Growth rates of groups associated with face 2-coloured triangulations and directed Eulerian digraphs on the sphere

Thomas A. McCourt

Keywords: Face 2-coloured spherical triangulation; directed Eulerian spherical digraph; canonical group; abelian sand-pile group; latin bitrade.
Mathematics Subject Classification: 05C10, 05B15, 05C20, 05C25.

Abstract
Let G be a properly face 2-coloured (say black and white) piecewise-linear triangulation of the sphere with vertex set V. Consider the abelian group A_W generated by the set V, with relations $r + c + s = 0$ for all white triangles with vertices r, c and s. The group A_B can be defined similarly, using black triangles. These groups are related in the following manner $A_W \cong A_B \cong \mathbb{Z} \oplus \mathbb{Z} \oplus C$ where C is a finite abelian group.

The finite torsion subgroup C is referred to as the canonical group of the triangulation. Let m_t be the maximal order of C over all properly face two-coloured spherical triangulations with t triangles of each colour. By relating properly face two-coloured spherical triangulations to directed Eulerian spherical embeddings of digraphs whose abelian sand-pile groups are isomorphic to C we provide improved upper and lower bounds for $\limsup_{t \to \infty} (m_t)^{1/t}$.

1 Introduction

Let G be a graph. We will denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. Suppose that there exists a face 2-coloured, black and

*School of Computing and Mathematics, Plymouth University, Drake Circus, Plymouth PL4 8AA.
white say, triangulation of the sphere, i.e. a spherical triangulation, \mathcal{G} of G. Denote the set of white faces by W and the set of black faces by B. As the faces are properly face 2-coloured G is Eulerian and, by a well known result of Heawood \[14\], regardless of whether or not G is simple, G has a proper vertex 3-colouring. If G is simple, then the rotation at every vertex is a cycle, i.e. the triangulation is piecewise-linear. See Figure 1 for an illustration of a face 2-coloured spherical triangulation where the graph is simple.

Figure 1: A face 2-coloured spherical triangulation. A vertex, r_0, has been placed at infinity.

Define \mathcal{A}_W to be the abelian group with generating set $V(G)$, subject to the relations $\{r + c + s = 0 : r, c, s$ are the vertices of a white face of $\mathcal{G}\}$. Define \mathcal{A}_B similarly but using the black faces. In [1] Blackburn and the current author proved that $\mathcal{A}_W \cong \mathcal{A}_B \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathcal{C}$

where \mathcal{C} is a finite abelian group. In the same paper the question of the growth rate of the maximal order of \mathcal{C}, in the terminology established in [13] the canonical group of the face 2-coloured spherical triangulation, was raised. More precisely:

Question (Blackburn & McCourt, [1]). Let m_t be the maximal order of the canonical group over all properly face two-coloured spherical triangulations.
of simple graphs with \(t \) faces of each colour. What is the value of

\[
\limsup_{t \to \infty} (m_t)^{1/t}?
\]

In [1] a lower bound of 1.201 was obtained. Earlier work of Cavenagh and Wanless [7] provided an upper bound of \(6^{1/3} < 1.818 \) and of Drápal and Kepka of \(e^{1/e} < 1.445 \). More recently Grubman and Wanless [13] improved the lower bound to \(5123^{1/30} > 1.329 \). In Section 3 we will provide an improved upper bound of \(\exp\left(\frac{\ln(3) + \ln(2)}{5}\right) < 1.431 \) and in Section 4 an improved lower bound of \((27/2)^{1/8} > 1.384 \).

In order to establish these new bounds we will make use of a connection between canonical groups of face 2-coloured spherical triangulation and abelian sand-pile groups of directed Eulerian spherical digraphs. In Section 2 we will discuss the background for both of these groups as well as further motivation for addressing the above question.

\section{Background and motivation}

\subsection{Spherical latin bitrades}

Let \(G \) be a properly vertex 3-coloured simple graph with \(v \) vertices. If the edges of \(G \) can be partitioned into copies of \(K_3 \), then such a partition is called a \textit{partial latin square}. The set of triples of vertices of each of the copies of \(K_3 \) completely describes such a partial latin square and we will use the two descriptions interchangeably. We will refer to the graph \(G \) as the \textit{support graph} of the partial latin square.

Let \(P \) be a partial latin square, then the three vertices in each triple of \(P \) are each from a different vertex colour classes, say \(R \) (the \textit{rows}), \(C \) (the \textit{columns}) and \(S \) (the \textit{symbols}), in the support graph. Suppose that \(\max\{|R|, |C|, |S|\} = n \), then any triple of the partial latin square is of the form \(\{r_i, c_j, s_k\} \), where \(r_i \in R \), \(c_j \in C \) and \(s_k \in S \), and such a triple can be thought of as the symbol \(k \) occurring in row \(i \), column \(j \) of a \(n \times n \) array.

Two partial latin squares are said to be \textit{isotopic} if they are equal up to a relabelling of their sets of rows, columns and symbols. A partial latin square \(P \) is said to \textit{embed} in an abelian group \(A \) if and only if it is isotopic to a partial latin subsquare contained in the Cayley table of \(A \). An abelian group \(A \) is said to be a \textit{minimal abelian representation} for the partial latin square.
Define \mathcal{A}_P to be the abelian group with generating set $V(G)$, subject to the relations $\{r + c + s = 0 : \{r, c, s\} \in P\}$. The motivation for this definition is that if P embeds in an abelian group, then it embeds in \mathcal{A}_P and, in particular, any minimal abelian representation A of P is a quotient of the finite torsion subgroup of \mathcal{A}_P, see [1] and [11] for details.

A latin bitrade is an ordered pair (W, B) of non-empty partial latin squares such that for each triple $\{r_i, c_j, s_k\} \in W$ (respectively B) there exist unique $r_{i'} \neq r_i, c_{j'} \neq c_j$ and $s_{k'} \neq s_k$ such that

$$\{\{r_{i''}, c_j, s_k\}, \{r_i, c_{j'}, s_{k'}\}, \{r_i, c_j, s_{k''}\}\} \subseteq B \text{ (respectively } W)$$

That is, they are disjoint decompositions of the edge set of the same simple support graph. The arrays in Figure 2 correspond to a pair of partial latin squares which form a latin bitrade (W, B). Note that the two partial latin squares, W and B, are not isotopic.

![Figure 2: A pair of partial latin squares that together form a latin bitrade.](image)

Suppose that \mathcal{G} is a face 2-coloured spherical triangulation of a simple graph G with face colour classes W and B and a proper vertex 3-colouring given by R, C and S. Then the faces of W (respectively B) form a partial latin square. As W and B are decompositions of the same simple graph and, provided $|W| > 1$, no face occurs in both W and B, the pair (W, B) is a latin bitrade. For example, the face 2-coloured spherical triangulation illustrated in Figure 1 corresponds to the latin bitrade (W, B) in Figure 2, the white faces corresponding to the entries in W and the grey faces the entries in B.

In general the partial latin squares forming a bitrade do not necessarily embed in an abelian group, see [7]. However, the partial latin squares forming a bitrade (W, B) arising from a face 2-coloured spherical triangulation both embed in abelian groups, and hence W embeds in \mathcal{A}_W and B embeds in \mathcal{A}_B. If P embeds in A and, for all embeddings of P in A, the isotopic copy of P in the Cayley table of A generates A.
A_B, [7] [10], answering a question from [9]. In [7] Cavenagh and Wanless conjectured that \(A_W \cong A_B \); this was proved in a more general setting in [1] as discussed in Section 1.

2.2 Directed Eulerian spherical digraphs and abelian sand-pile groups

Let \(G \) be a graph; we will denote the degree of a vertex \(v \in V(G) \) by \(\deg_G(v) \) and the maximum degree over all vertices of \(G \) by \(\Delta(G) \). Let \(G \) be an embedding of \(G \) in a sphere. We arbitrarily fix an orientation for the vertices, and denote the rotation at a vertex \(v \in V(G) \) by \(\rho(v) \). Suppose \(\rho(v) = (u_1, u_2, \ldots, u_{\deg_G(v)}) \) for some \(v \in V(G) \); if \(G \) is a triangulation and \(G \) is a simple graph, then the set of vertices \(\{u_0, u_1, \ldots, u_{\deg_G(v)} - 1\} \) induces a cycle in \(G \) where, interpreting \(u_{\deg_G(v)} \) as \(u_0 \), the edges are between \(u_i \) and \(u_{i+1} \). In a slight abuse of notation we will denote this cycle as \(\rho(v) \).

Let \(D \) be a (not necessarily simple) digraph. Label the vertices of \(D \) as \(v_1, v_2, \ldots, v_n \). The adjacency matrix \(A = [a_{ij}] \) of \(D \) is the \(n \times n \) matrix where the entry \(a_{ij} \) equals the number of arcs from vertex \(v_i \) to vertex \(v_j \). The asymmetric Laplacian of \(D \) is the \(n \times n \) matrix \(L(D) = B - A \) where \(B \) is the diagonal matrix whose entry \(b_{ii} \) is the out-degree of \(v_i \). A sink in a digraph is a vertex with 0 out-degree.

A digraph \(D \) is Eulerian if the out-degree at each vertex of \(D \) equals the in-degree of each vertex of \(D \). In this case, for each \(v \in V(D) \) we will refer to out-degree and in-degree of \(v \) simply as the degree of \(v \) and denote it by \(\deg_D(v) \). Suppose \(D \) is an Eulerian digraph with vertex set \(V(D) = \{v_1, v_2, \ldots, v_n\} \). Let \(u \in V(D) \), then the digraph obtained by deleting all the arcs leaving vertex \(u \) from \(D \) is called the Eulerian digraph \(D \) with sink \(u \).

Let \(D \) be a strongly connected Eulerian digraph where \(V(D) = \{v_1, v_2, \ldots, v_n\} \); fix an \(i \), where \(1 \leq i \leq n \). A reduced asymmetric Laplacian, \(L'(D) \), for \(D \) is obtained by removing row \(i \) and column \(i \) from \(L(D) \). The abelian sand-pile group of the Eulerian digraph \(D \) with sink \(v_i \), denoted \(S(D) \) is \(\mathbb{Z}^{n-1}/\mathbb{Z}^{n-1}L'(D) \). The group obtained is invariant of the choice of vertex for the sink, see [15, Lemma 4.12]. As such, without loss of generality, we can define \(S(D) = \mathbb{Z}^{n-1}/\mathbb{Z}^{n-1}L'(D) \) where \(L'(D) \) is the asymmetric Laplacian obtained by removing row and column \(n \) of \(L(D) \). (An equivalent definition of \(S(D) \) is the finite torsion subgroup of \(\mathbb{Z}^n/\mathbb{Z}^nL(D) \).)

Let \(D \) be a digraph and let \(v \in V(D) \). An arborescence diverging from \(v \)
is a directed sub-tree of D in which all the arcs are directed away from v. If D is Eulerian, and hence strongly connected, then the number of spanning arborescences diverging from a vertex v does not depend on v, see [20, Theorem VI.23]; this number is known as the tree number of D and we will denote it by $T(D)$. By the Matrix-Tree Theorem, [20, Theorem VI.28], $T(D)$ is the determinant of $L'(D)$; which in turn is the order of the abelian sand-pile group $S(D)$, see [15, Lemma 2.8]. A recent and comprehensive survey of results on abelian sand-pile groups of digraphs is given by [15].

In [17] Ribó Mor uses a probabilistic argument via Suen’s Inequality, [19], to establish an upper bound on the order of the abelian sand-pile group in an undirected planar graph in terms of the number of vertices. In the same thesis Ribó Mor establishes a tighter bound using non-probabilistic techniques. This bound has subsequently been improved on in [4].

Consider an embedding of an Eulerian digraph. If each face of the embedding is a directed cycle, equivalently the arc rotation at each vertex alternates between incoming and outgoing arcs, the embedding is called a directed Eulerian digraph embedding, see [2] and [3]. If the embedding is on the sphere we call it a directed Eulerian spherical digraph. Eulerian digraph embeddings in surfaces of arbitrary genus have been studied in [2] and [8], and in [3] Bonnington et al. provide Kuratowski type theorems for directed Eulerian spherical digraphs.

In the following Subsection we will discuss a connection between the canonical groups of face 2-coloured spherical triangulations and the abelian sand-pile groups of directed Eulerian spherical digraphs.

2.3 Canonical groups and abelian sand-pile groups

Let G be a face 2-coloured spherical triangulation with a proper vertex 3-colouring where the vertex colour classes are R, C and S. Let $I \in \{R, C, S\}$; we will construct a directed Eulerian spherical digraph $D_I(G)$ (or simply D_I) with vertex set I. The digraph will potentially have, for any pair of vertices u and v, multiple arcs from u to v. Let $\{I_0, I_1, I_2\} = \{R, C, S\}$. Consider a vertex $i \in I_0$, then the rotation at i is

$$
\rho(i) = (u_1, v_1, u_2, v_2, \ldots, u_{\frac{1}{2}\deg_G(i)}, v_{\frac{1}{2}\deg_G(i)}),
$$

where, without loss of generality, $u_j \in I_1$ and $v_j \in I_2$ for all $1 \leq j \leq \frac{1}{2}\deg_G(i)$ and the edge e_j between u_j and v_j in the rotation is contained in a black
face. Then in D_I there are $\frac{1}{2}\deg_G(i)$ outgoing arcs a_j with initial vertex i, one for each black face, and the terminal vertex for arc a_j is the vertex in I contained in the white face containing edge e_j. Clearly, the graph D_I inherits a spherical embedding from G in which the arc rotation at each vertex alternates between incoming and outgoing arcs. Hence G is a directed Eulerian spherical embedding. Figure 3 illustrates the graph D_R (the arcs of which are shown as dashed) obtained from a face 2-coloured spherical triangulation.

![Diagram](image)

Figure 3: A face 2-coloured spherical triangulation together with corresponding digraph D_R. The vertex colour classes are $R = \{r_0, r_1, r_2, r_3, r_4\}$, where vertex r_0 has been placed at infinity; $C = \{c_0, c_1, c_2, c_3\}$; and $S = \{s_0, s_1, s_2, s_3, s_4\}$.

Lemma 1. Given a strongly connected directed Eulerian spherical digraph D, there exists a face 2-coloured spherical triangulation \mathcal{G} with a vertex 3-colouring given by the vertex sets R, C and S, such that for some $I \in \{R, C, S\}$,

$$D_I(\mathcal{G}) \cong D.$$
Proof. In short, we reverse the construction above.

Denote the faces of D as f_1, f_2, \ldots, f_k. Insert a new vertex z_i into each face f_i for all $1 \leq i \leq k$. Consider an arc of D, a say that has x as its initial vertex and y as its terminal vertex. Then on one side of a there is a new vertex u and on the other a new vertex w. Replace a with two triangular faces; a black face with vertex set $\{x, u, w\}$ and a white face with vertex set $\{y, u, w\}$. As D is strongly connected this results in a triangulation of the sphere and as D is a directed Eulerian digraph the resulting triangulation is properly face 2-coloured. \qed

We now list some observations on Lemma 1 and the above construction.

Observation 1. Let \mathcal{G} be a face 2-coloured spherical triangulation of a graph G with a proper vertex 3-colouring where the colour classes are R, C and S. Let $I \in \{R, C, S\}$.

(i) If $v \in I$, then $\deg_{D_I}(v) = \frac{1}{2} \deg_G(v)$.

(ii) A face f of size k in D_I corresponds to a vertex in G with degree $2k$.

(iii) Let $\{I, J, K\} = \{R, C, S\}$. A face f of size d in D_I corresponds to a face of size d in, without loss of generality, D_J and a vertex of (out-)degree d in D_K. While a vertex of (out-)degree d in D_I corresponds to a face of size d in D_J and a face of size d in D_K.

The following lemma is implicit in [1].

Lemma 2. Let \mathcal{G} be a face 2-coloured spherical triangulation with a proper vertex 3-colouring where the vertex colour classes are R, C and S. Let $I \in \{R, C, S\}$, then D_I is strongly connected and $\mathcal{S}(D_R) \cong \mathcal{S}(D_C) \cong \mathcal{S}(D_S) \cong \mathcal{C}$, where \mathcal{C} is the canonical group of \mathcal{G}.

In the following sections we will focus on bounding the number of spanning arborescences in the directed graph D_I, where $I \in \{R, C, S\}$, obtained from a face 2-coloured spherical triangulation \mathcal{G} of a simple graph G. In Section 3 considering all such \mathcal{G} with a fixed number of faces in each colour class yields the improved upper bound. In Section 4 we provide a construction for face 2-coloured spherical triangulations for which the associated graphs D_I, where $I \in \{R, C, S\}$, have many spanning arborescences, obtaining a lower bound. Before doing so we will discuss the construction of face 2-coloured spherical triangulations that yield specific canonical groups.
2.4 Constructing abelian groups

Proposition 1. Let \(m \geq 1 \). There exists a face 2-coloured spherical triangulation of a simple graph with canonical group \(C \cong \mathbb{Z}_m \).

Proof. Let \(D \) be the strongly connected directed Eulerian spherical digraph with two vertices, \(v_0 \) and \(v_1 \) say, and \(2m \) arcs, \(m \) from \(v_0 \) to \(v_1 \) and \(m \) from \(v_1 \) to \(v_0 \) where the edge rotation at each vertex alternates between incoming and outgoing arcs. Then \(L(D) = \begin{bmatrix} m & -m \\ -m & m \end{bmatrix} \) and \(L'(D) = [m] \), so \(S \cong \mathbb{Z}_m \).

By Lemma 1, there exists a face 2-coloured spherical triangulation, with a vertex 3-colouring given by the sets \(R, C \) and \(S \) where \(D = D_I \) for some \(I \in \{ R, C, S \} \). It is easy to see that in this case the triangulation is of a simple graph. \(\square\)

We will use recursive applications of the following elementary lemma to prove Proposition 2.

Lemma 3. Given two Eulerian digraphs \(D_1 \) and \(D_2 \) with disjoint vertex sets the graph \(D \) obtained by identifying a vertex in \(D_1 \) with a vertex in \(D_2 \) has an abelian sand-pile group isomorphic to \(S(D_1) \oplus S(D_2) \).

Proof. Let \(v_1 \in V(D) \) and \(v_2 \in V(D_2) \) be the vertices identified to form \(D \) and denote the identified vertex as \(v \). As \(D_1 \) and \(D_2 \) are strongly connected and Eulerian, \(D \) is also strongly connected and Eulerian. Let \(L'(D_1) \) (respectively \(L'(D_2), L'(D) \)) be the reduced asymmetric Laplacians with sink \(v_1 \) in \(D_1 \) (respectively \(v_2 \) in \(D_2 \) and \(v \) in \(D \)). Then applying, possibly trivial, row and column permutations to \(L'(D) \) yields

\[
\begin{bmatrix}
L'(D_1) & 0 \\
0 & L'(D_2)
\end{bmatrix}.
\]

\(\square\)

Proposition 2. Consider an arbitrary finite abelian group \(\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k} \). Then there exists a face 2-coloured spherical triangulation with canonical group isomorphic to \(\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k} \).

Proof. Using Proposition 1 construct graphs \(D_i \) for \(1 \leq i \leq k \) where \(S(D_i) = \mathbb{Z}_{m_i} \). Take any spherical embedding of a tree with \(k \) edges, labelled \(e_1, \ldots, e_k \), and replace each edge with \(D_i \). It is easy to see that this can be done so
that the resulting embedded digraph, D, is a strongly connected directed Eulerian spherical digraph. The resulting graph can also be obtained by recursive applications of Lemma 3 and hence has an abelian sand-pile group isomorphic to $\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}$. Therefore, by Lemma 1, there exists a face 2-coloured triangulation that has $\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}$ as its canonical group.

Figure 4 illustrates the construction used in the proof of Proposition 2 in the case where the canonical group of the face 2-coloured triangulation is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{A face 2-coloured spherical triangulation whose canonical group is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. A vertex has been placed at infinity and the digraph D_R, where $R = \{r_0, r_1, r_2\}$, is shown with dashed arcs.}
\end{figure}

Note that the construction used in the proof of Proposition 2 yields triangulations of graphs that are not simple, i.e. they do not correspond to latin bitrades.

Let $A = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_{k-1}}$ where, without loss of generality, $m_i > 1$ for $1 \leq i \leq k - 1$. The construction in the proof of Proposition 2 yields a triangulation G with a proper vertex three colouring given by R, C and S such that $D \cong D_R(G)$ and neither $D_C(G)$ nor $D_S(G)$ contain any cut vertices. Hence a set T of nonisomorphic trees on k vertices yields $|T|$ nonisomorphic face 2-coloured triangulations all of which have canonical groups isomorphic to A. (Otter [18] showed that the number of nonisomorphic trees on k vertices is asymptotically $0.4399237(2.95576)^{k3/2}$.)
3 Improving the upper bound

In this section all the face 2-coloured spherical triangulations will be of simple graphs. Moreover, as we are concerned with the behaviour of m_t as $t \to \infty$, in the following discussion, we take $t \geq 4$. Hence every vertex in any triangulation considered is contained in at least four faces.

Similarly to the approach taken by Ribó Mor in [17], the improved upper bound for $\lim \sup_{t \to \infty} (m_t)^{1/t}$ is obtained using a probabilistic argument based on Suen’s Inequality. However, the results in [17] are concerned with the growth of the number of spanning trees in terms of the number of vertices in the graph, rather than the number of arcs. A vital component of Ribó Mor’s argument is the addition of edges to a planar graph to obtain a triangulation. Thus, although the beginning of our argument follows that of [17] (in setting up the use of a refinement of Suen’s Inequality), as we are interested in the growth rate as the number of arcs increases, the remainder necessarily follows a different approach.

Let $\{I_i\}_{i \in I}$ be a finite family of Bernoulli random variables each with success probability p_i; i.e. $\mathbb{P}(I_i) = p_i$. A simple graph Γ where $V(\Gamma) = I$ is called a dependency graph for $\{I_i\}_{i \in I}$ if when two disjoint subsets of I, A and B say, are mutually independent, there is no edge between any vertex in A and any vertex in B. In particular two distinct variables I_i and I_j are independent unless there is an edge between i and j. For ease of notation, when discussing a dependency graph, if there exists an edge between vertices i and j, we write $i \sim j$.

We will make use of the following refinement to Suen’s Inequality (note that in our case both Suen’s Inequality and that presented in Theorem 1 yield the same bound).

Theorem 1 (Janson [16]). Let I_i, where $i \in I$ be a finite family of Bernoulli random variables with success probability p_i, having a dependency graph Γ. Let $S = \sum_{i \in I} I_i; \mu = \mathbb{E}(S) = \sum_{i \in I} p_i; \Delta = \frac{1}{2} \sum_{i \in I} \sum_{j \in I, i \sim j} \mathbb{E}(I_iI_j);$ and $\delta = \max_{i \in I} \sum_{k \sim i} p_k$. Then

$$\mathbb{P}(S = 0) \leq \exp \left(-\mu + \Delta e^{2\delta} \right).$$

Let G be a properly face 2-coloured triangulation of a simple graph G with t faces of each colour such that the order of its canonical is maximum over all such triangulations. Fix a vertex i_0 of $D_I(G)$ (for the remainder of this section we will write D_I for $D_I(G)$). Let \mathcal{R} be a random selection of incoming
arcs, one for each vertex of \(V(D_I) - i_0\). Then, denoting the subgraph of \(D_I\) induced by the arcs of \(R\) as \(D_I[R]\), we have

\[
T(D_I) = \mathbb{P}\left(D_I[R] \text{ is a spanning arborescence rooted at } i_0 \right) \prod_{i \in V(D_I) - i_0} \deg_{D_I}(i).
\]

Equivalently

\[
T(D_I) = \mathbb{P}(D_I[R] \text{ contains a directed cycle}) \prod_{i \in V(D_I) - i_0} \deg_{D_I}(i).
\]

We can now use Theorem 1 to provide an upper bound for the probability that \(D_I[R]\) does not contain a directed cycle (as \(R\) contains exactly one incoming arc for each vertex not equal to \(i_0\) if the underlying graph contains a cycle, it must be directed).

Let \(D_{I-i_0}\) denote the set of all directed cycles in \(D_I\) that do not contain the vertex \(i_0\). For each \(\gamma \in D_{I-i_0}\), define:

\[
I_\gamma = \begin{cases} 1 & \gamma \text{ is a subgraph of } D_I[R]; \\
0 & \text{otherwise}. \end{cases}
\]

From the definition of \(R\) the arcs of \(\gamma\) are independent events and an arc from a vertex \(u\) to a vertex \(v\), where there is an arc from \(u\) to \(v\) in \(\gamma\) occurs in \(R\) with probability \(1/(\deg_{D_I}(u))\). Hence, \(I_\gamma\) is a Bernoulli random variable taking the value 1 with probability

\[
p_\gamma = \frac{1}{\prod_{u \in V(\gamma)} \deg_{D_I}(u)}.
\]

Therefore \(S = \sum_{\gamma \in D_I} I_\gamma\) counts the number of cycles in \(D_I[R]\), and \(\mathbb{P}(S = 0)\) measures the probability that no cycle exists in \(D_I[R]\).

Define a graph \(\Gamma\) on the vertex set \(D_I\), with an edge between vertex \(\alpha\) and \(\beta\) if and only if \(\alpha\) and \(\beta\) share a vertex in \(D_I\). (Note that two cycles in \(D_I[R]\) can never share a vertex.) Thus, \(\alpha \sim \beta\) implies that \(\mathbb{E}(I_\alpha I_\beta) = 0\), and hence, the value of \(\Delta\) from Theorem 1 is zero.

Applying Theorem 1 with \(\mu = \sum_{\gamma \in D_{I-i_0}} p_\gamma\), we have:

\[
T(D_I) \leq \exp\left(-\mu\right) \prod_{i \in V(D_I) - i_0} \deg_{D_I}(i).
\]
Let D_I denote the set of all directed cycles in D_I and D_{i_0} denote the set of all directed cycles in D_I that contain i_0. Then, by Inequality 1 we have:

$$T(D_I) \leq \exp \left[\left(\sum_{i \in I} \ln(\deg_{D_I}(i)) \right) - \ln(\deg_{D_I}(i_0)) - \left(\sum_{\gamma \in D_I} p_{\gamma} \right) \right].$$

Lemma 4.

$$T(D_I) \leq \exp \left[\left(\sum_{i \in I} \ln(\deg_{D_I}(i)) \right) - \left(\sum_{\gamma \in D_I} p_{\gamma} \right) \right].$$

Proof. We show that $-\ln(\deg_{D_I}(i_0)) + \left(\sum_{\gamma \in D_{i_0}} p_{\gamma} \right) < 0$.

As D_I is Eulerian there are $\deg_{D_I}(i_0)$ cycles passing through i_0. Hence,

$$-\ln(\deg_{D_I}(i_0)) + \left(\sum_{\gamma \in D_{i_0}} p_{\gamma} \right) \leq -\ln(\deg_{D_I}(i_0)) + \deg_{D_I}(i_0) \max_{\gamma \in D_I} \{p_{\gamma}\}.$$

Now i_0 is necessarily a vertex in each cycle passing through it and the minimum (out-)degree of any vertex in D_I is 2, so

$$\max_{\gamma \in D_I} \{p_{\gamma}\} = \max_{\gamma \in D_I} \left\{ \frac{1}{\prod_{u \in V(\gamma)} \deg_{D_I}(u)} \right\} \leq \frac{1}{2 \deg_{D_I}(i_0)}.$$

Therefore,

$$-\ln(\deg_{D_I}(i_0)) + \left(\sum_{\gamma \in D_{i_0}} p_{\gamma} \right) \leq -\ln(2) + \frac{\deg_{D_I}(i_0)}{2 \deg_{D_I}(i_0)} < 0.$$

By Lemma 2, $T(D_R) = T(D_C) = T(D_S)$, so, by Lemma 4 we have:

$$T(D_I)^3 \leq T(D_R)T(D_C)T(D_S) \leq \exp \left[\left(\sum_{r \in R} \ln(\deg_{D_R}(r)) + \sum_{c \in C} \ln(\deg_{D_C}(c)) + \sum_{s \in S} \ln(\deg_{D_S}(s)) \right) - \left(\sum_{\gamma \in D_R} p_{\gamma} + \sum_{\gamma \in D_C} p_{\gamma} + \sum_{\gamma \in D_S} p_{\gamma} \right) \right].$$
Denote the set of faces in D_I, for $I \in \{R, C, S\}$, by F_I; and, in a slight abuse of notation, the set of vertices on a face f by $V(f)$. As the triangulation is of a simple graph it is piecewise linear. Hence, the facial walk of any face in F_I is a cycle and so $F_I \subseteq D_I$. As $\deg_{D_I}(i) = \frac{1}{2} \deg_G(i)$, we have

$$3 \ln(T(D_I)) \leq \left(\sum_{v \in V} \ln \left(\frac{1}{2} \deg_G(v) \right) \right) - \left(\sum_{f \in F_R} \frac{1}{\prod_{r \in V(f)} \deg_{D_R}(r)} \right) - \left(\sum_{f \in F_C} \frac{1}{\prod_{c \in V(f)} \deg_{D_C}(c)} \right) - \left(\sum_{f \in F_S} \frac{1}{\prod_{s \in V(f)} \deg_{D_S}(s)} \right).$$

Let $\{I_0, I_1, I_2\} = \{R, C, S\}$. Consider a vertex $i \in I_0$, then the rotation at i is

$$\rho(i) = (u_1, v_1, u_2, v_2, \ldots, u_{\frac{1}{2} \deg_G(i)}, v_{\frac{1}{2} \deg_G(i)}),$$

where, without loss of generality, $u_j \in I_1$ and $v_j \in I_2$ for all $1 \leq j \leq \frac{1}{2} \deg_G(i)$. Note that i corresponds to the face with facial walk $(u_1, u_2, \ldots, u_{\frac{1}{2} \deg_G(i)})$ in G_{I_1} and the face with facial walk $(v_1, v_2, \ldots, v_{\frac{1}{2} \deg_G(i)})$ in G_{I_2}. Hence, defining $\rho_1(i) = \{u_1, u_2, \ldots, u_{\frac{1}{2} \deg_G(i)}\}$ and $\rho_2(i) = \{v_1, v_2, \ldots, v_{\frac{1}{2} \deg_G(i)}\}$ we have the following upper bound for $3 \ln(T(D_I))$.

$$\left(\sum_{v \in V} \ln \left(\frac{1}{2} \deg_G(v) \right) \right) - \left(\sum_{v \in V} \frac{1}{\prod_{j \in \rho_1(v)} \frac{1}{2} \deg_G(j)} \right) - \left(\sum_{v \in V} \frac{1}{\prod_{j \in \rho_2(v)} \frac{1}{2} \deg_G(j)} \right).$$

Let n_k denote the number of degree k vertices in G. Then arguing from Inequality 2 we prove the following theorem.

Theorem 2. Let m_t be the maximal order of the canonical group of all properly face two-coloured spherical triangulations of simple graphs with t faces of each colour. Then

$$\limsup_{t \to \infty} (m_t)^{1/t} \leq \exp \left(\frac{\ln(3) + \ln(2)}{5} \right) < 1.431.$$

Proof. Define a function $g : V \to \mathbb{Z}$ by

$$g : v \mapsto \begin{cases}
2, & \text{if all the neighbours of } v \text{ have degree } \leq 6; \\
1, & \text{if all the neighbours of } v \text{ in precisely one of the two colour classes in } \rho(v) \text{ have degree } \leq 6; \\
0, & \text{otherwise.}
\end{cases}$$
Let $N_4 = \{ v \in V(G) : \deg(v) = 4 \}$ and $N_6 = \{ v \in V(G) : \deg(v) = 6 \}$. Further let $0 \leq \alpha \leq 2$ and $0 \leq \beta \leq 2$ be such that $\alpha n_4 = \sum_{v \in N_4} g(v)$ and $\beta n_6 = \sum_{v \in N_6} g(v)$.

Rewriting the upper bound (2) in terms of the n_k's, and bounding the second summation in terms of α and β we have

$$3 \ln(T(D_I)) \leq \left(\sum_{i=2}^{\Delta(G)/2} \ln(i) n_{2i} \right) - \frac{\alpha n_4}{3^2} - \frac{\beta n_6}{3^3}.$$

As the average degree of a vertex in G is $6 - 12/n$, for each vertex of degree $2i > 6$ we can associate $(2i - 6)/2$ degree four vertices. Hence we have that $n_4 = 6 + \sum_{i=4}^{\Delta(G)/2} (i - 3)n_{2i}$. Thus

$$3 \ln(T(D_I)) < \ln(3) n_6 + \left(\sum_{i=4}^{\Delta(G)/2} (\ln(i) + (i - 3) \ln(2)) n_{2i} \right) - \frac{\alpha n_4}{9} - \frac{\beta n_6}{27}.$$

Consider a vertex v in N_j, where $j \in \{4, 6\}$. Recall that if $\rho_1(v)$ contains a vertex with degree greater than 6 but $\rho_2(v)$ does not, then $g(v) = 1$; if both $\rho_1(v)$ and $\rho_2(v)$ do not contain vertices of degree larger than 6, then $g(v) = 2$; and otherwise $g(v) = 0$. Hence, $3\alpha n_4 + \beta n_6 \geq 3 \left(2n_4 - \sum_{i=4}^{\Delta(G)/2} 2(i - 3)n_{2i} \right) + \left(2n_6 - \sum_{i=4}^{\Delta(G)/2} 2(i - (i - 3))n_{2i} \right) = 3(12) + 2n_6 - 6 \sum_{i=4}^{\Delta(G)/2} n_{2i} > 2n_6 - 6(n - n_6 - n_4)$. Therefore,

$$3 \ln(T(D_I)) < \ln(3) n_6 + \left(\sum_{i=4}^{\Delta(G)/2} (\ln(i) + (i - 3) \ln(2)) n_{2i} \right) - \frac{A}{27},$$

where

$$A = \begin{cases} 8n_6 + 6n_4 - 6n, & \text{if } 8n_6 + 6n_4 > 6n; \\ 0, & \text{otherwise}. \end{cases}$$

In $\sum_{i=4}^{\Delta(G)/2} (\ln(i) + (i - 3) \ln(2)) n_{2i}$, the coefficient $\ln(i) + (i - 3) \ln(2)$ corresponds to the average contribution of $i - 2$ vertices (one of degree $2i$ and $i - 3$ of degree four). Hence the sum corresponds to the contribution of all the vertices of degree not equal to 6. As $3 \ln(2)/2 \geq (\ln(i) + (i - 3) \ln(2))/(i - 2)$ for all $i \geq 4$ we have that

$$3 \ln(T(D_I)) < \ln(3)n_6 + \frac{3 \ln(2)}{2} (n - n_6) = \left(\ln(3) - \frac{3 \ln(2)}{2} \right) n_6 + \frac{3 \ln(2)n_6}{2},$$

15
regardless of whether or not $A = 0$.

Now, suppose that $8n_6 + 6n_4 > 6n$. Then $A \neq 0$ and

$$3 \ln(T(D_I)) < \ln(3)n_6 + \sum_{i=4}^{\Delta(G)/2} \left(\ln(i) + (i - 3) \ln(2) \right) n_{2i} - \frac{8n_6 + 6n_4 - 6n}{27}.$$

As $n_4 = 6 + \sum_{i=4}^{\Delta(G)/2} (i - 3) n_{2i}$ we have that

$$3 \ln(T(D_I)) < \frac{6n}{27} + \left(\ln(3) - \frac{8}{27} \right) n_6 + \sum_{i=4}^{\Delta(G)/2} \left(\ln(i) + \left(\ln(2) - \frac{6}{27} \right) (i - 3) n_{2i} \right).$$

As $\frac{3 \ln(2)}{2} - \frac{6}{54} \geq \frac{1}{i-2} \left(\ln(i) + (i - 3) \left(\ln(2) - \frac{6}{27} \right) \right)$ for all $i \geq 4$ we have that

$$3 \ln(T(D_I)) < \frac{6n}{27} + \left(\ln(3) - \frac{8}{27} \right) n_6 + \left(\frac{3 \ln(2)}{2} - \frac{6}{54} \right) (n - n_6).$$

$$= \left(\frac{3 \ln(2)}{2} + \frac{6}{54} \right) n + \left(\ln(3) - \frac{3 \ln(2)}{2} - \frac{10}{54} \right) n_6.$$

So we have overall upper bound for $3 \ln(T(D_I))$ when

$$\left(\ln(3) - \frac{3 \ln(2)}{2} \right) n_6 + \frac{3 \ln(2)}{2} n = \left(\frac{3 \ln(2)}{2} + \frac{6}{54} \right) n + \left(\ln(3) - \frac{3 \ln(2)}{2} - \frac{10}{54} \right) n_6;$$

i.e., when $n_6/n = 3/5$. Hence,

$$\limsup_{t \to \infty} (m_t^{1/t}) \leq \limsup_{t \to \infty} (m_t^{1/t}) \left(\exp \left(\frac{t(\ln(3) + \ln(2))}{5} \right) \right)^{1/t}$$

$$= \exp \left(\frac{\ln(3) + \ln(2)}{5} \right).$$

\[\square\]

A family of face 2-coloured spherical triangulations that has attracted recent interest, see [5] and [6], are triangulations that contain precisely six degree 4 vertices and all the other vertices have degree 6, i.e. near-homogeneous
face 2-coloured spherical triangulations. Part of the motivation for their study comes from their connection to a solved case of Barnette’s Conjecture [12]. When restricting ourselves to the near-homogeneous case we can significantly improve the upper bound.

Theorem 3. Let \(h_t \) be the maximal order of the canonical group of all near-homogeneous properly face two-coloured spherical triangulations. Then

\[
\limsup_{t \to \infty} \left(h_t \right)^{1/t} < \left(\exp \left(\ln(3) - \frac{2}{27} \right) \right)^{1/3} < 1.4071.
\]

Proof. As a near-homogeneous spherical triangulation has exactly six degree four vertices and every other vertex has degree six, the upper bound reduces to \(6 \ln(2) + \left(\ln(3) - \frac{2}{27} \right) (n - 6) \), and the result follows. \(\square \)

4 Improving the lower bound

In [13], Grubman and Wanless analyse the effect, to order of the canonical group of face 2-coloured spherical triangulations, of applying several recursive constructions. They obtain a lower bound on the growth rate of \(5123^{1/30} \) by using a construction that identifies a black triangle in one face 2-coloured spherical triangulation, \(G_1 \), with a white triangle in a second face 2-coloured spherical triangulation, \(G_2 \). When viewed as a recursive construction applied to edges of the related digraphs \(D_I(G_1) \) and \(D_I(G_2) \) this equates to removing an arc from a vertex \(u \) to a vertex \(u' \) in \(D_I(G_1) \) and an arc from a vertex \(w \) to a vertex \(w' \) in \(D_I(G_2) \), then identifying \(u \) and \(w' \) and adding an arc from \(w \) to \(u' \). Denote the resulting strongly connected digraph as \(D \), then, by considering the spanning arborescences rooted at \(u = w' \), it follows that \(\mathcal{T}(D) = \mathcal{T}(D_I(G_1))\mathcal{T}(D_I(G_2)) \). Note that the construction can be applied so that \(D \) has a directed embedding in the sphere.

By considering recursive constructions applied to faces, rather than the arcs, of \(D_R, D_C \) and \(D_S \), taking care to ensure the resulting related undirected triangulations are still simple, we will provide an improved lower bound.

Lemma 5. Let \(G \) be a face 2-coloured spherical triangulation of a simple graph \(G \), with a proper vertex 3-colouring given by the colour classes \(R, C \) and \(S \), and with canonical group \(C \). Suppose that \(G \) has \(t \) faces of each colour class. Further suppose that \(D_I(G) \) for some \(I \in \{R,C,S\} \) where \(|I| > k \) contains a face, \(f \) say, of size \(k \) the vertices of which all have (out-)degree 2.
Then there exists a face 2-coloured spherical triangulation G' of a simple graph with $t + 2k$ faces with a proper vertex 3-colouring given by the colour classes R', C' and S' with canonical group C' such that: there exists a $I \in \{R', C', S'\}$ where $D_I(G')$ contains a face of size k in which all the vertices have (out-)degree 2; and

$$|C'| \geq \left(\sum_{j=0}^{k-1} \frac{1}{2j-2} \binom{k-1}{j} \right) |C|.$$

Proof. Denote the vertices of the face f by v_1, v_2, \ldots, v_k so that the arcs on the boundary of the face are from v_i to v_{i+1}, where subscripts are taken modulo k. Insert a new vertex into the interior of f, call this vertex u, also add an arc from u to v_j and an arc from v_j to u, for all $1 \leq j \leq k$, maintaining a directed Eulerian spherical embedding, D' say. (We have replaced a face of size k with k triangular faces and k digons.)

We next calculate a lower bound for the number of spanning arborescences in D'. Let A be the set of all spanning arborescences in D rooted at $x \notin \{v_1, v_2, \ldots, v_k\}$. Choose a vertex $v \in \{v_1, v_2, \ldots, v_k\}$. Let $1 \leq j \leq k - 1$ and select j distinct vertices from $\{v_1, v_2, \ldots, v_k\} \setminus \{v\}$, denote them v_1', \ldots, v_j'. For each arborescence in A, remove the ingoing arc with end vertex v_i', for all $1 \leq i \leq j$. As $\deg_D(v_i') = 2$ this yields at least $\frac{1}{2} |A|$ different subgraphs. Now, to each of these subgraphs, add the arc from v to u and the arcs from u to v_i' for all $1 \leq i \leq j$. This results in $\frac{1}{2} |A|$ spanning arborescences of D' rooted at x. There were k choices for v and $\binom{k-1}{j}$ choices for the other j vertices. Hence we have at least

$$\left(\sum_{j=0}^{k-1} \frac{1}{2j-2} \binom{k-1}{j} \right) |A|$$

spanning arborescences rooted at x in D'.

To complete the proof we need to show that D' corresponds to a face 2-coloured spherical embedding of a simple graph G' with a vertex 3-colouring with colour classes R', C' and S' and that there exists a $I \in \{R', C', S'\}$ such that $D_I(G')$ has a face of size k in which all the vertices have (out-)degree 2.

By Lemma 1 D' corresponds to a face 2-coloured spherical triangulation G'. To see that this new triangulation is also of a simple graph note the following. The triangulation G' can be obtained from G by first deleting the vertex of degree $2k$ that corresponds to f in D_I and all the faces and
edges incident to it and replacing them with a single face of size $2k$. Denote the vertices of this new face by $w_0, w_1, \ldots, w_{2k-1}$ so that the edges on the boundary of the face are from w_i to w_{i+1} where subscripts are taken modulo $2k$. Next insert $2k + 1$ new vertices, z, z_0, \ldots, z_{2k-1} and edges into the new face so that the rotations at the new vertices are:

$$\rho(z) = (z_0, z_1, \ldots, z_{2k-1})$$
$$\rho(z_i) = (z, z_{i-1}, w_i, z_{i+1}),$$

where $0 \leq i \leq 2k - 1$ and subscripts are taken modulo $2k$. Hence G' is also a triangulation of a simple graph.

By Observation 1, G' contains a vertex (z in the previous paragraph) with degree $2k$ whose neighbours are all contained in precisely four faces (two white and two black). Hence there exists a $D_I(G')$ with a face of size k in which all the vertices have (out-)degree 2.

Theorem 4. Let m_t be the maximal order of the canonical group of all properly face two-coloured spherical triangulations of simple graphs with t faces of each colour. Then

$$\limsup_{t \to \infty} (m_t)^{1/t} \geq \left(\frac{27}{2} \right)^{1/8} > 1.384.$$

Proof. Consider the face 2-coloured spherical triangulation of a simple graph illustrated in Figure 3. The vertex set $R = \{r_0, r_1, r_2, r_3, r_4\}$ forms a colour class of a vertex three colouring (the other classes being $\{c_1, c_2, c_3, c_4\}$ and $\{s_0, s_1, s_2, s_3, s_4\}$). The digraph D_R contains a face of size 4 in which all the vertices have (out-)degree 2. Repeated application of Lemma 5 obtains the result.

Similar base triangulations for Lemma 5 to be recursively applied to can easily be obtained for face sizes other than 4, but the resulting families have smaller growth rates.

References

[1] S.R. Blackburn and T.A. McCourt, ‘Triangulations of the sphere, bi-trades and abelian groups’, *Combinatorica*, in press.
[2] C.P. Bonnington, M. Conder, M. Morton and P. McKenna, ‘Embedding digraphs on orientable surfaces’, J. Combin. Theory Ser. B, 85 (2002), 1–20.

[3] C.P. Bonnington, N. Hartsfield and J. Širáň, ‘Obstructions to directed embeddings of Eulerian digraphs in the plane’, European J. Combin., 25 (2004), 877–891.

[4] K. Buchin, A. Schulz, ‘On the number of spanning trees a planar graph can have’, Proc. 18th Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci., 6346, Springer-Verlag, Berlin (2010), 110–121.

[5] N.J. Cavenagh, ‘Embedding 3-homogeneous latin trades into abelian 2-groups’, Commentat. Math. Univ. Carolin. 45 (2004), 194–212.

[6] N.J. Cavenagh, ‘Near-homogeneous spherical Latin bitrades.’ Comment. Math. Univ. Carolin. 54 (2013), 313–328.

[7] N.J. Cavenagh and I.M. Wanless, ‘Latin trades in groups defined on planar triangulations’, J. Algebr. Comb. 30 (2009), 323–347.

[8] Y. Chen, J.L. Gross, and X. Hu, ‘Enumeration of digraph embeddings’, European J. Combin. 36 (2014), 660–678.

[9] A. Drápal and N.J. Cavenagh, Open Problem 8, ‘Open problems from Workshop on latin trades’, Prague, 6–10 February 2006. http://www.karlin.mff.cuni.cz/~rozendo/op.html

[10] A. Drápal, C. Hämäläinen and V. Kala, ‘Latin bitrades, dissections of equilateral triangles, and abelian groups’, J. Combin. Des., 18 (2010), 1–24.

[11] A. Drápal and T. Kepka, ‘Exchangeable partial groupoids I’, A Acta Univ. Carolin. Math. Phys. 24 (1983), 57–72.

[12] P.R. Goodey, ‘Hamiltonian circuits in polytopes with even sided faces.’ Israel J. Math. 22 (1975), 52–56.

[13] T. Grubman and I.M. Wanless, ‘Growth rate of canonical and minimal group embeddings of spherical latin trades.’ J. Combin. Theory Ser. A 123 (2014), 57–72.
[14] P.J. Heawood, ‘On the four-colour map theorem’, *Quart J. Pure Math.* 29 (1898), 270–285.

[15] A.E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp and D.B. Wilson, Chip-firing and rotor-routing on directed graphs, in: In and Out of Equilibrium, vol. 2, in: Progr. Probab., vol. 60, Birkhäuser, Basel, 2008, pp. 331–364.

[16] S. Janson, ‘New versions of Suen’s Correlation Inequality’, *Random Struct. Alg.* 13 (1998), 476–483.

[17] A. Ribó Mor. *Realization and Counting Problems for Planar Structures: Trees and Linkages, Polytopes and Polyominoes.* PhD thesis, Freie Universität Berlin, 2006.

[18] R. Otter, ‘The number of trees’, *Ann. of Math.* 49 (1948), 583–599.

[19] W.C.S. Suen, ‘A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph’, *Random Struct. Alg.* 1 (1990), 231–242.

[20] W.T. Tutte, *Graph theory*, Addison–Wesley, Reading, MA, 1984.