Building evidence for conservation globally

Threatened Taxa

Open Access

10.11609/jott.2022.14.2.20539-20702
www.threatenedtaxa.org

26 February 2022 (Online & Print)
14(2): 20539-20702
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)
First Indian DNA barcode record for the moth species

Pygospila tyries (Cramer, 1780) (Lepidoptera: Crambidae: Spilomelinae) distributed in Asia and Australia

Aparna S. Kalawate¹, **A. Shabnam**² & **K.P. Dinesh**³

¹-² Zoological Survey of India, Western Regional Centre, Vidya Nagar, Sector-29, P.C.N.T. (PO), Rawet Road, Akurdi, Pune, Maharashtra 411044, India.
³ aparna_ent@yahoo.co.in (corresponding author), ² shabnamansari9113@gmail.com, ³ kpdinesh.zsi@gmail.com

Abstract: The species *Pygospila tyries* was described from the Coromandel region of India about 240 years ago, accommodating in the family Crambidae having immense importance. The species is morphologically cryptic and is known to have 10 extant species under the genus. Earlier mt DNA Barcodes for the species were available from Pakistan, Korea, and Australia, here we report the first barcode of the species from the country of its type locality. Morphological details for the collections with the male and female genitalia are provided for the taxonomic identification. Identities of the mt COI DNA sequences for the genus in the GenBank are discussed.

Keywords: *Holarrhena*, host plant, India, Maharashtra, *Wrightia*.

The members of the superfamily Pyraloidea are known to cause crop yield loss between 10 to 100 per cent across the world (Jotwani & Young 2007). Earlier the family Crambidae was originally a part of the family Pyralidae, but separated from it by Munroe (1972). They are of immense economic importance as they are the pest on many agricultural important cash crops like sugarcane and other crops like maize, brinjal, tomato, cabbage, cotton, oil seed, and bamboo (Solis 1997). Most of the crambid moths are morphologically cryptic (cryptic species is a group of individuals that are morphologically identical to each other but belong to different species) and difficult to study. The moths of the subfamily are characterized by the absence of chaetosemata, presence of bilobed subcostal retinaculum in male, praecinctorium fornx tympani projecting and pointed spinula. Corpus bursae in the female genitalia lack signum and gnathos absent (Minet 1981; Solis & Maes 2003; Solis 2007; Kumar et al. 2013).

The genus *Pygospila* was established by Achille Guenée in 1854 and in 1896 Hampson subsequently designated the type species for this genus as *Pygospila tyries* Cramer, 1780, which was included by Guenée (1854) as *Pygospila tyrellasis* Cramer, 1780. Earlier, Hampson (1896) has recognized four species under the genus namely, *Pygospila octormaculis* Moore, 1867; *Pygospila tyries* Cramer, 1780; *Pygospila cuprealis*, (Swinhoe, 1892); *Pygospila costiflexalis*, Guenée, 1863. Further *Pygospila bivittalis* Walker, [1866]; *Pygospila hyalotyta* Turner, 1908; *Pygospila imperialis* Kenrick, 1907; *Pygospila marginalis* Kenrick, 1907; *Pygospila macogastra* Meyrick, 1936; *Pygospila minoralis* Caradja, 1937; *Pygospila yuenanensis* Caradja, 1937 were...
added. As of now a total of eleven species (Hampson 1896; Kenrick 1907; Turner 1908; Carda & Meyrick 1916; Meyrick 1937; Carda & Meyrick 1937; Kitching et al. 2020) are considered extant in the genus of which, five species are reported from India (Kitching et al. 2020). Hampson (1896) mentioned the distribution of *P. tyres* as throughout India (having type locality in the Coromandel region of southern India).

For easy identification of the morphological cryptic species, mt DNA barcoding are being used as an alternative tool for insect species identification and documentation of new species (Hebert et al. 2003). Although DNA barcode-based species identification works are in infancy in the developing countries, the technique provides robust and rapid approach for biodiversity analysis (Ashfaq et al. 2017), exploiting low conspecific and high interspecific genetic variation principle (Hebert et al. 2003). DNA barcodes have been constructively utilized for diverse aims in addition to serving as an aid to conventional slow-paced taxonomic delimitation approaches (Ashfaq et al. 2017). DNA barcodes having effectively applied to unpin species identity for numerous animal taxa, the order Lepidoptera has seen particularly intensive barcode analysis (Ashfaq et al. 2017). The identification using DNA barcoding approach exclusively depends on the quality of reference library, which is strengthened if the barcodes are linked to registered voucher specimens. Identification of moths using mt DNA barcode has been introduced in the moth groups of *Olepa* (Kalawate et al. 2020a,b). Despite its widespread distribution there are no genetic data available for the species from India. Hence, during one of our exercise of generation of mt DNA barcodes for the moth species, here we report the first mt DNA barcode for the species *P. tyres* from India, having a wide range of distribution.

MATERIALS AND METHODS

The specimens were collected by installing light trap during night, and were euthanized by ethyl acetate vapours. The specimens were transferred to the laboratory in insect packets under dry conditions. They were stretched, pinned, labelled, and dry-preserved in fumigated entomological boxes for further study. For morphological studies the specimens were studied under Leica EZ4E stereomicroscope. The map of the collection locality was prepared using open free QGIS software. The details of collection locality are given under material examined and also shown in Figure 1. The identification was done with the help of Hampson (1896). The genitalia of male and female were studied following Robinson (1976). The identified materials are deposited at the National Zoological Collections of the Zoological Survey of India, Western Regional Centre.

![Figure 1. Collection localities of *Pygospila tyres* from northern Western Ghats, India.](image-url)
Pune, Maharashtra, India (ZSI, WRC).

DNA extraction and purification were performed using leg and thoracic muscle from dried specimen, followed by quantitation utilizing HS dsDNA assay kit on Qubit 2.0 fluorometer. Amplification of mt COI gene was attempted using universal primer (Folmer et al. 1994), LCO1490 and HCO2198 in 25µL reaction volume constituted by 12.5 µL of Master Mix (Promega), 10 pmol of each forward and reverse primer along with Nuclease free water up to Q.S. thermal cycling profile as per Kalawate et al. (2020a). Amplified PCR product was confirmed by gel electrophoresis stained by SYBR safe DNA gel stain (Invitrogen), visualized under UV by gel documentation system, followed by purification of amplified product by Invitrogen’s Pure Link PCR Purification Kit. Purified PCR product was sequenced bidirectionally by Sanger’s method on ABI 377 (Applied Biosciences) sequencer.

Both the forward and reverse sequences generated in the current study were verified manually for corrections. From the GenBank 21 mt COI gene sequences available for the Pygospila were downloaded (Table 1) and were aligned with Clustal W algorithm in MEGA 5.2 software (Tamura et al. 2011). For phylogenetic reconstruction, Maximum Likelihood tree was built with RaxML (Silvestro & Michalak 2012) for thorough bootstrap 1,000 replicates under the GTR+GAMMA+I model and the final consensus tree was visualized by Fig Tree v1.4.0 treating species Pycnarmon as out groups (Figure 2).

RESULT AND DISCUSSIONS

Morphologically the collected samples were identified as Pygospila tyres (Cramer, 1780) (Image 1).

TAXONOMIC ACCOUNT

Superfamily Pyraloidea Latreille, 1809
Family Crambidae Latreille, 1810
Subfamily Spilomelinae Guenée, 1854
Genus Pygospila Guenée, 1854
1854. Pygospila Guenée, Delt. and Pryr.: 312.
Type species: Pygospila tyres (Cramer, 1780)
Species Pygospila tyres (Cramer, 1780) (Image 1A–D) 1780. Phalaena tyres Cramer, Pap. Exot., 3: 263.
Type Locality. Coromandel, southern India.

Morphological description Adult (Image 1A): Wing expanse: 40–45 mm. Olive-brown with purple tinge reflects in light; palpi white underside; frons with lateral white lines; white line on thorax and patagia; abdomen slender, long with paired white spots placed dorsal and lateral. Forewings olive brown with several nacreous spots, these spots shine with a purple tinge in light. Hindwing with nacreous streaks in and below the cell. A pair of spots present between origin of vein 3 and 5, three submarginal spots and a spot present below vein 2; cilia brown and white towards anal angle. Underside exactly same pattern on both fore and hindwings. Hind wing of male with vein 8 widely separated from 7, 6 bent downward, the veins beyond the cell roughly scaled.

Male genitalia (Image 1B): Uncus thin, bulbous with hairs; tegumen well developed with a process resembles feather of peacock; valvae broad, laterally surrounded by long hairs, ampulla thin, sclerotized and hooked; saccus relatively well developed, broad u-shaped, with two curved process. Aedeagus (Image 1C) very long, thin, whip-like, with swollen apex.

Female genitalia (Image 1D): Apophyses thin, both anterior and posterior are of equal length; Corpus bursae membranous, elongated, devoid of signum; papillae anales large, setosed.

Material examined: 01 #, Peth, Nashik (N 20.259; E 73.513, altitude 593 m), 28 viii 2013, Coll. P.S. Bhatnagar & Party (L-1465); 04 #, Dhebewadi, Satara (N 17.229; E 73.952, altitude 731 m), 17 vii 2017, Coll. A.S. Kalawate & Party (L-1630); 01 #, Dhebewadi, Satara (N 17.229; E 73.952, altitude 731 m), 12 vii 2017, Coll. A.S. Kalawate & Party (L-1706); 01 #, Dhebewadi, Satara (N 17.229; E 73.952, altitude 731 m), 13 vii 2017, Coll. A.S. Kalawate & Party (L-1716); 04 #, Dhebewadi, Satara (N 17.229; E 73.952; altitude 731 m), 15 vii 2017, Coll. A.S. Kalawate & Party (L-1759); 01 #, Lonavala, Pune (N 18.742; E 73.405, altitude 622 m), 23 viii 2017, A.S. Kalawate & party (L-1583).

Distribution in India: Bihar, Chhattisgarh, Himachal Pradesh, Jharkhand, Madhya Pradesh, Maharashtra, Punjab, Rajasthan, Sikkim, Tamil Nadu, and West Bengal.

Outside India: Africa, Australia, Borneo, China, Indonesia, Japan, Malaysia, Myanmar, New Guinea, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam.

Host plants: Wrightia tinctoria, Wrightia arborea, Holarrhena antidysentrica, Tabernaemontana heyneana (Apocynaceae) (ICAR-NBAIR 2020).

DNA Barcode diagnosis

The genetic sequence of sample of P. tyres from Pune, Maharashtra matches completely with the P. tyres sequences from Pakistan, Korea, and Australia. The clad composing the P. tyres is homologous without any genetic distance variation. One of the sequences (JX017862.1) from Australia is labelled as P. tyres, where the identity should be rechecked with the voucher.
specimens as the sequence is forming monophyletic clade with the members of *P. bivittalis* from Australia. Although there are limitations with the phylogenetic inferences of mt COI DNA barcode trees, our studies could discern three clear clades for the species *P. tyres*, *P. bivittalis* and *P. hyalotypa*. Of the extant eleven species of *Pygospila*, we could include data of three species in the phylogenetic studies including our sequences from India for *P. tyres*.

Since the species *P. tyres* is of economic importance, the present mt DNA Barcode data generated is expected to be helpful in building a reliable DNA barcode library for the country intimated with a voucher specimen and helpful in addressing the taxonomic problems as the morphological characters are cryptic. Interestingly *P. tyres* was described almost 240 years ago from India.
Table 1. GenBank details for the mt DNA COI sequences utilized in the construction of the phylogenetic tree.

GenBank Accession No.	Locality	Species name as per NCBI	Publication details as per NCBI
HQ953036.1	Australia: Northern Territory	Pygospila tyres	Unpublished
HQ953033.1	Australia: Northern Territory	Pygospila tyres	Unpublished
KF392550.1	Australia: New South Wales, Mt. Lewis	Pygospila tyres	Hebert et al. 2013
MT776312.1	India: Maharashtra	Pygospila tyres	This study
KX862292.1	Pakistan: Kashmir, Peer Chinassi, Azad Kashmir	Pygospila tyres	Ashfaq et al. 2017
KT888774.1	Korea	Pygospila tyres	Unpublished
HQ990826.1	Pakistan	Pygospila tyres	Unpublished
HQ953034.1	Australia: Queensland, Keating Gap, 3 km SW of Cooktown	Pygospila tyres	Unpublished
HQ990827.1	Pakistan	Pygospila tyres	Unpublished
HQ953035.1	Australia: Western Australia, 18 km from Fitzroy Crossing	Pygospila tyres	Unpublished
HQ990828.1	Pakistan	Pygospila tyres	Unpublished
HQ990824.1	Pakistan	Pygospila tyres	Unpublished
HQ990828.1	Pakistan	Pygospila tyrisses	Unpublished
HQ953031.1	Australia: Queensland, Gordon’s Mine, Claudie Riv	Pygospila hyalotypa	Unpublished
HQ953030.1	Australia: Queensland, Moses Ck 4km Nby E of Mt. Finigan	Pygospila hyalotypa	Unpublished
HQ953032.1	Australia	Pygospila hyalotypa	Unpublished
HQ953029.1	Australia: Queensland, Gap Creek, rainforest	Pygospila bivittalis	Unpublished
HQ953028.1	Australia: Queensland, Gap Creek, rainforest	Pygospila bivittalis	Unpublished
HQ953027.1	Australia: Northern Territory, Solar Village Humpty Doo	Pygospila bivittalis	Unpublished
JX017862.1	Australia	Pygospila tyrisses	Hains & Rubinoff 2012
GU695393.1	Papua New Guinea	Pygospila marginals	Unpublished
KY370911.1	Papua New Guinea: Madang, Mis village	Pycnarmon jaguaralis	Unpublished
KF394279.1	Australia: Queensland, Mt. Bartle Frere, east base	Pycnarmon jaguaralis	Hebert et al. 2013
KF391152.1	Australia: Queensland, Etty Bay	Pycnarmon jaguaralis	Hebert et al. 2013
MK459732.1	China	Pycnarmon pantherata	Mally et al. 2019
KF492066.1	Japan: Chubu, Shizuoka-shi, Honkawane, Kaminagao	Pycnarmon pantherata	Unpublished
KF390443.1	Australia: Queensland	Pycnarmon meritalis	Hebert et al. 2013

and now the species is known to have a wide range of distribution in Asia and Australia. Original description of the species P. tyres from Coromandel region and our multiple collections from the parts of Deccan plateau and the northern Western Ghats are similar in morphological characters. Genetic homogeneity with mt COI DNA gene studies across the two continents (Asia and Australia) reestablishes the wide distribution across these landscapes.

References

Ashfaq, M., S. Akhtar, M.A. Rafi, S. Mansoor & P.D. Hebert (2017). Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan. PLoS One 12(3): e0174749. https://doi.org/10.1371/journal.pone.0174749

Caradja, V.F.A. (1916). Beitragzur Kenntnis der geographischen Verbreitung der Pyraliden und Tortriciden deseuropäischen Faunengebietes, nebst Beschreibung neuer Formen. Deutsche Entomologische Zeitschrift "Iris", herausgegeben vom Entomologischen Verein Iris zu Dresden. Jahrgang, 152 pp.

Caradja, A. & E. Meyrick (1937). Materialienzueiner Mikrolepidopterenfauna des Yülingshanmassivs (Provinz Yünnan) Deutsche entomologische Zeitschrift Iris.

Föhrer, D., W. Hoeh, M.B. Black & R.C. Vrijenhoek (1994). Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology 3(5): 294–299.

Hains, W.P. & D. Rubinoff (2012). Molecular phylogenetics of the moth genus Omiodes Guenée (Crambidae: Spiolimelinae), and the origins of the Hawaiian lineage. Molecular Phylogenetics and Evolution 65(1): 305–316.

Hampson, G.F. (1896). The fauna of British India including Ceylon and Burma, Moths - Volume 4. Taylor and Francis, London, 595 pp.

Hebert, P.D., A. Cywinska, S.L. Ball & J.R. Dewaard (2003). Biological identifications through DNA barcodes. Proceedings of the Royal
Figure 2. Maximum likelihood (ML) tree for the species of *Pygospila* based on 599 bp of mt COI DNA.

Mally, R., J.E. Hayden, C. Neinhuis, B.H. Jordal & M. Nuss (2019). The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology. *Arthropod systematics and Phylogeny* 77(1): 141–204.

Meyrick, E. (1937). Exotic microlepidoptera – 2nd Edition. Taylor and Francis, London, 32 pp.

Minet, J. (1981). Les Pyraloidea et leurs principales divisions systématiques (Lep. Ditrysia). *Bulletin de la Société Entomologique de France,* Paris, 86: 262–280.

Robinson, G.S. (1976). The preparation of slides of Lepidoptera genitalia with special reference to the Microlepidoptera. *Entomologist’s Gazette* 27: 127–132.

Solis, M.A. (1997). Snout moths: Unraveling the taxonomic diversity of a speciose group in the Neotropics, pp. 231–242. In: Reaka-Kudla M.L., D. Wilson & E.O. Wilson (eds.). *Biodiversity II: Understanding and Protecting our Biological Resources*. Joseph Henry Press, Washington, D.C., 551 pp.

Solis, M.A. & K.V.N. Maes (2003). Preliminary phylogenetic analysis of the subfamilies of Crambidae (Pyraloidea Lepidoptera). *Belgian Journal of Entomology* 4: 53–95.

Solis, M.A. (2007). Phylogenetic studies and modern classification of the Pyraloidea (Lepioptera). *Revista Colombiana de Entomología* 33(1): 1–9.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar (2011). MEGAS: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution* 28(10): 2731–2739. https://doi.org/10.1093/molbev/msr121

Turner, J.A. (1908). New Australian Lepidoptera of the families Noctuidae and Pyralidae. *Transactions of the Royal Society of South Australia* 32(1908): 94–95.
A checklist of dragonflies & damselflies (Insecta: Odonata) of Kerala, India
– Akshay Dalvi & Yogesh Koli, Pp. 20648–20653

First record and description of female Onomarchus macrideri (Heliantheae: Compositae): notes on its distribution and vulnerable habitats in central Peru
– Daniel B. Montesinos-Tubile & Federico Garcia-Yanes, Pp. 20666–20671

Lichens and animal camouflage: some observations from central Asian ecoregions
– Mahmood Soofi, Sandeep Sharma, Barbod Safaei-Mahroo, Mohammad Sohrabi, Moosa Ghorbani Organli & Matthias Waltert, Pp. 20672–20676

Notes

First photographic evidence of Asiatic Black Bear Ursus thibetanus in Kaziranga Tiger Reserve, India
– Priyanka Borah, Jyotish Ranjan Deba, Mujahid Ahmad, Rabindra Sharma, Ruchi Badola & Syed Aminul Hussain, Pp. 20677–20679

First record of Small Minivet Pericrocotus cinnamomeus (Aves: Passeriformes: Campephagidae) from Kashmir, India
– Zahir Hussain Najir, Bilal A. Bhat & Riyaz Ahmad, Pp. 20680–20682

Cotesia anathea (Wilkinson, 1828) (Hymenoptera: Braconidae) a natural parasite of Cirrochola thais (Fabricius, 1787) (Lepidoptera: Nymphalidae), first report from the Oriental region
– Ankita Gupta & P. Manoj, Pp. 20683–20685

Melastoma imbricatum Wall. ex Triana (Melastomataceae): a new addition to the flora of Manipur, India
– Rajkumari Jashmi Devi, Deepashree Khuralajam, Peimichon Langkan & Biseshwori Thongam, Pp. 20686–20688

Geodorum laxiflorum (Aristolochiaceae), a new distribution record for Maharashtra state of India
– Ashish Ravindra Bhoyar, Swapnil Nandgawe, Syed Abrar Ahmed & Saduram Madavi, Pp. 20689–20691

Photographic record of Armillaria mellea a bioluminescent fungi from Lonavala in Western Ghats, India
– Swamand R. Patil & Shubham V. Yadav, Pp. 20692–20694

Response & Reply

Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)
– Pandi Karthik, Pp. 20695–20697

Reply to the “Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)” by P. Karthik
– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P. V. Karunakaran & Honnavalli N. Kumara, Pp. 20698–20700

Book Review

Conservation Kaleidoscope: People, Protected Areas and Wildlife in Contemporary India
– L.A.K. Singh, Pp. 20701–20702

Publisher & Host

Threatened Taxa

WILD

Threatened Taxa