Monitoring of Forest Land Use/Cover Change in Cat Tien National Park, Dong Nai Province, Vietnam Using Remote Sensing and GIS techniques

V F Kovyazin1*, A Yu Romanchikov1, Dang Thi Lan Anh1,2, Dang Viet Hung2
1Department of Engineering Geodesy, Saint-Petersburg Mining University, 2, 21 line of Vasilyevsky Island., St. Petersburg 199106, Russian Federation
2Department of Forest Plant, Vietnam National University of Forestry, Tran Phu street, 54, Trang Bom town, Trang Bom District, Dong Nai Province, Vietnam
*Corresponding email: vfkedr@mail.ru

Abstract. The Cat Tien National Park in the south of Vietnam represents a protected ecological area. It is located in tropical rainforest zone. For monitoring purposes of forest land use/cover change of the park satellite images (Landsat 5, Landsat 7 and Sentinel-2A) taken in 1988, 2003 and 2019 were used. NDVI was used for the estimation of vegetation quality. Forest land use/cover were classified by 5 categories using maximum likelihood classifier algorithm in ENVI 5.3. After classification, differentiation of forest land use/cover was analyzed on every image. Deforestation took place in 1988-2003 periods and broad-leaved forest areas have undergone reduction. Currently, new policies were introduced to reduce deforestation and therefore support free growth of tropical forest areas.

1. Introduction
The object of this investigation commonly known as Nam Cat Tien was founded in 1978 for the purpose of nature landscape reservation. In 1992 national park was reorganized to Cat Tien National Park. Since 2011 it became biosphere reservation as part of the UNESCO program. The area is located between 10°20'50" – 11°32'13" N and 107°11'13" – 107°28'20" E and has an area of about 41052.91 ha (figure 1).
Figure 1. Cat Tien National Park location.

The forest ecosystem of the Cat Tien National Park is virgin tropical rainforest. Satellite image data and forest inventory in 1992 showed that forestlands in the national park are under human impact because of urban population growth in Dong Nai province.

2. Materials and Methods

2.1. Materials

The materials for the research were satellite images and forest inventory maps (table 1). All satellite images were taken in dry season of 1988, 2003 and 2019 with cloud cover less than 10%. Source of images is https://earthexplorer.usgs.gov/ [1, 2].

Table 1. Details of satellite images used.

Entity ID	Data parameters	Date	Collected by
LT51240521988007BKT00	Landsat-5 Spatial resolution 30 m	07.01.1988	U.S. Geological Survey
LE71240522003072BKT01	Landsat-7 Spatial resolution 30 m	13.03.2003	U.S. Geological Survey
L2A_T48PYT_A019234_201 90227T031435	Sentinel-2A Spatial resolution 10 m	27.02.2019	European Space Agency
T48PYT_20190227T030651	Spatial data grouped in different layers Scale 1:20 000	Year 2015	Cat Tien National Park administration

2.2. The research methodology

The research methodology included different stages.

Image preprocessing – correction and improving of satellite images. Radiometric calibration of Landsat-5 and Landsat-7 data was made in ArcGis 10.5. SNAP software with Sen2Cor algorithm was used for atmospheric correction of Sentinel-2A data [3].

Forest lands use/cover classification was provided by supervised maximum likelihood classifier, which proposes normal distribution of vegetation imaging and calculates probability of single pixel affiliation to certain vegetation class [4, 5]. We used ENVI 5.3 for this classification algorithm.
Classification of forest lands use/cover using elements of satellite image interpretation were proposed in this study. Table 2 shows the elements of satellite image interpretation.

Table 2. Elements of satellite image interpretation.

Forest land use/cover category	Forest land use/cover category
Broad-leaved forest	Mixed forest
Land without vegetation cover	Meadows and shrubs
Wetlands	

Classification accuracy assessment was provided using satellite images. We compared classified images with data from other sources such as Google Earth images and forest inventory maps made in 2015. Confusion matrices are tables containing comparison of created map with control values [6]. Four accuracy assessment results were collected: user accuracy; producer accuracy; overall accuracy and Kappa index.

User accuracy is total amount of correct pixels in category divided by number of pixels classified in this category. Result is commission error. Producer accuracy is index showing quality of defined vegetation area classification. Kappa index measures the agreement between classification (X) and control values (Y).

We used formula below for Kappa index calculation [7]:

$$\text{Kappa} = \frac{P_0 - P_e}{1 - P_e},$$

where, P_0 - relative observed agreement among raters; P_e - hypothetical probability of chance agreement.

Kappa value $= 1$ means complete agreement and kappa $= 0$ means no agreement between classification results and control data values. We used Confusion Matrix tool in ENVI 5.3 for this accuracy assessment.

Vegetation change detection – The forest land use/cover cover most of the Cat Tien National Park area and therefore NDVI was used for vegetation change detection with formula below [8]:

$$\text{NDVI} = \frac{\text{NIR} - \text{RED}}{\text{NIR} + \text{RED}},$$

where, NIR – near infrared band value for a cell; RED – red band value for the cell.

NDVI value ranges from -1 to $+1$ [9]. Positive NDVI values are specific for vegetation [10, 11]. They increase with growth of plant biomass [12, 13]. We used next sensor bands for NDVI calculation: B3 (RED), B4 (NIR) [14] for Landsat images and B4 (RED), B8 (NIR) [15] for Sentinel images. We classified vegetation for 1988-2019 period and divided it for 3 categories: low vegetation density ($0<\text{NDVI}<0.2$), middle vegetation density ($0.2<\text{NDVI}<0.5$), high vegetation density ($\text{NDVI}>0.5$) [16, 17].

For the purpose of **forest lands use/cover change detection** we have statistics of its area in 1988-2019 period. Based on the three new maps we created in 1988, 2003 and 2019, Arcgis 10.5 was used to portray the dynamics of forest land use/cover change [18, 19] that have taken place in Cat Tien National Park for 31 years. These maps show dynamics of forest lands use/cover for 31 years by categories.

All remote sensing data analysis process is shown on figure 2.
Based on the results of the survey of Landsat-TM images, maps of forest land use/cover of Cat Tien National Park in 1988, 2003 and 2019 were developed (figure 3).

The accuracy assessment of image classification of different time periods (1988, 2003, 2019) are given in table 3.
Table 3. The results for the accuracy assessment of satellite image classification.

Forest land use/cover categories	Year 1988	User’s accuracy	Producer’s accuracy	Year 2003	User’s accuracy	Producer’s accuracy	Year 2019	User’s accuracy	Producer’s accuracy
Broad-leaved forest	94.00	90.38		96.08	94.23		96.08	98.00	
Mixed forest	80.36	88.24		88.46	86.79		90.74	92.45	
Meadows and shrubs	79.63	86.00		85.19	90.20		90.38	90.38	
Land without vegetation cover	86.00	84.31		88.68	90.38		94.64	91.38	
Wetlands	97.67	87.50		97.96	94.12		92.59	92.59	
Overall accuracy, %	86.96			91.12			92.88		
Kappa index	0.84			0.89			0.91		

In the table 3 shows that the accuracy of user, producer and overall is quite good, Kappa index indices greater than 0.84 indicate that the classification results have reached a level of significant consistency.

Maps of NDVI index for 1988, 2003 and 2019 show vegetation dynamics over a given period (figure 4). Vegetation inventory on NDVI index maps are shown in figure 5.

![Figure 4. Map of NDVI index in Cat Tien national park in 1988 (A), 2003 (B) and 2019 (C).](image-url)
The analysis showed that over the past 31 years, in Cat Tien has seen a trend towards vegetation restoration in general; between 1988 and 2003, the NDVI index decreased, some forest areas were in a state of degradation. In particular, areas along populated areas were found to have a lower NDVI index, reflecting anthropogenic impacts in these areas. In the period 2003-2019, the NDVI index increased, forest areas are in a state of recovery. On the territory of Cat Tien national park recorded index value NDVI < 0.92, a significant proportion of the area of national park is covered with forest vegetation with high density, indicating that Cat Tien is dominated by tropical moist evergreen broad-leaved forest with a significant supply of wood.

The forest vegetation described in this study is almost similar to that given by other researchers, such as Kuznetsov (2015) [20].

The inventory of forest land use/cover by category in Cat Tien National Park between 1988 and 2019 is shown in table 4.

Forest land use/cover categories	Year 1988	Year 2003	Year 2019	
	ha	%	ha	%
Broad-leaved forest	24546.61	59.79	20668.72	50.35
Mixed forest	10770.50	26.24	14136.46	34.43
Meadows and shrubs	2782.49	6.78	3052.62	7.44
Land without vegetation cover	2685.35	6.54	2871.47	6.99
Wetlands	267.95	0.65	326.34	0.79
Total	41052.91	100	41052.91	100

As can be seen from figure 3 and table 4, the dominant type of forest and vegetation cover on protected areas is broad-leaved forests, the share of which is about 59.79%, 50.35%, 65.20%, respectively, for 1988, 2003 and 2019. In the period 1988-2003, the area of broad-leaved forests decreased by 3877.89 ha (9.45%). This is due to illegal logging in Cat Tien. In the period 2003-2019, the area of broad-leaved forests decreased by 6096.49 ha (14.85%). After 13 years towards the end of Vietnam war in 1988, the welfare of the people living in the buffer zone in the Cat Tien was still quite difficult. Due to lack of funds, residents illegally cut down the forests of protected areas to sell wood and grow food crops in the cuttings. Thus, the area of broad-leaved forest was reduced. This created favorable conditions for the growth of mixed forest in the cleared area. Also in the east of Cat Tien, where there is a zone of the main distribution of broad-leaved forest, the forest area has been transformed into land without vegetation cover, meadows and shrubs. In the period 2003-2019, the
state forestry policy of Vietnam to attract and create conditions for the development of ecotourism in Cat Tien for the inhabitants of the region, especially indigenous communities, was effective. During this period, the level of well-being of the local population has increased, directly reducing the burden on forest ecosystems, contributing to the development and protection of forest. Along with the good performance of the forest protection work carried out by Cat Tien national park management unit, the situation of deforestation and transformation of forest lands into agricultural fields was quickly prevented, and the number of forest fires decreased. To assess the transfer of forest land use/cover in Cat Tien from one category to another, we have compiled a matrix of their dynamics over the past 31 years (table 5).

Table 5. Matrix of forest land use/cover change in Cat Tien National Park by category from 1988 to 2019.

Forest land use/cover categories	Area (ha), 2019	Total 1988				
	Broad-leaved	Mixed	Meadows and shrubs	Land without vegetation cover	Wetlands	Total 1988
Area (ha), 1988	forest	forest	shrubs	cover		
Broad-leaved forest	21315.01	3120.33	77.51	33.22	0.54	24546.61
Mixed forest	4071.39	6594.18	33.50	68.74	2.69	10770.50
Meadows and shrubs	706.26	1145.16	898.90	30.23	1.94	2782.49
Land without vegetation cover	645.84	295.26	495.52	1226.82	21.91	2685.35
Wetlands	26.70	6.52	12.67	85.32	136.74	267.95
Total 2019	26765.20	11161.45	1518.10	1444.33	163.83	41052.91

In the table 5 shows that, the area of forest vegetation in Cat Tien national park tended to increase during the study period. The area of meadows, shrubs and land without vegetation cover decreased by 1241.03 ha (3.02%) and 104.13 ha (0.25%), respectively, due to the fact that part of these lands for 31 years was planted with forest crops. The area of wetlands decreased by 1264.39 ha (3.08%). In Cat Tien national park, the dry season lasts six months in a row, resulting in a fairly low water level in the area, which has led to the transformation of part of the wetlands into land without vegetation cover.

3. Conclusions
Long-term studies of forest land use/cover in Cat Tien national park have shown that in the period from 1988 to 2019, they are dominated by tropical moist evergreen broad-leaved forest. The magnitude of forest land use/cover change in broad-leaved, mixed forest, meadows and shrubs, land without vegetation cover and wetlands are respectively 5.40%, 0.95%, 3.02%, 0.25% and 3.08%. For 31 years, the area of forest land use/cover under broad-leaved and mixed forest of Cat Tien national park increased by 2609.54 hectares (6.36%), respectively and area of other categories of forest decreased. Government reforms in Vietnam to improve the management system of protected areas have increased the area of land use/cover with forest vegetation and preserve the development of forest ecosystems in protected areas.

References
[1] Kovyazin V F, Do Quang Huy, Tran Hoang Hieu and Do Hong Hanh 2018 Definition of categories of forest lands in Kim Hy Nature Reserve of Vietnam using GIS technologies [in Russian - Opredelenie kategorij lesnyh ugodij v prirodnom zapovednike Kimhi respubliki Vietnam s primeneniem GIS–Tekhnologij] Forest journal 6/366 pp 39-47 Doi; 10.172.38/issn0536-1036.2018.6/39
[2] Kovyazin V F, Romanchikov A Y and Kitcenko A 2019 Classification of lands infrastructure forest fund// IOP Conference Series: Earth and Environmental Science. Volume 316. 012622
[3] Marina-Ramona Rujoiu-Mare et al 2017 Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery. European Journal of Remote Sensing, 50:1, pp 496-508

[4] Kovyazin V F, Usoltsev V, Osmirko A, Tsepordey I and Chasovskikh V 2019 Additive model of Larix sp. forest stand biomass sensitive to temperature and precipitation variables in Eurasia// IOP Conference Series: Earth and Environmental Science. Volume 316. 012074

[5] Ryazanov S S, Sahabiev I A and Galimov D Z 2015 Classification of the land cover of the Kuibyshev reservoir Islands using remote sensing data [in Russian - Klassifikaciya zemnego pokrova ostrovov kuibyshevskogo vodohranilishcha s ispol'zovaniem dannyh distancionnogo zondirovaniya] Russian journal of applied ecology pp 50-55

[6] Kovyazin V F, Lebedev Yu, Lebedeva T and Romanchikov A Y 2019 Value of Forest Ecosystem Natural Potential in the Areal Regional Richness Structure IOP Conference Series: Earth and Environmental Science Volume 316. 012027

[7] Congalton R G, Oderwald R G and Mead R A 1983 Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogrammetry Engineering and Remote Sensing Vol 49, No 12 pp 1671-1678

[8] Rouse J W, Haas R H, Schell J A and Deering D W. 1974 Monitoring vegetation systems in the Great Plains with ERTS, eds S C Freden, E P Mercanti, and M Becker Third Earth Resources Technology Satellite –1 Symposium. Volume I: Technical Presentations, NASA SP-351, NASA, Washington, D C pp 309-317

[9] Viktorovich B V and Vagitovich A Z 2017 Vegetation indices and their use for mapping mountain landscapes of The Russian Caucasus [in Russian - Vegetacionnye indekisy i ih ispol'zovanie dlya kartografirovaniya gornyh landshaftov Rossiijskogo Kavkaza] The electronic scientific journal "Argo". Series: natural and technical Sciences pp 3-21

[10] Kovyazin V F and Dang Thi Lan Anh 2019 Monitoring of forest lands of Kim Hy Reserve in Vietnam with using GIS technologies [in Russian - Monitoring lesnyh zemel' zapovednika «Kim Hy» Vietnam s ispol'zovaniem GIS–Tekhnologij] Astrakhan Bulletin of Ecological Education, Astrakhan, 3 pp 95-102

[11] Manylov I V 2011 Assessment of the accuracy of class recognition in automated processing of aerial photographs [in Russian - Ocenka tochnosti raspoznavaniya klassov pri avtomatizirovannoj obrabotke aerofotosnimkov] Journal of Instrument Engineering. Vol 54 5 pp 35-39

[12] Labutina I A and Baldina E A 2011 Use of remote sensing data for monitoring of protected areas ecosystems. Methodical manual [in Russian - Ispol'zovanie dannyh distancionnogo zondirovaniya dlya monitoringa ekosistem OOPT. Metodicheskoe posobie] World Wildlife Fund (WWF Russia). UNDP/GEF/ICI project "Biodiversity Conservation in the Russian part of the Altai-Sayan Ecoregion" Moscow p 88

[13] Zholobov D A and Baev A V 2015 Specification of values of normalized vegetative index (NDVI) by transpiration mask overlay method [in Russian - Utochnenie znachenij normalizovannogo vegetativnogo indeksa (NDVI), metodom nalogzeniya transpiracionnoj maski] Innovations in science: sat. XLV international. science-pract. Conf. № 5 (42). (Novosibirsk: Sibak) pp 164-185

[14] Haque M I and Basak R 2017 Land cover change detection using gis and remote sensing techniques: a spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Sciences 20 pp 251–263

[15] Hankui K Z et al 2018 Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences Remote Sensing of Environment pp. 482-494 doi:10.1016/j.rse.2018.04.031

[16] Dang Viet Hung, Dang Thi Lan Anh and Potokin A F 2019 Monitoring vegetation of Dong Nai Reserve with using GIS technologies (Vietnam) [in Russian - Monitoring rastitel'nosti zapovednika «Dong Nai» s primeneniem GIS – tekhnologij] Materials of the youth
international scientific and practical conference: "Topical issues of the economy" St. Petersburg pp 80-83

[17] Kovyazin V F and Romanchikov A Y 2018 The Problem of Cadastral Appraisal of Forest Lands Taking into Account the Infrastructure of the Forestry Fund. Zapiski Gornogo instituta. Vol 229 pp 98-104 doi:10.25515/PMI.2018.1.98

[18] Kovyazin V F and Nguyen T X 2019 Izvestiya News of the Development of predictive models of transformation of the land of Vietnam [in Russian - Izvestiya Razrabotka prognoznoj modeli transformacii zemel'nyh ugodij Vietnama] Tomsk Polytechnic University. Engineering of geo-resources. Tomsk. Vol 330 9 pp 221-229

[19] Kovyazin V F and Romanenko M 2019 Problem of temporary logging roads` inventory as real estate items IOP Conference Series: Earth and Environmental Science. Vol 316 012024

[20] Kuznecov A N 2015 Structure and dynamics of monsoon tropical forests of Vietnam [in Russian - Struktura i dinamika mussonnyh tropicheskikh lesov Vietnam] Thesis for the degree of doctor of biological sciences Moscow p 554