Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca\(^{2+}\) release

Carsten Völkner,1 Lorenz Josef Holzner,2 Philip M. Day,1 Amra Dhabalia Ashok,3,4 Jan de Vries,3,4,5,6 Bettina Bölter2 and Hans-Henning Kunz1,2,*

1 School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
2 Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
3 Department of Applied Bioinformatics, University of Göttingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
4 International Max Planck Research School for Genome Science, 37077 Göttingen, Germany
5 Applied Bioinformatics, Göttingen Center for Molecular Biosciences (G2MB), University of Göttingen, Göttingen, Germany
6 Campus Institute Data Science (CIDAS), University of Göttingen, 37077 Göttingen, Germany

*Author for communication: kunz@lmu.de
†Senior author.

H.-H.K. designed research and wrote the manuscript. C.V. performed most experiments, assisted in writing, and analyzed data. L.J.H. performed BN electrophoresis. P.M.D. purified α-PEC1 antigen. A.D.A. and J.d.V. analyzed PEC phylogeny, B.B. carried out protein import, membrane fractionation, and PEC topology studies. All authors assisted in editing the manuscript.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plphys/pages/General-Instructions) is Hans-Henning Kunz.

Abstract

Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K\(^+\)-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K\(^+\) conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K\(^+\) uptake. Nuclear POLLUX ion channels cofunction with Ca\(^{2+}\) channels to generate Ca\(^{2+}\) signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca\(^{2+}\) transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca\(^{2+}\) release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant’s stress-related Ca\(^{2+}\) signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.
Introduction

Land plants cannot escape from environmental challenges collectively known as abiotic and biotic stress. Consequently, evolutionary innovations in the molecular mechanisms to sense and respond to rapidly changing conditions likely played a key role in the success of land plants (Furst-Jansen et al., 2020). Leaf plastids are optimized for light harvesting, rendering the organelle a sensory hub to collect information about the plant’s environment. Chloroplasts employ several mechanisms to transmit environmental information to the nucleus to adjust gene expression. These include changes in metabolite and hormone levels, redox potential, reactive oxygen species production, and ion flux. Through the action of ion channels and carriers, signals—encoded as ion transients—can be relayed within seconds. The best-known ion signals are Ca$^{2+}$ transients which exist in plastids and several other organelles, including the nucleus (Resentini et al., 2021).

In the nuclear envelope, Ca$^{2+}$ and K$^+$ transport are coupled (Charpentier et al., 2016). The, Ca$^{2+}$ channel CYCLIC NUCLEOTIDE-GATED CHANNEL 15 functionally interacts with Doesn’t Make Infections 1 (DMI), a member of the CASTOR/POLLUX/DMI ion channel family. Both channels work in concert to trigger Ca$^{2+}$ transients critical for root development and in some species mycorrhizal symbiosis (Charpentier et al., 2016; Leitao et al., 2019). In the plastid envelope, a similar system may exist as the organelle elicits stromal Ca$^{2+}$ transients in response to various triggers such as sodium chloride (NaCl) and osmotic shock (Nomura et al., 2021). Temperature changes (Lenzoni and Knight, 2019), and circadian rhythms (Marti Ruiz et al., 2020). However, the inventory of ion transport proteins in the inner envelope (IE) membrane of plastids is still incomplete. Only recently, the dual-targeted mitochondrial calcium uniporter cMCU has been discovered, and reportedly plays a role in Ca$^{2+}$ flux into mitochondria and mature chloroplasts (Teardo et al., 2019). Indeed, cmcu loss-of-function mutants show dampened stromal Ca$^{2+}$ flux in response to osmotic but not salt-stress (Teardo et al., 2019). Because significant stromal Ca$^{2+}$ transients remain in cmcu, other ion channels and/or Ca$^{2+}$ transporters are expected in the plastid IE membrane (Resentini et al., 2021). The CHLOROPLAST MANGANESE TRANSPORTER 1/BIVALENT CATION TRANSPORTER 2 (CMT1/BICAT2) transporter was suggested as an alternative IE Ca$^{2+}$ transporter as its absence impacts the shape of stromal Ca$^{2+}$ release after dark transition (Frank et al., 2019). However, other data indicate that this particular carrier may primarily transport Mn$^{2+}$ ions (Eisenhut et al., 2018; Zhang et al., 2018).

Knowledge about plastid K$^+$ flux across the IE is similar limited. Thus far, only two K$^{+}$/H$^+$ exchangers from the K efflux antiporter (KEA) family have been characterized in more detail (Aranda-Sicilia et al., 2012; Kunz et al., 2014). Both carriers (KEA1 and KEA2) physiologically function in pH and ion homeostasis which is critical for plastid gene expression and development (Aranda Sicilia et al., 2021; deTar et al., 2021). The IE membrane potential of at least –70 mV on the stromal side (Wu et al., 1991) makes K$^+$/H$^+$ valves such as KEA1/2 a necessity for osmoregulation to balance K$^+$ influx and prevent rupture of plastids (Bernardi, 1999). To functionally describe IE cation channel(s) that aid in ion influx, reconstituted proteins from Spinacia oleracea L. (spinach) (Wang et al., 1993; Mi et al., 1994) or Pisum sativum L. (pea) (Pottosin et al., 2005) chloroplasts were employed in electrophysiological studies; these efforts resulted in the characterization of the voltage-dependent fast-activating chloroplast cation (FACC) channel of pea chloroplasts (Pottosin et al., 2005). The channel exhibits conductivity for K$^+ > Na^+ > Ca^{2+} > Mg$^{2+}$ ions. While the experimental setup seemed to assure that the channel(s)’ activity originated from the IE membrane (Pottosin and Dobrovinskaya, 2015), it is not entirely clear if the currents came exclusively from a single channel type. Fifteen years later, no FACC channel gene candidate(s) has emerged to explain what protein(s) may have caused the recorded K$^+$ currents in patch-clamped pea chloroplasts.

In this study, we set out to identify first candidate proteins and their corresponding genetic loci that may explain the recorded K$^+$ and other cation currents in the chloroplast IE membrane. By mining proteomic data on pea and Arabidopsis thaliana leaf plastids, distant members of the CASTOR/POLLUX/DMI ion channel family emerged as potential FACC candidates. Therefore, the goal of this study was to (1) determine if leaf plastids indeed possess members from the CASTOR/POLLUX/DMI ion channel family, (2) gain initial insights into their physiological relevance through heterologous expression in yeast and the study of A. thaliana loss-of-function mutants, and (3) test if plastid Ca$^{2+}$ transients depend on the activity of CASTOR/POLLUX-like ion channels.

Results and discussion

The family of CASTOR/POLLUX cation channels contains functionally similar members with plastid transit peptides

To identify potential FACC candidates, we mined published pea chloroplast envelope proteome datasets (Brautigam et al., 2008; Gutierrez-Carbonell et al., 2014). Only four different protein types related to ion transport were found: putative metal-transporting P-type ATPase PAA1, glutathione-regulated potassium-efflux system protein (KEA), Voltage-dependent anion-selective channel protein (VDAC), and probable ion channel CASTOR-like (Psat6g113560). PAA1 and KEA represent well-characterized copper and respectively K$^+$ carriers (Shikanai et al., 2003; Aranda-Sicilia et al., 2012; Kunz et al., 2014; Tsujii et al., 2019) and are therefore unlikely responsible for FACC-mediated currents. A frequent contaminant in plastid proteomics, VDAC is an anion-selective channel in the mitochondrial outer membrane (Clausen et al., 2004). However, a protein annotated “probable ion channel CASTOR-like” was intriguing as CASTOR/POLLUX/DMI have been described as nuclear cation channels with
POLLUX. Homologs of PEC, CASTOR, and POLLUX were sampled from genomes of 17 land plants, 7 streptophyte algae, and 4 chlorophytes. We further added in silico translated homologs from the transcriptomes of Spirogyra pratensis (de Vries et al., 2020), Coleochaete scutata and Zygnema circumcarinatum (de Vries et al., 2018), and Coleochaete orbicularis (Ju et al., 2015). Thirteen animal streptolysin O (SLO1) sequences were included as an out-group (blue). Only protein sequences longer than 700 AAs were included in the analysis. A rooted maximum likelihood phylogeny of all 170 sequences was computed using LG + F + R7 as model for protein evolution (chosen according to BIC). A 1,000 ultrafast bootstrap (UFBoot2; Hoang et al., 2018) replicates were computed. Only ultrafast bootstrap values ≥ 50 are shown and full support (ultrafast bootstrap values of 1,000) is depicted by a filled dot. PEC, CASTOR, and POLLUX sequences are found across the green lineage (fully supported yellow clade) and were likely present as a single-copy ortholog in the last common ancestor of Chloroplastida. Early during streptophyte evolution, the PEC/CASTOR/POLLUX ortholog duplicated, giving rise to the clade of streptophyte PECs (hues of orange) and CASTOR/POLLUX (hues of teal green). Scale bar length corresponds to 2.0 expected substitutions per site.

Figure 1 Phylogenetic tree of PEC/CASTOR/POLLUX family members. Phylogenetic framework for the evolutionary history of PEC, CASTOR, and POLLUX. Homologs of PEC, CASTOR, and POLLUX were sampled from genomes of 17 land plants, 7 streptophyte algae, and 4 chlorophytes. We further added in silico translated homologs from the transcriptomes of Spirogyra pratensis (de Vries et al., 2020), Coleochaete scutata and Zygnema circumcarinatum (de Vries et al., 2018), and Coleochaete orbicularis (Ju et al., 2015). Thirteen animal streptolysin O (SLO1) sequences were included as an out-group (blue). Only protein sequences longer than 700 AAs were included in the analysis. A rooted maximum likelihood phylogeny of all 170 sequences was computed using LG + F + R7 as model for protein evolution (chosen according to BIC). A 1,000 ultrafast bootstrap (UFBoot2; Hoang et al., 2018) replicates were computed. Only ultrafast bootstrap values ≥ 50 are shown and full support (ultrafast bootstrap values of 1,000) is depicted by a filled dot. PEC, CASTOR, and POLLUX sequences are found across the green lineage (fully supported yellow clade) and were likely present as a single-copy ortholog in the last common ancestor of Chloroplastida. Early during streptophyte evolution, the PEC/CASTOR/POLLUX ortholog duplicated, giving rise to the clade of streptophyte PECs (hues of orange) and CASTOR/POLLUX (hues of teal green). Scale bar length corresponds to 2.0 expected substitutions per site.
conductance for K\(^+\), Rb\(^+\), Na\(^+\), and Ca\(^{2+}\) (Charpentier et al., 2008; Venkateshwaran et al., 2012; Kim et al., 2019). We designated the candidate PEC. To understand the evolutionary history of PEC, POLLUX, and CASTOR, we performed a phylogenetic analysis (Figure 1). We used: (1) POLLUX, CASTOR, and DMI proteins from L. japonicus, M. truncatula, Pisum sativum, and O. sativa; (2) PEC proteins from A. thaliana (At5g02940, At5g43745) as query in a BLASTp search against a dataset of 17 land plants, 11 streptophyte algae, and 4 chlorophyte algae. Among these 31 chloroplastida, we detected 157 homologs with a minimum length of 700 amino acids (AAs). These long homologs were used in all following analyses; the topology stayed robust when we included shorter sequences (Supplemental Figure S1). PEC’s structural similarity to the SLO big potassium channel family (Roy et al., 2010), led us to add 13 animal SLO sequences as an outgroup.

All homologs of PEC, POLLUX, and CASTOR fell into a fully supported clade of diverse sequences from chloroplastida (Figure 1). In this large Chloroplastida clade, a few chlorophyte homologs branch sister to all other streptophyte sequences. The sequences from streptophytes (forming a sub-clade, bootstrap support of 87) were distributed over two major clades: a PEC clade and a CASTOR/POLLUX clade. Homologs of PEC fell into a fully supported clade that included sequences spanning the diversity of streptophytes; we detected PEC homologs in all major classes of streptophyte algae—from those most divergent from land plants, represented by C. atmophyticus and M. viride (Wang et al., 2020)—and diverse land plants. Nested within this clade of putative streptophyte PEC proteins was an angiosperm-specific sub-clade, in which a PEC homolog from A. trichopoda (see Amborella Genome, 2013) branched sister to homologs from all other angiosperms—which is in line with its position in the species phylogeny. A duplication that gave rise to AtPEC1 and AtPEC2 appears specific to the genus Arabidopsis.

The large CASTOR/POLLUX clade (ultrafast bootstrap support of 91) also contained homologs from across the diversity of streptophytes; the topology of this clade largely followed the species phylogeny. Clear outgroups of solely CASTOR and solely POLLUX first appeared in angiosperms; in each of these two clades, Amborella sequences branch sister to the other angiosperm sequences, suggesting a duplication event that occurred in a common ancestor of all extant angiosperms. It is noteworthy that, branching sister to the streptophyte CASTOR/POLLUX clade, we recovered a fully supported clade that contained homologs from diverse non-vascular streptophytes (including representatives of all streptophyte algae); this suggests that there was another very early duplication of the CASTOR/POLLUX ortholog followed by a loss early during vascular evolution—or euryphyllphyte evolution (see Supplemental Figure S1, where a Selaginella homolog falls into this clade).

In sum, it appears that there was a single PEC/CASTOR/POLLUX ortholog in the last common ancestor of chloroplastida when the green lineage was in its infancy. At the base of streptophyta, this ortholog duplicated, giving rise to the clade of PECs and the clade of CASTOR/POLLUX proteins. During the course of evolution, there were some lineage-specific duplications in each of the orthogroups—including the duplication in a common ancestor of angiosperms that gave rise to the separate POLLUX and CASTOR clades. From a bird’s eye view, the orthogroups of PEC and CASTOR/POLLUX are each likely as old as streptophyta.

We compared functional domains of AtPEC1/2 with the nuclear member DMI1 using InterPro (Supplemental Figure S2A). All three proteins contain a well-conserved C-terminal CASTOR/POLLUX domain (IPR010420). This stretch includes a tandem regulator of K\(^+\) conductance (RCK) domain (IPR036721), previously determined as functionally relevant for the nuclear members (Kim et al., 2019). In the N-terminal regions the three members differ. Only PEC1/2 possess a voltage-gated potassium channel superfamily domain (SSF81324) which was not identified in DMI1. Additionally, both PEC members contain a predicted pTP (Schwacke et al., 2003; Sun et al., 2009) and were identified in recent envelope proteomes from Arabidopsis (Bouchnak et al., 2019; Trentmann et al., 2020).

Heterologous expression of PEC1 and PEC2 rescues a K\(^+\) transport deficient yeast mutant

Nuclear envelope members of the CASTOR/POLLUX cation channel family exhibit conductivity for K\(^+\), Rb\(^+\), Na\(^+\), and Ca\(^{2+}\) ions (Charpentier et al., 2008; Kim et al., 2019). Initially, we injected PEC1/2-YFP (pTPs) cRNA into Xenopus oocytes to perform electrophysiology. However, oocytes did not synthesize the candidate proteins and PEC1/2-YFP was not detectable at the plasma membrane.

Therefore, we employed yeast in which the plasma membrane K\(^+\)-transportome is well-established [reviewed in (Arino et al., 2019)] and that had been successfully used as a model to study POLLUX family channels (Charpentier et al., 2008). Heterologous expression of LjPOLLUX restored growth of MAB2d, a yeast mutant defective in K\(^+\) uptake and K\(^+\) efflux across the plasma membrane (Mařeßova and Sychrova, 2005), at low K\(^+\) (Charpentier et al., 2008). PEC1/2 (pTPs) were cloned into the constitutive expression yeast vector pYET. As a control, we cloned DMI1, the closest Arabidopsis homolog to LjPOLLUX. Resulting strains were grown overnight in K\(^+\) supplemented media and washed extensively. Optical density at 600 nm (OD\(_{600}\)) was adjusted and cells were spotted side-by-side on media plates supplemented with increasing K\(^+\) amounts from 0 mM to 25 mM KCl (Figure 2A). While the wild-type (WT) strain W303 showed strong growth at all K\(^+\) levels, MAB2d + pYeT-empty vector cells were severely growth limited below 25 mM KCl in the growth medium. DMI1, the Arabidopsis homolog of LjPOLLUX, did not robustly restore MAB2d mutant growth at low (< 25 mM) KCl levels. In contrast, PEC1 and PEC2 transformed cells were able to grow on media even without additional KCl. PEC1/2 outperformed DMI1 in the MAB2d background, suggesting that PEC1 and PEC2 may possess higher K\(^+\) permeability than DMI1 in this setup.
Independent studies confirm PEC1 and PEC2 as proteins of the plastid envelope membrane

For subcellular localization studies, PEC1/2 full-length cDNA YFP fusions were co-injected with plastid envelope marker TIC40-CFP into Nicotiana benthamiana leaves. The PEC1/2-YFP fluorescence signals appeared ring-shaped and overlaid with the IE marker TIC40-CFP (Figure 2B). Both signals surrounded the chlorophyll (Chl a) fluorescence from the thylakoids. Line plots for each fluorescence channel confirmed the spatial signal overlay (Supplemental Figure S3A). Truncated PEC1/2 variants lacking pTPs did not exhibit YFP signal around chl fluorescence but at the cell periphery (Supplemental Figure S3B). We also attempted to establish stable full-length PEC1/2-YFP overexpressor mutants in A. thaliana. In successfully isolated T1 individuals, YFP signal co-localized with the chl fluorescence (Supplemental Figure S3C). Unfortunately, both constructs underwent transgene silencing in the T2 generation.

Next, we radiolabeled PEC1/2 and DMI1 proteins with 35S-Met. Isolated intact chloroplasts were incubated with labeled proteins and half of each reaction thermolysin treated to degrade nonimported substrate. After electrophoresis, protein bands were visualized using a phosphorimager (Supplemental Figure S3D). For the two candidate plastid proteins PEC1/2, an additional smaller sized band was detectable in the plus and minus thermolysin lanes (see asterisks), which was absent in DMI1 lanes. The results confirm that only PEC1/2 carry pTPs which are processed by the translocon on the outer/inner chloroplast membrane (TOC–TIC) complex after import into the organelle.
summary, independent assays led us to conclude that PEC1/2 reside in leaf plastids. It is noteworthy that the DMI homolog was initially also suggested as a plastid channel (Imaizumi-Anraku et al., 2005). However, later it was shown that this was caused by a promoter artifact and that the nuclear membrane is the genuine CASTOR/POLLUX/DMI localization (Charpentier et al., 2008).

The C-terminal RCK domains of PEC1 reside in the envelope intermembrane space

To realize PEC1/2 immunolabeling studies we used the well-conserved C-terminal soluble stretch (≈ 64 kDa) harboring the RCK domain of PEC1 to raise serum (Supplemental Figures S2, B and S4, A). The resulting α-PEC1 almost exclusively recognized PEC1, but not PEC2 or DMI1 (Supplemental Figure S4B). Initially, we produced suborganellar fractions from A. thaliana chloroplasts. Immunoblotting of established marker proteins confirmed fraction purity (Figure 2C; Supplemental Figure S4C). A strong enrichment of PEC1 was identified only in the plastid envelope fraction. To probe the topology of PEC1 and the localization of the functionally critical RCK domain, intact chloroplasts were isolated from WT plants. Subsequently, isolated plastids were incubated with increasing amounts of trypsin (Figure 2D; Supplemental Figure S4D). Trypsin accesses the intermembrane space (IMS) but does not cross the IE as long as the plastids remain intact (Froehlich, 2011). TOC64, which expands from the outer envelope membrane into the cytosol, served as a control to monitor proper function of the peptide at the cytosolic surface of the outer envelope, while KEA1/2 was used to show that trypsin entered the IMS. TIC40 is a plastid intactness indicator. The bulk of the TIC40 protein resides in the stroma and therefore only remains stable in the presence of trypsin if the IE membrane remains intact. In untreated chloroplasts, native PEC1 protein was detected at 75 kDa. In the presence of trypsin, TOC64, KEA1/2, and PEC1 were rapidly degraded while TIC40 signal remained unchanged. Because no stable PEC1 degradation product of ≈ 64 kDa accumulated, our results suggest that the long soluble PEC1 C-terminus harboring the RCK domain resides in the envelope IMS. In line with this, the heterologously expressed soluble PEC1 C-terminus was also trypsin-sensitive (Supplemental Figure S4E). It follows that PEC1 monomers likely possess an uneven number of transmembrane domains.

In planta characterization of PEC1/2 genes and loss-of-function mutants

Initially, we inserted 2 kB PEC1/2 promoter fragments directly upstream of a GUS reporter gene. Several independent Arabidopsis lines were tested for consistent staining patterns to gain insights into what plastid types harbor PEC1 and PEC2, respectively (Figure 3A). No unspecific blue GUS staining was observed when the WT plants were incubated with X-Glu, while the pUBQ10::GUS positive control line displayed dark blue GUS stain throughout all tissues. PEC1 and PEC2 were robustly expressed at plant ages 10, 28, and 35 d (Figure 3A; Supplemental Figure S5C). While PEC1 seemed exclusively expressed in aerial tissue, pPEC2::GUS reporter lines also showed staining in seedling roots. Both loci were expressed in mature leaf and flower tissue which is in line with the robust immunoblot signal we observed when probing isolated chloroplasts with α-PEC1 (Figure 2, C and D). The GUS tissue expression patterns were generally in line with publicly available transcriptomic data (Supplemental Figure S5A and B; Kilian et al., 2007; Zhang et al., 2020) although these suggest higher PEC1 expression in mature leaves compared to PEC2.

Subsequently, we isolated T-DNA insertion mutants in PEC1 and PEC2 loci (Figure 3B; Supplemental Figure S6, A and B). None of the independent pec1 and pec2 single mutants displayed obvious phenotypes (Supplemental Figure S6C). Therefore, two independent pec1pec2 double mutant lines were isolated by crossing respective single mutants. In both double mutants, the absence of detectable gene-specific transcripts and PEC protein was confirmed by means of RT-PCR and immunoblotting, respectively (Figure 3C and D). CASTOR/POLLUX/DMI form tetramers in in vivo (Kim et al., 2019). Thus, we probed the oligomeric state of PEC1 using isolated WT and pec1pec2 mutant chloroplasts separated on blue native (BN)-PAGE (Figure 3E). Indeed, PEC1 protein gave several higher molecular bands above the 440 kDa marker, suggesting that also the distantly related POLLUX member PEC1 exists as a multimer in vivo and potentially in complex(es) with other binding partners. To characterize the pec single and double loss-of-function lines, mutant plants and WT controls were grown under long-day conditions (16-h/8-h day–night cycle, 150 µmol photons m⁻² s⁻¹). While some mutant individuals appeared slightly smaller, no statistical differences from WT were found for fresh weight and chlorophyll content (Figure 3, F–H). Additionally, several basic photosynthesis parameters (F₀/FM, NPQ, and FΦPSII) were recorded by pulse-amplitude-modulation (PAM) fluorometry (Figure 3, I and J). Again, we detected no differences from WT in any of the photosystem-II-related parameters. This indicates that the lack of PEC1 and PEC2 neither impacts photosynthesis nor chloroplast function under normal growth conditions—a striking difference from envelope K⁺/H⁺ exchanger mutants kea1kea2 (Kunz et al., 2014; deTar et al., 2021) but also from Mn²⁺/Ca²⁺ carrier deficient cmt1/bicmt2 lines (Eisenhut et al., 2018; Zhang et al., 2018; Frank et al., 2019). Because of the importance of plastid ion carriers and their impact on the leaf ionome, several mutants show aberrations from the WT in ionomics experiments (Shikanai et al., 2003; Eisenhut et al., 2018; Zhang et al., 2018; Höhner et al., 2019). Therefore, we analyzed leaf element levels but did not find significant changes between WT and the two pec1pec2 loss-of-function lines (Table 1). We reckoned that the lack of phenotypic abnormalities and quantitative changes of leaf elements along with intact photosynthesis may point towards a more specialized role for PEC1/2 channels such as in signaling pathways triggered by specific stress conditions.
Figure 3 PEC expression and loss-of-function mutant characterization. A, Promotor studies of pPEC1/2::GUS constructs indicate strong expression in A. thaliana tissues. Left part shows 10-d-old seedlings, right part leaves of 28-d-old plants. Experiments were repeated three times with similar results. Representative images are shown (scale bars = 5 mm). B, PEC1 and PEC2 locus information, including T-DNA insertion sites for all pec mutants isolated in this study. Border sequences of T-DNA insertion sites are provided in (Supplemental Figure S6C) Full-length semi-quantitative reverse transcriptase PCR shows absence of PEC1 and PEC2 transcripts in the two independent pec1pec2 lines. D, Immunoblotting of WT and pec1pec2 mutant proteins validates lack of PEC1(2) in the mutant plastids. α-KEA1(2) and commassie are presented as loading controls, α-VDAC confirms absence of mitochondrial contamination in the isolated chloroplast fraction. E, BN-PAGE of WT and pec1-1pec2-1 isolated chloroplasts. Specific signals in WT samples detected by α-PEC1 are marked with asterisks. An unspecified band appearing in WT and knockout lanes was marked with triangle (Δ), which was confirmed by 2D SDS–PAGE of the WT BN lane (striped border). F, RGB and false color panel of photosynthesis measurements of WT and two pec1pec2 double mutants. No obvious phenotypes could be detected when grown under long-day conditions at 150 μmol m⁻² s⁻¹ (scale bar = 1 cm). G, Normalized chlorophyll values are unchanged when compared to the WT as determined by analysis of variance and Dunn’s multiple comparisons test (P > 0.05, mean ± SEM, n = 9). H, Loss of PEC1/2 does not affect plant fresh weight. Shown are pooled results of three independent experiments (mean ± SEM, n = 23). Photosynthetic parameters [F_v/F_m (I) and NPQ kinetics (J)] are unchanged in pec1pec2 mutants (mean ± SD, n = 8, a representative result of three experiments is shown).
The loss of PEC1/PEC2 function affects stress-induced stromal Ca2+ transients

Chloroplasts harbor the Ca2+ sensor protein CaS and are therefore an integral part of cellular Ca2+ signaling (Weinl et al., 2008). Because of the involvement of CASTOR/POLLUX channels in the formation of nuclear Ca2+ transients, it is important to test if PEC proteins may function in plastid Ca2+ signaling.

A homozygous WT reporter line expressing stromal targeted YFP-AEQUORIN [NADPH-dependent thioredoxin reductase C (NTRC) pTP fused to YFP-AEQUORIN, therefore NTRC-YA (Mehlmer et al., 2012)] was introgressed into pec1 and pec2 single mutants and into both pec1pec2 double mutant lines. The same sensor line was also crossed into the cmcu and bicat2 bicat2 double knockout lines never peaked higher than 390 nM in our tests (n = 36, Supplemental Figure S7B).

In line with prior work (Nomura et al., 2012), the Ca2+ response in the cas-1 control was also dampened, yet not as extreme as reported previously. This could be explained by the differing specimen types employed (leaf discs, Nomura et al., 2012 versus seedlings, this study). Interestingly, the decrease in stromal Ca2+ transients in cas-1 was less pronounced than in pec1pec2. When the same pec1pec2 double mutant lines were backcrossed to WT, resulting F1 progenies exhibited a clear but not full recovery of the Ca2+ (Supplemental Figure S7, F and G) transients, confirming that PEC proteins play a critical role in stromal Ca2+ kinetics. Interestingly, none of the tested stress elicitors affected homozygous pec1pec2 double mutant growth more severely than WT (Supplemental Figure S8).

Based on the obtained results, we compiled a working model which integrates PEC1/2’s suggested function with previously described K+ and Ca2+ transport proteins in the plastid IE (Figure 4H). All our experiments confirmed PEC1/2 as an IE protein which is in line with several proteomics studies from pea and Arabidopsis. PEC1/2 expression rescues K+-uptake deficient yeast mutants. Consequently, we propose that PEC1/2 can facilitate K+ influx into the stroma. According to the literature chloroplasts have a membrane potential of at least –70 mV across the IE (Wu et al., 1991), allowing for cation influx through an opened, cation-selective pore down the electrical gradient. KEA1/2 balance the K+ influx through K+/H+ exchange to avoid osmotic stress. Akin to the nuclear CASTOR/POLLUX/DMI cation channels, PEC1/2 function is highly relevant for organelar stress-triggered Ca2+ transients. Regardless of the elicitor, Ca2+ transients remained at a very low level in pec1pec2 double mutants. Comparing the here observed Ca2+ readings with the published data on cmcu and cmt1/bicat2 null mutants it appears that the loss of PECs has a more general and severe impact on stromal Ca2+ transients. This indicates two nonmutually exclusive scenarios: First, PEC proteins themselves might also facilitate Ca2+ influx. Second, PEC proteins may affect the activity of envelope Ca2+ transport proteins (cMCU, BICAT2 and/or unknown ones).

In regards to scenario 1: Independent studies suggest Ca2+ permeability for nuclear CASTOR-type cation channels albeit with different quantities. While two studies found

Table 1

Element	WT Mean	WT SEM	pec1pec2-1 Mean	pec1pec2-1 SEM	pec1pec2-2 Mean	pec1pec2-2 SEM
P	10.233	0.305	10.432	0.247	10.369	0.205
S	10.184	0.279	9.902	0.220	10.444	0.254
Cl	0.101	0.007	0.104	0.01	0.144	0.013
K	38.482	0.502	40.222	0.707	40.544	1.352
Ca	49.014	1.231	51.130	0.87	51.160	2.282
Mn	0.028	0.004	0.031	0.005	0.033	0.003
Fe	0.083	0.006	0.088	0.006	0.079	0.004
Cu	0.004	0.000	0.005	0.001	0.008	0.003
Zn	0.097	0.003	0.095	0.003	0.108	0.004
Rb	0.021	0.005	0.023	0.006	0.025	0.006
Sr	0.143	0.014	0.15	0.016	0.147	0.016

Mean leaf concentration of assorted elements normalized to dry weight (mg·g DW−1) (±SEM, n = 6-7). No significance was determined using analysis of variance and Tukey’s multiple comparisons test (p > 0.05).
The stroma through (1) having Ca\(^{2+}\) conductance themselves or (2) their activity influences other envelope Ca\(^{2+}\) transport proteins.

One-way analysis of variance followed by Tukey’s multiple comparisons test (mean ± SEM repeated multiple times with similar results. H, Working model of K\(^{+}\) and Ca\(^{2+}\) transport mechanisms across the outer envelope and IE membrane (integration, relative to WT, left) and peak Ca\(^{2+}\) values of the corresponding seedlings (right). Statistical differences were determined by

Figure 4 Stress-triggered stromal Ca\(^{2+}\) transients are diminished in pec1pec2. A, Plastid localization of the NTRC-YFP-AEQUORIN construct in WT and pec1pec2 backgrounds. Representative images are shown (scale bars = 10 μm). B, Full-length semi-quantitative reverse transcriptase PCR shows absence of either PEC transcript in the two independent pec1pec2 lines and shows similar expression of a YFP fragment that is attached to AEQUORIN. C, Immunoblotting of WT and pec1pec2 mutant total leaf proteins shows similar YFP-AEQUORIN levels and confirms absence of PEC in pec1pec2 mutants. Commassie and α-KEA1(2) validate similar loading for all samples. D–G, Ca\(^{2+}\) transients are decreased in plants lacking mutant total leaf proteins shows similar YFP-AEQUORIN levels and confirms absence of PEC1/2 possess K\(^{+}\)-permeability and may impact Ca\(^{2+}\) transients in the stroma through (1) having Ca\(^{2+}\) conductance themselves or (2) their activity influences other envelope Ca\(^{2+}\) transport proteins.
Plastid POLLUX channels control stromal Ca\(^{2+}\) flux

Conclusions

In this study, we set out to find candidate genes encoding for the enigmatic FACC channel. While we cannot say with certainty that PEC1/2 represent FACC it is likely that they contribute to the measured FACC conductance. PEC1/2 reside in the envelope membrane of pea and Arabidopsis chloroplasts and possess all characteristic functional domains of an ion channel. Similar to their homologs, the nuclear CASTOR/POLLUX/DMI cation channels, PEC1/2 restore K\(^+\) flux in yeast mutants and affect the formation of organellar Ca\(^{2+}\) transients. PEC1/2 might have Ca\(^{2+}\) conductance themselves or their activity influences other envelope Ca\(^{2+}\) transport proteins and thus impact stromal Ca\(^{2+}\) transients indirectly. To resolve this, electrophysiology on reconstituted PEC proteins, colocalization, and interaction studies are needed. The discovery of PEC1/2 adds members to the chloroplast transportome and enables the understanding of Ca\(^{2+}\) signaling in future work.

Materials and Methods

Phylogenetic analysis

We downloaded protein data from (1) genomes of seventeen land plants: Anthoceros agrestis as well as Anthoceros punctatus (Li et al., 2020), Amborella trichopoda (Amborella Genome, 2013), Arabidopsis thaliana (Lamesch et al., 2012), Arabidopsis lyrata (Hu et al., 2011), Brachypodium distachyon (International Brachypodium, 2010), Brassica rapa (Brassica rapa FPCA v1.3, DOE-JGI, http://phytozome.jgi.doe.gov/), Gnetum montanum (Wan et al., 2018), Lotus japonicus (Li et al., 2020), Marchantia polymorpha (Bowman et al., 2017), Orzya sativa (Ouyang et al., 2007), Physcomitrium patens (Lang et al., 2018), Pismum sativum (Kreplak et al., 2019), Selaginella moellendorfii (Banks et al., 2011), and Sphagnum falax (Sphagnum falax v0.5, DOE-JGI, http://phytozome.jgi.doe.gov/); protein data for Spinacia oleracea were obtained from (Dohm et al., 2014); (2) the genomes of seven streptophyte algae: Chlorokybus atmosphaericus (Wang et al., 2020), Chara braunii (Nishiyama et al., 2018), Klebsormidium nitens (Hori et al., 2014), Mesotaeniurn endlicherianum (Cheng et al., 2019), Mesostigma viride (Wang et al., 2020), Penium margsitateaum (Jiao et al., 2020), Spiragloea muscicola (Cheng et al., 2019)—additionally, we included sequences found in the transcriptomes of Spirogyra pratensis (de Vries et al., 2020), Zygnema circumcarinatum and Coleochaeta scutata (de Vries et al., 2018), and Coleochaeta orbicularis (Ju et al., 2015); (3) the genomes of four chlorophytes: Chlamydomonas reinhardtii (Merchant et al., 2007), Coccomyxa subellipsoidea (Blanc et al., 2012), Micromonas pusilla (Worden et al., 2009), Ulva mutabilis (De Clerck et al., 2018).

We used (1) seed sequences from Lotus japonicus, Medicago truncatula, Pismum sativum and Orzya sativa and (2) animal Slo1 protein homologs from Caenorhabditis elegans, Acanthaster planci, Danio rerio, Nematostella vectensis, Pomacea canaliculate, Echinococcus granulosus, Parastatodota tepidiariorum, Lingula anatine, Biomphalaria glabrata, Homo sapiens, Drosophila majaevensis, and Mus musculus as a query sequence for a BLASTp against this dataset. Initially, we considered all homologs recovered at a cutoff level of 10\(^{-5}\).

Alignments were generated using MAFFT v7.475 (Katoh and Standley, 2013) with an L-INS-I approach. Alignments are provided in Supplemental Datasets S1 and S2. We computed maximum likelihood phylogenies using IQ-TREE 2.0.3 (Minh et al., 2020), with 1,000 ultrafast (UFBoot2; Hoang et al., 2018) bootstrap replicates. To determine the best model, we used ModelFinder (Kalyaanamoorthy et al., 2017) and picked LG + F + R7 for Figure 1 (Le and Gascuel, 2008) and WAG + R8 (Whelan and Goldman, 2001) for Supplemental Figure S1 as the best models based on the Bayesian Information Criterion.
Alignment and domain structure
Full-length amino acid sequences of PEC1, PEC2, and DMI1 were submitted to the InterPro protein families and domains database (https://www.ebi.ac.uk/interpro/). Figures were created using Affinity Designer (serif).

Plant growth and isolation of Arabidopsis thaliana mutant lines
WT and mutant seeds from accession Columbia-0 (Col-0) were surface-sterilized, stratified in the dark (48 h at 4°C), and then germinated for seven days on 1/2 strength Murashige and Skoog (MS) 0.8% (w/v) phytagar plates (pH 5.8) at 150 μmol photons m⁻² s⁻¹ in long-day conditions (16 h/8 h at 22°C). On day seven seedlings were transferred to soil (Sun Gro Professional Growing Mix #1, Sun Gro Horticulture, Agawam, MA, USA) and grown under 150 μmol photons m⁻² s⁻¹ illumination in 16-h/8-h day–night cycle at 22°C. Rosettes of 3-week-old plants were used for all experiments if not stated differently, except for chloroplast isolation where seeds were sown directly onto soil. All T-DNA insertion mutants were ordered from the ABRC stock center. Homozygous genotypes were confirmed by PCR using primers detailed in Supplemental Tables S1 and S2.

Yeast complementation assay
For Saccharomyces cerevisiae assays, we used the MAB2d mutant (Maresova and Sychrova, 2005) and the corresponding WT strain W303. PEC1, PEC2, and DMI1 coding sequences without stop codon were cloned into the yeast stock center. Homozygous genotypes were confirmed by PCR using primers detailed in Supplemental Tables S1 and S2.

Transient N. benthamiana infiltration and confocal microscopy for protein localization studies
For localization studies in N. benthamiana, Agrobacterium tumefaciens strains carrying respective vectors (Supplemental Table S3) were co-injected with the 19k vector (Voinnet et al., 2003) according to (Waadt et al., 2014). Images were taken on a Leica SP8 Confocal Laser Scanning Microscope equipped with a supercontinuum laser and hybrid detectors. In co-localization experiments employing yellow fluorescent protein (YFP) and chlorophyll autofluorescence (chl a), both fluorophores were excited at 514 nm and recorded at 524–560 nm and 627–700 nm, respectively. Cyan fluorescent protein (CFP) was excited with a pulsed laser at 405 nm and emission was sequentially recorded at 465–492 nm.

Promoter-GUS-activity staining
For GUS promoter fusion constructs (Supplemental Table S3), 2,000 bp 5'-fragments upstream from the respective ATG were amplified from genomic DNA and cloned into pGreenII 0179-derived vectors harboring the GUS reporter gene (Pratt et al., 2020). Agrobacterium containing the respective plasmids were transformed into WT plants according to (Clough and Bent, 1998). GUS staining was performed as described in (Höhner et al., 2019). Representative images are shown and experiments were carried out three times with similar results.

Generation of α-PEC1(2) immunoglobulin
To maximize chance of recognition of the antibody against PEC1, the entire soluble domain (M244 until stop codon, ~64 kDa) was cloned into pET16b and transformed into BLR 21 for expression in Escherichia coli. Purification of the antigen was performed as described in (Höhner et al., 2021). An antigen solution at 0.49 mg/mL was flash-frozen on dry ice and sent for antibody generation. The PEC1 antiserum was raised in rabbits (YenZym Antibodies, San Francisco, CA, USA).

Immunoblotting
Arabidopsis leaf tissue frozen in liquid N₂ was powdered using mortar and pestle. Total protein was extracted in extraction buffer [200 mM Tris pH 8.0, 4% (w/v) sodium dodecyl sulfate (SDS), 20 mM dithiothreitol (DTT)] to 0.5 g fresh weight/mL, followed by heating at 80°C for 10 min and removing insoluble debris by centrifugation at 21,000g for 8 min. Supernatant was mixed with Laemmli buffer and loaded on 8%–10% (w/v) acrylamide gels. A voltage of 120 V was applied until the loading dye had left the gel. Gels were either Commassie stained or electroblotted onto Polyvinylidene Fluoride (PVDF) or nitrocellulose membranes (0.45-μm pore size) by applying 70 V for 45 min. Subsequently, the membrane was incubated with blocking buffer (Tris-buffered saline with 0.05% (w/v) Tween (TBS-T), 5% (w/v) nonfat dry milk) for up to 1 h at RT and incubated overnight in blocking buffer plus primary antibody at indicated dilutions, gently rocking at 4°C. Primary antibodies used in this study were α-PEC1 (this study), α-KEA1(2) (Bolter et al., 2020), α-LHCP, α-VDAC (both (Claussen et al., 2004)), α-FPBase (Benz et al., 2009), α-TIC40 (Stahl et al., 1999), α-TOC64 (Sohrt and Soll, 2000), and a commercial α-GFP antibody (Roche, Basel, Switzerland). The membrane was washed 4 times for 5 min in TBS-T and subsequently incubated with HRP conjugated secondary antibody (goat-anti-rabbit (Proteintech Cat# SA00001-2) or goat-anti-mouse in case of anti-GFP), diluted 1:10,000 in blocking buffer for 1 h at RT. The blot
was separated on the same SDS–PAGE.

Chloroplast subfractionation

Initially, chloroplasts were isolated according to (Bolter et al., 2020). Chloroplast subfractionation was performed as described in (Flores-Perez and Jarvis, 2017), with slight modifications. Intact chloroplasts were isolated, then incubated in 10 mM HEPES/KOH, 5 mM MgCl₂ plus complete protease inhibitor (cpi) at a concentration of 1 mg/mL chl for 30 min on ice and then ruptured by 50 strokes in a dounce homogenizer. The homogenate was loaded onto a step sucrose gradient (0.46 M, 1.0 M, 1.2 M sucrose in lysis buffer) and centrifuged at 58,000 g for 2 h at 4°C. Stroma was collected from the top and directly used for SDS–PAGE. The envelope fraction was taken from the interface between 0.46 M and 1.0 M sucrose, diluted 1:4 with lysis buffer and centrifuged for 30 min at 256,000 g at 4°C. The resulting pellet was resuspended in loading buffer. Thylakoids were recovered from the pellet of the gradient, washed 5 times in lysis buffer. Loading was adjusted to total protein.

Protease treatments of chloroplasts

For trypsin treatment of intact chloroplasts an equivalent of 100 µg chl was pelleted and resuspended in 100 µL wash buffer supplemented with 0.5 mM CaCl₂. Trypsin was added in the indicated amounts per milligram chl and incubated for 45 min at 23°C. The treatment was terminated by addition of 1 x cpi, chloroplasts were resiolated by centrifugation and washed once with wash buffer + 1 x cpi. The final pellet was solubilized in Laemmli loading buffer containing 2 M urea and 1 x cpi, heated at 65°C for 5 min and plastids equivalent to 10 µg chl were loaded onto an SDS gel followed by immunoblotting as described above. All experiments were at least done in triplicates giving the same results. Shown here are representative blots.

BN-PAGE

BN-PAGE experiments of total enriched chloroplast membrane fractions were carried out as described by (Nickel et al., 2016), with minor modifications. Samples equal to 15 µg chl were solubilized with 5% β-dodecylmaltoside for 15 min and separated on a 5%–15% acrylamide gradient overnight. For subsequent western blotting, lanes were incubated in Towbin buffer [25 mM Tris pH 8.3, 192 mM glycine, 0.1% (w/v) SDS, 20% (v/v) MeOH] with additional 0.9% (w/v) SDS for 1 h prior to blotting. For 2D experiments, the respective BN gel lane was incubated for 30 min in BN-denaturation buffer (1% (w/v) SDS, 50 mM DTT, 25 mM Tris, 192 mM glycine), washed, and afterward assembled on top of an SDS–PAGE. Total enriched chloroplast membrane fractions equal to 15 µg chl were loaded as a control and separated on the same SDS–PAGE.

Photosynthetic parameters and chlorophyll quantification

Plants were dark-adapted for 20 min. Subsequently, chlorophyll a fluorescence was measured with a Walz IMAGING-PAM M-Series MAXI version (Walz, Effeltrich, Germany). False-color images were exported using the ImagingWinGigE software. Total chlorophyll was extracted from 5 to 10 mg of N₂-frozen powdered plant material in prechilled reaction tubes. After addition of 1 mL 80% (v/v) acetone, samples were incubated for at least 30 min on ice in the dark interrupted by occasional vortexing. Samples were centrifuged at 10,000 g for 5 min at 4°C to pellet debris. Chlorophyll determination was performed through photometry on the clear supernatant (Porra et al., 1989). Obtained values were normalized to fresh weight, and then to the WT. A representative result of three independent experiments is shown.

Generation of stable Aequorin reporter mutants and Ca²⁺ assays

Aequorin lines were generated by using the floral dip method with A. tumefaciens strains harboring the plasmid pBINU-CHYA(K) (Mehlmer et al., 2012). Homozygous T₃ individuals were introgressed into mutant lines and homozygosity of the reporter lines was confirmed in the F₃ generation. Aequorin assays were performed according to (Tanaka et al., 2013), with minor changes to the CTZ buffer. In brief, 5-d-old seedlings were transferred from 1/2 MS plates to white 96-well plates filled with 50 µL CTZ buffer (1.4 mM CaCl₂, 20 mM KCl, 5 mM MES pH 5.7) containing 10 µM coelenterazine (NanoLight Technologies, USA, CAS#55779-48-1). Seedlings were kept in the dark overnight at 22°C. Luminescence was recorded in a TECAN SPARK plate reader (Tecan, Männedorf, Switzerland) with 500 ms integration time (400 ms in supplementary experiments). Total, reconstituted AEOQUORIN amounts were calculated by discharging with 10% (v/v) ethanol and 1 M CaCl₂. Calibrations were performed according to (Knight et al., 1996). Graphs were plotted with GraphPad Prism. A representative result of at least three experiments is shown. Statistical significance was tested using analysis of variance followed by Tukey’s multiple comparisons test.

Elemental analysis

Leaf elements are analyzed by Total Reflection X-ray Fluorescence (TXRF) spectroscopy. All procedures were previously described in detail (Höhner et al., 2016). In brief, 21-d-old plants were harvested, pooled in groups of three, and dried completely in an oven at 80°C. To avoid elemental contamination, tissue was ground into fine powder using a zirconia mortar and pestle (Stanford Advanced Materials, Lake Forest, USA). A 5–10 mg dry weight tissue was digested by boiling in 1 mL 70% (v/v) HNO₃ (analytical grade). About 100 lL of the digested tissue was mixed with internal quantitative Ga and Sc standards to final concentrations of 1 ppm Ga and 50 ppm Sc. A mixture of 10 µL was spotted
onto quartz disc carriers and dried before measuring on a S4 T-STAR TXRF spectrometer (Bruker, Berlin, Germany).

Accession numbers
PEC1 (At5g02940), PEC2 (At5g43745), DMI1 (At5g49960), Tic40 (At5g16620), NTRC (AT2G41680), pec1-1 (SAIL_300_A10, CS72537), pec1-2 (SALK_045095, CS72538), pec2-1 (SALK_102200, CS72539), pec2-2 (SAIL_839_E05, CS72540), pec1-1pec2-1 (CS72541), pec1-2pec2-2 (CS72542), cas-1 (SALK_070416), Col-0 WT NTRC-YFP-AEQ (CS72534), pec1-1pec2-1 NTRC-YFP-AEQ (CS72535), pec1-2pec2-2 NTRC-YFP-AEQ (CS72536).

Supplemental data
The following materials are available in the online version of this article.

Supplementary Figure S1. Phylogeny of PEC, CASTOR, and POLLUX homologs.
Supplementary Figure S2. PEC domains and construct information.
Supplementary Figure S3. Localization studies of PEC proteins in N. benthamiana and Arabidopsis thaliana.
Supplementary Figure S4. α-PEC1 antibody design and application in localization studies.
Supplementary Figure S5. Extended PEC expression information.
Supplementary Figure S6. PEC locus information and pec single mutant characterization.
Supplementary Figure S7. Background AEQUORIN and additional cold shock measurements, single mutant readings, and complementation by backcross into the WT.
Supplementary Figure S8. Lack of stromal Ca\(^{2+}\) transients in pec1pec2 mutants does not correspond with additional growth defects under abiotic stress conditions.

Supplemental Table S1. Oligonucleotide combinations used in genotyping PCRs.
Supplemental Table S2. List of oligonucleotides used in this study.
Supplemental Table S3. Constructs used in this study and their origin.
Supplemental Dataset S1. Main Figure 1 alignment
Supplemental Dataset S2. Supplemental Figure S1 alignment.

Acknowledgments
We thank Prof. Ute Vothknecht (University of Bonn) for kindly providing NTRC-YA vector DNA and the respective Arabidopsis Ca\(^{2+}\) reporter line. We thank Dr. Myriam Charpentier (John Innes Centre) for early advice on the yeast K\(^{+}\) assays and Dr Sychrová Hana (Czech Academy of Sciences at Prague) for sharing the MAB2d mutant strain. Many thanks to Drs Michael Varnum (Washington State University) and Miguel Piñeros (Cornell University) for tremendous support in trying to establish electrophysiology assays on PECs in Xenopus oocytes. We are very thankful for many helpful aequorin-related discussions with Drs Tanaka and Jewell (both WSU) and their insights on plate-reader-based luminescence assays. Lots of thanks to A.H. Howell for confocal microscopy assistance, to Dr DeTar for help in ionomics sample preparation and evaluation, to A.I. Pratt (all WSU) for early discussions on Ca\(^{2+}\) assays, and to Dr Jordan Zager (Dewey Scientific) for discussion on various parts of the project. C.M. and C.L. Lewis (Alumni WSU Honors College), and K. Bünger (LMU Munich) supported various aspects of the projects. A.M. Garbers (WSU) assisted early in the project. C.V. is grateful for travel support through the WSU Elling and Higinbotham scholarship program and support for microscopy work through the WSU Franceschi training grant.

Funding
H.-H.K. received funding from an National Science Foundation (NSF) Career Award (IOS-1553506) and a third call ERA-CAPS grant from NSF (IOS-1847382). Elemental analysis was realized through an NSF MRI-1828266 award to H.-H.K. B.B. received funding from the Deutsche Forschungsgemeinschaft (DFG) (SFBR-175, project B06). Work in the lab of J.d.V. is supported through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant no. 852725; ERC Starting Grant "TerreStriAL"). A.D.A. and J.d.V. are part of the framework of MADLand (http://madland.science, DFG priority program 2237), J.d.V. is grateful for funding by the DFG (VR132/4-1). Conflict of interest statement. None declared.

References
Amborella Genome P (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089
Aranda-Sicilia MN, Cagnac O, Chanroj S, Sze H, Rodriguez-Rosales MP, Venema K (2012) Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K(+)/H(+) antiporter with a chloroplast transit peptide. Biochim Biophys Acta 1818: 2362–2371
Aranda Sicilia MN, Sanchez Romero ME, Rodriguez Rosales MP, Venema K (2021) Plastidial transporters KEA1 and KEA2 at the inner envelope membrane adjust stromal pH in the dark. New Phytol 229: 2080–2090
Arino J, Velazquez D, Casamayor A (2019) Ser/Thr protein phosphatases in fungi: structure, regulation and function. Microb Cell 6: 217–256
Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, et al. (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960–963
Benz JP, Stengel A, Lintala M, Lee YH, Weber A, Philipp K, Gugel IL, Kaieda S, Ikegami T, Mulo P, et al. (2009) Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell 21: 3965–3983
Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79: 1127–1155
Blanc G, Argarkova I, Grimwood J, Kuo A, Brueggenman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, et al. (2012) The genome of the polar eukaryotic microalga Coccomyxa.
subellipsioide reveals traits of cold adaptation. Genome Biol 13: R39

Bolter B, Mitterreiter MJ, Schwenkert F, Sankemeier I, Kunz HH (2020) The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features. Photosynth Res 145:43–54

Bouchnak I, Brugiere S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N (2019) Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol Cell Proteomics 18: 1285–1306

Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. (2017) Insights into land plant evolution garnered from the marchantia polypora genome. Cell 171: 287–304 e215

Brautigam A, Hoffmann-Benning S, Weber AP (1998) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolism fluxes. Plant Physiol 148: 568–579

Charpentier M, Bredemeier R, Wanner G, Schwenkert S, Parniske M (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20: 3467–3479

Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Very AA, Sanders D, Morris RJ, Oldroyd GE (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352: 1102–1105

Cheng S, Xian W, Fu Y, Marin B, Keller J, Wu T, Sun W, Li X, Xu Y, Zhang Y, et al. (2019) Genomes of subaerical zygnematophycaceae provide insights into land plant evolution. Cell 179: 1057–1067 e1014

Clason C, Ikavets I, Thomson R, Philipp K, Vojta A, Mohlmann T, Neuhaus E, Fulgosi H, Soll J (2004) Intracellular localization of VDAC proteins in plants. Planta 220: 30–37

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743

de Clerck O, Kao SM, Bogaert KA, Blomme J, Fofonker F, Kwantes M, Vancaeter D, Vanvlaet L, Ayogodu E, Boesger J, et al. (2018) Insights into the evolution of multicellularity from the sea lettuce genome. Curr Biol 28: 2921–2933 e2925

def Tar RA, Barahimipour R, Manavski N, Schwenkert S, Hohner R, Bolter B, Inaba T, Meurer J, Zoschke R, Kunz H-H (2021) Loss of inner-envelope K + /H + exchangers impairs plastid rRNA maturation and gene expression. Plant Cell 33: 2479–2505

de Vries J, Curtis BA, Gould SB, Archibald JM (2018) Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci U S A 115: E4371–E4380

de Vries J, de Vries S, Curtis BA, Zhou H, Penny S, Feussner K, Pinto DM, Steinert M, Cohen AM, van Schwartzemberg K, et al. (2020) Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant J 2021: 187; 2110–2125

dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorenson TR, Stracke R, Reinhardt R, et al. (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505: 546–549

Eisenhut M, Hoecker N, Schmidt SB, Basgaran RM, Flachbart S, Jahns P, Eser T, Geimer S, Husted S, Weber APM, Leister D, Schneider A (2018) The plastid envelope CHLOROPLAST MANGANESE TRANSPORTER1 is essential for manganese homeostasis in Arabidopsis. Mol Plant 11: 955–969

Flores-Perez U, Jarvis P (2017) Isolation and suborganellar fractionation of Arabidopsis Chloroplasts. Methods Mol Biol 1511: 45–60

Frank J, Happeck R, Meier B, Hoang MTT, Stribny J, Hause G, Ding H, Morsomme P, Baginsky S, Peiter E (2019) Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. New Phytol 221: 866–880

Froehlich J (2011) Studying Arabidopsis envelope protein localization and topology using thermolysin and trypsin proteases. Methods Mol Biol 774: 351–367

Furst-Jansen JMR, de Vries S, de Vries J (2020) Evo-physio: on stress responses and the earliest land plants. J Exp Bot 71: 3254–3269

Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30: 816–820, 822–816, 828 passim

Gutierrez-Carbonell E, Takahashi D, Lattanzio G, Rodriguez-Celma J, Kehr J, Soll J, Philipp K, Uemura M, Abadia J, Lopez-Millan AF (2014) The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J Proteome Res 13: 2941–2953

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2019) UмотBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35: 518–522

Hohner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Gla Visalicio P, Correa Galvis V, Armbuster U, Schöttler MA, Jahns P, et al. (2021) Storidal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. Plant Physiol 186: 146–167

Hohner R, Galvis VC, Strand DD, Völkner C, Kramer M, Messer M, Dinc F, Sjuts I, Bolter B, Kramer DM, et al. (2019) Photosynthesis in Arabidopsis is Unaffected by the Function of the Vacuolar K(+) Channel TPKP. Plant Physiol 180: 1322–1335

Hohner R, Tabatabaei S, Kunz H-H, Fitzschen U (2016) A rapid total reflection X-ray fluorescence protocol for micro analyses of ion profiles in Arabidopsis thaliana. Spectrochimica Acta Part B: Atomic Spectrometry 125: 159–167

Horii K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Sae M, Sato S, Yamada T, Mori H, Tajima N, et al. (2014) Klebsormidium flaccum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5: 3978

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: 476–481

Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, et al. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433: 527–531

International Brachypodium I (2010) Genome sequencing and analysis of Brachypodium distachyon. Nature 463: 763–768

Jiao C, Sorensen I, Sun X, Sun H, Behar H, Alseekh S, Philippe G, Palacio Lopez K, Sun L, Reed R, et al. (2020) The penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181: 1097–1111 e1012

Ju C, Van de Poeel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1: 1400

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587–589

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780

Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50: 347–363

Kim S, Zeng W, Bernard S, Liao J, Venkateswaran M, Ane JM, Jiang Y (2019) Ca(2+)-regulated Ca(2+) channels with an RCK gating ring control plant symbiotic associations. Nat Commun 10: 3703
Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503

Kreplak J, Madou MA, Capal P, Novak P, Labadie K, Aubert G, Bayer PE, Gali KK, Syrne RA, Main D, et al. (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51: 1411–1422

Kunz HH, Gieth M, Herdean A, Satoh-Cruz M, Kramer DM, Speeta C, Schroeder JJ (2014) Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci U S A 111: 7480–7485

Lamesh P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sisadharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202–1210

Lang D, Ulrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, et al. (2018) The Phychomictella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J 93: 515–533

Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307–1320

Leitao N, Dangeville P, Carter R, Charpentier M (2019) Nuclear calcium signatures are associated with root development. Nat Commun 10: 4865

Lenzoni G, Knight MR (2019) Increases in absolute temperature stimulates free calcium concentration elevations in the chloroplast. Plant Cell Physiol 60: 538–548

Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blazquez MA, et al. (2020) Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat Plants 6: 259–272

Li H, Jiang F, Wu P, Wang K, Cao Y (2020) A high-quality genome sequence of model legume lotus japonicus (MG-20) provides insights into the evolution of root nodule symbiosis. Genes (Basel) 11: 483

Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55: 588–600

Marti Ruiz MC, Jung HJ, Webb AAR (2020) Circadian gating of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. New Phytol 225: 1993–2005

Mehlner N, Parvin N, Hurst CH, Knight MR, Teige M, Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Knight H, Trewavas AJ, Knight MR (2005) Physiological characterization of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis thaliana. J Exp Bot 56: 1751–1761

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al., (2007) The chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250

Mi F, Peters JS, Berkowitz GA, Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al., (2007) The Chlamydomonas reinhardtii genome database: a framework for comparative genomics in biology and medicine. Nucleic Acids Res 35: D883–D887

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975: 384–394

Pottosin I, Muniz J, Shabala S (2005) Fast-activating channel controls cation fluxes across the native chloroplast envelope. J Membr Biol 204: 145–156

Pottosin I, Dobrovinskaya O (2015) Ion channels in native chloroplast membranes: challenges and potential for direct patch-clamp studies. Front Physiol 6: 396

Pratt AL, Knoblauch J, Kunz HH (2020) An updated pGREEN-based vector suite for cost-effective cloning in plant molecular biology. Microbiol Public Biol 2020

Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A (2021) The signatures of organellar calcium. Plant Physiol 187: 1985–2004

Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738

Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UJ, Kunze R (2003) ARAMEMON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131: 16–26

Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15: 1333–1346

Sohrt K, Soll J (2000) To64, a new component of the protein translocon of chloroplasts. J Cell Biol 148: 1213–1221

Stahl T, Glocmann C, Soll J, Heins L (1999) Tic40, a new “old” subunit of the chloroplast protein import translocon. J Biol Chem 274: 37467–37472

Sun Q, Zybailov B, Majeran W, Frigo G, Olinades PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37: D969–D974

Tabana K, Choi J, Stacey G (2013) Aequorin luminescence-based functional calcium assay for heterotrophic G-proteins in Arabidopsis. Methods Mol Biol 1043: 45–54

Teardro E, Carrassetto L, Moscatelli R, Cortese E, Vicario M, Festa M, De Lortoli S, Cali T, Vothknecht UC, et al., (2019) A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat Plants 5: 581–588

Trentmann O, Muhlhaus T, Zimmer D, Sommer F, Schrda M, Haferkamp I, Keller J, Pommernrenig B, Neuhaus HE (2020) Identification of chloroplast envelope proteins with critical importance for cold acclimation. Plant Physiol 182: 1239–1255

Tsujii M, Kera K, Hamamoto S, Kuromori T, Shikanai T, Uozumi T, Voinnet O, Rivas S, Mestre P, Baulcombe D (2019) Evidence for potassium transport activity of Arabidopsis tonoplast inward rectifier potassium channel 2: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975: 384–394

Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E, Parniske M, Imai-zumi-Anraku H, Ane JM (2012) The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell 24: 2528–2545

Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33: 949–956

Waadt R, Schlucking K, Schroeder JJ, Kudla J (2014) Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations. Methods Mol Biol 1062: 629–658
Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, Liu ZJ, Xin HP, Gong YB, Liu Y, et al. (2018) A genome for gnetophytes and early evolution of seed plants. Nat Plants 4: 82–89
Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, et al. (2020) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6: 95–106
Wang X, Berkowitz GA, Peters JS (1993) K⁺-conducting ion channel of the chloroplast inner envelope: functional reconstitution into liposomes. Proc Natl Acad Sci U S A 90: 4981–4985
Weinl S, Held K, Schlucking K, Steinhorst L, Kuhlgerit S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca²⁺-regulated stomatal responses. New Phytol 179: 675–686
Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691–699
Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, et al. (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324: 268–272
Wu W, Peters J, Berkowitz GA (1991) Surface charge-mediated effects of mg on K flux across the chloroplast envelope are associated with regulation of stromal pH and photosynthesis. Plant Physiol 97: 580–587
Zhang B, Zhang C, Liu C, Jing Y, Wang Y, Jin L, Yang L, Fu A, Shi J, Zhao F, et al. (2018) Inner Envelope CHLOROPLAST MANGANESE TRANSPORTER 1 supports manganese homeostasis and phototrophic growth in Arabidopsis. Mol Plant 11: 943–954
Zhang H, Zhang F, Yu Y, Feng L, Jia J, Liu B, Li B, Guo H, Zhai J (2020) A comprehensive online database for exploring approximately 20,000 public Arabidopsis RNA-Seq libraries. Mol Plant 13: 1231–1233