IMPACT OF BUILT ENVIRONMENT ON FIRST- AND LAST-MILE TRAVEL MODE CHOICE

Baichuan Mo, Tsinghua Univ., China
Yu Shen*, SMART, Singapore
Jinhua Zhao, MIT, MA

* yushen@smart.mit.edu

2018/01/10 Lectern Session 744; TRB Paper # 18-02288
Contents

• Background
• Data
• Descriptive Analysis
• Methodology
• Results & Analysis
• Conclusions
First/Last mile issue in Singapore

- Residents in Singapore heavily rely on public transport for daily travels
 - Low auto ownership
 - High cost to own and to use a car
- An obstacle in promoting higher public transit usage
 - Distance to transit station may sometimes be greater than the willingness to walk
- First/Last mile:
Impact of built environment

- In past studies, solutions to bridge the gap tend to redesign the built environment:
 - Altering the location to mixed-used activity centers
 - Siting houses/workplaces near rail stations
 - Constructing pedestrian footways, shaded corridors and bike lanes
- We aim at investigating the impact of the BE on first- and last-mile modal choice
 - We use a mixed logit (ML) framework to capture the heterogeneity of the impact of BE
Data

• Modal choice: Household Interview Travel Survey (Total Sample size: 23,941)
• BE variables: Singapore Land Authority digitized cadastral data
• Employment and resident distribution: Zhu and Ferreira (2014)
• Travel time & travel cost of unselected mode: Google Maps API
Spatial representativeness of the sample
Mode choice

LRT is available

- Walk
- Bus
- LRT (Light Rail)

LRT is unavailable

- Walk
- Bus
First & last mile modal share

Data Source: HITS 2012
Total Sample Size: 23,941

LRT
Walk
Bus
Other
MRT/LRT Line
MTZs

Samples: 560
Descriptive Analysis

• In Singapore, walk and bus are the two major travel modes for the first- and last-mile trips. Mean travel time is about 7-10 minutes.

Area	Mode	Modal share (%)
Area where LRT is unavailable	Walk	72.30
	Bus	26.74
	Other	0.96
Area where LRT is available	Walk	52.74
	Bus	29.96
	LRT	15.81
	Other	1.49
Built Environment (BE)

- 4 “D” variables (Ewing and Cervero, 2010)
 - 4 “D” variables: Density, Diversity, Design and Distance to transit
 - In 3 categories: Origin area, Destination area, and Non-MRT station area
 - For example:
Mixed Logit (ML) Models

- The mean impact and taste variation of BE
- Variables:
 - Sociodemographic characteristics;
 - BE variables;
 - Trip-specific attributes of each travel mode;
 - Alternative specific constant (ASC)
- The probability of individual n choosing travel mode i can be expressed as

$$P_{ni} = \int \frac{\exp(V_{ni})}{\sum_{k=1}^{K} \exp(V_{nk})} f(\beta) d\beta$$
Model 1: LRT unavailable

Variable	(a) With BE		(b) Without BE				
	Coefficient	t-test	Coefficient	t-test			
Walk							
Constant α	-	0	fixed	0	fixed		
Travel time	Mean	-0.567	-20.06	***	-0.580	-41.09	***
	†Std. Dev.	-0.115	0.11		0.383	0.23	
Bus							
Constant α	-	-9.510	-17.25	***	-6.38	-46.13	***
Travel time	Mean	-0.946	-16.09	***	-0.253	-21.73	***
	Std. Dev.	0.250	12.42	***	0.058	4.97	***
Commute trip (Yes=1)	-	0.235	1.81	*	0.243	3.81	***
Distance to MRT station	†Mean	1.160	15.95	***	-	-	
	‡Std. Dev.	0.102	0.04		-	-	
EAI to Bus stop (Origin)	Mean	2.650	6.98	***	-	-	
	Std. Dev.	0.037	0.28		-	-	
Floor space density (Non-MRT station area)	Mean	-0.329	-4.53	***	-	-	
	Std. Dev.	0.146	3.23	***	-	-	
Walking-based EAI to MRT station	Mean	-0.039	-6.43	***	-	-	
	Std. Dev.	0.027	6.81	***	-	-	
Road density (Non-MRT station area)	Mean	0.144	1.75	*	-	-	
	Std. Dev.	0.362	0.06		-	-	
Statistics							
Observations	20181		20181				
Rho squared	0.832		0.736				
Adjusted Rho squared	0.831		0.735				
Summary of Model 1

- Trip-specific variables:
 - Walking time (-)
 - Bus travel time (-, significant σ)
- With BE, goodness-of-fit increases
- Impact of BE
 - We set walk as benchmark, all in utility function of bus
 - Distance to MRT (+)
 - EAI to bus stop from origin (+)
 - Walk-based EAI to MRT station (-, significant σ)
 - Floor space density in non-MRT area (-, significant σ)
 - Road density (+)
Model 2: LRT available

Variable	(a) With BE	(b) Without BE				
	Coefficient	t-test	Coefficient	t-test		
Walk						
Constant α	-		0 fixed			
Travel time	Mean	-0.835	-4.06***	-1.260	-6.42***	
	†Std. Dev.	0.144	2.77**	0.235	4.28***	
Bus						
Constant α	-		-3.860	-1.46	-7.290	-6.92***
Travel time	Mean	-1.850	-3.68***	-0.904	-5.57***	
	Std. Dev.	0.392	2.99***	0.154	2.70**	
	†Mean	2.450	3.58***			
	†Std. Dev.	1.430	0.16			
Distance to MRT station	Mean	-15.40	-2.95***			
	Std. Dev.	0.439	0.34			
Entropy (Non -MRT station area)	Mean	3.020	2.76**			
	Std. Dev.	0.141	0.19			
LRT						
Constant α	-		11.90	1.43	-7.790	-6.35***
Travel time	Mean	-3.230	-2.71**	-1.130	-6.11***	
	Std. Dev.	0.540	2.29**	0.008	0.11	
	†Mean	3.250	2.69**			
	†Std. Dev.	0.032	0.23			
Entropy (Non -MRT station area)	Mean	-44.40	-2.38**			
	Std. Dev.	3.600	1.73*			

Statistics

	(a)	(b)
Observations	2373	2373
Rho squared	0.891	0.816
Adjusted Rho squared	0.885	0.813
Summary of Model 2

• Trip specific variables
 • Walking time (-0.8, significant σ)
 • Bus travel time (-1.9, significant σ)
 • LRT travel time (-3.2, significant σ)

• With BE, ρ increases

• Impact of BE
 • Bus: Distance to MRT (2.5)
 • LRT: Distance to MRT of LRT (3.3)
 • Bus: EAI to bus stop (+)
 • Bus: Entropy (-15.4)
 • LRT: Entropy (-44.4, significant σ at 0.1)
Findings

• BE factors influencing first-/last-mile travel behaviors
 • Distance to MRT stations
 • Ease of access to buses
 • Land use mix and socioeconomic
• People with greater probability choosing to walk
 • Live or work close to MRT stations
 • Area with high socioeconomic activities and land use mix
• Heterogeneity
 • The impact of physical BE variables (e.g. distance, infrastructures) is relatively homogeneous across the sample.
 • The impact of socioeconomic-related BE (e.g. floor space density, entropy) varies.
Walk-friendly community design

- Active mobility behaviors associate with public health (Celis-Morales et al. 2017, BMJ)
- More compact community with higher floor space density
Deployment of AV

• The Ministry of Transport of Singapore recently made an ambitious plan to deploy autonomous vehicles in 2030

• The findings offer some suggestions for AV deployment and infrastructures installation with consideration of BE.
 • The areas with high first-/last-mile travel demand by bus may also imply high potential demand of AVs in the future.
15% over 15,000 passengers need to take a bus to access to the MRT station from 7 to 9 a.m.

Data source: EZ link data, 2012 Aug.
52% over 15,000 passengers need to take a bus to access to the MRT station from 7 to 9 a.m.

Data source: EZ link data, 2012 Aug.
Thank you!

yushen@smart.mit.edu