Transient behavior in systems with time-delayed feedback

Cite as: Chaos 21, 023114 (2011); https://doi.org/10.1063/1.3581161
Submitted: 13 December 2010 • Accepted: 30 March 2011 • Published Online: 05 May 2011

Robert C. Hinz, Philipp Hövel and Eckehard Schöll

ARTICLES YOU MAY BE INTERESTED IN

Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity
Chaos: An Interdisciplinary Journal of Nonlinear Science 21, 023119 (2011); https://doi.org/10.1063/1.3591791

Introduction to Focus Issue: Time-delay dynamics
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 114201 (2017); https://doi.org/10.1063/1.5011354

Strong persistence of an attractor and generalized partial synchronization in a coupled chaotic system
Chaos: An Interdisciplinary Journal of Nonlinear Science 21, 023110 (2011); https://doi.org/10.1063/1.3540319
Transient behavior in systems with time-delayed feedback

Robert C. Hinz, a) Philipp Hövel, b) and Eckehard Schöll
Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

(Received 13 December 2010; accepted 30 March 2011; published online 5 May 2011)

We investigate the transient times for the onset of control of steady states by time-delayed feedback. The optimization of control by minimizing the transient time before control becomes effective is discussed analytically and numerically, and the competing influences of local and global features are elaborated. We derive an algebraic scaling of the transient time and confirm our findings by numerical simulations in dependence on feedback gain and time delay. © 2011 American Institute of Physics. [doi:10.1063/1.3581161]

The desire to willingly influence the stability of dynamical systems has led to substantial advances in the field of control theory. A widely used control scheme is time-delayed feedback. The considered systems cover the full range from steady states to chaotic and stochastic dynamics even with spatial degrees of freedom. The large majority of studies has focused on the long-term, asymptotic behavior. Less attention has been paid to the initial stages of the control schemes. Thus, a detailed analysis of the transient behavior toward the target state is still missing. Such an analysis could be used to determine the efficiency of a given control method. For this purpose we investigate the onset of control and analyze the scaling of the transient time. An important aspect for the proposed analysis is the interplay of local dynamics of the system subject to control and global effects by additional delay-induced states.

I. INTRODUCTION

Control of nonlinear dynamical systems has attracted much attention since the seminal ground-breaking work of Ott, Grebogi, and Yorke,1 and a large variety of different control schemes have been proposed.2-5 One particularly successful method called time-delayed feedback control was introduced by Pyragas in order to stabilize periodic orbits embedded in a strange attractor of a chaotic system.4 In this scheme, the difference between the current control signal \(s(t) \), which is generated from some system variables, and its time-delayed counterpart \(s(t-\tau) \) yields a control force that is fed back to the system. If the time delay matches the period of the target orbit, this control force vanishes. Thus, time-delayed feedback is a noninvasive control method. Many extensions of the original controller have been developed including, for instance, multiple delays5-8 and different coupling scheme.9-11 The Pyragas scheme has been successfully applied for the control of both unstable steady states12,13 and periodic orbits in different areas of research ranging from mechanical14,15 and neurobiological systems16,17 to optics18-22 as well as semiconductor devices23-27 and chemical systems.28,29 On the theoretical part, previous work includes investigations on analytical properties,30,31 asymptotic scaling for large time delays,32,33 and limitations of this powerful control method.34,35 However, the transient dynamics of time-delayed feedback control have not been investigated systematically.

In this paper, we aim to obtain a deeper insight into the control mechanism and its efficiency by an analysis of transient times before control is achieved. The transient times and their scaling behavior have been studied in particular in the context of chaotic transients, e.g., in unstable–unstable pair bifurcation crises36 or in spatially extended systems, where supertransients were found.37 This approach builds upon the work by Lai who found supertransient behavior in the case of chaotic transients.38,39 Here, we consider the case of steady states in linear and nonlinear systems which are subject to time-delayed feedback control. We investigate a generic system beyond a supercritical Hopf bifurcation. Thus, the unstable fixed point can be treated as a linearized normal form above the bifurcation. Furthermore, we focus also on global aspects.40,41

This paper is organized as follows: In Sec. II, we investigate the transient times of control of an unstable focus in the presence of time-delayed feedback within a linear model and relate this quantity to the eigenvalues of the controlled system. Section III is devoted to effects of time-delayed feedback on transient times of fixed point control in a nonlinear system under the influence of stable periodic orbits. We finish with a conclusion in Sec. IV.

II. LINEAR TRANSIENTS

In this Section, we consider an unstable fixed point of focus type which is subject to time-delayed feedback.12,13 It can be described within a generic model in center-manifold coordinates by a linear system which corresponds to the normal form close to, but above a supercritical Hopf bifurcation whose nonlinear effects will be discussed in Sec. III. The dynamic equations are given by

\[
\dot{x}(t) = \lambda x(t) + \omega y(t) - K[x(t) - x(t-\tau)],
\]

© 2011 American Institute of Physics
\[
\dot{y}(t) = -\omega x(t) + \lambda y(t) - K[y(t) - y(t - \tau)],
\]
where \(\lambda > 0\) corresponds to the regime of unstable fixed point, and \(\omega \neq 0\) is the intrinsic frequency of the focus. The control parameters \(K \in \mathbb{R}\) and \(\tau \in \mathbb{R}\) denote the feedback gain and time delay, respectively. In a complex notation \(z = x + iy\), Eqs. (1) become
\[
\dot{z}(t) = (\lambda + i\omega)z(t) - K[z(t) - z(t - \tau)].
\]
Similarly, using \(z = re^{i\varphi}\) with amplitude \(r \geq 0\) and phase \(\varphi\), Eq. (2) can be rewritten in the uncontrolled case \((K = 0)\) as
\[
\dot{r}(t) = \lambda r(t), \quad \dot{\varphi}(t) = \omega.
\]
The amplitude equation will serve as a starting point of our analytical derivations presented later in this section.

The stability of the system’s equations (1) can be inferred from the characteristic equation
\[
[\Lambda + K(1 - e^{-\lambda \tau}) - \lambda] + \omega^2 = 0,
\]
where the fixed point is stable if the real part of all eigenvalues \(\Lambda \in \mathbb{C}\) is negative. Note that solutions of this transcendental equation can be found analytically using the multivalued Lambert function, \(W\), which is defined as the inverse function of \(f(z) = ze^z\) for \(z \in \mathbb{C}\) (Ref. 12).
\[
\Lambda = \frac{1}{\tau}W\left[K e^{-(\lambda + i\omega)\tau} + \lambda + i\omega - K\right].
\]

Figure 1(a) depicts the largest real parts of the eigenvalues \(\Lambda\) calculated from the characteristic equation (4) in dependence on the feedback gain \(K\). The time delay is fixed at \(\tau = T_0/2 = 1\) with the intrinsic timescale \(T_0 = 2\pi/\omega\). The dashed red curves refer to lower eigenvalues arising from \(-\infty\) in the limit of vanishing \(K\). In the absence of a control force, the system is unstable with \(\text{Re} \Lambda = \text{Re} \Lambda_0 = \lambda > 0\). As the feedback gain increases, the largest real part becomes smaller and changes sign at \(K_{\text{fl}} = \lambda/2\) where the system gains stability in a flip bifurcation. Above this change of stability, the largest real part collides with a control-induced branch and forms a complex conjugate pair. For even larger values of \(K\), the system becomes unstable again in a Hopf bifurcation at \(K_{\text{ho}}\). Both threshold values of \(K\) are marked as green vertical lines.

In the following, we will derive an analytical relation between the solutions of the characteristic equation and the transient times. Starting from an initial distance \(r_0\), the transient time, \(\tau_{tr}\), to reach a neighborhood, \(\epsilon \ll r_0\), around the fixed point is given for the uncontrolled case of Eq. (3) by the following expression:
\[
\tau_{tr}(r_0) = \int_{r_0}^{r} \frac{dr}{s_{sf}} = -\frac{1}{\lambda} \log \left(\frac{r_0}{\epsilon}\right).
\]
Note that \(\lambda\) corresponds to the real part of the uncontrolled eigenvalue \(\Lambda_0\). Time-delayed feedback influences the eigenvalues according to the characteristic equation (4) such that the transient time in the presence of the control scheme becomes
\[
\tau_{tr}(r_0) = -\frac{1}{\text{Re} \Lambda} \log \left(\frac{r_0}{\epsilon}\right),
\]
where \(\text{Re} \Lambda\) denotes the largest real part of the eigenvalues, which is depicted by the black solid curve in Fig. 1(a).

FIG. 1. (Color online) (a) Largest real part of the complex eigenvalues \(\lambda\) vs \(K\) for a fixed time delay \(\tau = T_0/2 = 1\) (solid curve). The dashed red curves show additional modes. (b) Transient time \(\tau_{tr}\) in dependence on the feedback gain \(K\). The solid curve corresponds to the analytical formula (7) and the green dots refer to values obtained by numerical simulations of Eqs. (1). The green lines at \(KT_0 = \lambda T_0/2 = 0.1\) and \(KT_0 = 94.76\) correspond to the flip \((K_{\text{fl}})\) and Hopf threshold \((K_{\text{ho}})\), respectively. Parameters: \(\lambda = 0.1, \omega = \pi, \tau = T_0/2 = 1, r_0 = 0.1,\) and \(\epsilon = 0.001\).

Figure 1(b) displays the transient time in dependence on the feedback gain. The solid curve corresponds to the transient time calculated from Eq. (7). The green dots depict the transient time \(\tau_{tr}\) obtained from numerical simulations of the system’s equation (2), where \(\tau_{tr}\) is measured as the duration to enter a neighborhood of radius \(\epsilon = 0.001\) starting from an initial distance \(r_0 = 0.1\). To be precise, the initial conditions are taken from the uncontrolled system for \(t \in [-\tau, 0]\) such that \(\sqrt{x^2(0) + y^2(0)} = r_0\), and the control is switched on at \(t = 0\).

One can see that the transient time diverges at the flip bifurcation and the Hopf threshold where the largest real part becomes zero. This is indicated by the solid green lines at \(K_{\text{fl}}\) and \(K_{\text{ho}}\). There is a broad optimum of transient times in a wide range of feedback gain \(K\). Thus the efficiency of control is not very sensitive to the choice of \(K\), which is not evident from mere inspection of the eigenvalues [Fig. 1(a)].

Figure 2 shows the transient times in the plane parametrized by both control parameters \(K\) and \(\tau\) as color code. Note that there are islands of stability separated by areas for which the control fails to stabilize the fixed point. Similar to
follows from Eq. (9b) for with the abbreviation
cal expression for the derivative of
derivative becomes in terms of the Lambert function
the feedback gain
Using a linear approximation of the dependence of Re
part changes its sign, i.e., at the boundaries of stability.
tion can be given near the values of
and for the transient time

\[\tau_{tr}(K) \approx -\frac{\lambda \tau - 2}{4} (K - K_{\text{fl}})^{-1} \log\left(\frac{\tau_0}{\epsilon}\right). \]

In analogy, one finds near the Hopf threshold at \(K_{\text{ho}} \), where
the imaginary part of the largest eigenvalue is given by
\[\text{Im}\Lambda = \omega \pm \sqrt{(2K_{\text{ho}} - \lambda)\lambda} \] (Ref. 32), the following expression

\[\text{Re}\Lambda[K] \approx \frac{(\lambda(K_{\text{ho}} - 1))(K - K_{\text{ho}})}{\tau^2 K_{\text{ho}}^2 + 2(K_{\text{ho}} - \lambda)\tau K_{\text{ho}} + K_{\text{ho}}}, \]

which yields

\[\tau_{tr}(K) \approx \frac{\tau^2 K_{\text{ho}}^3 + 2(K_{\text{ho}} - \lambda)\tau K_{\text{ho}} + K_{\text{ho}}}{(\lambda(K_{\text{ho}} - 1))(K - K_{\text{ho}}) \log\left(\frac{\tau_0}{\epsilon}\right)}. \]

Hence in both case a power-law scaling of the transient time
\[\tau_{tr} \sim (K - K_{\text{fl/ho}})^{-1} \] is obtained.

We note that a supertransient scaling\(^{37-40} \) of the form
\[\tau_{tr}(K) \sim \exp \left[C (K - K_{\text{fl/ho}})^{-2} \right] \] with positive constants \(C \) and \(\gamma \) cannot be found because the derivatives of \(\text{Re}\Lambda \) at
\(K = K_{\text{fl/ho}} \) do not vanish

\[\lim_{K \to K_{\text{fl/ho}}} \frac{d}{dK} \text{Re}\Lambda \neq 0, \]

as can be seen in Fig. 1(a).

Figure 3 depicts the linear approximations of \(\text{Re}\Lambda \) at the flip and Hopf threshold points \(K_{\text{fl}} \) and \(K_{\text{ho}} \) as dashed red lines according to Eqs. (12) and (14), respectively. The insets (b) and (c) display the transient time around these \(K \)-values as given by Eqs. (13) and (15), respectively. While the linearization yields a good approximation at the flip threshold, its deviations are more pronounced at the Hopf threshold because \(\text{Re}\Lambda \) changes here at a slower rate.

III. NONLINEAR TRANSIENTS

This section is devoted to investigations in nonlinear systems containing periodic orbits. We will consider the
Hopf normal form as a generic model given by the following equation (Stuart–Landau oscillator):

\[
\dot{z}(t) = (\lambda + i\omega)z(t) + (a + ib)|z(t)|^2z(t).
\]

(17)

As an extension to Eq. (2) of Sec. II, a cubic nonlinearity is taken into account with real coefficients \(a\) and \(b\). Before addressing the effects of time-delayed feedback on this system, we will briefly review the uncontrolled case in terms of the transient times. Using again amplitude and phase variables, i.e., \(z = re^{i\phi}\), Eq. (17) becomes

\[
\begin{align*}
\dot{r}(t) &= \left[\lambda + ar(t)^2\right]r(t), \\
\dot{\phi}(t) &= \omega + br(t)^2.
\end{align*}
\]

(18a)

(18b)

Note that the equation for the amplitude (18a) yields a periodic orbit with \(r_{PO} = \sqrt{-\lambda/a}\). In the following, we will restrict our consideration to the case \(a < 0\) which corresponds to a supercritical Hopf bifurcation, i.e., there exists a stable periodic orbit for \(\lambda > 0\). The parameters \(\omega\) and \(b\) are related to the dynamics of the oscillator phase and are fixed at arbitrary values, \(\omega = \pi\) and \(b = 1.5\).

Similar to Sec. II, the transient time can be calculated from the amplitude Eq. (18a) as follows:

\[
\tau_u(r_0) = \int_{r_0}^{r_f} \frac{dr}{r\left(\lambda + ar^2\right)},
\]

(19a)

\[
= -\frac{1}{\lambda} \log \left(\frac{r_0}{r_f}\right) + \frac{1}{2\lambda} \log \left(\frac{r_0^2 - r_{PO}^2}{r_f^2 - r_{PO}^2}\right),
\]

(19b)

where \(r_0\) denotes an initial amplitude, and the final amplitude \(r_f\) is chosen as \(r\) or \(r_{PO} \pm \epsilon\) for the analysis of the transient time concerning the fixed point at the origin and the periodic orbit, respectively. Note that the coefficients in front of the two logarithmic functions correspond to the inverse of the real part of the eigenvalue \(\lambda\) of the fixed point and the Floquet exponent \(\lambda_{PO} = -2\lambda\) of the supercritical periodic orbit, respectively.

Figure 4 depicts the time series of the amplitude \(r = |z|\) and the transient time \(\tau_u\) of the Hopf normal form (17), where panels (a)–(c) and (d)–(f) correspond to a parameter value below \((\lambda = -0.005)\) and above \((\lambda = 0.01)\) the Hopf bifurcation, respectively. Note that the time series is displayed in linear as well as in logarithmic scale.

Below the bifurcation, the stable fixed point at the origin is the only invariant solution. Panel (b) shows that this fixed point is approached exponentially. Panel (c) depicts the transient time in dependence on the initial amplitude \(r_0\) according to Eq. (19a). The dashed (red) curve refers to the linear case discussed in Sec. II showing the difference to the nonlinear system equation (17).

Above the bifurcation [Figs. 4(d)–4(f)], the fixed point is unstable and the trajectory approaches the periodic orbit \(r_{PO} = \sqrt{-\lambda/a}\). Note that the dashed (green) and solid curves correspond to initial conditions \(r_0\) inside and outside this periodic orbit, respectively. For initial conditions close to the origin, the transient time becomes arbitrarily large as the trajectory needs more time to leave the vicinity of the repelling fixed point.

Next, we consider effects of time-delayed feedback control. Applying this control scheme to the Hopf normal form, the system’s equation (17) becomes

\[
\dot{z}(t) = \left[\lambda + i\omega + (a + ib)|z(t)|^2\right]z(t) - K[z(t) - z(t - \tau)],
\]

(20)

with the feedback gain \(K \in \mathbb{R}\) and time delay \(\tau\). In the following, we will keep the time delay fixed at \(\tau = 1 = T_0/2\), as in Sec. II, but set initial conditions as \(x = r_0\), \(y = 0\) for \(t \in [-\tau, 0]\).

FIG. 4. (Color online) Time series of the amplitude \(r\) (top: linear, middle: logarithmic scale) and transient time (bottom) for a system with supercritical Hopf bifurcation (a)–(c) \(\lambda = -0.005\) and (d)–(f) \(\lambda = 0.01\); dashed green and solid curves denote an initial radius smaller and greater than the radius of the stable periodic orbit \(r_{PO} = \sqrt{-\lambda/a}\). (c) and (f) display the transient times for \(\epsilon = 0.001\). The dotted red curve in panel (c) refers to the linear case of Sec. II. Parameters: \(\omega = \pi\), \(a = -1\) \((r_{PO} = 0.1)\), and \(b = 1.5\).

FIG. 5. (Color online) Transient times to reach the fixed point at the origin in the \((K, T_0)\) plane as grayscale (color code). The dotted line at \(KT_0 = 8\) corresponds to the feedback gain used in Fig. 7. The white areas indicate parameter pairs for which the trajectory does not reach the fixed point. The circles mark parameters used in Fig. 6. Parameters: \(\epsilon = 0.001\), \(\lambda = 0.5\), \(a = -0.1\), i.e., \(r_{PO} = \sqrt{-\lambda/a} = 0.5\), \(b = 1.5\), \(\omega = \pi\), \(\tau = 1\).
Figure 5 depicts the transient time t_r in dependence on the feedback gain K and initial amplitude r_0 as color code. The delay time $\tau = T_0/2$ was demonstrated to be an optimal choice in the purely linear system discussed in Sec. II. The white areas correspond to parameter values for which the trajectory does not reach the fixed point. For $K = 0$ the fixed point is unstable. For a certain finite nonzero feedback gain, however, the fixed point can be stabilized by time-delayed feedback. The transient time t_r becomes larger as K increases even further until the control is lost again, similar to Fig. 1(b).

For a better understanding of the success and failure of the time-delayed feedback scheme, Fig. 6 shows the time series for selected combinations of the feedback gain K and initial amplitude r_0. Panels (a), (c), (e), and (g) depict the trajectory in the x,y phase space where the arrow indicates the direction. Panels (b), (d), (f), and (h) display the time series of the amplitude $r = |z|$. The parameters K and r_0 are chosen as follows: Figures 6(a)–(d) illustrate the behavior at the left boundary of the yellow region of Fig. 5 with fixed feedback gain $KT_0 = 4$. While the fixed point is still stabilized in panels (a), (b) for $r_0 = 2$, the control fails for $r_0 = 3$ in panels (c), (d) where a delay-induced stable periodic orbit is asymptotically reached. On the right boundary of Fig. 5 and for fixed $r_0 = 5$, panels (e), (f) correspond again to successful stabilization of the steady state at the origin for $KT_0 = 9$, whereas slightly larger feedback gain ($KT_0 = 10$) of panels (g), (h) results asymptotically in a delay-induced torus [see inset in Fig. 6(b)]. This explains the modulation of the stability range in Fig. 5 due to resonances with delay-induced periodic or quasiperiodic orbits which reduce the basin of attraction of the fixed point.

In contrast to the linear case, the controllability displays an interesting nonmonotonic dependence upon the initial condition r_0, with a strongly reduced range of control at certain values of r_0 resembling resonance-like behavior. Although the fixed point is locally stable under time-delayed feedback control in the whole range of K shown in Fig. 1(a), the global behavior is strongly modified by a finite size of the basin of attraction. This is reflected in the effect of the initial condition upon the transient time as displayed in Fig. 7 for fixed feedback gain $KT_0 = 8$, i.e., along the vertical dotted line indicated in Fig. 5. One can see a strong increase of t_r for small r_0 which is followed by a damped oscillatory behavior. For large initial amplitudes, this curve approaches the value corresponding to the uncontrolled system which is added as dashed red curve and calculated from Eq. (19b) for a real part $\lambda = -0.062$ of the eigenvalue of the stabilized fixed point and $a = -0.003$. These parameters were determined as follows: Choosing an open-loop system that has the same real part of its eigenvalue as the closed-loop, i.e., controlled, system, the real part λ was calculated from the characteristic equation (4) of the linear case. Then this value of λ was inserted in Eq. (19b) in order to determine the parameter a, which accounts for the nonlinearity. For the difference between linear and nonlinear cases see also Fig. 4(c).

The strong modulation of the transient time with r_0 can be explained by the following qualitative argument. It follows from Fig. 2 that the control works best in the linear system if $\tau = T_0(2n + 1)/2$, where $T_0 = 2\pi/\omega$ is the intrinsic timescale of the uncontrolled system, and it fails for $\tau = nT_0$, $n \in \mathbb{N}$. Now, in the nonlinear system, the effective angular velocity ω^e changes with distance r_0 from the fixed point according to $\omega^e = \omega + br_0^2$ by Eq. (18b). For $b > 0$ the angular velocity increases with increasing initial radius r_0. Hence, the period $T^e = 2\pi/\omega^e$ decreases with increasing radius. Thus, for fixed $\tau = T_0/2$ and increasing r_0, the ratio $\tau/T^e = (1 + b r_0^2/\omega)/2$ successively passes alternating half-

FIG. 6. (Color online) Phase portraits (left column) and time series $r(t) = |z(t)|$ (right column) for different combinations of r_0 and K. The red arrows indicate the direction of the trajectory. (a), (b) $KT_0 = 4, r_0 = 2$; (c), (d) $KT_0 = 4, r_0 = 3$; (e), (f) $KT_0 = 9, r_0 = 5$; (g), (h) $KT_0 = 10, r_0 = 5$. These values of r_0 and K are marked in Fig. 5 as circles. Other parameters as in Fig. 5.

FIG. 7. (Color online) Transient time t_r in dependence on the initial radius r_0 for a fixed feedback gain $KT_0 = 8$. The dashed red curve refers to the analytical formula of the uncontrolled case given by Eq. (19b). Parameters as in Fig. 5.
integer and integer values. This suggests that the resonance conditions for best and worst control are alternatingly satisfied, even though the fixed point itself is still linearly stable. By this we can explain the modulation of the transient time in Fig. 7. This is, of course, a simplified argument, since it does not take into account that not only the angular velocity is shifted by the nonlinearity, but also the radial velocity changes nonlinearly with radius by Eq. (18a).

In order to clearly separate the effects of modified angular and radial velocity, we will now consider the limit case \(a = 0 \) where the nonlinearity affects only the angular velocity \(\omega^r \) and hence \(T^* \). Figure 8 illustrates the behavior of \(\tau_{tr} \) for \(a = 0 \) in the \((K, r_0) \) plane. In contrast to Fig. 5, the domain of control is no longer connected but consists of several islands of stability. They are separated by white regions where control fails. The sequence of these white regions with increasing \(r_0 \) can be qualitatively explained by the condition \(\tau = n T^* \), \(n \in \mathbb{N} \), i.e., \(r_0 \sim \sqrt{n - 1/2} \). Here, the transients do not converge to the fixed point although this is linearly stable, but rather to a delay-induced orbit. This is a clear indication of the finite basin of attraction of the fixed point, and of complex global effects in the nonlinear system. Note that our simple qualitative explanation does not describe the exact position of the gaps of stabilization, since \(\omega^r \) changes with increasing time, and the condition \(\tau = n T^* \) holds only for the linear system. Within the stability islands, larger feedback gain \(K \) leads to longer transients.

Similar to Fig. 7, Fig. 9 shows a vertical cut of Fig. 8 for fixed feedback gain \(KT_0 = 8 \) as indicated by the dotted line. One can see that the transient time becomes arbitrarily large at the boundaries of the stability islands. Note that the transient time is bounded from below by the dashed red curve which corresponds to the uncontrolled case according to Eq. (19b) with \(\lambda = -0.062 \) and \(a = -0.0015 \), following the procedure described above.

IV. CONCLUSION

In conclusion, we have shown that the transient times for control of steady states by time-delayed feedback are strongly influenced by the interplay of local and global effects. In a linear delay system the transient time scales with an inverse power law of the control gain, if the boundary of stabilization is approached. In a nonlinear system, e.g., a Hopf normal form, global effects due to coexisting stable delay-induced orbits lead to strongly modulated transient times as a function of the initial distance \(r_0 \) from the fixed point. This can be interpreted as resonances between the time delay and the intrinsic timescale of the angular rotation around the fixed point. These results are relevant for the optimization of time-delayed feedback control. They might be also of importance in experimental realizations, where the transient time determines the rate of convergence to a target state and thus is related to the robustness of the controller, for instance, in the presence of perturbations.

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsgemeinschaft in the framework of SFB910.

1E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
2A. L. Fradkov, Cybernetical Physics: From Control of Chaos to Quantum Control (Springer, Heidelberg, 2007).
3Handbook of Chaos Control, 2nd completely revised and enlarged ed., edited by E. Schöll and H. G. Schuster (Viley-VCH, Weinheim, 2008).
4K. Pyragas, Phys. Lett. A 170, 421 (1992).
5J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, Phys. Rev. E 50, 3245 (1994).
6A. Alib horn and U. Parlitz, Phys. Rev. Lett. 93, 264101 (2004).
7A. Alib horn and U. Parlitz, Phys. Rev. E 72, 016206 (2005).
8A. Gjurchinovski and V. Urı nov, Europhys. Lett. 84, 40013 (2008).
9O. Beck, A. Amann, E. Schöll, J. E. S. Socolar, and W. Just, Phys. Rev. E 66, 016213 (2002).
10N. Baba, A. Amann, E. Schöll, and W. Just, Phys. Rev. Lett. 89, 074101 (2002).
11P. Hövel, M. A. Dahlem, and E. Schöll, Int. J.Bifurcation Chaos 20, 813 (2010).
12P. Hövel and E. Schöll, Phys. Rev. E 72, 046203 (2005).
13T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 76, 056201 (2007).
14K. B. Blyuss, Y. N. Kyrychko, P. Hövel, and E. Schöll, Eur. Phys. J. B 65, 571 (2008).
15J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg, and B. Krauskopf, Phys. Rev. Lett. 100, 244101 (2008).
16E. Schöll, G. Hiller, P. Hövel, and M. A. Dahlem, Phil. Trans. R. Soc. A 367, 1079 (2009).
17F. M. Schneider, E. Schöll, and M. A. Dahlem, Chaos 19, 015110 (2009).
18V. Z. Tronciu, H. J. Wünsche, M. Wolfrum, and M. Radziunas, Phys. Rev. E 73, 046205 (2006).
19S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006).
20V. Flunkert and E. Schöll, Phys. Rev. E 76, 066202 (2007).
21B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll, Phys. Rev. E 77, 066207 (2008).
22. T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 78, 056213 (2008).
23. E. Schöll, Nonlinear Spatio-temporal Dynamics and Chaos in Semiconductors (Cambridge University Press, Cambridge, 2001).
24. G. Stegeman, A. G. Balanov, and E. Schöll, Phys. Rev. E 73, 016203 (2006).
25. J. Hizanidis and E. Schöll, Phys. Rev. E 78, 066205 (2008).
26. M. Kehrt, P. Hövel, V. Flunkert, M. A. Dahlem, P. Rodin, and E. Schöll, Eur. Phys. J. B 68, 557 (2009).
27. E. Schöll, Nonlinear Dynamics of Nanosystems, edited by G. Radons, B. Rumpf, and H. G. Schuster (Wiley-VCH, Weinheim, 2009).
28. A. G. Balanov, V. Beato, N. B. Janson, H. Engel, and E. Schöll, Phys. Rev. E 74, 016214 (2006).
29. J. Schlesner, V. Zykov, H. Engel, and E. Schöll, Phys. Rev. E 74, 046215 (2006).
30. W. Just, H. Benner, and C. V. Löwenich, Physica D 199, 33 (2004).
31. A. Amann, E. Schöll, and W. Just, Physica A 373, 191 (2007).
32. S. Yanchuk, M. Wolfrum, P. Hövel, and E. Schöll, Phys. Rev. E 74, 026201 (2006).
33. S. Yanchuk and P. Perlikowski, Phys. Rev. E 79, 046221 (2009).
34. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll, Phys. Rev. Lett. 98, 114101 (2007).
35. W. Just, B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll, Phys. Rev. E 76, 026210 (2007).
36. C. Grebogi, E. Ott, and J. A. Yorke, Ergod. Theory Dyn. Syst. 5, 341 (1985).
37. T. Tél and Y. C. Lai, Phys. Rep. 460, 245 (2008).
38. Y. C. Lai and Y. Do, Phys. Rev. Lett. 91, 224101 (2003).
39. Y. C. Lai and Y. Do, Europhys. Lett. 67, 914 (2004).
40. Y. C. Lai and Y. Do, Phys. Rev. E 71, 046208 (2005).
41. C. von Loewenich, H. Benner, and W. Just, Phys. Rev. Lett. 93, 174101 (2004).
42. K. Hohne, H. Shirahama, C.-U. Choe, H. Benner, K. Pyragas, and W. Just, Phys. Rev. Lett. 98, 214102 (2007).
43. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. Comput. Math 5, 329 (1996).