Applications in CAR T-cell Therapy: Dissecting Cellular Composition Using Single Cell Multiomics

Tuesday, March 24th (US)
5:00pm EST, 2:00pm PST
Wednesday, March 25th (AU)
8:00am NSW

Free Webinar
Register Now

Sponsored by

Provided by

BD
CURRENT PROTOCOLS
WILEY
Heterogeneity of first-line palliative systemic treatment in synchronous metastatic esophagogastric cancer patients: A real-world evidence study

Willemieke P.M. Dijksterhuis1,2, Rob H.A. Verhoeven2,3, Marije Slingerland4, Nadia Haj Mohammad5, Judith de Vos-Geelen6, Laurens V. Beerepoot7, Theo van Voorthuizen8, Geert-Jan Creemers9, Martijn G.H. van Oijen1,2 and Hanneke W.M. van Laarhoven1

1Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
2Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
3Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
4Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
5Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
6Division of Medical Oncology, Department of Internal Medicine, GROW - School for Oncology and Developmental Biology, Maastricht UMC+, Maastricht, The Netherlands
7Department of Medical Oncology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
8Department of Medical Oncology, Rijnstate Hospital, Arnhem, The Netherlands
9Department of Medical Oncology, Catharina Hospital, Eindhoven, The Netherlands

The optimal first-line palliative systemic treatment strategy for metastatic esophagogastric cancer is not well defined. The aim of our study was to explore real-world use of first-line systemic treatment in esophagogastric cancer and assess the effect of treatment strategy on overall survival (OS), time to failure (TTF) of first-line treatment and toxicity. We selected synchronous metastatic esophagogastric cancer patients treated with systemic therapy (2010–2016) from the nationwide Netherlands Cancer Registry (n = 2,204). Systemic treatment strategies were divided into monotherapy, doublet and triplet chemotherapy, and trastuzumab-containing regimens. Data on OS were available for all patients, on TTF for patients diagnosed from 2010 to 2016.

Additional Supporting Information may be found in the online version of this article.

Key words: esophageal neoplasms, gastric neoplasms, drug therapy, palliative treatment

Abbreviations: 5-FU: 5-fluorouracil; CapOx: capecitabine/oxaliplatin; CI: confidence interval; CTCAE: Common Terminology Criteria for Adverse Events; ECC: epirubicin/cisplatin/capecitabine; EOX: epirubicin/oxaliplatin/capecitabine; FLOT: docetaxel/oxaliplatin/5-fluorouracil/leucovorin; FOLFOSX: 5-fluorouracil/oxaliplatin; HER2: human epidermal growth factor receptor 2; HR: hazard ratio; IQR: interquartile range; NCR: Netherlands Cancer Registry; NOS: not otherwise specified; OS: overall survival; TTF: time to failure

Conflict of interest: R.H.A.V. has received unrestricted research grants from BMS and Roche. N.H.M. has served as a consultant for BMS, Lilly and MSD. J.d.V. has received nonfinancial support from BTG and Servier, has served as a consultant for Shire and has received unrestricted research grants from Servier. M.G.H.v.O. has received unrestricted research grants from BMS, Merck Serono, Nordic, Roche and Servier. H.W.M.v.L. has served as a consultant for BMS, Celgene, Lilly and Nordic and has received unrestricted research funding from Bayer, BMS, Celgene, Lilly, Merck Serono, MSD, Nordic, Philips and Roche. The other authors have nothing to disclose.

Part of this study was presented at the ASCO Annual Meeting 2018, Chicago, United States of America; the European Gastric Cancer Congress 2018, Leiden, The Netherlands; and the Scientific Meeting of the European Network of Cancer Registries (ENCR), 2018, Copenhagen, Denmark.

[Correction added on August 31, 2019 after first online publication: reference list updated.]

Grant sponsor: Lilly Oncology

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1002/ijc.32580

History: Received 9 May 2019; Accepted 13 Jun 2019; Online 24 Jul 2019

Correspondence to: Hanneke W.M. van Laarhoven, MD, PhD, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, D3-221.1 1105 AZ Amsterdam, The Netherlands, Tel.: +31-20-5665955, Fax: +31-20-6919743, E-mail: h.vanlaarhoven@amsterdamumc.nl

Int. J. Cancer: 146, 1889–1901 (2020) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
Introduction
Palliative treatment represents an important part of esophagogastric cancer care, since approximately one-third of esophagogastric cancer patients have metastases at initial diagnoses, and curative treatment options are not available.1,2 Systemic therapy can improve both survival and quality of life in these patients.3–6

However, the optimal first-line palliative systemic therapy regimen for metastatic esophagogastric cancer patients has not yet been identified. Currently, first-line systemic treatment usually comprises a fluoropyrimidine and a platinum compound with the addition of trastuzumab in the case of human epidermal growth factor receptor 2 (HER2) overexpression, providing a survival benefit up to 9 months compared to no systemic treatment.7–11 Triplet therapy, in which either an anthracycline or taxane is added to the platinum-fluoropyrimidine doublet, is suggested in international guidelines for patients in good condition,8,10,12,13 but becomes increasingly controversial because of its toxicity.6,14,15 Because of the lack of consensus on optimal palliative systemic treatment, making choices about the best approach for these patients is challenging, which can result in interhospital and interphysician variation in individual systemic treatment. This could eventually affect survival and quality of life, and might be the explanation for stagnating survival rates, despite an increase in the administration of palliative systemic therapy from <10% to 40% of metastatic esophagogastric cancer patients between 1990 and 2011 in the Netherlands.1,2,16–18

Current practice is based on the results of several randomized controlled trials.5–6 Because of, for example, the under-representation of elderly and fragile patients in these trials, the actual patient population may not be adequately reflected. Therefore, more clarity about the administration and effects of palliative systemic therapy in daily clinical practice and evidence for the optimal therapeutic approach are needed. In this nationwide study, we aimed to explore first-line palliative systemic treatment in patients with metastatic esophagogastric cancer and the effect of treatment strategy on survival and toxicity in a real-world setting.

Materials and Methods
Data collection
Patients with an adenocarcinoma or squamous cell carcinoma of the esophagus, gastroesophageal junction or stomach (classified as C15 and C16 according to the third edition of the International Classification of Diseases for Oncology19) diagnosed with synchronous metastases (T1–4aN0–M1) and treated with systemic therapy were identified from the Netherlands Cancer Registry (NCR). The NCR is a population-based registry that covers the total Dutch population of more than 17 million people and is directly linked to the pathological archive that comprises all histologically confirmed cancer diagnoses. Data on vital status were obtained by annual linkage to the Dutch Personal Records Database.

All esophagogastric cancer patients with synchronous metastases (metastases diagnosed before or within the first 5 days of the first systemic treatment cycle) treated with systemic therapy were included when diagnosed in a subset of Dutch hospitals between 2010 and 2014, and all hospitals in 2015–2016 (Fig. 1). Due to capacity and financial constraints, we were able to collect additional data of approximately 50% of the patients diagnosed in 2010–2014. For this period, we selected 43 of all 80 hospitals as a representative sample of all
hospitals in terms of annual number of patients, type of hospital and location in the Netherlands, and included all patients diagnosed in these hospitals between 2010 and 2014. This sample can therefore be considered as adequately reflecting the nationwide patient population and hospitals (Supporting Information Table S1). Patient characteristics and data on treatment and follow-up were extracted from the hospital’s electronic health record system or medical records by specially trained data managers.

Exclusion

Patients with esophageal, gastroesophageal junction or cardia carcinoma and nonregional lymph node metastases in the head and neck region only (n = 153) were excluded because they could have been eligible for definitive chemoradiotherapy with potential curative intent in cases in which dissemination of metastases was limited to the supraclavicular lymph nodes (Fig. 1). Because the exact location of these head and neck lymph node metastases was unknown, we excluded all of these patients. Moreover, patients who received chemoradiotherapy, defined as chemotherapy with concurrent radiotherapy consisting of ≥23 fractions or a total radiation dose of ≥40 Gy, were excluded (n = 111). Patients who received first-line systemic treatment outside the Netherlands were excluded (n = 29) as were patients without follow-up data on vital status (n = 9), without information on type of administered systemic therapy regimen (n = 10) or who were included in a trial in which they possibly received a placebo (n = 9). Finally, six patients in whom the primary tumor was considered to be other than esophageogastric (n = 6) were excluded.

Systemic therapy

First-line systemic treatment was defined as the first systemic therapy (monotherapy or combination regimen) given until suspension, regardless of reason for discontinuation.
combination regimen was specified as all systemic agents starting within 3 days after the first chemotherapeutic agent started. However, if trastuzumab was added more than 3 days after the start but before the end date of the combination regimen, this was also considered first line (e.g., because of delay in determination of HER2 status). All assumptions regarding first-line treatment can be found in Supporting Information Table S2.

If the same regimen was restarted after a therapy break, regardless of the duration of this break, this was still considered first line. Continuation of first line was also assumed if one of the agents of the initially started regimen was discontinued and the other agent(s) continued (e.g., capecitabine monotherapy after capecitabine/oxaliplatin [CapOx]), as well as in the case of a switch of a single drug within the same drug group (e.g., 5-fluorouracil [5-FU]/oxaliplatin [FOLFOX] to CapOx). If systemic therapy was switched to a regimen containing an agent of a new drug group that was not administered in the first line (e.g., carboplatin/paclitaxel to CapOx) after progression or because of toxicity, or if an agent of a new drug group was added (e.g., oxaliplatin added to 5-FU), this was considered second-line treatment.

The systemic therapy strategy was classified into regimens with one, two or three therapeutic agents (monotherapy, doublet therapy and triplet therapy, respectively; all without targeted therapy), trastuzumab-containing regimens and (nontrastuzumab) targeted therapy-containing regimens. Subsequently, systemic therapy regimens were subdivided based on the number and type of agents, as described previously: monotherapy; fluoropyrimidine (F) doublets (with a platinum [but not cisplatin], taxane [T] or irinotecan [I]); cisplatin (C) doublets (with a fluoropyrimidine, taxane or etoposide); gemcitabine (G) doublets (with a platinum/cisplatin); platinum (P; but not cisplatin)/taxane doublets; anthracycline (A) triplets (with a fluoropyrimidine and platinum/cisplatin); taxane triplets (with a fluoropyrimidine and platinum/cisplatin); trastuzumab-containing regimens; and (nontrastuzumab) targeted therapy-containing regimens (Supporting Information Fig. S2).

Toxicity
grade 3–5 systemic treatment toxicity according to the Common Terminology Criteria for Adverse Events (CTCAE, version 4.0321) was registered in patients diagnosed between 2010 and 2014. If toxicity was registered but the grade was missing and the patient was not deceased, we considered toxicity as grade 3–4, because grades 1 and 2 were not registered in the NCR.

Overall survival and time to failure of first-line treatment
Overall survival (OS) was assessed from start of treatment until death or end of follow-up. Information on vital status was updated until February 1, 2019. Time to failure (TTF) of first-line treatment was available only in patients with complete follow-up (i.e., patients diagnosed between 2010 and 2015). TTF was used as a proxy for progression-free survival and calculated from the start of treatment to the first progression that resulted in termination of the regimen or end of follow-up. All assumptions regarding TTF are included in Supporting Information Table S1.

Statistical analysis
Patient and tumor characteristics are displayed with counts and percentages, or medians and interquartile ranges (IQRs). Differences between groups were analyzed using chi-square tests and Fisher’s exact tests where appropriate. Kaplan–Meier curves for OS and TTF were compared using the log-rank test. Multivariable Cox regression analyses were used to identify independently associated treatment strategies with OS and TTF, with adjustment of age, sex, performance status, number of comorbidities, year of diagnosis, tumor location, histology and metastases locations. Values of $p < 0.05$ were considered statistically significant. Analyses were performed using SAS software (version 9.4, SAS Institute, Cary, NC).

Data availability
The data that support the findings of our study are available from the Netherlands Cancer Registry. Restrictions apply to the availability of these data, which were used under license for our study.

Results
Patient characteristics
We included 2,204 patients (Fig. 1), of whom most were male (76%), with a median age of 64 (IQR, 57, 70) years (Table 1). Most patients had a World Health Organisation performance status of 0–1 (55%). Adenocarcinoma was present in 93% of the patients, squamous cell carcinoma in 6% and carcinoma not otherwise specified (NOS) in 1%. Nearly half of the primary tumors were located in the esophagus (46%), followed by noncardia stomach (35%) and gastroesophageal junction or cardia (19%). Most patients had one metastasis location at diagnosis (53%).

First-line systemic treatment regimens and strategies
A total of 45 different first-line systemic therapy regimens were administered (Supporting Information Fig. S1). The most commonly administered regimen was CapOx (21%), followed by epirubicin, oxaliplatin and capecitabine (EOX; 20%), carboplatin and paclitaxel (13%), epirubicin, cisplatin and capecitabine (ECC; 10%) and capecitabine monotherapy (9%; Supporting Information Table S3). Most patients received doublet chemotherapy (45%), followed by triplet chemotherapy (34%), monotherapy (10%), trastuzumab-containing regimens (10%) and nontrastuzumab targeted therapy-containing regimens (1%). The latter group was not displayed as a subgroup in Table 1, and not included in the Kaplan–Meier curves because of the limited number of patients.
Table 1 Baseline characteristics of all patients subdivided per systemic treatment strategy

Characteristics	All patients (n = 2,204)	Monotherapy (n = 228)	Doublet (n = 980)	Triplet (n = 758)	Trastuzumab-containing regimen (n = 215)
Male, n (%)	1,670 (75.8%)	158 (69.3%)	757 (77.2%)	564 (74.4%)	171 (79.5%)
Age, years, median (IQR)	64 (57, 70)	71 (65, 76)	64 (57, 70)	62 (53, 68)	63 (55, 69)
<60	741 (33.6%)	32 (14.0%)	306 (31.2%)	311 (41.0%)	81 (37.7%)
60–69	856 (38.8%)	68 (29.8%)	404 (41.2%)	292 (38.5%)	84 (39.1%)
70–79	566 (25.7%)	110 (48.2%)	251 (25.6%)	152 (20.1%)	49 (22.8%)
≥80	41 (1.9%)	18 (7.9%)	19 (1.9%)	3 (0.4%)	1 (0.5%)
BMI, kg/m², median (IQR)	24.7 (22.5, 27.7)	24.2 (21.4, 27.1)	25.0 (22.5, 27.8)	24.8 (22.6, 27.7)	24.4 (22.3, 27.7)
<18.5 (underweight)	57 (2.6%)	8 (3.5%)	26 (2.7%)	20 (2.6%)	3 (1.4%)
18.5–25 (normal weight)	829 (37.6%)	107 (46.9%)	325 (33.2%)	311 (41.0%)	78 (36.3%)
>25 (overweight)	779 (35.3%)	73 (32.0%)	337 (34.4%)	299 (39.4%)	59 (27.4%)
Unknown	539 (24.5%)	40 (17.5%)	292 (29.8%)	128 (16.9%)	75 (34.9%)
Performance status, n (%)					
0 or 1	1,220 (55.4%)	104 (45.6%)	549 (56.0%)	406 (53.6%)	143 (66.5%)
≥2	152 (6.9%)	33 (14.5%)	75 (7.7%)	33 (4.4%)	10 (4.7%)
Unknown	832 (37.7%)	91 (39.9%)	356 (36.3%)	319 (42.1%)	62 (28.8%)
Comorbidities, n (%)					
0	804 (36.5%)	61 (26.8%)	346 (35.3%)	311 (41.0%)	77 (35.8%)
1	621 (28.2%)	69 (30.3%)	271 (27.7%)	214 (28.2%)	63 (29.3%)
≥2	702 (31.9%)	94 (41.2%)	326 (33.3%)	207 (27.3%)	65 (30.2%)
Unknown	77 (3.5%)	4 (1.8%)	37 (3.8%)	26 (3.4%)	10 (4.7%)
Tumor location, n (%)					
Esophagus	1,014 (46.0%)	66 (28.9%)	579 (59.1%)	241 (31.8%)	116 (54.0%)
Gastroesophageal junction or cardia	410 (18.6%)	47 (20.6%)	148 (15.1%)	169 (22.3%)	41 (19.1%)
Stomach	780 (35.4%)	115 (50.4%)	253 (25.8%)	348 (45.9%)	58 (27.0%)
Histology, n (%)					
Adenocarcinoma	2,056 (93.3%)	221 (96.9%)	858 (87.6%)	739 (97.5%)	215 (100.0%)
Squamous cell carcinoma	128 (5.8%)	6 (2.6%)	107 (10.9%)	15 (2.0%)	0
Carcinoma NOS	20 (0.9%)	1 (0.4%)	15 (1.5%)	4 (0.5%)	0
cT stage, n (%)					
cT1–cT3	1,200 (54.4%)	111 (48.7%)	543 (55.4%)	388 (51.2%)	138 (64.2%)
cT4	206 (9.3%)	26 (11.4%)	79 (8.1%)	88 (11.6%)	12 (5.6%)
cTx	798 (36.3%)	91 (39.9%)	358 (36.5%)	282 (37.2%)	65 (30.2%)
cN stage, n (%)					
cN0	342 (15.5%)	45 (19.7%)	145 (14.8%)	128 (16.9%)	21 (9.8%)
cN1–cN2	1,474 (66.9%)	141 (61.8%)	659 (67.2%)	500 (66.0%)	160 (74.4%)
cN3	192 (8.7%)	14 (6.1%)	102 (10.4%)	53 (7.0%)	20 (9.3%)
cNx	196 (8.9%)	28 (12.3%)	74 (7.6%)	77 (10.2%)	14 (6.5%)
Histologic grade, n (%)					
Well differentiated	34 (1.5%)	2 (0.9%)	19 (1.9%)	7 (0.9%)	6 (2.8%)
Moderately differentiated	400 (18.1%)	29 (12.7%)	179 (18.3%)	127 (16.8%)	61 (28.4%)
Poorly differentiated	928 (42.1%)	86 (37.7%)	410 (41.8%)	352 (46.4%)	68 (31.6%)
Unknown	842 (38.2%)	111 (48.7%)	372 (38.0%)	272 (35.9%)	80 (37.2%)
Metastatic sites, n (%)					
1	1,172 (53.2%)	131 (57.5%)	517 (52.8%)	423 (55.8%)	94 (43.7%)
≥2	1,032 (46.8%)	97 (42.5%)	463 (47.2%)	335 (44.2%)	121 (56.3%)

(Continues)
Overall survival of synchronous metastatic esophagogastric cancer patients. Kaplan–Meier curves displaying overall survival in patients treated with one, two or three chemotherapeutic agents (monotherapy, doublet and triplet, respectively) and in patients treated with a trastuzumab-containing regimen, diagnosed between 2010 and 2016 (n = 1,981). Survival curve of patients treated with a regimen containing (nontrastuzumab) targeted therapy (n = 23) is not displayed.
analyses (Figs. 2 and 3; Table 2a). The OS and TTF of patients treated with doublet therapy did not differ from patients treated with triplets after adjustment for confounding (OS: adjusted hazard ratio [HR] 0.92, 95% confidence interval [CI] 0.83–1.02; TTF: HR 0.92, 95% CI 0.82–1.04).

Neither cisplatin, gemcitabine or platinum–taxane doublets nor anthracycline triplets showed survival benefit over fluoropyrimidine doublets in multivariable analyses (Table 2b). OS and TTF of taxane triplets were significantly better than in fluoropyrimidine doublets (HR 0.63, 95% CI 0.46–0.86; HR 0.67, 95% CI 0.45–1.00). Both trastuzumab- and targeted therapy-containing regimens showed significantly better OS and TTF than fluoropyrimidine doublets as well.

Of note, if we performed a predictive model and added only additional variables with \(p < 0.1 \) on univariable analysis, this did not influence statistically significance of the hazard ratios of systemic therapy strategies or regimens in the multivariable models.

Toxicity

Of 1,221 patients diagnosed in 2010–2014, systemic treatment toxicity grade 3–5 was reported in 27% (Table 3). Trastuzumab-containing regimens induced the highest complication rate (45%), followed by triplets (33%), doublets (21%) and monotherapy (17%). The complication rate differed significantly between the four subgroups (\(p < 0.001 \)).

Of 486 reported adverse events, the most common causes were gastrointestinal complications (43%), followed by blood and lymphatic system disorders, including infections (21%), general disorders (fatigue, pain) and administration site conditions (7%), cardiovascular (6%) and metabolism and nutrition disorders (5%).

Eighteen patients died due to complications of systemic therapy, of whom 7 were treated with a triplet, 5 with a doublet, 2 with monotherapy and 3 with a trastuzumab-containing regimen. Causes of death were blood and lymphatic system (\(n = 7 \)), cardiovascular (\(n = 6 \)) and gastrointestinal (\(n = 5 \)) disorders.

Discussion

In this nationwide cohort of 2,204 synchronous metastatic esophagogastric cancer patients, we found a strikingly wide variation of 45 different systemic therapy regimens that were administered between 2010 and 2016. This heterogeneity in treatment is undesirable, especially in case of unconventional
Systemic treatment strategy	Patients No.	Median OS (months)	Univariable analyses	Multivariable analyses	Time to failure of first-line treatment (n = 1,700)
Monotherapy	228	4.1	1.71 1.48–1.98 <0.001	1.67 1.43–1.96 <0.001	205 205 1.51 1.29–1.77 <0.001 1.65 1.39–1.96 <0.001
Doublet	980	7.4	Ref	Ref	683 683 Ref Ref 683 683 Ref Ref
Triplet	758	7.7	0.94 0.85–1.03 0.188	0.92 0.83–1.02 0.110	666 666 0.89 0.79–0.99 0.027 0.92 0.82–1.04 0.179
Trastuzumab-containing regimen	215	11.2	0.62 0.53–0.72 <0.001	0.63 0.54–0.74 <0.001	126 126 0.62 0.51–0.76 <0.001 0.62 0.51–0.76 <0.001
Targeted therapy-containing regimen (nontrastuzumab)	23	11.9	0.73 0.48–1.11 0.142	0.67 0.44–1.03 0.068	20 20 0.54 0.35–0.86 0.009 0.53 0.33–0.83 0.006
Age, years					
<60	741	7.8	Ref	Ref	581 581 Ref Ref 581 581 Ref Ref
60–69	856	7.5	1.03 0.93–1.14 0.542	1.01 0.91–1.12 0.901	669 669 0.99 0.89–1.11 0.904 0.95 0.85–1.07 0.432
70–79	566	7.0	1.06 0.95–1.19 0.280	1.01 0.89–1.14 0.893	417 417 1.00 0.88–1.13 0.937 0.92 0.80–1.06 0.227
≥80	41	6.5	1.26 0.92–1.74 0.153	1.03 0.74–1.43 0.873	33 33 1.19 0.84–1.69 0.330 0.94 0.65–1.35 0.721
Sex					
Male	1,670	7.5	Ref	Ref	1,290 1,290 Ref Ref 1,290 1,290 Ref Ref
Female	534	7.5	1.02 0.93–1.13 0.645	0.92 0.83–1.03 0.135	410 410 1.01 0.90–1.13 0.909 0.93 0.83–1.05 0.251
Performance status					
0 or 1	1,220	8.3	Ref	Ref	902 902 Ref Ref 902 902 Ref Ref
≥2	152	4.7	1.73 1.46–2.06 <0.001	1.61 1.36–1.92 <0.001	114 114 1.53 1.26–1.87 <0.001 1.39 1.14–1.70 0.001
Unknown	832	6.8	1.20 1.09–1.31 <0.001	1.16 1.06–1.27 0.002	684 684 1.14 1.10–1.26 0.011 1.14 1.02–1.26 0.016
Comorbidities					
0	805	7.6	Ref	Ref	652 652 Ref Ref 652 652 Ref Ref
1	621	7.0	0.94 0.84–1.04 0.233	0.94 0.84–1.05 0.272	475 475 0.95 0.85–1.08 0.442 0.97 0.85–1.10 0.600
≥2	702	7.6	1.00 0.90–1.11 0.975	0.96 0.86–1.07 0.460	538 538 0.97 0.87–1.09 0.654 0.95 0.84–1.07 0.414
Unknown	76	10.5	0.69 0.54–0.88 0.003	0.70 0.54–0.89 0.004	35 35 0.77 0.55–1.09 0.140 0.74 0.52–1.05 0.088
Tumor location					
Esophagus	1,014	7.8	Ref	Ref	772 772 Ref Ref 772 772 Ref Ref
Gastroesophageal junction or cardia	410	7.6	0.95 0.85–1.07 0.395	0.95 0.84–1.08 0.417	316 316 0.90 0.79–1.03 0.131 0.92 0.80–1.06 0.268
Stomach	780	6.9	1.08 0.98–1.18 0.132	1.02 0.91–1.15 0.698	612 612 0.98 0.88–1.09 0.691 0.98 0.85–1.12 0.729
Histology					
Adenocarcinoma	2,056	7.6	Ref	Ref	1,580 1,580 Ref Ref 1,580 1,580 Ref Ref
Squamous cell carcinoma	128	6.5	1.24 1.03–1.48 0.021	1.22 1.01–1.48 0.040	104 104 1.40 1.15–1.71 0.001 1.13 1.08–1.67 0.008
Carcinoma NOS	20	4.6	1.54 0.99–2.40 0.054	1.44 0.92–2.25 0.112	16 16 1.27 0.77–2.07 0.347 1.03 0.73–2.00 0.452

(Continues)
Overall survival (n = 2,204)	Time to failure of first-line treatment (n = 1,700)							
	Patients	Median OS (months)	Univariable analyses	Multivariable analyses	Patients	Median TTF (months)	Univariable analyses	Multivariable analyses
	No.		HR	95% CI	p value	HR	95% CI	p value
Liver metastasis	1,169	7.4	0.98	0.90–1.07	0.628	1.17	1.06–1.29	0.002
Distant lymph node	890	7.2	1.06	0.97–1.15	0.226	1.17	1.07–1.29	0.001
Peritoneal metastasis	524	6.9	1.22	1.11–1.35	<0.001	1.42	1.25–1.61	<0.001
Lung metastasis	430	7.0	1.09	0.98–1.21	0.122	1.16	1.04–1.29	0.010
Other metastases locations	499	6.6	1.25	1.13–1.39	<0.001	1.35	1.22–1.50	<0.001
Year of diagnosis			0.95	0.93–0.97	<0.001	0.97	0.95–0.99	0.009

Cox regression analyses in patients diagnosed between 2010 and 2016 for overall survival and patients between 2010 and 2015 for time to failure of first-line treatment. Both univariable and multivariable analyses are displayed for first-line systemic therapy subdivided in strategies (Table 2a) as well as regimens (Table 2b). Hazard ratios were adjusted for age, sex, performance status, number of comorbidities, tumor location, histology, metastases locations and year of diagnosis. Systemic treatment strategies were divided in chemotherapy regimens (monotherapy, doublet and triplet); trastuzumab-containing regimens and nontrastuzumab targeted therapy-containing regimens. Systemic treatment regimens were divided as follows: monotherapy; fluoropyrimidine doublets (with a platinum [but not cisplatin], taxane or irinotecan); cisplatin doublets (with a fluoropyrimidine, taxane or etoposide); gemcitabine doublets (with a platinum/cisplatin); platinum (but not cisplatin)/taxane doublets; anthracycline triplets (with a fluoropyrimidine and platinum/cisplatin); taxane triplets (with a fluoropyrimidine and platinum/cisplatin); trastuzumab-containing regimens; and (nontrastuzumab) targeted therapy-containing regimens. Abbreviations: A, anthracycline; C, cisplatin; CI, confidence interval; E, etoposide; F, fluoropyrimidine (capecitabine or 5-FU); G, gemcitabine; HR, hazard ratio; I, irinotecan; NOS, not otherwise specified; OS, overall survival; P, platinum compound (oxaliplatin or carboplatin); T, taxane; TTF, time to failure.

Table 2a. (Continued)

Cancer Therapy and Prevention

© 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
Cox regression analyses for overall survival and time to failure of first-line treatment per systemic treatment regimen

Overall survival (n = 2,204)	Univariable analyses	Multivariable analyses	Time to failure of first-line treatment (n = 1,700)	Univariable analyses	Multivariable analyses			
Patients No.	**Median OS (months)**	**HR 95% CI p value**	**Median TTF (months)**	**HR 95% CI p value**	**HR 95% CI p value**			
Systemic therapy regimen								
Monotherapy	228	4.1	1.72 1.47–2.00 <0.001	1.68 1.42–1.98 <0.001	205	2.5	1.51 1.27–1.79 <0.001	1.63 1.35–1.96 <0.001
F-doublet (FP, FT, FI)	611	7.3	Ref Ref	369	4.4	Ref Ref		
C-doublet (CF, CT, CE)	26	6.7	0.97 0.65–1.47 0.901	369	4.4	Ref Ref		
G-doublet (GP, GC)	50	4.7	1.84 1.38–2.45 <0.001	46	3.0	1.71 1.26–2.33 <0.001	1.65 1.20–2.27 0.002	
PT-doublet	293	8.2	0.93 0.81–1.08 0.342	248	5.5	0.91 0.78–1.07 0.272	0.86 0.72–1.03 0.093	
A-triplet (ACF, AFOx)	708	7.4	0.97 0.87–1.09 0.620	638	4.8	0.89 0.78–1.02 0.805	0.91 0.80–1.05 0.197	
T-triplet (TCF, FOxT)	50	11.8	1.38 0.84–2.26 <0.001	28	6.0	0.67 0.45–0.99 0.047	0.67 0.45–1.00 0.047	
Trastuzumab-containing regimen	215	11.2	0.62 0.53–0.73 <0.001	126	6.7	0.62 0.50–0.76 <0.001	0.60 0.49–0.75 <0.001	
Targeted therapy-containing regimen (nontrastuzumab)	23	11.9	0.73 0.48–1.12 0.145	20	9.2	0.54 0.34–0.86 0.009	0.51 0.32–0.81 0.005	
Age, years								
<60	741	7.8	Ref Ref	581	4.8	Ref Ref		
60–69	856	7.5	1.03 0.93–1.14 0.542	669	4.6	0.99 0.89–1.11 0.904	0.96 0.86–1.09 0.551	
70–79	566	7.0	1.06 0.95–1.19 0.280	417	4.3	1.00 0.88–1.13 0.937	0.92 0.80–1.06 0.236	
≥80	41	6.5	1.26 0.92–1.74 0.153	33	4.1	1.19 0.84–1.69 0.330	0.92 0.64–1.32 0.664	
Sex								
Male	1,670	7.5	Ref Ref	1,290	4.6	Ref Ref		
Female	534	7.5	1.02 0.93–1.13 0.645	410	4.6	1.01 0.90–1.13 0.909	0.93 0.83–1.05 0.270	
Performance status								
0 or 1	1,220	8.3	Ref Ref	902	4.8	Ref Ref		
≥2	152	4.7	1.73 1.46–2.06 <0.001	114	2.9	1.53 1.26–1.87 <0.001	1.37 1.12–1.68 0.002	
Unknown	832	6.8	1.20 1.09–1.31 <0.001	684	4.3	1.14 1.03–1.26 0.011	1.15 1.04–1.28 0.010	
Comorbidities								
0	805	7.6	Ref Ref	652	4.8	Ref Ref		
1	621	7.0	0.94 0.84–1.04 0.233	475	4.1	0.95 0.85–1.08 0.442	0.96 0.85–1.09 0.542	
≥2	702	7.6	1.00 0.90–1.11 0.975	538	4.7	0.97 0.87–1.09 0.654	0.95 0.84–1.07 0.371	
Unknown	76	10.5	0.69 0.54–0.88 0.003	35	6.2	0.77 0.55–1.09 0.140	0.74 0.52–1.05 0.091	
Tumor location								
Esophagus	1,014	7.8	Ref Ref	772	4.6	Ref Ref		
Gastroesophageal junction or cardia	410	7.6	0.95 0.85–1.07 0.395	316	5.0	0.90 0.79–1.03 0.131	0.90 0.78–1.04 0.158	
A relatively high rate of grade 3–5 toxicity (45%) was seen in patients who received trastuzumab-containing regimens. In the ToGA trial, trastuzumab did not induce more toxicity compared to chemotherapy only.11 We did not observe the expected increase in cardiovascular toxicity due to trastuzumab. Possibly, the cytotoxic backbone induced the toxicity, since a toxicity rate of 56% was observed in patients who received a triplet backbone, compared to 43% with a doublet backbone. Moreover, lower toxicity rates were found in doublet backbones containing oxaliplatin (33%) compared to cisplatin-containing doublet backbones (48%), which confirms previously described findings.32

Population-based data represent a wide variation of patients, including frail patients and patients with comorbidity who are usually not included in conventional clinical trials. Real-world evidence, if well analyzed and interpreted, is therefore highly potent in efficiently adding information about systemic treatment, alongside the results of these trials.33

We are aware that our study has possible limitations. Although the data have been checked and improved regularly, there could still have been some errors due to misinterpretations by data managers or inadequate reporting by physicians. Because of incomplete medical records, some variables were missing, which may have impaired adjustment for possible confounding. Furthermore, patients with solely head and neck lymph node metastases were excluded, because treatment could have consisted of definitive chemoradiotherapy with curative intent in the case of only positive supravacuicular lymph nodes, as well as patients who had long-term radiotherapy alongside systemic treatment, since radiotherapy could affect survival rates.20,34 Nevertheless, the vast majority of the metastatic esophagogastric cancer patient population who received systemic treatment is represented.

Our population-level findings support doublet chemotherapy as the preferred first-line treatment strategy in terms of survival rates and toxicity. A trastuzumab-containing regimen should be considered in patients with HER2 overexpression. Future studies comparing first-line palliative (doublet) treatment strategies, such as the LyRICX study (NCT03764553), should also focus on quality of life, since this is an important outcome in these patients. Moreover, possible predictive and prognostic characteristics that influence treatment outcomes should be taken into account to improve patient selection and personalize treatment strategies.35

In conclusion, in this nationwide study including real-world evidence in first-line systemic treatment of patients with synchronous metastatic esophagogastric cancer, doublet chemotherapy was associated with equal survival rates compared to triplet chemotherapy with a better toxicity profile. Patients treated with a trastuzumab-containing regimen had the best survival. A remarkable heterogeneity of 45 different systemic therapy regimens was observed, which is

Table 2b. (Continued)
Overall survival (n = 2,204)
Median
No.
Stomach
Histology

Dijksterhuis et al. 1899 Int. J. Cancer: 146, 1889–1901 (2020) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
undesirable since it may negatively affect outcomes in these patients.

Acknowledgements

Our study was financially supported by an unrestricted research grant from Lilly Oncology. The authors thank the registration team of the Netherlands Comprehensive Cancer Organisation (IKNL) for the collection of data for the Netherlands Cancer Registry.

References

1. Haj Mohammad N, Bernards N, van Putten M, et al. Volume-outcome relation in palliative systemic treatment of metastatic oesophagogastric cancer. *Eur J Cancer* 2017;78:28–36.
2. van Putten M, de Vos-Geelen J, Nieuwenhuijzen GAP, et al. Long-term survival improvement in oesophageal cancer in The Netherlands. *Eur J Cancer* 2018;4:138–47.
3. Al-Batran SE, Ajani JA. Impact of chemotherapy on quality of life in patients with metastatic esophagogastric cancer. *Cancer* 2010;116:2511–8.
4. Jammaat VT, Steyerberg EW, van der Gaast A, et al. Palliative chemotherapy and targeted therapies for esophageal and gastroesophageal junction cancer. *Cochrane Database Syst Rev* 2017;11:CD004063.
5. Wagner AD, Syn NL, Moehler M, et al. Chemotherapy for advanced gastric cancer. *Cochrane Database Syst Rev* 2017;3:CD004064.
6. Ter Veer E, Mohammad NH, Van Valkenhoef G, et al. The efficacy and safety of first-line chemotherapy in advanced Esophagogastric cancer: a network meta-analysis. *J Natl Cancer Inst* 2016;108:1–13.
7. Cunningham D, Starling N, Rao S, et al. Capecitabine and Oxaliplatin for advanced Esophageal gastric cancer. *N Engl J Med* 2008;358:36–46.
8. Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016;27:v50–7.
9. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. *Lancet* 2010;376:687–97.
10. Lordick F, Mariette C, Haustermans K, et al. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016;27:v50–7.
11. Lordick F, Mariette C, Haustermans K, et al. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016;27:v50–7.
12. Assouline PM, Versteijne E, van Berge Henegouwen MI, et al. Supraclavicular node dissection in oesophageal cancer: a systematic literature review and meta-analysis. *Cancer Metastasis Rev* 2015;34:429–41.
13. Nelen SD, van Putten M, Lemmens VEPS, et al. Effect of age on rates of palliative surgery and chemotherapy use in patients with locally advanced or metastatic gastric cancer. *Br J Surg* 2017;104:1837–46.
14. van Putten M, de Vos-Geelen J, Nieuwenhuijzen GAP, et al. Long-term survival improvement in oesophageal cancer in The Netherlands. *Eur J Cancer* 2018;4:138–47.
15. Haj Mohammad N, ter Veer E, Ngai L, et al. Optimal first-line chemotherapeutic treatment in patients with locally advanced or metastatic esophagogastric carcinoma: triplet versus doublet chemotherapy: a systematic literature review and meta-analysis. *Cancer Metastasis Rev* 2015;34:429–41.
16. Happ C, Verheij M, Allum W, et al. Palliative systemic treatment in esophagogastric cancer.
26. van Putten M, Nelen SD, Lemmens VEPP, et al. Overall survival before and after centralization of gastric cancer surgery in The Netherlands. Br J Surg 2018;105:1807–15.
27. Yun J, Lee J, Park SH, et al. A randomised phase II study of combination chemotherapy with epirubicin, cisplatin and capecitabine (ECX) or cisplatin and capecitabine (CX) in advanced gastric cancer. Eur J Cancer 2010;46:885–91.
28. Kim TW, Choi SJ, Ahn JH, et al. A prospective randomized phase III trial of 5-fluorouracil and cisplatin (FP) versus epirubicin, cisplatin, and 5-fluorouracil, cisplatin, and 4′-epirubicin (FPEPIR). Anticancer Res 1992;12:1983–8.
29. Al-Batran SE, Homann N, Pauligk C, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019;393:1948–57.
30. Al-Batran SE, Goetze TO, Mueller DW, et al. The RENAISSANCE (AIO-FLOT5) trial: effect of chemotherapy alone vs. chemotherapy followed by surgical resection on survival and quality of life in patients with limited-metastatic adenocarcinoma of the stomach or oesophagogastric junction - a phase III trial of the German AIO/CAO-V/CAOGI. BMC Cancer 2017;17:1–7.
31. ter Veer E, van Kleef JJ, Scholker S, et al. Prognostic and predictive factors for overall survival in metastatic oesophagogastric cancer: a systematic review and meta-analysis. Eur J Cancer 2018;103:214–26.