Bounds on Tracking Error using Closed-Loop Rapidly-Exploring Random Trees

Brandon Luders, Sertac Karaman, Emilio Frazzoli, and Jonathan How

Aerospace Controls Laboratory
Aerospace Robotics and Embedded Systems Laboratory
Laboratory for Information and Decision Systems (LIDS)
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology

July 2, 2010
Motivation

- Autonomous vehicles operating in complex, real-world scenarios
 - Many different navigation scenarios
 - Dynamic and uncertain environment
 - Numerous physical and logical constraints
 - Complex and unstable vehicle dynamics
- Approach: closed-loop rapidly-exploring random trees (CL-RRT) (Kuwata et al. 2009)
 - Maintains advantages of RRT (LaValle 1998)
 - Planning on a closed-loop system
 - Safety guarantees (Frazzoli et al. 2002)

(courtesy DARPA)
Motivation II

- Critical that predicted trajectories are accurately tracked for feasibility

- Successfully demonstrated in DARPA Urban Challenge (Leonard et al. 2008), Agile Robotics for Logistics (Teller et al. 2010)

Objective: Characterize theoretical properties of algorithm, particularly tracking
Contributions

1. Under certain assumptions (linear system, bounded disturbance), CL-RRT maintains bounded tracking error for predicted trajectory.
2. Can tighten constraints to guarantee long-term robust feasibility for CL-RRT.
3. Results for linear and nonlinear systems.
Problem Statement

- Uncertain, nonlinear, discrete-time system subject to disturbance
 \(w_t \sim P(W) \)

\[
x_{t+1} = f(x_t, u_t, w_t)
\]

- Constraints acting on system state and input

\[
x_t \in \mathcal{X}_t \\
u_t \in \mathcal{U}_t
\]

Primary Objective

Identify a path (via \(u_t \)) which reaches the goal region \(\mathcal{X}_{goal} \) while satisfying the constraints for all timesteps.
Rapidly-Exploring Random Trees

- System at tree root (R) attempting to reach goal region (G)

- Grow T for some duration: loop through
 1. Sample $x_{samp} \in \mathcal{X}$
 2. Find node $N_{near} \in T$ “nearest” to x_{samp}
 3. From N_{near}, select inputs $u(t) \in \mathcal{U}$
 4. Simulate trajectory,
 $N_{new} \leftarrow \Phi(N_{near}, u, x_{samp})$
 5. If N_{new} is feasible, add it to T

- Determine best path in T according to cost function and execute it
Closed-Loop RRT

- Sample inputs to low-level controller $u = \kappa(r, x)$, then propagate state trajectory (Kuwata et al. 2009)
- Maintain trees for both reference and state
- Resulting tree is still dynamically feasible
- Each sample can generate long-timescale maneuvers \rightarrow very efficient

Key Question:
How do the two algorithms compare in terms of robustness to disturbances/uncertainty?
Open-Loop Model, Open-Loop System

- **Assumptions:** LTI system, additive process noise
- **Approach:** Develop error dynamics of system vs. model

Model:

\[
\hat{u}_t \quad \text{open-loop} \\
\hat{x}_{t+1} = A\hat{x}_t + B\hat{u}_t
\]

System:

\[
u_t = \hat{u}_t \\
x_{t+1} = Ax_t + Bu_t + w_t
\]

Open-Loop Error Dynamics

\[
e_t = x_t - \hat{x}_t \Rightarrow e_{t+1} = Ae_t + w_t
\]

- A stable \iff Error dynamics stable
- Error propagation unaffected by input sequence
Closed-Loop Model, Closed-Loop System

Model:
\[
\hat{u}_t = K(\hat{x}_t - r_t)
\]
\[
\hat{x}_{t+1} = A\hat{x}_t + B\hat{u}_t
\]
\[
= (A + BK)\hat{x}_t - BKr_t
\]

System:
\[
u_t = K(x_t - r_t)
\]
\[
x_{t+1} = Ax_t + Bu_t + w_t
\]
\[
= (A + BK)x_t - BKr_t + w_t
\]

Closed-Loop Error Dynamics
\[
e_{t+1} = (A + BK)e_t + w_t
\]

- \(A + BK\) stable \(\Leftrightarrow\) Error dynamics stable
- Provides mechanism for shaping error propagation

BIBO Stability of Error Dynamics
\[
A + BK\text{ stable, } w \in \mathcal{W}\text{ bounded} \Rightarrow e_t\text{ bounded} \quad \forall t
\]
Ultimately want robust feasibility: state constraints X and input constraints U satisfied at all timesteps for all possible disturbances $w \in W$

Suppose error bounds known
 - Show error bounds satisfy nominal constraints ... or ...
 - Show nominal path satisfies tightened constraints
Achieving Robust Feasibility

- Ultimately want robust feasibility: state constraints \mathcal{X} and input constraints \mathcal{U} satisfied at all timesteps for all possible disturbances $w \in \mathcal{W}$
- Suppose error bounds known
 - Show error bounds satisfy nominal constraints . . . or . . .
 - Show nominal path satisfies tightened constraints
Achieving Robust Feasibility

- Ultimately want **robust feasibility**: state constraints \mathcal{X} and input constraints \mathcal{U} satisfied at all timesteps for all possible disturbances $w \in \mathcal{W}$
- Suppose error bounds known
 - Show error bounds satisfy nominal constraints ... or ...
 - Show **nominal** path satisfies tightened constraints
Tube MPC

- **Approach:** Leverage robust model predictive control (MPC) (Mayne et al. 2000) to show CL-RRT satisfies tightened constraints
 - RRT paths ⇔ feasible MPC solutions
- **Example:** Identify tube of nominally feasible constraints (Langson et al. 2004, Mayne et al. 2005)
 - **Centerline:** disturbance-free trajectory
 - **Cross-section:** robust positively invariant set Z

\[(A + BK)x + w \in Z \quad \forall \; x \in Z, \; \forall \; w \in \mathcal{W}\]
Approach: Leverage robust model predictive control (MPC) (Mayne et al. 2000) to show CL-RRT satisfies tightened constraints
- RRT paths ⇔ feasible MPC solutions

Example: Identify tube of nominally feasible constraints (Langson et al. 2004, Mayne et al. 2005)
- **Centerline:** disturbance-free trajectory
- **Cross-section:** robust positively invariant set Z

\[(A + BK)x + w \in Z \quad \forall \; x \in Z, \; \forall \; w \in \mathcal{W}\]
Tube MPC

- **Approach:** Leverage robust model predictive control (MPC) (Mayne et al. 2000) to show CL-RRT satisfies tightened constraints
 - RRT paths \Leftrightarrow feasible MPC solutions
- **Example:** Identify tube of nominally feasible constraints (Langson et al. 2004, Mayne et al. 2005)
 - Centerline: disturbance-free trajectory
 - Cross-section: robust positively invariant set Z

$$(A + BK)x + w \in Z \quad \forall \ x \in Z, \ \forall \ w \in \mathcal{W}$$
Tube MPC

- **Approach:** Leverage robust model predictive control (MPC) (Mayne et al. 2000) to show CL-RRT satisfies tightened constraints
 - RRT paths \iff feasible MPC solutions
- **Example:** Identify tube of nominally feasible constraints (Langson et al. 2004, Mayne et al. 2005)
 - **Centerline:** disturbance-free trajectory
 - **Cross-section:** robust positively invariant set Z

\[(A + BK)x + w \in Z \quad \forall \ x \in Z, \quad \forall \ w \in \mathcal{W}\]
Robust Feasibility

Theorem (Closed-loop RRT with Robust Feasibility)

Given an LTI system and linear feedback K such that $A + BK$ is stable, tighten the state constraints \mathcal{X} and input constraints \mathcal{U} according to

$$\mathcal{X}^- = \mathcal{X} \ominus Z, \quad \mathcal{U}^- = \mathcal{U} \ominus KZ.$$

Then any path followed using CL-RRT with feedback K satisfies all constraints for all $w \in \mathcal{W}$.

- Proof in paper (same error dynamics)
- Leads to **Tube-RRT**: “tree of tubes”
- Tube cross-section is fixed off-line \Rightarrow negligible complexity increase
- Other approaches for tightening constraints (CT-RRT)
Linear Example

- Double integrator (quadrotor) navigating 2D obstacle field in windy env. (30% of input)
- 20 trials

Algorithm	% Feas.	Avg Error, m	Max Error, m	Time per Node, ms
RRT (←)	10	0.341	0.997	7.04
CL-RRT (→)	100	0.025	0.057	6.77

Luders et al. (LIDS, MIT) Bounds on Tracking Error using CL-RRT
Nonlinear Example

- Badly-modelled skid-steering vehicle operating in uneven terrain
 - Terrain disturbance $\leq 20\%$ of speed
 - Steering map bias (10\% of speed)
 - Steered using pure pursuit (Park et al. 2007, Kuwata et al. 2008)

- Open-loop: heading drift \Rightarrow certain infeasibility

- Closed-loop RRT: identifies feasible path in 50\% of trials
 - Converts poor mapping into bounded offset
Conclusions

- CL-RRT can be used to accurately track a trajectory with **known error bounds** and **robust feasibility guarantees**, without replanning.
- Accurate trajectory tracking \Rightarrow improved likelihood of long-term feasibility.
- Introduced Tube-RRT: augments CL-RRT with robust feasibility by tightening constraints.
- Demonstrated robustness in many domains:
 - Linear vs. nonlinear
 - Simulation vs. hardware
E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. *AIAA Journal of Guidance, Control, and Dynamics*, 25(1):116–129, January-February 2002.

Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P. How. Motion planning in complex environments using closed-loop prediction. Submitted to the Proceedings of the IEEE Conference on Guidance, Navigation, and Control, 2008.

Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-time motion planning with applications to autonomous urban driving. *IEEE Transactions on Control Systems Technology*, 17(5):1105–1118, September 2009.

W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne. Robust model predictive control using tubes. *Automatica*, 40:125–133, 2004.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Iowa State University, October 1998.

J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and J. Williams. A perception-driven autonomous urban vehicle. *Journal of Field Robotics*, 25(10):727–774, 2008.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. *Automatica*, 36:789–814, 2000.

D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predictive control of constrained linear systems with bounded disturbances. *Automatica*, 41:219–224, 2005.

S. Park, J. Deyst, and J. P. How. Performance and lyapunov stability of a nonlinear path-following guidance method. *Journal of Guidance, Control, and Dynamics*, 30(6):1718–1728, November-December 2007.

S. Teller, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J. P. How, J. Jeon, S. Karaman, B. Luders, N. Roy, T. Sainath, and M. R. Walter. A voice-commanded robotic forklift working alongside humans in minimally-prepared outdoor environments. In *Proceedings of the IEEE International Conference on Robotics and Automation*, 2010. Submitted to the IEEE International Conference on Robotics and Automation; available online at http://www.mit.edu/~luders/agile.pdf.
Tube Error Propagation

Model: same as CL-RRT

\[
\begin{align*}
\hat{u}_t &= K(\hat{x}_t - r_t) \\
\hat{x}_{t+1} &= A\hat{x}_t + B\hat{u}_t \\
 &= (A + BK)\hat{x}_t - BKr_t
\end{align*}
\]

System: use same \(K \)

\[
\begin{align*}
\hat{u}_t &= \hat{u}_t + K(x_t - \hat{x}_t) \\
x_{t+1} &= Ax_t + Bu_t + w_t \\
 &= Ax_t + B\hat{u}_t + BK(x_t - \hat{x}_t) + w_t
\end{align*}
\]

Closed-Loop Error Dynamics

\[
e_{t+1} = (A + BK)e_t + w_t \iff \text{same as CL-RRT}
\]

- Same model trajectory, error dynamics \(\Rightarrow\) same system trajectory
- Tube MPC performs error propagation in same manner as closed-loop RRT
- Only necessary to tighten constraints to achieve robust feasibility

Luders et al. (LIDS, MIT)
Tube Error Propagation

Model: same as CL-RRT

\[
\begin{align*}
\hat{u}_t &= K(\hat{x}_t - r_t) \\
\hat{x}_{t+1} &= A\hat{x}_t + B\hat{u}_t \\
&= (A + BK)\hat{x}_t - BK r_t
\end{align*}
\]

System: use same K

\[
\begin{align*}
u_t &= \hat{u}_t + K(x_t - \hat{x}_t) \\
x_{t+1} &= Ax_t + Bu_t + w_t \\
&= Ax_t + B\hat{u}_t + BK(x_t - \hat{x}_t) + w_t
\end{align*}
\]

Closed-Loop Error Dynamics

\[e_{t+1} = (A + BK)e_t + w_t \leftarrow \text{same as CL-RRT}\]

- Same model trajectory, error dynamics \Rightarrow same system trajectory
- Tube MPC performs error propagation in same manner as closed-loop RRT
- Only necessary to tighten constraints to achieve robust feasibility
Tube Error Propagation

Model: same as CL-RRT

\[\hat{u}_t = K(\hat{x}_t - r_t) \]
\[\hat{x}_{t+1} = A\hat{x}_t + B\hat{u}_t \]
\[= (A + BK)\hat{x}_t - BKr_t \]

System: use same \(K \)

\[u_t = \hat{u}_t + K(x_t - \hat{x}_t) \]
\[x_{t+1} = Ax_t + Bu_t + w_t \]
\[= Ax_t + B\hat{u}_t + BK(x_t - \hat{x}_t) + w_t \]

Closed-Loop Error Dynamics

\[e_{t+1} = (A + BK)e_t + w_t \leftarrow \text{same as CL-RRT} \]

- Same model trajectory, error dynamics \(\Rightarrow \) same system trajectory
- Tube MPC performs error propagation in same manner as closed-loop RRT
- Only necessary to tighten constraints to achieve robust feasibility