Large-scale Pretraining for Visual Dialog: A Simple State-of-the-Art Baseline

Vishvak Murahari¹, Dhruv Batra²,¹, Devi Parikh²,¹, Abhishek Das¹
¹Georgia Institute of Technology, ²Facebook AI Research
¹{vishvak.murahari, parikh, dbatra, abhshkdz}@gatech.edu
visualdialog.org

Abstract

Prior work in visual dialog has focused on training deep neural models on the VisDial dataset [1] in isolation, which has led to great progress, but is limiting and wasteful. In this work, following recent trends in representation learning for language [2–9], we introduce an approach to leverage pretraining on related large-scale vision-language datasets before transferring to visual dialog. Specifically, we adapt the recently proposed VilBERT model [10] for multi-turn visually-grounded conversation sequences. Our model is pretrained on the Conceptual Captions [11] and Visual Question Answering [12] datasets, and finetuned on VisDial [1] with the masked language modeling and next sentence prediction objectives (as in BERT [4]). Our best single model achieves state-of-the-art on Visual Dialog, outperforming prior published work (including model ensembles) by more than 1% absolute on NDCG and MRR.

Next, we carefully analyse our model and find that additional finetuning using ‘dense’ annotations i.e. relevance scores for all 100 answer options corresponding to each question on a subset of the training set, leads to even higher NDCG – more than 10% over our base model – but hurts MRR – more than 17% below our base model! This highlights a stark trade-off between the two primary metrics for this task – NDCG and MRR. We find that this is because dense annotations in the dataset do not correlate well with the original ground-truth answers to questions, often rewarding the model for generic responses (e.g. “can’t tell”).

1. Introduction

Recent years have seen incredible progress in Visual Dialog [1,13–33], spurred in part by the initial efforts of Das et al. [1] in developing a concrete task definition – given an image, dialog history consisting of a sequence of question-answer pairs, and a follow-up question about the image, to predict a free-form natural language answer to the question – along with a large-scale dataset and evaluation metrics. The state-of-the-art on the task has improved by more than 20% absolute (∼54% → ∼74% NDCG) and the original task has since been extended to challenging domains, e.g. video understanding [34] and navigation assistants [35–37].

While this is promising, much of this progress has happened in isolation, wherein sophisticated neural architectures are trained and benchmarked solely on the VisDial dataset. This is limiting – since there is a significant amount of shared abstraction and visual grounding in related tasks in vision and language (e.g. captioning, visual question answering) that can benefit Visual Dialog – and wasteful – since it is expensive and dissatisfying to have to collect a large-scale dataset for every new task. In this work, we explore an approach to pretrain our core model on other publicly available vision and language datasets and then transfer to Visual Dialog.

Our work is inspired by prior work in transfer learning in computer vision and natural language understanding where large models [2–9, 38–40] are pretrained on large datasets [41–43] with simple yet powerful self-supervised objectives to learn powerful representations that are then transferred to downstream tasks, leading to state-of-the-art results on a broad set of benchmarks [41,44]. Recent work has also extended this to vision and language tasks [10,45–50], leading to compelling results in Visual Question Answering [12], Commonsense Reasoning [51], Natural Language Visual Reasoning [52], Entailment [53], Image-Text Retrieval [54,55], and Referring Expressions [56].

In this work, we adapt ViLBERT [10] to Visual Dialog. ViLBERT uses two Transformer-based [3] encoders, one each for the two modalities – language and vision – and interaction between the two modalities is enabled by co-attention layers i.e. attention over inputs from one modality conditioned on inputs from the other. Note that adapting ViLBERT to Visual Dialog is not as trivial as it may seem (or initially seemed to us). The Visual Dialog dataset has
image-grounded conversation sequences that are up to 10 rounds long. These are significantly longer than captions (which are ≤ 2 sentences) from the Conceptual Captions dataset [11] used to pretrain ViLBERT, and thus requires a different input representation and careful reconsideration of the masked language modeling and next sentence prediction objectives used to train BERT [4] and ViLBERT [10].

This adapted model outperforms prior published work by > 1% absolute and achieves state-of-the-art on Visual Dialog. Next, we carefully analyse our model and find that additional finetuning on ‘dense’ annotations1 i.e. relevance scores for all 100 answer options corresponding to each question on a subset of the training set, highlights an interesting trade-off – the model gets to ~74.5% NDCG (outperforming the 2019 VisDial Challenge winner), but an MRR of ~52% (~17% below our base model!). We find this happens because dense annotations in VisDial do not correlate well with the ground-truth answers to questions, often rewarding the model for generic, uncertain responses. Concretely, our contributions are as follows:

• We introduce an adaptation of the ViLBERT [10] model for Visual Dialog, thus making use of the large-scale Conceptual Captions [11] and Visual Question Answering (VQA) [12] datasets for pretraining and learning powerful visually-grounded representations before finetuning on VisDial [1]. Since captioning and VQA differ significantly from Visual Dialog in input size (≤ 2 sentence descriptions vs. ≤ 10 question-answer rounds), this requires rethinking the input representation to learn additional segment embeddings representing questions-answer pairs. Our adapted model improves over prior published work by > 1% and sets a new state-of-the-art.

• We next finetune our model on dense annotations i.e. relevance scores for all 100 answer options corresponding to each question on a subset of the training set, leading to even higher NDCG – more than 10% over our base model – but hurting MRR – more than 17% below our base model! This highlights a stark trade-off between the two primary metrics for this task – NDCG and MRR. We demonstrate through qualitative and quantitative results that this happens because dense annotations do not correlate well with the original ground-truth answers, often rewarding the model for generic, uncertain responses.

• Our PyTorch code is publicly available2 to encourage further work in large-scale transfer learning for VisDial.

1publicly available on visualdialog.org/data.

2github.com/vmurahari3/visdial-bert
2. Related Work

Our work is related to and builds on prior work in visual dialog [1,13–33], and self-supervised pretraining and transfer learning in computer vision and language [2–9, 38–40].

Visual Dialog. Das et al. [1] and de Vries et al. [13] introduced the task of Visual Dialog – given an image, dialog history consisting of a sequence of question-answer pairs, and a follow-up question, predict a free-form natural language answer to the question – along with a dataset, evaluation metrics, and baseline models. Follow-up works on visual dialog have explored the use of deep reinforcement learning [14, 15, 28], transferring knowledge from discriminative to generative decoders [16], conditional variational autoencoders [17], generative adversarial networks [18], attention mechanisms for visual coreference resolution [20, 22], and modeling the questioner’s theory of mind [21]. Crucially, all of these works train and evaluate on the VisDial dataset in isolation, without leveraging related visual grounding signals from other large-scale datasets in vision and language. We devise a unified model that can be pretrained on the Conceptual Captions [11] and VQA [12] datasets, and then transferred and finetuned on VisDial.

Self-Supervised Learning in Vision and Language. Building on the success of transfer learning in natural language understanding [2–9] leading to state-of-the-art results on a broad set of benchmarks [41, 44], recent work has extended this to vision and language tasks [10,45–50]. These works pretrain single [45, 48, 49] or two [10, 46]-stream Transformer [3]-based models with self-supervised objectives, such as next-sentence prediction and masked language/image modeling, on large-scale image-text datasets and have led to compelling results in Visual Question Answering [12], Commonsense Reasoning [51], Natural Language Visual Reasoning [52], Entailment [53], Image-Text Retrieval [54, 55], and Referring Expressions [56].

3. Adapting ViLBERT [10] for Visual Dialog

Lu et al. [10] introduced ViLBERT3, which extended BERT [4] to a two-stream multi-modal architecture for jointly modeling visual and linguistic inputs. Interaction between the two modalities was enabled through co-attention layers, i.e. attending to one modality conditioned on the other – attention over language conditioned on visual input, and attention over image regions conditioned on linguistic input. This was operationalized as swapping the key and value matrices between the visual and linguistic Transformer [3] blocks. We next discuss our changes to adapt it for Visual Dialog followed by our training pipeline.

Input Representation. Recall that the model gets image \(I\), dialog history (including image caption \(C\)) \(H = (C, (Q_1, A_1), ..., (Q_{t-1}, A_{t-1}))\), question \(Q_t\), and a list of 100 answer options \(A_t = \{A_t^{(1)}, A_t^{(2)}, ..., A_t^{(100)}\}\) as input, and is asked to return a sorting of \(A_t\). We concatenate the \(t\) rounds of dialog history and follow-up question \(Q_t\), with each question and answer separated by a \(<\text{SEP}>\) token. Similar to Wolf et al. [57], we use different segment embeddings for questions and answers to help the model distinguish between the two and understand question and answer boundaries in the input. Captions and answers share the same segment embeddings. To represent the image, we follow [10, 58] and extract object bounding boxes and their visual features for top-36 detected objects in the image from a Faster R-CNN [59] (with a ResNet-101 [38] backbone) object detection network pretrained on the Visual Genome dataset [42]. The feature vector for each detected object is computed as mean-pooled convolutional features from the regions of that object. A 5-d feature vector, consisting of normalized top-left and bottom-right object coordinates, and the fraction of image area covered, is projected to the same dimensions as the feature vector for the detected object, and added to it. The beginning of this image region sequence (consisting of object detection features) is demarcated by an 1\text{IMG} token with mean-pooled features from the entire image.

3.1. Pretraining on Conceptual Captions [11]

To pretrain the model, we follow [10] and train on the Conceptual Captions (CC) dataset, which is a large corpus (with ~3M samples) of aligned image-caption pairs. During pretraining, the sum of the masked language modeling (MLM) loss [4] and the masked image region (MIR) loss is optimized. To compute the MLM loss, a set of tokens in the input sequence are masked and the model is trained to predict these tokens given context. We mask around 15% of the tokens in the input sequence. For the MIR loss, similar to the MLM loss, we zero out 15% of the image features and the model learns to predict the semantic category of the masked out object (out of 1601 classes from Visual Genome [42, 58]). Both losses are equally weighted.

3.2. Pretraining on VQA [12]

The VQA dataset is quite related to Visual Dialog in that it can be interpreted as independent visually-grounded question-answer pairs with no dialog history, and thus is a natural choice for further pretraining prior to finetuning on VisDial. Similar to Lu et al. [10], we pretrain on VQA by learning a small decoder – a two-layer MLP – on top of the element-wise product between the image and text representations to predict a distribution over 3129 answers.

3along with code released at github.com/jiasenlu/ViLBERT_beta.
3.3. Finetuning on Visual Dialog [1]

To finetune on Visual Dialog, we use the MLM loss along with the next sentence prediction (NSP) loss and the MIR loss. For MLM, we mask 10% of the tokens in the dialog sequence. For the MIR loss, similar to pretraining, we mask 15% of the image features. Note that the discriminative task in visual dialog is to identify the ground-truth answer from a list of 100 answer options consisting of popular, nearest neighbors, and random answers from the dataset. We achieve this through the NSP loss. The NSP head is trained to predict 1 when the ground-truth answer is appended to the input sequence, and 0 when a negative answer sampled from the remaining answer options is appended to it. Each image in VisDial has 10 rounds of dialog, leading to 10 sets of positive and negative samples for the NSP loss per mini-batch. Since these are fairly correlated samples, we randomly sub-sample 2 out of these 20 during training. At test time, we use log-probabilities from the NSP head to rank the 100 answer options at each round.

3.4. Finetuning with Dense Annotations

The authors of [1] recently released dense annotations i.e. relevance scores for all 100 answer options from A_t corresponding to the question on a subset of the training set. These relevance scores range from 0 to 1 and are calculated as the ratio of number of human annotators who marked a particular answer option as correct to the total number of human annotators (= 4). So 0 means that the answer option was considered correct by 4 human annotators. In our final stage of training, we utilize these dense annotations to finetune our model. Concretely, we use the NSP head to predict likelihood scores $\hat{p}_i^{(t)}$ for each answer option $A_t^{(t)}$, normalize these to form a probability distribution over the 100 answers $\hat{y}_t = [\hat{y}_t^{(1)}, ..., \hat{y}_t^{(100)}]$, and then compute a cross-entropy (CE) loss against the normalized ground-truth relevance scores y_t, given by $-\sum_i y_t(i) \log \hat{y}_t(i)$.

4. Experiments

To compare to previous research, we conduct experiments on VisDial v1.0 [1]. The dataset contains human-human dialog on ~130k COCO [60]-like images. We follow the original splits and use ~120k for training, ~2k for validation, and ~8k for testing. We next describe the various settings we experiment with.

Evaluation Metrics. We use the same evaluation metrics as in [1]. Specifically, given the predicted ranking of 100 answer options from the model at each round, we compute retrieval metrics – mean rank (MR), mean reciprocal rank (MRR), and recall@k (where $k = \{1, 5, 10\}$). Additionally, along with the release of dense annotations, i.e. relevance scores $\in [0, 1]$ for all 100 answer options, a new metric – NDCG – was introduced. NDCG accounts for multiple correct answers in the option set and penalizes low-ranked but correct answer options.

4.1. Language-only

We begin with a ‘blind’ setting, where given the dialog history and follow-up question, and without access to the image, the model is tasked with predicting the answer. As such, we do not use the ViLBERT formulation for these experiments, and finetune the BERT model released in [4] and pretrained on BooksCorpus [43] and English Wikipedia. For the MLM loss, we mask 15% of tokens and sub-sample 8 out of 20 sequences per mini-batch during training. We experiment with two variants – training only with NSP, and training with both NSP and NSP. See Table 1 for language-only results (marked ‘L-only’). This experimental setting helps us put gains coming from switching to Transformer [3]-based architectures (and before the added complexity of incorporating visual input) in perspective.

Varying number of dialog rounds. We train ablations of our language-only model (with both NSP and MLM losses) where we vary the number of rounds in dialog history, starting from 0, where the input sequence only contains the follow-up question and answer, to 2, 4, and 6 rounds of dialog history. Table 2 shows these results.

Zero-shot and ‘cheap’ finetuning. We report performance for ablations of our NSP+MLM model with no/minimal training. First, we conduct a zero-shot test where we initialize BERT with weights from Wikipedia and BooksCorpus pretraining and simply run inference on VisDial. Second, with the same initialization, we freeze all layers and finetune only the MLM and NSP loss heads. See Table 3.

4.2. Finetuning on VisDial

We finetune ViLBERT on VisDial with three different weight initializations – 1) from the best language-only weights (from Section 4.1) for the language stream (visual stream and co-attention layers initialized randomly), 2) from a model pretrained on CC [11] (as described in Section 3.1), and 3) from a model pretrained on CC [11]+VQA [12] (as described in Section 3.2). 1) helps us benchmark performance if the model learns visual grounding solely from VisDial, 2) quantifies effects of learning visual grounding additionally from CC, while 3) helps us quantify improvements with additional exposure to visually-grounded question-answering data. See Table 1 for results.
4.3. Finetuning with Dense Annotations

Finally, we finetune our best model from Section 4.2 – marked ‘w/ CC+VQA’ in Table 1 – on dense annotations, as described in Section 3.4. Note that computing the CE loss requires a separate forward pass for each of the 100 answer options, since dialog history, question, answer are all concatenated together before passing as input. This is memory-expensive, and so in practice, we sub-sample and only use 80 options, and use gradient accumulation (or artificially) construct a larger mini-batch. Finetuning with the CE loss only leads to significant improvements on NDCG but hurts other metrics (see Table 1). We discuss and analyse this in more detail later. But to control for this ‘metric-overfitting’, we also train a variant with both the CE and NSP losses.

5. Results

Model	NDCG \uparrow	MRR \uparrow	R@5 \uparrow	R@10 \uparrow	MR \uparrow
NSP	56.17	63.37	49.17	90.02	89.42
NSP + MLM	57.26	64.40	50.30	81.60	90.43
w/ L-only	62.64	67.86	54.54	84.34	92.26
w/ CC [11]	60.80	67.13	53.59	84.39	92.49
w/ CC [11]+VQA [12]	64.94	69.10	55.88	85.50	93.29
CE	75.24	72.22	39.92	65.05	80.63
CE + NSP	69.24	65.88	53.41	80.92	90.18

Table 1: Results on VisDial v1.0 val. \uparrow indicates higher is better.

# history rounds	NDCG \uparrow	MRR \uparrow	R@5 \uparrow	R@10 \uparrow	MR \uparrow
0	50.54	54.29	38.88	72.67	83.09
2	53.60	61.31	46.83	78.96	88.15
4	55.10	62.83	48.36	80.61	89.57
6	55.69	63.73	49.31	81.13	90.06

Table 2: Performance of the NSP + MLM language-only model on VisDial v1.0 val as the number of dialog history rounds is varied.

Model	NDCG \uparrow	MRR \uparrow	R@5 \uparrow	R@10 \uparrow	MR \uparrow
No training	11.63	6.88	2.63	7.17	11.30
Loss heads only	19.69	9.81	3.42	10.44	18.85

Table 3: Performance of the NSP + MLM language-only model on VisDial v1.0 val with no / minimal training (described in Sec. 4.1).

We list findings from all our experiments in Section 4 below.

- **Language-only performs well.** The language-only model gets to 57.26 on NDCG and 64.40 on MRR (Table 1). This is high and already competitive with several prior published works (see Table 4).

- **Increasing dialog history rounds helps.** As reported in Table 2, performance of the language-only model continues to go up with increasing dialog history rounds. We believe these improvements are largely indicative of the Transformer’s ability to model long-term dependencies.

- **Zero-shot model performs poorly.** Running inference with the language-only model pretrained on BooksCorpus [43] and Wikipedia without any finetuning on VisDial only gets to 11.63 on NDCG and 6.88 on MRR. Finetuning the loss heads with all other layers frozen leads to an improvement of ~8 NDCG points over this. This low performance can be attributed to significantly longer input sequences in VisDial than the model was pretrained with.

- **VQA initialization helps more than CC.** Finetuning ViLBERT on VisDial with weights initialized from VQA pretraining gets to 64.94 on NDCG and 69.10 on MRR, ~4 points more than CC pretraining. This is likely because images in VQA are from COCO (same as VisDial) as opposed to CC, and the task of visual question answering is more closely related to VisDial than image captioning.

- **Dense annotations boost NDCG, hurt MRR.** Finetuning with the CE loss leads to 74.47 on NDCG – a ~10% improvement over the ‘w/ CC + VQA’ base model – but 50.74 on MRR, a ~17% decline below the base model. This is a somewhat surprising finding, and we dig deeper into this result in subsequent analysis in Section 6.

We report results from the Visual Dialog evaluation server for our best models – ‘w/ CC + VQA’, ‘CE’ and ‘CE + NSP’ – on the unseen test-set split in Table 4. We compare against prior published results as well as top entries from the leaderboard. Our models outperform prior results and set a
new state-of-the-art – ViLBERT with CC + VQA pretraining on MRR, R@k, MR metrics, and further finetuning with a CE loss on dense annotations on NDCG. Finally, adding the NSP loss along with CE (as in Section 4.3) offers a nice balance between optimizing metrics that reward both sparse (original ground-truth answers) and dense annotations.

6. Analysis

As described in Section 5, finetuning on dense annotations leads to a significant increase in NDCG, but hurts the other 5 metrics – MRR, R@1, R@5, R@10 and MR – which depend on the original sparse annotations in VisDial i.e. follow-up answers provided in human-human dialog.

We begin by visualizing the distribution of dense relevance scores for these sparse ground-truth (GT) answers in Fig. 2a and observe that ~50% GT answers have relevance ≤ 0.8, and ~30% have relevance ≤ 0.6. Thus, there is some degree of misalignment between dense and sparse annotations – answers originally provided during human-human dialog in VisDial were not always judged to be relevant by all humans during the post-hoc dense annotation phase.

Why are GT and dense annotations misaligned? We notice that many questions with discrepancy between GT and dense annotations are somewhat subjective. For e.g., in row 1, round 7 (Fig. 4), Q: ‘what color is the chair?’, the GT answer is ‘black’ but the chair is in shadow and it is difficult to accurately identify its color. And thus, we expect to see variance when multiple humans are polled for the answer. Instead, the GT answer is just one sample from the human answer distribution, not necessarily from its peak.

In general, the dense annotations seem less wrong than GT (as they are sourced by consensus) since they are safer – often resolving to answers like ‘I cannot tell’ when there is uncertainty / subjectivity – but also uninformative – not conveying additional information e.g., ‘I think 3 but they are occluded so it is hard to tell’ – since such nuanced answers are not part of the list of answer options in VisDial [1].

Model performance on GT vs. dense annotations. Table 3a shows mean ranks of these GT answers as predicted by three model variants – ViLBERT w/ CC + VQA, CE, and CE + NSP – grouped by dense relevance scores. The ‘CE’ model gets worse mean ranks than ‘w/ CC + VQA’ for all GT answers, since it is no longer trained with these GT answers during dense annotation finetuning. The CE model assigns low mean ranks to GT answers with higher relevance scores (≥ 0.8), which translates to a high NDCG score (Table 1). But it assigns poor mean ranks to GT answers with relatively lower relevance scores (≤ 0.8), and since ~50% GT answers have relevance scores ≤ 0.8, this hurts MRR, R@k, MR for the CE model (Table 1).

Next, we consider the top-50 most-relevant answer options (occurring ≥ 10 times) as per dense annotations in VisDial v1.0 val (not restricting ourselves to only GT answers). Fig. 2b shows the mean relevance scores for this set, and Fig. 3b shows the mean ranks assigned to these answers by our models. The CE model gets better mean ranks in this set compared to Base, leading to high NDCG.

Qualitative examples. Finally, we present uniformly sampled example answer predictions on VisDial v1.0 val from our models along with the ground-truth dialog sequences in Fig. 4, Fig. 5, and Fig. 6. In these examples, consistent
having 12 variants and ranges of relevance scores.

(a) Mean rank (lower is better) of the GT answers on VisDial v1.0 val split across model variants and ranges of relevance scores.

(b) Predicted mean rank for each of the top-50 most relevant answers as per dense annotations (from Fig. 2b) by three model variants – ViLBERT w/ CC + VQA (called ‘Base’), CE, and CE + NSP. The CE model gets lower mean ranks for most answers in this set compared to Base. This leads to significantly higher NDCG, as reported in Table 1 and Table 4, but low MRR, since these relevant answers as per dense annotations do not correlate well with the set of original ground-truth answers, as shown in Fig. 2a.

Figure 3

with the Visual Dialog task definition [1], at every round of dialog, the model gets the image, ground-truth human dialog history (including caption), and follow-up question as input, and predicts the answer. Specifically, the model ranks 100 answer options. Here we show the top-1 prediction.

We make a few observations. 1) The Base model is surprisingly accurate, e.g. in row 2, round 1 (Fig. 4), Q: ‘can you see any people?’, predicted answer: ‘part of a person’, in row 2, round 10, Q: ‘anything else interesting about the photo?’, predicted answer: ‘the dog is looking up at the person with his tongue out’. 2) The CE model often answers with generic responses (such as ‘I cannot tell’), especially for questions involving some amount of subjectivity / uncertainty, e.g. in row 1, round 7, Q: ‘what color is the chair?’, predicted answer: ‘I cannot tell’ (the chair seems to be in shadow in the image), in row 2, round 7, Q: ‘does the dog look happy?’, predicted answer: ‘I can’t tell’ (subjective question). 3) This also highlights a consequence of misalignment between ground-truth and dense annotations. While the ground-truth answer provides one reasonable response for the question asked, it is answerer-specific to quite an extent and there may be other correct answers (annotated in the dense annotations). A negative effect of this misalignment is that when finetuned on dense annotations (CE), the model gets rewarded for generic answers (e.g. ‘cannot tell’). While being able to capture and reason about uncertainty is a desirable property models should have, it would be more helpful if these agents can convey more information with appropriate qualifiers (e.g. ‘I think 3 but they are occluded so it is hard to tell’) than a blanket ‘I cannot tell’. We aim to study this in future work.

7. Implementation

For the linguistic stream, we use the BERT\textsubscript{BASE} model [4], which has 12 layers of Transformer blocks, with each block having 12 attention heads and a hidden state size of 768.

For the visual stream, we use 6 layers of Transformer blocks with each block having 8 attention heads with a hidden state size of 1024. We then connect the first 6 Transformer layers in the visual stream with the last 6 Transformer layers in the linguistic stream with co-attentional layers as in [10].

For the linguistic stream, we set the maximum sequence length to 256. We do not train on dialog sequences which exceed the maximum sequence length and during inference, we truncate rounds starting from the first round to fit within the maximum length (we do not remove the caption). However, nearly all dialog sequences have less than 256 tokens and we rarely had to truncate the dialog sequence.

All loss coefficients are set to 1. We use Adam [61] with the learning rate linearly increasing from 0 to 2\text{\times}10-5 over 10k iterations and decay it to 1e-5 over 200k iterations.

8. Conclusion

We introduced a model for Visual Dialog that enables pretraining on large-scale image-text datasets before transferring and finetuning on VisDial. Our model is an adaptation of ViLBERT [10], and our best single model is pretrained on BooksCorpus [43], English Wikipedia (at the BERT stage), and on Conceptual Captions [11], VQA [12] (at the ViLBERT stage), before finetuning on VisDial, optionally with dense annotations. Our model outperforms prior published results by > 1% absolute on NDCG and MRR, achieving state-of-the-art results, and providing a simple baseline for future ‘pretrain-then-transfer’ modeling approaches.

Through careful analysis of our results, we find that the recently released dense annotations for the task do not correlate well with the original ground-truth dialog answers, leading to a trade-off when models optimize for metrics that take into account these dense annotations (NDCG) vs. the original sparse annotations (MRR). This opens up avenues for future research into better evaluation for this task.
Finally, it is worth noting that our model is discriminative – it can pick a good answer from a list of answer options – but cannot generate an answer. In future work, we aim to remove this limitation and develop robust decoding techniques for a powerful generative visual dialog model.

Reproducibility. Code to replicate results from the paper is publicly available at github.com/vmurahari3/visdial-bert.

9. Acknowledgements

We thank Jiason Lu and Stefan Lee for helpful discussions. The Georgia Tech effort is supported in part by NSF, AFRL, DARPA, ONR YIPs, ARO PECASE. AD is supported in part by fellowships from Facebook, Adobe, and Snap Inc. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government, or any sponsor.

References

[1] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh, and D. Batra, “Visual Dialog,” in CVPR, 2017. 1, 2, 3, 4, 6, 7
[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding with unsupervised learning,” 2018. 1, 3
[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017. 1, 3, 4
[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in NAACL, 2019. 1, 2, 3, 4, 7
[5] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT pretraining approach,” arXiv preprint arXiv:1907.11692, 2019. 1, 3
[6] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A lite BERT for self-supervised learning of language representations,” arXiv preprint arXiv:1909.11942, 2019. 1, 3
[7] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language understanding,” arXiv preprint arXiv:1906.08237, 2019. 1, 3
[8] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” arXiv preprint arXiv:1910.10683, 2019. 1, 3
[9] Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan, “DialogPT: Large-scale generative pre-training for conversational response generation,” arXiv preprint arXiv:1911.00536, 2019. 1, 3
[10] J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks,” in NeurIPS, 2019. 1, 2, 3, 7
[11] P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceputal captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning,” in ACL, 2018. 1, 2, 3, 4, 5, 7
[12] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “VQA: Visual Question Answering,” in ICCV, 2015. 1, 2, 3, 4, 5, 7
[13] H. de Vries, F. Strub, S. Chandar, O. Pietquin, H. Larochelle, and A. Courville, “GuessWhat?! visual object discovery through multi-modal dialogue,” in CVPR, 2017. 1, 3
[14] F. Strub, H. De Vries, J. Mary, B. Piot, A. Courville, and O. Pietquin, “End-to-end optimization of goal-driven and visually grounded dialogue systems,” arXiv preprint arXiv:1703.05423, 2017. 1, 3
[15] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra, “Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning,” in ICCV, 2017. 1, 3
[16] J. Lu, A. Kannan, J. Yang, D. Parikh, and D. Batra, “Best of both worlds: Transferring knowledge from discriminative learning to a generative visual dialog model,” in NIPS, 2017. 1, 3
[17] D. Massiceti, N. Siddharth, P. K. Dokania, and P. H. Torr, “Flipdival: A generative model for two-way visual dialogue,” in CVPR, 2018. 1, 3
[18] Q. Wu, P. Wang, C. Shen, I. Reid, and A. van den Hengel, “Are you talking to me? reasoned visual dialog generation through adversarial learning,” in CVPR, 2018. 1, 3
[19] U. Jain, S. Lazebnik, and A. G. Schwing, “Two can play this game: visual dialog with discriminative question generation and answering,” in CVPR, 2018. 1, 3
[20] S. Kottur, J. M. Moura, D. Parikh, D. Batra, and M. Rohrbach, “Visual coreference resolution in visual dialog using neural module networks,” in ECCV, 2018. 1, 3, 5
[21] S.-W. Lee, T. Gao, S. Yang, J. Yoo, and J.-W. Ha, “Large-scale answerer in questioner’s mind for visual dialog question generation,” in ICLR, 2019. 1, 3
[22] Y. Niu, H. Zhang, M. Zhang, J. Zhang, Z. Lu, and J.-R. Wen, “Recursive visual attention in visual dialog,” in CVPR, 2019. 1, 3, 5
[23] Z. Zheng, W. Wang, S. Qi, and S.-C. Zhu, “Reasoning visual dialogs with structural and partial observations,” in CVPR, 2019. 1, 3, 5
[24] I. Schwartz, S. Yu, T. Hazan, and A. G. Schwing, “Factor graph attention,” in CVPR, 2019. 1, 3, 5
[25] G.-C. Kang, J. Lim, and B.-T. Zhang, “Dual attention networks for visual reference resolution in visual dialog,” in EMNLP, 2019. 1, 3, 5
[26] Z. Gan, Y. Cheng, A. E. Kholy, L. Li, J. Liu, and J. Gao, “Multi-step reasoning via recurrent dual attention for visual dialog,” in ACL, 2019. 1, 3, 5
[27] S. Kottur, J. M. Moura, D. Parikh, D. Batra, and M. Rohrbach, “Clevr-dialog: A diagnostic dataset for multi-round reasoning in visual dialog,” in NAACL, 2019. 1, 3
[28] V. Murahari, P. Chattopadhyay, D. Batra, D. Parikh, and A. Das, “Improving generative visual dialog by answering diverse questions,” in EMNLP, 2019. 1, 3
[29] R. Shekhar, A. Venkatesh, T. Baumgärtner, E. Bruni, B. Plank, R. Bernardi, and R. Fernández, “Beyond task suc-
Image + Caption	GT Dialog	Base Model	Base Model + CE	Base Model + CE + NSP
a chair sitting on the beach with boats in view offshore	Q: are there any people? At: yes Q: is the picture in color? At: yes Q: how many people are there? At: 1 Q: what are they doing? At: sitting on the boats Q: is this near a beach? At: yes Q: are they big boats? At: no Q: what color is the chair? At: black Q: what made it out of? At: metal Q: is it a nice day? At: yes	Q: are there any people? At: no Q: is the picture in color? At: yes, it is Q: how many people are there? At: 0 Q: what are they doing? At: i can't tell Q: is this near a beach? At: yes Q: are they big boats? At: no Q: what color is the chair? At: black Q: what made it out of? At: metal Q: is it a nice day? At: yes	Q: are there any people? At: no Q: is the picture in color? At: yes Q: how many people are there? At: 1 Q: what are they doing? At: i can't tell Q: is this near a beach? At: yes Q: are they big boats? At: no Q: what color is the chair? At: black Q: what made it out of? At: metal Q: is it a nice day? At: yes	Q: are there any people? At: no Q: is the picture in color? At: yes Q: how many people are there? At: 1 Q: what are they doing? At: i can't tell Q: is this near a beach? At: yes Q: are they big boats? At: no Q: what color is the chair? At: black Q: what made it out of? At: metal Q: is it a nice day? At: yes
a brown and white dog riding a skateboard	Q: can you see anyone? At: part of a person Q: is the photo in color? At: yes Q: man or woman? At: i can't tell Q: how many dogs? At: 1 Q: is it the dog big or small? At: medium Q: inside or outside? At: hard to tell but i think outside Q: does the dog look happy? At: kind of Q: can you see the ground? At: yes Q: what color is the skateboard? At: black Q: anything else interesting about the photo? At: the dog is looking up at the person with his tongue out	Q: can you see anyone? At: yes Q: is the photo in color? At: yes Q: man or woman? At: i can't tell Q: how many dogs? At: 1 Q: is it the dog big or small? At: big dog Q: inside or outside? At: outside Q: does the dog look happy? At: i can't tell Q: can you see the ground? At: yes Q: what color is the skateboard? At: black Q: anything else interesting about the photo? At: the dog is looking up at the person with his tongue out	Q: can you see anyone? At: yes Q: is the photo in color? At: yes Q: man or woman? At: i can't tell Q: how many dogs? At: 1 Q: is it the dog big or small? At: big dog Q: inside or outside? At: outside Q: does the dog look happy? At: i can't tell Q: can you see the ground? At: yes Q: what color is the skateboard? At: black Q: anything else interesting about the photo? At: the dog is looking up at the person with his tongue out	Q: can you see anyone? At: yes Q: is the photo in color? At: yes Q: man or woman? At: i can't tell Q: how many dogs? At: 1 Q: is it the dog big or small? At: big dog Q: inside or outside? At: outside Q: does the dog look happy? At: i can't tell Q: can you see the ground? At: yes Q: what color is the skateboard? At: black Q: anything else interesting about the photo? At: the dog is looking up at the person with his tongue out
a group of giraffes standing in a savannah	Q: how many giraffes are there? At: 3 Q: are they all adults? At: yes Q: do you see grass? At: yes Q: are there any trees? At: yes Q: is it sunny? At: yes Q: do the trees have any leaves on them? At: yes Q: are there any other animals visible? At: no Q: are the giraffes heads up? At: yes Q: is the sky clear? At: yes Q: does it look dry? At: yes	Q: how many giraffes are there? At: 3 Q: are they all adults? At: yes Q: do you see grass? At: yes Q: are there any trees? At: yes Q: is it sunny? At: yes Q: do the trees have any leaves on them? At: yes Q: are there any other animals visible? At: no Q: are the giraffes heads up? At: yes Q: is the sky clear? At: yes Q: does it look dry? At: yes	Q: how many giraffes are there? At: 3 Q: are they all adults? At: yes Q: do you see grass? At: yes Q: are there any trees? At: yes Q: is it sunny? At: yes Q: do the trees have any leaves on them? At: yes Q: are there any other animals visible? At: no Q: are the giraffes heads up? At: yes Q: is the sky clear? At: yes Q: does it look dry? At: yes	Q: how many giraffes are there? At: 3 Q: are they all adults? At: yes Q: do you see grass? At: yes Q: are there any trees? At: yes Q: is it sunny? At: yes Q: do the trees have any leaves on them? At: yes Q: are there any other animals visible? At: no Q: are the giraffes heads up? At: yes Q: is the sky clear? At: yes Q: does it look dry? At: yes
The large brown cow is standing by the building eating grass	Q: is the cow large or small? At: large Q: does the cow have an ear tag? At: no Q: what color is the building? At: white Q: is the photo professional? At: no Q: does the grass look well groomed? At: yes Q: are there any trees in the photo? At: no Q: are there any fences surrounding the cow? At: no Q: does it look sunny? At: yes Q: can you see the sky in the picture? At: yes Q: can you see windows in the building? At: yes	Q: is the cow large or small? At: large Q: does the cow have an ear tag? At: yes Q: what color is the building? At: white Q: is the photo professional? At: no Q: does the grass look well groomed? At: yes Q: are there any trees in the photo? At: no Q: are there any fences surrounding the cow? At: no Q: does it look sunny? At: yes Q: can you see the sky in the picture? At: yes Q: can you see windows in the building? At: yes	Q: is the cow large or small? At: large Q: does the cow have an ear tag? At: yes Q: what color is the building? At: white Q: is the photo professional? At: no Q: does the grass look well groomed? At: yes Q: are there any trees in the photo? At: no Q: are there any fences surrounding the cow? At: no Q: does it look sunny? At: yes Q: can you see the sky in the picture? At: yes Q: can you see windows in the building? At: yes	Q: is the cow large or small? At: large Q: does the cow have an ear tag? At: yes Q: what color is the building? At: white Q: is the photo professional? At: no Q: does the grass look well groomed? At: yes Q: are there any trees in the photo? At: no Q: are there any fences surrounding the cow? At: no Q: does it look sunny? At: yes Q: can you see the sky in the picture? At: yes Q: can you see windows in the building? At: yes
Question	Answer 1	Answer 2	Answer 3	Answer 4
----------	----------	----------	----------	----------
Q: is the light lit up?	A: yes	A: yes	A: yes	A: yes
Q: are there cars?	A: yes	A: yes	A: yes	A: yes
Q: is this a city area?	A: yes	A: yes	A: yes	A: yes
Q: is it daytime?	A: yes	A: yes	A: yes	A: yes
Q: is there a street sign?	A: yes	A: yes	A: yes	A: yes
Q: is it dark?	A: yes	A: yes	A: yes	A: yes
Q: can you see any trees?	A: yes	A: yes	A: yes	A: yes

Figure 5
Q: how many steps are there?	A: 3
Q: is it a passenger train?	A: yes
A: black ladder	A: yes
Q: are there people on the steps?	A: no
A: can you see windows?	A: yes
Q: how many cars are there?	A: 1
A: just the 1	A: yes
Q: what does the weather look like?	A: sunny
A: what can you see through the window?	A: white
A: sky	A: whitish pale blue
Q: what color is the sky?	A: white

Q: how many steps are there?	A: cannot tell
Q: is it a passenger train?	A: yes, it is
Q: what color are the steps?	A: black
Q: are there people on the steps?	A: no
Q: can you see windows?	A: no
Q: how many cars are there?	A: just 1
Q: are there windows?	A: yes
Q: what does the weather look like?	A: cloudy
Q: what can you see through the window?	A: no
A: sky	A: white
Q: what color is the sky?	A: white

Q: is this an outdoor or indoor market?	A: 2
Q: does the shelf have many layers?	A: just 2 that I can see
Q: is the picture in color?	A: yes
A: tall, thin vase	A: yes
Q: do the vegetables look fresh?	A: yes
Q: are there carrots?	A: no
A: potatoes in a bowl	A: yes
Q: are there cabbages?	A: no
A: what kind of vegetable has the most number present?	A: sugar snap beans
Q: are there labels on the shelf?	A: yes
A: are there prices?	A: yes

Q: is this an outdoor or indoor market?	A: can't really tell
Q: does the shelf have many layers?	A: no
Q: is the picture in color?	A: yes
Q: is the shelf full?	A: yes
Q: do the vegetables look fresh?	A: yes
Q: are there carrots?	A: no
A: mostly vegetables	A: yes
Q: are there cabbages?	A: no
A: what kind of vegetable has the most number present?	A: sugar snap beans
A: are there labels on the shelf?	A: yes
A: are there prices?	A: yes

Q: is the photo in color?	A: yes
Q: is there any people?	A: no
Q: how many birds?	A: 1
Q: is it night?	A: no
Q: is it day?	A: yes
Q: are there trees?	A: yes
Q: is the sky visible?	A: no
Q: are there many buildings?	A: no
Q: are the trees lush?	A: yes

Q: is the photo in color?	A: yes
Q: is there any people?	A: no
Q: how many birds?	A: 1
Q: is it night?	A: no
Q: is it day?	A: yes
Q: are there trees?	A: yes
Q: is the sky visible?	A: no
Q: are there many buildings?	A: yes
Q: are the trees lush?	A: yes

Q: is the photo in color?	A: yes
Q: can you see clouds?	A: yes
Q: what color is the ocean?	A: grey
Q: can you see the sand on the beach?	A: yes
Q: any people around?	A: no
Q: what color is the bird?	A: white
Q: do you see any boats?	A: no
Q: any other birds?	A: no
Q: any jets or balloons?	A: no
Q: do you see buildings?	A: no

Q: is the photo in color?	A: yes
Q: can you see clouds?	A: yes
Q: what color is the ocean?	A: grey
Q: can you see the sand on the beach?	A: yes
Q: any people around?	A: no
Q: what color is the bird?	A: white
Q: do you see any boats?	A: no
Q: any other birds?	A: no
Q: any jets or balloons?	A: no
Q: do you see buildings?	A: no

Figure 6: Qualitative samples for three model variants – ViLBERT w/ CC + VQA (called ’Base’), Base + CE, and Base + CE + NSP.