Analysis of the efficacy and safety of eribulin therapy in patients with HR+/HER2- metastatic breast cancer pretreated with CDK4/6 inhibitors in real Russian practice

Irina V. Kolyadina1–3, Natalia R. Abidova4, Arshak A. Akopyan4, Galina V. Antonova5, Oksana I. Arapova5, Elvira A. Bobrova6, Larisa V. Bolotina7, Chulpan Kh. Valiakhmetova8, Anna V. Vasilievskaya9, Lyubov Yu. Vladimirova10, Mikhail V. Volkonskiy11, Inna P. Ganshina11, Irina E. Gudkova11, Alexander S. Dergunov12, Irina V. Evstigneeva12, Viktoriya S. Egurenkova13, Aleksei V. Emshanov13, Lyudmila G. Zhukova13, Elena V. Zueva14, Elena V. Karabina15, James J. Kolokolov16, Svetlana V. Kuzmicheva17, Olesya A. Kuchevskaya17, Ivan A. Luev17, Ksenia S. Maistrenko17, Elena V. Markizova17, Vasily V. Marfutov17, Sergey P. Medvedev17, Yulia I. Merzlikina18, Tatiana A. Nersesova18, Elena G. Ovchinnikova18, Svetlana A. Orlova18, Natalia Yu. Samaneva18, Olesya A. Stativko18, Anna E. Storozhakova18, Daniil L. Stroyakovskiy19, Oksana N. Shirokova20, Alisa R. Shumskikh20, Larisa V. Bolotina21, Chulpan Kh. Valiakhmetova22, Anna V. Vasilevskaya23, Lyubov Yu. Vladimirova23, Mikhail V. Volkonskiy23, Irina V. Kolyadina24, Natalia Yu. Samaneva24, Olesya A. Stativko24, Anna E. Storozhakova24, Daniil L. Stroyakovskiy24, Oksana N. Shirokova24, Alisa R. Shumskikh24, Mariam Zh. Yakubova24.

1. Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 2. Blokhin National Medical Research Center of Oncology, Moscow, Russia; 3. kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; 4. Moscow City Oncological Hospital №62, Moscow, Russia; 5. City Clinical Hospital №40, Moscow, Russia; 6. Loginov Moscow Clinical Research Center, Moscow, Russia; 7. Hertsen Moscow Oncology Research Institute — branch of National Medical Research Centre, Moscow, Russia; 8. Republic Clinical Oncological Dispensary, Ufa, Russia; 9. Moscow Regional Oncological Dispensary, Balashikha, Russia; 10. National Medical Research Center of Oncology, Rostov-on-Don, Russia; 11. Troitsk City Hospital, Troitsk, Russia; 12. Treer Regional Clinical Oncological Dispensary, Tver, Russia; 13. Oncology Center, Rostov-on-Don, Russia; 14. City Clinical Oncological Hospital №1, Moscow, Russia; 15. Tula Regional Oncological Dispensary, Tula, Russia; 16. Botkin City Clinical Hospital, Moscow, Russia; 17. Treatment and Rehabilitation Center, Moscow, Russia; 18. Nizhny Novgorod Regional Clinical Oncological Dispensary, Nizhny Novgorod, Russia; 19. Republican Clinical Oncological Dispensary, Cheboksary, Russia; 20. Medical Center for Rehabilitation, Podolsk, Russia; 21. chelyabinsk Regional Clinical Center of Oncology and Nuclear Medicine, Chelyabinsk, Russia; 22. Perm Regional Oncological Dispensary, Perm, Russia; 23. Sverdlovsk Regional Oncological Dispensary, Sverdlovsk, Russia; 24. Orenburg Regional Clinical Oncological Dispensary, Orenburg, Russia.

Information about the authors / Информация об авторах

Irina V. Kolyadina — D. Sc. (Med.), Prof., Russian Medical Academy of Continuous Professional Education, Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology. E-mail: irinakolyadina@yandex.ru; ORCID: 0000-0002-1124-6802

Natalia R. Abidova — oncologist, Moscow City Oncological Hospital №62. E-mail: Vitt18@yandex.ru

Arshak A. Akopyan — oncologist, Moscow City Oncological Hospital №62. E-mail: arsh.akopian@gmail.com

Galina V. Antonova — oncologist, City Clinical Hospital №40. E-mail: gal-antonova@mail.ru

Oksana I. Arapova — oncologist, City Clinical Hospital №40. E-mail: sno7@yandex.ru

Elvira A. Bobrova — oncologist, Loginov Moscow Clinical Research Center. E-mail: bobrovalvia@yandex.ru

Larisa V. Bolotina — D. Sc. (Med.), Hertsen Moscow Oncology Research Institute — branch of National Medical Research Centre, E-mail: lbolotina@yandex.ru; ORCID: 0000-0003-4879-2687

Chulpan Kh. Valiakhmetova — Cand. Sci. (Med.), Republican Clinical Oncological Dispensary. E-mail: chvali@bk.ru

Anna V. Vasilievskaya — Department Head, Moscow Regional Oncological Dispensary. E-mail: annavasilieve@rambler.ru

Lyubov Yu. Vladimirova — D. Sc. (Med.), National Medical Research Center of Oncology. E-mail: lubovurievna@gmail.com; ORCID: 0000-0002-4822-5044

https://doi.org/10.26442/18151434.2021.1.200769

ORIGINAL ARTICLE

Svetlana A. Orlova19, Natalia Yu. Samaneva10, Olesya A. Stativko14, Anna E. Storozhakova10, Daniil L. Stroyakovskiy4, Irina A. Shangina5, Oksana N. Shirokova23, Alisa R. Shumskikh24, Mariam Zh. Yakubova24.

1. Moscow Regional Oncological Dispensary, Moscow, Russia; 2. Blokhin National Medical Research Center of Oncology, Moscow, Russia; 3. City Clinical Hospital №40, Moscow, Russia; 4. Moscow City Oncological Hospital №62, Moscow, Russia; 5. City Clinical Hospital №40, Moscow, Russia; 6. Loginov Moscow Clinical Research Center, Moscow, Russia; 7. Hertsen Moscow Oncology Research Institute – branch of National Medical Research Radiological Centre, Moscow, Russia; 8. Republican Clinical Oncological Dispensary, Ufa, Russia; 9. Moscow Regional Oncological Dispensary, Balashikha, Russia; 10. National Medical Research Center of Oncology, Rostov-on-Don, Russia; 11. Troitsk City Hospital, Troitsk, Russia; 12. Treer Regional Clinical Oncological Dispensary, Tver, Russia; 13. Oncology Center, Rostov-on-Don, Russia; 14. City Clinical Oncological Hospital №1, Moscow, Russia; 15. Tula Regional Oncological Dispensary, Tula, Russia; 16. Botkin City Clinical Hospital, Moscow, Russia; 17. Treatment and Rehabilitation Center, Moscow, Russia; 18. Nizhny Novgorod Regional Clinical Oncological Dispensary, Nizhny Novgorod, Russia; 19. Republican Clinical Oncological Dispensary, Cheboksary, Russia; 20. Medical Center for Rehabilitation, Podolsk, Russia; 21. chelyabinsk Regional Clinical Center of Oncology and Nuclear Medicine, Chelyabinsk, Russia; 22. Perm Regional Oncological Dispensary, Perm, Russia; 23. Sverdlovsk Regional Oncological Dispensary, Sverdlovsk, Russia; 24. Orenburg Regional Clinical Oncological Dispensary, Orenburg, Russia.
Abstract

Relevance. Data on the efficacy of endocrine and chemotherapy regimens in patients with hormone-resistant metastatic breast cancer (mBC) after progression with CDK4/6 inhibitors are limited; the search for an effective therapy regimen in this clinical situation is an urgent task of clinical oncology.

Aim. Evaluate the efficacy and safety of eribulin therapy in patients with HR+/HER2- mBC after progression with CDK4/6 inhibitors; compare the results of the Russian study and the EMPOWER observational study in the USA.

Materials and methods. The Russian observational study included 54 patients (pts) with HR+/HER2- mBC, who were treated with eribulin after CDK4/6 inhibitors in 24 Russian cancer hospitals. The median age of pts was 56 years; 75.9% of them had recurrent BC, 24.1% – de novo BC stage IV; 51.9% of pts had progression with CDK4/6 inhibitors in the first 6 months of therapy (primary endocrine resistance); 48.1% of patients had progression in the period from 6 to 38 months; 89.1% had visceral site of metastases (liver MTS – 65.5%, lung MTS – 52.8%, brain MTS in 7.5%). Eribulin was used after anthracyclines and taxanes in 94.4% of cases. The efficacy and safety of eribulin therapy in patients with HR+/HER2- mBC after progression with CDK4/6 inhibitors was studied, as well as subgroup analysis according to age, sites of metastasis, and previously treatment options.

Results. Eribulin was prescribed in the standard regimen of 1.4 mg/m² on days 1 and 8, the interval between cycles was 21 days, the number cycles of chemotherapy was 1–44 (median – 8, the mean number cycles – 10.5). With a median follow-up of 11.5 months (from 3 to 36 months), 30 patients (55.6%) continued therapy with eribulin at present; therapy was cancelled in 24 patients due to progression in 22 cases (40.7%), and due to intolerable toxicity in 2 patients (3.7%). The maximum response to eribulin therapy included partial response (in 11 cases, 24.4%), stable disease (in 30 cases, 66.7%) and progression in 4 patients (8.9%). Median PFS with eribulin therapy was 10.0 months; the 6-month, 1-year, and 2-year PFS were 79.5%, 44.8% and 26.5%, respectively. Eribulin therapy was equally effective in different subgroups (p>0.05) and did not depend on the age of patients, the previously received treatment, the presence of visceral MTS and liver damage. The best response to chemotherapy with eribulin was observed in lung metastases: median PFS 24 months vs 9.1 months, p=0.056. The safety profile was favorable; adverse events were registered in 34.5% of patients, which required dose adjustment in 18.5% of cases. With a median follow-up of 11.5 months, 92.6% of patients remain alive.

Conclusion. Eribulin has demonstrated high efficacy and favorable safety profile in hormone-resistant HER2- mBC in patients with progression when receiving CDK4/6 inhibitors.

Keywords: HR+/HER2- metastatic breast cancer, CDK4/6, combined endocrine therapy with CDK4/6 inhibitors, hormone resistance, eribulin, eribulin chemotherapy efficacy, eribulin chemotherapy safety, visceral metastases, lung metastases.

For citation:

Mikhail V. Volkovskiy – oncologist, Moscow City Oncological Hospital №62. E-mail: max19y@yandex.ru; ORCID: 0000-0003-4060-5015
Irina E. Markizova – oncologist, Moscow City Oncological Hospital №62. E-mail: elena.zyeva@yahoo.com
Ksenia S. Maistrenko – oncologist, Moscow City Oncological Hospital №62. E-mail: v marfutov@mknc.ru

References

1. Gershinov AV, Zhukova LG, Zueva EV, Karabina EV, Kuchevskaya OA, Luev IA, Maistrenko KS, Markizova EV, Volkonskiy MV, Volkovskiy MV. Eribulin was prescribed in the standard regimen of 1.4 mg/m² on days 1 and 8, the interval between cycles was 21 days, the number cycles of chemotherapy was 1–44 (median – 8, the mean number cycles – 10.5). With a median follow-up of 11.5 months (from 3 to 36 months), 30 patients (55.6%) continued therapy with eribulin at present; therapy was cancelled in 24 patients due to progression in 22 cases (40.7%), and due to intolerable toxicity in 2 patients (3.7%). The maximum response to eribulin therapy included partial response (in 11 cases, 24.4%), stable disease (in 30 cases, 66.7%) and progression in 4 patients (8.9%). Median PFS with eribulin therapy was 10.0 months; the 6-month, 1-year, and 2-year PFS were 79.5%, 44.8% and 26.5%, respectively. Eribulin therapy was equally effective in different subgroups (p>0.05) and did not depend on the age of patients, the previously received treatment, the presence of visceral MTS and liver damage. The best response to chemotherapy with eribulin was observed in lung metastases: median PFS 24 months vs 9.1 months, p=0.056. The safety profile was favorable; adverse events were registered in 34.5% of patients, which required dose adjustment in 18.5% of cases. With a median follow-up of 11.5 months, 92.6% of patients remain alive.

Conclusion. Eribulin has demonstrated high efficacy and favorable safety profile in hormone-resistant HER2- mBC in patients with progression when receiving CDK4/6 inhibitors.
Оригинальная статья

Анализ эффективности и безопасности терапии эрибулином у больных HR+HER2-негативным метастатическим раком молочной железы, предлеченных ингибиторами CDK4/6 в условиях реальной российской практики

И.В. Колядина1–3, Н.Р. Абидова4, А.А. Акопян4, Г.В. Антонова4, О.И. Арапова3, Е.А. Боброва3, Л.В. Болотина7, Ч.Х. Валиахметова3, А.В. Василевская9, Л.Ю. Владимирова10, М.В. Волконский4, И.П. Ганьшина2, И.Е. Гудкова11, А.С. Дергунов6, И.Ф. Егуренкова6, А.В. Емшанов3, Л.Г. Жукова3, Е.В. Зуева4, Е.В. Карабина15, Д.Д. Колоколов4, С.В. Кузьмищева8, О.А. Кучевская12, И.А. Луев18, К.С. Майстренко5, О.И. Марфутов6, Н.В. Мерзликина6, Ч.Х. Нерсесова14, Е.Г. Овчинникова18, С.А. Орлова19, Н.Ю. Саманева10, О.А. Стативко14, А.Э. Сторожакова10, Д.Л. Строяковский4, А.В. Султанбаев8, А.И. Текеева25, Н.В. Фадеева25, А.Н. Фёдорова14, О.М. Шалаева22, И.А. Шангина5, О.Н. Широкова23, А.Р. Шумских24, М.Ж. Якубова9

1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
3 ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия;
4 ГБУЗ «Московская городская онкологическая больница №62» Департамента здравоохранения г. Москвы, Москва, Россия;
5 ГБУЗ «Городская клиническая больница №40» Департамента здравоохранения г. Москвы, Москва, Россия;
6 ГБУЗ «Московский клинический научный центр им. А.С. Логинова», Москва, Россия;
7 Московский научный исследовательский онкологический институт им. П.А. Герцена — филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
8 ФГБУ «Национальный медицинский исследовательский центр онкологии» Минздрава России, Ростов-на-Дону, Россия;
9 ФГБУ «Онкологический диспансер», Екатеринбург, Россия;
10 ФГБУ «Онкологический диспансер», Ростов-на-Дону, Россия;
11 ГБУЗ «Городская клиническая онкологическая больница №1» Департамента здравоохранения г. Москвы, Москва, Россия;
12 ГБУЗ «Тверской областной клинический онкологический диспансер», Тверь, Россия;
13 ГБУЗ МО «Московский областной онкологический диспансер», Балашиха, Россия;
14 ФГБУ «Национальный медицинский исследовательский центр онкологии» Минздрава России, Ростов-на-Дону, Россия;
15 ГБУЗ «Свердловский областной онкологический диспансер», Екатеринбург, Россия;
16 ФГАУ «Лечебно-реабилитационный центр», Москва, Россия;
17 ФГБУ «Нижегородский областной клинический онкологический диспансер», Нижний Новгород, Россия;
18 ГБУЗ «Российский клинический онкологический диспансер им. Д.Д. Коновальца» Тульская область, Тула, Россия;
19 ООО «Медицинский центр восстановительного лечения», Подольск, Россия;
20 ГБУЗ МО «Оренбургский областной клинический онкологический диспансер», Оренбург, Россия;
21 ГАУЗ СО «Свердловский областной онкологический диспансер», Екатеринбург, Россия;
22 ГБУЗ ПК «Пермский краевой онкологический диспансер», Пермь, Россия;
23 ГБУЗ ИО «Свердловский областной онкологический диспансер», Екатеринбург, Россия;
24 ГБУЗ ПО «Оренбургский областной клинический онкологический диспансер», Оренбург, Россия

https://doi.org/10.26442/18151434.2021.1.200769

ORIGINAL ARTICLE

70 JOURNAL OF MODERN ONCOLOGY. 2021; 23 (1): 68–76. СОВРЕМЕННАЯ ОНКОЛОГИЯ. 2021; 23 (1): 68–76.
Брацестancer (BC) is the most common female oncopathology all over the world; a steady increase in morbidity and consistently high mortality rates induce a constant search for new effective regimens for the treatment of this disease. Despite the BC screening and modern treatment strategy about 25–30% of patients with early stages have a further recurrence of the disease; besides, the proportion of the BC de novo stage IV remains very high, both in the world (5–10%) and in the Russian population of women (7.5%) [1–3].

The dominant variant of the disease both in early and advanced stages of BC is the luminal (HR+) HER2-negative tumor subtype, for which multilinear change of endocrine therapy (ET) regimens is a preferred treatment strategy [3–6]. Recent studies show that ET and chemotherapy are equally efficient as initiating treatment for HR+/HER2- metastatic breast cancer (mBC), both in terms of progression-free survival (PFS) and overall survival (OS), but at the same time, ET has a more favorable safety profile compared with cytostatic regimens [7]. The emergence of

ОРИГИНАЛЬНАЯ СТАТЬЯ

https://doi.org/10.26442/18151434.2021.1.200769
of the class of CDK4/6 inhibitors (CDK4/6i) has led to the determination of the preferred regimens for the first and second line of therapy; the combined ET with CDK4/6i (palbociclib, ribociclib, and abemaciclib) has proven its significant advantage in increasing PFS, OS, disease control, and improvement of the quality of life in patients with HR+/HER2- mBC [8–11]. However, every fifth patient showed disease progression in the first year of combined ET despite the high efficacy of CDK4/6i, and the selection of the further treatment strategy (continuation of ET and which exactly) or the start of chemotherapy (selection of cytostatic agents) becomes a highly challenging task in clinical oncology [12–16]. Among the chemotherapy drugs that are effective in HER2-negative mBC, eribulin stands out, while it does not have cross-resistance with other cytostatic agents and effectively works after progression with anthracyclines and taxanes [17–19]. The efficacy of eribulin in the later lines of treatment for BC allowed suggesting that it might be the therapeutic potential in HR+/HER2-negative mBC pretreated with CDK4/6i.

Aim – assessment of the efficacy and safety of eribulin therapy in patients with HR+/HER2- mBC pretreated with CDK4/6i in real Russian practice.

Materials and methods

The article presents the results of the combined Russian experience in assessing the efficacy and safety of chemotherapy with eribulin in 54 women with HR+/HER2- mBC pretreated with CDK4/6i; the study is observational and includes data on patients from 24 Cancer Hospitals of the Russian Federation. The age of the patients varied from 29 to 79 years (median – 56 years); the diagnosis of HR+/HER2-negative BC was verified (based on biopsy of the primary tumor ± distant metastases) in all cases; 75.9% of patients had recurrent cancer, 24.1% had de novo BC stage IV. All patients with mBC received combined ET with CDK4/6i (palbociclib – 75.9%, ribociclib – 22.2%, both CDK4/6i – 1.9%), and aromatase inhibitors (51.9%) or fulvestrant (48.1%) were used as endocrine partners. Early lines with CDK4/6i prescription prevailed: the first line was in 50% of pts, the second line was in 35.2%, the third and subsequent lines were in only 14.8% of pts. Duration of response to CDK4/6i therapy ranged from 2 to 38 months (mean response was 9.1 months); progression on combined ET occurred in 51.9% of patients during the first 6 months of therapy (primary endocrine resistance), and in 48.1% of cases it developed within 6 to 38 months after starting therapy with CDK4/6i. Chemotherapy preceding eribulin (including early stages of BC) included anthracyclines and taxanes in 94.4% pts, in 5.6% of cases – taxanes only. The clinical characteristics of the patients and the treatment received are presented in Table 1.

At the time of the start of chemotherapy with eribulin, visceral metastases were detected in the majority of cases (49/54; 89.1%), moreover, 36 patients (65.5%) had liver metastases, 28 (52.8%) had lung MTS, and 4 patients (7.5%) had brain damage. Bone MTS were diagnosed in 42 patients (79.2%), and MTS in the skin and soft tissues was registered in 10 patients (18.9%); Fig. 1. Among the rare sites of metastasis, tumor lesion of the pericardium in 2 patients, and MTS in the spleen, adrenal gland and intestinal wall in 1 case each should be noted. The majority of patients (73.1%) were diagnosed with lesions of three sites or more.

The patients received eribulin after CDK4/6i according to the indications registered in Russia: as the second and subsequent lines of chemotherapy for metastatic BC after anthracyclines and taxanes, including chemotherapy for the early stages. The efficacy and safety of eribulin therapy in patients with HR+/HER2- mBC after the progression with CDK4/6i was studied; statistical analysis was performed by the international statistical program SPSS 20.0, differences were considered significant at p<0.05, survival was calculated using the Kaplan–Meier methods.

Results

Efficacy analysis of eribulin therapy

Eribulin was prescribed as monotherapy at a standard dose of 1.4 mg/m² on days 1 and 8 as a 5-minute intravenous infusion with a 21-days interval between cycles. In the case of the development of serious adverse events, the dose reduction was carried out in a 2-steps: the first reduction step – up to 1.1 mg/m² (required by 9 patients, 16.7%) on days 1 and 8, the second reduction step – up to a dose of 0.7 mg/m² on days 1 and 8 (required in 1 case, 1.9%); Table 2.

In the majority of patients (49/54; 90.7%), eribulin was used in the initial lines of HR+/HER2-negative mBC therapy: in the second line – 33 (61.1%) pts, in the third line – 16 (29.6%). In the later lines (fourth and fifth), eribulin was prescribed extremely rarely – only in 7.4 and 1.9% of pts, respectively. The number of
chemotherapy cycles with eribulin ranged from 1 to 44, the median was 8, and the mean was 10.5 cycles.

With a median follow-up of 11.5 months (from 3 to 36 months), 30 patients (55.6%) continue therapy with eribulin; therapy was cancelled in 24 pts, due to progression in 22 cases (40.7%), and due to intolerable toxicity in 2 patients (3.7%).

The maximum response to eribulin therapy (evaluated in 45 patients) included partial response (in 11 cases, 24.4%), stable of disease (in 30 cases, 66.7%) and progression in 4 pts (8.9%); Table 2. The effectiveness of treatment was not carried out in 9 pts due to a short follow-up period (from 1 to 5 months from the start of treatment). Data on eribulin therapy and its results are presented in Table 2.

Patient survival was assessed with a median follow-up of 11.5 months. Median PFS with eribulin therapy was 10.0 months; 3-months, 6-month, 1-year, and 2-year PFS were 94.4%, 79.5%, 44.8% and 26.5%, respectively. It should be noted that the efficiency of eribulin therapy did not depend on such clinical factors as the age of the patients, \(p=0.305 \); previously obtained CDK4/6i (palbociclib/ribociclib), \(p=0.642 \); endocrine partner to CDK4/6i (aromatase inhibitors/fulvestrant), \(p=0.804 \); the line of prescription of CDK4/6i (\(p=0.593 \)). Besides, PFS values were high and identical in patients with recurrent and de novo stage IV mBC (\(p=0.389 \)); Fig. 2, when using eribulin in the second and third lines of chemotherapy (\(p=0.567 \)); Fig. 3.

Eribulin therapy was equally effective at different sites of metastasis; thus, the median PFS with liver metastases or in their absence was 10 vs 11.8 months, \(p=0.663 \) (Fig. 4); with bone metastases/in their absence – 11 vs 9.0 months, \(p=0.726 \) (Fig. 5); with skin and soft tissue metastases/in their absence – 9 vs 11 months, \(p=0.476 \) (Fig. 6).

The best response to eribulin therapy were observed in patients with lung lesions: the presence of lung MTS was associated with a high sensitivity to eribulin and the best values of the median PFS and these differences are close to statistically significant (24 vs 9.1 months, \(p=0.056 \)); Fig. 7.

With a median follow-up of 11.5 months, 4 out of 54 patients (92.6%) died from BC progression, 50 out of 54 patients (92.6%) remain alive and continue treatment for mBC.

Safety analysis of eribulin therapy

The safety profile of eribulin therapy was favorable; adverse events associated with eribulin therapy were observed in 19 out of 54 patients (34.5%). Among adverse events of all grades, neutropenia prevailed in 14/54 pts, 25.9%, with G1 in 5.5%, G2 in 11.1%, G3 in 9.3%, while febrile neutropenia was noted in only

Table 1. Clinical characteristics of patients and the therapy prior to eribulin

Clinical Characteristics	Number of Patients, N	% of Patients
Age of patients		
Median (range)	56 (27–79 y.o.)	
Under 40 y.o.	5	9.3
40–50 y.o.	12	22.2
50–60 y.o.	22	40.7
Over 60 y.o.	15	27.8
BC stage		
Recurrent	41	75.9
De novo stage IV	13	24.1
BC stage at the time of primary treatment		
I	9	16.7
II	8	14.8
IIB	13	24.1
IIIA	2	3.7
IIIB	15	27.8
IIIC	7	13.0
Histological type of BC		
Invasive ductal	29	53.7
Invasive lobular	6	11.1
Other	19	35.2
Prior therapy with CDK4/6i		
Palbociclib	41	75.9
Ribociclib	12	22.2
Both CDK4/6i	1	1.9
Endocrine partner to CDK4/6i		
Aromatase inhibitors	28	51.9
Fulvestrant	26	48.1
CDK4/6i prescription line		
First	27	50.0
Second	19	35.2
≥Third	8	14.8
Duration of response to CDK4/6i therapy		
Mean response time (range)	9.1 months (2–38)	
Progression in the first 6 months	28	51.9
Progression from 6 to 38 months	26	48.1
Chemotherapy (including early stages of BC)		
Anthracyclines + taxanes	51	94.4
Taxanes only	3	5.6

https://doi.org/10.26442/18151434.2021.1.200769

ОРИГИНАЛЬНАЯ СТАТЬЯ

СОВРЕМЕННАЯ ОНКОЛОГИЯ. 2021; 23 (1): 68–76.

JOURNAL OF MODERN ONCOLOGY. 2021; 23 (1): 68–76. 73
11.1%, with G1 in 5.5%, G2 in 3.7%, G3 in 1.8% of cases. Anemia and asthenia were noted in 9.3% of patients, G1 in all cases; alopecia (G1 only) developed in 2/54 patients (3.7%). It should be noted that the development of adverse events did not affect the efficacy of eribulin therapy, \(p=0.648\) (Fig. 8).

The development of adverse events required dose reduction in 10 patients; in 9 out of 54 pts, 16.7% – up to a dose of 1.1 mg/m\(^2\), and a dose reduction to 0.7 mg/m\(^2\) was required in 1 patient (1.9%) only. It is important that the reduction of the eribulin dose did not affect the effectiveness of therapy; the median PFS were similar in patients with the full and reduced doses of the drug \(p=0.612\); Fig. 9.

Discussion

The current priorities in the treatment of hormone-sensitive HER2- BC are obvious: due to the high antitumor efficacy, proven survival benefit and high quality of life, oncological communities recommend CDK4/6i as first and second lines of therapy for this type of disease. Despite this, about 20% of patients have the progression of the disease already in the first year after starting CDK4/6i therapy [11–16]. The choice of a further treatment strategy after CDK4/6i becomes an urgent and difficult task due to the absence of convincing data on the benefit any type of therapy in this situation. When three lines of endocrine therapy are ineffective or when symptoms of a visceral crisis appear, the issue of prescribing chemotherapy becomes obvious for all patients with HR+/HER2- mBC [4–6].

Among the cytostatic agents that have proven efficacy as late lines of therapy, eribulin stands out, while it combines a high antitumor activity and a favorable safety profile. The uniqueness of this drug is caused not only by the absence of cross-resistance to other cytostatic agents and the high efficiency of eribulin after anthracyclines and taxanes but also by the presence of therapeutic potential for various biological subtypes including HR+/HER2- mBC [17–21].

The results of our observational study shows the high efficacy of eribulin in Russian practice in patients after progression on CDK4/6i therapy, which coincides with the data of the large US observational study, EMPOWER, in which 395 patients with HR+/HER2- mBC received combined ET with CDK4/6i and after progression – chemotherapy with eribulin [22]. In the group of patients who received eribulin according to the indications registered in the United States (third-line chemotherapy for mBC after anthracyclines and taxanes), there were 135 patients, who had visceral metastases in 92.6% of cases. The authors showed high rates of eribulin efficacy in such a challenging clinical situation: 26.7% had an objective response, and 54.1% of patients had shown clinical efficacy, the median PFS was not achieved, and the 6-month PFS was observed in 70.4% of patients. The safety profile of therapy was favorable and corresponded to previously reported data: the rate of neutropenia was low in 23% (febrile neutropenia in only 0.7% of cases), peripheral polyneuropathy was registered in 11.1%, and diarrhea in 12.6% of patients. It should be noted that the efficacy of eribulin in the EMPOWER study was assessed only for 64.4% of patients who received this treatment [22].

According to the combined Russian analysis, the population of Russian patients receiving eribulin after CDK4/6i was also characterized by the presence of unfavorable clinical factors: recurrent BC – 75.9%, progression during the first 6 months of therapy with CDK4/6i – 51.9%, visceral MTS – 89.1% (MTS in the liver – 65.5%, MTS in the lungs – 52.8%), MTS in the brain – 7.5%. Despite this, the prescription of eribulin as an early line of chemotherapy (in the second line – 61.1%, in the third line – 29.6%), careful monitoring of toxicity and competent dose reduction made it possible to achieve high rates of treatment efficacy in Russian women (partial response – 24.4%, stable of BC – 66.7%). Patient survival was assessed with a median follow-up of 11.5 months; median PFS was 10.0 months; 3-month, 6-month, 1-year, and 2-year PFS were 94.4%, 79.5%, 44.8% and 26.5%, respectively. It should be noted that the efficacy of eribulin therapy in Russian women did not depend on the age of the patients, previous treatment, and most of the metastatic sites. However, the maximum efficacy of eribulin therapy was observed in patients with lung metastases: in this subgroup the median PFS reached 24 months (without lung MTS – 9.1 months, \(p=0.056\)); the search for factors explaining such high therapeutic potential in lung metastases seems to be a very promising task for practical oncology.

The safety profile of eribulin therapy in Russian patients receiving eribulin after CDK4/6i was favorable, which is consistent with the results of the randomized trials and the data from the EMPOWER study analysis. Adverse events associated with eribulin therapy were observed in 34.5%, in most cases – of grade 1 and 2; dose reduction was required in 18.5% of cases. However, the development of adverse events and the dose reduction did not affect the efficacy of eribulin therapy in Russian patients.

Table 2. Eribulin chemotherapy in patients with CDK4/6i-pretreated HR+/HER2- mBC: main indicators and efficacy assessment

Key Characteristics	Number of Patients, N	% of Patients
Number of patients		
Number of cycles of eribulin		
Range	1–44	61.1
Median	8	16.7
Mean number	10.5	3.7

Eribulin chemotherapy line

- Second: 33
- Third: 16
- Fourth: 4
- Fifth: 1

Eribulin dose reduction

- No: 45
- Up to 1.1 mg/m\(^2\): 9
- Up to 0.7 mg/m\(^2\): 1

Therapy status with a median follow-up of 11.5 months

- Therapy continues: 30
- Therapy was discontinued due to progression: 22
- Therapy was discontinued due to toxicity: 2

Maximum response to eribulin therapy

- Partial response: 11
- Stabilization: 30
- Progression: 4

https://doi.org/10.26442/18151434.2021.1.200769
Fig. 4. PFS according to liver metastases ($p = 0.663$).
Fig. 5. PFS according to bone metastases ($p = 0.726$).
Fig. 6. PFS according to skin and soft tissue metastases ($p = 0.726$).
Fig. 7. PFS according to lung metastases ($p = 0.056$).
Fig. 8. PFS according to adverse events during eribulin therapy ($p = 0.648$).
Fig. 9. PFS according to dose reduction of eribulin ($p = 0.612$).
Conclusion

Thus, the first results of the pooled Russian analysis (as well as the results of the US observational study, EMPOWER) give grounds to hope that eribulin may become a promising therapeutic option in patients with hormone-resistant mBC after progression with CDK4/6i.

Литература/References

1. GLOBECAN 2018, ICR, WHO, 2018. Available at: http://gco.iarc.fr/today/
2. The state of cancer care for the population of Russia in 2018. Ed. AD Kaprina, VV Starinsky, GV Petrova. Moscow: Herzen molochnoi zhelezy. Zlokachestvennye opukholi. 2019; 9 (3s2). DOI: 10.18027 / 2224-5057-2019-9-3s2-128-163
3. Hwang KT, Kim J, Jung J, et al. Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: A population-based study using SEER database. Onc Cancer Res 2019; 25: 1970–9.
4. Shimizu M, Kishida K, Kumokura M, et al. Praktischehe rekomendatsii po sisekhtereomno kercheniu invazionogo raka molochnoi zhelezy. Zbelstdentystroenie spoduplodii, 2019; 9 (152). DOI: 10.18027/1727-2214/2019-9-152-128-163
5. NCCN guidelines 1.2021. Available at: https://education.nccn.org/node/88395.
6. Stenina MB, Zhukova LG, Koroleva IA, et al. Prakticheskie rekomendatsii po lekarstvennomu lechenii invazivnogo raka molochnoi zhelezy. Zlokachestvennye opukholi. 2019; 9 (3s2). DOI: 10.18027 / 2224-5057-2019-9-3s2-128-163
7. Bonotto M, Gerratana L, Di Maio M, et al. The Breast 2017; 31: 114–20. DOI: 10.1016/j.breast.2016.10.021
8. Messina C, Cattini C, Buzzatti G, et al. CDK4/6 inhibitors in advanced hormone receptor-positive/HER2-negative breast cancer: a systematic review and meta-analysis of randomized trials. Breast Cancer Res Treat 2018; 172 (1): 9–21. DOI: 10.1007/s10549-018-4901-0
9. 5th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 5). Available at: https://www.esmo.org/guidelines/breast-cancer/consensus-recommendations-advanced-breast-cancer-abc-5
10. Iorfida M, Mazza M, Munzone E, et al. Fulvestrant in Combination with CDK4/6 Inhibitors for HER2- Metastatic Breast Cancer: the results of long-term experience in real clinical practice in Russia. Journal of Modern Oncology 2019; 21 (1): 76
11. Wang L, Gao S, Li D, et al. CDK4/6 inhibitors plus endocrine therapy improve overall survival in advanced HR+/HER2- breast cancer: A meta-analysis of randomized controlled trials. Breast 2020; 36 (7): 1439–41. DOI: 10.10117/gyn.13702
12. Niu Y, Xu J, Sun T. Cyclin-Dependent Kinases 4/6 inhibitors in breast cancer: Current Perspectives. Breast Cancer (Ste Med Press) 2020, 12: 45–56. DOI: 10.2147/BTC.396240
13. Wang L, Gao S, Li D, et al. CDK4/6 inhibitors plus endocrine therapy improve overall survival in advanced HR+/HER2- breast cancer: A meta-analysis of randomized controlled trials. Breast 2020; 36 (7): 1439–41. DOI: 10.10117/gyn.13702
14. Bardia A, Huntz SA, Dakhilecheh A, et al. Tamarifen or a nonsteroidal aromatase inhibitor with ribociclib in premenopausal patients with hormone receptor-positive, HER2-negative advanced breast cancer: MONALEESA-7 subgroup analysis. Poster presented at: European Society for Medical Oncology Congress; October 19-23, 2016; Munich, Germany. Poster E390.
15. Rugo HS, Finn RS, Gelmon K, et al. Progression-free survival outcome is independent of objective response in patients with estrogen receptor-positive, Human Epidermal Growth Factor Receptor 2-negative Advanced Breast Cancer Treated with Palbociclib Plus Letrozole Compared with Letrozole: analysis from PHAOCRA-2. Clin Breast Cancer 2020, 20 (2): e173–e180. DOI: 10.1016/j.clbc.2019.08.009
16. Slade GE, Xu M, Rowe P, et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy- MONARCH 2: A randomized clinical trial. JAMA Oncol 2019 Sep 29. DOI: 10.1001/jamaoncol.2019.3782
17. Cortes J, Schiff P, Littlefield K. Multiple modes of action of eribulin mesylate: Emerging data and clinical implication. Cancer Treat Rev 2016; 70: 100–8.
18. Cortes J, D’Saugherty J, Larreche D, et al. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a Phase 3 open-label randomised study. Lancet 2011; 377 (9769): 914–23.
19. Pivot X, Paesel analyses of eribulin in metastatic breast cancer patients with at least one prior chemotherapy. Ann Oncol 2016; 2016: 00: 1–7. DOI: 10.1093/annonc/mdv201
20. Vladimirova L, Tihanovskaya N, Mitashok I, et al. Efficacy of eribulin in elderly patients with metastatic breast cancer in real clinical practice in Russian Federation. J Breast 2019, 46 (Suppl 2): S3.6.
21. Gorshkova VI, Kolodyants N, Kovalenko EI, et al. Efficacy and safety of eribulin in HER2-negative metastatic breast cancer: the results of long-term experience in real clinical practice in Russia. Journal of Modern Oncology 2019, 23 (1): 12–23. DOI: 10.26442/18151434.2019.1.190250
22. Masuyan SS, Ferrigno BA, Wang E, et al. Observational study of clinical outcomes of eribulin mesylate in metastatic breast cancer after cyclin-dependent kinase 4/6 inhibitor therapy. Future Oncol 2016; 15 (24): 3935–44.

The article received: 01.02.2021
The article approved for publication: 03.03.2021