ON THE COLLATZ PROBLEM

by
Roupam Ghosh
roupam_ghosh@vsnl.net

Abstract:
Taking a new approach towards analyzing the Collatz Problem, or, 3x+1 conjecture. Introducing some new functions, the Collatz-2 and Collatz-3 sequences, as well as deducing results related to Collatz-2 and Collatz-3 sequences.

The Collatz Problem

Consider the function

\[f(x) = \begin{cases}
\frac{x}{2} & \text{if } x \text{ is even} \\
3x+1 & \text{if } x \text{ is odd}
\end{cases} \]

The Collatz conjecture states that there exists a number ‘d’ corresponding to x such that \(f^d(x) = 1 \) for all natural numbers x
where \(f^d(x) = f(f(... d \text{ times } ...f(f(f(x)))))) \)

The sequence of numbers following the collatz function is as:
for x=1 1
for x=2 2 1
for x=3 3 10 5 16 8 4 2 1
for x=4 4 2 1
for x=5 5 16 8 4 2 1
for x=6 6 3 10 5 16 8 4 2 1
...

The Collatz-2 sequence

Now we construct a new sequence:
We start normally from 1 as in Collatz Sequence defined above
If we reach a number that already exists in any sequence before, then we stop iterating
Then we have, the **collatz-2** sequence, as follows

for x=1 1
for x=2 2 (Since 1 already exists before)
for x=3 3 10 5 16 8 4 (Since 2 already exists before)
for x=4 4 2 1 (Since 4 already exists before)
for x=5 (Since 5 already exists before)
for x=6 6 (Since 3 already exists before)
for x=7 7 22 11 34 17 52 26 13 40 20 (Since 10 already exists before)
...

Here each row is called a level

This collatz-2 sequence brings computability into question
We can never know about a particular level unless we compute all levels above it

We now make a couple of definitions based upon the above sequence:

- **touch(N)** = No. of numbers covered before N in the collatz-2 sequence
- **level(N)** = x if xth series in collatz-2 sequence contains N
- **s(N)** = Steps required to reach 1 starting from N
- **e(N)** = Number of elements in the Nth level
- **max(N)** = The maximum number in the Nth level in Collatz-2 sequence

For example in the collatz-2 sequence:

- `touch(4) = 7`
- `level(4) = 3`
- `s(4) = 3`
- `e(4) = 0`

We shall call the function `e(N)` as epsilon of N

The first number and last number in any level will be called level starters and level enders respectively for that level.

We shall study this Collatz-2 sequence.

In general we assume the following to be true:

1. If a non-trivial cycle exists in the Collatz-2 sequence, then it also exists in the Collatz sequence
2. Also, if any level does not stop iterating in the Collatz-2 sequence, then it also does not stop iterating in the Collatz sequence.

The Lambda Function

Consider the lambda function as follows:

\[
\Lambda(m) = \begin{cases}
0 & \text{if } e(m) = 0 \\
1 & \text{if } e(m) > 0
\end{cases}
\]

then, we call `nz(n)` the number of non-zero lambdas for numbers less than or equal to n

\[nz(n) = \sum_{i=1}^{n} \Lambda(i)\]

Let z(n) represent the number of zeroes of lambdas for number less than or equal to n
then \(z(n) + nz(n) = n \)

Now,

\[
 nz(n)/n = (1/n) \sum_{i=1}^{n} \Lambda(i)
\]

\[
 \lim_{n \to \infty} nz(n)/n < 1
\]

Now let us observe something,
If we consider the collatz-2 sequence then we have the following:

Some Lemmas:

Lemma 1: If \(\text{level}(n) < n \) then \(e(n) = 0 \)

If \(e(n) = 0 \) then definitely there exists one \(m < n \) such that \(f^d(m) = n \) and \(d < e(m) \)
Hence \(\text{level}(n) = m < n \)

Lemma 2: If \(e(n) \neq 0 \) then \(\text{level}(n) = n \)

If \(e(n) \neq 0 \) then definitely \(n \) has at least one member in its level
Since \(\text{level}(n) \) starts with \(n \), hence \(\text{level}(n) = n \)

Combining both we get
\(\text{level}(n) \leq n \) for all natural numbers \(n \)

Lemma 3: \(e(x) = s(x) - s(f^{e(x)}(x)) \)
This follows from the basic construction of the Collatz-2 sequence
In any level
- if \(e(x) = 0 \) then \(s(x) - s(f^0(x)) = s(x) - s(x) = 0 \)
- if \(e(x) > 0 \) then
 \(s(x) - s(f^{e(x)}(x)) = \) the number of elements in \(\text{level}(x) = e(x) \)

Lemma 4: \(s(x) > s(f(x)) > s(f^2(x)) > ... > s(f^d(x)) > ... > 0 \)
Since \(x \) comes before \(f(x) \) in the collatz sequence, hence \(s(x) > s(f(x)) \)

Lemma 5: \(e(f^n(x)) = 0 \) if \(\text{level}(x) = x \) and \(n < e(x) \)
Consider \(\text{level}(x) \)
Then obviously, it looks like

\(x, f(x), f^2(x), ..., f^{e(x)-1}(x) \)
For \(1 \leq n < e(x) \), we have \(e(f^n(x)) = 0 \)
Hence, proved

Lemma 6: \(s(2^n k) = s(k) + n \)
For,
\(s(2^n k) = s(2^{n-1}k) + 1 = ... = s(k) + n \)
Lemma 7: \(\sum e(n) < \max(m_1,m_2,m_3,...,m_n) \) where \(m_i = \max(i) \), \(\text{level}(m_i) \leq n \), and \(e(n) > 1 \)

We shall call \(m_n \) as maximal(n)

Now, it is obvious, that \(\sum e(n) \leq z(\text{maximal}(n)) \)
and, \(z(\text{maximal}(n)) < \text{maximal}(n) \) for \(e(n) > 1 \)

Hence, follows

Lemma 8: \(\frac{1}{n}\sum \Lambda(i).\text{level}(i) < \frac{n+1}{2} \)

i.e., Average of level starters is less than average of n

Lemma 9: \(\lim \frac{nz(n)}{n} < 0.5 \) as \(n \to \infty \) if Collatz conjecture is true

If collatz problem is true
then as \(n \to \infty \) \(nz(n) < z(n) \)

ie., \(nz(n) < n - nz(n) \)

ie., \(nz(n)/n < 1/2 \)

Cycles and their interpretation in the Collatz-2 sequence

Now lets consider 2 cases:
1. For all \(x \), \(e(x) \) is finite
2. For a particular \(x=n \), \(e(n) \) is infinite and \(e(x) \) is finite for all \(x < n \)

Case 1
Since \(e(x) \) is finite, includes 2 possibilities,
a. \(\text{level}(f^{e(x)}(x)) < x \)
b. \(\text{level}(f^{e(x)}(x)) = x \)

Here possibility a. denotes a normal level, which satisfies the Collatz problem
Possibility b. on the other hand denotes the existence of a cycle which contradicts the Collatz problem

Case 1, b
If we have cycles in a particular level(n), then Collatz-2 sequence for that level stops iterating after a finite time. This comes from the fundamental property of the Collatz-2 sequence ie., “No number is repeated”

Now lets analyze case 1, b in details.
Since a cycle exists at a particular level, lets say the level starter is \(x \) and for some \(1 < k < e(x) \)
\(f^k(x) = f^{e(x)}(x) \)

Lets now consider the following possibilities, where \(f^k(x) = f^{e(x)}(x) \)
\[
\begin{array}{cccc}
 f^{-1}(x) & f(x) & f_{e(x)-1}(x) & f_{e(x)}(x) \\
 \hline
 1 & odd & even & even & even \\
 2 & odd & even & odd & even \\
 3 & even & even & even & even \\
 4 & even & even & odd & even \\
 5 & even & odd & even & odd \\
\end{array}
\]

Other possibilities do not exist.

Note that cycling starts from \(f_{e(x)}(x)\), where \(f_{e(x)}(x) = f_k(x)\)

Consider possibility 1:
Let, \(f_{k-1}(x) = d\) where \(d\) is odd
then \(f_k(x) = 3d+1\)

Let, \(f_{e(x)-1} = e\) where \(e\) is even
then, \(f_{e(x)} = e/2\)

Here, \(e/2 = 3d+1\)

Consider possibility 2:
Let, \(f_{k-1}(x) = d\) where \(d\) is odd
then \(f_k(x) = 3d+1\)

Let, \(f_{e(x)-1} = e\) where \(e\) is odd
then, \(f_{e(x)} = 3e+1\)

Here, \(3d+1 = 3e+1\)
Hence, \(d = e\)

But that is not possible since cycling starts from \(f_{e(x)}\) and not \(f_{e(x)-1}\)
Hence we cancel possibility 2.

Consider possibility 3:
Let, \(f_{k-1}(x) = d\) where \(d\) is even
then \(f_k(x) = d/2\)

Let, \(f_{e(x)-1} = e\) where \(e\) is even
then, \(f_{e(x)} = e/2\)

Here, \(d/2 = e/2 \Rightarrow d = e\)
Hence we have the same case as possibility 2
So we cancel out possibility 3.

Consider possibility 4:
Let, \(f_{k-1}(x) = d\) where \(d\) is even
then \(f^k(x) = d/2 \)

Let, \(f_{e(x)-1} = e \) where \(e \) is odd
then, \(f_e(x) = 3e+1 \)

\[
\frac{d}{2} = 3e+1
\]

Consider possibility 5:
Let, \(f_{k-1}(x) = d \) where \(d \) is even
then \(f_k(x) = d/2 \)

Let, \(f_{e(x)-1} = e \) where \(e \) is even
then, \(f_e(x) = e/2 \)

Here, also \(d/2 = e/2 \)
Hence, \(d = e \)

So we cancel out possibility 5

We are left with possibility 1 and possibility 4

In both cases, we can see that,
An even number and an odd number generates the same number in the same level, ie, \(x \)

Hence if we can show that an even number and an odd number cannot generate the same number in the same level, we prove that cycles don’t exist in the Collatz-2 sequence, and hence the Collatz sequence.

We call such an even and odd number pair as the “cyclic pair”

Interpretation of cyclic pairs:

Consider,
In level \(x \), \(o \) and \(e \) are odd and even numbers and they generate the same number, i.e,
\[
f(o) = f(e)
\]
ie., \(3o+1 = e/2 \)

We have two cases
1. \(o > e \)
2. \(e > o \)

Case 1.
if \(o > e \)
Then,
\[
3o + 1 > e/2
\]

But here, \(3o+1 = e/2 \)
Hence case 1. is not valid

Case 2.
if e > o
Since e > o hence, e is definitely not the level starter
We have the following subcases

Subcase 1.
 o is the level starter, e is the level ender

Subcase 2.
 o is not the level starter, e is the level ender
 The level starter must be an odd integer,
 since the level accommodates more than
two integers.

Subcase 3.
 e is not the level starter, o is the level ender
 The level starter must be an odd integer,
 since the level accommodates more than
two integers.

To analyze Case 2. we shrink the Collatz-2 sequence into Collatz-3 sequence
The rules for the Collatz-3 sequence is as follows

Remove all even integers from Collatz-2 sequence to get the Collatz-3 sequence.

The sequence looks as follows

Collatz-2 sequence

x = 1	1
x = 2	2
x = 3	3 10 5 16 8 4
x = 4	
x = 5	
x = 6	6
x = 7	7 22 11 34 17 52 26 13 40 20
...	

Collatz-3 sequence

x = 1	1
x = 2	
x = 3	3 5
x = 4	
x = 5	
x = 6	
x = 7	7 11 17 13
...	
It is obvious, that if there exists a cycle in the Collatz-2 sequence, then it also exists in the Collatz-3 sequence.

Let $a_1a_2 \ldots a_m$ denote an endless cycle, from a_1 to a_m and back to a_1. Let the odd numbers in the cycle be $o_1o_2o_3 \ldots o_k$ where $k < m$. Then the Collatz-3 sequence will have the same number of odd numbers cycling, because Collatz-3 applies the function

$$f(x) = \frac{(3x+1)}{2^k}$$

when x is odd, and k is the maximum power of 2 that divides $3x+1$.

So stripping Collatz-2 of even numbers doesn't matter with regards to cycle, since,

$$o_k = \frac{(3o_{k-1}+1)}{2^r}$$

for some r.

$a_m = o_k$ if a_m is odd

$= \frac{(3o_{k+1})}{2^p}$ if a_m is even, for some p.

$o_1 = \frac{(3o_{k+1})}{2^q}$ for some $q > p$. Since, a_m cycles to a_1.

Now we again consider the three subcases:

Subcase 1. o is the level starter, e is the level ender. which in Collatz-3 sequence will be

$$o = o_1 \text{ is the level starter and } o_k \text{ is the level ender}$$

such that $\frac{(3o_k + 1)}{2^r} = e$ for some r.

Here cycle is from o_1 to o_k and back to o_1.

Subcase 2. $o_1 \text{ is the level starter and } o_k \text{ is the level ender}$

such that $\frac{(3o_k + 1)}{2^r} = e$ for some r.

and $o_1 \neq o$, hence $o > o_1$.

$o = o_j \text{ for some } j, 1 < j < k$.

Here cycle is from o_1 to o_k and back to o_j.

Subcase 3.

$$o_1 \text{ is the level starter and } o = o_k \text{ is the level ender}$$

and $o_1 \neq o$, hence $o > o_1$.

Here cycle is from o_1 to o_k and back to o_j for some $j, 1 < j < k$.

In subcase 1, the cycle is from end to the beginning of the level.
In subcase 2 and 3, the cycle is from end to somewhere between the beginning and end.

So, if we prove that the cycle cannot occur among integers (odd) in the Collatz-3 sequence, then it implies that cycles cannot occur in the Collatz-2 and hence Collatz sequence.

Analysis of the endless cycling in Collatz-3 sequence

Consider the sequence, \(o_1, o_2, \ldots, o_n \) where each element is odd.

If this is a cycle, then
\[
\begin{align*}
o_2 &= \frac{(3o_1+1)}{2^{k(1)}} \\
o_3 &= \frac{(3o_2+1)}{2^{k(2)}} \\
&\vdots \\
o_n &= \frac{(3o_{n-1}+1)}{2^{k(n-1)}} \\
o_{n+1} &= \frac{(3o_n+1)}{2^{k(n)}}
\end{align*}
\]

But, \(o_{n+1} = o_1 \)

Hence,
\[
o_1 = \frac{(3o_n+1)}{2^{k(n)}}
\]

Therefore we get
\[
\begin{align*}
k(1) &= \frac{1}{\log 2} \left(\log (3o_1+1) - \log (o_2) \right) \\
k(2) &= \frac{1}{\log 2} \left(\log (3o_2+1) - \log (o_3) \right) \\
&\vdots \\
k(n) &= \frac{1}{\log 2} \left(\log (3o_n+1) - \log (o_1) \right)
\end{align*}
\]

Hence
\[
\begin{align*}
\Sigma k(n) &= \frac{1}{\log 2} \left(\Sigma \log (3o_n+1) - \log (o_{n+1}) \right) \\
&> \frac{1}{\log 2} \left(\Sigma \log (3o_n) - \log (o_{n+1}) \right) \\
&= n \left(\log 3/\log 2 \right) + \left(\frac{1}{\log 2} \Sigma \log (o_n) - \log (o_{n+1}) \right) \\
&= n \left(\log 3/\log 2 \right) + 0 \quad [\text{Since } o_{n+1} = o_1]
\end{align*}
\]

Hence,
\[
\Sigma k(n) > n \left(\log 3/\log 2 \right), \text{ if there is a cycle}
\]

Here, \(\Sigma k(n) \) is the sum of powers of 2. Hence, in the corresponding Collatz-2 sequence, it represents the number of “divide by 2” operations in the respective level, and \(n \) is the number of “multiply by 3 and add 1” operations till \(o_n \).

Hence,
\[
\Sigma k(n)/n > \log 3/\log 2
\]

But,
\[
\Sigma k(n)+n = e(m) \text{ where } m \text{ is the corresponding level}
\]

Therefore, if we denote number of “divide by 2” operations in the cycle as \(q \) and if we denote number of “multiply by three and add 1” operations in the cycle as \(p \) Then,
Case 2:
If \(e(n) \) is infinite, then we can never know about \(e(n+1) \) until we reach \(n+1 \) in level(n), in which case \(e(n+1) = 0 \)

In a similar way, for any \(k > n \), we cannot know about \(e(k) \) unless we reach \(k \) in level(n), in which case \(e(k) = 0 \)

So if \(e(n) \) is infinite, then our information is limited and based upon computational evidence. We can never complete computing for level(n), hence the collatz-2 sequence will have no information for \(k > \text{max(level(n))} \)

Hence, our knowledge of collatz-2 sequence will increase with time, but we can never complete constructing the sequence if such a level exists where \(e(x) \) is infinite.

In this case, we can say the Collatz-2 sequence is incomplete. Thus, analysis of the Collatz-2 sequence fails, and the theorem remains a conjecture.

Distribution of zeroes of lambda function

We denote
\[
z(n) \text{ as the number of zeroes of the lambda function for } x \leq n
\]
\[
nz(n) \text{ as the number of ones of the lambda function for } x \leq n
\]

\(z(n) \) and \(nz(n) \) are monotonically increasing functions

Now, \(\sum e(n) > n \) then since \(\sum e(n) \) is a monotonically increasing function, the probability of the truth of Collatz conjecture increases with increasing \(n \).

In any case,
\[
\lim_{n \to \infty} \frac{\sum e(n)}{n} > 1
\]

Consider,
\[
\sum e(n) - nz(n) = z(n) + \text{number of zeroes after } n \text{ and less than } \text{maximal}(n)
\]

Now, number of zeroes after \(n \) and less than \(\text{maximal}(n) \) \(\leq z(\text{maximal}(n)) - z(n) \)

Hence,
\[
\sum e(n) - nz(n) \leq z(\text{maximal}(n)), \quad \text{whenever } e(n) > 1
\]

But we already know, that for \(e(n) > 1 \)
\[
z(\text{maximal}(n)) \geq \sum e(n)
\]
For sufficiently large n,
\[z(\text{maximal}(n)) \sim \sum e(n) \]
\[\text{ie., } \frac{n z(n)}{n} \to 0 \quad \text{as } n \to \infty \]
Hence, for sufficiently large values of n, $z(n) \sim n$

References:

Weisstein, Eric W. "Collatz Problem." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html

Sloane’s, A070165, The Online Encyclopedia of Integer Sequences
http://www.research.att.com/~njas/sequences/A070165

Eric Roosendaal, On the 3x+1 problem
http://www.ericr.nl/wondrous/

Ken Conrow, Collatz 3n+1 problem structure
http://www-personal.ksu.edu/~kconrow/