Efficacy and Effectiveness of Rotavirus Vaccine on Incidence of Diarrhoea among Children: A Meta-analysis

Katayi Mwila-Kazimbaya1,2*, Samuel Bosomprah1,3, Michelo Simuyandi1, Caroline C Chisenga1, Roma Chilengi1,4 and Sody Munsaka2

1Center for Infectious Disease Research in Zambia, Lusaka
2Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
3Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana
4School of Medicine, University of North Carolina at Chapel Hill, North Carolina, U.S

*Corresponding author: Kazimbaya KM, Centre for Infectious Disease Research in Zambia, Lusaka, Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia, Tel: +26 0211 242257-63; E-mail: katayi.kazimbaya@cidrz.org

Received date: January 18, 2018; Accepted date: January 31, 2018; Published date: February 2, 2018

Citation: Kazimbaya KM, Bosomprah S, Simuyandi M, Chisenga CC, Chilengi R, et al. (2018) Efficacy and Effectiveness of Rotavirus Vaccine on Incidence of Diarrhoea among Children: A Meta-analysis. Pediatric Infect Dis Vol.3, No.1: 4.

Copyright: ©2018 Kazimbaya KM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Introduction of rotavirus vaccines has resulted in a decrease in rotavirus related mortality and morbidity. We sought to conduct a meta-analysis to estimate the effect of rotavirus vaccine on incidence of diarrhoea.

Methods: The MEDLINE database was searched through PubMed interface using both textword and subject headings (MeSH). The search strategies were ["rotavirus vaccine effectiveness" or "rotavirus vaccine efficacy" or "rotavirus vaccine eff"][1]. The reference lists of the most recent studies identified by the search were checked for additional studies (if not already retrieved). We included both randomised trials and observational studies, which investigated the effect of rotavirus vaccine on incidence of diarrhoea.

Results: There was strong evidence of vaccine efficacy (70%) on incidence of diarrhoea (Pooled risk ratio (pRR)=0.30; 95% confidence interval (CI)=[0.24,0.38]; p<0.0001), with much lower vaccine efficacy (63%) in low-middle income countries (LMICs) (pRR=0.37; 95% CI=[0.56,69]; p<0.0001). When restricted to severe diarrhoea outcome, we found 74% vaccine efficacy (pRR=0.26; 95% CI=[0.19,0.24]; p<0.0001). For vaccine effectiveness in LMICs, we found 53% vaccine effectiveness (pRR=0.47; 95% CI=[0.36,0.62]; p<0.0001) for 1 dose; 61% effectiveness (pRR=0.39; 95% CI=[0.32,0.47]; p<0.0001) for 2 doses and 72% effectiveness (pRR=0.28; 95% CI=[0.14, 0.56]; p<0.0001) for 3 doses.

Conclusion: Incomplete dose series had lower vaccine effectiveness than vaccine efficacy in LMICs where health system capacity is low. However, a 3-dose series had similar effectiveness to vaccine efficacy, suggesting that a booster dose could present a potential benefit in LMIC.

Keywords: Meta-analysis; Efficacy; Effectiveness; Rotarix; RotaTeq; Rotavirus vaccines

Introduction

Rotavirus associated diarrhoea has been a key contributor to the morbidity and mortality among children under 5 years of age worldwide [1] and low-middle income countries (LMICs) bear the greater burden. This problem has led to the widespread introduction of Rotarix™ (GlaxosmithKline Biologicals, Belgium) and RotaTeq™ (Merck, USA) vaccines into national immunization programmes. As of December 2017, 93 countries have done so at either national, sub-national or began phased introduction of the vaccines [2]. The World Health Organization (WHO) made this recommendation after randomised clinical trials showed efficacy in high income countries (HICs) of between 80-95% [3-6].

Although subsequent trials from low and middle income countries (LMICs) showed much lower efficacy rates between 40 and 60% [7-10], the public health impact in these high burden settings was still compelling enough to continue the immunization campaigns. Several other vaccines are in the developmental and licensure phase such as Rotavin™ and RotaVac™ which have partial or restricted licensure in China, Vietnam and India [11,12]. Rotasil™ is another vaccine currently under development and was recently tested in Niger [13]. All have shown similar vaccine efficacy and effectiveness trends in LMICs [11-14].

Much data on post licensure effectiveness of rotavirus vaccines has been published on HICs which still indicate how well rotavirus vaccines have worked. LMIC researchers are now also beginning to generate more information on vaccine effectiveness in their respective locations that has shown that
vaccine responses have continued to be sub-optimal [7-10,15-17].

We will focus on consolidating vaccine efficacy and effectiveness data for globally licensed vaccines Rotarix and RotaTeq in HICs and LMICs as well as some of the steps and areas that still need to be addressed in order to improve vaccine effectiveness in LMICs.

Methods

Search strategy for identification of studies

The MEDLINE database was searched through PubMed interface using both textword and subject headings (MeSH). The search strategies were [“rotavirus vaccine effectiveness” or “rotavirus vaccine efficacy” or “rotavirus vaccine eff**”], which retrieved 858 studies. The reference lists of the most recent studies identified by the search were checked for additional studies (if not already retrieved).

Criteria for including studies for the review

In the efficacy analysis we included randomised clinical trials reporting efficacy of Rotarix (RV1) and RotaTeq (RV5). In the effectiveness analysis we included observational studies reporting population effectiveness of Rotarix (RV1) or RotaTeq (RV5) against hospital admission for rotavirus gastroenteritis (RVGE) or acute gastroenteritis (AGE) for incomplete and complete doses in all countries regardless of whether they are included in national immunisation programmes or privately offered. Duplicates were removed, as were cost effective, genotype specific, impact, methodological and review articles, leaving 68 articles for inclusion in the analysis. Efficacy data included overall efficacy and severe rotavirus related gastroenteritis, whilst effectiveness data included efficacy against hospital admission. All studies published until October 2017 was eligible for inclusion.

Data extraction

Two authors (K.M-K, SB) extracted data from the studies using data extraction form designed to capture relevant data for this purpose and the differences (if any) were reconciled. For the efficacy studies, the measure of effect for the meta-analysis was risk ratio (RR), which measures cumulative incidence more accurately. For studies that reported odds ratio, we recalculated risk ratios by reconstructing the 2x2 tables from data in the original paper because odds ratios usually overestimate risk ratios especially where the incidence of the outcome is common (>10%).

The recalculation was convenient because efficacy studies are required to report the unadjusted result as primary analysis [18]. For the effectiveness studies, we did not recalculate the measure of effect because the primary analysis was adjusted effect. All studies measured diarrhoea severity using Vesikari scores of 11 [19] or Clarke score of 16 [20]. We followed the preferred reporting items for systematic reviews and meta-analysis (PRISMA) in the conduct of this review. Severe diarrhoea was defined as Vesikari score of 11 or greater. Any diarrhoea was defined as mild or moderate or severe.

Statistical analysis

We calculated a weighted average of the effect measures across studies using ‘metan’ command in Stata. Forest plot was also presented. The ‘metan’ command is flexible for any measure of effect because it requires either the frequencies of events in exposed and unexposed group (the approach we used in the efficacy studies) or the logarithm of the effect measure and its standard error (the approach we used in the effectiveness studies). For studies that reported zero events, we replaced the zeros with 0.5 before performing the meta-analysis. For the effectiveness studies, we calculated the standard error of the log-risk ratio or log-odds ratio by back-transforming the relevant confidence intervals as reported in the papers. Studies conducted in different epidemiological settings are likely to vary, so we performed a chi-squared test of heterogeneity.

If there was evidence of heterogeneity, the individual study effect estimates were combined using random effects meta-analysis, which incorporates between-study variability in the weighting. P-values less than 0.05 were considered to show strong evidence of association. Published studies may not be representative of all valid studies undertaken and this can bias meta-analysis. We assessed publication bias using Harbord’s modified test for small-study effects [21]. All analyses were performed using Stata 15 MP (StatCorp, College Station, TX, USA).

Results

Overview of included studies

The search identified a total of 858 studies out of which 228 were duplicates (Figure 1). Of the 630 non-duplicated studies, we excluded 98 cost-effectiveness, 67 genotype specific, 13 impact, 21 reviews, and 7 methodological studies leaving a total of 424 studies. After applying the eligibility criteria, we further excluded 357 studies leaving a total of 67 full text articles for analysis out of which 16 were severe RVGE efficacy, 4 overall efficacy, and 47 efficacy against hospital admission studies (Figure 1).

Characteristics of included studies

27 studies investigated the efficacy of rotavirus vaccine on incidence of diarrhoea, out of which 7 studies investigated the overall efficacy of the vaccines [22-31] while 20 studies investigated efficacy on severe diarrhoea (Table 1) [4,5,31-45]. 23 studies were in LMICs while 4 studies were in HICs contributing a total sample size of 135,486 (Table 1). Data from the HICs included data from multicenter trials that was not
disaggregated by country. 13 investigated RV1 and 6 investigated RV5 (Table 1).

Table 1: Features of studies included in vaccine efficacy analysis

Reference	Country/Region	Demo	Vaccine Type	Sample Size	Loss to Follow Up	Study Duration (months)	Efficacy	Vaccinated No Diarrhoea	Vaccinated No Diarrhoea	Non-Vaccinated No Diarrhoea	Non-Vaccinated No Diarrhoea
Araujo et al. [82]	Brazil LMIC	RV1	2155	1	8	64.5	460	22	130	19	
Armah et al. [10]	Ghana, Mali and Kenya LMIC	RV5	5468	134	17.5	64.2	2712	21	2735	58	
Armah et al. [10]	Ghana LMIC	RV5	5468	134	18.2	65	3255	15	3235	42	
Armah et al. [10]	Mali LMIC	RV5	5468	134	18.2	1	2835	4	2844	4	
Armah et al. [10]	Kenya LMIC	RV5	5468	134	16	83.4	1892	2	1876	12	
Bhandari et al. [26]	India LMIC	Rotavac	4532	101	20	56.3	4298	56	2123	64	
Cunliffe et al. [27]	Malawi LMIC	RV1	9	19	49.7	989	41	445	38		
Feikin et al. [33]	Kenya LMIC	RV5	1308	185	7	83.4	569	2	552	12	
Iwata et al. [28]	Japan HIC	RV5	762	4	7	100	355	0	346	10	
Lau et al. [31]	China, Hong Kong LMIC	RV1	3025	20	100	1494	0	1491	8		
Li et al. [32]	China LMIC	RV1	3333	13	24	75	1567	8	1541	32	
Linhares et al. [32]	Latin America LMIC	RV1	1428	248	20	83.1	7195	10	7023	58	
Madhi et al. [94]	SA and Malawi LMIC	RV1	4939	206	12	61.2	2918	56	1373	70	
Madhi et al. [94]	South Africa LMIC	RV1	973	206	12	81.5	1929	15	928	32	
Madhi et al. [94]	Malawi LMIC	RV1	505	206	12	49.7	989	41	445	38	
Mo et al. [35]	China LMIC	RV5	4040	1	12	78.9	1916	11	1885	52	
Phua et al. [29,31]	Hong Kong, Singapore and Taiwan HIC	RV1	1051	155	21	96.1	5261	1	5206	51	
Ruiz-Palacios et al. [4]	Latin America LMIC	RV1	2016	239	12	84.8	8997	12	8781	77	
Sow et al. [22]	Mali LMIC	RV5	1960	36	12	1	782	41	754	71	
Tregnaghi et al. [38]	Latin America LMIC	RV1	6568	34	7.4	81.6	4204	7	2080	19	
Vesikari et al. [101]	Europe HIC	RV1	3994	23	5.7	95.8	2567	5	1242	60	
47 studies investigated vaccine effectiveness (Table 2) [5-16,40-77]. 29 studies were from HICs [5,47,48,60-62,72-74,78-84] and 18 were from LMICs (Table 2) [7-16,40-47,50-54,67-79]. 20 studies evaluated RV1, 10 studies evaluated RV5 and 11 studies evaluated the use of either RV1 or RV5. The total sample size across all the studies was 777,809 (Table 2).

Vaccine efficacy on incidence of diarrhoea (severe and/or any)

There was evidence of substantial variability between studies (I²=74.4%, p<0.0001) with about 74.4% of the pooled between-study heterogeneity attributable to the variability in the true effect (Figure 2A). There was strong evidence of vaccine efficacy (70%) on incidence of diarrhoea (Pooled risk ratio (pRR)=0.30; 95% confidence interval (CI)=(0.24, 0.38); p<0.0001) (Figure 2A).

Table 2: Features of studies included in vaccine effectiveness analysis.

Reference	Country/ Region	Dem o	Sample Size	Vaccine Type
Abeid et al. [52]	Zanzibar	LMI C	805	RV1
Adlhoch et al. [59]	Germany	HIC	368	RV1/RV5
Araki et al. [65]	Japan	HIC	RV1/RV5	
Armah et al. [101]	Ghana	LMI C	657	RV1
Beres et al. [7]	Zambia	LMI C	529	RV1
Boom et al. [48]	USA	HIC	205	RV5
Braeckman et al. [45]	Belgium	HIC	431	RV1
Cardellino et al. [75]	Nicaragua	LMI C	RV5	
Castilla et al. [57]	Spain	HIC	6792	RV1/RV5
Chang et al. [55]	China	HIC	1088	RV1
Chang et al. [55]	China	HIC	RV5	
Cortese et al. [44]	USA- RV1	HIC	593	RV1
Cortese et al. [44]	USA-RV5	HIC	593	RV5
Cotes-Cantillo et al. [42]	Colombia	LMI C	974	RV1
de Palma et al. [40]	El Salvador	LMI C	323	RV1
Desai et al. [83]	USA	HIC	122	RV1/RV5
Field et al. [72]	Australia	HIC	459	RV5
Fuji et al. [62]	Japan	HIC	244	RV1/RV5
Gastanaduy et al. [83]	Botswana	LMI C	610	RV1
Gastanaduy et al. [83]	Guatemala	LMI C	1417	RV1/RV5
Gheorghita et al. [85]	Moldova	LMI C	957	RV1
Gosselin et al. [60]	Canada	HIC	11203	RV1/RV5
Groome et al. [81]	South Africa	LMI C	1974	RV1
Ichihara et al. [46]	Brazil	LMI C	2176	RV1
When stratified by country income status, we observed strong evidence of vaccine efficacy (96%) in HICs (pRR=0.04; 95% CI=[93, 98]; p<0.0001) while an efficacy of 63% was observed in LMICs (pRR=0.37; 95% CI=[56, 69]; p<0.0001) (Figure 2A). We observed evidence of publication bias in terms of small-study effect (bias=-2.55; Harbord’s modified test p=0.017) (Figure 2B). When restricted to severe diarrhoea as the outcome, we also found strong evidence of vaccine efficacy (74%) (pRR=0.26; 95% CI=[0.19,0.24]; p<0.0001) (Figure 3). For any diarrhoea outcome, the efficacy was 53% (pRR=0.47; 95% CI=[0.36,0.60]; p<0.0001) (Figure 4).

In a secondary analysis to assess the efficacy of specific vaccine type, we found similar results. RV1 showed an efficacy of 76% (pRR=0.24; 95% CI=[0.17, 0.33]) while RV5 showed an efficacy of 60% (pRR=0.40; 95% CI=[0.31, 0.53]) (Figure 5).
Vaccine effectiveness on incidence of diarrhoea

In assessing the effect of rotavirus vaccine in real world setting, we found strong evidence of about 78% reduction in incidence of diarrhoea due to the vaccine (pRR=0.22; 95% CI=(0.18, 0.28); p<0.0001). This effect was influenced by the number of vaccine doses; we observed that as the number of dose increases so does the vaccine effectiveness (Figures 6A-6C). For 1 vaccine dose, the vaccine effectiveness in LMIC was 53% (pRR=0.47; 95% CI=(0.36, 0.62); p<0.0001) (Figure 6A). For 2 doses, the effectiveness in LMIC was 61% (pRR=0.39; 95% CI=(0.32, 0.47); p<0.0001) (Figure 6B). For 3 doses, the effectiveness in LMIC was 72% (pRR=0.28; 95% CI=(0.14, 0.56); p<0.0001) (Figure 6C).
Discussion

Results from both the efficacy and effectiveness trials show that rotavirus vaccines have been effective in reducing the scourge of rotavirus associated diarrhoea. Our analysis was able to consolidate data that shows HICs have consistently higher efficacy and effectiveness rates than LMICs; and is true for both RV1 and RV5.

Effectiveness data from real world setting results have also indicated that incomplete vaccine series are able to provide some protection to infants though to a lesser extent than a complete series. The incomplete series had a much lower effectiveness in LMIC than vaccine efficacy in LMIC. Incomplete series is common in LMICs where inadequate health facilities and long distances to health facilities exist. We found that a 3-dose vaccine series had effect similar to vaccine efficacy in LMIC, making it a logical argument for a booster dose especially in LMICs.

Improved vaccine effectiveness: Terrain à forte

The differences in efficacy and effectiveness in HICs and LMICs however still remain the main discussion point as there is need for further reduction in rotavirus associated mortality and morbidity [85]. Various factors have been postulated as contributing to this observed effect. Host factors such as genetics, malnutrition, enteric environmental dysfunction (EED), maternal factors such as antibodies passed onto the infant, various components of breast milk, exposure to HIV and other environmental factors including poor sanitation, concurrent infection with other pathogens have all been postulated to influence vaccine effectiveness [86-97].

Another factor postulated to possibly have an effect is strain diversity in HICs and LMICs. Both RV1 and RV5 are vaccines originally designed by HIC researchers from strains present in HIC regions. However, research has indicated that the vaccines are not strain specific but cross-cutting without evidence of vaccine induced selection pressure [43,98,99]. Nonetheless, the increased strain diversity being observed in many LMICs requires seroepidemiological vigilance to ensure tracking of any emerging strains such as P[4]G2 that may account for reduced efficacy through limited cross protection [100-104].

Despite greater understanding of contributing factors to reduced vaccine efficacy, we are faced with the fact that a lot of these factors are almost impossible to resolve. The high maternal immunity that is passed onto the child is a consequence of where one lives and poor water, sanitation and hygiene (WASH) that cannot easily be changed. Unless this is addressed, mothers will continue to pass these, on to their infants. The same applies to the EED; in order to change the micro biome that exists in individuals, it will require interventions that address which organisms are first introduced into the system. Additionally in low income settings with low availability of funds, the use of formula is not a feasible solution to address the issue of maternal antibodies passed onto the child during breast feeding.

Genetic makeup has also been included in the list of factors affecting vaccine effectiveness. Despite advances in science, genetics is still a growing area and we have not yet reached a point where we can change ones genetic code if one is pre-disposed towards a disease even in the developed settings. Thus, genetic predisposition is another unsolvable in the quest for better vaccine effectiveness. Another key area is that of
mal(nutrition) in LMICs. Again, despite great efforts being made worldwide, the magnitude of this problem renders it unsolvable for years to come. Unless we can find a world in which all children are able to have sufficient food and the right kind of food, this too shall remain a hindrance to our efforts to obtain better vaccine effectiveness.

Future perspectives

Despite the many hindrances to achieving better vaccine effectiveness in LMICs there are still many other areas that are available to work on. The next generation of vaccines can be targeted to areas that maybe within our control such as alternative routes of administration; short course full dose regimen. The ease of use and lower cost of oral vaccines is the main reason for their inclusion in national immunisation programmes. However, the large number of interfering factors has led us to reassess their use. As is the case with Polio, we may have to go the parenteral route to effectively circumvent the problems encountered via the oral route [105].

Another way of dealing with interference is the adjustment of the vaccine schedule; a neonatal dosing schedule has been proposed as potentially beneficial to improved vaccine immunogenicity [106,107]. A booster dose has also been proposed as viable option for enhanced vaccine immune responses of current vaccines in use [108]. While use of the expanded programme on immunization (EPI) was recommended in order to reach as many infants as possible, there may be larger benefits in offering immunization options outside of this schedule. This could be in the form of changing the time to one at which maternal antibodies are waning or as early as possible to ensure adequate protection from early exposure. Nonetheless, these options need to be weighed against the challenge of low coverage in LMIC [109], when venturing outside of the EPI.

Lastly, use of effective adjuvants has not been fully explored in rotavirus immunology [110]. This is particularly key when considering neonates in whom the immune system is naïve [111,112]; and yet it’s a practical window to beat the early exposure of infants to pathogens [88].

Conclusion

While current rotavirus vaccines have saved many lives in LMIC settings, there are still clear gaps in vaccine performance. This paper has comprehensively shown the differences and need for concerted effort to improve vaccine performance in these areas where in fact, vaccines are most needed.

References

1. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, et al. (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. The Lancet 382: 209-222.

2. Global Introduction Status, Rota Council.

3. Vesikari T, Karvonen A, Puustinen L, Zeng SQ, Szakal ED, et al. (2004) Efficacy of RIX4414 live attenuated human rotavirus vaccine in Finnish infants. Pediatr Infect Dis J 23: 937-943.

4. Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, et al. (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354: 11-22.

5. Vesikari T, Prymula R, Schuster V, Tejedor JC, Cohen R, et al. (2012) Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants. Pediatr Infect Dis J 31: 509-513.

6. WHO (2013) Rotavirus Vaccines WHO Position Paper-January 2013. Wkly Epidemiol Rep 88: 49-64.

7. Beres LK, Tate JE, Njobvu L, Chibwe B, Rudd C, et al. (2016) A preliminary assessment of rotavirus vaccine effectiveness in Zambia. Clin Infect Dis 62: S175-S182.

8. Bar-Zeev N, Tate JE, Pecenka C, Chikafa J, Mvula H, et al. (2016) Cost-effectiveness of monovalent rotavirus vaccination of infants in Malawi: a postintroduction analysis using individual patient-level costing data. Clin Infect Dis 62: S220-S228.

9. Gastañaduy PA, Steenhoff AP, Mokomane M, Esona MD, Bowen MD, et al. (2016) Effectiveness of monovalent rotavirus vaccine after programmatic implementation in Botswana: a multisite prospective case-control study. Clin Infect Dis 62: S161-S167.

10. Armah G, Pringle K, Enweronu-Laryea CC, Ansong D, Mwenda JM, et al. (2016) Impact and effectiveness of monovalent rotavirus vaccine against severe rotavirus diarrhea in Ghana. Clin Infect Dis 62: S200-S207.

11. Anh DD, Van Trang N, Thiem VD, Anh NTH, Mao ND, et al. (2012) A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine 30: A114-A121.

12. Fu C, He Q, Xu J, Xie H, Ding P, et al. (2012) Effectiveness of the Lanzhou lamb rotavirus vaccine against gastroenteritis among children. Vaccine 31: 154-158.

13. Isanaka S, Guindo O, Langendorf C, Matar Seck A, Plikaytis BD, et al. (2017) Efficacy of a low-cost, heat-stable oral rotavirus vaccine in Niger. N Engl J Med 376: 1121-1130.

14. O’Ryan M (2017) Rotavirus Vaccines: a story of success with challenges ahead. F1000 Research 6: 1517.

15. Enane LA, Gastañaduy PA, Goldfarb DM, Pernica JM, Mokomone M, et al. (2016) Impact of rotavirus vaccination on hospitalizations and deaths from childhood gastroenteritis in Botswana. Clin Infect Dis 62: S168-S174.

16. Enane LA, Gastañaduy PA, Goldfarb DM, Pernica JM, Mokomone M, et al. (2016) Impact of rotavirus vaccination on hospitalizations and deaths from childhood gastroenteritis in Botswana. Clin Infect Dis 62: S168-S174.

17. Bar-Zeev N, Jere KC, Bennett A, Pollock L, Tate JE, et al. (2016) Population impact and effectiveness of monovalent rotavirus vaccination in urban Malawian children 3 years after vaccine introduction: ecological and case-control analyses. Clin Infect Dis 62: S213-S219.

18. Schulz KF, Altman DG, Moher D, CONSORT Group (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med 8: 18.

19. Ruuska T, Vesikari T (1990) Rotavirus Disease in Finnish Children: Use of Numerical Scores for Clinical Severity of Diarrhoeal Episodes. Scand J Infect Dis 22: 259-267.

This article is available from: https://pediatric-infectious-disease.imedpub.com/
20. Clark HF, Horian FE, Bell LM, Modesto K, Gouvea V, et al. (1988) Protective effect of WC3 vaccine against rotavirus diarrhea in infants during a predominantly serotype 1 rotavirus season. J Infect Dis 158: 570-587.

21. Harbord RM, Egger M, Sterne JAC (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25: 3443-3457.

22. Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, et al. (2010) Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. The Lancet 376: 606-614.

23. Lau YL, Nelson EAS, Poon KH, Chan PK, Chiu S, et al. (2013) Efficacy of the oral pentavalent rotavirus vaccine in Mali. Vaccine 30: A71-A78.

24. Sow SO, Tapia M, Haidara FC, Clairlet M, Djalil F, et al. (2012) Efficacy of the oral pentavalent rotavirus vaccine in Mali. Vaccine 30: A84-A90.

25. Zaman K, Sack DA, Neuzil KM, Yunus M, Moulton LH, et al. (2013) Effectiveness of a live oral human rotavirus vaccine after programmatic introduction in Bangladesh: A cluster-randomized trial. PLoS medicine 14: e1002282.

26. Bhandari N, Rongsen-Chandola T, Bavedkar A, John J, Antony K, et al. (2014) Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. The Lancet 383: 2136-2143.

27. Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, et al. (2010) Effect of human rotavirus vaccine on severe diarrhoea in African infants. New Engl J Med 362: 289-298.

28. Iwata S, Nakata S, Ukae S, Koizumi Y, Morita Y, et al. (2013) Safety and efficacy of a pentavalent human rotavirus vaccine (RV5) in healthy Chinese infants: A randomized, double-blind, placebo-controlled trial. Vaccine 35: 5897-5904.

29. Paye DC, Selvarangan R, Azimi PH, Boom JA, Englund JA, et al. (2015) Long-term consistency in rotavirus vaccine protection: RV5 and RV1 vaccine effectiveness in US children, 2012–2013. Clin Infect Dis 61: 1792-1799.

30. Groome MJ, Page N, Cortese MM, Moyes J, Zar HJ, et al. (2016) Impact and effectiveness of monovalent rotavirus vaccine in Armenian children. Clin Infect Dis 62: S147-S154.
Gheorghita S, Birca L, Donos A, Wasley A, Birca I, et al. (2016) Impact of rotavirus vaccine introduction and vaccine effectiveness in the Republic of Moldova. Clin Infect Dis 62: S140-S146.

Pringle KD, Patzi M, Tate JE, Iniguez Rojas V, Patel M, et al. (2016) Sustained effectiveness of rotavirus vaccine against very severe rotavirus disease through the second year of life, Bolivia 2013-2014. Clin Infect Dis 62: S115-S120.

Abeid KA, Jani B, Cortese MM, Kamugisha C, Mwenza JM, et al. (2016) Monovalent rotavirus vaccine effectiveness and impact on rotavirus hospitalizations in Zanzibar, Tanzania: data from the first 3 years after introduction. J Infect Dis 215: 183-191.

Muhsen K, Shulman L, Kasem E, Rubinstein U, Shachter J, et al. (2010) Effectiveness of rotavirus vaccines for prevention of rotavirus gastroenteritis-associated hospitalizations in Israel: a case-control study. Human vaccines 6: 450-454.

Justino MCA, Linhares AC, Lanzieri TM, Miranda Y, Mascarenhas JDA, et al. (2011) Effectiveness of the monovalent G1P [8] human rotavirus vaccine against hospitalization for severe G2P [4] rotavirus gastroenteritis in Belem, Brazil. Pediatr Infect Dis J 30: 396-401.

Chang WC, Yen C, Wu FT, Huang YC, Lin JS, et al. (2014) Effectiveness of 2 rotavirus vaccines against rotavirus disease in Taiwanese infants. Clin Infect Dis 33: e81-e86.

Pérez-Vilar S, Diez-Domingo J, López-Lacort M, Martínez-Úbeda S, Martínez-Beneito MA (2015) Effectiveness of rotavirus vaccines, licensed but not funded, against rotavirus hospitalizations in the Valencia Region, Spain. BMC Infect Dis 15: 92.

Castilla J, Beristain X, Martínez-Artola V, Navasquéz A, Cenzó MG, et al. (2012) Effectiveness of rotavirus vaccines in preventing cases and hospitalizations due to rotavirus gastroenteritis in Navarre, Spain. Vaccine 30: 539-543.

Martín-Torres F, Alejandro MB, Collazo LR, Lastres JMS, Díaz SP, et al. (2011) Effectiveness of rotavirus vaccination in Spain. Human vaccines 7: 757-761.

Adlhoch C, Hoehme M, Littmann M, Marques AM, Lerche A, et al. (2013) Rotavirus vaccine effectiveness and case-control study on risk factors for breakthrough infections in Germany, 2010–2011. Pediatr Infect Dis J 32: e82-e89.

Gosselin V, Généreaux M, Gagneur A, Petit G, (2016) Effectiveness of rotavirus vaccine in preventing severe gastroenteritis in young children according to socioeconomic status. Hum Vaccines Immunother 12: 2572-2579.

Tharmaphornpisal P, Jiamsiri S, Boonchaiya S, Rochanathimoke O, Thinyounyong W, et al. (2017) Evaluating the first introduction of rotavirus vaccine in Thailand: moving from evidence to policy. Vaccine 35: 796-801.

Fujii Y, Noguchi A, Miura S, Ishii H, Nakagomi T, et al. (2017) Effectiveness of rotavirus vaccines against hospitalisations in Japan. BMC pediatrics 17: 156.

Desai SN, Esposito DB, Shapiro ED, Dennehy PH, Vázquez M (2010) Effectiveness of rotavirus vaccine in preventing hospitalization due to rotavirus gastroenteritis in young children in Connecticut, USA. Vaccine 28: 7501-7506.

Marlow R, Ferreira M, Cordeiro E, Trotter C, Januário L, et al. (2015) Case control study of rotavirus vaccine effectiveness in Portugal during 6 years of private market use. Pediatr Infect Dis J 34: 509-512.

Araki K, Hara M, Sakashita Y, Shimaneo C, Nishida Y, et al. (2016) Estimating rotavirus vaccine effectiveness in Japan using a screening method. Hum Vaccines Immunother 12: 1244-1249.

Yeung KHT, Tate JE, Chan CC, Chan MC, Chan PK, et al. (2016) Rotavirus vaccine effectiveness in Hong Kong children. Vaccine 34: 4935-4942.

Patel M, Pedreira C, De Oliveira LH, Tate J, Orozco M, et al. (2009) Association between pentavalent rotavirus vaccine and severe rotavirus diarrhea among children in Nicaragua. JAMA 301: 2243-2251.

Staat MA, Payne DC, Donauer S, Weinberg GA, Edwards KM, et al. (2011) Effectiveness of pentavalent rotavirus vaccine against severe disease. Pediatrics 128.

Leshem E, Givon-Iav N, Tate JE, Greenberg D, Parashar UD, et al. (2016) Real-world effectiveness of pentavalent rotavirus vaccine among Bedouin and Jewish children in southern Israel. Clin Infect Dis 62: 155-160.

Boom JA, Tate JE, Sahni LC, Rench MA, Hull JJ, et al. (2010) Effectiveness of pentavalent rotavirus vaccine in a large urban population in the United States. Pediatrics 125: e199-e207.

Wang FT, Mast TC, Glass RJ, Loughlin J, Seeger JD (2010) Effectiveness of the Pentavalent Rotavirus Vaccine in Preventing Gastroenteritis in the United States. Pediatrics 125: e208-e213.

Field EJ, Vally H, Grimwood K, Lambert SB (2010) Pentavalent Rotavirus Vaccine and Prevention of Gastroenteritis Hospitalizations in Australia. Pediatrics 126: e506-e512.

Mast TC, Khawaja S, Espinoza F, Paniagua M, Del Carmen LP, et al. (2011) Case-control study of the effectiveness of vaccination with pentavalent rotavirus vaccine in Nicaragua. Pediatr Infect Dis J 30: e209-e215.

Wang FT, Mast TC, Glass RJ, Loughlin J, Seeger JD (2012) Effectiveness of an Incomplete RotaTeq® (RVS) Vaccination Regimen in Preventing Rotavirus Gastroenteritis in the United States. Pediatr Infect Dis J 32: 1.

Cardellino A, Khawaja S, Sánchez Cruz E, Mast TC (2013) Effectiveness of vaccination with the pentavalent rotavirus vaccine in Nicaragua as determined using the screening method. Hum Vacc Immunother 9: 1449-1453.

Yang T-A, Hou JY, Huang YC, Chen CJ (2017) Genetic Susceptibility to Rotavirus Gastroenteritis and Vaccine Effectiveness in Taiwanese Children. Sci Rep 7: 6412.

Gastañaduy PA, Contreras-Roldán I, Bernart C, López B, Benoit SR, et al. (2016) Effectiveness of monovalent and pentavalent rotavirus vaccines in Guatemala as determined using the screening method. Hum Vacc Immunother 9: 1449-1453.

Yang T-A, Hou JY, Huang YC, Chen CJ (2017) Genetic Susceptibility to Rotavirus Gastroenteritis and Vaccine Effectiveness in Taiwanese Children. Sci Rep 7: 6412.

Sahakyan G, Grigoryan S, Wasley A, Mosina L, Sargsyan S, et al. (2016) Impact and effectiveness of monovalent rotavirus vaccine in Armenian children. Clin Infect Dis 62: S121-S126.

Yang TA, Hou JY, Huang YC, Chen CJ (2017) Genetic Susceptibility to Rotavirus Gastroenteritis and Vaccine Effectiveness in Armenian children. Sci Rep 7: 6412.

Sahakyan G, Grigoryan S, Wasley A, Mosina L, Sargsyan S, et al. (2016) Impact and effectiveness of monovalent rotavirus vaccine in Armenian children. Clin Infect Dis 62: S147-S154.
98. Velasquez DE, Parashar UD, Jiang B (2014) Strain diversity plays no major role in the varying efficacy of rotavirus vaccines: An overview. Infect Genet Evol 28: 561-571.

99. Leshem E, Lopman B, Glass R, Gentsch J, Bányai K, et al. (2014) Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect Dis 14: 847-856.1

100. Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, et al. (2010) Effect of human rotavirus vaccine on severe diarrhea in African infants. New Engl J Med 362: 289-298.

101. Patel MM, Glass R, Desai R, Tate JE, Parashar UD (2012) Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? Lancet Infect Dis 12: 561-570.

102. Gurgel RQ, Cuevas LE, Vieira SC, Barros VC, Fontes PB, et al. (2007) Predominance of rotavirus P [4] G2 in a vaccinated population, Brazil. Emerg Infect Dis 13: 1571.

103. Bernstein DI (2006) Live Attenuated Human Rotavirus Vaccine, RotarixTM. Semin Pediatr Infect Dis 17: 188-194.

104. Rahman M, Sultana R, Ahmed G, Nahar S, Hassan ZM, et al. (2007) Prevalence of G2P [4] and G12P [6] rotavirus, Bangladesh. Emerg Infect Dis 13: 18.

105. Groome MJ, Koen A, Fix A, Page N, Jose L, et al. (2017) Safety and immunogenicity of a parenteral P2-VP8-P [8] subunit rotavirus vaccine in toddlers and infants in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis 17: 843-853.

106. Bines JE, Danchin M, Jackson P, Handley A, Burnett J, et al. (2015) Safety and immunogenicity of RV3-BB human neonatal rotavirus vaccine administered at birth or in infancy: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis 15: 1389-1397.

107. Arman G E, Kapikian AZ, Vesikari T, Cunliffe N, Jacobson RM, et al. (2013) Efficacy, immunogenicity, and safety of two doses of a tetravalent rotavirus vaccine RRV-TV in Ghana with the first dose administered during the neonatal period. J infect Dis 208: 423-431.

108. Burnett E, Lopman BA, Parashar UD (2017) Potential for a booster dose of rotavirus vaccine to further reduce diarrhoea mortality. Vaccine 35: 7198-7203.

109. WHO | Rotavirus (RotaC) immunization coverage. WHO. 2017.

110. Vogel F, Powell MJ (1995) A Summary Compendium of Vaccine Adjuvants and Excipients, Vaccine Design: The Subunit and Adjuvant Approach. Vol (Vogel F, Newman MJ, eds.). New York: Plenum Publishing.

111. Demirjian A, Levy O (2009) Safety and efficacy of neonatal vaccination. Eur J Immunol 39: 36-46.

112. Schneerson R, Fattom A, Szu SC, Bryla D, Ulrich JT, et al. (1991) Evaluation of monophosphoryl lipid A (MPL) as an adjuvant. Enhancement of the serum antibody response in mice to polysaccharide-protein conjugates by concurrent injection with MPL. J Immunol 147: 2136-2140.