Resting Pain Level as a Preoperative Predictor of Success With Indirect Decompression for Lumbar Spinal Stenosis: A Pilot Study

Amrit S. Khalsa, MD¹, Areian Eghbali¹, Robert K. Eastlack, MD², Stacie Tran, MPH¹, Behrooz A. Akbarnia, MD¹, Justin B. Ledesma, MD¹, and Gregory M. Mundis, MD¹,²

Abstract

Study Design: Retrospective review of a single institution.

Objective: To determine if resting leg pain level is a predictor of success for indirect decompression in the setting of lumbar spinal stenosis, with lower levels of rest pain correlating with greater likelihood of successful indirect decompression.

Methods: Reviewed anterior or lateral lumbar interbody fusions from T12 to L5-S1 patients with a posterior-based pedicle screw-rod construct. Patients were separated into 2 groups based on a preoperative response to Oswestry Disability Index (ODI) Question 7 regarding level of pain at rest in the supine position. Responses of 0 to 2 (minimal rest pain) were group 1 (n = 54) and responses of 3 to 5 (significant rest pain) were group 2 (n = 16).

Results: Preoperative difference was detected between groups 1 and 2, in ODI (38 vs 63, P < .001) and Numeric Rating Scale (NRS) back (6.8 vs 7.9, P = .023). Three-month NRS leg and back scores were significantly lower in group 1 (leg, 1.9 vs 4.8, P < .001; back, 3.5 vs 6.4, P = .001). A significant difference was further noted in the percentage decrease in NRS leg and back scores from pre- to 3 months postoperatively between groups 1 and 2 (leg, 68.4% vs 22.7%, P < .001; back, 40.0% vs 7.4%, P = .012). Group 1 reached minimal clinically important difference for leg pain more often than group 2 (83.3% vs 43.8%, P = .001).

Conclusion: Preoperative assessment of rest pain level in the supine position has a significant association with reduction in NRS leg and back scores in patients undergoing indirect decompression for lumbar spinal stenosis. This tool may successfully indicate which patients will be candidates for indirect decompression with interbody fusion from an anterior or lateral approach.

Keywords
indirect decompression, leg pain, clinical outcomes, stenosis

Introduction

The use of indirect decompression for spinal stenosis is becoming increasingly common despite nebulous indications for when the addition of an open decompression is warranted. Irrespective of surgical approach, the addition of an interbody fusion can restore disc height and relieve symptoms of nerve compression. Indirect decompression is achieved through restoration of tension on the annular fibers with subsequent unbuckling of the ligamentum flavum.

The prospect of forgoing an open decompression in the setting of interbody fusion while still achieving an excellent outcome is appealing to avoid potentially unnecessary decompression surgery. Previous success has been described with the ability of anterior lumbar interbody fusion (ALIF) to restore disc height and provide indirect decompression with good functional outcome scores.

¹ San Diego Spine Foundation, San Diego, CA, USA
² Scripps Clinic, La Jolla, CA, USA

Corresponding Author: Gregory M. Mundis, Department of Orthopaedics & Research, Scripps Clinic, 10666 North Torrey Pines Road, MS116, La Jolla, CA 92037, USA.
Email: gmundis1@gmail.com

Creative Commons Non Commercial No Derivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The purpose of this study was to elucidate the use of preoperative rest pain as an indicator of success for isolated indirect decompression. The authors believe that lower levels of rest pain are correlated with greater likelihood of successful indirect decompression surgery.

Methods

The study performed was a retrospective chart review. The authors identified all patients who underwent either a primary ALIF or lateral lumbar interbody fusions (LLIF) from T12 to L5-S1 with a posterior-based pedicle screw-rod construct between January 2015 and December 2016 for radiculopathy dominant, surgically indicated degenerative and deformity pathologies of the lumbar spine. Surgical procedures were performed by 2 experienced spine surgeons at a single institution through a standard mini-open anterior approach performed with a vascular approach surgeon for ALIF, or a minimally invasive lateral retroperitoneal approach for LLIF (Figure 1). Exclusion criteria included patients who underwent direct neurologic decompression at the time of the index procedure, revision surgeries, and patients that reported no preoperative leg pain as indicated by Numeric Rating Scale (NRS) leg scores.

Patients were separated into 2 groups based on a preoperative response to Oswestry Disability Index (ODI) Question 7, how back and leg pain affects sleeping habits: (0) my sleep is never disturbed by pain, (1) my sleep is occasionally disturbed by pain, (2) because of pain I have less than 6 hours sleep, (3) because of pain I have less than 4 hours sleep, (4) because of pain I have less than 2 hours sleep, (5) pain prevents me from sleeping at all. This response was used as an indicator of rest pain level. Responses of 0 through 2 were categorized into group 1, or minimal rest pain (54 patients) and responses 3 through 5 were categorized into group 2, or significant rest pain (16 patients). We compared 3-month NRS leg and back scores in each group. Three-month follow-up was chosen for this pilot study to avoid confounding variables and directly evaluate response to the index procedure. Minimal clinically important differences (MCID) of back and leg pain were compared and the thresholds were set at 1.2 and 1.6, respectively. Three-month follow-up was specifically chosen to isolate the effect of the index procedure.

All statistical analyses were performed using Statistical Package for the Social Science (SPSS) v. 24 (IBM Corp, Armonk, NY). Wilcoxon signed-rank test was used to assess significant differences between the 2 groups. Chi-square was used to test for differences amongst categorical variables. Statistical significance was set at alpha of .05.

This study received institutional review board approval (IRB-13-6297).

Results

A total of 295 patients were initially identified and 70 patients met the inclusion criteria. No significant difference between groups 1 and 2 were noted with age, body mass index, levels treated, and presence of preoperative neurogenic claudication (Table 1). Preoperative NRS leg scores were similar between groups (P = .585). Preoperative difference was noted between groups 1 and 2, with regard to ODI (P < .001) and NRS back score (P = .023). Three-month NRS leg and back scores were significantly lower in group 1. A significant difference was further noted in the percentage decrease in NRS leg and back scores from pre- to 3 months postoperatively between groups 1 and 2. Group 1 reached MCID for leg pain more often than group 2, but no difference was seen for MCID NRS back.

When analyzing only those with less than 3 levels treated and an upper instrumented vertebrae at L3 or below (group 1, 38 patients; group 2, 10 patients) the change in 3-month NRS leg and back scores remained significant (leg, P = .012; back, P = .037) as did the percentage decrease in NRS leg score at 3 months (P = .012) (Table 2). No longer significant in this subanalysis were the percentage changes in 3-month NRS back score or the MCID for both leg and back.

Discussion

This pilot study is the first to identify an easily accessible preoperative screening tool for guidance in identifying patients that may be amenable to indirect decompression in a relatively large cohort. In the setting of an interbody fusion, an open laminectomy or laminoforaminotomy may not be needed in the absence of leg pain at rest based on the results of this study.

An attempt was made through this study to isolate patients with neurogenic leg pain to best identify the effect of indirect decompression. This was achieved by creating as homogenous a population as possible based on preoperative symptomatology. Though ODI Question 7 takes into consideration both back and leg pain, isolated back pain may be considered less likely to be pure neurogenic in origin. Therefore, using NRS scores, patients reporting negligible leg pain were excluded. Furthermore, all revision procedures at the index level as well as any patients undergoing concomitant posterior decompressions were excluded to better elucidate the effect of indirect decompression.

Several prior studies have attempted to define various radiographic measurements associated with restoration of interbody height and indirect decompression. Kepler et al performed a cadaveric study examining the difference between LLIF with lateral plating and pedicle screw fixation measured on computed tomography (CT) scan. In the lateral plate and pedicle screw groups, respectively, foraminal area increased by 25.3% and 61.5% on the right and 48.3% and 57.8% on the left. Canal area was increased by 32.3% and 33.3%, respectively. Fujibayashi et al examined the effect of LLIF in 28 patients at 48 levels on cross-sectional area of the thecal sac evaluated...
Figure 1. (a) Pre-operative lateral radiograph of lumbar spine with L4-5 grade 1 spondylolisthesis. (b) Preoperative sagittal and axial T2 magnetic resonance imaging sequences demonstrating central and lateral recess stenosis at L4-5. (c) Postoperative lateral radiograph of lumbar spine status post L4-5 lateral lumbar interbody fusion with percutaneous posterior instrumentation. (c) Postoperative sagittal and axial T2 magnetic resonance imaging sequences demonstrating indirect decompression at L4-5.
by magnetic resonance imaging (MRI). The mean cross-sectional area increased 30.2%. Rao et al15 studied 140 patients with 184 operatively treated levels with anterior lumbar inter-body fusion assessed with postoperative CT scan. Significant improvement in foraminidal dimensions (area 67%, height 21%, and width 38%) was noted. Sato et al16 evaluated 20 patients who underwent an oblique lumbar interbody fusion and utilized MRI to assess indirect decompression. MRI at 6 months post-operatively revealed axial and sagittal canal diameter increases of 12% and 32%, respectively. Spinal canal area was increased by 28.5 mm2, 2.8 mm2, and 0.85 mm, respectively. The authors concluded that cage width is the most important surgical factor determining successful indirect decompression.

In this pilot study, 3-month follow-up was chosen particularly in an attempt to isolate the effectiveness of indirect decompression as a surgical technique. Our concern with follow-up beyond this time period is the occurrence of new leg pain or other confounders that may not be directly related to the procedure in question. Further prospective studies are underway to evaluate the longevity of indirect decompression.

Preoperative differences regarding ODI and NRS may be viewed as a potential study bias. The preoperative difference found in ODI is inherent to the study design, since groups were defined entirely based on question 7 and this represents one-tenth of the total ODI score. Preoperative differences in the NRS back pain score were found between groups. However, the effect of indirect decompression on back pain was not a focus of the study despite showing significant percentage decrease in scores at 3 months. Lack of significant preoperative difference in NRS leg pain score is an important control between the 2 groups studied and further isolates rest pain level as the study variable.

Further limitations of this pilot study include the retrospective nature of the data collection. Another is the small sample size included. Additionally, this current study lacked radiographic correlation. Though, the intent of the study is to identify a key exam question irrespective of radiographic findings to aid in identifying candidacy for isolated indirect decompression. That being said, the degree of disc height loss and central stenosis may provide an interesting additional factor to consider as a correlate, along with the quantitative radiographic

Table 1. Demographic and Clinical Outcome Comparison.

Descriptor	Group 1 (n = 54)	Group 2 (n = 16)	P
Age, years	65.9	57.2	.067
Body mass index, kg/m2	27.9	28	.37
Female, n (%)	5 (9.3)	11 (68.8)	.461
Levels treated	2	2.4	.91
Preoperative ODI	38	62.9	<.001
Preoperative NRS leg	6.3	6.6	.585
Preoperative NRS back	6.8	7.9	.023
Neurogenic claudication, n (%)	46 (85.2)	16 (100.0)	.102
M3 NRS leg	1.9	4.8	.001
M3 NRS back	3.5	4.4	.012
Perceived difference NRS leg, %	−68.4	−22.7	<.001
Perceived difference NRS back, %	−40.0	−7.4	<.001
MCID leg, n (%)	45 (83.3)	7 (43.8)	.001
MCID back, n (%)	36 (66.7)	7 (43.8)	.098

Abbreviations: ODI, Oswestry Disability Index; NRS, Numeric Rating Scale; M3, 3-month postoperatively; MCID, minimal clinically important difference.

Table 2. Demographic and Clinical Outcome Comparisons in Subanalysis Cohort of <3 Levels Treated, UIV at L3 or Below.

Descriptor	Group 1 (n = 38)	Group 2 (n = 10)	P
Age, years	36.4	52.8	.132
Body mass index, kg/m2	27.4	29	.415
Female, n (%)	24 (63.2)	6 (60.0)	.854
Levels treated	1.1	1.5	.54
Preoperative ODI	38.3	63.8	<.001
Preoperative NRS leg	6.4	6.7	.662
Preoperative NRS back	6.5	7.6	.058
Neurogenic claudication, n (%)	32 (84.2)	10 (100.0)	.179
M3 NRS leg	1.9	4.4	.012
M3 NRS back	3.3	5.6	.037
Perceived difference NRS leg, %	−67.0	−27.1	.012
Perceived difference NRS back, %	−36.6	−8.5	.177
MCID leg	31 (81.6)	6 (60.0)	.149
MCID back	25 (65.8)	5 (50.0)	.359

Abbreviations: UIV, upper instrumented vertebrae; ODI, Oswestry Disability Index; NRS, Numeric Rating Scale; M3, 3-month postoperatively; MCID, minimal clinically important difference.
change occurring operatively via interbody cage height and degree of correction. The authors plan to include radiographic analysis in future studies.

Conclusion

Preoperative assessment of resting pain level in the supine position has a significant association with reduction in NRS leg and back scores in patients undergoing indirect decompression for lumbar spinal stenosis. This tool can be used to screen for patients that may be candidates for indirect decompression with interbody fusion from the anterior or lateral approach.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Oliveria SF, Thompson EM, Selden NR. Lumbar lipomyelomeingocele and sacrococcygeal teratoma in siblings: support for an alternative theory of spinal teratoma formation. *J Neurosurg Pediatr*. 2010;5:626-629.

2. Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. *Minim Invasive Neurosurg*. 2011;54:201-206.

3. Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. *Spine (Phila Pa 1976)*. 2015;40:E175-E182.

4. Gates TA, Vasudevan RR, Miller KJ, Stamatopoulou V, Mindea SA. A novel computer algorithm allows for volumetric and cross-sectional area analysis of indirect decompression following transpsoas lumbar arthrodesis despite variations in MRI technique. *J Clin Neurosci*. 2014;21:499-502.

5. Malham GM, Parker RM, Goss B, Blecher CM, Ballok ZE. Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. *Spine (Phila Pa 1976)*. 2014;39:E1303-E1310.

6. Giang G, Mobbs R, Phan S, Tran TM, Phan K. Evaluating outcomes of stand-alone anterior lumbar interbody fusion: a systematic review. *World Neurosurg*. 2017;104:259-271.

7. Konig MA, Ebrahimii FV, Nitulescu A, Behrbalk E, Boszczyk BM. Early results of stand-alone anterior lumbar interbody fusion in iatrogenic spondylolisthesis patients. *Eur Spine J*. 2013;22:2876-2883.

8. Ohtori S, Orita S, Yamauchi K, et al. Change of lumbar ligamentum flavum after indirect decompression using anterior lumbar interbody fusion. *Asian Spine J*. 2017;11:105-112.

9. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. *Spine (Phila PA 1976)*. 1997;22:691-699.

10. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. *Spine J*. 2006;6:435-443.

11. Copay AG, Glassman SD, Subach BR, Berven S, Schuler TC, Carreon LY. Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study Questionnaire Short Form 36, and pain scales. *Spine J*. 2008;8:968-974.

12. Kepler CK, Sharma AK, Huang RC, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. *J Neurosurg Spine*. 2012;16:329-333.

13. Marulanda GA, Nayak A, Murtagh R, Santoni BG, Bilsy JB, Castellvi AE. A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression. *J Spinal Disord Tech*. 2014;27:263-270.

14. Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG. Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. *Clin Orthop Relat Res*. 2014;472:1784-1791.

15. Rao PJ, Maharaj MM, Phan K, Lakshan Abeygunasekara M, Mobbs RJ. Indirect foraminal decompression after anterior lumbar interbody fusion: a prospective radiographic study using a new pedicle-to-pedicle technique. *Spine J*. 2015;15:817-824.

16. Sato J, Ohtori S, Orita S, et al. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. *Eur Spine J*. 2017;26:671-678.

17. Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. *Eur Spine J*. 2015;24(suppl 3):339-345.

18. Gabel BC, Hoshide R, Taylor W. An algorithm to predict success of indirect decompression using the extreme lateral lumbar interbody fusion procedure. *Cureus*. 2015;7:e317.

19. Lang G, Perrech M, Navarro-Ramirez R, et al. Potential and limitations of neural decompression in extreme lateral interbody fusion—a systematic review. *World Neurosurg*. 2017;101:99-113.