Exciton condensation in bilayer spin-orbit insulator

Hidemaro Suwa,1,2 Shang-Shun Zhang,2 and Cristian D. Batista2,3

1Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
3Quantum Condensed Matter Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Dated: March 25, 2021)

We investigate the nature of the magnetic excitations of a bilayer single-orbital Hubbard model in the intermediate-coupling regime. This model exhibits a quantum phase transition (QPT) between a paramagnetic (PM) and an insulating antiferromagnetic (AFM) phase at a critical value of the coupling strength. By using the random phase approximation, we show that the QPT is continuous when the PM state is a band insulator and that the corresponding quantum critical point (QCP) arises from the condensation of preformed excitons. These low-energy excitons reemerge on the other side of the QCP as the transverse and longitudinal modes of the AFM state. In particular, the longitudinal mode remains sharp for the model parameters relevant to Sr$_3$Ir$_2$O$_7$ because of the strong easy-axis anisotropy of this material.

I. INTRODUCTION

Low-dimensional Mott insulators play a central role in correlated electron physics because of the novel states of matter and phase transitions that they can host. In the strong-coupling limit, $U/|t| \gg 1$, the on-site repulsion U “freezes out” the charge degrees of freedom, turning the Mott insulator into a quantum magnet described by an effective spin Hamiltonian. The lattice connectivity can then be exploited to generate competing exchange interactions that induce quantum phase transitions (QPTs) between different states of matter. One of the simplest examples is provided by bilayer materials [1–6], where the competition between intralayer and interlayer hopping amplitudes, t and t_z, can induce a transition between an antiferromagnetic (AFM) state and a quantum para- magnet (QPM) comprising local singlet states on the interlayer dimers. This QPT, which is typically induced by applying pressure, has been extensively studied in multiple quantum magnets to understand different properties of the QCP, such as the emergence and decay of the longitudinal mode (LM) that is present in the AFM state [7–16].

The discovery of low-dimensional intermediate-coupling 4d and 5d-electron correlated insulators introduces a knob, $U/|t|$, that can be used to unleash the charge degrees of freedom via pressure or strain. For instance, the iridate materials [17–22] have a charge gap Δ that is comparable to the magnon bandwidth W. The reduction of $U/|t|$ leads to the suppression of the AFM ordering in favor of a paramagnetic state. In bilayer materials, such as Sr$_3$Ir$_2$O$_7$, the paramagnetic state can either be metallic or a band insulator depending on the spin orbit coupling. Similarly to the large $U/|t|$ limit, where the transition from the QPM to the AFM state can be described as a triplon condensation, the QPT from the band insulator to the AFM state corresponds to condensation of preformed magnetic excitons. These bound states reemerge on the other side of the QCP as longitudinal and transverse modes (magnons) of the AFM state. In contrast, the longitudinal mode (LM) is absent in the AFM phase induced by a metal-insulator transition with perfect Fermi surface (FS) nesting.

In this article, we study the possible QPTs induced by reducing the $U/|t|$ ratio in bilayer materials. Although the transition into the band insulator has some similarities with the transition into the QPM of pure spin systems ($U/|t| \gg 1$) [7–16], there are also important differences associated with the enhanced charge fluctuations. By applying our analysis to the easy-axis bilayer antiferromagnet Sr$_3$Ir$_2$O$_7$, with $\Delta = 130$meV [23] and $W = 70$meV [24], we reveal the existence of a LM in some regions of the Brillouin zone, which arises from the band-insulating character of the noninteracting limit of the model: The Néel phase is induced by condensation of preformed $S^z = 0$ excitons at a critical coupling strength $U = U_c$. This exciton reemerges in the Néel phase ($U > U_c$) as a LM whose energy scale and dispersion are consistent with previous resonant inelastic x-ray scattering (RIXS) measurements [24–27]. It is important to note that the LM that emerges near the same QCP in the strong coupling limit of the Hubbard model [25] exists over the whole Brillouin zone and its energy is much lower than the charge gap because it is obtained from a pure spin model. In contrast, the LM that we are proposing for Sr$_3$Ir$_2$O$_7$ only exists in finite regions of momentum space, around the wave vectors $q = 0$ and $q = (\pi, \pi)$, because it is induced by strong charge fluctuations ($U \sim U_c$). Indeed, the mode disappears inside the particle-hole continuum for wave vectors that are far enough from $q = 0$ and $q = (\pi, \pi)$.

Our results then suggest that Sr$_3$Ir$_2$O$_7$ is a realization of the long sought excitonic insulator that was predicted almost 60 years ago [28–30]. However, higher resolution RIXS experiments are needed to confirm this prediction.

II. MODEL

We consider a bilayer single-orbital Hubbard model $\mathcal{H} = -\mathcal{H}_K + \mathcal{H}_U$, with $\mathcal{H}_U = U \sum_r n_{r \uparrow} n_{r \downarrow}$ and

$$
\mathcal{H}_K = t \sum_{\mathbf{r}, \mathbf{r}'} \sum_{\sigma} c_{\mathbf{r} \sigma}^\dagger c_{\mathbf{r}' \sigma} + t_z \sum_{\mathbf{r}_\perp} \sum_{\sigma} c_{\mathbf{r}_\perp \uparrow \downarrow}^\dagger c_{\mathbf{r}_\perp \sigma} + H.c.,
$$

where $t, t_z, U \in \mathbb{R}$, $c_{\mathbf{r} \sigma}^\dagger \equiv [c_{\mathbf{r} \uparrow}^\dagger, c_{\mathbf{r} \downarrow}^\dagger]$, is the Nambu spinor of the electron field [$\mathbf{r} \equiv (\mathbf{r}_\perp, l)$, $l = 1, 2$ is the layer index
and \(\mathbf{r}_\perp = r_1 \mathbf{a}_1 + r_2 \mathbf{a}_2 \), and \(\mathbf{a}_\nu (\nu = 1, 2) \) are the primitive vectors of the square lattice of each layer. The sign \(\epsilon_r \) takes the values 1 (−1) for \(r \in A (B) \) sublattice of the bipartite bilayer system. \(\langle \mathbf{phase} \alpha \rangle \) Hubbard model onto the lowest energy \(J \) states and iridates. For example, the large SOC of the bilayer bilayer system. This Hamiltonian is an effective model for a and \(\mathbf{Ir} \) vectors of the square lattice of each layer. The sign second term can be absorbed into the chemical potential. (\(H \) with \(k \))

\[
H^\text{MF} = -UM \sum_{\mathbf{r}} (1)^{\mathbf{r}_\perp} M \delta_{\mathbf{r}_\perp, \mathbf{v}} - \frac{1}{2} U n \sum_{\mathbf{r}} c_{\mathbf{r}, \sigma}^\dagger c_{\mathbf{r}, \sigma} + C, \quad (2)
\]

where \(C = UM^2 N_s - \frac{1}{4} U n^2 N_s \), \(N_s \) is the number of lattice sites, \(n = N_s^{-1} \sum_{\mathbf{r}} (1)^{\mathbf{r}_\perp} c_{\mathbf{r}, \sigma}^\dagger c_{\mathbf{r}, \sigma} \) is the electron density and the second term can be absorbed into the chemical potential.

By Fourier transforming annihilation and creation operators,

\[
c_{\mathbf{r}, \sigma} = \frac{1}{\sqrt{N_u}} \sum_{k \in \text{BZ}} e^{i(k_{\mathbf{r}_\perp} \cdot \mathbf{r}_\perp + k_z t)} c_{\mathbf{r}, \sigma, k}, \quad \mathbf{r} \in \text{sublattice} \ \gamma, \quad (3)
\]

where \(N_u = \frac{1}{2} N_s \) is the number of unit cells, and \(k = (k_{\mathbf{r}_\perp}, k_z) \) runs over the first Brillouin zone (BZ); \(k_{\mathbf{r}_\perp} = k_1 b_1^* + k_2 b_2^* \), with \(b_1^* = (1/2, -1/2), b_2^* = (1/2, 1/2) \), \(k_1, k_2 \in [0, 2\pi) \) and \(k_z = 0, \pi \), we obtain the momentum space representation of

\[
H^\text{MF} = \sum_{k \in \text{BZ}} c_k^\dagger H_k^\text{MF} c_k, \quad (4)
\]

with

\[
H_k^\text{MF} = \begin{pmatrix}
UM \sigma_z & c_k^\dagger - t_z \cos(k_z) e^{-i2\beta \sigma_z} \\
c_k & -UM \sigma_z
\end{pmatrix},
\]

\[
c_k \equiv (c_{A\downarrow, k}, c_{A\uparrow, k}, c_{B\downarrow, k}, c_{B\uparrow, k})^T \quad \text{and} \quad c_k^\dagger = -2t \left(\cos \frac{k_1 + k_2}{2} + \cos \frac{k_1 - k_2}{2} \right), \quad (5)
\]

\[
H_k^\text{MF} \quad \text{is diagonalized by a unitary} \ 4 \times 4 \ \text{matrix} \ U(k),
\]

\[
c_{\gamma \sigma, k} = \sum_n U_{(\gamma \sigma), n}^*(k) \psi_{n, k}, \quad (6)
\]

where \(n \equiv (s, \sigma) \) with \(s = \pm, \sigma = \uparrow, \downarrow \) and each column of \(U(k) \) is an eigenvector of \(H_k^\text{MF} \):

\[
X_{\sigma\uparrow}(k) = \begin{pmatrix}
\sqrt{\frac{1+z_{\sigma\uparrow}}{2}} & 0 \\
0 & \sqrt{\frac{1-z_{\sigma\uparrow}}{2}}
\end{pmatrix}, \quad X_{\sigma\downarrow}(k) = \begin{pmatrix}
0 & \sqrt{\frac{1+z_{\sigma\downarrow}}{2}} \\
\sqrt{\frac{1-z_{\sigma\downarrow}}{2}} & 0
\end{pmatrix}, \quad (7)
\]

with

\[
x_{\sigma k} = \frac{b_{\sigma k}}{|b_{\sigma k}|}, \quad z_{\sigma k} = \frac{\delta}{\sqrt{\delta^2 + |b_{\sigma k}|^2}}
\]

\[
b_{\sigma k} = \epsilon_k^{\dagger} - t_z \cos(k_z) e^{-i\beta \sigma_z}, \quad (8)
\]

and \(\delta = U M \). The corresponding eigenenergies, \(\epsilon_{\sigma \sigma}(k) = s \sqrt{\delta^2 + |b_{\sigma k}|^2} \), are independent of the spin flavor, \(|b_{\sigma k}|^2 = b_k^2 \) and \(z_{\sigma k} \equiv z_k \), because of the U(1) invariance of \(H \) under global spin rotations about the z axis. The noninteracting system is then metallic when the band gap at each \(k \) point, \(\Delta_k = 2 \sqrt{\delta^2 + b_k^2} = 2|b_k| \) closes on a nodal line \(b_k = 0 \) of band crossing points that coincides with the FS [see Fig. 1(a)].

Because we are considering a bilayer system, the half-filled condition corresponds to an integer number of electrons per unit cell, implying that the ground state of the noninteracting \((U = 0) \) system can either be a metal or a band insulator, as illustrated in Fig. 1(a). For \(\alpha = 0 \), the metal to insulator transition occurs via a semimetallic state with small and identical electron and hole pockets that shrink into a quadratic Fermi point. For instance, for \(t_z = 0 \), the FS is the square defined by the equations \(k_1 + k_2 = \pm \pi \) and \(k_1 - k_2 = \pm \pi \). Upon increasing \(|t_z| \), while keeping \(\alpha = 0 \), the square shrinks into a circular pocket that finally disappears for \(|t_z| > 4 |t| \). In contrast, the noninteracting system is always a band insulator for \(\alpha \neq 0 \).

The on-site repulsion \(U \) induces AFM ordering via a QPT that depends on the nature of the noninteracting state. In both cases, noninteracting metal and insulator, the longitudinal AFM susceptibility \((q = 0) \) at \(\omega = 0 \) is given by

\[
\chi_0^{(1)}(\mathbf{q}, 2) = (1) \chi^{(1)} + \chi^{(2)} \frac{1}{2 N_u} \sum_{k \in \text{BZ}} \frac{1}{|b_k|}, \quad (9)
\]

where \(\gamma^{(1)}, 2 = A, B \) are sublattice indices. Note that the antiferromagnetic susceptibility can diverge at \(q = 0 \) because the nonmagnetic unit cell contains one site of each sublattice. From the mean field calculation, the critical interaction strength is given by

\[
U_{\text{c}}^{-1} = \frac{1}{2 N_u} \sum_{k \in \text{BZ}} \frac{1}{|b_k|}, \quad (10)
\]

The resultant phase boundaries for several values of \(\alpha \) are shown in Fig. 1(b).

For \(\alpha = 0 \) and \(U = 0 \), the system is metallic for \(|t_z|/t < 4 \). In this case, the perfect nesting due to the coincidence of the particle and hole Fermi surfaces leads to a logarithmic divergence of \(\chi_0^{(1)}(\mathbf{q}, \omega) = 0 \) at \(q = 0 \). Note that the divergence becomes \(\ln^2 q \) for a square FS (\(t_z = 0 \)) because of
the Van Hove singularity in the density of states at the Fermi level (the corners of the square correspond to saddle points of the dispersion relation). In other words, the critical interaction strength \(U_\alpha > 0 \) for \(\alpha = 0 \) and \(U = 0 \), the system is a metal for \(\vert t_z/t \vert < 4 \) and a band insulator for \(\vert t_z/t \vert > 4 \). The metal becomes an AFM insulator for an infinitesimally small value of \(U_\alpha \). For \(\alpha \neq 0 \), the present model \((1) \) exhibits a continuous phase transition from the band insulator to the AFM insulator at a finite \(U/t \). The solid circle symbol indicates the estimated parameter set for the bilayer iridate \(\text{Sr}_3\text{Ir}_2\text{O}_7 \) with \(\alpha = 1.45 \). (c) Energy diagram as a function of \(U/t \) for the parameter set relevant to \(\text{Sr}_3\text{Ir}_2\text{O}_7 \). The red dashed line indicates the energy of the \(S^z = \pm 1 \) exciton that becomes the transverse mode for \(U > U_c \). The blue dotted line indicates the energy of the \(S^z = 0 \) exciton that becomes a longitudinal mode for \(U > U_c \). The gray area indicates the particle-hole continuum. From a comparison with RIXS data [24–27], we estimate that \(U = 0.33 \text{ eV} \) for \(\text{Sr}_3\text{Ir}_2\text{O}_7 \).

clearer upon analyzing the behavior of the magnetic excitations. The order parameter is determined by solving the self-consistent mean field equation

\[
M = \frac{1}{2N_u} \sum_k z_k.
\]

Near the critical point \(U = U_c \), we obtain \(M \propto (t/U)e^{-1/(\rho_0 U)} \) for the metal, where \(\rho_0 \) is the density of states at the Fermi level, and \(M = 2\sqrt{(U - U_c)/(DU^c \gamma)} \) for the band insulator with \(D = \frac{1}{N_u} \sum_{k \in BZ} \vert b_k \vert^{-3/2} \).

IV. EXCITON CONDENSATION

In view of the \(U(1) \) invariance of \(\mathcal{H} \) and the AFM ground state, the transverse and longitudinal spin fluctuations are decoupled from each other. Within the random phase approximation (RPA), the magnetic susceptibilities of the transverse and the longitudinal modes are given by

\[
\chi^{+-}(q, i\omega_n) = \frac{1}{\tau^0 - U \chi_0^{-+}(q, i\omega_n)} \chi_0^{+-}(q, i\omega_n),
\]

\[
\chi^{zz}(q, i\omega_n) = \frac{1}{\tau^0 - \frac{U}{2} \chi_0^{zz}(q, i\omega_n)} \chi_0^{zz}(q, i\omega_n),
\]

respectively, where \(\tau_0 \) is the \(2 \times 2 \) identity matrix. Here \(\chi^{+-} \) and \(\chi^{zz} \) refer to \(2 \times 2 \) matrices in the sublattice space, while \(\chi_0^{+-} \) and \(\chi_0^{zz} \) are the bare magnetic susceptibilities. See Appendix A for details of the RPA calculation.

The eigenfrequencies \(\omega_q \) of the collective transverse modes (magnons) can be extracted from the poles of the transverse RPA susceptibility: \(\text{det[}\tau^0 - U \chi_0^{+-}(q, \omega_q)] = 0 \). The spectrum is fully gapped because the \(U(1) \) symmetry of \(\mathcal{H} \) is not spontaneously broken by the AFM ordering along the \(z \)-axis. As shown in Fig. 1(c), the transverse modes remain gapped at \(U = U_c \) and they become the \(S^z = \pm 1 \) excitons of nonmagnetic band insulator for \(U < U_c \). Note that this gap closes in the absence of spin-orbit coupling (\(\alpha = 0 \)) because the Hamiltonian becomes SU(2) invariant.

The most interesting feature is the emergence of a LM below the particle-hole continuum around the \(\Gamma \) point of the second Brillouin zone \(\{q = (\pi, \pi, \pi)\} \). The origin of this mode can be understood by analyzing the excitation spectrum of the band insulator for \(U < U_c \). The bare magnetic susceptibility at \(q = 0 \), which is equivalent to \((\pi, \pi, \pi) \), is \(\chi_0^{zz}(0, \omega) = \Phi(\omega)(\tau^0 - \tau^z) \), where \(\tau^z \) is the Pauli matrix and

\[
\Phi(\omega) = \frac{1}{2N_u} \sum_{k \in BZ} \frac{1}{\vert b_k \vert |1 - (\frac{\omega}{2\omega_p})^2|}.
\]

The function \(\Phi(\omega) \) is real, and it increases monotonically with \(\omega \) up to the lower edge of the particle-hole continuum \(\omega_{ph} = 2\min(b_k) \), where it diverges: \(\Phi(\omega = 0) = 1/U_c \) and \(\lim_{\omega \to \omega_{ph}} \Phi(\omega) = \infty \). The putative pole of the longitudinal susceptibility is determined by the condition

\[
\Phi(\omega) = 1/U,
\]

FIG. 1. (a) Schematic picture for the band structure of noninteracting metal and band insulator. (b) Phase boundaries in the mean field approximation for \(\alpha = 0, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 0.5, \text{ and } 1.45 \) (from top to bottom). For \(\alpha = 0 \) and \(U = 0 \), the system is a metal for \(\vert t_z/t \vert < 4 \) and a band insulator for \(\vert t_z/t \vert > 4 \). The metal becomes an AFM insulator for an infinitesimally small value of \(U_\alpha \). For \(\alpha \neq 0 \), the present model \((1) \) exhibits a continuous phase transition from the band insulator to the AFM insulator at a finite \(U/t \). The solid circle symbol indicates the estimated parameter set for the bilayer iridate \(\text{Sr}_3\text{Ir}_2\text{O}_7 \) with \(\alpha = 1.45 \). (c) Energy diagram as a function of \(U/t \) for the parameter set relevant to \(\text{Sr}_3\text{Ir}_2\text{O}_7 \). The red dashed line indicates the energy of the \(S^z = \pm 1 \) exciton that becomes the transverse mode for \(U > U_c \). The blue dotted line indicates the energy of the \(S^z = 0 \) exciton that becomes a longitudinal mode for \(U > U_c \). The gray area indicates the particle-hole continuum. From a comparison with RIXS data [24–27], we estimate that \(U = 0.33 \text{ eV} \) for \(\text{Sr}_3\text{Ir}_2\text{O}_7 \).
which implies that a pole must exist in the energy window $0 \leq \omega \leq \omega_{ph}$ for $0 < U < U_c$. As long as U_c is finite, i.e., the noninteracting system is a band insulator, the pole appears just below the gap $\Delta = \omega_{ph}$, that signals the onset of the particle-hole continuum. This pole corresponds to the formation of an $S^z = 0$ exciton. Upon examining the transverse susceptibility, we also find a doubly degenerate pole associated with the formation of $S^z = \pm 1$ excitons [see Fig. 1(c)], whose energy is higher than the energy of the $S^z = 0$ exciton because of the easy-axis anisotropy. We note that the three excitonic states become degenerate in the absence of spin-orbit interaction because \mathcal{H} is SU(2) invariant in that limit. The binding energy exhibits the singular behavior $E_b \propto \omega_{ph} \exp(-k \omega_{ph}/U)$, characteristic of 2D systems in the weak-coupling limit (κ is a nonuniversal number).

As shown in Fig. 1(c), the $S^z = 0$ exciton becomes soft at $U = U_c$ and $\omega_L \approx 2\sqrt{2(U_c-U)/(DU^2_S)}$ for $U \approx U_c$. The condensation of this mode signals the onset of the Néel phase with magnetic moments pointing along the z axis due to the effective easy-axis anisotropy.

In the AFM phase ($U > U_c$), the bare magnetic susceptibility at $q = 0$ is given by

$$\Phi(\omega) = \frac{1}{2UM} \frac{1}{N_u} \sum_{k \in \mathbb{BZ}} z_k \frac{1 - z_k^2}{1 - (2\pi/M)^2 z_k^2}. \quad (16)$$

Once again, $\Phi(\omega)$ is real, and $d\Phi/d\omega \geq 0$ for $\omega \leq \omega_{ph} = 2\sqrt{2(U/M)^2 + \min(b_k)}$. If the noninteracting state is a band insulator (finite U_c), it holds that $b_k > 0$ for any k, implying that a pole must then exist in the window $0 \leq \omega \leq \omega_{ph}$ because $\Phi(\omega = 0) < 1/U$ and $\Phi(\omega_{ph}) > 1/U$. For $U \geq U_c$, the exciton energy scales as $\omega_L = 4\sqrt{(U-U_c)/(DU^2_S)}$. Upon further increasing U, ω_L increases quickly and approaches the lower edge of the particle-hole continuum asymptotically. This behavior can be understood by considering the large-U limit. In this limit, the effective particle-hole interaction that provides the “glue” for the formation of the LM is the exchange interaction, on the order of t^2/U, along the vertical bonds, implying that the binding energy of the LM must vanish for $U \to \infty$. The particle and the hole break only one AFM link when they occupy the two sites of the same vertical bond, while they break two vertical links when they occupy two different vertical bonds. In contrast, the binding energy of the low-energy transverse modes is on the order of U because the particle and the hole occupy the same site. See Appendix B for the analysis of the exciton wave function.

The situation is qualitatively different for a metallic noninteracting system with perfect FS nesting. If $\min(b_k) = 0$, the condition (15) cannot be fulfilled because $\Phi(\omega < \omega_{ph}) \leq \Phi(\omega_{ph}) = 1/U$. Therefore, the LM of the AFM phase is absent in this case.

V. LONGITUDINAL MODE OF BILAYER IRIDATE

From the above analysis, we predict that the bilayer iridate Sr$_2$Ir$_2$O$_7$ should exhibit a LM in a relatively small region around the center of the Brillouin zone. This prediction is qualitatively different from a previous interpretation of the RIXS data [25], based on a pure spin model (i.e. strong-coupling limit), that reports the existence of a LM over the whole Brillouin zone. The effective Hamiltonian (1) for Sr$_2$Ir$_2$O$_7$ can be obtained by constructing a tight-binding model of the t_2g orbitals and projecting it onto $J_{el} = 1/2$ lowest energy doublet [32]. The resulting parameters of the effective single-orbital Hubbard model can be optimized to reproduce the experimentally observed magnon dispersion [24–27]: $\alpha = 1.45$ and $t = 0.11$, $t_z = 0.09$, $U = 0.33$ in units of eV. This value of $\alpha \approx \pi/2$ produces a strong easy-axis anisotropy, realized in a tetragonal elongation of octahedra consistent with $|t| > |t_z|$, as estimated for Sr$_3$Ir$_2$O$_7$ [32].

The dynamical spin structure factor

$$S^{uv}(q,\omega) = \int_{-\infty}^{\infty} dt e^{i\omega(t)} S_u^v(t)S_{-q}^v(0), \quad (17)$$

where $S_u^v = \frac{1}{\sqrt{\mathcal{N}}} \sum_{\mathbf{r}} S^v_{\mathbf{r}} e^{i\mathbf{q}\cdot\mathbf{r}}$, is obtained from the dynamical spin susceptibility given in Eqs. (12) and (13). Figure 2 shows the out-of-phase ($q_z = \pi$) transverse (OT) response, $S^{zz}(q,\omega) = S_{\mathbf{r}\varphi}^{\mathbf{r}\varphi}(q,\omega)$, and the out-of-phase longitudinal (OL) response, $S^{zz}(q,\omega)$, for $U = 0.33$, $U_c \approx 0.28$, and 0.23 eV. The in-phase, or $q_z = 0$, transverse (IT) response is not shown because it is practically identical to the OT response [24]. This is a direct consequence of the strong easy-axis effective interlayer exchange that suppresses the single magnon tunneling between the two layers. In the large-U limit, the effective interlayer exchange includes only Ising and Dzyaloshinskii-Moriya exchange interactions that do not split the two degenerate single-layer modes. This anisotropy is also responsible for the large spin gap revealed by RIXS measurements [24]. No excitation peak is found below the particle-hole continuum in the in-phase longitudinal response. To match the RIXS peak at $U = 0.33$ eV, shown in Figs. 2(a) and 2(b), is consistent with the RIXS measurements [24–27]. The resultant charge gap (≈ 130 meV) is also consistent with the experimental observation [23]. The structure of the continuum reflects the underlying electron bands. Unfortunately, the resolution of the reported RIXS data [24–27] is not enough to extract structures in the continuum. It would be of interest to compare the structure and the onset of the continuum to our calculation.

The most salient feature of the results shown in Fig. 2 is the sharp OL mode near $q_z = (0,0)$ and (π,π). Interestingly, the sharp OL mode appears only at restricted wave vectors because the particle-hole continuum exists in the same energy scale. The OL mode becomes gapless at $U = U_c$, while the OT mode remains gapped, as shown in Figs. 2(c) and 2(d); the excitation peaks in the band insulator for $U < U_c$ remain sharp, as shown in Figs. 2(e) and 2(f). The U dependence of the energy of this OL mode has important consequences for its stability. While the kinematic constraints do not allow for its decay into two transverse modes for the parameters of Sr$_3$Ir$_2$O$_7$, the fact that $\omega_L(\omega_F)$ is of order $U (t^2/U)$ in the large-U/t limit implies that the decay becomes kinematically
FIG. 2. Dynamical spin structure factors of the out-of-phase mode: (a) in-plane or transverse $S^{xx}(q, \omega) = S^{yy}(q, \omega)$ component and (b) out-of-plane or longitudinal component $S^{zz}(q, \omega)$ for $U = 0.33$ eV; (c) $S^{xx}(q, \omega) = S^{yy}(q, \omega)$ and (d) $S^{zz}(q, \omega)$ for $U = U_c \approx 0.28$ eV; and (e) $S^{xx}(q, \omega) = S^{yy}(q, \omega)$ and (f) $S^{zz}(q, \omega)$ for $U = 0.23$ eV. The hopping parameters were chosen to reproduce the RIXS data of the bilayer iridate Sr$_3$Ir$_2$O$_7$ [24-27]: $t = 0.11$ eV, $t_z = 0.09$ eV, $\alpha = 1.45$, and the intralayer next nearest neighbor hopping 0.012 eV. The broadening factor is $\eta = 10^{-4}$ eV. Intensity larger than the maximum value in the scale (color) bar is plotted in the same color.

allowed above a certain value of U. In other words, the sharp OL mode that we predict for Sr$_3$Ir$_2$O$_7$ is protected by the large spin gap generated by the easy-axis anisotropy and by the relatively small value of U/t. Thus, the sharpness of the OL peak and the fact that ω_L and ω_T are comparable energy scales are clear indicators of the proximity of Sr$_3$Ir$_2$O$_7$ to the QCP at $U = U_c$. Because the real material has a small inter-bilayer hopping, the dimension of the effective theory that describes
this QCP, \(D = 3 + 1 \), coincides with the upper critical dimension (Gaussian fixed point). This means that the mean field theory adopted here is correct up to logarithmic corrections.

Finally, we note that higher order processes through the \(J_{\text{int}} = 3/2 \) orbitals induce further neighbor hopping terms that can make the noninteracting system semimetallic without the FS nesting. In this case, a first-order metal-to-insulator transition occurs at a finite value of \(U \) [32], implying that there are two alternative scenarios for suppressing the AFM order via reduction of the coupling strength \(U/t \) in bilayer iridates. For the case of \(\text{Sr}_3\text{Ir}_2\text{O}_7 \), we predict that, if the material transitions into a band insulator, a QCP must exist at \(U_c \approx 0.28 \text{ eV} \), which is only 15\% smaller than the estimated value \(U = 0.33 \text{ eV} \) at ambient pressure. The coupling strength \(U/t \) can be reduced by applying high pressure [33].

In this scenario, the LM becomes soft at \(U = U_c \). In contrast, if the transition is of first order, the material becomes metallic without the softening of the LM. While absent in a metallic phase, the characteristic \(S^z = 0 \) exciton peak appears in the bilayer spin-orbit band insulator for \(U < U_c \), as shown in Fig. 2(f).

VI. SUMMARY AND DISCUSSION

We have reported the existence of a sharp LM in antiferromagnetic bilayer Mott insulators with large spin-orbit coupling. Whenever the noninteracting system is a band insulator, \(S^z = 0, \pm 1 \) excitons emerge from the particle-hole continuum for an infinitesimally small value of \(U \). For materials with easy-axis anisotropy, such as the bilayer iridate \(\text{Sr}_3\text{Ir}_2\text{O}_7 \), the Ising-like AFM ordering results from the condensation of \(S^z = 0 \) excitons at a critical value \(U = U_c \). If the noninteracting system is a metal with FS nesting, the formation and condensation of the particle-hole pairs that produce the magnetic moments occur simultaneously at \(U_c = 0^+ \). Similarly to the case of single-layer Mott insulators, such as \(\text{Sr}_2\text{IrO}_4 \), the LM is absent in the resulting AFM state.

We emphasize that the LM that we discussed in this work exists as a sharp mode only close enough to the QCP between the AFM phase and the paramagnetic band insulator. A similar QCP still exists in the large-\(U \) limit, where it divides the AFM state from a quantum paramagnetic spin state, whose mean field description is a product state of rung singlets [25], which is adiabatically connected with the band insulator. Note that such a mean field state can only be captured by expanding the variational space of product single-site states that is assumed by the conventional AFM mean field approach used in this work. However, our estimate of the hopping amplitudes for \(\text{Sr}_3\text{Ir}_2\text{O}_7 \), consistent with the effective model obtained from the three-orbital model [32], leads to \(J_z/J = (t_z/t)^2 \approx 0.67 \) in the strong coupling limit. This value of the exchange coupling ratio is significantly smaller than the critical value \((J_z/J)_c \). The bond-operator mean field theory gives \((J_z/J)_c = 4 \) for the isotropic and the easy-axis cases [16, 25], while the exact value for the SU(2) invariant case is very close to \((J_z/J)_c = 2.5221 \) according to quantum Monte Carlo simulations [34].

In the previous section, the sharp LM mode does not survive in the large-\(U \) limit of the Hubbard model of \(\text{Sr}_3\text{Ir}_2\text{O}_7 \) (the LM loses its sharpness far enough from the QCP because the kinematic constraints allow it to decay into pairs of transverse modes). Moreover, as shown in Fig. 2, the sharp LM appears only at restricted wave vectors because the particle-hole continuum exists in the same energy scale. This characteristic feature of \(\text{Sr}_3\text{Ir}_2\text{O}_7 \) indicates that this material is an excitonic insulator [28–30] near the critical point \(U = U_c \). In other words, the proximity of \(\text{Sr}_3\text{Ir}_2\text{O}_7 \) to quantum criticality is caused by strong charge fluctuations, which are absent in the pure spin model.

Finally, it is worth mentioning that the longitudinal mode can also exist in bilayer Mott insulators with easy-plane anisotropy. The corresponding \(XY \)-AFM state results from the condensation of the \(S^z = \pm 1 \) excitons, while the \(S^z = 0 \) exciton remains gapped at \(U = U_c \) and becomes the LM for \(U > U_c \). The main difference is that this LM, also known as “Higgs mode,” is critically damped in (3+1)D because it is allowed to decay into two transverse magnons (Goldstone modes) of the AFM state [11–13, 15, 35, 36]. It is of great interest to seek the sharp LM and the Higgs mode in other physical systems. Recently, fermionic systems described by bilayer Hubbard models have been realized in cold atoms [37], implying that the exciton condensation that we have discussed here can also be realized in these systems.

ACKNOWLEDGMENTS

We thank Jian Liu and Mark Dean for helpful discussions. H. S. acknowledges support from JSPS KAKENHI Grant No. JP19K14650. S.-S. Z. and C. D. B. are supported by funding from the Lincoln Chair of Excellence in Physics. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Appendix A: Random phase approximation (RPA)

In view of the \(U(1) \) invariance of \(\mathcal{H} \) and of the ground state, the transverse and longitudinal spin fluctuations are decoupled from each other. The same is true for the charge fluctuations. Consequently, we rewrite the (bare) interaction vertex in three different forms which account for the longitudinal and transverse spin fluctuations, respectively,

\[
\mathcal{H}_{\text{int}} = \frac{1}{2} \sum_r \sum_{\{\sigma_1\}} \sum_{\{\sigma_2\}} \sum_{\{\sigma_3\}} V_{\sigma_1 \sigma_2 \sigma_3} \sigma_{1,r}^\dagger \sigma_{2,r}^\dagger \sigma_{3,r} \sigma_{4,r}, \tag{A1}
\]

where the interaction vertex takes three equivalent forms,

\[
V_{\sigma_1 \sigma_2 \sigma_3} = \frac{1}{2} U \left(\sigma_{\sigma_1 \sigma_2 \sigma_3} - \sigma_{\sigma_1 \sigma_4} \sigma_{\sigma_2 \sigma_3} \right) \tag{A2}
\]

\[
= \frac{1}{2} U \sigma_{\sigma_1 \sigma_3} \sigma_{\sigma_2 \sigma_4} - U \sigma_{\sigma_1} \sigma_{\sigma_2} \sigma_{\sigma_3} \tag{A3}
\]

\[
= \frac{1}{2} U \sigma_{\sigma_1} \sigma_{\sigma_2} \sigma_{\sigma_3}. \tag{A4}
\]
\[\sigma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma^\pm = \frac{1}{2}(\sigma^x \pm i\sigma^y).\]

We are ready to compute the dynamic spin-charge susceptibility within the RPA. Figures 3(a) and 3(b) show the fermion propagator and the bare vertex, respectively. The free fermion Green's function

\[G_0(q, i\omega_n) = \sum_{n = \pm, \sigma = \pm, \downarrow} \frac{P_{n\sigma}(q)}{i\omega_n - \varepsilon_{n\sigma}(q)}, \tag{A5}\]

is represented by a solid line, where \(P_{n\sigma}(q) = \langle X_{n\sigma}(q) | X_{n\sigma}(q) \rangle\) is the projector on the eigenstate \(|X_{n\sigma}(q)\rangle\) of the mean field Hamiltonian.

The (bare) dynamic spin-charge susceptibility of the noninteracting mean field Hamiltonian is given by

\[\chi^{\pm}(q, i\omega_n) = \frac{1}{N_u} \sum_{k, \sigma, \sigma'} \frac{n_F(\varepsilon_{\sigma}(k + q)) - n_F(\varepsilon_{\sigma}(k))}{i\omega_n - \varepsilon_{\sigma}(k)} F^{(\gamma_1, \mu);(\gamma_2, \nu)}(q, i\omega_n), \tag{A6}\]

where \(\gamma_1, \gamma_2 = A, B\) are sublattice indices and \(\mu, \nu = 0, \pm, z\) are charge-spin indices. Here we have introduced the polarization factor

\[F^{(\gamma_1, \mu);(\gamma_2, \nu)}(k; q) = \text{Tr} \left[P_{\sigma_1}(k) \Sigma_{\gamma_1}^\mu P_{\sigma_2}(k + q) \Sigma_{\gamma_2}^\nu \right], \tag{A7}\]

with \(\Sigma_{\gamma}^\mu \equiv \frac{1}{2}(\tau_0 + \varepsilon_{\gamma} \tau_z) \otimes \sigma^\mu\), where \(\varepsilon_{\gamma}\) takes the values 1 (-1) for \(\gamma = A(B)\), and \(\tau_0\) and \(\tau_z\) are the 2 \times 2 identity and the Pauli matrix of the sublattice space, respectively. The diagram of \(\chi^{0}\) is shown in Fig. 3(c). Because of the \(U(1)\) spin rotation symmetry about the z axis, \(F^{(\gamma_1, \mu);(\gamma_2, \nu)}(k; q)\) has the following structure:

\[F^{(\gamma_1, \mu);(\gamma_2, \nu)}(k; q) = \begin{pmatrix} F^{(\gamma_1, 0);(\gamma_2, 0)} & 0 & 0 & 0 \\ 0 & F^{(\gamma_1, +);(\gamma_2, -)} & 0 & 0 \\ 0 & 0 & F^{(\gamma_1, -);(\gamma_2, +)} & 0 \\ 0 & 0 & 0 & F^{(\gamma_1, z);(\gamma_2, z)} \end{pmatrix}, \tag{A8}\]

The same structure holds for \(\chi^{0}_{RPA}(q, i\omega_n)\), confirming that the transverse spin fluctuations, longitudinal spin fluctuations, and charge fluctuations are decoupled from each other. In the following, we focus on the spin channel, which is of main interest for this work.

Figure 3(d) represents the magnetic susceptibility at the RPA level. The results are

\[\chi^{\pm}_{RPA}(q, i\omega_n) = \frac{1}{\tau^0 - U \chi^{0}_{RPA}(q, i\omega_n)} \chi^{\pm}(q, i\omega_n), \tag{A9}\]

for the transverse channel and

\[\chi^{zz}_{RPA}(q, i\omega_n) = \frac{1}{\tau^0 - \frac{2}{\pi} \chi^{zz}(q, i\omega_n)} \chi^{zz}_{RPA}(q, i\omega_n) \tag{A10}\]

for the longitudinal channel. Note that \(\chi^{\pm}_{RPA}, \chi^{zz}_{RPA}\), and \(\chi^{zz}_{RPA}\) are 2 \times 2 matrices in the sublattice space, while \(\chi^{0}_{RPA}\), \(\chi^{0}_{RPA}\), and \(\chi^{zz}_{RPA}\) are the corresponding bare magnetic susceptibilities, respectively.

Appendix B: Exciton wave function

We here investigate the wave function of the exciton formed by multiple particle-hole pairs with \(S^z = 0\). In the large-\(U\) limit, it is mainly composed of a single particle-hole pair because the energy cost of creating a particle-hole is of order \(\sim U\). The wave function of the pair is anticipated to be a tightly bound state because the mean field bandwidth of an electron/hole \(\sim t^2/U\) is comparable to the binding energy \(\zeta t^2/U\), where \(\zeta \simeq 0.88\) obtained by solving the pole equation for the relevant set of the hopping parameters.

To determine the size of the bound state, we consider the particle-hole Green’s function

\[iG^{(2)}_{\{\gamma_1\sigma_1, \gamma_1\sigma_1'; \{\gamma_2\sigma_2, \gamma_2\sigma_2'\}}(Q, \omega; k, q) = \int_{-\infty}^{\infty} dt e^{i\omega t} \langle T_{\sigma_1} c_{\gamma_1\sigma_1}^\dagger(k - \frac{Q}{2}, t) c_{\gamma_1\sigma_1'}(k + \frac{Q}{2}, t) \rangle \times c_{\gamma_2\sigma_2}^\dagger(q - \frac{Q}{2}, 0) c_{\gamma_2\sigma_2'}(q - \frac{Q}{2}, 0) \rangle (G). \tag{B1}\]

The exciton gives rise to a pole at \(\omega = \omega_E(Q)\) for the center-of-mass momentum \(Q\):

\[iG^{(2)}_{\{\gamma_1\sigma_1, \gamma_1\sigma_1'; \{\gamma_2\sigma_2, \gamma_2\sigma_2'\}}(Q, \omega; k, q) \sim \frac{\psi_{\gamma_1\sigma_1;\gamma_1'\sigma_1'}(k) \psi_{\gamma_2\sigma_2;\gamma_2'\sigma_2'}(q)}{\omega - \omega_E(Q) + i0^+} + \text{regular term}, \tag{B2}\]

where \(\psi_{\gamma_1\sigma_1;\gamma_1'\sigma_1'}(k) = (G)c_{\gamma_1\sigma_1}^\dagger(k - \frac{Q}{2}) c_{\gamma_1'\sigma_1'}(k + \frac{Q}{2}) |b_q\rangle\), |\(b_q\rangle\) is the exciton eigenstate with center of mass momentum \(Q\), and \(\omega_E(Q)\) is the exciton energy measured from the ground state. The probability amplitude to find a hole with spin \(\sigma_1\) at \(r_1\) and an electron with spin \(\sigma_2\) at \(r_2\) is obtained by
where $P_{s,σ}(k) = |X_{s,σ}(k)⟩⟨X_{s,σ}(k)|$ is the projector to the $(s, σ)$ eigenstate at k. In the RPA (see Fig. 4), the T matrix is given by

\[
-i T_{(γsγ3,γ4γ′)}(Q, ω; k, q) = i \frac{2}{U} σ_{sσ} σ_{σ} δ_{\gammaσσ} δ_{γ3γ4} δ_{γ4γ3} \frac{e^{i(q - 1/2, k - 1/2) - e^{i(-1, k - 1/2)}}}{ω - (ε_{1, k + 1/2} - ε_{-1, k - 1/2})}.
\]

(8)\

Note that the bare Hubbard interaction is written in terms of the longitudinal component of the spin operator, $H_{\text{int}} = \sum_{σ} [(1/4)(n_σ)^2 - (S_z^σ)^2]$ with $n_σ = \sum_{r} c_{rσ}^\dagger(r)c_{rσ}(r)$ and $S_z^σ = (1/2) \sum_{r} σc_{rσ}^\dagger(r)c_{rσ}(r)$. Under the RPA, the T matrix that describes the renormalized interaction between electrons includes contributions from longitudinal spin fluctuations.

Let us consider the exciton at $Q = 0$, which has the lowest energy $ω_L(Q = 0) = 0$. Near the exciton pole, the longitudinal RPA susceptibility is given by

\[
χ_{\text{RPA}}(γzγ′z; 0, ω) \sim -\frac{1}{U^2 Φ'(ω_L)} \frac{1}{ω - ω_L + i0^+},
\]

(10)\

where

\[
Φ'(ω_L) = \frac{1}{4(UM)^3 N_u} \sum_{k ∈ BZ} \frac{e^{2k}(1 - e^{-2k})^2}{[1 - (2ω_L/M)^2 e^{-2k}]^2}.
\]

(11)\

For $U > U_c$, in the vicinity of the critical point U_c, it takes the asymptotic form $Φ'(ω_L) ≈ UM \frac{1}{N_u} \sum_{k} |b_k|^{-3} ∝ \sqrt{U - U_c}$. The longitudinal RPA susceptibility, therefore, acquires a diverging spectral weight $\propto 1/\sqrt{U - U_c}$, implying strong lon-
FIG. 5. Probability distribution $|\psi_{\downarrow}(0, r_2)|^2$ for several strengths of the on-site coupling U. A hole with spin \downarrow is assumed located at $r_1 = 0$ on layer 1. The critical coupling is $U_c \approx 0.277 \text{ eV}$ for the hopping parameters relevant to Sr$_2$IrO$_4$, while the on-site Hubbard interaction is estimated to be $U = 0.33 \text{ eV} (= 1.19U_c)$ for the material. M is the magnitude of the local ordered magnetic moment. The distribution function $|\psi_{\downarrow}(0, r_2)|^2$ is normalized for each value of U, so that the sum over r_2 is equal to one.

Longitudinal Spin Fluctuations

In the large-U limit,

$$\Phi'(\omega_L) \rightarrow \frac{1}{\mathcal{N}_u} \sum_k \frac{2v^2_k}{(\epsilon^2 + 2q^2)^2} \sim O(1), \quad (B12)$$

and the spectral weight of the longitudinal RPA susceptibility approaches zero as U^{-2}.

According to Eq. (B9), the exciton mode also appears as a pole of the particle-hole Green’s function. For instance,

$$G^{(2)}_{(\gamma_1\sigma_1, \gamma_2\sigma_2);(\gamma_3\sigma_3, \gamma_4\sigma_4)}(0, \omega; k, q)$$

$$\sim \frac{1}{\omega - \omega_L + i\Gamma} \left[\frac{1}{\Phi'(\omega_L)} \delta_{\sigma_1\sigma_3} \delta_{\sigma_2\sigma_4} \sum_{\gamma_3} (-1)^{\gamma_3} G^{(2)}_{(\gamma_1\sigma_1, \gamma_3\sigma_3);(\gamma_2\sigma_2, \gamma_4\sigma_4)}(0, \omega_L; k, k) \right] \quad (B13)$$

$$\times \sum_{\gamma_4} (-1)^{\gamma_4} G^{(2)}_{(\gamma_4\sigma_2, \gamma_4\sigma_4);(\gamma_2\sigma_2, \gamma_2\sigma_2)}(0, \omega_L; q, q)$$

+ regular terms.
The spectral weight of the exciton pole is equal to the projection of the exciton wave function to the two-magnon sector

$$\psi_{\gamma;\gamma'}(k) = \frac{\sigma}{\sqrt{\Phi(\omega_L)}} \delta_{\sigma\sigma'} \sum_{\gamma_0} (-1)^{\gamma} G^{(2)}_{\gamma;\gamma'}(\gamma_0, \omega_L; k, k). \tag{B14}$$

For each combination of sublattices, it reads

$$\psi_{A,\sigma;A,\sigma'}(k) = \frac{\sigma}{2\sqrt{\Phi(\omega_L)}} \delta_{\sigma\sigma'} (1 - z^2_k) \times \frac{\varepsilon_{1,k} - \varepsilon_{-1,k}}{\omega - (\varepsilon_{1,k} - \varepsilon_{-1,k})^2}, \tag{B15}$$

$$\psi_{B,\sigma;B,\sigma'}(k) = -\psi_{A,\sigma;A,\sigma'}(k), \tag{B16}$$

$$\psi_{A,\sigma;A,\sigma'}(k) = \frac{\sigma}{\sqrt{\Phi(\omega_L)}} \delta_{\sigma\sigma'} x^*_{\sigma k} \sqrt{1 - z^2_k} \times \frac{1 - \sigma z_k}{\omega_L} + \frac{1 + \sigma z_k}{\omega_L + \varepsilon_{1,k} - \varepsilon_{-1,k}}, \tag{B17}$$

$$\psi_{B,\sigma;A,\sigma'(k)} = \psi_{A,\sigma;B,\sigma'}(k). \tag{B18}$$

In the large-U limit, $\psi_{A,\sigma;A,\sigma'}(k) \sim O(U^{-1})$, $\psi_{A,\sigma;B',\sigma'}(k) \sim O(U^{-2})$, and $\psi_{B',\sigma;A,\sigma'}(k) \sim O(1)$. The asymptotic form of the nonzero amplitude reads

$$\psi_{A,\sigma;B,\sigma'}(k) = \psi_{B',\sigma;A,\sigma'}(k) \sim \frac{1}{\sqrt{\Phi(\omega_L)}} \zeta t^2 + 2 ||b_k^2 - \min_q b_q^2||, \tag{B19}$$

where $\zeta \approx 0.88$ determines the exciton binding energy $E_b = \omega_{ph} - \omega_L \approx \zeta t^2 / U$. The amplitude $\psi_{\downarrow}(r_1 \in A, r_2 \in B)$ determines the spectral weight of the configuration with one hole with spin \downarrow at $r_1 \in A$ and one electron with spin \downarrow at $r_2 \in B$. Since the ordered moment is $-M$ on sublattice A and M on sublattice B, the exciton is created by moving either \downarrow spin from sublattice A to B or a \uparrow spin from sublattice B to A. On the condition that a hole with spin \downarrow is pinned at $r_1 = 0$ (sublattice A and layer 1), the distribution of the spectral weight, i.e., $|\psi_{\downarrow}(0, r_2)|^2$, is shown in Fig. 5. In the large-U limit, a hole and an electron occupy different sublattices [Fig. 5(b)]. The bound state with the particle-hole pair occupying a vertical bond has the largest spectral weight and the probability of finding the particle and the hole on different layers is higher than the probability of finding them on the same layer. As a result of the strong binding energy relative to the bandwidth of the single electron or hole ($\sim E_b$), the size of the bound state is comparable to one lattice constant.

Figure 5 shows the evolution of the real space distribution of the particle-hole pair as a function of U. The ordered magnetic moment, $M = |\langle G | \Sigma e^{i \phi} | G \rangle|$ decreases upon reducing U/t within the ordered phase [Figs. 5(e)–5(g)] and the probability of finding the particle and the hole on the same site increases. Thus, $S^z (G)$ provides a reasonably good approximation of the exciton eigenstate. At $U = U_c$, we find $\psi_{A;B}(k) = \psi_{B;A}(k) = 0$ [Fig. 5(d)]. The magnetically ordered state emerges as a superposition of the nonmagnetic ground state of the band insulator and states containing multiple coherent excitons. The choice of the phase factor carried by each condensing exciton, equal to 0 or π, corresponds to the Z_2 time-reversal symmetry breaking ($M > 0$ or $M < 0$ on either sublattice). Note that the magnetic moments on the two sublattices must be opposite because of the relative $-\pi$ sign between $\psi_{\sigma,\sigma}(r_1 \in A, r_2 \in A)$ and $\psi_{\sigma,\sigma}(r_1 \in B, r_2 \in B)$, i.e., the system develops Néel magnetic ordering for $U > U_c$.

The time-reversal symmetry is restored as U decreases further below U_c (in the band insulator), and the wave function of the exciton becomes extended [see Figs. 5(a)–5(c)], as expected from the reduction of the binding energy. For zero binding energy ($\zeta = 0$), the integral $\frac{1}{N_{\sigma}} \sum_{\kappa} \psi_{A,\sigma;B,\sigma'}(k)e^{-ik_{\kappa}(r_{2} - r_{1})}$ that determines the real space wave function $\psi_{\downarrow}(r_1 \in A, r_2 \in B)$ is dominated by the singular points k_0 that minimize the particle-hole excitation energy $2\sqrt{\sigma^2 + b_k^2}$. In the simplest case where there is a unique singular point k_0, $\psi_{\downarrow}(r_1 \in A, r_2 \in B) \propto \frac{1}{N_{\sigma}} e^{ik_{\kappa}(r_{2} - r_{1})}$ takes the form of a plane wave.

[1] M. Jaime, V. F. Correa, N. Harrison, C. D. Batista, N. Kawashima, Y. Kazuma, G. A. Jorge, R. Stern, I. Heinmaa, S. A. Zvyagin, Y. Sasago, and K. Uchinokura, “Magnetic-field-induced condensation of tripons in hal purple pigment bacussi,” Phys. Rev. Lett. 93, 087203 (2004).

[2] S. E. Sebastian, N. Harrison, C. D. Batista, L. Balicas, M. Jaime, P. A. Sharma, N. Kawashima, and I. R. Fisher, “Dimensional reduction at a quantum critical point,” Nature 441, 617 (2006).

[3] C. D. Batista, J. Schmalian, N. Kawashima, P. Sengupta, S. E. Sebastian, N. Harrison, M. Jaime, and I. R. Fisher, “Geometric frustration and dimensional reduction at a quantum critical point,” Phys. Rev. Lett. 98, 257201 (2007).

[4] Vivien Zapf, Marcelo Jaime, and C. D. Batista, “Bose-einstein condensation in quantum magnets,” Rev. Mod. Phys. 86, 563–614 (2014).

[5] M. B. Stone, M. D. Lumsden, S. Chang, E. C. Samulon, C. D. Batista, and I. R. Fisher, “Singlet-triplet dispersion reveals additional frustration in the triangular-lattice dimer compound ba3mnmno286,” Phys. Rev. Lett. 100, 237201 (2008).

[6] M. Kofu, H. Ueda, H. Nojiri, Y. Oshima, T. Zenmoto, K. C. Rule, S. Gerischer, B. Lake, C. D. Batista, Y. Ueda, and S.-H. Lee, “Magnetic-field induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system ba3ct2o5,” Phys. Rev. Lett. 102, 177204 (2009).

[7] Andrey V. Chubukov, Subir Sachdev, and Jinwu Ye, “Theory of two-dimensional quantum heisenberg antiferromagnets with a nearly critical ground state,” Phys. Rev. B 49, 11919–11961 (1994).

[8] Subir Sachdev, “Universal relaxational dynamics near two-dimensional quantum critical points,” Phys. Rev. B 59, 14054–14073 (1999).

[9] Masashige Matsumoto, B. Normand, T. M. Rice, and Manfred Sigrist, “Field- and pressure-induced magnetic quantum phase
transitions in tlcuc1s," Phys. Rev. B 69, 054423 (2004).
[10] Ch. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F. McMorrow, K. W. Krämer, H. U. Güdel, S. N. Gvasaliya, H. Mutka, and M. Boehm, “Quantum magnets under pressure: Controlling elementary excitations in tlcuc1s," Phys. Rev. Lett. 100, 205701 (2008).
[11] Daniel Podolsky, Assa Auerbach, and Daniel P. Arovas, “Visibility of the amplitude (higgs) mode in condensed matter," Phys. Rev. B 84, 174522 (2011).
[12] Daniel Podolsky and Subir Sachdev, “Spectral functions of the higgs mode near two-dimensional quantum critical points," Phys. Rev. B 86, 054508 (2012).
[13] M. Lohöfer, T. Coletta, D. G. Joshi, F. F. Assaad, M. Vojta, S. Wessel, and F. Mila, “Dynamical structure factors and excitation modes of the bilayer heisenberg model," Phys. Rev. B 92, 245137 (2015).
[14] Tao Hong, Masashige Matsumoto, Yiming Qiu, Wangchun Chen, Thomas R. Gentile, Shannon Watson, Firas A. Alwadi, Mark M. Turnbull, Sachith E. Dissanayake, Harish Agrawal, Rasmus Toft-Petersen, Bastian Klemke, Kris Coester, Kai P. Schmidt, and David A. Tennant, “Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point," Nature Physics 13, 638–642 (2017).
[15] Yan Qi Qin, B. Normand, Anders W. Sandvik, and Zi Yang Meng, “Amplitude mode in three-dimensional dimerized antiferromagnets," Phys. Rev. Lett. 118, 147207 (2017).
[16] Ying Su, A. Masaki-Kato, Wei Zhu, Jian-Xin Zhu, Yoshitomo Kamiya, and Shi-Zeng Lin, “Stable higgs mode in anisotropic quantum magnets," Phys. Rev. B 102, 125102 (2020).
[17] Ryotaro Arita, Jan Kuneš, Pavel Augustinšký, Anton V. Kozhevnikov, Adolfo G. Eguiluz, and Masatoshi Imada, “Mott versus Slater-type metal-insulator transition in sr3ir2o7 and ba2ir4o10," in Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013), Vol. 3 (Journal of the Physical Society of Japan, Tokyo, Japan, 2014) p. 013023.
[18] Jeffrey G. Rau, Eric Kin-Ho Lee, and Hae-Young Kee, “Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials," Annual Review of Condensed Matter Physics 7, 195–221 (2016).
[19] Gang Cao and Pedro Schollmann, “The challenge of spin-orbit-tuned ground states in iridates: a key issue review," Reports on Progress in Physics 81, 042502 (2018).
[20] Lin Hao, D. Meyers, Hidemaro Suwa, Junyi Yang, Clayton Kolm, Dominik Krieger, Yongseong Choi, Jong-Woo Kim, Daniel Haskel, Philip J. Ryan, Haixuan Xu, Cristian D. Batista, M. P. M. Dean, and Jian Liu, “Giant magnetic response of a two-dimensional antiferromagnet," Nature Physics 14, 806–810 (2018).
[21] Lin Hao, Zhentao Wang, Junyi Yang, D. Meyers, Joshua Sanchez, Gilberto Fabbris, Yongseong Choi, Jong-Woo Kim, Daniel Haskel, Philip J. Ryan, Kipton Barros, Jiun-Haw Chu, M. P. M. Dean, Cristian D. Batista, and Jian Liu, “Anomalous magnetoresistance due to longitudinal spin fluctuations in a jrot = 1/2 mott semiconductor," Nature Communications 10, 5301 (2019).
[22] Joel Bertinas, Y.K. Kim, Giniyat Khalilullin, and B.J. Kim, “Square lattice iridates," Annual Review of Condensed Matter Physics 10, 315–336 (2019).
[23] Yoshinori Okada, Daniel Walkup, Hsin Lin, Chetan Dhillon, Tay-Rong Chang, Sovit Khadka, Wenwen Zhou, Horn-Tay Jeng, Mandar Paranjape, Arun Bansil, Ziqiang Wang, Stephen D. Wilson, and Vidya Madhavan, “Imaging the evolution of metallic states in a correlated iridate," Nature Materials 12, 707 (2013).
[24] Jungho Kim, A. H. Said, D. Casa, M. H. Upton, T. Gog, M. Daghofer, G. Jackeli, J. van den Brink, G. Kahlilullin, and B. J. Kim, “Large spin-wave energy gap in the bilayer iridate sr3ir2o7: Evidence for enhanced dipolar interactions near the mott metal-insulator transition," Phys. Rev. Lett. 109, 157402 (2012).
[25] M. Moretti Sala, V. Schnells, S. Boseggia, L. Simonelli, A. Alzein, J. G. Vale, L. Paolasini, E. C. Hunter, R. S. Perry, D. Prabhakaran, A. T. Boothroyd, M. Kirsch, G. Monaco, H. M. Rønnow, D. F. McMorrow, and F. Mila, “Evidence of quantum dimer excitations in sr3ir2o7," Phys. Rev. B 92, 024405 (2015).
[26] Tom Hogan, Rebecca Dally, Mary Upton, J. P. Clancy, Kenneth Finkelstein, Young-June Kim, M. J. Graf, and Stephen D. Wilson, “Disordered dimer state in electron-doped sr3ir2o7," Phys. Rev. B 94, 100401 (2016).
[27] Xingye Lu, D. E. McNally, M. Moretti Sala, J. Terzic, M. H. Upton, D. Casa, G. Ingold, G. Cao, and T. Schmitt, “Doping evolution of magnetic order and magnetic excitations in (sr1−xbainx)3ir2o7," Phys. Rev. Lett. 118, 027202 (2017).
[28] Jacques Des Cloizeaux, “Exciton instability and crystallographic anomalies in semiconductors," Journal of Physics and Chemistry of Solids 26, 259–266 (1965).
[29] B. I. HALPERIN and T. M. RICE, “Possible anomalies at a semimetal-semiconductor transition," Rev. Mod. Phys. 40, 755–766 (1968).
[30] D. Jérome, T. M. Rice, and W. Kohn, “Excitonic insulator," Phys. Rev. 158, 462–475 (1967).
[31] B. J. Kim, Hosub Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem, Jaejun Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rothenberg, “Novel Jrot = 1/2 mott state induced by relativistic spin-orbit coupling in sr3ir4o7," Phys. Rev. Lett. 101, 076402 (2008).
[32] Jean-Michel Carter and Hae-Young Kee, “Microscopic theory of magnetism in sr3ir2o7," Phys. Rev. B 87, 014433 (2013).
[33] Jianbo Zhang, Dayu Yan, Sorb Yesudhas, Hongshan Deng, Hong Xiao, Bijuan Chen, Raimundas Sereika, Xia Yin, Changjiang Yi, Youguo Shi, Zhenxian Liu, Ekaterina M. Pärşche, Cheng-Chien Chen, Jun Chang, Yang Ding, and Ho-kwang Mao, “Lattice frustration in spin-orbit mott insulator sr3ir2o7 at high pressure," npj Quantum Materials 4, 23 (2019).
[34] Arnab Sen, Hidemaro Suwa, and Anders W. Sandvik, “Velocity of excitations in ordered, disordered, and critical antiferromagnets," Phys. Rev. B 92, 195145 (2015).
[35] Ian Affleck and Greg F. Wellman, “Longitudinal modes in quasi-one-dimensional antiferromagnets," Phys. Rev. B 46, 8934–8935 (1992).
[36] Y. Kulik and O. P. Sushkov, “Width of the longitudinal magnon in the vicinity of the \(\alpha(3)\) quantum critical point," Phys. Rev. B 84, 134418 (2011).
[37] Marcell Gall, Nicola Wurz, Jens Samland, Chun Fai Chan, and Michael Köhl, “Competing magnetic orders in a bilayer Hubbard model with ultracold atoms," Nature 589, 40 (2021).