High-throughput behavioral analysis in *C. elegans*

Nicholas A Swierczek\(^1,5\), Andrew C Giles\(^2,3,5\), Catharine H Rankin\(^3,4\) & Rex A Kerr\(^1\)

We designed a real-time computer vision system, the Multi-Worm Tracker (MWT), which can simultaneously quantify the behavior of dozens of *Caenorhabditis elegans* on a Petri plate at video rates. We examined three traditional behavioral paradigms using this system: spontaneous movement on food, where the behavior changes over tens of minutes; chemotaxis, where turning events must be detected accurately to determine strategy; and habituation of response to tap, where the response is stochastic and changes over time. In each case, manual analysis or automated single-worm tracking would be tedious and time-consuming, but the MWT system allowed rapid quantification of behavior with minimal human effort. Thus, this system will enable large-scale forward and reverse genetic screens for complex behaviors.

Since *Caenorhabditis elegans* was introduced as a model organism, a large number of mutations in genes that modulate easily scored behaviors have been isolated in genetic screens. However, it has been challenging to manually screen for behaviors that unfold over long periods of time, are difficult to score quickly and accurately by eye, or manifest stochastically. Thus, there is a need for high-throughput automated techniques that can be used to study such behaviors. Individual actions performed by worms, such as reversals and turns, are relatively easy to detect. The key computational difficulty is that to accurately monitor a long-lasting behavior consisting of many individual actions, a huge amount of image data needs to be acquired and processed: each worm needs to cover enough pixels to allow accurate quantification and frame rates need to be high enough to maintain identity and resolve fast behaviors.

A variety of computer vision systems have previously been applied to *C. elegans* behavior. Systems that use motorized stages to follow individual worms at high resolution allow precise quantification of behavior\(^1-3\), but screening for stochastic behaviors is still highly labor- and time-intensive. Systems that monitor many worms simultaneously on a single plate\(^4-6\) use a two-step process: first, an experiment is run, and a video is stored; then, image-analysis software extracts behavioral parameters from the worms in view. Because storing high-speed high-resolution video is impractical, these systems use resolutions (~75 \(\mu\)m pixel\(^{-1}\)) and frame rates (3–5 frames s\(^{-1}\)) that make it difficult to accurately analyze a wide range of behaviors.

We therefore designed and built a tracking system that analyzes image data in real time to monitor many worms on a single plate, using commodity computer hardware and a high-speed, high-resolution camera. This allows automated behavioral analysis of *C. elegans* on an unprecedented scale and should enable genetic screening for defects in complex worm behaviors.

RESULTS

Accuracy and speed of automated tracking

The Multi-Worm Tracker (MWT) package consists of real-time image-analysis software, the MWT, and offline behavioral parameter measurement software, Choreography, which together analyze the behavior of multiple worms on a single Petri plate (Fig. 1a,b).

The MWT provides low-level features including the position and outline of the worm. Choreography selects appropriate objects to analyze and computes additional features, such as direction of motion, that benefit from statistics that span the experimental session. Organism- or condition-specific behavioral parameters are computed using plugins for Choreography.

To test the ability of the system to perform image processing in real time, we recorded from a series of plates with different numbers of worms. Using a 3 GHz Core 2 Duo processor with a 4-megapixel, 30 Hz camera, essentially all frames were processed when 5–120 worms were present; the processing load declined in real time, we recorded from a series of plates with different numbers of worms. Using a 3 GHz Core 2 Duo processor with a 4-megapixel, 30 Hz camera, essentially all frames were processed when 5–120 worms were present; the processing load declined from the worms in view. Because storing high-speed high-resolution video to a disk as a reference dataset that could be both scored manually and analyzed using the MWT. We used a plate that might be typical for high-throughput screening (imperfect staging, some small worms present, imperfect lighting at edges and so on), such that not all worms were suitable for analysis. Manual scoring yielded

\(^1\)Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA. \(^2\)Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada. \(^3\)Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada. \(^4\)Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada. \(^5\)These authors contributed equally to this work. Correspondence should be addressed to R.A.K. (kerr@janelia.hhmi.org).

RECEIVED 8 NOVEMBER 2010; ACCEPTED 25 APRIL 2011; PUBLISHED ONLINE 5 JUNE 2011; DOI:10.1038/NMETH.1625
an average of 76 visible worms per frame, of which 20 were at least partially obscured by shadows at the edge of the plate, four were touching another worm and 52 were unobstructed. The MWT found and tracked worms in all categories as well as a small number of shadows and other non-worm artifacts. We used Choreography to select worms that were suitable for analysis; ideally, it would pick the unobstructed worms and reject all others. We tested different combinations of time and distance thresholds with several selection strategies, and found parameters that accepted a majority of worms manually annotated as suited for analysis while rejecting all nonworms, all touching worms and almost all worms obscured by shadows (Fig. 1d). We selected a combination of parameters (Fig. 1d and Online Methods) that yielded 97.5% of selected worms suitable for analysis and used these for all future experiments.

To estimate the pixel-level error remaining after this selection process, a human expert segmented 37 worms by hand and found the total error rate to be 2.8% (1.0% of in-worm pixels were classified as background, and 1.8% extra background pixels were added to the true worms). These parameters allowed nearly all worms to be quantified at low density; at 100 worms per plate the system quantified approximately half of the worms (Fig. 1e). Larger numbers of worms also increased the number of collisions, causing worm identity to be lost more quickly (Fig. 1f).

To estimate measurement noise, we assumed that worm behavior is predominantly slowly varying and thus high-order derivatives of parameters with respect to time are dominated by stochastic noise (Table 1). To determine whether reducing computational load was feasible, we subsampled our dataset in time and space to emulate slower and lower-resolution cameras. Both pixel size and frame rate had major effects on apparent noise in the position and speed of worms (Fig. 1g,h). We therefore continued using our system at full speed and resolution.

Analysis of movement speed

C. elegans modulates its speed in response to a variety of stimuli including both acute insults and chronic environmental conditions such as the presence of food. We first monitored basal movement rates of adult wild-type hermaphrodites on food. The process of putting a plate on the tracker involves temporarily removing the lid, and presumably changes temperature and humidity, induces mechanical vibration, and increases light levels. We observed, both by eye and with the MWT, that this process increased the worms’ movement speed, which then descended to a basal level after 10 min (Fig. 2a).

To assess the reproducibility of these results, we recorded from seven additional plates of wild-type worms (Fig. 2a) with an average of 27 worms tracked per time point per plate. Every plate...
showed approximately the same trend; Monte Carlo sampling of tracks suggested that plate-to-plate variability was ~60% larger than expected if all worms on a plate were independent, so we ran all experiments on several plates to average out this variability.

To explore which sensory modalities were responsible for the initial elevation in movement speed, we recorded mec-4 mutants, which are defective in gentle touch response, and che-2 mutants, which have defective sensory cilia and do not chemotax. mec-4 mutants responded similarly to wild-type worms; che-2 mutants increased speed but returned to baseline much faster (Fig. 2b). Unexpectedly, a line of the wild-type strain (N2) recently obtained from the C. elegans Genomic Center also showed notable differences from the lab's wild-type line (hereafter called XJ1 to distinguish it). To determine whether the che-2 phenotype was a result of a chemosensory defect or was due to genetic drift in strains, we tested two additional chemosensory mutants, osm-6 and tax-2. These phenocopied che-2 mutant behavior (Fig. 2b), indicating that a major portion of the initial increase in speed requires properly functioning ciliated sensory neurons. We also investigated whether the difference between wild-type strains was typical of variation found in the wild. We examined an extreme case by tracking other Caenorhabditis species, namely briggsae, remanei and brenneri. All three species showed similarly elevated movement rates, but C. briggsae had a markedly slower return to baseline (Fig. 2c). Collectively, these tests demonstrated that the MWT is broadly suited for studying baseline locomotion in Caenorhabditis.

Quantification of body posture

The MWT captures postural information in addition to position, but accuracy of this information is limited by the small number of pixels per worm. To determine whether the available postural information is useful, we sought to replicate work demonstrating that principal component analysis of the worm skeleton yields two major components, analogous to sine and cosine in circular motion, and that these components cycle as the worm moves 7.

We added a principal component analysis plugin to Choreography and found that in our reference dataset, the top two components explained over 75% of the variance in the worm's posture and the top three explained 90%. During movement, posture followed a phase advance along a ring in the space of the first two principal components (Fig. 2d,e). When we observed worms on food after movement had returned to baseline, we found that the same principal components still explained a similar portion of the variance. However, the relationship between these components changed: the ring partially collapsed as movement returned to basal levels (Fig. 2f), suggesting that mechanisms that control worm posture during rapid locomotion are relaxed during grazing.

Manual annotation of C. elegans motion often uses body bends as an easily quantified parameter; a body bend corresponds to an advance of π in phase. We compared distances and phase advance for ~1,300 short forward or backward motions detected by Choreography in our reference dataset and found that wild-type worms needed 3.8 body bends to advance one body length (Fig. 2g). Omega turns

| Table 1 | Estimates of measurement noise
Quantity	Mean	Noise
Area	0.145 mm²	1.7%
Bearing	–	4.1*
Position	–	1.2 μm
Head position	–	23 μm
Spine length	1.11 mm	2.5%
Spine curvature	260° mm⁻¹	8.0%
Speed (over 0.5 s)	0.186 mm s⁻¹	0.55%
Angular speed (over 0.5 s)	5.8° s⁻¹	2.4%

*, mean value is not typically informative.
Figure 3 | Analysis of chemotaxis. (a) Chemotaxis effectiveness of wild-type worms for eight plates with ~8 worms tracked per plate. Preference score is the Bayesian estimate of the probability that a worm will travel into the food spot instead of the control spot. (b) Pirouette frequency of the indicated strains near food. Reversal bias is f_r / (f_t + f_r), where f_r is the frequency of reversals when moving toward (f_t) or away (f_r) from food or control spot. Error bars, s.e.m. from Monte Carlo simulation (n ≥ 3 plates with 26 worms each). *P < 0.05 that reversals are equally common when traveling toward versus away from food (χ² test). (c) Weathervane chemotaxis to NaCl in the absence of food. The mean curve of the worm’s path is plotted against its bearing relative to the gradient; signs were chosen so that positive curve at positive bearing is a turn up the gradient. Positive curve is normalized by wild-type distribution. (d) Analysis of the strength of weathervane chemotaxis over time. Positive curve is up the gradient, and results were averaged over quadrants around ± 90° bearing. P < 0.001 (t-test) that the first 10 min and the next 20 are the same.

Figure 4 | Analysis of tap habituation. (a,b) Probability of reversing (a, Bayesian estimate) or reversal distance (b) after a tap are plotted against the number of tap stimuli. Data for six plates (~30 worms per plate) of wild-type (XJ1) worms were plotted in different shades of gray. (c,d) Reversal probability (c) and distance (d) for mechanosensory and chemosensory mutants plotted against the number of tap stimuli. Error bars are s.e.m.; n = 3 plates for mutants and N2, 6 plates for XJ1, ≥10 worms per plate. (e) Probability of response to first tap of various mutants and wild-type controls; Z-score was normalized by wild-type distribution. (f) Habituat response probabilities (at stimuli 28–30). Rejected mutants were those with abnormal initial response. (g,h) Probability of reversal after tap plotted for the loss-of-habituation mutant adp-1 (g) and the hyper-habituation mutant tom-1 (h). Error bars, s.e.m.; n = 3 plates with ~30 tracked worms each.
that the relationship may be generated by the worm’s motor program, not driven by sensory input.

Chemotaxis

Caenorhabditis elegans uses two strategies to navigate in chemical gradients: a random tumble strategy (klinokinesis), where worms pirouette (reorient) when a favorable chemical decreases 8, and a wave-ervane strategy (klinotaxis), where worms traveling perpendicular to the gradient turn up the gradient 9. To assay chemotaxis, we seeded 1 μl of LB medium as a control and 1 μl of OP50 bacteria on either side of a plate and placed 5–10 worms in the center.

Within ~3 min, wild-type worms reliably reached the food spot (Fig. 3a); without food, we observed no spatial preference (data not shown). Chemosensory mutants also preferentially aggregated on food, perhaps because they, as wild-type worms, can slow down when they reach food 10 (data not shown). We quantified pirouettes and found that wild-type worms and chemosensory mutants regulated reversals as a function of direction whereas chemosensory mutants che-2 and osm-6 did not (Fig. 3b). We omitted the tax-2 mutant from this assay because it retains considerable sensitivity to a subset of volatile odorants 11.

We also conducted a salt chemotaxis assay with NaCl at the center of the plate. As previously reported 9, wild-type worms traveling perpendicular to the attractant followed a path that curved with a bias toward the attractant, whereas chemotaxis mutants did not regulate their turning (Fig. 3c); we found no significant differences between mutant strains (P > 0.05). Worms also clustered less tightly at the end of longer recordings. Consistent with this, we found that curvature bias decreases over time (Fig. 3d). Together, these results indicate that the MWT is suited for analysis of chemotaxis behavior.

Tap habitation

Worms respond to nonlocalized vibration by executing an escape response (reversal) and habituate to repeated stimuli by lowering the magnitude and probability of response 12,13. To deliver tap stimuli automatically, we constructed a solenoid tapper that drove a metal rod into the side of the plate at intervals specified in the MWT and wrote a reversal-detection plugin. Careful manual annotation disagreed with the plugin results in 5% of cases for which reversals were small; as the manual annotator had to revisit the data several times to catch his or her own errors, we concluded that automatic annotation is likely more reliable than routine manual annotation.

When we applied taps with a 10 s inter-stimulus interval, initially nearly all worms responded with large reversals, but with repeated taps the probability and size of responses decreased (Fig. 4a,b); these results were consistent across six independent wild-type plates (strain XJ1). As expected, the mechano-sensory mutant mec-4 had low reversal probabilities (Fig. 4c) and small reversal sizes (Fig. 4d) that were not significantly different from reversals in the absence of tap (P = 0.11, χ² test and P = 0.50, Wilcoxon rank sum test, respectively). In contrast, all chemosensory mutants responded to tap (Fig. 4c,d) and showed a surprising range of phenotypes. che-2 worms showed a dramatically increased habituation rate, and none of the chemosensory mutants matched wild-type reversal distances; tax-2 mutants had larger responses, whereas osm-6 mutant responses were as small as basal reversals shown by mec-4 worms. Sensory deprivation is reported to cause a smaller response to tap 14. Consistent with this, osm-6 mutants lack functional sensory cilia 15 and che-2 mutants encode a gene expressed in many ciliated sensory neurons but not in touch neurons 16. However, this does not explain the wide diversity of phenotypes in the chemosensory mutants; additional work is required to understand this.

We then used the MWT to conduct a pilot screen for new tap-habitation mutants. We chose 33 strains with mutations in genes with a diversity of predicted functions (Table 2). Although we quantified a variety of parameters, to simplify analysis we focused on only the probability of reversal on initial and final taps. We recorded from three to four plates of each strain, averaging 136 worms per tap, plus six to eight plates of wild-type worms each day as a...
control. Of the 33 strains, four had movement defects that were too severe to properly score response to tap, twenty were not significantly different from wild-type worms ($P > 0.05$), six had defects in initial (nonhabituated) response (Fig. 4e), and three were identified as specifically tap habituation–defective (Fig. 4f). *adp-1* mutants were isolated during a screen for chemosensory and salt adaptation17; in our assay they showed a loss of tap habituation (Fig. 4g). MT8943 (*bas-1; cat-4*) mutant showed unusually strong habituation; it is deficient in dopamine and serotonin, and other dopamine mutants have been shown to be strong habituators18,19. Finally, the tomosyn ortholog *tom-1* mutant had a notable phenotype: only its first response was normal; all subsequent responses were at fully habituated levels (Fig. 4h). *tom-1* mutants have excess neurotransmitter release20. How this relates to the habituation phenotype we observed is unclear. The MWT will be valuable in studying the roles of these and other genes in tap habituation as well as in other behaviors.

DISCUSSION

Within the restrictions we imposed to enable real-time tracking, we designed the MWT to be as general as possible. It can be used to record worms with either bright- or dark-field illumination and provides triggers to activate up to four different stimulators at defined times, and we verified that the system robustly tracks swimming worms and fruit fly larvae in addition to crawling worms (data not shown). As the MWT is intended for high-throughput use, we opted to reliably detect problematic cases and omit such data, rather than track reliably but slowly in such cases, if there is any doubt about the quality of image processing, the experiment can be replicated.

Other methods for recording many worms simultaneously have been developed recently, both straightforward and with sophisticated techniques to handle noise and adjacent worms4–6,21,22. But all of these methods require stored video and thus have yet to demonstrate the throughput and accuracy achieved by the MWT. Commercial software supports real-time tracking (for example, Noldus EthoVision), but it is targeted mostly to tracking small numbers of rodents and thus uses relatively low-resolution cameras and does not provide shape information. Efforts in high-throughput behavioral screening in *C. elegans* have focused on worms in 96-well plates with no23 or very minimal24 image processing. These methods can achieve much higher throughput than the MWT can but can only measure aggregate motion of all worms in a well. In contrast, the strength of the MWT is its applicability to a wide range of behaviors.

High-throughput behavioral analysis has many advantages. One can run many controls along with experiments and test many conditions instead of being restricted to one carefully defined protocol without knowing which aspects are important and which are irrelevant. One can test large numbers of strains or screen for new mutants instead of relying on previous research and intuition to select a small number of candidate genes for analysis. As an example, in our tap habituation screen, we examined 33 strains with only 44 h of tracking, including many wild-type controls. In contrast, tap habituation phenotypes of only 26 strains covering 17 genes have been reported in the literature (spanning the previous 11 years). As tools such as the MWT become available, studies of *C. elegans* behavior will increasingly benefit from this data-rich regime.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/naturemethods/.

ACKNOWLEDGMENTS

We appreciate the assistance of P. Liu in collecting data for the tap habituation screen as part of a directed studies course at the University of British Columbia, and of D. Hoffmann in the design of the multimorph tracker illumination platform and solenoid for tap habituation. M. Zilic provided valuable bug reports, suggestions for features and feedback on the usability of the MWT outside of the authors’ laboratories. We appreciate advice from and discussions with members of our labs and our colleagues at the Janelia Farm Research Campus (JFRC). Strains used in this study were acquired with speed and ease from the Caenorhabditis Genetics Center, for whose services we are grateful; many of these strains were generated by the *C. elegans* Gene Knockout Consortium. This work was supported by the Howard Hughes Medical Institute’s JFRC (N.A.S. and R.A.K.) and the JFRC visitor program (A.C.G. and C.H.R.), and by a National Science and Engineering Research Council of Canada operating grant (to C.H.R.) and post-graduate scholarship (to A.C.G.). Preliminary investigations into multi-worm tracking were supported by the Peter Wall Institute for Advanced Studies’ Visiting Junior Scholars Program and by the lab of W. Schafer.

AUTHOR CONTRIBUTIONS

N.A.S. and R.A.K. designed the MWT system, built the hardware and wrote the software. A.C.G., C.H.R. and R.A.K. designed the experiments. A.C.G. and R.A.K. conducted the experiments and analyzed data. R.A.K. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/naturemethods/.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Baek, J.H., Cosman, P., Feng, Z., Silver, J. & Schafer, W.R. Using machine vision to analyze and classify *Caenorhabditis elegans* behavioral phenotypes quantitatively. *J. Neurosci. Methods* **118**, 9–21 (2002).

2. Feng, Z., Cronin, C.J., Wittig, J.H., Sternberg, P.W. & Schafer, W.R. An imaging system for standardized quantitative analysis of *C. elegans* behavior. *BMC Bioinformatics* **5**, 115 (2004).

3. Cronin, C.J., Feng, Z. & Schafer, W.R. Automated imaging of *C. elegans* behavior. *Methods Mol. Biol.* **351**, 241–251 (2006).

4. Ramot, D., Johnson, B.E., Berry, T.L., Carmell, L. & Goodman, M.B. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. *PLoS ONE* **3**, e2208 (2008).

5. Tsechpenakis, G., Bianchi, L., Metaxas, D. & Driscoll, M. A novel computational model for simultaneous tracking and feature extraction of *C. elegans* populations in fluid environments. *IEEE Trans. Biomed. Eng.* **55**, 1539–1549 (2008).

6. Roussel, N., Morton, C.A., Finger, F.P. & Roysam, B. A computational model for *C. elegans* locomotory behavior: application to multimorph tracking. *IEEE Trans. Biomed. Eng.* **54**, 1786–1797 (2007).

7. Stephens, G.J., Johnson-Kerner, B., Bleack, W. & Ryu, W.S. Dimensionality and dynamics in the behavior of *C. elegans*. *PLoS Comput. Biol.* **4**, e1000028 (2008).

8. Pierce-Shimomura, J.T., Morse, T.M. & Lockery, S.R. The fundamental role of pirouettes in *Caenorhabditis elegans* chemotaxis. *J. Neurosci.* **19**, 9557–9569 (1999).

9. Iino, Y. & Yoshida, K. Parallel use of two behavioral mechanisms for chemotaxis in *Caenorhabditis elegans*. *J. Neurosci.* **29**, 5370–5380 (2009).

10. Sawin, E.R., Ranganathan, R. & Horvitz, H.R. *C. elegans* locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. *Neuron* **26**, 619–631 (2000).

11. Coburn, C.M. & Bargmann, C.I. A putative cyclic nucleotide-gated channel is required for sensory development and function in *C. elegans*. *Neuron* **17**, 695–706 (1996).

12. Rankin, C.H., Beck, C.D. & Chiba, C.M. *Caenorhabditis elegans*: a new model system for the study of learning and memory. *Behav. Brain Res.* **37**, 89–92 (1990).

13. Rankin, C.H. & Broster, B.S. Factors affecting habituation and recovery from habituation in the nematode *Caenorhabditis elegans*. *Behav. Neurosci.* **106**, 239–249 (1992).
14. Rose, J.K., Sangha, S., Rai, S., Norman, K.R. & Rankin, C.H. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in *Caenorhabditis elegans*. J. Neurosci. 25, 7159–7168 (2005).
15. Perkins, L.A., Hedgecock, E.M., Thomson, J.N. & Culotti, J.G. Mutant sensory cilia in the nematode *Caenorhabditis elegans*. Dev. Biol. 117, 456–487 (1986).
16. Fujiwara, M., Ishihara, T. & Katsura, I. A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of *C. elegans* sensory cilia. Development 126, 4839–4848 (1999).
17. Colbert, H.A. & Bargmann, C.I. Odorant-specific adaptation pathways generate olfactory plasticity in *C. elegans*. Neuron 14, 803–812 (1995).
18. Sanyal, S. *et al.* Dopamine modulates the plasticity of mechanosensory responses in *Caenorhabditis elegans*. EMBO J. 23, 473–482 (2004).
19. Kindt, K.S. *et al.* Dopamine mediates context-dependent modulation of sensory plasticity in *C. elegans*. Neuron 55, 662–676 (2007).
20. Gracheva, E.O. *et al.* Tomosyn inhibits synaptic vesicle priming in *Caenorhabditis elegans*. PLoS Biol. 4, e261 (2006).
21. Fontaine, E., Burdick, J. & Barr, A. Automated tracking of multiple *C. elegans*. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3716–3719 (2006).
22. Wang, Y. & Roysam, B. Joint tracking and locomotion state recognition of *C. elegans* from time-lapse image sequences. Proc. IEEE Int. Symp. Biomed. Imaging 2010, 540–543 (2010).
23. Simonetta, S.H. & Golombek, D.A. An automated tracking system for *Caenorhabditis elegans* locomotor behavior and circadian studies application. J. Neurosci. Methods 161, 273–280 (2007).
24. Buckingham, S.D. & Sattelle, D.B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 10, 84 (2009).
ONLINE METHODS

Computer vision hardware. A Dalsa Falcon 4M30 camera (8 bits; 2,352 × 1,728 pixels, 31 Hz) was used with a Rodenstock 60 mm f-number 4.0 Rodagon lens to image a 5-cm plate of worms (resulting in an image with 24.3 μm per pixel) under bright-field illumination (backlit with a 4 inch × 4.9 inch light plate, Schott A08925 with ACE I illuminator). All tracking was performed on computers with 3 GHz Intel Core 2 Duo processors and 4 GB of RAM. Images were captured using National Instruments PCIe-1427 CameraLink capture card.

Online image processing. Custom software written in LabView (National Instruments) presents an interface to set up image processing and experimental parameters; once tracking is started, the software captures frames from the camera via CameraLink. (The software also supports GigE, Firewire and USB input, and can read saved video from .avi files.) Captured frames are passed, online, to a custom image analysis library written in C++. Collectively, this software is called the MWT and is available under an open-source license. The version used in this study is available as Supplementary Software, and the most recent version can be found at http://sourceforge.net/projects/mwt. LabView is required to modify the MWT code but not to run it. A runtime license for the LabView Vision package is required in all cases.

To identify moving objects, the MWT searches for portions of the image that are darker (optionally, lighter) than background by some threshold T. Objects are segmented using flood-fill from dark pixels. To avoid segmenting single pixels due to camera noise, T is set stringently, but objects are filled out to a less stringent threshold $\beta_T T$ (typical $\beta_T = 0.8$).

Objects that fall within user-specified size thresholds (with more stringent thresholds S_l, S_l for initial capture and less stringent ones $\beta_l S_l$ and $\beta^{-1}_l S_l$ thereafter) are presumed to be worms and are followed by rectangular subregions 10 pixels (by default) larger on each side than the bounding box of the object. In the next frame, the object is sought only in this subregion. Thus, only a small portion of each frame needs to be analyzed. In addition, new objects are sought in a moving band covering 1/16 (by default) of the full image.

The background estimate is updated with a decaying average: $B(t + 1) = (1 - \alpha)B(t) + \alpha I(t)$ in which B is the estimate of the background, I is the measured intensity, t is the time measured in the number of frames and by default $\alpha = 2^{-3}$. This estimate is only used to update pixels within the band used to search for new objects, and it only updates those pixels that are not in any worm's subregion. Permanently motionless worms were treated as part of the background.

Objects are considered to persist from one frame to the next if four criteria are satisfied: (i) the new object is within the (less stringent) size threshold; (ii) the new object overlaps an old object with at least 50% of its pixels; (iii) only one old object overlaps the new object; and (iv) only one new object overlaps that old object. Objects failing the first two criteria are discarded. Objects failing the third criterion (plus several others) are considered ‘collided’ and are tracked as a new joint object; objects failing (iv) are considered ‘split’ and are tracked as two new objects. Owing to rules (iii) and (iv), collisions can be robustly detected and isolated from analysis; when worms separate they can be immediately tracked again (original identities are lost, as robust maintenance of object identity is too computationally intensive to solve in real time).

The centroid position, area, best-fit line (least-squares) and exterior contour of each object is computed from the binary segmentation. A spine (branchless skeleton) is computed using a fast algorithm that assumes that the objects have two pointed ends. One end is the sharpest angle:

\[
\text{argmax}_i (c_{\text{in}12} - c_{\alpha/12})
\]

where n is the number of points in the contour, c is a vector between contour points, $c_{\text{in}12} = x_{i+k} - x_i$, and $c_{\alpha/12}$ is the i^{th} contour point. The other end is the sharpest weighted by distance from the first:

\[
\min\left(\frac{|c_{\text{in}12} - c_{\alpha/12}|}{n} \right)
\]

where i is the index of the selected end and j is the index being tested. Eleven spine points are then placed at the midpoint of equal divisions along the outline from the endpoints.

All quantities are computed at each time point for each object and accumulated in memory. When an object is lost, all of its data are written to disk. Online estimates of speed are computed and can be displayed during tracking as a diagnostic tool.

The image processing and analysis are single-threaded (although largely parallelizable in principle) and are not strictly real-time. In particular, if a heavy workload or operating system call causes enough delay so that several images arrive while the previous one is being processed, only the latest image is used and older ones are skipped.

By default, only the first image of an experiment is saved to disk as a reference, because disk access would be a limiting factor unless specialized hardware was used. Timelapse images can optionally be saved to disk; on our system, a frame every 2 s or 3 s was tolerated well.

Offline analysis. To refine the data saved by the MWT and to quantify specific behavioral parameters, we created a second software package, Choreography. Choreography is written in Java and is available under an open-source license as part of the MWT package at http://sourceforge.net/projects/mwt.

A variety of conditions can be set to select which worms are suitable for analysis; the primary selection criteria are a minimum duration of tracking (typically 20 s) and a minimum movement (here, three times the worm's length).

Choreography computes a variety of metrics and can provide population-averaged or worm-by-worm output, as appropriate. Metrics include area covered by the worm, bearing of the worm as defined by a least-squares line fit to the segmented pixels, speed and angular speed computed using boxcar averaging with user-defined width, length measured along the spine, average curvature along the spine, changes in direction and, assuming that the worm’s dominant movement direction is forward, direction of motion. Note that the resolution used does not permit direction of motion to be inferred from shape analysis; head and tail are largely indistinguishable.

For noise estimates, we assumed that high-order derivatives of behavioral parameters should tend toward zero, and therefore any
residual is caused by measurement noise. Specifically, we assumed Gaussian noise and thus
\[
\sum_{k=0}^{n} \frac{(-1)^k}{(k)!} s_{k+1} \sum_{k=0}^{n} \frac{n!}{k!} \sigma_k \rightarrow \sigma_n \text{ as } n \rightarrow \infty.
\]

In most cases, the estimate converges by \(n = 2 \) (second derivative). The estimate is conservative for stochastic camera noise alone because behavior probably contributes somewhat to high-order derivatives. However, it is imperfect: it does not take into account rare large changes owing to aliasing along pixel boundaries.

Metrics that rely on the spine, such as length and curvature, are typically computed by first low-pass filtering the outline using an exponentially decaying kernel (2\(^{-1/2}\) decrease per pixel) before applying a spine-finding algorithm similar to that used in the MWT. If the plate is particularly messy and the outlines are therefore not smooth, a heuristic is applied to the outline to detect T-shapes and remove the stem of the T (presumed to be a spurious projection).

Metrics that rely on the geometry of the worm’s path are not computed from raw centroid positions. Instead, we perform a greedy geometric decomposition of the path defined by the centroid positions. First, we classify those portions statistically indistinguishable from random jitter. As our noise-measurement routines do not test for normality, we view the tests not as a guarantee of statistical relevance but rather as a principled heuristic to obtain a decomposition of the worm’s path that is sufficient for robust behavioral analysis. Remaining points are fit by straight lines that are extended until new points are statistically indistinguishable from random jitter. As our noise-measurement routines do not test for normality, we view the tests not as a guarantee of statistical relevance but rather as a principled heuristic to obtain a decomposition of the worm’s path that is sufficient for robust behavioral analysis. Remaining points are fit by straight lines that are extended until new points are statistically indistinguishable from random jitter.

A change of direction is considered to be either two adjacent line segments that meet with a negative dot product or motion along a single line that backtracks a statistically significant distance (\(P < 0.05 \) over the entire track, assuming Gaussian noise). Movement direction is scored by first splitting the path into segments where the ends of the worm can be unambiguously followed, by rejecting segments whose perimeter to area ratio is statistically consistent with a worm folded back on itself along at least one-third of the body, and then scoring direction changes and assuming that any sufficiently long path (by default, three times body length) is predominantly forward.

Averages of computed metrics can be saved to disk or viewed as graphs in Choreography. In addition, metrics can be saved on a worm-by-worm basis or can be viewed as a color-coding of the tracks of the worm on a two-dimensional map. Along with the tracks, the worms’ body postures can be replayed at various zoom levels and speeds to allow manual validation of the results. The replay feature also allows the creation of multiple minimaps that provide an overview of different regions on the plate; by switching between these, one can rapidly move the main view back and forth between different locations and scales.

Organism- and experiment-specific functionality is implemented as plugins for Choreography. Plugins are tightly integrated in that they have access to all internal data used by the software and can intervene at various stages of analysis. Although Choreography is open-source and therefore can be modified directly, users are encouraged to write plugins when extending the software to reduce the difficulty of moving to new versions.

Strains. All assays were conducted with the wild-type Bristol isolate of *C. elegans* (N2) unless otherwise stated. The mutant strains CB1033 (*che-2*), PR811 (*osm-6*), RB2464 (*tax-2*) and CB1611 (*mec-4*) as well as the strains of wild-type *Caenorhabditis* species N2 (*C. elegans*, Bristol isolate) HK104 (*C. briggsae*), PB4641 (*C. remanei*) and PB2801 (*C. brenneri*) were obtained from the *Caenorhabditis* Genomic Center. These strains were maintained unfrozen for less than 30 generations before testing. The strain XJ1 is descended from N2 but was maintained unfrozen for at least several years (hundreds of generations). The 33 strains tested for tap habituation defects (Table 2) were also obtained from the *Caenorhabditis* Genomic Center.

Movement experiments. Baseline recordings on food were performed on 5-cm nematode growth medium (NGM) plates seeded 24 h earlier with 50 μl of OP50 bacteria. Worms were transferred to the plate at 80–90 h of age and allowed to acclimate for 4 h before being tracked for 60 min. Unless otherwise specified, all analysis was performed with the Choreography options—shadowless —M 3 -t 20 -S --plugin Reoutline::exp --plugin Respine (see MWT user guide in Supplementary Software or at http://sourceforge.net/projects/mwt).

To assess whether plate-to-plate differences in movement rates were a result of the statistics of behavior of individual worms, we pooled all worms from eight plates and randomly sampled them (with replacement) to generate data for 1,000 virtual plates. The observed differences between real plates and their mean was 60% larger than the difference between virtual plates and their mean (20.7 μm s\(^{-1}\) versus 12.9 μm s\(^{-1}\); five of eight real plates had difference scores that were statistical outliers (\(P < 0.01 \)) of the virtual plates’ distribution. Thus, the observed variability between plates was not solely due to statistical sampling. Other likely causes include different environmental conditions on the plates, subtle perturbations during recording or behavioral states that last longer than identity is maintained (205 s on average here). Fortunately, plate-to-plate variability does not obscure the advantage of multiworm tracking: Monte Carlo generation of virtual plates with ten tracked worms produced a dataset with slightly larger plate-to-plate variability than was observed for real plates.

We have not yet completed a robust and general plugin to detect omega turns. In this study, omega turns were detected with a combination of three factors. A spine-length-to-perimeter metric flagged regions where the worm had folded back to touch itself. To detect tight turns without self-contact, we used both the third principal component of the spine shape (which correlates with turns) and a folding score

\[
\min_i \prod_{j \geq 2} \left[\frac{1 - \frac{2 + \sqrt{2 + v_{i+1,j} v_{i,j} - j}}{2 + \sqrt{2}}}{2 + \sqrt{2}} \right]
\]
where \(\mathbf{v}_{b,a} \) is the vector from spine point \(a \) to \(b \). Intuitively, this last metric is small when the worm's spine is folded exactly in half (all dot products will be close to \(-1\)); constants are chosen so that one gets a minimum of 0.5 for each pair of spine points folded onto each other. Thresholds for these metrics were set by hand; a wide range of parameters gave results that agreed with human judgment in obvious cases. This method detected 74 of 76 hand-annotated omega turns in our reference dataset (3% false negatives), and 98 of 100 automatically scored omega turns were confirmed by hand in wild-type movement data on relatively clean plates (2% false positives, though the error rate is higher on a sub-optimal plate such as our reference dataset). Thus, the overall error rate was \(-5\%\).

Chemotaxis experiments. Food chemotaxis plates were prepared by placing a 50 \(\mu \)l drop of OP50 bacteria at \(x,y \) coordinates \((r/2,0)\) where \((0,0)\) represents the center of a plate of radius \(r \). In practice, on the 50 mm inner diameter plates we used, the actual coordinates (measured by hand) were \((12.4 \pm 0.5 \text{ mm}, 0.2 \pm 0.9 \text{ mm}) \); the diameter of the spot of food was \(3.7 \pm 0.3 \text{ mm} \). Values are mean \(\pm \) s.d. A control spot of LB growth medium was placed at \((-r/2,0)\). The OP50 was grown for 48 h. For testing, 6–12 worms were picked from food to an empty plate to reduce the amount of stray food, and then picked again from the empty plate to coordinate (0,0). Tracking was started within 60 s of placement and left to run for 20 min.

To quantify food chemotaxis, we counted crossings of the worms’ centroids along a ring 1 mm outside of the spot of food or the control spot. We computed Bayesian preference estimates \(P(t) \) and the associated standard error \(\sigma_P(t) \) for each spot size, based on a binomial distribution with uniform prior\(^26\):

\[
P(t) \pm \sigma_P(t) = \frac{F(t) + 1}{F(t) + C(t) + 2} \pm \frac{1}{F(t) + C(t) + 2} \sqrt{\frac{(F(t) + 1)(C(t) + 1)}{F(t) + C(t) + 3}}
\]

where \(F(t) \) is the cumulative number of (signed) crossings into the food spot at time \(t \) and \(C(t) \) is the same for the control spot.

To quantify pirouettes, we monitored the worm at 0.5 s intervals and calculated the angle between the direction of movement and the direction to the food. We then pooled the quadrant heading toward the food (angles from \(-\pi/4 \) to \(\pi/4 \)) and the quadrant heading away and counted reversed frequency (probability per unit time of executing a reversal). We compared the behavior of worms in a 1-cm-radius circle about the center of the food spot to those in a 1-cm-radius circle about the center of the control spot. Within-strain statistical comparisons were performed using a \(\chi^2 \) test; \(P \) values for hypotheses about the similarity of strains were computed using Monte Carlo sampling.

Salt chemotaxis plates were prepared following previous work\(^9\). In brief, we placed a 5 \(\mu \)l drop of 500 mM NaCl at the center of a low-salt plate (1 mM CaCl\(_2\), 1 mM MgSO\(_4\), 5 mM potassium phosphate (pH 6) and 2% agar) 3 h before tracking. Worms were washed 30 min before tracking in low-salt buffer (as plate, less agar) and rinsed in low-salt buffer plus 0.05% glycerol. We transferred 8–12 worms from the rinse bath to a <0.5 \(\mu \)l droplet held in a glass loop, which we then dotted onto the plate 12.5 mm from the center. The droplet dried within 60 s; tracking was started within 120 s. To quantify weather vane turning, we segmented the path into one-movement-cycle chunks (two body bends), calculated the angle between the worm’s movement and the direction to the food (‘bearing’) and how that angle changed over one cycle (‘curve’). We considered only worms 2.5–12.5 mm from the location of the NaCl drop, as this was predicted to be where the gradient was steepest (using the method in ref. 8) and provided some robustness to inaccurate placement of the drop.

Tap habituation experiments. Tap habituation assays were performed on food after a minimum of 6 h recovery from transfer; worms were tracked for 10 min to allow them to approach steady-state behavior and then were tapped 20 or 30 times at a 10-s inter-stimulus interval with a custom-built solenoid tagger that drives a small plunger into the side of the plate. A reversal was scored when a worm was still or moving forward at the time of the tap and moved backwards within 1 s of the impact; the reversal was considered to be complete when the worm began a pause or forward motion lasting for more than 0.2 s. Cases where the worm was already reversing were removed from analysis. For reversal probability computations, reversal distances of less than 30 \(\mu \)m were considered ‘no reversal’, and we converted counts of reversals and failures into probabilities using a Bayesian estimate of probability with uniform prior.

Validation was performed by comparing with manually annotated reversals. Out of 148 responses scored by hand as either yes, no or already-reversing, the tracker disagreed with eight (5% error rate). All discrepancies but one were due to small disagreement over the timing or size of a response.

Putative tap habituation mutants were prepared using a higher-throughput method: five gravid adults were placed on a plate seeded with 50 \(\mu \)l \(E. \) coli 24 h before. The adults were left to lay eggs and then removed from the plate 3 h later, leaving ~60–80 eggs. The plate was tracked once the worms reached adulthood (80 ± 3 h later, at 20 °C). The recording protocol consisted of 100 s of baseline followed by 30 taps applied to the side of the plate at a 10 s inter-stimulus interval. The data were analyzed with Choreography’s reversal detection plugin: \(-- \)plugin MeasureReversal:--tap:dt = 1:collect = 0.5. For each mutant strain and wild-type replicate, three or four plates were tested (except CB1220, two plates); on average, 34 worms per plate were suitable for analysis. A wild-type distribution for all wild-type plates tested on the same day was created for the initial and habituated (28th–30th) responses. All strains and wild-type replicates were standardized to the distribution for the day they were tested. Monte Carlo sampling was used to generate the null hypothesis distribution given this scheme, and the resulting \(P \) values were interpreted as an effective \(Z \) score for plotting. Values outside \(\pm 3.13 \) were considered to be significantly different than the wild-type distribution (\(P < 0.05 \), two-tailed, with Bonferroni correction for multiple comparisons). CX20 and NM1815 were confirmed using an unpaired two-tailed \(t \)-test between the raw reversal probabilities of the last stimulus versus the wild-type replicate that was tested most closely chronologically.

Reference data. The reference dataset used for most hand annotation and for speed and accuracy tests was a tap habituation screen assay with two differences. First, the worms were given only 5 min to recover before tapping instead of 10 min.
Second, the worms were allowed to grow up for 100 h. These conditions provided an extra challenge for the tracking algorithms, as there were L1 progeny on the plate by that time. To improve the outlines in this more-difficult case, we used the despike option of the Reoutline plugin.

As the MWT cannot save video at the full rate (7.2 gigabytes min$^{-1}$), we used a custom LabView program to stream video to a solid state drive so we had a complete record of the experiment. We then ran the MWT on the saved video.

25. Al-Sharadqah, A. & Chernov, N. Error analysis for circle fitting algorithms. *Electronic J. Stat.* **3**, 886–911 (2009).

26. Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. *Bayesian Data Analysis* 36 (Chapman & Hall/CRC, 1995).