Abstract

Introduction

Permanent congenital bilateral hearing loss (CHL) of moderate or greater degree (≥40 dB HL) is a rare disease, with a prevalence of about 1 to 3 per 1000 births. However, it is one of the most frequent congenital diseases. Reliance on physician observation and parental recognition has not been successful in the past in detecting significant hearing loss in the first year of life. With this strategy significant hearing losses have been detected in the second year of life. With two objective technologies based on physiologic response to sound, otoacoustic emissions (OAE) and auditory brainstem response (ABR) hearing screening in the first days of life is made possible.

Objectives

The objective of this health technology assessment report is to update the evaluation on clinical effectiveness and cost-effectiveness of newborn hearing screening programs. Universal newborn hearing screening (UHNS) (i), selective screening of high risk newborns (ii), and the absence of a systematic screening program are compared for age at identification and age at hearing aid fitting of children with hearing loss. Secondly the potential benefits of early intervention are analysed. Costs and cost-effectiveness of newborn hearing screening programs are determined. This report is intended to make a contribution to the decision making whether and under which conditions a newborn hearing screening program should be reimbursed by the statutory sickness funds in Germany.

Methods

This health technology assessment report updates a former health technology assessment (Kunze et al. 2004 [1]). A systematic review of the literature was conducted, based on a documented search and selection of the literature using predefined inclusion and exclusion criteria and a documented extraction and appraisal of the included studies. To assess the cost-effectiveness of the different screening strategies in Germany the decision analytic Markov state model which had been developed in our former health technology assessment report was updated.

Results

Universal newborn hearing screening programs are able to substantially reduce the age at identification and the age at intervention of children with CHL to six months of age in the German health care setting. High coverage rates, low fail rates and - if tracking systems are implemented - high follow-up rates to diagnostic evaluation for test positives were achieved. New publications on potential benefits of early intervention could not be retrieved. For a final assessment of cost-effectiveness of newborn hearing screening evidence based long-term data are lacking.
Decision analytic models with lifelong time horizon assuming that early detection results in improved language abilities and lower educational costs and higher life time productivity showed a potential of UNHS for long term cost savings compared to selective screening and no screening. For the short-term cost-effectiveness with a time horizon up to diagnostic evaluation more evidence based data are available. The average costs per case diagnosed range from 16,000 EURO to 33,600 EURO in Germany and hence are comparable to the cost of other implemented newborn screening programs. Empirical data for cost of selective screening in the German health care setting are lacking. Our decision analytic model shows that selective screening is more cost-effective but detects only 50% of all cases of congenital hearing loss.

Discussion

There is good evidence that UNHS-Programs with appropriate quality management can reduce the age at start of intervention below six months. Up to now there is no indication of considerable negative consequences of screening for children with false positive test results and their parents. However, it is more difficult to prove the efficacy of early intervention to improve long-term outcomes. Randomized clinical trials of the efficacy of early intervention for children with CHL hearing losses are inappropriate because of ethical reasons. Prospective cohort studies with long-term outcomes of rare diseases are costly, take a long time and simultaneously substantial benefits of early intervention for language development seem likely.

Conclusions

A UNHS-Program should be implemented in Germany and be reimbursed by the statutory sickness funds. To achieve high coverage and because of better conditions for obtaining low false positive rates UNHS should be performed in hospital after birth. For outpatient deliveries additionally screening measures in an outpatient setting must be provided.

Zusammenfassung

Einleitung

Spracherwerbsrelevante (Hörverlust >40 dB) angeborene Hörstörungen (HST) sind mit einer Prävalenz von 1 bis 3 pro 1000 zwar eine seltene Erkrankung, aber eine der häufigsten angeborenen Erkrankungen. Mit der bisherigen Praxis der Entdeckung von HST durch Verdacht durch Ärzte und Eltern war es nicht möglich angeborene HST in Deutschland bereits im ersten Lebensjahr zu erkennen. Bisher werden relevante HST erst im zweiten Lebensjahr erkannt. Objektive audiologische Testverfahren mittels transitorisch evozierter otoakustischer Emissionen (TOAE) oder der Hirnstammaudiometrie (ABR) ermöglichen ein Hörscreening unmittelbar nach der Geburt.

Fragestellung

In diesem Bericht wird die Bewertung der medizinischen Effektivität und der Wirtschaftlichkeit von Neugeborennörscreeningprogrammen (NHS-Programm) aktualisiert. Als Zielgrößen werden die Diagnose- und Versorgungszeitpunkte unter (i) einem universellen Hörscreeningprogramm, (ii) einem Screeningprogramm für Risikokinder und (iii) bei Abwesenheit eines Screeningprogramms verglichen. Es folgt eine Analyse der Vorteile einer frühzeitigen Therapie. Ferner werden die Kosten und
die Kosteneffektivität von Hörscreeningprogrammen ermittelt. Die Ergebnisse des Berichts sollen als Entscheidungshilfe dienen, ob die Aufnahme eines NHS in den Leistungskatalog der gesetzlichen Krankenversicherung (GKV) sinnvoll erscheint.

Methodik

 Dieser HTA-Bericht aktualisiert den Vorgänger-HTA-Bericht (Kunze et al. 2004 [1]). Es wird eine systematische Literaturübersicht mit dokumentierter Literaturrecherche und -selektion, vorabdefinierten Ein- und Ausschlusskriterien sowie dokumentierter Extraktion und Bewertung der eingeschlossenen Studien durchgeführt. Zur Beurteilung der Kosteneffektivität der verschiedenen Screeningstrategien in Deutschland wird das im Vorgänger-HTA-Bericht entwickelte entscheidungsanalytische Markov-Modell anhand der neu identifizierten Daten aktualisiert.

Ergebnisse

 Auch im deutschen Versorgungs­kontext ermöglichen universelle Neonatennachverleugung der Identifikation einer HST und einen früheren Interventionsbeginn bis zum sechsten Lebensmonat mit hohen Erfassungsraten, niedrigen Anteilen Testauffälliger und insofern ein System zur Nachverfolgung Testauffälliger installiert wurde, hohen Anteilen Testauffälliger mit Abklärungsdagnostik. Neue Daten zu Vorteilen einer frühen Intervention konnten nicht identifiziert werden. Für eine abschließende Beurteilung der Kosteneffektivität von NHS fehlt eine sichere Datengrundlage. Langzeitmodelle ergeben Kosteneinsparungen für UNHS gegenüber und von Risikoscreening gegenüber einer Praxis ohne Screening. Die Datenlage zur Wirtschaftlichkeit im kurzfristigen Zeithorizont ist besser gesichert und ist mit durchschnittlichen Kosten von 16.000 EURO bis 33.600 EURO pro entdeckter HST in Deutschland im Bereich anderer bereits implementierter Screeningprogramme für Neugeborene. Für die Kosten von Risikoscreening liegen im deutschen Kontext keine empirischen Daten vor. Die entscheidungsanalytische Modellierung zeigt, dass Risikoscreening kostengünstiger ist, jedoch gegenüber einem UNHS nur die Hälfte der Fälle von HST identifizieren kann.

Diskussion

 Dass UNHS-Programme bei entsprechender Qualitätssicherung eine Vorverlegung der Therapie in das Lebensalter von sechs Monaten erzielen können, kann als gesicherte Evidenz gelten. Zudem sind bisher keine Hinweise auf relevante negative Auswirkungen des Screenings auf Kinder mit falsch-positiven Testergebnissen und deren Eltern zu identifizieren. Schwieriger ist eine empirische Absicherung der genauen Abschätzung der Vorteile einer frühen Intervention. Randomisierte Studien mit Kindern mit HST verbieten sich aus ethischen Gründen, prospektive Beobachtungsstudien mit langfristigem Zeithorizont bei seltenen Erkrankungen sind aufwändig und langwierig. Gleichzeitig sind die Vorteile einer frühen Intervention für eine normale Sprachentwicklung sehr wahrscheinlich.

Schlussfolgerung

 Ein UNHS-Programm sollte als Leistung der GKV in Deutschland eingeführt werden. Bei stationären Geburten sollte es wegen der zu erzielenden höheren Erfassungsraten und der günstigeren Untersuchungsbe-
dingsungen bei Neugeborenen noch während des Krankenhausaufenthalts durchgeführt werden.

Schlüsselwörter: Technologie, biomedizinische, Screening, Screening, Neugeborenen-, Hören, Hörstörungen, Neugeborene
Executive Summary

1. Introduction

Permanent congenital bilateral hearing loss of moderate or greater degree is a rare disease, with a prevalence of about 1 to 3 per 1000 births. However, the impact of such hearing loss on the development of language and communication can be substantial if effective intervention is delayed. The mean age at identification of a permanent congenital hearing loss in Germany was 47 months of age for moderate and 22 months for profound hearing loss for birth cohorts after 1987. During the nineties automated screening devices were developed for two objective technologies based on physiologic response to sound, the auditory brainstem response (ABR) and oto-acoustic emissions (OAE). These devices permit screening of newborns by non-professional personnel within short test times and without considerable discomfort for the child. Since 1994 several statements of Scientific Medical Societies were published recommending the implementation of universal newborn hearing screening programs (UNHS). The goal of universal detection of hearing loss in infants before three months of age, with appropriate intervention not later than six months of age is endorsed. Universal hearing screening is supported, because screening of high-risk populations alone could only identify about 50% of newborns with significant hearing loss. Reliance on physician observation and/or parental recognition is judged as not have been successful in the past in detecting hearing loss in the first year of life. Economic consequences of an early detection and intervention of congenital hearing impairment are also considerable. While health care costs might be increased by screening programs because screening costs and costs for diagnostic evaluation for false positive test results, educational costs probably could be saved if the proportion of children with hearing loss, who can be taught in mainstream classes, could be increased. Indirect costs (productivity losses) may also be influenced.

2. Objectives

The objective of this health technology assessment was to evaluate the clinical effectiveness and cost-effectiveness of a UNHS compared to selective screening of high risk newborns or no systematic screening. This report is intended to make a contribution to the decision making whether and under which conditions a newborn hearing screening program should be reimbursed by the statutory sickness funds in Germany. The background of connatal hearing disorders and its epidemiology is described and the evidence concerning age at identification of a congenital hearing impairment, age at hearing aid fitting and start of accompanying therapies with and without a systematic newborn hearing screening and the coverage of screening programs is collected. In addition the question is addressed whether an earlier diagnosis of a permanent hearing impairment and an earlier application of available therapies are clinically more effective than a delayed start of treatment making newborn hearing screening an alternative to the existing practice. Available data on the consequences of delayed detection and treatment of permanent hearing impairment concerning language and speech development, but also educational and occupational achievements are described. Evidence on sensitivity and specificity of screening tests based on evoked oto-acoustic emissions (EOAE) or brainstem evoked response audiometry (BERA) is analyzed. The clinical effectiveness of UNHS is compared to selective screening of high risk children and to no systematic screening. Furthermore, the consequences of false positive and false negative tests are addressed.

The objective of the economic evaluation and decision analytical modelling is to compare UNHS, risk screening and the existing practice of no systematic screening for cost-effectiveness. Evaluated outcomes are: costs per screened child, costs for early and late detected children until hearing-aid fitting, costs for education and also indirect costs by productivity losses caused by hearing impairment. Costs are related to health outcomes using cost-effectiveness ratios.

3. Clinical evaluation

3.1 Methods

A systematic review of clinical and economic effectiveness has been conducted based on a literature search in 18 electronic databases and a search of internet sites related to the topic. The time horizon of the literature search was limited from 2001 to March 2005. Two independent reviewers selected studies to be entered in this assessment using a priori defined inclusion- and exclusion criteria specifying study population, intervention, comparison technology, outcomes and study types. Study quality was assessed with instruments developed by the German Scientific Working Group Technology Assessment for Health Care and by the authors. Data of included studies were extracted and summarized in evidence tables.

3.2 Results

The literature search retrieved 1950 hits. After application of inclusion and exclusion criteria 35 publications were included in the syntheses of information of clinical effectiveness: ten publications on the epidemiology of permanent congenital hearing loss, two on potential benefits of early intervention, two publications on sensitivity and specificity of screening devices, two publications on comparisons of screening devices, 15 publications on newborn hearing screening programs (NHS), and four publications on the attitude of parents to NHS or on consequences of false test results.
Age at identification and intervention without Newborn Hearing Screening

The median age at identification ranged from 18 to 30 months of age (seven studies). The median age at hearing-aid fitting ranged from 22 to 34 months (four studies). Only two German studies were identified, one with poor study quality and one with short follow-up time to identify all cases with hearing loss.

Age at identification and intervention with Universal Newborn Hearing Screening

See “Effectiveness of Newborn Hearing Screening-Programs”.

Potential benefits of early intervention

Since our former HTA-Report no new studies could be identified comparing language development, or educational attainment in children with hearing loss receiving early or late intervention with a prospective study design. Two studies examined language development or quality of life respectively of a birth cohort of seven to eight years old children with hearing loss. The influence of age at identification on language development (mean 21.6 months) was analysed by regression analysis. No association between age at identification and language development has been found. However, the proportion of children with an early treatment start was very small. Language development was 25% beneath the values that could be expected according to nonverbal intelligence and quality of life in the domain of psychosocial functioning was statistically significant lower than an age matched cohort of hearing children.

Test sensitivity and specificity of OAE- and BERA-Screening devices

The test sensitivity of four different automated screening devices (Echoscreen/S-TOAE, GSI60/D-DPOAE, Blitzbera/AABR, Eroscan/S-DPOAE modus, S-TOAE modus) ranged from 99.4% to 100%. The test specificity for three devices (Echoscreen/S-TOAE, GSI60/D-DPOAE, Blitzbera/AABR) ranged from 82.4% to 92.3%.

Effectiveness of Newborn Hearing Screening Programs

The achieved coverage rates of 13 included NHS screening programs ranged from 65% to 100% with a median coverage of 94.2%. For regional UNHS in Germany (three studies) coverage ranged from 87.4% to 95.3%. Fail rates for bi- and unilateral fails after the first stage of screening in relation to all screened newborns ranged from 2.5% to 20% with a median of 4.3% (nine studies). For bilateral fails they ranged from 0.5% to 10.6% with a median of 2.3%. The median fail rate for bilateral fails after the last screening stage was 1.5% (range 0.08%-3.9%). The percentage of false positive test results after the first stage of screening in relation to all screened newborns ranged from 0.13% to 9.3% with a median of 2.4% (nine studies). The median of the percentage of false positive test results after the last stage of screening in relation to the number of newborns with diagnostic evaluation was 72.7% (range 0%-93.9%, nine studies). In only two studies the number of identified CHL in the whole region was collected to compare it to the number identified by the UNHS. The proportion of false negative test results was 8.4% and 5.5% respectively. Until to the last stage of screening 0.3% to 2% (median 0.72%, nine studies) of test positive newborns in relation to all newborns screened were lost to follow-up. The range of the proportion of newborns not getting a diagnostic evaluation after having completed the last stage of screening was 0%-23.8% (median 0%, ten studies). The mean age at identification was reduced to about three months of age (range of means 1.2-4.3 months). The proportion of children with bilateral hearing losses fitted with hearing-aids or treated by surgery ranged from 77.8% to 100% (median 98.4%, six studies). The mean age at intervention was reduced to six months of age in UNHS-programs reporting this outcome (six studies).

Consequences of false screening results for children and their parents

Four studies reported on the attitude of parents to NHS. The parents in these studies had different experiences with NHS: Mothers without personal experience, mothers of screened babies where the test result was not yet known, mothers of children taking part in a rescreening because they failed the first screening test, parents of children with diagnosed hearing loss. The majority of mothers and parents did not feel substantial anxiety after a positive test result.

4. Economic evaluation

4.1 Methods

Literature search and selection of the studies to be included in the systematic review of cost-effectiveness has been performed analogous to the methods in the systematic review of clinical effectiveness. Costs, cost components and incremental cost-effectiveness-ratios (IKER) are systematically summarized in evidence tables. For currency conversions to EURO 2004 values purchasing power parities of the WHO are used. Adjustments for inflation are made using the general consumer price index of the Statistisches Bundesamt.

4.2 Results

Five studies were included in the systematic review of cost-effectiveness, three cost-analyses and two cost-effectiveness analyses. With the exception of one study with a lifelong time horizon, the studies had only a short term time horizon covering merely the period until diag-
nostic evaluation of hearing loss. Furthermore, these studies were heterogeneous regarding sample size, screening procedures, and included cost components. The average costs per screened child ranged from 14.3 EURO to 49.37 EURO (2004 values, four studies). The average costs per identified case of hearing impairment in the well baby care unit were 25,311 EURO and 43,837 EURO respectively (two studies) and 1237 EURO for high risk babies in an UNHS-Program and 10,151 EURO in selective screening (two studies). In UNHS-Programs the average costs for the whole population (WBN and high risk) ranged from 4888 EURO to 33,613 EURO per case (three studies). The IKER of selective screening versus no screening and of UNHS versus risk screening in one study were 16,648 EURO and 44,971 EURO respectively per additionally early detected child (until the sixth month of life).

5. Decision analysis

The short-term submodel including diagnostic outcomes of the former developed two-component Markov state model was updated with new data from the present systematic review. IKER were calculated. The long-term component could not be updated because no new data were available on long-term outcomes and costs.

5.1 Model for diagnostic outcomes

Because screening aims at an early detection of CHL, the primary outcome of the diagnostic submodel is the number of detected child months after six, twelv and 120 months and the number of children detected until six months of age. For the diagnostic model, cost-effectiveness was expressed as costs per additionally detected child month and cost per additionally detected child at the age of six months. The primary cost-effectiveness outcome of the education submodel was saved educational costs per additionally detected child. Time horizon for diagnostic model was 120 months.

5.2 Results

The model parameters of the diagnostic model were derived from the published literature. Assuming a prevalence of congenital hearing impairment of 0.15%, UNHS detected 75% of children with hearing impairment within the first six months of life, compared to 49% detected with risk screening and 24% detected without systematic screening. UNHS yields 72% of all possible child months after six months and 77% after 12 months. Risk screening yielded 43% after six months and no systematic screening (the alternative which is the most common in Germany at the moment) yields only 23% child months after six months. Sensitivity analysis shows that results strongly depend on the prevalence of hearing impairment. The costs of detection are varying considerably between strategies. Based on the decision analysis, total costs for screening of 100,000 newborns until six months of life are 1.52 Mio. EURO for UNHS, 0.21 Mio. EURO for risk screening, and 13,370 EURO for the absence of systematic screening. The costs per detected child are 10,306 EURO for UNHS, 2592 EURO for selective screening, and 1402 EURO without systematic screening respectively. The costs for detection strongly depended on the costs and sensitivity of screening tests, the probability of a false suspicion of hearing impairment among healthy children, and the coverage of the screening program.

6. Comprehensive discussion

Is congenital permanent hearing loss a target for screening?

The new identified studies confirmed the results of the former HTA-report on the epidemiology of congenital permanent hearing loss: CHL is with a prevalence of 0.3% of 1000 newborns one of the most frequent congenital diseases. Without screening the age of detection is in the second year of life. The most frequent (50%) moderate degree of CHL is detected in the third year of life. The evidence for benefits of early intervention for long-term outcomes (language development, quality of life, educational attainment) could not be improved. The evidence that attaining a normal language development with early intervention is basically possible although the influence of age at intervention might be over- or underestimated has already been shown in studies on this item in the former HTA-report. Evidence for the efficacy of early intervention by randomized trials can not be provided because of ethical reasons. Prospective cohort studies with long-term outcomes of rare diseases are costly, take a long time and simultaneously substantial benefits of early intervention for language development seem likely according to the theory of language development.

Do appropriate screening tests exist?

There is only limited evidence about sensitivity and specificity of automated screening devices. The two diagnostic studies identified, showed considerable limitations in study quality. Furthermore program sensitivity can only be measured if all cases of CHL in the region of the NHS are identified. Only one study with a sufficiently long follow-up has been identified. Besides test accuracy, coverage and follow-up rate contribute to program sensitivity and a negative screening test in a case of late identified hearing loss may also be due to late onset hearing impairment and has not to represent a false test result. After the present experience with large size hearing screening programs the specificity and sensitivity of the screening devices seems to be high enough with the above discussed limited evidence for sensitivity.
Are Newborn Hearing Screening Programs effective in reducing age at detection and age at appropriate intervention (fitting of hearing aids, Cochlea Implant)?

As distinguished to the former HTA-report in the present report five publications of UNHS-programs in Germany could be identified. They report high coverage rates, low fail rates and - if tracking systems are implemented - high follow-up-rates to diagnostic evaluation for test positives. Only two of the German studies report on age at diagnosis and hearing-aid fitting. They achieved the goal of starting intervention until six months of age. The feasibility study in Hannover has shown that test positive rates have been strongly influenced by the health care setting. Screening tests in medical practices with babies with a higher mean age at time of testing show significantly higher test positive rates of about 10% vs. 2.3% or 3.9% in the well baby nursery or the children’s hospital respectively. Another important issue is that regional differences in capacity for diagnostic evaluation must be taken into account.

Negative consequences of screening

CHL is a rare disease. Of 740,000 newborns per year about 740 babies are affected by an at least moderate CHL. Assuming a fail-rate of 2% 14,800 children would have to undergo further testing, 14,060 children of them will not benefit from the screening. Therefore it is important, that these healthy children will not be harmed by the screening program. The screening tests themselves are not invasive and are normally performed during sleep. For diagnostic evaluation a proportion of children receive an oral sedative and furthermore it cannot be completely excluded that a hearing child will be fitted with hearing-aids. Up to the present on a basis of some 100,000 screened newborns in the published literature no adverse events during diagnostic evaluation were reported. Concerns that positive test results might raise anxiety in parents and have a negative impact on the bonding process are not confirmed. The majority of parents in two studies did not feel substantial anxiety due to positive test results. Two qualitative studies give a more differentiated picture of the feelings of parents after receiving positive test results during the screening process, but they had small sample sizes and low response rates thus the generalisability of these studies are questionable. On the other hand it has to be considered that the majority of hearing impaired would get the opportunity of a normal language and psychosocial development and the consequences of lifelong disability might be prevented. Ultimately ethical principles as well will determine which risk and how much inconveniences seem to be acceptable to healthy persons to improve the opportunities of persons affected by diseases or disabilities. In any case quality management seems to be indicated to optimise the effectiveness and acceptability of screening.

Is a Newborn Hearing Screening Program cost-effective?

The assessment of the cost-effectiveness of UNHS depends strongly on the selection of the perspective and time horizon of costs and benefits to be included into the evaluation. From the health care perspective screening could only improve effectiveness. Early detected cases of CHL are not expected to save costs for the health care system in comparison to late detected cases. Besides from the perspective of the affected children a big positive effect both on costs and effects can be expected for the educational system and for the national economy regarding productivity losses. However, in comparison to the former HTA-report the evidence concerning societal and long-term perspective of cost-effectiveness analysis did not improve. On the other hand new data for the short term horizon for Germany are now available from the feasibility study in Hannover at least concerning average cost of screening and per detected case of CHL. An incremental cost-effectiveness analysis comparing additional cost of screening per additionally early detected case of CHL to selective screening or no screening has not been done. Rather an incremental analysis comparing different health care settings to the setting of the model project has been given. The lowest average costs of screening (16.57 EURO) and per case detected (15,961 EURO) were reported from model 1, where all newborns in well baby nurseries and children’s hospital were screened by a two-stage TEOAE-screening program and only newborns missed by screening and outpatient deliveries were screened in certified ear-nose-throat practices. The highest costs were calculated for model 2 (34.67 EURO per baby screened, 33,613 EURO per case detected) where only babies in the children’s hospital have been screened there and all other newborns were screened during the routinely performed examination between the fourth and sixth week of life in pediatric practices (U3). In model 3 all newborns in well baby nurseries and children’s hospital were screened in hospital, only the children missed by screening in the hospital were screened in pediatric practices during U3-examination. Intermediate average costs of 23.02 EURO per baby screened and 22,417 EURO per case detected were calculated. A comparison of incremental costs of these different settings shows that additionally detected case by model 3 versus model 1 are accompanied by additional costs of 139,568 EURO.

Unfortunately the data provided in cost-effectiveness studies of other newborn screening programs do not permit to compare incremental cost-effectiveness ratios (IKER) for the short-term horizon until diagnostic evaluation. Only IKER provides the information about additional costs for an additionally by screening identified case, but solely average costs are reported. The average costs per detected case of UNHS lie in the range of other newborn screening programs in European countries already implemented. But for Germany no data on the cost-effectiveness of other newborn screening programs are available.
7. Conclusions and recommendations

It has to be assumed that the mean age at detection of CHL in regions without UNHS in Germany lies still in the second half of the second year of life. A spontaneous improvement cannot be assumed without directed measures. Evaluation of the clinical and economic evidence shows that UNHS supports early intervention. Despite the lack of data and the flaws in study design on the issue of the benefit of early intervention, it seems likely that early intervention improves language development and the opportunity for a normal educational and vocational development increases. From a long-term societal perspective it can be assumed that UNHS is the most cost-effective strategy and selective screening is more cost-effective than no screening, but the evidence is uncertain. However, short-term cost-effectiveness of UNHS is in the range of other accepted newborn screening programs. In due consideration of the evaluation of clinical and economic evidence and decision analysis the authors of the present report recommend the implementation of a UNHS-program in Germany reimbursed by the statutory sickness funds. To achieve high coverage and because of better conditions for obtaining low false positive rates UNHS should be performed in hospital after delivery, for outpatient deliveries additionally screening measures in an outpatient setting must be provided. Institutions performing UNHS should apply quality management measures of which a general framework has to be established by the institutions of the joint self-governing body of the German health care system. Babies failing the screening tests must be reliably referred to diagnostic evaluation.

Kurzfassung

1. Einleitung

Permanente kongenitale bilaterale Hörstörung (HST) mit mindestens mittlerem Schweregrad sind mit einer Prävalenz von 1 bis 3 pro 1000 Neugeborenen eine seltene Erkrankung. Wenn eine effektive Behandlung verzögert wird, können die Auswirkungen einer HST auf die Entwicklung von Sprache und Kommunikation bedeutend sein. Das durchschnittliche Alter bei Erstdiagnose einer kongenitalen HST war in Deutschland für Geburtskohorte nach 1987 47 Monate für mittelgradige und 22 Monate für an Taubheit grenzende HST. Während der neunziger Jahre wurden automatisierte Screeninggeräte für zwei objektive audiologische Technologien entwickelt, die auf der physiologischen Antwort auf Geräusche beruhen, der Hirnstammaudiometrie (ABR) und der Messung otoakustischer Emissionen (OAE). Diese Geräte erlauben ein Screening von Neugeborenen ohne audiologisches Fachpersonal innerhalb kurzer Zeiten und ohne nennenswerte Unannehmlichkeiten für das Kind. Seit 1994 wurden mehrere Stellungnahmen wissenschaftlicher medizinischer Fachgesellschaften veröffentlicht, die die Einführung eines universellen Neugeborenenhörscreeningprogramms (UNHS-Programm) empfahlen. Das Ziel der Erstdiagnose innerhalb der ersten drei Monate und der adäquaten therapeutischen Versorgung bis zum sechsten Lebensmonat wird unterstützt. Ein universelles Screening wird deshalb unterstützt, weil ein ausschließliches Screening von Hochrisikokindern nur etwa 50% der Neugeborenen mit HST entdecken kann. Die Identifikation von HST über den Verdacht von Ärzten und Eltern wird als in der Vergangenheit nicht erfolgreiche Maßnahme zur Entdeckung von HST im ersten Lebensjahr eingeschätzt. Die ökonomischen Konsequenzen einer frühen Erstdiagnose und Intervention sind ebenfalls beträchtlich. Während die Kosten für das Gesundheitssystem durch Screeningsprogramme aufgrund der Kosten für das Screening und die Abklärung von falsch-positiven Testergebnissen vergrößert werden könnten, könnte wahrscheinlich ein Teil der Bildungskosten eingespart werden, wenn der Anteil der Kinder mit HST, die eine Regelschule besuchen, erhöht werden könnte. Indirekte Kosten (Produktivitätsverluste) könnten ebenfalls beeinflusst werden.

2. Fragestellung

Ziel des vorliegenden Health Technology Assessment (HTA)-Berichts ist es, die medizinische Effektivität und Wirtschaftlichkeit eines UNHS im Vergleich zu einem Screening von Risikokindern oder einer Situation ohne systematisches Screening zu bewerten. Der Bericht soll einen Beitrag zu der Frage leisten, ob und unter welchen Bedingungen die Aufnahme eines NHS in den Leistungskatalog der gesetzlichen Krankenversicherung (GKV) in Deutschland sinnvoll ist. Hierzu sollen Eckdaten zur Epidemiologie konnataler HST dargestellt, die Evidenz zum
Zeitpunkt der Erstdiagnose und der therapeutischen Versorgung einer HST erhoben, Befunde zu Erfassungsraten, Erstdiagnose und therapeutischer Versorgung bei einem Hörscreening für Neugeborene ermittelt sowie die Frage beantwortet werden, ob eine infolge eines universellen Screeningprogramms möglicherweise erreichbare frühere Diagnose und Therapie einer kongenitalen HST medizinisch effektiver als ein später Therapiebeginn ist, so dass Screeningprogramme eine relevante Alternative zur bisherigen deutschen Praxis ohne systematisches Screening sein könnten. Die vorzufindenden Daten zu den Folgen verspäteter Diagnose und Therapie in Bezug auf die Sprachentwicklung, aber auch mit Blick auf das Bildungssystem und auf den Arbeitsmarkt sollen dargestellt werden. Testqualitäten verwendeter Screeningverfahren zur Messung evozierter otoakustischer Emissionen (EOAE) und der Hirnstammapidiometrie werden untersucht. Es wird ein Vergleich der medizinischen Effektivität eines UNHS mit einem Screening nur von Risikokindern und der Abwesenheit eines systematischen Screenings durchgeführt. Auf die Folgen falsch-positiver (FP) Befunde wird eingegangen.

Zentrales Anliegen der ökonomischen Evaluation und der systematischen Entscheidungsanalyse ist es, die Kosten- effektivität eines UNHS und eines Hörscreenings von Neugeborenen mit Risikofaktoren (RF) mit der bisherigen Praxis ohne systematisches Screening zu vergleichen. In die Bewertung einbezogene Zielgrößen sind: Kosten pro gescreentem Kind, Kosten bei früh und spät entdeckten Kindern bis zur Hörgeräteanpassung, Bildungskosten und indirekte Kosten durch die HST verursachten Produktivitätsverlust. Kosten und Effekte werden in Form von Kosteneffektivitätsrelationen (IKER) in Beziehung gesetzt.

3. Medizinische Bewertung

3.1 Methodik

Es wird eine systematische Übersichtsarbeit erstellt, die auf einer Literaturrecherche in 18 elektronischen Datenbanken und dem Durchsuchen von Internetseiten zum Thema basiert. Der Zeitraum der Literaturrecherche geht von 2001 bis März 2005. Die Literatursuche der Studien, die in die Literatursynthese eingeschlossen werden sollen, erfolgt unabhängig durch zwei Reviewer unter Verwendung von vorab definierten Ein- und Ausschlusskriterien, die Studienpopulation, Art der Intervention, Vergleichstechnologie, Zielgrößen und Studientypen spezifizieren. Die Studienqualität wird durch Checklisten, die von der German Scientific Working Group Technology Assessment for Health Care und den Autoren entwickelt wurden, bewertet. Die Daten der eingeschlossenen Studien werden in Übersichtstabellen extrahiert und zusammengefasst.

3.2 Ergebnisse

Die Literaturrecherche ergab 1950 Treffer. Nach Anwendung der Ein- und Ausschlusskriterien werden 35 Publikationen in die Literatursynthese zur medizinischen Effektivität eingeschlossen; zehn Publikationen zur Epidemiologie von HST, zwei zu Vorteilen einer frühen Intervention, zwei zur Sensitivität und Spezifität von Screeninggeräten, zwei zum Screeninggerätevergleich unter Alltagsbedingungen, 15 Publikationen zu Neugeborenenhörscreeningprogrammen (NHS-Programmen) und vier Veröffentlichungen zur Haltung von Eltern gegenüber dem NHS oder zu Konsequenzen falscher Screeningergebnisse.

Alter bei Erstdiagnose und -versorgung ohne NHS

Das mediane Alter bei Erstdiagnose varierte zwischen 18 und 30 Monaten (sieben Studien). Das mediane Alter bei Hörgeräteanpassung varierte zwischen 22 und 34 Monaten (vier Studien). Nur zwei deutsche Studien wurden identifiziert, eine mit schlechter Studienqualität und eine zweite mit zu kurzem „Follow Up“, um alle Fälle von HST identifizieren zu können.

Alter bei Erstdiagnose und -versorgung mit UNHS

Siehe „Die Effektivität von NHS-Programmen“.

Vorteile einer frühen Intervention

Seit dem vorherigen HTA-Bericht konnten keine neuen Studien identifiziert werden, die die Sprachentwicklung oder andere Ergebnisparameter wie Schulplatzierung oder Lebensqualität von früh- und spätidentifizierten Kindern prospektiv vergleichend untersucht haben. Es wurden nur zwei Publikationen identifiziert, die die Sprachentwicklung bzw. Lebensqualität einer Geburtskohorte von sieben- bis achtjährigen Kindern mit HST untersuchten und mittels Regressionsanalyse den Einfluss des Erstdiagnosealters, das bei durchschnittlich 21,6 Monaten lag, auf die Sprachentwicklung bzw. Lebensqualität analysierten. Es konnte kein Einfluss des Erstdiagnosealters festgestellt werden. Jedoch war der Anteil der bis zum sechsten Lebensmonat diagnostizierter Kinder sehr gering. Die Sprachentwicklung der Kinder lag ca. 25% unter den Werten, die anhand der non-verbalen Intelligenztestung zu erwarten gewesen wäre und die Lebensqualität dieser Kinder lag in der Domäne der psychosozialen Funktion statistisch signifikant niedriger, als bei einer Vergleichsgruppe hörgesunder Kinder.

Testensitivität und Spezifität von OAE- und BERA-Screeninggeräten

Die berechnete Sensitivität von vier der eingesetzten Techniken wird zu 100% errechnet. (Echoscreen/S-TOAE, GSI60/D-DPOAE, Blitzbera/AABR und Eroscan im S-DPOAE-Modus) bzw. im S-TOAE-Modus des Eroscans mit 99,4%. Die berechnete Spezifität schwankt für die drei untersuchten Geräte (Echoscreen/S-TOAE, GSI60/D-DPOAE und Blitzbera/AABR) zwischen 82,4% und 92,3%.
Die Effektivität von NHS-Programmen

Die Erfassungsrate der eingeschlossenen NHS-Studien liegt zwischen 65% und 100%, der Median der 13 Studien bei 94,2%. Für regionale UNHS in Deutschland varierte die Erfassungsrate zwischen 87,4% und 95,3% (drei Studien). Der Anteil Testauffälliger nach der ersten Screeningstufe bezogen auf die Anzahl aller gescreenten Neugeborenen beträgt für bi- und unilaterale Auffälligkeiten im Median 4,3% und variiert zwischen 2,5% und 20%. Betrachtet man nur bilaterale Auffälligkeiten, so liegt der Median bei 2,3% und die Spannweite zwischen 0,5% und 10,6% (neun Studien). Der Median des Anteils bilateral Testauffälliger nach der letzten Screeningstufe lag bei 1,5% (Spannweite: 0,08% bis 9%). Der Anteil falsch-positiver Testergebnisse nach der ersten Screeningstufe in Bezug auf alle gescreenten Neugeborenen variierte von 0,13% bis 9,3% mit einem Median von 2,4% (neun Studien). Der Median des Anteils der falsch-positiven Testergebnisse nach der letzten Screeningstufe in Bezug auf alle Neugeborenen mit diagnostischer Abklärung betrug 72,7% (Spannweite: 0% bis 93,9%, neun Studien). In nur zwei Studien wurden alle identifizierten HST in der Gesamtregion erfasst, um sie mit der Anzahl der durch UNHS identifizierten Kinder zu vergleichen. Der Anteil falsch-negativer Testergebnisse betrug 8,4% bzw. 5,5%. Bis zur letzten Screeningstufe wurden 0,3% bis 2% der Testauffälligen (Median: 0,72%, neun Studien) bezogen auf alle gescreenten Neugeborenen nicht zur jeweils nächsten Screeningstufe vorgestellt. Die Spannweite des Anteils der Neugeborenen, die keine Abklärungsdiagnostik erhalten hatten, nachdem sie die letzte Stufe des Screenings absolviert hatten, lag zwischen 0% und 23,8% (Median 0%, zehn Studien). Das durchschnittliche Alter der bei Erstdiagnose wurde auf etwa drei Monate vorverlegt (Spannweite der Mittelwerte 1,2 bis 4,3 Monate). Der Anteil der Kinder mit bilateralen HST, die mit Hörgeräten oder Operationen versorgt worden waren, variierte von 77,8 % bis 100% (Median 98,4%, sechs Studien). Das durchschnittliche Alter bei therapeutischer Erstversorgung wurde in den UNHS-Programmen, die diese Zielgröße berichteten, auf etwa sechs Monate vorverlegt.

Konsequenzen von falschen Testergebnissen für Kinder und Eltern

Vier Studien berichteten über die Haltung von Eltern zum NHS. Die Eltern in diesen Studien hatten verschiedene Vorerfahrungen: Mütter ohne persönliche Erfahrung, Mütter von gescreenten Säuglingen, denen das Testergebnis aber noch unbekannt war, Mütter von Säuglingen, die an einem Rescreening teilnahmen, weil ihre Kinder im ersten Screeningstest auffällig gewesen waren, Eltern von Kindern mit diagnostizierter HST. Die Mehrheit der Mütter und Eltern war nach einem auffälligen Testergebnis nicht ernsthaft beunruhigt.

4. Ökonomische Bewertung

4.1 Methodik

Literatursuche und -selektion der Studien, die in die systematische Übersichtsarbeit zur Kosteneffektivität eingeschlossen wurden, war analog zur Methodik im medizinischen Teil durchgeführt worden. Kosten, Kostenkomponenten und IKER werden in Übersichtstabellen zusammengefasst. Für Währungskonversionen in EURO des Jahres 2004 werden Kaufkraftparitäten der Weltgesundheitsorganisation (WHO), zur Inflationsanpassung wird der allgemeine Verbraucherpreisindex (VPI) des statistischen Bundesamts verwendet.

4.2 Ergebnisse

Es wurden fünf Studien in die systematische Übersichtsarbeit zur Kosteneffektivität eingeschlossen, drei Kostenanalysen und zwei Kosteneffektivitätsanalysen. Mit Ausnahme einer Studie mit lebenslangem Zeithorizont hatten die Studien lediglich einen kurzfristigen Zeithorizont bis zur Abklärungsdiagnostik der HST. Die Studien waren außerdem heterogen hinsichtlich Fallzahl, Screeningtechnologien und eingeschlossenen Kostenkomponenten. Die durchschnittlichen Kosten pro gescreentem Kind variierten von 14,30 EURO bis 49,37 EURO (Bezugsjahr 2004, vier Studien). Die durchschnittlichen Kosten pro identifiziertem Fall einer HST in der Normalstation einer Geburtsklinik betrug 25,311 EURO bzw. 43,837 EURO (zwei Studien) und 1237 EURO für Hochrisikokinder in einem UNHS sowie 10,151 EURO in einem Risikoscreeningprogramm (zwei Studien). In UNHS-Programmen variierten die durchschnittlichen Kosten für die Gesamtpopulation (WBN und Risikokinder) zwischen 4888 EURO und 33,613 EURO pro Fall (drei Studien). Die IKER von Risikoscreening gegenüber dem Verzicht auf Screening und von UNHS versus Risikoscreening betrug 16.648 EURO bzw. 44,971 EURO pro zusätzlich frühzeitig (bis zum sechsten Lebensmonat) entdecktem Kind.

5. Systematische Entscheidungsanalyse

Das kurzfristige Submodell des im vorherigen HTA-Bericht entwickelten zweiteiligen Markov-Modells wurde anhand der neuen Daten der vorliegenden systematischen Übersichtsarbeit aktualisiert. Dieses Teilmodell umfasst den Zeithorizont bis zur diagnostischen Abklärung. Das Submodell mit langfristigem Zeithorizont konnte nicht aktualisiert werden, da keine neuen Daten zu langfristigen Effekt- und Kostendaten verfügbar waren.

5.1 Diagnosemodell

Da Screening auf eine frühe Entdeckung von HST abzielt, ist die primäre Zielgröße des Diagnosesubmodells die Anzahl der entdeckten Kindermonate nach sechs, zwölf und 120 Monaten und die Anzahl der bis zum sechsten Monat entdeckten Kinder. Für das Diagnosemodell wird
die Kosteneffektivität als Kosten pro zusätzlich bis zum sechsten Monat entdecktem Kind ausgedrückt. Die primäre Zielgröße der Kosteneffektivität im langfristigen Bildungsmodell ist eingesparte Bildungskosten pro zusätzlich entdecktem Kind. Der Zeithorizont für das Diagnosemodell war 120 Monate.

5.2 Ergebnisse

Die Modellparameter für das Diagnosemodell wurden der veröffentlichten Literatur entnommen. Unter der Annahme einer Prävalenz von kongenitalen HST von 0,15%, wurden mit UNHS 75% der Kinder, mit Risikoscreening 49% und ohne systematischem Screening 24% bis zum sechsten Monat entdeckt. UNHS liefert 72% aller möglichen Kindermonate nach sechs und 77% nach zwölf Monaten. Risikoscreening lieferte 43% und der Verzicht auf ein systematisches Screening nur 23% nach sechs Monaten. Die Sensitivitätsanalyse zeigte, dass die Ergebnisse stark von der angenommenen Prävalenz der HST abhängen. Die Kosten für die Entdeckung variieren beträchtlich zwischen den Strategien. Auf Basis der Entscheidungsanalyse betragen die Gesamtkosten für 100.000 Neugeborene bis zum sechsten Monat bei einem UNHS 1,52 Mio. EURO, bei einem Risikoscreening 0,21 Mio. und bei einem Verzicht auf ein systematisches Screening 13,370 EURO. Die Kosten pro entdecktem Kind betragen 10.306 EURO für UNHS, 2592 EURO für Risikoscreening und 1402 EURO ohne Screening. Die Kosten für die Entdeckung sind stark von den Kosten und der Sensitivität der Screeningtests, der Wahrscheinlichkeit für einen falschen Verdacht einer HST unter hörgesunden Kindern und der Erfassungsrate des Screeningprogramms abhängig. Der Nachweis, dass eine normale Sprachentwicklung durch frühe Intervention prinzipiell überhaupt möglich ist, auch wenn der Einfluss des Diagnosealters über- oder unterschätzt würde, ist bereits in den Studien zu diesem Thema im Vorgänger-HTA-Bericht erbracht worden.

6. Zusammenfassende Diskussion

Ist die kongenitale permanente HST für ein Screening geeignet? Anhand der neu identifizierten Studien werden die Ergebnisse des Vorgänger-HTA-Berichts zur Epidemiologie von HST bestätigt: Kongenitale HST sind mit ca. 1 pro 1000 bei Neugeborenen eine der häufigsten angeborenen Erkrankungen. Ohne Screeningmaßnahmen liegt das Erstdiagnosealter immer noch im zweiten Lebensjahr. Die mit einem Anteil von ca. 50% häufigsten mittelgradigen HST werden im dritten Lebensjahr entdeckt. Zur Frage, ob eine frühe Intervention eine normale sprachliche und psychosoziale Entwicklung fördern kann, konnte die Evidenzlage nicht verbessert werden. Der geforderte Wirksamkeitsnachweis von randomisierten Studien für die Vorteile einer frühen Intervention kann aus ethischen Gründen nicht erbracht werden und prospektive Beobachtungsstudien mit dem entsprechend langfristigen Zeithorizont bei seltenen Erkrankungen sind aufwändig sowie langwierig. Gleichzeitig erscheint ein wesentlicher Vorteil für die Sprachentwicklung durch frühe Intervention entscheidend der Theorie der Sprachentwicklung wahrscheinlich.

Gibt es geeignete Screeningtests?

Es ist nur eingeschränkte Evidenz zur Sensitivität und Spezifität von automatisierten Screeninggeräten verfügbar. Die zwei identifizierten Diagnosestudien zeigten beträchtliche Limitationen in der Studienqualität. Zudem kann die Programmsensitivität nur gemessen werden, wenn alle Fälle von kongenitalen HST in der Screeningregion erfasst werden. Hier wurde nur eine Studie mit einem genügend langen „Follow Up“ gefunden. Neben der Testgüte tragen auch Erfassungsraten und „Follow Up“-Raten zur Programmsensitivität bei und ein negativer Screeningtest bei einem spät identifizierten Fall von HST muss nicht notwendigerweise einen falsch-negativen Screeningtest bedeuten, da auch spät einsetzende HST auftreten können. Nach der bisherigen Erfahrung mit großen NHS-Programmen erscheinen Sensitivität und Spezifität ausreichend hoch, mit den oben diskutierten Einschränkungen der Evidenz zur Sensitivität.

Senken NHS-Programme das Erstdiagnose- und -versorgungsalter (Hörgeräteanpassung, Cochlea-Implantat (CI))?

Im Unterschied zum vorherigen HTA-Bericht konnten im vorliegenden Bericht auch fünf Publikationen zu NHS-Programmen in Deutschland identifiziert werden. Hier werden hohe Erfassungsraten, niedrige Anteile Testauffälliger und – falls Trackingsysteme implementiert wurden – hohe „Follow Up“-Raten für testauffällige Kinder berichtet. Jedoch berichten zwei der deutschen Studien über das Alter bei Erstdiagnose und Hörgeräteversorgung. Das Ziel die Behandlung bis zum Alter von sechs Monaten zu beginnen wurde erreicht. Die Machbarkeitsstudie in Hannover hat gezeigt, dass die Anteile testauffälliger Kinder stark vom Versorgungskontext abhängig sind. Screeningtests in Arztpraxen bei durchschnittlich älteren Säuglingen weisen signifikant höhere Anteile Testauffälliger und – falls Trackingsysteme implementiert wurden – hohe „Follow Up“-Raten für testauffällige Kinder berichtet. Jedoch berichten zwei der deutschen Studien über das Alter bei Erstdiagnose und Hörgeräteversorgung. Das Ziel die Behandlung bis zum Alter von sechs Monaten zu beginnen wurde erreicht. Die Machbarkeitsstudie in Hannover hat gezeigt, dass die Anteile testauffälliger Kinder stark vom Versorgungskontext abhängig sind. Screeningtests in Arztpraxen bei durchschnittlich älteren Säuglingen weisen signifikant höhere Anteile Testauffälliger und – falls Trackingsysteme implementiert wurden – hohe „Follow Up“-Raten für testauffällige Kinder berichtet.

Negative Konsequenzen des Screenings

Permanente kongenitale HST sind eine seltene Erkrankung. Von 740.000 jährlich in Deutschland geborenen Kindern weisen 740 Säuglinge eine mindestens mittelgradige HST auf. Bei einem angenommenen Anteil von 2% testauffälliger Kinder, müssten 14.800 Kinder weiteren Maßnahmen unterzogen werden, von denen 14.060 Kinder keinen Nutzen hätten. Dementsprechend ist es...
von besonderer Wichtigkeit, dass die untersuchten hör-
gesunden Kinder keinen Schaden davontragen. Die
Messungen mit den automatisierten Screeningverfahren
selbst sind nicht invasiv und werden in der Regel im
Schlaf durchgeführt. Bei der Abklärungsdiagnostik mit
D-ABR ist zum Teil eine Sedierung der Kinder erforderlich
und grundsätzlich kann auch nicht vollständig ausgeschlossen werden, dass ein hörigesundes Kind mit einem
Hörgerät versorgt wird. Bisher, auf der Basis von einigen
100.000 gescreenten Neugeborenen in der publizierten
Literatur, wurde jedoch von keinen unerwünschten physischen Nebenwirkungen bei der Abklärungsdiagnostik
berichtet. Sorgen, dass auffällige Screeningergebnisse
die Eltern beunruhigen könnten und negative Auswirkun-
gen auf den Bindungsprozess zwischen Eltern und Kindern haben könnten, wurden nicht bestätigt. Die Mehrheit
der Eltern in zwei Studien zeigte sich nicht in größtem Ausmaß durch auffällige Testergebnisse beunruhigt. Qualitative Befragungen zeichneten hier ein detaillierteres Bild über die unterschiedliche Wahrnehmung eines unsi-
cheren Testergebnisses und des Screeningprozesses.
Wegen der geringen Anzahl der Interviews und einer möglichen Selektion der Teilnehmer aufgrund geringer Teilnahmeraten steht die Repräsentativität dieser Interviews jedoch in Frage. Auf der anderen Seite ist zu berück-
sichtigten, dass ein Großteil der von einer HST betroffenen Kinder durch das Hörscreening mit der dann frühen Dia-
gnose einer HST und einer frühen Hörgeräteversorgung
grundsätzlich die Chance auf eine normale Sprachent-
wicklung und eine altersgemäße psychosoziale Entwick-
lung erhalten und die Folgen lebenslanger Behinderungen
vermieden werden können. Letztlich entscheiden hier
auch ethische Maßstäbe, welches Risiko und welches
Ausmaß an Unannehmlichkeiten für einen Gesunden
akzeptabel erscheinen, um die Lebenschancen von von
Krankheit oder Behinderung betroffenen Menschen zu
verbessern. In jedem Fall erscheint es angebracht durch
qualitätssichere Maßnahmen die Effektivität und die
Akzeptanz des Screenings zu optimieren.

Ist ein NHS-Programm wirtschaftlich?

Die Beurteilung der Wirtschaftlichkeit eines UNHS ist in
besonderem Maß von der Wahl der Perspektive und des
Zeithorizonts aus denen Kosten und Nutzen in die Berech-
nung einbezogen werden, abhängig. Aus der Perspektive
des Gesundheitssystems könnte durch ein Screening im
Wesentlichen nur die Effektseite verbessert werden, da
eine Einsparungen der Kosten für die Gesundheitsver-
sorgung eines früh entdeckten Falls von HST gegenüber
einem spät entdeckten Fall zu erwarten sind. Ein großer
positiver Effekt sowohl auf der Nutzen- als auch der
Kostenseite sind außer aus der Perspektive der betroffe-
nen Kinder vorwiegend auf Seiten des Bildungssystems
und volkswirtschaftlich hinsichtlich der Produktivität zu
erwarten. Gerade für die langfristige und gesamtsell-
geschichtliche Perspektive hat sich die Datenlage gegenüber
dem letzten Bericht nicht verbessert. Für den kurzfristigen
Zeithorizont hingegen liegen durch die ökonomische
Evaluation zum Hannoveraner Modellprojekt auch für Deutschland valide Daten zumindest zur Frage der
durchschnittlichen Screening- und zu den Durchschnitts-
kosten pro entdecker HST vor. Eine inkrementelle Kos-
teneffektivitätsanalyse, die die zusätzlich anfallenden
Kosten pro zusätzlich rechtzeitig entdeckter HST gegen-
über der Situation ohne Screening oder gegenüber einem
Risikoscreening verglichen, wurde allerdings nicht durch-
geführt. Vielmehr wurde eine inkrementelle Analyse für
die Einbettung in verschiedene Versorgungssettings ge-
genüber dem Ausgangsmodell aus dem Modellprojekt
untersucht. Die niedrigsten Durchschnittskosten des
Screenings (16,57 EURO) und pro entdecktem Fall
(15,961 EURO) wurden von Modell 1 berichtet, in dem
alle Neugeborenen auf der Normalstation der Geburtskli-
niken und im Kinderkrankenhaus mit einem zweistufigen
TEOAES-Screeningprogramm gescreent wurden und nur
Neugeborene, die durch das Screening nicht erfasst und
ambulante Geburten wurden in zertifizierten HNO-Praxen
screent. Die höchsten Kosten wurden für Modell 2
berechnet (34,67 EURO pro gescreentem Säugling,
33,613 EURO pro entdecktem Fall), wo nur Säuglinge in
der Kinderklinik dort gescreent wurden und alle anderen
Neugeborenen bei der Vorsorgeuntersuchung U3 zwi-
sehen der vierten und sechsten Woche in Kinderarztpra-
 xen. In Modell 3 werden alle Normalstationen der Geburts-
kliniken und in den Kinderkliniken in der Klinik gescreent
und nur Kinder, die im Screening nicht erfasst wurden,
werden bei der U3 in Kinderarztpraxen gescreent.
Durchschnittskosten von 23,02 EURO pro gescreentem
Säugling und 22,417 EURO pro entdecktem Fall wurden
hierfür berechnet. Der Vergleich der inkrementellen
Kosten zwischen den verschiedenen Settings ergibt, dass ein
zusätzlich durch Modell 3 gegenüber Modell 1 ent-
derfall zusätzliche Kosten von 139.568 EURO erfor-
dert. Leider erlauben die eingeschränkten Angaben in
den zur Verfügung stehenden publizierten gesundheits-
ökonomischen Studien zu anderen Screeningverfahren
bei Neugeborenen keinen direkten Vergleich von IKER
des kurzfristigen Zeithorizonts bis zur Abklärungsdiagno-
stik. Nur die IKER liefert die eigentlich interessierende
Information, was ein durch die Screeningtechnologie zu-
sätzlich identifizierter Fall kostet. Es wurden jedoch nur
die Durchschnittskosten berichtet. Die durchschnittlichen
Kosten pro entdecktem Fall liegen im Bereich anderer
bereits implementierter Neugeborenscreeningprogram-
me in europäischen Ländern.

7. Schlussfolgerungen/Empfehlungen

Es ist davon auszugehen, dass das Erstdiagnosealter für
konatale HST in Deutschland in Regionen ohne Hörs-
creening nach wie vor in der zweiten Hälfte des zweiten
Lebensjahrs liegt. Ohne gezielte Maßnahmen ist kaum
mit spontanen Verbesserungen zu rechnen. Nach der
Auswertung der medizinischen und der ökonomischen
Evidenz zeigt sich, dass ein UNHS einen früheren Thera-
piebeginn begünstigt. Trotz der Forschungsdefizite und
Datenmängel gerade zur Frage der Effektivität eines frü-
hen Therapiebeginns ist es wahrscheinlich, dass durch die Früherkennung von HST die Sprachentwicklung begünstigt wird sowie die Chancen für eine normale schulische und berufliche Entwicklung verbessert werden. Aus einer langfristigen gesellschaftlichen Perspektive ist anzunehmen, dass ein universelles Hörscreening die kostengünstigste Variante und ein Risikoscreening immer noch insgesamt kostengünstiger als der Status quo ist. Die Datenlage hierzu ist unsicher. Jedoch auch bei kurzfristiger Betrachtung der Kosteneffektivität bewegen sich die für ein UNHS aufzuwendenden Kosten im Verhältnis zum Effekt im Rahmen der Kosten für andere Neugeborenencreeningprogramme. Unter Berücksichtigung der medizinischen, der ökonomischen und der entscheidungsanalytischen Evaluation empfehlen daher die Autoren, ein UNHS in Deutschland als Leistung der GKV einzuführen. Um hohe Erfassungsraten zu erzielen und wegen der besseren Bedingungen niedrige Anteile falsch-positiver Testergebnisse zu erreichen, sollte das UNHS in der Klinik nach der Geburt erfolgen. Für den Fall ambulanter Geburten müssen zusätzliche Maßnahmen im ambulanten Versorgungsbereich eingerichtet werden. In den durchführenden Einrichtungen sind Maßnahmen der Qualitätsicherung zu betreiben, für die durch die zuständigen Institutionen der Selbstverwaltung Rahmenbedingungen zu setzen sind. Beim Screening auffällige Säuglinge müssen verlässlich zur pädaudiologischen Abklärung überwiesen werden.

Literatur

1. Kunze S, Schnell-Inderst P, Hessel F, Grill E, Nickisch A, Siebert U, von Voss H, Wasem J. Hörscreening für Neugeborene. Ein Health Technology Assessment der medizinischen Effektivität und der ökonomischen Effizienz. Niebüll. 2004.

Korrespondenzadresse:
Dr. rer. medic Petra Schnell-Inderst
Lehrstuhl für Medizinmanagement, Universität Duisburg-Essen, Fachbereich Wirtschaftswissenschaften, Schützenbahn 70, 45117 Essen, Tel. 089-21031939
inderst@lrz.uni-muenchen.de

Bitte zitieren als
Schnell-Inderst P, Kunze S, Hessel F, Grill E, Siebert U, Nickisch A, von Voß H, Wasem J. Hörscreening für Neugeborene - Update. GMS Health Technol Assess. 2006;2:Doc20.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/hta/2006-2/hta000033.shtml

Veröffentlich: 27.11.2006

Der vollständige HTA-Bericht in deutscher Sprache steht zum kostenlosen Download zur Verfügung unter:
http://portal.dimdi.de/de/hta/hta_berichte/hta137_bericht_de.pdf

Copyright
©2006 Schnell-Inderst et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.