Corrigendum

Stress-induced IncRNA LASTR fosters cancer cell fitness by regulating the activity of the U4/U6 recycling factor SART3

Linde De Troyer1,2,†, Peihua Zhao1,2,†, Tibor Pastor1,2,†, Maria Francesca Baietti1,2, Jasmine Barra1,2, Roberto Vendramin1,2, Ruveyda Dok2, Benoit Lechat1,2, Paul Najm1,2, Delphi Van Haver3,4,5, Francis Impens3,4,5, Eleonora Leucci2 and Anna A. Sablina1,2,*

1VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium, 2Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium, 3VIB Proteomics Core, Albert Baertsoenkaai 3, 9000 Ghent, Belgium, 4Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium and 5VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium

Nucleic Acids Research, 2020, 48(5): 2502–2517, https://doi.org/10.1093/nar/gkz1237

In Figure 3H, the labels of the X-axis were inadvertently inverted at revision, the data remains correct.

A new figure is provided below.

This error does not affect the results or conclusion of the article.

*To whom correspondence should be addressed. Email: anna.sablina@kuleuven.vib.be
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Figure 3. \(\text{LASTR} \) modulates SART3 interactions with U4snRNP and U6snRNP. (A) Subcellular localization of \(\text{LASTR} \). \(\text{LASTR} \) expression was analysed by RT-qPCR in cellular fractions of MCF10A. Data are presented as mean ± s.e.m.; \(P \)-values were determined by two-tailed t-tests, \(n = 3 \). (B) \(\text{LASTR} \) fluorescent in situ hybridization of MCF10A. \(\text{LASTR} \)-specific probes signal a red. Scale bar, 10 μm. (C) Volcano plot showing \(\text{LASTR} \) interactors from triplicate pull-downs of total protein extracts from MCF10A cells. Proteins interacting with biotinylated \(\text{LASTR} \) sense or antisense strands were determined by MS. Putative nuclear interactors of \(\text{LASTR} \) are shown in red. (D) Validation of \(\text{LASTR} \) nuclear interactors. Biotinylated sense or antisense \(\text{LASTR} \) was used for pull-down from MCF10A cells ectopically expressing HA-tagged candidate proteins. The pull-down was followed by immunoblotting using anti-HA antibody. (E) SART3 was immunoprecipitated from MCF10A total protein extracts using anti-SART3 antibody. The presence of SART3 in the immunoprecipitate was detected by immunoblotting, the presence of the indicated non-coding RNAs in the SART3 immunoprecipitate was determined by RT-qPCR analysis. Data are presented as mean ± s.e.m.; \(P \)-values were determined by two-tailed t-test, \(n = 3 \). (F) \(\text{LASTR} \) was pulled down from MCF10A cell lysates using biotinylated Stellaris probes. Stellaris probes against antisense \(\text{LASTR} \) were used as a negative control. SART3 and NONO were detected in the \(\text{LASTR} \) pull-downs by immunoblotting. (G) Volcano plot of SART3 interactors from triplicate pull-downs of total protein extracts from MCF10A cells treated with Scramble GapmeR or \(\text{LASTR} \) GapmeR1. U4-associated proteins are shown in red; U6-associated proteins are shown in blue. (H) Presence of U4snRNA and U6snRNA in SART3 immunoprecipitates as detected by RT-qPCR. SART3 immunoprecipitated from total protein extracts of MCF10A cells treated with Scramble GapmeR or \(\text{LASTR} \) GapmeR1 using anti-SART3 antibody. Data are presented as mean ± s.e.m.; \(P \)-values were determined by two-tailed t-tests, \(n = 3 \).