Obesity mediates the opposite association of education and diabetes in Chinese men and women: Results from the REACTION study

Yuanyue Zhu1,2† | Chunyan Hu1,2† | Lin Lin1,2† | Shuangyuan Wang1,2 | Hong Lin1,2 | Yanan Huo3 | Qin Wan4 | Yingfen Qin5 | Ruying Hu6 | Lixin Shi7 | Qing Su8 | Xuefeng Yu9 | Li Yan10 | Guijun Qin11 | Xulei Tang12 | Gang Chen13 | Min Xu1,2 | Yu Xu1,2 | Tiange Wang1,2 | Zhiyun Zhao1,2 | Zhengnan Gao14 | Guixia Wang15 | Feixia Shen16 | Zuojie Luo5 | Li Chen17 | Qiang Li18 | Zhen Ye6 | Yinfeng Qin1 | Ruying Hu6 | Lixin Shi7 | Qing Su8 | Xuefeng Yu9 | Li Yan10 | Guijun Qin11 | Xulei Tang12 | Gang Chen13 | Min Xu1,2 | Yu Xu1,2 | Tiange Wang1,2 | Zhiyun Zhao1,2 | Zhengnan Gao14 | Guixia Wang15 | Feixia Shen16 | Zuojie Luo5 | Chenyh70@126.com

Correspondence
Jieli Lu and Yuhong Chen, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200 025, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumors, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200 025, Shanghai, China. Email: jieli@umail.com and cheny70@126.com

Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 81970728, 81670818, 81670819, 81670820, 81670822, 81870823, 81870824, 81970836, 81970837, 81970838, 81970839, 81971068.

Abstract
Background: Evidence regarding the impact of education on diabetes risk is scarce in developing countries. We aimed to explore the association between education and diabetes within a large population in China and to identify the possible mediators between them.

Methods: Information on educational level and lifestyle factors was collected through questionnaires. Diabetes was diagnosed from self-report and biochemical measurements. A structural equation model was constructed to quantify the mediation effect of each mediator.

Results: Compared with their least educated counterparts, men with college education had a higher risk of diabetes (odds ratio [OR] 1.19; 95% confidence interval [CI], 1.12–1.27), while college-educated women were less likely to have diabetes (OR 0.77; 95% CI, 0.73–0.82). Obesity was the strongest mediator in both genders (proportion of mediation: 11.6% in men and 23.9% in women), and its association with education was positive in men (β(SE) 0.0387 [0.0037]) and negative in women (β(SE) −0.0824 [0.0037]). Taken together, all behavioral factors explained 12.4% of the excess risk of diabetes in men and 33.3% in women.
Conclusions: In a general Chinese population, the association between education level and diabetes was positive in men but negative in women. Obesity was the major mediator underlying the education disparities of diabetes risk, with a stronger mediation effect among women.

KEYWORDS
diabetes, education, gender-dependent, mediation, obesity

Highlights
• The association between education level and diabetes in Chinese adults is positive in men but negative in women.
• Obesity is the major mediator underlying the gender disparity in the association between education and diabetes.
• Combating obesity may help address the burden of diabetes across education levels in both genders.

1 | INTRODUCTION

China is the biggest developing country in the world and is currently undergoing a drastic nutrition transition. The past decades have witnessed an alarming increase in diabetes prevalence, from 5.5% in 2001 to 12.8% in 2017, which is much faster than that in developed countries. To halt the striking rising trend of diabetes, it is essential to identify those at high risk and implement target population-level strategies.

Low education level is a well-established risk factor of diabetes in developed countries. However, in developing countries such as China, the association varied with time and region. Therefore, it is crucial to renew the related knowledge in a nationally representative cohort of the Chinese population.

Previous studies investigating the education–diabetes association have already identified several possible mediators. Unhealthy behaviors like obesity, smoking, and depressive symptoms were shown to play a role in this association. However, few studies assessed the specific mediating effect of each mediator separately. The knowledge gap added the difficulties in understanding the educational disparities of diabetes risk. Indeed, in most previous studies, the mediation effect of a certain variable was discovered by the difference in the estimates between adjusted and unadjusted models. Admittedly, such a design has methodological issues as the inclusion of a single variable might alter the convergence of the whole statistical model, and subsequently affect the estimates of each mediation effect in an uncontrollable way. Therefore, an advanced statistical method tailored for mediation analysis is warranted for evaluating the path-specific effects of interest.

Furthermore, evidence for sex differences in the education–diabetes association has been indicated in several studies, where the link between education and diabetes seemed stronger among women than men, or even in the opposite direction. Therefore, it might be necessary to separate the discussion by gender. Hence, in the current study, we aimed to examine the relationship between education level and diabetes in both genders. We also tried to search for possible mediators, and individually assess the specific mediation effect of each mediator. Obesity, smoking history, unhealthy diet and activity status, non-ideal sleep time, and depression are all well-recognized behavioral risk factors of diabetes in previous literature; more importantly, they are all modifiable factors, which have the potential to be corrected. Given this, these variables were chosen to be the potential mediators in the current mediation study.

2 | METHODS

2.1 Study population

The REACTION study is a multicenter, nationwide, population-based study conducted in Chinese individuals aged 40 years or older. Briefly, 259,657 participants were recruited from 25 communities across mainland China, with 253,490 individuals providing information on education level. Among them, 8609 participants were further excluded because of missing information on both diabetes diagnosis and biomedical measurement. Finally, a total of 244,881 individuals were included in the analysis. The study was approved by the Committee on Human Research at Ruijin...
Hospital, and written informed consent was obtained from each participant.

2.2 | Data collection and clinical evaluation

Information on medical history, education level, residence, occupation, lifestyle factors (including smoking behavior, physical activity, and dietary patterns), and family history of diabetes was collected via in-person interviews with a standard questionnaire. In the current study, participants were interviewed about their highest attained education. In response of the question, the participants were categorized into four groups (i.e., primary school or below, middle school, high school, and college or above). A validated questionnaire (Patient Health Questionnaire 9, PHQ-9) was also administered to assess mental health. Participants underwent measurements of height and weight using a standard protocol with light clothes and no shoes. Body mass index (BMI) was calculated as body weight in kilograms divided by body height in meters squared (kg/m²).

After an overnight fast of at least 10 h, blood samples were drawn for biochemical tests. Plasma was obtained at 0 and 2 h for the measurement of fasting glucose and 2 h postload glucose. Plasma glucose concentrations were evaluated at local hospitals using the glucose oxidase or hexokinase method within 2 h after blood sample collection. The Hemoglobin Capillary Collection System (Bio-Rad Laboratories, Hercules, California) was used to collect finger capillary whole blood and shipped at 2–6°C to the central laboratory of the study to measure the level of glycosylated hemoglobin (HbA1c).

2.3 | Definition of exposure, outcome, and covariates

2.3.1 | Education levels

Education level was self-reported and categorized into four groups, including primary education or below, middle school, high school, and college or above. In the current mediation study, education level was further classified into two categories based on receiving high school education or not. In China, primary and middle school education is compulsory; therefore, participants who completed high school were considered relatively well educated. This classification was also in accordance with that in our previous study.

2.3.2 | Diabetes

According to the American Diabetes Association (ADA) 2010 criteria, diabetes was defined as (1) a self-reported previous diagnosis by health-care professionals, (2) fasting plasma glucose level of 126 mg/dl (7.0 mmol/L) or higher, (3) 2-h plasma glucose level of 200 mg/dl (11.1 mmol/L) or higher, or (4) HbA1c concentration of 6.5% or higher.

2.3.3 | Covariates

Behavioral factors included obesity, smoking, physical activity, dietary patterns, and depression. For obesity, the cutoff point for Asian populations was used (BMI ≥ 25 kg/m²). For sleep duration, a sleep time of 6–8 h was considered ideal, as is verified by our previous study. Smoking status was binarized as ever/never smoker because diabetes risk changes remarkably once smoked. Healthy physical activity was defined according to the 2008 Physical Activity Guidelines for Americans. Participants who engaged in moderate-intensity exercise for ≥150 min/week or vigorous-intensity exercise for ≥75 min/week were considered physically active. Healthy dietary patterns were defined as a dietary score of 4. For depressive symptoms, each of the nine items of the PHQ-9 is scored as 0, 1, 2, or 3, and the total score was summed; a PHQ-9 score of 5–27 represented overt depression.

Other covariates included in the analysis were age, economic-geographic residence and family history of diabetes. Economic-geographic residences of China were categorized into four groups according to the per capita disposable income of households from National Bureau of Statistics of China as Eastern, Northeastern, Central, and Western, which reflected different levels of economic development in China. Age was defined as the age of the participants at recruitment. Family history of diabetes was defined as diabetes diagnosis among first-degree relatives (i.e., direct blood relatives).

2.4 | Statistical analysis

The total effect of education on diabetes was estimated with multivariable logistic regression; odds ratios (ORs) and 95% confidence intervals (95% CIs) of education level (four categories) for diabetes are presented for men and women separately in Table 2. Model 1 was the crude model, model 2 was further adjusted for age, economic-geographic residence, and family history of diabetes. In model 3, obesity (yes/no), ever smoker (yes/no),
	Men	Women
	Number, n (%)	
Primary school or below	19 009	54 860
Middle school	30 117	51 702
High school	22 257	41 301
College or above	13 106	12 529
Age (years)	62.24 ± 9.75	60.79 (9.64)
Body mass index (kg/m²)	24.21 ± 3.62	24.86 (3.74)
Obesity, n (%)	7291 (39.0)	24 850 (45.9)
Sleep time (h)	2.59 ± 0.54	2.53 (0.56)
Ideal sleep time (%)	5920 (35.8)	19 360 (40.2)
Ever smoker, n (%)	7627 (40.1)	840 (1.5)
Healthy diet, n (%)	7882 (54.3)	740 (1.5)
Healthy physical activity, n (%)	15 42 (8.5)	4761 (15.7)
Depression, n (%)	498 (2.9)	2360 (4.7)
Diabetes, n (%)	4782 (25.2)	15 033 (27.4)
Family history of diabetes, n (%)	965 (5.3)	3191 (14.8)
Economic-geographic residence (%)		
Eastern	10 766 (56.6)	29 173 (53.2)
Northeastern	4775 (24.8)	13 463 (24.5)
Central	3093 (16.3)	10 619 (19.4)
Western	435 (2.3)	1605 (2.9)

Note: Continuous variables are represented as mean ± SD and categorical variables are shown as case (%).
healthy diet (yes/no), ideal sleep time (yes/no), healthy physical activity (yes/no), and depression (yes/no) were also adjusted.

For the behavioral factors of interest, multivariable logistic regression was used to estimate their independent effect on diabetes one by one, separately in men and women. Age, education level, economic-geographic residence, and family history of diabetes were adjusted for the analysis of each behavioral factor. The variables significantly associated with diabetes were included in a mediation model, and the mediation effect was further quantified. In this study, mediation analysis was conducted with a structural equation model (SEM), which is a recommended approach for mediation analysis with multiple mediators. SEMs are usually elaborated by path diagrams, with nodes representing the variables and arrows representing the relationship between them. A schematic diagram is shown in Supplement Figure S2. In the current model, the pathway between education and mediators was denoted as path α, the one between mediators and diabetes as path β, and the overall association of education with diabetes was marked as path c. Age, economic-geographic residence, and family history of diabetes were used as controlling variables. The indirect effect was obtained by multiplying the coefficients of path α and β. The proportion of mediation for each mediator was calculated by dividing the total effect into indirect effect. SAS version 9.4 (SAS Institute) was used to conduct multivariate logistic regression analyses, and R version 4.0.3 (R Foundation for Statistical Computing) was used to construct an SEM for analyzing the complexity of associations between mediators and outcome using the “Lavvan” package.

3 | RESULTS

The distribution of behavioral factors by education level is shown in Table 1 (education level of four categories) and Supplement Table S1 (education level of two categories: high school education or not). Generally, participants with a higher education level tended to adopt an more ideal lifestyle compared with their disadvantaged counterparts: They were more likely to have a healthier diet, sleep time, and physical activity and less likely to smoke. However, the prevalence of both obesity and diabetes changed with education level in the opposite direction by gender. Compared with those with the lowest education level, the prevalence of obesity was 49.6% versus 39.0% in men, and 32.1% versus 45.9% in women with the highest education level, respectively (Figure 1A). Similarly, Figure 1B shows that the prevalence of diabetes rises with increasing education level in a graded manner among men (25.2% for primary school or below and 31.8% for college or above), while in women it decreases as education level rises (27.4% for primary school or below and 19.6% for college or above).

The association between education level and diabetes is depicted by gender in Table 2. After adjusting for age, economic-geographic residence, lifestyle factors, and obesity, the association of diabetes and education level remained positive in men and negative in women. Compared with the least-educated individuals, the ORs (95% CI) of diabetes among men and women with college education were 1.19 (1.12–1.27) and 0.77 (0.73–0.82), respectively. When taking education level as a dichotomous variable (high school education or not), participants with high school education were at a 11% higher risk in men and 16% lower risk in women, which is shown in Supplement Table S2.

![Figure 1](image-url)
We then examined the effect of each behavioral factor on diabetes in both genders. Supplement Figure S1 summarizes the ORs of the potential factors on diabetes after controlling for age, economic-geographic residence, family history of diabetes, and education. In men, obesity and being a smoker were significantly related to the risk of diabetes, while in women, significant variables were obesity, healthy diet, healthy physical activity, and ideal sleep time. Therefore, these factors were included in the mediation model as potential mediators. For men, the proportion of mediation was 11.6% for obesity and 0.8% for being an ever smoker (Table 3), whereas among women, the proportion for mediation was 23.9% for obesity, 3.1% for healthy diet, 2.1% for healthy physical activity, and 4.2% for ideal sleep time (Table 3). Overall, behavioral factors mediated 12.4% and 33.3% of the total association between education and diabetes in men and women.

4 DISCUSSION

In the present study, we found that the association of diabetes with education level was positive in men but negative in women. Moreover, obesity was the major mediator underlying the observed association. To our knowledge, this is the first mediation analysis in a Chinese population concerning the gender-specific education–diabetes association. These results bring new perspectives to the prevention of diabetes at the population level.

Compared with other indicators, education is superior in representing socioeconomic levels. Education level can incorporate socioeconomic factors in both earlier and later life and remains relatively stabilized throughout the life course. Furthermore, information on education is less private and thus more easily to obtain and measure. As a result, education was employed as proxy to represent...
socioeconomic position in our study, as is the case in much of the proceeding literature.36,37

To date, a number of studies have explored the association between educational level and diabetes, with some further discussing the potential mediators. However, the results were conflicting with diverse economic development and ethnicity. For example, in developed countries, the association between educational level and diabetes is unitedly negative,5,38 while in less developed countries, such as China and India, the results were far more discordant.39,40 Even within the Chinese population, the relationship varied with time, region, and overall education level of the study population. In 2006, a study conducted in Nanjing reported that participants with higher education were at higher risk of diabetes after adjustment for gender,39 while in a previous Qingdao study, low education was an established risk factor of diabetes.41 Another study at approximately the same period using the China Kadoorie Biobank (CKB) population reported no linear association between education and diabetes.20 However, in contrast to all these studies, a gender-specific gradient relationship between education and diabetes was observed in our study, with men with a high level of education and women with a low level of education having a high risk of diabetes. This finding is in line with what was found in Korean42 and Swedish populations,14 where the ORs of diabetes among men with higher education and women with lower education ranged from 1.64 to 2.3. It is indicated that gender differences in the education–diabetes association are most likely to occur in low- or middle-income countries which are currently undergoing economic and nutritional transformation.8,43

The gendered relationship between education and diabetes could be a result of the variation of BMI with education, as Wu et al. put it.20 However, no further elucidation was given in that study. Similarly, we also found that obesity is the major mediator in both genders. Given its negligible mediation effect size and the opposite connection with education level (positive in men and negative in women), it might be one possible explanation in the contrasting association between education and diabetes by gender.

Nevertheless, other mediating factors varied in type and quantity by gender. Apart from obesity, smoking for men, physical activity, diet, and sleep time for women also played important mediating roles in the education–diabetes relationship. For obesity alone, the mediation proportion of obesity was 23.9% in women, more than double that (11.6%) in men. One possible explanation is that the association between education and obesity is stronger in women (path α in Table 2). The association between education level and obesity was stronger among women, which was consistent with a study from Thailand.44 Taking all the results together, it could be speculated that behavioral factors have a stronger impact on diabetes among women, which is consistent with previous findings.14,45 In this case, maintaining a healthy lifestyle might be most useful for the prevention of diabetes among women with low education.

Furthermore, it is noteworthy that even when all the mediators are combined, they can only explain a modest percentage (33.3% for women and 12.4% for men) in the total effect of education on diabetes, which was reported before as well.46,47 Thus, it is implied that other potential mediators such as marital status, household income, and insurance type still remained undiscovered, and the direct effect of education is remarkable. Nevertheless, efforts aiming at lifestyle modification should be encouraged in people with low education, particularly women.

The strengths of this study include the large nationally representative sample, the comprehensive inclusion of potential mediators, and the advanced statistical method for mediation analysis. However, there are some limitations to be addressed. Firstly, it was a cross-sectional study, which limits our interpretation of causality underlying the association between education and diabetes. However, the highest educational level usually remained consistent after early adulthood48 and thus less likely led to a reversed causation. Secondly, information on education level, diet, and physical activity was self-reported, which might result in a reported bias. Thirdly, people aged less than 40 years old were not included in the current study due to our study design. However, as shown in previous studies, the education–diabetes association is more evident among younger individuals,49 which means our results might underestimate, but not overestimate, the total effect of education on diabetes.

In conclusion, we found a gender-specific association between education and diabetes in China, where women with low education and men with high education were at higher risk of diabetes. The mediation effect of obesity might be one possible explanation in this gender difference. Other behavioral factors such as physical activity and sleep time may also play a mediating role, but this is only evident in women. Therefore, mitigating obesity is of great potential to curb the educational disparities of diabetes risk in both genders, and promoting a healthy lifestyle is especially helpful for women.

AFFILIATIONS
1Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and
ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (Grant No. 81970728, 81930021, 81970691, 82170819, and 21904084), Shanghai Outstanding Academic Leaders Plan (Grant No. 20XD1422800), Shanghai Medical and Health Development Foundation (Grant No. DMRFP_I_01), Clinical Research Plan of SHDC (Grant No. SHDC2020CR3064B, SHDC2020CR1001A), Clinical Research Project of Shanghai Municipal Health Commission (20214Y0002) and Science and Technology Committee of Shanghai (Grant No. 19411964200 and 20Y11905100).

DISCLOSURE
None declared.

ORCID
Yuanyue Zhu https://orcid.org/0000-0003-3114-3314
Chunyan Hu https://orcid.org/0000-0002-8673-3859
Ruying Hu https://orcid.org/0000-0002-5917-3454
Gang Chen https://orcid.org/0000-0002-8105-2384
Min Xu https://orcid.org/0000-0003-3930-8718
Tiange Wang https://orcid.org/0000-0003-0723-489X
Zhiyuan Zhao https://orcid.org/0000-0001-5950-2732
Zuojie Luo https://orcid.org/0000-0003-2969-8329
Li Chen https://orcid.org/0000-0001-7670-8062
Yiming Mu https://orcid.org/0000-0002-3344-3540
Yuhong Chen https://orcid.org/0000-0002-6506-2283
Jieli Lu https://orcid.org/0000-0003-1317-0896

REFERENCES
1. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129-2140.
2. Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997.
3. Espelt A, Arriola L, Borrell C, Larrañaga I, Sandín M, Escolar-Pujolar A. Socioeconomic position and type 2 diabetes mellitus in Europe 1999-2009: a panorama of inequalities. Curr Diabetes Rev. 2011;7(3):148-158.
4. Williams ED, Magliano DJ, Zimmet PZ, et al. Area-level socioeconomic status and incidence of abnormal glucose metabolism: the Australian diabetes, obesity and lifestyle (AusDiab) study. Diabetes Care. 2012;35(7):1455-1461.
5. Sacerdote C, Ricceri F, Rolandsson O, et al. Lower educational level is a predictor of incident type 2 diabetes in European countries: the EPIC-InterAct study. Int J Epidemiol. 2012;41(4):1162-1173.
6. Seiglie JA, Marcus ME, Ebert C, et al. Diabetes prevalence and its relationship with education, wealth, and BMI in 29 low- and middle-income countries. Diabetes Care. 2020;43(4):767-775.
in 49 low-income and middle-income countries. J Epidemiol Community Health. 2014;68(8):705-711.

8. Williams J, Allen L, Wickramasinghe K, Mikkelsen B, Roberts N, Townsend N. A systematic review of associations between non-communicable diseases and socioeconomic status within low- and lower-middle-income countries. J Glob Health. 2018;8(2):020409.

9. Rodríguez López S, Tumas N. Educational disparities in diabetes: a mediation analysis through BMI among urban adults from Argentina. Nutr Clin Diet Hosp. 2020;40(2):128-134.

10. Hauger H, Groth MV, Ritz C, et al. Socio-economic differences in cardiometabolic risk markers are mediated by diet and body fatness in 8- to 11-year-old Danish children: a cross-sectional study. Public Health Nutr. 2016;19(12):2229-2239.

11. Steele CJ, Schottker B, Marshall AH, et al. Education achievement and type 2 diabetes—what mediates the relationship in older adults? Data from the ESTHER study: a population-based cohort study. BMJ Open. 2017;7(4):e013569.

12. Rahman M, Nakamura K, Hasan SMM, Seino K, Mostofa G. Mediators of the association between low socioeconomic status and poor glycemic control among type 2 diabetics in Bangladesh. Sci Rep. 2020;10(1):6690.

13. Smith PM, Smith BT, Mustard CA, Lu H, Glazier RH. Estimating the direct and indirect pathways between education and diabetes incidence among Canadian men and women: a mediation analysis. Ann Epidemiol. 2013;23(3):143-149.

14. Agardh EE, Ahlborn A, Andersson T, et al. Explanations of socioeconomic differences in excess risk of type 2 diabetes in Swedish men and women. Diabetes Care. 2004;27(3):716-721.

15. Maty SC, Everson-Rose SA, Haan MN, Raghubaradhan TE, Kaplan GA. Education, income, occupation, and the 34-year incidence (1965-99) of type 2 diabetes in the Alameda County study. Int J Epidemiol. 2005;34(6):1274-1281.

16. Loucks EB, Magnusson KT, Cook S, Rehkopf DH, Ford ES, Berkman LF. Socioeconomic position and the metabolic syndrome in early, middle, and late life: evidence from NHANES 1999-2002. Ann Epidemiol. 2007;17(10):782-790.

17. Lange T, Rasmussen M, Thygesen LC. Assessing natural direct and indirect effects through multiple pathways. Am J Epidemiol. 2014;179(4):513-518.

18. Chung GK, Lai FTT, Yeoh EK, Chung RY. Gender-specific trends of educational inequality in diagnosed diabetes from 1999 to 2014 in Hong Kong: a serial cross-sectional study of 97,481 community-dwelling Chinese adults. Popul Health Metr. 2021;19(1):37.

19. Iakunchykov A, Overina M, Wilsgaart T, et al. What factors explain the much higher diabetes prevalence in Russia compared with Norway? Major sex differences in the contribution of adiposity. BMJ Open Diabetes Res Care. 2021;9(1):e002021.

20. Wu H, Bragg F, Yang L, et al. Sex differences in the association between socioeconomic status and diabetes prevalence and incidence in China: cross-sectional and prospective studies of 0.5 million adults. Diabetologia. 2019;62(8):1420-1429.

21. Bi Y, Lu J, Wang W, et al. Cohort profile: risk evaluation of cancers in Chinese diabetic individuals: a longitudinal (REACTION) study. J Diabetes. 2014;6(2):147-157.

22. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606-613.

23. Meng D, Poon-Mcbrayer KF, Farnsworth EB. The development of special education in China: A sociocultural review. Remedial Spec Educ. 2001;22(5):288-298.

24. Hu C, Zhang Y, Lin L, et al. Gestational hyperglycemia and the risk of cardiovascular diseases among elderly Chinese women: findings from the REACTION study. J Diabetes. 2021;13(12):949-959.

25. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62-S69.

26. Pan WH, Yeh WT. How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pac J Clin Nutr. 2008;17(3):370-374.

27. Zheng R, Niu J, Wu S, et al. Gender and age differences in the association between sleep characteristics and fasting glucose levels in Chinese adults. Diabetes Metab. 2021;47(2):101174.

28. Akter S, Goto A, Mizoue T. Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. J Epidemiol. 2017;27(12):553-561.

29. U.S. Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. www.health.gov/paguidelines.

30. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586-613.

31. Jiang H, Sun Z, Guo H, et al. An assessment of urbanization sustainability in China between 1990 and 2015 using land use efficiency indicators. npj Urban Sustain. 2021;1(1):34.

32. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173-1182.

33. MacKinnon DP, Valente MJ. Mediation from multilevel to structural equation modeling. Ann Nutr Metab. 2014;65(2–3):198-204.

34. Rosseel Y. The lavvan tutorial.

35. Darin-Mattsson A, Fors S, Käreholt I. Different indicators of socioeconomic status and their relative importance as determinants of health in old age. Int J Equity Health. 2017;16(1):173.

36. Mathisen J, Jensen AKG, Andersen I, Andersen GS, Hvidtfeldt UA, Rod NH. Education and incident type 2 diabetes: quantifying the impact of differential exposure and susceptibility to being overweight or obese. Diabetes. 2020;63(9):1764-1774.

37. Oshio T, Kan M. Educational level as a predictor of the incidence of type 2 diabetes mellitus among Japanese: a hazards-model analysis. J Diabetes. 2021;9(1):e013569.
40. Ramachandran A, Snehalatha C, Kapur A, et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. *Diabetologia*. 2001;44(9):1094-1101.

41. Shang X, Li J, Tao Q, et al. Educational level, obesity and incidence of diabetes among Chinese adult men and women aged 18–59 years old: an 11-year follow-up study. *PLoS One*. 2013; 8(6):e66479.

42. Park SJ, Kang HT, Nam CM, Park BI, Linton JA, Lee YJ. Sex differences in the relationship between socioeconomic status and metabolic syndrome: the Korean National Health and nutrition examination survey. *Diabetes Res Clin Pract*. 2012; 96(3):400-406.

43. Imkampe AK, Gulliford MC. Increasing socio-economic inequality in type 2 diabetes prevalence--repeated cross-sectional surveys in England 1994–2006. *Eur J Public Health*. 2011;21(4):484-490.

44. Aekplakorn W, Hogan MC, Chongsuvivatwong V, et al. Trends in obesity and associations with education and urban or rural residence in Thailand. *Obesity (Silver Spring)*. 2007; 15(12):3113-3121.

45. Kumari M, Head J, Marmot M. Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. *Arch Intern Med*. 2004;164(17):1873-1880.

46. Wikström K, Lindström J, Tuomilehto J, et al. Socio-economic differences in dysglycemia and lifestyle-related risk factors in the Finnish middle-aged population. *Eur J Public Health*. 2010; 21(6):768-774.

47. Demakakos P, Marmot M, Steptoe A. Socioeconomic position and the incidence of type 2 diabetes: the ELSA study. *Eur J Epidemiol*. 2012;27(5):367-378.

48. Härkönen J, Lindberg M, Karlsson L, Karlsson H, Scheinin NM. Education is the strongest socio-economic predictor of smoking in pregnancy. *Addiction*. 2018;113(6):1117-1126.

49. Kim SR, Han K, Choi JY, et al. Age- and sex-specific relationships between household income, education, and diabetes mellitus in Korean adults: the Korea National Health and nutrition examination survey, 2008-2010. *PLoS One*. 2015; 10(1):e0117034.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Zhu Y, Hu C, Lin L, et al. Obesity mediates the opposite association of education and diabetes in Chinese men and women: Results from the REACTION study. *Journal of Diabetes*. 2022;14(11):739-748. doi:10.1111/1753-0407.13325