無水銀メタルハライドランプの始動メカニズムに関する研究

Study on Ignition Mechanism of Non-mercury Metal Halide Lamps

The filling gas pressure of mercury-free HID lamp is much higher than that of the mercury containing lamp. A high filling gas pressure leads to a high ignition voltage in mercury-free HID lamp and this makes the ballast with ignition circuit bigger and heavier in order to maintain the ignition reliability. Therefore, it is important to decrease the ignition voltage of mercury-free HID lamps. It is necessary to better understand how the discharge starts and grows in the HID lamp burner in order to decrease the ignition voltage. An ultra high speed camera was used for the discharge observation, the shutter speed of which is 5 ns. As a result, we found that a very weak discharge occurred outside the burner before the burner ignited. It is believed that this weak discharge influences the ignition condition from two points of view, which are the ultraviolet rays radiating from this discharge and the electric field distortion formed by the attached electric charge on the outside of the burner wall. We found that the attached electric charge on the outside of the burner wall strongly influences the ignition performance and that the ultraviolet radiation little influences the ignition performance.

KEYWORDS: HID-lamp, ignition, electric distortion, pre-discharge, shroud gas

1. はじめに

一般照明用HIDランプは現在でも水銀が含まれているが、自動車用ヘッドランプ用のHIDランプでは一般照明用と光製け2004年世界初で水銀フリー化が進められている。日本では新車の自動車用のヘッドランプの約30％はHIDランプが装着されており、その約半数が水銀フリーランプとなっている。2012年7月欧州ELV指令で自動車用ヘッドランプには水銀入りのHIDランプが使用禁止になることと同調して、今後は水銀フリー化が一層進められやすいに考えられている。

水銀が封入されたHIDランプは、始動時は低圧の希ガス状態であり、点灯後のランプ温度の上昇に伴い水銀蒸気圧が上昇し適正なランプ電圧に達する仕組みになっている。しかしながら無水銀HIDランプは水銀がないためその蒸気圧の上昇を利用することができず、点灯後のランプ電圧を確保するためにガス(Xe)を高圧で封入する必要がある。このため始動時には発光後の水銀封入HIDランプ以上の高圧電圧印加が必要となる。このことは点火装置の大型化と高コスト化につながるため、始動電圧の低減は非常に重要である。現在の無水銀HIDランプの始動電圧は約30V以上であり、それを低減させるためには始動のメカニズムを把握することが非常に重要である。一般に始動電圧に影響を及ぼすものとして、印加電圧の極性、発光管と外管の間に封入するガス（以後このガスをシュラウドガスと表現する）の種類や圧力、発光管近傍の近接導体の有無などが知られているが、ここでは、自動車用ヘッドランプに用いられている無水銀HIDランプに関して、印加電圧の極性およびシュラウドガスの始動性能に及ぼす影響を調べ、無水銀HIDランプの始動メカニズムについて考察した。

2. 実験および結果

2.1 実験装置および測定条件

現在市場に出ている自動車用HIDランプは（照明用HIDランプと同様）、石英ガラス製の発光管と外管との2重管構造になっている（図1）。ランプはAC点灯タイプであり、発光管と外管の間には不活性ガスが封入されている。それをフルブリッジ回路により矩形波点灯を行っている。

我々がここで使用した発光管は、従来の発光管と同様の構造で新しく開発した透光性セラミックスで作成したものであり、図2にその発光管の写真を示す。透光性セラミックスはランプの管壁温度を上昇させることができ高効率を実現できる。ランプにはキセノン15kWとメタルハライド金属を封入した。
実験効率化のため、HID ランプ発光管を真空チャンバーの中にいれて、シュラウドガスの種類や圧力を可変できるようにした測定システムを用いた。ランプには外と防止部材を取り付けて、放電管外部で沿面放電が起きないように工夫した。図 3 に始動試験の測定システムおよびそれに利用したランプの形状を示す。バ尔斯電源として株ソイズ研究所製の ESS-2002、ランプ電圧・電流の波形測定には岩崎のオシロスコープ DS-4262 を用いた。始動性能を評価するために、始動電圧 (Vig) と電圧印加から始動までに経過する時間 (以下、始動遅延時間 (Time lag) とよぶ) を測定した。その両者の定義は、電圧を印加してから放電する (放電管端電圧がゼロに低下する) 時間を始動遅延時間とし、放電直前の放電管端電圧値を始動電圧とした (図 4)。図 4 においてランプ始動後 (電圧がゼロに低下した後) に振れ始めているのは、急激な電圧変化のため回路中のインダクタンス成分により振動を引き起こしている。

始動電圧を測定する条件として、始動電圧測定後に、「5 分以上の定格点灯後消灯し、30 分以上放置」を毎回行った。その詳細を図 5 に示す。

2.2 シュラウドガスの影響

図 6 にガス種およびガス圧を変えたときの始動電圧 (Vig) と始動遅延時間 (Time lag) の関係を示す。ここでの印加電圧は負パルスを用いた。この結果は、放電管外部にガスが存在する方が真空に比べて同一始動遅延時間での始動電圧を低くできること、その始動性能はガス圧およびガス種に影響されることを示している。

2.3 印加パルス電圧の極性の影響

印加電圧の極性が始動性能 (始動電圧と始動遅延時間の関係) に及ぼす影響を調べた。チャンバー内のシュラウドガスの条件を窒素13.3kPa(100Torr), 50.5kPa(380Torr), アルゴン80.0kPa(600Torr) とした場合について、それぞれ極性を変え実験を行った。測定結果を図 7 に示す。この結果から正パルスと負パルスとは違いはない。

2.4 始動状況の観察

ハイビジョンカメラ ULTRA Neo（ナックイメージテクノロジー社製、波長感度400nm ～850nm）を用いて始動状況を観察した結果を図 8 に示す。観察のしやすさを考慮して、シュラウドガスとして Ar/N2 (1 : 1) 13.3kPa を用いた。写真は印加電圧として一10kV を与えたときのみであり、シャッタースピードは 5 ns、フレーム速度10ns である。図 8 で最初 (0 ～ 56) に薄いブラズマがランプ内部に局所的で、それが電極間全体に広がり、その後激しいストリーマ放電がアノード側からカソードに向かって進展していることが確認できる。ただし図 8 では始動の前駆現象が鮮明には観測できていない。この原因をカメラの発光スペクトルに対する感度であると考え、ハイビジョンカメラのパック Pco2000hs（ナックイメージテクノロジー社製、波長感度200nm ～ 1000nm）を用いて図 8 の薄いブラズマがランプ内に発生し始める真直前の写真を撮影した。その結果を図 9 に示す。この写真のシャッタースピードは 1 μs であり、電圧印加と同期させ始動直
3. 考察

3.1 始動状況の観察結果について

図8で示した紫のストリーム放電がアノード側からカソードに向かって進展しているという観察結果は、N.Y.Babaevらの報告したシミュレーション結果と一致しない。彼らは8気圧のXeを封入したHIDランプの始動に関するシミュレーションを行い、ストリームが陽極から進展し、金属ハログランプ管壁に存在する場合であるのにに対し、8気圧のXeを封入したHIDランプの始動状況は異なる。したがって、N.Y.Babaevらの報告したシミュレーション結果と一致しない。彼らは8気圧のXeを封入したHIDランプの始動に関するシミュレーションを行い、ストリームが陽極から進展し、金属ハログランプ管壁に存在する場合であるのにに対し、彼らのシミュレーション結果による結果である。
に使用したランプの形状と境界条件を示す。

まず電荷が帯電していない状態を計算した。図14に電極の片側に-23kVの電圧を印加（他方の電極は接地）したときの電界分布を示す。最も電界が高かった場所は、電圧印加電極先端のエッジ部分である。次にシュラウド内部で発生した電荷がランプ管外壁に帯電している場合についての計算を行った。帯電状態として簡単化のために、電荷は発光管の外部（タンクストン電極封入部の端面は含まずそれ以外の場所）に均質に付着したものとして計算した。

図12 紫外線の有無が起動性能に及ぼす影響
Fig.12 Influence of UV emission on the ignition performance.

図15 ランプ内部の電界強度と発光管外壁に帯電した電荷量の関係
Fig.15 The relation between the electric intensity distribution and the attached electric charge on the outside of the burner wall.
算した。発光管外壁に正電荷が帯電したときの電荷密度とランプ内部の電界分布およびランプ内部の最大電界強度の変化の様子を計算によって求めた結果を図15に示す。電界が最も高かったのは、電荷が帯電していない場合と同じく、印加電圧端部のエッジ部分である。

図15に示した条件で、ランプ内部の最大電界強度（電圧印加電極端部のエッジ部分の電界）と電荷量の関係を図16に示す。なお、印加電圧を+23kVとして帯電する電荷を負とした場合もこれと同じ結果が得られた。

図15、図16の結果は、印加電圧の極性と帯電する電荷が逆の場合、印加電圧の電荷密度が1×10^8C/m^2より大きくなると、発光管内部の電界分布に大きな影響を及ぼし始めることを示す。

3.3 印加電圧の極性の影響について

図7から、このランプは正パルスと負パルスとで始動性に大きな違いはなかった。印加電圧の極性が帯電に及ぼす影響は以前より極性効果として知られている。しかし、今回の実験結果から極性は始動性能に影響を及ぼさない結果が得られた。シミュレーションで求めた結果も、発光管外壁が帯電していない場合は、印加電圧極性によってはランプ内部電界の分布に大きな差が生じなかった。これに基づき間隔が非常に短い（数mm）ために、ランプ内部に及ぼす周囲電位の影響が、電極に印加される電位の影響に比べて無視できるくらい小さいためであると考える。

しかし、前節で述べたように、ランプ発光管壁に帯電することでランプ内部の電界強度が大きく変化する。そこで、印加電圧の極性、帯電荷の正負が印加電圧の極性とランプ内部の電界強度分布にどのように影響を及ぼすかを調べ、ランプ内部の電界、電極間電位の影響を調べた。

図17に示す図18は印加電極の極性と帯電電荷の極性を逆にした場合（印加電圧が正で帯電電荷が負）のものである。図19は印加電極の極性と帯電電荷の極性を同じにした場合（印加電圧が正で带電電荷が正）のものである。

印加電極の極性と帯電電荷の極性が逆の場合（図18）の場合は、電界の最大となる場所は変化せず、かつ前節で述べたように、1×10^8C/m^2より大きくなると、発光管内部の電界分布に大きな影響を及ぼす。
自動車用ヘッドランプに用いられている無極性 HID ランプに関して、印加電圧の極性やシュラウドガスが発光性能に及ぼす影響を調べ、以下のことを確認した。
(1) 放電管と外管の間にガス（シュラウドガス）が存在すると、存在しない場合に比べ発光性能は大きく向上する。
(2) 高速カメラでの観察により、シュラウドガスが存在する場合には、放電管の始動初期にシュラウドガス内で微放電が発生することが確認できた。
(3) 高速カメラでの観察により、発光管内の放電開始時には正ストローマが見られることが確認できた。
(4) シュラウドガス内での微放電が発生することを防止するためには、微放電を抑制する条件を検討したところ、放電管内にガス圧を調整することで安定した放電が可能であることが分かった。
(5) 本実験において、非常に高電圧間隔の短い HID ランプの始動に関しては、電極間の電圧の極性が影響を及ぼすことが示唆された。

参考文献
(1) T. Hayakawa, S. Hayashi, S. Miyazawa, T. Ohashi and K. Watanabe: C-axis Orientation and Optical Transmission Properties of Translucent Polycrystalline Alumina Ceramics, The proceedings of 13th International Symposium on the Science and Technology of Lighting, pp.131-132 (2012).
(2) S. Y. Babaeva, A. sato, N. Brates, K. Noro and M. J. Kushner: Modeling mercury– free HID lamps: Breakdown characteristics and thermodynamics, The proceedings of 12th International Symposium on the Science and Technology of Light Source and White LEDs.
(3) A. Bergner, T. Hobing, C. Ruhrmann, J. Mentel and P. Awakowicz: Investigation of breakdown processes in automotive HID lamps, The proceedings of 64th Gaseous Electronics Conference,NR35, p.67 (2011).

(4) A. Bergner, T. Hobing, C. Ruhrmann, J. Mentel and P. Awakowicz: Minimizing the ignition voltage of automotive HID lamps by optimized DBD ignition within the outer bulbs, The proceedings of 13th International Symposium on the Science and Technology of Lighting, pp.173-174 (2012).

(受付日2013年11月5日／採用日2014年5月8日)