A Literature Review on Antipyrine in Chemistry Fields

Dr. Nagham Mahmood Aljamali
Saba AbdAlhussain Aati, Nadia Hussein Obaid
Fatimah A. Wannas

1, 3, 4 Department of Chemistry, College of Education for Girls, Kufa University, Iraq.
2 Assist. Lecturer, Chemistry Department, Faculty of Pharmacy, Kufa University, Iraq.
(Dr. nagham_mj@yahoo.com)

Abstract
This literature review concerned with antipyrine compound. Antipyrine compound is very important compound in many chemistry fields such as in coordination chemistry, analytical chemistry as a reagent which continuously identified for possible uses and applications in several fields beside to pharmacological, medical and industrial fields.

Keywords: field, antipyrine, pyrazolone, azo, Schiff, ligand, complex.

Introduction
Pyrazolone is a five-membered lactam ring compound involving two (N) atoms with ketone group in the same ring. Antipyrine ring is an odorless compound, a white powder or colorless crystal, very soluble in distilled water, alcohol (ethanol) or chloroform solvent, while it is less soluble in ether solvent with its aqueous solution. However, antipyrine is basic in its nature, which is due to involving (N)-atom at position (2). Its melting point of (110-113°C). But it decomposes when distilled at (atmospheric pressures) while it has a boiling point of (141-1410°C) under high vacuum and (3190°C) at (174 mm). It has molecular weight is (188.23 g / mole), it prepared:

![Synthesis of antipyrine](image)
Five- Lactam structure (pyrazolone) is an active nucleus in pharmaceutical activity. It is an active moiety as a pharmaceutical agents used in the treatment of arthritis and other musculoskeletal and joint disorders\(^{(16-21)}\). Sometimes the term((pyrazolone)) refers to nonsteroidalanti-inflammatory agents, it is a class nonsteroidal anti-inflammatory drug includes phenylbutazone, oxyphenbutazone, dipyrone, and ramifenazone. Antipyrine (also named phenazone) which is a pyrazolone class analgesic agent in solutions in combination with other analgesic\(^{(22-30)}\) like benzocaine, and phenylphrine.

The Tautomeric of antipyrine:

\[
\text{Me} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{Ar} \quad \text{Me} \\
\text{OH} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{Ar} \quad \text{Me}
\]

Tautomeric of antipyrine

The antipyrene ring has been opened by (basic solution) - alcoholic potassium hydroxide at (1300) to form N-methyl-N1-phenylhydrazine. Antipyrene ring is stable to (30%) hydrochloric acid at(1800), but above (2000) it gives amino benzene (antiline), methyamine and ammonia (NH\(_3\)).

Pyrazolone derivatives are also act a starting material in synthesis of dyes and pigments. 2, 3-Dimethyl -1-phenyl -5-pyrazolone (antipyrene) has been discovered as antipyretics of the quinoline type. By this discovery, initiated the beginning of the German drug production and industry. It is now used as relief of many forms\(^{(31-40)}\) of arthritis in which capacity it has more than an analgesic action in that it also decreases swelling and spasm through an anti-inflammation action.

The pyrazolone with its derivatives appear distinct medical activities like antituberculosis, anti-inflammatory, analgesic, antibacterial and antifungal activity\(^{(40-45)}\). Also coordination compounds containing antipyrene derivatives can be synthesized and studied recently for their various applications\(^{(46-48)}\) with azo and imine groups\(^{(49-58)}\):

\[
\text{antipyrene} \quad \text{pyrazolone}
\]

The reaction of pyrazolone derivatives\(^{(59-65)}\) with carbonyl compounds has not been reported largely. Hence, it was thought that pyrazolone compounds may provide good medicinal active compounds. Which is due to their easy modification and flexible nature, antipyrene-Imine ligands prepared in several compounds:
Antipyrine compounds with their complexes have interesting pharmacological and medical properties\(^{(66-70)}\). A search via the literature reveals few reports on thermal studies on antipyrine–Anil metal complexes. The publications on the thermolytic identifications of antipyrine–Imine bases\(^{(71)}\) with first row transition metals summarized that the counter ions take a major role on the thermal stability of structure in complexes.

Cyclic phenazone with their derivatives (4-amino antipyrine) are known to concede as (bidentate, tridentate)-ligands through coordinated to any metal ion from transition elements.

Imine base of 4-amino antipyrine and its complexes have variety of application and uses in the areas of catalysis clinical uses and pharmacologically\(^{(71-73)}\).
Antipyrine belongs to the five membered heterocyclic system. Some of the synthetic compounds involving pyrazole moiety have been focused in the medical chemistry field. The pyrazole derivatives, 4-aminoantipyrine has played an important role in coordination Chemistry. It gives stable complexes with types of transition metal ions and its complexes have many applications in analytical fields as a reagents, biological fields as antimicrobial and clinical areas as analgesic:

![Chemical structures of analgesic](image1)

Pyrazolone compounds are used as antiinflammatory and chemotherapeutic agents and it is also active against a wide spectrum of microorganisms on bacteria and fungi (E.coli, Pseudomonas Staphylococcus aureus) (Candida albicance - fungus) and malaria.

![Chemical structures of antimalaria](image2)

Also the chemistry of pyrazolone with its derivatives has been extensively characterized due to its physiological properties. The studying of the ion complexes of pyrazolone in antineoplastic medication, molecular biology and bio engineering has become hotspots in recent years.
Antipyrine(pyrazolone) is a lactam derivative, it has appeared wide applications of biological and microbial activities such as antibacterial activity, analgesic, antiviral, and also used as precursors in the synthesis of bioactive compounds from (ligands, complexes):

Due to this fact that pyrazolone derivatives are stable, useful intermediates, for the preparation of other organic compounds and substances containing biological activities, interest in studying antipyrine derivatives has been continued through many articles. Antipyrinenucleus\(^{74-78}\) like: antitumor, antimicrobial (fungi, bacteria), antiviral, anticancer, analgesic drugs and optoelectronic material aspects.

Anil group (-C=N-) is the effective group of the derivatives that know Imine compounds, which are usually prepared via the condensation reaction of primary aromatic amines and carbonyl groups (aldehyde or ketone). Imine compounds act important type of compounds in medicinal and pharmaceutical field and it has several applications in important bio-field, further move it represent as corrosion inhibitors\(^{76}\).
Antipyrine in azo compounds:

Imine bases - transition metal complexes are one of the most adjustable and totally studied systems, these complexes have many applications in bio-clinical, industrial, analytical fields. Most of these complexes act important role in biological oxygen carrier systems. The formation and investigation of antipyrine derivatives have been described by number of articles:

And in liquid crystals applications. It is a temperature decreasing pyrazole derivative. It is one of the synthetic drugs and its complexes have some applications in analytical as reagents and pharmacological applications.
It is also used in the preparation of azo dyes:

Antipyrine and its derivatives are the extremely important active compounds and intermediates (involving di-nitrogen atoms in structures)\(^{(60)}\) for formation of pharmaceuticals and natural compounds and products due to a wide range of uses, activities and applications\(^{(79)}\):
References:

1. Nakamoto, K., "Infrared Spectra of Inorganic and Coordination Compounds, 2nd Ed., Wiley Interscience", New York, 1970.
2. Nakamoto, K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds "; Wiley Interscience, New York, 1978.
3. Bansal R. K., "Heterocyclic Chemistry", 4th Edn., New Age International Publisher, New Delhi, 2010, 454.
4. Acheson, R. M., "An Introduction to Heterocyclic Compounds", 3rd Edn., John Wiley and Sons, New York, 2009, 354-364.
5. Mohammad. F., Mokhles .M, Mohamad .M , Fathy A. El-Saied, Mohammed A &Abdou S. El Tabl ,(2008), "Synthesis and characterization of a hydrazone ligand containing antipyrine and its transition metal complexes", Journal of Coordination Chemistry, 61:12,1983-1996.
6. Khushbu K Mehta , Sunil T Patel , Asha D Patel ,, " Studies on Chelating Properties of Antipyrine Based Azo Ligands and Its Coordination Compounds ", Der PharmaChemica, 2017, 9(12):79-82 .
7. A.Z. El-Sonbati, A.A. El-Bindary, G.G. Mohamed, Sh.M. Morgan, W.M.I. Hassan, A.K. Elkholy, J. Mol. Liq., 2016, 218, 16.
8. K. Phopin, N. Sinthupoom, L. Treeratanapiboon, S. Kunwittaya, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Excli. J., 2016, 15, 144.
9. D. Rojas, M.L. Araujo, J.D. Martinez, F. Brito, E. del Carpio, K. Reina, V.R. Landaeta, L. Hernandez, V. Lubes, J. Mol. Liq., 2016, 220, 238.
10. N.S. Krstic, R.S. Nikolic, M.N. Stankovic, N.G. Nikolic, D.M. Dordevic, Trop. J. Pharm. Res., 2015, 14, 337.
11. J.C. Patel, H.R. Dholariya, K.S. Patel, K.D. Patel, Appl. Organometal. Chem., 2012, 26, 604.
12. J.C. Patel, H.R. Dholariya, K.S. Patel, J. Bhatt, K.D. Patel, Med. Chem. Res., 2014, 23, 3714.
13. G.R. Chauhan, K.D. Patel, H.R. Dholariya, J.C. Patel, K.K. Tiwari, Int. J. Health Pharm. Sci., 2012, 1, 83.
14. MieaadMohamd, NaghamMahmoodAljamali, WassanAlaShubber, Sabreen Ali Abdulrahman ," New Azomethine- Azo Heterocyclic Ligands Via Cyclization of Ester ",Research J. Pharm. and Tech.,11, 6 ,2018 ,DOI: 10.5958/0974-360X.2018.00472.9 .
15. Intisar Obaid A, Eman HS, NaghamMahmoodAljamali, "Synthesis of (Tetrazole, Oxazepine, Azo, Imine) Ligands and Studying of Their (Organic Identification, Chromatography, Solubility, Physical, Thermal Analysis, Bio-Study) ", Research J. Pharm. and Tech ,2018; 11,7,: 2821-2828., DOI: 10.5958/0974-360X.2018.00521.8 .
16. Otilia C, Wolfgang Lt, Stefan D& Claudia S., (1994),"NOVEL COMPLEXES OF ANTIPYRINE LIGANDS: DINUCLEAR COPPER(II), COBALT(II) AND NICKEL(II) COMPLEXES OF N,N'-TETRA(4-ANTIPYRYLMETHYL)-1,2-DIAMINOETHANE", Journal of Coordination Chemistry, 33:3, 229234, DOI: 10.1080/00958979408024281.
17. H. Jayasankar, P. Indrasenan, "Synthesis and characterization of some lanthanide nitrate complexes of 4-nitroso antipyrine". Journal of the Less Common Metals, 132,1, 1987, 43-47.

18. Hussien H Alganzory, Samar A Alyand Tarek A Salem, "Study the Effect of Mercury-Polluted Drinking Water on the Level of Some Hormones in Male Rats and Comparative Study of the Potential Therapeutic Action of the Thiosemicarbazone and Antipyrine Ligands and their Complexes". Journal of Chemical and Pharmaceutical Research, 2017, 9(1):133-144.

19. C. K. Jorgensen. Absorption spectra and chemical bonding in complexes. The Pergamon Press, Ltd., Oxford. 1962. Chap. 7.

20. B. N. Figgis and J. Lewis. In Progress in inorganic chemistry. Vol. 6. Edited by F. A. Cotton. Interscience Publishers, Inc., New York. 1964. Chap. 2.

21. B. N. Figgis and J. Lewis. In Modern coordination chemistry. Edited by J. Lewis and R. G. Wilkins. Interscience Publishers, Inc., New York. 1960. p. 415.

22. I. Dick, R. Bacionalu, and A. Maurer. Rev. RournaineChirnie, 12, 607 (1967); 12, 617 (1967).

23. Madhu NT, Esther TK, Tesfay GA, Bekele GM, Sirak TB, (2017), "Ligand Field and Counter Anion Effects on the Thermal Stability of Copper(II) Complexes of 1,2-Di(Imino-4′-antipyrinyl)ethane and 4-N-(4′-antipyrilmethylidene) aminoantipyrine". J Chem Appl Chem Eng 1:2. doi: 10.4172/2576-3954.1000110.

24. Alaudeen M, Abraham A, Radhakrishnan PK (1995) Synthesis and antibacterial activity of rare earth perchlorate complexes of 4-(2′-hydroxynaphthylazo) antipyrine. J Chem Sci 107: 123-126.

25. Alice CJ, Prabhakaran CP (1990) Palladium(II) complexes of Schiff bases derived from 5-amino-2,4-(1H, 3H) pyrimidinedione (5-aminouracil) and 1,2-dihydro-1,5-dimethyl-2-phenyl-4-amino-3H-pyrazol-3-one. Transit Met Chem 15: 449-453.

26. Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W(2003) Antipyrine and its Derivatives with First Row Transition Metals. Rev InorgChem 23: 1-24.

27. Madhu NT, Radhakrishnan PK (2001) Copper (II) complexes of 1,2-di(Imino-4′-antipyrinyl)ethane and 4-n-(4′-antipyrilmethylidene) aminoantipyrine. Synth React Inorg Org Chem 31: 315-330.

28. Gilman AG, Goodman LS, Gilman A (1980) The Pharmacological Basis of Therapeutics. (6thedn), Macmillan Publishing Co, New York, USA.

29. Vinod Kumar CR, Nair MKM, Radhakrishnan PK (2000) Thermal studies on lanthanide nitrate complexes of 4-n-(2′-furfurylidene) aminoantipyrine. J Therm Anal Calorim 61: 143-149.

30. Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W (2003) A thermal decomposition study on cobalt (II) complexes of 1, 2-di (imino-4′-antipyrinyl) ethane. Thermochim Acta 400: 29-36.

31. Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W (2003) Synthesis and thermal studies on iron(III) complexes of 4- N-(4′-antipyrilmethylidene) aminoantipyrine with varying counter ions. Thermochim Acta 407: 73-84.
32. Madhu NT, Radhakrishnan PK, Williams E, Linert W (2005) Thermal decomposition studies on cobalt(II) complexes of 4-N-(4’-antipyrilmethylidene) aminoantipyrine with varying counter ions. J Therm Anal Calorim 79: 157–161.
33. Madhu NT, Radhakrishnan PK, Linert W (2006) Thermal decomposition study on nickel(ii) complexes of 1,2-(diimino-4’-antipyryl)ethane with varying counter ions. J Therm Anal Calorim 84: 607-611.
34. Madhu NT, Radhakrishnan PK, Linert W (2007) Thermolytic investigations on nickel(II) complexes of 4-N-(4’-antipyrilmethylidene) aminoantipyrine with various counterions. Int J Chem Kinet 39: 53-58.
35. Madhu NT, Knittl ET, Fekadu K, Feleke H, Abuye A, et al. (2017) Thermal Decomposition Studies on Iron(III) Complexes of 1,2-Bis(imino-4’-antipyrinyl)ethane with Varying Counter Ions. J Chem Appl ChemEng 1:1.
36. J. A. Dean (1976) Lange’s Hand Book of Chemistry. (13thedn), 421 McGraw-Hill, New York, USA.
37. Satava V (1971) Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta 2: 423.
38. K. Nakamoto," Infrared Spectra of Inorganic and Coordination Compounds", New York, NY: John Wiley & Sons (1970).
39. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, VK (1978).
40. Ram K. Agarwal and Surendra Prasad , Indranil Chakraborti., "Synthesis and Characterization of Some Lanthanide(III) Chloro Complexes Derived from 4[N-(4’-Hydroxy-3’-Methoxybenzalidene) Amino] AntipyrineSemicarbazone and 4[N-(3’,4’,5’-Trimethoxybenzalidene) Amino]AntipyrineSemicarbazone ", Iran. J. Chem. & Chem. Eng. , Vol. 23, No. 2, 2004.
41. Dyer, J.F., “ApplicationsofAbsorption Spectroscopy of Organic Compounds”, Prentice-Hall, New Delhi (1984).
42. Koppikar, D.K., Sivapulliah, P.V., Ramakrishnan, L. and Soundararajan, S., Struct. & Bonding, 34, 135 (1978).
43. Shoaib, M., Rahman, G., Ali Shah, S., & Umar, M. (2015). “Synthesis of 4-aminoantipyrine derived Schiff bases and their evaluation for antibacterial, cytotoxic and free radical scavenging activity". Bangladesh Journal of Pharmacology, 10(2), 332-336. https://doi.org/10.3329/bjp.v10i2.22471.
44. Alam MS, Lee DU. "Synthesis, molecular structure and antioxidant activity of (E)-4[benzylideneamino]-1, 5-dimethyl-2-phenyl-1H-pyrazol-3 (2H)-one, a Schiff base ligand of 4-aminoantipyrine ". J Chem Crystallogr. 2012; 42: 93-102.
45. Ali N, Ali Shah S, Ahmad B. "Calcium channel blocking activity of fruits of Callistemon citrinus ". 2011; 33: 245-48.
46. Awad L, Ibrahim E, Bdeewy OK. "Synthesis of antipyridinederi-vatives derived from dimedone". China J Chem. 2007; 25: 570-73.
47. Burdulene D, Palaima A, Stumbryavichyute Z, Talaikite Z. Synthesis and antiinflammatory activity of 4-aminoantipyrine derivatives of succinamides. Pharm Chem J. 1999; 33: 191-93.
48. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. "Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol ". Bull ChemSoc Ethiop. 2011; 25: 407-17.
49. Colwell WT, Lange JH, Henry DW. "Chemotherapeutic nitroheterocycles. Nitropyrrrole-2-carboxaldehyde derivatives". J Med Chem. 1968; 11: 282-85.
50. Evstropov A, Yavorovskaya V, Vorob'ev E. "Synthesis and antiviral activity of antipyrine derivatives". Pharm Chem J. 1992; 26: 426-30.
51. Harpstrite SE, Collins SD, Oksman A, Goldberg DE, Sharma V. "Synthesis, characterization, and antimalarial activity of novel Schiff-base-phenol and naphthalene-amine ligands". Med Chem. 2008; 4: 392-95.
52. Ilahi I, Samar S, Khan I, Ahmad I. "In vitro antioxidant activities of four medicinal plants on the basis of DPPH free radical scavenging". Pak J Pharm Sci. 2013; 26: 949-52.
53. Kabak M, Elmali A, Elerman Y, Durlu T. "Conformational study and structure of bis-N,N?-p-bromo-salicylideneamine-1, 2-diaminobenzene". J MolStruct. 2000; 553: 187-92.
54. Kalaivani S, Priya NP, Arunachalam S. "Schiff bases: Facile synthesis, spectral characterization and biocidal studies". Int J App Bio Pharm Tech. 2012; 3: 219-23.
55. Karthikeyan MS, Prasad DJ, Poojary B, Subrahmanyabhat K, Holla BS, Kumari NS. "Synthesis and biological activity of Schiff and Mannich bases bearing 2, 4-dichloro-5-fluorophenyl moiety". Bioorg Med Chem. 2006; 14: 7482-89.
56. Khafagi I, Dewedar A, Farouk S. "In vitro cytotoxicity and antimicrobial activities of some common essential oils". Egypt J Bio. 2004; 2: 20-27.
57. Kumar D, Chadda S, Sharma J, Surain P. "Syntheses, spectral characterization, and antimicrobial studies on the coordination compounds of metal ions with Schiff base containing both aliphatic and aromatic hydrazide moieties". BioinorgChem App. 2013; 2013: 1-10.
58. Maity S, Khan SA, Ahmad S. "Synthesis, characterization, anti-microbial and antioxidant activity of some novel Schiff bases derived from 8-hydroxy quinolone". IJBPS. 2012; 3: 90-98.
59. Malladi S, Isloor AM, Isloor S, Akhila D, Fun H-K. "Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases". Arabian J Chem. 2013; 6: 335-40.
60. Nagham MahmoodAljamali , Intisar O, "Synthesis of Sulfur Heterocyclic Compounds and Study of Expected Biological Activity". Research J. Pharm. and Tech., 8(9), 2015,1225-1242. DOI: 10.5958/0974-360X.2015.00224.3.
61. Metzler CM, Cahill A, Metzler DE. "Equilibriums and absorption spectra of Schiff bases". J Am Chem Soc. 1980; 102: 6075-82.
62. Patil S, Jhadav S, Patil U. "Natural acid catalyzed synthesis of Schiff base under solvent-free condition: As a green approach". Arch ApSci Res. 2012; 4: 1074-78.
63. Raman N, Mitu L, Sakthivel A, Pandi M. "Studies on DNA cleavage and antimicrobial screening of transition metal complexes of 4-aminoantipyrine derivatives of N2O2 type". J Iran Chem Soc. 2009; 6: 738-48.
64. Shivarama HB, Veerendra B, Shivananda M, Poojary B. "Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4-triazoles". Eu J Med Chem. 2003; 38: 759-67.
65. Thorat B, Mandewale M, Shelke S, "Synthesis of novel Schiff bases of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde and development of HPLC chromatographic method for their analysis". J Chem Pharm Res. 2012; 4: 14-17.

66. Venkatesan K, Satyanarayana V, Sivakumar A. "Microwave-assisted synthesis and evaluation of antibacterial activity of 2, 2'-(naphthalene-2, 7-diylbis (oxy)) bis (N'-substituted acetoxydrazide) derivatives". Bull ChemSoc Ethiopi. 2012; 26: 257-65.

67. Venugopal T, Swathi D, Suchitha Y, "Mineral composition, cytotoxic and anticariogenic activity of Scleropyrumpentandrum (Dennst.) Mabb". Int J Drug Develop Res. 2011; 3: 344-50.

68. Zhang Y, Fang Y, Liang H, "Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives". Bioorg Med Chemlett. 2013; 23: 107-11.

I. Labádi, E. Pál, R. Tudose and O. Costisor, "THERMAL BEHAVIOUR OF COMPLEXES OF ANTIPYRINE DERIVATIVES Part III", Journal of Thermal Analysis and Calorimetry, 83 (2006) 3, 681–686.

70. J. A. McCleverty, S. Gill, R. S. Z. Kowalski, N. A. Bailey, H. Adams, K. W. Lumbard and M. A. Murphy, J. Chem. Soc. Dalton Trans., (1982) 493.

71. J. A. McCleverty, N. J. Morrison, N. Spencer, C. C. Ashworth, N. A. Bailey, M. R. Johnson, J. M. Smith, B. A. Tabbiner and C. R. Taylor, J. Chem. Soc. Dalton Trans., (1980) 1945.

72. N. A. El-Ghamaz, M. A. Diab, A. Z. El-Sonbati, Sh. M. Morgan and O. L. Salem, "Polymer complexes. LXVII: electrical conductivity and thermal properties of polymer complexes of quinolineazo dye", Chemical Papers, 71, 12, (2417), (2017).

73. M. Saif, Hoda F. El-Shafiy, Mahmoud M. Mashaly, Mohamed F. Eid, A.I. Nabeel and R. Fouad, "Hydrothermal preparation and physicochemical studies of new copper nano-complexes for antitumor application", Journal of Molecular Structure, 1155, (765), (2018).

74. JashodaBehera and BharatiBehera, "Kinetics and Mechanism of Interaction of cis-Diaquabis(oxalato)chromate(III) with Cefoperazone in Aqueous Medium: as an Antibacterial Study" Journal of Pharmaceutical Innovation, 10.3, (2018).

75. Colak AT, Colak F, Atar N, Olgun A, Acta. Synthesis, spectral, thermal analysis, biological activity and kinetic studies of copper(II)-pyridine-2,5- dicarboxylate complexes with 2- aminomethylpyridine and 8-hydroxyquinoline. ChimSlov. 2010;57:212.

76. Hegazy WH, Motawaa IH. Lanthanide Complexes of Substituted β-DiketoneHydrazone Derivatives: Synthesis, Characterization, and Biological Activities. BioinorgChem Appl. 2011;1.

77. Ajitha PS, Nair MKM. Antibacterial study of Schiff base complexes of some lanthanide nitrates. Res J Pharma Bio Chem Sci. 2010;1(1):449.

78. Agarwal RK, Khan AA, Singh P, Kumar V. Synthesis and characterisation of some lanthanide(III) chloro complexes with 4-[N-(4'- nitrobenzylidin3)amino] antipyrinethiosemicarbazon and pyridine as ligands. J ApplChem Res 2009; 11: 62.
79. Mutallik V, Phaniband MA. Synthesis and characterisation, fluorescent and antimicrobial properties of new lanthanide(III) complexes derived from coumarin Schiff base. J ChemPharma Res. 2011;3:313.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/)