«Metrological Support of Innovative Technologies»
ICMSIT-2020

«Wavelet method of hiding text information in audio signals »

N N Manuilova, L E Khairullina, G Z Khabibullina, Ch B Minnegalieva, S V Makletsov, V V Bronskaya and O S Kharitonova
• One of the tools that allows to embed is a discrete wavelet transform. Wavelet transform is a relatively new and powerful analysis and processing tool.

• The method of secret transmission of a text message by hiding in sound files and subsequent recovery without loss is considered.

• The basic of method is a discrete wavelet transform on biorthogonal wavelets. A web application implementing this method has developed. The implementation language is Python.
a) ψ -wavelet function rbior5.5, b) φ-wavelet function rbior5.5
Stegosystem based on DWT.
User interface
(a) original signal-container, (b) signal with embedded secret text at the decomposition level $L = 1$, (c) signal with embedded secret text at the decomposition level $L = 5$
Conclusions

Results, implementation

• Biorthogonal wavelet transform provides reliable hiding secret information with subsequent recovery without loss.

• The space for hiding information is the coefficients of subbands obtained as a result of decomposition of the signal to the level L.

• The steganographic method using reverse biorthogonal wavelet rbio5.5 has the greatest efficiency. It was found using the PSNR calculation.

• The considered steganographic method can be used for the formation of “watermarks” for copyright protection.
Contacts

N N Manuilova\(^1\), L E Khairullina\(^1\), G Z Khabibullina\(^2\), Ch B Minnegalieva\(^1\), S V Makletsov\(^3\), V V Bronskaya\(^4\) and O S Kharitonova\(^5,6\)

\(^1\)Department of Information Systems, Kazan Federal University, 35 Kremlyovskaya Street, Kazan 420008, Russian Federation

\(^2\)Department of Relativity Theory and Gravity, Kazan Federal University, 35 Kremlyovskaya Street, Kazan 420008, Russian Federation

\(^3\)Department of Theory of Functions and Approximations, Kazan Federal University, 35 Kremlyovskaya Street, Kazan 420008, Russian Federation

\(^4\)Department of Chemical Process Engineering, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation

\(^5\)Department of Chemical Technology of Petroleum and Gas Processing, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation

olga220499@mail.ru