Spatially patterned neutralizing icosahedral DNA nanocage
for efficient SARS-CoV-2 blocking

Jialu Zhang[a][b][+], Yunyun Xu[b][+], Miao Sun[a], Siwen Liu[c], Shuang Wan[a], Honglin Chen[c], Chaoyong Yang[a][b], Yang Yang[b]* and Yanling Song[a]*

\textsuperscript[a] The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China. \textsuperscript[b] Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. \textsuperscript[c] State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.

\textsuperscript[+] These authors contributed equally to this work: Jialu Zhang, Yunyun Xu

Corresponding author E-mail: yang.yang.nano@sjtu.edu.cn; ylsong@xmu.edu.cn

Contents:

Supplementary Figures and Tables

References
Supplementary Figures and Tables

Supplementary Figure 1. The distances between amino acid residues which Apt (CoV2-6C3 neutralizing aptamer) binds on receptor-binding domain (RBD) of spike trimer at two different conformational states (“closed” and “open”). The distance between amino acid residues of (a) Gln474 or (b) Phe486 on RBD at all closed states. The distance between amino acid residues of (c) Gln474 or (d) Phe486 on RBD at one open state. The molecular docking-based computation above utilized the PDB: 7DDN."}

Supplementary Figure 2. Overhang layout on the edges of the icosahedral DNA origami. The blue dots represent the assembly sites of the aptamer. ID+30toe and ID+3toe were ID with thirty toeholds and three toeholds, respectively. IDNA-30 was ID+30toe functioned with aptamer of molar equivalents of thirty; IDNA-R5 was ID+30toe functioned with neutralizing aptamer of molar equivalents of five; and IDNA-3 was ID+3toe functioned with neutralizing aptamer of three molar equivalents.
Supplementary Figure 3. Dispersion of ID and IDNA-30 after 7 days at 4 ℃. After 7 days, IDNA-30 were still well-composed and well-dispersed, indicating the superior stability of IDNA-30.

Supplementary Figure 4. Representative gels and plots indicating the integrity of IDNA after storing for several days. (a) 1.5 % Agarose gel electrophoresis of IDNA-30, stored at 4 °C for 7, 14, 21, 28, 35 days (corresponding to lanes 3-7) and lane 1: p7560, lane 2: ID. (b) Analysis of the band intensity of IDNA-30 by Image J.

Supplementary Figure 5. Representative gels and plots indicating the integrity of IDNA in a complex matrix. (a) 1.5 % Agarose gel electrophoresis analysis of 5 nM IDNA-30 incubated in 80 % DMEM (10 % FBS) at 37 ℃ for 0, 2, 4, 8, 24 and 48 h (corresponding to lanes 4-9) and lane 1: p7560, lane 2: ID, lane 3: IDNA-30. (b) Analysis of the band intensity of IDNA-30 by Image J. Although IDNA-30 displayed little aggregation or sporadic stripe tailing after incubating with 80 % DMEM (10 % FBS) at 37 ℃, it exhibited slower migration compared with ID. Thus, IDNA-30 showed integrity of aptamer assembly with excellent enzyme resistance.
Supplementary Figure 6. Cryo-EM images of SARS-CoV-2 pseudovirus bound with IDNA-30.

Supplementary Figure 7. TEM images of SARS-CoV-2 pseudovirus bound with IDNA-30.
Supplementary Figure 8. TEM images of SARS-CoV-2 pseudovirus bound with IDNA-30. The particle concentration ratio of SARS-CoV-2 pseudovirus and IDNA-30 were I: 100:1; II: 80:1; III: 50:1; IV: 20:1; V: 10:1, respectively. Scale bar=100 nm.

Supplementary Figure 9. Selected confocal frames at different time points of from top row: virus particles (red) incubated with IDNA-30 (green) and bottom row: virus particles (red) at room temperature. Scale bar=1 μm.
Supplementary Figure 10. Time-lapsed, separate fluorescence channels and merged confocal images of (A) SARS-CoV-2 pseudovirus or (B) SARS-CoV-2 pseudovirus bound with IDNA-30 show viral entry or inhibition on ACE2-transfected HEK293T at room temperature. Cell nuclei (blue), cell membrane (yellow) and virus (red) were stained with Hoechst, Dil and DiD, respectively. The white arrows point to the representative viral particles.
Supplementary Figure 11. Confocal images of 2 nM IDNA-30, 60 nM Apt or 60 nM random sequence (RS) incubated with ACE2-transfected HEK293T cells at 37 °C for 4 h. It is obvious that IDNA-30 (green) did not show cell internalization.

Supplementary Figure 12. Flow cytometric analysis of 2 nM IDNA-30, 60 nM Apt or 60 nM random sequence (RS) incubated with ACE2-transfected HEK293T at 37 °C for 4 h.
Supplementary Figure 13. Representative images of 293T-SARS-COV-2-Spike-Del18-HA-OE(GFP) cells after pretreatment without (A) or with (B) 5 nM IDNA-30 or with (C) 10 nM IDNA-30 before co-culturing with ACE2-transfected HEK293T cells (dyed with Hoechst) for 48 hours. The white arrows point to representative syncytium formation. 293T-SARS-COV-2-Spike-Del18-HA-OE-GFP and ACE2-transfected HEK283T cells were defined as effector cells and target cells, respectively. Three fields were randomly selected in each well. The white arrows point to the representative syncytium formation.
Supplementary Figure 14. Scheme of inhibition experiment of SARS-CoV-2 pseudovirus. Utilizing a lentivirus packaging system, SARS-CoV-2 pseudovirus was packaged with spike trimers protein of SARS-CoV-2 as a surface capsid glycoprotein, and the RNA genome comprising the gene of CMV-promoter, GFP, IRES and luciferase.
Supplementary Figure 15. Enhanced cck-8 assays of cell viability. Different concentrations DNA nanostructures (ID or IDNA-30) were incubated with ACE2-transfected HEK293T cells for 48 h.

Supplementary Figure 16. Flow cytometry analysis of 0.5 nM IDNA-30, Apt and random sequence (RS) incubated with white blood cells at 37 °C/30 min.
Supplementary Figure 17. Early immunogenic response of 5 nM IDNA-30 by measuring the IFN-γ, TNF-α, IL-10, IFN-α levels in mouse plasma samples. Plasma proinflammatory cytokine concentrations of C57BL/6J mice injected with IDNA-30 or PBS showing negligible change.
Supplementary Figure 18. Histological analysis of mice injected with IDNA-30. Representative H&E staining analysis of organs at the end of the experiment.
Supplementary Table 1. DNA sequences of DNA origami.

The sequences are marked with colors; replaceable staples with **bold font** and **yellow background**, bases with **green background** are spacers, the 18-nt nucleotides with **red** are toeholds of DNA origami.

Staple Code	Length (bp)	DNA sequences (5’-3’)
1	49	AGACATTTTTGTCAAATCACCAGTACCCCGGTGTTTTTTTGATAATCAGAAA
2	49	AATTCTTTTTGCGCTCTGGCCTAGTATCGGGCTTTTTTCAGGAAGATTCGCT
3	22	TTTTTTTTTTTAAAAATCGCA
4	43	AATTATTTTTACCGTTGTAGCGATAGGGTGAAAATTTTTTGTTTG
5	49	TAGGGTTTTTCGCTGGCAAGTGGAACGGTACGTTTTTCCAGAATCTGCA
6	33	TTCCACCCCGATTTAATTTTTGAGCTTGACGAG
7	49	ATTTGCTTTTTTCTATATAGCATATCTATGATACATTGTTTTTCCAGAATCTGCA
8	49	CCAATTTTTTACTCGGAATCTCATCGGCTTTTTTATTTTTATTCGAGCTTCA
9	22	TTCTATTTTTCTATAGTACAG
10	43	AGGCTTTTTTTTGCAAAGACCTCATATATTTTTTTTTTAAT
11	49	AAGTTTTTTTTGAGTAAACTATTTAGAAATTACTATTTTTTTGCTTTAGTAAGA
12	33	GCAATGCGACGTTTTTTTTTCCAGTCAGAC
13	49	TAGACCTTTTTTTAAACACGCGGCCTTGAGTTTTTTGACCTCATATGATA
14	49	ATAAATTTTTACAGAGGTAGCTAATATTCTATTTTTTTTTAGGAGACTA
15	22	GGCTTTTTTTGATTCGCTGCA
16	43	ATGCGTTTTTTCCAATGATATTTATCCGCTCATTTTTCAATCC
17	49	TCAAAATTTTTCTATCGGACTACGACTATCTATTTTTTTTTTCCATCTGACCT
18	33	CACACGCGTATTGGGCTTTTTTGCAGGCTGGT
19	49	TCACCTTTTTGTACTCAGGAGCGACTCTCATATTTTTGTTAGCGTAAAG
20	22	GGGTTTTTTTTGCTACGATAC
21	49	TTTGCTTTTTTTAAAAACATTTTGACTAGTTTTTTTTCGCGCGGCAAA
22	33	CATGAAGATTTTTCTATTTTTAAACGGGTAA
23	43	AATAAAATTTTTATCCTCATATAAACATTTTATTTTTTTATGAAA
24	49	ACTAATTTTTAAACACTCATCTAGGAGACGTGTATTATGAAACCGGTGTA
25	49	CGCCTTTTTGCCAGCATTGACATCAAATTTTTATTTTTTCATTTGTGAATTTA
26	22	TTGAATTTTTTCGCTAATATCAG
27	49	CATATTTTTTTTCTTGATAATTATCCGCTACCTTTTTTTTACATCGGAGAA
28	33	GCCGAAACGATACAAATTTTTTTATAATATG
29	43	ATTTTTTTTTCACAACCAGTAAACATAAAAACATTTTTTAGGAA
30	49	TCTTTTTTTTGAACAACTACGCTTTTTTCAATTTTTTTTTTATTAGTAA
31	49	GGCGTTTTTTTTTAGCGAACCCTTAATTGAGATTTTTATCGCCCATATT
32	22	TAGGATTTTTATCCGACGCG
33	49	TATAATTTTTAGTACCGCAATATCCTATTTTTTTTCAAGAACCGG
34	43	AAAAGGTATTTTTCACGCAAGAGCCATTTTGGGATTTTTATTAGA
35 33 GCCAGTTAGCGTTTGTCTTTTTCATCTTTTCTATA		
36 49 CCCCTCTTGTAGAAACGCGACAAACTGGCAGATATTTTTTAAGACTCCTT		
37 32 ACTCACATTAATTGGGCGATGGCCCGGTTAATA		
38 24 AACCGCTCATATCATCGTAAACT		
39 31 GATGAACCGGTATCTGTGGGAGAGGAGGCCG		
40 24 CAGGCTGCGCAATATCATCGCAGT		
41 31 TCGTAACCGGTGTTGCGCTCCAAATAT		
42 31 ATCGGCAAAATTTATCAAAATATCATCAACGCA		
43 24 GAACCGCCTATCATATCGTAAAAC		
44 31 GGAGCTAAAAAGATATGCAACTACGGGGCG		
45 24 CAACATGTTTTTATTAGCAGCATAAAT		
46 23 AGGTGCGGTAATCCTTATATAAT		
47 31 TTGCAATTCTTATTTGAAATATCTCCACTTTA		
48 24 ATTTTTTCAGTTAAAGGAAAGC		
49 31 ATCAAAAAAGATTCTAATATCGGATGATAGCT		
50 32 CAGAGCATAAAGTCTACAAAGGCTAGCATCAA		
51 24 TTHTTGTAGGATTTTGCTGAAGAGTGA		
52 31 AGCCTTTATTTTTTGTGCTGAAATTAGCGAG		
53 24 TCGCCTGATAAAATCAACATGAATGCA		
54 31 ATACACACATTTATGCGACAGACTATTTAA		
55 24 ATCAAAAAAGATATGCAACTACGGGGCG		
56 31 ATTCTATATATATGCAAGAGTGA		
57 31 GGAGCTAAAAAGATATGCAACTACGGGGCG		
58 24 CAACATGTTTTTATTAGCAGCATAAAT		
59 23 ATCAAAAAAGATATGCAACTACGGGGCG		
60 31 TTTTTGAGAGATTGCGAACGTAT		
61 24 TCGCAATATCAGGCTCCAGTAA		
62 31 TTGCAATTCTTATTTGAAATATCTCCACTTTA		
63 24 ATCAAAAAAGATATGCAACTACGGGGCG		
64 31 GACGGTGCAATCTCAAAAATCAGGTAGAATAC		
65 24 GCAGCAAGCGGTGTTGCCAGAAGCG		
66 23 ATCAAAAAAGATATGCAACTACGGGGCG		
67 31 TTTTTGAGAGATTGCGAACGTAT		
68 32 TTTTTGAGAGATTGCGAACGTAT		
69 24 GGCCTGTGTTTTCGAGGTTGTA		
70 31 GACGGTGCAATCTCAAAAATCAGGTAGAATAC		
71 24 GGCCTGTGTTTTCGAGGTTGTA		
72 23 ATCAAAAAAGATATGCAACTACGGGGCG		
73 31 TTTTTGAGAGATTGCGAACGTAT		
74 24 GGCCTGTGTTTTCGAGGTTGTA		
75 31 GACGGTGCAATCTCAAAAATCAGGTAGAATAC		
---	---	---
	24	ATGACCATAAATTTTTGAGGACTA
77	31	CAGAACGAGTATGAAGCCCTTTTTACCCAGAG
78	32	AGCTATCTTACCTCCTGAGCAAAAAGAGGTAA
79	24	TCATTTCATTATGTACCTAAGGTC
80	31	TAGATTTTCTGTCTAAAGCCATAATTATCAT
81	24	TAATAAAACGAATGTAAATTGGGC
82	24	AAAAAATCTAAGITCTATTTTGAATT
83	23	ATTTAACAATTGAAAATAGCAG
84	31	ACGTCAAAAAATTCCGGAATCATAAAAAGTTGCT
85	24	TAAGAATAAACATATCAGCACAGACA
86	31	ATGCAAAATCCCATCATCACCCTTCTCTTCTAGAA
87	31	AATTTCATCATAAAGGCGACATAACCGGA
88	32	GCGCCAAAGACATCCGGAATCATAAAGTTGCT
89	24	CCAACCTCATTTTAGAAACCCAATC
90	31	TACGAGCATTTCTCTTTTCTGCTAAAGAGAA
91	24	TGGAAATACCTATGTAATAAAGCCA
92	23	GCACCTTCTTTGCAGAATTTATC
93	24	GCTTTTGATGATTTCGCAAATTTTTC
94	31	AAACCGAGGAATAACAGAGATGTACGGCCAGCA
95	24	CCAGTTCAAAAAATAACGCAATAATA
96	31	TATTCATAAATTTAACAGCACATAACATAT
97	32	TATTTAAAAACAGGAAGCTCAAAGGCGAAA
98	32	GCGACGTGTGTATGTACCCGAGAGGCTAGCTA
99	32	TTCAAAAGCGCTTTTACGCGCATTAGGATT
100	32	TCGTAGTTTGCAATCAGATCAAACCCGCGGCTAG
101	32	CCAATAGGTTTTAAACCTATAGTGATAGCTA
102	32	AAGAAAGCCGGAAGCTATATATAATGCTGTAGCT
103	32	AAAATGTATCTAATAgCTAAAAAGCCT
104	32	TGGCCGAAACGACGCGGATGTCTTTCTCCAAAGT
105	32	ACCGAACGCATAAAATTAATGAGTAAACAGGG
106	32	ATCATTGCTACGAGTGCGGCTTGGAGGATTTT
107	32	TAAAGAGGTGTTAATAATATGCTAGCTAATGCA
108	32	TAAAATGAAATTGTTGCTATTAGGCACCAGTAC
109	32	GTCAGGATCAGACCAGGGAATTGCGAATAAT
110	32	AAACGAAATGCGCCATAAAGCTAAGGAACAGA
111	32	ACGATAAAATCTAACAGAGGAGTTTGTATCA
112	32	ACCAGAAGGATTTTGAAGAAAAATCTACGT
113	32	TACATTTGAGATTGTTAATCTCTAGCTAATA
114	32	TATTAATACCTTGCGACAGCAGCAGAAATG
115	32	TTTGAATAAGAATACTTTTATCAAAAATCATAG
116	32	TTTTCGAGCAACATGTACAGGAAAAAAGCCTCA
117	32	GCAAGCCGAAGTACCGGCCACCCTCAGAGCCA
118	32	CAAGAGAAACCATCGCCTTGCAGGGAGTTAA
119	32	ATTGGGCTGCGCATAGAAGAACCAGTATTCA
120	32	CCTGGAACGGATTGCCCGAGAGGCCGAATTAT
121	32	GCCTTAATCTGACCTTAAATAAGGCGTTAAA
122	32	AAGTATAGAAACTGCCGAAACGTCACAGCAC
123	32	AACCCTCTCCACCCGAAGGTAAAGCAGTCATAG
124	32	CGCCACCACCACAAAGACAATGAAATAGCAAT
125	32	CATACATAGTATGTTTACTCCAGAGCCATTTTG
126	32	TATCCCGGTCAAGCAAATTCATATGGTTTACCA
127	56	CCAAAATCGGACTCCAAGATTTGTACACCTATTAACAAGGAGGTTTGGAATTGGGGTCG
128	56	GAGTCTGGAATTAATGTATTTCATAGAGCATATATACAATATTAGAATC
129	56	TCTTCGCTCCAGGCAACGCGCACCACCTTCTGGTTTGAACCGCTGAGTAGCTGGCG
130	56	GTCACGGTTAGGAGGTGACCTCATCCTCAACAAACGAGCAGTCTACGTAGTGCGGCA
131	56	TGGGGAAAATGCGGGTTCTCAGCTCAAGTAAAGGGCGGTTTAACATACGGCAGCTG
132	56	AGTTTCATATTGCTAGGGCGGAAGATGGCCTTTTGACCATAGAGGTCAACAGTTGA
133	56	ACCCTGTATAGCAAAAAATCATACAGGCAAGGTTTAGAACAGTTTGCCGCGGAGA
134	56	TGAATTGTGCGAGGTCAGTCACATCAGAAAGGTGTTTTACGCTTCTGACAAATGCAATG
135	56	GATCCCCGGGTGGTGCAATTTCCTCCGAAACTCTTGAATTGCCCTAAAAGCTCAGAAT
136	56	ATCCTGTTCACACCAGACGGCGCAACGCTTGACTGCGCAATAATCTGCTCCGAAA
137	56	GAAAAATATAAACCAACGGTGAAGGTCCAGACGCTTCTAAGGTTAAAATCCTAATT
138	56	GCTTTCATCCGCGCTTCTTCTCAGCAGTACTTAACTGACAGTACGCGGGAAGAGCAGCG
139	56	AAGGAGCCACAATCAAAGCAACGCTGAGAATAACAGCTTCAACAGTTTATCGGTTT
140	56	ATAGTCAGCTTTAACCAGAAGGCCAGATTCCCTTACACTGCTATACAAAGGCAGGAG
141	56	GTTACTTAAAGGTACACCTCCTTCTTACATTAAGCAGCTTGGAGCCCCAGAGGCCGA
142	56	AAGATTCAGACCGTTGGGAACCTGGCTCATTATACAGCAGCCTAAAATCATTAGG

16
143	56	TAAAACAGTGTATTGGAAGCCGTCATCAATATATACGTAAGAAGATGATG AAATTCGG
144	56	ACCCTCAACACGCTGATTCTGTAACCGCCTGCCAAGGTATGCGTCACTG GGTGCACTG
145	56	TTATATAAATAGTGAAGTGGCACAACGCTGAGGAGAAAACGATAGCTT AAATGCTG
146	56	ATATTATCTACATGCAAATTTTAAAGGAACAATATTCCTGGCCAAGCTGGTAAG ATTCACC
147	56	ATGTACCGTCAAGAACCACACTCATCCTCAGAACTCCACAGAGTTTAGTA AGTTCGTA
148	56	AGCATCGGCCTGAGGGCCACGATAAACCCATATTCATGGAAGATTTAA TAGCAACG
149	56	AAGGCTTTGATCTTTGACCGTGCTCCCTCATGTTTAATTCAGGAGGTA GAAACAC
150	56	CATCAAGACAAAAATCGCATTGATGCTTTGGAATATAATGGAATATTAGCCG TTAATAC
151	56	GTTUGTATCCGTGTGAAAAATTTAATGTTGACAGTAGGCTCAGACTG TTAATAC
152	56	GGGGACCTAGGGCCGATCAGGAGGACCATTACCCCCCTTACAAAAATCA AGACTGTA
153	56	CCGGGGTAGCCTCAGGCTAGGAGCCGAGTCCTCTATTTGCAAGCCAGGAA AGTACAG
154	56	TAGCCGAAAGGCAAGAAAATTTAGTATTAGGCTAGCACCACAAAAGCCTCAGA GCGAGAAGG
155	56	AAAATAAGGAGCGTCTTTGCAAACGTCTTTACCAAGAGAATCAATTTTA TTTGTATA
156	56	GGGAGGTATAGAAAAATCGATATTTTTTGTCACTGGACACCCACGGG ACGGAAAT
157	32	AGCCCCAATTGGAACACTACGTAAGGAAAGCATCA
158	32	ATACATCTGAAAAGGTGCATGCTATTGCTTCCCTGA
159	32	ACTCCAGCGGTGAGAAGCGATCGGTGCGGGCC
160	32	CCGACAGTGGGCAGAGCCGATACGGTGTCAGGAG
161	32	TTAAATTTAACGCTATCCTGCTTTCCAG
162	32	GAAAGCCCGAAAGGAGAAGTAGCAGGGTGCTCAGGA
163	32	GCAATTAATAGAATCTGGTACCCAAACATCATG
164	32	GTTGTTAAACGTTTATTATAAGTGTTCTTTAGTG
165	32	CGCATTTTAACCCACACTGCCCTGAAAGACGGAG
166	32	TTTCTTTTTCTCAAGGAGGCCCACGGAAAGG
167	32	GAAGTGTTTCTGTCCAGATAAGTGCCTGAAACAA
168	32	ATCTAAAGTTTTCTCTGAGGACAGGTATAAAGCT
169	32	AAGCGAAGTACGAGATAAAAAAGGCTCAGAA
170	32	ATACGTAAGAGGCAAACCTTTAACCCTGACTATT
GCAACACTAACCACCAACCACGACCTGCTCCAT		
CTTAATGCGAGCGGAACACATTATCAGGTAGA		
ACAACTAAAGGATTACAAAATTATTTCGACG		
GAGTGAATAATTTTCCCAACCTCTAACATCAA		
GAAAAGCGTGCTATTATCCCGCTTAGGTGTTG		
AACACGCCCCAGTAAATCAGTGATACAGTAGG		
ATTAAACCTTTTTATTAGCCCAATAGGAACC		
TGCAACACAGGATTGCTCAGCAGCGGAAAGAC		
CAGACCGATGTATTCTGCTCATTCAGTGAAT		
ACAATACACAAAAGTCAAGAGATGTGAAACAAA		
TTTCATCTTCAGAGATTTTACTAGAAAAAGCCT		
AGCGGATCCCGGAATGTAGCGACAGAATAAGAA		
ATCAAAATCCCTCAGATGTAATAAGATTAA		
AGAGATAAGAACACAGAAGAAAAGTAAAGCAGA		
ATTACGCAAAAGGTGGCTTTATATTCCAATCC		
CCCCATAGATTTCTAGTCAACCCGATGAGGGA		
GAACCCTAAGAACGTAAGTTTTTCAAGAGTCTAA		
AGCATGTCAGCTGATAAGCAAACAGATATTCATTTGGGGC		
GATTAAGTGCGGAAAATTACGCAATGTGAGTGAAGAT		
TTGAGGGGTTAAATGTGGTGTAAGCGAGCTTTAAGCAC		
CGGGGAGATGTAAAGCCCTGTCGTAGCCGGAATTTTTTA		
GATTTAGTAGAGCTTATCCCATATATTTTTGCAGGAGGAGG		
TAAAAATTCAAAGAATATACTTTTCAGAGGGGTAATAG		
CTATCTACAGGAAGAAACACCTACTCTAGTTAATCCCTT		
TTCCCTGAGGCACTCCTCTGCTACCGGACATCGCCATTAAAAAT		
CAAAGAAAATTGCGCCTTGTGATTGTTGATTAGTAATAAC		
AATAATCGGACGCAAAATATCCCGTAGAATTCTCCACGAG		
AAAGGGGATACCACACCGTTAGAACACACGCTCGGACGTAG		
ATTCTAAAGAAAAGATTCTTAATT TGCAAGGATACCCAC		
CCAAGACTCAAATGAAGCAAAGTATTCATTCACCCATACT		
GAACGTACCGCCGAAACCGCCGAAACCACGATTACCAGACG		
GATACATACCCATGCAGCTGAGCAGCGAAACAAAGAAACC		
GATGAAATATGCAATATTTAAAGCAATTTCAATAGTAA		
AATCAGAAACAGTGCTCAATATCTCAAAATGCTG		
GGAACATTACCCGCGACCTTGTCAGCATCAGACAGAGCA		
GGCGAATTACCGGTAAAAATTACGCGGAAAGACCCAC		
AACACTCTCTCCCTTAGAACGAGATGAGGGATAC		
TTCCCACAAGAGTCATATCTGCAGTGAGC		
AAGACATTATTTCTCAGGAAGGAGAGAGCTGAGACTCCT		
TTGAGATGCAAGAGTACCCCTAGCAGTGGAGCGGACAGTCAGC		
ACCTTTTCCAAAGTTAAAAACAAAAAGAGAATATTAAACTGAAC		
ACGCTCAAAATACCGATCATATGCTCGGGAAGGTTTTGA		
Sequence	Length	Description
---	---	---
GGTCATAGCATTAGCATTAGCGTCCCCAGGTAGCGTTGATAT	40	
CCCCTGCCCTGAGATTTAGTGCCCTTGGGAAAAGCACCCGG	40	
ACCGGAATAATAATAAGGAAGTTACCACCACCCTCAGAGC	40	
CTTTTACACGCTAACGAAACGATTTCCTGAAATAGAAAATA	40	
ACCGTCACCACAATCAAATATTGAATAAGTTAGAAGGCT	40	
GGAACCCCTAAGAAGTAAAGTTTTTCAAGAGTCTAAGCAAAG	58	GAGAGTTAGGAAATGT
AGCATGTCAGCTGATAAGCGAAAGCAGATATTCCATTGGGGC	58	GAGAGTTAGGAAATGT
GATTAAGTGCCCGAAAATTACGCAATGTGTTAGGAAAGGAAG	58	GAGAGTTAGGAAATGT
TTAGGGGTTAATAGTGTTTAGACAGCTTTTAAAGCAAC	58	GAGAGTTAGGAAATGT
GATTAAATGAGCTAGTCTATCCATATATTGGGACGAGAAAGG	58	GAGAGTTAGGAAATGT
TAAAAATCAAAGAATAATACCTTTTCAGAGGGTAAATTAGT	58	GAGAGTTAGGAAATGT
CTAATCTACAGGAGAACAACCTTACTCGTATTAAATCCTT	58	GAGAGTTAGGAAATGT
TTCCTGTGACCTCCTGGTACCGACATCGCCATTAAAAAT	58	GAGAGTTAGGAAATGT
CAAAGAAATTGCCCTTGATGGTGTTTGATTAGTAATAAC	58	GAGAGTTAGGAAATGT
AATAATCGGACGACAAATATCCCAGTAATTCTCCACCGAG	58	GAGAGTTAGGAAATGT
AAAGGGATACCACCCGTTAGAACACGCTGCGACGTTAG	58	GAGAGTTAGGAAATGT
ATTTCTTAAGAAGGATTATTTATTACGAGATCCAAACAG	58	GAGAGTTAGGAAATGT
CCGAAGACTCACAATGAAGCAAGATTATTCTACCAACCTA	58	GAGAGTTAGGAAATGT
GAACTGACCGACGACGACGACGACGACGACGATACCAGACG	58	GAGAGTTAGGAAATGT
GATACATACCGTACGTCAGTGGAGCGGAACAAAGGAAACCCCATCGT	58	GAGAGTTAGGAAATGT
GATGAAATATCCTGATAGAATAAAGGCAATATTCAATAGATAA	58	GAGAGTTAGGAAATGT
AATTGAGGAACGACGTGCATATATCTATTAACAACATCGTCG	58	GAGAGTTAGGAAATGT
		AAGAACGCAAGAGTCACTATATGTAGATTAAGGACAATAT
----	----	--
235	58	GGGACATTACGCCAGCATTTGGCATATCCAGACAGAGGCA
236	58	TGTAGCATCGCCACCTAACACTGCCGCAACCGGACAAACAA
237	58	AAGACTTTTTATTCGTAACGAGGGAGGAGCTGAGACTCCT
238	58	TTAGGAATGT
239	58	TTAGGAATGT
240	58	ACGCTCAAATACCGATCATATGCCTGGAGGTTTTGAA
241	58	GGTACATAGCATTTAGCGTCCAGTGGACAGTTGATAAT
242	58	CCCCCTGCCTGAATTTAGTGCCTTGTGGAAAGCACCACCGG
243	58	ACGGAATAATAATAAGCAAAGTTACCACCACCTCAGAGC
244	58	CCTTTACACGCTAACGAACGATTTTCCTGAATGAATAAT
245	58	ACCGTACACCACAATCAAATATTGAATAAGTGAAGGCT
Supplementary Table 2. DNA sequences used in this work.

Name	Length (bp)	DNA sequences (5'-3')
Apt	46	CGCAGCACCACAAAGAACGGACTGCTTAGGATTGCGATAGG TTCGG
Apt-T	66	CGCAGCACCACAAAGAACGGACTGCTTAGGATTGCGATAGG TTCGG ACATTCTAACACTCTAAA

Supplementary Table 3. DNA strands corresponding to the DNA nanostructures.

Name	DNA strands involved
ID	Staple Code.1-216
ID+3toe	Staple Code.1-186, 189, 190,191, 193-216, 217, 218 and 222
IDA-3	Staple Code.1-186, 189, 190,191, 193-216, 217, 218 and 222; Apt-T
ID+30toe	Staple Code.1-186 and 217-246
IDNA-30	Staple Code.1-186 and 217-246; Apt-T

Supplementary Table 4. Molecular mass conversion

Name	Calculated formula	Relative molecular mass (g/mol)
ID	7560*660	4989600
ID+3toe	7560*660+3*18*330	5007420
ID+30toe	7560*660+30*18*330	5167800
IDNA-30	7560*660+30*18*330+30*66*330	5821200
Supplementary Table 5. Comparison of the previous reported neutralizing antibodies to IDNA-30.

Name	Wild-typed pseudovirus neutralization IC50 (μg/mL)	Wild-typed pseudovirus inhibition efficiency	Wild-typed authentic virus neutralization IC50 (μg/mL)	Authentic virus inhibition efficiency	Manufacture method	References
IDNA-30	0.0048 (0.82 aM)	~92%	NA	85.5% (D614G)	DNA molecular self-assembly	This work
VHH E	48 nM	NA	NA	NA	Single-domain antibodies (VHHs) isolated from a llama immunized with coronavirus spikes	*Science* 2021, 371, eabe6230
VHH EV	0.7 nM	NA	NA	NA	Single-domain antibodies (VHHs) isolated from a llama immunized with prefusion stabilized coronavirus spikes, and subsequent mass expressed in *Pichia pastoris*. VHH-72-Fc included two SARS VHH-72 molecules connected by a (GGGGS)_3 linker and a genetic fusion of SARS VHH-72 to the Fc domain of human IgG1.	*Cell* 2020, 181, 1004–1015
VHH VE	1.32 nM	NA	NA	NA	Single-domain antibodies (VHHs) isolated from a llama immunized with prefusion stabilized coronavirus spikes, and subsequent mass expressed in *Pichia pastoris*. VHH-72-Fc included two SARS VHH-72 molecules connected by a (GGGGS)_3 linker and a genetic fusion of SARS VHH-72 to the Fc domain of human IgG1.	*Cell* 2020, 183, 1–11
n3088	3.3	100%	2.6	~ 80%	Fully human single-domain antibodies expressed in *Escherichia coli*	*Cell Host & Microbe* 2020, 27, 891–898
n3130	3.7	100%	4.0	~ 60%	Fully human single-domain antibodies expressed in *Escherichia coli*	*Cell Host & Microbe* 2020, 27, 891–898
n3088+n3113	0.51	100%	NA	NA	Fully human single-domain antibodies expressed in *Escherichia coli*	*Cell Host & Microbe* 2020, 27, 891–898
n3130+n3113	0.70	100%	NA	NA	Fully human single-domain antibodies expressed in *Escherichia coli*	*Cell Host & Microbe* 2020, 27, 891–898
BD-368-2	0.0012	100%	0.015	100%	High-throughput single-cell RNA and VDJ sequencing of antigen-binding B cells before candidate genes were transfected into HEK293 cells.	*Cell* 2020, 182, 73–84
BD-629	0.006	100%	NA	NA	High-throughput single-cell RNA and VDJ sequencing of antigen-binding B cells before candidate genes were transfected into HEK293 cells.	*Cell* 2020, 183, 1–11
-------	-------	-------	-------	-------		
1-20	0.127	100%	0.008	100%		
2-38	0.232	~95%	0.208	100%		
2-4	0.394	~95%	0.057	100%		
2-30	0.512	~95%	0.050	100%		
CV1	15	70%	NA	NA		
CV30	0.03	100%	NA	NA		
P2C-1F11	0.03	100%	0.03	100%		
P2C-2F6	0.05	~95%	0.41	~100%		
P2C-1A3	0.62	~95%	0.28	~95%		

CA1					
Huh7	1.276	100%			
Calu-3	0.527	100%			
HEK2	4.659	100%			
93T					
Vero E6			30h	0.382	~80%
			72h	4.981	100%
CB6					
Huh7	0.036	100%			
Calu-3	0.023	100%			
HEK2	0.041	~100%			
93T					
			30h	0.036	~100%
			72h	0.835	100%
S309	0.150	100%	0.079	90%	
CC6.29	0.002	NA	NA	NA	
CC6.30	0.001	NA	NA	NA	
COV2-2196	0.0007	100%	0.015	100%	
COV2-2130	0.0016	100%	0.107	100%	

Single antigen-specific memory B cell antibody cloning

Nature 2020, 584, 450-456

Immunity 2020, 53, 98-105

Nature 2020, 584, 115-119

Nature 2020, 584, 120-124

Nature 2020, 583, 290-295

Science 2020, 369, 956–963

Nature 2020, 584, 443-449
References

1. Sun M, et al. Aptamer Blocking Strategy Inhibits SARS-CoV-2 Virus Infection. *Angew. Chem. Int. Ed.* **60**, 10266-10272 (2021).

2. Zhang C, et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. *Nat. Commun.* **12**, 264 (2021).