A cross-sectional study on the mental health of patients with COVID-19 1 year after discharge in Huanggang, China

Zhuqing Li1 · Jiangming He1,2 · Yaqi Wang3 · Minghua Bai1 · Ying Zhang4 · Hongshu Chen5 · Wenle Li1 · Yuyang Cai1 · Shunqi Chen1 · Miao Qu6 · Ji Wang1

Received: 21 April 2022 / Accepted: 29 August 2022 / Published online: 3 October 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022

Abstract

Objective This study is aimed to investigate the mental health status of COVID-19 survivors 1 year after discharge from hospital and reveal the related risk factors.

Methods From April 11 to May 11, 2021, 566 COVID-19 survivors in Huanggang city were recruited through their primary doctors. A total of 535 participants (94.5%) admitted to participate in the survey and completed the questionnaires. Five scales were applied including 7-Items Generalized Anxiety Disorder Scale, Patient Health Questionnaire-9, Impact of Event Scale-Revised, Pittsburgh Sleep Quality Index, and Fatigue Scale-14. The chi-square and the Fisher’s exact test were used to evaluate the classification data, multivariate logistic regression was used to explore the related factors of sleep quality, fatigue, anxiety, depression, and post-traumatic stress disorder (PTSD).

Results One year after being discharged, of the 535 COVID-19 survivors, 252 (47.1%) had poor sleep quality; 157 (29.3%) had the symptoms of fatigue; 84 (15.7%),112 (20.9%), and 130 (24.3%) suffered from symptoms of anxiety, depression, and PTSD, respectively. The logistic regression analysis showed that history of chronic disease was risk factor for poor sleep quality (OR 2.501; 95% CI, 1.618–3.866), fatigue (OR 3.284; 95% CI 2.143–5.033), PTSD (OR 2.323; 95% CI 1.431–3.773) and depression (OR 1.950; 95% CI 1.106–3.436) in COVID-19 survivors. Smoking contributed to the poor sleep quality (OR 2.005; 95% CI 1.044–3.850), anxiety (OR 4.491; 95% CI 2.276–8.861) and depression (OR 5.459; 95% CI 2.651–11.239) in survivors. Drinking influenced fatigue (OR 2.783; 95% CI 1.331–5.819) and PTSD (OR 4.419; 95% CI 1.990–9.814) in survivors. Compared with college-educated survivors, survivors with high school education were at higher risk for poor sleep quality (OR 1.828; 95% CI 1.050–3.181) and PTSD (OR 2.521; 95% CI 1.316–4.830), and survivors with junior high school education were at higher risk for PTSD (OR 0.404 95% CI 0.250–0.653). Compared with overweight survivors (BMI ≥ 23.0), survivors with normal BMI (18.5–22.9) (OR 0.600; 95% CI 0.405–0.889) were at lower risk for fatigue. While being housewife (OR 0.390; 95% CI 0.189–0.803) was protective factor for fatigue and having more family members was protective factor for PTSD (OR 0.404 95% CI 0.250–0.653) in survivors.

Conclusions One year after infection, poor sleep quality, fatigue, anxiety, depression, and PTSD, still existed in a relatively high proportion of COVID-19 survivors. Chronic disease history was an independent risk factor for poor sleep quality, fatigue, depression, and PTSD. Participants with low education levels were more likely to have mental problems than the others. We should focus on the long-term psychological impact of COVID-19 on survivors, and the government should apply appropriate mental health services to offer psychiatric support.

Keywords COVID-19 · One year after discharge · Fatigue · Sleep quality · PTSD · Depression · Anxiety · Related factors

Introduction

Following the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome, 2019 coronavirus disease (COVID-19) is the third disease causing by cross-species new coronavirus in the past 18 years and has been declared as a pandemic by World Health Organization [1–3].
As of middle April, 2022, more than 500 million COVID-19 cases have been confirmed, and more than 6.1 million people have died globally [4]. In the general population, between 13 and 60% of COVID-19 survivors are at risk of developing post COVID-19 symptoms [5]. A wide variety of COVID-19 sequelae have been described, including respiratory symptoms, gastrointestinal sequelae, functional impairment, neuro-cognitive changes and urological symptoms [5–12]. The patients with SARS suffer from many physical and psychological problems even after 1–3 years of being discharged from the hospital [13–18]. In COVID-19 survivors, many mental health issues also existed after hospital discharge, such as fatigue, insomnia, decreased quality of life, anxiety, depression, and PTSD [19–21].

However, few studies have been conducted on COVID-19 survivors 1 year after hospital discharge, and mainly focused on physical health [11, 12, 22]. Only one study at Jinyintan Hospital reported that after 12 months of discharge, anxiety and depression scores in 1,276 survivors were significantly higher than these in general population [8]. As a result, the long-term impact of COVID-19 on mental health of survivors still need to be further investigated. Therefore, this study applied accepted scales to reveal the long-term psychological impact of COVID-19 on survivors 1 year after hospital discharge, and attempted to explore the related factors. This study will provide evidence for the long-term psychological effects of COVID-19 and ultimately inform government policies to support COVID-19 survivors.

Methods

Study design and participants

This cross-sectional study was conducted from April 11 to May 11, 2021. All the COVID-19 survivors discharged from the Huanggang Central Hospital from April to May 2020 were recruited through their primary doctors. The diagnosis of COVID-19 was based on the Chinese standard [23]. Excluded patients were (1) those who declined to participate and (2) those who could not be contacted. Participants were recruited from different communities by primary doctors. The purpose and benefits of the study were notified. After obtaining consent, the questionnaire was distributed to participant for data collection. For participants under the age of 18, the survey was carried out with the consent of parents.

In accordance with the Declaration of Helsinki, this study was approved by the Institutional Review Board of the Ethics Committee of Beijing University of Traditional Chinese Medicine (2020BZHYLL0111), and informed consent was obtained from all the participants. The trial was registered in the Chinese Clinical Trial Registration Center (ChiCTR2000031955).

Questionnaires

The survey included five self-reported scales and some sociodemographic data, including sex, age, BMI (measured by primary doctors, categorized as < 18.5, 18.5–22.9, ≥ 23.0), education (none, primary school, junior high school, high school, university and above), family member (≤ 3 or > 3), residence (urban, rural and urban–rural fringe), income (categorized as none, RMB1 to 2999, RMB3000 to 7999, RMB8000 to 19 999, and ≥ RMB200 000), work (full time, part time, student, housewife, unemployed and retire) drinking (drinker or never drinker), smoking (smoker or never-smoker), chronic diseases history (chronic conditions from 13 disease categories, including infectious diseases other than COVID-19, musculoskeletal, respiratory, cardiovascular, endocrine-metabolic, neurological, gastrointestinal, genitourinary, ophthalmologic, blood, skin, renal, and cancer) and severity of COVID-19 (mild, moderate, severe, and critical). 7-Items Generalized Anxiety Disorder Scale (GAD-7) was used to screen the anxiety [24, 25]. The Patient Health Questionnaire-9 (PHQ-9) was used to assess depression status [24, 26]. Symptoms of PTSD among survivors after the event were evaluated by the Impact of Event Scale-Revised (IES-R) [27]. The Fatigue Scale-14 (FS-14) was used to assess fatigue [28]. The Pittsburgh Sleep Quality Index (PSQI) was used to estimate sleep quality [29].

Statistical analysis

All data were analyzed using the IBM SPSS Statistics (version 20.0, SPSS Inc, USA) software. The sociodemographic characteristics and health status of subjects were presented using frequency statistics and composition ratios. Age, BMI, education, and family members were described using average and standard deviation. The chi-square test was used to evaluate the classification data, and the Fisher’s exact test was used whenever the P value calculation did not meet the chi-square test conditions. In addition, the correlation between related factors and sleep quality, fatigue, anxiety, depression, and PTSD were determined using the multifactor binary logistic regression. All tests were two-tailed, and the level of significance level was set as p value < 0.05.
Results

Demographics and characteristics

Among 566 COVID-19 survivors one year after hospital discharge, 535 participants (94.5%) admitted to participate in the survey and completed the questionnaires. Among the 535 patients, 216 (40.4%) were males, and 319 (59.6%) were females. The average age was 50.80 ± 14.44 years. Among the survivors, 84 (15.7%), 358 (66.9%), 92 (17.2%), and 1 (0.2%) had mild, moderate, severe, and critical COVID-19, respectively. The demographic and clinical characteristics of the participants are shown in Table 1.

Mental Health Outcomes

The mental health outcomes of COVID-19 survivors 1 year after hospital discharge are shown in Table 2. Except anxiety (15.7%), the prevalence of poor sleep quality, fatigue, PTSD and depression were all over 20%, and the rate of self-reporting poor sleep quality reached 47%.

The status of poor sleep quality, fatigue, anxiety, depression and PTSD among different demographic and clinical characteristics groups are presented in Table 1. These mental outcomes were statistically significant across six subgroups of family members, income, work, smoking, drinking, and history of chronic diseases (all \(P < 0.01 \)).

Risk Factors for Mental Health Outcomes

After adjusting age, sex, severity of COVID-19, residence and income, the multivariate logistic regression was performed to explore the related factors of the mental health outcomes (Table 3). The history of chronic disease was risk factor for poor sleep quality (OR 2.501; 95% CI 1.618–3.866), fatigue (OR 3.284; 95% CI 2.143–5.033), PTSD (OR 2.323; 95% CI 1.431–3.773) and depression (OR 1.950; 95% CI 1.106–3.436). Smoking contributed to the poor sleep quality (OR 2.005; 95% CI 1.044–3.850), anxiety (OR 4.491; 95% CI 2.276–8.861) and depression (OR 5.459; 95% CI 2.651–11.239). Drinking negatively influenced fatigue (OR 2.783; 95% CI 1.331–5.819), and PTSD (OR 4.419; 95% CI 1.990–9.814) in survivors. Compared with college-educated survivors, survivors with high school education were at higher risk for poor sleep quality (OR 1.828; 95% CI 1.050–3.181) and PTSD (OR 2.521; 95% CI 1.316–4.830), survivors with junior high school education had more risk for PTSD (OR 2.078; 95% CI 1.039–4.155). Compared with overweight survivors (BMI ≥ 23.0), survivors with normal BMI (18.5–22.9) (OR 0.600; 95% CI 0.405–0.889) were at lower risk for fatigue. While being housewife (OR 0.390; 95% CI 0.189–0.803) was protective factor for fatigue and having more family members was protective factor for PTSD (OR 0.404 95% CI 0.250–0.653) in survivors.

Discussion

We found that most COVID-19 survivors still had some mental health problems 1 year after discharge. Poor sleep quality was the most common symptom, fatigue, anxiety, depression, and PTSD still existed. The history of chronic diseases was an independent risk factor for poor sleep quality, fatigue, depression, and PTSD. Smoking was associated with poor sleep quality, anxiety and depression, while drinking contributed to fatigue and PTSD. Additionally, we found that lower educated survivors were more likely to suffer from mental problems than higher educated survivors.

In our study, 52.9% of survivors suffered from sleep problems one year after hospital discharge. Sleep problems have also been reported in SARS survivors [16]. The cause and pathogenesis of poor sleep quality after COVID-19 are still unclear, but on the basis of previous evidence from SARS, the long-term effects of coronavirus damage to the nervous system leading to impaired respiratory regulation could have contributed to the condition, since there is a close relationship between breathing disorders and sleep [30]. The sleep has been proved able to affect the immune function by regulating immune pathways and cells [31], therefore, poor sleep quality is not only detrimental to the recovery of immune system function of COVID-19 survivors, but also may induce serious psychological problems and ultimately become a risk factor for suicide [32].

For the risk factors of poor sleep quality in COVID-19 survivors, we revealed that risk factors might be smoking, lower school education, and history of chronic diseases. Studies have shown that 30.1% of smokers in China have increased their smoking since the outbreak of COVID-19 [33], and the pharmacological effects of nicotine exacerbate sleep problems [34]. The low educational levels have also been reported to be associated with poor sleep quality [35], which is consistent with our findings. Previous studies have shown that higher education level is one of the strong mediators in alleviating the psychological responses caused by traumatic events [36]. Chronic diseases can certainly affect the physical and psychical health of COVID-19 survivors [37]. Our study found that chronic disease was an independent risk factor for poor sleep quality, fatigue, PTSD, and depression. A world mental health survey from 17 countries suggested that a wide range of chronic physical conditions was associated with increased risk of all kinds of mental disorders. The mechanisms have
Table 1 Characteristics of COVID-19 survivors and differences in the mental health outcomes among/between various demographic and clinical characteristics

Characteristics	Total(%)	Poor sleep quality	Fatigue	PTSD	Depression	Anxiety
	n	P value	n	P value	n	P value
Sex						
Male	216(40.4)	96 0.311	68 0.372	79 0.000*	67 0.000*	35 0.793
Female	319(59.6)	156 0.000*	89 0.362	51 0.000*	45 0.000*	49 0.000*
Age (years)						
10–19	5(0.9)	2 0.019**	1 0.180a	1 0.187a	1 0.240a	1 0.000**
20–39	115(21.5)	44 0.000*	33 0.000a	26 0.000*	18 0.000*	12 0.000*
40–59	281(52.5)	122 0.000*	71 0.000*	61 0.000*	52 0.000*	42 0.000*
60–79	124(23.2)	78 0.000*	48 0.000*	39 0.000*	38 0.000*	27 0.000*
80–99	10(1.9)	6 0.000*	4 0.000*	3 0.000*	3 0.000*	2 0.000*
BMI < 18.5	19(3.6)	11 0.018*	3 0.001**	2 0.025**	8 0.052	7 0.000*
18.5–22.9	295(55.1)	128 0.000*	70 0.000*	62 0.000*	56 0.000*	41 0.000*
≥ 23.0	221(41.3)	113 0.000*	84 0.000*	66 0.000*	48 0.000*	36 0.000*
Education (years)						
None	18(3.4)	11 0.011*	7 0.794	6 0.037*	7 0.000**	4 0.000**
Primary school	66(12.3)	38 0.000*	18 0.000*	13 0.000*	14 0.000*	10 0.000*
Junior high school	157(29.3)	80 0.000*	49 0.000*	45 0.000*	46 0.000*	31 0.000*
High school	141(26.4)	68 0.000*	42 0.000*	41 0.000*	26 0.000*	22 0.000*
University and above	153(28.6)	55 0.000*	41 0.000*	25 0.000*	19 0.000*	17 0.000*
Family member						
≤ 3	320(59.8)	153 0.000*	94 0.000*	95 0.000*	68 0.000*	48 0.000*
> 3	215(40.2)	99 0.000*	63 0.000*	35 0.000*	36 0.000*	36 0.000*
Residence						
Urban	433(80.9)	208 0.000*	132 0.335	108 0.596	88 0.068	69 0.000**
Rural	53(9.9)	26 0.000*	15 0.000*	13 0.000*	17 0.000*	11 0.000*
Urban–rural fringe	49(9.2)	18 0.000*	10 0.000*	9 0.000*	7 0.000*	4 0.000*
Income (month/yuan)						
0	247(46.2)	141 0.000**	92 0.000**	78 0.000**	62 0.000**	43 0.000**
1–2999	99(18.5)	52 0.000*	31 0.000*	21 0.000*	28 0.000*	23 0.000*
3000–7999	164(30.7)	49 0.000*	28 0.000*	25 0.000*	18 0.000*	14 0.000*
8000–19,999	21(3.9)	9 0.000*	5 0.000*	5 0.000*	3 0.000*	3 0.000*
≥ 20,000	4(0.7)	1 0.000*	1 0.000*	1 0.000*	1 0.000*	1 0.000*
Work						
Full time	256(47.9)	95 0.000*	61 0.000**	47 0.000**	38 0.000**	30 0.000**
Part time	38(7.1)	19 0.000*	6 0.000*	6 0.000*	14 0.000*	13 0.000*
Student	11(2.0)	5 0.000*	3 0.000*	4 0.000*	2 0.000*	2 0.000*
housewife	57(10.7)	24 0.000*	11 0.000*	14 0.000*	10 0.000*	6 0.000*
Unemployed	58(10.8)	39 0.000*	26 0.000*	23 0.000*	18 0.000*	11 0.000*
Retire	115(21.5)	70 0.000*	50 0.000*	36 0.000*	30 0.000*	22 0.000*
Smoking						
Yes	65(12.1)	44 0.000*	16 0.000*	16 0.000*	28 0.000*	28 0.000*
No	470(87.9)	208 0.000*	141 0.000*	114 0.000*	84 0.000*	56 0.000*
Drinking						
Yes	45(8.4)	28 0.000*	22 0.000*	20 0.000*	14 0.000*	10 0.209
No	490(91.6)	224 0.000*	135 0.000*	110 0.000*	98 0.000*	74 0.000*
Chronic diseases history						
been proved on the basis of biological, behavioral, and psychological researches [38]. Therefore, having chronic disease is detrimental to the recovery of physical and mental health of COVID-19 survivors even one year after hospital discharge.

In our study, 29.3% of survivors reported fatigue, which is consistent with previous studies that showed a fatigue rate of 27.7% among COVID-19 survivors one year after discharge from Wuhan hospital [8]. Survivors of SARS also developed chronic fatigue symptoms after the first year of recovery, 40% of survivors reported chronic fatigue syndrome [39, 40]. Fatigue is common after acute lung injury in COVID-19 infection and is associated with substantial impairments in physical function and quality of life [41].

Our study also explored the related factors of fatigue, and found that having normal BMI (18.5–22.9) and being housewife were protective factors for fatigue among survivors, whereas drinking and chronic disease were risk factors. A study of COVID-19 survivors one month after hospital discharge found that increased BMI was associated with higher odds of persistence of fatigue [42]. Fatigue is associated with greater fat mass [43], both overweight and obese subjects showed higher fatigue scores compared to normal weight participants, and might be related to systemic inflammation [44]. Housewives are less affected by pandemic compared to the working population. As housewives, they may spend more time at home with family members, it reduces loneliness and social stress, which have been proved to be risk factors for fatigue [45]. On the other hand, alcohol affects neurological function, metabolism, cardiovascular physiology, thermoregulation, and skeletal myopathy [46]. Thus, drinking strains the body, and hangovers can significantly increase fatigue next day. The chronic disease has been discussed in sleep quality part.

In our study, the prevalence of PTSD, anxiety, and depression among COVID-19 survivors were 24.3%, 15.7%, and 20.9%, respectively, these results are approximately consistent with previous study of SARS survivors (28%,19%, and 20%, respectively) [47]. The prevalence of PTSD was significantly higher than anxiety and depression in COVID-19 survivors one year after hospital discharge. The influence of the virus on nervous system, the discomfort experience after infection, the side effect of treatment drugs, and the loneliness caused by separation from relatives and friends all can be the causes of PTSD, depression and anxiety [48]. In addition, the current epidemic situation is still not resolved, and multiple infections frequently reoccur, these may all increase the fear, anxiety and PTSD in COVID-19 survivors [49].

Among these survivors, junior high school and high school education, drinking, and chronic illness were risk factors.
factors for PTSD, whereas having family members was protective factors for PTSD. The lower education was also associated with PTSD in previous study [50], and low IQ has been shown to be a risk factor for PTSD, while education is highly correlated with IQ, thus education is inversely associated with the risk of PTSD and other psychiatric disorders [36]. For drinking, there are many evidences suggesting that alcohol use increases vulnerability to the development of PTSD, exacerbates existing posttraumatic stress symptoms, and contributes to the maintenance of posttraumatic stress symptoms [51, 52]. On the contrary, spending time with the family members provided improving support, relieved destructive emotions, and ultimately minimized PTSD [21]. These are all consistent with our findings. The chronic disease has been discussed in sleep quality part.

At present, the mechanism of long-term symptoms after COVID-19 infection is still unclear, and further research is required. Many exploratory discussions on the long-term symptoms and potential mechanism after COVID-19 infection have been conducted, and believe that the related sequelae may be due to the joint effect of virus infection, host immune response and psychological stress [58–62]. For example, persistent hypoxia after infection can lead to fatigue, and the immune system disturbance caused by infection may induce psychopathological processes. Meanwhile, patients will suffer psychological stress from potentially fatal diseases, resulting in stress-related inflammation [63]. The interaction between the inflammation and neurotransmitters has been shown to be the underlying mechanism of mood disorders, psychosis and anxiety disorders [64]. Unlike SARS and MERS, T-helper cell-2 secretes elevated levels of cytokines in COVID-19-infected patients [60]. Emily A. Troyer et al. also suggested that the dysregulation of cytokine network after COVID-19 infection is one of the potential mechanisms for the occurrence of neurological and psychiatric symptoms, and mentioned five other possible mechanisms, including virus penetration into the central nervous system, peripheral immune cell transport, autoimmune disorders after infection, effects of immunoregulatory therapy, and intestinal microbial translocation [62]. These are to be further confirmed in future research.

The present study had several limitations. First, this work is a cross-sectional study, so there are limited causal links between the findings. Second, most of the survey samples were recruited in Huangzhou District, which could not represent the whole city. Third, there was a lack of baseline data on participants’ mental status. As a result, it is not possible to

Outcomes	Variables	OR (95% CI)	P value
Poor sleep quality	Education (High school)	1.828 (1.050–3.181)	0.033*
	Smoking	2.005 (1.044–3.850)	0.037*
	Chronic diseases history	2.501 (1.618–3.866)	0.000***
Fatigue	BMI (18.5–22.9)	0.600 (0.405–0.889)	0.011*
	Work (Housewife)	0.390 (0.189–0.803)	0.011*
	Drinking	2.783 (1.331–5.819)	0.007**
	Chronic diseases history	3.284 (2.143–5.033)	0.000***
PTSD	Education (Junior high school)	2.078 (1.039–4.155)	0.039*
	Education (High school)	2.521 (1.316–4.830)	0.005**
	Family member (> 3)	0.404 (0.250–0.653)	0.000***
	Drinking	4.419 (1.990–9.814)	0.000***
	Chronic diseases history	2.323 (1.431–3.773)	0.001**
Depression	Smoking	5.459 (2.651–11.239)	0.000***
	Chronic diseases history	1.950 (1.106–3.436)	0.021*
Anxiety	Smoking	4.491 (2.276–8.861)	0.000***

*P value < 0.05, **P value < 0.01, ***P value < 0.001
determine whether mental health symptoms are pre-existing, or due to COVID-19 infection.

Conclusion

One year after acute infection, poor sleep quality, fatigue, anxiety, depression, and PTSD, still existed in a relatively high proportion of COVID-19 survivors. Chronic disease history was an independent risk factor for poor sleep quality, fatigue, depression, and PTSD. Survivors with low education levels were more likely to have mental problems than the others. We should focus on the long-term psychological impact of COVID-19 on survivors, and to consider to developing and implementing effective intervention and management approaches to address persistent negative mental status among COVID-19 survivors.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00406-022-01484-8.

Funding This work was supported by the Key project of National Key Research and Development Project of the Ministry of Science and Technology “Technical Equipment for Public Security Risk Prevention and Control and Emergency Response” (2020YFC0845200). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All authors report no financial relationships with commercial interests.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical standards The authors assert that all procedures contributing to this work have been approved by the Ethics Committee of Beijing University of Traditional Chinese Medicine (2020BZHYLL0111) and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent to participate Informed consent was obtained from all participants included in the study. For participants under the age of 18, the survey was carried out with the consent of their parents.

References

1. Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM, HandSattar KA (2020) Neurological manifestations of COVID-19 (SARS-CoV-2); a review. Front Neurol 11:518. https://doi.org/10.3389/fneur.2020.00518
2. Poland GA, GandKennedy OI (2020) SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet 396(10262):1595–1606. https://doi.org/10.1016/S0140-6736(20)32137-1
3. Lai C-C, Shih T-P, Ko W-C, TangHsueh H-JP-R (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
4. World Health Organization (2022) WHO coronavirus (COVID-19) dashboard. https://covid19.who.int. Accessed 15 April 2022
5. Cortellini A, Gennari A, Pommeret F, Patel G, Newsom-Davis T, Bertuzzi A, Viladot M, Aguilar-Company J, Mirallas O, Felip E, Lee AJX, Pria AID, Sharkey R, Brunet J, Garcia MC, Chester J, Mukherjee U, Scotti L, Dolly S, Sita-Lusmden A, Ferrante D, Van Hemelrijck M, Moss C, Russell B, Segui E, Biello F, Krengl M, Marco-Hernández J, Gaidano G, Patriarca A, Bruna R, Boldán E, Fox L, Pous A, Grisselli F, Salazar R, Martinez-Vila C, Sureda A, Loizidou A, Maluquer C, Stocian A, Iglesia M, Pedrazzoli P, Rizzo G, Santoro A, Rimassa L, Rossi S, Harbeck N, de Torre AS, Vincenzi B, Libertini M, Provenzano S, Generali D, Grisanti S, Berardi R, Tucci M, Mazzoni F, Lambertini M, Tagliamento M, Parisi A, Zoratto F, Queirolo P, Giusti R, Guida A, Zambelli A, Tondini C, Maconi A, Bettì M, Colomba E, Diamantis N, Sinclair A, Bower M, Ruiz-Camps IandPinato DJ (2022) COVID-19 sequelae and the host pro-inflammatory response: an analysis from the oncovid registry. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djac057
6. Ebner B, Volz Y, Mumm JN, Gand SC, Magistro G (2022) The COVID-19 pandemic—what have urologists learned? Nat Rev Urol. https://doi.org/10.1038/s41585-022-00586-1
7. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, Guo L, Liu M, Zhou X, Luo J, Huang Z, Tu S, Zhao Y, Chen L, Xu D, Li Y, Li C, Peng L, Li Y, Xie W, Cui D, Shang L, Fan G, Xu J, Wang G, Wang Y, Zhong J, Wang C, Wang J, Zhang DandCao B (2021) 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397(10270):220–232. https://doi.org/10.1016/S0140-6736(20)32656-8
8. Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, Hu P, Guo L, Liu M, Xu J, Zhang X, Qu Y, Fan Y, Li X, Li C, Yu T, Xia J, Wei M, Chen L, Li Y, Xiao F, Liu D, Wang J, Wang XandCao B (2021) 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet 398(10302):747–758. https://doi.org/10.1016/S0140-6736(21)01755-4
9. Łoś K, Jand K, Waszkiewicz N (2022) The impact of the COVID-19 virus pandemic on the incidence of first psychotic spectrum disorders. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19073787
10. Weng J, Li Y, Li J, Shen L, Zhu L, Liang Y, Lin X, Jiao N, Cheng S, Huang Y, Zou Y, Yan G, Zhu RandLan P (2021) Gastrointestinal sequelae 90 days after discharge for COVID-19. Lancet Gastroenterol Hepatol 6(5):344–346. https://doi.org/10.1016/s2468-1253(21)00076-5
11. Wu X, Liu J, Zhou Y, Yu H, Li R, Zhan Q, Ni F, Fang S, Lu Y, Ding X, Liu H, Ewing RM, Jones MG, Hu Y, Nie HandWang Y (2021) 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med 9(7):747–754. https://doi.org/10.1016/S2213-2600(21)00174-0
12. Yan X, Huang H, Wang C, Jin Z, Zhang Z, He J, Yin S, Fan M, Huang J, Chen F, Zeng Y, Han XandZhu Y (2021) Follow-up study of pulmonary function among COVID-19 survivors 1 year after recovery. J Infect 83(3):381–412. https://doi.org/10.1016/j.jinf.2021.05.034
13. Chong M-Y, Wang W-C, Hsieh W-C, Lee C-Y, Chiu N-M, Yeh W-C, Huang O-L, Wen J-KandChen C-L. (2004) Psychological impact of severe acute respiratory syndrome on health workers in a tertiary hospital. Br J Psychiatry 185:127–133
14. Mak IWC, Chu CM, Pan PC, Cand YMG, Chan VL (2009) Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry 31(4):318–326. https://doi.org/10.1016/j.genhosppsych.2009.03.001
15. Mak WWS, Cheung F, Woo J, Lee D, Li P, Sand Tam CK, C M (2009) A comparative study of the stigma associated with infectious diseases (SARS, AIDS, TB). Hong Kong Med J 15(Suppl 8):34–37
16. Moldofsky Hand Patcai J (2011) Chronic widespread musculoskeletal pain, fatigue, depression and musculoskeletal pain in chronic post-SARS syndrome: a case-controlled study. BMC Neurol 11:37. https://doi.org/10.1186/1471-2377-11-37
17. Ngai JC, Ko FW, Ng SS, To K-W, Tong MandHui DS (2010) The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respir Physiol 15(3):543–550. https://doi.org/10.1178/1440-1843.2010.01720.x
18. Yu CCW, Li AM, So RCH, Chu W, Chan D, Cheng F, Chiu WK, Leung CW, Yao YS, Mo KW, Wong EMC, Cheung AYK, Leung TF, Tand SRY, Fok TF (2006) Longer term follow up of aerobic capacity in children affected by severe acute respiratory syndrome (SARS). Thorax 61(3):240–246
19. Iqbal A, Iqbal K, Arshad Ali S, Azim D, Faizah F, Baig MD, Bin Arif Tand Raza M (2021) The COVID-19 sequelae: a cross-sectional evaluation of post-recovery symptoms and the need for rehabilitation of COVID-19 survivors. Cureus 13(2):e13080. https://doi.org/10.7759/cureus.13080
20. Iwu CI, Iwu CD, Wiysonge CS (2021) The occurrence of long COVID: a rapid review. Pan Afr Med J 38:65. https://doi.org/10.11604/pamj.2021.38.65.27366
21. O’Sullivan O (2021) Long-term sequelae following previous coronavirus epidemics. Clin Med (Lond) 21(1):e68–e70. https://doi.org/10.7861/c clinmed.2020-0204
22. Zhang X, Wang F, Shen Y, Zhang X, Cen Y, Wang B, Zhao S, Zhou Y, Hu B, Wang M, Liu Y, Miao H, Jones P, Ma X, He Y, Cao G, Cheng Land LiL (2021) Symptoms and health outcomes among survivors of COVID-19 Infection 1 Year after discharge from hospitals in Wuhan. China JAMAT New Open 4(9):e2127403. https://doi.org/10.1001/jama.netmopen.2021. 27403
23. Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, Fang C, Huang D, Huang L-Q, Huang Q, Han Y, Hu B, Hu F, Li B-H, Li Y-R, Liang K, Lin L-K, Luo L-S, Ma J, Ma L-L, Peng Z-Y, Pan Y-B, Pan Z-Y, Ren X-Q, Sun H-M, Wang Y, Wang Y-Y, Weng H, Wei C-J, Wu D-F, Xia J, Xiong Y, Xu H-B, Yao X-M, Yuan Y-F, Ye T-S, Zhang X-C, Zhang Y-W, Zhang Y-G, Zhang H-M, Zhao Y, Zhao M-J, Zi H, Zeng X-T, Wang Y-Yand W-H (2020) A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 7(1):4. https://doi.org/10.1186/s40779-020-0233-6
24. Liu Y, Chen H, Zhang N, Wang X, Fan Q, Zhang Y, Huang L, Hu Band Mi L (2021) Anxiety and depression symptoms of medical staff under COVID-19 epidemic in China. J Affect Disord 278:144–148. https://doi.org/10.1016/j.jad.2020.09.004
25. Spitzer RL, Kroenke K, Wandt-Löwe WJB, Löwe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097
26. Costantini L, Pasquarella C, Odone A, Colucci ME, Costanza A, Serafini G, Aguglia A, Belvederi Murri M, Brakoulias V, Amore M, Nand GS, Amerio A (2021) Screening for depression in primary care with Patient Health Questionnaire-9 (PHQ-9): a systematic review. J Affect Disord 279:473–483. https://doi.org/10.1016/j.jad.2020.09.131
27. Creamer M, Bell Rand Failla S (2003) Psychometric properties of the impact of event scale—revised. Behav Res Ther 41(12):1489–1496
28. Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright Dand Wallace E (1993) Development of a fatigue scale. J Psychosom Res 37(2):147–153
29. Buyssse DJ, Reynolds CF, Monk TH, Rand Kupfer BS, D J, (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213
30. Vitti-Ruela BV, Dokkedal-Silva V, Rosa DS, Tufik Sand Andersen ML (2021) Possible sequelae in post-SARS-CoV-2 patients: effects on sleep and general health condition. Sleep Breath 25(2):963–964. https://doi.org/10.1007/s11325-020-02152-8
31. Silva E d S E, Oto B V Sand Souza J C, (2020) Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (2022) 66Suppl 2(2 suppl) 143–147. https://doi.org/10.1590/1806-9282.66.S2.143
32. Sher L (2020) COVID-19, anxiety, sleep disturbances and suicide. Sleep Med 70:124. https://doi.org/10.1016/j.sleesp.2020.04.019
33. Ren Y, Qian W, Li Z, Liu Z, Zhou Y, Wang R, Qi L, Yang J, Song X, Zeng Rand Zhang X (2020) Public mental health under the long-term influence of COVID-19 in China: Geographical and temporal distribution. J Affect Disord 277:893–900. https://doi.org/10.1016/j.jad.2020.08.045
34. Kaneita Y, Ohida T, Takemura S, Sone T, Suzuki K, Miyake T, Yokoyama Eand Umeda T (2005) Relation of smoking and drinking to sleep disturbance among Japanese pregnant women. Prev Med 41(5–6):877–882
35. Hossain M M, Tasnim S, Sultana A, Faizah F, Mazumder H, Zou L, McFyser E L J, Ahmed H and Mand M, P (2020) Epidemiology of mental health problems in COVID-19: A review. F1000Res 9636. https://doi.org/10.12688/f1000research.24457.1
36. Sayed S, Mand Charney D S, (2015) Risk factors for the development of psychopathology following trauma. Curr Psychiatry Rep 17(8):612. https://doi.org/10.1007/s11920-015-0612-y
37. Yan Z, Yang RandLai C-L, (2021) Long COVID-19 Syndrome: A Comprehensive Review of Its Effect on Various Organ Systems and Recommendation on Rehabilitation Plans. Biomedicines 9(8) https://doi.org/10.3390/biomedicines9080966
38. Scott KM, Lim C, Al-Hamzawi A, Alonso J, Bruetta simultaneously R, Calsada-de-Almeida JM, Florescu S, de Girolamo G, Hu C, de Jonge P, Kawakami N, Medina-Mora ME, Moskalewicz J, Navauro-Mateu F, O’Neill S, Piazza M, Posada-Villa J, Torres RandKessler RC (2016) Association of Mental Disorders With Subsequent Chronic Physical Conditions: World Mental Health Surveys From 17 Countries. JAMA Psychiat 73(2):150–158. https://doi.org/10.1001/jamapsychiatry.2015.2688
39. Lam MH-B, Wing Y-K, Yu MW-M, Leung C-M, Ma RCW, Kong APS, So WY, Fong S, Yand Lam S-P (2020) Mental morbidity and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med 169(22):2142–2147. https://doi.org/10.1001/archinternmed.2009.384
40. Tansey CM, Louie M, Loeb M, Gold WL, Muller MP, de Jager J, Cameron JI, Tomlinson G, Mazzulli T, Walmsley SL, Rachlis AR, Mederski BD, Silverman M, Shainhouse Z, Eptimios IE, Avendano M, Downey J, Styra R, Yamamatu D, Gerson M, Stano brook MB, Marras TK, Phillips EJ, Zamel N, Richardson SE, SandHerridge SA, M S, (2007) One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med 167(12):1312–1320
41. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevansky JE, Shawholtz C, Himmelfarb C, Desai SV, Ciesla N, Herridge JE, Shanholtz C, Herridge CM (2012) Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med 42(4):849–859. https://doi.org/10.1097/ CCM.0b013e318200000000000040
42. Karaarslan F, Demircioglu Guner Fand Kardeş S (2021) Post-discharge depressive and musculoskeletal symptoms following hospitalization for COVID-19: prospective follow-up by phone interviews. Rheumatol Int 41(7):1263–1271. https://doi.org/10. 1007/s00296-021-04882-8
43. Vantieghem S, Bautmans I, Tresignie JandProvyn S (2018) Self-perceived fatigue in adolescents in relation to body composition and physical outcomes. Pediatr Res 83(2):420–424. https://doi.org/10.1038/pr.2017.274

44. Huet L, Delgado I, Dexpert S, Sauvant J, Aouizerate B, Beau C, Forester D, Ledagueneul P, Magne EandCapuron L (2021) Relationship between body mass index and neuropsychiatric symptoms: Evidence and inflammatory correlates. Brain Behav Immun 94:104–110. https://doi.org/10.1016/j.bbi.2021.02.031

45. Jaremka LM, Andridge RR, Fagundes CP, Alfano CM, Povoski SP, Lipari AM, Agnese DM, Arnold MW, Farrar WB, Yee LD, Carson WE, Bekaii-Saab T, Martin EW, RandKiecolt-Glaser SC, J K, (2014) Pain, depression, and fatigue: loneliness as a longitudinal risk factor. Health Psychol 33(9):948–957. https://doi.org/10.1037/a0034012

46. Vella L, DandCameron-Smith D (2010) Alcohol, athletic performance and recovery. Nutrients 2(8):781–789. https://doi.org/10.3390/nu2080781

47. Chau SWH, Wong OWH, Ramakrishnan R, Chan SSM, Wong EKY, Li PYT, Raymont V, Elliot K, Rathod S, Delanerolle GandPhiri P (2021) History for some or lesson for all? A systematic review and meta-analysis on the immediate and long-term mental health impact of the 2002–2003 Severe Acute Respiratory Syndrome (SARS) outbreak. BMC Public Health 21(1):670. https://doi.org/10.1186/s12889-021-10701-3

48. Xie Q, Liu X-B, Xu Y-MandZhong B-L, (2021) Understanding the symptoms among smokers with serious mental illness. Drug Alcohol Depend 194:128–135. https://doi.org/10.1016/j.drugalcdep.2018.08.043

49. Norrholm SD, Jovanovic T, Olin IW, Sands LA, Bradley BandCameron-Smith D (2018) Self-report and meta-analysis on the immediate and long-term mental health impact of the 2002–2003 Severe Acute Respiratory Syndrome (SARS). J Trauma Stress 18(1):39–42

50. Wu KK, KandMa CS, T M, (2005) Posttraumatic stress, anxiety, and depression in survivors of severe acute respiratory syndrome (SARS). J Trauma Stress 18(1):39–42

51. Jakupcak M, Tull MT, McDermott MJ, Kaysen D, Hunt Sand -McDevitt-Murphy ME, Luciano MT, CandEddinger TJ, J E, (2014) Pain, depression, and fatigue: loneliness as a longitudinal risk factor. Health Psychol 33(9):948–957. https://doi.org/10.1037/a0034012

52. McDevitt-Murphy ME, Luciano MT, CandEddinger TJ, J E, (2017) Drinking motives and PTSD-related alcohol expectancies among combat veterans. Addict Behav 64:217–222. https://doi.org/10.1016/j.addbeh.2016.08.029

53. Lin B, Zhong G, Lian Z, Huang J, Wang XandLin Y (2022) Mental Health Symptoms and Associations with Tobacco Smoking, Dependence, Motivation, and Attempts to Quit: Findings from a Population Survey in Germany (DEBRA Study). Eur Addict Res. https://doi.org/10.1159/000523973

54. Castanares-Zapatero D, Chalon P, Kohn L, Dauvinn M, Detollenaere J, Maertens de Noordhout C, Primus-de Jong C, IandVan C, den Heede K (2022) Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med 54(1):1473–1487. https://doi.org/10.1080/07853890.2022.2076901

55. Kastaun S, Brose LS, Scholz E, Viechbauer WandKotz D (2022) Alcohol, athletic performance and recovery. Nutrients 2(8):781–789. https://doi.org/10.3390/nu2080781

56. Miller A, HandRaison C, L, (2016) The role of inflammation in psychiatric illness. J Neuroinflammation 13:118. https://doi.org/10.1186/s12974-016-0500-0

57. Romantic S andPupeza M (2021) History for some or lesson for all? A systematic review and meta-analysis on the immediate and long-term mental health impact of the 2002–2003 Severe Acute Respiratory Syndrome (SARS). J Trauma Stress 18(1):39–42

58. Tomita AandManuel JI (2020) Evidence on the Association Between Cigarette Smoking and Incident Depression From the South African National Income Dynamics Study 2008–2015: Mental Health Implications for a Resource-Limited Setting. Nicotine Tob Res 22(1):118–123. https://doi.org/10.1093/ntr/nty163

59. Forestier D, Ledaguenel P, Magne EandCapuron L (2021) Relational aggression and perceived fatigue in adolescents in relation to body composition and physical outcomes. Pediatr Res 83(2):420–424. https://doi.org/10.1038/pr.2017.274

60. Tomita AandManuel JI (2020) Evidence on the Association Between Cigarette Smoking and Incident Depression From the South African National Income Dynamics Study 2008–2015: Mental Health Implications for a Resource-Limited Setting. Nicotine Tob Res 22(1):118–123. https://doi.org/10.1093/ntr/nty163

61. Tomita AandManuel JI (2020) Evidence on the Association Between Cigarette Smoking and Incident Depression From the South African National Income Dynamics Study 2008–2015: Mental Health Implications for a Resource-Limited Setting. Nicotine Tob Res 22(1):118–123. https://doi.org/10.1093/ntr/nty163

62. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

63. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

64. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

65. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

66. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

67. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

68. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

69. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027

70. Marco M, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini PandBenedetti F (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027
