Effects of bowel rehabilitation and combined trophic therapy on intestinal adaptation in short bowel patients

Guo-Hao Wu, Zhao-Han Wu, Zhao-Guang Wu

METHODS: Thirty-eight patients with severe short-bowel syndrome (SBS) were employed in the present study, whose average length of jejunum-ileum was 35.8±21.2 cm. The TPN treatment was initiated early to attain positive nitrogen balance and prevent severe weight loss. The TPN composition was designated to be individualized and altered when necessary. Enteral feeding was given as soon as possible after resection and increased gradually. Meals were distributed throughout the day. Eight patients received treatment of growth hormone (0.14 mg/kg/day) and glutamine (0.3 g/kg/day) for 3 weeks. D-xylose test, N-Gly trace test and 13C-palmitic acid breath test were done to determine the patients’ absorption capability.

RESULTS: Thirty-three patients maintained well body weight and serum albumin concentration. The average time of follow-up for 33 survival patients was 5.9±4.3 years. Twenty-two patients weaned from TPN with an average TPN time of 9.5±6.6 months. Two patients, whose whole small bowel, ascending and transverse colon were resected received home TPN. An other 9 patients received parenteral or enteral nutritional support partly as well as oral diet. Three week rhGH+GLN therapy increased nutrients absorption but the effects were transient.

CONCLUSION: By rehabilitation therapy, most short bowel patients could wean from parenteral nutrition. Dietary manipulation is an integral part of the treatment of SBS. Treatment with growth hormone and glutamine may increase nutrients absorption but the effects are not sustained beyond the treatment period.

INTRODUCTION

Clinical management
Massive fluid and electrolyte losses were noted due to transient gastric hypersecretion and profound diarrhea during the initial postoperative periods. So, initial postoperative treatment was designed to maintain adequate fluid and electrolyte balance. TPN began early to attain positive nitrogen balance and to prevent severe weight loss. It should continue until the adaptive processes were complete or indefinitely, if clinically indicated. The composition of TPN was individualized and altered when necessary. Caloric requirements were delivered in accordance with the resting energy expenditure of patients, and it was reassessed often as the patient’s clinical condition warranted. As the patient’s oral
intake increased, the amount of TPN was reduced, the frequency of TPN was reduced to every other day in the first week, three times in the next week, and twice during the third week. If the patient lost 1 kg/week or more or if diarrhea exceeded 600 g/day or if laboratory abnormalities developed, then the patients were placed back on TPN. If the patient’s eventual adaptation was insufficient to allow survival on oral/enteral feeding alone, the patients usually required lifelong TPN support.

Patients with SBS received at least some enteral feeding as soon as possible after resection. Usually this was administered throughout the day.

Combined trophic therapy

Eight patients (4 males, 4 females, mean age 36±8 years) with severe SBS (mean jejunoileal length 44 cm, range 0 to 80 cm)

Table 1: Patient characteristics and status

Patient No.	Gender	Age(±)	Cause of resection	Jejunum-ileum(cm)	Colon	TPN(*)	Current status	Survival time(*)
1	F	28	Small bowel volvulus	0	ACR	17	HPN	17
2	M	7	Small bowel volvulus	0	ACR	17.6	HPN	7.6
3	M	41	Small bowel volvulus	35	All	0.8	Normal oral diet	13.5
4	M	61	SMA thrombosis	30	All	1.6	Died	2.2
5	M	62	SMA thrombosis	30	All	2.0	Died	2.6
6	M	33	Small bowel volvulus	28	All	1.2	Normal oral diet	14.4
7	M	24	Small bowel volvulus	18	All	1.8	PN +EN	1.8
8	M	35	Small bowel volvulus	45	All	0.5	Died	6.2
9	F	52	Small bowel volvulus	55	ACR	0.3	Died	7.4
10	F	68	SMA thrombosis	70	ACR	0.6	Normal oral diet	9.5
11	F	44	Small bowel obstruction	100	All	0.2	Normal oral diet	9.6
12	M	22	Crohn’s disease	80	ACR	0.5	Normal oral diet	12.2
13	M	15	Small bowel volvulus	20	ACR	5.2	Died	5.4
14	M	50	Small bowel obstruction	60	ACR	1.2	Normal oral diet	9.0
15	F	42	Small bowel volvulus	28	ACR	2.2	PN +oral diet	8.5
16	F	44	Small bowel volvulus	35	ACR	1.0	Normal oral diet	10.8
17	M	59	Small bowel volvulus	30	All	1.2	Normal oral diet	6.4
18	F	50	SMA thrombosis	60	ACR	0.4	Normal oral diet	5.4
19	M	55	SMA thrombosis	40	ACR	1.0	Normal oral diet	7.6
20	M	56	Small bowel volvulus	30	All	0.8	PN +oral diet	4.5
21	M	26	Small bowel volvulus	30	All	1.0	Normal oral diet	8.8
22	M	40	Small bowel obstruction	50	ACR	0.6	Normal oral diet	6.0
23	M	16	Small bowel volvulus	30	All	1.5	Normal oral diet	12.5
24	M	28	Small bowel volvulus	30	All	2.0	Normal oral diet	5.5
25	M	57	SMA thrombosis	45	All	0.3	Normal oral diet	6.5
26	M	34	Crohn’s disease	60	All	0.5	Normal oral diet	4.0
27	M	41	Crohn’s disease	70	All	0.4	Normal oral diet	2.0
28	M	30	Small bowel volvulus	40	All	0.2	Normal oral diet	1.8
29	M	62	SMA thrombosis	50	ACR	0.8	EN +oral diet	1.6
30	F	45	Small bowel volvulus	30	All	0.5	EN +oral diet	1.5
31	M	18	Small bowel volvulus	30	All	0.4	Normal oral diet	2.0
32	M	20	Small bowel volvulus	30	All	0.5	Normal oral diet	2.0
33	M	16	Small bowel volvulus	20	All	1.0	EN +oral diet	1.5
34	M	36	Small bowel volvulus	30	All	0.4	EN +oral diet	1.2
35	M	18	Small bowel volvulus	18	All	0.6	HPN +oral diet	2.6
36	F	46	SMA thrombosis	40	ACR	0.5	EN +oral diet	0.5
37	M	32	Small bowel volvulus	35	All	0.3	Normal oral diet	1.8
38	F	30	Small bowel volvulus	30	All	0.2	Normal oral diet	1.0

| Mean | 36±16 | 35.8±21.2 | 9.5±6.6 | 5.9±4.3 |

Table 2: Absorption capability of patients before and after treatment with GH +GLN

	Baseline	End of therapy	One week after therapy
D-xylene test (%)	5.4±2.1	7.6±1.8*	6.0±2.0*
15N-Gly trace test (%)	62.4±14.2	73.2±15.3*	58.4±11.8*
13C-palmitic acid breath test (%)	55.3±8.8	64.5±11.2*	62.6±10.4*

Values are mean ±SEM, *p <0.05 vs baseline, **p >0.05 vs baseline.
who previously adapted to the provision of TPN and enteral feedings were admitted for 0.8±0.5 years in the study after surgical resection. The first week served as a control period when nutritional (parenteral and enteral) and medical managements were delivered as the routine therapy. Thereafter, the patients who received treatment of subcutaneous recombinant human growth hormone (rhGH) (0.14 mg/kg/day; Saizen, Serono Co., Switzerland) were divided into two daily injections, intravenous alanyl-glutamine solution (0.3 g/kg/day, Dipeptiven, Fresenius Co., Germany) was delivered daily for 3 weeks. D-xylene test, 13N-Gly trace test and 14C-palmitic acid breath test were done respectively before, at the end of therapy and one week after treatment to determine the patients’ absorption capability.

Statistical analysis
Data were analyzed using standard statistical software (SPSS 10.0). For normally distributed data, a paired Student’s t test was used for statistical analysis. A probability value less than or equal to 0.05 was considered statistically significant. Data are expressed as mean ±SEM.

RESULTS
Thirty-eight patients were admitted and received nutritional support and rehabilitation therapy, among them 2 died of severe malnutrition 2 years after treatment because they failed to receive nutritional therapy, 2 died of accidental event, 1 died of liver failure 5 years later. Thirty-three patients maintained well body weight and serum albumin concentration. The average time of follow-up for 33 survival patients was 5.9±4.3 years (range, 0.5–17 years). Twenty-two patients weaned from TPN, their average TPN time was 9.5±6.9 months. They maintained their nutritional status well on normal oral diet. Two patients, whose whole small bowel, ascending and transverse colon were resected received home TPN. An other 9 patients received parenteral or enteral nutritional support partly as well as oral diet (Table 1). Eight patients developed gall bladder stones. Cholecystectomy was performed for three patients.

For the eight patients, the 3 week rhGH+GLN therapy resulted in weight gain, and stool output dramatically decreased. Three patients weaned from TPN completely after the treatment period, 3 patients reduced TPN requirements, and 2 patients failed the therapy. The absorption capability of D-xylene, 13N-Gly and 14C-palmitic acid in these SBS patients was much lower than normal level. After 3 week rhGH+GLN therapy, the absorption capability of D-xylene, 13N-Gly and 14C-palmitic acid improved. However, it dropped to the level of baseline at one week after treatment (Table 2).

DISCUSSION
After extensive resection of the small intestine, the remaining bowel, to some degree, had a significant adaptation response to resection. Bowel adaptation, characterized by epithelial hyperplasia and increase in villus diameter, height, and crypt depth, occurred weeks to months after resection[19-21]. Various nutritional and medical therapies can be tried to improve bowel absorptive capacity. TPN is the most important factor responsible for prolonging the lives of patients with SBS. In the initial stages after massive resection of bowel, TPN should begin early to attain positive nitrogen balance and to prevent severe weight loss[12,13]. TPN has been shown to greatly increase the chances of long-term survival. It should be delivered until the adaptive processes were complete or indefinitely, if clinically indicated[14]. This process can take place for up to a year and sometimes longer. Long-term TPN resulted in small bowel mucosa atrophy and was associated with certain complications, such as catheter sepsis and liver failure[15]. So, oral diet is encouraged, if there is any absorptive capacity of the remaining bowel, bowel adaptation should be promoted. An enteral tube feeding might be used to supplement the diet in an effort to wean patients from TPN[16]. At first, diluted solutions of chemically defined diets containing simple amino acids and short-chain peptides were offered. Gradually, the diet with intact protein nutrient formulas and dietary fiber was given in accordance with the patients’ need. The parenteral supply had to be adjusted according to the oral intake. As the patient’s oral intake increased, the amount of TPN was reduced, the frequency of TPN was reduced to every other day for 1 week, three times in the next week, and twice during the third week or weaned from TPN at last[17]. If the patient lost or more 1 kg/week of body weight or more, if diarrhea exceeded 600 g/day or if laboratory abnormalities developed, then the patients were placed back on TPN[18]. In our group, 22 patients weaned from TPN among the 33 survived patients after receiving rehabilitation therapy. They maintained their nutritional status well on normal oral diet. It indicated that rehabilitation therapy for SBS played important roles in the intestinal adaptation.

Combination of glutamine, human recombinant growth hormone has been shown to influence bowel adaptation[19-24]. The study by Byrne et al[25] indicated that at one year of follow-up 40 % of treated patients were able to reduce or discontinue parenteral nutrition. Patients in the study were also receiving other medical therapy, including medications known to slow down intestinal motility and oral rehydration solutions. It is not clear whether glutamine, growth hormone, diet, or other factors contributed to the favorable outcome. It did not necessarily mean that fluid and nutrients absorption was increased because absorptive studies were not performed. Szkudlarek et al[27] reported in a randomized control study of eight short-bowel patients the combination of growth hormone and glutamine for 28 days did not result in a significant increase in fluid or nutrient absorption. In our clinical trial, we used D-xylene test, 13N-Gly trace test and 14C-palmitic acid breath test to determine the patients’ nutrient absorption capability. The results showed that the absorption of carbohydrates (from 5.4 % to 7.6 %), protein (from 62.4 % to 73.2 %) and fat (from 55.3 % to 64.5 %) increased. Weight gain was observed and stool output dramatically decreased. Three patients weaned from TPN completely after the treatment period and 3 patients reduced TPN requirements. However, the absorption capability dropped to the level of baseline at one week after treatment. We found that the treatment with growth hormone and glutamine might increase absorption of nutrients but the effect seemed to be transient with no long term improvement in gut function when treatment was discontinued. This has been supported by recent clinical studies[26-30].

In conclusion, by rehabilitation therapy, most short bowel patients could wean from parenteral nutrition. Dietary manipulation is an integral part of the treatment of SBS. Treatment with growth hormone and glutamine may increase nutrients absorption but the effects are not sustained beyond the treatment period. Therapeutic efficacy can be achieved only when the treatment plan is tailored to meet individual need.

REFERENCES
1. Thompson JS. Comparison of massive vs. repeated resection leading to short bowel syndrome. J Gastrointest Surg 2000; 4: 101-104
2. Jeppesen PB, Mortensen PB. Enhancing bowel adaptation in short bowel syndrome. Curr Gastroenterol Rep 2002; 4: 338-347
3. Welters CF, Dejong CH, Deutz NE, Heirman E. Intestinal
adaptation in short bowel syndrome. AN Z J Surg 2002; 72: 229-236

4 Wasa M, Takagi Y, Sando K, Harada T, Okada A. Intestinal adaptation in pediatric patients with short-bowel syndrome. Eur J Pediatr Surg 1999; 9: 207-209

5 Sondheimer JM, Asturias E, Cadnapaphornchai M. Infection and cholestasis in neonates with intestinal resection and long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 1996; 27: 131-137

6 Burstyne M, Jensen GL. Abnormal liver functions as a result of total parenteral nutrition in a patient with short-bowel syndrome. Nutrition 2000; 16: 1090-1092

7 Terra RM, Plopper C, Waltzberg DL, Cukier C, Santoro S, Martins JR, Song RJ, Gama-Rodrigues J. Remaining small bowel length: association with catheter sepsis in patients receiving home total parenteral nutrition: evidence of bacterial translocation. World J Surg 2000; 24: 1537-1541

8 Candusso M, Faraguna D, Sperli D, Dodaro N. Outcome and quality of life in paediatric home parenteral nutrition. Curr Opin Clin Nutr Metab Care 2002; 5: 309-314

9 Schulzke JD, Schmitz H, Fromm M, Bentzel CJ, Riecken EO. Clinical models of intestinal adaptation. Ann N Y Acad Sci 1998; 899: 127-138

10 Kvetys PR. Intestinal physiology relevant to short-bowel syndrome. Eur J Pediatr Surg 1999; 9: 196-199

11 Welters CF, Dejong CH, Deutz N E, Heijnen C. Intestinal function and metabolism in the early adaptive phase after massive small bowel resection in the rat. J Pediatr Surg 2001; 36: 1746-1751

12 Platell CF, Coster J, McCauley RD, Hall JC. The management of patients with the short bowel syndrome. World J Gastroenterol 2002; 8: 13-20

13 Sundaram A, Koutkia P, Apovian CM. Nutritional management of short bowel syndrome in adults. J Clin Gastroenterol 2002; 34: 207-220

14 Messing B, Crenn P, Beau P, Boutron-Ruault MC, Rambaud JC, Matuchansky C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology 1999; 117: 1043-1050

15 Howard L, Ashley C. Management of complications in patients receiving home parenteral nutrition. Gastroenterology 2003; 124: 1651-1661

16 Vanderhoof JA, Matya SM. Enteral and parenteral nutrition in patients with short-bowel syndrome. Eur J Pediatr Surg 1999; 9: 214-219

17 Buchman AL. The clinical management of short bowel syndrome steps to avoid parenteral nutrition. Nutrition 1997; 13: 907-913

18 Gouttebel MC, Saint Aubert B, Colette C, Astre C, Monnier LH, Joyeux H. Intestinal adaptation in patients with short bowel syndrome. Measurement by calcium absorption. Dig Dis Sci 1989; 34: 709-715

19 Gu Y, Wu ZH. The anabolic effects of recombinant human growth hormone and glutamine on parenterally fed, short bowel rats. World J Gastroenterol 2002; 8: 752-757

20 Zhou X, Li YY, Li N, Li JS. Effect of bowel rehabilitative therapy on structural adaptation of remnant small intestine: animal experiment. World J Gastroenterol 2001; 7: 766-773

21 Ukleja A, Scolapio JS, Buchman AL. Nutritional management of short bowel syndrome. Semin Gastrointest Dis 2002; 13: 161-168

22 Seguy D, Vahedi K, Kapel N, Souberbielle JC, Messing B. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology 2003; 124: 293-302

23 Li-Ling L, Irving M. The effectiveness of growth hormone, glutamine and a low-fat diet containing high-carbohydrate on the enhancement of the function of remnant intestine among patients with short bowel syndrome: a review of published trials. Clin Nutr 2001; 20: 199-204

24 Scolapio JS, Ukleja A. Short-bowel syndrome. Curr Opin Clin Nutr Metab Care 1998; 1: 391-394

25 Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. J Parenter Enteral Nutr 1995; 19: 296-302

26 Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW. A new treatment for patients with short-bowel syndrome. Growth hormone, glutamine, and a modified diet. Ann Surg 1995; 222: 243-254

27 Szkudlarek J, Jeppesen PB, Mortensen PB. Effect of high dose growth hormone with glutamine and no change in diet on intestinal absorption in short bowel patients: a randomized, double blind, crossover, placebo controlled study. Gut 2000; 47: 199-205

28 Scolapio JS, McGeary K, Tennyson GS, Burnett OL. Effect of glutamine in short-bowel syndrome. Clin Nutr 2001; 20: 319-323

29 Jeppesen PB, Szkudlarek J, Hoy CE, Mortensen PB. Effect of high-dose growth hormone and glutamine on body composition, urine creatinine excretion, fatty acid absorption, and essential fatty acids status in short bowel patients: a randomized, double-blind, crossover, placebo-controlled study. Scand J Gastroenterol 2001; 36: 48-54

30 Scolapio JS. Effect of growth hormone, glutamine, and diet on body composition in short bowel syndrome: a randomized, controlled study. J Parenter Enteral Nutr 1999; 23: 309-312

Edited by Zhu LH and Wang XL