Quantifying the impact of Covid-19 on the US stock market: An analysis from multi-source information

Asim Kumer Dey,1, 2 G M Toufiqul Hoque,3 and Kumer Das4
1University of Texas at Dallas, Richardson, TX 75080
2Princeton University, Princeton, NJ 08544
3Lamar University, Beaumont, TX 77705
4University of Louisiana at Lafayette, Lafayette, LA 70504

August 28, 2020

Abstract

We investigate the impact of Covid-19 cases and deaths, local spread spreads of Covid-19, and Google search activities on the US stock market. We develop a temporal complex network to quantify US county level spread dynamics of Covid-19. We conduct the analysis by using the following sequence of methods: Spearman’s rank correlation, Granger causality, Random Forest (RF) model, and EGARCH (1,1) model. The results suggest that Covid-19 cases and deaths, its local spread spreads, and Google searches have impacts on the abnormal stock price between January 2020 to May 2020. However, although a few of Covid-19 variables, e.g., US total deaths and US new cases exhibit causal relationship on price volatility, EGARCH model suggests that Covid-19 cases and deaths, local spread spreads of Covid-19, and Google search activities do not have impacts on price volatility.

1 Introduction

The stock market reacts to different local and global major events. [Cagle (1996); Worthington and Valadkhani (2004); Worthington (2008); Cavallo and Noy (2009), and Shan and Gong (2012) study the impact of natural disasters, e.g., hurricanes and earthquakes, on the stock markets. Hudson and Urquhart (2015); Schneider and Troeger (2006); Chau et al. (2014); Beaulieu et al. (2006), and Huynh and Burggraf (2019) evaluate the effect of political uncertainty and war on the stock market. The influences of the outbreak of infectious diseases, e.g., Ebola and SARS, on the stock indices are assessed in Nippani and Washer (2004); Siu and Wong (2004); Lee and McKibbin (2004), and Ichev and Marinč (2018).]
Investor sentiment is another crucial determinant of stock market dynamics. However, quantifying investor sentiment is not an easy task because of its unobservable and heterogeneous behaviors (García Petit et al. (2019); Gao et al. (2020); Baker and Wurgler (2007); Bandopadhyaya and Jones (2005)). In recent years, due to data availability, Google search volume has become a popular index of investor sentiment (Bijl et al. (2016); Kim et al. (2019); Preis et al. (2013)). Bollen et al. (2011) determine Twitter feeds as the moods of investors and use the Twitter mood to predict the stock market. Alanyali et al. (2013); Schumaker and Chen (2008); Bomfim (2003), and Albuquerque and Vega (2008) evaluate the relationship between financial news and the stock market and find that news related to the asset significantly impact the corresponding stock price and volatility.

After the Covid-19 pandemic started spreading worldwide, the US stock market collapsed significantly with the S&P 500 dropping 38% between February 24, 2020 and March 20, 2020. Similar declines have occurred in other stocks too. In recent months a number of studies have appeared to assess the impact of the Covid-19 outbreak on the stock market. Nicola et al. (2020) provide a review on the socioeconomic effects of Covid-19 on individual aspects of the world economy. Baker et al. (2020) analyze the reasons why the U.S. stock market reacted so much more adversely to Covid-19 than to previous pandemics that occurred in 1918-19, 1957-58 and 1968. Wagner (2020) gives a picture of post-Covid-19 economic world. Onali (2020); Zaremba et al. (2020); Arias-Calluari et al. (2020), and Cao et al. (2020) perform statistical modeling to analyze the effect of Covid-19 on the stock market price and volatility.

However, there are still a number of important questions that need to be investigated. For example,

1. Do the number of Covid-19 cases and deaths exhibit any causal effect on stock price?
2. How can we quantify the local spread dynamics of Covid-19? Do the local spreads, e.g., US county level spreads of Covid-19, affect the stock price?
3. Do the local spreads, and the number of Covid-19 cases and deaths influence the stock market volatility?
4. Do the Google search volumes related to Covid-19 exhibit any relationship with the stock price and volatility?
5. Do the local spreads of Covid-19, the number of cases and deaths, and Google search volumes convey some additional information about the stock price dynamics, given more conventional economic variables?

In this study, we focus on the above questions. In order to quantify the local spread of Covid-19, we introduce the concept of temporal network and network motifs. There are no works that use higher order network structure, e.g., network motif, to evaluate spread dynamics of a disease. In the case study
though we focus on S&P 500, the methodology is applicable to any other stock indices.

The rest of the paper is organized as follows. Section 2 describes the data, constructs a temporal network for Covid-19 spreads, and defines the variables used in the study. The methodology is described in Section 3. Section 4 presents findings and a discussion of the results. Finally, Section 5 concludes.

2 Data and Variables

The S&P 500 closing price from June 3, 2019 to May 29, 2020 data are obtained from Yahoo! Finance. Google search data from January 2, 2020 to May 29, 2020 are obtained from Google Trends. We get US County level Covid-19 case data from New York Times and US county information from US National Weather Service.

2.1 Abnormal stock price and volatility

We evaluate the impact of Covid-19 on abnormal S&P 500 index. We define the daily abnormal S&P 500 price (AP) between January 2, 2020 and May 29, 2020 by subtracting the average price of the last seven months from the daily price and by dividing the resultant difference from the standard deviation of last seven months (i.e., 148 days) as follows:

$$AP_t = \frac{P_t - \frac{1}{148} \sum_{i=1}^{148} P_{t-i}}{\sigma_P},$$

where, P_t is the daily closing price for day t, σ_P is the standard deviation of the last 148 days closing price (Kim et al. (2019); Bijl et al. (2016)). We use daily squared log returns of prices P_t as a proxy for daily volatility (Vol_t) (Brooks (1998); Barndorff-Nielsen and Shephard (2002)):

$$r_t = \log \left(\frac{P_t}{P_{t-1}} \right), \quad Vol_t = r_t^2.$$

2.2 Covid-19 cases

We study the impact of a number of Covid-19 variables (C), e.g., daily US total cases, daily US new cases, daily World total cases, etc. to AP_t and Vol_t. For a complete list of Covid-19 variables see Table 1. We standardized each Covid-19 variable on the basis of a rolling average of the past 7 days and corresponding standard deviation as:

$$CV_t = \frac{C_t - \mu_C}{\sigma_C},$$

3
where, C_t is a Covid-19 variable (e.g., US total cases) at day t, μ_C and σ_C are the mean and standard deviation of the corresponding variable within the sliding window of days $[t-k, t-1]$.

2.3 Local Spread through complex network analysis

A complex network represents a collection of elements and their inter-relationship. A network consists of a pair $G = (V, E)$ of sets, where V is a set of nodes, and $E \subset V \times V$ is a set of edges, $(i, j) \in E$ represents an edge (relationship) from node i to node j. Here $|V|$ is the number of nodes and $|E|$ is the number of edges. The degree d_u of a node u is the number of edges incident to u i.e., for $u, v \in V$ and $e \in E$, $d_u = \sum_{u \neq v} e_{u,v}$. A graph $G' = (V', E')$ is a subgraph of G, if $V' \subseteq V$ and $E' \in E$. The largest connected component (GC) is the maximal connected subgraph of G. The elements of the $n \times n$-symmetric adjacency matrix, A, of G can be written as

$$A_{ij} = \begin{cases} 1, & \text{if } (i, j) \in E \\ 0, & \text{otherwise.} \end{cases} \quad (4)$$

Higher-order network structure, e.g., motif, represents local interaction pattern of the network. In a disease transmission network motif provide significant insights about the spread of the diseases. For example, the presence of dense motif or fully connected motif can increase the spread of the disease through the network, while chain-like motif can decrease the spread of the disease (Leitch et al. (2019)). A motif is a recurrent multi-node subgraph pattern. A detailed description of network motifs and their functionality in a complex network can be found in Milo et al. (2002); Ahmed et al. (2016); Rosas-Casals and Corominas-Murtra (2009), and Dey et al. (2019). Figure 1 shows all connected 3-node motifs (T) and 4-node motifs (M).

![Figure 1](image.png)

Figure 1: All 3-node and 4-node connected network motifs.

Temporal Network is an emerging extension of network analysis which appears in many domains of knowledge, including epidemiology (Valdano et al. 2015; Demirel et al. 2017; Enright and Kao 2018), and finance (Battiston et al. 2010; Zhao et al. 2018; Begnusić et al. 2018). A temporal network is a network structure that changes in time. That is, a temporal network can be represented with a time indexed graph $G_t = (V(t), E(t))$, where, $V(t)$ is the set of nodes in the network at time t, $E(t) \subset V(t) \times V(t)$ is a set of edges in the network at time t. Here t is either discrete or continuous. Figure 2 depicts a small 15-node temporal network with time $t = 1, 2$, and 3.
In order to quantify the county level spread of Covid-19 we construct a complex network \((G_t)\) in each day \((t)\) between Jan 2, 2020 to May 29, 2020: \(G = \{G_1, \ldots, G_T\}\), where \(T = 130\). We evaluate the occurrences of different motifs in each \(G_t\). An increase number of motifs, i.e., \(T\) and \(M\), and other network features e.g., \(E\), indicate a higher spread in local community. These increases of higher order network structures have potential impacts on \(AP\), and \(Vol\).

Let \(C\) be the set of counties in US, \(I\) is the set of Covid-19 new cases identified in \(C\) on a day \(t\), and \(D\) is the of pairwise distance matrix in miles among centroid of the counties in \(C\). We use the following three steps to construct the Covid-19 spread network \((G_t)\) at time \(t\) and compute the occurrences of motifs in \(G_t\):

1. Each County in \(C\) with \(\gamma\) or more Covid-19 new cases, \(\gamma \in \mathbb{Z}^+\), makes node in the network \((G_t)\).

2. Two counties (i.e., nodes), \(i\) and \(j\), are connected by an edge if (1) both counties have \(\lambda\) or more Covid-19 new cases, \(\lambda \in \mathbb{Z}^+\), and (2) the distance between \(i\) and \(j\) is less than \(\delta\), \(\delta \in \mathbb{R}_{\geq 0}\). Therefore, the adjacency matrix, \(A_t\), is written as

 \[
 A_{ij}^t = \begin{cases}
 1, & \text{if } I_i, I_j > \lambda \& D_{ij} > \delta \\
 0, & \text{otherwise.}
 \end{cases}
 \]

3. We compute occurrences of nodes \((V_t)\), edges \((E_t)\), different 3-node motif \((T(t))\), different 4-node motifs \((M(t))\), and size of the largest connected component \((GC(t))\) in \(G_t\).

In this study we choose \(\gamma = 5\), \(\lambda = 5\), and \(\delta = 100\). That is, if two counties both have 5 or more Covid-19 cases and if the distance between these two counties is less than 100 miles they are connected by an edge. Fig. 3 shows Covid-19 spread network in US counties on April 11, 2020. We consider different network features e.g., \(E, T, M\), etc. as metrics of the local spread of Covid-19. We normalize each of the network variables based on Eq. 3 as

\[
SP_t = \frac{N_t - \mu_N}{\sigma_N},
\]
Figure 3: Local spread of Covid-19. (a) Shows US counties with 5 or more Coronavirus cases ($\gamma = 5$) on April 11, 2020. (b) Represents the corresponding spread network ($\lambda = 5$, $\delta = 100$) with 514 nodes and 3831 edges.

where, N_t is a network variable (e.g., E) at day t, μ_N and σ_N are the mean and standard deviation of the corresponding variable within the sliding window of days $[t - k, t - 1]$.

2.4 Google Trend data

A number of studies, e.g., Preis et al. (2010); Bijl et al. (2016), and Kim et al. (2019), show that there is a significant correlation between stock variables (e.g., return, volume, and volatility) and related Google searches, and Google search data can be used to predict future stock.

We investigate whether Google trend data affect the abnormal price, AP, and volatility, Vol, and if we can use Google search volumes to predict AP and Vol. We obtain the volume of the Covid-19 related daily Google searches (e.g., “Coronavirus”) from Jan 2, 2020 to May 29, 2020. We select the location of a query in “US” and in the “World”. We standardized each Google search variable similar to Eq. 3 as

$$GT_t = \frac{G_t - \mu_G}{\sigma_G},$$

(7)

where, G_t is a Google search variable at day t, μ_G and σ_G are the mean and standard deviation of the corresponding variable within the sliding window of days $[t - k, t - 1]$. Table 1 provides an overview of the data sets and variables that are used in this study.
Table 1: Overview of the data sets.

Data type	Variables
Stock market	S&P 500 daily closing price
Covid-19	US total cases, US new cases, US total deaths, US new death, World total cases, World new cases, World total deaths, World new deaths
Google Trends	“Coronavirus” US, “Covid-19” US, “Covid 19” US, “Covid - 19” US, “Coronavirus” World, “Covid-19” World, “Covid 19” World, “Covid - 19” World
Local Spread	V, E, GC, T_1, T_2, M_1, M_2, M_3, M_4, M_5, M_6

3 Methodology

We investigate the impact of Covid-19 cases and deaths, local spread spreads of Covid-19, and Covid-19 related Google search volumes on the abnormal stock price and volatility.

3.1 Correlation and Causality

A correlation test is widely used to evaluate relationship between stock market and potential covariate (Preis et al. (2010); Alanyali et al. (2013); Preis et al. (2013); Kim et al. (2019)). In this study, we use Spearman’s rank correlation to study correlation between stock market (AP and Vol) and each of the Covid-19 related variables.

To assess potential predictive utilities of Covid-19 cases, local spreads, and Google search interests on abnormal price formation (AP) and Vol, we apply the concept of Granger causality (Granger (1969)). The Granger causality test evaluates whether one time series is useful in forecasting another. Let Y_t, $t \in Z^+$ be a $p \times 1$-random vector (AP_t or V_t) and let $\mathcal{F}_{Y_t} = \sigma\{Y_s : s = 0, 1, \ldots, t\}$ denote a σ-algebra generated from all observations of Y in the market up to time t. Consider a sequence of random vectors $\{Y_t, X_t\}$, where X can be either Covid-19 cases, local spreads or Google search volumes. Suppose that for all $h \in Z^+$

$$F_{t+h}\left(\cdot|\mathcal{F}_{Y_t}\right) = F_{t+h}\left(\cdot|\mathcal{F}_{Y_t}\right),$$

where $F_{t+h}\left(\cdot|\mathcal{F}_{Y_t}\right)$ and $F_{t+h}\left(\cdot|\mathcal{F}_{Y_t}\right)$ are conditional distributions of Y_{t+h}, given Y_{t-1}, X_{t-1} and Y_{t-1}, respectively. Then, X_{t-1} is said not to Granger cause Y_{t+h} with respect to \mathcal{F}_{Y_t}. Otherwise, X is said to Granger cause Y, which can be denoted by $G_{X \rightarrow Y}$, where \rightarrow represents the direction of causality (White et al. (2011); Dey et al. (2020)).
We fit two models, where one model includes X and another does not include X (base model), and compare their predictive performance to assess causality of X to Y using an F-test, under the null hypothesis of no explanatory power in X. For univariate cases we compare the following two models:

\[y_t = \alpha_0 + \sum_{k=1}^{d} \alpha_k y_{t-k} + \sum_{k=1}^{d} \beta_k x_{t-k} + e_t, \]

versus the base model

\[y_t = \alpha_0 + \sum_{k=1}^{d} \alpha_k y_{t-k} + \tilde{e}_t. \]

If \(\text{Var}(e_t) \) is significantly lower than \(\text{Var}(\tilde{e}_t) \), then x contains additional information that can improve forecasting of y, i.e., \(G_{x \rightarrow y} \). We can also fit two linear vector autoregressive (VAR) models, with and without X, respectively, and evaluate statistical significance of model coefficients associated with X.

3.2 Predictive Models

To quantify the forecasting utility of the covariates (X), i.e., Covid-19 cases, US county level spreads of Covid-19, and Google searches, we develop predictive models with and without X and compare their predictive performances. In order to conduct such a comparison, Box-Jenkins (BJ) class of parametric linear models are commonly used. However, different studies, e.g., [Kane et al. (2014); Dey et al. (2020)], show that flexible Random Forest (RF) models often tend to outperform the BJ models in their predictive capabilities. We present the comparative analysis based on the RF models. However, any appropriate forecasting model (e.g., autoregressive integrated moving average (ARIMA(p, d, q)), can also be used to compare the predictive performances of the covariates.

A RF model sorts the predictor space into a number of non-overlapping regions \(R_1, R_2, \cdots, R_m \) and makes a top-down decision tree. A common dividing technique is recursive binary splitting process, where in each split it makes two regions \(R_1 = \{ X|X_j < k \} \) and \(R_2 = \{ X|X_j \geq k \} \) by considering all possible predictors \(X_j \)s and their corresponding cutpoint \(k \) such that residual sum of squares (RSS) (Eq. 11) become the lowest.

\[\text{RSS} = \sum_{x_i \in R_1(j,k)} (y_i - \hat{y}_{R_1}) + \sum_{x_i \in R_2(j,k)} (y_i - \hat{y}_{R_2}), \]

where \(\hat{y}_{R_1} \) and \(\hat{y}_{R_2} \) are the mean responses for the training observations in the region \(R_1(j,k) \), and in \(R_2(j,k) \), respectively. To improve the predictive accuracy, instead of fitting a single tree, RF technique builds a number of decision trees and averages their individual predictions (Hastie et al. (2001)). RF is a
non-linear model (piece-wise linear). Therefore, if there is any nonlinear causality (Kyrtsou and Labys (2006); Anoruo (2012); Song and Taamouti (2018)) of X to AP and V, RF model apprehends this causality.

We compare predictive performance of a baseline model (Model P_0), which includes only the lagged values of the abnormal price, with other proposed models which additionally include a set of covariates. The covariates are selected based on their significant correlations and causalities. Table 2 represents a description of the five models we use in our analysis.

Table 2: Model description for abnormal price AP and varying predictors.

Model	Predictors
Model P_0	AP lag 1, AP lag 2, AP lag 3
Model P_1	AP lag 1, AP lag 2, AP lag 3, US total deaths lag 1, US total deaths lag 2, US total deaths lag 3, World new deaths lag 1, World new deaths lag 2, World new deaths lag 3
Model P_2	AP lag 1, AP lag 2, AP lag 3, Edges lag 1, Edges lag 2, Edges lag 3, GC lag 1, GC lag 2, GC lag 3, T_2 lag 1, T_2 lag 2, T_2 lag 3, M_4 lag 1, M_4 lag 2, M_4 lag 3
Model P_3	AP lag 1, AP lag 2, AP lag 3, “Covid-19” US lag 1, “Covid-19” US lag 2, “Covid 19” US lag 1, “Covid 19” US lag 2, “Covid-19” World lag 1, “Covid-19” World lag 2
Model P_4	AP lag 1, AP lag 2, AP lag 3, “Covid-19” US lag 1, “Covid-19” US lag 2, “Covid 19” US lag 1, “Covid 19” US lag 2, T_2 lag 1, T_2 lag 2, US total deaths lag 1, US total deaths lag 2

We consider the root mean squared error (RMSE) as measure of prediction error. The RMSE for abnormal price modeling can be defined as

$$RMSE = \sqrt{(1/n) \sum_{i=1}^{n} (y_i - \hat{y}_i)^2},$$

where y_i is the test set of abnormal price (AP) and \hat{y}_i is the corresponding predicted value. We calculate the percentage change in prediction error (RMSE) for a specific model in Table 2 with respect to model P_0 as

$$\Delta = \left(1 - \frac{\Psi(P_i)}{\Psi(P_0)}\right) \times 100\%, \quad i = 1, \ldots, 4,$$

(12)

where $\Psi(P_i)$ and $\Psi(P_0)$ are the RMSE of model P_0 and model P_i, respectively. If $\Delta > 0$, the covariate (X) is said to improve prediction of Y. We compare the Δ for different models, calculated for varying prediction horizons.
3.3 Analysis of Volatility

We now turn to evaluate the utility of Covid-19 cases and deaths, US county level spreads of Covid-19, and Google searches in predicting stock market volatility. Let the conditional mean of log return of S&P 500 price (r_t) be given as

$$y_t = E(y_t|I_{t-1}) + \epsilon_t,$$

where I_{t-1} is the information set at time $t-1$, and ϵ_t is conditionally heteroskedastic error. We build two exponential GARCH (EGARCH (p, q)) models, Model 0 and Model X, where Model 0 is a standard EGARCH model with no explanatory variables, and Model X includes a set of explanatory variables:

$$\epsilon_t = \sigma_t \eta_t,$$

Model 0: $\log_e(\sigma_t^2) = \omega_0 + \sum_{i=1}^{q} (\omega_i \eta_t - j + \gamma_j (|\eta_t - j| - E|\eta_t - j|)) + \sum_{j=1}^{p} \tau_j \log_e(\sigma_t^2 - j),$

Model X: $\log_e(\sigma_t^2) = \omega_0 + \sum_{i=1}^{q} (\omega_i \eta_t - j + \gamma_j (|\eta_t - j| - E|\eta_t - j|)) + \sum_{j=1}^{p} \tau_j \log_e(\sigma_t^2 - j) + \Lambda X_t,$

where $\eta_t \sim iid (0,1), i = 1, 2, \ldots, q, j = 1, 2, \ldots, p$ (Nelson (1991); McAleer and Hafner (2014); Chang and McAleer (2017); Martinet and McAleer (2018); Bollerslev et al. (2020)).

We select a set of eight explanatory variables: $X = [\text{US total deaths lag 1, US total deaths lag 2, # Edges lag 1, # Edges lag 2, } T_2 \text{ lag 1, } T_2 \text{ lag 1, } \text{“Covid 19” US lag 1, “Covid 19” US lag 2}]$ with $\Lambda = [\lambda_1 \lambda_2 \cdots \lambda_8]$. All the explanatory variables are in the form of log returns. For simplicity we choose EGARCH (1,1) model. For EGARCH (1,1) with the assumption of $\eta_t \sim iid (0,1)$ the two propose models (Eq. 14) reduce to

Model 0: $\log_e(\sigma_t^2) = \omega_0 + \omega_i \eta_t - j + \gamma_j |\eta_t - j| + \tau_j \log_e(\sigma_t^2 - j),$

Model X: $\log_e(\sigma_t^2) = \omega_0 + \omega_i \eta_t - j + \gamma_j |\eta_t - j| + \tau_j \log_e(\sigma_t^2 - j) + \sum_{l=1}^{8} \lambda_l x_l.$

The performances of the two models are compared based on their log likelihood, Akaike Information Criterion (AIC) and Bayesian information criterion (BIC).

4 Result

We investigate the effect of Covid-19 public health crisis on the stock market, in particular, on S&P 500. We primarily focus on S&P 500 reaction to Covid-19
cases and deaths, local spread, and Covid-19 related Google searches. Figure 4 shows the movements of abnormal S&P 500 price and volatility from January 13, 2020 to May 29, 2020. The top panel reveals the precipitous drop of S&P 500 price compare to last seven months prices (Eq. 1). Historic high volatility (Eq. 2) is depicted in the bottom panel.

![Figure 4: Time plots of abnormal price (AP) and volatility (Vol) from January 13 2020 to May 29 2020.](image)

We start our analysis with the Spearman’s rank correlation test. We calculate correlations between the daily abnormal S&P 500 closing price AP and the daily Covid-19 cases and deaths, and daily occurrences of higher order structures in the spread network at different time lags. For example, at lag 1 we compute correlation of AP at day t with Covid-19 cases and deaths, and higher order network structures, all at day $t - 1$. These lag correlations evaluate the directionality of the relationships. Figure 5a shows the box plots which combined correlations between each Covid-19 cases and deaths variable and AP at different lag. Here we build two box plots at each lag: one for Covid-19 cases and deaths in the US (four valuables), and another for Covid-19 cases and deaths in the World (four valuables). Similarly, Figure 5b represents the box plots that combined correlations between each eleven local spread variables and AP at different lag.

We find that there exists significant (negative) correlation between Covid-19 cases and deaths in US and abnormal S&P 500 in all six lags, $lag = 1, 2, \cdots, 6$. However, there is no significant correlation between Covid-19 cases and deaths in entire world and abnormal S&P 500 (p-value > 0.05) in any lag (see Table 7 in Appendix). We also find that all the local spread variables are significantly (negative) correlated (p-value < 0.05) with abnormal S&P 500 in every $lag = 1, 2, \cdots, 6$. That is, US county level spread of Covid-19 adversely effect the price of S&P 500. However, it is anticipated that the strength of correlations of local spread variables will gradually decrease in higher lags, which is also reflected
Figure 5: (Spearman) Correlations between Covid-19 and abnormal S&P 500. Correlations of eight Covid-19 variables in each lags are summarized in a box plot.

Some of the Covid-19 related google searches, e.g., “Covid-19” in US and “Corona” in world are also significantly correlated (p-value > 0.1) with abnormal S&P 500 in different lags (Table 9 in Appendix).

We now investigate the potential impact of Covid-19 cases and deaths, its local spread, and related Google searches on S&P 500 price formation and risk, i.e., volatility. Table 3 and Table 4 present summaries of the Granger causality tests for predictive utility of Covid-19 cases and deaths, and county level local spreads, respectively. Here the direction of causality is denoted by \rightarrow.

We find that US total new cases and US total death have significant predictive impacts on price and volatility. US total number of cases have predictive relationship only with volatility in few lags. Among world Covid-19 cases and deaths only total new deaths have causality on price and volatility. Almost all the local spread variables have predictive impact on price, but none of them except # Edges at lag 1 have causality on volatility. That is, county level spread of Covid-19 significantly influence abnormal price formation, but, surprisingly, they do not have causal linkage with the volatility. Table 10 in Appendix shows that a number of Google search variables have causality effects on abnormal price. However, only “Coronavirus” US and “Covid 19” US have predictive impacts on volatility at very few lags.

Now we turn our analysis to compare the predictive performance of models described in Table 2. Table 5 percents prediction errors based on Eq. 12 calculated for varying prediction horizons $h = 1, 2, \ldots, 6$. For short term forecasting horizons ($h = 1, 2,$ and 3) model P_3, which is based on Google search variables yields more accurate performance. For longer term forecasting horizons ($h = 4, 5,$ and 6), model P_2 containing information from local spreads delivers...
Table 3: Summary of G-causality analysis of Covid-19 cases and deaths on abnormal S&P 500 (y) on different lag effects (day). P and Vol denote significance in price and volatility, respectively. Blank space implies no significance. Confidence level is 90%.

Causality	Lag
US total cases $\rightarrow y$	$-$ $-$ $-$ Vol $-$ Vol $-$
US total deaths $\rightarrow y$	P/Vol Vol P/Vol P/Vol P/Vol P/Vol P/Vol
US new cases $\rightarrow y$	P/Vol $-$ $-$ Vol P P/Vol P/Vol
US new deaths $\rightarrow y$	$-$ $-$ $-$ $-$ $-$ P $-$
World total cases $\rightarrow y$	$-$ $-$ $-$ $-$ $-$ $-$ $-$
World total deaths $\rightarrow y$	$-$ $-$ $-$ $-$ $-$ $-$ $-$
World new cases $\rightarrow y$	$-$ $-$ $-$ $-$ $-$ $-$ $-$
World new deaths $\rightarrow y$	$-$ P P P Vol Vol $-$

Table 4: Summary of G-causality analysis of Covid-19 spreads on abnormal S&P 500 (y) on different lag effects (day). P and Vol denote significance in price and volatility, respectively. Blank space implies no significance. Confidence level is 90%.

Causality	Lag
# Edges $\rightarrow y$	Vol P P P P P P
GC $\rightarrow y$	P P P P P P P
T_1 $\rightarrow y$	P P $-$ $-$ $-$ $-$ $-$
T_2 $\rightarrow y$	P P P P P P P
V_1 $\rightarrow y$	$-$ $-$ P $-$ $-$ $-$ $-$
V_2 $\rightarrow y$	$-$ $-$ P P $-$ P P
V_3 $\rightarrow y$	$-$ $-$ $-$ $-$ $-$ $-$ $-$
V_4 $\rightarrow y$	$-$ $-$ P P P P P
V_5 $\rightarrow y$	$-$ $-$ P P P P P
V_6 $\rightarrow y$	$-$ $-$ $-$ P $-$ $-$ $-$
Total # V $\rightarrow y$	$-$ $-$ $-$ P $-$ $-$ $-$

the most competitive results, followed by model P_4, which contains information from Covid-19 deaths, local spreads, and Google searches.

Figure 6 represents a comparison of the observed data with fitted values from baseline model (model P_0) and four other models, i.e., model P_1, P_2, P_3, and P_4. For 1 day horizon model P_3 yield a noticeably higher predictive accuracy followed by model P_4. For 2 day horizon, although it is expected that the prediction performances of all models deteriorates compare to their performances for 1 day horizon, model P_3 again delivers the best prediction accuracy.

We now evaluate the influence of Covid-19 cases and deaths, US county level spreads of Covid-19, and Google searches in S&P 500 volatility. A comparison of the two EGARCH models, Model 0 and Model X (Eq. 15) including the
Table 5: Predictive utilities (Δ) of models in Table 2 over the baseline model (Mode P₀) for different prediction horizons.

h	Model P₁	Model P₂	Model P₃	Model P₄
1	-0.411	-5.305	7.219	2.086
2	0.171	-1.257	2.279	0.042
3	1.549	3.242	3.477	2.397
4	1.463	3.579	3.368	2.672
5	1.410	3.843	2.718	2.922
6	0.962	3.898	2.718	3.107

(a) h=1 day. (b) h=2 days.

Figure 6: Abnormal price prediction for March 2020 to May 2020 with 1, and 2 day horizons.

estimated parameters of the explanatory variables for Model X are presented in Table 6. All EGARCH coefficients expect the constant term (ω₀) are statistically significant in both models. However, unexpectedly, the coefficients estimates of all the covariates in Model X are not statistically significant.

We also examine the goodness of fit of the two models by comparing their log likelihood, Akaike Information Criterion (AIC) and Bayesian information criterion (BIC). We find that Model 0 tends to describe the S&P 500 volatility more accurately than the volatility model with covariates, Model X. That is, Covid-19 cases and deaths, its local spread and Google searches do not significantly influence the S&P 500 volatility. Figure 7 also suggests that Model 0 captures the spikes of the price returns more accurately than Model X.

5 Conclusion

The aim of this paper is to evaluate whether Covid-19 cases and deaths, local spread spreads of Covid-19, and Google search activity explain and predict US stock market Crash in 2020. We develop a modeling framework that systematically evaluates the correlation - causality - predictive utility of each of the
Table 6: Estimates of EGARCH models for S&P 500 price volatility. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Parameter	Model X Coef.	t value	Model 0 Coef.	t value
ω_0	-0.611	-1.287	-0.392	-1.394
ω	-0.517	-3.249***	-0.484	-3.443***
γ	0.514	2.387***	0.513	2.871***
τ	0.937	16.192***	0.955	2.871***
US total deaths lag 1 (λ_1)	-0.867	-0.864		
US total deaths lag 2 (λ_2)	-0.558	-0.609		
# Edges lag 1 (λ_3)	-0.260	-1.235		
# Edges lag 2 (λ_4)	0.050	0.221		
T_2 lag 1 (λ_5)	-0.514	-0.939		
T_2 lag 1 (λ_6)	-0.067	-0.120		
“Covid 19” US lag 1 (λ_7)	-0.132	-0.167		
“Covid 19” US lag 2 (λ_8)	-0.476	-0.621		
Log-likelihood	214.049		218.258	
AIC	-4.540		-4.709	
BIC	-4.205		-4.599	

Figure 7: Time plots of AP and Vol from January 13 2020 to May 29 2020.

Covid-19 related features on stock decline and stock volatility. In order to quantify local spreads of Covid-19 we construct a temporal spread network and study the dynamics of higher order network structures as a measure of local spreads. We find that Covid-19 cases and deaths, its local spread spreads, and Google
search activities have contemporary relationships and predictive abilities on abnormal stock prices. This indicates that Covid-19 cases and deaths, and its local spread not only unprecedentedly disrupt economic activity and cause a collapse in demand for different goods but also they make investors panic and anxious. The anxiety also reflects in Google search intensity for Covid-19. These shocks affect investment decisions and the subsequent stock price dynamics. On the other hand, a very few Covid-19 variables have causal relationship on volatility. But EGARCH models show that Covid-19 cases and deaths, its local spread spreads, and Google search volumes do not have impact on volatility. Different forms volatility measure [Molnár (2012); Kim et al. (2019); Bijl et al. (2016)] lead to the same conclusions.
6 Appendix

Table 7: Spearman correlations between covid-19 cases and abnormal S&P 500. blue color indicates significant correlation (p-values < 0.05), while black color represents non-significant correlation (p-values > 0.05).

Lag	0	1	2	3	4	5	6
US total cases	-0.45	-0.48	-0.53	-0.59	-0.60	-0.59	-0.55
US total deaths	-0.75	-0.76	-0.78	-0.82	-0.83	-0.82	-0.78
US new cases	-0.37	-0.41	-0.42	-0.45	-0.48	-0.48	-0.40
US new deaths	-0.37	-0.34	-0.36	-0.40	-0.45	-0.45	-0.39
World total cases	-0.04	-0.05	-0.01	0.00	0.03	0.06	0.07
World total deaths	-0.08	-0.11	-0.11	-0.18	-0.20	-0.19	-0.17
World new cases	-0.14	-0.18	-0.13	-0.15	-0.17	-0.18	-0.18
World new deaths	-0.11	-0.09	-0.10	-0.17	-0.21	-0.17	-0.14

Table 8: Spearman correlations between Local spread variables and abnormal S&P 500. blue color indicates significant correlation (p-values < 0.05). A non-significant correlation (p-values > 0.05) is presented by black color.

Lag	0	1	2	3	4	5	6
Edge	0.60	-0.58	-0.63	-0.64	-0.61	-0.60	-0.57
GC	0.61	-0.43	-0.50	-0.50	-0.50	-0.51	-0.49
T_1	0.95	-0.35	-0.35	-0.34	-0.31	-0.30	-0.30
T_2	0.90	-0.35	-0.36	-0.35	-0.34	-0.32	-0.32
M_1	0.82	-0.22	-0.23	-0.22	-0.20	-0.19	-0.20
M_2	0.93	-0.31	-0.30	-0.30	-0.28	-0.27	-0.27
M_3	0.98	-0.35	-0.35	-0.35	-0.32	-0.31	-0.30
M_4	0.84	-0.27	-0.26	-0.25	-0.25	-0.22	-0.22
M_5	0.84	-0.36	-0.35	-0.35	-0.33	-0.32	-0.31
M_6	0.91	-0.40	-0.40	-0.38	-0.38	-0.36	-0.35
TotM	0.93	-0.39	-0.39	-0.38	-0.37	-0.35	-0.33

References

Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N., Willke, T.L., 2016. Graphlet decomposition: Framework, algorithms, and applications. Knowledge and Information Systems (KAIS) 50, 1–32.

Alamyli, M., Moat, H.S., Preis, T., 2013. Quantifying the relationship between financial news and the stock market. Scientific Reports 3, 3578.
Table 9: Spearman correlations between google trend and abnormal S&P 500. A significant correlation (p-values < 0.05) is represented by blue color, while black color indicates a non-significant correlation (p-values > 0.05).

	Lag 0	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6
“Coronavirus” US	0.02	-0.03	-0.10	-0.11	-0.08	-0.07	-0.10
“Corona” US	0.25	0.18	0.12	0.11	0.09	0.05	0.02
“Covid-19” US	-0.26	-0.31	-0.28	-0.29	-0.29	-0.32	
“Covid 19” US	-0.09	-0.15	-0.17	-0.21	-0.25	-0.29	-0.30
“Coronavirus” World	0.10	0.08	.01	-0.03	-0.05	-0.08	-0.06
“Corona” World	0.26	0.22	0.16	0.11	0.06	0.02	0.00
“Covid-19” World	-0.04	-0.07	-0.08	-0.10	-0.11	-0.12	-0.14
“Covid 19” World	-0.11	-0.11	-0.12	-0.15	-0.21	-0.25	

Table 10: G-causality analysis of Google searches on abnormal S&P (y) on different lag effects (day). P and Vol denote significance in price and volatility, respectively. Blank space implies no significance. Confidence level is 90%.

Causality	1	2	3	4	5	6	7
“Coronavirus” US $\rightarrow y$	-	-	-	-	-	-	-
“Covid-19” US $\rightarrow y$	P	P	P	P	P	-	-
“Covid 19” US $\rightarrow y$	Vol	P	P	P	-	-	-
“Covid - 19” US $\rightarrow y$	-	P	-	-	-	-	-
“Coronavirus” World $\rightarrow y$	-	-	P	-	-	-	-
“Covid-19” World $\rightarrow y$	P	P	P	P	P	-	-
“Covid 19” World $\rightarrow y$	-	-	-	-	-	-	-
“Covid - 19” World $\rightarrow y$	P	P	P	-	-	-	-

Albuquerque, R., Vega, C., 2008. Economic News and International Stock Market Co-movement*. Review of Finance 13, 401–465.

Anoruo, E., 2012. Testing for linear and nonlinear causality between crude oil price changes and stock market returns. International Journal of Economic Sciences and Applied Research (IJESAR) 4, 75–92.

Arias-Calluari, K., Alonso-Marroquin, F., Nattagh-Najafi, M., Harré, M., 2020. Methods for forecasting the effect of exogenous risk on stock markets. arXiv preprint arXiv:2005.03969 .

Baker, M., Wurgler, J., 2007. Investor sentiment in the stock market. The Journal of Economic Perspectives 21, 129–151.

Baker, S.R., Bloom, N., Davis, S.J., Kost, K.J., Sammon, M.C., Viratyosin, T., 2020. The Unprecedented Stock Market Impact of COVID-19. Working Paper 26945. National Bureau of Economic Research.
Bandopadhyaya, A., Jones, A., 2005. Measuring investor sentiment in equity markets. Journal of Asset Management 7.

Barndorff-Nielsen, O.E., Shephard, N., 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64, 253–280.

Battiston, S., Glattfelder, J.B., Garlaschelli, D., Lillo, F., Caldarelli, G., 2010. The Structure of Financial Networks. Springer London, London. pp. 131–163. doi:10.1007/978-1-84996-396-1_7.

Beaulieu, M.C., Cosset, J.C., Essaddam, N., 2006. Political uncertainty and stock market returns: evidence from the 1995 quebec referendum. Canadian Journal of Economics/Revue canadienne d’économique 39, 621–642.

Begušić, S., Kostanjcar, Z., Kovac, D., Stanley, H., Podobnik, B., 2018. Information feedback in temporal networks as a predictor of market crashes. Complexity 2018, 1–13. doi:10.1155/2018/2834680.

Bijl, L., Kringhaug, G., Molnár, P., Sandvik, E., 2016. Google searches and stock returns. International Review of Financial Analysis 45, 150 – 156. doi:https://doi.org/10.1016/j.irfa.2016.03.015.

Bollen, J., Mao, H., Zeng, X., 2011. Twitter mood predicts the stock market. Journal of Computational Science 2, 1 – 8. doi:https://doi.org/10.1016/j.jocs.2010.12.007.

Bollerslev, T., Patton, A.J., Quaedvlieg, R., 2020. Multivariate leverage effects and realized semicovariance garch models. Journal of Econometrics 217, 411 – 430. doi:https://doi.org/10.1016/j.jeconom.2019.12.011 nonlinear Financial Econometrics.

Bomfim, A.N., 2003. Pre-announcement effects, news effects, and volatility: Monetary policy and the stock market. Journal of Banking & Finance 27, 133 – 151.

Brooks, C., 1998. Predicting stock index volatility: can market volume help? Journal of Forecasting 17, 59–80. doi:10.1002/(SICI)1099-131X(199801)17:1<59::AID-FOR676>3.0.CO;2-H.

Cagle, J.A., 1996. Natural disasters, insurer stock prices, and market discrimination: The case of hurricane hugo. Journal of Insurance Issues 19, 53–68.

Cao, K.H., Li, Q., Liu, Y., Woo, C.K., 2020. Covid-19’s adverse effects on a stock market index. Applied Economics Letters 0, 1–5. doi:10.1080/13504851.2020.1803481.

Cavallo, E., Noy, I., 2009. The Economics of Natural Disasters - A Survey. Working Papers 200919. University of Hawaii at Manoa, Department of Economics.
Chang, C.L., McAleer, M., 2017. The correct regularity condition and interpretation of asymmetry in egarch. Economics Letters 161, 52 – 55. doi: https://doi.org/10.1016/j.econlet.2017.09.017

Chau, F., Deesomsak, R., Wang, J., 2014. Political uncertainty and stock market volatility in the middle east and north african (mena) countries. Journal of International Financial Markets, Institutions and Money 28, 1 – 19.

Demirel, G., Barter, E., Gross, T., 2017. Dynamics of epidemic diseases on a growing adaptive network. Scientific Reports 7, 42352. doi:10.1038/srep42352

Dey, A.K., Akcora, C.G., Gel, Y.R., Kantarcioğlu, M., 2020. On the role of local blockchain network features in cryptocurrency price formation. Canadian Journal of Statistics n/a. doi:10.1002/cjs.11547

Dey, A.K., Gel, Y.R., Poor, H.V., 2019. What network motifs tell us about resilience and reliability of complex networks. Proceedings of the National Academy of Sciences 116, 19368–19373. doi:10.1073/pnas.1819529116

Enright, J., Kao, R.R., 2018. Epidemics on dynamic networks. Epidemics 24, 88 – 97. doi:https://doi.org/10.1016/j.epidem.2018.04.003

Gao, Z., Ren, H., Zhang, B., 2020. Googling investor sentiment around the world. Journal of Financial and Quantitative Analysis 55, 549–580. doi:10.1017/S0022109019000061

García Petit, J.J., Vaquero Lafuente, E., Rúa Vieites, A., 2019. How information technologies shape investor sentiment: A web-based investor sentiment index. Borsa Istanbul Review 19, 95 – 105.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning. Springer Series in Statistics, Springer New York Inc., New York, NY, USA.

Hudson, R., Urquhart, A., 2015. War and stock markets: The effect of world war two on the british stock market. International Review of Financial Analysis 40, 166 – 177.

Huynh, T., Burggraf, T., 2019. If worst comes to worst: Co-movement of global stock markets in the us-china trade war. SSRN Electronic Journal.

Ichev, R., Marinê, M., 2018. Stock prices and geographic proximity of information: Evidence from the ebola outbreak. International Review of Financial Analysis 56, 153 – 166.
Kane, M.J., Price, N., Scotch, M., Rabinowitz, P., 2014. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics 15, 276.

Kim, N., Lučivjanská, K., Molnár, P., Villa, R., 2019. Google searches and stock market activity: Evidence from Norway. Finance Research Letters 28, 208 – 220. doi:https://doi.org/10.1016/j.frl.2018.05.003

Kyrtsou, C., Labys, W.C., 2006. Evidence for chaotic dependence between US inflation and commodity prices. Journal of Macroeconomics 28, 256 – 266. doi:https://doi.org/10.1016/j.jmacro.2005.10.019 nonlinear Macroeconomic Dynamics.

Lee, J.W., McKibbin, W.J., 2004. Globalization and disease: The case of SARS. Asian Economic Papers 3, 113–131.

Leitch, J., Alexander, K., Sengupta, S., 2019. Toward epidemic thresholds on temporal networks: a review and open questions. Applied Network Science 4. doi:10.1007/s41109-019-0230-4

Martinet, G.G., McAleer, M., 2018. On the invertibility of EGARCH(p, q). Econometric Reviews 37, 824–849. doi:10.1080/07474938.2016.1167994

McAleer, M., Hafner, C.M., 2014. A one line derivation of EGARCH. Econometrics 2, 92–97. doi:10.3390/econometrics2020092

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U., 2002. Network motifs: simple building blocks of complex networks. Science 298, 824–827.

Molnár, P., 2012. Properties of range-based volatility estimators. International Review of Financial Analysis 23, 20 – 29. doi:https://doi.org/10.1016/j.irsfa.2011.06.012 complexity and Non-Linearities in Financial Markets: Perspectives from Econophysics.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59, 347–370.

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., Agha, R., 2020. The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. International Journal of Surgery 78. doi:10.1016/j.ijsu.2020.04.018

Nippani, S., Washer, K.M., 2004. SARS: a non-event for affected countries’ stock markets? Applied Financial Economics 14, 1105–1110.

Onali, E., 2020. Covid-19 and stock market volatility doi:http://dx.doi.org/10.2139/ssrn.3571453

Preis, T., Moat, H.S., Stanley, H.E., 2013. Quantifying trading behavior in financial markets using google trends. Scientific Reports 3, 1684.
Preis, T., Reith, D., Stanley, H., 2010. Complex dynamics of our economic life on different scales: Insights from search engine query data. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 368, 5707–19. doi:10.1098/rsta.2010.0284

Rosas-Casals, M., Corominas-Murtra, B., 2009. Assessing European power grid reliability by means of topological measures. WIT Transactions on Eco. and the Env. 121, 527–537.

Schneider, G., Troeger, V.E., 2006. War and the world economy: Stock market reactions to international conflicts. Journal of Conflict Resolution 50, 623–645. doi:10.1177/0022002706290430, arXiv:https://doi.org/10.1177/0022002706290430

Schumaker, R.P., Chen, H., 2008. Evaluating a news-aware quantitative trader: The effect of momentum and contrarian stock selection strategies. Journal of the American Society for Information Science and Technology 59, 247–255.

Shan, L., Gong, S.X., 2012. Investor sentiment and stock returns: Wenchuan earthquake. Finance Research Letters 9, 36 – 47.

Siu, A., Wong, Y.C.R., 2004. Economic impact of sars: The case of hong kong. Asian Economic Papers 3, 62–83. doi:10.1162/1535351041747996

Song, X., Taamouti, A., 2018. Measuring nonlinear Granger causality in mean. Journal of Business & Economic Statistics 36, 321–333. doi:10.1080/07350015.2016.1166118

Valdano, E., Ferreri, L., Poletto, C., Colizza, V., 2015. Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005. doi:10.1103/PhysRevX.5.021005

Wagner, A., 2020. What the stock market tells us about the post-covid-19 world. Nature Human Behaviour 4. doi:10.1038/s41562-020-0869-y

White, H., Chalak, K., X., L., 2011. Linking Granger causality and the Pearl causal model with settable systems, in: JMLR, pp. 1–29.

Worthington, A., Valadkhani, A., 2004. Measuring the impact of natural disasters on capital markets: an empirical application using intervention analysis. Applied Economics 36, 2177–2186. doi:10.1080/0003684042000282489

Worthington, A.C., 2008. The impact of natural events and disasters on the australian stock market: a garch-m analysis of storms, floods, cyclones, earthquakes and bushfires. Global Business and Economics Review 10, 1–10.

Zaremba, A., Kizys, R., Aharon, D.Y., Demir, E., 2020. Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Finance Research Letters 35, 101597. doi:https://doi.org/10.1016/j.frl.2020.101597
Zhao, L., Wang, G.J., Wang, M., Bao, W., Li, W., Stanley, H.E., 2018. Stock market as temporal network. Physica A: Statistical Mechanics and its Applications 506, 1104 – 1112. URL: http://www.sciencedirect.com/science/article/pii/S0378437118305752, doi:https://doi.org/10.1016/j.physa.2018.05.039.