Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria

Lianyu Song1†, Xin Hu2†, Xiaomin Ren1, Jing Liu2 and Xiaoye Liu1,2*

1Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China, 2Animal Science and Technology College, Beijing University of Agriculture, Changping, China

The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.

Keywords: natural plant flavonoids, heat-clearing Chinese medicine, antibiotic resistance, multidrug resistant bacteria, antibacterial modes

INTRODUCTION

The worldwide spreading of pathogenic resistant bacteria threatens public health. Currently, the infections caused by Gram-negative (G−) bacteria occur more frequently than Gram-positive (G+) bacteria in clinics. A report from the China Antimicrobial Resistance Surveillance System (CARSS) shows that G− bacteria accounted for 71.1% of the 3,249,123 clinical isolated strains, while Gram-positive (G+) bacteria for 28.9% (Figure 1A). Among them, the high number of multidrug resistant (MDR) bacterial infections, such as carbapenem-resistant G− bacteria (CRGNB), are life-threatening (Bassetti et al., 2021; Palacios-Baena et al., 2021). As shown in Figure 1A, many more MDR pathogens are emerging, including the resistant G− bacteria like carbapenem-resistant E. coli (CREC, 1.6%), carbapenem-resistant K. pneumoniae (CRKPN, 10.9%), carbapenem-resistant P. aeruginosa (CRPsA, 18.3%), carbapenem-resistant A. baumannii (CRAB, 53.7%), and the resistant G+ bacteria such as methicillin-resistant S. aureus (MRSA, 29.4%) and methicillin-resistant coagulase-negative S. aureus (MRCNS, 74.4%). Worse still, global patient deaths due to antibiotic resistance are approximately 700,000 and the numbers are expected to increase to 10 million by 2050 if no effective measures are introduced. Therefore, alternative
strategies to antibiotics and the discovery of novel antibacterial drugs to combat resistant bacteria are in high demand.

In the resistant era, the major therapy of MDR still rely the efficacy and safety antibacterial agents, while the discovery and development of antibacterial drugs are barrier by the unknown infective route of pathogen (Liu et al., 2019; Song et al., 2020; Zulauf and Kirby, 2020). Effective antibacterial therapies need to explore more antibacterial compounds and their pharmacological activities and targets to sustainably combat the resistant bacteria (Theuretzbacher et al., 2020). Our previous work has demonstrated that the host defenses are critical for both bacterial infections and antibacterial drug therapy (Liu F. et al., 2020; Liu et al., 2021). Therefore, host factors are vital for the management of MDR bacterial infections. In most situations, bacteria evolve or develop a variety of strategies to infect the human host (Culyba and Van Tyne, 2021). Thus, antibiotics cannot effectively fight against various bacterial mutations, while large doses and frequent usage of antibiotics can cause bacteria to be constantly exposed to drug stress, which will trigger the emergence of drug-resistant bacteria.

Unlike the direct stress of antibiotics to bacteria, host-directed therapy (HDT) is a sensible strategy against unknown resistant bacteria, and host-acting antibacterial compounds (HACs) are worthy of developing (Liu et al., 2022). The intrinsic advantages of HACs therapy are mobilizing the host cells to protect themselves from unknown infections with less emergence of resistant bacteria, due to the reduced selective pressure from directly targeting bacteria. Similar to HDT and HACs, the main therapeutic principle of traditional Chinese medicine (TCM) against bacteria is dependent on “reinforcing healthy Qi and expelling pathogenic factors,” which also refers to its abilities of both enhancing host defense forces and eliminating pathogenic bacteria (Figure 1B). In terms of the TCM theory, we divide the antibacterial actions of TCM to direct-acting and host-acting antibacterial modes (Figure 1B). Upon infections, bacterial diseases belong to heat syndrome (Wang et al., 2018). Heat-clearing Chinese medicines symptomatically treat bacteria-caused internal heat syndrome. Therefore, the heat-clearing herbs may serve as potential drug libraries for screening the lead compounds to combat MDR bacterial infection. Flavonoids are abundant in plants, such as in most herbs, and recent research shows that flavonoids have excellent antibacterial activities that are regulated tightly with their functional groups (Song et al., 2021a).

Overall, this review focuses on the flavonoids from heat-clearing herbs to reveal the therapeutic strategies of resistant pathogens. In the following sections, we discuss the availabilities and antibacterial pipelines of herbal flavonoids.

HERBAL FLAVONOIDS IN HEAT-CLEARING MEDICINES

TCM is identified by organic wholeness and treatment based on syndrome differentiation. The syndrome differentiation of infectious diseases belongs to internal heat syndrome, which can be treated with heat-clearing medicines. Internal heat...

FIGURE 1 | Resistant pathogenic infections and the treatment of traditional Chinese medicine. (A) The occurrence of resistant pathogens in China from 10/2019 to 12/2020. Reported data are collected from China Antimicrobial Resistance Surveillance System (CARSS). The isolated resistant strains from the report that account for Gram-negative (G−) bacteria and Gram-positive (G+) bacteria are 71.1% and 28.9%, respectively. (B) Scheme of the infectious therapy of traditional Chinese medicine (TCM). Resistant bacterial infections lead to the treatment failures of antibiotics. While therapeutic principles of TCM focus on the organic wholeness referring to “reinforcing healthy Qi and expelling pathogenic factors,” which displays that both suppressing bacteria and enhancing host defense. The TCM can divide to two types including direct-acting antibacterial mode and host-acting antibacterial mode. It is worth noting that “Qi” in TCM denoted the gas of host healthy, mostly meaning the forces of host defense.
syndrome manifests itself in many forms including
Qi aspect heat, blood aspect heat, dampness-heat, toxin-heat, and
deficiency-heat (Figure 2A) (Chen, 1965). The heat syndrome
occurs in the spatiotemporal axis of infectious diseases’
correspondence with acute phase, disorders of coagulation
system, chronic infection, fever, pathological changes, and
chronic illness with weakness (Figure 2A). For these heat
syndromes, heat-clearing medicines have five of therapy: 1)
heat-clearing and fire-purging herbs, 2) heat-clearing and
blood-cooling herbs, 3) heat-clearing and damp-eliminating
herbs, 4) heat-clearing and toxin-relieving herbs, and 5)
asthenic-heat clearing herbs (Figure 2B).

Flavonoids are widely distributed heat-clearing medicines and
exhibit multiple biological activities such as antibacterial, anti-
inflammatory, and antioxidation effects (Lan et al., 2021;
Waditzer and Bucar, 2021). The chemical structures of more
than 8000 flavonoids have been determined (Wen et al., 2021)
and most existing flavonoids have been reported to defend against
MDR bacterial infections (Song et al., 2021a). As shown in
Figure 2B, the typical heat-clearing and fire-purging herbs include Anemarrhenae Rhizome, Gardeniae Fructus, and
Mangosten peel. Mangiferin and isomangiferin are the main
compounds from Anemarrhenae Rhizome (Piwowar et al., 2020),
quercetin and isoquercitrin can be extracted from fruits of
Gardeniae Fructus (Kim et al., 2006), and mangostin exists in
the Mangosteen peel (Weerayuth et al., 2014). Heat-clearing and
blood-cooling herbs contain Moutan Coetrx, Rehmanniae Radix,
and Scrophulariae Radix; among these, only Moutan Coetrx is
reported to contain flavonoid compounds of catechins, picetin,
and kaempferol (Zhang et al., 2017), while the others have no
detected flavonoids. Three heat-clearing and damp-eliminating
herbs with large flavonoids are apigenin, luteolin, and quercetin in
Cancrinia discoidea (Su et al., 2011), baicalin, baicalein, wogonin,
and wogonoside in Scutellariae Radix (Guowei et al., 2018), and
kurarinone and norkurarinone in Sophora flavescens (Dong et al.,
2021). Heat-clearing and toxin-relieving herbs such as Lonicerae Japonica and Forsythiae Fructus have luteolin, lonicerin, hyperin,
and rutin (Huang et al., 2020; Wei et al., 2020). Finally, asthenic-
heat clearing herbs include Artemisia annua herba and Stellariae Radix and these exist in tamarixetin and quercetin,
correspondingly (Hao et al., 2020).
CHEMICAL STRUCTURE CLASSIFICATION OF FLAVONOIDS

To assess the antibacterial activities of flavonoids, the chemical structures of flavonoid compounds need to be clarified. Thus, the structural classifications of herbal flavonoids are detailed in Figure 3. Generally, flavonoids refer to a series of compounds in which two benzene rings (A and B rings) with phenolic hydroxyl groups are connected to each other through the central three carbon atoms (Wen et al., 2021). As shown in Figure 3A, the nuclear skeleton of flavonoids forms the C6-C3-C6 system. This subsequently classifies the flavonoids according to the degree of oxidation of the central three carbon atoms, the linking position of the B ring, and whether the three carbon chains constitutes a ring (C ring) or not (Xie et al., 2015). Major subclasses of flavonoids are detailed in Figure 3B; subclass I includes flavones and flavonols, subclass II includes flavanones and dihydroxyflavonones, subclass III includes flavans and delphinidins, subclass IV includes isoflavones and dihydroxyisoflavones, subclass V includes flavan-3-ols, flavan-3,4-diols, and anthocyanidins, subclass VI includes xanthones, and mangiferin, subclass VII includes other flavonoids such as bioflavonoids, homoisoflavonoids, aurones, isoaurones, and so on. The common skeletons are marked by blue and the green R groups denote substitutable groups. The main functional groups of flavonoids include phenolic hydroxy, prenyl, methoxyl, and methyl (highlighted in red).

MODES OF ACTION OF FLAVONOIDS ON RESISTANT BACTERIA

Antibacterial modes of flavonoids depend on the structures, that is the substitutions on the aromatic rings. As more antibacterial
activities of natural flavonoids have been found, numerous flavonoids have been confirmed to have existing antibacterial activity-structure relationships. For instance, the flavonoid compounds that have prenyl groups with hydrophobic substituents inhibit bacterial membrane function and biofilm formation (Rashid et al., 2007; Prawat et al., 2013; Wenzel, 2013; Narendran et al., 2016). The flavonoid compounds that have phenolic hydroxy groups with scavenging oxygen free radicals can modulate antioxidation and anti-inflammatory activities (Wenzel, 2013; Guowei et al., 2018; Farhadi et al., 2019; Jordan et al., 2020).

According to different modes of action, flavonoid compounds can be grouped into two types, one with a direct-acting antibacterial mode (DAC) regulated by prenyl (Dong et al., 2017; Kariu et al., 2017; Jordan et al., 2020; Song et al., 2021a), the other with host-acting antibacterial mode (HAC) regulated by phenolic hydroxy (Xie et al., 2015; Echeverria et al., 2017; Farhadi et al., 2019; Liu et al., 2022).

For a clearer understanding of the two modes, the related three subcategories are attributed to these two modes. According to the antibacterial activities of inhibition of bacterial membrane, bacterial biofilm, efflux pump, and virulence factor, DAC divides to DACIM, DACIB, DACIE, and DACIV, respectively. HAC is divided into HACAO, HACAI, HACMI, and HACRP based on the effects on the antioxidation, anti-inflammatory, modulation of immune cells, and regulating pathway of host (Figure 4A and Table 1). Furthermore, the specific modes of action on herbal flavonoids that combat resistant bacteria are illustrated in the following.

Direct-Acting Antibacterial Modes

Direct-acting antibacterial modes of herbal flavonoids means that the antibacterial agents directly target the bacterial themselves, such as the bacterial membrane functions, biofilm formation, efflux pumps, and virulence factors (Figure 4A). Of the activities of DAC flavonoids, the first category is the biophysical barrier of the bacterial inner membrane that directly increases bacteria survival (Martin et al., 2020). Similar to most antibacterial drugs, the main therapeutic treatment option of flavonoids is damaging bacterial membrane functions. A recent report shows that the antibacterial mechanisms of flavonoids rely on distinctive modes of action to bind the phospholipids of bacterial membrane, which result in the disruption of proton motive force and metabolic disturbance (Song et al., 2021a). DAC flavonoids such as isobavachalcone (AMG) and α-mangostin (IBC) target the phosphatidylglycerol (PG) of bacterial membrane.
| Flavonoids | Flavonoid structures | Sources | Antibacterial modes (DAC_{IM}; IE/IV/IB; HAC_{AO/AD/AI/MI/RP}) | Target | Bacteria | References |
|------------------------|----------------------|-----------------------|---|----------------------------------|--|
| **Flavonoids** | | | | | |
| Prenylated flavonoids | Epimedium species | DAC_{AV/IB} | Bacterial biofilm formation | Porphyrmonas gingivalis | Kariu et al. (2017) |
| Flavonoids | Sophora flavescens^a | HAC_{AR/PP} | Autophagy protein LC3II and p62 | Tuberculosis (TB) | Kan et al. (2020) |
| Apigenin | Cancrinia discoidea^a | DAC_{AE/AD/AO} | Inhibition of EtBr efflux pump | Staphylococcus aureus | (Brown et al., 2015; Tang et al., 2017; Wang et al., 2018; Gumanean et al., 2023) |
| Bicailein, Baicalin | Scutellariae Radix^a | HAC_{AO/AD/RP} | Regulating Wnt/β-catenin and MAPK signal pathways | G− Bacteria | Liu et al. (2020; Pereira et al., 2020) |
| Bicailein-7-O-β-D-glucuronide | Scutellariae Radix | HAC_{AO/AD/RP} | | Escherichia coli K1 | Park et al. (2018) |
| Quercetin, Isoquercitrin| Gardeniae Fructus^b; Stellariae Radix^c | DAC_{AM/IM}; HAC_{AO} | | S. aureus; Mycobacterium aurum and Mycobacterium smegmatis | Solnier et al. (2020) |
| Kaempferol | Moutan Coetx^d | DAC_{AM/IV} | | Escherichia coli | |
| Luteolin, Lonicerin | Lonicerae Japonica^e | DAC_{AE/IV/BS/AH}; HAC_{AM/MI} | Reducing the extracellular matrix to inhibit microcolony biofilms; Msra efflux pump | MRSA; S. aureus; MRSA; Trueperella pyogenes; Mycobacterium tuberculosis | (Lee et al., 2017; Mohamed et al., 2020; Pal and Tripathi, 2020; Yang et al., 2020) |
| Luteolin-7-O-β-D-glucuronide | Impatiens balsamina | HAC_{AO/PP} | MAPKs pathway | G− Bacteria | Liu et al. (2020) |
| Tamarixetin | Artemisia annua herba^e | DAC_{A/MI} | Inhibition of EtBr efflux pump | Escherichia coli K1 | Park et al. (2018) |
| Wogonin | Scutellariae Radix^a | DAC_{AE/IV} | | S. aureus; Mycobacterium aurum and Mycobacterium smegmatis | Solnier et al. (2020) |
| Flavanones | Liquorice (n.a.) | DAC_C | LPS | MRSA | Kali et al. (2021) |
| Flavanonols | Lonicerae Japonica^e; Anadenanthera colombina var cebil (n.a.) | HAC_{AO} | Antioxidant potentials | S. aureus | Rodrigo Cavalcante de Araújo et al. (2019) |
| Kurarinol A, Kurarine | Sophora flavescens^a | HAC_{AE/AV} | Regulation of macrophage functions | Gram-negative bacteria | Xu et al. (2021) |
| Rutin | Forsthiae Fructus^a | DAC_{AE/IV}; HAC_{AO} | Bacterial biofilm, atoxicant potentials, inflammatory cytokine expressions | P. aeruginosa; S. aureus; Multidrug-resistant Gram-positive pathogens; Drug resistant Aeromonas hydrophila | (Deepika et al., 2019; Di Lodovico et al., 2020; Motallebi et al., 2020; Suebsaard and Chareomuntanakul, 2021) |
| Chalcones | Phloridzin | DAC_{CIE}; HAC_{CI} | Efflux protein genes | S. aureus (msra and norA efflux protein); Gram-negative bacteria MRSA | (Lopes et al., 2017; Kamdi et al., 2021) |
| Dihydrochalcones | Liquorice (n.a.) | DAC_C; HAC_{CI} | Bacterial cytoplasmic membrane function, Tissue inflammation | MRSA | (Gaur et al., 2016; Watanabe et al., 2016) |
| Isobavachalcone | Psoralea corylifolia^{n.a.} | DAC_{AC} | AcrAB, TolC efflux pumps | MDR-Gram-negative bacteria; MRSA; Bacteria | (Kuete et al., 2010; Song et al., 2021a) |

(Continued on following page)
TABLE 1 | Antibacterial modes of natural plant flavonoids and the main target bacteria.

Flavonoids	Flavonoid structures	Sources	Target	Bacteria	References	
Isoflavones	Rotone	Pueraria	HAC₄	Anti-inflammation by protecting the epithelia and goblet cells and increasing the short-chain fatty acids level	Pathogenic bacteria	- (Wu et al., 2020; Song et al., 2021a)
Dihydroisoflavones	Puerarin	Lobata (n.a.)	HAC₄	Anti-inflammation by protecting the epithelia and goblet cells and increasing the short-chain fatty acids level	Pathogenic bacteria	- (Wu et al., 2020; Song et al., 2021a)
Flavan-3-OLS	Catechin	Moutan Coetx	DAC₄	Efflux pump assemblies and MexB proteins	Resistant bacteria	- (Gomes et al., 2018; Yang et al., 2018; Siebert et al., 2021; Wu and Brown, 2021)
Flavan-3,4-Diols	Cyanidin	Geranium, Malvidin	-	-	- (Gomes et al., 2018; Yang et al., 2018; Siebert et al., 2021; Wu and Brown, 2021)	
Anthocyanidins	Cytisin, Delphinidin	-	-	-	- (Gomes et al., 2018; Yang et al., 2018; Siebert et al., 2021; Wu and Brown, 2021)	
Xanthones	Mangiferin	Anemarrhenae Rhizome	DAC₄	Efflux pumps	Gram-negative MDR bacteria	Tchinda et al. (2019)
	α-mangostin	Mangosteen peel	DAC₄	PG of bacterial membrane function	Bacteria	- (Song et al., 2021a)

Note: Heat-clearing Chinese herbs include.
1 Heat-clearing and damp-eliminating herbs.
2 Heat-clearing and fire-purging herbs.
3 Asthenic-heat clearing herbs.
4 Heat-clearing and blood-cooling herbs.
5 Heat-clearing and toxin-relieving herbs.

n.a., not applicable. DAC represents direct antibacterial flavonoid compound, DAC₄, DAC that inhibition of bacterial membrane, DAC₄E, DAC that inhibition of bacterial efflux pump, DAC₄, DAC that inhibition of bacterial virulence factor, DAC₄E, DAC that inhibition of bacterial biofilm; HAC denotes host-acting antibacterial flavonoid compound, HAC₄, anti-inflammatory of HAC; HAC₄, HAC that modulation of immune cells, HAC₄, antioxidation of HAC; HAC₄, HAC that regulate signaling pathways; MDR, multidrug-resistant; MRSAs, Methicillin-resistant Staphylococcus aureus; CRGNB, carbapenem-resistant Gram-negative bacteria; CRPsA, carbapenem-resistant Pseudomonas aeruginosa; CRAB, carbapenem-resistant Acinetobacter baumannii; "-" denotes that not report the antibacterial activity. All the species listed in the table are fully validated.

(Figure 4B). These two DAC flavonoids have 3′-prenyl and 2, 8-prenyl, respectively (Figure 3B). Active prenyl flavonoids endow the antibacterial activities that combat most bacteria, even MRSA (Table 1). In addition, the prenyl flavonoid compounds are abundantly distributed in herbal flavonoids (Wen et al., 2021). For instance, as typical heat-clearing and damp eliminating herbs, Scutellariae Radix has the main flavonones of baicalein and baicalin using the direct-acting antibacterial activity to fight against MRSA, S. aureus, and Streptococcus suis infections via inhibition of bacterial membrane functions (Rajkumari et al., 2017; Chen et al., 2018; Zhang et al., 2020; Lu et al., 2021) (Table 1). In addition, other flavonoid compounds in heat-clearing herbs also have the antibacterial abilities of damaging the bacterial membrane, such as quercitin from Gardeniae Fructus (ii, heat-clearing and damp eliminating herb) (Mohamed et al., 2020; Yang et al., 2020), kaempferol origin from Moutan Coetx (ii, heat-clearing and blood-eliminating herb) (Lin et al., 2020; He et al., 2021), luteolin and lonicerin from Lonicerae Japonica (ii, heat-clearing and toxin-relieving herb) (Zhang et al., 2018; Singh et al., 2021), hyperin and hyperoside origin from Lonicerae Japonica (iv, heat-clearing and toxin-relieving herb) (Rodrigo Cavalcante de Araújo et al., 2019), rutin from Forskiae Fructus (iii, heat-clearing and damp eliminating herb) (Deepika et al., 2019; Di Lodovico et al., 2020; Motallebi et al., 2020), and mangiferin from Anemarrhena Rhizome (i, heat-clearing and blood-cooling herbs) (Tchinda et al., 2019). These DAC₄M flavonoids that treat bacterial strains are detailed in Table 1.

In order to gain more survival options from the antibiotic stress, resistant bacteria evolved various approaches to survive, such as biofilm, efflux pumps, and virulence factors (Blair et al., 2015; Narendran et al., 2016; Ercoli et al., 2018; Yelin and Kishony, 2018). Flavonoids limited the spread of resistant bacteria by serving as the inhibitors of bacterial efflux pumps (Solnier et al., 2020) and bacterial virulence factors (Wang et al., 2020). We summarized the effect of flavonoids such as DAC₄B, DAC₄E, and DAC₄H in Table 1. For the DAC₄B mode, flavonoids directly target the bacterial biofilm formation as therapeutic strategies. For instance, the baicalin-fabricated gold nanoparticles have antibiofilm activity against Pseudomonas aeruginosa PAO1 (Rajkumari et al., 2017). The flavone luteolin and the flavonols myricetin, morin, and quercetin strongly reduce the extracellular matrix to interrupt the Escherichia coli macrocolony biofilms by directly inhibiting the assembly of amyloid curli fibers by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers (Pruteanu et al.,...
With flavonoid DACIV, apigenin can recover the susceptibility of antibiotics to resistant bacteria by suppressing the EtBr efflux pump (Brown et al., 2015; Tang et al., 2017; Wang et al., 2019; Giumarnean et al., 2020). Additionally, wogonin can suppress the EtBr efflux pumps of S. aureus, Mycobacterium aurum, and Mycobacterium smegmatis (Solnier et al., 2020). Luteolin inhibits MsrA efflux pump in Trueperella pyogenes (Guo et al., 2022), phloridzin inhibits the msrA and norA efflux proteins of S. aureus (Lopes et al., 2017; Kamdi et al., 2021), isobavachalcone inhibits AcrAB, TolC efflux pumps of G. bacteria (Kuete et al., 2010), and daidzein inhibits AcrB efflux pump of E. coli (Aparna et al., 2014). It is worth noting that quer cetin that belongs to flavonoids have the inhibitory potential to effectively act as the efflux pump to treat CRNB due to its polyphenol hydroxyl group structure (Pal and Tripathi, 2020).

On the other side, flavonoid compounds have the direct-acting antibacterial effect of inhibiting bacterial virulence factors, such as α-hemolysin (Hla) of S. aureus (Wang et al., 2020; He et al., 2021). The Hla can cause bacterial entry of host cells and also lead to bacterial coinfection, while flavonoids can target Hla to control bacterial infection (He et al., 2021). Altogether, the flavonoid compounds that inhibit virulence factors are denoted as DACIV flavonoids and summarized in Table 1.

Host-Acting Antibacterial Modest

To establish persistent infection in the host, resistant bacteria toned to interrupt the host defense and trigger inflammation (Ercoli et al., 2018; Mathur et al., 2019; Pham et al., 2020; Rowe et al., 2020). The host is the key point to drug therapy and HDT may be a new approach for controlling resistant bacteria (Kaufmann et al., 2018; Ahmed et al., 2020). Many natural plant compounds exhibited the antibacterial activity of HDT, such as the bacterial infection therapy obtained from bedaquiline from Peruvian bark that activates host innate immunity (Giraude-Gatineau et al., 2020).

Additionally, the host-acting antibacterial compounds were systematically summarized in our previous works (Liu et al., 2022). Based on these foundations, as shown in Figure 4C, we divide HAC flavonoids into four groups: antioxidation (HACAO), anti-inflammatory (HACAI), modulation of immune cells (HACAMI), and regulating cellular pathways (HACARP).

HACAO flavonoids are able to combat bacterial infection with their antioxidation function, by reducing the free radicals and lipid peroxidation to inhibit oxygen-derived radicals or nitrogen-derived radicals to avoid oxidative damage (Kamdi et al., 2021; Palierse et al., 2021) In addition, this antibacterial activity mainly relies on the phenolic hydroxy group of flavonoid compounds, such as quer cetin and hyperoside (Figures 3C, 4A) (Xie et al., 2015). For the HACAI flavonoids, the major anti-inflammatory modes of flavonoid compounds are inhibition of protein kinases (COX, cyclooxygenase, LOX, lipid oxygenase and PLA2, phospholipase A2), inflammatory factors (IL-1, IL-4, IL-10, and IL-13) and related transcription factors (NF-κB, GATA-3, and STAT-6) (Park et al., 2018; Ren et al., 2019; Kamdi et al., 2021; Miao et al., 2021). The anti-inflammatory flavonoid compounds include apigenin, baicalein, baicalin, luteolin, lonicerin, tamarixetin, rutin, phloridzin, isoliguritigentin, puerarin, and catechin (Table 1). The HACMI flavonoids are marked as modulation of immune cells, which is usually accompanied by anti-inflammatory effects, like luteolin and kuranol A (Singh et al., 2021; Xu et al., 2021). These functions of activating immune cells to downregulate inflammation contains decreasing CD80/CD86 of dendritic cells and histamine, prostaglandin, pro-inflammatory, and cytokines of mast cells to suppress excessive inflammation. In addition, it also increases immune cells (T cell, macrophage, PMNs and Th2 cell) to activate innate immunity (Figure 4C).

The HACARP flavonoids are the kinds of compounds that target cellular signaling pathways to combat bacteria. As shown in Table 1 and Figure 4C, the flavonoids of Sophora flavescent are potential agents in Tuberculosis (TB) infection therapy by enhancing macrophage autophagy to promote cellular survival and then reducing inflammation. (Kan et al., 2020). The Baicailein-7-O-β-D-glucuronide of Scutellariae Radi and Luteolin-7-O-β-D-glucuronide of Impatiens balsamina target MAPKs or Wnt/β-catenin pathway to inhibit the inflammation from bacterial LPS (Li et al., 2009; Kawai, 2018; Liu F. et al., 2020; Pereira et al., 2020).

CONCLUSION

The antibacterial resistance crisis has led to a prolonged period of infection control in clinics. High-efficiency and novel antimicrobial drugs remain the most effective strategies for the treatment of multidrug-resistant and unknown pathogen infections (Brown and Wright, 2016; Theuretzbacher et al., 2020). It is clear that the main measures for the prevention and control of drug-resistant bacteria are to vigorously develop green and effective new antibacterial drugs and restore existing antibacterial drugs safely and stably. However, unclear mechanisms of antibacterial action is the main reason that hinders the development of drugs. Therefore, target identification of herbal products is necessary. In this review, we summarized both the direct-acting and host-acting antibacterial flavonoids derived from heat-clearing herbs and focused on the antibacterial modes. The current reports show the antibacterial effects of flavonoid compounds on MDR bacteria by both the direct-acting antibacterial mode and host-acting antibacterial mode (Table 1). It also proves that herbal flavonoids should be the better source for alternative antibiotics (Figure 1B and Figure 4). However, the focus on the discovery of antibacterial targets of flavonoids are the main topic in this review. In addition, the screening principles of lead flavonoids based on the antibacterial targets need more illustration. Hence, further studies ought to devote more attention to the multi-targets of flavonoids. Thus, we believe the crisis in antibiotic discovery will rapidly be solved though exploring more herbs in future. Altogether, the basis of this review aims to find the flavonoid lead compounds to guide the future drug modifications based on the structure and active antibacterial mechanism based on functional groups.
AUTHOR CONTRIBUTIONS

XL conceived the projects. XL, LS, and XH prepared the figures and table. JL and XR performed data collection. XL, LS, and XH wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

FUNDING

This work was funded by "Beijing Natural Science Foundation, grant number 6224060", "2021 youth project of high-end technology innovation think tank, grant number 2021ZZZLFZB1207120", "2022 Research and Innovation ability improvement plan for young teachers of Beijing University of Agriculture, grant number QJKC2022028" and "Beijing University of Agriculture science and Technology innovation Sparkling support plan, grant number, BUA-HHXD2022070".

ACKNOWLEDGMENTS

We thank Prof. Kui Zhu from China Agricultural University for his kind help with this review.

REFERENCES

Ahmed, S., Raqib, R., Guðmundsson, G. H., Bergman, P., Agerberth, B., and rekha, R. S. (2020). Host-directed Therapy as a Novel Treatment Strategy to Overcome Taberculosis: Targeting Immune Modulation. *Antibiot. (Basel)* 9, 21. doi:10.3390/antibiotics9010021

Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., and Hopper, W. (2014). Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of *Escherichia coli* and *Pseudomonas aeruginosa* Using In Silico High-Throughput Virtual Screening and In Vitro Validation. *PLoS One* 9, e011840. doi:10.1371/journal.pone.011840

Bassetti, M., Echols, R., Matsunaga, Y., Ariyasa, M., Doi, Y., Ferrer, R., et al. (2021). Efficacy and Safety of Cefdicerol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): a Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. *Lancet Infect. Dis.* 21, 226–240. doi:10.1016/S1473-3099(20)30796-9

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbonu, D. O., and Piddock, L. J. (2015). Molecular Mechanisms of Antibiotic Resistance. *Nat. Rev. Microbiol.* 13, 42–52. doi:10.1038/nrmicro3380

Brown, A. R., Ettefagh, K. A., Todd, D., Cole, P. S., Egan, J. M., Foil, D. H., et al. (2018). Intracellular Replication of *Streptococcus Pneumoniae* inside Splenic Macrophages Serves as a Reservoir for Septicaemia. *Nat. Microbiol.* 3, 600–610. doi:10.1038/s41564-018-0147-1

Farhadi, F., Khameneh, B., Iranshahi, M., and Iranshahy, M. (2019). Antibacterial Activity of Flavonoids and Their Structure-Activity Relationship: An Update Review. *Phytother. Res.* 33, 13–40. doi:10.1002/ptr.6208

Gomes, F. M. S., Da Cunha Xavier, J., Dos Santos, J. F. S., Tantino, S. R., De Freitas, T. S., et al. (2018). Evaluation of Antibacterial and Modifying Action of Catechin Antibiotics in Resistant Strains. *Microb. Pathog.* 115, 175–178. doi:10.1016/j.micpath.2017.12.058

Giraud-Gatineau, A., Coya, J. M., Maure, A., Biton, A., Thomson, M., Bernard, E. M., et al. (2020). The Antibiotic Bedaquiline Activates Host Macrophage Innate Immune Resistance to Bacterial Infection. *Elife* 9, e55692. doi:10.7554/eLife.55692

Guo, W., Huaiyou, W., Xiangpeng, K., Ran, D., and Tina (2018). Flavonoids Are Identified from the Extract of *Scutellaria Radix* to Suppress Inflammatory-Induced Angiogenic Responses in Cultured RAW 264.7 Macrophages. *Sci. Rep.* 8, 17412. doi:10.1038/s41598-018-35817-2

Guo, Y., Huang, C., Su, H., Zhang, Z., Chen, M., Wang, R., et al. (2022). Luteolin Increases Susceptibility to Macrolides by Inhibiting MsrA Efflux Pump in *Trupearella Pyogenes*. *Vet. Res.* 53, 3. doi:10.1186/s13567-021-01021-w

Hao, C., Chen, L., Dong, H., Xing, W., Xue, F., and Cheng, Y. (2020). Extraction of Flavonoids from *Scutellaria Radix* Using Ultrasound-Assisted Deep Eutectic Solvents and Evaluation of Their Anti-inflammatory Activities. *ACS Omega* 5, 23140–23147. doi:10.1021/acsomega.0c02898

He, S., Deng, Q., Liang, B., Fu, Y., Yu, X., Guo, D., et al. (2021). Supressing Alpha-Hemolysin as Potential Target to Screen of Flavonoids to Combat Bacterial Coinfection. *Molecules* 26, 7377. doi:10.3390/molecules26247577

Huang, Y., Xiyme, M. A., Zeng, C., Cai, X., Jie, H. E., Feng, X., et al. (2020). Extraction Process and Content Determination of Total Flavonoids in *Loniceria japonica*. *Med. Plant* 11, 4.

Jordán, P. M., Gertsmeier, J., Pace, S., Bilancia, R., Rao, Z., Börner, F., et al. (2020). Staphylococcus Aureus-Derived α-Hemolysin Evokes Generation of Specialized Pro-resolving Mediators Promoting Inflammation Resolution. *Cell Rep.* 33, 108247. doi:10.1016/j.celrep.2020.108247

Kalli, S., Araya-Cloutier, C., Hageman, J., and Vincken, J. P. (2021). Insights into the Molecular Properties Underlying Antibacterial Activity of Prenylated (iso) flavonoids Against MRSA. *Sci. Rep.* 11, 14180. doi:10.1038/s41598-021-99264-9

Kamdi, S. P., Raval, A., and Nakhate, K. T. (2021). Phloridzin Attenuates Promoting Autophagy of Bacillus Calmette-Guérin-Stimulated Macrophages. *Front. Microbiol.* 12, 9915027. doi:10.3389/fmicb.2021.9915027
Biofilm Formation by Prenyl Flavonoids. J. Periodontal Res. 52 (1), 89–96. doi:10.1111/1601-0962.12372

Kaufmann, S. H. E., Dorchow, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Host-directed Therapies for Bacterial and Viral Infections. Nat. Rev. Drug Discov. 17, 35–56. doi:10.1038/nrd.2017.138

Kawai, Y. (2018). Understanding Metabolic Convolutions and Molecular Actions of Flavonoids in Vivisector New Strategies for Effective Utilization of Natural Polyphenols in Human health. J. Med. Invest. 65, 162–165. doi:10.1252/jmi.65.162

Kim, J. H., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kuete, V., Ngameni, B., Tangmouso, G. J. B., Rolla, J. M., Alibert-Franco, S., Ngadjui, B. T., et al. (2010). Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. Antimicrob. Agents Chemother. 54, 1749–1752. doi:10.1128/AAC.01533-09

Lan, J.-E., Li, X.-J., Zhu, X.-F., Sun, Z.-L., He, J.-M., Zloh, M., et al. (2021). Extracellular Matrix Stiffness Modulates Host-Bacteria Interactions and Antibiotic Therapy. Biomater. 2021.121098. doi:10.1016/j.biomaterials.2021.121098

Liu, X., Zhu, K., Duan, X., Wang, P., Han, Y., Peng, W., et al. (2020c). Sublethal Levels of Biofilm Formation by Staphylococcus aureus. J. Nat. Prod. Res. 35, 1881–1886. doi:10.1080/14786419.2019.1639182

Li, C., Zhou, L., Lin, G., and Zuo, Z. (2009). Contents of Major Bioactive Flavones from Zingiber of the genus Zingiber. J. Agric. Food Chem. 57, 5361–5367. doi:10.1021/jf9028382

Liu, X., Liu, F., Ding, S., Shen, J., and Zhu, K. (2020c). A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. J. Phytochem. Appl. 50, 298–306. doi:10.1016/j.jpba.2009.04.028

Lee, Y. S., Woo, J. B., Ryu, S. L., Moon, S. K., Han, N. S., and Lee, S. B. I. (2017). Glucosylation of Flavonol and Flavanones by Bacillus cyclodextrin. Carbohydr. Res. 440, 172–178. doi:10.1016/j.carres.2016.05.010

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004

Kim, H. J., Kim, E. J., Seo, S. H., Shin, C. G., Jin, C., and Lee, Y. S. (2006). Vanillic Acid Glycoside and Quinic Acid Derivatives from Gardeniea Fructus. J. Nat. Prod. 69, 600–603. doi:10.1021/np050767x

Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018). Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Microbiol. Pathog. 108, 209–217. doi:10.1016/j.micpath.2018.03.004
Song, X., Wang, W., Ding, S., Liu, X., Wang, Y., and Ma, H. (2021b). Puerarin. Wang, T., Zhang, P., Lv, H., Deng, X., and Wang, J. (2020). A Natural Dietary Flavone Myricetin as an α-Hemolysin Inhibitor for Controlling Staphylococcus aureus Infection. Front. Cell Infect. Microbiol. 10, 330. doi:10.3389/fcimb.2020.00330

Watanabe, Y., Nagai, Y., Honda, H., Okamoto, N., Yamamoto, S., and Hamashima, T. (2016). Isoquinigrigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice. Sci. Rep. 6, 23097. doi:10.1038/srep23097

Weerathuy, S., Supranee and Mamrukainakorn (2014). In Vitro Antioxidant Properties of Mangosteen Peel Extract. J. Food Sci. Technol. 51, 3546–3558. doi:10.1007/s13197-012-0887-5

Wei, L., Mei, Y., Zou, L., Chen, J., Tan, M., Wang, C., et al. (2020). Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules 25, 340. doi:10.3390/molecules25020340

Wen, K., Fang, X., Yang, J., Yao, Y., Nandakumar, K. S., Salem, M. L., et al. (2021). Recent Research on Flavonoids and Their Biomedical Applications. Curr. Med. Chem. 28, 1042–1066. doi:10.2174/0929867327666200713184138

Wenzel, U. (2013). Flavonoids as Drugs at the Small Intestinal Level. Curr. Opin. Pharmacol. 13, 864–868. doi:10.1016/j.coph.2013.08.015

Wu, M., and Brown, A. C. (2021). Applications of Catechins in the Treatment of Bacterial Infections. Pathogens 10. doi:10.3390/pathogens10050546

Wu, Y., Li, Y., Ruan, Z., Li, J., Zhang, L., Lu, H., et al. (2020). Puerarin Rebuilding the Mucus Layer and Regulating Mucin–Utilizing Bacteria to Relieve Ulcerative Colitis. J. Agric. Food Chem. 68, 11402–11411. doi:10.1021/acs.jafc.0c04119

Xiao, T., Cui, Y., Ji, H., Yan, L., Pei, D., and Qu, S. (2021). Baicalin Attenuates Acute Liver Injury by Blocking NLRP3 Inflammasome. Biochem. Biophys. Res. Commun. 534, 212–218. doi:10.1016/j.bbrc.2020.11.109

Xie, Y., Yang, W., Tang, F., Chen, X., and Ren, L. (2015). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 22, 132–149. doi:10.2174/092986732166614091613443

Xu, X., Dong, Q., Zhong, Q., Xiu, W., Chen, Q., Wang, J., et al. (2021). The Flavonoid Kurarinone Regulates Macrophage Functions via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Irritable Bowel Syndrome. J. Inflamm. Res. 14, 4347–4359. doi:10.2147/JIR.S329991

Yang, D., Wang, T., Long, M., and Li, P. (2020). Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell Longev. 2020, 8825387. doi:10.1155/2020/8825387

Yelin, L., and Kishony, R. (2018). Antibiotic Resistance. Cell 172, 1156–1161. doi:10.1016/j.cell.2018.02.018

Zhang, H., Luan, Y., Jing, S., Wang, Y., Gao, Z., Yang, P., et al. (2020). Baicalein Mediates Protection against Staphylococcus Aureus-Induced Pneumonia by Inhibiting the Coagulase Activity of vWbp. Biochem. Pharmacol. 178, 114024. doi:10.1016/j.bcp.2020.114024

Zhang, T., Qiu, Y., Luo, Q., Zhao, L., Yan, X., Ding, Q., et al. (2018). The Mechanism by Which Luteolin Disrupts the Cytoplasmic Membrane of Methicillin-Resistant Staphylococcus aureus. J. Phys. Chem. B 122, 1427–1438. doi:10.1021/acs.jpcb.7b05766

Zhang, X. S., Shi, Q. Q., Ji, D., Niu, L. X., and Zhang, Y. L. (2017). Determination of the Phenolic Content, Profile, and Antioxidant Activity of Seeds from Nine Tree Peony (Paonia Section Moutan DC.) Species Native to China. Food Res. Int. 97, 141–148. doi:10.1016/j.foodres.2017.03.018

Zulauf, K. E., and Kirby, J. E. (2020). Discovery of Small-Molecule Inhibitors of Multidrug-Resistance Plasmid Maintenance Using a High-Throughput Screening Approach. Proc. Natl. Acad. Sci. U. S. A. 117, 29839–29850. doi:10.1073/pnas.2005948117

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.