Biosensing using arrays of vertical semiconductor nanowires: mechanosensing and biomarker detection

Mercy Lard, Heiner Linke and Christelle N Prinz

Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund Sweden
E-mail: christelle.prinz@ftf.lth.se

Received 27 December 2018, revised 25 January 2019
Accepted for publication 30 January 2019
Published 13 March 2019

Abstract
Due to their high aspect ratio and increased surface-to-foot-print area, arrays of vertical semiconductor nanowires are used in numerous biological applications, such as cell transfection and biosensing. Here we focus on two specific valuable biosensing approaches that, so far, have received relatively limited attention in terms of their potential capabilities: cellular mechanosensing and lightguiding-induced enhanced fluorescence detection. Although proposed a decade ago, these two applications for using vertical nanowire arrays have only very recently achieved significant breakthroughs, both in terms of understanding their fundamental phenomena, and in the ease of their implementation. We review the status of the field in these areas and describe significant findings and potential future directions.

Keywords: nanowires, mechanosensing, biosensing, lightguiding, biomarkers

1. Introduction
During the last decade, semiconductor nanowires have found their way into biology and medicine, and are currently being explored in a plethora of bio-applications such as cell culture substrates, cell transfection and biosensing. Silicon nanowire field effect transistors have been used to detect biomolecules, biomarkers and viruses [1–3], as well as to record action potentials [4, 5]. Arrays of vertical nanowires, with ‘bed of nails’-like morphologies, have attracted a lot of attention since having been shown to be benign substrates for cells [6, 7]. These arrays have been the subject of multiple studies focused on investigating their interactions with living cells. For instance, culturing cells on vertical nanowire arrays can, depending on the array geometry and cell type, affect cell adhesion, motility and proliferation [8–13]. Vertical nanowire arrays have also been used to transfect cells with minimal perturbation [14, 15], to steer stem cell differentiation [16–18], or to guide cellular growth [19–22].

An increased surface-to-foot-print area is one of the interesting properties of vertical nanowire arrays. It has been exploited for the detection and capture of biomolecules, relevant for a variety of medical applications including diagnostics and drug discovery. One main obstacle to overcome in these fields is the ability to effectively identify targets, such as proteins, organic molecules, chemical species and subpopulations of cells (e.g. for capturing circulating tumor cells through membrane markers). Nanowires have been recognized as potentially invaluable tools in this respect, as they may enable researchers to achieve detection of target analytes [23–28] and cells [29–31] with higher efficiency and unprecedented specificity [32].

There are a number of review articles summarizing the interactions of vertical nanowire arrays with living cells, and the use of increased nanowire array surface area for biosensing [31, 33–36]. Two other exciting applications in biosensing with vertical nanowire arrays include (i) precise cellular force sensing with high spatial resolution, and (ii) light-guiding-induced enhancement of fluorescence-based...
biomarker detection. These two applications have recently been the subject of an increasing number of studies. The technique of using vertical nanowire arrays for cellular mechanosensing has progressed, from a method that initially used to be imprecise and cumbersome to implement, into a robust and more user-friendly tool. Concurrently, utilization of vertically aligned lightguiding nanowires has allowed researchers to substantially improve the signal-to-noise ratio when detecting the fluorescence of surface-bound biomolecules. This article reviews the use of vertical nanowire arrays in these two promising applications, which have developed rapidly as of late and thus deserve further consideration.

2. Vertical nanowire arrays for mechanosensing

Cell mechanical forces regulate many crucial biological processes, such as cell signaling and tissue morphogenesis [37, 38]. Cellular force measurements have been carried out using atomic force microscopy, optical tweezers and micro-pipettes [39–42]. With these methods, only a single point can be probed at a given time. Addressing this issue, traction force microscopy enables forces to be measured in multiple points simultaneously. This is achieved by incorporating fluorescent beads into a thin elastomer substrate onto which cells are cultured. The displacement of the fluorescent beads is then used to calculate the forces exerted on the substrate. However, since the fluorescent beads are dispersed in a three-dimensional elastomer, forces applied at a given point on the surface can cause displacement at distant locations in the elastomer matrix. Therefore, the data interpretation and force calculation requires extensive modeling, which introduces uncertainty in the measurements [42, 43]. To remove any uncertainty associated to the force application location, and to greatly simplify the data analysis, one can use substrates with elastomer micropillars with cells cultured on top of the array of pillars [42, 44, 45]. The force exerted on each pillar is calculated from its measured deflection, assuming the pillar is a cantilever [44, 45]. However, the spatial resolution of this method still remains limited to a few attachment points per cell, due to the finite size of micropillars.

Nanowires can be arranged in much denser arrays, compared to elastomer pillars, and can therefore increase the spatial resolution of force measurements. Using arrays of vertical nanowires for cellular mechanosensing was proposed in 2009 [46]. In this study, cells were cultured on top of silicon nanowires, the samples were dehydrated and scanning electron microscopy was used to quantify the bending of nanowires underneath the cell edges. Finite element simulations were performed to extract the lateral force exerted on the nanowires from the measured displacement of the nanowire tip. The measured maximum traction forces exerted by mechanocytes, L929 fibroblasts and HeLa cells, were on the order of μN. A primary drawback of this method is the necessity to perform cell fixation and dehydration prior to performing force measurements, which also precludes the possibility for longitudinal studies. Moreover, dehydrating cells can lead to cell shrinking, which affects the deflection of

Figure 1. (a) Scanning electron microscopy of a hexagonal array of GaP nanowires used to measure cellular forces, and schematic of the force exerted on a nanowire of spring constant k, calculated from the nanowire deflection, using the linear elasticity theory. Reprinted from [47], with the permission of AIP Publishing. Scale bar 2 μm. (b) Diagram of force magnitudes that can be probed using the linear elasticity theory, as a function of nanowire diameter and length (for InP nanowires). [50] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
measured. A full map of the force ranges that can be probed as a function of nanowire length and diameter can be created (see figure 1(b) for indium phosphide (InP) nanowires, taken from [50]).

Using fluorescently labeled nanowires to measure the tip displacement is not a requirement for cellular mechanosensing; as recent studies have shown, detecting the reflections in confocal laser light excitation from InP nanowires also enables very precise tip position readout [50, 51]. These studies pioneered the use of vertical nanowire arrays for probing forces exerted by bacteria, in this case the phytopathogen Xylella fastidiosa (figure 2(a)). In a first study, Xylella fastidiosa biofilms (composed of a few cells surrounded by a large amount of extra cellular polymeric substances) were shown to exert higher forces than cells alone [51]. Moreover, the forces exerted by Xylella fastidiosa and their related biofilm were shown to depend on the nanowire surface functionalization. Greater forces were measured in the presence of the transmembrane trimeric autotransporter adhesin XadA1, adsorbed on the nanowires, thus shedding light on the importance of XadA1 in promoting bacterial adhesion and biofilm formation. In a second study, the effects of N-acetylcysteine on Xylella fastidiosa forces were investigated. N-acetylcysteine was tested as possible inhibitor of

Figure 2. (a) Confocal fluorescence image of a GFP-expressing Xylella fastidiosa cell adhering to vertical InP nanowires and forces measured on the nanowires highlighted. Adapted with permission from [51]. Copyright 2016 American Chemical Society. (b) Traction force heat map for MCF7 cancer cells (top) and MCF10A normal-like cells (bottom). The insets show the force direction (arrows) and magnitude (length of arrows, red scale bar: 20 nN for MCF7 cells and 10 nN for MCF10A cells). Scale bars: 10 μm (white), 1 μm (black). Reproduced from [53]. CC BY 3.0.
Xylella fastidiosa biofilm formation [52]. Exposure to N-acetylcycteine led to an abrupt loss of detectable forces exerted on the nanowires, and to the detachment of Xylella fastidiosa from the nanowire substrate [50]. The drop in force occurs too rapidly to arise from changes in gene expression. Instead, the possible dissolution of the extra cellular polymeric substances, upon N-acetylcycteine exposure, has been proposed to explain the loss of detectable forces.

In the above-mentioned studies, proper force measurement relies on the setting of the focal plane at the tip of the nanowires. Any drift in focus induces an error in the measurement, since the signal no longer arises from the nanowire tip. Using GaP nanowires with a gallium indium phosphide (GaInP) photoluminescent top segment has been proposed in order to ensure that the signal comes only from the top of the nanowires [53]. GaInP nanowires exhibit a strong and stable photoluminescence in the near infrared, which makes them ideal for imaging through cells and tissue [54–56]. This technique can accommodate for small focal drifts, as long as the GaInP photoluminescence is still detectable, and does not overlap with that of neighboring nanowires. This method has been used to show that cancer cells exert higher traction forces than normal cells, as well as to investigate the effect of the anticancer drug α-difluoromethylornithine on cellular traction forces [53]. Moreover, in that study, a robust image analysis program was developed to enable the calculation of the force exerted on all nanowires in the field of view. This image analysis program allows for the representation of results in the form of highly spatially resolved force heat maps (figure 2(b)).

When cells are cultured on top of the nanowire array, they are located in the light path and refract the light, resulting in artefacts in the observed nanowire deflection. A recent study has investigated the perceived nanowire deflection, resulting from light refraction by cells, and estimated that it is on the order of 150 nm [57]. As a possible solution, the authors suggest to culture cells on sparse nanowire array substrates, to ensure that the cells grow inside the array and not on top of the nanowires, thereby leaving the light path undisturbed [57]. Such a method removes the uncertainty in determining the forces associated with any cell-induced light refraction. However, it requires live three-dimensional imaging to precisely identify the point of contact between cells and nanowires in order to properly calculate the forces exerted on the nanowires, which can be challenging in cases where cells contact nanowires in multiple points.

An additional point to consider when using vertical nanowire arrays to measure cellular forces is the fact that the cell morphology and adhesion can be influenced by the geometry of the array, and differ from the ones of cells cultured on standard flat substrates [8–13, 58].

In summary, the use of vertical arrays of nanowires for cellular mechanosensing has developed tremendously in the past decade and has become more precise, and easier to implement. Beyond demonstrations of the technological development, biological questions have been addressed using this method, such as biofilm formation mechanisms and elucidating the mechanisms of action of anticancer drugs. In the future, this method could be further automated for a more user-friendly mode of operation. For instance, integrating a camera in an incubator where nanowire substrates could be easily mounted, would make the method accessible to cellular biology and biomedical laboratories. Cellular mechanosensing could then take place in a plethora of different research projects and one would imagine that cellular force could be used as a biomarker, on the same level as genes and proteins.

3. Enhancing biomolecule detection using lightguiding nanowires

Detecting low-abundance biomolecules in biological fluids, such as blood and urine is a challenging task. To date, only a limited number of disease biomarkers can be detected in biological fluids and often only when present in rather high concentrations, i.e. once the disease is at a rather advanced state [59]. Enhancing the signal-to-noise in fluorescence detection would be one way to achieve a lower limit of detection for fluorescently labeled biomarkers.

Although semiconductor nanowire waveguides have been reported, especially in the context of nanowire lasers [60–62], they have only recently been used to enhance the signal-to-noise ratio when detecting the fluorescence of molecules in close proximity to the nanowire surface.

Enhanced fluorescence signals on zinc oxide (ZnO) nanowire arrays have been reported in 2006. After non-specific adsorption of fluorescently labeled proteins on various substrates, an increase in fluorescence intensity was measured on ZnO nanowires compared to control substrates such as glass, silicon nanowires, and polymer substrates [63]. Enhanced fluorescence on ZnO nanowires was also measured in the case of fluorescently labeled DNA oligonucleotides hybridizing to complementary strands deposited on the substrate, as well as fluorescently labeled proteins binding specifically to proteins adsorbed on the substrate [63, 64]. ZnO nanowires and nanorods have since been used in antibody microarrays, to directly detect cancer biomarkers in diluted human serum with limit of detection comparable to that of ELISA assays [65]. In these assays, ZnO nanorods were grown on a glass slide, and micro-spots of antibodies for a cancer biomarker (carcinoembryonic antigen or α-Fetoprotein) were printed on the slide. After incubation in 10% human serum, the sample was incubated with primary antibodies to the target biomarker, followed by incubation with fluorescently labeled secondary antibodies. In similar sandwich assays, ZnO nanorods have been shown to achieve orders of magnitude lower detection limits in the duplexed detection of IL-8 and TNF-α kidney injury biomarkers in human urine, compared to ELISA [66] (figure 3). The difference in assay sensitivity between the two studies may be explained by the fact that, in the latter study, the nanorods were grown from Au catalysis particles deposited on a silicon wafer, resulting in altered nanorod dimensions and possibly differing orientation compared to the former cancer biomarker detection study.
ZnO nanorod enhanced fluorescence was reported and used in multiple studies, with nanorods arranged in vertical arrays [67, 68] and in a flower-like configuration [69, 70]. The use of ZnO nanorods can also be combined with lab-on-a-chip technologies [71–73].

The fluorescence enhancement was initially thought to arise from nanowire-induced changes in the fluorophores radiative decay rates, or from a reduced fluorescence quenching [64]. Recent investigations of the fluorescence signal on ZnO individual nanorods revealed a higher fluorescence intensity and more stable fluorescence at the nanorod extremities, compared to along the nanorod’s length [74]. This is attributed to a combination of locally enhanced electric fields at the nanorod tip, and to the waveguiding properties of ZnO nanorods. There is an in-coupling of the fluorophore signal to the nanorods, which was found to be independent of nanorod diameter, and fluorophore wavelength; it is however, highly dependent on the light polarization state [74–76].

In parallel, the guiding of light emitted by surface-bound fluorophores was also reported for III–V nanowires (figure 4(a)). This was first observed on vertically aligned GaP nanowires, coated with alumina and subsequently decorated with heavy meromyosin (HMM). The HMM propelled fluorescently labeled actin filaments over the top, and along the length of the wires [77]. In this study, the authors observed an increase in fluorescence intensity at the tip of the nanowires, when filaments were moving up or down the wires. This fluorescence intensity scaled linearly with the length of the fluorescent actin filament transported along the nanowire surface. The integration of the fluorescence signal at the nanowire tip led to a higher signal-to-noise ratio, which should enable a lower limit of detection in biosensing. Lightguiding of surface-bound fluorophore emission was also observed for InAs nanowires and later for GaAs nanowires [78–80]. In the latter case, the increase in fluorescence at the nanowire tip was used to achieve high surface-to-noise ratio and highly localized excitation volumes, which was applied to the imaging of membrane proteins from cells cultured on the nanowires [79]. Theoretical simulations were performed for InAs nanowires, which considered only the fundamental waveguide mode HE_{11} at a single nanowire diameter of 100 nm. These simulations agreed with experimental results, showing clear lightguiding of green and blue light, but not red light [78]. A subsequent, and more comprehensive description of lightguiding in nanowires as a function of nanowire diameter d (d was varied between 50–260 nm) and fluorophore emission wavelength \(\lambda \) was performed for GaP. This study showed that the normalized frequency parameter \(V = \frac{2 \pi d}{\lambda} \sqrt{n_{\text{core}}^2 - n_{\text{clad}}^2} \), frequently used in optical fiber studies [81], can be used to predict lightguiding properties in semiconductor nanowires, with lightguiding of surface-bound fluorescence occurring in cases where \(V > 2 \) [82]. Here, \(n_{\text{core}} \) is the optical refractive index of the nanowire core and \(n_{\text{clad}} \) of the coating. In the same study, finite-difference time-domain (FDTD) simulations showed that higher order modes, beyond HE_{11}, must be taken into account to understand and describe lightguiding in larger diameter nanowires (figures 4(b), (c)).

By achieving lower detection limits, compared to existing biosensing technologies, lightguiding nanowires could be used for the discovery of new antibodies in biological fluids. This would, for instance, enable early disease diagnostics from easily accessible blood and urine samples. Such a technology would dramatically improve the prognosis of patients with asymptomatic cancers, such as pancreatic and ovarian cancer.
4. Conclusions

In conclusion, we review the status of two exciting applications, currently under development, for arrays of vertical semiconductor nanowires: cellular mechanosensing and enhanced fluorescence detection by use of lightguiding in nanowires. As shown in the recent studies reviewed here, using nanowires for cellular mechanosensing can be achieved with both high spatial resolution and high force precision. The measurement of cellular traction forces can be used as a valuable tool in many research areas, such as the investigation of biofilm formation, cancer onset and spreading, as well as morphogenesis. Lightguiding in semiconductor nanowires for fluorescence detection enhancement is now well understood, and the degree of lightguiding for various nanowire materials and geometries can be predicted as a function of fluorophore emission wavelength. This knowledge will enable the design of nanowire arrays with optimal lightguiding properties, in order to achieve lower limits of detection in biosensing devices.

Acknowledgments

This work was financed by NanoLund, the Horizon 2020 Research and Innovation Framework Programme of the European Union (Bio4Comp, grant agreement 732482, and ERC-CoG NanoPokers, grant agreement No. 682206) and the Swedish Research Council (VR).

ORCID iDs

Christelle N Prinz https://orcid.org/0000-0002-1726-3275

References

[1] Cui Y, Wei Q, Park H and Lieber C M 2001 Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species Science 293 1289–92
[2] Patolsky F, Zheng G F, Hayden O, Lakadamyali M, Zhuang X W and Lieber C M 2004 Electrical detection of single viruses Proc. Natl Acad. Sci. USA 101 14017–22
[3] Zheng G F, Patolsky F, Cui Y, Wang W U and Lieber C M 2005 Multiplexed electrical detection of cancer markers with nanowire sensor arrays Nat. Biotechnol. 23 1294–301

[4] Patolsky F, Timko B P, Yu G H, Fang Y, Gretyak A B, Zheng G F and Lieber C M 2006 Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays Science 313 1100–4

[5] Duan X, Fu T M, Liu J and Lieber C M 2013 Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues Nano Today 8 351–73

[6] Kim W, Ng J K, Kunitake M E, Conklin B R and Yang P D 2007 Interfacing silicon nanowires with mammalian cells J. Am. Chem. Soc. 129 7228–9

[7] Höllström W, Mårtensson T, Prinz C, Gustavsson P, Montelius L, Samuelson L and Kanje M 2007 Gallium phosphide nanowires as a substrate for cultured neurons Nano Lett. 7 2960–5

[8] Bonde S et al 2013 Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors ACS Appl. Mater. Interfaces 5 10510–9

[9] Persson H, Li Z, Tegenfeldt J O, Oredsson S and Prinz C N 2013 From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour Sci. Rep. 5 18553

[10] Buch-Månson N, Kang D-H, Kim D, Lee K E, Yoon M-H and Martinez K L 2017 Mapping cell behavior across a wide range of vertical silicon nanocolumn densities Nanoscale 9 5517–27

[11] Li Z, Persson H, Adolfsson K, Oredsson S and Prinz C N 2018 Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters Sci. China Life Sci. 61 427–35

[12] Li Z, Kamlund S, Ryser T, Lard M, Oredsson S and Prinz C N 2018 Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates J. Mater. Chem. B 6 7042–9

[13] Park Y S, Yoon S Y, Park J S and Lee J S 2016 Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity NPG Asia Mater. 8 e249

[14] Shalek A K et al 2010 Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells Proc. Natl Acad. Sci. USA 107 1870–5

[15] Chiapini C, Chiappini J O, Liu X, Steele J, Stevens M M and Tasciotti E 2015 Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays ACS Appl. Mater. Interfaces 5 13295–304

[16] Kim H, Kim J, Choi H-J, Kim S Y and Yang E G 2015 Neuron-like differentiation of mesenchymal stem cells on silicon nanowires Nanoscale 7 17131–8

[17] Prinz C, Hällström W, Mårtensson T, Samuelson L, Montelius L and Kanje M 2008 Axonal guidance on patterned free-standing nanowire surfaces Nanotechnology 19 345101

[18] Hallstrom W, Prinz C N, Suyatin D, Samuelson L, Montelius L and Kanje M 2009 Rectifying and sorting of regenerating axons by free-standing nanowire patterns: a highway for nerve fibers Langmuir 25 4343–6

[19] Bucaro M A, Vasquez Y, Hatton B D and Aizenberg J 2012 Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars ACS Nano 6 6222–30

[20] Piret G, Perez M-T and Prinz C N 2015 Support of neuronal growth over glial growth and guidance of optic nerve axons by vertical nanowire arrays ACS Appl. Mater. Interfaces 7 18944–8

[21] Rostgaard K R, Frederiksen R S, Liu Y-C C, Berth Ting, Madsen M H, Holm J, Nygard J, Martinez K L, Nygård J and Martínez K L 2013 Vertical nanowire arrays as a versatile platform for protein detection and analysis Nanoscale 5 10226–35

[22] Vutti S, Schoffenel S, Bolinsson J, Buch-Månsson N, Bovet N, Nygård J, Martínez K L and Meldal M 2016 Click chemistry mediated functionalization of vertical nanowires for biological applications Chem. Eur. J. 22 496–500

[23] Na Y-R, Kim S Y, Gauhblomme J T, Shahk A K, Jorgolli M, Park H and Yang E G 2013 Probing enzymatic activity inside living cells using a nanowire-cell ‘sandwich’ assay Nano Lett. 13 158–31

[24] Choi S, Kim H, Kim S Y and Yang E G 2016 Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay Nanoscale 8 11380–4

[25] Krivitsky V, Hsiung L C, Lichtenstein A, Brudnik B, Kantaev R, Elhanath R, Pevzner A, Khatchtourints A and Patolsky F 2012 Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all Nano Lett. 12 4748–56

[26] Dabkowski A P, Niman C S, Piret G, Persson H, Wacklin H P, Linke H, Prinz C N and Nylander T 2014 Fluid and highly curved model membranes on vertical nanowire arrays Nano Lett. 14 4286–92

[27] Wang S et al 2009 Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells Angew. Chem. Int. Ed. 48 8970–3

[28] Hou S et al 2013 Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures Adv. Mater. 25 1547–51

[29] Kwak M, Han L, Chen J J and Fan R 2015 Interfacing inorganic nanowire arrays and living cells for cellular function analysis Small 11 5600–10

[30] Chiapini C 2017 Nanoneedle-based sensing in biological systems ACS Sensors 2 1086–102

[31] Elhanath R, Kwaist M, Patolsky F and Voelcker N H 2014 Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences Nano Today 9 172–96

[32] Bonde S, Buch-Månson N, Rostgaard K R, Andersen T K, Berthting T and Martinez K L 2014 Exploring arrays of vertical one-dimensional nanostructures for cellular investigations Nanotechnology 25 362001

[33] Prinz C N 2015 Interactions between semiconductor nanowires and living cells J. Phys.: Condens. Matter 27 233103

[34] Mcguire A F, Santoro F and Cui B 2018 Interfacing cells with vertical nanoscale devices: applications and characterization Annu. Rev. Anal. Chem. 11 101–26

[35] Wang N 2017 Review of cellular mechanotransduction J. Phys. D: Appl. Phys. 50 233002

[36] Iskraotsch T, Wolfenson H and Sheetz M P 2014 Appreciating force and shape-the rise of mechanotransduction in cell biology Nat. Rev. Mol. Cell Biol. 15 825–33

[37] Cross S E, Jin Y S, Rao J and Gimzewski J K 2007 Nanomechanical analysis of cells from cancer patients Nat. Nanotechnol. 2 780–3
[40] Guck J et al 2005 Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence Biophys. J. 88 3689–98
[41] Zhang G, Long M, Wu Z-Z and Yu W-Q 2002 Mechanical properties of hepatocellular carcinoma cells World J. Gastroenterol. 8 1862–7
[42] Polacheck W J and Chen C S 2016 Measuring cell-generated forces: a guide to the available tools Nat. Methods 13 415–23
[43] Schwarz U S and Soine J R D 2015 Traction force microscopy on soft elastic substrates: a guide to recent computational advances Biochim. Biophys. Acta - Mol. Cell Res. 1853 3095–104
[44] Tan J L, Tien J, Pirone D M, Gray D S, Bhadriraju K and Chen C S 2003 Cells lying on a bed of microneedles: an approach to isolate mechanical force Proc. Natl Acad. Sci. USA 100 1484–9
[45] du Roure O, Saez A, Buguin A, Austin R H, Chavrier P, Silberzan P and Ladoux B 2005 Force mapping in epithelial cell migration Proc. Natl Acad. Sci. USA 102 2390–5
[46] Li Z, Song J H, Mantiini G, Lu M Y, Fang H, Falconi C, Chen L J and Wang Z L 2009 Quantifying the traction force of a single cell by aligned silicon nanowire array Nano Lett. 9 3575–80
[47] Suyatin D B et al 2009 Gallium phosphate nanowire arrays and their possible application in cellular force investigations J. Vac. Sci. Technol. B 27 3092–4
[48] Hallström W, Lexholm M, Suyatin D B, Hammari G, Hassman D, Samuelson L, Montelius L, Kanje M and Prinz C N 2010 Fifteen-piconewton force detection from neural growth cones using nanowire arrays Nano Lett. 10 782–7
[49] Lexholm M, Karlsson I, Boxberg F and Hassman D 2009 Optical determination of Young's modulus of InAs nanowires Appl. Phys. Lett. 95 113103
[50] da Silva A M, Sahoo P K, Cavalli A, de Souza A A, Bakkers E P A M, Cesar C L, Janissens R and Cotta M A 2018 Nanowire arrays as cell force sensors with super-resolved localization position detection: application to optical measurement of bacterial adhesion forces Small Methods 2 1700411
[51] Sahoo P K et al 2016 Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability Nano Lett. 16 4656–64
[52] Muranaka L S, Giorgiano T E, Takita M A, Forim M R, Silva L F C, Coletta-Filho H D, Machado M A and de Souza A A 2013 N-acetylcycteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen xylella fastidiosa PLoS One 8 e72937
[53] Li Z, Persson H, Adolfsson K, Aburutei L, Borgström M T, Hessen D, Åström K, Oredsson S and Prinz C N 2017 Cellular traction forces: a useful parameter in cancer research Nanoscale 9 19039–44
[54] Adolfsson K, Persson H, Wallentin J, Oredsson S, Samuelson L, Tegenfeldt J O, Borgström M T and Prinz C N 2013 Fluorescent nanowire heterostructures as a versatile tool for biology applications Nano Lett. 13 4728–32
[55] Mattsson K, Adolfsson K, Ekwall M T, Borgström M T, Linse S, Hansson L-A, Cedervall T and Prinz C N 2016 Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna Nanotechnology 10 1160–7
[56] Oracz J, Adolfsson K, Westphal V, Radzewicz C, Borgström M T, Sahl S J, Prinz C N and Hell S W 2017 Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature Nano Lett. 17 2652–9
[57] Paulitschke P, Keber F, Lebedev A, Stephan J, Lorenz H, Hasselmann S, Heinrich D and Weig E M 2018 Ultraflexible nanowire array for label- and distortion-free cellular force tracking Nano Lett. accepted (https://doi.org/10.1021/acs.nanolett.8b02568)
[58] Piret G, Perez M T and Prinz C N 2013 Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture Biomaterials 34 875–87
[59] Anderson N L and Anderson N G 2002 The human plasma proteome: history, character, and diagnostic prospects Mol. Cell. Proteomics 1 845–67
[60] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P and Saykally R J 2002 Single gallium nitride nanowire lasers Nat. Mater. 1 106–10
[61] Duan X, Huang Y, Agarwal R and Lieber C M 2003 Single-nanowire electrically driven lasers. Supplementary materials Nature 421 241–5
[62] Mayer B et al 2013 Lasing from individual GaAs-AlGaAs core–shell nanowires up to room temperature Nat. Commun. 4 2931
[63] Dorfman A, Kumar N and Hahn J I 2006 Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms Langmuir 22 4890–5
[64] Dorfman A, Kumar N and Hahn J I 2006 Nanoscale ZnO-enhanced fluorescence detection of protein interactions Adv. Mater. 18 2685–90
[65] Hu W, Liu Y, Yang H, Zhou X and Li C M 2011 ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter- amplification Biosens. Bioelectron. 26 3683–7
[66] Singh M, Alahanza A, Gonzalez L E, Wang W, Reeves W B and Hahn J I 2016 Ultrtrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods Nanoscale 8 4613–22
[67] Hahn J-I 2014 Zinc oxide nanomaterials for biomedical fluorescence detection J. Nanosci. Nanotechnol. 14 475–86
[68] Shrivastava S, Triet N M, Son Y M, Lee W B and Lee N E 2017 Seesawed fluorescence nano-aptasensor based on highly vertical ZnO nanorods and three-dimensional quantitative fluorescence imaging for enhanced detection accuracy of ATP Biosens. Bioelectron. 90 450–8
[69] Xie F, Centeno A, Zou B, Ryan M P, Riley D J and Alford N M 2013 Tunable synthesis of ordered Zinc Oxide nanoflower-like arrays J. Colloid Interface Sci. 395 85–90
[70] Wang T, Costan J, Centeno A, Pang J S, Darvill D, Ryan M P and Xie F 2015 Broadband enhanced fluorescence using zinc-oxide nanoflower arrays J. Mater. Chem. C 3 2656–63
[71] Ladanov M, Algarin-Amaris P, Matthews G, Ram M, Thomas S, Kumar A and Wang J 2013 Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures Nanotechnology 24 375301
[72] Sang C H, Chou S J, Pan F M and Sheu J T 2016 Fluorescence enhancement and multiple protein detection in ZnO nanostucture microfluidic devices Biosens. Bioelectron. 75 285–92
[73] Guo L, Shi Y, Liu X, Han Z, Zhao Z, Chen Y, Xie W and Li X 2018 Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips Biosens. Bioelectron. 99 368–74
[74] Singh M, Song S and Hahn J I 2014 Unique temporal and spatial biomolecular emission profile on individual zinc oxide nanorods Nanoscale 6 308–15
[75] Singh M, Jiang R, Coia H, Choi D S, Alabanza A, Chang J Y, Wang J and Hahn J I 2015 Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends Nanoscale 7 1424–36
[76] Truong J, Singh M, Hansen M and Hahn J I 2017 Polarization-resolved mechanistic investigation of fluorescence signal
intensification on zinc oxide nanorod ends Nanoscale **9** 8164–75

[77] Ten Siethoff L, Lard M, Generosi J, Andersson H S H S, Linke H, Månsson A and Maišnsson A 2014 Molecular motor propelled filaments reveal light-guiding in nanowire arrays for enhanced biosensing *Nano Lett.* **14** 737–42

[78] Frederiksen R S, Alarcon-Llado E, Madsen M H, Rostgaard K R, Krogstrup P, Vosch T, Nygård J, Fontcuberta I, Morral A and Martinez K L 2015 Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures *Nano Lett.* **15** 176–81

[79] Frederiksen R S, Alarcon-Llado E, Krogstrup P, Bojarskaite L, Buch-Månson N, Bolinsson J, Nygård J, FontcubertaMorral A and Martinez K L 2016 Nanowire-aperture probe: local enhanced fluorescence detection for the investigation of live cells at the nanoscale *ACS Photonics* **3** 1208–16

[80] Frederiksen R, Tutuncuoglu G, Matteini F, Martinez K L, Fontcuberta A and Alarcon-Llado E 2017 Visual understanding of light absorption and waveguiding in standing nanowires with 3D fluorescence confocal microscopy *ACS Photonics* **4** 2235–41

[81] Bures J 2008 *Guided Optics: Optical Fibers and All-Fiber Components* (New York: Wiley-VCH)

[82] Verardo D, Lindberg F W, Anttu N, Niman C S, Lard M, Dabkowska A P, Nylander T, Mansson A, Prinz C and Linke H 2018 Nanowires for biosensing: light-guiding of fluorescence as a function of diameter and wavelength *Nano Lett.* **8** 4796–802