Anticancer Activity of Key Lime, *Citrus aurantifolia*

Nithithep Narang, Wannee Jiraungkoorskul

Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ABSTRACT

Citrus aurantifolia (family: Rutaceae) is mainly used in daily consumption, in many cultural cuisines, and in juice production. It is widely used because of its antibacterial, anticancer, anti-diabetic, anti-fungal, anti-hypertensive, anti-inflammatory, anti-lipidemia, and antioxidant properties; moreover, it can protect heart, liver, bone, and prevent urinary diseases. Its secondary metabolites are alkaloids, carotenoids, coumarins, essential oils, flavonoids, phenolic acids, and triterpenoids. The other important constituents are apigenin, hesperetin, kaempferol, limonoids, quercetin, naringenin, nobiletin, and rutin, all of these contribute to its remedial properties. The scientific searching platforms were used for publications from 1990 to present. The abstracts and titles were screened, and the full-text articles were selected. The present review is up-to-date of the phytochemical property of *C. aurantifolia* to provide a reference for further study.

Key words: Cancer, *Citrus aurantifolia*, herb, lime, phytochemical substance, plant

INTRODUCTION

Due to the distinct aroma and delicious taste, citrus may be called a fruit that is cultivated worldwide, especially in tropical and subtropical regions. According to the USDA, the top lemons and lime producer countries in the world in 2015 were Mexico (2270), Argentina (1450), the EU (1286), the USA (666), Turkey (60), South Africa (330), and Israel (60) in the 1000 metric tons unit. There are many natural metabolites in citrus fruit that potentially provide advantage and good for health. Products of citrus fruit such as essential oil and pectin of fruit peel are used in the cosmetic and pharmaceutical industries. *Citrus* species are known as lime fruit (English), limah (Arabic), jeruk (Malay), limun (Greek), limone (Italian), and lemon (French). There are many species in the genus of *Citrus*, the most well-known citrus species are *Citrus aurantifolia* (key lime), *C. hystrix* (makrut lime), *C. limonia* (Mandarin lime), *C. limon* (lemon), *C. jambhiri* (rough lemon), *C. sinensis* (sweet orange), *C. aurantium* (sour orange), *C. limetta* (bitter orange), *C. macroptera* (wild orange), *C. tachibana* (tachibana orange), *C. maxima* (shaddock), *C. medica* (citron), *C. nobilis* (tanger), *C. paradise* (grapefruit), *C. reticulata* (tangerine), and *C. tangelo* (tangelo). The present review is up-to-date of the anticancer property of *C. aurantifolia* to provide a reference for further study.

Plant Description

C. aurantifolia is a perennial evergreen tree that can grow to a height of 3–5 m [Figure 1]. Stem: irregularly slender branched and possesses short and stiff sharp spines or thorns 1 cm or less. Leaves: alternate, elliptical to oval, 4.5–6.5 cm long, and 2.5–4.5 cm wide with small rounded teeth around the edge. Petioles are 1–2 cm long and narrowly winged. Flowers: short and axillary racemes, bearing few flowers which are white and fragrant. Petals are 5, oblong, and 10–12 mm long. Fruits: green, round, 3–5 cm in diameter, it is yellow when rip. All citrus fruits present the same anatomical structures [Figure 2]: (1) flavedo is the external part of the fruit and has a lot of flavonoids as its name. The outer cell wall is composed of wax and cutin for prevention of water loss from the fruit; (2) albedo is the white spongy portion, below the flavedo layer; (3) carpal membranes or septum presenting around 8–11 glabular segments, usually aligned and situated around (4) the soft central core; (5) juice sacs are yellow-green pulp vesicles; and (6) seeds are small, plump, ovoid, pale, and smooth with white embryo.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Narang N, Jiraungkoorskul W. Anticancer activity of key lime, *Citrus aurantifolia*. Phcog Rev 2016;10:118-22.
C. aurantifolia contains active phytochemical substances as follows: (1) flavonoids including apigenin, hesperetin, kaempferol, nobiletin, quercetin, and rutin; (2) flavones; (3) flavanones and naringenin; (4) triterpenoids; and (5) limonoids. In addition, Lota et al. reported that 62 volatile compounds in the fruit peel oils and 59 in the leaf oils of several lime species. In the fruit peel oils, limonene was the major volatile component, followed by terpinene, pinene, and sabine. For leaf oils, limonene, pinene, and sabine were the major components, followed by citronellal, geranial, linalool, and neral. The bioactive compounds from citrus in many countries were reported, for example, Italy: Spadaro et al. reported the fruit essential oil of C. aurantifolia as limonene (59%), β-pinene (16%), γ-terpinene (9%), and citral (5%). In the same research group, Costa et al. reported the fruit essential oils of C. aurantifolia as limonene (54%), γ-terpinene (17%), β-pinene (13%), terpinolene (1%), α-terpinolene (0.5%), and citral (3%). Nigeria: Okwu and Emenike determined the phytochemical and vitamin contents of five varieties of citrus species; C. sinensis, C. reticulata, C. limonum, C. aurantifolia, and C. grandis. The presence of bioactive compounds in 100 g of citrus comprise alkaloids (0.4 mg), flavonoids (0.6 mg), phenols (0.4 mg), tannins (0.04 mg), ascorbic acid (62 mg), riboflavin (0.1 mg), thiamin (0.2 mg), and niacin (0.5 mg). Further, the same researchers’ group including Okwu and Emenike also reported that these citrus fruits contain crude protein (18%), crude fiber (8%), carbohydrate (78%), moisture (6%), crude lipid (1%), ash (8%), and food energy content was (363 g/cal) of fresh fruits. The most important minerals detected in the fruit include calcium (3%), phosphorus (0.4%), potassium (1%), magnesium (0.6%), and sodium (0.4%). Lawal et al. reported that the leaves of C. aurantifolia contain limonene (45%) and geranial (38%). India: Patil recorded that the chemical substances from citrus fruit contain hesperidin, the major flavanone (6 mg/g), naringin (2 mg/g), diosmin, the major flavone (0.7 mg/g), kaempferol, the major flavanol (1 mg/g), chlorogenic acid, the major phenolic acid (0.1 mg/g), β-cryptoxanthin, the major carotenoid (7 μg/g), and β-carotene (4 μg/g), followed by total pectin (87 mg/g). Mexico: Sandoval-Montemayor et al. reported that C. aurantifolia fruit peels consist of 44 volatile compounds, for example, dimethoxycoumarin (16%), cyclopentanediene (9%), methoxycyclohexane (8%), corylone (7%), palmitic acid (7%), dimethoxypsoralen (6%), α-terpineol (6%), and umbelliferone (5%).

Traditional Uses

The traditional uses or phytochemical properties of C. aurantifolia from several literature reviews are described as antibacterial, antidiabetic, antifungal, antihypertensive, anti-inflammatory, anti-lipidemia, antioxidant, anti-parasitic, and antiplatelet, activities. It is used for the treatment of cardiovascular diseases and acts as a fertility promoter. Moreover, it can be used for insecticide activity.

Cancer Incidence

Cancer is a serious public health problem worldwide that is the second leading cause of death, exceeding only by heart disease. A total of 1.6 million new cancer cases and more than five hundred thousand cancer deaths are recorded in the United States in 2015. The natural products were studied, and it was tried to develop a novel anti-cancer therapy for several years. The anticancer property of Citrus aurantifolia was reviewed in this article for update.

Colon Cancer

Patil et al. reported that C. aurantifolia fruit from Texas, USA, consists of at least 22 volatile compounds, and its major compounds were limonene (30%) and dihydrocarvone (31%). About 100 μg/ml of C. aurantifolia extract can inhibit the growth of colon SW-480 cancer cell in 78% after 48 h of exposure. It showed the fragment of DNA and increased level of caspase-3. After a few years, Patil et al. found the new three coumarins from C. aurantifolia peel from Texas that were 5-geranyloxy-7-methoxycoumarin, limettin, and isopimpinellin. About 25 μM of C. aurantifolia extract can inhibit the growth of colon SW-480 cancer cell in 67% after 72 h of exposure. The result of apoptosis was confirmed by the expression of tumor suppressor gene caspase-8/3, p53, and Bcl-2, and inhibition of p38 mitogen-activated protein kinases phosphorylation.

Pancreatic Cancer

Patil et al. reported that the active components of C. aurantifolia juice contain rutin, neohesperidin, hesperidin, and hesperetin. They also...
found limonoid substances such as limonoxic acid, isolimonoxic acid, and limonin. Moreover, 100 μg/ml of C. aurantifolia juice extract can stop 73–89% of pancreatic Panc-28 cancer cells growth after 96 h of exposure. The result of apoptosis was confirmed by the expression of Bax, Bcl-2, caspase-3, and p53. In the next year, Patil et al. reported the five active components of C. aurantifolia seeds such as limonin, limonoxic acid, isolimonoxic acid, β-sitosterol glucoside, and limonin glucoside. They also reported that C. aurantifolia extract can stop the growth of pancreatic Panc-28 cancer cells with inhibitory concentration 50% (IC50) of 18–42 μM after 72 h of exposure. Moreover, the order of the induction of apoptosis was isolimonoxic acid > limonoxic acid > sitosterol glucoside > limonin > limonin glucoside, based on the expression ratio of Bax/Bcl-2.

Breast Cancer

Gharagozloo et al. reported that the 125–500 μg/ml of C. aurantifolia fruit juice extract from Iran inhibits the growth of breast MDA-MB-453 cancer cell after 24 h of exposure. Adina et al. reported that the 6 and 15 μg/ml of C. aurantifolia peel extract from Indonesia inhibits the growth of breast MCF-7 cancer cell at G1 and G2/M phase, respectively, after 48 h of exposure. The expression of p53 and Bcl-2 was also observed, which indicated the apoptosis.

Lymphoma

Castillo-Herrera et al. reported that the limonin extract from C. aurantifolia seed from Mexico inhibits the growth of L5178Y lymphoma cells with IC50 of 8.5–9.0 μg/ml. Moreover, the citrus secondary metabolites were studied for anticancer activity, for example, flavonoids on skin cancer, hesperetin on colon cancer, limonoids on colon cancer, naringenin on prostate cancer, and hepatocarcinoma.

The information from electronic databases about the protective effect of high citrus fruit intake in the risk of stomach cancer studies until 2007 was reviewed by Bae et al. Li et al. reported the relationship between the citrus consumption and the reduction of cancer incidence among 42,470 Japanese adults, aged 40–79 years, in the Ohsaki National Health Insurance Cohort study from 1995 to 2003. The study revealed a positive relationship that citrus consumption could prevent the occurrence of cancer. Wang et al. reviewed the protective effects of polymethoxylflavones from citrus and proposed that it inhibits carcinogenesis by several pathways in the metastasis, cell mobility, proapoptosis, and angiogenesis.

CONCLUSION

Even though citrus is a common fruit and easy to use in daily consumption, it contains many beneficial substances for human health. It may be a miracle fruit. The phytochemical substances such as alkaloids, carotenoids, coumarins, essential oils, flavonoids, phenolic acids, and triterpenoids exist in citrus abundantly. All of these substances have their board range of pharmacological properties, especially anticancer property. C. aurantifolia was studied for its effect against carcinogenesis by mechanisms such as stopping cancer cell mobility in circulatory system; so, inhibiting the metastasis, blocking the angiogenesis, and inducing tumor suppressor gene and apoptosis. The present review suggests that C. aurantifolia consumption may have a change to use for cancer therapy.

Acknowledgement

The authors wish to express their gratitude to the members of the Fish Research Unit, Department of Pathobiology, Faculty of Science, Mahidol University, for their support. We also thank the anonymous reviewer and editor for their perceptive comments and positive criticism of this review article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Liu Y, Heying E, Tanumihardjo S. History, global distribution, and nutritional importance of Citrus fruits. Compr Rev Food Sci Food Saf 2012;11:520-45.
2. USDA. Citrus: World markets and trade. Washington United States Department of Agriculture, Foreign Agricultural Service; 2016.
3. Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, et al. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 2015;9:68.
4. Kiefer S, Weivel M, Smits J, Juch M, Tedtke J, Herbst N. Citrus flavonoids with skin lightening effects – Safety and efficacy studies. Int J Appl Sci 2010;13:42-54.
5. Khan IA. Citrus Genetics, Breeding and Biotechnology. UK: CAB International; 2007. p. 370.
6. Ladanii M. Citrus Fruit Biology, Technology and Evaluation. Goa, India: Academic Press; 2008. p. 593.
7. Dongmo P, Tchoumougounag F, Boyom F, Sonwa E, Zollo P, Menut C. Antiradical, antioxidant activities and anti-inflammatory potential of the essential oils of the varieties of Citrus limon and Citrus aurantifolia growing in Cameroon. J Asian Sci Res 2013;3:1046-57.
8. Zandkarimi H, Taleae A, Fatahi R. Evaluation of cultivated lime and lemon cultivars in Southern Iran for some biochemical compounds. Food 2011;5:94-8.
9. Costa R, Bisignano C, Filocamo A, Grasso E, Occhiotto F, Spadaro F. Antimicrobial activity and chemical composition of Citrus aurantifolia (Christm.) Swingle essential oil from Italian organic crops. J Essent Oil Res 2014;26:400-8.
10. Lawal O, Oguzwanide I, Owolade M, Giva-Awwwa S, Kasali A, Abudu F, et al. Comparative analysis of essential oils of Citrus aurantifolia Swingle and Citrus reticulata Blanco, from two different localities of Lagos State, Nigeria. Am J Essent Oils Nat Prod 2014;2:8-12.
11. Wang Y, Chang Y, Ku Y. Quantitation of bioactive compounds in Citrus fruits cultivated in Taiwan. Food Chem 2007;102:1163-1173.
12. Kaewsuksaeng S, Tarnala N, Sirilong V, Pongprasert N. Postharvest heat treatment delays chlorophyll degradation and maintains quality in Thai lime (Citrus aurantifolia Swingle cv. Paan) fruit. Postharvest Biol Technol 2015;100:1-7.
13. Phi N, Tu N, Nishiyama C, Sawamura M. Characterisation of the odour volatiles in Citrus aurantifolia Persa lime oil from Vietnam. Dev Food Sci 2006;4:193-9.
14. Dugo G. Citrus: The genus Citrus. In: Di Giacomo A, editor. Medicinal and Aromatic Plants – Industrial Profiles. Vol. 26. London: Taylor & Francis; 2002.
15. Manner H, Buker R, Smith V, Ward D, Elevitch C. Citrus species (Citrus). In: Elevitch C, editor. Species Profiles for Pacific Island Agroforestry. Ver. 2.1. Honolulu, Hawaii: Permanent Agriculture Resources; 2006.
16. Enejoh O, Oguyemfi I, Bala M, Ozuene I, Suleiman M, Ambial S. Ethnomedical importance of Citrus aurantifolia (Christm) Swingle. Pharm Innov J 2015;4:1-6.
17. Rivero-Cabrera F, Ponce-Valdez M, Sanchez F, Villegas-Monter A, Perez-Flores L. Acid imes: A review. Fresh Produce 2010;4:116-22.
18. Berhow MA, Bennett RD, Poling SM, Vannier S, Hidaka T, Omura M. Acylated flavonoids in citrus cultures of Citrus aurantifolia. Phytochemistry 1994;36:1225-7.
19. Kawai S, Tomono Y, Katsae E, Ogawa K, Yano M. Quantitation of flavonoid constituents in Citrus fruits. J Agric Food Chem 1999;47:3565-71.
20. Caristi C, Bellocco E, Panzera V, Tocasino G, Vada R, Leuzzi U. Flavonoid detection by HPLC-DAD-MS-MS in lemon juices from Sicilian cultivars. J Agric Food Chem 2003;51:3528-34.
21. Aranganathan S, Selvar JB, Nalini N. Effect of hesperetin, a Citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: A dose-dependent study. J Pharm Pharmacol 2008;60:1385-92.
22. Lee YC, Cheng TH, Lee JS, Chen JH, Liao YC, Fong Y, et al. Nobiletin, a Citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in...
human gastric adenocarcinoma AGS cells. Mol Cell Biochem 2011;347:103-15.

23. Loizzo MR, Tundis R, Bonesi M, Menchini E, De Luca D, Colica C, et al. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric 2012;92:2906-7.

24. Piccinieli AL, Garcia Mesa M, Armenteros DM, Alfonso MA, Arevalo AC, Campone L, et al. HPLC-PDA-MS and NMR characterization of C-glycosyl flavones in a hydroalcoholic extract of Citrus aurantifolia leaves with antiplatelet activity. J Agric Food Chem 2008;56:1574-81.

25. Peterson J, Beecher G, Bhagwat S, Dwyer J, Gebhardt S, Haytowitz D, et al. Flavonoids in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J Food Compost Anal 2006;19:74-80.

26. Anu D, Subramanian P. Inhibitory effect of naringin (Citrus flavanone) on N-nitrosodiethylnitrosamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 2013;434:203-9.

27. Jayaparakasha GK, Mandaki KK, Poulouse SM, Jadegoud Y, Nagana Gowda GA, Patil BS. Novel triterpenoid from Citrus aurantium L. possesses chemopreventive properties against human colon cancer cells. Bioorg Med Chem 2008;16:5939-51.

28. Poulouse SM, Harris ED, Patil BS. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. J Nutr 2005;135:870-7.

29. Lota ML, de Rocca Serra D, Torni F, Jacquemond C, Casanova J. Volatile components of peel and leaf oils of lemon and lime species. J Agric Food Chem 2002;50:796-805.

30. Spadaro F, Costa R, Ciriootta G, Orsini F. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat Prod Commun 2012;7:1523-6.

31. Okwu D, Emenike I. Evaluation of the phytochemicals and vitamins content of Citrus fruits. Int J Mol Med Adv Sci 2006;2:1-6.

32. Okwu D, Emenike I. Nutritive value and mineral content of different varieties of Citrus fruits. J Food Technol 2007;5:105-9.

33. Sandoval-Montemayor NE, Garcia A, Elizondo-Treviño E, Garza-González E, Alavez L, del Rey Camacho-Corona M. Chemical composition of hexane extract of Citrus aurantium L. (sweet) peel and its phytochemical screening. Asian Pac J Trop Dis 2012;2:328-31.

34. Daniels S. Citrus peel extract shows benefit for diabetes. Life Sci 2006;79:365-73.

35. Karim A, Nasabi N. Effect of garcin extract and Citrus aurantium (lime) juice on and blood glucose level and activities of amylase and trypsin in streptozotocin-diabetic rats. World J Pharm Sci 2014;2:624-7.

36. Dongmo PJ, Tatadiuel JD, Sonve EK, Kuete J, Arnault ZO, Penut C. Essential oils of citrus aurantium from Cameroon and their antifungal activity against Penicillium oxalicum. Afr J Agric Res 2009;4:354-8.

37. Tagoe D, Baidoo S, Dadzie A, Kanganay V, Nyarko B. A comparison of the antimalarial and antiparasitic properties of Citrus aurantium (lime) juice and on blood platelet aggregation. J Ethnopharmacol 2014;43:691-6.

38. Balamurugan S. Antioxidant activities of the unripen and ripen Citrus aurantifolia of Assam. Int J Innov Res Sci Eng Technol 2013;2:4811-6.

39. Abdelgader A, Qaralah B, Al-Ramannel N, Das G. Anthelmintic effects of Citrus peel extracts on Ascaris galli. Vet Parasitol 2012;188:79-84.

40. Eneji S, Shuaibu K, Suleman M, Ajaniu J. Evaluation of anthelmintic efficacy of extracts of Citrus aurantifolia fruit juice in mice experimentally infected with Heligmosomoides bakeri. Int J Biol Res 2014;4:241-6.

41. Eneji S, Suleman M, Ajaniu J, Ambali S. In vitro anthelmintic efficacy of extracts of Citrus aurantifolia (Christm) Swingel fruit peels against Heligmosomoides bakeri ova and larvae. Int J Curr Pharm Res 2015;7:92-6.

42. Dominguez-Vigil I, Camacho-Corona M, Heredia-Rojas J, Vargas-Vilarreal J, Rodriguez-de la Fuente A, Heredia-Rodriguez O, et al. Anti-giardia activity of hexane extract of Citrus aurantifolia (Christm) Swingel and some of its constituents. Afr J Tradit Complement Altern Med 2015;12:55-9.

43. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saeusa T, Gotoh T, et al. Frequency of Citrus fruit intake is associated with the incidence of cardiovascular disease: The Jichi Medical School cohort study. J Epidemiol 2011;21:169-75.

44. Gokulkrishnan K, Senthilvelan P, Swakumar V. Regenerating activity of Citrus aurantifolia on paracetamol induced hepatic damage. Asian J Bio Sci 2010;4:176-9.

45. Shalaby N, Hovaida A, Hanaa H, Nour B. Protective effect of Citrus sinensis and Citrus aurantifolia against osteoporosis and their phytoconstituents. J Med Plants Res 2011;5:579-88.

46. Tsokoumova P, Tsacheva P, Mudrochova M, Todorova K, Tatsadzienou P, Vatcheva M. Effects of Citrus aurantium L. peel extract on cholesterol levels and antioxidant status in rats. J Nutr Health 2006;39:105-10.

47. Arul D, Subramanian P. Inhibitory effect of naringin (Citrus flavanone) on N-nitrosodiethylnitrosamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 2013;434:203-9.

48. Jayaparakasha GK, Mandaki KK, Poulouse SM, Jadegoud Y, Nagana Gowda GA, Patil BS. Novel triterpenoid from Citrus aurantium L. possesses chemopreventive properties against human colon cancer cells. Bioorg Med Chem 2008;16:5939-51.

49. Poulouse SM, Harris ED, Patil BS. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. J Nutr 2005;135:870-7.

50. Lota ML, de Rocca Serra D, Torni F, Jacquemond C, Casanova J. Volatile components of peel and leaf oils of lemon and lime species. J Agric Food Chem 2002;50:796-805.

51. Spadaro F, Costa R, Ciriootta G, Orsini F. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat Prod Commun 2012;7:1523-6.

52. Okwu D, Emenike I. Evaluation of the phytochemicals and vitamins content of Citrus fruits. Int J Mol Med Adv Sci 2006;2:1-6.

53. Okwu D, Emenike I. Nutritive value and mineral content of different varieties of Citrus fruits. J Food Technol 2007;5:105-9.

54. Sandoval-Montemayor NE, Garcia A, Elizondo-Treviño E, Garza-González E, Alavez L, del Rey Camacho-Corona M. Chemical composition of hexane extract of Citrus aurantium and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules 2012;17:1173-84.

55. Albinu I, Ademulakun T, Adelovutan T, Ogunsanya T, Odugbemi T. Evaluation of the antimicrobial properties of different parts of Citrus aurantium (lime) fruit as used locally. Afr J Tradit Complement Altern Med 2006;4:185-90.

56. Nwaniko IU, Osaro-Matthew RC, Ekele IN. Synergistic antibacterial potentials of Citrus aurantifolia (lime) and honey against some bacteria isolated from sputum of patients attending Federal Medical Center, Umuma. Int J Curr Microbiol Appl Sci 2015;4:534-44.

57. Fatihan R, Papí R, Parveen P, Tanaki G, Soypanya T. In vitro antimicrobial activity of Citrus aurantifolia and its phytochemical screening. Asian Pac J Trop Dis 2012;2:328-31.

58. Daniels S. Citrus peel extract shows benefit for diabetes. Life Sci 2006;79:365-73.

59. Karim A, Nasabi N. Effect of garcin extract and Citrus aurantium (lime) juice on and blood glucose level and activities of amylase and trypsin in streptozotocin-diabetic rats. World J Pharm Sci 2014;2:624-7.

60. Dongmo PJ, Tatadiuel JD, Sonve EK, Kuete J, Arnault ZO, Penut C. Essential oils of citrus aurantium from Cameroon and their antifungal activity against P aeruginosa. Afr J Agric Res 2009;4:354-8.

61. Tagoe D, Baidoo S, Dadzie A, Kanganay V, Nyarko B. A comparison of the antimalarial and antiparasitic properties of Citrus aurantium (lime) juice and on blood platelet aggregation. J Ethnopharmacol 2014;43:691-6.

62. Balamurugan S. Antioxidant activities of the unripen and ripen Citrus aurantifolia of Assam. Int J Innov Res Sci Eng Technol 2013;2:4811-6.
Anticancer Properties of Citrus aurantifolia

1. Yoshimizu N, Otani Y, Saikawa Y, Kubota T, Yoshida M, Funukawa T, et al. Anti-tumour effects of nobiletin, a Citrus flavonoid, on gastric cancer include: Antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol Ther 2004;20 Suppl 1:95-101.

2. Gao K, Henning SM, Niu Y, Youssefian AA, Seeram NP, Xu A, et al. The Citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem 2006;17:89-95.

3. Ekambaram G, Rajendran P, Magee V, Sakthisekaran D. Naringenin reduces tumor size and weight lost in N-methyl-N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats.

Pharmacognosy Reviews, Vol 10, Issue 20, Jul-Dec, 2016

ABOUT AUTHOR

Nithithep Narang, is currently pursuing his B.Sc. in Biological Sciences (Biomedical concentration) from Mahidol University International College. He plans to graduate by April, 2018. His senior project research paper focuses on the “Comparative evaluation of in vitro anthelmintic activity of leaves of Citrus aurantifolia and Citrus hystrix against Tubifex tubifex.” It is being carried out under the supervision and guidance of Dr. Wannee Jiraungkoorskul.

Wannee Jiraungkoorskul, is currently working as Assistant Professor in the Department of Pathobiology, Faculty of Science, Mahidol University, Thailand. She received her B.Sc. in Medical Technology, M.Sc. in Physiology, and Ph.D. in Biology. Dr. Wannee Jiraungkoorskul’s current research interests are aquatic toxicopathology and efficiency of medicinal herbs.