Synthesis of potassium niobates by the microwave-assisted solvothermal method.

T M Duarte 1, L M C Honorio 1, A S Brito 1, J K D Souza 1, E Longo 2, R L Tranquilín 3, A G Souza 1, I M G Santos 1 and A S Maia 1,4
1 LACOM/INCTMN, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
2 INCTM/LIEC, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
3 LIEC/CDMF/INCTMN, Universidade Federal de São Carlos, São Carlos, SP, Brazil
4 To whom correspondence should be sent. E-mail: arymaia@quimica.ufpb.br

Abstract: Potassium niobates have been synthesized by different methods, but few papers use the microwave-assisted solvothermal method, with possibility of a deeper evaluation in this area. In this work, the synthesis of KNbO₃, KNb₂O₈ and K₄Nb₆O₁₇ was performed by calcinations of precursors obtained by the microwave-assisted solvothermal method. This study evaluates the influence of various synthesis parameters such as reaction time, pH of the reaction medium, K⁺ concentration in the precursor solution. The results show the formation of different niobates, KNbO₃, KNb₂O₈, K₄Nb₆O₁₇, depending on the short and long-range order of the precursor used in the post annealing process.

1. Introduction
Niobates have wide application in the chemical industry, for presenting versatile structures and thus make possible the development of a wide range of materials with different physicochemical properties [1–3]. For example, KNbO₃ exhibits properties and applications as optical devices, acoustic wave surface devices and others [4], while KNb₂O₈ and K₄Nb₆O₁₇ exhibit optical and electronic properties, high catalytic activity in hydrogen production by water splitting and are also used in composition of new nanostructured semiconductor materials [5–8].

Different synthesis routes, as solid-state reaction route, sol-gel, hydro/solvothermal, under different conditions are reported for obtaining KNbO₃, KNb₂O₈ and K₄Nb₆O₁₇, as observed in table 1.

Since the mid 80s, the use of microwave-assisted hydro/solvothermal method has been studied in materials synthesis [9]. This technique has interesting advantages compared to other traditional synthesis processes, especially in relation to a lower energy consumption and time control of the morphology and reproducibility [9–11].
Table 1. Some methods of synthesis of niobates, reported in the literature.

Material	Methods and References
KNbO₃	Solid State [12,13], Sol-Gel [14,15], Conventional Hydro/Solvothermal [4,16], Microwave Assisted Hydrothermal [3,17]
KNb₃O₈	Solid State [18,19], Conventional Hydro/Solvothermal [16,20]
K₄Nb₂O₁₇	Solid State [14,21], Sol-Gel [22], Conventional Hydro/Solvothermal [16,23]

2. Experimental

The precursor suspension was obtained using niobic acid and potassium hydroxide in an aqueous/ethanolic medium with a volumetric ratio of 1:1. 70 ml of the suspensions were solvothermalized at a constant reaction temperature of 150 °C. Three parameters were varied during synthesis: reaction time (1, 15, 45 min), K/Nb molar ratio (6.6:1 and 10.5:1) and pH (6, 8 and 14) of the solution, adjusted with acetic acid. Materials were centrifuged and dried at 100 °C for 8 h, and then heat treated at 650 °C for 120 min. The materials were characterized by X-ray diffraction (XRD 6000 – Shimadzu), Raman spectroscopy (micro-Raman LabRAM Horiba Jobin-Yvon, with argon laser) and field-emission scanning electronic microscopy (FEG-VP - Zeiss Supra 35).

3. Results and Discussion

XRD patterns of the material synthesized during 1 to 45 min, at pH = 14 and K:Nb molar ratio of 6.6:1 are shown in figure 1(a). The Lindquist salt (K₆H₂Nb₆O₁₉.13H₂O) was obtained in all of the conditions in agreement with the results of Santos et al. [24]. Raman spectrum showed in figure 1b, have good agreement with the results of Farrell et al. [25], as observed in Table 2.

![Figure 1](image1.png)

Figure 1. Characterization of the precursor obtained after solvothermalization at pH = 14 and K:Nb molar ratio of 6.6:1. (a) XRD patterns (starred peaks are assigned to the Lindquist salt); (b) Raman spectra.

Table 2. Calculated and observed frequencies (cm⁻¹) for Nb₂O₁₉⁻.

Modes	Calcd.²	Obsd.a	Obsd.b	Modes	Calcd.²	Obsd.a	Obsd.b
A₁g	879	875	875	A₁g	500	495	*
E₂g	834	823	827	T₂g	469	460	463
E₁g	726	730	*	A₁g	292	290	288
E₂g	521	532	531	T₂g	224	220	217

² Not cleared observed, ³From [25], ⁴This study.
The post-annealing of the precursor ensures the formation of KNbO$_3$, with orthorhombic structure, in agreement to JCPDS Card 00-032-0822, figure 2(a). The Raman spectra (figure 2.b) is also in excellent agreement with those previously reported in the literature [26,27]. For this authors, the band located at 192 cm$^{-1}$ can be attributed to internal vibrational modes of the NbO$_6$ octahedron and/or translational modes of K$^+$ cation, the two bands at 595 and 531 cm$^{-1}$ are two stretching modes (ν_1 and ν_2 respectively), the broad band at 280 cm$^{-1}$ is a bending mode (ν_5) and the weak band at 834 cm$^{-1}$ is a combinational band ($\nu_1 + \nu_5$) [26,27]. FE-SEM micrograph showed a high degree of sintering among particles, as presented in Figure 2c.

![Raman spectra and XRD patterns](image)

Figure 2. Characterization of the Lindquist Salt calcined at 650 °C. (a) XRD patterns. Legend: ■ KNbO$_3$, ★ unknown phase; (b) Raman spectrum; (c) FE-SEM micrograph.

After modification of the potassium concentration, a K/Nb ratio of 10.5:1 was used with pH values of 6 and 8. The highest amount of potassium in solution associated with the lowest pH led to the formation of an amorphous precursor, ensuring the crystallization of lamellar niobates, KNb$_3$O$_8$ and K$_4$Nb$_6$O$_{17}$, after post annealing.

Figures 3(a) and 3(b) show the XRD patterns of the niobates, before and after calcination and its indexing according to JCPDS 00-032-0822 (KNbO$_3$), 01-075-2182 (KNb$_3$O$_8$), 00-021-1295 (K$_4$Nb$_6$O$_{17}$) and 00-021-1295 (K$_4$Nb$_6$O$_{17}$·3H$_2$O)cards. The appearance of the peaks related to the lamellar planes (0 x 0), at angles below 15° is a clear distinction between these XRD patterns and those shown in Figure 2.a. This is the main characteristic of lamellar compounds.
Figure 3. XRD patterns of the precursors obtained from solutions with different values of pH, before and after post annealing at 650 °C. (a) pH = 6; (b) pH = 8. Legend: red - K₄Nb₆O₁₇·3H₂O; green - K₄Nb₆O₁₇; blue - KNbO₃; black – KNb₃O₈.

It was possible to observe a high dependence on the product direction with the pH since, even when working with higher K/Nb ratio, fact that should favor the formation of KNbO₃, by adjusting the solutions pH to less basic values benefited the formation of lamellar species.

Lamellar niobates are characterized by having two different types of octahedra. The first one has shorter Nb-O bonds causing a sharp deformation of such NbO₆ units. These are the octahedra that stuck out into interlayers. The other have longer Nb-O bonds and are slightly distoted [28,29]. These differences are evidenced in the Raman spectra, showed in figure 4. The sharp and intense bands observed at 953 and 881 cm⁻¹ (figures 4.a and 4.b respectively) are assigned to the stretching mode of the short Nb-O bonds. The region between 700-500 cm⁻¹ is assigned to Nb-O stretching mode of the slightly distorted octahedra. Bands related to the bending modes of Nb-O-Nb linkages are presented in lower Raman shift [28,29].

Figure 4. Raman spectra of the lamellar niobates. (a) KNb₃O₈; (b) K₄Nb₆O₁₇.

Morphologies of lamellar potassium niobates are presented in the figures 5a and 5b. The formation of superimposed thin small plates is observed as well as some degree of sintering.
Figure 5. FE-SEM micrographs of the lamellar niobates. (a) KNbO₅; (b) K₃Nb₆O₁₇.

4. Conclusions
The microwave-assisted solvothermal method was used to obtain precursors for different potassium niobates. Each structure was obtained in a different reaction condition, and the pH of the suspension and potassium concentration determined the niobate structure obtained after post annealing. For instance, post annealing of the highly ordered Lindquist salt formed KNbO₅, a material with more ordered octahedra. When a disordered precursor was obtained, post annealing led to lamellar phases which show highly distorted octahedra.

References:
[1] Sugai T and Shindo H 2001 Effects of Adsorbed Water upon Friction at Layered K₄Nb₆O₁₇·3H₂O Surfaces Studied with FFM Stud. Surf. Sci. Catal. 132 897–900
[2] Komarneni S 2003 Nanophasse materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods Curr. Sci. 85 1729–34
[3] Paula A J, Parra R, Zaghete M a. and Varela J a. 2008 Synthesis of KNbO₃ nanostructures by a microwave assisted hydrothermal method Mater. Lett. 62 2581–4
[4] Nakashima K, Fujii I and Wada S 2013 Preparation of KNbO₃ nanocubes using a solvothermal method at low temperature J. Ceram. Soc. Japan 121 693–7
[5] Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K and Onishi T 1989 Nickel-loaded K₄Nb₆O₁₇ photocatalyst in the decomposition of H₂O into H₂ and O₂: Structure and reaction mechanism J. Catal. 120 337–52
[6] Sayama K, Tanaka A, Domen K, Maruya K and Onishi T 1990 Photocatalytic decomposition of water over a Ni-loaded Rb₂Nb₆O₁₇ catalyst J. Catal. 124 541–7
[7] Uchida S, Inoue Y, Fujishiro Y and Sato T 1998 Hydrothermal synthesis of K₃Nb₆O₁₇ J. Mater. Sci. 3 5125–9
[8] Bizeto M A, Shiguirara A L and Constantino V R L 2009 Layered niobate nanosheets: building blocks for advanced materials assembly J. Mater. Chem. 19 2512
[9] Komarneni S, Noh Y D, Kim J Y, Kim S H and Katsuki H 2010 ChemInform Abstract: Solvothermal/Hydrothermal Synthesis of Metal Oxides and Metal Powders with and Without Microwaves. ChemInform 41 1033–7
[10] Sung H J, Lee J H and Chang J S 2005 Microwave synthesis of a nanoporous hybrid material, chromium trimesate Bull. Korean Chem. Soc. 26 880–1
[11] Prado-Gonjal J, Villafuerte-Castrejón M E, Fuentes L and Morán E 2009 Microwave-hydrothermal synthesis of the multiferroic BiFeO₃ Mater. Res. Bull. 44 1734–7
[12] Kinoshita T, Senna M, Doshida Y and Kishi H 2012 Synthesis of size controlled phase pure KNbO₃ fine particles via a solid-state route from a core–shell structured precursor Ceram. Int. 38 1897–904

[13] Chaiyo N, Ruangphanit A, Muanghlua R, Niemcharoen S, Boonchom B and Vittayakorn N 2010 Synthesis of potassium niobate (KNbO₃) nano-powder by a modified solid-state reaction J. Mater. Sci. 46 1585–90

[14] Amini M M and Mirzaee M 2009 Effect of solvent and temperature on the preparation of potassium niobate by hydrothermal-assisted sol–gel processing Ceram. Int. 35 2367–72

[15] Czechowska K, Psiuk B, Wrzalik R, Szade J, Burdyl M, Sliwa A and Stec K 2014 Preparation of KNbO₃ powders by sol-gel method using water-soluble potassium and niobium compounds as precursors Glas. Phys. Chem. 40 88–92

[16] Kong X, Hu D, Wen P, Ishii T, Tanaka Y and Feng Q 2013 Transformation of potassium Lindquist hexaniobate to various potassium niobates: solvothermal synthesis and structural evolution mechanism. Dalton Trans. 42 7699–709

[17] Qin B, Tan G-Q, Miao H-Y, Xia A and Cheng L 2011 Study on Microwave-assisted Hydrothermal Synthesis and the Properties of KNbO₃ Powders J. Inorg. Mater. 26 892–6

[18] Bizeto M A, De Faria D L A and Constantino V R L 1999 Organic-inorganic hybrid material synthesized by porphyrin intercalation into a layered niobate host matrix J. Mater. Sci. Lett. 18 643–6

[19] Kudo A and Sakata T 1996 Effect of Ion Exchange on Photoluminescence of Layered Niobates KₓNb₆O₁₇ and KNb₅O₁₃ J. Phys. Chem. 100 17323–6

[20] Li X, Pan H, Li W and Zhuang Z 2012 Photocatalytic reduction of CO₂ to methane over HNb₃O₈ nanobelts Appl. Catal. A Gen. 413-414 103–8

[21] Lin H-Y H, Lee T T-H and Sie C C-Y 2008 Photocatalytic hydrogen production with nickel oxide intercalated K₄Nb₆O₁₇ under visible light irradiation Int. J. Hydrogen Energy 33 4055–63

[22] Chou H-L, Lee C-C, Chen H-M, Su W-N and Hwang B-J 2011 Characterization of KₓNb₆O₁₇ synthesized by a sol–gel method for H₂ evolution J. Chinese Inst. Eng. 34 3–9

[23] Qu W, Chen F, Zhao B and Zhang J 2010 Preparation and visible light photocatalytic performance of methylene blue intercalated KₓNb₆O₁₇ J. Phys. Chem. Solids 71 35–41

[24] Santos I C M S, Loureiro L ., Silva M F . and Cavaleiro A M V 2002 Studies on the hydrothermal synthesis of niobium oxides Polyhedron 21 2009–15

[25] Farrell F J, Maroni V A and Spiro T G 1969 Vibrational analysis for Nb₆O₁₉⁻ and Ta₆O₁₉⁻ and the the Raman intensity criterion for metal-metal interaction Inorg. Chem. 8 2638–42

[26] Kakimoto K, Akao K, Guo Y and Ohsato H 2005 Raman Scattering Study of Piezoelectric (NaₓLi₁₋ₓ)NbO₃-LiNbO₃ Ceramics Jpn. J. Appl. Phys. 44 7064–7

[27] Zhang T, Zhao K, Yu J, Jin J, Qi Y, Li H, Hou X and Liu G 2013 Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO₃ microcubes. Nanoscale 5 8375–83

[28] Li L, Deng J, Yu R, Chen J, Wang X and Xing X 2010 Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method. Inorg. Chem. 49 1397–403

[29] Bizeto M A, Leroux F, Shiguhiara A L, Temperini M L A, Sala O and Constantino V R L 2010 Intralamellar structural modifications related to the proton exchanging in KₓNb₆O₁₇ layered phase J. Phys. Chem. Solids 71 560–4