We present a combined, non-simultaneous, ASCA GIS and CGRO OSSE spectrum of the Seyfert 2 galaxy, NGC 7172, and make broad band spectral fits. The only Seyfert 2 galaxy previously studied over such a broad band is NGC 4945. We find that the most probable model for the data is a power law over such a broad band is NGC 4945. We find that the only Seyfert 2 galaxy previously studied over a broader band using non-simultaneous ASCA/Ginga/CGRO OSSE data is NGC 4945 (Done et al. 1996). The average non-simultaneous Ginga/CGRO OSSE spectrum of three Seyfert 2 galaxies has also been studied (Zdziarski et al. 1995).

The X-ray spectrum of NGC 7172, an obscured, edge-on Seyfert 2 galaxy at a redshift of $z = 0.008$ (Sharples et al. 1985), was studied by EXOSAT in October 1985 (Turner & Pounds 1989), by Ginga in October 1989 (Warwick et al. 1993), and on May 17, 1996 (Matt et al. 1996). Here we analyse and fit the March/May 1995 data. The ASCA data for NGC 7172 are extracted using XSELECT (ftools v3.6) and all the data analysis is performed with XSPEC.

2. THE X/γ OBSERVATIONS OF NGC 7172

We observed NGC 7172 with the ASCA satellite from 23:18 UTC on May 12 until 16:00 UTC on May 13, 1995 with the two GSPC’s, GIS2 and GIS3 and with the two CCD detectors SIS0 and SIS1. The SIS data seem to be sensitive to the screening criteria and give different results depending on the criteria adopted. The SIS0 and the SIS1 detectors also give different results as compared to each other. This needs to be investigated further. The GIS data are, however, consistent with each other and they are usually less affected by calibration problems. In this paper we therefore only use the GIS2 and the GIS3 data for the ASCA observation. In screening the GIS data, standard, conservative criteria are applied: Minimum angle to Earth limb = 10°, angle from bright Earth (illuminated limb) = 20°, minimum cutoff rigidity = 6 GeV/c. The background is extracted from a source-free region of the same image as the source. The final results do not differ significantly, if a background instead is extracted from the blank sky background event files provided by the ASCA Guest Observer Facility. The extracted data are regrouped to contain a minimum of 20 counts per channel to allow the use of the χ^2-test. This leads us to ignore low energy channels up to ~ 2 keV. The net exposure time for both
detectors is 27 ks. NGC 7172 did not show any significant variability during the observations, with the variations being less than 10 per cent of the mean count rate.

NGC 7172 was observed by the OSSE instrument aboard CGRO from February 21 to March 21, 1995. The data may be affected by the proximity of PKS 2155-304, as both objects often had to be observed together. The OSSE data were provided by the CGRO Science Support Center.

3. DATA ANALYSIS AND RESULTS

We analyse the combined spectrum using the ASCA GIS, and CGRO OSSE data discussed above from which one should be able to determine the photon index unambiguously. The observations are not simultaneous, however, but the ASCA and OSSE observations are only two months apart.

We start off with a model (denoted as ‘model P’) consisting of a power law and a neutral absorber, leaving the e-folding energy free. The resulting fit gives a photon spectral index \(\Gamma = 1.47 \pm 0.15 \), an e-folding energy of \(88^{+65}_{-28} \) keV and an equivalent hydrogen column density \(N_H = (7.8 \pm 0.6) \cdot 10^{22} \) cm\(^{-2}\). The fit has a reduced \(\chi^2 \) of 0.881, for the number of degrees of freedom, dof = 470. For the simple model under consideration, the OSSE data gives a relatively good constraint to the e-folding energy. The observed flux, in the 2 – 10 keV range, \(F_{2-10} = 4.7 \cdot 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\) and the flux, corrected for absorption, \(F_{\text{corrected}} = 7.3 \cdot 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\). The luminosity, with \(z = 0.008 \), \(H_0 = 50 \) km s\(^{-1}\) Mpc\(^{-1}\), \(q_0 = 0 \), becomes \(L_{2-10} = 1.5 \cdot 10^{43} \) erg s\(^{-1}\).

In the next step of the analysis, we try adding a Compton reflection component (XSPEC model pexrav by Magdziarz & Zdziarski 1995). The resulting fit does not change, and the reflection parameter stays at zero. The data clearly do not require a reflection component and we therefore use ‘model P’ above as our best fit model.

The Ginga observations of NGC 7172 from 1989 (Warwick et al. 1993) showed that \(\Gamma = 1.85^{+0.05}_{-0.04} \) and the \(F_{2-10} = 4.0 \cdot 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\). The X-ray spectrum of NGC 7172 has thus become flatter between 1989 and 1995, and the 2 – 10 keV flux level has increased.

Figure 1 shows the combined ASCA GIS and CGRO OSSE data and the best fit model (‘model P’) in \(\nu F_\nu \) versus \(E \). The ASCA data below \(\sim 2 \) keV do not have sufficient photon counts for a proper \(\chi^2 \) analysis and that data was not used in the modeling. It is, however, evident that there exists a soft component which is often seen in Seyfert 2 galaxies (Morse et al. 1996).

4. SUMMARY

Using the ASCA GIS and the CGRO OSSE observations of NGC 7172, a broad spectral band is achieved.

The best fit model is a power law affected by a neutral absorber, \(\Gamma = 1.47 \pm 0.15 \) and \(N_H = (7.8 \pm 0.6) \cdot 10^{22} \) cm\(^{-2}\). The e-folding energy is constrained by the OSSE data to be \(E_\text{e} = 88^{+65}_{-28} \) keV. The fit does not improve, when more complicated models are used, such as adding a reflection component. The flat spectrum found means that the spectral index of NGC 7172 is variable, changing from \(\Gamma = 1.8 \) in 1989 to \(\Gamma = 1.5 \) in 1995. It still lies within the range that Seyfert galaxies are observed to have (see, e.g. Nandra & Pounds 1994). We note that some other Seyfert galaxies, most notably NGC 4151 (Yaqoob & Warwick 1991), also have variable \(\Gamma \).

5. ACKNOWLEDGMENTS

We thank Drs. Christine Done, Matteo Guainazzi and Giorgio Matt for enlightening discussions. We are also indebted to Dr. Tom Bridgman at the CGRO Science Support Center and to the ASCA GOF at Goddard Space Flight Center for their assistance. This research was supported by the Swedish National Space Board and the Swedish Natural Science Research Council.

REFERENCES

Antonucci, R., 1993 ARAA, 31, 473
Done, C., Madejski, G. M., Smith, D. A., 1996, ApJL, 463, L63
Johnson, W. N. et al., 1994, in 'The Second Compton Symposium', eds. C. E. Fichtel, N. Gehrels, J. P. Norris, AIP v.304, p.515
Magdziarz, P., Zdziarski, A.A. 1995, MNRAS, 273, 837
Morse, G., Guainazzi, M., Antonelli, L. A., Fiore, F., Piro, L., Robba, R., Ueno, S., these proceedings
Morse, J. A., Wilson, A. S., 1995, ApJ, 439, 121.
Nandra, K., Pounds, K. A., 1994, MNRAS, 268, 405
Ryde F., Larsson S., Mihara T., Poutanen J., Svensson R., Ueno S., Yamashita A., 1996, to be published in the proceedings of the conference ‘X-ray Imaging and Spectroscopy of Cosmic Hot Plasmas’, Tokyo
Sharples, R. M., Longmore, A. J., Hawarden, T. G., Carter, D., 1984, MNRAS, 208, 15
Smith, D. A., Done, C., 1996, MNRAS, 280, 355.
Turner, T. J. and Pounds, K. A., 1989, MNRAS, 240, 833
Warwick, R. S. et al., 1993, MNRAS, 265, 412
Yaqoob, T. and Warwick, R. S., 1991, MNRAS, 248, 773
Zdziarski, A. A., Johnson, W. N., Done, C., Smith, D., McNaron-Brown, K., 1995, ApJ, 438, L63