Diversity and bioactive potential of culturable fungal endophytes of *Dysosma versipellis*; a rare medicinal plant endemic to China

Xiao-ming Tan¹, Ya-qin Zhou², Xiao-lei Zhou², Xiang-hua Xia², Ying Wei², Li-li He², Hong-zhen Tang¹ & Li-ying Yu²

The plant *Dysosma versipellis* is known for its antimicrobial and anticancer properties but is a rare and vulnerable perennial herb that is endemic to China. In this study, 224 isolates were isolated from various tissues of *D. versipellis*, and were classified into 53 different morphotypes according to culture characteristics and were identified by sequence analyses of the internal transcribed spacer (ITS) region of the rRNA gene. Although nine strains were not assignable at the phylum level, 44 belonged to at least 29 genera of 15 orders of Ascomycota (93%), Basidiomycota (6%), and Zygomycota (1%). Subsequent assays revealed antimicrobial activities of 19% of endophytic extracts against at least one pathogenic bacterium or fungus. Antimicrobial activity was also determined using the agar diffusion method and was most prominent in extracts from four isolates. Moreover, high performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry analyses (UPLC–QTOF MS) showed the presence of podophyllotoxin in two *Fusarium* strains, with the highest yield of 277 μg/g in *Fusarium* sp. (WB5121). Taken together, the present data suggest that various endophytic fungi of *D. versipellis* could be exploited as sources of novel natural antimicrobial or anticancer agents.

Resistance to antibiotics and drugs in pathogenic bacteria and fungi and overuse of antibiotics are the major challenges for researchers all over the world¹. Thus, safer and novel antimicrobial drugs are eagerly awaited⁴, and natural secondary metabolites from endophytic fungi are increasingly considered due to their diverse structural classes and various bioactivities. These include antifungal⁵, antibacterial⁶, anticancer, anti-HIV⁷, and other promising bioactivities⁸. In addition, endophytic fungi are nontoxic and, thus, provide a promising source of novel drugs⁸.

Endophytic fungi inhabit living plant tissues without causing apparent disease or injury to the host⁹ and are ubiquitous in vascular plant species⁹,¹¹. Currently, less than 10% of the approximately one million known terrestrial endophytes have been investigated¹². However, several rare medicinal plants produce important bioactive compounds to survive in unique environments and may host novel and diverse fungal endophytes⁶,¹³, and these have rarely been isolated and characterized.

Dysosma versipellis (Hance) M. Cheng ex Ying (Fig. 1a) is commonly referred to as podophyllum, hemipilia, fatsia, or octagonal lotus, and is a rare and vulnerable perennial herb of the Berberidaceae family¹⁴. This plant species is endemic to China and is mainly distributed in high altitudes ranging from 200–2400 m above sea level in disjunct stands of warm-temperate, deciduous, montane forests (Fig. 1b) across central and eastern China¹⁵. *Dysosma* species including *D. aurantiocaulis*, *D. difformis*, *D. majorensis*, *D. pleiantha*, *D. tsayuensis*, *D. veitchii*, and *D. versipellis* have been identified in previous studies and six of these are endemic to China¹⁶. As a traditional Chinese medicine, extracts from the rhizomes of this plant has been used as antibacterial treatments for syphilis and an antidote for snake bites¹⁷. In recent decades, *D. versipellis* has attracted increasing pharmaceutical attention due to the discovery of podophyllotoxin (PTOX), which is a pivotal lignan and is used as a natural source of various anticancer PTOX derivatives¹⁸. Recent studies show antiviral and anti-inflammatory properties of the flavonoids quercitrin and kaempferol from this plant¹⁹. However, due to overexploitation and slow growth, all *Dysosma* species have been

¹Guangxi University of Chinese Medicine, Nanning, 530200, China. ²Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023, China. Correspondence and requests for materials should be addressed to X.-M.T. (email: txm1978@126.com) or H.-Z.T. (email: hzhent2012@126.com)
under the threat of extinction. Therefore, to protect these valuable medicinal plants and maintain the supply of PTOX for anticancer drugs, alternative sources are eagerly sought. Among these, endophytic fungi have the potential to produce PTOX for the production of podophyllotoxin. However, to date, only a few PTOX-producing fungi associated with Berberidaceae plants have been reported. In the present study, we investigated the diversity of culturable fungal endophytes of *D. versipellis* and screened the endophytic fungi for antimicrobial activities and PTOX-producing fungal isolates using HPLC and UPLC–QTOF MS analyses.

Results and Discussion

Isolation, sequencing data, and diversity of culturable endophytic fungi. In this study, a total of 224 fungal colonies (isolation rate, 41.2%) were isolated from 544 tissue segments of *D. versipellis* plants and included 62 (32.6%), 104 (42.3%), 33 (73.3%), and 25 (39.7%) strains from root, rhizome, stem, and leaf tissue segments, respectively (Table 1). The 224 isolates were assigned to 53 representative morphotypes (19, 22, 6, and 6 strains from roots, rhizomes, stems, and leaves, respectively) according to culture characteristics on potato dextrose agar (PDA; Fig. 1c), and all culturable morphotypes were identified according to ITS rDNA sequence analyses. Subsequently, 44 isolates were categorized at the genus level based on sequence similarity analyses, and the other nine isolates remained unidentified due to low sequence homology in the GenBank database. According to diversity and sequence data of 53 isolates recovered from *D. versipellis* tissues.

Tissues	Segments examined	Segments infected	Total isolates	Endophytic species	Total CR%	Total IR%	Shannon H'
Root	190	58	62	19	30.50%	32.60%	2.433
Rhizome	246	97	104	22	39.40%	42.30%	2.728
Stem	45	31	33	6	68.00%	73.30%	1.330
Leaf	63	23	25	6	36.50%	39.70%	1.242
Total	544	209	224	53			

Table 1. Endophytic isolates from *D. versipellis* tissues.

Figure 1. Habitat of *D. versipellis* and its endophytic fungi. Adult plants of *D. versipellis* (Bar = 20 mm) (a) growing among hillside shrubs (b) and representative fungal morphotypes isolated from *D. versipellis* growing on potato dextrose agar (PDA) for 2 weeks at 26°C (c).
Fungal isolate	Accession number	Closest relatives in NCBI	ITS identity (%)	Tissue	IR %	Phylum; Class; Order	Classification
WB5101	KY940469	*Acremonium nepalense* CBS 115254 (DQ825972)43 44	99	Leaf	1.12	Ascomycota; Sordariomycetes; Glomerellales	*Acremonium sp.*
WB5102	KY940470	*Alternaria alternata* CBS 112018 (AY673074)45	99	Root	0.53	Ascomycota; Dothideomycetes; Pleosporales	*Alternaria sp.*
WB5103	KY940471	*Arthrinium arundinis* CBS 114516 (KF144884)46	99	Root	0.53	Ascomycota; Sordariomycetes; Xylariales	*Arthrinium sp.*
WB5104	KY940472	*Ascomyctea* P7 (AY265338)47	80	Rhizome	0.41	Ascomycota	Ascomycota
WB5105	KY940473	*Ascomyctea* (JX270545)48	84	Root	0.53	Ascomycota	Ascomycota
WB5106	KY940474	*Cladosporium* uredinicola SACCR 040661 (AY251071)49	99	Rhizome	0.41	Ascomycota; Dothideomycetes; Capnodiales	*Cladosporium sp.*
WB5107	KY940475	*Colletotrichum exsolubilis* CCMCC 3.15131 (JX625182)50	99	Leaf	1.12	Ascomycota; Sordariomycetes; Glomerellales	*Colletotrichum sp.*
WB5108	KY940476	*Colletotrichum gigasporus* P1982 (KT269249)51	99	Stem	2.22	Ascomycota	*Colletotrichum sp.*
WB5109	KY940477	*Colletotrichum* gloeosporioides CBS 119204 (JX010150)52	99	Leaf	19.04	Ascomycota	*Colletotrichum sp.*
WB5110	KY940478	*Colletotrichum* karstii CCMCC 3.15123 (JX625163)46	99	Leaf	1.12	Ascomycota	*Colletotrichum sp.*
WB5111	KY940479	*Colletotrichum* siamense GM29 (KC512127)53	100	Stem	2.22	Ascomycota	*Colletotrichum sp.*
WB5113	KY940481	*Cylindrocarpon* lioidendra CBS 117640 (DQ178166)54	99	Rhizome	0.41	Ascomycota; Hypocreales	*Cylindrocarpon sp.*
WB5114	KY940482	*Cylindrocarpon* pasicteptatum Cy196 (JF353505)55	99	Root	0.53	Ascomycota	*Cylindrocarpon sp.*
WB5115	KY940483	*Dactylonectria* alacerealis CBS 129087 (NK_121496)56	99	Rhizome	0.41	Ascomycota; Sordariomycetes; Hypocreales	*Dactylonectria sp.*
WB5116	KY940484	*Diaporthe* perjuncta CBS 109745 (KC343172)57	96	Rhizome	0.41	Ascomycota; Sordariomycetes; Diaporthales	*Diaporthe sp.*
WB5117	KY940485	*Diaporthe* sp. HKB37 (DQ902525)58	96	Rhizome	0.41	Ascomycota	*Diaporthe sp.*
WB5118	KY940486	*Exophiala* sp. AS29-1 (AB752282)59	99	Rhizome	3.65	Ascomycota; Eurotiales; Chaetothyriales	*Exophiala sp.*
WB5119	KY940487	*Fusarium* nematophilum BBA 70838 (HQ897786)60	99	Rhizome	2.43	Ascomycota; Sordariomycetes; Diaporthales	*Fusarium sp.*
WB5120	KY940488	*Fusarium* oxysporum ERP-10 (JN222394)61	99	Root	0.53	Ascomycota; Sordariomycetes; Hypocreales	*Fusarium sp.*
WB5121	KY940489	*Fusarium* solani ATCC 56480 (FJ345335)62	100	Root	0.53	Ascomycota	*Fusarium sp.*
WB5122	KY940490	*Hypoxylon* fragiforme 22 (JN198512)63	99	Rhizome	0.41	Ascomycota; Sordariomycetes; Xylariales	*Hypoxylon sp.*
WB5123	KY940491	*Ilyonectria* coprosmae CBS 119606 (JF735260)64	96	Root	10.53	Ascomycota; Sordariomycetes; Hypocreales	*Ilyonectria sp.*
WB5124	KY940492	*Ilyonectria* macrodyma K6 (IF807395)65	99	Rhizome	1.62	Ascomycota	*Ilyonectria sp.*
WB5125	KY940493	*Ilyonectria* robusta CBS 117815 (JF735266)66	96	Rhizome	5.69	Ascomycota	*Ilyonectria sp.*
WB5126	KY940494	*Ilyonectria* torresiensis CBS 112598 (FJ735351)67	99	Rhizome	1.62	Ascomycota	*Ilyonectria sp.*
WB5127	KY940495	*Leotiomycetes* AK1466 (HQ759764)68	89	Root	0.53	Ascomycota; Sordariomycetes; Hypocreales	*Leotiomycetes*
WB5128	KY940496	*Minimelanolocus aquaticus* 15-0414 (KR215607)69	97	Rhizome	2.83	Ascomycota; Eurotiales; Chaetothyriales	*Minimelanolocus sp.*
WB5129	KY940497	*Mucor* sp. CY118 (HQ607969)70	95	Root	0.53	Zygomycota; Zygomycetes; Mucorales	*Mucor sp.*
WB5130	KY940499	*Ochrroconis* cf. constricta CBS 124172 (GQ426096)71	99	Leaf	1.12	Ascomycota; Dothideomycetes; Venturiales	*Ochrroconis sp.*
WB5131	KY940500	*Ophioceras* sp. P2224 (KU747946)72	94	Stem	2.22	Ascomycota; Sordariomycetes; Magnaporthales	*Ophioceras sp.*
WB5132	KY940487	*Ophiostomalata* F1732 (KU747803)73	97	Stem	2.22	Ascomycota; Sordariomycetes; Ophiostomalatales	*Ophiostomalatales*
WB5133	KY940501	*Microsphaeropsis* sp. SAA1ACS (KY305064)74	99	Root	0.53	Ascomycota; Dothideomycetes; Pleosporales	*Microsphaeropsis sp.*
WB5134	KY940502	*Pestalotiopsis* oryzae CBS 115122 (KM199324)75	99	Root	0.53	Ascomycota; Sordariomycetes; Xylariales	*Pestalotiopsis sp.*
WB5135	KY940503	*Phialophora* musae BAN-C4 (IN123359)76	99	Root	0.53	Ascomycota; Eurotiales; Chaetothyriales	*Phialophora sp.*
WB5136	KY940505	*Phoma* putaminum CBS 372.91 (GU237843)77	99	Root	0.53	Ascomycota; Dothideomycetes; Pleosporales	*Phoma sp.*
WB5137	KY940506	*Phoma* salignella CIB 122.93 (GU237762)78	99	Root	0.53	Ascomycota	*Phoma sp.*

Continued
Table 2. Culturable endophytic fungi from D. versipellis and corresponding isolation rates (IR%).

Fungal isolate	Accession number	Closest relatives in NCBI	ITS identity (%)	Tissue	IR %	Phylum; Class; Order	Classification
WB5139	KY940507	Phyllosticta sp. MUC03547 (AB454364)	99	Rhizome	0.41	Basidiomycota; Agaricomycetes; Agaricales	Phyllosticta sp.
WB5140	KY940508	Paathyrella candolleana P73 (AM712281)	99	Rhizome	0.41	Basidiomycota; Agaricomycetes; Agaricales	Paathyrella sp.
WB5141	KY940509	Pseudocercospora humidula CPC11358 (GU124676)	99	Stem	26.7	Ascomycota; Dothideomycetes; Capnodiaceae	Pseudocercospora sp.
WB5112	KY940480	Pyrenochaeta sp. P2916 (KT270113)	98	Root	1.05	Ascomycota; Dothideomycetes; Pleosporales	Pyrenochaeta sp.
WB5142	KY940510	Pyrenochaeta sp. CBS 135108 (KF251149)	97	Leaf	1.12	Ascomycota; Dothideomycetes; Pleosporales	Pyrenochaeta sp.
WB5143	KY940467	Ramichloridium sp. NC1_3.3F1a (FJ425199)	96	Stem	2.22	Ascomycota; Dothideomycetes; Capnodiaceae	Ramichloridium sp.
WB5144	KY940511	Rhexocercosporidium sp. Dfel14 (EU543257)	99	Rhizome	0.41	Ascomycota; Leotiomyces; Helotiales	Rhexocercosporidium sp.
WB5145	KY940512	Rhizoctonia sp. Rh183 (JF519833)	99	Rhizome	0.81	Basidiomycota; Agaricomyotina incertae sedis	Rhizoctonia sp.
WB5146	KY940513	Rhizoctonia sp. R14 (AY927321)	95	Root	0.53		Rhizoctonia sp.
WB5147	KY940514	Sordariomyces RfEF169 (JN859389)	95	Root	2.11	Ascomycota; Sordariomyces; Sordariales	Sordariales
WB5148	KY940515	Sordariomyces AK0924 (JQ793094)	88	Rhizome	0.81	Ascomycota; Sordariomyces	Sordariomyces
WB5151	KY940517	Virgaria nigra NRBC 9453 (AB670716)	99	Rhizome	0.41	Ascomycota; mitosporic Phycomycetes	Virgaria sp.
WB5152	KY940518	Volutella consors CBS 139.79 (KM231768)	98	Rhizome	0.81	Ascomycota; Sordariomyces; Hypocreales	Volutella sp.
WB5153	KY940519	Xenacremumum falcatus CBS 400.85 (KM231832)	99	Rhizome	0.41	Ascomycota; Sordariomyces; Hypocreales	Xenacremumum sp.
WB5150	KY940516	Xylariales Ws6110H (GQ924056)	95	Rhizome	2.44	Ascomycota; Sordariomyces; Xylariales	Xylariales

In further analyses, 49 representative morphotypes belonged to four classes of the Ascomycota phylum, including Dothideomycetes, Eurotiomycetes, Leotiomycetes, and Sordariomycetes. Most of the isolates (n = 28) from D. versipellis belonged to Sordariomycetes class in this study. This class was represented by seven orders: Glomerellales (7 isolates), Hypocreales (13 isolates), Diaporthales (2 isolates), Xylariales (4 isolates), Magnaporthales (1 isolate), Ophiostomales (1 isolate), Sordariales (1 isolate); and 13 genera: Acremonium, Arthrinium, Colletotrichum, Cylindrocarpon, Dactylonectria, Diaporthe, Fusarium, Ilyonectria, Pestalotiopsis, Pestalotiopsis, Phialophora, Sporothrix, Xylaria. Three isolates were assigned to Eurotiomycetes class and Chaetothyriales order, representing the genera Exophiala, Minimelanolocus and Phialophora. Finally, two isolates were assigned to Leotiomycetes class. One (WB5144) was classified as Rhexocercosporidium genus of the Helotiales order. No sequence similarity with any reference species was detected in GenBank database.

Ten isolates were assigned to Dothideomycetes class, comprising three orders: Pleosporales (6 isolates), Capnodiaceae (3 isolates) and Ventariales (1 isolate) and eight genera (Alternaria, Cladosporium, Ochroconis, Microsphaeropsis, Phoma, Pseudocercospora, Pyrenochaeta and Ramichloridium). Three times were assigned to Eurotiomycetes class and Chaetothyriales order, representing the genera Exophiala, Minimelanolocus and Phialophora. Exophiala nigra was exclusively detected in roots. Another 19 isolates only colonized rhizomes, and Acremonium and Ochroconis were exclusively present in leaves. Pseudocercospora and Ramichloridium only colonized stems. Based on these varying spatial distributions of endophyte communities in D. versipellis, we suggested that these microorganisms have adapted to distinct tissue microenvironments, resulting in clear tissue specificity among endophytic fungi in D. versipellis, as indicated in a previous study of Indian medicinal plants.34,25 Additionally, the isolates WB5143 (Ramichloridium sp., Fig. 1c), WB5104 (Ascomycota) and WB5136 (Cadophora sp.) have darkly pigmented and septate hyphae of thick walls. These are referred as dark septate fungi (DSF) and were isolated from roots. Junpapon & Trappe suggested that DSF frequently colonize roots of mycorrhizal or nonmycorrhizal plants and play unique roles in terrestrial ecosystems35. However, in contrast with the common root tissue habitat of DSE, Ramichloridium sp. (WB5143) was isolated from stems of plants.

Antimicrobial activity of ethanolic fraction of culture supernatants of endophytic fungal species.

In this study, antimicrobial-producing fungi belonged to the genera Fusarium, Cladosporium, Ilyonectria,
at 26 °C.

Table 3. Antibacterial and antifungal activities of endophytic fungi from *D. versipellis* against five pathogens.

Isolate No	Taxa (accession number)	Inhibition zone in diameter on Petri plates (mm)	S. aureus	E. coli	B. subtilis	A. fumigatus	C. tropicalis
WB5106	Cladosporium sp. (KY940474)	10.9 ± 0.3	10.8 ± 0.5	11.0 ± 0.3	—	19.1 ± 0.7	
WB5121	Fusarium sp. (KY940489)	18.7 ± 0.9	21.3 ± 0.7	10.0 ± 0.1	7.3 ± 0.3	—	
WB5127	Ilyonectria sp. (KY940494)	—	—	7.5 ± 0.4	—	21.0 ± 0.3	
WB5134	Microsphaeropsis sp. (KY940501)	7.3 ± 0.5	9.7 ± 0.2	8.0 ± 0.5	—	—	
WB5136	Cadophora sp. (KY940503)	15.0 ± 0.4	14.0 ± 0.3	—	—	8.0 ± 0.5	
WB5138	Phoma sp. (KY940506)	10.2 ± 0.5	10.3 ± 0.2	15.5 ± 0.3	—	—	
WB5145	Rhizoctonia sp. (KY940512)	10.9 ± 0.2	17.8 ± 0.2	—	—	—	
WB5147	Sordariales (KY940514)	9.6 ± 0.3	10.8 ± 0.4	—	—	13.7 ± 0.2	
WB5148	Sordariomyces (KY940515)	25.0 ± 0.5	—	10.0 ± 0.4	7.0 ± 0.5	18.0 ± 0.3	
WB5151	Virgaria sp. (KY940517)	9.6 ± 0.3	—	—	—	—	
Positive control-1	Ampicillin	17.0 ± 0.3	18.6 ± 0.2	21.5 ± 0.3	—	—	
Positive control-2	Fluconazole	—	—	—	25.0 ± 0.3	18.1 ± 0.2	
Negative control	10% DMSO	—	—	—	—	—	

Microsphaeropsis, Cadophora, Phoma, Rhizoctonia, Virgaria. In addition, the ethanolic extracts of two unidentiﬁed isolates also inhibited the microbial growth (Table 3).

Endophytic strains of *Fusarium* are well-known producers of various metabolites screened in the host plants; the commercially important drug precursor PTOX was originally found in the endangered genus *Dysoxylum*, but is also produced by the endophytic *F. oxysporum* from *Juniperus recurva* plants. Other natural agents include taxol which was originally found in *Taxus* plants and was produced by endophytic *F. proliferatum* from *Taxus x media*. Additionally, 2-methylbutyraldehyde-substituted α-pyrones, beauvericin, and subglutinol A and B are dominant antimicrobial compounds that are produced by endophytic *Fusarium* spp. isolated from medicinal plants. Most members of the genus *Cladosporium* also produce antimicrobial compounds, and *C. uredinicola* from *Tinospora cordifolia* was found to possess anti-insect properties, potentially protecting plants against insect pests. In the present study, *Cladosporium* sp. (WB5106) exhibited high antimicrobial activity against *S. aureus*, *E. coli*, *B. subtilis*, and *C. tropicalis*, but did not show any activity against *A. fumigatus*.

Interestingly, all of the present endophytic fungal strains that produce antimicrobial compounds were isolated from roots or rhizomes of *D. versipellis*. Similar studies had also showed medicinal plants with antifungal, antibacterial, anticancer, and antioxidant activities may provide more feasible opportunities to isolate and culture endophytic fungal producers. However, further studies are required to characterize dynamic changes of endophytic communities and uncultured fungi and to confirm fungal tissue specificity in *D. versipellis*.

Screening of PTOX-producing fungi. Crude extracts of endophytic fungi were screened for fungal PTOX using HPLC and UPLC–QTOF MS analyses. In these analyses, PTOX from *Fusarium* sp. WB5121 and WB5122 had retention times that corresponded with the standard PTOX (Fig. 2) and corresponding yields were 277 and 1.25 µg/g (wet weight of crude extracts), respectively, after culture in 200 mL of potato dextrose broth (PDB) at 26 °C ± 2 °C with shaking at 125 rpm for 10 days. Associated MS spectra showed the same peak MH+ at m/z 459.12 for standard and fungal PTOX from *Fusarium* sp. WB5121, and that of the fungal PTOX from *Fusarium* sp. WB5121 yielded a peak MH+ at m/z 459.13 (Fig. 3), indicating the presence of endogenous PTOX in isolates of *Fusarium* sp. WB5121 and WB5122 strains.

In conclusion, *D. versipellis* harbors a rich and diverse range of endophytic fungi and provides a fungal resource for the study of PTOX and other unique secondary metabolites. Among the present endophytic fungi, 18.9% and 3.7% of strains produced antimicrobial and anticancer metabolites, respectively. Hence, future studies of metabolic pathways, mutual relationships, and fungal species identification are warranted.

Materials and Methods

Collection of plant material. The wild plant samples of *D. versipellis* were collected from Yongfu county, Guangxi province of China (109°36′E; 24°37′N). Samples were placed in polyethylene bags, labeled, transported to the laboratory, and refrigerated at 4 °C, as described previously. Plant specimens were identified by Dr. Tan and were preserved in the herbarium of the Guangxi Botanical Garden of Medicinal Plants.

Fungal isolation and cultivation. Endophytic fungi were isolated from stems, leaves, and roots of plants. Procedures for surface sterilization of plant tissues and isolation and cultivation of fungi are described by Tan et al. Briefly, stems, leaves, and roots were separated from plants, were washed thoroughly in running tap water, and were surface-sterilized in a sequence of 70% ethanol (v/v) for 30 s and sodium hypochlorite solution (2.5%, v/v) for 5 min. All tissues were then rinsed three times with sterile distilled water and were surface-dried with sterile filter paper. Subsequently, 0.5 × 0.5-cm pieces were excised using a sterile blade and were placed on PDA containing 50-µg/mL oxytetracycline and 50-µg/mL streptomycin. Nine segments were plated per Petri dish (90-mm diameter). Petri dishes were then wrapped in parafilm and were incubated at 25 °C in the dark for more than one week. Samples were checked daily and colonies were routinely isolated, purified, and maintained in PDA for
identification and antimicrobial assays. Pure endophytic fungi were finally photographed and preserved in the laboratory of Mycology, Guangxi Botanical Garden of Medicinal Plants.

DNA extraction, PCR amplification, sequencing, and molecular identification. To produce fungal mycelia, all strains were grown on PDA plates at 25 °C for 10 days. Mycelia were scraped using sterile pipette tips and were then freeze-dried, and DNA from endophytic fungi were then extracted using E.Z.N.A.TM Fungal DNA Mini Kits (Omega Bio-tek, Norcross, USA) according to the manufacturers’ instructions for use as templates in polymerase chain reactions (PCR). The primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were constructed for molecular phylogenetic studies and were used to amplify ribosomal internal transcribed spacers (ITS)39. The PCR mixture (50 µL) contained 25 µL of Taq PCR Master Mix (Qiagen, Beijing), 2 µL of each primer at 5 µM, 19 µL of H2O, and 2 µL of genomic DNA. PCR were performed using a thermal cycler (BioRAD) with an initial denaturation step at 95 °C for 3 min, followed by 35 cycles of 94 °C for 1 min, 55 °C for 30 s, 72 °C for 1 min, and then a final extension step at 72 °C for 7 min. Subsequently, 5-µL PCR products were analyzed electrophoretically in 1% (w/v) agarose gels stained with ethidium bromide. After visual inspection under UV light, 45-µL aliquots of PCR products were purified and sequenced at the Shanghai Sangon Biological Engineering Technology & Services Co. Ltd. Sequences were then compared with ITS sequences from reliable isolates listed in the NCBI database (http://www.ncbi.nlm.nih.gov). Only sequence matches with high similarity to those published in previous studies were included in analyses. All identified isolates were categorized at genus or family levels according to the ownership criterion as follows: species of the same genera have sequence similarity (SS) of >95% and those of the same families had SS of <95%40.

Figure 2. Representative base peak ion chromatograms of *Fusarium* sp. (WB5122) extract (a) and standard podophyllotoxin (PTOX) samples (b) from UHPLC-QTOF-MS/MS analyses performed in negative ionmode.

Figure 3. MS spectra of PTOX; standard podophyllotoxin (a); fungal PTOX isolated from *Fusarium* sp. WB5122 (b); the arrow indicates the molecular ion of PTOX at m/z 459.12 (MH+).
The sequences obtained in this study were previously submitted to the GenBank database with accession numbers from KY940469 to KY940519.

Crude extract preparation of fungal fermentation broth. Fifty-three strains were precultured on PDA (potato extract, 200 g/L; dextrose, 20 g/L) for 7 days, and five plugs (6 mm of diameter) of each fungus were then pre-inoculated into 500-mL Erlenmeyer flask containing 200-mL PDB containing 200 g/L potato extract and 20 g/L dextrose. All cultures were incubated on a rotary shaker (125 rpm) at 26 °C ± 2 °C in the dark for 10 days. Cultures were then filtered to collect fermentation broth and wet mycelia were discarded. Fermentation broth was extracted with four volumes of ethanol for one day and filtrates were further concentrated in vacuo to remove organic solvent. Concentrates were then volatilized in a water bath at 60 °C and dried residues and were finally stored at −20 °C. Crude extracts were diluted with 10% dimethyl sulfoxide (DMSO) to 10 mg/mL and were sterilized by filtration using a Millipore filter (0.22 μm) prior to antimicrobial assays.

Antimicrobial activity. Five pathogens, including the fungi A. fumigatus and C. albicans and bacteria E. coli, B. subtilis, and S. aureus, were used to test antimicrobial activities of 53 crude fungal EtOH extracts, and inhibitory effects were assayed using the agar diffusion method with 10-mg/mL extracts at 100 μg/disk. Ampicillin sodium (100 μg/disk) and fluconazole (25 μg/disk) were used as positive antimicrobial controls and 10% DMSO was used as a negative control. Antimicrobial activities were determined according to diameters of inhibition zones (IZ) and experiments were repeated three times.

Determination of PTOX-producing fungi. PTOX-producing endophytic fungi were screened using HPLC22,23 analyses and the agent was identified using UPLC–QTOF MS. In these experiments, crude extracts of fungal isolates were dissolved in 1 mL of 80% methanol (v/v) and were filtered through 22-μm syringe filters prior to HPLC analyses (Agilent 1260, USA), which were performed using a Zorbax SB-C18 column (5 μm, 4.6 mm × 250 mm; Agilent, USA). Gradient elution was then performed with acetonitrile/H2O binary solvent-delivery gradient elution at a flow rate of 1.0 mL/min as follows: 0–20 min, 20% acetonitrile; 20–25 min, 60% acetonitrile; 25–30 min, acetonitrile; volume fraction. Analytes were detected at 207 nm and injection volumes for all fungal methanol extracts and PTOX standard were 20 and 5 μL, respectively. PTOX standard was purchased from Sigma-Aldrich Corporation (St. Louis, Missouri, USA).

Fungal PTOX was further identified using a UPLC–QTOF MS system (Waters, USA) as described previously. Briefly, chromatographic separation was performed with an Acquity UPLC HSS T3 C18 column (1.8 μm, 2.1 mm × 100 mm) with an injection volume of 0.3 μL and a binary gradient elution mixture comprising water with 0.1% formic acid (A) and 0.1% formic acid in acetonitrile (B) as follows: 0–3.5 min, 10–35%; 3.5–5.5 min, 35–40%; 5.5–6.5 min, 40–60%; 6.5–8.0 min, 60–90%; 8.1–10 min, 100% B. The mobile phase was applied at a flow rate of 0.5 mL/min and the temperature of the column oven was set to 35 °C. The MS was operated in negative ion mode and was set to total ion chromatogram mode with the following mass conditions: capillary voltage = 2500 V, cone voltage = 40 V, low collision energy = 6 V, source temperature = 100 °C, desolvation temperature = 400 °C, and desolvation gas flow = 800 L/h. Data acquisition and processing were conducted using MassLynx version 4.1 (Waters, Manchester, UK).

Statistical analyses. Colonization rates (CR%) of fungal strains isolated from D. versipellis were calculated as follows: CR% = (Nec/Nos) × 100, where Nec represents the number of segments infected by fungi and the Nos represents the total number of segments investigated. Isolation rates (IR%) of the strains were calculated as follows: IR% = (Ni/Ns) × 100, where Ni represents the number of segments from which fungal species were isolated and Ns is the total number of segments incubated. The diversity of fungal species from D. versipellis was evaluated using the Shannon–Weiner Index (H′) with the following formulas:

\[
H' = - \sum (p_i \times \ln p_i) = \frac{\ln n}{n}
\]

where \(n\) represents the numbers of individuals and \(N\) represents the total number of individuals. All statistical analyses were performed using SPSS 19.0 (SPSS Inc., Chicago, IL, USA).

References
1. Aksoy, D. Y. & Unal, S. New antimicrobial agents for the treatment of Gram-positive bacterial infections. *Clin Microbiol Infect* **14**, 411–420 (2008).
2. Katoch, M. et al. Diversity, phylogeny, anticanic and antimicrobial potential of fungal endophytes associated with Monarda citriodora. *L. BMC Microbiology* **17**, 44 (2017).
3. Silva-Hughes, S. A. F. et al. Diversity and anti-fungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. *Microbiological Research* **175**, 67–77 (2015).
4. Salam, N. et al. Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. *BioMed Research International* **10.1155/2017/1308563** (2017).
5. Zhang, D. W. et al. A novel assay for screening inhibitors targeting HIV-1 integrase dimerization based on Ni-NTA magnetic agarose beads. *Scientific Reports* **6**, 25375 (2016).
6. Cui, J. L. et al. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola cremlata, R. angusta, and R. schauffenni. *PloS ONE* **10**(3), e0118204 (2015).
7. Strobel, G. A. Endophytes as sources of bioactive products. *Microbes infect.* **5**, 535–544 (2003).
8. Pupo, M. T. et al. Microbial natural products: a promising source of bioactive compounds. (In: Taft CA, editor Modern Biotechnology in Medicinal Chemistry and Industry. Kerala: Research Signpost, p 51–78, 2006).
9. Petri, O. et al. Ecology, metabolite production, and substrate utilization in endophytic fungi. *Nat Toxins* **1**, 185–196 (1992).
10. Arnold, A. E., Maynard, Z. & Gilbert, G. S. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. *Mycol. Res.* **105**, 1502–1507 (2001).
11. Hawkesworth, D. L. The variety of fungal- algal symbioses, their evolutionary significance, and the nature of lichens. *Bot. J. Linn. Soc.* **96**, 1–20 (1988).
12. Ganley, R. J., Brunsonfeld, S. J. & Newcombe, G. A community of unknown, endophytic fungi in western white pine. PNAS 101, 10107–10112 (2004).

13. Pupo, M. T. et al. Microbial natural products: a promising source of bioactive compounds. (In: Taft CA, editor. Modern Biotechnology in Medicinal Chemistry and Industry. Kerala: Research Signpost, p 51-78, 2006).

14. Wang, S. & Xie, Y. China species red list (Vol.1). (Beijing: Higher Education Press, p 324, 2004).

15. Ying, T. S., Zhang, Y. L. & Balfour, D. E. The endemic genera of seed plants of China. (Beijing: Science Press, 1993).

16. Goni, R. et al. A Frontiers Board of Flora of China: Flora of China (Vol. 29). (Beijing: Science Press, 2001).

17. Jiangsu New Medical College. Dictionary of Chinese Traditional Medicine. (Shanghai: Shanghai Science and Technology Press, 1986).

18. Canol, C. et al. Molecules of interest: podophyllotoxin. Phytochemistry 54, 115–120 (2000).

19. Chen, R. D. et al. Flavonoid glycosides from callus cultures of Diosyos versipellis. China. Journal of Chinese Material Medic 41(1), 87–91 (2016).

20. Chaurasia, O. P. et al. Podophyllum L.: an endangered and anticancerous medicinal plant-an overview. Indian J. Tradit. Know. 11, 234–241 (2012).

21. Vasundhara, M. & Trappe, J. M. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 191, 139–164 (2012).

22. Mishra, A. et al. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Mycol. Prog. 11, 655–688 (2012).

23. Hata, K. & Futai, K. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge. Mycol. Prog. 11, 1115–1121 (2012).

24. Tan, X. M. et al. In vitro seed germination and seedling growth of an endophytophilic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.). Scientia Horticulturae 165, 62–68 (2014).

25. Almeida, R. et al. Diversity of endophytic fungi in roots of nine属 orchid species (Orchidaceae) is broader than expected from adult plants (Orchidaceae), with descriptions of seven new speices. Studies in Mycology 73, 655–688 (2011).

26. Gomes, R. et al. Chemical constituents from endophytic fungus Diaporthe theobromae. Journal of Chinese Material Medic 41, 4134–4140. PMID: 12985237 (2003).

27. Feng, Y. & Wang, S. China species red list (Vol.1). (Beijing: Higher Education Press, p 324, 2004).

28. Mishra, A. et al. Diversity of aerobic Gram-positive rods in the clinical laboratory (an overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Diaporthe, Musicillium, and Microtheca). Mycol. Prog. 68, 79–113 (2011).

29. Jumpponen, A. & Trappe, J. M. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140, 295–310 (1998).

30. Tejevi, M. V. et al. Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Diversity 47, 97–107 (2011).

31. Xiong, Z.Q. et al. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglogiap yew, Taxus s media. BMC Microbiology 13, 71 (2013).

32. Lee, J. C. et al. Subglutinolins A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J. Org. Chem. 60, 7076–7077 (1995).

33. Almeida, R. et al. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge. Thecodiplosis lapponica. Can. J. Bot. 73, 384–390 (1995).

34. Sun, Y. et al. Endophytic fungi associated with two Sauadera species growing in alkaline soil in China. Mycosphere 2, 239–248 (2011).

35. Grafenhan, T. et al. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 68, 79–113 (2011).

36. Bussaban, B. et al. Molecular and morphological characterization of Pyricularia oryzae and allied genera. Mycologia 97(5), 1002–1011 (2005).

37. Hata, K. et al. Phylogenetic re-evaluation of Arthrinum. JMA Fungus 4(1), 133–154 (2013).

38. Altindere, M. et al. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devinnium and Dendrobium thysiforum from Vietnam. Curr. Microbiol. https://doi.org/10.1007/s00284-010-9848-2 (1997).

39. Fu, Y. J. et al. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chemistry 194, 46–54 (2016).

40. Hata, K. & Futai, K. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge. Thecodiplosis lapponica. Can. J. Bot. 73, 384–390 (1995).

41. Sun, Y. et al. Endophytic fungi associated with two Sauadera species growing in alkaline soil in China. Mycosphere 2, 239–248 (2011).

42. Grafenhan, T. et al. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 68, 79–113 (2011).

43. Bussaban, B. et al. Molecular and morphological characterization of Pyricularia oryzae and allied genera. Mycologia 97(5), 1002–1011 (2005).

44. Cantrell, S. A. et al. Fungal communities of young and mature hypersaline microbial mats. Mycologia 105(4), 827–836 (2013).

45. Braun, U. et al. Phylogeny and taxonomy of Cladosporium–like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s.str. Mycol. Prog. 2(1), 3–18 (2003).

46. Taro, G. et al. Endophyte Colletotrichum species from Betelia ochracea (Orchidaceae), with descriptions of seven new species. Fungal Divers. 61(1), 139–164 (2013).

47. Glyenou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13112 (2015).

48. Wei, B. S. et al. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73(1), 115–180 (2012).

49. Almeida, R. et al. Diversity and pathogenicity of Colletotrichum species isolated from sour sop in Colombia. Eur. J. Plant Pathol. 139(2), 319–332 (2014).

50. Halleen, F. et al. Neocentria lioriodendi sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology 55, 227–234 (2006).

51. Cabral, A. et al. Cylindrocarpon rot root: multi-genie analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol. Prog. 11(3), 655–688 (2012).

52. Miao, C. P. et al. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens. J. Ginseng. Res. 40(2), 127–134 (2016).

53. Testelova, T. et al. Symbiotic germination capability of four Epipactic species (Orchidaceae) is broader than expected from adult ecology. Am. J. Bot. 99(6), 1020–1032 (2012).

54. Gomes, R. R. et al. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31, 1–41 (2013).

55. Li, Q. & Wang, G. Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol. Res. 164(2), 233–241 (2009).

56. Hirose, D. et al. Microfungi associated with withering willow wood in ground contact near Syowa Station, East Antarctica for 40 years. Polar Biol. 36, 919–923 (2013).
61. Zhao, J. et al. Endophytic fungi from pigeon pea (Cajanus cajan (L.) Millsp.) produce antioxidant Cajaninstilbene acid. J. Agric. Food Chem. 60(17), 4314–4319 (2012).
62. Khot, P. D. et al. Sequencing and analysis of fungal RNA operons for development of broad-range fungal PCR assays. Appl. Environ. Microbiol. 75(6), 1559–1565 (2009).
63. Wu, L. et al. Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Curr. Microbiol. 66(1), 40–48 (2013).
64. Gao, Y. et al. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea (Cajanus cajan (L.) Millsp. PLoS ONE 6(11), E27589 (2011).
65. U’Ren, J. M. et al. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 99(5), 898–914 (2012).
66. Liu, X. Y. et al. Backbone tree for Chaetothyriales with four new species of Minimelanolocus from aquatic habitats. Fungal Biol. 119(11), 1046–1062 (2015).
67. Rodrigues, A. et al. Ecology of microfungal communities in gardens of fungous-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol. Ecol. 78(2), 244–255 (2011).
68. Lian, X. & de Hoog, G. S. Indoor wet cells harbour melanized agents of cutaneous infection. Med. Mycol. 48(4), 622–628 (2010).
69. Del Olmo-Ruiz, M. & Arnold, A. E. Community structure of fern-affiliated endophytes in three neotropical forests. J. Trop. Ecol. 33(1), 60–73 (2017).
70. Micalizzi, E. W. et al. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS one 12(6), E017790 (2017).
71. Maharachchikumbura, S. S. et al. Pestalotiopsis revisited. Stud. Mycol. 79, 121–186 (2014).
72. Ban, Y. et al. The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS one 7(10), E47968 (2012).
73. Avekamp, M. M. et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 65, 1–60 (2010).
74. Motohashi, K. et al. Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto. Mycoscience 50, 291–302 (2009).
75. Vastiota, M. et al. Phylogenetic studies in Pithyrella focusing on sections Pennatea and Spalidaceae–new evidence for the paraphyly of the genus. Mycol. Res. 112 (PT 10), 1153–1164 (2008).
76. Crox, P. W. et al. Phylogenetic lineages in the Capnodiales. Stud. Mycol. 64, 17–4758 (2009).
77. Quadrelvieg, W. et al. Sizing up Septoria. Stud. Mycol. 75(1), 307–390 (2013).
78. Diaz Arias, M. M. et al. Diversity and biogeography of sooty blotch and flyspeck fungi on apple in the eastern and midwestern United States. Phytopathology 100(4), 345–355 (2010).
79. Ruiwen Zhang et al. Diosgenin production of Dioscorea zingiberensis cultures stimulated by its endophytic fungi. Journal of Biotechnology 1365, 151 (2008).
80. Kelderer, M. et al. Planting in the inter-row to overcome replant disease in apple orchards: a study on the effectiveness of the practice based on microbial indicators. Plant Soil 357(1–2), 381–393 (2012).
81. Manici, L. M. & Bonora, P. Molecular genetic variability of Italian binucleate Rhizoctonia spp. isolates from strawberry. Eur. J. Plant Pathol. 118(1), 31–42 (2007).
82. Knapp, D. G. The dark side is not fastidious–dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 7(2), E32570 (2012).
83. Nonaka, K. et al. Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycoscience 54, 394–399 (2013).
84. Lombard, L. et al. Generic concepts in Nectriaceae. Stud. Mycol. 80, 189–245 (2015).
85. Herrera, J. et al. Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102(5), 1012–1026 (2010).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC, Project No. 81360682), the Scientific Research Foundation of Introduced Doctor of Guangxi University of Chinese Medicine (Project No. B170032), the Guangxi Science Foundation (Project No. 2016GXNSFBA380088; Project No. 2015GXNSFDA139012), and the Key Laboratory Project of Guangxi University (Project No. J17008). The authors give great thanks to Dr. Gang Zhang (Shaanxi University of Chinese Medicine, China) and Dr. Jin-long Cui (Shanxi University, China) for proof-read of the manuscript.

Author Contributions
X.M.T. and Y.Q.Z. conceived and designed the experiments. X.M.T., L.L.H., H.Z.T. and Y.W. performed the experiments. X.M.T., X.L.Z., X.H.X. and L.Y.Y. analyzed the data. X.M.T. and Y.Q.Z. wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24313-2.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018