RESEARCH ARTICLE

Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season

Shubham Shrivastava1, Divya Tiraki1, Arundhati Diwan2, Sanjay K. Lalwani3, Meera Modak4, Akhilesh Chandra Mishra1, Vidya A. Arankalle1*

1 Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India, 2 Department of Medicine, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India, 3 Department of Pediatrics, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India, 4 Department of Microbiology, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India

Abstract

Dengue is the most common mosquito-borne viral infection in tropical and sub-tropical countries. In recent years, India has reported increased incidences of concurrent infection with multiple serotypes of dengue viruses (DENV). In the present study, we have characterized DENV circulating during a single season of 2016 in Pune, India. A total of 64 serum samples from NS1 ELISA positive dengue patients were used for PCR amplification of CprM region of the viral genome and sequencing. Phylogenetic analysis documented circulation of all the four DENV serotypes with predominance of DENV-2 (40.6%). DENV genotyping classified DENV-1 to Genotype V, DENV-2 to Genotype IV, DENV-3 to Genotype III and DENV-4 to Genotype I. Further analysis revealed emergence of a novel clade (D) of genotype I of DENV-4. Subsequent isolation of three DENV-4 viruses in cell culture followed by complete genome sequence analysis confirmed this observation. Additionally, a new genotype within serotype-4 with >6.7% sequence variation from other genotypes was identified. This first report of significant co-circulation of all the four serotypes in a single outbreak in Pune reconfirms need for molecular monitoring of DENV.

Introduction

An estimated 40% of the global population (~3.9 billion) is at risk of dengue virus (DENV) infection [1, 2]. About 2.5% of people affected with severe dengue die each year [3]. The disease is endemic in more than 125 countries and the spread to newer areas is mainly attributed to returning travelers from endemic countries [4, 5]. There are four serotypes of DENV (DENV-1 to -4) and all of them can cause dengue fever (DF), a self-limiting febrile illness. A variable proportion of patients progress to life threatening dengue hemorrhagic fever (DHF) characterized by thrombocytopenia and hemorrhage, and dengue shock syndrome (DSS) due
to excessive plasma leakage [6, 7]. DENV has been in circulation in the Indian subcontinent since 1950s [8]. The first virologically proven epidemic of DF occurred in Kolkata in 1963–1964 and at present the virus has spread to 35 states and union territories in the country (NVBDCP, http://nvbdcp.gov.in/den-cd.html) [9].

On account of sequence variability, dengue serotypes are further classified into distinct genotypes that differ >6% within a single serotype [10–12]. Emergence of new serotype or lineage clade shifts in circulating DENV genotypes led to enhanced severity during dengue outbreaks [13–17]. A lineage shift in DENV-3 was reported to cause severe disease in Sri Lanka [13, 18]. Emergence of genotype III of DENV-3 in 2005 resulted in dengue outbreak in Northern India [19]. Recently, emergence of Asian or genotype I of DENV-1 also caused large outbreak of dengue with 12,000 cases in Tamil Nadu, South India [20].

All the four serotypes of DENV have circulated in India at different times, but generally one serotype dominates a given outbreak. Dengue outbreak in 1996 in Delhi was caused by genotype IV of DENV-2 replacing genotype V isolates of 1957 and 1967 [21] and virus remained in circulation till 2002. Second outbreak in 2003 in Delhi was due to emergence of DENV-3 which remained as dominant serotype till 2006 [19]. Over a period from 2007–2009, DENV-1 became the predominant serotype in Delhi by replacing DENV-2 and DENV-3 [22]. Earlier dengue outbreaks were attributed to sudden emergence of serotype or genotype that co-circulate along with existing genotype for some time before getting replaced by others in subsequent years. In recent years, co-circulation of multiple serotypes has been reported from different parts of India [23]. High percentage of co-infection with more than one serotype was also observed with increased disease severity [24–26]. In 2017, co-circulation of all four DENV serotypes in single outbreak was reported from Odisha [27] and Hyderabad [28].

Pune city, western India with a population of 112 million (census 2011) is endemic for dengue [29]. In view of the possibility of introduction of dengue vaccine in near future, it is essential to understand the type and proportion of circulating DENV strains. The present study reports molecular characterization of dengue viruses circulating in Pune during the 2016-dengue season.

Methods

Sample collection

Patients presenting with dengue-like symptoms for <4 days to the Medicine and Pediatric OPDs of the Bharati hospital, a tertiary care hospital from Pune were included in the study. To avoid second prick, consent for the use of blood sample for dengue molecular studies was obtained from all the suspected patients. This included written informed consent from the parents (subjects below 7 years of age), written informed assent and consent (subjects and their parents respectively, age group 7–17 years) and written informed consent (subjects above 17 years of age). NS1 positive (Dengue Early ELISA, Panbio, Windsor, Qld, Australia), leftover serum samples (n = 120) were collected from the diagnostic laboratory of the hospital. The study was approved by Institutional Ethics Committee, Bharati Vidyapeeth Deemed University, Pune with approval number IEC/2017/04.

Virus isolation

One day prior to infection, 1×10^4 Vero cells were seeded in each well of 96-well plate and incubated at 37°C in 5% CO$_2$ incubator. 100μl of 10-fold serially diluted patient’s serum in quadruplicate wells in 96-well plate was used to infect Vero cells grown in Minimum Essential Medium (MEM, Gibco, Thermo Scientific) containing 2% fetal bovine serum, 1% penicillin
and streptomycin. 7 days post infection, culture supernatant was harvested from NS1 positive wells and aliquots were stored at -80°C.

Viral RNA extraction

Total RNA was extracted from 140μl of human serum or cell culture isolates using a QIAmp viral RNA kit (QIAGEN, INC, Valencia, CA), as per manufacturer’s protocol. RNA was eluted in 50μl of AVE buffer provided with the kit. For a conventional gel-based PCR, a minimum of one negative control every four samples with no presence of target RNA was included as a part of the extraction procedure.

cDNA synthesis

Dengue specific viral RNA was reverse transcribed and amplified for CprM region of the viral genome as reported by Chien et al (2006) [30]. For this, single-stranded cDNA was synthesized from total RNA using the high capacity cDNA reverse transcription kit (Invitrogen). Briefly, 10μl of the extracted RNA was added to the 2 X RT master mix consisting of 2μl of 10X RT buffer, 0.8μl of 100mM dNTP mix, 2μl of reverse primer D2 (TTGCACCAACAGTCAATGTC TTCAGGTTC-616) and 1μl of MultiScribe reverse transcriptase. The reaction was then subjected to reverse transcription at 25˚C for 1min, 37˚C for 120min, 85˚C for 5min. The prepared cDNA was immediately used or stored at -20˚C until use.

PCR and sequencing

CprM region was PCR amplified using AmpliTaq polymerase kit (Invitrogen). 5μl of the synthesized cDNA was then added to the PCR mix containing 10μl of PCR buffer, 10μl of MgCl₂, 5μl of primers mD1 (134-TCAATATGCTGAAACGCGA GAGAAACCG) and D2 each, 0.5μl dNTPs, 1μl of polymerase. The reaction mixture was then subjected to 35 cycles of denaturation at 94˚C for 1min, annealing at 55˚C for 1min, and extension at 72˚C for 1min. The products were then visualized for 511bp by ethidium bromide agarose gel staining [30]. Amplified products were then extracted from the gels using Qiaquick Gel extraction kit (QIAGEN, INC, Valencia, Calif) and both strands were sequenced by using a Big Dye Terminator Cycle Sequencing kit (Applied Biosystems). The CprM sequences were confirmed by BLAST (www.ncbi.nlm.nih.gov/BLAST). The forward and reverse sequences were aligned and manually edited using Codon Code aligner v.7.0.1 software to obtain the consensus sequence. New partial CprM sequences were submitted to GenBank at www.ncbi.nlm.nih.gov (accession number MG053110-MG053173).

Complete genome sequencing

Full genome sequencing of viral genomes was done using Ion Proton system (Life technologies, USA). Briefly, products were purified, size selected, amplified and quantified. Clonal amplification was carried out by emulsion PCR and the Ion sphere particles were deposited on to Ion PI chip. All proton quality-approved, trimmed and filtered (against human genome) data were exported as BAM files for bioinformatics analysis. Unmapped reads were quality filtered with mean quality score > = 20, minimum length 20 and trimmed using PrinSeq-Lite program. Resulting high quality reads were assembled using MIRA v4.0.2 assembler and contigs were annotated using BLAST against NCBI database. Complete genome sequences were submitted to GenBank at www.ncbi.nlm.nih.gov (accession number MG272272-MG272274).
Phylogenetic analysis

The sequences obtained in the present study and other sequences retrieved from GenBank were aligned using MAFFT online alignment tool [31]. Phylogenetic trees were constructed using Maximum Likelihood method based on Tamura Nei model in MEGA 6.06 software [32]. Genetic distances were calculated using the p-distance model of nucleotide and amino acid substitution. The robustness of the resulting tree was assessed with 1000 bootstrap replicates.

Results

Patient characteristics

During 2016-dengue season, serum samples from 109 NS1 positive patients were subjected to RT-PCR and 53(48.6%) scored positive for DENV-RNA. Further, 11 cell culture-grown DENV isolates obtained from additional NS1 positive patients were subjected to RT-PCR. Of the 64 patients, age of the patients ranged from 5 months to 65 years with median age of 28.6 years. Male (n = 35) to female (n = 29) ratio was 1: 0.8. Based on WHO 2009 guidelines, 63 patients were categorized as dengue illness of which 59 without warning signs and 4 with warning signs. One patient was classified as severe dengue. Details are provided in Table 1.

DENV serotype distribution

Fig 1 depicts CprM gene phylogeny-based serotyping of 64 DENV sequences obtained during this study. Clearly, all the four serotypes were circulating in Pune during the 2016 season. Of

Table 1. Demographics and clinical parameters of patients infected with DENV with different serotypes.

Sr. No.	Sample No.	Sample type	NS1 Detection	Age	Gender	Clinical Manifestation	GenBank Accession No.
1	S44	Serum	pos	36	M	DwoWS	MG053110
2	S58	Serum	pos	32	F	DwoWS	MG053111
3	S59	Serum	pos	18	M	DwoWS	MG053112
4	S105	Vero isolates	pos	27	F	DwoWS	MG053113
5	S5	Serum	pos	10	F	DwoWS	MG053114
6	S19	Serum	pos	24	M	DwoWS	MG053115
7	S16	Serum	pos	10	M	DwoWS	MG053116
8	S10	Serum	pos	4	M	DwoWS	MG053117
9	S51	Serum	pos	47	M	DwoWS	MG053118
10	141	Serum	pos	30	M	DwoWS	MG053119
11	812	Serum	pos	26	F	DwoWS	MG053120
12	815	Serum	pos	22	M	DwoWS	MG053121
13	892	Serum	pos	60	F	DwoWS	MG053122
14	1008	Serum	neg	21	F	DwoWS	MG053123
15	1053	Serum	pos	20	M	DwoWS	MG053124
16	1571	Vero isolates	pos	25	F	DwoWS	MG053125
17	S107	Vero isolates	pos	16	M	DwoWS	MG053126
18	S47	Serum	pos	25	M	DwoWS	MG053127
19	S57	Serum	pos	24	M	DwoWS	MG053128
20	S77	Serum	pos	5 month	M	DWS	MG053129
21	S85	Serum	pos	11	F	DWS	MG053130
22	S94	Serum	pos	27	M	DwoWS	MG053131
23	S87	Serum	pos	35	M	DwoWS	MG053132

(Continued)
Table 1. (Continued)

Sr. No.	Sample No.	Sample type	NS1 Detection	Age	Gender	Clinical Manifestation	GenBank Accession No.
24	S25	Serum	pos	25	F	DwoWS	MG053133
25	S26	Serum	pos	26	M	DwoWS	MG053134
26	S52	Serum	pos	34	F	DwoWS	MG053135
27	S53	Serum	pos	50	M	DwoWS	MG053136
28	S66	Vero isolates	pos	41	M	DwoWS	MG053137
29	S67	Vero isolates	pos	38	F	DwoWS	MG053138
30	S97	Vero isolates	pos	22	M	DwoWS	MG053139
31	S100	Vero isolates	pos	18	M	DwoWS	MG053140
32	S4	Serum	pos	16	F	DwoWS	MG053141
33	S15	Serum	pos	12	F	DwoWS	MG053142
34	S9	Serum	pos	34	F	DwoWS	MG053143
35	S78	Serum	neg	21	F	DwoWS	MG053144

Dengue Serotype 3 and genotype III

36	1389	Serum	pos	19	F	DwoWS	MG053145
37	984	Serum	pos	18	F	DwoWS	MG053146
38	S108	Serum	pos	24	M	DwoWS	MG053147
39	S73	Serum	pos	41	F	DwoWS	MG053148
40	S45	Vero isolates	pos	26	F	DwoWS	MG053149
41	S33	Serum	pos	25	F	DwoWS	MG053150
42	S111	Vero isolates	pos	30	F	DwoWS	MG053151
43	S56	Serum	neg	42	M	DwoWS	MG053152
44	S54	Serum	pos	39	M	DwoWS	MG053153
45	S50	Serum	pos	13	M	DwoWS	MG053154
46	S74	Serum	pos	20	M	DwoWS	MG053155
47	S112	Vero isolates	pos	20	M	DwoWS	MG053156
48	S1	Serum	pos	26	F	DwoWS	MG053157
49	S76	Vero isolates	pos	8	M	DwoWS	MG053158
50	S81	Serum	pos	10	M	DwoWS	MG053159
51	S82	Serum	pos	41	M	DWS	MG053160
52	S65	Serum	pos	18	F	DwoWS	MG053161

Dengue Serotype 4 and genotype I

53	S28	Serum	pos	55	M	DwoWS	MG053162
54	S30	Serum	pos	42	M	DwoWS	MG053163
55	S46	Serum	pos	37	M	DWS	MG053164
56	S80	Serum	pos	21	M	DwoWS	MG053165
57	S2	Serum	pos	16	F	DwoWS	MG053166
58	36	Serum	pos	6	F	SD	MG053167
59	294	Serum	pos	65	F	DwoWS	MG053168
60	1018	Serum	pos	2	M	DwoWS	MG053169
61	1021	Serum	pos	20	F	DwoWS	MG053170
62	1028	Serum	pos	17	M	DwoWS	MG053171
63	S49	Serum	pos	47	F	DwoWS	MG053172
64	S41	Serum	pos	23	F	DwoWS	MG053173

DwoWS: Dengue illness without warning signs
DWS: Dengue illness with warning signs
SD: Severe dengue

https://doi.org/10.1371/journal.pone.0192672.t001

these, DENV-1 was detected in 9 (14.1%, Pune-2016-DENV1), DENV-2 in 26 (40.6%, Pune-2016-DENV2), DENV-3 in 17 (26.6%, Pune-2016-DENV3) and DENV-4 in 12 (18.7%, Pune-2016-DENV4) samples. Thus, DENV-2 was found to be the predominant serotype and a
Fig 1. Phylogenetic analyses of CprM gene sequences from 64 DENV positive cases for serotype determination. Each strain is identified by Genbank accession number followed by country and year of isolation. Numbers at the nodes are support values for the major branches (bootstrap; 1000 replicates). The sequences obtained in this study are marked in filled colored circles. Scale bar indicates number of base substitutions per site.

https://doi.org/10.1371/journal.pone.0192672.g001
A substantial proportion of patients were infected with other serotypes as well. As far as serotypic distribution among different clinical forms is considered, the only severe dengue patient was infected with serotype 4, patients with dengue illness without warning signs were infected with either of 4 serotypes and those with warning signs were infected with serotypes 2, 3 or 4.

DENV genotype distribution

To determine the genotype distribution of DENV within each serotype, CprM gene sequences obtained during this study and sequences from different geographical locations across the globe were retrieved from NCBI database and used for phylogenetic analyses (Figs 2–5).
For DENV-1 strains, phylogenetic tree revealed clustering of DENV-1 sequences into six genotypes. The Pune-2016-DENV1 isolates (n = 9) grouped into American/African (AM/AF) or genotype V together with other Indian isolates from 1962 to 2011 (Fig 2). As reported earlier (Cecilia et al, 2017), one isolate from Kerala, 2013 (KJ755855) belonged to Asian or genotype I. The Pune-2016-DENV1 sequences were similar with 99.8 ± 0.3% nucleotide identities. The current sequences clustered with isolates from India (2008–2016), Singapore (2011–15), China (2014) and Brunei (2005).

As evident from Fig 3, DENV-2 sequences were classified into six genotypes. Pune-2016 sequences (n = 26) grouped together in Cosmopolitan or genotype IV and exhibited 99.3 ± 0.3% nucleotide similarity. This genotype is divided into two geographically distinct lineages, lineage A (isolates from Southeast Asia, China and Oceania) and lineage B (isolates mostly from Indian subcontinent). Pune-2016 sequences belonged to lineage B and clustered with strains from India (2008–12), Pakistan (2008–13), China (1999), Singapore (2013) and Sri Lanka (2003).

Phylogenetic analysis classified Pune-2016-DENV3 (n = 17) CprM sequences in genotype III (Fig 4) with nucleotide sequence similarity of 99.3 ± 0.3%. Genotype III strains exhibit wide geographic distribution from Asia, Caribbean, Americas and Europe. Pune-2016 sequences were closely related to the other isolates from India (2004–2016), China (2009, 2013), Singapore (2009), Pakistan (2008–09) and a single isolate from Senegal (2009) with 99.4 ± 0.3% nucleotide similarities. Among the other India isolates, 1984-isolate (KF955477) grouped into Genotype II while a single isolate from northern India (KC787098, 2009) was assigned to genotype IV and was found to be closely related to DENV-3 prototype strain of Philippines, 1956 (M93130).

DENV-4, the rare serotype in India was previously reported in 2003 from Delhi, and 2007 from Hyderabad and 2010 from Kerala [33–35]. In Maharashtra state, last report of DENV-4 cases was in 1975 from Amalner district and later detected in Pune in 2009 after a gap of 30 years [36]. Phylogenetic analysis revealed that DENV-4 sequences have been grouped into 5 genotypes with an inter-genotypic sequence divergence of > 6% [10–12, 37, 38]. Our data documented that (1) the Pune-2016 viruses (n = 12) formed a distinct cluster within genotype I and (2) 11 sequences earlier classified elsewhere [39, 40] as genotype II constituted a separate cluster (Fig 5) that included isolates mostly from East and Southeast Asian countries such as Japan, China, Taiwan, Indonesia, Singapore and Philippines.

We further compared percent nucleotide divergence in CprM region among different clusters within genotype I and different clusters constituting genotypes within serotype IV (Table 2). The novel cluster including current Pune strains was 3.0±0.6% to 5.6±0.8% divergent when compared to the other clusters/clades within genotype I and tentatively designated as clade D. DENV-4 viruses isolated in 2007 (EU652498–EU652499) and 2010 ([JN882277]) from two southern Indian states together with Pune-2016 sequences belonged to clade D. The distinct cluster of sequences earlier classified as genotype II was 6.8% - 10.2% different from the known genotypes I–V (Table 2). These results suggested that this cluster may represent a novel genotype VI.

For confirmation of these observations, full genome sequence analysis was done. We obtained complete genome sequences of three DENV-4 strains, isolated in Vero cells (accession number MG272272-MG272274). The complete genome lengths of Pune-2016 isolates are

Fig 3. Genotyping analyses of CprM gene sequences of DENV-2 serotype isolates (n = 26) from Pune. Each strain is indicated by Genbank accession number followed by country and year of isolation. Numbers at the nodes are support values for the major branches (bootstrap; 1000 replicates). The sequences obtained in this study are marked in filled colored circles. Scale bar indicates number of base substitutions per site.

https://doi.org/10.1371/journal.pone.0192672.g003
10653 nucleotides (nt). The length of 5’ and 3’ untranslated regions are 103 nt and 386 nt respectively with an ORF of 10164 nt coding for 3388 amino acids. As evident from Fig 6, phylogenetic analysis on complete genome sequences confirmed emergence of a novel clade “D” within genotype I that differed by 3.3 to 5.9% (nt) and 1.2 to 1.9% (aa) from the other clades (Table 3). Pune-2016 complete genome sequences showed nucleotide similarity of 99.2 ± 0.1% among themselves and diversity of 3.3 ± 0.1% when compared with Pune, 2009 isolate (JQ922560). Genomic diversity within genotype I was highest of 4.4% as compared to other genotypes of DENV-4 viruses. The existence of an additional genotype VI was confirmed by the full genome analysis with nucleotide divergence of 6.7% - 13.5% across genotypes I to V (Table 3). Inter-genotypic divergence for genotype I to VI ranged from 6.7 to 13.7% in nucleotide and 2.2 to 5.2% in amino acid sequences (Table 3).

To understand the mutation sites associated with the divergence of Pune-2016 DENV-4 isolates to “clade D”, amino acid sequence comparison with different clades of genotype I and Indian isolates of genotype V was carried out (Table 4). Unique substitutions in coding region of clade D was identified in comparison to reference strain H241 isolated in Philippines, 1956 (AY947539, clade A). A total of 7 amino acid changes in polyprotein (M271I, I411V, K479T, N645S, F945L, V1262A and C1310R) were found to be specific to clade D. In fact, none of the other genotype I clades exhibited these amino acid substitutions. Individual protein analysis revealed that amino acid substitutions specific to Clade D were confined to membrane glycoprotein precursor (n = 1), envelope (n = 3), NS1 (n = 1), and NS2A (n = 2) regions (Table 4). Envelope region showed two and one amino acid substitutions in domain II (I132V, K200T) and domain III (N366S) respectively. Domain III (residues 300–495) is responsible for receptor binding and contains virus neutralizing epitopes. Two amino acid substitutions in NS2A region (V136A and C184R) might affect virus replication. As compared to the reference strain, clades C and D shared identical substitutions at only one amino acid position in NS3 (M605V) region. Three amino acid substitutions specific to clade C at positions 130, 202 in envelope and at position 383 in NS3 was reversed back to the original amino acids of reference strain in clade D.

Discussion

This study documents co-circulation of all the four serotypes of DENV during a single season at Pune, India. Interestingly, though DENV-2 was the most prevalent serotype (40.6%), 18.7% isolates belonged to serotype IV. This is especially important since this serotype was introduced in this city in 2009 after a gap of 30 years [36]. Since 2005, DENV-1, 2 and 3 were shown to co-circulate. However, each year was dominated by a single serotype; DENV-1 in 2005 and 2007, DENV-2 in 2008 and DENV-3 in 2009. In 2010, both DENV-2 and DENV-3 were co-dominant [41]. 2016 witnessed prevalence of all the four serotypes to an appreciable extent and presents possible risk of secondary infection with serotype 4 leading probably to severe disease. Though one patient infected with serotype 4 led to severe disease, no conclusions can be made because of small numbers.

On account of highest mutation rate among the Flavivirus group, DENV serotypes are divided into different genotypes and further into lineages or clades [10–12]. Infection of populations with a new genotype not exposed to earlier or with a virus with lineage shift within
Fig 5. Genotyping analyses of CprM gene sequences of DENV-4 serotype isolates (n = 12) from Pune. Each strain is indicated by Genbank accession number followed by country and year of isolation. Numbers at the nodes are support values for the major branches (bootstrap; 1000 replicates). The sequences obtained in this study are marked in filled colored circles. Scale bar indicates number of base substitutions per site.

https://doi.org/10.1371/journal.pone.0192672.g005
genotype has been attributed to severe form of disease [19, 42–44]. In the light of these observations, it is important to note that Pune-2016 DENV-4 isolates formed a distinct clade-D within genotype I that were 3.0%- 5.6% (CprM) and 3.3%-5.9% (complete genome) divergent from clades A, B and C. Interestingly, viruses isolated earlier (2007, 2010) from two southern states also belonged to this clade. Identification of novel clade within genotype I emphasizes high rate of genomic diversity in this continually evolving genotype of DENV-4 viruses. It would be desirable to assess the role of this clade in disease severity when presenting with primary or secondary infection. Further monitoring is essential to identify emergence of novel DENV-4 viruses, especially, as introduction of dengue vaccine remains a distinct possibility in endemic areas including India. As far as serotypes I, II and III are concerned, similar to earlier reports from India [25, 45–48], persistent circulation of genotype V of DENV-1, genotype IV of DENV-2 and genotype III of DENV-3 was noted.

Another significant observation of this study is the identification of an additional genotype (VI) within serotype-4. This genotype includes viruses from East Asia, Southeast Asia and Oceania countries, isolated during 2000-2016 that were earlier grouped in genotype II [39–40, 49–50]. Genotype VI is proposed since > 6% divergence from other genotypes was observed as evidenced by complete genome based phylogenetic analysis (Table 3, Fig 6). Further study is required to correlate disease profile of patients infected with different genotypes of DENV-4 viruses. Different regions of dengue genome like Envelope, E-NS1 and C-prM have been largely utilized for genotyping. CprM gene based genotyping is faster and economical due to usage of single set of primer pair for both amplification and sequencing [30, 51]. Our study emphasizes the utility of this region for genotyping as the CprM based observations of emergence of a new clade in genotype I or a distinct cluster within genotype II were confirmed by complete genome based analysis.

Chances of co-infection with more than one serotype are likely to be much higher when multiple dengue serotypes co-circulate in a population. Co-infection with multiple serotypes poses risk of emergence of recombinant virus strains that could have distinct properties. Co-circulation of all the four serotypes in a single outbreak has been reported earlier with 42.9% and 45.4% cases of co-infection in Karnataka and Hyderabad respectively [28, 52]. Significant co-infection (15% -43%) has been reported from northern [24, 26], and eastern India [25]

Table 2. Nucleotide diversity in CprM region between (A) clades within genotype I and (B) across genotypes of DENV-4 viruses.

(A)	Clade A	Clade B	Clade C
Clade A	–	–	–
Clade B	5.5 ± 0.9	–	–
Clade C	5.0 ± 0.9	5.8 ± 0.9	–
Clade D	**4.6 ± 0.9**	**5.6 ± 0.8**	**3.0 ± 0.6**

(B)	GT I	GT II	GT III	GT IV (sylvatic)	GT V
GT I	–	–	–	–	–
GT II	6.9±0.9	–	–	–	–
GT III	7.8±1.0	7.3±1.0	–	–	–
GT IV (sylvatic)	10.9±1.2	9.3±1.3	10.7±1.3	–	–
GT V	7.4±0.9	6.2±0.9	7.3±1.0	11.5±1.2	–
GT VI	**8.6±1.0**	**6.8±1.0**	**8.9±1.1**	**10.2±1.2**	**8.0±0.9**

* GT—abbreviation for genotype
– indicates blank spaces

https://doi.org/10.1371/journal.pone.0192672.t002
without detecting all the 4 serotypes. These regions with circulation of more than one serotype simultaneously are of high significance as they are more prone to severe dengue infection [28, 52]. However, we did not find evidence of co-infection among the patients studied.

In summary, in contrast to the predominance of a single serotype observed earlier, we provide recent evidence of significant co-circulation of all the four serotypes in Pune and emergence of a novel clade in genotype I of DENV-4 viruses. In view of the role of novel strains in
increased severity and vaccine availability in near future, a comprehensive molecular surveillance programme for DENV is urgently needed.

Table 3. Nucleotide and amino acid diversity in complete genome between (A) clades within genotype I and (B) across genotypes of DENV-4 viruses. Pairwise distances and standard errors of nucleotide and amino acid diversity are displayed in lower-left and upper-right matrix respectively.

(A) Clade A Clade B Clade C Clade D
Clade A – 1.9±0.2 1.8±0.2 1.9±0.2
Clade B 5.4±0.2 – 1.7±0.2 1.7±0.2
Clade C 5.3±0.2 5.4±0.2 – 1.2±0.2
Clade D 5.7±0.2 5.9±0.1 3.3±0.1 –

(B) GT I GT II GT III GT IV (sylvatic) GT V GT VI
GT I – 2.7±0.2 2.9±0.3 4.8±0.4 3.0±0.2 3.1±0.3
GT II 5.4±0.2 – 2.8±0.3 4.5±0.4 3.0±0.3 2.2±0.2
GT III 9.2±0.2 9.2±0.3 – 4.4±0.4 3.2±0.3 3.1±0.3
GT IV (sylvatic) 13.4±0.3 13.3±0.3 13.7±0.3 – 5.2±0.4 4.7±0.4
GT V 7.3±0.2 7.1±0.2 8.5±0.3 13.4±0.3 – 3.2±0.2
GT VI 8.2±0.2 6.7±0.2 9.4±0.3 13.5±0.3 7.6±0.2 –

* GT—abbreviation for genotype
–indicates blank spaces

https://doi.org/10.1371/journal.pone.0192672.t003

Table 4. Comparative analyses of amino acid substitutions among 4 clades of genotype I, genotype V and Indian isolate, 1979 to corresponding residues in the reference strain, H241 (AY947539, Philippines 1956) of clade A.

Sr No.	Genomic region	Polyprotein position	Gene position	Reference strain (H241)	Clade A	Clade B	Clade C	Clade D (Pune 2016)	Genotype I	JQ922559 (India, 1979)	Genotype V (India, 1961–62)
1	prM (114–279,166aa)	269	156	V	'I'	'I'	'I'	'I'	'I'		
2	Env (280–774, 495aa)	409	130	V	'I'	'I'	'I'	'I'			
3	Env	411	132	I	'V'	'V'	'V'	'V'			
4	Env	479	200	K	'T'	'T'	'T'	'T'			
5	Env	481	202	K	'N'	'N'	'N'	'N'			
6	NS1 (775–1126, 352aa)	512	233	Y	'H'	'H'	'H'	'H'			
7	NS1	645	366	N	'S'	'S'	'S'	'S'			
8	NS2A (1127–1344, 218aa)	776	2	T	'M'	'M'	'M'	'M'			
9	NS2A	903	129	K	'R'	'R'	'R'	'R'			
10	NS2A	945	171	F	'L'	'L'	'L'	'L'			
11	NS2A	1219	93	R	'K'	'K'	'K'	'K'			
12	NS2A	1262	136	V	'A'	'A'	'A'	'A'			
13	NS2A	1281	155	R	'K'	'K'	'K'	'K'			
14	NS2A	1310	184	C	'R'	'R'	'R'	'R'			
15	NS2B (1345–1474, 130aa)	1433	89	I	'V'	'V'	'V'	'V'			
16	NS2B	1536	62	T	'S'	'S'	'S'	'S'			
17	NS3 (1475–2092, 618aa)	1645	171	T	'I'	'I'	'I'	'I'			
18	NS3	1795	321	A	'T'	'T'	'T'	'T'			
19	NS3	1857	383	I	'V'	'V'	'V'	'V'			
20	NS3	1954	480	K	'R'	'R'	'R'	'R'			
21	NS3	2079	605	M	'V'	'V'	'V'	'V'			
22	NS3	2079	605	M	'V'	'V'	'V'	'V'			

(Continued)
Table 4. (Continued)

Sr No.	Genomic region	Polyprotein position	Gene position	Reference strain (H241)	Genotype I	JQ922559 (India, 1979)	Genotype V (India, 1961–62)						
		Clade A	Clade B	Clade C	Clade D (Pune 2016)	Clade A	Clade B	Clade C	Clade D (Pune 2016)	Clade A	Clade B	Clade C	Clade D (Pune 2016)
23	NS4A (2093–2219, 127aa)	2209	117	V	*	*	A	A!!	*	A			
24	2K peptide (2220–2242, 23aa)	2240	21	I	*	V	V	V	*				
25	NS4B (2243–2487, 245aa)	2440	198	V	*	I	I	I	I	I			
26	NS5 (2488–3387, 900aa)	2733	246	R	*	*	*	K	K	*			
27	2734	247	H	*	*	Y †	Y	*	*				
28	2743	256	V	*	A	A	A	A	A				
29	2762	275	T	*	*	A †	A	*	*				

*—sequence similar to reference strain Philippines, 1956
Bold—amino acid substitution unique to clade D
!!—amino acid substitution unique to clade D except MG272272 (1028)
†—amino acid substitution unique to clade D except MG272273 (S41)
Italics—amino acid substitution unique to clade C
—amination acid substitution unique to clade C except KU509287

https://doi.org/10.1371/journal.pone.0192672.t004

Supporting information

S1 Text. Details of accession numbers for DENV-4 genotype II sequences (n = 141) shown as compressed tree in Fig 6.

(DOCX)

Acknowledgments

The authors thank Dr. Ruta Kulkarni and Mrunal Gosavi for testing clinical samples for NS1 ELISA. Special thanks are due to Mr. Tushar Bhosale and Mr. Mandar Bhutkar for collecting samples and clinical information used in this study.

Author Contributions

Conceptualization: Shubham Shrivastava, Akhilesh Chandra Mishra, Vidya A. Arankalle.
Funding acquisition: Akhilesh Chandra Mishra.
Methodology: Shubham Shrivastava, Divya Tiraki.
Resources: Arundhati Diwan, Sanjay K. Lalwani, Meera Modak, Akhilesh Chandra Mishra.
Supervision: Akhilesh Chandra Mishra, Vidya A. Arankalle.
Writing – original draft: Shubham Shrivastava, Divya Tiraki.
Writing – review & editing: Shubham Shrivastava, Divya Tiraki, Akhilesh Chandra Mishra, Vidya A. Arankalle.

References

1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013 Apr 25; 496(7446):504–7. https://doi.org/10.1038/nature12060 Epub 2013 Apr 7. PMID: 23563266
2. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers. 2016 Aug 18; 2:16055. https://doi.org/10.1038/nrdp.2016.55 Review. PMID: 27534439

3. WHO report. Global Strategy for dengue prevention and control, 2012–2020, http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034_eng.pdf (Accessed 11 November 2017)

4. Schwartz E, Weld LH, Wilder-Smith A, von Sonnenburg F, Keystone JS, Kain KC, et al. Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997–2006. Emerg Infect Dis. 2008 Jul; 14(7):1081–8. https://doi.org/10.3201/eid1407.071412 PMID: 18598629

5. Shihada S, Emmerich P, Thomé-Bolduan C, Jansen S, Günther S, Frank C, et al. Genetic Diversity and New Lineages of Dengue Virus Serotypes 3 and 4 in Returning Travelers, Germany, 2006–2015. Emerg Infect Dis. 2017 Feb; 23(2):272–275. https://doi.org/10.3201/eid2302.160751 PMID: 28098525

6. Gubler DJ, Clark GG. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis. 1995 Apr-Jun; 1(2):55–7. https://doi.org/10.3201/eid0102.952004 PMID: 8903160

7. Halstead SB, Cohen SN. Dengue Hemorrhagic Fever at 60 Years: Early Evolution of Concepts of Causation and Treatment. Microbiol Mol Biol Rev. 2015 Sep; 79(3):281–91. https://doi.org/10.1128/MMBR.00009-15 PMID: 26085471

8. Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg. 2012 May; 106(5):273–82. https://doi.org/10.1016/j.trstmh.2011.12.007 Epub 2012 Feb 21. Review. PMID: 22357401

9. National Vector Borne Disease Control Programme (NVBDCP), Government of India. Dengue cases and deaths in the Country since 2010, http://nvbdcp.gov.in/den-cd.html (Accessed 11 November 2017)

10. Rico-Hesse R. Microevolution and virulence of dengue viruses. Adv Virus Res. 2003; 59:315–41. Review. PMID: 14696333

11. Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol. 2009 Jul; 9(4):523–40. https://doi.org/10.1016/j.meegid.2009.02.003 Epub 2009 Feb 13. Review. PMID: 19460319

12. Chen R, Vasilakis N. Dengue—quo tu et quo vadis? Viruses. 2011 Sep; 3(9):1562–608. https://doi.org/10.3390/v3091562 Epub 2011 Sep 1. Review. PMID: 21994796

13. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis. 2003 Jul; 9(7):800–9. https://doi.org/10.3201/eid0907.030038 PMID: 12899133

14. Kukreti H, Mittal V, Chaudhary A, Rautela RS, Kumar M, Chauhan S, et al. Continued persistence of a single genotype of dengue virus type-3 (DENV-3) in Delhi, India since its re-emergence over the last decade. J Microbiol Immunol Infect. 2010 Feb; 43(1):53–61. https://doi.org/10.1016/S1684-1182(10)60008-4 Epub 2010 Mar 29. PMID: 20434124

15. Hapuarachchi HC, Koo C, Rajarethinam J, Chong CS, Lin C, Yap G, et al. Epidemic resurgence of dengue fever in Singapore in 2013–2014: A virological and entomological perspective. BMC Infect Dis. 2016 Jun 17; 16:300. https://doi.org/10.1186/s12879-016-1606-z PMID: 27316694

16. Saha K, Ghosh M, Firdaus R, Biswas A, Seth B, Bhattacharya D, et al. Changing pattern of dengue virus serotypes circulating during 2008–2012 and reappearance of dengue serotype 3 may cause outbreak in Kolkata, India. J Med Virol. 2016 Oct; 88(10):1697–702. https://doi.org/10.1002/jmv.24529 Epub 2016 Mar 29. PMID: 26991505

17. Choudhary MC, Gupta E, Sharma S, Hasnain N, Agarwala P. Genetic signatures coupled with lineage shift characterise endemic evolution of Dengue virus serotype 2 during 2015 outbreak in Delhi, India. Trop Med Int Health. 2017 Jul; 22(7):871–880. https://doi.org/10.1111/tmi.12898 Epub 2017 Jun 19. PMID: 28540099

18. Ospina MC, Diaz FJ, Osorio JE. Prolonged co-circulation of two distinct Dengue virus Type 3 lineages in the hyperendemic area of Medellin, Colombia. Am J Trop Med Hyg. 2010 Sep; 83(3):672–8. https://doi.org/10.4269/ajtmh.2010.09-0766 PMID: 20810837

19. Dash PK, Parida MM, Saxena P, Abhyankar A, Singh CP, Tewari KN, et al. Reemergence of dengue virus type-3 (subotype-III) in India: implications for increased incidence of DHF & DSS. Virol J. 2006 Jul 6; 3:55. https://doi.org/10.1186/1743-422X-3-55 PMID: 16824209

20. Cecilia D, Patil JA, Kakade MB, Walimbe A, Alagarasu K, Anukumar B, et al. Emergence of the Asian genotype of DENV-1 in South India. Virology. 2017 Oct; 510:40–45. https://doi.org/10.1016/j.virol.2017.07.004 Epub 2017 Jul 10. PMID: 28704695

21. Singh UB, Maitra A, Broor S, Rai A, Pasha ST, Seth P. Partial nucleotide sequencing and molecular evolution of epidemic causing Dengue 2 strains. J Infect Dis. 1999 Oct; 180(4):959–65. https://doi.org/10.1086/315043 PMID: 10479118
22. Chakravarti A, Kumar A, Matiani M. Displacement of dengue virus type 3 and type 2 by dengue virus type 1 in Delhi during 2008. Indian J Med Microbiol. 2010 Oct-Dec; 28(4):412. https://doi.org/10.4103/0255-0857.71806 PMID: 20966588

23. Reddy MN, Dungdung R, Vallyott L, Pilankatta R. Occurrence of concurrent infections with multiple serotypes of dengue viruses during 2013–2015 in northern Kerala, India. PeerJ. 2017 Mar 14; 5:e2970. https://doi.org/10.7717/peerJ.2970 eCollection 2017. PMID: 28316881

24. Bharaj P, Chahar HS, Pandey A, Diddy K, Dar L, Guleria R, et al. Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India. Virol J. 2008 Jan 9; 5:1. https://doi.org/10.1186/1743-422X-5-1 PMID: 18182120

25. Das B, Das M, Dwibedi B, Kar SK, Hazra RK. Molecular investigations of dengue virus during outbreaks in Orissa state, Eastern India from 2010 to 2011. Infect Genet Evol. 2013 Jun; 16:401–10. https://doi.org/10.1016/j.meegid.2013.03.016 Epub 2013 Mar 22. PMID: 23523598

26. Tazeen A, Afreen N, Abdullah M, Deeba F, Haider SH, Kazim SN, et al. Occurrence of co-infection with dengue viruses during 2014 in New Delhi, India. Epidemiol Infect. 2017 Jan; 145(1):67–77. Epub 2016 Sep 13. https://doi.org/10.1017/S0950268816001990 PMID: 27620341

27. Mishra B, Turuk J, Sahu SJ, Khajuria A, Kumar S, Dey A, et al. Co-circulation of all four dengue virus serotypes: First report from Odisha. Indian J Med Microbiol. 2017 Apr-Jun; 35(2):293–295. https://doi.org/10.4103/ijmm.IJMM_15_536 PMID: 28681825

28. Vaddadi K, Gandikota C, Jain PK, Prasad VSV, Venkatarama M. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014. Epidemiol Infect. 2017 Sep; 145(12):2563–2574. https://doi.org/10.1017/S0950268817001479 Epub 2017 Jul 20. PMID: 28726995

29. Cecilia D. Current status of dengue and chikungunya in India. WHO South East Asia J Public Health. 2014 Jan-Mar; 52:165–77. https://doi.org/10.1017/S0950268810001706 Epub 2010 Jul 30. PMID: 20670467

30. Cecilia D. Co-circulation of dengue viruses in Pune, India. PLOS ONE | https://doi.org/10.1371/journal.pone.0192672 February 22, 2018 18 / 19

31. Martinez R, Mendieta J, de la Fuente A, Rubin J, Del Carmen J, Martinez G, et al. Genetic characterization of dengue virus serotype-4 associated with severe dengue. Epidemiol Infect. 2017 May; 145(6):1198–1204. https://doi.org/10.1017/S0950268817000150 Epub 2017 Mar 10. PMID: 28508488

32. Vaddadi K, Gandikota C, Venkatarama M. Complete genome characterization and evolutionary analysis of serotype-4 associated with severe dengue. Epidemiol Infect. 2017 May; 145(7):1443–1450. https://doi.org/10.1017/S0950268817000243 Epub 2017 Feb 20. PMID: 28225186

33. Zhao H, Yu XD, Zhang XY, Jiang T, Hong WX, Yu M, et al. Complete genome sequence of a dengue virus serotype 4 strain isolated in Guangdong, China. J Virol. 2012 Jun; 86(12):7021–2. https://doi.org/10.1128/JVI.00858-12 PMID: 22628403

34. Das B, Das M, Dwibedi B, Kar SK, Hazra RK. Molecular investigations of dengue virus during outbreaks in Orissa state, Eastern India from 2010 to 2011. Infect Genet Evol. 2013 Jun; 16:401–10. https://doi.org/10.1016/j.meegid.2013.03.016 Epub 2013 Mar 22. PMID: 23523598

35. Mishra B, Turuk J, Sahu SJ, Khajuria A, Kumar S, Dey A, et al. Co-circulation of all four dengue virus serotypes: First report from Odisha. Indian J Med Microbiol. 2017 Apr-Jun; 35(2):293–295. https://doi.org/10.4103/ijmm.IJMM_15_536 PMID: 28681825

36. Vaddadi K, Gandikota C, Jain PK, Prasad VSV, Venkatarama M. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014. Epidemiol Infect. 2017 Sep; 145(12):2563–2574. https://doi.org/10.1017/S0950268817001479 Epub 2017 Jul 20. PMID: 28726995

37. Chien LJ, Liao TL, Shu PY, Huang JH, Gubler DJ, Chang GJ. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J Clin Microbiol. 2006 Apr; 44(4):1295–304. https://doi.org/10.1128/JCM.44.4.1295-1304.2006 PMID: 16597854

38. Vaddadi K, Gandikota C, Venkatarama M. Complete genome characterization and evolutionary analysis of serotype-4 associated with severe dengue. Epidemiol Infect. 2017 May; 145(7):1443–1450. https://doi.org/10.1017/S0950268817000243 Epub 2017 Feb 20. PMID: 28225186

39. Zhao H, Yu XD, Zhang XY, Jiang T, Hong WX, Yu M, et al. Complete genome sequence of a dengue virus serotype 4 strain isolated in Guangdong, China. J Virol. 2012 Jun; 86(12):7021–2. https://doi.org/10.1128/JVI.00858-12 PMID: 22628403

40. Sasmono RT, Wahid I, Trimmersanto H, Yohan B, Wahyu S, Hertanto M, et al. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infect Genet Evol. 2015 Jun; 32:165–77. https://doi.org/10.1016/j.meegid.2015.03.006 Epub 2015 Mar 14. PMID: 25784569

41. Cecilia D, Shah PS, Alagarasu K. Dengue: Achievements in the last decade. In: NIV Golden to Diamond Jubilee: The Glorious Decade. Eds. Arankalle VA, Cecilia D. 2012. pp. 141–162.
42. Zhang FC, Zhao H, Li LH, Jiang T, Hong WX, Wang J, et al. Severe dengue outbreak in Yunnan, China, 2013. Int J Infect Dis. 2014 Oct; 27:4–6. https://doi.org/10.1016/j.ijid.2014.03.1392 Epub 2014 Aug 11. PMID: 25107464

43. Heringer M, Nogueira RM, de Filippetis AM, Lima MR, Faria NR, Nunes PC, et al. Impact of the emergence and re-emergence of different dengue viruses’ serotypes in Rio de Janeiro, Brazil, 2010 to 2012. Trans R Soc Trop Med Hyg. 2015 Apr; 109(4):268–74. https://doi.org/10.1093/trstmh/trv006 Epub 2015 Jan 28. PMID: 25634640

44. Heringer M, Souza TMA, Lima MDRQ, Nunes PCG, Faria NRD, de Bruycker-Nogueira F, et al. Dengue type 4 in Rio de Janeiro, Brazil: case characterization following its introduction in an endemic region. BMC Infect Dis. 2017 Jun 9; 17(1):410. https://doi.org/10.1186/s12879-017-2488-4 PMID: 28599640

45. Sharma S, Dash PK, Agarwal S, Shukla J, Parida MM, Rao PV. Comparative complete genome analysis of dengue virus type 3 circulating in India between 2003 and 2008. J Gen Virol. 2011 Jul; 92(Pt 7):1595–600. https://doi.org/10.1099/vir.0.030437-0 Epub 2011 Mar 16. PMID: 21411675

46. Dash PK, Sharma S, Soni M, Agarwal A, Sahni AK, Parida M. Complete genome sequencing and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1. Virus Res. 2015 Jan 2; 195:124–34. https://doi.org/10.1016/j.virusres.2014.08.018 Epub 2014 Sep 6. PMID: 25197040

47. Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and Molecular Clock Analysis of Dengue Serotype 1 and 3 from New Delhi, India. PLoS One. 2015 Nov 4; 10(11):e0141628. https://doi.org/10.1371/journal.pone.0141628 eCollection 2015. PMID: 26536458

48. Afreen N, Naqvi IH, Broor S, Ahmed A, Kazim SN, Dohare R, et al. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India. PLoS Negl Trop Dis. 2016 Mar 15; 10(3):e0004511. https://doi.org/10.1371/journal.pntd.0004511 eCollection 2016 Mar. PMID: 26977703

49. Cao-Lormeau VM, Roche C, Aubry M, Teissier A, Lastere S, Daudens E, et al. Recent emergence of dengue virus serotype 4 in French Polynesia results from multiple introductions from other South Pacific Islands. PLoS One. 2011; 6(12):e29555. https://doi.org/10.1371/journal.pone.0029555 Epub 2011 Dec 28. PMID: 22216313

50. Bai Z, Liu Q, Jiang LY, Liu LC, Cao YM, Xu Y, et al. Complete genome sequence of dengue virus serotype 4 from guangzhou, china. Genome Announc. 2013 May 30; 1(3). pii: e00299-13. https://doi.org/10.1128/genomeA.00299-13 PMID: 23723400

51. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vornadam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992 Mar; 30(3):545–51. PMID: 1372617

52. Vinodkumar CS, Kalapannavar NK, Basavarajappa KG, Sanjay D, Gowli C, Nadig NG, et al. Episode of coexisting infections with multiple dengue virus serotypes in central Karnataka, India. J Infect Public Health. 2013 Aug; 6(4):302–6. https://doi.org/10.1016/j.jiph.2013.01.004 Epub 2013 Apr 3. PMID: 23806706