Partitioned Particle Swarm Optimization

Bisheban M.*, Mahmoodabadi MJ* and Bagheri A1

1Young Researchers Club, Bandar Anzali branch, Islamic Azad University, Bandar Anzali, Iran
2Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
3Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran

Abstract

The particle swarm optimization (PSO) is a population-based optimization method inspired by flocking behavior of birds and human social interaction. So far, numerous modifications of PSO algorithm have been published, which make the PSO method more complex. Several improved PSO versions succeed in keeping the diversity of the particles during the searching process, but at the expense of convergence speed. This paper is aimed at increasing the rate of convergence and diversity of solutions in the population via two easy techniques:

(a) Applying improved acceleration coefficients
(b) Dividing search space into blocks. In particular, the second technique is efficient in the case of functions with optimal design variables situated in the one block. Hence, instead of proposing more complex variant of PSO, a simplified novel technique, called Partitioned Particle Swarm Optimizer (PPSO), has been proposed. In order to find optimal coefficients of this method, an extensive set of experiments were conducted. Experimental results and analysis demonstrate that PPSO outperforms nine well-known particle swarm optimization algorithms with regard to global search.

Keywords: Partitioned Particle Swarm Optimization (PPSO); Improved acceleration coefficients; Partitioning search space; Sub population

Introduction

Particle Swarm Optimization (PSO) is one of the modern heuristic algorithms [1]. It was developed through simulation of simplified social systems, and has been found to be robust in solving nonlinear optimization problems [1,2]. PSO can generate good-quality solutions with stable convergence characteristic at a high speed [3,4]. Shi and Eberhart introduced a linearly decreasing inertia weight [5,6]. A fuzzy controller is used to adapt the inertia weight dynamically [7,8]. Clerc and Kennedy introduced a novel technique and introduced a set of coefficients to control convergence tendencies [9]. Kennedy and Mendes investigated various population topologies and proposed the Von Neumann topological structure [10,11]. Parsopoulos and Vrahatis combined local and global best topologies and proposed Unified PSO (UPSO) [12]. Mendes, Kennedy and Neves proposed Unified Particle Swarm (FPS) which all of a particle's neighbors' previous best positions are considered to calculate the next positions [13]. By moving particles towards nearby particles with better fitness, Peram et al. proposed Fitness–Distance–Ratio based PSO (FDR-PSO) [14]. Van den Bergh and Engelbrecht, by using multiple swarms to optimize different components of the solution vector cooperatively, designed Cooperative Particle Swarm Optimizer (CPSO-H) [15]. A new method to maintain diversity in a standard generational evolutionary algorithm was proposed by creating subpopulations [16]. The notion of subpopulation is applied to the hybrid model based on the PSO and the standard genetic algorithm (GA) [17]. Comprehensive Learning Particle Swarm Optimizer (CLPSO) which performs well on multimodal problems is introduced [18]. In CLPSO each dimension of a particle may learn from the corresponding dimension of different particle's personal best solution. An elitist learning strategy is introduced, and by evaluating the population distribution and particle fitness, inertia weight and acceleration coefficients of Adaptive PSO (APSO) are controlled [19]. A mechanism is integrated in the velocity update formula of Cellular PSO to modify trajectories of particles to avoid being trapped in local optimums [20]. In order to improve exploration ability, a random velocity is added to the velocity updating [21]. Inspired by the migratory behavior in the nature, the population is randomly partitioned into several sub-swarms, and some particles migrate from one complex to another to enhance the diversity of the population at periodic stage in the evolution [22]. By decomposition of the search space into subspaces which are probed by sub-swarms, a master–slave model for parallel cooperative micro-particle swarm optimization is introduced [23]. A PSO with Random Dimension Selection (PSORDS) algorithm by utilization of random dimension selection instead of stochastic coefficients is proposed [24]. While several PSO variants have been proposed, the complications were introduced in order to improve the PSO algorithm. Hence, a simplified novel technique is introduced in this paper. In this paper, to improve exploration of search space and escaping local minima, the particles are restricted to subspaces, and for increasing convergence, acceleration coefficients are improved. The rest of this paper is organized as follows. In the above section it gives a brief review on the original PSO algorithm. The above section introduces PPSO in details, followed by the other Sections analyzing the parameters used in PPSO. Experimental results and comparison study to verify the capability of PPSO are shown in the Section below. Finally, Conclusion concludes the paper.

Basic Concept of Particle Swarm Optimization

James Kennedy and Russell C. Eberhart [1] originally proposed

*Corresponding author: M.J. Mahmoodabadi. Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran, E-mail: mahmoodabadi@sirjan.tech.ac.ir

Received April 18, 2013; Accepted July 17, 2013; Published July 20, 2013

Citation: Bisheban M, Mahmoodabadi MJ, Bagheri A (2013) Partitioned Particle Swarm Optimization. J Appl Comput Math 2: 133. doi:10.4172/2168-9679.1000133
the PSO algorithm for optimization. PSO is a population-based search algorithm based on the simulation of the social behavior of birds within a flock. Although PSO was originally adopted to balance weights in neural networks [25], it soon became a popular global optimizer, mainly in problems in which the decision variables were real numbers [26,27]. In PSO, particles are flown through hyper-dimensional search spaces. Changes to the position of particles within search space are based on social-psychological tendencies of individuals to emulate success of the others. Let \(x_i(t) \) denote position of particle \(i \) at time step \(t \). The position of \(x_i(t) \) is then changed by adding a velocity \(v_i(t) \) to the current position:

\[
x_i(t + 1) = x_i(t) + v_i(t + 1)
\]

(1)

The velocity vector reflects the socially exchanged information and, in general, is defined in the following way:

\[
v_i(t + 1) = \omega v_i(t) + C_1 r_1(x_{pbest_i} - x_i(t)) + C_2 r_2(x_{gbest} - x_i(t))
\]

(2)

where \(r_1, r_2 \) have random real values with uniform distribution in \([0,1]\). \(C_1 \) is the cognitive learning factor and represents the attraction which a particle has toward its own success. \(C_2 \) is the social learning factor and represents the attraction that a particle has toward the success of the entire swarm. \(\omega \) is the inertia weight, which is employed to control the effects of previous velocity on the current velocity. \(x_{pbest_i} \) is the current best position of the particle \(i \). \(x_{gbest} \) is the position of the best particle in the entire swarm.

PPSO

In this section, a novel variant of PSO is proposed, which is improved by a new search technique and utilizing modified acceleration coefficients to update particle positions. Traditional PSO algorithms easily fall into stagnation, when no particle is able to discover a better position than its previous best position on several iterations. The aim of introducing subspaces is to restrict particles to keep diversity, and to avoid suboptimal convergence. Search space is divided into subspaces, and particles are forwarded to them to explore global optima, quickly and precisely. Actually, particles attempt to evade suboptimal convergence. Search space is divided into \(R \) subspaces, and particles are forwarded to them to explore global optima, quickly and precisely. Actually, particles attempt to evade suboptimal convergence. Search space is divided into subspaces, and particles are forwarded to them to explore global optima, quickly and precisely. Actually, particles attempt to evade suboptimal convergence. Search space is divided into subspaces, and particles are forwarded to them to explore global optima, quickly and precisely. Actually, particles attempt to evade suboptimal convergence.

The number of members in a group is the integer part of the result of division of the population number by \(R \). If the reminder is not zero, the rest of particles will be added randomly to groups. Each group has been sent to a special region. While the initial positions are distributed randomly, groups start exploring simultaneously for a maximum allowed number of iterations. By calculation of fitness values, \(x_{pbest_i} \), and \(x_{gbest} \) of subspaces are determined, while there is no relationship among groups. Finally, personal best positions and the best particles are memorized as \(x_{P, pbest} \) and \(x_{P, gbest} \). In both of the first and the transition stages, if the global minimum in \(r \)th region is found or better \(x_{gbest} \) after \(\epsilon \) iterations cannot be found, \(r \)th group will stop searching. Therefore, iteration number of the second stage may be increased. Comparing results of the first and the transition stages, \(x_{gbest} \) for the second stage is selected. If \(x_{gbest} \) is obtained from \(r \)th group, this group will be called best \(r \) group. In the second stage, in order to avoid being trapped in local minima and to discover better positions, particles can fly in the entire search space. Particles are initialized as the pseudo code shown in Figure 1.

Particles in the best \(r \) group remain in their positions while others jump to new positions around the best solution, as follows:

\[
\bar{x}_i(t + 1) = \bar{x}_{i, pbest} + \text{normrnd}(\mu, \sigma)
\]

(6)

Where \(\text{normrnd}(\mu, \sigma) \) is a vector randomly generated by normal distribution with a mean parameter \(\mu \) and a standard deviation parameter \(\sigma \). Here, \(\mu \) and \(\sigma \) are set to 0 and 1 respectively [19]. Iteration number of last stage is defined as follows:

Figure 1: Pseudo code of initializing personal best positions in second stage.
In this paper, acceleration coefficients, social learning factor (C2) and cognitive learning factor (C1), are initialized to 2.0 and increased over iterations as follows [28]:

\[C_j(t+1) = C_j(t) + \delta_j, \quad j = 1, 2 \]

(8)

Reference [28] proposed \(\delta_j \) as a random value in the interval [0.01, 0.1]. The interval [0.05, 0.1] is applied for \(\delta_j \) selection in [19]. In order to find optimal interval for PPSO, an extensive set of experiments was conducted, and uniformly generated random values in interval [0.0250.80] is chosen. The sum of \(C_j \) and \(C_i \) should be clamped between 3.0 and 4.0, each of them should be set between 0 and 4 [28]. If the sum is larger than 4.0, the following expressions to set the coefficients are developed:

\[C_j(t+1) = \alpha_j C_j(t)/(C_j(t) + C_j(t)) \]

(9)

\[C_i(t+1) = \alpha_i C_i(t)/(C_i(t) + C_i(t)) \]

(10)

If the sum is smaller than 3.0 both of coefficients are magnified by:

\[C_j(t+1) = \alpha_j C_j(t)/(C_j(t) + C_j(t)) \]

(11)

\[C_i(t+1) = \alpha_i C_i(t)/(C_i(t) + C_i(t)) \]

(12)

In [19], \(\alpha_j = 0.5 \), \(\alpha_i = 0.8 \), \(\alpha_j = 3 \) lead to perform well on most of test functions.

Figure 3 illuminates changes of acceleration coefficients over 80 iterations. Initially, both of coefficients are set equal to two. In the second iteration, \(C_j \) and \(C_i \) fall substantially to 0.39 and 0.25 respectively, so the effect of inertia weight increases. It can help particles explore new regions, and the ability to flee from local minima may be improved. After sharply growing \(C_j \) and \(C_i \) to 1.88 and 1.12, respectively, they steadily rose to 2.02 and 1.28, respectively. This results in stronger tendency toward search around \(x_{\text{gbest}} \). Again the black line declines to 0.43 and the red line decreases to 0.23. In two iterations they grow to 2.08 and 1.25 respectively. However, both of the social and cognitive learning factors reveal similar trends, a small gap between them leads to discourage premature convergence. Therefore, there is a good balance between the ability to explore new regions and search a smaller region around \(x_{\text{gbest}} \). On the other hand, on the first iterations, \(C_j \) is greater than \(C_i \), so the tendency toward success of entire swarm is greater than individual's success. In contrast, from iteration 16 to 38, except iteration 22, the pattern changes with higher maximum values of \(C_j \). These variations are another cause of the ability of algorithm to escape from local minima.

Inertia weight

In this paper, adaptive inertia weight is used which is given in Equation (13) [19].

\[W(f) = \frac{1}{1+1.5e^{2x^2}} \in [0.4, 0.9] \]

(13)

Where 0.4 and 0.9 are initial and final values of the inertia weight, respectively. The parameter \(f \), which is called evolutionary factor, is defined by (14).

\[f = \frac{d_x - d_{\text{min}}}{d_{\text{max}} - d_{\text{min}}} \in [0, 1] \]

(14)

\[d_x = \frac{1}{N-1} \sum_{i=1}^{N} (\sum_{j=1}^{4} x_i^j - x_i^j) \]

(15)

Where \(d_x \) is the mean distance of particlei to all of the other particles in its group, which can be measured using a Euclidian metric (15). \(N \) and \(D \) are population size of a group and number of dimensions respectively. of the globally best particle is denoted as \(d_x \). By comparing all \(d_x \)'s, the maximum and minimum distances, \(d_{\text{max}} \) and \(d_{\text{min}} \) are determined in a group, respectively.
Analysis of PPSO

In order to get an insight of how parameters influence performance of PPSO, in the following sections the parameters of PPSO will be changed separately to gain the best ranges. All parameters of the PPSO are set as Table 1, except those will be noted. The mean results of 30 independent trials will be presented. An extensive set of experiments were conducted over different test functions, but a few of them are selected randomly to be shown in this paper.

The twenty one benchmark functions, which represent challenges for optimization methods, are used. The name of function, search range of variables, location of global optimum (x^*), and corresponding optimum value $f(x^*)$ are summarized in Table 2. Note that these test functions should be minimized.

The term $\psi(t)$ is limited to the range $[-v_{\max},+v_{\max}]$ which v_{\max} is set to 20% of the search range [29]. If the dth dimension velocity violates this range, then it will be replaced by sign $(v_d)_{\max}$mad. The equation $x_d^t = \min(x_{\max}^t, \max(x_{\min}^t, v_d^t))$ is used to prevent the particles moving out of the search bounds while the search range is defined as $[x_{\min}^t, x_{\max}^t]$. Number zero returns numbers less than 10^{-324} in all of the following tables.

Advantages of PPSO

In this section, modified acceleration coefficients and partitioning search space into blocks will be judged solely on their own merits. The adaptive inertia weight described in sections 4.3 and both of acceleration coefficients set to 2.05 is chosen. By partitioning search space without applying modified acceleration coefficients, effects of this technique on the performance of PPSO are revealed and vice versa. The results are presented in Tables 3 and 4. It can be seen that the easy technique of partitioning search space into blocks not only makes the searching ability stronger, but also increases the rate of convergence.

Number of subspaces

In this section, the number of subspaces is determined in order to ensure sufficient diversity of particles (Table 4). It seems that, greater number of subspaces leads to greater probability that the algorithm is able to explore regions without attractions of local minima of other regions. On the other hand; the rate of convergence becomes slower if the number of subspaces increases. Furthermore, if dimensions of the global minimum are placed in different regions, increasing the number of subspaces cannot help to reach the global minimum. Therefore, there should be a balance. An exhaustive set of experiments are conducted with fixed number of particles in order to investigate the number of regions which contributes to good results. If the number of regions is

NO.	Name	Search range (x^*)	$f(x^*)$	
1	Sphere	$[-100,100]^D$	$[0,0,...,0]$	0
2	Rosenbrock	$[-2.048,2.048]^D$	$[1,1,...,1]$	0
3	Quadric	$[-100,100]^D$	$[0,0,...,0]$	0
4	Griewank	$[-600,600]^D$	$[0,0,...,0]$	0
5	Weierstrass	$[-0.0898,0.7126]^D$	$[0,0,...,0]$	0
6	Quartic	$[-1.281,2.82]^D$	$[0,0,...,0]$	0
7	Nonc_Rasti	$[-5.12,5.12]^D$	$[0,0,...,0]$	0
8	Rastigin	$[-5.12,5.12]^D$	$[0,0,...,0]$	0
9	Beale	$[-4.5,4.5]^D$	$[3,0.5]$	0
10	Bohachevsky1	$[-100,100]^D$	$[0,0,...,0]$	0
11	Bohachevsky2	$[-100,100]^D$	$[0,0,...,0]$	0
12	Bohachevsky3	$[-100,100]^D$	$[0,0,...,0]$	0
13	Booth	$[-10,10]^D$	$[1,3]$	0
14	Branin	$[-5.10,[0,15]]$	$[-\pi,12.275],[\pi,2.275],[\pi,9.42478,2.475]$	0.3977887
15	Easom	$[-100,100]^D$	$[-1]$	0.15
16	Hartmann1	$[0,1]^D$	$[0.114614,0.555649,0.852547]$	-3.86278
17	Hump	$[-5.5]^D$	$[0.0896,-0.7126,0.0989,0.7126]$	0
18	Matyas	$[-10,10]^D$	$[0.025,0.05]$	-1.8013
19	Michalewics1	$[0,\pi]^D$	$[0,0]$	-4.6876582
20	Michalewics2	$[0,\pi]^D$	$[2.0220955,1.5707963],[2.0220955,1.5707963],[1.294916,1.933085,1.720498]$	-3600

Table 2: Test Functions.
increased, the number of particles of each group will be decreased. So there should be a balance between the number of subspaces and total number of particles to enhance good explorations in subspaces.

Iteration number of first stage

Optimal maximum allowed number of iterations of the first stage is associated with 0020 maximum allowed number of iterations of the second stage.

\[
FE = F _ IT \times (NM \times R + PS) + S _ IT \times PS
\]

(16)

where \(F _ IT \) and \(S _ IT \) are maximum allowed number of iterations of the first and second stages respectively. \(PS \) is population size. \(NM \) is
in Equation (16), we have:

\[
F_{\text{IT}} = \frac{FE}{PS} - S_{\text{IT}} \tag{17}
\]

By choosing the value of \(F_{\text{IT}} \) carefully, a configuration can be referred as the number of members in each group, \(FE \) as the number of function evaluations, and \(R \) as the number of subspaces. By substituting

\[
NM = \frac{PS}{R}
\]
Table 13: Comparison of results on Quadratic test function among ten PSOs.

Dimension	PSO-w	PSO-cf	PSO-cf-local	UPSO	FDR	FIPS	CPSO-H	CLPSO	CPSO-out	PPSO
10	5.88×10^{-3}	5.14×10^{-4}	5.63×10^{-6}	1.36×10^{-18}	1.47×10^{-20}	3.13×10^{-15}	1.57×10^{-12}	1.22×10^{-7}	0	0
Best	2.12×10^{-3}	9.91×10^{-4}	9.74×10^{-6}	4.8×10^{-20}	1.71×10^{-20}	4.68×10^{-15}	4.56×10^{-10}	1.08×10^{-7}	0	0
Worst	8.28×10^{-3}	7.81×10^{-4}	6.39×10^{-6}	1.61×10^{-20}	8.44×10^{-20}	3.13×10^{-15}	2.87×10^{-10}	4.58×10^{-7}	0	0
Mean	3.86×10^{-3}	1.34×10^{-4}	1.51×10^{-6}	0	0	0	8.84×10^{-20}	8.84×10^{-20}	0	0

Table 14: Comparison of results Griewank test function among ten PSOs.

Dimension	PSO-w	PSO-cf	PSO-cf-local	UPSO	FDR	FIPS	CPSO-H	CLPSO	CPSO-out	PPSO
30	3.16×10^{-21}	7.33×10^{-6}	6.06×10^{-6}	3.27×10^{-44}	1.62×10^{-26}	5.7×10^{-15}	3.25×10^{-10}	8.37×10^{-2}	0	0
Best	3.58×10^{-21}	8.99×10^{-6}	9.98×10^{-6}	1.91×10^{-44}	6.02×10^{-26}	5.41×10^{-15}	3.41×10^{-10}	8.10×10^{-2}	0	0
Worst	8.00×10^{-21}	1.00×10^{-6}	8.75×10^{-6}	2.82×10^{-44}	2.68×10^{-26}	3.71×10^{-15}	2.31×10^{-10}	5.2×10^{-2}	0	0
Mean	1.42×10^{-21}	3.73×10^{-6}	8.60×10^{-6}	3.27×10^{-44}	1.53×10^{-26}	1.71×10^{-15}	1.27×10^{-10}	9.03×10^{-2}	0	0

Table 15: Comparison of results on Weierstrass test function among ten PSOs.

Dimension	PSO-w	PSO-cf	PSO-cf-local	UPSO	FDR	FIPS	CPSO-H	CLPSO	CPSO-out	PPSO
30	1.72×10^{-2}	1.72×10^{-2}	9.02×10^{-4}	6.40×10^{-2}	7.4×10^{-10}	2.55×10^{-3}	1.5×10^{-2}	3.16×10^{-1}	0	0
Best	1.35×10^{-2}	1.19×10^{-2}	6.61×10^{-4}	2.63×10^{-2}	1.38×10^{-9}	4.94×10^{-3}	1.16×10^{-2}	6.65×10^{-1}	0	0
Worst	7.06×10^{-2}	2.39×10^{-2}	3.35×10^{-4}	2.49×10^{-2}	3.36×10^{-9}	1.66×10^{-3}	1.57×10^{-2}	1.52×10^{-2}	0	0
Mean	3.13×10^{-2}	1.33×10^{-2}	1.61×10^{-4}	1.61×10^{-2}	1.38×10^{-9}	1.66×10^{-3}	1.57×10^{-2}	1.52×10^{-2}	0	0

Table 16: Comparison of results on Quatric test function among ten PSOs.

Dimension	PSO-w	PSO-cf	PSO-cf-local	UPSO	FDR	FIPS	CPSO-H	CLPSO	CPSO-out	PPSO
30	1.37×10^{-2}	1.89×10^{-2}	2.09×10^{-2}	4.00×10^{-2}	3.36×10^{-9}	4.02×10^{-3}	4.8×10^{-3}	1.53×10^{-1}	0	0
Best	4.41×10^{-2}	9.71×10^{-2}	6.89×10^{-2}	1.59×10^{-2}	5.37×10^{-9}	5.74×10^{-3}	5.44×10^{-3}	1.54×10^{-1}	0	0
Worst	2.68×10^{-2}	1.26×10^{-2}	5.09×10^{-2}	1.01×10^{-2}	3.28×10^{-9}	4.79×10^{-3}	4.84×10^{-3}	1.91×10^{-1}	0	0
Mean	1.18×10^{-2}	2.09×10^{-2}	1.17×10^{-2}	1.17×10^{-2}	3.63×10^{-9}	6.35×10^{-3}	6.86×10^{-3}	7.66×10^{-1}	0	0

Table 17a: Comparison of results on Non Continues Rastriгин test function among ten PSOs.

found which maintains the balance between F_{IT} and F_{IT}. The ratio of F_{IT} to S_{IT}’s defined as N:1 Table 5, which lists the results gained by different values of parameter N, makes it clear that which value should be set to achieve a better performance.

Table 5 represents that there is no much difference between high numbers of iterations of the first stage. Therefore, ε is set to 10. On the other hand, because of incomplete search in subspaces, few numbers of iterations of the first stage led to poor performance.
The convergence curves of Rosenbrock function is shown in Figures 4a and 4b). If each dimension of global minimum is situated in one region, it is clear that algorithm cannot reach the best solution in restricted areas. In order to find global minimum, search area should be extended to the entire search space in the second stage. If search space is divided into 15 regions, each dimension of global minimums of Hartmann1 and Michalewick 2 functions will be placed in different regions. The convergence curves of these functions are shown in Figures 5a and 5b). These figures clearly indicate that global minimum would not be found via searching in subspaces.

Parameters of acceleration coefficients

To access the sensitivity of $\delta_{1,2}$, different values of $\delta_{1,2}$ are tested. Results presented in Table 6 makes it clear that the interval $[0.025, 0.8]$ is suitable. The magnitudes of a_1, a_2, and a_3 are discussed in this section. From Tables 7-9, it is found that the best results are achieved when parameters a_1, a_2, and a_3 are set equal to 0.5, 0.8, and 3, respectively.

Numerical Experiments and Discussion

To evaluate the performance of the PPSO, nine famous PSO...
algorithms are used, as detailed in Table 10. In all of the tests, the parameter configurations of these PSO variants are set according to their corresponding references, and the algorithm configuration of the PPSO is shown in Table 2. For the first eight functions which are commonly used in different articles and one function which is randomly chosen from the rest of Table 1, the worst, the best, mean and standard deviation of fitness values of the best particles found by nine algorithms over 30 runs, are listed in Tables 11-19 [20]. Two different dimensions are tested (10 and 30 dimensions) for the first eight functions. The boldface numbers indicate the best results. The times of reaching global optima out of all runs are presented in the brackets. The successful rate the number of successful runs the number of all runs 0 (3)

Table 19: Comparison of results on Needle-in-a-haystack test function among ten PSOs.

Dimension	PSO-w	PSO-cf	PSO-cf-local	UPSO	FDR	FIPS	CPSO-H	CLPSO	CPSO-outer	PPSO
2	3600	3600	3600	3600	3600	3600	3588.9	3600	3600	3600
Best	2729.1	2734.9	2732	2748.8	2748.8	2748.8	2748.8	2748.8	2748.8	3600
Worst	2798.1	3269.8	3105.3	3085.3	2919	2919	2919	2919	2919	0
Mean	218.0172	417.5431	412.3334	424.1387	382.8577	346.3078	355.7935	355.7935	0	0

The successful rate = the number of successful runs × 100 the number of all runs (30) \((18) \)

Figure 5: The median converge characteristics of first and transition stages. (a) Hartmann1 & (b) Michalewicz 2.

From Tables 11-19, it can be seen that the results of the proposed method are superior to other nine algorithms, for example, the results of 10-D Sphere and 30-D Griewank and Rastrigin and 10-D and 30-D Rosenbrock. On 10-D and 30-D Quadric, the CPSO-outer method is slightly better than PPSO; however, PSO can get better result of the best solution. On 30-D Quadric, FDR performs best with high optimization robustness; however, PPSO could find global optimum with high successful rate. For 10-D Sphere and Quadric; however, UPSO and FDR perform robust and show good accuracy, PPSO and CPSO-outer can converge to global optimum with the same robustness. Only PPSO and CPSO-outer methods achieved the best results of sphere, 10-D Quadric, and Griewank. However, 30-D functions are more difficult than 10-D functions; results show that PPSO can perform well when dimensions are increased. On 30-D Griewank, Rastrigin and Non Continues Rastrigin, only PPSO could achieve global optimums. Although, other algorithms find global optimums on 10-D functions, in 30-D cases their performances sharply plummet.

Conclusion

In this paper, PPSO with simple techniques of partitioning search space into blocks and use of improved acceleration coefficients is able to escape from local minima and converge to the global minima robustly. The proposed algorithm contains three stages. Particles are divided into smaller groups and search small regions at the first stage. Then, particles search all of the search space as the transition stage. Finally, particles search all of the search space as the transition stage. Finally, based on the results of these two stages, particles continue searching. Moreover, PPSO performs well even if dimensions of search space are increased; however, the performance of some methods considerably drops. In short, PPSO is generally simple, and yields good results in comparison with other variants.

References

1. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia.
2. Angeline PJ (1998) Using selection to improve particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation.
3. Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation.
4. Yoshida H, Kawata K, Fukuyama Y (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems 15: 1232-1239.
5. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proceedings of the IEEE Congress on Evolutionary Computation.
6. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, Washington DC, USA.
7. Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, Seoul, Korea.
8. Shi Y, Eberhart RC (2001) Particle swarm optimization with fuzzy adaptive inertia weight. In Proceedings of the Workshop on Particle Swarm Optimization, Purdue School of Engineering and Technology, USA.
9. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6: 58-73.
10. Kennedy J, Mendes R (2002) Population structure and particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation.
11. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and informed particle swarms.
best-of-neighborhood particle swarms. IEEE Transaction on Systems, Man, and Cybernetics Part C 36: 515-519.

12. Parsopoulos KE, Vrahatis MN (2004) UPSO A unified particle swarm optimization scheme. In: Lecture Series on Computational Sciences 868-873.

13. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation 8: 204-210.

14. Peram T, Veeramachaneni K, Mohan CK (2003) Fitness-distance-ratio based particle swarm optimization. Proceedings of the Swarm Intelligence Symposium.

15. Van Den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation 8: 225-239.

16. Spears WM (1994) Simple Subpopulation Scheme, in: Proceeding of Evolutionary Programming Conference 296-307.

17. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage, Advances in Neural Information Processing Systems2 598-608.

18. Liang JJ, Qin AK, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10: 281-295.

19. Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 39: 1362-1381.

20. Shi Y, Liu H, Gao L, Zhang G (2011) Cellular particle swarm optimization. Information Sciences 181: 4460-4493.

21. Chen X, Li Y (2007) A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Transactions on Systems, Man, and Cybernetics B Cybern 37: 1271-1289.

22. Gang M, Wei Z, Xiaolin C (2012) A novel particle swarm optimization algorithm based on particle migration. Applied Mathematics and Computation 218: 6620-6626.

23. Parsopoulos KE (2012) Parallel cooperative micro-particle swarm optimization: A master-slave model. Applied Soft Computing 12: 3552-3579.

24. Jin X, Liang Y, Tian D, Zhuang F (2013) Particle swarm optimization using dimension selection methods. Applied Mathematics and Computation 219: 5185-5197.

25. Eberhart RC, Dobbins R, Simpson PK (1996) Computational Intelligence PC Tools, Morgan Kaufmann Publishers.

26. Engelbrecht AP (2002) Computational Intelligence: An Introduction, John Wiley and Sons.

27. Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence, John Wiley & Sons.

28. Zhan ZH, Xiao J, Zhang J, Chen WN (2007) Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis. Proceeding of IEEE Congress on Evolutionary Computation, Singapore.

29. Eberhart RC, Shi YH (2001) Particle swarm optimization: developments, applications and resources, in: Proceeding of IEEE Congress Evolutionary Computation, Seoul, Korea.