Antibiogram pattern of *Salmonella* in blood samples of enteric fever patients at Lalitpur, Nepal

Biraj Gurung', Sunil Pandey', Dhirendra Kumar Shah', Manish Kumar Mandal', Bibek Bhatta', Bivek Timalsina', Sanjay Shahi', Tauseef Ahmad'

1Department of Medical Microbiology, Nobel College, Pokhara University, PO Box: 10420, Kathmandu, Nepal
2Department of Biological Sciences, Eastern Illinois University, Charleston IL, 61920, USA
3Faculty of Science and Technology, Pokhara University, PO Box: 427, Lekhnath-12, Kashi, Kaski, Nepal
4Department of Microbiology, Hazara University, Mansehra, Khyber, Pakhtunkhwa, Pakistan

ARTICLE INFO

Article history:
Received 14 Sep 2016
Accepted 8 Nov 2016
Available online 24 Nov 2016

Keywords:
Antibiogram
Salmonella
Blood sample
Nepal

ABSTRACT

Objective: To determine the status of isolation blood stream serotypes of enteric fever pathogens and their antibiotic susceptibility patterns and to guide clinicians for appropriate therapy.

Methods: Samples were examined by microbiological techniques to identify the causative agent and determine their antimicrobial susceptibility patterns by Kirby-Bauer disk diffusion methods and interpreted as per Clinical and Laboratory Standards Institute guidelines.

Results: Among 403 blood samples, 76 (18.85%) showed growth for *Salmonella* isolates. Distribution of *Salmonella typhi* and *Salmonella paratyphi* A isolates were found to be 54% and 46% respectively. Among 76 *Salmonella* isolates, 28 (36.84%) were from male and remaining 48 (63.15%) were from female belonging to all age-groups. Multidrug-resistance was found to be 17% among the *Salmonella* isolates. Nalidixic acid resistance was 73.68% in *Salmonella* with higher proportion in *Salmonella paratyphi* A (85.7%) in comparison to *Salmonella typhi* (63.42%). *Salmonella* isolates demonstrated 100% susceptibility to azithromycin, ceftriaxone, ciprofloxacin, ofloxacin and imipenem.

Conclusions: The need of continual surveillance of resistance levels to guide clinicians for appropriate therapy based on the antibiotic susceptibility pattern for *Salmonella* isolates is sustained with discouragement in misuse of antibiotics prior to prescription as multidrug-resistant-nalidixic acid resistant strains.

I. Introduction

Febrile disease with multiple important causative agents is common. A confirmative diagnosis ensures appropriate and effective treatment. Enteric fever is defined as a syndrome of systemic illness associated with *Salmonella* infection with an estimated 12–33 million cases and 600 000 deaths occurring worldwide each year[1,2]. Enteric fever is endemic in many developing countries including Nepal and other Southeast Asian countries, where 80% of the world’s typhoid fever cases occur[3]. *Salmonella* species are important causes of febrile illness in crowded and impoverished populations with poor drinking water system, and unhygienic condition. Ingestion of food and water contaminated with feces or urine increases the risk of being infected with *Salmonella* not only to the inhabitants, but also to the travelers visiting endemic region of the country[4]. *Salmonella typhi* (S. typhi) is the most common etiological agent, while *Salmonella paratyphi* A (S. paratyphi A) is responsible for only a minority of enteric fever cases and is traditionally associated with asymptomatic and/or mild clinical illnesses[5]. Since all the signs and symptoms of typhoid fever are nonspecific, a definitive diagnosis of the disease depending on the clinical presentation alone is very difficult. An accurate diagnosis of enteric fever is important in clinical settings where antimicrobial therapy prevent serious complications and deaths and reduces inappropriate antimicrobial usage[6].

Blood culture is a definitive diagnostic method for isolation of *S. typhi* and *S. paratyphi* which has quite variable yield result[7]. With standard broth culture, *Salmonellae* have been found in the blood of 30%–90% of patients with clinically suspected cases of enteric fever. The proportion of typhoid fever patients with positive blood
cultures decreases with increasing duration of illness[7]. The volume of blood taken and the laboratory methods used for isolation are also important factors determining the yields from blood culture.

In Nepal, S. typhi and S. paratyphi A are common causative organisms for typhoid and paratyphoid fevers respectively, whereas serotype paratyphi B is rare[8]. However, studies propose that sustained higher incidences of S. paratyphi A cases have been observed in recent years[9,10]. The disease may occur in all ages, with the highest incidence found particularly in children[11,12]. S. paratyphi A is the most commonly identified cause of febrile illness among adults in urban[13]. For the treatment of enteric fever, traditional drugs such as chloramphenicol, ampicillin and cotrimoxazole were most effectively used as first-line drugs[12,13]. However, during the late 1980s and early 1990s the occurrence of multidrug-resistant (MDR) S. typhi and S. paratyphi A strains resistant to chloramphenicol, ampicillin and cotrimoxazole led to the use of fluoroquinolones, in particularly ciprofloxacin, and third generation cephalosporin for the treatment of enteric fever[14]. The wide spread use of fluoroquinolones led to increased occurrence of Salmonella enterica (S. enterica) strains having reduced susceptibility to fluoroquinolones that were being reported more frequently, particularly in Europe, Asia and Africa[15]. Isolates resistant to nalidixic acid are less responsive to fluoroquinolones antibiotics. Nalidixic acid susceptible Salmonella enterica with reduced susceptibility to fluoroquinolones are also increasingly being recognized. Thus, the use of nalidixic acid disc diffusion test during the antibiotic sensitivity test has been recommended by Clinical And Laboratory Standards Institute to screen reduced susceptibility to fluoroquinolones[16]. Besides, occurrence of nalidixic acid resistant (NAR) strain, the increase in use of cefepimparin and azithromycin for the treatment of typhoid and paratyphoid fever also resulted in increasing rates of cefepimparin and azithromycin resistance among S. enterica[17]. Susceptibility to chloramphenicol and ampicillin in South Asia is soaring[18].

In our study, we are determining and monitoring the altering antimicrobial resistance pattern with MDR Salmonella serotypes, re-outgrowth of Salmonellae susceptible to first line antibiotics (ampicillin, chloramphenicol and cotrimoxazole), increasing resistant serotypes to fluoroquinolones and the third-generation cephalosporin. Currently used antibiotics for the treatment of Salmonella infection are in urgent for their determination of resistance and re-evaluation. New approaches to the treatment and the control strategies in Salmonella infections are emerging issues. Thus, our study can be the part of continual surveillance of resistance levels for clinicians to guide appropriate therapy based on the antibiotic susceptibility patterns of S. typhi and S. paratyphi.

2. Materials and methods

2.1. Sample collection

Blood samples were collected aseptically from 403 patients from the Outpatient and Inpatient Department of Medicine in Kist Medical College, Teaching Hospital in Kathmandu, Nepal, from September 2014 to January 2015. The patients were categorized in four age groups 0–28 days, 29 days to 20 years, 21–40 years and > 41 years. Study was conducted on patients who were referred for blood culture in the laboratory.

This study was approved by Institutional Review Committee of KIST Medical Teaching Hospital. Official letter was submitted to the Kist Medical College Imadole, Lalitpur. Informed verbal agreement was taken from Patients. The intent and the importance of the study were explained and approval was received from the Head of Department of Medical Microbiology at Nobel College, Pokhara University.

2.2. Isolation of bacterial colonies

The aseptically collected blood samples were inoculated on culture bottle with Brain-heart infusion broth with sodium polyanethol sulfonate and were incubated at 37 °C. Broth cultures exhibiting turbidity were then inoculated on blood agar plate and MacConkey agar plate, at 37 °C. The isolates were identified by following standard microbiological procedure which includes colony morphology characters, Gram stain reactions and biochemical reactions such as oxidase test, triple sugar iron test, urease test, citrate test and Indole test. If growth is not observed, the blind subcultures in MacConkey agar and blood agar were done after the 5 days of incubation before discarding. In positive cases, colonies characters were noted down. The isolates of Salmonella were further confirmed by slide agglutination with specific antisera O-antigens and H-antigens.

2.3. Sensitivity test

Susceptibility and resistance of all isolates were checked by performing the Kirby-Bauer disc diffusion method as per the guidelines of Clinical and Laboratory Institute; formerly National Committee for Clinical Laboratory Standards[19,20]. Following 24-h incubation of the antibiotic incorporated plates at 37 °C, zone of inhibition around the antibiotic disc was measured. The antibiotics used were amikacin, ampicillin, azetanom, azithromycin, cefpieme, cefixime,cefotaxime, chloramphenicol, ciprofloxacin, cotrimoxazole, gentamycin, imipenem, nalidixic acid, ofloxacin, tetracycline, which were tested in-vitro (Clinical And Laboratory Standards Institute, 2013). The isolates were considered as MDR if they were resistant to at least two classes of the antibiotics.

2.4. Data collection and analysis

Data were first recorded in notebook and then entered computer based MS-Excel version 2013 and appropriate statistical analysis was done using SPSS version 20.0.0.

3. Results

Among 403 blood culture, 327 (81%) showed no growth for Salmonella while 76 (19%) were culture positive for Salmonella isolates. Distribution of S. typhi and S. paratyphi A isolates were found to be 41 (54%) and 35 (46%) respectively. Among 76 Salmonella isolates, 28 (36.84%) were from male and remaining 48 (63.15%) were from female. Out of 28 Salmonella isolates in male, the presence of 11 S. typhi and 17 S. paratyphi A were observed. Likewise, out of 48 Salmonella isolates in female, 26 in S. typhi and 22 in S. paratyphi A were present (Figure 1). Based on age group, the highest Salmonella isolates were in adult (21–40) age group followed by 28 days to 20 years and more than 41 years. Neonatal
sensitivity and 14.3% intermediate to cefipime. All the 41 isolates of Salmonella were tested for antimicrobial susceptibility patterns using 13 antibiotics. All the isolates were fully sensitive (100%) to azithromycin, cefixime, cefotaxime, ceftriazone, ciprofloxacin, gentamicin, imipenem, and ofloxacin. Antibiotic susceptibility pattern of S. typhi showed that it was 75% sensitive to ampicillin, chloramphenicol and cotrimoxazole severally, followed by 37.5% sensitive and 25% intermediate to cefipime. S. typhi showed 62.5% resistance to nalidixic acid (Figure 2). All the 41 isolates of S. paratyphi A were tested for antimicrobial susceptibility patterns using 13 antibiotics. All the isolates were fully sensitive (100%) to azithromycin, ampicillin, cefixime, cefotaxime, ceftriazone, chloramphenicol, ciprofloxacin, cotrimoxazole, gentamicin, imipenem, and ofloxacin (Figure 3). S. paratyphi A showed 57.1% sensitivity and 14.3% intermediate to cefipime. S. paratyphi A was 85.7% resistance to nalidixic acid.

Among the total cases, 13 (17.10%) isolates of Salmonella were MDR and 63 (83%) were non-MDR. Both MDR-isolates were resistant to ampicillin, chloramphenicol, ciprofloxacin, nalidixic acid (MDR-NAR) and cefepime. Among 76 isolates, 56 NAR strain with 26 in S. typhi and 30 S. paratyphi A, while 20 isolates belonged to non-NAR group (Figure 4).

4. Discussion

Enteric fever cases have occurred throughout the study period which implied that safety of drinking water hygienic practice and sanitation have not improved much over that period. In our study period, only 18.85% showed growth which is similar to the results done by Masoumi et al. and Sultana et al.[21,22]. There is direct relationship between the volume of blood obtained and the yield of a blood culture (University of Pennsylvania Medical Center Guidelines for Antibiotic Use, 2010). Lack of growth in blood culture during isolation of pathogen is common, most probably, due to the use of antibiotics prior to blood collection for culture. Availability and misuse of antibiotics even for mild cases of fever is common in Nepal[22]. A relation between antibiotic use and its resistance in clinical isolates had been proven in more studies. However, a straight quantitative relationship between the amount of antibiotic used and the frequency of resistance is still lacking[21,22]. This study showed the higher prevalence of enteric fever in female. On the blood culture, the growth was 46.0% and 53.94% for male and female respectively. Similar results were found by Adabara et al.[20], Masoumi et al.[21], Sultana et al.[22]. We isolated single S. paratyphi A as a neonatal septicemia. Sepsis due to S. enterica serovar typhi and paratyphi A is rare in neonates and described as a mild and unrecognized sickness in infants, life-threatening hindrance and even deaths have been reported[22,23]. Salmonella infections should be considered in the differential diagnosis of neonatal septicemia, especially in endemic areas. All the 76 isolates were tested for antimicrobial susceptibility patterns using 13 antibiotics. All the isolates were fully sensitive (100%) to azithromycin, cefixime, cefotaxime, ciprofloxacin, gentamicin, imipenem, and ofloxacin.

About 75% Salmonella isolates were sensitive to ampicillin, chloramphenicol and cotrimoxazole. In the study of Emary et al.[23], the proportion of S. typhi isolates showed high susceptibility to first line antibiotics ampicillin, chloramphenicol and cotrimoxazole and suggested that reconsidering the addition of these antimicrobial drugs into the treatment regime of enteric fever.

High resistance to cefepime was encountered in this study. Only 37.30% were sensitive to cefepime in S. typhi and 57.10% in S. paratyphi A. As a general principle of antimicrobial intervention, intermediate susceptibility should be regarded as equivalent to resistance Lynch et al.[24]. So, we included intermediate cases of...
cefipime, as resistant. In this study 17.10% of isolates were MDR. There has been increasing concern about the outgrowth of MDR S. typhi and S. paratyphi A in Nepal[23,25,26]. The emergence of these strains is worrying due to the malpractice of use of antibiotics from pharmacies without prescription by physician in Nepal. But overall there is a general trend of decline in MDR strains. The reasons for this could be due to discontinuation of traditional drugs in the treatment of typhoid fever, thus relieving the selection pressure. We have found only MDR S. typhi but not in S. paratyphi A and our results coincided with Acharya et al.[24] and Gaind et al.[26]. In this study, all the MDR isolates showed resistance to ampicillin, chloramphenicol, cotrimoxazole and nalidixic acid (MDR-NAR). This finding is similar to the Acharya et al.[25]. Further in present study all MDR were resistant to cefipime. The combination of MDR and NAR (MDR-NAR) is a particular problem, because it severely restricts the therapeutic options for patients with typhoid fever. The increased prevalence of MDR-NAR strains of S. typhi and S. paratyphi A has posed a therapeutic challenge.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

We would like to thank Dr. Bijendra Raj Raghusambansi and Menuka Sapkota, for their valuable feedback and constructive suggestion for the research and the manuscript.

References

[1] Kariuki S, Gordon MA, Feasey N, Parry CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 2015; 33(Suppl 3): C21-9.

[2] Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ 2004; 82(5): 346-53.

[3] Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Biaqing D, Bhattacharya SK, Agtini MD, et al. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 2008; 86(4): 260-8.

[4] Vinh DB, Ko DC, Rachubinski RA, Aitchison JD, Miller SI. Expression of the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes. Mol Biol Cell 2010; 21(20): 3567-77.

[5] Buckley CL, Walker CL, Black RE. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health 2012; 2(1): 010401.

[6] Andrews-Polymenis HL, Bäumler AJ, McCormick BA, Fang FC. Taming the elephant: Salmonella biology, pathogenesis, and prevention. Infect Immun 2010; 78: 2356-69.

[7] Mathur R, Oh H, Zhang D, Park SG, Seo J, Koblansky A, et al. A mouse model of Salmonella typhi infection. Cell 2010; 151(3): 590-602.

[8] Pokharel P, Rai SK, Kariki G, Katuraw A, Viraikutki R, Shresthu SK. Study of enteric fever and antibiotic of Salmonella isolates at a Teaching Hospital in Kathmandu Valley. Nepal Med Coll J 2009; 11(3): 176-8.

[9] de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. Host-pathogen interaction in invasive salmonellosis. 2012; 8(10): e1002933.

[10] Acharya D, Bhatta DR, Malla S, Dumre SP, Adhikari N, Kandel BP. Salmonella enteric serovar paratyphi A: an emerging cause of febrile illness in Nepal. Nepal Med Coll J 2011; 13(2): 69-73.

[11] John J, Van Aart CJ, Grassly NC. The Burden of typhoid and paratyphoid in India: systematic review and meta-analysis. PLoS Negl Trop Dis 2016; 10(4): e0004616.

[12] Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B, Wolf L, et al. Emergence of Salmonella enterica serotype paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans R Soc Trop Med Hyg 2006; 100(11): 1063-7.

[13] Dewan AM, Corner R, Hashizume M, Onge E. Typhoid fever and its association with environmental factors in the Dhaka metropolitan area of Bangladesh: a spatial and time-series approach. PLoS Negl Trop Dis 2013; 7(1): e1998.

[14] Akhtar S, Sarker MR, Jabeen K, Sattar A, Qamar A, Fasih N. Antimicrobial resistance in Salmonella enterica serovar typhi and paratyphi in South Asia-current status, issues and prospects. Crit Rev Microbiol 2015; 41(4): 536-45.

[15] Garg N, Tewari R, Gupta V, Kapil A, Kumar S, Rishi P. Current antibiogram and clonal relatedness among drug-resistant Salmonella enterica Serovar Typhi in Northern India. Microb Drug Resist 2013; 19(3): 204-11.

[16] Rai S, Jain S, Prasad KN, Ghoshal U, Dhole TN. Rationale of azithromycin prescribing practices for enteric fever in India. Indian J Med Microbiol 2012; 30(1): 30.

[17] Thaver D, Zaidi AK, Critchley J, Azmatullah A, Madni SA, Bhutta ZA. A comparison of fluoroquinolones versus other antibiotics for treating enteric fever: meta-analysis. BMJ 2009; 338: b1865.

[18] Boyle VL, Fancher ME, Ross WR Jr. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob Agents Chemother 1973; 3: 418-24.

[19] Mannan A, Shohel M, Rajia S, Mahnud NU, Kabir S, Hasan I. A cross sectional study on antibiotic resistance pattern of Salmonella typhi clinical isolates from Bangladesh. Asian Pac J Trop Biomed 2014; 4(4): 306-11.

[20] Adabarana N, Ezuwgu B, Momojimoh A, Madzu A, Hashimizu Z, Damisa D. The prevalence and antibiotic susceptibility pattern of Salmonella typhi among patients attending a military hospital in Minna, Nigeria. Adv Prev Med 2012; 2012: 875419.

[21] Masoumi JP, Anwar MS, Bokhari SR. Clinical features of infantile diarrhoea associated with single or multiple enteric pathogens. J Pak Med Assoc 1995; 45: 266-8.

[22] Sultana F, Afroz H, Jahan A, Fakruddin M, Datta S. Multi-antibiotic resistant bacteria in frozen food (ready to cook food) of animal origin sold in Dhaka, Bangladesh. Asian Pac J Trop Biomed 2013; 4(Suppl 1): S268-71.

[23] Emary K, Moore CE, Chanphakeatra N, An KP, Chheng K, Sona S, et al. Enteric fever in Cambodian children is dominated by multidrug-resistant H59 Salmonella enterica serovar Typhi with intermediate susceptibility to ciprofloxacin. Trans R Soc Trop Med Hyg 2012; 106(12): 718-24.

[24] Lynch MF, Blanton EM, Bulens S, Polyak C, Vojdani J, Stevenson J, et al. Typhoid fever in the United States, 1999-2006. JAMA 2009; 302(8): 859-65.

[25] Acharya IL, Lowe CU, Thapa R, Gurbacharya VL, Shrestha MB, Cadoz M, et al. Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi. N Engl J Med 1987; 317(18): 1101-4.

[26] Gaind R, Paglietti B, Murgia M, Dawar R, Uzzau S, Cappuccinelli P, et al. Molecular characterization of ciprofloxacin-resistant Salmonella enterica serovarTyphi and Paratyphi A causing enteric fever in India. J Antimicrob Chemother 2006; 58(6): 1139-44.