Research Article

Wed Mohammed Ali ALaerjani, Saraa Abdullah Abu-Melha, Khalid Ali Khan, Hamed A. Ghramh, Ali Yahya A. Alalmie, Rahaf Mohammed Hussein Alshareef, Badria M. Al-Shehri, Mohammed Elimam Ahamed Mohammed*

Presence of short and cyclic peptides in Acacia and Ziziphus honeys may potentiate their medicinal values

https://doi.org/10.1515/chem-2021-0106
received June 4, 2021; accepted November 15, 2021

Abstract: Acacia honey is characterized by high nutritional, antioxidant, antibacterial and immuno-modulatory values. This work investigated the presence of short and cyclic peptides in Acacia and Ziziphus honey samples. Acacia honey samples (Acacia tortilis and Acacia hamulosa) and three Ziziphus honeys (Ziziphus spinachristi) were screened for their short and cyclic peptide contents using the LC-MS and the chemical structure databases. Moreover, the total protein content was determined using the Bradford method. The A. tortilis honey contained three short peptides; HWCC, DSST, and ECH, and the A. hamulosa honey sample contained five short peptides and one cyclic peptide. The short peptides of the A. hamulosa honey were Ac-GMGHG-OH (Ac-MGGHG-OH), Boc-R(Aloc)2-C(Pal)-OH, H-C (1)-NEt2-H-C (1)-NEt2, APAP (AAPP), and GAFQ (deamino-2-pyrid-4-y1-glycyl-DL-alanyl-DL-norvalyl-DL-asparagine). The cyclic peptide of the A. hamulosa honey was cyclo[Aad-RGD-D-F] (cyclo [Aad-Arg-Gly-Asp-d-Phe]). The Ziziphus honey was characterized by the presence of either Almiramide B or Auristatin-6-AQ. A. tortilis, A. hamulosa, and Ziziphus honeys are characterized by the presence of short and cyclic peptides which may contribute to their medicinal values.

Keywords: bioactive peptides, LC-MS, PubChem, ChemSpider, Molbase

1 Introduction

Nutritionally, honey is considered as energy food since it is majorly composed of carbohydrates and it is used in infants and children feeding to boost their growth. Moreover, honey contains some amounts of vitamins, minerals, amino acids, enzymes, and phenolic compounds which qualify it to act as antioxidant and to boost the athletic performance, immune system, and digestion and absorption. Medicinally, honey is used for wound healing due to its high sugar content, low moisture percentage, hydrogen peroxide, gluconic acid, and dicarbonyl molecules including the methylglyoxal. Furthermore, honey is used to treat disorders of hematology and immunity, metabolism and cardiovascular system, oral health, ophthalmology, and gastrointestinal tract beside its usage as anticancer (chemotherapy) and antimicrobial [1,2].

Honey is characterized by proteins such as the enzymes which originate from the honeybees or the plants’ nectars and secretions. The protein content of honey is associated with its medical and pharmaceutical value [3,4].

Short or bioactive peptides are composed of small number of amino acids in foods. The bioactive peptides are mostly produced by enzymatic hydrolysis of large proteins from animal and plant origins. Milk and its
products, eggs, meat, marine organisms, spinach, soybeans, and cereal grains are the best examples of bioactive peptides containing foods. Some bioactive peptides are chemically synthesized and added to foods for the purpose of increasing their medicinal value. Short peptides affect different body systems including the cardiovascular, endocrine, immune, nervous, and digestive systems. The presence of short peptides in foods prevents their oxidation and degradation by microbes [5–8].

Cyclic peptides are short peptides with ring structure due to the binding of its amino terminal to its carboxyl terminal by amide bond or other chemical bonds such as the ether, disulfide, and lactone bonds. Cyclic peptides are reported to be found in roasted coffee, cocoa, and malt beside their presence in milk, beverages, chicken, and fermented foods. Biological activities of cyclic peptides include antibacterial, antitumor, immunosuppressive and antioxidant activities. Known functions of cyclic peptides are the cyclo ([–Phe–Phe]) of chicken essence which inhibits the serotonin transporter and the acetylcholinesterase and the cyclo ([–His–Pro]) which inhibits rat’s food intake and reduces their body weight [5,9].

This article measured the concentration of total proteins and investigated the presence of short and cyclic peptides in Acacia and Ziziphus honey samples after they were authenticated with regard to their oral origin and some quality parameters.

2 Materials and methods

2.1 Study design

This study is an observational descriptive study. The disadvantages of descriptive studies include the small number of samples and the difficulty in deriving a general conclusion. However, descriptive studies are useful since they highlight research areas for survey studies [10].

2.2 Honey samples and their authentication

Two Acacia and three Ziziphus honey samples were collected directly from the bee farms and their hives. The samples were involved in this study after confirming their floral origin and their conformance to some of the international standards for honey. The two Acacia honeys were collected during the flowering seasons of A. tortilis and A. hamulosa, while the dominant Ziziphus tree in the study area was Z. spina-christi. All the honey samples were collected from Asir region at the southwestern part of Saudi Arabia.

The Ziziphus 3 honey samples were collected from bee farms at sea level altitude, while the A. hamulosa, Ziziphus 1, and Ziziphus 2 samples were harvested from bee farms at 900 m above sea level. A. tortilis was harvested at 2,000 m above sea level. The flowering season of the Z. spina-christi and A. hamulosa ranges from September to November, while the flowering season of A. tortilis is from March to July [11,12].

The floral origin of the honey samples was determined following the method published by Louveaux et al. [13]. The moisture, pH and acidity, conductivity, and diastase activity were determined according to the methods of International honey commission, (2009) [14], while the glucose, fructose, sucrose, and HMF were measured following the methods of Agilent company.

2.3 Determination of total protein concentration

The total protein concentration was determined in the studied samples using the spectrophotometric method of Bradford (1976) [3]. The protein in the samples (50% W/V; 100 µL) was reacted with coomassie brilliant blue (5 mL) and the absorbance was measured at a wavelength of 595 nm. Albumin was used in preparation of standard curve (0–500 µg/mL).

2.4 Liquid chromatography-mass spectrometry (LC-MS)

The chemical constituents and the presence of short peptides in honey samples were investigated using the LC-MS. Reverse phase elution was used (Waters Symmetry LC18 column 250 x 4.6 mm, 5 µm) on Agilent 6500 Series Accurate-Mass Quadrupole Time-of Flight (Q-TOF; Agilent CA, USA); Chemical structure databases search was carried out to identify the molecular formula and structure of the spectra obtained. LC-MS system with Agilent 1200 Series Diode Array Detector (module G1315B; detection type: 1,024-element photodiode array; light source: deuterium and tungsten lamps; wavelength range 190–950 nm). The mobile phase was composed of (A) formic acid (0.1%, v/v); (B) acetonitrile + 0.1% formic acid; gradient (in solvent B): (i) 20%, from 0 to 20 min, (ii) 95%, from 20 to 27 min, and (iii) 35%, at 27–30 min of total run time; flow rate was 0.2 mL/min; and injection
volume was 3 L. The ESI parameters were both negative and positive ion modes, mass range 100–1,200 m/z, spray voltage 4 kV, gas temperature 325°C, gas flow 10 L/min, and Nebulizer was 40 psi. The Agilent technologies Mass Hunter software was used to analyze the mass. Tuning and optimization are carried out before any run and on each single day as recommended by the manufacturer.

2.5 Chemical structure databases search

The molecular formulas obtained from the LC-MS were searched in the PubChem, ChemSpider, and Molbase databases to investigate the possible isomers. However, one short peptide is published by the University of Dortmund-Germany.

2.6 Statistical analysis

The agglomerative hierarchical Cluster analysis of the Statistical Package for Social Sciences (SPSS) was used to group the honey samples according to the values of the physicochemical parameters and the total proteins.

3 Results

The honey microscopic pollen analysis showed that all the honey samples were mono-floral with dominance of one pollen type by more than 60% (Figure 1).

The results of the measured quality parameters were within their ranges in the Codex Alimentarius standards of honey [15] (Table 1). However, some honeys were with marginal diastase activity compared to the standards which may be due to the geographical and climatic conditions.

3.1 Total protein concentration

The R^2 was 0.976, while the equation of the standard curve line was $Y = 0.00142X + 0.042$. The A. hamulosa and the Ziziphus 2 honey samples had the highest concentration of proteins (Table 1).

3.2 The agglomerative hierarchical clustering

The honey samples were divided into three groups (levels). Level one was composed of A. hamulosa, Ziziphus 2, and Ziziphus 3 honey samples and level 2 contained the honey samples of A. tortilis and Ziziphus 1. Level 3 involved all the honey samples except Ziziphus 1 honey (Figure 2). The clustering analysis grouped the honey samples according to their flowering time in the case of group one (A. hamulosa, Ziziphus 2, and Ziziphus 3). Moreover, the clustering analysis grouped the honey samples according to their altitude (level 3); all the honey samples were from farm at 900–2,000 m above sea level except the Ziziphus 3 sample which was from farms at the sea level.
3.3 LC-MS and the search in chemical structure databases

The LC-MS showed that the Ziziphus honey samples had one short peptide. Three short peptides were found in the *A. tortilis* honey, while five short peptides and one cyclic peptide were reported for the *A. hamulosa* honey.

3.4 The short peptides of the *A. tortilis* honey

The three short peptides of the *A. tortilis* honey were:

1. HWCC (His-Trp-Cys-Cys) with the molecular formula of $C_{23}H_{29}N_7O_5S_2$ which is retrieved from the ChemSpider database (Table 2 and Figure 3) [16].

2. DSST (Asp-Ser-Ser-Thr) which was obtained from the Molbase database and it had the molecular formula of $C_{14}H_{24}N_4O_{10}$ (Table 2 and Figure 3) [17].

3. The search in the PubChem for the molecular formula of $C_{14}H_{22}N_6O_5$ showed two short peptide isomers containing three amino acids with different sequences; Gln-Cys-His (ECH) and Cys-His-Gln (CHE) (Table 2 and Figure 3) [18,19].

3.5 The short and cyclic peptides of the *A. hamulosa* honey

The *A. hamulosa* honey was characterized by five short peptides and one cyclic peptide.
Table 2: The short and cyclic peptides of the Acacia and Ziziphus honey samples

Peak	Analyte peak name	RT min	Precursor m/z	Formula	MS/MS fragment	Proposed peptide fragment	Score	Honey sample	Database
1	47	4.33	548.1764/4.31	C$_{23}$H$_{29}$N$_7$O$_5$S$_2$	548.1764/4.31	His-Trp-Cys-HWCC	98.557	A. tortilis	ChemSpider
2	375	10.01	409.1556/9.98	C$_{16}$H$_{24}$N$_4$O$_{10}$	408.1879/9.98	l-Aspartic acid, l-seryl-l-seryl-l-threonyl-DSST	99.686	A. tortilis	Molbase
3	393	10.32	387.1454/10.33	C$_{16}$H$_{22}$N$_6$O$_5$S	386.2884/10.33	Gln-Cys-His (ECH) Cys-His-Gln (CHE)	98.413	A. tortilis	PubChem
4	135	5.15	500.1933/5.16	C$_{19}$H$_{23}$N$_7$O$_5$S	499.1383/5.16	Ac-Gly-Met-Gly-His-Gly-OH	99.811	A. hamulosa	PubChem
5	274	9.58	784.4526/9.58	C$_{38}$H$_{63}$N$_5$O$_{10}$S	784.3932/9.58	Boc-Arg(Aloc)2-Cys(Pal)-OH Boc-R(Aloc)2-C(Pal)-OH Na-tert-Butyloxy carbonyl-(N$_8$-ω-diallyloxy carbonyl)-l-arginyl-(S-palmitoyl)-l-cysteine [21]. l-Cysteine diethylamide (1→1')-disulfide compound with l-cysteine diethylamide	97.161	A. hamulosa	University of Dortmund
6	709	14.42	351.2083/14.54	C$_{16}$H$_{30}$N$_4$O$_5$S$_2$	349.8780/14.42	l-Cysteine diethylamide (1→1')-disulfide compound with l-cysteine diethylamide	98.603	A. hamulosa	PubChem

(Continued)
The five short peptides and their databases were:

1. The PubChem search showed that the molecular formula \(C_{19}H_{29}N_{7}O_{7}S \) is similar to the molecular formula of two short peptides Ac-GMGHG-OH (Ac-Gly-Met-Gly-His-Gly-OH) and Ac-MGGHG-OH (Ac-Met-Gly-Gly-His-Gly-OH) (Table 2 and Figure 4) [20].

2. Eisele (2000) [21] did his diploma degree at the university of Dortmund and synthesized a short peptide with the molecular formula of \(C_{12}H_{28}N_{4}O_{6}S \) similar to the molecular formula reported in the \textit{A. hamulosa} honey. The short peptide was Boc-R(Aloc)2-C(Pal)-OH (Boc-Arg(Aloc)2-Cys(Pal)-OH) or \(\alpha\text{-ner}-\text{Butyloxy carbonyl-}(N8,\omega\text{-diallyloxy carbonyl})-\text{L-arginyl-(S-palmitoyl)}\text{-L-cysteine} \) (Table 2 and Figure 4) [21].

3. The third molecular formula was \(C_{16}H_{30}N_{4}O_{2}S_{2} \) which is corresponding to \(H-C-(1\text{-NEt2})H-C-(1\text{-NEt2}) \text{-L-cysteine diethylamide (1 \rightarrow 1')}\text{-disulfide compound with L-cysteine diethylamide} \) in the PubChem database (Table 2 and Figure 4) [22].

Table 2: Continued

Peak	Analyte peak name	RT min	Precursor m/z	Formula	MS/MS fragment	Proposed peptide fragment	Score	Honey sample	Database
7	372.2242/15.32M +NH4+	15.32	372.2242	\(C_{16}H_{28}N_{6}O_{5} \)	353.3566 354.2020	Ala-Pro-Ala-Pro 96.085 A. hamulosa PubChem			
8	444.1856/15.37M +Na+	15.39	444.1856	\(C_{19}H_{27}N_{5}O_{6} \)	443.2626 443.2857	Alfuzosin hydroxy acid 98.318 A. hamulosa PubChem			
9	619.2838/15.62	15.63	619.2838	\(C_{27}H_{38}N_{8}O_{9} \)	619.2836 620.2860 621.2891 622.5138	Cyclo[Arg-Gly-Asp-Phe] 98.108 A. hamulosa PubChem			
10	725.4955/18.51	18.48	725.496	\(C_{16}H_{28}N_{6}O_{6} \)	725.4441 725.4960 725.6715 726.5013 726.5954 727.5192 727.4981 727.5192 728.5191	Auristatin-6-AQ or 99.94 Ziziphus-2 PubChem			

Footnote:

(i) The five short peptides and their databases were:

1. The PubChem search showed that the molecular formula \(C_{19}H_{29}N_{7}O_{7}S \) is similar to the molecular formula of two short peptides Ac-GMGHG-OH (Ac-Gly-Met-Gly-His-Gly-OH) and Ac-MGGHG-OH (Ac-Met-Gly-Gly-His-Gly-OH) (Table 2 and Figure 4) [20].

2. Eisele (2000) [21] did his diploma degree at the university of Dortmund and synthesized a short peptide with the molecular formula of \(C_{12}H_{28}N_{4}O_{6}S \) similar to the molecular formula reported in the \textit{A. hamulosa} honey. The short peptide was Boc-R(Aloc)2-C(Pal)-OH (Boc-Arg(Aloc)2-Cys(Pal)-OH) or \(\alpha\text{-ner}-\text{Butyloxy carbonyl-}(N8,\omega\text{-diallyloxy carbonyl})-\text{L-arginyl-(S-palmitoyl)}\text{-L-cysteine} \) (Table 2 and Figure 4) [21].

3. The third molecular formula was \(C_{16}H_{30}N_{4}O_{2}S_{2} \) which is corresponding to \(H-C-(1\text{-NEt2})H-C-(1\text{-NEt2}) \text{-L-cysteine diethylamide (1 \rightarrow 1')}\text{-disulfide compound with L-cysteine diethylamide} \) in the PubChem database (Table 2 and Figure 4) [22].
4. APAP (Ala-Pro-Ala-Pro) in the ChemSpider database and AAPP (Ala-Ala-Pro-Pro) in the PubChem. The molecular formula was C\textsubscript{16}H\textsubscript{26}N\textsubscript{4}O\textsubscript{5} (Table 2 and Figure 4) [23,24].

5. The fifth short peptide of the A. hamulosa honey was with the molecular formula of C\textsubscript{19}H\textsubscript{27}N\textsubscript{5}O\textsubscript{6} which correspond the sequence of deamino-G\textsubscript{4}-pyridyl-DL-A-DL-Nva-DL-aspartyl-DL-phenylalaninyl] (cyclo[Aad-RGD-D-F]) with the molecular weight of C\textsubscript{27}H\textsubscript{38}N\textsubscript{8}O\textsubscript{9}. The LC-MS molecular formula was searched in the PubChem database (Table 2 and Figure 4) [28].

3.6 The short peptide of the Ziziphus honey samples

The Ziziphus 2 honey sample contained a short peptide with the molecular formula of C\textsubscript{40}H\textsubscript{64}N\textsubscript{6}O\textsubscript{6}. In the PubChem, the short peptide is registered as Auristatin-6-AQ, a
dipeptide containing two methylated valine residues [29]. The ChemSpider and PubChem search showed that the molecular formula is for Almiramide B, a short peptide with phenylalanamide, three methylated valine residues and one methyl alanine (Table 2 and Figure 5) [30,31].

4 Discussion

All the studied quality parameters of the honey samples were within the ranges of the Codex Alimentarius standards except the diastase activity of two Ziziphus honey samples which was in the lower margin. The marginal activity of the diastase enzyme may be due to the climatic conditions of Tehama (Geographical region). The Ziziphus honey had no short peptides, while the two Acacia honeys contained short and cyclic peptides.

The first short peptide of the A. tortilis honey is the (His-Trp-Cys-Cys) which is available in the ChemSpider database [16]. It proposed that presence of cross links between His-Cys and Trp-Cys play a regulatory role of host enzymes [32]. Dipeptides that possess tryptophan, tyrosine, cysteine, or methionine have antioxidant activities [33].

The L-aspartic acid-L-seryl-L-threonyl (DSST) (CAS No.: 748808-93-7) of the A. tortilis honey sample has the molecular formula of C_{14}H_{24}N and is registered in the Molbase database [17]. Proteins and short peptides containing Asp, Ser, and threonine are reported to act as binders and transporters of cations and their related substrates [34,35]. Thus, the presence of the DSST short peptide in the A. tortilis honey may be an indication for its mineral content.

The A. tortilis honey contained a third short peptide identified as Gln-Cys-His (ECH) [18] or Cys-His-Gln (CHE) [19]. No published article containing the three amino acids was retrieved. However, Cys-His are known to be responsible for acetyl transfer reactions in enzyme mimics [36].

Concerning the short peptides of the A. hamulosa, the N-acetyl-L-methionyl-glycyl-glycyl-L-histidyl-glycine is the first identified short peptide in the PubChem of the national center for biotechnology information [20]. Peptides that contain the sequence of Gly-Gly-His are known to act as copper binding proteins [37–39]. Moreover, it is reported that presence of tyrosine, tryptophan, methionine, lysine, cysteine, and histidine in a short peptide increases its antioxidant activity [40].
Na-tert-Butyloxycarbonyl-(N6,ω-diallyloxycarbonyl)-L-arginyl-(S-palmitoyl)-L-cysteine (Boc-Arg(Aloc)2-Cys(Pal)-OH) was the second short peptide of the *A. hamulosa* honey. A search of the literature showed that this short peptide is synthesized for the purpose of identifying the function of viral proteins and their modified forms [21]. Cysteine residues of short peptides and their position are well-known to possess an antioxidant activity because of the direct interaction between the SH and the radicals [41]. Some Arginine containing short peptides in royal jelly samples have been proved to possess antioxidant activities [42]. Since this short peptide contains both arginine and cysteine, it may qualify the *A. hamulosa* honey to act as antioxidant diet.

The third short peptide in the *A. hamulosa* was the L-cysteine diethylamide (1 → 1')-disulfide compound with L-cysteine diethylamide (H-C (1)-NEt2-H-C (1)-NEt2) [22], with score percentage of 98.6%. This dipeptide was produced and tested as inhibitor of L-cystine crystallization and a possible treatment for cystinuria and prevention of cystine renal stones [22]. The *A. hamulosa* honey may be a possible inhibitor of the formation of cystine renal stones.

The fourth supposed short peptide in the *A. hamulosa* honey have sequence of Ala-Ala-Pro-Pro in the PubChem [23] and the sequence of Ala-Pro-Ala-Pro in the ChemSpider database [24]. Short peptides rich in proline are known to possess an antioxidant activity [43,44]. Strong capacity of hydroxyl radical scavenging was reported for the Alanine containing dipeptides [45].

The *A. hamulosa* fifth short peptide was reported as deamino-2-pyrid-4-yl-glycyl-DL-alanyl-DL-norvalyl-DL-asparagine (deamino-G(4-pyridyl)DL-A-DL-NV-DL-N) in the PubChem [25] and gly-al-a-phe-gln in the ChemSpider [26]. Presence of hydrophobic amino acids such as alanine, glycine, and valine in the sequence of short peptides facilitates the binding of these short peptides to fatty acids leading to the inhibition of lipid oxidation [39]. Presence of phenylalanine in a short peptide indicates its radical scavenging capability [40], while short peptides containing Asparagine or glutamine in the mid exhibited antihypertensive activity [46,47].

The cyclic peptide of the *A. hamulosa* honey was the cyclo{[L-alpha-homoglutamyl-L-arginyl-glycyl-L-alpha-aspartyl-D-phenylalanyl]} (cyclo[Aad-RGD-D-F]) which is found in the PubChem database [28]. The cyclic peptide is used in bioassay for integrin receptor [28]. According to its cyclic nature and amino acid content, this peptide could be used as antioxidant, antimicrobial, antitumor and can also be used as weight loss inducing peptide [5,9].

The *Z. spina-christi* honey contained Almiramide B short peptide which acts as anti-*Leishmania donovani* and anti-*Trypanosoma brucei* brucei [48,49]. Auristatin-6-AQ is potently active against human cancer cell lines [50].
This study is limited due to the small number of honey samples. Future studies should be designed to involve more Acacia honey samples and the short peptides should be extracted or synthesized so as to investigate their biological and medicinal activities.

5 Conclusion

The A. tortilis honey contained three short peptides, while five short peptides and one cyclic peptide were found in the A. hamulosa honey. The Ziziphus spina-christi honey can be used as an anticancer, anti-Leishmania donovani, and anti-Trypanosoma brucei brucei. The presence of the short and cyclic peptides in the Acacia honey qualifies it to act as a natural medicine such as the Manuka honey.

Acknowledgements: The authors extend their appreciation for the Poison Control and Medical Forensic Chemistry Centre, Ministry of Health, Asir region, Saudi Arabia for permitting them to perform the LC-MS analysis.

Funding information: This research is funded by the Scientific Research Deanship at King Khalid University and the Ministry of Education in KSA through the project number (IFP-KKU-2020/5).

Authors contributions: A.W. – conceptualization and formal analysis; A.S. and G.H. – conceptualization; KK – formal analysis and revision of manuscript; A.A., A.R., and A.B. – formal analysis; MM – conceptualization, management, formal analysis, statistical analysis, manuscript writing, and revision.

Conflict of interest: The authors declare no conflict of interest.

Informed consent (if applicable): The bee keepers did not agree to publish the latitude and longitude of their bee farms, because they believe that if their location is published, many beekeepers will bring their bee farms to the location. The geographical location of the samples is mentioned as wide areas such as Bisha and Tehama.

Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: The research data are available upon request.

References

[1] Khan FR, Ul Abadin Z, Rauf N. Honey: nutritional and medicinal value. Int J Clin Pract Int J Clin Pract. 2007;61(10):1705–7. doi: 10.1111/j.1742-1241.2007.01417.x.
[2] Ajibola A, Chamunorwa JP, Erlwanger KH. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr Metab (Nutr Metab (Lond). 2012;9:61. doi: 10.1186/1743-7075-9-61.
[3] Azeredo LDAC, Azeredo MAA, de Souza SR, Dutra VML. Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem. 2003;80(2):249–54. doi: 10.1016/S0308-8146(02)00261-3.
[4] Erban T, Scherbachenko E, Talacko P, Harant K. The unique protein composition of honey revealed by comprehensive proteomic analysis: allergens, venom-like proteins, antibacterial properties, royal jelly proteins, serine proteases, and their inhibitors. J Nat Prod. 2019;82(5):1217–26. doi: 10.1021/acs.jnatprod.8b00968.
[5] Sánchez A, Vázquez A. Bioactive peptides: a review. Food Qual Saf. 2017;1:29–46. doi: 10.1093/fqs/fux006.
[6] Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients. 2018;10:1738. doi: 10.3390/nu10111738.
[7] Rutherford-Markwick KJ. Food proteins as a source of bioactive peptides with diverse functions. Br J Nutr. 2012;108:S149–57. doi: 10.1017/S000711451200253X.
[8] Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Res Int. 2014;2014:608979. doi: 10.1159/2014/608979.
[9] Joo SH. Cyclic peptides as therapeutic agents and biochemical tools. Biomol Ther (Seoul). 2012;20(1):19–26. doi: 10.4062/biomolther.2012.20.1.019.
[10] Koh ET, Owen WL. Descriptive research and qualitative research. In Koh ET, Owen WL, editors. Introduction to nutrition and health research. Boston, MA, USA: Springer; 2000. p. 219–48.
[11] Khabash MS. Ziziphus trees in yemen (in Arabic). Yemeni Bee Keep. 2006;7:1–16.
[12] High Commission for the Development of Arriyadh. Manual of Arriyadh plants. Riyadh, Saudi Arabia: King Fahd National Library Cataloging-in-Publication Data; 2014. p. 34–5.
[13] Louveaux J, Maurizio A, Vorwöhl G. International commission for bee botany of IUBS. Methods of melissopalynology. Bee Word. 1978;59(4):139–57.
[14] International Honey Commission. Harmonized methods of international honey commission; 2009. Available at: https://www.ihc-platform.net/IHCmethods2009.pdf.
[15] Codex Alimentarius: International food standards. CXS 12-1981. Standard for honey; 1981. Revised 2019.
[16] Royal Society of Chemistry. ChemSpider compound summary for CSID: 16646752, His-Trp-Cys-Cys. http://www.chemspider.com/Chemical-Structure.16646752.html. Accessed May 9, 2021.
[17] MOLBASE. MOLBASE compound summary for CAS no: 748808-93-7, L-Aspartic acid, L-seryl-L-seryl-L-threonyl-. http://www.molbase.com/moldata/36227906.html. Accessed May 10 2021.
[18] National Center for Biotechnology Information. PubChem Compound Summary for CID 145455020, Gln-Cys-His. https://pubchem.ncbi.nlm.nih.gov/compound/Gln-Cys-His. Accessed May 10, 2021.
[19] National Center for Biotechnology Information. PubChem Compound Summary for CID 165454757, Cys-His-Gln. https://pubchem.ncbi.nlm.nih.gov/compound/Cys-His-Gln. Accessed May 10, 2021.

[20] National Center for Biotechnology Information. PubChem Compound Summary for CID 134827222, Ac-Met-Gly-Gly-His-Gly-OH. https://pubchem.ncbi.nlm.nih.gov/compound/Ac-Met-Gly-Gly-His-Gly-OH. Accessed May 10, 2021.

[21] Eisele F. Synthesis of lipidated peptide structures of viral and cellular proteins. Germany: Faculty of Chemistry, University of Dortmund; 2000. p. 107–8. Available at: https://dnb.info/961588497/34.

[22] National Center for Biotechnology Information. PubChem Compound Summary for CID 76684165, Chembl4228418. https://pubchem.ncbi.nlm.nih.gov/compound/Chembl4228418. Accessed May 11, 2021.

[23] National Center for Biotechnology Information. PubChem Compound Summary for CID 71446459, Ala-Ala-Pro-Pro. https://pubchem.ncbi.nlm.nih.gov/compound/Ala-Ala-Pro-Pro. Accessed May 12, 2021.

[24] Royal Society of Chemistry. ChemSpider compound summary for CSID: 16581690, Ala-Ala-Pro-Pro. http://www.chemspider.com/Chemical-Structure.16581690.html. Accessed May 12, 2021.

[25] National Center for Biotechnology Information. PubChem Compound Summary for CID 137440181, Schembl20677254. https://pubchem.ncbi.nlm.nih.gov/compound/Schembl20677254. Accessed May 12, 2021.

[26] Royal Society of Chemistry. ChemSpider Compound Summary for CSID: 16632217, gly-ala-pha-gln. http://www.chemspider.com/Chemical-Structure.16632217.html. Accessed May 12, 2021.

[27] Sanki UK, Mandal BK. In vitro-in vivo correlation evaluation of generic alfuzosin modified release tablets. International scholarly research notices; 2012. p. 813836. doi: 10.5402/2012/813836.

[28] National Center for Biotechnology Information. PubChem Compound Summary for CID 11628719. https://pubchem.ncbi.nlm.nih.gov/compound/11628719. Accessed May 12, 2021.

[29] National Center for Biotechnology Information. PubChem Compound Summary for CID 54582072, Auristatin-6-AQ. https://pubchem.ncbi.nlm.nih.gov/compound/Auristatin-6-AQ. Accessed Oct. 30, 2021.

[30] Royal Society of Chemistry. ChemSpider Compound Summary for CSID: 24671779, ALMIRAMIDE B. http://www.chemspider.com/Chemical-Structure.24671779.html. Accessed Oct. 30, 2021.

[31] National Center for Biotechnology Information. PubChem Compound Summary for CID 46237303, Almiramide B. https://pubchem.ncbi.nlm.nih.gov/compound/Almiramide-B. Accessed Oct. 30, 2021.

[32] Fujieda N. His-Cys and Trp-Cys cross-links generated by posttranslational chemical modification. Biosci Biotechnol Biochem. 2020;84(3):445–54. doi: 10.1080/09168451.2019.1696178.

[33] Zheng L, Zhao Y, Dong H, Su G, Zhao M. Structure–activity relationship of antioxidant dipetides: Dominant role of Tyr, Trp, Cys and Met residues. J Funct Foods. 2016;21:485–96. doi: 10.1016/j.jff.2015.12.003.

[34] Simonin A, Montalbetti N, Gyimesi G, Pujol-Giménez J, Hediger MA. The hydroxyl side chain of a highly conserved serine residue is required for cation selectivity and substrate transport in the glial glutamate transporter GLT-1/SLC1A2. J Biol Chem. 2015;290(51):30464–74. doi: 10.1074/jbc.M115.689836.

[35] Sun X, Sarteshnizzi RA, Boachie RT, Okagu OD, Abioye RO, Neves RP, et al. Peptide–mineral complexes: understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods. 2020;9:1402. doi: 10.3390/foods9101402.

[36] Takahashia T, Ngob BCV, Xiaob L, Aryac G, Heller MJ. Molecular mechanical properties of short-sequence peptide enzyme mimics. J Biomol Struct Dyn. 2016;34(3):463–74. doi: 10.1080/07391102.2015.1039586.

[37] Hohage O, Sheldrick WS. Cisplatin mediates selective downstream hydrolytic cleavage of Met-(Gly)n-His segments (n = 1) in methionine- and histidine-containing peptides: The role of ammine loss trans to the initial Pt-S(Met) anchor in facilitating amide hydrolysis. J Inorg Biochem. 2006;100:1506–13. doi: 10.1016/j.jinorgbio.2006.03.017.

[38] Gooding JJ, Hibbert DB, Yang W. Electrochemical metal ion sensors. exploiting amino acids and peptides as recognition elements. Sensors. 2001;1(3):75–90. doi: 10.3390/si0300075.

[39] Karami Z, Akbari-adergani B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J Food Sci Technol. 2019;56(2):535–47. doi: 10.1007/s13197-018-3549-4.

[40] Guo H, Kouzumya Y, Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009;113:238–45. doi: 10.1016/j.foodchem.2008.06.081.

[41] Yang Y, Albanyan H, Lee S, Aloysius H, Liang J-J, Kolodovych V, et al. Design, synthesis, and evaluation of l-cystine diamidates as l-cystine crystallization inhibitors for cystinuria. Bioorg Med Chem Lett. 2018;28:1303–8. doi: 10.1016/j.bmcl.2018.03.024.

[42] Karami Z, Peighambardoust SH, Hesari J, Akbari-adergani B. Response surface methodology to optimize hydrolysis parameters in production of antioxidant peptides from wheat germ protein by alcalase digestion and identification of antioxidant peptides by LC-MS/MS. J Agric Sci Technol. 2019;21(4):829–44. http://jast.modeares.ac.ir/article-23-17648-en.html.

[43] Mendis E, Rajapakse N, Byun HG, Kim SK. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005;77(17):2166–78. doi: 10.1016/j.lfs.2005.03.016.

[44] Rajapakse N, Mendis E, Jung W-K, Je Y-Y, Kim S-K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int. 2005;38:175–82.

[45] Babizhayev MA, Seguin MC, Gueye J, Evstigneeva RP, Ageyeva EA, Zheltukhina GA. L-Carnosine (β-alanyl-l-histidine) and carmine (β-alanlyhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem J. 1994;304(2):509–16. doi: 10.1042/bj3040509.

[46] Suetusuna K, Nakano T. Identification of an antihypertensive peptide from peptic digest of wakeame (Undaria pinnatifida). J Nutr Biochem. 2000;11(9):450–4. doi: 10.1016/s0955-2863(00)00110-8.
[47] Rho SJ, Lee JS, Chung Y, Kim YW, Lee HG. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem. 2009;44:490–3.

[48] Jones AJ, Grkovic T, Sykes ML, Avery VM. Trypanocidal activity of marine natural products. Mar Drugs. 2013;11:4058–82. doi: 10.3390/md11104058.

[49] Sanchez LM, Lopez D, Vesely BAD, Togna G, Gerwick WH, Kyle DE, et al. Almiramides A–C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem. 2010;53:4187–97. doi: 10.1021/jm100265s.

[50] Newman DJ, Cragg GM. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs. 2017;15:99. doi: 10.3390/md15040099.