Search for the Decays $B^0_{(s)} \to e^+\mu^-$ and $B^0_{(s)} \to e^+e^-$ in CDF Run II

T. Aaltonen,24 J. Adelman,14 T. Akimoto,56 B. Álvarez González,12 S. Amerio,26 D. Amidei,35 A. Anastassov,39 A. Anuovì,29 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 W. Ashmanskas,18 A. Attila,4 A. Arisano,54 F. Azfar,43 P. Azzurri,47 W. Bagdett,18 A. Barbaro-Galtieri,29 V. E. Barnes,49 B. A. Barnett,26 V. Bartsch,31 G. Bauer,33 P.-H. Beauchein,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettini,27 J. Bellinger,60 D. Benjamín,18 A. Beretvas,18 J. Beringer,29 A. Bhati,51 M. Binkley,18 D. Bisello,44 I. Bizjak,31 R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 G. Bolla,59 D. Bortoletto,49 J. Boudreau,48 A. Boveia,11 B. Bran,11 A. Bridgeman,25 L. Brigliadori,44 C. Bromberg,36 E. Brubaker,14 J. Budagov,16 H.S. Budd,50 S. Budu,25 S. Burke,18 K. Burkett,18 G. Bussetto,44 P. Bussey,22 A. Buzatu,34 K. L. Byrum,2 S. Cabrera,17 C. Calancha,52 M. Campanelli,36 M. Campbell,35 F. Canelli,14 A. Canepa,46 B. Carls,25 D. Carlsmith,60 R. Carosi,47 S. Carrillo,19 S. Carron,34 B. Casal,52 M. Casarsa,18 A. Castro,6 P. Catastini,44 D. Cauz,56 V. Cavaliere,47 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerrito,31 S.H. Chang,28 Y.C. Chen,1 M. Chertok,8 G. Chiarelli,18 F. Chlebana,18 K. Cho,28 D. Chokheli,16 J.P. Chou,23 G. Choudalakis,33 S.H. Chung,53 K. Chung,13 W.H. Chung,60 Y.S. Chung,50 T. Chhwak,27 C.I. Ciobanu,45 M.A. Ciocci,47 A. Clark,21 M. Clark,47 G. Compostella,44 M.E. Convey,18 J. Conway,8 M. Cordelli,20 G. Cortiana,44 C.A. Cox,8 D.J. Cox,8 F. Crescioli,47 C. Cuenca Almenera,8 J. Cuevas,18 R. Culbertson,18 J.C. Cully,35 D. Dagenhart,18 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52 A. Deisser,29 G. De Lorenzo,4 M. Dell'Orso,47 J. Deluca,4 L. Demortier,51 J. Deng,17 M. Deninno,6 P.F. Derwent,18 G.P. di Giovanni,45 C. Dionisi,47 B. Di Ruzza,55 J.R. Dittmann,5 M. D'Onofrio,4 S. Donati,47 P. Dong,9 J. Donini,44 T. Dorigo,44 S. Dube,53 J. Efron,40 A. Elagin,54 R. Erbacher,8 D. Errede,25 S. Errede,25 R. Eusebi,18 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feld,51 M. Feindt,27 J.P. Fernandez,32 C. Ferrazza,47 R. Field,49 G. Flanagan,9 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,19 M. Gallinaro,52 J. Galyardt,13 F. Garberson,11 J.E. Garcia,21 A.F. Garfinkel,49 K. Genser,18 H. Gerberich,25 D. Gerdes,35 A. Gessler,27 S. Giaccone,52 V. Giakoumopoulou,3 P. Giannetti,47 K. Gibson,48 J.L. Gimmell,50 C.M. Ginsburg,18 N. Giokaris,3 M. Giordani,55 P. Giromini,50 M. Giunta,47 G. Giurdin,26 V. Glagolev,16 D. Glenzinskas,18 M. Gold,38 N. Goldschmidt,19 A. Golossanov,18 G. Gomez,12 G. Gomez-Ceballos,33 M. Goncharov,33 O. Gontález,32 I. Gorelov,43 A.T. Goshaw,17 K. Goulianos,51 A. Gresele,44 S. Grinstein,23 C. Grosso-Pilcher,14 R.C. Group,18 U. Grander,25 J. Guimarães da Costa,23 Z. Gunay-Unalan,36 C. Haber,29 K. Hahn,33 S.R. Hahn,18 E. Halkiadakis,53 B.-Y. Han,50 J.Y. Han,50 F. Happacher,20 K. Hara,56 D. Hare,53 M. Hare,37 S. Harper,43 R.F. Harr,59 R.M. Harris,18 M. Hartz,48 K. Hatakeyama,51 C. Hays,43 M. Heck,27 A. Heijboer,46 J. Heinrich,16 C. Henderson,33 M. Herndon,60 J. Heuser,27 S. Hewamanage,3 D. Hidas,17 C.S. Hill,11 D. Hirschbuehl,27 A. Hocker,18 S. Hou,5 M. Houlden,30 S.-C. Hsu,29 B.T. Huffman,43 R.E. Hughes,40 U. Hussemen,61 M. Hussein,36 J. Huston,36 J. Incandela,11 G.Introcco,17 M. Iori,47 A. Ivanov,8 E. James,18 D. Jang,13 B. Jayatilaka,17 E.J. Jeon,28 M.K. Jha,6 S. Jindariani,18 W. Johnson,8 M. Jones,49 K.K. Joo,28 S.Y. Jun,13 J.E. Jung,28 T.R. Junk,18 T. Kamon,54 D. Kar,19 P.E. Karchin,59 Y. Kato,42 R. Kephart,18 J. Keung,46 V. Khotilovich,54 B. Kilminster,18 D.H. Kim,28 H.S. Kim,28 H.W. Kim,28 J.E. Kim,29 M.J. Kim,29 S.B. Kim,28 S.H. Kim,56 Y.K. Kim,14 N. Kimura,56 L. Kirsch,7 S. Klimentov,19 B. Knuteson,33 B.R. Ko,17 K. Kondo,58 D.J. Kong,28 J. Kongisberg,19 A. Korytov,19 A.V. Kotwal,17 M. Kreps,27 J. Kroll,46 D. Krop,14 N. Krumnack,5 M. Kruse,17 V. Krutelyov,11 T. Kubo,56 T. Kuhr,27 N.P. Kulkarni,59 M. Kurata,56 S. Kwang,14 A.T. Laassen,49 S. Lami,47 S. Lammel,18 M. Lancaster,31 R.L. Landau,8 K. Lannon,40 A. Lath,53 G. Latino,47 I. Lazzizzera,47 T. LeCompte,2 E. Lee,54 H.S. Lee,14 S.W. Lee,54 S. Leone,47 J.D. Lewis,47 C.-S. Lin,29 J. Linacre,43 M. Lindgren,18 E. Lipeles,46 A. Lister,8 D.O. Litvinvetv,18 C. Liu,48 T. Liu,18 N.S. Lockyer,46 A. Logino,61 M. Loretij,44 L. Lovas,15 D. Luchessi,44 C. Luci,42 J. Lukec,27 P. Lukanj,29 P. Lukens,18 G. Lungu,51 L. Lyons,43 J. Lys,29 R. Lysak,15 D. MacQueen,44 R. Madrak,18 K. Maeshima,18 K. Makhoul,33 T. Maki,24 P. Maksimovic,26 S. Malde,43 S. Malik,31 G. Manca,30 A. Manousakis-Katsikakis,7 F. Margaroli,49 C. Marino,27 C.P. Marino,25 A. Martin,61 V. Martin,42 M. Martínez,4 R. Martínez-Ballarín,23 T. Maruyama,50 P. Mastrodouglas,52 T. Masubuchi,56 M. Mathis,26 M.E. Mattson,59 P. Mazzanti,5 K.S. McFarland,50 P. McIntyre,54 R. McNulty,30 A. Mehta,30 P. Mehtala,24 A. Menzione,47 P. Merkel,49 C. Mesropian,51 T. Miao,18 N. Miladinovic,7 R. Miller,36 C. Mills,23 M. Milnik,27 A. Mitra,1 G. Mitselmakher,19 H. Miyake,56 N. Moggi,6 C.S. Moon,28 R. Moore,19 M.J. Morillo,47 J. Morlock,27 P. Movilla Fernandez,18 J. Mühlenscheidt,29 A. Mukherjee,18 Th. Muller,27 R. Mumford,26 P. Murat,18 M. Mussini,7 J. Nachtman,18 Y. Nagai,56 A. Nagan,56 J. Naganoma,56 K. Nakamura,56 I. Nakano,41 A. Napier,57 V. Necula,17
We report results from a search for the lepton flavor violating decays $B_{d(s)}^{0} \rightarrow e^{+} \mu^{-}$, and the flavor-changing neutral-current decays $B_{d(s)}^{0} \rightarrow e^{+}e^{-}$. The analysis uses data corresponding to 2 fb$^{-1}$ of integrated luminosity of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. The observed number of $B_{d(s)}^{0}$ candidates is consistent with background expectations. The resulting Bayesian upper limits on the branching ratios at 90% credibility level are $B(B_{d}^{0} \rightarrow e^{+} \mu^{-}) < 2.0 \times 10^{-7}$, $B(B_{d}^{0} \rightarrow e^{+} \mu^{-}) < 6.4 \times 10^{-8}$, $B(B_{s}^{0} \rightarrow e^{+}e^{-}) < 2.8 \times 10^{-7}$, and $B(B_{s}^{0} \rightarrow e^{+}e^{-}) < 8.3 \times 10^{-8}$. From the limits on $B(B_{d(s)}^{0} \rightarrow e^{+} \mu^{-})$, the following lower bounds on the Pati-Salam leptoquark masses are also derived: $M_{LQ}(B_{d(s)}^{0} \rightarrow e^{+} \mu^{-}) > 47.8$ TeV/c2, and $M_{LQ}(B_{d}^{0} \rightarrow e^{+} \mu^{-}) > 59.3$ TeV/c2, at 90% credibility level.

PACS numbers: 13.20.He 13.30.Ce 12.15.Mn 12.60.-i
Rare particle decays that are either forbidden within the standard model of particle physics (SM), or are expected to have very small branching ratios provide excellent signatures with which to look for new physics and allow to probe subatomic processes that are beyond the reach of direct searches. The decays $B^0_s \rightarrow e^+\mu^-$ [1] are forbidden within the SM, in which lepton number and lepton flavor are conserved. However the observation of neutrino oscillations indicates that lepton flavor is not conserved. To date, no lepton flavor violating (LFV) decays in the charged sector such as $B^0_s \rightarrow e^+\mu^-$ have been observed. These decays are allowed in models where the SM has been extended by heavy singlet Dirac neutrinos [2]. The LFV decays are also allowed in some physics scenarios beyond the SM, such as the Pati-Salam model [3] and supersymmetry (SUSY) models [4]. The grand-unification theory by J. Pati and A. Salam predicts a new interaction to mediate transitions between leptons and quarks via exchange of spin-1 gauge bosons, which are called Pati-Salam leptoquarks (LQ), that carry both color and lepton quantum numbers [3]. The lepton and quark components of the leptoquarks are not necessarily from the same generation [4], and the decays $B^0 \rightarrow e^+\mu^-$ and $B^0 \rightarrow e^+\mu^-$ can be mediated by different types of leptoquarks. Processes involving flavor-changing neutral currents (FCNCs) can occur in the SM only through higher-order Feynman diagrams where new physics contributions can provide a significant enhancement. Compared to $B^0 \rightarrow \mu^+\mu^-$ [5,6], the FCNC decays of $B^0_s \rightarrow e^+\mu^-$ are further suppressed by the square of the ratio of the electron and muon masses $(m_e/m_\mu)^2$. The SM expectations for branching ratios of $B^0_s \rightarrow e^+\mu^-$ are of the order of 10^{-15} [8].

In this Letter we report on a search for the LFV decays $B^0_s \rightarrow e^+\mu^-$ and the FCNC decays $B^0_s \rightarrow e^+e^-$, using a data sample corresponding to 2 fb$^{-1}$ of integrated luminosity collected in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. With no evidence for either the LFV or FCNC decays, we set upper limits on their branching ratios using the common reference decay $B^0 \rightarrow K^+\pi^-$, which has a precisely-known branching ratio. This is the first time a search for $B^0_s \rightarrow e^+e^-$ has been performed.

A detailed description of the CDF II detector can be found in Ref. [9]. Here we give a brief description of the detector elements most relevant to this analysis. Charged particle tracking is provided by a silicon microstrip detector together with the surrounding open-cell wire drift chamber (COT), both immersed in a 1.4 T axial magnetic field. The tracking system provides precise vertex and momentum measurement for charged particles in the pseudorapidity range $|\eta| < 1.0$ [10]. Surrounding the tracking system are electromagnetic (CEM) and hadronic sampling calorimeters, arranged in a projective geometry. Drift chambers and scintillation counters are located behind the calorimeters to detect muons within $|\eta| < 0.6$ (CMU) and $0.6 < |\eta| < 1.0$ (CMX).

We use a data sample enriched in two-body $B-$decays selected by a three-level trigger system using the extremely fast tracker [11] at level-1, and the silicon vertex trigger [12] at level-2. The trigger requires two oppositely-charged tracks, each with a transverse momentum $p_T > 2$ GeV/c, and an impact parameter $0.1 < d_0 < 1$ mm. It also requires the scalar sum of the transverse momenta of the two tracks to be greater than 5.5 GeV/c, the difference in the azimuthal angles of the tracks $20^\circ < \Delta \phi < 135^\circ$, and a transverse decay length $L_{xy} > 200$ μm. At the level-3 trigger stage, and in the offline analysis, the trigger selections are enforced with a more accurate determination of the same quantities. In the off-line analysis, additionally we require: the $B-$meson isolation $I > 0.675$ [13], the pointing angle $\Delta \phi < 6.3^\circ$ [14], and a tighter selection of $L_{xy} > 375$ μm. These three thresholds were optimized in an unbiased way to obtain the best sensitivity for the searches using the procedure described in Ref. [17].

Electron and muon identification is applied in the selection of $B^0_s \rightarrow e^+\mu^-$ and $B^0_s \rightarrow e^+e^-$ decay modes. The electron identification [15] requires that both the specific ionization (dE/dx) measured in the COT, and the transverse and longitudinal shower shape as measured in the CEM, be consistent with the hypothesis that the particle is an electron. The performance of electron identification is optimized using pure electron samples reconstructed from $\gamma \rightarrow e^+e^-$ conversions and hadron and muon samples from $D^0 \rightarrow K^-\pi^+$, $\Lambda \rightarrow p\pi^-$, and $J/\psi \rightarrow \mu^+\mu^-$ decays. We find the identification efficiency to be around 70% for electrons. The muon identification starts from tracks in the COT that are extrapolated into the muon detectors and are required to match hits in the muon systems. The muon selection is fully efficient for muons with $p_T > 2$ GeV/c in CMU or CMX.

The mass resolution σ_m of fully-reconstructed $B-$meson decays to two charged particles is about 28 MeV/c2. Energy loss due to bremsstrahlung by electrons generates a tail on the low side of the mass distribution. This tail is more prominent for the $B^0_s \rightarrow e^+e^-$ channels, where two electrons are involved. We define search windows of $(5.262 - 5.477)$ GeV/c2 for $B^0_s \rightarrow e^+\mu^-$.
and \((5.171-5.387) \text{ GeV} / c^2\) for \(B^0 \rightarrow e^+ \mu^-\). These correspond to a window around the nominal values of the \(B^0_s\) and \(B^0\) masses \(^{15}\) of approximately \(\pm 3 \sigma_m\). To recover some of the acceptance loss due to electron bremsstrahlung for the \(B^0_s \rightarrow e^+ e^-\) channels, we choose wider and asymmetric search windows ranging from 6 \(\sigma_m\) below to 3 \(\sigma_m\) above the nominal values of the \(B^0_s\) and \(B^0\) masses. The search windows are \((5.154-5.477) \text{ GeV} / c^2\) for the \(B^0\) and \((5.064-5.387) \text{ GeV} / c^2\) for the \(B^0_s\). The sideband regions \((4.800-5.028) \text{ GeV} / c^2\) and \((5.549-5.800) \text{ GeV} / c^2\) are used to estimate the combinatorial backgrounds.

The background contributions considered include combinations of random track pairs and partial \(B\) decays that accidentally meet the selection requirement (combinatorial), and hadronic two-body \(B\) decays in which both final particles are misidentified as leptons. The combinatorial background is evaluated by extrapolating the normalized number of events found in the sidebands to the signal region. The double-lepton misidentification rate is determined by applying electron and muon misidentification probabilities to the number of two-body decays found in the search window.

Figure 1 shows the invariant mass distribution for \(e^+ \mu^-\) candidates. We observe one event in the \(B^0_s\) mass window, and two events in the \(B^0\) mass window, consistent with the estimated total background of 0.8 ± 0.6 events in the \(B^0_s\) search window, and 0.9 ± 0.6 in the \(B^0\) window. The combinatorial background in both channels is estimated to be 0.7 ± 0.6 events. The number of events where two tracks are misidentified as electron and muon is estimated to be 0.09 ± 0.02 for the \(B^0_s\) case and 0.22 ± 0.04 for the \(B^0\) case.

Figure 2 shows the invariant mass distributions for \(e^+ \mu^-\) candidate pairs where both tracks were identified as electrons. We observe one event in the \(B^0_s\) mass window, and two events in the \(B^0\) mass window. We estimate the total background contributions to be 2.7 ± 1.8 events in both the \(B^0_s\) and \(B^0\) mass windows. The dominant contribution comes from combinatorial background: 2.7 ± 1.8 compared to the contribution where both tracks are misidentified as electrons: 0.038 ± 0.008 for both \(B^0_s\) or \(B^0\).

We use the reference decay \(B^0 \rightarrow K^+ \pi^-\) to set a limit on \(B(B^0_s \rightarrow e^+ \ell^-)\) (where \(\ell\) is either \(e\) or \(\mu\)), using the following expression:

\[
B(B^0_s \rightarrow e^+ \ell^-) = \frac{N(B^0_s \rightarrow e^+ \ell^-) \cdot B(B^0 \rightarrow K^+ \pi^-) \cdot f_d / f_s}{N(B^0 \rightarrow K^+ \pi^-) \cdot \epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-} \cdot \alpha_{e \rightarrow e^+ \ell^-} \cdot \alpha_{K^+ \pi^-}}.
\]

The expression for the \(B^0\) channels is identical, except that the ratio of \(b\)-quark fragmentation probabilities: \(f_d / f_s\) is not present. In the expression, \(N(B^0_s \rightarrow e^+ \ell^-)\) is the calculated upper limit on the number of \(B^0_s \rightarrow e^+ \ell^-\) events, \(N(B^0 \rightarrow K^+ \pi^-)\) is the observed number of events from the reference channel \(B^0 \rightarrow K^+ \pi^-\), \(B(B^0 \rightarrow K^+ \pi^-) = (19.4 \pm 0.6) \times 10^{-6}\) \(^{15}\) is the branching ratio for the \(B^0 \rightarrow K^+ \pi^-\) decay, and \(\epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-}\) is the detector acceptance and event selection efficiency for reconstructing \(B^0 \rightarrow e^+ \ell^-\) decays relative to that for \(B^0 \rightarrow K^+ \pi^-\). The value of \(f_d / f_s\) is 3.86 ± 0.59, where the (anti)-correlation between the uncertainties has been accounted for \(^{21}\). To calculate the detector acceptance, we use simulated events with a detailed simulation of the CDF II detector and event selection. We obtain \(\epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-} = 0.207 \pm 0.016, \epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-} = 0.210 \pm 0.012, \epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-} = 0.129 \pm 0.011,\) and \(\epsilon_{e \rightarrow e^+ \ell^-} \cdot \epsilon_{K^+ \pi^-} = 0.128 \pm 0.011\). The uncertainties listed above are the combined statistical and systematic uncertainties. The later include uncertainties from detector fiducial coverage, electron and muon identification efficiencies, detector material determination, \(B^0\) \(p_T\) spectrum, and \(B^0_s\) lifetimes. The reference channel \(B^0 \rightarrow K^+ \pi^-\) has been reconstructed using the same selection criteria except lepton identification. We find 6387 ± 214 \(B^0 \rightarrow K^+ \pi^-\) events, using a fitting procedure similar to that described in Ref. \(^{21}\).

The upper limit on the branching ratio in each search window is obtained using the Bayesian approach \(^{19}\), assuming a flat prior, and incorporating Gaussian uncertainties into the limit. The total systematic uncertainties, listed in Table 1 are used as input for the limit calculation. Table 1 lists the upper limits we obtain on the branching ratios at 90% (95%) credibility level (C.L.).

Within the Pati-Salam leptoquark model, the following relationship between the \(B(B^0_s \rightarrow e^+ \mu^-)\) and the leptoquark mass \((M_{LQ})\) can be derived \(^{3}\):

\[
B(B^0_s \rightarrow e^+ \mu^-) = \pi \alpha_e^2 (M_{LQ}) \frac{1}{M_{LQ}} F_{B^0} \cdot m_{B^0}^3 \cdot \tau_{B^0} \cdot R \cdot \frac{M_{LQ}}{h},
\]

where \(R = \frac{m_{B^0}}{m_{B^0}} \left(\frac{\alpha_e (M_{LQ})}{\alpha_e (m_t)} \right)^{-4} \left(\frac{\alpha_e (m_t)}{\alpha_e (m_b)} \right)^{-12}\). The values and uncertainties of the quantities used in the calculation of \(M_{LQ}\) are the following \(^{10}\): the top-quark mass \(m_t\) \((171.2 \pm 2.1 \text{ GeV} / c^2)\), the bottom quark mass \(m_b\) \((4.20 \pm 0.17 \text{ GeV} / c^2)\), the charm quark mass \(m_c\) \((1.27 \pm 0.11 \text{ GeV} / c^2)\), the \(B^0\)-meson mass \(m_{B^0}\) \((5.2793 \pm 0.00033 \text{ GeV} / c^2)\), the \(B^0_s\)-meson mass \(m_{B^0_s}\) \((5.3663 \pm 0.0006 \text{ GeV} / c^2)\), the \(B^0\)-meson lifetime \(\tau_{B^0}\) \((1.530 \pm 0.009 \text{ ps})\), the \(B^0_s\)-meson lifetime \(\tau_{B^0_s}\) \((1.470 \pm 0.027 \text{ ps})\), the coupling strength \(F_{B^0}\) \((0.178 \pm 0.014 \text{ GeV})\), and \(F_{B^0}\) \((0.200 \pm 0.014 \text{ GeV})\) \(^{22}\). For the strong coupling constant we use \(\alpha_e (M_{Z^0}) = 0.115\), which is evolved to \(M_{LQ}\) using the Marciano approximation \(^{22}\) assuming no colored particles exist with masses between \(m_t\) and \(M_{LQ}\). Using the limits on the branching ratios listed in Table 1, we calculate limits on the masses of the corresponding Pati-Salam leptoquarks of \(M_{LQ}(B^0_s \rightarrow e^+ \mu^-) > 47.8 (44.9) \text{ TeV} / c^2\) and \(M_{LQ}(B^0 \rightarrow e^+ \mu^-) > 59.3 (56.3) \text{ TeV} / c^2\) at 90 (95)% C.L. Figure 3 shows the limit and the relation between the leptoquark mass and the branching ratio for the \(B^0_s\) meson.
TABLE I: Values used to calculate the limits on $B(B^{0}_s \to e^+\mu^-)$ and $B(B^{0}_s \to e^+e^-)$ and their uncertainties.

Source	Values	$B(B^{0}_s \to e^+\mu^-)$	$B(B^{0}_s \to e^+\mu^-)$	$B(B^{0}_s \to e^+\mu^-)$	$B(B^{0}_s \to e^+e^-)$
$N(B^{0} \to K^+\pi^-)$	6387 ± 214	3.4%	3.4%	3.4%	3.4%
$B(B^{0} \to K^+\pi^-)$	$(19.4 \pm 0.6) \times 10^{-6}$	3.1%	3.1%	3.1%	3.1%
f_{B^0}/f_{B^0}	3.86 ± 0.59	15.3%	-	15.3%	-
$\epsilon_{B_s^{\text{rel}}}$	0.207 ± 0.016	7.6%	-	-	-
$\epsilon_{B_s^{\text{rel}}}$	0.210 ± 0.012	5.9%	-	-	-
$\epsilon_{B_s^{\text{rel}}}$	0.129 ± 0.011	8.9%	-	-	-
$\epsilon_{B_s^{\text{rel}}}$	0.128 ± 0.011	8.9%	-	-	-
Total	17.7%	7.5%	18.3%	10.0%	

TABLE II: Branching ratio limits at 90 (95) % C.L.

- $B(B^{0}_s \to e^+\mu^-) < 2.0 (2.6) \times 10^{-7}$
- $B(B^{0}_s \to e^+\mu^-) < 6.4 (7.9) \times 10^{-8}$
- $B(B^{0}_s \to e^+e^-) < 2.8 \times 10^{-7}$
- $B(B^{0}_s \to e^+e^-) < 8.3 \times 10^{-8}$

In summary, we report on a search for the lepton flavor violating decays $B^{0}_{(s)} \to e^+\mu^-$ and the flavor changing neutral current decays $B^{0}_{(s)} \to e^+e^-$ using data corresponding to 2 fb$^{-1}$ of integrated luminosity collected in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. This is the first search for $B^{0}_{(s)} \to e^+e^-$ decays. We observe no evidence for these decays and set limits that are the most stringent to date. These results represent a significant improvement compared to the previous measurements by CDF and the best results from B-Factories.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministro de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[1] Throughout this Letter inclusion of charge conjugate reactions is implied.

[2] A. Ilakovac, Phys. Rev. D 62, 036010 (2000).

[3] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).

[4] R. A. Diaz, R. Martinez, C. E. Sandoval, Eur. Phys. J. C 41, 305 (2005).

[5] G. Valencia and S. Willenbrock, Phys. Rev. D 50, 6843 (1994).

[6] M. Blanke et al. J. High Energy Phys. 05 (2007) 103.

[7] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 101802 (2008).

[8] M. Misiak and J. Urban, Nucl. Phys. B548, 309 (1999).

[9] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); and references therein.

[10] The polar angle (θ) in cylindrical coordinates is measured with respect to the proton beam direction, which defines the z-axis. Pseudorapidity (η) is defined as $\eta = -\ln(\tan \frac{\theta}{2})$.

[11] E.J. Thomson et al., IEEE Trans. Nucl. Sci. 49, 1063 (2002).

[12] W. Ashmanskas et al., Nucl. Instrum. Methods A518, 532 (2004).

[13] The impact parameter d_0 is the distance of closest approach of the track to the beam line.

[14] F. Abe et al. (CDF Collaboration), Phys. Rev. D 57, 5382 (1998).

[15] Due to the hard b-quark fragmentation, B-mesons carry most of the momentum of the b-quark. The isolation is defined as $I = p_T(B)/\left(\sum p_T + p_T(B)\right)$, where $p_T(B)$ is the transverse momentum of the B candidate, and the sum runs over all other tracks within a cone of radius 1 in $\eta - \phi$ space around the B flight direction.

[16] For track pairs coming from the two-body decay of a B, the vector pointing from the primary vertex to the B decay vertex in the transverse plane l_{xy} should point in the same direction as the transverse momentum vector $p_T(B)$ of the B candidate. $\Delta \phi$ is defined as the angle between l_{xy} and $p_T(B)$.

[17] G. Punzi, arXiv:physics/0308063v2.

[18] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 012002 (2006).

[19] C. Amsler et al., Physics Letters B667, 1 (2008)

[20] Heavy Flavor Averaging Group, arXiv:hep-ex/0704.3575v1.

[21] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 211802 (2006).

[22] J. Bordes et al. J. High Energy Phys. 12 (2004) 064.

[23] W. J. Marciano, Phys. Rev. D 29, 580 (1984).

[24] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 81, 5742 (1998).

[25] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 251803 (2007).

[26] M. C. Chang et al. (Belle Collaboration), Phys. Rev. D 68, 111101 (2003).

[27] T. Bergfeld et al. (CLEO Collaboration), Phys. Rev. D 62, 091102 (2000).