Continuous-time Models for Stochastic Optimization Algorithms

Antonio Orvieto, Aurelien Lucchi

Accepted as a poster at NeurIPS | 2019
Unconstrained non-convex optimization

For some regular $f : \mathbb{R}^d \to \mathbb{R}$, find $x^* := \arg \min_{x \in \mathbb{R}^d} f(x)$.

Training loss of ResNet-110, no skip connections on CIFAR-10
(for more details, check [Li et al., 2018])

Usual Assumption: f is L-smooth, i.e. $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$.

A recent trend is to model the dynamics of iterative gradient-based optimization algorithms with differential equations.
Tutorial: how is an ODE model constructed?

\[x_{k+1} = x_k - h\nabla f(x_k) \] \hspace{1cm} (GD)

Define curve \(y(t) \) as smooth interpolation: \(y(kh) = x_k \)

What is the law for \(y(t) \)?
1) by construction : \[y(t + h) = y(t) - h\nabla f(y(t)) \];
2) thanks to smoothness: \[y(t + h) = y(t) + \dot{y}(t) + \mathcal{O}(h^2) \].

In the limit \(h \to 0 \), \[\dot{y}(t) = -\nabla f(y(t)) \]

*Solution \(y \in C^1(\mathbb{R}_+, \mathbb{R}^d) \) exists unique in since \(\nabla f \) is globally Lip.
Some important ODE/SDE models

Algorithm	Model	Perturbed model (stochastic grads)
\(x_{k+1} = x_k - h \nabla f(x_k) \)	\(\dot{X} = -\nabla f(X) \)	\(dY = -\nabla f(Y) dt + \sigma dB \)
(GD)		[Mertikopoulos and Staudigl, 2016]
\(x_{k+1} = x_k + \beta(x_k - x_{k-1}) - h \nabla f(x_k) \)	\(\dot{y} = -\alpha \dot{y} - \nabla f(y) \)	\(\begin{cases}
\dot{v} = -\alpha v - \nabla f(y) \\		
\dot{y} = v		
\end{cases} \begin{cases}		
\dot{V} = -\alpha V dt - \nabla f(Y) dt + \sigma dB \\		
\dot{Y} = Y dt		
\end{cases} \)		
(HB)		[Polyak, 1964] [Orvieto et al., 2019]
\(\begin{cases}		
x_{k+1} = u_k - h \nabla f(u_k) \\		
u_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)		
\end{cases} \)	\(\dot{y} = -\frac{3}{t} \dot{y} - \nabla f(y) \)	\(\begin{cases}
\dot{v} = -\frac{3}{t} v - \nabla f(y) \\		
\dot{y} = v		
\end{cases} \begin{cases}		
\dot{V} = -\frac{3}{t} V dt - \nabla f(Y) dt + \sigma dB \\		
\dot{Y} = V dt		
\end{cases} \)		
(NAG)		[Nesterov, 1983] [Su et al., 2016] [Krichene and Bartlett, 2017]

and many more: primal-dual algorithms, adaptive methods, etc.
why should we care about SDE models?
do we really need to introduce these objects? what’s the gain?

- GD-ODE/SDE is the basis for many seminal contributions to the theory of SGD:
 1. asymptotic behavior [Kushner and Yin, 2003];
 2. connection to Bayesian inference [Mandt et al., 2017];
 3. generalization, width of minimas [Jastrzębski et al., 2017].

- NAG-ODE recently provided us with some novel insights of the acceleration phenomenon\(^1\):
 1. [Su et al., 2016] studied accel. with Bessel functions;
 2. [Wibisono et al., 2016] connected NAG to meta-learning and physics via the minimum action principle;
 3. [Krichene and Bartlett, 2017] studied the non-trivial interplay between noise and acceleration in NAG using stochastic analysis on the NAG-SDE;
 4. [Orvieto et al., 2019] showed NAG is equivalent to a linear gradient averaging system after the time-stretch \(\tau = t^2/8\).

\(^1\)For convex functions, there is a method (NAG) strictly faster than GD.
In this paper, inspired by this success.

- we build SDE models for SVRG and mini-batch SGD, which include the effect of **decaying learning rates and increasing batch-sizes**.

- We derive **convergence rates for our models**. We focus on non-convex functions relevant for machine learning.

- We derive equivalent **novel results for the algorithmic counterparts**, using the same Lyapunov functions. This proves the effectiveness of our SDE models.

- We provide a new interpretation for the distribution induced by SGD with decreasing stepsizes, which reveals an underlying **time warping** that can be used for designing Lyapunov functions.

- We provide a dual interpretation of this last phenomenon as **landscape stretching**.
SDEs description

Below are the two SDEs corresponding to mini-batch SGD (MB-PGF) and SVRG (VR-PGF).

\[
\begin{align*}
\text{d}X(t) &= -\psi(t)\nabla f(X(t)) \, dt + \psi(t)\sqrt{\frac{h}{b(t)}} \sigma_{\text{MB}}(X(t)) \, d\B(t) \\
\text{d}X(t) &= -\psi(t)\nabla f(X(t)) \, dt + \psi(t)\sqrt{\frac{h}{b(t)}} \sigma_{\text{VR}}(X(t), X(t - \xi(t))) \, d\B(t)
\end{align*}
\]

where

- \(\xi : \mathbb{R}_+ \rightarrow [0, \Xi] \) is the \textit{staleness function} (linked to the pivot update frequency \(m \) in SVRG);
- \(\psi(\cdot) \in C^1(\mathbb{R}_+, [0, 1]) \) is the \textit{adjustment function} (encodes the relative decrease in the learning rate)
- \(b(\cdot) \in C^1(\mathbb{R}_+, \mathbb{R}_+) \) is the \textit{mini-batch size function};
- \(\{B(t)\}_{t \geq 0} \) is a \(\dim - \)dimensional Brownian Motion on some filtered probability space.
We derive matching convergence rates in continuous- and discrete-time, using the same Lyapunov functions. This proves the effectiveness of our SDE models.
Insight 1: time stretching

Using the SDE models, we can transform an algorithm to an equivalent one which is easier to study.

Theorem. Let \(\{X(t)\}_{t \geq 0} \) satisfy PGF and define \(\tau(\cdot) = \varphi^{-1}(\cdot) \), where \(\varphi(t) = \int_0^t \psi(s)ds \). For all \(t \geq 0 \), \(X(\tau(t)) = Y(t) \) in distribution, where \(\{Y(t)\}_{t \geq 0} \) has the stochastic differential

\[
dY(t) = -\nabla f(Y(t))dt + \sqrt{h \psi(\tau(t))/b(\tau(t))}\sigma(\tau(t)) dB(t).
\]

Example.

\(b(t) = 1, \sigma(s) = \sigma I_d \) and \(\psi(t) = 1/(t + 1); \) we have \(\varphi(t) = \log(t + 1) \) and \(\tau(t) = e^t - 1 \).

\[
dX(t) = -\frac{1}{t+1} \nabla f(X(t))dt - \frac{\sqrt{h} \sigma}{t+1} dB(t) \text{ is s.t. the sped-up solution } Y(t) = X(e^t - 1)
\]

satisfies

\[
dY(t) = -\nabla f(X(t))dt + \sqrt{h \sigma e^{-t}} dB(t).
\]

Verification of the Thm. on a 1d quadratic (100 samples): empirically \(X(t) \triangleq Y(\varphi(t)) \).
Insight 2: landspace stretching

For the sake of simplicity, let \(f(x) = \frac{1}{2} \|x\|^2 \). PGF with \(b(t) = 1, \sigma(s) = \sigma I_d, \psi(t) = \frac{1}{t+1} \) is

\[
dX(t) = -\frac{1}{t+1}X(t)dt + \frac{h\sigma}{t+1}dB(t).
\]

Using solution feedback (only possible with a continuous time formulation), we find that in expectation

\[
\mathbb{E}[dX] = CX^2 dt \rightarrow \frac{d\mathbb{E}[X]}{dt} = C\nabla (X^3/3).
\]

Hence, PGF on the quadratic \(\frac{1}{2} \|x\|^2 \) with learning rate decreasing as \(1/t \) behaves in expectation like PGF with constant learning rate on a cubic.

i.e., we loose strong convexity hence we converge slower!
References
Anosov, D. V. (1967).
Geodesic flows on closed riemannian manifolds of negative curvature.
Trudy Matematicheskogo Instituta Imeni VA Steklova, 90:3–210.

Hairer, E., Lubich, C., and Wanner, G. (2006).
Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, volume 31.
Springer Science & Business Media.

Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., and Storkey, A. (2017).
Three Factors Influencing Minima in SGD.
ArXiv e-prints.

Krichene, W. and Bartlett, P. L. (2017).
Acceleration and Averaging in Stochastic Mirror Descent Dynamics.
ArXiv e-prints.
Kushner, H. and Yin, G. (2003).

Stochastic Approximation and Recursive Algorithms and Applications.

Stochastic Modelling and Applied Probability. Springer New York.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018).

Visualizing the loss landscape of neural nets.

In *Advances in Neural Information Processing Systems*, pages 6389–6399.

Mandt, S., Hoffman, M. D., and Blei, D. M. (2017).

Stochastic gradient descent as approximate bayesian inference.

The Journal of Machine Learning Research, 18(1):4873–4907.

Mertikopoulos, P. and Staudigl, M. (2016).

On the convergence of gradient-like flows with noisy gradient input.

ArXiv e-prints.

Nesterov, Y. E. (1983).
A method for solving the convex programming problem with convergence rate $o \left(\frac{1}{k^2} \right)$.

In *Dokl. Akad. Nauk SSSR*, volume 269, pages 543–547.

Orvieto, A., Kohler, J., and Lucchi, A. (2019).
The role of memory in stochastic optimization.
arXiv preprint arXiv:1907.01678.

Polyak, B. T. (1964).
Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

Su, W., Boyd, S., and Candès, E. J. (2016).
A differential equation for modeling nesterovs accelerated gradient method: theory and insights.
Journal of Machine Learning Research, 17(153):1–43.

Wibisono, A., Wilson, A. C., and Jordan, M. I. (2016).
A Variational Perspective on Accelerated Methods in Optimization.

ArXiv e-prints.