A Novel Technique to Reconstruct the Z mass in WZ/ZZ Events with Lepton(s), Missing Transverse Energy and Three Jets at CDF II.

Marco Trovato and Caterina Vernieri1,2
1 INFN sez. Pisa, Italy
2 Scuola Normale Superiore Pisa, Italy

Abstract. Observing WZ/ZZ production at the Tevatron in a final state with a lepton, missing transverse energy and jets is extremely difficult because of the low signal rate and the huge background. In an attempt to increase the acceptance we study the sample where three high-energy jets are reconstructed, where about 1/3 of the diboson signal events are expected to end. Rather than choosing the two E_T-leading jets to detect a Z signal, we make use of the information carried by all jets.

To qualify the potential of our method, we estimate the probability of observing an inclusive diboson signal at the three standard deviations level (P(3.22)) to be about four times larger than when using the two leading jets only. Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ over the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

1 Motivations

The study of diboson production provides a test of the electroweak sector of the Standard Model (SM). In particular the predicted W *, Z couplings (Trilinear Gauge Couplings) are sensitive to new physics.

The study of associated WZ boson production in the final state ℓνb̅ is important since the event topology of this process is the same as expected for WH associated production (M_H ≤ 135 GeV) [1].

Observing this process at Tevatron is difficult since the event rate is extremely low. NLO calculations predict WZ production cross section to be about four times larger than when using the two leading jets only. Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

2 Three jets

In diboson analyses at CDF the standard kinematical cut requires two high energy jets in the candidate sample (two jets region). In order to increase signal acceptance, we investigate the sample where three high-E_T jets are found (three-jets region), which in simulations is predicted to contain about 33% of signal events.

Additional jets may be initiated by gluons radiated from the interacting partons (Initial State Radiation, ISR) or from the Z-decay quarks (Final State Radiation, FSR).

The experimental signature involves the presence of a charged lepton (electron or muon), a neutrino (identified through the missing transverse energy, E_T) and large-E_T jets. To qualify the potential of our method, we estimate the probability of observing an inclusive diboson signal at the three standard deviations level (P(3.22)) to be about four times larger than when using the two leading jets only.

Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

1 Motivations

The study of diboson production provides a test of the electroweak sector of the Standard Model (SM). In particular the predicted W *, Z couplings (Trilinear Gauge Couplings) are sensitive to new physics.

The study of associated WZ boson production in the final state ℓνb̅ is important since the event topology of this process is the same as expected for WH associated production (M_H ≤ 135 GeV) [1].

Observing this process at Tevatron is difficult since the event rate is extremely low. NLO calculations predict WZ production cross section to be about four times larger than when using the two leading jets only. Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

2 Three jets

In diboson analyses at CDF the standard kinematical cut requires two high energy jets in the candidate sample (two jets region). In order to increase signal acceptance, we investigate the sample where three high-E_T jets are found (three-jets region), which in simulations is predicted to contain about 33% of signal events.

Additional jets may be initiated by gluons radiated from the interacting partons (Initial State Radiation, ISR) or from the Z-decay quarks (Final State Radiation, FSR).

The experimental signature involves the presence of a charged lepton (electron or muon), a neutrino (identified through the missing transverse energy, E_T) and large-E_T jets. To qualify the potential of our method, we estimate the probability of observing an inclusive diboson signal at the three standard deviations level (P(3.22)) to be about four times larger than when using the two leading jets only.

Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

1 Motivations

The study of diboson production provides a test of the electroweak sector of the Standard Model (SM). In particular the predicted W *, Z couplings (Trilinear Gauge Couplings) are sensitive to new physics.

The study of associated WZ boson production in the final state ℓνb̅ is important since the event topology of this process is the same as expected for WH associated production (M_H ≤ 135 GeV) [1].

Observing this process at Tevatron is difficult since the event rate is extremely low. NLO calculations predict WZ production cross section to be about four times larger than when using the two leading jets only. Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.

2 Three jets

In diboson analyses at CDF the standard kinematical cut requires two high energy jets in the candidate sample (two jets region). In order to increase signal acceptance, we investigate the sample where three high-E_T jets are found (three-jets region), which in simulations is predicted to contain about 33% of signal events.

Additional jets may be initiated by gluons radiated from the interacting partons (Initial State Radiation, ISR) or from the Z-decay quarks (Final State Radiation, FSR)

The experimental signature involves the presence of a charged lepton (electron or muon), a neutrino (identified through the missing transverse energy, E_T) and large-E_T jets.

To qualify the potential of our method, we estimate the probability of observing an inclusive diboson signal at the three standard deviations level (P(3.22)) to be about four times larger than when using the two leading jets only.

Aiming at applying the method to the search for the exclusive WZ/ZZ→ℓνq̅ channel in the three jets sample, we analyze separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ→ℓνb̅b̅ search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E_T. Studies for improving the method further are on-going.
Then, we investigate at generator level the origin of jets which jets are matched in direction to quarks from Z decay. We started from studying the three jets sample in WZ MC collected sample within our cuts:

Table 1 shows the estimated number of events for each process contributing for the MJ1J2 distribution.

In Table 1 we show the estimated number of events for the MJ1J2 distribution.

2.1 Composition of the selected events

The following processes would contribute to a data selected sample within our cuts:

- **Electroweak and top (EW):** WW, WZ, ZZ, Z+jets, t, single-top. Each of these processes can mimic the signal signature, with one detected lepton, large \(E_T \) and jets. The contamination of these processes in the selected data sample is estimated by using their accurately predicted cross sections [2]. The shapes (templates) of a number of observables are obtained from ALPGEN+Pythia [4, 5], Pythia MC [5] after the simulation of the CDF detector.

- **W(\(\rightarrow l\nu \))+jets, l = e,\(\mu \),\(\tau \).** Due to the presence of real leptons and neutrinos, the \(W + jets \) background is the hardest to be reduced. Templates are obtained from ALPGEN+Pythia MC, while the rate normalization is obtained from data.

- **QCD:** multi-jet production with a jet faking the lepton and fake \(E_T \). Since the mechanism for a jet faking a lepton or for fake missing transverse energy is not expected to be well modeled in MC events, both rate normalization and templates are obtained from data.

In Table 1 we show the estimated number of events for each process contributing for the MJ1J2 distribution.

3 Adopted strategy

We started from studying the three jets sample in WZ MC in which jets are matched in direction to quarks from Z decay. Then, we investigate at generator level the origin of the not-matched jet (NMJ) in order to find the Right Jet Combination (RJC) which would give the Z mass.

In terms of the RJC frequency the selected sample is composed as follows:

1. NMJ = J3 is from ISR \(\rightarrow \) RJC = J1J2 - 35% of events
2. NMJ = J2 is from ISR \(\rightarrow \) RJC = J1J3 - 21% of events
3. NMJ = J1 is from ISR \(\rightarrow \) RJC = J2J3 - 10% of events
4. NMJ is from FSR \(\rightarrow \) RJC = J1J2J3 - 19% of events

15% of events cannot be allocated to any of these categories. This problem is a subject of further studies.

Four different Neural Networks (NNs) have been trained with the MLP method [7], (NN12, NN13, NN23 and NN123) in order to decide event by event which RJC should be used. Inputs to NNs are:

1. Kinematical variables:
 - \(\eta_{j_{k,h}} \), \(\Delta R_{j_{k,h}} \), \(\Delta R_{j_{k,h},l} \), \(\Delta R_{j_{k,h},l'} \)

2. Variables related to the jet systems:
 - \(m_{j_{k,h}} \rightarrow m_{j_{k,h}} \)
 - \(\gamma_{j_{k,h}} = (E_{j_{k,h}} + E_{h_{k,h}}) / m_{j_{k,h}} \)
 - \(\gamma_{j_{k,j,j}} = (E_{j_{k,j}} + E_{j_{k,j}} + E_{j_{k,j}}) / m_{j_{k,j,j}} \)
 - ‘pt-imbalance’ = \(p_T_{j_{k,j}} + p_T_{j_{k,j}} - p_T \cdot E_{T} \)
 - \(\eta_{j_{k,j,k}} \), \(p_T(j_{k,j}, k) \), \(p_T(j_{k,j}, k) \)

3. Some tools developed by CDF Collaboration for distinguishing gluon-like and b-like jets from light-flavored jets [6] [8].

In Fig. 2 some inputs are shown.

Combining by a set of subsequent optimal cuts6 the information provided by the outputs of the four NNs, we build a “MJJC\textsubscript{COMB}” Z-mass. Using MJJC\textsubscript{COMB} rather than MJ1J2, resolution improves by a factor ~2, see Fig. 1 and Table 2. We apply the method also to the major sources of background of a typical diboson analysis at CDF (W+jets, Z+jets, t\(\bar{t} \) and single top) and compare the result to WZ events. In Fig. 3 and in Table 2 can be noticed that MJJC\textsubscript{COMB} allows a better separation of the WZ/ZZ signal from background.

4 Tests of the method

To qualify the potential of the method we have studied an experimental data sample accepting events with an isolated large \(E_T \) (\(p_T \)) lepton, large missing \(E_T \) and three large leptons and neutrinos, the \(W + jets \) background is the hardest to be reduced. Templates are obtained from ALPGEN+Pythia [4, 5], Pythia MC [5] after the simulation of the CDF detector.

In Table 1, predicted and observed number of events in the notag sample. W+jets and QCD rates are estimated by fitting data. The expected rates are separated for different triggered lepton type. By construction the expected numbers are equal to the observed.

Process	Rate (Electrons)	Rate (Muons)
Signal	66.2 ± 0.9	69.5 ± 0.9
WW	386.2 ± 3.0	311.1 ± 3.1
\(t\bar{t} \)	333.0 ± 1.4	288.5 ± 1.2
single-top	68.9 ± 0.4	57.8 ± 0.3
\(Z + jets \)	350.0 ± 3.2	1167.8 ± 4.5
W+jets	10304.2 ± 29.6	8275 ± 22.8
QCD	1600.4 ± 60.0	352.3 ± 5.4

Total Observed: 13109.0 ± 114.5, 10522.0 ± 102.6

Table 1. Predicted and observed number of events in the notag sample. W+jets and QCD rates are estimated by fitting data. The expected rates are separated for different triggered lepton type. By construction the expected numbers are equal to the observed.

\footnote{ \(i, k, p = 1; 2; 3; \ell = \text{highest} \ E_T \text{ lepton} \)}

\footnote{ Cuts have been optimized against the sensitivity of the measurement.
Fig. 2. Some distributions of the variables used as input to NNs, built for the RJC sample and for the complementary one (shaded).

MJ1J2	MJJ_{COMB}
Acc	100%
p	35%
σ/μ	0.27

Table 2. Acc is the acceptance; p is the purity and it is defined as the fraction of events where the corrected jets are selected; σ and μ are estimated by a Gaussian fit in the mass window [70,110] GeV/c²

Fig. 3. Simulation of signal + background. Top, MJ1J2. Bottom, MJJ_{COMB}. The horizontal scale is in GeV/c². The signal is multiplied by 100.

transverse momentum jets. The selection cuts accept jets of all flavors (pretag sample), and all diboson events including WW besides WZ, ZZ may pass the cuts. We estimate the probability at three standard deviations level to extract an inclusive diboson signal. After our procedure for building the Z mass is applied, P_{3σ} is about 4 times greater than when building the Z mass “by default” with the two E_T leading jets.

This attempt represents just a check of our technique. Since diboson signal has been observed in CDF [9], it would be an useful test to understand if using only the three-jets sample a diboson signal could be extracted.

In order to discriminate WZ against the WW contribution we apply our technique considering only WZ/ZZ as the signal. We decide to treat separately the notag and tag three jets regions and then combine the results in order to reach a greater sensitivity. The sensitivity increases when MJJ_{COMB} rather than the standard MJ1J2 is used: the expected p-value is about 30% greater in the former case.

In conclusion, our technique allows including the three jets sample in the WZ/ZZ search in order to increase acceptance and sensitivity in the search for the hadronically decaying Z-boson.

Improvements to this technique and other possible applications are being investigated.

We are grateful to Prof. Giorgio Bellettini, Dr. Giuseppe Latino and Dr. Vadim Rusu for many fruitful discussions and suggestions.

References

1. CDF Collaboration [arXiv:1112.4358v1] (2011)
2. J. M. Campbell and R. K. Ellis, Phys. Rev. D 65, 113007 (2002).
3. M. Trovato, C. Vernieri, J Phys. Conf. Series 323, 012014 (2011)
4. M. Mangano, M. Moretti, M. Piccinini, R. Pittau and A. Polosa, J. High Energy Phys. 07, 001 (2001)
5. T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin Computer Phys. Commun. 135, 238 (2001).
6. J. Freeman, W. Ketchum, J.D. Lewis, S. Poprocki, A. Pronko, V. Rusu, P. Wittich, Nuclear Instruments and Methods in Physic Research Sec. A 663, 37 (2012)
7. A. Hoecker et al. TMVAUser’sGuide (http: tmva.sourceforge.net, 2009)
8. W. Ketchum, CDF Public Note 10643 (2011)
9. T. Aaltonen et al., Phys. Rev. Lett. 104, 101801 (2010)