G-Homotopy Invariance of the Analytic Signature of Proper Co-compact G-manifolds and Equivariant Novikov Conjecture

Yoshiyasu Fukumoto ∗

Research Center for Operator Algebras, Department of Mathematics, East China Normal University

Abstract

The main result of this paper is the G-homotopy invariance of the G-index of signature operator of proper co-compact G-manifolds. If proper co-compact G manifolds X and Y are G-homotopy equivalent, then we prove that the images of their signature operators by the G-index map are the same in the K-theory of the C*-algebra of the group G. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required, so this is a generalization of the classical case of closed manifolds. Using this result we can deduce the equivariant version of Novikov conjecture for proper co-compact G-manifolds from the Strong Novikov conjecture for G.

Mathematics Subject Classification (2010). 19K35, 19K56, 46L80, 58A12

Keywords. Novikov conjecture, Higher signatures, Almost flat bundles

Contents

1 Preliminaries on proper actions 3

2 Perturbation arguments 4
 2.1 Quadratic forms and graded modules .. 4
 2.2 Perturbation arguments ... 7

3 G-signature 8
 3.1 Description of the Analytic G-index ... 8
 3.2 Proof of Theorem A .. 12
 3.3 On proof of Corollary B ... 18

4 Index of Dirac operators twisted by almost flat bundles 19
 4.1 G-index map in KK-theory .. 19
 4.2 Infinite product of C*-algebras .. 21
 4.3 Index of the product bundle .. 25
 4.4 Proof of Theorem C .. 27
 4.5 On proof of Corollary D ... 29

∗Research Center for Operator Algebras, Department of Mathematics, East China Normal University
3663 North ZhongShan Road, Shanghai, CHINA. 200062
fukumoto@math.ecnu.edu.cn

arXiv:1709.05884v1 [math.KT] 18 Sep 2017
Introduction

Before discussing on our case of proper G-action, let us review the classical case of closed manifolds. For even dimensional oriented closed manifold M, the ordinary Fredholm index of the signature operator ∂_M is equal to the signature of the manifold M which is defined using the cup product of the ordinary cohomology of M. In particular it follows that $\text{ind}(\partial_M)$ is invariant under orientation preserving homotopy. We have the following classical and important result;

Theorem 0.1 [Kas75], [KM], [HiSk] Let M and N be even dimensional oriented closed manifolds with fundamental group $\Gamma = \pi_1(M) = \pi_1(N)$. Assume that M and N are orientation preserving homotopy equivalent to each other. Then $\text{ind}_\Gamma(\partial_M) = \text{ind}_\Gamma(\partial_N) \in K_0(\Gamma)$.

Notice that we can deduce the Novikov conjecture from the Strong Novikov conjecture by using this theorem. Moreover, we also have a more generalized result;

Theorem 0.2 [RW, 3.3. PROPOSITION and 3.6. THEOREM] Let a finite group Γ acts on M and N and let $\Gamma = \pi_1(M) = \pi_1(N)$. Let ind_{Γ}^G be the G-equivariant Γ-index map with value in $K_0^G(C^*_\text{red}(\Gamma)) \simeq K_0(C^*_\text{red}(\Gamma))$, where G^Γ denotes the group extension $\{1\} \to \Gamma \to G^\Gamma \to G \to \{1\}$. Assume that M and N are orientation preserving Γ-equivariantly homotopy equivalent. Then $\text{ind}_{\Gamma}^G(\partial_M) = \text{ind}_{\Gamma}^G(\partial_N) \in K_0(C^*_\text{red}(G^\Gamma))$.

Our main theorem is a generalization of them. Let us fix the settings. Let X and Y be oriented even-dimensional complete Riemannian manifolds and let G be a second countable locally compact Hausdorff group acting on X and Y isometrically, properly and co-compactly.

Theorem A Let X and Y be oriented even-dimensional complete Riemannian manifolds and let G be a second countable locally compact Hausdorff group acting on X and Y isometrically, properly and co-compactly. Let ∂_X and ∂_Y be the signature operators. Assume we have a G-equivariant orientation preserving homotopy equivalent map $f: Y \to X$.

Then $\text{ind}_G(\partial_X) = \text{ind}_G(\partial_Y) \in K_0(C^*(G))$.

This claim is also stated in [BCH] without proofs and here we will give a proof for it to obtain Corollary B. The method we use in this paper is based on [HiSk], so we will construct a map that sends $\text{ind}_G(\partial_X)$ to $\text{ind}_G(\partial_Y)$. Our group C^*-algebras can be either maximal one or reduced one.

Theorem 0.1 is the case when X and Y are the universal covering of closed manifolds M and N. Thus, analogously to the case of closed manifolds, the equivariant version of the Novikov conjecture can be deduced from the Strong Novikov conjecture for the acting group G. In particular, by using this theorem and the result discussed in [F], we obtain the following equivariant version of Novikov conjecture for low dimensional cohomologies:

Corollary B Let X, Y and G as above and let L be a G-hermitian line bundles over X which is induced from a G-line bundle over $\mathcal{E}G$, or more generally, G-hermitian line bundle L over X satisfying $c_1(L) = 0 \in H^2(X; \mathbb{R})$. Suppose, in addition, that G is unimodular and $H_1(X; \mathbb{R}) = H_1(Y; \mathbb{R}) = \{0\}$. Then,

$$\int_X c_X(x)\mathcal{L}(TX) \wedge \text{ch}(L) = \int_Y c_Y(y)\mathcal{L}(TY) \wedge \text{ch}(f^*L),$$

where c_X denotes the cut-off function, that is, c_X is a $\mathbb{R}_{\geq 0}$-valued compactly supported function on X satisfying $\int_X c(x^{-1}x)\,dy = 1$ for any $x \in X$. In the case of the closed manifold, that is, when X is obtained as the universal covering of a closed manifold M, and the acting group is the fundamental group, the above value is equal to the ordinary, so called, higher signature $(\mathcal{L}(TX) \cup \text{ch}(L), [M])$.

The same result in this case of closed manifolds was obtained in [Ma] and [HaSc].
Moreover in Section , we will prove the \(G\)-homotopy invariance of the analytic signature twisted by almost flat bundles as in [HiSk, Section 4.]. However we will use a different method from [HiSk] to deal with general \(G\)-invariant elliptic operators. To be specific, we will prove the following Theorem C to obtain Corollary D.

Theorem C Let \(X\) be a complete oriented Riemannian manifold and let \(G\) be a locally compact Hausdorff group acting on \(X\) isometrically, properly and co-compactly. Moreover we assume that \(X\) is simply connected. Let \(D\) be a \(G\)-invariant properly supported elliptic operator of order 0 on \(G\)-Hermitian vector bundle over \(X\).

Then there exists \(\varepsilon > 0\) satisfying the following: for any finitely generated projective Hilbert \(B\)-module \(G\)-bundle \(E\) over \(X\) equipped with a \(G\)-invariant Hermitian connection such that \(\|R^E\| < \varepsilon\), we have

\[
\text{ind}_G \left([E] \otimes_{C_0(X)} [D] \right) = 0 \quad \in K_0 \left(C^*_\text{Max}(G) \otimes_{\text{Max}} B \right)
\]

if \(\text{ind}_G([D]) = 0 \in K_0(C^*_\text{Max}(G))\). If we only consider commutative \(C^*\)-algebras for \(B\), then the same conclusion is also valid for \(C^*_\text{red}(G)\).

Corollary D Consider the same conditions as Theorem A on \(X, Y\) and \(G\) and assume additionally that \(X\) and \(Y\) are simply connected.

Then there exists \(\varepsilon > 0\) satisfying the following: for any finitely generated projective Hilbert \(B\)-module \(G\)-bundle \(E\) over \(X\) equipped with a \(G\)-invariant Hermitian connection such that \(\|R^E\| < \varepsilon\), we have

\[
\text{ind}_G([E] \otimes_{\partial X}) = \text{ind}_G([f^*E] \otimes_{\partial Y}) \quad \in K_0(C^*_\text{Max}(G) \otimes_{\text{Max}} B).
\]

If we only consider commutative \(C^*\)-algebras for \(B\), then the same conclusion is also valid for \(C^*_\text{red}(G)\).

\section{Preliminaries on proper actions}

Definition 1.1 Let \(G\) be a second countable locally compact Hausdorff group. Let \(X\) be a complete Riemannian manifold.

- \(X\) is called a \(G\)-Riemannian manifold if \(G\) acts on \(X\) isometrically.
- The action of \(G\) on \(X\) is said to be proper or \(X\) is called a proper \(G\)-space if the following continuous map is proper: \(X \times G \to X \times X, \ (x, \gamma) \mapsto (x, \gamma x)\).
- The action of \(G\) on \(X\) is said to be co-compact or \(X\) is called \(G\)-compact space if the quotient space \(X/G\) is compact.

Definition 1.2 The action of \(G\) on \(X\) induces actions on \(TX\) and \(T^*X\) given by

\[
\gamma: T_xX \to T_{\gamma x}X \quad \text{and} \quad \gamma: T^*_xX \to T^*_{\gamma x}X
\]

\[
\gamma(v) := \gamma_*v \quad \text{and} \quad \gamma(\xi) := (\gamma^{-1})^*\xi.
\]

The action on \(\mathfrak{X}(X)\) and \(\Omega^*(X)\) is given by

\[
\gamma[V] := \gamma_*V \quad \text{and} \quad \gamma[\omega] := (\gamma^{-1})^*\omega
\]

for \(\gamma \in G, V \in \mathfrak{X}(X)\) and \(\omega \in \Omega^*(X)\). Obviously, \(\gamma[\omega \wedge \eta] = \gamma[\omega] \wedge \gamma[\eta]\) and \(d(\gamma[\omega]) = \gamma[d\omega]\).

Proposition 1.3 (Slice theorem) Let \(G\) be a second countable locally compact Hausdorff group and act properly and isometrically on \(X\). Then for any neighborhood \(O\) of any point \(x \in X\) there exists a compact subgroup \(K \subset G\) including the stabilizer at \(x\), \(K \supset G_x := \{ \gamma \in G \mid \gamma x = x \}\) and there exists a \(K\)-slice \(\{ x \} \subset S \subset O\).
Here $S \subset X$ is called K-slice if the followings are satisfied;

- S is K-invariant; $K(S) = S$,
- the tubular subset $G(S) \subset X$ is open,
- there exists a G-equivariant map $\psi: G(S) \to G/K$ satisfying $\psi^{-1}([e]) = S$, called a slice map.

Corollary 1.4 We additionally assume that X is G-compact. Then for any open covering $X = \bigcup_{x \in X} O_x$, there exists a sub-family of finitely many open subsets $\{O_{x_1}, \ldots, O_{x_N}\}$ such that

$$\bigcup_{\gamma \in G} \bigcup_{i=1}^N \gamma(O_{x_i}) = X.$$

In particular, X is of bounded geometry, namely, the injective radius is bounded below and the norm of Riemannian curvature is bounded. \qed

Lemma 1.5 Let X and Y be manifolds on which G acts properly. Suppose that the action on Y is co-compact. Let $f: Y \to X$ be a G-equivariant continuous map. Then f is a proper map.

Proof. Since the action on Y is co-compact, there exists a compact subset $F \subset Y$ satisfying $G(F) = Y$. Fix a compact subset $C \subset X$ and assume that the closed set $f^{-1}C \subset Y$ is not compact. Then there exists a sequence $\{y_j\} \subset f^{-1}C$ tending to the infinity, that is, any compact subset in Y contains only finitely many points of $\{y_j\}$. Since the action on Y is proper, there exists a sequence $\{\gamma_j\} \subset G$ tending to the infinity satisfying $y_j \in \gamma_j F$. Then it follows that $f(y_j) \in f(\gamma_j F) = \gamma_j f(F)$. Due to the compactness of $f(F) \subset X$ and the properness of the action on X, the sequence $\{f(y_j)\} \subset X$ tends to the infinity. However, the compact subset C cannot contain such a sequence. So, $f^{-1}C$ is compact. \qed

2 Perturbation arguments

In this section, we will discuss on some technical method introduced in [HiSk, Section 1 and 2]. For now, we will forget about the manifolds and group actions. Let A be a C^*-algebra, which may not be unital. Especially we will consider $A = C^*(G)$. Let \mathcal{E} be a Hilbert A-module equipped with A-valued scalar product $\langle \cdot, \cdot \rangle$. Let us fix some notations:

- $\mathbb{L}(\mathcal{E}_1, \mathcal{E}_2)$ denotes a space consisting of adjointable A-linear operators, and we also use $\mathbb{L}(\mathcal{E}) := \mathbb{L}(\mathcal{E}, \mathcal{E})$.
- $\mathbb{K}(\mathcal{E}_1, \mathcal{E}_2)$ denotes a sub-space of $\mathbb{L}(\mathcal{E}_1, \mathcal{E}_2)$ consisting of compact A-linear operators, namely, the norm closure of the space of operators whose A-rank are finite. We also use $\mathbb{K}(\mathcal{E}) := \mathbb{K}(\mathcal{E}, \mathcal{E})$.

2.1 Quadratic forms and graded modules

Definition 2.1 (Regular quadratic forms) $Q: \mathcal{E} \times \mathcal{E} \to A$ is called a quadratic form on \mathcal{E} if it satisfies

$$Q(\xi, \nu) = Q(\nu, \xi)^* \quad \text{and} \quad Q(\nu, \xi a) = Q(\nu, \xi)a \quad \text{for} \quad \nu, \xi \in \mathcal{E}, a \in A. \quad (2.1)$$

A quadratic form Q is said to be regular if there exists an invertible operator $B \in \mathbb{L}(\mathcal{E})$ satisfying that $Q(\xi, B\nu) = \langle \xi, \nu \rangle$.

For an operator $T \in \mathbb{L}(\mathcal{E})$, let T' denote the adjoint with respect to Q, that is, an operator satisfying that $Q(T\xi, \nu) = Q(\xi, T'\nu)$. Using B, it is written as $T' = BT^*B^{-1}$.

Definition 2.2 (Compatible scalar product) Another scalar product $\langle \cdot, \cdot \rangle_1 : \mathcal{E} \times \mathcal{E} \to A$ is called compatible with $\langle \cdot, \cdot \rangle$ if there exists a linear bijection $P : \mathcal{E} \to \mathcal{E}$ satisfying that $\langle \nu, \xi \rangle_1 = \langle \nu, P\xi \rangle$.

Note that P is a positive operator with respect to both of the scalar product and $\sqrt{P} : (\mathcal{E}, \langle \cdot, \cdot \rangle_1) \to (\mathcal{E}, \langle \cdot, \cdot \rangle)$ is a unitary isomorphism. In particular, neither the spaces $L(\mathcal{E})$ nor $\mathbb{K}(\mathcal{E})$ depends on the choice of compatible scalar product.

Lemma 2.3 Let Q be a regular quadratic form on \mathcal{E}. then there exist a compatible scalar product $\langle \cdot, \cdot \rangle_Q$ with the initial scalar product of \mathcal{E} and $U \in L(\mathcal{E})$ satisfying that $Q(\xi, U\nu) = \langle \xi, \nu \rangle_Q$ and $U^2 = 1$. Moreover they are unique.

Proof. With respect to the initial scalar product $\langle \cdot, \cdot \rangle$, we have that
\[\langle \nu, B^{-1}\xi \rangle = Q(\nu, \xi) = Q(\xi, \nu)^* = \langle \xi, B^{-1}\nu \rangle^* = \langle B^{-1}\nu, \xi \rangle = \langle \nu, (B^{-1})^*\xi \rangle, \]
which implies that B^{-1} is an invertible self-adjoint operator. Thus, it has the polar decomposition $B^{-1} = UP$ in which B^{-1}, U and P commute one another, here U is unitary and P is positive. To be specific, U and P are given by the continuous functional calculus. Let f and g be continuous functions given by $f(x) := \frac{x}{|x|}$ and $g(x) := |x|$ on the spectrum of B^{-1}, which is contained in $\mathbb{R} \setminus \{0\}$, and set $U := f(B^{-1})$ and $P := g(B^{-1})$. Note that
\[U = P^{-1}B^{-1} = P^{-1}(B^{-1})^* = P^{-1}PU^* = U^*, \]
so it follows that $U^2 = U^*U = 1$. Let us set $\langle \nu, \xi \rangle_Q := \langle \nu, P\xi \rangle$. Then,
\[Q(\nu, U\xi) = Q(\nu, U^{-1}\xi) = Q(\nu, BP\xi) = \langle \nu, P\xi \rangle = \langle \nu, \xi \rangle_Q. \]
If there is another such operator U_1 satisfying that $U_1^2 = 1$ and that $Q(\nu, U_1\xi)$ is another scalar product, then $U_1^{-1}U$ is a positive unitary operator, which implies that $U_1^{-1}U = 1$. Thus we obtained the uniqueness.

Remark 2.4 A regular quadratic form Q on a Hilbert A-module \mathcal{E} determines the renewed compatible scalar product $\langle \cdot, \cdot \rangle_Q$ associated to Q and the $(\mathbb{Z}/2\mathbb{Z})$-grading given by the ± 1-eigen spaces of U. Conversely, if a Hilbert A-module \mathcal{E} is equipped with a $(\mathbb{Z}/2\mathbb{Z})$-grading, then it determines a regular quadratic form Q given by $Q(\nu, \xi) = \langle \nu, (-1)^{\text{deg}(\xi)}\xi \rangle$ for homogeneous elements.

Definition 2.5 Let A be a C^*-algebra. $\mathcal{J}(A)$ denotes the space consisting of unitary equivalent classes of triples (\mathcal{E}, Q, δ), where \mathcal{E} is a Hilbert A-module, Q is a regular quadratic form on \mathcal{E} and $\delta : \text{dom}(\delta) \to \mathcal{E}$ is a densely defined closed operator satisfying the following conditions;

1. $\delta' = -\delta$, namely, $Q(-\delta(\nu), \xi) = Q(\nu, \delta(\xi))$ for $\nu, \xi \in \text{dom}(\delta)$.
2. $\text{Im}(\delta) \subset \text{dom}(\delta)$ and $\delta^2 = 0$.
3. There exists $\sigma, \tau \in \mathbb{K}(\mathcal{E})$ satisfying $\sigma\delta + \delta\tau - 1 \in \mathbb{K}(\mathcal{E})$.

The typical example, which we will use for dealing with the signature, is given by Definition 3.7. Roughly speaking, \mathcal{E} is a completion of the space of compactly supported differential forms Ω^*_c, Q is given by the Hodge $*$-operation and δ is the exterior derivative.

Remark 2.6 This definition is slightly different from $L_{ab}(A)$ in [HiSk, 1.5 Définition] and our $\mathcal{J}(A)$ is smaller. However it is sufficient for our purpose.
Lemma 2.7 If a closed operator δ satisfies the condition (3), then both operators $(\delta + \delta^* \pm i)^{-1}$ can be defined and they belong to $\mathbb{K}(\mathcal{E})$. Here, δ^* denotes the adjoint of δ with respect to a certain scalar product on \mathcal{E}.

Proof. Since δ is a closed operator, $\delta + \delta^*$ is self-adjoint. Thus $\text{Im}(\delta + \delta^* \pm i)$ are equal to \mathcal{E} and both operators $\delta + \delta^* \pm i$ are invertible. We now claim that both $(\delta + \delta^* \pm i)^{-1} \in \mathbb{L}(\mathcal{E})$ are compact operators. Since $\text{Im}((\delta + \delta^* \pm i)^{-1}) = \text{dom}(\delta + \delta^* \pm i) = \text{dom}(\delta) \cap \text{dom}(\delta^*)$ and δ and δ^* are closed operators, the following operators

$$ \alpha_{\pm} := (\delta + \delta^* \pm i)^{-1} \quad \text{and} \quad \beta_{\pm} := (\delta^* + \delta \pm i)^{-1} $$

are closed operators defined on entire \mathcal{E}, which implies that they are bounded; $\alpha, \beta \in \mathbb{L}(\mathcal{E})$.

On the other hand, note that $(\sigma \delta)^2 = (\sigma \delta)(1 - \delta \tau) = \sigma \delta$ and $(\delta^* \delta)^2 = \delta^* \delta$ modulo $\mathbb{K}(\mathcal{E})$. Let p be the orthogonal projection onto $\text{Im}(\delta \tau)$ and let $q = 1 - p$. Then we have that $p(\delta \tau) = \delta \tau$ and $(\delta^* \delta)p = p$ modulo $\mathbb{K}(\mathcal{E})$. Moreover,

$$ (\sigma \delta)q = (1 - \delta \tau)(1 - p) = 1 - \delta \tau - p + (\delta \tau)p = 1 - \delta \tau = \sigma \delta, $$

$$ q(\sigma \delta) = (1 - p)(1 - \delta \tau) = 1 - p - \delta \tau + p(\delta \tau) = 1 - p = q, $$

$$ 1 - (\delta^* \delta^*)q - (\delta^* \delta)p = 1 - (q \sigma \delta^*) - p $$

$$ 1 - q^* - p = 1 - q - p = 0 \quad \text{modulo } \mathbb{K}(\mathcal{E}). $$

Then, set $\ell := 1 - (\delta^* \delta^*)q - (\delta \tau)p \in \mathbb{K}(\mathcal{E})$. Now we conclude that

$$ 1 = \ell + (\delta^* \delta^*)q - (\delta \tau)p, $$

$$ (\delta + \delta^* \pm i)^{-1} = (\delta + \delta^* \pm i)^{-1} \ell + (\alpha_{\pm}^\ast q - \beta_{\pm}^\ast p) \in \mathbb{K}(\mathcal{E}) $$

because ℓ, σ and τ belong to $\mathbb{K}(\mathcal{E})$ and α_{\pm} and β_{\pm} belong to $\mathbb{L}(\mathcal{E})$. \hfill \square

Definition 2.8 For $(\mathcal{E}, Q, \delta) \in \mathbb{J}(A)$, we define the K-homology class $\Psi(\mathcal{E}, Q, \delta) \in K_0(A)$ as follows. As in Lemma 2.3, let \mathcal{E} be equipped with the compatible scalar product $\langle \cdot, \cdot \rangle_Q$ and $(\mathbb{Z}/2\mathbb{Z})$-grading associated to Q. Next, put

$$ F_{\delta} := (\delta + \delta^*) (1 + (\delta + \delta^*)^2)^{-\frac{1}{2}} \in \mathbb{L}(\mathcal{E}), $$

where δ^* is the adjoint of δ with respect to the scalar product $\langle \cdot, \cdot \rangle_Q$. Obviously F_{δ} is self-adjoint and F_{δ} is an odd operator since $U \delta U = \delta^t = -\delta$. Moreover it follows that

$$ 1 - F_{\delta}^2 = (1 + (\delta + \delta^*)^2)^{-1} \in \mathbb{K}(\mathcal{E}) $$

by the previous lemma. Then we define $\Psi(\mathcal{E}, Q, \delta) := (\mathcal{E}, F_{\delta}) \in KK(C, A) \cong K_0(A)$. The action of C on \mathcal{E} is the natural multiplication.

Lemma 2.9 For $(\mathcal{E}, Q, \delta) \in \mathbb{J}(A)$ satisfying $\text{Im}(\delta) = \text{Ker}(\delta)$, $\Psi(\mathcal{E}, Q, \delta) = 0 \in K_0(A)$.

Proof. First, remark that $\text{Im}(\delta)$ and $\text{Ker}(\delta^*)$ are orthogonal to each other, and hence, $\text{Im}(\delta) \cap \text{Ker}(\delta^*) = \{0\}$. Indeed, for $\delta(\eta) \in \text{Im}(\delta)$ and $\nu \in \text{Ker}(\delta^*)$, it follows that $\langle \delta(\eta), \nu \rangle = \langle \eta, \delta^* (\nu) \rangle = 0$. Now let $\xi \in \text{Ker}(\delta + \delta^*)$. Then

$$ 0 = \langle \xi, (\delta + \delta^*)^2(\xi) \rangle = \langle \xi, \delta^* \delta(\xi) + \delta \delta^*(\xi) \rangle = \langle \delta(\xi), \delta(\xi) \rangle + \langle \delta^*(\xi), \delta^*(\xi) \rangle, $$

which implies that $\xi \in \text{Ker}(\delta) \cap \text{Ker}(\delta^*) = \text{Im}(\delta) \cap \text{Ker}(\delta^*) = \{0\}$. Therefore, $\text{Ker}(F_{\delta}) = \{0\}$. Since F_{δ} is a bounded self-adjoint operator, it is invertible. To conclude, $(\mathcal{E}, F_{\delta}) = 0 \in KK(C, A)$. \hfill \square
2.2 Perturbation arguments

Lemma 2.10 [HiSk, 2.1, Lemma] Let \((E_X, Q_X, \delta_X), (E_Y, Q_Y, \delta_Y) \in \mathcal{J}(A)\). Suppose that we have...

1. \(T \in \mathbb{L}(E_X, E_Y)\) satisfying \(T(\text{dom}(\delta_X)) \subset \text{dom}(\delta_Y)\), \(T\delta_X = \delta_Y T\) and \(T\) induces an isomorphism \([T]: \text{Ker}(\delta_X)/\text{Im}(\delta_X) \to \text{Ker}(\delta_Y)/\text{Im}(\delta_Y)\);

2. \(\phi \in \mathbb{L}(E_X)\) satisfying \(\phi(\text{dom}(\delta_X)) \subset \text{dom}(\delta_X)\) and \(1 - T'T = \delta_X \phi + \phi \delta_X\);

3. \(\varepsilon \in \mathbb{L}(E_X)\) satisfying \(\varepsilon^2 = 1, \varepsilon' = \varepsilon, \varepsilon \delta_X = -\delta_X \varepsilon\) and \(\varepsilon(1 - T'T) = (1 - T'T)\varepsilon\).

Then, \(\Psi(E_X, Q_X, \delta_X) = \Psi(E_Y, Q_Y, \delta_Y) \in K_0(A)\).

Proof. First, we may assume that \(\phi' = -\phi\). Indeed, since \(1 - T'T = (1 - T'T)' = (\delta_X \phi + \phi \delta_X)' = -((\delta_X \phi' + \phi' \delta_X)\), we may replace \(\phi\) by \(\frac{1}{2}(\phi + \phi')\) which satisfies the same assumption.

Set \(E := E_X \oplus E_Y\), \(Q := Q_X \oplus (-Q_Y)\) and \(\nabla := \left[\begin{array}{cc} \delta_X & 0 \\ 0 & -\delta_Y \end{array} \right]\). Note that the replacing of \(Q_Y\) by \(-Q_Y\) means the reversing of the grading of \(E_Y\). Then it is easy to see that \(\Psi(E, Q, \nabla) = \Psi(E_X, Q_X, \delta_X) - \Psi(E_Y, Q_Y, \delta_Y)\). Therefore it is sufficient to verify that \(\Psi(E, Q, \nabla) = 0\).

Let us introduce invertible operators \(R_t \in \mathbb{L}(E)\) and a quadratic form \(B_t\) on \(E\) given by the formula:

\[
R_t := \begin{bmatrix} 1 & 0 \\ it\varepsilon & 1 \end{bmatrix} \quad \text{and} \quad B_t(\nu, \xi) := Q(R_t\nu, R_t\xi) = Q(R_t' R_t \nu, \xi)
\]

for \(t \in [0, 1]\). We claim that \((E, B_t, \nabla) \in \mathcal{J}(A)\).

It is easy to see that \(\nabla R_t = R_t^\dagger \nabla\), and hence, \(B_t(\nu, \nabla \xi) = B_t(-\nabla \nu, \xi)\). Clearly the scalar products associated to \(B_t\) and \(Q\) are compatible with each other, also the condition (2) and (3) in the definition of \(\mathcal{J}(A)\) are satisfied. Therefore \((E, B_t, \nabla) \in \mathcal{J}(A)\) and \(\Psi(E, B_t, \nabla) = \Psi(E, Q, \nabla)\).

Next let us introduce

\[
L_t := \begin{bmatrix} 1 - T'T & (i \varepsilon + t \phi) T' \\ T(i \varepsilon + t \phi) & 1 \end{bmatrix} \quad \text{and} \quad C_t(\nu, \xi) := Q(L_t\nu, \xi)
\]

Notice that since \(Q = Q_X \oplus (-Q_Y)\) and that \(T'\) denotes the adjoint of \(T\) with respect to \(Q_X\) and \(Q_Y\), the adjoint of the matrix \(\begin{bmatrix} 0 & 0 \\ T & 0 \end{bmatrix}\) with respect to \(Q\) is equal to \(\begin{bmatrix} 0 & -T' \\ 0 & 0 \end{bmatrix}\). Thus we have that

\[
R_t' \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and that}
\]

\[
R_t' R_t = \begin{bmatrix} 1 - \varepsilon T'T & i \varepsilon T' \\ iT\varepsilon & 1 \end{bmatrix} = \begin{bmatrix} (1 - T'T) \varepsilon & i \varepsilon T' \\ iT\varepsilon & 1 \end{bmatrix} = L_t.
\]

In particular, \(B_1 = C_0\). Since \(L_t\) is invertible at \(t = 0\), there exists \(t_0 > 0\) such that \(L_t\) is invertible for \(t \in [0, t_0]\). Besides it is clear that \(L'_t = L_t\), so \(C_t\) is a regular quadratic form for \(t \in [0, t_0]\).

Moreover consider the operator \(\nabla_t := \left[\begin{array}{cc} \delta_X & tT' \\ 0 & -\delta_Y \end{array} \right]\), and we claim that \((E, C_t, \nabla_t) \in \mathcal{J}(A)\) for \(t \in [0, t_0]\). The adjoint of \(\nabla_t\) with respect to the quadratic form \(C_t\) is equal to \(L_t^{-1} \nabla'_t \nabla_t\) so in order to check that it is equal to \(-\nabla_t\), we should check that \(L_t \nabla_t = -\nabla'_t \nabla_t\).

\[
L_t \nabla_t = \begin{bmatrix} (1 - T'T)\delta_X & t(1 - T'T)T' - (i \varepsilon + t \phi) T' \delta_Y \\ T(i \varepsilon + t \phi) \delta_X & tT(i \varepsilon + t \phi) T' - \delta_Y \end{bmatrix}
\]

\[
\nabla'_t \nabla_t = \begin{bmatrix} -\delta_X (1 - T'T) & -\delta_X (i \varepsilon + t \phi) T' \\ -tT(1 - T'T) - \delta_Y T(i \varepsilon + t \phi) & -tT(i \varepsilon + t \phi) T' + \delta_Y \end{bmatrix}
\]
Obviously the (1,1) and (2,2)-entries are the negative of each other. Besides we can see that

\[
[(1,2)\text{-entry of } L_t\nabla_t] = t(\delta_X\phi + \phi\delta_X)T' - (i\varepsilon + t\phi)\delta_X T' \\
= t\delta_X\phi T' - i\varepsilon\delta_X T' \\
= \delta_X(i\varepsilon + t\phi)T' = -[(1,2)\text{-entry of } \nabla'_t L_t].
\]

Since \((L_t\nabla_t)' = \nabla'_t L_t\), it automatically follows that \([\text{(2,1)-entry of } L_t\nabla_t] = -[\text{(1,2)-entry of } \nabla'_t L_t]\) as well, and now we obtained that \(L_t\nabla_t = -\nabla'_t L_t\). It is easy to see that \((\nabla'_t)^2 = 0\). If \(\sigma_X, \tau_X \in \mathbb{K}(E_X)\) and \(\sigma_Y, \tau_Y \in \mathbb{K}(E_Y)\) satisfy \(\sigma_X\delta_X + \delta_X\tau_X - 1 \in \mathbb{K}(E_X)\) and \(\sigma_Y\delta_Y + \delta_Y\tau_Y - 1 \in \mathbb{K}(E_Y)\), then it follows that \(\begin{bmatrix} \sigma_X & 0 \\ 0 & -\sigma_Y \end{bmatrix} \nabla_t + \nabla_t \begin{bmatrix} \tau_X & 0 \\ 0 & -\tau_Y \end{bmatrix} - 1 \in \mathbb{K}(E)\) since \(T \in \mathbb{L}(E_X, E_Y)\). Thus we obtained that \((E, C_t, \nabla_t) \in \mathcal{J}(E)\) and \(\Psi(E, C_t, \nabla_t) = \Psi(E, B_1, \nabla) = \Psi(E, Q, \nabla)\).

Finally check that \(\operatorname{Ker}(\nabla_t) = \operatorname{Im}(\nabla_t)\) for any \(t \in (0, t_0)\). \(\operatorname{Ker}(\nabla_t) \supset \operatorname{Im}(\nabla_t)\) is implied by \((\nabla_t)^2 = 0\), so let \(\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \in \operatorname{Ker}(\nabla_t)\). Then \(\theta_2 \in \operatorname{Ker}(\delta_Y)\) and \(tT\theta_2 = -\delta_X\theta_1 \in \operatorname{Im}(\delta_X)\). Since \(T\) induces an isomorphism \([T']\colon \operatorname{Ker}(\delta_Y)/\operatorname{Im}(\delta_Y) \to \operatorname{Ker}(\delta_X)/\operatorname{Im}(\delta_X)\), it follows from the injectivity that \(\theta_2 \in \operatorname{Im}(\delta_Y)\). There exists \(\eta \in E_2\) such that \(\delta_Y\eta = \theta_2\). On the other hand, \(\theta_1 + tT'\eta \in \operatorname{Ker}(\delta_X)\) and the surjectivity of \([T']\) imply that there exists \(\zeta \in \operatorname{Ker}(\delta_Y)\) such that \(T'\zeta = \frac{1}{t}(\theta_1 + tT'\eta)\). Therefore \(\operatorname{Im}(\nabla_t) \supset \nabla_t \begin{bmatrix} 0 \\ \zeta - \eta \end{bmatrix} = \begin{bmatrix} tT'(\zeta - \eta) \\ -\delta_Y(\eta) \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}\), which concludes that \(\operatorname{Ker}(\nabla_t) \supset \operatorname{Im}(\nabla_t)\).

Due to Lemma 2.9, it follows that \(\Psi(E, C_t, \nabla_t) = 0 \in KK(C, A)\) and we conclude that \(\Psi(E, Q, \delta_X) - \Psi(E, Q, \delta_Y) = \Psi(E, Q, \nabla) = 0\).

3 \(G\text{-signature}\)

3.1 Description of the Analytic \(G\text{-index}\)

Let \(G\) be a second countable locally compact Hausdorff group. Let \(X\) be a \(G\)-compact proper complete \(G\)-Riemannian manifold. And let \(\mathcal{V}\) be a \(G\)-Hermitian vector bundle over \(X\). In this section, we will define and investigate a \(\mathcal{C}^*(G)\)-module denoted by \(\mathcal{E}(\mathcal{V})\) obtained by completing \(C_c(X; \mathcal{V})\). This will be used for the definition of the index of \(G\)-invariant elliptic operators, in particular, the signature operator.

Definition 3.1 [Kas16, Section 5] First we define on \(C_c(X; \mathcal{V})\) the structure of a pre-Hilbert module over \(C_c(G)\) using the action of \(G\) on \(C_c(X; \mathcal{V})\) given by \(\gamma[s](x) = \gamma(s(\gamma^{-1}x))\) for \(\gamma \in G\).

- The action of \(C_c(G)\) on \(C_c(X; \mathcal{V})\) from the right is given by

 \[
 s \cdot b = \int_G \gamma[s] \cdot b(\gamma^{-1}) \Delta(\gamma)^{-\frac{1}{2}} d\gamma \in C_c(X; \mathcal{V})
 \]

 for \(s \in C_c(X; \mathcal{V})\) and \(b \in C_c(G)\). Here, \(\Delta\) denotes the modular function.

- The scalar product valued in \(C_c(G)\) is given by

 \[
 \langle s_1, s_2 \rangle = \Delta(\gamma)^{-\frac{1}{2}} \langle s_1, \gamma[s_2] \rangle_{L^2(\mathcal{V})}
 \]

 for \(s_i \in C_c(\mathcal{V})\).

Define \(\mathcal{E}(\mathcal{V})\) as the completion of \(C_c(\mathcal{V})\) in the norm \(\| (s, s) \|_{\mathcal{C}^*(G)}\).
Theorem 3.2 [Kas16, Theorem 5.8] Let G be a second countable locally compact Hausdorff group. Let X be a G-compact proper complete G-Riemannian manifold. Let $D: C_c^\infty(X; \mathbb{V}) \to C_c^\infty(X; \mathbb{V})$ be a formally self-adjoint G-invariant first-order elliptic operator on a G-Hermitian vector bundle \mathbb{V}. Then both operators $D \pm i$ have dense range as operators on $\mathcal{E}(\mathbb{V})$ and $(D \pm i)^{-1}$ belong to $\mathbb{K}(\mathcal{E}(\mathbb{V}))$. The operator $D(1 + D^2)^{-1/2} \in \mathbb{L}(\mathcal{E}(\mathbb{V}))$ is a Fredholm and determines an element $\text{ind}_G(D) \in K_0(\mathbb{C}^*(G))$.

In this paper, mainly we consider \mathbb{V} as $\Lambda^* T^* X$ equipped with the $\mathbb{Z}/2\mathbb{Z}$-grading given by the Hodge $*$-operation and D as a signature operator.

Definition 3.3 Let X and Y be proper and co-compact Riemannian G-manifolds and let \mathbb{V} and \mathbb{W} be G-Hermitian vector bundles over X and Y respectively. Let $T: C_c^\infty(X; \mathbb{V}) \to C(Y; \mathbb{W})$ be a linear operator. The support of the distributional kernel of T is given by the closure of the complement of the following union of all subsets $K_X \times K_Y \subset X \times Y$:

$$
\bigcup_{\substack{\langle T s_1, s_2 \rangle = 0 \text{ for any sections} \\ s_1 \in C_c(X; \mathbb{V}) \text{ and } s_2 \in C_c(Y; \mathbb{W}) \text{ satisfying} \\ \text{supp}(s_1) \subset K_X, \text{ supp}(s_2) \subset K_Y}} K_X \times K_Y.
$$

T is said to be properly supported if both

$$
\text{supp}(k_T) \cup (K_X \times Y) \quad \text{and} \quad \text{supp}(k_T) \cup (X \times K_Y) \quad \subset X \times Y
$$

are compact for any compact subset $K_X \subset X$ and $K_Y \subset Y$.

T is said to be compactly supported if $\text{supp}(k_T) \subset X \times Y$ is compact.

The following proposition is used for the construction of the bounded operators on $\mathcal{E}(\mathbb{V})$.

Proposition 3.4 [Kas16, Proposition 5.4] Let G, X, Y, \mathbb{V} and \mathbb{W} be as above. Let $T: C_c^\infty(X; \mathbb{V}) \to C_c(Y; \mathbb{W})$ be a properly supported G-invariant operator which is L^2-bounded. Then T defines an element of $\mathbb{L}(\mathcal{E}(\mathbb{V}), \mathcal{E}(\mathbb{W}))$.

For the proof, we will use the following Lemma 3.5 and Lemma 3.6.

Lemma 3.5 Let $P \in \mathbb{L}(L^2(X; \mathbb{V}), L^2(Y; \mathbb{W}))$ be a compactly supported bounded operator. Then the operator

$$
\tilde{P} := \int_G \gamma |P| \, d\gamma
$$

is well defined as a bounded operator in $\mathbb{L}(L^2(X; \mathbb{V}), L^2(Y; \mathbb{W}))$ and the inequality $\|\tilde{P}\|_{\text{op}} \leq C \|P\|_{\text{op}}$ holds, where C is a constant depending on its support.

Proof. Assume that the support of the distributional kernel of P is contained in $K_X \times K_Y$ for some compact subsets $K_X \subset X$ and $K_Y \subset Y$. We will follow the proof of [CM, Lemma 1.4–1.5]. Fix an arbitrary smooth section with compact support $s \in C_c^\infty(X; \mathbb{V})$ and let us consider $F_s \in L^2 \left(G; L^2(Y; \mathbb{W}) \right)$ given by

$$
F_s(\gamma) := \gamma |P| s.
$$

Note that for any $\gamma \in G$ the support of the distributional kernel of $\gamma |P|$ is contained in $\gamma(K_X) \times \gamma(K_Y)$. This is because for any $s \in C_c^\infty(X; \mathbb{V})$, it follows that $\text{supp}(\gamma |P| s) \subset \gamma(K_Y)$ and $\gamma |P| s = 0$ whenever $\text{supp}(s) \cap \gamma(K_X) = \emptyset$. In particular, since the actions are proper, F_s has compact support in G. In
addition, again since the actions are proper, \(\gamma(K_Y) \cap \eta(K_Y) = \gamma(K_Y) \cap \gamma^{-1} \eta(K_Y) = \emptyset \) if \(\gamma^{-1} \eta \in G \) is outside some compact neighborhood \(Z \subset G \) in particular,

\[
\|F_s(\gamma)\|_{L^2(Y;\mathbb{W})} \cdot \|F_s(\eta)\|_{L^2(Y;\mathbb{W})} = 0
\]

for such \(\gamma \) and \(\eta \in G \). Remind that \(Z \) is determined only by \(K_Y \) so independent of \(s \). Then,

\[
\left\| \int_G F_s(\gamma) \, d\gamma \right\|^2_{L^2(Y;\mathbb{W})} = \left\| \int_G F_s(\gamma) \, d\gamma \right\|_{L^2(Y;\mathbb{W})} \left\| \int_G F_s(\eta) \, d\eta \right\|_{L^2(Y;\mathbb{W})} \\
\leq \int_G \left\| F_s(\gamma) \right\|_{L^2(Y;\mathbb{W})} \left\| F_s(\eta) \right\|_{L^2(Y;\mathbb{W})} \, d\gamma \, d\eta \\
\leq \int_G \left\| F_s(\gamma) \right\|_{L^2(Y;\mathbb{W})} \left(\int_G \chi_Z(\gamma^{-1}) \left\| F_s(\eta) \right\|_{L^2(Y;\mathbb{W})} \, d\eta \right) \, d\gamma \\
\leq \left\| F_s \right\|_{L^2(G)} \left\| \chi_Z \right\|_{L^2(G)} \left\| F_s \right\|_{L^2(G)} \\
\leq |Z| \left\| F_s \right\|^2_{L^2(G)},
\]

where \(\chi_Z : G \to [0,1] \) is the characteristic function of \(C \), that is \(\chi_Z(\gamma) = 1 \) for \(\gamma \in Z \) and \(\chi_Z(\gamma) = 0 \) for \(\gamma \notin Z \).

Next, take a compactly supported smooth function \(c_1 \in C_c^\infty(X;[0,1]) \) such that \(c_1 = 1 \) on \(K_X \). Noting that \(P = P_{c_1} \), we obtain

\[
\left\| F_s \right\|^2_{L^2(G)} = \int_G \|F_s(\gamma)\|^2_{L^2(Y;\mathbb{W})} \, d\gamma = \int_G \left\| F_s(\gamma) \right\|^2_{L^2(Y;\mathbb{W})} \, d\gamma \\
\leq \int_G \left\| F_s \right\|^2_{op} \left\| c_1 \gamma^{-1}s \right\|^2_{L^2(X;\mathbb{V})} \, d\gamma \\
\leq \|P\|^2_{op} \int_G \int_X \left| c_1(x) \right|^2 \left\| \gamma^{-1}s(x) \right\|^2_{\mathbb{V}} \, dx \, d\gamma \\
\leq \|P\|^2_{op} \sup_{x \in X} \left(\int_G \left| c_1(\gamma^{-1}x) \right|^2 \, d\gamma \right) \left\| s \right\|^2_{L^2(X;\mathbb{V})}.
\]

Since the action of \(G \) is proper, \(\{ \gamma \in G \mid \gamma^{-1}x \in \text{supp}(c_1) \} \subset G \) is compact so the value \(\int_G |c_1(\gamma^{-1}x)|^2 \, d\gamma \) is always finite for any fixed \(x \in X \). Besides, since \(X/G \) is compact, this value is uniformly bounded;

\[
C := \sup_{x \in X} \left(\int_G \left| c_1(\gamma^{-1}x) \right|^2 \, d\gamma \right) = \sup_{x \in X/G} \left(\int_G \left| c_1(\gamma^{-1}x) \right|^2 \, d\gamma \right) < \infty.
\]

Remind that \(C \) depends only on \(K_X \), not on \(s \). We conclude that

\[
\left\| \int_G \gamma[P] \, d\gamma \right\|^2_{L^2(Y;\mathbb{W})} = \left\| \int_G F_s(\gamma) \, d\gamma \right\|^2_{L^2(Y;\mathbb{W})} \leq |Z| \left\| F_s \right\|^2_{L^2(G)} \leq |Z|C \cdot \left\| P \right\|^2_{op} \left\| s \right\|^2_{L^2(X;\mathbb{V})}.
\]

\[\square \]

Lemma 3.6 [Kas16, Lemma 5.3] Let \(P \) be a bounded positive operator on \(L^2(X;\mathbb{V}) \) with a compactly supported distributional kernel. Then the scalar product

\[
(s_1, s_2) \mapsto \left< s_1, \left(\int_G \gamma[P] \, d\gamma \right) s_2 \right>_{\mathcal{E}(\mathbb{V})} \in C^*(G)
\]

is well defined and positive for any \(s_1 = s_2 \in C_c(X;\mathbb{V}) \).
Proof. Note that

\[\langle \gamma[s], P(\gamma[s]) \rangle_{L^2(X;V)} = \left\langle \sqrt{P}(\gamma[s]), \sqrt{P}(\gamma[s]) \right\rangle_{L^2(X;V)} \]

for \(\gamma \in G \) and \(s \in C_c(X;V) \). Regarding the each side of the above equation as a function in \(\gamma \in G \), it is clear that the left hand side vanishes outside some compact subset in \(G \) depending on the support of \(s \) and \(P \). This implies \(\sqrt{P}(\gamma[s]) \) has a compact support in \(G \). Take any unitary representation space \(\mathcal{H} \) of \(G \) and \(h \in \mathcal{H} \). By the above observation of the compact support,

\[v := \int_G \Delta(\gamma)^{-\frac{1}{2}} \sqrt{P}(\gamma[s]) \otimes \gamma[h] \, d\gamma \in L^2(X;V) \otimes \mathcal{H} \]

is well-defined. Then we obtain that

\[
0 \leq \|v\|^2 = \int_G \int_G \Delta(\gamma)^{-\frac{1}{2}} \Delta(\eta)^{-\frac{1}{2}} \left\langle \sqrt{P}(\gamma[s]), \sqrt{P}(\eta[s]) \right\rangle_{L^2(X;V)} \langle \gamma[h], \eta[h] \rangle_{\mathcal{H}} \, d\gamma \, d\eta \\
= \int_G \int_G \Delta(\gamma)^{-\frac{1}{2}} \Delta(\eta)^{-\frac{1}{2}} \left\langle s, \gamma^{-1}[P(\eta[s])] \right\rangle_{L^2(X;V)} \langle h, \gamma^{-1}[\eta[h]] \rangle_{\mathcal{H}} \, d\gamma \, d\eta \\
= \int_G \int_G \Delta(\gamma)^{-1} \Delta(\eta)^{-\frac{1}{2}} \left\langle s, \gamma^{-1}[P(\gamma^{-1}[\eta[s]])] \right\rangle_{L^2(X;V)} \langle h, \gamma^{-1}[\eta[h]] \rangle_{\mathcal{H}} \, d\gamma \, d(\gamma^{-1}[\eta]) \\
= \int_G \int_G \Delta(\gamma)^{-\frac{1}{2}} \left\langle s, \left(\int_G \gamma[P] \, d\gamma \right)(\gamma[s]) \right\rangle_{L^2(X;V)} \langle h, \gamma[h] \rangle_{\mathcal{H}} \, d\gamma \, d\zeta \\
= \int_G \left\langle s, \left(\int_G \gamma[P] \, d\gamma \right)(\gamma[s]) \right\rangle_{E(V)} \langle \zeta, h, \gamma[h] \rangle_{\mathcal{H}} \, d\zeta
\]

Recall that the action of \(f := \left\langle s, \left(\int_G \gamma[P] \, d\gamma \right)(\gamma[s]) \right\rangle_{E(V)} \in C_c(G) \) on \(\mathcal{H} \) is given by \(f[h] = \int_G f(\zeta) \zeta[h] \, d\zeta \) for \(h \in \mathcal{H} \). Thus, by rewriting the above inequality, we have \(\langle h, f[h] \rangle_{\mathcal{H}} \geq 0 \) for any \(h \), which means that this \(f \) is a positive operator on any unitary representation space \(\mathcal{H} \). To conclude, \(f \) is positive in \(C^*(G) \) for any \(s \in C_c(E(V)) \).

Proof of Proposition 3.4. Let \(T_1 := \frac{1}{2} (cT^*T + T^*Tc) \), which is bounded self-adjoint operator \(L^2(X;V) \to L^2(X;V) \). Moreover the distributional kernel of \(T_1 \) is contained in \(K \times K \) for some compact subset \(K \subset X \). By Lemma 3.5, \(\int_G \gamma[T_1] \) is well-defined in \(L(L^2(X;V)) \) and

\[
\int_G \gamma[T_1] = \int_G \frac{1}{2} \left(\gamma[cT^*T + T^*Tc] \right) = T^*T.
\]

Consider a compactly supported continuous function \(f \in C_c(X;[0,1]) \) satisfying that \(c_1 = 1 \) on \(K \) so that \(c_1T_1c_1 = T_1 \) holds. Consider the following self-adjoint operator;

\[P := c_1 \left(\|T\|^2 \|c\| - T_1 \right) c_1 = c_1^2 \|T\|^2 \|c\| - T_1 \in L(L^2(X;V)). \]

Obviously \(P \) is compactly supported and since \(T_1 \leq \|T\| \leq \|T\|^2 \|c\| \), \(P \) is positive. Using Lemma 3.6, for any \(s \in C_c(V) \), the following value is positive;

\[
0 \leq \left\langle s, \left(\int_G \gamma[P] \, d\gamma \right)(\gamma) \right\rangle_{E(V)} \\
\leq C \|T\|^2 \|c\| \left\langle s, s \right\rangle_{E(V)} - \left\langle s, \left(\int_G \gamma[T_1] \right)(\gamma) \right\rangle_{E(V)} \in C^*(G),
\]

Y. Fukumoto
where C is the maximum of a G-invariant bounded function $\int_X \gamma[c_i^2]$, which is independent of s. To conclude,

$$\langle T(s), T(s) \rangle_{\mathcal{E}(\mathcal{W})} = \langle s, T^*T(s) \rangle_{\mathcal{E}(\mathcal{V})} = \left\langle s, \left(\int_G \gamma[T_1] s \right) \right\rangle_{\mathcal{E}(\mathcal{V})} \leq C \|T\|^2 \|c\| \langle s, s \rangle_{\mathcal{E}(\mathcal{V})}.$$

\[\square\]

3.2 Proof of Theorem A

The theorem we will discuss is the following:

Theorem A Let X and Y be oriented even-dimensional complete Riemannian manifolds and let a locally compact Hausdorff group G acts on X and Y isometrically, properly and co-compactly. $f: Y \to X$ be a G-equivariant orientation preserving homotopy equivalent map. Let ∂_X and ∂_Y be the signature operators. Then $\text{ind}_G(\partial_X) = \text{ind}_G(\partial_Y) \in K_0(C^*(G)).$

From now on we will slightly change the notation for simplicity. We will only consider \mathcal{V} for the cotangent bundle $\Lambda^* T^*X \otimes \mathbb{C}$. Let us use \mathcal{E}_X for $\mathcal{E}(\Lambda^* T^*X \otimes \mathbb{C})$. Let $\Omega^k_c(X)$ be the space consisting of compactly supported smooth differential forms on X, namely, $C^\infty_c(X; \mathcal{V})$. We will prove Theorem A using Lemma 2.10.

Definition 3.7 Let us introduce the following data (\mathcal{E}, Q, δ) to present the G-index of the signature operator:

- Let $C^*(G)$-valued quadratic form Q_X be defined by the formula;

$$Q_X(\nu, \xi)(\gamma) := i^{k(n-k)} \Delta(\gamma)^{-\frac{1}{2}} \int_X \bar{\nu} \wedge \gamma[\xi] \quad \text{for} \quad \nu \in \Omega^k_c(X), \quad \nu \in \Omega^{n-k}_c(X), \quad \gamma \in G, \quad (3.3)$$

where $\bar{\nu}$ denotes the complex conjugate. If $\text{deg}(\nu) + \text{deg}(\xi) \neq \text{dim}(X)$ then $Q_X(\nu, \xi) := 0$. This deg means the degree of the differential form.

- The grading U_X determined by Q_X is given by

$$U_X(\xi) = i^{-k(n-k)} \ast \xi \quad \text{for} \quad \xi \in \Omega^k_c(X), \quad (3.4)$$

where \ast denotes the Hodge \ast-operation.

Clearly, $U_X^2 = 1$ and $Q_X(\nu, U_X(\xi)) = \langle \nu, \xi \rangle_{\mathcal{E}_X}$ hold.

- $\delta_X(\xi) := i^k d_X \xi$ for $\xi \in \Omega^k_c(X)$, where d_X denotes the exterior derivative on X.

We will also use the similar notations for Y.

Lemma 3.8 $(\mathcal{E}_X, Q_X, \delta_X) \in \mathbb{J}(C^*(G))$ and $\Psi(\mathcal{E}_X, Q_X, \delta_X) = \text{ind}_G(\partial_X)$, where ∂_X is the signature operator of X.

Proof. First, obviously $\delta^2 = 0$. Applying Theorem 3.2 to the signature operator on X, it follows that $\delta_X - U_X \delta_X U_X: \Omega^k_c(X) \to \mathcal{E}_X$ is closable and its closure is self-adjoint. Let us use $\delta_X - U_X \delta_X U_X$ for also its closure. Since $\text{Im}(\delta_X)$ and $\text{Im}(-U_X \delta_X U_X)$ are orthogonal to each other with respect to the scalar product $\langle \cdot, \cdot \rangle_{\mathcal{E}_X}$, it follows that δ_X itself is a closed operator on \mathcal{E}. Moreover, set $\sigma = \tau := \frac{\delta_X^*}{1 + (\delta_X + \delta_X)^*}$.

They belong to $\mathbb{K}(\mathcal{E}_X)$ since $\frac{\delta_X}{\delta_X + \delta_X i} \in L(\mathcal{E}_X)$ and $\frac{1}{\delta_X + \delta_X i} \in \mathbb{K}(\mathcal{E}_X)$. Then from Theorem 3.2, we obtain

$$\sigma \delta_X + \delta_X \tau - 1 = \frac{-1}{1 + (\delta_X + \delta_X)^2} \in \mathbb{K}(\mathcal{E}_X).$$

Therefore, $(\mathcal{E}_X, Q_X, \delta_X) \in \mathbb{J}(C^*(G))$ and $\Psi(\mathcal{E}_X, Q_X, \delta_X) = \text{ind}_G(\partial_X)$ by the definition of Ψ.

Let $f: Y \to X$ be a G-equivariant proper orientation preserving homotopy equivalent map between n-dimensional proper co-compact Riemannian G-manifolds. In order to construct a map $T \in L(\mathcal{E}_X, \mathcal{E}_Y)$ satisfying the hypothesis of Lemma 2.10, it is sufficient to construct an L^2-bounded G-invariant operator $T: \Omega^*_c(X) \to \Omega^*_c(Y)$ due to Proposition 3.4.

Remark 3.9 Note that $f^*: \Omega^*_c(X) \to \Omega^*_c(Y)$ may not be L^2-bounded unless $f: Y \to X$ is submersion. For instance, let $Y = X = [-1, 1]$ and $f(y) = y^3$. Consider an L^2-form ω on X given by $\omega(x) = \frac{1}{|x|^{1/2}}$. Actually $\|\omega\|^2_{L^2(X)} = \int_{-1}^1 \frac{1}{|y|^{1/2}} dy = 2$, however, $\|f^*\omega\|^2_{L^2(Y)} = \int_{-1}^1 \frac{1}{|y|^{1/2}} dy = +\infty$. So we need to replace f^* by a suitable operator.

Let us construct operator T that we need and investigate its properties in a slightly more general condition.

- X and Y are Riemannian manifold and G acts on them isometrically and properly. For a while, X and Y may have boundary and the action may not be co-compact if not mentioned.
- Let W be an oriented G-invariant fiber bundle over Y whose typical fiber is an even dimensional unit open disk $B^k \subset \mathbb{R}^k$. Let $q: W \to Y$ denote the canonical projection map and $q_I: \Omega^*_{c+k}(W) \to \Omega^*_c(Y)$ be the integration along the fiber.
- Let us fix $\omega \in \Omega^k(W)$ be a G-invariant closed k-form with fiber-wisely compact support such that the integral along the fiber is always equal to 1; $q_I(\omega)(y) = \int_{W_y} \omega = 1$ for any $y \in Y$. Let e_ω denote the operator given by $e_\omega(\zeta) = \zeta \wedge \omega$ for $\zeta \in \Omega^*(W)$.

We can construct a G-invariant ω as follows: Let $\tau \in \Omega^k(W)$ be a k-form inducing a Thom class of W. We may assume that $\int_{W_y} \tau = 1$ for any $y \in Y$. Then $\omega := \int_G \gamma [\tau] \gamma^* d\gamma$ is a desired G-invariant form.

- Suppose that we have a G-equivariant submersion $p: W \to X$ whose restriction on $\text{supp}(\omega) \subset W$ is proper.

Definition 3.10 For the above data, let us set $T_{p, \omega} := q_I e_\omega p^*: \Omega^*_c(X) \to \Omega^*_c(Y)$. We may write just T_p for simplicity.

$$\begin{array}{ccc}
W & \xrightarrow{q} & Y \\
\downarrow p & & \downarrow X \\
\Omega^*_c(X) & \xrightarrow{p^*} & \Omega^*_c(W) \\
\xrightarrow{e_\omega} & & \xrightarrow{q_I} \\
\Omega^*_c(W) & \xrightarrow{e_\omega p^*} & \Omega^*_c(Y).
\end{array}$$

Lemma 3.11 If the actions of G are co-compact, then $T_{p, \omega}$ determines an operator in $L(\mathcal{E}_X, \mathcal{E}_Y)$.

Proof. By Proposition 3.4, it is sufficient to check that $T_{p, \omega}$ is L^2-bounded.

Since q_I is obviously L^2-bounded, only the boundedness of $e_\omega p^*: \Omega^*_c(X) \to \Omega^*_c(W)$ is non-trivial. Note that our proper submersion p restricted on $\text{supp}(\omega) \subset W$ is locally trivial G-invariant fibration. Let p_I denotes the integration along this fibration. Then

$$\int_W \zeta = \int_X p_I \zeta$$
holds for any compactly supported differential form \(\zeta \in \Omega^*(W) \) satisfying \(\text{supp}(\zeta) \subset \text{supp}(\omega) \), in particular, \(\zeta = ((p^* \xi) \wedge \omega)^2 \text{vol}_W \in \Omega^{2+k}(W) \) for \(\xi \in \Omega^*_c(X) \). Let \(C_\omega \) be the maximum of the norm of bounded \(G \)-invariant form \(p_I ((\omega)^2 \text{vol}_W) \in \Omega^n(X) \).

\[
\|e_\omega p^*(\xi)\|_{L^2(W)}^2 = \int_W |(p^* \xi) \wedge \omega|^2 \text{vol}_W \equiv \int_X |\xi|^2 \text{vol}_X = C_\omega \|\xi\|_{L^2(X)}^2 \quad \text{for} \quad \xi \in \Omega^*_c(X).
\]

The equation (†) holds because the function \(p^* |\xi|^2 \) is constant along the fiber \(p^{-1}(x) \).

Lemma 3.12 Let us consider proper co-compact \(G \)-manifold \(X, Y, Z \) and \(q_1 : W \to Y \) and \(q_2 : V \to Z \) be \(G \)-invariant oriented disk bundles over \(Y \) and \(Z \) with typical fiber \(B^{k_1} \) and \(B^{k_2} \). Fix \(G \)-invariant closed forms \(\omega_1 \in \Omega^1(W) \) and \(\omega_2 \in \Omega^{k_2}(V) \) with fiber-wisely compact support satisfying \((q_j)_I(\omega_j) = 1 \). Let \(p_1 : W \to X \) \(p_2 : V \to Y \) be \(G \)-equivariant submersions whose restriction on \(\text{supp}(\omega_j) \) are proper.

On the other hand, as in the diagram below, let us consider the pull-back bundle \(p_2^* W = \{(v, w) \in V \times W | p_2(v) = w \} \) over \(V \) and let us regard it as a fiber bundle over \(Z \) with projection denoted by \(q_{21} \). Let us set \(\omega_{21} : = p_2^* \omega_1 \wedge \tilde{q}_1 \omega_2 \in \Omega^*(p_2^* W) \), \(p_{21} : = p_1 \tilde{p}_2 \), where \(\tilde{q}_1 : p_2^* W \to V \) denotes the projection and \(\tilde{p}_2 : p_2^* W \to W \) denotes the map induced by \(p_2 \).

Then \(T_{p_2} T_{p_1} = T_{p_{21}} : \mathcal{E}_X \to \mathcal{E}_Z \).

Proof. First we can see that for \(\xi \in \Omega^*_c(X) \),

\[
T_{p_{21}}(\xi) = (q_{21})_I \circ e_{\omega_2} p_{21}^* (\xi)
= (q_2)_I (\tilde{q}_1)_I \{ \tilde{p}_2^* p_1^* \xi \wedge (p_2^* \omega_1 \wedge \tilde{q}_1^* \omega_2) \}
= (q_2)_I (\tilde{q}_1)_I \{ \tilde{p}_2^* (p_1^* \xi \wedge \omega_1) \wedge \tilde{q}_1^* \omega_2 \}
= (q_2)_I (\tilde{q}_1)_I \{ (\tilde{q}_1)_I \circ (\tilde{p}_2^* (p_1^* \xi \wedge \omega_1)) \wedge \omega_2 \}
= (q_2)_I (\tilde{q}_1)_I e_{\omega_2} (\tilde{q}_1)_I e_{\omega_2} p_1^* (\xi).
\]

\[
T_{p_2} T_{p_1}(\xi) = (q_2)_I e_{\omega_2} (q_1)_I e_{\omega_1} p_1^* (\xi).
\]

Note that \((\tilde{q}_1)_I \) in the second bottom row is well defined because the differential form \(\tilde{p}_2^* e_{\omega_1} p_1^*(\xi) \) is compactly supported along each fiber of \(\tilde{q}_1 : p^* W \to V \). We need to prove the commutativity of the following diagram:

\[
\begin{array}{ccc}
\Omega^*(V) & \xrightarrow{p_2^*} & \Omega^*(W) \\
\xrightarrow{(q_1)_I} & \downarrow \tilde{p}_2^* & \\
\Omega^*(W) & \xrightarrow{p_1^*} & \Omega^*(Y)
\end{array}
\]
It is easy to check this using local trivializations. Suppose that \(W \to Y \) is trivialized on \(U \subset Y \). Then \(p_2^*W \) is trivialized on \(p_2^{-1}U \subset V \). We write these trivialization as \(W|_U \cong U \times B^k \) and \(p_2^*W|_U \cong p_2^{-1}U \times B^k \). Then for \(\zeta(y,w) = f(y,w)dy \wedge dw \in \Omega^*|_U \),

\[
((\tilde{q}_1)_I \tilde{p}_2^* \zeta)(v) = \int_{B^k} (f(p_2(v),w)p_2^*(dy)) \, dw = (p_2^*(q_1)_I \zeta)(v) \quad \text{for} \quad v \in p^{-1}U \subset V.
\]

\[\square\]

We will use the following proposition repeatedly.

Proposition 3.13 Let \(W_1 \) and \(W_2 \) be oriented \(G \)-invariant disk bundles over \(Y \) with typical fiber \(B^{k_1} \) and \(B^{k_2} \), and let \(q_j : W_j \to Y \) be the projection. Let \(\omega_j \in \Omega^{k_j} \) be closed forms with fiber-wisely compact support satisfying \((p_j)_* \omega_j = 1 \).

Suppose that there exist \(G \)-equivariant submersions \(p_j : W_j \to X \) whose restriction on the 0-sections \(p_j(\cdot,0) : Y \to X \) are \(G \)-equivariant homotopic to each other.

Then, there exists a properly supported \(G \)-equivariant \(L^2 \)-bounded operator \(\psi : \Omega^*_c(X) \to \Omega^*_c(Y) \) satisfying that \(T_{p_2\omega_2} - T_{p_1\omega_1} = d_X \psi + \psi d_Y \).

First, let us prove the following lemma;

Lemma 3.14 Let \(Q : \tilde{W} \to Y \times [0,3] \) be a \(G \)-invariant disk bundle over \(Y \times [0,3] \) and let \(\omega \in \Omega^k(\tilde{W}) \) be a closed form with fiber-wisely compact support satisfying \(Q_1(\omega) = 1 \). Suppose that there exists a \(G \)-equivariant submersion \(P : \tilde{W} \to X \) whose restriction on \(\text{supp}(\omega) \) is proper. Then there exists a properly supported \(G \)-equivariant \(L^2 \)-bounded operator \(\psi : \Omega^*_c(X) \to \Omega^*_c(Y) \) satisfying that \(T_{P(\cdot,3),\omega(3)} - T_{P(\cdot,0),\omega(0)} = d_X \psi + \psi d_Y \).

Proof. Let \(\xi \in \Omega^*_c(X) \) and \(\theta := Q_1(P^*\xi \wedge \omega) \in \Omega^*_c(Y \times [0,3]) \). Then it is easy to see that

\[
\int_{[0,3]} d\theta = -d \left(\int_{[0,3]} \theta \right) + (i_3^*\theta - i_0^*\theta),
\]

where \(i_\cdot : Y \times \{\cdot\} \hookrightarrow Y \times [0,3] \) denotes the inclusion map. Note that \(i_0^*\theta = T_{P(\cdot,0),\omega(\cdot,0)} \xi \).

Now, set \(\psi : \Omega^*_c(X) \to \Omega^*_c(Y) \) by the formula; \(\psi(\xi) := \int_{[0,3]} Q_1(P^*\xi \wedge \omega) \) for \(\xi \in \Omega^*_c(X) \). Note that the identity map \(L^1([0,3]) \to L^2([0,3]) \) is a continuous inclusion due to the finiteness of \(\text{vol}([0,3]) \) hence, the map \(\int_{[0,3]} : \Omega^*_c(Y \times [0,3]) \to \Omega^*_c(Y) \) is \(L^2 \)-bounded. Moreover, since \(P^*\xi \wedge \omega \) vanishes at the boundary of each fiber of \(\tilde{W} \), the integration along the fiber commutes with taking exterior derivative, in particular,

\[
d\theta = dQ_1(P^*\xi \wedge \omega) = Q_1d(P^*\xi \wedge \omega) = Q_1(P^*(d\xi) \wedge \omega).
\]

To conclude, we obtain

\[
\psi(d\xi) = \int_{[0,3]} dQ_1(P^*\xi \wedge \omega) = -d\psi(\xi) + T_{P(\cdot,3),\omega(\cdot,3)} \xi - T_{P(\cdot,0),\omega(\cdot,0)} \xi,
\]

\[\square\]

Proof of Proposition 3.13. We need to construct \(\tilde{W} \) and \(P \) as above satisfying \(T_{P(\cdot,0),\omega(\cdot,0)} = T_{P_1\omega_1} \) and \(T_{P(\cdot,3),\omega(\cdot,3)} = T_{p_2\omega_2} \).

Let \(h : Y \times [0,3] \to X \) be a re-parametrized \(G \)-homotopy between \(p_1(\cdot,0) \) and \(p_2(\cdot,0) \), that is, \(h \) is a \(G \)-equivariant smooth map satisfying

\[
h(y,t) = p_1(y,0) \quad \text{for} \quad t \in [0,1]
\]

\[
\text{and} \quad h(y,t) = p_2(y,0) \quad \text{for} \quad t \in [2,3].
\]
here G acts on $[0,3]$ trivially. Moreover, consider the following fiber product $W_1 \times_Y W_2 = \{(y_1, w_1), (y_2, w_2) \in W_1 \times W_2 \}$. Let us introduce a smooth map $\chi: [0,3] \to [0,1]$ satisfying that

$$\chi(t) = 0 \quad \text{for} \quad t \in [0, \frac{11}{10}] \cup \left(\frac{29}{10}, 3\right]$$

and

$$\chi(t) = 1 \quad \text{for} \quad t \in \left(\frac{9}{10}, \frac{21}{10}\right).$$

Then

$$\tilde{h}: (W_1 \times_Y W_2) \times [0,3] \to X,$$

$$((y,t), w_1, w_2, v) \mapsto \begin{cases} p_1(y, (1 - \chi(t))w_1) & \text{for} \quad t \in [0,1], \\ h(y,t) & \text{for} \quad t \in [1,2], \\ p_2(y, (1 - \chi(t))w_2) & \text{for} \quad t \in [2,3]. \end{cases}$$

This \tilde{h} is submersion as long as $\chi(t) \neq 1$ due to the submergence of p_1 and p_2. Let $BX := \{ v \in TX \mid \|v\| < 1 \}$ be the unit disk tangent bundle and consider the pull-back bundle $\tilde{W} := h^*BX$ and let us regard it as a bundle over $Y \times [0,3]$ and set

$$P: \tilde{W} \to X,$$

$$((y,t), w_1, w_2, v) \mapsto \exp_{\tilde{h}(y,t), w_1, w_2}(\chi(t)v).$$

Due to the $(\chi(t)v)$-component, P is submersion also when $\chi(t) \neq 0$ not only when $\chi(t) \neq 1$.

Moreover, define $\omega \in \Omega^*(W)$ as $\omega := \pi^*_1 \omega_1 \wedge \pi^*_2 \omega_2 \wedge \tilde{h}^* \omega_{BX}$, where $\pi_j: \tilde{W} \to W_j$ for $j = 1,2$ and $\omega_{BX} \in \Omega^*(BX)$ is a G-invariant differential with fiber-wisely compact support satisfying $\int_{BX} \omega_{BX} = 1$. These \tilde{W}, P and ω satisfy the assumption of Lemma 3.14.

It is easy to see that $T_{P(\cdot,0),\omega(\cdot,0)} = T_{p_1,\omega_1}$ and $T_{P(\cdot,3),\omega(\cdot,3)} = T_{p_2,\omega_2}$ as follows. For the simplicity, let

$\pi: \tilde{W}_{Y \times \{0\}} \to W_1$ denote the projection. Note that $P(y,0) = p_1 \pi$ and we can write $\omega(\cdot,0) = \pi^* \omega_1 \wedge \tilde{\omega}$, using some $\tilde{\omega} \in \Omega^*(\tilde{W}_{Y \times \{0\}})$ satisfying $\pi_1 \tilde{\omega} = 1$. Then we obtain that

$$T_{P(\cdot,0),\omega(\cdot,0)}(\xi) = (q_1)_f \pi(\pi^* p_1^* \xi \wedge \pi^* \omega_1 \wedge \tilde{\omega})$$

$$= (q_1)_f \pi(\pi^* (p_1^* \xi \wedge \omega_1) \wedge \tilde{\omega})$$

$$= (q_1)_f ((p_1^* \xi \wedge \omega_1) \wedge \pi_1 \tilde{\omega})$$

$$= (q_1)_f (p_1^* \xi \wedge \omega_1) = T_{p_1,\omega_1}(\xi),$$

and similarly, $T_{P(\cdot,3),\omega(\cdot,3)} = T_{p_2,\omega_2}$.}

Now let us define a map $T \in \mathbb{L}(\mathcal{E}_X, \mathcal{E}_Y)$ which satisfies the assumption of Lemma 2.10. First, remark that our map $f: Y \to X$ is a proper map by Lemma 1.5.

Definition 3.15 Let $BX := \{ v \in TX \mid \|v\| < 1 \}$ be the unit disk tangent bundle and let $W := f^*BX$ be the pull-back on Y, that is, $W = \{(y,v) \in Y \times BX \mid v \in BX \}$. Let $\tilde{f}: W \to BX$ be a map given by $\tilde{f}(x,v) := (f(x),v)$. Since the action of G on X is isometric and f is G-equivariant, G acts on BX and also on W. Consider a G-equivariant submersion given by the formula;

$$p: \quad W \to X,$$

$$(y,v) \mapsto \exp_{f(y),(v)}. \tag{3.6}$$

Let us fix a G-invariant \mathbb{R}-valued closed n-form $\omega_0 \in \Omega^n(BX)$ with fiber-wisely compact support whose integral along the fiber is always equal to 1, and let $\omega := \tilde{f}^* \omega_0 \in \Omega^n(W)$ For these W, p and ω, let us set $T := T_{p,\omega}$.

\]
Lemma 3.16 The adjoint with respect to quadratic forms Q_X and Q_Y is given by $T' = p_f e_\omega q^*$. Proof. Note that $\text{deg}(\omega) = \text{dim}(X)$ is even, hence, ω commutes with other differential forms. For $\nu \in \Omega^k_c(Y)$ and $\xi \in \Omega^{n-k}_c(X)$,

\[
\int_X p_f e_\omega q^*(\nu) \wedge \xi = \int_X p_f (q^* \nu \wedge \omega) \wedge \xi = \int_X p_f (q^* \nu \wedge \omega \wedge p^* \xi) = \int_BX q^* \nu \wedge \omega \wedge p^* \xi
\]

\[
= \int_Y q_f (q^* \nu \wedge p^* \xi \wedge \omega) = \int_Y \nu \wedge q_f (p^* \xi \wedge \omega) = \int_Y \nu \wedge T(\xi).
\]

Since $Q_X(\nu, \xi)(\gamma) := \frac{1}{k} \Delta(\gamma) \int_X \nu \wedge \gamma(\xi)$, the proof complete replacing ν and ξ by ν and $\gamma(\xi)$ respectively and using the G-invariance of T. \hfill \Box

Proposition 3.17 There exists $\phi \in \mathcal{L}(E_X)$ such that $1 - T'\theta = d_X \phi + \phi d_X.$

Proof. Consider the fiber product $W \times_Y W$ and let q_1 and q_2: $W \times_Y W \rightarrow W$ denote the projections given by $q_j(y, v_1, v_2) := (y, v_j)$. Take $\zeta \in \Omega^2_c(W)$, here W is regarded as the first component of $W \times_Y W$. Using the commutativity of the diagram (3.5), we obtain that

\[
e_\omega q^* q_f(\zeta) = e_\omega (q_2)_f q_f(\zeta) = (q_2)_f (q_f(\zeta) \wedge \omega) = (q_2)_f (q_f(\zeta) \wedge q_f \omega)
\]

and hence,

\[
T'\theta = p_f e_\omega q^* q_f e_\omega p^* = p_f (q_2)_f e_\omega q_f^* e_\omega p^*.
\]

On the other hand, since $q_1(y, 0) = q_2(y, 0)$, by Proposition 3.13, there exists a properly supported G-equivariant L^2-bounded operator $\psi_W: \Omega^*_c(W) \rightarrow \Omega^*_c(W)$ satisfying

\[
(q_2)_f e_\omega q_f^* - (q_2)_f e_\omega q_f^* = d\psi_W + \psi_W d.
\]

Moreover, it is obvious that $(q_2)_f e_\omega q_f^* = \text{id}_{\Omega^*_c(W)}$, so we obtain

\[
p_f e_\omega p^* - T'\theta = p_f \left(\text{id}_{\Omega^*_c(W)} - (q_2)_f e_\omega q_f^* \right) e_\omega p^*
\]

\[
= p_f \left(d\psi_W + \psi_W d \right) e_\omega p^*
\]

\[
= d \circ p_f \psi_W e_\omega p^* + p_f \psi_W e_\omega p^* \circ d.
\]

Remark that $p_f \circ d = d \circ p_f$ because the act on differential forms with compact support, and $e_\omega \circ d = d \circ e_\omega$ because ω is a closed form.

Next let us consider submersion $p_X : BX \rightarrow X$ given by $(x, v) \mapsto \exp_x(v)$. Note that $p = p_X \tilde{f}$.

\[
f^*BX \xrightarrow{\tilde{f}} BX \\
p \downarrow \downarrow p_X \\
\tilde{f} \downarrow \\
X
\]
Now we want to check that $p_I e_\omega p^* = (p_X)_I e_\omega_X p^*_X$. For any $\nu \in \Omega^*_c(X)$ and $\zeta \in \Omega^*_c(BX)$,
\[
\int_X \nu \wedge p_I (\tilde{f}^* \zeta) = \int_W p^* \nu \wedge \tilde{f} \zeta = \int_W \tilde{f}^* (p^*_X \nu \wedge \zeta) = \deg(\tilde{f}) \int_{BX} p^*_X \nu \wedge \zeta = \int_{BX} p^*_X \nu \wedge \zeta = \int_X \nu \wedge (p_X)_I(\zeta),
\]
since f is an orientation preserving proper homotopy equivalent. In particular, we obtain
\[
p_I (\tilde{f}^* \zeta) = (p_X)_I(\zeta) \tag{3.8}
\]
Put $\zeta := p^*_X \xi \wedge \omega_0$ for $\xi \in \Omega^*_c(X)$ to obtain
\[
p_I e_\omega p^* (\xi) = p_I (\tilde{f}^* p^*_X \xi \wedge \tilde{f} \omega_0) = p_I (\tilde{f}^* (p^*_X \xi \wedge \omega_0)) = (p_X)_I (p^*_X \xi \wedge \omega_0) = (p_X)_I e_\omega_X p^*_X (\xi). \tag{3.9}
\]
Let $\pi: BX \to X$ be the natural projection. Since $p^*_X (x, 0) = \pi(x, 0)$, by Proposition 3.13, there exists a properly supported G-equivariant L^2-bounded operator $\psi_X: \Omega^*_c(X) \to \Omega^*_c(X)$ satisfying
\[
\pi_I e_\omega_X \pi^* - (p_X)_I e_\omega_X p^*_X = d\psi_X + \psi_X d. \tag{3.9}
\]
On the other hand, it is obvious that $\pi_I e_\omega_X \pi^* = \text{id}_{\Omega_c(X)}$. Therefore, combining (3.7), (3.8) and (3.9), we conclude
\[
\text{id}_{\Omega_c(X)} - T'T = d\phi + \phi d,
\]
where $\phi = p_I \psi_W e_\omega p^* + \psi_X$. Since ϕ is properly supported G-invariant L^2-bounded operator, it defines an element in $L(\mathcal{E}_X)$.

\textbf{Proof of Theorem A.} First, let us check that T satisfies the assumption (1) of Lemma 2.10. Since ω is a closed form and has fiber-wisely compact support, it follows that $T\delta_X = \delta_Y T$. Let $g: X \to Y$ be the G-equivariant homotopy inverse of f and consider a map $S \in L(\mathcal{E}_Y, \mathcal{E}_X)$ constructed in the same method as T from g instead of f in Definition 3.15. By 3.12, the composition ST is equal to the map $T_p \in L(\mathcal{E}_X)$ for p satisfying that $p(\cdot, 0)$ is G-equivariant homotopic to id_X. Then by Proposition 3.13, there exists $\phi_X \in L(\mathcal{E}_X)$ satisfying that $ST - (\delta_X \phi_X + \phi_X \delta_X) = T_{\text{id}_X} = \text{id}_{\mathcal{E}_X}$. Thus, ST induces the identity map on $\text{Ker}(\delta_X)/\text{Im}(\delta_X)$. Similarly TS induces the identity map on $\text{Ker}(\delta_Y)/\text{Im}(\delta_Y)$, and hence, T induces an isomorphism $\text{Ker}(\delta_X)/\text{Im}(\delta_X) \to \text{Ker}(\delta_Y)/\text{Im}(\delta_Y)$.

The assumption (2) of Lemma 2.10 is obtained from 3.17.

Finally, let $\varepsilon(\xi) := (-1)^k \xi$ for $\xi \in \Omega^*_c(X)$. Clearly, ε determines an operator $\varepsilon \in L(\mathcal{E}_X)$, $\varepsilon^2 = 1$ and satisfies $\varepsilon f = f, \varepsilon(\text{dom}(\delta_X)) \subset \text{dom}(\delta_X)$ and $\varepsilon \delta_X = -\delta_X \varepsilon$. Moreover since neither T nor T' changes the order of the differential forms, ε commutes with $1 - T'T$. Thus ε satisfies the assumption (3) of Lemma 2.10. To conclude, we obtain $\text{ind}_G(\partial_X) = \Psi(\mathcal{E}_X, Q_X, \delta_X) = \Psi(\mathcal{E}_Y, Q_Y, \delta_Y) = \text{ind}_G(\partial_Y)$. \hfill \Box

3.3 On proof of Corollary B

To prove Corollary B, we will combine [F, Theorem A] with Theorem A. Suppose, in addition, that G is unimodular and $H_1(X; \mathbb{R}) = H_1(Y; \mathbb{R}) = \{0\}$. Let $f: Y \to X$ be a G-equivariant orientation preserving homotopy invariant map and consider a G-manifold $Z := X \sqcup (-Y)$, the disjoint union of X and orientation reversed Y. Let ∂_Z be the signature operator, then we have that $\text{ind}_G(\partial_Z) = \text{ind}_G(\partial_X) - \text{ind}_G(\partial_Y) = 0 \in K_0(C^*(G))$. Although the G-manifold should be connected in [F, Theorem A], however in this case, we can apply it to Z after replacing some arguments in [F] as follows.
Lemma 4.2 Using a cut-off function given line bundle, we just use a line bundle L the formula; f bundles of line bundles $\{L_t\}$ over X in the same way and pull back on Y to obtain a family $\{f^*L_t\}$. To be specific, f^*L_t is a trivial bundle $Y \times \mathbb{C}$, equipped with the connection given by $\nabla^t = d + itf^*\eta$ and the action of G_{α_t} is given by

$$(\gamma, u)(y, z) = (\gamma y, \exp[-itf^*\psi(x)]uz) \quad \text{for} \quad (\gamma, u) \in G_{\alpha_t}, \ y \in Y, \ z \in \mathbb{C} = (L_t)_x.$$

Then consider a family of G_{α_t}-line bundles $\{L_t \sqcup f^*L_t\}$ over Z. We also need the similar replacement in [F, Definition 7.19] to obtain the global section on $L_t \sqcup f^*L_t$. Then the rest parts proceed similarly.

4 Index of Dirac operators twisted by almost flat bundles

Now we will discuss on the Dirac operators twisted by a family of Hilbert module bundles $\{E^k\}$ whose curvature tend to zero and prove Theorem C. Such an family is called a family of almost flat bundles. In this section, it is convenient to formulate the index map using KK-theory.

4.1 G-index map in KK-theory

Lemma 4.1 [Kas88, Theorem 3.11] Let G be a second countable locally compact Hausdorff group. For any G-algebras A and B there exists a natural homomorphism

$$j^G: KK^G(A, B) \to KK(C^*(G; A), C^*(G; B)).$$

Furthermore if $x \in KK^G(A, B)$ and $y \in KK^G(B, D)$, then $j^G(x \otimes_B y) = j^G(x) \hat{\otimes}_{C^*(G; B)} j^G(y).$ \hfill \square

Lemma 4.2 Using a cut-off function $c \in C_c(X)$, one can define an idempotent $p \in C_c(G; C_0(X))$ by the formula;

$$\hat{c}(\gamma)(x) = \sqrt{c(x)c(\gamma^{-1}x)}\Delta(\gamma)^{-1}.$$

In particular it defines an element of K-homology denoted by $[c] \in K_0(C^*(G; C_0(X)))$. Moreover the element of K-homology $[c] \in K_0(C^*(G; C_0(X)))$ does not depend on the choice of cut-off functions. \hfill \square

Definition 4.3 (G-Index) [Kas16, Theorem 5.6.] Define

$$\mu^G: KK^G(C_0(X), C) \to K_0(C^*(G))$$

as the composition of

- $j^G: KK^G(C_0(X), C) \to KK(C^*(G; C_0(X)), C^*(G))$ and
- $[c] \tilde{\otimes}: KK(C^*(G; C_0(X)), C^*(G)) \to KK(C, C^*(G)) \simeq K_0(C^*(G))$, i.e.,

$$\mu^G(-) := [c] \tilde{\otimes}_{C^*(G; C_0(X))} j^G(-) \in K_0(C^*(G)).$$

Remark 4.4 As in [Kas16, Remark 4.4.] or [F, Subsection 5.2], it is sufficient to consider only in the case of Dirac type operators for calculating the index.

Let B be a unital C^*-algebra. Following the definition 4.3, we define the index maps with coefficients;

Definition 4.5 For unital C^*-algebras B, define the index map

$$\text{ind}_G: KK^G(C_0(X), B) \to K_0(C^*(G; B))$$

as the composition of
\(j^G: KK^G(C_0(X), B) \to KK(C^*(G; C_0(X)), C^*(G; B)) \) and

\([c] \hat{\otimes}: KK(C^*(G; C_0(X)), C^*(G; B)) \to K_0(C^*(G; B)), \) i.e.,

\[
\text{ind}_G(\cdot) := [c] \hat{\otimes}_{C^*(G; C_0(X))} j^G(\cdot) \in K_0(C^*(G; B)).
\]

The crossed product \(C^*(G; B) \) is either maximal or reduced one. In this paper, we assume that \(G \) acts on \(B \) trivially. Then \(C^*_\text{Max}(G; B) \) and \(C^*_\text{red}(G; B) \) will be naturally identified with \(C^*_\text{Max}(G) \otimes_{\text{Max}} B \) and \(C^*_\text{red}(G) \otimes_{\text{min}} B \) respectively. Moreover if \(B \) is nuclear, \(\otimes_{\text{Max}} B \) and \(\otimes_{\text{min}} B \) are identified.

Definition 4.6 Let \(E \) be a finitely generated projective \((\mathbb{Z}/2\mathbb{Z})\)-graded Hilbert \(B \)-module \(G \)-bundle. Define \(C_0(X; E) \) as a space consisting of sections \(s: X \to E \) vanishing at infinity. It is considered as a \((\mathbb{Z}/2\mathbb{Z})\)-graded Hilbert \(C_0(X; B) \)-module with the right action given by point-wise multiplications and the scalar product given by

\[
\langle s_1, s_2 \rangle(x) := \langle s_1(x), s_2(x) \rangle_{E_x} \in C_0(X; B).
\]

Remark 4.7 The \(C^* \)-algebra \(C_0(X; B) \) consisting of \(B \)-valued function vanishing at infinity is naturally identified with \(C_0(X) \hat{\otimes} B \) by [We, 6.4.17. Theorem]. Similarly, if \(E = X \times E_0 \) is a trivial Hilbert \(B \)-module bundle over \(X \), then \(C_0(X; E) \) is naturally identified with \(C_0(X) \hat{\otimes} E_0 \) as Hilbert \((C_0(X; B) \cong C_0(X) \hat{\otimes} B)\)-modules.

Definition 4.8 \(E \) define an element in \(KK \)-theory

\[
[E] = (C_0(X; E), 0) \in KK^G(C_0(X), C_0(X) \hat{\otimes} B).
\]

The action of \(C_0(X) \) on \(C_0(X; E) \) is the point-wise multiplication.

Definition 4.9 Let \(E \) be a finitely generated Hilbert \(B \)-module bundle over \(X \) equipped with a Hermitian connection \(\nabla^E \). Let \(R^E \in C^\infty \left(X; \text{End}(E) \otimes \wedge^2(T^*(X)) \right) \) denote its curvature. Then define its norm as follows: First, define the point-wise norm as the operator norm given by

\[
\|R^E\|_x := \sup \left\{ \|R^E(u \wedge v)\|_{L(E)} \mid u, v \in T_x X, \|u \wedge v\| = 1 \right\} \quad \text{for} \quad x \in X.
\]

Then define the global norm as the supremum in \(x \in X \) of the point-wise norm: \(\|R^E\| := \sup_{x \in X} \|R^E\|_x \)

To describe the Theorem which we will prove,

Theorem C Let \(X \) be a complete oriented Riemannian manifold and let \(G \) be a locally compact Hausdorff group acting on \(X \) isometrically, properly and co-compactly. Moreover we assume that \(X \) is simply connected. Let \(D \) be a \(G \)-invariant properly supported elliptic operator of order 0 on \(G \)-Hermitian vector bundle over \(X \).

Then there exists \(\varepsilon > 0 \) satisfying the following: for any finitely generated projective Hilbert \(B \)-module \(E \) over \(X \) equipped with a \(G \)-invariant Hermitian connection such that \(\|R^E\| < \varepsilon \), we have

\[
\text{ind}_G \left([E] \hat{\otimes}_{C_0(X)} [D] \right) = 0 \in K_0(C^*_\text{Max}(G) \otimes_{\text{Max}} B)
\]

if \(\text{ind}_G([D]) = 0 \in K_0(C^*_\text{Max}(G)) \). If we only consider commutative \(C^* \)-algebras for \(B \), then the same conclusion is also valid for \(C^*_\text{red}(G) \).
4.2 Infinite product of C^*-algebras

Definition 4.10 Let B_k be a sequence of C^*-algebras.

- Define $\prod B_k$ as the C^*-algebra consisting of norm-bounded sequences
 \[
 \prod B_k := \left\{ \{b_1, b_2, \ldots\} \mid b_k \in B_k, \sup_k \|b_k\|_{B_k} < \infty \right\}.
 \]
 The norm of B_k is given by $\|\{b_1, b_2, \ldots\}\|_{\prod B_k} := \sup_k \|b_k\|_{B_k}$.

- Let $\bigoplus B_k$ a closed two-sided ideal in $\prod B_k$ consisting of sequences vanishing at infinity
 \[
 \bigoplus B_k := \left\{ \{b_1, b_2, \ldots\} \mid b_k \in B_k, \lim_{k \to \infty} \|b_k\| = 0 \right\}.
 \]
 In other words, $\bigoplus_{k \in \mathbb{N}} B_k$ is a closure of the sub-space in $\prod_{k \in \mathbb{N}} B_k$ consisting of sequences $\{b_1, b_2, \ldots, 0, 0, \ldots\}$ whose entries are zero except for finitely many of them.

- Define $Q B_k$ as the quotient algebra given by
 \[
 Q B_k := \left(\prod B_k \right) / \left(\bigoplus B_k \right).
 \]
 The norm of QB_k is given by $\|\{b_1, b_2, \ldots\}\|_{QB_k} := \limsup_{k \to \infty} \|b_k\|_{B_k}$.

- If \mathcal{E}_k are Hilbert B_k-modules, one can similarly define $\prod \mathcal{E}_k$ as a Hilbert $\prod B_k$-module consisting of bounded sequences
 \[
 \prod \mathcal{E}_k := \left\{ \{s_1, s_2, \ldots\} \mid s_k \in \mathcal{E}_k, \sup_k \|s_k\|_{\mathcal{E}_k} < \infty \right\}.
 \]
 The action of $\prod B_k$ and $\prod B_k$-valued scalar product are defined as follows;
 \[
 \{s_k\} \cdot \{b_k\} := \{s_k \cdot b_k\} \in \prod \mathcal{E}_k \quad \text{for} \quad \{s_k\} \in \prod \mathcal{E}_k, \{b_k\} \in \prod B_k,
 \]
 \[
 \langle \{s^1_k\}, \{s^2_k\} \rangle_{\prod \mathcal{E}_k} := \left\{ \langle s^1_k, s^2_k \rangle \right\} \in \prod B_k \quad \text{for} \quad \{s^1_k\}, \{s^2_k\} \in \prod \mathcal{E}_k.
 \]
 One can define similarly
 \[
 \bigoplus \mathcal{E}_k := \left\{ \{s_1, s_2, \ldots\} \mid s_k \in \mathcal{E}_k, \lim_{k \to \infty} \|s_k\|_{\mathcal{E}_k} = 0 \right\}
 \]
 as a Hilbert $\prod B_k$-module, and define
 \[
 Q \mathcal{E}_k := \left(\prod \mathcal{E}_k \right) \hat{\otimes}_\pi (QB_k) = \left(\prod \mathcal{E}_k \right) / \left(\bigoplus \mathcal{E}_k \right)
 \]
 as a Hilbert QB_k-module, where $\pi : \prod B_k \to QB_k$ denotes the projection.

Example 4.11 If all of B_k are \mathbb{C}, then, $\prod \mathbb{C} = \ell^\infty(\mathbb{N})$ and $\bigoplus \mathbb{C} = C_0(\mathbb{N})$.

Following [Ha12, Section 3.], we will construct “infinite product bundle $\prod E_k$” over X which has a structure of finite generated projective $\prod B_k$-module.
Definition 4.12 Let us fix some notations about the holonomy.

- Two paths p_0 and p_1 from x to y in X are thin homotopic to each other if there exists an end points preserving homotopy $h: [0, 1] \times [0, 1] \to X$ with $h(\cdot, j) = p_j$ that factors through a finite tree T,

$$h: [0, 1] \times [0, 1] \to T \to X$$

such that both restrictions of the first map $[0, 1] \times \{j\} \to T$ are piecewise-linear for $j = 0, 1$.

- The path groupoid $\mathcal{P}_1(X)$ is a groupoid consisting of all the points in X as objects. The morphism from x to y are the equivalence class of piece-wise smooth paths connecting given two points

$$\mathcal{P}_1(X)[x, y] := \{p: [0, 1] \to X | p(0) = x, p(1) = y\} / \sim .$$

The equivalent relationship is given by re-parametrization and thin homotopy.

- If a Hilbert B-module G-bundle E over X is given, the transport groupoid $\mathcal{T}(X; E)$ is a groupoid with the same objects as $\mathcal{P}_1(X)$. The morphism from x to y are the unitary isomorphisms between the fibers $\mathcal{T}(X; E)[x, y] := \text{Iso}_B(E_x, E_y)$.

Definition 4.13 A parallel transport of E is a continuous functor $\Phi^E: \mathcal{P}_1(X) \to \mathcal{T}(X; E)$. Φ^E is called ε-close to the identity if for each $x \in X$ and contractible loop $p \in \mathcal{P}_1(X)[x, x]$, it follows that

$$\|\Phi^E_p - \text{id}_{E_x}\| < \varepsilon \cdot \text{area}(D)$$

for any two dimensional disk $D \subset X$ spanning p. D may be degenerated partially or completely.

Remark 4.14 Let E be a Hermitian vector bundle, in other words, a finitely generated Hilbert C^*-module bundle, equipped with a compatible connection ∇. Let Φ^E be the parallel transport with respect to ∇ in the usual sense. If its curvature $R^E \in C^\infty \left(X; \text{End}(E) \otimes \Lambda^2(T^*(X))\right)$ has uniformly bounded operator norm $\|R^E\| < C$, then for any loop $p \in \mathcal{P}_1(X)[x, x]$ and any two dimensional disk $D \subset X$ spanning p, it follows that $\|\Phi^E_p - \text{id}_{E_x}\| < \int_D \|R^E\| < C \cdot \text{area}(D)$ so it is C-closed to identity.

Proposition 4.15 Let $\{E^k\}$ be a sequence of Hilbert B_k-module G-bundles over X with B_k unital C^*-algebras. Assume that each parallel transport Φ^k for E^k is ε-close to the identity uniformly, that is, ε is independent of k.

Then there exists a finitely generated Hilbert $(\prod_k B_k)$-module G-bundle V over X with Lipschitz continuous transition functions in diagonal form and so that the k-th component of this bundle is isomorphic to the original E^k.

Moreover, if the parallel transport Φ^k for each of E^k comes from the G-invariant connection ∇^k on E^k, V is equipped with a continuous G-invariant connection induced by E^k.

Proof. We will essentially follow the proof of [Ha12, Proposition 3.12]. For each $x \in X$ take a open ball $U_x \subset X$ of radius $\ll 1$ whose center is x. Assume that each U_x is geodesically convex. Due to the corollary 1.4 of the slice theorem, there exists a sub-family of finitely many open subsets $\{U_{x_1}, \ldots U_{x_N}\}$ such that $X = \bigcup_{\gamma \in G} \bigcup_{i=1}^N \gamma(U_{x_i})$.

Fix k. In order to simplify the notation, let $U_i := U_{x_i}$ and $\Phi_{y,x}^k: E^k_y \to E^k_x$ denote the parallel transport of E^k along the minimal geodesic from y to x for x and y in the same neighborhood $\gamma(U_i)$. Trivialize E^k via $\Phi_{y,x}^k: E^k_y \to E^k_x$ on each U_i. Similarly trivialize E^k on each $\gamma(U_i)$ for $\gamma \in G$ via $\Phi_{y,\gamma x}^k: E^k_{\gamma y} \to E^k_{\gamma x}$. Note that since parallel transport commute with the action of G, it follows that $\Phi_{y,\gamma x}^k = \gamma \circ \Phi_{y,x}^k \circ \gamma^{-1}$.

These provide a local trivializations for E^k whose transition functions have uniformly bounded Lipschitz constants. More precisely we have to fix unitary isomorphisms $\phi_{\gamma x}^k: E^k_{\gamma x} \to E^k_x$ between
the fiber on γx_i and the typical fiber E^k. Our local trivialization is $\phi_{\gamma x_i} \Phi_{y;\gamma x_i} : E^k_y \to E^k$. If $y, z \in \gamma(U_i) \cap \eta(U_j) \neq \emptyset$, we can consider the transition function

$$y \mapsto \psi_{\gamma(U_i), \eta(U_j)}(y) := (\phi_{y;\eta x_j} \circ \Phi_{y;\gamma x_i}) (\phi_{\gamma x_i} \circ \Phi_{y;\gamma x_i})^{-1} \in \text{End}_{B_k}(E^k).$$

Now we will estimate its Lipschitz constant as follows;

$$\psi_{\gamma(U_i), \eta(U_j)}(y) - \psi_{\gamma(U_i), \eta(U_j)}(z) = (\phi_{y;\eta x_j} \Phi_{y;\gamma x_i}) (\phi_{y;\gamma x_i} \Phi_{y;\gamma x_i})^{-1} - (\phi_{z;\eta x_j} \Phi_{y;\gamma x_i}) (\phi_{\gamma x_i} \Phi_{y;\gamma x_i})^{-1}$$

$$= \phi_{y;\eta x_j} \left((\Phi_{y;\eta x_j} \Phi_{y;\gamma x_i})^{-1} - (\Phi_{z;\eta x_j} \Phi_{y;\gamma x_i})^{-1} \right) \phi_{\gamma x_i}^{-1}$$

$$= \phi_{y;\eta x_j} \left((\Phi_{y;\eta x_j} \Phi_{y;\gamma x_i})^{-1} - (\Phi_{z;\eta x_j} \Phi_{y;\gamma x_i})^{-1} \right) \phi_{\gamma x_i}^{-1}.$$

Since ϕ's and Φ's are isometry, it follows that

$$\left| \psi_{\gamma(U_i), \eta(U_j)}(y) - \psi_{\gamma(U_i), \eta(U_j)}(z) \right| \leq \left| \Phi_{y;\eta x_j} - \Phi_{z;\eta x_j} \right| + \left| \Phi_{y;\gamma x_i}^{-1} - \Phi_{z;\gamma x_i}^{-1} \right|$$

$$= \left| \Phi_{y;\eta x_j} \Phi_{z;\gamma x_i} - \Phi_{z;\eta x_j} \Phi_{y;\gamma x_i} \Phi_{y;\gamma x_i} \right| + \left| \Phi_{y;\gamma x_i}^{-1} - \Phi_{z;\gamma x_i}^{-1} \right|$$

$$\leq \varepsilon \cdot (\text{area}(D_1) + \text{area}(D_2)). \quad (4.1)$$

Here $D_1 \subset \eta(U_j)$ is a two dimensional disk spanning the piece-wise geodesic loops connecting ηx_j, y, z, and ηx_j and $D_2 \subset \gamma(U_j)$ is a two dimensional disk spanning the piece-wise geodesic loop connecting γx_i, y, z, and γx_i.

We claim that there exists a constant C depending only on X such that

$$\text{area}(D_1), \text{area}(D_2) \leq C \cdot \text{dist}(y, z) \quad (4.2)$$

if we choose suitable disks D_1 and D_2.

We verify this using the geodesic coordinate $\exp_{\eta x_j}^{-1} : \eta(U_j) \to T_{\eta x_j}X$ centered at $\eta x_j \mapsto 0$. More precisely, let p denote the minimal geodesic from $y = p(0)$ to $z = p(\text{dist}(y, z))$ with unit speed. Consider

$$D_0 := \{ (r \cos \theta, r \sin \theta) \in \mathbb{R}^2 \mid 0 \leq r, 0 \leq \theta \leq \text{dist}(y, z) \} \subset \mathbb{R}^2$$

and $F : D_0 \to \eta(U_j) \subset X$ given by

$$F(r \cos \theta, r \sin \theta) := \exp_{\eta x_j} \left(r \exp_{\eta x_j}^{-1}(p(\theta)) \right).$$

Set $D_1 := F(D_0)$. F is injective if $\exp_{\eta x_j}^{-1}(y)$ and $\pm \exp_{\eta x_j}^{-1}(z)$ are on different radial directions, in which case F is a homeomorphism onto its image, and hence $F(D_0)$ is a two dimensional disk spanning the target loop. The Lipschitz constant of F is bounded by a constant depending on the curvature on $\eta(U_j)$, so there exists a constant $C_{\eta, j}$ depending on the Riemannian curvature on $\eta(U_j)$ satisfying

$$\text{area}(D_1) \leq C_{\eta, j} \cdot \text{area}(D_0) \leq C_{\eta, j} \cdot \text{dist}(y, z).$$

However, the constant $C_{\eta, j}$ can be taken independent of $\eta(U_j)$ due to the bounded geometry of X implied by the slice theorem (Corollary 1.4). In the case of $\exp_{\eta x_j}^{-1}(y)$ and $\pm \exp_{\eta x_j}^{-1}(z)$ are on the same radial direction, D_1 is completely degenerated and $\text{area}(D_1) = 0$. We can construct D_2 in the same manner so the claim (4.2) has been verified.

Therefore combining (4.1) and (4.2), we conclude that the Lipschitz constants of the transition functions of these local trivialization are less than $2C\varepsilon$, which are independent of E^k, U_i and $\gamma \in G$, in particular, the product of them

$$\Psi_{\gamma(U_i), \eta(U_j)} := \left\{ \psi^k_{\gamma(U_i), \eta(U_j)} \right\}_{k \in \mathbb{N}} : \gamma(U_i) \cap \eta(U_j) \to \mathbb{L}(\prod B_k) \left(\prod B_k^k \right)$$
are Lipschitz continuous. So it is allowed to use them to define the Hilbert $\prod_k B_k$-module bundle V as required. Precisely V can be constructed as follows:

$$V := \bigsqcup_{\gamma, i} \left(\gamma(U_i) \times \prod_k E^k \right) / \sim.$$

Here, $(x, v) \in \gamma(U_i) \times \prod_k E^k$ and $(y, w) \in \eta(U_j) \times \prod_k E^k$ are equivalent if and only if $x = y \in \gamma(U_i) \cap \eta(U_j)$ and $\Phi_{\gamma(U_i), \eta(U_j)}(v) = w$. By the construction of V, if $p_n : \prod_k B_k \to B_n$ denotes the projection onto the n-th component, $V \otimes_{p_n} B_n$ is isomorphic to the original n-th component E^n.

In order to verify the continuity of the induced connection, let $\{e_i\}$ be an orthonormal local frame on U_i for an arbitrarily fixed E^k obtained by the parallel transport along the minimal geodesic from the center $x_i \in U_i$, namely, $e_i(x_i) = \Phi_{x_i, y_i} e_i(x_i)$. It is sufficient to verify that $\|\nabla^k e_i\| \leq C$. Let $v \in T_y X$ be a unit tangent vector and $p(t) := \exp_y(tv)$ be the geodesic of unit speed with direction v.

$$\nabla^k e_i(y) = \lim_{t \to 0} \frac{1}{t} \left(\Phi_{p(t); p(0)} e_i(p(t)) - e_i(p(0)) \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\Phi_{p(t); p(0)} \Phi_{x_i; p(t)} - \Phi_{x_i; p(0)} \right) e_i(x_i),$$

$$\|\nabla^k e_i(y)\| \leq \lim_{t \to 0} \frac{1}{|t|} \| \Phi_{p(t); p(0)} \Phi_{x_i; p(t)} - \Phi_{x_i; p(0)} \|$$

$$\leq \lim_{t \to 0} \frac{1}{|t|} \epsilon \cdot \text{area}(D(t)),$$

where $D(t)$ is a 2-dimensional disk in U_i spanning the piece-wise geodesic connecting $x_i, p(0) = y, p(t)$ and x_i. As above, we can find a constant $C > 0$ and disks $D(t)$ satisfying

$$\text{area}(D(t)) \leq C \cdot \text{dist}(p(0), p(t)) = C|t|$$

for $|t| \ll 1$. Hence, we obtain $\|\nabla^k e_i(y)\| \leq C\epsilon$.

Definition 4.16 Let us define a Hilbert $(Q B_k)$-module bundle

$$W := V \otimes_{\pi} (Q B_k),$$

where $\pi : \prod B_k \to Q B_k$ denotes the projection.

The family of parallel transport of E^k induces the parallel transport Φ^W of W which commutes with the action of G.

Proposition 4.17 If the parallel transport of E^k is C_k-close to the identity with $C_k \searrow 0$, then the G-bundle W constructed above is a flat bundle. More precisely the parallel transport $\Phi^W(p) \in \text{Hom}(W_x, W_y)$ depends only on the ends-fixing homotopy class of $p \in P_1(X)[x, y]$.

Proof. It is sufficient to prove that for any contractive loop $p \in P_1(X)[x, x]$, it satisfies $\Phi^W(p) = \text{id}_{W_x}$. Fix a two dimensional disk $D \subset X$ spanning the loop p. For arbitrary $\epsilon > 0$ there exists n_0 such that every $k \geq n_0$ satisfies that Φ^{E^k} is $\frac{\epsilon}{1 + \text{area}(D)}$-close to the identity.

$$\|\Phi^W(p) - \text{id}_{W_x}\| = \limsup_{k \to \infty} \left\| \Phi^{E^k}(p) - \text{id} \right\| \leq \sup_{k \geq n_0} \left\| \Phi^{E^k}(p) - \text{id} \right\| \leq \frac{\epsilon}{1 + \text{area}(D)} \cdot \text{area}(D) \leq \epsilon$$

This implies $\Phi^W(p) = \text{id}_{W_x}$. \qed
4.3 Index of the product bundle

Proposition 4.18

(1) Let \(p_n : \prod B_k \to B_n \) denote the projection onto the \(n \)-th component and consider

\[
(1 \otimes p_n)_* : K_0 \left(C^* (G) \hat{\otimes} (\prod B_k) \right) \to K_0 \left(C^* (G) \hat{\otimes} B_n \right).
\]

Then

\[
(1 \otimes p_n)_* \text{ind}_G \left(\prod E^k \right) \hat{\otimes} [D] = \text{ind}_G \left([E^n] \hat{\otimes} [D] \right).
\]

(2) Let \(\pi : \prod B_k \to Q B_k \) denote the quotient map and consider

\[
(1 \otimes \pi)_* : K_0 \left(C^* (G) \hat{\otimes} (\prod B_k) \right) \to K_0 \left(C^* (G) \hat{\otimes} (Q B_k) \right).
\]

Then

\[
(1 \otimes \pi)_* \text{ind}_G \left(\prod E^k \right) \hat{\otimes} [D] = \text{ind}_G ([W] \hat{\otimes} [D]).
\]

Proof. As for the first part, \([E^n] = (p_n)_* \prod E^k \in \text{KK}^G (C_0 (X), C_0 (X) \hat{\otimes} B_n) \) by the construction of \(\prod E^k \). Then it follows that

\[
\text{ind}_G \left([E^n] \hat{\otimes} [D] \right) = \text{ind}_G \left((p_n)_* \left[\prod E^k \right] \hat{\otimes} [D] \right)
\]

\[
= \text{ind}_G \left([\prod E^k] \hat{\otimes} [D] \hat{\otimes} \mathbb{P}_n \right)
\]

\[
= \text{ind}_G \left([\prod E^k] \hat{\otimes} [D] \hat{\otimes} j^G (\mathbb{P}_n) \right)
\]

\[
\text{ind}_G \left(\left[\prod E^k \right] \hat{\otimes} [D] \right) \hat{\otimes} j^G (\mathbb{P}_n)
\]

\[
= \text{ind}_G \left(\left[\prod E^k \right] \hat{\otimes} [D] \right) \hat{\otimes} j^G (\mathbb{P}_n)
\]

\[
= (1 \otimes p_n)_* \text{ind}_G \left(\left[\prod E^k \right] \hat{\otimes} [D] \right),
\]

where \(\mathbb{P}_n = (B_n, p_n, 0) \in \text{KK} (\prod_{k \in \mathbb{N}} B_k, B_n) \). Then note that \(j^G (\mathbb{P}_n) = (C^* (G) \hat{\otimes} B_n, 1 \otimes p_n, 0) \in \text{KK} \left(C^* (G) \hat{\otimes} (\prod_{k \in \mathbb{N}} B_k), C^* (G) \hat{\otimes} B_n \right) \). Since \(\pi_* \left[\prod E^k \right] = [W] \in \text{KK}^G \left(C_0 (X), C_0 (X) \hat{\otimes} (Q B_k) \right) \) by the construction of \(W \), the second part can be proved in the similar way.

Proposition 4.19 Let \([D] \) be a \(K \)-homology element in \(\text{KK}^G (C_0 (X), \mathbb{C}) \) determined by a Dirac operator on a \(G \)-Hermitian vector bundle \(V \) over \(X \). Suppose that \(W \) is a finitely generated flat \(B \)-module \(G \)-bundle. Assume that \(X \) is simply connected.

Then \(\text{ind}_G ([W] \hat{\otimes} [D]) = 0 \) if \(\text{ind}_G ([D]) = 0 \).

In order to prove this, we introduce an element \([W]_{\text{rpn}} \in \text{KK}^G (\mathbb{C}, B) \) using the holonomy representation.

Definition 4.20

- Let \(\Phi_{x,y} \) denote the parallel transport of \(W \) along an arbitrary path from \(x \in X \) to \(y \in X \). Since \(X \) is simply connected and \(W \) is flat, it depends only on the ends of the path.

- Let us fix a base point \(x_0 \in X \) and \(W_{x_0} \) be the fiber on \(x_0 \). Define \([W]_{\text{rpn}} \) as

\[
[W]_{\text{rpn}} := (W_{x_0}, 0) \in \text{KK}^G (\mathbb{C}, B)
\]

The action of \(G \) on \(W_{x_0} \) is given by the holonomy \(\rho : G \to \text{End}_Q (W_{x_0}) \)

\[
\rho [\gamma] (w) = (\Phi_{x_0, x_0})^{-1} x_0) \gamma (w) \quad \text{for} \quad \gamma \in G, \ w \in W_{x_0}
\]
Lemma 4.21

\[[W] \hat{\otimes}_{C_0(X)} [D] = [D] \hat{\otimes}_{C} [W]_{\text{rpn}} \in KK^G(C_0(X), B). \]

Proof. Recall that \([D] \in KK^G(C_0(X), \mathbb{C})\) is given by \((L^2(X; V), F_D)\), where \(F_D\) denotes the operator \(\frac{D}{\sqrt{1+D^2}}\), and that

\[[W] \hat{\otimes}_{C_0(X)} [D] = \left(C_0(X; W) \hat{\otimes}_{C_0(X)} L^2(X; V), F_{DW} \right), \]

where \(D^W\) is the Dirac operator twisted by \(W\) acting on \(L^2(X; W \otimes V) \simeq C_0(X; W) \hat{\otimes}_{C_0(X)} L^2(X; V)\), that is,

\[D^W = \sum_j (\text{id}_W \otimes c(e_j)) \left(\nabla^{W}_{e_j} \otimes \text{id}_V + \text{id}_W \otimes \nabla^{V}_{e_j} \right), \]

where \(\{e_j\}\) denotes an orthogonal basis for \(TX\) and \(c(\cdot)\) denotes the Clifford multiplication by \(\text{Cliff}(TX)\) on \(V\). The action of \(C_0(X)\) on \(C_0(X; W)\) and \(L^2(X; V)\) are the point-wise multiplications. On the other hand,

\[[D] \hat{\otimes}_{C} [W]_{\text{rpn}} = (L^2(X; V) \hat{\otimes}_{C} W_{x_0}, F_{D} \hat{\otimes} \text{id}) \]

The action of \(C_0(X)\) is the point-wise multiplications. Note that the action of \(G\) on \(W_{x_0}\) is given by the holonomy representation \(\rho\). It is sufficient to give a \(G\)-equivariant isomorphism

\[\varphi : L^2(X; V) \hat{\otimes}_{C} W_{x_0} \to C_0(X; W) \hat{\otimes}_{C_0(X)} L^2(X; V), \]

which is compatible with \(D^W\) and \(D \hat{\otimes} \text{id}\). Set a section for \(W\) given by

\[\overline{w} : x \mapsto \Phi_{x_0; x} w \in W_x \quad (4.3) \]

and define \(\varphi\) on a dense sub space \(C_c(X; V) \hat{\otimes} W_{x_0}\) as

\[\varphi(s \otimes w) := \overline{w} \cdot \chi \otimes s \quad \text{for } s \in C_c(X; V) \text{ and } w \in W_{x_0}, \]

where \(\chi \in C_0(X)\) is an arbitrary compactly supported function on \(X\) with values in \([0, 1]\) satisfying that \(\chi(x) = 1\) for all \(x \in \text{supp}(s)\).

\(\varphi\) is independent of the choice of \(\chi\) and hence well-defined. Indeed, Let \(\chi' \in C_c(X)\) be another such function, and let \(\rho \in C_c(X)\) be a compactly supported function on \(X\) with values in \([0, 1]\) satisfying that \(\rho(x) = 1\) for all \(x \in \text{supp}(\chi) \cup \text{supp}(\chi')\). Then in \(C_0(X; W) \hat{\otimes}_{C_0(X)} C_c(X; V)\),

\[\overline{w} \cdot \chi \otimes s - \overline{w} \cdot \chi' \otimes s = \overline{w} \cdot (\chi - \chi') \otimes s = \overline{w} \cdot \rho \cdot (\chi - \chi') \otimes s = \overline{w} \cdot \rho \otimes (\chi - \chi') s = 0. \]

Now we obtain that

\[D^W \circ \varphi(s \otimes w) = D^W(\overline{w} \otimes s) = \overline{w} \otimes D(s) = \varphi \circ (D \hat{\otimes} \text{id})(s \otimes w) \]

for \(s \in C_c(V)\) and \(w \in W_{x_0}\). This is because \(\nabla^W \overline{w} = 0\) by its construction.

Compatibility with the action of \(G\) is verified as follows;

\[\varphi(\gamma(s \otimes w))(x) = \Phi_{x_0; x}(\rho[\gamma](w)) \otimes \gamma(s(\gamma^{-1}x)) = \Phi_{x_0; x}(\Phi_{x_0; \gamma x_0})^{-1} \gamma(w) \otimes \gamma(s(\gamma^{-1}x)) = \Phi_{\gamma x_0; x}(\gamma(b)) \otimes \gamma(s(\gamma^{-1}x)), \]

\[\gamma(\varphi(s \otimes w))(x) = \gamma((\Phi_{x_0; \gamma^{-1}x}(w) \otimes s(\gamma^{-1}x)) = \Phi_{\gamma x_0; x}(\gamma(w)) \otimes \gamma(s(\gamma^{-1}x)), \]
Let us check that \(\varphi \) induces an isomorphism. For \(s_1 \otimes w_1,\ s_2 \otimes w_2 \in C_c(X;\mathbb{V}) \otimes_{C} W_{x_0} \), it follows that

\[
\begin{align*}
\left\langle \varphi(s_1 \otimes w_1), \varphi(s_2 \otimes w_2) \right\rangle_{C_0(X;W) \otimes_{C_0(X;X)} L^2(X;\mathbb{V})} &= \left\langle s_1, \left\langle \overline{w}_1 \chi, \overline{w}_2 \chi \right\rangle_{C_0(X;W)} s_2 \right\rangle_{L^2(X;\mathbb{V})} \\
&= \int_X \left\langle s_1(x), \left\langle (\Phi_{x_0;x} w_1) \chi(x), (\Phi_{x_0;x} w_2) \chi(x) \right\rangle_{W_x} s_2(x) \right\rangle_{\mathbb{V}_x} \, d\text{vol}(x) \\
&= \int_X \left\langle w_1, w_2 \right\rangle_{W_x} \chi(x)^2 \left\langle s_1(x), s_2(x) \right\rangle_{\mathbb{V}_x} \, d\text{vol}(x) \\
&= \left\langle w_1, w_2 \right\rangle_{W_0} \left\langle s_1, s_2 \right\rangle_{L^2(X;\mathbb{V})} \\
&= \left\langle s_1 \otimes w_1, s_2 \otimes w_2 \right\rangle_{L^2(X;\mathbb{V})} \otimes_{\mathbb{V}} W_{x_0},
\end{align*}
\]

where \(\chi \in C_0(X) \) is a compactly supported function on \(X \) satisfying that \(\chi(x) = 1 \) for all \(x \in \text{supp}(s_1) \cup \text{supp}(s_2) \). This implies that \(\varphi \) is continuous and injective.

Moreover, choose arbitrary \(F \in C_c(X;W) \otimes_{C} W_{x_0} \) and \(s \in C_c(X;\mathbb{V}) \). Since \(\Phi_{x_0;x}^{-1} \) provides a trivialization of \(W \simeq X \times W_{x_0} \), we have an isomorphism \(C_c(X;W) \simeq C_c(X;\mathbb{V}) \otimes_{C} W_{x_0} \). Remark that, however, this is not a \(G \)-equivariant isomorphism, just as pre-Hilbert \((C_0(X;B) \cong C_0(X) \otimes B) \)-modules. Then there exist countable subsets \(\{f_1, f_2, \ldots\} \subset C_c(X) \) and \(\{w_1, w_2, \ldots\} \subset W_{x_0} \) satisfying that \(\sum_{j \in \mathbb{N}} f_j w_j = F \) in \(C_0(X;W) \). Now it follows that

\[
\varphi \left(\sum_{j \in \mathbb{N}} f_j s \otimes w_j \right) = \sum_{j \in \mathbb{N}} \left(\overline{w}_j \chi \otimes f_j s \right) = \sum_{j \in \mathbb{N}} (\overline{w}_j \chi f_j \otimes s) = \left(\sum_{j \in \mathbb{N}} \overline{w}_j f_j \right) \cdot \chi \otimes s = F \otimes s,
\]

where \(\chi \in C_0(X) \) is a compactly supported function on \(X \) satisfying that \(\chi(x) = 1 \) for all \(x \in \text{supp}(F) \cup \text{supp}(s) \). This implies that the image of \(\varphi \) is dense in \(C_0(X;W) \otimes L^2(X;\mathbb{V}) \). Therefore \(\varphi \) induces an isomorphism. \(\square \)

Proof of the Proposition 4.19. Due to the previous lemma, it follows that

\[
\text{ind}_G([W] \otimes [D]) = \text{ind}_G([D] \otimes C_0(X) \otimes L^2(X;\mathbb{V})) = \text{ind}_G([D] \otimes C_0(X) \otimes L^2(X;\mathbb{V})).
\]

Thus the assumption \(\text{ind}_G[D] = 0 \) implies \(\text{ind}_G([W] \otimes [D]) = 0 \). \(\square \)

4.4 Proof of Theorem C

Proof of Theorem C. As Remark 4.4, we may assume that \(D \) is a Dirac type operator. Assume that \(\text{ind}_G[D] = 0 \) and we assume the converse. that is, for each \(k \in \mathbb{N} \) there exits a Hilbert \(B_k \)-module \(G \)-bundle \(E^k \) over \(X \) whose curvature norm is less than \(\frac{1}{k} \) satisfying that

\[
\text{ind}_G([E^k] \otimes [D]) \neq 0 \quad \in K_0(C^*(G) \otimes B_k).
\]

To begin with, we have an exact sequence;

\[
0 \rightarrow \bigoplus B_k \rightarrow \prod B_k \rightarrow \mathcal{Q} B_k \rightarrow 0,
\]
where ι and π are natural inclusion and projection. We also have the following exact sequence [We, Theorem T.6.26]:

$$0 \to C^*_\text{Max}(G) \otimes_{\text{Max}} \left(\bigoplus B_k \right) \xrightarrow{\mathbf{1} \otimes \iota} C^*_\text{Max}(G) \otimes_{\text{Max}} \left(\prod B_k \right) \xrightarrow{\mathbf{1} \otimes \pi} C^*_\text{Max}(G) \otimes_{\text{Max}} (Q B_k) \to 0.$$

We have the exact sequence of K-groups

$$K_0 \left(C^*_\text{Max}(G) \otimes_{\text{Max}} \left(\bigoplus B_k \right) \right) \to K_0 \left(C^*_\text{Max}(G) \otimes_{\text{Max}} \left(\prod B_k \right) \right) \to K_0 \left(C^*_\text{Max}(G) \otimes_{\text{Max}} (Q B_k) \right).$$

If all of B_k are commutative, then QB_k is also commutative and hence nuclear. In that case, we also have the same exact sequences in which $C^*_\text{Max}(G)$ and \otimes_{Max} are replaced by $C^*_\text{red}(G)$ and \otimes_{min} respectively.

Let us start with $\text{ind}_G (\prod E^k \otimes [D]) \in K_0 (C^*(G) \otimes (\prod B_k)).$

Due to the flatness of W (Proposition 4.17) and Proposition 4.19 and 4.18, we have

$$(1 \otimes \pi)_* \text{id}_G \left(\prod E^k \otimes [D] \right) = \text{id}_G \left([W] \otimes [D] \right) = 0.$$

It follows from the exactness that there exists $\zeta \in K_0 (C^*(G) \otimes (\bigoplus B_k))$ such that

$$(1 \otimes \iota)_* (\zeta) = (1 \otimes \iota)_* \text{id}_G \left(\prod E^k \otimes [D] \right).$$

Lemma 4.22 $A \otimes (\bigoplus_{k \in N} B_k)$ is naturally isomorphic to $\bigoplus_{k \in N} (A \otimes B_k) = \lim_n \bigoplus_{k=1}^n (A \otimes B_k).$

Proof. Let C denote the direct product $\lim_n \bigoplus_{k=1}^n (A \otimes B_k)$. Note that for the finite direct product, we have the natural isomorphism $\bigoplus_{k=1}^n (A \otimes B_k) \cong A \otimes (\bigoplus_{k=1}^n B_k)$. For each $n \in N$, we have the following commutative diagram:

\[
\begin{array}{ccc}
A \otimes (\bigoplus_{k=1}^n B_k) & \xrightarrow{id_A \otimes \iota^+_{n+1}} & A \otimes (\bigoplus_{k=1}^{n+1} B_k) \\
\downarrow{id_A \otimes \iota^+_{n}} & & \downarrow{id_A \otimes \iota^+_{n+1}} \\
A \otimes (\bigoplus_{k \in N} B_k) & & \\
\end{array}
\]

Now by using the universal property of the direct limit, we obtain a map ϕ:

\[
\begin{array}{ccc}
A \otimes (\bigoplus_{k=1}^n B_k) & \xrightarrow{\lim_n} & A \otimes (\bigoplus_{k \in N} B_k) \\
\downarrow & & \downarrow \phi \\
A \otimes (\bigoplus_{k \in N} B_k) & & \\
\end{array}
\]

Since $id_A \otimes \iota_n$ are isometric and injective, ϕ is isometric and injective on each sub-space $A \otimes (\bigoplus_{k=1}^n B_k) \subset \lim_n A \otimes (\bigoplus_{k=1}^n B_k)$. Since the union of such sub-spaces is dense in $\lim_n A \otimes (\bigoplus_{k=1}^n B_k)$, it follows that ϕ itself is isometric and injective.

As for the surjectivity of ϕ, take any $a \otimes \{b_k\} \in A \otimes (\bigoplus_{k \in N} B_k)$. For any $\varepsilon > 0$, there exists $n \in N$ such that $\|b_k\| < \frac{\varepsilon}{1 + \|a\|}$ for $k \geq n$. Then replace b_k by 0 for all $k \geq n$ to obtain an element $\beta := \{b_1, b_2, \ldots, 0, 0, \ldots\} \in \bigoplus_{k \in N} B_k$. Now we have that

$$a \otimes \beta = (id_A \otimes \iota_n)(a \otimes \{b_1, b_2, \ldots, b_{n-1}\}) = \phi(a \otimes \{b_1, b_2, \ldots, b_{n-1}\}) \in \text{Im}(\phi)$$

and $\|a \otimes \{b_k\} - a \otimes \beta\| \leq \|a\| \|\{b_k\} - \beta\| \leq \varepsilon$. These imply that $\text{Im}(\phi)$ is dense in $A \otimes (\bigoplus_{k \in N} B_k)$ and hence, ϕ is surjective since it has closed range.

\[\square\]
By this lemma, $C^*(G)\hat{\otimes} (\bigoplus B_k)$ is naturally isomorphic to $\bigoplus (C^*(G)\hat{\otimes} B_k)$. Besides, we have the natural isomorphism $K_0 (\bigoplus (C^*(G)\hat{\otimes} B_k)) \simeq \bigoplus K_0 (C^*(G)\hat{\otimes} B_k)$ [HR, 4.15 Proposition, 4.2.3 Remark], with the last \bigoplus meaning the algebraic direct sum. Thus we can consider the following diagram:

$$
\begin{array}{ccc}
K_0 (C^*(G)\hat{\otimes} (\bigoplus B_k)) & \xrightarrow{(1\otimes p_k)_*} & K_0 (C^*(G) \otimes (\prod B_k)) \\
\{\{1\otimes p_k\}_*\} & \cong & \{\{1\otimes p_k\}_*\} \\
\bigoplus K_0 (C^*(G)\hat{\otimes} B_k) & \xrightarrow{\text{inclusion}} & \prod K_0 (C^*(G)\hat{\otimes} B_k)
\end{array}
$$

Since $p_k = \iota p_k$, this diagram commutes. Note that both \bigoplus and \prod in the bottom row are in the algebraic sense. Again due to Proposition 4.18,

$$
\left\{ \text{ind}_G \left([E^n] \hat{\otimes} [D] \right) \right\}_{k \in \mathbb{N}} = \left\{ (1 \otimes p_k)_* \left(\text{ind}_G \left(\prod E^k \hat{\otimes} [D] \right) \right) \right\} = \left\{ (1 \otimes p_k)_* (1 \otimes \iota)_* (\xi) \right\} = \left\{ (1 \otimes p_k)_* (\xi) \right\} \in \bigoplus K_0 (C^*(G)\hat{\otimes} B_k).
$$

This implies that all of $\text{ind}_G \left([E^n] \hat{\otimes} [D] \right) \in K_0 (C^*(G)\hat{\otimes} B_n)$ are equal to zero except for finitely many $n \in \mathbb{N}$, which contradicts to our assumption. \qed

4.5 On proof of Corollary D

To prove Corollary D, we will combine Theorem C with Theorem A. Consider the same conditions as Theorem A on X, Y and G and assume additionally that X and Y are simply connected. Let $f: Y \to X$ be a G-equivariant orientation preserving homotopy invariant map. Assume that for each $k \in \mathbb{N}$ there exits a Hilbert B_k-module G-bundle E^k over X whose curvature norm is less than $\frac{1}{k}$ satisfying that

$$
\text{ind}_G ([E^k] \hat{\otimes} [\partial X]) \neq \text{ind}_G ([f^* E^k] \hat{\otimes} [\partial Y]) \in K_0 (C^*(G)\hat{\otimes} B_k).
$$

as in the proof of Theorem C. Consider a G-manifold $Z := X \sqcup (-Y)$, the disjoint union of X and orientation reversed Y and the signature operator ∂_Z on it. Although Z is not connected, however, we may apply Theorem C to ∂_Z, after replacing some argument in the proof as follows. Consider a family of Hilbert B_k-module bundles $\{ E^k \sqcup f^* E^k \}$ over Z and obtain a flat bundle $W \sqcup f^* W$ as in subsection 4.2. In order to obtain a global section \overline{w} as in (4.3) in the proof of Lemma 4.21, we have used the connectedness of the base space. In this case, construct a section $\overline{w}: X \to W$ on X in the same way and pull back it on Y by f to obtain a global section on Z. The other parts are the same as above.

Acknowledgements

The author is supported by Natural Science Foundation of China (NSFC) Grant Number 11771143.

References

[BCH] P. Baum, A. Connes and N. Higson, *Classifying space for proper actions and K-theory of group C*-algebras*, Contemp. Math. 167(1994), 241-291.

[CM] A. Connes and H. Moscovici, *The L^2-Index theorem for homogeneous spaces of Lie groups*, Annals of Math. 115-2(1982), 291–330.

[F] Y. Fukumoto, *On the Strong Novikov Conjecture of Locally Compact Groups for Low Degree Cohomology Classes*, arXiv:1604.00464
G-Homotopy Invariance of the Analytic Signature of Proper Co-compact G-manifolds

[HaSc] B. Hanke and T. Schick, *The strong Novikov conjecture for low degree cohomology*, Geom. Dedicata. **135**(2008), 119-127.

[Ha12] B. Hanke, *Positive scalar curvature, K-area and essentialness*, Global differential geometry, Springer Proceedings in Mathematics **17**(2012), 275-302.

[HR] N. Higson and J. Roe, *Analytic K-Homology*, Oxford University Press (2000).

[HiSk] M. Hilsum and G. Skandalis, *Invariance par homotopie de la signature à coefficients dans un fibre presque plat*, Journal für die reine und angewandte Mathematik, **423**(1992), 73–99.

[KM] J. Kaminker and J.G. Miller, *Homotopy invariance of the analytic signature operators over C^*-algebras*, J. Operator Theory **14**(1985), 113–127.

[Kas75] G.G. Kasparov, *Topological invariants of elliptic operators I*, Miomology, Izv. Akad. Nauk. S.S.S.R. Ser. Mat., **39**(1975), 796–838; English translated in Math. U.S.S.R. Izv., **9**(1975), 751–792.

[Kas88] G. Kasparov, *Equivariant KK-theory and the Novikov conjecture*, Invent. Math. **91**(1988), 147-201.

[Kas16] G.G. Kasparov, *Elliptic and transversally elliptic index theory from the viewpoint of KK-theory*, J. Noncommut. Geom., **10**(2016), 1303–1378.

[Ma] V. Mathai, *The Novikov conjecture for low degree cohomology classes*, Geom. Dedicata. **99**(2003), 1-15.

[RW] J. Rosenberg and S. WeinbergerMoscovici, *An Equivariant Novikov Conjecture*, K-Theory **4**(1990), 29–53.

[We] N. E. Wegge-Olsen, *K-Theory and C^*-Algebras*, Oxford University Press (1993).