Brachytherapy in accelerated partial breast irradiation (APBI) – review of treatment methods

Janusz Skowronek, MD, PhD, Ass. Prof., Magdalena Wawrzyniak-Hojczyk, MD, Kinga Ambrochowicz, MD
Brachytherapy Department, Greater Poland Cancer Center, Poznań, Poland

Abstract
Breast conserving surgery (BCS) with following radiotherapy (EBRT) of the conserved breast became widely accepted in the last decades as the treatment of early invasive breast cancer. In an early stage of breast cancer, research has shown that the area requiring radiation treatment to prevent cancer from local recurrence is the breast tissue that surrounds the area where the initial cancer was removed. Accelerated partial breast irradiation (APBI) is an approach that treats only the lumpectomy bed with 1-2 cm margin, rather than the whole breast and as a result allows accelerated delivery of the radiation dose in four to five days. Published results of APBI are very promising. It is evident that APBI will play a role in the management of a selected group of early breast cancer. We discuss current status, indications, technical aspects and recently published results of APBI using different brachytherapy techniques.

Key words: APBI, balloon, brachytherapy, breast cancer, interstitial.

Purpose
Breast cancer is the most frequently detected cancer in women in developed countries and its incidence ranges from 25% to 30% of all cancers in women. Average age of breast cancer patients range between 45 and 65, however, in recent years is noticeable that the average age of incidence tend to lower [1]. With the prevalence of screening and increasing awareness of the disease, more and more women may be treated with breast-conserving surgery (BCS) with a complementary external beam radiation therapy (EBRT) and tumor’s bed dose increasing (‘boost’). Results of conservative treatment supplemented by radiation therapy are as good as the results obtained after mastectomy [2-6]. Further advances in radiotherapy techniques and knowledge of the biology of breast cancer, in addition to the standard methods of combination therapy (WBRT and ‘boost’), increases the application of APBI as a radical treatment in particular cases [7-11]. This method of radiation therapy is used in a selected group of patients in the early stages of the disease [3,12-17]. The main reason for APBI introduction was the assumption that it leads to obtain an equivalent local control rates with less toxicity of treatment compared with whole breast irradiation technique (EBRT) after BCS in the selected group of patients. The results of studies comparing the effectiveness of BCS + WBRT and APBI have shown that a very large percentage of local recurrence (more than 80-90%) occurs in the immediate vicinity of the original location of the tumor.

This was the primary cause for the use of brachytherapy alone after breast-conserving therapy in a strictly selected group of patients. The advantage of this method is also shorter time of treatment from 5-7 weeks (WBRT + boost), to 4-5 days of APBI. It is supposed to be capable of reducing the rate of complications: radiation-induced reactions, telangiectasia and fibrosis. Due to increasing use of APBI methods we present the most recent reports on this subject. We describe the treatment techniques, principles of patient selection for this method, the results of treatment and current recommendations of GEC-ESTRO (Groupe Européen de Curietherapie – European Society for Therapeutic Radiology and Oncology), ABS (American Brachytherapy Society) and ASTRO (American Society for Therapeutic Radiology), three major world societies of radiation oncologists.

Rationale for use of APBI
The results of studies examining the efficacy of BCS followed by whole breast radiotherapy (WBRT) showed that a very large percentage of local recurrence arises in the immediate vicinity of the original location of the tumor (Fig. 1). At least five prospective randomized studies examining the percentage of local recurrence after radiotherapy the whole breast were published and it was found that 69% to 90% recurrences occur in immediate vicinity of the primary tumor (Table 1). In other studies, the percentage of recurrences in other quadrants than in being treated or contralateral...
breast was 0.9% to 3.5% in prospective studies and 2% to 5% in retrospective studies (Table 2). This was the basic cause for the use of brachytherapy alone after BCS treatment in a strictly selected group of patients [5,10,15,26-28]. Another advantage of this method pointed out by many authors is also shortening the treatment duration from 5-7 weeks (conventional EBRT) to 4-5 days, what, particularly for working women, living far away from the cancer center and older patients is important. Offeresen et al. [29] in the summary pointed out that in the U.S. socio-economic factors affect the type of surgery – poorer women (eg, paying a lower insurance premium) and/or living far from the radiotherapy center choose mastectomy, even after qualifying for the BCS. In some areas, up to 25% of older women after BCS are not irradiated from these reasons. After examination of 175 000 patients with early breast cancer (SEER database) it was found that in 1992-2003 the percentage of BCS increased from 41% to 60%, while the proportion of patients irradiated after BCS decreased from 79% to 71%. Undoubtedly it affects the increased risk of local recurrences after BCS. Similar conclusions were reached by Njeh et al. [30] – in this article, they exchanged the factors affecting to decide RT: convenience, accessibility, cost, distance from the center of RT, lack of transportation, lack of social support, movement difficulties of patients doctor bias, age of the patient and fear of radiation. Also in Japan, only about 70% of patients are treated with radiotherapy after BCS, for similar reasons as in the U.S.

Indications for APBI

Recommendations of the American Brachytherapy Society (ABS) and the American Society of Breast Surgeons (ASBS) on the qualifications for APBI are shown in Table 3 [31], while the GEC-ESTRO (Groupe Européen de Curie-thérapie European Society for Therapeutic Radiology and Oncology) recommendations are posted in Table 4 [32].

Contraindications for APBI

It lists: clinical stage III or IV, no evaluation of surgical margins, presence of extensive intraductal component (EIC), Paget’s disease, infiltration or other changes in skin, present contralateral breast cancer (or in the past), previous others cancers (within 5 years from eligibility for the study) with the exception of skin cancer and 0 or I stage FIGO cervical cancer (previous), pregnancy or lactation period, connective tissue disorders, collagen diseases, genetic or metabolic proceeding with hypersensitivity to radiation such as Ataxia teleangiectasia or similar, disorder or mental diseases, anticipated difficulties with carrying out brachytherapy [3,6,10,11].

Table 1. Spatial pattern of ipsilateral breast relapse (IBTR) in patients enrolled in randomised trials testing the effect of whole breast radiotherapy [11]

Trial (time of primary treatment)	Median follow-up (range)	Recurrence number/ Total number of patients	Pattern of IBTR
NSABP B-06 (1976-1984) [12]	39 (5-95) months	110 (1108)	86% within or close to the quadrant of the index cancer 14% more diffuse within the breast
Uppsala-Orebro (1981-1988) [13]	10 years	57 (381)	69% in the surgical field 3.6% in the cuticular scar 3.6% in the skin overlying the surgical field 23.6% in the breast parenchyma outside the field of surgery
Ontario Clinical Oncology Group (1984-1989) [14]	43 months	131 (837)	86% (83% with RT) at the site of primary surgery
Milan III (1987-1989) [15]	9 years	75 (579)	85% (84% with RT) in the scar area 15% (16% with RT) in other quadrants
SweBCG 91-RT (1991-1997) [16]	5 years	104 (1178)	90% in the same quadrant as the previous tumour 10% in other quadrants
In APBI currently are applied several techniques: 1) Interstitial brachytherapy (HDR, PDR, permanent implants); 2) Brachytherapy using the balloons (Mammosite, Contura); 3) Hybrid brachytherapy devices (SAVI applicator); 4) External beam radiotherapy (3D, IMRT); 5) IORT (intraoperative radiotherapy) with electrons or X-rays. Below we will discuss the basic principles of brachytherapy techniques.

Patient qualification for brachytherapy techniques

Before preparing the treatment plan, a careful evaluation of tumor size and location should be made (clinical examination, mammography, ultrasonography (US), magnetic resonance (MRI)), determination of the stage of disease according to TNM and detailed histopathological examination should be performed. In the course of conservative treatment it is advisable to leave 4 to 6 clips on the border of tissue removed in the axis of anterior-posterior, posterior-medial, sagittal, up and down, which will facilitate the preparation of the brachytherapy treatment plan. Clipping of tumor bed is considered by many authors as the most precise factor determining the accuracy of brachytherapy.

Below we will discuss the basic principles of brachytherapy techniques.
Interstitial multicatheter brachytherapy

Currently, two brachytherapy techniques are used in breast cancer brachytherapy: HDR (high dose rate) and PDR (pulsed dose rate). Some clinical studies are published on using permanent implants (I125, Pd103) [33,34].

Techniques
Perioperative application of catheters

Brachytherapy using interstitial applicators can be performed in two ways. Perioperative brachytherapy involves the assumption of flexible applicators during surgery in place of the tumor bed. In this method, BT is applied immediately during BCS. The advantage of a perioperative technique is a need for only one general anesthesia (implantation of applicators takes place during surgery), resulting in reducing overall treatment time and the ability to precisely determining the location of the tumor visible during surgery. Throughout lumpectomy/quadrantectomy, the surgeon provides surgical clips (should be 6) to determine the tumor bed (the clips are helpful later in treatment planning). Applying of applicators requires precision, experience and basic knowledge in the field of radiation from the surgeon. The limitation of perioperative “boost” is the lack of the final histopathological examination - the risk of incorrect BT qualification can be leveled by precise clinical staging before procedure, intraoperative histological examination and the necessary implementation of the Sentinel-Lymph-Node Biopsy (SLN). The irradiated area is limited to the surgical bed with 1-1.5 cm margin depending on technique.

Application of catheters after BCS

Applicators are often implanted after healing of the surgical scar and after receiving the final histopathological diagnosis in 2-4 weeks after surgery. Radiation oncologist inserts applicators after visualization of the tumor bed using X-ray (the location of surgical clips) and ultrasound (in general) or local anesthesia (depending on the experience of the center). Location of applicators on the skin with subcutaneous tissue and part of the breast is anesthetized with lidocaine or Xylocaine (2%) solution, while analgesics are intravenously administered. General anesthesia involves standard procedures. After determining the shape and position of the tumor bed, the correct template and number of planes is selected, as well as the distance between the applicators.

Fig. 2. Interstitial brachytherapy for breast cancer – implantation of 7 flexible applicators attached to the skin with buttons, the tumor bed localized by ultrasound.
plicators and the active length for stepping source. The num-
ber of implanted applicators has to be determined indi-
vidually, depending on breast size, location of the tumor
bed and type of surgery (tumorectomy, quadrantectomy).
Frequently it is from 7 to over a dozen. Figure 2 shows im-
ages of applicators implanted in a patient with breast can-
cer after quadrantectomy, covering the upper external quad-
rant. Figures 3-5 present examples of treatment plan and
applicators used in interstitial BT.

Balloon brachytherapy (MammoSite, Contura)
and hybrid SAVI applicators

This technique was intended to reduce the technical dif-
ficulties associated with EBRT treatment planning and ap-
plication of many interstitial applicators. The balloon ap-
plicator consists of a silicone balloon catheter, containing
a channel for filling the balloon and 1 to 8 channels to in-
troduce radioisotope (Figs. 6A-B, 7A-B). SAVI applicator
does not include a balloon, but only applicators to adapt
to the shape of the box (Figs. 8A-D). Balloon technique in
principle is applicable in APBI without WBRT after surgery.
HDR sources are used in this technique. Balloon applica-
tors may be placed in the bed of the tumor during the BCS
(rarely) or 2-4 weeks after surgery with the help of ultra-
sound. Previously published results suggest a satisfac-
tory treatment outcome (as measured by the percentage of
local failure) and good cosmetic results (80% to 93% of pa-
tients) [36-43]. So far, we do not have randomized studies
comparing this technique treatment with interstitial BT.
The possible response will bring the results of Phase III Trial (NSABP B-39/RTOG 0413) conducted by the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the Radiation Therapy Oncology Group (RTOG). The objective of this trial is to compare the results of different treatment methods: WBRT, APBI with MammoSite or multicatheter interstitial BT 3D EBRT in stage 0, I and II of breast cancer [38].

Balloon brachytherapy was developed as an alternative to interstitial brachytherapy. Interstitial brachytherapy requires the experience in setting up many interstitial applicators, while using balloon brachytherapy is simpler in the application. Cosmetic results after balloon brachytherapy techniques seem to be very acceptable [37,40,43-45] with a high rate of satisfactory or excellent results. To achieve such results, the proper selection of patients (large breasts, central location of the primary tumor) is significant.

Technique

The balloon applicator consists of a silicone balloon with catheter to fill the balloon with fluid and 1 to 8 channels, where a radioactive source is placed. For the greater precision, in most centers using this method, the balloon is fixed

![Fig. 7. A) Contura balloon applicator (SenoRx®) [30]. B) Contura balloon applicator on CT section with the distribution of isodoses, 5 channels for iridium visible](image1)

![Fig. 8. A) Applicator SAVI (Strut Adjusted Volume Implant) with expanded channels (Cianna Medical®) [30]. B) SAVI applicator X-ray images showing surgical clips (arrows) [35]. C) SAVI applicator, a balloon with a visible isodoses [35]](image2)
in the operating room under ultrasonography. Then the applicator is fluid-filled to a volume strictly adhering to the walls of the tumor bed. Afterwards, a cross-section CT is made in order to prepare a treatment plan. Target (CTV) includes the volume of the balloon with a margin of 1 cm. Critical organs include the skin and lungs. In this technique HDR sources are used.

Doses

The most common treatment schemas of APBI techniques are: 1) fraction dose of 3.4 Gy two times daily with an interval of 6 hours, 10 fractions in 5 days to a total dose of 34 Gy; 2) fraction dose of 4 Gy two times daily – 8 fractions to 32 Gy; 3) fraction dose of 4.3 Gy two times daily – 7 fractions to 30.1 Gy [31,32].

Electronic brachytherapy [30]

A platform for delivering HDR brachytherapy radiation has been developed that involves the electronic generation of kV X-rays instead of using a radioactive source. The Axxent X-Ray Source manufactured by Xoft, Inc. was approved by the FDA for the treatment of breast cancer in January 2006 (Figs. 9A-C). The Xoft Axxent produces X-rays ranging from 20 to 50 kV, although only the 50 kV X-ray setting is used in breast brachytherapy. Using the 50 kV setting, the average energy of the X-rays is 28 keV; the radial dose function lies between those of 125I and 103Pd sources [46]. The Xoft Axxent Electronic Brachytherapy source is used in conjunction with a balloon applicator. The disposable source is intended to be used for a maximum of 10 fractions. Testing of the inter-source consistency performed by Rivard et al. shows that individual sources produce predictable energy spectra, anisotropy functions and radial dose functions. As such, independent dosimetric verification is not necessary for each source. Instead, prior to each treatment, a single measurement of the source air-kerma strength is the only requirement [46].

The low energy photons emitted from the kV brachytherapy source (KVB) have a limited range that obviates the need for a shielded radiation vault. This expands the settings in which the source could be used and may increase the availability of PBI. Additionally, the difference in photon energy between a KVB source and an 192Ir source has dosimetric implications. Dickler et al. found that the %V90 and %V100 do not appear to differ between KVB and MammoSite, demonstrating that KVB offers comparable target volume coverage. Due to its rapid dose fall-off, KVB provides a mean ipsilateral lung %V30 of 1.1% compared to 3.7% for MammoSite. Using KVB, the volume of the PTV receiving 200% of the prescription dose slightly exceeded the volume associated with an increased risk of fat necrosis in a previous study by Wazer et al. [44]. Similarly, a phantom study of KVB by Smitt et al. found that in order to achieve 90% coverage of the PTV, the V200 varied from 16 to 22 cm³ [48]. These figures are far higher than those of MammoSite and approach the dose-volume constraints that have been shown to be correlated with fat necrosis in studies of interstitial multicatheter brachytherapy [49]. However, it is unclear if dosimetric parameters that predict fat necrosis in multicatheter procedures are applicable to balloon applicator procedures. The effect of chemotherapy on the development of fat necrosis also remains to be clarified.

Fig. 9. A) Axxent Electronic Brachytherapy System, the control unit (Xoft®) [30]. B) Axxent Electronic Brachytherapy System, X-ray source HDR (Xoft®) [30]. C) Axxent Electronic Brachytherapy System, a balloon applicator (Xoft®) [30]
Table 5. Comparison of APBI techniques – from Offersen [29] and Sarin [50]

Coverage of target	3D EBRT	Interstitial brachytherapy HDR, LDR, PDR	MammoSite	Target, 50 kV X-rays	IORT, electrons
Thickness of cavity wall irradiated	PTV = tumor bed + 20-25 mm to field edge from PTV	1-2 cm	dose prescribed to 1 cm from surface of applicator	dose prescribed to 1 mm from surface of applicator	dose prescribed to 90% isodose line. 80% isodose at 13 mm (3 MeV) – 24 mm (9 MeV)
Dose homogeneity	best	good	good	good	good
Sparing of normal breast/other organs	least	good	good	best	varies with location
Skin dose	least	least	variable	least (can shield)	least
Technical feasibility for various size, shape or location of cavity	suitable for virtually all cases	not suitable if inadequate tissue or near axilla	not suitable for large/irregular cavities, or at the periphery of the breast	not suitable for large/irregular cavities, or at the periphery of the breast	not suitable for tumors near brachial lexus/axilla or skin
Expertise required	average	high	average	high	very high
Potential for wide spread use	very good	fair	very good	fair	limited
Main drawback	relatively higher dose to normal tissue and breathing motion	adequacy of target coverage in some cases and wider applicability	cavity shape and size. Although easy to use, stringent QA is required. Skin dose may be high	very limited depth irradiated; cavity shape and size, histology not available	wider applicability. Histology not available, based on quadrantectomy

Table 6. Results of recent clinical experience with interstitial brachytherapy with more than 5 years follow-up [30]

Author	No of cases	Follow up interval (years)	Technique	Scheme	Total dose (Gy)	5-year LR (%)	Good/Excellent cosmesis
Strnad et al.	274	5.25	PDR/HDR	PDR – 0.6 Gy/h HDR – 4 Gy × 8 fr.	PDR = 50 Gy HDR = 32 Gy	2.9%	90%
Antonucci et al.	199	9.6	LDR/HDR	HDR – 0.52 Gy/h × 96 h	HDR = 4 Gy × 8 fr. HDR = 3.4 Gy × 10 fr.	5%	99%
Johansson et al.	50	7.2	PDR	HDR = 50 Gy/5 d	50 Gy	4%	56%
Arthur et al.	99	7	LDR/HDR	HDR = 3.5 Gy/5 d HDR = 3.4 Gy × 10 fr.	45 Gy (LDR) HDR = 34 Gy (HDR)	4%	n/a
Polgar et al.	128	6.8	HDR	HDR = 5.2 Gy × 7 fr.	36.4 Gy	4.7%	77%
King et al.	51	6.25	LDR/HDR	HDR = 4 d HDR = 4 Gy × 8 fr.	45 Gy (LDR) HDR = 32 Gy (HDR)	3.9%	75%
Otto et al.	274	5.25	PDR/HDR	HDR = 5 d, 0.6 Gy/h HDR = 4 Gy × 8 fr.	49.8 Gy (PDR) HDR = 32 Gy (HDR)	2.9%	92%
Polgar et al.	45	11.1	HDR	HDR = 4.33 Gy × 7 fr. HDR = 5.2 Gy × 7 fr.	30.3 Gy HDR = 36.4 Gy	4.4%	78%

LR – local recurrence; HDR – high dose rate; LDR – low dose rate; PDR – pulsed dose rate; n/a – data not available; h – hours, d – days, fr. – fractions

Results of APBI

Comparison of different APBI techniques is posted in Table 5 [29,50]. Clinical results of APBI after various treatment techniques are presented in tables. Table 6 presents the results of interstitial brachytherapy, Tables 7, 8 – results of balloon brachytherapy.
Table 7. Some of the recent clinical experience with MammoSite [29]

Institution/Study	No. of cases	Follow-up (years)	Inclusion criteria and definition of target	Ipsilateral breast recurrence
American Society of Breast Surgeons, MammoSite Breast Brachytherapy Trial [59-64]	1255	2.5	> 45 years, T6, 2 cm, N0, negative margins, ductal only, applicator placement < 10 weeks postoperative, cavity P3 cm in one dimension, no EIC	2 years – 1.11%, 3 years – 1.79%
Texas Cancer Clinic San Antonio [65]	67	1.1	≥ 45 years, T < 3 cm, N0, negative margins, lumpectomy cavity 3-6 cm	NA
Kaiser Permanente Los Angeles Medical Center [66,67]	51	1.3	≥ 45 years, T6, 2 cm, N0, ductal only, negative margins	0
Rush University Medical Center, Chicago [68,69]	78	2.2	≥ 45 years, T < 3 cm, N0, negative margins	7.1%
Medical University of South Carolina [70]	37 (7 with DCIS)	0.5	any age, pT1-2N0, negative margins	NA
Tufts New England [71,72]	38	1.4	any age, T < 3 cm, ductal and DCIS, N0 (solitary nodal micrometastasis accepted), negative margins > 1 mm	NA
European MammoSite trial [73,74]	28	1.2	≥ 60 years, T ≤ 2 cm, ductal only, grade 1/2, margins > 5 mm, ER+, balloon-skin distance > 7 mm, lumpectomy cavity > 3 cm, no EIC	0

EIC – extensive intraductal component; DCIS – ductal carcinoma in situ; ER – estrogen receptor; PR – progesterone receptor; N/A – data not available; d – days; fr – fractions

Table 8. Local recurrences after MammoSite [31]

Trial	No. of cases	Follow-up (months)	Local recurrences rate (%)
ASBS TRIAL [75]	1440	30	1.04
Tufts/Medical College Virginia/Rhode Island [71]	28	19	0
St. Vincent Cancer Center [66]	31	11	0
Rush University Medical Center [76]	70	26	5.7
Kaiser Permanente [49]	40	13	0
Medical University South Carolina [74]	90	24	2.2
ASBS DCIS TRIAL [77]	191	7	0
William Beaumont [68]	80	22	2.5
European TRIAL [73]	44	14	0
International TRIAL [78]	23	20	0
Western Pennsylvania Hospital [79]	55	24	3.6
Oscar Lambret Center [69]	25	13	0

Table 9. Rates of good and excellent cosmesis after MammoSite brachytherapy [31]

Institution/Study	Number of patients	Follow-up (months)	Good or excellent cosmesis (%)
ASBS registry trial [63]	1449	30	94
FDA trial [75]	36	65	81
Tufts/medical college of Virginia/Rhode Island [46]	28	19	93
St. Vincent’s cancer center [66]	31	11	86
Rush university medical center [76]	30	26	93
Kaiser permanente [49]	40	13	97
Medical University of South Carolina [74]	90	24	90
ASBS DCIS trial [77]	191	7	94
William Beaumont [68]	80	22	88
European trial [73]	44	14	75
International trial [78]	18	20	67
Oscar Lambret center [69]	25	13	84
Table 10. Cosmesis and complications after APBI with interstitial brachytherapy [29]

Institution, Technique	Number of patients	Follow-up	Cosmesis and complications
The William Beaumont Hospital, USA [49,80-82] HDR 32-34 Gy/8-10 fr/4-5 days LDR 50 Gy, 96 hours	199	5.7 years (L.R.), 6.4 years (cosmesis)	7% acute infection, 4% late infection, 11% fat necrosis at ≥ 5 years, good/excellent cosmesis in > 90%
Ochsner Clinic, USA [83] HDR 32-34 Gy/8-10 fr/4-5 days LDR 45 Gy, 4 days	50	6.3 years	cosmesis scored at median 20 months: 22% grade II/III compl., 8% grade III compl., 75% had an excellent/good cosmesis, all based on²
Ochsner Clinic, USA [84] HDR 32-34 Gy/8-10 fr/4-5 days LDR 45 Gy, 4 days	99	2.7 years	late grade III tox. 18% (LDR) and 4% (HDR), no late grade IV tox., all based on²
London Regional Cancer Center, Ontario [85] HDR 37.2 Gy/10 fr/5 days	39	7.6 years	median overall cosmetics score 89%, 13% had fat necrosis, all based on²
Tufts New England [44,86-88] HDR 34 Gy/10 fr/5 days	75	6.1 years	cosmesis, excellent/good/fair-poor: 67%/24%/9% at last follow-up, late skin tox. grad. I/II/III 77%, 19%, 4%, late subcutaneous tox. grad. I/II/III 55%, 15%, 12%, 18%
Tufts New England [89] LDR 50, 55, and 60 Gy	48	1.9 years	very good/excellent cosmesis 91.8%, 12.5% perioperative complications, 25% had fibrosis, 8% moderate to severe fibrosis, based on²
Tufts New England [90] HDR 34 Gy/10 fr/5 days	32	7 years	18% had fat necrosis > 5 years, 35.7% moderate to severe subcutaneous fibrosis > 5 years, 89% excellent cosmesis at 5 years, toxicity based on onc, fibrosis > 5 years
University of Kansas [91] LDR 20-25 Gy	24	3.9 years	cosmesis good to excellent in 100%, no late complications, based on²
Guys Hospital, London [92,93] LDR 55 Gy, 5 days	27	6 years	cosmesis good to excellent in 83%, no fibrosis, based on²
Guys Hospital, London [94] LDR 45 Gy, 4 days	49	6.3 years	abnormal breast in 58%, based on²
National Institute of Oncology, Hungary [95,96] HDR 30.3-36.4 Gy/7 fr/4 days	45	6.8 years	cosmesis excellent/good in 84.4%, fat necrosis 20%, ≥ grade 2 late radiation reaction 26.7%, based on³
National Institute of Oncology, Hungary [55,97] HDR 36.4 Gy/7 fr/4 days (n = 88) or ERBT 50 Gy/25 fr (n = 40)	126	5.5 years	excellent to good in 81.2% (HDR) and 70% (electrons), based on³, 4-year actuarial fat necrosis 36.5% (HDR) and 17.7% (electrons), based on institutional scheme
Erlangen, Germany [57,98-100] HDR (36%) 32 Gy/8 fr/5 days; PDR (64%) 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour/5 days	274	2.7 years	cosmesis excellent to good in 94%, acute toxicity in 6.6%, fat necrosis 4.7%, breast tissue fibrosis in 19.3% and telangiec-tasia in 12.8%, scoring based on²,³,⁴

Number of patients refers to patients diagnosed with invasive cancer². Cosmesis scored according to institutional guidelines:² Cosmesis scored according to Harvard criteria [101].³ Skin and subcutaneous toxicity scored according to Radiation Therapy Oncology Group (RTOG)/Eastern Cooperative Oncology Group system [102].⁴ Acute and late side effects based on LENT SOMA [103].

Cosmetic effect

Cosmetic results after brachytherapy techniques seem to be very satisfactory. Draws attention to a high rate of satisfactory or excellent results. Essential to achieve such results is a proper selection of patients (large breasts, the central location of the primary tumor).

The tables below provide a summary of cosmetic results after using the balloon brachytherapy and interstitial brachytherapy (Tables 9, 10).

Conclusions

The percentage of local recurrence and the cosmetic results are an important argument for the choice of APBI brachytherapy technique. Based on available results from prospective clinical trials where excellent results in selected groups of patients are achieved, it seems reasonable to use of APBI outside clinical trials in selected cases. These is a conclusion also of GEC-ESTRO Breast Cancer Working Group [32]. Strict criteria for selecting patients with early...
breast cancer group (low-risk group) and systematic quality control procedures (QA) must be preserved. These recommendations may be an indication for physicians and patients to choose an APBI techniques.

References

1. Jassem J (ed.). Rak sutka. Springer-PWN, Warszawa 1998 [in Polish].
2. Clarke DH, Vicini F, Jacobs H et al. High dose rate brachytherapy for breast cancer. In: Nag S (ed.). High dose rate brachytherapy: A textbook. Armonk Futura Publishing Company Inc., New York 1994, pp. 321-329.
3. Gerbaulet A, Potter R, Mazeron J-J et al. (eds.). The GEC ESTRO Handbook of Brachytherapy. ESTRO, Brussels 2002.
4. Sauer G, Strnad V, Kurzeder C et al. Partial Breast Irradiation after Breast-Conserving Surgery. Strahlenther Onkol 2005; 181: 1-8.
5. Makarewicz R (ed.). Brachyterapia HDR. Vis Medica, Gdansk 2004 [in Polish].
6. Polgar C, Major T, Somogyi A et al. Sole brachytherapy after breast conserving surgery: 4-years results of a pilot study and initial findings of a randomized Phase III trial (abstract). Radiother Oncol 2000; 55 (suppl.1): 31.
7. Vicini F, Kini VR, Chen P. Brachytherapy of the tumour bed alone after lumpectomy in selected patients with early stage breast cancer treated with breast conserving therapy. J Surg Oncol 1999; 70: 30-40.
8. Kuske RR, Bolton JS, Mc Kinnon MP et al. 6.5-year results of a prospective phase II trial of wide volume brachytherapy as the sole method of breast irradiation in Tis, T1, T2, N0:1 breast cancer (abstract). Radiother Oncol 2000; 55 (suppl.1): 2.
9. Johansson B, Kalsson L, Liljegren G et al. PDR brachytherapy as the sole adjuvant radiotherapy after breast conserving surgery of T1-T2 breast cancer (abstract). In: Program & Abstracts. 10th International Brachytherapy Conference, Madrid, Nuclearon 2000, pp. 127.
10. Niwińska A. Postępy w radioterapii: napromienianie części gruczołu piersiowego (Partial Breast Irradiation – PBI) u chorych na raka piersi po operacji oszczędzającej. Nowotwory 2003; 6: 643-647 [in Polish].
11. Mannino M, Yarnold J. Accelerated partial breast irradiation trials: Diversity in rationale and design. Radiat Oncol 2009; 91: 16-22.
12. Fisher ER, Podszuber K, Fisher B et al. Pathologic findings from the National Surgical Adjuvant Breast Project (protocol 6). II. Relation of local breast recurrence to multicentricity. Cancer 1985; 57: 1717-1724.
13. Liljegren G, Holmberg L, Bergh J et al. 10-Year results after sector resection with or without postoperative radiotherapy for stage I breast cancer: a randomized trial. J Clin Oncol 1999; 17: 2326-2333.
14. Clark RM, Whelan T, Levine M et al. Randomized clinical trial of breast irradiation following lumpectomy and axillary dissection for node-negative breast cancer: an update. Ontario Clinical Oncology Group. In Natl Cancr Inst 1996; 88: 1659-1664.
15. Veronesi U, Marubini E, Ramacciotti L et al. Radiotherapy after breast-conserving surgery in small breast carcinoma: long-term results of a randomized trial. Ann Oncol 2001; 12: 997-1003.
16. Malmstrom P, Holmberg L, Anderson H et al. Breast-conserving surgery, with and without radiotherapy, in women with lymph node-negative breast cancer: a randomized clinical trial in a population with access to public mammography screening. Eur J Cancer 2003; 39: 1690-1697.
17. Kurtz JM, Amalric R, Brandoone H et al. Local recurrence after breast conserving surgery and radiotherapy. Frequency, time course, and prognosis. Cancer 1989; 63: 1912-1917.
18. Freedman GM, Anderson PR, Hanlon AL et al. Pattern of local recurrence after conservative surgery and whole-breast irradiation. Int J Radiat Oncol Biol Phys 2005; 61: 1328-1336.
19. Krauss DJ, Kestin LL, Mitchell C et al. Changes in temporal patterns of local failure after breast-conserving therapy and their prognostic implications. Int J Radiat Oncol Biol Phys 2004; 60: 731-740.
20. Veronesi U, Marubini E, Del Vecchio M et al. Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancr Inst 1995; 87: 19-27.
21. Fisher B, Anderson S, Bryant J et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002; 347: 1233-1241.
22. Forrest AP, Stewart HJ, Everington D et al. Randomized controlled trial of conservation therapy for breast cancer: 6-year analysis of the Scottish trial. Scottish Cancer Trials Breast Group. Lancet 1996; 348: 708-713.
23. Fisher B, Bryant J, Dignam J et al. Tamoxifen, radiation therapy, or both for prevention of ipsilateral breast tumor recurrence after lumpectomy in women with invasive breast cancer of one centimeter or less. J Clin Oncol 2002; 20: 4141-4149.
24. Winzer KJ, Sauer R, Sauerbrö W et al. Radiotherapy after breast conserving surgery; first results of a randomized clinical trial in patients with low risk of recurrence. Eur J Cancer 2004; 40: 998-1005.
25. Poter R, Gnau M, Kwasnes W et al. Lumpectomy plus tamoxifen or anastrozole with or without whole breast irradiation in women with favorable early breast cancer. Int J Radiat Oncol Biol Phys 2007; 68: 334-340.
26. Resch A, Fellner C, Mock U et al. Locally recurrent breast cancer: pulse dose rate brachytherapy for repeat irradiation following lumpectomy a second chance to preserve the breast. Radiology 2002; 225: 713-718.
27. Sauer G, Strnad V, Kurzeder C et al. Partial Breast Irradiation after Breast-Conserving Surgery. Strahlenther Onkol 2005; 181: 1-8.
28. Weed DW, Edmundson GK, Vicini FA et al. Accelerated partial breast irradiation: A dosimetric comparison of three different techniques. Brachytherapy 2005; 4: 121-129.
29. Offersen BV, Overgaard M, Kroman N et al. Accelerated partial breast irradiation as part of breast conserving therapy of early breast carcinoma: A systematic review. Radiother Oncol 2009; 90: 1-13.
30. Njeh CF, Saunders MW, Langton CM. Accelerated Partial Breast Irradiation (APBI): A review of available techniques. Radiation Oncol 2010; 5: 90; doi:10.1186/1748-717X-5-90.
31. Strauss JB, Dickler A. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques. Review of partial breast brachytherapy. Radiother Oncol 2009; 91: 157-165.
32. Polgár C, Van Limbergen E, Pötter R et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe Européen de Curiethérapie – European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence. Radiother Oncol 2010; 94: 264-273.
33. Keller B, Sankrea R, Rakovitch E et al. A permanent breast seed implant as partial breast radiation therapy for early-stage patients: a comparison of palladium-103 and iodine-125 isotopes based on radiation safety considerations. Int J Radiat Oncol Biol Phys 2005; 62: 358-365.
34. Pignol J-P, Rakovitch E, Keller B et al. Tolerance and acceptability of a palladium-103 permanent breast seed implant phase I/II study. Int J Radiat Oncol Biol Phys 2009; 73: 1482-1488.
35. Scanderbeg DJ, Yashar C, Rice R et al. Clinical implementation of a new HDR brachytherapy device for partial breast irradiation. *Radiother Oncol* 2009; 90: 36-42.
36. Weed DW, Edmundson GK, Vicini FA et al. Accelerated partial breast irradiation: A dosimetric comparison of three different techniques. *Brachytherapy* 2005; 4: 121-129.
37. Dickler A, Kirk MC, Chu J et al. The MammoSiteTM breast brachytherapy applicator: A review of technique and outcomes. *Brachytherapy* 2005; 4: 130-136.
38. Perera F, Chisela F, Engel M et al. Method of localization and implantation of the lumpectomy cavity for high dose rate brachytherapy after conservative surgery for T1 and T2 breast cancer. *Int J Radiat Oncol Biol Phys* 1995; 31: 4959-4966.
39. Kirk M, Hsi WC, Dickler A et al. Surface Optimization Technique for MAMMOSITE Breast Brachytherapy Applicator. *Int J Radiat Oncol Biol Phys* 2005; 62: 366-372.
40. Kini V. Balloon breast brachytherapy – review of current data. *Brachytherapy* 2005; 4: 181-182.
41. Forszpaniak J. Balloon brachytherapy: how I do it. *Novartovety* 2004; 1: 11-14.
42. Keisch M, Arthur DW. Current perspective on the Mammosite Radiation Therapy System – A balloon brachytherapy applicator. *Brachytherapy* 2005; 4: 177-180.
43. White J. MammoSite and accelerated partial breast irradiation: Rethinking one-size-fits-all breast irradiation after lumpectomy. *Brachytherapy* 2005; 4: 183-185.
44. Wazer DE, Kaufman S, Cuttino L et al. Accelerated Partial Breast Irradiation: An Analysis Of Variables Associated With Late Toxicity And Long-Term Cosmetic Outcome After High-Dose-Rate Interstitial Brachytherapy. *Int J Radiat Oncol Biol Phys* 2006; 64: 489-495.
45. De la Rochefordière A, Abner AL, Silver B et al. Differences in cosmetic and functional outcomes after accelerated partial breast irradiation using the MammoSite device: A detailed analysis. *Radiother Oncol* 2009; 90: 36-42.
46. Antonucci JV, Wallace M, Goldstein NS et al. Differences in patterns of failure in patients treated with accelerated partial breast irradiation versus whole-breast irradiation: A matched-pair analysis with 10-year follow-up. *Int J Radiat Oncol Biol Phys* 2009; 74: 447-452.
47. Johansson B, Karlsson L, Liljegren G et al. Pulsed dose rate brachytherapy as the sole adjuvant radiotherapy after breast-conserving surgery of T1-T2 breast cancer: first long time results from a clinical study. *Radiother Oncol* 2009; 90: 30-35.
70. Harper JL, Jenrette JM, Vanek KN et al. Acute complications of MammoSite brachytherapy: a single institution's initial clinical experience. *Int J Radiat Oncol Biol Phys* 2005; 61: 169-174.

71. Shah NM, Tenenholz T, Arthur D et al. MammoSite and interstitial brachytherapy for accelerated partial breast irradiation: factors that affect toxicity and cosmesis. *Cancer* 2004; 101: 727-734.

72. Evans SB, Kaufman SA, Price LL et al. Persistent seroma after intraoperative placement of MammoSite for accelerated partial breast irradiation: incidence, pathologic anatomy, and contributing actors. *Int J Radiat Oncol Biol Phys* 2006; 65: 333-339.

73. Niehoff P, Polgar C, Osterig H et al. Clinical experience with the MammoSite radiation therapy system for brachytherapy of breast cancer: results from an international phase II trial. *Radiother Oncol* 2006; 79: 316-320.

74. Niehoff P, Ballardini B, Polgar C et al. Early European experience with the MammoSite radiation therapy system for partial breast brachytherapy following breast conservation operation in low risk breast cancer. *Breast* 2006; 15: 319-325.

75. Benitez PR, Keisch ME, Vicini F et al. Five-year results: the initial clinical trial of MammoSite balloon brachytherapy for partial breast irradiation in early stage breast cancer. *Am J Surg* 2007; 194: 456-462.

76. Dragun AE, Harper JL, Jenrette JM et al. Predictors of cosmetic outcome following MammoSite breast brachytherapy: a single-institution experience of 100 patients with two years of follow-up. *Int J Radiat Oncol Biol Phys* 2007; 68: 354-358.

77. Jeruss JS, Vicini FA, Beitsch PD et al. Initial outcomes for patients treated on the American Society of Breast Surgeons MammoSite clinical trial for ductal carcinoma-in-situ of the breast. *Ann Surg Oncol* 2006; 13: 967-976.

78. Belkacem Y, Chauvet MP, Giard S et al. Partial breast irradiation as soletherapy for low risk breast carcinoma: early toxicity, cosmesis and quality of life results of a MammoSite brachytherapy phase II study. *Radiother Oncol* 2009; 90: 23-29.

79. Voth M, Budwary R, Leleher A et al. Local recurrence of breast cancer after MammoSite brachytherapy. *Am Surg* 2006; 72: 798-800.

80. Baglan KL, Martinez AA, Frazier RC et al. The use of high-dose-rate brachytherapy alone after lumpectomy in patients with early-stage breast cancer treated with breast-conserving therapy. *Int J Radiat Oncol Biol Phys* 2001; 50: 1003-1011.

81. Vicini FA, Kestin L, Chen P et al. Limited-field radiation therapy in the management of early-stage breast cancer. *J Natl Cancer Inst* 2003; 95: 205-211.

82. Benitez PR, Chen PY, Vicini FA et al. Surgical considerations in the treatment of early stage breast cancer with accelerated partial breast irradiation (APBI) in breast conserving therapy via interstitial brachytherapy. *Am J Surg* 2004; 188: 335-344.

83. King TA, Bolton JS, Kuske RR et al. Long-term results of wide-field brachytherapy as the sole method of radiation therapy after segmental mastectomy for T(is, 1, 2) breast cancer. *Am J Surg* 2000; 180: 299-304.

84. Kuske RR, Winter K, Arthur DW et al. Phase II trial of brachytherapy alone after lumpectomy for select Brest cancer: toxicity analysis of RTOG 95-17. *Int J Radiat Oncol Biol Phys* 2006; 65: 45-51.

85. Perera F, Yu E, Engel J, Holliday R et al. Patterns of Breast recurrence in a pilot study of brachytherapy confined to the lumpectomy site for early breast cancer with six years' minimum follow-up. *Int J Radiat Oncol Biol Phys* 2003; 57: 1239-1246.

86. Arthur DW, Koo D, Zwicker RD et al. Partial Brest brachytherapy after lumpectomy: low-dose-rate and high-dose-rate experience. *Int J Radiat Oncol Biol Phys* 2003; 56: 681-689.

87. Wazer DE, Lowther D, Boyle T et al. Clinically evident fat necrosis in women treated with high-dose-rate brachytherapy alone for early-stage breast cancer. *Int J Radiat Oncol Biol Phys* 1992; 50: 107-111.

88. Wazer DE, Berle L, Graham R et al. Preliminary results of a phase I/II study of HDR brachytherapy alone for T1/T2 breast cancer. *Int J Radiat Oncol Biol Phys* 2002; 53: 889-897.

89. Lawenda BD, Taghian AG, Kachnic LA et al. Dose-volume analysis of radiotherapy for T1N0 invasive breast cancer treated by local excision and partial breast irradiation by low-dose-rate interstitial implant. *Int J Radiat Oncol Biol Phys* 2003; 56: 671-680.

90. Kaufman SA, DiPetillo TA, Price LL et al. Long-term outcome and toxicity in a phase I/II trial using high-dose-rate multicatheter interstitial brachytherapy for T1/T2 breast cancer. *Brachytherapy* 2007; 6: 286-292.

91. Krishnan L, Jewell WR, Tawfik OW et al. Breast conservation therapy with tumor bed irradiation alone in a selected group of patients with stage I breast cancer. *Breast* 2001; 7: 91-96.

92. Fentiman IS, Poole C, Tong D et al. Inadequacy of iridium implant as sole radiation treatment for operable Breast cancer. *Eur J Cancer* 1996; 32: 608-611.

93. Fentiman IS, Poole C, Tong D et al. Iridium implant treatment without external radiotherapy for operable breast cancer: a pilot study. *Eur J Cancer* 1991; 27: 447-450.

94. Fentiman IS, Deshamane V, Tong D et al. Caesium137 implant as sole radiation therapy for operable breast cancer: a phase II trial. *Radiother Oncol* 2004; 71: 281-285.

95. Polgar C, Sulyok Z, Fodor J et al. Solo brachytherapy of the tumor bed after conservative surgery for T1 breast cancer: five-year results of a phase I-II study and initial findings of a randomized phase III trial. *J Surg Oncol* 2002; 80: 121-128.

96. Polgar C, Major T, Fodor J et al. High-dose-rate brachytherapy alone versus whole breast radiotherapy with or without tumor bed boost after breast-conserving surgery: seven-year results of a comparative study. *Int J Radiat Oncol Biol Phys* 2004; 60: 1173-1181.

97. Lovey K, Fodor J, Major T et al. Fat necrosis after partial-breast irradiation with brachytherapy or electron irradiation versus standard whole-breast radiotherapy-4-year results of a randomized trial. *Int J Radiat Oncol Biol Phys* 2007; 69: 724-731.

98. Ott OJ, Lotter M, Sauer R et al. Accelerated partial-breast irradiation with interstitial implants: the clinical relevance of the calculation of skin doses. *Strahlenther Onkol* 2007; 183: 426-431.

99. Ott OJ, Pötter R, Hammer J et al. Accelerated partial breast irradiation with iridium-192 multicatheter PDR/ HDR brachytherapy: preliminary results of the German-Austrian multicenter trial. *Strahlenther Onkol* 2004; 180: 642-649.

100. Ott OJ, Schulz-Wendtland R, Uter W et al. Fat necrosis after conserving surgery and interstitial brachytherapy and/or external-beam irradiation in women with breast cancer. *Strahlenther Onkol* 2005; 181: 638-644.

101. Harris JR, Levine M, Svensson G et al. Analysis of the cosmetic results following primary radiation therapy for stages I and II carcinoma of the breast. *Int J Radiat Oncol Biol Phys* 1979; 5: 257-261.

102. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). *Int J Radiat Oncol Biol Phys* 1995; 31: 1341-1346.

103. LENT SOMA tables. *Radiother Oncol* 1995; 35: 17-60.