Substance used for cell treatment	Description of the substance	Cells	Acceptor of cholesterol	References
----------------------------------	------------------------------	-------	-------------------------	------------
IL-1β	Pro-inflammatory cytokine	HepG2, primary mouse hepatocytes	ApoA-I	[95]
IL-6	Pro-inflammatory cytokine	THP-1	ApoA-I	[96]
INFγ	Pro-inflammatory cytokine, has a variety of proatherogenic effects	MPM, THP-1	ApoA-I	[91, 97–99]
TNFαb	Pro-inflammatory cytokine	THP-1, HepG2, mouse primary hepatocytes, podocytes (kidney cells)	ApoA-I	[95, 96, 100]
TNF-like protein 1A (TL1A; TNFSF15)	Binds to DR3; highly expressed in atherosclerotic plaques	THP-1, hPBMC	ApoA-I	[99]
Visfatin (pre-B cell colony-enhancing factor 1)	A nicotinamide phosphoribosyltransferase	RAW 264.7	ApoA-I, HDL	[101]

Hormones, hormone receptor ligands (excluding ligands of nuclear receptors), hormone metabolism and growth factors

Stimulation

Substance used for cell treatment	Description of the substance	Cells	Acceptor of cholesterol	References
17β-estradiol	A steroid sex hormone	VSMC, MAC-T	ApoA-I, HDL (VSMC)	[34, 102]
Angiotensin-(1–7)	Produced by ACE2; ACE2-deficient mice have an increased risk of heart failure	THP-1, RAW 264.7	ApoA-I or HDL (THP-1)	[43, 103]
Exendin-4	A GLP-1 mimetic affecting insulin regulation	3T3-L1 adipocytes	No acceptor	[104]
FGF-21	Mitogenic and cell survival activities	THP-1	ApoA-I, HDL	[105]
Ghrelin	An endocrine peptide mainly identified in stomach epithelium; stimulates food intake in humans	THP-1	ND	[106]
GDP-15	A 12-kDa secreted protein, also named macrophage inhibitory cytokine-1	THP-1	No acceptor	[107]
Hydrocortisone (i.e. cortisol)	A steroid hormone, stimulates gluconeogenesis, suppresses the immune system	MAC-T	ApoA-I	[34]
IGF-1	Regulates metabolism, growth, and cell differentiation and survival	INS-1 cells originated from a rat insulinoma cell line	ND	[108]
Insulinb)	A peptide hormone, regulates glucose metabolism	MAC-T	ApoA-I	[34]
Progesterone	A steroid sex hormone	MAC-T	ApoA-I	[34]
Prolactin	A peptide hormone; initiates milk production	MAC-T	ApoA-I	[34]
Vildagliptin	An antidiabetic drug, an inhibitor of DPP-4, thus prolonging the half-life of GLP-1	3T3-L1 adipocytes	No acceptor	[104, 109]

Inhibition

Substance used for cell treatment	Description of the substance	Cells	Acceptor of cholesterol	References
Adiponectin (Acrp30)	An adipokine secreted by adipocytes that functions as an insulin sensitizer	hPBMC	ApoA-I	[110]
Substance used for cell treatment	Description of the substance	Cellsᵃ	Acceptor of cholesterol	References
----------------------------------	---	-------------------	-------------------------	------------
Angiotensin-II	A peptide produced by the enzyme ACE; ACE inhibitors are used for the treatment of CVDs	THP-1	ApoA-I or HDL	[103]
CRH	A peptide that links psychological stress to pathophysiological responses	MPM	ApoA-I	[111]
Dexamethasone	A corticosteroid, agonist of GR	THP-1	ApoA-I	[112]
EGF	Activates MAP kinases ERK1/2	RAW 264.7	ApoA-I	[113]
Hydrocortisone	A corticosteroid, agonist of GR	THP-1	Human serum	[114]
Insulinᵇ	A peptide hormone, regulates glucose metabolism	HepG2, HEK293	ApoA-I, ABCA1	[110, 115]
Raloxifene	A benzothiophene derivative that is used for the treatment of osteoporosis in postmenopausal women; a selective ER modulator: stimulates ER in bone and inhibits ER in the uterus and breast	THP-1, MPM	ApoA-I, HDL	[116]
Tamoxifen	A medication for treating breast cancer; a prodrug that is metabolized in the liver into an ER antagonist	THP-1, MPM	ApoA-I, HDL	[116]
Toremifene	A selective ER modulator; a medication for treating breast cancer	THP-1, MPM	ApoA-I, HDL	[116]

Lipid metabolism—intracellular and extracellular

Stimulation

Substance used for cell treatment	Description of the substance	Cellsᵃ	Acceptor of cholesterol	References
Ibrolipim	An LPL activator	THP-1	ApoA-I, HDL	[117]
MCC-147	An inhibitor of ACAT	MPM	ApoA-I	[118]
Myriocin	An inhibitor of SPTLC1	Primary human fibroblasts, mBMDM	ApoA-I	[119]
NTE-122 (trans-1,4-bis [1-cyclohexyI-3-(4-dimethylamino phenyl)ureido]methyl)cyclohexane)	An inhibitor of ACAT	THP-1	HDL	[120]
PLTPᵇ	Transfers phospholipids between lipoproteins, remodels HDL	J774, BHK expressing ABCA1	HDL, trypinized HDL	[121]
PLTPᵇ	Relatively lipophilic statin; type II statinᵇ	BHK expressing ABCA1	No acceptor, LDL, phospholipid vesicles	[121]
Pitavastatinᵇ	Relatively lipophilic statin; type I statinᵇ	Fu5AH	ApoA-I	[122]
Simvastatinᵇ		THP-1	ApoB-depleted plasma	[57]

Inhibition

Substance used for cell treatment	Description of the substance	Cellsᵃ	Acceptor of cholesterol	References
LPL	A secreted enzyme facilitating the hydrolysis of triglycerides in chylomicrons	THP-1	ApoA-I	[123]
PLTPᵇ	Transfers phospholipids between lipoproteins, remodels HDL	BHK expressing ABCA1	ApoA-I	[121]
PCSK9	A subtilisin family-serine protease that degrades LDL receptor in liver	MPM	ApoA-I	[53]
Substance used for cell treatment	Description of the substance	Cellsa	Acceptor of cholesterol	References
-----------------------------------	-------------------------------	--------	-------------------------	------------
Simvastatinb (0.01 µM)	Relatively lipophilic statin; type I statinc	J774	ApoA-I	[124]
		THP-1, hPBMC	HDL	
Atorvastatin (10 µM)	Relatively lipophilic statin; type II statinc	J774, RAW 264.7	ApoA-I	[124, 126]
		THP-1, hPBMC	HDL, ApoA-I (THP-1)	[125, 127]
Rosuvastatin (10 µM)	Relatively hydrophilic statin; type II statinc	J774	ApoA-I	[124]
Pitavastatinb) (0.1 or 1 µM for J774, RAW—depends on the paper)	Relatively lipophilic statin; type II statinc	J774, MPM, RAW 264.7	ApoA-I	[124, 126, 128]
Pravastatin	Relatively hydrophilic statin; type I statinc	3T3-L1 adipocytes	No acceptor	[109]
Mevasstatin (Compactin; 10 uM)	Relatively lipophilic statin; type I statinc	MPM	ApoA-I	[128]

Fatty acids and lipid membrane-disturbing agents

Stimulation

	Description of the substance	Cellsa	Acceptor of cholesterol	References
α-Linolenic acid conjugated to BSA	An omega-3 PUFA	THP-1	No acceptor	[67]
Cholesterolb		GM3468A normal human skin fibroblasts, primary cerebellar astroglia	ApoA-I	[129, 130]
Edelfosineb (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine)	An alkyl-phospholipid with amphiphilic properties	HepG2	No acceptor (the compound itself might perform as the acceptor)	[131]
Eruceylphosphocholine ([([Z]-docos-13-enyl) 2-(trimethylazaniumyl)ethyl phosphate)	An alkyl-phospholipid with amphiphilic properties	HepG2	No acceptor (the compound itself might perform as the acceptor)	[131]
Miltefosine,b i.e. hexadecylphosphocholine (hexadecyl12-(trimethylazaniumyl)ethyl phosphate)	An alkyl-phospholipid with amphiphilic properties	HepG2	No acceptor (the compound itself might perform as the acceptor)	[131]
Imipramine	An amphipathic amine	MPM	ApoA-I	[132]
Perifosineb (1,1-dimethylpiperidin-1-ium-4-y1) octadecyl phosphate	An alkyl-phospholipid with amphiphilic properties	HepG2	No acceptor (the compound itself might perform as the acceptor)	[131]
U18666A	An amphipathic amine	MPM	ApoA-I, HDL2	[132]

Inhibition

	Description of the substance	Cellsa	Acceptor of cholesterol	References
1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol [a precursor of bis(monoacylglycerophosphate)]	Bis(monoacylglycerophosphate (lysobisphosphatidic acid), a phospholipid highly abundant in the internal membranes of multi-vesicular late endosomes, in which it forms specialized lipid domains	RAW 264.7	Mβ-CD, ApoA-I, HDL	[133]
Cholesterolb		MPM	ApoA-I, HDL2	[132]
Table 1 (continued)

Substance used for cell treatment	Description of the substance	Cellsa	Acceptor of cholesterol	References
Edelfosineb (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocho-line)	An alkyl-phospholipid with amphiphilic properties	THP-1	ApoA-I	[134]
Eicosapentaenoic acid [20:5(n-3)]	Omega-3 PUFA	RAW 264.7, THP-1	ApoA-I	[49, 135]
Linoleic acid 18:2 omega-6 PUFA	mBMDM	HDL		[136]
Miltefosineb, i.e. hexadecylphosphocholine [hexadecyl 2-(trimethylazaniumyl)ethyl phosphate]	An alkyl-phospholipid with amphiphilic properties	THP-1	ApoA-I	[134]
Perifosineb (1,1-dimethylpiperidin-1-ium-4-yl) octadecyl phosphate	An alkyl-phospholipid with amphiphilic properties	THP-1	ApoA-I	[134]
Oleic acid (18:1)	Monounsaturated fatty acid	J774, RAW 264.7	ApoA-I	[49, 137]

Effectors of Akt, mTOR, PI-PLC

Stimulation

Substance	Description	Cells	Acceptor of cholesterol	References
Akt1/2 kinase inhibitor	An inhibitor of Akt	BHK expressing ABCA1	ApoA-I	[137]
DEPC (10-[4‘-(N,N-Diethylamino)butyl]-2-chlorophenoxazine hydrochloride)	An inhibitor of Akt; supresses mTORC1 activity	RAW 264.7, Min6, HepG2, BHK expressing ABCA1	ApoA-I	[138]
K3-0063794	mTOR inhibitor	ABCA1-expressing BHK cells	ApoA-I	[35]
LY294002	An inhibitor of PI3 kinase; supresses mTORC1 activity	HepG2, HEK293 expressing ABCA1, BHK expressing ABCA1	ApoA-I	[115, 138]
Rapamycin (at 10–100 nM; inhibition over 10 μM)	mTOR inhibitor	BHK expressing ABCA1	ApoA-I	[35, 138]
Torin-1	An inhibitor of mTORC1	BHK expressing ABCA1	ApoA-I	[138]

Inhibition

Substance	Description	Cells	Acceptor of cholesterol	References
PI-PLC	Hydrolyzes PIP2 to inositol triphosphate and diacylglycerol	RAW264.7, HEK293 expressing ABCA1	ApoA-I	[139]

Ceramide signaling

Stimulation

Substance	Description	Cells	Acceptor of cholesterol	References
C2-dihydroceramide	Ceramide analog that is not associated with apoptosis	CHO	ApoA-I	[140]
Ceramide	A lipid signaling molecule, a product of the digestion of sphingomyelin, an activator of cathepsin D (a lysosomal proteinase)	J774, CHO, CHO expressing ABCA1, HeLa expressing ABCA1	ApoA-I	[140, 141]
MAPP [(1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol	An inhibitor of alkaline ceramidase; elevates the level of endogenous ceramide	CHO	ApoA-I	[140]
Substance used for cell treatment	Description of the substance	Cells	Acceptor of cholesterol	References
---------------------------------	-------------------------------	-------	-------------------------	------------
MAP kinase and non-receptor tyrosine kinase signaling				
Stimulation				
PD98059^b	An inhibitor of MAP kinases MEK1 and MEK2	RAW 264.7, MPM	ApoA-I, HDL	[113, 142]
PP2 (i.e. AG 1879)	An inhibitor of Src family kinase	Jurkat cells (human acute T lymphocyte leukemia cell line)	ApoA-I	[143]
U0126	An inhibitor of MAP kinases ERK1/2	RAW 264.7, MPM	ApoA-I, HDL	[113, 142]
Inhibition				
AG490	Inhibitor of JAK-2	MAC-T	ApoA-I	[34]
PD98059^b	An inhibitor of MAP kinases MEK1 and MEK2	MAC-T	ApoA-I	[34]
Raf1 kinase inhibitor I, i.e. GW5074 [3-(3,5-Dibromo-4-hydroxybenzyliden)-5-iodo-1,3-dihydroindol-2-one]	Inhibits signaling through the MAPK cascade	HEK293 expressing ABCA1	ApoA-I	[115]
Ion channels and Ca2+ regulation				
Stimulation				
BAY-K8644	An agonist of plasma membrane L-type Ca2+ channels	ABCA1-expressing BHK cells	ApoA-I	[44]
Digoxin	A cardioactive glycoside that inhibits Na+/K+/ATPase, activates the mevalonate pathway, and stimulates the mitochondrial respiratory chain and synthesis of ATP	H9c2 (rat cardiomyocyte cell line)	No acceptor, ApoA-I	[144]
Ouabain	A cardioactive glycoside that inhibits Na+/K+/ATPase, activates the mevalonate pathway, and stimulates the mitochondrial respiratory chain and synthesis of ATP	H9c2 (rat cardiomyocyte cell line)	No acceptor, ApoA-I	[144]
Nifedipine	A calcium channel blocker	RAW 264.7	ApoA-I, HDL	[145]
Inhibition				
BAPTA-AM	Intracellular Ca2+ chelator	ABCA1-expressing BHK cells, RAW 264.7	ApoA-I	[44]
Benzamil (stimulation at 100 μM)	Blocks the epithelial sodium channel and sodium-calcium exchange	MAC-T	HDL	[34]
Cyclosporine A	Calcineurin inhibitor	ABCA1-expressing BHK cells, RAW 264.7, THP-1	ApoA-I	[35, 44]
Disulphonic acid hydrate disodium salt	Chloride channel inhibitor	ABCA1-expressing BHK cells	ApoA-I	[44]
EDTA	Chelator of Ca2+	ABCA1-expressing BHK cells	ApoA-I	[44]
Table 1 (continued)

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
EGTA	Chelator of Ca²⁺	ABCA1-expressing BHK cells, RAW 264.7	ApoA-I	[44]
Pimecrolimus	Calcineurin inhibitor	ABCA1-expressing BHK cells	ApoA-I	[35]
FK506 (tacrolimus)	Calcineurin inhibitor	ABCA1-expressing BHK cells, RAW 264.7	ApoA-I	[35, 44]
W-7	CaM antagonist (inhibits binding of Ca²⁺-bound CaM with its substrates)	ABCA1-expressing BHK cells	ApoA-I	[44]

Protein synthesis and degradation

Stimulation

ALLN (Calpain inhibitor I)	Thiol protease inhibitors; increases ABCA1 level; reversibly blocks Ca-dependent neutral cysteine protease calpain I	THP-1	ApoA-I	[146]
Bortezomib	A proteasome inhibitor	THP-1, RAW 264.7, MPM	ApoA-I, HDL	[147]
Chloroquine	A lysosomal inhibitor	HeLa expressing ABCA1	ApoA-I	[24]
Epoxomicin	A proteasome inhibitor	THP-1, RAW 264.7, MPM	ApoA-I, HDL	[147]
MG132	A proteasome inhibitor	THP-1, RAW 264.7, MPM	ApoA-I, HDL	[147]
Leupeptin	Thiol protease inhibitor; increases the ABCA1 level; inhibits serine and cysteine proteases (plasmin, trypsin, papain, calpain, and cathepsin B)	THP-1	ApoA-I	[146]
Pepstatin A	An inhibitor of cathepsin D, a lysosomal protease	mBMDM, MPM, J774, CHO	ApoA-I	[141]

Inhibition

Brefeldin A	Lactone antibiotic that alters the structure and function of the Golgi apparatus; inhibits protein processing through the Golgi	J774, RAW 264.7, human skin fibroblasts, 3T3 L-1-derived adipocytes	ApoA-I (J774, adipocytes), ApoE4 (RAW 264.7, HDL (fibroblasts), HDL3 (J774)	[23, 28, 148]
Cycloheximide	Protein synthesis inhibitor	J774, MPM	ApoA-I	[29, 118]
Monensin	Polyether antibiotic that alters the structure and function of the Golgi apparatus; inhibits protein processing through the Golgi	RAW 264.7, human skin fibroblasts	ApoE4 (RAW 264.7), HDL (fibroblasts)	[36, 148]

Structural and trafficking proteins and their ligands

Stimulation

| Colchicine | Inhibits microtubule polymerization, a metabolic and transport inhibitor, mitotic poison | Human skin fibroblasts | Plasma, albumin-depleted plasma, and ApoA-I-depleted plasma | [149] |
| Caveolin-1 expression | Integral membrane protein that acts as a scaffolding protein | HepG2 stably transfected caveolin-1 | ApoA-I and plasma | [150] |
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
FGIN-1-27	A ligand for TSPO	THP-1	ApoA-I, HDL	[151]
Flunitrazepam	A ligand for TSPO	THP-1	ApoA-I	[151]
GGTI-298	An inhibitor of prenyltransferase GGTase-I that post-translationally modifies proteins for association to the membrane	mBMDM, THP-1	No acceptor, ApoA-I (mBMDM), HDL (mBMDM)	[152]
PK11195	A ligand for TSPO	THP-1	ApoA-I, HDL	[151]

DNA-dependent processes

Stimulation

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Etoposide (VP-16)	DNA topoisomerase II inhibitor	MPM	ApoA-I	[153]
Pyrrole-imidazole polynamide targeting ABCA1 promoter	A nuclease-resistant compound that inhibits the transcription factor by binding to the minor groove of DNA	RAW 264.7	ApoA-I	[154]
Teniposide (VM-26)	DNA topoisomerase II inhibitor	MPM	ApoA-I	[153]

Inhibition

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Mithramycin A	A chemotherapeutic drug that binds to GC-rich DNA sequences and blocks the binding of the transcription factor Sp1	RAW 264.7	ApoA-I	[155]

Other factors

Stimulation

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Aspirin (up to 0.5 mM; inhibition over 1 mM)	NSAID and an antiplatelet drug (antiaggregant) used in CVD	RAW 264.7	ApoA-I	[63]
Doxazosin	α1-selective alpha blocker used to treat high blood pressure	RAW 264.7	ApoA-I	[154]
EP 80317	Selective CD36 ligand	J774	ApoA-I, HDL	[156]
IRAK1 and IRAK4 inhibitor	IRAK1 participates in signaling via toll-like receptors/IL-1R	THP-1	ApoA-I, HDL	[157]
L. acidophilus bacteria strain K301, heat killed	A component of the human gut microflora; used as probiotics	THP-1	ApoA-I	[158]
Paraoxonase-1	An HDL-associated enzyme that contributes to the antioxidant and anti-inflammatory capacities of HDLs	J774, THP-1	No acceptor, HDL, ApoA-I (J774)	[159]

Inhibition

Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
Arsenic trioxide	Chronic arsenic exposure is associated with an increased risk of CVD mortality	HepG2	HDL	[160]
Celecoxib	COX-2-specific inhibitor for the treatment of pain and inflammation	THP-1	ApoA-I	[161]
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
----------------------------------	-----------------------------	-----------------	------------------------	------------
Chlamydia pneumoniae, viable	A Gram-negative obligate intracellular bacterium, a common cause of community-acquired pneumoniae	THP-1	ApoA-I	[162]
CRP	CRP in plasma are elevated in numerous disease states; CRP possesses proinflammatory and proatherogenic properties	THP-1, hPBMC	ApoA-I, HDL (THP-1)	[163]
D-(+)-trehalose 6,6'-dibehenate	Synthetic Clec4e (macrophage inducible Ca2+ dependent lectin) ligand	mBMDM	HDL, serum	[164]
HSP65	Binds to TCR and initiates immune responses, resulting in the production of proinflammatory cytokines	Jurkat cells (human acute T lymphocyte leukemia cell line), primary CD4+ T cells	ApoA-I	[143]
JNJ-26854165 (serdemetan)	A proposed drug, activates p53	HEK293T; mantle lymphoma cell lines: MAVER-1, JeKo-1; multiple myeloma cell lines: OPM-2, U266	ApoA-I	[165]
Low pH (pH 5.5–6.5 compared with pH 7.5)	hPBMC	ApoA-I, HDL2, human plasma	[166]	
Low temperature	Human skin fibroblasts	Plasma, albumin-depleted plasma, and ApoA-I-depleted plasma	[149]	
LPS (i.e. endotoxins)	A polysaccharide found in the outer membrane of Gram-negative bacteria that causes strong immune responses	RAW 264.7	ApoA-I, HSA	[167]
		mBMDM, primary hepatocytes	Mβ-CD	[168]
Okadaic acid	An inhibitor of protein phosphatases that downregulates caveolin expression	Fibroblasts, SMC	ApoA-I	[26]
PAPP-A	A metalloproteinase detected in ruptured atherosclerotic plaques	THP-1	ApoA-I, HDL	[50]
Ritonavir	A human immunodeficiency virus protease inhibitor	hPBMC, THP-1	ApoA-I, HDL (THP-1)	[170]
Trypsin (pretreatment of the cells)	A protease	J774	ApoA-I	[29]
Urotensin II	A vasoconstrictor peptide, a ligand of G protein-coupled receptor GPR14	THP-1	No acceptor	[171]
Vitamins, coenzymes and metabolites				
Stimulation				
9-nitro oleic acid	Found in human plasma; is generated by nitration of oleic acid by peroxynitrite and acidified nitrite	J774	HDL	[172]
Calcitriol [1,25-dihydroxyvitamin D3 or 1,25-(OH)2D3]	Homonally active metabolite of vitamin D	THP-1	ApoA-I	[173]
Substance used for cell treatment	Description of the substance	Cells\(^a\)	Acceptor of cholesterol	References
----------------------------------	---	---	-------------------------	--------------------------------------
Citrulline	A precursor of arginine and a byproduct of arginine oxidation by nitric oxide synthase	hPBMC, THP-1	ApoA-I, HDL	[174]
Coenzyme Q10	A component of the electron transport chain and a natural antioxidant	hPBMC, THP-1, J774	HDL	[175, 176]
Ethanol	Astrocytes, HepG2 (conditioned media)		ApoA-I, HDL, ApoE, conditioned medium	[32, 177]
GSH (glutathione)	A tripeptide, a thiol antioxidant	J774	HDL	[178]
Nicotinic acid (niacin)	Vitamin B3, lipid-lowering drug	MPM	HDL3	[179], [180]
Spermidine	Endogenous polyamine that induces autophagy	VSMC	ApoA-I	[181]
7-Ketocholesterol (cholest-5-en-3beta-ol-7-one)	The major form of oxidized cholesterol that is present in oxidized LDL and atherosclerotic lesions	THP-1	ApoA-I	[182]
Acetoacetate	A component of ketone bodies	RAW 264.7	ApoA-I	[49]
Carbon monoxide	A component of the primary traffic emission; endogenously produced via heme degradation by heme oxygenase	J774	HDL	[183]
Glucose, increased level (20–25 mM)		RAW 264.7, human glomerular endothelial cells	ApoA-I	[126, 184]
Neopterin	A catabolic product of GTP, mainly synthesized by activated macrophages upon stimulation with IFNy; a marker of inflammation	THP-1	ApoA-I, HDL	[185]
Alpinetin (7-hydroxy-5-methoxyflavanone)	A plant flavonoid abundantly present in Alpinia katsumadai Hayata	THP-1, hPBMC	ApoA-I or HDL	[186]
Anthocyanins (cyanidin-3-O-beta-glucoside and peonidin-3-O-beta-glucoside)	Plant pigments; phenolic compound rich in plants	MPM	ApoA-I	[73]
Arctigenin	Antioxidant, antitumor and anti-inflammatory substance from Arctium lappa plant	THP-1	ApoA-I, HDL2, HDL3	[187]
α-Asarone	Isolated from Purple perilla extract; known as a component of Acorus tatarinowii herb	J774	No acceptor	[188]
Substance used for cell treatment	Description of the substance	Cells	Acceptor of cholesterol	References
----------------------------------	-----------------------------	-------	------------------------	------------
Astaxanthin	A carotenoid found in salmon, crab, and shrimp	RAW 264.7	ApoA-I, HDL	[189]
BCD1	A compound designed for ABCA1 induction based on the structure of rutaecarpine	RAW 264.7	HDL	[190]
Betulin	A pentacyclic triterpenoid from the bark of yellow and white birch trees	RAW 264.7	ApoA-I, HDL	[191]
Dihydrocapsaicin	A component of capsaicinoids of pepper	THP-1	ApoA-I	[192]
Chrysin	A flavonoid that is widely present in honey, propolis, and plant extracts	RAW 264.7	HDL	[75]
Curcumin	A polyphenol derived from the rhizome of turmeric (curcuma longa)	Adipocytes	ApoA-I	[193]
Dehydroxytrichostatin A (i.e. 9179B)	A compound found by screening of microbial secondary metabolites on the ability to induce ABCA1	RAW 264.7	ApoA-I	[194]
Diosgenin	A steroidal sapogenin present in a variety of plants, including fenugreek, yam root and soy bean	MPM, THP-1	ApoA-I	[195]
Emodin	Anthraquinone derivative from the roots of Rheum palmatum	THP-1	ApoA-I	[196]
Ethanol extracts of Brazilian red propolis	Propolis, collected by honey bees from Dalbergia ecastaphyllum (L) Taub. (Leguminosae)	THP-1	ApoA-I	[197]
Hesperetin	One of the major citrus flavonoids	THP-1	ApoA-I	[198]
Leoligin	The major lignan from edelweiss (Leontopodium nivale subsp. alpinum)	THP-1	ApoA-I, human plasma	[199]
Marrubium vulgare extract	The plant is widely used in traditional medicine; extract is rich in phenolic compounds	THP-1	HDL	[200]
Methyl protodioscin	A compound isolated from Dioscorea nipponica makino	THP-1, HepG2	ApoA-I	[78]
Nagilactone B	A novel compound, suppresses atherosclerosis in apoE−/− mice	RAW264.7	ApoA-I, HDL	[201]
Paeonol	A phenolic component purified from Paonia suffrutiosa (Cortex Moutan) used in traditional Chinese medicine	J774	ApoA-I	[202]
Phellinus linteus polysaccharide extract (at 5–20 μg/mL; inhibition at 100 μg/mL)	An immunomodulatory agent with a molecular weight of 153 Kd	THP-1	ApoA-I	[203]
Piperine	The pungent ingredient of black pepper	THP-1	ApoA-I, human plasma	[71]
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
---------------------------------	--	-------------------	-------------------------	----------------
Pomegranate peel polyphenols	Gallic acid, ellagic acid, punicalagins are the main active substances	RAW 264.7	ApoA-I	[204]
Protocatechuic acid	A metabolite of the flavonoid cyanidin-3-O-β-glucoside	MPM, THP-1	ApoA-I, HDL	[205]
Purple perilla extract	Contains rosmarinic acid, methyl rosmarinic acid, caffeic acid, chlorogenic acid and luteolin	J774	No acceptor	[188]
Rutaecarpine	A compound identified by screening of 20,000 compounds on the stimulation of the promoters of ABCAl and CLA1 (CD36 and lysosomal integral membrane protein II analogous 1)	RAW 264.7	ApoA-I, HDL	[206]
Quercetin	A natural flavonoid found in red wine, fruits and other natural sources with antioxidant, anti-inflammatory and antiatherosclerosis activities	J774, THP-1, RAW 264.7	ApoA-I, HDL (J774, RAW 264.7)	[178, 207, 208]
Quercetin 7-O-sialic acid	Combines the cardioprotective effect of quercetin and N-acetyleneuraminic acid	RAW 264.7	ApoA-I, HDL	[208]
Resveratrol	A stilbene with cardioprotective and anti-inflammatory properties	THP-1	Human plasma	[209]
Riccardin C	Non-sterol natural product isolated from liverworts	THP-1	ApoA-I, no acceptor	[77]
Sage (Salvia plebeia) weed extract	Contains antioxidants royleanonic acid, hispidulin and eupatorin	J774	No acceptor (just medium)	[210]
Saikosaponin A	One of the most active saikosaponins of Radix Bupleuri, a triterpenoid glycoside	THP-1	ApoA-I, HDL	[74]
Salvianolic acid B	A compound isolated from the Danshen root (Salvia miltiorrhiza Bunge)	THP-1	ApoA-I, HDL2, HDL3	[62]
Sesame oil	Oil from Sesamum indicum	MPM	ApoA-I	[211]
Sesamin	The most abundant lignan in sesame oil	RAW 264.7	HDL	[212]
Sesamol	A lignan found in sesame oil	MPM	ApoA-I	[211]
Tanshinone IIA	A lipophilic compound derived from Danshen (Salvia miltiorrhiza)	THP-1	ApoA-I, HDL	[213]
VAO-PE	Unsaponifiable fraction of the oil contains tocopherols, squalene, sterols (schottenol and spinasterol) and phenols (ferulic, syringic and vanillic acid)	THP-1	HDL, Ox-HDL pre-incubated with VAO-PE	[214]
Walnut oil	Walnuts contain high levels of PUFA, both linoleic acid and α-linolenic acid	THP-1	No acceptor	[67]
Substance used for cell treatment	Description of the substance	Cells^a	Acceptor of cholesterol	References
----------------------------------	-----------------------------	------------------	------------------------	------------
Wogonin	A component of *Scutellaria baicalensis* Georgi extracts	J774	No acceptor	[215]
Zerumbone	A cyclic sesquiterpene isolated from Zingiber zerumbet Smith	THP-1	ApoA-I	[216]
Inhibition				
Cigarette smoke	Smoking a cigarette with a filter containing 14 mg of tar and 0.9 mg of nicotine was passed through 50 ml of culture medium	J774	HDL	[217]
Nicotine	Considered a pro-atherogenic component in tobacco	hPBMC	ApoA-I	[218]

^a In many cases, cells were treated with substances to differentiate to macrophages (e.g. by phorbol 12-myristate 13-acetate, macrophage colony-stimulating factor, or granulocyte/macrophage colony-stimulating factor), to induce expression of ABCA1 (e.g. by cpt-cAMP, TO-901317, or 22-OH + 9cRA), and transformed to foam cells (e.g. by Ac-LDL).

^b The same factor stimulates and inhibits, depending on the cells, acceptor, and cholesterol depletion.

^c Statin description is given according to McFarland et al. [219]
The distribution of activators and inhibitors between particular pathways is shown in Fig. 2. Importantly, the substances are distributed non-uniformly among different pathways; the ‘biological oxidations’ pathway includes mostly substances with an activating effect on cholesterol efflux (all-trans retinoic acid, ethanol, 17β-estradiol, progesterone, hydrocortisone, resveratrol), while signaling by the G protein-coupled receptor and protein tyrosine kinase 6 pathways include substances with an inhibiting effect (oleic and eicosapentaenoic acids). ‘Biological oxidations’ include biotransformation of xenobiotics and endogenous compounds in the liver, kidneys, gut and lungs. As far as chemicals that undergo functionalization, the electrophilic or nucleophilic species can be detrimental to biological systems. Electrophiles can react with electron-rich macromolecules such as proteins, DNA and RNA by covalent interaction, while nucleophiles have the potential to interact with biological receptors [221].

Thus, in addition to nuclear receptor ligands and their precursors activating cholesterol efflux and lipoprotein metabolism, and widely used in clinics (bezafibrate and fenofibric acid [222], pioglitazone [223], telmisartan [224]), targeting biological oxidation processes looks promising for the correction of inefficient reverse cholesterol transport in humans. For instance, the stimulating effect was described for chloroquine [225], diosgenin [226], 17β-estradiol [227], all-trans retinoic acid [228], ethanol [229], spermidine [230, 231], resveratrol [232] and 9-cis-retinoic acid [233].

3 Conclusions

We performed a comprehensive analysis of the various substances influencing cholesterol efflux, with pathway enrichment using the Reactome database. The activators and inhibitors of cholesterol efflux are non-uniformly distributed among different pathways. The substances influencing biological oxidation activate cholesterol efflux, and the substances influencing signaling by GPCR and PTK6 inhibit efflux. This analysis may be useful in the targeted therapy of structural and functional HDL deficiency.
Table 2 Substances and pathways influencing cellular cholesterol efflux (ChEBI and Reactome pathway indexes are included)

Activator	R-HSA-112316	R-HSA-381340	R-HSA-1428517	R-HSA-163685	R-HSA-196854	R-HSA-211859	R-HSA-897868	R-HSA-400206	R-HSA-8957322	R-HSA-71291	R-HSA-446728	R-HSA-166520	R-HSA-195721	R-HSA-2187338	R-HSA-372790	R-HSA-5362517
2981 Baicalin	●●●	●●●		●	●	●	●	●●	●●●	●●	●●●	●●●	●●●	●●●	●●●	●●●
3086 Betulin	●●●	●●●		●●	●	●	●	●●●	●●●	●●●	●●	●●●	●●●	●●●	●●	●●●
3638 Chloroquine	●●●	●		●●	●●●	●●	●●	●●	●●●	●●●	●●	●	●	●●	●●	●
4551 Digoxin	●	●●●		●	●●●	●	●●	●●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
4629 Diosgenin	●●●	●●●		●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
4708 Doxazosin	●●●	●●●		●●●	●●●	●	●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
6426 Leupeptin	●	●●		●	●	●●	●	●	●●●	●●●	●●●	●●●	●●●	●●●	●	
15365 Aspirin	●●●	●●●		●●	●	●●	●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●●	
15367 All-trans retinoic acid (tretinoin)	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
15940 Nicotinic acid (niacin)	●	●●		●	●	●●	●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
16236 Ethanol	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
16243 Quercetin	●	●●		●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●	
16469	●●●	●●●		●●	●	●●	●	●●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
17β-estradiol	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
16610 Spermidine	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
16856 GSH (glutathione)	●	●●●		●●	●	●●	●	●●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
17026 Progesterone	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
17351 α-Linolenic acid	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
17579 All-trans β-carotene	●●●	●●●		●●	●	●●	●	●●	●●●	●●●	●●●	●●●	●●●	●●●	●●	
17650 Hydrocortisone (i.e. cortisol)	●●●	●●●		●●●	●●●	●	●●	●	●●●	●●●	●●●	●●●	●●●	●●●	●	
Table 2 (continued)

R-HSA-112316	R-HSA-381340	R-HSA-1428517	R-HSA-163685	R-HSA-196854	R-HSA-211859	R-HSA-897886	R-HSA-400206	R-HSA-8957322	R-HSA-71291	R-HSA-446728	R-HSA-166520	R-HSA-195721	R-HSA-2187338	R-HSA-372790	R-HSA-5362517
Neuronal System															
R-HSA-381340	R-HSA-1428517	R-HSA-163685	R-HSA-196854	R-HSA-211859	R-HSA-897886	R-HSA-400206	R-HSA-8957322	R-HSA-71291	R-HSA-446728	R-HSA-166520	R-HSA-195721	R-HSA-2187338	R-HSA-372790	R-HSA-5362517	
Integration of energy metabolism	The citric acid (TCA) cycle and respiratory electron transport	Metabolism of vitamins and cofactors	Metabolism of lipids by PPAR-α	Regulation of lipid metabolism by PPAR-α	Metabolism of steroids	Metabolism of amino acids and derivatives	Cell junction organization	Signaling by NGF	Signaling by Wnt	Signaling by GPCR	Signaling by retinoic acid				

17823 Calcitriol
18211 Citrulline
23359 Colchicine
27881 Resveratrol
36062 Protocathecruic acid
46245 Coenzyme Q10
47499 Imipramine
50122 Rosiglitazone
50648 9-cis-retinoic acid
63892 Zerumbone
65329 LY294002
84612 cpt-cAMP

Inhibitor
8772 Raloxifene
9635 Toremifene
15344 Acetoacetate
16196 Oleic acid
16551 D-(-)-trehalose
6,6'-dibehenate
17245 Carbon monoxide
25675 Oligomycin
R-HSA-112316	R-HSA-381340	R-HSA-1428517	R-HSA-163685	R-HSA-196854	R-HSA-211859	R-HSA-8978868	R-HSA-400206	R-HSA-8957322	R-HSA-71291	R-HSA-446728	R-HSA-166520	R-HSA-195721	R-HSA-2187338	R-HSA-372790	R-HSA-5362517
R-HSA-381340	Neuronal System	Transcriptional regulation of white adipocyte differentiation	The citric acid (TCA) cycle and respiratory electron transport	Integration of energy metabolism	Metabolism of vitamins and cofactors	Fatty acid metabolism	Regulation of lipid metabolism by PPAR-α	Metabolism of steroids	Metabolism of amino acids and derivatives	Cell junction organization	Signaling by NGF	Signaling by Wnt	Visual phototransduction	Signal by GPCR	Signaling by retinoic acid

28364 Eicosapentaenoic acid	●	●	●	●
30740 EGTA	●	●	●	●
34159 15d-PGJ2	●	●	●	●
38545 Rosuvastatin	●	●	●	●
41423 Celecoxib	●	●	●	●
41774 Tamoxifen	●	●	●	●
41879 Dexamethasone	●	●	●	●

R-HSA-73887	R-HSA-8848021	R-HSA-5619115	R-HSA-5663202	R-HSA-5579029	R-HSA-5663084	R-HSA-168256	R-HSA-174824	R-HSA-425366	R-HSA-425397	R-HSA-392499	R-HSA-400253	R-HSA-5653656	R-HSA-73857	R-HSA-8963743	
R-HSA-73887	Death receptor signaling	PTK6	Disorders of transmembrane transporters	Diseases of signal transduction	Metabolic disorders of biological oxidation enzymes	Diseases of carbohydrate metabolism	Immune system	Plasma lipoprotein assembly, remodeling, and clearance	Transport of bile salts and organic acids, metal ions and amine compounds	Transport of vitamins, nucleosides, and related molecules	Metabolism of proteins	Circadian Clock	Vesicle-mediated transport	RNA Polymerase II Transcription	Digestion and absorption

Activator

2981 Baicalin	●	●	●	●
3086 Betulin	●	●	●	●
3638 Chloroquine	●	●	●	●
4551 Digoxin	●	●	●	●
4629 Diosgenin	●	●	●	●
4708 Doxazosin	●	●	●	●
R-HSA-73887 Death receptor signaling	R-HSA-8848021 Signaling by PTK6	R-HSA-5619115 Disorders of trans-membrane transporters	R-HSA-5663084 Diseases of signal transduction	R-HSA-5579029 Metabolic disorders of biological oxidation enzymes	R-HSA-168256 Immune system	R-HSA-174824 Plasma lipo-protein assembly, remodeling, and clearance	R-HSA-425366 Transport of bile salts and organic acids, metal ions and amine compounds	R-HSA-425397 Transport of vitamins, nucleosides, and related molecules	R-HSA-392499 Metabolism of proteins	R-HSA-400253 Circadian Clock	R-HSA-5653656 Vesicle-mediated transport	R-HSA-73857 RNA Polymerase II Transcription	R-HSA-8963743 Digestion and absorption
6426 Leupeptin													
15365 Aspirin													
15367 All-trans retinoic acid (retinoin)													
15940 Nicotinic acid (niacin)													
16236 Ethanol													
16243 Quercetin													
16469 17β-estradiol													
16610 Spermidine													
16856 GSH (glutathione)													
17026 Progesterone													
17351 α-Linolenic acid													
17579 All-trans β-carotene													
17650 Hydrocortisone (i.e. cortisol)													
17823 Calcitriol													
18211 Citrulline													
23359 Colchicine													
Table 2 (continued)

R-HSA-73887 Death receptor signaling	R-HSA-884021 Signaling by PTK6	R-HSA-5619115 Disorders of transmembrane transporters	R-HSA-5663202 Diseases of signal transduction	R-HSA-5579029 Metabolic disorders of biological oxidation enzymes	R-HSA-5663084 Diseases of carbohydrate metabolism	R-HSA-168256 Immune system	R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance	R-HSA-425366 Transport of bile salts and organic acids, metal ions and amine compounds	R-HSA-425397 Transport of vitamins, nucleosides, and related molecules	R-HSA-392499 Metabolism of proteins	R-HSA-400253 Circadian Clock	R-HSA-5653656 Vesicle-mediated transport	R-HSA-73857 RNA Polymerase II Transcription	R-HSA-8963743 Digestion and absorption
27881 Resveratrol	⬤													
36062 Protocatechuc acid	⬤													
46245 Coenzyme Q10														
47499 Imipramine														
50122 Rosiglitazone														
50649 9-cis-retinoic acid														
63892 Zerumbone	⬤													
65329														
LY294002														
84612 cpt-cAMP														
Inhibitor														
8772 Raloxifene	⬤													
9635														
Toremifene														
15344 Acetoacetate														
16196 Oleic acid														
16551 D-(-)-trehalose														
6,6’-dibehenate														
17245 Carbon monoxide														
Table 2 (continued)

R-HSA-73887	R-HSA-884021	R-HSA-5619115	R-HSA-5579029	R-HSA-5663084	R-HSA-168265	R-HSA-174824	R-HSA-425366	R-HSA-425397	R-HSA-392499	R-HSA-400253	R-HSA-565365	R-HSA-73857	R-HSA-896374
Death receptor signaling	Signaling by PTK6	Disorders of transmembrane transporters	Metabolic disorders of biological oxidation enzymes	Diseases of carbohydrate metabolism	Immune system	Plasma lipoprotein assembly, remodeling, and clearance	Transport of bile salts and organic acids, metal ions and amine compounds	Transport of vitamins, nucleosides, and related molecules	Metabolism of proteins	Circadian Clock	Vesicle-mediated transport	RNA Polymerase II Transcription	Digestion and absorption

25675 Oligomycin
28364 Eicosapentaenoic acid
30740 EGTA
34159 15d-PGJ2
38545 Rosuvastatin
41423 Celecoxib
41774 Tamoxifen
41879 Dexamethasone

GPCR G protein-coupled receptor, NGF nerve growth factor, PPAR peroxisome proliferator-activated receptor, black circle (●) denotes the action of a particular substance
Compliance with Ethical Standards

Funding No funding has been received for the conduct of this analysis or the preparation of this article.

Conflict of interest Dmitry Y. Litvinov, Eugeny V. Savushkin and Alexander D. Dergunov have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland II, Yuhanna IS, Rader DR, de Lemos JA, Shaul PW. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93.

2. Dergunov AD, Garaeva EA, Savushkin EV, Litvinov DY. Significance of lipid-free and lipid-associated ApoA-I in cellular cholesterol efflux. Curr Protein Pept Sci. 2017;18:92–9.

3. Litvinov DY, Savushkin EV, Garaeva EA, Dergunov AD. Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem. 2016;23:3883–908.

4. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289:24020–9.

5. Gillon AD, Latham CF, Miller EA. Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta. 2012;1821:1040–9.

6. Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. Biochim Biophys Acta. 2007;1771:700–18.

7. Raychaudhuri S, Prinz WA. The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol. 2010;26:157–77.

8. Olkkonen VM. OSBP-related protein family in lipid transport over membrane contact sites. Lipid Insights. 2015;8:1–9.

9. Daniele T, Schiaffino MV. Organelle biogenesis and interorganelar connections: better in contact than in isolation. Commun Integr Biol. 2014;7:e29587.
10. Drin G, von Moser FJ, Copic A. New molecular mechanisms of inter-organelle lipid transport. Biochem Soc Trans. 2016;44:486–92.
11. Quon E, Beh CT. Membrane contact sites: complex zones for membrane association and lipid exchange. Lipid Insights. 2015;8:55–63.
12. Haynes MP, Phillips MC, Rothblat GH. Efflux of cholesterol from different cellular pools. Biochemistry. 2000;39:4508–17.
13. Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, Lukmanova D, Muckavage ML, Luben R, Billheimer J, Kastelein J, Boekholdt SM, Khaw KT, Wareham N, Rader DJ. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:507–13.
14. Ogura M, Hori M, Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36:181–8.
15. Bhatt A, Rohatgi A. HDL cholesterol efflux capacity: cardiovascular risk factor and potential therapeutic target. Curr Atheroscler Rep. 2016;18:2.
16. Rohatgi A. High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog Cardiovasc Dis. 2015;58:32–40.
17. Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32:2813–20.
18. Chyu KY, Shah PK. HDL/Apo-A-I infusion and Apo-A-I gene therapy in atherosclerosis. Front Pharmacol. 2015;6:187.
19. Arakawa R, Tsuji M, Iwamoto N, Ito-Ohsumi C, Lu R, Wu CA, Shimizu K, Aotsuka T, Kanazawa H, Abe-Dohmae S, Yokoyama S. Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antatherogenesis. J Lipid Res. 2009;50:2299–305.
20. Terao Y, Ayaori M, Ogura M, Yakushiji E, Uto-Kondo H, Hisada T, Ozasa H, Takiguchi S, Nakaya K, Sasaki M, Komatsu T, Iizuka M, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo. J Atheroscler Thromb. 2011;18:513–30.
21. Liu J, Zhang Z, Xu Y, Feng T, Jiang W, Li Z, Hong B, Xie Z, Si S. IMB206791, a xanthone, stimulates cholesterol efflux by increasing the binding of apolipoprotein A-I to ATP-binding cassette transporter A1-expressing cells. Arterioscler Thromb Vasc Biol. 2011;31:2700–6.
22. Fielding PE, Nagaok K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39:14113–20.
23. Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276:23742–7.
24. Favar L, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, Kovanen PT. Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1 but not scavenger receptor class B type I-mediated lipid efflux to high density lipoprotein. J Biol Chem. 2004;279:9930–6.
25. Sakr SW, Williams DL, Stoudt GW, Phillips MC, Rothblat GH. Induction of cellular cholesterol efflux to lipid-free apolipoprotein A-I by cAMP. Biochim Biophys Acta. 1999;1438:85–98.
26. Favar L, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol. 2004;24:2345–50.
27. Tsuji M, Yokoyama S. Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Biochemistry. 1996;35:13011–20.
28. Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta. 2013;1831:263–75.
29. Lu CA, Tsuji M, Hayashi M, Yokoyama S. Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem. 2004;279:30168–74.
30. Favar L, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol. 2004;24:2345–50.
31. Tsuji M, Yokoyama S. Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Biochemistry. 1996;35:13011–20.
32. Smith JD, Miyata M, Ginsberg M, Grigaux C, Shmookler E, Plump AS. Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors. J Biol Chem. 1996;271:30647–55.
33. Guizzetti M, Chen J, Oram JF, Tsuji R, Dao K, Moller T, Costa LG. Ethanol induces cholesterol efflux and up-regulates ATP-binding cassette cholesterol transporters in fetal astrocytes. J Biol Chem. 2007;282:18740–9.
34. Kemmerer M, Wittig I, Richter F, Brune B, Namgaladze D. AMPK activates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem. 2013;288:398–406.
35. Liang B, Wang X, Yan F, Bian YF, Liu M, Bai R, Yang HY, Zhang NN, Yang ZM, Xiao CS. Angiotensin-(1–7) upregulates (ATP-binding cassette transporter A1) ABCA1 expression.

△ Adis
through cyclic AMP signaling pathway in RAW 264.7 macrophages. Eur Rev Med Pharmacol Sci. 2014;18:985–91.
44. Karwatsky J, Ma L, Dong F, Zha X. Cholesterol efflux to apoA-I in ABCA1-expressing cells is regulated by Ca2+-dependent calcineurin signaling. J Lipid Res. 2010;51:1144–56.
45. Karunakaran D, Thrush AB, Nguyen MA, Richards L, Geoffrion M, Singaravelu R, Ramphos E, Shangari P, Ouimet M, Pezacki JP, Moore KJ, Perisic L, Magedefessel L, Hedin U, Harper ME, Rayner KJ. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res. 2015;117:266–78.
46. Chen J, Costa LG, Guizzetti M. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects. J Pharmaco Exp Ther. 2011;338:870–80.
47. Kammerer I, Ringsie R, Biemann R, Wen G, Eder K. Ouimet M, Wang MD, Cadotte N, Ho K, Marcel YL. Epoxy-13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids Health Dis. 2011:10:222.
48. Ouimet M, Wang MD, Cadotte N, Ho K, Marcel YL. Epoxy-cholesterol impairs cholesteryl ester hydrolysis in macrophage foam cells, resulting in decreased cholesterol efflux. Arterioscler Thromb Vasc Biol. 2008:28:1144–50.
49. Uehara Y, Engel T, Li Z, Goepfert C, Rust S, Zhou X, Langer C, Schachturb C, Wiekowski J, Lorkowski S, Assmann G, von EA. Polyunsaturated fatty acids and acacetacetae downregulate the expression of the ATP-binding cassette transporter A1. Diabetes. 2002;51:2922–8.
50. Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Lv YC, Ouyang XP, Yu XH, Kuang HJ, Jiang ZS, Fu YC, Tang CK. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRPalpha through the IGF-1-mediated signaling pathway. Atherosclerosis. 2012:222:344–54.
51. Sparrow CP, Bafic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macaulay KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG. A potent synthetic LXRalpha pathway: findings from in vitro and ex vivo studies. Atherosclerosis. 2015;462:233–8.
52. Cervera A, Masson D, Roggy A, Roumier C, Chague C, Gauthier T, Philippe L, Lamarthe B, Angelot-Delettre F, Bonnefoy F, Perruche S, Biichle S, Preudhomme C, Macintyre E, Lagrost L, Garnache-Ottou F, Saas P. LXR agonist treatment of atopic dermatitis induces dermal neoplasm restores cholesterol efflux and triggers apoptosis. Blood. 2016:128:2694–707.
53. Zhang J, Griejer JA, Kris-Evenhorn PM, Thompson JT, Gillies P, Fleming JA, Vanden Heuvel JP. Walnut oil increases cholesterol efflux through inhibition of stearoyl CoA desaturase 1 in THP-1 macrophage-derived foam cells. Nutr Metab (Lond). 2011:8:61.
54. Cervera A, Masson D, Roggy A, Roumier C, Chague C, Gauthier T, Philippe L, Lamarthe B, Angelot-Delettre F, Bonnefoy F, Perruche S, Biichle S, Preudhomme C, Macintyre E, Lagrost L, Garnache-Ottou F, Saas P. LXR agonist treatment of atopic dermatitis induces dermal neoplasm restores cholesterol efflux and triggers apoptosis. Atherosclerosis. 2012:222:344–54.
55. Sparrow CP, Bafic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macaulay KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG. A potent synthetic LXRalpha pathway: findings from in vitro and ex vivo studies. Atherosclerosis. 2015;462:233–8.
56. Cervera A, Masson D, Roggy A, Roumier C, Chague C, Gauthier T, Philippe L, Lamarthe B, Angelot-Delettre F, Bonnefoy F, Perruche S, Biichle S, Preudhomme C, Macintyre E, Lagrost L, Garnache-Ottou F, Saas P. LXR agonist treatment of atopic dermatitis induces dermal neoplasm restores cholesterol efflux and triggers apoptosis. Blood. 2016:128:2694–707.
57. Zhang J, Griejer JA, Kris-Evenhorn PM, Thompson JT, Gillies P, Fleming JA, Vanden Heuvel JP. Walnut oil increases cholesterol efflux through inhibition of stearoyl CoA desaturase 1 in THP-1 macrophage-derived foam cells. Nutr Metab (Lond). 2011:8:61.
72. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Frucht JC, Clavey V, Staels B. PPARGamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7:53–8.

73. Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q, Li Y, Chi D, Yu X, Zhao T, Han P, Xia X, Ling W. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor (gamma)-liver X receptor [alpha]-ABCA1 pathway. J Biol Chem. 2005;280:36792–801.

74. He D, Wang H, Xu L, Wang X, Peng K, Wang L, Liu P, Qu P. Saikosaponin-a attenuates oxidized LDL uptake and prompts cholesterol efflux in THP-1 cells. J Cardiovasc Pharmacol. 2016;67:510–8.

75. Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, Wu C. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol. 2015;53:1481–7.

76. Cui H, Okuhira K, Ohoka N, Naito M, Kagechika H, Hirose A, Nishimaki-Mogami T. Tributyltin chloride induces ABCA1 expression and apolipoprotein A-I-mediated cellular cholesterol efflux by activating LXRA/lR alpha. Biochim Biophys Acta. 2011;1819:21–4.

77. Tamehiro N, Sato Y, Suzuki T, Hashimoto T, Asakawa Y, Yokoyama S, Kawanishi T, Ohno Y, Inoue K, Nagao T, Nishimaki-Mogami T, Riccardi C: a natural product that functions as a Liver X receptor (LXR)-alpha agonist and an LXRbeta antagonist. FEBS Lett. 2005;579:529–34.

78. Ma W, Ding H, Gong X, Liu Z, Lin Y, Zhang Z, Lin G. Methyl protodioscin increases ABCA1 expression and cellular cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels. Atherosclerosis, 2015;239:566–70.

79. Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, Jepsen K, Baek SH, Heyman RA, Rosenfeld MG, Schulman IG, Glass CK. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol. 2003;23:5780–9.

80. Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Low H, Mukhamedova N, Cui HL, McSharry BP, Avdic S, Jiang M, Li X. Activation of PPARgamma does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482:849–56.

81. Liu XY, Lu Q, Ouyang XP, Tang SL, Zhao GJ, Lv YC, He PP, Kuang HJ, Tang YY, Fu Y, Zhang DW, Tang CK. Apelin-13 increases expression of ATP-binding cassette transporter A1 via activating protein kinase C alpha signaling in THP-1 macrophage-derived foam cells. Atherosclerosis. 2013;226:398–407.

82. Rousséelle A, Qadri F, Leukel R, Yilmaz R, Fontaine JF, Sihn G, Bader M, Ahluwalia A, Duchene J. CXL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest. 2013;123:1343–7.

83. Chen Y, Wang Z, Zhou L. Interleukin-8 inhibition enhanced cholesterol efflux in acetylated low-density lipoprotein-stimulated THP-1 macrophages. J Investig Med. 2014;62:615–20.

84. Halvorsen B, Holm S, Yndestad A, Scholz H, Sagen EL, Nebb H, Holven KB, Dahl TB, Aukrust P. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor alpha. Biochem Biophys Res Commun. 2014;450:1525–30.

85. Yu XH, Jiang HL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Ouyang XP, Lv YC, Jiang ZS, Zhang DW, Tang CK. Interleukin-12 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18/nuclear factor-kappaB signaling pathway in THP-1 macrophage-derived foam cells. Circ J. 2012;76:1780–91.

86. Edel KA, Leboeuf RC, Oram JF. Tumor necrosis factor-alpha and lymphoxygen-alpha increase macrophage ABCA1 by gene expression and protein stabilization via different receptors. Atherosclerosis, 2010;209:387–92.

87. Sun RL, Huang CX, Bao JL, Jiang JY, Zhang B, Zhou SX, Cai WB, Wang H, Wang JF, Zhang YL. CC-chemokine ligand 2 (CCL2) suppresses high density lipoprotein (HDL) internalization and cholesterol efflux via CC-chemokine receptor 2 (CCR93) induction and p42/44 mitogen-activated protein kinase (MAPK) activation in human endothelial cells. J Biol Chem. 2016;291:19532–44.

88. Bosshuizen MC, Hoeksema MA, Needle AE, van d V, Hamers AA, Van den Bossche J, Luigens E, de Winther MP. Interferon-beta promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine. 2016;77:220–6.

89. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology. 2008;48:770–81.

90. Miao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, Zhang N, Zhou C, Ruan XZ. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.

91. Wang XQ, Panousis CG, Evans GF, Zuckerman SH. TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma. J Lipid Res. 2001;42:856–63.

92. Edel KA, Leboeuf RC, Oram JF. Tumor necrosis factor-alpha and lymphoxygen-alpha increase macrophage ABCA1 by gene expression and protein stabilization via different receptors. Atherosclerosis, 2010;209:387–92.

93. Sun RL, Huang CX, Bao JL, Jiang JY, Zhang B, Zhou SX, Cai WB, Wang H, Wang JF, Zhang YL. CC-chemokine ligand 2 (CCL2) suppresses high density lipoprotein (HDL) internalization and cholesterol efflux via CC-chemokine receptor 2 (CCR93) induction and p42/44 mitogen-activated protein kinase (MAPK) activation in human endothelial cells. J Biol Chem. 2016;291:19532–44.

94. Bosshuizen MC, Hoeksema MA, Needle AE, van d V, Hamers AA, Van den Bossche J, Luigens E, de Winther MP. Interferon-beta promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine. 2016;77:220–6.

95. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology. 2008;48:770–81.

96. Miao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, Zhang N, Zhou C, Ruan XZ. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.

97. Wang XQ, Panousis CG, Alfaro ML, Evans GF, Zuckerman SH. Interferon-gamma-mediated downregulation of cholesterol efflux and ABC1 expression is by the Stat1 pathway. Arterioscler Thromb Vasc Biol. 2002;22:e5–9.

98. Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, Liao DF, Mao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, Zhang N, Zhou C, Ruan XZ. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.

99. McLaren JE, Calder CI, McSharry BP, Sexton K, Salter RC, Singh NN, Wilkinson GW, Wang EC, Ramji DP. The TNF-like protein 1A death receptor 3 pathway promotes macrophage foam cell formation in vitro. J Immunol. 2010;184:5827–34.

100. Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, Molina-David J, Ge M, Lassenius MI, Forsblom C, Lehto M, Groop PH, Kretzler M, Eddy S, Martini S, Reich H.
114. Greco D, Favari E, Adorni MP, Zimetti F, Gatti R, Bernini F, Wahl P, Ghiggeri G, Fauc C, Burke GW III, Kretz O, Huber TB, Mendez AJ, Merscher S, Foronn A. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016;126:3336–50.

101. Lin YT, Jian DY, Kwok CF, Ho LT, Juan CC. Visfatin promotes foam cell formation by dysregulating CD36, SRA, ABCA1, and ABCG1 expression in Raw264.7 macrophages. Shock. 2016;45:460–8.

102. Wang H, Liu Y, Zhu L, Wang W, Wan Z, Chen F, Wu Y, Zhou J, Yuan Z. 17beta-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor alpha-dependent pathway. Int J Mol Med. 2014;33:550–8.

103. Liang B, Wang X, Bian Y, Yang H, Liu M, Bai R, Yang Z, Xiao C. Angiotensin-(1–7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette G1 through the Mas receptor over the liver X receptor alpha signalling pathway in THP-1 macrophages treated with angiotensin-II. Clin Exp Pharmacol Physiol. 2014;41:1023–30.

104. Mostafa AM, Hamdy NM, El-Mesallamy HO, Abdel-Rahman SZ. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes. Biochim Biophys Res Commun. 2015;468:900–6.

105. Cheng B, Wan J, Wang Y, Mei C, Liu W, Ke L, He P. Ghrelin inhibits foam cell formation via simultaneously down-regulating the expression of acyl-coenzyme A: cholesterol acyltransferase 1 and up-regulating adenosine triphosphate-binding cassette transporter A1. Cardiovasc Pathol. 2010;19:e159–66.

106. Wu JF, Wang Y, Zhang M, Tang YY, Wang B, He PP, Lv YC, Ouyang XP, Yao F, Tan YT, Tang SL, Tang DP, Cayabab FS, Zheng XL, Zhang DW, Zeng GF, Tang CK. Growth differentiation factor-15 induces expression of ATP-binding cassette transporter A1 through PI3-K/PKCzeta/SP1 pathway in THP-1 macrophages. J Biol Chem. 2014;289:325–31.

107. Mostafa AM, Hamdy NM, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux from macrophages treated with angiotensin-II. J Biomed Pharmacol Ther. 2016;45:460–8.

108. Park W, Song W, Wang Y, Chen L, Yan X. HMG-CoA reductase inhibitor of acylCoA: cholesterol acyltransferase inhibitor, on cholesterol esterification and high-density lipoprotein-induced cholesterol efflux in macrophages. Jpn J Pharmacol. 1999;79:59–67.

109. Chang S, Xiao C. Angiotensin-(1–7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette G1 through the Mas receptor over the liver X receptor alpha signalling pathway in THP-1 macrophages treated with angiotensin-II. Clin Exp Pharmacol Physiol. 2014;41:1023–30.

110. Mostafa AM, Hamdy NM, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux from macrophages treated with angiotensin-II. J Biomed Pharmacol Ther. 2016;45:460–8.

111. Fernandez-Suarez ME, Escola-Gil JC, Pastor O, Davalos A, Blanco-Vaca F, Lasuncion MA, Martinez-Botas J, Gomez-Coronado D. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Sci Rep. 2016;6:32105.

112. Chen SG, Xiao J, Liu XH, Liu MM, Mo ZC, Yin K, Zhao GJ, Jiang J, Cui LB, Tan CZ, Yin WD, Tang CK. Ibrolipim increases ABCA1/G1 expression by the LRAlphal signaling pathway in THP-1 macrophage-derived foam cells. Acta Pharmacol Sin. 2010;31:1343–9.

113. Sugimoto K, Tsujita M, Wu CA, Suzuki K, Yokoyama S. An inhibitor of acylCoA: cholesterol acyltransferase increases expression of ATP-binding cassette transporter A1 and thereby enhances the Apo-A-I-mediated release of cholesterol from macrophages. Biochim Biophys Acta. 2004;1636:69–76.

114. Tamehiro N, Zhou S, Okuhira K, Benita Y, Brown CE, Zhuang DZ, Latz E, Hornemann T, von EA, Xavier RJ, Freeman MW, Fitzgerald ML. SPCTL1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter. Biochemistry. 2008;47:6138–47.

115. D. Y. Litvinov et al. Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis. 2011;216:334–41.
elevated levels of cellular unesterified cholesterol. J Lipid Res. 1992;33:1699–709.

130. Karten B, Campenot RB, Vance DE, Vance JE. Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem. 2006;281:4049–57.

131. Rios-Marco P, Jimenez-Lopez JM, Marco C, Segovia JL, Carrasco MP. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells. J Pharmacol Exp Ther. 2011;336:866–73.

132. Feng B, Tabas I. ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem. 2002;277:43271–80.

133. Luquain-Costaz C, Lefai E, Arnal-Levron M, Markina D, Sakai S, Euthine V, Makino A, Guichardant M, Yamashita S, Kobayashi T, Lagarde M, Moulin P, Delton-Vandenbroucke I. Bis(monoacylglycerol)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver X receptor/ATP-binding cassette transporter A1/G protein pathways, and impairs cholesterol efflux. Arterioscler Thromb Vasc Biol. 2013;33:1803–11.

134. Spartano NL, Lamon-Fava S, Matthaei NR, Obin MS, Greenberg AS, Lichtenstein AH. Linoleic acid suppresses cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis. 2009;204:e35–43.

135. Spartano NL, Lamon-Fava S, Matthaei NR, Obin MS, Greenberg AS, Lichtenstein AH. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. Lipids. 2014;49:415–22.

136. Kanter JE, Tang C, Oram JF, Bornfeldt KE. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochim Biophys Acta. 2012;1821:358–64.

137. Dong F, Mo Z, Eid W, Courtney KC, Zha Y, Akt inhibition promotes ABCA1-mediated cholesterol efflux to Apo-A-I through suppressing mTORC1. PLoS One. 2014;9:e113789.

138. Gulshan K, Brubaker G, Conger H, Wang S, Zhang R, Hazen SL, Smith JD. Phosphatidylcholine inhibits ABCA1 to the cell surface where it mediates apolipoprotein A1 binding and nascent HDL assembly. Circ Res. 2016;119:827–38.

139. Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin (Shanghai). 2004;36:218–26.

140. Ogura M, Ayaori M, Terao Y, Hisada T, Iizuka M, Takiguchi S, Uto-Kondo H, Yukishii E, Nakaya K, Sasaki M, Komatsu T, Ozasa H, Ohzsu F, Ikewaki K. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2011;31:1980–7.

141. Mendez AJ, Monensin and brefeldin A inhibit high density lipoprotein-mediated cholesterol efflux from cholesterol-enriched cells. Implications for intracellular cholesterol transport. J Biol Chem. 1995;270:5891–900.

142. Fielding CJ, Moser K. Evidence for the separation of albumin- and apo A-I-dependent mechanisms of cholesterol efflux from cultured fibroblasts into human plasma. J Biol Chem. 1982;257:10955–60.

143. Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem. 2004;279:14140–6.

144. Taylor JM, Allen AM, Graham A. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. Clin Sci (Lond). 2014;127:603–13.

145. Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel proteinmediated cholesterol efflux from cholesterol-enriched cells. Exp Ther. 2011;336:866–73.

146. Tsunemi A, Ueno T, Fukuda N, Watanabe T, Tahira K, Hekata A, Hatanaka Y, Tanaka S, Matsumoto T, Matsumoto Y, Nagase H, Soma M. A novel gene regulator, pyrrole-imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration. J Mol Med (Berl). 2014;92:509–21.

147. Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One. 2011;6:e21453.

148. Bujold K, Rhainds D, Jossart C, Febbraio M, Marleau S, Ong Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D. Targeting GGTase-I activates LXR, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation. 2013;127:782–90.

149. Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, Liu M, Duan Y, Han J. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux—an LXR-dependent mechanism. Biochim Biophys Acta. 2013;1831:1134–45.

150. Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem. 2004;279:14140–6.

151. Taylor JM, Allen AM, Graham A. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. Clin Sci (Lond). 2014;127:603–13.

152. Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel proteinmediated cholesterol efflux from cholesterol-enriched cells. Exp Ther. 2011;336:866–73.
cholesteryl ester transfer protein expression without affecting the liver X receptor alpha in HepG2 cells. Chem Biol Interact. 2016;258:288–96.

161. Voloshyna I, Kasseljian LJ, Carsons SE, Littlefield MJ, GMOolin IH, De Li, Reiss AB. COX-2-dependent and independent effects of COX-2 inhibitors and NSAIDs on proatherogenic changes in human monocytes/macrophages. J Investig Med. 2017;65:694–704.

162. Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, Yao F, Tan YL, Xie W, Shi JF, Wang Y, Zhang M, Liu D, Tang DP, Zheng XL, Tian GP, Tang CK. Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and mir-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis. 2014;3:255:19–25.

163. Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler Thromb Vase Biol. 2008;28:519–26.

164. Clement M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation. 2016;134:1039–51.

165. Jones RJ, Du G, Bjorklund CC, Kuiatse I, Remaley AT, Bashir D. Y. Litvinov et al.

166. Lee-Rueckert M, Lappalainen J, Pihlajamaa T, Kovanen PT. Acidic extracellular environments change in human monocytes/macrophages. Biochim Biophys Acta. 2003;160:119–28.

167. Wang MD, Franklin V, Sundaram M, Kiss RS, Ho K, Gallant M, Marcel YL. Differential regulation of ATP binding cassette protein A1 expression and ApoA1 lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem. 2007;282:22325–33.

168. Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One. 2013;8:e74782.

169. Wang MD, Franklin V, Sundaram M, Kiss RS, Ho K, Gallant M, Marcel YL. Differential regulation of ATP binding cassette protein A1 expression and ApoA1 lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem. 2007;282:22325–33.

170. Arctigenin promotes cholesterol efflux from THP-1 macrophage-derived foam cells. Mol Nutr Food Res. 2015;59:1725–34.

171. Polo MP, de Bravo MG, de Alanz MJ. Effect of ethanol on cell growth and cholesterol metabolism in cultured HEP G2 cells. Biochem Cell Biol. 2003;81:379–86.

172. Rosenblat M, Volkova N, Khatib S, Mahmood S, Vaya J, Aviram M. Reduced glutathione increases quercetin stimulatory effects on HDL- or apoA1-mediated cholesterol efflux from J774A.1 macrophages. Free Radic Res. 2014;48:1462–72.

173. Xu X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X, Wang Y. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-gamma/LXR-alpha signaling pathway. Biochem Biophys Res Commun. 2013;441:321–6.

174. Uoto-Kondo H, Ayaori M, Nakaya K, Takiguchi S, Yakushiji E, Ogura M, Terao Y, Ozasa H, Sasaki M, Komatsu T, Sotherden GM, Hosoi T, Sakurada M, Ikewaki K. Citrulline increases cholesterol efflux from macrophages in vitro and ex vivo via ATP-binding cassette transporters. J Clin Biochem Nutr. 2014;55:32–9.

175. Yan X, Shen T, Jiang X, Tang X, Wang D, Li H, Ling W. Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: a randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers. Mol Nutr Food Res. 2015;59:1725–34.

176. Wang D, Yan X, Xia M, Yang Y, Li D, Li X, Song F, Ling W. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler Thromb Vase Biol. 2014;34:1860–70.

177. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation. 2016;134:1039–51.

178. Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One. 2013;8:e74782.

179. Wang X, Mu H, Chai H, Liao D, Yao Q, Chen C. Human immunodeficiency virus protease inhibitor ritonavir inhibits cholesterol efflux from human macrophage-derived foam cells. Am J Pathol. 2007;171:304–14.

180. Wang Y, Wu JF, Tang YY, Zhang M, Li Y, Chen K, Zeng MY, Yao F, Xie W, Zheng XL, Zeng GF, Tang CK. Urotensin II increases foam cell formation by repressing ABCA1 expression and ApoA-I lipidation by Niemann-Pick M, Marcel YL. Differential regulation of ATP binding cassette protein A1 expression and ApoA1 lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem. 2007;282:22325–33.

181. Michiels CF, Kurdi A, Timmermans JP, De Meyer GR, Marti­net W. Spermidines reduce lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis. 2016;251:319–27.

182. Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid induces expression of HDL-mediated cholesterol efflux from macrophages. J Biol Chem. 2008;283:519–26.

183. Gaus K, Dean RT, Kriitharides L, Jessup W. Inhibition of choles­terol efflux by 7-ketocholesterol: comparison between cells, plasma membrane vesicles, and liposomes as cholesterol donors. Biochemistry. 2001;40:13002–14.

184. Patrick L, Rosenblat M, Aviram M. In vitro effects of exogenous carbon monoxide on oxidative stress and lipid metabolism in macrophages. Toxicol Ind Health. 2016;32:1318–23.

185. Petrick L, Rosenblat M, Aviram M. In vitro effects of exogenous carbon monoxide on oxidative stress and lipid metabolism in macrophages. Toxicol Ind Health. 2016;32:1318–23.

186. Jiang Z, Sang H, Li L, Wang YT, Liu JP, Zhang J, Bai L, Cheng JQ, Fu P, Liu F. Exendin-4 ameliorates lipotoxicity-induced glo­merular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoE knockout mice. J Biol Chem. 2016;291:26487–501.

187. Lu T, Xia X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X, Wang Y. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-gamma/LXR-alpha signaling pathway. Biochem Biophys Res Commun. 2013;441:321–6.

188. Yang Q, Tan C, Wu JH, Zhang DC, Chen JL, Zeng BY, Wang NP, Nie J, Liu W, Liu Q, Dai H. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem. 2013;379:123–31.

189. Jiang Z, Sang H, Fu X, Liang Y, Li L. Alpinetin enhances choles­terol efflux and inhibits lipid accumulation in oxidized low-den­sity lipoprotein-loaded human macrophages. Biotechnol Appl Biochem. 2015;62:840–7.

190. Xu X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X, Wang Y. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-gamma/LXR-alpha signaling pathway. Biochem Biophys Res Commun. 2013;441:321–6.

191. Park SH, Paek JH, Shin D, Lee JY, Lim SS, Kang YH. Purple perilla extracts with alpha-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages. Int J Mol Med. 2015;35:957–65.

192. Iizuka M, Ayaori M, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya K, Hisada T, Sasaki M, Komatsu T, Yogo M, Kishimoto Y, Kondo K, Ikewaki K. Astaxanthin enhances...
ATP-binding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages. J Nutr Sci Vitamino (Tokyo). 2012;58:96–104.

190. Li Y, Feng T, Liu P, Liu C, Wang X, Li D, Li N, Chen M, Xu Y, Si S. Optimization of rutecarpine as ABCA1 up-regulator for treating atherosclerosis. ACS Med Chem Lett. 2014;5:884–8.

191. Gui YZ, Yan H, Gao F, Xi C, Li HH, Wang YP. Betulin attenuates atherosclerosis in apoE−/− mice by up-regulating ABCA1 and ABCG1. Acta Pharmacol Sin. 2016;37:1337–48.

192. Hu YW, Ma X, Huang JL, Mao XR, Yang YJ, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q. Dihydroxysapcaisin attenuates plaque formation through a PPARGamma/LXRalpha pathway in apoE−/− mice fed a high-fat/high-cholesterol diet. PLoS One. 2013;8.e66876.

193. Dong SZ, Zhao SP, Wu ZH, Yang J, Xie XZ, Yu BL, Nie S. Curcumin promotes cholesterol efflux from adipocytes related to PPARGamma-LXRalpha-ABCA1 passway. Mol Cell Biochem. 2011;358:281–5.

194. Xu Y, Xu Y, Bao Y, Hong B, Si S. Identification of dehydroxytriterpene in kawakami extract as a novel up-regulator of the ATPI-binding cassette transporter A1 (ABCA1). Molecules. 2011;16:7183–98.

195. Lv YC, Yang J, Yao F, Xie W, Tang YY, Ouyang XP, He PP, Tan YL, Li L, Zhang M, Liu D, Caiyan FS, Zheng XL. Tang CK. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis. 2015;240:80–9.

196. Fu X, Xu AG, Yao MY, Guo L, Zhao LS. Emodin enhances cholesterol efflux by activating peroxisome proliferator-activated receptor-gamma in oxidized low density lipoprotein-loaded THP1 macrophages. Clin Exp Pharmacol Physiol. 2014;41:679–84.

197. Iio A, Ohguchi K, Maruyama H, Nozawa Y, Ito M. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages. Phytotherapy. 2012;19:383–8.

198. Iio A, Ohguchi K, Inuma M, Nozawa Y, Ito M. Hesperetin upregulates ABCA1 expression and promotes cholesterol efflux from THP-1 macrophages. J Nat Prod. 2012;75:563–6.

199. Wang L, Ladurner A, Latoklik S, Schweiger S, Linder T, Hosek J, Palme V, Schlicher N, Polansky O, Heiss EH, Stangl H, Mihovilovic MD, Stuppner H, Dirsch VM, Atanasov AG. Leolicin, the Major Lignan from Edelweiss (Leontopodium nivale Mihovilovic MD, Stuppner H, Dirsch VM, Atanasov AG). A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE−/− mice. Life Sci. 2006;80:105–12.

200. Park SH, Kim JL, Kang MK, Gong JH, Han SY, Shim JH, Lim SS, Kang YH. Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages. J Int Med Res. 2012;30:1105–12.

201. Majdalawieh AF, Ro HS. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARGamma1 and LXRalpha transcriptional activity in a MAPK-dependent manner. Eur J Nutr. 2015;54:691–700.

202. Liu N, Wu C, Sun L, Zheng J, Guo S. Sesamin enhances cholesterol efflux in RAW264.7 macrophages. Molecules. 2014;19:7516–27.

203. Liu Z, Wang J, Huang E, Gao S, Li H, Liu J, Tian K, Little PJ. Shen X, Xu S, Liu P. Tanshinone IIA suppresses cholesterol accumulation in human macrophages: role of heme oxygenase-1. J Lipid Res. 2014;55:201–13.

204. Berrougui H, Cloutier M, Isabelle M, Khalil A. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages. Atherosclerosis. 2006;184:389–96.

205. Chen CY, Shyue SK, Chang AN, Pan CC, Lee TS. Wogonin promotes cholesterol efflux by increasing protein phosphatase 2B-dependent dephosphorylation at ATP-binging cassette transporter-A1 in macrophages. J Nutr Biochem. 2011;22:1015–21.

206. Zhu S, Liu JH, Zhou MB, a natural cyclic sesquiterpene, promotes ABCA1-dependent cholesterol efflux from human THP-1 macrophages. Pharmacology. 2015;95:258–63.

207. Rom O, Aviram M. Paraoxonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation. Chem Biol Interact. 2016;259:394–400.

208. Zhang H, Li X, Qian Z. Regulation of macrophage cholesterol efflux and liver X receptor alpha activation by nicotine. Int J Clin Exp Med. 2015;8:16374–8.

209. McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci. 2014;15:20607–37.

210. Hastings J, de MF, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2013;41:D456–D463.
D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649–55.

222. Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol. 2012;11:140.

223. Khera AV, Cuchel M, Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

224. Kim TS, Rha SW, Kim SY, Park DG, Sung KC, Yoon MH, Kim KH, Lee HC, Kim WS, Kim YJ, Ahn JC, Rhee MY, Cha DH, Yoo BS, Park SH, Yoo KD, Jeon DW, Yoon YW, Cho SK, Oh YS. Efficacy and tolerability of telmisartan/amlodipine and rosuvastatin coadministration in hypertensive patients with hyperlipidemia: a phase III, multicenter, randomized, double-blind study. Clin Ther. 2019;41:728–41.

225. Mirjafari H, Al-Husain A, Bruce IN. Cardiovascular risk factors in inflammatory arthritis. Curr Opin Lipidol. 2011;22:296–301.

226. Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI J. 2018;17:24–8.

227. Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.

228. Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Nataraajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis. 2012;11:69.

229. Padro T, Munoz-Garcia N, Vilahur G, Chagas P, Deya A, Antonijoan RM, Badimon L. Moderate beer intake and cardiovascular health in overweight individuals. Nutrients. 2018;10:E1237.

230. Evans TD, Sergin I, Zhang X, Razani B. Target acquired: selective autophagy in cardiometabolic disease. Sci Signal. 2017;10:eaag2298.

231. Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359:eaan2788.

232. Reeskamp LF, Meessen ECE, Groen AK. Transintestinal cholesterol excretion in humans. Curr Opin Lipidol. 2018;29:10–7.

233. Parikh M, Patel K, Soni S, Gandhi T. Liver X receptor: a cardinal target for atherosclerosis and beyond. J Atheroscler Thromb. 2014;21:519–31.