Study of physico-chemical properties, detection and toxicity study of organic compounds from effluent of MIDC Thane and GIDC Ankleshwar industrial zone

Prashant Bhimrao Koli1 · Kailas Haribhau Kapadnis2 · Uday Gangadhar Deshpande1

Received: 14 May 2018 / Accepted: 2 October 2018 / Published online: 10 October 2018
© The Author(s) 2018

Abstract
The anthropological activities and huge industrialization to fulfil needs of mankind are making the remarkable and disastrous effect on aquatic life and responsible for severe pollution. The research deals with the identification and detection of organic pollutants present in industrial effluent by FTIR and GC–MS techniques. The samples were collected from paint, textile and dyes industries of MIDC Thane and GIDC Ankleshwar situated in western zone of India and recognized to be the most polluted cities in Asia. The samples were collected by standard operating procedure and then operated for extraction in ether so as to dissolve maximum organic compounds. These samples after extraction sealed in airtight glass vessel and used for FTIR and GC–MS analysis. The large number of organic compounds was detected by GC–MS analysis, whereas the presence of different functional groups of organic pollutants confirmed by FTIR analysis. The physico-chemical analysis was performed for effluent samples to know the different chemical factors associated with aqua samples. The statistical analysis of collected data was carried out; it comprises the mean, standard deviation, standard errors, Pearson correlation constants and regression analysis. The calculated results compared with WHO standards and water quality index were calculated. Large number of organic and aromatic compounds identified from GC–MS data and their toxicity is discussed.

Keywords Chemical toxicity · Effluent · Extraction · FTIR · GCMS · Physico-chemical · WQI

Introduction
The rapid urbanization and immense industrialization is making a mark influence on global environment, especially water, air and land pollution. The major pollution augmenting unit is a water pollution. In general, the water is considered to be polluted when its quality impaired by several anthropological activities (Birjandi et al. 2016). Some of the major sources responsible for water pollution are excess discharge of untreated sewage from various industries, waste water production due to anthropological activities released in the rivers, costal area (Sharma et al. 2017; Kumar and Krishna 2017). The major contribution for water pollution reported due to untreated effluent of drugs, dyes, chemicals, pharmaceutical industries and nuclear waste, which are found to be huge pestilent. As most of the major pathogenic diseases, hazards and dermatological problems, are recognized due to consumption of polluted water, it is whole onus of industries that the effluent must be amend before subjecting to the discharge in various water sources (Wang et al. 2017; Nirgude et al. 2013).
In undeveloped country like India, water pollution is a major issue because of polluted waste discharged in water streams may effect on economical budget if processed for sewage treatment. Hence, majority of industries released their sewage without further process and contributing to make the water contamination. However, most of the chemical industries take enough care while releasing the waste to the water streams, but this number is less and thus enhancing the pollution (Kumar et al. 2012). The pollutants present in water contain a large number of organic and inorganic contaminants which are unnecessary, producing pestilent and fatal effects on human health as well as aquatic life. These organic and inorganic pollutants as well as different pathogenic organism make the quality of water squalor. Most of the researchers are coalesce to defeat this problem of water pollution to serve the mankind better (Hladchenko et al. 2017).

The cities like Ankleshwar and Thane industrial found to be the most polluted according to the global pollution survey. Both the cities covered large industrial area and becoming a native place for most of the pharmaceutical, drugs, dyes, paint, textiles and API manufacturing industries (Mishra and Soni 2016; Mostafa 2015). These various drugs, dyes and paint industries synthesizes huge quantity of organic products every year. Most of the products manufactured by industries are valuable to the society and domestic use, but at the same time waste by-products and waste water which is left after synthesizing these products is a major environmental threat. This waste water indiscriminately flowed in the water streams lead to an inception of water pollution imperceptibly (Ouasif et al. 2013). Most of the researchers worked on this type of serious issue and published their view and facts related to waste water from these industrial zones (Patil and Shrivastava 2013).

The effluent samples were collected from paint, Textile and dye industries. The effluent discharged by them contains astonishing contaminants which ruffles quality of water. It is previously anticipated that these industries utilize large number of chemicals that are organic in nature. Even though the finished products synthesized by these industries are probably organic in nature. The inception of water pollution is started from these organic compounds; nevertheless, these industries discharged their waste after synthesis of their products, dyeing, processing, etc., in the river stream or coastal region (Ong et al. 2011). Textile and paint industries also utilize different colours, dyes and pigments which are organic in nature (CPCB 2016; Chandran 2016).

In the present research, an attempt has made to identify and detect the different organics that are probably present in effluent sources. Also, the physico-chemical analysis of collected water samples was examined. Finally, the results obtained from physico-chemical analysis subjected for water quality index comparison. The toxicity of organic compound detected by GC–MS has been discussed.

Materials and methods

Diethyl ether [(C₂H₅)₂O] AR grade purchased from Merck, India. All the effluent samples (7 samples) were collected from MIDC Thane, India and GIDC, Ankleshwar, India. Solvent extraction technique was used to separate the organic contaminants present in the collected effluent samples.

Sampling of effluents

Three samples were collected from dyes and textile industries, from waste water effluent outlet Ankleshwar GIDC (Gujarat Industrial Development Co-operation, Ankleshwar), and four samples were collected from various paint and dye industries of Thane MIDC (Maharashtra Industrial Development Co-operation, Thane). Collected samples were stored in glass bottles previously washed with acetone to remove all the organics and further with nitric acid as well as by using double-distilled water, to remove all the metallic and other inorganic content previously present. All the containers then dried and kept in hot air oven for three hours at 120 °C. All the extracted samples were preserved in refrigerator for further analysis (Patil and Shrivastava 2013; Mahajan and Shrivastava 2013). The labelling of the collected samples is shown in Table 1.

Sample preparation for FTIR analysis

All the samples were extracted in diethyl ether; the aqueous and organic layer was separated by use of solvent extraction technique in separating funnel. After extraction, organic layer was stored in airtight glass vessel and used for FTIR characterization (Ladwani et al. 2016).

Sample preparation for GC–MS analysis

Similar extraction procedure was followed for GC–MS analysis, i.e. solvent extraction technique (Helaleh et al. 2001). After extraction, the samples AG2, TM5 and TM6 were used for GC–MS analysis (Thermo Scientific TSQ 8000).

S. no.	Sample name	Sampling point	Sampling source
01	AG1	Ankleshwar GIDC	Dyes and textiles
02	AG2	Ankleshwar GIDC	Dyes and textiles
03	AG3	Ankleshwar GIDC	Dyes and textiles
04	TM4	Thane MIDC	Paint industry
05	TM5	Thane MIDC	Paint industry
06	TM6	Thane MIDC	Dyes
07	TM7	Thane MIDC	Dyes

Sampling locations and source of sampling
S. no.

01
02
03
04
05
06
07
Detection of organics by FTIR

The main purpose of FTIR study is to investigate the possible organics present in the collected effluents. All the samples were extracted in diethyl ether. The labelled samples (Table 1) were sent for FTIR studies to detect the possible functional groups that are present in collected effluent samples (Table 2).

Detection and identification of organics by GC–MS

The samples AG-2, TM-5 and TM-6 were extracted in diethyl ether. These extracted samples were analysed by GC–MS (Thermo Scientific TSQ 8000). The GC–MS data from which speculated organics obtain their corresponding spectrum are depicted in Table 3. The imperceptibly concentration is detected by GC–MS. The toxic, fatal and environmental hazards of selected compounds are discussed in results and discussion section (Srebrenkoska et al. 2014; Kotowska et al. 2012).

Table 2 Detected organic functional groups in collected wastewater sample

S. no.	Frequency in cm⁻¹	Interpretation (functional group)	Sample TM4	Frequency in cm⁻¹	Interpretation (functional group)
01	2974.23	Alkane C–H	01	2924 (2850–2975)	Alkane C–H
02	2862.36	C–H stretching freq in –CH₃	02	2854.65	C–H stretching freq in –CH₃
03	1975.11	C=O stretch in acid/aldehyde	03	1712.79	C=O stretch in acid/aldehyde
04	1450.47	C–H bending in –CH₂	04	1458.18	C–H bending in –CH₂
05	1381.03	C–O stretching in benzoate	05	1265.30	
06	1288.45	C–O–C stretch in ether (broad)	06	740.67	Monosubstituted aromatics
07	1122.57	C–N stretching in sec. amines	07	–	–
08	929.69	Ethylene	08	–	–
09	840.96	Tetra-substituted benzene	09	1064.71	C–O stretching freq in alcohols/ethers
10	752.24	Monosubstituted aromatic ring	10	740.67	Monosubstituted aromatics

Sample AG2	Frequency in cm⁻¹	Interpretation (functional group)	Sample TM5	Frequency in cm⁻¹	Interpretation (functional group)
01	2970.38	Alkane C–H	01	2924.09	Alkane C–H
02	2924.09		02	2862.63	C–H stretching freq in –CH₃
03	2862.36	C–H stretching freq in –CH₃	03	1728.22	C=O stretch in acid/aldehyde
04	1728.22	C=O stretch in acid/aldehyde	04	1597.06	C=C frequency for alkene
05	1450.47	C–H bending in –CH₂	05	1458.18	C–H bending in CH2
06	1373.32		06	1381.03	
07	1126.43	C–N stretching in sec. amines	07	1273.02	C–O–C stretch in ether (broad)
08	840	Tetra-substituted benzene	08	1126.43	C–N stretching in sec.amines
09	–	–	09	1064.71	C–O stretching freq in alcohols/ethers
10	–	–	10	740.67	Monosubstituted aromatics

Sample AG3	Frequency in cm⁻¹	Interpretation (functional group)	Sample TM6	Frequency in cm⁻¹	Interpretation (functional group)
01	3425.58	O–H stretch (broad)	01	2970.38	Alkane C–H
02	3001.24	Chelate H bridge (O–H)	02	2862.36	C–H stretching freq in –CH₃
03	2877.81	C–H bending in –CHO	03	1450.47	C–H bending in –CH₂
04	1458.18	O=S=O stretch	04	1373.32	
05	1350.17		05	1126.43	C–N stretching in sec.amines
06	1296.16	C–O–C stretch in ether (broad)	06	925.83	≡CH bending frequency
07	1249.87	C–H out of plane bending	07	840.96	Tetra-substituted benzene
08	1111.10	Anhydride C=O stretch	08	–	–
09	941.26	≡CH bending frequency	09	–	–
10	756.10	Monosubstituted aromatics	10	–	–
Table 3 Probable organic compounds detected from collected effluent samples AG2, TM5 and TM6 by GC–MS technique

S. no.	Name of compound	RT	Molecular formula	Molecular weight in g	CAS number
	Sample AG2				
01	4-Methyl-3-hexanol	4.83	C₇H₁₄O	116	615-29-2
02	2,3-Dimethyl-2-butanol	4.83	C₆H₁₄O	102	594-60-5
03	3-Heptanol	4.83	C₇H₁₆O	116	589-82-2
04	Hexadecane	11.49	C₁₆H₃₄	226	544-76-3
05	2,6,10-Trimethyl tetradecane	11.49	C₁₇H₃₆O₂	240	14905-56-7
06	Heptadecane	14.13	C₁₇H₃₆O₈	652	28474-90-0
07	n-Hexadecanoic acid	14.33	C₁₉H₃₈O₂	256	57-10-3
08	Palmitic acid anhydride	14.33	C₃₂H₆₂O₃	494	623-65-4
09	3-Ethyl-5-(2-ethylbutyl)-octadecane	14.38	C₂₉H₅₄O₂	366	55282-12-7
10	3,5-Dehydro-6-methoxy-pivalate-cholest-22-ene-21-ol	14.38	C₂₉H₅₂O₃	498	NA
11	2,6,10-Trimethyl tetradecane	14.38	C₁₇H₃₆O₂	240	14905-56-7
12	1-Monolinoleolylglycerol trimethylsilyl ether	19.50	C₂₂H₄₄O₄Si₂	470	54284-45-6
13	2,3-Bis(trimethylsilyl) oxypropyl ster,(-z,z,z)-9,12,15-octadecatrienoic acid	19.50	C₂₉H₅₄O₃	440	55521-22-7
14	25-(Trimethylsilyl) oxy-(3a, 5Z, 7E)-9, 10-secocholesta-5, 7, 10 (19)-tiene-1,3-diol	19.50	C₂₉H₅₂O₃Si	488	55759-94-9
15	Ethyl iso-allocholate	19.69	C₂₉H₅₂O₃	536	NA
16	(3a,5Z,7E)-9, 10-secocholesta-5, 7, 10 (19)-tiene-3, 24,25-triol	19.69	C₂₉H₅₂O₃	416	40013-87-4
17	3-Acetoxy-7,8-epoxylanostan-11-ol	19.69	C₃₃H₅₄O₃	502	NA
18	4-en-3-one-stigmaster	21.11	C₂₉H₄₄O₂	412	1058-61-3
19	Cypionate testosterone	21.11	C₂₉H₄₄O₃	412	58-20-8
20	4-en-3-one-cholest	21.11	C₂₉H₄₄O₃	384	601-57-0
	Sample TM5				
22	Nonane	4.69	C₉H₁₈SiO	128	111-84-2
23	Decane	4.69	C₁₀H₂₂	142	124-18-5
24	2,4-Dimethyl hexane	4.69	C₈H₁₈	114	589-43-5
25	1-Ethyl-3-methyl benzene	5.69	C₉H₁₂	120	620-14-6
26	1-Ethyl-2-methyl benzene	5.69	C₈H₁₂	120	611-14-3
27	1,2,4-Trimethyl benzene	5.69	C₉H₁₂	120	95-63-6
28	1,2,3-Trimethyl benzene	5.82	C₈H₁₂	120	526-73-8
29	3,5-Dimethyl octane	6.29	C₁₀H₂₂	142	15869-93-9
30	4,6-Dimethyl undecane	6.29	C₁₁H₂₈	184	17312-82-2
31	4-Methyl-decane	6.64	C₁₂H₂₄	156	2847-72-5
32	2-Ethylhexyl ester, trichloracetic acid	6.64	C₁₁H₂₈Cl₂O₂	275	16397-79-8
33	5-Ethyl-2-methyl heptane	6.64	C₁₂H₂₂	142	13475-78-0
34	Undecane	7.89	C₁₁H₂₄	156	1120-21-4
35	Dodecane	7.89	C₁₂H₂₆	170	112-40-3
36	4,5-Dimethyl nonane	7.89	C₁₂H₂₆	156	17302-23-7
37	(Z)-9,17-Octadecadienal	20.34	C₁₉H₃₆O₂	264	56554-35-9
38	7,11-Hexadecadienal	20.34	C₁₉H₃₆O₂	236	NA
39	12-Methyl-E,E-2,13-octadecadienal-1-ol	20.34	C₁₉H₃₆O₂	280	NA
	Sample TM6				
40	5-Methyl-3-hexanol	4.84	C₇H₁₆O	115	615-29-2
41	Phenol	5.43	C₆H₁₂O	94	108-95-2
42	p-Hydroxy phenyl phosphonic acid	5.43	C₆H₁₂O₃P	174	33795-18-5
43	Carbamic acid, phenyl ester	5.43	C₆H₁₂NO₂	137	622-46-8
44	2,6-Dimethyl quinoline	10.17	C₁₁H₁₄N	157	877-43-0
45	2,8-Dimethyl quinoline	10.17	C₁₁H₁₄N	157	1463-17-8
Table 3 (continued)

S. no.	Name of compound	RT	Molecular formula	Molecular weight in g	CAS number
46	4,8-Dimethyl quinoline	10.17	C₁₁H₁₁N	157	13362-80-6
47	7-Methoxy-2,2,4,8-tetramethyl tricyclo[5.3.1.0(4,11)] undecane	10.37	C₁₆H₂₈O	236	NA
48	2-Acetyl-3,3-dimethyl-2-(3-oxo-1-butanyl)-(E)-cyclopentanone	10.37	C₁₃H₁₈O₃	222	70412-49-6
49	3-(1,1-Dimethylthyl)-4-methoxy, phenol	10.37	C₁₃H₁₆O₂	180	88-32-4
50	2,6-bis(1,1-dimethylethyl)—2,5-cyclohexadiene-1,4-dione	10.44	C₁₆H₂₈O₂	220	719-22-2
51	2,5-di-tert-butyl-1,4-benzoquinone	10.44	C₁₆H₂₈O₂	220	2460-77-7
52	Furan-5-yl-1(5,6,7,8-tetrahydro-2,8,8-trimethyl-4H-cyclohepta, ethanone	10.44	C₁₆H₂₈O₂	220	71596-88-8
53	Butylated hydroxytoluene	10.76	C₁₅H₂₄O	220	128-37-0
54	4,6-di(1,1-dimethylethyl)-2-methyl-phenol	10.76	C₁₅H₂₄O	220	616-55-7
55	2,4,6-tris(1-methylethyl)-Phenol	10.76	C₁₅H₂₄O	220	2934-07-8
56	Heptadecane	11.48	C₁₇H₃₆	240	629-78-7

NA not applicable; CAS chemical abstracts service

Table 4 Physico-chemical properties of collected industrial effluent samples

Parameter	Unit (µmho/cm)	Electrical conductivity (µmho/cm)	Sulphate (mg/L)	Chloride (mg/L)	COD (mg/L O₂)	BOD (mg/L O₂)	TDS (mg/L)
AG1	8.2	398	91.60	262	1610	536	1590
AG2	7.8	402	82	300	1460	486	1620
AG3	7.7	500	76	387	1570	523	1480
TM4	8.5	398	93.50	281.50	1760	586	1805
TM5	7.5	402	86.42	310	1350	450	1745
TM6	7.4	500	72.83	418	1465	488	1654
TM7	7.2	530	80.00	497	1580	526	1970
Mean	7.26	447.14	83.19	350.78	1542.14	513.57	1694.85
S.D	0.95	40.1246	7.7233	85.76	131.58	43.68	160.61
S.E	0.36	15.16	2.92	32.42	49.73	16.51	60.70
WHO	6.5–9.5	1400	500	250	–	–	1000
US-EPA	6.5–8.5	250	250	250	–	–	500

SD standard deviation; SE standard error

Table 5 Pearson correlation coefficient (r) of different physico-chemical parameters for waste water effluent samples

Parameters	Correlation coefficient (r) of different parameters
pH	1
Electrical conductivity	–0.9514
Sulphates	0.81
Chlorides	–0.9758
COD	0.2916
BOD	0.2917
TDS	–0.2684
Pearson correlation coefficient (r) data of different parameters

Table 5.

Water quality index

Table 6.

Results and discussions

Physico-chemical properties

(a) **pH** The negative proton ions are universal species that decide the acidic and basic condition of aqua solution. The species strongly affect different properties, characteristics of water. The major reliable contribution made by the authentic institutes such as WHO, US-EPA to control important water parameters (Elango et al. 2017). The present investigation was compared against the standard data of these institutes. Here, the maximum value of protonic ions was shown by sample AG1, i.e. 8.2 (slightly alkaline, MIDC Thane), while the least value was shown by sample TM7, i.e. 5.76 (Acidic, GIDC Ankleshwar). All the samples comprise the given range prescribed by the standard data.

(b) **Electrical conductivity** Total dissolved salts are generally responsible for high values of electrical conductivity (Manikandan et al. 2015). Values of electrical conductivity were in the range of 398–530 μm/cm. The highest value was observed for sample TM7, probably due to the presence of dissolved inorganic salts in the collected sample. The electrical conductivity data pass the permissible limit prescribed by the WHO and US-EPA standards.

(c) **Sulphates** Probably sulphates are present in water streams due to utilization of sulphonates and sulphuric acid for various industrial processes such as tanning. Most of the time magnesium and calcium sulphates are responsible for permanent water hardness. The sulphates data obtained for all the effluent sample are listed in table 4. This data matches within the prescribed limit of WHO and US-EPA (Periyasamy and Rajan 2009).

(d) **Chlorides** Chloride ions originate probably from sewage, industrial effluent, several natural sources, in certain cases due to urban activities such as saline intrusion, de-icing salt process, etc. In all the collected samples, the chloride values were found in the range of 262–497 mg/L. The values of chloride ion found to be very high and beyond the decided level of WHO.

(e) **BOD** The biological oxygen demand is found to be higher in all the samples indicating the more percentage of bacterial content utilizing the oxygen, probably due to the presence of higher organics content in the sample.

(f) **COD** The higher values of COD are attributed to more carbon containing waste present in all the samples, because all the samples which are collected are from organic source (Brahmbhatt and Pandya 2015).

(g) **TDS** The total dissolved solids are the organic contaminants and inorganic insoluble, suspended particles, sulphates, phosphates, sodium chloride, etc., are present due to which the water quality is ruffled. The TDS value limited by authorized institutes is said to be 1000 mg/L, while all the samples have astonishing TDS values (Rawway et al. 2016).

Correlation coefficient

Correlation coefficient was calculated to know the relationship between two variables. The positive relationship is assumed when the value expected is 1; the strong negative relationship is expected when R has a value ~ 1. The net zero value indicates no relationship between two
variables. The correlation coefficient was calculated by using formula

\[
 r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}} \tag{1}
\]

The correlation coefficient values for selected variables depicted in Table 5 show good agreement of values for present variables (Saxena and Saxena 2015; Nagaraju et al. 2017). The correlation coefficient values are depicted in Table 5.

Water quality index

Water quality index is 100-point scale of water parameters considered for physico-chemical analysis. In the present discussion, five parameters are examined for water quality index. The water quality index was found to be very high for all the collected effluent samples; all the effluent samples are unsuitable for potable and other purposes due to high WQI. The standard water quality index report is shown in Table 7. The diagrammatic representation of calculated water quality index of all the collected effluent samples is summarized in Fig. 1.

Table 7 Water quality index report status

S. no.	Water quality index range	Quality of water
01	90–100	Unsuitable for potable purpose
02	70–89	Very poor quality water
03	50–70	Ruffled water quality
04	25–50	Good quality water
05	0–25	Excellent quality water

Toxicity of selected compounds detected by GC–MS in effluents

As the samples contain dissolved organics, these samples were analysed by GC–MS. The detected organics and their data obtained are as shown in Table 3. In this section, the toxicity of some selected organic compounds detected in GC–MS is discussed.

(a) **2-ethyl, hexyl ester trichloroacetic acid** The compound in association with water (drinking or effluent) produces complex by-products disinfectants which are found to raise the risk of colon, rectal and bladder cancer in human (Kumar and Pandit 2012) and adverse effects on reproduction.

(b) **3,5-dehydro-6-methoxy-pivalate-cholest-22-ene-21-ol** The compound was investigated for microbiological studies and showed toxic effects against the S. pyogenes organism that was found to be effective. This compound serves as an effective reagent to inhibit the growth of most of pathogenic and non-pathogenic microorganisms (Singariya et al. 2016).

(c) **4,6-di(1, 1-dimethylethyl)-2-methyl-phenol** This is one of the toxic compounds detected in cigarette mainstream smoke (CMS), and if this compound is found in water streams then its free radicals are responsible for cardiovascular disease, (Smith et al. 2002) occupational and environmental lung diseases. Substituted phenols with electron releasing molecules can frame conceivably poisonous phenoxyl free radicals, and those substituted phenols with electron pulling back impact apply their lethality for the most part through lipophilicity (Vallyathan et al. 1998).

(d) **Palmitic acid** The major threat of suffering from cardiovascular diseases as well as enhancement of LDL level in the bloodstream may cause due to feeding of palmitic acid anhydride according to WHO reports. Oxidation of fats in the body and energy utilization rates may alter due to palmitic acid (Borsheim et al. 2006).

(e) **Carbamic acid, phenyl ester** The assessment of accessible poisonous quality information for fish, aquatic invertebrates and amphibian plants is moderate.

(f) **3-(1,1-dimethylethyl)-4-methoxy, phenol** Most of the substituted phenol used as an antioxidant in food and fats, viz. BHA and BHA, is for preservation of food products (Davi and Gundi 1999). The toxicity of phenolic compounds can be explained by the substitution of this surface-active agent with new products, as polyethoxylated alcohols, with the substitution of the phenolic group, because of the problems correlated with toxicity accumulation and oestrogenic effects that this...
surfacyt induced in some animals and organisms. Regular monitoring of phenolic compounds is essential due to their toxicity and bioaccumulation effects in animal and vegetable organisms (Kumar and Pacha 2015).

(g) **Heptadecane** However, carcinogenic reports, reproductive toxicity and genotoxicity chronic reports are not available for heptadecane, but several subchronic cases are reported for this compound.

(h) **3-acetoxy-7,8-epoxyxylanostan-11-ol** The compound was investigated from plant extract of *Hamelia patens* using chloroform as extractor in the research work reported that 3-acetoxy-7,8-epoxyxylanostan-11-ol compound shows an antidepressant activity for animals (Surana and Wagh 2017).

(i) **4-en-3-one-stigmast** This compound was extracted from bark of *Anacardium occidentale* (cashew), reported that the 4-en-3-one-stigmast shows hypoglycaemic effects (lowering of blood sugar level) in healthy dogs (Alexander-Lindo et al. 2004).

(j) **2,3-bis(trimethylsilyloxy)propyl ester, (z,z,z)-9,12,15-octadecatrienoic acid** The extraction of *Diospyros Montana* (Roxb.) reported the presence of this compound which shows some phytochemical effects (Bodele and Shahare 2018).

Conclusions

All the samples collected from Ankleshwar GIDC and Thane MIDC from paint and dyes industries were analysed by various physico-chemical parameters. The samples were found to be heavily contaminated, and some parameters not comply with standards reported by WHO and US-EPA. All the tested parameters such as BOD, COD, chlorides, sulphates and TDS were found to be very higher for AG1, AG2, AG3, TM4, TM5, TM6 and TM7 samples. Except pH and electrical conductivity passes the limit for all effluent samples. The water quality index report for all the samples was found to be extreme and not within the range of WQI; hence, it can be suggested that effluent must be treated by concern industries before discharging them into the river stream or nearby costal region so that contaminated water may become decontaminated. The infrared spectrum of the samples showed the corresponding functional groups of possible organic compounds in the samples as depicted in Table 2. The most important parameter analysed was GC–MS studied for the detection of organic contaminants. A wide range of organics were detected by this technique as the data as reported in Table 3. The most fatal and harmful compounds that can be harmful to the humans health as well as hazardous to the aquatic life are described such as, 2-ethyl, hexyl ester trichloroacetic acid, 3, 5-dehydro-6-methoxy-pivalate-cholest-22-ene-21-ol, 4, 6-di(1, 1-dimethylethyl)-2-methyl-phenol, palmitic acid, carboxylic acid, phenyl ester, 3-(1, 1-dimethylethyl)-4-methoxy, phenol, heptadecane, 3-acetoxy-7,8-epoxyxylanostan-11-ol, 4-en-3-one-stigmast, 2,3-bis(trimethylsilyloxy)propyl ester, (z,z,z)-9,12,15-octadecatrienoic acid.

The large number of industries discharge harmful waste effluents into the water streams that should be monitored by the concern industries. There must be some strong regulations for discharging such a toxic chemical in the form of effluent. The industries such as paint, dyes, chemical, pharmaceutical and API should take initiative to minimize the pollution by taking government help for waste management such as construction of adequate sanitary landfills sites, catalytic activities to convert harmful chemicals into less harmful chemicals or compounds, photocatalysis, recycling of waste water, conduction of epidemiological study in the polluted area and asses the health survey on the water consumers, etc.

In the present research, we tried to investigate water-related properties, but main objects were to envisage the organic compound present in the effluent sources. We discussed the toxicity of some organic compounds from the GC-MS data (listed in Table 3). However, it is highly impossible to separate the individual organic compounds due to presence of large number compounds present in the water streams. Also, all the compounds detected by GC–MS are organic, and hence, their quantitative and qualitative separation is very complex task. Analysis of this type of effluent is very beneficial to the society and ecosystem. The detailed toxicity of all the listed compounds has been discussed in the results and discussion section.

Acknowledgement Authors are grateful to the Sophisticated Analytical Instrumentation facility (SAIF), Chandigarh, for providing GC–MS Facility and CIC, KTHM College, Nashik, for providing IR spectrums and Pratap College, Amalner, as well as L.V.H. College, Nashik, for providing necessary laboratory facilities.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alexander-Lindo RL, Morrison ES, Nair MG (2004) Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of *Anacardium occidentale* (cashew). Phytother Res 18(5):403–407

Birjandi N, Younesi H, Bahrani Far N (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and
