Novel therapies for proliferative retinopathies

Juan Manuel Martinez-Alejo, Leopoldo Martin Baiza-Duran and Juan de Dios Quintana-Hau

Abstract: Proliferative retinopathies, such as neovascular age-related macular degeneration and proliferative diabetic retinopathy, are a special health issue due to their contribution to irreversible blindness. Although the promoting conditions and physiopathology of proliferative retinopathies are different, these feature a highly detrimental angiogenesis driven by the overproduction of vascular endothelial growth factor (VEGF). This article describes the mechanism of action of ocular antiangiogenic therapies currently found in clinical development. Systems classify accordingly as (a) novel anti-VEGF systems, (b) molecules targeting non-VEGF pathways, and (c) gene therapies. Whereas most therapies are designed to neutralize VEGF, there is a significant set of products with diverse complexity and mechanism of action. Anti-VEGF therapies are still the most studied approach to tackle angiogenesis. Therapies targeting non-VEGF pathways, however, are highlighted because they could be an option for patients nonresponsive to anti-VEGF therapies. Finally, gene therapy is a promissory technology platform but still is subject to demonstrate safety and efficacy.

Keywords: age-related macular degeneration, angiogenesis, eye diseases, eye health, novel therapies, proliferative retinopathy, VEGF

Received: 1 April 2022; revised manuscript accepted: 3 November 2022.

Introduction

Proliferative retinopathies are severe sight-threatening pathologies that feature uncontrolled angiogenesis. Diseases displaying this feature, such as neovascular age-related macular degeneration (wet AMD) and proliferative diabetic retinopathy (PDR), are leading causes of irreversible blindness in adults. Given their relevance, the World Health Organization (WHO) has an active agenda to develop strategies for avoiding and treating these diseases.1 Neovascularization in wet AMD occurs from the choroid into the subretinal space and characterizes by a rapid progression and severity. Current estimations of incidence indicate that AMD affects 0.5 per 1000 individuals <70 years old, and 6.7 per 1000 individuals >70 years old.2 On the contrary, diabetic retinopathy (DR) is an ocular condition triggered by diabetes mellitus. The persistent damage on the retinal microvasculature due to sustained hyperglycemia leads to local ischemia (i.e. hypoxia). This upregulates the production of pro-angiogenic factors that increase vascular permeability, producing the presence of blood and fluid that can cause mild vision changes. DR can evolve into PDR when neovascularization is produced, which can produce vitreous hemorrhage, retinal detachment, neovascular glaucoma, and vision loss.3–5 Probability of evolution from PD into PDR is about 17.6% within 5 years in patients diagnosed with moderate diabetic retinopathy.6

Although proliferative retinopathies are caused by different factors, angiogenesis is their most detrimental manifestation. Seminal paper of Miller et al.7 demonstrated the key role played by the vascular endothelial growth factor (VEGF) in ocular angiogenesis (growth of new capillaries from pre-existing blood vessels). VEGF family is glycoproteins that bind to specific membrane receptors, termed VEGFRs. The formation of the VEGF/VEGFR complex is paramount for different signaling processes involved in the formation of new blood vessels, such as the modulation of vascular permeability, cellular migration, proliferation, and cellular survival. Actually, this system is considered the master regulator of angiogenesis and lymphangiogenesis.8,9 VEGF family is composed of...
five members, namely, VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PIGF). These molecules bind with corresponding membrane-bound receptors, namely, VEGFR-1, VEGFR-2, and VEGFR-3. Figure 1 shows the binding specificities of VEGF members toward corresponding receptors. VEGF-A, VEGF-C, and VEGF-D can bind and activate VEGFR-2, the main signaling receptor for angiogenesis and vascular permeability. On the contrary, VEGF-C and VEGF-D are the only known ligands for VEGFR-3, which also is an important driver of angiogenesis and lymphangiogenesis.10,11 VEGF-A is, however, highlighted due to its major role in pathological neovascularization.12

Prior to the anti-VEGF era, Verteporfin (VP) was the most used therapy to inhibit angiogenesis. VP is a small molecule that produces upon local photo-stimulation short-lasting free radicals that damage the endothelium, occluding the newly formed vessels. The use of VP, however, has declined due to its unspecific mechanism of action, side effects, and inefficacy in the long term.13 Other therapies available to control angiogenesis are through intravitreal implants loaded with corticosteroids, which have shown acceptable long-term safety and efficacy.14,15 Most used strategy today toward ocular angiogenesis, however, is via neutralization of VEGF.5 Commercially available options include to pegaptanib (Macugen®), ranibizumab (Lucentis®), bevacizumab (Avastin®), aflibercept (Eylea®), conbercept (Lumitin®), and brolucizumab (Beovu®). These are biopharmaceuticals that differ in size, intravitreal half-life, and selectivity toward VEGF protein family and isoforms. Briefly, first anti-VEGF therapy approved by US Food and Drug Administration (FDA) was pegaptanib (Macugen®). This is an aptamer designed to bind specifically VEGF165.16 On the contrary, Bevacuzimab (BCZ) is a full-length antibody that binds all VEGF-A isoforms. BCZ was approved in 2004 for advanced colon cancer but used off-label for proliferative retinopathies.17 Ranibizumab is Fab fragment that derives from BCZ. It was developed under the idea that size of BCZ could compromise its diffusion through retina and, therefore, efficacy.17,18

It was approved by FDA in 2006 for wet AMD. As regard to aflibercept, this is a fusion protein containing binding elements of the VEGFR-1 and VEGFR-2 fused to the Fc portion of IgG1. This endows the ability to bind VEGF-A, VEGF-B, and PIGF.19 Aflibercept was approved by FDA in 2011. In the case of Conbercept, this is also a fusion protein with similar characteristics than aflibercept, which was approved in 2013 by the National Medical Products Administration of China (NMPA).20 Brolucizumab is a single-chain antibody fragment with affinity to all VEGF-A isoforms.21 It was approved by FDA in 2019. Anti-VEGF therapies are administered as intravitreal injections to override the physiological barriers that limit topical bioavailability, to achieve therapeutic levels of drug molecules within the retinal space, and to avoid toxicities associated with their systemic administration.22–24 Therapy, however, requires repeated and long-term injections to halt disease and improve vision.25 Furthermore, even though intravitreal anti-VEGF doses are small, these molecules display high potencies. Hence, intravitreal clearance toward systemic circulation can suppress the circulating VEGF and produce adverse effects26 In the case of brolucizumab, some patients have reported retinal vasculitis and intraocular inflammation after intravitreal injection.27 Furthermore, the price and need of continuous administrations and monitoring, and the reluctance of patients toward intravitreal administration can contribute to lack of treatment adherence.28

This short review provides a comprehensive analysis of therapies found in clinical trials designed to treat proliferative retinopathies. The aim is to generate a clear understanding of their mechanism of action, differences among them, and the potential benefits that these therapies could represent for clinicians and patients.
Materials and methods

An extensive search in intellectual property files was conducted by Observatorio Tecnologico (Zapopan, Jal, MX, https://www.observatoriotecnologico.org.mx/). Collection of data was performed using a software-based IA analysis as well as individual searches in databases such as in USPTO, Espacenet, PubMed, and ClinicalTrials. Keywords utilized to identify relevant documents included ‘proliferative retinopathy’ or ‘macular degeneration’ or ‘proliferative diabetic retinopathy’ or ‘diabetic macular edema’ or ‘DME’ or ‘macular degeneration retinal’, or ‘age-related’, or ‘AMD’, or ‘wet AMD’ or ‘exudative AMD’ or ‘treatment’ and their possible combination. The analysis resulted in 309 patents. Data were analyzed in accordance with their innovation areas, and further clustered as cell therapy, early detection methods of retinal diseases, therapies and molecules, and drug targets. Findings were further delimited to developments in clinical trials designed to tackle angiogenesis.

Results

As described above, proliferative retinopathies feature an uncontrolled neovascularization triggered by an overexpression of VEGF. Developments found in clinical trials classify in accordance with their pharmacological targets as follows: (a) antiedematous therapies that block the formation of the VEGF–VEGFR complex, (b) compounds that modulate inflammation or oxidative stress, and (c) gene therapies. These are described in the following sections.

Antiedematous therapies

Developments found in this category aim to block the interaction of VEGF with VEGFR, which inhibits the triggering point of the angiogenesis cascade. Many therapies in this section are biopharmaceuticals that neutralize VEGF molecules. Therefore, their mechanism of action occurs at the extracellular domain. A significative set of therapies in development, however, target an intracellular mechanism of action (see Figure 2). Active pharmaceutical ingredients (APIs) in these systems are small molecules from the tyrosine kinase inhibitors (TKIs) family. TKI molecules interfere competitively with the ATP-binding site of receptors, avoiding thus their activation upon VEGF stimulus. TKIs display different selectivity and potency toward VEGFR-1, VEGFR-2, and VEGFR-3. Relevant characteristics antiedematous systems approved and in development are described in Table 1 (commercially available therapies are also included for comparison purposes).

Antiedematous biopharmaceuticals

Faricimab. Phase III. Roche/Genentech. Faricimab (previously RG7716) is a novel monoclonal antibody designed to inhibit simultaneously and inde-
pendently two ligands involved in angiogenesis: VEGF-A and angiopoietin-2 (Ang-2).39 As previously described, neutralization of VEGF-A has shown to suppress efficiently neovascularization. Approved biopharmaceuticals (e.g. ranibizumab, aflibercept, and brolucizumab) follow this mechanism of action (see Table 1). On the contrary, angiopoietins (Ang-1 and Ang-2) are growth factors that interact competitively toward endothelium-specific receptor tyrosine kinase Tie-2. This pathway plays an important and complementary role alongside VEGF to regulate vascular homeostasis, vessel permeability, inflammation, and angiogenic responses. Ang-1/Tie-2 signaling is involved in inflammation prevention and vessel maturation (particularly after angiogenesis). On the contrary, Ang-2/Tie-2 system increases vascular instability, endothelial activation, and remodeling. Due to their antagonist properties, the Ang-1:Ang-2 ratio is paramount for vascular homeostasis.40 However, conditions such as hypoxia, hyperglycemia, and/or oxidative stress, can upregulate the formation of Ang-2, which prone to endothelial activation. Dual mechanism of Faricimab highlights because blockage of VEGF-A halt angiogenesis, whereas neutralization of Ang-2 favors the Ang-1/Tie-2 complexation to stabilize vasculature. Faricimab equilibrium dissociation constant (K_D) for Ang-2

Name	Target	Size (kDA)	Equilibrium dissociation constant (K_d)	Dose regimen	Dose	Clinical stage	
COMMERCIAL	Ranibizumab	Target	Size (kDA)	Monthly	0.5 mg	FDA approved	
Bevacizumab	VEGF-A	149	1 nM	Monthly	1.25 mg	Off-label	
Aflibercept	VEGF-A	115	1 pM	Monthly first 3 months, then bimonthly	2 mg	FDA approved	
Brolucizumab	VEGF-A	26	1.6 pM	Monthly first 3 months, then bimonthly	6 mg	FDA approved	
Conbercept	VEGF-A	143	0.77 pM	Monthly first 3 months, then trimonthly	0.5 mg	NMPA approved	
IN DEVELOPMENT	Faricimab	VEGF-A/Ang-2	150	3 nM (VEGF-A)/22 nM (Ang-2)	Monthly first 4 months, then every 3–4 months	6 mg	Phase III completed
OPT 302	VEGF-C/VEGF-D	NR	VEGF-C (~5 pM); VEGF-D (~0.5 nM)	Coadministration with Anti-VEGF-A	2 mg (OPT), 0.5 mg RBZ	Phase III ongoing	
PAN-90806	TKI	NR	NR	Drop suspension, daily	2, 6, 10 mg/mL	Phase I/II completed	
GB-102	TKI	0.532	NR	Injectable depot with controlled release	1–2 mg	Phase II completed	
KSI-301	VEGF-A	950	NR	3 months	5 mg	Phase I ongoing	
OTX-TKI	TKI	NR	NR	6–7 months	NR	Phase I ongoing	

NMPA, National Medical Products Administration of China; NR, not reported; TKI, tyrosine kinase inhibitors.
is 22 nM and about 3 nM for VEGF-A (comparable with the K_D of ranibizumab). Clinical trials have been performed with intravitreal doses of 6 mg, showing an enhanced treatment durability (up to 24 weeks).

OPT-302. Phase III. Opthea. OPT-302 is a novel fusion protein that displays a high affinity toward VEGF-C and VEGF-D (K_D is about 5 pM and 0.5 nM, respectively). Although the angiogenic effect of VEGF-A has demonstrated to be higher than other member of the VEGF family, the concentration and activity of the VEGF-C and VEGF-D have been found increased in patients receiving anti-VEGF-A treatments (e.g. BCZ). Consequently, these patients undergo suboptimal response to treatment because VEGF-C and VEGF-D can also activate VEGFR-2 (Figure 1). It is plausible that upregulation of VEGF-C and VEGF-D is a physiological response driven by the fact that factors that induce the overproduction of VEGF-A, such as hypoxia, remain unresolved. Data from clinical trials have shown that combining OPT-302 (2 mg) with ranibizumab (0.5 mg) provide an additive effect in comparison with monotherapy, which is relevant to design better responsive and longer lasting therapies.

KSI-301. Phase II. Kodiak. This system is a novel full-length antibody covalently bonded to an optically clear high molecular weight phosphorylcholine biopolymer. Due to this design characteristics, its molecular size is significantly larger than conventional anti-VEGF molecules (950 kDa, see Table 1). Size and structure of KSI-301 serve two purposes. On one hand, conjugated antibody has activity toward all isoforms of VEGF-A, as other primary anti-VEGF agents. The large size of KSI-301, however, limits its intravitreal diffusion. This decreases its ocular clearance, providing a long-lasting action. Therefore, KSI-301 aims to increase the time required for reinjection. Clinical studies were performed using a dose of 5 mg and were compared with 2 mg dose of aflibercept. Preliminary results showed significant outcomes for patients with wet AMD in terms of efficacy and durability.

Inhibitors of VEGFR

GB-102. Phase II. Graybug vision. API used in this formulation is sunitinib maleate [Figure 3(a)], a TKI with activity toward VEGFR-1, VEGFR-2, VEGFR-3, and the platelet-derived growth factor receptors. OTX-TKI is formulated as a bioresorbable intracameral implant composed of a polyethylene glycol–based hydrogel fiber, wherein drug microcrystals are homogeneously dispersed. This configuration permits to achieve long-lasting release of axitinib because drug delivery is limited by diffusion from the gel and dissolution of the microcrystals. A phase I trial is ongoing testing drug doses of 200, 400, and 600 µg, with preliminary favorable results.

Non-antiedematous systems

Therapies found in this category target mechanisms not primary related to the VEGF/VEGFR pathway. These developments are based on compelling evidence connecting the onset and severity of neovascularization with preceding and/or concomitant processes involving oxidative stress and inflammation. For instance, patients with diabetic macular
edema (DME) have shown elevated concentrations of different pro-angiogenic factors besides VEGF-A (e.g. Ang2, erythropoietin, and soluble matrix metalloproteinase-2 and soluble matrix metalloproteinase-9), but also inflammation molecules [e.g. interleukin-37 (IL-37), IL-1β, IL-6, IL-8, IL-10, IL-18, tumor necrosis factor-α, inflammasomes] and lymphangiogenic factors (i.e. VEGF-C and VEGF-D). These set of therapies not only represent an option to current anti-VEGF therapies, but also these could be an important option for non-responsive patients. The chemical structure of some molecules found in this category is depicted in Figure 4.

Luminate® – Risuteganib. Phase II. Allegro/Senju/Hanmi. Risuteganib is a synthetic oligopeptide that regulates integrins. These are membrane receptors that enable cell–cell and cell–extracellular matrix adhesion. Some integrins (e.g. αvβ3, αvβ5, and α5β1), however, has been associated with pathological neovascularization. Detrimental changes on integrins have been attributed to mitochondrial mutations triggered by oxidative stress. Preclinical studies showed that intravitreal administration of risuteganib protected retinal cells against cytotoxic promoters. The mechanism of action of risuteganib is still under discussion, but it is plausible that this molecule upregulates the mitochondrial metabolic/redox function and activation of oxidases. Trials on risuteganib showed a decrease in the expression of several integrins associated with retinal diseases. The protecting mechanism of risuteganib highlights the relevance of oxidative stress on retinal disfunctions, in particular because the retinal pigment epithelium (RPE) cells contain a large mitochondria number to meet the RPE energetic needs. A phase II clinical trial in comparison with BCZ for the treatment of diabetic macular edema has been concluded.

ICON-1. Phase II. Roche/Iconic. Tissue Factor (TF) is expressed in pathological angiogenesis and in macrophage-associated human diseases, but not expressed in normal vasculature. Hence, overexpression of TF is a specific and accessible target for diseases featuring angiogenesis. ICON-1 is a chimeric antibody-like homodimer of 210 kDa formed by the crystallizable region of an immunoglobulin G1 conjugated with the factor VII (the natural ligand of TF). Given this configuration, ICON-1 displays a higher ligand affinity than other anti-TF antibodies (up to 1 nM versus 10 μM, respectively). Clinical results showed that...
intravitreal administration of ICON-1 in combination with ranibizumab provided significant improvements for proliferative AMD, which could enable a more durable improvement following anti-VEGF administration.62,63

AKST4290. Phase II. Alkahest. C-C chemokine receptor type 3 (CCR3) is normally found on the surface of certain immune cells, such as eosinophils, basophils, and Th2 lymphocytes. Its ligand, termed eotaxin, is an immunomodulatory chemokine overexpressed in different age-related diseases, such as wet AMD. The formation of the CCR3–eotaxin complex increases the permeability and degradation of the vascularity, recruits immune cells, and disturbs the homeostasis regulation.64 AKST4290 is a system based on lazucirnon, a small molecule with affinity toward CCR3. Therefore, its administration creates a competitive interaction toward CCR3, which inhibits the formation of eotaxin–CCR3 complex. This has shown to reduce eosinophils accumulation and eosinophil-mediated tissue damage. One advantage of this therapy is that it is intended for oral administration. Preclinical data showed that choroidal neovascularization was inhibited more efficiently with lazucirnon than with anti-VEGF molecules tested.65 This observation highlighted its potential toward proliferative AMD. Further studies are expected to provide greater insights on the mechanism of action and efficacy.53 Phase II clinical trials have been performed in patients with wet AMD refractory to anti-VEGF therapy, showing promising results.66,67

AR-13503. Phase I. Aerie pharmaceuticals. AR-13503 is a formulation based on the active form of netarsudil, the last a pro-drug with anti-glaucomatous activity. AR-13503 targets the upregulation of the Rho/Rho kinase (ROCK) pathway, which can be mediated by VEGF-A. ROCK pathway is involved in different angiogenic processes, including changes in permeability, migration of endothelial cells, and survival. Furthermore, the ROCK pathway has shown to be a key factor in the angiogenesis of wet AMD and DR.68,69 AR-13503 is designed as a biodegradable sustained-release implant that undergoes hydrolysis and/or enzymatic degradation. This enables a zero-order release over a period of 4–6 months.69 It is administered intravitreally in 10.6 μg doses throughout a single-use applicator.68 Phase I trial (NCT03835884) in patients with wet AMD and diabetic macular edema is undergoing.

HCB1019. InflimmX therapeutics. HCB1019 treatment targets connexin 43 (Cx43), a hemichannel which is ubiquitously found on the membrane of different cells lines. Cx43 is an important protein of gap junctions and highly important for the normal physiological function of the cell. However, in pathological conditions, Cx43 can increase the secretion of proinflammatory cytokines from inflammatory cells. Inhibition of the Cx43 opening has shown to reduce inflammatory conditions, especially those involving the infilamasome pathway.70,71 HCB-1019 is based on tonabersat, a compound initially studied as an anti-migraine agent. Therefore, there is compelling evidence on this repurposed drug in terms of safety.72 One of the most significant advantages of this system is that it is orally administered, displaying a suitable pharmacokinetic profile and tolerability by patients.72,73

Gene therapy

Gene therapy could represent the ultimate form of sustained release of anti-VEGF molecules to tackle angiogenesis. Gene therapy aims to transfer one or more therapeutic nucleic acids to a patient’s cells or correcting a defective gene.74 Early stages of clinical gene therapy sought to establish safety and experience in patients. Immune responses and insertional mutagenesis were major concerns.75 The goal of these therapies in the field of proliferative retinopathies is to modify genes in retina to induce an endogenous and in situ anti-VEGF secretion.76,77 If successful, this would decrease the need of continuous intravitreal injections, which is one of the main disadvantages of most anti-VEGF therapies.

RGX 314. Phase II. RegenXbio. This system utilizes an adeno-associated virus (AAV8), a small non-pathogenic viral vector designed to transfect retinal cells. Successful transfection induces the in situ production of a soluble monoclonal antibody fragment similar to ranibizumab.78 RGX-314 has been tested as a single-dose subretinal injection via pars plana vitrectomy. Preclinical studies showed promising results, and clinical trials to assess safety and tolerability are undergoing.41,77,79

ADVM-022 [AAV2.7 m8-aflibercept]. Phase II. Adverum biotechnologies. This system utilizes a recombinant AAV optimized to induce the expression of aflibercept (see Table 1).80 ADVM-022 uses the AAV2.7 m8 capsid, which has been engineered from AAV2 to induce an efficient retinal transduction following
intravitreal administration. Preclinical studies in a nonhuman primate model showed that ADVM-22 could induce the production of aflibercept in equivalent amounts to the observed 56 days after the administration of one single intravitreal dose of aflibercept.\(^8\) Phase I study has been completed (NCT04418427) and two phase II clinical trials are ongoing (NCT04418427, NCT05536973).\(^8\)\(^,\)\(^8\)

HMR59 or AAVCAGsCD59. Phase I. Hemera biosciences. AAVCAGsCD59 (HMR59) aims to avoid the formation of the membrane attack complex (MAC), which induces apoptosis of retinal cells. HMR59 uses a recombinant adeno-associated virus serotype 2 vector to induce the expression of a human CD59 protein.\(^8\)\(^3\) The transfected CD59 protein interacts with the C8 and C9 components of nascent MAC, which prevents that the endogenous C9 protein can bind with the aforementioned to form the MAC complex. Consequently, the complement-mediated cell lysis is inhibited.\(^8\)\(^4\) Phase 1 study to assess efficacy and safety of two doses of HMR59 has been completed.\(^8\)\(^3\),\(^8\)\(^5\)

OXB201. Phase I. Oxford biomedica. OXB201 was developed to transfected two genes that encode for endostatin and angiostatin. At preclinical stage, these proteins showed to suppress blood vessel growth and leakage. Results from clinical trials, however, showed that despite an apparent reduction in fluorescein angiographic leakage, only one subject showed convincing evidence of antiangiogenic activity.\(^7\)\(^7\),\(^8\)\(^6\)

Potential impact of upcoming therapies

Uncontrolled angiogenesis as a highly deteriorative condition for retina. Although anti-VEGFs have shown to be successful to halt neovascularization, they face issues such as a lack of vision improvements for many patients, and that the long-term use of anti-VEGF therapy is associated with adverse events. Therefore, there is a current need to develop efficient strategies that reduce or eliminate ocular injections. Therapies described herein were limited to results obtained using a software-based IA analysis and individual searches in databases. Results were also limited to therapies currently found in clinical trials. Analysis indicates that developments follow three main strategies: (a) increasing the efficacy of anti-VEGF therapy, (b) inhibiting pharmacological pathways related to oxidative stress and inflammation, and (c) inducing the in situ production of anti-VEGF molecules to avoid the need of reinjection. Strategy 1 is being addressed with new anti-VEGF molecules with targets beyond VEGF-A, by increasing the intravitreal residence time to produce long-lasting effects, or by targeting VEGF receptor. Strategy 2 seems promising not only because drugs in this classification have shown to be efficient, but also because they could be used in patients who do not respond to the conventional anti-VEGF therapies, or for patients in early and mid-stage of disease development. One of the main highlights is that some of these therapies avoid the intravitreal pathway, which could enhance patient compliance. Strategy 3 is addressed through gene therapy. This has a lot of potential, but there are several obstacles that it needs to overcome. If successful, this platform could, however, improve clinical outcomes while reducing treatment burden.

Conclusions

The analysis performed herein described the mechanism of action of anti-angiogenic therapies in clinical development. A significant set of these novel therapies target the angiogenic cascade driven by the VEGF. This strategy is being addressed with novel anti-VEGF aiming long-lasting effects. Another significant area of development targets non-VEGF pathways. These set of therapies not only display efficacy but could represent a primary alternative for patients nonresponsive to available anti-VEGF compounds and, in some cases, without the burden of intraocular administrations. Finally, gene therapy can potentially improve clinical outcomes while drastically reducing treatment burden. These therapies, however, need to demonstrate safety and efficacy. In summary, the diverse mechanism of action of upcoming therapies is likely to increase the current portfolio for treating proliferative retinopathies, providing significant benefits for patients and clinicians.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Author contributions

Juan Manuel Martinez-Alejo: Conceptualization; Investigation; Methodology; Writing – original draft; Writing – review & editing.
Leopoldo Martin Baiza-Duran: Data curation; Formal analysis; Validation; Writing – review & editing.

Juan de Dios Quintana-Hau: Conceptualization; Formal analysis; Project administration; Validation; Writing – review & editing.

Acknowledgements
Authors kindly thank Addy Linan-Segura from Centro de Investigacion Sophia for her comments and discussions on the manuscript.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Competing interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Availability of data and materials
Not Applicable.

ORCID iD
Juan Manuel Martinez-Alejo https://orcid.org/0000-0002-2438-5465
Juan de Dios Quintana-Hau https://orcid.org/0000-0002-5660-4431

References
1. World Health Organization. Vision impairment and blindness. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (2022, accessed 30 March 2022)
2. Li JQ, Welchowski T, Schmid M, et al. Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis. Br J Ophthalmol 2020; 104: 1077–1084.
3. Duh EJ, Sun JK and Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2017; 2: 1–13.
4. GBD 2019 Blindness and Vision Impairment Collaborators and Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020; the right to sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9: e144–e160.
5. Al-Zamil W and Yassin S. Recent developments in age-related macular degeneration: a review. Clin Interv Aging 2017; 12: 1313–1330.
6. Moshfeghi A, Garmo V, Sheinson D, et al. Five-year patterns of diabetic retinopathy progression in US clinical practice. Clin Ophthalmol 2020; 14: 3651–3659.
7. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994; 145: 574–584.
8. Bryan BA, Dennstedt E, Mitchell DC, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 2010; 24: 3186–3195.
9. Eklund L, Kangas J and Saharinen P. Angiopoietin-1 signalling in the cardiovascular and lymphatic systems. Clin Sci 2017; 131: 87–103.
10. Dugel PU, Boyer DS, Antoszyk AN, et al. Phase 1 study of OPT-302 inhibition of vascular endothelial growth factors C and D for neovascular age-related macular degeneration. Ophthalmic Retina 2020; 4: 250–263.
11. Alsohaimi A. The pathogenic role of vascular endothelial growth factor (VEGF) in skin diseases. Adv Med Med Res 2019; 2: 27–37.
12. Peach CJ, Mignone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 2018; 19: 1264.
13. Su Y, Wu J and Gu Y. Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy for wet age-related macular degeneration: a systematic review and meta-analysis. Photodiagnostics Photodyn Ther 2018; 22: 263–273.
14. Regillo CD, Callanan DG, Do DV, et al. Use of corticosteroids in the treatment of patients with diabetic macular edema who have a suboptimal response to anti-VEGF: recommendations of an expert panel. Ophthalmic Surg Lasers Imaging Retin 2017; 48: 291–301.
15. Bucolo C, Gozzo L, Longo L, et al. Long-term efficacy and safety profile of multiple injections of intravitreal dexamethasone implant to manage diabetic macular edema: a systematic review of real-world studies. J Pharmacol Sci 2018; 138: 219–232.
16. Vinores SA. Pegaptanib in the treatment of wet, age-related macular degeneration. *Int J Nanomedicine* 2006; 1: 263–268.

17. Kim LA and D’Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis. *Am J Pathol* 2012; 181: 376–379.

18. Zou L, Lai H, Zhou Q, et al. Lasting controversy on ranibizumab and bevacizumab. *Theranostics* 2012; 1: 395–402.

19. Stewart MW. Aflibercept (VEGF trap-eye): the newest anti-VEGF drug. *Br J Ophthalmol* 2012; 96: 1157–1158.

20. Liu WS and Li YJ. Comparison of conbercept and ranibizumab for the treatment efficacy of diabetic macular edema: a metaanalysis and systematic review. *Int J Ophthalmol* 2019; 12: 1479–1486.

21. Nguyen QD, Das A, Do DV, et al. Brolucizumab: evolution through Preclinical and Clinical Studies and the Implications for the management of neovascular age-related macular degeneration. *Ophthalmology* 2020; 127: 963–976.

22. Kim YC, Chiang B, Wu X, et al. Ocular delivery of macromolecules. *J Control Release* 2014; 190: 172–181.

23. Awad S and Angkawinitwong U. Overview of antibody drug delivery. *Pharmaceutics* 2018; 10: 83.

24. Baiza-Durán L, Sánchez-Ríos A, González-Barón J, et al. Safety and tolerability evaluation after repeated intravitreal injections of a humanized anti-VEGF-A monoclonal antibody (PRO-169) versus ranibizumab in New Zealand white rabbits. *Int J Retina Vitreous* 2020; 6: 32–39.

25. Falavarjani KG and Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. *Eye (Lond)* 2013; 27: 787–794.

26. Avery RL, Castellarin AA, Steinle NC, et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. *Br J Ophthalmol* 2014; 98: 1636–1641.

27. Baumal CR, Spaide RF, Vajzovic L, et al. Retinal vasculitis and intraocular inflammation after intravitreal injection of brolucizumab. *Ophthalmology* 2020; 127: 1345–1359.

28. Sobolewska B, Sabsabi M and Ziemssen F. Importance of treatment duration: unmasking barriers and discovering the reasons for undertreatment of anti-VEGF agents in neovascular age-related macular degeneration. *Clin Ophthalmol* 2021; 15: 4317–4326.

29. Bhargava P and Robinson MO. Development of second-generation VEGFR tyrosine kinase inhibitors: current status. *Curr Oncol Rep* 2011; 13: 103–111.

30. Shibuya M. VEGF-VEGFR signals in health and disease. *Biochem Ther (Seoul)* 2014; 22: 1–9.

31. Wykoff CC, Abreu F, Adams AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. *Lancet* 2022; 399: 741–755.

32. Opthea Limited. OPT-302 with aflibercept in neovascular age-related macular degeneration (nAMD) (COAST). NCT04757636, https://clinicaltrials.gov/ct2/show/NCT04757636 (2022, accessed 8 October 2022).

33. Opthea Limited. OPT-302 with ranibizumab in neovascular age-related macular degeneration (nAMD) (ShORe). NCT04757610, https://clinicaltrials.gov/ct2/show/NCT04757610 (2022, accessed 8 October 2022).

34. PanOptica I. Study of PAN-90806 eye drops, suspension for neovascular AMD – full text view. *ClinicalTrials.gov*, NCT03479372, https://clinicaltrials.gov/ct2/show/NCT03479372?term=pan-90806&phase=1&draw=2&rank=1 (accessed 8 October 2022).

35. Graybug Vision. A depot formulation of sunitinib malate (GB-102) compared to aflibercept in subjects with wet AMD – full text view. *ClinicalTrials.gov*, NCT03953079, https://clinicaltrials.gov/ct2/show/NCT03953079?term=gb-102&phase=1&draw=2&rank=2 (accessed 8 October 2022).

36. Graybug Vision. A depot formulation of sunitinib malate (GB-102) in subjects with diabetic macular edema and retinal vein occlusion – full text view. *ClinicalTrials.gov*, NCT04085341, https://clinicaltrials.gov/ct2/show/NCT04085341?term=gb-102&phase=1&draw=2&rank=1 (accessed 8 October 2022).

37. Samanta A, Aziz AA, Jhingan M, et al. Emerging therapies in neovascular age-related macular degeneration in 2020. *Asia Pac J Ophthalmol (Phila)* 2020; 9: 250–259.

38. Ocular Therapeutix I. Study evaluating the treatment of OTX-TKI for subjects with neovascular age-related macular degeneration (ShORe) (nAMD) (COAST). NCT04757636, https://clinicaltrials.gov/ct2/show/NCT04757636?term=otx-tki&phase=01&draw=2&rank=1 (accessed 8 October 2022).

39. Shibuya M. VEGF-VEGFR signals in health and disease. *Biochem Ther (Seoul)* 2014; 22: 1–9.

40. Wykoff CC, Abreu F, Adams AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. *Lancet* 2022; 399: 741–755.

41. Opthea Limited. OPT-302 with aflibercept in neovascular age-related macular degeneration (nAMD) (COAST). NCT04757636, https://clinicaltrials.gov/ct2/show/NCT04757636 (2022, accessed 8 October 2022).

42. Opthea Limited. OPT-302 with ranibizumab in neovascular age-related macular degeneration (nAMD) (ShORe). NCT04757610, https://clinicaltrials.gov/ct2/show/NCT04757610 (2022, accessed 8 October 2022).

43. PanOptica I. Study of PAN-90806 eye drops, suspension for neovascular AMD – full text view. *ClinicalTrials.gov*, NCT03479372, https://clinicaltrials.gov/ct2/show/NCT03479372?term=pan-90806&phase=1&draw=2&rank=1 (accessed 8 October 2022).

44. Graybug Vision. A depot formulation of sunitinib malate (GB-102) compared to aflibercept in subjects with wet AMD – full text view. *ClinicalTrials.gov*, NCT03953079, https://clinicaltrials.gov/ct2/show/NCT03953079?term=gb-102&phase=1&draw=2&rank=2 (accessed 8 October 2022).

45. Graybug Vision. A depot formulation of sunitinib malate (GB-102) in subjects with diabetic macular edema and retinal vein occlusion – full text view. *ClinicalTrials.gov*, NCT04085341, https://clinicaltrials.gov/ct2/show/NCT04085341?term=gb-102&phase=1&draw=2&rank=1 (accessed 8 October 2022).

46. Samanta A, Aziz AA, Jhingan M, et al. Emerging therapies in neovascular age-related macular degeneration in 2020. *Asia Pac J Ophthalmol (Phila)* 2020; 9: 250–259.

47. Ocular Therapeutix I. Study evaluating the treatment of OTX-TKI for subjects with neovascular age-related macular degeneration (ShORe) (nAMD) (COAST). NCT04757636, https://clinicaltrials.gov/ct2/show/NCT04757636?term=otx-tki&phase=01&draw=2&rank=1 (accessed 8 October 2022).
39. Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial. *Ophthalmology* 2019; 126: 1155–1170.

40. Khan M, Aziz AA, Shaﬁ NA, et al. Targeting angiopoietin in retinal vascular diseases: a literature review and summary of clinical trials involving faricimab. *Cells* 2020; 9: 1–14.

41. Al-Khersan H, Hussain RM, Ciulla TA, et al. Innovative therapies for neovascular age-related macular degeneration. *Expert Opin Pharmacother* 2019; 20: 1879–1891.

42. Mettu PS, Allingham MJ and Cousins SW. Incomplete response to anti-VEGF therapy in neovascular AMD: exploring disease mechanisms and therapeutic opportunities. *Prog Retin Eye Res* 2021; 82: 100906.

43. Chandrasekaran PR and Madanagopalan VG. KSI-301: antibody biopolymer conjugate in retinal disorders. *Ther Adv Ophthalmol* 2021; 13: e00723-18.

44. Puliafito CA and Wykoff CC. New frontiers in retina: highlights of the 2020 angiogenesis, exudation and degeneration symposium. *Int J Retina Vitreous* 2020; 6: 18–17.

45. Formica ML, Awde Alfonso HG and Palma SD. Biological drug therapy for ocular angiogenesis: anti-VEGF agents and novel strategies based on nanotechnology. *Pharmacol Res Perspect* 2018; 6: 321–325.

46. Mandal A, Pal D, Agrahari V, et al. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. *Adv Drug Deliv Rev* 2018; 126: 67–95.

47. Beebe JS, Jani JP, Knauth E, et al. Pharmacological characterization of CP-547,632, a Novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. *Cancer Res* 2003; 63: 7301–7309.

48. Stewart M. Future treatments of diabetic retinopathy: pharmacotherapeutic products under development. *Eur Med J* 2017; 5: 93–103.

49. Bora PS, Hu Z, Tezel TH, et al. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration. *Proc Natl Acad Sci USA* 2003; 100: 2679–2684.

50. Allegro Ophthalmics L. A phase 2 study (EMERGE) evaluating repeated intravitreal administration of ICON-1 in patients with choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). *Invest Ophthalmol Vis Sci* 2016; 57: 4434.
secondary to age-related macular degeneration – full text view. ClinicalTrials.gov, NCT02358889, https://clinicaltrials.gov/ct2/show/NCT02358889?term=icon-1&phase=12&draw=2&rank=2 (accessed 9 October 2022).

64. Amerio P, Frezzolini A, Feliciani C, et al. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: therapeutic implications. Curr Drug Target-Inflammation Allergy 2005; 2: 81–94.

65. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 2009; 460: 225–230.

66. Alkahest I. Evaluate the therapeutic effects and safety of ALK4290 in patients with refractory wet age-related macular degeneration – full text view. ClinicalTrials.gov, NCT03558074, https://clinicaltrials.gov/ct2/show/NCT03558074?term=AKST4290&phase=12&draw=2&rank=5 (accessed 9 October 2022).

67. Alkahest I. A study to assess the efficacy and safety of AKST4290 with aflibercept in patients with newly diagnosed nAMD – full text view. ClinicalTrials.gov, NCT04331730, https://clinicaltrials.gov/ct2/show/NCT04331730?term=AKST4290&phase=12&draw=2&rank=4 (accessed 9 October 2022).

68. Glendenning A, Crews KM, Sturdivant JM, et al. Sustained release, biodegradable PEA implants for intravitreal delivery of the ROCK/PKC inhibitor AR-13503, https://iovs.arvojournals.org/article.aspx?articleid=2692993 (2018, accessed 21 October 2020).

69. Ding J, Crews K, Carbajal K, et al. Ocular tissue distribution and duration of release of AR-13503 following administration of AR-13503 sustained release intravitreal implant in rabbits and miniature swine. Invest Ophthalmol Vis Sci 2019; 60: 5387–5387.

70. Schroder K and Tschopp J. The inflamasomes. Cell 2010; 140: 821–832.

71. Danesh-Meyer HV, Zhang J, Acosta ML, et al. Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51: 41–68.

72. Kim Y, Griffin JM, Nor MNM, et al. Tonobersat prevents inflammatory damage in the central nervous system by blocking connexin43 hemichannels. Neurotherapeutics 2017; 14: 1148–1165.

73. InflammX. XiflamTM. InflammX Therapeutics, Inc, https://inflammx.com/xiflam (accessed 9 October 2022).

74. Kumar SR, Markusic DM, Biswas M, et al. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3: 16034.

75. Herzog RW, Cao O and Srivastava A. Two decades of clinical gene therapy – success is finally mounting. Discov Med 2010; 9: 105–111.

76. Shahryari A, Jazi MS, Mohammadi S, et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet 2019; 10: 868.

77. Bordet T and Behar-Cohen F. Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019; 24: 1685–1693.

78. Ammar MJ, Zhou EJ, Morgan JIW, et al. Safety of the subretinal delivery of RGX-314 AAV8-anti-VEGF fab gene therapy in NHP: retinal structure over one year. Invest Ophthalmol Vis Sci 2018; 59: 1422–1422.

79. Khanani AM. Suprachoroidal delivery of RGX-314 gene therapy for neovascular AMD: the phase II AAVIATETM study. Invest Ophthalmol Vis Sci 2022; 63: 1497–1497.

80. Kiss S, Grishanin R, Nguyen A, et al. Analysis of aflibercept expression in NHP’s following intravitreal administration of ADVM-022, a potential gene therapy for nAMD. Mol Ther – Methods Clin Dev 2020; 18: 345–353.

81. Grishanin R, Vuillemenot B, Sharma P, et al. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol Ther 2019; 27: 118–129.

82. Khanani AM, Kiss S, Turpcu A, et al. Phase 1 study of intravitreal gene therapy ADVM-022 for neovascular AMD (OPTIC Trial). Invest Ophthalmol Vis Sci 2020; 61: 1154–1154.

83. Sabbagh O, Ankur M and Maldonado RS. Gene therapy for neovascular AMD. Retin Spec 2020; 8; 5–9.

84. Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD – from hypothesis to clinical trials. Exp Eye Res 2019; 184: 266–277.

85. Jansen Research Development LLC. AAVCAGsCD59 for the treatment of wet AMD – full text view. ClinicalTrials.gov, NCT03585556, https://clinicaltrials.gov/ct2/show/NCT03585556?term=hmr59&phase=012&draw=2&rank=3 (accessed 9 October 2022).

86. Campochiaro PA, Laufer AK, Sohn EH, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther 2017; 28: 99–111.