A Study of Foliage Morphological Descriptions Accommodating Continuity in Previous Delimitation of Types in Tropical Plants

Fawibe Oluwasegun Olamide*, Ogunyale Omolara Grace, Oyelakin Abiodun Sunday, Ayodele Muyiwa Segun

Department of Pure and Applied Botany, Federal University of Agriculture Abeokuta, Ogun State, Nigeria

Email address: fawibeo@yahoo.com (O. O. Fawibe)

To cite this article:
Fawibe Oluwasegun Olamide, Ogunyale Omolara Grace, Oyelakin Abiodun Sunday, Ayodele Muyiwa Segun. A Study of Foliage Morphological Descriptions Accommodating Continuity in Previous Delimitation of Types in Tropical Plants. Journal of Plant Sciences. Vol. 3, No. 3, 2015, pp. 111-116. doi: 10.11648/j.jps.20150303.11

Abstract: The morphological description of some selected tropical plants in Ogun State, Nigeria was investigated. This is with a view to bridge existing more or less compartmentalized foliar descriptions which are discrete and lack the observed continuum of shape types in nature. Plants from which leaves were collected and observed for the different traits were randomly collected from some Local Government Areas of the State. The qualitative macromorphological characters observed include, leaf type, leaf shape, leaf apex, leaf base and leaf margin with varying percentage occurrence. Of the 74 distinct foliage types examined 62(84%) matched the existing foliage descriptions in literature while 12(16%) had undefined shape descriptions. It was observed that simple (79%), ovate and lanceolate (18%), entire (58%), acute (26%), acute (44%) had the highest frequency for the leaf type, leaf shape, leaf margin, leaf apex and leaf bases respectively, while the lowest frequency was recorded to be compound (21%), linear, oblanceolate, acicular, orbicular, sagitate, peltate, hastate, lobed (1.6%), spinose, denticulate, crenate, parted (1.6%), mucronulate and cirrhose (1.6%), auriculate and hastate (1.6%) in the leaf type, leaf shape, leaf margin, leaf apex and leaf bases respectively. Other shapes hitherto undefined include: lanceospatulate, zygomorphic-trilobe, ensiformis, lobed-pentate, lobed-starlate and ellipto-dentoid. The study revealed that there is a continuum in plant foliage macromorphological description rather than independent occurrence of plant foliage characters found in literature.

Keywords: Foliage, Qualitative, Morphology, Delimitation

1. Introduction

There are various descriptive terminologies in literature for plant foliage. These all present the different aspects of plant leaves in more or less compartmentalized groups which may not actually leave room for the usually observed continuity in variation of forms in nature. The usefulness of these existing descriptions cannot be overemphasized judged by their application by Taxonomists and Biosystematists.

Plant leaves are normally regarded as possessing useful characteristics for species identification [1, 7, 8, 4]. However, Gwo and Wei (2013) in expressing the premise for their own study, highlighted the fact that plant identification demands extensive knowledge and such complex terminologies which even professional Botanists would require significant time in

the field for mastery of the subject. One of the reasons for such challenges may not be far removed from non-accommodation of some forms intermediate in current descriptions.

The subject of leaf traits has been reported as having a relationship with different ecological and physiological factors [16, 5, 3, 13, 17]. The functional significance of shape variation among leaves has been the subject of debate for many years; and there are a range of different approaches to describing leaf shape [7]. The diversity of shape suggests that there is no one ecological strategy that is dependent exclusively on leaf shape. Even within a single genus, leaf shape variation can be tremendous [8].

Leaves exhibit a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to immediate environment; to variation
among species within and between communities and among orders or families [8]. Many plant traits are sensitive to climate [16, 3]. Compared with warmer sites, colder sites contained species whose leaves generally had more teeth, a larger tooth area and a higher perimeter-to-area ratio [12]. Thus the need for this current study arises, with a view to presenting if any, those forms and shapes not considered in the descriptions currently available.

2. Materials and Methods

Plants from which leaves were collected and observed for the different traits under study were obtained from surrounding forests of Abeokuta Metropolis, Nigeria. These are tropical plants in typical rain forest locations which include: Osiele, Camp, Obantoko, FUNAAB community in Odeda Local Government Area (7 11′ 51˝N - 32 612˝ E); Olomore, in Abeokuta North Local Government Area (7 939’N - 3 2054°E).

Leaf specimens severed from the plants by means of secateurs, were collected in labelled polythene bags containing the plant locations, habitat growth form and position on the plants. The specimens were later prepared for preservation as described by [9]. Preserved specimens were mounted on cardboard and their pictures recorded by means of a NIKON Coolpix P90 digital model camera. Voucher specimens were deposited at the Herbarium. Qualitative characters such as leaf types, shapes, margin, base and apex were observed and scored as they occurred and recorded. The leaf characters were identified in line with existing records in various Flora and some text books.

Descriptive statistics such as frequency distribution, bar chart were used in the analysis of the data.

3. Results

Majority of the leaves examined (80%) from the different plants under study were of the Simple leaf Category. The leaf shapes more pronounced in occurrence in this study were Ovate and Lanceolate (18%); while the least occurring shapes were Linear, Oblanceolate, Aciclar, Orbicular, Sagitate, Falcate, Peltate, Hastate and Lobed (1.6%) respectively (Figure 2). The leaf margin type with the highest frequency of occurrence was Entire (58%), followed by the Serrate margin type (28%) Other margin types were not too conspicuous (Figure 3). The common leaf Apex forms and their percentage of occurrence include in descending order: Acute (26%), Apiculate (22%), and Acuminate (19%) Figure 4. The most pronounced leaf base type was Acute (44%). Other fairly noticeable types ranging between 16 - 18% were Rounded and Attenuate (Figure 5). Table 1 gives a holistic idea of the relative combinations of these qualitative attributes among the leaves of the different plants examined.
Of the 74 distinct foliage types collected and examined, 62 (84%) matched the existing foliage descriptions in literature and available Flora, while 12 (16%) had undefined shape description. These had leaf qualitative traits observed among the plants examined (Figure 6) that would not readily fit into any of the existing described delimitation of types. These were separated for further comparative examination with a view to assigning an appropriate character nomenclature. Their leaf shape features and how they combine other morphological details were duly presented in Table 1. Suggestive descriptive names are as in Table 2; consisting of 9 leaf shapes and one each of leaf Apex and Margin and two of leaf Base. A glossary of the suggested descriptive terminologies are provided in Table 3.

Figure 5. Frequency of the leaf base among studied specimens

Figure 6. Pictures of leaves with undefined features and their suggested nomenclature (a) Lanceospatulate (b) Forkate (c) Starlate (d) Lobed-starlate (e) Zygomorphic trilobe (f) Ensiformate (g) Lobed -pentate (h) Octopulate (i) Ellipto-dentoid (j) Serro-dentate (k) Pinoid (l) Simpo-compound
Table 1. Qualitative morphological characters of different leaves examined

S/N	LEAF TYPE	LEAF SHAPE	LEAF APEX	LEAF BASE	LEAF MARGIN
1.	Simple	Linear	Acuminiate	Acute	Entire
2.	Simple	Obovate	Acute	Acute	Sinuate
3.	Simple	Deltoid	Aciculate	Acute	Serrate
4.	Simple	Elliptical	Aristate	Acute	Serrate
5.	Simple	Deltoid	Acute	Oblique	Serrate
6.	Simple	Ovate	Aciculate	Auriculate	Serrate
7.	Compound	Oblong	Obruse	Rounded	Entire
8.	Compound	Ovate	Acute	Rounded	Entire
9.	Simple	Oblanceolate	Acute	Acute	Entire
10.	Simple	Lanceolate	Aciculate	Acute	Serrate
11.	Simple	Lanceolate	Aciculate	Acute	Serrate
12.	Simple	Oblong	Retuse	Acute	Crenate
13.	Simple	Lobed	Aciculate	Acute	Serrate
14.	Simple	Ovate	Aciculate	Rounded	Entire
15.	Simple	Elliptical	Aristate	Rounded	Serrate
16.	Simple	Ovate	Acuminiate	Attenuate	Serrate
17.	Simple	Obovate	Acute	Attenuate	Entire
18.	Compound	Lanceolate	Acuminiate	Oblique	Serrate
19.	Simple	Acicular	Acuminiate	Attenuate	Entire
20.	Simple	Cordate	Aciculate	Cordate	Entire
21.	Simple	Elliptical	Micromulate	Rounded	Entire
22.	Simple	Cordate	Acute	Cordate	Serrate
23.	Simple	Orbicular	Acute	Cordate	Serrate
24.	Simple	Obovate	Retuse	Acute	Entire
25.	Simple	Ovate	Aristulate	Oblique	Spinose
26.	Simple	Rhomboidal	Acuminiate	Acute	Serrate
27.	Compound	Ovate	Acuminiate	Acute	Entire
28.	Compound	Ovate	Acute	Acute	Serrate
29.	Compound	Lanceolate	Aciculate	Acute	Entire
30.	Simple	Obovate	Cirrhoste	Attenuate	Denticulate
31.	Compound	Lanceolate	Aristate	Acute	Entire
32.	Simple	Elliptic	Acute	Attenuate	Entire
33.	Simple	Cordate	Aciculate	Cordate	Serrate
34.	Simple	Cuneate	Retuse	Acute	Entire
35.	Simple	Obovate	Obruse	Acute	Entire
36.	Simple	Elliptical	Aciculate	Attenuate	Serrate
37.	Simple	Rhomboidal	Acute	Acute	Serrate
38.	Simple	Obovate	Obruse	Acute	Entire
39.	Simple	Ovate	Aciculate	Attenuate	Serrulate
40.	Compound	Lanceolate	Acuminiate	Acute	Entire
41.	Simple	Elliptical	Retuse	Acute	Entire
42.	Compound	Rhomboidal	Acuminiate	Acute	Parted
43.	Simple	Ovate	Acute	Cordate	Sinuate
44.	Simple	Lanceolate	Acuminiate	Attenuate	Entire
45.	Simple	Ovate	Acuminiate	Acute	Entire
46.	Simple	Lanceolate	Acuminiate	Rounded	Entire
47.	Simple	Ovate	Aristate	Rounded	Serrulate
48.	Simple	Deltoid	Acute	Rounded	Entire
49.	Simple	Deltoid	Acute	Rounded	Serrulate
50.	Simple	Sagitate	Aciculate	Sagitate	Entire
51.	Simple	Lanceolate	Aristate	Acute	Entire
52.	Compound	Elliptical	Retuse	Rounded	Entire
53.	Simple	Obovate	Obruse	Attenuate	Entire
54.	Compound	Falcate	Acuminiate	Attenuate	Entire
55.	Simple	Cuneate	Obruse	Attenuate	Entire
56.	Simple	Obovate	Aciculate	Acute	Entire
57.	Simple	Lanceolate	Aristate	Rounded	Entire
58.	Compound	Oblong	Obruse	Rounded	Entire
59.	Simple	Elliptical	Acute	Acute	Entire
60.	Compound	Lanceolate	Acuminiate	Acute	Sinuate
61.	Simple	Peltate	Acute	Sagitate	Entire
62.	Simple	Hastate	Acute	Hastate	Entire
Table 2. Morphological features of undefined leaf characters (in bold print)

FIGURE 6	LEAF SHAPE	LEAF APEX	LEAF BASE	LEAF MARGIN
a	Lanceospathulate	Acute	Rounded	Entire
b	Forkate	Acuminate	Attenuate	Serrulate
c	Starlate	Acuminate	Auriculate	Serrulate
d	Lobed-starlate	Acuminate	Sagitate	Lobate
e	Zygomorphic-trilobe	Acute	Acute	Entire
f	Ensiforate	Acute	Acute	Entire
g	Lobed-pentate	Obtuse	Auriculate	Lobate
h	Octopulate	Acute	Auriculate	Sinuate
i	Ellipto-dentoid	Obtuse	Acute	Double–dentate
j	Ovate	Acute	Acute	Simpo-compound
k	Filiform	Pinoid	Pinoid	Entire
l	Ovate	Acute	Simpo-compound	Sinuate

Table 3. Glossary of upgraded foliar descriptions

Terminology	Description
Lanceospatulate	A lance-shaped leaf with a broad apex which tappers at the middle to give a broad base
Forkate	Fork - shaped leaf
Starlate	Star - shaped leaf
Lobed-starlate	A lobed star - shaped leaf
Zygomorphic-trilobe	A simple leaf with two sides lobed at equal angle from the same axis.
Ensiformate	Sword- shaped leaf
Lobed-pentate	A five - lobed shaped leaf
Octopulate	Octopus- shaped leaf
Ellipto-dentoid	An Elliptic-shaped leaf with dentate margin
Serro-dentate	Leaf with serrate margin towards the apex and dentate margin towards the base
Pinoid apex and base	A sharp pointed apex and base
Simpo-compound	A leaf that looks simple towards the apex but splits towards the base into leaflets

4. Discussion

Plant leaves manifest a remarkable diversity of shapes, margins, apices and bases that range from developmental sequences within and between communities. Morphologically, the leaves in the area studied were predominantly simple with acute apex, entire margin and acute base. These results were similar to those of species from other tropical rainforest vegetation [6, 2]. This similarity might have resulted from comparable species composition and/or from convergent development as a response to similar environmental condition [10].

The less occurrence of compound leaves compared to simple leaves in this region could be attributed to the ecological factors of this region. This was supported by [14] who reported that compound leaves seem to be more common in warmer and arid or semi-arid environments and in light demanding species. Their shape, arrangement and construction are thought to offer advantages in capturing light while reducing water loss and maintaining lower leaf lamina temperatures.

Ovate leaves with acute or acuminate apex and entire margins prominent in these areas can be associated with the high pluviosity of the area [6]. It has been suggested that this leaf morphology worked as drainage triggers [11] which probably retards the growth of epiphylls and reduces loss of soluble nutrients by leaching [15]. Shape, margin, apex and base variation among leaves have been the subject of debate for many years. The undefined leaf qualitative traits among the plants observed showed that there is a continuum in plant foliage morphology rather than independent occurrence of foliar description has appeared in text. Proposed leaf margin such as Serro-dentate, may fill the gap between the serrate and dentate margin while the Lanceospatulate may bridge the gap between the Lanceolate and Spathulate leaf shape. Understudied foliage also showed some “Shapes” attributes which better described them than generalized acronym. Proposed leaf shape such as Zygomorphic-trilobed, Ensiformate and Starlate showed better description than “lobed” as appeared in literature.

The study revealed that there is a continuum in plant foliage macromorphological description rather than independent occurrence of plant foliage characters found in literature.

References

[1] E. M. Armstrong. “Leaf Types and Shapes” URL : en.wikipedia.org/wiki/leaf type and shapes. Retrieved 12-05-2014
[2] F. Bongers and J. Popma, “Leaf characteristics of the tropical rainforest Flora of Los Tuxtlas”, Mexico Botanical Gazette, vol 151, pp. 354-365, 1990
A Study of Foliage Morphological Descriptions Accommodating Continuity in Previous Delimitation of Types in Tropical Plants

[3] S. W. Breckle, Walter’s vegetation of the earth: the ecological systems of the geo-biosphere”, 4th edn. Berlin, Germany: Springer-Verlag, 2002

[4] C. Gwo and C. Wei, “Plant identification through images: using feature extraction of keypoints on leaf contours” Applications in Plant Sciences vol 1, pp. 1200005, 2013

[5] B. Kirchoff, “Character description in phylogenetic analysis: insights from Agnes Arber’s concept of the plant”, Annals of Botany vol 88, pp 1203 – 1214, 2001

[6] T. O. Maria, C. A. Luiz and B. N. Raquel, “Leaf morphology of 89 tree species from a lowland tropical rain forest (Atlantic forest) in South Brazil”, Brazilian Archives of Biology and Technology vol 47 (6), pp. 21-24. 2004

[7] A. B. Nicotra. Leaf size and shape. Prometheus wiki.http://prometheuswiki.publish.csiro.au/tikiindex.php?page=Leaf+size+and+shape (Verified 2 July 2014), 2010

[8] A. B. Nicotra, A. Leigh, C. K. Boyce, C. S. Jones, K. J. Niklas, D. L. Royer and H. Tsukaya, “The evolution and functional significance of leaf shape in the angiosperm”, Funct Plant Biol vol 38, pp.535-552, 2011

[9] O. Olorode. Taxonomy of West African Flowering Plants. The Book Project. Nigeria Obafemi Awolowo University, Ile-Ife, 2011, pp: 14-17

[10] M. Pyykko, “Morphology and Anatomy of leaves from some woody plants in a humid tropical forest of Venezuelan Guayana”, Acta. Bot. Fennica, vol 112 pp. 1-41, 1979

[11] P. W. Richards. The tropical rainforest: an ecological study (2nd ed.), U.K. Cambridge University Press, 1996, pp. 44-56

[12] D. L. Royer, P. Wilf, D. A. Janesko, E. A. Kowalski and D. L. Dilcher, “Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record” American Journal of Botany vol 92, pp. 1141–1151, 2005

[13] M. Tsiantis, A. Hay, “Morphological innovations in plant leaves – origin” Nature review: Genetics vol 4, pp. 169-180, 2003

[14] L. Warman, T. Moles, W. Edwards. “Not so simple after all: searching for ecological advantages of compound leaves”. Nordic Society Oikos vol 000, pp. 001-09, 2010

[15] T. C. Whitemore. An introduction to tropical rain forests. Oxford. Oxford University Press, 1998, pp. 30-34

[16] F. I. Woodward, Climate and plant distribution. Cambridge, UK. Cambridge University Press, 1987, pp 35-52

[17] P. Wright, B. Groom and B. Lamon “Functional Plant Biology”. 2004 pp. 551 – 558