Sudden rhabdomyolysis in an elderly patient after single atorvastatin dose: The need for early and frequent creatine kinase monitoring in high-risk patients

Min Xiao¹, Lu Zhang², Yan Zhong³ and Guirong Xiao¹

Abstract
An 80-year-old patient with diabetes mellitus, chronic bronchitis, and chronic heart failure presented with pain in the right calf after one dose of atorvastatin. Significant increases in creatine kinase, myoglobin, and potassium levels were also observed. Based on the symptoms and laboratory results, the patient was diagnosed with rhabdomyolysis. Older patients with co-morbidities may have a higher risk of statin-associated myopathy. However, there is currently no recommendation for creatine kinase monitoring in this population. This case emphasizes the need to identify high-risk populations and provide early and more frequent creatine kinase measurements to help avoid statin-associated myopathy.

Keywords
Atorvastatin, creatine kinase, rhabdomyolysis, creatine kinase monitoring

Date received: 12 May 2019; accepted: 25 March 2020

Introduction
Statin therapy plays an important role in the primary and secondary prevention of cardiovascular disease.¹ One of the characteristics of statin therapy is that patients usually need long-term medication, which may cause more safety concerns. Studies have found that statins increase the risk of incident diabetes by 9% and are potentially associated with cognitive dysfunction in some populations during long-term statin treatment.²,³ However, compared to other toxicities, myotoxicity is the most common adverse event during statin therapy.⁴ A retrospective study found that the average duration of statin treatment was 6.3 months (range: 0.25–48.0 months) when muscular symptoms were first noticed.⁵ Other studies report a much longer time span.⁶,⁷ Here, we report a patient who developed sudden rhabdomyolysis after taking one dose of atorvastatin. This case highlights the rapid occurrence of rhabdomyolysis induced by atorvastatin. To the best of our knowledge, this is rare in statin therapy. We believe that early and more frequent creatine kinase (CK) measurements may help avoid statin-associated myopathy (SAM) in high-risk patients.

Case report
An 80-year-old Tibetan man was admitted to our infection center because of chronic bronchitis with a superimposed acute infection. His notable past medical history included chronic bronchitis, emphysema, chronic heart failure (New York Heart Association III; ejection fraction (EF): 23%), chronic atrial fibrillation, and diabetes mellitus type 2. He had 5 years of medication on aspirin (100 mg po qd), metoprolol (12.5 mg po qd), benapril (10 mg po qd), and insulin. Initial medications in our center included cefathiamidine (2 g ivgtt q8h), ambroxol (30 mg ivgtt qd), furosemide (20 mg po qd), spironolactone (40 mg po qd), and digoxin (0.125 mg po qd). After consultation with a cardiologist, warfarin (2.5 mg po qd) and atorvastatin (20 mg po qn) were initiated on the eighth day. One day after the drug adjustment (ninth institution day), the patient developed pain in the right calf. Laboratory test results showed a significant increase in CK, myoglobin, and potassium levels (Table 1). The CK levels increased by 25.8 times.
Table 1. Patient laboratory data over time.

Parameter	Day 1	Day 4	Day 11	Day 13	Reference
CK (IU/L)	174	63	5840	10,615	19–226
Myoglobin (ng/mL)	127	N	>3000	>3000	<72
K⁺ (mmol/L)	5.32	4.34	6.17	5.32	3.5–5.3
eGFR (mL/min/1.73m²)	53.34	55.71	58.29	37.87	56–122
Creatinine (μmol/L)	113	109	105	150	53–140
ALT/AST (IU/L)	19/24	23/30	29/119	37/177	<50/<40

CK: creatine kinase; eGFR: estimate glomerular filtration rate; N: not available; AST: aspartate transaminase; ALT: alanine transaminase.

Discussion

Muscular symptoms usually occur after a few weeks to more than 2 years of statin treatment. However, the rapid occurrence of rhabdomyolysis after taking one dose of statin in this case was rare. SAM can either be a statin-associated self-limited myopathy or a type of statin-associated autoimmune myopathy. The latter is characterized by muscle weakness, high CK levels, lack of improvement after statin discontinuation, and a need for immunosuppressive therapy.

Muscular symptoms usually occur after a few weeks to more than 2 years of statin treatment. However, the rapid occurrence of rhabdomyolysis after taking one dose of statin in this case was rare. SAM can either be a statin-associated self-limited myopathy or a type of statin-associated autoimmune myopathy. The latter is characterized by muscle weakness, high CK levels, lack of improvement after statin discontinuation, and a need for immunosuppressive therapy. SAM can be associated with muscle symptoms and laboratory findings, such as CK elevation and elevated CK levels, both before and after the initial statin exposure.

The risk factors for SAM vary (Box 1). In a review of our patient’s health condition, there were many risk factors that may have led to rhabdomyolysis, such as advanced age (80 years old), multisystem diseases (diabetes and chronic heart failure), and infection. However, triggers such as liver disease, strenuous exercise, hypokalemia, and aspirin overdose could be ruled out in our patient. Pharmacokinetically, atorvastatin is metabolized by cytochrome P450 3A4 (CYP3A4). In contrast, the other drugs our patient took were neither CYP3A4 substrates, inducers, nor inhibitors. Hence, these had no apparent drug interactions with atorvastatin. Atorvastatin is mostly excreted via bile, while only about 2% is excreted by the kidney. Thus, the plasma concentration of atorvastatin is not influenced by renal dysfunction. However, there were still triggers that we did not identify. First, viruses—especially influenza A H1N1—and bacteria such as Legionella are known to cause rhabdomyolysis. The results of bacterial sputum cultures from our patient were all negative; however, viral testing was not performed. Thus, we could not rule out an infection contributing to his rhabdomyolysis. Second, hypothyroidism is another risk factor for rhabdomyolysis. In combination with other risk factors, hypothyroidism would have supported atorvastatin, resulting in rhabdomyolysis. However, we did not test his thyroid-stimulating hormone level.

In summary, our case highlights the need to identify high-risk populations and perform early and more frequent CK measurements in these patients.
Box 1. Risk factors for SAM.

Patient	Drug
Age >80 years	Multiple drugs
Female	High-dose statin
Asia descent	Drug interactions (drugs, such as azole antifungal agents, protease inhibitors, macrolides and cyclosporine, can affect statins’ metabolism)
Co-morbidities (diabetes mellitus, impaired renal, hypothyroidism, acute infection, etc.)	
Genetics (genetic factors that affect cytochrome P450 isoenzymes or drug transporters)	

Source: Adapted from Stroes et al.16

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
Our institution does not require ethical approval for reporting individual cases or case series.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed consent
Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

ORCID iD
Guirong Xiao https://orcid.org/0000-0001-7720-4130

References
1. Criqui MH and Golomb BA. Low and lowered cholesterol and total mortality. J Am Coll Cardiol 2004; 44(5): 1009–1010.
2. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375(9716): 735–742.
3. Rojas-Fernandez CH and Cameron JC. Is statin-associated cognitive impairment clinically relevant? A narrative review and clinical recommendations. Ann Pharmacother 2012; 46(4): 549–557.
4. Maji D, Shaikh S, Solanki D, et al. Safety of statins. Indian J Endocrinol Metab 2013; 17(4): 636–646.
5. Hansen KE, Hildebrand JP, Ferguson EE, et al. Outcomes in 45 patients with statin-associated myopathy. Arch Intern Med 2005; 165(22): 2671–2676.
6. Frydrychowicz C, Pasieka B, Pierer M, et al. Colchicine triggered severe rhabdomyolysis after long-term low-dose simvastatin therapy: a case report. J Med Case Rep 2017; 11(1): 8.
7. Kar S and Chockalingam A. Statin-associated rhabdomyolysis with acute renal failure complicated by intradialytic NSTEMI: a review of lipid management considerations. Am J Ther 2013; 20(1): 57–60.
8. Bellosta S, Paoletti R and Corsini A. Safety of statins focus on clinical pharmacokinetics and drug interactions. Circulation 2004; 109(23 Suppl. 1): III50–III57.
9. Jiao YQ, Lin J, Cai S, et al. Necrotizing myopathy related to anti 3-hydroxy-3-methylglutaryl-coenzyme A reductase antibody. Chin J Clin Neurol 2017; 25(2): 191–197.
10. Canzonieri E, De Candia C, Tarascio S, et al. A severe myopathy case in aged patient treated with high statin dosage. Toxicol Rep 2017; 4: 438–440.
11. Neuvonen PJ. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 2010; 11(3): 323–332.
12. Singh U1 and Scheld WM. Infectious etiologies of rhabdomyolysis: three case reports and review. Clin Infect Dis 1996; 22(4): 642–649.
13. Ehelepola NDB, Sathkumara SMBY, Bandara HMPAGS, et al. Atorvastatin-diltiazem combination induced rhabdomyolysis leading to diagnosis of hypothyroidism. Case Rep Med 2017; 2017: 8383251, https://www.hindawi.com/journals/crim/2017/8383251/.
14. DeGorter MK, Tirona RG, Schwarz UI, et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet 2013; 6(4): 400–408.
15. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy: a genomewide study. N Engl J Med 2008; 359(8): 789–799.
16. Stroes ES, Thompson PD, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy: European Atherosclerosis Society Consensus Panel statement on assessment, aetiology and management. Eur Heart J 2015; 36(17): 1012–1022.
17. Pasternak RC, Smith SC, Jr, Bairey-Merz CN, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation 2002; 106: 1024–1028.
18. Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation 2006; 114(25): 2788–2797.
19. Mancini GB, Baker S, Bergeron J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Consensus Working Group update (2016). Can J Cardiol 2016; 32(7 Suppl.): S35–S65.