Generic non-trivial resonances for Anosov diffeomorphisms

Alexander Adam

Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Institut de Mathématiques de Jussieu, 4, Place Jussieu, 75005 Paris, France

E-mail: alexander.adam@imj-prg.fr

Received 26 May 2016, revised 27 December 2016
Accepted for publication 16 January 2017
Published 7 February 2017

Recommended by Professor Masato Tsujii

Abstract
We study real analytic perturbations of hyperbolic linear automorphisms on the 2-torus. The Koopman and the transfer operator are nuclear of order 0 when acting on a suitable Hilbert space. We show the generic existence of non-trivial Ruelle resonances for both operators. We prove that some of the perturbations preserve the volume and some of them do not.

Keywords: Koopman operator, transfer operator, resonances, Anosov diffeomorphism, real analytic, perturbation, torus
Mathematics Subject Classification: Primary 37C30; Secondary 37C20, 37D20

(Some figures may appear in colour only in the online journal)

1. Introduction

Let \(T : \mathbb{T}^2 \to \mathbb{T}^2 \) be a real analytic Anosov diffeomorphism. We define the Ruelle resonances of \(T \) to be the zeroes of the (holomorphically continued in \(z \in \mathbb{C} \)) dynamical determinant

\[
d_T(z) := \exp - \sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{T^n(x)=x} \left| \det(I - D_xT^n) \right|^{-1}.
\]

It is well-known (e.g. combining (1) and lemma A.1) that 1 is the only resonance if \(T \) is a hyperbolic linear toral automorphism \(M \). A subset of the Banach space of \(\mathbb{T}^2 \)-preserving maps, holomorphic and uniformly bounded on some annulus, is called generic if it is open and dense. We show in theorem 4.3, using an idea of Naud [13], that there is such a set \(\mathcal{G} \) so that for all \(\psi \in \mathcal{G} \), appropriately scaled, the Anosov diffeomorphism \(M + \psi \) admits non-trivial
Ruelle resonances. For this, we construct a Hilbert space of anisotropic generalized functions on which the transfer operator \(L_{tf} := (f/|\det Df|) \circ T^{-1} \) is nuclear with its Fredholm determinant equal to \(d_T \). Moreover, we prove that some of those generic perturbations preserve the volume while some do not.

The expanding case is easier and was initially studied by Ruelle [14]. More recently, Bandtlow \textit{et al} [2, 20] calculated the resonances of real analytic expanding maps \(T : S \to S \) on the unit circle \(S \) explicitly for Blaschke products. Their transfer operator acts on the Hardy space of holomorphic functions on the annulus (see also Keller and Rugh [11] in the differentiable category.).

In the hyperbolic setting, Rugh proved the holomorphy of the dynamical determinant of real analytic Anosov diffeomorphisms on surfaces [15, 16]. The idea was generalized by Fried to hyperbolic flows in all dimensions [5]. The detailed study of anisotropic Banach spaces in the hyperbolic case started with the pioneering work of [3] (in the differentiable setting) and is now a well established tool, see e.g. [1] and [7].

Faure and Roy [4] later addressed real analytic perturbations of hyperbolic linear toral automorphisms on the two-dimensional torus, considering an anisotropic complex Hilbert space, which had already been briefly discussed by Fried [5, section 8, I].

Our approach is based on this construction and strongly relies on an idea suggested by Naud [13]. We put the transfer operator central in our analysis. We introduce an anisotropic Hilbert space (definition 2.4) in section 2.

In section 3, we rephrase a result from Faure and Roy [4, theorem 6] to show that the Koopman operator \(K_{tf} := f \circ T \) is nuclear of order 0 when acting on our anisotropic Hilbert space.

In section 4, we use this result and an idea of Naud [13] to show that the Koopman operator admits non-trivial Ruelle resonances under a small generic perturbation of the dynamics.

In section 5, we consider the adjoint of the Koopman operator, which is just the transfer operator, acting on the dual Hilbert space and obtain our final results.

In the appendix, we recall two needed basic properties of integer matrices (seen as linear maps on the torus) and provide a sufficient condition for determinant preserving perturbations of differentiable real maps.

In principal the analogous problem on any higher dimensional torus can be treated with the presented method. However, one has to modify slightly the used space from section 2 if the linear toral automorphism has non-trivial Jordan blocks.

Blaschke products were recently generalized to the hyperbolic setting by Slipantschuk \textit{et al} [19] who calculate the entire spectrum of these real analytic Anosov volume preserving diffeomorphisms explicitly.

2. An anisotropic Hilbert space

We denote the flat 2-torus by \(T^2 := \mathbb{R}^2/\mathbb{Z}^2 \). We embed \(T^2 \) into the standard polyannulus in \(\mathbb{C}^2 \) and set for each \(r > 0 \)

\[
A_r := T^2 + i(-r, r)^2.
\]

We see \(A_r \) as a submanifold of \(\mathbb{C}^2 \). The Hilbert space \(L_2(T^2) \) is equipped with the canonical Lebesgue measure on \(T^2 \). This space admits an orthonormal Fourier basis given by

\[
\varphi_n : T^2 \to C : x \mapsto \exp(i2\pi n^*x), \quad n \in \mathbb{Z}^2,
\]

where \(n^* \) is the canonical dual of \(n \). We recall a construction from Faure and Roy [4] for a complex Hilbert space \(\mathcal{H}_{A_r} \). This space also has been described briefly by Fried as an ‘ad hoc example’ [5, section 8, I] of a generalized function space. The construction will be based on:
Definition 2.1 (Hardy space $H^r(A_r)$). For each $r > 0$ and each holomorphic function $f : A_r \to \mathbb{C}$, we define the norm

$$
\|f\|_{H^r(A_r)} := \sup_{y \in (-r,r)} \left(\int_{-r}^{r} |f(x+iy)|^2 \, dx \right)^{1/2}.
$$

Then we set

$$
H^r(A_r) := \{ f : A_r \to \mathbb{C} \mid \text{holomorphic}, \|f\|_{H^r(A_r)} < \infty \}.
$$

The space $H^r(A_r)$ is the 2-dimensional analogue of the Hardy space studied in [18, p 4]. It admits a Fourier basis given by

$$
\varphi_n(z) := \exp(-2\pi i n \|z\|) \varphi_n, \quad n \in \mathbb{Z}^2,
$$

where $\|z\| := |z_1| + |z_2|$ for all $(z_1, z_2) \in \mathbb{C}^2$ and $z \in \mathbb{T}^2$. With this choice of norm, the Fourier basis is orthonormal. Under the canonical isomorphism $L^2(\mathbb{T}^2) \cong L^2(\mathbb{T}^2)$, we have the isomorphism

$$
(\varphi_n) \cong \varphi_n^r.
$$

A matrix $M \in \text{SL}_2(\mathbb{Z})$ is called hyperbolic if its eigenvalues do not lie on the unit circle. We denote by E^+_M the eigenspace for the eigenvalue of modulus $\lambda_M > 1$ and by E^-_M the eigenspace of the eigenvalue of modulus λ_M^{-1}. We decompose $y \in \mathbb{R}^2$ uniquely as

$$
y = y^+_M + y^-_M \quad \text{with} \quad y^+_M \in E^+_M \quad \text{and} \quad y^-_M \in E^-_M.
$$

We have

$$
\|M^* y^+_M\| = \lambda_M \|y^+_M\| \quad \text{and} \quad \|M^* y^-_M\| = \lambda_M^{-1} \|y^-_M\|.
$$

Definition 2.2 (Scaling map $A_{M,c}$). Let $c > 0$, and $M \in \text{SL}_2(\mathbb{Z})$ be hyperbolic. For every $n \in \mathbb{Z}^2$, we set, recalling (2),

$$
A_{M,c} \varphi_n := \exp(-2\pi c(\|\varphi_n\| - \|n\|)) \varphi_n.
$$

Lemma 2.3 (Continuous embedding of $H^r(A_r)$). Let $c > 0$ and let $M \in \text{SL}_2(\mathbb{Z})$ be hyperbolic. Then the map $A_{M,c}$ can be extended by continuity to an injective linear map

$$
A_{M,c} : H^r(A_r) \to L^2(\mathbb{T}^2),
$$

bounded in operator norm by 1.

Proof. By definition 2.2, for each $f \in H^r(A_r)$ we have

$$
\|A_{M,c} f\|^2_{L^2(\mathbb{T}^2)} = \sum_{n \in \mathbb{Z}^2} |\varphi_n^r A_{M,c} f|^2 = \sum_{n \in \mathbb{Z}^2} \exp(-4\pi c(\|n\| - \|n^r\|)) |\varphi_n^r|^2 \|f\|^2,
$$

where we used (3) in the last step. Using the triangle inequality, we find

$$
\|n^r - n\| + \|n\| \geq 0.
$$
Hence, it holds

\[
\sum_{n \in \mathbb{Z}} \exp(-4\pi c(\|n_M\| - \|n_M\| + \|n\|)) \|\hat{f}\|_2^2 \leq \|f\|_{L^2(H_c(\mathbb{A}))}^2.
\]

Injectivity follows since \(A_{M,c}\) is invertible on the Fourier basis of \(L^2_2(T^2)\).

The image of \(H_c(\mathbb{A})\) under \(A_{M,c}\) is dense in \(L^2_2(T^2)\) since it contains all Fourier polynomials.

Definition 2.4 (Hilbert space \(\mathcal{H}_{A_{M,c}}\)). Let \(c > 0\) and let \(M \in \text{SL}_2(\mathbb{Z})\) be hyperbolic. Let \(A_{M,c}\) be the map given by definition 2.2. Then we set

\[
\mathcal{H}_{A_{M,c}} := \text{closure of } H_c(\mathbb{A}) \text{ with respect to the norm } \|A_{M,c} \cdot \|_{L^2_2(T^2)},
\]

and extend \(A_{M,c}\) by continuity to a linear map

\[
A_{M,c} : \mathcal{H}_{A_{M,c}} \to L^2_2(T^2).
\]

As a direct consequence of this construction, the scalar product on \(\mathcal{H}_{A_{M,c}}\) satisfies

\[
\langle \cdot, \cdot \rangle_{A_{M,c}} : \mathcal{H}_{A_{M,c}} \times \mathcal{H}_{A_{M,c}} \to \mathbb{C} : (f, g) \mapsto \langle A_{M,c} f, A_{M,c} g \rangle_{L^2_2(T^2)}.
\]

An orthonormal Fourier basis of \(\mathcal{H}_{A_{M,c}}\) is given by

\[
\varphi_n := A_{M,c}^{-1} \varphi_n, \quad n \in \mathbb{Z}.
\]

Lemma 2.5 (Dual space of \(\mathcal{H}_{A_{M,c}}\)). Under the canonical isomorphism \(L^2_2(T^2) \cong \mathcal{H}_{A_{M,c}}^*\), the dual space \(\mathcal{H}_{A_{M,c}}^*\) is isomorphic to \(A_{M,c}^2 \mathcal{H}_{A_{M,c}}\).

Proof. Under the canonical isomorphism \(L^2_2(T^2) \cong \mathcal{H}_{A_{M,c}}^*\), we have for each \(n_1, n_2 \in \mathbb{Z}\), using (6),

\[
\varphi^*_n(\varphi_{n_1}) = \varphi^*_n(A_{M,c} \varphi_{n_2}) = (A_{M,c} \varphi_{n_2}) = (A_{M,c}^2 \varphi_{n_1})(\varphi_{n_2}).
\]

Remark 2.6. By lemma 2.5, we associate to every linear functional \(f^* \in \mathcal{H}_{A_{M,c}}^*\) a unique vector \(f \in A_{M,c}^2 \mathcal{H}_{A_{M,c}}\). Then, for every \(g \in \mathcal{H}_{A_{M,c}}\), the product \(fg\) is absolutely integrable with respect to the Lebesgue measure on \(T^2\).

The decomposition in (4) defines two cones

\[
C^+_M := \{ y \in \mathbb{R}^2 \| y_M^* \| \geq \| y_M \| \} \quad \text{and} \quad C^-_M := \{ y \in \mathbb{R}^2 \| y_M^* \| \leq \| y_M \| \}.
\]

Example 2.7. We let \(M = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}\), then \(\lambda_M = 2 + \sqrt{3}\). An eigenvector for \(\lambda_M^*\) for \(M^*\) is \(\begin{pmatrix} 1 + \sqrt{3} \\ 1 \end{pmatrix}\) and an eigenvector for \(\lambda_M^*\) is \(\begin{pmatrix} 1 - \sqrt{3} \\ 1 \end{pmatrix}\). The two subspaces \(E^+_M\) and \(E^-_M\) and the two cones \(C^+_M\) and \(C^-_M\) are shown in figure 1.

We set

\[
\mathcal{H}^+_{A_{M,c}} := \left\{ \sum_{g \in C^+_M \mathbb{Z}^2} \langle g_n f \rangle_{\mathcal{H}_{A_{M,c}}} g_n | f \in \mathcal{H}_{A_{M,c}} \right\}
\]

and

\[
\mathcal{H}^-_{A_{M,c}} := \left\{ \sum_{g \in C^-_M \mathbb{Z}^2} \langle g_n f \rangle_{\mathcal{H}_{A_{M,c}}} g_n | f \in \mathcal{H}_{A_{M,c}} \right\}.
\]
Hence, we have \(A = A_{\mathcal{H}} \). Comparing for each \(n \in \mathbb{C} \) the Fourier basis \(n / \varphi \) with \(n \varphi \), it follows immediately that \(\mathcal{H} \subset \mathcal{H}^{*} \). For each \(n \in \mathbb{C} \), comparing the Fourier basis \(n / \varphi \) with \(n \varphi^{*} \), using (3), shows \(\mathcal{H} \subset \mathcal{H}^{*} \). We conclude therefore that \(\mathcal{H} \) contains linear functionals which do not belong to \(L_{2}^{2} \). By construction, the space \(\mathcal{H} \) is a rigged Hilbert space, i.e.:

\[
\mathcal{H}_{2}(\mathcal{H}) \subset \mathcal{H} \subset \mathcal{H}_{2}(\mathcal{H})^{*}. \tag{7}
\]

Remark 2.8. We note that in the construction of \(\mathcal{H} \), the expanding and contracting directions appear in the dual coordinates \(n / \varphi \) of the Fourier basis (6). This distinguishes \(\mathcal{H} \) from the space of Rugh [15] where expanding and contracting coordinates are spatial. We observe

\[
n^{*} x = (n_{M}^{+} + n_{M}^{-})(x_{M}^{+} + n_{M}^{-}) = (n_{M}^{+})x_{M}^{+} + (n_{M}^{-})^{*}x_{M}^{-}. \]

Hence, we can rewrite (6) as

\[
\tilde{\varphi}_{n}(x) = \exp(2\pi c(\|n_{M}^{+}\| - \|n_{M}^{-}\|)) \exp(i2\pi n^{*} x) \\
= \exp(2\pi c(\|n_{M}^{+}\|)) \exp(i2\pi (n_{M}^{+} x_{M}^{+})) \\
\times \exp(-2\pi c(\|n_{M}^{-}\|) \exp(i2\pi (n_{M}^{-} x_{M}^{-})). \tag{8}
\]

It is tempting to think of the \(\tilde{\varphi}_{n} \) as basis elements for a tensor product space of a Hardy space on an annulus, with the dual of such a Hardy space. However, we cannot use \(\tilde{\varphi}_{n} \) as such a basis since \(n_{M}^{+} \) and \(n_{M}^{-} \) are not independent of each other. Nevertheless, we can decompose \(\mathcal{H} \) into two generalized Hardy spaces as follows. We define four norms...
\(\mu_j(f) := \sup_{y \in A_j} \left(\int_{\mathbb{R}^2} |f(x + iy)|^2 \, dx \right)^{1/2}, \, f \in L_2(\mathbb{T}^2), \, j \in \{1, 2, 3, 4\},\)

where:

\(A_1 := \{ y \in \mathbb{R}^2 \mid y_{M^2} \in (-c, c)^2, y_{M^*}^+ \in (c, \infty)^2 \},\)

\(A_2 := \{ y \in \mathbb{R}^2 \mid y_{M^2} \in (-c, c)^2, y_{M^*}^+ \in (-\infty, -c)^2 \},\)

\(A_3 := \{ y \in \mathbb{R}^2 \mid y_{M^2} \in (-c, c)^2, y_{M^*}^+ \in (c, \infty) \times (-\infty, -c) \},\)

\(A_4 := \{ y \in \mathbb{R}^2 \mid y_{M^2} \in (-c, c)^2, y_{M^*}^+ \in (-\infty, -c) \times (c, \infty) \}.\)

For all \(f \in L_2(\mathbb{T}^2)\) the norms \(\mu_j(f)\) cannot be finite but they are so at least for some Fourier polynomials. The spaces \(H_j, \, j \in \{1, 2, 3, 4\}\), are the completions with respect to the norms \(\mu_j\) above. E.g. using \(\mu_1\), it holds for all \(f \in H_1\)

\[\mu_1(f)^2 = \sup_{y \in A_1} \left(\int_{\mathbb{R}^2} |f(x + iy)|^2 \, dx \right) = \sup_{y \in A_1} \sum_{n \in \mathbb{Z}^2} \exp(-4\pi n^2 y) \left| \varphi_n^* f \right|^2\]

\[= \sup_{y \in A_1} \sum_{n \in \mathbb{Z}^2} \exp(-4\pi n^2 y_{M^2}) \left| \varphi_n^* f \right|^2 = \sum_{n \in \mathbb{Z}^2} \exp(4\pi c |n_{M^2}| - 4\pi |n_{M^*}^+|) \left| \varphi_n^* f \right|^2 = \sum_{n \in \mathbb{Z}^2} \left| \varphi_n^* A_{M^*} f \right|^2.\]

Similar calculations for the other three norms show then that the spaces \(H_j, \, j \in \{1, 2, 3, 4\}\) disjointly partition the space \(H_{A_{\mathbb{R}^2}}\), with respect to the dual coordinate up to \(n = 0\). Since \(E_{M^*}\) is a one dimensional subspace of \(\mathbb{R}^2\), always two of the spaces contain only the constant functions (note that \(n_{M^*} = 0\) implies \(n = 0\)), say, \(H_3\) and \(H_4\). Then all vectors in the spaces \(H_1\) and \(H_2\) are holomorphic functions on \(\mathbb{T}^2 + iA_1\) and on \(\mathbb{T}^2 + iA_2\), respectively.

3. The Koopman operator is nuclear

We set for each \(r > 0\)

\[T_r := \{ T : \mathbb{T}^2 \rightarrow \mathbb{T}^2 | T \text{ extends holomorphically and boundedly on } A_r \}.\]

For every \(T \in T_r\), the Koopman operator

\[K_T : L_2(\mathbb{T}^2) \rightarrow L_2(\mathbb{T}^2) : f \mapsto f \circ T\]

is well-defined by differentiability of \(T\). It is well-known that the operator \(K_T\) acting on \(L_2(\mathbb{T}^2)\) is not compact. We say that two maps \(f, g \in T_r\) are \(C^1\)-close if the distance

\[d(f, g) := \sup_{z \in A_r} \| f(z) - g(z) \| + \sup_{z \in A_r} \| D_z f - D_z g \|\]

is small. In this section we revisit the proof of Faure and Roy [4]. They showed that \(K_T\), acting on the Hilbert space \(H_{A_{\mathbb{R}^2}}\), (see definition 2.4), is nuclear of order 0 if \(T\) is sufficiently \(C^1\)-close to a hyperbolic matrix \(M \in SL_2(\mathbb{Z})\) for some \(c > 0\).

We recall that a linear operator \(L : \mathcal{H} \rightarrow \mathcal{H}\) on a Hilbert space \(\mathcal{H}\) with norm \(\| \cdot \|_\mathcal{H}\) is called nuclear of order 0 if it can be written as a sum \(L = \sum_{n \in \mathbb{N}} d_n \psi_{1,n} \psi_{2,n}^*\), with
\[\inf\{ p > 0 | \sum_{\epsilon \in \mathbb{N}} |d_{\epsilon}|^p < \infty \} = 0 \text{ and } \psi_{1,\epsilon}, \psi_{2,\epsilon} \in \mathcal{H}, \|\psi_{1,\epsilon}\|_{\mathcal{H}}, \|\psi_{2,\epsilon}\|_{\mathcal{H}} \leq 1, d_{\epsilon} \in \mathbb{C}, \epsilon \in \mathbb{N} \]

In particular, such an operator is trace class, hence bounded and admits a trace \(\text{Tr} \mathcal{L} := \sum_{\epsilon \in \mathbb{N}} e_{\epsilon} \mathcal{L} e_{\epsilon} \), invariant for any choice of orthonormal basis \(e_{\epsilon}, \epsilon \in \mathbb{N} \) of \(\mathcal{H} \). Moreover, one can show that \(\text{Tr} \mathcal{L} \) equals the sum, including multiplicity (dimension of corresponding generalized eigenspace), over the spectrum \(\text{sp}(\mathcal{L}) \) of \(\mathcal{L} \). The Fredholm determinant, defined for small enough \(z \in \mathbb{C} \) by

\[
\det(1 - z \mathcal{L}) := \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \text{Tr} \mathcal{L}^n \right),
\]

extends to an entire function in \(z \), having zeroes at \(z = \lambda^{-1}, \lambda \in \text{sp}(\mathcal{L}) \setminus \{0\} \) of same order as the multiplicity of \(\lambda \).

Theorem 3.1 (Nuclearity of \(K_T \)). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic and let \(r > 0 \). Then there exist constants \(K_M > 0 \) and \(0 < c_1 < r \) such that for each \(T \in \mathcal{T} \), with \(d(T, M) \leq \delta_M \) the map

\[K_T : \mathcal{H}_{Ad_{c_1}} \to \mathcal{H}_{Ad_{c_1}} : f \mapsto f \circ T \]

defines a nuclear operator of order 0. In particular, there exists \(c_2 > 0 \) depending only on \(c_1, M \) and \(\|\cdot\| \) so that for each \(n_1, n_2 \in \mathbb{Z}^2 \)

\[\langle \psi_{n_1}, K_T \psi_{n_2} \rangle_{\mathcal{H}_{Ad_{c_1}}} \leq \exp(-2\pi c_2(\|n_1\| + \|n_2\|)) \]

For every \(n_1, n_2 \in \mathbb{Z}^2 \), we set

\[I_{n_1n_2}(T) := \langle \psi_{n_1}, K_T \psi_{n_2} \rangle_{L^2(\mathbb{T}^2)} \]

Estimating this ‘oscillatory integral’ is central for theorem 3.1. In the case \(T = M \), we have simply

\[I_{n_1n_2}(M) = \begin{cases}
1 & \text{if } M^*n_2 = n_1 \\
0 & \text{if } M^*n_2 \neq n_1
\end{cases} \]

The strategy of the proof is as follows. We get an upper bound for \(|I_{n_1n_2}(T)| \) in lemma 3.2, taking advantage of the holomorphicity of \(T \). In lemma 3.3, we compare the contribution of \(n_1 \) and \(n_2 \) in the expanding and contracting directions, using here essentially the hyperbolicity of \(M \). Combining both results, we obtain a weaker bound on \(|I_{n_1n_2}(T)| \) in proposition 3.4, which finally allows for the proof of theorem 3.1.

For every \(n \in \mathbb{Z}^2 \) and \(y \in \mathbb{R}^2 \) any solution \(x \in \mathbb{T}^2 \) so that

\[\exp(-2\pi (n^*D_T y)) = \int_{\mathbb{C}^2} \exp(-2\pi (n^*D_T y)) \, dz \]

is denoted by \(x_n(y) \). Since the integrand is continuous in \(y \) such a solution exists by the mean value theorem.

Lemma 3.2 (Upper bound on \(|I_{n_1n_2}(T)| \)). Let \(r > 0 \). Then, there exists \(C \geq 0 \) so that for each \(T \in \mathcal{T} \), \(n_1, n_2 \in \mathbb{Z}^2 \) and \(y \in (-r, r)^2 \), recalling (10), we have

\[|I_{n_1n_2}(T)| \leq \exp(2\pi (-n_2^*D_{x,y} T y + n_1^* y + Cd(T, 0) \| y \|^2 \|n_2\|)) \]
Proof. By definition
\[I_{n_0}(T) = \left\langle \varphi_{n_0}^*, K_T \varphi_{n_0} \right\rangle_{L^2(\mathbb{C})} = \int_{\mathbb{C}} \exp(i2\pi(n_0^2T(x) - n_0^*x))dx. \]

Since \(T \in T_r\), the \(\mathbb{Z}^2\)-invariance of the integrand follows. By holomorphicity of \(T\) on \(\mathbb{A}_r\), we can change the path of integration to \(x \mapsto x + iy\) for every \(y \in (-r, r)^2\). Therefore for any \(y \in (-r, r)^2\)
\[|I_{n_0}(T)| \leq \int_{\mathbb{C}} \exp(2\pi(n_0^2y - \Im(n_0^2T(x + iy))))dx, \]

where \(\Im\) is the imaginary part. We expand \(T\) (or rather its lift to \(\mathbb{R}^2\)) at \(x \in T^2\) in a Taylor series to the second order. This yields
\[T(x + iy) = T(x) + iD_xTy + P(x + iy) + R_\varepsilon(x + iy). \]

Here, \(P(x + iy)\) is the second order term of the expansion which is \(\mathbb{R}^2\)-valued, and \(R_\varepsilon\) is the remainder of the series expansion. We find therefore
\[\Im T(x + iy) = D_yT + \Im R_\varepsilon(x + iy). \]

Since \(T\) is holomorphic we find a constant \(C > 0\) independent of \(T\) such that
\[|n_0^2R_\varepsilon(x + iy)| \leq Cd(T, 0)||n_2|||y||^3. \]

We are left with the evaluation of
\[\int_{\mathbb{C}} \exp(-2\pi(n^2D_xTy))dx. \]

Using (12) yields the result. \(\square\)

The following abbreviation is used in the remaining section. We set for each \(y \in \mathbb{R}^2\)
\[|y|_M := \|y^+_M\| - \|y^-_M\|. \] (13)

Lemma 3.3 (Directional inequality). Let \(M \in \text{SL}_2(\mathbb{Z})\) be hyperbolic. Let \(\varepsilon > 0\) and \(\kappa \geq 0\) and let \(R : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}\) be a map such that for all \(z \in \mathbb{R}^2\) with \(\|z\| < \varepsilon\) it holds
\[R(z) \leq \kappa \|z\|. \]

Then there exists \(c_M > 0\) such that if \(\kappa < c_M\) there exist \(0 < c_2 < c_1 < \varepsilon\) such that for all \(n_1, n_2 \in \mathbb{Z}^2\) there exists \(\gamma_{n_1, n_2} \in \mathbb{R}^2\) independent of \(R\) with \(\|\gamma_{n_1, n_2}\| < \varepsilon\) such that it holds
\[-c_1(|n_1|_M - |n_2|_M) - (n_2^2M - n_1^2)\gamma_{n_1, n_2} + ||n_2||R(\gamma_{n_1, n_2}) \leq -c_2(||n_1|| + ||n_2||). \]

Proof. We assume \(0 < c_2 \leq c_1\). For \(n_1 = n_2 = 0\) there is nothing to prove. For every \((y_1, y_2) \in \mathbb{R}^2\) we set \(\|(y_1, y_2)\| := \sqrt{y_1^2 + y_2^2}\). We let \(0 < \hat{c}_1 \leq 1 \leq \hat{c}_2\) such that
\[\hat{c}_2^{-1}(\|y^+_M\| + \|y^-_M\|) \leq \|y\| \leq \hat{c}_1^{-1} \|y\|_2, \quad \text{for all} \ y \in \mathbb{R}^2. \] (14)
Whenever \(n_2 \neq 0 \) we find a linear map \(M_{\alpha} \) such that \(M_{\alpha} n_2 = M^* n_2 - n_1 \) and whenever \(n_1 \neq 0 \) we find a linear map \(M_{\beta} \) such that \(M_{\beta} n_1 = M^* n_2 - n_1 \). For now we let \(\kappa > 0 \) be a variable which will be fixed later on, independently of \(n_1 \) and \(n_2 \). We consider the following four cases

(a) \(\|n_2\| > 0 \) and \(\|n_2\| \geq \|n_1\| \) \hspace{1cm} (b) \(\|n_1\| > 0 \) and \(\|n_1\| \geq \|n_2\| \)

(i) \(\|M_{\alpha} n_2\| \geq \kappa \|n_2\| \) \hspace{1cm} (i) \(\|M_{\beta} n_1\| \geq \kappa \|n_1\| \)

(ii) \(\|M_{\alpha} n_2\| < \kappa \|n_2\| \) \hspace{1cm} (ii) \(\|M_{\beta} n_1\| < \kappa \|n_1\| \)

We assume Case (a)(i). For every \(\delta > 0 \) we let \(y = \delta M_{\alpha} n_2 / \|n_2\| \).

It follows, using (14), that

\[
-(n_2^2 M - n_1^2) y = -n_1^2 M^* y \leq -\tilde{c}_1^2 \|M_{\alpha} n_2\| \|y\|. \tag{15}
\]

We recall \(\|M\| \) from (13). Using that \(c_1 + c_2 > 0 \) and that (a) holds, we estimate

\[
-c_1(\|n_1\| - \|n_2\|) \leq c_1(\|n_1\| + \|n_2\|) = -c_2(\|n_1\| + \|n_2\|) + (c_1 + c_2)(\|n_1\| + \|n_2\|) \\
\leq -c_2(\|n_1\| + \|n_2\|) + 2(c_1 + c_2)\|n_2\|.
\]

Using (a)(i) and the assumed bound on \(R \) for \(\|y\| < \epsilon \), we have

\[
-c(\|n_1\| - \|n_2\|) - \|n_2\| \left(\tilde{c}_1^2 \|M_{\alpha} n_2 / \|n_2\|\|y\| - R(y) \right) \\
\leq -c_2(\|n_1\| + \|n_2\|) + 2(c_1 + c_2) - (\tilde{c}_1^2 \kappa - \kappa) \|y\| \|n_2\|. \tag{16}
\]

We put \(c_M := \tilde{c}_1^2 \kappa \). Any value \(\|y\| \in (0, \epsilon) \) can be attained by controlling \(\delta \). Assuming that \(c_M > \kappa \), it follows from (15) and (16) that

\[
0 < c_1 + c_2 < \frac{c_M - \kappa}{2}. \tag{17}
\]

The reasoning in Case (b)(i) is completely analogous and yields the same bounds on \(c_1 + c_2 \).

In Case (a)(ii) and (b)(ii), we take \(y = 0 \), where \(R(0) = 0 \) by assumption on \(R \). We assume now Case (a)(ii). We find, using (14),

\[
\|(M_{\alpha} n_2)^\delta\| + \|(M_{\alpha} n_2)^\delta\| \leq c_2 \|M_{\alpha} n_2\| \\
< \tilde{c}_2^2 \|n_2\| \leq \tilde{c}_2^2(\|n_2^\delta\| + \|n_2^\delta \|). \tag{18}
\]

We have

\[
\|(M_{\alpha} n_2)^\delta\| = \|M^* n_2^\delta - n_1^\delta\| \quad \text{and} \quad \|(M_{\alpha} n_2)^\delta\| = \|M^* n_2^\delta - n_1^\delta\|.
\]
Recalling (5), this allows the estimate
\[\| (M \nu_2) \| + \| (M \nu_1) \| \geq \| M \nu_2 \| - \| M \nu_1 \| + || n_M \| + || n_1 \| + || n_M \| - || n_1 \|. \]
Together with (18) we find therefore
\[- |n|_{M} = - || n_M \| + || n_1 \| < - (\lambda_M - k\epsilon_2) || n_M \| + || n_1 \|. \]
We set
\[\kappa_+ := \lambda_M - k\epsilon_2 - 1 \text{ and } \kappa_- := 1 - \lambda_M - k\epsilon_2. \]
We finally estimate
\[-c_1 |n|_{M} - |n|_{M} < -c_1 \kappa_+ || n_M \| - c_1 \kappa_- || n_M \|. \]
Note that we have \(\kappa_+ > \kappa_- \) because \(\lambda_M > 1 \). Assuming that \(c_1 \kappa_- \geq 2c_2 \), we find
\[-c_1 \kappa_- || n_M \| - c_1 \kappa_- || n_M \| < -c_1 \kappa_- || n_M \| - 2c_2 |n|_{M} \leq - c_1 (|n_1| + |n_2|). \]
In Case (b)(ii) we consider the bounds
\[|n_2|_{M} + \lambda_M || n_1 \| - \lambda_M || n_1 \| \leq || (M^{-1}) |(M \nu_1) n_M \| + || (M^{-1}) |(M \nu_1) n_M \| \leq \epsilon_2 || (M^{-1}) |(M \nu_1) || n_1 \|. \]
Therefore \(\kappa_- \) is replaced by \(1 - \lambda_M^{-1} || (M^{-1}) || \kappa \) which we require to be positive. Since \(|| (M^{-1}) || > 1 \), this yields the stronger conditions
\[0 < \kappa < \frac{1 - \lambda_M^{-1} || (M^{-1}) || \kappa \epsilon_2}{2c_2}, \text{ and } c_2 \leq \frac{1 - \lambda_M^{-1} || (M^{-1}) || \kappa \epsilon_2}{2c_1}. \]
Any such choice for \(\kappa \) is independent of \(n_1 \) and \(n_2 \) and fixes \(c_M \). Using (19) for an upper bound on \(c_2 \) and (17), we find the stronger condition
\[0 < c_1 < \frac{c_M \epsilon_2}{3 - \lambda_M^{-1} \epsilon}. \]
Therefore the choices of \(c_1 \) and \(c_2 \) are valid if \(\kappa < c_M \). They depend only on \(\epsilon, M \) and \(|| \| \) and not on \(n_1 \) or \(n_2 \).

Proposition 3.4 (Upper bound on \(|I_{\nu_1}(T)| \) (II)). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic and let \(r > 0 \). Then there exist constants \(0 < \epsilon_M < 0 < \epsilon < c_1 < r \) such that for each \(n_1, n_2 \in \mathbb{Z} \) and each \(T \in T_r \) with \(d(T, M) \leq \epsilon_M \) it holds that
\[\exp(-2\pi c_1 |n|_{M} - |n|_{M}) |I_{\nu_1}(T)| \leq \exp(-2\pi c_2 (|n|_{M} + |n_2|)). \]

Proof. By lemma 3.2 there is a constant \(C > 0 \) independent of \(T \) such that for each \(y \in (-r, r)^2 \) and \(n_1, n_2 \in \mathbb{Z} \) it holds that
\[|h_{n,ni}(T)| \leq \exp(2\pi(-n_2^2D_{x,y}Ty + n_1^2y + Cd(T, 0) \| y \|^3\| n_2 \|)). \] (20)

We rewrite
\[n_2^2D_{x,y}Ty = n_2^2My + n_2^2D_{x,y}(T-M)y, \]
and set
\[R(y) := \begin{cases} \frac{n_2^2}{\| n_2 \|}D_{x,y}(M - T)y + Cd(T, 0) \| y \|^3 & \text{if } n_2 \neq 0, \\ 0 & \text{if } n_2 = 0. \end{cases} \]

Let \(\delta_M > 0 \) and assume that \(d(T, M) \leq \delta_M \). We choose \(\epsilon > 0 \) sufficiently small such that for all \(y \in \mathbb{R}^2 \) with \(\| y \| < \epsilon \) there is \(\kappa > 0 \) such that
\[|R(y)| \leq \kappa \delta_M. \]

Since \(d(T, 0) \leq d(T, M) + d(M, 0) \leq \delta_M + d(M, 0) \) this choice of \(\epsilon \) is independent of \(T \). Lemma 3.3 applied to \(M \) and \(R \) gives \(c_1, c_2 \) and \(y_{n_2} \in \mathbb{R}^2 \) for which the right-hand side of (20) fulfills the desired inequality. \(\Box \)

Proof of theorem 3.1. Proposition 3.4 yields \(0 < \delta_M \) and assume that \(0 < c_1 < c_2 < r \) such that if \(d(T, M) \leq \delta_M \) it holds
\[C_n^C_n^{-1}|h_{n,ni}(T)| \leq \exp(-2\pi c_2(|| n_1 \| + || n_2 \|)), \] (21)
where
\[C_n := \exp(-2\pi c_3(|| n_1 \| - || n_2 \|)). \quad n \in \mathbb{Z}^2. \]

We put \(c_1 = c_1 \) and \(M \) in definitions 2.2 and 2.4, giving a linear map \(A_{M,\epsilon} \) and a Hilbert space \(\mathcal{H}_{A_{M,\epsilon}} \). Recalling (6), and assuming that \(K_T : \mathcal{H}_{A_{M,\epsilon}} \to \mathcal{H}_{A_{M,\epsilon}} \) is well-defined, we have
\[\left\langle \varphi_n, K_T \varphi_n \right\rangle_{\mathcal{H}_{A_{M,\epsilon}}} = \left\{ \varphi_{n_1}, A_{M,\epsilon}K_TA_{M,\epsilon}^{-1}\varphi_{n_1} \right\}_{L_2(T^2)} = C_n C_n^{-1}|h_{n,ni}(T)|. \] (22)

Using (21) to estimate the right-hand side, the bound in theorem 3.1 follows. We next obtain well-definedness and nuclearity of order 0 of \(K_T \). Let \(f \in \mathcal{H}_{A_{M,\epsilon}} \) and put \(g := A_{M,\epsilon}f \). We have then
\[K_T f \in \mathcal{H}_{A_{M,\epsilon}} \Leftrightarrow A_{M,\epsilon}K_T f \in L_2(T^2) \Leftrightarrow \sum_{n \in \mathbb{Z}^2} \left| \varphi_n A_{M,\epsilon}K_T f \right|^2 < \infty \]
\[\Leftrightarrow \sum_{n_1 \in \mathbb{Z}^2} \sum_{n_2 \in \mathbb{Z}^2} \left| \varphi_{n_1} A_{M,\epsilon}K_TA_{M,\epsilon}^{-1} \varphi_{n_1} \right|^2 g_{n_2} < \infty \]
\[\Leftrightarrow \sum_{n_1 \in \mathbb{Z}^2} \sum_{n_2 \in \mathbb{Z}^2} C_n C_n^{-1}|h_{n,ni}(T)| \varphi_{n_1} g_{n_2} < \infty. \]
Using (21) and the Cauchy-Schwartz inequality, it follows that
\[\sum_{n_1 \in \mathbb{Z}} \left| \sum_{n_2 \in \mathbb{Z}} C_{n_1} C^{-1}_{n_2} h_{n_1}(T) \varphi_{n_2} \right|^2 \leq \left(\sum_{n \in \mathbb{Z}} e^{-4\pi c_2 |n|} \right)^2 \| \phi \|_{L^2(T^2)}^2 < \infty. \]

This gives the well-definedness of \(\mathcal{K}_T \). Now, using the Cauchy-Schwartz inequality, we have
\[\left\| \langle \varphi_n, \mathcal{K}_T f \rangle_{\mathcal{H}_{A_{M'c}}} \right\|^2 \leq \sum_{m \in \mathbb{Z}} \left\| \langle \varphi_m, \mathcal{K}_T \varphi_m \rangle_{\mathcal{H}_{A_{M'c}}} \right\|^2 \| f \|_{\mathcal{H}_{A_{M'c}}}^2. \]

Using (22) and (21) to bound \(\| \varphi_n, \mathcal{K}_T \varphi_m \|_{\mathcal{H}_{A_{M'c}}} \) we find a constant \(C > 0 \) such that
\[\left\| C \exp(2\pi c_2 |n|) \varphi_n, \mathcal{K}_T f \right\|_{\mathcal{H}_{A_{M'c}}} \leq \| f \|_{\mathcal{H}_{A_{M'c}}}. \]

This allows the representation of \(\mathcal{K}_T \) as
\[\mathcal{K}_T f = \sum_{n \in \mathbb{Z}} C^{-1} \exp(-2\pi c_2 |n|) \left\langle \varphi_n, \mathcal{K}_T f \right\rangle_{\mathcal{H}_{A_{M'c}}} \varphi_n \]
from which nuclearity of order 0 follows. Finally, a brief inspection of the proofs for lemma 3.3 and proposition 3.4 gives the statement about the constants. \(\square \)

4. Non-trivial resonances for the Koopman operator

Given any hyperbolic matrix \(M \in \text{SL}_2(\mathbb{Z}) \), we find by theorem 3.1 constants \(0 < \delta_M \) and \(c > 0 \) such that for each map \(T \in \mathcal{T}_r \), satisfying \(d(T, M) \leq \delta_M \), the operator \(\mathcal{K}_T \) acting on the Hilbert space \(\mathcal{H}_{A_{M'c}} \) is nuclear of order 0. Therefore it has a well-defined trace
\[\text{Tr} \mathcal{K}_T := \sum_{n \in \mathbb{Z}} \left\langle \varphi_n, \mathcal{K}_T \varphi_n \right\rangle_{\mathcal{H}_{A_{M'c}}} \] (23)

The map \(T \) is an Anosov diffeomorphism (for all small enough \(\delta_M \)), by structural stability [9, theorem 9.5.8]. Then the map \(T \) has the same number \(N_M = |\text{det}(1 - M)| \) of fixed points as the matrix \(M \). We recall a well-known result [4, proposition 9].

Lemma 4.1 (Trace formula for \(\mathcal{K}_T \)). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic and let \(r > 0 \). Then there exist constants \(\delta_M > 0 \) and \(c > 0 \) such that for each \(T \in \mathcal{T}_r \) with \(d(T, M) \leq \delta_M \), letting \(\mathcal{K}_T \) act on \(\mathcal{H}_{A_{M'c}} \) it holds
\[\text{Tr} \mathcal{K}_T = \sum_{T(x) = x} |\text{det}(1 - D_x T)|^{-1}. \]

For the convenience of the reader, we give a proof:

Proof. Using theorem 3.1 gives constants \(c > 0 \) and \(\delta_M > 0 \) and well-definedness of \(\mathcal{K}_T \). For small enough \(\delta_M > 0 \), by structural stability and lemma A.1(II), the map \(1 - T \) can be partitioned into \(N_M \) surjective submaps. In particular, there are diffeomorphisms \(y_j : D_j \to \mathbb{T}^2, D_j \subseteq \mathbb{T}^2, 1 \leq j \leq N_M \) such that \(1 - T = \bigcup_{j=1}^{N_M} y_j \). Then, using (6), we have for each \(n \in \mathbb{Z} \)
\[
\langle \varphi_n, K T \varphi_n \rangle_{\mathcal{H}_{\text{Aut}}} = \langle \varphi_n, A_{M,K}^{-1} K T A_{M,K} \varphi_n \rangle_{L^2(T^2)} = \int_{T^2} \exp(i2\pi n'(T - 1)(x)) \, dx \\
= \sum_{n \in \mathbb{Z}} \int_{T^2} \exp(i2\pi n' y(x)) \, dx \\
= \sum_{n \in \mathbb{Z}} \int_{T^2} \frac{\exp(i2\pi n' z)}{\det(1 - D_{\gamma^c(z)}T)} \, dz.
\]

For \(N \in \mathbb{N} \) and \(z \in T^2 \) the following sum
\[
D_N(z) := \sum_{n \in \mathbb{Z}} \exp(i2\pi n' z)
\]
is the 2-dimensional analogue of the Dirichlet kernel [10, p 13]. Together with (23), this yields immediately
\[
\text{Tr} K_T = \lim_{N \to \infty} \sum_{n \in \mathbb{Z}} \langle \varphi_n, K T \varphi_n \rangle_{\mathcal{H}_{\text{Aut}}} = \sum_{T(x) = 1} \det(1 - D_x T)^{-1}. \tag{24}
\]

Using lemma 4.1, and the definitions (1) and (9) for the dynamical determinant and Fredholm determinant, respectively, we see directly that
\[
\det(1 - z K_T) = d_T(z).
\]
The Ruelle resonances correspond to the zeroes of the Fredholm determinant, hence to the inverses of the non-zero eigenvalues of \(K_T \).

Remark 4.2. In view of equation (24) and the relation of the Ruelle resonances of \(T \) to the eigenvalues of \(K_T \), one may ask how the spectrum of \(K_T \) would be affected if we let \(K_T \) act on a different Banach space. The following relates a part of the eigenvalues of two linear operators sharing a common dense subspace and is due to a proof of Baladi and Tsujii [1, appendix A]. Consider two separable Banach spaces \((B_1, \| \cdot \|)\) and \((B_2, \| \cdot \|)\). This induces two other Banach spaces
\[
(B_1 + B_2, \| \cdot \|_+) \text{ and } (B_1 \cap B_2, \| \cdot \|_-),
\]
where
\[
\| f \|_+ := \inf \{ \| f_1 \|_1 + \| f_2 \|_1 : f_1, f_2 \in B_1, f = f_1 + f_2 \} \quad \text{and} \quad \| f \|_- := \max \{ \| f \|_1, \| f \|_1 \}.
\]
Suppose that \(B_{+} \) is dense in \(B_1 \) and \(B_2 \). Let \(L : B_+ \to B_1 \) be a linear map which preserves the spaces \(B_{+} \), \(B_1 \) and \(B_2 \) and is a bounded linear operator on the restrictions \(L|_{B_1} \) and \(L|_{B_2} \). Then the part of the eigenvalues of \(L|_{B_1} \) and \(L|_{B_2} \) coincide which lies outside the closed disc with radius larger to both essential spectral radii. Moreover, the corresponding generalized eigenspaces of \(L|_{B_1} \) and \(L|_{B_2} \) coincide and are contained in \(B_{+} \).

For the applications that we have in mind, the map \(L \) is just the Koopman or transfer operator, defined on \(B_1 \) and \(B_2 \), respectively, extended to the space \(B_+ \).

The spectrum \(\text{sp}(K_T) \) of \(K_T \) on \(\mathcal{H}_{\text{Aut}} \) is invariant under complex conjugation since \(T \) is real. The constant functions on \(T^2 \) are all fixed by \(K_T \). Therefore we have \(1 \in \text{sp}(K_T) \). If we take \(T = M^k, k \in \mathbb{N} \) in lemma 4.1, it follows that \(\text{Tr} K_T = 1 \). Hence, the dynamical determinant is just \(d_T(z) = 1 - z \), also noted in [16, p 3]. We find immediately that 1 is the only Ruelle
resonance. We show now that this finding is non-generic in the following sense. The rest of this section is devoted to an idea of Naud [13]. We put for every \(r > 0 \)
\[
B_r := \{ T \in T_r \mid \text{The lift of } T \text{ to } \mathbb{R}^2 \text{ is } \mathbb{Z}^2 \text{-periodic} \}.
\] (25)
Endowed with the uniform norm this is a Banach space.

Theorem 4.3 (Non-trivial Ruelle resonances (I)). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic. For each \(r > 0 \) there exists an open and dense set \(G \subseteq B_r \) such that the linear functional
\[
B_M : B_r \rightarrow \mathbb{R} : \psi \mapsto N_M^{-1} \sum_{Mx=x} \text{Tr}((I - M)^{-1}D_x\psi)
\]
ever vanishes on \(G \). For all \(\psi \in G \) there exists \(\epsilon_0 > 0 \) such that for all \(\epsilon < \epsilon_0 \)
\[
\text{Tr}K_{M+\epsilon\psi} = 1 + \epsilon B_M(\psi) + O(\epsilon^2).
\]
In particular, for all sufficiently small \(\epsilon > 0 \) it holds
\[
\text{sp}(K_{M+\epsilon\psi}) \setminus \{0, 1\} \neq \emptyset.
\]

Lemma 4.4 (Real analyticity of fixed points). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic and \(r > 0 \). Then for all \(\psi \in B_r \) the fixed points of the map
\[
M + \delta\psi
\]
are real analytic functions of \(\delta \) where \(\delta \) lies in a real neighborhood of 0.

Proof. We set for \(\delta \in \mathbb{R} \)
\[
F(\delta, x) := Mx + \delta\psi(x) - x.
\]
We fix a point \(y_j := (0, x_j) \) where \(x_j, 1 \leq j \leq N_M \), is a fixed point of \(M \). By construction, the map \(F \) has a holomorphic extension to \(\mathbb{C} \times \mathbb{A}_r \). Since \(M \) is hyperbolic, we have \(\det D_x(F(0, \cdot)) \neq 0 \).
We apply the Holomorphic implicit function theorem [12, theorem 1.4.11] on \(F \) with \(F(y_j) = 0 \). This yields a holomorphic function \(x_j(\delta) \) such that \(x_j(0) = x_j \) and which is obviously real analytic for \(\delta \in \mathbb{R} \) in a neighborhood of 0. \(\square \)

Proof of theorem 4.3. Let \(\delta \in \mathbb{R} \) and \(\psi \in B_r \), and set \(\tilde{M} := M + \delta\psi \). We choose \(\delta \) small in lemma 4.4 which gives for each fixed point \(x \) of \(M \) a real analytic function \(\tilde{x} \) with \(\tilde{x}(0) = x \).
Using a Taylor expansion on \(\tilde{x} \) at 0, we have
\[
\tilde{x}(\delta) = x + O(\delta).
\]
Using real analyticity of the derivative \(D_x\psi \), we have
\[
D_x\psi - D_{\tilde{x}(\delta)}\psi = O(\delta).
\]
We write now for each fixed point \(x \) of \(M \)
\[
\left| \det(I - D_{\tilde{x}(\delta)}\tilde{M}) \right| = \left| \det(I - M - \delta D_x\psi + \delta(D_x\psi - D_{\tilde{x}(\delta)}\psi)) \right|
\]
\[
= N_M \left| \det(I - (I - M)^{-1}(\delta D_x\psi + (\delta D_x\psi - \delta D_{\tilde{x}(\delta)}\psi))) \right|
\]
\[
= N_M \left| \det(I - \delta(I - M)^{-1}D_x\psi + O(\delta^2)) \right|
\]
\[
= N_M (1 - \delta \text{Tr}((I - M)^{-1}D_x\psi) + O(\delta^2)).
\]
We have by lemma 4.1 for \(\delta \) small enough
\[
\text{Tr}K_M = 1 + \frac{\delta}{N_M} \sum_{Mx=x} \text{Tr}((I - M)^{-1}D_x\psi) + O(\delta^2).
\]
Now we set
\[
B_M : \mathcal{B}_r : \psi \mapsto N_M^{-1} \sum_{Mx=x} \text{Tr}((I - M)^{-1}D_x\psi).
\]
We next check that this is a non-trivial linear functional. Note that formally \(B_M(I - M) = 2 \). However, no non-zero linear map is in the space of additive perturbations \(\mathcal{B}_r \). We denote by \(v_j, j \in \{1, 2\} \) the \(j \)th column of the matrix \((I - M)^{-1}\) and we fix now \(j \). Let \(\psi_0 : \mathbb{T} + i(-r, r) \to \mathbb{C} \) be holomorphic and bounded. For every \((x_1, x_2) = x \in \mathbb{T}^2\) we put
\[
\psi(x) := \psi_0(x) v_j.
\]
By construction, we have \(\psi \in \mathcal{B}_r \) and we evaluate
\[
B_M(\psi) = \frac{\psi_0(v_j)}{N_M} \sum_{Mx=x} \psi_0(1)(v_j).
\]
The right-hand side is a finite sum and by taking for \(\psi_0 \) a suitable Fourier polynomial (e.g. a shifted sine with sufficiently high frequency), we can establish \(B_M(\psi) \neq 0 \). We set \(\mathcal{G} := \mathcal{B}_r^1(\mathbb{R} \setminus \{0\}) \). By continuity of \(B_M \), the set \(\mathcal{G} \) is open and dense in \(\mathcal{B}_r \). \(\square \)

5. Non-trivial resonances for the transfer operator

As before, we consider maps \(T \in T_r, r > 0 \) which are sufficiently \(C^1 \)-close to a hyperbolic linear map \(M \in \text{SL}_2(\mathbb{R}) \). We turn to the adjoint of \(\mathcal{K}_T \), acting on the dual space \(\mathcal{H}_{Apr}^* \) which we denote by \(\mathcal{L}_T \).

Lemma 5.1 (Transfer operator). Let \(M \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic and let \(r > 0 \). Then there exist constants \(0 < \delta_M \) and \(c > 0 \) such that for each \(T \in T_r \) with \(d(T, M) \leq \delta_M \) the map
\[
\mathcal{L}_T : \mathcal{H}_{Apr}^* \to \mathcal{H}_{Apr}^* : f \mapsto \frac{f}{[\det DT]} \circ T^{-1}
\]
defines a nuclear operator of order 0, conjugate to \(\mathcal{K}_T \). In particular,
\[
\text{sp}(\mathcal{L}_T) = \text{sp}(\mathcal{K}_T).
\]

Proof. By theorem 3.1 there is \(0 < \delta_M, c > 0 \) and \(\mathcal{H}_{Apr} \), such that \(\mathcal{K}_T \) acting on \(\mathcal{H}_{Apr} \) is nuclear of order 0 if \(d(T, M) \leq \delta_M \). The same can be said about its adjoint, acting on \(\mathcal{H}_{Apr}^* \) (e.g. see [17, p 77]). The trace of \(\mathcal{K}_T \) and \(\mathcal{L}_T \) coincide, so does their Fredholm determinant, and hence their resonances. By definition of the adjoint, \(\forall f^* \in \mathcal{H}_{Apr}^*, \forall g \in \mathcal{H}_{Apr} : (\mathcal{L}_T f^*)(g) = f^*(\mathcal{K}_T g) \). Using lemma 2.5, it holds
\[
\begin{align*}
\int f^*(\mathcal{K}_Tg) &= \left\langle A_{M,T}^{-1} f, \mathcal{K}_Tg \right\rangle_{H_{\mathcal{M},s}} = \int_{\mathbb{T}^2} (A_{M,T}^{-1} \tilde{f})(x)(A_{M,T} \mathcal{K}_Tg)(x) dx \\
&= \int_{\mathbb{T}^2} \tilde{f}(x)(\mathcal{K}_Tg)(x) dx = \int_{\mathbb{T}^2} \left(\frac{f}{|\det D_f^T|} \circ T^{-1} \right)(x) g(x) dx \\
&= \left\langle A_{M,T}^{-1} \left(\frac{f}{|\det D_f^T|} \circ T^{-1} \right), g \right\rangle_{H_{\mathcal{M},s}} = \left(\frac{f}{|\det D_f^T|} \circ T^{-1} \right)(g).
\end{align*}
\]

By lemma 5.1, recalling (6), and lemma 4.1 it holds
\[
\text{Tr} \mathcal{L}_T = \sum_{n \in \mathbb{Z}} \mathcal{L}_T g_n^T(\psi) = \sum_{T(x)=x} |\det(1 - D_x T)|^{-1}.
\]
We have the equality
\[
d(\psi) = \det(1 - z \mathcal{K}_T) = \det(1 - z \mathcal{L}_T).
\]
We give now analogously to theorem 4.3 a spectral result for the transfer operator (recall \(B_r\) from (25)).

Lemma 5.2 (Non-trivial Ruelle resonances (II)). Let \(M \in \text{SL}_2(\mathbb{Z})\) be hyperbolic. For each \(r > 0\) there exists an open and dense set \(\mathcal{G} \subset B_r\) such that for all \(\psi \in \mathcal{G}\) there exists \(\epsilon_0 > 0\) such that for all \(0 < \epsilon \leq \epsilon_0\)
\[
\text{sp}((\mathcal{L}_M + \epsilon \psi) \setminus \{0, 1\} \neq \emptyset.
\]

Proof. By theorem 4.3 we know that under every perturbation \(\psi \in \mathcal{G}\) there is \(\epsilon_0 > 0\) such that we find for all \(0 < \epsilon \leq \epsilon_0\) non-trivial Ruelle resonances. Using lemma 5.1 for well-definedness of \(\mathcal{L}_M + \epsilon \psi\) and for the relation \(\text{sp}(\mathcal{L}_T) = \text{sp}(\mathcal{K}_T)\), the result follows.

Clearly, the Lebesgue measure (by remark 2.6, the constant density 1) is fixed by \(\mathcal{L}_M\). This does not persist under a generic perturbation of \(M\). However, the spectral relation in lemma 5.1 implies that \(\mathcal{L}_T\) fixes some functionals in \(H_{\mathcal{M},s}\). In particular, using remark 4.2, we can apply [3, theorem 3] to our transfer operators \(\mathcal{L}_M\) and \(\mathcal{L}_T\). Hence, the eigenvalue 1 of \(\mathcal{L}_T\) is simple and the projector \(\Pi \mathcal{L}_T\) onto the corresponding eigenspace of \(\mathcal{L}_T\) gives us the SRB measure
\[
\mu_{\text{SRB}} := \Pi \mathcal{L}_T^s,
\]
in the usual sense (It is absolutely continuous with respect to Lebesgue measure in the unstable direction.).

We finish this section by showing the existence of non-zero perturbations \(\psi \in B_r\) which allow the determinant \(\det(M + \epsilon D_x \psi)\) to remain constant or to vary for \(x \in \mathbb{T}^2\).

Lemma 5.3 (Volume under perturbations). Let \(r > 0\) and let \(M \in \text{SL}_2(\mathbb{Z})\) be hyperbolic. Then there exist non-zero maps \(\psi \in B_r\) in each of the following cases:

(i) For all \(\epsilon > 0\) and all \(x \in \mathbb{T}^2\) it holds \(\det(M + \epsilon D_x \psi) = 1\).

(ii) For all \(\epsilon > 0\) and Lebesgue almost all \(x \in \mathbb{T}^2\) it holds \(\det(M + \epsilon D_x \psi) \neq 1\).

In particular, the map \(\psi\) can be chosen such that for all small \(\epsilon > 0\) the corresponding transfer operator
\[
\mathcal{L}_{M+\epsilon \psi}
\]
admits non-trivial Ruelle resonances.
Proof. We prove first Claim (i), including the statement about the non-trivial Ruelle resonances. We will apply lemma A.2(i). We choose \(j \in \{1, 2\}, r > 0 \) and let \(\phi : \mathbb{T} + i(-r, r) \to \mathbb{C} \) be a holomorphic and bounded map. For \(\alpha \in \mathbb{R}^2 \) we set for every \((a_1, a_2) = x \in \mathbb{T}^2\)
\[
\psi_{\alpha, \phi}(x) := (\alpha_1 \phi(x_j), \alpha_2 \phi(x_j)).
\]
We put \(d := 2, j, T := M, \phi \) and \(T_\alpha := \psi_{\phi, \alpha} \) (e.g. as lift to \(\mathbb{R}^2 \)) in lemma A.2. Since \(M \) is a constant matrix, say, \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) for suitable \(a, b, c, d \in \mathbb{Z} \), we can write Condition A.2(i) as
\[
\alpha_1 d = \alpha_2 b \quad \text{if } j = 1 \quad \text{or} \quad \alpha_1 c = \alpha_2 a \quad \text{if } j = 2.
\]
(26)
Hence, we have non-zero solutions in \(\alpha \) independent of \(x \). We choose such a solution \(\alpha \) and take
\[
\psi := \psi_{\phi, \alpha}.
\]
Then \(\psi \in \mathcal{B}_\epsilon \) which yields \(\det(M + \epsilon D_x \psi) = 1 \) for every \(\epsilon > 0 \). We are free to choose any suitable \(\phi \). In particular, theorem 4.3 yields a linear functional \(B_M \) and a dense subset \(\mathcal{B} \) on which \(B_M \) is non-zero. We have to make sure that \(\psi \in \mathcal{G} \). Then for \(\epsilon \) small \(\mathcal{L}_{M + \epsilon} \) admits non-trivial Ruelle resonances by lemma 5.2. To this end, we evaluate \(B_M \) at \(\psi \) which yields
\[
B_M(\psi) = B_M(\psi_{\phi, \alpha}) = N_M^{-1} \sum_{Mx = x} \Tr((I - M)^{-1} D_x \psi_{\phi, \alpha}) = \frac{v_j^\phi}{N_M} \sum_{Mx = x} \phi^{(1)}(x_j),
\]
where \(v_j^\phi \) is the \(j \)th row of \((I - M)^{-1} \). The sum over the fixed points of \(M \) can be made non-zero by a suitable Fourier polynomial. Now we have
\[
v_j^\phi = \frac{(1 - d)\alpha_1 + c\alpha_2}{\det(I - M)} \quad \text{or} \quad v_2^\phi = \frac{b\alpha_1 + (1 - a)\alpha_2}{\det(I - M)}.
\]
Using (26), we find
\[
v_1^\phi = \frac{\left(c - b + \frac{b}{d}\right)\alpha_2}{\det(I - M)} \quad \text{or} \quad v_2^\phi = \frac{\left(b - c + \frac{c}{d}\right)\alpha_1}{\det(I - M)}.
\]
Both equations can never be zero since \(M \) is not diagonal. We prove now Claim (ii) by modifying the map \(\psi \). For \(\delta \in \mathbb{R} \setminus \{0\} \) we set \(\alpha := \alpha + \delta w_j \), where \(w_j \) is the \(j \)th column of \(M \) and put \(\tilde{\psi} := \psi_{\phi, \tilde{\alpha}} \). We have
\[
\det(M + \epsilon D_x \tilde{\psi}) = \det(M + \epsilon D_x \psi + \epsilon D_x (\tilde{\psi} - \psi)) = 1 + \delta c \phi^{(1)}(x_j).
\]
Since \(\phi \) is not constant, the right-hand side differs from 1 (and \(-1\)) for Lebesgue almost all \(x \). Since \(v_j^\phi = v_j^\psi + \delta v_j^w \neq 0 \) for the right choice of the sign of \(\delta \), we have \(B_M(\psi) \neq 0 \). \(\qed \)

Acknowledgments

I thank Frédéric Naud for sharing his ideas [13] which gave rise to this work and Paolo Giulietti and Carlangelo Liverani [6] for pointing out the relevance of non-trivial resonances. Special thanks to Viviane Baladi for all her valuable suggestions and our discussions. I am also very grateful to both referees for their useful comments and suggestions.
Appendix

For the readers convenience we give a proof of a well-known result:

Lemma A.1 (Fixed points). Let M be 2×2 integer matrix acting on \mathbb{T}^2. Assume that $\det(I - M) \neq 0$. Then the following holds:

(i) The number N_M of fixed points of M is given by $N_M = |\det(I - M)|$.

(ii) There exists a disjoint partition $D_j \subseteq \mathbb{T}^2$, $1 \leq j \leq N_M$ of \mathbb{T}^2 such that the maps $y_j : D_j \to \mathbb{T}^2 : x \mapsto (1 - M)x$ are bijections.

Proof. We let $I - M$ act on the cover \mathbb{R}^2. The linear map $I - M$ sends a fundamental region of \mathbb{T}^2, e.g. $[0, 1)^2$, to a convex polytope having a non-zero volume given by $|\det(I - M)|$. Each fixed point of M on \mathbb{T}^2 is mapped by $I - M$ to an element of \mathbb{Z}^2, and the number of integer points contained in the polytope is just given by its volume. Claim (i) follows.

Let $v_1, v_2 \in \mathbb{Z}^2$ be two different such integer points in the polytope. Now assume that there are $f_1, f_2 \in [0, 1)^2$ such that

$$(I - M)^{-1}(f_1 - f_2) \equiv (I - M)^{-1}(v_1 - v_2) \pmod{0, 1^2}.$$

The right-hand side is mapped to a fixed point of M on \mathbb{T}^2, implying that $f_1 - f_2$ is an integer point, which is only possible if $f_1 = f_2$. Therefore, $v_1 = v_2$, which contradicts the assumption, and Claim (ii) follows. \square

For $d \in \mathbb{N}$ and every real $d \times d$ matrix M we denote by $\Box_{i,j}(M)$, $1 \leq i, j \leq d$ the submatrix arising by removing the ith row and jth column from M.

Lemma A.2 (Determinant preserving transformation). Let $d \in \mathbb{N}$, and let $T : \mathbb{R}^d \to \mathbb{R}^d$ and $\phi : \mathbb{R} \to \mathbb{R}$ be differentiable maps. Fix $1 \leq j \leq d$ and $\alpha \in \mathbb{R}^d$ and set

$$T_\alpha : \mathbb{R}^d \to \mathbb{R}^d : x \mapsto (\alpha_i \phi(x_i)) \cdot 1 \leq i \leq d).$$

Then for $x \in \mathbb{R}^d$ it holds

$$\det D_x(T + T_\alpha) - \det D_x(T) = 0$$

if and only if at least one of the conditions holds:

(i) $\sum_{i=1}^d (-1)^i \alpha_i \det \Box_{i,j}(D_x(T)) = 0$ or

(ii) $\phi^{(i)}(x_j) = 0$.

Proof. We develop the determinant of $D_x(T + T_\alpha)$ with respect to the jth column. Since T_α depends only on x_j this gives

$$\det D_x(T + T_\alpha) = (-1)^j \sum_{i=1}^d (-1)^i \partial_j(T + T_\alpha)(x) \det \Box_{i,j}(D_x(T)).$$

Hence, it holds
One deduces Claim (i) and (ii) directly from the right-hand side. □

References

[1] Baladi V and Tsujii M 2008 Dynamical determinants, spectrum for hyperbolic diffeomorphisms Geometric and Probabilistic Structures in Dynamics (Contemporary Mathematics vol 469) (Providence, RI: American Mathematical Society) pp 29–68
[2] Bandtlow O F, Just W and Slipantschuk J 2017 Spectral structure of transfer operators for expanding circle maps Ann. l’Institut. Henri Poincaré C 34 31–43
[3] Blank M L, Keller G and Liverani C 2002 Ruelle–Perron–Frobenius spectrum for Anosov maps Nonlinearity 15 1905–73
[4] Faure F and Roy N 2006 Ruelle–Pollicott resonances for real analytic hyperbolic maps Nonlinearity 19 1233–52
[5] Fried D 1995 Meromorphic zeta functions for analytic flows Commun. Math. Phys. 174 161–90
[6] Giulietti P and Liverani C 2016 Parabolic dynamics and anisotropic Banach spaces (arXiv:1412.7181v2)
[7] Gouëzel S and Liverani C 2006 Banach spaces adapted to Anosov systems Ergod. Theor. Dynam. Syst. 26 189–217
[8] Grothendieck A 1966 Produits Tensoriels Topologiques et Espaces Nucléaires (Memoirs of the American Mathematical Society vol 16) 4th edn (Providence, RI: American Mathematical Society)
[9] Hasselblatt B and Katok A 2003 A First Course in Dynamics: with a Panorama of Recent Developments (Cambridge: Cambridge University Press) (doi: 10.1017/CBO9780511998188)
[10] Katznelson Y 2004 An Introduction to Harmonic Analysis 3rd edn (Cambridge: Cambridge University Press) (doi: 10.1017/CBO9781139165372)
[11] Keller G and Rugh H H 2004 Eigenfunctions for smooth expanding circle maps Nonlinearity 17 1723–30
[12] Krantz S G 2001 Function Theory of Several Complex Variables 2nd edn (Providence, RI: American Mathematical Society)
[13] Naud F 2015 Anosov diffeomorphisms with non-trivial ruelle spectrum private communication
[14] Ruelle D 1976 Zeta-functions for expanding maps and Anosov flows Inventory Math. 34 231–42
[15] Rugh H H 1992 The correlation spectrum for hyperbolic analytic maps Nonlinearity 5 1237–63
[16] Rugh H H 1996 Generalized Fredholm determinants and Selberg zeta functions for Axiom a dynamical systems Ergod. Theor. Dynam. Syst. 16 805–19
[17] Ryan R A 2002 Introduction to Tensor Products of Banach Spaces (Springer Monographs in Mathematics) (New York: Springer) (doi: 10.1007/978-1-4471-3903-4)
[18] Sarason D 1965 The Hp Spaces of an Annulus (Memoirs of the American Mathematical Society vol 56) (Providence, RI: American Mathematical Society) (doi: 10.1090/memo/0056)
[19] Slipantschuk J, Bandtlow O F and Just W 2016 Complete spectral data for analytic Anosov maps of the torus Nonlinearity submitted (arXiv:1605.02883)
[20] Slipantschuk J, Bandtlow O F and Just W 2013 Analytic expanding circle maps with explicit spectra Nonlinearity 26 3231–45