Baryons and the phase diagram for a large number of colors and flavors

Yoshimasa Hidaka, Larry D. McLerran, and Robert D. Pisarski

RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: March 3, 2008)

We consider the possible phases of a non-Abelian gauge theory, as a function of temperature and quark chemical potential, when both the number of colors and flavors is very large. Generally, a large number of flavors washes out deconfining phase transitions. We show, however, that the degeneracy of even the lightest baryons is exponentially large. This implies that the baryon number (or fluctuations thereof, at zero chemical potential) is an order parameter in the limit of an infinite number of colors and flavors.

I. INTRODUCTION

Understanding the phase transitions of non-Abelian gauge theories in various limits may provide a qualitative understanding of the phase transitions of QCD. One limit is to take the number of quark flavors, N_f, fixed as the number of colors, N_c, becomes large [1]. Quarks are suppressed in this limit, so the transition is dominated by gluons; at nonzero temperature, there is expected to be a deconfining transition of first order. It is not obvious what happens as one moves out in the plane of quark chemical potential. In ref. [2], it was suggested that for low temperatures, there is a “quarkyonic” phase, in which quarks are confined, but dominate the free energy, up to power like corrections.

In this note we make an elementary comment about the limit where the number of quark flavors, N_f, is allowed to grow along with N_c [3]. In the first section, we review what a standard analysis indicates. The potential between quarks approaches a constant at large distances, as quark-antiquark pairs short out the linear confining force. Thus there is no order parameter which strictly vanishes in a confined phase: the theory is always deconfined. Of course with massless quarks, it is possible to have a chiral phase transition. For massive quarks, however, there is no obvious order parameter, and naively one concludes that there is no phase transition in plane of temperature, T, and baryon chemical potential, μ_B.

We argue that the expectation value of the baryon number provides an order parameter in the limit in which both N_c and N_f are infinite. We show that for T and quark chemical potential $\mu_Q = \mu_B/N_c$ somewhat smaller than the scale parameter of the theory, Λ_{QCD}, there are mesons and glueballs present, but no baryons. In the plane of T and μ_Q, above some line the baryon number acquires a non-zero expectation value, and thus there is a phase transition across this line. (When $\mu_Q = 0$, there is no net baryon number, so there one must use fluctuations in baryon number.) When baryons condense, there is no way to tell if they (or anything else) are confined or not. This phase is therefore analogous to the quarkyonic phase of large N_c and small N_f [2]. We also explore the way the phase transition evolves at large N_f, as we allow N_f from a small value, $\ll N_c$, to one $\sim N_c$.

II. EXPANSION IN LARGE N_c AND N_f

The usual analysis for a large number of colors and flavors is familiar [3]. We start by considering the theory for small N_f, and large N_c, and then consider how things change when N_f grows with N_c.

At small N_f, in vacuum there is a confined phase, in which all states are color singlets. At low temperature, it is an ideal phase at infinite N_c: the trilinear interactions between mesons is $\sim 1/\sqrt{N_c}$, while those between glueballs are $\sim 1/N_c$: quartic interactions are $\sim 1/N_c$ and $\sim 1/N_c^2$, respectively. Thus the free energy of the confined phase is ~ 1, up to corrections of $\sim 1/N_c$.

At a nonzero temperature T, and zero quark chemical potential, we assume that there is a deconfining transition at a temperature T_c. Like the masses of the lightest mesons and glueballs, we take this to be ~ 1 as $N_c \to \infty$. Above T_c, the free energy from the deconfined gluons is $\sim N_c^2$, so that the free energy itself is an order parameter.

The behavior of the transition in the plane of temperature and quark chemical potential, μ, is not obvious. For values of μ which are finite as $N_c \to \infty$, T_c is independent of μ. Once a Fermi sea of quarks condenses, for μ greater than some mass threshold, at $T < T_c$ there is a novel phase, termed “quarkyonic” [2]: while the free energy is, up to the power like corrections, that of free quarks, excitations near the Fermi surface are those of confined states, which are baryons.

Even so, the pressure provides an order parameter: it is ~ 1 in the confined phase, $\sim N_c$ in the quarkyonic phase, and $\sim N_c^2$ in the deconfined phase.

We make one obvious comment which will matter latter. As illustrated in Fig. (1), consider the hadronic phase, which exists in a “box” where $T < T_c$ and for...
values of μ below the mass threshold [2]. Baryons are composed of N_c quarks, and so have a mass $\sim N_c$. Simply because they are so heavy, at infinite N_c the hadronic phase only contains mesons and glueballs, and no baryons. There are baryons in the quarkyonic and deconfined phases, although in the deconfined phase, they cannot be distinguished from quarks.

Now consider letting the number of flavors increase along with the number of colors. We assume that this is done so that asymptotic freedom still holds; in practice this is not very restrictive.

Consider the spectrum in vacuum. States need to be gauge invariant with respect to color, but can carry flavor. We assume there are N_f flavors of quarks, but for the time being, we do not need to assume anything about further flavor or chiral symmetries.

Mesons are composed from a quark and an anti-quark, and so for each spin, there are $\sim N_f^2$ mesons. Up to factors involving functions of N_f/N_c, the couplings between mesons and glueballs have the same parametric dependence upon N_c as they do for $N_f/N_c \to 0$. Nevertheless, in loop diagrams all possible species of mesons contributes, with the sum over flavor canceling the suppression associated with small couplings at large N_c.

For example, consider a meson M_{ij}, where i and j are flavor indices. At one loop order, its self energy receives a contribution from processes such as $M_{ij}^{(1)} \to M_{ik}^{(1)} M_{kj}^{(1)} \to M_{ij}^{(2)}$. Each coupling between three mesons is $\sim 1/\sqrt{N_c}$, but because of the sum over the flavor index k, representing the $\sim N_f$ possible intermediate states, in all the self energy is $\sim N_f/\sqrt{N_c^2} \sim N_f/N_c$, which is of order one. Thus while the individual couplings between specific mesons and glueballs are each small at large N_c, because there are so many possible mesons to interact with, at large N_f mesons (and glueballs) are strongly interacting. This is very unlike the case of large N_c and small N_f, where in vacuum, or at low temperature and density, mesons and glueballs only weakly interact.

It is also clear that the pressure is no longer an order parameter. At high temperature, and/or large values of the quark chemical potential, the pressure can be computed perturbatively, and receives contributions $\sim N_c^2$ from gluons, and $\sim N_c N_f$ from quarks. If both N_f and N_c are large, this is of the same order as the mesonic contribution to the pressure, which is $\sim N_f^2$. The only statement one can make is that because they don’t have a large flavor degeneracy, the contribution of glueballs to the pressure is irrelevant, only ~ 1.

This is reflected in the following. In a pure gauge theory, there is a strict order parameter for deconfinement, given by the value of the renormalized Polyakov loop. At small N_f and infinite N_c, the expectation value of the Polyakov loop vanishes in the confined phase, and approaches one at high temperature. Quarks contribute to the Polyakov loop as $\sim N_f/N_c$, and so at large N_f, the renormalized Polyakov loop is nonzero. The value of the Polyakov loop increases with temperature, and may even jump, if there is a first order transition. Even so, it is of order one at all T. This is like the pressure, which is of the same order in all phases.

Consequently, unlike small N_f and large N_c, when both N_f and N_c are large, neither a Polyakov loop nor the pressure provide an order parameter. As noted before, there can still be a chiral phase transition associated with massless quarks.

At nonzero quark chemical potential, baryons also contribute to the free energy. As well shall see in the next section, because of the great multiplicity of the baryons, it is better viewing their contribution to the free energy as from highly non-ideal quarks, as in the quarkyonic phase at small N_f [2]

III. BARYON DEGENERACY

We now assume that the N_f flavors of quarks respect an exact flavor symmetry of $SU(N_f)$, and compute the degeneracy of possible baryons. We consider the simplest baryons with spin $j+1/2$, assuming that j is finite as N_c and $N_f \to \infty$. These are the lowest energy states in spin and flavor; in a non-relativistic quark model with three flavors, they correspond to the octet and decuplet baryon multiplets.

For convenience, we define

$$N_c = 2n + 1.$$
A baryon is composed of N_c quarks, so we need to classify the degeneracy with respect to $SU(N_c)$. We assume that the wave function is antisymmetric in color, so that we need to construct a wave function which is totally symmetric in spin and flavor. Since the spin group is $SU(2)$, we can construct a state with spin $j + 1/2$ by taking a flavor Young tableaux to have at most two rows, as in Fig. (2); this is Fig. (8) of Luty, [3]. It has $n - j$ boxes in the second row, and $n - j$ plus $2j + 1 = n + j + 1$ boxes in the first row. For the $n - j$ columns with two rows, in each column the Young tableaux requires us to antisymmetrize with respect to flavor. To obtain a wave function which is symmetric in spin and flavor, then, for each such pair we also antisymmetrize with respect to spin. Hence each of the $n - j$ columns contains a pair of quarks with zero spin. This leaves $2j + 1$ columns with just one row; the symmetric combination of these obviously gives a state with spin $j + 1/2$.

The computation of the degeneracy of this Young tableaux is then a simple application of the “factors over hooks” rule for the dimension of a representation [4]. This gives

$$d_j = \frac{(2j + 2)! (N_f + n + n)! (N_f + n - j - 2)!}{(N_f - 1)! (N_f - 2)! (n + j + 2)! (n - j)!}.$$ \hspace{1cm} (1)

The first factor, $2j + 2$, is the usual degeneracy of a state with spin $j+1/2$. The other factors are special to nonzero N_c and N_f. These states neglect the possibility of orbital angular momentum, and so are clearly amongst the lightest baryons.

It is then direct to compute the degeneracy of this state as N_c and N_f become large:

$$d_j \sim \frac{4(j + 1)}{\pi (N_c - 1)^2} \frac{\xi^2}{1 + \xi} \exp \left((N_c - 1) f(\xi) \right),$$

where

$$\xi = \frac{2N_f}{N_c - 1}, \quad f(\xi) = (1 + \xi) \log (1 + \xi) - \xi \log (\xi).$$ \hspace{1cm} (2)

Since $df(\xi)/d\xi = \log(1 + 1/\xi)$, $f(\xi)$ increases monotonically, as ξ varies from 0 to ∞. $f(\xi)$ has a cusp about the origin,

$$f(\xi) \sim \xi (1 - \log(\xi)) \quad , \quad \xi \to 0;$$ \hspace{1cm} (3)

thus there is a smooth limit when N_f/N_c vanishes. For large ξ, $f(\xi)$ grows logarithmically,

$$f(\xi) \sim + \log(\xi) \quad , \quad \xi \to \infty.$$ \hspace{1cm} (4)

If N_f is held fixed as $N_c \to \infty$, then the degeneracy of the lightest baryon is $\sim \exp(N_c f(\xi))/N_c^2 \sim N_c^{-4+2N_f}$. If N_f is allowed to grow with N_c, then $\xi \sim 2N_f/N_c$ is a number of order one, and the degeneracy of these baryons — which are, admittedly, a small subset of all baryons — increases exponentially, as N_c times the function $f(\xi)$. While mathematically trivial, this increase in the degeneracy of even the lightest baryons has dramatic consequences for thermodynamics. Even though the baryons are very heavy, and so Boltzmann suppressed at nonzero temperature, at finite temperature this can be overwhelmed by the large degeneracy of states. In other words, the entropy times temperature, $T \ln d_j$, overwhelms the energy, m_B. If m_B is the mass of the lightest baryon, then at vanishing quark chemical potential, this occurs when the temperature is greater than the “quarkyonic” temperature,

$$T_{qk} = \frac{m_B}{N_c} \frac{1}{f(\xi)}.$$ \hspace{1cm} (5)

Above T_{qk}, while there is no net density of baryons, fluctuations in baryon number — or, equivalently, quark number — are unsuppressed. At nonzero quark density, the corresponding temperature is

$$T_{qk}(\mu) = \left(\frac{m_B}{N_c} - \mu \right) \frac{1}{f(\xi)}.$$ \hspace{1cm} (6)

This vanishes when $\mu = m_B/N_c$, which is the naive mass threshold for producing a Fermi sea of baryons at zero temperature. This mass threshold can be corrected by effects from binding in nuclear matter [2].

By its nature, T_{qk} is well defined only when both N_c and N_f are infinite. When N_c and N_f are finite, there is a large, but finite, degeneracy for the ground state baryons, and at any finite temperature, that cannot win out over Boltzmann suppression.

We do not claim that our “computation” of T_{qk} is anything more than suggestive. Baryons interact strongly, and there are many more excited baryons than we have considered. It is difficult to imagine, however, that the effects of interactions, or other baryonic states, could suppress the exponentially large increase above. For example, while meson-baryon and baryon-baryon interactions are large, they are large by powers of N_c, not exponentials.

IV. THE PHASE DIAGRAM AS A FUNCTION OF N_f/N_c

We conclude with some speculations as to how the phase diagram might change at infinite N_c, as one tunes the number of flavors from being finite, to growing with N_c.

The phase diagram when N_f/N_c vanishes as $N_c \to \infty$ is shown in Fig. (1). In this limit, there is no net density of baryons, or even fluctuations thereof, in the hadronic “box”. There are baryons, or baryonic fluctuations (when $\mu = 0$) in the quarkyonic and deconfined phases. Thus we simply ask how the phase diagram of Fig. (1) could smoothly interpolate as we increase N_f/N_c.

At small values of N_f/N_c, presumably one has the phase diagram of Fig. (2). The hadronic “box” for small T and μ now has a curved boundary. Further, the line
FIG. 3: Possible phase diagram for $N_c = \infty$, and a small, but nonzero value of N_f/N_c.

FIG. 4: Possible phase diagram for $N_c = \infty$ and N_f/N_c of order one.

separating the deconfined and quarkyonic phases surely persists for some nonzero range in N_f/N_c. One can then speak of two phases of the theory, hadronic and quarkyonic. Clearly the terminology is imprecise: for very small values of N_f/N_c, the phase at high temperature, and low μ, will look like a deconfined phase, dominated by gluons, with some admixture of quarks. Thus the persistence of the line separating the deconfined and quarkyonic phases indicates the quantitative difference between the two phases.

Now let N_f/N_c continue to increase to large values.

As shown in Fig. (3), there is certainly a phase boundary between the hadronic and quarkyonic phases, but there is no point in speaking of a deconfining transition. Thus as indicated in the figure, at some point the line between the deconfined and quarkyonic phases presumably shrinks away. Further note that unlike (6), we do not draw the boundary between the two phases as a straight line. Due to interactions between mesons and baryons, we expect that this will acquire some curvature.

We have assumed only a flavor symmetry of $SU(N_f)$. Alternately, assume that there are N_f flavors of massless quarks, with a $SU(N_f) \times SU(N_c)$ chiral symmetry which is spontaneously broken to $SU(N_f)$ in vacuum. (The axio-$U(1)$ symmetry is a correction $\sim 1/N_f^2$ at large N_f, and so of little consequence.) In the chirally broken phase, our arguments go through as before. At nonzero temperature or density, however, there is now another line of phase transition in Figs. (1), (2), and (3), to restore chiral symmetry. When $N_c = \infty$ and $N_f/N_c = 0$ [2], the chiral transition is expected to split from deconfinement at the corner of the hadronic box, extending into the quarkyonic phase. This presumably is true of Fig. (2), where N_f/N_c is small but nonzero. As N_f/N_c continues to increase, however, there is no reason for the chiral transition to continue to coincide for the line characterizing baryon condensation (or fluctuations). Indeed, since deconfinement is eventually completely washed away, it is possible that the chiral transition completely separates from the baryonic/quarkyonic transition line of Fig. (3), even at $\mu = 0$. We do not draw all of the possibilities, since we can only resort to conjecture.

It is impossible to resist the completely unreasonable extrapolation from infinite N_c and N_f to finite values. For three colors and two flavors, $f(2) \approx 1.91...$; for three colors and flavors, $f(3) \approx 2.25...$. With $m_{baryon}/3 = 313$ MeV, $T_{qk} \approx 160$ and ≈ 140 MeV, respectively. At least these values are where we expect something to happen in QCD.

V. ACKNOWLEDGEMENTS

We thank Dima Kharzeev for asking the question which stimulated this work. This manuscript has been authorized under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy.