Comparative population genetics of mimetic *Heliconius* butterflies in an endangered habitat; Brazil’s Atlantic Forest

Priscila Albuquerque de Moura¹, Swee-Peck Quek², Márcio Z Cardoso³, Marcus R Kronforst²*

Abstract

Background: Brazil’s Atlantic Forest is a biodiversity hotspot endangered by severe habitat degradation and fragmentation. Habitat fragmentation is expected to reduce dispersal among habitat patches resulting in increased genetic differentiation among populations. Here we examined genetic diversity and differentiation among populations of two *Heliconius* butterfly species in the northern portion of Brazil’s Atlantic Forest to estimate the potential impact of habitat fragmentation on population connectivity in butterflies with home-range behavior.

Results: We generated microsatellite, AFLP and mtDNA sequence data for 136 *Heliconius erato* specimens from eight collecting locations and 146 *H. melpomene* specimens from seven locations. Population genetic analyses of the data revealed high levels of genetic diversity in *H. erato* relative to *H. melpomene*, widespread genetic differentiation among populations of both species, and no evidence for isolation-by-distance.

Conclusions: These results are consistent with the hypothesis that the extensive habitat fragmentation along Brazil’s Atlantic Forest has reduced dispersal of *Heliconius* butterflies among neighboring habitat patches. The results also lend support to the observation that fine-scale population genetic structure may be common in *Heliconius*. If such population structure also exists independent of human activity, and has been common over the evolutionary history of *Heliconius* butterflies, it may have contributed to the evolution of wing pattern diversity in the genus.

Background

Landscape structure has a fundamental influence on the distribution of populations, affecting their demography and genetics [1]. Some populations may be found continuously distributed while others are patchily distributed across their range, both of which may ultimately lead to some degree of genetic differentiation. Such geographic patterns of genetic variation reflect both historical processes, such as natural selection, and contemporary gene flow [2].

Gene flow determines the potential for genetic differentiation among populations and for local adaptation and the spread of novel adaptations [3,4]. In butterflies, as in other organisms, the nature and extent of gene flow is largely dependent on the mobility of individuals.

Species with high vagility may disperse over large distances and therefore have extensive gene flow over large areas resulting in more homogeneous populations [5-8], whereas in species with low vagility, the effect of restricted dispersal will be evident at fine spatial scales [9-11]. Furthermore, gene flow may also be affected by a variety of ecological factors such as mating habits, gender-biased dispersal, diet specialization, habitat and population persistence, environmental factors and geographic distance [12].

Extensive studies using molecular markers on butterflies have shown how fragmentation leads to the reduction of gene flow among populations in different habitat patches and increases genetic differentiation among populations [9,13-15]. In fact, intra- and inter-population genetic variability is generally more affected in small patches of habitat and in small populations [6,16]. Fragmentation may even affect species with high vagility...
[8,11], leading to a decrease in genetic diversity due to reduced gene flow between populations.

However, even though information on the relationship between fragmentation and genetic diversity in butterflies is available, many of these studies have been conducted with temperate species [6,14,17,18]. To date, few such studies have been conducted with tropical species. One tropical region of particular interest for this type of study is Brazil’s Atlantic Forest (Figure 1), a highly fragmented biodiversity hotspot that has a high level of species endemism [19], including butterflies [20,21]. After more than 500 years of intensive human occupation, less than 7% of the original forest remains [22] and this region is now considered a priority area for conservation [23].

Heliconius butterflies are a well-studied group of tropical organisms [24-30], commonly found in New

![Figure 1](image-url)
World tropical and subtropical forests [31]. Mark-recapture studies of *Heliconius* have shown that populations remain fairly stable over time, usually at low densities [26]. After a brief period of dispersal, *Heliconius* adults establish themselves in areas where they remain for the rest of their lives [32]. Thus, populations of *Heliconius* are organized in moderately sedentary units, with little movement of individuals, apparently as a result of home range behavior [32]. These behaviors suggest that gene flow among geographically separate populations may be low.

Yet, little is known about geographical structure of *Heliconius* populations and the effects of fragmentation on population connectivity. Most studies have employed mark-recapture methods to infer population structure [32-39], but some evidence from molecular markers is available. For instance, Kronforst & Fleming [7] analyzed population genetic structure of the highly vagile species *Heliconius charithonia* using allozymes and found low genetic diversity and no evidence of genetic subdivision in south Florida. Additional studies with allozymes have found little evidence for genetic differentiation in other *Heliconius* species [40-42]. In contrast, Kronforst & Gilbert [43] found evidence for extensive genetic differentiation and isolation by distance across multiple *Heliconius* species in Costa Rica using AFLP markers.

Population genetic structure in *Heliconius* also has important implications for the evolutionary dynamics of mimicry. *Heliconius erato* and *H. melpomene* are distantly-related species belonging to different clades within the genus [24,44]. These two species are Müllerian mimics of one another throughout their shared range of Central and South America but they have both diversified, in parallel, into over 20 geographic wing pattern races. Historically, the co-mimetic radiations of *H. erato* and *H. melpomene* were thought to have occurred in parallel across time and space, possibly facilitated by Pleistocene rainforest refugia [31]. However, data from a variety of sources, including modern population genetic data [45-47], support an alternative ‘mimetic advergence’ hypothesis [48], with *H. erato* radiating first and establishing the diversity of wing patterns which *H. melpomene* later evolved to mimic. A remaining issue then is how *H. erato* originally diversified, given the strong stabilizing selection expected on warning coloration. One hypothesis is that stochastic events in local populations have occasionally allowed novel phenotypes to drift over the frequency threshold necessary to become a learned, and hence protected, warning pattern [49,50] and this may be playing out as part of a larger “shifting-balance” type process [51-53]. This process requires small local population sizes as well as drift, and existing molecular data provide mixed evidence as to whether these conditions are generally met in *Heliconius*; allozymes have generally shown little structure while AFLPs have revealed more.

Our current analysis of population genetic structure in *Heliconius* was hence motivated by two factors. First, we were interested in determining the potential impact of the highly fragmented habitat along Brazil’s Atlantic Forest on population connectivity in butterfly species with home range behavior. Second, we were interested in whether replicate analyses of population genetic structure in different geographic regions, and with a diversity of molecular markers, provide evidence for or against substantial population genetic structure in *Heliconius*. The generality of this phenomenon has important implications for the potential role of drift in color pattern diversification, as long as it has also occurred throughout the evolutionary history of *Heliconius* butterflies and independent of human activity.

To address these questions, we analyzed the population genetic structure of co-mimics *H. erato* and *H. melpomene* throughout a portion of Brazil’s Atlantic Forest using three types of molecular markers; microsatellites, AFLPs, and mitochondrial DNA sequences. Our results reveal substantial genetic differentiation among populations and intriguing differences between species and among molecular markers, reflecting the unique population biology of our study system and its geographic context.

Results and Discussion

Brazil’s Atlantic Forest is a biodiversity hotspot endangered by extreme deforestation. To examine the potential impact of this habitat fragmentation on butterfly dispersal, we measured genetic diversity and differentiation among remnant forest patches for two co-mimetic *Heliconius* butterfly species, *H. erato* and *H. melpomene*. Our analysis included multiple populations of both species and three distinct classes of molecular markers, allowing us to compare and contrast patterns across species, populations, and types of molecular data.

Genetic Diversity

Across all marker types, *H. erato* displayed greater genetic diversity than *H. melpomene* (Table 1), which is consistent with previous genetic comparisons between the two species [43,45,47,54]. Elevated genetic diversity in *H. erato*, relative to *H. melpomene*, is commonly attributed to the fact that *H. erato* is generally more abundant than *H. melpomene* [26,48,55,56], which could result in a larger effective population size. Another potential contributing factor is that the geographic radiation of *H. erato* predates that of *H. melpomene* [45], allowing more time for the accumulation of standing genetic variation. It is unclear whether these explanations may apply to our sampling locations however.
For instance, our collections revealed that *H. melpomene* is as abundant, or more abundant, than *H. erato* across most of our collecting sites. In addition, recent data suggest that *H. melpomene* may have originated in coastal Brazil while *H. erato* colonized this region after originating in western South America [47], which may mean that the two species have occupied this area for similar lengths of time. Regardless of the cause, our data show that *H. erato* is 14 times more variable than *H. melpomene* at mtDNA, seven times more variable at AFLP markers, and 1.3 times more variable at microsatellite loci (Table 1).

Differentiation and isolation-by-distance

Our analyses revealed widespread genetic differentiation in both species but substantial variation across marker types. Overall, *H. erato* displayed significant genetic differentiation at both AFLPs and mtDNA but not microsatellites while *H. melpomene* displayed significant genetic differentiation at microsatellites and AFLPs but not mtDNA (Table 1). Pairwise comparisons among populations revealed similar patterns. For instance, based on microsatellites, seven population comparisons were significant in *H. melpomene* while only two were significant in *H. erato* (Table 2). With AFLPs, virtually all pairwise comparisons were significant in both species (Table 3). Finally, mtDNA revealed 13 significant comparisons in *H. erato* and only four in *H. melpomene* (Table 4). Interestingly, mtDNA revealed much more genetic differentiation in *H. erato* than did the nuclear markers, suggesting females may be more sedentary than males in this species. While genetic differentiation appears to be widespread in both species, none of the tests for isolation-by-distance were significant (Table 1). This indicates that geographic distance alone is not a good indicator of genetic distance among populations.

Implications for habitat fragmentation and mimicry

Human activity in Northeastern Brazil over the last five hundred years has generated substantial habitat fragmentation in this region [57]. Today, much of Brazil’s Atlantic Forest is highly fragmented with few stretches of continuous forest [19]. Because *Heliconius* butterflies are relatively sedentary, we expect this extensive fragmentation to limit migration among habitat patches and potentially generate genetic differentiation among populations over time. Consistent with this expectation, our analyses revealed widespread genetic differentiation among populations of both *H. erato* and *H. melpomene*. While it seems likely that the observed genetic differentiation is at least partially related to extensive habitat fragmentation, future comparative work in undisturbed habitats will be required to quantify the exact impact of fragmentation relative to baseline differentiation among populations in a natural setting.

The extent of population subdivision across the range of *Heliconius* species has potentially important implications beyond estimating the impact of fragmentation on...
population connectivity. For instance, it has been proposed that novel color patterns may occasionally arise and become locally abundant as a result of genetic drift [49,51]. From there, these patterns may spread out to neighboring populations via a shifting balance type mechanism, thereby generating the geographic patchwork of wing pattern races which are particularly evident in *H. erato* and *H. melpomene* [51,58]. The baseline conditions necessary for this process to operate are small local population sizes and genetic drift, but allozyme data from a variety of *Heliconius* species have shown that populations are not genetically differentiated, arguing against local population genetic structure and drift. In contrast, a recent study revealed widespread genetic differentiation among *Heliconius* populations from Costa Rica based on AFLP data [43]. Here we have shown that population genetic differentiation is common in *Heliconius* and evident in microsatellites and mtDNA sequence data, in addition to AFLPs. If *Heliconius* populations are generally subdivided, independent of human induced habitat fragmentation, this may have allowed drift to contribute to the establishment of novel warning pattern phenotypes over their evolutionary history.

Conclusions

Brazil’s Atlantic Forest is a highly fragmented habitat and a priority for conservation efforts. Here we have shown that populations of two *Heliconius* butterfly species from the northern Atlantic Forest display widespread population genetic differentiation. These results are consistent with the expectation that fragmentation should reduce dispersal among neighboring habitat patches. The results also lend support to the observation that fine-scale population genetic structure may be common in *Heliconius*, which may have contributed to the evolution of mimetic diversity in the genus.

Methods

Sample collection

Between January 2007 and January 2008, we collected adult *Heliconius erato* and *Heliconius melpomene* specimens from various populations throughout the State of Rio Grande do Norte in northeastern Brazil (Figure 1). Our final sample set consisted of 136 *H. erato* from 8 locations and 146 *H. melpomene* from 7 locations (Table 5), with distances between sites ranging from 3 to 314 km. Seven sites were remnant patches of coastal Atlantic Forest and one was a cooler habitat island in the semi arid Caatinga scrub.

Microsatellite analysis

Using eight individuals from each species, we performed an initial screen of fourteen microsatellite loci: nine (Hel02, Hel04, Hel05, Hel08, Hel10-13, Hel15) described by Flanagan et al. [59], four (Hm06, Hm08, Hm16, Table 3 Pairwise population F_{ST} values based on AFLP data; *H. erato* comparisons below diagonal, *H. melpomene* above diagonal

	MRT	JND	CTR	CTL	JQ	FLN	PP	BF
MRT	0	-	-	-	-	-	-	-
JND	0.01832**	0	0.13739***	0.06361***	0.03481**	0.08283***	0.04566***	0.12646***
CTR	0.01117*	0.02969***	0	0.04576***	0.12178***	0.11645***	0.10595***	0.06254***
CTL	0.01519*	0.01937***	0.02173***	0	0.07282***	0.08292***	0.04716***	0.07188***
JQ	0.01704***	0.01656***	0.02653***	0.02037***	0	0.07318***	0.074***	0.18178***
FLN	0.04009***	0.02507*	0.03515***	0.02235*	0.0294**	0	0.03954***	0.16888***
PP	0.02068***	0.01496***	0.03057***	0.01615***	0.00698**	0.01170	0	0.12302***
BF	0.00223*	0.01850*	0.01383*	0.01485*	0.01445**	0.05357***	0.02061**	0

P-values are indicated as follows: * P < 0.05, ** P < 0.01, *** < 0.001, (no asterisk) = not significant.

**Table 4 Pairwise population F_{ST} values based on mtDNA sequence data; *H. erato* comparisons below diagonal, *H. melpomene* above diagonal

	MRT	JND	CTR	CTL	JQ	FLN	PP	BF
MRT	0	-	-	-	-	-	-	-
JND	0.3290**	0	-0.0428	-0.0582	0.0665	-0.0229	-0.0456	-0.0706
CTR	0.1519*	0.0129	0	-0.0252	0.0890***	0.0074	-0.0082	-0.0305
CTL	0.4578***	-0.0160	0.0512	0	0.0852**	0.0006	-0.0181	-0.0425
JQ	0.1709*	0.0059	-0.0267	0.0564	0	0.0167	0.1105**	0.0784*
FLN	0.0441	0.4681**	0.2522*	0.5880**	0.3043*	0	0.0283	-0.0179
PP	-0.0355	0.2651**	0.1282*	0.3519***	0.1322*	0.0615	0	-0.0284
BF	0.2030*	-0.0308	-0.0223	0.0381	-0.0008	0.3039	0.1520	0

P-values are indicated as follows: * P < 0.05, ** P < 0.01, *** < 0.001, (no asterisk) = not significant.
Hm22) described by Mavárez & González [60], and one (He-Ca-001) described by Tobler et al. [61]. The microsatellites that amplified consistently were selected for analysis (Table 6). PCR amplification was performed using standard conditions and reagents following Flanagan et al. [59] and Mavárez & González [60]. Fluorescent-labeled PCR products were separated with an ABI3730 Genetic Analyzer (Applied Biosystems, Foster City, CA) and sized and scored using ABI GeneMapper software v. 3.7.

For each locus we calculated standard population genetic statistics such as allele frequencies, expected heterozygosity (HE), observed heterozygosity (HO), and deviations from Hardy-Weinberg equilibrium using Arlequin 3.0 [62]. In addition, we used Arlequin 3.0 to estimate AMOVA-based [63] fixation indexes (FST) and to perform Mantel tests, comparing population pairwise FST values to straight line geographic distances, to test isolation-by-distance (IBD).

AFLP analysis

We genotyped each individual with AFLPs using a plant mapping kit (Applied Biosystems) and separated fragments with an ABI3730 Genetic Analyzer. Three selective primer combinations were used to generate fragments: EcoRI-Act/MseI-CAT, EcoRI-Act/MseI-CTG, and EcoRI-ACA/MseI-CTG. We separated fragments with an ABI3730 Genetic Analyzer and scored fragments between 50 and 500 bp using ABI GeneMapper software v. 3.7. For each species, we calculated AFLP gene diversity using the Bayesian method of Zhivotovsky [64]. We calculated FST values and performed Mantel tests using Arlequin 3.0.

Mitochondrial DNA analysis

We PCR amplified and sequenced a 1600 bp region of mitochondrial DNA from each individual using the primers and methods described by Beltran et al. [65]. This region spans the 3' end of COI, tRNA-Leu, and COII. Contigs were assembled with Sequencher 3.1 (Gene Codes Corporation, Ann Arbor, MI) and aligned by eye. Arlequin 3.0 was used to calculate nucleotide diversity (π) and FST values as well as perform Mantel tests. DNA sequences were submitted to GenBank under

Table 5 Number of H. erato and H. melpomene specimens analyzed from the eight habitat fragments in Rio Grande do Norte, Brazil

Site	GPS coordinates	H. erato (N)	H. melpomene (N)
MRT	6°55'S, 37°5359'W	9	0
JND	5°3323'S, 35°21'W	29	11
CTR	5°314's, 35°139W	20	21
CTL	5°5425'S, 35°1417'W	25	24
JQ	5°5533'S, 35°1142'W	23	23
FLN	6°459'S, 35°111'W	5	26
PP	6°1323'S, 35°41'W	18	26
BF	6°2449'S, 35°450'W	7	15

Table 6 Details of microsatellite loci genotyped in H. erato and H. melpomene

Locus	Primer sequence (5’-3’)	Core repeat	GenBank number	H. erato T_a (°C)	H. melpomene T_a (°C)	Ref.
He02	F: TCAAAATGTGACAGCCGAG	(GA)_13(GAA)_2(GA)_2	AF81467	55	-	[59]
	R: TGACTCATTGTAAGGGCT					
He05	F: TGCTGTCCATACCCAACTCA	(GA)_14(GA)_4	AF81470	52	55	[59]
	R: CGAATCTACCCACATGC					
He10	F: TCTCTACCTTTCCACACAGA	(CA)_7(TA)(CA)_10	AF81475	55	-	[59]
	R: TTGGAAGACACACATGGGA					
He11	F: TTTTTTGGAGTCCCCGATGG	(CA)_12	AF81476	55	55	[59]
	R: ATCTCAGAAGCTGGCCGAG					
He12	F: CGGCACCTCATGTTTCATT	(TAG)_4	AF81477	55	-	[59]
	R: GCCATTTGCATTCAAGAATGG					
He13	F: ATTTTCATAGTACCCCTCC	(CA)_13	AF81478	55	-	[59]
	R: TGACGCTATCCAAAGGCT					
Hm06	F: AAAATTGTTGGCCCGGGAATA	(CA)_7	DQ020077	55	-	[60]
	R: TGGAGTAGAAATGCGGGTTTA					
Hm08	F: AAAGCCTGATGGCCGTATGG	(CA)_17	DQ020079	-	55	[60]
	R: GCAATGTCAGCAGACTGGA					
Hm16	F: CCGATAGCATTGTGTTAAGTGTG	(CA)_14	DQ020086	-	55	[60]
	R: AGCGAGTGCGGGACTACG					
Hm22	F: CCTGGTCCAAACTCCAAAAC	(GA)_16	DQ020090	-	52	[60]
	R: AACATGTCACAACCTCATGC					
accession numbers GU330064 - GU330070, GU330108 - GU330114, and HQ701917 - HQ702184.

Acknowledgements
We thank Katia Scortecci (Genome Lab-UFRN) for support during the early stages of this project, Luis Vicente Burle Maciel for assistance with the map, and Durrell Kapan and reviewers for comments on the manuscript. Butterflies were collected under MMA (Brazil) permit #10894-1 to MZC. This project was funded by grants from CAPES and the Graduate Program in Ecology at UFRN to PAM, FAPERN/CNPq (PPP/2007) to MZC, and NIH NIGMS grant GM068763 to MRK.

List of abbreviations
AFLP: amplified fragment length polymorphism, AMOVA: analysis of molecular variance; FST: Wright’s fixation index; mtDNA: mitochondrial DNA, PCR: polymerase chain reaction, SNP: single nucleotide polymorphism.

Author details
1Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil. 2FAS Center for Systems Biology, Harvard University, Cambridge MA 02138, USA. 3Departamento de Botânica, Ecologia e Zoológia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.

Authors’ contributions
PAM, MZC and MRK planned the project, PAM and MZC, collected specimens, PAM and SPO generated molecular data, PAM and MRK analyzed the data, PAM, MZC and MRK wrote the paper; all authors read and approved the final manuscript.

Received: 12 November 2010 Accepted: 20 January 2011 Published: 20 January 2011

References
1. Manel S, Schwartz MK, Luikart G, Taberlet P: Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 2003, 18:189-197.
2. Fauvet C, Planes S: Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Mar Biol 2002, 141:773-788.
3. Starkin M: Gene flow in natural populations. Annu Rev Ecol Syst 1985, 16:393-430.
4. Wright S: Evolution and the Genetics of Populations: Genetics and Biometric Edition Chicago: University of Chicago Press; 1984.
5. Haag KL, de Araújo AM, Zaha A: Genetic structure of natural populations. Mol Ecol 2003, 12:11-20.
6. Scriver KT, Blanchong JA, Bruggeman DJ, Epperson BK, Lee CY, Pan YW, Shorey RI, Prince HH, Winterstein SR, Luukkonen DR: Geographical genetics: Conceptual foundations and empirical applications of spatial genetic data in wildlife management. J Wildlife Manage 2005, 69:1434-1453.
7. Clarke GM, D’Oywer C: Genetic variability and population structure of the endangered golden sun moth, Symenoptera. Biol Conserv 2000, 92:371-381.
8. Keyghobadi N, Roland J, Strobeck C: Influence of landscape on the population genetic structure of the alpine butterfly Papuanus smintheus (Lepidoptera, Papilionidae). Mol Ecol 1999, 8:1461-1495.
9. Lushai G, Fjellstad W, Marcovitch O, Aagaard K, Sherratt TN, Allen JA, Maclean N: Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biolog Conserv 2000, 94:43-50.
10. Schmitt T, Seitz A: Influence of habitat fragmentation on the genetic structure of Polyommatus cedon (Lepidoptera: Lycaenidae): Implications for conservation. Biol Conserv 2002, 107:291-297.
11. Debinski DM: Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii. Biol Conserv 1994, 70:25-31.
12. Vandewoestijne S, Martin T, Liegeois S, Baguette M: Dispersal, landscape occupancy and population structure in the butterfly Melanargia galathea. Basic Appl Ecol 2004, 5:581-591.
13. Leite UJ, Viana VM, Verissimo A, Voit S, Perkins K, Husain SA: Brazil. Forests in the balance: challenges of conservation with development (evaluation country case study series) Washington, D.C.: The World Bank; 2000.
14. Brown KS, Freitas AVL: Lepidoptera. In Biodiversidade do Estado de São Paulo, Brasil invertebrados Terrestres. Edited by: Brandao CRF, Cancelo EM. São Paulo: FAPESP; 1999:225-245.
15. Brown KS, Freitas AVL: Diversidade de Lepidoptera em Santa Teresa, Espírito Santo. Bol Mus Biol Mello Leitão 2000, 11:71-118.
16. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM: The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 2009, 142:1141-1153.
17. Myers N, Mittemeier RA, Mittemeier CG, da Fonseca GAB, Kent J: Biodiversity hotspots for conservation priorities. Nature 2000, 403:853-858.
18. Brown KS: The biology of Heliconius and related genera, Annu Rev Entomol 1981, 26:427-456.
19. Gilbert LE: Ecological consequences of a coevolved mutualism between butterflies and plants. In Coevolution of Animals and Plants. Edited by: Gilbert LE, Raven PH. Austin: University of Texas Press; 1975:210-240.
20. Gilbert LE: Biodiversity of a Central American Heliconius community: pattern, process, and problems. In Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Edited by: Price PW, Lewinsohn TM, Fernandes GW, Benson WW. New York: Wiley; 1991:403-427.
21. Mallet J: Speciation, raciation, and colour pattern evolution in Heliconius butterflies: the evidence from hybrid zones. In Hybrid Zones and the Evolutionary Process. Edited by: Harrison RG. New York: Oxford University Press; 1993:226-260.
22. Mallet J, Jiggins CD, McMillan WO: Mimicry and warning colour at the boundary between races and species. In Endless Forms: Species and Speciation. Edited by: Howard DJ, Berlocher SH. New York: Oxford University Press; 1998:390-403.
23. Papa R, Martin A, Reed RD: Genomic hotspots of adaptation in butterfly wing pattern evolution. Curr Opin Genet Dev 2008, 18:559-564.
24. Sheppard PM, Turner JRG, Brown KS, Benson WW, Singer MC: Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Phil Trans R Soc Lond B 1985, 308:433-56.
25. Brown KS, Sheppard PM, Turner JRG: Quaternary refugia in tropical America: Evidence from race formation in Heliconius butterflies. Proc R Soc Lond B 1974, 187:369-378.
26. Mallet J: Dispersal and gene flow in a butterfly with home range behaviour: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 1986, 68:210-217.
33.Cook LM, Thomason EW, Young AM. Population structure, dynamics and dispersal of the tropical butterfly Heliconius charithonius. J Anim Ecol 1976, 45:851-863.

34.Ehrlich PR, Gillett LE. Population structure and dynamics of the tropical butterfly Heliconius erithacus. Biotropica 1973, 5:69-82.

35.Mallet J. Gregarious roosting and home range in Heliconius butterflies. Natl Geogr Res 1986, 2:198-215.

36.Quinteno HE. Population dynamics of the butterfly Heliconius charithonius L. in Puerto Rico. Cimb J Sci 1988, 24:155-160.

37.Ramos RR, Freitas AVL. Population biology and wing color variation in Heliconius erato phyllis (Nymphalidae). J Lep Soc 1999, 53:1-21.

38.Saalfeld K, Araujo AM. Studies on the genetics and ecology of Heliconius erato (Lepidoptera: Nymphalidae). I: demography of a natural population. Rev Brasil Biol 1981, 41:855-860.

39.Turner JRG. Experiments on the demography of tropical butterflies. II. Longevity and home-range behaviour in Heliconius erato. Biotropica 1971, 3:21-31.

40.Jiggins CD, McMillan WD, King P, Mallet J. The maintenance of species differences across a Heliconius hybrid zone. Heredity 1997, 79:495-505.

41.Mauricio-da-Silva L, Araujo AM. The genetic structure of Heliconius erato populations (Lepidoptera: Nymphalidae). Rev Brasil Genet 1994, 17:19-24.

42.Turner JRG, Johnson MS, Eanes WF. Contrasted modes of evolution in the same genome: allozymes and adaptive change in Heliconius. Proc Natl Acad Sci USA 1979, 76:1924-1928.

43.Kronforst MR, Gillett LE. The population genetics of mimetic diversity in Heliconius butterflies. Proc R Soc B 2008, 275:493-500.

44.Beltran M, Jiggins CD, Brower AVZ, Bermingham E, Mallet J. Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc 2007, 92:221-239.

45.Flanagan NS, Tobler A, Davison A, Pybus OG, Kapan DD, Linares M, Heckel D, McMillan WD. Historical demography of Mullerian mimicry in the neotropical Heliconius butterflies. Proc Natl Acad Sci USA 2004, 101:9704-9709.

46.Mallet J, Jiggins CD, McMillan W. Mimicry meets the mitochondrial. Cur Biol 1996, 6:857-860.

47.Quek SP, Counterman BA, Albuquerque de Moura P, Cardoso MZ, Marshall CR, McMillan WD, Kronforst MR. Dissecting comimetic radiations in Heliconius reveals divergent histories of convergent butterflies. Proc Natl Acad Sci USA 2010, 107:7365-7370.

48.Etringham H. On specific and mimetic relationships in the genus Heliconius. Trans Entomol Soc Lond 1916, 101-148.

49.Mallet J, Singer MC. Individual selection, kin selection, and the shifting balance in the evolution of warning colors: the evidence from butterflies. Biol J Linn Soc 1987, 32:337-350.

50.Turner JRG, Mallet JLB. Did forest islands drive the diversity of waringly coloured butterflies? Biotic drift and the shifting balance. Phil Trans R Soc Lond B 1996, 351:833-845.

51.Mallet J. Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecol Entomol 2010, 35:90-104.

52.Wright S. The roles of mutation, inbreeding, crossing and selection in evolution. Proc Sixth Int Congr Genet 1932, 1:356-366.

53.Wright S. In Evolution and the Genetics of Populations, Experimental Results and Evolutionary Deductions. Volume 3. Chicago: University of Chicago Press; 1977.

54.Brower AVZ. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 1996, 50:195-221.

55.Gilbert LE. The biology of butterfly communities. In The Biology of Butterflies. Edited by: Van-Wright RI, Ackery PR. London, UK: Academic Press; 1984:41-54.

56.Mallet J. Causes and consequences of a lack of coevolution in Mullerian mimicry. Evol Ecol 1999, 13:777-806.

57.Silva JMC, Castelini CHW. Status of the biodiversity of the Atlantic Forest of Brazil. In The Atlantic Forest of South America: biodiversity status, threats, and outlook. Edited by: Galindo-Leal C, Camara IG. Washington, D.C.: Island Press; 2003:43-59.

58.Blum MJ. Rapid movement of a Heliconius hybrid zone: Evidence for phase III of Wright’s shifting balance theory? Evolution 2002, 56:1992-1998.

59.Flanagan NS, Blum MJ, Davison A, Alamo M, Albaran R, Faulhaber K, Peterson E, McMillan WD. Characterization of microsatellite loci in neotropical Heliconius butterflies. Mol Ecol Notes 2002, 2:398-401.

60.Mavarez J, Gonzalez M. A set of microsatellite markers for Heliconius melpomene and closely related species. Mol Ecol Notes 2006, 6:20-23.

61.Tobler A, Kapan D, Flanagan NS, Gonzalez C, Peterson E, Jiggins CD, Johnston JS, Heckel DG, McMillan WD. First-generation linkage map of the waringly colored butterfly Heliconius erato. Heredity 2005, 94:408-417.

62.Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.

63.Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.

64.Zhvostovsky LA. Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 1999, 8:907-913.

65.Beltran M, Jiggins CD, Bull V, Linares M, Mallet J, McMillan WD, Bermingham E. Phylogenetic discordance at the species boundary: Comparative gene genealogies among rapidly radiating Heliconius butterflies. Mol Biol Evol 2002, 19:2176-2190.

Cite this article as: Albuquerque de Moura et al.: Comparative population genetics of mimetic Heliconius butterflies in an endangered habitat; Brazil’s Atlantic Forest. BMC Genetics 2011 12:9.