The effect of banana humps size on the vegetative growth of dwarf banana seedling

Muhidin¹*, A Nurmas¹, G R Sadimantara¹, A E Pratama, T C Rakian, G A K Sutariati¹, S Leomo² and D N Yusuf²

¹Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia.
²Department of Soil Science, Faculty of Agriculture, Halu Oleo University, Southeast Sulawesi, Kendari, Indonesia.

E-mail: *muhidinunhalu@gmail.com

Abstract. The aim of the study is to determine the effect of different hump size on banana seedling growth. The study carries out at the Agriculture Farm in Halu Oleo University. The study arranged in single-factor using randomized block design. The factor examined is the difference in the humps size, consists of (1) size 8cm x 8cm x 8cm, (2) size 10cm x 10cm x 10cm, and (3) size 12cm x 12cm x 12cm. The parameter observed were shoot height (cm), leaves number (strands) and stem circumference (cm). The results showed that differences in humps size has affected on the vegetative banana growth. As large as the hump size, some vegetative characteristics are getting higher, such as for the shoot height (cm), number of leaves (strands) and stem circumference (cm). Based on the research, it concluded that the humps size affected the vegetative seedling growth of dwarf banana plants.

1. Introduction

Bananas have become a very common commodity of tropical fruit [1-3] and can be intensively planted as intercropping in both plantation and forestry crops in a business-oriented manner and insertion farming [4]. For humans, bananas have many uses [5], because they can serve as a food replacement containing a lot of calories, protein, carbohydrates, fat [6] vitamins, minerals [7] and antioxidant [8]. The types of banana are three types of banana including cooking, dessert, cooking and roasting bananas [9-11]. National banana production averaged only 7.0 tonnes ha⁻¹ from the potential 35 tonnes ha⁻¹ [12]. Of this number, 4.0 million tonnes are freshly consumed forms of table bananas. It’s believed that about 60% (150 million) of Indonesia's total population (250 million) is like bananas. But the consumption level is only 26.75 kg year⁻¹ or 73.25 grams day⁻¹ per capita banana consumption. The domestic banana market has a massive and wide-open capacity. In Indonesia, bananas demand an annual rise, in line with the growth of population and economic. Increased banana production in Indonesia has faced many challenges, particularly in the limited land that can be used for cultivation. The alternative way to solve this problem is by development of banana cultivar that tolerant to limited solar radiation. Limited solar prove to decrease growth and production in rice [13-15], soybean [16,17] and other commodity such as maize [18,19]. The banana tolerant can be planted as intercropped plant in agroforestry system [20]. Intercropping model is an important activity to enhance banana production, when an economic commodity competes for the same small land area. It is therefore
important to screen a dwarf banana cultivar that is tolerant of shades with high potential yields and easy to multiplication. The research aim was to characterize the effect of hump size on the banana seedling growth.

2. Materials and methods
The study carries out at the Agriculture Farm in Halu Oleo University. The study arranges in single factor using a randomized block design. The factor examined is the difference in the humps size, consists of (1) size 8cm x 8cm x 8cm, (2) size 10cm x 10cm x 10cm, and (3) size 12cm x 12cm x 12cm. The parameter observed were shoot height (cm), leaves number (strands) and stem (cm). The observed data were analysed at a 95% confidence level using Anova and DMRT.

3. Results and discussion

3.1. Shoots height
The data founded that the different hump size has significant effect on shoots height (table 1). Based on the data it indicates that the increase in hump size will increase the shoots height from the beginning of research at 42 day after planting (DAP) to 112 day after planting (DAP).

Table 1. The effect of hum size on shoots height of banana seedling from 42 day after planting (DAP) to 112 day after planting (DAP).

Treatment (Different of Hump Size)	42 DAP	56 DAP	70 DAP	84 DAP	98 DAP	112 DAP
U₁ (8 cm x 8 cm x 8 cm)	4.5a	6.2a	7.7a	9.4a	10.8a	12.9a
U₂ (10 cm x 10 cm x 10 cm)	5.5a	7.5a	9.3a	11.0ab	13.2a	15.5ab
U₃ (12 cm x 12 cm x 12 cm)	7.9b	10.1b	11.7	15.0b	17.5b	20.0b
Duncan 0.05	2=2.15	2=2.81	2=3.26	2=3.93	2=3.77	2=3.77
	3=2.26	3=2.95	3=3.42	3=4.13	3=3.93	3=3.93

Note: Number followed by the same letter are not significant different at 5% percent DMRT means stages.

3.2. Number of leaves
The data founded that the different hump size has no significant effect on the leaf number (table 1). Based on the data it indicates that the increase in hump size will not increase the number of leaves significantly from the beginning of research at 42 day after planting (DAP) to 112 day after planting (DAP).

Table 2. The effect of hum size on leaf number of banana seedling from 42 day after planting (DAP) to 112 day after planting (DAP).

Treatment (Different of Hump Size)	42 DAP	56 DAP	70 DAP	84 DAP	98 DAP	112 DAP
U₁ (8 cm x 8 cm x 8 cm)	2.1	3.1	4.1	5.1	6.6	7.6
U₂ (10 cm x 10 cm x 10 cm)	2.6	3.1	4.3	5.5	7.3	7.9
U₃ (12 cm x 12 cm x 12 cm)	3.4	4.0	4.6	6.0	7.4	8.3
3.3. Stem circumference

The results showed that the different of hump size has significant differences to stem circumference the parameter stem circumference of the stem (table 3). Based on the data also it indicates that the increase in hump size will increase the circumference of the stem.

Table 3. The effect of hump size on stem circumference of banana seedling from 42 day after planting (DAP) to 112 day after planting (DAP).

Treatment (Different of Hump Size)	42 DAP	56 DAP	70 DAP	84 DAP	98 DAP	112 DAP
U₁ (8 cm x 8 cm x 8 cm)	3.2a	4.0a	4.6a	5.5a	6.4a	7.2a
U₂ (10 cm x 10 cm x 10 cm)	3.9a	4.9ab	5.7a	6.3ab	7.1a	8.0a
U₃ (12 cm x 12 cm x 12 cm)	5.1b	6.1ab	7.5b	8.2b	9.3b	10.3b
Duncan 0.05	2=1.17	2=2.81	2=1.69	2=1.91	2=1.80	2 = 1.74
	3=1.27	3=2.95	3=1.78	3=2.00	3=1.89	3 = 1.83

Note: Number followed by the same letter are not significant different at 5% percent DMRT means stages.

In general, research shows that the larger the hump size as a seedling source, the greater the potential for growth, especially for the vegetative growth, such as shoots height and leaf wide. The results also showed that the micro hump was very potential as a source of seedling. The seedling propagation through micro hump takes longer. It needs more extended maintenance, but the potential for seedlings produced will be more numerous than using tillers as a source of seedling. The use of micro hump will also be more efficient if many seedlings are to be propagated at a farmer scale. Therefore, this study will support the plant cultivation model to produce superior seedling in large quantities, quickly and uniformly, so that plant cultivation efforts can immediately follow the availability of superior clone lines in the farmers.

4. Conclusions

The result showed that the hump size has significant effect on shoots height and stem circumferences of banana seedling and has not significant effect on number of leaves.

References

[1] Samson JA 1986 Tropical Fruits 2nd Edition (New York: Longman)
[2] Ploetz RC, Kepler AK,Daniells J and Nelson SC 2007 Banana and plantain—an overview with emphasis on Pacific island cultivars Species profiles Pacific Isl. Agrofor pp 21–32)
[3] Auroue G, Parfait B and Fahrasmane L 2009 Bananas, raw materials for making processed food products Trends Food Sci. Technol. 20 pp 78–91
[4] Muhidin, Sadimantara GR, Leomo S, Rakian TC, Arma MJ and Suliantini NW S 2016 The Response of Dwarf Banana Cavendish Growth and Production under Natural Shade Int. J. ChemTech Res. 9 pp 541–8
[5] Englberger L, Lyons G, Foley W,Daniells J, Aalbersberg B, Dolodolotawake U, Watoto C, Iramu E, Taki B, Wehi F, Warito P and Taylor M 2010 Carotenoid and riboflavin content of banana cultivars from Makira, Solomon Islands J. Food Compos. Anal. 23 pp 624–32
[6] Horie K, Hossain M S, Morita S, Kim Y, Yamatsu A, Watanabe Y, Ohgitani E, Mazda O and Kim M 2020 The potency of a novel fermented unripe banana powder as a functional immunostimulatory food ingredient J. Funct. Foods 70 103980
[7] Anyasi T A, Jideani A I O and Mchau G R A 2018 Phenolics and essential mineral profile of organic acid pretreated unripe banana flour Food Res. Int. 104 pp 100–9
[8] Borges CV, Maraschin M, Coelho DS, Leonel M, Gomez HAG, Belin MAF, Diamante MS,
Amorim EP, Gianeti T, Castro GR and Lima GPP 2020 Nutritional value and antioxidant compounds during the ripening and after domestic cooking of bananas and plantains Food Res. Int. 132 109061

[9] Vuylsteke D 1987 Morphological taxonomy of plantain (Musa cultivars AAB) in West Africa ACIAR proceedings series

[10] Sági L, May GD, Remy S and Swennen R 1998 Recent developments in biotechnological research on bananas (Musa spp.) Biotechnol. Genet. Eng. Rev. 15 pp 313–28

[11] Valmayor RV, Jamaluddin SH, Silayoi B, Kusumo S, Danh LD, Pascua OC and Espino RRC 2000 Banana cultivar names and synonyms in Southeast Asia Adv. Banan. plantain R D Asia 55

[12] Kementerian Pertanian [Ministry of Agriculture] 2019 Statistik Hortikultura 2019 [Statistics of Horticulture 2019] (Jakarta: Kementerian Pertanian [Ministry of Agriculture])

[13] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia IOP Conference Series: Earth and Environmental Science 157 p 012017

[14] Muhidin, Syam’Un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 The effect of shade on chlorophyll and anthocyanin content of upland red rice IOP Conference Series: Earth and Environmental Science

[15] Sadimantara GR, Alawyah T, Suliartini NWS, Febrianti E and Muhidin 2019 Growth performance of two superior line of local upland rice (Oryza sativa L.) from SE Sulawesi on the low light intensity IOP Conference Series: Earth and Environmental Science 260 p 12145

[16] Fan Y, Chen J, Cheng Y, Raza MA, Wu X, Wang Z, Liu Q, Wang R, Wang X and Yong T 2018 Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system PLOS 13 5 e019815 pp 1-15

[17] Yang C, Hu B, Iqbal N, Yang F, Liu W, Wang X, Yong T, Zhang J, Yang W and Liu J 2018 Effect of shading on accumulation of soybean isoflavonoid under maize-soybean strip intercropping systems Plant Prod. Sci. 21 pp 193–202

[18] Jia S F, Li C F, Dong S T and Zhang J W 2011 Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level Agric. Sci. China 10 pp 58–69

[19] Yang Y, Xu W, Hou P, Liu G, Liu W, Wang Y, Zhao R, Ming B, Xie R and Wang K 2019 Improving maize grain yield by matching maize growth and solar radiation Sci. Rep. 9 pp 1–11

[20] Muhidin, Sadimantara GR, Leomo S, Yusuf DN and Rakian TC 2019 Characterizing the vegetative and fruit of local dwarf banana cavendish from SE Sulawesi IOP Conference Series: Earth and Environmental Science 260 p 12175

Acknowledgements
The authors will extend their appreciation to the Rector of the University of Halu Oleo and the Ministry of Education of Indonesia for financial support for the Penelitian Desentralisasi scheme in the fiscal year 2020.