Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity

Chakraborty C et al. Gut microbiota in COVID-19 patients

Chiranjib Chakraborty, Ashish Ranjan Sharma, Manojit Bhattacharya, Kuldeep Dhama, Sang-Soo Lee

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to a severe respiratory illness and alters the gut microbiota, which dynamically interacts with the human immune system. Microbiota alterations include decreased levels of beneficial bacteria and augmentation of opportunistic pathogens. Here, we describe critical factors affecting the microbiota in coronavirus disease 2019 (COVID-19) patients. These include, such as gut microbiota imbalance and gastrointestinal symptoms, the pattern of altered gut microbiota composition in COVID-19 patients, and crosstalk between the microbiome and the gut-lung axis/gut-brain-lung axis. Moreover, we have illustrated the hypoxia state in COVID-19 associated gut microbiota alteration. The role of ACE2 in the digestive system, and control of its expression using the gut microbiota is discussed, highlighting the interactions between the lungs, the gut, and the brain during COVID-19 infection. Similarly, we address the gut microbiota in elderly or co-morbid patients as well as gut microbiota dysbiosis of in severe COVID-19. Several clinical trials to understand the role of probiotics in COVID-19 patients are listed in this review. Augmented inflammation is one of the major driving forces for COVID-19 symptoms and gut microbiome disruption and is associated with disease severity. However, understanding the role of the gut microbiota in immune modulation during SARS-CoV-2 infection may help improve therapeutic strategies for COVID-19 treatment.

Key Words: COVID-19; Inflammation; Gut microbiota; Therapeutic
Chakraborty C, Sharma AR, Bhattacharya M, Dhama K, Lee SS. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. *World J Gastroenterol* 2022; In press

Core Tip: The gut microbiota of coronavirus disease 2019 (COVID-19) patients is altered compared to that of healthy individuals, with a reduction in the count of beneficial bacteria and an increase in the count of opportunistic fungi. In this review, we elucidate the components governing immune modulation. Additionally, we explore the effect of changes in the microbial ecosystem in COVID-19 patients, with an aim to help develop precise therapeutics and expand our knowledge regarding the pattern of changes in the gut microbiota of COVID-19 patients.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has stimulated research on several medical conditions and on individual patient variations during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to unfold underlying disease mechanisms. Scientists have determined the inflammatory response and cellular injury mediated by acute SARS-CoV-2 infection. Moreover, several studies have revealed the involvement of the gastrointestinal (GI) tract and its associated gut microbiome during COVID-19, motivating research in this field. Increasing evidence has surfaced confirming the association of the GI tract and COVID-19, including a severe state of gut dysbiosis in COVID-19 patients. Similarly, GI symptoms such as vomiting, abdominal pain, and diarrhea have been noted in many COVID-19 patients. Moreover, high expression of ACE2 receptor was reported in epithelial cells of the GI tract. SARS-CoV-2 RNA has been identified in rectal and anal swabs, as well as stool specimens. Finally, liver damage, loss of appetite, and irritable inflammatory diseases have been reported as post-COVID-19 illnesses. These all data strongly indicate a correlation between the GI including the gut microbiome, and COVID-19.

The gut microbiota plays an important role in controlling gut health and acts as a health modulator (Figure 1) aiding in different metabolic activities and
extensively impactings health and disease[13,14]. Ongoing research aims to better understand the gut microbiota and provide insights into the mechanistic conditions required to implement normal health functions. The gut microbiota controls specific functions in the host, such as drug and xenobiotic metabolism and nutrient metabolism[15]. Simultaneously, it helps maintain the structural integrity of the gut mucosal barrier, protects against pathogens, and regulates immunomodulation, as well as health and disease conditions[16,17]. Several other studies suggest a possible link between COVID-19 and gut microbiota composition[18,19]. Additionally, an association has been shown between altered gut microbial composition and increased risk factors in COVID-19 patients (Figure 1)[20,21].

Inflammation is a major risk factor in COVID-19 patients[22-24]. During uncontrolled inflammation, abnormal levels of cytokines such as interleukin-1 beta (IL-1\beta), IL-6, IL-8, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-\alpha), and interferon-gamma (IFN-\gamma) are found in the patients[23,25-27]. Certain abnormal levels of cytokines are substantial related to the severity of COVID-19 and are probably responsible for the “cytokine storm” syndrome manifested during the disease[25-30]. Research has correlated the inflammation during COVID-19 with GI and hepatic manifestations of the disease[31]. Interactions between the gut microbiota and the lungs, known as the gut-lung axis, have sparked interest for gastroenterology studies focusing on COVID-19 as these interactions affect disease severity. Changes in the gut microbiome certainly affect homeostasis and may lead to increased infections[32,33]. Similarly, in addition to the gut, COVID-19 can also have a detrimental effect on the central nervous system (CNS) and the blood-brain barrier (BBB) and disrupt the gut-brain-lung axis. Studies have explored therapeutic options (nicotinic cholinergic agonists and vagus nerve stimulation) to minimize the damage caused to this axis[34]. Research is necessary to understand how the gut microbiome is altered during COVID-19 infection and the factors that influence the microbiome during mild to moderate and severe disease. Studies have been conducted to understand the GI symptoms during COVID-19 and to detect viral shedding using the fecal matter of SARS-CoV-2 patients. The gut microbiota of COVID-19 patients has been mapped to
obtain evidence regarding inflammation, disease severity, and therapeutic development.

Using these studies, we explore the following critical factors: (1) The gut microbiota imbalance and GI symptoms in COVID-19 patients; (2) fecal viral shedding in COVID-19 patients and restoration of the gut microbiota; (3) the pattern of altered gut microbiota composition in COVID-19 patients; (4) alterations in gut biosynthesis during COVID-19 infection; (5) the role of ACE2 in the digestive system and the gut microbiome; (6) crosstalk between the microbiome and the gut-lung axis during COVID-19 infection; (7) crosstalk between the microbiome and the gut-brain-lung axis during COVID-19 infection; and (8) hypoxia during COVID-19 associated with altered gut microbiota. We also discuss how immune responses and inflammation due to COVID-19 drive the changes in the microbial ecosystem and summarize therapeutic options currently in development.

GI SYMPTOMS IN COVID-19 PATIENTS

Along with respiratory symptoms and fever, GI symptoms have also been observed in COVID-19 patients (Table 1). A study by Redd et al\[^{[3]}\] reported abdominal pain (14.5%), nausea (26.4%), diarrhea (33.7%), and vomiting (15.4%) in patients from the United States. Three hundred and eighteen hospitalized COVID-19 patients were evaluated to understand their symptoms. In another study with 204 COVID-19 patients, 50.5% (103 patients) exhibited GI symptoms. Among these 103 patients, 78.6% showed a lack of appetite, 34% had diarrhea, 3.9% vomited, and 1.9% complained of abdominal pain. The authors correlated patients describing GI symptoms with other measurements such as prothrombin time, monocyte count, and liver enzyme levels. Patients with GI symptoms had elevated mean liver enzyme levels, extended prothrombin times, and lower monocyte counts\[^{[36]}\]. In a much larger cohort study involving 1099 COVID-19 patients from 552 different hospitals spread to over 30 provinces, only 3.8% of patients experienced diarrhea. The authors concluded that fever and cough are common symptoms, unlike diarrhea, among the COVID-19 patient population\[^{[37]}\].
These findings suggest that the virus might be present for a period in the GI tract, which may cause a GI infection (Figure 2). Importantly, fecal viral shedding was noted after clearing SARS-CoV-2 from the respiratory tract, suggesting that the virus can persist for a long time in the GI tract, especially in patients who manifest GI symptoms. During COVID-19 infection, gut microbiota composition is altered, possibly explaining the GI imbalance and manifestations of the different GI symptoms such as abdominal pain, nausea, vomiting, and diarrhea, as described above. This change in the gut microbiota includes reduced levels of commensals microbes and is observed in patient samples even after 30 d of disease remission38, 40. Additional studies addressed the imbalance of the gut microbiota and its association with different GI-related aspects of COVID-1941. The gut microbiota population in COVID-19 patients with low to moderate GI symptoms should also be analyzed. Evaluating these diverse patient populations will enable a thorough description of this phenomenon.

Fecal Viral Shedding in COVID-19 Patients

Table 2 lists various cohort studies reporting fecal viral shedding by COVID-19 patients and detecting SARS-CoV-2 RNA in the fecal matter42,43. SARS-CoV-2 RNA-positive fecal matter was detected in 66.67\% of COVID-19 patients (42 patients) in China43. Researchers attempted to evaluate the viral shedding period in stool samples, and noted viral shedding in asymptomatic patients. For example, SARS-CoV-2 RNA was detected from a stool sample of an asymptomatic child 17 d after viral exposure49.

Certain studies have reported that virus separation from stool samples is difficult. For example, Wölfel \textit{et al}44 detected viral RNA in stool samples but attempts to isolate the virus were unsuccessful, most likely due to the mild nature of the infection. A viral load below 10^6 copies per milliliter often hampers viral isolation36. The viral load also varies widely from one sample to another, including stool, serum, and respiratory samples44,46. However, understanding the correlation between the altered gut microbiota and the viral load in patient samples is essential for advancing therapeutic strategies centered around restoring the microbiota.
Additionally, efforts should focus on determining the possible correlation between fecal viral shedding and altered gut microbiota composition at different stages of the infection, i.e., mild to moderate or severe COVID-19.

ALTED GUT MICROBIOTA COMPOSITION IN COVID-19 PATIENTS

SARS-CoV-2 infections have led to changes in the ecology of the gut microbiota in patients (compared to that seen in controls). These changes are influenced by the immune responses elicited during COVID-19 (Table 3). Different studies have revealed the growth of unusual microorganisms and depletion of common gut microbes (bacterial, viral, and fungal populations) in COVID-19 patients (Figure 3).

To understand the severity of disease in COVID-19 patients, the gut microbiota composition of 100 COVID-19 patients was analyzed in two hospital cohorts. Stool samples were collected from 27 of the 100 patients. The gut microbiome compositions were characterized using total DNA extracted from stool samples. The authors demonstrated that the number of gut commensals and Bifidobacteria was low and correlated with several factors of disease severity, such as high concentrations of inflammatory cytokines and C-reactive protein (CRP). These data suggest that the composition of the microbiota is associated with disease severity[36].

Another study carried out RNA and DNA profiling by sequencing of the virome using fecal matter from COVID-19 patients. The fecal matter of 98 COVID-19 patients was analyzed to understand COVID-19 severity and its association with the gut virome. The study showed that COVID-19 severity is inversely correlated with gut viruses, and older patients are more prone to severe COVID-19 outcomes[47].

Alterations in fungal microbiomes during COVID-19 have also been investigated. Analysis of the fecal mycobiome using the deep shotgun method showed heterogeneous microbial profiles, with enrichment of fungal genera such as Aspergillus and Candida. Two species of *Aspergillus* (*Aspergillus flavus* and *Aspergillus niger*) were identified in fecal samples after clearance of SARS-CoV-2 from nasopharyngeal samples[48]. Additionally, there is evidence of abundant symbionts among COVID-19 patients including *Clostridium ramosum*, *Coprobacillus*, and *Clostridium hathewayi*, which directly correlated with disease severity.
Conversely, *Faecalibacterium prausnitzii*, which was also abundant among the patients, was inversely correlated with disease severity\cite{49}.

Similarly, in a study by Yeoh et al\cite{38}, stool samples from 27 patients were correlated with blood markers and inflammatory cytokines. The study concluded that the scale of COVID-19 severity might be associated with the gut microbiome and linked it to COVID-19 inflammation\cite{46}. In another study containing a greater number of African Americans, enriched genera (*Campylobacter*, *Corynebacterium*, and *Peptostreptococcus*) were mapped in the COVID-19 patient population, the gut microbial composition was markedly different between positive and negative samples. However, the study did not identify any considerable association between COVID-19 severity and microbiome composition\cite{50}.

Certain studies even noted a reduction in fiber-utilizing bacteria such as *Prevotella*, *Bacteroides plebsius*, and *Faecalibacterium prausnitzii* (*F. prausnitzii*), and a low Firmicute/Bacteroidetes ratio\cite{51}. Poor outcomes were noted in special populations, such as hypertensive, diabetic, and elderly patients\cite{52,53}. Research is still underway to ascertain the different types of gut microbial populations (pro-inflammatory, opportunistic, beneficial, or anti-inflammatory) present depending on COVID-19 severity (Figure 4).

These studies help us understand how gut microbiota composition affects patients with moderate to severe COVID-19 and how gut microbiota diversity might alter immunity in COVID-19 patients.

ALTERATIONS IN THE BIOSYNTHESIS OF BIOLOGICAL COMPOUNDS IN THE GUT DURING COVID-19 INFECTION

Other than compositional changes in gut microbiota, functional changes during SARS-CoV-2 infection were observed in some patients. The gut microbiota aids in different biosynthetic pathways, such as amino acid biosynthesis, carbohydrate metabolism, nucleotide de novo biosynthesis, and glycolysis. This might be due to the abundance of bacterial components such as *Collinsella tannakae*, *Streptococcus infantis*, *Morganella morganii*, and *Collinsella aerofaciens*, etc. Apart from these microbes, many short-chain fatty acid (SCFA) synthesis bacteria, such as
Lachnospiraceae bacteria, Bacteroides stercoris, Alistipes onderdonkii, and Pambacteroides merdae were present in COVID-19 samples with mild symptoms and in non-COVID-19 samples\(^5\). In a study using non-human primate models, 16S rRNA gene profiling were carried out to understand the gut microbiota composition during SARS-CoV-2 infection. The study revealed substantial changes in the gut microbiota composition and metabolism and a reduction in the concentration of SCFAs as well as a difference in the concentrations of bile acids. The study also found alterations in tryptophan metabolites during SARS-CoV-2 infection in the animal models\(^6\).

Shotgun metagenomic sequencing using fecal samples has also been performed to profile the gut microbiome in SARS-CoV-2 infected patients. Researchers observed prolonged impairment of L-isoleucine biosynthesis and SCFAs due to alterations in the gut microbiome of patients with COVID-19\(^8\).

ROLE OF ACE2 IN THE DIGESTIVE SYSTEM AND THE GUT MICROBIOME

The ACE2 (angiotensin-converting enzyme 2) receptor acts as a binding site by which SARS-CoV-2 enters host cells\(^{57,58}\). A higher expression of ACE2 in the cell favors SARS-CoV-2 infection. Despite this, ACE2 deficiency can play a vital role in SARS-CoV-2 infection\(^{59}\). Increased ACE2 expression is found in the epithelial cells of the respiratory tract (nasal mucosa, nasopharynx, and lungs), in different parts of the intestine, and in different types of epithelial cells, including nasal, corneal, and intestinal epithelial cells in humans\(^{60}\). In addition, this protein is expressed in different parts of the digestive system, such as the small intestine, stomach, colon, and liver\(^{61}\). However, ACE2 expression is controlled by distinct microbial communities in several body tissues. Mouse model studies suggest an association between certain microbial communities and overexpression of ACE2. This overexpression may prevent detrimental changes in hypoxia-induced gut pathophysiology and pulmonary pathophysiology\(^{62}\). ACE2 expression is controlled in the GI and respiratory tract\(^{63}\). Additionally, it can also be controlled by some bacterial species from important phyla. Downregulation of ACE2 expression was associated with the Bacteroidetes phylum. Among all species of this phylum,
Bacteroides dorei has been shown to inhibit ACE2 expression in the colon, whereas the Firmicutes phylum plays a variable role in its modulation. These findings are supported by other studies describing the modulation of ACE2 expression in the gut by the microbiota.

GUT-LUNG AXIS CROSSTALK DURING COVID-19 INFECTION

Several reports indicate that manipulation of the gut microbiota may be used to treat pulmonary diseases. Therefore, the gut-lung axis crosstalk can help to elucidate these respiratory and digestive system interactions (Figure 5). Dysbiosis occurs when there are detrimental changes in the microbial composition of the gut or respiratory tract. It often leads to altered immune responses and the development of diseases, such as COVID-19. Nonetheless, gut dysbiosis can be manipulated for treatment purposes. Studies suggest that SARS-CoV-2 from the lungs travels to the gut via the lymphatic system leading to disrupted gut permeability. Furthermore, the extent of dysbiosis is associated with COVID-19 severity. Therefore, understanding the crosstalk between the microbiome and the gut-lung axis during COVID-19 infection may provide therapeutic approaches.

GUT-BRAIN-LUNG AXIS CROSSTALK DURING COVID-19 INFECTION

Like the gut-lung axis, crosstalk between the microbiome and the gut-brain axis has been recognized and remains the topic. Several studies have illustrated the role of the microbiome-gut-brain axis in different neurological disorders.

The interaction between the brain and the gut (also called the gut-brain axis) is bidirectional, with several pathways involved, including bacterial metabolites, neuroanatomical communications, neurotransmitters, and hormones. The vagus nerve is primarily involved in such communication, and these molecules (neurotransmitters/hormones) are produced in the GI tract. During communication between neurotransmitters and hormones, they might interact with the receptors on the vagus nerve, relaying information to the brain. Many hormones can cross the BBB and affect the CNS directly. Additionally, neuroendocrine pathways which operate via the hypothalamic-pituitary-adrenal (HPA) axis associated with stress...
also affect the BBB. The stress-HPA axis is associated with the release of glucocorticoids such as cortisol from the adrenal cortex. Cortisol, is associated with augmented intestinal permeability and GI motility, affecting the gut microbiota78,82,84. The stress-HPA axis may also lead to inflammation and bacteria-derived impaired metabolite production, especially SCFAs78,84. Therefore, a thorough understanding of the gut-brain axis can help the development of therapeutic approaches via modulation of the gut microbial composition.

The gut microbiota might play a distinct role in controlling the host immune system, and research is underway to uncover more in this field85,86. The involvement of the lungs (gut-brain-lung axis) occurs when inflammation and neurodegeneration in the brain stem due to COVID-19 prevent cranial nerve signaling, disrupting anti-inflammatory pathways and normal respiratory and GI functions. Recently, the lungs have been associated in the crosstalk among the microbiota-gut-brain axis components, and this axis was also noted during COVID-19 (Figure 6)34,78. Moreover, in COVID-19 patients, alterations in the gut microbiota have been shown to reduce live microbes (Bifidobacterium and Lactobacillus) during intestinal microbial dysbiosis87.

The microbial translocation to the gut and its subsequent damage may play a vital role in inferior clinical outcomes for the disease. The gut-brain-lung axis during COVID-19 infection can also offer clues indicate viable directions for therapeutic development34.

HYPOXIA IN COVID-19 AND GUT MICROBIOTA

Abnormal cytokine release (cytokine storms) and inflammatory responses may be associated with hypoxia during severe COVID-19. Viral replication in the lungs leads to a cytokine storm, destroying normal lung function and causing hypoxemia, \textit{i.e.}, low oxygen levels in the blood. \textbf{Hypoxia-inducible factor-1\(\alpha\) (HIF-1\(\alpha\)) is a transcription factor that regulates cellular functions such as cell proliferation and angiogenesis. In hypoxic conditions, HIF-1\(\alpha\) binds to the hypoxemic response element and induces the production of cytokines such as IL-6 and TNF-\(\alpha\), leading to hypoxia88. There are other collective causes of hypoxia, including pulmonary
infiltration and thrombosis. The COVID-19 virus induces pneumonia that causes atelectasis (collapsing of air sacs), leading to low oxygen levels in the body[89]. Additionally, COVID-19 leads to mitochondrial damage, production of reactive oxygen species production and subsequently HIF-1\alpha, further promoting viral infections and inflammation[90].

As part of its normal metabolic functions, the gut microbiota produces neurotropic metabolites, neurotransmitters, peptides, and SCFA, whose levels are disrupted due to COVID-19. SCFA such as butyrate confer neuroprotection. Modulation of gut microbes (responsible for such metabolite production) by SARS-CoV-2 alters hypoxia-sensing, negatively impacting the CNS[91]. Therefore, an association between gut microbiota and hypoxia in COVID-19 patients can be speculated, and may be linked to the CNS (Figure 7).

ALTERATION OF GUT MICROBIOTA IN COVID-19: EVIDENCE FOR INFLAMMATION OR DISEASE, SEVERITY?

Under normal conditions, colonization of the normal microbiota in the gut causes resistance to pathogen[92,93]. Much of the normal gut microbiota belongs to Clostridia, which produces butyric acid. This SCFA is produced during dietary fiber fermentation along with acetic acid and propionic acid, which play a critical role in gut health (Figure 8a)[94,95]. Butyric acid helps in maintaining the integrity of the gut barrier by providing a vital energy resource for colonocytes. This SCFA also hinders histone deacetylase activity and inhibits the activation of the nuclear factor (NF)-\kappaB signaling pathway activation. This phenomenon may activate the G protein-coupled receptor pair (GPR41 /GPR43). These events help exert an anti-inflammatory response in normal gut health and stimulate regulatory T cells (Treg cells)[96-100]. Treg cells play a central role in suppressing inflammatory responses[101,102]. However, in COVID-19 patients, typical microbiota dysbiosis causes an imbalance in all these events.

There is a distinct connection between dysbiosis of the gut microbiota and hyperinflammatory responses, especially cytokine release, in some COVID-19 patients[102] (Figure 8). Researchers noted that gut microbiota composition is related to the
COVID-19 severity of and observed an association between altered cytokine levels and gut microbiota composition[38]. Cytokines/inflammatory factors, such as IL-1β, IL-6, and TNF-α, are usually associated with inflammation during disease[103]. In the case of severe COVID-19, the levels of certain cytokines, such as IL-6, IL-10, TNF-α, and IFN-α are raised abnormally, and in some cases, cytokine storms are observed (Figure 8b)[23]. In pilot study, the quality of gut microbial composition was associated with the severity COVID-19 in 15 patients at the time of hospitalization in Hong Kong. The study showed an abundance of microbes such as Clostridium hathewayi, Clostridium ramosum, and Coprobacillus in COVID-19 patients. Moreover, an anti-inflammatory bacteria, Faecalibacterium prausnitzii, was be inversely correlated with disease severity[40].

Nonetheless, more detailed studies are needed to understand the impaired gut health during COVID-19, especially in extreme forms of the disease. Another study confirmed microbiota dysbiosis in COVID-19 patients. This study found differential bacterial populations with a decrease in F. prausnitzii and Clostridium spp and an association of IL-21 in mild to severe COVID-19 patients[51].

A gut microbiota richness analysis in COVID-19 patients was conducted over through a six-months evaluation using 16S rDNA sequencing. This study showed that, patients with decreased post-convalescence richness in bacterial microbiota had high disease severity with increased CRP. Additionally, the authors observed increased incidence of intensive care unit admissions with worse pulmonary functions in these patients[104]. The study suggested an association between the hyper-inflammatory response in COVID-19 and gut dysbiosis. However, a greater number of studies testing patients well after recovery are required to fully illustrate gut dysbiosis, associated factors, and the hyper-inflammatory response during COVID-19.

GUT MICROBIOTA IN ELDERLY OR CO-MORBID COVID-19 PATIENTS

Researchers have attempted to understand the role of the gut microbiota in elderly or co-morbid COVID-19 patients. A recent study evaluated the association of the gut microbiota and its modulation in COVID-19 patients. In this study, the cohort
comprised approximately 200 severe COVID-19 patients hospitalized with pneumonia. Researchers considered elderly patients (age 62 years to 64 years) and their comorbidity. Patients in this study received two types of treatments: one group was treated with only the best available therapy (BAT), and the other group was treated with oral bacteriotherapy and BAT. Researchers found a decline in mortality and decreased progress in severe disease. Finally, researchers concluded that oral bacteriotherapy might be helpful in the management of hospitalized COVID-19 patients. Similarly, Rao et al. noted that people with the comorbidities are more prone to COVID-19-related complications. In this case, immune system deregulation and deaths were also noted. However, researchers used glucan to enhance the immune system in COVID-19 patients. This glucan was used to augment the activity of macrophages, natural killer cells, and IL-8, implicating that it might enhance the defense mechanisms to combat the virus.

Recently, Liu et al. evaluated the role of the gut microbiota composition and its association with the post-acute COVID-19 syndrome (PACS). In this study, researchers considered the comorbidities and dietary patterns during patient selection compare gut microbiota compositions. However, no considerable differences were observed in age, comorbidities, gender, antibiotics, or antiviral drug use between patients with PACS or without PACS.

Therefore, in cases of elderly or co-morbid COVID-19 patients, the gut microbiota might play an important role in immune system deregulation, although further studies are required to validate the findings.

GUT MICROBIOTA BASED ON ANTIBIOTIC USAGE IN COVID-19 PATIENTS

In COVID-19 patients, the use of antibiotics is relatively common. The frequently used antibiotics in COVID-19 patients are Azithromycin, Amoxicillin Clavulanate, Cephalosporin, Tetracycline, etc. The composition of the gut microbiota is hampered in COVID-19 patients due to the usage of antibiotics, occasionally causing antibiotic-associated diarrhea (AAD). Antibiotics usages in COVID-19 patients were increased the number of opportunistic pathogens compared with that detected
in an untreated control group. Zuo et al49 reported that the gut of COVID-19 patients, using antibiotics contains opportunistic bacterial pathogens such as \textit{Bacteroides nordii}, \textit{Actinomyces viscosus}, and \textit{Clostridium hathewayi}. Additional studies also reported this phenomenon22,109. An increase of opportunistic bacterial pathogens causes dysbiosis of the gut. Rafiqul Islam et al also noted that the abundance of opportunistic pathogens in COVID-19 patients in Bangladesh could cause dysbiosis, with 46 genera of opportunistic bacteria being identified patient GI samples110. However, a study demonstrated that particular strains of probiotics may be useful for AAD111. Scientists have shown that the administration of oral probiotics can recover gut health and have antiviral effects112,53. For probiotic strain identification, Mak et al113 highlight the need for effective research to easily recognize the probiotic strains of therapeutic use. In this case, the probiotics should be specific for COVID-19, and help reduce the susceptibility to COVID-19 preventing severe COVID-19 disease.

GUT MICROBIOTA DYSBIOSIS DURING COVID-19 AND USE OF PROBIOTICS

Scientists identified an association between the gut microbiota dysbiosis and the severity of COVID-19. Magalhães et al52 noted that gut microbiota dysbiosis causes poor outcomes in elderly COVID-19 patients with hypertension and diabetes. Additionally, co-morbid elderly COVID-19 patients were prone to increased inflammatory situations due to the dysbiosis. The elevated amount of bacterial products in the gut might translocate into the blood due to the increased permeability across the intestinal epithelium. Bacterial toxin products, such as LPS, may accumulate in blood, aggravating TLR4 and subsequent downstream signaling. This could contribute to the “cytokine storm”, and result in complications in elderly COVID-19 patients54. Researchers also found a different route of activation of toll-like receptor (TLR)4/TLR5 in COVID-19 patients114-116. Hung et al53 also reported that gut microbiota dysbiosis increases COVID-19 severity in the elderly. However, the use of probiotics is a novel way to reduce COVID-19 severity in elderly populations.
THERAPEUTIC IMPLICATIONS AND CLINICAL TRIALS TO UNDERSTAND
THE ROLE OF THE GUT MICROBIOTA DURING COVID-19

A careful analysis of the microbiome-gut-lung axis during COVID-19 infection can
direct research towards therapeutic options for restoring gut health. As an altered
gut microbiota is strongly associated with COVID-19 and its severity,
supplementation of bacterial metabolites or commensals and prebiotics to enrich the
microbial ecosystem is a path toward effective therapeutic options.

However, very few studies have explored this. A randomized clinical trial with
300 registered participants assessed the effectiveness of combination therapy using
Lactobacillus plantarum (L. plantarum) CECT 7484, L. plantarum CECT 30292,
Pedicoccus acidilactici (P. acidilactici) CECT 7483, and L. plantarum CECT 7485, in
adult COVID-19 patients (ClinicalTrials.gov; Clinical trial no. NCT04517422).
Nonetheless, a deficiency of well-established data calls for more studies of this
nature[41]. An open-label, randomized clinical trial with 350 participants conducted
by Kaleido Biosciences sought to determine the effectiveness of a novel glycan
molecule (KB109) in patients with mild to moderate COVID-19 (ClinicalTrials.gov;
Clinical trial no. NCT04414124)[12]. The synthetic glycan molecule reduced the
number of acute care visits by COVID-19 patients. Additionally, disease resolution
in patients with comorbidities was improved, compared to that in patients relying
solely on supportive self-care.

A similar study attempted to evaluate the glycan molecule’s effectiveness (KB109)
associated with gut microbiota function in COVID-19 patients. The same
organization conducted the clinical study, an open-label, randomized clinical trial in
49 participants in the United States (ClinicalTrials.gov; Clinical trial no.
NCT04486482)[17]. There were no conclusive results; however, more studies are
likely to be conducted in this sense. A complete list of the clinical trials initiated to
understand the role of the gut microbiota in COVID-19 and its therapeutic
implications are shown in Table 4.
As the pandemic persists, it is critical to assess the effect of next-generation probiotics, prebiotics, synbiotics, and increased fiber intake on changes in gut microbiota composition in patients with mild to moderate and severe COVID-19.

FUTURE PERSPECTIVE

In several cases, complex pathophysiological and immunological responses are reported in the host due to SARS-CoV-2 infection. However, very little is known regarding the changes in gut virome in the COVID-19 patients, and this should be explored in future studies should explore it further. Moreover, the possible role of the gut microbiota in COVID-19 should be explored in future research. Likewise, population-based cohorts should be generated to illustrate the function of the altered gut microbiota during COVID-19 in different populations. This will enable the design of diagnostics and therapeutics for COVID-19 in different population types. Simultaneously, population-specific changes need to be described as this can help resolve severe conditions in COVID-19 patients. In the future, researchers should attempt to understand population-specific gut microbiota alteration during COVID-19 to design therapeutic interventions as required. Moreover, research could focus on the population specific changes in the immune response generated against the two altered gut microbiota during COVID-19.

CONCLUSION

Presently, abundant research has described the marked changes in the gut microbiomes of COVID-19 patients. Therefore, an apparent association exists between the overall health of the gut microbiome and the progression of COVID-19[118]. Furthermore, the altered gut microbiota has been shown to persist in patients even after several days of recovery from COVID-19.

However, poor outcome were observed in elderly or co-morbid patients[97,119]. Recently, several studies discussed the factors associated with the modified gut microbiota in COVID-19 patients manifesting GI symptoms. According to some reports, increased inflammation may lead to a leaky gut, which enables the
translocation of bacterial metabolites and toxins into the systemic circulation[97,130]. This might cause further complications to the severe COVID-19 patients.

In this review, we have illustrated various GI aspects of COVID-19 patients including the gut microbiota imbalance and GI symptoms, the patterns of altered gut microbiota composition, the crosstalk between the microbiome and the gut-lung axis, the crosstalk between the microbiome and the gut-brain-lung axis, as well as hypoxia associated with altered gut microbiota. We also highlighted the association between the gut microbiota and elderly or co-morbid COVID-19 patients, as well as that of gut microbiota dysbiosis and COVID-19 severity. Additionally, we explored the correlation between, probiotics usage and the gut microbiota based on antibiotic usage in COVID-19 patients. Therefore, our review will provide a distinct outline for researchers working in the field. Also, it will provide valuable insight into the role of gut microbiomes in COVID-19 patients.

Currently, therapeutics are in development to combat COVID-19. In addition to antiviral therapeutics, probiotics might be effective for improving gut health through the gut-lung axis. Recently, several clinical trials have been initiated to understand the role of probiotics in COVID-19 patients. The ongoing clinical trials will elucidate the role of probiotic therapeutics or for COVID-19 patients, and offer new alternatives in COVID-19 treatment.

Figure Legends

Figure 1 The schematic diagram shows normal healthy gut and the incidence in gut microbiota and gut virome in coronavirus disease 2019 patients. COVID-19: Coronavirus disease 2019.

Figure 2 The schematic diagram illustrates the syndrome coronavirus 2 entry in the body, causes of gut microbiota imbalance which assists in manifesting the gastrointestinal symptoms in coronavirus disease 2019 patients. GI: Gastrointestinal; SARS-CoV-2: Syndrome coronavirus 2.
Figure 3 The diagram illustrates increased or decreased gut microbiota in coronavirus disease 2019 patients, including bacterial, viral, and fungal populations. COVID-19: Coronavirus disease 2019.

Figure 4 The diagram illustrates different types of mapped gut microbiota in coronavirus disease 2019 patients. Pro-inflammatory microbiota, opportunistic microbiota, the microbiome in severe coronavirus disease 2019 (COVID-19) patients, and the microbiome in low to moderate COVID-19 patients, anti-inflammatory microbiota, and beneficial microbiota. COVID-19: Coronavirus disease 2019.

Figure 5 The diagram points out the normal gut and its microbial association. The figure also illustrates the crosstalk between the microbiome and gut-lung axis. SARS-CoV-2: Syndrome coronavirus 2.

Figure 6 The diagram describes the normal gut and its microbial association. The figure also illustrates the crosstalk between the microbiome and gut-brain-lung axis. BDNF: Brain-derived neurotrophic factor; HPA: Hypothalamic-pituitary-adrenal, SARS-CoV-2: Syndrome coronavirus 2.

Figure 7 The figure illustrates an association between gut microbiota and hypoxia in coronavirus disease 2019 patients, and it is connected with central nervous system. SARS-CoV-2: Syndrome coronavirus 2.

Figure 8 The figure illustrates normal gut microbiota and immunological consequences, and coronavirus disease 2019 related altered gut microbiota associated inflammation. A: Normal gut microbiota and immunological consequences for healthy gut; B: Coronavirus disease 2019 (COVID-19) related altered gut microbiota associated inflammation. The inflammatory condition in COVID-19 patients causes the abnormal release of different cytokines, such as interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon-gamma. PSA:
Polysaccharide A; SCFA: Short-chain fatty acid; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6; GMCSF: Granulocyte-macrophage colony-stimulating factor; TNF-α: Tumor necrosis factor-alpha; IFN-γ: Interferon-gamma.

Table 1 Different gastrointestinal symptoms in coronavirus disease 2019 patients

S. No.	Total number of the study populations	Demographics	Vomiting	Diarrhea	Nausea	Remarks/study summary	Reference
1	191 adults (46-67 years) hospitalised, Chinese peoples, 91 patients having comorbidity	7 (3.7%)	9 (4.7%)	7 (3.7%)	Identification of several risk factors and a detailed clinical course of illness for mortality of COVID-19 patients	[121]	
2	171 minor aged (1-15 years) hospitalised, Chinese children, no such comorbidity	11 (6.4%)	15 (8.8%)	NA	Report of a spectrum of illness from children infected with SARS-CoV-2 virus	[122]	
3	1099 median age group (35-58 years) hospitalised,	55 (5.0%)	42 (3.8%)	55 (5.0%)	Identification and definition of clinical characteristics	[37]	
Chinese patients without any comorbidity and disease severity of hospitalized COVID-19 patients Report on [123] hospitalized patients having COVID-19 with abnormal clinical manifestations (fever, fatigue, gastrointestinal symptoms, allergy)

4	140 Adults (25-87)	7 (5.0%)	18	24 (12.9%)	(17.3%)
5	73 Adults	NA	26	NA	(35.6%)
6	52 Adults (mean 2)	NA	NA	NA	

Adults hospitalised Chinese patients, comorbidity reported Clinical significance of SARS-CoV-2 by examining viral RNA in feces of COVID-19 patients during hospitalizations

Retrospective, single-centered, observational study on critically ill, ICU-admitted Chinese patients,
comorbidity reported

7 138 Adult (median age 56 years), hospitalised Chinese patients with comorbidities

8 41 Middle age group (41-58 years) hospitalised Chinese patients with comorbidities

9 62 Studied patients (median age 41 years) were hospitalised, Chinese ethnicity and comorbidity reported

10 137 Studied patients (mean age 57- adult COVID-19 patients

Clinical characteristics of COVID-19 patients in hospitalized conditions

Epidemiological, laboratory, clinical, and radiological features and treatment with clinical outcomes of hospitalized COVID-19 patients

Most common symptoms at onset of illness with clinical data in confirmed COVID-19 patients

Investigation of epidemiological history, clinical
Country	Hospitalised, Comorbidity	Patients (Mean Age)	Comorbidities	Chinese	4 (4.9%)	3 (3.7%)	NA	Characteristics, Treatment, and Prognosis of COVID-19 Patients
							NA	Report of [129] confirmed COVID-19 patients with chest computer tomography imaging anomalies
							NA	Inclusive [130] exploration of epidemiology and clinical features of COVID-19 patients
	Hospitalised, Comorbidity						NA	NA: Not available; ICU: Intensive care unit; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Syndrome coronavirus 2.
S. No.	Total number of the study populations	Demographics	Gastrointestinal symptoms	Confirmed cases of fecal shedding	Remarks/study	Reference		
-------	--------------------------------------	--------------	---------------------------	----------------------------------	--------------	-----------		
1	205 Patients (mean age of 44 years)	No symptoms	44	Evidence-based study for gastrointestinal infection of SARS-CoV-2 virus and its possible fecal-oral transmission route in humans		[133]		
2	73 Different age group (10 mo to 78 years old) hospitalised Chinese patients without report any comorbidities	Gastrointestinal 39		Description of epidemiological and clinical characteristics of COVID-19 patients		[124]		
3	10 Chinese patients have diarrhea, cough	Hemoptysis, 8		Report of median aged		[127]		
aged 19-40 years, hospitalised and no such comorbidity was reported

4 14 Patients (18-87 years) were hospitalized, Chinese individuals without any comorbidities

5 66 Chinese patients (median age of 44) were hospitalized, comorbidity was not reported

COVID-19 confirmed patients in ICU

Patients were hospitalized, Viral RNA detection was performed from throat swabs, stool, urine, and serum samples in different clinical conditions in COVID-19 patients.

6 18 Adults patients (median age, 47 years) from Singapore

Retrospective analysis of laboratory-confirmed COVID-19 cases in hospitalized conditions [132]

Viral RNA detection was performed from throat swabs, stool, urine, and serum samples in different clinical conditions in COVID-19 patients [133]

COVID-19 [134] patient case series using clinical, laboratory, and
were hospitalised and comorbidities was noted

7 74 Studied No symptoms 41 Analysis of [135] patients belonged from China and were hospitalised with comorbidities

8 9 Adults Diarrhea and 2 Detection of [136] Chinese urinary patients were irritation hospitalised without any comorbidities RNA in urine and blood samples, and oropharyngeal swabs of confirmed COVID-19 patients

ICU: Intensive care unit; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Syndrome coronavirus 2.
Sl.	Cohort composition	No of Patients	Demographics of the study populations	Country	Significant gut microbiota found	Study conclusion	Reference
1	A pilot study with healthy individuals (controls) and 15 patients with COVID-19	15	Study performed with hospitalised patients (median age 55), Chinese ethnicity and comorbidities were reported	Hong Kong	Abundance of *Clostridium hathewayii*, *Clostridium ramosum*, *Coprobacillus*, which are correlated with COVID-19 severity	Change in the fecal microbiome of COVID-19 patients during hospitalization, compared to healthy individuals (controls)	[48]
2	The two-hospitals cohort, serial stool samples collected from 27 COVID-19 patients among 100	27	Adults hospitalised Chinese patients, comorbidities were noted	Hong Kong	*Faecalibacterium prausnitzii*, *Eubacterium rectale* and bifidobacteria	Gut microbiome involved in COVID-19 severity	[38]
3	United States cohort (majority African American)	50	Studied patients (mean age 62.3 years) were hospitalised with comorbidities, American	United States	Some of the significant genera (*Corynebacterium*, *Peptostreptococcus*, *Campylobacter*, etc.)	No significant associations found between the microbiome and disease severity from	[50]
The study used 53 COVID-19 patients and 76 healthy individuals. 81 fecal samples collected during hospitalization.

Study performed in Hong Kong adults hospitalised patients with comorbidities, Chinese ethnicity. Elevated bacterial species found fecal viral (SARS-CoV-2) activity.

Two-hospital cohort with a total of 100 patients. Stool samples collected from 27 patients. Hospitalised adults patients were from China, comorbidities were noted.

COVID-19 patient gut microbiota
Elevated gut microbes such as Rothia mucilaginosa, Granulicatella spp, etc.

COVID-19 infection linked with change of the microbiome in COVID-19 patients.

COVID-19 [137]

Gut microbiota [38]
Associated disease
Severity and inflammation in COVID-19 patients
Adults (mean age 37) Kong hospitalised condition from Chinese ethnicity, comorbidities were reported [47] A total of 10 patients, DNA virus virome (RNA fecal matter) in species and 1 COVID-19 RNA virus, patients pepper chlorotic spot virus) collected from COVID-19 patients

Study of fecal samples from 30 COVID-19 patients Patients (mean age 46) were Hong hospitalised from Chinese groups, comorbidities were noted Increased Analysis of [48] proportions of fecal fungal pathogens (Candida albicans, Candida auris, Aspergillus flavus, Aspergillus niger) in fecal samples

COVID-19: Coronavirus disease 2019.
Table 4 List of clinical trials initiated to understand the role of gut microbiota in coronavirus disease 2019 and its therapeutic implications

Sl No.	Objective of clinical trials	Clinical trials No.	Description of clinical trials	Remarks
1	Evaluate the combination of probiotics (P. acidilactici and L. plantarum) to reduce the viral load of moderate or severe COVID-19 patients	NCT04517422	It was a randomized controlled trial, 300 participants, trial completed	Observational study of adult and older adult, treatment by dietary supplement (probiotics)
2	To explore the natural history of mild-to-moderate COVID-19 illness and safety of a novel glycan (KB109) and self-supportive care	NCT04414124	It was a observational randomized, prospective, open-label, parallel-group controlled clinical study of 350 participants	
3	Investigate the physiologic effects of the novel glycan (KB109) on patients with COVID-19 illness on gut microbiota structure and function in the outpatient	NCT04486482	It was a observational randomized, open-label clinical study of 49 participants	Observational study of adults patients with mild-to-moderate COVID-19 infections, trial completed
4	Evaluate the clinical contribution of the gut microbiota and its	NCT05107245	It was case-control, diagnostic study of 143 participants	Observational study on the diagnostic
diversity on the COVID-19 disease severity and the viral load

5 Studied the effects of Lactobacillus coryniformis K8 intake on the prevalence and severity of COVID-19 in health professionals

6 Investigate to exploring the role of nutritional support by probiotics to COVID-19 outpatients (adult)

7 Use of dietary supplement (Omni-Biotic® 10 AAD) can decrease the intestinal inflammation and improves dysbiosis for COVID-19 patients

8 Evaluate the probiotics efficacy to
decrease the COVID-19 infection symptoms and duration of COVID-19 positive patients.

9 Impact analysis of NCT04734886 It was control, randomized trial of 17 participants explored the effects of dietary supplement: Probiotics (2 strains 10^8 UFC), trial completed.

To assess the probiotic strain *L. reuteri* DSM 17938 for specific Abs response against SARS-CoV-2 infection.

10 To evaluate the NCT04847349 It was double-blind, randomized, controlled trial of 161 participants COVID-19 infection in healthy adults, trial completed.

Efficacy analysis of dietary supplement (combination of live microbials) as anti COVID-19 infection, trial completed.

11 Evaluate the follow-up of Symprove (probiotic) to COVID-19 positive patients.

Observational study to supervision of hospitalized COVID-19 patients.

12 Study was performed NCT04390477 It was randomized case control, clinical trial of 41 supplement:

Observational study of dietary
probiotic mixtures in the improvement of COVID-19 infection symptoms

13 The probiotic (Omni-Biotic Pro Vi 5) use for investigating the side effect of post-COVID syndrome

NCT04813718 It was a randomized trial of 20 participants

It was a therapeutic target study of probiotic for treatment of acute COVID-19 and prevention of post COVID infections

14 To evaluate the effect of a probiotic strain on the occurrence and severity of COVID-19 in hospitalised elderly population

NCT04756466 Randomized control trial of 201 participants

It was an observational study, probiotic used for improving the immune response of elderly patients

15 This study assesses the beneficial effects of the nutritional supplementation (ABBC1) to individuals taken the COVID-19 vaccine

NCT04798677 It was a double-blind, placebo-controlled, randomized clinical study of 90 participants

Used as knowing the microbiome modulating properties, observational study

16 To investigate the consequence of *Ligilactobacillus*

NCT04922918 Non-randomised observational study of 25 participants

Observational study of aged patients having
salivarius MP101 to highly affected
hospitalised elderly by COVID-19
individuals

17 Study was performed NCT04399252 It was a Observational
to explored the effect randomized study of
of the probiotic double-blind, individuals
Lactobacillus rhamnosus placebo-controlled microbiome of
trail of 182 household
GG participants contacts exposed
to COVID-19

18 Treatment approaches NCT04854941 It was a The optimizing
by probiotics to randomized treatment
human gut controlled open-
microbiome and label study of 200
growing the anti-
inflammatory participants observational
response for COVID-
19 trial, completed

19 To evaluate the NCT04666116 Randomized, Used of dietary
capability of the novel single blind clinical supplementation
nutritional single blind clinical with probiotics
supplement trial of 96 trial of 96 participants aims to reduce
(probiotics and other vitamins) to COVID-
19 participants the viral load

19 infected and
hospitalised patients

20 Using of probiotics for NCT04462627 It was a non-
COVID 19 randomized trial of reduction of
transmission 500 participants COVID-19 viral
reduction to health load to health
care professionals
care
P. acidilactici; Pediococcus acidilactici; L. plantarum; Lactobacillus plantarum; COVID-19; Coronavirus disease 2019; SARS-CoV-2; Syndrome coronavirus 2
Yeganeh Farsi, Azin Tahvildari, Mahta Arbabi, Fateme Vazife et al. "Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review", Frontiers in Cellular and Infection Microbiology, 2022

Pushpanathan Muthuirulan, Meenakshi Bandyopadhyay, Sireesha Mamillapalli, Pooja Sharma. "Chapter 11 Unlocking the Mysteries of the Human Microbiome to Combat COVID-19", Springer Science and Business Media LLC, 2022

Fen Zhang, Yating Wan, Tao Zuo, Yun Kit Yeoh et al. "Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19", Gastroenterology, 2022

Kobra Ziyaei, Zahra Ataie, Majid Mokhtari, Kelvin Adrah, Mohammad Ali Daneshmehr. "An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19", International Journal of Biological Macromolecules, 2022
www.ncbi.nlm.nih.gov

Sara Ahmadi Badi, Samira Tarashi, Abolfazl Fateh, Pejman Rohani, Andrea Masotti, Seyed Davar Siadat. "From the Role of Microbiota in Gut-Lung Axis to SARS-CoV-2 Pathogenesis", Mediators of Inflammation, 2021

Jia Luo, Shan Liang, Feng Jin. "Gut microbiota in antiviral strategy from bats to humans: a missing link in COVID-19", Science China Life Sciences, 2021

www.science.gov

Tao Zuo, Xiaojian Wu, Weiping Wen, Ping Lan. "Gut Microbiome Alterations in COVID-19", Genomics, Proteomics & Bioinformatics, 2021

Yun Yang, Weishan Huang, Yubo Fan, Guo-Qiang Chen. "Gastrointestinal Microenvironment and the Gut-Lung Axis in the Immune Responses of Severe COVID-19", Frontiers in Molecular Biosciences, 2021

Geng-Hao Bai, Sheng-Chieh Lin, Yi-Hsiang Hsu, Shih-Yen Chen. "The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications", Viruses, 2022

Shaghayegh Baradaran Ghavami, Mahsa Pourhamzeh, Maryam Farmani, Shahrbanoo Keshavarz Azizi Raftar et al. "Cross-talk between immune
system and microbiota in COVID-19”, Expert Review of Gastroenterology & Hepatology, 2021

Samuel D Johnson, Omalla A Olwenyi, Namita Bhyravbhatla, Michellie Thurman et al. "Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis", World Journal of Gastroenterology, 2021

Indranil Chattopadhyay, Esaki M. Shankar. "SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19?", Frontiers in Cellular and Infection Microbiology, 2021

Syed B Pasha, Ahmed Swi, Ghassan M Hammoud. "Gastrointestinal and hepatic manifestations of COVID-19 infection: Lessons for practitioners", World Journal of Meta-Analysis, 2020

Tao Zuo, Fen Zhang, Grace C.Y. Lui, Yun Kit Yeoh et al. "Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization", Gastroenterology, 2020

Sabine Hazan, Neil Stollman, Huseyin Bozkurt, Sonya Dave et al. "The missing microbes: and depletion and loss of microbiome diversity as potential susceptibility markers for SARS-CoV-2 infection and severity ", Cold Spring Harbor Laboratory, 2021
	Title	Author(s)	Journal/Source	Crossref Link	
19	onlinelibrary.wiley.com				
20	assets.researchsquare.com				
21	www.mdpi.com				
22	link.springer.com				
23	scholarcommons.usf.edu				
24	Imane Allali, Youssef Bakri, Saaïd Amzazi, Hassan Ghazal. "Gut-Lung Axis in COVID-19"	Interdisciplinary Perspectives on Infectious Diseases, 2021	Crossref		
25	Heenam Stanley Kim. "Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity?"	mBio, 2021	Crossref		
26	Yuke Wang, Pengbo Liu, Haisu Zhang, Makoto Ibaraki et al. "Early warning of a COVID-19 surge on a university campus based on wastewater surveillance for SARS-CoV-2 at residence halls"	Science of The Total Environment, 2022	Crossref		
27	www.medrxiv.org				
Page	Author(s)	Title	Journal/Wind	Crossref	Internet
------	-----------	-------	--------------	---------	----------
28	Alan D. Kaye, Elyse M. Cornett, Kimberley C. Brondeel, Zachary I. Lerner et al.	"Biology of COVID-19 and related viruses: epidemiology, signs, symptoms, diagnosis, and treatment"	Best Practice & Research Clinical Anaesthesiology, 2020	Crossref	
Page	Reference				
------	------------				
34	Rachel C. Newsome, Josee Gauthier, Maria C. Hernandez, George E. Abraham et al. "The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort", Gut Microbes, 2021 [Crossref](academic.oup.com)				
35	Chiranjib Chakraborty, Ashish Ranjan Sharma, Bidhan Chandra Patra, Manojit Bhattacharya, Garima Sharma, Sang-Soo Lee. "MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia", Oncotarget, 2016 [Crossref](www.spandidos-publications.com)				
36	Yun Ling, Shui-Bao Xu, Yi-Xiao Lin, Di Tian et al. "Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients", Chinese Medical Journal, 2020 [Crossref](ukmbahasa.poliupg.ac.id)				
37	Antonio Faraone, Francesca Fabbrizzi, Tommaso Picchioni, Elena Lovicu et al. "REGEN-COV antibody cocktail (casirivimab/imdevimab) for the treatment of inpatients with early hospital-acquired COVID-19: a single center experience", Research Square Platform LLC, 2021 [Crossref](www.spandidos-publications.com)				
	Dafeng Liu, yong Wang, Bennan Zhao, Lijuan Lan, Yaling Liu, Lei Bao, Hong Chen, Min Yang, Qingfeng Li, Yilan Zeng. "Overall Reduced Baseline Lymphocyte Subsets Closely Related to the Poor Prognosis and the Disease Severity in Patients With COVID-19 and Diabetes Mellitus", Research Square, 2020				
Crossref Posted Content					
---	---				
	Mohammed Al-Beltagi, Nermin Kamal Saeed, Adel Salah Bediwy, Yasser El-Sawaf. "Paediatric gastrointestinal disorders in SARS-CoV-2 infection: Epidemiological and clinical implications", World Journal of Gastroenterology, 2021				
Crossref					
	P. Singh. "Chapter 6 Tumor Targeting Using Canine Parvovirus Nanoparticles", Springer Science and Business Media LLC, 2009				
Crossref					
	www.frontiersin.org				
Internet					
	fjfsdata01prod.blob.core.windows.net				
Internet					
	www.cureus.com				
Internet					
	www.pubfacts.com				
Internet					
	Chiranjib Chakraborty, Ashish Ranjan Sharma, Garima Sharma, Bimal Kumar Sarkar, Sang-Soo Lee. "The novel strategies for next-generation cancer				
49	Elena Biagi. "Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians", PLoS ONE, 05/17/2010				
50	Gislane Lelis Vilela de Oliveira, Camilla Narjara Simão Oliveira, Camila Figueiredo Pinzan, Larissa Vedovato Vilela de Salis et al. "Microbiota Modulation of the Gut-Lung Axis in COVID-19", Frontiers in Immunology, 2021				
51	Jinhui Li, Yichang Yang, Bing Xiong, Jing Lu, You Zhou, Caixia Li, Xiao Hu. "The immunomodulatory effects of Qushi Jianpi Hewei Decoction (QJHD) for patients with COVID-19 by metagenomics and transcriptomic sequencing", Pharmacological Research - Modern Chinese Medicine, 2022				
52	Joao Fadista, Luke M. Kraven, Juha Karjalainen, Shea J. Andrews et al. "Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity", Cold Spring Harbor Laboratory, 2020				
53	Swati Rajput, Deepanshu Paliwal, Manisha Naithani, Aashish Kothari, Kiran Meena, Satyavati Rana. "COVID-19 and Gut Microbiota: A Potential Connection", Indian Journal of Clinical Biochemistry, 2021				
54	Velaphi C. Thipe, Shireen Mentor, Caroline S.A. Lima, Lucas F. Freitas et al. "The role of probiotics in maintaining immune homeostasis", Elsevier BV, 2022				
Xiao-Wei Xu, Xiao-Xin Wu, Xian-Gao Jiang, Kai-Jin Xu et al. "Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series", BMJ, 2020

Ahmad Ud Din, Maryam Mazhar, Muhammed Waseem, Waqar Ahmad et al. "SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role", Biomedicine & Pharmacotherapy, 2021

Krishna Sriram, Paul A. Insel. "A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance", British Journal of Pharmacology, 2020

Lakshya Sharma, Antonio Riva. "Intestinal Barrier Function in Health and Disease—Any role of SARS-CoV-2?", Microorganisms, 2020

Elizabeth Varghese, Samson Mathews Samuel, Alena Liskova, Peter Kubatka, Dietrich Büsselberg. "Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing", PLOS Pathogens, 2021

Larissa Braga Costa, Lucas Giandoni Perez, Vitória Andrade Palmeira, Thiago Macedo e Cordeiro et al. "Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System", Frontiers in Cell and Developmental Biology, 2020
Lin Fu, Jun Fei, Shen Xu, Hui-Xian Xiang et al. "Acute liver injury and its association with death risk of patients with COVID-19: a hospital-based prospective case-cohort study", Cold Spring Harbor Laboratory, 2020

Shen Xu, Lin Fu, Jun Fei, Hui-Xian Xiang et al. "Acute kidney injury at early stage as a negative prognostic indicator of patients with COVID-19: a hospital-based retrospective analysis", Cold Spring Harbor Laboratory, 2020