A Kobayashi-Hitchin correspondence between
Dirac-type singular mini-holomorphic bundles and
HE-monopoles

Masaki Yoshino
February 27, 2019

Abstract
We prove an analogue of the Kobayashi-Hitchin correspondence on
compact connected 3-folds that is fibered on orbifold Riemann surfaces
and satisfy an integrability condition, which contains compact con-
nected Sasakian 3-folds. We define mini-holomorphic bundles on such
3-folds and the algebraic Dirac-type singularities on mini-holomorphic
bundles, and prove that there exists a special Hermitian metric (admis-
sible BHE-metric) on a Dirac-type singular mini-holomorphic bundle
if the bundle satisfies a slope stability.

1 Introduction
On a connected compact Kähler manifold \((M, g)\) with the Kähler form \(\omega\), a
holomorphic vector bundle \(V\) has a Hermite-Einstein metric if and only if
\(V\) is polystable, which is called the Kobayashi-Hitchin correspondence and
proved by Uhlenbeck and Yau [10]. In this paper, we prove an analog of the
Kobayashi-Hitchin correspondence on compact mini-holomorphic 3-folds.

We describe mini-holomorphic 3-folds and mini-holomorphic vector bun-
dles on them. In our context, they are the counterpart of complex manifolds
and holomorphic bundles. Let \(X\) be a compact oriented 3-fold. Let \(\partial_t\) be
a nowhere vanishing vector field on \(X\) and \(\alpha\) a \(\partial_t\)-invariant 1-form on \(X\)
with a condition \(\langle \partial_t, \alpha \rangle = 1\). Let \((\Sigma, g_\Sigma)\) be an orbifold Riemann surface
and \(\pi : M \to \Sigma\) a \(\partial_t\)-invariant submersion. Set a metric \(g = \alpha^2 + \pi^* g_\Sigma\). As-
sume that \(\alpha \wedge \pi^* \text{vol}_\Sigma\) is positive-oriented. We set \(\Omega_{X,1}^{0,1} := \mathcal{C}_{\alpha} \oplus \pi^* \Omega_{\Sigma}^{0,1}\)
and \(\Omega_{X,2}^{0,2} := \bigwedge^2 \Omega_{X}^{0,1}\), where \(\mathcal{C}_{\alpha}\) is the subbundle spanned by \(\alpha\). Then
the tuple \((\partial_t, \alpha, \Sigma, \pi)\) is called a mini-holomorphic structure on \(X\). We
set a differential operator $\overline{\partial}_X(f) := \partial_t(f)\alpha + \overline{\partial}_z f \pi^*(d\bar{z})$, where z is a holomorphic local chart of Σ and $\overline{\partial}_z$ is the lift of ∂_z by the isomorphism $\text{Ker}(\alpha) \simeq \pi^*T\Sigma$. If a vector bundle V on an open subset $U \subset X$ and a differential operator $\overline{\partial}_V : \Omega^{0,1}_X(V) \to \Omega^{0,0}_X(V)$ satisfies the Leibniz rule $\overline{\partial}_V(f \pi^*\omega) = \overline{\partial}_V f \pi^*\omega + f \pi^*\overline{\partial}_V \omega$, for any proper mini-holomorphic subbundle (E, h, A, Φ) of (V, h, A, Φ) on $X \setminus Z$, $(V, \overline{\partial}_V)$ is a Dirac-type singular mini-holomorphic bundle on (X, Z) if it satisfies a certain condition (See Definition 2.13). We describe HE-monopoles on mini-holomorphic 3-folds. Let (V, h, A) be a Hermitian vector bundle on an open subset $U \subset X$ with a connection. Let Φ be a skew-Hermitian endomorphism of V. The tuple (V, h, A, Φ) is HE-monopole of factor $c \in \mathbb{R}$ if it satisfies the Bogomolny-Hermite-Einstein equation $F(A) = \ast \nabla_A(\Phi) + \sqrt{-1}c \cdot (\pi^*\omega_{\Sigma})\text{Id}_V$, where ω_{Σ} is the Kähler form of Σ. If the constant $c = 0$, the Bogomolny-Hermite-Einstein equation agrees with the ordinary Bogomolny equation. A HE-monopole (V, h, A, Φ) on $X \setminus Z$ is a Dirac-type singular monopole if it satisfies a certain condition (See Definition 2.25). A HE-monopole (V, h, A, Φ) has a natural mini-holomorphic structure $\overline{\partial}_V := \nabla^{0,1}_A - \sqrt{-1}\Phi \cdot \alpha$, and underlying mini-holomorphic bundles of Dirac-type singular HE-monopoles are Dirac-type singular. Conversely, for a mini-holomorphic bundle $(E, \overline{\partial}_E)$ and a Hermitian metric h on E, there uniquely exist a connection A_h and a skew-Hermitian endomorphism Φ_h on E such that $\overline{\partial}_E = \nabla^{0,1}_{A_h} - \sqrt{-1}\Phi_h \cdot \alpha$.

For a Dirac-type singular mini-holomorphic bundle $(E, \overline{\partial}_E)$, if the tuple (E, h, A_h, Φ_h) has the lift by the Hopf-fibration, then h is called an admissible metric (See Definition 3.3). If the tuple (E, h, A_h, Φ_h) is a HE-monopole, we call h a Bogomolny-Hermite-Einstein metric (or shortly BHE-metric). Moreover, the tuple (E, h, A_h, Φ_h) is a Dirac-type singular HE-monopole if and only if h is an admissible BHE-metric (See Proposition 3.5). We introduce the stability of Dirac-type singular mini-holomorphic bundles. We set the degree of $(E, \overline{\partial}_E)$ to be $\text{deg}(E, \overline{\partial}_E) := \int_{X \setminus Z} \alpha \wedge c_1(A_{h_0})$, where h_0 is an admissible metric. By Proposition 3.6, $\text{deg}(E, \overline{\partial}_E)$ is independent of the choice of h_0. The Dirac-type singular mini-holomorphic bundle $(E, \overline{\partial}_E)$ is stable if the inequality $\text{deg}(E, \overline{\partial}_E)/\text{rank}(E) > \text{deg}(F, \overline{\partial}_F)/\text{rank}(F)$ holds for any proper mini-holomorphic subbundle $(F, \overline{\partial}_F)$ of $(E, \overline{\partial}_E)$. Our main result is the following:

Theorem 1.1 (Theorem 3.7). If $(E, \overline{\partial}_E)$ is stable, then there exists an admissible BHE-metric h on E.

In Section 2, we recall the notations necessary for Section 3. Moreover,
in Proposition [2.30] we give a slight generalization of Theorem 4.5 in [7]. In Section 3, we prove our main result.

Comparison with previous studies

In [4], Charbonneau and Hurtubise introduced the notion of HE-monopoles and mini-holomorphic bundles on a product of S^1 and a Riemann surface Σ. They also proved the Kobayashi-Hitchin correspondence on $S^1 \times \Sigma$.

In [2], Biswas and Hurtubise considered the Kobayashi-Hitchin correspondence on compact Sasakian 3-folds, and proved that two Dirac-type singular monopole on a compact Sasakian 3-folds are isomorphic as monopoles if their underlying mini-holomorphic structures are isomorphic.

In [1], Baraglia and Hekmati constructed the Kobayashi-Hitchin correspondence for compact oriented taut Riemannian foliated manifolds with transverse Hermitian structure. This result seems to be considered as a higher-dimensional generalization of our result under the non-singular condition.

Acknowledgments

I deeply thank my supervisor Takuro Mochizuki for his kind advices and discussions. I also thank Yoshinori Hashimoto for teaching me the result of [1].

2 Preliminaries

2.1 Kähler orbifolds

We recall the notion of orbifold by following [8]. For a Lie groupoid \mathcal{C}, we denote by \mathcal{C}_0 and \mathcal{C}_1 the object space and the morphism space of \mathcal{C}. Let s, t, m and u be the source map, the target map, the composition map and the unit map. We set $\mathcal{C}(x, y) := (s, t)^{-1}(x, y)$. We also set $\mathcal{C}_2 := \mathcal{C}_1 \times_t \mathcal{C}_1$, and denote by $p_i : \mathcal{C}_2 \to \mathcal{C}_1$ the projection to the i-th component.

Definition 2.1. Let \mathcal{C} be a Lie groupoid unless otherwise denoted.

(i) The groupoid \mathcal{C} is called an orbifold if the following conditions are satisfied.

- The maps s and t are local diffeomorphisms.
- The map $(s, t) : \mathcal{C}_1 \to \mathcal{C}_0 \times \mathcal{C}_0$ is proper.
For an orbifold C, we define the dimension of C as the one of C_0.

(ii) We denote by $|C|$ the underlying topological space C_0/\sim, where $x \sim y$ holds if $C(x, y) \neq \emptyset$.

(iii) A vector bundle on C is a vector bundle V on C_0 equipped with an isomorphism $\Phi : t^*V \to s^*V$ that satisfies the following commutative diagram:

\[
\begin{array}{ccc}
p_2^*t^*V & \xrightarrow{p_2^*\Phi} & p_2^*s^*V \\
\downarrow & & \downarrow p_1^*\Phi \\
m^*t^*V & \xrightarrow{m^*\Phi} & m^*s^*V
\end{array}
\]

The tangent and cotangent bundles on C_0 naturally satisfy the above condition. In particular, a Riemannian metrics on C is a C^1-invariant Riemannian metric on C_0.

(iv) An orbifold C is a complex orbifold if both C_0 and C_1 have complex structures such that s, t, m and u are holomorphic. Moreover, a complex orbifold C is called Kähler orbifold if C equips a Riemannian metric g such that (C_0, g) is Kähler.

(v) Let M be a manifold and C an orbifold. A smooth map φ from M to C is a collection of an open covering $\{U_i\}_{i \in I}$ of M and smooth maps $\varphi_i : U_i \to C_0$ and $\varphi_{ij} : U_i \cap U_j \to C_1$ that satisfies $(s, t) \circ \varphi_{ij} = (\varphi_j, \varphi_i)$ and $\varphi_{ij} \circ \varphi_{jk} = \varphi_{ik}$ for any $i, j, k \in I$. Moreover, a smooth map $\varphi : M \to C$ is said to be a submersion or an immersion if each φ_i is a submersion or an immersion.

For a preparation of following subsections, we show the following lemma.

Lemma 2.2. Let $f : M \to C$ be a smooth map from a manifold M to an orbifold C, and $\{U_i\}_{i \in I}$ the associated open covering. Let V be a vector bundle on C. Then we have the isomorphisms $f_j^*V|_{U_i \cap U_j} \simeq f_i^*V|_{U_i \cap U_j}$ that satisfies the cocycle condition.

Proof. Obvious from the definition of vector bundles on a Lie groupoid. □

Definition 2.3. Let $f : M \to C$ and V be as in the above lemma. We define the pullback f^*V as the gluing of each pullback f_i^*V.

Remark 2.4. The pullback of a Riemannian metric is defined in a similar way.
2.2 The boundary value problem of HE-metrics on trivial holomorphic bundles

Let \((M, g)\) be a compact connected Hermitian manifold of dimension \(n\) with boundary \(\partial M\) and \(\omega\) the fundamental form. Let \(\Lambda_\omega : \Omega^1_M \to \Omega^{n-2}_M\) be the contraction by \(\omega\). We assume that \(g\) is of \(L^p\)-class for some \(p \gg 2n\). We denote by \(\partial\) and \(\overline{\partial}\) the \((1, 0)\) and \((0, 1)\)-part of the exterior derivative.

Definition 2.5. Let \((V, \overline{\partial}_V)\) be a holomorphic bundle on \(M\). A Hermitian metric \(h\) on \((V, \overline{\partial}_V)\) is Hermite-Einstein of factor \(f \in L^1(M)\) if the Chern connection \(A\) of \((V, \overline{\partial}_V, h)\) satisfies the Hermite-Einstein equation \(\Lambda_\omega F(A) = \sqrt{-1}f \text{Id}_V\).

For a holomorphic line bundle \((L, \overline{\partial}_L)\) on \(M\), a Hermitian metric \(h\) on \(L\) is Hermite-Einstein of factor \(f \in L^1(M)\) if and only if we have \(\tilde{\Delta}(\log(h)) = -f\), where \(\tilde{\Delta} := \sqrt{-1}\Lambda_\omega \overline{\partial}\partial\) is the complex Laplacian.

Lemma 2.6. The operator \(S : L^p(M) \ni f \mapsto (\Delta f, f|_{\partial M}) \in L^p(M) \oplus L^p_{2-n/p}(\partial M)\) is an isomorphism.

Proof. Set the operator \(\hat{\Delta} := \partial^*\partial\), where \(\partial^*\partial\) is the adjoint of \(\partial\) with respect to \(g\). Then the operator \(\hat{S} : L^p(M) \ni f \mapsto (\hat{\Delta}(f), f|_{\partial M}) \in L^p(M) \oplus L^p_{2-n/p}(\partial M)\) is an isomorphism by the Lax-Milgram argument. The difference \(S - \hat{S}\) is a first-order differential operator with \(C^0\)-coefficient, and hence \(S\) is a Fredholm operator of index 0. Here we have \(\text{Ker}(S) = \{0\}\) by the maximum principle. Therefore \(S\) is an isomorphism.

Let \(V \simeq \mathbb{C}^r \times M\) be a trivial holomorphic bundle on \(M\). By following [5], we solve the Dirichlet problem of HE-metrics on \(V\).

Proposition 2.7. For any smooth Hermitian metric \(\tilde{h}\) on \(V|_{\partial M}\) and a real-valued function \(f \in L^p\), there exists a unique Hermitian metric \(h\) on \(V\) such that \(h|_{\partial M} = \tilde{h}\) is a Hermite-Einstein metric of factor \(f \in L^p(M)\) and satisfies \(h|_{\partial M} = \tilde{h}\).

Proof. By Lemma 2.6, we may assume \(f = 0\). We first show the uniqueness. Let \(h_1, h_2\) be Hermite-Einstein metrics on \(V\) of factor 0 such that \(h_1|_{\partial M} = h_2|_{\partial M} = \tilde{h}\). We denote by \(A_i\) the Chern connections of \((V, h_i)\) respectively. Set an endomorphism \(\eta\) of \(V\) to be \(\eta := (h_1)^{-1}h_2\). Then Hermite-Einstein condition induces \(\overline{\partial}(\eta) \wedge \eta^{-1}\partial A_1(\eta) = \overline{\partial}\partial A_1(\eta)\). Hence by taking the trace and contraction by \(\omega\), we obtain \(\Delta(\text{Tr}(\eta)) = -|\overline{\partial}_V \eta \cdot \eta^{-1/2}|^2 h_1 \leq 0\) because \(\eta\) is a Hermitian endomorphism with respect to \(h_1\). The same argument...
applies to η^{-1} and we also obtain $\tilde{\Delta}(\text{Tr}(\eta^{-1})) \leq 0$. Therefore $\tilde{\Delta}(\text{Tr}(\eta) + \text{Tr}(\eta^{-1})) \leq 0$, and then maximum principle shows $\max_M(\text{Tr}(\eta) + \text{Tr}(\eta^{-1})) \leq \max_{\partial M}(\text{Tr}(\eta) + \text{Tr}(\eta^{-1})) = 2r$. Since we have $(\text{Tr}(\eta) + \text{Tr}(\eta^{-1})) \geq 2r$ by some calculation, the equality $\text{Tr}(\eta) + \text{Tr}(\eta^{-1}) = 2r$ holds identically. Therefore we obtain $\eta = \text{Id}_V$, and which proves the uniqueness.

We prove the existence by the method of continuity. Since the space of smooth Hermitian metric on $V|_{\partial M}$ is contractible, there exists a smooth family $\{\hat{h}_t\}_{t \in [0,1]}$ of smooth Hermitian metrics on $V|_{\partial M}$ such that \hat{h}_0 is the trivial metric and \hat{h}_1 is the vacuum metric and particularly \hat{h}_1 exists in the case $\hat{h} = \hat{h}_1$. Obviously $0 \in I$ and particularly $I \neq \emptyset$. We prove that I is open. We fix an arbitrary $s \in I$. Let X_t be the space of L^p-valued Hermitian endomorphism on V with respect to h_s. Let Y be the space of $L^p_{2-4/p}$-valued Hermitian endomorphism on $V|_{\partial M}$ with respect to $h_s|_{\partial M}$. Let $O \subset X_0$ be a neighborhood of Id_V such that h_s is a Hermitian metric for any $e \in O$. We set an operator $\Xi : O \to X_0 \times Y$ to be $\Xi(e) := (\sqrt{-\Lambda}F(A_{h_s,e}), e|_{\partial M})$. Then we have $(d\Xi)|_{\text{Id}_V}(v) = (\tilde{\Delta} h_s(v), v|_{\partial M})$, where $\tilde{\Delta} h_s := \sqrt{-\Lambda} \partial \bar{\partial} A_{h_s}$. By the same argument in Lemma 2.6 $(d\Xi)|_{\text{Id}_V}$ is an isomorphism. Therefore the implicit function theorem shows that s is an interior point of I. We prove that I is closed. Let $\{h_i\}_{i \in \mathbb{N}}$ be a sequence of Hermitian-Einstein metrics on V such that $\{h_i|_{\partial M}\}$ converges to a smooth Hermitian metric h_∞ in the sense of $L^p_{2-4/p}$-norm. We introduce the Donaldson metric on Hermitian metric space. For Hermitian metrics H_1, H_2 on \mathbb{C}^n, we set $\sigma(H_1, H_2) := \text{Tr}(H_1^{-1} H_2) + \text{Tr}(H_2^{-1} H_1) - 2r$. Then σ is a complete metric on the space of Hermitian metrics and its topology coincides with the induced one from the linear space of skew-Hermitian forms on \mathbb{C}^n. We consider functions $d_{ij} := \sigma(h_i, h_j)$ on \mathcal{M}. By the same argument in the uniqueness part, we have $\tilde{\Delta}(d_{ij}) \leq 0$, and hence $\max_{\partial M}(d_{ij}) \leq \max_{\partial M}(d_{ij})$. Since $\{h_i|_{\partial M}\}$ converges to h_∞ in C^0-norm, there exists a C^0-limit h_∞ of the sequence $\{h_i\}$. By the elliptic regularity and the (vacuum) Hermitian-Einstein equation $\Lambda \partial \bar{\partial}(h^{-1}\partial h) = 0$, it is sufficient to prove the regularity of h_∞ that the C^1-norms of h_∞ are bounded. We assume that the norms $||h_i||_{C^1}$ are unbounded. Without loss of generality, we may assume $||h_i||_{C^1} \to \infty$. For $i \in \mathbb{N}$, we take $p_i \in M$ to satisfy $m_i := |d h_i|(p_i) \to \infty$. First we consider the case $\delta = \lim_{\epsilon} \text{dist}(p_i, \partial M) \cdot m_i > 0$. For $i \in \mathbb{N}$, we set K_i to be the rescaling of $h_i|_{B(p_i, \delta/m_i)}$ to $B(0, \delta) \subset \mathbb{C}^n$, where $B(p, \epsilon) := \{z \in \mathbb{C}^n \mid |z - p| \leq \epsilon\}$. Since $\{h_i\}$ converge to h_∞ in C^0-sense, $\{K_i\}$ converges to a constant metric K_∞ in C^0-sense. We have $||d K_i||_{C^0} = 1$ and each K_i is a Hermitian-Einstein metric on $B(0, \delta)$ with respect to each rescaled Hermitian metric. Hence $\{K_i\}$ converges to the constant metric

6
\[K_{\infty} \] in \(C^1 \)-sense. However, this contradict to the assumption \(|dK_i|(0) = |dh_i|(p)/m_i = 1\). Next we consider the case \(\lim_i \text{dist}(p_i, \partial M) \cdot m_i = 0 \). We use closed half balls instead of closed balls, and then a similar argument induces a contradiction. Therefore the \(C^1 \)-norms of \(h_i \) are bounded and this completes the proof. \[\square \]

2.3 3-dimensional Sasakian manifolds

By following [3], we recall the notion of Sasakian manifolds.

Definition 2.8. Let \((X, g)\) be a \(2n + 1 \)-dimensional Riemannian manifold. If there exists a compatible \(\mathbb{R}_+ \)-invariant complex structure \(J \) on \((\mathbb{R}_+ \times X, dr^2 + r^2 g)\) such that \((\mathbb{R}_+ \times X, J, dr^2 + r^2 g)\) is Kähler, then the tuple \((X, g, J)\) is called a Sasakian manifold. For a Sasakian manifold \((X, g, J)\), the Killing vector field \(\xi := -J(\partial_r)|_{\{1\} \times X} \) on \(X \) is called the Reeb vector field on \((X, g, J)\).

Let \((X, g, J)\) be a Sasakian manifold. If any orbits of the Reeb vector field of \((X, g, J)\) is compact, then \((X, g, J)\) is called a quasi-regular Sasakian manifold. For a quasi-regular Sasakian manifold \((X, g, J)\), the Reeb vector field determines an almost free \(S^1 \)-action on \(X \). In particular, \(X/S^1 = (\mathbb{R}_+ \times X)/\mathbb{C}^* \) is Morita-equivalent to a complex orbifold. For a compact 3-dimensional Sasakian manifold, we have the following result in [3].

Theorem 2.9. Any compact 3-dimensional Sasakian manifolds are quasi-regular.

2.4 The Mini-holomorphic Structure

Let \(X \) be a \(2n + 1 \) dimensional manifold.

Definition 2.10. Let \(\partial_t \) be a nowhere vanishing vector field on \(X \). Let \(\alpha \in \Omega_X^1 \) be a \(\partial_t \)-invariant 1-form such that \(\langle \alpha, \partial_t \rangle = 1 \). Let \(\pi : X \to Y \) be a \(\partial_t \)-invariant submersion to an \(n \)-dimensional complex orbifold \(Y \). For a local vector field \(\nu \) on \(Y_0 \), we will denote by \(\tilde{\nu} \) the lift of \(\nu \) by the isomorphism \(\text{Ker}(\alpha) \cong \pi^*TY \).

- The tuple \((\partial_t, \alpha, Y, \pi)\) is called an almost mini-holomorphic structure on \(X \).

- We define \(\Omega_X^{0,1} \) as a subbundle of \(\Omega_X^1 \) spanned by \(\alpha \).

We define \(\Omega_Y^{0,1} := \pi^* \Omega_Y^{0,1} \oplus \varepsilon \alpha \) and \(\Omega_X^{0,i} := \bigwedge^i \Omega_X^{0,1} \), where \(\varepsilon \alpha \) means a subbundle of \(\Omega_X^{1,\mathbb{C}} \) spanned by \(\alpha \).
An almost mini-holomorphic structure \((\partial_t, \alpha, Y, \pi)\) is called a mini-holomorphic structure on \(X\) if we have \((d\alpha)^{0,2} = 0\), where \((d\alpha)^{0,2}\) is the \(\Omega^0_{X,C} = \Omega^0_X \oplus (\Omega^0_X \otimes \pi^*\Omega^1_Y) \oplus \pi^*\Omega^2_Y\) component of \(d\alpha\) with respect to the decomposition \(\Omega^2_X, C = \Omega^0_X \oplus (\Omega^0_X \otimes \pi^*\Omega^1_Y) \oplus \pi^*\Omega^2_Y\).

We define a differential operator \(\partial_X : \Omega^0_{X,0} \to \Omega^0_{X,1}\) to be \(\partial_X(f) := \partial_t(f)\alpha + \sum_i \overline{\partial} z_i(f)\pi^*(d\overline{z}_i)\), where \((z^i)\) is a holomorphic local chart on \(Y_0\). Moreover, we extend \(\partial_X\) to be an operator from \(\Omega^0_{X,i}\) to \(\Omega^0_{X,i+1}\) by a usual way.

If a function \(f\) locally defined on \(X\) satisfies \(\partial_X(f) = 0\), then \(f\) is said to be a mini-holomorphic function.

Remark 2.11.

If \(Y\) is a complex manifold and \(X = \mathbb{R}_t \times Y\) or \(S^1_t \times Y\), then there exists the trivial mini-holomorphic structure \((\partial_t, dt, Y, \pi)\). On the trivial mini-holomorphic structure, the notion of mini-holomorphic bundle as above defined agree with the one in [7].

For a mini-holomorphic structure \((\partial_t, \alpha, Y, \pi)\), we have \(\partial_X \circ \partial_X = 0\).

For a nonempty open subset \(U \subset X\), the tuple \(\left(\partial|_U, \alpha|_U, \pi(U), \pi|_U\right)\) is a mini-holomorphic structure on \(U\).

For example, Any principal \(S^1\)-bundle on a Riemann surface with a connection has a unique mini-holomorphic structure.

Let \((M, g_M)\) be a compact Sasakian 3-fold and \(\partial_t\) the Reeb vector field on \(M\). Let \(\Sigma\) be the orbifold Riemann surface obtained as the quotient of \(M\) by the \(S^1\)-action induced by \(\partial_t\), and \(\pi : M \to \Sigma\) the quotient map. Let \(\alpha \in \Gamma(M, (\pi^*\Omega^1_{\Sigma})^\perp)\) be the unique section that satisfies \(\langle \alpha, \partial_t \rangle = 1\), where \((\pi^*\Omega^1_{\Sigma})^\perp\) is the orthogonal complement bundle of \(\pi^*\Omega^1_{\Sigma}\) in \(\Omega^1_M\).

Proposition 2.12. The tuple \((\partial_t, \alpha, \Sigma, \pi)\) is a mini-holomorphic structure on \(M\).

Proof. Any conditions other than the \(\partial_t\)-invariance of \(\alpha\) is trivial, and \(\alpha\) is \(\partial_t\)-invariant because \(\text{rank}((\pi^*\Omega^1_{\Sigma})^\perp) = 1\).

Definition 2.13. Let \((\partial_t, \alpha, Y, \pi)\) be a mini-holomorphic structure on \(X\).

(i) Let \(V\) be a complex vector bundle on \(X\). A differential operator \(\overline{\partial}_V : \Omega^0_{X,i}(V) \to \Omega^0_{X,i+1}(V)\) is said to be a mini-holomorphic structure on \(V\) if the following conditions are satisfied:
• The Leibniz rule $\overline{\partial}_V(fs) = \overline{\partial}_X(f) \wedge s + f\overline{\partial}_V(s)$ holds for any $f \in C^\infty(X)$ and $s \in \Omega^0_X(V)$.

• The integrability condition $\overline{\partial}_V \circ \overline{\partial}_V = 0$ holds.

We call the pair $(V, \overline{\partial}_V)$ a mini-holomorphic bundle on X.

(ii) If a local section v on V satisfies $\overline{\partial}_V(v) = 0$, then we call v a mini-holomorphic section.

(iii) Let $(V_i, \overline{\partial}_{V_i})$ be a mini-holomorphic bundle on X for $i = 1, 2$. A homomorphism $\phi : V_1 \to V_2$ is mini-holomorphic if we have $\overline{\partial}_{V_2} \circ \phi = \phi \circ \overline{\partial}_{V_1}$. Moreover, if ϕ is an injective homomorphism of vector bundles, then V_1 is called a mini-holomorphic subbundle of V_2.

Let $(\partial_t, \alpha, Y, \pi)$ be a mini-holomorphic structure on X and $(V, \overline{\partial}_V)$ a mini-holomorphic bundle on X. Let $U \subset X$ be a sufficiently small open subset such that π can be lifted to $\pi_U : U \to Y_0$. Let $W \subset \pi_U(U)$ be an open subset. A smooth map $s : W \to X$ is called a section on W i.e., s satisfies $\pi_U \circ s = \text{Id}_W$. For a section $s : W \to X$, the pullback s^*V has a natural holomorphic structure $\overline{\partial}_{s^*V} : \Omega^0_0(s^*V) \to \Omega^0_1(s^*V)$ defined as follows:

$$\overline{\partial}_{s^*V}(v) := \overline{\partial}_V(\tilde{v})|_{s(W)}, \quad (v \in \Omega^0_0(s^*V)),$$

where \tilde{v} is the local section of V on a neighborhood of $s(W)$ that is obtained by the parallel transport of v with the differential equation $\langle \partial_t, \overline{\partial}_V(\tilde{v}) \rangle = 0$ along each integral curve of ∂_t.

We define the scattering map of a mini-holomorphic bundle in our context. Since the following arguments are local with respect to X and Y, we assume that Y is a domain of \mathbb{C}^n and $X = (-\varepsilon, \varepsilon)_t \times Y$. Let s_1, s_2 be a section on Y. We set the scattering map $\Psi_{s_1, s_2} : (s_1)^*V \simeq (s_2)^*V$ to be $\Psi_{s_1, s_2}(v) := \tilde{v}|_{s_2(Y)}$, where \tilde{v} is the parallel transport of v. The scattering map Ψ_{s_1, s_2} is obviously an isomorphism of differentiable vector bundle.

Proposition 2.14 ([4]). The scattering map Ψ_{s_1, s_2} is a holomorphic isomorphism.

Proof. Let v be a local holomorphic section of $(s_1)^*V$. By the integrability condition $\overline{\partial}_V \circ \overline{\partial}_V = 0$, the parallel transport \tilde{v} satisfies $\overline{\partial}_V(\tilde{v}) = 0$. Therefore $\Psi_{s_1, s_2}(v) = (s_2)^*(\tilde{v})$ is a holomorphic section of $(s_2)^*V$.

\qed
In the following part of this subsection, we assume \(\dim(X) = 3 \). We define the notion of algebraic Dirac-type singularities of mini-holomorphic bundle on \(X \). Similar in the above argument, we assume that \(Y \) is a neighborhood of \(p \in \mathbb{C} \) and \(X = (−\varepsilon, \varepsilon) \times Y \). Let \((V, \overline{\nabla}_V) \) be a mini-holomorphic bundle on \(X \setminus \{(0,p)\} \). Set sections \(s_1, s_2 : Y \to X \) as \(s_i(z) := ((−1)^i\varepsilon/2), z) \).

Definition 2.15.
- The point \((0,p)\) is an algebraic Dirac-type singularity of \((V, \overline{\nabla}_V)\) if the scattering map \(\Psi_{s_1, s_2} \) can be prolonged to the meromorphic isomorphism \((s_1)^*V \ast \pi(p) \simeq (s_2)^*V \ast \pi(p) \). Moreover, The algebraic Dirac-type singularity \((0,p)\) is of weight \(\vec{k} = (k_i) \in \mathbb{Z}^r \) if there exist holomorphic frames \(e_i = (e_{i,j}) \) of \((s_i)^*V \) \(i = 1, 2 \) such that we have \(\Psi_{s_1, s_2}(e_{1,j}) = z^{k_j}e_{2,j} \), where \(z \) is a holomorphic local chart on \(Y \) such that \(z(p) = 0 \).
- Let \(Z \subset X \) be a discrete subset. If each point \(p \in Z \) is an algebraic Dirac-type singularity of a mini-holomorphic bundle \((E, \overline{\nabla}_E)\) on \(X \setminus Z \), then we call \((E, \overline{\nabla}_E)\) a Dirac-type singular mini-holomorphic bundle on \((X, Z)\).

Remark 2.16. Since \(\mathbb{C}\{z\} \) is a PID, the weight of an algebraic Dirac-type singularity is unique up to permutations.

2.5 The Hopf fibration and Dirac-type HE-monopoles
2.5.1 The Hopf fibration
Let \(U \subset \mathbb{R}^3 \) be a neighborhood of \(0 \in \mathbb{R}^3 \) and \(g \) be a Riemannian metric on \(U \). We assume that the canonical coordinate of \(\mathbb{R}^3 \) is the normal coordinate of \(g \) at \(0 \in \mathbb{R}^3 \). Set the Hopf fibration \(p : \mathbb{R}^4 = \mathbb{C}^2 \to \mathbb{R}^3 = \mathbb{R} \times \mathbb{C} \) to be \(p(z_1, z_2) = (|z_1|^2 - |z_2|^2, 2z_1z_2) \), where we set \(z_i = x_i + \sqrt{-1}y_i \). We also set the \(S^1(= \mathbb{R}/2\pi\mathbb{Z}) \)-action on \(\mathbb{C}^2 \) to be \(\theta \cdot (z_1, z_2) := (e^{\sqrt{-1}\theta}z_1, e^{-\sqrt{-1}\theta}z_2) \). Then the restriction \(p : \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\} \) forms a principal \(S^1 \)-bundle.

Lemma 2.17. There exist a harmonic function \(f : U \setminus \{0\} \to \mathbb{R} \) with respect to the metric \(g \) and a 1-form \(\xi \) on \(p^{-1}(U) \) such that the following hold.
- The 1-form \(\omega := p^*f \cdot \xi \) is a connection of \(p : \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\} \), i.e. \(\omega \) is \(S^1 \)-invariant, and we have \(\omega(\partial_\theta) = 1 \). Here \(\partial_\theta \) is the generating vector field of the \(S^1 \)-action on \(\mathbb{R}^4 \setminus \{0\} \).
- We have \(d\omega = p^*(-\ast df) \).
We have the following estimates:
\[
\begin{align*}
 f &= 1/2r^3 + o(1) \\
 \xi &= 2(-y_1 dx_1 + x_1 dy_1 + y_2 dx_2 - x_2 dy_2) + O(r^2).
\end{align*}
\]

- The symmetric tensor \(g_4 = p^* f(p^* g + \xi^2) \) is a Riemannian metric of \(L^2_{5,\text{loc}} \)-class on \(p^{-1}(U) \), and we have an estimate \(|g_4 - 2g_4|_{Euc} = O(r^4) \). Here a function on \(p^{-1}(U) \) is of \(L^2_k,\text{loc} \)-class if every derivative of \(f \) up to order \(k \) has a finite \(L^2 \)-norm on any compact subset of \(p^{-1}(U) \).

Remark 2.18.
- If \(g = g_{\mathbb{R}^3} \), we can choose \(f = 1/2r^3 \) and \(\xi = 2(-y_1 dx_1 + x_1 dy_1 + y_2 dx_2 - x_2 dy_2) \). Then we have \(g_4 = 2g_{\mathbb{R}^4} \).
- By the Sobolev embedding theorem, the connection matrix of \(A_4 \) is of \(C^3 \)-class.

2.5.2 The Hopf fibration of mini-holomorphic manifolds

Let \(I = (-\varepsilon, \varepsilon) \subset \mathbb{R}_t \) and \(W \subset \mathbb{C}_z \) be neighborhoods of origins of \(\mathbb{R} \) and \(\mathbb{C} \) respectively. Set \(U := I \times W \), and take the projection \(\pi : U \to W \). Let \(g_W = \lambda dzd\bar{z} \) be the Kähler metric on \(W \) that satisfies \(\lambda(0) = 1 \). Take an \(\mathbb{R}_t \)-invariant 1-form \(\alpha = dt + \alpha_x dx + \alpha_y dy \in \Omega^1_U \) satisfying \(\alpha_x(0) = \alpha_y(0) = 0 \). Set \(g_U := \alpha^2 + \pi^* g_W \). The tuple \((\partial_t, \alpha, W, \pi) \) forms a mini-holomorphic structure on \(U \).

Take a normal coordinate \((x^i) \) at \((0, 0) \) on \(U \) satisfying \(dt|_0 = dx^1|_0 \) and \(dz|_0 = (dx^2 + \sqrt{-1} dx^3)|_0 \). Let \(U_4 \subset \mathbb{R}^4 \) be a sufficiently small neighborhood of \(0 \in \mathbb{R}^4 \) and \(p : U_4 \to U \) the Hopf fibration with respect to the coordinate \((x^i) \). We take a harmonic function \(f \) on \(U \setminus \{0\} \) and a 1-form \(\xi \) on \(U_4 \) as in Lemma 2.17. Set an \(L^2_{5,\text{loc}} \)-metric \(g_4 := p^* (p^* g_U + \xi^2) \) on \(U_4 \). Set an almost complex structure \(J \in \Gamma(U_4, \text{End}(TU_4)) \simeq \Gamma(U_4 \setminus \{0\}, \text{End}(\Omega^1_{U_4})) \) to be
\[
\begin{align*}
 J(-\xi) &:= -p^* \alpha \\
 J(p^* dx) &:= -p^* dy.
\end{align*}
\]

Lemma 2.19. The almost complex structure \(J \) is integrable and of \(L^p_{2,\text{loc}} \)-class on \(U_4 \) for any \(p \in [1, \infty) \).

Proof. We can check vanishing of the Nijenhuis tensor of \(J \) by an easy calculation, and hence \(J \) is integrable. Take a 1-form \(\xi_0 = 2(-y_1 dx_1 + x_1 dy_1 + y_2 dx_2 - x_2 dy_2) \) and
\begin{align*}
y_2dx_2 - x_2dy_2\end{align*}
and set an almost complex structure \(J_0 \) on \(U_4 \) to be
\[
\begin{cases}
J(-\xi_0) := -p^*dx^1 \\
J(p^*dx^2) := -p^*dx^3.
\end{cases}
\]

Then \(J_0 \) agrees with the canonical complex structure on \(\mathbb{R}^4 \). Hence \(J_0 \) is of \(C^\infty \)-class on \(U_4 \). Then by some calculation the difference \(J_0 - J \) is of \(L^p_{2,\text{loc}} \)-class for any \(p \in [1, \infty) \), which completes the proof. \(\square \)

By the result in [6], we obtain the following corollary.

Corollary 2.20. There exists a holomorphic coordinate \((w_1, w_2)\) on \((U_4, J)\) such that \(\theta \cdot w_1 = e^{\sqrt{-1}\theta}w_1 \) and \(\theta \cdot w_2 = e^{-\sqrt{-1}\theta}w_2 \) for any \(\theta \in S^1 \), and \(w_1 \) and \(w_2 \) are of \(L^p_{3,\text{loc}} \)-class for any \(p \in [1, \infty) \). Moreover, we have \(p^*z = w_1w_2 \).

Proof. Since the \(S^1 \)-weight of \(\Omega^1_{C^2} \) is \((1,1)\). Hence we can take a holomorphic local chart \(w_1, w_2 \) that \(\theta \cdot w_1 = e^{\sqrt{-1}\theta}w_1 \) and \(\theta \cdot w_2 = e^{-\sqrt{-1}\theta}w_2 \) for any \(\theta \in S^1 \). Since \(p^*z \) is a holomorphic function and \(\eta^1 \)-invariant and of order 2 at origin, we may assume \(p^*z = w_1 \cdot w_2 \). \(\square \)

Set \(U_+ := U \setminus ((-\varepsilon, 0) \times \{0\}) \) and \(U_- := U \setminus ([0, \varepsilon) \times \{0\}) \). For Proposition 2.23, we prepare the following lemma.

Lemma 2.21. We have \(\text{Zero}(w_1) = p^*((-\varepsilon, 0) \times \{0\}) \) and \(\text{Zero}(w_2) = p^*([0, \varepsilon) \times \{0\}) \).

Proof. We have \(p^*((-\varepsilon, \varepsilon) \times \{0\}) = \text{Zero}(p^*z) = \text{Zero}(w_1) \cup \text{Zero}(w_2) \) because \(p^*z = w_1w_2 \). Hence \(p^*((-\varepsilon, 0) \times \{0\} \cup [0, \varepsilon) \times \{0\}) = (\text{Zero}(w_1) \setminus \{(0,0)\}) \cup (\text{Zero}(w_2) \setminus \{(0,0)\}) \). Since the image of a connected space by a continuous map is connected, we obtain \(\text{Zero}(w_1) = p^*((-\varepsilon, 0) \times \{0\}) \) and \(\text{Zero}(w_2) = p^*([0, \varepsilon) \times \{0\}) \), or \(\text{Zero}(w_1) = p^*((0, \varepsilon) \times \{0\}) \) and \(\text{Zero}(w_2) = p^*((-\varepsilon, 0) \times \{0\}) \). We assume the latter one. Let \(L \) be an \(S^1 \)-equivariant line bundle on \(U_4 \) such that the weight of \(L|_{0} \) is 1. Let \(b \) be a frame of \(L \) such that \(\theta \cdot b = e^{\sqrt{-1}\theta}b \). We denote by \(\tilde{L} \) the quotient of \(L|_{U_4\setminus\{0\}} \). On one hand, for the canonical coordinate \(z_1, z_2 \) on \(\mathbb{C}^2 \), the descent of the sections \((z_1)^{-1} \cdot b \) on \(U_4 \setminus \text{Zero}(z_1) \) and \(z_2 \cdot b \) on \(U_4 \setminus \text{Zero}(z_2) \) give frames of \(\tilde{L} \) on \(U_+ \) and \(U_- \) respectively. By using this frame, the degree of \(\tilde{L} \) is calculated as 1. On the other hand, the descent of the frame \((w_1)^{-1} \cdot b \) on \(U_4 \setminus \text{Zero}(w_1) \) and \(w_2 \cdot b \) on \(U_4 \setminus \text{Zero}(w_2) \) also gives frames of \(\tilde{L} \) on \(U_- \) and \(U_+ \) respectively. Then the degree of \(\tilde{L} \) is calculated as \(-1 \), which is a contradiction. Therefore we obtain \(\text{Zero}(w_1) = p^*((-\varepsilon, 0) \times \{0\}) \), \(\text{Zero}(w_2) = p^*([0, \varepsilon) \times \{0\}) \). \(\square \)

Remark 2.22.
• If $p > 4$, we have $L_i^p \subset C^{i-1,(p-4)/p}$.

• The tuple (U_4, J, g_4) is not a Kähler manifold in general.

We mention the lift of Dirac-type singular mini-holomorphic bundles by the Hopf fibration. Let $(E, \overline{\partial} E)$ be a Dirac-type singular mini-holomorphic bundle on $(U, \{(0,0)\})$ of weight $\vec{k} = (k_i) \in \mathbb{Z}^r$. We set a holomorphic structure $\overline{\partial} E_4 : \Omega^{0,0}(E_4) \to \Omega^{0,1}(E_4)$ on $E_4 := p^*E$ as follows:

$$\overline{\partial} E_4(p^*v) := (p^*\overline{\partial} E_4(v))^{0,1},$$

where v is a local section of E. Take mini-holomorphic frames $e_{\pm} = (e_{\pm,i})$ of E on U_\pm such that we have $e_{+,i} = z^{k_i} \cdot e_{-,i}$.

By Lemma 2.21 we get a frame $e_4 = (e_{4,i})$ of E_4 on $U_4 \setminus \{(0,0)\}$ given as follows:

$$e_{4,i} = \begin{cases} w_1^{k_i} \cdot p^*(e_{+,i}) & (w_1 \neq 0) \\
 w_2^{-k_i} \cdot p^*(e_{-,i}) & (w_2 \neq 0). \end{cases}$$

We extend E_4 over U_4 by this frame. Then the weight of $E_4|_0$ is $\vec{k} = (k_i) \in \mathbb{Z}^r$ because $\theta \cdot e_{4,i} = e^{\sqrt{-1}k_i} \cdot e_{4,i}$. Summarizing the above argument, we obtain the following proposition.

Proposition 2.23. For the Dirac-type singular mini-holomorphic bundle $(E, \overline{\partial} E)$ of weight $\vec{k} \in \mathbb{Z}^r$ and the mini-holomorphic frames e_{\pm} on U_\pm, the lift $E_4 := p^*E$ has the natural S^1-equivariant prolongation over U_4 and the S^1-weight of $E_4|_0$ is \vec{k}.

For the proof of Theorem 3.7 we prove the following lemma.

Lemma 2.24. Let $(E, \overline{\partial} E)$ be a Dirac-type singular mini-holomorphic bundle on $(U, \{(0,0)\})$ of rank r and $(F, \overline{\partial} F)$ be a mini-holomorphic subbundle of $(E, \overline{\partial} E)$ of rank r'. Then the lift F_4 of F in Proposition 2.23 is a holomorphic subbundle of the lift E_4 of E.

Proof. Let $e = (e_{\pm,i})$ and $f_{\pm} = (f_{\pm,j})$ be the mini-holomorphic frames of E and F on U_\pm respectively such that there exist $\vec{k} = (k_i) \in \mathbb{Z}^r$ and $\vec{k}' = (k'_j) \in \mathbb{Z}^{r'}$ such that $e_{+,i} = \sum_i z^{k_i} \cdot e_{-,i}$ and $f_{+,j} = z^{k'_j} \cdot f_{-,j}$ for any i, j. By shrinking U if necessary, we may assume that for any $j \in \{1, \ldots, r'\}$ there exist mini-holomorphic functions $(a^j_i)_{i=1}^{\vec{k}}$ on U_+ such that $f_{j,+} = a^j_i \cdot e_{i,+}$. By the definition of mini-holomorphic functions, a^j_i can be prolonged to whole U uniquely. Since we have $f_{j,-} = \sum_i a^j_i z^{k_i-k'_j} e_{-,i}$,
we obtain \(a_j^i = 0 \) unless \(k_i = k_j^i \). Therefore we obtain \(f_{j,\pm} = \sum_i a_j^i e_{\pm, i} \).

Let \(e_4 = (e_4, i) \) and \(f_4 = (f_4, j) \) be the holomorphic flames of \(E_4 \) and \(F_4 \) that is used in construction of \(E_4 \) and \(F_4 \) respectively. Then we have \(f_{4, j} = \sum_i p^*(a_j^i) \cdot e_{4, i} \).

Let \(e_4 \) and \(f_4 \) be the holomorphic flames of \(E_4 \) and \(F_4 \) respectively. Then we have \(f_{4, j} = \sum_i p^*(a_j^i) \cdot e_{4, i} \).

Since \(F_4|_{U_4}\{ (0, 0) \} \) is a subbundle of \(E_4|_{U_4}\{ (0, 0) \} \), it suffices to show \(\text{rank}(a_j^i(0, 0)) = r' \).

If we have \(\text{rank}(a_j^i(0, 0)) < r' \), then we have \(\text{rank}(a_j^i(-\varepsilon, 0)) = \text{rank}(a_j^i(0, 0)) < r' \) by the definition of mini-holomorphic functions. However, it contradicts to the assumption that \(f_- \) is a frame of \(F|_{U_-} \).

2.5.3 HE-monopoles and underlying mini-holomorphic structures

Let \(X \) be an oriented connected 3-fold. Let \((\partial_t, \alpha, \Sigma, \pi)\) be a mini-holomorphic structure on \(X \). Let \(g_\Sigma \) be a Kähler metric on \(\Sigma \) and \(\omega_\Sigma \) the Kähler form of \((\Sigma, g_\Sigma)\). Set \(g_X := \alpha^2 + \pi^* g_\Sigma \). We assume that \(\alpha \wedge \pi^* \omega_\Sigma \) is positive-oriented.

Definition 2.25.

(i) Let \((V, h)\) be a Hermitian vector bundle with a unitary connection \(A \) on \(X \). Let \(\Phi \) be a skew-Hermitian section of \(\text{End}(V) \). The tuple \((V, h, A, \Phi)\) is said to be a HE-monopole of degree \(c \in \mathbb{R} \) on \(X \) if it satisfies the Hermite-Einstein-Bogomolny equation \(F(A) = \pm \nabla_A(\Phi) + \sqrt{-1} c \cdot (\pi^* \omega_\Sigma) \text{Id}_V \).

(ii) Let \(Z \subset X \) be a discrete subset. Let \((V, h, A, \Phi)\) be a HE-monopole of rank \(r \in \mathbb{N} \) on \(X \setminus Z \). A point \(p \in Z \) is called a Dirac-type singularity of the monopole \((V, h, A, \Phi)\) with weight \(\vec{k}_p = (k_{p, i}) \in \mathbb{Z}^r \) if the following holds.

- There exists a small neighborhood \(B \) of \(p \) such that \((V, h)|_{B \setminus \{p\}}\) is decomposed into a sum of Hermitian line bundles \(\bigoplus_{i=1}^r F_{p, i} \) with \(\deg(F_{p, i}) = \int_{\partial B} c_1(F_{p, i}) = k_{p, i} \).
- In the above decomposition, we have the following estimates,
 \[
 \Phi = \frac{\sqrt{-1}}{2R_p} \sum_{i=1}^r k_{p, i} \cdot Id_{F_{p, i}} + O(1) \\
 \nabla_A(R_p \Phi) = O(1),
 \]

where \(R_p \) is the distance from \(p \).

For a HE-monopole \((V, h, A, \Phi)\) on \(X \setminus Z \), if each point \(p \in Z \) is a Dirac-type singularity, then we call \((V, h, A, \Phi)\) a Dirac-type singular monopole on \((X, Z)\).
In [9], Pauly proved a characterization of Dirac-type singular monopoles using the Hopf fibration, and it remains valid for HE-monopoles.

Theorem 2.26. Let \(U \subset \mathbb{R}_t \times \mathbb{C}_z \) be a neighborhood of \((0, 0)\) and \((\partial_t, \alpha, W, \pi : U \to W)\) a mini-holomorphic structure on \(U \). Let \((V, h, A, \Phi)\) be a HE-monopole on \(U \setminus \{(0, 0)\}\) of degree \(c \in \mathbb{R} \).

- The tuple \((V_4, h_4, A_4) := (p^* V, p^* h, p^* A - \xi \otimes p^* \Phi)\) is a Hermitian holomorphic bundle that satisfies the Hermite-Einstein condition of factor \(c/p^* f \).

- The point \((0, 0)\) is a Dirac-type singularity of the HE-monopole \((V, h, A, \Phi)\) if and only if the tuple \((V_4, h_4, A_4)\) can be prolonged as \(S^1\)-invariant Hermitian holomorphic bundle over \(U_4 \). Moreover, the weight of \((V, h, A, \Phi)\) at \((0, 0)\) agrees with the \(S^1\)-weight of \(V_4 |_{0} \).

Remark 2.27. We have \((p^* f)^{-1} \in L^p_{1,\text{loc}}(U_4)\) for any \(p \in [1, \infty) \).

Proposition 2.28. A HE-monopole \((V, h, A, \Phi)\) on \(X\) has a natural mini-holomorphic structure \(\partial V(v) := \nabla^0_A(v) - \sqrt{-1} \Phi(v) \alpha\).

Proof. By a direct calculation. \[\square \]

Let \((E, \overline{\partial}_E)\) be a mini-holomorphic bundle on \(X\), and \(h\) a Hermitian metric on \(E\). As an analogue of the Chern connection, there uniquely exist a connection \(A_h\) and a skew-Hermitian endomorphism \(\Phi_h\) on \(E\). We call \(A_h\) and \(\Phi_h\) the Charbonneau-Hurtubise (or shortly CH) connection and endomorphism. If the tuple \((V, h, A_h \Phi_h)\) is a monopole on \(X\), we call \(h\) a Bogomolny-Hermite-Einstein (or shortly BHE) metric on \((V, \overline{\partial}_V)\).

By following [4], we mention the relation between Dirac-type singular monopole and mini-holomorphic bundles by following [4]. We assume that \(Y\) is a neighborhood of \(0 \in \mathbb{C}\) and \(X = [-\varepsilon, \varepsilon]_t \times Y\). Let \((V, h, A, \Phi)\) be a HE-monopole on \(X \setminus \{(0, 0)\}\) and \((V, \overline{\partial}_V)\) the underlying mini-holomorphic bundle. We denote by \(\tilde{k} \in \mathbb{Z}^r\) the weight of \((V, h, A, \Phi)\) at \((0, 0)\). Take sections \(s_1, s_2\) on \(Y\) to be \(s_i(z) := ((-1)^i \varepsilon, z)\). Let \(\Psi_{s_1, s_2} : (s_1)^* V|_{Y \setminus \{0\}} \to (s_2)^* V|_{Y \setminus \{0\}}\) be the scattering map.

Proposition 2.29. The scattering map \(\Psi_{s_1, s_2}\) induces a meromorphic isomorphism \((s_1)^* V(\ast 0) \simeq (s_2)^* V(\ast 0)\). In particular, \((0, 0)\) is an algebraic Dirac-type singularity of \((V, \overline{\partial}_V)\). Moreover, the weight of the algebraic Dirac-type singularity of \((V, \overline{\partial}_V)\) at \((0, 0)\) is \(\tilde{k}\).
Proof. Let \((V_2, \overline{\partial}_2)\) be a Dirac-type singular mini-holomorphic bundle on \((U, \{(0, 0)\})\) such that the weight at \((0, 0)\) is \(\vec{k}\). Take a small neighborhood \(U_4 \subset \mathbb{C}^2\) of \((0, 0) \in \mathbb{C}^2\). Let \(V_{4,1}\) be the holomorphic bundle on \(U_4\) obtained by applying Theorem 2.26 to \((V, h, A, \Phi)\). Let \(V_{4,2}\) be the holomorphic bundle on \(U_4\) obtained by applying Proposition 2.23 to \((V_2, \overline{\partial}_2)\). Since the \(S^1\)-weights of \(V_{4,1}\) and \(V_{4,2}\) agree with each other, there exists an \(S^1\)-equivariant holomorphic isomorphism \(K_4 : V_{4,1} \to V_{4,2}\). Then the descent \(K : V \to V_2\) is a mini-holomorphic isomorphism. Therefore the weights of algebraic Dirac-type singularity of \((V, \overline{\partial}_V)\) and \((V_2, \overline{\partial}_2)\) agrees with each other, which is the assertion of the Proposition. \(\square\)

2.6 A generalization of the Characterization of Dirac-type singularities in \([7]\)

Let \(U = I \times W \subset \mathbb{R} \times \mathbb{C}_z, \alpha \in \Omega^1(U), g_2, g_U\) and \(J\) be as in subsection 2.5.2. We denote by \(r_1 : \mathbb{R} \to \mathbb{R}\) the distance function from the origin. Let \((V, h, A, \Phi)\) be a HE-monopole on \(U \setminus \{0\}\) of rank \(r > 0\) of factor \(c \in \mathbb{R}\). The following proposition is a slight generalization of Theorem 4.5 in \([7]\).

Proposition 2.30. If the estimate \(|\Phi| = O(r_3^{-1})\) is satisfied, then \((V, h, A, \Phi)\) is a Dirac-type monopole on \((U, \{(0, 0)\})\).

Proof. Take the Hopf-fibration \(p : U_4 \to U_4, f : U_4 \setminus \{0\} \to \mathbb{R}, \xi \in \Omega^1(U_4)\), and the holomorphic coordinate \(w_1, w_2\) on \((U_4, J)\) as in 2.5.2. We set \((V_4, h_4, A_4) := (p^*V, p^*h, p^*A + \xi \otimes p^*\Phi)\). Set \(U_+ := U_4 \setminus ((-\varepsilon, 0] \times \{0\})\) and \(U_- := U_4 \setminus ([0, \varepsilon] \times \{0\})\). Let \(\overline{\partial}_V\) be the mini-holomorphic structure of \((V, h, A, \Phi)\). By the assumption, there exist \(\vec{k} = (k_i)\) and mini-holomorphic frames \(e_{\pm}^{1}\) of \((V, \overline{\partial}_V)\) on \(U_\pm\) such that we have \(e_{\pm,i} = z^{k_i}e_{-\pm,i}\) and the estimate \(|e_{\pm,i}|_{h_4} = O(r_4^{-N})\) around the origin for some \(N > 1\). We take the frame \(e_4 = (e_{4,i})\) of \(V_4 := p^*V\) on \(U_4 \setminus \{0\}\) and prolong \(V_4\) over \(U_4\) as in Proposition 2.23. Then we obtain the estimate \(|e_{4,i}|_{h_4} = O(r_4^{-N'})\) for some \(N' > 0\). We prepare the following lemma.

Lemma 2.31. Let \(D \subset \mathbb{C}^2\) be a relatively compact neighborhood of \(0 \in \mathbb{C}^2\) with a smooth boundary \(\partial D\). Let \((E, h_0)\) be a Hermitian holomorphic vector bundle on \(D = D \cup \partial D\) of rank \(r\). Let \(h\) be a HE-metric of factor \(f \in L^p(U)\) on \(E|_{\{D\setminus\{0\}}\) for \(p > 8\). If the estimate \(|e|_h = O(r_4^{-N})\) holds for some positive number \(N > 0\) and for any local smooth section \(e\) of \(E\), then \(h\) can be prolonged as a HE-metric of \(E\) over whole \(D\).

By the above Lemma 2.31, \(h_4\) is at least of \(C^1\)-class. By Theorem 2.26 (ii), \((V, h, A, \Phi)\) is a Dirac-type singular monopole on \((U, \{0\})\). \(\square\)
(The proof of Lemma 2.31). We may assume \(f = 0 \). Since the statement is local, we also may assume that \(E \) is a trivial bundle. Moreover, we may assume that \(h_0 \) is a HE-metric and \(h_0|_{\partial D} = h|_{\partial D} \) by Proposition 2.7. We set the endomorphism \(k := h^{-1}_0 h \). Then log(Tr(\(k \))) satisfies log(Tr(\(k \))|_{\partial \Omega U'}) = log(\(r \)) and \(\tilde{\Delta}(\log \text{Tr}(k)) \leq 0 \) on \(D \setminus \{0\} \) by \[?, \text{Lemma 3.1}\]. We have an estimate |log Tr(\(k \))| = \(O(\log(\(r \)^4)) \), and hence we obtain \(\tilde{\Delta}(\log \text{Tr}(k)) \leq 0 \) on \(D \) as a distribution. Therefore log(Tr(k)) = log(\(r \)) by the maximum principle. Thus we obtain \(k = \text{Id}_E \), and particularly \(h \) is smooth over \(\overline{D} \).

3 The K-H correspondence of Dirac-type singular mini-hol. bundles on compact mini-hol. 3-folds.

3.1 The flat lift of mini-hol. 3-folds

Let \(X \) be a 3-fold with a mini-holomorphic structure \((\partial_t, \alpha, \Sigma, \pi)\). Let \(g_\Sigma \) be a Kähler metric on \(\Sigma \) and set \(g_X := \alpha^2 + \pi^* g_\Sigma \). We set \(M := S^1_\theta \times X \) and \(g_M := d\theta^2 + p^* g_X \), where \(p : M \to X \) is the projection. Let \(J \) be an almost holomorphic structure on \(M \) such that

\[
\begin{cases}
J(d\theta) = -\alpha \\
J(\pi^* a) = \pi^*(J_\Sigma(a)) (a \in \Omega^1_\Sigma),
\end{cases}
\]

where \(J_\Sigma \) is the complex structure on \(\Sigma \).

Proposition 3.1. The almost complex structure \(J \) is integrable and the tuple \((M, J, g_M)\) is a Gauduchon manifold.

Proof. The integrability is trivial from an easy calculation. For a local holomorphic coordinate \(z = x + \sqrt{-1} y \) on an open subset \(W \subset \Sigma_0 \), there exists a positive function \(\lambda \) on \(W \) such that \(g_\Sigma = \lambda(dx^2 + dy^2) \). Then the fundamental form \(\omega_M \) of \((M, J, g_M)\) can be written as \(\omega = d\theta \wedge \alpha + \lambda dx \wedge dy \). Hence we have \(\bar{\partial} \partial \omega_M = 0 \), and hence \((M, J, g_M)\) is a Gauduchon manifold.

Let \((V, \bar{\partial}_V)\) be a mini-holomorphic bundle on \(X \). The pullback \(\tilde{V} := p^* V \) has a natural holomorphic structure \(\tilde{\partial}_V \) determined as follows:

\[
\tilde{\partial}_V(p^* s) = (p^* \bar{\partial}_V(s))^{0,1},
\]

where \(s \) is a local section of \(V \). We call \((\tilde{V}, \tilde{\partial}_V)\) the flat lift of the mini-holomorphic bundle \((V, \bar{\partial}_V)\). For a Hermitian metric \(h \) on \(V \), the upstairs
connection \(p^*A_h + d\theta \otimes p^*\Phi_h \) is the Chern connection \(A_{p^*h} \). Moreover, \(h \) is a BHE-metric if and only if \(p^*h \) is a HE-metric.

Let \(Z \subset X \) be a finite subset. As a preparation to prove Theorem 3.7, we prove that \(M' = M \setminus (S^1 \times Z) \) satisfies the following assumptions in \([11]\).

(I) The volume of \(M' \) is finite.

(II) There exists an exhaustion function \(f \) of \(M' \) such that \(|\hat{\Delta}(f)| < M \) for some \(M > 0 \).

(III) There exist \(C > 0 \) and an increasing function \(a : [0, \infty) \to [0, \infty) \) with \(a(0) = 0 \) and \(a(x) = x \) for \(x > 1 \), such that if for a bounded positive function \(f \) on \(X \) satisfies \(\hat{\Delta}(f) \leq B \) then \(\sup f \leq C(B) a(\|f\|_{L^1}) \).

Furthermore, if \(\hat{\Delta}(f) \leq 0 \), then \(\hat{\Delta}(f) = 0 \).

Proposition 3.2. If \(X \) is compact, then the assumptions 1-3 in \([11]\) holds for \(M' := M \setminus (S^1 \times Z) \).

Proof. Obviously \(M' \) has finite volume, and hence the assumption (I) holds for \(M' \). We prove the assumption (II). By a direct calculation, there exists a vector field \(\beta \) on \(X \) such that we have \(\hat{\Delta}(p^*f) = 2p^*(\Delta(f) + \beta f) \) for any \(f \in \mathcal{C}^\infty(X) \). For each \(p \in Z \), there exists a smooth function \(\rho_p : B_2(p) \setminus \{p\} \to \mathbb{R} \) that satisfies

\[
\begin{align*}
(\Delta + \beta)(\rho_p) &= 0 \\
\rho_p(x) &= d(x, p)^{-1} + O(1).
\end{align*}
\]

Thus, by using a partition of unity, we obtain a non-negative smooth function \(\rho : X \setminus \{p\} \to \mathbb{R} \) satisfying

\[
\begin{align*}
|\hat{\Delta}(\rho)| &< R \\
\rho(x) &= d(x, p)^{-1} + O(1) \quad (x \in B_\varepsilon(p)).
\end{align*}
\]

Therefore the pullback \(\hat{\rho} := p^*\rho \) is an exhaustion function of \(M' \) and \(|\hat{\Delta}(\hat{\rho})| < R \), and this is the assertion of the assumption (II). We prove the assumption 3. Let \(O(Z) \) be the orbit of \(Z \) with respect to \(\partial_t \)-action. Since \(M \) is compact, \(S^1 \times O(Z) \) is a smooth hypersurface of \(M \). The assumption (III) holds for \(M \setminus (S^1 \times O(Z)) \) by the same argument in \([?\], Proposition 2.2\). Therefore \(M' \) also satisfies the assumption (III) because of the inclusions \(M \setminus (S^1 \times O(Z)) \subset M' \subset M \).
3.1.1 The stability condition for mini-hol. bundles on mini-hol. manifolds

Let X be a compact connected 3-fold with a mini-holomorphic structure $(\partial_t, \alpha, \Sigma, \pi)$ and $Z \subset X$ a finite subset. Let g_Σ be a Kähler metric on Σ and set $g_X := \alpha^2 + \pi^* g_\Sigma$. We set the orientation of X as $\text{vol}_X = \alpha \wedge \pi^* \text{vol}_\Sigma$.

Let $U_q \subset X$ be a sufficiently small neighborhood of $q \in Z$. Let $U_{q,4} \subset \mathbb{C}^2$ be a neighborhood of $(0,0) \in \mathbb{C}^2$ and $p_q : U_{q,4} \to U_q$ the Hopf-fibration by identifying U_q with a neighborhood of $0 \in \mathbb{R}^3$. We set the holomorphic structure on $U_{q,4}$ by Corollary 2.20. Let $(V, \overline{\partial}_V)$ be a Dirac-type singular mini-holomorphic bundle of rank $r > 0$ on (X, Z) such that each $q \in Z$ is of weight $\vec{k}_q = (k_{q,i}) \in \mathbb{Z}^r$. Let $V_{q,4}$ be the holomorphic bundle on $U_{q,4}$ obtained by applying Proposition 2.23 to $(V, \overline{\partial}_V)|_{U_q}$.

Definition 3.3. (i) A smooth Hermitian metric h on $(V, \overline{\partial}_V)$ is admissible if for any $q \in Z$ the pullback metric $p_q^* h$ can be prolonged to a Hermitian metric of $V_{q,4}$ of C^1-class.

(ii) We define the degree $\deg(V, \overline{\partial}_V)$ to be

$$\deg(V, \overline{\partial}_V) := \int_{X \setminus Z} \alpha \wedge c_1(A_h),$$

where h is an admissible Hermitian metric on $(V, \overline{\partial}_V)$.

(iii) We define the slope of $(V, \overline{\partial}_V)$ to be $\mu(V, \overline{\partial}_V) := \deg(V, \overline{\partial}_V)/\text{rank}(V)$.

(iv) A mini-holomorphic bundle $(V, \overline{\partial}_V)$ is said to be stable if $\mu(F, \overline{\partial}_F) < \mu(V, \overline{\partial}_V)$ holds for any proper mini-holomorphic subbundle $(F, \overline{\partial}_F)$ of $(V, \overline{\partial}_V)$. Semistability and polystability of mini-holomorphic bundles are also defined as in the usual case.

Remark 3.4. By Lemma 2.24, the restriction of an admissible metric h to a mini-holomorphic subbundle $(F, \overline{\partial}_F)$ of $(V, \overline{\partial}_V)$ is also admissible.

We show some properties of admissible Hermitian metrics and well-definedness of the degree $\deg(V, \overline{\partial}_V)$.

Proposition 3.5. Any admissible Hermitian metrics on $(V, \overline{\partial}_V)$ are mutually bounded. Conversely, a Hermitian metric \tilde{h} is admissible if the following conditions are satisfied:

- The metric \tilde{h} and an admissible metric h_0 are mutually bounded.
• For any \(q \in \mathbb{Z} \) there exists a neighborhood \(U \subset X \) of \(q \) such that the tuple \((V, h, A_h, \Phi_h)|_{U \setminus \{q\}} \) is a monopole on \(U \setminus \{q\} \).

Proof. By the definition of the admissible metrics, the former claim is trivial. We prove the Converse. Let \(p : U_4 \rightarrow U \) be the Hopf-fibration by identifying \(U \) as a neighborhood of \(0 \in \mathbb{R}^3 \). The pullback \(p^* \tilde{h} \) is a Hermite-Einstein metric on \((V_4, \partial V_4)|_{U \setminus \{q\}} \) and \(p^* \tilde{h} \) and \(p^* h_0 \) are mutually bounded. Therefore \(p^* \tilde{h} \) can be prolonged over \(U_4 \) by Lemma \ref{lem:2.31} and hence \((V_4, \tilde{h}, A_{\tilde{h}}, \Phi_{\tilde{h}})|_{U \setminus \{q\}} \) is a Dirac-type singular monopole on \((U, \{q\}) \) by Theorem \ref{thm:2.26}.

Proposition 3.6. The degree \(\deg(V, \overline{\partial} V) \) is independent of the choice of admissible connections.

Proof. Let \(h_1 \) and \(h_2 \) be admissible Hermitian metrics on \((V, \overline{\partial} V) \) and \((A_i, \Phi_i) \) the CH connections and endomorphisms for \(i = 1, 2 \). Fix \(q \in \mathbb{Z} \) and take a neighborhood \(U \subset X \) of \(q \). As the proof of the last proposition, we take the Hopf fibration \(p : U_4 \rightarrow U \) and the holomorphic bundle \((V_4, \overline{\partial} V_4) \) on \(U_4 \). Then \(p^* h_i \) are the Hermitian metrics on \(V_4 \) and the upstairs connections \(A_{4,i} = p^* A_i + \xi \otimes p^* \Phi_i \) are the Chern connections of \(p^* h_i \) respectively. Since \(A_{4,i} \) are at least \(C^0 \)-connections on \(V_4 \), we have \(A_{4,1} - A_{4,2} = O(1) \), and hence we obtain an estimate

\[
|A_1 - A_2|, |\Phi_1 - \Phi_2| = O(\text{dist}(\cdot, q)^{-1}).
\]

Set \(M := S^1_\theta \times X \). Let \(p_M : M \to X \) be the projection and \(\omega_M \) the fundamental form of \(M \). Set \(B_\varepsilon(Z) := \bigsqcup_{p \in Z} B_\varepsilon(p) \) for \(\varepsilon > 0 \). Then by using the flat lift \((\tilde{V}, \overline{\partial} \tilde{V}) \) of \((V, \overline{\partial} V) \) we can write

\[
\int_{X \setminus Z} \alpha \wedge (\text{Tr}(F(A_h_1)) - \text{Tr}(F(A_h_2)))
\]

\[
= (2\pi)^{-1} \int_{M \setminus (S^1 \times Z)} \omega_M \wedge \text{Tr} \left(F(A_{p_M}^* h_1) - F(A_{p_M}^* h_2) \right)
\]

\[
= (2\pi)^{-1} \lim_{\varepsilon \to +0} \int_{M \setminus (S^1 \times B_\varepsilon(Z))} \omega_M \wedge \text{Tr} \left(F(A_{p_M}^* h_1) - F(A_{p_M}^* h_2) \right).
\]
Set $\eta := \det(h_1 h_2^{-1})$. Then we have

$$(2\pi)^{-1} \int_{M \setminus (S^1 \times B(\varepsilon)(Z))} \omega_M \wedge \text{Tr} \left(F(A_{p_M}^* h_1) - F(A_{p_M}^* h_2) \right)$$

$$= (2\pi)^{-1} \int_{M \setminus (S^1 \times B(\varepsilon)(Z))} \omega_M \wedge \partial \partial p_M^* \eta$$

$$= (2\pi)^{-1} \int_{M \setminus (S^1 \times B(\varepsilon)(Z))} d\{ \partial (p_M^* \eta \cdot \omega_M) - p_M^* \eta (\partial \omega_M - \partial \omega_M) \}$$

$$= (2\pi)^{-1} \int_{S^1 \times \partial B(\varepsilon)(Z)} \partial (p_M^* \eta \cdot \omega_M) - p_M^* \eta (\partial \omega_M - \partial \omega_M)$$

$$= (2\pi)^{-1} \int_{S^1 \times \partial B(\varepsilon)(Z)} \{ \text{Tr}(A_{p_M} h_1 - A_{p_M} h_2) \wedge \omega_M + p_M^* \eta \cdot \partial \omega_M \} + O(\varepsilon^2)$$

$$= O(\varepsilon) \quad (\because (1)).$$

Taking the limit $\varepsilon \to +0$ we obtain

$$\int_{X \setminus Z} \alpha \wedge \text{Tr}(F(h_1)) = \int_{X \setminus Z} \alpha \wedge \text{Tr}(F(h_2)),$$

which proves the uniqueness.

Polystability of the underlying mini-holomorphic bundle of a Dirac-type HE-monopole easily follows from the Gauss-Codazzi formula as in the ordinary Kobayashi-Hitchin correspondence. We prove the converse.

Theorem 3.7. If $(V, \overline{\partial} V)$ is stable, then there exists an admissible BHE-metric h on $(V, \overline{\partial} V)$.

Proof. We take an admissible metric h_0 on $(V, \overline{\partial} V)$. For a Dirac type singular mini-holomorphic bundle $(E, \overline{\partial} E)$ on (X, Z) and an admissible Hermitian metric h_E on E, we have

$$\deg(E, \overline{\partial} E) = (2\pi)^{-1} \int_{M \setminus (S^1 \times Z)} \omega_M \wedge c_1(A_{p}^* h_E) = (2\pi)^{-1} \deg(\tilde{E}, p^* h_E),$$

where $(\tilde{E}, \overline{\partial} \tilde{E})$ is the flat lift of $(E, \overline{\partial} E)$. Therefore the slope inequality $\mu(\tilde{V}, p^* h_0) > \mu(\tilde{F}, p^* (h_0|_F))$ holds for any proper mini-holomorphic subbundle F of V. Since an S^1-invariant saturated subsheaf \mathcal{F} of \tilde{V} is an S^1-invariant holomorphic subbundle, there exists a mini-holomorphic subbundle $(F, \overline{\partial} F)$ such that it satisfies $\mathcal{F} = \tilde{F}$, where $(\tilde{F}, \overline{\partial} \tilde{F})$ is the flat lift of $(F, \overline{\partial} F)$. Hence the slope inequality $\mu(\tilde{V}, p^* h_0) > \mu(\mathcal{F}, p^* h_0|_F)$ also holds.

21
for any proper saturated S^1-invariant subsheaf F. By [11, Theorem 1.1] and Proposition 3.2 there exists a HE-metric \hat{h} of \hat{V} such that \hat{h} and p^*h_0 is mutually bounded. Let h be the descent of \hat{h}. Then h is BHE-metric and mutually bounded to h_0. Therefore h is an admissible BHE-metric by Proposition 3.5 which proves the theorem.

Remark 3.8. Indeed group actions are not considered in [11, Theorem 1.1], however the proof of Theorem 1.1 remains valid for the case that V has an action by a group G and satisfies the slope inequality for any G-invariant saturated subsheaves.

References

[1] David Baraglia and Pedram Hekmati, “A foliated Hitchin-Kobayashi correspondence”, [arXiv:1802.09699](https://arxiv.org/abs/1802.09699)

[2] Indranil Biswas and Jacques Hurtubise, “Monopoles on Sasakian Three-folds”, Communications in Mathematical Physics 339 (2015), no. 3, 1083–1100

[3] Charles Boyer and Krzysztof Galicki, “Sasakian geometry”, Oxford University Press (2008)

[4] Benoit Charbonneau and Jacques Hurtubise, “Spatially periodic instantons: Nahm transform and moduli.”, Communications in Mathematical Physics (2017), vol.365, 1-39

[5] Simon Donaldson, “Boundary value problems for Yang—Mills fields.”, Journal of Geometry and Physics (1992), vol.8, 89–122

[6] Hill and Taylor, “Integrability of Rough Almost Complex Structures.”, The Journal of Geometric Analysis (2003), vol. 13, 163–172

[7] Takuro Mochizuki and Masaki Yoshino, “Some Characterizations of Dirac Type Singularity of Monopoles.”, Communications in mathematical physics (2017), vol. 356, 613–625

[8] Ieke Moerdijk, “Orbifolds as Groupoids : an Introduction”, [arXiv:math/0203100](https://arxiv.org/abs/math/0203100)

[9] Marc Pauly, “Monopole moduli spaces for compact 3-manifolds”, Mathematische Annalen (1998), vol. 311, 125–146
[10] Karen Uhlenbeck and Shing-Tung Yau, “On the existence of Hermitian-
Yang-Mills connections in stable vector bundles.”, Communications on
Pure and Applied Mathematics 39.S1 (1986)

[11] Chuanjing Zhang, Pan Zhang, Xi Zhang, “Higgs bundles over non-
compact Gauduchon manifolds”, arXiv:1804.08994