The β-Arrestin-Like Protein Rim8 Is Hyperphosphorylated and Complexes with Rim21 and Rim101 To Promote Adaptation to Neutral-Alkaline pH

Jonathan Gomez-Raja and Dana A. Davis
Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, USA

β-Arrestin proteins are critical for G-protein-coupled receptor desensitization and turnover. However, β-arrestins have recently been shown to play direct roles in nonheterotrimeric G-protein signal transduction. The Candida albicans β-arrestin-like protein Rim8 is required for activation of the Rim101 pH-sensing pathway and for pathogenesis. We have found that C. albicans Rim8 posttranslationally modified by phosphorylation and specific phosphorylation states are associated with activation of the pH-sensing pathway. Rim8 associated with both the receptor Rim21 and the transcription factor Rim101, suggesting that Rim8 bridges the signaling and activation steps of the pathway. Finally, upon activation of the Rim101 transcription factor, C. albicans Rim8 was transcriptionally repressed and Rim8 protein levels were rapidly reduced. Our studies suggest that Rim8 is taken up into multivesicular bodies and degraded within the vacuole. In total, our results reveal a novel mechanism for tightly regulating the activity of a signal transduction pathway. Although the role of β-arrestin proteins in mammalian signal transduction pathways has been demonstrated, relatively little is known about how β-arrestins contribute to signal transduction. Our analyses provide some insights into potential roles.

Received 16 March 2012 Accepted 21 January 2012 Published ahead of print 16 March 2012

Address correspondence to Dana A. Davis, dadavis@umn.edu.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/EC.05211-11
in Rim8 activity among these model organisms. For example, in S. cerevisiae Rim8 ubiquitination is pH independent; in A. nidulans PalF ubiquitination is pH dependent (23, 24). It is also unclear how the signaling complex affects the ESCRT machinery in order to promote Rim101 processing only at neutral–alkaline pH in any system. Here, we demonstrate that in C. albicans Rim8 is phosphorylated in response to neutral–alkaline pH and that this modification is correlated with Rim101 activation. Further, we find that Rim21, Rim8, and Rim101 coimmunoprecipitate, suggesting that Rim8 may directly bridge the receptor and transcription factor. Finally, our studies suggest that Rim8 represents a key step in negative feedback, allowing C. albicans cells to exhibit fine control of arrestin–dependent signaling.

MATERIALS AND METHODS

Media and growth conditions. C. albicans strains were routinely grown at 30°C in YPD broth (2% Bacto peptone, 1% yeast extract, 2% dextrose). C. albicans transformants were selected on synthetic medium (0.67% yeast nitrogen base plus ammonium sulfate and without amino acids with 2% dextrose and supplemented with a dropout mix containing amino and nitrogen base plus ammonium sulfate and without amino acids with 2% dextrose and supplemented with a dropout mix containing amino and nucleic acids except those necessary for the selection) (1).

Strains and plasmids. All strains used in this study are listed in Table 1. The Rim8-hemagglutinin (HA) C-terminally tagged strains were generated by transformation with either the HA-URA3 and HA-HIS1 cassette amplified in a PCR with primers 5’ Rim8-3’-HA c-term and either 3’ Rim8-3’HA c-term URA or Rim8R2 (Table 2) and plasmid pMG1874 or pMG1921 as the template (18). Rim8-Myc C-terminally tagged strains were generated by transformation with the Rim8-Myc-HIS1 cassette amplified with primers RIM8FMyc and RIM8R2 and the plasmid pMG2093 as the template (18). Rim8-green fluorescent protein (GFP) C-terminally tagged strains were generated by transformation with the Rim8-GFP-HIS1 cassette amplified in a PCR with primers RIM8F1 and RIM8R2 and the plasmid pGFP-HIS1 (17). Correct integration were identified via the PCR using primer seq4 rim8 in combination with primer 3’ HA detect, 3’ myc detect, or GFP 3’ detect.

Rim101-V5-tagged strains were generated by transformation of Nrlul-digested pDDB322 as described previously (31).

Rim21-HA C-terminally tagged strains were generated by transformation of the HA-URA3 cassette amplified in a PCR with primers RIM21HA and RIM21R1 and pMG1874 as the template (18). Correct integration was determined via the PCR using primers Rim21+1397 and 3’ HA detect.

The mck1Δ/Δrim8-HA strain (JAD032) was generated as follows. BWPI7 was transformed with the mck1:ΔARG4 cassette, which was amplified in a PCR using the MCK1 5DR and MCK1 3DR (Table 2) primers and the pRS-ArgΔSpe template (53), to generate the heterozygous mutant DAY399. DAY399 was then transformed with the mck1:ΔURA3-Δp200 cassette, which was amplified in a PCR using the MCK1 5DR and MCK1 3DR primers and the pDDB87 template (52), to generate the homozygous mutant DAY406. Correct integration was demonstrated by the PCR using primers MCK1 5detect and MCK1 3detect, which flank the site of integration. Rim8-HA was introduced into DAY406 as described above to generate JAD032.

Protein preparation and Western blot analyses. Overnight cultures were diluted 200-fold into fresh medium 199 (M199) buffered with 150 mM HEPES at the appropriate pH and grown at 30°C as indicated. Cell pellets were resuspended in ice-cold radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris, pH 8, 150 mM NaCl, 1% NP-40, 3 mM EDTA, 0.5% deoxycholate, 0.1% SDS) containing 1 µg/ml leupeptin, 2 µg/ml aprotinin, 1 µg/ml pepstatin, 0.1 mM phenylmethylsulfonyl fluoride, and 10 mM dithiothreitol (DTT) and lysed by vortexing with acid-washed glass beads for 1 h at 4°C. Lysates were cleared by centrifugations at 4°C to remove cell debris, and the protein concentration was determined spectrophotometrically (19).

For Western blot assays, ~0.7 mg of total protein was resuspended in 2× SDS gel-loading buffer (100 mM Tris-Cl, pH 6.8, 200 mM DTT, 4% SDS, 0.1% bromophenol blue, 20% glycerol), boiled at 95°C for 3 min, and run in either 6 or 8% SDS-polyacrylamide gels. Gels were transferred to a nitrocellulose membrane and blocked in 6% nonfat milk in TBS-T (50 mM Tris, pH 7.6, 150 mM NaCl, 0.1% Tween 20). Membranes were incubated with a 1:1,000 dilution of anti-HA (F-7 probe; Santa Cruz), a 1:5,000 dilution of anti-V5 or anti-Myc (Invitrogen), or a 1:15,000 dilution of antitubulin in 6% nonfat milk in TBS-T. Membranes were washed three times in TBS-T and then exposed to a 1:5,000 dilution of anti-mouse horseradish peroxidase antibody (GE Healthcare) in 6% nonfat milk in TBS-T or a 1:10,000 dilution of antirat-horseradish peroxidase antibody (to detect antitubulin) in 6% nonfat milk in TBS-T. Membranes were washed three times in TBS-T incubated with enhanced chemiluminescence reagent (GE Healthcare) and exposed to film.

Immunoprecipitation of HA-tagged proteins. Twenty microliters of anti-HA agarose beads (Sigma) was added to 0.8 ml of crude extracts (~12 mg of total protein), and the mixture was incubated overnight at 4°C. Beads were washed three times with TBS-T, and proteins were eluted by resuspension in 50 µl of 2× SDS gel-loading buffer and incubation at 95°C for 5 min.

Phosphatase assay. HA-tagged proteins were immunoprecipitated, suspended in TBS, and incubated with and without calf intestine alkaline phosphatase (NEB) and with or without 50 mM EDTA. Reaction mixtures with beads were incubated at 37°C for 30 min. SDS gel-loading buffer (2×) was added, and the samples were boiled at 95°C for 5 min. The entire product was loaded in a 6% SDS-polyacrylamide gel to be analyzed by Western blotting.

RNA analyses. Total RNA was extracted as described previously (13). Total RNA was further purified using an RNA purification kit (Qiagen). For reverse transcription-PCR (RT-PCR), RNA was treated with DNase I (Promega) and the RNA concentration was determined spectrophotometrically. Five micrograms of total RNA was reverse transcribed to cDNA using SuperScript II (Invitrogen) and random primers (Promega). Two microliters of cDNA was used as the template with either RIM8-specific primers (RTRIM8-F and RTRIM8-R) or ACT1-specific primers (ACT1-F and ACT1-R) as the loading control. PCR parameters were 94°C for 2 min, followed by 30 cycles, each consisting of 94°C for 30 s, 53°C for 30 s, and 72°C for 1 min.

Microscopy. GFP-tagged Rim8 strains were grown overnight at 30°C to saturation in YPD. Cells were diluted 1/100 into fresh M199 at pH 4 and 30°C for 2 to 3 h. Cells were then shifted to 2 ml of fresh M199 at pH 4 or pH 8 containing 2.5 µl of 16 mM lipophilic dye FM4-64 (Invitrogen) and incubated at 30°C for 30 min. Cells were washed with phosphate-buffered saline, pH 4 or pH 7.2, and analyzed by fluorescence microscopy. Pictures were taken using a Zeiss Axio camera using either a GFP-specific or a rhodamine filter set.

RESULTS

Rim8 is posttranslationally modified. Rim8/PalF is posttranslationally modified in both A. nidulans and S. cerevisiae (23, 24). Thus, we asked if Rim8 is also posttranslationally modified in C. albicans. To address this question, we constructed a RIM8-HA/rim8Δ RIM101-V5 strain. The RIM8-HA/rim8Δ strain did not have the growth or filamentation defects associated with loss of Rim8, demonstrating that the Rim8-HA fusion was functional (data not shown). Using this strain background, we analyzed Rim8 expression across a range of pHs (Fig. 1A). At the most acidic pHs, pH 4 to 5.5, two distinct bands of Rim8-HA of ~82 and 87 kDa were observed. However, at pH 6 to 7, a higher-molecular-mass band of ~95 kDa was observed. We also noted a dramatic loss of Rim8-HA signal with increasing pH, as Rim8-HA levels were reduced beginning at pH 5.5 and were undetectable at pH 7.5 and 8 compared to Rim101-V5 levels. Thus, Rim8 is post-
As reported previously, Rim101-V5 was found in multiple forms processing was correlated with Rim8-HA modification (Fig. 1A).

TABLE 1

Strain	Genotype	Source or reference
JAD001	his1G/his1G arg4G/arg4G	This study
JAD002	his1G/his1G arg4G/arg4G	This study
JAD003	his1G/his1G arg4G/arg4G	This study
JAD004	his1G/his1G arg4G/arg4G	This study
JAD005	his1G/his1G arg4G/arg4G	This study
JAD006	his1G/his1G arg4G/arg4G	This study
JAD007	his1G/his1G arg4G/arg4G	This study
JAD008	his1G/his1G arg4G/arg4G	This study
JAD009	his1G/his1G arg4G/arg4G	This study
JAD100	his1G/his1G arg4G/arg4G	This study
JAD101	his1G/his1G arg4G/arg4G	This study
JAD102	his1G/his1G arg4G/arg4G	This study
JAD103	his1G/his1G arg4G/arg4G	This study
JAD104	his1G/his1G arg4G/arg4G	This study
JAD105	his1G/his1G arg4G/arg4G	This study
JAD106	his1G/his1G arg4G/arg4G	This study
JAD107	his1G/his1G arg4G/arg4G	This study
JAD108	his1G/his1G arg4G/arg4G	This study
JAD109	his1G/his1G arg4G/arg4G	This study
JAD110	his1G/his1G arg4G/arg4G	This study
JAD111	his1G/his1G arg4G/arg4G	This study
JAD112	his1G/his1G arg4G/arg4G	This study
JAD113	his1G/his1G arg4G/arg4G	This study
JAD114	his1G/his1G arg4G/arg4G	This study
JAD115	his1G/his1G arg4G/arg4G	This study
JAD116	his1G/his1G arg4G/arg4G	This study
JAD117	his1G/his1G arg4G/arg4G	This study
JAD118	his1G/his1G arg4G/arg4G	This study
JAD119	his1G/his1G arg4G/arg4G	This study
JAD120	his1G/his1G arg4G/arg4G	This study
JAD121	his1G/his1G arg4G/arg4G	This study
JAD122	his1G/his1G arg4G/arg4G	This study
JAD123	his1G/his1G arg4G/arg4G	This study
JAD124	his1G/his1G arg4G/arg4G	This study
JAD125	his1G/his1G arg4G/arg4G	This study
JAD126	his1G/his1G arg4G/arg4G	This study
JAD127	his1G/his1G arg4G/arg4G	This study
JAD128	his1G/his1G arg4G/arg4G	This study
JAD129	his1G/his1G arg4G/arg4G	This study
JAD130	his1G/his1G arg4G/arg4G	This study
JAD131	his1G/his1G arg4G/arg4G	This study
JAD132	his1G/his1G arg4G/arg4G	This study
JAD133	his1G/his1G arg4G/arg4G	This study
JAD134	his1G/his1G arg4G/arg4G	This study
JAD135	his1G/his1G arg4G/arg4G	This study
JAD136	his1G/his1G arg4G/arg4G	This study
JAD137	his1G/his1G arg4G/arg4G	This study
JAD138	his1G/his1G arg4G/arg4G	This study
JAD139	his1G/his1G arg4G/arg4G	This study
JAD140	his1G/his1G arg4G/arg4G	This study
JAD141	his1G/his1G arg4G/arg4G	This study
JAD142	his1G/his1G arg4G/arg4G	This study
JAD143	his1G/his1G arg4G/arg4G	This study
JAD144	his1G/his1G arg4G/arg4G	This study
JAD145	his1G/his1G arg4G/arg4G	This study
JAD146	his1G/his1G arg4G/arg4G	This study
JAD147	his1G/his1G arg4G/arg4G	This study
JAD148	his1G/his1G arg4G/arg4G	This study
JAD149	his1G/his1G arg4G/arg4G	This study
JAD150	his1G/his1G arg4G/arg4G	This study
JAD151	his1G/his1G arg4G/arg4G	This study
JAD152	his1G/his1G arg4G/arg4G	This study
JAD153	his1G/his1G arg4G/arg4G	This study
JAD154	his1G/his1G arg4G/arg4G	This study
JAD155	his1G/his1G arg4G/arg4G	This study
JAD156	his1G/his1G arg4G/arg4G	This study
JAD157	his1G/his1G arg4G/arg4G	This study
JAD158	his1G/his1G arg4G/arg4G	This study
JAD159	his1G/his1G arg4G/arg4G	This study
JAD160	his1G/his1G arg4G/arg4G	This study
JAD161	his1G/his1G arg4G/arg4G	This study

Translationaly modified in response to environmental pH in *C. albicans*.

The Rim101 transcription factor is proteolytically activated with increasing pH (31). Thus, we next asked whether Rim101 processing was correlated with Rim8-HA modification (Fig. 1A). As reported previously, Rim101-V5 was found in multiple forms (31). The full-length 85-kDa (FL) and 65-kDa processed (P1) forms were observed regardless of pH, although the levels of each varied depending on pH. Beginning at pH 6.0, two active forms (Act) of 72 and 74 kDa were observed. Thus, Rim101-V5 processing to the active 72- and 74-kDa forms occurs concomitantly with the modification and loss of Rim8-HA.

These initial analyses used samples that were grown for 4 h, which we reasoned represents steady state for Rim8-HA expres-
To determine how quickly Rim8-HA modification occurs, we grew Rim8-HA-expressing cells in M199, pH 4, to logarithmic phase, shifted them to fresh M199 at pH 4 and pH 8, and monitored Rim8-HA expression over time (Fig. 1B). In fresh pH 4 medium, a broad band of 82 to 87 kDa was observed at all time points. In fresh pH 8 medium, by 30 min most of the Rim8-HA signal was found in at least 4 discrete bands of slower mobility between 95 and 105 kDa. However, we did note that some residual 82- and 87-kDa Rim8-HA protein remained after 30 min incubation. Furthermore, we observed that the Rim8-HA signal was drastically reduced within 30 min after the shift to pH 8 medium. At 1 and 1.5 h after the shift to M199 at pH 8, only the 95- to 105-kDa forms of Rim8-HA were apparent, although at even more reduced levels, and by 1.5 h after the shift to pH 8 medium, Rim8-HA was virtually undetectable. These results clearly demonstrate that Rim8 is rapidly modified and its expression is reduced in response to neutral-alkaline pH.

Rim8/PalF is posttranslationally modified by ubiquitination and phosphorylation in A. nidulans and S. cerevisiae (23, 24), and we predicted that the 95- to 105-kDa forms of Rim8-HA were due to ubiquitination. However, we could not detect ubiquitin-modified Rim8-HA in immunoprecipitates using a variety of antiubiquitin antibodies, although we readily detected other ubiquitinated proteins in the extracts (data not shown). Thus, we tested whether C. albicans Rim8 is phosphorylated. Rim8-HA-expressing cells were grown in M199 at pH 4 and shifted to fresh M199 at pH 4 and pH 8 for 30 min, and Rim8-HA was immunoprecipitated from crude extracts and incubated with or without phosphatase or with...
phosphatase plus a phosphatase inhibitor (Fig. 2). Cells grown in pH 4 medium showed Rim8-HA primarily in 2 distinct bands of 82 kDa and 87 kDa. However, only the 82-kDa band was apparent following phosphatase treatment, and both the 82-kDa and 87-kDa forms were present when EDTA was included as a phosphatase inhibitor. These results suggest that the 87-kDa form of Rim8 results from phosphorylation of the 82-kDa form. Cells grown in pH 8 medium showed Rim8-HA in several discrete bands ranging from 95 to 105 kDa. However, only the 82-kDa band was observed following phosphatase treatment and the 95- to 105-kDa bands were present if EDTA was included in the reaction mixtures. These results demonstrate that Rim8 is hyperphosphorylated in response to neutral-alkaline pH. Furthermore, these data suggest that all observed modifications of C. albicans Rim8 can be explained by phosphorylation.

Requirements for Rim8 phosphorylation. To determine the contribution of the Rim101 pathway for Rim8 phosphorylation, Rim8-HA was introduced into the Rim101 pathway mutants and Rim8-HA was monitored by Western blotting. After a 30-min shift to fresh pH 8 medium, wild-type cells showed the 82- to 87-kDa forms of Rim8-HA (Fig. 3A, lane 1). Similar results were observed in the Rim101 pathway mutants (Fig. 3A, lanes 3, 5, 7, 9, and 11), suggesting that this Rim8-HA phosphorylation is independent of the Rim101 pathway.

After a 30-min shift to fresh pH 8 medium, wild-type cells showed the 95- to 105-kDa forms of Rim8-HA (Fig. 3A, lane 2). However, the rim21Δ/Δ, dfg16Δ/Δ, rim13Δ/Δ, and rim20Δ/Δ mutants showed the 82- to 87-kDa forms of Rim8-HA and lacked the 95- to 105-kDa forms observed in wild-type cells grown at pH 8 (Fig. 3A, lanes 4, 6, 8, and 10). The rim101Δ/Δ mutant behaved similarly to the other Rim101 pathway mutants, although some faint higher-molecular-mass bands of ~90 kDa could be detected (Fig. 3A, lane 12). Similar bands could also be observed in wild-type cells at pH 4 when the gel was overexposed (Fig. 3A, lane 1) and may represent a transient secondary modification that occurs prior to degradation (see below). Regardless, these results demonstrate that wild-type levels of Rim8 modification to the 95- to 105-kDa forms require both the signaling and processing components of the Rim101 pathway.

Rim101 activation requires the ESCRT-I, ESCRT-II, and ESCRT-IIIa components of the ESCRT pathway (28, 55, 56, 58). Thus, we asked if ESCRT components are required for Rim8 modification. To address this question, Rim8-HA was introduced into ESCRT pathway mutants (56). At pH 4, Rim8-HA modification in the ESCRT mutants was similar to that in wild-type cells (Fig. 3B). However, at pH 8, Rim8-HA modification was not modified to the 95- to 105-kDa forms in mutants lacking Vps28, Vps36, Vps22, Vps20, or Snf7 (Fig. 3B, lanes 10, 12, 14, 16, and 18). The ESCRT-0 components Hse1 and Vps27 as well as the ESCRT-DS components Bro1 and Doa4 were not required for wild-type-like Rim8-HA modification at pH 8 (Fig. 3B, lanes 4, 6, 22, and 24). Finally, the ESCRT-I mutant lacking Mvb12 had the 95- to 105-kDa bands at pH 8, but residual 82- to 87-kDa bands were still apparent, unlike the bands observed in the wild-type or the ESCRT-0 mutant background (Fig. 3B, lane 8). These results are in agreement with our previous studies that suggested that Mvb12 is not an essential member of the ESCRT-I complex for Rim101 signaling (56). These results demonstrate that ESCRT proteins required for Rim101 processing are also required for Rim8 phosphorylation.

Two kinases, Slt2 and Mck1, have reported genetic interactions with Rim8 in S. cerevisiae (45, 47). To determine if these kinases affect Rim8 phosphorylation, Rim8-HA was introduced into the mck1Δ/Δ (the homolog of ScSlt2) and mck1Δ/Δ mutant backgrounds. Although MCK1 is reported to be an essential gene by the Candida Genomic Database, we were able to generate homozygous null strains using conventional disruption techniques (53). In both mck1Δ/Δ and mck1Δ/Δ mutant backgrounds, Rim8-HA was modified similarly to wild type at pH 4 and pH 8 (Fig. 4). These results suggest that additional proteins phosphorylate Rim8, although it is possible that Mkc1 and Mck1 are redundant for Rim8 phosphorylation.

Rim8 bridges the signaling and processing complexes. β-Arrestin proteins interact with plasma membrane receptors; Rim8/
PalF interacts with the pH sensor Rim21/PalH in *S. cerevisiae* and *A. nidulans* (23, 24). To determine if this paradigm holds true in *C. albicans*, we constructed a strain coexpressing functional Rim21-HA and Rim8-Myc fusions. Our analysis of Rim21-HA expression showed that Rim21-HA ran at ~59 kDa at pH 4 (Fig. 5A, lane 1) and at ~59 kDa and ~62 kDa at pH 8 (Fig. 5A, lane 4). We also noted that there was no apparent reduction in Rim21 intensity at pH 8 compared to pH 4, suggesting that Rim21 levels are not limiting for Rim101 signaling.

Since Rim21-HA migrated as two distinct bands at pH 8, we asked whether this was due to phosphorylation, as observed for Rim8. In extracts from cells grown at pH 4, Rim21-HA migrated at 59 kDa regardless of whether phosphatase was present (Fig. 5A, lanes 1 to 3). However, in extracts from cells grown at pH 8, addition of phosphatase abolished the presence of the 62-kDa band, which was restored when EDTA was included as a phosphatase inhibitor. These results demonstrate that Rim21 is phosphorylated in a pH-dependent manner correlated with activation of the Rim101 pathway.

To determine if Rim21-HA and Rim8-Myc interact, whole-cell extracts from cells grown at pH 4 or pH 8 were immunoprecipitated using anti-HA, separated by SDS-PAGE, and probed with anti-Myc and with anti-HA. Rim8-Myc protein was detected in Rim21-HA immunoprecipitates at both pH 4 and pH 8 (Fig. 5B, left lanes) but not from extracts lacking Rim21-HA (Fig. 5B, right lanes). We noted that Rim8-Myc was modified and that its levels were reduced at pH 8, and these findings are in agreement with our analyses demonstrating that Rim8 is rapidly modified and its levels are reduced at pH 8.

Since Rim8 modification is correlated with Rim101 processing (Fig. 1), we considered the possibility that Rim8 may be in complexes with Rim101. Thus, we conducted immunoprecipitations using cell extracts from a Rim8-HA Rim101-V5 strain grown at pH 4 or pH 8 (Fig. 5C, lanes 3 to 10). In cells grown at pH 4, no Rim101-V5 was detected in Rim8-HA immunoprecipitates, although Rim101-V5 was detected in the flowthrough (Fig. 5C, lane 3). In cells grown at pH 8, the 95- to 105-kDa forms of Rim8-HA were immunoprecipitated, and we detected the P1 form of Rim101-V5 and a faint signal of full-length Rim101-V5 (Fig. 5C, lane 4). No Rim101-V5 was detected from HA immunoprecipitates in the absence of Rim8-HA (Fig. 5C, lanes 1 and 2). These results suggest that Rim8 is in a complex that also contains Rim101.

To determine the genetic requirements for the Rim8-Rim101 interaction, we introduced Rim8-HA and Rim101-V5 into the *rim21ΔΔ*, *rim20ΔΔ*, and *rim13ΔΔ* backgrounds and repeated the immunoprecipitations (Fig. 5C, lanes 5 to 10). In the absence of either the pH sensor Rim21 or the Rim101-recruiting protein Rim20, the 82- to 87-kDa forms of Rim8-HA were immunoprecipitated. No Rim101-V5 was coimmunoprecipitated, although Rim101-V5 was detected in the flowthrough. In the absence of the processing enzyme Rim13, low levels of full-length Rim101-V5 were detected in the immunoprecipitates. The Rim8-HA Rim101-V5 interaction in the *rim13ΔΔ* mutant seems to be incomplete, as most of the Rim101-V5 is still found in the flowthrough. On the basis of these results, the pH sensor and Rim101-recruiting proteins, but not the processing enzyme, are required for Rim8-Rim101 interactions. Furthermore, these results indi-
cate that Rim8 modification to the 95- to 105-kDa forms is not absolutely essential for interactions with Rim101.

Since Rim8 coimmunoprecipitates with Rim21 and Rim101 (Fig. 5B and C), we asked whether Rim21 and Rim101 interact. To address this question, we constructed a Rim21-HA Rim101-V5 strain and determined whether Rim101-V5 coimmunoprecipitates with Rim21-HA (Fig. 5D). At pH 8, when the Rim101 pathway is active, the P1 form of Rim101 was pulled down with Rim21-HA. In overexposed images, we also detected faint coimmunoprecipitates with Rim21-HA (Fig. 5C, lanes 11 and 12). We found that in the absence of Vps4, the full-length, P1, and active forms of Rim101-V5 were coimmunoprecipitated with Rim8-HA regardless of pH. Similarly, Rim101-V5 coimmunoprecipitated with Rim21-HA regardless of pH, although only the full-length and P1 forms of Rim101-V5 were observed (Fig. 5D). These results demonstrate that in the absence of Vps4, Rim101 can associate with Rim21 and Rim8 independently of extracellular pH, suggesting an explanation for pH-independent Rim101 processing.

Rim8 appears to be degraded in the vacuole. Rim8 immunoprecipitates with Rim21 and is modified in an ESCRT-dependent manner. Thus, we asked where Rim8 is localized. A functional Rim8-GFP C-terminal fusion was constructed, and localization was determined at pH 4 and pH 8 by fluorescence microscopy (Fig. 6). In acidic medium, Rim8-GFP was associated with the plasma membrane (Fig. 6, arrowheads), similar to results described for S. cerevisiae (23). However, we also noted that the lumen of the vacuole, identified with the lipophilic dye FM4-64 (49), had a robust signal. GFP is resistant to vacuolar proteases (39), suggesting that Rim8-GFP can be localized within the vacuole. In alkaline medium, we found little plasma membrane-associated localization and observed only vacuole-associated fluorescence. These results suggest that plasma membrane-localized Rim8-GFP may be transported to the vacuole.

Since the Rim8 signal is reduced at neutral-alkaline pH (Fig. 1) and appears to be localized to the vacuole, we considered the possibility that Rim8 may be degraded within the vacuole following activation of the Rim101 pathway. If true, Rim8-GFP localization to the vacuole should be Vps4 dependent. To address this idea, we introduced RIM8-GFP into the vps4ΔΔ mutant background. In vps4ΔΔ cells grown at either pH 4 or pH 8, Rim8-GFP was not observed within the vacuole but was colocalized with FM4-64 in class E-like structures around the presumptive vacuole (Fig. 6, arrows).

Rim8 is transcriptionally repressed. RIM8 encodes a β-arrestin-like protein required for Rim101 activation at neutral-alkaline pH. However, RIM8 transcription is repressed at alkaline pH in a Rim101-dependent manner (9, 42). This led us to hypothesize that Rim8 is a target for negative-feedback regulation. To identify the genetic requirements for RIM8 repression, we analyzed RIM8 transcription at pH 4 and pH 8 by RT-PCR (Fig. 7). RIM8 mRNA levels were reduced by ~40% at pH 8 compared to pH 4 in wild-type cells, no RIM8 product was observed at either pH in the 82- to 90-kDa range (data not shown). Thus, cells lacking Vps4 do not promote wild-type-like modification of Rim8.

Since Vps4 affects Rim8-HA modification and constitutively processes Rim101, we asked how loss of Vps4 affects the association of Rim101 with Rim8 and Rim21. Immuno precipitation of Rim8-HA in the vps4ΔΔ mutant background did pull down Rim101-V5 (Fig. 5C, lanes 11 and 12). We found that in the absence of Vps4, the full-length, P1, and active forms of Rim101-V5 were coimmunoprecipitated with Rim8-HA regardless of pH. Similarly, Rim101-V5 coimmunoprecipitated with Rim21-HA regardless of pH, although only the full-length and P1 forms of Rim101-V5 were observed (Fig. 5D). These results demonstrate that in the absence of Vps4, Rim101 can associate with Rim21 and Rim8 independently of extracellular pH, suggesting an explanation for pH-independent Rim101 processing.

Vps4 limits Rim101 signaling. Vps4, an AAA-ATPase, is required to form multivesicular bodies (MVBs) and disassemble ESCRT-III (6). In the absence of Vps4, ESCRT-III is stably localized at the endosomal membrane and vacuolar fusion is impaired. We and others have found that the vps4ΔΔ mutant constitutively processes Rim101 (22, 56), suggesting that the stable association of ESCRT-III and specifically that of Snf7 with the endosomal membrane allows the Rim101-processing machinery to associate and process Rim101 in a pH-independent manner.

Thus, we predicted that Rim8-HA would be constitutively modified to the 95- to 105-kDa forms in the vps4ΔΔ background. However, we found that while the vps4ΔΔ mutant modified 82- to 90-kDa forms of Rim8-HA, it lacked the 95- to 105-kDa forms of Rim8-HA under pH 8 inducing conditions (Fig. 3B, lanes 19 and 20). At steady state, we could detect some Rim8-HA in the 95- to 100-kDa range, although the majority of Rim8-HA was still in the 82- to 90-kDa range (data not shown). Thus, cells lacking Vps4 do not promote wild-type-like modification of Rim8.

Since Vps4 affects Rim8-HA modification and constitutively processes Rim101, we asked how loss of Vps4 affects the association of Rim101 with Rim8 and Rim21. Immuno precipitation of Rim8-HA in the vps4ΔΔ mutant background did pull down Rim101-V5 (Fig. 5C, lanes 11 and 12). We found that in the absence of Vps4, the full-length, P1, and active forms of Rim101-V5 were coimmunoprecipitated with Rim8-HA regardless of pH. Similarly, Rim101-V5 coimmunoprecipitated with Rim21-HA regardless of pH, although only the full-length and P1 forms of Rim101-V5 were observed (Fig. 5D). These results demonstrate that in the absence of Vps4, Rim101 can associate with Rim21 and Rim8 independently of extracellular pH, suggesting an explanation for pH-independent Rim101 processing.

Rim8 appears to be degraded in the vacuole. Rim8 immunoprecipitates with Rim21 and is modified in an ESCRT-dependent manner. Thus, we asked where Rim8 is localized. A functional Rim8-GFP C-terminal fusion was constructed, and localization was determined at pH 4 and pH 8 by fluorescence microscopy (Fig. 6). In acidic medium, Rim8-GFP was associated with the plasma membrane (Fig. 6, arrowheads), similar to results described for S. cerevisiae (23). However, we also noted that the lumen of the vacuole, identified with the lipophilic dye FM4-64 (49), had a robust signal. GFP is resistant to vacuolar proteases (39), suggesting that Rim8-GFP can be localized within the vacuole. In alkaline medium, we found little plasma membrane-associated localization and observed only vacuole-associated fluorescence. These results suggest that plasma membrane-localized Rim8-GFP may be transported to the vacuole.

Since the Rim8 signal is reduced at neutral-alkaline pH (Fig. 1) and appears to be localized to the vacuole, we considered the possibility that Rim8 may be degraded within the vacuole following activation of the Rim101 pathway. If true, Rim8-GFP localization to the vacuole should be Vps4 dependent. To address this idea, we introduced RIM8-GFP into the vps4ΔΔ mutant background. In vps4ΔΔ cells grown at either pH 4 or pH 8, Rim8-GFP was not observed within the vacuole but was colocalized with FM4-64 in class E-like structures around the presumptive vacuole (Fig. 6, arrows).

Rim8 is transcriptionally repressed. RIM8 encodes a β-arrestin-like protein required for Rim101 activation at neutral-alkaline pH. However, RIM8 transcription is repressed at alkaline pH in a Rim101-dependent manner (9, 42). This led us to hypothesize that Rim8 is a target for negative-feedback regulation. To identify the genetic requirements for RIM8 repression, we analyzed RIM8 transcription at pH 4 and pH 8 by RT-PCR (Fig. 7). RIM8 mRNA levels were reduced by ~40% at pH 8 compared to pH 4 in wild-type cells, no RIM8 product was observed at either pH in the

FIG 6 Rim8 localization in wild-type and vps4ΔΔ cells. Rim8-GFP fusions were generated in a wild-type (JAD081) and vps4ΔΔ (JAD083) background. Cells were analyzed and photographed by fluorescence microscopy.

FIG 7 RIM8 transcription is repressed by activated Rim101. RT-PCR on total RNA purified from wild-type (DAY1), rim8ΔΔ (DAY61), rim101ΔΔ (DAY5), rim21ΔΔ (JAD003), dfg16ΔΔ (KBC033), rim20ΔΔ (DAY23), rim13ΔΔ (DAY349), snf7ΔΔ (DAY354), vps4ΔΔ (DAY537), and rim101ΔΔ rim101-281 (DAY1145) cells grown at pH 4 and pH 8. Controls lacking reverse transcriptase were performed, with no bands observed (data not shown). RT-PCR for ACT1 was included as a normalization control.
DISCUSSION

β-Arrestin proteins function in receptor desensitization but also play a direct role in signal transduction. In fungi, the β-arrestin-like protein Rim8/PalF is essential for regulation of the Rim101 transcription factor in response to environmental pH (3, 13, 42, 48). Much like the β-arrestin proteins in mammalian systems, *C. albicans* Rim8 interacts with a receptor, Rim21, which senses environmental pH. Our studies further demonstrate that Rim8 can be found within complexes containing the transcription factor Rim101, which itself can be found in complexes containing Rim21. These results suggest that β-arrestin proteins can link a receptor with its cognate transcription factor. We also found that like some other β-arrestin-like proteins, Rim8 is postranslationally modified by phosphorylation (34, 35). However, *C. albicans* Rim8 can be found in multiple phosphorylation states, which are linked with Rim101 activation. Finally, our results suggest a novel signal transduction regulation. When the Rim101 pathway is activated, the cytosolic Rim8 protein is delivered to the vacuole and degraded. Based on the similarities between fungal and mammalian β-arrestin-dependent signal transduction, we propose that lysosomal degradation may play an important role in β-arrestin regulation in mammalian systems as well. These analyses shed important insights into the evolving paradigm of the linkage between endocytosis and signal transduction pathways in eukaryotic cells.

Model for Rim8 phosphorylation and activity. Based on our analyses, we propose the following framework to consider Rim8 modification, localization, and function (Fig. 8). Rim8 was found in several phosphorylation states: a hypophosphorylation state (82- to 87-kDa forms), an intermediate phosphorylation state (87- to 95-kDa forms), and a hyperphosphorylated state (95- to 105-kDa forms). The hypophosphorylation state is observed at acidic pH, when Rim101 is not processed, and is thus considered inactive. The fact that Rim8 appears within the vacuole at pH 4 suggests that Rim8 is constitutively trafficked to the vacuole.

The intermediate and hyperphosphorylation states are observed at neutral-alkaline pH when Rim101 processing is defective or intact, respectively. This suggests that Rim8 hyperphosphory-
Rim8 Modification and Degradation

The hypothesis that Rim8 is taken up into MVBs also explains a previously unresolved observation. In S. cerevisiae, Rim101 is processed to the small P1 form in a pH-independent manner (Fig. 1A) (31), although no function has been associated with this form of Rim101. In other fungi, Rim101/PacC processing does not occur at the more acidic pHs (29, 32, 41). Since Rim8 appears to be trafficked to the vacuole of cells grown at acidic pH, we propose that Rim101 may weakly associate with Rim8 on endosomes in the absence of an activating signal. Under these conditions, Rim101 is not processed but is taken up into MVBs with Rim8 and transported to the vacuole. In this model, the P1 form of Rim101 represents a partially stable degradation product. In S. cerevisiae, where no Rim101 processing is observed at acidic pH, Rim8 does not appear to be trafficked to the vacuole (23). It will be necessary to analyze Rim8/PalF localization in other fungal species to determine if vacuolar localization and degradation were lost in S. cerevisiae or gained in C. albicans.

Rim8 modification: phosphorylation versus ubiquitination. In the related ascomycetes S. cerevisiae and A. nidulans, Rim8/PalF is posttranslationally modified by ubiquitination. In A. nidulans, this modification is linked to environmental pH and is required for PacC activation, but in S. cerevisiae it is not (23–25). We were not able to detect Rim8 ubiquitination in C. albicans but instead found robust phosphorylation (Fig. 2). A. nidulans PalF is also known to be phosphorylated in a pH-dependent manner (24), although the role that PalF phosphorylation plays in PacC activation has not been explored. Based on our findings, we suggest that the PalF phosphorylation observed in A. nidulans may also be critical for PacC pathway signaling.

The fact that we did not detect Rim8 ubiquitination in C. albicans suggests either that C. albicans Rim8 is not ubiquitinated or that Rim8 is ubiquitinated at levels too low to be detected using our assays. In S. cerevisiae, Rim8 ubiquitination occurs at residue K521 (23), which is located 12 residues C terminal to a PX domain predicted to be critical for interacting with the WW domain of the Rps5 E3 ubiquitin ligase (20, 51). K521 is also located 13 residues N terminal to the SXP domain that interacts with the UEV domain of Vps23 (23). In C. albicans, the cognate lysine, K538, is similarly located 13 residues N terminal to an SXP domain. However, 12 residues N terminal to K538 is not a PX motif but a divergent PXF sequence. This supports the idea that C. albicans Rim8 may not be ubiquitinated. However, a PX domain is located 20 residues N terminal to K538, and there is not an absolute spacing requirement for Rsp5 function (44). It is noteworthy that C. albicans Rim8 has 64 potential phosphorylation sites (41 Ser, 5 Thr, and 12 Tyr), whereas S. cerevisiae has 42 potential phosphorylation sites (26 Ser, 7 Thr, and 9 Tyr). Of these sites, 28 and 15 have a high confidence (>0.950 from NetPhos software, version 2.0) of being phosphorylated in C. albicans and S. cerevisiae, respectively. Thus, C. albicans Rim8 has a greater potential to be phosphorylated than S. cerevisiae Rim8. Regardless, these analyses demonstrate several fruitful directions to elucidate the nature and role of specific Rim8 modifications.

Why does Rim8/PalF posttranslational modification vary between C. albicans, S. cerevisiae, and A. nidulans? While there is currently no definitive answer to this question, we suggest that environmental pH stresses found within the mammalian host may provide one explanation. C. albicans is a commensal of the oral and gastrointestinal tract. Thus, a C. albicans cell residing within the slightly alkaline oral cavity may find itself within a markedly acidic environment by the simple act of swallowing. Thus, it is possible that unique host environments colonized by C. albicans may require a more rapid and/or finely controlled response to extracellular pH.

Rim8 as a point of negative-feedback regulation. Upon Rim101 pathway activation, Rim8 levels are rapidly reduced. We believe that our results best support a model where Rim8 levels are reduced in large part because Rim8 is taken up into MVBs and trafficked to the vacuole. We propose that reduction in Rim8 levels serves to negatively regulate the Rim101 pathway.

Upon exposure to neutral–alkaline pH, Rim101 is proteolytically processed to the active form, which promotes gene expression changes associated with growth at these environmental pHs. Active Rim101 promotes its own induction, leading to a positive-feedback loop (13, 43). This leads to the following questions: how is the positive-feedback loop limited, and what happens when cells are then exposed to acidic pH environments?

We propose that both questions are answered by the degradation of Rim8. Not only does active Rim101 induce its own expression, but it also represses Rim8 transcription (~40% (Fig. 7) (9, 42). This reduces the message available to express new Rim8 protein. As Rim8 levels are reduced, less signaling from Rim21 can be transmitted. This serves to delay processing of newly translated Rim101, thus limiting the positive-feedback loop. If the environmental pH drops, Rim21 is no longer stimulated and newly translated Rim8 is not modified, leading to a rapid inhibition in continued Rim101 processing.

Activation of the Rim101 transcription factor by proteolysis of the inhibitory C-terminal domain has been compared to the activation of mammalian NFκB by the proteolysis of the inhibitory protein IκB. Our work allows an extension of this comparison, as β-arrestin proteins can interact with IκB and stabilize NFκB–IκB (37, 54). This β-arrestin–NFκB–IκB interaction inhibits activation of the transcription factor, which is the converse of our system, in which Rim8 promotes Rim101 activation. Regardless, the paradigm of arrestin-dependent regulation of a transcription factor is conserved and, we suggest, may be a more common mechanism for signal transduction than has previously been appreciated. Furthermore, the paradigm that we envision for Rim8 trafficking from the plasma membrane to the endosomal membrane and then within MVBs has also been suggested in higher eukaryotes. Glycogen synthase kinase 3, a cytoplasmic regulator of...
We thank Judith Berman for providing the antitubulin and antirat sec-
(46). Not surprisingly, like Rim101 activation, Wnt signaling re-
the Wnt signaling receptor frizzled, is also internalized into MVBs
Gomez-Raja and Davis

11. Blitzer JT, Nusse R.
10. Cornet M, et al.
9. Arst HN, Jr, Bignell E, Tilburn J.
8. Gomez-Raja and Davis
7. Davis D, Wilson RB, Mitchell AP.
6. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-
5. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-
4. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-
3. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-
2. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-
1. Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -inde-

Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. 1990. Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550.

Luan B, Zhang Z, Wu Y, Kang J, Pei G. 2005. Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J. 24:4237–4246.

Miller WE, Lefkowitz RJ. 2001. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13:139–145.

Nikko E, Pelham HR. 2009. Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10:1856–1867.

Nobile CJ, et al. 2008. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell. Microbiol. 10:2180–2196.

Orejas M, et al. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 9:1622–1632.

Porta A, Ramon AM, Fonzi WA. 1999. PRR1, a homolog of Aspergillus nidulans pacA, controls pH-dependent gene expression and filamentation in Candida albicans. J. Bacteriol. 181:7516–7523.

the Wnt signaling receptor frizzled, is also internalized into MVBs (46). Not surprisingly, like Rim101 activation, Wnt signaling re-
quires endocytosis (10, 59, 60). Again, these results suggest that the intimate connection between the signal transduction and endo-
cytotic pathways is a conserved phenomenon throughout the eu-
karya.

ACKNOWLEDGMENTS

We thank Judith Berman for providing the antitubulin and antirat sec-
secondary antibodies. We also appreciate the kind gift of the mve1ΔΔΔ strain from Jesus Pla as well as the dfg16ΔΔΔ strain from Aaron P. Mitchell. We thank all the members of the Davis laboratory and members of Kirsten Nielsen’s laboratory for helpful discussion with this work. We also thank Julie Wolf and Lucia Zacchi for critical reading of the manuscript.

J.G.-R. was the recipient of a postdoctoral fellowship from Junta de Extremadura (ERDF, European Regional Development Fund). This re-
search of Dana A. Davis was supported in part by an Investigators in
Extremadura (ERDF, European Regional Development Fund). This re-

Gerami-Nejad M, Berman J, Gale CA. 2001. Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18:859–864.

Gerami-Nejad M, Dulumage K, Berman J. 2009. Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans. Yeast 26:399–406.

Grimslay GR, Pace CN. 2004. Spectrophotometric determination of protein concentration. John Wiley & Sons, Inc., New York, NY.

Grady RN, Brown ME, Wang G, Hubregtse J, Hayes FP. 2000. A PpX motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl. Acad. Sci. U. S. A. 97:13871–13876.

Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. 2005. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol. Cell. Biol. 25:9478–9490.

Herrador A, Herranz S, Lara D, Vincent O. 2010. Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol. Cell. Biol. 30:897–907.

Herranz S, et al. 2005. Arrestin-related proteins mediate pH signaling in fungi. Proc. Natl. Acad. Sci. U. S. A. 102:12141–12146.

Hervas-Aguilar A, Galindo A, Penvala MA. 2010. Receptor-independent Ambient pH signaling by ubiquitin attachment to fungal arson-like PafC. J. Biol. Chem. 285:18095–18102.

Ito T, et al. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactionome. Nat. Genet. 30:459–5479.

Katzmann DJ, Stefan CJ, Babst M, Emr SD. 2003. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162:413–423.

Kullas AL, Li M, Davis DA. 2004. Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Can-
dida albicans. Eukaryot. Cell. 3:1609–1618.

Lambert M, Blanchin-Roland S, Le Louedec F, Lepingle A, Gaillardin C. 1997. Genetic analysis of regulatory mutants affecting synthesis of extra-
cellular proteinase in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol. Cell. Biol. 17:3966–3976.

Lauwers E, Jacob C, Andre B. 2009. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J. Cell Biol. 185:493–502.

Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA. 2004. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot. Cell 3:741–751.

Liu W, Mitchell AP. 1997. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73.

Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. 2008. Arrestin-related ubiquitin-ligase adapters regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725.

Lin FT, et al. 2002. Phosphorylation of beta-arrestin2 regulates its func-
tion in internalization of beta(2)-adrenergic receptors. Biochemistry 41: 10692–10699.

Lin FT, et al. 1997. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-
arrestin1. J. Biol. Chem. 272:31051–31057.

Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. 1990. Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550.

Luan B, Zhang Z, Wu Y, Kang J, Pei G. 2005. Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J. 24:4237–4246.

Miller WE, Lefkowitz RJ. 2001. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13:139–145.

Nikko E, Pelham HR. 2009. Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10:1856–1867.

Nobile CJ, et al. 2008. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell. Microbiol. 10:2180–2196.

Orejas M, et al. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 9:1622–1632.

Porta A, Ramon AM, Fonzi WA. 1999. PRR1, a homolog of Aspergillus nidulans pacA, controls pH-dependent gene expression and filamentation in Candida albicans. J. Bacteriol. 181:7516–7523.
43. Ramon AM, Porta A, Fonzi WA. 1999. Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J. Bacteriol. 181:7524–7530.

44. Stamenova SD, Dunn R, Adler AS, Hicke L. 2004. The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Slal-Rvs167. J. Biol. Chem. 279:16017–16025.

45. Su SS, Mitchell AP. 1993. Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133:67–77.

46. Taelman VF, et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–1148.

47. Tong AH, et al. 2004. Global mapping of the yeast genetic interaction network. Science 303:808–813.

48. Treton B, Blanchin-Roland S, Lambert M, Lepingle A, Gaillardin C. 2000. Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and paIH. Mol. Gen. Genet. 263:505–513.

49. Vida TA, Emr SD. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792.

50. Villar CC, Kashleva H, Nobile Cj, Mitchell AP, Dongari-Bagtzoglou A. 2007. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75:2126–2135.

51. Wang G, Yang J, Huibregtse JM. 1999. Functional domains of the Rsp5 ubiquitin-protein ligase. Mol. Cell. Biol. 19:342–352.

52. Wilson RB, Davis D, Mitchell AP. 1999. Rapid hypothesis testing in Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181:1868–1874.

53. Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ. 2004. beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc. Natl. Acad. Sci. U. S. A. 101:8603–8607.

54. Wolf JM, Davis DA. 2010. Mutational analysis of Candida albicans SNF7 reveals genetically separable Rim101 and ESCRT functions and demonstrates divergence in bro1-domain protein interactions. Genetics 184:673–694.

55. Wolf JM, Johnson DJ, Chmielewski D, Davis DA. 2010. The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis. Eukaryot. Cell 9:1203–1215.

56. Xu W, Mitchell AP. 2001. Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J. Bacteriol. 183:6917–6923.

57. Xu W, Smith FJ, Jr, Subaran R, Mitchell AP. 2004. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol. Biol. Cell. 15:5528–5537.

58. Yamamoto H, Sakane H, Yamamoto H, Michiue T, Kikuchi A. 2008. Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev. Cell 15:37–48.

59. Yuan X, Mitchell B, Hua X, Davis DA, Wilhelmus KR. 2010. The Rim101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis. Invest. Ophthalmol. Vis. Sci. 51:4668–4676.