SUPPLEMENTARY MATERIAL

Two new sesquiterpenes from the leaves of *Nicotiana tabacum* and their anti-tobacco mosaic virus activities

Qinpeng Shen\(^a\), Xingmeng Xu\(^{a,b}\), Chunbo Liu\(^a\), Wei Zhao\(^a\), Nengjun Xiang\(^a\), Zhihua Liu \(^{a*}\), Yongkuan Chen\(^a\), Mingming Miao\(^a\), Guangyu Yang \(^{a*}\)

\(^a\) Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, P.R.China.

\(^b\) School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Nature Products, Kunming Medical University, Kunming, Yunnan 650500, P.R.China.

\(^{a*}\)Corresponding author. Tel: +86 871 68315280. E-mail addresses: zhihualiu@163.com, ygy1110@163.com

Abstract: Two new sesquiterpenes, nicotianasesterpenes A and B (1 and 2), together with five known sesquiterpenes (3-7) were isolated from the leaves of *Nicotiana tabacum*. Their structures were determined mainly by spectroscopic methods, including extensive 1D- and 2D NMR techniques. The anti-tobacco mosaic virus (anti-TMV) activities of compounds 1-7 were evaluated. The results revealed that compound 1 exhibited high anti-TMV activities with inhibition rates of 33.6%. This rate is high than that of positive control. The other compounds also showed potential activities with inhibition rates in the range of 18.8%–28.4%, respectively.

Keywords: *Nicotiana tabacum*; sesquiterpenes; anti-tobacco mosaic virus activity
Figure S1 1C NMR spectrum of nicotianasesterpene A (1)
Figure S2: 1H NMR spectrum of nicotianasesterpene A (1)
Figure S3 13C NMR spectrum of nicotianesesterpene B (2)
Figure S4 1H NMR spectrum of nicotianasesterpene B (2)
Figure S5 Key HMBC and 1H-1H COSY correlations of 1
No.	1	2	1	2
1	120.1 s	121.0 s		
2	136.8 s	137.0 s		
3	117.4 d 6.55 s	117.2 d 6.58 s		
4	145.1 s	145.5 s		
5	144.2 s	144.4 s		
6	118.3 d 6.92 d (8.2)	119.0 d 7.02 d (8.2)		
7	131.7 d 7.33 d (8.2)	129.8 d 7.38 d (8.2)		
8	124.9 s	126.9 s		
9	158.0 s	155.6 s		
10	138.8 d 6.36 d (10.0)	138.0 d 6.34 d (10.0)		
11	29.0 d 3.03 m	29.2 d 3.06 m		
12,13	24.5 q 1.15 d (6.8)	24.3 q 1.18 d (6.8)		
14	60.0 t 4.60 s	59.9 t 4.62 s		
15	20.6 q 2.33 s	58.3 t 4.84 s		
-OMe	61.0 q 3.80 s	61.6 q 3.78 s		