Spontaneous graphitization of ultrathin cubic structures: A computational study

Pavel B. Sorokin,1, 2, 3 Alexander G. Kvashnin,2, 3 Zhen Zhu,1 and David Tománek1, ∗

1Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA
2FSBI Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow, Russia 142190
3Moscow Institute of Physics and Technology, Dolgoprudny, Russia 141700

(Dated: June 24, 2014)

Results based on ab initio density functional calculations indicate a general graphitization tendency in ultrathin slabs of cubic diamond, boron nitride, and many other cubic structures including rocksalt. Whereas such compounds often show an energy preference for cubic rather than layered atomic arrangements in the bulk, the surface energy of layered systems is commonly lower than that of their cubic counterparts. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.

PACS numbers: 61.46.-w, 68.65.-k, 62.23.Kn

Structural changes at surfaces including atomic relaxation and reconstruction are a manifestation of the driving force to minimize their total free energy[1, 2]. Atomic rearrangements are typically moderate at surfaces of semi-infinite systems and in thick slabs so that the energy penalty associated with structural mismatch at the interface between the reconstructed surface and the unreconstructed bulk may be limited. In ultra-thin slabs, surface contribution dominates the total energy, as only a small fraction of atoms experience bulk-like atomic environment. There, a large-scale reconstruction involving not only the topmost layers, but the entire system may yield the most stable structure. Examples of such large-scale atomic rearrangements, driven by a tendency to reduce the surface energy, are the observed graphitization of diamond nanoparticles[3] and nanowires[4], as well as ultrathin SiC[5] and ZnO[6] films. This graphitization scenario, if energetically viable for a large range of compounds, may turn into a valuable bottom-up approach to synthesize ultrathin layered structures for nanoelectronics applications in the post-graphene era.

We present results of ab initio density functional calculations, which indicate a general graphitization tendency in ultrathin slabs of cubic compounds. We find that an energy preference for layered honeycomb rather than cubic structures in ultrathin slabs is rather common, extending from diamond[7] and boron nitride to less obvious cubic structures including silicon carbide, boron phosphide and rocksalt. Whereas the bulk of such compounds shows an energy preference for cubic rather than layered atomic arrangements, the surface energy of systems with honeycomb layers is commonly lower than that of their cubic counterparts. Whether the type of crystal bonding is purely covalent, purely ionic, or a combination of the two, the optimum structure of a slab results from an energy competition between the energy preference for a honeycomb structure at the surface and for a cubic atomic arrangement in the bulk. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.

Our computational approach to learn about the equilibrium structure, stability and charge distribution in ultrathin slabs is based on ab initio density functional theory (DFT) as implemented in the SIESTA[8] and VASP[9] codes. We used periodic boundary conditions throughout the study, with multilayer structures represented by a periodic array of slabs separated by a 15 Å thick vacuum region. We used the Perdew-Burke-Ernzerhof [10] exchange-correlation functional throughout the study. VASP calculations are based on the projector-augmented wave method and our SIESTA studies make use of norm-conserving Troullier-Martins pseudopotentials[11] and a double-ζ basis including polarization orbitals. The plane-wave energy cutoff was set to 180 Ry in SIESTA and 500 eV in VASP. The reciprocal space was sampled by a fine k-point mesh[12] rang-

![Figure 1](https://example.com/image1.png)

FIG. 1. (Color online) Ball-and-stick models of (a) diamond, (b) zincblende, and (c) rocksalt in their native bulk structure (top panels) and their corresponding layered counterparts (bottom panels).
The competing cubic and layered graphitic phases for di-
triguing result is that ΔE changes sign in ultrathin slabs
of many of the cubic structures, indicating spontaneous
graphitization tendency.

The reason for this behavior is the dominant role of
the surface energy $E(\text{surface})$ in the cohesive energy
for small values of N. The behavior of $\Delta E(N−\text{layer slab})$ in Fig. 2 can be explained quantitatively in
the following way. For sufficiently thick slabs, the cohesive energy of
an N−layer slab with the cubic structure is given by

$$E_{\text{cub}}(N−\text{layer slab}) = NE_{\text{cub}}(\text{bulk}) − E_{\text{cub}}(\text{cleave}),$$

where $E_{\text{cub}}(\text{cleave}) = 2E_{\text{cub}}(\text{surface})$ is the cleavage energy of the bulk cubic crystal or twice the surface energy per unit cell. Similarly, the cohesive energy of an
N−layer slab with the layered graphitic structure is given by

$$E_{\text{gra}}(N−\text{layer slab}) = NE_{\text{gra}}(\text{bulk}) − E_{\text{gra}}(\text{cleave}),$$

where $E_{\text{gra}}(\text{cleave})$ is the cleavage energy corresponding
to the interlayer interaction per unit cell of the layered
graphitic crystal. Calculated cleavage energies for the
systems of interest in cubic as well as layered graphitic
structures are listed in Table I. As expected, the listed
values are a small fraction of the bulk cohesive energies
and in general agreement with published data. They ig-
nore additional energy gain caused by complex surface
reconstruction involving large unit cells, which is a small
fraction of the surface energy[2] and does not affect our
main predictions.

N_c	$E_{\text{cub}}(\text{bulk})$	$E_{\text{gra}}(\text{bulk})$	$E_{\text{cub}}(\text{cleave})$	$E_{\text{gra}}(\text{cleave})$
C	18.18	18.39	3.91	<0.01
BN	17.47	17.57	3.31	0.04
Si	10.84	9.93	2.66	0.89
SiC	14.97	14.06	3.31	0.04
BP	12.88	12.14	2.66	<0.01
NaCl	6.78	6.60	2.34	0.42

FIG. 2. (Color online) Cohesive energy difference ΔE of
N−layer slabs with cubic and graphitic structure, with $\Delta E < 0$ indicating energetic preference for graphitization. Data
points are results of DFT calculations. Solid symbols represen-
t structures with locally stable cubic and graphitic phase.
Open symbols represent structures with an unstable cubic
phase. Lines represent predictions based on Eq. (5) using
quantities listed in Table I.

The inspiration for our study came from structure op-
timization calculations for ultrathin slabs, constrained to
a quasi-2D geometry[11], which indicated a spontaneous
transformation from a cubic to a layered graphitic struc-
ture in systems ranging from diamond to rocksalt[15]. The
competing cubic and layered graphitic phases for di-
amond, zincblende and rocksalt lattices are illustrated in
Fig. 1. In the following, we investigate the graphitization
tendency of ultrathin slabs of such systems, introduce a
critical criterion to judge this tendency, and relate it to
the charge redistribution at surfaces.

The tendency of a system to graphitize can be judged
by the difference of cohesive energies

$$\Delta E(\text{bulk}) = E_{\text{cub}}(\text{bulk}) − E_{\text{gra}}(\text{bulk})$$

in the bulk and

$$\Delta E(N−\text{layer slab}) =$$

$$E_{\text{cub}}(N−\text{layer slab}) − E_{\text{gra}}(N−\text{layer slab})$$

in a free-standing N−layer slab. For the sake of consist-
tency, we subdivide also cubic structures into nominal
layers and consider N−layer slabs with the same number
of atoms in the cubic and the graphitic structure. Co-
hesive energies of bulk and layered structures are taken
per unit cell and are listed in Table I. The overbinding of
bulk structures, common in well-converged DFT calcula-
tions, does not affect energy differences. The prevalent
energetic preference of the bulk for the cubic rather than
a layered graphitic structure can be inferred from data in
Table I and is indicated by $\Delta E(\text{bulk}) > 0$.

As a counterpart to the bulk results, we plot the de-
pendence of the slab cohesive energy difference $\Delta E(N−$
layer slab) on the number of layers N for C, BN, Si, SiC,
BN, and for NaCl in Fig. 2. For $N→\infty$, these results
are consistent with the energetic preference of bulk Si,
SiC, BP and NaCl for the cubic structure, and that of C
and BN for the layered graphitic structure. Our most in-
triguing result is that ΔE changes sign in ultrathin slabs
of many of the cubic structures, indicating spontaneous
graphitization tendency.

TABLE I. Calculated cohesive and cleavage energies of cubic
(cub) and graphitic (gra) phases of compounds presented in
Fig. 2. All results are for the (111) cleavage plane. N_c is
the critical number of layers for favorable graphitization according
to Fig. 2.
To get a more quantitative description of the graphitization, we may combine Eqs. (2)-(4) to
\[
\Delta E(N - \text{layer slab}) = \left(N \left[E_{\text{cub}}(\text{bulk}) - E_{\text{gra}}(\text{bulk}) \right] + [- E_{\text{cub}}(\text{cleave}) + E_{\text{gra}}(\text{cleave})] \right).
\]

The linear dependence of \(\Delta E \) on the number of layers, predicted by Eq. (5), is reproduced amazingly well in Fig. 2 down to few layers. Systems with an energetic preference for the cubic structure in the bulk have a positive slope, those with a graphitic structure in the bulk have a negative slope. The reason behind the graphitization of most cubic structures in our study is the fact that the cleavage or the surface energy of the graphitic structures is generally lower than that of cubic structures. This energy difference, \(E_{\text{gra}}(\text{cleave}) - E_{\text{cub}}(\text{cleave}) \), appears as the intercept of the ordinate in Fig. 2.

The critical slab thickness for graphitization is determined by the condition \(\Delta E(N_c - \text{layer slab}) = 0 \). In systems with energetic preference for the cubic phase in the bulk, we expect graphitization for \(N < N_c \) layers and may estimate the critical value \(N_c \) using Eq. (5) from
\[
N_c = \frac{E_{\text{cub}}(\text{cleave}) - E_{\text{gra}}(\text{cleave})}{E_{\text{cub}}(\text{bulk}) - E_{\text{gra}}(\text{bulk})}.
\]

As can be inferred from Fig. 2, critical slab thicknesses obtained using the linear extrapolation underlying Eq. (6) agree generally very well with \(N_c \) values listed in Table I, which are based on calculated total energy differences in finite slabs, where structural changes at the surface of few-layer systems are considered explicitly. Since only values \(N_c \geq 2 \) indicate graphitization, our finding that \(N_c(Si) = 1 \) agrees with the fact that graphitization of free-standing silicon slabs to silicene is unfavorable. We should note that observed silicene layers, which have been stabilized by strong adhesion to a substrate, are not planar, but buckled, indicating their instability and energetic preference for a 3D structure.[16–20] The graphitization condition changes to \(N > N_c \) in systems, where the layered graphitic phase is preferred energetically in the bulk. There, a negative value of \(N_c \) obtained using Eq. (6) indicates graphitization for all layer thicknesses, equivalent to \(N_c \rightarrow \infty \) in the convention used in Table I.

We need to reemphasize that our results for the graphitization tendency are given for slabs of the cubic phase terminated by the (111) surface, which usually has the lowest surface energy. We expect no qualitative differences when considering other terminating surfaces.

Since the graphitization tendency of ultrathin layers depends sensitively on the surface or cleavage energy of bulk structures, we next explore the reasons, why the surface energy of graphitic structures is generally lower than that of cubic structures. As we expand later on, the fundamental reason is different in ionic and covalent solids. In the latter case, formation of a surface by cleaving a bulk structure gives rise to unsaturated bonds and a charge redistribution that is commensurate with the surface energy. To visualize the degree and the spatial extent of the charge redistribution, we considered a region of the bulk structure corresponding to a thick slab, determined the charge density \(\rho(\text{bulk}) \) in this region, and set \(\rho = 0 \) outside the slab region. Then we truncated the bulk structure to obtain the geometry of an unrelaxed slab and determined the slab charge density \(\rho(\text{slab}) \). Finally, we obtained the charge density difference \(\Delta \rho = \rho(\text{slab}) - \rho(\text{bulk}) \) and displayed it in Fig. 3.

Inspection of our results in Fig. 3 confirms that charge redistribution is confined to the surface region and decays to a vanishing value in the bulk. Comparison between cubic and layered graphitic structures indicates a significantly lower degree of charge redistribution in the latter, reflecting our finding that cleavage and surface energies are lower in layered graphitic than in cubic structures. This is the case not only in covalent systems, but also in ionic systems like NaCl. We find that the degree of charge redistribution at the surface indeed reflects the relative value of the cleavage energy as listed in Table I.

Obviously, the physical origin of energetic stabilization and charge redistribution at the surface is different in covalent systems like diamond, in ionic systems such as NaCl, and systems with covalent and ionic bonding contributions such as BP. In covalent systems, as mentioned...
above, surface energy can be associated with unsaturated dangling bonds. The resulting significant charge redistribution at the surface of diamond is clearly visible in the top panel of Fig. 3(a). The distribution of $\Delta \rho$ also indicates that the charge flow in this system is mostly confined to the topmost three layers. In stark contrast to these findings, the charge redistribution caused by cleaving graphite, displayed in the bottom panel of Fig. 3(a), is significantly smaller. The absence of contours in this figure indicates that the charge density difference between the bulk and the surface lies below $5 \times 10^{-4} \text{e/Å}^3$.

The ionic nature of bonding gives rise to a large surface dipole at the (111) surface of the cubic NaCl structure, which is the origin of the large surface energy\cite{21}. As seen in the top panel of Fig. 3(c), the charge redistribution at the surface of NaCl is significant and, due to lack of screening, involves more layers than in covalent materials. As an alternative to the bulk cubic structure, we can imagine arranging Na and Cl atoms in charge neutral honeycomb layers that would form a layered structure. As pointed out earlier\cite{21}, the major energetic benefit of the layered graphitic structure of NaCl results from removing the surface dipole component normal to the surface, thus reducing the electrostatic energy penalty. Our results for $\Delta \rho$ in the bottom panel of Fig. 3(c) indicate a much smaller degree of charge redistribution in the graphitic layered structure and also a stronger confinement to the narrow surface region, explaining the significant difference in the cleavage or surface energy between the layered graphitic and the cubic structure, listed in Table I.

Our results for boron phosphide, shown in Fig. 3(b), indicate similarities with covalent and ionic systems in Figs. 3(a) and 3(c). For one, cleavage of the cubic phase affects the charge distribution in more surface layers than in purely covalent crystals. We also observe a noticeable charge redistribution upon cleavage of the layered graphitic phase, which is mostly confined to the topmost layer.

The results presented above have focussed on energy differences between two structural phases, but say little about the local stability of these structures or about a way to synthesize them. As mentioned before, the open symbols in the $\Delta E < 0$ region of Fig. 2 indicate instability of the cubic phase and its spontaneous conversion to a layered graphitic phase. For other systems, we find both phases to be locally stable, implying an activation barrier for the conversion. Such energy barriers may be factual or may result from unit cell size and symmetry constraints imposed in our calculations. In an infinite slab with no such constraints, possibly aided by the presence of defects, such activation barriers may be strongly suppressed or even vanish, providing an energetically viable pathway for the structural change. The energetics of the conversion of NaCl from the bulk cubic to the layered graphitic structure is discussed in the Supplemental Material\cite{15}.

The geometry of samples formed by Chemical Vapor Deposition (CVD) closely resembles the constrained optimized geometry described here. Recent success achieved in CVD synthesis of layered structures including graphene\cite{22} and hexagonal boron nitride\cite{23} indicates that this approach may also be useful to form ultrathin slabs of other compounds with a layered graphitic structure. An important criterion for the selection of the deposition substrate is the requirement that the substrate-adlayer interface energy should not penalize energetically the formation of a graphitic structure. Free-standing few-layer slabs could then be obtained by mechanical transfer of the deposited structure.

In summary, we performed ab $initio$ density functional calculations that indicate a general graphitization tendency in ultrathin slabs of cubic compounds. We found that an energy preference for layered honeycomb rather than cubic structures in ultrathin slabs is rather common, extending from diamond and boron nitride to less obvious cubic structures including silicon carbide, boron phosphide and rocksalt. Whereas the bulk of such compounds shows an energy preference for cubic rather than layered atomic arrangements, the surface energy of systems with honeycomb layers is commonly lower than that of their cubic counterparts. Whether the type of crystal bonding is purely covalent, purely ionic, or a combination of the two, the optimum structure of a slab results from an energy competition between the energy preference for a honeycomb structure at the surface and for a cubic atomic arrangement in the bulk. We determined the critical slab thicknesses for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures. Finally, we believe that graphitization of ultrathin layers is a rather general phenomenon that is not limited to systems in this study and expect that it will provide a viable route to a bottom-up synthesis of few-layer compounds by CVD.

This study has been supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled “NSEC: Center for High-rate Nanomanufacturing”. Computational resources have been provided by the Michigan State University High Performance Computing Center and by the Supercomputing Center of the Lomonosov Moscow State University. AGK was supported by a Scholarship from the President of Russia for young scientists and PhD students (competition SP-2013). PBS acknowledges the hospitality of Michigan State University, where this research was performed, and additional support by the FAEMCAR Grant No. FP7-PEOPLE-2012-IRSES.
[1] G. A. Somorjai, *Chemistry in two dimensions: Surfaces* (Cornell University Press, Ithaca, 1981).
[2] A. Zangwill, *Physics at surfaces* (Cambridge University Press, New York, 1988).
[3] F. Banhart, Rep. Prog. Phys. 62, 1181 (1999).
[4] N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.-N. Lin, M. Chu, and A. Stamboulis, ACS Nano 3, 1032 (2009).
[5] S. S. Lin, J. Phys. Chem. C 116, 3951 (2012).
[6] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfold, and J. H. Harding, J. Mater. Chem. 15, 139 (2005).
[7] A. Kvashnin, L. A. Chernozatskii, B. I. Yakobson, and P. B. Sorokin, Nano Lett. 14, 676 (2014).
[8] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal, and J. M. Soler, J. Phys. Cond. Mat. 20, 064208 (2008).
[9] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[10] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[11] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[12] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[13] M. R. Hestenes and E. Stiefel, J. Res. Natl. Bur. Stand. 49, 409 (1952).

The growth mechanism of films on selected substrates by Chemical Vapor Deposition (CVD) differs fundamentally from the growth of nanostructures in free space. Whereas aggregation of carbon atoms leads to the formation of fullerene in free space, layered graphitic structures are formed by CVD on a substrate. Our 2D constrained optimization addresses the latter process.

See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.000.000000 for the energetics of the cubic-to-hexagonal transition in NaCl.