An Efficient Non-Invasive Method for Fetal Ecg Extraction from Abdominal Signals

S. Rajalingam, Varsha D, Suvetha M, Veerabathiran P

Abstract: The principle target of this paper is to decide the over the top attributes of a baby during pregnancy by examining a fetal ECG waveform. In obtrusive system of FECG estimation, terminals are embedded inside the body this may cause the burst of films, which is perilous to both the fetal’s and mother’s lives. It is important to go for non-invasive strategy, right now readings are taken from the mid-region of pregnant ladies which is protected procedure for both mother and fetal. The fetal ECG waveform can be separated by smothering maternal ECG sign and clamor defilements present in the ECG input signal. By breaking down the fetal ECG waveform we can decide the irregularity of baby heart by estimating the fetal pulse and contrasting it and maternal pulse. The variation from the norm found in fetal during pregnancy can be valuable to treat the hatching against heart related illnesses.

Keywords: Extraction, Fetal ECG, Fast ICA, Maternal ECG, Peak Detection.

I. INTRODUCTION

The proposed thought of fetal ECG extraction by non-obtrusive strategy utilizing single lead will be valuable in getting insignificant supreme data about the fetal pulse. The examination and extraction of fetal ECG has the accompanying advances. They are 1.Abdominal Recordings 2.Pre-Processing 3.Implementing Algorithm 4.Extraction of FECG 5.Analyzing of FECG. As of late, investigates and extends have been accomplished for the extraction of fetal ECG .A bunches of methods and thoughts has been proposed for separating fetal ECG. The various techniques utilized were Blind source extraction, Extended Kalman filter, Adaptive filter, Independent Component Analysis etc[1]. There are a few disadvantages saw in these above existing strategies for fetal extraction .In those current techniques it is hard to perform on the grounds that commotion/signal is joined with the stomach signal. Various commotions saw in the stomach signal are Power line interference, Electrode contact clamor, Maternal strong commotion, Baseline Wander noise. In our undertaking we will build up an effective appropriate calculation for removing FECG signal from MECG by utilizing a NON-INVASIVE METHOD with single lead electrode. non-invasive strategy in which the sign is recorded from the mother’s mid-region by setting a sensor near the baby with the goal that the fECG signal is sufficient contrasted with the maternal ECG.

Both invasive and non-obtrusive techniques can be utilized for fECG recording from the mid of the second trimester of pregnancy, yet fetal scalp cathode requires that the layers are burst, and subsequently, obtrusive strategies ought to be kept away from before 34 weeks growth

II. FLOWCHART

![Flowchart](image)

III. OUTLINE ON RECENT TECHNIQUES

A. Cardiorespiratory Interaction During Labour

In this paper they have utilized independent component analyzing strategy for extricating fetal ECG. They have utilized in another strategy called top vitality identification for recognizing fetal QRS area[2]. The dynamic connection between the warmth and maternal heart and breath period, certain time span can be displayed utilizing neural systems. The forecast mistake acquired from this signs can be utilized to compute the Granger causality. This measure can be characterized as

$$NNGC = \varepsilon_r - \varepsilon_f$$
Table 1: Ranges for maternal and fetal heart rate (MHR and FHR) in beat-per-minute

Case ID	MHR	MBR	FHR	FBR
1	81.4	21.2	127.5	39.4
2	85.7	20.7	125.3	38.9
3	77.0	20.3	126.0	39.6
4	81.4	19.2	128.9	39.9
5	96.0	20.9	131.6	38.1

B. Detection Of Fetal Arrhythmia Using ICA

Extreme fetal arrhythmia can cause unexpected heart passing. Reference based methodologies are utilized to remove fetal ECG from mother's stomach ECG, yet this ECG contains a few antiquities. Right now pre-process and separate fetal ECG ICA is utilized. Pinnacle recognition calculation is utilized to remove highlights from fetal ECG[3]. Heart abandons begin in beginning periods of pregnancy and can influence elements of heart. So as to decrease birth deformities and deaths, we should separate the fetal ECG in the beginning time of pregnancy.

In the event that the pulse is fast it is called as tachycardia and if pulse is moderate it is called as bradycardia. The recognizable proof of arrhythmia can be made conceivable by estimating highlights of ECG. Right now, grouping arrhythmia they have utilized Extreme Learning Machine and PCA. It is difficult to acquire fetal ECG from mother's ECG on the grounds that MECG has some commotion. The characterization of the sign is finished utilizing Bayesian Classifier.

![Fig 2: Block diagram of Arrhythmia detection](image1)

![Fig 3: Maternal heartbeat signal](image2)

![Fig 4: Fetal heartbeat signal](image3)

C. Robustica, Kurtosis-And Negentropy-Based Fastica In Maternal-Fetal ECG Division

Blended maternal-fetal ECG blended by heart waves from the Physionet and genuine maternal-fetal ECG from the DaISy are utilized to test the three calculations[4]. Test outcomes show that the three ICA techniques all adequately extricate maternal and fetal ECG from the blended signs. RobustICA has more prominent focal points in detachment speed and exactness, while its steadiness, showed by bigger standard deviation, is lower than the two FastICA calculations. FastICA dependent on negentropy has higher precision and heartiness than the kurtosis-based FastICA, yet it is sub-par in division speed.

The idea of ICA is to change the blended signs into independent parts in with least factual reliance. RobustICA is the most recent proposed calculation utilizing ideal advance size system

\[Y = WX = WAS(1) \]
Negentropy is defined as
\[J(x) = H(x_{\text{gauss}}) = H(x). \]
Strong ICA
\[\text{kurt}(y) = E\{|y|^4\} - 2E\{|y|^2\} - |E\{y^2\}|^2 \]

D. Fast ICA And Wavelet Denoising
Right now fetal ECG was extricated by a strategy called quick fixed point free segment investigation. The watched fetal sign gets isolated by a technique called dazzle source partition.

\[X(t)=A_s(t)+N(t) \]
Before actualizing the visually impaired source division, a preprocessing strategy was utilized inorder to lessen the computational multifaceted nature. This treatment incorporates zero mean, brightening, focusing and so on [5].

The visually impaired source detachment depends on negentrophy scientific examination and wavelet change used to evacuate the clamor present in the fetal ECG signal. This treatment incorporates zero mean, brightening, focusing and so forth cooking process utilized right now used to diminish the element of the single and lessens intricacy and clamor present in the data fetal ECG signal.

E. Standard And Non-Standard Multi Abdominal Maternal Leads
Right now have proposed a novel calculation for location of FECG and approve its presentation by testing an assortment of 75 explained FECG traces. The two principle methods for FECG extraction are strategies dependent on MQRS abrogation and ICA. The preparation set A was utilized as it incorporates reference comments [6].

The fetal sign is removed from stomach signal. The Abdominal sign is then preprocessed. For the identification and evacuation of MECG the initial step is to distinguish a proficient and steady strategy to identify MQRS. The MQRS improvement depends on PCA. Number of improvement dependent on PCA is performed given that FECG is not really perceivable in all odds for FECG identification and extraction. In FECG extraction, measurement of least and most extreme beat move, the two estimates shows a thin mistake interval. In FHR extraction both least and greatest bungles reflects correspondingly what recently announced.

The decision of this methodologies is intended to fulfill
1. Easy execution
2. Employed with set number of AECG leads.

F. Activation Scaled Non - Negative Matrix Factorization
Right now heart absconds are behind the insights, the primary thought is to highlight cadence which is for the most part connected with intrauterine disintegration, is the key purpose behind fetal end [1].

This procedure is principally centered around fetal ECG extraction utilizing enactment scaled non Matrix factorization and exhaustive ensing so as to diminish the all out transmission control and improve the handling speed over IOT structure.
An Efficient Non-Invasive Method for Fetal Ecg Extraction from Abdominal Signals

FECG observing utilizing web of things is proposed right now. The web of things utilized right now just to guarantee that persistent observing of fetal heart, pulse and pulse changeability estimations. NMF factorization is done in packed area. Signal is compacted at 75%. ICA and NMF were utilized for ECG partition .

\[V = W M_r \times H_r \times N \]

The FI score utilizing ICA is 92.5% and in NMF is 24%. Pressure proportion builds, execution of the Separation procedures diminishes. The exhibition correlation between a number and ICA for ECG division, report demonstrates that it is conceivable to isolate ECG from single channel stomach ECG signal which is a vitality proficient transmission and financially savvy to FECG remote observing.

G. RR Time-Series Smoothing And Template-Matching

Observing of fetal pulse during pregnancy is significant and it is hard to affirm fetal wellbeing. Doppler ultrasound is utilized for FHR examination, fetal R wave and RR interim and it likewise depicts the fetal heart movement. When all is said in done, MECG QRS complex has a high abundancy it at times cover with FECG QRS complex in time and recurrence area.

The info stomach ECG signal experiences the way toward separating because of this sifting procedure the extremity of the MECG R wave is acquired. The acquired R wave is the blend of unclustered set and two beginning bunched set and entomb QRS[7].

The MQRS wave gets isolated by performing K-implies bunching calculation to get a rectified MECG.

\[X = \{x_i\}_{i=1,...,n} \quad t_i = \text{argmax} AECG_i \]

\[x_i = AECG(t_i + w) i \in (2, ..., w-1), \quad i = 1, ..., n \]

From the MECG signal the covered FECG signal is precisely situated by TM calculation. The FQRS and MQRS layouts were developed utilizing SVD calculation. The length of MQRS and FQRS layouts were set to be 0.16 and 0.02s. The SVD calculation is a compelling strategy for removing the segment commitment to cycles in semi occasional sign. The extricated signal gets adjusted as two-dimensional lattice.

H. Fetal ECG Extraction Using Adaptive Filters

The deliberate fetal electrocardiogram signal from the stomach area of the mother is typically overwhelmed by the maternal heartbeat signal that proliferates from the chest pit to the stomach area. This spread way can be depicted as a direct FIR channel with 10 randomized coefficients. What's more, a limited quantity of uncorrelated Gaussian commotion is included to reproduce any broadband commotion sources inside the estimation[8]. The maternal electrocardiogram signal is gotten from the chest of the mother. The objective of the versatile commotion canceller right now to adaptively expel the maternal heartbeat signal from the fetal electrocardiogram signal. The commotion canceller needs a reference signal created from the maternal electrocardiogram to play out this errand. Much the same as the fetal electrocardiogram signal, the maternal electrocardiogram sign will contain some added substance broadband commotion.

Fig 8: Block diagram for Adaptive filter

Fig 9: Abdominal signal, Thoraic signal, Fetal signal

Fig 7: Top panel shows the original FRR series(solid black lines) verses results obtained by proposed algorithm(dotted black lines). Bottom panel shows FHR series
I. Fast ICA Based Technique For Non-Invasive Fetal Ecg Extraction

Independent Component Analysis (ICA) is a subtype of BSS methods, and ICA can be utilized effectively to biomedical signal handling with the supposition of autonomy of sources. The extraction of FECG signal out of the complex blend of signs can be acted in a progressively effective way utilizing Independent part examination (ICA) [5]. Autonomous part examination (ICA) can be utilized adequately to extricate the FECG signal from blend of signals. ICA process the info information as a solitary framework, there is no compelling reason to give wanted yield as a kind of perspective.

\[y = W^T x \]
\[x_g = V x \]

Fig 9: Block diagram for Fast ICA Model.

Fig.10. A) R-peaks of reference scalp FECG, B) R-peaks of extracted FECG by proposed algorithm.

IV. RESULT AND DISCUSSION

The enormous assortment of physiological sign can be gotten to from physionet named as physiobank is your bank is an assortment of computerized physiological information which is developing step by step. It incorporates information bases of stomach and direct fetal ECG and database of fetal ECG manufactured signals. All information are recorded in milli volts (mV).

Both fetal and maternal respiration activities act only as a source affecting the fetal and maternal heart rates, while not being affected by them. However, the effect of respiration was generally weaker than the maternal fetal heart rate interaction.

The signal is preprocessed and removed from the abdomen ECG is finished by utilizing the strategy ICA. The signal is likewise handled by utilizing FIR channel and PCA channel. Be that as it may, ICA gives the best results. The trademark focuses Q, R, S and T are distinguished by top discovery calculation utilizing state machine logic.

Distinguishing obsessive qualities of a baby and isolating fetal ECG from maternal ECG signal is very confounded in intrusive strategy. Persistent checking of fetal pulse in obtrusive is repetitive and it might influence.

V. CONCLUSION

Fig 11: fetal ECG extraction using NLMS

Fig 12: ECG signals are processed by using derivative filter.

Fig 13: finding peaks of fetal ECG.
It is important to go for non-intrusive strategy, right now readings are taken from the stomach area of pregnant ladies which is sheltered system for both mother and baby yet these readings are to a great extent twisted by different kinds of clamors, among which the most significant obstruction is maternal electrocardiogram (MECG) which is a lot more prominent in abundancy than FECG .To beat the downsides that has been seen in before procedures, a productive non-obtrusive technique has been utilized in our venture to get a maximal precision in removing signal.

REFERENCES

1. D. Gurve and S. Krishnan, “Separation of Fetal-ECG from Single Channel Abdominal ECG Using Activation Scaled Non-Negative Matrix Factorization,” IEEE J. Biomed. Heal. Informatics, vol. PP, no. c, pp. 1–1, 2019, doi: 10.1109/jbhi.2019.2920356.
2. F. Marzbanrad and G. D. Clifford, “Analyzing fetal and maternal cardiorespiratory interactions during labor,” Comput. Cardiol. (2010), vol. 44, pp. 1–4, 2017, doi: 10.22489/CiC.2017.335-343.
3. S. Apsana, M. G. Suresh, and R. P. Aneesh, “A novel algorithm for early detection of fetal arrhythmia using ICA,” 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018-Janua, pp. 1277–1283, 2018, doi: 10.1109/ICICICTI.2017.8342753.
4. W. Yao, M. Wu, and J. Wang, “FastICA in Maternal-Fetal ECG separation,” 2018 11th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, pp. 1–5, 2018.
5. Y. Wang, Y. Fu, and Z. He, “Fetal Electrocardiogram Extraction Based on Fast ICA and Wavelet Denoising,” Proc. 2018 2nd IEEE Adv. Inf. Manag. Commun. Electron. Autom. Control Conf. IMCEC 2018, no. Inecc, pp. 466–469, 2018, doi: 10.1109/IMCEC.2018.8469501.
6. N. Pini, G. Magenes, A. Fanelli, and M. G. Signorini, “An Efficient Algorithm for the Extraction of Fetal ECG from Standard and Non-Standard Multi Abdominal Maternal Leads,” Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2019, pp. 5717–5720, 2019, doi: 10.1109/EMBC.2019.8858152.
7. H. Liu, D. Chen, and G. Sun, “Detection of Fetal ECG R Wave from Single-Lead Abdominal ECG Using a Combination of RR Time-Series Smoothing and Template-Matching Approach,” IEEE Access, vol. 7, pp. 66633–66643, 2019, doi: 10.1109/ACCESS.2019.2917826.
8. [8] K. Prasanth, B. Paul, and A. a Balakrishnan, “Fetal ECG Extraction Using Adaptive Filters,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 2, no. 4, pp. 1483–1487, 2013.

AUTHORS PROFILE

S. RajalingamM .E, (Ph.D), working as an Assistant professor in Electronics and Communication engineering at Rajalakshmi Institute of technology .Completed his Bachelor of Engineering in Electronics and Communication Engineering and Masters in the field of VLSI. Currently Pursuing his research in the area of Bio signal processing.He has published many papers and ideas in the IEEE conferences and Scopus indexed journals. His area of interests are Signal Processing ,VLSI and Machine Learning,Data Analytics. Having vast experience in teaching field. He is IEEE, IETE Life member.

Varsha D. currently pursuing Bachelors in Electronics and Communication Engineering at Rajalakshmi Institute of Technology. Being an interested engineer who is willing to explore technologies in area of signal processing networking and Data Analytics carried out an idea for detecting the speed of objects on the topic.Object Speed Detector using LDR in the project Expo conducted at Rajalakshmi Institute of Technology. Cleared online NPTEL certification course on Analog Circuits and Digital Circuits certified by IIT Bombay and IIT Kharagpur.

Suvetha M, currently pursuing Bachelor's degree in Electronics and Communication Engineering from Rajalakshmi Institute of Technology. A passionate engineer interested in the field of Signal Processing and Networking. Presented a paper on Network Security and System held at DMI College of Engineering. Implemented an idea for detecting the speed of objects on the topic, Object Speed Detector using LDR in the project Expo conducted at Rajalakshmi Institute of Technology. Cleared online NPTEL certification course on Analog Circuits and Digital Circuits certified by IIT Bombay and IIT Kharagpur.

Veerabathiran P, currently pursuing Bachelor's degree in Electronics and Communication Engineering from Rajalakshmi Institute of Technology. Presented a paper on Geo Fencing in Advanced computer and communication conference at IIT Bangalore. Passed NPTEL online certification in control engineering. Done a project on child safety tracking system to track the location of the children in case of emergency. Undergone implant training program on switch gears, sensors, controllers, basic of PLC at CDCE Automation and Industrial Industrial Automation at MSME Technology Development Centre.