High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication

ABDULLAH A. ALATAWI,1,2,3 JORGE A. HOLGUIN-LERMA,1,3 CHUN HONG KANG,1 CHAO SHEN,1 RAM CHANDRA SUBEDI,1 ABDULRAHMAN M. ALBADRI,2 AHMED Y. ALYAMANI,2 TIEN KHEE NG,1 AND BOON S. OOI1,*

1Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
2National Center for Nanotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442-6086, Saudi Arabia
3These authors contributed equally to this work
*boon.ooi@kaust.edu.sa

Abstract: We demonstrated a high-power (474 mW) blue superluminescent diode (SLD) on c-plane GaN-substrate for speckle-free solid-state lighting (SSL), and high-speed visible light communication (VLC) link. The device, emitting at 442 nm, showed a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. By integrating a YAG-phosphor-plate to the SLD, a CRI of 85.1 and CCT of 3392 K were measured, thus suitable for solid-state lighting. The SLD shows a relatively large 3-dB modulation bandwidth of >400 MHz, while a record high data rate of 1.45 Gigabit-per-second (Gbps) link has been achieved below forward-error correction (FEC) limit under non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Our results suggest that SLD is a promising alternative for simultaneous speckle-free white lighting and Gbps data communication dual functionalities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (060.2605) Free-space optical communication; (250.0250) Optoelectronics; (140.7300) Visible lasers; (230.3670) Light-emitting diodes.

References and links
1. A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).
2. R. J. Li, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
3. H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
4. H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018).
5. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
6. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
7. C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
8. C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
9. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
10. S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
11. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
12. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).

13. E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duell, and C. Vélez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).

14. A. Kafar, S. Stańczyk, P. Wisniewski, T. Otto, I. Makarova, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).

15. A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duell, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

16. H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaN/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).

17. F. Kopp, C. Eichler, A. Lebl, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for piperecognition,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).

18. C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202T) blue InGaN/GaN superluminescent diodes for drop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).

19. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).

20. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).

21. H. S. Djie, C. E. Dimas, B.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaN/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).

22. A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).

23. H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dot InGaN/GaN superluminescent diodes at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).

24. C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991).

25. C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitseh, A. Avramescu, A. Miller, A. Lebl, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).

26. C. E. Dimas, H. S. Djie, and B. S. Ooi, “Gain optimization method of a DQW superluminescent diode with output power above 100 mW for piperecognition,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).

27. M. Rossetti, J. Napièrala, N. Matuschek, U. Achatz, M. Duell, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light-emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 82520B (2012).

28. T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

29. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).

30. H. S. Djie, C. E. Dimas, B.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaN/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).

31. A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).

32. A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).

33. A. Kafar, S. Stańczyk, G. Targowski, T. Otto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 9(5), A50002 (2016).

34. A. Kafar, S. Stańczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 6(2), A30 (2017).
38. A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwińska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
39. M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duvel, C. Velez, E. Felin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
40. G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
41. M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
42. C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
43. F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
44. M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
45. J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of low wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
46. D. F. Feezell, J. J. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (022T) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
47. D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010).
48. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
49. Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
50. B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
51. R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
52. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006).
53. L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
54. K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguín-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Microphotodetector,” Opt. Express 26(3), 3037–3045 (2018).
55. R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. (Artech House Publishers, 2000).
56. K. Y. Lau, I. Ury, N. Bar-Chaïm, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(34), 329–331 (1983).

1. Introduction

Ever since the first demonstration of ambient-sunlight wireless telephone communication [1], the field of optical wireless communication has evolved significantly. The recent advent of light-emitting diode (LED) and laser diode (LD) allows one to integrate efficient solid-state lighting (SSL) and high-speed visible light communication (VLC), offering data security and immunity to electromagnetic interference [2]. Beyond this, VLC provides the resource for mitigating the saturating bandwidth in the conventional radio-frequency (RF) band. The RF spectrum is limited to a bandwidth of ~300 GHz, which is significantly lower than the predicted bandwidth demand of 6 THz by 2035 [3], and ~1300 times lower than the bandwidth available in the visible light spectrum (~390 THz) [3,4]. Moreover, in the past 10 years, data transmission rate in VLC systems have remarkably improved from Megabit-per-second (Mbps) to Gigabit-per-second (Gbps) offering unprecedented possibilities of simultaneous functionalities in signaling, communication, localization, and illumination for the paradigm-shift in 5G technology [3,4] and beyond.
Light emitters are essential components in VLC, deserving a focused attention in order to push the limit for higher data rate and modulation bandwidth. Although Gbps-class high-speed data transmission based on LD has been reported [5–9], the speckle-noise and the concern for eye-safety remain as some of the existing challenges for practical implementation in SSL-VLC systems. Similarly, LED-based emitter have also been studied and demonstrated in SSL-VLC [10–12]; however in order to achieve high data rates, the LED-based VLC technology has to resort to complex modulation schemes and/or multiplexing configurations.

Group-III-Nitride-based superluminescent diodes (SLD) have received significant attention recently [13–16] owing to their unique features, which combine the advantages of both LEDs and LDs [17]. The short wavelength SLDs, have a broad spectral emission attributed to the coexistence of spontaneous and stimulated emission, known as amplified spontaneous emission (ASE) [18], making it a promising alternative for SSL-emitters. In parallel, highly directional beam (limited etendue) with high power, low speckle noise and droop-free can be achieved [19]. Conventionally, SLD is used in optical coherence tomography (OCT) [20], fiber gyroscope [21], sensing [22], and picoprojections [23]. Our previous works reported the fabrication of semipolar InGaN-based SLDs and the potential for white light generation with a CRI of 68.9 [19] and for data communications [24,25] However, the limited availability and high-cost of semipolar GaN substrate present significant challenges in eventual foundry adoption. Therefore, it is important to develop high-power blue SLD based on matured and relatively low-cost c-plane GaN substrate and fabrication technologies.

In this work, we present a high-power (>100 mW), broad spectral emission (6.5 nm) blue (442 nm) SLD on c-plane GaN substrate. The device shows a large 3-dB modulation bandwidth of >400 MHz and a record SLD data rate of 1.45 Gbps based on on-off keying (OOK) modulation. Integrating SLD with a commercial phosphor generates high quality white light with a color rendering index (CRI) of 85.1 and correlated color temperature (CCT) of 3392 K. Additionally, a record-breaking high-power of 474 mW was achieved under pulsed injection (2% duty cycle, 9.8 kHz). This is the first report on simultaneous attainment of high performance SLD characteristics for white-light communication, such as high power, color quality, modulation bandwidth and data rate, while droop-free, simply based on c-GaN substrate-platform, thus advancing SLD as a practical utility for simultaneous SSL-VLC technology.

2. Experimental setup

Various methods have been pursued to realize high-power SLD where the underlying mechanism is to suppress the formation of resonance cavity, such as implementing antireflection (AR) facet coating [26], tilting or bending the waveguide and facet [14,27,28], and utilizing a passive absorber [29]. In our work, we utilize a 12° tilted-facet as illustrated in Fig. 1(a), etched from a GaN-based 15-µm-wide ridge blue LD with a ~1 mm long waveguide. This tilted angle was adopted to minimize the reflectance from the front facet of the SLD without antireflection coatings (AR) [30], while the back facet is coated with a dielectric high-reflective (HR) mirror with >90% reflectivity in order to increase the output power. Conventional LD fabrication steps were used in a commercial epitaxial structure consisting of a c-plane GaN substrate, AlGaN p- and n-type cladding layers, InGaN active region with multiple quantum wells, p-AlGaN electron blocking layer, highly Mg-doped p-GaN contact layer and GaN waveguides similar to previous reported structures [31].

The light-output – current – voltage (L–I–V) characteristics of the SLD device were measured up to 1 A in both continuous wave (CW) and pulsed mode (2% duty cycle, 9.8 kHz) using a customized probe station equipped with a Keithley 2520 pulsed laser diode system, a Labsphere integrating sphere, and a thermoelectric cooler (TEC) to stabilize the operation at room temperature (18 °C to 22 °C). The electroluminescence (EL) spectra measurement was conducted using an Ocean Optics HR4000 spectrometer. The generated
white light from combining the SLD and a commercial phosphor-plate 930-LR from ChromaLit Linear Intematix was characterized using a GL-Spectis 5.0 Touch from GL-Optic, and the illumination was measured using a Uni-T UT383 meter. The frequency response was measured using an Agilent E8361C PNA network analyzer. An Agilent 85093-60010 RF electronic calibration (E-cal) module was utilized for the calibration process. The data transmission experiment was conducted using the non-return-to-zero on-off-keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 2^10-1 data stream from the Agilent N4903B J-BERT pattern generator. The setup involves a Tektronix PSPL5580 bias tee, a Tektronix PSPL5866 linear amplifier, and a Menlo Systems APD210 Si avalanche photodetector as the receiver. Also, the eye diagrams were captured using an Agilent DCA-86100C digital communication analyzer during the NRZ-OOK data transmission measurement.

3. Results and discussion

The EL spectra of the SLD at different injection current are shown in Fig. 1(b). The change in the peak position and full-width at half-maximum (FWHM) of the SLD emission are summarized in Fig. 1(c). FWHM decreases from 20 nm to 6.5 nm on increasing injection current from 100 mA to 1 A respectively. Broad FWHM (6.5 nm) even at high injection currents (1 A, CW) confirm that the SLD is working in ASE regime. Such spectral narrowing is expected and attributed to the higher ASE near the peak optical gain of the active region [32]. Furthermore, initial blue shift is observed in the EL peak position of the SLD, which is mainly attributed to the band-filling effect, with a further red-shift in the peak positions at higher currents due to the increase in device heating.
Table 1. Comparison of characteristics on GaN-based superluminescent diodes (SLDs).

λ (nm)	Substrate material	Waveguide design (ridge width, w; cavity length, l)	Optical power (mW)	Spectral FWHM (nm)	Optical power · FWHM (mW·nm)	Year	Ref.
405	Semipolar GaN	45° tilted facet (w = 4 μm, l = 590 μm)	20 (CW)	9	180	2016	[24]
405	c-GaN	5° tilted waveguide (w = 3 μm, l = 700 μm)	0.65 (pulsed)	5.23	3.4	2010	[33]
405	c-GaN	10° tilted facet, tapered waveguide, back HR coating (dimensions are unavailable)	200	3	600	2011	[34]
405	c-GaN	5° tilted waveguide (w = 5°10 μm ridge, l = 2 mm)	125 (CW)	2.5	312.5	2012	[28]
405	c-GaN	“j-shape” waveguide curved ridge (dimensions are unavailable)	350 (CW)	NA	-	2016	[35]
405	c-GaN	“j-shape” waveguide (w = NA, l = 1 mm)	230 (CW)	2.5	575	2013	[36]
405	c-GaN	“j-shape” waveguide (w = 3 μm ridge, l = 1 mm)	200 (CW)	2.5	500	2015	[14]
415-423	c-GaN	“j-shape” graded In composition waveguide (w = 3 μm, l = 1 mm)	3 (CW), 2 (CW)	15.5, 5	46.5, 10	2017	[37]
410-445	c-GaN	Tilted waveguide (w = 2 μm, l = 800 μm)	40 (CW), 55 (pulsed)	5	200	2010	[39]
420	c-GaN	Tilted waveguide (w = 2 μm, l = 800 μm)	2.8 (CW), 100 (pulsed)	4.6	13	2009	[13]
428	c-GaN	Active absorber (w = 10 μm, l = 2.6 mm)	70 (pulsed)	10	700	2017	[40]
439	m-GaN	Facet roughening (w = 4 μm, l = 500 μm)	5 (pulsed)	9	45	2009	[41]
440	c-GaN	Curved waveguide AR/HR coating (dimensions are unavailable)	150 (CW)	4	600	2018	[15]
442	c-GaN	12° tilted facet (w = 15 μm, l = 1 mm)	105 (CW), 474 (pulsed)	6.5 (CW)	650	2018	This work
443	c-GaN	Curved waveguide, AR/HR coating (w = 2 μm, l = 1.2 mm)	100 (CW)	2.6	260	2013	[23]
445	c-GaN	30° facet (w = 5 μm, l = 800 μm)	NA	7.7	-	2014	[42]
447	Semipolar GaN	Passive absorber waveguide (w = 7.5 μm, l = 1000 μm)	123 (CW)	6.3	775	2016	[19]
500	c-GaN	Curved waveguide AR/HR coating (w = 2 μm, l = 1.2 mm)	4.3 (pulsed)	4.4	17.6	2012	[43]

L–I–V plots are presented in Fig. 1(d) and 1(e) under CW and pulsed injection (duty cycle of 2%, 9.8 kHz). The output power (optical) under both conditions reaches maximum values of 105 mW and 474 mW respectively, where the lower output power under CW injection is
attributed to self-heating effect caused by high injection current, increasing the non-radiative recombinations and carrier escape from the heterostructure [33,44]. The L–I plots prove an exponential dependency of output power at lower injection currents (<700 mA), followed by a superlinear L–I characteristic. These characteristics are translated into droop-free emission with maximum external quantum efficiencies (EQE, \(\eta_{\text{ext}} \)) of 6.74% and 16.91% for CW and pulsed injection respectively (Fig. 1(f)).

It is important to ponder the emission wavelength and the crystal plane of growth in light emitting devices. It is well known that increasing the indium (In) composition of the active region of InGaN-based emitters decreases the quantum efficiency significantly [45], therefore, longer emission wavelengths represent a higher challenge for device operation. Also, it has been shown that piezoelectric effects found in c-plane GaN affect the performance of the light emitters [46] and semipolar/non-polar GaN substrates can be a solution, however, the high-cost and low availability of these substrates, as compared to c-plane GaN, delay their implementation. Considering these facts whereby we can ponder the information listed in Table 1, and compare the product of optical power and FWHM among the reports, it can be shown that our SLD device stands out among all previous results.

![Fig. 2. Light beam of LD and SLD: (a) LD beam path. (b) SLD beam path. Insets are the far field projections of the LD and SLD beam patterns, respectively.](image)

The performance of the SLD in generating white light was evaluated based on the speckle density and high-CRI value. In Fig. 2, we compared the emission path and far-field projection of the SLD against a blue LD from the same epitaxial structure and dimensions. The emission path of LD and SLD are shown in Fig. 2(a) and 2(b) respectively where the insets in each of the figures illustrate the far field projection of the devices. Owing mainly to the incoherence nature of ASE and the broader emission (6.5 nm) as compared to the LD (<2 nm), the speckles in the case of LD are denser than those in SLD, which makes SLD promising for the generation of high-power speckle-free white light.

A commercially available phosphor (ChromaLit Linear Intematix) was integrated with the blue SLD to generate white light obtaining an illuminance of 1550 lux measured directly at the source under 1 A CW injection (Fig. 3). Thus generated white light presented a CRI of 85.1, a CCT of 3392 K, and corresponding Commission Internationale de l'Eclairage (CIE 1931) chromaticity coordinates at (0.3991, 0.3625). These values were consistent at different SLD injection current ranging from 700 mA to 1 A. Moreover, the CRI value obtained in this report is significantly higher than our previously reported value of SLD-based SSL on semipolar GaN substrate [19]. In the search for warmer SSL-based white light due to health
concerns \[47,48\], the CCT of 3392 K obtained in this work represents one step further on integrating blue emitters into indoor lighting solutions offering warm illumination with a competent CRI (>85).

![Figure 3. SLD-based SSL white light characteristics: (a) Photograph of SLD in combination with a phosphor plate operating at 1A CW. (b) Illuminance of the generated white light at different injection current. (c) Spectral shape of the white light with CRI of 85.1 and CCT of 3392 K. (d) CIE diagram showing the chromaticity coordinates of the generated white light.](image)

The modulation bandwidth capability of the SLD was explored and plotted in Fig. 4(a). By increasing the current density \(J\), it is expected that the active region carrier concentration \(N\) increases, leading to a decrease in the differential carrier lifetime \(\tau\) \[49,50\]. This differential lifetime is inversely proportional to the frequency modulation bandwidth \(f_{3dB}\), given by \(f_{3dB} = \frac{\sqrt{3}}{2\pi\tau}\), leading to incremental modulation bandwidths at higher injection currents \[51,52\]. The 3-dB modulation bandwidth of our device was measured to be 376 MHz, 398 MHz, and 404 MHz, at 800 mA, 900 mA, and 1A respectively. As shown in Fig. 4(a), the natural frequency response of the SLD shows a continuous flat response without the need of equalization techniques \[53\]. This bandwidth flat response is desired when using modulation schemes for high density data such as orthogonal frequency division multiplexing (OFDM) \[54,55\]. Moreover, the absence of the relaxation resonance frequency peak \(\omega_r\), which is characteristic of LD cavities \[56\] is one more evidence of the existence of ASE and the suppression of the resonance cavity.

Furthermore, we measure the VLC data rate using NRZ-OOK modulation scheme. As seen in Table 2, we demonstrated data rates up to 1.45 Gbps with corresponding bit error rate (BER) of \(1.8 \times 10^{-3}\), which is below the forward error correction (FEC) limit of \(3.8 \times 10^{-3}\). The distance between the emitter and the receiver was ~25 cm. The eye diagrams showing clear open eyes are presented in Fig. 4(b) and 4(c) for two different data rates 1 Gbps and 1.45 Gbps, respectively. The values reported herewith represent the highest data rate ever achieved in SLD (Table 3) and pave the way for future SLD-based SSL-VLC systems.
Fig. 4. Stand-alone SLD modulation bandwidth and data rate: (a) Modulation bandwidth response at different injection currents. (b) and (c) show the eye diagram for data rate of 1 Gbps, and 1.45 Gbps respectively.

Table 2. Data rates achieved with the SLD used for visible light communication (VLC).

Data rate (Gbps)	CW Current (mA)	AC voltage before amplifier (mV)	BER
0.7	400	400	2.0×10^{-4}
1	500	400	1.7×10^{-4}
1.2	600	500	6.0×10^{-4}
1.3	700	500	1.1×10^{-4}
1.4	700	500	1.9×10^{-3}
1.45	700	550	1.8×10^{-3}

Table 3. Comparison of superluminescent diodes (SLD) used for visible light communications (VLC)

λ (nm)	Substrate material	Optical power	FWHM (nm)	Bandwidth, $f_{3\text{dB}}$ (MHz)	Data rate (Gbps)	Ref.
405	Semipolar GaN	20 mW (CW)	9	807	1.3	[24]
447	Semipolar GaN	123 mW (CW)	6.3	560	-	[19]
442	c-GaN	105 mW (CW)	6.5	405	1.45	This work

4. Conclusions

In conclusion, we demonstrated VLC and SSL combined functionality visible-light device based on a c-plane GaN blue (442 nm) SLD with a broad FWHM of 6.5 nm and high-power output of 105 mW at 1 A of CW injection current. SLD-based warm white light with CCT of 3392 K and CRI of 85.1 were demonstrated along with a VLC record data rate of 1.45 Gbps using NRZ-OOK modulation scheme. Moreover, a record peak power of 474 mW was achieved under pulsed injection (2% duty cycle, 9.8 kHz). These results underscore the practicality of c-plane SLDs in realizing high-power, high data rate, speckle-free and droop-free SSL-VLC apparatus.
Funding

King Abdulaziz City for Science and Technology (KACST), Grant No. KACST TIC R2-FP-008; This work was partially supported by the King Abdullah University of Science and Technology (KAUST) baseline funding, BAS/1/1614-01-01; KAUST equipment funding KCR/1/2081-01-01; GEN/1/6607-01-01; KAUST-KFUPM Special Initiative (KKI) Program, REP/1/2878-01-01.