The Orphan Receptor Serine/Threonine Kinase ALK7 Signals Arrest of Proliferation and Morphological Differentiation in a Neuronal Cell Line*

The signaling capabilities and biological functions of activin receptor-like kinase 7 (ALK7), a type I receptor serine/threonine kinase predominantly expressed in the nervous system, are unknown. We have constructed a cell line derived from the rat pheochromocytoma PC12 in which expression of a constitutively active mutant of ALK7 (T194D) is under the control of a tetracycline-inducible promoter. For comparison, another cell line was engineered with tetracycline-regulated expression of a constitutively active variant of the transforming growth factor-β type I receptor ALK5. Expression of activated ALK7 in PC12 cells resulted in activation of Smad2 and Smad3, but not Smad1, as well as the mitogen-activated protein kinases extracellular signal-regulated kinase and c-Jun N-terminal kinase. Thymidine incorporation assays revealed an anti-proliferative effect of ALK7 activation in PC12 cells, which correlated with increased transcription from the promoters of cycline-dependent kinase inhibitor-1. reporter assays demonstrated that ALK7 activation stimulates transcription from the Smad-binding element of the Jun-B gene, the plasminogen activator inhibitor-1 gene, and c-Jun N-terminal kinase. Expression of activated ALK7 in PC12 cells resulted in increased expression of endogenous gene products, including Smad7, c-fos mRNA, and plasminogen activator inhibitor-1. Thymidine incorporation assays revealed an anti-proliferative effect of ALK7 activation in PC12 cells, which correlated with increased transcription from the promoters of cycline-dependent kinase inhibitors p15INK4B and p21. Unexpectedly, ALK7 signaling produced a remarkable change in cell morphology characterized by cell flattening and elaboration of blunt, short cell processes. Interestingly, no such changes were observed upon induction of activated ALK5. The alterations in cell morphology upon ALK7 activation were more pronounced in cultures grown in full serum, were accompanied by rearrangements of actin filaments, and were maintained for several days after withdrawal of treatment. PC12 cultures that had been “primed” in this way showed an accelerated and augmented differentiation response to nerve growth factor. These results indicate that ALK7 may participate in the control of proliferation of neuronal precursors and morphological differentiation of postmitotic neurons.

The transforming growth factor (TGF)β superfamily constitutes the largest group of polypeptide growth factors known, including the TGF-βs, activins, bone morphogenetic proteins (BMPs), nodal, and growth and differentiation factors (GDFs). Members of the TGF-β superfamily exhibit an extensive array of biological activities, regulating proliferation, lineage determination, differentiation, migration, adhesion and apoptosis during development, homeostasis, and repair in practically all tissues from flies to humans. TGF-β ligands signal through a complex of two transmembrane receptor serine/threonine kinases belonging to two distinct subfamilies: the type I receptors of ~55 kDa and the type II receptors of ~70 kDa. Both receptors cooperate with ligand binding, type II receptors phosphorylate type I receptors, and type I receptors activate members of the Smad family of signal transducers, which then translocate to the nucleus where they take part in a number of DNA binding complexes (1–3). Receptor-specific Smads transiently interact with and become phosphorylated by type I receptors. Smad2 and 3 participate in downstream signaling from TGF-β/activin receptors, and Smad1, 5, and 8 participate in downstream signaling from BMP/GDF receptors. Smad4 forms complexes with receptor-specific Smads and is a common mediator of the nuclear responses of TGF-β/activin and BMP/GDF. Smad 6 and 7, on the other hand, are inhibitory Smads that compete with receptor-specific Smads for association with type I receptors. Once in the nucleus, activated Smads may bind DNA on their own or, most commonly, in association with other DNA-specific factors. A number of general transcription factors, co-activators, and corepressors have been found to associate with Smads during TGF-β signaling (1–3). TGF-β has also been shown to activate several other cytoplasmic signaling pathways in addition to the Smads, including several members of the MAP kinase family such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) (4–8). The signaling events leading from the activated receptors to these signaling components remain for the most part undefined.

Activin receptor-like kinase 7 (ALK7) is an orphan member of the type I subfamily of receptor serine/threonine kinases (9–11). It is predominantly expressed in distinct subpopulations of central neurons during postnatal development and adulthood (9, 12). Presently, not only the ligand of ALK7 but also its corresponding type II receptor partner are unknown.

* This work was supported by Swedish Cancer Society Grant 3474-B97-05XBC, by funds from Petrus & Agneta Hedlunds Stiftelsen, Göran Gustafssons Stiftelsen, Swedish National Board for Laboratory Animals, and the Karolinska Institute (to C. F. I.), and by European Union TMR Grant ERBFMT97CT980216 (to P. t. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

† Supported by the Swedish National Network in Neuroscience.

‡ To whom correspondence should be addressed. E-mail: carlos@cajal.mbb.ki.se.

The abbreviations used are: TGF, transforming growth factor; BMP, bone morphogenetic protein; GDF, growth and differentiation factor; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; ALK7, activin receptor-like kinase 7; NGF, nerve growth factor; HA, hemagglutinin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PAGE, polyacrylamide gel electrophoresis; PBS, phosphate-buffered saline; MAP, mitogen-activated protein.

5140

This paper is available on line at http://www.jbc.org
ALK7 is highly similar in its intracellular domain to ALK5 (78% identity) and ALK4 (77% identity), type I receptors for TGF-βs and activins, respectively. Despite this similarity, the extracellular domain of ALK7 is very divergent from other type I receptors, indicating that it binds a distinct member of the TGF-β superfamily.

In the present work, we have investigated the signaling and biological activities of ALK7 using a constitutively active form of this receptor in an inducible expression system in PC12 cells. Taking advantage of the ability of these cells to adopt a neuronal phenotype after differentiation with nerve growth factor (NGF), we have also studied the interactions between this well characterized cell system of neuronal differentiation and ALK7 signaling.

EXPERIMENTAL PROCEDURES

Subcloning and Mutagenesis—Single-stranded DNA from rat ALK7 subcloned in pBS KS+ (Stratagene) was used for oligonucleotide-based site-directed mutagenesis as described previously (13).

Cell Culture and Tetracycline System—The rat pheochromocytoma cell line PC12 was cultured in Dulbecco’s modified Eagle’s medium containing 10% horse serum, 5% fetal bovine serum, 2 mM L-glutamine, and 60 μg/ml gentamycin (Life Technologies, Inc.) at 37 °C in a 5% CO₂ humidified atmosphere. All serum was screened for absence of tetracycline using the CHO-AA8-Luc Tet-Off control cell line from CLON-TECH. Low serum experiments where done using one-twentieth of the serum concentrations specified above. Perfect Lipid 4 (Invitrogen) was used for cell transfections according to the manufacturer’s instructions. PC12 cells were transfected with an expression construct of the reverse tetracycline transactivator (pUHD172–1neo) and constitutively active His₆-tagged T194D-ALK7 or hemagglutinin (HA)-tagged T204D-ALK5 under the control of the tet-operon and a minimal cytomegalovirus promoter (pUHD10-3) (14). Stably transfected cells were selected with 200 μg/ml geneticin (G-418) and 1 μg/ml puromycin (Life Technologies, Inc.). Individual colonies, respectively, expanded, and individually screened for low leakage and high tetracycline inducibility by RNase protection assay (ALK7) or Western blotting (ALK5). The tetracycline analogue doxycycline was used in all inductions at 1 μg/ml or at the concentrations indicated.

RNase Protection Assay—RNA isolation was done by guanidinium isothiocyanate lysis and acid phenol extraction as previously described (9). For RNase protection assays, a 310-bp 3’UTR fragment of rat ALK7 cDNA was subcloned into pBS KS+ linearized and used as template for T7 RNA polymerase. The rat c-fos probe has been previously described (15). A rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) riboprobe was used for normalization. 10 μg of total RNA was hybridized to [α-32P]CTP-labeled eRNA probes using a kit from Ambion according to the manufacturer’s instructions. Protected bands were visualized and quantified using a STORM840 PhosphorImager and ImageQuant software (Molecular Dynamics).

Western Blotting, JNK In Vitro Kinase Assay, and PAI-1 Assay—For protein analyses, cells were lysed in 1% Nonidet P-40 with 150 mM NaCl, 10 mM Tris-HCl (pH 7.5), 10 mM NaF, 2 mM Na₂VO₄, and Complete EDTA-free protease inhibitor mixture (Roche Molecular Biochemicals). The supernatant after mild centrifugation constituted the cell lysates. Western blotting, JNK in vitro kinase assay, and PAI-1 assay were performed according to the manufacturer’s instructions.

Filamentous Actin Staining and Morphological Studies—Actin was stained using a fluorescent phalloidin from Molecular Probes (Alexa 488 phallolidin, A-12379) according to manufacturer’s instructions. Briefly, cells were plated on poly-D-lysine-coated chamber slides (Lab-Tek) and left to attach overnight. The medium was then changed according to the experimental parameters, and the cells were incubated for additional 4.5 days before washing twice with PBS and fixing in 3% formaldehyde solution in PBS for 10 min at room temperature. After two additional washes in PBS, each slide was stained at room temperature for 20 min with one unit of Alexa 488 phallolidin in PBS. Following the staining, the slides were washed twice in PBS and mounted under a coverslip in a 1:1 solution of PBS and glycerol and examined by fluorescence microscopy. Morphological studies were performed in PDL-coated 6-well tissue culture plates in a similar fashion. Cells were always washed with PBS in between changes of medium to avoid carry over. For neuronal differentiation, NGF (Promega) was used at 50 ng/ml in low serum medium (i.e., 1/10th of its normal strength). Cultures were examined and photographed under phase contrast illumination in a Zeiss Axioscope microscope.
RESULTS

PC12 Cell Lines with Inducible Expression of Constitutively Active ALK7 and ALK5 Receptors—In the absence of the ALK7 ligand and its corresponding type II receptor partner, an alternative system was developed to study the downstream signaling mechanism and potential biological activities of the ALK7 receptor. Type I receptor serine/threonine kinases can be activated in a ligand- and type II receptor-independent way by replacing an acidic residue for a specific threonine within the juxtamembrane region of the intracellular domain, a segment known to be involved in kinase regulation (21). An equivalent mutation in the ALK7 receptor, corresponding to replacement of Asp for Thr204 (T194D), also results in constitutive activation of ALK7 as evaluated using TGF-β-specific reporter assays (10).2 Signaling by TGF-β ligands is known to have profound effects on cell proliferation, survival, and differentiation. To avoid potential problems caused by constitutive signaling during clone expansion and to allow the study of acute effects of ALK7 signaling, an inducible expression system based on the tetracycline-responsive operon (14) was utilized to generate stable cell lines. As a cellular host for inducible expression of constitutively active ALK7, we chose the rat pheochromocytoma PC12. This cell line has been extensively used as model system in studies of signal transduction, primarily because of its ability to develop a striking neuronal phenotype upon treatment with NGF (22). For comparison with a better characterized signaling system, we also generated PC12 cells with inducible expression of a constitutively active form of the TGF-β type I receptor ALK5, generated, as previously described, by replacement of Asp for Thr204 (T204D) (21). A C-terminal His6 tag was placed in ALK7, and a C-terminal HA tag was placed in ALK5. It should be noted that parental PC12 cells do not express ALK7 and express only moderate levels of endogenous ALK5 (data not shown).

Under basal conditions, ALK7-PC12 or ALK5-PC12 cells did not express any detectable levels of the introduced ALK7 or ALK5 receptors, respectively (Fig. 1). However, treatment with the tetracycline analogue doxycycline resulted in a marked increase in the expression of the respective receptors (Fig. 1).

Induction of ALK7 mRNA expression was dose-dependent over a wide range of doxycycline concentrations (Fig. 1A), with a peak 8 h after doxycycline treatment followed by a slow decline (Fig. 1B). Expression of ALK7 and ALK5 protein could be first detected 4 h after doxycycline stimulation and was maximal at 24 h (Fig. 1C). The delay observed between the time course of induction of protein and mRNA expression following Dox treat-
ment is unclear and could be due to differences in the sensitivity of the two methods. As shown below, several ALK7-induced signaling events can be detected as early as 3 and 6 h following Dox treatment, indicating that levels of ALK7 protein must in fact be present at these early time points. Expression of the exogenous receptors declined 5 days after uninterrupted doxycycline treatment, perhaps because of autoinhibition following continuous signaling (data not shown).

Activation of Smad Proteins and MAP Kinases in Response to ALK7 Signaling in PC12 Cells—A universal signal transduction event following activation of ALK receptors is the phosphorylation and nuclear translocation of members of the Smad protein family. Phosphorylation and nuclear accumulation of receptor specific Smads after ALK7 activation was investigated in nuclear fractions of ALK7- and ALK5-PC12 cells treated with doxycycline using specific antibodies for Smad1, Smad2, and Smad3. Activation of ALK7 resulted in phosphorylation and nuclear translocation of Smad2 but not Smad1 (Fig. 2A). Smad3 was also found to accumulate in the nuclei of ALK7-PC12 cells treated with doxycycline (Fig. 2A). Similar results were obtained in ALK5-PC12 cells in agreement with previous observations. In agreement with the kinetics of ALK receptor expression, activation of Smad2 and Smad3 could first be detected 3 h after doxycycline stimulation and was maximal at 24 h (Fig. 2A).

We also looked for activation of the MAP kinases ERK and JNK in ALK7- and ALK5-PC12 cells after doxycycline treatment. Increased phosphorylation of ERK1 and ERK2 could be detected 6 and 12 h following doxycycline stimulation in both ALK7- and ALK5-expressing cells (Fig. 2B). Using a c-Jun-glutathione S-transferase fusion protein as substrate, we assayed the activity of JNK in cell lysates of ALK7- and ALK5-PC12 cells after doxycycline treatment. JNK activity was significantly elevated in both cell lines after 12 h of doxycycline treatment (Fig. 2B).

Thus, in agreement with the structural similarity between the kinase domain of ALK7 and those of the TGF-β and activin receptors ALK5 and ALK4, signal transduction by the ALK7 receptor also utilizes the pathway-specific Smads 2 and 3, as well as the MAP kinases ERK and JNK.

Activation of TGF-β-responsive Promoter Elements Following ALK7 Signaling—Downstream transcriptional responses to ALK7 signaling were investigated using the luciferase reporter gene coupled to regulatory elements from different genes known to be responsive to TGF-β superfamily proteins, including the genes of cycline-dependent kinase (cdk) inhibitors p15INK4b (23) and p21 (24), the PAI-1 gene (i.e. p3TP-Lux, which also includes three TPA-responsive sequences) (25), four tandem copies of the Smad-binding element from the Jun-B gene ((SBE)4) (26), AP-1 elements, and nine tandem copies of the Smad-binding element from the PAI-1 promoter (CAGA)9 (27). (SBE)4 is activated by both TGF-β/activin and BMP ligands, whereas (CAGA)9 is only activated by Smad3-mediated signaling (27). ALK7-PC12, ALK5-PC12, and parental PC12 cells were transiently transfected with reporter plasmids, and reporter gene activity was assayed in cell lysates 48 h following doxycycline treatment. ALK7 signaling stimulated transcription from all the reporters (Fig. 3A). Similar results were obtained in an independently isolated ALK7-PC12 cell clone (data not shown). With the exception of the p21 cyclin inhibitor reporter, which appeared down-regulated after doxycycline

Fig. 3. Activation of TGF-β-responsive promoter elements by ALK7 signaling. Luciferase reporter constructs as indicated were transiently transfected into ALK7-PC12 cells (A) or ALK5-PC12 cells (B). Samples from control (open bars) or doxycycline-treated cells (solid bars) were assayed 48 h later. The results indicate corrected luciferase values expressed relative to control (averages ± S.D.) and were reproduced in several other independent experiments. Dox, doxycycline.

Fig. 4. Induction of endogenous genes by ALK7 signaling in PC12 cells. A, induction of Smad7 expression was assessed by Western blotting of total extracts of cells stimulated with doxycycline for the indicated periods of time. B, induction of c-fos mRNA expression was determined by RNase protection assay. A GAPDH probe was included in the same reaction as loading control. C, induction of PAI-1 expression was measured by direct SDS-PAGE and autoradiography of cell matrix extracts prepared from metabolically labeled cells. The two most prominent bands (arrows) correspond to the PAI-1 protein. Dox, doxycycline.
treatment, similar results were also observed in ALK5-expressing cells (Fig. 3B). No changes were detected in parental PC12 cells after doxycycline stimulation (data not shown). Thus, with the possible exception of p21, ALK7 signaling resembles that of the type I TGF-β receptor ALK5 in PC12 cells, including the robust activation of the Smad3-specific reporter (CAGA)_9.

Regulation of Endogenous Gene Expression by ALK7 Signaling in PC12 Cells—We also investigated whether ALK7 is able to regulate endogenous genes known to be targets of TGF-β and Activin signaling pathways. Expression of the inhibitory Smad7 is induced by TGF-β via direct interaction of Smad3 and 4 with the smad7 gene promoter (17). In PC12 cells, ALK7 activation induced expression of Smad7 with a peak of protein expression between 12 and 24 h following Dox treatment (Fig. 4A), indicating that, similar to other TGF-β family members, ALK7 signaling is also regulated through a feedback loop of inhibitory Smad proteins. Expression of immediate early genes is also regulated by TGF-β signaling, and the fact that activation of ALK7 induced phosphorylation of Erk proteins prompted us to examine the levels of c-fos mRNA in these cells. Doxycycline stimulation stimulated c-fos mRNA levels in ALK7-PC12 cells with a peak at 24 h of treatment, declining back to basal levels by 72 h (Fig. 4B). We found that in ALK7-PC12 cells treated with doxycycline, the levels of PAI-1 were elevated compared with untreated cells (Fig. 4C), indicating that ALK7 activation regulates target genes responsible for some of the phenotypic changes induced by TGF-β proteins.

Anti-proliferative Effect of ALK7 Activation—Thymidine incorporation experiments were performed to investigate the effects of ALK7 signaling on cell survival and proliferation. In the first set of experiments, the cells were pulsed at the beginning with [3H]thymidine for 4 h and then cultured for another 48 h in the presence or absence of doxycycline. Under these conditions, there was no change at the end of the experiment between parental PC12, ALK7-PC12, or ALK5-PC12 cells (Fig. 5A), indicating that neither ALK7 nor ALK5 signaling affected the viability of PC12 cells. In the second experiment, the cells were first incubated for 48 h in the presence or absence of doxycycline and then pulsed with [3H]thymidine for 4 h with the indicated concentrations of doxycycline and then pulsed with [3H]thymidine. The results are expressed relative to control as averages ± S.D.

Effects of ALK7 Signaling on PC12 Cell Morphology, Actin Filaments, and Neuronal Differentiation—During the course

FIG. 5. Anti-proliferative effects of ALK7 activation in PC12 cells. A, assay of cell viability. The indicated cells were pulsed with [3H]thymidine and then cultured for 48 h with the indicated concentrations of doxycycline. The results are expressed relative to control as averages ± S.D. B, assay of DNA synthesis. The indicated cells were cultured for 48 h with the indicated concentrations of doxycycline and then pulsed with [3H]thymidine. The results are expressed relative to control as averages ± S.D.

FIG. 6. Effects of ALK7 signaling on PC12 cell morphology, actin filaments, and neuronal differentiation. A, ALK7-PC12 cells were cultured for 4 days in the absence (control) or presence (+Dox) of doxycycline and then visualized by phase contrast illumination (left panels) or stained with Alexa488-conjugated phalloidin (right panels). Note the marked effects on cell morphology produced by ALK7 activation (black arrows, left), paralleled by a decrease in actin filament staining in the same cells (white arrows, right). B, ALK5-PC12 cells, in contrast, do not show alterations in cell morphology or actin filament staining 4 days after doxycycline treatment.
of the studies described above, it became evident that ALK7 signaling had very characteristic effects on cell morphology. Under control conditions, ALK7-PC12 cells were indistinguishable from parental cells. However, within 12 h of doxycycline treatment, ALK7-PC12 cells flattened out and began extending blunt, short cell processes. Four days after doxycycline stimulation, ALK7-PC12 cells were unequivocally different from parental cells (Fig. 6A). Conditioned medium from doxycycline-treated ALK7-PC12 cells had no biochemical or morphological effects on naïve PC12 cells (not shown), indicating that the changes induced in ALK7-PC12 cells were produced by a direct, cell autonomous mechanism and not via the production of a secondary signal. The effects of ALK7 on PC12 cell morphology were most evident in the presence of serum. Although cultures grown in low serum did show some changes, these were not as pronounced and mostly restricted to a few cells (not shown). Intriguingly, the morphological changes induced by ALK7 activation were still evident several days after removal of doxycycline, suggesting a long lasting alteration. The effects of ALK7 activation on PC12 cell morphology were also reflected in the distribution of actin filaments, as revealed by phalloidin staining (Fig. 6A). ALK7 signaling resulted in an overall reduction in actin staining, indicating actin filament depolimerization (Fig. 6A). Loss of cortical actin staining, characteristic of round, phase bright parental PC12 cells, was also seen in several of the most affected cells (Fig. 6A). Similar effects in cell morphology could also be observed in an independently isolated PC12 cell clone overexpressing constitutively active ALK7 (data not shown). Surprisingly, ALK5 activation had no effect on the morphology or actin filament distribution of PC12 cells (Fig. 6B), suggesting that, despite their apparently similar signaling mechanisms, ALK5 and ALK7 have the capacity to transmit distinct biological responses.

Although the effects of ALK7 signaling on cell morphology were clearly different from those induced by NGF, both processes shared several features, including a reduction in proliferation rate and the elaboration of cell processes, albeit short in the case of ALK7. In the absence of doxycycline, ALK7-PC12 cells responded to NGF just like parental cells, differentiating at the same speed and to the same extent after comparable treatments (data not shown). On the other hand, cultures that were pretreated with doxycycline showed an accelerated differentiation in response to NGF, already evident 12 h after the onset of NGF stimulation (Fig. 7). At this time, more than 50% of the ALK7-PC12 cells stimulated with doxycycline and NGF showed signs of undergoing neuronal differentiation, whereas only a smaller proportion (10%) did in the cultures that received only NGF (Fig. 7). Two weeks into the differentiation process, ALK7-PC12 cells treated with doxycycline showed in addition a more robust phenotype with longer neurites and a greater percentage of differentiated cells (Fig. 7). A similar, albeit less pronounced effect was obtained if the cultures were simultaneously exposed to both doxycycline and NGF (data not shown). Again, no accelerated neuronal differentiation in response to NGF could be seen in ALK5-PC12 cells that had been stimulated with doxycycline (data not shown).

DISCUSSION

We have devised a system to study the function of type I serine/threonine kinase receptors that bypasses the ligand and the type II receptor. We have used this system to obtain insights into the signaling capabilities and biological activities of the orphan type I receptor ALK7.

The high similarity in the primary sequence of the kinase domain of ALK7 with type I receptors for activin and TGF-β, i.e. ALK4 and ALK5, anticipated further similarities in the signaling mechanisms of these receptors. In agreement with this, we saw very comparable signaling profiles following ALK7 and ALK5 activation in PC12 cells, both in the type of Smad proteins and MAP kinases activated as well as in the transcriptional responses elicited on a variety of TGF-β responsive reporters. A recent study failed to detect activation of Smad2 by a constitutively active ALK7 receptor (28), which is surprising given the universal role played by this Smad in downstream signaling by receptors of the TGF-β and activin subfamily. In addition to the cell type used, a major difference between the present and previous studies that utilized constitutively active forms of type I receptors lies in our ability to control the onset of receptor activity by stimulation with doxycycline. This has allowed us to study the acute effects of ALK7 activation, something that has not been possible in previous experiments that relied on heterogeneous populations of transiently transfected cells.

In agreement with its ability to induce the promoters of cyclin-dependent kinase inhibitors p15INK4B and p21, ALK7 activation had an anti-proliferative effect on PC12 cells. In this regard, ALK7 shares with other type I receptors of the TGF-β superfamily the ability to control the cell cycle and inhibit cell division. Arrest of proliferation is in many neuronal systems a prerequisite for cell differentiation. The effects seen here on PC12 cells suggest that ALK7 signaling may play a similar role in vivo, for example, facilitating the differentiation of mitotically active neuronal precursors. Intriguingly, a site of abundant expression of ALK7 is the developing postnatal cerebellum (9), where the onset of ALK7 expression coincides with cessation of mitosis and neuronal differentiation of granule and Purkinje cells. Together, these observations suggest the possibility that one or more cell types in the developing cerebellum may be a source of ALK7 ligand that, upon activation of the ALK7 receptor complex on precursor cells, induces or facilitates
cell cycle exit and neuronal differentiation.

In line with a role in neuronal differentiation, ALK7 activation in PC12 cells induced a marked and long lasting morphological change, characterized by cell flattening, reduction of actin polymerization, loss of phase brightness and cortical actin filaments, and elaboration of short, blunt cell processes. In particular, the effects of ALK7 activity on the actin cytoskeleton suggest cross-talk with signaling components that regulate actin reorganization, such as the small G proteins of the Rho subfamily. Interestingly, JNK, a downstream effector of the Rho family proteins Rac and cdc42, was also activated by ALK7. Of note, TGF-β has recently been found to regulate the levels of Rho GTPases, and inhibition of Rho function was shown to block the ability of TGF-β1 to induce cytoskeletal reorganization in transformed fibroblasts (29). Although the precise mechanisms by which TGF-β proteins affect the cytoskeleton remain unknown, these and other studies offer possible biochemical links between type I receptor signaling and actin reorganization.

The morphological changes induced by ALK7 activity were quite different from those elicited by NGF, which does not induce cell flattening but stimulates the growth of round, phase bright cell bodies and long, thin neuritic processes. Nevertheless, ALK7 collaborated with NGF in promoting neuronal maturation, as demonstrated by an acceleration of the differentiation process in cells exposed to both signals. In this regard, the effects of ALK7 activation in PC12 cells resemble the “priming” effect of a transient exposure to NGF, which also results in accelerated differentiation during a subsequent encounter with this factor (30). Although a direct extrapolation of the effects of ALK7 on PC12 cells to other cell types expressing endogenous ALK7 in vivo is limited at present, our observations do suggest that this receptor may have effects on cell differentiation beyond the control of proliferation, in particular, in the regulation of cytoskeletal rearrangements and cell morphology.

Unexpectedly, despite the similarities in signaling between ALK7 and ALK5, the latter was unable to induce the kind of morphological changes promoted by ALK7 in PC12 cells. This difference could not have been due to different levels of expression or signaling intensity between the two systems, because all other effects of ALK7 and ALK5 activation were fully comparable in magnitude and duration across several different assays, including Smad and MAP kinase activation, induction of reporter activity, and inhibition of DNA synthesis. On the other hand, the evidence obtained suggests a qualitative difference in the signaling of these two receptors in PC12 cells. Although the underlying mechanism is unclear at the moment, these results suggest that different type I receptors may have distinct biological effects, even if they activate the same complement of Smad proteins.

In conclusion, the orphan receptor serine/threonine kinase ALK7 appears to utilize many of the same signaling mechanisms activated by TGF-β and activin receptors. The biological effects of ALK7 signaling in PC12 cells suggest, however, that some of the signals transmitted by this receptor are distinct, as illustrated by its unique ability to induce morphological and cytoskeletal changes in these cells. Together with its predominantly neuronal pattern of expression, these findings indicate that ALK7 may play a role in the control of proliferation of neuronal precursors and morphological differentiation of postmitotic neurons in several regions of the central nervous system.

Acknowledgments—We are grateful to L. Attisano and J. L. Wrana for the T204D-ALK5 mutant, J. Massague for the p3TP-Lux plasmid, and B. Hujard and M. Gossen for the tetracycline system vectors. We also thank Ann-Sofie Nilsson and Anita Morén for help with protein purification, DNA sequencing, and generation of the Smad antibodies, Annika Ahlström for additional technical assistance, and Xiaoli Li-Ellström for secretarial help.

REFERENCES

1. Massagué, J., and Chen, Y.-G. (2000) Genes Dev. 14, 627–644
2. ten Dijke, P., Miyazono, K., and Heldin, C.-H. (2000) Trends Biochem. Sci. 25, 64–70
3. Wrana, J. (2000) Science’s Signal Transduction Knowledge Environment, The American Association for the Advancement of Science, Washington D. C.
4. Atfi, A., Djelloul, S., Chastre, E., Davis, R. R., and Gespach, C. (1997) J. Biol. Chem. 272, 1429–1432
5. Frey, R. S., and Mulder, K. M. (1997) Cancer Res. 57, 628–633
6. Hartsough, M. T., and Mulder, K. M. (1995) J. Biol. Chem. 270, 7117–7124
7. Wang, W., Zhou, G., Hu, M., Yao, Z., and Tan, T. (1997) J. Biol. Chem. 272, 23771–23775
8. Engel, M. E., McDonnell, M. A., Law, B. K., and Moses, H. L. (1999) J. Biol. Chem. 274, 37413–37420
9. Ryden, M., Imamura, T., Jernvall, H., Belhuard, N., Neveu, I., Trupp, M., Okadome, T., ten Dijke, P., and Baizés, C. F. (1996) J. Biol. Chem. 271, 30603–30609
10. Tsuschka, K., Sawchenko, P. E., Nishikawa, S. I., and Vale, W. W. (1996) Mol. Cell. Neurosci. 7, 467–478
11. Kang, Y., and Reddi, A. H. (1983) Biochem. Mol. Biol. Int. 13, 594–600
12. Lorentzon, M., Hoffer, B., Ebendal, T., Olson, L., and Tomac, A. (1996) Exp. Cell Res. 237, 141–150
13. Kunkel, T. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 48–49
14. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Science 268, 706–716
15. Trupp, M., Scott, R., Whittemore, S. R., and Baizés, C. F. (1999) J. Biol. Chem. 274, 20885–20894
16. Brodin, G., ten Dijke, P., Funke, K., Heldin, C.-H., and Landstrom, M. (1999) Cancer Res. 59, 2731–2738
17. Nakao, A., Imamura, T., Souchelnyski, S., Kawabata, M., Ishiakari, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C.-H., Miyazono, K., and ten Dijke, P. (1997) EMBO J. 16, 5353–5362
18. Persson, U., Izumi, H., Souchelnyski, S., Itoh, S., Grimsey, S., Engstrom, U., Heldin, C.-H., Funke, K., and ten Dijke, P. (1998) FEBS Lett. 434, 83–87
19. Franzen, P., ten Dijke, P., Ichiyo, H., Yamashita, H., Schulz, P., Heldin, C. H., and Miyazono, K. (1993) Cell 75, 681–692
20. Laiho, M., Ronnstrand, L., Heino, J., Decaprio, J. A., Ludlow, J. W., Livingston, D. M., and Massague, J. (1991) Mol. Cell. Biol. 11, 1766–1769
21. Wieser, R., Srivastava, D., and Massague, J. (1994) EMBO J. 13, 2199–2208
22. Gossen, M. L. A., and Tischler, A. S. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 2424–2428
23. Li, J. M., Nichols, M. A., Chandrasekharan, S., Xiong, Y., and Wang, X.-F. (1995) J. Biol. Chem. 270, 26750–26753
24. Datto, M. B., Yu, Y., and Wang, X.-F. (1995) J. Biol. Chem. 270, 26823–26828
25. Carcamo, J., Zentella, A., and Massague, J. (1995) Mol. Cell. Biol. 15, 1573–1581
26. Jonk, L., Itoh, S., Heldin, C. H., ten Dijke, P., and Kruijver, W. (1998) J. Biol. Chem. 273, 21145–21152
27. Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J. M. (1998) EMBO J. 17, 3091–3100
28. Watanabe, R., Yamada, Y., Ibara, Y., Someya, Y., Kubota, A., Kagi, S., Kurone, A., Iwakura, T., Shen, Z. P., Inada, A., Adachi, T., Ban, N., Miyawaki, K., Sunaga, Y., Tsuda, K., and Seino, Y. (1999) Biochem. Biophys. Res. Commun. 254, 707–712
29. Moustakas, A., and Stournaras, C. (1999) J. Cell Sci. 112, 1169–1179
30. Heumann, R., Kachel, V., and Thoenen, H. (1983) Exp. Cell Res. 145, 179–190