Rosenkranz, Markus; Gao, Xing; Guo, Li
An algebraic study of multivariable integration and linear substitution. (English)
J. Algebra Appl. 18, No. 11, Article ID 1950207, 51 p. (2019)

MSC:

47G10 Integral operators
16W99 Associative rings and algebras with additional structure
16T10 Bialgebras
68W30 Symbolic computation and algebraic computation
12H05 Differential algebra
47G20 Integro-differential operators
13N10 Commutative rings of differential operators and their modules
16W70 Filtered associative rings; filtrational and graded techniques

Keywords:
Rota-Baxter Algebra; coalgebra; bialgebra; noncommutative Gröbner-Shirshov basis

Full Text: DOI arXiv

References:
[1] Albrecher, H.; Constantinescu, C.; Pirsic, G.; Regensburger, G.; Rosenkranz, M., An algebraic approach to the analysis of Gerber-Shiu functions, Insurance: Math. Economics, 46, 42-51, (2010) · Zbl 1231.91135
[2] Bai, C.; Bellier, O.; Guo, L.; Ni, X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN, 2013, 3, 485-524, (2013) · Zbl 1314.18010
[3] Bai, C.; Guo, L.; Pei, J., Splitting of operads and Rota-Baxter operators on operads, Appl. Categor. Struct., 25, 505-538, (2017) · Zbl 1423.18031
[4] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10, 731-742, (1960) · Zbl 0095.12705
[5] Becker, T.; Weispfenning, V., A Computational Approach to Commutative Algebra, In Cooperation with Heinz Kredel. Gröbner Bases, 141, (1993), Springer: Springer, New York
[6] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial Species and Tree-Like Structures, 67, (1998), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0888.05001
[7] Bergman, G. M., The diamond lemma for ring theory, Adv. Math., 29, 2, 179-218, (1978)
[8] Bokut, L.; Latyshev, V.; Shestakov, I.; Zelmanov, E., Selected Works of A.I. Shirshov, (2009), Birkhäuser: Birkhäuser, Basel
[9] Buchberger, B., An Algorithm for Finding the Bases Elements of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German). Ph.D thesis, University of Innsbruck (1965), J. Symbolic Comput., 41, 3-4, 475-511, (2006) · Zbl 1158.01307
[10] Buchberger, B.; Rosenkranz, M., Transforming problems from analysis to algebra: A case study in linear boundary problems, J. Symbolic Comput., 47, 6, 589-609, (2012) · Zbl 1241.65066
[11] Cartier, P., Frontiers in Number Theory, Physics, and Geometry. II, A primer of Hopf algebras, 537-615, (2007), Springer: Springer, Berlin · Zbl 1184.16031
[12] Cohn, P. M., Universal Algebra, 6, (1981), D. Reidel Publishing Co.: D. Reidel Publishing Co., Dordrecht-Boston, Mass.
[13] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210, 1, 249-273, (2000) · Zbl 1032.81026
[14] R. W. Downie, An introduction to the theory of quantum groups, Master’s thesis, Eastern Washington University (2012).
[15] Duffy, D. G., Green’s Functions with Applications, (2001), Chapman & Hall: Chapman & Hall, Boca Raton, FL · Zbl 0983.35003
[16] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, (1992), CRC Press: CRC Press, Boca Raton, FL · Zbl 0804.28001
[17] Franz, U., Quantum Independent Increment Processes. II, 1866, Lévy processes on quantum groups and dual groups, 161-257, (2006), Springer: Springer, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.