Measurement of $\cos 2\beta$ in $B^0 \to D^{(*)} h^0$ Decays with a Time-Dependent Dalitz Plot Analysis of $D \to K_S^0 \pi^+ \pi^-$

B. Aubert,1 M. Bona,1 D. Boutigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 X. Prudent,1 V. Tisserand,1 A. Zghiche,1 J. Garra Tico,2 E. Grauges,2 L. Lopez,3 A. Palano,3 M. Pappalardo,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,5 M. Battaglia,6 D. N. Brown,7 J. Button-Shafer,8 R. N. Cahn,9 G. R. Cowan,10 D. A. Hopkins,10 S. Paramesvaran,10 F. Salvatore,10 A. C. Wren,10 D. N. Brown,10 M. C. C. da Costa,11 D. Dujmic,11 D. D. Altenburg,12 E. Feltresi,12 A. Hauke,12 H. Jasper,12 D. J. Payne,13 K. C. Schofield,13 C. Touramanis,13 A. J. Bevan,14 K. A. George,14 F. Di Lodovico,14 R. Sacco,14 G. Cowan,15 H. U. Flaecher,15 D. A. Hopkins,15 S. Paramesvaran,15 F. Salvatore,15 A. C. Wren,15 D. N. Brown,15 C. L. Davis,16 J. Allison,16 D. Bailey,16 N. R. Barlow,16 Y. M. Chia,16 G. D. Lafferty,16 S. R. Wagner,16 N. B. Sinev,16 N. B. Sinev,17 N. L. Blount,17 J. Brau,17 R. Frey,17 O. Igonkina,17 J. A. Kolb,17 M. Lu,17 R. Rahmat,17 F. Winklmeier,17 D. D. Altenburg,18 E. Feltresi,18 A. Hauke,18 H. Jasper,18 D. J. Payne,19 K. C. Schofield,19 C. Touramanis,19 A. J. Bevan,19 K. A. George,19 F. Di Lodovico,19 R. Sacco,19 G. Cowan,19 H. U. Flaecher,19 D. A. Hopkins,19 S. Paramesvaran,19 F. Salvatore,19 A. C. Wren,19 D. N. Brown,19 C. L. Davis,19 J. Allison,19 D. Bailey,19 N. R. Barlow,19 Y. M. Chia,19 G. D. Lafferty,19 S. R. Wagner,19 N. B. Sinev,19 N. B. Sinev,20 N. L. Blount,20 J. Brau,20 R. Frey,20 O. Igonkina,20 J. A. Kolb,20 M. Lu,20 R. Rahmat,20 F. Winklmeier,20 D. D. Altenburg,21 E. Feltresi,21 A. Hauke,21 H. Jasper,21 D. J. Payne,22 K. C. Schofield,22 C. Touramanis,22 A. J. Bevan,22 K. A. George,22 F. Di Lodovico,22 R. Sacco,22 G. Cowan,22 H. U. Flaecher,22 D. A. Hopkins,22 S. Paramesvaran,22 F. Salvatore,22 A. C. Wren,22 D. N. Brown,22 C. L. Davis,23 J. Allison,23 D. Bailey,23 N. R. Barlow,23 Y. M. Chia,23 G. D. Lafferty,23 S. R. Wagner,23 N. B. Sinev,23 N. B. Sinev,24 N. L. Blount,24 J. Brau,24 R. Frey,24 O. Igonkina,24 J. A. Kolb,24 M. Lu,24 R. Rahmat,24 F. Winklmeier,24 D. D. Altenburg,25 E. Feltresi,25 A. Hauke,25 H. Jasper,25 D. J. Payne,26 K. C. Schofield,26 C. Touramanis,26 A. J. Bevan,26 K. A. George,26 F. Di Lodovico,26 R. Sacco,26 G. Cowan,26 H. U. Flaecher,26 D. A. Hopkins,26 S. Paramesvaran,26 F. Salvatore,26 A. C. Wren,26 D. N. Brown,26 C. L. Davis,27 J. Allison,27 D. Bailey,27 N. R. Barlow,27 Y. M. Chia,27 G. D. Lafferty,27 S. R. Wagner,27 N. B. Sinev,27 N. B. Sinev,28 N. L. Blount,28 J. Brau,28 R. Frey,28 O. Igonkina,28 J. A. Kolb,28 M. Lu,28 R. Rahmat,28 F. Winklmeier,28 D. D. Altenburg,29 E. Feltresi,29 A. Hauke,29 H. Jasper,29 D. J. Payne,30 K. C. Schofield,30 C. Touramanis,30 A. J. Bevan,30 K. A. George,30 F. Di Lodovico,30 R. Sacco,30 G. Cowan,30 H. U. Flaecher,30 D. A. Hopkins,30 S. Paramesvaran,30 F. Salvatore,30 A. C. Wren,30 D. N. Brown,30 C. L. Davis,30 J. Allison,30 D. Bailey,30 N. R. Barlow,30 Y. M. Chia,30 G. D. Lafferty,30 S. R. Wagner,30 N. B. Sinev,30 N. B. Sinev,31 J. Garra Tico,31 P. David,31 L. Del Buono,31 Ch. de la Vaissière,31 O. Hamon,31 Ph. Leruste,31 J. Malcles,31 J. Ocariz,31
We study the time-dependent Dalitz plot of $D \rightarrow K^0 \pi^+ \pi^-$ in $B^0 \rightarrow D^{(*)} h^0$ decays, where h^0 is a π^0, η, η', or ω meson and $D^* \rightarrow D \pi^0$, using a data sample of 383×10^6 $Y(4S) \rightarrow B\bar{B}$ decays collected with the BABAR detector. We determine $\cos2\beta = 0.42 \pm 0.49 \pm 0.09 \pm 0.13$, $\sin2\beta = 0.29 \pm 0.34 \pm 0.03 \pm 0.05$, and $|\lambda| = 1.01 \pm 0.08 \pm 0.02$, where the first error is statistical, the second is the experimental systematic uncertainty, and the third, where given, is the Dalitz model uncertainty. Assuming the world average value for $\sin2\beta$ and $|\lambda| = 1$, $\cos2\beta > 0$ is preferred over $\cos2\beta < 0$ at 86% confidence level.
Time-dependent CP asymmetries in B^0 meson decays, resulting from the interference between decays with and without B^0-\bar{B}^0 mixing, have been studied with high precision in $b \to c\bar{c} s$ decay modes by the BABAR and Belle collaborations [1]. These studies measure the asymmetry amplitude $\sin 2\beta$, where $\beta = -\arg(V_{cd}V_{cb}^*/V_{td}V_{tb}^*)$ is a phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [2]. The CP-violating phase 2β, inferred from $\sin 2\beta$, has a two-fold ambiguity, 2β and $\pi - 2\beta$ (four-fold ambiguity in β). This ambiguity can be resolved by studying decay modes that involve multibody final states $B^0 \to J/\psi K^0_S \pi^0$ [3], $D[K^0_S \pi^+ \pi^-]h^0$ [4], $D^*+ D^*- K^0_S$ [5], or $K^+ K^- K^0$ [6], where the knowledge of the variation of the strong phase differences as a function of phase space allows one also to measure $\cos 2\beta$.

In this Letter, we present a study of CP asymmetry in $B^0 \to D^{(*)h^0}$ [7] decays with a time-dependent Dalitz plot analysis of $D \to K^0_S \pi^+ \pi^-$ [8], where h^0 is a π^0, η, η', or ω meson. The $B^0 \to D^{(*)h^0}$ decay is dominated by a color-suppressed $b \to c\bar{u} d$ tree amplitude. The diagram $b \to ucd$, which involves a different weak phase, is suppressed by $V_{ub}V_{cd}/V_{tb}V_{td} \approx 0.02$. Neglecting the suppressed amplitude, we factorize the decay amplitude of the chain $B^0 \to D^{(*)h^0} \to [K^0_S \pi^+ \pi^-]h^0$ into $A_f = A_{B^0} A_{D^{(*)h^0}}$ and similarly for \bar{B}^0 into $\bar{A}_f = \bar{A}_{B^0} \bar{A}_{D^{(*)h^0}}$. The D^0 and \bar{D}^0 decay amplitudes are functions of the Dalitz plot variables $A_{D^{(*)h^0}} = f(m_{\pi^+}^2, m_{\pi^-}^2)$ and $\bar{A}_{D^{(*)h^0}} = \bar{f}(m_{\pi^+}^2, m_{\pi^-}^2) = f(m_{\pi^+}^2, m_{\pi^-}^2)$, where $m_{\pi\pi}^2 = m_{K^0_S}^2 + m_h^2$. In the $Y(4S) \to B^0\bar{B}^0$ system, the rate of a neutral B^0 meson decaying at proper decay time t_{rec}, the other B (B_{tag}) at t_{tag}, and the D decaying at a point on the Dalitz plot, is proportional to

$$e^{-Lm}/2 \left[|A_{B^0}|^2 (|A_{D^{(*)h^0}}|^2 + |\lambda|^2 |A_{D^{(*)h^0}}|^2) + \frac{1}{2} |\lambda|^2 |A_{D^{(*)h^0}}|^2 \cos(\Delta m t) \right]$$

where the upper (lower) sign is for events with B_{tag} decaying as a B^0/\bar{B}^0 meson, $L = t_{rec} - t_{tag}$, Γ is the decay rate of the neutral B meson, $A = e^{-2i\beta} (A_{B^0}/A_{\bar{B}^0})$, Δm is the B^0-\bar{B}^0 mixing frequency, $\xi_{D^{(*)h^0}}$ is the CP eigenvalue of h^0, and $(-1)^\ell$ is the orbital angular momentum factor. Here, we have assumed CP-conservation in mixing and neglected decay width differences. For Dh^0 modes, $\xi_{D^{(*)h^0}}(-1)^\ell = -1$. For $D^*[D\pi^0]h^0 (h^0 \neq \omega)$ modes, $\xi_{D^{(*)h^0}}(-1)^\ell = +1$ including factors from D^* decay [9]. In the last term of expression (1), we can rewrite
sideband. A kinematic fit is performed on the D candidate to constrain its mass to the nominal D^0 mass. A $D^* \to D \pi^0$ candidate is accepted if the invariant mass difference between D^* and D candidates is within 3 MeV/c^2 of the nominal mass difference.

The signal is characterized by the kinematic variables
\[
(1/2 + p_0 \cdot p_B)^2 / E_0^2 - p_B^2, \quad \text{and} \quad \Delta E = E_B^* - E_{\text{beam}},
\]
where the asterisk denotes the quantities evaluated in the center-of-mass (c.m.) frame, the subscripts 0, beam, and B denote the e^+e^- system, the beam, and the B candidate, respectively, and \sqrt{s} is the c.m. energy. For signal events, m_{ES} peaks near the B^0 mass with a resolution of about 3 MeV/c^2, and ΔE peaks near zero, with a resolution that varies by mode. We require $m_{ES} > 5.23$ GeV/c^2 and select events with $|\Delta E| < 80$ MeV for modes with π^0, $\eta \to \gamma \gamma$, and $|\Delta E| < 40$ MeV for modes with η, $\omega \to \pi^0 \pi^0 \pi^0$, or $\eta' \to \eta \pi^0 \pi^0$.

The proper decay time difference Δt is determined from the measured distance between the two B decay vertices projected onto the boost axis and the boost ($\beta \gamma = 0.56$) of the c.m. system. The reconstructed $|\Delta t|$ and its uncertainty $\sigma_{\Delta t}$ are required to satisfy $|\Delta t| < 15$ ps and $\sigma_{\Delta t} < 2.5$ ps. The flavor of B_{tag} is identified from particles that do not belong to the reconstructed B meson using a neural network based flavor-tagging algorithm [12].

The main background is from the continuum $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$). We use a Fisher discriminant (F) to separate the more isotropic $B \bar{B}$ events from more jetlike $q\bar{q}$ events [13]. The requirement on F is optimized with simulation. Another major background for the $D^* \pi^0$ mode comes from color-allowed $B^- \to D^0 \rho$ ($\rho^- \to \pi^0 \pi^0$) decays, which mimic signal if the π^0 is missed from reconstruction while a random π^0 is included. We veto the B^0 candidate if the combination of another charged pion in the event with the D and the π^0 in the B^0 candidate is consistent with a charged B decay. In total, we select 4450 events, of which 2843 events have useful tagging information (tagged).

The signal and background yields are determined by a fit to the (m_{ES}, m_D) distributions using a two-dimensional probability density function (PDF), where m_D denotes the $K_{L}^0 \pi^+ \pi^- \pi^0$ invariant mass. We divide the sample into four categories to take into account different background levels: (1) $D\eta$, (2) $D\eta'$, (3) $D\omega$, and (4) D^*h^0.

The PDF has five components: (a) signal, and backgrounds that peak in (b) both m_{ES} and m_D, (c) m_{ES} but not m_D, (d) m_D but not m_{ES}, and (e) neither distribution. Both peaks are modeled by a Crystal Ball detector line shape [14]. The nonpeaking component is modeled by a straight line in m_D and a threshold function [15] in m_{ES}. We fit the four categories of events simultaneously, allowing the m_{ES} peak shape to be different but letting them share the m_D shape and m_{ES} background parameters. We first determine the amount of the peaking component (b) from simulated events and then fit to data allowing all other components to vary. We obtain 463 ± 39 signal events (335 ± 32 tagged). The contribution from each mode is shown in Table I. The m_{ES} and m_D distributions are shown in Fig. 1. The $D^0 \to K^0_S \pi^+ \pi^-$ Dalitz plot has been studied in detail [16,17]. We use the isobar formalism described in [18] to express \mathcal{A}_{D^0} as a sum of two-body decay matrix elements (\mathcal{A}_+) and a nonresonant (NR) contribution,

\[
\mathcal{A}_{D^0} = a_{\text{NR}} e^{i\phi_{\text{NR}}} + \sum_{r} a_{r} e^{i\phi_{r}} \mathcal{A}_r (m_{D}^2, m_s^2).
\]

The function $\mathcal{A}_r (m_{D}^2, m_s^2)$ is the Lorentz-invariant expression for the matrix element of a D^0 decaying into $K^0_S \pi^+ \pi^-$ through an intermediate resonance r, parameterized as a function of the position on the Dalitz plot. The resonances in the model include $K^*(892)$, $K^*_0(1430)$, $K^*_1(1430)$, $K^*_0(1410)$, and $K^*(1680)$ for both $K^0_L \pi^+$ and $K^0_S \pi^-$, and $\rho(770)$, $\omega(782)$, $f_0(980)$, $f_0(1370)$, $f_2(1270)$, $\rho(1450)$, and two scalar terms σ and σ' in the $\pi^+ \pi^-$ system. Details of the Dalitz model and the parameters (determined from data) can be found in [17].

To perform the time-dependent Dalitz plot analysis, we expand the PDF to include Δt and Dalitz plot dependence. The signal component is proportional to expression (1), modified to account for the probability of misidentifying the B_{tag} flavor (mistag), and is convolved with a sum of three Gaussian distributions [19]. The mistag parameters and the resolution function are determined from a large data control sample of $B^0 \to D^{*-} h^+ \pi^-$ decays, where h^+ is a π^+, ρ^+, or a_1^+ meson. Each of the background components consists of a product of Δt and (m_L^2, m_s^2) PDFs. The components that peak in m_D use $\mathcal{A}_{D^0}(m_{D}^2, m_s^2)$ as their Dalitz model. The model for components that are flat in m_D

| Mode | N_{tag} | $\cos 2\beta$ | $\sin 2\beta$ | $|\lambda|$ |
|------|----------------|----------------|----------------|-------|
| $D\pi^0$ | 143 ± 19 | 0.78 ± 0.92 | 0.70 ± 0.52 | |
| $D\eta/\eta'$ | 60 ± 12 | 1.20 ± 1.19 | -1.17 ± 1.00 | |
| $D\omega$ | 76 ± 12 | 0.43 ± 0.87 | -0.48 ± 0.74 | 1.0 (fixed) |
| D^*h^0 | 56 ± 12 | -0.56 ± 1.07 | 0.78 ± 0.87 | |
| All | 335 ± 32 | 0.42 ± 0.49 | 0.29 ± 0.34 | 1.01 ± 0.08 |

FIG. 1 (color online). Distributions of (a) m_{ES} [$|m_D - m_{ES}^{\text{PDG}}| < 14$ MeV/c^2], (b) D mass [$m_{ES} > 5.27$ GeV/c^2]. Dashed (dotted) lines represent the total (nonpeaking) background.
is an incoherent sum of a phase space contribution and several resonances. The choice of resonances and their relative contributions are determined empirically from events outside the m_D peak. The Δt model for components that peak in m_{ES} is a simple exponential decay convolved with the resolution function used in the signal component.

For the nonpeaking background, we use a zero-lifetime component convolved with a double Gaussian resolution function for events with a real D because they are dominated by $c\bar{c}$ events, and we add an exponential decay component for events without a real D to account for B background.

We fit the m_{ES}, m_D, and Δt distributions, with m_{ES} and m_D shapes and background fractions fixed by the previous fit for event yields, to determine the Δt parameters for backgrounds. We then perform the final fit adding Dalitz plot variables to determine $\cos2\beta$, $\sin2\beta$, and $|\lambda|$. Table I shows the nominal fit result (All) and the results of a fit allowing $\cos2\beta$ and $\sin2\beta$ to be different among the four types of events. The correlations are $\rho(\cos2\beta,\sin2\beta) = 2\%$, $\rho(|\lambda|,\cos2\beta) = 2\%$, and $\rho(|\lambda|,\sin2\beta) = -2\%$. The Dalitz plot projections are shown in Fig. 2. Figure 3 shows the time-dependent asymmetries $(N_+ - N_-)/(N_+ + N_-)$, where N_+ (N_-) is the number of $B^0(\bar{B}^0)$ tagged events, for events in various Dalitz plot regions. Events in the $D \rightarrow K^0\rho$ region are dominated by a single CP eigenstate; thus, the asymmetry is proportional to $\sin2\beta \sin(\Delta m \Delta t)$. Events near $D \rightarrow K^{\pm}\pi^\mp$ are dominated by decays to a definite flavor and therefore exhibit a $\cos(\Delta m \Delta t)$ behavior.

The dominant systematic uncertainty is the Dalitz plot model dependence. The Dalitz model includes scalar terms σ and σ', which are not well established, in order to achieve a good quality fit [17]. We study the effect of these two scalars by simulating a number of datasets, each of which is 50 times the size of the data, according to the PDF, and repeat the final fit using both the nominal PDF and the PDF without the two scalars. We compare the results between the two fits in each dataset and conservatively take the quadratic sum of the mean and RMS of the differences as the systematic uncertainty: $\sigma(\cos2\beta) = 0.13$, $\sigma(\sin2\beta) = 0.05$, and $\sigma(|\lambda|) < 0.01$. Many parameters are predeterined in fits to control samples and to data without the Dalitz variables. We randomize them according to a Gaussian distribution whose width equals 1 standard deviation of each parameter, taking correlations into account, and repeat the final fit. The width of the distribution is taken as the systematic uncertainty: $\sigma(\cos2\beta) = 0.06$, $\sigma(\sin2\beta) = 0.02$ from Dalitz model parameters; $\sigma(\cos2\beta) = 0.05$, $\sigma(\sin2\beta) = 0.02$ from m_D and m_{ES} shape parameters; $\sigma(\cos2\beta) \leq 0.01$, $\sigma(\sin2\beta) \leq 0.01$ from background Δt parameters, tagging parameters, or signal Δt resolution function. We also vary the peaking background fractions by the statistical uncertainty found in simulation and find the variations are $\sigma(\cos2\beta) = 0.02$ and $\sigma(\sin2\beta) = 0.01$. Other sources of uncertainty such as B^0,\bar{B}^0 mixing frequency, B lifetimes, background Dalitz model and reconstruction efficiency variation over the Dalitz plot are negligible. In all cases, the uncertainty on $|\lambda|$ is less than 0.01. The only significant uncertainty on $|\lambda|$ (< 0.02) is from the interference between the CKM-suppressed $b \rightarrow u\bar{c}d$ and CKM-favored $b \rightarrow c\bar{d}u$ amplitudes in some B_{tag} final states [20]. This effect is studied with simulation. Summing over all contributions in quadrature, we obtain total experimental systematic uncertainties $\sigma(\cos2\beta) = 0.09$, $\sigma(\sin2\beta) = 0.03$, and $\sigma(|\lambda|) = 0.02$.

To resolve the ambiguity in 2β, we generate two sets of toy simulation samples, one with $\cos2\beta = \sqrt{1 - S_0^2} = C_0$ and the other with $\cos2\beta = -C_0$, where $S_0 = 0.678$, the world average of $\sin2\beta$ [21], and fit each sample while fixing $\sin2\beta = S_0$ and $|\lambda| = 1$. For data, this configuration results in $\cos2\beta = 0.43 \pm 0.47$. We then use double Gaussian functions, $h_{\pm}(x)$ for $\pm C_0$ hypotheses, to model the probability density of the resulting $\cos2\beta$ distributions, smeared by the experimental systematic uncertainty and the uncertainty of C_0. The confidence level (C.L.) of preferring $\cos2\beta = +C_0$ over $-C_0$ is defined as $h_+(x)/[h_+(x) + h_-(x)]$ if $\cos2\beta = x$ is observed in data. Considering the Dalitz model dependence for $\cos2\beta(0.13)$,
we use \(x \) between 0.43 \pm 0.13 and find the smallest C.L. \(86\% \) at \(x = 0.43 - 0.13 \).

In conclusion, we have studied the \(B^0 \rightarrow D^{(*)} h^0 \) decays using a time-dependent Dalitz plot analysis of \(D \rightarrow K^0 \pi^+ \pi^- \). We obtain \(\cos 2\beta = 0.42 \pm 0.49 \) (stat.) \(\pm 0.09 \) (syst.) \(\pm 0.13 \) (Dalitz), \(\sin 2\beta = 0.29 \pm 0.34 \) (stat.) \(\pm 0.03 \) (syst.) \(\pm 0.05 \) (Dalitz), and \(|\lambda| = 1.01 \pm 0.08 \) (stat.) \(\pm 0.02 \) (syst.). Using the world average \(\sin 2\beta = 0.678 \pm 0.026 \) and \(|\lambda| = 1 \), \(\cos 2\beta > 0 \) is preferred over \(\cos 2\beta < 0 \) at 86\% C.L.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

*Deceased
\dagger Now at Tel Aviv University, Tel Aviv, 69978, Israel
\ddagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\§ Also with Università della Basilicata, Potenza, Italy
\| Also with Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

1. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 94, 161803 (2005); K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 98, 031802 (2007).
2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
3. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 032005 (2005); R. Itoh and Y. Onuki et al. (Belle Collaboration), Phys. Rev. Lett. 95, 091601 (2005).
4. P. Krokovny et al. (Belle Collaboration), Phys. Rev. Lett. 97, 081801 (2006).
5. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 091101 (2006); J. Dalseno et al. (Belle Collaboration), arXiv:0706.2045.
6. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 161802 (2007).
7. The notation \(D^{(*)} \) represents \(D^{(*)0} \) or \(D^{(*)0} \), or their linear combination.
8. A. Bondar, T. Gershon, and P. Krokovny, Phys. Lett. B 624, 1 (2005).
9. A. Bondar and T. Gershon, Phys. Rev. D 70, 091503 (2004).
10. B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
11. All nominal masses are from W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
12. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 94, 161803 (2005).
13. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 081801 (2007).
14. M. J. Oreglia, Ph.D. thesis, Stanford University [SLAC, Report No. SLAC-236, 1980], Appendix D; J.E. Gaiser, Ph.D. thesis, Stanford University [SLAC, Report No. SLAC-255, 1982], Appendix F; T. Skwarnicki, Ph.D. thesis, Institute for Nuclear Physics, Krakow [DESY, Report No. DESY F31-86-02, 1986], Appendix E.
15. H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
16. A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 70, 072003 (2004); A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 73, 112009 (2006).
17. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 121802 (2005).
18. S. Kopp et al. (CLEO Collaboration), Phys. Rev. D 63, 092001 (2001); H. Muramatsu et al. (CLEO Collaboration), Phys. Rev. Lett. 89, 251802 (2002); 90, 059901(E) (2003).
19. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66, 032003 (2002).
20. O. Long et al., Phys. Rev. D 68, 034010 (2003).
21. E. Barberio et al. (HFAG), arXiv:0704.3575; online update at http://www.slac.stanford.edu/xorg/hfag.