An SU(3) model for octet baryon and meson fragmentation

D. Indumathi1, H.S. Mani1, Anubha Rastogi1,2

1Mehta Research Institute of Mathematics and Mathematical Physics, Jhusi, Allahabad 211 019, India
2Dept. of Physics and Astrophysics, University of Delhi, Delhi 110 007

Abstract

The production of the octet of baryons and mesons in $e^+ e^-$ collisions is analysed, based on considerations of SU(3) symmetry and a simple model for SU(3) symmetry breaking in fragmentation functions. All fragmentation functions, $D_h^q(x, Q^2)$, describing the fragmentation of quarks into a member of the baryon octet (and similarly for fragmentation into members of the meson octet) are expressed in terms of three SU(3) symmetric functions, $\alpha(x, Q^2)$, $\beta(x, Q^2)$, and $\gamma(x, Q^2)$. With the introduction of an SU(3) breaking parameter, λ, the model is successful in describing hadroproduction data at the Z pole. The fragmentation functions are then evolved using leading order evolution equations and good fits to currently available data at 34 GeV and at 161 GeV are obtained.

PACS Nos: 13.65.+i, 13.87.Fh, 13.85.Ni

1 Introduction

The formation of hadrons from fragmentation of partons is of considerable current interest \[1, 2\]. While the production of partons in any process—be it Deep Inelastic Scattering or $e^+ e^-$ annihilation—can be calculated, perturbative QCD can only predict the scale (Q^2) dependence of the process of fragmentation of quarks and gluons into hadrons; the fragmentation functions themselves are not perturbatively calculable and can only be modelled. Various models exist which attempt to explain the process of fragmentation \[3, 4, 5\]. Many computer simulations \[6, 7\] also exist and are in popular use. However, the rôle of strangeness suppression as well as isospin in hadroproduction is not yet clearly established. A clean channel to study such phenomena is provided by $e^+ e^-$ annihilation experiments due to the fact that the initial
interacting vertex is purely electromagnetic in nature. These experiments have been performed at different energies [8, 9, 10].

We propose a simple model for a light quark (u, d, s) to fragment into an octet baryon or a pseudoscalar meson, using SU(3) symmetry of quarks and octet hadrons. All fragmentation functions are described in terms of three SU(3) symmetric functions \(\alpha(x, Q^2) \), \(\beta(x, Q^2) \) and \(\gamma(x, Q^2) \) (one set for baryons and another set for mesons) and an SU(3) breaking parameter \(\lambda \) which have been determined by comparison with data. The model is able to predict the \(x \)-dependence of all octet baryons and mesons. There is good agreement with data at two different energies (corresponding to \(Z^0 \) and photon exchange) over most of the \(x \) range of available data. Hence, the overall success of the model does seem to indicate the existence of an underlying SU(3) symmetry between members of a hadron octet.

The paper is organised as follows: in the next section, we develop the model for quark fragmentation into octet baryons and mesons. In Section 3, we fix our model parameters using data on some hadrons at the \(Z^0 \) pole and use the resulting fits to predict production rates for other hadrons. We find good agreement with data. In Section 4, therefore, we use leading order evolution equations to simultaneously fit data at two different energies corresponding to hadroproduction via \(Z^0 \) and photon exchange. We use both the standard DGLAP evolution equations [11] as well as the modified leading log approximation (MLLA) [12] to evolve the fragmentation functions to different energies and compare the model with data. Section 5 contains discussions on our results and concludes the paper. Some details for the expressions of the different quark fragmentation functions in terms of \(\alpha \), \(\beta \) and \(\gamma \) are given in Appendix A.

2 Cross Section and Kinematics

We consider the production of hadrons in \(e^+ e^- \) annihilations via \(\gamma \) and \(Z \) exchange. To leading order, the cross-section for producing a hadron \(h \) can be expressed [13] in terms of the unknown fragmentation functions, \(D^h_q(x_E, Q) \), as

\[
\frac{1}{\sigma_{tot}} \frac{d\sigma^h}{dx_E} = \frac{\sum_q c_q D^h_q(x_E, Q)}{\sum_q c_q} .
\] (1)

Here \(c_q \) are the charge factors associated with a quark \(q_i \) of flavour \(i \) and can be expressed [13] in terms of the electromagnetic charge, \(e_i \), and the vector and axial vector electroweak couplings, \(v_i = T_{3i} - 2e_i \sin^2 \theta_w \) and \(a_i = T_{3i} \) as

\[
\begin{align*}
 c_q & = c^V_q + c^A_q , \\
 c^V_q & = \frac{4\pi\alpha^2}{s} \left[e^2_q + 2e_q v_q \rho_1(s) + (v^2_e + a^2_e) v^2_q \rho_2(s) \right] , \\
 c^A_q & = \frac{4\pi\alpha^2}{s} (v^2_e + a^2_e) a^2_q \rho_2(s) .
\end{align*}
\] (2)
\[\rho_1(s) = \frac{1}{4 \sin^2 \theta_w \cos^2 \theta_w} \frac{s(m_Z^2 - s)}{(m_Z^2 - s)^2 + m_Z^2 \Gamma_Z^2}, \]
\[\rho_2(s) = \left(\frac{1}{4 \sin^2 \theta_w \cos^2 \theta_w} \right)^2 \frac{s^2}{(m_Z^2 - s)^2 + m_Z^2 \Gamma_Z^2}. \]

In Eq. 1, a sum over quarks as well as anti-quarks is implied. Here \(x_E \) is the energy fraction, \(x_E = E_{\text{hadron}} / E_{\text{beam}} = 2E_h / \sqrt{s} \). We shall also use the momentum variable, \(x_p = P_{\text{hadron}} / P_{\text{beam}} = 2P_h / \sqrt{s} \); \(x_E^2 = x_p^2 + 4m_h^2 / s \), where \(m_h \) is the mass of the hadron \(h \) and \(Q \) is the energy scale of the interaction and is equal to \(\sqrt{s} \). We shall normally use \(x \) to mean \(x_E \) unless otherwise specified.

The fragmentation function, \(D_q(x_E, Q) \), associated with the quark \(q \) is the probability for a quark \(q \) to hadronise to a hadron \(h \) carrying a fraction \(x_E \) of the energy of the fragmenting quark. This is not perturbatively calculable from theory, although the scale (\(Q \)) dependence of these functions is given by QCD. Data from different experiments at different energies from \(\sqrt{s} = 10-91.2 \) GeV exists on \(p, \Lambda, \Sigma \) and \(\Xi \) octet baryon production as well as on \(\pi, K, \eta \) octet meson production [8, 9, 10]. All available data measures the production rate of hadron plus antihadron. Due to the symmetric nature of the process \(e^+ e^- \rightarrow q\bar{q} \), the resulting hadron and antihadron yields are equal. We therefore present results for the sum of hadron and antihadron yields in what follows.

We can also re-express the cross section in terms of the octet and singlet fragmentation function combinations, as

\[\frac{1}{\sigma_{tot}} \frac{d\sigma^h}{dx_E} = a_0 \Sigma^h(x_E, t) + a_3 D_3(x_E, t) + a_8 D_8(x_E, t), \]

where \(\Sigma, D_3 \) and \(D_8 \) refer to the singlet, and the two octet ((\(u-d \)) and (\(u+d-2s \)) combinations respectively, with \(a_0 = (c_u + c_d + c_s) / 3; a_3 = (c_u - c_d) / 2 \) and \(a_8 = (c_u + c_d - 2c_s) / 6. \)

We now present our model for quark fragmentation functions.

3 The Model

We study semi-inclusive production of the octet baryons and the pseudo-scalar octet mesons in \(e^+ e^- \) annihilation process using SU(3) symmetry of the quarks and of the hadrons in their respective octets. The production of the entire meson and baryon octet is described in terms of SU(3) symmetric quantities. We study only light quark (\(u, d, s \)) fragmentation where the fragmenting quark (\(q_i \)) is a member of the quark triplet (\(q_1 = u, q_2 = d, q_3 = s \)) and the hadron under study (\(h^i \)) is a member of the baryon (or meson) octet (see Table I):

\[q \rightarrow h + X, \]

with \(X \) being a triplet, antisixplet or fifteenplet. Since the final states in these three processes are distinct, we can express all the quark fragmentation functions for the
hadron h in terms of the independent fragmentation probabilities $\alpha(x, Q)$, $\beta(x, Q)$, and $\gamma(x, Q)$ where α (β, γ) is the fragmentation probability when $X = 3(\overline{6}, 15)$. The corresponding probabilities for antiquark fragmentation are $\overline{\alpha}$, $\overline{\beta}$ and $\overline{\gamma}$ (in this case, there is an antitriplet fragmenting into an octet and X, with the X being a $\overline{3}, 6$ or $\overline{15}$). These probabilities are also functions of x_E. The quark and antiquark fragmentation into h_i^j, $i, j = 1, \ldots, 8$, in terms of the SU(3) probability functions, α, β, and γ are given in Table 2. Note that the functions α, β and γ for the baryon and meson octets are unrelated; they just correspond to the same underlying symmetry.

Since the (more) massive strange quark is known to break SU(3) symmetry, we introduce symmetry breaking effects as follows: the fragmentation function is suppressed by an x_E–independent factor λ whenever a strange quark belonging to the valence of the hadron is produced. This means that all non-strange fragmentation functions of strange hadrons are suppressed by λ. For example, D^K_u or D^K_s are suppressed by a factor λ compared to D^K_u or D^K_s. Note that all (strange and nonstrange) sea fragmentation functions corresponding to a given hadron come with the same factor of λ.

There are 3 quark and 3 antiquark fragmentation functions for each hadron. Since there are eight baryons (or mesons) in the octet, this corresponds to a total of forty eight unknown functions for a given octet, which, in principle, need to be fitted to data. However, in our model, all the hadron fragmentations for a given octet can be described in terms of 6 functions alone, along with an SU(3) breaking parameter, λ, thus leading to an enormous simplification in the analysis as well as dramatically increasing the predictive power of the model.

We now go on to detail the model, first for the case of octet baryons and then for the octet mesons.

4 Comparison with data at the Z pole

We relate the model parameters and try to find α, β, γ (and the corresponding antiquark functions) as well as the SU(3) breaking parameter λ by comparing with data on $e^+ e^- \rightarrow Z^0 \rightarrow q\overline{q}$ obtained at LEP.

4.1 Baryon Fragmentation

First of all, we observe that our model predicts equal rates of production of Σ^0 and $(\Sigma^+ + \Sigma^-)/2$ (See Table 2) due to isospin symmetry. This is borne out by data; for instance, the multiplicities of $(\Sigma^+ + \Sigma^-)/2$ and Σ^0 at $Q = 90$ GeV are 0.091 ± 0.019 and 0.071 ± 0.018 respectively and are compatible within 1σ.

To obtain predictions for the other baryons, we separate the quark fragmentation functions into valence and sea parts by defining, as usual,

$$\alpha = \alpha_V + \alpha_S \; ; \; \beta = \beta_V + \beta_S \; ; \; \gamma = \gamma_V + \gamma_S \; ;$$

\[^1\text{Our model does not account for isospin breaking effects which are small compared to SU(3) breaking effects but are known to exist; hence we are looking for agreement only to within this approximation.}\]
\[\alpha = \alpha_S \ ; \quad \beta = \beta_S \ ; \quad \gamma = \gamma_S . \quad (4) \]

There is no \(s \) quark in the valence of the proton; hence, we obtain \(\gamma_V = 0 \) or \(\gamma = \gamma_S \) (see Table 2). Furthermore, using \(D_{us}^\Lambda = D_{ds}^\Lambda = D_{ss}^\Lambda \), leads to the constraint, \(\beta = \gamma/4 + \pi/3 \). The final simplifying assumption of \(D_u = D_d \) for all baryons allows us to express all antiquark fragmentation functions in terms of \(\gamma \) alone:

\[\begin{align*}
\gamma &= \gamma \ ; \\
\alpha &= 0.75 \gamma \ ; \\
\beta &= 0.5 \gamma \ ;
\end{align*} \quad (5) \]

The model for octet baryons therefore has three unknown functions \(\alpha_V(x_E, Q^2) \), \(\beta_V(x_E, Q^2) \), \(\gamma(x_E, Q^2) \) and an unknown parameter, \(\lambda \), that characterises SU(3) symmetry breaking. We now attempt to evaluate these by suitable comparison with data.

We expect valence fragmentation functions (leading quark fragmentation) to dominate in the large \(x_E \) region and sea fragmentation functions to dominate at small \(x_E \). We use the large \(x_E \) data to fix the value of \(\lambda \). Since \(\Xi^- \) has two \(s \) quarks in its valence, its \(s \)-valence fragmentation function is suppressed by a factor of \(\lambda \) compared to \(p \), \(\Lambda \) and \(\Sigma^{\pm} \). Therefore, we expect \(\Xi^- \) production cross sections to be smaller than for other baryons even in the large \(x_E \) range, where only the valence contribution survives. Indeed, as can be seen from Fig. 1 data show that the large \(x_E \) cross sections are similar for all octet baryons, \(p \), \(\Lambda \) and \(\Sigma^{\pm} \), within errorbars, while \(\Xi^- \) data is smaller in that region. Furthermore, assuming that \(u \) quark fragmentation dominates the large \(x_E \) proton data, we see from Table 3 that the ratio of \(\Xi^- \) to proton production rates is just \(\lambda \) (the expressions for the two are otherwise the same). Using the data at \(\sqrt{s} = 91.2 \) GeV, we find that \(\lambda = 0.07 \). This result can be corrected due to the fact that \(D_d^p \) is not small at large \(x_E \); however, we shall see that this value for \(\lambda \) gives good agreement with data.

Since \(\lambda \) turns out to be quite small, the production rate of strange baryons is dominated by \(s \)-quark fragmentation. This means that the \(\Lambda^0 \) rate is sensitive to \(\alpha_V \) while the \(\Sigma \) baryons give information on \(\beta_V \) (see Table 2). On the other hand, \(p \) and \(\Xi \) depend on the combination \((\alpha_V + \beta_V) \); it is therefore possible to separately determine \(\alpha_V \) and \(\beta_V \) from the data, rather accurately, especially in the valence-dominated region of large \(x \), \(x \gtrsim 0.1 \). The (SU(3) symmetric) sea is the same for all members of the octet, up to overall powers of \(\lambda \).

Note that the measured hadron spectrum is an inclusive one. We take this into account, especially for the case of \(p \) and \(\Lambda \), by defining inclusive fragmentation functions in terms of the exclusive ones used so far:

\[\begin{align*}
\rho_{\text{inclusive}} &= \rho_{\text{exclusive}} + 0.52 \Sigma^+ + 0.64 \Lambda \ ; \\
\Lambda_{\text{inclusive}} &= \Lambda_{\text{exclusive}} + 1.0 \Sigma^0 + 1.0 \Xi^- + 1.0 \Xi^0 .
\end{align*} \]

The multiplying fractions indicate the branching fractions into \(p \) and \(\Lambda \) of the various baryons. Here \(\Sigma^* \) and \(\Lambda_c \) decays to the various baryons have been ignored since they
are very small. \(\Lambda_c \) data is between 15 to 100 times smaller than \(\Lambda \) and proton data in the overlapping \(x_E \) range of about 0.3–0.8 \([14]\). The \(\Sigma^\pm \) and \(\Xi^- \) data is considered to be purely exclusive for this reason. The energy (\(x_E \)) of the daughter-baryon is taken to be the same as that of the parent because of the small difference in masses of \(p, \Lambda, \Sigma \) and \(\Xi \).

For the case of the 91.2 GeV Z exchange data, \(\alpha_V, \beta_V \) and \(\gamma \) were evaluated at different \(x_E \) values using parametrisations to the \(p, \Lambda \) and \(\Sigma \) data \([8, 9]\) and the value of \(\lambda \) as already estimated; these were then used to predict the cross section for \(\Xi^- \). We find that the data is fitted very well at all \(x_E \) as is shown in Fig. 1, where the resulting fits to \(\alpha_V, \beta_V \) and \(\gamma \) are also shown. Note that a change in \(\lambda \) can alter the overall normalisation but not the shape of the distribution, which is a prediction of this model.

4.2 Meson Fragmentation

The pseudo-scalar meson-octet is a self conjugate octet i.e., the same octet contains mesons as well as their antiparticles. The mesons and their antiparticles are related by charge conjugation. This means that \(D_q^\pi=D_{\bar{q}}^\pi \). As a consequence of this fact we immediately see that \(\pi, \bar{\beta} \) and \(\gamma \) are not independent of \(\alpha, \beta \) and \(\gamma \) (see Table 2). Of these six quantities, only three are independent. We choose these to be \(\alpha, \beta \) and \(\gamma \). Due to mixing with the singlet sector, we do not consider the \(\eta \) meson here.

Just as in the case of \(\Sigma \), here we predict equal rates for \((\pi^+ + \pi^-)/2 \) and \(\pi^0 \), due to isospin invariance. This is also borne out by data \([8]\). We therefore consider only the combinations \(m^\pm \equiv (m^+ + m^-) \) for \(m = \pi, K \), and \((K^0 + \bar{K}^0) \equiv 2K_s^0 \).

We make the usual separation into valence and sea fragmentation functions. As before, we reduce the number of unknown functions through various symmetry considerations. We assume that the sea is SU(3) flavour symmetric, so that \(D_u^{\pi^-}_u = D_s^{\pi^-}_s \) and so on. Using this, we have \(\beta = \gamma/2 \) and all sea fragmentation functions are equal to \(S = 2\gamma \).

Thus, all valence fragmentation functions can be expressed in terms of the functions, \(V \), where \(V \) is given, for example, by the difference \((D_u - D_{\bar{u}}) \) in \(\pi^+ \), as\[V = \alpha + \beta - \frac{5}{4}\gamma = \alpha - \frac{3}{4}\gamma, \]
and all sea fragmentation functions in terms of \(\gamma \). Now \(V \) and \(\gamma \) can be determined by comparison with \((\pi^\pm, K^\pm \) and \(K^0 \)) data; since the two sets of \(K \) data are not very different \([8]\), it is not possible to determine \(\alpha \) and \(\beta \) individually in this case.

The assumption (made in the baryon case) that the daughter hadron carries away the bulk of the energy of the parent, thus contributing to the same \(x_E \) bin, enabled us to simply add the various hadron fragmentation functions to arrive at an “inclusive” hadron fragmentation function. Here, since both \(\pi \)'s and \(K \)'s are very much lighter than their decay sources (mostly \(D \) mesons and baryons), this assumption is no longer reasonable. We therefore merely estimate errors arising from the inclusive nature of the data by comparing multiplicities rather than \(x_E \) distributions.

The bulk of the contamination of the pion sample which is due to \(K_s^0 \to \pi \pi \) decays is estimated to be about 4% from the ratio of the relative multiplicities \([8, 15] \).
$N^\pi/NK_s \sim 10$ and a branching fraction ~ 0.35 for the decay for $\pi = \pi^+, \pi^-, \pi^0$; hence we ignore this. K^0_L does not decay within the detector. However, there is a substantial contribution from charm meson feeddown for the K data sample (from the decay of all the Ds); this is estimated (from multiplicity data [8, 15]) to be about 16% for K^\pm and about 20% for K^0 mesons. The contamination from baryons is negligible.

As before, we include SU(3) symmetry breaking effects: the fragmentation probability is suppressed by a factor λ whenever a strange quark belonging to the valence of the meson is produced. Since the fragmenting quark excites a quark pair rather than a diquark pair (as in the case of baryons) the value of λ here is not related to that for the baryonic sector. We can get bounds for λ by using the π^\pm and K^\pm multiplicities $= 17.05 \pm 0.43$ and 2.26 ± 0.18 respectively [8, 15]: The total rates for π^\pm and K^\pm production (their multiplicities) are related to the first moment of V and S, and the parameter λ; positivity constraints on V and S (since they are probabilities) then require that $\lambda < 0.14$. A tighter constraint on λ will be found in the next section, when we apply the model to data at different energies.

We use a typical value of $\lambda = 0.08$ to fit V and S over the available x_E range of π^\pm and K^\pm data. These were then used to predict cross sections for π^0 and $(K^0 + \bar{K}^0)$. The data is fitted very well by these functions and is shown in Fig. 1: the fits to V and γ as determined from π^\pm and K^\pm are also shown here.

We have been able to explain the production of the entire meson and baryon octet by using SU(3) symmetry and the suppression factor λ at $\sqrt{s} = 91.2$ GeV. Encouraged by this success, we investigate whether the model works for other c.m. energies also. In the next section, we discuss the evolution of these fragmentation functions to different energies.

5 Comparison with data for photon exchange

5.1 Leading log evolution

Over the last decade, several experiments, performed over a wide range of c.m. energies, (10 GeV $\leq \sqrt{s} \leq 91.2$ GeV), have reported measurements of cross-section of hadron production. It is known that the cross-section is a not a constant over the range of c.m. energies; for instance, this has enabled the extraction of the running coupling constant α_s. We use leading order (LO) DGLAP evolution equations [11] to relate the fragmentation functions (and hence the cross-section) at a given energy Q to those at a different energy Q_0.

Nonsinglet (including the valence functions α_V and β_V for baryons and V for mesons) and singlet fragmentation functions evolve differently under evolution. The singlet $(\Sigma^h(x, t) = u(x, t) + d(x, t) + s(x, t) + \bar{u}(x, t) + \bar{d}(x, t) + \bar{s}(x, t))$ mixes with the gluon fragmentation function, $g(x, t)$; here we have used $x = x_E$, $t = Q^2$, and $D_q^h = q$ for convenience. Since the gluon is a flavour singlet, we use one gluon fragmentation function for all of the mesons and another one for all the baryons.

The symmetry between the singlet sector of different baryons is broken by λ. However, all singlet combinations for the other baryons can be expressed in terms of
\[\Sigma^\Lambda = \lambda \Sigma^p + (1 - \lambda)s^\Lambda_V; \]
\[\Sigma^\Sigma = \lambda \Sigma^p + (1 - \lambda)s^\Sigma_V; \]
\[\Sigma^{\Xi^-} = \lambda^2 \Sigma^p + \lambda(1 - \lambda)s^{\Xi^-}_V. \]

Similarly, we construct only the singlet combination \(\Sigma^\pi \) for the pion. All other meson singlets can then be recovered from this, and the valence function \(V \).

The evolution was done in two steps. First of all, for the baryon octet, the gluon fragmentation function and \(\gamma \) (i.e., all the sea quark fragmentation functions) were set to zero at the starting scale, and then radiatively generated. This precludes us from having to guess a possible starting gluon function, which is very poorly (if at all) constrained. Since the sea of all strange baryons is suppressed by a factor of \(\lambda = 0.07 \), only the proton data (with an unsuppressed sea sector) was poorly fitted. Fits to other baryons were still fairly reasonable. This indicates that the fragmentation of, say, \(\Lambda \) or \(\Sigma \) is dominated by strange quark fragmentation at almost all \(x_E \) values. Clearly, the function \(\gamma \) is necessary to fit the proton data. In Ref. [4], an analysis for fragmentation functions for \(\Lambda \) and \(p \) has been done using SU(6) symmetry of the baryons. The functions \(\hat{S} \) and \(\hat{T} \) given therein are analogous to the functions \(\alpha \) and \(\beta \). However, there is no function analogous to \(\gamma \), which (being the sea contribution) is required to explain the small \(x \) data.

We then used a small, non-zero starting sea as well as (a common) gluon fragmentation function to improve the fits, the results of which are shown in Figs. 2 and 3. However, we emphasise that the evolved fragmentation functions are not very sensitive to the choice of the gluon fragmentation function, which is therefore not well-determined in our model.

Each of the fragmentation functions was parametrised at a starting value of \(Q^2 = 2 \text{ GeV}^2 \) and evolved up to the final \(Q^2(= s) \) value of the data. The input functions \(F_i(x) = \alpha_V, \beta_V, \gamma \) (for the case of baryons) and \(F_i(x) = V, \gamma \) (for the case of mesons) were parametrised as

\[F_i(x) = a_i(1 - x)^{b_i}(x^{c_i})(1 + d_i x + e_i x^2). \]

The parameters \(a, b, c, d, e \) for different input fragmentation functions are given in Table 3.

We tuned the starting parameters to yield a good fit to the 90 GeV hadroproduction data which is essentially via \(Z \)-exchange [8, 9]. We then used the same set to predict the rates for a lower \(Q^2 \) value which is dominated by photon exchange. The resulting fits on the \(Z \) pole (\(\sqrt{s} = 91.2 \text{ GeV} \)) and a fit to the available baryon data sample [10] at \(\sqrt{s} = 34 \text{ GeV} \) for \(\lambda = 0.07 \) are shown in Figs. 2a and 3a. In the meson sector, we find that \(\lambda \) is constrained to lie between 0.04–0.12, with \(\lambda = 0.08 \) giving the best fit to the data. The overall shape of meson data is very well realised at either energy, as can be seen from Figs. 2b and 3b. The model parameters yield a reasonable fit to all baryon and meson data at these two different energies. The meson data is better fitted than the baryon data at both the energies. The discrepancy in overall
normalisation could be due to the inclusive nature of the measurement (especially acute in the case of p and Λ) and possible energy dependence of the suppression factor λ. However, we emphasise that our model is fairly simple; its biggest advantage is that it predicts the production rates of several mesons and baryons with relatively few inputs.

Recently, the total inclusive charged hadron cross section has been measured at LEP at 161 GeV [16]. We know from the multiplicity data at the Z^0 pole that 81% (91%) of the charged particle inclusive cross section is from pions (pions plus kaons). Specifically, the total charged particle multiplicity at $\sqrt{s} = 91.2$ GeV is $21.4 \pm 0.02 \pm 0.43$ [13], of which 17.05 ± 0.43 are π^\pm and $2.26 \pm 0.01 \pm 0.16 \pm 0.09$ are K^\pm mesons. We therefore compare the charged particle spectrum at 161 GeV (with multiplicity $24.46 \pm 0.45 \pm 0.44$) with our predictions for π^\pm and $(\pi^\pm + K^\pm)$; we expect the latter should saturate the data to within 10%. Our model shows excellent agreement with data, as can be seen from Fig. 4.

We remark that the charge factors $c_q/\sum_q c_q$ for quarks $q = u, d, s$ are very different for pure Z^0 and photon exchange. For instance, the charge factor for an s quark is $1/6$ at 34 GeV and $13/36$ at 91.2 GeV, more than a factor of two larger. On the other hand, that for the u quark is almost a factor of two smaller. This means that the photon exchange data is more sensitive to u quark fragmentation than the Z^0 data. That the model predictions for strange hadrons such as Λ and K (where the u contribution is suppressed by a factor of λ) are systematically smaller than data may therefore mean that D_u is actually larger than the model prediction, thus indicating that a single strangeness suppression factor λ may not suffice. In other words, our simple model may not completely account for all SU(3) breaking effects. In this context, it would be interesting to obtain data on the Σ baryon at a different energy and check whether this trend is visible there as well.

Finally, the data (specially for mesons, p and Λ) show a decreasing trend at low x. The usual DGLAP evolution [11] cannot account for such a trend since the pole in the splitting function P_{gg} always drives the gluon, and hence the sea, to larger values at small x. In 1988, Dokshitzer, Khoze, and Troyan [12] proposed a model wherein this dip could be accounted for by including gluon coherence effects. The resulting modified leading log approximation (MLLA) then gives a gaussian distribution for the singlet fragmentation functions. In the next section, we discuss singlet evolution using MLLA and look for improved fits to the low x data.

5.2 Modified Leading log evolution

The main result of the MLLA evolution [12, 17] is that the low-x singlet fragmentation functions have a gaussian form in the variable $\log(x_p)$:

$$x_p D(x_p, Q) = \frac{N(Q)}{\sqrt{2\pi} \sigma(Q)} \exp \left[-\frac{[\log(x_p) - \log(x_0)]^2}{2\sigma^2(Q)} \right],$$

where $N(Q)$ is the total multiplicity, σ is the width of the gaussian and x_0 is the position of the peak of the gaussian. The Q^2 dependence of N, σ and x_0 are computable.
for total inclusive hadrons within this approach. They are given as an expansion in terms of the scale parameter, $Y = \log(Q/\Lambda)$, $\Lambda = 200$ MeV:

$$N(Q) \propto Y^{-B/2+1/4} \exp \sqrt{16N_c Y/b} ;$$

$$\sigma^2 = Y^2/(3z) ;$$

$$\log(1/x_0) = Y \left[1/2 + \sqrt{c/Y - c/Y} \right] ,$$

where N_c and n_f are the number of colours and flavours, which determine the constants,

$$a = 11N_c/3 + 2n_f/(3N_c^2) ; \quad b = (11N_c - 2n_f)/3 ;$$

$$B = a/b ; \quad z = \sqrt{(16N_c Y)/b} ;$$

$$c = (11/48) \left[1 + (2n_f/(11N_c^3))^2 / [1 - 2n_f/(11N_c)] \right] .$$

The total multiplicities (at 91.2 GeV, for instance) [8, 9, 15] can be used to fix the proportionality constant for $N(Q)$; the individual particle multiplicities then determine $N^h(q)$, the multiplicity of the specific hadron, h. The values of σ and x_0 are in good agreement with inclusive data [12]: however, we are here interested in semi-inclusive spectra. In general, the peak shifts to smaller x (here meaning x_p) values for heavier hadrons. Also, the semi-inclusive widths are naturally smaller than the total inclusive ones. We therefore parametrise the corresponding semi-inclusive parameters as

$$x^h_0 = C^h_1 x_0 ,$$

$$\sigma^2_h = C^h_2 \sigma^2 ,$$

where x^h_0 is the peak position and σ_h the width of the data for hadron h. Here C^h_1 and C^h_2 are Q^2 independent constants which we fit to the 91.2 GeV data. They are given in Table 4. These are then used to determine the rates at lower energies. The resulting fits are again quite good and shown in Figs. 5 and 6 for 90 and 34 GeV respectively. Note that the cross section has been plotted as a function of x_p and not x_E here.

Note that the MLLA is a fit to the singlet fragmentation functions alone; therefore comparison should be made with data for $x_p \lesssim 0.1$, where the valence contribution is expected to be small. In the case of Z^0 exchange, this is also a good fit to the entire data. This is because at 91.2 GeV, the cross section is dominated by the singlet term, as can be seen from writing Eq. 3 explicitly:

$$\frac{1}{\sigma_{tot}} \frac{d\sigma^{h,Z}}{dx} = \frac{12\Sigma^h - 1.5D_3 - 0.5D_8}{36} .$$

We see that the singlet contribution is about 10 times larger than either of the octet contributions. We therefore expect the MLLA approach to yield sensible fits to the data at this energy. In the case of photon exchange data, the singlet contribution is still large:

$$\frac{1}{\sigma_{tot}} \frac{d\sigma^{h,\gamma}}{dx} = \frac{2\Sigma^h + 1.5D_3 + 0.5D_8}{6} ,$$

10
but the D_3 contribution is not small. Hence MLLA may not be a very good description of the data at smaller energies, especially at larger x. However, for the case of Λ and Σ^0, $D_3 = 0$ so that the MLLA singlet term still saturates the event rate to a good approximation.

6 Discussion and Conclusions

We have proposed a simple model for quark fragmentation into an octet baryon or a pseudoscalar meson, using SU(3) symmetry of quarks and octet hadrons. All quark fragmentation functions have been described in terms of three SU(3) symmetric functions $\alpha(x, Q^2)$, $\beta(x, Q^2)$ and $\gamma(x, Q^2)$ and an SU(3) breaking parameter λ. The antiquark fragmentation functions are correspondingly described by $\overline{\alpha}$, $\overline{\beta}$ and $\overline{\gamma}$. There are 3 quark (plus 3 antiquark) fragmentation functions corresponding to a given hadron; hence a given hadron octet would involve a total of (24×2) fragmentation functions. All these are described in our model by just 6 functions, leading to a very simple model, but with strong predictive power. Leading log evolution of these fragmentation functions has been used to compare the model predictions with data. We find that it is possible to fit the model parameters in such a way as to get a good agreement with the x-dependence of all octet baryons and mesons, at two different sample energies (corresponding to Z^0 and photon exchange) over most of the x range of available data. These fits were then used to determine the inclusive cross section at 161 GeV where both photon and Z^0 exchange are involved. There was good agreement with data here as well. We have used both DGLAP evolution as well as the modified leading log approximation (MLLA) to evolve the fragmentation functions; the latter has especially been used to explain the decrease in the hadroproduction rates at small-x seen in the data for many hadrons. We have used a small non-zero input gluon distribution (as shown in Table 3); however, very little sensitivity to the gluon fragmentation function is seen and this is therefore not well-determined in our analysis.

The model realises the shape of the x-distribution of all available data on octet mesons and baryons very well. It does not describe the Λ and K data at 34 GeV very accurately; however, it is able to give a good agreement with even this data to within 2σ. All other baryon and meson data are fitted very well. However, we note that it is possible to get good fits at all Q^2 for each hadron individually. The SU(3) symmetry constraint relating the different hadron fragmentation functions worsens the fit in some cases; this reflects the simplicity of our model, which incorporates SU(3) symmetry breaking effects in a very simple way. The goodness-of-fit from the model therefore also indicates the extent to which this symmetry breaking is a universal phenomenon, independent of the type of quark or diquark that is produced.

The parameter λ takes into account the difference in masses of the strange and non-strange quarks and suppresses non-strange quark fragmentation into strange hadrons. This parameter is similar to the suppression factor of the Lund Monte Carlo, however, it is determined by means of a simple comparison of data of stange and
non-strange hadrons. The Lund model uses string fragmentation and has a much larger suppression for the case of baryons (suppression factor = 0.06) as compared to the suppression factor of 0.2-0.3 for mesons. Our model has very similar values for the suppression factors for the two cases ($\lambda = 0.07$ for baryons, 0.08 for mesons).

Another approach [4] uses an SU(6) analysis of fragmentation functions using a quark and diquark model. Our SU(3) symmetric functions α and β are analogous to the SU(6) symmetric functions $\hat{S}(z)$ and $\hat{T}(z)$ defined therein. The function γ (not included in their model) describes sea fragmentation, for instance, s fragmenting to a proton. We find that γ is large in the small x region, so that its contribution is significant and cannot be ignored.

We find that the strange quark fragmentation dominates strange hadroproduction over almost the entire x range. This is especially true for Λ, which has recently been of much interest [1, 18]. It is possible to extend the model to include spin-dependent fragmentation functions; the unpolarised result then indicates that polarised Λ fragmentation will be dominated by its strange fragmentation function, which can then be readily parametrised and studied.

Finally, our results suggest that there is indeed an underlying symmetry among the baryons and mesons in an octet, which can be tested further by extending the model to decuplet baryons and other hadrons.

Acknowledgments: We are grateful to the late K.V.L. Sarma for helpful discussions. We would like to thank B.D. Roy and Debajyoti Choudhury for active discussions and ideas. A.R. thanks U.G.C. for grant of a fellowship, R.K. Shivpuri for constant support and encouragement and MRI for hospitality.

Appendix A

We briefly detail the calculations leading to the results in Table 2 for the quark fragmentation functions in terms of α, β and γ.

Let q_i be a quark triplet, B^j_{ik} the hadron octet, $i, j, k = 1, 2, 3$.

Case 1 X is a triplet, X_i: Then the invariant amplitude for the process $q \to H + X$ is $q_iH^i_jX^3$, where X_i and q_i are normalised. Here H^i_j are the elements of the meson/baryon matrix (see Table 1). Thus, the rate for $u \to p + X$ is $\alpha |uB^3_3X^3|^2$ which is equal to α. Similarly, the rate for $u \to \Lambda + X$ is $\alpha |uB^1_1X^1|^2$ which is equal to $\alpha/6$ and so on.

Case 2 X is a sixplet, X_{ij}: Now X_{ij} is symmetric in i and j and is expressed in terms of triplets as $(q_iq_j + q_jq_i)/\sqrt{2}$, where each q is normalised. The invariant amplitude is $\epsilon^{imj}q_iH^k_jX_{km}$. Thus, $d \to p + X$ as $\beta |\sqrt{2}|^2$ and so on.
Case 3 \(X \) is a fifteenplet, \(X_{ij}^{jk} \): Then \(X_{ij}^{jk} \) is symmetric in \(j, k\) and is antisymmetric in \(i, j\). In terms of triplets, the normalised \(X \) can be re-expressed as

\[
X_{ij}^{jk} = \frac{1}{\sqrt{2}} \left[q^i q^k q_i + q^k q^j q_i - \frac{1}{4} \delta_i^j (q^k q^j q_i + q^j q^k q_i) - \frac{1}{4} \delta_i^k (q^i q^j q_i + q^j q^i q_i) \right],
\]

where each of the \(q_i\)‘s is normalised.

The invariant amplitude is \(X_{i}^{ij}H_{i}^{j}q_k\). In this case, we shall have to take the interference terms for the diagonal elements of the meson/baryon matrix also into account. Note that \(X_{ij}^{ij} = 0 \) (sum over \(i\) is implied). Thus, the rate for \(u \to \Lambda + X\) is

\[
\gamma \left| \frac{1}{\sqrt{6}}X_{11}^{11} + \frac{1}{\sqrt{6}}X_{21}^{21} - \frac{2}{\sqrt{6}}X_{31}^{31} \right|^2 \text{ which is equal to } \gamma \left| \frac{3}{\sqrt{6}}(X_{11}^{11} + X_{21}^{21}) \right|^2.
\]

On evaluating this expression, we find that this is equal to \(9/8\gamma\). The other rates can also be found in a similar manner. The final results are given in Table 2.

References

[1] D. de Florian, M. Stratmann and W. Vogelsang, preprints [hep-ph/9710410, hep-ph/9711387], 1997.

[2] J. Binnewies, B.A. Kniehl and G. Kramer, Z. Phys. C65, 471 (1995).

[3] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 97, 31 (1983).

[4] P. Hoodbhoy and M. Nzar, Phys. Rev. D51, 32 (1995).

[5] S. Chun and C. Buchanan, Phys. Rep. 292, 239 (1998).

[6] T. Sjöstrand, Comp. Phys. Comm 82, 74 (1994).

[7] G. Marchesini et al., Comp. Phys. Comm 67, 465 (1992).

[8] D. Buskulic et al., ALEPH Collaboration, Z. Phys. C66, 355 (1995), Z. Phys. C64, 361 (1994); R. Barate et al., ALEPH Collaboration, CERN-PPE-96-186 (1996), CERN-PPE-96-168 (1996); P. Abreu et al., DELPHI Collaboration, Nucl. Phys. B444, 3 (1995), Z. Phys. C67, 543 (1995), Z. Phys. C65, 587 (1995), Phys. Lett. 318B, 249 (1993); D. Adam et al., DELPHI Collaboration, Z. Phys. C69, 561 (1995); M. Acciarri et al., L3 Collaboration, Phys. Lett. 328B, 223 (1994); R. Akers et al., OPAL Collaboration, Z. Phys. C67, 389 (1995), Z. Phys. C63, 181 (1994); G. Alexander et al., OPAL Collaboration, CERN-PPE-96-099 (1996), CERN-PPE-96-100 (1996); see also [8] below.

[9] G. Alexander et al., OPAL Collaboration, Z. Phys. C73, 587 (1997).
[10] M. Althoff et al., TASSO Collaboration, Z. Phys. C27, 27 (1985), Phys. Lett. 130B, 340 (1983); R. Brandelik et al., TASSO Collaboration, Phys. Lett. 108B, 71 (1982), Phys. Lett. 94B, 444 (1980); W. Braunschweig et al., TASSO Collaboration, Z. Phys. C47, 167 (1990), Z. Phys. C45, 209 (1990), Z. Phys. C42, 189 (1989), Z. Phys. C33, 13 (1986); H. Aihara et al., TPC Collaboration, Phys. Rev. Lett. 61, 1263 (1988), Z. Phys. C27, 187 (1985); D.D. Pitzl et al., JADE Collaboration, Z. Phys. C46, 1 (1990); W. Bartel et al., JADE Collaboration, Z. Phys. C28, 343 (1985); T.L. Geld et al., HRS Collaboration, Phys. Rev. D45, 3949 (1992); M. Derrick et al., HRS Collaboration, Phys. Rev. D35, 2639 (1987); P. Baringer et al., HRS Collaboration, Phys. Rev. Lett. 56, 1346 (1986); H.J. Behrend et al., CELLO Collaboration, Z. Phys. C47, 1 (1990), Z. Phys. C46, 397 (1990); S.R. Klein et al., MARK-II Collaboration, Phys. Rev. Lett. 58, 644 (1987); C. De La Vaissiere et al., MARK-II Collaboration, Phys. Rev. Lett. 54, 2071 (1985).

[11] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972); Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[12] Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Rev. Mod. Phys. 60, 373 (1988); Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics Of Perturbative QCD (Editions Frontieres) 1991.

[13] See, for instance, P. Nason and B.R. Webber, Nucl. Phys. B421, 473 (1994).

[14] The data were taken from the Durham Database, 1997.

[15] M. Acciarri et al., L3 Collaboration, Phys. Lett. 328B, 223 (1994); W. Braunschweig et al., TASSO Collaboration, Z. Phys. C45, 193 (1989); P.D. Acton et al., OPAL Collaboration, Z. Phys. C53, 539 (1992), Phys. Lett. 291B, 503 (1992); H. Aihara et al., TPC Collaboration, Phys. Rev. Lett. 52, 577 (1984); W. Bartel et al., JADE Collaboration, Phys. Lett. 104B, 325 (1981).

[16] K. Ackerstaff et al., OPAL Collaboration, Z. Phys. C75, 193 (1997).

[17] A. Bassetto, M. Ciafaloni and G. Marchesini, Phys. Rep. 100, 201 (1983).

[18] V. Ravindran, Nucl. Phys. B490, 272 (1997).
\[
\begin{pmatrix}
\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\
\Sigma^- & \frac{-\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\
\Xi^- & \Xi^0 & -2\Lambda/\sqrt{6}
\end{pmatrix}
\]
\[
\begin{pmatrix}
\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\
\pi^- & \frac{-\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\
K^- & K^0 & -2\eta/\sqrt{6}
\end{pmatrix}
\]

Table 1: (a) Members of the meson octet and (b) Members of the baryon octet.

fragmenting quark	p/K^+	fragmenting quark	n/K^0
u	$\alpha + \beta + \frac{3}{4}\gamma$	u	$2\beta + \gamma$
d	$2\beta + \gamma$	d	$\alpha + \beta + \frac{3}{4}\gamma$
s	2γ	s	2γ
fragmenting quark	Λ^0/η	fragmenting quark	Σ^0/π^0
u	$\frac{1}{6}\alpha + \frac{5}{6}\beta + \frac{11}{6}\gamma$	u	$\frac{1}{6}\alpha + \frac{5}{6}\beta + \frac{11}{6}\gamma$
d	$\frac{1}{6}\alpha + \frac{5}{6}\beta + \frac{11}{6}\gamma$	d	$\frac{5}{6}\alpha + \frac{1}{2}\beta + \frac{11}{6}\gamma$
s	$\frac{1}{6}\alpha + \frac{5}{6}\beta + \frac{11}{6}\gamma$	s	$2\beta + \gamma$
fragmenting quark	Σ^+/π^+	fragmenting quark	Σ^-/π^-
u	$\alpha + \beta + \frac{3}{4}\gamma$	u	2γ
d	2γ	d	$\alpha + \beta + \frac{3}{4}\gamma$
s	$2\beta + \gamma$	s	$2\beta + \gamma$
fragmenting quark	Ξ^0/K^0	fragmenting quark	Ξ^-/K^-
u	$2\beta + \gamma$	u	2γ
d	2γ	d	$2\beta + \gamma$
s	$\alpha + \beta + \frac{3}{4}\gamma$	s	$\alpha + \beta + \frac{3}{4}\gamma$

Table 2: Quark fragmentation functions into members of the baryon and meson octet in terms of the SU(3) functions, α, β and γ.

15
Table 3: Input values at $Q^2 = 2 \text{ GeV}^2$ for the valence and singlet fragmentation functions for the (a) meson and (b) baryon octet.

	α_V	β_V	γ	g
a	3.0	25.8	3.5	2.5
b	4.8	8.0	13.6	13.4
c	-0.55	1.52	0.12	0.12
d	-3.96	-5.19	-7.82	0
e	13.12	9.84	38.0	0

	V	γ	g
a	2.33	3.5	0.25
b	2.15	12.76	11.4
c	-0.64	-0.75	0.12
d	5.35	3.87	0
e	-5.12	61.59	0

Table 4: Multiplying constant factors for description of singlet fragmentation functions for mesons and baryons in the MLLA approach.

	p	Λ	Σ^\pm	Ξ^-	π^\pm	π^0	K^\pm	K^0
C_1	0.70	0.70	0.70	0.70	0.92	0.92	0.75	0.75
C_2	0.4	0.4	0.4	0.4	0.59	0.59	0.425	0.425
Figure 1: The figure on the left shows the baryon fragmentation probabilities α_V, β_V and γ, fitted using data on p, Λ and Σ at 90 GeV as a function of x, and the prediction for the Ξ baryon using these, along with the data used. The figure on the right shows the mesonic probabilities, V and γ, and the predictions for mesons; the fits shown are to data corresponding to π^\pm, π^0, K^\pm and K^0 in decreasing order of magnitude.
Figure 2: (a) The figure shows the model fits to the 90 GeV data for baryons using DGLAP evolution.
Figure 2: (b) The figure shows the model fits to the 90 GeV data for mesons using DGLAP evolution.
Figure 3: (a) The figure shows the model fits to the 34 GeV data for baryons using DGLAP evolution.

Figure 3: (b) The figure shows the model fits to the 34 GeV data for mesons using DGLAP evolution.
Figure 4: The model prediction for π^\pm (dotted lines) and $\pi^\pm + K^\pm$ (solid lines) is compared with the total inclusive charged particle data at 161 GeV [16].
Figure 5: (a) The figure shows the model fits to the 90 GeV data for baryons using MLLA evolution. Note that we have used $x = x_p$ in order to clearly exhibit the small-x data which is of interest here.
Figure 5: (b) The figure shows the model fits to the 90 GeV data for mesons using MLLA evolution. Note that we have used $x = x_p$ in order to clearly exhibit the small-x data which is of interest here.
Figure 6: (a) The figure shows the model fits to the 34 GeV data for baryons using MLLA evolution. Note that we have used $x = x_p$ in order to clearly exhibit the small-x data which is of interest here.

Figure 6: (b) The figure shows the model fits to the 34 GeV data for mesons using MLLA evolution. Note that we have used $x = x_p$ in order to clearly exhibit the small-x data which is of interest here.