Data Article

MiBio: A dataset for OCR post-processing evaluation

Jie Meia, Aminul Islamb, Abidalrahman Moh’da, Yajing Wua, Evangelos E. Miliosa

aFaculty of Computer Science, Dalhousie University, Canada
bSchool of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70503, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 11 June 2018
Accepted 24 August 2018
Available online 15 September 2018

\textbf{A B S T R A C T}

We introduce a dataset for OCR post-processing model evaluation. This dataset contains fully aligned OCR texts and the ground truth recognition texts of an English biodiversity book. To better used for benchmark evaluation, we extracted the following information in TSV files: 1) 2907 OCR-generated errors with position in the OCR texts and correction in the ground truth text, 2) ground truth word and sentence segmentation of the OCR texts. In this article, we detail the data preprocessing and provide quantitative data analysis.

\textcopyright{} 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\textbf{Specifications table}

Subject area	Computer Science
More specific subject area	Natural Language Processing
Type of data	Text, Table
How data was acquired	OCR texts are generated from scanned book images by an open source OCR engine (Tesseract 3.0.2) and ground truth texts are generated with additional manual correction. Tables contain information (i.e. ground truth OCR tokens and OCR error corrections) extracted from the texts.

\textbf{DOI of original article:} https://doi.org/10.1016/j.ipm.2018.06.001
\textbf{E-mail addresses:} jmei@cs.dal.ca (J. Mei), aminul@louisiana.edu (A. Islam), amohd@cs.dal.ca (A. Moh’d), yajing@cs.dal.ca (Y. Wu), eem@cs.dal.ca (E.E. Milios).

https://doi.org/10.1016/j.dib.2018.08.099
2352–2409/\textcopyright{} 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- This dataset can be used for evaluating and comparing the performance of OCR post-processing models.
- This dataset contains page-separated OCR texts and corresponding ground truth texts. The line and paragraph breaks in the source image are preserved in both text versions. Thus each line in both OCR and ground truth texts are fully aligned and can easily refer to each other.
- OCR errors are extracted and listed in a table. For each OCR error, we record its correction in the ground truth text and position in the OCR text.
- We provide the ground truth word and sentence segmentation for OCR texts to disambiguate word and sentence boundary and to be served as a reference when evaluating the tokenization performance of post-processing models.

1. Data

We made available Mining Biodiversity (MiBio) dataset with 2910 OCR-generated errors along with the OCR and the ground truth recognition texts for benchmark testing. The OCR text was generated from the book titled “Birds of Great Britain and Ireland (Volume II)” [1] and made publicly available by the Biodiversity Heritage Library (BHL) for Europe1 using Tesseract 3.0.232. The ground truth text is based on an improved OCR output3 and adjusted manually to match with the original content of the whole book.

The scanned image data of the book contains 460 page-separated files, where the main content is included in 211 pages. The scanned images and different format of raw OCR outputs are online accessible and downloadable on https://archive.org/download/birdsofgreatbrit02butl.

2. Experimental design, materials, and methods

2.1. OCR and ground truth recognition texts preprocessing

The dataset is generated from two OCR outputs for book “Birds of Great Britain and Ireland (Volume II)” [1]. One version is generated from the standard BHL-Europe recognition workflow, which OCR technique is based on Tesseract 3.0.23. We manually correct the OCR errors in the OCR outputs to be the ground truth. We then remove footnotes and page numbers in both versions to keep the content fluency over pages.

1 http://www.biodiversitylibrary.org/item/35947#page/13/mode/1up
2 https://github.com/tesseract-ocr/tesseract
3 http://www.bhle.eu/en/results-of-the-collaboration-of-bhl-europe-and-impact
Fig. 1. A image segment (a) and its corresponding OCR-generated text (b) of the evaluation dataset. The recognition errors are highlighted in red.

2.2. OCR error extraction

When generating the error list, we adopted the following rules in extracting the OCR errors in aligned contents from the OCR and the ground truth texts:
when segmenting an OCR-generated string into substrings that match with tokens in the ground truth text, the separating positions are approximated manually to make the best guess. For example, given an OCR string “fFinHluurJ” aligns with “(Fringillinae)” in the ground truth, we separated this string into three error-correction mappings: < f → >, < FrinHluurJ → Fringillinae >, and < J → >. In another example, given an OCR string “countrJ” and “country,” in the ground truth, we split it as two error-correction mapping: < countrJ → country > and < →, >.

- Two ASCII substitution of unicode characters are allowed: (æ, ae) and (Æ, AE). Note that the dataset is generated from a biodiversity book, which contains terminologies with non-English characters, for example, Corvidæ or ORIOLIDÆ. We accept these two ASCII substitutions in order to match the original terminologies to their English counterparts.

- The aligned two words with different cases is not treated as an error. Observed that the standard BHL-Europe recognition workflow is tend to lowercase the non-heading characters in some entirely capitalized words. Thus, we do not categorized this type of mismatches as error. Such change in capitalization form is also hard to detect by human readers with only input text when page layout is eliminated.

- The extra whitespaces between tokens are allowed. It is also observed that the standard BHL-Europe recognition workflow generate extra whitespaces between tokens. We do not categorize this type of mismatch as error unless the inserted whitespace leads to a splitting or merging error.

2.3. OCR text tokenization

Tokenizing OCR text is one internal step in OCR post-processing. The tokenization performance affect downstream error detection and correction. Since intra-word characters of OCR errors can be misrecognized as punctuation, it is hard to disambiguate the misrecognized punctuation with true punctuation in an OCR text and thus lead to high token boundary ambiguities. We thus provide the ground truth OCR tokens for evaluating the tokenization performance of OCR post-processing models. The ground truth tokens are generated by first tokenizing the ground truth recognition text and maps the segmentation positions to the OCR texts.

Referencing to the ground truth OCR tokens in the dataset, we quantitative analysis the tokenization performance on the OCR texts by tokenization different schemes including the Whitespace, Penn Treebank, WASTE [2] and Elephant [4]. The results are shown in Table 2. The tokenization result shows that the correct word boundaries of OCR errors are hard to be identified by man-crafted rules or trained segmentation models.

2.4. Dataset analysis

To have a close look at the OCR input/output, we sample a segment of OCR-generated text with original scanned image In Fig. 1. Table 1 shows the OCR performance, measured by precision and recall, indicating a high quality OCR output with low error rate in both word- and character-level measurements.

Observed that some OCR errors are orthographically far from their correction, we further analyze the distribution of error words with respect to Levenshtein edit distance [3] in Table 3. Although within edit distance three induces more than 80% of the OCR errors, some OCR errors have high edit distance and are very complicated to correct.

Table 1
The precision and recall of OCR generated text.

Measure	Character-wise	Word-wise
Precision	1 – 6362/409236 = 98.45%	1 – 2906/101700 = 97.14%
Recall	1 – 6362/407194 = 98.44%	1 – 2906/98097 = 97.04%
Table 2
The performance of different tokenization schemes on the OCR text.

Tokenization method	Prec. [%]	Rec. [%]	F1 [%]	Err. [%]
Whitespace convention	85.5	73.14	78.84	94.93
Penn Treebank convention	94.33	93.94	94.13	11.08
WASTE (Jurish 2013)	95.18	93.14	94.15	11.05
Elephant (Evang et. al. 2013)	95.17	93.18	94.16	11.03

Table 3
The Levenshtein distance distribution of the errors in the OCR texts.

Edit distance	Error statistics	Sample OCR error		
	Number	Percent [%]	Correction	Error
1	889	30.58	gaihula	ga/bula
2	1376	47.35	yellowish	yellowish
3	307	10.56	bents	ljnts
4	148	5.09	my	ni'
5	70	2.41	Lanius	Lioiilts
6	51	1.75	minor	jii > iof
7	28	0.96	garrulus	f;ay > //us
8	16	0.55	curviostra	iJi7'iyoisra
9	5	0.17	Nucifraga	Aiii/rutl
>= 10	16	0.55	pomeranus	poiui-nViis
Total	2906	100		

Acknowledgements

This research was funded by the Social Sciences and Humanities Research Council of Canada (SSHRC) via RGPDD 451330, RGPIN 130082, and RGPIN 06183.

Transparency document. Supporting information

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.099.

References

[1] Arthur G. Butler, Frederick William Frohawk, H. Gr onvold, Birds of Great Britain and Ireland. Order Passeres, Brumby & Clarke, Hull, 1907.
[2] B. Jurish, Word and sentence tokenization with Hidden Markov Models, J. Lang. Technol. Comput. Linguist. 28 (2) (2013) 61–83.
[3] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 10 (1966) 707.
[4] K. Evang, V. Basile, G. Chrupała, J. Bos, Elephant: Sequence Labeling for Word and Sentence Segmentation, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (2013) pp. 1422–1426.