High catch of *Sardinella lemuru* (Bleeker, 1853) and plankton abundance in Prigi Waters: Case study in 2017 and 2019

A Sartimbul\(^1\)\(^2\)\(^*\), R D Kasitowati\(^1\)\(^3\), M K ‘Izza\(^1\) and S S Fauzia\(^1\)

\(^1\)Faculty of Fisheries and Marine Science, Brawijaya University, Malang 65145, East Java, Indonesia
\(^2\)Marine Resources Exploration and Management (MEXMA) Research Group, Brawijaya University, Malang 65145, East Java, Indonesia
\(^3\)Coastal Resilience and Climate Change Adaptation (CORECT) Research Group, Brawijaya University Malang 65145, East Java, Indonesia

Corresponding author: aida@ub.ac.id

Abstract. Prigi Waters, East Java, is known as a fishing ground for mackerel tuna and other tunas. However, at the end of 2019, it was found that Bali Sardine (*Sardinella lemuru*) was a dominant caught that reach more than 56% of the total catch. The reason for the high fish abundance in 2019 is still unknown. Therefore, this study aims to understand the relationship between *S. lemuru* catch and plankton abundance in Prigi Waters during the high catch event and comparing a similar study in 2017. Plankton abundance was analyzed using the APHA method. Pearson correlation analysis was used to express the relationship between *S. lemuru* catch and plankton abundance. The result showed that the composition of zooplankton and phytoplankton in waters was 52.8:47.2. Class Bacillariophyceae dominated the phytoplankton group in Prigi waters (47%), where *Actinocyclus* is the most common genus found (28,762 cell/m\(^3\)). While in the zooplankton group, the class Maxillopoda dominated (75%), where *Nauplius* is the most common genus found (34,876 ind./m\(^3\)). The Pearson correlation analysis showed that *S. lemuru* catch in November 2019 was greatly influenced by phytoplankton (61.32%) than zooplankton (21.38%) abundances, and the rest was influenced by other factors. High and low plankton abundance in 2019 and 2017 has implications to high and low catch of *S.lemuru*, respectively. It is suggested that routine and continuous monitoring of plankton may provide good information for fisheries prediction and management in Prigi Waters.

Keywords: catch; correlation; plankton; Prigi Waters; *Sardinella lemuru*

1. **Introduction**

Sardinella lemuru (Bleeker, 1853) is a fish that often dominates the catch of fishermen in Indonesia. It is an important fishery commodity because it contains 17.8-20% of protein [1] and high Omega-3 [2]. *S. lemuru* is also dominant as a raw material in the fish canning industry [3]. *S. lemuru* catches in Indonesia fluctuates seasonally and even annually. It has occurred in Prigi waters as well. Based on Prigi Fishing Port statistic data [4], the catch of *S. lemuru* in 2015 was 2,277,493 kg then decreased in 2016, 2017, 2018 as 30,286; 15,018; 110,148 kg, respectively. However, *S. lemuru* catches increased sharply with the highest catch peaks in October-November reached 4,840,247 kg (17.15%) of the total production only in single 2019 (figure 1).
S. lemuru is a filter feeder organism that feeds on phytoplankton and zooplankton, especially copepods (zooplankton) [4]. The availability of S. lemuru in nature can be influenced by several factors, e.g. food availability [5]. A Previous study revealed that the catch of S. lemuru in the Bali Strait was closely related to the abundance of phytoplankton and zooplankton [3, 6]. However, there is very limited similar information for Prigi Waters. From this study, the question arises whether it is possible that the high catch of S. lemuru landed at the Prigi fishing port at the end of 2019 is also related to the abundance of food. This relationship is what makes this research important to do in the Prigi Waters. Therefore, this study aims to understand the relationship between the high catch of S. lemuru at the end of 2019 and the possible relationship to the abundance of plankton in 2019 and comparing it to a similar study in 2017. This study may provide basic information for the government in fisheries prediction and management in the Prigi waters.

![Figure 1](image1.png)

Figure 1. Time series of monthly mean Sardinella lemuru catch in the last 5 years landed at Prigi Fishing Port. The high peak of S. lemuru catch occurs in October, then November 2019.

2. Research methods

A sampling of plankton and fish were conducted at the same time using two boat system purse seiner. It was carried out at five fishing grounds during the peak of the S. lemuru catch event on 4-8 November 2019. It was one-day fishing where a trip was done within a day. Fishing grounds were determined by the captain based on his feeling and experiences. In this case, the fishing grounds (FG 1, 2, 3, 4, and 5) were in the southeast of Prigi Bay and landed in Prigi Fishing Port (figure 2). Plankton sampling was carried out soon after the hauling time of purse seiner [3]. A hundred ml surface seawater was filtered using 20 µm plankton net with three times repetitions. The filtered water was preserved with a 1% Lugol solution of 4-5 drops [7]. All fish caught from five fishing grounds were weighed and recorded. To understand the catch fluctuation in Prigi waters, then the 2019 dataset was compared to the previous data collecting in 2017 under the Marine Resource Exploration and Management (MEXMA) project.
Figure 2. Prigi waters where Prigi Bay and Prigi fishing port located. The five fishing grounds (FG 1, 2, 3, 4, and 5) in the current study located at the southeast of Prigi Bay.

All plankton samples were identified at Exploration of Fisheries and Marine Resources Laboratory, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya from 25 November–12 December 2019. Plankton observations were carried out by the sweeping method. Plankton count using a 1 ml Sedgwick Rafter Counting Cell volume and observed under a microscope with a magnification of $10\times10=100x$ [8]. Then the plankton abundance analysis was carried out by calculating the number of individual units observed using the equation (1) by APHA [7, 9].

$$N = \frac{n \times O_i \times V_r \times 1}{p \times O_p \times V_o \times V_s}$$ \hspace{1cm} (1)

where, N = Plankton abundance, n = Number of plankton in the entire field of view, p = Number of a field of view observed, O_i = Area of the Sedgwick Rafter Counting Cell (mm2), O_p = Area of view (mm2), V_r = Volume of filtered water (L), V_o = Volume of water observed in SRCC (ml), V_s = Volume of filtered water (ml).

3. Results and discussion

3.1. Catch of Sardinella lemuru in Prigi Waters

The number of catches of $S. lemuru$ from five fishing grounds in southeast Prigi Bay which landed at Prigi Fishing Port was shown in figure 3. The $S. lemuru$ catch had fluctuated during 4–8 November 2019. The lowest catch found at fishing ground 2 of 200 kg. While the highest catch was recorded at fishing ground 3 and 5 of 1700 kg each (figure 3).
During November, the *S. lemuru* catch was still high compared to the previous months. This is also experienced by water areas located in south Java and Bali Strait [10, 11]. The catch fluctuation of *S. lemuru* is thought to be influenced by the upwelling cycle that occurs in south Java [2], this fish enter the spawning period in the eastern season (Jun-Aug), then take time to develop until the transitional season 2. (September–November), many *S. lemuru* are caught by fishermen with the peak season in November [12].

3.2. Plankton abundance in Prigi Waters
Plankton abundance at five fishing grounds in Prigi waters shown in figure 4. The abundance ratio of phytoplankton and zooplankton was 48:52. The plankton found to have an average of 145,053 cell/m³ for phytoplankton with the highest abundance was found at fishing ground 3 of 222,788 cell/m³ and the lowest was at fishing ground 2 of 111,819 cell/m³. Whereas, zooplankton has an average of 155,924 ind./m³ with the highest abundance also at fishing ground 3 of 202,123 ind./m³ and the lowest is at fishing ground 2 as well of 119,745 ind./m³.

![Figure 3](image)

Figure 3. Catch of *Sardinella lemura* in five fishing grounds in Prigi waters fluctuated during 4-8 November 2019.

The results showed that class Bacillariophyceae dominated the phytoplankton group in Prigi waters by 47% (figure 5a) with Actinocyclus being the most common genus of 28,762 cells/m³ (table 1). The class Bacillariophyceae dominates the waters with 10 genera from a total of 21 phytoplankton genera found. The class Bacillariophyceae has a high abundance in waters because according to Odum [13], Bacillariophyceae has a fast growth rate, able to utilize nutrients properly, and able to adapt to environmental changes compared with other plankton classes.

![Figure 4](image)

Figure 4. (a) Plankton composition of Prigi waters and (b) Plankton distribution in five sampling sites of Prigi Waters.
Figure 5. The composition of plankton in Prigi waters according to their class, where (a) phytoplankton was dominated by Bacillariophyceae by 47% and (b) zooplankton was dominated by Maxillopoda by 75%.

Meanwhile, the zooplankton group, class Maxillopoda was dominated by 75% (figure 5b) with the most common genus found was Nauplius at 34,876 ind./m3 (table 2). The class Maxillopoda dominates the waters with nine genera of twelve zooplankton genera found. The nine genera belong to the subclass Copepoda. The high abundance of copepods in the aquatic environment is due to the ability of Copepoda to live and adapt to various conditions of the aquatic environment [14, 15].

Table 1. Abundance and composition of phytoplankton in Prigi Waters.

Class	Genus	Abundance (cells/m3)
Bacillariophyceae	Actinocyclus	28762
	Ceratium	10021
	Chaetoceros	453
	Codonellopsis	2038
	Coscinodiscus	17778
	Cyclotella	12852
	Dinophysis	7587
	Euglena	8209
	Guinardia	113
	Navicula	453
Dinophyceae	Noctiluca	4190
	Oocystis	7926
	Planktoniella	170
	Protoperidinium	10701
	Pseudosolenia	962
	Pyrocystis	849
Chloropyceae	Pyrophacus	5492
Euglenophyceidae	Rhabdonema	2774
Noctilucophyceae	Scenedesmus	9172
Oligotriceae	Scrippsiella	2321
Trebouxiphycceae	Thalassiosira	9908
Table 2. Abundance and composition of zooplankton in Prigi waters.

Class	Genus	Abundance (ind/m³)
Maxillopoda	Acartia	25987
	Balanus	21967
	Canthocalanus	7813
	Cletocamptus	4076
	Cyclops	20835
	Nauplius	34876
	Oitthona	8379
	Oncaea	8889
	Paracalanus	20042
Globothalamea	Bolivina	170
	Discorbis	2548
Gastropoda	Heliconoides	340

3.3. Relationship between plankton abundance and catch

The Pearson correlation analysis was used to explain the relationship between plankton abundance and catch [16]. The strength and weakness of a relationship between variables can be expressed in the magnitude of the correlation coefficient. The correlation value between plankton abundance and catch was shown in figure 6.

![Figure 6](image-url)
Figure 6. Relationship between plankton abundance and *Sardinella lemuru* catch.

The Pearson correlation shows that the strong correlation between the abundance of phytoplankton and the catch of *S. lemuru* in each fishing ground. The high catch was found at fishing ground 3. It was suspected that this phenomenon was due to the high abundance of plankton at fishing ground 3, and vice versa at the lowest value at fishing ground 2.

Based on the results of the correlation analysis, the correlation coefficient between phytoplankton in the waters and the catch of *S. lemuru* was 0.783 with a coefficient of determination of 0.6132. Meanwhile, the correlation coefficient between zooplankton in the waters and the catch of *S. lemuru* was 0.462 with a determination coefficient of 0.2138 (figure 6). The result indicates that phytoplankton and zooplankton in the waters have a strong relationship and affect the catch of *S. lemuru* by 61.32% and 21.38%, respectively, and the rest is influenced by other factors like abiotic factors [17].

S. lemuru is a small pelagic fish known as phytoplankton feeder mainly Baccilariophyceae class, such as *Coscinodiscus* sp. often found in their diet [18]. Meanwhile, the abundance of zooplankton has a moderate relationship with the catch of *S. lemuru*. According to Adinugroho et al. [19], a zooplankton abundance peak often occurs after a high phytoplankton abundance because zooplankton grows slower than phytoplankton. The time lag between plankton abundance and fish predation [2, 20] also causes a
correlation value between zooplankton abundance and catches classified as moderate. Pertami et al. [21] also explained that the dietary composition of S. lemuru also changes depending on the season and the size of the fish.

To determine the effect of plankton abundance on the high catch of S. lemuru in Prigi waters, case studies of plankton abundance and S. lemuru catch in 2019 were compared to the previous dataset (2017) as based on data collected by the MEXMA research group. Based on Statistics data, 2017 was the year with the lowest catch of S. lemuru in the last 5 years (figure 1). 2017 was a poor year for S. lemuru, where the result of the research in 2017 the catch for S. lemuru was only 15,018 kg when plankton abundance only reached 6,794 cell/m³ (phytoplankton) and 10,757 ind./m³ (zooplankton), on contrary in 2019 it reached 4,840,247 kg was followed by the high abundance of phytoplankton (1,450,053 cell/m³) and zooplankton (155,924 ind./m³) (table 3).

Year	Number of Phytoplankton (cell/m³)	Number of Zooplankton (ind./m³)	Temperature (°C)	Chl-a	Catch (kg)
2017	6794	10757	28.94	0.27	15018
2019	145053	155924	25.83	3.49	4840247

4. Conclusion

The high catch of S. lemuru in November 2019 was indeed influenced by the abundance of plankton. The correlation analysis showed that phytoplankton had a greater influence on the catch of S. lemuru at the time of the study as 61.32% compared with zooplankton which was only 21.38% and the rest was influenced by other factors like abiotic factors. Class Bacillariophyceae (phytoplankton) was dominated in this study. It is suggested to conduct routine and continuous plankton and S. lemuru monitoring for fish prediction and management.

Acknowledgements

The authors would like to thank MEXMA and the Faculty of Fisheries and Marine Science, Universitas Brawijaya for facilitating sampling equipment and laboratory. This research is dedicated in memoriam of Erawati Wulandari as the head of the operational section of the Prigi Fishing Port who helps the sampling process and permit. She died on January 4, 2021 when the Covid-19 pandemic was outbreak. This research is partly funded by the Ministry of Research, Technology and Higher Education No. 167/SP2H/LT/DPRM/2019.

References

[1] Wahyuningsih W 2005 Optimizing production of lemuru fish (Sardinella longiceps) with high fatty-acid omega-3 using liquid smoked ginger flavor process Journal of Coastal Development 8(2): 93-101
[2] Sartimbul A, Nakata H, Rohadi E, Yusuf B, and Kadarisman H P 2010 Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia Progress in Oceanography 87(1-4): 168-174 doi: 10.1016/j.pocean.2010.09.002
[3] Sihombing H, P, Hendrawan I G, and Suteja Y 2017 Analisis Hubungan Kelimpahan Plankton di Permukaan Terhadap Hasil Tangkapan Ikan Lemuru (Sardinella lemuru) di Selat Bali J. Mar. Aquat. Sci 4(1): 151-161 doi: 10.24843/jmas.2018.v4.i01.151-161.
[4] FishBase 2019 S lemuru summary page FishBase https://www.fishbase.us/ summary/Sardinella-S. lemuru.html (accessed 11.27.20)
[5] Metillo E B, Campos W L, Villanoy C L, Hayashizaki K, Tsunado T, and Nishida S 2018 Ontogenetic feeding shift and size-based zooplanktivory in S. lemuru (Pisces, Clupeidae)
during an upwelling in southeastern Sulu Sea *The Philippines Fish Management Ecology* 25(6): 441-455.

[6] Gaughan D J and Mitchell R W D 2000 Final report, FRDC Project 95/037: the biology and stock assessment of the tropical sardine, *Sardinella lemuru*, off the mid-west coast of Western Australia *Fisheries Research & Development Corporation (Australia)*, and Fisheries Western Australia 119: 1-136

[7] APHA (American Public Health Association) 1989 Standar Methods for The Examination of Water and Wastewater *American Public Control Federation Washington DC American Public Health Association*

[8] Ingram W M and Palmer C M 1952 Simplified Procedure for Collecting, Examining, and Recording Plankton in Water *Jour. AWWA (American Water Works Association)* 44(7): 617–624

[9] Sahami F M, Baruadi A S R, and Hamzah S N 2017 Phytoplankton abundance as a preliminary study on pearl oyster potential culture development in the North Gorontalo water, Indonesia,” *AACI Bioflux* 10(6): 1506-1513

[10] Pertami N D, Nurjaya I W, Damar A, and Rahardjo M. F 2019 The spatial pattern relationship between SST and chlorophyll-a in Lemuru Bleeker, 1853 catches in Bali Strait, Indonesia,” *OP Conf. Ser.: Earth Environ. Sci* 278: 052058 doi: 10.1088/1755-1315/278/1/052058.

[11] Purwaningsih R, Widjaja S, and Pratiwi S G 2011 The Effect of Marine Fish Biomass Stock Reduction to Fishers Revenue (A Case Study of *Sardinella Lemuru* Fisheries on Bali Strait) *JTS* 22(3): 166-176 doi: 10.12962/j20882033.v22i3.73.

[12] Suwarso S, Wujdi A, and Fauzi M 2014 Exploitation and catch fluctuation of small pelagic fishes in prigi waters, south coast of Java *Indonesian Fisheries Research Journal* 20(2): 69–76 doi: 10.15578/ifrj.20.2.2014.69-76

[13] Odum E P 1959 *Fundamentals of ecology* Philadelphia: Saunders

[14] H. Abo-Taleb, M. Ashour, A. El-Shafei, A. Alataway, and M. M. Maaty, “Biodiversity of Calanoida Copepoda in Different Habitats of the North-Western Red Sea (Hurghada Shelf),” *Water* 12(656): 1–21

[15] Sodré E de O and Bozelli R L 2019 How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective *Int Aquat Res* 11(3): 207–223 doi:10.1007/s40071-019-0233-x

[16] Fuad M A Z, Sartimbul A, Iranawati F, Sambah A B, Yona D, Hidayati N, and Rahman M A 2020 *Metode Penelitian Kelautan dan Perikanan: Prinsip Dasar Penelitian, Pengambilan Sampel, Analisis, dan Interpretasi Data* Malang: UB Press

[17] Bruno D O, Barbini S A, Díaz de Astarloa J M and Martos P 2013 Fish abundance and distribution patterns related to environmental factors in a choked temperate coastal lagoon (Argentina) *Brazilian Journal of Oceanography* 61(1): 43-53

[18] Pradini S, Rahardjo M F, and Kaswadi R 2001 Kebiasaan Makanan Ikan Lemuru {Sardinella Lemuru} Di Perairan Muncar, Banyuwangi [Food Habits of Threadfin Bream, Sardinella Lemuru in Muncar, Banyuwangi] *Jurnal Iktiologi Indonesia* 1(1): 41-45

[19] Adinugroho M, Subiyanto and Haeruddin 2014 Komposisi dan distribusi plankton di perairan Teluk Semarang *Saintifika* 16(2): 39-48

[20] Hardy A C 1936 Part I. The Object, Plan and Methods of the Investigation *J. Mar. Biol. Ass* 21(1): 147–177 doi:10.1017/S0025315400011267

[21] Pertami N D, Rahardjo M F, Damar A, and Nurjaya I W 2019 Food and feeding habit of Bali Sardinella, *Sardinella lemuru* Bleeker, 1853 in Bali Strait waters *J Iktiol Indonesia* 19(1): 143-155 doi: 10.32491/jii.v19i1.444.