The Effects on the Pain Index and Lumbar Flexibility of Obese Patients with Low Back Pain after PNF Scapular and PNF Pelvic Patterns

KwangYong Park, MS1, KyoChul Seo, PhD, PT2)*

1) Department of Rehabilitation Technology, Korea Nazarene University, Republic of Korea
2) Department of Physical Therapy, Korea Nazarene University: 456 Ssangyong-dong, Seobuk-gu, Cheonan, Chungnam 331-718, Republic of Korea

Abstract. [Purpose] The purpose of this study was to determine whether exercises using proprioceptive neuro-muscular facilitation (PNF) scapular and pelvic patterns might decrease the pain index and increase the lumbar flexibility of obese patients with low back pain. [Subjects and Methods] Thirty obese patients with low back pain were randomly assigned to an experimental group (n=15) and a control group (n=15). The exercise program of the experimental group consisted of scapular patterns (anterior depression – posterior elevation) and pelvic patterns (anterior elevation – posterior depression). The control group performed neutral back muscle strengthening exercises. Over the course of four weeks, the groups participated in PNF or performed strengthening exercises for 30 minutes, three times per week. Subjects were assessed a pre-test and post-test using measurements of pain and lumbar flexibility. [Results] The results show that lumbar flexion and lumbar extension significantly improved in the experimental group, had significant improvement and that the Oswestry Disability index (ODI) significantly decreased. However, there were no significant changes in the control group. The experimental group also showed significant differences in the pain index and lumbar flexibility from the control group. [Conclusion] This study showed that PNF can be used to improve pain index rating and lumbar flexibility. The findings indicate that the experimental group experienced greater improvement than the control group by participating in the PNF lumbar stabilization program.

Key words: Obesity, Low back pain, Proprioceptive neuromuscular facilitation

INTRODUCTION

As society has become highly industrialized and automated, physical activity has decreased, triggering an overall lack of exercise and which resulted in chronic diseases accompanied by diverse activity disorders1). Among these, low back pain is a clinical, social, and economic problem affecting everybody, and it is a very important and common condition among humans3).

There are diverse causes of low back pain. Physical conditions, such as obesity may lead to secondary occurrence of low back pain3). In particular, abdominal obesity causes an imbalance in the muscles around the pelvis, and this unbalanced muscle pattern triggers excessive activity of the hip joint flexors, to compensate for the weakened abdominal muscles, hip joint contracture, and anterior pelvic tilt, which results in lordosis and, therefore, low back pain3). Generally, the etiology of obesity with low back pain has been clarified by focusing on structural parts, such as vertebral joints and intervertebral discs, and muscular injuries5, 6). In particular, a lot of research has been conducted on improving the muscle strength of abnormally obese patients through muscle strengthening exercise programs5, 8); decreasing pain and enhancing dynamic balance through the use of directional tilt and rotation exercises9); strengthening of the lumbar region using a ball10); engaging in endurance and flexibility training11); and implementing core muscle stabilizing exercises12); and pain control13). However, those previous studies solved structural problems through simple lumbar strengthening exercises and they focused on strengthening large muscle groups, such as the abdominal muscles. They were lacking in co-contraction and flexibility training and, therefore, they failed to contribute much to the stabilization of the lumbar region14). A previous study recommended proprioceptive neuromuscular facilitation (PNF), which may stimulate the proprioceptive senses of the lumbar region muscles, and is useful for training sensory-motor regulation and balance15). Therefore, this study examined the effects of PNF intervention on lumbar flexibility and the pain index of obese patients with low back pain using interventions for low back pain patients described in previous studies.

*Corresponding author. KyoChul Seo (E-mail: blueskyskc@kornu.ac.kr)

©2014 The Society of Physical Therapy Science. Published by IPEC Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/3.0/>.
SUBJECTS AND METHODS

Subjects
The subjects of this study were 30 obese males in their 20s to 40s who visited S Hospital located in Daegu Metropolitan City complaining of low back pain from April 15, 2014 to May 15, 2014. The subjects were randomly and equally assigned to an experimental group and a control group. The criteria for inclusion in this study were: people who had visited the hospital and received treatment for low back pain; people whose body mass index (BMI) was higher than 25 kg/m2; people who had not undergone vertebral fixation or other surgical treatments, and people who had no cardiovascular diseases related to abdominal obesity and/or metabolic diseases such as diabetes mellitus. The subjects understood the purpose of this study and consented to participation in it. This study was approved by the IRB of the Korea Nazarene University and was conducted in accordance with the ethical principles of the Declaration of Helsinki. The general characteristics of both groups are shown in Table 1.

Methods
The experimental group participated in a 30-minute PNF-pattern exercise session three times per week, for four weeks, after receiving basic physical therapy (hot pack, ICT, US) and resting for five minutes. Four physical therapists with three years of experience, and who had completed PNF levels 1 and 2 trained the experimental group.

The subjects lay on a bed and began the exercise. In order to exercise the upper extremities first, a therapist positioned himself at the head of each of the subjects, one by one, and manipulated each of the subject’s shoulder joints in a scapular pattern (anterior depression – posterior elevation pattern) using the basic principles of PNF. The therapist held the acromion areas of the subject’s shoulders with both hands and instructed the subject to “move the shoulder bone toward the pelvis of the opposite side”. The therapist provided adequate resistance after successful trajectory contraction of the abdominal muscles while the subject’s shoulders were moving. Then, the therapist conducted a pelvic pattern exercise (anterior elevation – posterior depression pattern). He held the anterior ridge of the subject’s pelvis and instructed the subject to “move the pelvic bone toward the shoulder of the opposite side”, triggering movement of the pelvis and resulting in trajectory contraction of the abdominal muscles. The therapist then provided adequate resistance. At that time, for irradiation effect against the resistance, each of the subjects alternately conducted muscle contractions on both sides of their bodies\(^7\). The subjects were allowed to rest whenever they felt fatigue during the exercise.

The control group performed strengthening exercises three times per week for four weeks after basic physical therapy (HP, ICT, US) and resting for five minutes. For an ordinary lumbar muscle strengthening exercise, the control group conducted a warm-up exercise (stretching) for five minutes, a flexion exercise (raising the upper abdominal region in a lying position, stretching the knees and raising

Table 1. General characteristics of the subjects
EG (n=15)

Age (years)
Height (cm)
Weight (kg)
BMI (kg/m2)

Values are means ± SD, EG: experimental group; CG: control group

the legs, and flexing the trunk by stretching the arms and raising the legs in a side-lying position) for 10 minutes, an extension exercise (pulling the chin and lifting the head and raising the trunk in a prone position, raising one leg while laying the arms comfortably in a prone position) for 10 minutes, and a cool-down exercise (stretching, breathing exercise) for five minutes\(^8\). When the subjects felt fatigue during the exercise, they rested.

The flexibility of the lumbar region through measured with trunk flexion and trunk extension. In order to measure trunk flexion, the subjects drew their heels together and stretched their fingers; then they slowly bent their body forward. Measurements were taken while rebound of the body and bending of the knees were prevented. In order to measure trunk extension, the subjects lay prone on a mat with both hands behind their waist, and the assistant fixed the ankles of the subjects and raised their upper body high, maintaining that position for more than one second. Measurements were taken from the ground to the subjects’ chins. Measurements of trunk flexion and extension were taken three times and the average values were recorded in cm\(^9\). Measurements were taken prior to and after the experiment of both the experimental group and the control group subjects.

To analyze low back pain the Oswestry Disability Index (ODI) was used. ODI is a scale that measures the response that patients with low back pain have to activities of daily living and disorders. ODI consists of 10 items (the degree of pain, self-management, raising objects, walking, sitting, standing, sleeping, hobbies, movement, and sexual activity). According to the degree of the patients’ performance, each of the 10 items is assigned a point ranging from zero to five. The condition of no pain is given zero points and the condition of the worst degree of pain is given five points. The total score was 50 points\(^10\). This study converted the total score into percentages. The ODI of the experimental group and the control group were measured prior to and after the experiment.

For analysis, this study used SPSS ver. 12.0, and each group’s mean and standard deviation were calculated. In order to compare differences in the lumbar flexibility between each group prior to and after the exercise, two-way ANOVA was conducted, and in order to compare differences between the groups after the experiment, the independent t-test was carried out. The significance level (α) was chosen as 0.05.
RESULTS

Lumbar flexion and lumbar extension significantly increased (p<0.05) and ODI significantly decreased after the intervention in the experimental group (p<0.05). There were no significant differences in the control group between prior to and after the intervention (p>0.05). In the comparison of the groups after the intervention, only lumbar extension and ODI were significantly different between the two groups (p<0.05); there was no significant difference in lumbar flexion between the groups (p>0.05) (Table 2).

DISCUSSION

Low back pain is associated with body mass index, and the intensity of low back pain gradually increases as the degree of obesity becomes higher21. In the treatment of gradually increasing low back pain in obese people, the effect of treating low back pain with exercise therapy rather than surgical therapy was recently clarified, and exercise therapy has developed as an area that has drawn a great deal of attention22. Stretching and physical exercise programs are effective for low back pain patients, and in particular, exercises combined with muscle resistance and aerobic exercises have the best effects23. Because a lot of research has already proven the usefulness of manual exercise therapy directly provided by therapists in a variety of exercise treatment methods24, 25, this study examined the effects of combination patterns of the PNF on lumbar flexibility and pain index of 30 patients. In order to reduce subject muscle fatigue and efficiently increase their muscle strength, the exercises combined with muscle resistance and aerobic exercises have the best effects23. For the effect of PNF combination patterns on lumbar flexibility and pain, the results of previous studies that have examined the effects of back pain, the results of this study are consistent with the results of previous studies that have examined the effects of PNF combination patterns on lumbar flexibility and pain.

| Table 2. The comparison of lumbar flexion and lumbar extension and ODI between the experimental group and the control group |
|---------------------------------|------------------|------------------|
| | EG | CG |
| | Pre-test | Post-test | Pre-test | Post-test |
| Lumbar flexion (cm) | 0.3 ± 0.1 | 1.3 ± 1.7a | 0.3 ± 0.1 | 0.6 ± 0.2 |
| Lumbar extension (cm) | 15.3 ± 2.4 | 27.3 ± 3.4a | 17.6 ± 2.9 | 21.1 ± 2.8a |
| ODI (%) | 32.0 ± 3.2 | 23.4 ± 4.7a | 31.8 ± 3.5 | 28.1 ± 2.4a |

Mean±SE, ODI: Oswestry Disability Index, *Significant difference from before the intervention, p <0.05. a Significant difference in changes between the two groups, p<0.05.
strengthening the ability of the muscles to generate tensile force through spiral movement of the abdominal muscles. We consider that the PNF treatment method, which has been routinely applied to stroke patients, has further treatment opportunities in physical therapy for treating musculoskeletal system conditions like low back pain.

ACKNOWLEDGEMENT

This research was supported by Korean Nazarene University Research Grants 2014.

REFERENCES

1) Hart JM, Fritz JM, Kerrigan DC, et al.: Quadriceps inhibition after repetitive lumbar extension exercise in persons with a history of low back pain. J Athl Train, 2006, 41: 264–269. [Medline]
2) Manchikanti L, Pampati V, Singh V, et al.: Evaluation of the role of facet joint in persistent low back pain in obesity: a controlled, prospective, comparative evaluation. Pain Physician, 2001, 4: 266–272. [Medline]
3) Park SD, Lee AL, Hwang JS, et al.: The study on relation of low back pain and obesity. J Korean Acupunct Moxibustion Soc, 2003, 20: 102–113.
4) Mun SG: influence of pelvic crossed muscle exercise program to lumbar stabilization on abdominal obesity. Unpublished Doctor’s dissertation, Graduate School of Chungnam National University, 2005.
5) Cavanaugh JM, Ozaktay AC, Yamashita T, et al.: Mechanisms of low back pain: a neurophysiologic and neuroanatomic study. Clin Orthop Relat Res, 1997, 335: 166–180. [Medline]
6) Salminen JJ, Erkintalo MO, Pentti J: [Low back pain in adolescents]. Duodecim, 1994, 110: 52–58. [Medline]
7) Choi HJ, Hwang R: Effect of exercise program for abdominal muscular strength on the decrease of abdominal obesity. Bullenn Dongnam Health Coll, 2001, 19: 61–70.
8) Lee HJ, Lee CS, Daniel C: The effects of combined exercise on visceral fat and nokinetic muscle function in middle-aged obese women. Korea J Sports Sci, 2005, 16: 487–494.
9) Gu BO, Park MC, Song YY, et al.: Effect of 8 direction incline and rotation exercise on pain and dynamic balance in the patients with chronic low back pain. The Korea Contents Association, 2010, 10: 285–92.
10) Lee CW, Hwangbo K, Lee IS: The effects of combination patterns of proprioceptive neuromuscular facilitation and ball exercise on pain and muscle activity of chronic low back pain patients. J Phys Ther Sci, 2014, 26: 93–96. [Medline] [CrossRef]
11) Mori A: Electromyographic activity of selected trunk muscles during stabilization exercises using a gym ball. Electromyog Clin Neurophysiol, 2004, 44: 57–64. [Medline]
12) Stanton R, Reaburn PR, Humphries B: The effect of short-term Swiss ball training on core stability and running economy. J Strength Cond Res, 2004, 18: 522–528. [Medline]
13) Lee JH, Park SI, Na SS: The effect of proprioceptive neuromuscular facilitation therapy on pain and function. J Phys Ther Sci, 2013, 25: 713–716. [Medline] [CrossRef]
14) Vera-Garcia FJ, Grenier SG, McGill SM: Abdominal muscle response during curl-ups on both stable and labile surfaces. Phys Ther, 2000, 80: 564–569. [Medline]
15) Lee YJ: The effects of the PNF techniques on lumbar stability and the functional activity in chronic low back pain patients. Unpublished Master’s dissertation, Graduate School of Dongshin University, 2009.
16) Journal of Korean Society for the Study of Obesity: Clinical obesity. Korea Medicine, 2008.
17) Ku BO, Kwon MJ, Kim KT, et al.: Treatment of neurological and muscle and joint proprioceptive neuromuscular facilitation: evidence-based diagnosis and intervention. DaiHak Public, 2009, 385–389.
18) Park MY, Kim SS, Kim SH et al.: Effect of functional electrical stimulation and lumbar trunk muscle strengthening exercise for muscle strengthening and abdominal fat in postmenopausal women. J Sport and Leisure Studies, 2007, 29: 387–396.
19) Kim K, Han JT, Lee HJ: The effects of swiss ball exercise on scoliosis and flexibility in young adults. Korea Sport Research, 2007, 18: 253–262.
20) Fairbank JC, Pyntem PJ: The Oswestry disability index. Spine, 2000, 25: 2940–2952, discussion 2952. [Medline] [CrossRef]
21) Youdas JW, Garrett TR, Egan KS, et al.: Lumbar lordosis and pelvic inclination in adults with chronic low back pain. Phys Ther, 2006, 80: 261–275. [Medline]
22) Shin DS, Lee CJ, Roh DF: Effect of walking and walking with dumbbell exercise on health-related fitness and blood Lipids in obese female college students. KSSPE, 2010, 15: 1229–9685.
23) Mitchell RI, Carmen GM: Results of a multicenter trial using an intensive active exercise program for the treatment of acute soft tissue and back injuries. Spine, 1990, 15: 514–521. [Medline] [CrossRef]
24) Dietz B: International PNF Basic Course Book. Gwangjoo, Korea, 2006.
25) Westerholt F: International PNF Basic Course Book. Daejeon, Korea, 2005.
26) Kim JH, Hong YS, Bae SS: The effects of chest physical therapy on improvement of pulmonary function in the patients with stroke. J Kor Soc Phys Ther, 2000, 12: 133–144.
27) British T British Thoracic Society Standards of Care Subcommittee on Pulmonary Rehabilitation: Pulmonary rehabilitation. Thorax, 2001, 56: 827–834. [Medline] [CrossRef]
28) Bae SS, Kim JS, Ju MY: The effect of dynamic lumbar stabilization exercise on low back pain patients. J Kor Soc Phys Ther, 2001, 13: 495–507.
29) Ha SH: The effects of lumbar stabilization exercise and sling exercise on the lumbar flexibility, lumbar muscle strength and visual analogue scale of the low back pain patients. Unpublished Master’s dissertation, Graduate School of Changwon National University, 2008.
30) Yang JH, Choi JH: Effects of aquatic exercises and sling exercise on the lumbar flexibility, lumbar muscle strength and visual analogue scale in women with chronic low back pain. J Sport and Leisure Studies, 2008, 32: 881–890.
31) Kofotolos N, Kellis E: Effects of two 4-week proprioceptive neuromuscular facilitation programs on muscle endurance, flexibility, and functional performance in women with chronic low back pain. Phys Ther, 2006, 86: 1001–1012. [Medline]
32) Adler SS, Beckers D, Buck M: PNF in practice an illustrated guide, 2nd ed. Springer-Verlag, 2002.
33) Jeon HJ, Lee MH: The effects of PNF technique versus trunk exercise program on the pain, disability and balance in chronic LBP patients. The Korea Contents Association, 2009, 9: 665–673.