Hydrogenation properties of lithium and sodium hydride – closo-borate, \([\text{B}_{10}\text{H}_{10}]^{2-}\) and \([\text{B}_{12}\text{H}_{12}]^{2-}\), composites†

Steffen R. H. Jensen, Mark Paskevicius, Bjarne R. S. Hansen, Anders S. Jakobsen, Kasper T. Møller, James L. White, Mark D. Allendorf, Vitalie Stavila, Jørgen Skibsted and Torben R. Jensen

The hydrogen absorption properties of metal closo-borate/metal hydride composites, \(\text{M}_2\text{B}_{10}\text{H}_{10}–8\text{MH}\) and \(\text{M}_2\text{B}_{12}\text{H}_{12}–10\text{MH}\), \(\text{M} = \text{Li or Na}\), are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by \textit{in situ} synchrotron radiation powder X-ray diffraction at \(p(H_2) = 400\) bar and by \textit{ex situ} hydrogen absorption measurements at \(p(H_2) = 526\) to 998 bar. The \textit{in situ} experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH\(_4\)) are formed. On the contrary, the \(\text{M}_2\text{B}_{12}\text{H}_{12}–10\text{MH}\) (\(\text{M} = \text{Li and Na}\)) systems show no formation of the metal borohydride at \(T = 400\) °C and \(p(H_2) = 537\) to 970 bar. \(^{11}\)B MAS NMR of the \(\text{M}_2\text{B}_{10}\text{H}_{10}–8\text{MH}\) composites reveal that the molar ratio of LiBH\(_4\) or NaBH\(_4\) and the remaining B species is 1 : 0.63 and 1 : 0.21, respectively. Solution and solid-state \(^{11}\)B NMR spectra reveal new intermediates with a B : H ratio close to 1 : 1. Our results indicate that the \(\text{M}_2\text{B}_{10}\text{H}_{10}\) composites have also been used to thermodynamically destabilize metal borohydrides by altering the decomposition mechanism, \(e.g.,\) LiBH\(_4–\)MgH\(_2\), or by changing the morphology of the sample, \(e.g.,\) NaBH\(_4–\)KHB\(_4\), where the solid is transformed into a liquid. \(^{21,24}\) Finally, several materials have been studied as catalysts for hydrogen uptake and release, \(e.g.,\) transition metals and their halides and oxides. \(^{25–27}\) However, to the best of our knowledge, an efficient catalyst for breaking and forming B–H bonds has not yet been discovered.

Introduction

The human consumption of energy has increased over the past decades, and has mainly been covered by burning fossil fuels at an increasing rate, which has led to an increase in CO\(_2\) levels in the atmosphere.\(^1,2\) Despite an abundance of available renewable energy from sun and wind, these energy sources are intermittent and fluctuate over time and geography. Thus, energy storage is required to compensate for the variability in renewable energy fluxes, and hydrogen is a promising energy carrier with the highest gravimetric energy density among all known compounds (\(\mu_m = 120\) MJ kg\(^{-1}\)).\(^3\) However, compressed hydrogen gas has a low volumetric energy density (\(\mu_v = 8.5\) MJ L\(^{-1}\)).

The volumetric density can be improved by storing hydrogen in a solid, for example in reversible metal hydrides.\(^3–5\) Metal borohydrides have been proposed as solid-state hydrogen storage media due to their high hydrogen content and potential reversibility.\(^6–9\) The challenge of using metal borohydrides as hydrogen carriers is that they often possess high hydrogen release temperatures, coupled with harsh conditions needed for hydrogenation.\(^10–14\) These issues have generated interest in the synthesis and investigation of hydrogen storage properties of bi- and tri-metallic main group/transition metal borohydrides with tunable hydrogen desorption temperatures.\(^15–21\) Another approach has been to stabilize unstable borohydrides \(e.g.,\) Fe(BH\(_4\))\(_2\) and Co(BH\(_4\))\(_2\), using ammonia.\(^22\) Reactive hydride composites have also been used to thermodynamically destabilize metal borohydrides by altering the decomposition mechanism, \(e.g.,\) LiBH\(_4–\)MgH\(_2\), or by changing the morphology of the sample, \(e.g.,\) NaBH\(_4–\)KHB\(_4\), where the solid is transformed into a liquid. \(^{21,24}\) Finally, several materials have been studied as catalysts for hydrogen uptake and release, \(e.g.,\) transition metals and their halides and oxides.\(^25–27\) However, to the best of our knowledge, an efficient catalyst for breaking and forming B–H bonds has not yet been discovered.

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cp07776a

‡ Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark. E-mail: tj@chem.au.dk

† Chemistry, Combustion, and Materials Center, Sandia National Laboratories, Livermore, California 94551, USA. E-mail: vnstavi@sandia.gov

⁠‡ Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cp07776a

Cite this: Phys. Chem. Chem. Phys., 2018, 20, 16266
Polyhydro-closo-polyborates (also known as closo-borates), \(B_n H_{10} \) \((n = 6 \text{–} 12) \), are anions comprised of boron atoms with solely terminal hydrogen in closed polyhedral clusters. These compounds can be prepared through a variety of solid-state and solution synthetic approaches. Higher closo-borates, such as dodecaborate, are often assumed to be intermediates in the mechanism for hydrogen release and uptake in metal borohydrides, \(MB_n H_{2n+4} \), and their relatively high stability may retard the reversibility of these reactions. The formation of higher closo-borates during decomposition of metal borohydrides may occur in a reaction between the metal borohydride and transient diborane (\(B_2H_6 \)). The formation of either \(Li_2B_{10}H_{10} \) or \(Li_2B_{12}H_{12} \), depending on temperature, has been clearly observed by mechano-chemical treatment of \(LiBH_4 \) in a diborane atmosphere. The formation of \(Li_2B_{12}H_{12} \) is also observed for the reactive hydride composite, \(LiBH_4–MH \), which shows decreasing reversible hydrogen content commensurate with increasing amounts of \(Li_2B_{12}H_{12} \) during cycling of hydrogen release and uptake. In a similar manner, magnesium borohydride, \(Mg(BH_4)_2 \), decomposes under vacuum at \(T \approx 200^\circ C \) and forms arachno-\(Mg(BH_4)_2 \), which can absorb hydrogen at more moderate conditions, e.g., \(p(H_2) = 120 \text{ bar and } T = 250^\circ C \), in contrast to the closo-borates.

Hydrogen release and absorption reactions in boron-based hydrides remain not fully understood. Density functional theory (DFT) calculations have been used to predict reaction enthalpies for multiple chemical reactions that reversibly store hydrogen and to identify promising reactions with large storage capacities and relevant thermodynamic properties. Experiments have revealed that \(LiBH_4 \) decomposes into \(LiH \) and \(B_2H_6 \), with \(Li_2B_{12}H_{12} \) as an intermediate phase. Theoretical work has suggested formation of \(LiBH_4 \), with \(n \leq 12 \), nanoclusters, which decompose into mixed \(Li_2B_n \) clusters via a series of intermediate clusters of \(Li_2B_{12}H_{4n} \) \((m \leq 4n) \). A variety of other intermediates have also been suggested, with the \([B_{12}H_2]^{2-} \) as the most stable, which is considered to hamper hydrogen uptake reactions. Experimental determination of structure and composition of intermediates is often hampered by poor crystallinity and difficulties in preparation of phase-pure samples.

Recently, \(MB_{12}H_{12}–8MH \) and \(MB_{12}H_{12}–10MH \) composites were hydrogenated at \(p(H_2) = 1000 \text{ bar and } 500^\circ C \) for 72 hours forming the corresponding metal borohydrides, \(M(BH_4)_n \), \(M = Li, Na \) or \(K \). This has prompted the present hydrogenation study of closo-polyborate-containing composites, \(MB_{10}H_{10}–8MH \) and \(MB_{12}H_{12}–10MH \), \(M = Li \) or \(Na \), using less harsh conditions in custom-made hydrogenation equipment designed to monitor the hydrogen uptake. In doing so, the reaction pathway and kinetic issues associated with the hydrogenation of closo-borates containing samples can be assessed. It is expected that this information will provide insights into the “boron-sink” closo-borates in borohydride-based hydrogen storage systems. The mechanism for hydrogen uptake is investigated using \(in situ \) synchrotron radiation powder X-ray diffraction (SR-PXD), \(ex situ \) powder X-ray diffraction (PXD), Fourier transform infrared spectroscopy (FT-IR), as well as solution and solid-state \(^{11}B \) NMR and \(^{23}Na \) magic-angle spinning (MAS) NMR.

Experimental

Sample preparation

Lithium hydride, \(LiH \) (Sigma-Aldrich, 95%), and sodium hydride, \(NaH \) (Sigma-Aldrich, 95%), were used as supplied. Anhydrous \(LiB_{10}H_{10} \) and \(Na_2B_{10}H_{10} \) were synthesized from decaborane \((B_{10}H_{14}, \text{Katchem}) \), dimethyl sulfide, liquid ammonia and the respective hydroxides \(MOH \), using a method described elsewhere. \(LiB_{12}H_{12} \), \(4H_2O \) and \(Na_2B_{12}H_{12} \cdot 2H_2O \) (Katchem) were heated to 245 °C under dynamic vacuum for 12 hours to remove coordinated water. The closo-borates \(M_2B_{10}H_{10} \) or \(M_2B_{12}H_{12} \) were mixed with metal hydrides \(MH \), \(M = Li \) or \(Na \), in the molar ratio 1 : 8 or 1 : 10, respectively, to form a composite with a \(M : B \) ratio of 1 : 1. The mixtures were then manually ground for 3 minutes. These samples are denoted \(LiB_{10}H_{10}-A \), \(LiB_{12}H_{12}-A \), \(Na_2B_{10}H_{10}-A \) and \(Na_2B_{12}H_{12}-A \). Other samples were prepared with either 3 minutes of manual grinding (\(LiB_{12}H_{12}-As \) and \(Na_2B_{12}H_{12}-As \)) or 15 minutes of ball-milling (ball to powder ratio of 25 : 1) (\(LiB_{10}H_{10}-Ab \), \(Na_2B_{10}H_{10}-Ab \), \(LiB_{12}H_{12}-Ab \) and \(Na_2B_{12}H_{12}-Ab \)). All handling of the chemicals was performed in an argon-filled glovebox with \(p(O_2, H_2O) < 1 \text{ ppm} \).

The closo-borate-hydride composites (\(Li_2B_{12}H_{12}-A \), \(Li_2B_{12}H_{12}-Ab \), \(Na_2B_{12}H_{12}-A \) and \(Na_2B_{12}H_{12}-Ab \)) were hydrogenated in custom-made equipment by loading the mixed powders (80–200 mg) into a steel container, which is closed with a filter and placed in a specialized sample cell. High pressures (HP) are generated using a metal hydride hydrogen compressor, i.e., heating a commercial \(AB_2 \) hydrogen storage alloy with the composition \(MnNi_{1.35}Co_{0.8}Al_{0.05} \) where \(Mn \) is a mixture of rare earth metals, primarily \(La \) and \(Ce \). The pressure generated at room temperature, \(p(H_2) \approx 400 \text{ bar} \), was increased to 526–547 bar during heating to either \(\approx 300 \text{ or } 400^\circ C \) (\(AT/AT = 5 \text{ °C min}^{-1} \)) and was then kept isothermal for 24 hours. The high-pressure hydrogenation experiments were performed at 400 °C under hydrogen pressures of 970 to 998 bar in a stainless steel reactor. An overview of the hydrogen-treated samples is given in Table 1.

Characterization

In-house powder X-ray diffraction (PXD). In-house powder X-ray diffraction patterns were measured on a Rigaku Smart Lab diffractometer using a Cu source and conversion beam mirror (Cu K\(_x1\), \(\lambda = 1.540593 \text{ Å} \)). Data were collected in the 20 range 5° to 50° at 3° min\(^{-1}\) using a Rigaku D/tek detector. Samples were placed in 0.5 mm boron silicate capillaries and sealed with grease under argon in a glovebox.

Fourier transform infrared spectroscopy (FT-IR). All samples were characterized by FT-IR using a NICOLET 360 FT-IR from Thermo Electron Corporation. Data were measured in the range 4000–400 cm\(^{-1}\) and 32 scans, with a spectral resolution of 4 cm\(^{-1}\), were collected per sample and averaged. The samples were briefly exposed to air (\(\approx 10 \text{ s} \)) prior to measurement.

Synchrotron radiation powder X-ray diffraction. In situ synchrotron radiation powder X-ray diffraction (SR-PXD)
measurements were conducted at beam line P02.1 at the synchrotron facility PETRA III, DESY, Germany, with a high photon energy of 60 keV, \(\lambda = 0.20775 \text{ Å}\). The data were collected using a fast area detector from Perkin Elmer (XRD1621) and an X-ray exposure time of 10 seconds per diffraction pattern. The high photon energy is required to penetrate the thick-walled sapphire capillaries (o.d. = 3.0 mm, i.d. = 0.8 mm) that are necessary when working at high pressure \(p(H_2) > 200\) bar. For the high pressure measurement, a modified high pressure cell is used as described previously.\(^\text{46}\) The in situ hydrogenation was performed by increasing the hydrogen pressure to 407–440 bar at room temperature (RT), followed by heating to 300 °C for the \(M_2B_{10}H_{10}–8\text{MH}\) composites and 400 °C for the \(M_2B_{12}H_{12}–10\text{MH}\) composites with a heating and cooling rate of \(\Delta T/\Delta t = 10\) °C min\(^{-1}\). The in situ HP SR-PXD experiment for Li\(_2\)B\(_{10}\)H\(_{10}\)–8LiH was conducted for ~12 hours, whereas the experiments for Na\(_2\)B\(_{10}\)H\(_{10}\)–8NaH and Na\(_2\)B\(_{12}\)H\(_{12}\)–10NaH were conducted for ~4 hours.

NMR spectroscopy. The solid-state \(^{11}\)B and \(^{23}\)Na MAS NMR spectra were acquired on a Bruker AVANCE-700 spectrometer (16.4 T) using a triple-tuned \(^1\)H-X-Y 4 mm MAS probe and a spinning speed of \(\nu_s = 15.0\) kHz. The \(^{11}\)B NMR experiments employed a 0.5 μs excitation pulse (\(\gamma_B/2\pi = 62\) kHz), \(^1\)H SPINAL-64 decoupling (\(\gamma_B/2\pi = 100\) kHz) and a relaxation delay of 10 s. The \(^{23}\)Na spectra were acquired with a 0.5 μs excitation pulse (\(\gamma_B/2\pi = 60\) kHz) and a 10 s relaxation delay. The solution \(^{11}\)B NMR spectra were obtained on a Varian Direct Drive VNMRS-600 spectrometer (14.1 T) using a 4 mm CP/MAS probe for solids, no sample spinning, and \(^1\)H decoupling (\(\gamma_B/2\pi = 50\) kHz). All samples were packed in airtight end-capped zirconia rotors in an argon-filled glovebox. Solutions for \(^{11}\)B NMR measurements were prepared by dissolving 20–40 mg of sample in dry tetrahydrofuran (THF). \(^{11}\)B and \(^{23}\)Na chemical shifts are relative to neat F\(_3\)B-\(\text{O(CH}_2\text{CH}_3\) and a 0.1 M aqueous solution of NaCl, respectively.

Results and discussion

Hydrogenation of metal decahydro-closo-decaborate \(M_2B_{10}H_{10}–8\text{MH}\) compositions

Sample Li\(_2\)B\(_{10}\)H\(_{10}\)–8LiH. The Li\(_2\)B\(_{10}\)A sample was heated to 307 °C (\(\Delta T/\Delta t = 5\) °C min\(^{-1}\)) and kept isothermal for 24 hours at \(p(H_2)_{\text{start}} = 526\) bar, Fig. S1 (ESI†). The hydrogen pressure decreased slowly, 0.054 wt% per h, for the first 6 hours, then ~5× faster (0.262 wt% per h) for 8 hours, and again slower for the remaining 8 hours, suggesting that there was an incubation period before hydrogen absorption could proceed rapidly or that several reactions take place. The pressure decrease corresponds to a total uptake of 2.9 wt% \(H_2\), which is about 4× less than the theoretical hydrogen uptake, i.e. 11.3 wt%, which would correspond to full conversion of the sample to LiBH\(_4\). PXD of the post-hydrogenation sample, Li\(_2\)B\(_{10}\)B (Fig. 1), reveals that the reactants, Li\(_2\)B\(_{10}\)H\(_{10}\) and LiH, are almost completely consumed during the formation of LiBH\(_4\) and 1. PXD of Li\(_2\)B\(_{10}\)A treated at 400 °C, \(p(H_2) = 998\) bar \(H_2\) for 48 h (Li\(_2\)B\(_{10}\)C) (Fig. S2, ESI†) also reveals the formation of LiBH\(_4\) and intermediate 1. However, additional Bragg reflections appear at low Bragg angles (2θ), which are assigned to impurities from the reaction vessel. Compound 1 has not previously been reported and may be an intermediate in the formation of LiBH\(_4\) with a lithium/boron ratio in between Li\(_2\)B\(_{10}\)H\(_{10}\) and LiBH\(_4\), i.e., 0.2 < Li/B < 1. Observed Bragg diffraction data,

\[\text{Li}_2\text{B}_{10}\text{H}_{10}\text{–8LiH} \rightarrow \text{LiBH}_4 + \text{LiH} + 1\]

\[\text{Na}_2\text{B}_{10}\text{H}_{10}\text{–8NaH} \rightarrow \text{NaBH}_4 + \text{NaH} + 2\]

\[\text{Na}_2\text{B}_{12}\text{H}_{12}\text{–10NaH} \rightarrow \text{NaBH}_4 + \text{NaH} + 3 + 4\]

\[\text{Li}_2\text{B}_{12}\text{H}_{12}\text{–10LiH} \rightarrow \text{LiBH}_4 + \text{LiH} + 1\]

\[\text{Na}_2\text{B}_{12}\text{H}_{12}\text{–10NaH} \rightarrow \text{NaBH}_4 + \text{NaH} + 3 + 4\]
The hydrogenation of Li$_2$B$_{10}$H$_{10}$–8LiH was further studied by in situ SR-PXD at high hydrogen pressure, p(H$_2$) = 407 bar, and isothermal conditions, T = 300 °C (Fig. 2). The PXD signatures of the reactants, Li$_2$B$_{10}$H$_{10}$ and LiH, were observed at RT, after ~6 hours the unidentified compound 1 emerged in accordance with ex situ PXD (Fig. 1 and Table S1, ESI†), and reflections from Li$_2$B$_{10}$H$_{10}$ completely disappeared after ~9 hours. This agrees with the induction period observed in Fig. S1 (ESI†). As Bragg reflections from Li$_2$B$_{10}$H$_{10}$ disappear, the reflections from 1 become more pronounced. After ~11 hours the sample is cooled and crystallization of h-LiBH$_4$ (h-hexagonal) is observed (Fig. 3). The PXD signatures for the central and satellite transitions are observed for LiBH$_4$ and LiH, were observed at RT, after isothermal conditions, T = 300 °C for ~10 hours. The dashed line indicates the temperature profile. Symbols: □ o-LiBH$_4$, ○ h-LiBH$_4$, ▲ Li$_2$B$_{10}$H$_{10}$, ▴ LiH, and compound 1.

d-spacings and relative intensities, from 1 are listed in Table S1 (ESI†), which can be indexed with an orthorhombic unit cell, $a = 6.0754(2)$, $b = 6.2494(2)$, $c = 21.019(5)$ Å, $V = 778.0(3)$ Å3.

The hydrogenation of Li$_2$B$_{10}$H$_{10}$–8LiH was further studied by in situ SR-PXD at high hydrogen pressure, p(H$_2$) = 407 bar, and isothermal conditions, T = 300 °C (Fig. 2). The PXD signatures of the reactants, Li$_2$B$_{10}$H$_{10}$ and LiH, were observed at RT, after ~6 hours the unidentified compound 1 emerged in accordance with ex situ PXD (Fig. 1 and Table S1, ESI†), and reflections from Li$_2$B$_{10}$H$_{10}$ completely disappeared after ~9 hours. This agrees with the induction period observed in Fig. S1 (ESI†). As Bragg reflections from Li$_2$B$_{10}$H$_{10}$ disappear, the reflections from 1 become more pronounced. After ~11 hours the sample is cooled and crystallization of h-LiBH$_4$ (h-hexagonal) is observed ($T_{\text{melt}} = 280$ °C), which transforms into the ambient o-LiBH$_4$ polymorph (o-orthorhombic). This indicates that 1 may be an intermediate in the formation of LiBH$_4$.

The 11B MAS NMR spectrum of Li$_2$B$_{10}$-B is dominated by the narrow centerband resonance at ~41.1 ppm from LiBH$_4$ (Fig. 3a). In addition, a somewhat broader centerband is observed at ~23 ppm, which is ascribed to boron in compound 1, since the resonance does not match with the chemical shift reported for Li$_2$B$_{10}$H$_{10}$ at ~28.8 ppm. All spinning sidebands for the central and satellite transitions are observed for LiBH$_4$ whereas only a part of the spinning sideband manifold from the satellite transitions is observed for compound 1. Thus, the total intensity for the 11B central and satellite transitions for LiBH$_4$ is obtained as the sum of intensities for the centerband and all spinning sidebands, whereas the central-transition intensity for compound 1 is obtained from the intensities for the centerband and first-order spinning sidebands after an intensity correction to these peaks from the contribution from the satellite transitions. The central-transition intensity for LiBH$_4$ is obtained as 4/10 of the total intensity, which holds for a spin 3/2 nucleus, and comparison of this value with the central transition intensity for 1 reveals that the molar ratio for boron in LiBH$_4$ and 1 is 1 : 0.63, which corresponds to an uptake of 2.8 wt% H$_2$, matching well with the observed hydrogenation, 2.9 wt% H$_2$. This indicates that the absorbed hydrogen only goes toward producing LiBH$_4$ as the B : H ratio in the unknown compound 1 is 1 : 1, consistent with a higher borate, which is also reflected in its characteristic IR mode and 11B chemical shift. Thus, 11B MAS NMR reveals that all Li$_2$B$_{10}$H$_{10}$ (~0.9 ppm and ~28.8 ppm) is consumed during hydrogenation and that LiBH$_4$ and 1 are the only reaction products, besides a minor amount of a BO$_3$ species (~20 ppm), corresponding to 3.5% of the boron in the sample. Solution-state 11B NMR spectra of Li$_2$B$_{10}$-B dissolved in THF obtained without and with 1H decoupling (Fig. S4, ESI†) allow identification of resonances at ~14.0 ppm ($^\text{f}_{\text{BH}} = 142$ Hz), ~15.6 ppm ($^\text{f}_{\text{BH}} = 120$ Hz), ~16.0 ppm ($^\text{f}_{\text{BH}} = 120$ Hz), ~16.7 ppm ($^\text{f}_{\text{BH}} = 120$ Hz), ~18.0 ppm ($^\text{f}_{\text{BH}} = 150$ Hz) and ~20.7 ppm ($^\text{f}_{\text{BH}} = 142$ Hz) in addition to the main peak at ~41.8 ppm from the [BH$_4$]$^-$ units.
All resonances in the −14.0 to −20.7 ppm region show doublets in the 1H-coupled spectra, demonstrating that they originate from boron sites which are directly bonded to one 1H atom. The resonance and J_{BH} coupling at −15.6 ppm is in agreement with the 11B NMR data reported for [Li$_2$H$_4$]$_2$,48,49 matching the impurity of LiB$_2$H$_4$ in the solid-state 11B NMR spectrum (Fig. 3a). The remaining resonances, and, in particular, the peak at −20.7 ppm, may originate from the unknown compound 1 and thereby suggest that this phase contains boron sites directly bonded to a single 1H atom. Moreover, comparison of the 11B chemical shifts with those reported for relevant borate species (Table S4, ESI†) strongly suggests that compound 1 contains closo-borate units.

The formation of LiBH$_4$ is also confirmed by FT-IR (Fig. S3, ESI†). The IR spectrum of Li$_2$B$_{10}$A has a single large B–H stretching mode at 2500 cm$^{-1}$ with minor modes at lower wavenumbers consistent with metal closo-borates.46,47 For Li$_2$B$_{10}$B, the B–H stretching mode at 2500 cm$^{-1}$ has almost disappeared while B–H stretching modes appear around 2300 cm$^{-1}$, which correspond to those of LiBH$_4$.48,49

This work suggests that 1 has a lithium–boron ratio in between Li$_2$B$_{10}$H$_{10}$ and LiBH$_4$, i.e. 0.2 < Li/B < 1, and a hydrogen–boron ratio close to 1:1. A hydrogen uptake of 2.9 wt% H$_2$ was measured, which corresponds to a sample composition of 10Li–108–23.6H. After hydrogenation, the sample contains LiBH$_4$ and LiH and, therefore, also some metal borates richer in boron and hydrogen than lithium. However, the spectroscopy and diffraction data do not unambiguously identify any such compounds.

Sample Na$_2$B$_{10}$H$_{10}$–8NaH. Hydrogenation of Na$_2$B$_{10}$A was conducted at $T = 289 \degree C$ and $p(H_2) = 534$ bar and kept isothermal for 24 hours, Fig. S5 (ESI†). The hydrogen pressure was steady for the first 3 hours at $p(H_2) = 534$ bar, then decreased, at 0.248 wt% per h, over the next 12 h, and then more slowly at 0.091 wt% per h during the remaining 8 hours (Fig. S5, ESI†). This reveals an induction period of 3 h prior to absorption of 3.2 wt% H$_2$, which is approximately half of the theoretical maximum, i.e. 6.23 wt%, which would correspond to full conversion to NaBH$_4$.

PXD of Na$_2$B$_{10}$B reveals Bragg reflections from NaBH$_4$ along with an unidentified compound, denoted 2, and some unreacted NaH (Fig. 4). PXD of the high-pressure sample, Na$_2$B$_{10}$C, reveals that NaBH$_4$ is the major crystalline product, along with 2 (Fig. S6, ESI†). The new compound 2 has reflections at low Bragg angles $2\theta < 7^\circ$ (d > 13 Å) (Table S2, ESI†), which can be indexed with a relatively large monoclinic unit cell, $a = 12.7068(5)$, $b = 23.3384(7)$, $c = 16.8802(8)$ Å, $\beta = 105.456(4)^\circ$, $V = 4824.9(5)$ Å3.

The formation of NaBH$_4$ is further confirmed by IR spectroscopy (Fig. S7, ESI†). The two B–H stretching bands at ~ 2500 cm$^{-1}$ from Na$_2$B$_{10}$H$_{10}$ in Na$_2$B$_{10}$A are replaced by a single broad band at ~ 2400 cm$^{-1}$ in Na$_2$B$_{10}$B, indicating that a different B–H containing cluster is formed, possibly a closo-, arachno-, or nido-borate, which could potentially be ascribed to the unidentified compound 2. Finally, the two stretching modes between 2350–2250 cm$^{-1}$ are assigned to NaBH$_4$.

The formation of NaBH$_4$ was also confirmed by FT-IR (Fig. S3, ESI†). After 20 min at $T = 302 \degree C$ and $p(H_2) = 440$ bar ($t = 60$ min), Bragg reflections from 2 are observed, whereas NaBH$_4$ is observed after approximately 220 minutes at $T = 250 \degree C$ during cooling. This reaction time agrees well with the ~ 4 hours induction time observed in ex situ hydrogen absorption in Fig. S5 (ESI†). Thus, 2 may represent an intermediate in the formation of NaBH$_4$ from the Na$_2$B$_{10}$H$_{10}$–8NaH composite.

The 11B MAS NMR spectrum of Na$_2$B$_{10}$B (Fig. 3b) reveals at least two different boron environments, with the dominating resonance at −41.9 ppm originating from NaBH$_4$. The second broad resonance is centered at −28 ppm and includes a sharp low-intensity component at −30 ppm. The main component of the resonance at −28 ppm is ascribed to 2 while the sharp resonance at −28 ppm is assigned to a small amount of the Na$_2$B$_{10}$H$_{10}$ starting material.44 The molar ratio for boron in NaBH$_4$ and 2 of 1:0.21 and is derived from the intensities of the central and satellite transitions for NaBH$_4$ and the central transition for the −28 ppm resonance.

The 23Na MAS NMR spectrum of the Na$_2$B$_{10}$B sample (Fig. 6a) is dominated by resonances from NaBH$_4$ (−7.9 ppm) and NaH (18.2 ppm). Spectral integration, considering the centerband intensities only, reveals that NaBH$_4$ and NaH are present in a 1:0.16 molar ratio. The vertical expansion of the spectrum (Fig. 6a) shows at least four additional resonances, i.e., a second-order quadrupolar lineshape with singularities at 12.2 and 11.1 ppm, a broadened resonance at 2.7 ppm, a shoulder to the NaBH$_4$ centerband at −2.8 ppm and a resonance at −17.9 ppm. These additional resonances constitute 8.3% of the total intensity in the centerband region and thereby represent smaller amounts of other Na containing compounds, possibly 2.
Solution 11B NMR spectra of Na$_2$B$_{10}$-B dissolved in THF and obtained with and without 1H decoupling (Fig. 7) show resonances at -1.7 ppm ($J_{BH} = 134$ Hz), -17.5 ppm ($J_{BH} = 125$ Hz), -20.7 ppm ($J_{BH} = 125$ Hz), -21.3 ppm ($J_{BH} = 125$ Hz) and -29.9 ppm ($J_{BH} = 119$ Hz), all corresponding to boron bonded to one H atom, and a main peak at -41.8 ppm from the [BH$_4$]$^-$ units. The peaks at -1.7 ppm and -29.9 ppm exhibit a 1:4 intensity ratio and are ascribed to the two distinct B sites in [B$_{10}$H$_{10}$]$^2-$, in accordance with 11B NMR data from literature.33 Thus, the resonances at -17.5 ppm, -20.7 ppm, and -21.3 ppm are assigned to 2 and is in accord with data reported for [B$_{11}$H$_{11}$]$^2-$ (Table S4, ESI†), which is a closo-borate with terminal hydrogens only, i.e., B–H units producing doublets in liquid state NMR spectra.

Thus, the measured hydrogen uptake of 3.2 wt% H$_2$ corresponds to a sample composition of 10Na–10B–29.3H, and Na NMR reveals a sample composition of NaBH$_4$–NaH 1:0.16 and that Na$_2$B$_{11}$H$_{11}$ (denoted 2) accounts for <8.3% of the sodium in the sample. Boron NMR reveals a ratio between NaBH$_4$–Na$_2$B$_{11}$H$_{11}$ of 1:0.21. The products besides NaBH$_4$ and Na$_2$B$_{11}$H$_{11}$ are difficult to determine and may be a mixture of different borates.

Hydrogenation of metal dodecaboro-closo-dodecaboraborate

Sample Li$_2$B$_{12}$H$_{12}$–10LiH. PXD of the physical mixture Li$_2$B$_{12}$-A is shown in Fig. 8. Li$_2$B$_{12}$-A was heated to $T = 402$ °C and kept isothermal for 24 hours at $p(\text{H}_2) = 546$ bar. The total pressure decrease corresponds to a H$_2$ uptake of 2.19 wt% H$_2$. However, PXD of Li$_2$B$_{12}$-B reveals no changes in the composite except for weak reflections from Li$_2$O. Experiments conducted on Li$_2$B$_{12}$H$_{12}$–10LiH samples at high pressure, $p(\text{H}_2) = 970$ bar and $T = 400$ °C for 48 h (Li$_2$B$_{12}$-C and Li$_2$B$_{12}$-D), confirmed that no LiBH$_4$ or other compounds were produced under the conditions used in this study (Fig. S9, ESI†). Hence, the pressure decrease observed in Fig. S8 (ESI†) is possibly due to a slight hydrogen gas leak.

This finding is further supported by the 11B MAS NMR spectrum of Li$_2$B$_{12}$-B (Fig. S10a, ESI†) that almost exclusively shows a single resonance peak at -15.2 ppm, in agreement with the reported chemical shift for Li$_2$B$_{12}$H$_{12}$.44

Sample Na$_2$B$_{12}$H$_{12}$–10NaH. The physical mixture of Na$_2$B$_{12}$H$_{12}$–10NaH (Na$_2$B$_{12}$-A) was heated to $T = 401$ °C and kept isothermal for 24 hours at $p(\text{H}_2) = 537$ bar (Fig. S11, ESI†). PXD of Na$_2$B$_{12}$-B (Fig. 9) reveals no formation of NaBH$_4$; however, another unidentified compound is observed, denoted 3. The total pressure decrease corresponds to a H$_2$ uptake of 1.5 wt% H$_2$ (Fig. S11, ESI†). Experiments conducted on Na$_2$B$_{12}$H$_{12}$–10NaH samples at higher pressure, $p(\text{H}_2) = 970$ bar and $T = 400$ °C for 48 h (Na$_2$B$_{12}$-C and Na$_2$B$_{12}$-D), confirmed that no NaBH$_4$ was produced (Fig. S12, ESI†); however, both samples show formation of 3. The ball-milled sample, Na$_2$B$_{12}$-C, shows less remaining Na$_2$B$_{12}$H$_{12}$.
compared to the hand-ground sample, Na$_2$B$_{12}$-D, probably due to a smaller particle size and hence a higher reactivity.

The change in structures is investigated by IR spectroscopy (Fig. S13, ESI†). The B–H stretching bands at B$_{2478}$ cm$^{-1}$/C$_0$1 from Na$_2$B$_{12}$H$_{12}$ in Na$_2$B$_{12}$-A are shifted slightly to a lower value of 2462 cm$^{-1}$/C$_0$1 in Na$_2$B$_{12}$-B, which may be ascribed to 3 along with a new bending mode at B$_{1650}$ cm$^{-1}$/C$_0$1.

The formation of 3 is studied by HP in situ SR-PXD (Fig. 10). Initially, Bragg reflections from Na$_2$B$_{12}$H$_{12}$ and NaH are present, and, during heating, the polymorphic transition of α- to β-Na$_2$B$_{12}$H$_{12}$ is observed at \sim275 °C. In addition, an unidentified compound denoted 4 is observed. No changes in the diffraction pattern are observed at the isothermal temperature, but Bragg reflections from compound 4 disappear at $T \sim 210^\circ$C during cooling. At the same time, Bragg reflections from compound 3 appear, which indicates a phase transition of 4 into 3. Reflections from compounds 3 and 4 are listed in Table S3 (ESI†) with the d-spacing and relative intensities. Indexing suggests an orthorhombic unit cell for 3: $a = 6.9114(6)$, $b = 12.877(2)$, $c = 14.296(1)$ Å, $V = 1272.2(5)$ Å3, and an orthorhombic unit cell for 4: $a = 6.3383(2)$, $b = 10.5223(8)$, $c = 14.8283(7)$ Å and $V = 987.4(2)$ Å3.
The 11B MAS NMR spectrum of Na$_2$B$_{12}$-B (Fig. S10b, ESI†), exhibits a narrow resonance (full width at half maximum (FWHM) = 0.7 ppm) at −15.7 ppm, in accordance with the 11B chemical shift reported for Na$_2$B$_{10}$H$_{12}$, which may suggest that 3 has boron coordination similar to that of Na$_2$B$_{10}$H$_{12}$. PXD clearly shows the formation of a new crystalline product after hydrogenation at high temperature, whereas NMR results only indicate the presence of [B$_{12}$H$_{13}$]$^{2-}$-containing compounds. A previous study has shown that annealing Li$_2$B$_{10}$H$_{12}$ under hydrogen pressure can result in the formation of additional Bragg diffraction peaks, indicating that other compounds may form at high temperature. Compound 3 appears to consist of [B$_{12}$H$_{13}$]$^{2-}$ anions as suggested by NMR.

The 23Na MAS NMR spectrum of Na$_2$B$_{12}$-B (Fig. 6b) is dominated by a resonance at 18.2 ppm from NaH. In addition, minor peaks are observed at 32.1 ppm, 11.9 ppm, 2.3 ppm, −11.4 ppm, −28.8 ppm and −38 ppm. A 23Na MAS NMR spectrum of Na$_2$B$_{12}$H$_{12}$ reveals that the resonance at −11.4 ppm originates from this compound. Moreover, the peaks at −28.8 ppm and −38 ppm are most likely the low-frequency part (singularity and edge) of a second-order quadrupolar lineshape. However, the resonances at 32.1 ppm, 11.9 ppm, 2.3 ppm, −28.8 ppm, and −38 ppm are not assigned and thus they may include contributions from the unidentified compound 3. Spectral integration shows that the four resonances correspond to 10.7% of the total 23Na centerband intensity.

The Na$_2$B$_{12}$-B sample absorbed 1.5 wt% H$_2$, which corresponds to a sample composition of 12Na–12B–28.4H. Solid state 11B MAS NMR show that 3 has similar chemical environment as [B$_{12}$H$_{13}$]$^{2-}$ and diffraction reveal that 4 transforms to 3 upon cooling.

Comparison of the investigated closo-borate composites

Comparison of the reactivity of the Li and Na closo-borate composites, Li$_2$B$_{10}$H$_{10}$–8LiH and Na$_2$B$_{10}$H$_{10}$–8NaH, reveals several important differences. For instance, the Na composites have faster kinetics for hydrogenation than the corresponding Li samples, e.g., Li$_2$B$_{10}$A absorbs hydrogen slowly for the first 6 hours, then ~5 × faster for 8 hours and then again slower whereas Na$_2$B$_{10}$A does not absorb hydrogen for the first 3 hours then absorbs quickly for 12 h, and then more slowly. From a kinetic point of view, the shorter induction period for the sodium system may be associated with faster nucleation and growth of intermediate compounds prior to formation of NaBH$_4$, as compared to similar reactions for the analogous lithium composites. This is well documented by solid-state 11B NMR, which reveals sample compositions of LiBH$_4$–1 (1:0.63) for Li$_2$B$_{10}$H$_{10}$–8LiH and NaBH$_4$–2 (1:0.21) for Na$_2$B$_{10}$H$_{10}$–8NaH after 24 h. In situ HP SR-PXD experiments reveal the formation of NaBH$_4$ after 4 hours of Na$_2$B$_{10}$H$_{10}$–8NaH, whereas LiBH$_4$ forms after 10 hours. A major difference between composites based on M$_2$B$_{10}$H$_{10}$ and M$_2$B$_{12}$H$_{12}$ is their reactivity: those based on M$_2$B$_{10}$H$_{10}$ more readily form the corresponding metal borohydride, MBH$_4$, and intermediate compounds. In contrast, only unidentified compounds are observed in the Na$_2$B$_{10}$H$_{12}$–10NaH composite, whereas no reaction is observed for Li$_2$B$_{12}$H$_{12}$–10LiH under the conditions used in this study. Four different intermediate compounds have been observed during hydrogenation reactions in this investigation. However, they are different than intermediates predicted theoretically for the decomposition of LiBH$_4$ and to those observed experimentally.

In a previous study, Li$_2$B$_{12}$H$_{12}$–10LiH and Na$_2$B$_{12}$H$_{12}$–10NaH were fully converted to the respective metal borohydrides, LiBH$_4$ and NaBH$_4$, under harsher conditions, i.e., $T = 500 ^\circ$C, $p(H_2) = 1.0$ kbar for 72 h. Milder conditions are used in this investigation, i.e., $T = 400 ^\circ$C, $p(H_2) = 998$ bar for 24 h for hydrogenation of M$_2$B$_{10}$H$_{10}$–8MH and $T = 400 ^\circ$C, $p(H_2) = 970$ bar for 48 h for M$_2$B$_{12}$H$_{12}$–10MH, which proves insufficient to form the respective metal borohydride. The M$_2$B$_{10}$H$_{10}$ composites are clearly more reactive and take up hydrogen at milder conditions compared to the M$_2$B$_{12}$H$_{12}$ composites, possibly due to the lower thermodynamic stability of the [B$_{10}$H$_{12}$]$^{2-}$ anion, which allows B–B bond breaking to occur under milder reaction conditions.

Conclusions

The composites M$_2$B$_{12}$H$_{12}$–10MH and M$_2$B$_{10}$H$_{10}$–8MH (M = Li and Na) have been reacted with hydrogen at elevated pressures and temperatures and studied by X-ray diffraction both PXD and in situ SR-PXD and FT-IR. Both the in situ and ex situ characterization results show that the M$_2$B$_{10}$H$_{10}$–8MH composites react with hydrogen gas to form the respective metal borohydride, MBH$_4$, at $T \approx 300 ^\circ$C and $p(H_2) > 500$ bar. These conditions were deliberately selected to obtain partial hydrogenation of the samples in order to focus on the mechanism of hydrogen uptake. The relatively mild conditions used in this investigation did not allow formation of MBH$_4$ by hydrogenation of the M$_2$B$_{12}$H$_{12}$–10MH composites: no hydrogen absorption was detected for Li$_2$B$_{12}$H$_{12}$–10LiH, but new intermediates were observed for Na$_2$B$_{12}$H$_{12}$–10NaH. Generally, the sodium-containing composites are observed to be more reactive towards hydrogen compared to the lithium analogues under similar conditions of temperature and H$_2$ pressure, and M$_2$B$_{10}$H$_{10}$–8MH are more reactive than M$_2$B$_{12}$H$_{12}$–10MH. The high stability of the [B$_{12}$H$_{13}$]$^{2-}$ anions is associated with the pseudorotaxane bonding in dodecahydro-closo-dodecaborate cages and lack of chemically distinct and more reactive apical boron atoms within the closo-borate polyhedra that the decahydro-closo-decaborate cages contain.

The conditions for hydrogenation used in this study are clearly above the thermodynamic limit needed to form the corresponding metal borohydrides, LiBH$_4$ or NaBH$_4$, for the composites containing [B$_{10}$H$_{10}$]$^{2-}$. Therefore, the observed differences in the length of the induction periods prior to hydrogen absorption, which occur at different rates, are assigned to kinetic constraints. Remarkably, four different intermediate compounds have been observed in this study for the hydrogenation of the composites. The formation of intermediate compounds appears to be the rate-limiting step of the
reaction, with the slowest kinetics observed for the \(\text{M}_2\text{B}_{12}\text{H}_{12} \) compounds. This suggest that the molecular mechanism for hydrogen absorption is different for the two \textit{closo}-borate cages, \([\text{B}_{10}\text{H}_{10}]^{2-} \) and \([\text{B}_{12}\text{H}_{12}]^{2-} \).

This study not only demonstrates that lithium and sodium \(\text{M}_2\text{B}_{10}\text{H}_{10} \) salts can be hydrogenated into the corresponding metal borohydrides, but it also reveals the presence of, at least, four \(\text{B–H} \) intermediates, which are different to those previously observed experimentally or suggested based on theoretical calculations. Additional investigations are needed to clarify composition, structure, and properties of these intermediate compounds. The analysis of the available solid-state and solution \(^{11}\text{B} \) NMR data indicates that these intermediates are not salts of \([\text{B}_3\text{H}_8]^{-} \), \([\text{B}_9\text{H}_{10}]^{2-} \) or \([\text{B}_{11}\text{H}_{12}]^{2-} \) anions. We hypothesize that these could be other \textit{closo}-polynorboranes, e.g., \([\text{B}_9\text{H}_9]^{2-} \) or \([\text{B}_{11}\text{H}_{11}]^{2-} \) salts, or oligomers resulting from \([\text{B}_{10}\text{H}_{10}]^{3-} \) polymerization.\(^{29}\) For example, \textit{closo}-decaborate salts are known to form dimeric anions, such as various isomers of \([\text{B}_{10}\text{H}_{11}]^{4-} \) and \([\text{B}_{12}\text{H}_{12}]^{2-} \) anions.\(^{57}\)

A detailed understanding of the reactivity of these important compounds may allow further tailoring of the reaction mechanisms of hydrogen storage reactions. Further investigations should focus on identifying reaction pathways in the dehydrogenation of metal borohydrides that avoid the formation of stable \([\text{B}_{11}\text{H}_{12}]^{2-} \) anions, and favoring formation of intermediate \(\text{B–H} \) species that can be cycled under more reasonable conditions of hydrogen pressure and temperature.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The Danish National Research Foundation is thanked for funding to the Center for Materials Crystallography (CMC, DNRF93). Furthermore, we acknowledge financial support from The Danish Council for Independent Research for a DFF Mobility grant (no. 1325-00072) and the research project HyNanoBiON (DFF - 4181-00462). The beam line P02.1, PETRA III, DESY, Germany is acknowledged for providing beam time to conduct the \textit{in situ} experiments. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, Aarhus University, sponsored by the Danish Natural Science Research Councils and the Carlsberg Foundation is acknowledged. The authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). Sandia National Laboratories is a multi-mission laboratory managed by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analyses. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References
1. The Relentless Rise of Carbon Dioxide, http://climate.nasa.gov/climate_resources/24/, accessed October 2nd, 2017.
2. U.S. EIA, International Energy Outlook, 2016, http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.
3. M. B. Ley, L. H. Jepsen, Y.-S. Lee, Y. W. Cho, J. M. Bellosta von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jorgensen, F. Besenbacher and T. R. Jensen, Mater. Today, 2014, 17, 122–128.
4. L. H. Jepsen, M. B. Ley, Y.-S. Lee, Y. W. Cho, M. Dornheim, J. O. Jensen, Y. Filinchuk, J. E. Jorgensen, F. Besenbacher and T. R. Jensen, Mater. Today, 2014, 17, 129–135.
5. K. T. Møller, T. R. Jensen, E. Akiba and H.-W. Li, Prog. Nat. Sci.: Mater. Int., 2017, 27, 34–40.
6. H.-W. Li, Y. Yan, S. Orimo, A. Züttel and C. M. Jensen, Energies, 2011, 4, 185–214.
7. J. Puzsziel, S. Garroni, C. Milanese, F. Gennari, T. Klassen, M. Dornheim and C. Pistidda, Inorganics, 2015, 7.
8. G. Moussa, R. Moury, U. B. Demirci, T. Şener and P. Miele, Int. J. Energy Res., 2013, 37, 825–842.
9. M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Cerny, D. B. Ravnbaek, Y. Filinchuk, M. Dornheim, F. Besenbacher and T. R. Jensen, Chem. Soc. Rev., 2017, 46, 1565–1634.
10. G. Severa, E. Könnebro and C. M. Jensen, Chem. Commun., 2010, 46, 421–423.
11. O. Friedrichs, J. W. Kim, A. Remhof, F. Buchter, A. Borgschulte, D. Wallacher, Y. W. Cho, M. Fichtner, K. H. Oh and A. Züttel, Phys. Chem. Chem. Phys., 2009, 11, 1515–1520.
12. M. Paskevicius, M. B. Ley, D. A. Sheppard, T. R. Jensen and C. E. Buckley, Phys. Chem. Chem. Phys., 2013, 15, 19774–19789.
13. P. Martelli, R. Caputo, A. Remhof, P. Mauron, A. Borgschulte and A. Züttel, J. Phys. Chem. C, 2010, 114, 7173–7177.
14. Q. Lai, M. Paskevicius, D. A. Sheppard, C. E. Buckley, A. W. Thornton, M. R. Hill, Q. Gu, J. Mao, Z. Huang, H. K. Liu, Z. Guo, A. Banerjee, S. Chakraborty, R. Ahuja and K. F. Aguey-Zinsou, ChemSusChem, 2015, 8, 2789–2825.
15. T. D. Humphries, M. B. Ley, C. Frommen, K. T. Munroe, T. R. Jensen and B. C. Hauback, J. Mater. Chem. A, 2015, 3, 691–698.
16. P. Schouwink, M. B. Ley, A. Tissot, H. Hagemann, T. R. Jensen, L. Smrčková and R. Cerný, Nat. Commun., 2014, 5, 5706–5715.
17. M. B. Ley, M. Paskevicius, P. Schouwink, B. Richter, D. A. Sheppard, C. E. Buckley and T. R. Jensen, Dalton Trans., 2014, 43, 13333–13342.
18. P. Schouwink, V. D’Anna, M. B. Ley, L. M. Lawson Daku, B. Richter, T. R. Jensen, H. Hagemann and R. Černý, J. Phys. Chem. C, 2012, 116, 10829–10840.
19. L. Lindemann, R. Domenec Ferrer, L. Dunsch, Y. Filinchuk, R. Cerny, H. Hagemann, V. D’Anna, L. M. Lawson Daku,
