CHARACTERIZATION OF 16 MICROSATellite MARKERS FOR THE
OREINOTINUS CLADE OF VIBURNUM (ADOXACEAE)¹

SYNDI BARISH², MONICA ARAKAKI³, ERIKA J. EDWARDS⁴, MICHAEL J. DONOGHUE⁵,
AND WENDY L. CLEMENT²,⁶

²Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628 USA; ³Facultad de
Ciencias Biológicas y Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apdo.
14-0434, Lima 14, Peru; ⁴Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, Rhode
Island 02912 USA; and ⁵Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven,
Connecticut 06520 USA

• Premise of the study: Microsatellite loci were isolated from four species of Viburnum (Adoxaceae) to study population structure
and assess species boundaries among morphologically similar South American Viburnum species of the Oreinotinus clade.
• Methods and Results: Using a microsatellite-enriched library and mining next-generation sequence data, 16 microsatellites were
developed. Each locus was tested on two populations of V. triphyllum and one population of V. pichinchense. For nuclear loci,
one to 13 alleles were recovered, expected heterozygosity ranged from 0 to 0.8975, Simpson diversity index ranged from 0.0167
to 1,000, and Shannon diversity index ranged from 0 to 2.3670 in a given population. For the mitochondrial locus, three to six
alleles were recovered and unbiased haploid diversity values ranged from 0.756 to 0.853 in a given population.
• Conclusions: The 16 microsatellite loci developed for the Oreinotinus clade (Viburnum, Adoxaceae) will inform investigations
of population structure and species boundaries within this group.

Key words: Adoxaceae; genetic diversity; Viburnum dentatum; Viburnum hallii; Viburnum pichinchense; Viburnum trilobum;
Viburnum triphyllum.

Viburnum L. (Adoxaceae) is a clade of approximately 165 species of shrubs and small trees that occur in northern temperate
forests, the mountains of Central and South America, and subtropical montane forests of Southeast Asia. The phylogeny of
Viburnum provides a clear understanding of relationships among major clades (Spriggs et al., 2015). However, evolutionary
relationships within Viburnum clades that have experienced upward shifts in diversification rates, such as Oreinodentinus, are
largely unresolved (Spriggs et al., 2015). Oreinodentinus is composed of Oreinotinus (ca. 32 species in Latin America; Killip
and Smith, 1930; Morton, 1933) and Dentata (possibly three species native to eastern North America; Spriggs et al., 2015).

Phylogenetic analyses using plastid regions and the nuclear ribosomal internal transcribed spacer (ITS) region have sup-
ported the monophyly of Oreinotinus but have not fully resolved species relationships within the clade (Spriggs et al., 2015).
Furthermore, relationships within the South American Oreinotinus clade are best described as a polytomy, and species bound-
aries are difficult to assess due to morphological similarity and ontogenetic variation. Although species in the South American
Oreinotinus clade have been delimited based on morphological characters (Killip and Smith, 1930), our field studies suggest an
evolutionary investigation will yield different species boundaries. More variable molecular markers are needed for such an
analysis. Microsatellite loci (simple sequence repeats [SSRs]) have been developed to distinguish cultivated varieties of V. dila-
tatum Thunb. and closely related species (Dean et al., 2011) that belong to the distantly related Viburnum clade, Succotinus, of
eastern Asia (Spriggs et al., 2015). Development of SSR loci specific to Oreinotinus will allow investigation of population dynam-
ics and species boundaries within this group. We describe 16 novel microsatellite markers developed from V. hallii (Oerst.) Killip
& A. C. Sm. (Oreinotinus) and V. trilobum Marshall (Opulus) and recovered from mining next-generation sequence (NGS) data for
V. dentatum L. (Dentata) and V. triphyllum Bentham. (Oreinotinus).

METHODS AND RESULTS

Construction of a microsatellite-enriched library and mining of NGS data were used to identify candidate loci. Viburnum hallii (collected from Ecuador) and V. trilobum (collected from Massachusetts, USA; Appendix 1) were used to construct microsatellite libraries (following V. Symonds, personal communication). Total genomic DNA was extracted from silica-dried leaves using a
FastDNA kit (MP Biomedicals, Santa Ana, California, USA). DNA was digested using Sau3AI and was visualized using gel electrophoresis. Linkers constructed with SAU-LA and SAU-LB oligos were ligated to the DNA fragments for 16 h at 16°C. A nested PCR was used to verify linker ligation. PCR products

¹Manuscript received 30 August 2016; revision accepted 2 October 2016.

The authors thank E. Lo, C. Bossu, C. Mariani, and the DNA Analysis Facility on Science Hill (Yale University, New Haven, Connecticut, USA) for help with marker development and fragment analysis, and P. W. Sweeney (Yale University), D. Neil, and J. Yepez (Museo Ecuatoriano de Ciencias Naturales del Instituto Nacional de Biodiversidad [QCNE]), as well as the Herbario Nacional del Ecuador for assistance and support with fieldwork. This study was supported by a U.S. National Science Foundation grant to M.J.D. (DEB-1145606) and E.J.E. (DEB-1026611), Yale University, and the Peabody Museum of Natural History.

²Author for correspondence: clementw@tcnj.edu
doi:10.3732/apps.1600103

Applications in Plant Sciences 2016 4(12): 1600103; http://www.bioone.org/loi/apps © 2016 Barish et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
were hybridized to a mix of (CA)_n and (GA)_n biotinylated probes. DNA fragments containing microsatellites were recovered from the PCR products using Streptavidin MagneSphere Paramagnetic Particles (Promega Corporation, Madison, Wisconsin, USA). SAU-LA primers were used to construct a second strand and repeat-enriched library. These products were then used in a Stratagene PCR Cloning Kit (Agilent Technologies, Santa Clara, California, USA) and screened using T7 and M13 plasmid primers. Colonies with inserts containing repeat regions (144 selected from V. hallii and 144 from V. trifolium) were saved and thereafter considered mitochondrial regions; unused reads were mapped to *Helianthus* were saved and thereafter considered plastid regions. Using the same approach, *Lonicera* in Geneious R8 (Biomatters, Auckland, New Zealand). Reads mapped to plastid (M. Moore, personal communication) using the read mapping assembler First, data were assembled using reference-based assembly to a *L.* *Lonicera* (collected from Ecuador; SRP041815). from Connecticut, USA) and *V. triphyllum* from USA). Six loci were optimized.

Table 1. Characteristics of 16 microsatellite loci developed in *Viburnum triphyllum* and *V. pichinchense.*

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	GenBank accession no.
H121	*ACCCCTCCTCCCTCTCTTCTTG*	(CT)_b	156–174	KX447798
	GAGGAGGCTTAAGGGGTCCTCCT			
O24	*GCCCATAGGAAAAAGGCTTCTTG*	(TA)_b(TA)(TG)_b	183–189	KX447799
	CACCCGGGAATAATACG			
O91	*CCCAATGGGCTTCTTGGTAA*	(AC)_12	200–266	KX447800
	CGGAAAGATCCATGGTGAGC			
O104	*GTTTCAGCCTACACACAG*	(AC)_10	168–186	KX447801
	ATCTCGAGGGAGCTCCACAC			
O121_p	*CTCTCTCCTGCGCTACGTAGAC*	(AG)_14	112–158	KX447802
	TGCGGCTTTATCTCCTCCA			
H81	*GGGCGAGGTCCTTTAAAAAC*	(GA)_16	199–233	KX447797
	GAGGCTAAGCTCCCTGCAACACCA			
TN2	*GTTGTTGGTTGACAGGAGG*	(GT)_5	236–244	KX447804
	GCACCTTGGCAATGGGACTC			
TN3	*AGTGTTGGTATGAGTAGGCG*	(TA)_3	138–144	KX447805
	ACTCTACTGACCTCCACTCTG			
DMI_p	*GCCTCATATAACCCCAATTTCT*	(AT)_6	411–427	KX447806
	ATAAGGCTGCAAAGCGCAG			
DN10	*GTTCAGCGAAAGGGCGCAACG*	(CA)_10	140–150	KX447809
	GATTCGACATGCTCCTAAAGGAG			
DN13	*CAAGCTTGAGCTGAGTTAGGACG*	(CT)_b	222–238	KX447810
	TCTGACCATAAGTGATGACCTTG			
DN15	*TTTTTCTCCCTCCCTCTCAG*	(TA)_4	108–134	KX447811
	CAGACGCTAGGGTATAGGCG			
DN16_p	*AACCTCCACCGGCTCCACATC*	(AG)_5	352–380	KX447812
	TGCGTGAAGGAGTCTGCTAG			
DN18	*CAGGTCCGGCTTCCACAC*	(TA)_5	200–240	KX447813
	TGCTAGGTGGTTATGATGCGG			
DN19_p	*CCTCCAGGCTTCCCTCCTC*	(CT)_7	449	KX447814
	TCACCCTAGCTAAAGGTCTG			
DN22	*GGTCCCTTAAACCGCCAAGG*	(AG)_7	373–483	KX447815
	AGGGGTGGACTCCGAAATCT			

*Annealing temperature for all loci was 52°C.

*Loci amplified with the addition of BSA.

*Loci located in the mitochondria.

*Primer preceded by a fluorescently labeled M13 tag (CAGCACGTGGTAAACCGAC).
Table 2. Genetic properties of the 16 microsatellite loci for three populations of *Viburnum triphyllum* and *V. pichinchense* located in Ecuador.\(^a\)

Locus	\(A\)	\(H_e\)	\(H'\)	\(D\)	\(A\)	\(H_e\)	\(H'\)	\(D\)	\(A\)	\(H_e\)	\(H'\)	\(D\)
H121	7	0.7409	1.5760	0.1471	10	0.8548	2.0705	0.0500	3	0.5207	0.8587	0.4359
O42	3	0.5468	0.8661	0.7794	3	0.5753	0.9327	0.7583	3	0.5822	0.9533	0.6154
O91	12	0.8685	2.0204	0.0441	13	0.8680	2.2660	0.0500	7	0.8046	1.7369	0.1923
O104	6	0.7426	1.5264	0.2564	7	0.7605	1.5844	0.2418	8	0.7942	1.7799	0.1667
O121	9	0.8249	1.9063	0.0500	10	0.8441	2.0591	0.0417	9	0.8540	2.0497	0.0513
H81	9	0.7807	1.8124	0.0809	12	0.8975	2.3670	0.0167	5	0.6945	1.3326	0.2179
TN2	2	0.0564	0.1293	0.8824	4	0.3200	0.6361	0.4250	2	0.0737	0.1599	0.8462
DN10	1	0.0000	0.0000	1.0000	1	0.0000	0.0000	1.0000	3	0.5694	0.9596	0.3788
DN13	6	0.6753	1.2996	0.4191	4	0.6165	1.1566	0.2500	3	0.5124	0.8017	0.5897
DN15	3	0.3156	0.5841	0.5074	4	0.4120	0.7990	0.2833	2	0.0730	0.1586	0.8462
DN16	6	0.7696	1.5824	0.1544	6	0.7824	1.6406	0.1500	6	0.7796	1.6249	0.1282
DN18	1	0.0000	0.0000	1.0000	1	0.0000	0.0000	1.0000	1	0.0000	0.0000	1.0000
DN19	1	0.0000	0.0000	1.0000	1	0.0000	0.0000	1.0000	1	0.0000	0.0000	1.0000
DN22	3	0.5030	0.7768	0.5956	1	0.0000	0.0000	1.0000	3	0.5736	0.9675	0.2821
DMI\(^b\)	6	0.8250	——	——	6	0.8530\(^c\)	——	——	3	0.7560\(^c\)	——	——

Note: \(A\) = number of alleles sampled; \(D\) = Simpson diversity index; \(H'\) = Shannon diversity index; \(H_e\) = expected heterozygosity; \(n\) = number of individuals sampled.

\(^a\)Refer to Appendix 1 for voucher and locality information.

\(^b\)Mitochondrial locus.

\(^c\)Unbiased haplotype diversity reported instead of expected heterozygosity.

R (Clark and Jasieniuk, 2011). For organellar loci, unbiased haplotype diversity was calculated using GenAlEx (Peakall and Smouse, 2006, 2012). Rare alleles were grouped together as one haplotype.

Statistics per locus are in Table 2. Among nuclear loci, the number of alleles per locus per population varied from one to 13 alleles, \(H_e\) from 0 to 0.8975, \(H'\) from 0 to 2.3670, and \(D\) from 0.0167 to 1.0000. For organellar loci, three to six alleles per locus per population were detected, and unbiased haplotype diversity ranged from 0.756 to 0.853.

CONCLUSIONS

The 16 microsatellite loci developed for the South American *V. triphyllum* and *V. pichinchense* are variable and will be informative in studies of population dynamics and species boundaries among species of the *Oreinotinus* clade.

LITERATURE CITED

CLARK, L., AND M. JASIENIUK. 2011. polysat: An R package for polymorphic microsatellite analysis. *Molecular Ecology Resources* 11: 562–566.

DEAN, D., P. A. WADL, X. WANG, W. E. KLINGEMAN, B. H. OWNLEY, T. A. RINEHART, B. E. SCHEFFLER, AND R. N. TRIGIANO. 2011. Screening and characterization of 11 novel microsatellite markers from *Viburnum dilatatum*. *Horticultural Science* 36: 243–249.

DONOGHUE, M. J. 1982. Systematic studies in the genus *Viburnum*. Ph.D. dissertation, Harvard University, Cambridge, Massachusetts, USA.

EGOLF, D. R. 1962. A cytological study of the genus *Viburnum*. *Journal of the Arnold Arboretum* 43: 132–172.

FAIRCLOTH, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated locus-specific primer design. *Molecular Ecology Resources* 8: 92–94.

KILLIP, E. P., AND A. C. SMITH. 1930. The South American species of *Viburnum*. *Bulletin of the Torrey Botanical Club* 57: 245–258.

MORTON, C. V. 1933. The Mexican and Central American species of *Viburnum*. *Contributions of the United States National Herbarium* 26: 339–366.

PEAKALL, R., AND P. E. SMOUSE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Resources* 6: 288–295.

PEAKALL, R., AND P. E. SMOUSE. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* (Oxford, England) 28: 2537–2539.

ROZEN, S., AND H. J. SCALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.]. Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

SPRIGGS, E. L., W. L. CLEMENT, P. W. Sweeney, S. MADRIÑAN, E. J. EDWARDS, AND M. J. DONOGHUE. 2015. Temperate radiations and dying embers of a tropical past: The diversification of *Viburnum*. *New Phytologist* 207: 340–354.

WINK, R. C., AND M. J. DONOGHUE. 2004. *Viburnum* phylogeny: Evidence from the duplicated nuclear gene *GBSSI*. *Molecular Phylogenetics and Evolution* 33: 109–126.

VAN PUYVELDE, K., A. VAN GERWEN, AND L. TRIST. 2010. ATETRA, a new software program to analyse tetraploid microsatellite data: Comparison with TETRA and TETRASAT. *Molecular Ecology Resources* 10: 331–334.

ZERRINO, D. R., AND E. BIRNEY. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. *Genome Research* 18: 821–829.
APPENDIX 1. Locality and voucher information for all samples in this study.\(^a\)

Species	Voucher information	Latitude	Longitude	Locality
V. dentatum L.\(^b\)	W. L. Clement and M. J. Donoghue 244	—	—	Marsh Botanic Gardens, Yale University, New Haven, Connecticut, USA
V. hallii (Oerst.) Killip & A. C. Sm.\(^b\)	P. W. Sweeney et al. 1827	-0.16587	-78.29389	Imbabura, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1808	-0.22412	-78.64078	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1809	-0.22412	-78.64078	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1810	-0.22836	-78.63997	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1811	-0.22836	-78.63997	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1812	-0.22412	-78.64078	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1813	-0.22412	-78.64078	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1814	-0.22944	-78.63964	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1815	-0.23202	-78.63820	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1816	-0.23202	-78.63820	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1817	-0.23111	-78.63658	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1818	-0.23547	-78.63181	Pichincha, Ecuador
V. pichinchense Benth.	P. W. Sweeney et al. 1819	-0.23575	-78.63097	Pichincha, Ecuador
V. pichinchense Benth.	M. J. Donoghue and R. C. Winkworth 2	—	—	Arnold Arboretum, Boston, Massachusetts, USA
V. triphyllum Benth.\(^b\)	P. W. Sweeney et al. 1783	-3.58931	-79.18901	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1747	-4.09720	-79.5067	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1748	-4.09720	-79.5067	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1749	-4.09720	-79.5067	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1750	-4.09720	-79.5067	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1751	-4.09720	-79.5067	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1752	-4.09216	-79.5525	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1753	-4.09216	-79.5525	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1754	-4.09216	-79.5525	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1755	-4.09216	-79.5525	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1756	-4.09488	-79.94771	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1757	-4.09442	-79.94802	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1758	-4.09442	-79.94802	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1759	-4.09124	-79.95113	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1760	-4.09124	-79.95113	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1761	-4.09124	-79.95113	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1762	-4.09124	-79.95113	Loja, Ecuador
V. triphyllum Population 1	P. W. Sweeney et al. 1763	-4.09199	-79.94384	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1680	-3.99517	-79.26857	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1681	-3.99517	-79.26857	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1682	-3.99502	-79.26685	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1683	-3.99650	-79.26112	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1685	-3.99992	-79.25980	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1686	-4.00323	-79.25863	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1687	-4.00567	-79.25797	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1688	-4.00710	-79.25788	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1689	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1690	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1691	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1692	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1693	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1694	-4.00292	-79.25720	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1695	-4.00172	-79.25698	Loja, Ecuador
V. triphyllum Population 2	P. W. Sweeney et al. 1696	-4.00208	-79.25540	Loja, Ecuador

\(^a\)Voucher specimens are deposited at the Yale University Herbarium (YU), New Haven, Connecticut, USA.

\(^b\)Specimens used in marker development.