CLASSIFICATION OF THE MULTIGENE FAMILY OF FATTY ACID BINDING PROTEINS (FABPs) AND TRANSCRIPTION PROFILE OF THE GENES IN STRIPED CATFISH (PANGASIANODON HYPOPHTHALMUS)

Le Thi Nguyen Binh¹, Tran Son Hoang¹, Tran Thi Huyen Trang¹, Nguyen Thi Hoa¹, Kim Thi Phuong Oanh¹,²

¹Institute of Genome Research, Vietnam Academy of Science and Technology
²Graduate University of Science and Technology, Vietnam Academy of Science and Technology

To whom correspondence should be addressed. E-mail: ktpoanh@igr.ac.vn

Received: 16.10.2020
Accepted: 12.12.2020

SUMMARY

Striped catfish (Pangasianodon hypophthalmus) is an economically important fish in Vietnam. The catfish fillets contain high fatty acid composition. The FABP family is involved in lipid transport and metabolism as well as in the regulation of gene expression and cell development. In this study, the catfish genome database was searched for fabp gene family; then, gene structure, classification and phylogenetic relationships were analyzed. In striped catfish genome, we found 10 fabp genes that are homologous to other fish species and other 5 novel fabp genes that have not been clearly annotated. These newly identified fabp genes cluster separately from the known members of the fabp family on the phylogenetic tree, and further studies are needed to understand their roles and functions. We examined transcriptional gene expression of fabp3, fabp7 and fabp10a genes in muscle, liver and brain tissues of the striped catfish. The results showed that fabp10a gene was not strongly expressed in all 3 types of tissues; fabp3 gene was most strongly expressed in liver tissue and fabp7 was highly up-regulated in brain tissue. The results of this study provide a resource for further research on the function of fabp genes and their genetic diversity in striped catfish.

Keywords: FABPs, fatty acid binding proteins, Pangasianodon hypophthalmus, striped catfish

INTRODUCTION

The striped catfish (Pangasianodon hypophthalmus), which belongs to the Asian catfish family Pangasiidae, is native to Mekong river and successfully cultured in the river delta. Vietnam is the world’s largest producer of P. hypophthalmus. According to Vietnam Association of Seafood Exporters and Producers (VASEP), the pangasius products were exported to over 140 markets including USA, EU, China, ASEAN, Mexico, and Brazil.

Recently, with the development of next generation sequencing (NGS) technology, a draft genome of P. hypophthalmus has been reported, which has developed genomic resources for genetic improvement of the striped catfish (Kim et al., 2018). The available of genomic information will enhance opportunities for fundamental researches and commercial applications. In order to develop molecular markers, identification of the genes linked with traits of interest is an effective approach. Based on P. hypophthalmus genome, several gene families related to growth and development have been analyzed, such as members of the insulin-like growth factor (IGF) system (IGFs, IGFRs, IGFBPs) (Kim et al., 2018, Le et al., 2019).
Fatty Acid Binding Proteins (FABPs) belong to a family of 14-16 kDa molecules and long-chain fatty acid bonds in both vertebrates and invertebrates (Alvite et al., 2008; Borchers et al., 1989; Kanda, 1989). FABPs can mediate the transport of free fatty acids for specific metabolic pathways, protecting cells from the cytotoxic effects of free fats, acids and modifying lipid metabolizing enzymes (Bensard et al., 2002; Lowe et al., 1987; Storch and McDermott, 2009). A number of studies have indicated the role of FABPs in a multitude of cellular processes including: (1) Binding and isolating long-chain fats, acids, bile salts and other hydrophobic ligands; (2) Transporting these ligands to the intracellular compartments for metabolism and energy production; (3) Interacting with other enzyme systems and transport proteins; and (4) Transporting fatty acids (FA) to the nucleus for the regulation of gene transcription through the activation of nuclear receptors, peroxisome proliferator activation receptors (PPARs) (Denovan-Wright et al., 2000; Sharma et al., 2006; Storch et al., 2008, Leaver et al., 2005; Judith et al., 2010, Angel et al., 2010). FABPs participate in the regulation of gene expression and cell growth (Haunerland, Spene, 2004). In addition, FABPs also play an important role in resilience to environmental temperatures and extreme nutritional conditions in vertebrates (Syamsunarno et al., 2014; Furuhashi et al., 2008). The expression of FABPs in various tissues such as intestinal tissue, heart tissue, and liver; and fat fulfill specific roles associated with histological structure and physiological function of these tissues have been confirmed (Banaszak et al., 1994; Veerkamp et al., 1991; Veerkamp et al., 1993; Judith et al., 2010, Angel et al., 2010).

FABPs are encoded by a group of fabp genes. Atotal of 12 fabp genes have been identified in vertebrates so far, but not all members of fabp genes occur in the same species (Lucke et al., 2003). For example, fabp10 and fabp11 have only been proposed in nonmammalian vertebrates, like teleost fishes (Smather et al., 2011), while fabp12 appears restricted to mammals, such as human (Parma et al., 2012). Venkatachalam described 12 fabp genes in zebra fish, based on results of cDNA sequence synthesis, gene structure, and conservative gene regions the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA) transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed with different concentrations of clofibrate (Venkatachalam, 2012). The fabp genes expressed differently, but their tertiary structure and genetic makeup were highly conservative (Storch et al., 2008; Glatz et al., 1996; Ong et al., 1994). Almost all fabp genes comprise four exons and three different sized introns between the isomorphic and orthogonal fabp genes in different species (Schaap et al., 2002), except for the fabp3 gene in the desert grasshopper (Wu et al., 2001) the fabp1a gene from zebrafish (Sharma et al., 2004) and the fabp11a gene from anchovies (Parma et al., 2012).

This study aims to identify and classify the fabp gene family from genome database; and analyse transcriptional expression of fabp genes in various tissues in striped catfish (P. hypophthalmus). Since protein FABPs participate in the regulation of gene expression and cell growth, members of fabp gene family are candidates for studying genetic variations of the genes and their association with growth traits. The results of this study would provide material for applying in further research to develop molecular markers toward growth.

MATERIALS AND METHODS

Identification of fabp genes from striped catfish genome data

FABP genes were surveyed based on previous reports of teleost FABP genes (Venkatachalam et al., 2017). The teleost FABP genes were used as queries for BLAST searches of FABP genes in the P. hypophthalmus genome (Kim et al., 2018). NCBI assembly record for P. hypophthalmus genome is GCF_003671635.1 (BioProject: PRJNA501861; BioSample: [BioSample ID]).
SAMN08866743). The nucleotide/protein sequences with annotation of FABP family are also available in NCBI database.

Comparative analysis of fabp genes

The identified **fabp** genes from *P. hypophthalmus* and **fabp** genes from different taxa (157 genes) available in the NCBI database were used for phylogenetic analysis. Multiple alignment of the deduced amino acid sequences was performed using the ClustalW web-based tool with default parameters. A phylogenetic tree was constructed with MEGA7.0 (Kumar *et al*., 2016) using neighbor-joining methods (Saitou, Nei, 1987). The tree topology was evaluated with a bootstrap probability calculated on 1000 resamplings.

Sampling

The catfish samples used in the study were collected directly from the Research Institute of Aquaculture No.2, Ho Chi Minh City. Liver, brain, and muscle tissue samples were cut into small pieces and immediately immersed in RNA later solution, and subsequently stored at -80°C until RNA extraction.

Total RNA extraction and cDNA synthesis

Catfish tissues were homogenized and used for RNA extraction with RNeasy Mini Kit (Qiagen) according to the manufacture’s protocol and stored at -80°C. The quantity and quality of total RNAs were checked by gel electrophoresis on a 1% agarose gel and NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific). The cDNA libraries were constructed using RevertAid First Strand cDNA SynthesisKit (Thermo Fisher) according to the manufacturer’s procedure.

Primer design

The primer pairs for qRT-PCR were designed by Primer 5.0 software based on the annotated nucleotide sequences from striped catfish genome. The 18S ribosomal RNA was used as internal control for qRT-PCR analyses.

Among **fabp** genes identified in the striped catfish, three genes (**fabp10a, fabp3, fabp7**) were chosen for further examination of transcriptional gene expression profiles. The gene structures and primer positions were shown in Figure 1. Information about the designed primers used in this study is shown in Table 1.

Figure 1. Structure of **fabp** genes and position of designed primer pairs for qRT-PCR. **A.** **fabp10a** gene; **B.** **fabp3** gene; and **C.** **fabp7** gene. The nucleotide of each gene was numbered based on the annotation for the gene in scaffold. The boxes denoted “E” and “I” are exons and introns, numbered in ascending order.
Table 1. Primers for qRT-PCR used in this study.

Gene	Accession (XM)	Primer name	Nucleotide sequences (5'→3')	Amplicon length	Exon junction
fabp10a	XM_026924089.1	fabp10a-Fw	CACCATCGGCAAAGAAGCAG	78 bp	Exon2-Exon3
		fabp10a-Rv	TTTCCCTCTTCCAGCTCAC		
fabp3	XM_026929677.1	fabp3-Fw	CCACAGCAGAGGCACTAAAG	82 bp	Exon2-Exon3
		fabp3-Rv	TGGCGCTCCATTTCTGAACG		
fabp7	XM_026925940.1	fabp7-Fw	AACTGGGAGAGGGCTTTGACG	75 bp	
		fabp7-Rv	TGTTCTCGTTCCAAGGTTCAGT	75 bp	Exon2-Exon3
18S rRNA	(XR_004577708)	18S-Fw	TGACTCAACACGGGAAACCTC	122 bp	
		18S-Rv	CAGACAAATCGCTCCACCAAC		

Transcriptional gene expression analysis by qRT-PCR method

The cDNA was synthesized from total RNA by reverse transcription using the First-Strand cDNA Synthesis Kit for qRT-PCR (Sigma Aldrich). The cDNA product was quantified using the NanoDrop™ 1000 Spectrophotometer and then diluted to a 20 ng/μl working concentration.

Primer pairs were checked by performing regular PCR reaction and agarose gel electrophoresis. Quantitative RT-PCR reaction was performed using FastStart Essential DNA Green Master kit (Roche) and LightCycler® 96 Instrument as follow: pre-incubation 95°C for 1 min, 40 cycles of denaturation at 94°C for 15 sec, annealing at 60°C for 20 sec, extension at 72°C for 30 sec and final elongation at 72°C for 30 sec. Each reaction was performed thrice simultaneously and with a negative control (without cDNA).

Analysis of qPCR Data

Relative quantification of RT-PCR data is based on the expression ratio of the fabp gene versus the reference 18S gene. Analysis of qRT-PCR results using the relative quantitative 2^(-∆∆CT) method where ∆∆CT = Ctarget gene − C18S. (Livak, 1997; Livak, Schmittgen, 2001). Differences were considered significant when p<0.05.

RESULTS AND DISCUSSION

Catfish genome data mining for fabp gene family

Fatty acid-binding proteins belong to the conserved multigene family of the intracellular lipid binding proteins. Twelve zebrafish fabp genes have been identified in the zebrafish (Danio rerio) genome based on their sequence similarity, phylogeny and conserved gene synteny with their human and chicken orthologs (Venkatachalam et al., 2017). In this study, we used fabp genes from zebrafish and other teleost fish as queries to search the catfish genome sequence database (Kim et al., 2018) by BLAST to identify catfish fabp genes. The identified fabp genes in the P. hypophthalmus genome are listed in Table 2.

Table 2 showed that 15 genes related to the fabp family were found in the P. hypophthalmus genome. Among these genes, 10 fabp genes were annotated based on their sequence similarity with that of other teleost fish, including fabp 1, fabp2, fabp3, fabp 6, fabp 7, fabp 10 andfabp11. Five genes, namely fabp_brainlike, were not clearly annotated.

Classification of the FABPs multigene family

All of the catfish fabp genes found in the BLAST searches (Table 2) were annotated based on sequence identity/similarity and phylogenetic analyses. A neighbor-joining tree shows the phylogenetic relationship of fabps from the
stripped catfish and other vertebrate species (Figure 2).

Figure 2 showed that the genomes of the striped catfish (P. hypophthalmus) contained at least one copy of fatty acid-binding protein genes: fabp1, fabp2, fabp3, fabp6, fabp7, fabp10 and fabp11 as same as other teleost fish. P. hypophthalmus genome retains duplicates of fabp2, fabp10 and fabp11 while zebrafish (D. rerio) contains duplicates in fabp1a/b, fabp7a/b, fabp10a/b and fabp11a/b (Venkatachalam et al., 2017).

Table 2. Genes related to the FABPs family in the P. hypophthalmus genome.

No	Description	P. hypophthalmus 2018 Genome/ scaffold ID	NCBI- Nucleotide ID	NCBI- ProteinID
1	fabp1	NW_020824196.1/sc0000001	XM_026915289.1	XP_026771090.1
2	fabp2	NW_020824279.1/sc00000084	XM_026910795.1	XP_026766596.1
3	fabp2_intestinal-like	NW_020824240.1/sc00000045	XM_026945385.1	XP_026801186.1
4	fabp3	NW_020824213.1/sc00000018	XM_026929677.1	XP_026785478.1
5	fabp6	NW_020824225.1/sc00000030	XM_026938343.1	XP_026794635.1
6	fabp7	NW_020824209.1/sc00000014	XM_026925940.1	XP_026781741.1
7	fabp10a	NW_020824207.1/sc00000012	XM_026924089.1	XP_026779890.1
8	fabp10b	NW_020824330.1/sc00000135	XM_026911873.1	XP_026766747.1
9	fabp11a	NW_020824213.1/sc00000018	XM_026929359.1	XP_026785160.1
10	fabp11b	NW_020824227.1/sc00000032	XM_026939973.1	XP_026795774.1
11	fabp_brainlike	NW_020824206.1/sc00000011	XM_026922912.1	XP_026778713.1
12	fabp_brainlike	NW_020824238.1/sc00000043	XM_026944702.1	XP_026800503.1
13	fabp_brainlike	NW_020824206.1/sc00000011	XM_026922911.1	XP_026778712.1
14	fabp_brainlike	NW_020824290.1/sc00000095	XM_026911183.1	XP_026766984.1
15	fabp_brainlike	NW_020824290.1/sc00000095	XM_026911177.1	XP_026766978.1

The phylogenetic tree showed close relationship between striped catfish (P. hypophthalmus) and channel catfish (Ictalurus punctatus). However, only single fabp2 was found in I. punctatus genome while two fabp2 genes were found in P. hypophthalmus. Among 15 genes related to the FABPs family in P. hypophthalmus genome, five ambiguously annotated fabp genes clustered together in the same clade which was distantly related to the currently known members of the fabp family. Future research will be needed to investigate function of these members of the fabp family.

Transcriptional gene expression of several fabp genes in various catfish tissues

In our study, transcriptional gene expression of fabp10a, fabp3 and fabp7 were examined in brain, muscle, and liver tissues from catfish P. hypophthalmus. Firstly, total RNAs were extracted from tissue samples. The quantity and quality of total RNA were checked by 1.5% agarose gel electrophoresis and NanoDrop spectrophotometer. The data showed that all RNA samples had a ratio of A260/280 of circa 2 and contain ≥ 50 ng RNA.

The cDNA was synthesized from total RNA by reverse transcription using the First-Strand cDNA Synthesis Kit for qRT-PCR (Sigma Aldrich).

Primers designed for qRT-PCR were shown in Figure 1 and Table 1. To check the primer specificity and quality of cDNA product, regular PCR reactions were performed. The products were checked by 1% agarose gel electrophoresis (Figure 3). Figure 3 showed that each PCR
product gave a single band on the gel with expected product size. This result confirmed primer specificity and cDNAs could be further used as templates of qRT-PCR reactions.

Figure 2. Molecular phylogenetic analysis of FABPs showing classification and duplication of fabp genes.

After qRT-PCR run, specific amplifications were also confirmed by the presence of a single peak in the melting curve (Figure 4). The melting curves presented in Figure 4 showed that all amplicons for fabp10a, fabp3 and fabp7 have the same melting peaks at circa 84°C. The single peak observed for each amplification verified the single, specific product.

Based on the qRT-PCR performance, transcriptional gene expression of fabp10a, fabp3 and fabp7 genes in stripped catfish *P. hypophthalmus* was examined in brain, muscle, and liver tissues. The results of the transcriptional gene expression were shown in Figure 5. The qRT-PCR results showed that for the fabp10a gene, minimal mRNA expression
was detected in all tissues. In the case of \textit{fabp3}, it had a very high expression level, up to more than 80 times in liver tissue and also had a significantly up-regulation, more than 7 times, in brain tissue. For the \textit{fabp7} gene, the highest expression was observed in brain tissue and followed by liver tissue, but only minimal expression was showed in muscle tissue.

Figure 3. Electrophoresis of PCR products on 1% agarose gel. M. 1kb DNA marker; 1. \textit{fabp10a}; 2. \textit{fabp3}; 3. \textit{fabp7}; 4. 18S

Figure 4. Melting curves for determination of specificity and efficiency of qRT-PCR amplification of \textit{fabp} genes. A. 18S rRNA; B. \textit{fabp10a}; C. \textit{fabp3}; D. \textit{fabp7}.

The \textit{fabp10} gene has been found in the liver of vertebrates such as chickens (Ceciliani \textit{et al.}, 1994), iguanas, toads (Schleicher, Santome, 1996; Di Pietro \textit{et al.}, 2003), frogs (Baba \textit{et al.}, 1999) and in many fish species such as shark (Cordoba \textit{et al.}, 1999), zebrafish (Denovan-Wright \textit{et al.}, 2000; Sharma \textit{et al.}, 2006; Venkatachalam \textit{et al.}, 2009), lungfish (Di Pietro. Santome, 2001) and rainbow trout (Kim 2006; Bayir \textit{et al.}, 2015). In our study, \textit{fabp10a} only
showed expression at minor level in all examined tissues (liver, brain and muscle) of the catfish *P. hypophthalmus*. On the contrary, previous study in zebrafish showed that the steady-state level of *fabp10a* increased 6-fold in intestine and >5-fold in muscle (Ventakachalam *et al*., 2012).

The study of Wang and colleagues have reported expression profile of nine separate *fabp* genes in different chicken tissues. Among them, *fabp7* and *fabp10* were also showed to be highly expressed in the liver tissue (Wang *et al*., 2019). In pufferfish (*Tetraodon nigroviridis*), duplicated *fabp7* and *fabp10* genes was found in the genome and differently distributed in different tissues (Parmar, Wright, 2013, Thirumaran, 2014). In gold pompanos (*Trachinotus ovatus*), the expression of *fabp7* gene in brain tissue was significantly higher than that of other *fabp* genes (Lei *et al*., 2020), which is very similar to our case. For the *fabp3* gene, a study in Japanese seabass (*Lateolabrax japonicus*) has showed that although *fabp3* was widely distributed in many tissues, but muscle and liver tissues have much higher *fabp3* expressions compared with other tissues (Xu *et al*., 2017). Our study in the catfish *P. hypophthalmus* showed the remarkable up-regulation of *fabp3* gene in liver tissue and followed by brain tissue. Our results further indicated the important roles of fish liver in fatty acid and lipid metabolism, including synthesis, oxidation and storage of fatty acid and lipid. The tissue expression patterns of stripped catfish *fabp* genes were different with those of some other fish to some extent that may indicate specific evolutionary *fabp* functions in stripped catfish. The function of *fabp* gene family in stripped catfish needs to be elucidated by further studies.

CONCLUSION

The available of *P. hypophthalmus* genome database enables us to analyze particularly the *fabp* gene family. Totally, 15 genes related to the FABPs family in *P. hypophthalmus* were annotated and classified based on sequence identity/similarity and phylogenetic analyses. Among them, a cluster of 5 novel FABP related genes was identified. Moreover, transcriptional
gene expression patterns of fabp3, fabp7 and fabp10a genes in muscle, liver and brain tissues were firstly examined in P. hypophthalmus. This study provides a fundamental understanding of fabp gene family in P. hypophthalmus, which promotes further studies to clarify the function and genetic diversity of the fabp gene family.

Acknowledgement: This work was supported by the program “Development and Application of Biotechnology in Aquaculture” from the Ministry of Agriculture and Rural Development (MARD-Vietnam) to Kim Thi Phuong Oanh under the project "Genome analyses of striped catfish in order to develop molecular marker for growth traits (2nd phase)".

REFERENCES

Alves-Costa FA, Denovan-Wright EM, Thisse C, Thisse B, Wright JM (2008) Spatio-temporal distribution of fatty acid-binding protein 6 (fabp6) gene transcripts in the developing and adult zebrafish (Danio rerio). FEBS J 275: 3325–3334.

Alvite G, Canclini L, Corvo I, Esteves A (2008) Two novel Mesocestoidesvogae fatty acid binding proteins - functional and evolutionary implications. FEBS J (16): 107-116.

Angel A, Bray GA (2010) Synthesis of fatty acids and cholesterol by liver, adipose tissue and intestinal mucosa from obese and control patients. Eur J Clin Invest (9): 355–362.

Baba K, Takahashi Y, Aoyagi Y, Odani S. (1999) The amino acid sequence of a lamprey (Entosphenus japonicus) liver fatty acid-binding protein identified its close relationship to cardiac fatty acid-binding proteins of mammalia. Comp Biochem Physiol B Biochem Mol Biol 123(2): 223–228.

Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Alwyn Jones T (1994) Lipid-binding Proteins: A Family of Fatty Acid and Retinoid Transport Proteins, in: Shumaker, V. (Ed.), Advances in Protein Chemistry. Academic Press, San Diego: 89-151.

Bayr M, Bayr A, Wright JM (2015) Divergent spatial regulation of duplicated fatty acid-binding protein (FABP) genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part D (14): 26–32.

Besnard P, Niot I, Poirier H, Clement L, Bernard A (2002) New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem (239): 139-147

Borchers T, Unterberg C, Rudel H, Robenek H, Spener F (1989) Fatty acid-binding proteins 10. Subcellular distribution of cardiac fatty acid-binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochimica et Biophysica Acta (1002)L: 54-61

Ceciliani F, Monaco HL, Ronchi S, Faotto L, Spadon P (1994) The primary structure of a basic (pl 9.0) fatty acid-binding protein from liver of Gallus domesticus. Comp Biochem Physiol B Biochem Mol Biol (109): 261–271.

Chen X, Shi Z (2009) Sequence analysis of the full-length cDNA and protein structure homology modeling of FABP2 from Paralichthys olivaceus. Bioinform Biol Insights (3): 29-35.

Cordoba OL, Sanchez EI, Santome JA. (1999) The main fatty acid-binding protein in the liver of the shark (Halaetunus bivius) belongs to the liver basic type. Isolation, amino acid sequence determination and characterization. Eur J Biochem 265(2): 832–838.

Denovan-Wright EM, Pierce M, Wright JM. (2000) Nucleotide sequence of cDNA clones coding for a brain-type fatty acid-binding protein and its tissue-specific expression in adult zebrafish (Danio rerio). Biochim Biophys Acta - Gene Struct Expr (1492): 221–226.

Di Pietro SM, Co’rsico B, Perduca M, Mo’naco HL, Santome’ JA (2003) Structural and biochemical characterization of toad liver fatty acid-binding protein. Biochemistry (42): 8192–8203.

Di Pietro SM, Santome’ JA (2001) Structural and biochemical characterization of the lungfish (Lepidosiren paradoxa) liver basic fatty-acid binding protein. Arch Biochem Biophys 388(1): 81–90.

Glatz JF, van der Vusse GJ (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res (35): 243–282.

Hauerland NH, Friedrich Spener F (2004) Fatty acid-binding proteins-insights from genetic manipulations. Prog Lipid Res 43(4): 328-49.

Her GM, Chiang C, Wu J (2004) Zebrafishintestinal fatty acid binding protein (I-FABP) gene promoter
drives gut-specific expression in stable transgenic fish. *Genesis* (38): 26-31.

Hsu KT, Storch J (1996) Fatty acid transfer from liver and intestinal fatty acid binding proteins to membranes occurs by different mechanisms. *J Biol Chem* (271): 13317-13323.

Judith S, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. *J Biol Chem* (285): 32679.

Kanda T, Iseki S, Hitomi M, Kimura H, Odani S, Kondo H, Matsubara Y, Muto T, Ono T (1989) Purification and characterization of a fatty-acid-binding protein from the gastric mucosa of rats. Possible identity with heart fatty-acid-binding protein and its parietal cell localization. *European J Biochem* 185: 27-33.

Karanth S, Denovan-Wright EM, Thisse C, Thisse B, Wright JM (2009) Tandem duplication of the fabp1b gene and subsequent divergence of the tissue-specific distribution of fabp1b.1 and fabp1b.2 transcripts in zebrafish (Danio rerio). *Genome* 52: 985–992.

Karanth S, Lall SP, Denovan-Wright EM, Wright JM (2009) Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. *BMC Evol Biol* 9: 219.

Kemp P, Smith MW (1970) Effect of temperature acclimatization on the fatty acid composition of goldfish intestinal lipids. *Biochem J* 117: 9-15.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33(7): 1870-4.

Kim OTP, Nguyen PT, Shoguchi E, Hisata K, Vo TTB, Inoue J, Shinzato C, Le BTN, Nishitsuji K, Kanda M, Nguyen VH, Nong HV, Satoh N (2018) A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. *BMC Genom* 19: 1, 733.

Kim S (2006) Basic liver-type fatty acid binding protein in rainbow trout Oncorhynchus mykiss: sequence and gene expression in tissue. *Fish Sci* 72: 1316–1318.

Le Thi Nguyen Binh, Nguyen Thi Hoa, Tran Thi Huyen Trang, Nguyen Thanh Phuong, Kim Thi Phuong Oanh (2019) Structure of insulin-like growth factor 2 (IGF2) gene from striped (Pangasianodon hypophthalmus). *Vietnam Journal of Biotechnology* 17(3): 447–455 (in Vietnamese).

Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G., 2005. Three peroxisome proliferators activated receptor isotypes from each of two species of marine fish. *Endocrinology*, 146:3150–3162

Lei CX, Li MM, Zhang M, Wang S, Tian J, Wen J, Li Y., 2020. Cloning, olecular characterization, and nutritional regulation of fatty acid-binding protein family genes in gold pompanos (Trachinotus ovatus), *Comp Biochem Physiol B Biochem Mol Biol* 246-247.

Livak KJ (1997 updated 2001) Relative quantification of gene expression: ABI Prism 7700 Sequence Detection System, *Applied Biosystems User Bulletin #2*.

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^-ΔΔCt method. *Methods* 25: 402–408.

Liu RZ, Saxena V, Sharma MK, Thisse C, Thisse B, Denovan-Wright EM, Wright JM (2007) The fabp4 gene of zebrafish (Danio rerio) – genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression. *FEBS J* 274: 1621–1633.

Lücke C, Gutiérrez-González LH, Hamilton JA (2003) Intracellular Lipid Binding Proteins: Evolution, Structure, and Ligand Binding. In: Asim KD, Friedrich S, editors. *Cellular Proteins and their Fatty Acids in Health and Disease*. Wiley; Hoboken, NJ, USA: 95–118.

Ong DE, Newcomer ME, Chytl F (1994) The Retinoids: Biology, Chemistry and Medicine. In *Cellular retinoid-binding proteins*. 2nd edition. Edited by Sporn MB, Roberts AB, Goodman DS. New York: Raven; 1994: 283–317

Parmar MB, Venkatachalam AB, Wright JM (2012) The evolutionary relationship of the transcriptionally active fabp11a (intron less) and fabp11b genes of medaka with fabp11 genes of other teleost fishes. *FEBS J* 279: 2310-2321.

Parmar MB, Wright JM (2013) Comparative genomic organisation and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. *Genome*, 56(11): 691–701

Pelsers MMAL, Hermens WT, Glatz JFC (2005)
Fatty acid-binding proteins as plasma markers of tissue injury. *Clin Chim Acta* 352: 15-35.

Pierce M, Wang YM, Denovan-Wright EM, Wright JM (2000) Nucleotide sequence of a cDNA clone coding for an intestinal-type fatty acid binding protein and its tissue-specific expression in zebrafish (Danio rerio). *Biochim Biophys Acta - Gene Struct Exp* 1490: 175–183.

Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: Evolutionary divergences and functions. *Hum Genom* 5:170–191.

Schaap FG, van der Vusse GJ, Glatz JFC (2002) Evolution of the family of intracellular lipid-binding proteins in vertebrates. *Mol Cell Biochem* 239: 69–77.

Schleicher CH, Santome’ JA (1996) Purification, Characterization and partial amino acid sequencing of an amphibian liver fatty acid binding protein. *Biochem Cell Biol* 74: 109–115.

Sharma MK, Liu RZ, Thiss C, Thiss B, Denovan-Wright EM, Wright JM (2006) Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. *FEBS J* 273: 3216–3229.

Storch, J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. *J Biol Chem* 285: 32679-32683.

Syamsunarno MR, Iso T, Yamaguchi A, Hanaoka H, Putri M, Obokata M, Sunaga H, Koitabashi N, Matsui H, Maeda K, Endo K, Tsushima Y, Yokoyama T, KurabayashiM (2014) Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress. *PloS One*, 9(6).

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* 30: 2725–2729.

Thirumaran A, Wright JM (2014) The differential tissue-specific distribution of pufferfish fabp transcripts suggests divergent spatial regulation of duplicated pairs of fabp genes. *Genome* 57: 289–301

Thompson JD (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22: 4673–4680

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. *Nucleic Acids Res* 40(15).

Veenkamp JH, Van Kuppevelt THSM, Maatman RGHJ, Prinsen CFM (1993) Prinsen, structural and functional aspects of cytosolic fatty-acid-binding proteins. Prostaglandins, Leukotrienes and Essential Fatty Acids. 49: 887-906.

Venkatachalam AB, Thisse C, Thisse B, Wright JM (2009) Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). *FEBS J* 276: 6787–6797.

Venkatachalam AB, Lall SP, Denovan-Wright Em, Wright JM (2012) Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). *BMC Evol Biol* 12: 112.

Venkatachalam AB, Parmar MB, Wright JM (2017) Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. *Mol Genet Genom* 292: 699–727.

Wang Z, Yue YX, Liu ZM, Yang LY, Li H, Li ZJ, Li GX, Yan-Bin Wang YB, Tian YD, Kang XT, Liu XJ (2019) Genome-Wide Analysis of the FABP Gene Family in Liver of Chicken (Gallus gallus): Identification, Dynamic Expression Profile, and Regulatory Mechanism. *Int J Mol Sci* 20(23): 5948.

Wu Q, Andolfatto P, Haunerland NH: Cloning and sequence of the gene encoding the muscle fatty acid binding protein from the desert locust, Schistocerca gregaria. *Insect Biochem Mol Biol* 31: 553–562.

Xie, P, Liu, L, Wang, C, Zou, X (2013) Molecular cloning, characterization, and mRNA expression of intestinal fatty acid binding protein (I-FABP) in Columbia livia. *J Poultry Sci* 50: 9-19.

Xu H, Zhang Y, Wang C, Wei Y, Zheng K, Liang M., 2017 . Cloning and characterization of fatty acid-binding proteins (fabps) from Japanese seabass (Lateolabrax japonicus) liver, and their gene expressions in response to dietary arachidonic acid (ARA). *Comp. Biochem. Physiol. B: Biochemistry and Molecular Biology*

Yamamoto T, Suzuki N, Furuita H, Sugita T, Tanaka N, Goto T (2007) Supplemental effect of bible salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. *Fish Sci* 73.
PHÂN LOẠI HỘI ĐA GEN MÃ HÓA PROTEIN LIÊN KẾT ACID Béo (FABPS) VÀ NGHIỆN CƯ UỶ BIỂU HIỆN CỦA MỘT SỐ GEN THUỘC HỘI ĐA GEN NÀY Ở Cá TRA NUỐI (PANGASIANODON HYPOPHTHALMUS)

Lê Thị Nguyên Bình¹, Trần Sơn Hoàng¹, Trần Thị Huyên Trang¹, Nguyễn Thị Hoa¹, Kim Thị Phương Oanh¹,²
¹Viện Nghiên cứu Hệ gen, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
²Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam

TÓM TẮT

 Cá tra nuôi (Pangasianodon hypophthalmus) là một loại cá kinh tế quan trọng ở Việt Nam. Thí thể cá tra có chứa thành phần axit béo cao. Protein liên kết acid béo (FABPs) tham gia vào quá trình vận chuyển và chuyển hóa lipid cũng như điều hòa biểu hiện gen và phát triển tế bào. Trong nghiên cứu này, họ gen fabp được khai thác từ cơ sở dữ liệu hệ gen cá tra. Tiếp đó cáu trắc gen, phân loại gen và các mối quan hệ phát sinh loài được tiến hành phân tích. Trong dữ liệu hệ gen cá tra, chúng tôi tìm thấy 10 gen fabp tương ứng với các loại cá khác và 5 gen fabp mới được xác định. Các gen mới xác định này tập trung thành một nhóm riêng trên cây phát sinh chủng loại của họ gen fabp, và cần có các nghiên cứu sâu hơn để hiểu thêm về vai trò và chức năng của chúng. Chúng tôi đã kiểm tra sự biểu hiện gen của các gen fabp3, fabp7 và fabp10a ở các mô cơ, gan và não của cá tra nuôi. Kết quả cho thấy gen fabp10a không biểu hiện mạnh ở cả 3 loại mô, gen fabp3 biểu hiện mạnh nhất ở mô gan và fabp7 biểu hiện mạnh ở mô não. Những kết quả này có thể làm nguyên liệu cho các nghiên cứu sâu hơn về chức năng của gen fabp và sự đa dạng di truyền của chúng ở cá tra nuôi.

Từ khóa: cá Tra, FABPs, Pangasianodon hypophthalmus, protein liên kết acid béo.