ON THE SOBOLEV-POINCARÉ INEQUALITY OF CR-MANIFOLDS

YI WANG AND PAUL YANG

Abstract. The purpose is to study the CR-manifold with a contact structure conformal to the Heisenberg group. In our previous work [WY17], we have proved that if the Q'-curvature is nonnegative, and the integral of Q'-curvature is below the dimensional bound c'_1, then we have the isoperimetric inequality. In this paper, we manage to drop the condition on the nonnegativity of the Q'-curvature. We prove that the volume form e^{4u} is a strong A_∞ weight. As a corollary, we prove the Sobolev-Poincaré inequality on a class of CR-manifolds with integrable Q'-curvature.

1. Introduction

On a four dimensional manifold, the Paneitz operator P_g and the Branson’s Q-curvature [Bra95] have many analogous properties as the Laplacian operator Δ_g and the Gaussian curvature K_g on surfaces. The Paneitz operator is defined as

$$P_g = \Delta^2 + \delta\left(\frac{2}{3}R_g - 2Ric\right)d,$$

where δ is the divergence, d is the differential, R is the scalar curvature of g, and Ric is the Ricci curvature tensor. The Q-curvature is defined as

$$Q_g = \frac{1}{12}\left\{-\Delta R + \frac{1}{4}R^2 - 3|E|^2, \right\}$$

where E is the traceless part of Ric, and $| \cdot |$ is taken with respect to the metric g. The most important two properties for the pair (P_g, Q_g) are that under the conformal change $g_w = e^{2w}g_0$,

1. P_g transforms by $P_{g_w}(\cdot) = e^{-4w}P_{g_0}(\cdot)$;
2. Q_g satisfies the fourth order equation

$$P_{g_0}w + 2Q_{g_0} = 2Q_{g_w}e^{4w}.$$

The research of the author is partially supported by NSF grant DMS-1612015.
The research of the author is partially supported by NSF grant DMS-1509505.
As proved by Beckner [Bec93] and Chang-Yang [CY13], the pair \((P, Q)\) also appears in the Moser-Trudinger inequality for higher order operators.

On CR-manifold, it is a fundamental problem to study the existence and analogous properties of CR invariant operator \(P\) and curvature scalar invariant \(Q\). Graham and Lee [GL88] has studied a fourth-order CR covariant operator with leading term \(\Delta^2 + T^2\) and Hirachi [Hir93] has identified the \(Q\)-curvature which is related to \(P\) through a change of contact form. However, although the integral of the \(Q\)-curvature on a compact three-dimensional CR-manifold is a CR invariant, it is always equal to zero. And in many interesting cases when the CR three manifold is the boundary of a strictly pseudoconvex domains, the \(Q\)-curvature vanishes everywhere. As a consequence, it is desirable to search for some other invariant operators and curvature invariants on a CR-manifold that are more sensitive in the CR geometry. The work of Branson, Fontana and Morpurgo [BFM13] aims to find such a pair \((P', Q')\) on a CR sphere. Later, the definition of \(Q'\)-curvature is generalized to all pseudo-Einstein CR-manifolds by the work of Case-Yang [CY13] and that of Hirachi [Hir14]. The construction uses the strategy of analytic continuation in dimension by Branson [Bra95], restricted to the subspace of the CR pluriharmonic functions.

\[
P'_4 := \lim_{n \to 1} \frac{2}{n - 1} P_{4,n}|_P.
\]

Here \(P_{4,n}\) is the fourth-order covariant operator that exists for every contact form \(\theta\) by the work of Gover and Graham [GG05]. By [GL88], the space of CR pluriharmonic functions \(P\) is always contained in the kernel of \(P_4\).

In this paper, we want to explore the geometric meaning of this newly introduced conformal invariant \(Q'\)-curvature.

In Riemannian geometry, a classical isoperimetric inequality on a complete simply connected surface \(M^2\), called Fiala-Huber’s [Fia41], [Hub57] isoperimetric inequality

\[
Vol(\Omega) \leq \frac{1}{2(2\pi - \int_{M^2} K_g^+ dv_g)} Area(\partial \Omega)^2,
\]

where \(K_g^+\) is the positive part of the Gaussian curvature \(K_g\). Also \(\int_{M^2} K_g^+ dv_g < 2\pi\) is the sharp bound for the isoperimetric inequality to hold.

In [Wan15], we generalize the Fiala-Huber’s isoperimetric inequality to all even dimensions, replacing the role of the Gaussian curvature in dimension two by that of the \(Q\)-curvature in higher dimensions:
Let $(M^n, g) = (\mathbb{R}^n, g = e^{2u}|dx|^2)$ be a complete noncompact even dimensional manifold. Let Q^+ and Q^- denote the positive and negative part of Q_g respectively; and dv_g denote the volume form of M. Suppose $g = e^{2u}|dx|^2$ is a “normal” metric, i.e.

\[
u(x) = \frac{1}{c_n} \int_{\mathbb{R}^n} \log \frac{|y|}{|x-y|} Q_g(y)dv_g(y) + C;
\]

for some constant C. If

\[\alpha := \int_{M^n} Q^+ dv_g < c_n\]

where $c_n = 2^{n-2}(\frac{n-2}{2})! \pi^{\frac{n}{2}}$, and

\[\beta := \int_{M^n} Q^- dv_g < \infty,
\]

then (M^n, g) satisfies the isoperimetric inequality with isoperimetric constant depending only on n, α and β. Namely, for any bounded domain $\Omega \subset M^n$ with smooth boundary,

\[|\Omega|_g^{\frac{n}{n-1}} \leq C(n, \alpha, \beta)|\partial \Omega|_g.
\]

In our previous paper [WY17], we have studied the Q'-curvature and P' operator, and proved that if $(\mathbb{H}^1, e^u \theta)$ for pluriharmonic function u is a complete CR-manifold with nonnegative Q' curvature and nonnegative Webster scalar curvature at infinity, if in addition Q' curvature satisfies

\[\int_{\mathbb{H}^1} Q' e^{4u} \theta \wedge d\theta < c_1',
\]

then e^{4u} is an A_1 weight. Here c_1' is the constant in the fundamental solution of P' operator (See [WY17]). As a corollary, we have derived the isoperimetric inequality on CR-manifold $(\mathbb{H}^1, e^u \theta)$:

\[Vol(\Omega) \leq C Area(\partial \Omega)^{4/3}.
\]

Here the constant C is controlled by $c_1' - \int_{\mathbb{H}^1} Q' e^{4u} \theta \wedge d\theta$. To prove this result, we notice that the class of pluriharmonic functions P is the relevant subspace of functions for the conformal factor u.

The purpose of the current paper is two-fold. We will first study the case when Q' curvature is negative. Then we will discuss the general case when Q' curvature does not have a sign. The main results of the paper are stated in the following.
Theorem 1.1. Let \((\mathbb{H}^1, e^u\theta)\) be a complete CR-manifold, where \(\theta\) denotes the contact form on the Heisenberg group \(\mathbb{H}^1\) and \(u\) is a pluriharmonic function on \(\mathbb{H}^1\). If the \(Q'\)-curvature is negative, and the Webster scalar curvature is nonnegative at infinity. If

\[(1.8) \quad \int_{\mathbb{H}^1} Q' e^{4u} \theta \wedge d\theta < \infty, \]

then \(e^{4u}\) is a strong \(A_{\infty}\) weight.

Note that \(e^{4u}\) is the volume form of this conformal metric, where 4 is the homogeneous dimension of \(\mathbb{H}^1\). The descriptions of \(A_1\) weight and strong \(A_{\infty}\) weight will be in Section 2.

We will then discuss the case when the \(Q'\)-curvature does not have a sign.

Theorem 1.2. Let \((\mathbb{H}^1, e^u\theta)\) be a complete CR-manifold, where \(\theta\) denotes the contact form on the Heisenberg group \(\mathbb{H}^1\) and \(u\) is a pluriharmonic function on \(\mathbb{H}^1\). If the Webster scalar curvature is nonnegative at infinity, If

\[(1.9) \quad \alpha := \int_{\mathbb{H}^1} Q'^+ e^{4u} \theta \wedge d\theta < c'_1, \]

and

\[(1.10) \quad \beta := \int_{\mathbb{H}^1} Q'^- e^{4u} \theta \wedge d\theta < \infty, \]

then \(e^{4u}\) is a strong \(A_{\infty}\) weight.

As a corollary of Franchi-Lu-Wheeden \([FLW95]\), we will show that \((\mathbb{H}^1, e^u\theta)\) satisfies Sobolev-Poincaré inequality. We remark that on a CR-manifold \((\mathbb{H}^1, e^u\theta)\), the David-Semme’s \([DS90]\) type of isoperimetric inequality is still an open question for strong \(A_{\infty}\) weights.

Theorem 1.3. Let \((\mathbb{H}^1, e^u\theta)\) satisfy the same assumptions as in Theorem 1.2. Let \(K\) be a compact subset of \(\Omega\). Then there exists \(r_0\) depending on \(K,\Omega,\) and \(\{X_j\}\) such that if \(B = B(x, r)\) is a ball with \(x \in K\) and \(0 < r < r_0\), and if \(e^{4u}\) is \(A_p\) weight for some \(1 \leq p < 4\). Let \(\mu(x) := e^{4u} dx, \nu(x) := e^{(4-p)u} dx\). Then

\[(1.11) \quad \left(\frac{1}{\mu(B)} \int_B |f(x) - f_B|^q d\mu \right)^{1/q} \leq c r \left(\frac{1}{\nu(B)} \int_B |\nabla_b f(x)|^p d\nu \right)^{1/p}, \]

for any \(f \in \text{Lip}(\bar{B})\), with \(f_B = \frac{1}{\mu(B)} \int_B f(x) d\mu\). The constant \(c\) depends only on \(K, \Omega, \alpha, \beta, p\).
2. Preliminaries

On a Heisenberg group \mathbb{H}^n, one can also define the A_p weight, in the same way as on the Euclidean space \mathbb{R}^n. For a nonnegative local integrable function ω, we call it an A_p weight $p > 1$, if for all balls B in \mathbb{H}^n

$$\frac{1}{|B|} \int_B \omega(x) dx \cdot \left(\frac{1}{|B|} \int_B \omega(x)^{\frac{p'}{p}} dx \right)^{\frac{p}{p'}} \leq C < \infty.$$

Here $\frac{1}{p'} + \frac{1}{p} = 1$. The constant C is uniform for all B. The definition of A_1 weight is given by taking the limit process $p \to 1$. Namely, ω is called an A_1 weight, if

$$M\omega(x) \leq C\omega(x),$$

for almost all $x \in B$.

An important property of A_p weight is the reverse Hölder inequality: if ω is an A_p weight for some $p \geq 1$, then there exist an $r > 1$ and a $C > 0$ such that for all balls B

$$\left(\frac{1}{|B|} \int_B \omega^r dx \right)^{1/r} \leq \frac{C}{|B|} \int_B \omega dx.$$

This would imply that any A_p weight ω satisfies the doubling property: there exists a $C > 0$ s.t.

$$\int_{B(x_0,2r)} \omega(x) dx \leq C \int_{B(x_0,r)} \omega(x) dx$$

for all balls $B(x_0,r)$.

The notion of strong A_∞ weight was first proposed by David and Semmes in [DS90]. Given a positive continuous weight ω, we define

$$\delta_\omega(x,y) := \left(\int_{B_{x,y}} \omega(z) dz \right)^{1/n},$$

where $B_{x,y}$ is the ball with diameter $|x - y|$ that contains x and y. On the other hand, we can define the geodesic distance with respect to the weight ω to be

$$d_\omega(x,y) := \inf_\gamma \int_\gamma \omega^{\frac{2}{n}}(s) ds.$$

Here $\gamma \subset B_{x,y}$ is a curve connecting x, y such that the tangent vector is always contact. If ω is an A_∞ weight, then it is easy to prove (see for example Proposition 3.12 in [Sem93])

$$d_\omega(x,y) \leq C\delta_\omega(x,y).$$
for all \(x, y \in \mathbb{H}^n\). If in addition, \(\omega\) also satisfies the reverse inequality (2.8)
\[
\delta_{\omega}(x, y) \leq Cd_{\omega}(x, y)
\]
then we say \(\omega\) is a strong \(A_\infty\) weight.

The product of an \(A_1\) weight and an \(A_\infty\) weight is an \(A_\infty\) weight. This can be proved using the same proof as in the Euclidean space.

3. CR-manifold with negative \(Q'\)-curvature

In this section, we will prove Theorem 1.1. It shows that for CR-manifolds with negative \(Q'\)-curvature, the integral of \(Q'\)-curvature controls the geometry in a very rigid way.

We first remark that since \(Q'(y)e^{4u(y)}\) is integrable, \(\log \frac{|y|}{|x-y|}Q'(y)e^{4u(y)}\) is also integrable in \(y\) for each fixed \(x \in \mathbb{H}^1\).

In this section, we consider the analytic property of \(e^{4u(x)}\). For simplicity, we denote it by \(\omega_2(x)\). We define \(\beta := \int_{\mathbb{H}^1} |Q'(y)e^{4u(y)}|dy < \infty\).

Recall that for a nonnegative continuous function \(\omega(x)\),
\[
d_{\omega}(x, y) := \left(\int_{B_{xy}} \omega(z)dz \right)^{\frac{1}{n}},
\]
\[
\delta_{\omega}(x, y) := \inf_{\gamma} \int_{\gamma} \omega^{\frac{1}{n}}(\gamma(s))ds,
\]
where \(B_{xy}\) is the ball with diameter \(|x - y|\) that contains \(x\) and \(y\), the infimum is taken over all contact curves (meaning that the tangent vector on each point of this curve is contact) \(\gamma \subset B_{xy}\) connecting \(x\) and \(y\), and \(ds\) is the arc length.

We want to prove \(\omega_2(x) := e^{4u(x)}\) is a strong \(A_\infty\) weight, i.e. there exists a constant \(C = C(\beta)\) such that
\[
\frac{1}{C(\beta)}d_{\omega_2}(x, y) \leq \delta_{\omega_2}(x, y) \leq C(\beta)d_{\omega_2}(x, y).
\]

Since the Webster scalar curvature is nonnegative at infinity, by Proposition in [WY17], \(u\) is normal. Thus
\[
u_{\lambda}(x) := u(\lambda x) = \frac{-1}{c'_1} \int_{\mathbb{H}^1} \log \frac{|y|}{|x-y|}Q'(y)e^{4u(y)}dy.
\]

We first observe that without generality we can assume \(|x - y| = 2\). This is because we can dilate \(u\) by a factor \(\lambda > 0\),
\[
u_{\lambda}(x) := u(\lambda x) = \frac{-1}{c'_1} \int_{\mathbb{H}^1} \log \frac{|y|}{|\lambda x-y|}Q'(y)e^{4u(y)}dy.
\]
By the change of variable, this is equal to
\[-\frac{1}{c_1'} \int_{\mathbb{H}^1} \log \frac{|y|}{|x-y|} |Q'(\lambda y)| e^{4u(y)} \lambda^4 dy. \]

Notice $|Q'(\lambda y)| e^{4u(y)} \lambda^4$ is still an integrable function on \mathbb{H}^1, with integral equal to β. Thus by choosing $\lambda = \frac{2}{|x-y|}$, the problem reduces to proving inequality (3.1) for u^λ and $|x-y| = 2$.

Let us denote the midpoint of x and y by p_0. And from now on, we adopt the notation $\lambda B := B(p_0, \lambda)$. Since $|x-y| = 2$, we have $B_{xy} = B(p_0, 1) = B$. We also define
\[u_1(x) := -\frac{1}{c_1'} \int_{10B} \log \frac{|y|}{|x-y|} |Q'(y)| e^{4u(y)} dy, \]
and
\[u_2(x) := -\frac{1}{c_1'} \int_{H^1 \setminus 10B} \log \frac{|y|}{|x-y|} |Q'(y)| e^{4u(y)} dy. \]

In the following lemma, we prove that when z is close to p_0, the difference between $u_2(z)$ and $u_2(p_0)$ is controlled by β.

Lemma 3.1.
\[|u_2(z) - u_2(p_0)| \leq \frac{\beta}{4c_1'} \]
for $z \in 2B$.

Proof.
\[|u_2(z) - u_2(p_0)| = \frac{1}{c_1'} \left| \int_{\mathbb{H}^1 \setminus 10B} \log \frac{|y|}{|z-y|} |Q'(y)| e^{4u(y)} dy + \int_{\mathbb{H}^1 \setminus 10B} \log \frac{|y|}{|p_0-y|} |Q'(y)| e^{4u(y)} dy \right| \]
\[\leq \frac{1}{c_1'} \int_{\mathbb{H}^1 \setminus 10B} \frac{1}{|1-t^*(p_0-y) + t^*(z-y)|} |Q'(y)| e^{4u(y)} dy, \]
for some $t^* \in [0, 1]$. Since $y \in \mathbb{H}^1 \setminus 10B$ and $z, p_0 \in 2B$,
\[\frac{1}{|1-t^*(p_0-y) + t^*(z-y)|} \leq \frac{1}{8}, \]
$|u_2(z) - u_2(p_0)|$ is bounded by
\[|z - p_0| \cdot \frac{1}{8c_1'} \int_{\mathbb{H}^1 \setminus 10B} |Q'(y)| e^{4u(y)} dy. \]
Note that for $z \in 2B$, $|z - p_0| \leq 2$. From this, (3.6) follows. □

Now we adopt some techniques used in [BHS04] for potentials to deal with the ϵ-singular set E_ϵ.

Lemma 3.2. (Cartan’s lemma) For the Radon measure $|Q'|(y)e^{4u(y)}dy$, given $\epsilon > 0$, there exists a set $E_\epsilon \subseteq \mathbb{H}^1$, such that

$$\mathcal{H}^1(E_\epsilon) := \inf_{E_\epsilon \subseteq \bigcup B_i} \left\{ \sum_i \text{diam } B_i \right\} < 10\epsilon$$

and for all $x \notin E_\epsilon$ and $r > 0$,

$$\int_{B(x,r)} |Q'|(y)e^{4u(y)}dy \leq \frac{r\beta}{\epsilon}.$$

The proof of Lemma 1 follows from standard measure theory argument. Thus we omit it here.

Proposition 3.3. Given $\epsilon > 0$,

$$\mathcal{H}^1 \left(\left\{ x \in 10B : \left| -\frac{1}{c_1} \int_{10B} \log \frac{1}{|x-y|} |Q'(y)e^{4u(y)}dy| \right| > \frac{C_0\beta}{\epsilon} \right\} \right) < 10\epsilon.$$

Proof. Fix $\epsilon > 0$. By Lemma 3.2, there exists a set $E_\epsilon \subseteq \mathbb{H}^1$, s.t. $\mathcal{H}^1(E_\epsilon) < 10\epsilon$ and for $x \notin E_\epsilon$ and $r > 0$

$$\int_{B(x,r)} |Q'|(y)e^{4u(y)}dy \leq \frac{r\beta}{\epsilon}.$$

If we can show for some C_0

$$10B \setminus E_\epsilon \subseteq \left\{ x \in 10B : \left| -\frac{1}{c_1} \int_{10B} \log \frac{1}{|x-y|} |Q'(y)e^{4u(y)}dy| \right| \leq \frac{C_0\beta}{\epsilon} \right\},$$

then

$$\mathcal{H}^1 \left(\left\{ x \in 10B : \left| -\frac{1}{c_1} \int_{10B} \log \frac{1}{|x-y|} |Q'(y)e^{4u(y)}dy| \right| > \frac{C_0\beta}{\epsilon} \right\} \right) \leq \mathcal{H}^1(E_\epsilon) < 10\epsilon.$$
To prove (3.10), we notice for \(x \in 10B \setminus E, r = 2^{-j} \cdot 10 \), (3.9) implies
\[
\left| \frac{-1}{c_1} \int_{10B} \log \frac{1}{|x-y|} |Q'(y)e^{4u(y)}dy| \right| \\
\leq \frac{1}{c_1} \sum_{j=-1}^{\infty} \left| \int_{B(x,2^{-j} \cdot 10) \setminus B(x,2^{-(j+1)} \cdot 10)} \log \frac{1}{|x-y|} |Q'(y)e^{4u(y)}dy| \right| \\
\leq \frac{1}{c_1} \sum_{j=-1}^{\infty} \left(\max\{ |\log 2^{-j}|, |\log 2^{-(j+1)}| \} + \log 10 \right) \\
\int_{B(x,2^{-j} \cdot 10) \setminus B(x,2^{-(j+1)} \cdot 10)} |Q'(y)e^{4u(y)}dy| \\
\leq \frac{1}{c_1} \sum_{j=-1}^{\infty} \left(\max\{ |\log 2^{-j}|, |\log 2^{-(j+1)}| \} + \log 10 \right) \cdot \frac{2^{-j} \cdot 10^\beta}{\epsilon} \\
\leq C_0 \frac{\beta}{\epsilon}
\]
By Lemma 3.1
\[
\int_{2B} e^{4u(z)} dz = \int_{2B} e^{4u_1(z)} e^{4u_2(z)} dz \\
\leq e^{\frac{\beta}{c_1}} e^{4u_2(p_0)} \int_{2B} e^{4u_1(z)} dz.
\] (3.15)

To estimate \(u_1 \), by definition \(\beta_{10} := \int_{10B} |Q'(y)e^{4u(y)}|dy \leq \beta < \infty \). If \(\beta_{10} = 0 \), then \(u_1(z) = 0 \) and \(\bar{c} := \frac{1}{c_1} \int_{10B} \log |y||Q'(y)e^{4u(y)}|dy = 0 \). So (3.12) follows immediately. If \(\beta_{10} \neq 0 \), \(|Q'(y)e^{4u(y)}|_{\beta_{10}} \) is a nonnegative probability measure on \(10B \). Hence by Jensen’s inequality
\[
\int_{2B} e^{4u_1(z)} dz \leq e^{\frac{\beta_{10}}{c_1}} \int_{10B} |Q'(y)e^{4u(y)}|_{\beta_{10}} dy d\omega_2(z).
\] (3.16)

Since \(z \in 2B \) and \(y \in 10B \),
\[
\int_{2B} |z - y|^{\frac{4\beta_{10}}{c_1}} dz \leq C.
\] (3.17)

From this, we get
\[
\int_{2B} e^{4u_1(z)} dz \leq Ce^{4\bar{c}} \int_{10B} |Q'(y)e^{4u(y)}|_{\beta_{10}} dy = Ce^{4\bar{c}}.
\] (3.18)

Plugging it to (3.15), we finish the proof of the proposition. \(\square \)

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us assume \(\omega_2 := e^{4u} \) is an \(A_p \) weight for some large \(p \), with bounds depending only on \(\beta \). The proof of this fact follows that of Proposition 5.1 in [Wan15]. So we omit it here. By the reverse Hölder’s inequality for \(A_p \) weights, it is easy to prove (see for example Proposition 3.12 in [Sem93]),
\[
\delta_{\omega_2}(x, y) \leq C_2(\beta) d_{\omega_2}(x, y).
\]

Hence we only need to prove the other side of the inequality:
\[
\delta_{\omega_2}(x, y) \geq C_3(\beta) d_{\omega_2}(x, y),
\] (3.19)

for some constant \(C_3(\beta) \). By Proposition 3.3, for a given \(\epsilon > 0 \), there exists a Borel set \(E_\epsilon \subseteq \mathbb{R}^1 \), such that
\[
\mathcal{H}^1(E_\epsilon) \leq 10\epsilon,
\] (3.20)

and for \(z \in 10B \setminus E_\epsilon \), according to (3.10)
\[
|\hat{u}_1(z)| \leq \frac{C_0}{\epsilon} \beta.
\] (3.21)
Here
\[\hat{u}_1(z) := \frac{-1}{c'_1} \int_{10B} \log \frac{1}{|x-y|} |Q'(y)| e^{4u(y)} dy. \]

With this, we claim the following estimate.

Claim: Suppose \(H^1(E_\epsilon) < 10 \epsilon \) with \(\epsilon \leq \frac{1}{20} \). Then the length of \(\gamma \setminus E_\epsilon \) with respect to the metric of Heisenberg group \(\mathbb{H}^1 \) satisfies

\[(3.22) \quad \text{length } (\gamma \setminus E_\epsilon) > \frac{3}{2}, \]

where \(\gamma \subset B_{xy} \) is a curve connecting \(x \) and \(y \).

Proof of Claim. Let \(P \) be the projection map from points in \(B_{xy} \) to the contact line segment \(I_{xy} \) between \(x \) and \(y \). Since the Jacobian of the projection map is less or equal to 1,

\[(3.23) \quad \text{length } (\gamma \setminus E_\epsilon) \geq \text{length } (P(\gamma \setminus E_\epsilon)) = m(P(\gamma \setminus E_\epsilon)), \]

where \(m \) is the arc length measure on the line segment \(I_{xy} \). Notice \(P(\gamma) = I_{xy} \), and \(P(\gamma) \setminus P(E_\epsilon) \) is a subset of \(P(\gamma \setminus E_\epsilon) \). Therefore

\[(3.24) \quad m(P(\gamma \setminus E_\epsilon)) \geq m(P(\gamma)) - m(P(E_\epsilon)) = 2 - m(P(E_\epsilon)). \]

Now by assumption, \(H^1(E_\epsilon) < 10 \epsilon \), so \(H^1(\gamma \cap E_\epsilon) < 10 \epsilon \). Hence there is a covering \(\cup_i B_i \) of \(\gamma \cap E_\epsilon \), so that

\[\sum_i \text{diam } B_i < 10 \epsilon. \]

This implies that \(\cup_i P(B_i) \) is a covering of the set \(P(\gamma \cap E_\epsilon) \) and

\[\sum_i \text{diam } P(B_i) = \sum_i \text{diam } B_i \leq 10 \epsilon. \]

Thus \(m(P(E_\epsilon)) = H^1(P(E_\epsilon)) < 10 \epsilon < \frac{1}{2} \), by choosing \(\epsilon \leq \frac{1}{20} \). Plug it to (3.24), and then to (3.23). This completes the proof of the claim.

We now continue the proof of Theorem 1.1. Since \(\gamma \subset B \), then by Lemma 3.1

\[(3.25) \quad \int_\gamma e^{u_-(\gamma(s))} ds = \int_\gamma e^{(u_1+u_2)(\gamma(s))} ds \geq \tilde{c} \int_\gamma e^{\hat{u}_1(\gamma(s))} ds. \]

Here \(\tilde{c} \) is the constant defined in Proposition 3.4. Let \(\epsilon = \frac{1}{20} \). By (3.21),

\[|\hat{u}_1(z)| \leq 20C_0 \beta \]

for \(z \in 10B \setminus E_\epsilon \). Thus

\[(3.26) \quad \int_\gamma e^{\hat{u}_1(\gamma(s))} ds \geq e^{-20C_0 \beta} \text{length } (\gamma \setminus E_\epsilon). \]
By (3.22), it is bigger than
\[\frac{3}{2} e^{-20C_0 \beta}. \]
Therefore
\[(3.27) \quad \int_{\gamma} e^{u-(\gamma(s))} ds \geq \frac{3}{2} e^{-20C_0 \beta} e^{u_2(p_0)} e^{\tilde{c}} = C_4(\beta) e^{u_2(p_0)} e^{\tilde{c}} \]
for \(C_4(\beta) = \frac{3}{2} e^{-20C_0 \beta}. \) By inequality (3.27) and Proposition 3.4, we conclude for any curve \(\gamma \subset B_{xy} \) connecting \(x \) and \(y \), there is a \(C_3 = C_3(\beta) \) such that
\[(3.28) \quad \int_{\gamma} e^{u-(\gamma(s))} ds \geq C_3(\beta) \left(\int_{B_{xy}} e^{4u-(z)} dz \right)^{\frac{1}{4}}. \]
This implies inequality (3.19) and thus completes the proof of Theorem 1.1.

4. \(Q' \)-CURVATURE WITHOUT A SIGN

In this section, we consider CR-manifold on which the \(Q' \)-curvature does not have a sign any more. Suppose \((\mathbb{H}^1, e^{2u} \theta) \) satisfies that
\[(4.1) \quad \alpha := \int_{\mathbb{H}^1} Q'^+ e^{4u} \theta \wedge d\theta < c_1', \]
\[(4.2) \quad \beta := \int_{\mathbb{H}^1} Q'^- e^{4u} \theta \wedge d\theta < \infty. \]
Suppose also that the Webster scalar curvature is nonnegative at infinity.

By Theorem 1.1, \(e^{4u} \) is a strong \(A_\infty \) weight. By Theorem 1.4 in [WY17], \(e^{4u} \) is an \(A_1 \) weight.

Proposition 4.1. Assume \(\omega_1 \) is an \(A_1 \) weight, \(\omega_2 \) is a strong \(A_\infty \) weight. If \(\omega_1^r \omega_2 \) for some \(r \in \mathbb{R} \) is an \(A_\infty \) weight, then \(\omega_1^r \omega_2 \) a strong \(A_\infty \) weight.

Remark 4.2. The proposition for the Euclidean space has been proved in [Sem93]. We prove here the proposition for Heisenberg groups.

Proof. Let \(\delta_2(\cdot, \cdot) \) and \(\delta_{12}(\cdot, \cdot) \) be the quasidistance associated to \(\omega_2 \) and \(\omega_1^r \omega_2 \) respectively. Let \(x_1, ..., x_k \in \mathbb{H}^1 \) such that \(x_j \in B(x_1, 2|x_k - x_1|) \) for all \(j \). Notice that it suffices to prove
\[(4.3) \quad \delta_{12}(x_1, x_k) \leq C \sum_{j=1}^{k-1} \delta_{12}(x_j, x_{j+1}). \]
Let $B = B_{x_1, x_k}$ and $B_j = B_{x_j, x_{j+1}}$. Since $x_j \in B(x_1, 2|x_k - x_1|)$ for all j, $B_j \subset 100B$ for all j. By definition δ_{12},

\begin{equation}
\delta_{12}(x_j, x_{j+1})
\end{equation}

By Proposition 4.1, in order to prove Theorem 1.2, we only need to show that e^{4u} is an A_∞ weight. In other words, we need to show e^{4u} is an A_p weight for some p.

Proposition 4.3. Suppose $(H^1, e^{2u} \theta)$ satisfies the same assumptions as in Theorem 1.2. Then e^{4u} is an A_p weight for some p. The A_p bound depends only on the integral of Q' curvature.

Proof.

\begin{equation}
u(x) = \frac{1}{c_1'} \int_{H^1} \log \frac{|y|}{|x-y|} Q'(y)e^{4u(y)} dy\end{equation}

with assumptions (1.3) and (1.4). By Theorem 1.4 in [WY17], e^{4u} is an A_1 weight, so there is a uniform constant $C = C(\alpha)$, so that for all $x_0 \in H^1$ and $r > 0$

\begin{equation}
\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} e^{4u}(y) dy \leq C(\alpha) e^{4u}(x_0).
\end{equation}

So for all $x \in B(x_0, r)$

\begin{equation}
\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} e^{4u}(y) dy \leq \frac{1}{|B(x_0, r)|} \int_{B(x, 2r)} e^{4u}(y) dy
\end{equation}

\begin{equation}
= \frac{2^4}{|B(x, 2r)|} \int_{B(x, 2r)} e^{4u}(y) dy \leq C(\alpha) e^{4u}(x).
\end{equation}

Namely, for all ball B in H^1 and $x \in B$,

\begin{equation}
\frac{1}{|B|} \int_{B} e^{4u}(y) dy \leq C(\alpha) e^{4u}(x).
\end{equation}

We observe that $e^{-4\varepsilon u_-(x)}$ is also an A_1 weight for $\varepsilon = \varepsilon(\beta) << 1$. In fact,

\begin{equation}
e^{-4\varepsilon u_-(x)} = e^{-4\varepsilon} \int_{H^1} \log \frac{|y|}{|x-y|} Q^-(y) e^{4u(y)} dy
\end{equation}

$Q^-(y) e^{4u(y)} \geq 0$ and $\int_{H^1} \varepsilon Q^-(y) e^{4u(y)} dy < c_1$ if ε is small enough. Thus by Theorem 1.4 in [WY17], $e^{-4\varepsilon u_-(x)}$ is an A_1 weight. As (4.8), we have

\begin{equation}
\frac{1}{|B|} \int_{B} e^{-4\varepsilon u_-(y)} dy \leq C(\beta) e^{-4\varepsilon u_-(x)}
\end{equation}
for all ball B in \mathbb{H}^1 and all $x \in B$. Choose $1 < p < \infty$ such that $\epsilon = p'/p$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Using $e^{4u} = e^{4u_+} \cdot e^{4u_-}$, we get

$$
\left(\int_B e^{4u(x)} \, dx \right)^{\frac{1}{p}} \left(\int_B (e^{4u(x)})^{-\frac{1}{p'}} \, dx \right)^{\frac{1}{p'}}
$$

(4.11)

$$
\left(\int_B e^{4u_+} \cdot (e^{-4u_-})^{-\frac{1}{p'}} \, dx \right)^{\frac{1}{p}} \left(\int_B (e^{4u_+})^{-\frac{1}{p'}} \cdot e^{-4u_-} \, dx \right)^{\frac{1}{p'}}.
$$

By (4.10), if p is large enough and thus ϵ is small enough, then

$$
(e^{-4\epsilon u_-})^{-\frac{1}{p'}} \leq \left(\frac{1}{C(\beta)|B|} \int_B e^{-4\epsilon u_-} \, dx \right)^{-\frac{1}{p'}}.
$$

So

(4.12)

$$
\left(\int_B e^{4u_+} \cdot (e^{-4\epsilon u_-})^{-\frac{1}{p'}} \, dx \right)^{\frac{1}{p}} \leq \left(\int_B e^{4u_+} \, dx \right)^{\frac{1}{p}} \left(\frac{1}{C(\beta)|B|} \int_B e^{-4\epsilon u_-} \, dx \right)^{-\frac{1}{p'}}
$$

$$
\left(\int_B e^{4u_+} \, dx \right)^{\frac{1}{p}} \left(\frac{1}{C(\beta)|B|} \int_B e^{-4\epsilon u_-} \, dx \right)^{-\frac{1}{p'}}.
$$

Similarly, by (4.8)

$$
(e^{4u_+})^{-\frac{1}{p'}} \leq \left(\frac{1}{C(\alpha)|B|} \int_B e^{4u_+} \, dx \right)^{-\frac{1}{p'}}.
$$

So

(4.13)

$$
\left(\int_B (e^{4u_+})^{-\frac{1}{p'}} \cdot e^{-4\epsilon u_-} \, dx \right)^{\frac{1}{p'}} \leq \left(\frac{1}{C(\alpha)|B|} \int_B e^{4u_+} \, dx \right)^{-\frac{1}{p'}} \left(\int_B e^{-4\epsilon u_-} \, dx \right)^{\frac{1}{p'}}.
$$

Applying (4.12) to (4.13) in (4.11), we have

(4.14)

$$
\left(\int_B e^{4u(x)} \, dx \right)^{\frac{1}{p}} \left(\int_B (e^{4u(x)})^{-\frac{1}{p'}} \, dx \right)^{\frac{1}{p'}} \leq \left(\frac{1}{C|B|} \right)^{-\frac{1}{p}} \left(\frac{1}{C|B|} \right)^{\frac{1}{p'}} = C|B|
$$

for $p >> 1$. This shows that $e^{4u(x)}$ is an A_p weight for $p >> 1$. The bound C depends only on α and β. \(\square\)

5. Proof of Theorem 1.3

Theorem 5.1. [FLW95, Theorem 2] Let $\{X_j\}$ be a family of vector fields that satisfies Hörmander’s condition. Let K be a compact subset of Ω. Then there exists r_0 depending on K, Ω and $\{X_j\}$ such that if $B = B(x, r)$ is a ball with $x \in K$ and $0 < r < r_0$, and if $1 \leq p < q < \infty$
and ω_1, ω_2 are weights satisfying the balance condition (5.2) for B, with $\omega_1 \in A_p(\Omega, \rho, dx)$ and ω_2 doubling, then
\begin{equation}
\frac{1}{\omega_2(B)} \int_B |f(x) - f_B|^q \omega_2(x) dx \leq c r \frac{1}{\omega_1(B)} \int_B |X f(x)|^p \omega_1(x) dx
\end{equation}
for any $f \in \text{Lip}(\bar{B})$, with $f_B = \omega_2(B)^{-1} \int_B f(x) \omega_2(x) dx$. The constant c depends only on $K, \Omega, \{X_j\}$ and the constants in the conditions imposed on ω_1, ω_2.

The balance condition is stated as follows: for two weight functions ω_1, ω_2 on Ω and $1 \leq p < q < \infty$, a ball B with center in K and $r(B) < r_0$:
\begin{equation}
\frac{r(I)}{r(J)} \left(\frac{\omega_2(I)}{\omega_2(J)} \right)^{1/q} \leq c \left(\frac{\omega_1(I)}{\omega_1(J)} \right)^{1/p}
\end{equation}
for all metric balls I, J with $I \subset J \subset B$.

Proof. of Theorem 1.3. It is obvious that $X_1 := \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial t}$, $X_2 := \frac{\partial}{\partial y} - 2x \frac{\partial}{\partial t}$ on the Heisenberg group \mathbb{H}^1 satisfy the Hömander’s condition. Let us take $\omega_1(x) = e^{(n-p)s(x)}$, $\omega_2(x) = e^{nu(x)}$, $q = \frac{np}{n-p}$.

We only need to check condition (5.2). Namely, we need to show
\begin{equation}
\left(\frac{r(I)}{r(J)} \right)^{n-p} \frac{\int_I \omega_2 dx}{\int_J \omega_2 dx} \leq c \left(\frac{\int_I \omega_2^{\frac{n-p}{n}} dx}{\int_J \omega_2^{\frac{n-p}{n}} dx} \right)
\end{equation}
This is true because $0 \leq \frac{n-p}{n} < 1$ and $\omega_2 = e^{nu}$ is a strong A_∞ weight, thus it is an A_∞ weight. In fact, for any A_∞ weight w, $0 \leq s < 1$, by the result of Strömberg-Wheeden [SW85]
\begin{equation}
\left(\frac{1}{|B|} \int_B w(x)^s dx \right)^{\frac{1}{s}} \leq C \frac{1}{|B|} \int_B w(x) dx.
\end{equation}
On the other hand, by Hölder’s inequality,
\begin{equation}
\frac{1}{|B|} \int_B w(x) dx \leq \left(\frac{1}{|B|} \int_B w(x)^s dx \right)^{\frac{1}{s}}
\end{equation}
Therefore by taking $s = \frac{n-p}{n}$, (5.3) holds.

References

[Bec93] W. Beckner, *Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality*, Ann. of Math. (2) 138 (1993), no. 1, 213–242.
[BHS04] M. Bonk, J. Heinonen, and E. Saksman, *The quasiconformal Jacobian problem*, In the tradition of Ahlfors and Bers, III, 2004, pp. 77–96.

[Bra95] T. P. Branson, *Sharp inequalities, the functional determinant, and the complementary series*, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742.

[BFM13] T. P. Branson, L. Fontana, and C. Morpurgo, *Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere*, Ann. of Math. (2) 177 (2013), no. 1, 1–52.

[CY13] J. S. Case and P. Yang, *A Paneitz-type operator for CR pluriharmonic functions*, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), no. 3, 285–322.

[CY95] S.-Y. A. Chang and P. C. Yang, *Extremal metrics of zeta function determinants on 4-manifolds*, Ann. of Math. (2) 142 (1995), no. 1, 171–212.

[CCY13] S. Chanillo, H.-L. Chiu, and P. Yang, *Embedded three-dimensional CR manifolds and the non-negativity of Paneitz operators*, Geometric analysis, mathematical relativity, and nonlinear partial differential equations, Contemp. Math., vol. 599, Amer. Math. Soc., Providence, RI, 2013, pp. 65–82.

[CCY14] J.-H. Cheng, H.-L. Chiu, and P. Yang, *Uniformization of spherical CR manifolds*, Adv. Math. 255 (2014), 182–216.

[CL90] J. H. Chêng and J. M. Lee, *The Burns-Epstein invariant and deformation of CR structures*, Duke Math. J. 60 (1990), no. 1, 221–254.

[DS90] G. David and S. Semmes, *Strong A_∞ weights, Sobolev inequalities and quasiconformal mappings*, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 101–111.

[Fef76] C. L. Fefferman, *Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains*, Ann. of Math. (2) 103 (1976), no. 2, 395–416.
[FH03] C. Fefferman and K. Hirachi, *Ambient metric construction of Q-curvature in conformal and CR geometries*, Math. Res. Lett. 10 (2003), no. 5-6, 819–831.

[Fia41] F. Fiala, *Le problème des isopérimètres sur les surfaces ouvertes à courbure positive*, Comment. Math. Helv. 13 (1941), 293–346.

[FLW95] B. Franchi, G. Lu, and L. R. Wheeden, *Representation formulas and weighted Poincaré inequalities for Hörmander vector fields*, Ann. Inst. Fourier, Grenoble 45 (1995), no. 2, 577–604.

[GG05] A. R. Gover and C. R. Graham, *CR invariant powers of the sub-Laplacian*, J. Reine Angew. Math. 583 (2005), 1–27.

[GL88] C. R. Graham and J. M. Lee, *Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains*, Duke Math. J. 57 (1988), no. 3, 697–720.

[HK00] P. Hajłasz and P. Koskela, *Sobolev met Poincaré*, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101.

[Hir93] K. Hirachi, *Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds*, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993.

[Hir14] K. Hirachi, *Q-prime curvature on CR manifolds*, Differential Geom. Appl. 33 (2014), 213–245.

[Hub57] A. Huber, *On subharmonic functions and differential geometry in the large*, Comment. Math. Helv. 32 (1957), 13–72.

[Jer86] D. Jerison, *The Poincaré inequality for vector fields satisfying Hörmander’s condition*, Duke Math. J. 53 (1986), no. 2, 503–523.

[Sem93] S. Semmes, *Bi-Lipschitz mappings and strong A_∞ weights*, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 211–248.

[Wan15] Y. Wang, *The isoperimetric inequality and Q-curvature*, Adv. Math. 281 (2015), 823–844.
[WY17] Y. Wang and P. Yang, *Isoperimetric inequality on CR-manifolds with nonnegative Q'-curvature*, to appear in Annali della CR-manifoldScuola Normale Superiore di Pisa (2017).

[Web77] S. M. Webster, *On the transformation group of a real hypersurface*, Trans. Amer. Math. Soc. 231 (1977), no. 1, 179–190.

[FGW94] B. Franchi, S. Gallot, and R. L. Wheeden, *Sobolev and isoperimetric inequalities for degenerate metrics*, Math. Ann. 300 (1994), no. 4, 557–571.

[SW85] J.-O. Strömberg and R. L. Wheeden, *Fractional integrals on weighted H^p and L^p spaces*, Trans. Amer. Math. Soc. 287 (1985), no. 1, 293–321.

Department of Mathematics, Johns Hopkins University, Baltimore MD 21218

E-mail address: ywang@math.jhu.edu

Department of Mathematics, Princeton University, Princeton, NJ 08540

E-mail address: yang@math.princeton.edu