Revision and Enhancement of Two Three Party Key Agreement Protocols Vulnerable to KCI Attacks

Maurizio Adriano Strangio

Department of Mathematics, University of Rome “Roma Tre”, Rome, Italy

*Corresponding Author: strangio@mat.uniroma3.it

Abstract In two recent papers, Zuowen Tan (Security and Communication Networks) and Chih-ho Chou et al. (Computers and Electronics) published three party key agreement protocols especially convenient for protecting communications in mobile-centric environments such as e-payments, vehicular mobile networks (VMN), RFID applications, etc.

For his protocol, Tan provides a formal security proof developed in a model of distributed computing based on the seminal work of Bellare and Rogaway.

In this paper, we show that both protocols are vulnerable to KCI attacks. We suggest modifications to both protocols that fix the vulnerability at the expense of a small decrease in their computational efficiency.

Keywords Three Party Key Agreement, Key-compromise Impersonation, Mobile Network Communications

1 Introduction

In two recent papers, Tan [2] and Chou et al. [5] present three party key agreement protocols especially convenient for protecting communications in mobile-centric environments such as e-payments, vehicular mobile networks (VMN), RFID applications, etc.

For his protocol, Tan provides a formal security proof in a model of distributed computing based on the work of Bellare and Rogaway [6, 20] and Abdalla et al. [1].

Unfortunately, both protocols are vulnerable to a particular man-in-the-middle attack known as Key Compromise Impersonation (KCI) [12, 15]. In such attacks, an adversary that has obtained the private key of party A can impersonate a legitimate peer B; if the attack is successful A will share a session key with the adversary (instead of B). This is a subtle attack that can have drastic consequences since the adversary may obtain personal information from A such as secret keying material (e.g. passwords) or private data (e.g. credit card numbers). With three party protocols the adversary may impersonate a peer (A or B) or the trusted third party (S).

In this paper, we describe successful KCI attacks against the aforementioned protocols and also suggest modifications to fix the vulnerabilities at the expense of a small decrease in their computational efficiency.

The rest of the paper is organized as follows. We describe KCI attacks against the protocols of TAN and CHOU et al. respectively in Sections 2 and 3. In Section 4, we suggest modifications to the above protocols in order to prevent those attacks. Finally, Section 5 contains our concluding remarks.

2 A KCI attack against Tan’s protocol

In this section we review Tan’s three-party key agreement protocol and describe how a successful KCI attack can be conducted by an adversary that has compromised the private keying material of an honest party.

2.1 Review of the protocol specification

The protocol consists of an initialization phase (wherein A and B register with the trusted server S and obtain an $d_A = H(ID_A || x)$ and $d_B = H(ID_B || x)$ respectively, where $x \in F_q$ is the master key held by S) and the subsequent authenticated key agreement phase (Figure 1).

System parameters are defined by the following tuple:

$$\Phi_{TAN} = (p, n, E, P, E_k(\cdot), D_k(\cdot), h(\cdot))$$

were

(i) p, n are prime numbers;

(ii) $E(F_p)$ is an elliptic curve defined by the equation $y^2 = x^3 + ax + b$ over the finite field F_p, where $4a^3 + 27b^2 \neq 0 \mod p$;
Below we provide a detailed description of a successful KCI attack against Chou et al.’s protocol:

This protocol also comprises an initialization phase (wherein users A and B register with the trusted server S and obtain $Y_A = sk_A PK_S$ and $Y_B = sk_B PK_S$) and an authenticated key agreement phase (Figure 2).

System parameters are defined by the following tuple:

$$\Phi_{CHOU} = (p, n, E, G, P, E_k(), D_k(), h())$$

were each parameter is defined as in Section 2.

$$A[sk_A, PK_A], B[sk_B, PK_B], S[sk_S, PK_S]$$

$$A \rightarrow B: \{ID_A, request\}$$

$$A: \begin{align*} & a \leftarrow R \in Z_n^* \\
& R_1 \leftarrow aP, e_1 \leftarrow h(R_1||ID_A||ID_B) \\
& e_2 \leftarrow E_{d_A}(R_1||ID_A||ID_B||e_1) \end{align*}$$

$$A \rightarrow S: \{ID_A, ID_B, e_2\}$$

$$B: \begin{align*} & b \leftarrow R \in Z_n^* \\
& R_2 \leftarrow bP, e_3 \leftarrow h(R_2||ID_B||ID_A) \\
& e_4 \leftarrow E_{d_B}(R_2||ID_B||ID_A||e_3) \end{align*}$$

$$B \rightarrow S: \{ID_B, ID_A, e_4\}$$

$$S \leftarrow A: \{Q_1\}$$

$$S \rightarrow B: \{Q_2\}$$

$$A: \begin{align*} & R'_1||R'_2 || e'' = D_{d_A}(Q_1) \\
& \text{if } R'_1 \neq R'_3 \text{ abort} \\
& \text{if } e'' \neq R'_1||R'_2 || ID_A||ID_B \text{ abort} \\
& sk \leftarrow h(R'_1||ID_A||ID_B) \end{align*}$$

$$B: \begin{align*} & R'_3||R'_4 || e'' = D_{d_B}(Q_2) \\
& \text{if } R'_2 \neq R'_3 \text{ abort} \\
& \text{if } e'' \neq R'_3||R'_4 || ID_A||ID_B \text{ abort} \\
& sk \leftarrow h(R'_3||ID_A||ID_B) \end{align*}$$

4. on receipt of Q_1, A computes $D_{d_A}(Q_1)_n = R'_1||R'_2 || e''$. If the equations $R_1 = R'_1$ and $e'' = R'_1||R'_2 || ID_A||ID_B$ are verified (indeed they are since the transcripts are indistinguishable from those exchanged by honest parties) A terminates with the session key $sk_A = h(aR'_2||ID_A||ID_B)$;

5. A computes $sk' = h(cR'_1||ID_A||ID_B)$ and will be able to establish a communication session with A since $sk'' = sk_A$.

3 A KCI attack against Chou et al.’s protocol

In this section we review Chou et al.’s three-party key agreement protocol and describe how a successful KCI attack can be conducted by an adversary.

3.1 Review of the protocol specification

Below we provide a detailed description of a successful KCI attack against Tan’s protocol:

1. Adversary A obtains A’s private key $d_A = h(ID_A||x)$;

2. A generates a random nonce $a \in Z_n^*$, computes $R_1 = aP, e_1 = h(R_1||ID_A||ID_B), e_2 = E_{d_A}(R_1||ID_A||ID_B||e_1)$ and sends $\{ID_A, request\}$ and $\{ID_A, ID_B, e_2\}$ to B and S respectively to initiate a protocol instance with B;

3. A intercepts the messages $\{ID_A, request\}$ and $\{ID_A, ID_B, e_2\}$, decrypts the ciphertext $D_{d_A}(e_2) = R'_1||ID_A||ID_B||e_1$ chooses a random nonce $e \in Z_n^*$ computes $R_2 = cP, e = h(R'_1||R_2||ID_A||ID_B)$, $Q_1 = E_{d_A}(R'_1||R_2||e)$, and sends Q_1 to A;
3.2 Description of the KCI attack scenario

Below we provide a detailed description of a successful KCI attack against Chou’s protocol:

1. Adversary A obtains A’s private key sk_A;
2. A executes all operations according to the protocol specification and sends $\{ID_A, r^A, C_A, T_A\}$ to B and S respectively to initiate a protocol instance with B;
3. A intercepts the message $\{ID_A, r^A, C_A, T_A\}$, chooses a random nonce $r_E \in Z_p$ and sends $C_{SA} = E_{K_{A,s}}(R_A, K_B, ID_B, ID_S, T_S)$ where $K_B = r_E P$ to A;
4. on receipt of C_{SA}, A follows the protocol specification (R_A, T_S will pass the verification step) and terminates with the session key $sk = r_A sk_A K_B = r_A sk_A r_E P = r_E r_A P K_A = r_E (R_A - Y_A)$;
5. A can establish a communication session with B by computing $sk = r_E (R_A - Y_A)$ where $Y_A = sk_A P K_S$ and is thus easily computed by the adversary.

4 Revisiting the protocols to eliminate the vulnerability to KCI attacks

In this section we illustrate modifications to the protocols of Tan and Chou et al. that do not allow a malicious party to perform successful KCI attacks.

4.1 A KCI-resilient version of Tan’s protocol

It is interesting to notice that Tan’s protocol cannot withstand KCI attacks despite the fact that a formal security proof was provided by the author (see Theorems 1, 2 in [2]). The arguments used by the author to support the proof of KCI-resilience (Theorem 2) require that the adversary must be able to forge the transcript c_4; however, this assumption misses the point since the adversary does not need to faithfully reproduce the protocol actions of B but must simply generate message transcripts (in this particular case, a Diffie-Hellman ephemeral key $R_2 = cP$) that are indistinguishable (for A) from the real ones. In general, for the sake of protocol security analysis one assumes that a man-in-the-middle attacker has total control over the network (i.e. she can insert, delete, modify messages flowing across the network) and is allowed to achieve her goals by arbitrarily diverging from the protocol specification.

To prevent the attack Tan’s protocol can be modified as follows: the trusted third party S shall generate keys for each peer $DA = d_A P, DB = d_B P$ (eventually during the initialization stage) and compute $e = h(R_1^A || R_2^B || ID_A || ID_B || D_A || D_B)$, $Q_1 = E_{d_A}(R_1^A || R_2^B || e)$ and $Q_2 = E_{d_B}(R_2^A || R_1^B || e)$; finally A shall compute its session key as $sk = h(a D_B || d_A R_2^B || ID_A || ID_B)$ (similarly for B).

With the preceding modifications, Tan’s key exchange can now withstand KCI attacks. Indeed, the session key is computed using the method introduced in the MT1/A0 [9] protocol, which is immune from KCI attacks; the adversary must now obtain both the private key d_A and the random nonce a to compute the session key of A. A significant difference with the MTI protocol is due to the fact that the keys DA, DB do not necessarily have to be pre-distributed to A, B respectively and therefore do not require public key certificates.

The revised protocol enjoys KCI attack resilience at the expense of an increased computational workload with respect to the original version. In particular, the trusted first party S must now compute two additional scalar multiplications to generate the keys DA, DB. However, for reasons of efficiency the computation can be performed prior to online executions of the protocol. Each peer A, B is required to compute an additional scalar multiplication $(a DB, b DA)$ at runtime to compute the session key.

4.2 A KCI-resilient version of Chou et al.’s protocol

It is worth mentioning that the protocol of Chou et al. is actually a revised version of a flawed protocol previously proposed by Zuowen Tan [3] which was yet another version of the protocol originally published by Yang and Chang [4] (the later also contained a vulnerability to impersonation attacks).

Chou et al.’s protocol can withstand KCI attacks with the following modifications. The trusted third party computes $C_{SA} = E_{K_{A,s}}(R_A, K_B, Y_B, ID_A, ID_S, T_S)$, $C_{SB} = E_{K_{B,s}}(R_B, K_A, Y_A, ID_B, ID_S, T_S)$ and sends these transcripts to A, B respectively; with respect to the original specification the terms Y_B, Y_A are included in C_{SA}, C_{SB} respectively. On receipt of C_{SA}, A computes the session key $sk = h(r_A Y_B || sk_A K_B)$ (similarly for B) where h is an appropriate hash function.

The revised protocol (similarly to Tan’s protocol) enjoys KCI attack resilience at the expense of a slightly increased computational workload with respect to the original version. In this case, each peer A, B needs an additional scalar multiplication $(r_A Y_B, r_B Y_A, ID_A, ID_B)$ at runtime to compute the session key.

5 Concluding remarks

We have shown that the three key party agreement protocols recently published in the literature by Tan [2] and Chou et al. [5] are not resilient to KCI attacks although their authors claim the contrary.

Designing secure key agreement protocols is far from being a simple task, such protocols involve so many details and complicated interactions between different cryptographic primitives that it is nearly impossible to establish beyond doubt that they are infallible. Indeed, in the history of this subject there is an abundance of protocols that were more or less trivially broken regardless of whether formal or heuristic arguments were provided to support security claims.

One of the main problems with formal security proofs
is that few people are capable of verifying them because
the maths can be quite sophisticated and may be there-
difficult to understand for the average practitioner.
In the last two decades many formal security models
have been proposed (which often differ by a few details)
but it still is not quite clear how to "transfer" a security
property proved in one model to a different model and
to the real world (Choo et al. [14] have examined this
issue). Furthermore, provable security of cryptographic
primitives is largely based on the use of computational
assumptions, these have proliferated in the last decade
[16] making it difficult to differentiate between their rela-
tive strengths (an interesting classification was proposed
by Naor [17]. It is also important to analyse the security
of cryptographic protocols not only from an theoretical
perspective but in more realistic models wherein
an opponent may physically attack an honest peer (e.g.
tampering with devices [18]).

In any case, the publication of protocol specifications
in specialised literature and conferences is of fundamen-
tal importance since the peer review process and the
subsequent period of public scrutiny can increase the
confidence in the security of the protocol either because
vulnerabilities are not discovered or if there are propos-
als to fix them will be immediately published.

A topic for future research is the development of
a concrete implementation of the protocols discussed in
this paper to evaluate real world security issues and ef-
ciciency. In particular, we plan to develop an implemen-
tation with the Java Cryptography Architecture frame-
work [19] which uses a "provider"-based approach and
contains a set of APIs for various purposes (e.g. encryp-
tion, key generation and management, secure random
number generation, certificate validation, etc).

REFERENCES

[1] Abdalla M., Fouque P.A., Pointcheval D. 2005
Password- based authenticated key exchange in the
three-party setting Proceedings of the PKC05, LNCS,
3386: 65-84

[2] Tan A. 2012. A Communication and computation-
efficient three party authenticated key agreement pro-

cotol Security Comm. Networks DOI: 10.1002/sec.622

[3] Tan Z., 2010. An enhanced three-party authentication
key exchange protocol for mobile commerce environ-
ments J.Commun., DOI:10.4304/jcm.5.5:436-443

[4] Yang J.H., Chang C.C., 2009. An efficient three-
party authenticated key exchange protocol using elliptic
curve cryptography for mobile-commerce environments
J. Syst. Software, DOI:10.1016/j.jss.2009.03.075

[5] Chou Chih-ho, Tsai Kuo-yu, Wu Tzong-chen, Yeh Kuo-

hu. 2013. Efficient and secure three-party authenti-
cated key exchange protocol for mobile environments,
14(5):347-355

[6] Bellare M. and Rogaway P. 1993 Entity Authentica-
tion and Key Distribution Advances in Cryptology-
CRYPTO 93, pp. 110-125, Springer-Verlag.

[7] Canetti R. and Krawczyk H. 2001 Analysis of key ex-
change protocols and their use for building secure chan-
nels Proc. of Eurocrypt’01, LNCS 2045, pp. 453-474.

[8] Hankerson D., Menezes A.J. and Vanstone S.A. 2004
Guide to Elliptic Curve Cryptography Springer Profes-

tional Computing, New York

[9] Matsumoto T., Takashima Y, and Imai H. 1986 On
seeking smart public-key distribution systems Transac-
tions of IEICE, VolE69:99-106

[10] Lamacchia B., Lauter B. and Mityagin A. 2007 Stronger
Security of Authenticated Key Exchange LNCS 4784,
pp. 1-16.

[11] Mohammad Z. and Chi-Chun Lo 2009 Vulnerability of
an improved Elliptic Curve Diffie-Hellmann Key Agree-
ment and its Enhancement Proc. of EBISS’09, pp. 1-5

[12] Strangio M.A. 2006 On the Resilience of
Key Agreement Protocols to Key Compro-
mise Impersonation Cryptology ePrint Archive,
http://eprint.iacr.org/2006/252.pdf.

[13] Wang S. Cao Z. Strangio M.A and Wang B 2009 Crypt-
analysis and Improvement of an Elliptic Curve Diffie-
Hellmann Key Agreement Protocol IEEE Commu-
nication Letters, Vol. 12, No. 2, pp. 149-151.

[14] Choo K.R, Boyd C, Hitchcock Y 2005 Examin-
ing Indistinguishability-Based Proof Models for Key
Establishment Protocols, Advances in Cryptology-
ASIACRYPT, Springer Berlin/Heidelberg, pp. 585-604

[15] Boyd C, Mathuria A 2003 Protocols for Authentication
and Key Establishment, Springer Berlin/Heidelberg

[16] ECRYPT 2013 Final Report on Main Computational
Assumptions in Cryptography, ECRYPT II,
http://www.ecrypt.eu.org/documents/D.MAYA.6.pdf

[17] Naor M. 2003 On Cryptographic Assumptions and Chal-
lenges, Advances in Cryptology, Lecture Notes in
Computer Science Volume 2729, pp 96-109

[18] Anderson R, 2001 Security Engineering: A guide to
Building Dependable Distributed Systems, Wiley

[19] Oracle, 2013 Java Cryptography Architecture,
http://docs.oracle.com/javase/7/docs/technotes/guides
/security/crypto/CryptoSpec.html

[20] Bellare M., Rogaway P. 1995 Provably secure session
key distribution: the three party case, Proceedings of the
ACM Symposium on the Theory of Computing
(STOC95), pp. 5766