Traction Force on a Kinetochore at Metaphase
Acts as a Linear Function of Kinetochore Fiber Length

THOMAS S. HAYS, DWAYNE WISE, and E. D. SALMON
Zoology Department, Duke University, Durham, North Carolina 27706. T. Hays' and Dr. Salmon's present address is the Zoology Department, University of North Carolina, Chapel Hill, North Carolina 27514. Dr. Wise's present address is the Biology Department, Mississippi State University, Mississippi State, Mississippi 39672.

ABSTRACT We are investigating the relation between the force pulling a kinetochore poleward and the length of the corresponding kinetochore fiber. It was recognized by Östergren in 1950 (Hereditas 36:1-19) that the metaphase position of a chromosome could be achieved by a balance of traction forces if such forces were proportional to the distance from kinetochore to pole. For the typical chromosome (i.e., a meiotic bivalent or mitotic chromosome) with a single kinetochore fiber extending to each pole, the resultant force (RF) would equal zero when the chromosome lay at the midpoint between the two poles. For special chromosomes that have unequal numbers of kinetochore fibers extending towards opposite poles, Östergren's proposal suggests that RF = 0 when the chromosome is shifted closer to the pole toward which the greater number of kinetochore fibers are pulling. We have measured the force-length relationship in living spindles by analyzing the metaphase positions of experimentally generated multivalent chromosomes having three or four kinetochore fibers. Multivalent chromosomes of varied configurations were generated by γ-irradiation of nymphs of the grasshopper Melanoplus differentialis, and their behavior was analyzed in living first meiotic spermatocytes. The lengths of kinetochore fibers were determined from time-lapse photographs by measuring the kinetochore-to-pole distances for fully congressed chromosomes just before the onset of anaphase. In our analysis, force (F) along a single kinetochore fiber is expressed by: F = kL^{exp}, where k is a length-independent proportionality constant, L represents the kinetochore fiber length, and exp is an unknown exponent. The RF on a chromosome is then given by: RF = Σk_i L_i^{exp}, where kinetochore fiber lengths in opposite half-spindles are given opposite sign. If forces on a metaphase chromosome are at equilibrium (RF = 0), then for asymmetrical orientations of multivalents we can measure the individual kinetochore fiber lengths (L_i) and solve for the exponent that yields a resultant force of zero. The value of the exponent relates how the magnitude of force along a kinetochore fiber varies with its length. For six trivalents and one naturally occurring quadrivalent we calculated an average value for exp = 1.06 ± 0.18. This result is consistent with Östergren's hypothesis and indicates that the magnitude of poleward traction force along a kinetochore fiber is directly proportional to the length of the fiber. Our finding suggests that the balance of forces along a kinetochore fiber may be a major factor regulating the extent of kinetochore microtubule assembly.

A simple hypothesis to explain meiotic and mitotic congression of chromosomes has emerged from the thoughts and observations of Rashevsky (1), Hughes-Schrader (2), and Östergren (3–5). As proposed by Östergren, congression of meiotic bivalents is produced by the pulling of homologous kinetochores towards opposite poles by traction forces, these forces increasing in magnitude with increasing distance from the pole. A similar force-distance relationship would hold for mitotic chromosomes, in which kinetochores of the sister chromatids are arranged back-to-back and are pulled towards opposite poles. As a result of this force-distance relationship, chromosomes with bipolar orientation become centered on the spindle equa-
For simply because the equator is the position where opposite kinetochore fibers are of equal length; therefore, the two kinetochores are pulled equally toward their respective poles. Should a chromosome be displaced from this equilibrium position, there would be generated a resultant force on the chromosome so as to re-establish the position of the chromosome equidistant from the spindle poles.

Forces moving chromosomes are now known to be generated along the array of kinetochore fiber microtubules which mechanically link the kinetochore to the spindle pole (6). Therefore, the force-distance relationship proposed by Östergren (3) concerns the relationship between the force applied to a kinetochore and the length of the kinetochore fiber.

In contrast to Östergren's force-balance concept of congression, chromosomes could be moved to an equilibrium position at the metaphase plate by regulation of the equilibrium length of the kinetochore fiber (7). For example, based on the dynamic equilibrium theory of Inoué and Sato (8), Dietz specifically proposed (9) that, as a consequence of achieving monomer-polymer equilibrium, kinetochore microtubule lengths change and thereby regulate chromosome position. If all kinetochores participate equally in the formation of kinetochore fibers and if tubulin subunits are freely diffusible, this proposal predicts that all kinetochore fibers will be of equal length at metaphase equilibrium. Therefore a chromosome would lie at the spindle equator due to a requirement that equal lengths of microtubules compose the two opposing kinetochore fibers. As the Dietz hypothesis predicts, movements of the kinetochores are observed to be closely coupled to changes in extent of assembly of kinetochore fiber microtubules (8, 10, 11).

The two hypotheses proposed to account for chromosome congression therefore suggest the following question: Does a requirement for balance of forces generated along microtubules of the kinetochore fiber regulate the extent of kinetochore fiber microtubule assembly (Östergren hypothesis), or does the kinetochore microtubule assembly mechanism directly regulate the equilibrium length of kinetochore fibers (Dietz hypothesis)? An answer to this question is possible through observation of the stable metaphase position of multivalent chromosomes that have more than two kinetochore regions and asymmetrical orientations on the spindle, i.e., unequal numbers of kinetochores oriented to opposite poles (see Fig. 1). If congression is the result of a balancing of forces, then multivalents oriented asymetrically should be shifted off the equator, closer to the pole to which the greater number of kinetochores are attached (3, 12). Otherwise, if an equilibrium length-balance mechanism determines chromosome position, the asymmetrically oriented multivalents should lie at the spindle equator, with the lengths of all kinetochore fibers equal (Fig. 1c).

In this study, we generated multivalents in grasshoppers by γ-irradiation of nymphs, and in living-cell preparations we examined the positions of these newly arisen multivalents at congression in meiosis I. From our analysis of the positions of congressed multivalent chromosomes, we present quantitative evidence consistent with Östergren's hypothesis.

MATERIALS AND METHODS

Experimental Material and Production of Multivalent Chromosomes

Males of the grasshopper species Melanoplus differentialis (Acrididae, Orthoptera) were taken from a laboratory colony maintained by Dr. R. B. Nicklas at Duke University, Durham, NC.

We selected third-instar nymphs with average head width and femur length of 3.6 mm and 12 mm, respectively, and exposed them to a 480-rad dose of γ-irradiation (cobalt source operating at 160 rad/min). Both the age of nymphs when irradiated and the time postirradiation when grasshoppers were sacrificed affected the number of rearrangements per cell and general cell health. Our treatment typically yielded 1-2 rearrangements per cell, a useful number for analysis. Higher numbers of rearrangements produced multivalent chromosomes too complex for analysis.

![Figure 1](image-url)
Spermatocyte Cultures and Photographic Methods

9-12 h after irradiation, living-cell preparations were made of spermatocytes explanted from the grasshoppers.

Preparation of cell cultures, phase-contrast microscopy, time-lapse cinematography, and frame-by-frame analysis of film records were done according to methods described by Nicklas and Stachelby (13). The buffered saline we used for the cell preparation was described by Nicklas et al. (14). Normal, healthy cells were chosen for analysis on the criteria of spindle size and shape, mitochondrial distribution, and the successful completion of anaphase.

Measurements and Computer Analysis

The lengths of kinetochore fibers for multivalents were measured as follows. The distance between each kinetochore and the pole to which it was attached was determined just before anaphase from projected cine records (see Fig. 1). Kinetochores were identified by a slight difference in phase density between a monoregion and the adjacent chromatin. The identity of kinetochores was later confirmed by noting that these regions of chromatin lead the way to the poles during anaphase; the attached chromatins arms trail behind these kinetochores.

The polar region was identified by the phase-dense image of the centriole complex itself or was considered to occur approximately at the point of convergence of mitochondria surrounding the spindle. A total of 16 cells was analyzed: 7 trivalents and 9 quadrivalents. As controls, 12 bivalents from 4 of the 16 cells were also analyzed (Table I). Data analysis was performed as described in Results and Fig. 2 using an Apple II Plus microcomputer (Apple Computer Inc., Cupertino, CA) and a Houston Instruments Hi-Plot digital plotter (Houston Instruments, Austin, TX).

RESULTS

Trivalents

Trivalents assumed asymmetric orientations (two chromosomes oriented to one pole and only one chromosome oriented to the opposite pole) and were shifted off the equator as shown, for example, in Fig. 3. Trivalents lie closer to the pole to which two kinetochores are attached. All seven trivalents analyzed showed a similar off-equator position at metaphase; the metaphase kinetochore-to-pole distances for the seven are listed in Table I.

For each of the analyzed trivalents the sum of the lengths of the two kinetochore fibers oriented to the nearer pole approximately equaled the length of the single kinetochore fiber oriented to the far pole; the values are not significantly different based on a paired Student’s t test (Table I). This result suggests that all kinetochores are nearly alike and that a linear relation-
ship exists between traction force and kinetochore fiber length, assuming that the measured kinetochore-to-pole distances correspond to the lengths of the kinetochore fibers (see below), and assuming, as Östergren (3) proposed, that the stable position of fully congressed chromosomes reflects isometric forces on the chromosome.

Since for these trivalents the summed lengths of the two shorter kinetochore fibers in one half-spindle usually do not equal exactly the length of the single kinetochore fiber in the opposite half-spindle, the possibility that the force-length relationship is not strictly linear must be considered. Therefore, in addition to comparing the summed kinetochore fiber lengths of opposite half-spindles, we used an algorithm to calculate the power to which these measured kinetochore-to-pole distances must be raised in order to make the difference between them exactly equal to zero. The value of the exponent relates how the magnitude of force along a kinetochore fiber varies with fiber length. If the force-length relationship is linear, then we expect the exponent value to equal 1.

In our algorithm, the force \(F \) applied to a kinetochore is assumed to be proportional to the kinetochore fiber length \(L \) raised to the power \(\exp \) in the relation: \(F = k L^{\exp} \), where \(k \) represents a length-independent factor which in the following analysis is assumed to be the same for all kinetochores. If the metaphase position of a chromosome represents the position at which forces in opposite directions on a chromosome are exactly balanced, the resultant force \(RF \) will equal zero. For example, see the trivalent of Figs. 1 and 2, where \(RF = 0 = A_1^{\exp} + B_1^{\exp} - A_2^{\exp} \) (\(A_1 \) and \(B_1 \) are the kinetochore fibers to pole 1, \(A_2 \) is the kinetochore fiber to pole 2). The exponent values were derived from computer-generated plots, such as those shown in Fig. 4a and b. For six of the seven trivalents analyzed, a linear relation between force and kinetochore fiber length is indicated by the fact that \(RF = 0 \) when the exponent is approximately 1. The mean exponent for these six chromosomes (excluding trivalent 2) is \(1.06 \pm 0.18 \) (see Table II); trivalent 2 was anomalous and gave an exponent value of 3.15 (see Discussion).

We evaluated the significance of our calculated exponent values by asking how great a difference would occur in the equilibrium chromosome position for different exponent values. That is, for exponents that did not yield \(RF = 0 \) for the observed position of the chromosome, how much would the position of the chromosome need to be shifted for \(RF \) to equal 0. If such an analysis showed that shifts of chromosome position as small as 0.25 \(\mu m \) would allow exponents much greater or less than 1 to yield an \(RF = 0 \), then the significance of the exponent 1 would be questionable since our measurements from the ciné films could not detect such small changes with accuracy. For values of the exponent between 0.1 and 4, we determined the distance, delta \((\Delta) \), that a multivalent would have had to be displaced from its observed equilibrium position between the spindle poles to achieve an \(RF = 0 \). This analysis supports our conclusion that an exponent value of 1 best fits the force-balance data since a 1-\(\mu m \) or greater shift in the observed metaphase chromosome position is necessary to yield exponent values greater or less than 1 ± 0.4 (see Fig. 2).

A source of error in interpreting our results stems from the possibility that the kinetochore fiber ends at some distance from the pole (15, 16). For example, mechanical anchorage of a kinetochore fiber may occur at the periphery of the centrosome complex, closer to the kinetochore than we assumed by considering the centriole complex to be the terminus of kinetochore fibers. If so, our measurement of kinetochore-to-pole distances overestimates the true lengths of the kinetochore fibers. To estimate the possible contribution of such error, the measured kinetochore-to-pole distances were shortened by an amount approximately equal to the radius of the pericentriolar material (0.5–1.0 \(\mu m \)) and these new lengths were used to determine the exponent values. Only small differences were
The analysis of the force balance, for (a) trivalent 5, cf. Fig. 3 a and Table I and (b) trivalent 6, cf. Fig. 3 b and Table I. Kinetochore traction force to opposite poles is balanced at the exponent value \(\exp = 1.05 \) for both trivalents. (c) Hypothetical shortening of the measured kinetochore-to-pole distances has little effect on the exponent value.

noted between the mean exponent value derived from the measured distances (1.06 ± 0.18) and those values calculated from the hypothetically shortened distances: 0.98 ± 0.18 when shortened by 0.5 \(\mu \text{m} \), 0.90 ± 0.17 when shortened by 1.0 \(\mu \text{m} \) (see also Fig. 4c and Table II). It must, of course, be borne in mind that any overestimation of the true kinetochore fiber lengths by our distance measurements is counteracted by spindle geometry. The spindle at the metaphase plate is elliptical in cross section due to flattening during the culture preparation. The major and minor axes of this ellipse are represented by the width and thickness of the spindle. The kinetochore-to-pole distance measurements are accurate for kinetochores in the same optical focal plane as the spindle interpolar axis. For kinetochores on the periphery of the spindle, above or below this interpolar axis, our measurements will represent a projection of the true kinetochore-to-pole distance. Taking an average pole-to-pole spindle length of 26 \(\mu \text{m} \) and a 5-\(\mu \text{m} \) radius for the minor axis of the ellipse (17), we have calculated that our kinetochore fiber length values underestimate the correct values by 0.5 \(\mu \text{m} \) or less.

Quadrivalents

Symmetric orientations of quadrivalents (kinetochores oriented two to each pole) are apparently more stable than asymmetric ones (18–21). Seven of the eight experimentally generated quadrivalents had symmetrical 2:2 orientations, as shown in the example of Fig. 6. In this situation, with equal numbers of kinetochores oriented to opposite poles, the congressed quadrivalents lie on the spindle equator, on a line with normal bivalents. The length of individual kinetochore fibers within a half-spindle can be significantly unequal because of the geometry of the quadrivalent chromosome as, for example, in Fig. 6. Yet for each quadrivalent the sums of kinetochore fiber lengths in opposite half-spindles are not significantly different \((P = 0.05) \) and support a linear force-length proportionality (Table I). However, the data obtained from symmetrically oriented multivalents do not yield unique solutions for the exponent \(\exp \) in our computer algorithm.

One of the eight experimentally produced quadrivalents recorded was asymmetrically oriented in a 2:1:1 fashion. In this configuration the fourth kinetochore pair was separated from the other kinetochores by an extended chromatin arm (12 \(\mu \text{m} \) long), and appeared to behave independently, congressing to

Multivalent no.	L*	L - 0.5 \(\mu \text{m} \)	L - 1.0 \(\mu \text{m} \)
Triv 1	1.00	0.95	0.85
Triv 2	3.15	2.95	2.75
Triv 3	0.85	0.85	0.75
Triv 4	0.95	0.85	0.85
Triv 5	1.05	0.85	0.75
Triv 6	1.05	1.05	0.95
Triv 7	1.45	1.35	1.25

Mean 1.36 1.22 1.16
SD 0.74 0.73 0.66
\(t = 1.19 \) (d.f. = 6, \(P > 0.05 \))

Excluding triv 2:

Multivalent no.	L*	L - 0.5 \(\mu \text{m} \)	L - 1.0 \(\mu \text{m} \)
Triv 1	1.06	0.98	0.90
Triv 2	0.18	0.18	0.17
Triv 3	1.15	1.05	0.95
Triv 4	1.45	1.35	1.35

* Exponent values are given for the solution to \(\Sigma F = \Sigma k \exp = 0 \) using the actual measured, kinetochore-to-pole distances (4), and hypothetical lengths \(\exp = 0.5 \mu \text{m} \) and \(\exp = 1.0 \mu \text{m} \).

\(\dagger \) The mean and standard deviation are recalculated excluding the values obtained for trivalent 2, whose behavior is anomalous (see Discussion).
the spindle equator with the normal bivalents, so that equal lengths of kinetochore fibers extended to opposite poles. Therefore, we considered the remaining three kinetochore pairs as members of a trivalent and determined that an exponent of 1.45 was required to yield an $RF = 0$ on the chromosome in its observed position. This exponent value represents a deviation from linearity. An explanation for this exception may lie in the structure of the chromatin joining the kinetochores. That is, despite the apparent independent behavior of the fourth kinetochore, the extended and folded chromatin arm connecting it to the rest of the multivalent may have presented structural constraints on the position of the rest of the chromosome.

We have also included in our analysis a naturally occurring quadrivalent described earlier by Wise and Rickards (22). Fig. 5 depicts this natural quadrivalent in the observed asymmetrical 3:1 orientation. Three chromosomes are oriented to the lower pole and the fourth is oriented to the upper pole. As noted by the authors, the chromosome is shifted off the spindle equator and closer to the pole to which three chromosomes are oriented. The extent of shift is consistent with a linear force-length relationship as indicated by the graph resulting from the computer analysis shown in Fig. 5b. Both the resultant force plot and the delta plot pass through zero at the exponent value of 1.15. Shortening all the measured kinetochore-to-pole distances by 0.5 or 1.0 μm had little effect on the computed exponent value (Table II).

Univalents

Occasionally, irradiation of the spermatocytes produced univalents. Such univalents, much like the X-chromosome (7, 15, 23), did not congress but continued to course back and forth between spindle poles. At the onset of anaphase, the univalent remained in the half-spindle in which it happened to lie. Thus, with unidirectional force applied to it, the chromosome does not achieve a stable equilibrium position. Fig. 7 shows one such trip of an induced univalent to one pole where the univalent reorients and then proceeds towards the opposite pole.

DISCUSSION

Our observations confirm some earlier observations that asymmetrically oriented multivalents are displaced off the equator (3, 18, 24–26) and strongly support Östergren’s hypothesis that the position of chromosomes at metaphase is determined by a balancing of traction forces on opposing kinetochores (3–5). Moreover, our results show that the magnitude of traction force on a kinetochore fiber is a linear function of fiber length, as proposed by Luykx (27). This balance of forces is demonstrated most dramatically by the stable metaphase positions of asymmetrically oriented multivalents. These multivalents lie closer to the pole to which the greater number of kinetochore fibers, and therefore force components, are directed. The experiments reported here, like the studies of Bauer et al. (26) and Wise and Rickards (22), meet two important criteria (12): (a) by using newly arisen (i.e., experimentally induced) multivalents there is no need to consider evolutionary modifications of kinetochore activity such as might be involved in establishing stable multivalents in the genome (as is necessary, for example, in considering sex multivalents [28–30]), and (b) we can determine precisely the final metaphase position of these chromo-
kinetochore may not run continuously to the spindle pole, a significant number do (35, 36). The simplest way to establish a linear force-length mechanism is to distribute force-producers uniformly along the kinetochore fiber. Such forces on the chromosomes could result from cross-bridging between microtubules and microfilaments or between microtubules and the cytoplasmic matrix (6, 37-43). The magnitude of force would increase with the number of cross-bridges, which would be directly proportional to the length of the kinetochore fiber.

Alternatively, forces may be generated by the depolymerization of kinetochore microtubules, as suggested by Inoué and Sato (8; see also reference 10). The simplest interpretation of our data with this alternative would require that depolymerization occur along the entire length of the microtubules, with the rate of subunit loss per unit length being constant; total disassembly would then be greater for longer microtubules. The off-equator position of trivalents would be the position at which the amount of disassembly occurring in opposite half-spindles is equal. The plausibility of this interpretation, however, is tempered by indirect evidence in vivo (44, 45) and in vitro (46-48) that suggests that depolymerization occurs only at the ends of microtubules or spindle fibers. However, a mechanism of force production that generates forces only at the ends of the kinetochore fibers and does not sense the length of the fiber would not be consistent with our results. Such a mechanism would not achieve a balance of forces on a trivalent chromosome: instead of reaching a stable metaphase position, the trivalent would move directly to the pole with the greater number of attached kinetochore fibers.

In the relation for traction force, \(F = kL^{n_p} \), \(k \) represents the length-independent factor(s) that determine the magnitude of traction force applied to the kinetochore. Our assumption that \(k \) is the same for all multivalent kinetochores is justified by two results. First, for most multivalents, both symmetrically and asymmetrically oriented, the sum of the lengths of the kinetochore fibers in one half-spindle equals, within 10\%, the sum of the lengths in the opposite half-spindle (Table I). Secondly, with the exception of trivalent 2 (Table II), the standard deviation of the calculated exponent values (\(\exp \approx 1.06 \pm 0.18 \)) for the trivalents is small. If kinetochores typically had widely different values of \(k \), then no single force-length relationship (exponent value) would explain the observed positions of the majority of the multivalents.

The length-independent factor(s), \(k \), may be directly related to the number of functional kinetochore microtubules. In this case, the traction force produced along a kinetochore fiber would not be simply a linear function of its length but a...
function of both length and number of kinetochore microtubules (i.e., total microtubule length). Consequently, we would expect a trivalent to congress to a position where the total length of kinetochore microtubules (not lengths of kinetochore fibers) will be equal in opposite half-spindles (Fig. 8, trivalent B). If the number of microtubules on different kinetochores varied widely, the ultimate positions of asymmetrically oriented multivalents would show little relationship from example to example. Instead, we usually observed that the sums of kinetochore fiber lengths in opposite half-spindles were equal (Fig. 8, trivalent A). Only if all kinetochores have equal numbers of attached microtubules can both the total microtubule length and fiber length be equal in opposite half-spindles. Therefore, the observed positions of the multivalents in our study suggest that the majority of autosomes have about the same number of functional kinetochore microtubules.

Traction force, however, cannot depend only on the number of microtubules attached to a kinetochore independent of the length of the fiber. The chromosome would always move all the way to the pole towards which the greater number of kinetochore microtubules was oriented.

We have no ultrastructural information on the numbers of kinetochore microtubules attached to multivalents of Melanoplus, but ultrastructural analysis of several other cells has shown that the number of microtubules per kinetochore is relatively constant for a given cell type (35, 49–52). Moens (50) compared the number of kinetochore microtubules between different autosomes of primary spermatocytes from the grasshopper Locusta. Like the Melanoplus spermatocytes used in our study, Locusta spermatocytes contain 11 bivalents and one univalent sex chromosome. From the three metaphase I Locusta cells analyzed by Moens, we computed an average of 22 ± 5 microtubules per kinetochore. The low SD indicates a high degree of uniformity. However, an occasional kinetochore had substantially more or fewer microtubules than the average—as many as 35 or as few as 10.

In light of these data, consider the exceptional trivalent 2 observed in our study. Its congressed position was not consistent with a linear force-length relationship if we assumed that all three kinetochores had the same length-independent constant, k. The simplest explanation would be that one kinetochore of the trivalent had a significantly different value of k. Relative values of k for each kinetochore of the trivalent can be calculated from the observed kinetochore-fiber lengths at congression (Table II), using a linear force-length relation in the force-balance equation. The value of k for the single fiber (10 μm long, extending to pole 2, Table I) could be 1.6 times greater than the value for k for the pair of fibers in the opposite half-spindle (both 8.0 μm long, extending to pole 1, Table I), or the value of k of one of the pair of fibers could be one-fourth the value of the other two fibers. It is possible that irradiation may have damaged a kinetochore in trivalent 2, thus causing a change in its normal k value. On the other hand, if k is related to the number of functional microtubules, perhaps one kinetochore in trivalent 2 had substantially more or fewer microtubules than the others. Since some kinetochores on Locusta chromosomes appear to have exceptionally high or low numbers of microtubules naturally, a difference in k values as would explain the position of trivalent 2 would be expected to occur now and then. Translocations between chromosomes with kinetochores of similar k values, however, would be more likely.

An important implication of our results is that, if balanced traction forces determine the position of metaphase chromosomes, traction forces may directly regulate the extent of microtubule assembly, hence the length of kinetochore fibers. Some earlier investigations also suggest force-balance regulation of microtubule assembly. Inoue (53) showed that Chaetopterus metaphase spindles elongated in response to interpolar tension produced by flattening the oocyte between slide and cover slip. Nicklas (12, and unpublished data) observed that chromosomes move from their congressed position in grasshopper spermatocytes when tension is applied to a meiotic bivalent by stretching a chromosome arm towards one pole with a microneedle. The kinetochores remain mechanically anchored to their poles by their kinetochore fibers, but the kinetochore fiber under tension slowly elongated while the other kinetochore fiber shortened. After tension on the stretched chromosome was released, the bivalent moved back to the metaphase plate at the normal congression velocity. These results demonstrate that the position of the chromosomes under artificially produced tension was determined by the balance of applied forces. The length of the kinetochore fibers changed in response to the applied forces. It should be noted, however, that, although these data demonstrate that chromosomes move when there is an imbalance of poleward-directed forces, the velocity at which they move is largely independent of the magnitude of the imbalance. The rate at which kinetochore fibers change length is limited by the rates at which microtubules can assemble and/or disassemble (12, 54).

In summary, our results strengthen the view that congression of chromosomes takes place as the result of a balancing of countervailing linear forces on the chromosomes. We also have suggestive evidence that this balance of forces regulates the extent of assembly of kinetochore-fiber microtubules.

It is a pleasure to express our thanks to Dr. R. B. Nicklas for the use of his facilities throughout this research. We acknowledge a wonderful old literature on mitosis and many enjoyable discussions with Drs. R. B. Nicklas, Donna Kubai, and Geoffrey Rickards as inspiration for this study. We thank Drs. D. Begg, G. Gordon, S. Inoue, J. R. McIntosh, R. B. Nicklas, and T. Otter for criticisms of the manuscript and extend special thanks to Dr. Donna Kubai for insightful suggestions in the final preparation of this manuscript. We also acknowledge...
the editorial comments and typing of Nancy Salmon, and the technical assistance of Leslie Murray.

This research was supported by National Institutes of Health Institutional Grants GM 13745 to R. B. Nicklas and GM 24364 to E. D. Salmon.

Received for publication 24 August 1981, and in revised form 28 December 1981.

REFERENCES

1. Rachovsky, N. 1941. Some remarks on the movement of chromosomes during cell division. Bull. Math. Biophys. 3:1–3.

2. Hughes-Schrader, S. 1943. Polarization, kinetochore movements, and bivalent structure in the meiosis of male mantids. Biol. Bull. (Woods Hole). 85:265–300.

3. Östergren, G. 1945. Equilibrium of trivalents and the mechanism of chromosome movements. Hereditas. 31:49.

4. Östergren, G. 1950. Considerations on some elementary features of mitosis. Hereditas. 36:1–19.

5. Östergren, G. 1951. The mechanism of co-orientation in bivalents and multivalents. Hereditas. 37:85–156.

6. Nicklas, R. B. 1975. Chromosome movement: current models and experiments on living cells. In Molecules and Cell Movements. S. Inoué and R. E. Stephens, editors. Raven Press, New York. 97–177.

7. Dietz, R. 1958. Multiple Geschlechtschromosomen bei den Cypriden Ostracoden, ihre Evolution und ihr Teilungsverhalten. Chromosoma (Berl). 9:359–440.

8. Inoué, S. and H. Sato. 1967. Cell motility by labile association of molecules: the nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50:299–292.

9. Dietz, R. 1972. Die Assembly-Hypothese der Chromosomenbewegung und die Veränderungen der Spindellänge während der Anaphase I in Spermatoziten von Palaemon serratus (Talipulideae, Diptera). Chromosoma (Berl). 38:11–76.

10. Inoué, S. and H. Ritter, Jr. 1975. Dynamics of mitotic spindle organization and function. In Molecules and Cell Movement. S. Inoué and R. E. Stephens, editors. Raven Press, New York. 3:30.

11. Salmon, E. D. 1975. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann. N. Y. Acad. Sci. 253:383–406.

12. Nicklas, R. B. 1977. Chromosome movement: facts and hypotheses. In Mitosis: Facts and Questions. M. Little, N. Pavelcz, C. Prezelli, H. Ponaing, D. Schroeter, Z. Zimmermann, editors. Springer-Verlag, Berlin. 150–155.

13. Nicklas, R. B., and C. A. Stashly. 1967. Chromosome micronaplanulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma (Berl). 3:22–47.

14. Nicklas, R. B., R. B. Brinkley, Daniel A. Pepper, D. F. Kuhl, and G. K. Rickards. 1979. Electron microscopy of spermatocytes previously studied in life: methods and some observations of micromanipulated chromosomes. J. Cell. Biol. 83:87–104.

15. Nicklas, R. B. 1961. Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanogaster domestica spermatocytes. Chromosoma (Berl) 129:7–115.

16. Dietz, R. 1969. Bau und Funktion der Spindelapparate. Natoasymposium. 56:237–248.

17. Marek, L. F. 1978. Control of spindle figure and function in grasshopper spermatocytes. Chromosoma (Berl). 68:367–398.

18. Burnham, C. R. 1962. Discussions in Cytogenetics. Burgess Publishing Company, Minneapolis.

19. John, B., and K. R. Lewis. 1965. The mitotic system. Protoplasmatologia 7.

20. Dougill, L. T. 1968. Matrix and path coefficient solutions of tr- and quadrivalents. Genetics (The Hague). 49:456–496.

21. Nicklas, R. B., and C. A. Koch. 1969. Chromosome micronaplanulation. III. Spindle fiber tension and the reorientation of ma-oriented chromosomes. J. Cell. Biol. 43:40–50.

22. Wise, D., and G. K. Rickards. 1979. A quadrivalent studied in living and fixed grasshopper spermatocytes. Chromosoma (Berl). 63:305–315.

23. Heas, K. 1929. Beiträge zur Kausalanalyse der Mitose. Untersuchungen an den Spermatoziten von Chorthippus (Stenobothrus) lineatus Pfl. Wilhelm Roux’s Arch. Entwicklungsmech. Org. 118:359–484.

24. Rooke, J. A. 1945. Equilibrium of trivalents at metaphase. Hereditas. 31:449.

25. Östergren, G. and R. Prækien. 1946. Behavior on the spindle of the actively mobile chromosome ends of rye. Hereditas. 32:473–494.