Bayesian Dependent Functional Mixture Estimation for Area and Time-Indexed Data: An Application for the Prediction of Monthly County Employment

Terrance D. Savitsky ¹ Matthew R. Williams ²

¹ U.S. Bureau of Labor Statistics (Office of Survey Methods Research)
² RTI International (Division for Statistical and Data Sciences)

Seasonal Adjustment Practitioners Workshop
June 7-8, 2022
Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives
Local Area Un/employment “survey” (LAUS) publishes by county
- Employment and Unemployment totals
- Monthly
- For every county and Municipal Civil Division (MCD) in the U.S.
- ... there is no survey.
Background (2)

- LAUS project forward census instrument
 - Quarterly Census of Employment and Wages (QCEW)
 - by 7 months
 - for each county time series, separately
 - Includes seasonality

- Simultaneously model collection of county time-series
 - To produce more accurate predictions.
LAUS Employment Estimation

- LAUS (Local Area Unemployment Survey) partners with States for county-level monthly employment
- CES (Current Employment Statistics) is unavailable for 1751 out of 3108 counties
- Partnering with QCEW (Quarterly Census of Employment and Wages) program to use lagged data and project forward 7 months
- Data set is $N = 3108 \times T = 180,$
 - $i = 1, \ldots, (N = 3108)$ counties
 - $j = 1, \ldots, (T = 180)$ months
 - Observe Jan 2002 - May 2016
 - Predict 7 months, June - December 2016
- Project monthly values, by county, for remainder of 2016.
Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives
County-indexed Time Series

- \(y_{ij} \sim \mathcal{N} \left(f_{ij} = \text{pred}_{ij} + \text{tr}_{ij} + \text{seas}_{ij}, \tau^{-1}_y \right) \)
- \(\text{pred}_{ij} = x'_{ij} \beta_i; \beta_i \sim \mathcal{N}_p \left(\mu_i, \Lambda_i^{-1} \right) \)
- \(T \times 1, \text{tr}_i \sim f_{\nu_i}, \text{autoregressive, bw 1} \left(\text{tr}_{i,j-1}, \text{tr}_{i,j+1} \right). \)

\[
\text{tr}_i \overset{\text{ind}}{\sim} \nu_i \frac{T-1}{2} \exp \left(-\frac{\nu_i}{2} \sum_{j=1}^{T-1} (\text{tr}_{i(j+1)} - \text{tr}_{ij})^2 \right) \tag{1}
\]

\[
= \nu_i \frac{T-1}{2} \exp \left(-\frac{\nu_i}{2} \text{tr}_i^T Q \text{tr}_i \right) \tag{2}
\]

- Precision matrix, \(Q = (D - \Omega) \)
- \(\text{tr}_{ij} \perp \text{tr}_{ik} \mid \text{tr}_{i,-jk} \leftrightarrow \Omega_{ij} = 0 \)
- Rank-deficient since mean level not identified
- Probabilistic local smoother
County-indexed Time Series

- \(y_{ij} \sim \mathcal{N} \left(f_{ij} = \text{pred}_{ij} + \text{tr}_{ij} + \text{seas}_{ij}, \tau_y^{-1} \right) \)

- \(\text{pred}_{ij} = x'_{ij} \beta_i; \beta_i \sim \mathcal{N}_P \left(\mu_i, \Lambda_i^{-1} \right) \)

- \(T \times 1, \text{tr}_i \sim f_{\nu_i}, \text{autoregressive}, \text{bw} 1 \) \((\text{tr}_{i,j-1}, \text{tr}_{i,j+1}) \).

- 2 options for \(T \times 1, \text{seas}_i: \)
 - \(\text{seas}_i \sim g_{\phi_i}, \text{autoregressive}, \text{bw} (O = 12) - 1 \) \((\text{seas}_{ij}, \ldots, \text{seas}_{i(j+(O-1))}) \)
 - Improper, local, \(\text{seas}_i = \mathcal{N}_T \left(0, Q_i^{-1} = [\tau_i (D - \Omega)]^{-1} \right) \)
 - Proper, global \(\text{seas}_i = \mathcal{N}_T \left(0, Q_i^{-1} = [\tau_i (D - \rho_i \Omega)]^{-1} \right) \)

- \(\text{seas}_{ij} = \text{fourier basis} = \left[O^{-1} \times 1 \begin{array}{c} z_{ij} \\ \end{array} \right] = \left\{ \cos \left(\frac{2\pi k_1 j}{O} \right), \sin \left(\frac{2\pi k_2 j}{O} \right) \right\}^{k_1=1, \ldots, O/2, \ k_2=1, \ldots, (O/2-1)} \right] \times \kappa_i \)

- \(x_{ij} \leftarrow (x_{ij}, z_{ij}) \) and \(\beta_i \leftarrow (\beta_i, \kappa_i) \).
County-indexed Time Series

- \(y_{ij} \sim \mathcal{N} \left(f_{ij} = \text{pred}_{ij} + \text{tr}_{ij} + \text{seas}_{ij}, \tau_y^{-1} \right) \)

- \(\text{pred}_{ij} = \mathbf{x}_i' \beta_i; \beta_i \sim \mathcal{N}_P \left(\mu_i, \Lambda_i^{-1} \right) \)

- \(T \times 1, \text{tr}_i \sim f_{\nu_i}, \text{autoregressive, bw} \ 1 (\text{tr}_{i,j-1}, \text{tr}_{i,j+1}). \)

- 2 options for \(T \times 1, \text{seas}_i: \)
 - \(\text{seas}_i \sim g_{\phi_i}, \text{autoregressive, bw} \ (O = 12) - 1 \)
 \(\left(\text{seas}_{i,j}, \ldots, \text{seas}_{i,(j+(O-1))} \right) \)
 - \(\text{seas}_{ij} = \text{fourier basis} = O^{-1} \times 1 \mathbf{z}_i' \times \kappa_i \)
 \(\mathbf{x}_{ij} \leftarrow (\mathbf{x}_{ij}, \mathbf{z}_{ij}) \) and \(\beta_i \leftarrow (\beta_i, \kappa_i). \)

- Probabilistic Clustering:
 - Collect, \(\theta_i = (\nu_i, \phi_i, \mu_i, \Lambda_i) \)
 - Unique cluster parameter values, \(\theta_k^*, \ k = 1, \ldots, K \leq n \)
 - If counties \(i, \ell \in \text{cluster} \ k \rightarrow \theta_i = \theta_\ell = \theta_k^* \)
Predictors Used for Clustering

- **location quotient** $\in [0, 1]$, employment concentration of economic sector in county compared to national average.

- **Sectors** constructed from the **first 2– digits** of detailed **NAICS** industry code

- **Sectors:** Construction, Transportation, Services, Leisure, Public, Mining, Manufacturing, Information, Education.

- **Assertion:** location quotient more useful than spatial contiguity.
 - e.g., Rural county adjacent to urban county
 - Distinct economic drivers / bases

- **Other predictors:**
 - **Unemployment insurance (UI) claims** in each month for each county to measure economic health.
 - **Latitude and Longitude**, computed based on population (rather than geographic) centroids
Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives
Compare Seasonality Methods: Less Expressed

Figure: Fourier Basis (pink). Proper AR (blue), Local AR (green).
Compare Seasonality Methods: More Expressed

Figure: Fourier Basis (pink). Proper AR (blue), Local AR (green).
Smaller County

- Little seasonality expressed

Figure: Predictor Assist (pink). Unsupervised (turquoise).
Medium-sized County

- Higher, but irregular seasonality expressed

Figure: Predictor Assist (pink). Unsupervised (turquoise).
Figure: Predictor Assist (pink). Unsupervised (turquoise).
Spatial Process vs. Time-series

- Higher, but irregular seasonality expressed

Figure: Predictor Assist (pink). Spatial process (turquoise).
Compare Prediction Errors of Models

Model	RMSPE	MAPE-C
Predictor Ast. Fourier (DDP - FB)	919	1.29%
Unsupervised Fourier (DP - FB)	1570	2.11%
Predictor Ast. Global (DDP - PCAR)	1688	2.45%
Predictor Ast. Local (DDP - ICAR)	2103	2.71%
Spatial Model (MI-t)	2987	3.37%
LAUS Production (SAEE)	—	2.49%

Comments:

- The models differentiated on seasonality
- DDP-FB performs best
- SAEE is the current production model
Summary

Bayesian Analysis, Advance Publication 1-25 2021.
https://doi.org/10.1214/21-BA1274

- Heterogeneity between counties for seasonal structures is a challenge
- The Fourier Basis shows marked improvement over Autoregressive Smoothers
- The Predictor Assisted clustering (DDP) shows marked improvement over unsupervised clustering (DP)
- Co-modelling time series leads to better prediction vs. modelling time series separately
- Clustering based on similar economic indices improves performance.
- Modelling a spatially-varying time series was much more effective than modelling a time-varying spatial process
Thanks to:

- Garret Schmitt, Tyler Bohnsack, Nic Aakre, Andrew Bean, Walter Sylva
CONTACT INFORMATION

Savitsky.Terrance@bls.gov
mrwilliams@rti.org

Bayesian Analysis, Advance Publication 1-25 2021.
https://doi.org/10.1214/21-BA1274