Optimal parameters of EWMA Control Chart for Seasonal and Non-Seasonal Moving Average Processes

Y Areepong¹ and C Chananet¹,∗

¹Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

∗Corresponding author: chanaphun.c@sci.kmutnb.ac.th

Abstract. The main goal of this paper is to study optimal parameters of an Exponentially Weighted Moving Average (EWMA) control chart for seasonal and non-seasonal Moving Average (SMA and MA) processes. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be large enough, so-called Average Run Length for in-control process (ARL₀). Otherwise, it should be small when the process is out-of-control, so-called Average Run Length for out-of-control process (ARL₁). We obtain explicit formulas of ARL for EWMA chart for Moving Average (MA) process with exponential white noise. In particular, the explicit analytical formulas for evaluating ARL₀ and ARL₁ are able to obtain a set of optimal parameters which depend on a smoothing parameter (λ) and a width of control limit (b) for designing EWMA chart with a minimum ARL₁ value. In addition, the explicit formulas for the EWMA control chart was applied with the practical data of the unemployment rate of Thailand.

1. Introduction

Statistical Process Control (SPC) plays a vital role in monitoring, detecting changes in a process, and it is used for measuring, controlling and improving quality in many areas, such as industrial statistics and manufacturing, economics and finance, computer sciences and telecommunications, and in other areas of applications (see [1]-[3]). The main tool for SPC is control chart. CUSUM control chart was firstly introduced by Page [4], and EWMA control chart was initially presented by Roberts [5]. In this paper, we discuss the Exponentially Weighted Moving Average (EWMA) chart which is used for detecting small changes of parameters. A basic assumption of control charts is that observations from the process at different times are independently and identically distributed (i.i.d) random variables. However, there are many situations in which the process is serially correlated data, such as a chemical process, the manufacture of food, computer intrusion detection, wind speeds, and a daily water flow of a river. Various authors were studied control charts for monitoring processes with serially dependent data, see [6]-[7]. The observations from the variables or factors in real situations are usually collected from stochastic processes, or time series. In general, normally distributed white noise indicates the errors in a time series model with autocorrelated observations. However, the white noise can be distributed differently in some applications, such as exponentially distributed white noise. For instance, the exponential white noise was also used to analyze the autoregressive model, proposed by Mohamed and Hocine [8].
A common characteristic used for comparing the performance of control charts is Average Run Length (ARL) defined as the expected number of observations taken from an in-control process until the control chart falsely signals out-of-control which is denoted by ARL_0. An ARL_0 will be regarded as acceptance if it is large enough to keep the level of false alarms at an acceptable level. The second common characteristic is the expected number of observations taken from an out-of-control process until the control chart signals that the process is out-of-control, which is denoted by ARL_1. Ideally, the ARL_1 should be as small as possible.

In literature, there are many methods for evaluating the ARL such as Markov Chain approach (MCA), Numerical Integral Equation approach (NIE) and Monte Carlo simulation (MC). In 1959, Roberts [5] presented evaluating ARL of the EWMA control chart by using the Monte Carlo simulation technique. Later, Crowder [9] presented a numerical procedure for the ARL of the EWMA control chart under a normal observation assumption by using the Integral Equation approach. Recently, Champ and Ridgon [10] studied CUSUM and EWMA charts using the Markov chain and integral equation approaches to evaluate the ARL. As discussed earlier, MC, MCA and NIE are the most popular methods for evaluating the characteristics of control charts. However, these methods are difficult and laborious to find the optimal designs. The limitations of the MC, MCA and IE methods provide the motivation for evaluating explicit analytical formulas of ARL. Petcharat et al. [11] derived explicit formula of ARL for an Exponentially Weighted Moving Average (EWMA) chart by using integral equation when observations are described by Moving Average order q (MA(q)) process with exponential white noise. Later, Suntornwat et al. [12] proposed the explicit formulas of ARL which evaluated the Integral Equation technique on the EWMA control chart for ARFIMA process and also compared the analytical solutions.

Recently, Peerajit [13] evaluated the numerical integral equation method of ARL on CUSUM chart. After that, Sunthornwat and Areepong [14] presented explicit formulas of ARL on CUSUM control chart for seasonal and non-seasonal moving average processes with exogenous variables and compared the results with the NIE method. From the above research, the explicit formulas were derived but the optimal values from the formulas for the ARL value have yet found.

In this paper, we develop explicit formulas of ARL for EWMA control chart for Moving Average (MA) process with exponential white noise. In particular, the explicit analytical formulas for evaluating ARL_0 and ARL_1 be able to get a set of optimal parameters which depend on smoothing parameter (λ) and control limit (b) for designing EWMA control chart with minimum of ARL_1.

2. Methodology
In this paper, we consider SPC chart under an assumption that sequential observations ξ_1, ξ_2, \ldots, are independent random variables with a distribution function $F(x, \alpha)$. The parameter α is equal to α_0 before a change-point time ($\theta \leq \infty$). For in-control process, $\theta = \infty$ means that there are no change at all. For out-of-control process, $\alpha > \alpha_0$ after the change-point time θ. All popular charts are based on use of stopping time τ. The typical condition on choice of the stopping time τ is the following:

$$E_{\alpha}(\tau) = T, \quad (1)$$

where T is a constant and $E_{\alpha}(\cdot)$ denotes that the expectation under distribution $F(x, \alpha_0)$. In literature on quality control the quantity, $E_{\alpha}(\tau)$ is called an Average Run Length for in-control process (ARL_0).

Then, by definition, $ARL_0 = E_{\alpha}(\tau)$ and the typical practical constraint is

$$ARL_0 = E_{\alpha}(\tau) = T. \quad (2)$$

Another typical constraint consists in minimizing the quantity

$$Q(\alpha) = E_{\alpha}(\tau - \theta + 1 | \tau \geq \theta), \quad (3)$$
where \(E_{\theta}(.) \) is the expectation under distribution \(F(x,\alpha_i) \) (out-of-control) and \(\alpha_i \) is a value of parameter after the change-point. We restrict on the special case, usually \(\theta = 1 \). The quantity \(E_{\theta}(\tau) \) is called as Average Run Length for out-of-control process \((ARL_c) \) and one could expect that a sequential chart has a near optimal performance if \(ARL_c \) is close to a minimal value.

The EWMA statistics based on \(MA(q) \) process is defined by the following recursion:

\[
Z_t = (1 - \lambda)Z_{t-1} + \lambda X_t ; t = 1, 2, \ldots
\]

(4)

where \(Z_t \) is the EWMA statistics, \(X_t \) is a sequence of \(MA(q) \) process, the initial value is a constant \((Z_0 = u) \), and \(\lambda \in (0, 1) \) is a smoothing parameter.

The cumulative sum (CUSUM) control chart can be defined as follows:

\[
Y_t = \max \left(Y_{t-1} + X_t - a, 0 \right) ; t = 1, 2, \ldots
\]

(5)

where \(Y_t \) is the CUSUM statistic, \(X_t \) is the sequence of an \(MA(q) \) process, the initial value is a constant \((Z_0 = u) \), and \(a \) is the constant recall reference value for the chart.

The \(MA(q) \) process can be described by the following recursion:

\[
X_t = \mu - \theta_1 \xi_{t-1} - \theta_2 \xi_{t-2} - \ldots - \theta_q \xi_{t-q}
\]

(6)

where \(\xi_t \) is a white noise process assumed to have exponential distribution, \(\theta \) is a moving average coefficient which \(0 \leq \theta_i \leq 1 \), and \(\mu \) is a constant. We assume the initial value of \(MA(q) \) process \(\xi_{t-1}, \xi_{t-2}, \ldots, \xi_{t-q} = 1 \) as the process mean.

The Seasonal Moving Average process, denoted by \(SMA(Q)_L \), process can be written as:

\[
X_t = \mu - \theta_{Q-L} \xi_{t-L} - \theta_{2L} \xi_{t-2L} - \ldots - \theta_{QL} \xi_{t-QL}
\]

(7)

where \(\xi_t \) is to be a white noise process assumed with exponential distribution. A seasonal moving average coefficient \(0 \leq \theta_i \leq 1 \), and \(\mu \) is a constant. We assume the initial value of \(MA(q) \) process \(\xi_{t-L}, \xi_{t-2L}, \ldots, \xi_{t-QL} = 1 \) as the process mean.

The stopping time for the EWMA control chart can be written as:

\[
\tau_b = \inf \left\{ t > 0 : Z_t > b \right\}, b > u ,
\]

(8)

where \(b \) is a control limit.

The stopping time for the CUSUM control chart can be written as:

\[
\tau_h = \inf \left\{ t > 0 : Y_t > h \right\}, h > u ,
\]

(9)

where \(h \) is a control limit.

3. Solution for Evaluating \(ARL_0 \) and \(ARL_1 \) of EWMA Procedure

In this section, we present the explicit formulas of \(ARL \) for \(MA(q) \) process in Petcharat et al. [11]. We obtain the explicit formula for \(ARL \) as follows:

\[
ARL_0 = 1 - \lambda \exp \left(\frac{1 - \lambda u}{\lambda \alpha_0} \right) \exp \left(- \frac{b}{\lambda \alpha_0} \right) - 1
\]

(10)

On the other hand, since the process is out-of-control, parameter \(\alpha = \alpha_1 \), the explicit formula for \(ARL_1 \) can be written as follows:
Using the explicit formulas, we have been able to provide the tables for the optimal smoothing parameter \((\lambda)\) and width of control limit \((b)\) for designing EWMA chart with minimum of \(ARL_1\). We first describe a procedure for obtaining optimal designs for EWMA control chart. The criterions for choosing optimal values are smoothing parameter \((\lambda)\) and control limit \((b)\) for designing EWMA chart with minimum of \(ARL_1\) for a given in-control parameter value \(\alpha_0 = 1\), \(ARL_0 = T\), and a given out-of-control parameter value \((\alpha = \alpha_1)\). We compute optimal \((\lambda, b)\) values for \(T = 370, 500\) and magnitudes of change. Tables of the optimal parameters values are shown in Tables 1-6.

3.1 The numerical procedure for obtaining optimal parameters for MA designs

1. Select an acceptable in-control value of \(ARL_0\) and decide on the change parameter value \((\alpha_i)\) for an out-of-control state.

2. For given values \(\alpha_0\) and \(T\), find optimal values of \(\lambda\) and \(b\) to minimize the \(ARL_1\) value given by Equation 11 subjected to the constraint that \(ARL_0 = T\) in Equation 10. Then \(\lambda\) and \(b\) are solutions of the optimality problem.

In addition, the numerical procedure for obtaining optimal parameters for SMA(\(Q_l\)) designs is the same as MA(\(q\)) procedure by using Equations 12 and 13 for \(ARL_0\) and \(ARL_1\) respectively. The optimal values \((\lambda, b)\) for \(T = 370, 500\) and magnitudes of change are shown in Tables 1-4.

4. Numerical Results

In this section, the numerical results for optimal design parameters of optimal width of smoothing parameter \((\lambda)\), optimal of a control limit \((b)\), and minimal \(ARL_1\) for EWMA control chart were calculated from Equations 10-13. The optimal parameter values for the EWMA control chart were chosen by setting the desired \(ARL_0 = 370\) and 500. The value of the in-control parameter \(\alpha_0 = 1\) and the out-of-control parameter \(\alpha_i \subseteq [1.01; 1.20]\). Tables 1-3 show optimal design parameters for EWMA control chart for \(MA(q)\) process. The coefficient parameters of the process \(u = 0.1\) was used for the \(MA(1)\) process, \(u = 0.1, v = 0.2\) were used for the \(MA(2)\) process, and \(u = 0.4, v = 0.2, w = 0.3\) were used for the \(MA(3)\) process. For example, if we want to detect a parameter change of \(MA(l)\) process from \(\alpha_0 = 1\) to \(\alpha_1 = 1.05\) and the \(ARL_0\) value is 370 then the optimality procedure given above will give optimal parameter values \(\lambda = 0.2031\) and \(b = 0.2536\). On substituting the values for \(\alpha_i, \lambda\) and \(b\) into Equation 10, we obtain an optimal \(ARL_1\) value 20.265. In Tables 4-5, the optimal parameter values for EWMA control chart for \(MA(Q_l)\) process are presented. The coefficient parameters of the process
\(\theta_1 = -0.1 \) was used for the \(MA(1)_4 \) process, \(\theta_1 = -0.1, \theta_2 = 0.2 \) were used for the \(MA(2)_4 \) process, and \(\theta_1 = -0.1, \theta_2 = -0.2, \theta_3 = 0.3 \) were used for the \(MA(3)_4 \) process. For example, if we want to detect a parameter change of \(MA(1)_4 \) process from \(\alpha_0 = 1 \) to \(\alpha_4 = 1.10 \) and the \(ARL_0 \) value is 370 then the optimality procedure given above will give optimal parameter values \(\lambda = 0.2347 \) and \(b = 0.2381 \). On substituting the values for \(\alpha_1, \lambda \) and \(b \) into Equation 10, we obtain an optimal \(ARL \) value 9.339.

As shown in Tables 1-5, the use of the suggested \(ARL \) explicit formulas for EWMA control chart can greatly reduce the computational time, and is useful for practitioners especially finding optimal parameters of EWMA control chart.

Table 1. Optimal design parameters and \(ARL_1 \) for \(MA(2) \) when give \(\theta_1 = 0.1, \theta_2 = 0.2 \)

\(\alpha_1 \)	\(\lambda \)	\(b \)	\(ARL_0 = 370 \)	\(\alpha_1 \)	\(\lambda \)	\(b \)	\(ARL_0 = 500 \)
1.01	0.1690	0.2585	96.519	1.01	0.1691	0.2587	103.442
1.02	0.1689	0.2581	55.877	1.02	0.1689	0.2583	58.109
1.03	0.1686	0.2577	39.520	1.03	0.1687	0.2579	40.604
1.04	0.1684	0.2573	30.681	1.04	0.1684	0.2575	31.322
1.05	0.1682	0.2569	25.146	1.05	0.1682	0.2571	26.001
1.06	0.1679	0.2565	21.355	1.06	0.1680	0.2567	21.656
1.07	0.1677	0.2561	18.596	1.07	0.1677	0.2562	18.821
1.08	0.1675	0.2557	16.498	1.08	0.1675	0.2559	16.673
1.09	0.1672	0.2552	14.849	1.09	0.1672	0.2554	14.989
1.10	0.1670	0.2548	13.519	1.10	0.1670	0.2550	13.633
1.15	0.1658	0.2527	9.467	1.15	0.1658	0.2529	9.520
1.20	0.1645	0.2506	7.407	1.20	0.1646	0.2507	7.438

Table 2. Optimal design parameters and \(ARL_1 \) for \(MA(3) \) when give \(\theta_1 = 0.1, \theta_2 = 0.2, \theta_3 = 0.3 \)

\(\alpha_1 \)	\(\lambda \)	\(b \)	\(ARL_0 = 370 \)	\(\alpha_1 \)	\(\lambda \)	\(b \)	\(ARL_0 = 500 \)
1.01	0.1112	0.2280	147.452	1.01	0.1122	0.2282	164.374
1.02	0.1123	0.2285	91.920	1.02	0.1124	0.2288	98.161
1.03	0.1125	0.2290	66.708	1.03	0.1126	0.2293	69.908
1.04	0.1128	0.2295	52.318	1.04	0.1128	0.2297	54.250
1.05	0.1130	0.2300	43.018	1.05	0.1130	0.2302	44.305
1.06	0.1131	0.2303	36.518	1.06	0.1132	0.2306	37.434
1.07	0.1133	0.2308	31.721	1.07	0.1134	0.2310	32.404
1.08	0.1135	0.2312	28.037	1.08	0.1135	0.2314	28.565
1.09	0.1137	0.2315	25.121	1.09	0.1137	0.2318	25.540
1.10	0.1138	0.2319	22.756	1.10	0.1139	0.2321	23.097
1.15	0.1145	0.2334	15.499	1.15	0.1145	0.2335	15.650
1.20	0.1150	0.2348	11.796	1.20	0.1150	0.2347	11.880
Table 3. Optimal design parameters and ARL_1 for $SMA(1)_k$ when given $\theta_i = -0.1$

α_i	$ARL_0 = 370$	ARL_1^*	α_i	$ARL_0 = 500$	ARL_1^*		
	λ	b	ARL_1	λ	b	ARL_1	
1.01	0.2404	0.2447	69.602	1.01	0.2404	0.2449	73.117
1.02	0.2398	0.2439	38.866	1.02	0.2398	0.2441	39.920
1.03	0.2391	0.2432	27.174	1.03	0.2391	0.2433	27.676
1.04	0.2385	0.2424	21.011	1.04	0.2385	0.2426	21.306
1.05	0.2378	0.2417	17.206	1.05	0.2378	0.2419	17.399
1.06	0.2372	0.2409	14.623	1.06	0.2372	0.2411	14.760
1.07	0.2365	0.2402	12.754	1.07	0.2365	0.2404	12.857
1.08	0.2359	0.2395	11.339	1.08	0.2359	0.2397	11.419
1.09	0.2353	0.2388	10.231	1.09	0.2353	0.2390	10.295
1.10	0.2347	0.2381	9.339	1.10	0.2347	0.2382	9.392
1.15	0.2316	0.2346	6.636	1.15	0.2316	0.2348	6.660
1.20	0.2287	0.2313	5.267	1.20	0.2287	0.2314	5.281

Table 4. Optimal design parameters and ARL_1 for $SMA(2)_k$ when given $\theta_i = -0.1, \theta_j = 0.2$

α_i	$ARL_0 = 370$	ARL_1^*	α_i	$ARL_0 = 500$	ARL_1^*		
	λ	b	ARL_1	λ	b	ARL_1	
1.01	0.2049	0.2562	80.318	1.01	0.2050	0.2564	85.043
1.02	0.2045	0.2555	45.493	1.02	0.2045	0.2557	46.948
1.03	0.2040	0.2549	31.946	1.03	0.2040	0.2551	32.646
1.04	0.2036	0.2542	24.739	1.04	0.2036	0.2544	25.150
1.05	0.2031	0.2536	20.265	1.05	0.2031	0.2538	20.336
1.06	0.2026	0.2529	17.217	1.06	0.2027	0.2531	17.410
1.07	0.2022	0.2523	15.007	1.07	0.2022	0.2525	15.151
1.08	0.2017	0.2517	13.331	1.08	0.2018	0.2518	13.443
1.09	0.2013	0.2510	12.016	1.09	0.2013	0.2512	12.106
1.10	0.2008	0.2504	10.957	1.10	0.2009	0.2506	11.031
1.15	0.1986	0.2473	7.741	1.15	0.1987	0.2475	7.775
1.20	0.1965	0.2443	6.109	1.20	0.1965	0.2444	6.129

Table 5. Optimal design parameters and ARL_1 for $SMA(3)_k$ when given $\theta_i = -0.1, \theta_j = -0.2, \theta_k = 0.3$

α_i	$ARL_0 = 370$	ARL_1^*	α_i	$ARL_0 = 500$	ARL_1^*		
	λ	b	ARL_1	λ	b	ARL_1	
1.01	0.2227	0.2513	74.481	1.01	0.2227	0.2514	78.523
1.02	0.2221	0.2505	41.860	1.02	0.2221	0.2507	43.086
1.03	0.2215	0.2498	29.324	1.03	0.2215	0.2499	29.911
1.04	0.2210	0.2491	22.690	1.04	0.2210	0.2493	23.034
1.05	0.2204	0.2484	18.583	1.05	0.2204	0.2486	18.810
1.06	0.2199	0.2477	15.791	1.06	0.2199	0.2479	15.952
1.07	0.2193	0.2470	13.769	1.07	0.2193	0.2472	13.889
1.08	0.2188	0.2463	12.236	1.08	0.2188	0.2465	12.330
1.09	0.2182	0.2456	11.036	1.09	0.2183	0.2458	11.111
1.10	0.2177	0.2449	10.069	1.10	0.2178	0.2451	10.130
1.15	0.2151	0.2416	7.135	1.15	0.2151	0.2417	7.164
1.20	0.2125	0.2383	5.649	1.20	0.2125	0.2385	5.666
5. Real world Application

Application to real-world data was conducted to evaluate the ARL by the explicit formula in Equations 10-11. The unemployment rate of Thailand, was collected monthly from January 2012 to December 2019 as the dataset of real observations. The second-order MA model is suitable for fitting the unemployment rate. Therefore, the second-order MA model was constructed with the process coefficients $\mu = 0.916$, $\theta_1 = -0.587$, $\theta_2 = -0.263$, and the error as exponential white noise with $\alpha_0 = 0.1305$. For the ARL performance comparison, the boundary values $b = 0.0000939$, 0.000127 for the EWMA control chart and $h = 0.2121, 0.21875$ for the CUSUM control chart were used with conditions of $ARL_0 = 370$ and 500, respectively. The smoothing parameter of the EWMA control chart was set to 0.1. In Table 6, the performance of EWMA control chart with the explicit formula is compared with CUSUM control chart. The results of performance comparison show that the EWMA control chart performed better than the CUSUM control chart for all magnitude of shift sizes. To more clearly, Figures 1 show the ARL_1 value of the EWMA is lower than the CUSUM charts for all levels change for $ARL_0 = 370$ and 500 respectively.

ARL_0	EWMA	CUSUM
370	370.69	370.23
500	500.38	500.55

Table 6. Comparison of ARL_1 between EWMA and CUSUM charts for $MA(2)$ under data on the unemployment rate of Thailand for in-control process $\alpha_0 = 0.1305$.

Figure 1. Comparison of ARL_1 between EWMA and CUSUM charts for $MA(2)$ given (a) $ARL_0 = 370$ and (b) $ARL_0 = 500$.
6. Conclusion
This research has been applied the ARL explicit formulas of MA process for determining the optimal parameters on the EWMA control chart. It can be seen that the benefit of the ARL explicit formulas is to obtain the appropriate parameters of EWMA control chart at different levels of change. Additionally, this process can be applied for observing real life situations such as the unemployment rate of Thailand. In future studies, the method for evaluating the ARL could be developed for other models and construct explicit formulas to modern control charts.

7. References
[1] V V Mazalov and D N Zhuravlev 2002 A method of Cumulative Sums in the problem of Detection of traffic in computer networks (Programming and Computer Software) vol 28 pp 342-348
[2] A Amiri, W A Jensen, and R B Kazemzadeh 2010 A Case Study on Monitoring Polynomial Profiles in the Automotive Industry (Qual. Reliab. Engng. Int) vol 26 pp 509-520
[3] D Han, F Tsung, Y Li, J Xian 1954 Detection of changes in a random financial sequence with a stable distribution (Journal of Applied Statistics) vol 37 pp 1089–1111
[4] E S Page 1954 Continuous inspection schemes (Biometrika) vol 41 pp 100-115
[5] S W Roberts 1959 Control chart tests based on geometric moving average (Technometrics) vol 1 pp 239-250
[6] C M Borror, D C Montgomery and G C Runger 1999 Robustness of the EWMA Control Chart to Non-normality (Journal of Quality Technology) vol 31 pp 309-316
[7] Y Areepong 2019 The exact solution of ARL on EWMA chart for non seasonal AR model with exogenous variables (Advances and applications in statistics) vol 57 pp 41-59
[8] I Mohamed and F Hocine 2010 Bayesian estimation of an AR(1) process with exponential white noise (A Journal of Theoretical and Applied Statistics) vol 37 pp 365-372
[9] S V Crowder 1987 A Simple Method for Studying Run- Length Distributions of Exponentially Weighted Moving Average Charts (Technometrics) vol 29 pp 401-407
[10] C W Champ and S E Rigdon 1991 A Comparison of the Markov Chain and the Integral Equaation Approaches for Evaluating the Run Length Distribution of Quality Control Charts (Communications in Statistics Simulation and Computation) vol 20 pp 191-204
[11] K Petcharat, Y Areepong and S Sukpakrungsee 2013 Exact solution of Average Run Length of EWMA chart for MA(q) processes (Advances and applications in statistics) vol 78 pp 291-300.
[12] R Sunthornwat, Y Areepong, S Sukparungsee and G Mititelu 2017 Average Run Length of the Long-Memory Autoregressive Fractionally integrated Moving Average Process of the Exponential Weighted Moving Average Control Chart Cogent (Mathematics) vol 4 pp. 1358536.
[13] W Peerajit, Y Areepong, S Sukparungsee 2018 Numerical integral equation method for ARL of CUSUM chart for long-memory process with non-seasonal and seasonal ARFIMA models (Thailand Statistician) vol 16 pp 26-37
[14] R Sunthornwat and Y Areepong 2020 Average run length on CUSUM control chart for seasonal and non-seasonal moving average processes with exogenous variable” (Symmetry) vol 12 pp 173-187
[15] K Petcharat 2016 Explicit formula of ARL for MA(Q) with exponential white noise on EWMA chart (International Journal of Applied Physics and Mathematics) vol 6 pp 218-225

Acknowledgments
We are grateful to the referees for their constructive comments and suggestions which helped to improve this research. The research was funding by King Mongkut's University of Technology North Bangkok Contract no. KMUTNB-60-GEN-042