A note on induced Turán numbers

Freddie Illingworth∗

Abstract

Loh, Tait, Timmons and Zhou introduced the notion of induced Turán numbers, defining
ex(n, {H, F-ind}) to be the greatest number of edges in an n-vertex graph with no copy of H
and no induced copy of F. Their and subsequent work has focussed on F being a complete
bipartite graph. In this short note, we complement this focus by asymptotically determining
the induced Turán number whenever H is not bipartite and F is not an independent set nor
a complete bipartite graph.

1 Introduction

Consider the following induced version of the classical Turán problem. What is the most edges
in an n-vertex graph which does not contain F as an induced subgraph? This question has a
simple answer: if F is a clique, then it is the original subgraph problem (and so answered by
Turán’s theorem [8]), and if F is not complete, then the maximum is plainly \(^n\choose 2\), as witnessed
by the n-vertex complete graph \(K_n\).

In an insightful paper, Loh, Tait, Timmons and Zhou [5] recovered an interesting and natural
induced Turán problem by forbidding both an induced F and a (not necessarily induced) copy
of H. This removes the possibility of \(K_n\) being extremal and so rules out the humdrum answer
of \(^n\choose 2\). To be precise, for a positive integer n and graphs H and F, they defined the induced
Turán number

\[\text{ex}(n, \{H, F\text{-ind}\}) \]

to be the maximum number of edges in an n-vertex graph with no copy of H and no induced
copy of F.

In [5], Loh, Tait, Timmons and Zhou focussed on complete bipartite F proving general
bounds for \(\text{ex}(n, \{H, K_{s,t}\text{-ind}\})\) with some sharper results when \(s = 2\). Nikiforov, Tait and
Timmons [6] proved spectral improvements of their results. Ergemlidze, Győri and Methuku [3]
asymptotically determined \(\text{ex}(n, \{H, F\text{-ind}\})\) in the important case where H is an odd cycle and
F is \(K_{2,t}\) or \(K_{3,3}\) (except when \(H = C_5\) and F = \(K_{2,2}\) where they strengthened the upper bound).
In [4], the author gave further improvements to the upper bounds for \(\text{ex}(n, \{H, K_{2,t}\text{-ind}\})\).

All the work to date has focussed on complete bipartite F. The following theorem comple-
ments this focus.

Theorem 1. Let H and F be graphs with chromatic numbers r + 1 and s + 1 respectively. Then

\[\text{ex}(n, \{H, F\text{-ind}\}) = \begin{cases} (1 - \frac{1}{s} + o(1)) \binom{n}{2} & \text{if } s > r \text{ or } F \text{ is not complete multipartite,} \\ (1 - \frac{1}{r} + o(1)) \binom{n}{2} & \text{if } s < r \text{ and } F \text{ is complete multipartite.} \end{cases} \]

This asymptotically determines the induced Turán number except if H is bipartite or F is
an independent set or a complete bipartite graph.

∗DPMMS, University of Cambridge, UK. E-mail: fci21@cam.ac.uk. Research supported by an EPSRC grant.

2020 MSC: 05C35.
2 Proof of Theorem 1

We will use $T_r(n)$ to denote the r-partite Turán graph on n vertices. This is complete r-partite with parts as equal in size as possible. We remind the reader that $T_r(n)$ has $(1 - 1/r + o(1))(n^2)$ edges.

Proof of Theorem 1. If $s \geq r$ or F is not complete multipartite, then F is not an induced subgraph of the Turán graph $T_r(n)$. This also does not contain H, so

$$\text{ex}(n, \{H, F\text{-ind}\}) \geq e(T_r(n)) = (1 - \frac{1}{r} + o(1))(n^2).$$

On the other hand, the Erdős-Simonovits theorem [1] says that any n-vertex graph not containing H has at most $(1 - 1/r + o(1))(n^2)$ edges. This completes the first part of the theorem.

Now suppose that $s < r$ and F is complete $(s + 1)$-partite. Firstly the Turán graph $T_s(n)$ contains neither H nor F as subgraphs (let alone induced ones) so,

$$\text{ex}(n, \{H, F\text{-ind}\}) \geq e(T_s(n)) = (1 - \frac{1}{s} + o(1))(n^2).$$

As F is complete $(s + 1)$-partite, there is a positive integer t such that F is an induced subgraph of $K_{s+1}(t) = T_{s+1}(t(s+1))$. By Ramsey’s theorem [7], there is a positive integer m such that any m-vertex graph contains either an independent t-set or a copy of H.

Fix $\varepsilon > 0$ and let G be an n-vertex graph with at least $(1 - 1/s + \varepsilon)(n^2)$ edges where n is sufficiently large. By the Erdős-Stone theorem [2], G contains a copy of $K_{s+1}(m)$. Let the parts of the $K_{s+1}(m)$ be V_1, \ldots, V_{s+1} so each one has m vertices. If any V_i contains H, then G does. Otherwise, by the definition of m, each V_i contains an independent set of size t. Thus G contains an induced copy of $K_{s+1}(t)$ and so an induced copy of F. Thus, for all large n,

$$\text{ex}(n, \{H, F\text{-ind}\}) \leq (1 - \frac{1}{s} + \varepsilon)(n^2).$$

This holds for arbitrary $\varepsilon > 0$, as required. □

References

[1] P. Erdős and M. Simonovits. A limit theorem in graph theory. Studia Scientiarum Mathematicarum Hungarica, 1:51–57, 1966.

[2] P. Erdős and A. H. Stone. On the structure of linear graphs. Bulletin of American Mathematical Society, 52:1087–1091, 1946.

[3] B. Ergemlidze, E. Győri, and A. Methuku. Turán number of an induced complete bipartite graph plus an odd cycle. Combinatorics, Probability and Computing, 28(2):241–252, March 2019.

[4] F. Illingworth. Graphs with no induced $K_{2,t}$. Electronic Journal of Combinatorics, 28(1.19), January 2021.

[5] P.-S. Loh, M. Tait, C. Timmons, and R. M. Zhou. Induced Turán numbers. Combinatorics, Probability and Computing, 27(2):274–288, March 2018.

[6] V. Nikiforov, M. Tait, and C. Timmons. Degenerate Turán problems for hereditary properties. Electronic Journal of Combinatorics, 25(4.39), November 2018.

[7] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society, s2-30(1):264–286, 1930.

[8] P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Matematikai és Fizikai Lapok, 48:436–452, 1941.