On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops.

Alexander Grishkov, Marina Rasskazova, Liudmila Sabinina, Mohamed Salim

May, 2020

Abstract

In this note we describe the structure of finite dimensional Malcev algebras over a field of real numbers \(\mathbb{R} \), which are nilpotent modulo its Lie center. It is proved that the corresponding analytic global Moufang loops are nilpotent modulo their nucleus.

Key words: Malcev algebras, Moufang loops, Global Moufang loops.

2010 Mathematics Subject Classification: 17D10, 20N05.

1 Introduction

The theory of analytic loops started with the work of A.I. Malcev in [Ma1]. In this article, the correspondence between the analytic local diassociative loops and the binary Lie algebras was established. A loop is a set \(M \), endowed with a binary operation \(M \times M \to M \), with the neutral element \(e \in M \) and the condition that the equations \(ax = b, ya = b \) for all \(a, b \in M \) have a unique solution. A loop is called diassociative, if every two elements of this loop generate a subgroup. Malcev showed that for an analytic loop, with the Moufang identity: \((xy)(zx) = x(yz)x \) the corresponding tangent algebra satisfies the following identities:

\[
x^2 = [J(x, y, z), x] - J(x, y, [x, z]) = 0,
\]

where \(J(x, y, z) = [[x, y], z] + [[x, z], x] + [[z, x], y] \) (See [1]). Algebras with these defining identities are currently called Malcev algebras. The more difficult question, if every finite dimensional Malcev \(\mathbb{R} \)-algebra is the tangent algebra of some local analytic Moufang loop was solved positively by E.Kuzmin in 1969 in [Kuzm2].

Let us consider a pair \((a, \mathcal{L})\), where \(a \) is some subvariety of binary Lie algebras (in particular Malcev algebras) and \(\mathcal{L} \) is a subvariety of diassociative loops (in particular, Moufang loops).

A pair \((a, \mathcal{L})\), will be called locally dual, if it satisfies the following conditions:
• every tangent algebra of a local analytic loop from the variety \mathcal{L} belongs to the variety \mathfrak{a},

• every finite-dimensional \mathbb{R}-algebra from the variety \mathfrak{a} is a tangent algebra of some local analytic loop from the variety \mathcal{L}

The description of all locally dual pairs is a meaningful and difficult problem.

If a locally dual pair $(\mathfrak{a}, \mathcal{L})$ satisfies a stronger condition, namely, if for every global analytic loop S such that its local loop belongs to \mathcal{L}, is in \mathcal{L} too, we will call such a pair $(\mathfrak{a}, \mathcal{L})$ globally dual.

Kerdman [Ker] showed that a pair $(\mathfrak{m}, \mathfrak{M})$ is globally dual if \mathfrak{m} is the variety of all Malcev algebras, and \mathfrak{M} is a variety of all Moufang loops. In this note we study the duality of a pair formed by two varieties: the first one, NL_k, is the subvariety of the variety \mathfrak{m}, which is defined by the identity $J([x_1, x_2, ..., x_k], y, z) = 0$, where in the product $[x_1, x_2, ..., x_k]$ a distribution of parentheses is arbitrary and the second one, NG_k, is the subvariety of the variety \mathfrak{M}, defined by the identity $([x_1, x_2, ..., x_k], y, z) = 1$. Here $[x_1, x_2, ..., x_k]$ is a commutator of length k with an arbitrary distribution of parentheses and $(a, b, c) = ((ab)c)(a(bc))^{-1}$ is an associator.

For a Malcev algebra M we define $M^1 = M$, $M^n = \sum_{i,j>0} [M^i, M^j]$. Let F be a free Malcev algebra, then NL_k is a variety of Malcev algebras defined by all identities of the type $J(w, x, y) = 0$, where $w \in F^k$, $k \geq 2$.

2 Structure of finite dimensional Malcev algebras nilpotent by Lie center.

Let M be a finite dimensional Malcev algebra over a field \mathbb{C}, and let G be a solvable radical of M. Then there exists a semisimple subalgebra (Levi factor) S, such that $M = S \oplus G$ ([Gri1],[Kuzm1],[Car]).

We will use the results and the terminology from [Gri2]. Let $g \in M$, the element g is said to be splitting element if $g = t + n$, where n is a nilpotent element and t is a semisimple element, i.e., the right multiplication operator R_t is diagonalizable and the operators R_t and R_n commute. A Malcev algebra M is said to be splitting if all elements of M are splitting. If M is a finite-dimensional splitting Malcev algebra over a field of characteristic 0, then $M = S \oplus T \oplus N$, where S is a semisimple Levi factor, T is an abelian subalgebra of M such that each element of T is semisimple (toroidal subalgebra), and N is the nilpotent radical of M. Additionally $[S, T] = 0$,

$$N = \sum_{\alpha \in \Delta} \bigoplus N_\alpha,$$

where $\Delta \subset T^* = \text{Hom}_k(T, k)$ and

$$N_\alpha = \{ x \in N \mid [x, t] = \alpha(t)x, \quad \forall t \in T \}.$$ \hspace{1cm} (1)
Moreover, \([N_\alpha, N_\beta] \subseteq N_{\alpha+\beta}\), if \(\alpha \neq \beta\), and \([N_\alpha, N_\alpha] \subseteq N_{2\alpha} + N_{-\alpha}\).

Since \([T, S] = 0\), one has that \(N_\alpha\) is an \(S\)-module and hence \(N_0 = N_{01} \oplus N_{00}\), \([S, N_0] = [S, N_{01}] = N_0\) and \([S, N_{00}] = 0\). Set

\[
M_{11} = \left(S \oplus \sum_{\alpha \in \Delta \setminus 0} \bigoplus_{\alpha} N_\alpha \right) \oplus N_{01}
\]

and let us denote by \(M_1\) the subalgebra generated by \(T \oplus M_{11}\). Notice that in general, \(M_1 \neq T \oplus M_{11}\), and \([N_{01}, N_{00}] \subseteq N_{01}\), \([M_{11}, N_0] \subseteq M_{11}\). Hence \(M_1\) is an ideal. Every finite-dimensional Malcev algebra \(M\) over a field of characteristic 0 is contained in some splitting Malcev algebra \(\hat{M}\). If such \(\hat{M}\) does not contain intermediate splitting subalgebra, which contains \(M\), then \(\hat{M}\) is called a splitting of \(M\). Each automorphism of the algebra \(M\) extends uniquely to an automorphism of a splitting of \(M\). If \(M\) is a splitting of \(M\), then \(\hat{M}^2 = \hat{M}^2\), and any ideal of the algebra \(\hat{M}\) is an ideal of the algebra \(M\) and vice versa any ideal of \(M\), which is in \(\hat{M}\) is also the ideal of \(M\). This result is analogous to one for Lie algebras due to A. I. Malcev [Mn2].

In what follows in this article the splitting algebra of an algebra \(M\) we will denote by \(\hat{M}\).

Recall that

\[
\text{Lie}(M) = \{x \in M | J(x, M, M) = 0\}
\]

is the Lie center of \(M\).

Lemma 1. In this notation \(\text{Lie}(M) \subseteq \text{Lie}(\hat{M})\).

Proof. By the construction \(\hat{M} = \bigcup_{i=1}^n M(i)\), where \(M(1) = M, M(n) = \hat{M}\), \(\dim M(i) = \dim M(i-1) + 1\), \(M(i) = M(i-1) + R_{t_i}, i \geq 2\), where \(t_i\) is a semisimple element, i.e. \(R_{t_i} : M(i-1) \to M(i-1)\) is a diagonalizable operator.

Moreover there exists \(x_i \in M(i-1)\), such that \(n_i = x_i - t_i\) is a nil element, i.e \(R_{n_i}\) is a nilpotent operator and \(R_{t_i} \circ R_{n_i} = R_{n_i} \circ R_{t_i}, [n_i, t_i] = 0\).

Now consider \(l \in \text{Lie}(M(i-1)), x_i \in M(i-1)\). It is sufficient to show that \(J(l, x_i, t_i) = 0\). Suppose that

\[
M(i-1) = \sum_{\alpha \in \Delta} \oplus M(i-1)_{\alpha}
\]

is a Cartan decomposition with respect to the operator \(R_{t_i}\) or \(R_{x_i}\).

Without loss of generality one can assert that

\[
l \in \text{Lie}(M(i-1) \cap M(i-1)_{\alpha}, x_i \in M(i-1)_{\beta}.
\]

If \(\alpha \neq \beta\), then \(J(l, x_i, t_i) = 0\) due to the fact that any Malcev algebra is a binary-Lie algebra.
Consider the case $\alpha = \beta \neq 0$.

The equality $J(l, x, t_i) = 0$ is equivalent to $[x, l] \in M(i - 1)_{2\alpha}$.

Indeed, suppose that $[x, l] \notin M(i - 1)_{2\alpha}$. Then $[x, l] = [x, l]_{2\alpha} + [x, l]_{-\alpha}$, where $[x, l]_{2\alpha} \in M(i - 1)_{2\alpha}$ and $0 \neq [x, l]_{-\alpha} \in M(i - 1)_{-\alpha}$. Recall that $x_i - n_i = t_i$.

Now if $\alpha = \beta = 0$ we have $J(l, x, t_i) = 0$, since $[N_0, N_0] \subseteq N_0$ and $[N_0, t_i] = 0$.

Thus one has $\text{Lie}(M) \subseteq ... \subseteq \text{Lie}(M(i)) \subseteq ... \subseteq \text{Lie}(\hat{M})$.

In the theory of Lie algebras there exists the following construction of decomposable extension. Let L be a Lie algebra and let N be a subalgebra of the Lie algebra $\text{Der}L$ (the algebra of all derivations of L). Then the direct sum $N \oplus L$ has a structure of Lie algebra with the multiplication:

$$(a, l) \cdot (b, r) = ([a, b], l^a - r^a + [l, r]).$$

Notice that we are not assuming that N or L is abelian.
This construction has a generalization for Malcev algebras.

Suppose that M is a Malcev algebra such that $M = \tilde{N} + L$, where $L \subseteq \text{Lie}(M)$, and M has an ideal $I \subseteq \tilde{N}$ such that $J(\tilde{N}) \subseteq I$, $[I, L] = 0$, then $\tilde{N}/I \cong N$ is a Lie algebra. It means that N acts on L by derivations. In this case the formula \[\text{(5)}\] defines a Malcev algebra structure on $\tilde{M} = \tilde{N} \oplus L$, where I acts trivially on the Lie algebra L by definition. This construction is called the \textit{decomposable extension of Malcev algebras}. Notice that in this construction L is an ideal contained in the Lie center of M.

In what follows the decomposable extension of Malcev algebra will be denoted by M.

The aim of this section is to show the following

Theorem 1. Let M be a finite dimensional Malcev algebra from the variety NL_k over a field of complex numbers \mathbb{C}. Then

1. M may be embedded into the splitting Malcev algebra $\tilde{M} = S \oplus T \oplus N \in NL_k$, where S is a semi-simple Lie subalgebra, T is a toroidal subalgebra, N is a nilpotent ideal.

2. $N = N_{00} \oplus [S, N]$, where N_{00} is a Malcev subalgebra of N and the ideal M_1 generated by $S \oplus T \oplus \left(\sum_{\alpha \in \Delta \setminus 0} N_{\alpha} \right) \oplus [S, N]$ is contained in $\text{Lie}(\tilde{M})$.

3. There exists a Malcev algebra $\tilde{M} = N_{00} \oplus M_1$ of the variety NL_k, which is a decomposable extension of a nilpotent Malcev algebra N_{00} and a Lie subalgebra M_1, such that there exists an epimorphism $\pi: \tilde{M} \longrightarrow M$.

In order to prove this Theorem we need to collect some intermediate results which we will present in the following lemmata.

Put $\bigoplus_{n=1}^{\infty} M^n$ by M^ω. Following introduced notation one has:

Lemma 2. Let M be a splitting Malcev algebra from the variety NL_k, $k \geq 2$. Then ideal M_1, constructed above, contains M^ω and is contained in the Lie center $\text{Lie}(M)$.

\begin{proof}
By definition of the variety NL_k we get that $M^\omega \subseteq \text{Lie}(M)$ the Lie center of M. By construction $M_{11} \subseteq M^\omega \subseteq \text{Lie}(M)$, hence $M' \subseteq \text{Lie}(M)$ where M' is a subalgebra of M generated by M_{11}. It is clear that $M_1 = T \oplus M'$, $[T, M'] \subseteq M' = S \oplus V$ with $V \subseteq N$. Hence for proving the lemma it is enough to prove that $J(x, y, z) = 0$, where x, y and z are elements of $T \cup (\cup_{\alpha \in \Delta} N_{\alpha})$. If $x, y \in T$, then $z \in N_{\alpha}$ and $J(x, y, z) = [[x, z], y] + [[[y, z]], x] = \alpha(x)\alpha(y)z - \alpha(y)\alpha(x)z = 0$.

If $x \in T$, $y \in N_{\alpha}, z \in N_{\beta}$ and $\alpha \neq 0$ or $\beta \neq 0$, then $y \in M_{11} \subseteq \text{Lie}(M)$ or $z \in \text{Lie}(M)$, hence $J(x, y, z) = 0$. At last, in the case $\alpha = \beta = 0$ we get $J(x, y, z) = 0$ since $[N_0, N_0] \subseteq N_0$. \hfill \qed
\end{proof}
Lemma 3. Let M be a Malcev algebra from the variety NL_k.
Then $[J(M), M^\omega] = 0$.

Proof. By the result of Filippov (see [Fi], page 236) one has $[J(M), \text{Lie}(M)] = 0$. On the other hand, $M^\omega \subseteq \text{Lie}(M)$ since $M \in NL_k$.

Since $M_1 \subseteq M^\omega$ by Lemma 3 we have $[J(M), M_1] = 0$. Then the subalgebra N_{00} acts on the ideal M_1 by derivations, hence it is possible to construct, as above, a Malcev algebra $\hat{M} = N_{00} \oplus M_1$ with a product given by $[\cdot, \cdot]$. It is easy to see that the morphism $\varphi : M \rightarrow M$, $\varphi(n, m) = n + m$ is an epimorphism of Malcev algebras.

Lemma 4. The Malcev algebra $\hat{M} = N_{00} \oplus M_1$ with the product given by $[\cdot, \cdot]$ is a Malcev algebra of the variety NL_k.

Proof. Since $M_1 \subseteq \text{Lie}(\hat{M})$, one has $J(\hat{M}) = J(N_{00})$. By construction, $[M_1, J(N_{00})] = 0$. In this case, \hat{M} is a Malcev algebra of the variety NL_k if and only if N_{00} is a Malcev algebra of the variety NL_k; which is exactly our case.

Remark. In general, if we have a Malcev algebra $P = P_0 + P_1$, where P_0 is a nilpotent subalgebra, $P_1 \subseteq \text{Lie}(P)$ is an ideal contained in the Lie center of P and P/P_1 is a Malcev algebra of the variety NL_k, then P is not necessarily a Malcev algebra of the the variety NL_k. It is possible that $P \in NL_{k+1} \setminus NL_k$.

Example. Set $P_1 = \mathbb{R}\{t, a, b, c \mid [a, t] = a, [b, t] = -b, [a, b] = c, [c, t] = [a, c] = [b, c] = 0\}$ and let it be a splitting Lie algebra. Choose any nilpotent Malcev algebra P_0 which is not a Malcev algebra from the variety NL_k, but P_0/I is. Here $Z = \mathbb{R}z$ is some central ideal of P_0. It is easy to construct an algebra with those properties. Let us consider $\hat{P} = P_0 \oplus P_1$ and $P = \hat{P}/I$, where $I = \mathbb{R}(c-z)$ is a central ideal. It is clear that P is not a Malcev algebra from the variety NL_k. But $P = \pi(P_0) + \pi(P_1)$, where $\pi : \hat{P} \rightarrow P$ is a canonical homomorphism. Notice that $\pi(P_0) \cong P_0, \pi(P_1) \cong P_1 \subseteq N(P)$ and $P/P_1 = P_0/Z$ is a Malcev algebra from the variety NL_k.

Proof of the Theorem.
Consider $\hat{M} = S \oplus T \oplus N$ as splitting algebra of $M = S \oplus G$. We will show that $\hat{M} \in NL_k$ if $M \in NL_k$. Due to the construction of \hat{M} ([Gri2]) any ideal $I \triangleleft \hat{M}$ is also the ideal of \hat{M} and therefore $M^k = \hat{M}^k, k \geq 2$. Now since $\text{Lie}(M) \subseteq \text{Lie}(\hat{M})$ and $M^k \subseteq \text{Lie}(M)$ one has $M^k \subseteq \text{Lie}(M) \subseteq \text{Lie}(M^k)$. This means $M^k \in NL_k$. As it was noticed above N is a semisimple $S \oplus T$-module, therefore $N_{00} = \text{Ann}_N(S \oplus T)$ is the nilpotent subalgebra of M. Moreover

$$M_{11} \subseteq \hat{M}^\omega \subseteq \text{Lie}(\hat{M})$$

Since $[T, N_{00}] = 0$ one has $N_{00} \subseteq N_0$. In other hand in general case $N_{00} \cap M_1 \neq 0$. Recall that M_1 is the ideal generated by $T \oplus M_{11}$. Finally one gets $M =
$N_{00} \oplus M_1$.

3 Malcev algebras and global Moufang loops.

A variety \mathbf{M} of Malcev algebras will be called (locally) smooth, if there exists a variety of Moufang loops \mathbf{L} such that the pair (\mathbf{M}, \mathbf{L}) is (locally) globally dual. Analogously, a variety of Moufang loops \mathbf{L} is (locally) smooth if there exists a variety of Malcev algebras \mathbf{M}, such that the pair (\mathbf{M}, \mathbf{L}) is (locally) globally dual. A dual pair (\mathbf{M}, \mathbf{L}) will be called global if for any local analytic loop G of the variety \mathbf{L}, there exists a global analytic loop \tilde{G} from the variety \mathbf{L} which is locally isomorphic to G. It is clear, that not all varieties of Moufang loops are smooth. For example, the variety \mathbf{B}_n of Moufang loops of exponent n is not smooth, since every analytic Moufang loop of a positive dimension is not periodic. Nevertheless we have the following Conjecture:

Conjecture 1. Every dual pair (\mathbf{M}, \mathbf{L}) of Malcev algebras and their corresponding Moufang loops is global.

Notice that if the pair (\mathbf{M}, \mathbf{L}) is locally dual and the variety \mathbf{M} contains only Lie algebras, then all finite dimensional Lie algebras from \mathbf{M} are solvable. Indeed, if $M \in \mathbf{M}$ is not solvable finite dimensional then $M = S \oplus G$, where S is semisimple Lie subalgebra. Hence S contains some simple 3–dimensional Lie subalgebra L. But the corresponding Lie group $G(L)$ contains free subgroup. Hence \mathbf{L} is variety of all groups and \mathbf{M} is the variety of all Lie algebras.

We will prove the Conjecture 1 for the pairs (NL_k, G_k), where NL_k is the variety defined in the last section and G_k is a variety of Moufang loops defined by all identities of the type $(w, x, y) = 1$, where $w \in F^k$, $k \geq 2$ and F is an infinite free generated Moufang loop such that $F^1 = F$, and F^k is the normal subloop generated by $\Pi \prod_{i=1}^{k-1} [F^i, F^{k-i}]$.

Proposition 1. The pair (NL_k, G_k) is dual for any $k \geq 2$.

Proof. Let M be a Malcev \mathbb{R}-algebra of dimension n of the variety NL_k. Then $M \cong \mathbb{R}^n$. There exists a small ball $M_\epsilon = \{ x \in M \mid |x| \leq \epsilon \}$, which is a local Moufang loop with the product given by the Campbell-Hausdorff formula

\[x \cdot y := \text{CH}(x, y) = x + y + \frac{1}{2}[x, y] + \cdots. \]

(6)

Notice that the element 0 of M is the unit of this local analytic loop. From [9] we have that for every subalgebra P of M the corresponding local subgroup is given by $P_\epsilon = P \cap M_\epsilon$. The subgroup P_ϵ is normal if and only if P is an ideal of M.

7
From (6) we get
\[
\{x, y\} = x^{-1} \cdot y^{-1} \cdot x \cdot y = [x, y] + \sum_{s=3}^{\infty} a_s(x, y),
\] (7)
where \(a_s(x, y) \in M^s\) if \(x, y \in M\). Hence every commutator \(w\) in the local Moufang loop \((M, \cdot)\) of length \(k \geq 3\) has the form \(w = \sum_{i=k}^{\infty} w_i\), with \(w_i \in M^i\). Since \(M \in NL_k\), then \(M^s \subseteq Lie(M)\) for \(s \geq k\). Hence the corresponding commutator subloop \(M^k\) of local Moufang loop \(M_e\) is contained in \(Lie(M)\).

E. Kuzmin proved [?], that in a local Moufang loop \((M, \cdot)\) the associator can be expressed as:
\[
(x, y, z) = \frac{1}{6} J(x, y, z) + \sum_{i=7}^{\infty} a_i(x, y, z),
\] (8)
where \(a_i(x, y, z)\) is an element of degree \(i\) of the ideal \(J(M) \subset M\).

By (8) we get that \(Lie(M) \cap M_e \subseteq Nuc(M_e)\), where \(Nuc(M_e) = \{ x \in M_e | [x, a, b] = 0, \forall a, b \in M_e \}\). Hence \(M^k_e \subseteq Lie(M) \cap M_e \subseteq Nuc(M^k_e)\). It means that \((M_e, \cdot) \subseteq G_k\).

Now suppose that \((M_e, \cdot) \subseteq G_k\). Following the previous notation, we have:

Lemma 5. \(M^k \cap M_e = (M_e, \cdot)^k\), where \((M_e, \cdot)^k\) is a commutator subloop of the local loop \((M_e, \cdot)\) of degree \(k\).

Proof. From the construction of the local loop \((M_e, \cdot)\), for every ideal \(I\) of the Malcev algebra \(M\) there is a corresponding normal subloop \(I_e = I \cap M_e\) of \((M_e, \cdot)\). It is clear that for nilpotent of class \(k\) Malcev algebra \(M/M^k\) the corresponding local Moufang loop is \(((M/M^k)_e, \cdot)\), which is nilpotent of class \(k\). Hence \((M_e, \cdot)^k \subseteq M^k\).

Suppose that \((M_e, \cdot)\) is a nilpotent local loop of class \(k\). By induction we prove that the Malcev algebra \(M\) is nilpotent of the same class \(k\). It is clear for \(k = 1\). If the Malcev algebra \(M\) is not nilpotent of degree \(k\) then for some \(x_1, ..., x_k \in M\) we have \(w = [x_1, ..., x_k] \neq 0\) for some distribution of parentheses. By (7) we get in \((M_e, \cdot)\): \(u_i = \{tx_1, tx_2, ..., tx_k\} = t^i w + \sum_{s > k} t^j w_i\), where \(w_i\) is an element of \(M^i\) and \(t \in R\). Since \((M, \cdot)\) is nilpotent of degree \(k\), \(u = 0\) in \((M, \cdot)\). Then \(w = 0\) in \(M\) which yields to a contradiction. \(\square\)

With all considerations above Lemma 5 is proved.

Now we can finish the proof of Proposition 1. Let \(w = [x_1, ..., x_k] \in M^k\), we have to prove that \(w \in Lie(M)\). For some \(t \in R\) we have by Lemma 5 that \(t^k w = [tx_1, ..., tx_k] \in M^k \cap M_e \subseteq (M_e, \cdot)^k \subseteq Nuc(M_e)\). Here we used that \((M_e, \cdot) \subseteq G_k\). Hence \((t^k w, x, y) = 0\) for all \(x, y \in M_e\). By (8) we get that \(J(t^k w, x, y) = 0\). It means that \(w \in Lie(M)\). Proposition 1 is proved. \(\square\)
Now we are ready to prove the main result of this paper.

Theorem 2. The dual pair \((NL_k, G_k)\) is global.

Proof. Let \(G_0 \in G_k\) be a local analytic loop and let \(L(G_0) = M \in NL_k\) be its corresponding Malcev algebra. Let \(\varphi : M \mapsto \hat{M}\) be an embedding of \(M\) in a splitting Malcev algebra \(\hat{M} = S \oplus T \oplus N\), (see notation of Theorem 1). By definition \(\hat{M}\) is minimal with this property. Hence \([M, \hat{M}] = [M, M]\). Since \(M \in NL_k\) then \(\hat{M} \in NL_k\) by Theorem 1. By \([\text{Ker}]\) there exists the corresponding to \(M\) global analytic simply connected Moufang loop \(\hat{G}\).

By construction of \(\hat{G}\) in \([\text{Ker}]\) we get that \(\hat{G} = P \cdot Q\), where \(P\) is simply connected semisimple Lie group with corresponding Lie algebra \(S\) and \(Q = Q_0 \cdot Q_1\) is simply connected solvable Moufang loop with corresponding Malcev algebra \(T \oplus N\), and \(Q_0 \cong \mathbb{R}^1 \cong T\) is abelian vectorial group Lie, corresponding to Lie subalgebra \(T\), \(Q_1\) is simply connected nilpotent normal subloop corresponding to the nilpotent ideal \(N\). By Theorem 1 we have that \(\hat{M} = S \oplus T \oplus N = N_{00} + M_1\), where \(N_{00} \subseteq N\) is a nilpotent subalgebra and \(M_1\) is an ideal of \(M\) that is contained in \(\text{Lie}(\hat{M})\). Since exponential map from \(N\) to \(Q_1\) is a bijection then \(\exp(N_{00}) = Q_2 \subseteq Q_1\) is a nilpotent simply connected subloop of \(\hat{G}\). Since \(\hat{M} = N_{00} + M_1\) then \(\hat{G} = Q_2 \times G_1\), where \(G_1\) is simply connected normal group Lie corresponding to the ideal \(M_1 \subseteq \text{Lie}(\hat{M})\).

Since \(\hat{M}\) is a splitting by Theorem 1 there exists a Malcev algebra \(\hat{M} = N_{00} \oplus M_1 \in NL_k\) and an epimorphism \(\pi : M \mapsto \hat{M}\).

Let \(\hat{G}\) be simply connected analytic Moufang loop corresponding to Malcev algebra \(\hat{M}\). Then \(\hat{G} = Q_2 \times G_1\), where \(Q_2\) and \(G_1\) are subloops of \(\hat{G}\). Notice that multiplication in \(\hat{G}\) may be given the following analogue of (3).

\[(r_1, g_1) \cdot (r_2, g_2) = (r_1 r_2, g_1^{g_2} g_2)\] \hspace{1cm} (9)

Where \(g_1^{g_2} = r_2^{-1} g_1 r_2\) is natural action of Moufang loop \(Q_2\) on the Lie group \(G_1\) by automorphisms, since \(A(Q_2) = J(N_{00})\) acts trivially on \(G_1\). Here \(A(Q_2)\) is an associate of \(Q_2\) and we used that \([J(\hat{M}), M_1] \subseteq [J(\hat{M}), \text{Lie}(\hat{M})] = 0\).

It is clear that \(G_1\) is contained in the nucleus of \(\hat{G}\) and \(\hat{G} \in G_k\) if and only if \(Q_2 \in G_k\).

Lemma 6. Let \(N\) be a nilpotent finite dimensional Malcev algebra and \(R\) be the corresponding simply connected analytic Moufang loop.

If the corresponding local analytic Moufang loop \(R_e\) satisfies some identity \(f(x_1, \ldots, x_n) = 1\), then the global analytic loop \(R\) satisfies the same identity.

In particular, \(N \in NL_k\) if and only if \(R \in G_k\).

Proof. It is possible to assume that \(R = N \cong \mathbb{R}^m\) with multiplication \(\cdot\). Let \(f\) be an identity of the local analytic loop \(R_e\). Then \(f(x_1, \ldots, x_n) = \sum_j f_j\), where \(f_j = f_j(x_1, \ldots, x_n)\) is a Lie word in \(x_1, \ldots, x_n\). Let \(v_1, \ldots, v_m\) be a basis of \(N\). Then \(f = \sum_{j=1}^m g_j v_j\), where \(g_j = g_j(x_1, \ldots, x_n)\) is a polynomial function in \(x_1, \ldots, x_n\). Since \(f\) is a local identity then \(g_j = 0\) if \(|x_s| < \varepsilon, s = 1, \ldots, n\) and \(\varepsilon\) is small enough. But any polynomial function, which is equal
to zero in some neighborhood of $\tilde{0}$ is equal to zero for all values of the variables. Hence $f = 1$ is an identity of the loop R.

Returning to the proof of the Theorem 2 we have that $\tilde{G} \in G_k$ due to Lemma 6. Hence $\hat{G} \in G_k$, since \hat{G} is a homomorphic image of \tilde{G}. With this the proof of the Theorem 2 is done.

Acknowledgements

The first author was supported by grants CNPq 307824/2016-0 and FAPESP 2018/23690-6. The second author was supported by grant FAPESP 2018/11292-6. The third author thanks for the support to FAPESP for grant 2019/24418-0 and the University of Sao Paulo. The first and fourth authors was supported by UAEU UPAR grant G00002599.

References

[Fi] Filippov, V.T., Central simple Malcev algebras. (Russian) Algebra i Logika 15(1976), no. 2, 235-242, 246.

[Gri1] Grishkov, A., An analogue of Levi’s theorem for Malcev algebras. Algebra and Logic 16 (1977), no. 4, 389-396, 493.

[Gri2] Grishkov, A., Decomposable Malcev algebras. Algebra and Logic 19 (1980), no. 4, 405-422, 503.

[Car] Carlsson R., On the exceptional central simple non-Lie Malcev algebras, Trans. Amer. Math. Soc. 244 (1978), 173-184.

[Ker] Kerdman, F.S. Analytic Moufang loops in the large, Algebra and Logic (1979) 18:325. Translated from Algebra i Logika, Vol. 18, No. 5, pp. 523 - 555, September-October, (1979).

[Kuzm1] Kuz’min, E.N. Levi’s theorem for Malcev algebras. (Russian) Algebra i Logika 16 (1977), no. 4, 424-431, 493.

[Kuzm2] Kuz’min, E.N. On the relation between Mal’tsev algebras and analytic Moufang groups. Algebra and Logic (1971) 10: 1. Translated from Algebra i Logika, Vol. 10, No. 1, pp. 3 -22, January-February, (1971).

[Ma1] Malcev, A.I. Analytic loops. (Russian) Mat. Sb. N.S. 36(78), (1955). 569-576.

[Ma2] Malcev, A.I. On solvable Lie algebras. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 9(1945), 329-356.