The first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of surface-links and of virtual links

AKIO KAWAUCHI

We characterize the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of ribbon surface-links in the 4–sphere fixing the number of components and the total genus, and then the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of surface-links in the 4–sphere fixing the number of components. Using the result of ribbon torus-links, we also characterize the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of virtual links fixing the number of components. For a general surface-link, an estimate of the total genus is given in terms of the first Alexander $\mathbb{Z}[\mathbb{Z}]$–module. We show a graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of all surface-links and then a graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of classical links, surface-links and higher-dimensional manifold-links.

57M25; 57Q35, 57Q45

1 The first Alexander $\mathbb{Z}[\mathbb{Z}]$–module of a surface-link

For every non-negative partition $g = g_1 + g_2 + ... + g_r$ of a non-negative integer g, we consider a closed oriented 2–manifold $F = F_g = F_{g_1,g_2,...,g_r}$ with r components F_i ($i = 1, 2, ..., r$) such that the genus $g(F_i)$ of F_i is g_i. The integer g is called the total genus of F and denoted by $g(F)$. An F–link L is the ambient isotopy class of a locally-flatly embedded image of F into S^4, and for $r = 1$ it is also called an F–knot. The exterior of L is the compact 4–manifold $E = S^4 \setminus \text{int}(L)$, where $N(L)$ denotes the tubular neighborhood of L in S^4. Let $p: \tilde{E} \to E$ be the infinite cyclic covering associated with the epimorphism $\gamma: H_1(E) \to \mathbb{Z}$ sending every oriented meridian of L in $H_1(E)$ to 1 $\in \mathbb{Z}$. An F–link L is trivial if L is the boundary of the union of disjoint handlebodies embedded locally-flatly in S^4. A ribbon F–link is an F–link obtained from a trivial F_0–link by surgeries along embedded 1–handles in S^4 (see Kawauchi, Shibuya and Suzuki [12, page 52]). When we put the trivial F_0–link in the equatorial 3–sphere $S^3 \subset S^4$, we can replace the 1–handles by mutually disjoint 1–handles embedded in the 3–sphere S^3 without changing the ambient isotopy class of the ribbon F–link by an argument of [12, Lemma 4.11] using a result of Hosokawa.
and Kawauchi [2, Lemma 1.4]. Thus, every ribbon F–link is described by a disk–arc presentation consisting of oriented disks and arcs intersecting the interiors of the disks transversely in S^3 (see Figure 1 for an illustration), where the oriented disks and the arcs represent the oriented trivial 2–spheres and the 1–handles, respectively.

![Figure 1: A ribbon $F^2_{1,1}$–link](image)

Let $\Lambda = \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t, t^{-1}]$ be the integral Laurent polynomial ring. The homology $H_*(\tilde{E})$ is a finitely generated Λ–module. Specially, the first homology $H_1(\tilde{E})$ is called the first Alexander $\mathbb{Z}[\mathbb{Z}]$–module, or simply the module of an F–link L and denoted by $M(L)$. In this paper, we discuss the following problem:

Problem 1.1 Characterize the modules $M(L)$ of F^r_g–links L in a topologically meaningful class.

In Section 2, we discuss some homological properties of F^r_g–links. Fixing r and g, we shall solve Problem 1.1 for the class of ribbon F^r_g–links in Section 3. We also solve Problem 1.1 for the class of all F^r_g–links not fixing g as a corollary of the ribbon case in Section 3. In Section 4, we characterize the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of virtual links by using the characterization of ribbon $F^r_{1,1,...,1}$–links. In Section 5, we show a graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of all F^r_g–links by establishing an estimate of the total genus g in terms of the first Alexander $\mathbb{Z}[\mathbb{Z}]$–module of an F^r_g–link. In fact, we show that there is the first Alexander $\mathbb{Z}[\mathbb{Z}]$–module of an F^r_g–link which is not the first Alexander $\mathbb{Z}[\mathbb{Z}]$–module of any F^r_g–link for every r and g. In Section 6, we show a graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of classical links, surface-links and higher-dimensional manifold-links. We mention here that most results of this paper are announced in [11] without proofs. A group version of this paper is given in [10].
2 Some homological properties on surface-links

The following computation on the homology $H_\ast(E)$ of the exterior E of an F^r_g–link L is done by using the Alexander duality for (S^4, L):

Lemma 2.1

$$H_d(E) = \begin{cases}
\mathbb{Z}^{r-1} & (d = 3) \\
\mathbb{Z}^2 & (d = 2) \\
\mathbb{Z}^r & (d = 1) \\
\mathbb{Z} & (d = 0) \\
0 & (d \neq 0, 1, 2, 3)
\end{cases}$$

For a finitely generated Λ–module M, let TM be the Λ–torsion part, and $BM = M/TM$ the Λ–torsion-free part. Let $\beta(M)$ be the Λ–rank of the module M, namely the $Q(\Lambda)$–dimension of the $Q(\Lambda)$–vector space $M \otimes_\Lambda Q(\Lambda)$, where $Q(\Lambda)$ denotes the quotient field of Λ. Let

$$DM = \{ x \in M \mid \exists f_i \in \Lambda (i = 1, 2, ..., s \geq 2) \text{ with } (f_1, ..., f_s) = 1 \text{ and } f_i x = 0 \},$$

which is the maximal finite Λ–submodule of M (cf Kawauchi [5, Section 3]), where the notation $(f_1, ..., f_s)$ denotes the greatest common divisor of the Laurent polynomials $f_1, ..., f_s$. We note that DM contains all finite Λ–submodules of M, which is a consequence of M being finitely generated over Λ. Let $TDM = TM/DM$, and $E^qM = \text{Ext}^q_\Lambda(M, \Lambda)$. The following proposition is more or less known (see J Levine [14] for S^n–knot modules and [5] in general):

Proposition 2.2 We have the following properties (1)–(5) on a finitely generated Λ–module M.

1. $E^0M = \text{hom}_\Lambda(M, \Lambda) = \Lambda^{\beta(M)}$,
2. $E^1M = E^2M = 0$ if and only if M is Λ–free,
3. there are natural Λ–exact sequences $0 \to E^1BM \to E^1M \to E^1TM \to 0$ and $0 \to BM \to E^0E^0BM \to E^2E^1BM \to 0$,
4. $E^1BM = DE^1M$,
5. $E^1TM = \text{hom}_\Lambda(TM, Q(\Lambda)/\Lambda)$ and $E^2M = E^2DM = \text{hom}_\mathbb{Z}(DM, Q/\mathbb{Z})$.

The dth Λ–rank of an F^r_g–link L is the number $\beta_d(L) = \beta(H_d(\tilde{E}))$. We call the integer $\tau(L) = r - 1 - \beta_1(L)$ the torsion-corank of L, which is shown to be non-negative in Lemma 2.5. We use the following notion:
Definition 2.3 A finitely generated Λ–module M is a cokernel-free Λ–module of corank n if there is an isomorphism $M/(t-1)M \cong \mathbb{Z}^n$ as abelian groups.

The corank of a cokernel-free Λ–module M is denoted by $cr(M)$. We shall show in Corollary 3.3 that a Λ–module M is a cokernel-free Λ–module of corank n if and only if there is an F_g^{n+1}–link L for some g such that $M(L) = M$. The following lemma implies that the cokernel-free Λ–modules appear naturally in the homology of an infinite cyclic covering:

Lemma 2.4 Let $p: \tilde{X} \to X$ be an infinite cyclic covering over a finite complex X. If $H_d(X)$ is free abelian, then the Λ–modules $H_d(\tilde{X})$, $TH_d(\tilde{X})$ and $T\partial H_d(\tilde{X})$ are cokernel-free Λ–modules. In particular, if $H_1(X) \cong \mathbb{Z}^r$ and \tilde{X} is connected, then $H_1(\tilde{X})$ is cokernel-free of corank $r - 1$.

Proof By Wang exact sequence, the sequence

$$H_d(\tilde{X}) \xrightarrow{\partial} H_{d-1}(\tilde{X})$$

is exact, which also induces an exact sequence

$$TH_d(\tilde{X}) \xrightarrow{\partial} TH_{d-1}(\tilde{X}),$$

for $(t-1)TH_d(\tilde{X}) = TH_d(\tilde{X}) \cap (t-1)H_d(\tilde{X})$. Since $H_d(X)$ is free abelian, we have also the induced exact sequence

$$T\partial H_d(\tilde{X}) \xrightarrow{\partial} T\partial H_{d-1}(\tilde{X}),$$

obtaining the desired result of the first half. The second half follows from the calculation that

$$\text{im}[p_*: H_1(\tilde{X}) \to H_1(X)] = \ker[\partial: H_1(X) \to H_0(\tilde{X})] \cong \mathbb{Z}^{r-1}. \quad \Box$$

From Lemmas 2.1 and 2.4, we see that the Λ–modules $H_n(\tilde{E})$, $TH_n(\tilde{E})$ and $T\partial H_n(\tilde{E})$ are all cokernel-free Λ–modules for every F_g^{r}–link L. On these Λ–modules, we make the following calculations by using the dualities on the homology $H_n(\tilde{E})$ in [5]:

Lemma 2.5

(1) $\beta_1(L) = \beta_3(L) \leq r - 1$ and $\beta_2(L) = 2(g - \tau(L))$,

(2) $H_d(\tilde{E}) = 0$ for $d \neq 0, 1, 2, 3$, $H_0(\tilde{E}) \cong \Lambda/(t-1)\Lambda$ and $H_3(\tilde{E}) \cong \Lambda^{\beta_3(L)}$,

(3) $cr(M(L)) = r - 1$ and $cr(TM(L)) = cr(T\partial M(L)) = \tau(L)$.

Geometry & Topology Monographs 14 (2008)
The following corollary follows directly from Lemma 2.5.

Corollary 2.6 An F^r_g–link L has $\beta_r(L) = 0$ if and only if $\beta_1(L) = 0$ and $g = r - 1$.

The first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of surface-links and of virtual links 357
3 Characterizing the first Alexander \(\mathbb{Z}[\mathbb{Z}]\)–modules of ribbon surface-links

For a finitely generated \(\Lambda\)–module \(M\), let \(e(M)\) be the minimal number of \(\Lambda\)–generators of \(M\). The following estimate is given by Sekine [17] and Kawauchi [7] for the case \(r = 1\) where we have \(\tau(L) = 0\):

Lemma 3.1 If \(L\) is a ribbon \(F^r_g\)–link, then we have

\[
g \geq e(E^2 M(L)) + \tau(L).
\]

Proof Since \(L\) is a ribbon \(F^r_g\)–link, there is a connected Seifert hypersurface \(V\) for \(L\) such that \(H_1(V)\) and \(H_1(V, \partial V)\) are torsion-free. In fact, we can take \(V\) to be a connected sum of \(r\) handlebodies and some copies, say \(n\) copies, of \(S^1 \times S^2\) (cf [12]). Then we have \(H_1(V) = \mathbb{Z}^{n+s}\) and \(H_2(V) = \mathbb{Z}^{n+r-1}\). Let \(E'\) be the compact 4–manifold obtained from \(E\) by splitting it along \(V\). Let \(\bar{V}\) and \(\bar{E}'\) be the lifts of \(V\) and \(E'\) by the infinite cyclic covering \(p: \bar{E} \to E\), respectively. By the Mayer-Vietoris exact sequence, we have the following exact sequence

\[
0 \to B \to H_1(\bar{V}) \to H_1(\bar{E}') \to H_1(\bar{E}) \to 0,
\]

where \(B\) denotes the image of the boundary operator \(\partial: H_2(\bar{E}) \to H_1(\bar{V})\). Since \(H_1(\bar{V}) \cong \mathbb{Z}^{n+s}\), we have \(H_1(\bar{V}) \cong \Lambda^{n+s}\). We note that

\[
H_1(\bar{E}') \cong H_1(S^4 - V) \cong H_2(S^4, S^4 - V) \cong H^2(V) \cong \mathbb{Z}^{n+r-1},
\]

so that \(H_1(\bar{E}') \cong \Lambda^{n+r-1}\). Using that \(\Lambda\) has the graded dimension 2, we see that \(B\) must be a free \(\Lambda\)–module whose \(\Lambda\)–rank is calculated from the exact sequence to be

\[
(n + g) - (n + r - 1 - \beta_1(L)) = g - \tau(L).
\]

Since by definition \(E^2 M(L) = E^2 H_1(\bar{E})\) is a quotient \(\Lambda\)–module of \(E^0 B \cong \Lambda^{\geq \tau(L)}\), we have \(e(E^2 M(L)) \leq g - \tau(L)\). \(\square\)

The following theorem is our first theorem, which shows that the estimate of Lemma 3.1 is best possible and generalizes [7, Theorem 1.1].

Theorem 3.2 A finitely generated \(\Lambda\)–module \(M\) is the module \(M(L)\) of a ribbon \(F^r_g\)–link \(L\) if and only if \(M\) is a cokernel-free \(\Lambda\)–module of corank \(r - 1\) and \(g \geq e(E^2 M) + \tau(M)\). Further, if a non-negative partition \(g = g_1 + g_2 + \ldots + g_r\) is arbitrarily given, then we can take a ribbon \(F^r_g\)–link \(L\) with \(g(F_i) = g_i\) for all \(i\).
Proof The “only if” part is proved by Lemmas 2.5 and 3.1. We show the “if” part. Let $M/(t−1)M \cong \mathbb{Z}^n$. We construct a ribbon F_{g}^{m+1}–link L with $M(L) = M$ and $g = e(E^2M) + \tau(M)$ and observe that the module $M(L)$ is independent of a choice of the partitions $g = g_1 + g_2 + ... + g_r$ in our construction. This will complete the proof, since an F_{g}^{m+1}–link L' with $g' > g$ and $M(L') = M$ can be obtained from L by taking suitable connected sums of L with $g' − g$ trivial F_1–knots. The proof will be done by establishing the following three steps:

1. Finding a nice Λ–presentation matrix B for M.

2. Constructing a finitely presented group G and an epimorphism $\gamma: G \to \mathbb{Z}$ which induces a Λ–isomorphism $\ker \gamma / [\ker \gamma, \ker \gamma] \cong M$.

3. Applying T. Yajima’s construction to find a ribbon F_{g}^{r}–link L with a prescribed disk–arc presentation such that $\pi_1(S^1 \setminus L) = G$.

In (2), recall that $\ker \gamma / [\ker \gamma, \ker \gamma]$ has a natural Λ–module structure with the t–action meant by the conjugation of any element $g \in G$ with $\gamma(g) = 1 \in \mathbb{Z}$. This Λ–module is calculable from the group presentation of G by the Fox calculus (see Kawauchi [4] and H Zieschang [20]). We shall show how to construct a desired Wirtinger presented group G from the Λ–presentation B of M by this inverse process, so that we can establish (3).

Let $m = e(E^2M)$ and $\beta = \beta(M)$. We take a Λ–exact sequence

$$0 \to \Lambda^k \to \Lambda^{m+k} \to \Lambda^m \to E^2M \to 0$$

for some $k \geq 0$, which induces a Λ–exact sequence

$$0 \to \Lambda^m \to \Lambda^{m+k} \to \Lambda^k \to E^2E^2M = DM \to 0.$$

On the other hand, using $D(M/DM) = 0$, we have $E^2(M/DM) = 0$ and hence we have a Λ–exact sequence

$$0 \to \Lambda^s \to \Lambda^{s+\beta} \to M/DM \to 0$$

for some $s \geq 0$. Thus, we have a Λ–exact sequence

$$0 \to \Lambda^m \to \Lambda^{m+k+s} \to \Lambda^{k+s+\beta} \to M \to 0.$$

Let $B = (b_{ij})$ be a Λ–matrix of size $(k + s + \beta, m + k + s)$ representing the Λ–homomorphism $\Lambda^{m+k+s} \to \Lambda^{k+s+\beta}$. Since $M/(t−1)M = \mathbb{Z}^n$, we can assume

$$B(1) = \begin{pmatrix} E^u & O_{12} \\ O_{21} & O_{22} \end{pmatrix}$$

by base changes of Λ^{m+k+s} and $\Lambda^{k+s+\beta}$, where E^u is the unit matrix of size $u = k + s + \beta − n$, and O_{12}, O_{21}, O_{22} are the zero matrices of sizes $(u, m − \beta + n), (n, u), (n, m − \beta + n)$.
respectively. Let $b_{ij} = -\sum_{i=1}^{k+s+\beta} b_{ij}$, and $B^+ = (b_{ij})$ ($0 \leq i \leq k + s + \beta$, $1 \leq j \leq m + k + s$) We take $c_{ij} \in \Lambda$ so that

$$b_{ij} = \begin{cases} (t - 1)c_{ij} & (j > u) \\ (t - 1)c_{ij} + \delta_{ij} & (i > 0, 1 \leq j \leq u) \\ (t - 1)c_{ij} - 1 & (i = 0, 1 \leq j \leq u) \end{cases}$$

Let γ be the epimorphism from the free group $G_0 = \langle x_0, x_1, \ldots, x_{k+s+\beta} \rangle$ onto \mathbb{Z} defined by $\gamma(x_i) = 1$, and $\gamma^+ : \mathbb{Z}[G_0] \to \mathbb{Z}[\mathbb{Z}] = \Lambda$ the group ring extension of γ with $\gamma^+(x_i) = t$. Using that $\Sigma_{i=0}^{k+s+\beta} c_{ij} = 0$, an algorithm of A Pizer [15] enables us to find a word w_j in G_0 such that $\gamma(w_j) = 0$ and the Fox derivative

$$\gamma^+(\partial w_j/\partial x_i) = c_{ij} (j = 1, \ldots, m + k + s)$$

for every i. Let

$$R_j = \begin{cases} x_jw_jx_0^{-1}w_j^{-1} & (1 \leq j \leq u) \\ x_hw_jx_h^{-1}w_j^{-1} & (u + 1 \leq j \leq m + k + s), \end{cases}$$

where we can take any h for the x_h in every R_j with $u + 1 \leq j \leq m + k + s$. Then the finitely presented group $G = \langle x_0, x_1, \ldots, x_{k+s+\beta} \mid R_1, R_2, \ldots, R_{m+k+s} \rangle$ has the Fox derivative $\gamma^+(\partial R_j/\partial x_i) = b_{ij}$ for every i, j. We note that $G/[G, G] = \mathbb{Z}^{1+k+s+\beta} = \mathbb{Z}^{1+n}$. Let $\gamma_s : G \to \mathbb{Z}$ be the epimorphism induced from γ. Then $\text{Ker} \gamma_s / [\text{Ker} \gamma_s, \text{Ker} \gamma_s] \cong M$. By T Yajima’s construction in [19], there is a ribbon F_{g+1}^m–link L with $\pi_1(S^1 \setminus L) = G$ (hence $M(L) = M$) so that, in terms of a disk–arc presentation of a ribbon surface-link, the generators x_i ($i = 0, 1, \ldots, k + s + \beta$) correspond to the oriented disks D_j ($i = 0, 1, \ldots, k + s + \beta$), respectively, and the relation $R_j : w_j^{-1}x_jw_j = x_0$ (or $w_j^{-1}x_hw_j = x_h$, respectively) corresponds to an oriented arc α_j which starts from a point of ∂D_j (or ∂D_h, respectively), terminates at a point of ∂D_0 (or ∂D_s, respectively), and is described in the following manner: When w_j is written as $x_1^{\varepsilon_1}x_2^{\varepsilon_2} \cdots x_l^{\varepsilon_l}$ ($\varepsilon_l = \pm 1$), the arc α_j should be described so that it first intersects the interior of the disk D_j in a point with sign ε_1. Next, it intersects the interior of the disk D_{j_2} in a point with sign ε_2. This process should be continued in the order of the letters x_j appearing in w_j until they are exhausted. Thus, the arc α_j is constructed. Then we have

$$g = m + k + s - u = m + (n - \beta) = e(E^2M) + \tau(M).$$

The arbitrariness of h for the x_h in R_j with $u + 1 \leq j \leq m + k + s$ guarantees us to construct a 2–manifold $F_{g+1}^{m+1} = F_{g_1}^{m+1} \times \cdots \times F_{g_n}^{m+1}$ corresponding to any partition $g = g_1 + g_2 + \cdots + g_n + 1$.

The following corollary comes directly from Lemmas 2.4, 2.5 and Theorem 3.2.

Geometry & Topology Monographs 14 (2008)
Corollary 3.3 A finitely generated Λ–module M is a cokernel-free Λ–module of corank n if and only if there is an F_{g}^{n+1}–link L with $M(L) = M$ for some g.

The following corollary gives a characterization of the modules $M(L)$ of ribbon F_{g}^{n+1}–links L with $\beta_{n}(L) = 0$.

Corollary 3.4 A cokernel-free Λ–module M of corank n is the module $M(L)$ of a ribbon F_{g}^{n+1}–link L with $\beta_{n}(L) = 0$ (in this case, we have necessarily $g = n$) if and only if $\beta(M) = 0$ and $DM = 0$.

Proof For the proof of “if” part, we note that $E_{2}^{2}M = E_{2}^{2}DM = 0$ and hence $e(E_{2}^{2}M) + \tau(M) = n$. By Theorem 3.2, we have a ribbon F_{g}^{n+1}–link L with $M(L) = M$. Since $\beta(M) = 0$, we see from Corollary 2.6 that $\beta_{n}(L) = 0$. For the proof of “only if” part, we note $g = n$ by Corollary 2.6. Hence by Lemma 3.1, $n \geq e(E_{2}^{2}M) + \tau(M)$. Since $\beta(M) = 0$ means $\tau(M) = n$, we have $e(E_{2}^{2}M) = 0$, so that $E_{2}^{2}M = 0$ which is equivalent to $DM = 0$.

Here are two examples which are not covered by Corollary 3.4.

Example 3.5 For a cokernel-free Λ–module M of corank n with $\beta(M) = 0$ (so that $\tau(M) = n$) and $DM = 0$, we have the following examples (1) and (2).

1. Let $M' = M \oplus \Lambda/(t+1,a)$ for an odd $a \geq 3$. Since $E_{2}^{2}M' \cong \Lambda/(t+1,a) \neq 0$, the Λ–module M' is not the module $M(L)$ of a ribbon F_{g}^{n+1}–link L with $\beta_{n}(L) = 0$. On the other hand, $\Lambda/(t+1,a)$ is well-known to be the module of a non-ribbon F_{1}^{3}–knot K (for example, the 2–twist-spun knot of the 2–bridge knot of type $(a,1)$) and M is the module $M(L)$ of a ribbon F_{g}^{n+1}–link L with $\beta_{n}(L) = 0$ by Corollary 3.4. Hence M' is the module $M(L')$ of a non-ribbon F_{g}^{n+1}–link L' (taking a connected sum $L#K$) with $\beta_{n}(L') = 0$.

2. Let $M'' = M \oplus \Lambda/(2t-1,a)$ for an odd $a \geq 5$. Although M'' is cokernel-free of corank n and $\beta(M'') = 0$, we can show that M'' is not the module $M(L)$ of any F_{g}^{n+1}–link L with $\beta_{n}(L) = 0$. To see this, suppose $M'' = M(L)$ for an F_{g}^{n+1}–link L. Since $\Lambda/(2t-1,a)$ is not Λ–isomorphic to $\Lambda/(2t-1-1,a) = \Lambda/(t-2,a)$, the Λ–module $DM'' = \Lambda/(2t-1,a)$ is not t–anti isomorphic to the Λ–module $E_{2}^{2}DM'' = \text{hom}_{\mathbb{Z}}(DM'', \mathbb{Q}/\mathbb{Z}) \cong \Lambda/(2t-1,a)$ and hence by the second duality of [5] there is a t–anti isomorphism

$$\theta : DM'' \rightarrow E_{1}BH_{2}(\tilde{E}, \partial \tilde{E}).$$

Geometry & Topology Monographs 14 (2008)
This implies that $\beta_2(L) = \beta(H_2(\tilde{E}, \partial\tilde{E})) \neq 0$. Thus, M'' is not the module $M(L)$ of any F_{n+1}^r–link L with $\beta_1(L) = 0$. On the other hand, there is a ribbon F_{n+1}^r–link L'' with $M(L'') = M''$ by Theorem 3.2, because $e(E^2M'') = e(\Lambda/(2t - 1, a)) = 1$ and hence $e(E^2M'') + \tau(M'') = 1 + n$. In this case, we have $\beta_2(L'') = 2$ by Lemma 2.5.

4 A characterization of the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of virtual links

Figure 2: A real or virtual crossing point

The notion of virtual links was introduced by L H Kauffman [3]. A virtual r–link diagram is a diagram D of immersed oriented r loops in S^2 with two kinds of crossing points given in Figure 2, where the left or right crossing point is called a real or virtual crossing point, respectively. A virtual r–link ℓ is the equivalence class of virtual r–link diagrams D under the local moves given in Figure 3 which are called R-moves for the first three local moves and virtual R-moves for the other local moves. A virtual r–link is called a classical r–link if it is represented by a virtual link diagram without virtual crossing points. The group $\pi(\ell)$ of a virtual r–link ℓ is the group with Wirtinger presentation whose generators consist of the edges of a virtual link diagram D of ℓ.

Geometry & Topology Monographs 14 (2008)
and whose relations are obtained from \(D \) as they are indicated in Figure 4. It is easily checked that the Wirtinger group \(\pi(\ell) \) up to Tietze equivalences is unchanged under the R-moves and virtual R-moves. Figure 5 defines a map \(\sigma' \) from a virtual \(r \)–link diagram to a disk–arc presentation of a ribbon \(F_{1,1,\ldots,1} \)–link. S Satoh proved in \([16]\) that this

\[
\begin{align*}
 a &= d, b = a^{-1}ca & a &= d, b = c \\
 b & \quad c & b & \quad c
\end{align*}
\]

Figure 4: Relations

map \(\sigma' \) induces a (non-injective) surjective map \(\sigma \) from the set of virtual \(r \)–links onto the set of ribbon \(F_{1,1,\ldots,1} \)–links. For example, the map \(\sigma \) sends a nontrivial virtual knot into a trivial \(F_{1} \)–knot in Figure 6, where non-triviality of the virtual knot is shown by the Jones polynomial (see \([3]\)) and triviality of the \(F_{1} \)–knot is shown by an argument of \([2]\) on deforming a 1–handle. It would be an important problem to find a finite

Figure 6: A non-trivial virtual knot sent to the trivial \(F_{1} \)–knot
number of local moves generating the preimage of σ (see [16]). Yajima in [19] gives
a Wirtinger presentation of the group $\pi_1(S^4 \setminus L)$ of a ribbon F^r_g–link L. From an analogy
of the constructions, we see that the map σ induces the same Wirtinger presentation
of a virtual r–link diagram D and the disk–arc presentation $\sigma'(D)$. Thus, we have
the following proposition which has been independently observed by S G Kim [13], S
Satoh [16], and D Silver and S Williams [18] in the case of virtual knots:

Proposition 4.1 The set of the groups of virtual r–links is the same as the set of the
groups of ribbon $F^r_{1,1,\ldots,1}$–links.

For a virtual r–link ℓ, let $\gamma : \pi(\ell) \to \mathbb{Z}$ be an epimorphism sending every generator of a
Wirtinger presentation to 1, which is independent of a choice of Wirtinger presentations.
The *first Alexander* $\mathbb{Z}[\mathbb{Z}]$–module, or simply the module of a virtual r–link ℓ is the
Λ–module $M(\ell) = \text{Ker}\gamma/\text{[Ker}\gamma, \text{Ker}\gamma]$. The following corollary comes directly from
4.1.

Corollary 4.2 The set of the modules of virtual r–links is the same as the set of the
modules of ribbon $F^r_{1,1,\ldots,1}$–links.

The following theorem giving a characterization of the modules of virtual r–links comes
directly from *Theorem 3.2* and *Corollary 4.2*.

Theorem 4.3 A finitely generated Λ–module M is the module $M(\ell)$ of a virtual
r–link ℓ if and only if M is a cokernel-free Λ–module of corank $r - 1$ and has
$e(E^2M) \leq 1 + \beta(M)$.

![Figure 7: A virtual 2–link sent to the ribbon $F^3_{1,1}$–link in Figure 1](image)
Example 4.4 The ribbon $F^2_{1,1}$–link in Figure 1 is the σ–image of a virtual 2–link ℓ illustrated in Figure 7 with group $\pi(\ell) = \langle x, y \mid x = (yx^{-1}y^{-1})x(yx^{-1}y^{-1})^{-1}, y = (x^{-1}yx^{-1})(x^{-1}yx^{-1})^{-1} \rangle$ and module $M(\ell) = \Lambda/((t - 1)^2, 2(t - 1))$. Since $DM(\ell) = \Lambda/((t - 1), 2) \neq 0$, the virtual 2–link ℓ is not any classical 2–link. In fact, if ℓ is a classical link with $M(\ell)$ a torsion Λ–module, then we must have $DM(\ell) = 0$ by the second duality of [5] (cf [6]). It is unknown whether there is a classical link ℓ such that $t - 1 : DM(\ell) \to DM(\ell)$ is not injective (cf [6]), but this example means that such a virtual link exists.

We see from Theorem 4.3 that M is the module of a virtual knot (ie, a virtual 1–link) if and only if M is a cokernel-free Λ–module of corank 0 and has $e(E^2M) \leq 1$, for we have $\beta(M) = 0$ for every cokernel-free Λ–module of corank 0. For a direct sum on the modules of virtual knots, we obtain the following observations.

Corollary 4.5

1. For the module M of every virtual knot with $e(E^2M) = 1$, the $n(> 1)$–fold direct sum M^n of M is a cokernel-free Λ–module of corank 0, but not the module of any virtual knot.

2. For the module M of every virtual knot and the module M' of a virtual knot with $e(E^2M') = 0$, the direct sum $M \oplus M'$ is the module of a virtual knot.

Proof The module M^n is obviously cokernel-free of corank 0. Using that $E^2M^n = (E^2M)^n$, we see that $e(E^2M^n) \leq n$. If E^2M has an element of a prime order p, then we consider the non-trivial Λ_p–module $(E^2M)_p = E^2M/pE^2M$, where $\Lambda_p = \mathbb{Z}_p[\mathbb{Z}] = \mathbb{Z}_p[t, t^{-1}]$ which is a principal ideal domain. Using $e((E^2M)_p) = 1$, we have

$$e(E^2M^n) = e((E^2M)^n) \geq e(((E^2M)_p)^n) = n$$

and hence $e(E^2M^n) = n > 1$. By Theorem 4.3, M^n is not the module of any virtual knot, proving (1). For (2), the module $M \oplus M'$ is also cokernel-free of corank 0. Since $E^2M' = 0$, we have $E^2(M \oplus M') = E^2M$ and by Theorem 4.3 $M \oplus M'$ is the module of a virtual knot, proving (2).
5 A graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of surface-links

Let \mathcal{A}_g^r be the set of the modules $M(L)$ of all F^r_g–links L, and $\mathcal{A}[2] = \bigcup_{r=0}^{+\infty} \mathcal{A}_g^r$. In this section, we show the properness of the inclusions

$$\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_n \subset \cdots \subset \mathcal{A}[2].$$

To see this, we establish an estimate of the total genus g by the module of a general F^r_g–link. To state this estimate, we need some notions on a finite t–module. A finite Λ–module D is symmetric if there is a t–anti isomorphism $D \cong E^2 D = \text{hom}_{\mathbb{Z}}(D, \mathbb{Q}/\mathbb{Z})$, and nearly symmetric if there is an Λ–exact sequence

$$0 \to D_i \to D \to D^* \to D_0 \to 0$$

such that $D_i(i = 0, 1)$ are finite Λ–modules with $(t - 1)D_i = 0$ and D^* is a finite symmetric Λ–module. For a general F^r_g–link L, we shall show the following theorem:

Theorem 5.1 If M is the module $M(L)$ of an F^r_g–link L, then we have a nearly symmetric finite Λ–submodule $D \subset DM$ such that $g \geq e(E^2(M/D))/2 + \tau(M)$.

Proof Let $F^r_g = F^r_{g_1, g_2, \ldots, g_r}$. Let L_i be the $F^1_{g_i}$–component of L, and $\partial_i E$ the component of the boundary ∂E corresponding to L_i. We parametrize $\partial_i E$ as $L_i \times S^1$ so that the natural composite

$$H_1(L_i \times 1) \to H_1(\partial_i E) \to H_1(E) \xrightarrow{\gamma} \mathbb{Z}$$

is trivial. Let V_i be the handlebody of genus g_i. We construct a closed connected oriented 4–manifold $X = E \cup (\bigcup_{i=1}^{r} V_i \times S^1)$ obtained by pasting $\partial_i E$ to $L_i \times S^1 = (\partial V_i) \times S^1$. Then the infinite cyclic covering $p: \bar{E} \to E$ associated with γ extends to an infinite cyclic covering $p_X: \bar{X} \to X$, so that $(p_X)^{-1}(V_i \times S^1) = V_i \times R^1$. Since $H_*(\bar{X}, \bar{E}) \cong \oplus_{i=1}^{r} H_*(\{V_i, \partial V_i\} \times R^1)$, the exact sequence of the pair (\bar{X}, \bar{E}) induces a Λ–exact sequence

$$0 \to T_1 \to H_1(\bar{E}) \xrightarrow{i} H_1(\bar{X}) \to 0$$

where $(t - 1)T_1 = 0$. This exact sequence induces a Λ–exact sequence

(5.1.1) $$0 \to D_1 \to DH_1(\bar{E}) \xrightarrow{i} DH_1(\bar{X}) \to D_0 \to 0$$

for some finite Λ–modules $D_i(i = 0, 1)$ with $(t - 1)D_i = 0$.

To see (5.1.1), it suffices to prove that the cokernel D_0 of the natural homomorphism $i^*_{\Lambda}: DH_1(\bar{E}) \to DH_1(\bar{X})$ has $(t - 1)D_0 = 0$. For an element $x \in DH_1(\bar{X})$, we take...
an element \(x' \in H_1(\tilde{E}) \) with \(i_*(x') = x \). Since there is a positive integer \(n \) such that \((t^n - 1)x = 0\), the element \((t^n - 1)x' \in H_1(\tilde{E})\) is the image of an element in \(T_1 \). Hence \((t^n - 1)(t - 1)x' = 0\). Also, since there is a positive integer \(m \) such that \(mx = 0\), we also see that \(m(t - 1)x' = 0\), so that \((t - 1)x' \) is in \(DH_1(\tilde{E}) \) and \(D_0((t - 1)x') = (t - 1)x \). This means \((t - 1)D_0 = 0\), showing (5.1.1).

By the second duality in [5], there is a natural \(t \)-anti epimorphism \(\theta : DH_1(\tilde{X}) \to E^1BH_2(\tilde{X}) \) whose kernel \(D^* = DH_1(\tilde{X})^\theta \) is symmetric. Then

\[
e(E^2(DH_1(\tilde{X})/D^*)) = e(E^2E^1BH_2(\tilde{X})) \leq \beta BH_2(\tilde{X}),
\]

where the later inequality is obtained by using 2.2. Since \(H_*(\tilde{X}, \tilde{E}) \) is \(\Lambda \)-torsion, we see from Lemma 2.5 that

\[
\beta BH_2(\tilde{X}) = \beta_2(L) = 2(g - \tau(L)).
\]

In (5.1.1), the \(\Lambda \)-submodule \(D = (D^0)^{-1}(D^*) \subset DH_1(\tilde{E}) = DM(L) \) induces a \(\Lambda \)-exact sequence \(0 \to D_1 \to D \to D^* \to D_0' \to 0 \) for a finite \(\Lambda \)-module \(D_0' \) with \((t - 1)D_0' = 0\), so that \(D \) is nearly symmetric. Using that \(i_*^D \) induces a \(\Lambda \)-monomorphism \(DM(L)/D \to DH_1(\tilde{X})/D^* \), we see that there is a \(\Lambda \)-epimorphism \(E^2(DH_1(\tilde{X})/D^*) \to E^2(DM(L)/D) \), so that

\[
e(E^2(DM(L)/D)) \leq e(E^2(DH_1(\tilde{X})/D^*)) \leq 2(g - \tau(L)).
\]

Thus, we have \(g \geq e(E^2(DM(L)/D))/2 + \tau(L) \). \(\square \)

For an application of this theorem, it is useful to note that every finite \(\Lambda \)-module \(D \) has a unique splitting \(D_{r-1} \oplus D_c \) (see [9, Lemma 2.7]), where \(D_{r-1} \) is the \(\Lambda \)-submodule consisting of an element annihilated by the multiplication of some power of \(t - 1 \) and \(D_c \) is a cokernel-free \(\Lambda \)-submodule of corank \(0 \). As a direct consequence of this property, we see that if \(D \) is nearly symmetric, then \(D_c \) is symmetric. Then we can obtain the following result from Theorem 5.1.

Corollary 5.2 For every \(r \geq 1 \), we have

\[
\mathcal{A}_0' \subseteq \mathcal{A}_1' \subseteq \mathcal{A}_2' \subseteq \cdots \subseteq \mathcal{A}_n' \subseteq \cdots \subseteq \mathcal{A}'[2]
\]

and the set \(\mathcal{A}'[2] \) is equal to the set of finitely generated cokernel-free \(\Lambda \)-modules of corank \(r - 1 \), so that \(\mathcal{A}'[2] \cap \mathcal{A}'[2] = \emptyset \) if \(r \neq r' \).

Proof We have \(\mathcal{A}_g' \subseteq \mathcal{A}_{g+1}' \) for every \(g \) by a connected sum of a trivial \(F^1_g \)-knot. Let \(L_0 \) be a trivial \(F^0_0 \)-link whose module \(M(L_0) = \Lambda^{-1} \). Let \(K \) be a ribbon \(F^1_1 \)-knot with

\[Geometry & Topology Monographs 14 (2008)\]
We have a classical theorem. This means that among the modules \(M \) and higher-dimensional manifold-links with \(r \) knots with non-trivial Alexander polynomials, we see that the set \(A \) of the modules of virtual manifold-links. By Theorem 3.2 and Corollary 3.3, we have
\[e(T^2 M_n) = n. \]
Hence \(g \geq n/2 \) by Theorem 5.1. This means that among the modules \(M_n(2g + 1 \leq n \leq 2g + 1) \) there is a member \(M_n \) in \(A_{g+1}' \) but not in \(A_g' \). In fact, if \(M_{g+1} \not\in A_g' \), then \(M_{g+1} \) is a desired member. If \(M_{g+1} \in A_g' \), then we take the largest \(n \geq g + 1 \) such that \(M_n \in A_g' \). Since \(M_{2g+1} \not\in A_g' \), we have \(n < 2g + 1 \). Let \(L' \) be an \(F_g' \)-link with \(M(L') = M_n \), and \(L'' \) an \(F_g' \)-knot which is a connected sum of \(L' \) and \(K \). Then \(M_{g+1} = M(L'') \) is in \(A_{g+1}' \), but not in \(A_g' \). The characterization of \(A'[2] \) follows directly from Corollary 3.3, so that if \(r \neq r' \), then \(A'[2] \cap A'[2] = \emptyset \).

\[\square \]

6 A graded structure on the first Alexander \(\mathbb{Z}[\mathbb{Z}] \)-modules of classical links, surface-links and higher-dimensional manifold-links

An \(n \)-dimensional manifold-link with \(r \) components is the ambient isotopy class of a closed oriented \(n \)-manifold with \(r \) components embedded in the \((n + 2)\)-sphere \(S^{n+2} \) by a locally-flat embedding. A \(1 \)-dimensional manifold-link with \(r \) components coincides with a classical \(r \)-link even when we regard it as a virtual link by a result of M Goussarov, M Polyak and O Viro [1]. Let \(E_Y = S^{n+2} \setminus \Int(N(Y)) \) for a tubular neighborhood \(N(Y) \) of \(Y \) in \(S^{n+2} \). Since \(H_1(E_Y) \cong \mathbb{Z}^r \) has a unique oriented meridian basis, we have a unique infinite cyclic covering \(p: \tilde{E}_Y \to E_Y \) associated with the epimorphism \(\gamma: H_1(E_Y) \to \mathbb{Z} \) sending every oriented meridian to \(1 \). The first Alexander \(\mathbb{Z}[\mathbb{Z}] \)-module, or simply the module of the manifold-link \(Y \) is the \(\Lambda \)-module \(M(Y) = H_1(\tilde{E}_Y) \). Let \(A'[n] \) denote the set of the modules of \(n \)-dimensional manifold-links with \(r \) components by generalizing the case \(n = 2 \). Let \(R_{g}' \) be the set of the modules of ribbon \(F_g' \)-links. By Theorem 3.2 and Corollary 3.3, we have \(A'[2] = \bigcup_{g=0}^{\infty} R_{g}' \). Let \(V A'[1] \) denote the set of the modules of virtual \(r \)-links. By Theorem 3.2 and Corollary 4.2, we have \(V A'[1] = R_{A_g'} \). For the set \(A'[1] \), we further consider the subset \(A_{g+1}'[1] = A'[1] \cap A_{g}' \). We have \(A_{g}'[1] \subset A_{g+1}'[1] \subset A'[1] \) for every \(g \geq 0 \). Taking a split union of classical knots with non-trivial Alexander polynomials, we see that the set \(A_0[1] \) is infinite. We have the following comparison theorem on the modules of classical \(r \)-links, \(F_g' \)-links and higher-dimensional manifold-links with \(r \) components, which explains why we
consider the strictly nested class of classical and surface-links for the classification problem of the Alexander modules of general manifold-links.

Theorem 6.1

\[A'_g[1] \subsetneq A'_g[2] \subsetneq \cdots \subsetneq A'_g[n] = A'_g[1] \subsetneq RA'_g[2] \subsetneq RA'_g = V A'_g[1] \]

\[\subsetneq A'_1 \subsetneq \cdots \subsetneq A'_2 \subsetneq \cdots \subsetneq A'[2] = A'[3] = A'[4] = \cdots. \]

Proof By Lemma 2.4 and Corollary 3.3, we have \(A'[2] \supset A'[n] \) for every \(n \geq 1 \). To see that \(A'[n] \subset A'[n+1] \), we use a spinning construction. To explain it, let \(M(Y) \in A'[n] \) for a manifold-link \(Y \). We choose an \((n+2)\)-ball \(B^{n+2}_0 \subset S^{n+2} \) such that the pair \((B^{n+2}_0, Y_0)\) \((Y_0 = Y \cap B^{n+2}_0)\) is homeomorphic to the standard disk pair \((D^2 \times D^n, 0 \times D^n)\), where \(D^n \) denotes the \(n \)-disk and \(o \) denotes the origin of the \(2 \)-disk \(D^2 \). Let \(B^{n+2} = \text{cl}(S^{n+2} \setminus B^{n+2}_0) \) and \(Y' = \text{cl}(Y \setminus Y_0) \). We construct an \((n+1)\)-dimensional manifold link \(Y^+ \subset S^{n+3} \) by

\[Y^+ = Y' \times S^1 \cup (\partial Y') \times D^2 \subset B^{n+2} \times S^1 \cup (\partial B^{n+2}) \times D^2 = S^{n+3}. \]

Then the fundamental groups \(\pi_1(E_Y) \) and \(\pi_1(E_{Y^+}) \) are meridion-preservingly isomorphic by van Kampen theorem and hence \(M(Y) = M(Y^+) \). This implies that \(A'[1] \subset RA'[2] \) and \(A'[2] = A'[3] = A'[4] = \cdots \). Let \(g \) be an integer with \(0 < g \leq r - 1 \). Let \(\ell \) be a classical \((g + 1)\)-link with \(M(\ell) \) a torsion \(\Lambda \)-module. Then \(M(\ell) = M(\ell) \) for a ribbon \(F^r_{g-1} \)–link \(L \) by the spinning construction. The \(\Lambda \)-module \(M' = M(\ell) \oplus \Lambda^{r-1-g} \) is in \(A'[1] \) as the module of a split union \(\ell^r_{g} \) of \(\ell \) and a trivial \((r-1-g)\)-link and in \(RA'_{g} \subset A'_{g} \) as the module of a split union \(L^r_{g} \) of \(L \) and a trivial \(F^r_{g-1-g} \)–link. Hence \(M' \) is in \(A'_g[1] \). If \(M' = M(L') \) for an \(F^r_{g-1} \)–link \(L' \), then we have \(\tau(L') = (r-1) - (r-1-g) = g \) and by Lemma 2.5 \(\beta_2(L') = 2(s - \tau(L')) = 2(s - g) \geq 0 \). Hence \(s \geq g \). Thus, \(M' \) is not in \(A'_g[1] \). This shows that \(A'_g[1] \subsetneq A'_g[2] \subsetneq RA'_g \subsetneq RA'_g \). This last proper inclusion also holds for every \(g \geq r \). In fact, by taking \(M = (\Lambda/(t-1))^r_{g-1} \oplus (\Lambda/(t+1,a))^g_{r-1} \) for an odd \(a \geq 3 \), we have \((E^2_M) + \tau(M) = (g-r+1) + (r-1-g) = g \). Since \(M \) is cokernel-free and \(\text{cr}(M) = r-1 \), we have \(M \in RA'_g \) by Theorem 3.2. Next, let \(M = M(L) \in RA'_g \) have \((E^2_M) + \tau(M) = g \) and \(pDM = 0 \) for an odd prime \(p \). Let \(K \) be an \(S^2 \)–knot with \(M(K) = \Lambda/(t+1,p) \) (see Example 3.5 (1)). Then we have \(M' = M \oplus \Lambda/(t+1,p) = M(LK) \in A'_g \) for a connected sum \(L#K \) of \(L \) and \(K \). Then we have \(E^2_M' + \tau(M') = g + 1 \) and \(M' \notin RA'_g \) by Theorem 3.2. Thus, \(RA'_g \subsetneq A'_g \) for every \(g \). The properness of \(A'[1] \subsetneq RA'_g \) follows by a reason that the torsion Alexander polynomial of every classical \(r \)–link in [8] is symmetric, but there is a ribbon \(S^2 \)–knot with non-symmetric Alexander polynomial (see [10] for the detail). □
On the inclusion $\mathcal{A}'[1] \subset \mathcal{A}'[2]$, we note that the invariant $\kappa_1(\ell)$ in [8] is equal to the torsion-corank $\tau(L)$ for every classical r–link ℓ and every F_r^ℓ–link L with $M(\ell) = M(L)$.

References

[1] M Goussarov, M Polyak, O Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000) 1045–1068 MR1763963

[2] F Hosokawa, A Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979) 233–248 MR527028

[3] L H Kauffman, Virtual knot theory, European J. Combin. 20 (1999) 663–690 MR1721925

[4] A Kawauchi, A test for the fundamental group of a 3-manifold, J. Pure Appl. Algebra 28 (1983) 189–196 MR697665

[5] A Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23 (1986) 633–651 MR866269

[6] A Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4 (1987) 31–41 MR934138

[7] A Kawauchi, The first Alexander modules of surfaces in 4-sphere, from: “Algebra and topology 1990 (Taejon, 1990)”, Korea Adv. Inst. Sci. Tech., Taejŏn (1990) 81–89 MR1098722

[8] A Kawauchi, The quadratic form of a link, from: “Low-dimensional topology (Funchal, 1998)”, Contemp. Math. 233, Amer. Math. Soc. (1999) 97–116 MR1701676

[9] A Kawauchi, An intrinsic Arf invariant on a link and its surface-link analogue, from: “Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999)”, Topology Appl. 121 (2002) 255–274 MR1903695

[10] A Kawauchi, On the surface-link groups, from: “Intelligence of low dimensional topology (Hiroshima, 2006)”, (J S Carter, S Kamada, L H Kauffman, A Kawauchi, T Kohno, editors), Knots and everything 40, World Scientific (2007) 157–164

[11] A Kawauchi, Characterizing the first Alexander $\mathbb{Z}[\mathbb{Z}]$-modules of surface-links and of virtual links, to appear in Proc. Second East Asian School of Knots and Related Topics in Geometric Topology (Dalian, 2005)

[12] A Kawauchi, T Shibuya, S Suzuki, Descriptions on surfaces in four-space. II. Singularities and cross-sectional links, Math. Sem. Notes Kobe Univ. 11 (1983) 31–69 MR742906

[13] S-G Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications 9 (2000) 797–812 MR1775387
The first Alexander $\mathbb{Z}[\mathbb{Z}]$–modules of surface-links and of virtual links

[14] J Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977) 1–50 MR0461518
[15] A Pizer, Matrices over group rings which are Alexander matrices, Osaka J. Math. 21 (1984) 461–472 MR759474
[16] S Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000) 531–542 MR1758871
[17] M Sekine, Kawauchi’s second duality and knotted surfaces in 4-sphere, Hiroshima Math. J. 19 (1989) 641–651 MR1035148
[18] D S Silver, S G Williams, Virtual knot groups, from: “Knots in Hellas ’98 (Delphi)”, Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ (2000) 440–451 MR1865722
[19] T Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962) 63–71 MR0151960
[20] H Zieschang, On the Alexander and Jones polynomial, from: “Topics in knot theory (Erzurum, 1992)”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Acad. Publ., Dordrecht (1993) 229–257 MR1257912

Department of Mathematics, Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@sci.osaka-cu.ac.jp

Received: 6 October 2005 Revised: 9 March 2007