Anisotropic Cosmology and (Super)Stiff Matter in Hořava’s Gravity Theory

S. Kalyana Rama

Institute of Mathematical Sciences, C. I. T. Campus, Tharamani, CHENNAI 600 113, India.
email: krama@imsc.res.in

ABSTRACT

We study anisotropic cosmology in Hořava’s gravity theory and obtain Kasner type solutions, valid for any number d of spatial dimensions. The corresponding exponents satisfy two relations, one involving the marginal coupling λ. Also, Hořava’s (super)renormalisable theory predicts (super)stiff matter whose equation of state is $p = w\rho$ with $w \geq 1$. We discuss briefly the implications of these results for the nature of cosmological collapse.
1. Introduction

Recently, Hořava has proposed [1] a candidate theory for gravity based on anisotropic scaling of space and time coordinates:

\[x^i \rightarrow lx^i, \quad t \rightarrow lt \]

where \(z \) is the scaling exponent. He has constructed an action for the metric fields invariant under the above scaling and also under foliation preserving diffeomorphic transformations. The action is required to have no more than two time derivatives. The kinetic part of the action is then universal and is characterised by a marginal coupling \(\lambda \). The potential part has numerous terms containing various powers and spatial derivatives of curvatures of the spatial metric. Hořava has invoked ‘the principle of detailed balance’ to constrain such terms, but this seems unnecessary and may even be problematic. The action reduces to the Einstein action in the infrared (IR) if \(\lambda \rightarrow 1 \) and \(z \rightarrow 1 \). The theory then has full space–time diffeomorphism symmetry and may, therefore, be a candidate for a renormalisable Einstein’s theory of gravity. Hořava’s theory may also acquire an anisotropic Weyl symmetry at \(\lambda = \frac{1}{d} \) where \(d \) is the number of spatial dimensions.

Such a theory has many appealing properties. For example, it is ghost free since there are no more than two time derivatives. By construction, it is power counting renormalisable in the ultraviolet (UV) if \(z = d \) and is super renormalisable if \(z > d \), so it is believed to be UV complete. It contains many higher powers and derivatives of curvature, hence it may be able to resolve singularities. It singles out time, so the causal structure in UV is likely to be modified which may have non trivial implications for black hole physics. In such a theory, the speed of light generically diverges in the UV, so the horizon problem may perhaps be solved without requiring inflation. See [1, 2] for more details.

Various aspects of such a theory are being studied actively. See, for example, [2] – [20]. In this letter, we focus on implications of such a theory in early universe cosmology where differences from Einstein’s theory are likely to be manifest. Such implications have also been studied in [5, 6, 8, 9, 13, 14] for \(d = 3 \) homogeneous isotropic FRW universe. It is found that scale invariant cosmological perturbations can be generated without requiring inflation if the scale factor \(a(t) \) evolves as \(\sim t^n \) with \(n > \frac{1}{3} \); it is also found that there can be a bounce in the early universe if the spatial curvature is non zero.
The scale invariance of perturbations is due to the modifications of dispersion relations arising from anisotropic scaling symmetry and, hence, is likely to be a generic feature of Hořava’s theory. The bounce is due to non-zero spatial curvature of the FRW universe and due to higher powers of curvature in the action. The bounce is thus a possible but non-generic feature of Hořava’s theory. For example, it is absent for spatially flat universe.

Our main motivation here is to find the implications of Hořava’s theory which differ from those of Einstein’s theory and which are not crucially dependent on the spatial curvature. We find that generic equation of state for the matter in the UV is \(\frac{p}{\rho} = w = \frac{\dot{\xi}}{\dot{x}} \). This is independent of whether the spatial curvature is zero or non-zero. Thus, in the early universe, \(w = 1 \) for renormalisable theory whereas \(w > 1 \) for super renormalisable theory. The corresponding matter is sometimes referred to as (super)stiff.

We consider the general action given in [6] and study the evolution of a homogeneous anisotropic universe with \(d \) spatial dimensions. We obtain anisotropic Kasner type solution in the limit where universe is collapsing to zero size. The exponents in the corresponding scale factors satisfy two relations, one of them involving \(\lambda \). The marginal coupling \(\lambda \) may be different from 1 in the UV, and may even be close to \(\frac{1}{d} \) where the theory may acquire a Weyl symmetry. Such a behaviour of \(\lambda \) and the presence of (super)stiff matter have interesting implications for the nature of collapse which we explain briefly.

This paper is organised as follows. In section 2 we present the set up. In section 3 we discuss the dispersion relation and the consequent equation of state. In section 4 we present the equations of motion and some solutions, and discuss briefly their implications. In section 5 we conclude with a brief summary and a few comments.

2. Ansatz for action and metric

In Hořava’s theory, the fields are the lapse function \(N \), shift vector \(N^i \), and the spatial metric \(g_{ij} \). The scaling dimensions of various quantities in momentum units are:

\[
[x^i] = -1 \quad [t] = -z \quad [N] = [g_{ij}] = 0 \quad [N^i] = z - 1
\]

The action \(S = S_K + S_V \) is required to contain no more than two time derivatives, and to be invariant under the scaling in equation (1) and foli-
ation preserving diffeomorphism. The kinetic part S_K of the action is then universal and may be written as

$$S_K = \frac{1}{2\kappa^2} \int dt \, d^d x \, N \sqrt{g} \left(K_{ij} K^{ij} - \lambda K^2 \right)$$

(2)

where κ^2 is a parameter with dimension $[\kappa^2] = z - d$, λ is a dimensionless parameter, the spatial indices $i, j, \ldots = 1, 2, \ldots, d$ are to be lowered or raised using g_{ij} or its inverse g^{ij},

$$K_{ij} = \frac{1}{2N} \left(\dot{g}_{ij} - \nabla_i N_j - \nabla_j N_i \right)$$

and the covariant derivatives, as well as curvature tensors below, are all with respect to g_{ij}. For $z = d$, the parameter κ becomes dimensionless and the theory is power counting renormalisable; for $z > d$ it is super renormalisable [1]. Our interest is in the $d = 3$ case, but most of the expressions below are valid for any value of d.

The potential part S_V of the action contains various powers and spatial derivatives of the Riemann tensor R_{ijkl}, equivalently of the Ricci tensor R_{ij} in the $d = 3$ case. It suffices our purposes to write S_V symbolically as

$$S_V = \int dt \, d^d x \, N \sqrt{g} \left(\sigma + \xi \, R + \sum_{n=2}^{n_*} \zeta_n \, R^n + \sum_{p,q=1}^{p_*,q_*} \beta_{pq} R^{pq} R^d \right)$$

(3)

where the first sum denotes various powers of curvature tensor and the second denotes various derivatives acting on various powers of curvature tensor. The upper limits of (n, p, q) depend on the value of z. For the renormalisable case, for example, $z = d$ and $n_* = z$, $p_* + 2q_* + 2 = 2z$.

In [1], Hořava invokes ‘the principle of detailed balance’ which will constrain the above form for S_V. For example, in $d = 3$ case, S_V will not contain R^3 terms and the coefficients of various terms in S_V depend only on three new parameters. By construction, the resulting action is not the most general one. However, quantum corrections may not obey the principle of detailed balance and may induce other possible terms. This principle may even be problematic since the corresponding static spherically symmetric solutions reduce to the IR ones only on scales beyond the cosmological horizon, and not on smaller scales where Einstein’s theory has been well tested. To
rectify this problem requires going beyond the detailed balance. See [5, 6, 7] and, in particular, [10] for detailed discussions of these issues.

For these reasons, we will not invoke detailed balance in this paper, and consider the general form for the action S_V. The most general form of S_V for $z = d = 3$ is given, for example, in [6] where the corresponding equations of motion are also obtained. These equations are very long and, hence, are not presented here but will be used for the present cosmological study. Note that, for such a study, one can set $N = 1$ and $N^i = 0$ in the equations of motion with no loss of generality; and, also that these equations are applicable for any value of d as we later explain.

Here, we consider only spatially curved, homogeneous, isotropic universe; or spatially flat, homogeneous, anisotropic universe. The line element of a spatially curved, homogeneous, isotropic universe may be written as

$$ds^2 = -dt^2 + a^2 d^2 \Sigma_{d,k}$$

where $a(t)$ is the scale factor, $d^2 \Sigma_{d,k}$ is the line element of a d-dimensional space of constant curvature, and $\hat{k} = +1, -1, 0$ for positive, negative, or zero curvature. The Hubble parameter H is defined by $H = \frac{\dot{a}}{a}$ where an overdot denotes time derivative.

The line element of a spatially flat, homogeneous, anisotropic universe may be written as

$$ds^2 = -dt^2 + \sum_{i=1}^{d} a_i^2 (dx_i)^2$$

where $a_i(t)$ are the scale factors. The corresponding Hubble parameters h_i are defined by $h_i = \frac{\dot{a}_i}{a_i}$. Also, define the geometric mean a of the scale factors by $a^d = \prod_i a_i$. Then $H = \frac{\dot{a}}{a} = \frac{1}{d} \sum_i h_i$ is the average of the Hubble parameters h_i.

With the above definitions, the conservation equation for a matter source with pressure p and density ρ is given in both of the above cases by

$$\dot{\rho} + d H (\rho + p) = 0 .$$

If the equation of state is given by $p = w \rho$ then we have $\rho = \rho_0 a^{-d(1+w)}$ where ρ_0 is an initial value.

3. (Super)stiff matter
Consider now matter sources, *e.g.* radiation, and their equations of state. The matter action which is invariant under the scaling in equation (1) will lead to a modified dispersion relation in the UV, typically of the form \(\omega^2 \sim k^{2z} \) [1, 2]. From the standard statistical mechanical methods using such a dispersion relation, it follows that the dependence of free energy \(F \) on temperature \(T \) is of the form \(F \sim T^{1+\frac{d}{2}} \) [2, 17]. For renormalisable theories \(z = 1 \) in the IR and \(z = d \) in the UV. It then follows that \(F \sim T^{1+d} \) at low temperatures and \(F \sim T^{1+1} \) at high temperatures. As noted in [2], similar free energy behaviour at high temperature appears also in string theory. We further note here that similar free energy behaviour, at both low and high temperatures, appears also in the context of a particular version of generalised uncertainty principle [21].

With free energy \(F \sim T^{1+\frac{d}{2}} \), it follows upon using thermodynamical relations that the corresponding equation of state is given by \(p = \omega \rho \) where \(\omega = \frac{\omega_0}{T} \). Thus for radiation in \(d = 3 \), we have \(z = 1 \) and \(\omega = \frac{1}{T} \) in IR. We have \(z = d \) in the UV for renormalisable theories which then implies that \(w = 1 \). \(^1\) the corresponding matter sometimes referred to as stiff matter. Also, \(z > d \) for super renormalisable theories which then implies that \(w \) can be \(> 1 \), the corresponding matter sometimes referred to as super stiff matter.

Such an UV dispersion relation, namely \(\omega^2 \sim k^{2z} \), is ubiquitous in Hořava’s theory and arises from an underlying principle: it is a consequence of invariance under the anisotropic scaling in equation (1). Also, it is independent of whether spatial curvature is zero or non zero. Thus, Hořava’s theory can be taken to predict that early universe, and more generally UV regime, is dominated by matter whose equation of state is given by \(p = \omega \rho \) where \(\omega = \frac{\omega_0}{T} = 1 \) for renormalisable theories and \(\geq 1 \) for super renormalisable theories. \(^2\)

4. Equations of motion, solutions and their implications

Consider now equations of motion. They are given in [6] for \(d = 3 \). Consider, for any \(d \), the general form of the contributions of various terms in

\(^1\) That \(w = 1 \) for radiation in the UV is also pointed out in [18] which appeared while writing up this paper.

\(^2\) The idea that early universe must be dominated by \(w \geq 1 \) matter also appears in different contexts. For example, see [24, 25] for the \(w = 1 \) case; see [26] and references therein for the \(w > 1 \) case.
the action to the equations of motion. For the cases of interest here, namely where the line element is given by equation (4) or (5), we observe the following:

(i) Matter source with an equation of state \(p = w \rho \) will contribute terms \(\propto a^{-d(1+w)} \) in the equations of motion, see equation (6).

(ii) Consider terms of the form \(R^n \) in \(S_V \). For the isotropic case, it is easy to see that they contribute a term \(\propto \dot{k}^n a^{-2n} \) in the equations of motion. It thus follows that such terms act as sources with equations of state \(p = w \rho \) where \(w = \frac{2n}{d} - 1 \) and \(\rho = C_n \dot{k}^n a^{-2n} \). The constant \(C_n \) depends on the index structure of \(R^n \) terms and their coefficients in \(S_V \). For the spatially flat case, \(\dot{k} = 0 \) and the corresponding contributions all vanish.

Note that \(n = 1 \) for \(R \) term and \(w = \frac{2}{d} - 1 = -\frac{1}{3} \) for \(d = 3 \); \(n = 2 \) for \(R^2 \) term and \(w = \frac{4}{d} - 1 = \frac{1}{3} \) for \(d = 3 \); and, formally, \(n = 0 \) for cosmological constant term and \(w = -1 \) for any value of \(d \). For the term \(R^{n*} \) with highest power of curvature, we have \(n_* = z = d \) for the renormalisable case and \(w = \frac{2n_*}{d} - 1 = 1 \) for any value of \(d \).

(iii) \(R_{ijkl} \) for a constant curvature space is given in terms of \(g_{ij} \), and the scale factor which depends on \(t \) only. Hence covariant derivatives acting on curvature tensors will all vanish. Therefore the terms in the second sum in equation (3) do not contribute to the equations of motion.

(iv) The kinetic part \(S_K \) of the action is universal for any values of \(d \) and \(z \). Hence, the corresponding terms in the equations of motion are just those given in [6].

Using the observations (i) – (iv) above and the expressions given in [6], we can now write the equations of motion.

Isotropic case

For the isotropic case, the metric is given in equation (4) and the equations of motion may be written as

\[
d(\lambda d - 1) H^2 = 2\kappa^2 \sum \rho
\]

(7)
(\lambda d - 1) \left(\dot{H} + dH^2 \right) = \kappa^2 \sum (\rho - p) \tag{8}

where $H = \frac{\dot{a}}{a}$ and $\dot{H} = \frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a} \right)^2$. The sum \sum in the equations above denotes contributions from matter source, and also those from R^n terms in S_V for which $p = \left(\frac{2n}{d} - 1 \right) \rho$ and $\rho = C_n \ k^n \ a^{-2n}$ where the constant C_n depends on the index structure of R^n terms and their coefficients in S_V. See [6] for explicit expressions for the $d = 3$ case.

We will assume in this paper that $\lambda d > 1$, since this is the case in Einstein’s theory for which $\lambda = 1$, and also that λ is not arbitrarily close to $\frac{1}{d}$. Replacing κ^2 by $\left(\frac{\lambda d - 1}{d - 1} \right) \kappa^2$ then renders equations (7) and (8) identical to those in Einstein’s theory.

The evolution of the scale factor is then straightforward to understand. Let $a \rightarrow 0 \ (\infty)$ in the limit $t \rightarrow 0 \ (\infty)$. The evolution is then dictated by those sources for which w is largest (smallest). If the total coefficient of the dominant sources is positive then it follows that $a(t) \sim t^\frac{1}{d}$.

If the spatial curvature is non zero then sources arising from curvature terms can have negative coefficients. Then the total coefficient of the dominant sources can be negative and this will generically lead to a bounce in the evolution of $a(t)$. The details, and even the presence itself, of the bounce depend on the nature and strength of other sources present and can only be obtained by further analysis incorporating these data.

Let $z = d = 3$. Hořava’s theory then predicts the existence of stiff matter in the UV for which $w = 1$. Assume the total coefficient of the sources with $w = 1$, which are the dominant ones in the limit $a \rightarrow 0$, to be positive. This will be the case for spatially flat universe for which there are no contributions from curvature terms. It then follows that there is no bounce and that $a(t) \sim t^\frac{1}{3}$ in the limit $t \rightarrow 0$.

We now make a remark. It has been shown in [6, 8, 13, 14] that, in Hořava’s theory, scale invariant primordial perturbation spectrum can be generated in the UV with an additional scalar field and without requiring inflation. Scale invariance arises, essentially, from the dispersion relation for the scalar field in the UV which is of the form $\omega^2 \sim k^6$. For the desired dynamics of the perturbations thus generated, it is also required that H^2a^6 be an increasing function of t, or equivalently that $\int_0^\infty \frac{dt}{a^3}$ converge, which is taken to imply that the scale factor a evolve as $\sim t^n$ with $n > \frac{1}{3}$. See [6, 8, 13, 14] for details.
However, as described above, it is likely that $a(t) \sim t^{\frac{2}{3}}$ in the UV. Although this violates the requirement $n > \frac{1}{3}$, there may be no adverse effect on scale invariance of the spectrum since H^2a^6 may still be an increasing function of t because of the presence of other sources in equation (7) which will become important as t increases. This is plausible but, nevertheless, it is desirable to study in detail the effects of $a(t) \sim t^{\frac{2}{3}}$ in the UV on the scale invariance of the spectrum obtained in [6, 8, 13, 14] in Hořava’s theory without requiring inflation.

Anisotropic case

For the spatially flat anisotropic case, the metric is given in equation (5). There are no contributions from R^n terms and the equations of motion may be written as

\[
\lambda d^2H^2 - \sum_i (h_i)^2 = 2\kappa^2 \rho \quad (9)
\]

\[
(\lambda d - 1) \left(\dot{h}_i + dH h_i \right) = \kappa^2 (\rho - p) \quad (10)
\]

where $h_i = \frac{\dot{a}_i}{a_i}$, $H = \frac{1}{d} \sum_i h_i$, and $\dot{h}_i = \frac{\ddot{a}_i}{a_i} - \left(\frac{\dot{a}_i}{a_i} \right)^2$. Note that summing equation (10) over i gives

\[
(\lambda d - 1) \left(\dot{H} + dH^2 \right) = \kappa^2 (\rho - p) . \quad (11)
\]

We have $H = \frac{\dot{a}}{a}$ from the definition $a^d = \prod_i a_i$. It then follows that 3

\[
\begin{align*}
\dot{h}_i - H &= A_i a^{-d} \\
(\lambda d - 1)H^2 &= 2\kappa^2 \rho + A^2 a^{-2d}
\end{align*} \quad (12)
\]

\[
(\lambda d - 1)H^2 = 2\kappa^2 \rho + A^2 a^{-2d}
\]

where A_i are initial values satisfying $\sum_i A_i = 0$ and $A^2 = \sum_i (A_i)^2$. Once the equation of state $p(\rho)$ is given then, in principle, $\rho(a)$ can be obtained from equation (6), $a(t)$ from equation (13), and $a_i(t)$ from equation (12). Note that the initial values A_i encode anisotropic initial conditions, e.g. during a collapse, and also that A_i may be thought of as a source with equation of state $p = w \rho$ where $w = 1$ and $\rho_0 = \frac{A^2}{2\kappa^2}$, see equations (6) and (13).

3Equations (10) and (11) give equation (12). Using $\sum_i h_i = dH$ gives the constraint $\sum_i A_i = 0$. Substituting h_i in equation (9) then gives equation (13).
Consider now the dynamics of the evolution, assuming the equation of state to be \(p = w\rho \). Equation (6) then implies that \(\rho = \rho_0 \ a^{-d(1+w)} \) where \(\rho_0 > 0 \) is an initial value. The evolution in the limit \(a \to \infty \), namely large universe limit, is similar to the standard one where \(a \sim t^{\frac{2}{d(1+w)}} \). The effect of \(\lambda \) is unimportant unless \(\lambda \) is arbitrarily close to \(\frac{1}{d} \).

Consider a universe collapsing to zero size, i.e. \(a \to 0 \), as \(t \to 0 \). Let the scale factors \(a_i \sim t^{\alpha_i} \) in this limit. We study the following cases.

\(w > 1 \)

In the limit \(a \to 0 \), \(2\kappa^2 \rho \sim a^{-d(1+w)} \gg A^2 a^{-2d} \) in equation (13) since \(w > 1 \). It is then straightforward to show that

\[
\begin{align*}
a &\sim t^\frac{2}{w+1}, & a_i &\sim c_i \ e^{c_i \ t^\frac{2}{w+1}}, \\
\alpha_i &= \frac{1}{d} - \frac{A_i}{B} \left(\lambda - \frac{1}{d} \right)^\frac{1}{2}.
\end{align*}
\] (14)

where \(c_i \) and \(c \) are constants. Thus, since \(t^\frac{w-1}{w+1} \to 0 \) in the limit \(t \to 0 \), it follows that the exponents \(\alpha_i \) in \(a_i \sim t^{\alpha_i} \) are all equal, and are independent of the initial values \(A_i \). Hence, the collapse is isotropic and stable under perturbations [26].

\(w \leq 1 \)

In the limit \(a \to 0 \), the right hand side of equation (13) becomes \(B^2 a^{-2d} \) where \(B^2 = A^2 \) if \(w < 1 \) and \(B^2 = 2\kappa^2 \rho_0 + A^2 \) if \(w = 1 \). It is then straightforward to show that

\[
\begin{align*}
a &\sim t^\frac{1}{d}, & a_i &\sim t^\alpha_i, & \alpha_i &= \frac{1}{d} - \frac{A_i}{B} \left(\lambda - \frac{1}{d} \right)^\frac{1}{2}.
\end{align*}
\] (15)

This is a Kasner type solution. The exponents \(\alpha_i \) depend on initial values \(A_i \) and, since \(\sum_i A_i = 0 \), satisfy the relations

\[
\sum_i \alpha_i = 1, \quad X \equiv \sum_i (\alpha_i)^2 = \frac{1}{d} + \left(\lambda - \frac{1}{d} \right) \frac{A^2}{B^2}.
\] (16)

For \(w < 1 \) we have \(B^2 = A^2 \), hence \(X = \lambda \) is the only possible value. For \(w = 1 \) we have \(B^2 = 2\kappa^2 \rho_0 + A^2 \), hence \(0 < \frac{A^2}{B^2} < 1 \) and \(\frac{1}{d} < X < \lambda \). Clearly \(X \to \lambda \) if \(2\kappa^2 \rho_0 \ll A^2 \). Also \(X \to \frac{1}{d} \) if \(2\kappa^2 \rho_0 \gg A^2 \) which is the
only possibility in Einstein’s theory, or if $\lambda \to \frac{1}{d}$ which is a new possibility in Hořava’s theory and is valid for any values of ρ_0 and A^2.

Kasner type solutions, in particular the value of X and the dependence of α^i on initial values, provide an insight into the stability of the cosmological collapse process under generic curvature and/or anisotropic perturbations; namely, an insight into whether the collapse will be isotropic or anisotropic, whether smooth or will exhibit chaotic oscillatory behaviour, et cetera.

Since α_i depend on the initial values A_i, the collapse will be generically anisotropic. Consider $d = 3$ case. The exponents α_i must satisfy the constraints in equation (16). If $X = 1$ then one of the α_i must be negative. Then, under curvature perturbations, the collapse will not be smooth and will exhibit chaotic behaviour. If X is sufficiently close to $\frac{1}{d}$ then no α_i can be negative and the collapse will be stable and non oscillatory under perturbations.

In Einstein’s theory $\lambda = 1$ and, hence, smaller values of X may result only through smaller values of $\frac{A^2}{2\kappa^2 \rho_0}$ which necessarily requires stiff matter with $w = 1$. Stability also results if superstiff matter with $w > 1$ is present as follows from equation (14). See [26] and the references therein for a thorough discussion of these issues.

In Hořava’s theory, on the other hand, λ is typically different from 1 in the UV. This theory may acquire an anisotropic Weyl symmetry if $\lambda = \frac{1}{d}$, so it is possible that $\lambda \to \frac{1}{d}$ in the UV. If so then X may be naturally small even without stiff matter. But (super)stiff matter with $w \geq 1$ is also naturally present in this theory. This makes it more likely that collapse process is stable and non oscillatory.

However, spatial curvature terms of high order are also allowed in Hořava’s theory. As explained in remark (ii) in section 4, this order is closely linked to the scaling exponent z, to which is also linked the presence of (super)stiff matter. Curvature terms typically lead to destabilising effects under curvature perturbations and our preliminary analysis indicates that they may be comparable to the stabilising effects of (super)stiff matter. However, there is also the stabilising effect that results if λ is close to $\frac{1}{d}$ in the UV but no comparable, λ–dependent, destabilising curvature effects seem to be present. It is therefore possible that the sum total of all these effects in Hořava’s theory results in a stable and non oscillatory collapse. Clearly, further analysis is necessary but it is complicated and quite involved, and is beyond the scope of the present work.
5. Conclusion

We now summarise briefly and make a few comments. Our main motivation for the present study is to find the implications of Hořava’s theory which differ from those of Einstein’s theory and which are not crucially dependent on the spatial curvature. The implications of Hořava’s theory we find which differ from those of Einstein’s theory are: (1) The UV regime in the (super)renormalisable case is dominated by (super)stiff matter, namely matter with \(w \geq 1 \). (2) \(\sum_i (\alpha^i)^2 \), where \(\alpha^i \) are the Kasner exponents, can be different from and smaller than 1 even without stiff matter present. These two implications are generic. (3) Equations of motion contain curvature terms of the form \(C_n \, \dot{k}^n \, a^{-2n} \) where \(n \leq d \) for the renormalisable case. The constants \(C_n \) can be positive or negative. The curvature terms may hence lead to a bounce in the evolution of the scale factor \(a(t) \). The bounce is possible but non generic since it depends on the sign and the magnitude of \(C_n \, \dot{k}^n \) as well as the nature and strength of other sources present.

We now make a few comments. Hořava’s theory is believed to be UV complete. Also, it contains higher powers and derivatives of curvature. It is then reasonable to expect that this theory will also resolve the singularities. The big bang singularity is indeed absent if \(a(t) \) bounces back. But the bounce is not a generic feature. If there is no bounce then, as can be inferred from the present solutions, the big bang singularity is present. Note that black hole singularity is also present in all the static spherically symmetric solutions to Hořava’s theory studied so far, see e.g. [7, 10, 11, 12, 15], although these solutions do differ from those in Einstein’s theory.

It is possible that, regarding the presence or absence singularities, this is the most one can see using classical action in Hořava’s theory and that quantisation of the action is necessary to see any further.

There is a similar situation in string/M theory. No classical string/M theory action so far has led to generic absence of singularities. However, it is likely that when the temperatures become comparable to string theory scales the classical description of the universe, and similarly of black holes, must be abandoned and string theoretic description should be used, see [27, 28]. But the details of such a description, or of how exactly the singularities get resolved, are not fully known at present. However, due to entropic reasons, the universe at this stage seems likely to be dominated by stiff matter for
which $w = 1$ [24, 25].

In this context, note that Hořava’s theory also predicts generically the presence of stiff matter in the early universe. The presence of such matter and/or the scaling arguments using equation (1) lead to the high temperature behaviour of the free energy $F \sim T^2$ [2]. This behaviour may be taken to signify that the spectral dimension of the spacetime in the UV is $1 + 1$. This is shown to be the case for Hořava’s theory in [2]. Such an UV spectral dimension is also observed in many candidate theories for quantum gravity e.g. causal dynamical triangulations, quantum Einstein gravity, spin foam theory, and string theory. This may perhaps be the case also for loop quantum gravity. It is indeed argued in [5] that two dimensional effective gravitational theories in the UV may be a generic feature of UV complete theories of gravity. See [5] for more discussions and an extensive list of references.

If these similarities are more than just coincidences then it may be that there are also similarities in the ways in which singularities get resolved in any of these theories and in Hořava’s theory. It is therefore important to study if singularities can be resolved by quantising the action in Hořava’s theory. Such a resolution, besides being important on its own, may also provide insights into the theories mentioned above.

Acknowledgement: We thank the referee for many helpful suggestions which improved the presentation of the paper.

References

[1] P. Horava, Phys. Rev. D **79**, 084008 (2009) [arXiv:0901.3775 [hep-th]].

See also P. Horava, JHEP **03**, 020 (2009) [arXiv:0812.4287 [hep-th]].

[2] P. Horava, Phys. Rev. Lett. **102**, 161301 (2009) [arXiv:0902.3657 [hep-th]].

4The nature and quantum mechanical properties of stiff matter, and those of a universe dominated by stiff matter, and further evolution of such a universe are studied in a series of papers in [24]. A possible string/M theory scenario of how such a universe may arise is also given in [25]. Also, the properties of stars made up of stiff matter and their similarities to black holes are studied in [29].
[3] M. Visser, *Lorentz symmetry breaking as a quantum field theory regulator*, arXiv:0902.0590 [hep-th].

[4] T. Takahashi and J. Soda, *Chiral Primordial Gravitational Waves from a Lifshitz Point*, arXiv:0904.0554 [hep-th].

[5] G. Calcagni, *Cosmology of the Lifshitz universe*, arXiv:0904.0829 [hep-th].

[6] E. Kiritsis and G. Kofinas, *Horava-Lifshitz Cosmology*, arXiv:0904.1334 [hep-th].

[7] H. Lu, J. Mei and C. N. Pope, *Solutions to Horava Gravity*, arXiv:0904.1595 [hep-th].

[8] S. Mukohyama, *Scale-invariant cosmological perturbations from Horava-Lifshitz gravity without inflation*, arXiv:0904.2190 [hep-th].

[9] R. Brandenberger, *Matter Bounce in Horava-Lifshitz Cosmology*, arXiv:0904.2835 [hep-th].

[10] H. Nastase, *On IR solutions in Horava gravity theories*, arXiv:0904.3604 [hep-th].

[11] R. G. Cai, L. M. Cao and N. Ohta, *Topological Black Holes in Horava-Lifshitz Gravity*, arXiv:0904.3670 [hep-th].

[12] R. G. Cai, Y. Liu and Y. W. Sun, *On the z=4 Horava-Lifshitz Gravity*, arXiv:0904.4104 [hep-th].

[13] Y. S. Piao, *Primordial Perturbation in Horava-Lifshitz Cosmology*, arXiv:0904.4117 [hep-th].

[14] X. Gao, *Cosmological Perturbations and Non-Gaussianities in Hořava-Lifshitz Gravity* arXiv:0904.4187 [hep-th].

[15] E. O. Colgain and H. Yavartanoo, *Dyonic solution of Horava-Lifshitz Gravity*, arXiv:0904.4357 [hep-th].

[16] T. Sotiriou, M. Visser and S. Weinfurtner, *Phenomenologically viable Lorentz-violating quantum gravity*, arXiv:0904.4464 [hep-th].
[17] B. Chen and Q. G. Huang, *Field Theory at a Lifshitz Point*, arXiv:0904.4565 [hep-th].

[18] S. Mukohyama, K. Nakayama, F. Takahashi and S. Yokoyama, *Phenomenological Aspects of Horava-Lifshitz Cosmology*, arXiv:0905.0055 [hep-th].

[19] R. G. Cai, B. Hu and H. B. Zhang, *Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity*, arXiv:0905.0255 [hep-th].

[20] T. Nishioka, *Horava-Lifshitz Holography*, arXiv:0905.0473 [hep-th].

[21] Modified dispersion relations appear in other contexts also, but depend on an arbitrary choice of certain function(s). In the context of a particular version of generalised uncertainty principle, such a choice is fixed by a set of group theoretic assumptions [22]. The corresponding statistical mechanics incorporating the generalised uncertainty principle is then shown in [23] to lead to a free energy with the same behaviour as appears here for renormalisable theories – namely, $F \sim T^{1+d}$ at low temperatures and $F \sim T^{1+1}$ at high temperatures.

[22] M. Maggiore, Phys. Lett. B 304, 65 (1993) [arXiv:hep-th/9301067]; M. Maggiore, Phys. Rev. D 49, 5182 (1994) [arXiv:hep-th/9305163]; M. Maggiore, Phys. Lett. B 319, 83 (1993) [arXiv:hep-th/9309034].

[23] S. Kalyana Rama, Phys. Lett. B 519, 103 (2001) [arXiv:hep-th/0107255]; S. Kalyana Rama, Phys. Lett. B 539, 289 (2002) [arXiv:hep-th/0204215].

[24] T. Banks and W. Fischler, *M-theory observables for cosmological spacetimes*, arXiv:hep-th/0102077; T. Banks and W. Fischler, *An holographic cosmology*, arXiv:hep-th/0111142; T. Banks and W. Fischler, Phys. Scripta T117, 56 (2005) [arXiv:hep-th/0310288]; T. Banks and W. Fischler, “Holographic cosmology, arXiv:hep-th/0405200; T. Banks, W. Fischler and L. Mannelli, Phys. Rev. D 71, 123514 (2005) [arXiv:hep-th/0408076].

[25] S. Kalyana Rama, Phys. Lett. B 645, 365 (2007) [arXiv:hep-th/0610071]; S. Kalyana Rama, Gen. Rel. Grav. 39, 1773
(2007) [arXiv:hep-th/0702202]. See also B. D. Chowdhury and S. D. Mathur, Class. Quant. Grav. 24, 2689 (2007) [arXiv:hep-th/0611330]; S. D. Mathur, J. Phys. Conf. Ser. 140, 012009 (2008) [arXiv:0803.3727 [hep-th]].

[26] J. K. Erickson, D. H. Wesley, P. J. Steinhardt and N. Turok, Phys. Rev. D 69, 063514 (2004) [arXiv:hep-th/0312009].

[27] M. J. Bowick and L. C. R. Wijewardhana, Gen. Rel. Grav. 18, 59 (1986); S. Kalyana Rama, Phys. Lett. B 638, 100 (2006) [arXiv:hep-th/0603216].

[28] G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997) [arXiv:hep-th/9612146]; G. T. Horowitz and J. Polchinski, Phys. Rev. D 57, 2557 (1998) [arXiv:hep-th/9707170]; T. Damour and G. Veneziano, Nucl. Phys. B 568, 93 (2000) [arXiv:hep-th/9907030].

[29] T. Banks, W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, Class. Quant. Grav. 19, 4717 (2002) [arXiv:hep-th/0206096]; T. Banks and W. Fischler, *Black crunch*, arXiv:hep-th/0212113.