Differences in problem and pathological gambling: A narrative review considering sex and gender

CORINNA GARTNER1*, ANDREAS BICKL2, SABINE HÄRTL1, JOHANNA K. LOY2 and LAURA HÄFFNER1

1 BAS Bayerische Akademie für Sucht- und Gesundheitsfragen (Unternehmergesellschaft haftungsbeschränkt), LSG Landesstelle Glücksspielsucht in Bayern, Munich, Germany
2 IFT Institut für Therapieforschung, Munich, Germany

Received: December 14, 2021 • Revised manuscript received: February 11, 2022; March 15, 2022 • Accepted: March 22, 2022
Published online: May 2, 2022

ABSTRACT

Background and aim: A wide range of studies indicates that men and women with Problem (PrG) and Pathological Gambling (PG) differ in several clinical and sociodemographic characteristics. However, evidence for sex differences, such as the telescoping effect, is contradictory, and it is still unclear whether sex differences observed in offline gambling can also be found for online gambling. Furthermore, reviews have so far focused on binary sex differences but neglect gender aspects. In this study, an updated literature survey of sex- and gender-related differences in gambling was conducted.

Methods: We searched PsyInfo, Medline/Pubmed, and the Web of Science databases from 2005 to 2020 for studies investigating sex and gender differences in gambling. A total of 126 papers were included in the literature survey.

Results: We are presenting our findings according to the categories 'prevalence' (of offline, online, LGBTQI), 'sociodemographic factors', 'preferred gambling type', 'gambling motives', 'severity', 'progression of gambling problems', 'use of professional help/motivation for treatment', 'comorbidity', 'trauma', 'violence and criminality/delinquency'. The studies indicate that, despite some robust sex differences (e.g., concerning prevalence rates), results for most areas were mixed or suggest no sex differences (e.g., violence, gambling motives).

Discussion and conclusion: To date, there is a lack of studies assessing gender, and not only sex, warranting further research in this area.

KEYWORDS
problem gambling, pathological gambling, sex and gender differences, review

INTRODUCTION

Problem gambling (PrG) and pathological gambling (PG) are well recognized societal and individual health issues (Marshall, 2009; The Lancet, 2017). PrG and PG are characterized by a strong urge to gamble with increasing amounts of money and loss of control. The gambling activities go along with significant financial losses and legal problems. Frequently, persons with PrG and PG risk their relationships and jobs and report severe psychosocial problems (American Psychiatric Association, 2013).

Aside from these general diagnostic criteria, the clinical picture may vary considerably by sex and gender. Whereas sex refers to the biological characteristics, gender focuses on societal and cultural norms, preferences as well as behaviors (WHO, 2019).

Regarding sex differences, some studies report that men are twice as likely to develop a gambling problem as women (Banz & Lang, 2017) and that men prefer skill-based games such as poker, whereas women prefer strictly chance-based games such as slot-machines or...
bingo (Bonnaire et al., 2017; Odlaug, Marsh, Kim, & Grant, 2011; Potenza, Maciejewski, & Mazure, 2006). Another frequently mentioned example is the telescoping effect (e.g., Blanco, Hasin, Petry, Stinson, & Grant, 2006; Grant, Odlaug, & Mooney, 2012; Tavares et al., 2003), suggesting that women start to gamble later in life but progress to pathological gambling behavior faster. It has also been hypothesized that women gamble for different motives (Echeburúa et al., 2011, 2013; Grant & Kim, 2002). Whereas men gamble to earn money easily or to seek excitement, women mainly want to escape boredom, loneliness and everyday problems. Men enter gambling-related treatment at a younger age than women, show more difficulties concerning their alcohol use and are more often in conflict with the law (Ladd & Petry, 2002; Potenza et al., 2001). Men and women also seem to differ in comorbidities. Some studies reported a higher probability of comorbid disorders in women (Blanco et al., 2006; Desai & Potenza, 2008; Díez, Aragay, Soms, Prat, & Casas, 2014). Elevated comorbidity rates have been found most often for addictive and anxiety disorders. However, despite the wide variety of areas where sex differences between men and women have been observed in their gambling behavior and related problems, evidence so far has been mixed. Even for the often-cited telescoping effect, findings are contradictory (Slutske, Piatecki, Deutsch, Statham, & Martin, 2014). An additional issue is that existing reviews about gambling related problems have focused on binary sex differences between women and men and lack a gender dimension (e.g., McCarthy, Thomas, Bellringer, & Cassidy, 2019; Merkouris et al., 2016). As gambling is a phenomenon shaped by sociocultural factors (e.g., How socially accepted is it for different genders to gamble?), gender aspects should be considered. Despite some attempts to explore gender differences in gambling, a common problem is that even though only sex is being assessed, gender differences are implied. To avoid a confusion of concepts, Clayton and Tannenbaum (2016) suggest strictly differentiating between the two concepts. Due to the importance of the two concepts are more detailed definition will be given in the following.

Sex can be categorized as male, female or intersex and is indicated for example by one’s sex chromosomes or reproductive organs. Whereas sex is a construct focusing on medical assumptions, gender highlights cultural and social aspects. Gender identity can be defined as a person’s inner sense of being female, male or something else. It does not necessarily have to be congruent with a person’s sex assigned at birth nor is it always visible to others. The concept gender includes the concept gender identity as well as gender expression. The external appearance of an individual (e.g., clothing, behavior, voice) is defined as gender expression and can be contrary to one’s gender identity. In short gender identity is best captured as a continuum ranging from woman-ness to man-ness whereas gender-expression could be measured on a scale from femininity to masculinity. Another social construct, that is closely linked to gender, is sexual orientation, which refers to the sexual and emotional attraction to another person. As the definitions illustrate, sex and gender comprise two distinct concepts. Even though they might influence or complement each other, sex and gender focus on different aspects. Therefore, it is necessary to examine them separately. Differentiating between sex and gender aspects is not only of scientific interest. For example, it may help clarify reasons for differences in prevalence rates and treatment seeking behavior.

The aim of this study is to critically re-examine assumed sex and gender differences based on accumulated empirical evidence. A special focus is on identifying studies explicitly including gender aspects. The summary is intended to inform good clinical practice by providing a guideline about which differences between male, female, and gender diverse persons with PrG and PG should be considered in treatment.

METHODS

Selection criteria

To be included in the present narrative review, studies had to be peer-reviewed and available to the authors no later than November 2020. Only studies on predefined areas of interest were included. Overall, we defined 11 areas of interest: (1) prevalence rates (offline, online, LGBTQI* [Lesbian, Gay, Bisexual, Transgender, queer, intersex and others]); (2) sociodemographic factors (educational level, marital status, income, debts, children); (3) preferred gambling types; (4) gambling motives; (5) severity of gambling problems; (6) progression of gambling problems (age/telescoping effect); (7) use of help/motivation for treatment; (8) comorbidity; (9) trauma; (10) violence; (11) criminality and delinquency.

Procedure for identification of studies

We searched PsyInfo, Medline/Pubmed, and the Web of Science databases from 2005 to 2020 for clinical studies investigating sex and gender differences in gambling. We used the search term "(problem OR addict OR pathological OR risk OR disorder) AND gambling AND (gender OR sex OR male OR female OR men OR women OR man OR woman)". To search for specific sub-categories, further search terms were added (AND “prevalence”, “comorbidity” …). All peer-reviewed papers published in German or English between 2005 and 2020 were scanned based on the title and information given in the abstract and keywords (full text available, specifically addressed gender differences). Additionally, we manually scanned the reference lists of relevant papers and included papers that were considered suitable. Pivotal gray literature (e.g., addiction surveys) was included as well. To be included in the review, studies had to have at least some focus on sex or gender differences. Studies in which this aspect was considered rather superficially, e.g., as a covariate in the analyses and only discussed in passing, were not included.

RESULTS

Overall, we identified 1970 articles. After removing duplicates and scanning the abstracts, 126 articles were included.
As some articles contained relevant information on more than one of the predefined areas, they will be cited separately in each category. 126 of the included articles examined sex. None provided information how the construct gender was assessed even if the title or abstract implied it. Therefore, we can’t present any findings regarding gender differences in the results section.

Prevalence

Offline. Noting that partly different instruments were used to assess gambling-related problems among the used studies, the 26 included studies indicate a prevalence spectrum from 0.3% to 10.9% for at least problematic gambling (Abbott, Stone, Billi, & Yeung, 2016; Anagnostopoulos et al., 2017; Andrie et al., 2019; Assanangkornchai, McNeil, Tantriratsee, & Kittirattananapiboon, 2016; Baggio et al., 2018; Castrén, Heiskanen, & Salonen, 2018; Blanco et al., 2006; Brodbeck, Duerrenberger, & Znoj, 2009; Castrén et al., 2013; Chiu & Woo, 2012; Economou et al., 2019; Fröberg et al., 2015; Giralt et al., 2018; Gori et al., 2015; Huang & Boyer, 2007; Lupu & Todirita, 2013; Melendez-Torres, Anthony, Hewitt, Murphy, & Moore, 2020; Mori & Goto, 2020; Nordmyr, Forsman, Wahlbeck, Björkqvist, & Österman, 2014; Petry & Steinberg, 2005; Petry, Stinson, & Grant, 2005; Svensson & Romild, 2014; van der Maas et al., 2018; Welte, Barnes, Tidwell, Hoffman, & Wieczorek, 2015; Williams, Lee, & Back, 2013; Wu, Lai, & Tong, 2014). Within this spectrum, men were usually more often affected by problematic and pathological gambling behavior than women. This general trend could be observed for adolescents and adults (Assanangkornchai et al., 2016; Blanco et al., 2006; Brodbeck et al., 2009; Castrén et al., 2013; Gori et al., 2015; Huang & Boyer, 2007; Mori & Goto, 2020). However, in one Swedish study (Svensson & Romild, 2014), there was a deviation from this pattern as females showed a higher prevalence after controlling for age and gambling type domains.

The extent of observed differences varied within different age groups. In studies addressing adolescent gambling, men exhibited higher ratios for PrG and PG compared with women (Anagnostopoulos et al., 2017; Andrie et al., 2019; Chiu & Woo, 2012; Gori et al., 2015; Huang & Boyer, 2007; Lupu & Todirita, 2013). According to a study by Blanco et al. (2006), men generally appeared to be affected by gambling problems at a younger age, whereas women appeared to be affected more often at an older age. In a study among the over 55-year-olds, differences could only be found with regard to general aspects of gambling (e.g., frequency, attitudes) and not with regard to the prevalence of PrG (van der Maas et al., 2018). The longitudinal comparison of two US surveys conducted in 1999–2000 and 2011–2013 found increasing PrG rates for men and decreasing rates for women (Welte et al., 2015), whereas a Finnish study by Castrén, Heiskanen, and Salonen (2018) observed the opposite with a decrease in men’s PrG from 2007 to 2011, whereas women’s at-risk gambling and problem gambling increased from 2011 to 2015 (see Table 1 at section ‘prevalence of offline gambling’).

Online. Overall, we found 11 studies investigating the prevalence of online gambling by sex (Chóliz, Marcos, & Lázaro-Mateo, 2019; Edgren, Castrén, Alho, & Salonen, 2017; Elton-Marshall, Leatherdale, & Turner, 2016; Flores, Siomos, Fisoun, & Geroukalis, 2013; Gainsbury et al., 2015; Gómez, Feijóo, Braña, Varela, & Rial, 2020; Griffiths, Wardle, Orford, Sproston, & Erens, 2009; Lelonek-Kuleta, Bartczuk, Wiechete, Chwaszcz, & Niewiadomska, 2020; McCormack, Shorter, & Griffiths, 2014; Wu, Lai, & Tong, 2015; Yazdi & Katzian, 2017). The studies unanimously indicate that men are more likely to engage in online gambling. For example, Griffiths et al. (2009) and Chóliz et al. (2019) found that approximately 9% of men and only 3% of women had gambled online. Gómez et al. (2020) reported an even more pronounced sex difference of 11.5% vs. 1.4%. Griffiths et al. (2009) reported elevated prevalence rates of PG among persons who gamble online (5%). However, the group of people who gamble online was too small to be analyzed by sex. Data from Spain, where online gambling has been legalized since 2012, suggested that sex ratios for a mix of online and offline gambling are similar to previously reported sex ratios (Chóliz et al., 2019). See Table 1 at section ‘prevalence of online gambling’ for further information.

LGBTQI. Overall, we found only three studies on the association between sexual orientation and the prevalence of pathological gambling. Two studies (Grant & Potenza, 2006; Richard et al., 2019) hinted at higher severity of gambling problems in the LGBTQI’ community, whereas one study (Broman & Hakansson, 2018) found no evidence for elevated prevalence levels. As Richard et al. (2019) outlined, higher prevalence levels are in line with a generally higher risk for mental health and substance use problems in this group (see Table 1 at section ‘prevalence of LGBTQI’).

Sociodemographic factors

We identified 11 studies providing information on sex differences for sociodemographic variables (Blanco et al., 2006; Bonnaire et al., 2016, 2017; Castrén, Konutto, Alho, & Salonen, 2018; Granero et al., 2009; Grant, Chamberlain, Schreiber, & Odlaug, 2012; Guillou-Landreat et al., 2016; Hing, Russell, Tolchard, & Nower, 2016; Jiménez-Murcia et al., 2020; Ronzitti, Lutri, Smith, Clerici, & Bowden-Jones, 2016; Vogelgesang, 2009). Education, income, employment status, and household composition were defined as variables of interest.

Two studies reported on education differences (Grant, Chamberlain, et al., 2012; Hing et al., 2016). Among a general population sample, Hing et al. (2016) found that men as well as women with PrG were more likely to have a lower education with less than 10 years of schooling, whereas Grant, Chamberlain, et al. (2012) found no educational differences among their clinical sample. Three studies included information on income differences (Blanco et al., 2006; Castrén, Konutto, et al., 2018; Granero et al., 2009). All showed that, on average, men with PrG had a higher monthly income than women with PrG. Concerning unemployment, two of three studies found women more
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Abbott et al. (2016)	Australia	23,479	Male: n = 9,473	Adults	General population	SOGS, CPGI, VGS
Anagnostopoulo et al. (2017)	Greece	2,141	Male: 45.4%	Adolescents	General population	DSM-IV
Andrie et al. (2019)	Spain, Greece, The Netherlands, Poland, Romania, Germany, Iceland	13,284	Male: n = 6,284	Adolescents	General population	SOGS
Assanangkornchai et al. (2016)	Thailand	4,727	Male: 36%	Adults	General population	DSM-IV
Baggio et al. (2018)	France	8,805	Male: 48.2%	Adolescents, Adults, Older Adults	General population	PGSI
Blanco et al. (2006)	USA	43,093	Only reported for participants with GD	Adults	General population	AUDADIS-IV
Brodbeck et al. (2009)	Switzerland	8,385	Male: 48%	Adults	General population	NODS
Castrén et al. (2013)	Finland	2,826	Male: n = 1,243	Adolescents, Adults	General population	PGSI
Castrén, Heiskanen, and Salonen (2018)	Finland	13,721	Male: n = 6,785	Adolescents, Adults, Older Adults	General population	SOGS
Chiu and Woo (2012)	Chinese in USA	192	Male: n = 97	Adolescents	General population	SOGS
Economou et al. (2019)	Greece	7,818	Male NPG: 46.7%	Adults	General and clinical sample	PGSI
Fröberg et al. (2015)	Sweden	4,358	Male PG: 67.1%	Adolescents, Adults	General population	PGSI, SOGS
Giralt et al. (2018)	Germany	9,309	Male: n = 4,600	Adolescents	General population	DSM-IV
Gori et al. (2015)	Italy	5,920	Male: 62.3%	Adolescents	General population	SOGS
Huang and Boyer (2007)	Canada	5,666	N/A	Adolescents, Young Adults	General population	CPGI
Lupu and Todirita (2013)	Romania	1,032	Male: 65.57%	Adolescents	General population	20-GA
Melendez-Torres et al. (2020)	Wales	37,363	Male: n = 18,663	Adolescents	General population	N/A
Mori and Goto (2020)	Japan	6,576	Male: n = 3,302	Adults	General population	SOGS
Nordmyr et al. (2014)	Finland	2,984	Male: n = 1,438	Adults	General population	DSM-IV

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Petry and Steinberg (2005)	USA	149	Male: n = 72, Female: n = 77	Adults	Clinical sample (treatment seeking PGs)	SOGS
Petry et al. (2005)	USA	42,898	Male: 47.8%, Female: 52.3%	Adults	General population	AUDADIS-IV
Svensson and Romild (2014)	Sweden	3,191	Male: n = 2048, Female: n = 1,143	Adolescents, Adults, Older Adults	General population	PGSI
van der Maas et al. (2018)	Canada	2,187	Male: n = 1,011, Female: n = 1,176	Older Adults	General population	CPGI
Welte et al. (2015)	USA	5,594	Male: n = 2,703, Female: n = 2,891	Adults	General population	SOGS
Williams et al. (2013)	South Korea	8,330	N/A	Adults	General population	CPGI, NODS, PPGM
Wu et al. (2014)	Macao	1,018	Male: n = 454, Female: n = 564	Adults	General population	DSM-IV
Prevalence of online gambling						
Chóliz et al. (2019)	Spain	6,816	Male: 48.4%, Female: 51.6%	Adults, Older Adults	General population	NODS
Edgren et al. (2017)	Finland	3,555	Male: 53.8%, Female: 46.2%	Adults, Older Adults	General population	PGSI
Elton-Marshall et al. (2016)	Canada	10,035	Male: n = 4,937, Female: n = 5,098	Adolescents	General population	GPSS of the CAGI
Floros et al. (2013)	Island of Kos	2017	Male: 51.8%, Female: 48.2%	Adolescents	General population	DSM-IV
Gainsbury et al. (2015)	Australia	15,006	Male: 47.5%, Female: 52.5%	Adolescents, Older Adults	General population	PGSI
Gómez et al. (2020)	Spain	3,772	Male: 49.8%, Female: 50.2%	Adolescents	General population	N/A
Griffiths et al. (2009)	GB	9,003	N/A	Adolescents, Adults	General population	DSM-IV, BBGS
Lelonok-Kuleta et al. (2020)	Poland	2,000	Male: 48.2%, Female: 51.8%	Adults	General population	BBGS
McCormack et al. (2014)	UK	975	Male: n = 800, Female: n = 175	Adults	General population	PGSI
Wu et al. (2015)	China	952 community sample (CS), 427 university student sample (US) (N = 1,399)	CS: Male: 42%, Female: 58%, US: Male: 43.6%, Female: 56.4%	CS: Adults, US: Young Adults	General population	DSM-IV
Yazdi and Katzian (2017)	Austria	3,043	Only reported for participants with GD	Only reported for participants with GD	General population	Johnson’s Lie-and-Bet Questionnaire (Johnson et al., 1997) (continued)
Table 1. Continued

Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures	
Prevalence of LGBTQI							
Broman and Hakansson (2018)	Italy	605	Male: 38%		Adolescents, Adults	General population	NODS, GAS
Grant and Potenza (2006)	USA	105	Only male		Adults	Clinical sample	DSM-IV
Richard et al. (2019)	Canada	19,299	Male: Hetero: n = 10,305		Adolescents, Young Adults	General population	DSM-5
Sociodemographic factors							
Blanco et al. (2006)	USA	43,093	Only reported for participants	Adults	General population	AUDADIS-IV	
Bonnaire et al. (2016)	France	25,646	Male: n = 12,504	Adolescents, Adults,	General population	CPGI	
Bonnaire et al. (2017)	France	25,646	Male: n = 12,504	Adolescents, Adults,	General population	CPGI	
Castrén, Kontto, et al. (2018)	Finland	3,251	Male: n = 1,833	Adolescents, Adults,	General population	SOGS	
Granero et al. (2009)	Spain	286	Male: 50%	Adults	Clinical sample	SOGS, DSM-IV	
Grant, Chamberlain, et al.	USA	501	Male: n = 227	Adults	Clinical sample	SCI-PG, CGI, PG-YBOGS, GSAS	
Guilló-Landreat et al. (2016)	France	194	Male: 82.47%	Adults	Clinical sample	DSM-IV, GRCS	
Hing et al. (2016)	Australia	8,917	Male: n = 3,783	Adults	General population	PGSI	
Jiménez-Murcia et al. (2020)	Spain	512	Male: n = 473	Adults	Clinical sample	DSM, GRSC	
Ronzitti et al. (2016)	UK	1,178	Male: 92.5%	Adults	Clinical sample	PGSI	
Vogelgesang (2009)	Germany	200	Male: 50%	Adults	Clinical sample	ICD-10	
Preferred gambling type							
Bonnaire et al. (2017)	France	25,647	Male: n = 12,504	Adolescents, Adults,	General population	CPGI	
Leung and Tsang (2011)	Chinese in Hong Kong	4,480	Male: n = 3,949	Adults	Clinical sample	N/A	

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Lopez-Gonzalez et al. (2020)	Australia/Spain	1,092	Australian Male: 79.3%, Female: 20.7%	Adults	General population	PGSI
Nong et al. (2020)	China	855	Male: 48.1%, Female: 51.9%	Adults, Older Adults	CPGI	DSM-5
Nower and Blaszczynski (2006)	USA	2,670	Male: 51.1%, Female: 48.4%	Clinical sample	N/A	
Odlaug et al. (2011)	N/A	440	Male: 54.9%, Female: 45.1%	Clinical sample	PG-YBOGS, CGI	
Potenza et al. (2006)	US	2,417	Male: n = 1,131, Female: n = 1,231	Adults	General population	NOSD
Ronzitti et al. (2016)	UK	1,178	Male: 92.5%, Female: 7.5%	Clinical sample		
Stark et al. (2012)	Canada	3,604	Male: 52.4%, Female: 47.6%	Adults	General population	PGSI
Stevens and Young (2010)	Australia	1,172	Male: 54.9%, Female: 45.1%	Adults	General population	PGSI
Svensson and Romild (2014)	Sweden	3,191	Male: n = 2048, Female: n = 1,143	Adolescents, Adults, Older Adults	General population	PGSI
Toneatto and Wang (2009)	Canada	60	Male: n = 44, Female: n = 16	Adults	CPGI	
van der Maas et al. (2018)	Canada	2,187	Male: n = 1,011, Female: n = 1,176	Older Adults	General population	CPGI
Williams et al. (2013)	South Korea	8,330	N/A	Adults	General population	CPGI, NODS, PPGM
Gambling motives						
Clarke and Clarkson (2008)	New Zealand	104	Male: n = 41, Female: n = 63	Older Adults	General population	N/A
Clarke et al. (2007)	New Zealand	209	Male: n = 61, Female: n = 148	Younger Adults, Older Adults	General population	DSM-IV
Echeburúa et al. (2011)	Spain	103	Male: n = 52, Female: n = 51	Adults	Clinical sample	DSM-IV
Flack and Stevens (2018)	Australia	4,945	N/A	Adults, Older Adults	General population	PGSI
Grant and Kim (2002)	N/A	131	Male: 40%, Female: 60%	Adults	Clinical sample (treatment seeking PGs)	SOGS, GAF, CGI, DSM-IV
Hing et al. (2016)	Australia	8,917	Male: n = 3,783, Female: n = 3,903	Adults	General population	PGSI

(continued)
Table 1. Continued

Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
McCormack et al. (2014)	UK	975	Male: $n = 800$ Female: $n = 175$	Adults	General population	PGSI
Sundqvist et al. (2016)	Sweden	257	Male: $n = 179$ Female: $n = 78$	Adults	General population	NODS-PERC, Johnson’s Lie-and-Bet Questionnaire (Johnson et al., 1997)
Walker et al. (2005)	Canada	400	N/A	Adults	General population	N/A
Granero et al. (2009)	Spain	286	Male: 50% Female: 50%	Adults	Clinical sample	SOGS, DSM-IV
Grant et al. (2017)	N/A	574	Male: 54% Female: 46%	Adults	Clinical sample	CGI, SCI-GD, PG-YBOGS, GSAS
Grant, Chamberlain, et al. (2012)	USA	501	Male: $n = 227$ Female: $n = 104$	Adults	Clinical sample	SCI-PG, CGI, PG-YBOGS, GSAS
Håkansson and Widinghoff (2020)	Sweden	327	Male: $n = 223$ Female: $n = 104$	Adults	Clinical sample	PGSI
Jiménez-Murcia et al. (2016)	Spain	1,632	Male: 91.5% Female: 8.5%	Adults	Clinical sample	SOGS
Jiménez-Murcia et al. (2020)	Spain	512	Male: $n = 473$ Female: $n = 39$	Adults	Clinical sample	DSM, GRSC
Kim et al. (2016)	New Zealand	150	Male: $n = 64$ Female: $n = 86$	Adults	Clinical sample	PGSI
Ronzitti et al. (2016)	UK	1,178	Male: 92.5% Female: 7.5%	Adults	Clinical sample	PGSI

Severity

Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Carneiro et al. (2014)	Brazil	118	Only reported for subgroups	Adolescents, Adults	Clinical sample	NODS, DSM-IV
Edgerton et al. (2015)	Canada	679	Male: 48.2% Female: 51.8%	Young adults	General population	PGSI
Grant, Odlaug, and Mooney (2012)	N/A	71	Male: 52.1% Female: 47.9%	Adults	Clinical sample	SCI-PG
Haw and Holdsworth (2016)	Australia	267	Male: 54% Female: 46%	Adults	Clinical sample	PGSI
Nelson et al. (2006)	USA	2,256	Male: $n = 1,239$–$1,258$ Female: $n = 921$–935	Adults	Clinical sample	DSM-IV
Slutske et al. (2014)	Australia	4,663	Male: $n = 2,001$ Female: $n = 2,662$	Adults	General population	DSM-IV

Progression of gambling problems

Study	Progression of gambling problems	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Aster et al. (2018)	Use of professional help/Motivation for treatment	Germany	773	Male: $n = 688$ Female: $n = 85$	Adolescents, Adults	Clinical sample (treatment seeking PGs, relatives)	N/A

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Braun et al. (2014)	Germany	7,718	Male: 83.9% Female: 16.1%	Adults	Clinical and general sample	DSM
Buchner et al. (2015)	Germany	N/A	N/A	Adults	Clinical sample	ICD-10
Echeburúa et al. (2011)	Spain	103	Male: n = 52 Female: n = 51	Adults	Clinical sample	DSM-IV
Harries et al. (2018)	USA	880	Only reported for subgroups	Adults	Clinical sample (treatment seeking PGs)	MIDI, SCI-PG, YBOCS, PGS
Kim et al. (2016)	New Zealand	150	Male: n = 64 Female: n = 86	Adults	Clinical sample	PGSI
Kushnir et al. (2016)	Canada	207	Male: n = 127 Female: n = 80	Adults	Clinical sample	PGSI
Nelson et al. (2006)	USA	2,256	Male: n = 1,239–1,258 Female: n = 921–935	Adults	Clinical sample	DSM-IV
Comorbidity						
Bischof et al. (2013)	Germany	164	Male: 74.4% Female: 25.6%	Adults	Clinical sample	CIDI
Bischof et al. (2015)	Germany	442	Male: 83.9% Female: 16.1%	Adults	Clinical sample	CIDI
Blanco et al. (2006)	USA	43,093	Only reported for participants with GD	Adults	General population	AUDADIS-IV
Bonnaire et al. (2017)	France	25,647	Male: n = 12,504 Female: n = 13,142	Adults, Older Adults	General population	CPGI
Boughton and Falenchuk(2007)	Canada	354	Only female	Adults	General population	SOGS
Brand et al. (2019)	USA	591	Male: n = 404 Female: n = 187	Adults	Clinical sample	ICD-9
Dannon et al. (2006)	Israel	78	Male: n = 42 Female: n = 36	Adults	Clinical sample	DSM-IV
Dash et al. (2019)	Australia	3,785	Male: n = 1,365 Female: n = 2,420	Adults	General population	NODS
Desai and Potenza (2008)	USA	43,039	Male: n = 18,518 Female: n = 24,575	Adults	General population	AUDADIS-IV
Diez et al. (2014)	Spain	96	Male: n = 49 Female: n = 47	Adults	Clinical sample	DSM-IV
Echeburúa et al. (2011)	Spain	103	Male: n = 52 Female: n = 51	Adults	Clinical sample	DSM-IV
Echeburúa et al. (2013)	Spain	206	Male: n = 104 Female: n = 102	Adults	Clinical and general population	SCI-PG, SCID-I
Ellenbogen et al. (2007)	Canada	5,313	Male: n = 2,750 Female: n = 2,563	Adolescents, Young Adults	General population	DSM-IV, GAQ

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Fröberg et al. (2013)	Sweden	19,016	Male: n = 8,447 Female: n = 10,569	Adolescents, Young Adults	General population	N/A
Håkansson and Widinghoff (2020)	Sweden	327	Male: n = 223 Female: n = 104	Adults	Clinical sample	PGSI
Håkansson et al. (2017)	Sweden	106	Male: n = 85 Female: n = 21	Adults	Clinical sample	DSM-5, ICD-10
Håkansson et al. (2018)	Sweden	2099	Male: 77% Female: 23%	Adults	Clinical sample	ICD-10
Jiménez-Murcia et al. (2009)	Spain	498	Male: n = 439 Female: n = 59	Adults	Clinical sample	SOGS, DSM-IV
Karlsson and Håkansson (2018)	Sweden	2099	Male: n = 1,625 Female: n = 754	Adults, Older Adults	Clinical sample	DSM-5, ICD-10
Lister et al. (2015)	Canada	150	Male: n = 75 Female: n = 474	Adults	Clinical sample	NODS
Luczak and Wall (2016)	USA	678	Male: 50% Female: 50%	Young Adults	General population	SOGS
Moodie and Finnigan (2006)	Scotland	1827	Male: n = 739 Female: n = 1,037	Young Adults	General population	SOGS
Ronzitti et al. (2016)	UK	1,178	Male: 92.5% Female: 7.5%	Adults	Clinical sample	PGSI
Sanscartier et al. (2019)	Canada	624	Male: 47.8% Female: 52.2%	Adults	General population	PGSI
Sundqvist and Rosendahl (2019)	Sweden	2010	Male: 66/65% Female: 34/35%	N/A	Clinical sample and general population	SOGS, PGSI
Suomi et al. (2014)	Australia	212	Male: n = 105 Female: n = 107	Adults	Clinical sample	PGSI
Vogelgesang (2010)	Germany	200	Male: n = 100 Female: n = 100	Adults	Clinical sample	ICD-10

Trauma

Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Boughton and Falenchuk (2007)	Canada	354	Only female	Adults	General population	SOGS
Hodgins et al. (2010)	Canada	1,372	Male: n = 602 Female: n = 770	Adults, Older Adults	General population	PGSI, CIDI
Kausch et al. (2006)	USA	111	Male: 91.9% Female: 8.1%	Adults	Clinical sample	GSRI, ASI
Ledgerwood and Milosevic (2015)	Canada	150	Male: n = 75 Female: n = 75	Adults	General population (TN with PG background)	NODS, SOGS
Ledgerwood and Petry (2006)	North America	149	Male: n = 72 Female: n = 77	Adults	Clinical sample (treatment seeking PGs)	NODS
Petry and Steinberg (2005)	USA	149	Male: n = 72 Female: n = 77	Adults	Clinical sample (treatment seeking PGs)	SOGS

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Roberts et al. (2017)	UK	3,025	Only male	Adults	General population	SOGS
Scherrer et al. (2007)	USA	1,675	Only male	Adults, Older Adults	General population	DSM-IV
Shultz et al. (2016)	USA	Cases: 94, Controls: 91 (Relatives: 312)	Only reported for subgroups	Adults	General population	SOGS, NODS
Violence						
Afifi et al. (2010)	USA	3,334	Only reported for subgroups	Adults	general population	DSM-IV
Andronicos et al. (2015)	N/A	86	Male: n = 41, Female: n = 45	Adults	Clinical sample	SCID-I, SCID-II, SOGS
Cunningham-Williams et al. (2007)	USA	926	Only female	Adults	General population	N/A
Dowling et al. (2014)	Australia	704	Male: n = 364, Female: n = 320	Adults	Clinical sample (treatment seeking)	BBGS
Dowling et al. (2018)	Australia	4,153	Male: 48.7%, Female: 51.3%	Adults	General population	PGSI
Dowling et al. (2019)	Australia	1,109	Male: 62.4%, Female: 37.6%	Adults, Older Adults	General population	PGSI, DSM-IV
Echeburúa et al. (2011)	Spain	103	Male: n = 52, Female: n = 51	Adults	Clinical sample	DSM-IV
Echeburúa et al. (2013)	Spain	206	Male: n = 104, Female: n = 102	Adults	Clinical and general population	N/A
Fröberg et al. (2013)	Sweden	19,016	Male: n = 8,447, Female: n = 10,569	Adolescents, Young	General population	N/A
Kausch et al. (2006)	USA	111	Male: 91.9%, Female: 8.1%	Adults	Clinical sample	GSRI, ASI
Korman et al. (2008)	Canada	248	Male: 82.7%, Female: 17.3%	Adults	General population	CPGI
Lee et al. (2012)	USA	515	Male: n = 283, Female: n = 232	Adolescents	General population	SOGS
Roberts et al. (2016)	UK	3,025	Only male	Adults	General population	SOGS
Suomi et al. (2019)	Australia	212	Male: 49%, Female: 51%	Adults	Clinical sample with family members	N/A
Vogelgesang (2009)	Germany	200	Male: 50%, Female: 50%	Adults	Clinical sample	ICD-10
Criminality/delinquency						
Abbott and McKenna (2005)	New Zealand	94	Only female	Adults	Prisoners	SOGS
Granero et al. (2014)	Spain	2,309	Male: 88.2%, Female: 11.8%	Adults	Clinical sample	DSM-IV, SOGS

(continued)
Study	Country	Sample Size	Sex (%)	Mean age (SD, age range)	Sample type	Problem gambling measures
Ledgerwood et al. (2007)	N/A	231	Male: n = 127			
Female: n = 104	Adults	Clinical sample	SOGS, ASI-G			
Mestre-Bach et al. (2018)	Spain	273	Only female	Adults	Clinical sample (treatment seeking PGs)	DSM-IV-TR, SOGS
Vogelgesang (2009)	Germany	200	Male: 50%			
Female: 50% | Adults | Clinical sample | ICD-10 |

Note.

20-GA The 20 questions of the Gamblers Anonymous American Association.
ASI Addiction Severity Index.
ASI-G Addiction Severity Index Gambling Scale.
AUDADIS-IV Alcohol Use Disorder and Associated Disabilities Interview Schedule – DSM-IV version.
BBGS Brief Biosocial Gambling Screen.
CGI Clinical Global Impression-Severity scale.
CIDI Composite International Diagnostic Interview.
CPGI Canadian problem gambling index.
DSM-IV Pathological gambling diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, 4th edition.
DSM-5 Pathological gambling diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, 5th edition.
GAF Global Assessment of Functioning.
GAQ Gambling Activities Questionnaire.
GAS Gaming Addiction Scale.
GPSS of CAGI Gambling Problem Severity Subscale of the Canadian Adolescent Gambling Inventory.
GRSC Gambling Related Cognitions Scale.
GSAS Gambling Symptom Assessment Scale.
GSRI Gambler’s Self-Report Inventory.
ICD-9 Pathological gambling diagnosed using the International Classification of Diseases and related Health Problems, 9th revision.
ICD-10 Pathological gambling diagnosed using the International Classification of Diseases and related Health Problems, 10th revision.
MIDI Minnesota Impulsive Disorders Interview.
NODS National Opinion Research Center (NORC) DSM Screen for Gambling Problems.
NODS-PERC National Opinion Research Center DSM-IV Screen for Gambling Problems - Preoccupation, Escape, Risked relationships and Chasing losses.
PGSI Problem Gambling Severity Index.
PG-YBOGS Pathological Gambling-Modification of the Yale-Brown Obsessive-Compulsive Scale.
PPGM problem and pathological gambling measure.
SCID-I Structured Clinical Interview for DSM IV Axis I Disorders.
SCID-II Structured Clinical Interview for DSM IV Axis II Personality Disorders.
SCI-GD Structured Clinical Interview for Gambling Disorder.
SCI-PG Structured Clinical Interview for Pathological Gambling.
SOGS South Oaks Gambling Screen.
VGS Victorian Gambling Screen.
likely to be unemployed (Granero et al., 2009; Ronzitti et al., 2016). Only Vogelgesang (2009) reported equivalent unemployment levels for men and women with PG, which, however, refer to a small sample size. Four studies on general population samples reported differences in household composition (Blanco et al., 2006; Bonnaire et al., 2016, 2017; Hing et al., 2016), whereas one study among a clinical sample found no differences (Grant, Chamberlain, et al., 2012). Men were more often found to be single and women to be widowed/divorced or separated. Furthermore, Hing et al. (2016) stated that women were more likely to be living in one-parent family households (see Table 1 at section 'sociodemographic factors').

Preferred gambling type

The 14 studies included indicate that women who gamble prefer non-strategic types of gambling (bingo, lottery, scratch cards), whereas men who gamble prefer more strategic games (casino games, horse race and sports betting) (Bonnaire et al., 2017; Leung & Tsang, 2011; Lopez-Gonzalez, Russell, Hing, Estévez, & Griffiths, 2020; Nong, Fong, Fong, & Lam, 2020; Nower & Blaszczynski, 2006; Odlaug et al., 2011; Potenza et al., 2006; Ronzitti et al., 2016; Stevens & Young, 2010; Svensson & Romild, 2014; Toneatto & Wang, 2009; van der Maas et al., 2018; Williams et al., 2013). However, age may be an important confounding factor as younger age is associated with a preference for strategic games and men who gamble tend to start gambling earlier (Bonnaire et al., 2017; Odlaug et al., 2011). Additionally, men who gamble were reportedly more likely to gamble on several games than women with PG (Stark, Zahnal, Albaneese, & Tepperman, 2012). See Table 1 at section 'preferred gambling type' for further information.

Gambling motives

According to Flack and Stevens (2018), three main motives for gambling can be distinguished. People gamble for emotional (release of tension, stimulation, excitement), social (social recognition, "community" of gamblers), and monetary reasons (expectation to solve money problems). Of the nine studies identified (Clarke et al., 2007; Clarke & Clarkson, 2008; Echeburúa et al., 2011; Flack & Stevens, 2018; Grant & Kim, 2002; Hing et al., 2016; McCormack et al., 2014; Sundqvist, Jonsson, & Wennberg, 2016; Walker, Hinch, & Weighill, 2005), six found no statistically significant sex differences in any of these gambling motives. In contrast, three studies indicated sex differences (Echeburúa et al., 2011; McCormack et al., 2014; Walker et al., 2005). In a study on online gambling, female participants reported that they gambled significantly more often out of boredom, for free practice opportunities, and to spend less money compared with their male counterparts (McCormack et al., 2014). Walker et al. (2005) found that men who gamble in casinos endorsed risk-taking and cognitive self-classification more often than women as an important motive. Similar results are reported by Echeburúa et al. (2011), where men who gamble showed higher sensation seeking and impulsiveness than women (see Table 1 at section 'gambling motives'). Age specific differentiations were not available, as the studies mainly referred to adults.

Severity

Most of the eight included clinical studies showed higher levels of problem gambling severity for women than for men (Grant, Chamberlain, et al., 2012; Grant, Odlaug, & Chamberlain, 2017; Håkansson & Widinghoff, 2020; Jiménez-Murcia et al., 2020; Kim, Hodgins, Bellringer, & Abbott, 2016; Ronzitti et al., 2016). These higher levels of severity concerned the gambling disorder itself as well as accompanying burdens such as elevated anxiety or a more general psychopathology (Granero et al., 2009; Grant, Chamberlain, et al., 2012). However, there are also contradictory results. Another study stated an equal severity of PG for both sexes with no differences concerning SOGS total score and total DSM-IV reported criteria (Granero et al., 2009). Furthermore, Jiménez-Murcia et al. (2016) found higher severity scores for men in association with their early onset of PrG, suggesting that the onset of PrG mediates between sex and severity (Jiménez-Murcia et al., 2016). See Table 1 at section 'severity' for further information.

Progression of gambling problems

Six studies tackling the progression of gambling problems were included. Typical course-related factors such as age at gambling onset, first symptoms of PG, and onset of a PG diagnosis generally occurred earlier in men than in women (Carneiro et al., 2014; Grant, Odlaug, & Mooney, 2012; Slutske et al., 2014). This finding was also observed for a longitudinal study among young adults below the age of 25 by Edgerton, Melnyk, and Roberts (2015).

Two studies with treatment-seeking samples found a shorter time interval from the onset of gambling to the first occurrence of manifest problems with gambling for women compared with men who gamble (Grant, Odlaug, & Mooney, 2012; Nelson, LaPlante, Labrie, & Shaffer, 2006). However, Slutske et al. (2014) found no evidence for the telescoping effect in a general population sample.

One cross-sectional study found a temporal difference in the occurrence of comorbid disorders (Haw & Holdsworth, 2016). Women with PG retrospectively reported that they had experienced other disorders (e.g., mood and substance abuse disorders) before the first onset of PrG, whereas men indicated it to be the other way round. It should be noted that the PGSI was used here, which is usually recommended in a general population setting (Holgraves, 2009) (see Table 1 at section 'progression of gambling problems').

Use of professional help/motivation for treatment

Sex differences in motivation for treatment and treatment seeking have hardly been examined so far. The existing evidence in the eight included studies is mixed. Echeburúa et al. (2011), Harries, Redden, and Grant (2018), and Kushner, Godinho, Hodgins, Hendershot, and Cunningham
Echeburúa et al., 2011; Erbas & Buchner, 2012; Håkansson et al., 2018; Jiménez-Murcia et al., 2009; Sundqvist & Rosendahl, 2019; Ronzitti et al., 2016; Vogelgesang, 2010). However, one general population study found no sex differences for anxiety disorders (Echeburúa et al., 2013). As it is typical for other psychological disorders, suicidality was found to be more prevalent in gambling women than in men (Bischof et al., 2015; Boughton & Falenchuk, 2007; Fröberg, Hallqvist, & Tengström, 2013; Sanscartier, Shen, & Edgerton, 2019; Sundqvist & Rosendahl, 2019). However, more committed suicides were reported for men (Karlsson & Håkansson, 2018).

The evidence for a correlation between PG and alcohol abuse/dependence was quite consistent for men but not for women (Blanco et al., 2006; Dannon et al., 2006; Dash et al., 2019; Echeburúa et al., 2011, 2013; Erbas & Buchner, 2012; Fröberg et al., 2013; Luczak & Wall, 2016; Ronzitti et al., 2016; Sanscartier et al., 2019; Suomi et al., 2014; Sundqvist & Rosendahl, 2019). Research concerning nicotine use or dependence and PG showed conflicting results, which seem to depend on the sample type. While general population studies indicated higher rates for gambling women (Bonnaire et al., 2017; Boughton & Falenchuk, 2007; Desai & Potenza, 2008), clinical studies reported no sex differences (Ronzitti et al., 2016; Vogelgesang, 2010).

Regarding other substance-related disorders, six studies showed a correlation with gambling for men but not for women (Brand et al., 2019; Dannon et al., 2006; Echeburúa et al., 2011; Erbas & Buchner, 2012; Jiménez-Murcia et al., 2009; Ronzitti et al., 2016). One study, addressing adolescents, contradicted this finding and found higher rates of using hard drugs for girls than for boys (Ellenbogen et al., 2007). No sex differences in substance use were found in three studies (Echeburúa et al., 2013; Håkansson et al., 2018; Håkansson & Widinghoff, 2020). See Table 1 at section ‘comorbidity’ for further information.

Comorbidity

In general, PG was often accompanied by mental and substance-related comorbidities [e.g., 73% of persons with PG have a current other psychiatric diagnosis (Håkansson, Karlsson, & Widinghoff, 2018)]; the lifetime prevalence for any other psychiatric disorder for people with PG is 96.3% (Bischof et al., 2013). However, studies indicated that general comorbidity rates are higher for women (Brand, Rodriguez-Monguio, & Volber, 2019; Håkansson, Mårdhed, & Zaa, 2017, 2018; Suomi, Dowling, & Jackson, 2014).

Most evidence for higher comorbidity rates in women was found for affective disorders (Bischof et al., 2013; Blanco et al., 2006; Boughton & Falenchuk, 2007; Brand et al., 2019; Dannon et al., 2006; Desai & Potenza, 2008; Diez et al., 2014; Echeburúa et al., 2011; Erbas & Buchner, 2012; Håkansson et al., 2018; Jiménez-Murcia et al., 2009; Lister, Milosevic, & Petry, 2006; Sanscartier et al., 2019, 2020; Sundqvist & Rosendahl, 2019; Vogelgesang, 2010). Only two studies reported no sex differences for affective disorders with these findings referring to young people and general population settings (Echeburúa et al., 2013; Ellenbogen, Derevensky, & Gupta, 2007). An equally strong sex difference as for affective disorders could be found for anxiety disorders (Blanco et al., 2006; Boughton & Falenchuk, 2007; Dannon et al., 2006; Echeburúa et al., 2011; Erbas & Buchner, 2012; Håkansson et al., 2018; Jiménez-Murcia et al., 2009; Sundqvist & Rosendahl, 2019; Ronzitti et al., 2016; Vogelgesang, 2010). However, one general population study found no sex differences for anxiety disorders (Echeburúa et al., 2013). As it is typical for other psychological disorders, suicidality was found to be more prevalent in gambling women than in men (Bischof et al., 2015; Boughton & Falenchuk, 2007; Fröberg, Hallqvist, & Tengström, 2013; Sanscartier, Shen, & Edgerton, 2019; Sundqvist & Rosendahl, 2019). However, more committed suicides were reported for men (Karlsson & Håkansson, 2018).

The evidence for a correlation between PG and alcohol abuse/dependence was quite consistent for men but not for women (Blanco et al., 2006; Dannon et al., 2006; Dash et al., 2019; Echeburúa et al., 2011, 2013; Erbas & Buchner, 2012; Fröberg et al., 2013; Luczak & Wall, 2016; Ronzitti et al., 2016; Sanscartier et al., 2019; Suomi et al., 2014; Sundqvist & Rosendahl, 2019). Research concerning nicotine use or dependence and PG showed conflicting results, which seem to depend on the sample type. While general population studies indicated higher rates for gambling women (Bonnaire et al., 2017; Boughton & Falenchuk, 2007; Desai & Potenza, 2008), clinical studies reported no sex differences (Ronzitti et al., 2016; Vogelgesang, 2010).

Regarding other substance-related disorders, six studies showed a correlation with gambling for men but not for women (Brand et al., 2019; Dannon et al., 2006; Echeburúa et al., 2011; Erbas & Buchner, 2012; Jiménez-Murcia et al., 2009; Ronzitti et al., 2016). One study, addressing adolescents, contradicted this finding and found higher rates of using hard drugs for girls than for boys (Ellenbogen et al., 2007). No sex differences in substance use were found in three studies (Echeburúa et al., 2013; Håkansson et al., 2018; Håkansson & Widinghoff, 2020). See Table 1 at section ‘comorbidity’ for further information.

Trauma

Nine studies regarding trauma were included in this review. For men as well as women with PrG and PG, there was evidence for higher odds of traumatic life events than for people without gambling problems (Boughton & Falenchuk, 2007; Hodgins et al., 2010; Ledgerwood & Petry, 2006; Ledgerwood & Milosevic, 2015; Roberts et al., 2017; Scherrer et al., 2007; Shultz, Shaw, McCormick, Allen, & Black, 2016). These studies further observed that past experience of maltreatment was more frequent in women with PG. Similarly, most clinical studies showed that rates of physical, emotional, or sexual abuse in childhood as well as trauma in adulthood were considerably higher for women who gamble than for their male counterparts (Kausch, Rugle, & Rowland, 2006; Petry & Steinberg, 2005). In a general population study, people with gambling disorder and a comorbid post-traumatic stress disorder (PTSD) were less likely to be men than women (Ledgerwood & Milosevic, 2015). In contrast to clinical studies, the results of general population studies were less equivocal. With regard to the odds of maltreatment of men and women with PrG, general population studies
suggested that there is no difference (Hodgins et al., 2010). See Table 1 at section ‘trauma’ for further information.

Violence

We found 16 studies that explored the relationship between sex, gambling, and violence (Andronicos et al., 2015; Afifi, Brownridge, MacMillan, & Sareen, 2010; Cunningham-Williams, Abdallah, Callahan, & Cottler, 2007; Dowling et al., 2014, 2016, 2018, 2019; Echeburúa et al., 2011; Fröberg et al., 2013; Kausch et al., 2006; Korman et al., 2008; Lee, Storr, Ialongo, & Martins, 2012; Roberts et al., 2016; Suomi et al., 2019; Vogelgesang, 2009, 2013). Pathological gambling was found to be associated with a higher likelihood of being the victim and the perpetrator of violence (psychological, physical, and sexual violence) (Afifi et al., 2010; Roberts et al., 2016; Suomi et al., 2019). It is noteworthy that the prevalence of violence was unusually high among men and women with PrG and PG (compared with the general population). In their systematic review, Dowling et al. (2016) reported that around 38% were victims of violence and 37% perpetrators. In most cases, men and women who gambled were both victims and perpetrators, indicating reciprocal violence (Afifi et al., 2010; Suomi et al., 2019). Suomi et al. (2019) and Korman et al. (2008) found that around 60% of people with gambling problems experienced violence during the past year. For women who gambled, Echeburúa et al. (2011) reported an even higher number of 68.6%, compared with only 9.8% in a non-gambling control group. Although there was robust evidence of the association between violence and gambling for men and women, the research findings on sex differences in scale were mixed. While Suomi et al. (2019) did not find differences between men and women, Dowling et al. (2014) found that women were more likely to be victims (2.1 times) than men and to report both victimization and perpetration (1.6 times) more often than men. Similar findings were reported by Kausch et al. (2006) and Andronicos et al. (2015).

In a small clinical sample, Vogelgesang (2009) found higher rates of physical maltreatment and specifically sexual assaults for women (See Table 1 at section ‘violence’).

Criminality/delinquency

Overall, we found six studies exploring sex differences in criminality (Abbott & McKenna, 2005; Banks, Waters, Andersson, & Olive, 2020; Granero et al., 2014; Ledgerwood, Petry, Weinstock, & Morasco, 2007; Mestre-Bach et al., 2018; Vogelgesang, 2009). In relationship to gambling, mostly income-generating crimes were reported. These crimes included petty theft, fraud, and forgery (Laursen, Plauborg, Ekhholm, Larsen, & Juel, 2016). Overall prevalence rates ranged from 14% to 30% (Granero et al., 2014; Ledgerwood et al., 2007). No sex differences were observed. Only in a very small clinical sample women who gambled reported criminal acts in 10% of the cases, whereas men who gambled had committed crimes in 30% of the cases (Vogelgesang, 2009).

Another topic of interest concerning criminality was the high prevalence of PG in forensic populations. In their systematic review, Banks et al. (2020) found that 10.4–73% of imprisoned men met the criteria for PG, whereas only 5.9–45% of imprisoned women did so. These numbers show that prevalence rates among inmates were significantly higher than in the general population and higher for men than for women (see Table 1 at section ‘criminality/delinquency’).

DISCUSSION

Lack of gender sensitive research

The most important result of our extensive literature search was that studies measuring gender are still scarce. Our initial goal, to explicitly include gender differences and not only focus on sex differences could thus not be met. The studies on LGBTQI+ were the only studies to include sexual orientation. In the other studies the terms sex and gender were used interchangeably without differentiating between the two concepts. As the studies failed to measure gender and only reported sex, the results of this review are limited to sex differences. This result was rather surprising as even more recent studies showed little awareness of the problem. An inconsistent use of the terms sex and gender, poor measuring of sex and gender, and a lack of gender- and sex-specific reporting can be considered as a major impediment concerning reviews on sex and gender differences (Blake- man, 2020). Future studies correctly assessing sex and gender are needed in order to highlight gender differences and not only sex differences (Clayton & Tannenbaum, 2016). As a generally accepted standard of measuring and reporting gender and related concepts is still missing, it will be a challenge to implement new ways of assessing gender and embrace the linked higher level of complexity when it comes to data analysis and interpretation of results (Blake- man, 2020).

The minimum standard should be, to separately assess and report both sex and gender (e.g., see most applied gender identity measurements in GenL USS, 2013). As gender is a complex construct, it would be advisable to use multidimensional instruments [e.g., gender scale by Pelletier et al. (2015) or Lindqvist, Gustafsson Sendén, & Renström, 2021].

We are aware that including gender measures might be challenging, however we consider it to be necessary. As gambling is a phenomenon shaped by environmental and sociocultural factors and presumably not primarily by biological sex differences, investigating gender differences could yield new and surprising results.

One example is the preliminary result, that prevalence rates for PG might be elevated in the LGBTQI+ community. Expanding research on differences by gender and sexual orientation might also yield new insights into the motives underlying observable differences. For instance, gambling is often used as a coping mechanism to deal with discrimination and victimization experiences linked to a non-heteronormative sexual orientation (Richard et al., 2019).
Furthermore, existing data on substance use disorder (SUD) suggest that results for prevalence rates or comorbidities may depend on whether sex or gender is considered. Data from the Word Health Organization indicate that prevalence differences for SUD narrow in societies with less gender role traditionality (Seedat et al., 2009). Given these findings it is reasonable to assume that including gender aspects in gambling research would add value to the current picture.

Sex differences

Despite not being able to report on gender differences, the review yielded some important results concerning sex differences, which will be discussed in the following.

Overall, most results on sex differences concerning persons with PrG and PG were mixed. However, the review could identify a few areas with rather robust evidence of sex differences. Compared to women, men generally showed higher prevalence rates, started gambling at an earlier age, reported a higher monthly income, played a larger variety of chance-based games, and showed a tendency toward strategic forms of gambling. These results are mostly in line with the review by Wenzel and Dahl (2009). Concerning prevalence rates there is even some evidence that the sex gap might be narrowing (Castrén, Heiskanen, & Salonen, 2018; McCarthy et al., 2018). Possible explanations are emerging games and gambling environments designed to appeal specifically to women.

For quite a few of the studied characteristics, the number and quality of studies were limited, indicating the need for further research. Especially in areas such as LGBTQI+, online gambling and the use of help/motives for help seeking, a shortage of studies was observed. Concerning sex differences, some further reasons for ambiguous results must be discussed. Contradictory findings in areas such as motives for gambling, severity, or comorbidity might be an artifact of varying study quality. Besides small sample sizes and heterogeneous definitions of PrG and PG (different diagnostic instruments), important confounding factors, such as progress of severity and sample age, were not considered in all studies. Previously claimed differences in gambling motives are an example. In this case, the assumption that women gamble to regulate emotions, whereas men gamble for economic reasons might result from a failure to account for the severity and progression of gambling problems. Rather than being a gender effect, monetary reasons and social recognition become less important and emotional regulation becomes the primary goal as the addiction progresses. Reports about differences in gambling motivations could thus be seen as artifacts of confounding factors such as the severity of problem gambling and addiction progress.

Even areas with apparently clear sex differences (prevalence rates) show a more nuanced picture when scrutinized in detail. The convergence of prevalence rates with increasing age is one example of the complex interplay of sex with further sociocultural factors (e.g., sample age, country in which the study was conducted, sample type: general population vs. treatment-seeking population).

This finding is in line with the review by Merkouris et al. (2016), lending support to the gender as proxy theory (Nelson et al., 2006). Although sex is an important factor in explaining differences in gambling characteristics, the size of its contribution might sometimes be overestimated by a failure to account for further psychosocial characteristics. When factors such as age at initiation, socioeconomic status, cultural background, family history of addiction problems, etc. are considered, differences attributable to sex might diminish.

In line with the existing literature, we found mixed evidence for gambling-related sex differences in areas such as violence or acquisitive crime. Although women were more likely to be the victim and less likely to be the perpetrator in some of the studies, they were also generally found to have a higher proportion of delinquents or offenders among them. The ambiguous results are certainly caused by the very heterogeneous samples, survey settings and possibly biased by a failure to distinguish between minor violent acts and actual health-threatening assaults, but there is a need to expand research in this area. For clinicians, it might be important to keep in mind that a considerable number of men as well as women with PG are both perpetrators and victims of violence.

Concerning treatment, the review findings clearly indicate that factors such as trauma and violence should be actively queried for both sexes. Trauma appears to be a major risk factor for developing a gambling disorder and should therefore necessarily be considered in the development of prevention and treatment strategies. Especially women with more severe experiences of traumatic life events might be more likely to seek treatment than women with less severe histories (Hodgins et al., 2010).

Given the low utilization rates among women who gamble, it is important to elaborate and expand therapy services that are more suitable for women (Aster et al., 2018; Loy, Daniel, Bickl, Schwarzkopf, & Kraus, 2021; Kim et al., 2016). As prevention and therapy approaches are often geared towards a male clientele, it is necessary to expand the orientation of the offers in a more inclusive way, addressing feelings of shame and stigmatization among women.

CONCLUSIONS AND FURTHER RESEARCH

In conclusion, the review could identify a few areas with robust evidence of sex differences (e.g., men show higher prevalence rates, women start gambling later in life). Concerning treatment, PTSD and being the victim of violence should be checked for both sexes, but especially for women. Women’s access to therapy services should be improved.

As studies on gender differences are currently scarce, future studies should focus on gender and report both sex and gender. Furthermore, relevant confounding factors such
as severity, sample age should be considered, and homogenous and psychometric valid instruments used.

Funding sources: This study was conducted in the context of the Bavarian Coordination Centre for Gambling Issues (Bayerische Landesstelle Gluecksspielsucht (LSG)). The LSG is funded by the Bavarian State Ministry of Public Health and Care Services. The State of Bavaria provides gambling services (lotteries, sports betting and casino games) within the State gambling monopoly via the State Lottery Administration and provided funding for the Bavarian Coordination Centre for Gambling Issues as an unrestricted grant.

Authors’ contribution: CG, AB, SH and JL designed the study. CG, AB, SH, JL and LH acquired the data to be reviewed. CG, AB, SH, JL and LH conducted the analysis and interpretation of the data. All authors critically contributed to earlier drafts of the manuscript. CG, AB, JL and LH approved the final version of the paper.

Conflict of interest: The authors report no financial or other relationship relevant to the subject of this article.

Acknowledgements: The authors express their heartfelt thanks to their colleagues Sonja Schröder, Pia Wullinger, Larissa Schwarzkopf, Norbert Wodarz, and Ludwig Kraus, who provided advice and support in conducting the study or drafting this paper.

REFERENCES

Abbott, M. W., & McKenna, B. G. (2005). Gambling and problem gambling among recently sentenced women in New Zealand prisons. *Journal of Gambling Studies*, 21(4), 559–581. https://doi.org/10.1007/s10899-005-5563-5.

Abbott, M., Stone, C. A., Billi, R., & Yeung, K. (2016). Gambling and problem gambling in Victoria, Australia: Changes over 5 years. *Journal of Gambling Studies*, 32(1), 47–78. https://doi.org/10.1007/s10899-015-9542-1.

Afifi, T. O., Brownridge, D. A., MacMillan, H., & Sareen, J. (2010). The relationship of gambling to intimate partner violence and child maltreatment in a nationally representative sample. *Journal of Psychiatric Research*, 44(5), 331–337. https://doi.org/10.1016/j.jpsychires.2009.07.010.

American Psychiatric Association (2013). *Diagnostic and statistical manual of mental disorders* (DSM-5) (5. Auflage).

Anagnostopoulos, D. C., Lazaratou, H., Paleologou, M. P., Peppou, L. E., Economou, M., Malliori, M., … Papageorgiou, C. (2017). Adolescent gambling in greater Athens area: A cross-sectional study. *Social Psychiatry and Psychiatric Epidemiology*, 52(11), 1345–1351. https://doi.org/10.1007/s00127-017-1431-8.

Andrie, E. K., Trzavara, C. K., Tzavela, E., Richardson, C., Greydanus, D., Tsolia, M., & Tsitsika, A. K. (2019). Gambling involvement and problem gambling correlates among European adolescents: Results from the European network for addictive behavior study. *Social Psychiatry and Psychiatric Epidemiology: The International Journal for Research in Social and Genetic Epidemiology and Mental Health Services*, 54(11), 1429–1441. https://doi.org/10.1007/s00127-019-01706-w.

Andronicos, M., Beauchamp, G., DiMambro, M., Robert, M., Besson, J., & Séguin, M. (2015). Do male and female gamers have the same burden of adversity over their life course? *International Gambling Studies*, 15(2), 224–238. https://doi.org/10.1080/14459795.2015.1024706.

Assanangkornchai, S., McNeil, E. B., Tantirangsee, N., & Kittiratanapiboon, P. (2016). Gambling disorders, gambling type preferences, and psychiatric comorbidity among the Thai general population: Results of the 2013 National Mental Health Survey. *Journal of Behavioral Addictions*, 5(3), 410–418. https://doi.org/10.1556/2006.5.2016.066.

Aster, R., Quack, A., Wejbera, M., & Beutel, M. E. (2018). Telefonische Beratung für Glücksspielsüchtige – der heiße Draht ins Hilfesystem? Akzeptanz und Nutzung der Mainzer Hotline Verhalenssucht [Telephone Counseling for Pathological Gamblers as Immediate Access to the Health Care System: Acceptance and Use of The MainzerBehavioral Addiction Helpline]. Gesundheitswesen (Bundesverband der Ärzte des Öffentlichen Gesundheitsdienstes (Germany)), 80(11), 994–999. https://doi.org/10.1055/a-a0592-7006.

Baggio, S., Gainsbury, S. M., Starcevic, V., Richard, J.-B., Beck, F., & Billieux, J. (2018). Gender differences in gambling preferences and problem gambling: A network-level analysis. *International Gambling Studies*, 028, 1–14. https://doi.org/10.1080/14459795.2018.1495750.

Banks, J., Waters, J., Andersson, C., & Olive, V. (2020). Prevalence of gambling disorder among prisoners: A systematic review. *International Journal of Offender Therapy and Comparative Criminology*, 64(12), 1199–1216. https://doi.org/10.1177/0306624x19862430.

Banz, M., & Lang, P. (2017). Glücksspielerverhalten und Glücksspielsucht in Deutschland: Ergebnisse des Surveys 2017 und Trends. https://doi.org/10.17623/BZGA225-GS-SY17-10.

Bischof, A., Meyer, C., Bischof, G., John, U., Wurst, F. M., Thon, N., … Rumpf, H.-J. (2015). Suicidal events among pathological gamblers: The role of comorbidity of axis I and axis II disorders. *Psychiatry Research*, 225(3), 413–419. https://doi.org/10.1016/j.psychres.2014.11.074.

Bischof, A., Meyer, C., Bischof, G., Kastirke, N., John, U., & Rumpf, H.-J. (2013). Comorbid Axis I disorders among subjects with pathological, problem, or at-risk gambling recruited from the general population in Germany: Results of the PAGEx study. *Psychiatry Research*, 210(3), 1065–1070. https://doi.org/10.1016/j.psychres.2013.07.026.

Blakeman, J. R. (2020). Words matter: Sex and gender as unique variables in research. *Advances in Nursing Science*, 43(3), 214–227. https://doi.org/10.1097/ANS.0000000000000295.

Blanco, C., Hasin, D. S., Petry, N., Stinson, F. S., & Grant, B. F. (2006). Sex differences in subclinical and DSM-IV pathological gambling: Results from the national epidemiologic survey on alcohol and related conditions. *Psychological Medicine*, 36(7), 943–953. https://doi.org/10.1017/s0033291706007410.
Dowling, N. A., Oldenhof, E., Cockman, S., Suomi, A., Merkouris, S. S., & Jackson, A. C. (2019). Problem gambling and family violence: Factors associated with family violence victimization and perpetration in treatment-seeking gamblers. *Journal of Interpersonal Violence*. https://doi.org/10.1177/0886260519835877.

Dowling, N., Suomi, A., Jackson, A., Lavis, T., Patford, J., Cockman, S., … Abbott, M. (2016). Problem gambling and intimate partner violence: A systematic review and meta-analysis. *Trauma, Violence & Abuse*, 17(1), 43–61. https://doi.org/10.1177/1524838014561269.

Echeburúa, E., González-Ortega, I., Corral, P. de, & Polo-López, R. (2011). Clinical gender differences among adult pathological gamblers seeking treatment. *Journal of Gambling Studies*, 27(2), 215–227. https://doi.org/10.1007/s10899-010-9205-1.

Echeburúa, E., González-Ortega, I., Corral, P. de, & Polo-López, R. (2013). Pathological gamblers and a non-psychiatric control group taking gender differences into account. *The Spanish Journal of Psychology*, 16, E2. https://doi.org/10.1017/spj.2013.2.

Edgren, R., Castrén, S., Alho, H., & Salonen, A. H. (2017). Gender comparison of online and land-based gamblers from a nationally representative sample: Does gambling online pose elevated risk? *Computers in Human Behavior*, 72, 46–56. https://doi.org/10.2147/PRBM.S248540.

Ellenbogen, S., Derevensky, J., & Gupta, R. (2007). Gender differences among adolescents with gambling-related problems. *Journal of Gambling Studies*, 23(2), 133–143. https://doi.org/10.1007/s10899-006-9048-y.

Elton-Marshall, T., Leatherdale, S. T., & Turner, N. E. (2016). An examination of internet and land-based gambling among adolescents in three Canadian provinces: Results from the youth gambling survey (YGS). *BMC Public Health*, 16(1), 1–10. https://doi.org/10.1186/s12889-016-2933-0.

Erbas, B., & Buchner, U. G. (2012). Pathological gambling: Prevalence, diagnosis, comorbidity, and intervention in Germany. *Deutsches Ärzteblatt International*, 109(10), 173–179. https://doi.org/10.3238/arztebl.2012.0173.

Flack, M., & Stevens, M. (2018). Gambling motivation: Comparisons across gender and preferred activity. *International Gambling Studies*. https://doi.org/10.1080/14459795.2018.1505936.

Floros, G. D., Siomos, K., Fisoun, V., & Geroukalis, D. (2013). Adolescent online gambling: The impact of parental practices and correlates with online activities. *Journal of Gambling Studies*, 29(1), 131–150. https://doi.org/10.1007/s10899-011-9291-8.

Fröberg, F., Hallqvist, J., & Tengström, A. (2013). Psychosocial health and gambling problems among men and women aged 16–24 years in the Swedish National Public Health Survey. *European Journal of Public Health*, 23(3), 427–433. https://doi.org/10.1093/eurpub/cks129.

Fröberg, F., Rosendahl, I. K., Abbott, M., Romild, U., Tengström, A., & Hallqvist, J. (2015). The incidence of problem gambling in a representative cohort of Swedish female and male 16–24 year-olds by socio-demographic characteristics, in comparison with 25–44 year-olds. *Journal of Gambling Studies*, 31(3), 621–641. https://doi.org/10.1007/s10899-014-9450-9.

Gainsbury, S. M., Russell, A., Hing, N., Wood, R., Lubman, D., & Blaszczynski, A. (2015). How the Internet is changing gambling: Findings from an Australian prevalence survey. *Journal of Gambling Studies*, 31(1), 1–15. https://doi.org/10.1007/s10899-013-9404-7.

Gender Identity in US Surveillance Group (GeniUS$) (2013). Gender-related measures overview. Los Angeles, CA: The Williams Institute at the University of California Los Angeles School of Law.

Giralt, S., Müller, K. W., Beutel, M. E., Dreier, M., Duven, E., & Wölling, K. (2018). Prevalence, risk factors, and psychosocial adjustment of problematic gambling in adolescents: Results from two representative German samples. *Journal of Behavioral Addictions*, 7(2), 339–347. https://doi.org/10.1556/2006.7.2018.37.

Gómez, P., Feijoo, S., Braña, T., Varela, J., & Rial, A. (2020). Minors and online gambling: Prevalence and related variables. *Journal of Gambling Studies*, 36(3), 735–745. https://doi.org/10.1007/s10899-019-09923-3.

Gori, M., Potente, R., Pitino, A., Scalese, M., Bastiani, L., & Molly, N. (2015). Relationship between gambling severity and attitudes in adolescents: Findings from a population-based study. *Journal of Gambling Studies*, 31(3), 717–740. https://doi.org/10.1007/s10899-014-9481-2.

Granero, R., Penelo, E., Martínez-Giménez, R., Alvarez-Moya, E., Gómez-Peña, M., Ayammi, M. N., … Jiménez-Murcia, S. (2009). Sex differences among treatment-seeking adult pathological gamblers. *Comprehensive Psychiatry*, 50(2), 173–180. https://doi.org/10.1016/j.comppsych.2008.07.005.

Granero, R., Penelo, E., Stinchfield, R., Fernández-Aranda, F., Ayammi, N., Gómez-Peña, M., … Menchón, J. M. (2014). Contribution of illegal acts to pathological gambling diagnosis: DSM-5 implications. *Journal of Addictive Diseases*, 33(1), 41–52. https://doi.org/10.1080/10550887.2014.882730.

Grant, J. E., Chamberlain, S. R., Schreiber, L. R. N., & Odlaug, B. L. (2012). Gender-related clinical and neurocognitive differences in individuals seeking treatment for pathological gambling. *Journal of Psychiatric Research*, 46(9), 1206–1211. https://doi.org/10.1016/j.jpsychires.2012.05.013.

Grant, J. E., & Kim, S. W. (2002). Gender differences in pathological gamblers seeking medication treatment. *Comprehensive Psychiatry*, 43(1), 56–62. https://doi.org/10.1053/comp.2002.29857.

Grant, J. E., Odlaug, B. L., & Chamberlain, S. R. (2017). Gambling disorder, DSM-5 criteria and symptom severity. *Comprehensive Psychiatry*, 75, 1–5. https://doi.org/10.1016/j.comppsych.2017.02.006.

Grant, J. E., Odlaug, B. L., & Mooney, M. E. (2012). Teleconsulting phenomenon in pathological gambling: Association with
gender and comorbidities. *Journal of Nervous and Mental Disease, 200*(11), 996–998. https://doi.org/10.1097/NMD.0b013e31827184d4.

Grant, J. E., & Potenza, M. N. (2006). Sexual orientation of men with pathological gambling: Prevalence and psychiatric comorbidity in a treatment-seeking sample. *Comprehensive Psychiatry, 47*(6), 515–518. https://doi.org/10.1016/j.comppsych.2006.02.005.

Griffiths, M., Wardle, H., Orford, J., Sproston, K., & Erens, B. (2009). Sociodemographic correlates of internet gambling: Findings from the 2007 British gambling prevalence survey. *Cyberspace and Behavior, 12*(2), 199–202. https://doi.org/10.1089/cpb.2008.0196.

Guillou-Landreat, M., Guillou, A., Sauvaget, A., Brisson, L., Leboucher, J., Remaud, M., ... Grall-Bronnec, M. (2016). Factors associated with suicidal risk among a French cohort of problem gamblers seeking treatment. *Psychia
tics Research, 240*, 11–18. https://doi.org/10.1016/j.psychres.2016.04.008.

Håkansson, A., Karlsson, A., & Widinghoff, C. (2018). Primary and secondary diagnoses of gambling disorder and psychiatric comorbidity in the Swedish health care system – a nationwide register study. *Frontiers in Psychiatry, 9*, 426. https://doi.org/10.3389/fpsyt.2018.00426.

Håkansson, A., Mårdhed, E., & Zaar, M. (2017). Who seeks treatment when medicine opens the door to pathological gambling patients – psychiatric comorbidity and heavy predominance of online gambling. *Frontiers in Psychiatry, 8*, 255. https://doi.org/10.3389/fpsyt.2017.00255.

Håkansson, A., & Widinghoff, C. (2020). Gender differences in problem gamblers in an online gambling setting. *Psychology Research and Behavior Management, 13*, 681–691. https://doi.org/10.2147/PRBM.S248540.

Harries, M. D., Redden, S. A., & Grant, J. E. (2018). An analysis of treatment-seeking behavior in individuals with gambling disorder. *Journal of Gambling Studies, 34*(3), 999–1012. https://doi.org/10.1007/s10899-017-9730-2.

Haw, J., & Holdsworth, L. (2016). Gender differences in the temporal sequencing of problem gambling with other disorders. *International Journal of Mental Health and Addiction, 14*(5), 687–699. https://doi.org/10.1007/s11469-015-9601-y.

Hing, N., Russell, A., Tolchard, B., & Nower, L. (2016). Risk factors for gambling problems: An analysis by gender. *Journal of Gambling Studies, 32*(2), 511–534. https://doi.org/10.1007/s10899-015-9548-8.

Hodgins, D. C., Schopfler, D. P., d’Guebaly, N., Casey, D. M., Smith, G. J., Williams, R. J., & Wood, R. T. (2010). The association between childhood maltreatment and gambling problems in a community sample of adult men and women. *Psychology of Addictive Behaviors, 24*(3), 548–554. https://doi.org/10.1037/a0019946.

Holtgraves, T. (2009). Evaluating the problem gambling severity index. *Journal of Gambling Studies, 25*(1), 105–120. https://doi.org/10.1007/s10899-008-9107-7.

Huang, J.-H., & Boyer, R. (2007). Epidemiology of youth gambling problems in Canada: A national prevalence study. *The Canadian Journal of Psychiatry, 52*(10), 657–665. https://doi.org/10.1177/070674370705201006.

Jiménez-Murcia, S., Granero Pérez, R., Fernández-Aranda, F., Álvarez Moya, E., Ayamé, M. N., Gómez-Peña, M., ... Menchón, J. M. (2009). Comorbidity in pathological gambling: Clinical variables, personality and treatment response. *Revista de Psiquiatria y Salud Mental, 24*(4), 178–189. https://doi.org/10.1516/1016/S1888-9891(09)03236-7.

Jiménez-Murcia, S., Granero, R., Giménez, M., del Pino-Gutiérrez, A., Mestre-Bach, G., Mena-Moreno, T., ... Fernández-Aranda, F. (2020). Moderator effect of sex in the clustering of treatment-seeking patients with gambling problems. *Neuropsychiatric: Klinik, Diagnostik, Therapie und Rehabilitation: Organ der Gesellschaft Österreichischer Nervenärzte und Psychiatrer, 34*(3), 116–129. https://doi.org/10.1007/s40211-020-00341-1.

Jiménez-Murcia, S., Granero, R., Tárrega, S., Angulo, A., Fernández-Aranda, F., Arcelus, J., ... Menchón, J. M. (2016). Media
tional role of age of onset in gambling disorder, a path modeling analysis. *Journal of Gambling Studies, 32*(1), 327–340. https://doi.org/10.1007/s10899-015-9537-y.

Karlsson, A., & Håkansson, A. (2018). Gambling disorder, increased mortality, suicidality, and associated comorbidity: A longitudinal nationwide register study. *Journal of Behavioral Addictions, 7*(4), 1091–1099. https://doi.org/10.1556/2006.7.2018.112.

Kausch, O., Rugle, L., & Rowland, D. Y. (2006). Lifetime histories of trauma among pathological gamblers. *American Journal on Addictions, 15*(1), 35–43. https://doi.org/10.1080/1050490500419045.

Kim, H. S., Hodgins, D. C., Bellringer, M., & Abbott, M. (2016). Gender differences among helpline callers: Prospective study of gambling and psychosocial outcomes. *Journal of Gambling Studies, 32*(2), 605–623. https://doi.org/10.1007/s10899-015-9572-8.

Korman, L. M., Collins, J., Dutton, D., Dhayananthan, B., Littman-Sharp, N., & Skinner, W. (2008). Problem gambling and intimate partner violence. *Journal of Gambling Studies, 24*(1), 13–23. https://doi.org/10.1007/s10899-007-9077-1.

Kushnir, V., Godinho, A., Hodgins, D. C., Hendershot, C. S., & Cunningham, J. A. (2016). Gender differences in self-conscious emotions and motivation to quit gambling. *Journal of Gambling Studies, 32*(3), 969–983. https://doi.org/10.1007/s10899-015-9574-6.

Ladd, G. T., & Petry, N. M. (2002). Gender differences among pathological gamblers seeking treatment. *Experimental and Clinical Psychopharmacology, 10*(3), 302–309. https://doi.org/10.1037/1064-1297.10.3.302.

Laursen, B., Plauborg, R., Ekholm, O., Larsen, C. V. L., & Juel, K. (2016). Problem gambling associated with violent and criminal behaviour: A Danish population-based survey and register study. *Journal of Gambling Studies, 32*(1), 25–34. https://doi.org/10.1007/s10899-015-9536-z.

Ledgerwood, D. M., & Milosevic, A. (2015). Clinical and personality characteristics associated with post traumatic stress disorder in problem and pathological gamblers recruited from the community. *Journal of Gambling Studies, 31*(2), 501–512. https://doi.org/10.1007/s10899-013-9426-1.

Ledgerwood, D. M., & Petry, N. M. (2006). Posttraumatic stress disorder symptoms in treatment-seeking pathological gamblers.
Petry, M. N., & Steinberg, K. L. (2005). Childhood maltreatment in male and female treatment-seeking pathological gamblers. *Psychology of Addictive Behaviors, 19*(2), 226–229. https://doi.org/10.1037/0893-164X.19.2.226.

Petry, M. N., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: Results from the national epidemiologic survey on alcohol and related conditions. *Journal of Clinical Psychiatry, 66*(5), 564–574. https://doi.org/10.4088/JCP.v66n0504.

Potenza, M. N., Maciejewski, P. K., & Mazure, C. M. (2006). A gender-based examination of past-year recreational gamblers. *Journal of Gambling Studies, 22*(1), 41–64. https://doi.org/10.1007/s10899-005-9002-4.

Potenza, M. N., Steinberg, M. A., McLaughlin, S. D., Wu, R., Rounsaville, B. J., & O’Malley, S. S. (2001). Gender-related differences in the characteristics of problem gamblers using a gambling helpline. *American Journal of Psychiatry, 158*(9), 1500–1505. https://doi.org/10.1176/appi.ajp.158.9.1500.

Richard, J., Martin-Storey, A., Willke, E., Derevensky, J. L., Paskus, T., & Temcheff, C. E. (2019). Variations in gambling disorder symptomatology across sexual identity among college student-athletes. *Journal of Gambling Studies, 35*(4), 1303–1316. https://doi.org/10.1007/s10899-019-09838-z.

Roberts, A., Coid, J., King, R., Murphy, R., Turner, J., Bowden-Jones, H., … Landon, J. (2016). Gambling and violence in a nationally representative sample of UK men. *Addiction (Abingdon, UK), 111*(12), 2196–2207. https://doi.org/10.1111/add.13522.

Roberts, A., Sharan, S., Coid, J., Murphy, R., Bowden-Jones, H., Cowlishaw, S., & Landon, J. (2017). Gambling and negative life events in a nationally representative sample of UK men. *Addictive Behaviors, 75*, 95–102. https://doi.org/10.1016/j.addbeh.2017.07.002.

Ronzitti, S., Lutri, V., Smith, N., Clerici, M., & Bowden-Jones, H. (2016). Gender differences in treatment-seeking British pathological gamblers. *Journal of Behavioral Addictions, 5*(2), 231–238. https://doi.org/10.1556/2066.5.2016.032.

Sanscartier, M. D., Shen, J., & Edgerton, J. D. (2019). Gambling among emerging adults: How gender and risk level influence associated problem behaviours. *Journal of Gambling Issues Advance online publication* https://doi.org/10.4309/jgi.2019.41.6.

Scherrer, J. F., Xian, H., Kapp, J. M. K., Waterman, B., Shah, K. R., Volberg, R., & Eisen, S. A. (2007). Association between exposure to childhood and lifetime traumatic events and lifetime pathological gambling in a twin cohort. *Journal of Nervous and Mental Disease, 195*(1), 72-78. https://doi.org/10.1097/01.nmd.0000252384.20382.e9.

Seedat, S., Scott, K. M., Angermeyer, M. C., Berglund, P., Bromet, E. J., Brugha, T. S., … Kessler, R. C. (2009). Cross-national associations between gender and mental disorders in the world health organization world mental health surveys. *Archives of General Psychiatry, 66*(7), 785–795. https://doi.org/10.1001/archgenpsyc.2009.36.

Shultz, S. K., Shaw, M., McCormick, B., Allen, J., & Black, D. W. (2016). Intergenerational childhood maltreatment in persons with DSM-IV Pathological Gambling and their first-degree relatives. *Journal of Gambling Studies, 32*(3), 877–887. https://doi.org/10.1007/s10899-015-9588-0.

Slutske, W. S., Piatecki, T. M., Deutsch, A. R., Statham, D. J., & Martin, N. G. (2014). Telescoping and gender differences in the time course of disordered gambling: Evidence from a general population sample. *Addiction (Abingdon, UK), 110*(1), 144–151. https://doi.org/10.1111/add.12177.

Stark, S., Zahlan, N., Albasene, P., & Tepperman, L. (2012). Beyond description: Understanding gender differences in problem gambling. *Journal of Behavioral Addictions, 1*(3), 123–134. https://doi.org/10.1556/JBA.1.2012.3.5.

Stevens, M., & Young, M. (2010). Who plays what? Participation profiles in chance versus skill-based gambling. *Journal of Gambling Studies, 26*(1), 89–103. https://doi.org/10.1007/s10899-009-9143-y.

Sundqvist, K., Jonsson, J., & Wennberg, P. (2016). Gambling motives in a representative Swedish sample of risk gamblers. *Journal of Gambling Studies, 32*(4), 1231–1241. https://doi.org/10.1007/s10899-016-9607-9.

Sundqvist, K., & Rosendahl, I. (2019). Problem gambling and psychiatric comorbidity – risk and temporal sequencing among women and men: Results from the Swelogs case–control study. *Journal of Gambling Studies, 35*(3), 757–771. https://doi.org/10.1007/s10899-019-09851-2.

Suomi, A., Dowling, N. A., & Jackson, A. C. (2014). Problem gambling subtypes based on psychological distress, alcohol abuse and impulsivity. *Addictive Behaviors, 39*(12), 1741–1745. https://doi.org/10.1016/j.addbeh.2014.07.023.

Suomi, A., Dowling, N. A., Thomas, S., Abbott, M., Bellringer, M., Battersby, M., … Jackson, A. C. (2019). Patterns of family and intimate partner violence in problem gamblers. *Journal of Gambling Studies, 35*(2), 465–484. https://doi.org/10.1007/s10899-018-9768-9.

Svensson, J., & Romild, U. (2014). Problem gambling features and gendered gambling domains amongst regular gamblers in a Swedish population-based study. *Sex Roles, 70*, 240–254. https://doi.org/10.1007/s11199-014-0354-z.

Tavares, H., Martins, S. S., Lobo, D. S., Silveira, C. M., Gentil, V., & Hodgin, D. C. (2003). Factors at play in faster progression for female pathological gamblers: An exploratory analysis. *Journal of Clinical Psychiatry, 64*(4), 433–438. https://doi.org/10.4088/jcp.v64n0413.

The Lancet (2017). Problem gambling is a public health concern. *The Lancet, 390*(10098), 913. https://doi.org/10.1016/S0140-6736(17)32333-4.

Toneatto, T., & Wang, J. J. (2009). Community treatment for problem gambling: Sex differences in outcome and process. *Community Mental Health Journal, 45*(6), 468–475. https://doi.org/10.1007/s10597-009-9244-1.

Vogelgesang, M. (2009). Traumata, traumatogene Faktoren und pathologisches Glücksspielen. *Psychotherapeut, 55*(1), 12–20. https://doi.org/10.1007/s00278-009-0670-x.

Vogelgesang, M. (2010). Psychische Komorbidität und Gender bei Pathologischem Glücksspielen. *Verhaltenstherapie & Verhaltensmedizin, 31*(1), 36–49.

Walker, G. J., Hinch, T. D., & Weighill, A. I. (2005). Inter- and intra-gender similarities and differences in motivations for casino gambling. *Leisure Sciences, 27*(2), 111–130. https://doi.org/10.1080/01490400590912042.
Welte, J. W., Barnes, G. M., Tidwell, M.-C. O., Hoffman, J. H., & Wieczorek, W. F. (2015). Gambling and problem gambling in the United States: Changes between 1999 and 2013. Journal of Gambling Studies, 31(3), 695–715. https://doi.org/10.1007/s10899-014-9471-4.

Wenzel, H. G., & Dahl, A. A. (2009). Female pathological gamblers – a critical review of the clinical findings. International Journal of Mental Health and Addiction, 7(1), 190–202. https://doi.org/10.1007/s11469-008-9174-0.

WHO (2019). Gender and health. https://www.who.int/health-topics/gender#tab_5_tab_1.

Williams, R. J., Lee, C.-K., & Back, K. J. (2013). The prevalence and nature of gambling and problem gambling in South Korea. Social Psychiatry and Psychiatric Epidemiology: The International Journal for Research in Social and Genetic Epidemiology and Mental Health Services, 48(5), 821–834. https://doi.org/10.1007/s00127-012-0580-z.

Wu, A., Lai, M. H. C., & Tong, K.-K. (2014). Gambling disorder: Estimated prevalence rates and risk factors in Macao. Psychology of Addictive Behaviors, 28(4), 1190. https://doi.org/10.1037/a0037603.

Wu, A. M. S., Lai, M. H. C., & Tong, K.-K. (2015). Internet gambling among community adults and university students in Macao. Journal of Gambling Studies, 31(3), 643–657. https://doi.org/10.1007/s10899-014-9451-8.

Yazdi, K., & Katzian, C. (2017). Addictive potential of online-gambling. A prevalence study from Austria. Psychiatria Danubina, 29(3), 376–378. https://doi.org/10.24869/psyd.2017.376.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.