Opium Carcinogenicity: A Systematic Review of Experimental Studies

Haniyeh Rafipour1, Elham Mohebbi2, Kazem Zendehdel1, Samad Muhammednejad3, Paria Akbari4, Saadeh Hashemi1, Kosar Nouri5, Fatemeh Moradkhani6, Tahereh Barati7, Saeid Amanpour1,*,

ABSTRACT

Several epidemiological studies have reported that regular use of opium can be associated with an increased risk of developing cancers, including oesophageal, laryngeal, bladder, lung, and gastric cancer. In this systematic review, we aimed at investigating whether experimental studies support this finding and, if yes, how opium consumption can cause cancer. Most of the articles that have studied opium or its derivatives have found it as a carcinogen. However, due to the complex composition, different forms, and various ways of opium use, further comprehensive experimental studies are required. Using modern genomic and epigenomic methods seems to help determine the molecular mechanisms underlying opium carcinogenicity.

Keywords: Opium, Carcinogenicity, Guideline, Neoplasm
INTRODUCTION:

An increasing number of epidemiological studies, especially in Iran, have suggested that opium use could cause cancer in humans. However, there is contradictory evidence about the carcinogenicity of other opioids (1-5). Opium is a highly addictive drug, which could lead to drug dependence and disorder. Opium is the most commonly consumed drug among Iranians, although the opiate trade has been banned since 1997 (6). The most recent national survey indicated that more than 2% of Iranians suffer from opium abuse disorder (7). Opium is a brown, bitter, and dried latex obtained from the unripe seed of Papaver somniferum (1). Over 50 various alkaloids such as noscapine, morphine, and thebaine are derived from the opium poppy. Some of these substances are classified as medicines. Morphine is the main alkaloid of opium. The mode of action of morphine and its derivatives relies on these alkaloids’ action as mu and kappa opioid receptor agonists that later derive into analgesia. Large amounts of morphine are prescribed for moderate to severe pain in cancer patients each year (8, 9). Noscapine is another important alkaloid derived from opium used in medicine and acting as a sigma receptor agonist (10). Unlike other opioids, noscapine does not cause addiction. Some studies indicate that this opium alkaloid can demonstrate anti-carcinogenic properties (11-16). There are numbers of traditional narcotic derivatives of opium in the list of illegal narcotic drugs, including Teriak (air-dried and dark, sticky, or crumbly paste of raw opium), Shireh (refined opium made by boiling the raw opium or Teriak in hot water, and heating and passing it through filters for several times), Sukhte (dry residue of the burned Teriak), and Tofaleh (residue of the filtered Teriak solution) (3, 8). Recent evidence suggests that the rate of opioid consumption is increasing in 25 OECD (Organisation for Economic Co-operation and Development) countries (17). Although many studies on humans have shown a higher risk of cancer incidence among opium users, opening the black box of the molecular pathways and mechanism of opium carcinogenicity is a challenge for health researchers. For instance, it is unclear whether opium is a genotoxic carcinogen or a non-genotoxic carcinogen (18-21). This study attempted to systematically review experimental studies, including in-vivo and in-vitro, to explore opium carcinogenicity.

METHODS

Search strategy and selection criteria:
We searched PubMed, Google Scholar, and Scopus to identify experimental studies on opium use and cancer. We searched PubMed with the terms “Opium”, “Neoplasms” [MeSH term], “Carcinogenesis” [MeSH term], “Animal” OR “In-vitro”, “Cell Line” OR “In-vivo”, and “Experimental Study”. Entry terms were used to search Google Scholar and Scopus databases. The PubMed search was limited to “Other Animals” (for species), and the Scopus search was filtered by “Article” (for document type), “Medicine” (for the subject area), and “Non-human Subjects” (for the keywords). All searches were updated in September 2019. No language limitation was applied. However, all found publications were in English.

Data extraction:
A total of 3067 articles were found through crude searches. After removing duplicates, 2016 unique records were screened. Of these, 1926 studies were excluded at the title and abstract evaluation phase for several reasons according to the exclusion criteria mentioned above. Finally, 90 articles were screened for full-text (Figure 1).

RESULTS:
Among 90 full-text screened articles, 36 were about opium or its alkaloids, which were carefully studied,
and the data table was prepared. Data were extracted based on the bibliography (first author, year, type of opium sample, and the type of study) and results of the selected articles. The summary of the results obtained from these 36 articles, including 52 tests, is presented in Table 1. The complete table of opium derivatives and opium alkaloids (noscapine, morphine, and heroin) are provided in Table 2 and Supplementary Table 3.

Noscapine

Thirty-five studies (23 articles) were on noscapine alkaloids. Among these, 22 were in-vitro studies, and 21 experimental studies reported that noscapine could inhibit cancer growth (15, 16, 22-39). One article did not report any effects (40). There were 13 in-vivo studies among noscapine articles. Interestingly, all of them indicated the cancer-protective effect of noscapine.

Morphine and Heroin

Four articles investigated the effects of morphine and heroin on cancer. Among these, two studies indicated the tumor-suppressive effect of morphine, while one reported its carcinogenicity (4, 41, 42). One article also reported that heroin decelerated tumor growth in mice (43).

Opium

Nine articles examined the carcinogenicity of opium or its common derivatives like Teriak, Shireh, Sukhteh, and Tofaleh. Some of them included both laboratory tests and animal models, whereby the results of the in-vivo and in-vitro studies were separately reported in Table 2. Most of these articles indicated the carcinogenicity of opium or its derivatives. We re-evaluated their data and matched the similarity among materials.
and methods with standard carcinogenicity criteria, including OECD and ARRIVE (Animal Research: Reporting of In-Vivo Experiments) guidelines, standard test conditions, dose-response association, etc. (51-54) It was finally found that only nine studies had applied carcinogenicity tests on opium. Among these studies, 13 tests were performed on cancer cells or laboratory animals. Data on these nine articles are presented in Table 2.

Tables 3 and Table 4 summarize the results of the re-evaluation of articles in terms of testing raw opium and matching them with standard guidelines (51-54). The quality (high, moderate, and low quality) of strains, animals, and cells were determined by matching them with previous guidelines based on using suitable materials; checking strains for contamination, sensitivity, and mutation; proper concentration and condition during the procedure; and considering pre-incubation in the studies.

As an illegally marketed drug, opium contains various types of plant alkaloids as well as impurities. Supplementary Tables 1 and Table 2 provide an example of these materials. These data were obtained from the analysis of a sample of opium and its four well-known derivatives, Teriak, Shireh, Tofaleh, and Sukhteh (the Iranian names of these products), at the Cancer Biology Research Centre (CBRC) of Tehran University of medical sciences.

Table 1. Summary of the studies results

Substances	Type of Study	Technique	Result	Comment
Opium (9 articles including: 13 tests)	In vitro (8)	4 (Bacteria reverse mutation) 2 (Mammalian cell assays)	Carcinogen (6)	Carcinogenicity test
Noscapine (23 articles including: 35 tests)	In vitro (22)	Cancerous cell lines	Carcinogen (0) Anticancer effect evaluation	
Other Opioids (Morphine & Heroine (4 articles)	In vitro (1)	Cancerous cell lines	Protective (1) Anticancer effect evaluation	
	In vivo (3)	Rat	Carcinogen (1)	Carcinogenicity test
		Mice and Rat	Protective (2)	Carcinogenicity test, Anticancer effect evaluation
Table 2. In-vivo and in-vitro studies, indicating the carcinogenicity effect of opium and its derivate

Opium

In vitro (bacterial reverse mutation test) studies
Author (Year)

1 Mottaghi M. A. (2018)
2 Friesen, M. A. (1985)
3 Malaveille, C. (1982)
4 Hewer, T. (1978)

In vitro (mammalian cell assays) studies
Author (Year)

5 Khaleghi, M. A. (2016)
6 Arababadi, M.K. (2015)
7 Friesen, M. A. (1985)
8 Perry, P. E. (1983)
Author (Year)

9 (Alzaidi,M.A. 2018)
10 Tsuda,H. 1993
11 Friesen,M. 1985
12 Friesen,M. 1985
13 Friesen,M. 1985
Study type

In vivo
No †
In vivo

*The quality of strain, animal and cells determined by level of matching with guideline based on the using suitable material, checking strain about contamination, sensitivity and mutation, suitable concentration and condition during the procedure and considering pre-incubation in the studies (High quality, Moderate quality and low quality).
**Guideline NO.479 was deleted on 2nd April 2014
***The mentioned article includes 3 types of studies
†There is no approved OECD guidelines for this two protocols
††Friesen 1985 article includes 3 animal carcinogenicity studies on opium pyrolysates with different administration route
†††Duration time is around 12 month (carcinogenicity studies normally should be 24 months but 12 month is acceptable too). In this case the number of administration in a week is not acceptable
DISCUSSION and CONCLUSION

Epidemiological studies have reported that regular use of opium can be associated with an increased risk of several types of cancer. In this systematic review, we explored whether the experimental studies could support the carcinogenicity of opium, although the studies on this issue are limited. Among the available studies, nine articles that had performed 13 different cell or animal tests on opium and its derivatives were selected to be assessed. Most of these assays confirmed the carcinogenicity of opium.

Although many articles have worked on opioid alkaloids (mainly noscapine and morphine), they have not considered these materials' carcinogenicity in their investigations. These compounds have been studied on cancer cell lines or animal models (22-40). Nociceptor and morphine have many clinical applications and therapeutic effects. Morphine is used as a potent analgesic drug in treating cancer patients (55). Therefore, it is not expected that such well-known and widely used products, which have undergone numerous efficacy and safety tests, show carcinogenic effects.

Available opium and its derivatives in the black market contain many impurities (See Supplementary Tables 1 and 2), including phytochemical composition, lead, or toxic heavy metals and various substances (some of which are toxic) (66, 57). This means that such substances can play a role in opioid-related harms among people who regularly use opium (58, 59). Therefore, studies on opium alkaloids may not be helpful to show the toxicity of these impurities or the carcinogenicity of crude opium. Further studies are required to address this issue specifically.

Table 4. Result of matching articles with ARRIVE guideline

Article	Ethical statement	Study design	Experimental procedures*	Experimental animals	Housing and husbandry	Welfare-related assessments	Sample size	Experimental outcomes	Statistical methods	Allocating animals
Alzaidi, M.A. (2018)	approved by the institutional Animal care and use Committee	Considered	Group animals in cage	Not standard procedure	Standard strain	Housing and husbandry conditions: 25±1 °C temperature and 60% humidity under controlled light (12-h light/12-h dark), free access to food and water	acclimatization to the environment for 2 weeks	Less than standard number	Clearly defined	Lack of enough information
Friesen, M. (1985)	No information	Lack of enough information	Group animals	Not standard procedure	Standard strain	Housing and husbandry conditions: 23±2 °C temperature and 60% humidity under controlled light (12-h light/12-h dark)	acclimatization to the environment	Less than standard number	Clearly defined	Provided
Tsuda, H. (1993)	No information	Lack of enough information	Group animals in cage	Not standard procedure	Standard strain	Housing and husbandry conditions: Housed five per plastic cage on wood chips for bedding	acclimatization to the environment for 1 weeks	Standard	Clearly defined	Provided

*Important features which are considered as indexes for experimental procedure include: concentration, route of administration, time of day, and duration (explained in details in Table 3)
On the other hand, among the studies aimed at observing or rejecting the carcinogenic effects of opium and its derivatives, most have confirmed these compounds’ carcinogenicity (5, 44-46, 49, 50). Nearly all these studies have been conducted based on known tests or well-known protocols for carcinogenicity (51-54). All studies reported the Ames test result on opium have shown that it is mutagenic (5, 48-50). This result from the Ames test indicates the probability of its carcinogenicity. Four studies have been done on mammalian cells, two of which have reported the carcinogenicity effect of opium (5, 49), while two have reported the protective roles of opium against cancer (47, 48). Of the five animal studies, three showed carcinogenicity of opium (50); one study found no effect (5), and one study showed its protection against tumor progression (20).

We could not find any comprehensive experimental research articles studying the carcinogenicity of opium. Several reasons explaining the lack of such studies are as follows:

Carcinogenicity tests usually require several related and sequential steps to be taken to lead to the necessary results. Completing all the steps is usually complicated and time-consuming. Most of the current guidelines for carcinogenicity tests involve long-term bioassays (several weeks or months) in the animal laboratory. Due to the long period, cost, and need for special facilities and equipment, such studies are beyond many researchers and research centers’ reach. In addition, opium is used by various routes, such as ingestion, smoking, or inhalation. However, there has been no comparison among different routes of use in experimental investigations. Besides, opium smoke contains large amounts of potentially combustible carcinogenic compounds such as Poly Aromatic Hydrocarbons that do not exist in the crude opium itself. Furthermore, opium in the black markets contains numerous impurities that can affect the analyses and make experimental study design complicated. Classic carcinogenicity tests are a set of complementary laboratory and animal tests, while none of the conducted studies have performed or completed all series of tests. Thereafter, the exact pathway of the carcinogenicity of opium is still unclear, and future experimental investigations are required in this regard. Moreover, the use of new genomic and epigenetic screening techniques is not observed in most of the included studies. In conclusion, crude opium has a complex composition and has many impurities that vary in the consumer market. This makes experimental research on this material challenging. There is not much experimental research on this substance. Thus, we could not find any comprehensive experimental research articles studying the carcinogenicity of opium. However, most of the studies found in this search indicate that this substance can be carcinogenic. Through empirical research, further studies are needed to provide an accurate answer to whether opium is carcinogenic and what molecular mechanisms are involved.

FUNDING:

This research was supported by a research grant from the Cancer Biology Research Center of Tehran University of Medical Sciences.

REFERENCES:

1. Shakeri R, Kamangar F, Nastrollahzadeh D, Nouraie M, Khademi H, Etemadi A, et al. Is opium a real risk factor for esophageal cancer or just a methodological artifact? Hospital and neighborhood controls in case-control studies. PLoS One. 2012;7(3):e32711-e.
2. Mousavi M.R.A., Damghani MA, Haghdoust AA, Khamesipour A. Opium and risk of laryngeal cancer. The Laryngoscope. 2003;113(11):1939-43.
3. United Nations Office on Drugs and Crime (UNODC) World drug report 2010. United Nations Publication Sales No.:10.XI.13. New York, pp. 1–50.
4. Dillenburg CF, Kruel C.D.P., Cerski CT, Edelweiss MI, Silva TLD, Schier AS. Morphine does not promote esophageal carcinogenesis in rats exposed to diethylaminothiourea.
Arquivos de Gastroenterologia. 2008;45(1):87-92.

5. Friesen M, O’Neill IK, Malaveille C, Garren L, Hautefeuille A, Cabral JR, et al. Characterization and identification of 6 mutagens in opium pyrolysates implicated in oesophageal cancer in Iran. Mutat Res. 1985;150(1-2):177-91.

6. Ray R, Kattimani S, Sharma H. Opium Abuse and its Management: Global Scenario. World Health Organization Department of Mental Health and Substance Abuse Management of Substance Abuse. National Drug Dependence Treatment Centre All India Institute of Medical Sciences New Delhi, India; 2006.

7. Zarghami M. Iranian Common Attitude Toward Opium Consumption. Iran J Psychiatry Behav Sci. 2015;9(2):e2074-e.

8. International Narcotics Control Board. Report of the International Narcotics Control Board for 2014. United Nations Publication Sales No.: E.15.XI.1. New York, pp. 21-30.

9. Pacifi ci GM. Metabolism and pharmacokinetics of morphine in neonates: A review %J Clinics. 2016;71:474-80.

10. Junzo K, Hiroaki T, Hironori I, Yutaka K. Effects of N-methyl-D-aspartate antagonists on the cough reflex. European Journal of Pharmacology. 1989;168(2):153-8.

11. Buldik I, Taktak F. Isolation and Characterization of Antitumor Alkaloid from Poppy Capsules (Papaver somniferum). Journal of Chemistry. 2013;2013:493870.

12. Tegeder I, Gröschn, Schmidtko A, Häussler A, Schmidt H, Niederberger E, et al. G Protein-independent G⊂δ⊂1⊂δ Cell Cycle Block and Apoptosis with Morphine in Adenocarcinoma Cells. Cancer Research. 2003;63(8):1846.

13. Sasamura T, Nakamura S, Iida Y, Fujii H, Murata J, Saiki I, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. European Journal of Pharmacology. 2002;441(3):185-91.

14. Aneja R, Zhou J, Zhou B, Chandra R, Joshi HC. Treatment of hormone-refractory breast cancer: apoptosis and regression of human tumors implanted in mice. Molecular cancer therapeutics. 2006;5(9):2366-77.

15. Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer. 2011;71(3):271-82.

16. Aneja R, Ghaele AM, Zhou J, Yang VW, Joshi HC. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer research. 2007;67(8):3862-70.

17. OECD, Addressing Problematic Opioid Use in OECD Countries, OECD Health Policy Studies. OECD, Paris; 2019.

18. Shakeri R, Malekzadeh R, Etemadi A, Nasrollahzadeh D, Aghcheli K, Sotoudeh M, et al. Opium: an emerging risk factor for gastric adenocarcinoma. Int J Cancer. 2013;133(2):455-61.

19. Khademi H, Malekzadeh R, Pourshams A, Jafari E, Salahi R, Semnani S, et al. Opium use and mortality in Golestan Cohort Study: prospective cohort study of 50,000 adults in Iran. B.M.J. 2012;344:e2502-e.

20. Somogyi AA, Larsen M, Abadi RM, Jittiwutikarn J, Ali R, White JM. Flexible dosing of tincture of opium in the management of opioid withdrawal: pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol. 2008;66(5):640-7.

21. Alzaidi MA, Arab HA, Amanpour S, Shirkoohi R, Muhammadnejad S, Sasani F. Opium Consumption and the Incidence of Cancer: Does Opium Account as an Emerging Risk Factor for Gastrointestinal Cancer? J Gastrointest Cancer. 2018;49(2):172-80.

22. Afzali M, Ghaeili P, Khanavi M, Parsa M, Montazeri H, Ghahremani MH, et al. Non-addictive opium alkaloids selectively induce apoptosis in cancer cells compared to normal cells. Daru. 2015;23:16.

23. Heidari N, Goliaei B, Moghaddam PR, Rahbar-Roshandel N, Mahmoudian M. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells. Anti-cancer drugs. 2007;18(10):1139-47.

24. He M, Jiang L, Ren Z, Wang G, Wang J. Noscapine targets EGFR(p-Tyr1068) to suppress the proliferation and invasion of MG63 cells. Sci Rep. 2016;6:37062.

25. Ke Y, Ye K, Grossniklaus HE, Archer DR, Joshi HC, Kapp JA. Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immunology Immunotherapy. 2000;49(4-5):217-25.

26. Landen JW, Lang R, McMahon SJ, Rusan NM, Yvon A-M, Adams AW, et al. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma. 2002;62(14):4109-14.

27. Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainner BH, et al. Noscapine crosses the blood-brain barrier and inhibits glioblastoma growth. Clin Cancer Res. 2004;10(15):5187-201.

28. Liu M, Luo XJ, Liao F, Lei XF, Dong WG. Noscapine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Cancer Chemotherapy and Pharmacology. 2011;67(3):605-12.

29. Newcomb EW, Lukyanov Y, Siminova I, Schnee T, Zagzag D. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. Anti-cancer drugs. 2008;19(6):553-63.

30. Qi Q, Liu X, Li S, Joshi HC, Ye K. Synergistic suppression of noscapine and conventional chemotherapeutics on human glioblastoma cell growth. Acta Pharmacologica Sinica. 2013;34(7):930-8.

31. Quisbert-Valenzuela EO, Calaf G.M. Apoptotic effect of noscapine in breast cancer cell lines. Int J Oncol.
32. Sajadian S, Vatankhah M, Majdzadeh M, Kouhsari SM, Ghahremani MH, Ostad SN. Cell cycle arrest and apopto-

33. Shen W, Liang B, Yin J, Li X, Cheng J. Noscapine Increases the Sensitivity of Drug-Resistant Ovarian Cancer Cell Line SKOV3/DDP to Cisplatin by Regulating Cell Cycle and Activating Apoptotic Pathways. Cell Biochem Biophys. 2015;72(1):203-13.

34. Sung B, Ahn KS, Aggarwal BB Jr. Noscapine, a benzyl-

35. Xu G, Niu Z, Dong J, Zhao Y, Zhang Y, Li X. Noscapine inhibits human hepatocellular carcinoma growth through inducing apoptosis in vitro and in vivo. Neoplasma. 2016;63(5):726-33.

36. Yang ZR, Liu M, Peng XL, Lei XF, Zhang JX, Dong WG. Noscapine induces mitochondria-mediated apoptosis in hu-

37. Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, et al. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(4):1601-6.

38. Zhou J, Gupta K, Yao J, Ye K, Panda D, Giannakakou P, et al. Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine. J Biol Chem. 2002;277(42):39777-85.

39. Zhou J, Gupta K, Aggarwal S, Aneja R, Chandra R, Pan-

date. 2016;62(11):76-80.

40. Arababadi MK, Asadikaram G.J.C., Biology M. Induction of apoptosis by opium in some tumor cell lines. 2016;62(11):76-80.

41. Malaveille C, Friesen M, Camus AM, Garren L, Hautefeu-

42. Malaveille C, Friesen M, Camus AM, Garren L, Hautefeu-

43. Malaveille C, Friesen M, Camus AM, Garren L, Hautefeu-

44. Mottaghi M, Safinejad K, Mohammad Asghari HJSJ. Evaluation of Mutagenicity and Carcinogenicity of Opium Us-

45. Malaveille C, Friesen M, Camus AM, Garren L, Hautefeu-

46. Fewer T, Rose E, Ghadrian P, Castegnaro M, Malavei-

47. Khaleghi M, Farsinejad A, Dabiri S, Asadikaram G.J.C., Biology M. Induction of apoptosis by opium in some tumor cell lines. 2016;62(11):76-80.

48. OECD. Test No. 451: Carcinogenicity Studies; 2018.

49. OECD. Test No. 471: Bacterial Reverse Mutation Test; 2020.

50. OECD. Test No. 214: Guidance Document on the In Vitro Syrian Hamster Embryo (SHE) Cell Transformation; 2015.

51. OECD. Test No. 214: Guidance Document on the In Vitro Syrian Hamster Embryo (SHE) Cell Transformation; 2015.

52. Kirkpatrick Z, Homiski M, Rubitski E, Repnevskaya M, Howlett N, Aubrecht J, et al. Yeast DEL assay detects clas-

53. Kirkpatrick Z, Homiski M, Rubitski E, Repnevskaya M, Howlett N, Aubrecht J, et al. Yeast DEL assay detects clas-

54. Kirkpatrick Z, Homiski M, Rubitski E, Repnevskaya M, Howlett N, Aubrecht J, et al. Yeast DEL assay detects clas-

55. Kirkpatrick Z, Homiski M, Rubitski E, Repnevskaya M, Howlett N, Aubrecht J, et al. Yeast DEL assay detects clas-

56. OECD. OECD Guidelines for the Testing of Chemicals. 2009.

57. OECD. OECD Test No. 471: Bacterial Reverse Mutation Test; 2009.

58. OECD. OECD Test No. 471: Bacterial Reverse Mutation Test; 2009.

59. OECD. OECD Test No. 471: Bacterial Reverse Mutation Test; 2009.

60. OECD. OECD Test No. 471: Bacterial Reverse Mutation Test; 2009.