Schizosaccharomyces pombe Dss1p is a DNA damage checkpoint protein that recruits Rad24p, Cdc25p and Rae1p to DNA double strand breaks

Saravana P. Selvanathan, Anjan G. Thakurta, Jothy Dakhshnamoorthy, Ming Zhou, Timothy D. Veenstra, and Ravi Dhar

a Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; and *b* Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702, USA.

Running Title: Recruitment of Cell Cycle Proteins to DSB

Address correspondence to: Ravi Dhar, Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bldg. 37/Rm. 5016, 37 Convent Drive, 9000 Rockville Pike, Bethesda, MD 20892, USA. Tel. 301-496-0990; Fax. 301-480-5088; Email: dharr@mail.nih.gov

Schizosaccharomyces pombe Dss1p and its homologs function in multiple cellular processes including recombinational repair of DNA and nuclear export of messenger RNA (mRNA). We found that Tap-tagged Rad24p, a member of the 14-3-3 class of proteins, co-purified Dss1p along with mitotic activator Cdc25p, mRNA export/cell cycle factor Rae1p, 19s proteasomal factors and recombination protein Rhp51p (a Rad51p homolog). Using chromatin immunoprecipitation, we found that Dss1p recruited Rad24p and Rae1p to the double strand break (DSB) sites. Furthermore, Cdc25p also recruited to the DSB site and its recruitment was dependent on Dss1p, Rad24p and the protein kinase Chk1p. Following DSB, all nuclear Cdc25p was found to be chromatin associated. We found that Dss1p and Rae1p have a DNA damage checkpoint function and upon treatment with UV light Δdss1 cells entered mitosis prematurely with indistinguishable timing from Δrad24 cells. Taken together, these results suggest that Dss1p plays a critical role in linking repair and checkpoint factors to damaged DNA sites by specifically recruiting Rad24p and Cdc25p to the DSBs. We suggest that the sequestration of Cdc25p to DNA damage sites could provide a mechanism for *S. pombe* cells to arrest at G2/M boundary in response to DNA damage.

Eukaryotic cells respond to double strand breaks (DSBs) within DNA by activating DNA damage checkpoint proteins that send signals to the cells, ultimately resulting in cell cycle arrest. The arrest allows DNA damage to be repaired by the proteins of the DNA repair pathway before cells can enter mitosis (1,2). In **Schizosaccharomyces pombe** (*S. pombe*), entry into mitosis at the G2/M boundary is regulated by the phosphorylation status of the mitotic regulator Cdc2p at the tyrosine-15 residue (3). Cells are maintained in G2 by phosphorylation of Cdc2p by Wee1p and Mik1p kinases while their entry into mitosis is triggered by dephosphorylation of Cdc2p by the Cdc25p phosphatase (3).

Dss1p, or its *Saccharomyces cerevisiae* (*S. cerevisiae*) homolog Sem1p, is a small acidic protein that is required for efficient DNA repair and the nuclear export of messenger RNA (mRNA) (4-7). Dss1p is a cofactor for human breast cancer susceptibility protein BRCA2 (8). In *Ustilago maydis* (*U. maydis*), a Dss1p homolog is a cofactor for Brh2p, a homolog of the human BRCA2 (9). The association between Dss1p and BRCA2 regulates the function of recombination-repair protein Rad51p (a homolog of the bacterial RecA; Rhp51p in *S. pombe*) (10,11). So far the homologs of BRCA2/Brh2p have not been reported in either *S. cerevisiae* or in *S. pombe*. *S. cerevisiae* Sem1p was shown to recruit to DSB sites following a pattern similar to Rad51p, with high enrichment around the break site and gradually decreasing away from the break in both directions (12). Both Dss1p and Sem1p were shown to associate with the 19S subunit of the 26S proteasomes (12-14). It was suggested that Sem1p’s function involves regulating the function...
of the proteasome complex in DNA repair (12). So far the corresponding role of *S. pombe* Dss1p in DNA recombination-repair has not been studied.

S. pombe Rad24p belongs to the 14-3-3 family of proteins that play a significant role as checkpoint factors in monitoring DNA damage in the G2 phase of the cell cycle (15-18). Their role in the cell cycle was first demonstrated in *S. pombe*, where the products of *rad24* and *rad25* genes were shown to possess DNA damage checkpoint function (19). Neither *rad24* nor *rad25* gene is essential for growth, but simultaneous loss of both genes is lethal (19). Loss of *rad24*, but not *rad25*, leads to premature entry of cells into mitosis resulting in small, round cells. In addition, the loss of *rad24* renders cells highly sensitive to DNA damaging agents, while a *rad25* null strain is only modestly sensitive (19). In response to DNA damage in the G2 stage, activated Chk1p kinase phosphorylates Cdc25p. Recently Mek1p was shown to phosphorylate Cdc25p independent of Chk1p (20). Rad24p binds phosphorylated Cdc25p and apparently blocks a nuclear localization signal (NLS) within Cdc25p. The Rad24p-Cdc25p complex exits the nucleus by using a dedicated nuclear export pathway. It was originally suggested that the ‘nuclear exclusion’ of Cdc25p prevents the dephosphorylation and activation of Cdc25p’s target Cdc2p at tyrosine-15 (21). More recently, it has been shown that Cdc25p’s exclusion from the nucleus is not essential for inhibiting cell cycle progression (22).

S. pombe Rae1p is essential for the nuclear export of mRNA and functions in cell cycle progression from G2 to M (23,24). However, Rae1p’s role in the G2/M transition was shown to be independent of its role in mRNA export (25). Thus far no role of Rae1p has been implicated in DNA damage. A human homolog of Rae1p was found to be required in metaphase in mitotic spindle assembly. Through its interaction with the nuclear mitotic apparatus protein (NuMA), human Rae1p is thought to be involved in bipolar spindle pole body formation (26-28). Whether *S. pombe* Rae1p plays a similar role remains to be investigated.

In this study, by using the Tandem Affinity Purification (TAP) method we found that Rad24p-TAP co-purified Dss1p and Rae1p. Several DNA repair proteins (for example, 19s proteasomal subunits and Rhp51p) known to interact with Dss1p homologs also co-purified with the Rad24p-TAP fusion. By using an *S. pombe* strain carrying the *S. cerevisiae* HO-endonuclease cleavage site and a plasmid expressing inducible HO-endonuclease (29), we conducted chromatin immunoprecipitation (ChIP) experiments to develop evidence that upon DNA damage, Dss1p mediates recruitment of DNA recombination/repair, cell cycle and checkpoint control proteins to the DNA DSB sites. Finally, we found that Dss1p and Rae1p have a DNA checkpoint function, with ∆dss1 cells timing of entry into mitosis indistinguishable from ∆rad24 cells. Taken together, these results suggest that Dss1p plays a critical role in linking DNA repair and checkpoint factors to damaged sites by recruiting Rad24p and Cdc25p to the DNA DSB sites. We suggest that the recruitment of Cdc25p to the DSB site could lead to cell cycle arrest at the G2/M boundary in *S. pombe* cells in response to DNA damage.

Experimental Procedures

Strains and Culture - Basic genetic and cell culture techniques have been described previously (30,31). Strains used in this study are described in Table 1. The *rad24-tap* strain was constructed by techniques described previously (32,33), in which TAP is fused to the *rad24* gene at the C-terminus by homologous recombination using the kanamycin gene as a selectable marker. Strains carrying the HO-endonuclease site were kind gifts from Paul Russell’s laboratory (The Scripps Research Institute, La Jolla, CA-92037).

TAP Purification of Complexes - To identify mRNA export factors that may interact with Rad24p, an *S. pombe* strain expressing Rad24p-TAP fusion protein from its chromosomal locus was used. As a control for these experiments, pNTAP41 was used. Purification of TAP-tagged proteins was performed by published methods using IgG sepharose beads (34). The complexes were cleaved from the beads by using TEV-protease. The cleaved fraction was next bound to calmodulin beads and the bound proteins were eluted by calmodulin elution buffer and precipitated by TCA (34). Purified samples were separated on SDS-PAGE and visualized by Coomassie Blue staining and associated proteins were identified using tandem mass spectrometry...
(MS/MS) and/or Western blot analysis using specific antibodies (35,36). The MS/MS data were searched against the S. pombe database from Wellcome Trust Sanger Institute (UK) using BioWorks 3.3.1.

Western Blot Detection - Polyclonal antibodies to S. pombe mRNA export factors were made by expressing the proteins in E. coli and injecting them into rabbits as previously described (5,37,38). Antibodies to S. pombe Rad24p and Rhp51p were made by expressing the full length rad24 and rhp51 genes in pET14b. Polyclonal antibodies to S. pombe Mts2p were bought from Biomol Research La. Standard chemiluminescent methods (NEN, MA) were used to detect the purified proteins.

Chromatin Immunoprecipitation (ChIP) analysis - ChIP analysis was performed using published protocols (39,40). Following crosslinking of proteins to DNA and precipitation by different antibodies, specific primer pairs were used to amplify segments of DNA fragments precipitated by the specific antibodies (Table 2). As a control for amplification, PCR primers (Table 2) that did not amplify the precipitated products were used with each experiment as an internal control. [α-32P]dCTP was added to the PCR. The amplified products were separated by electrophoresis on 6% TBE gel and quantified using the phosphorimagener.

Chromatin Association Assay - Extracts were prepared from spheroplasts and nuclei according to published protocols (30,41). Chromatin associated fraction was separated from nuclear supernatant by layering the nuclear extract onto 30% sucrose cushion and centrifuged at 16,000g for 15 min. (41). The chromatin associated proteins were released by incubation with 277 U DNase 1 for 10 min at 25°C in a buffer containing 20 mM Hepes pH 7.9, 1.5 mM magnesium acetate, 50 mM potassium acetate, 10% glycerol, 0.5 mM DTT, 150 mM Nacl, protease and phosphatase inhibitors (42). Chromatin associated protein was identified by Western blot analysis.

Construction of Plasmids - rad24 gene was isolated from a genomic library. For expression in bacteria the rad24 gene was amplified and introduced into pGEX4T-3 (Amersham) and pET14b (Novagen, CA) to produce GST and His tagged Rad24p respectively. Similarly His-Rhp51p also made with pET14b. Construction of His-tagged fusions of Rae1p and Dss1p were described previously (5).

Sensitivity to DNA Damaging Agents - Sensitivity to UV light was determined by plating 750-1000 cells and irradiating with a Stratagene UV- Stratalinker 2400 at fixed energy levels. Cells were then incubated at 21°C and the number of colonies scored after 5 days. Sensitivity of cells to other DNA damaging agents was determined by incubating liquid cultures cells in 3 mU/ml bleomycin or 0.03 percent methyl methanesulfonate (MMS) or 15mM hydroxyurea (HU) (43-45). In parallel, control cells were incubated similarly without addition of any DNA damaging agent. Following incubation of 500 to 700 cells on YES plates, surviving colonies were counted after 5 days.

RESULTS

Dss1p and Interacting Components Co-purify with Rad24p-TAP Fusion Protein - An S. pombe strain was constructed in which rad24 gene was replaced by a rad24-tap gene fusion. As a negative control, TAP was expressed in wild type cells from a plasmid (pNTAP41) under the control of the nmt1 promoter. Fig. 1A shows a typical TAP-purification experiment using genomic Rad24p-Tap fusion. Compared to the Tap control (left lane), several distinct bands were visible when Rad24-TAP fusion was used to pull-down interacting proteins whose identities were established by tandem mass spectrometric analysis. Elongation factors (eIF4G, eIF3a, eIF3b), cell cycle factors (Cdc15p, Cdc22p, Cdc25p, Rad25p), 19s proteosomal subunits (Mts4p, Rpn5p, Mts2p, Rpn6p) were pulled down by
Rad24p-Tap. DNA repair protein Rhp51p, Dss1p and mRNA export factor Rae1p also co-purified with Rad24p-Tap fusion. Additional proteins identified using mass spectrometry (not shown in the gel in Fig. 1A) are presented in the Supplemental Table 1S.

It is notable that only two known mRNA export factors (Rae1p and Dss1p) co-purified with Rad24p-Tap fusion protein. Using Western blot analysis was used to confirm these results. Fig. 1B shows the western blot confirming that Rae1p and Dss1p co-purified with Rad24p-TAP but not with TAP alone (compare lane 4 vs. lane 3). However, no other known mRNA export factor such as Uap56p, Mlo3p, Nup98p, Nup159p and Sac3p co-purified with Rad24p-TAP. The absence of interaction with any other known mRNA export factor by Rad24p suggests that its interaction with Rae1p and Dss1p may represent a new complex, distinct from an mRNA export related protein complex of these two proteins we previously described (5). By Western analysis we also confirmed interaction between Rad24p and Mts2p and Rhp51p. These results suggest that Rad24p physically interacts with at least some components of the proteasomes and DNA recombination-repair pathway.

Dss1p, Rhp51p and Mts2p are Recruited to an HO-endonuclease Induced DSB Site in S. pombe Cells - We wanted to test whether in S. pombe cells Dss1p was recruited to DSB sites similar to human Dss1p. For this purpose, we used an S. pombe strain carrying the S. cerevisiae HO-endonuclease site integrated within the arg3 locus (obtained from Paul Russell; (29)). A schematic of the 5.4 kb genomic region surrounding the HO-endonuclease cleavage site (~2.1 kb upstream to ~3.2kb downstream) and specific regions/fragments # 1-9 that were amplified by PCR are shown in Fig. 2A (for details see Fig. 2 legend and Table 2). The strain was transformed with a plasmid expressing HO-endonuclease in pJR1-41XH vector under the control of a thiamine repressible nmt1 promoter. By ChIP, DNA-bound proteins were precipitated using anti-Dss1p, anti-Rhp51p or anti-Mts2p antibody from S. pombe cells in the presence or absence of HO-endonuclease expression. Quantitative PCR was performed to amplify specific fragments (1-9 in Fig. 2A) corresponding to both sides of the HO-endonuclease site as well as from a non-transcribed internal control (IC) region (at a different chromosomal locus; (24) from the immunoprecipitated DNA obtained by antibodies (+IP) or pre-bleed sera (-IP). Relative fold enrichment of DNA was calculated by using established procedures following the formula shown in Fig. 2B. Based on this calculation, a protein was considered enriched at a region when the DNA fold increase value was above 1 (see details in Fig. 2B. legend; (39)).

We previously showed that Dss1p recruits to actively transcribed genes in wild type S. pombe cells (5). In the absence of HO-endonuclease (control), in the S. pombe strain carrying the HO-site, Dss1p showed a relative fold enrichment above 1 throughout the tested region (that also carried a functional kanamycin gene) (Fig. 2C, panel-a data and grey bars in graph). In the cells expressing HO-endonuclease (HO), Dss1p showed a clear pattern of enrichment around the break site. Enrichment was highest near the break site (peak relative enrichment ~5 fold proximal to the HO-site; fragments 4, 5, 6 and 7) and gradually decreased away from the break site (fragments 1, 2, 3, 8 and 9).

Rad51p is known to recruit to DSB site in S. cerevisiae. We therefore tested whether Rhp51p similarly enriched at or around DNA break sites in S. pombe. Following a similar experimental procedure, we found that Rhp51p did not enrich within the test region in the control experiment (Fig. 2C, panel-b, graph-control). However, in the cells expressing the HO-endonuclease (HO) there was significant increase in relative fold enrichment throughout the region (relative enrichment between 3-5 fold; Fragments labeled 1-9). Thus, in contrast to Dss1p, the pattern of enrichment shown by Rhp51p was different; it had an elevated level of enrichment both near and away from the break site, perhaps reflecting its nature of interaction with DNA.

Proteasomal components are known to recruit to DSB sites. We tested for the recruitment of Mts2p, a component of the proteasomes, to the DSB site. Mts2p was not significantly enriched in cells that did not express the HO-endonuclease (Fig. 2C, panel-c, graph-control). Relative fold enrichment of Mts2p was observed in the vicinity of the DSB site (highest enrichment ~4.5 fold Fig. 2C, panel-c, graph-HO, fragments 3, 4, 5, 6 and 7) similar to the recruitment pattern observed for...
Dss1p in the strain expressing the HO-endonuclease (HO). These results demonstrate that Dss1p, Rhp51p and Mts2p are recruited preferentially surrounding the region of a DSB site introduced into the *S. pombe* cells, consistent with observations made with their homologs (12).

Rad24p and Rae1p are Enriched at DSB Sites in S. pombe Cells - We previously showed that Rae1p was not recruited to active genes (5,24). Also, it is not known whether Rad24 or any of its homologs recruit to genes. We wanted to test whether Rad24p and Rae1p were recruited to the DSB site in *S. pombe* cells. Following a similar experimental plan as above, we tested relative fold enrichment of Rad24p and Rae1p around the DSB site. Rad24p did not recruit efficiently within the 5.4 kb region in the cells not expressing the HO-endonuclease (Fig. 2C, panel-d, control experiment). However, in presence of the HO-endonuclease, there was a significant relative fold enrichment of Rad24p with a pattern similar to Dss1p; there was maximum enrichment proximal to the break site (~5 fold) and gradual decrease away from the break site in either direction (Fig. 2C, panel-d, see graph-HO).

Finally, we tested for relative enrichment of Rae1p to the same 5.4 kb region in the presence or absence of the HO-endonuclease. Rae1p did not show preferential recruitment to any portion of the 5.4 kb region in cells not expressing the HO-endonuclease. However, in the cells expressing the HO-endonuclease, there was a significant relative fold enrichment of Rae1p around the DSB site (highest relative enrichment ~4.5 fold; Fig. 2C, panel-e, see graph-HO).

In previous work, we showed that in *S. pombe* cells, Rae1p predominantly localizes at the nuclear pore (25). The current results are the first indication that some fraction of Rae1p could be physically (and functionally) associated with the genome. In addition, these results suggest that although under the normal cellular conditions Rad24p did not interact with the DNA region around the HO-site, following DNA damage it was recruited to the DSB site similar to Dss1p, Rhp51p, Mts2p and Rae1p. By considering the codistribution of proteins with Rad24p-TAP and the pattern of enrichment at the DSB site described above, it is likely that some of these proteins may function as a multiprotein complex(s) on DNA around the DSB site.

Dss1p is Required for Recruitment of Rad24p, Rae1p, Rhp51p and Mts2p to DSB sites - We wanted to explore whether Dss1p-interacting proteins depended on Dss1p for their recruitment onto the DSB sites. In a Δdss1 strain, the recruitment of Rad24p, Rae1p, Rhp51p and Mts2p was not detectable when HO-endonuclease was expressed (Fig. 3A-D). We tested the amount of proteins present in the extract used for the ChIP experiment (shown in Fig. 3E) to rule out the possibility that lack of recruitment was not due to loss of proteins in the Δdss1 strain. As can be seen, the level of each protein in Δdss1 strain was comparable to the level observed in wild type cells (Fig. 3E). The lack of recruitment of all four proteins in the Δdss1 strain is strikingly different from the enrichment pattern observed in wild type cells (see Fig. 2C for comparison). These results strongly suggest that at the DSB site and the surrounding region, the recruitment of all four proteins depends on the presence of Dss1p.

In a Δrad24 strain, we found that the recruitment of Dss1p was unaffected, suggesting that Dss1p’s recruitment was independent of Rad24p (Fig. 3F, compare with Fig. 2C, panel-a). Similarly, Rhp51p was also enriched in Δrad24 strain at the DSB site similar to the pattern observed in wild type cells (Fig. 3G, compare with Fig. 2C, panel-b). Thus, Rhp51p was recruited independent of Rad24p. However, we found that Rae1p was not recruited significantly at the break site in a Δrad24 strain (Fig. 3H; see also supplemental Fig. 1S). Rae1p levels were tested in the Δrad24 strain and no significant drop in the expression level of Rae1p in the Δrad24 strain was detected (Fig. 3I). These results indicate that (i) Dss1p is required for the recruitment of Rad24p, Rae1p, Rhp51p and Mts2p to DSB sites and that (ii) Rad24p is required for the recruitment of Rae1p.

Cdc25p is Recruited to DSB Sites Dependent on Rad24p and Dss1p - The recruitment of Rad24p raised the interesting possibility that its interacting partner Cdc25p may associate with it and be recruited to DSB site upon DNA damage in *S. pombe* cells. To test this hypothesis, we constructed a wild type test strain carrying the HO-endonuclease cleavage site and a genomic copy of *cdc25-gfp* gene. Following the experimental plan as before, we tested the...
recruitment of Cdc25p-GFP in the presence or absence of HO-endonuclease in the strain. In the absence of the HO-endonuclease, there was no detectable enrichment of Cdc25p-GFP around the HO-site (see control-grey bars in the histogram shown on the right of Fig. 4A, panel-a). In contrast, there was a significant relative enrichment of Cdc25p-GFP around the DSB site when the HO-endonuclease expression was induced. These results clearly show that Cdc25p-GFP recruited to the DSB site in S. pombe cells during DNA damage.

To further explore how Cdc25p could be recruited to the DSB site, Cdc25p-GFP recruitment was tested in a ∆rad24 strain. There was no detectable recruitment of Cdc25p-GFP in a ∆rad24 strain with or without HO-endonuclease induction demonstrating that there was no significant enrichment of Cdc25p-GFP to the DSB site (Fig. 4A, panel-b). Thus Cdc25p recruitment depended on Rad24p.

The activation of Chk1p is known to be required for Cdc25p-Rad24p interaction. To test whether Cdc25p-GFP recruitment was dependent on Chk1p, a ∆chk1 strain carrying the HO-site along with a genomic copy of Cdc25p-GFP was constructed. As can be seen in Fig. 4A, panel-c, in the ∆chk1 strain, Cdc25p-GFP did not recruit to the DSB site.

Cdc25p protein levels can vary within the cell at different time points in the cell cycle. So we wanted to exclude the possibility that loss of recruitment of Cdc25p-GFP was due to low levels of protein in the cell. Thus, we tested the relative amount of Cdc25p-GFP present in the wild type strain (carrying the HO-site and genomic tagged Cdc25p-GFP) and in isogenic ∆rad24 and ∆chk1 strains before and after HO-endonuclease induction (Fig. 4B). Compared to the uninduced condition (lanes 1, 3, 5), under the induced condition (lanes 2, 4 and 6) for the three strains, there was a significant increase in Cdc25p-GFP level as measured by detection of immunoprecipitated protein. The increase in the amount of Cdc25p-GFP in ∆rad24 and ∆chk1 cells (lane 4 and 6) is expected and is consistent with data from other observations (21), and suggests that the lack of recruitment of Cdc25p-GFP was not due to a low amount of the protein in the tested strains. These results are consistent with the suggested functional role of Chk1p kinase in Cdc25p-Rad24p interaction.

We finally tested whether the recruitment of Cdc25p-GFP to the DSB site depended on the presence of Dss1p. There was no detectable increase in the recruitment of Cdc25p-GFP to the HO-site in the presence of HO-endonuclease in ∆dss1 cells (Fig. 4A, panel-d). We compared the relative amounts of Cdc25p-GFP protein under the HO-endonuclease induced and uninduced conditions. As expected there was a slight increase in the level of detectable Cdc25p-GFP in the HO-endonuclease induced cells (Fig. 4B, compare lane 7 and 8). These results suggest that the lack of increase in the recruitment of Cdc25p-GFP to the DSB site in ∆dss1 cells under the conditions of DNA damage was not due to the lack of available protein. Taken together, the recruitment of Cdc25p-GFP to the DSB site was dependent on the presence of Dss1p.

Following DSB, Cdc25p in the Nucleus is Found Chromatin Associated-

We next wanted to determine what fraction of nuclear Cdc25p-GFP is chromatin associated following the formation of DSBs. We used the wild type strain carrying the HO-endonuclease cleavage site expressing cdc25-gfp to test the relative amounts of Cdc25p-GFP in total lysate (in Fig. 4C, T; see figure legend for experimental details), total nuclear lysate (TN), nuclear supernatant (NS) and chromatin associated fraction (C) in the presence and absence of the HO-endonuclease (Fig. 4C). In the absence of the HO-endonuclease, the nuclear Cdc25p-GFP was found to be present in the nuclear supernatant but not associated with the chromatin (compare NS and C lanes in control panel). In contrast, in cells expressing the HO-endonuclease, Cdc25p-GFP was detected in the chromatin associated fraction but not in the nuclear supernatant (see NS and C in the HO panel). We used Uap56p, a nuclear protein, as a control to exclude the possibility that the lack of Cdc25p-GFP in the nuclear supernatant was not due to the absence of proteins in the extract. Fig. 4C shows that comparable amount of nuclear supernatant protein was used in control and HO-endonuclease induced cells. These results indicate that in cells with DSB, all detectable nuclear Cdc25p is chromatin associated.

We next investigated whether Cdc25p was also chromatin associated in DNA damaged cells.
using ionizing radiation. The association of Cdc25p-GFP with chromatin was analyzed in asynchronous wild type cells expressing Cdc25p-GFP with and without gamma radiation (300 Gy) treatment (Fig. 4D). Following gamma radiation chromatin was purified at 0, 1, 2, 3, and 4 hours for determining its association with Cdc25p-GFP. Cdc25p-GFP was found to be associated with chromatin by 1, 2, and 3 hours with maximum association at 2 hours after treatment (Fig. 4D). Alpha-tubulin was used as an internal control for the total amount of protein loaded and Coomassie staining of the gel was performed to show that proteins were present in samples that were chromatin purified (Fig. 4D). These results indicate that Cdc25p is chromatin associated even when cells are damaged using ionizing radiation.

Rad24p Directly Binds to Rae1p and Dss1p - Based on the ChIP experiments described above, one way that Rad24p could be recruited onto the DSB site was by direct physical interaction with Dss1p. Using proteins expressed and purified from E. coli extracts, we tested direct interaction between Dss1p and Rad24p. Dss1p was able to bind GST-Rad24p fusion protein on beads but not GST alone (Fig. 5A, lane 4 vs. 5).

The ChIP experiment also suggested that Rae1p recruitment was dependent on Rad24p. We therefore tested their interaction in vitro. GST-Rad24p, but not GST alone, was able to bind His-Rae1p (Fig. 5B, lane 4 vs. 5). Since Rae1p's recruitment onto DSBs depended on Rad24p (see previous section), these results clearly support the view that Rae1p-Rad24p interaction is essential for recruitment of Rae1p onto the DSB site, and Rad24p mediates Rae1p's recruitment to DSB site. We previously showed direct physical interaction between Dss1p and Rae1p in a proposed mRNP complex critical for mRNA export (5). In contrast, here our results indicate that direct physical interaction with Dss1p does not determine recruitment of Rae1p.

Others have shown that homologs of Rhp51p associate with a Dss1p homolog indirectly within the recombination-repair complex (8,9). Consistent with those studies, we detected no direct association between GST-Dss1p and His-Rhp51p (Fig. 5C, lane 4). Finally, direct physical interaction between Dss1p and Mts2p was not tested as their homologs are components of the 19S proteasomal sub-complex and are known to interact with each other (12).

Dss1p is Required for DNA Damage Checkpoint Function in S. pombe - Others and we have shown that dss1 mutants are sensitive to DNA damaging agents such as UV light (5,12). We wanted to test whether Δdss1 mutant cells were capable of activating the DNA damage checkpoint in response to UV light. As a control we used Δrad24 and wild type cells. Using a lactose gradient, we synchronized wild type, Δrad24 and Δdss1 cells at G2 stage. The G2 synchronized cells were then exposed to varying doses of UV light and the percentage of cells passing through mitosis over time at 27°C was monitored and counted (Fig. 6A). Both Δdss1 and Δrad24 cells entered mitosis prematurely compared to the wild type cells. Strikingly, the timing of entry to mitosis by Δdss1 and Δrad24 cells was almost indistinguishable. One consequence of the Δdss1 cells entering mitosis prematurely was that the cells had abnormal morphologies (cut, anucleated and multiseptated phenotypes) (Fig. 6B), similar to that seen for Δrad24 cells. These results indicate that Dss1p is required for monitoring DNA damage in the G2 stage of the cell cycle.

rae1-1 Allele is Sensitive to DNA Damaging Agents - Since Rae1p requires both Dss1p and Rad24p for recruitment to DSB site, we wanted to determine if the rae1 gene has any role in DNA damage in S. pombe. Wild type, rae1-1, Δrad24, and rae1-1 Δrad24 double mutant cells were treated with DNA damaging agents such as UV light, bleomycin, MMS and HU. Fig. 6C shows that wild type cells were not sensitive to any of the DNA damaging agents. In contrast and as expected, Δrad24 cells were sensitive to UV, bleomycin, and MMS but not to HU. Similarly, rae1-1 cells were sensitive to UV, bleomycin, and MMS but not to HU (Fig. 6C). The sensitivity of rae1-1 cells was intermediate between wild type and Δrad24 mutant cells. The sensitivity of rae1-1 Δrad24 double mutant was similar to that of the more sensitive Δrad24 mutant cells suggesting that in DNA damage, rae1-1 mutation is epistatic to Δrad24. Similar to Δrad24 mutant cells, rae1-1 and the rae1-1 Δrad24 double mutant also did not exhibit any sensitivity to HU.
thus, suggesting that Rae1p is unlikely to have a role in monitoring DNA damage during replication (Fig. 6C).

rae1-1 Mutation Shows Partial Loss of DNA Damage Checkpoint Function - Since the rad24 gene is known to be involved in monitoring DNA damage in G2, we tested whether rae1-1 cells exposed to DNA damaging agents such as UV light could fully activate the DNA damage checkpoint. Wild type, rae1-1 and rad1-1 cells (rad1 is a known DNA damage checkpoint gene) were synchronized in G2 using a lactose gradient. These strains were exposed to varying doses of UV light, and the percentage of cells for each culture passing through mitosis over time was determined (Fig. 6D). In contrast to rad1-1 cells, which showed essentially no arrest following treatment with UV light, rae1-1 cells showed an initial checkpoint arrest but entered mitosis prematurely when compared to wild type cells. For example, following treatment with 150 J/m² of UV light, at 21°C rae1-1 mutant cells (these cells are ts at 25°C) began to enter mitosis after a delay of 5 hours as compared to 9 hours for wild type cells (Fig. 6D).

The consequence of premature entry of rae1-1 cells into mitosis was the generation of cells with abnormal morphologies. At 6.5 hours following exposure to 100 J/m² of UV light, approx. 22 percent of the rae1-1 cells had passed through mitosis whereas less than 1 percent of wild type had done so. Of these, approximately 25 percent of rae1-1 cells and 40 percent of rad1-1 cells displayed either a cut or anucleated phenotype (Fig. 6E). These results suggest that rae1-1 cells pass through mitosis prior to completely repairing their DNA and that Rae1p has a role in monitoring DNA damage in G2.

DISCUSSION

In this work, we show that Dss1p has a DNA damage checkpoint function in *S. pombe* at the G2/M boundary and functions by recruiting the checkpoint protein Rad24p, cell cycle protein Cdc25p and mRNA export/cell cycle factor Rae1p to DSB sites. To our knowledge, this is the first evidence of recruitment of these proteins to the damaged DNA sites, linking their functions in DNA damage and checkpoint via Dss1p. The similarity of timing and premature entry into mitosis by Δdss1 cells and Δrad24 cells suggests an epistatic relationship. This relationship is further revealed by direct physical interaction between Rad24p and Dss1p, placing them functionally together in DNA damage response. We further show that following DNA damage the nuclear Cdc25p is chromatin associated. Finally, we propose that the recruitment of Cdc25p onto DSB site causes its intra-nuclear sequestration that could delay the timing of mitosis by arresting the cells at G2/M boundary in response to DNA damage.

Dss1p is Critical for Linking DNA Repair and Checkpoint Functions in *S. pombe* Cells - ChIP experiments shed new light into how Dss1p functions in *S. pombe*. In this view, Dss1p is a key physical link between two functional complexes, one relating to DNA repair-recombination, and the other relating to the DNA damage checkpoint. First, our results confirm observations made in other eukaryotic organisms about the physical association of Dss1p to DSB sites (8,12). In addition, our data physically connect the recruitment of Rhp51p and Mts2p to DSB site through Dss1p.

Second, Dss1p is also essential for the recruitment of two additional proteins Rad24p and Rae1p. By examining the patterns of recruitment of Rad24p and Rae1p in wild type and Δdss1 backgrounds, a scheme of their recruitment on the DSB emerged. A simple sequential recruitment scheme (Dss1p<Rad24p<Rae1p) could explain the observed pattern. Proteins purified in *E. coli* allowed us to confirm direct physical interactions among Dss1p, Rad24p and Rae1p. Consistently, we found evidence of direct physical interaction between Rad24p and Dss1p; and Rad24p and Rae1p. We could not directly investigate the formation of a ternary complex of Dss1p-Rad24p-Rae1p, since Dss1p and Rae1p also interact in vitro directly (5).

Recruitment of Rad24p to the DSB site raised the intriguing possibility whether Cdc25p was also recruited by its interaction with Rad24p under the conditions of DNA damage. Indeed, a clear enrichment of Cdc25p following Rad24p’s pattern was discernible in the ChIP experiments. Cdc25p’s recruitment was also dependent on Dss1p. These results are consistent with Dss1p mediated recruitment of Cdc25p via Rad24p into a single complex analogous to Dss1p-Rad24p-
Rae1p complex suggested above. Indeed, it is not unreasonable to speculate that a four protein complex of Dss1p, Rad24p, Rae1p and Cdc25p may exist in vivo on or near DNA DSB sites.

Mechanism of Checkpoint Control in S. pombe Cells - In S. pombe, the Rad24p-Cdc25p interaction is well characterized in mediating G2/M checkpoint control. Rad24p’s function is thought to be mediated by its binding to phosphorylated Cdc25p (47). Also, the binding of Rad24p to Cdc25p is preceded by activation and phosphorylation of Cdc25p by Chk1p kinase or independently by Mek1p (20,47). Cdc25p dephosphorylates Cdc2p (47). It is thought that in order to establish G2/M checkpoint control, Rad24p-Cdc25p complex exits the nucleus (nuclear exclusion) thereby physically removing the enzyme (Cdc25p) from its substrate (Cdc2p). However, recently it has also been suggested that nuclear exclusion of Cdc25p may not be essential for cell cycle arrest in response to DNA damage (22).

Our results here support a new mechanistic scenario. In this scenario, DNA DSB formation signals activation of Chk1p kinase. At the DSB site, DNA repair factors including Dss1p are recruited (Fig. 7). Rad24p and Cdc25p (phosphorylated by activated Chk1p kinase) are recruited concurrently or sequentially to the break site via Dss1p. Rae1p is also likely recruited to the same site, dependent on Rad24p and Dss1p. The recruitment of Cdc25p physically separates it from its target Cdc2p and thus prevents it from activating Cdc2p. In the absence of active Cdc2p, cells are prevented from entering mitosis. Once the DNA is repaired, the protein complexes are likely disassembled, releasing Cdc25p into the nucleoplasm to interact with and activate Cdc2p. This in turn allows cells to enter mitosis.

What is the Role of Rae1p in Checkpoint Control in S. pombe? - Several experiments now link Rae1p to the S. pombe cell cycle progression. First, rael-1 ts mutant at the restrictive temperature causes cells to arrest at G2/M boundary (25,37). Sensitivity of rael-1 cells to DNA damaging agents shown here is consistent with a functional role in monitoring DNA damage and/or cell cycle. Interestingly, another mutant of rael (rael-167) was not sensitive to any DNA damaging agent (Data not shown), suggesting allele specificity of Rae1p’s function in DNA damage. Second, we have previously shown Rae1p’s role in mRNA export within a protein complex comprised of mRNA export factors Uap56p, Dss1p and Mlo3p. Most of the S. pombe Rae1p is localized to the nuclear pore in association with nucleoporin Nup98 (25). Our hypothesis is that a Rae1p-containing mRNA export complex functions at the nuclear pore. In contrast, the recruitment of Rae1p to the DSB site described in this paper is reflective of a separate protein complex with components that are not known to be linked to mRNA export. In particular, neither Nup98 nor Nup159 associated with the Rad24p purified complex that pulled down Rae1p. (Rae1p is stably bound to Nup98 in mRNA export complexes and these proteins co-purify in vivo/in vitro (48)). Third, the direct physical interaction between Rae1p and Rad24p in vitro and Rad24p-dependent recruitment of Rae1p in vivo suggest a molecular basis of Rae1p function through Rad24p in checkpoint control. Finally, for establishing cell cycle delay, Cdc25p function must be inhibited so that it does not activate Cdc2p. The timing of Rae1p’s function in the cell cycle also places it prior to Cdc2p activation (23,25). Based on work described here, the key future question regarding the role of Rae1p in checkpoint control is whether its function affects Cdc2p directly or indirectly (i.e. via Cdc25p) or via another target protein.

REFERENCES

1. Bucher, N., and Britten, C. D. (2008) Br J Cancer 98(3), 523-528
2. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Annu Rev Biochem 73, 39-85
3. Berry, L. D., and Gould, K. L. (1996) Prog Cell Cycle Res 2, 99-105
4. Mannen, T., Andoh, T., and Tani, T. (2008) Biochem Biophys Res Commun 365(4), 664-671

Downloaded from http://www.jbc.org/ by guest on March 22, 2020
5. Thakurta, A. G., Gopal, G., Yoon, J. H., Kozak, L., and Dhar, R. (2005) *Embo J* **24**(14), 2512-2523
6. Yang, H., Jeffrey, P. D., Miller, J., Kinnucan, E., Sun, Y., Thoma, N. H., Zheng, N., Chen, P. L., Lee, W. H., and Pavletich, N. P. (2002) *Science* **297**(5588), 1837-1848
7. Zhou, Q., Kojic, M., Cao, Z., Lisby, M., Mazloum, N. A., and Holloman, W. K. (2007) *Mol Cell Biol* **27**(7), 2512-2526
8. Gudmundsdottir, K., Lord, C. J., Witt, E., Tutt, A. N., and Ashworth, A. (2004) *EMBO Rep* **5**(10), 989-993
9. Kojic, M., Yang, H., Kostrub, C. F., Pavletich, N. P., and Holloman, W. K. (2003) *Mol Cell* **12**(4), 1043-1049
10. Jang, Y. K., Jin, Y. H., Shim, Y. S., Kim, M. J., Yoo, E. J., Choi, I. S., Lee, J. S., Seong, R. H., Hong, S. H., and Park, S. D. (1996) *Mol Gen Genet* **251**(2), 167-175
11. Muris, D. F., Vreeken, K., Carr, A. M., Broughton, B. C., Lehmann, A. R., Lohman, P. H., and Pastink, A. (1993) *Nucleic Acids Res* **21**(19), 4586-4591
12. Krogan, N. J., Lam, M. H., Fillingham, J., Keogh, M. C., Gebbia, M., Li, J., Datta, N., Cagney, G., Buratowski, S., Emili, A., and Greenblatt, J. F. (2004) *Mol Cell* **16**(6), 1027-1034
13. Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M., and Kobayashi, H. (2004) *J Cell Sci* **117**(Pt 26), 6447-6454
14. Josse, L., Harley, M. E., Pires, I. M., and Hughes, D. A. (2006) *Biochem J* **393**(Pt 1), 303-309
15. Bruckmann, A., Steensma, H. Y., Teixeira De Mattos, M. J., and Van Heusden, G. P. (2004) *Biochem J* **382**(Pt 3), 867-875
16. Hermeking, H., and Benzinger, A. (2006) *Semin Cancer Biol* **16**(3), 183-192
17. van Heusden, G. P. (2005) *IUBMB Life* **57**(9), 623-629
18. van Heusden, G. P., and Steensma, H. Y. (2006) *Yeast* **23**(3), 159-171
19. Ford, J. C., al-Khodairy, F., Fotou, E., Sheldrick, K. S., Griffiths, D. J., and Carr, A. M. (1994) *Science* **265**(5171), 533-535
20. Perez-Hidalgo, L., Moreno, S., and San-Segundo, P. A. (2008) *Cell Cycle* **7**(23), 3720-3730
21. Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999) *Nature* **397**(6715), 172-175
22. Lopez-Girona, A., Kanoh, J., and Russell, P. (2001) *Curr Biol* **11**(1), 50-54
23. Brown, J. A., Bharathi, A., Ghosh, A., Whalen, W., Fitzgerald, E., and Dhar, R. (1995) *J Biol Chem* **270**(13), 7411-7419
24. Thakurta, A. G., Selvanathan, S. P., Patterson, A. D., Gopal, G., and Dhar, R. (2007) *J Biol Chem* **282**(24), 17507-17516
25. Whalen, W. A., Bharathi, A., Danielewicz, D., and Dhar, R. (1997) *Yeast* **13**(12), 1167-1179
26. Blower, M. D., Nachury, M., Heald, R., and Weis, K. (2005) *Cell* **121**(2), 223-234
27. Jeganathan, K. B., Malureanu, L., and van Deursen, J. M. (2005) *Nature* **438**(7070), 1036-1039
28. Wong, R. W., Blobel, G., and Coutavas, E. (2006) *Proc Natl Acad Sci U S A* **103**(52), 19783-19787
29. Du, L. L., Nakamura, T. M., Moser, B. A., and Russell, P. (2003) *Mol Cell Biol* **23**(17), 6150-6158
30. Alfa, C., Fantes, P., Hyams, J., Mcleod, M., and Warbrick, E. (1993) Experiments with fission yeast, Cold Spring Harbor Press, Cold Spring Harbor, NY
31. Moreno, S., Klar A., Nurse, P. (1991) Methods Enzymol. 194, 795-823
32. Bahler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., 3rd, Steever, A. B., Wach, A., Philippson, P., and Pringle, J. R. (1998) Yeast 14(10), 943-951
33. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) Nat Biotechnol 17(10), 1030-1032
34. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Seraphin, B. (2001) Methods 24(3), 218-229
35. Ilani, T., Khanna, C., Zhou, M., Veenstra, T. D., and Bretscher, A. (2007) J Cell Biol 179(4), 733-746
36. Simkus, C., Bhattacharyya, A., Zhou, M., Veenstra, T. D., and Jones, J. M. (2009) Immunology 128(2), 206-217
37. Bharathi, A., Ghosh, A., Whalen, W. A., Yoon, J. H., Pu, R., Dasso, M., and Dhar, R. (1997) Gene 198(1-2), 251-258
38. Yoon, J. H., Love, D. C., Guhathakurta, A., Hanover, J. A., and Dhar, R. (2000) Mol Cell Biol 20(23), 8767-8782
39. Noma, K., Allis, C. D., and Grewal, S. I. (2001) Science 293(5532), 1150-1155
40. Partridge, J. F., Borgstrom, B., and Allshire, R. C. (2000) Genes Dev 14(7), 783-791
41. Lygerou, Z., and Nurse, P. (1999) J Cell Sci 112 (Pt 21), 3703-3712
42. Nishitani, H., Lygerou, Z., Nishimoto, T., and Nurse, P. (2000) Nature 404(6778), 625-628
43. Enoch, T., Carr, A. M., and Nurse, P. (1992) Genes Dev 6(11), 2035-2046
44. Morishita, T., Tsutsui, Y., Iwasaki, H., and Shinagawa, H. (2002) Mol Cell Biol 22(10), 3537-3548
45. Rhind, N., and Russell, P. (2001) Mol Cell Biol 21(5), 1499-1508
46. Barbet, N. C., and Carr, A. M. (1993) Nature 364(6440), 824-827
47. Russell, P. (1998) Trends Biochem Sci 23(10), 399-402
48. Blevins, M. B., Smith, A. M., Phillips, E. M., and Powers, M. A. (2003) J Biol Chem 278(23), 20979-20988
49. Rowley, R., Subramani, S., and Young, P. G. (1992) Embo J 11(4), 1335-1342
50. Chua, G., Lingner, C., Frazer, C., and Young, P. G. (2002) Genetics 162(2), 689-703
51. Roguev, A., Shevchenko, A., Schaft, D., Thomas, H., Stewart, A. F., and Shevchenko, A. (2004) Mol Cell Proteomics 3(2), 125-132

ACKNOWLEDGMENTS

We thank Dr. Paul Russell, Dr. Paul G. Young, and Dr. Kathleen L. Gould for providing strains and plasmids, lab members for helpful discussions and Dr. Joseph Landry and NIH Fellows Editorial Board (FEB) members for reading and correcting the manuscript.

FOOTNOTES

This work was supported by the Center for Cancer Research, the intramural program of the NCI, National Institutes of Health. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
The abbreviations used are: DSB, double strand break; NLS, nuclear localization signal; RNP, ribonucleoprotein; mRNP, messenger ribonucleoprotein; NuMA, nuclear mitotic apparatus protein; TAP, tandem affinity purification; GST, glutathione S-transferase; MMS, methyl methanesulfonate; HU, hydroxyurea; DAPI, 4,6-diamidino-2-phenylindole; GFP, green fluorescent protein; ChIP, chromatin immunoprecipitation; IC, internal control.

FIGURE LEGENDS

FIGURE 1. Identification of Rad24p-TAP associated protein complex by tandem mass spectrometry and/or Western blot analysis. A, Tandem mass spectrometry analysis of Rad24p-TAP and their identified proteins are indicated (lane 2). * indicates the 60S ribosomal protein L2 (rpl402). B, Input extracts from strains expressing TAP control or Rad24p-TAP fusion as indicated (lanes 1 and 2). TAP control or Rad24-TAP associated proteins purified on IgG-Sepharose and calmodulin beads as indicated (lanes 3 and 4). Proteins identified by specific antibodies are indicated. WCE represents whole cell extract. See experimental procedures for details.

FIGURE 2. Recruitment of *S. pombe* proteins to a genomic region containing a DSB site. A, A schematic of the DNA fragment (5.4 kb) surrounding an HO-endonuclease cleavable site within a KanMX4 gene integrated into the *S. pombe* genome (29). Location and corresponding number represent different non-overlapping regions surrounding the HO site whose amplification was tested by PCR. Primers used for PCR reaction are shown in Table 2. B, A schematic diagram showing the calculation for relative fold enrichment of proteins based on the formula shown (36). IC represents PCR product generated by using a pair of primers (Table 2) as internal control of the PCR reaction. C, Panels (a-e), Individual ChIP experiment data shown on the left. Antibodies used for immunoprecipitation are as indicated. WCE is whole cell extract; -IP, pre-bleed sera was used for immunoprecipitation; +IP, antibodies as indicated were used for immunoprecipitation. IC is the internal control used in every experiment. Graphical representations of the quantification of relative/fold enrichment at each of the nine fragments are shown on the right. Y-axis shows fold enrichment and X-axis shows each of the nine fragments tested and corresponding antibodies used for the immunoprecipitation. Each bar is an average of three independent experiments. Shaded bars represent control experiments done in the absence of HO-endonuclease and black bars represent experiments performed in presence of the HO-endonuclease.

FIGURE 3. Dss1p-dependent recruitment to the DSB site of proteins that co-purified with Rad24p-TAP. A-D & F-H, As in Fig. 2C, graphical representations of the relative fold enrichment at each of the nine fragments are shown. Strain backgrounds and specific antibodies used in each experiment are indicated. See Fig. 2C for nomenclature and details of the experiments. The experimental data are provided as Supplemental Fig. 1S. E & I, Protein levels was tested in wild type, Δdss1 and Δrad24 strain. Lane 1: HO-endonuclease uninduced, Lane 2: HO-endonuclease induced. Uap56p was used as an experimental control.

FIGURE 4. Recruitment of Cdc25p-GFP to a DSB containing region. A, Panels (a-d) Extracts from cells expressing the integrated Cdc25p-GFP and HO-endonuclease site were used for immunoprecipitation using an anti-GFP polyclonal antibody. ChIP experiments were performed using wild type, Δrad24, Δchk1 and Δdss1 cells carrying integrated Cdc25-GFP and an HO-endonuclease site. Experimental details and figure descriptions are as in Fig. 2. B, Protein levels of Cdc25p-GFP in wild type, Δrad24, Δchk1 and Δdss1 cells. Equal amounts of proteins from various cell extracts were first
immunoprecipitated by monoclonal antibodies to GFP, and following gel electrophoresis and western blotting Cdc25p-GFP was detected by a polyclonal anti-GFP antibody (Clontech). Uap56p was used as an experimental control. C, Chromatin association of Cdc25p-GFP was analyzed in the absence of HO-endonuclease (control) and in the presence of HO-endonuclease (HO) as shown. Total cell lysates (T), total nuclei (TN), nuclear supernatant (NS) and chromatin-associated fractions (C) were analyzed by western blotting using anti-GFP polyclonal antibody (Clontech). The nuclear protein Uap56p was used as an experimental control. D, Asynchronized wild type cells expressing the integrated Cdc25p-GFP were treated without (-IR) or 300 Gy gamma ionizing radiation (+IR). Samples were taken at indicated times intervals (hours). Total cell lysate and chromatin-associated fractions were analyzed by western blot using anti-GFP polyclonal antibody. As a loading control, anti-α-tubulin was used against total cell lysates, and Coomassie-staining for chromatin associated fractions was performed to show the presence of proteins.

FIGURE 5. *In vitro* binding of GST-Rad24p to His-Dss1p and His-Rae1p. Proteins as indicated were made and purified from *E. coli* extracts. Presence or absence of a protein in the binding reaction is indicated by (+) or (-) on top of the respective lanes. Individual protein bands are shown with an arrow. GST or GST tagged proteins were immobilized on glutathione beads. A, Binding of His-Dss1p by GST-Rad24p. Lanes 1, 2 and 3 are input. Lane 4 is binding of His-Dss1p to GST-Rad24p on beads and lane 5 is binding of His-Dss1p to GST alone. B, Binding of His-Rae1p by GST-Rad24p. Lanes 1, 2 and 3 are input. Lane 4 is binding of His-Rae1p with GST-Rad24p and lane 5 is binding of His-Rae1p with GST. C, Binding of His-Rhp51p by GST-Dss1p. Lanes 1, 2 and 3 are input. Lane 4 is binding of His-Rhp51p with GST-Dss1p and lane 5 is binding of His-Rhp51p with GST alone. Five fold more His-Dss1p, His-Rae1p and His-Rhp51p over input was used in the binding reactions in A, B and C respectively. The bound proteins were analyzed by SDS-PAGE and Coomassie staining.

FIGURE 6. Sensitivity to DNA damaging agents and analysis of the checkpoint control of *S. pombe* wild type and mutant strains. A, Analysis of DNA damage checkpoint control in wild type, ∆rad24 and ∆dss1 cells. G2 synchronized cells were treated with different doses of UV light at 30°C, and cells were scored as having passed through mitosis if the nuclei had divided or septum had formed (see experimental procedures for details). B, Morphology of cells treated with DAPI and calcofluor following treatment with UV light with 100 J/m² when 20-25 percent of mutant cells had passed through mitosis. C, Survival analysis at 21°C of wild type, rae1-1, ∆rad24 and rae1-1 ∆rad24 treated with UV light, MMS, bleomycin and HU as indicated (see experimental procedures for experimental details). D, Analysis of checkpoint control in wild type, rae1-1 and rad1-1 cells. See experimental procedures for details. Cells were scored as having passed through mitosis if the nuclei had divided or a septum had formed. E, Morphology of cells following irradiation with UV light. When 20-25% of cells had passed through mitosis following irradiation with 100 J/m², cells were fixed and stained with DAPI and calcofluor. The morphology of wild type, rae1-1 and rad1-1 cells are shown.

FIGURE 7. A schematic diagram for models of Cdc25p regulation in response to DNA damage. The nuclear sequestration model: DNA damage leads to activation of Chk1p kinase that phosphorylates Cdc25p. Phosphorylated Cdc25p binds Rad24p within the nucleoplasm (as shown in the schematic diagram) or after pre-binding to DNA via Dss1p. In either case, Cdc25p is sequestered from its target Cdc2p.

FIGURE 1S (Supplement 1). Experimental data for Fig. 3 are shown. See experimental procedures for details of the experiment and Fig. 2 for explanation of nomenclature and other details.
Table 1: *S. pombe* strains used in this study

Genotype(s)	Source
h\(^{-}\) leu1-32 ura4-D18	(25)
h\(^{-}\) leu1-32 ura4-D18 rae1-1	(23)
h\(^{-}\) leu1-32 ura4-D18 ade6-704 rae1-1 rad24::ura4\(^{+}\)	This study
h\(^{-}\) leu1-32 ura4-D18 ade6-704 rad24::ura4\(^{+}\)	(19)
h\(^{-}\) leu1-32 ura4-D18 rad24-TAP	This study
h\(^{+}\) leu\(^{+}\) ura4\(^{+}\) rad1-1	(49)
h\(^{+}\) leu1-32 ura4-D18 ade\(^{-}\) dss1::kan	(5)
h\(^{+}\) leu1-32 ura4-D18 cdc25-GFPint cdc25::ura4\(^{+}\)	(50)
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4	(29)
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4 dss1::kan	This study
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4 rad24::ura4\(^{+}\)	This study
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4 cdc25-GFPint cdc25::ura4\(^{+}\)	This study
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4 cdc25-GFPint cdc25::ura4\(^{+}\) rad24::ura4\(^{+}\)	This study
h\(^{-}\) leu1-32::2xYFP-crb2\(^{-}\)-leu1\(^{+}\) ura4D18 crb2-D2::ura4\(^{+}\) his3-D1 arg3::HO site-kanMX4 cdc25-GFPint cdc25::ura4\(^{+}\) chk1::ura4\(^{+}\)	This study
Primer	Sequence
--------------------	--
CHIP 1 (Forward)	5’ TTCATTTGAGATAGACCACCT 3’
CHIP 1 (Reverse)	5’ CTCTTTCTGCTGCTGCTGAAAG 3’
CHIP 2 (Forward)	5’ CCACCAACCTTGATAATAGCG 3’
CHIP 2 (Reverse)	5’ GGCAATGCTTAATTTGAGTTGCA 3’
CHIP 3 (Forward)	5’ TGGCTGAAATTACATCGGAAACC 3’
CHIP 3 (Reverse)	5’ GAGAAGGGGCTTCTTGCCAAAT 3’
CHIP 4 (Forward)	5’ CATCCCTTTTCATTAGTTCTA 3’
CHIP 4 (Reverse)	5’ GTCGACTACAAGGAACCACA 3’
CHIP 5 (Forward)	5’ CGCAGCTCAGGGGCATGATGT 3’
CHIP 5 (Reverse)	5’ CTGATTGCCCGACATTATCGC 3’
CHIP 6 (Forward)	5’ CTCTTTCCGACCATCAAGCAT 3’
CHIP 6 (Reverse)	5’ AATCACCATGAGTGACGACTG 3’
CHIP 7 (Forward)	5’ AACTGCCTCGGTGATTTTCT 3’
CHIP 7 (Reverse)	5’ CACATACGATTGACGATG 3’
CHIP 8 (Forward)	5’ CCTCTTAACTAGATATTTCAAGG 3’
CHIP 8 (Reverse)	5’ AAGGAATTGCCGGAGAGCAAG 3’
CHIP 9 (Forward)	5’ GTAACCACAAAGGTAATTTCT 3’
CHIP 9 (Reverse)	5’ AGGGCTCTAGAAACTAATGAG 3’
Internal Control (Forward)	5’ CAACAGGAGCGCTATAATAA 3’
Internal Control (Reverse)	5’ CAGATAGCTTGGATAGATAG 3’
FIGURE - 1

A

TAP Control Rad24p-TAP

(Kda) 200 -

100 -

50 -

30 -

10 -

1 2

Rad24p/Rad25p

Dss1p

Rad24p-TAP

TAP Control

B

TAP Control Rad24p-TAP TAP Control Rad24p-TAP

WCE Purified

Rac1p

Dss1p

Uap56p

Mlo3p

Nup98p

Nup159p

Sac3p

Rhp51p

Mts2p

Rad24p

Downloaded from http://www.jbc.org/ by guest on March 22, 2020
FIGURE - 4

A

Wild type

(a) Cdc25p-GFP

(b) Δrad24

(c) Δchk1

(d) Δdss1

B

	wild type	Δrad24	Δchk1	Δdss1
Cdc25p-GFP				
Uap56p				

C

Control

	Control	HO
Cdc25p-GFP		
Uap56p		

D

Total cell lysate	Chromatin associated	
Hours	-IR	+IR
	0 1 2 3 4	0
	0 1 2 3 4	

Loading control	-IR	+IR
Cdc25p-GFP	0 1 2 3 4	0 1
	2 3 4	2 3

| | 3 4 | 3 4 |
| | | |
FIGURE - 5

A
His-Dss1p _ _ + +
GST-Rad24p _ + _ +
GST + _ _ _ +

B
His-Rae1P _ _ + +
GST-Rad24p _ + _ +
GST + _ _ _ +

C
His-Rhp51p _ _ + +
GST-Dss1p _ + _ +
GST + _ _ _ +
FIGURE - 7

Nuclear sequestration
Schizosaccharomyces pombe Dss1p is a DNA damage checkpoint protein that recruits Rad24p, Cdc25p and Rae1p to DNA double strand breaks
Saravana P. Selvanathan, Anjan G. Thakurta, Jothy Dhakshnamoorthy, Ming Zhou, Timothy D. Veenstra and Ravi Dhar

J. Biol. Chem. published online March 15, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M109.083485

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/03/15/M109.083485.DC1