Quality of rattan board with lamination process using tannin-based adhesives

A Santoso* and R Pari
Forest Products Research and Development Center, Ministry of Environment and Forestry, 16610 Bogor, Indonesia

*E-mail: profadisantoso@gmail.com

Abstract. The use of rattan with a diameter of more than 30 mm as rattan laminated board has prospective opportunities in the market. This paper presents research results on the quality of the Calamus zollingeri rattan board glued using tannin adhesive from Acacia mangium bark extract. Rattan boards were laminated with 3 glue spread (100, 150, and 200 g/m² surface) and 2 pressing temperature (60°C and 100°C). The quality of gluing was analyzed by testing the bonding strength and formaldehyde emission. Results showed that the best quality of rattan laminated board was observed in 150 g/m² surface glue spread and 60°C pressing temperature application. The formaldehyde emission of products was still within safe level comply with JAS 234-2003 standards.

1. Introduction
Rattan is one of the substitutions of furniture made from wood and is demanded by the market [1,2]. In addition, rattan is one of the trade commodities of non-timber forest products with high export value, and rattan furniture producing regions in Indonesia are Sumatra, West Java, East Java, Kalimantan, Sulawesi [3]. Rattan used by craftsmen in production is with a diameter of less than 30 mm, while rattan with a diameter of more than 30 mm is not utilized [1].

Development of gluing technology provides alternative for rattan-based products into composite products such as rattan boards [4]. Commonly used adhesives for composite wood products are synthetic non-renewable resources which produce formaldehyde emission [5]. The effort of using organic adhesives has been developed to reduce these impacts. One source of organic adhesive is bark waste that contains tannin and can be formulated as an adhesive [5,6]. The bark of the Acacia family such as acacia (Acacia decurrens Willd.) and mangium (Acacia mangium Willd.) contain many phenolic compounds which can be used as substitutes for resorcinol or phenol [6-8]. Tannin adhesives from mangium bark have been used in improving oil palm trunks [5] and laminated composite panels [9,10] quality as well as gluing rattan boards [4]. This research aims to obtain information on the quality of rattan laminated boards using mangium tannin from bark extract. The data can be determined by the appropriate treatment of pressing temperature and glue spread to produce rattan laminated board.

2. Materials and Methods
The materials used for this study were rattan Calamus zollingeri Bec. from Palu, Central Sulawesi, tannin-based adhesives, and tannins from bark extract of Acacia mangium. The equipment used were rattan split machine, pickling tub, measuring glass, scales, and universal testing machine.
The tannin adhesive is made from mangium bark extracted with a water : bark ratio of 1:3 (w/w) which is melted down macerated for 3 hours at 80°C as described in [5]. Dried rattan with 10–15% moisture content is used to make a five-layer rattan laminated board sized 1.5 x 7.5 x 90 cm which compressed for 3 hours with a specific pressure of 10 kg/cm², as done by Pari et al. [4].

The characteristics of tannin-based adhesives were analyzed by adhesion properties according to SNI 4567 [11] such as acidity, viscosity, specific gravity, solid content, free formaldehyde and gelatinous time. The quality of the rattan laminated board was examined through testing of the dry condition test sample with three replications. The test includes bonding strength and formaldehyde emission referring to the Japan Agricultural Standard (JAS) Glued Laminated Timber JAS 234-2003 [12].

The results of the test sample were analyzed using ANOVA with 2 factors which are pressing temperature and glued spread and their interaction on the bonding properties and formaldehyde emission of laminated rattan board.

3. Results and Discussion

3.1. Characterization of tannin-based adhesives

Visually, the adhesive from mixing tannin extract from mangium bark with formaldehyde (tannin formaldehyde) produces a dark red liquid that is close to the color of phenol formaldehyde. The tannin-based adhesive characteristics of the formulations from mangium bark extract are presented in Table 1.

Properties	Tannin formaldehyde	Phenol formaldehyde*
Visual test	Dark red liquid	Red blackish liquid
Acidity (pH)	10.50	10–13
Viscosity (Poise)	12.34	1.3–3.0
Specific gravity	1.02	1.165–1.200
Solid content (%)	8.63	40–45
Free formaldehyde (%)	0.054	< 1
Gelatinous time (minutes)	300	≥ 300

Remarks: * source: SNI 4567 [11]

The results showed that the parameters of viscosity, specific gravity and solid content are different with phenol formaldehyde adhesive commercially (SNI 4567). Specific gravity and solid content lower than the standard indicate that tannin adhesive has a low solid content [5]. The adhesive with high viscosity has shorter pot life and will harden more quickly than low viscosity adhesive, therefore the quality of adhesion is relatively low [13]. However, the pot life of resin tannins as showed in the results of gelatinous times value is still safe because the values > 88 minutes [14]. Tannin-based adhesive with characteristics as mentioned above, has the ability to penetrate pores of lamina material and form a bond with good adhesion [15]. Besides, tannin-based adhesive produced relatively environment-friendly, indicated by the value of free formaldehyde that is lower than the required standard value [5].

3.2. The evaluation of rattan laminated boards

The application of mangium tannin adhesives in rattan laminated boards manufacturing was examined through a bonding strength testing approach. Formaldehyde emission testing was conducted to
determine the levels of formaldehyde from adhesives. Table 2 shows that the treatment of pressing temperature gave significant different results, while the treatment of glue spread and their interactions gave highly significant different results on bonding strength. In addition, both the treatment and the interaction have a highly significant effect on formaldehyde emission.

Table 2. Analysis of variances on bonding strength and formaldehyde emission.

Source of variation	df	Bonding strength	Formaldehyde emission
Pressing temperature, A	1	5.62 *	705.90 **
Glue spread, B	2	308.36 **	319.64 **
A * B	2	243.53 **	107.21 **

Remarks: hs = highly significant, s = significant, df = degree of freedom.

The quality of the rattan lamina products made from types of low-density wood originating from plantations, such as sengon (*Falcatoria moluccana*), jabon (*Anthosephalus cadamba*), mangium (*Acacia mangium*), sungkai (*Peronema canescens*), and rubberwood (*Hevea brasiliensis*) which use tannin as an adhesive with a glue spread of 140–170 g/cm² surface, with bonding strength of 22.19 kg/cm², 32.36 kg/cm², and 25.56 kg/cm² [9], 35.23 kg/cm², and 32.40 kg/cm² [16]. The bonding strength value of this rattan laminated board is also better than the laminated board made from bamboo andong, mayan, and betung using tannin adhesives from merbau.
wood powder extract (21.46–33.52 kg/cm²) [17], and laminated products from a mixture of kecapi and sengon wood (18.99 kg/cm²) using isocyanate adhesives (PI Bond) [18].

4. Conclusion
Rattan Calamus zollingerii with diameter more than 30 mm could be used as rattan laminated board using tannin of mangium bark extract as adhesive. The highest bonding strength values of rattan laminated board products in this research was observed in glue spread treatment of 150 g/m² surface and a pressing temperature of 60°C, with the formaldehyde emission at 1.04 mg/L this product is categorized as F** according to JAS 234-2003 standards.

References
[1] Rachman O and Jasni 2013 Rotan: Sumberdaya, Sifat dan Pengolahannya (Bogor: Pusat Penelitian dan Pengembangan Keteknikan Kehutanan dan Pengolahan Hasil Hutan)
[2] Wahab R, Mokhtar N, Ghani RSM, and Sulaiman MS 2019 An overview of rattan industry status and its economic aspect in setting up rattan-based industry in Malaysia Journal of Social Sciences and Humanities 16(3) 1-10
[3] Salim Z, Munadi E, Pujianti R, Buddiarti FT, Laksmi DD, Menanti S, and Sari NB 2017 Bunga Rampai Info Komoditi Furnitur ed. Salim Z and Munadi E (Jakarta: Badan Pengkajian dan Pengembangan Perdagangan)
[4] Pari R, Abdurachman, and Santoso A 2019 Keteguhan rekat dan emisi formaldehida papan lamina rotan menggunakan perekat tanin formaldehida Jurnal Penelitian Hasil Hutan 37(1) 33-41
[5] Rachmawati O, Sugita P, and Santoso A 2018 Sintesis perekat tanin resorsinol formaldehida dari ekstrak kulit pohon mangium untuk peningkatan kualitas batang sawit Jurnal Penelitian Hasil Hutan 36(1) 33-46
[6] Santoso A and Abdurachman 2016 Karakteristik ekstrak kulit kayu mahoni sebagai bahan perekat kayu Jurnal Penelitian Hasil Hutan 34(4) 269-84
[7] Tahir PM, Halip JA, and Lee SH 2019 Tannin-based bioresin as adhesives in Lignocellulose for Future Bioeconomy (Elsevier) pp. 109-33
[8] Bharudin MA, Zakaria S, and Chia CH 2013 Condensed tannins from Acacia mangium bark: Characterization by spot tests and FTIR AIP Conference Proceedings 1571(1)153-57
[9] Hendrik J, Hadi YS, Massijaya MY, Santoso A, and Pizzi A 2019 Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives Journal of Korean Wood Science and Technology 47(3) 253-64
[10] Hendrik J, Hadi YS, Massijaya MY, and Santoso A 2016 Properties of laminated composite panels made from fast-growing species glued with mangium tannin adhesive BioResources 11(3) 5949-60
[11] [BSN] Badan Standardisasi Nasional 2000 Fenol Formaldehida Cair untuk Perekat Kayu Lapis SNI 4567-2000 (Jakarta: Badan Standardisasi Nasional)
[12] [JAS] Japanese Agricultural Standard 2003 Glued Laminated Timber JAS 234-2003 (Tokyo: Japanese Plywood Inspection Corporation)
[13] Santoso A 2003 Sintesis dan karakterisasi resin lignin resorsinol formaldehida untuk perekat kayu limba [Dissertation] Institut Pertanian Bogor
[14] Pizzi A 1994 Tannin Base Wood Adhesive and Preservative Chemisti and Tecnology (New York: Marcel Dekker)
[15] Maloney T 1977 Modern Particleboard and Dry-Process Fiberboard Manufacturing (San Fransisco: Miller-freeman publication)
[16] Santoso A, Pari G, and Jasni 2015 Kualitas papan lamina dengan perekat resorsinol dari ekstrak limbah kayu merbau Jurnal Penelitian Hasil Hutan 33(3) 253-60
[17] Santoso A, Sulastinusigh IM, Pari G, and Jasni 2016 Pemanfaatan ekstrak kayu merbau untuk perekat produk laminasi bambu Jurnal Penelitian Hasil Hutan 34(2) 89-100
[18] Muthmainnah 2011 Pembuatan Cross Laminated Timber (CLT) dari kayu sengon dan kecapi [Thesis] Institut Pertanian Bogor

Acknowledgments
The author would like to express gratefully to Mr. Kuswandi, Mr. Aftoni, Mr. Supardiono, Mrs. Nuryani, Mr. Aris Sembiring, and Mr. Endang who has been assisting activities during the laboratory.