Supplemental Information

A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis

Karoline Kollmann, Gerwin Heller, Christine Schneckenleithner, Wolfgang Warsch, Ruth Scheicher, Rene G. Ott, Markus Schäfer, Sabine Fajmann, Michaela Schlederer, Ana-Iris Schiefer, Ursula Reichart, Matthias Mayerhofer, Christoph Hoeller, Sabine Zöchbauer-Müller, Donscho Kerjaschki, Christoph Bock, Lukas Kenner, Gerald Hoefler, Michael Freissmuth, Anthony R. Green, Richard Moriggl, Meinrad Busslinger, Marcos Malumbres, and Veronika Sexl

Inventory of Supplemental Information

- SUPPLEMENTAL DATA
 - Figure S1, related to Figure 1.
 - Figure S2, related to Figure 2.
 - Figure S3, related to Figure 3.
 - Figure S4, related to Figure 4.
 - Figure S5, related to Figure 5.
 - Figure S6, related to Figure 6.
 - Figure S7, related to Figure 7.

- SUPPLEMENTAL EXPERIMENTAL PROCEDURES

- SUPPLEMENTAL REFERENCES
SUPPLEMENTAL DATA

Figure S1, related to Figure 1. Enforced CDK6 expression decreases proliferation.
A) Cell cycle profiles of Cdk6+/+ and Cdk6+/+ + Cdk6 cells were determined by FACS (n = 3).
B) Facs-histogram overlay shows a CFSE staining to analyze proliferation of Cdk6+/+ and Cdk6+/+ + Cdk6 cells before and after 20 h. C) Proliferation assay of Cdk6+/+ and Cdk6+/+ + Cdk6 cells via CFSE dilution staining over a period of 20 h. Mean fluorescence intensity (MFI) was analyzed after 20 h (n = 3; p = 0.001 [**])
D) Immunoblot for CDK6 of Cdk6–/– cells expressing a doxycycline inducible tet-on Cdk6 vector (Cdk6–/–+tet-on Cdk6). 1 lane: Cdk6–/–+tet-on Cdk6 cells; 2-5 lane: Cdk6–/–+tet-on Cdk6 cells 48 h after treatment with doxycycline (0.1, 0.3, 1, 3 µM).
E, F) Apoptosis stain of Cdk6–/–+tet-on Cdk6 cells 24-72h after 3µM doxycycline (DOX) treatment. Propidium iodide (PI)- annexin V+ cells, early apoptosis; PI+-annexin V+ cells,
middle apoptosis; PI–annexinV– cells, late apoptosis. (E) Percentages of each apoptotic stage are in corner of each blot. (F) Bar graphs represent the indicated stages of apoptosis. (G) Cytoplasmic and nuclear fractionation was performed of Cdk6+/+ and Cdk6+/+ Cdk6 cells. Immunoblot for CDK6, CDK4, α-Tubulin (as cytoplasmic control) and LaminB (as nuclear control) is shown of the different fractions. Error bars indicate the mean ± SEM.
Figure S2, related to Figure 2. CDK6 regulates p16INK4a expression.

A) Immunoblot for CDK6, CDK4, p15INK4b, p18INK4c, p19INK4d and p19ARF of Cdk6+/+ and Cdk6+/+ + Cdk6 cells.

B) Immunoblot for CDK6, p21CIP1, p27KIP1 of Cdk6+/+ and Cdk6+/+ + Cdk6 cells as well as a positive control (etoposide treated p185BCR-ABL-transformed cells as pos. cntrl. for p21CIP1; murine myeloid leukemic cells as pos. cntrl. for p27KIP1).

C) Immunoblot for CDK6, p16INK4a and 19ARF of MEFs infected with either a pMSCV-puro (Cdk6+/+) or a pMSCV-Cdk6-puro (Cdk6+/+ + Cdk6) based retrovirus.

D) Immunoblot for p16INK4a of Cdk6+/+ and Cdk6+/+ + Cdk6 cells after treatment with cycloheximide (an inhibitor of protein biosynthesis), bortezomib (a proteasome inhibitor) or a combination of both for four hours.

E) Immunoblot for CDK4, HA and p16INK4a in p185BCR-ABL-transformed wild type cells infected with either a pMSCV-puro (Cdk4+/+) or a pMSCV-Cdk4HA-puro (Cdk4+/+ + Cdk4) based retrovirus.

F) Cdk4+/+ and Cdk4+/+ + Cdk4 cells were injected subcutaneously into Nu/Nu mice. Tumour weight was measured after eight days (n = 2 cell lines/genotype; n = 3 mice/genotype; p = 0.94).
G) \(p16^{\text{INK4a}} \) mRNA levels of \(Cdk4^{+/+} \) and \(Cdk4^{+/+}+Cdk4 \) cells were analysed by qPCR (\(n = 2 \)).

H) Immunohistochesmical stainings for the proliferation marker Ki-67 of \(Cdk4^{+/+} \) and \(Cdk4^{+/+}+Cdk4 \) cells. Original magnification 20x. A representative set of pictures is given.

I) \(p16^{\text{INK4a}} \) pre-mRNA levels of \(Cdk6^{+/+} \) and \(Cdk6^{+/+}+Cdk6 \) as well as \(Cdk6^{-/-} \) and \(Cdk6^{-/-}+Cdk6 \) were analyzed (\(n = 5, p = 0.048 [*] \)). The increased pre-mRNA levels in cells enforced expressing CDK6 do not support an altered mRNA stability in these cells.

J) Immunoblot for CDK6 and \(p16^{\text{INK4a}} \) of \(Cdk6^{+/-}, Cdk6^{+/-}+Cdk6 \) and \(Cdk6^{+/-}+Cdk6K43M \) cells.

K) \(p16^{\text{INK4a}} \) mRNA levels of \(Cdk6^{+/+}, Cdk6^{+/+}+Cdk6 \) and \(Cdk6^{-/-}+Cdk6R31C \) and \(Cdk6^{-/-}+Cdk6K43M \) cells were analysed by qPCR (\(n \geq 4; Cdk6^{-/-}+Cdk6, p = 0.036 [*]; Cdk6^{-/-}+Cdk6R31C, p = 0.02 [*]; Cdk6^{-/-}+Cdk6K43M, p = 0.04 [*]).

L) \(^3\text{H}\)-thymidine incorporation of \(Cdk6^{+/+}, Cdk6^{+/+}+Cdk6 \) and \(Cdk6^{-/-}+Cdk6K43M \) cells was measured (\(n \geq 3; Cdk6^{-/-} vs.: Cdk6^{+/+}: p < 0.0001 [***]; Cdk6^{-/-}+Cdk6: p = 0.008 [**]; Cdk6^{-/-}+Cdk6R31C: p = 0.005 [**]; Cdk6^{-/-}+Cdk6K43M, p = 0.04 [*]).

M) \(p16^{\text{INK4a}} \) mRNA levels of \(Cdk6^{+/+}, Cdk6^{+/+}+Cdk6R31C \) and \(Cdk6^{+/+}+Cdk6K43M \) cells were analysed by qPCR (\(n \geq 3; Cdk6^{+/+}+Cdk6R31C, p < 0.0001 [***]; Cdk6^{+/+}+Cdk6K43M, p = 0.025 [*]).

N) \(^3\text{H}\)-thymidine incorporation of \(Cdk6^{+/+}, Cdk6^{+/+}+Cdk6R31C \) and \(Cdk6^{+/+}+Cdk6K43M \) cells (\(n \geq 3; Cdk6^{+/+} vs.: Cdk6^{+/+}+Cdk6R31C, p = 0.002 [**]; Cdk6^{+/+}+Cdk6K43M, p = 0.006 [**]).

O) Immunoblot for CDK6 and \(p16^{\text{INK4a}} \) of \(Cdk6^{+/-}, Cdk6^{+/-}+Cdk6 \) and \(Cdk6^{+/-}+Cdk6R31C \) cells.

P) Immunoblot for CDK6 and \(p16^{\text{INK4a}} \) of \(Cdk6^{+/-} \) and \(Cdk6^{+/-}+Cdk6R31C \) cells. Error bars indicate the mean ± SEM.
Figure S3, related to Figure 3. CDK6 and p16INK4a expression in human lymphomas.

A, B) The immunohistochemical sections of (A) 17 NPM-ALK positive lymphomas and (B) 11 NPM-ALK negative lymphomas were quantified by the HistoQuestTM software. Scattergrams show the percentage of cells positive for CDK6 or p16INK4a of all samples (MI = Mean Intensity).

C) Double immunofluorescence stainings on 8 human ALCL whole tissue sections were performed for co-localization studies; stainings illustrated an inverse relation between CDK6 (green) and p16INK4a (red), with tumour cells being either positive for CDK6 or p16INK4a. Original magnification 20x. Representative cases are depicted.

Figure S4, related to Figures 4. CDK6 expression in murine and human cell lines.

A-D) Immunoblot for CDK6 of (A) murine Cdk6+/+ and Cdk6+/-+Cdk6 p18\textsubscript{5BCR-ABL}-transformed cells as well as human B-lymphoid leukemic cell lines (RL-7, REH, Ramos), (B) murine Cdk6+/-+Cdk6 p18\textsubscript{5BCR-ABL}-transformed cells as well as human B-lymphoid leukemic cell lines (JVM2, SUP-B15, Granta 519, DOHH2, SD1, REC1, RAJI), (C) murine Cdk6+/+ NPM-ALK-transformed cells as well as human T-lymphoid leukemic cell lines (Mac2a, HPB-ALL, Sudhl1, CCRF) and (D) murine Cdk6+/- NPM-ALK-transformed cells as well as human T-lymphoid leukemic cell lines (Jurkat, PEER, MOLT13, HSB2).
Figure S5, related to Figure 5. CDK6 regulates blood vessel formation.

A) The expression of CD31 was analysed of 13 human ALCL whole tissue sections by immunohistochemistry. Original magnification 200x. A high CDK6 expressing case (left panel, patient #3, NPM-ALK+) and a low CDK6 expressing case (right panel, patient #8, NPM-ALK-) are depicted.

B) Statistical analysis of vessel density of CD31 immunohistochemical stainings of 14 human ALCL whole tissue sections (two of them depicted in panel A). Two independent observers noticed a higher vessel density in human ALCL with high CDK6 expression compared to human ALCL with low or lacking CDK6 levels. CD31 stained lumen were counted within a hotspot in an area of 0.25 mm² at a magnification of 200x. Counting results confirmed the increase in vessels in T-cell lymphoma cases with high CDK6 expression.

C) The expression of CD31 and CDK6 was analysed of 33 human DLBCL whole tissue sections by immunohistochemistry. Original magnification 40x. A high CDK6 expressing
case (left panel, patient #9) and a low CDK6 expressing case (right panel, patient #10) are depicted.

D) Statistical analysis of vessel density of CD31 immunohistochemical stainings of 33 human DBLCL whole tissue sections (two of them depicted in panel C). Two independent observers noticed a higher vessel density in human DBLCL with high CDK6 expression compared to human DBLCL with low or lacking CDK6 levels. CD31 stained lumen were counted within a hotspot in an area of 0.25 mm² at a magnification of 200x. Counting results confirmed the increase in vessels in B-cell lymphoma cases with high CDK6 expression (n = 7/rel. CDK6 level 0; n = 15/rel. CDK6 level 1; n = 11/rel. CDK6 level 2; rel. CDK6 level 0 vs. rel. CDK6 level 2: p = 0.01 [*]).

E) Kaplan Meier blot of Nu/Nu mice subcutaneously injected with Cdk6^+/+ and Cdk6^-/- NPM-ALK-transformed cells (n = 2 cell lines/ genotype; n = 6 mice/genotype; mean survival: 9 (Cdk6^+/+) and 16 (Cdk6^-/-); p = 0.003 [**]).

F) Immunohistochemical staining for CD31 (red) was performed in Cdk6^+/+ and Cdk6^-/- NPM-ALK^+ subcutaneous tumours to analyze blood vessel formation. Original magnification 20x. Representative cases of each genotype are depicted. Error bars indicate the mean ± SEM.
Figure S6, related to Figure 6. CDK6 regulates VEGF-A

A) Vegf-A pre-mRNA levels of Cdk6+/+ and Cdk6+/+ + Cdk6 as well as of Cdk6−/− and Cdk6−/− + Cdk6 were analyzed (n = 5, p = 0.035 [*]). The increased pre-mRNA levels in cells enforced expressing CDK6 do not support an altered mRNA stability in these cells.

B) In vitro VEGF-A protein (pg/mL) levels in the supernatant of Cdk6−/− and Cdk6−/− + Cdk6 as well as of Cdk6+/+ and Cdk6+/+ + Cdk6 cells were analyzed by ELISA (n = 3; Cdk6−/− vs. Cdk6+/+ + Cdk6: p = 0.05 [*]).

C) In vitro VEGF-A protein (pg/mL) levels in the supernatant of Cdk6+/+, Cdk6+/+ + Cdk6, Cdk6+/+ + Cdk6R31C and Cdk6+/+ + Cdk6K43M cells were analyzed by ELISA (n = 3).

D) Vegf-A mRNA levels of Cdk6+/+ and Cdk6+/+ + Cdk6, Cdk6+/+ + Cdk6R31C and Cdk6+/+ + Cdk6K43M cells analysed by qPCR. The fold change compared to Cdk6+/+ Vegf-A mRNA level is shown (n ≥ 3; Cdk6+/+ vs.: Cdk6+/+ + Cdk6: p = 0.02 [*]; Cdk6+/+ + Cdk6R31C: p = 0.06; Cdk6+/+ + Cdk6K43M: p = 0.04 [*]).

E) Vegf-A mRNA levels of Cdk6+/+ and Cdk6−/− NPM-ALK-transformed cells were quantified by qPCR (n = 3; p = 0.036 [*]).

F, G) Cdk4+/+ and Cdk4+/+ + Cdk4 p185BCR-ABL-transformed cells were injected subcutaneously into Nu/Nu mice (n = 2 cell lines/genotype; n ≥ 4 tumors/genotype). (F) Immunofluorescence staining for CD31 (red) was performed to analyze blood vessel formation in the tumours. Original magnification 20x. Representative cases of each genotype are depicted. (G) Quantitative assessment (HistoQuest™) of the blood vessels of the
subcutaneous tumours (n = 3).

H) *Vegf-A* mRNA levels of *Cdkt4*+/+ and *Cdkt4+/+Cdkt4 cells analysed by qPCR (n = 2).

I) ChIP assays were performed using *Cdkt6*+/+ *Cdkt6, Cdkt6*+/+, *Cdkt6*−/− and *Cdkt6*−/−+*Cdkt6K43M* cells. Protein-DNA complexes were immunoprecipitated using an anti-CDK6, anti-CDK4 or anti-PolII-antibody and analysed by PCR for the presence of p16INK4a or *Vegf-A* promoter sequence. One representative experiment out of three is depicted.

J) Promoter ChIP assays were performed using *Cdkt6*+/+, *Cdkt6*+/+*Cdkt6* and *Cdkt6*−/− cells. Protein-DNA complexes were immunoprecipitated using antibodies specific for the indicated histone modification. ChIP and input DNA were analysed by qPCR for the presence of a *Vegf-A* promoter sequence (region 1 in Supplementary Figure 11c). The relative enrichment of the histone modification was determined by dividing the percentage of precipitated DNA of the *Vegf-A* promoter region (ChIP/input) by the percentage of precipitated DNA at a positive control region (ChIP/input). A *Tbp* promoter region was used as positive control for H3K9ac, H3K4me2 and H3K4me3 and a *Neurog1* promoter region was used for H3K27me3. The mean ± S.E.M. of two independent experiments is shown.

K) H3K36me3 ChIP assays were performed using *Cdkt6*+/+ and *Cdkt6high* cells. Protein-DNA complexes were immunoprecipitated using an antibody specific for H3K36me3. ChIP DNA was analysed by qPCR for the presence of *Vegf-A* sequences depicted in the lower panel [black rectangles; middle of the amplicon relative to the TSS (arrow symbol marked +1) of *Vegf-A*: 1 -386 bp, 2 +693 bp, 3 +2710 bp, 4 +6461 bp, 5 +8621 bp]. The relative enrichment of the histone modification was determined by dividing the percentage of precipitated DNA of the given *Vegf-A* region (ChIP/input) by the percentage of precipitated DNA of a Gapdh gene region (ChIP/input). The mean ± S.E.M. of two independent experiments is shown.

L) Human *CDK6* and *VEGF-A* mRNA levels of several human B-cell lines (JVM2, SUP-B15, DOHH2, RAJI, Granta519, U931, SD1, REC1, Ramos RL-7) were analysed by qPCR. The correlation between *CDK6* and *VEGF-A* is depicted in a x,y blot.

M) Human *CDK6* and *VEGF-A* mRNA levels of several human T-cell lines (Molt13, HSB2, MKB1, PEER, LBL, HPB-ALL, CCRF, Mac2A, Jurkat, Karpas, Sudhll, Molt4) were analysed by qPCR. The correlation between *CDK6* and *VEGF-A* is depicted in a x,y blot.

N) Human *CDK4* and *VEGF-A* mRNA levels of several human B-cell lines (JVM2, SUP-B15, DOHH2, RAJI, Granta519, U931, SD1, REC1, Ramos RL-7) were analysed by qPCR. The correlation between *CDK4* and *VEGF-A* is depicted in a x,y blot.

O) Human *CDK4* and *VEGF-A* mRNA levels of several human T-cell lines (Molt13, HSB2, MKB1, PEER, LBL, HPB-ALL, CCRF, Mac2A, Jurkat, Karpas, Sudhll, Molt4) were analysed by qPCR. The correlation between *CDK4* and *VEGF-A* is depicted in a x,y blot. Error bars indicate the mean ± SEM.
Figure S7, related to Figure 7. Interaction partners of CDK6 to regulate transcription.

A) An anti-CDK4 co-immunoprecipitation (co-IP) was performed with Cdk6$^{+/+}$ and Cdk6$^{+/+}$+Cdk6 cell extracts and immunoblotted for STAT3 and CDK4. Depicted is a whole lysate, as a control (co) and the CDK4 immunoprecipitate.

B, C) ChIP assays were performed using (B) Stat3$^{+/+}$+Cdk6 and Stat3$^{\Delta/\Delta}$ cells. Protein-DNA complexes were immunoprecipitated using an anti-STAT3-antibody and analysed by PCR for the presence of Vegf-A or p16INK4a promoter sequence (C) cJun$^{+/+}$+Cdk6 and cJun$^{\Delta/\Delta}$ cells. Protein-DNA complexes were immunoprecipitated using an anti-c-JUN-antibody and analysed by PCR for the presence of Vegf-A or p16INK4a promoter sequence. One representative experiment out of three is depicted.

D) An anti-CDK4 and anti-CDK6 co-immunoprecipitation (co-IP) was performed with Cdk6$^{+/+}$ and Cdk6$^{+/+}$+Cdk6 cell extracts and immunoblotted for Cyclin D2, Cyclin D3, CDK4 and CDK6.

E) Re-ChIP assays were performed using p185BCR-ABL-transformed Cdk6$^{+/+}$+Cdk6 and Cdk6$^{-/-}$ cells as well as CyclinD1/2/3$^{-/-}$ MEFs. Protein-DNA complexes were immunoprecipitated using an anti-CDK6 and anti-Cyclin D2 antibody and analysed by PCR for the presence of p16INK4a and Vegf-A promoter sequence. Two representative experiments out of three are
F) ChIP assays were performed using \textit{CyclinD1/2/3}^{+/+} + \textit{Cdk6} and \textit{CyclinD1/2/3}^{+/−} MEFs. Protein-DNA complexes were immunoprecipitated using an anti-Cyclin D2 or CDK6-antibody and analysed by PCR for the presence of \textit{p16}^{INK4a} promoter sequence. One representative experiment out of three is depicted.
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Cell culture, infection of foetal liver cells and expression vectors
Tissue culture conditions, virus preparation, infections establishment of cell-lines and colony forming assays were performed as described previously (Kollmann et al., 2011a). Expression vectors: pMSCV-puro, pMSCV-Cdk6-puro, pMSCV-Cdk6R31C-puro (Grossel et al., 1999), pMSCV-Cdk6K43M-puro (Zacharek et al., 2005), pMSCV-Cdk4-puro, pMSCV-JunB-puro and pMSCV-cJun-puro.

cJunA/A and Stat3A/A p185BCR-ABL-transformed cell lines and Cyclin D1/2/3-/- MEFs have been described previously (Hoelbl et al., 2010; Kollmann et al., 2011a; Kozar et al., 2004).

Generation of p185BCR-ABL-transformed Cdk6-/- cells with inducible expression of CDK6:
To generate cell lines with doxycycline-inducible expression of CDK6, p185BCR-ABL-transformed Cdk6-/- cells were retrovirally transduced with pRevTet-On (Clontech) and selected with puromycin (2 \(\mu \)g/ml). To test for doxycycline-inducible gene expression, Cdk6-/--tet-on cells were transduced with the pRevTRE vector (Clontech) containing a GFP cDNA and selected by growing in hygromycin (400 \(\mu \)g/ml). Single cell clones were generated by FACS sorting and screened for clones with the highest doxycycline-dependent induction of GFP and the lowest background expression. These Cdk6-/--tet-on cells were than transduced with the pRevTRE-tight vector (Clontech) containing CDK6 cDNA and selected by growing in hygromycin (400 \(\mu \)g/ml). Expression of CDK6 was induced by addition of doxycycline (0.3-10 \(\mu \)g/ml) (Mayerhofer et al., 2008).

Isolation of untransformed human B and T cells: Peripheral blood mononuclear cells were obtained from human peripheral blood samples over a Ficoll gradient, and B and T cells were then selected using first the EasySep FITC Selection Kit (StemCell Technologies) together with FITC-labeled antibodies to exclude all CD41+, CD66b+, CD56+, CD36+, CD16+, GPA+, CD71+, CD33+ and CD15+ cells and secondary the EasySep APC Selection Kit (StemCell Technologies) together with APC-labeled antibodies to select either CD19+ B cells or CD2+ T cells, according to manufacturer's instructions.

Isolation of untransformed murine B and T cells: Bone marrow of three 6 week-old C57BL/6J mice was pooled and stained with fluorescence-conjugated antibodies CD3\textepsilon and CD19. 4-way purity FACS sorting was performed using an eight-colour BD FACSARia equipped with 488, 633, 546 and 407 nm lasers.
3[H]-thymidine incorporation and flow cytometric analysis

3[H]-thymidine incorporation and cell cycle analysis were performed as previously described (Kollmann et al., 2011a).

Colony forming assay

A defined number of p185BCR-ABL-transformed cells were plated in growth factor-free methylcellulose (StemCell Technologies). Formed colonies were analyzed after 5 days of incubation by colony counting per dish and taking pictures. Assay was performed in duplicates.

Transplantation of tumour cells into Rag2-/- and Nu/Nu mice

Tail vein injection and subcutaneous injection were performed as described previously (Kollmann et al., 2011a).

PD0332991 treatment:

3[H]-thymidine incorporation: 1x10^5 cells were seeded in triplets in 96-well plates and incubated with 0, 30, 100, 300, 1000, 3000 nM PD0332991. After 12h incubation, 3[H]-thymidine (0,1µCi/well [MBq/well]) was added and incubated again for 12h before analysisation.

Western Blot and qPCR: 1x10^6 cells were incubated with 0, 30, 100, 300, 1000, 3000 nM PD0332991 for 24h, harvested and analyzed .

Protein analysis and immunoblotting

Cell lysates and immunoblotting was performed as described previously (Kollmann et al., 2011a).

Co-immunoprecipitation: 1000 µg of cell lysates were incubated with 2µg of antibody on a rotating wheel at 4°C overnight, followed by 1/2 hour of incubation in the presence of equilibrated protein A sepharose beads on a rotating wheel at 4°C. After washing 4x the mixture was centrifuged and SDS loading buffer added. Heating the samples for 5 min. at 95°C separated beads and proteins. Reaction mixtures were run on a SDS polyacrylamide gel.

Treatment with bortezomib and cycloheximide: 5 x 10^6 cells were seeded in either 10nM bortezomib, 1µM cycloheximide or a combination of these drugs. After 4h incubation immunoblot analysis was performed.
Cytoplasmic and nuclear fractionation: Fractionation was performed as described previously (Schreiber et al., 1989).

Antibodies used in the study

Antibodies used for histonmark analysis:
H3K9ac Millipore, 07-352
H3K4me2 Millipore, 07-030
H3K4me3 Diagenode, pAb-003-050
H3K27me3 Millipore, 07-449
H3K36me3 Cell Signaling, 4909

Antibodies used for ChIP experiments:
CDK6 Santa Cruz, sc-177
HA Abcam, ab9110
CDK4 Santa Cruz, sc-260
STAT3 Cell Signalling, 9132
c-JUN Santa Cruz, sc-1694x
PolII Santa Cruz, sc-899
Cyclin D2 Santa Cruz, sc-593

Antibodies used for immunoblot and co-immunoprecipitation experiments:
CDK6 (Fig. 2A, 2C, 2G, 4C, 7A, 7B, S1D, S1G, S2A, S2B, S2C, S3D, S4A, S4D, S5D, S5F, S11A, S11D) SIGMA, C8343
CDK6 (Fig. 4E, 4F, S5E, S5G) SIGMA, SAB4300596
α-Tubulin Sigma Aldrich Inc., T-9026
CDK4 Santa Cruz, sc-260
STAT3 Cell Signalling, 9132
c-JUN Santa Cruz, sc-1694x
HA Abcam, ab9110
p15INK-4a Santa Cruz, sc-612
p16INK-4a Santa Cruz, sc-1207
p18INK-4c Santa Cruz, sc-865
p19INK-4d Santa Cruz, sc-1063
p19ARF Abcam Inc., Ab80
Gapdh Cell Signalling, 2119
HSC-70 Santa Cruz, sc-7298
Cyclin D2 Santa Cruz, sc-593
Cyclin D3 Santa Cruz, sc-182
p21CIP1 Santa Cruz, sc-6246
p27KIP1 Santa Cruz, sc-1641

ELISA

VEGF Quantikine ELISA Kit (R&D Systems) was used in accordance with the
manufacturer’s recommendations.

RNA-isolation and qPCR analysis

RNA was isolated using TriZol (Invitrogen). First-strand cDNA-synthesis and PCR-amplification were performed using a reverse transcriptase–polymerase chain reaction (RT-PCR) kit (GeneAmp RNASPCRkit; Applied Biosystems) according to the manufacturer’s instructions. qPCR was performed on an Eppendorf RealPlex cycler using RealMasterMix (Eppendorf) and SYBR Green. Each experiment was performed in triplicate and results normalized by comparison to \(rplpO \) mRNA expression.

Primer used in the study:

Primer (5’ - 3’) used for histonmark analyzation:
mouse \(Cdkn2a_1 \)
mouse \(Cdkn2a_2 \)
mouse \(Cdkn2a_3 \)
mouse \(Cdkn2a_4 \)
mouse \(Vegfa_1 \)
mouse \(Vegfa_2 \)
mouse \(Vegfa_3 \)
mouse \(Vegfa_4 \)
mouse \(Vegfa_5 \)
mouse \(Tbp \)
mouse \(Neurog1 \)
mouse \(Gapdh \)

Primer (5’ - 3’) used for qPCR analysis:
mouse \(p16^{INK4a} \)
mouse \(Vegf-A \)
mouse \(Cdk6 \)
mouse \(rplpO \)

CAGCATTTCTCCAGAGC
mouse
pre-mRNA p16\(^{NK4a}\)
GGTGCTTTTGTGGTTCCGC
GCTTTGGACCAAATCTATGC

mouse
pre-mRNA Vegf-A
TCCCTCTACAGATCATGGGG
CCTGAGTGTGAAGCTCTGG

human
Cdk6
GGACGTGATTGACTCCC
AAGTAGGTTGACAGGCG

human
Cdk4
GCTGACTTTTAAACCACACA
AAAGATTGCCCCTCAGATGT

human
Vegf-A
GTCGGGCCTCGAACCCTATG
CGTGATGATTGTGCTCCTCCTCTC

human
rlpO
GGCGACCTGGAAGTCCAACCT
CCATCAGCACCACAGCCTTC

Proliferation assays and analysis of apoptosis by FACS

Cells were analyzed by a BD FACS-Canto II FACS device and BD FACS Diva software (Beckton Dickinson). Cell cycle profiles were obtained by staining 5 x 10^6 cells with propidium iodide (50 µg ml\(^{-1}\)) in hypotonic lysis solution (0.1% (w/v) sodium citrate, 0.1% (v/v) Triton X-100, 100 µg ml\(^{-1}\) RNAse) and incubated at 37 °C for 30 min before measurement via FACS. For evaluation of proliferation rate, 5 x 10^6 cells were stained with CFSE using the CellTrace CFSE Proliferation Kit (Invitrogen) and CFSE-MFI was measured over 20 h. To evaluate the onset of apoptosis, 5 x 10^6 cells were stained with propidium iodide and an APC-conjugated antibody to annexinV (BD Bioscience) and analyzed using a FACS device.

Methylation-specific PCR (MSP):

Methylation-specific PCR was performed as described previously (Kollmann et al., 2011b).

Immunohistochemistry

Tissue array technology was applied to compare samples using antibodies against CDK6 (sc-177, Santa Cruz Biotechnology), CD30 (Ber-H2, 0751, DakoCytomation), p16\(^{NK4a}\) (9511, CINtec® p16\(^{NK4a}\) Histology Kit, mtm laboratories AG), Ki-67 (Novocastra Laboratories, Newcastle, UK) and murine CD31 (Dianova, Hamburg, Germany) and using the ABC kit (Vector Laboratories) (AEC for CDK6 and DAB for p16, CD30) according to the manufacturers’ recommendations. The Ki-67 signal was visualized with 3-amino-9-ethylcarbazole (ID laboratories, London, CDN) followed by a counterstaining with hematoxylin. Samples were rated positive for the individual antibodies when the staining intensity of the tumour cells was consistently higher than that of the surrounding...
untransformed cells. Normal lymph nodes were used as controls.

Human CD31 immunohistochemistry was performed on whole tissue sections. CD31 (JC70A, Dako) –ABC kit: AEC according to the manufacturer's recommendations.

Immunofluorescence staining for blood vessels was performed using an antibody against murine CD31 (DIA310, Dianova) and as fluorochrome Alexa Fluor ® 594 (A11007, Molecular Probes).

Image Acquisition and Protein Quantification in vivo

Samples were analysed with a Zeiss AxioImager Z1 microscope system with CCD camera and an automated acquisition system TissueFAXSTM (TissueGnostics GmbH). The percentages of Ki-67-, CDK6-, p16INK4a- or CD30-positive cells were depicted as scattergrams. Pictures were digitalized, analysed and quantified. Statistical analysis was performed using HistoQuestTM software (TissueGnostics GmbH, Vienna, Austria).

Vessel density of human tissue samples: Vessel density was assessed by two independent observers. CD31 immunostained sections were scanned (Aperio technologies).

Hot spots of vessel density were determined at low magnification (40x). Each CD31-stained lumen within this hot spot was counted at a magnification of 200x in an area of 0.25 mm2 by two independent pathologists. Vessel density was prescribed as mean values of counting results.

Immunofluorescence Analysis

IF- Analyses were performed on whole tissue sections of 8 human ALCL cases. Tissue sections were deparaffinized, antigen retrieval was carried out by steamer in TE-buffer. Non-specific binding sites were saturated by goat serum for 15 minutes at room temperature. The primary antibodies CDK6 (1:50 dilution; Sigma-Aldrich, AB-13, SAB4300595) and p16INK4a (9511, CINtec® p16INK4a Histology Kit, mtm laboratories AG) were incubated at 4° C overnight. After washing the primary antibodies were detected with appropriate secondary antibodies 1 hour at room temperature (Alexa Flour 488 goat anti rabbit, 1:500 for CDK6; Alexa Flour 594 goat anti mouse, 1:500 for p16INK4a). After immunostaining the sections were incubated with 4’, 6-diamidino-2 phenylindole (DAPI).

Stainings for CDK6 un p16INK4a were scored semiquantitatively as negative (-: <10% positive tumour cells, weak positive (+: 10-30% positive tumour cells or weakly positive tumour cells) and positive (++: >30% positive tumour cells).
SUPPLEMENTAL REFERENCES

Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W. (1989). Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res 17, 6419.
Hoelbl, A., Schuster, C., Kovacic, B., Zhu, B., Wickre, M., Hoelzl, M. A., Fajmann, S., Grebien, F., Warsch, W., Stengl, G., et al. (2010). Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2, 98-110.
Kozar, K., Ciemerych, M. A., Rebel, V. I., Shigematsu, H., Zagozdzon, A., Sicinska, E., Geng, Y., Yu, Q., Bhattacharya, S., Bronson, R. T., et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477-491.