Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cardiovascular markers and COVID-19

El-houcine Sebbar⇑, Mohammed Choukri

Faculty of Medicine and Pharmacy of Oujda, Mohammed First University, PB 724, Oujda 60000, Morocco
Central Laboratory, Mohammed VI University Hospital of Oujda, PB 4806, Oujda 60049, Morocco

A R T I C L E I N F O

Article history:
Available online 2 August 2022

Keywords:
COVID-19
Cardiovascular markers
BNP /NT-proBNP
Troponin and D-dimer

A B S T R A C T

COVID-19 is an emerging viral disease with incompletely elucidated pathogenesis, a heterogeneous clinical profile, and significant interindividual variability. The major cardiovascular complications of COVID-19 include acute cardiac injury, acute myocardial infarction (AMI), myocarditis, arrhythmia, heart failure, and venous thromboembolism (VTE)/pulmonary embolism (PE). Elevated BNP/NT-proBNP, troponin and D-dimer levels have been found in a significant proportion of patients since the first data analysis, suggesting that myocardial damage is a likely pathogenic mechanism contributing to severe disease and mortality. The level of these markers is now associated with a risk of adverse outcome, namely mortality. The aim of our study is to highlight the importance of these biomarkers for the prediction of cardiovascular complications and their potential role in the evolution of COVID-19.

Copyright © 2023 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Fifth edition of the International Conference on Materials & Environmental Science.

1. Introduction

COVID-19 is an emerging viral disease with incompletely elucidated pathogenesis, a heterogeneous clinical profile, and significant interindividual variability[1]. The course of the disease can be mild or severe with associated pulmonary and multisystem damage that can lead to death[2]. The major cardiovascular complications of COVID-19 include acute cardiac injury, acute myocardial infarction (AMI), myocarditis, arrhythmia, heart failure, and venous thromboembolism (VTE)/pulmonary embolism (PE)[3]. COVID-19 may cause cardiovascular complications or deterioration of coexisting cardiovascular disease by direct or indirect mechanisms, including viral toxicity, deregulation of the renin-angiotensin-aldosterone system (RAAS), endothelial cell damage and thrombo-inflammation, cytokine storm and oxygen supply/demand mismatch[4]. It has been speculated that COVID-19 infection may cause thrombus formation with hypercoagulability. Up to 20 % of patients with COVID-19 have abnormal coagulation, which may be caused by myocardial injury[5]. In addition, it has been established that patients with COVID-19 have the potential to develop severe heart failure and are at risk of sudden cardiac death[6]. Thus, several studies and analyses have been performed to determine whether the measurement of cardiac troponin, pro-BNP and D-dimer measurements can help predict clinical severity in patients with COVID-19. The purpose of this review is to present the current data on using cardiovascular markers as COVID-19 prognostic factors.

2. Materials and methods

A literature search was done on PubMed, SCOPUS, and Google Scholar to detect articles discussing biomarkers in this review and its clinical implications on COVID-19 based on the Preferred Reporting Items for Systematic Reviews and meta-analysis (PRISMA) guidelines. Key words used were ‘COVID-19’, ‘cardiovascular markers’, ‘BNP/NT-proBNP’, ‘troponin’ and ‘D-dimer’. Studies were included if they have reviewed a correlation between a biomarker and the severity of COVID-19. While, exclusion criteria were studies with no particular definition of the role of biomarkers in COVID-19.

3. BNP and NT-proBNP

A retrospective cohort study of consecutive adults (N = 679; median age 59 years; 38.7 % female), reported that NT-proBNP at admission was categorized using the age-specific criteria of the European Society of Cardiology Heart Failure Association for acute presentations. They examined mortality and the composite of death or mechanical ventilation and the number of days without...
hospitalization, without intensive care unit and without ventilator at 28 days. 417 patients (61.4 %) had low, 141 (20.8 %) borderline, and 121 (17.8 %) high NT-proBNP. Mortality was 5.8 %, 20.6 % and 36.4 % for patients with low, borderline and high NT-proBNP, respectively. Elevated NT-proBNP level was associated with a higher mortality rate hazard ratio (HR) [2.15; 95 % confidence interval (CI) 1.04–4.26; P = 0.034] and a higher composite endpoint rate (HR) [1.66; 95 % CI 1.04–2.66; P = 0.035] composite endpoint (HR 1.66; 95 % CI 1.04–2.66; P = 0.035]. Patients with elevated NT-proBNP levels had 32 %, 33 % and 33 % fewer days without hospitalization, intensive care and ventilation than their counterparts with low NT-proBNP. The results were consistent across age, sex, and race, and independent of coronary artery disease or hypertension, except for a stronger mortality signal with elevated NT-proBNP in women. In conclusion, in patients with COVID-19 and without a history of heart failure, a high NT-proBNP level at admission is associated with higher mortality and health care resource utilization [7]. Another conducted retrospective, single-admission is associated with higher mortality and health care resource utilization [7].

Table 1. Summary BNP/NT-proBNP concentrations between COVID-19 patients with low vs high severity or survivor vs non-survivor status.

Study design	Low severity or survivor	High severity or non-survivor		
	n	BNP pg/mL (Mean ± SD)	N	BNP pg/mL (Mean ± SD)
Chen et al. [10]	Not reported	1651	208	685 ± 987
Gottlieb et al. [11]	Retrospective	7190	1483	73 ± 74
Cui et al. [12]	Retrospective	699	1483	73 ± 74
Ma et al. [13]	Retrospective	429	1483	73 ± 74
He et al. [14]	Retrospective	530	1483	73 ± 74
Ciceri et al. [15]	Not reported	291	1483	73 ± 74
Tao et al. [16]	Retrospective	202	1483	73 ± 74

*: NT-proBNP.

4. Troponin

A meta-analysis was performed on studies conducted in China and included that a total number of 341 patients of which 123 (36 %) had severe disease. Although heterogeneity was significantly high (12.98 %; p < 0.001), the HS cTnI values were found to be significantly increased in COVID-19 patients with severe disease compared with those with moderate disease (MDS: 25.6 ng/L; 95 % CI, 6.8–44.5 ng/L) [3]. Han et al reported higher concentrations of some biomarkers, such as myoglobin (Mb), CK-MB isoenzyme, NT-proBNP and cardiac troponin cTnI. Rates were related to severity and mortality in patients infected with COVID-19. HS troponin was above normal in 27 patients, these data indicated that some patients with COVID-19 developed an acute cardiac injury. They concluded that increased venous blood concentrations of Mb, Tn-ultra and NT-proBNP were associated with the severity of COVID-19 [17]. A cohort analysis showed that 82 patients (19.7 %) had a cardiac lesion. These patients had more complications (impaired renal function, ARDS with non-invasive mechanical ventilation, hydroelectrolytic disorders, coagulation disorders) and were more susceptible to mortality than those without cardiac injury, with very high values of inflammatory and cardiac markers [18]. On the other hand, a multicenter retrospective study, 3219 patients diagnosed with COVID-19 admitted to 9 hospitals, aims to estimate the associations and prognostic power of circulating cardiac lesion markers with poor prognosis. The adjusted hazard ratio for 28-day mortality for HS-cTnI was 7.12 ([95 % CI 95 %: 4.60–11.03] P < 0.001), NT-proBNP was 5.11 ([95 % CI: 3.50–7.47] P < 0.001), CK MB was 4.86 ([95 % CI: 3.33–7.09] P < 0.001), and Mb was 4.50 ([95 % CI: 3.18–6.36] P < 0.001). The threshold for these cardiac biomarkers for effective prognosis of 28-day mortality for COVID-19 were found to be much lower than for ordinary heart disease at approximately 19 % to 50 % of currently recommended thresholds. Patients with elevated cardiac injury markers above newly established thresholds were associated with a significantly increased risk of death by COVID-19. They also found that elevations in cardiac biomarkers were significantly associated with death at 28 days in patients with COVID-19 [19]. Huiqi Guo and Yunzhi Shen studied myocardial injury in patients with severe and critical COVID-19. They reported that myocardial injury is evident and associated with a poor prognosis, including long ventilation time, incidence of malignant arrhythmia incidence and mortality [20]. The various kinds of cTn studies are shown in Table 2.

5. D-dimer

A study conducted by Huang et al reported that D-dimer values were almost five times higher in those with severe disease (median: 2.4 mg/L; IQR: 0.6–14.4 mg/L) than in those without severe disease.
Several studies on Cardiac troponin and COVID-19 [21].

References	Number of patients	Type of study	Results
Ali et al. [23]	466	Retrospective	High cTnI level N = 168 (36.05%)
Puntmann et al. [24]	207	Prospective	Elevated TnT levels, significantly correlated with native T1
Shi et al. [18]	187	Case Series	Elevated TnT levels, patients with high TnT levels had more severe respiratory dysfunction
Guo et al. [25]	187	Retrospective	Elevated TnI in 52 patients
Wei et al. [26]	181	Retrospective	Almost half of whom had an hs-TnT value fivefold more than the normal upper limit
Zhu et al. [27]	49	Retrospective	12 % Elevated TnT levels
Kermali et al. [28]	25	Retrospective	Elevated CRP, cTnI, d-dimer, LDH, and lactate levels

D-dimer levels increased significantly with increasing severity of COVID-19. D-dimer level’s median in non-survivors (n = 17) was significantly higher than in survivors (n = 231) [6,21]. Tang et al also studied 183 patients with COVID-19 and found that D-dimer values were approximately 3.5 times higher in patients with severe disease (median: 2.12 mg/L; IQR: 0.77 to 5.27 mg/L) than in non-severe patients (median: 0.61 mg/L; IQR: 0.35–1.29 mg/L; p < 0.001). They pointed out that the vast majority of COVID-19 patients who died stay met the diagnostic criteria for disseminated intravascular coagulation disseminated intravascular coagulation [29]. Wang et al studied 138 patients hospitalized for COVID-19, D-dimer values were 2.5 times higher in patients with severe disease (median: 4.14 mg/L; IQR: 1.91–13.2 mg/L) than in non-severe patients (median: 1.66 mg/L; IQR: 1.01–2.85 mg/L; p < 0.001) [30]. Zhou et al studied 191 patients with COVID-19 and found that D-dimer values were almost nine times higher in patients who died (median: 5.2 mg/L; IQR: 1.5–21.1 mg/L) than in those who survived (median: 0.6 mg/L; IQR: 0.3–1.0 mg/L; p < 0.001) [31]. A retrospective study of 248 consecutive cases of COVID-19, showed that A D-dimer level > 2000 g/L at admission was the only variable associated with an increased probability of mortality. An elevation D-dimer elevation > 500 g/L was observed in 74.6 % of patients. Pulmonary embolism and deep vein thrombosis were excluded in patients with a high probability of thrombosis.

6. Conclusion

Overall, we note that the values of D-dimer, troponin, pro-BNP and NT-proBNP are significantly higher in patients with severe COVID-19 than in those with milder forms of the disease. As a result, the level of these markers is now associated with a risk of adverse outcome, namely mortality. Our literature review showed their importance in the management of patients with severe forms of COVID-19 progressing to critical forms. The validation of clinical-biological scores would therefore allow a standardization of practices with a correct prescription of biological analyses.

Data availability

No data was used for the research described in the article.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References:

[1] S. Sorrentino, M. Cacia, I. Leo, A. Polimeni, J. Sabatino, C.A.M. Spaccarotella, A. Mongiardino, S. De Rosa, C. Indolfi, B-type natriuretic peptide as biomarker of COVID-19 disease severity—a meta-analysis, J. Clin. Med. 9 (9) (2020) 2957.
[2] A. Zinellu, S. Sotgia, C. Carru, A.A. Mangoni, B-Type Natriuretic Peptide Concentrations, COVID-19 Severity, and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression, Front. Cardiovasc. Med. 8 (2021) 657.
[3] G. Lippi, C.J. Lavié, F. Sanchis-Gomar, Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis, Prog. Cardiovasc. Dis. 63 (3) (2020) 390–391.
