DEFICIENCY OF BROAD-LINE AGNs IN COMPACT GROUPS OF GALAXIES

M. A. Martínez, A. del Olmo, R. Coziol, and P. Focardi

Received 2007 October 22; accepted 2008 March 21; published 2008 April 3

ABSTRACT

Based on a new survey of AGN activity in compact groups of galaxies, we report a remarkable deficiency of broad-line AGNs as compared to narrow-line AGNs. The cause of such deficiency could be related to the average low luminosity of AGNs in CGs: (10^40 ergs s^{-1}). This result may imply lower accretion rates in CG AGNs, making broad-line regions (BLRs) undetectable, or may indicate a genuine absence of BLRs. Both phenomena are consistent with gas stripping through tidal interaction and dry mergers.

Subject headings: galaxies: active — galaxies: evolution — galaxies: nuclei — galaxies: Seyfert

1. INTRODUCTION

From the optical spectra of AGNs, one can generally distinguish two main types: those that show broad emission lines (BLAGNs) and those that show only narrow emission lines (NLAGNs). With an absolute magnitude M_V \geq -23, the local BLAGNs are called Seyfert 1 galaxies (Sy1s), while the NLAGNs are called Seyfert 2 galaxies (Sy2s). In the literature, one can also find other types of Seyfert galaxies: Sy1.2, Sy1.5, Sy1.8, and Sy1.9, all of them being some sort of Sy1 and consequently NLAGNs. NLAGNs may also come in the form of low-ionization nuclear emission-line regions (LINERs).

Phenomenologically, it is unclear why AGNs come in different types. Based on spectral variation, the narrow-line region (NLR) is thought to be located farther out from the central black hole accretion disk than the broad-line region (BLR), and to be spatially much more extended. Within the unification model (Antonucci 1993), which assumes all AGNs to be intrinsically the same, the BLR in NLAGNs is hidden behind an optically thick torus of gas and dust. Consistent with this model, many observations of NLAGNs have revealed hidden BLRs through polarized spectroscopy (Antonucci 2002). However, not all NLAGNs observed with this technique have shown such structures (Tran 2001, 2003; Laor 2003; Shu et al. 2007), suggesting that in some NLAGNs the BLR might simply be absent.

This last finding is consistent with alternative models in which the accretion rate and, consequently, AGN luminosity plays a direct role in determining the presence of the BLR (Nicastro 2000; Nicastro et al. 2003; Elitzur & Shlosman 2006).

One possible way how to solve this dilemma is to explore the connection of AGNs with their environment. According to the unification model, for example, one does not expect to find any differences in the number of AGNs in different environments. Unfortunately, such studies are usually controversial. While some authors found Sy2s to inhabit richer environments than Sy1s (de Robertis et al. 1998), others claimed the opposite (Schmitt 2001 and references therein). Recently, Koulouridis et al. 2006, hereafter SRR06) who found twice as many Sy2s as Sy1s in the local (\leq 100 kpc) environment.

To explore further the possible connection between AGN activity and environment we have undertaken a new survey to determine the nature and frequency of nuclear activity in two different samples of compact groups of galaxies (CGs): the Hickson compact groups (HCGs; Hickson 1982) and a sample of CGs from the Updated Zwicky Catalog (UZC-CG; Focardi & Kelm 2002). Previous studies on CGs revealed a high percentage of low-luminosity AGNs in these structures, but very few luminous ones (Coziol et al. 1998, 2000; Martínez et al. 2006, 2007). Having in hand a statistically significant sample of CGs with complete information on the nuclear activity of their members allows us to better quantify the frequency of BLAGNs in these systems.

2. DATA AND RESULTS

Among the HCGs, we have selected the groups with redshifts z \leq 0.045, having a surface brightness \mu_v \leq 24.4. These criteria provided us with a statistically complete sample of 283 galaxies in 65 groups. We have obtained medium-resolution spectroscopy for 238 of these galaxies. The spectra of 71 galaxies come from previous observations made by Coziol et al. (1998, 2000, 2004). The remaining 167 galaxies were observed by our group using four different telescopes: the 2.5 m NOT in El Roque de los Muchachos Observatory (Spain), the 2.2 m in Calar Alto (CAHA; Spain), the 2.12 m in San Pedro Mártir (SPM; Mexico), and the 1.5 m at the Sierra Nevada Observatory (OSN; Spain).

For all the galaxies, broad component searches and activity classification were done only after template subtraction, to correct for absorption features produced by the underlying stellar population. Detailed of the template subtraction method used can be found in Coziol et al. (1998, 2004). Preliminary results have already been published in Martínez et al. (2007). A complete description of the observation, reduction, and analysis methods will be published elsewhere.

For the UZC-CG sample, we have collected spectra from three spectroscopic archives: the Sloan Digital Sky Survey (SDSS-DR4), the Z-Machine, and the FAST Spectrograph Archives. We have found spectra for all the galaxy members of
215 groups (720 galaxies): 210 spectra are from the SDSS, 187 from FAST, and 323 from the Z-Machine (Martínez et al. 2006). Because the Z-Machine spectra have too low S/N ratios to measure broad components, we restrict our analysis to the 397 spectra found in the SDSS and FAST databases. Spectra from the SDSS survey were template subtracted using Hao et al. (2005, hereafter H05) eigenspectra and their PCA method. No correction was applied to the galaxies in the FAST sample, due to the nonavailability of suitable spectra to be used as templates.

Emission lines were found in 153 of the 238 galaxies in the HCG sample (64%) and 274 of the 397 galaxies (69%) in the UZC-CG sample. The identification of broad components was done by fitting a multicomponent Gaussian on the emission lines, using the IRAF task NGAUSSFIT. The FWHM of [S\text{ii}] when the [S\text{ii}] lines were too faint or noisy has been used to model the narrow components of the H\alpha and [N\text{ii}] lines. When a broad fourth component was necessary, it was centered on H\alpha. A \chi^2 criterion, as described in H05, was applied to choose the fourth component parameters, establishing in this way its presence and characteristics. Examples of fitting plots for three BLAGNs are shown in Figure 1.

Following Osterbrock (1989) we classified BLAGN galaxies having FWHM \geq 500 km s$^{-1}$. Our analysis revealed only one BLAGN in the HCG sample and eight in the UZC-CG sample. For each of these galaxies we give in Table 1 the FWHM of the broad component and activity classification according to Osterbrock (1989): a Sy1 shows a broad component only in H\alpha, while a Sy1.8 shows also a weak broad component in H\beta. None of our BLAGNs are classified as Sy1, Sy1.2, or Sy1.5. Based on our analysis, BLAGNs represent only 1% (1/153) of emission-line galaxies in the HCG sample and 3% (8/274) in the UZC-CG sample.

To classify NLAGNs we used the diagnostic diagram based on the four most intense emission lines: H\beta, [O\text{iii}] λ5007, H\alpha, and [N\text{ii}] λ6583 and criteria similar to those employed by Kewley et al. (2006). Galaxies located above the theoretical maximum sequence for star formation are classified as AGNs. We also distinguished between Sy2s and LINERs using the classical upper limit log([O\text{iii}] λ5007/H\beta) < 0.4 for LINERs. Both CG samples are rich in galaxies having only [N\text{ii}] λ6583 and H\alpha; we classified these cases as low-luminosity AGNs (LLAGNs) when log([N\text{ii}]/H\alpha) >-0.1 (Coziol et al. 1998; Stasińska et al. 2006).

A summary of the nuclear classification for the AGN galaxies in our two samples are presented in Table 2. For each sample we give the number of Sy2s, LINERs, and LLAGNs, which together constitute the total NLAGN populations. We also report the fractions of BLAGNs over NLAGNs and the fraction of Sy1s over Sy2s, considering all BLAGNs as Sy1-like.

2.1. Lower Ratio of BLAGNs to NLAGNs in CGs Than in the Field

The fraction of BLAGNs over NLAGNs in our two CG samples is extremely low: 1% for the HCGs and 6% for the UZC-CGs. Also noticeably low are the ratios of Sy1s to Sy2s: 4% in the HCG and 19% in the UZC-CG. To realize how low these ratios are one has to compare with what is usually found in other surveys.

The mean H\alpha luminosity of both NLAGNs and BLAGNs in our two samples is about 10^{40} ergs s$^{-1}$, which is typical of the faint end of the luminosity function of AGNs. This value is comparable with the mean H\alpha luminosity of AGNs observed in the local universe by Ho et al. (1997a, hereafter HFS97). Except for some galaxies in Virgo, all the galaxies in the HFS97 sample are located in low-density environments (either loose groups or isolated). In Table 2 we compare their results (395 galaxies, excluding the galaxies in Virgo) with ours. In the HFS97 sample, the BLAGNs were classified as such by Ho et al. (1997b) based on the detection of a broad H\alpha component. To be consistent with our definition, all these galaxies were classified as Sy1s. Also for comparison’s sake, the narrow emission lines galaxies in the HFS97 sample were reclassified using the criteria described in § 2.

The fraction BLAGN/NLAGN in the HFS97 sample is 22% and the ratio Sy1/Sy2 is 61%. There is consequently a clear deficiency of BLAGNs in CGs. This also appears as an extremely large difference in the number of Sy1 as compared to Sy2 galaxies. This phenomenon is quite intriguing considering that there is no deficit of AGNs as a whole in CGs: 46% AGNs in the HCG and 51% in the UZC-CG, compared to 44% in the HFS97 sample.

Comparable ratios (Sy1/Sy2 $\sim 60\%$) were obtained by SRR06 in the field, with a slight increase in “loose groups” (Sy1/Sy2 $\sim 69\%$). In the nearby (\z < 0.33) sample of SDSS

TABLE 1
BLAGN Identification
Name
HCG 5a
UZ-CG 84c
UZ-CG 89b
UZ-CG 109b
UZ-CG 117a
UZ-CG 132b
UZ-CG 139b
UZ-CG 232c
UZ-CG 234b

TABLE 2
Nuclear Classification for the AGN Galaxies
Sample
HCG 5a
UZ-CG 84c
HFS97 46
H05 2424
SRR06 1104
AGN galaxies covering four orders of luminosity and environments similar to those of SRR06, H05 determined a ratio BLAGN/NLAGN of 43% and a ratio Sy1/Sy2 of 54%. Assuming BLAGNs are slightly favored at higher luminosity these high ratios are comparable to those found by HFS97.

3. DISCUSSION

3.1. Quantifying Biases and Detection Limits

Our results suggest there is an important deficit of BLAGNs in our two CG samples as compared to similar surveys in the field. This result confirm the tendency first encountered by Coziol et al. (1998, 2000). To verify that the lack of BLAGNs in CGs cannot be induced by differences in observation, reduction, or analysis methods we have investigated thoroughly these possibilities.

Comparison of the UZC-CG sample with the survey made by H05 is safe, because our SDSS data derive from the same telescope and reduction and analysis methods (including template subtraction) as theirs. The ratio BLAGN/NLAGN is 8% in our sample compared to 43% for the sample of H05, which is already a huge difference.

A possible effect due to difference in spectral resolution can also be excluded. Ho et al. (1997b) have used high-resolution (2.5 Å) spectra, but made tests with two other low-resolution setups (5 and 10 Å), obtaining similar results. These are comparable to our own observations: CAHA and OSN (4 Å), NOT and SPM (8 Å), SDSS (3.5 Å), and FAST (6 Å). Both H05 and SRR06 have 3.5 Å.

The S/N continuum levels of the different surveys are also comparable. On average the S/N of AGNs in our spectra is 60 with a maximum of the order of 120. This is comparable to H05 and SRR06 spectra (they both used SDSS). HFS97 did not publish their values. However, their BLAGN rates are comparable to those of H05 and SRR06, suggesting this is not an issue.

There is no evidence either for higher galaxy contamination (the fraction of a galaxy falling into the aperture) in our samples. Taking into account the slit aperture and distances of the host galaxies in each sample we find medians of 1 and 1.3 kpc for the HCG and UZC-CG, respectively. Although the median for HFS97 is lower (0.5 kpc) than for H05 (7 kpc) the results are similar. Obviously, template subtraction (as we also did) alleviates the differences. We may note also that no relation is observed in any of these surveys (including ours), between the frequency of BLAGNs and the redshift of the galaxies where they are found, which means that nearby galaxies are not more likely BLAGNs than remote ones.

To test whether our low number of Sy1s could be due to a difference in morphologies (Schmitt 2001), we have divided our two samples and the HFS97 one into three morphology classes: E for early-type galaxies (E–S0), S0a–Sbc for early-type spirals (S0a–Sbc), and Sy1/Sy2 for late-type spirals (Sc and later).

For the sake of homogeneity, all the morphologies have been taken from the Hyperleda database (Paturel et al. 2003). In Table 3 we give for each morphology class the fraction of galaxies and the ratios BLAGN/NLAGN and Sy1/Sy2. There are no BLAGNs in late-type spirals in any sample. In the HFS97 sample, the ratio BLAGN/NLAGN is marginally higher in the E class while the ratio Sy1/Sy2 is significantly higher, which indicates a definitive increase in BLAGNs in early-type galaxies.

In the two CG samples we almost see an inverse trend: the ratios of BLAGN/NLAGN and Sy1/Sy2 are both larger in the Se class than in the E one. Moreover there is a definite rise in the number of early-type galaxies in CGs. Following the HFS97 trend, this should have produced more BLAGNs in CGs instead of less. This eliminates a difference in morphologies as a possible explanation.

We also reject the hypothesis of lower sensitivity. Comparing the median luminosity in Hα of the different types of galaxies in our samples with those in the HFS97 sample, lower sensitivity would have translated into higher values in our samples. This is not observed. In the HFS97 sample the median Hα luminosity of the NLAGNs is log(L_{Hα}) = 38.72 (in units of ergs s⁻¹). Our values are comparable: 38.69 for the HCG and 38.79 for the UZC-CG.

Finally, we have determined the detection limits in our samples as in Ho et al. (1997b). Different simulations were performed adding to each setup spectra a grid of synthetic spectra with broad Gaussian components of various widths and amplitudes centered on Hα. We then applied our template and extraction analysis to deduce the following limits. For the CAHA and OSN spectra, broad components equivalent to 15% or higher of the total blended flux in Hα + [N II] were recovered. Using medians of AGN blended flux and redshift this transforms into a detection limit in Hα broad luminosity of 3.5 × 10³⁸ ergs s⁻¹. We find a slightly higher fraction (20%) for the NOT and SPM spectra, equivalent to a detection limit in luminosity of 4.0 × 10³⁸ ergs s⁻¹. Only three BLAGNs in the HFS97 sample have a luminosity lower than these limits. Obviously, the lack of BLAGNs encountered in our samples cannot be explained by a higher detection limits in our samples.

There seem to be no obvious observational biases or differences in reduction and analysis methods capable of reproducing the lack of BLAGNs in CGs as compared to lower density environments. It is consequently reasonable to conclude that this phenomenon must be related to the environment typical of CGs.

3.2. The Disappearance of BLRs in CGs

In the unification model for AGNs, a torus of matter is assumed to be responsible for hiding the BLR from the observer. To be consistent with our analysis, this mechanism should be much more efficient in CGs. However, this assumption goes against the evidence of tidal stripping: in CGs the infall of gas in the disk seems to have stopped, generally diminishing the amount of star formation (Caon et al. 1994; Coziol et al. 1998, 2000; Verdes-Montenego et al. 2001; de la Rosa et al. 2007; Durbala et al. 2008). At the same time, the number of early-type galaxies in CGs is observed to increase. Therefore, a possible reason why no BLRs appear in AGNs in CGs may be because any amount of gas that has reached the center was consumed into stars, building larger bulges (de Carvalho & Coziol 1999). Alternatively, the bulges...
of galaxies in CGs may have grown without gas, through dry mergers (Coziol & Plauchu-Frayn 2007).

The fact that the average luminosity of the AGNs in CGs is low is another argument in favor of the dissipation hypothesis for the BLR. According to recent results obtained by reverberation mapping, the size of the BLR in AGNs is correlated to the optical luminosity at 5100 Å (Kaspi et al. 2005). It is consequently possible to imagine the size of the BLR shrinking almost to zero at some low threshold luminosity (Elitzur & Shlosman 2006). The luminosity at 5100 Å in our samples ranges from log(Lo/1000 luminosity at 5100 Å) = 40.7 to 43.1 (in units of ergs s⁻¹); comparing with data of Peterson et al. (2004) we are in the lower luminosity part of their distribution, where few objects with broad lines have been observed. We also are at the lower limit where no hidden BLRs have been found (Shu et al. 2007; Bian & Gu 2007). Using the relation log(Lo/Lbol), most of our galaxies are below −1.37, which suggests that broad features may simply not exist in these LLAGNs.

According to Nicastro (2000) and Nicastro et al. (2003) low accretion rates rather than smaller mass black holes are responsible in explaining the absence of BLRs in LLAGNs, which is fully compatible with our observations.

4. CONCLUSION

Based on the above statistics, we confirm that there is a remarkable deficiency of BLAGNs as compared to NLAGNs in CGs. This result suggests that BLRs in AGN CGs are directly affected by tidal or group interaction effects, which make them shrink below detection or completely disappear.

In CG environment, galaxies are undergoing morphological transformations (Hickson et al. 1988; Coziol et al. 2004) and the main mechanisms for such transformations are tidal interactions and mergers (Mendes de Oliveira & Hickson 1994; Coziol & Plauchu-Frayn 2007). Our analysis suggests that the combined effects of these two mechanisms also result in an important decrease in the amount of gas that can reach the nucleus to form a BLR in AGNs.

We are grateful to Lei Hao for making available her eigenspectra and to Jaime Perea for his PCA software and helpful discussion. M. A. M. acknowledges the Ministerio de Educación y Ciencia for financial support grant FPU AP2004-4064. M. A. M. and A. d. O. are partially supported by Spanish research projects AYA2007-62190 and TIC114. R. C. was partially supported by the CONACyT, under grant 47282. P. F. acknowledges financial contribution from MIUR and from the contract ASI-INAF I/023/05/0. We thank the referee for constructive comments. We also thank the TAC of the Observatorio Astronómico Nacional at San Pedro Mártir for time allocations. We thank the SDSS collaboration for providing the extraordinary database and processing tools that made part of this work possible. The SDSS Web Site is http://www.sdss.org/. We acknowledge also the use of the Hyperleda database (http://leda.univ-lyon1.fr).

REFERENCES

Antonucci, R. 1993, ARA&A, 31, 473
———. 2002, Astrophysical Spectropolarimetry (Cambridge: Cambridge Univ. Press), 151
Bian, W., & Gu, Q. 2007, ApJ, 657, 159
Caon, N., Capaccioli, M., D’Onofrio, M., & Longo, G. 1994, A&A, 286, L39
Coziol, R., Brinks, E., & Bravo-Alfaro, H. 2004, AJ, 128, 68
Coziol, R., Iovino, A., & de Carvalho, R. R. 2000, AJ, 120, 47
Coziol, R., & Plauchu-Frayn, I. 2007, AJ, 133, 2630
Coziol, R., Ribeiro, A. L. B., Capelato, H. V., & de Carvalho, R. R. 1998, ApJ, 493, 563
de Carvalho, R. R., & Coziol, R. 1999, AJ, 117, 1657
de la Rosa, I. G., de Carvalho, R. R., Vazdekis, A., & Barbuy, B. 2007, AJ, 133, 330
de Robertis, M. M., Yee, H. K. C., & Hayhoe, K. 1998, ApJ, 496, 93
Durbala, A., et al. 2008, AJ, 135, 130
Elitzur, M., & Shlosman, I. 2006, ApJ, 648, L101
Focardi, P., & Kelm, B. 2002, A&A, 391, 35
Hao, L., et al. 2005, AJ, 129, 1783 (H05)
Hickson, P. 1982, ApJ, 255, 382
Hickson, P., Kindl, E., & Huchra, J. P. 1988, ApJ, 331, 64
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997a, ApJS, 112, 315 (HFS97)
Ho, L. C., Filippenko, A. V., Sargent, W. L. W., & Peng, C. Y. 1997b, ApJS, 112, 391
Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., & Jannuzi, B. T. 2005, ApJ, 629, 61
Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961
Koulouridis, E., Plionis, M., Chavushyan, V., Dultzin-Hacyan, D., Krongold, Y., & Goudis, C. 2006, ApJ, 639, 37
Laor, A. 2003, ApJ, 590, 86
Martínez, M. A., del Olmo, A., Focardi, P., & Perea, J. 2006, preprint (astro-ph/0611099)
Martínez, M. A., del Olmo, A., Perea, J., & Coziol, R. 2007, in Groups of Galaxies in the Nearby Universe, ed. I. Saviane et al. (Berlin: Springer), 163
Mendes de Oliveira, C., & Hickson, P. 1994, ApJ, 427, 684
Nicastro, F. 2000, ApJ, 530, L65
Nicastro, F., Martocchia, A., & Matt, G. 2003, ApJ, 589, L13
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)
Paturel, G., et al. 2003, A&A, 412, 45
Peterson, B. M., et al. 2004, ApJ, 613, 682
Schmitt, H. R. 2001, AJ, 122, 2243
Shu, X. W., Wang, J. X., Jiang, P., Fan, L. L., & Wang, T. G. 2007, ApJ, 657, 167
Sorrentino, G., Rudovich, M., & Rifatto, A. 2006, A&A, 451, 809 (SRR06)
Stasiská, G., Cid Fernandes, R., Mateus, A., Sodré, L., & Asari, N. V. 2006, MNRAS, 371, 972
Tran, H. D. 2001, ApJ, 554, L19
———. 2003, ApJ, 583, 632
Verdes-Montenegro, L., et al. 2001, A&A, 377, 812