Ischemic stroke in COVID-19: An urgent need for early identification and management

Dinesh Jillella, Emory University
Nicholas J. Janocko, Emory University
Fadi Nahab, Emory University
Karima Benameur, Emory University
James Greene, Emory University
Wendy Wright, Emory University
Mahmoud Obideen, Emory University
Srikant Rangaraju, Emory University

Journal Title: PLOS ONE
Volume: Volume 15, Number 9
Publisher: PUBLIC LIBRARY SCIENCE | 2020-09-18, Pages e0239443-e0239443
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1371/journal.pone.0239443
Permanent URL: https://pid.emory.edu/ark:/25593/vmn02

Final published version: http://dx.doi.org/10.1371/journal.pone.0239443

Copyright information:

© 2020 Jillella et al
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed October 1, 2023 5:40 PM EDT
Ischemic stroke in COVID-19: An urgent need for early identification and management

Dinesh V. Jillella, Nicholas J. Janocko, Fadi Nahab, Karima Benameur, James G. Greene, Wendy L. Wright, Mahmoud Obideen, Srikant Rangaraju

1 Department of Neurology, Emory University School of Medicine and Grady Memorial Hospital, Atlanta, GA, United States of America, 2 Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America

* dineshvinayakjillella@gmail.com

Abstract

Objective

In the setting of the Coronavirus Disease 2019 (COVID-19) global pandemic caused by SARS-CoV-2, a potential association of this disease with stroke has been suggested. We aimed to describe the characteristics of patients who were admitted with COVID-19 and had an acute ischemic stroke (AIS).

Methods

This is a case series of PCR-confirmed COVID-19 patients with ischemic stroke admitted to an academic health system in metropolitan Atlanta, Georgia (USA) between March 24th, 2020 and July 17th, 2020. Demographic, clinical, and radiographic characteristics were described.

Results

Of 396 ischemic stroke patients admitted during this study period, 13 (2.5%) were also diagnosed with COVID-19. The mean age of patients was 61.6 ± 10.8 years, 10 (76.9%) male, 8 (61.5%) were Black Americans, mean time from last normal was 4.97 ± 5.1 days, and only one received acute reperfusion therapy. All 13 patients had at least one stroke-associated co-morbidity. The predominant pattern of ischemic stroke was embolic with 4 explained by atrial fibrillation. COVID-19 patients had a significantly higher rate of cryptogenic strokes than non-COVID-19 patients during the study period (69% vs 17%, p = 0.0001).

Conclusions

In our case series, ischemic stroke affected COVID-19 patients with traditional stroke risk factors at an age typically seen in non-COVID populations, and mainly affecting males and Black Americans. We observed a predominantly embolic pattern of stroke with a higher than expected rate of cryptogenic strokes, a prolonged median time to presentation and symptom recognition limiting the use of acute reperfusion treatments. These results highlight the need
Introduction

The United States has seen an exponential rise in COVID-19 infection cases recently, resulting in over 1.7 million cases and > 100,000 deaths. In the setting of the COVID-19 pandemic, there have been reports of its association with various neurological disorders including stroke [1, 2]. Stroke has been reported in 5.7% of patients with severe COVID-19 infections and 0.8% of patients with non-severe infection in an Asian study [1]. Previous studies have reported the role of infectious agents in stroke pathogenesis [3]. Based on the underlying hypercoagulability and increased incidence of thrombotic events in severe COVID-19 patients, increased risk of stroke, particularly of embolic etiology, may be predicted. A recent case series of 5 young COVID-19 patients with embolic strokes with few/no traditional risk factors supports this idea [4]. However, there are very limited data on the characteristics and frequency of stroke in COVID-19. In this case series from a large academic hospital system in the Southern United States, we report clinical and radiographic characteristics of eight acute ischemic stroke (AIS) patients with COVID-19 infection.

Methods

Study design

This is a retrospective study of adult patients aged 18 years or above admitted to Emory Healthcare hospitals in Atlanta, Georgia, USA with a diagnosis of COVID-19 and identified to have an acute ischemic stroke at initial presentation or during hospital admission. The Institutional Review Board of Emory University approved this retrospective study under the waiver of informed consent.

Inclusion and exclusion criteria

Adult patients aged 18 years or above at the time of PCR-confirmed COVID-19 admission from March 24th, 2020 to July 17th, 2020 were included. Diagnosis of acute ischemic stroke based on clinical and radiological confirmation at presentation or during admission was required for inclusion. Patients were excluded if they did not have either clinical or radiological confirmation on review of the patient records.

Study variables

We captured demographic variables including age, sex, and race. Clinical variables collected include vascular risk factors such as diabetes mellitus (DM), hyperlipidemia, hypertension, congestive heart failure (CHF) and atrial fibrillation; deep vein thrombosis (DVT) or pulmonary embolism (PE); ischemic stroke-specific features like etiology as per TOAST guidelines [5]; hemispheric laterality and location of stroke; neurological symptomatology; therapeutic interventions used including intravenous tissue plasminogen activator (iv-tPA) or mechanical thrombectomy (MT); stroke outcome measures including modified Rankin Scale (mRS at discharge), admission to the intensive care unit (ICU) and the duration of ICU stay; non-neurological presenting symptoms and diagnoses; brain imaging and laboratory characteristics in COVID-19 infection and therapies used.
Results
A total of 396 ischemic stroke patients were admitted during this time-period including 13 (2.5%) who were diagnosed with COVID-19. Mean age was 61.6 ± 10.8, 10 (76.9%) were male and 8 (61.5%) were Black Americans. History of DM was present in 9 (69.2%) patients and hypertension was present in 11 (84.6%) patients and all patients had at least one medical comorbidity (DM, hypertension, atrial fibrillation, or hyperlipidemia). The predominant pattern of ischemic stroke observed was embolic (13 of 13) and a clear cardio-embolic cause was identified for 4 cases (atrial fibrillation or flutter). Nine patients had D-dimer levels of > 3,000 ng/mL with 4 of these having a level > 60,000 ng/mL at admission, and 4 having deep venous thrombosis (DVT) or pulmonary embolism (PE).

COVID-19 patients had a significantly higher rate of cryptogenic stroke (stroke of undetermined etiology per the TOAST criteria) [5] than non-COVID-19 patients during the study period (69% vs 17%, p = 0.0001). Baseline characteristics and clinical and investigational characteristics of these 13 AIS patients with COVID-19 infection are described in Table 1.

Discussion
COVID-19 infection caused by the SARS-CoV2 virus is associated with multi-system dysfunction including neurological involvement, systemic inflammation, and hypercoagulability. Neurological involvement with stroke as a manifestation was reported in 6 (2.8%) patients with COVID-19 based on an Asian study of 214 patients. Ischemic stroke constituted a majority of these patients with 5 of the 6 having a diagnosis of ischemic stroke [1].

Infectious pathogens have been described to contribute to stroke causation via various mechanisms including accelerated atherosclerosis, vasculitis, vasculopathy, and coagulopathy [3]. Coagulopathy/hypercoagulable state specifically has been postulated to be one of the important mechanisms of COVID-19’s clinical effects [6, 7]. Its possible effect on stroke causation is still unclear although some recent case reports in young patients with few/no comorbid risk factors potentially point towards an association (4). In our study, COVID-19 patients with AIS constituted 2.5% of the ischemic stroke admissions in our healthcare system. All the patients had an embolic pattern stroke noted on imaging and without a clear source of the embolism identified in 9 of the 13 (69) meeting the criteria for cryptogenic strokes that contribute to 10–30% of all stroke cases and lower in centers with advanced testing capabilities [8]. Cryptogenic strokes overall (non-COVID) constituted 17% at all our stroke centers, considerably lower than those observed in our case series. Four patients (none of whom had a diagnosis of atrial fibrillation or flutter) also had DVT or PE. All patients with DVT / PE had a D-dimer elevation of > 30,000 and 2 of them had >60,000. Based on this information, COVID-19 associated hypercoagulable state stemming from the pro-inflammatory processes [6, 7] could be hypothesized as a possible contributory mechanism for the higher prevalence of embolic cryptogenic stroke presentations in our series. Of note, a study from the New York Healthcare System also reported a high prevalence of cryptogenic strokes and suggested a possible association with hypercoagulability [9], although further prospective studies are needed to confirm these findings considering the limitations of retrospective studies.

One patient had a prior diagnosis of atrial fibrillation while three had new diagnoses of atrial fibrillation/flutter during this admission that could be causal in the stroke etiologies in these three patients. Active infectious processes triggering atrial fibrillation events have been described [10] and increasing reports suggest a cardiac involvement with COVID-19 infections [11, 12]. Of note, none of the cardiac arrhythmias were observed in patients who received hydroxychloroquine.
Table 1. Clinical and radiographic characteristics of AIS patients with COVID-19.

Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7	Patient 8	Patient 9	Patient 10	Patient 11	Patient 12	Patient 13	
Demographics:													
Age	50s	60s	70s	50s	60s	60s	60s	60s	20s	60s	70s	60s	
Sex	Female	Male	Male	Female	Male	Male	Female	Male	Male	Male	Male	Male	
Race	Black	Unknown	White	Black	Black	White	Black	Black	Black	Hispanic	White	Black	
Stroke Risk Factors/Associated Medical Conditions:													
Diabetes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	
Hypertension	Yes	No	Yes	Yes	Yes	Yes							
Hyperlipidemia	No	No	Yes	No	No	Yes	No	NA	Yes	No	Yes	Yes	
Atrial Fibrillation or Flutter	No	Yes	No	No	Yes	No	Yes	No	No	No	No	No	
DVT/PE	Yes	No	No	No	No	Yes	No	No	NA	No	Yes	Yes	
Stroke Characteristics:													
Etiology	Cryptogenic	Cardio-embolic	Cryptogenic	Cardio-embolic	Cryptogenic	Cardio-embolic	Cryptogenic	Cardio-embolic	Cryptogenic	Cryptogenic	Cryptogenic	Cryptogenic	
Location	Anterior	Anterior and Posterior	Anterior	Anterior and Posterior	Anterior	Anterior	Anterior	Anterior and Posterior	Anterior	Anterior	Anterior and Posterior		
Side	Bilateral	Bilateral	Right	Left	Bilateral	Left	Left	Right	Bilateral	Left	Bilateral	Bilateral	
Acute Therapy	No tPA or EVT	Yes tPA / no EVT	No tPA or EVT	No tPA or EVT									
Time from COVID-19 manifestations to stroke symptom onset or identification in days	11	6	25	0.75	7	14	2	2	15	NA	9	26	3
Last known normal (in days)	11	6	0.5	0.75	2	14	2	2	15	0.1	0.3	8	3
Primary Neurological Symptoms	Encephalopathy	Coma	Bilateral Hearing Loss	Aphasia, Right-sided Weakness	Bilateral Lower Extremity Weakness	Obtundation	Aphasia, Encephalopathy	Left-sided weakness and Right Gate Deviation	Encephalopathy/Obliteration	Encephalopathy	Encephalopathy	Encephalopathy	
Cerebral Imaging Fig 1 (A to H)	A) MRI Brain: Small infarctions in the bilateral corona radiata, centrum semiovale, splenium of the corpus callosum, and right temporal lobe involving the bilateral MCA territories.	B) CT Head: Infarct in the right parietal lobe and two infarcts in the frontal and occipital lobes involving the MCA and PCA territories.	C) MRI Brain: Right temporal lobe infarction involving the insular and subinsular cortex involving the MCA territory.	D) CT Head: Left frontal lobe infarction involving the ACA territory.	E) MRI Brain: Small Infarctions involving the bilateral MCA territories.	F) CT Head: Left parietooccipital lobe and parietal lobe infarction involving the PCA and MCA territories.	G) CT Head: Left thalamic and left basal ganglia, corona radiata, and left parietal lobe involvement involving the anterior and posterior circulations.	H) MRI Brain: Right putamen, corona radiata and left parietal lobe and posterior insula involving the anterior and posterior circulations.	I) CT Head: Right frontal lobe infarction involving the MCA territory.	J) CT Head: Left frontal lobe Infarction involving the MCA territory.	K) CT Head: Right temporal lobe and left parietal lobe and bilateral insula involving the anterior and posterior circulations.	L) MRI Brain: Frontotemporal and centrum semiovale/corona radiata infarctions involving the bilateral MCA territories.	
Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7	Patient 8	Patient 9	Patient 10	Patient 11	Patient 12	Patient 13	
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	
Clinical Features:													
Hypoxic Respiratory Failure	Respiratory and Cardiogenic Shock	Fatigue	Shortness of Breath, Encephalopathy	Cough, Fever	Hypoxic, Septic Shock, Encephalopathy	Cough, Encephalopathy		Hypoxic Respiratory Failure					
COVID-19 Therapy:													
Hydroxychloroquine	None	None	Hydroxychloroquine	Remdesivir	None	None	None	None	None	None	Dexamethasone	None	
General Therapeutics:													
ACE/ARB use	No	No	No	Yes	Yes	Yes	No	No	Yes	No	Yes	No	
Laboratory Parameters on initial presentation:													
WBC (10^3/mcL)	9.5	15.1	8.9	8.4	9.3	179	3.5	19.1	12.1	5.8	6.2	5	9.7
Platelet count (10^3/mcL)	318	302	253	291	409	337	156	466	217	154	123	162	203
CRP (mg/L)	182	27.5	8.4	9.3	179	3.5	19.1	12.1	5.8	6.2	5	9.7	
Ferritin (ng/ml)	549	NA	433	NA	NA	NA	571	15	1191	275	NA	215	233
Fibrinogen (mg/dl)	861	571	NA	NA	580	NA	765	882	337	NA	604	587	
D-Dimer (mg/ml)**	30,630	4724	781	>60,000	2119	>60,000	833	>60,000	32330	5863	>60,000	20,322	34,671
INR	1.12	1.2	1.12	1.34	1.62	1.3	1.24	1.33	0.97	1.15	1.3	1.26	1.21
LDL (mg/dl)	46	UTC	NA	121	22	78	33	55	NA	49	59	NA	120
Triglycerides (mg/dl)	87	301	NA	178	59	94	46	232	248	332	113	114	122
HbA1c	11.3	6.1	NA	8.6	6.4	5.5	12.1	6.6	15.3	5.9	8.1	6.6	6.1
Outcomes:													
ICU Admission	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes	No	No
ICU LOS (days)	21	12	-	5	1	9	-	11	25	3	-	21	-
mRS on Admission	0	0	1	0	3	3	1	0	1	0	0	4	0
mRS at Discharge*	3	6	1	3	4	5	2	6	6	4	4	6	3

DVT/PE–Deep venous thrombosis/Pulmonary Embolus; ivtPA–intravenous tissue plasminogen activator; MT–Mechanical thrombectomy; MRI–Magnetic Resonance Imaging; CT–Computed Tomography; ACA–Anterior Cerebral Artery; MCA–Middle Cerebral Artery; PCA–Posterior Cerebral Artery; ACE/ARB–Angiotensin-Converting Enzyme/Angiotensin Receptor Blocker; WBC–White blood count; CRP: C-reactive protein, INR- International Normalized Ratio, LDL- Low-density Lipoprotein; UTC = unable to be calculated; MRS–Modified Rankin Scale; ICU–Intensive Care Unit; NA = Not available; LOS–length of stay

* Highest D-dimer during admission; ** At discharge or the most recent if the patient was still admitted.

https://doi.org/10.1371/journal.pone.0239443.t001
All except two patients in our study had a diagnosis of either DM or hypertension (most having both), and both patients who did not have a prior diagnosis of DM were found to be pre-diabetic on testing. Although these could be argued as potential confounders from a stroke etiologic standpoint, the presence of these comorbid conditions has been associated with a higher risk of having a COVID-19 infection, and with greater disease severity [13]. In this setting, it needs to be ascertained if the presence of hypertension, DM and related upregulation of the ACE2 receptor could contribute to an increased risk of stroke in these patients. In our study, we observed that the average age of COVID-19 stroke presentation was in line with the nationwide average for ischemic stroke.

Acute ischemic stroke therapy has greatly evolved over the last two decades with excellent clinical outcomes reported in recent years with reperfusion strategies of iv-tPA and MT. Unfortunately, none of the AIS patients in our series received reperfusion therapy and with primary reasons being either delayed presentation or recognition of atypical stroke symptoms. The diverse constellation of symptoms ranging from encephalopathy, bilateral deficits, hearing loss among others compared to the typical cortical or unilateral motor findings of stroke could have contributed to this delayed stroke recognition. COVID-19 patients with cardio-pulmonary dysfunction are also generally intubated with paralytics and sedatives on board, along with strict isolation measures that could potentially cause delays in stroke recognition. There need to be protocols in place ensuring sedation holidays that can help counter this issue along with more frequent clinical monitoring. Delayed presentations could be a result of patients waiting longer due to self-isolation or quarantine precautions that have led to a general decline in acute stroke evaluations across the country [14]. This highlights the need to increase community awareness regarding stroke symptoms and the need to ensure rapid evaluation in the ED to facilitate early stroke treatments and limit disability.

Fig 1. (A–M) Imaging characteristics of ischemic stroke in COVID-19 patients. A: MRI of the brain showing areas of infarction in the right corpus callosum and left temporal lobe on the diffusion-weighted sequence. B: CT brain showing hypodensities in the bilateral middle cerebral artery territories. C: MRI brain showing a right-sided temporal lobe infarction on the diffusion-weighted sequence. D: CT head showing hypodensity in the left anterior cerebral artery territory. E: MRI brain showing areas of infarction in the left frontal and right temporal lobes on the diffusion-weighted sequence. F: CT head showing hypodensities correlating with infarctions in the left parietal and occipital lobes. G: CT head showing a hypodensity in the left temporal lobe. H: CT head showing a large infarction in the right middle cerebral artery territory. I: MRI brain showing area of infarction in the left superior cerebellum on the diffusion-weighted sequence. J: MRI brain showing areas of infarction in the right corona radiate and left parietal lobe on the diffusion-weighted sequence. K: CT head showing a hypodensity in the left frontal lobe in the middle cerebral artery territory. L: CT head showing bilateral infarctions involving the anterior and posterior circulations. M: MRI head showing bilateral frontoparietal centrum semiovale/corona radiata infarctions on the diffusion-weighted sequence.
Limitations
This is a retrospective case series that is limited by the small number of cases and hence, the results are mainly observational and causal association of COVID-19 infection with AIS cannot be ascertained.

Conclusion
In our case series, ischemic stroke affected COVID-19 patients at an age of stroke presentation typically seen in non-COVID populations and mainly affected males and Black Americans. We observed a predominantly embolic pattern of stroke with a higher than expected rate of cryptogenic strokes and with a prolonged median time to presentation/symptom recognition limiting the utilization of acute reperfusion therapy. These results highlight the need for community awareness, early identification, and management of AIS in COVID-19 patients. Further studies to determine the effects of COVID-19 associated coagulopathy on ischemic stroke risk as well as the interactions between COVID-19 and other known stroke risk factors are warranted.

Author Contributions
Conceptualization: Dinesh V. Jillella, Nicholas J. Janocko, Fadi Nahab, Wendy L. Wright, Srikant Rangaraju.
Data curation: Dinesh V. Jillella, Nicholas J. Janocko, Fadi Nahab, Wendy L. Wright, Srikant Rangaraju.
Formal analysis: Dinesh V. Jillella, Fadi Nahab, Srikant Rangaraju.
Investigation: Dinesh V. Jillella, Fadi Nahab, Karima Benameur, James G. Greene, Wendy L. Wright, Mahmoud Obideen, Srikant Rangaraju.
Methodology: Dinesh V. Jillella, Fadi Nahab, Karima Benameur, James G. Greene, Wendy L. Wright, Mahmoud Obideen, Srikant Rangaraju.
Project administration: Dinesh V. Jillella.
Resources: Dinesh V. Jillella.
Supervision: Dinesh V. Jillella, Fadi Nahab, Karima Benameur, James G. Greene, Wendy L. Wright, Mahmoud Obideen, Srikant Rangaraju.
Validation: Dinesh V. Jillella, Fadi Nahab.
Visualization: Dinesh V. Jillella, Fadi Nahab.
Writing – original draft: Dinesh V. Jillella, Nicholas J. Janocko, Fadi Nahab, Srikant Rangaraju.
Writing – review & editing: Dinesh V. Jillella, Nicholas J. Janocko, Fadi Nahab, Karima Benameur, James G. Greene, Wendy L. Wright, Mahmoud Obideen, Srikant Rangaraju.

References
1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020.
2. Avula A, Nalleballe K, Narula N, Sapozhnikov S, Dandu V, Toom S, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020.
3. Jillella DV, Wisco DR. Infectious causes of stroke. Curr Opin Infect Dis. 2019; 32(3):285–92. https://doi.org/10.1097/QCO.0000000000000547 PMID: 30973394
4. Oxley JM T.J., Majidi S., Kellner C.P., Shoirah H., Singh I.P., et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med (2020).

5. Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993; 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35 PMID: 7678184

6. Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. 2020.

7. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis. J Thromb Haemost. 2020.

8. Saver JL. CLINICAL PRACTICE. Cryptogenic Stroke. N Engl J Med. 2016; 374(21):2065–74. https://doi.org/10.1056/NEJMp1503946 PMID: 27223148

9. Yaghi S, Ishida K, Torres J, Mac Grory B, Raz E, Humbert K, et al. SARS2-CoV-2 and Stroke in a New York Healthcare System. Stroke. 2020:STROKEAHA120030335.

10. Kuipers S, Klein Klouwenberg PM, Cremer OL. Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients with sepsis: a systematic review. Crit Care. 2014; 18(6):688. https://doi.org/10.1186/s13054-014-0688-5 PMID: 25498795

11. Seecheran R, Narayansingh R, Giddings S, Rampaul M, Furlonge K, Abdool K, et al. Atrial Arrhythmias in a Patient Presenting With Coronavirus Disease-2019 (COVID-19) Infection. J Investig Med High Impact Case Rep. 2020; 8:2324709620925571. https://doi.org/10.1177/2324709620925571 PMID: 32370558

12. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5):531–8. https://doi.org/10.1007/s00392-020-01626-9 PMID: 32161990

13. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine. 2020; 8(4).

14. Kansagra AP, Goyal MS, Hamilton S, Albers GW. Collateral Effect of Covid-19 on Stroke Evaluation in the United States. N Engl J Med. 2020.