Synthesis and crystal structure of diaqua(1,4,8,11-tetraazacyclotetradecane)zinc(II) bis(hydrogen 4-phosphonatobiphenyl-4'-carboxylato)(1,4,8,11-tetraazacyclotetradecane)zinc(II)

Liudmyla V. Tsymbal,a Irina L. Andriichuk,a Vasile Lozan,b Sergiu Shova and Yaroslav D. Lampeka*

a*L. V. Pisarzhovskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 01028, Ukraine, bInstitute of Chemistry of MES, Academiei str. 3, Chisinau 2028, Republic of Moldova, and c‘Petru Poni’ Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Alleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania. *Correspondence e-mail: lampeka@adamant.net

In the asymmetric unit of the title compound, trans-diaqua(1,4,8,11-tetraazacyclotetradecane-κ^4^N^4^N^8^N^11)zinc(II) trans-bis(hydrogen 4-phosphonatobiphenyl-4'-carboxylato-κO)(1,4,8,11-tetraazacyclotetradecane-κ^4^N^4^N^8^N^11)-zinc(II), [Zn(C_{10}H_{24}N_{4})(H_{2}O)]\,[Zn(C_{13}H_{9}O_{5}P)_{2}(C_{10}H_{24}N_{4})], both Zn atoms lie on crystallographic inversion centres and the atoms of the macrocycle in the cation are disordered over two sets of sites. In both macrocyclic units, the metal ions possess a tetragonally elongated ZnN4O2 octahedral environment formed by the four secondary N atoms of the macrocyclic ligand in the equatorial plane and the two trans O atoms of the water molecules or anions in the axial positions, with the macrocyclic ligands adopting the most energetically favourable trans-III conformation. The average Zn—N bond lengths in both macrocyclic units do not differ significantly [2.112 (12) Å for the anion and 2.101 (3) Å for the cation] and are shorter than the average axial Zn—O bond lengths [2.189 (4) Å for phosphonate and 2.295 (4) Å for aqua ligands]. In the crystal, the complex cations and anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles, the O—H groups of coordinated water molecules and the P—O—H groups of the acids as proton donors, and the O atoms of the phosphonate and carboxylate groups as acceptors, resulting in the formation of layers lying parallel to the (110) plane.

1. Chemical context

Metal–organic frameworks (MOFs) – crystalline coordination polymers with permanent porosity – attract much current attention due to the possibilities of their applications in different areas, including gas storage, separation, sensing, catalysis, etc. (MacGillivray & Lukehart, 2014; Kaskel, 2016). Metal complexes of the tetraaza-macrocycles, in particular cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane, C_{10}H_{24}N_{4}, L), possessing high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985), are popular metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018). The overwhelming majority of these materials are built up using oligocarboxylates as the bridging units (Rao et al., 2004), though linkers with other coordinating groups, in particular oligophosphonates, are also used for the construction of MOFs (Gagnon et al., 2012). At the same time, hybrid bridging molecules containing both phosphonate and carboxylate functional groups have been
studied to a much lesser extent (see, for example, Heering et al., 2016b), though one can expect that the combination of different acidic donor groups in one ligand molecule could open new possibilities for the creation of MOFs with specific chemical and structural features different from those inherent for MOFs formed by pure ligand classes.

We report here the synthesis and crystal structure of the product of the reaction of \([\text{Zn}(L)(\text{ClO}_4)_2]\) with 4-phosphonatobiphenyl-4’-carboxylic acid (H₃A) – the closest structural analogue of the ligand 4,4’-diphenyldicarboxylate that is actively used for the preparation of different MOFs – namely, trans-diaqua(1,4,8,11-tetraazacyclotetradecane-κ⁴N⁰,N⁴,N⁶,N¹⁰)zinc(II) trans-bis(hydrogen 4-phosphonatobiphenyl-4’-carboxylato-κO)(1,4,8,11-tetraazacyclotetradecane-κ⁴N¹,N⁴,N⁶,N¹⁰)zinc(II), [Zn(L)(H₂O)₂][Zn(L)(HA)₂]. I. Though several ionic compounds and coordination polymers with this ligand have been reported (Heering et al., 2016a,b), none of its complexes with macrocyclic cations have been described up to now.

2. Structural commentary

The molecular structure of the title compound, I, is shown in Fig. 1. Atom Zn1 (site symmetry \(\bar{1}\)) is coordinated by two monodentate doubly deprotonated acidic ligands HA²⁻ via their phosphate O-donor atoms, resulting in the formation of the \([\text{Zn}1(\text{L})(\text{HA})_2]\)^²⁻ divalent anion, which is charge-balanced by the \([\text{Zn}2(\text{L})(\text{H}_2\text{O})_2]\)^²⁺ divalent cation (Zn2 site symmetry \(\bar{1}\)). In the latter case, the macrocyclic ligand L is disordered over two orientations, with site occupancies of 50%, which are rotated around the O–Zn₂–O axis by approximately 23°. The ligand L in both \([\text{Zn}(\text{L})]\) fragments adopts its energetically favoured trans-III conformation, with the five- and six-membered chelate rings in gauche and chair conformations, respectively (Bosnich et al., 1965).

Both metal ions possess a tetragonally elongated trans-Zn₄O₈ octahedral environment formed by the four secondary N atoms of the macrocyclic ligand in the equatorial plane and the two O atoms of the anions or water molecules in the axial positions (Table 1). The location of the metal ions on inversion centres enforces strict planarity of the ZnN₄ coordination moieties. The directivity of the axial Zn–O bonds is nearly orthogonal to the ZnN₄ plane.

The average Zn–N bond lengths in both macrocyclic units do not differ significantly [2.112 (12) Å for Zn1 and 2.101 (3) Å for Zn2] and are shorter than the average axial Zn–O bond lengths. The Zn–O distance for the phosphate group [2.189 (4) Å] is shorter than that for the aqua ligand [2.295 (4) Å], reflecting the stronger donating properties of the anion. Thus, analogous to the situation for carboxylate groups coordinated to aza-macroyclic cations (Tsymbal et al., 2021), the Zn–O interactions are reinforced by intra-molecular hydrogen bonding between the secondary amino

![Figure 1](image-url)

The extended asymmetric unit in I, showing the coordination environment of the Zn atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms have been omitted for clarity. Only one of two disordered components of the Zn2 cation is shown. Dotted lines represent intra-cation hydrogen-bonding interactions. [Symmetry codes: (i) \(-x+2,-y,-z+2\); (ii) \(-x+2,-y,-z+1\).]
group (N1—H1) of ligand L and the O2 atom of the phosphonate fragment (Table 2).

The benzene rings in the HA2− anion in I are tilted with respect to each other [the angle between their mean planes is 40.4 (2)°], while the uncoordinated carboxylate group is close to being coplanar with the corresponding aromatic fragment [12.3 (2)°]. This carboxylate group displays a high degree of electronic delocalization [the C23—O4 and C23—O5 bond lengths are 1.251 (8) and 1.258 (8) Å, respectively]. The protonated P—O3H bond [1.583 (4) Å] is not involved in delocalization.

3. Supramolecular features

The crystals of I are composed of [Zn1(L)(HA)2]2+ anions and [Zn2(L)(H2O)2]2+ cations that are connected by numerous hydrogen bonds (Table 2). In particular, due to hydrogen bonding between the protonated phosphonate P1—O3—H fragments and the secondary amino N2—H2 groups of the macrocycle L as proton donors, and carboxylate atoms O4 [at (x + 1, y − 1, z)] as acceptors, the complex anions are arranged into one-dimensional tapes running along the [110] direction (Fig. 2). These tapes are further connected into two-dimensional arrays lying parallel to the (110) plane by virtue of O—H···O and N—H···O hydrogen bonding between the O1W coordinated water molecule and the amino N3—H3 and N4—H4 groups as donors, and the phosphate and carboxylate atoms O2 [at (−x + 2, −y, −z + 1)], O3 and O5 [at (x + 1, y − 1, z) and (−x + 1, −y + 1, −z + 1)] as acceptors (Fig. 2). The distances Zn1···Zn1(x + 1, y − 1, z) and Zn2···Zn2(x + 1, y − 1, z) in the [110] direction are 14.179 (2) Å, while the Zn1···Zn2 distance is 8.131 (1) Å. There are no hydrogen-bonding contacts between the layers and the three-dimensional coherence of the crystal is provided by van der Waals interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update March 2022; Groom et al., 2016) indicated that several ionic compounds including ammonium and hexaamine cobalt(III) cations (refcodes SEDDUD and SEDFEP, respectively; Heering et al., 2016a) and coordination polymers formed by zinc(II) (UNISOB and UNISUH), cadmium(II) (UNITES) and mercury(II) ions (UNIWEV; Heering et al., 2016b) have been structurally characterized to date. In the polymeric complexes, the phosphonate groups of the ligands display a \(\text{P}_2^2\) bridging function and form two-dimensional metal–oxo layers. The complexation behaviour of the carboxylate groups determines the dimensionality of the polymeric systems formed. If, like in I, they are not coordinated, the metal–oxo layers are simply decorated with ligand molecules (UNISOB and UNIWEV). At the same time, the \(\mu_2\) or \(\mu_3\) bridging function of the carboxylate groups results in the formation of another kind of metal–oxo layer, thus producing three-dimensional coordination polymers (UNISUH and UNITES), in which the ligand molecules act as pillars. Interestingly, the tilting of the benzene rings in the ligand in polymeric complexes is much smaller that in I and does not exceed 7° (UNITES).

Figure 2
The hydrogen-bonded tape (C atoms in green) and sheet parallel to the (110) plane in I. H atoms at C atoms have been omitted, as has one disorder component of the macrocyclic Zn2 cation. Intra- and inter-tape hydrogen bonds are shown as dashed lines in green and blue, respectively; intramolecular N1—H1···O2 hydrogen bonds are not depicted.
Table 3
Experimental details.

Crystal data	Chemical formula	Found: C 49.45, H 6.41, N 10.01
M	[Zn(C₁₀H₂₄N₄)(H₂O)₂]⁻	
	[Zn(C₅H₆O₄P₂)(C₁₀H₂₄N₄)]⁻	
Crystal system, space group	Triclinic, P₁	
Temperature (K)	296	
a, b, c (Å)	8.8781 (15), 9.3224 (14), 16.2627 (14)	
α, β, γ (°)	102.759 (10), 90.777 (11), 102.315 (14)	
V (Å³)	1279.9 (3)	
Z	1	
μ (mm⁻¹)	1.07	
Crystal size (mm)	0.3 × 0.1 × 0.05	

Data collection
Diffractometer
Absorption correction
Multi-scan
Tₘin, Tₘax
0.866, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections
9578, 4514, 3242
R(int)
0.081
(sin θ/λ)max (Å⁻¹)
0.595

Refinement
R(F² > 2σ(F²), wR(F²), S
0.080, 0.203, 1.06
No. of reflections
4514
No. of parameters
317
No. of restraints
41
H-atom treatment
H atoms treated by a mixture of independent and constrained refinement

Δρmax, Δρmin (e Å⁻³)
0.91, −0.69

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The acid H₄A was synthesized according to a procedure described previously (Heering et al., 2016b). The complex [Zn(L)](ClO₄)₂ was prepared by mixing equimolar amounts of L and zinc perchlorate hexahydrate in ethanol.

For the preparation of the title compound, I, a solution of [Zn(L)](ClO₄)₂ (23 mg, 0.06 mmol) in water (2 ml) was added to a dimethylformamide (DMF) solution (3 ml) of H₄A (11 mg, 0.04 mmol) containing triethylamine (0.05 ml). A white precipitate, which had formed over several days, was filtered off, washed with small amounts of dimethylformamide (DMF) and diethyl ether, and dried in air (yield: 6.7 mg, 15% based on the acid). Analysis calculated (%) for C₅₄H₇₀N₈O₁₈P₂Zn₂: C 49.34, H 6.30, N 10.01; found: C 49.45, H 6.41, N 10.21. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis. Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) and 0.97 Å (methylene H atoms), and N—H distances of 0.98 Å, with Uiso(H) values of 1.2Ueq of the parent atoms.

Acknowledgements

VL is indebted for support of the project by Agenția Națională pentru Cercetare și Dezvoltare.

Funding information

Funding for this research was provided by: Agenția Națională pentru Cercetare și Dezvoltare (award No. 20.80009.5007.04).

References

Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.
Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Heering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209–5223.
Heering, C., Nateghi, B. & Janiak, C. (2016a). Crystals, 6, 22–35.
Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.
MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.
Macrae, C. F., Souvagn, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Picdock, E., Platings, M., Shields, G. P., Stevens, J. I., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
Rigaku OD (2019). CrystAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.
Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Wozniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macroyclic Ligands. Kiev: Naukova Dumka. (In Russian.)
Synthesis and crystal structure of diaqua(1,4,8,11-tetraazacyclotetradecane)-zinc(II) bis(hydrogen 4-phosphonatobiphenyl-4′-carboxylato)(1,4,8,11-tetraazacyclotetradecane)zinc(II)

Liudmyla V. Tsymbal, Irina L. Andriichuk, Vasile Lozan, Sergiu Shova and Yaroslaw D. Lampeka

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(1,4,8,11-tetraazacyclotetradecane-κ⁴N¹,N⁴,N⁸,N¹¹)zinc(II) trans-bis(hydrogen 4-phosphonatobiphenyl-4′-carboxylato-κO)(1,4,8,11-tetraazacyclotetradecane-κ⁴N¹,N⁴,N⁸,N¹¹)zinc(II)

Crystal data

\[\text{[Zn(C}_{10}\text{H}_{24}\text{N}_4)(\text{H}_2\text{O})_2]\]
\[\text{[Zn(C}_{13}\text{H}_{9}\text{O}_5\text{P})_2(\text{C}_{10}\text{H}_{24}\text{N}_4)]}\]

\[M_r = 1119.78\]

Triclinic, \(P\bar{1}\)

\(a = 8.8781\) (15) Å
\(b = 9.3224\) (14) Å
\(c = 16.2627\) (14) Å
\(a = 102.759\) (10)°
\(\beta = 90.777\) (11)°
\(\gamma = 102.315\) (14)°
\(V = 1279.9\) (3) Å³

\(Z = 1\)

\(F(000) = 588\)

\(D_x = 1.453\) Mg m⁻³

Mo Ka radiation, \(\lambda = 0.71073\) Å

Cell parameters from 1677 reflections

\(\theta = 2.3\text{–}25.6°\)

\(\mu = 1.07\) mm⁻¹

\(T = 296\) K

Block, clear light colourless

0.3 × 0.1 × 0.05 mm

Data collection

Rigaku Xcalibur Eos
diffractometer

Radiation source: fine-focus sealed X-ray tube,
Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 8.0797 pixels mm⁻¹
\(\omega\) scans
Absorption correction: multi-scan
 (CrysAlis PRO; Rigaku OD, 2019)

\(T_{\text{min}} = 0.866, T_{\text{max}} = 1.000\)

9378 measured reflections

4514 independent reflections

3242 reflections with \(I > 2\sigma(I)\)

\(R_{\text{int}} = 0.081\)

\(\theta_{\text{max}} = 25.0°, \theta_{\text{min}} = 2.3°\)

\(h = -10\rightarrow10\)

\(k = -10\rightarrow11\)

\(l = -19\rightarrow19\)
Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.080$
$wR(F^2) = 0.203$
$S = 1.06$
4514 reflections
317 parameters
41 restraints
Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.084P)^2 + 0.5432P]$
where $P = (F_o^2 + 2F_c^2)/3$

$\Delta(\sigma)_{\text{max}} < 0.001$
$\Delta \rho_{\text{max}} = 0.91 \text{ e Å}^{-3}$
$\Delta \rho_{\text{min}} = -0.69 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

x	y	z	U_{iso}/U_{eq}	Occ. (<1)
Zn1	1.000000	0.000000	1.000000	0.0289 (3)
P1	0.88329 (17)	0.02758 (16)	0.80359 (8)	0.0265 (4)
O1	0.8559 (4)	-0.0163 (4)	0.8866 (2)	0.0323 (9)
O2	1.0432 (4)	0.1165 (4)	0.7945 (2)	0.0321 (9)
O3	0.8352 (5)	-0.1164 (4)	0.7280 (2)	0.0342 (10)
H3C	0.909808	-0.161970	0.728072	0.06 (2)*
O4	0.0291 (5)	0.7128 (5)	0.7344 (3)	0.0507 (12)
O5	0.1942 (7)	0.7954 (6)	0.6441 (3)	0.0742 (17)
N1	1.1789 (5)	0.1580 (5)	0.9652 (3)	0.0339 (12)
H1	1.153015	0.161569	0.907023	0.041*
N2	1.0824 (6)	-0.1907 (5)	0.9371 (3)	0.0331 (12)
H2	1.051793	-0.211859	0.876801	0.040*
C1	1.3309 (7)	0.1235 (8)	0.9670 (4)	0.0475 (17)
H1A	1.364444	0.129596	1.024910	0.057*
H1B	1.404031	0.198141	0.945943	0.057*
C2	1.3313 (7)	-0.0338 (7)	0.9136 (4)	0.0472 (17)
H2A	1.282632	-0.043165	0.858312	0.057*
H2B	1.437937	-0.040350	0.905594	0.057*
C3	1.2535 (7)	-0.1652 (7)	0.9470 (4)	0.0453 (17)
H3A	1.285584	-0.254901	0.917223	0.054*
H3B	1.285174	-0.147785	1.006389	0.054*
C4	0.9991 (8)	-0.3146 (7)	0.9716 (4)	0.0480 (18)
H4A	1.046006	-0.309242	1.026683	0.058*
H4B	1.005633	-0.410042	0.934768	0.058*
C5	1.1696 (8)	0.3063 (7)	1.0205 (4)	0.0474 (17)
H5A	1.223716	0.387661	0.996402	0.057*
H5B	1.218427	0.317228	1.075963	0.057*
C11	0.7481 (7)	0.1412 (6)	0.7863 (3)	0.0273 (13)
C12	0.5919 (7)	0.0848 (6)	0.7650 (3)	0.0330 (14)
H12	0.550559	-0.017794	0.758556	0.040*
	x	y	z	Uiso
---	------	------	------	------------
C13	0.4965 (7)	0.1788 (6)	0.7532 (4)	0.0350 (14)
H13	0.391696	0.138655	0.739331	0.042*
C14	0.5548 (7)	0.3329 (6)	0.7618 (3)	0.0317 (14)
C15	0.7119 (7)	0.3890 (6)	0.7823 (4)	0.0358 (15)
H15	0.753957	0.491104	0.787393	0.043*
C16	0.8059 (7)	0.2947 (6)	0.7949 (3)	0.0331 (14)
H16	0.910507	0.334874	0.809487	0.040*
C17	0.4534 (7)	0.4353 (6)	0.7474 (3)	0.0294 (13)
C18	0.3040 (7)	0.4188 (6)	0.7760 (3)	0.0345 (14)
H18	0.266975	0.343425	0.804391	0.041*
C19	0.2111 (7)	0.5140 (6)	0.7622 (4)	0.0373 (15)
H19	0.113715	0.503674	0.783539	0.045*
C20	0.2585 (7)	0.6225 (6)	0.7183 (3)	0.0310 (14)
C21	0.4062 (8)	0.6399 (7)	0.6901 (4)	0.0424 (17)
H21	0.441059	0.713837	0.660376	0.051*
C22	0.5029 (7)	0.5488 (7)	0.7054 (4)	0.0410 (16)
H22	0.602640	0.563411	0.687123	0.049*
C23	0.1516 (8)	0.7174 (7)	0.6970 (4)	0.0397 (16)
Zn2	1.000000	0.000000	0.500000	0.0363 (3)
O1W	0.8744 (5)	-0.0550 (4)	0.3688 (2)	0.0394 (10)
H1WA	0.950153	-0.050667	0.335769	0.059*
H1WB	0.860423	0.028953	0.359289	0.059*
N3	0.7873 (9)	-0.0897 (10)	0.5448 (6)	0.0419 (15)
H3	0.805715	-0.081913	0.605351	0.050*
N4	1.0871 (12)	-0.1955 (9)	0.4820 (6)	0.0419 (15)
H4	1.123687	-0.201773	0.537935	0.050*
C6	0.7127 (18)	-0.2479 (14)	0.5069 (10)	0.063 (2)
H6A	0.664219	-0.253928	0.452095	0.075*
H6B	0.632279	-0.283288	0.542095	0.075*
C7	0.8282 (15)	-0.3491 (16)	0.4932 (9)	0.063 (2)
H7A	0.862152	-0.349203	0.550088	0.075*
H7B	0.766981	-0.448083	0.466108	0.075*
C8	0.9767 (16)	-0.3350 (14)	0.4479 (8)	0.063 (2)
H8A	1.023645	-0.419755	0.448358	0.075*
H8B	0.949025	-0.338235	0.389488	0.075*
C9	1.2244 (19)	-0.165 (2)	0.4347 (15)	0.059 (3)
H9A	1.192948	-0.182814	0.375229	0.070*
H9B	1.289179	-0.233766	0.440579	0.070*
C10	0.6842 (17)	0.0081 (17)	0.5368 (9)	0.059 (3)
H10A	0.646497	-0.009429	0.478382	0.070*
H10B	0.597397	-0.008959	0.571702	0.070*
N3X	0.7879 (9)	-0.0031 (11)	0.5569 (6)	0.0419 (15)
H3X	0.808176	-0.003809	0.616184	0.050*
N4X	0.9879 (11)	-0.2316 (8)	0.4855 (6)	0.0419 (15)
H4X	1.020262	-0.249725	0.539454	0.050*
C6X	0.6707 (17)	-0.1419 (13)	0.5207 (9)	0.063 (2)
H6XA	0.646379	-0.143247	0.462195	0.075*
H6XB	0.577179	-0.137626	0.550435	0.075*
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Zn1	0.0359 (6)	0.0307 (5)	0.0213 (5)	0.0112 (4)	−0.0001 (4)	0.0050 (4)
P1	0.0354 (9)	0.0329 (8)	0.0130 (7)	0.0148 (7)	−0.0034 (6)	0.0024 (6)
O1	0.038 (2)	0.042 (2)	0.019 (2)	0.0099 (19)	−0.0004 (17)	0.0121 (17)
O2	0.036 (2)	0.041 (2)	0.021 (2)	0.0126 (19)	−0.0033 (17)	0.0062 (17)
O3	0.042 (3)	0.039 (2)	0.021 (2)	0.017 (2)	−0.0097 (18)	−0.0002 (17)
O4	0.059 (3)	0.051 (3)	0.050 (3)	0.033 (2)	−0.003 (2)	0.007 (2)
O5	0.111 (5)	0.099 (4)	0.052 (3)	0.078 (4)	0.023 (3)	0.046 (3)
N1	0.037 (3)	0.045 (3)	0.017 (2)	0.007 (2)	−0.005 (2)	0.007 (2)
N2	0.048 (3)	0.039 (3)	0.015 (2)	0.020 (2)	−0.001 (2)	0.003 (2)
C1	0.033 (4)	0.071 (5)	0.035 (4)	0.001 (3)	−0.007 (3)	0.016 (3)
C2	0.041 (4)	0.073 (5)	0.032 (4)	0.027 (4)	0.000 (3)	0.007 (3)
C3	0.051 (4)	0.060 (4)	0.025 (3)	0.026 (4)	−0.011 (3)	−0.002 (3)
C4	0.073 (5)	0.039 (4)	0.030 (3)	0.018 (4)	−0.006 (3)	0.000 (3)
C5	0.061 (5)	0.041 (4)	0.034 (4)	0.000 (3)	−0.010 (3)	0.006 (3)
C11	0.040 (4)	0.032 (3)	0.012 (3)	0.019 (3)	−0.003 (2)	−0.001 (2)
C12	0.040 (4)	0.030 (3)	0.029 (3)	0.011 (3)	−0.003 (3)	0.004 (3)
C13	0.030 (3)	0.033 (3)	0.038 (3)	0.003 (3)	−0.002 (3)	0.006 (3)
C14	0.038 (4)	0.038 (3)	0.023 (3)	0.015 (3)	0.003 (3)	0.009 (3)
C15	0.045 (4)	0.025 (3)	0.039 (4)	0.013 (3)	−0.005 (3)	0.006 (3)
C16	0.033 (3)	0.037 (3)	0.026 (3)	0.008 (3)	−0.008 (3)	0.000 (3)
C17	0.038 (3)	0.030 (3)	0.021 (3)	0.010 (3)	−0.004 (2)	0.004 (2)
C18	0.039 (4)	0.037 (3)	0.030 (3)	0.013 (3)	0.002 (3)	0.009 (3)
C19	0.037 (4)	0.043 (4)	0.036 (3)	0.016 (3)	0.002 (3)	0.009 (3)
C20	0.040 (4)	0.033 (3)	0.022 (3)	0.022 (3)	−0.001 (3)	−0.002 (2)
C21	0.069 (5)	0.041 (4)	0.026 (3)	0.025 (3)	0.003 (3)	0.012 (3)
C22	0.043 (4)	0.046 (4)	0.041 (4)	0.020 (3)	0.009 (3)	0.013 (3)
C23	0.057 (4)	0.038 (4)	0.026 (3)	0.027 (3)	−0.010 (3)	−0.003 (3)
Zn2	0.0392 (6)	0.0365 (6)	0.0346 (6)	0.0141 (5)	0.0030 (5)	0.0053 (4)
O1W	0.044 (3)	0.053 (3)	0.024 (2)	0.012 (2)	−0.0033 (19)	0.0136 (19)
N3	0.064 (4)	0.046 (4)	0.022 (2)	0.023 (4)	−0.001 (3)	0.011 (3)
N4	0.064 (4)	0.046 (4)	0.022 (2)	0.023 (4)	−0.001 (3)	0.011 (3)
C6	0.081 (5)	0.051 (4)	0.040 (4)	−0.018 (4)	−0.018 (3)	0.011 (3)
C7 0.081 (5) 0.051 (4) 0.040 (4) −0.018 (4) −0.018 (3) 0.011 (3)
C8 0.081 (5) 0.051 (4) 0.040 (4) −0.018 (4) −0.018 (3) 0.011 (3)
C9 0.068 (6) 0.096 (7) 0.030 (4) 0.054 (5) 0.017 (5) 0.019 (5)
C10 0.068 (6) 0.096 (7) 0.030 (4) 0.054 (5) 0.017 (5) 0.019 (5)
N3X 0.064 (4) 0.046 (4) 0.022 (2) 0.023 (4) −0.001 (3) 0.011 (3)
N4X 0.064 (4) 0.046 (4) 0.022 (2) 0.023 (4) −0.001 (3) 0.011 (3)
C6X 0.081 (5) 0.051 (4) 0.040 (4) −0.018 (4) −0.018 (3) 0.011 (3)
C7X 0.081 (5) 0.051 (4) 0.040 (4) −0.018 (4) −0.018 (3) 0.011 (3)
C8X 0.081 (5) 0.051 (4) 0.040 (4) −0.018 (4) −0.018 (3) 0.011 (3)
C9X 0.068 (6) 0.096 (7) 0.030 (4) 0.054 (5) 0.017 (5) 0.019 (5)
C10X 0.068 (6) 0.096 (7) 0.030 (4) 0.054 (5) 0.017 (5) 0.019 (5)

Geometric parameters (Å, °)

Bond	Distance (Å)	Bond Angle (°)
Zn1—O1 i	2.189 (4)	
Zn1—O1	2.189 (4)	90.00
Zn1—N1 i	2.099 (5)	
Zn1—N1	2.099 (5)	90.00
Zn1—N2 i	2.125 (4)	
Zn1—N2	2.125 (4)	90.00
P1—O1	1.503 (4)	
P1—O2	1.511 (4)	120.00
P1—O3	1.583 (4)	
P1—C11	1.818 (5)	120.00
O3—H3C	0.8597	
O4—C23	1.251 (8)	
O5—C23	1.258 (8)	
N1—C1	1.454 (8)	
N1—C5	1.493 (8)	
N2—H2	0.9800	
N2—C3	1.487 (8)	
N2—C4	1.459 (8)	
C1—H1A	0.9700	
C1—H1B	0.9700	
C1—C2	1.531 (9)	
C2—H2A	0.9700	
C2—H2B	0.9700	
C2—C3	1.490 (9)	
C3—H3A	0.9700	
C3—H3B	0.9700	
C4—H4A	0.9700	
C4—H4B	0.9700	
C4—C5 i	1.522 (9)	
C5—H5A	0.9700	
C5—H5B	0.9700	
C11—C12	1.384 (8)	
C11—C16	1.389 (7)	
C12—H12 0.9300 N3X—C6X 1.475 (8) C12—C13 1.382 (8) N3X—C10X 1.460 (10) C13—H13 0.9300 N4X—H4X 0.9800 C13—C14 1.394 (8) N4X—C8X 1.462 (9) C14—C15 1.388 (8) N4X—C9X 1.473 (8) C14—C17 1.496 (7) C6X—H6XA 0.9702 C15—H15 0.9300 C6X—H6XB 0.9699 C15—C16 1.379 (8) C6X—C7X 1.544 (11) C16—H16 0.9300 C7X—H7XA 0.9700 C17—C18 1.401 (8) C7X—H7XB 0.9700 C17—C22 1.381 (8) C7X—C8X 1.527 (11) C18—H18 0.9300 C8X—H8XA 0.9700 C18—C19 1.382 (8) C8X—H8XB 0.9694 C19—H19 0.9300 C9X—H9XA 0.9700 C19—C20 1.363 (8) C9X—H9XB 0.9700 C20—C21 1.383 (8) C9X—C10Xii 1.58 (3) C20—C23 1.513 (8) C10X—H10C 0.9699 C21—H21 0.9300 C10X—H10D 0.9699 O1i—Zn1—O1 180.0 N3ii—Zn2—N3 180.0 N1i—Zn1—O1 88.15 (16) N3ii—Zn2—N3Xii 21.5 (3) N1—Zn1—O1 91.85 (16) N3—Zn2—N3Xii 158.5 (3) N1i—Zn1—O1i 91.85 (16) N4—Zn2—O1W 83.7 (3) N1—Zn1—O1i 88.15 (16) N4—Zn2—O1Wii 83.7 (3) N1i—Zn1—N1 180.0 N4—Zn2—O1W 96.3 (3) N1—Zn1—N1 91.85 (16) N4ii—Zn2—O1Wii 96.3 (3) N1i—Zn1—N2i 85.27 (19) N4—Zn2—N3 96.8 (4) N1—Zn1—N2i 85.27 (19) N4ii—Zn2—N3 96.8 (4) N1i—Zn1—N2 94.73 (18) N4—Zn2—N3ii 180.0 N1—Zn1—N2i 94.73 (18) N4ii—Zn2—N3 180.0 N2—Zn1—O1i 90.00 (15) N4—Zn2—N3 180.0 N2—Zn1—O1i 90.00 (15) N4ii—Zn2—N3 180.0 N2—Zn1—O1 85.27 (19) N4—Zn2—N3ii 180.0 N2i—Zn1—O1 90.00 (15) N4ii—Zn2—N3 180.0 N2i—Zn1—N2i 90.00 (15) N4—Zn2—N3Xii 62.3 (4) N2i—Zn1—N2i 90.00 (15) N4ii—Zn2—N3Xii 117.7 (4) N2—Zn1—N2 90.00 (15) N4—Zn2—N3Xii 117.7 (4) O1—P1—O2 116.2 (2) N4—Zn2—N4Xii 24.3 (3) O1—P1—O3 110.1 (2) N4i—Zn2—N4Xii 24.3 (3) O1—P1—O1 109.0 (2) N4—Zn2—O1W 90.3 (3) O2—P1—O3 110.9 (2) N3X—Zn2—O1W 89.7 (3) O2—P1—O2 107.0 (2) N3X—Zn2—N3X 180.00 (19) O2—P1—C11 104.2 N4X—Zn2—O1W 88.2 (3) O3—P1—C11 102.6 (2) N4X—Zn2—O1W 91.8 (3) P1—O1—Zn1 135.3 (2) N4X—Zn2—N3X 85.0 (4) P1—O3—H3C 104.2 N4X—Zn2—N3X 95.0 (4) Zn1—N1—H1 107.3 Zn2—O1W—H1WA 102.4 C1—N1—Zn1 115.2 (4) Zn2—O1W—H1WB 107.2 C1—N1—H1 107.3 H1WA—O1W—H1WB 88.9 C1—N1—C5 114.3 (5) Zn2—N3—H3 106.9 C5—N1—Zn1 105.1 (4) C6—N3—Zn2 117.6 (8) C5—N1—H1 107.3 C6—N3—H3 106.9		
Bond	Angle (°)	Bond
----------------------	------------	----------------------
Zn1—N2—H2	108.4	C10—N3—Zn2
C3—N2—Zn1	112.3 (4)	C10—N3—H3
C3—N2—H2	108.4	C10—N3—C6
C4—N2—Zn1	104.6 (4)	Zn2—N4—H4
C4—N2—H2	108.4	C8—N4—Zn2
C4—N2—C3	114.4 (5)	C8—N4—H4
N1—C1—H1A	109.2	C8—N4—C9
N1—C1—H1B	109.2	C9—N4—Zn2
N1—C1—C2	112.1 (5)	C9—N4—H4
H1A—C1—H1B	107.9	N3—C6—H6A
C2—C1—H1A	109.2	N3—C6—H6B
C2—C1—H1B	109.2	N3—C6—C7
C1—C2—H2A	108.0	H6A—C6—H6B
C1—C2—H2B	108.0	C7—C6—H6A
H2A—C2—H2B	107.3	C7—C6—H6B
C3—C2—C1	117.1 (5)	C6—C7—H7A
C3—C2—H2A	108.0	C6—C7—H7B
C3—C2—H2B	108.0	H7A—C7—H7B
N2—C3—C2	111.6 (5)	C8—C7—C6
N2—C3—H3A	109.3	C8—C7—H7A
N2—C3—H3B	109.3	C8—C7—H7B
C2—C3—H3A	109.3	N4—C8—C7
C2—C3—H3B	109.3	N4—C8—H8A
H3A—C3—H3B	108.0	N4—C8—H8B
N2—C4—H4A	109.6	C7—C8—H8A
N2—C4—H4B	109.6	C7—C8—H8B
N2—C4—C5i	110.3 (5)	H8A—C8—H8B
H4A—C4—H4B	108.1	N4—C9—H9A
C5i—C4—H4A	109.6	N4—C9—H9B
C5i—C4—H4B	109.6	N4—C9—C10i
N1—C5—C4i	109.3 (5)	H9A—C9—H9B
N1—C5—H5A	109.8	C10i—C9—H9A
N1—C5—H5B	109.8	C10i—C9—H9B
C4i—C5—H5A	109.8	N3—C10—C9i
C4i—C5—H5B	109.8	N3—C10—H10A
H5A—C5—H5B	108.3	N3—C10—H10B
C12—C11—P1	124.4 (4)	C9ii—C10—H10A
C12—C11—C16	118.0 (5)	C9ii—C10—H10B
C16—C11—P1	117.6 (4)	H10A—C10—H10B
C11—C12—H12	119.6	Zn2—N3X—H3X
C13—C12—C11	120.9 (5)	C6X—N3X—Zn2
C13—C12—H12	119.6	C6X—N3X—H3X
C12—C13—H13	119.5	C10X—N3X—Zn2
C12—C13—C14	121.0 (6)	C10X—N3X—H3X
C14—C13—H13	119.5	C10X—N3X—C6X
C13—C14—C17	121.6 (5)	Zn2—N4X—H4X
C15—C14—C13	118.0 (5)	C8X—N4X—Zn2
C15—C14—C17	120.4 (5)	C8X—N4X—H4X
Bond/Distance	Angle/Distance	Angle/Distance
-------------------------------	----------------	----------------
C14—C15—H15	119.7	C8X—N4X—C9X
C16—C15—C14	120.6 (5)	C9X—N4X—Zn2
C16—C15—H15	119.7	C9X—N4X—H4X
C11—C16—H16	119.3	N3X—C6X—H6XA
C15—C16—C11	121.5 (6)	N3X—C6X—H6XB
C15—C16—H16	119.3	N3X—C6X—C7X
C18—C17—C14	120.9 (5)	H6XA—C6X—H6XB
C18—C17—C14	120.1 (6)	C7X—C6X—H6XA
C17—C18—H18	119.8	C6X—C7X—H7XA
C19—C18—C17	120.4 (5)	C6X—C7X—H7XB
C19—C18—H18	119.8	H7XA—C7X—H7XB
C18—C19—H19	119.1	C8X—C7X—C6X
C20—C19—C18	121.8 (6)	C8X—C7X—H7XA
C21—C20—C19—H19	119.1	C8X—C7X—H7XB
C19—C20—C21	118.1 (5)	N4X—C8X—C7X
C19—C20—C23	121.5 (6)	N4X—C8X—H8XA
C21—C20—C23	120.3 (6)	N4X—C8X—H8XB
C20—C21—H21	119.5	C7X—C8X—H8XA
C20—C21—C22	121.1 (6)	C7X—C8X—H8XB
C22—C21—H21	119.5	H8XA—C8X—H8XB
C17—C22—C21	121.0 (6)	N4X—C9X—C7X
C17—C22—H22	119.5	N4X—C9X—H9XB
C21—C22—H22	119.5	N4X—C9X—C10Xa
O4—C23—O5	125.7 (6)	H9XA—C9X—H9XB
O4—C23—C20	117.1 (6)	C10Xa—C9X—H9XA
O5—C23—C20	117.3 (6)	C10Xa—C9X—H9XB
OIWii—Zn2—O1W	180.0	N3X—C10X—H10C
N3—Zn2—O1Wii	92.6 (3)	N3X—C10X—H10D
N3ii—Zn2—O1Wii	87.4 (3)	C9Xii—C10X—H10C
N3ii—Zn2—O1W	92.6 (3)	C9Xii—C10X—H10D
N3—Zn2—O1W	87.4 (3)	H10C—C10X—H10D
Zn1—N1—C1—C2	54.5 (6)	C17—C14—C15—C16
Zn1—N1—C5—C4i	−40.5 (5)	C17—C18—C19—C20
Zn1—N2—C3—C2	−58.8 (5)	C18—C17—C22—C21
Zn1—N2—C4—C5i	41.9 (5)	C18—C19—C20—C21
P1—C11—C16—C15	179.7 (4)	C18—C19—C20—C21
P1—C11—C16—C15	179.5 (4)	C19—C20—C21—C22
O1—P1—C11—C12	−73.1 (5)	C19—C20—C23—O4
O1—P1—C11—C16	107.0 (4)	C19—C20—C23—O5
O2—P1—O1—Zn1	−6.4 (4)	C20—C21—C22—C17
O2—P1—C11—C12	160.4 (4)	C20—C20—C23—O4
O2—P1—C11—C16	−19.5 (5)	C21—C20—C23—O5
O3—P1—O1—Zn1	120.7 (3)	C22—C17—C18—C19
O3—P1—C11—C12	43.6 (5)	C23—C20—C21—C22
O3—P1—C11—C16	−136.3 (4)	Zn2—N3—C6—C7
N1—C1—C2—C3	−72.0 (7)	Zn2—N3—C10—C9ii
C1—N1—C5—C4i −167.7 (5) Zn2—N4—C8—C7 −48.3 (14)
C1—C2—C3—N2 74.9 (7) Zn2—N4—C9—C10ii 39.5 (19)
C3—N2—C4—C5i 165.2 (5) Zn2—N3X—C6X—C7X 56.2 (14)
C4—N2—C3—C2 −177.8 (5) Zn2—N3X—C10X—C9Xii −38.2 (17)
C5—N1—C1—C2 176.4 (5) Zn2—N4X—C8X—C7X −63.1 (13)
C11—P1—O1—Zn1 −127.4 (3) Zn2—N4X—C9X—C10Xii 43.1 (13)
C11—C12—C13—C14 0.5 (9) N3—C6—C7—C8 −53 (2)
C12—C11—C16—C15 −0.4 (8) C6—N3—C10—C9i −172.2 (12)
C12—C13—C14—C15 0.2 (8) C6—C7—C8—N4 58 (2)
C12—C13—C14—C17 178.7 (5) C8—N4—C9—C10i 168.5 (14)
C13—C14—C15—C16 −1.0 (8) C9—N4—C8—C7 −172.0 (13)
C13—C14—C17—C18 40.4 (8) C10—N3—C6—C7 165.1 (12)
C13—C14—C17—C22 −139.4 (6) N3X—C6X—C7X—C8X −73.0 (16)
C14—C15—C16—C11 1.1 (9) C6X—N3X—C10X—C9Xii −166.0 (12)
C14—C17—C18—C19 −179.9 (5) C6X—C7X—C8X—N4X 75.3 (16)
C14—C17—C22—C21 177.9 (5) C8X—N4X—C9X—C10Xii 166.2 (12)
C15—C14—C17—C18 −141.2 (6) C9X—N4X—C8X—C7X 179.0 (11)
C15—C14—C17—C22 39.0 (8) C10X—N3X—C6X—C7X −177.9 (14)
C16—C11—C12—C13 −0.4 (8)

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O2	0.98	1.98	2.923 (6)	161
N2—H2···O4ii	0.98	2.26	3.220 (6)	166
N3—H3···O3	0.98	2.11	3.076 (10)	168
N4—H4···O5ii	0.98	1.84	2.815 (11)	178
N3X—H3X···O3	0.98	2.33	3.239 (11)	155
N4X—H4X···O5ii	0.98	2.19	3.075 (11)	150
O3—H3C···O4iii	0.86	1.75	2.597 (6)	167
O1W—H1WA···O2ii	0.87	2.08	2.735 (5)	132
O1W—H1WB···O5iv	0.86	1.82	2.668 (6)	169

Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x+1, y−1, z; (iv) −x+1, −y+1, −z+1.