On the images of certain G_2-valued automorphic Galois representations

ADRIÁN ZENTENO *

August 4, 2020

Abstract

In this paper we study the images of certain families $\{\rho_{\pi,\lambda}\}_\lambda$ of G_2-valued Galois representations associated to algebraic regular, self-dual, cuspidal automorphic representations π of $\text{GL}_7(\mathbb{A}_\mathbb{Q})$. In particular, we prove that under certain conditions in the weights of π the images of the residual representations $\overline{\rho}_{\pi,\lambda}$ are as large as possible for infinitely many primes λ and provide some examples where such conditions are satisfied.

2020 Mathematics Subject Classification: Primary 11F80; Secondary 20G41.

1. Introduction

Let $G_\mathbb{Q}$ be the absolute Galois group of \mathbb{Q} and π be an algebraic regular, self-dual, cuspidal automorphic representation of $\text{GL}_n(\mathbb{A}_\mathbb{Q})$. Thanks to the work of Chenevier, Clozel, Harris, Kottwitz, Shin, Taylor and several others, we know that there exists a number field E_π and a family $\{\rho_{\pi,\lambda}\}_\lambda$ of semi-simple Galois representations $\rho_{\pi,\lambda} : G_\mathbb{Q} \rightarrow \text{GL}_n(E_{\pi,\lambda})$ where λ ranges over all finite places of E_π and $E_{\pi,\lambda}$ is an algebraic closure of the completion $E_{\pi,\lambda}$ of E_π at λ. In particular, by the self-duality, the image of $\rho_{\pi,\lambda}$ is contained in $\text{GO}_n(\mathbb{Q}_\ell)$ or $\text{GSp}_n(\mathbb{Q}_\ell)$. See Section 2.1 of [BGGT14] for details and references.

A folklore conjecture, ensures that the images of the residual representations $\overline{\rho}_{\pi,\lambda}$ should be as large as possible for almost all places λ (i.e. all but finitely many), unless there is an automorphic reason for it does not happen. In the 2-dimensional case, the conjecture was proven by Momose [Mo81] and Ribet [Ri85] when π comes from a classical modular form of weight $k \geq 2$. In this case, modular forms with complex multiplication (the automorphic reason in this case) had to be excluded in order to obtain large image. When π comes from a Siegel modular form of genus 2 and weights (k_1, k_2), $k_1 \geq k_2 \geq 2$, the conjecture has been proved recently by Weiss [Wei]. In this case, CAP, endoscopics, automorphic inductions and symmetric cubes need to be excluded to obtain large image.

In a recent work [Ch19], Chenevier has studied certain algebraic regular, self-dual, cuspidal automorphic representations π of $\text{GL}_7(\mathbb{A}_\mathbb{Q})$ with weights of the form $0, \pm u, \pm v, \pm (u + v)$, $0 < u < v$, such that the 7-dimensional families of Galois representations $\{\rho_{\pi,\lambda}\}_\lambda$ associated to them, are G_2-valued (Theorem 2.1). In this paper, we prove a weak version of the conjecture for these automorphic representations. More precisely, we prove that if the weights of π are such that $v \neq 2u$ (condition imposed to exclude sixth symmetric powers), there exists a positive Dirichlet

*The author was supported by CONICYT Proyecto FONDECYT Postdoctorado No. 3190474
density set of primes \(L \) such that for all \(\lambda \) above \(\ell \in L \) the image of \(\rho_{\pi,\lambda} \) is isomorphic to \(G_2(\mathbb{F}_\ell) \) for some positive integer \(s \) (Theorem 5.1). In fact, if we assume that \(\pi \) is such that \(\pi_p \) is Steinberg for some prime \(p \), the set of primes \(L \) has Dirichlet density 1 (Theorem 4.2).

The proof of our result follows the line of [Dj02] and [DZ20], in the sense that our main tools are: some recent results about residual irreducibility of compatible systems of Galois representations [BGGT14], the classification of the maximal subgroups of \(G_2(\mathbb{F}_\ell) \) [Kle88], and Fontaine-Laffaille theory [FLS2].

Finally, we show that 10 examples of cuspidal automorphic representations of \(GL_7(A_\mathbb{Q}) \) of level one, given in [Ch19], satisfy our result (Proposition 4.1). As far as we know, examples of cuspidal automorphic representation of \(GL_7(A_\mathbb{Q}) \) with certain prescribed local ramification, such that the \(G_2 \)-valued Galois representation associated to them, are large as possible for a fixed prime (resp. a set of primes of Dirichlet density at least 1/18) have been studied in [KLS10] (resp. [MS]).

2. \(G_2 \)-valued automorphic Galois representations

In this section we review some definitions and results about certain 7-dimensional Galois representations associated to cuspidal automorphic representations of \(GL_7(A_\mathbb{Q}) \). We refer the reader to [Ci01, Chapter 3] and [Ci19, Section 6] for more details and references.

Let \(\pi = \pi_\infty \otimes \pi_f \) be a cuspidal automorphic representation of \(GL_7(A_\mathbb{Q}) \). We recall that \(\pi_f \) decomposes into a restricted tensor product \(\otimes \pi_p \) of irreducible smooth representations \(\pi_p \) of \(GL_7(Q_p) \) which are well defined up to isomorphism and unramified for almost all primes \(p \). We will denote by \(S_\pi \) the (finite) set of primes such that \(\pi_p \) is not unramified and we will say that \(\pi \) is of \textit{level one} if \(S_\pi = \emptyset \). According to Satake Parametrization, the set of isomorphism classes of unramified representations of \(GL_7(Q_p) \) is in canonical bijection with the set of conjugacy classes of semi-simple elements in \(GL_7(C) \). So, when \(\pi_p \) is unramified, we denote by \(c(\pi_p) \subset GL_n(C) \) the semi-simple conjugacy class associated to \(\pi_p \) that is called the Satake parameter of \(\pi_p \). On the other hand, we recall that \(\pi_\infty \) is a \(\mathfrak{gl}_7(K) \)-module, where \(K \) is a fixed maximal compact subgroup of \(GL_7(R) \) and \(\mathfrak{gl}_7(R) = M_7(R) \) is the Lie algebra of \(GL_7(R) \). Then, the center \(z \) of the enveloping algebra of \(\mathfrak{gl}_7(R) \) acts by scalars in \(\pi_\infty \). The resulting \(C \)-algebra homomorphism \(j : C \to C \) is called the \textit{infinitesimal character} of \(\pi_\infty \). By the Harish-Chandra isomorphism this character can be viewed as a semi-simple conjugacy class \(c(\pi_\infty) \in M_7(C) \). We will say that \(\pi_\infty \) is \textit{algebraic} if the eigenvalues \(k_1 \leq \cdots \leq k_7 \) of \(c(\pi_\infty) \) are integers and that it is \textit{regular} if such integers are distinct. We will say that \(\pi = \pi_\infty \otimes \pi_f \) is \textit{algebraic regular} if \(\pi_\infty \) is algebraic and regular, and the integers \(k_1, \cdots, k_7 \) will be called the \textit{weights} of \(\pi \).

Let \(\pi \) be an algebraic regular cuspidal automorphic representation of \(GL_7(A_\mathbb{Q}) \). Thanks to algebraic regularity, Clozel [Clo90, Theorem 3.7] proved that there is a number field \(E_\pi \subset \mathbb{C} \), called a \textit{coefficient field for} \(\pi \), such that for each prime \(p \) the representation \(\pi_p \) of \(GL_7(Q_p) \) is defined over \(E_\pi \). In particular, if \(\pi_p \) is unramified, the characteristic polynomial \(\det(X - c(\pi_p)) \) belong to \(E_\pi[X] \). Moreover, if we assume that \(\pi \) is self-dual (i.e., \(\pi^\vee \simeq \pi \)) it can be proved that, for any prime \(\ell \) and any place \(\lambda \) of \(E_\pi \) above \(\ell \), there exists a continuous semi-simple representation

\[
\theta_{\pi,\lambda} : G_\mathbb{Q} \longrightarrow GL(E_{\pi,\lambda})
\]

(unique up to isomorphism) unramified outside \(S_\pi \cup \{ \ell \} \) and such that, for every \(p \notin S_\pi \cup \{ \ell \} \), the characteristic polynomial of a Frobenius element \(Frob_p \) satisfies

\[
\det(X - \theta_{\pi,\lambda}(Frob_p)) = \det(X - c(\pi_p)).
\]

Additionally, if \(\ell \notin S_\pi \), the representation \(\theta_{\pi,\lambda} \) is crystalline at \(\ell \) and its Hodge-Tate numbers are equal to the weights of \(\pi \) [Shi11, Theorem 1.2]. We remark that, the existence of \(E_\pi \) and
The residual representation $\rho_{\pi, \lambda}$ is known in greater generality (e.g. any dimension, without the assumption of self-duality), but we focus on this case because it is the only one that we really use in this paper.

Let G_2 be the automorphism group scheme of the standard split octonion algebra over \mathbb{Z}. It is well known that, for any algebraically closed field k of characteristic 0, there is a unique (up to isomorphism) irreducible k-linear algebraic representation $\sigma : G_2(k) \to GL_7(k)$. By using the previous result on the existence of Galois representations associated to self-dual cuspidal automorphic representations of $GL_7(\mathbb{A}_Q)$, Chenevier [Ch19 Corollary 6.5, Corollary 6.10] proved the following result:

Theorem 2.1. Let $\pi = \pi_{\infty} \otimes \pi_f$ be an algebraic regular, self-dual, cuspidal automorphic representation of $GL_7(\mathbb{A}_Q)$ and assume that, for almost all primes p, the Satake parameter $c(\pi_p)$ of π_p is the conjugacy class of an element in $\sigma(G_2(\mathbb{C}))$. Then, for any prime ℓ and any place λ of E_π above ℓ, there exists a continuous semi-simple representation

$$
\rho_{\pi, \lambda} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to G_2(\mathbb{F}_{\pi, \lambda})
$$

(unique up to $G_2(\mathbb{F}_{\pi, \lambda})$-conjugacy) unramified outside $S_{\pi} \cup \{\ell\}$ and such that

$$
det(X - \sigma(\rho_{\pi, \lambda}(\text{Frob}_p))) = det(X - c(\pi_p))
$$

for every $p \notin S_{\pi} \cup \{\ell\}$. Moreover, the weights of π are of the form $0, \pm u, \pm v, \pm (u + v)$, with $0 < u < v$.

3. Study of the images of the residual representations $\mathfrak{f}_{\pi, \lambda}$

Let $\rho_{\pi, \lambda} : G_2 \to G_2(\mathbb{F}_{\pi, \lambda})$ be a Galois representation as in Theorem 2.1 we will denote by $\mathfrak{f}_{\pi, \lambda} : G_2 \to G_2(\mathbb{F}_s)$ the semi-simplification of its reduction, which is well defined up to conjugacy. This representation is usually called the residual representation of $\rho_{\pi, \lambda}$. The main goal of this paper is to prove the following result.

Theorem 3.1. Let $\pi = \pi_{\infty} \otimes \pi_f$ be a cuspidal automorphic representation of $GL_7(\mathbb{A}_Q)$ as in Theorem 2.1 and assume that the weights of π are such that $v \neq 2u$. Then, there exists a positive Dirichlet density set of primes \mathcal{L} such that for all λ above $\ell \in \mathcal{L}$ the image of $\mathfrak{f}_{\pi, \lambda}$ is isomorphic to $G_2(\mathbb{F}_s)$ for some positive integer s.

The proof of this theorem follows the structure of [Di02] and [DZ20]. Then, as in loc. cit., the proof of Theorem 3.1 is done by considering the possible images of $\mathfrak{f}_{\pi, \lambda}$ given by the maximal subgroups of $G_2(\mathbb{F}_s)$. Such subgroups were classified by Kleidman in [Kle88].

Proposition 3.2. Let \mathbb{F}_q be a finite field of characteristic $\ell > 3$ and $q = \ell^r$. Then, the maximal proper subgroups of $G_2(\mathbb{F}_q)$ are as follows:

i) maximal parabolic subgroups;

ii) $SL_2(\mathbb{F}_q), SU_3(\mathbb{F}_q)$;

iii) $(SL_2(\mathbb{F}_q) \circ SL_2(\mathbb{F}_q)).2$;

iv) $PGL_2(\mathbb{F}_q), \ell \geq 7, q \geq 11$;

v) $2^4 PSL_3(\mathbb{F}_2), PSL_2(\mathbb{F}_{13}), PSL_2(\mathbb{F}_8), G_2(\mathbb{F}_2)$;

vi) the sporadic Janko group $J_1, \ell = 11$;
Moreover, if \(\rho \) depends on the restriction of \(\text{Inert}(\pi_{\rho, \lambda}) \) as defined as in Section 2 of \[Bar20\], which only depends on the restriction of \(\pi_{\rho, \lambda} \) to the inertia subgroup \(I\ell \). Fontaine-Laffaille theory gives us a way to compute the inertial weights of \(\pi_{\rho, \lambda} \) from the Hodge-Tate numbers of \(\rho_{\pi, \lambda} \) for almost all \(\ell \). More precisely, we have the following result \[Bar20\] Theorem 1.0.1].

Proposition 3.3. Let \(\pi \) be a cuspidal automorphic representation of \(\text{GL}_7(A_q) \) as in Theorem 2.1 Then, \(\rho_{\pi, \lambda} \) is crystalline at \(\ell \not\in S_{\pi} \) with Hodge-Tate numbers

\[
\text{HT}(\rho_{\pi, \lambda}) = \{-(u + v), -v, -u, 0, u, v, u + v\}.
\]

Moreover, if \(\ell \not\in S_{\pi} \) and \(\ell \geq 2u + 2v + 1 \), we have that \(\text{HT}(\rho_{\pi, \lambda}) \in \text{Inert}(\pi_{\rho, \lambda}) \).

Now, we are ready to prove Theorem 3.1. Our proof will be given by showing that the image of \(\pi_{\rho, \lambda} \) is not contained in any subgroup lying in cases \(i) - vii) \) of Proposition 3.2. In this case, \(\text{PGL}_2(F_{\ell}) \) fits into \(G_2(F_{\ell}) \) via \(\text{Sym}^6 : \text{PGL}_2 \to G_2 \). So, if \(G_\lambda := \text{Im}(\pi_{\rho, \lambda}) \) is contained in \(\text{Sym}^6(\text{PGL}_2(F_{\ell})) \), the elements of \(G_\lambda \) are of the form

\[
\text{Sym}^6 \left(\begin{array}{c c c c c c c}
 x^6 & * & * & * & * & * & * \\
* & x^5y & * & * & * & * & * \\
* & * & x^4y^2 & * & * & * & * \\
* & * & * & x^3y^3 & * & * & * \\
* & * & * & * & x^2y^4 & * & * \\
* & * & * & * & * & x^6y & * \\
* & * & * & * & * & * & y^6
\end{array} \right)
\]

where \(x, y \in F_{\ell} \). Then, we can deduce that

\[
(x^{(6-a)}y^a)(x^{(6-a)-2y^a+2}) = (x^{(6-a)-1}y^{a+1})^2
\]

for \(0 \leq a \leq 4 \). In particular, from these equalities, the inertial weights \((k_1, \ldots, k_7) \in \text{Inert}(\pi_{\rho, \lambda}) \) should satisfy the following relation

\[
k_i + k_{i+2} = k_{i+1}
\]

for \(1 \leq i \leq 5 \) and \(\ell \) sufficiently large. Then, by Proposition 3.3 if \(\ell \not\in S_{\pi} \) and \(\ell \geq 2u + 2v + 1 \), the Hodge-Tate numbers \(\text{HT}(\rho_{\pi, \lambda}) = \{-(u + v), -v, -u, 0, u, v, u + v\} = \{k_1, \ldots, k_7\} \) should satisfy

\[
k_i + k_{i+2} = k_{i+1}
\]
Theorem 4.2.

Example 4.1. If \((u, v) \in \{(5, 8), (3, 10), (5, 9), (4, 10), (2, 12), (7, 8), (4, 11), (1, 14), (1, 16), (1, 17)\}\) then \(|G_2(u, v)| = 1\).

We remark that if we allow certain local ramification behavior in our automorphic representations, we can obtain a strong version of Theorem 3.1.

Theorem 4.2. Let \(\pi\) be a cuspidal automorphic representation of \(GL_7(\mathbb{A}_\mathbb{Q})\) as in Theorem 3.1, and assume that for some prime \(p\), \(\pi_p\) is square integrable. Then there exists a set of primes \(\mathcal{L}\) of Dirichlet density 1 such that for all \(\lambda\) above \(\ell \in \mathcal{L}\) the image of \(\pi_{\pi,\lambda}\) is isomorphic to \(G_2(\mathbb{F}_\ell)\) for some positive integer \(s\).

Proof. As we are assuming that \(\pi_p\) is square integrable, from Corollary B of [TY07], we have that \(\rho_{\pi,\lambda}\) is irreducible for all \(\lambda\) above \(\ell \neq p\). By Proposition 5.3.2 of [BGGT14], there exists a set of primes \(\mathcal{L}'\) of Dirichlet density 1, such that for all \(\lambda\) above \(\ell \in \mathcal{L}'\), \(\pi_{\pi,\lambda}\) is irreducible.

The rest of the proof is exactly the same as the proof of Theorem 3.1. In particular, the set of primes \(\mathcal{L}\) of Dirichlet density 1 is obtained by removing a finite number of primes from \(\mathcal{L}'\) as in the proof of Theorem 3.1.

Finally, we remark that Magaard and Savin [MS] have used (before the appearance of Chenevier’s work) this kind local behavior to construct a self-dual cuspidal automorphic representation \(\pi\) of \(GL_7(\mathbb{A}_\mathbb{Q})\) (unramified outside 5 and such that \(\pi_5\) is Steinberg), such that the image of the residual representations \(\pi_{\pi,\lambda}\) : \(G_3(\mathbb{F}_\ell) \to GL_7(\mathbb{F}_\ell)\) associated to \(\pi\) are equal to \(G_2(\mathbb{F}_\ell)\) for an explicit set of primes of Dirichlet density at least 1/18.
References

[ADSW15] S. Arias-de-Reyna, L. Dieulefait, S.W. Shin and G. Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties. Math. Ann. 361 (2015), no. 3-4, 909-925.

[Art13] J. Arthur, The endoscopic classification of representations. Orthogonal and Symplectic Groups. AMS Colloquium Publications, 61. AMS, Providence, RI, 2013.

[BGGET14] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Potential automorphy and change of weight. Ann. of Math. 179 (2014) 501-609.

[Bar20] R. Bartlett, Inertial and Hodge-Tate weights of crystalline representations. Math. Ann. 376 (2020), No. 1-2, 645-681.

[CG13] F. Calegari and T. Gee, Irreducibility of automorphic Galois representations of GL(n), n at most 5. Ann. Inst. Fourier (Grenoble) 63 (2013), no. 5, 1881-1912.

[Ch19] G. Chenevier, Subgroups of Spin(7) or SO(7) with each element conjugate to some element of G2, and applications to automorphic forms, Documenta Math. 24 (2019), 95-161.

[CR15] G. Chenevier and D. Renard, Level one algebraic cuspforms of classical groups of small rank. Memoirs of the A.M.S. 1121, vol. 237 (2015).

[Clo90] L. Clozel, Motifs et formes automorphes: applications du principe de fonctorialit. In L. Clozel and J. Milne, eds., Automorphic forms, Shimura varieties, and L-functions, Vol. I, Perspect. Math. 10 (1990) 77-151.

[Di02] L. Dieulefait, On the images of the Galois representations attached to genus 2 Siegel module forms. J. Reine Angew. Math. 553 (2002), 183-200.

[DZ20] L. Dieulefait and A. Zenteno, On the images of the Galois representations attached to generic automorphic representations of GSp(4). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 20 (2020), no. 2, 635-655.

[FL82] J.-M. Fontaine and G. Laffaille, Construction de representations p-adiques. Ann. Sci. Ecole Norm. Sup. (4), 15 (1992), 547-608.

[HC68] Harish-Chandra, Automorphic forms on semisimple Lie groups. Notes by J. G. M. Mars. Lecture Notes in Mathematics, No. 62, Springer-Verlag, Berlin-New York, 1968.

[KLS10] C. Khare, M. Larsen and G. Savin, Functoriality and the inverse Galois problem II: Groups of type Bn and G2, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 37-70.

[Kle88] P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups. J. Algebra, 117 (1988) 30-71.

[MS] K. Magaard and G. Savin, Computing finite Galois groups arising from automorphic forms. arXiv:1406.3773v1.

[Mo81] F. Momose, On the l-adic representations attached to modular forms. J. Fac. Sci. Univ. Tokyo Sect. IA 28 (1981), 89-109.
[PT15] S. Patrikis and R. Taylor, *Automorphy and irreducibility of some l-adic representations*. Compositio Math. **151** (2015) 207-229.

[Ri85] K. Ribet, *On l-adic representations attached to modular forms. II*. Glasgow Math. J. **27** (1985), 185-194.

[Shi11] S. W. Shin, *Galois representations arising from some compact Shimura varieties*. Ann. of Math. **173** (2011) 1645-1741.

[Tai17] O. Taïbi, *Dimension spaces of level one automorphic forms for split classical groups using the trace formula*. Ann. Sci. E.N.S. **50** (2017), 269-344. The extended tables are available at: http://otaibi.perso.math.cnrs.fr/dimtrace/

[TY07] R. Taylor and T. Yoshida, *Compatibility of local and global Langlands correspondences*. J. Amer. Math. Soc. **20** (2007), no. 2, 467-493.

[Wei] A. Weiss, *On the image of Galois representations attached to low weight Siegel modular forms*. [arXiv:1802.08537v3](https://arxiv.org/abs/1802.08537).

[Wil09] R. A. Wilson, *The finite simple groups*. Graduate Texts in Mathematics 251, London: Springer (2009).

INSTITUTO DE MATEMÁTICAS
PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO
BLANCO VIEL 596, CERRO BARÓN
VALPARAÍSO, CHILE
E-mail: adrian.zenteno@pucv.cl