Radioactivity Investigation In Water of Tigris River in Salah Al-Din Governorate, Iraq

Alaa H. Al-Hayani1, Asia H. Al-Mashhadani2 and Nada F. Tawfiq3

1 Department of Physics, College of Science, Alnahrain University, Iraq, alaaalhayani1980@gmail.com
2 Department of Physics, College of Science, Baghdad University, Iraq, assia19662006@yahoo.com
3 Department of Physics, College of Science, Alnahrain University, Iraq, nadafathel@yahoo.com

ABSTRACT

The specific activity of naturally radionuclides (226Ra, 212Pb, and 40K) in water samples of Tigris river was tested using a NaI(Tl) scintillation detector at 30 separate locations in tigris river in Iraq's Salah Al-Din Governorate. The activity concentrations of activity of 226Ra, 212Pb, 137Cs, and 40K ranged from (0.056, 0.702, 0.15, 105.12 Bq/L) to (805.6, 75.12, 27.6, 1149.4 Bq/L) respectively. The average The radium equivalent activity was found to be (397.4 Bq/kg). The absorbed dose rate in air for the samples was also investigated, and its average of (185.6 nGyh⁻¹). For one year, the outdoor annual effective doses with an average of (0.23 mSv/y), and the indoor annual effective doses with an average of (0.911 mSv/y). The external hazard indices, as well as the internal hazard indices, were found to be more than one higher than the global limit, with average values of 2.04 and 2.89, respectively, higher than the global limit. The International Commission on Radiological Safety and Ionizing Radiation's Biological Effects Radiation risk factors is used to measure the excess lifetime cancer risk.

Keywords: NaI(Tl) scintillation detector, γ-spectrometry, Radium-equivalent activity, Activity concentration, Internal hazard index, External hazard index, annual effective dose.

1. INTRODUCTION

The geological composition of the region is reflected in the chemical composition of the water. The precise activity of radio elements and heavy metals in water is largely determined by tropospheric geological formation and mineralization. Radionuclide distribution in waters is a major concern because of their geochemical versatility, which allows them to travel around freely and pollute different components of the atmosphere. Primitive radionuclides are present in varying amounts in the water due to weathering, sedimentation, and chemical reactions in the earth's crust. The uranium, actinium, and thorium series of naturally occurring radionuclides account for around half of the natural background external radiation[1]. The bulk of internal and external exposure to the human body is caused by gamma radiation released by naturally occurring radioactive materials found in all waters and soil [2]. The natural environment is thought to be responsible for about 85 percent of the radiation dose obtained by humans[3]. Certain anthropogenic behaviors have been found to increase the levels of these doses. The value of health physics is increasing as the need for population safety and protection from radiation exposure grows. Studies on the distribution of radionuclides in the
atmosphere and their corresponding doses can be useful as radiological baseline knowledge for developing radiation safety rules and regulations[4,5]. Numerous experiments have been performed in many parts of the world and in various geological formations in order to collect reference data for natural environmental radioactivity and related exposure [6,7].

The aim of this research was to assess radioactivity in water of Tigris river in Salah al-Din governorate and investigate of radiation hazard indicators of these naturally occurring radionuclides (\(^{226}\)Ra, \(^{228}\)Ac and \(^{40}\)K) in 30 water samples in Tigris river from Salah Al-Din Governorate, Iraq using scintillation detector NaI(Tl)[9,10].

2. The Study Area.

The Salah Al-Din government is located about 55 kilometers north of Baghdad and tigris river cross it from north to south by 293km. The coordinates for the site are 34°27′00″N 43°35′00″E. The Salah Al-Din government was divided into equal-sized sectors, and the analysis included 12 sectors in the Salah Al-Din government, as shown in Figure 1 and Table 1. Salah Al-governement Din's has a population of 1.595.354 people. And this knowledge clearly demonstrates the significance of the Salah Al-Din government in the search.

![Figure 1. Mao of Water Samples of Tigris river in Salah Al-Din Governorate.](image-url)

Samples Code	Location	Longitude	Latitude
SD1	AlSherqat-ba'aja	35.54947	43.23117
SD2	AlSherqat-mashro'	35.509302	43.25472
SD3	AlSherqat-kosom	35.477081	43.2709
SD4	Biji-mahzam	35.137094	43.44965
SD5	Biji-elbojwari	34.978383	43.5412
SD6	Biji-alishetehe	34.949254	43.50763
SD7	Biji-alhanshi	35.021586	43.57791
SD8	Biji-alshat	34.933493	43.51394
SD9	Biji-b'i'ajji	34.917269	43.51662
SD10	Biji-almazra'a	34.855359	43.53805
SD11	Tikrit-hajaj	34.778133	43.5824
SD12	Tikrit-mahzam	34.662442	43.67389
SD13	Tikrit-qarawardi	34.670019	43.66819
3. Materials and Procedures

In the year 2020, thirty water samples were collected from eight sectors from Tigris river in the Salah Al-Din Governorate in Iraq. The samples were prepared by drying each water sample using an heater at 100°C until a constant weight was achieved. The samples dried up from 3 liters to 1 litter. Water samples stored in a sealed morinli beaker for 30 days to achieve the secular equilibrium between radon and its decay products[11]. The activity concentration of (226Ra, 232Th and 40K) in water samples were determined using NaI(Tl) (3x3) scintillation detector coupled to PC-MCA (4096 channel) and related accessories based on a high efficiency gamma spectrometry device with an overall efficiency of 60% and resolution of (6.5- 8.5) were used.

A multi radionuclides stander source with energies of (59.53, 88.34, 661.7, and 1333,1) keV for 214Am, 109Cd, 137Cs, and 60Co was put in front of the detector for a time of 1080 seconds to test the detector’s performance and energy calibration.

3.1. Specific activity of radionuclides

The following equation was used to calculate the precise concentrations of activity of radionuclides in water samples:[12]

\[
A = \frac{\text{Net area under the photo peak at energy (E)} - \text{B.G}}{M \times I(E) \times \epsilon(E) \times T}
\]

Where,
A: The specific activity concentration of radionuclide (Bq/L).
M: Volume of the water sample (L).
I (E): is the abundance at energy (E).
\(\epsilon(E)\): The efficiency at energy (E).
T: The time of measurement which is equal to (2h).

3.2 Evaluation of radiological hazard effects
- Radium equivalent activity (Raeq)

The definition of radium equivalent operation (Raeq) allows a single index or number to classify the gamma contribution from various mixtures of 238U, 232Th, and 40K in water samples from various
locations. Raeq was determined using the following formula [12,13]:

\[\text{Raeq} = AU + 1.43 ATh + 0.07 AK \]

(2)

The basic operation of 238U, 232Th, and 40K (Bq/L) is represented by AU, ATh, and AK, respectively. The gamma dose rate is assumed to be the same for 370 Bq/L of 238U, 259 Bq/L of 232Th, and 4810 Bq/L of 40K. Raeq is linked to radon and its daughters’ external-dose and internal-dose effects.

- **Absorbed gamma dose rate (D_γ)**

Based on UNSCEAR guidance, the absorbed gamma dose thresholds related to gamma radiations in air at 1 m above the ground surface for the uniform distribution of naturally occurring radionuclides (238U, 232Th, and 40K) were determined [14]. The conversion factors for calculating the absorbed gamma dose rate (D_γ) in air per unit specific operation in Bq/L are as follows: 0.462 nGy h$^{-1}$ for 238U, 0.604 nGy h$^{-1}$ for 232Th and 0.042 nGy h$^{-1}$ for 40K. Therefore, D_γ can be determined using the following formula [15]:

\[DR(nGy/h) = 0.462AU + 0.604 AT + 0.042AK \]

(3)

- **Annual Effective Doses Equivalent**

The annual effective dose equivalent (AEDE) of the member was calculated using a factor of 0.7 SvGy$^{-1}$ to convert the absorbed dose rate to human effective dose equivalent with an outdoor of 20% and an indoor of 80%. The annual effective doses equivalent outdoor and indoor is calculated using equations [16]:

\[Outdoor \ (mSv/y) = AD\ (nGy/h) \times 8760h \times 0.2 \times 0.7 \text{SvGy/y} \times 0.000001 \]

(4)

\[Indoor \ (mSv/y) = AD\ (nGy/h) \times 8760h \times 0.8 \times 0.7 \text{SvGy/y} \times 0.000001 \]

(5)

- **Radiation hazard indices**

The external and internal hazard indexes are calculated using the (Raeq) expression on the assumption that the permitted maximum value (equal to unity) corresponds to Raeq’s upper limit (370 Bq/L). The (Hex) external hazard index and internal hazard index (Hin) are then [17]:

\[H_{ex} = \frac{AU}{370Bq/L} + \frac{ATh}{259Bq/L} + \frac{AK}{4810Bq/L} \]

(6)

\[H_{in} = \frac{AU}{185Bq/L} + \frac{ATh}{259Bq/L} + \frac{AK}{4810Bq/L} \]

(7)

In order for the radiation hazard to be trivial, this index value must be less than unity.

- **Excess Lifetime Cancer Risk (ELCR)**

Excess Lifetime Cancer Risk (ELCR) is a value that represents the amount of extra cancers predicted in a given number of people on exposure to a carcinogen at a given dose, and we can measure (ELCR) using Eq. (8) if we regard (70) years as the average lifespan of a human being[18]

\[ELCR = AEDE \times DL \times RF \]

(8)

RF stands for risk factor (Sv1), which is the lethal cancer risk per Sievert, where AEDE stands for Annual Effective Dose Equivalent, DL stands for normal Quality of Life (estimated to be 70 years), and DL stands for average Duration of Life (estimated to be 70 years). ICRP 60 uses 0.05 for public exposure for low dose background radiations that are thought to have stochastic effects [16]. We can deduce the equation above from this value-free unit since it represents the likelihood of cancer incidence.
4 RESULTS AND DISCUSSION

Table 2 shows the activity concentrations of radionuclides in 30 water samples obtained from Tigris river in Salah Al-Din governorate. The results show that the highest concentration of 226Ra was (805.6 Bq/L) found in SD23 (Ishaqi-raqah2) higher than the concentration of specific activity of 238U global limit which is equal to (35 Bq/L) [19], while the lowest concentration (0.056 Bq/L) was found in SD13 (Tikrit-qarawardi) lower than global limit. The average concentration of 238U was (292.8 Bq/L) higher than the global limit as shown in Fig. 2.

The highest concentration of 212Pb was 75.1 Bq/L found in SD23 (Ishaqi-raqah2) higher than the specific activity concentration of 232Th global limit which is equal to (30 Bq/L) [12], while the lowest concentration (0.7 Bq/L) was found in SD25 (Ishaqi-qaban2) lower than global limit. The average concentration of 232Th was (30.8 Bq/L) near to the global limit as shown in Fig. 3.

The highest concentration of 40K was 1149.4 Bq/L found in SD4 (Biji-Mahzam) higher than the specific activity of global limit which is equal to 400 Bq/L [12], while the lowest specific activity 105.23 Bq/L was found in SD29 (Alhatamiah-Dour) lower than global limit. The average concentration of 232Th was (509.2 Bq/L) higher than the global limit as shown in Fig. 4.

The highest concentration of 137Cs was 27.58 Bq/L found in SD23 (Ishaqi-raqah2) higher than the concentration of specific activity of global limit which is equal to (14.8 Bq/L) [20], while the lowest concentration (0.15 Bq/L) was found in SD21 (Samarra-Qala'h) lower than global limit. The average concentration of 232Th was (12.04 Bq/L) lower than the global limit as shown in Fig. 5.
Sample ID	226Ra (Bq/L)	212Pb (Bq/L)	137Cs (Bq/L)	40K (Bq/L)
SD1	5.959	2.218	4.426	321.3
SD2	697.9	58.34	23.77	259.7
SD3	296.4	18.22	2.728	342.9
SD4	583.1	51.54	13.25	1149
SD5	640.1	52.54	10.81	506.7
SD6	184.7	5.500	23.98	592.1
SD7	222.1	13.69	7.116	503.4
SD8	6.426	9.617	5.341	405.3
SD9	249.4	16.39	19.01	848.0
SD10	246.3	42.53	9.526	546.1
SD11	271.4	23.87	4.947	818.2
SD12	639.1	69.38	11.11	818.2
SD13	0.057	24.04	4.198	207.8
SD14	5.414	0.806	14.57	597.7
SD15	426.0	34.97	10.71	781.5
SD16	160.4	13.53	5.801	802.8
SD17	342.0	35.43	20.57	265.7
SD18	147.0	12.07	24.58	515.1
SD19	181.9	16.78	10.86	653.6
SD20	423.5	40.63	11.18	536.2
SD21	332.9	25.12	0.151	411.5
SD22	19.01	1.292	17.38	452.1
SD23	805.6	75.11	27.58	869.0
SD24	2.339	1.955	6.830	373.1
SD25	38.99	0.702	11.83	505.4
SD26	697.1	59.54	19.97	773.3
SD27	411.2	61.41	6.739	307.0
SD28	538.0	48.71	6.695	358.9
SD29	728.9	71.63	3.085	105.1
SD30	452.3	37.11	4.520	128.2
A.V.	325.2	30.81	11.44	525.2
Table 3 shows that the highest value of radium equivalent activity (Raeq) was found in (Ishaqiaqah2) sectors which was equal to (805.6 Bq/L) higher than the global limit which is equal to (370 Bq/L) [15], while the lowest value found in (Tikrit-Qarawardi) region which equal to (0.056 Bq/L), with an average (315.6 Bq/L) shown in Fig.6. The present results have shown that values of average radium equivalent activity in Salah Al-Din governorate were lower than the value of global limit which equal to (370 Bq/L).
The highest value of absorbed gamma dose rate (D_γ), of outdoor annual effective dose rate (AED_{out}), indoor annual effective dose rate (AED_{in}), external hazard index (H_{out}), internal hazard index (H_{in}) and Excess Lifetime Cancer Risk (ELCR) were found in (Ishaqi-raqaq2) sectors equal to (454.1 nGy/h, 0.56, 2.23 mSv/y, 2.64, 4.8, 1.95x10^{-3}) respectively, while the lowest value of absorbed gamma dose rate (D_γ), of outdoor annual effective dose rate (AED_{out}), indoor annual effective dose rate (AED_{in}), external hazard index (H_{out}), internal hazard index (H_{in}) and (ELCR) Excess Lifetime Cancer Risk were found in (AlSherqat-kosom) sectors equal to (17.4 nGy/h0.02, 0.086 mSv/y, 0.091, 0.098, 0.075x10^{-3}) respectively. The average values of the absorbed gamma dose rate (D_γ), of outdoor annual effective dose rate (AED_{out}), indoor annual effective dose rate (AED_{in}), internal hazard index (H_{in}), external hazard index (H_{out}) and (ELCR) Excess Lifetime Cancer Risk were (185.6 nGy/h, 0.23, 0.91 mSv/y, 2.04, 2.9, 0.8x10^{-3}) respectively. The present results have shown that the average values of absorbed gamma dose rate (D_γ) and the internal hazard index (H_{in}) in Salah Al-Din governorate were higher than the a worldwide limit which equal to (55 nGy/h and 1 mSv/y).

The average values of indoor annual effective dose rate (AED_{in}), outdoor annual effective dose rate (AED_{out}), external hazard index (H_{out}) and ELCR Excess Lifetime Cancer Risk in Salah Al-Din governorate were higher than the value of the a worldwide limit which equal to (1 mSv/y, 1, 1,). [20].
TABLE 3: Radium Equivalent Activity (Ra eq), Absorbed Gamma Dose Rate (Dγ), Annual Effective Dose Rate External (AE Dout) and Internal (AE Din), Hazard Indices (Hin), (Hex) and Excess Lifetime Cancer Risk (ELCR) for Water Samples in Salah Al-Din Governorate.

Sample ID	Ra eq (Bg/L)	Absorbed Dose Rate (nGy h⁻¹)	The Annual Effective Dose (mSv/y)	Hazard Indices	ELCR×10⁻⁵		
			Outdoor	Indoor	Hex	Hin	
SD1	33.90	17.40	0.02	0.09	0.09	0.11	0.07
SD2	800.4	368.4	0.45	1.81	2.16	4.05	1.59
SD3	348.9	162.2	0.20	0.80	0.90	1.70	0.70
SD4	745.3	348.5	0.42	1.71	2.01	3.60	1.50
SD5	754.2	348.8	0.40	1.71	2.04	3.80	1.50
SD6	238.1	113.1	0.14	0.60	0.64	1.10	0.50
SD7	280.4	131.7	0.16	0.65	0.76	1.30	0.57
SD8	51.30	25.70	0.03	0.13	0.13	0.16	0.11
SD9	338.1	160.3	0.20	0.79	0.90	1.59	0.69
SD10	349.1	162.6	0.20	0.80	0.94	1.61	0.70
SD11	368.6	173.9	0.21	0.80	0.99	1.72	0.74
SD12	801.3	371.7	0.45	1.82	2.16	3.89	1.60
SA13	50.43	23.60	0.03	0.12	0.14	0.14	0.10
SA14	52.59	27.70	0.03	0.14	0.14	0.15	0.12
SD15	536.2	250.5	0.31	1.23	1.45	2.60	1.08
SD16	241.5	115.6	0.14	0.57	0.65	1.08	0.50
SD17	413.1	190.7	0.23	0.94	1.11	2.04	0.82
SD18	203.9	96.60	0.12	0.47	0.55	0.95	0.42
SD19	256.1	121.3	0.15	0.59	0.69	1.18	0.52
SD20	522.9	242.7	0.29	1.19	1.41	2.55	1.04
SD21	400.5	186.1	0.22	0.9	1.08	1.98	0.80
SD22	55.66	28.30	0.03	0.14	0.15	0.20	0.12
SD23	979.9	454.1	0.56	2.23	2.64	4.82	1.95
SD24	33.86	17.70	0.02	0.09	0.09	0.09	0.07
SD25	78.91	39.30	0.04	0.19	0.21	0.31	0.16
SD26	841.8	390.5	0.48	1.92	2.27	4.15	1.68
SD27	522.6	240.5	0.3	1.20	1.40	2.50	1.01
SD28	635.3	293.2	0.35	1.44	1.71	3.17	1.20
SD29	839.4	385.0	0.48	1.90	2.27	4.24	1.66
SD30	515.3	237.0	0.29	1.16	1.39	2.62	1.02
A.V	397.4	185.6	0.23	0.91	2.04	2.90	0.80
5 CONCLUSIONS
The specific activity for ^{226}Ra, ^{212}Pb, ^{137}Cs and ^{40}K radionuclides in water samples were measured covering eight sectors in Tigris river in Salah Al-Din Governorate. The highest values of ^{226}Ra which belongs to ^{238}U series were found in (Ishaqi-Raqah2) sectors higher than the global limite and the lowest value found in (Tikrit-Qarawardi) sectors. The average value of ^{238}U in Salah Al-Din governorate was less than the global limite. The highest values of ^{212}Pb which belongs to ^{232}Th series were found in (Ishaqi-raqah2) sectors higher than the global limite and the lowest value found in (Ishaqi-qaban2) sectors. The average value of ^{232}Th in Salah Al-Din governorate was less than the global limite. The highest values of artificial nuclide ^{137}Cs was found in (Ishaqi-raqah2) sectors higher than the global limite and the lowest value found in (Samarra-qala’h) sectors. The average value of ^{137}Cs in Tigris river in Salah Al-Din governorate was less than the global limite. The highest values of ^{40}K nuclide was found in (Biji-Mahzam) sectors higher than the global limite and the lowest value found in (Alhatamiah-Dour) sectors. The average value of ^{40}K in Salah Al-Din governorate was higher than the global limite. The average of absorbed dose rate, the hazard index outdoor and the hazard index indoor in Salah Al-Din governorate were higher than the global limite.
References

[1] United States Environmental Protection Agency, USEPA, 2012.
[2] UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effect of Atomic Radiation Report Vol.1 to the General Assembly, with Scientific Annexes. United Nations Sales Publication, United Nations, New York, 2000.
[3] WNA, World Nuclear Association, 2009.
[4] Asia H. Al-Mashhadani et al (Radon concentration measurement in a groundwater in Al-Tuz, Salah AlDin Governorate using nuclear track detector CN-85 To cite) 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757. 01. 2015.
[5] Karahan G., Kapdan E., Bingoldag N., Taskin H., Bassari Atayoglu A. A.T. (Environmental health risk assessment due to radionuclides and metal(loids) for Igdir province in Anatolia, near the Metsamor nuclear power plant)18(4):863-874, 2020.
[6] Ibikunle SB, Arogunio AM and Ajayi OS (Characterization of Radiation dose and Excess Lifetime Cancer Risk Due to Natural Radionuclides in waters from Some Cities in Southwestern Nigeria) ISSN: 2476-1311, 2018.
[7] Isinkaye M.O., Emelue H.U. (Natural radioactivity measurements and evauation of radiological hazards in sediment of Oguta Lake, South East Nigeria), 2015.
[8] Gbadebo M.A, A.M., Adedije O.H.,Okeyode I.C. and Ajayi O.A. (Excess lifetime Cancer risk and Radiation pollution hazard indices in rocks and water of some selected mining sites in Nasarawa State, Nigeria) vol.3, pp.1-18, 2018
[9] Basim Abd Al-Hassen Al-Mayahi, Dhia Amin Al Joher, Muthana Hassan Hadi, (Radioactivity level measurement of some samples) Scientific, vol.7, Issue 2, pp 81-89, 2009.
[10] Nada F. Tawfiq and Dhuha R. Mathloom (Measurement of Natural Radioactivity in Water Samples from Al Dora Thermal Power plant in BaghdadGovernorate) 2018.
[11] Nada F. Tawfiq, Asmaa Aziz and Lukman A.Hussain (Natural Radioactivity and Risk Assessment in Water Samples of Tuzkhormato District Salahdin Governorate), J. Rad. Nucl. Appl. 2, No. 3, 109-114, 2017.
[12] Fareed M. Mohammed, Saad A. Essa, Nadah F. Tawfiq (Characterization of Natural Radioactivity in Water of Balad City and Surroundings, Iraq) SSRG International Journal of Applied Physics (SSRG-IJAP) vol. 7, Issue 2, 2020.
[13] United Nations Scientific Committee on the Effects of AtomicRadiation (UNSCEAR), Sources, Effects and Risks of IonizingRadiation. Report to the General Assembly with Annex B, United Nations, New York, 2000.
[14] Alghamdi,Abdulrahman S,. Aleissa, Khalid A,(Influences on indoor radon concentrations in Riyadh, Saudi Arabia, Radiation Measurements), 62 35-40, 2014.
[15] Maghraby,Ahmed M, K. Alzimami, Abo-Elmagd M.,(Estimation of the residential radon levels and the population annual effective dose in dwellings of Al-kharj), Saudi Arabia, Journal of Radiation Research and Applied Sciences, 7,577-582, 2014.
[16] Hadad, Kamal, Mokhtari, Javad,(Indoor radon variations in central Iran and its geostatistical map), Atmospheric Environment, 102, 220-227, 2015.
[17] Gorur F. Korkmaz, H. Camgoz, (Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey), Chemosphere, 112, 134-140, 2014.
[18] Shabana E.I., A.A. Kinsara, (Radioactivity in the groundwater of a high background radiation area), Journal of Environmental Radioactivity 137, 181-189, 2014.
[19] EPA: US Environmental Protection Agency. Technical Support Document, Citizen’s Guide to Radon. Washington DC; EPA 400-R-92-011.1992.

[20] Ewaid, S.H., Abed, S.A., 2017. Water quality index for Al-Gharraf river, southern Iraq. Egypt. J. Aquatic Res. 43 (2), 117–122. http://dx.doi.org/10.1016/j.ejar.201703001.

[21] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756.

[22] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water Footprint of Wheat in Iraq. Water 2019, 11, 535.

[23] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Assessment of Main Cereal Crop Trade Impacts on Water and Land Security in Iraq. Agronomy 2020, 10, 98.

[24] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[25] Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.

[26] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 722 012008

[27] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012075

[28] Nada F. Tawfiq, Shaimaa J. Khudair and Abdullah M. Ali (Assessment of Natural and Industrial Radioactivity and Radiological Hazard in Sediments of Tigris River of Dhuluiya City, Iraq) rafidain Journal of Science vol.29, No.4, pp.14-22, 2020.