Interactions between FGF23 and vitamin D

Mohammed S Razzaque
Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
Correspondence should be addressed to M S Razzaque: mrazzaque@lecom.edu or msr.nagasaki@gmail.com

This paper forms part of a special series on 100 Years of Vitamin D. The guest editors for this section were Josef Köhrle, Susan Lanham-New and Martina Rauner

Abstract

Fibroblast growth factor-23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α-hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)₂D₃). FGF23 can also activate the transcription of 24-hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)₂D₃ induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)₂D₃ by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)₂D₃, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.

Vitamin D metabolism

Vitamin D regulates mineral ion homeostasis and skeletogenesis (1). The synthesis process of vitamin D initiates in the skin and is processed further in the liver and kidney to generate bioactive vitamin D. The biologically functional metabolite, 1,25 dihydroxy vitamin D3 (1,25(OH)₂D₃), is generated by two successive hydroxylations in the liver by 25 hydroxylase (CYP27A1) and in the kidney by 1α-hydroxylase (1α(OH)ase; CYP27B1). When 1,25(OH)₂D₃ level reaches optimal, the 24-hydroxylase (CYP24) catabolizes vitamin D, mainly in the kidney. The homeostatic control of vitamin D is partly regulated by the negative feedback of 1,25(OH)₂D₃ through suppressing the renal expression of 1α(OH)ase and stimulating the renal expression of 24-hydroxylase (2). The bioactive 1,25(OH)₂D₃ interacts with the high-affinity vitamin D receptor (VDR) to exert its functions (3). VDR forms a heterodimer with the retinoid receptor to induce the transcription of vitamin D-dependent genes by interacting with vitamin D-responsive elements (VDREs) in the promoter region of target genes (3). Several important mineralization-promoting genes are regulated by 1,25(OH)₂D₃ (4). Whether 1,25(OH)₂D₃ can directly influence the skeletal mineralization process is unclear. An exogenous infusion of calcium and phosphate to the severe vitamin D-deficient rats resulted in skeletal mineralization, similar to the group that received only vitamin D (5). Likewise, the rickets phenotype of genetically modified vitamin D-deficient mice could be rescued by providing adequate calcium and phosphate (6). However, a recent case report of rickets and hypophosphatasia in an infant girl with normal serum calcium and phosphate levels showed remarkable improvements in skeletal mineralization following vitamin D treatment, suggesting the possibility of a direct effect of vitamin D on the mineralization process (Fig. 1) (7). Several factors, including phosphate-regulating fibroblast growth factor-23 (FGF23), can influence vitamin D metabolism by suppressing 1α(OH)ase activity (8).
FGF23

FGF23 is a member of the endocrine FGF family, along with FGF19 and FGF21 (9). The biologically active form of intact FGF23 contains 227 amino acids. FGF23 is mainly synthesized and released from osteoblasts and osteocytes (10). Bioactive FGF23 (32-kDa), in the presence of αKlotho, can bind with the FGF receptors (FGFR) to exert downstream signaling events (11). Studies have found that FGF23 exerts most of its physiologic functions through binding with FGFR1c (11, 12). In renal proximal tubular epithelial cells, circulating FGF23 binds with the αKlotho/FGFR1c complex to suppress the activities of sodium-phosphate cotransporters (NaPi-2a and NaPi-2c) to increase urinary phosphate excretion. NaPi-2a is responsible for the renal reabsorption of most of the filtered phosphate, and its expression is regulated by FGF23, parathyroid hormone (PTH), and dietary phosphate intake (13). About one-third of renal reabsorption is mediated by NaPi-2c and regulated by FGF23, metabolic acidosis, dietary magnesium, and phosphate (13). Genetically ablating FGF23 or its obligate cofactor, αKlotho, reduced urinary phosphate excretion due to enhanced renal reabsorption of phosphate by increased activities of NaPi-2a (12, 14, 15, 16). Human studies have found that vitamin D supplementation or administration of calcitriol (1,25(OH)₂D₃) could increase urinary phosphate excretion, perhaps by inducing FGF23 secretion (17). Alongside phosphaturic functions, FGF23 is able to repress the transcription of 1α(OH)ase in proximal renal tubular epithelial cells to influence vitamin D metabolism.

Vitamin D and skeletal FGF23 synthesis

Skeletal secretion of FGF23 is regulated by local and systemic factors, including calcium, phosphate, vitamin D, PTH, leptin, iron, acidosis, and inflammatory cytokines (Fig. 2) (18, 19, 20). Experimental studies have shown that FGF23 can suppress PTH secretion (21), although the human relevance of this observation is not yet clear. PTH is also claimed to induce FGF23 synthesis (22, 23). When rat osteoblastic cells were treated with 1,25(OH)₂D₃, enhanced production of FGF23 was noted (24, 25). However, when osteoblastic cells were exposed only to phosphate, such enhancement of FGF23 was no longer detected, implying that in the in vitro microenvironment, phosphate alone is not able to induce FGF23 production (24, 26, 27). Moreover, when using co-treatment with commonly used transcriptional and translational inhibitors studies, the induction of FGF23 by 1,25(OH)₂D₃ has shown to be regulated at the transcriptional level, perhaps involving the nuclear VDR (25). In relevance to this, genetically inactivating VDR from mice resulted in reduced circulatory levels of FGF23 compared to the wild-type (WT) control mice (28); 1,25(OH)₂D₃ challenged VDR null mice did not show any response to FGF23 production, implying that functionality of VDR is required for the skeletal synthesis of FGF23. In a similar observation, 1α(OH)ase knockout mice with a functioning VDR system also demonstrated low circulatory levels of FGF23, but when treated with 1,25(OH)₂D₃, the 1α(OH)ase knockout animals were able to enhance FGF23 expression, once again implying...
FGF23 and renal vitamin D synthesis

A counter-regulation exists between FGF23 and vitamin D activities (26). When in vivo FGF23 functions were blunted, 1α(OH)ase expression level was high in the kidneys of both Fgf23 knockout mice and aKlotho knockout mice, resulting in increased serum levels of 1,25(OH)₂D₃ (15, 16, 36). Similarly, increased expression of 1α(OH)ase and elevated serum levels of 1,25(OH)₂D₃ were detected in Fgf23 and aKlotho double knockout mice (14), suggesting that disrupting the FGF23 signaling cascade can enhance vitamin D activities. Moreover, genetically restoring the systemic effects of bio-active FGF23 in Fgf23 knockout mice reversed the hypervitaminosis D (from high serum 1,25(OH)₂D₃ levels to lower serum levels) that was consistently noted in Fgf23 knockout mice (37), again providing an in vivo evidence of FGF23 and vitamin D interactions. An increased serum 1,25(OH)₂D₃ level with hyperphosphatemia, hypercalcemia, and ectopic calcification are also noted in human diseases with inactivating mutations in FGF23 (38) and/or aKLOTHO (39) genes. Contrary to the loss of function of FGF23, genetically modified mice overexpressing fgf23 showed markedly reduced serum 1,25(OH)₂D₃ levels (37, 40). However, when FGF23 signaling was disrupted by selectively inactivating FGFR1 from proximal tubular epithelial cells, FGF23 lost its ability to suppress 1,25(OH)₂D₃ production in mice (41). Injecting exogenous bioactive FGF23 into normal WT mice has been shown to decrease renal 1α(OH)ase expression and enhance the expression of 24-hydroxylase in the proximal tubular epithelial cells (42). When recombinant FGF23 was injected into the VDR-knockout mice, it could suppress 1α(OH)ase similar to the WT mice but could not increase the expression of 24-hydroxylase, suggesting the involvement of VDR in FGF23-mediated regulation of 24-hydroxylase (43).

The Hyp mouse is the murine model of human X-linked hypophosphatemia (XLH), with a loss-of-function mutation in the PHEX gene. Hyp mice develop severe hypophosphatemia due to high circulating levels of bioactive FGF23 and activation of Erk1/2 signaling (44). It is believed that FGF23 and FGFR interactions activate the downstream MAP kinase signaling pathway to exert its bioactivities. Blunting the FGF23 activities by inhibiting Erk1/2 actions in Hyp mouse resulted in an increase of 1,25(OH)₂D₃ levels (45), suggesting an in vivo interaction of FGF23-vitamin D. Similarly, when FGF23 bioactivities were blunted in Hyp mouse by genetically ablating aKlotho functions, increased serum levels of 1,25(OH)₂D₃ were detected (44). Although further studies are required to dissect exact molecular interactions, existing human and animal studies suggest that FGF23 is an endogenous regulator of vitamin D that can fine-tune the synthesis and functions of vitamin D (46, 47).
Translational implications

Understanding the physiologic regulation and interaction of FGF23 and vitamin D helped in determining the pathomechanisms of renal phosphate-wasting diseases, including XLH, autosomal dominant hypophosphatemic rickets, or tumor-induced osteomalacia (TIO); all three of these diseases are characterized by extremely high circulating levels of bioactive (intact) FGF23 (48, 49). Furthermore, higher bioactive FGF23 in these diseases reduces the generation of 1,25(OH)₂D₃ to lower intestinal phosphate absorption. The cumulative effect of increased renal phosphate wasting and reduced intestinal phosphate uptake diminishes skeletal mineralization due to persistent hypophosphatemia (50). Therefore, therapeutically, decreasing the activities of FGF23 in patients with XLH improved phosphate balance and reduced skeletal defects (51). Burosumab, a human MAB, binds and blocks the action of FGF23. A double-blind, placebo-controlled, phase 3 trial with burosumab on symptomatic adults with XLH showed improvements in the mineralization process of preexisting unmineralized bone matrix (52). The safety profile of FDA-approved burosumab is claimed to be similar to placebo (53). Beneficial effects of reducing FGF23 activities by administering burosumab are also reported in a patient with TIO; burosumab normalized serum phosphate levels without phosphate supplementation within 2 months of treatment (54). Moreover, neutralizing the effects of FGF23 by burosumab normalized bone biomarkers and improved pseudofractures of the patient (54). In patients with cutaneous skeletal hypophosphatemia syndrome, where conventional treatment failed to achieve desired benefits, burosumab treatment can improve the clinical symptoms of hypophosphatemic rickets (55, 56). Of relevance, cutaneous skeletal hypophosphatemia syndrome is a rare illness caused by the gain-of-function mutations of RAS family gene, causing epidermal nevi, dysplastic cortical bony lesions, and FGF23-induced hypophosphatemic rickets (57). Ongoing clinical studies are suggesting therapeutic potentials of manipulating FGF23-vitamin D axis in patients with mineral ion dysregulation and skeletal deformities.

Conclusion

I briefly highlighted the underlying mechanisms of FGF23 and vitamin D interactions. A counter-regulation between FGF23 and vitamin D synthesis appears to fine-tune the functions of both FGF23 and vitamin D. Bone and kidney cross-talk is actively regulating the FGF23-vitamin D axis. Kidney-derived active 1,25(OH)₂D₃ acts on the bone cells to produce FGF23, which in turn decreases renal 1,25(OH)₂D₃ synthesis (Fig. 3). Such reduction of 1,25(OH)₂D₃ is achieved by FGF23-induced downregulation of 1α(OH)ase expression in the kidney. In the reduced FGF23 microenvironment, the intrinsic regulation of 1,25(OH)₂D₃ is impaired, causing high circulating 1,25(OH)₂D₃ levels. In elderly individuals, serum FGF23 levels were relatively higher (58). Whether such elevation is related to generally low vitamin D levels in this group of people will require further study. Higher FGF23 level in patients with CKD is associated with reduced production of 1,25(OH)₂D₃, though part of it might be related to the reduced functional renal mass. Whether the conventional approach of using vitamin D analogs to treat patients with CKD could further enhance the levels of FGF23 to exacerbate non-renal adverse effects would need careful clinical consideration (59). Human studies have shown that cardiovascular and all-cause mortality risk rises gradually and progressively as the level of FGF23 increases (60, 61). Of biological importance, PTH-mediated induction of 1α(OH)ase in the kidney is unable to compensate for the FGF23-mediated renal suppression of 1α(OH)ase, once more emphasizing the crucial involvement of FGF23 in vitamin D metabolism.

Figure 3
Simplified diagram illustrating vitamin D interactions with PTH, FGF23, calcium, and phosphate. PTH increases the synthesis of 1α(OH)ase and thereby increases 1,25(OH)₂D₃, which in turn exerts suppressive effects on PTH production. 1,25(OH)₂D₃ also enhances intestinal absorption of calcium and phosphate. 1,25(OH)₂D₃ can induce skeletal synthesis of FGF23, which exerts inhibitory effects on 1α(OH)ase to reduce 1,25(OH)₂D₃ levels. In addition, FGF23 increases urinary phosphate excretion and is likely to exert inhibitory effects on PTH. Moreover, 1,25(OH)₂D₃ can control its own balance by inhibiting the bioactivities of 1α(OH)ase. Ca, calcium; Pi, phosphorus.
(Fig. 3). Finally, how subcellular signaling events regulate skeletal FGF23 synthesis and renal regulation of vitamin D activation and catabolism will need further study.

Declaration of interest
The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding
This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Acknowledgements
The author wishes to express his sincere gratitude to Dr Nuraiy Akimbekov (Al-Farabi Kazakh National University, Kazakhstan) for his help in drawing the illustrations. The author also wishes to thank Ms Aysya Razzaque and Dr Peace Uwambaye for providing useful suggestions.

References
1 Akimbekov NS, Digel I, Shereikhan DK & Razzaque MS. Vitamin D and phosphate interactions in health and disease. Advances in Experimental Medicine and Biology 2023 1362 37–46. (https://doi.org/10.1007/978-3-030-96123-7_5)
2 Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kagawuchi Y, Hosoya T & Kato S. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 1999 140 2224–2231. (https://doi.org/10.1210/endo.140.5.6691)
3 Christkors S, Dhwans P, Verstuyf A, Verlinden L & Carmeliet G. Taking a closer look at vitamin D. Biochemical Society Transactions 2016 44 365–368. (https://doi.org/10.1042/bst0440365)
4 Golszman D. Functions of vitamin D in bone. Histochemistry and Cell Biology 2018 149 305–312. (https://doi.org/10.1007/s00418-018-1648-y)
5 Underwood JL & DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. American Journal of Physiology 1984 246 E493–E498. (https://doi.org/10.1152/ajpendo.1984.246.6.E493)
6 Dardenne O, Prud’homme J, Hacking SA, Glorieux FH & St-Arnaud R. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB Journal 2006 20 720–722. (https://doi.org/10.1096/fj.05-4324flc)
7 Trautvetter U, Neef N, Leiterer M, Kienztopf M, Katsch S & Jäzeis G. Effect of calcium phosphate and vitamin D supplementation on bone remodeling and metabolism of calcium, phosphorus, magnesium and iron. Nutrition Journal 2014 13 6. (https://doi.org/10.1186/1475-2891-13-6)
8 Latic N & Erben RG. FGF23 and vitamin D metabolism. JBMR Plus 2021 5 e10558. (https://doi.org/10.1002/jbmr.10558)
9 Erem S & Razzaque MS. Dietary phosphate toxicity: an emerging global health concern. Histochemistry and Cell Biology 2018 150 711–719. (https://doi.org/10.1007/s00418-017-1118-1)
10 Ratsma DMA, Zilnikens MC & van der Eerden BCJ. Upstream regulators of fibroblast growth factor 23. Frontiers in Endocrinology 2021 12 588096. (https://doi.org/10.3389/fendo.2021.588096)
11 Olausson H, Lindberg K, Amin R, Santa T, Jia T, Goetz R, Mohammadi M, Andersson G, Lanske B & Larsson JO. Parathyroid-specific deletion of klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTHR secretion. PLoS Genetics 2013 9 e1003975. (https://doi.org/10.1371/journal.pgen.1003975)
12 Lanske B & Razzaque MS. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney International 2014 86 1072–1074. (https://doi.org/10.1038/kid.2014.316)
13 Meir T, Durlacher K, Pan Z, Amir G, Richards WG, Silver J & Naveh-Many T. Parathyroid hormone activates the orphan nuclear receptor Nur1 to induce FGF23 transcription. Kidney International 2014 86 1106–1115. (https://doi.org/10.1038/ki.2014.215)
14 Ito M, Sakai Y, Furuzomo M, Segawa H, Hato S, Yamanaka S, Nakamura R, Kuwahata M & Miyamoto K. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. American Journal of Physiology: Endocrinology and Metabolism 2005 288 E1101–E1109. (https://doi.org/10.1152/ajpendo.00502.2004)
15 Kolek OJ, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JE, Haussler MR & Ghishan FK. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. American Journal of Physiology: Gastrointestinal and Liver Physiology 2005 289 G1036–G1042. (https://doi.org/10.1152/ajpgi.00243.2005)
16 Liu S, Tang W, Zhou J, Stobbs JK, Luo Q, Li M & Qureshi LD. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone.
30 Zittermann A, Berthold HK & Pilz S. The effect of vitamin D on fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. Journal of the American Society of Nephrology 2017 28 586–597. (https://doi.org/10.1681/ASN.2016010066)

31 Meshkini F, Soltani S, Clark CCT, Tam V, Meyre D, Toupchian O, Zittermann A, Berthold HK & Pilz S. The effect of vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. American Journal of Physiology: Renal Physiology 2004 289 F1088–F1095. (https://doi.org/10.1152/ajpren.00474.2004)

40 Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Fukumoto S & Yamashita T. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochemical and Biophysical Research Communications 2004 314 409–414. (https://doi.org/10.1016/j.bbrc.2003.12.102)

16 Voncina S, Sajeev K, Sajeev S & Razzaque MS. Inactivation of klotho in mice promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. Journal of Clinical Investigation 2006 116 3150–3159. (https://doi.org/10.1172/JCI29463)

29 Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R & Goltzman D. Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. Journal of the American Society of Nephrology 2017 28 586–597. (https://doi.org/10.1681/ASN.2016010066)

28 Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet F, Bouillon R & Carmeliet G. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. Journal of Clinical Investigation 2006 116 3150–3159. (https://doi.org/10.1172/JCI29463)

27 Saji F, Shigematsu T, Sakaguchi T, Ohyama M, Orita H, Maeda Y, Ooura M, Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y, Ooura M, Fujita T, Nakahara K, Fukumoto S & Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of Bone and Mineral Research 2004 19 429–435. (https://doi.org/10.1359/JBMR.0301264)

26 Mima T & Negi S. Fibroblast growth factor 23 production in bone is increased by deletion of vitamin D 1alpha-hydroxylase. Journal of the American Society of Nephrology 2010 21 1166–1172. (https://doi.org/10.1038/ki.2009.24)

25 DeLuca S, Sitana D, Kang K, Marsell R, Jonsson K, Taguchi T, Erben RG, Razzaque MS & Larsko B. Amelioration of the premature ageing-like condition of FGFR1-deficient mice by genetically restoring the systemic actions of FGF23. Journal of Pathology 2008 216 345–355. (https://doi.org/10.1002/path.2409)

24 Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, Yoshii N, Yamazaki Y, Yamashita T, Silver J, et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. Journal of Clinical Endocrinology and Metabolism 2005 90 5523–5527. (https://doi.org/10.1210/jc.2005-0301)

23 Ichikawa S, Imel EA, Kreiter ML, Yu X, MacKenzie DS, Sorenson AH, Goette R, Mohammadi M, White KE & Econs MJ. A homozygous missense mutation in human klotho causes severe tumoral calcinosis. Journal of Clinical Investigation 2007 117 2684–2691. (https://doi.org/10.1172/JCI31350)

22 Chikai N, Miyazaki M, Hasegawa Y, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S & Yamashita T. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochemical and Biophysical Research Communications 2004 314 409–414. (https://doi.org/10.1016/j.bbrc.2003.12.102)

21 Han X, Yang J, Li L, Huang J, King G & Quarelles L.D. Conditional deletion of FGFR1 in the proximal and distal tubule identifies distinct roles in phosphate and calcium transport. PLoS ONE 2016 11 e0147845. (https://doi.org/10.1371/journal.pone.0147845)

20 Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S & Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of Bone and Mineral Research 2004 19 429–435. (https://doi.org/10.1359/JBMR.0301264)

19 Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa O, Ishima T, Ono K, Kakitani M, Tomizuka K, Fujita T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. American Journal of Physiology: Renal Physiology 2005 289 F1088–F1095. (https://doi.org/10.1152/ajprenal.00474.2004)

18 Sakaguchi T, Ohya M, Ooura M, Fujita T, Nakahara K, Fukumoto S & Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of Bone and Mineral Research 2004 19 429–435. (https://doi.org/10.1359/JBMR.0301264)

17 Saji F, Shigematsu T, Sakaguchi T, Ohyama M, Orita H, Maeda Y, Ooura M, Fujita T, Nakahara K, Fukumoto S & Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of Bone and Mineral Research 2004 19 429–435. (https://doi.org/10.1359/JBMR.0301264)

16 Voncina S, Sajeev K, Sajeev S & Razzaque MS. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB Journal 2009 23 3702–3711. (https://doi.org/10.1096/fj.08-123992)

15 Ranch D, Zhang MY, Portale AA & Perwad F. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAPK kinase signaling pathway in Hyp mice. Journal of Bone and Mineral Research 2011 26 1883–1890. (https://doi.org/10.1002/jbmr.401)

14 Razzaque MS. FGF23-klotho axis: endocrine regulation of phosphate homeostasis. Nature Reviews: Endocrinology 2009 5 611–619. (https://doi.org/10.1038/nrendo.2009.196)

13 Razzaque MS. FGF23-mediated regulation of systemic phosphate homeostasis: is klotho an essential player? American Journal of Physiology: Renal Physiology 2009 296 F470–F476. (https://doi.org/10.1152/ajprenal.0538.2008)

12 ADHD Consortium. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nature Genetics 2006 34 345–348. (https://doi.org/10.1038/ng.1066)

11 Razzaque MS. FGF23-mediated regulation of systemic phosphate homeostasis: is klotho an essential player? American Journal of Physiology: Renal Physiology 2009 296 F470–F476. (https://doi.org/10.1152/ajprenal.0538.2008)

10 Oliveri MB, Cassinelli H, Bergada C & Mautalen CA. Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone and Mineral 1991 2 91–100. (https://doi.org/10.1016/0169-6009(91)90038-2)

9 Schindele A, Biggin A & Murns CE. Clinical evidence for the benefits of burosumab therapy for X-linked hypophosphatemia (XLH) and other conditions in adults and children. Frontiers in Endocrinology 2020 11 338. (https://doi.org/10.3389/fendo.2020.00338)

8 Fratzl-Zelnik N, Hartmann MA, Gamsjaeger S, Rokidi S, Paschalis EP, Blouin S & Zwerina J. Bone matrix mineralization and response to burosumab in adult patients with X-linked hypophosphatemia: results from the phase 3, single-arm international trial. Journal of Bone and Mineral Research 2022 [epub]. (https://doi.org/10.1002/jbmr.4641)

7 Insogna KL, Briot K, Imel EA, Kamenicky P, Ruppe MD, Portale AA, Weber T, Pituchkeevanton P, Cheong HI, Jan de Beur S, et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. Journal of Bone and Mineral Research 2018 33 1383–1393. (https://doi.org/10.1002/jbmr.3475)
54 Oe Y, Kameda H, Nomoto H, Sakamoto K, Soyama T, Cho KY, Nakamura A, Iwasaki A, Abe D, Kudo K, et al. Favorable effects of burosumab on tumor-induced osteomalacia caused by an undetectable tumor: a case report. Medicine 2021 100 e27895. (https://doi.org/10.1097/MD.0000000000027895)

55 Merz LM, Buerger F, Ziegelasch N, Zenker M, Wieland I, Lipek T, Wallborn T, Terliesner N, Prenzel F, Siekmeyer M, et al. A case report: first long-term treatment with burosumab in a patient with cutaneous-skeletal hypophosphatemia syndrome. Frontiers in Endocrinology 2022 13 866831. (https://doi.org/10.3389/fendo.2022.866831)

56 Khadora M & Mughal MZ. Burosumab treatment in a child with cutaneous skeletal hypophosphatemia syndrome: a case report. Bone Reports 2021 15 101 138. (https://doi.org/10.1016/j.bonr.2021.101 138)

57 Lim YH, Ovejero D, Derrick KM, Yale Center for Mendelian Genomics, Collins MT & Choate KA. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. Journal of the American Academy of Dermatology 2016 75 420–427. (https://doi.org/10.1016/j.jaad.2015.11.012)

58 Mirza MA, Larsson A, Lind L & Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009 205 385–390. (https://doi.org/10.1016/j.atherosclerosis.2009.01.001)

59 Dorr K, Kammer M, Reindl-Schwaighofer R, Lorenz M, Prikoszovich T, Marculescu R, Beitze D, Wielandner A, Erben RG & Oberbauer R. Randomized trial of Etelcalcetide for cardiac hypertrophy in hemodialysis. Circulation Research 2021 128 1616–1625. (https://doi.org/10.1161/CIRCRESAHA.120.318556)

60 Qin Z, Liu X, Song M, Zhou Q, Yu J, Zhou B, Wu Y, He Y & Huang L. Fibroblast growth factor-23 as a predictor of cardiovascular and all-cause mortality in prospective studies. Atherosclerosis 2017 261 1–11. (https://doi.org/10.1016/j.atherosclerosis.2017.03.042)

61 Gao S, Xu J, Zhang S & Jin J. Meta-analysis of the association between fibroblast growth factor 23 and mortality and cardiovascular events in hemodialysis patients. Blood Purification 2019 47 (Supplement 1) 24–30. (https://doi.org/10.1159/000496220)

62 Akimbekov NS, Digel I, Shereikhlan DK, Lutfoor AB & Razzaque MS. Vitamin D and the host-gut microbiome: a brief overview. Acta Histochemica et Cytochemica 2020 53 33–42. (https://doi.org/10.1267/ahc.20011)

63 Akimbekov NS, Ortoski RA & Razzaque MS. Effects of sunlight exposure and vitamin D supplementation on HIV patients. Journal of Steroid Biochemistry and Molecular Biology 2020 200 105664. (https://doi.org/10.1016/j.jsbmb.2020.105664)

64 Mumena CH, Mudhihiri MH, Sasi R, Mlawa M, Nyerembe S, Akimbekov NS & Razzaque MS. The relevance of vitamin D in the oral health of HIV infected patients. Journal of Steroid Biochemistry and Molecular Biology 2021 211 105905. (https://doi.org/10.1016/j.jsbmb.2021.105905)

65 Amos A & Razzaque MS. Zinc and its role in vitamin D function. Current Research in Physiology 2022 5 203–207. (https://doi.org/10.1016/j.crphys.2022.04.001)

66 Eskander M & Razzaque MS. Can maintaining optimal magnesium balance reduce the disease severity of COVID-19 patients? Frontiers in Endocrinology 2022 13 843152. (https://doi.org/10.3389/fendo.2022.843152)

67 Mironov N, Afifi A & Razzaque MS. Phosphate burden and organ dysfunction. Frontiers in Aging 2022 3 890985. (https://doi.org/10.3389/fragi.2022.890985)

68 Razzaque MS. Phosphate toxicity: new insights into an old problem. Clinical Science 2011 120 91–97. (https://doi.org/10.1042/CS20100377)

69 Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life 2011 63 240–247. (https://doi.org/10.1002/iub.437)

70 Razzaque MS. Bone-kidney axis in systemic phosphate turnover. Archives of Biochemistry and Biophysics 2014 561 154–158. (https://doi.org/10.1016/j.abb.2014.06.031)

71 Razzaque MS. Phosphate metabolism: from physiology to toxicity. Advances in Experimental Medicine and Biology 2022 1362 1–6. (https://doi.org/10.1007/978-3-030-91623-7_1)

Received in final form 18 July 2022
Accepted 30 August 2022
Accepted Manuscript published online 30 August 2022