COVID-19 Symptom Monitoring and Social Distancing in a University Population

Janusz Wojtusiak
Health Informatics Program
Deptment of Health Administration and Policy
George Mason University
Fairfax, VA, U.S.A
jwojusi@gmu.edu

Pramita Bagchi
Department of Statistics
George Mason University
Fairfax, VA, U.S.A
pbagchi@gmu.edu

Sri Surya Krishna Rama
Taraka Naren Durbha
Hediyeh Mobahi
Health Informatics Program
Department of Health Administration and Policy
George Mason University
Fairfax, VA, U.S.A

Reyhaneh Mogharab Nia
Health Informatics Program
Department of Health Administration and Policy
George Mason University
Fairfax, VA, U.S.A
rmogharab@gmu.edu

Amira Roess
Department of Global and Community Health
George Mason University
Fairfax, VA, U.S.A
aroess@gmu.edu

Abstract—This paper reports on our efforts to collect daily COVID-19 related symptoms for a large public university population, as well as study relationship between reported symptoms and individual movements. We developed a set of tools to collect and integrate individual-level data. COVID-19 related symptoms are collected using a self-reporting tool initially implemented in Qualtrics survey system and consequently moved to .NET framework. Individual movement data are collected using off-the-shelf tracking apps available for iPhone and Android phones. Data integration and analysis are done in PostgreSQL and Python. We collected about 184,000 daily symptom responses for 20,000 individuals, as well as over 15,000 days of GPS movement data for 175 individuals. The analysis of the data indicates that headache is the most frequently reported symptom, present almost always when any other symptoms are reported as indicated by derived association rules. It is followed by cough, sore throat, and aches. The study participants traveled on average 223.61 km every week with a large standard deviation of 254.53 and visited on average 5.77 +/- 4.75 locations each week for at least 10 minutes. However, there is no evidence that reported symptoms or prior COVID-19 contact affects movements (p>0.5 in most models). This suggests that although some individuals limit their movements during pandemics, the overall study population do not change their movements as suggested by guidelines.

Keywords—COVID-19, symptom reporting, GPS movement, social distancing, unsupervised learning, association mining, statistical analysis

I. INTRODUCTION

Non-compliance with recommendations of self-quarantine, social distancing and mask-wearing, particularly among exposed/asymptomatic and other infected individuals, appears to be driving the increases in COVID-19 incidence being observed in many regions of the country [1][2][3]. While the true extent of compliance with social distancing guidelines remains unknown, observational data suggest that people continue to move freely while not wearing masks nor maintaining the minimum distance recommended [4]. Recent national studies highlight that mask-wearing is not fully adopted [5][6]. Several U.S. states experiencing serious outbreaks have poor compliance with social distancing guidelines and mask-wearing particularly among young adult populations [86]. Some states are reporting that people between 20-44 years of age now make up more than half of new cases [7][8][9]. Cases have been linked to specific bars, parties or social events [10]. This situation is not unique to the U.S, but repeats across the globe.

In order to address social distancing, mask-wearing and population monitoring many institutions implement their own solutions ranging from complete telework to routine testing to symptom monitoring. The presented work is based on efforts by a large public university that implemented tools for daily monitoring of COVID-19 symptoms, as well as a research study that enrolled a cohort of participants to monitor their detailed movements during the pandemic, and linked these movements to reported symptoms and contacts. Efforts at other universities are not much different from ours. As reported in the literature, significant efforts are made in order to move large portion of education online so that number of people on campus can be reduced [11][12]. Summaries of selected measures taken by universities are reported in [13]. Virtually all universities operate dedicated websites for COVID-19 response as exemplified by [14][15][16][17].

Most research to understand the impacts of human movement on infectious disease transmission have focused on the macro-level [18][19] and fall short of incorporating actual individual-level behavior and specific movement patterns with only a few individual-level studies available, i.e. [20][21][22]. More commonly, insect movement models are used to observe
infectious disease transmission with attempts to extrapolate to human populations [23][24][25]. It is possible to address this gap using GPS tracking individual-level movement data, which has been previously done when studying movements of animals [26], and only in limited scope in human disease transmission [27][28]. This is partially because GPS tracker data to study movement are extremely difficult to obtain by researchers. In fact, there is a common misconception that there are large amounts of COVID-19 related GPS movement data available for research. These data are collected and owned by private companies and available only in aggregated form [29][30], preventing any individual-level studies. Several studies have been recently completed that use such aggregated GPS movement data [31][32][33], which demonstrated population level impact of social distancing, but these are unable to analyze or link individual movements to symptoms, testing or individual reasons for (non)compliance, nor study individual reasons for (non)compliance. Many of these studies use Safegraph data [29] that is freely available to those who wish to study COVID-19, social distancing and policy implications, yet has unclear quality. The data appears to be on proprietary methodology used to process and aggregate data whose details are not available, thus making any obtained results questionable. In contrast, Moore et al. [34] used survey data but not GPS to study how COVID-19 affected movements in children. To address this issue, our team continues to collect and analyze individual-level data including exact GPS locations and daily reported symptoms for a selected cohort of participants. In the present work we describe results obtained when merging individual-level GPS data with daily symptom monitoring.

II. DATA COLLECTION

The initial data collection efforts started on March 22, 2020 as part of overall university response to quickly developing COVID-19 pandemic. On May 5, 2020 we started geolocation data collection for a selected cohort of participants who consented to the data collection in an IRB approved study.

A. Symptom Monitoring

Our group designed and implemented a screening tool and daily symptom journal based on the U.S. Center of Disease Control and Prevention (CDC) symptom monitoring guidelines. The CDCs guidelines have been revised several times since we implemented the tool, and these changes are reflected in our work. Additional items have been added to the revised tool as summarized in Table I. The numbers in the table indicate the total number of responses as well as the total number of individuals reporting symptoms.

The initial implementation of the daily symptom journal has been done using Qualtrics survey system that allowed us for quick deployment of the tool in just a few days. The tool has been used by the general university population between March 22, 2020 and August 17, 2020 and is still used by a research study of social distancing. Starting August 18, 2020, a new Health✓™ tool implemented in .NET framework has been deployed to the university population [35]. The university is currently enforcing requirement for students, faculty, staff and visitors to complete the screening tool every day before coming to campus which significantly increased number of responses.

Symptom data collection timeline is shown in Figure 1 that shows daily numbers of respondents. The initial high number of responses to the screening tool (red line) correspond to inclusion of the link to the tool in the university learning management system (LMS), and consequently a spike corresponds to an email sent to the university listserv. The tool has been disabled on August 18. Daily symptom journal (blue line) has been completed by a relatively constant number of individuals, with a slight increase in May 2020 when research study on social distancing started to recruit participants. Another increase of responses corresponds to the university population preparing for and returning to campus for Fall semester. Small number of respondents who continue to answer the daily journal are participants of the social distancing study. The required Health✓™ tool has high number of responses, with clear weekly cycle but also an overall declining trend.

To date, we received 23,786 responses to the old COVID-19 screening tool for 15,603 people, 34,965 responses to the old daily journal for 5,867 people, and 125,186 responses to the new screening tool for 17,662 people.

B. Movement Tracking

Individual movement data collection requires apps installed on individuals’ smartphones. There are a wide range of apps that can be used for this purpose, ranging from specialized ones developed for the purpose of tracking people during COVID-19 pandemic, to fitness trackers, to general purpose loggers. A

| Table I. Summary of Symptom Data Collected by Three Survey Instruments Used Since March 2020. The Numbers Indicate Numbers of Responses as Well as Numbers of People. |
|--|--|--|
| **Initial Screening Tool (March – August)** | **Daily Symptom Journal (March -)** | **Health✓™ Reporting Tool (August -)** |
| Number of responses | Total | # Ind. | Total | # Ind. | Total | # Ind. |
| 23,786 | 15,603 | 34,965 | 5,867 | 125,186 | 17,662 |
| COVID-19 Tested | Positive | 7 | 6 | 18 | 8 | 77 | 39 |
| | Negative | 428 | 387 | 2301 | 612 | 9871 | 2703 |
| | Awaiting results | 105 | 98 | 541 | 220 | 3510 | 1004 |
| | Inconcl. | 0 | 0 | 46 | 21 |
| | Contact | 169 | 148 | 181 | 67 | 252 | 101 |
| | Cough | 1688 | 1571 | 771 | 471 | 2211 | 109 |
| | Difficulty Breathing | 191 | 174 | 183 | 129 | 40 | 25 |
| | Muscle or body aches | 490 | 294 | 125 | 71 |
| | Sore thro. | 609 | 343 | 290 | 154 |
| | Chills | 163 | 120 | 122 | 52 |
| | Headache | 1063 | 643 | 256 | 131 |
| | Fever | 316 | 294 | 63 | 50 | 125 | 53 |
| | Diarrhea | 263 | 187 | 152 | 88 |
| | Runny Nose | 813 | 475 | 217 | 118 |
| | Nausea or Vomiting | 302 | 197 | 130 | 61 |
| | Loss of taste/smell | 139 | 34 | 65 | 32 |
| | Fatigue | 225 | 143 | 168 | 106 |

In contrast, Moore et al. [34] used survey data but not GPS to study how COVID-19 affected movements in children.

To address this issue, our team continues to collect and analyze individual-level data including exact GPS locations and daily reported symptoms for a selected cohort of participants. In the presented work we describe results obtained when merging individual-level GPS data with daily symptom monitoring.

Symptom data collection timeline is shown in Figure 1 that shows daily numbers of respondents. The initial high number of responses to the screening tool (red line) correspond to inclusion of the link to the tool in the university learning management system (LMS), and consequently a spike corresponds to an email sent to the university listserv. The tool has been disabled on August 18. Daily symptom journal (blue line) has been completed by a relatively constant number of individuals, with a slight increase in May 2020 when research study on social distancing started to recruit participants. Another increase of responses corresponds to the university population preparing for and returning to campus for Fall semester. Small number of respondents who continue to answer the daily journal are participants of the social distancing study. The required Health✓™ tool has high number of responses, with clear weekly cycle but also an overall declining trend.

To date, we received 23,786 responses to the old COVID-19 screening tool for 15,603 people, 34,965 responses to the old daily journal for 5,867 people, and 125,186 responses to the new screening tool for 17,662 people.

B. Movement Tracking

Individual movement data collection requires apps installed on individuals’ smartphones. There are a wide range of apps that can be used for this purpose, ranging from specialized ones developed for the purpose of tracking people during COVID-19 pandemic, to fitness trackers, to general purpose loggers. A
TABLE II. SELECTED TOP RANKED MOVEMENT TRACKING APPS AVAILABLE IN ANDROID AND IOS APP STORES. THERE ARE APPROXIMATELY OVER 400 SIMILAR APPS IN THE APP STORES. THE APPS MARKED WITH A * ARE USED IN THE PRESENTED RESEARCH.

App	OS	Developer	COVID	COVID Symptoms	Fitness	General
Exposure Notification System [ENS]	iOS	Apple & Google	Yes	No	No	No
COVID Alert NY	iOS & Android	New York State Department of Health	Yes	Yes	No	No
COVIDWISE	iOS & Android	Virginia Department of Health	Yes	No	No	No
COVID Alert NJ	iOS & Android	New Jersey State Department of Health	Yes	Yes	No	No
Care19 Diary	iOS & Android	North Dakota Department of Health	Yes	No	No	No
CRUSH COVID RI	iOS & Android	Rhode Island Department of Health	Yes	Yes	No	No
HEALTHLINKED COVID19 Tracker	iOS & Android	HealthLynked	Yes	Yes	No	No
Apple COVID-19	iOS	Apple	Yes	Yes	No	No
COVID Symptom Study	iOS & Android	Zoe Global Limited	Yes	Yes	No	No
HowWeFeel	iOS	The How We Feel Project, Inc	Yes	Yes	No	No
Coronavirus COVID Tracker	iOS	H Clinic	Yes	No	No	No
COVID-19I	iOS	Nemocnice Milosrdnych Bratri	Yes	No	No	No
HealthChampion	iOS & Android	HealthChampion	Yes	Yes	No	No
MyFitnessPal	iOS & Android	Under Armour	No	No	Yes	No
Pacer Pedometer & Step Tracker	iOS	Pacer Health, Inc	No	No	Yes	No
Google Fit: Health and Activity Tracking	Android	Google	No	No	Yes	No
Fitbod Workout & Fitness Plans	iOS	Fitbod Inc	No	No	Yes	No
myTracks *	iOS	Dirk Stichling	No	No	No	Yes
GPS Logger *	Android	Mendhak	No	No	No	Yes
Life360: Find Family & Friends	iOS & Android	Life360	No	No	No	Yes
Map My Ride	iOS	Under Armour	No	No	No	Yes

A summary of selected top ranked apps is available in Table 2. A detailed survey of contact tracing apps is available in [36].

The idea of using specialized tracking apps developed for COVID-19 pandemic was originally considered as an attractive option for our study, as they combine movement, symptom, and potentially Bluetooth data in one place. However, each of these apps is essentially a data black box without the possibility of accessing it by research teams. Many of the apps have also unacceptable privacy terms which precluded us from using them for our participant cohort. We decided to use two general-purpose commercially available GPS tracking apps which participants can download from app stores: myTracks on iOS devices, and GPSLogger on Android devices. Both apps collect data locally and can be configured to send data only to the research team. We compared data from both apps by wearing iPhone and Android phones at the same time for about 3 months and concluded that data do not differ in a way that would affect further analysis.

The average distance traveled (Figure 2) and the average number of visited locations (Figure 3) are relatively constant during the reported period. The change in total distance and total number of visited locations over time is due to the changing number of participants in the study. The spike in total distance on July 31 is due to one participant’s travel. Increased movements in mid-late-August correspond to preparations to the new academic year.

Fig. 1. Daily numbers of responses collected by the three reporting tools.

C. Data Integration

GPS coordinates data were retrieved from the study participants via automatically generated email (sent to dedicated account on our server) and later preprocessed using procmail and Python program, or automatically uploaded to Google Drive and retrieved by the study team. The two applications used in the study created data in different formats (csv and xml) with additional variations when some users enabled additional features not described in the guide provided to them. These were processed and normalized by a series of Python programs. The symptom data were extracted as csv files and securely copied to the project server. Data from daily symptom reports and GPS movements were integrated using a common identifier within a PostgreSQL database. The overall diagram of data flow in the project is shown in Figure 4.
Symptom cluster analysis has been done in Python 3.7 and partially in Weka [37] in which Apriori algorithm was executed to find combinations of symptoms. GPS data processing and overall GIS analysis was done in PostgreSQL (PostGIS library) and Python (geopy library). Finally, preprocessed data have been moved to R for the statistical analysis.

III. DATA ANALYSIS

A. Symptom Clustering

To analyze reported symptoms, we first derived groups of symptoms reported together within one screening response as well as groups of symptoms reported by the same individuals regardless of time. This was done by a simple application of Apriori algorithm [38] on the survey-level and individual-level data. Two sets of results have been obtained: based on entire dataset and for surveys/individuals who reported at least one symptom. Number of individuals with at least one reported symptom at some point is 1,382, and the number of surveys with at least one reported symptom is 2,818. Most individuals report just one symptom. The leading symptom in both individual- and survey-level data is “headache” followed by “cough” and “throat” as summarized in Table III that shows top symptoms and their combinations.

TABLE III. SELECTED ASSOCIATION RULES GENERATED FROM THE SYMPTOM DATA. THE REPORTED NUMBERS RELATE TO THE RULE SUPPORT (NUMBER OF INDIVIDUALS) AND SELECTED RULE QUALITY METRICS.

Rule	# ind	Confidence	Lift	Leverage	Conviction
1	42	2.15	0.02	22.46	
2	34	2.15	0.01	18.18	
3	19	4.7	0.01	14.96	
4	13	2.93	0.01	8.57	
5	10	10.71	0.01	9.07	
6	10	12.34	0.01	9.19	
7	9	3.35	0.01	8.76	
8	9	30.04	0.01	8.7	
9	9	7.81	0.01	7.85	
10	9	4.03	0	6.77	

Results presented in Table IV show that the Apriori algorithm found are all reliable rules (confidence = 1). This means that, all individuals with left-side symptoms always report the right-side symptom(s). For most of the top generated rules, headache was the symptom that was reported together with other symptoms or their combinations. Lift is always greater than one, and ranged from 2.15 to 37.3. This indicates that, for all these rules, the likelihood of occurrence of the symptoms at the right-side increases by ((lift-1) *100) %, if the...
left-side symptoms had happened. For instance, based on rule 4, if an individual has “difficulty breathing, aches, chills, headache and nausea” symptoms already, it is 193% more likely for the individual to have “cough” as well [39].

The cluster analysis indicates that the largest group of individuals report no symptoms or small number of symptoms. The second largest cluster includes people who reported headache and additional related symptoms. Finally, the smallest of the clusters includes people who reported multiple symptoms.

Finally, we looked at the group of 39 individuals who tested positive for COVID-19 in data since August 18. Their symptoms are summarized in Table V. Symptoms “before test” indicate symptoms reported prior to the reported COVID-19 test result. Symptoms “with test” indicate symptoms reported on the same response as the positive test result. The majority of positive cases report cough, loss of smell/taste, sore throat and headache, followed by runny nose and aches. There are also 13 individuals in the data who are asymptomatic, i.e., tested positive for COVID-19 but did not report any symptoms. These findings are consistent with some of the literature on COVID-19 related symptoms [41]-[44].

Three clusters of individuals who tested positive for COVID-19 are shown in Figure 7. The largest of the clusters include individuals who are asymptomatic and those with few symptoms, while the smallest cluster includes individuals with large number of symptoms present.

B. Movement Analysis

Raw GPS data recorded by GPS trackers are imprecise due to GPS accuracy and sampling error. The data are also subject to noise that result from connection errors. For example, a number of datapoints recorded have coordinates (0,0) on equator. There are a number of points that “jump” to random coordinates or have random timestamps. While the number of such outliers is small, their extreme values significantly affect results.
The GPS extracted data include the total 3.3 million distinct coordinates collected over 14.6 thousand person-days. On average one individual in the study traveled 224 km every week and visited 6 locations. These numbers, however, have a high standard deviation due to outliers who traveled more than typical study participants.

Symptom	Before test N=23	With test N=39
Cough	10	24
Difficulty Breathing	0	4
Loss of smell or taste	5	24
Muscle or body aches	9	24
Sore throat	6	13
Chills	8	20
Headache	2	13
Diarrhea	9	22
Runny Nose	1	12

TABLE VI. SUMMARY OF GPS MOVEMENT DATA FOR N=162 INDIVIDUALS BETWEEN MAY 6, 2020 AND SEPTEMBER 6, 2020.

GPS Data	Total	Per Individual	
Number of Data Points	3,311,973	20.571	43.286
Number of Days	14,633	90.89	35.35
Weekly Number of Locations Visited	1,068.48	6.14	5.5
Weekly Distance Traveled (km)	86,021	223.61	253.53

C. Symptom-Movement Relation

In order to understand the movement pattern in relation to the reported symptoms, test result status of whether individuals have been in close contact with a person with possible COVID-19 infection, we constructed a number of different linear models with (R1) the distance travelled (in km) next day and (R2) the decrease in distance travelled (difference between distance travelled (in km) next day and the day of symptom entry) as response. For these models we dropped the missing values and only analyzed complete cases in the data, resulting in usable data for 95 individuals. Both the response variables, namely the distance travelled next day and the difference in distance travelled, have skewed distributions. Therefore, the variables were transformed using a Box-Cox power transformation to make their distribution normal. To adjust for the dependence in data due to repeated observations from the same subject, we fitted a mixed linear model with a random effect due to the subject. All the other 21 covariates related to the journal entries were assumed to have a fixed linear effect on the response. Using all the covariates separately in the model yields unstable estimators due to extreme multicollinearity present in the covariates. To solve this issue, we used different lower dimensional versions of the fixed effect covariates and fitted the following models for both responses.

1) **Factors using multiple factor analysis**

To reduce the dimension of the covariate space, we performed a multiple factor analysis (can be interpreted as principal component analysis for categorical data) on the 21 covariates. In particular, this method identifies the important features in the covariate space by employing the dimension reduction technique and transforming the original variables (presence/absence of categorical variables) to a new set of variables (factors), which are uncorrelated and ordered so that the first few accounts for most of the variation in the data. We then fitted linear mixed models for both the responses with subject specific random effect and fixed linear effect(s) of the first two components. The contribution of each of the variables are shown in Figure 8. The first factor is affected mostly by loss of smell and taste and the prominent contributing variables in the second factor are chill, chest-pain and nausea.

TABLE V. SUMMARY OF SYMPTOMS REPORTED AMONG COVID-19 POSITIVE INDIVIDUALS.

![Figure 8](image.png)

Fig. 8. The contribution of the individual symptoms in the first two components of the factor analysis.

2) **Number of symptoms**

The explanatory variables can be divided in two categories. There are two variables assessing the test status of the participant (if they are awaiting a test result and if they had a negative test result), two variables summarizing if they have been in close contact with anyone who either had COVID-19 or COVID-19 symptoms still without a definite test result. All the other 17 variables are different health symptoms related to COVID-19. We summed over all these 17 variables to obtain total number of symptoms reported every day. We then used this total number of symptoms instead of all the 17 categorical variables in our model (Model ST). In order to identify if a particular level of severity affects the mobility we also used categorical versions of this total symptom variables, identifying if the person has reported at least k symptoms, for k=1,2,3 and 4 (Model S1, S2, S3 and S4 respectively). All these models included the subject specific random effects and fixed linear effects of the four variables related to test result status and possible contact (See Tables VIII for (R1) and IX for (R2)).

3) **Results**

The results indicate that there is no evidence that people change their movement pattern when experiencing symptoms consistent with COVID-19. The factor analysis indicates the loss in smell and taste affects the first component and second component is influenced by symptoms such as chill, chest pain, nausea etc. (Figure 8). But the models (Table VII) do not indicate any
TABLE VII. MODELS FOR MOBILITY PATTERN BASED ON THE FACTORS AS COVARIATES

Response	Factor 1	Factor 2		
	Estimate	P-value	Estimate	P-value
Distance travelled next day	-0.002	0.688	-0.008	0.237
Decrease in distance travelled next day	-0.002	0.693	-0.003	0.606

TABLE VIII. MODELS FOR DISTANCE TRAVELLED (IN KM) NEXT DAY USING NUMBER OF SYMPTOMS AS COVARIATES

Variable	Awaiting Test Results	Negative Test result	Symptoms	Contact with confirmed COVID patient	Contact with suspected COVID patient					
Model	β-hat	p								
ST	-0.058	0.75	0.199	0.52	-0.013	0.48	-0.047	0.89	-0.049	0.54
S1	-0.062	0.73	0.199	0.52	-0.051	0.12	-0.022	0.94	-0.043	0.59
S2	-0.056	0.76	0.199	0.52	0.000	0.99	-0.021	0.95	-0.052	0.51
S3	-0.056	0.76	0.199	0.52	0.028	0.76	-0.044	0.89	-0.052	0.51
S4	-0.056	0.76	0.199	0.52	0.004	0.97	-0.024	0.94	-0.052	0.51

TABLE IX. MODELS FOR DECREASE IN DISTANCE TRAVELLED (IN KM) NEXT DAY USING NUMBER OF SYMPTOMS AS COVARIATES

Variable	Awaiting Test Results	Negative Test result	Symptoms	Contact with confirmed COVID patient	Contact with suspected COVID patient					
Model	β-hat	p								
ST	0.100	0.70	0.502	0.25	0.024	0.33	0.716	0.12	-0.073	0.51
S1	0.103	0.69	0.502	0.25	0.049	0.29	0.807	0.07	-0.077	0.50
S2	0.097	0.71	0.502	0.25	0.079	0.33	0.782	0.08	-0.072	0.52
S3	0.097	0.71	0.502	0.25	0.098	0.44	0.766	0.09	-0.067	0.55
S4	0.097	0.71	0.502	0.25	-0.097	0.59	0.932	0.05	-0.068	0.55

association of these components with the change in distance travelled. The models based on the number of symptoms also do not indicate any association of mobility pattern with physical symptoms. The actual distance travelled next day after the reported symptom (Table VIII) is not significantly affected by any reported symptom, test result status or contact with confirmed or suspected COVID patients. However, if we consider the change in distance travelled next day of the symptom entry as compared to the previous day (Table IX), the contact with a confirmed COVID patient is marginally statistically significant, with p-value ranging from 0.05 to 0.12 for the five different models under consideration. Besides this mild association of the contact with confirmed COVID-19 cases none of the models indicate any significant effect of the physical symptoms and the possibility of being able to spread the infection on the change in the distance travelled, which is indicative of not following self-quarantine recommendations [17].

IV. CONCLUSION

At the time of writing this paper, COVID-19 pandemic continues to evolve. Despite tremendous amount of work across the globe, it is unclear if a vaccine will be available to the public or if other measures will be used country-wide and internationally. It is our belief that there will be a need to monitor symptoms, contacts, and movements of people for some time in order to slow spread of the disease. The presented work illustrated a small portion of efforts by a large public university to monitor and prevent spread of COVID-19 among its students, faculty, staff and visitors. We focused here only on portion symptom monitoring efforts and research that aims at understanding movement of individuals in relation to their reported symptoms and contacts.

There are a number of interesting observations in the obtained results. Headache is by far the most frequently reported symptom, always reported by individuals who report any symptom. Individuals’ movement patterns are very diverse, but clearly related to imposed movement restrictions. Some stay at home and leave only when they have to, while others tend to freely move without any limitations. However, the most important result indicates that there is no evidence that reported symptoms affect movement. This means that people who report symptoms consistent with COVID-19 do not self-quarantine but continue move as before. There are significant implications of this observations, particularly on providing right information and educating individuals. Further, the university currently requires every individual to self-report symptoms daily. Those who report any symptoms are not allowed on campus.

The presented results are a combination of data collected as part of university efforts to control COVID-19 spread and a research project that aims at studying social distancing. In this work we were unable to link movements to the actual COVID-19 cases, because of very few cases within the university
population (N=39) and none in the movement study cohort. Such linking would employ supervised learning to construct models for predicting risk of infection based on symptoms and movements. Instead, we focused on describing the population and linking overall symptoms to movements as a simple way of studying social distancing. We collected a unique longitudinal dataset of movements linked to symptoms for about 170 individuals who participated in the study. Such data allows for a detailed individual-level analysis, in contrast to large number of aggregate studies recently published.

The presented work has several limitations. First, the university cohort may not be generalizable to general population. To address this concern, we plan to compare aggregated movements patterns to large-scale aggregated data from general population, SafeGraph. Further, at the time of writing this manuscript, very few COVID-19 positive cases were reported in the university population. A surge of COVID-19 positive cases is expected in late November and December 2020. If this is the case, we will be able to create models that link symptoms with COVID-19 diagnosis.

Beyond work to address limitations, our current efforts focus on a more detailed analysis of the results. We are linking the GPS data to landscape information extracted from OpenStreet Map [40]. We are also reconstructing detailed movement trajectories of individuals in between GPS locations, and constructing models to predict movements. In addition, we are reconstructing sequences of reported symptoms for COVID-19 positive cases. Finally, we are extending the cohort of participants that will be followed until spring 2021, which will allow for higher power analysis and longer follow-up period.

ACKNOWLEDGEMENTS

The authors thank Mason’s Information Technology Services team that implemented Health™ tool available to the university community.

REFERENCES

[1] Moore, R. C., Lee, A., Hancock, J. T., Halley, M., & Linos, E. (2020). Experience with social distancing early in the COVID-19 pandemic in the United States: Implications for Public Health Messaging. medRxiv.

[2] Nivet, A., Ribeaud, D., Murray, A. L., Steinhoff, A., Bechtiger, L., Hepp, U., … & Eisner, M. (2020). Non-compliance with COVID-19-related public health measures among young adults: Insights from a longitudinal cohort study.

[3] Pedersen, M. J., & Favero, N. (2020). Social Distancing During the COVID-19 Pandemic: Who Are the Present and Future Non-compliers?. Public Administration Review.

[4] Haischer, M. H., Beilfuss, R., Hart, M. R., Opieinski, L., Wrucke, D., Zirguitis, O., … & Hunter, S. K. (2020). Who is wearing a mask? Gender-, age-, and location-related differences during the COVID-19 pandemic. medRxiv.

[5] Ballew, M.T., Bergquist P, Goldberg M, Gustafson A, Kotcher J, Marlon JR, Roess A, et al. , American Public Responses to COVID-19 -- April 2020, in PsyArXiv. 2020.

[6] Ballew, M.T., Bergquist P, Goldberg M, Gustafson A, Kotcher J, Marlon JR, Roess A, et al. , Americans’ Risk Perceptions and Emotional Responses to COVID-19, April 2020, in PsyArXiv. 2020.

[7] Arizona Department of Health Services: https://www.azdhs.gov/preparedness/epidemiology-disease-control/infectious-disease-epidemiology/covid-19/dashboards/index.php, accessed July 4, 2020.

[8] California Department of Public Health: https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/COVID-19-Cases-by-Age-Group.aspx accessed 7/8/20.

[9] Virginia Department of Health, https://www.vdh.virginia.gov/coronavirus/covid-19-daily-dashboard/

[10] Detroit News, https://www.detroitnews.com/story/news/local/michigan/2020/06/27/easter-ansing-bar-linked-85-positive-cases-coronavirus/3272687001/, June 27, 2020.

[11] Crawford, J., Butler-Henderson, K., Rudolph, J., Malikwi, B., Glowatz, M., Burton, R., Magni, P. and Lam, S., 2020. COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1), pp.1-20.

[12] O’Keefe, L., J. Rafferty, A. Gunder, and K. Vignare. "Delivering High-Quality Instruction Online in Response to COVID-19: Faculty Playbook." Online Learning Consortium (2020).

[13] Cheng, S.Y., Wang, C.J., Shen, A.C.T. and Chang, S.C., 2020. How to safely reopen colleges and universities during COVID-19: experiences from Taiwan. Annals of Internal Medicine.

[14] https://www.harvard.edu/coronavirus

[15] https://www.ox.ac.uk/coronavirus

[16] https://now.mit.edu/

[17] https://www2.gmu.edu/Safe-Return-Campus

[18] Stoddard, S. T., Morrison, A. C., Vazquez-Prokopec, G. M., Soldan, V. P., Kochel, T. J., Kitron, U., … & Scott, T. W. (2009). The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis, 3(7), e481.

[19] Wen, T. H., Lin, M. H., & Fang, C. T. (2012). Population movement and vector-borne disease transmission: differentiating spatial-temporal diffusion patterns of commuting and noncommuting dengue cases. Annals of the Association of American Geographers, 102(5), 1026-1037.

[20] Hast, M., Searle, K. M., Chaponda, M., Lupiya, J., Lubinda, J., Sikalima, J., … & Moss, W. J. (2019). The use of GPS data loggers to describe the impact of spatio-temporal movement patterns on malaria control in a high-transmission area of northern Zambia. International journal of health geographics, 18(1), 19.

[21] Vazquez-Prokopec, G. M., Bisanzio, D., Stoddard, S. T., Paz-Soldan, V., Morrison, A. C., Elder, J. P., … & Kitron, U. (2013). Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PloS one, 8(4), e58802.

[22] Wesolowski, A., Buckee, C. O., Engo-Monsen, K., & Metcalf, C. (2016). Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. The Journal of infectious diseases, 214(suppl_4), S414–S420. https://doi.org/10.1093/infdis/jiw273

[23] Modimele, A. P., Colman, E., Hanks, E. M., Bringenberg, R., Bsansl, S., & Hughes, D. P. (2019). Ant colonies maintain social homeostasis in the face of decreased density. eLife, 8, e38473. https://doi.org/10.7554/eLife.38473.

[24] Quevillon, L. E., Hanks, E. M., Bsansl, S., & Hughes, D. P. (2015). Social, spatial, and temporal organization in a complex insect society. Scientific reports, 5, 13393.

[25] Sah, P., Mann, J., & Bsansl, S. (2018). Disease implications of animal social network structure: a synthesis across social systems. Journal of Animal Ecology, 87(3), 546-558.

[26] Meunier, N. V., Sebulime, P., White, R. G., & Kock, R. (2017). Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis. The Onderstepoort journal of veterinary research, 84(1), e1–e10. https://doi.org/10.4102/ojvr.v84i1.1221

[27] Qi, F., & Du, F. (2013). Tracking and visualization of space-time activities for a micro-scale flu transmission study. International Journal of Health Geographics, 12(1), 1-16.

[28] Vazquez-Prokopec, G. M., Stoddard, S. T., Paz-Soldan, V., Morrison, A. C., Elder, J. P., Kochel, T. J., … & Kitron, U. (2009). Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International journal of health geographics, 8(1), 68.
[29] SafeGraph COVID-19 Data Consortium, https://www.safegraph.com/covid-19-data-consortium, accessed August 30, 2020.
[30] UNACAST COVID-19 website: https://www.unacast.com/covid19/social-distancing-scoreboard, accessed August 30, 2020.
[31] Bourassa, K., Sbarra, D., Caspi, A., & Moffitt, T. (2020). Social Distancing as a Health Behavior: County-level Movement in the United States During the COVID-19 Pandemic is Associated with Conventional Health Behaviors.
[32] Dasgupta, N., Funk, M. J., Lazard, A., White, B. E., & Marshall, S. W. (2020). Quantifying the social distancing privilege gap: a longitudinal study of smartphone movement. medRxiv.
[33] Gao, Song, Jinmeng Rao, Yuhao Kang, Yunlei Liang, and Jake Kruse. "Mapping county-level mobility pattern changes in the United States in response to COVID-19." SIGSPATIAL Special 12, no. 1 (2020): 16-26.
[34] Moore, Sarah A., Guy Faulkner, Ryan E. Rhodes, Mariana Brussoni, Tala Chulak-Bozzer, Leah J. Ferguson, Raktim Mitra et al. "Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey." International Journal of Behavioral Nutrition and Physical Activity 17, no. 1 (2020): 1-11.
[35] https://healthcheck.gmu.edu
[36] Ahmed, Nadeem, Regio A. Michelin, Wanli Xue, Sushmita Raj, Robert Malaney, Satil S. Kanhere, Aruna Seneviratne, Wen Hu, Helge Janicke, and Sanjay K. Jha. "A survey of covid-19 contact tracing apps." IEEE Access 8 (2020): 134577-134601.
[37] WEKA, The Workbench for Machine Learning website: https://www.cs.waikato.ac.nz/ml/weka/
[38] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for mining association rules." In Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487-499. 1994.
[39] Witten, I., Eibe Frank, M. Hall, and C. Pal. " : Data mining: practical machine learning tools and techniques. Elsevier Inc." (2017).
[40] OpenStreetMap Wiki: https://wiki.openstreetmap.org/wiki/Main_Page
[41] Sampaio Rocha - Filho, Pedro Augusto, and Lara Voss. "Persistent headache and persistent anosmia associated with COVID-19." Headache: The Journal of Head and Face Pain 60, no. 8 (2020): 1797-1799.
[42] Magdy, Rehab, Mona Hussein, Christine Ragaiie, Hoda M. Abdel-Hamid, Ahmed Khalil, Hoda I. Rizk, and Ahmed Dahshan. "Characteristics of headache attributed to COVID-19 infection and predictors of its frequency and intensity: A cross sectional study." Cephalalgia 40, no. 13 (2020): 1422-1431.
[43] Carfì, Angelo, Roberto Bernabei, and Francesco Landi. "Persistent symptoms in patients after acute COVID-19." Jama 324, no. 6 (2020): 603-605.
[44] Menni, Cristina, Ana M. Valdes, Maxim B. Freidin, Carole H. Sudre, Long H. Nguyen, David A. Drew, Sajaysurya Ganesh et al. "Real-time tracking of self-reported symptoms to predict potential COVID-19." Nature medicine (2020): 1-4.