A large body of epidemiologic evidence exists for exploring causal associations between cancer and trichloroethylene (TCE) exposure. The U.S. Environmental Protection Agency 2001 draft TCE health risk assessment concluded that epidemiologic studies, on the whole, support associations between TCE exposure and excess risk of kidney cancer, liver cancer, and lymphomas, and, to a lesser extent, cervical cancer and prostate cancer. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article reviews recently published scientific literature examining cancer and TCE exposure and identifies four issues that are key to interpreting the larger body of epidemiologic evidence: a) relative sensitivity of cancer incidence and mortality data; b) different classifications of lymphomas, including non-Hodgkin lymphoma; c) differences in data and methods for assigning TCE exposure status; and d) different methods employed for causal inferences, including statistical or meta-analysis approaches. The recent epidemiologic studies substantially expand the epidemiologic database, with seven new studies available on kidney cancer and somewhat fewer studies available that examine possible associations at other sites. Overall, recently published studies appear to provide further support for the kidney, liver, and lymphatic systems as targets of TCE toxicity, suggesting, as do previous studies, modestly elevated (typically 1.5–2.0) site-specific relative risks, given exposure conditions in these studies. However, a number of challenging issues need to be considered before drawing causal conclusions about TCE exposure and cancer from these data. Key words: cancer, drinking water exposures, epidemiology, occupational exposures, risk assessment, trichloroethylene. Environ Health Perspect 114:1471–1478 (2006). doi: 10.1289/ehp.8949 available via http://ehp.niehs.nih.gov/ [Online 9 May 2006].

Despite numerous reviews (Brüning and Bolt 2000; International Agency for Research on Cancer (IARC) 1995; Institute of Medicine 2002; Lyne et al. 1997; McLaughlin and Blot 1997; National Toxicology Program (NTP) 2002; Wartenberg et al. 2000; Weiss 1996; Wong 2004), including those of two multidisciplinary expert panels that concluded that trichloroethylene (TCE) is “probably” (IARC 1995) or “reasonably anticipated to be” (NTP 2002) carcinogenic in humans, the interpretation of the epidemiologic studies on cancer and TCE exposure remains an area of considerable debate. The strongest epidemiologic evidence for associations between TCE exposure and cancer is for liver cancer, kidney cancer, and lymphomas, but perspectives have differed about the causal inferences regarding the human carcinogenicity of TCE that can be drawn from the epidemiologic database as a whole (e.g., Mandel and Kelsh 2001; Wartenberg et al. 2000). Some of the key issues underlying different interpretations are the use of different qualitative and quantitative (e.g., meta-analysis) methods to synthesize the body of evidence and the weight given to studies on the basis of different measures of cancer risk (e.g., incidence versus mortality) and different methods of exposure assessment. In addition, interpretation of data on lymphomas poses unique challenges because of the use of different classification systems and an evolving understanding of their etiology. As discussed in the overview article on this mini-monograph (Chiu et al. 2006a), these are all issues on which the National Academy of Sciences (NAS) has been asked to provide advice.

In this review we first summarize the recent epidemiologic literature on TCE exposure and cancer occurrence and then discuss the issues identified above as key to interpreting the larger body of epidemiologic evidence. Although some scientific conclusions can be drawn from this updated body of data, speculation about the impact of these data on the final TCE risk assessment would be premature at this point, given the ongoing NAS consultation discussed in the overview article by Chiu et al. (2006a) and the planned revision of the U.S. Environmental Protection Agency (EPA) TCE risk assessment. Therefore, the purpose here and throughout this mini-monograph is to review recently published scientific literature in the context of how it informs the key scientific issues believed to be most critical in developing a revised risk assessment.

Epidemiologic Studies on Cancer and TCE Exposure

The epidemiologic analysis in the U.S. EPA draft TCE risk assessment (U.S. EPA 2001) was supported in large part by the review by Wartenberg et al. (2000). This review identified more than 80 studies that evaluated cancer and TCE exposure, concluding that the evidence more firmly supported associations of TCE exposure with kidney and liver cancer while providing some support for associations with non-Hodgkin lymphoma (NHL). Wartenberg et al. (2000) also noted possible associations between TCE exposure and multiple myeloma and prostate, laryngeal, and colon cancer as well as cervical cancer and TCE or perchloroethylene exposure. A number of studies and literature reviews have been published since 2000. Tables 1–3 provide short descriptions of these studies, which include historical or retrospective cohort studies (Table 1), case–control studies (Table 2), and ecologic or community studies (Table 3). Most of the TCE cohort and case–control studies involve occupational exposure to TCE, primarily by inhalation, whereas community studies usually involve contaminated groundwater where potential TCE exposure may be through both ingestion of drinking water and inhalation from TCE vapor intrusion into subsurface residential areas or from showering. Many of these studies employed more sophisticated exposure assessment approaches, allowing better identification of likely TCE-exposed subjects (Brüning et al. 2003; Charbotel et al. 2006; DeRoo et al. 2000; DiPaola et al. 2000; Hansen et al. 2001; Pesch et al. 2000a, 2000b; Raaschou-Nielsen et al. 2003; Zhao et al. 2005). Tables 4–7 show corresponding study results for cancers that either are newly reported to have associations (Table 4, total cancers and cancers of the bladder, breast, and esophagus) or have drawn the most attention in previous reviews (Table 5, kidney cancer or renal cell carcinoma (RCC); Table 6, cancer of the liver or liver and biliary passages; Table 7, lymphomas). These recent studies substantially expand the epidemiologic database, providing additional insights on potential causal associations between TCE exposure and cancer occurrence. The following discussion focuses on the three groups of end points—kidney cancer and RCC, liver and...
biliary cancer, and lymphomas—previously identified as having the strongest evidence for potential causal association with TCE exposure (IARC 1995; NTP 2002; Wartenberg et al. 2000).

The studies available since 2000 report consistent associations between kidney cancer or RCC and TCE exposure (Table 5). Two cohort studies with large numbers of exposed cases (Raaschou-Nielsen et al. 2003; Zhao et al. 2005) observed statistically significant associations with greater exposure level or duration of employment. These findings were supported by three recent case–control studies assessing TCE exposure in the metal industry in Germany (Brüning et al. 2003; Pesch et al. 2000a) and in France (Charbotel et al. 2006). The studies by Brüning et al. (2003) and Charbotel et al. (2006) were designed specifically to examine the a priori hypothesis of an association between RCC and TCE exposure. Charbotel et al. (2006) suggested that exposure intensity may contribute to the risk associated with cumulative exposure because risks were higher for subjects in the highest cumulative exposure category with peak TCE exposure [odds ratio (OR) = 2.7; 95% confidence interval (CI), 1.1–7.1] than for subjects with only high cumulative exposure (OR = 2.2; 95% CI, 1.0–4.6), compared with unexposed subjects.

Most of the recent cohort studies also provide information as to possible association between TCE and liver and/or biliary tract cancer, although many examined only the combined category (Table 6). Grouping the adjacent, but anatomically distinct, end points of primary liver cancer and biliary cancer, which includes cancer of the gallbladder, limits its application of mode-of-action data and may introduce misclassification bias. The recent Nordic cohort studies (Hansen et al. 2001; Raaschou-Nielsen et al. 2003) disaggregate these cancers, and the addition of these two studies doubles the total number of epidemiologic studies providing information for primary liver cancer. The study by Raaschou-Nielsen et al. (2003), having greater statistical power because of its larger cohort size, suggested that both sites are possible targets of TCE toxicity, reporting a standardized incidence ratio (SIR) for primary liver cancer similar to that for gallbladder and biliary tract cancer. Risks for the larger category of liver and biliary tract cancers are presented in both the Nordic studies and the two recent community studies (Lee et al. 2003; Morgan and Cassidy 2002). These studies together suggest a modest association (risks between 1.1 and 2.8), with no clear pattern with duration of exposure. Furthermore, none of the studies have sufficient power to identify sex differences in susceptibility.

New information on lymphomas, including NHL and leukemia, and TCE exposure comes from cohort and community studies (Table 7). Both Nordic studies (Hansen et al. 2001; Raaschou-Nielsen et al. 2003) reported statistically significant associations with NHL, with increasing SIRs with increasing duration of employment. The risk of NHL mortality in Zhao et al. (2005) was more consistent than the NHL incidence with risks observed in Nordic cohorts. Except in the

Table 1. Occupational cohort studies of cancer and TCE exposure.

Reference	Aircraft and aerospace workers	Cohorts identified from U-TCA
Zhao et al. 2005	Aerospace workers with at least 2 years of employment at Boeing/Rockwell/Rocketdyne (Santa Susana Field Laboratory, Ventura, CA) between 1950 and 1993. Cancer mortality as of 31 December 2001.	Workers biologically monitored for occupational exposure to TCE between 1947 and 1989 using U-TCA and air TCE measurements between 1947 and 1989 and alive as of 1 April 1988. Follow-up for cancer incidence from 1 April 1988 or date of first employment through 31 December 1998.
Pesch et al. 2000a	Aerospace workers with at least 2 years of employment at Boeing/Rockwell/Rocketdyne (Santa Susana Field Laboratory) between 1950 and 1993 who were alive as of 1988. Cancer incidence was ascertainment between 1988 and 2000.	Cohorts identified from U-TCA: Hansen et al. 2001; Chang et al. 2003; Raaschou-Nielsen et al. 2003.
Hansen et al. 2001	Workers employed between 1978 and 31 December 1988 at an electronics factory in Taiwan. Follow-up began on 1 January 1979 or date of entry to the cohort through 31 December 1997. Cancer incidence ascertained as of 31 December 1997.	Workers employed between 1978 and 31 December 1997 at an electronics factory in Taiwan. Follow-up began on 1 January 1985 or date of entry to the cohort through 31 December 1997. Vital status ascertained from 1 January 1985 through 31 December 1997.
Chang et al. 2003	Workers employed between 1964 and 1997 for at least 3 months and alive as of 1 January 1968 at 347 Danish TCE-using companies. Follow-up for cancer incidence from 1 April 1968 or date of first employment through 31 December 1997.	Blue-collar workers employed between 1964 and 1997 for at least 3 months and alive as of 1 January 1968 at 347 Danish TCE-using companies. Follow-up for cancer incidence from 1 April 1968 or date of first employment through 31 December 1997.
Raaschou-Nielsen et al. 2003	Of the 803 subjects, 712 had U-TCA, 89 had air TCE measurement records and 2 had records of both types. Median TCE concentration was 19 mg/m³. Mean and median concentrations of U-TCA were 250 µmol/L and 92 µmol/L, respectively. There were on average 2.2 U-TCA measurements per individual.	Of the 803 subjects, 712 had U-TCA, 89 had air TCE measurement records and 2 had records of both types. Median TCE concentration was 19 mg/m³. Mean and median concentrations of U-TCA were 250 µmol/L and 92 µmol/L, respectively.

Abbreviations: JEM, job exposure matrix; P-Y, person-years; U-TCA, urinary trichloroacetic acid.
Table 2. Case–control epidemiologic studies examining cancer and TCE exposure.

Reference	Population	Cases (no.)	Controls (no.)	Response rate (%)	Exposure assessment	Statistical analysis	
Brain (neuroblastoma)	DeRoos et al. 2001, Oslan et al. 1999	Cases in children ≤ 19 years of age selected from Children’s Cancer Group and Pediatric Oncology Group with diagnosis in 1992–1994; population controls (random digit dialing) matched to control for birth date.	504	504	Cases, 73 Controls, 74	Telephone interview with parent using questionnaire to assess parental occupation and self-reported exposure history and judgment-based attribution of exposure to TCE and other solvents.	Logistic regression with covariate for child’s age and material race, age, and education.
Rectal	Dumas et al. 2000	Male cases, 35–70 years of age, diagnosed in 1979–1985 and histologically confirmed; controls with other sites selected from same cancer registry as cases (group 1) or population controls (group 2).	257	1,295 (group 1) 533 (group 2)	Cases, 85 Controls, 100 (group 1) Controls, 72 (group 2)	In-person or telephone interview to assess self-reported occupational history; TCE exposure assigned to subject using work history obtained by interview and JEM.	Logistic regression analyses adjusted for age, education, cigarette smoking, beer consumption, body mass index, and respondent status.
Renal cell	Brüning et al. 2003	Histologically confirmed cases from German hospitals (Amsberg) in 1992–2000; controls frequency-matched (one case, three controls) by sex and age to cases, from hospitals with urology department (and local geriatric department for older controls) serving Amsberg.	134	401	Cases, 83 Controls, no information	In-person interview with case or next-of-kin; questionnaire assessing occupational history using job title and JEM of Parrett et al. (1985).	Logistic regression with covariates for age, sex, and smoking.
Urinary tract	Charbotel et al. 2005, 2006, Fevotte et al. 2006	Histologically confirmed cases from three hospitals and urologists in the High Savoy area and surrounding region in France and from Geneva, Switzerland, in 1993–2003; controls selected from urologists’ files matched 1:4 to case for birth year and sex.	86	316	Cases, 74 Controls, 78	Blinded telephone interview with case or next-of-kin; questionnaire assessing occupational history using JTEM or self-reported exposure to assign TCE and other exposures.	Matched pairs conditional logistic regression with covariates for body mass index and tobacco smoking.
	Pesch et al. 2000a	Histologically confirmed cases from German hospitals (five regions) in 1991–1995; controls randomly selected from residency registries matched for region, sex, and age.	935	4,298	Cases, 88 Controls, 71	In-person interview with case or next-of-kin; questionnaire assessing occupational history using job title or self-reported exposure to assign TCE and other exposures.	Logistic regression with covariates for age, family income, ethnicity, smoking, and respondent status.
	Pesch et al. 2000b	Histologically confirmed cases from German hospitals (five regions) in 1991–1995; controls randomly selected from residency registries matched for region, sex, and age.	1,035	4,298	Cases, 84 Controls, 71	In-person interview with case or next-of-kin; questionnaire assessing occupational history using job title or self-reported exposure to assign TCE and other exposures.	Logistic regression with covariates for age, family income, ethnicity, smoking, and respondent status.

JTEM, job-task exposure matrix.

Table 3. Community studies on cancer and TCE exposure.

Reference	Description	Statistical methods	Exposure assessment
Ahrens et al. 2001, Waller and Tumbull 1993	Incident leukemia cases from 1978–1982 from eight counties in upstate New York.	Illustration of three statistical methodologies to assess clustering of leukemia cases and 12 hazardous waste sites.	Residence in census tract or census block group with a previously identified inactive hazardous waste site.
Waller and Tumbull 1992			
Tumbull et al. 1990			
Ackin et al. 2004	Deaths due to cancer, including leukemia, congenital anomalies, injuries, and cardiovascular diseases in 1986–1988 and childhood leukemia incident cases (1965–1988) among residents of Maricopa County, Arizona.	Standardized rate ratios for mortality from Poisson regression modeling. Childhood leukemia incidence data evaluated using Bayes methods and Poisson regression modeling.	Resident of Maricopa County, AZ, at the time of diagnosis or death as surrogate for exposure.
Ackin et al. 1992			
Flood et al. 1990, 1997			
Flood and Chapin 1988			
Costas et al. 2002, 2005, 2006	Childhood leukemia (≤ 19 years age) diagnosed in 1989–1991 in residents of Woburn, MA; controls randomly selected from Woburn public school records, matched for age.	Logistic regression with composite covariate, a weighted variable of individual covariates.	Questionnaire administered to parents separately assessing demographic and lifestyle characteristics, medical history information, environmental and occupational exposure, and use of public drinking water in the home. Hydraulic mixing model used to infer drinking water containing TCE and other solvents delivered to residence.
Massachusetts Department of Public Health 1997			
Lee et al. 2003	Cancer deaths in 1966–1997 in two villages in Taiwan; controls were cardiovascular and cerebrovascular disease deaths from same underlying area as cases.	Mortality OR using Mantel-Haenszel method and stratified by gender and age and logistic regression with covariates for age and period.	Location of residence as recorded on death certificate. Monitoring in 1999–2000 of TCE in groundwater or well water was used to infer exposure to TCE to village residents.
Morgan and Cassady 2002	Cancer cases diagnosed between 1 April 1988 and 31 December 1998 among residents of 13 census tracts in Redlands area, San Bernardino County, CA.	Standardized incidence rates for all cancer sites and 16 site-specific cancers; expected numbers of cancers using incidence rates of site-specific cancer of a four-county region in 1988–1992.	TCE and perchlorate detected in some county wells; no information on distribution of contaminated water to residents. TCE concentrations in water after 1991 were below maximum contaminant level of 5 ppb.
case of Raaschou-Nielsen et al. (2003), numbers of exposed NHL cases are small, limiting statistical power. The one available case–control study observed a strong but imprecise association between maternal exposure to TCE-contaminated drinking water during pregnancy and childhood leukemia (Costas et al. 2002). Aickin (2004) provides further evidence for an association between TCE in drinking water and childhood leukemia. Analyses using Bayesian statistical methods confirmed an elevated mortality in children from leukemia. Examining childhood leukemia incidence, Aickin (2004) reported that a rate ratio ≤ 1.0 was not credible, and risk > 2.0 could not be ruled out.

To illustrate the potential impact of these new studies, Figures 1–4 show relative risks, SIRs, and standardized mortality ratios (SMRs) from cohort studies and ORs from case–control studies for four cancer sites discussed above (liver, liver and biliary passages, kidney, and NHL, respectively). These figures include studies published before 2000 [reviewed in, e.g., Wartenberg et al. (2000)] and those discussed above. The integration of this new information will contribute substantially to the hazard characterization of a TCE health evaluation and become an integral part of the U.S. EPA revised TCE risk assessment. However, this integration requires consideration of a number of key issues related to interpretation and synthesis, as discussed below.

Issues Related to TCE: Epidemiologic Evidence

Studies of cancer incidence or cancer mortality. Both cancer incidence and cancer mortality rates are potentially useful in risk assessment for identifying hazards and assessing dose–response relationships. Incidence rates, generally considered as the most reliable measure of the health effects of exposure to hazardous substances, could not be ruled out.

Reference	Study population	Exposed cases (no.)	Estimated relative risk (95% CI)	
Total cancer				
Cohort studies				
Hansen et al. 2001	Male	109	1.0 (0.9–1.3)	
Chang et al. 2003	Male	66	0.7 (0.5–0.8)	
Male	2,434	1.1 (1.0–1.1)		
Female	624	1.2 (1.1–1.3)		
Community studies				
Lee et al. 2003	Upstream village	266a	1.0	
Downstream village	2.1 (1.3–3.3)b			
Morgan and Cassady 2002	13 census tracts in San Bernardino County, CA	3,098	1.0 (0.9–1.0)	
Bladder				
Cohort studies				
Hansen et al. 2001	Male	10	1.0 (0.5–2.0)	
Chang et al. 2003	Male	1	1.0 (0.01–5.4)	
Female	1	1.0 (0.01–5.4)		
Raaschou-Nielsen et al. 2003	Male	203	1.0 (0.9–1.2)	
Female	17	1.6 (0.9–2.6)		
Zhao et al. 2005c	Low TCE score	7	1.0	
Medium TCE score	1.5 (0.8–2.9)			
High TCE score	2.0 (0.9–4.2)			
Case–control studies				
Pesch et al. 2000b	JTEM, male	Medium TCE exposure	47	0.8 (0.6–1.2)
High TCE exposure	74	1.3 (0.9–1.7)		
Substantial TCE exposure	36	1.8 (1.2–2.7)		
Community studies				
Morgan and Cassady 2002	13 census tracts in San Bernardino County, CA	82	1.0 (0.8–1.2)	
Breast				
Cohort studies				
Hansen et al. 2001	Female	4	0.9 (0.2–2.3)	
Chang et al. 2005	Male	215	1.2 (1.0–1.4)	
Female	2	0.5 (0.1–1.9)		
Raaschou-Nielsen et al. 2003	Male	145	1.1 (0.9–1.2)	
Community studies				
Morgan and Cassady 2002	Females in 13 census tracts in San Bernardino County, CA	536	1.1 (1.0–1.2)	
Esophagus				
Cohort studies				
Hansen et al. 2001	Male	6	4.2 (1.5–9.2)	
Chang et al. 2005	Male	0	0	
Raaschou-Nielsen et al. 2003	Male	23d	1.8 (1.2–2.7)	
Female	0	0		
Zhao et al. 2005c,e	Low TCE score	7	1.0	
Medium TCE score	1.7 (0.6–4.4)			
High TCE score	3 (0.2–4.0)			

CI: confidence interval. aTotal cancer deaths in the two villages. b99% CI. cZhao et al. (2005) present both cancer incidence and cancer mortality. Relative risks in this table are for cancer incidence. dAdenocarcinoma of the esophagus. eEsophageal and stomach cancer incidence.
disease in a population, are rarely available. In the absence of incidence data, epidemiologic studies have commonly relied on mortality data to assess exposure–disease associations. An understanding of the accuracy of death certificate information as a surrogate for incidence data is important for evaluating observations in the mortality studies. Known inaccuracies exist between cancer incidence and death certificate recordings for some cancer sites important to evaluating TCE exposure, for example, cancer of liver (primary) and liver and biliary passages (Percy et al. 1990). In their study of death certificate accuracy, Percy et al. (1990) showed that only 53% of 2,388 incident cases of primary liver cancer were actually attributed on the death certificate to this disease. Zhao et al. (2005) were able to examine both incidence and mortality among TCE-exposed workers and observed underreporting on death certificates for several site-specific cancers, including NHL, leukemia, and kidney and bladder cancers.

Death certificate inaccuracies would obscure exposure–disease associations toward the null by reducing statistical power and may explain apparent inconsistencies between epidemiologic studies using incidence data versus those based on death certifications. For example, apparent inconsistencies in some observations from cohort studies of American workers, which were primarily based on mortality, and cohort studies of Nordic workers, which were largely based on incidence, may reflect misclassification of death certificates compared with incidence data.

Non-Hodgkin lymphoma. Lymphoma, including NHL, is a disease composed of numerous, etiologically distinct neoplasms (Fisher 2003; Herrington 1998). Several issues may affect interpretation of NHL associations in the TCE epidemiologic studies and may be important to evaluating the consistency, or lack thereof, across studies. First, epidemiologic studies evaluating NHL and TCE exposure have used a number of different International Classification of Diseases (ICD) revisions. All four Nordic studies (Anttila et al. 1995; Axelson et al. 1994; Hansen et al. 2001; Raaschou-Nielsen et al. 2003) classified NHL according to the seventh revision of the ICD (ICD-7; World Health Organization [WHO] 1957), and all reported consistent findings. Other revisions of the ICD were used in the more recent studies by Blair et al. (1998) [ICD Adapted (ICDA)-8, National Center for Health Statistics 1967], Boice et al. (1999) (ICD-9, WHO 1977), Garabrant et al. (1988) (ICD-9 in effect at date of death: ICD-7, ICDA-8, or ICD-9), Morgan et al. (1998, 2000) (ICD in effect at date of death: ICD-7, ICDA-8, or ICD-9), and Ritz (1999) (ICD-9). Few case–control studies on lymphoma are available. NHL cases in Hardell et al. (1994) were histologically verified and were classified using the Rappaport system. Persson et al. (1989) do not identify the system used to classify NHL cases in their study. Classification of lymphomas has changed with each revision.

Second, understanding of histopathologic and immunologic characteristics of lymphoma has grown since 1977, the publication date of ICD-9. Past classifications of lymphomas do not reflect the current biologic understanding of NHL and do not make distinctions between different cell types. From this perspective, lymphomas are defined broadly as B-cell and T-cell lymphomas, with further divisions into precursor neoplasms and mature neoplasms (Corigliano and Schmid 2002). This implies that lymphomas classified in the past into distinct categories may share common biological properties and differentiation pathways. For example, a lymphoma of B-cell origin may be classified under older schemes as NHL, multiple myeloma, or leukemia. Emerging data on molecular markers of lymphoma suggest stage of cell differentiation at time of exposure as an important factor in NHL development (Staudt and Dave 2005).

Table 6. Select epidemiologic studies: liver cancer and exposure to TCE.

Reference	Study population	Exposed cases (no.)	Estimated relative risk (95% CI)
Hansen et al. 2001	Male, female	2	1.7 (0.2–6.0)
Chang et al. 2003	Male	0	
Raaschou-Nielsen et al. 2003	Male	27	1.1 (0.7–1.6)
	Female	7	2.8 (1.1–5.8)
	Duration of employment, male		
	≤ 1 year	9	1.3 (0.6–2.5)
	1–4.9 years	9	1.0 (0.5–1.9)
	≥ 5 years	9	1.1 (0.5–2.1)
	Duration of employment, female		
	≤ 1 year	2	2.8 (0.3–10)
	1–4.9 years	4	4.1 (1.1–11)
	≥ 5 years	1	1.3 (0.0–7.1)

Zhao et al. (2005) did not present relative risks for liver or liver and bile duct cancer in their article. *Total liver cancer deaths in the two villages.
power is also important because of fewer subjects compared with cohorts identified using other methods.

Other cohort and case-control studies have adopted a number of approaches for exposure assessment. TCE exposure has been assigned to subjects using surrogates based on historical job descriptions, from personal interviews to develop job exposure matrices (JEMs). For several cohorts, industrial hygiene measurements were absent before the 1970s (Boice et al. 1999; Marano et al. 2000; Morgan et al. 1998, 2000) or were quite limited (Blair et al. 1998; Stewart et al. 1991). Furthermore, some cohort (Ritz 1999) and case-control (Greenland et al. 1994) studies classified study subjects as TCE exposed using information obtained from personal interviews or generic JEMs or job-task exposure matrices (JTEMs) in the absence of historical monitoring. Two issues associated with the use of generic JEMs are sensitivity (i.e., the ability to identify study subjects as exposed) and specificity (i.e., the ability to identify study subjects as not exposed).

Still other cohort studies (Chang et al. 2003, 2005; Costa et al. 1989; Garabrant et al. 1998) have defined exposure using occupational and industry. TCE is identified as one of a number of potential exposures, but no information is provided on individual subjects with TCE exposure. The main shortcoming of this type of study is that the lack of an association with a particular job or industry may mask the effect of exposure to a specific chemical to which only some individuals in the job are exposed (Tesche et al. 2002). For this reason, a consideration of potential exposure misclassification bias is important in weighting these studies in an overall weight of evidence.

In addition, multiple solvents and chemical agents are common in the TCE studies, adding to the complexity of exposure assessment and inferences about causality. Some studies of TCE also identify exposures to other chlorinated solvents such as perchloroethylene and 1,1,1-trichloroethane (Blair et al. 1998; Boice et al. 1999; Marano et al. 2000; Morgan et al. 1998, 2000; Stewart et al. 1991; Zhao et al. 2005). The potential for exposure to multiple chlorinated solvents is an important consideration in the TCE epidemiologic studies for two reasons. First, these chemicals can share similar metabolic profiles or modes of action as TCE (U.S. EPA 2001), and second, some epidemiologic studies have also reported independent associations between exposure to these other

Table 7. Select epidemiologic studies: lymphoma and exposure to TCE.

Reference	Study population	Exposed cases (no.)	Estimated relative risk (95% CI)
NHL			
Cohort studies			
Hansen et al. 2001	Male	8	3.5 (1.5–6.9)
	Female	0	
	Duration of employment, male		
	Unknown	2	3.7 (0.4–13)
	≤ 6.25 years	2	2.5 (0.3–9.2)
	≥ 6.25 years	4	4.2 (1.1–11)
Chang et al. 2005	Male	5	1.3 (0.4–3.0)
	Female	10	1.1 (0.6–2.1)
Raaschou-Nielsen et al. 2003	Male	83	1.2 (1.0–1.5)
	Female	13	1.4 (0.7–2.3)
	Duration of employment, male		
	≤ 1 year	23	1.1 (0.7–1.6)
	1–4.9 years	33	1.3 (0.9–1.8)
	≥ 5 years	27	1.4 (0.9–2.0)
Zhao et al. 2005*	Low TCE score	28	1.0
	Medium TCE score	16	0.9 (0.5–1.7)
	High TCE score	1	0.2 (0.03–1.5)
Community studies			
Morgan and Cassady 2002	13 census tracts in San Bernardino County, CA	111	1.1 (0.9–1.3)
Leukemia			
Cohort studies			
Hansen et al. 2001	Male	5	1.9 (0.6–4.4)
	Female	1	3.1 (0.04–18)
Chang et al. 2005	Male	2	0.4 (0.05–1.6)
	Female	8	0.5 (0.2–1.1)
Raaschou-Nielsen et al. 2003	Male	69	1.1 (0.8–1.4)
	Female	13	1.7 (0.9–2.9)
Community studies			
Costas et al. 2002	Exposed to water from TCE-contaminated wells G and H 2 years before pregnancy to leukemia diagnosis		
	Never	3	1.0
	Least	9	5.0 (0.7–34)
	Most	7	3.6 (0.5–25)
	Exposed to water from TCE-contaminated wells G and H during pregnancy		
	Never	9	1.0
	Least	3	3.5 (0.2–58)
	Most	7	14 (0.9–224)*
Morgan and Cassady 2002	13 census tracts in San Bernardino County, CA	77	1.0 (0.8–1.3)

*Zhao et al. (2005) present both cancer incidence and cancer mortality. Relative risks in this table are for NHL and leukemia incidence combined. *P* test for trend is statistically significant, *p* < 0.05.
solvents and cancer (Blair et al. 1998; Zhao et al. 2005). Physiologically based pharmacokinetic models such as those discussed by Chiu et al. (2006b) may be useful for better understanding cumulative exposure in these epidemiologic studies.

Approaches for Causal Inference

The practice of causal inference in environmental epidemiology relies on three approaches: narrative reviews, criteria-based inference methods, and, increasingly, meta-analysis (Weed 2002). All three have been employed in various analyses of the epidemiologic literature on cancer and TCE exposure. Narrative reviews of a body of epidemiologic evidence generally do not fully consider potential biases and confounding factors. By contrast, criteria-based approaches for assessing causality evaluate evidence according to a set of criteria or standards applied to the evidence (Weed 2002). For instance, the aspects proposed by Sir Bradford Hill (1965) are widely cited for framing the factors to consider in determining whether statistical associations are likely to be causal. Similar criteria are also presented in the U.S. EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA 2005).

Criteria-based approaches have increasingly been supplemented with formal statistical methods such as meta-analysis for reviewing and summing a body of evidence (Weed 2002). Common meta-analytic methods can include fitting of fixed-effects or random-effects models, linear regression analysis to assess dose–response, or pooled analyses. Pooled analysis of the Nordic studies may be more feasible because of their similar design and similar follow-up period for documenting cancer incidence than for other TCE cohorts. As discussed in the overview article of this mini-monograph by Chiu et al. (2006a), the NAS has been asked to provide advice on appropriate meta-analysis methods, including the classification and weighting of individual studies.

Discussion and Summary

The U.S. EPA draft TCE assessment (U.S. EPA 2001) noted that epidemiologic studies, when considered as a whole, have associated TCE exposure with excess risk of kidney, liver, lymphohematopoietic, cervical, and prostate cancer. Recently published studies appear to provide further support for several of those conclusions, suggesting, as do previous studies, modestly elevated site-specific risk (typically between 1.5 and 2.0), given exposure conditions in the epidemiologic studies.

The recent epidemiologic studies strengthen the evidence that the kidney is a target of TCE toxicity. It should be noted that kidney toxicity besides cancer has been found by Radican et al. (2006), who reported a statistically significant association with end-stage renal disease mortality and exposure to solvents, including TCE. Understanding the mechanism by which TCE may act in kidney toxicity, including cancer, can inform cause–effect evaluations. The glutathione S-transferase (GST) metabolic pathway has been hypothesized as important to mode-of-action considerations (Caldwell and Keshava 2002). Of particular importance for assessment of epidemiologic evidence on TCE exposure is characterizing the totality of the evidence in light of factors that may contribute to false positive findings or to false negative observations. The evidence presented on issues regarding data sources, exposure assessment, and disease classification can influence the statistical power of the epidemiologic study to detect whether there is an underlying risk. The challenge is to consider these issues, along with well-articulated approaches when evaluating the body of evidence, including the application of meta-analysis methods and rationale for grouping individual studies, in identifying hazards and drawing causal conclusions.

REFERENCES

Ahrens C, Altman N, Casella G, Eaton M, Hwang JTS, Staudenmayer J, et al. 2001. Leukemia clusters in upstate New York: how adding covariates changes the story. Environmetrics 12:659–672.

Aickin M, 2004. Bayes without priors. J Clin Epidemiol 57:4–13.

Aickin M, Chapin CA, Flood TJ, Englund SJ, Caldwell GW. 1992. Assessment of the spatial occurrence of childhood leukemia mortality using standardized rate ratios with a simple linear Poisson model. Int J Epidemiol 21:494–505.

Anttila A, Puukka E, Saltman M, Hembregt S, Henniemi K. 1999. Cancer incidence among Finnish workers exposed to halogenated hydrocarbons. J Occup Environ Med 37:797–806.

Axelson O, Selden A, Andersson K, Hogstedt C. 1994. Updated and expanded Swedish cohort study of trichloroethylene and cancer risk. J Occup Med 36:556–562.

Blair A, Hartage P, Stewart PA, McAdams M, Lubin J. 1998. Mortality and cancer incidence of aircraft maintenance workers.
