Epidemiology of Sepsis-associated Acute Kidney Injury in Beijing, China: a descriptive analysis

Haiman Wang
Beijing Friendship Hospital

Xiaojun Ji
Beijing Friendship Hospital

Amanda Y Wang
UNSW Sydney

Patrick Wu
Queen Mary Hospital

Zhuang Liu
Beijing Friendship Hospital

Lei Dong
Beijing Friendship Hospital

Jingfeng Liu
Beijing Friendship Hospital

Pei Liu
Beijing Friendship Hospital

Zhili Qi
Beijing Friendship Hospital

Meili Duan (dmeili@bfh.com.cn)
Beijing Friendship Hospital

Research Article

Keywords: Epidemiology, Sepsis-associated acute kidney injury, Traditional Chinese medicine hospitals, Western medicine hospitals

DOI: https://doi.org/10.21203/rs.3.rs-136890/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Sepsis is the most common contributing factor towards development of acute kidney injury (AKI), which is strongly associated to poor prognostic outcomes. There are numerous epidemiological studies about sepsis-associated acute kidney injury (S-AKI), however current literature is limited with the majority of studies being conducted only in the intensive care unit (ICU) setting. The aim of this study was to assess the epidemiology of S-AKI in all hospitalized in-patients.

Methods This was a retrospective population-based study using a large regional population database in Beijing city from January, 2005 to December, 2017. It included patients with S-AKI. Patients with pre-existing end-stage kidney disease (ESKD), previous history of kidney transplantation, or being pregnant were excluded. Patients’ demographic characteristics, incidence, risk factors and outcomes of S-AKI were analyzed. The differences between different time periods, different levels of hospitals, and types of the hospitals (i.e. traditional Chinese medicine hospitals (TCMHs) and Western medicine hospitals (WMHs)) were also compared using Mann-Whitney U test.

Results A total of 19,579 patients were included. The overall incidence of S-AKI in all in-patients was 48.1%. The risk factors for AKI included: age (P < 0.001), male (P < 0.001), treatment in a level-II hospital (P < 0.001) and so on. The overall mortality rate in this cohort was 55%. The risk factors for mortality included: age (P < 0.001), female (P < 0.001), pre-existing chronic kidney disease (CKD) (P = 0.023) and so on. The incidence of S-AKI increased over time, but the mortality rate did not. Compared with level-II hospitals, the incidence of S-AKI was similar in tertiary hospitals, but the mortality rate was significantly higher.

Although patients treated in TCMHs had a shorter hospital stay and a lower cost of care, this cohort had a higher mortality rate when compared with patients treated in WMHs.

Conclusions AKI is a common complication in all hospitalized patients with sepsis, and its incidence increases over time, especially when ICU admission is required. Exploring interventional strategies to address modifiable risk factors will be important to reduce incidence and mortality of S-AKI.

Background

Acute Kidney Injury (AKI) is common in critically ill patients. Approximately one out of three patients in intensive care unit (ICU) develop AKI, and its incidence is increasing from 35.8–50.4% \(^1\text{-}^5\).

Critically ill patients with AKI carries high mortality rates of up to 60% \(^6\). Survivors following an episode of severe AKI in ICU have an increased risk of developing chronic kidney disease and end-stage kidney disease, cardiovascular disease and are associated with reduced quality of life \(^7\text{-}^8\).

Sepsis remains the most common cause of AKI in the critically ill patients \(^7\text{-}^9\). There are numerous studies that have evaluated the epidemiology of S-AKI. The largest study to date by Bagshaw et al \(^10\), involving
57 Australian ICUs with >120,000 critically ill patients, reported a S-AKI incidence of only 11.7%. However, the incidence of S-AKI was reported higher in the Chinese literature, ranging from 45%-51% 5,11,12. The difference in incidence could be attributed to differences in ethnic backgrounds and different AKI diagnostic criteria used in different studies. Furthermore, the existing studies on incidence of S-AKI in Chinese population were mainly derived from ICU data, which is not representative of the whole population. Furthermore, there is paucity of information on incidence and outcomes of S-AKI among different levels and types of healthcare system.

Therefore, the objective of this study was to assess the epidemiology of S-AKI in both ICU and non-ICU patients from all the level-II and tertiary hospitals in Beijing, China. The study also compares the differences between the level-II and tertiary level of hospitals as well as between TCMHs and WMHs on the incidence and outcomes of S-AKI, in order to provide greater insight into the burden of this condition in China, which is essential for the planning and assessment of interventional strategies to improve clinical outcomes.

Methods

Study population

We conducted this retrospective study including hospitalized patients from 1 January, 2005 to 31 December, 2017 in Beijing, China. Patients with S-AKI were identified using the Primary International Classification of Diseases, 10th revision (ICD-10) codes.

The inclusion criteria consisted of: (1) adult patients (age ≥ 18 years), (2) hospital stay longer than 24 hour in duration and (3) diagnosis consistent with sepsis (A41.9 based on ICD-10 classification).

The exclusion criteria consisted of: (1) pre-existing end-stage kidney disease (ESKD), (2) patients who had received kidney transplantation or (3) pregnant patients. All methods in this study were performed in accordance with the relevant guidelines and regulations. This study was approved by the research ethics committee of Beijing Friendship Hospital (Reference Number: 2020-P2-089-01). Because this was a retrospective observational study, an informed consent was exempted by the research ethics committee of Beijing Friendship Hospital.

Definitions of S-AKI

Since the publication of the RIFLE consensus classification for AKI, and the modifications by the Acute Kidney Injury Network (AKIN), and Kidney Disease Improving Global Outcomes (KDIGO), these definitions have been used in the majority of studies reporting on AKI 13–15.

Our AKI definition followed the AKIN criteria 15 from the 2005–2011 period and the KDIGO criteria from 2012 onwards 13. Given that the values of serum creatinine level and urine volume could not be obtained, the diagnosis of AKI was extrapolated directly from the database using the ICD-10 code. We used the A41.9 code as the diagnosis of sepsis and the N17.9 code as the diagnosis of AKI.
Statistical analysis

Patients’ demographic characteristics were presented using proportions for categorical variables, mean (standard deviation) or median (interquartile range) as appropriate for continuous variables. Continuous variables were compared using the Student’s t-test or Mann-Whitney U test according to data distribution, while categorical variables were compared using the chi-square test. Based on existing knowledge, the following variables: age, age stratification, gender, hospital levels, time interval, comorbidities (including diabetes mellitus (DM), hypertension (HT), CKD stage 2 and stage 3, malignancy and cirrhosis), ICU admission, types of infection and types of organ function damage were selected and constructed in multivariate analysis to assess the risk factors of S-AKI.

Logistic regression was used to assess the associations of patients characteristics including age, gender, medical insurance patterns, hospital levels, comorbidities, infection sites, presence of organ dysfunction with AKI among patients with sepsis, and with in-hospital death in patients with AKI, respectively.

Pre-specified subgroup analyses included level II versus tertiary hospitals, TCMHs versus WMHs, and pre-KDIGO guideline era (2005–2011) and post-KDIGO guideline era (2012–2017).

Participants were divided into four subgroups based on age: 18–39 years old, 40–59 years old, 60–79 years old, 80 years old and above.

Log-rank tests were used to compare hospital survival rates between groups. A p value of < 0.05 was considered statistically significant. All analyses were conducted with SAS 9.4 (SAS Institute Inc., Cary, North Carolina).

Results

Among 108,848 patients’ data obtained from a hospitalised registration system in Beijing, China, a total of 40,720 septic patients were included in the final analysis, of which 19,579 met the criteria for S-AKI. The average age was 78 years old, with 62.7% were male. Majority of the patients (90.1%) were admitted to a tertiary hospital who were generally admitted from the emergency department (60%).

Compared with septic patients without concurrent AKI, S-AKI patients were older, predominantly male, and have more significant comorbidities (including HT, DM, chronic kidney disease (CKD), cirrhosis and underlying malignancy).

Patients who experienced an episode of shock of any form (i.e. hypovolaemic, cardiogenic or septic) were more susceptible to AKI. Majority of the patients (77.4%) with S-AKI had pneumonia. Approximately, every 1 in 3 patients (34.3%) with S-AKI required an ICU admission. Compared with septic patients without concurrent AKI, patients with S-AKI had longer hospital length of stays and were associated with significantly higher average daily costs (P < 0.001) and overall costs (P < 0.001). The demographic and clinical characteristics of these patients are presented in Table 1.
Table 1
Baseline clinical characteristics of sepsis patients with and without AKI

Variables	Sepsis with AKI (n = 19579)	Sepsis without AKI (n = 21141)	P value
Age median [IQR]	78(64–84)	75(59–83)	< 0.001
Age stratification (years)			
18–39	949(4.8)	1703(8)	< 0.001
40–59	2663(13.6)	3633(17.2)	
60–79	7304(37.2)	7761(36.7)	
≥ 80	8693(44.3)	8059(38.1)	
Gender			
Female	7294(37.3)	8272(39.1)	< 0.001
Male	12285(62.7)	12869(60.9)	
Classification of insurance			
BMI	10825(55.3)	11601(54.9)	< 0.001
RCMTI	1485(7.6)	1612(7.6)	
GMP	3306(16.9)	3345(15.8)	
OPP	1261(6.4)	1175(5.6)	
Others	2702(13.8)	3408(16.1)	
Hospital level			
Tertiary hospitals	17519(89.5)	19151(90.6)	< 0.001
Second-class hospital	2060(10.5)	1990(9.4)	
Hospital nature			
Western Medicine hospital	18006(92)	19412(91.8)	0.59
Hospital of TCM	1573(8)	1729(8.2)	
Time interval (year)			
2005–2011	1468(7.5)	2228(10.5)	< 0.001
2012–2017	18111(92.4)	18913(89.4)	
Comorbidities (n)			
Diabetes	7024(35.8)	6571(31.1)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	Sepsis with AKI (n = 19579)	Sepsis without AKI (n = 21141)	P value
Hypertension	10227(52.2)	9573(45.2)	< 0.001
CKD stage 2 and 3	2944(15)	1655(7.8)	< 0.001
Malignancy	3750(19.1)	3832(18.1)	0.01
Cirrhosis	800(4.1)	592(2.8)	< 0.001
ICU	6725(34.3)	4642(21.9)	< 0.001
Types of shock			
No shock	14617(74.5)	19233(90.9)	< 0.001
Septic shock	3422(17.5)	1073(5.1)	< 0.001
Hypovolemic shock	988(5)	593(2.8)	< 0.001
Cardiac shock	939(4.8)	357(1.7)	< 0.001
Two or more kinds of shock	345(1.8)	96(0.5)	< 0.001
Types of infection			
Pneumonia	15176(77.4)	14858(70.2)	< 0.001
Urinary infection	1492(7.6)	1906(9)	< 0.001
Intra-abdominal infection	1782(9.1)	1792(8.5)	0.03
CRBSI	657(3.4)	472(2.2)	< 0.001
CNS infection	47(0.2)	67(0.3)	0.14
Others	3229(16.5)	4510(21.3)	< 0.001
Types of organ function damage			
Respiratory insufficiency	11797(60.2)	8032(38)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	Sepsis with AKI (n = 19579)	Sepsis without AKI(n = 21141)	P value
Acute liver injury | 4000(20.4) | 3518(16.6) | < 0.001
DIC | 680(3.5) | 195(0.9) | < 0.001
MODS | 3386(17.3) | 1117(5.3) | < 0.001
Metabolic encephalopathy | 238(1.2) | 124(0.6) | < 0.001
Expenses | Total expense | 60242.42(28580.86-122460.29) | 39853.56(18844.39-81420.71) | < 0.001
Average daily expense | 5272.18(3190.64-8583.87) | 3224.33(1862.96-5593.4) | < 0.001
Western medicine expense | 13885.26(5645.02-30424.3) | 9700.77(3298.62-22050.47) | < 0.001
Chinese medicine expense | 94.74(0-854.43) | 77.75(0-623.56) | < 0.001
Outcome | Length of hospital stay (day) | 13(6–23) | 13(7–22) | < 0.001
Death(n) | 10647(55) | 6157(29.3) | < 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).

Incidence and risk factors of S-AKI

The incidence of S-AKI in all inpatients was 48.1%, which was higher in ICU patients than non-ICU patients (59.2% versus 31.6%, p < 0.001).

In multivariate analysis, the following independent risk factors for S-AKI were identified: age (odds ratio(OR) = 1.00, 95%CI (1.00–1.00), P < 0.001), male (OR = 1.13, 95%CI (1.08–1.19), P < 0.001), uninsured (OR = 1.33, 95%CI (1.47–1.22), P < 0.001), being treated in a level-II hospital (OR = 1.18, 95%CI (1.10–1.27), P < 0.001), pre-existing hypertension (OR = 1.20, 95%CI (1.14–1.26), P < 0.001), CKD (OR = 1.94, 95%CI (1.80–2.08), P < 0.001), malignancy (OR = 1.20, 95%CI (1.14–1.26), P < 0.001), cirrhosis (OR = 1.69, 95%CI (1.49–1.91), P < 0.001), emergency admission (OR = 1.69, 95%CI (1.49–1.91), P < 0.001), ICU admission (OR = 1.2, 95%CI (1.14–1.26), P < 0.001), shock (OR = 1.2, 95%CI (1.14–1.26), P < 0.001),
pneumonia (OR = 1.33, 95%CI (1.18–1.49), P < 0.001), intra-abdominal infection (OR = 1.46, 95%CI (1.32–1.61), P < 0.001), bloodstream infection (OR = 1.51, 95%CI (1.32–1.73), P < 0.001), acute respiratory failure (OR = 1.93, 95%CI (1.84–2.03), P < 0.001), disseminated intravascular coagulation (OR = 2.15, 95% CI (1.75–2.65), P < 0.001).

All-cause mortality and risk factors (Table 2)
Table 2
Risk factors associated with death of S-AKI

Variables	Survivor	Death	P value
N (%)	8712(45.0)	10647(55.0)*	
Age median [IQR]	76(60–84)	79(68–85)	< 0.001
Age stratification(years)			
18–39	575(6.6)	358(3.4)	< 0.001
40–59	1487(17.1)	1134(10.7)	
60–79	3212(36.9)	3983(37.4)	
≥ 80	3438(39.5)	5172(48.6)	
Gender			0.06
Female	3182(36.5)	4029(37.8)	
Male	5530(63.5)	6618(62.2)	
Classification of insurance			< 0.001
BMI	3929(45.1)	6818(64)	
RCMTI	958(11)	483(4.5)	
GMP	1890(21.7)	1415(13.3)	
OPP	622(7.1)	639(6)	
Others	1313(15.1)	1292(12.1)	
Hospital level			< 0.001
Tertiary hospitals	7953(91.3)	9370(88)	
Second-class hospital	759(8.7)	1277(12)	
Hospital nature			0.59
Western Medicine hospital	8200(94.1)	9603(90.2)	
Hospital of TCM	512(5.9)	1044(9.8)	
Time interval(year)			< 0.001
2005–2011	450(5.2)	798(7.5)	
2012–2017	8262(94.8)	9849(92.5)	

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)). * 220 missing values because of lacking of outcome indicators.
Variables	Survivor	Death	P value
Comorbidities(n)			
Diabetes	3475(39.9)	3513(33)	< 0.001
Hypertension	4785(54.9)	5394(50.7)	< 0.001
CKD stage 2 and 3	1134(13)	1804(16.9)	< 0.001
Malignancy	1288(14.8)	2430(22.8)	< 0.001
Cirrhosis	305(3.5)	495(4.6)	< 0.001
ICU	3136(36)	3589(33.7)	< 0.001
Types of shock			
No shock	7179(82.4)	7400(69.5)	< 0.001
Septic shock	1032(11.8)	2178(20.5)	< 0.001
Hypovolemic shock	380(4.4)	607(5.7)	< 0.001
Cardiac shock	190(2.2)	745(7)	< 0.001
Two or more kinds of shock	67(0.8)	273(2.6)	< 0.001
Types of infection			
Pneumonia	6508(74.7)	8527(80.1)	< 0.001
Urinary infection	898(10.3)	576(5.4)	< 0.001
Intra-abdominal infection	794(9.1)	967(9.1)	0.94
CRBSI	275(3.2)	377(3.5)	0.14
CNS infection	20(0.2)	27(0.3)	0.74
Others	1568(18)	1580(14.8)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)). * 220 missing values because of lacking of outcome indicators.
There were 220 missing values because of lack of in-hospital outcomes. Overall all-cause mortality in S-AKI patients were 55%. Majority of them (57.9% of non-survivors) were admitted to ICU. The mortality in ICU patients was lower at 53.4%, compared to 54.8% in non-ICU patients (P < 0.001).

Patients with pneumonia had significantly higher mortality rates than those without (P < 0.001). Patients with more severe multi-functional organ dysfunction syndrome was also associated with increased mortality, and had significantly higher overall costs (p = 0.02) and average daily costs (P < 0.001).

A multivariate regression analysis revealed that risk factors for mortality included age (OR = 1.02, 95%CI (1.02–1.03), P < 0.001), female (OR = 1.15, 95%CI (1.08–1.24), P < 0.001), pre-existing comorbidities (CKD (OR = 1.12, 95%CI (1.02–1.24), P = 0.023), malignancy (OR = 2.03, 95%CI (1.86–2.23, P < 0.001), and cirrhosis (OR = 1.75, 95%CI (1.45–2.11), P < 0.001)), ICU admission (OR = 1.15, 95%CI (1.05–1.27), P =

Variables	Survivor	Death	P value
Types of organ function damage			
Respiratory insufficiency	4571(52.5)	7135(67)	<0.001
Acute liver injury	1780(20.4)	2199(20.7)	0.7
DIC	205(2.4)	473(4.4)	<0.001
MODS	1132(13)	2238(21)	<0.001
Metabolic encephalopathy	112(1.3)	126(1.2)	0.52
Expenses			
Total expense (Yuan)	58362.5(29533.66-114864.4)	62520.49(27564.02-130377.97)	0.02
Average daily expense (Yuan)	4673.41(2681.64-7898.79)	5823.35(3670.61-9187.57)	<0.001
Western medicine expense (Yuan)	13422.67(5867.98-28107.39)	14098.64(5414.67-32046.23)	0.01
Chinese medicine expense (Yuan)	142.69(0-1087.74)	68.98(0-693.93)	<0.001
Outcome			
Length of hospital stay (day)	14(7–24)	12(4–22)	<0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)). * 220 missing values because of lacking of outcome indicators.
pulmonary infection (OR = 1.47, 95% CI (1.23–1.76), P < 0.001), respiratory failure (OR = 2.02, 95% CI (1.87–2.17), P < 0.001), DIC (OR = 1.8, 95% CI (1.41–2.29), P < 0.001) and MODS (OR = 2.07, 95% CI (1.86–2.29), P < 0.001). We tested collinearity for relevant variables model and there was no collinearity among the included variables.

The development of AKI strongly influenced hospital survival rates in patients with sepsis (45.0% versus 70.7% in patients with and without AKI, respectively; p < 0.001; Figure 1)

S-AKI before and after the KDIGO guideline era (Table 3)
Table 3
Comparison of the epidemiology of S-AKI between pre and post KDIGO guideline for AKI definition

Variables	2005–2011	2012–2017	P value
N (%)	1468(100)	18111(100)	
Death	798(63.9)	9849(54.4)	< 0.001
Age median [IQR]	75(60.5–82)	78(65–85)	< 0.001
Age stratification(years)			
18–39	111(7.6)	838(4.6)	< 0.001
40–59	238(16.2)	2419(13.4)	
60–79	623(42.4)	6666(36.8)	
≥ 80	496(33.8)	8188(45.2)	
Gender			
Female	554(37.7)	6741(37.2)	0.69
Male	914(62.3)	11370(62.8)	
Classification of insurance			
BMI	750(51.1)	10082(55.7)	< 0.001
RCMTI	222(15.1)	1260(7)	
GMP	96(6.5)	3215(17.8)	
OPP	41(2.8)	1222(6.7)	
Others	359(24.5)	2332(12.9)	
Hospital level			
Tertiary hospitals	1357(92.4)	16163(89.2)	< 0.001
Second-class hospital	111(7.6)	1948(10.8)	
Hospital nature			
Western Medicine hospital	1352(92.1)	16656(92)	0.86
Hospital of TCM	116(7.9)	1455(8)	
Comorbidities(n)			
Diabetes	257(17.5)	6763(37.3)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	2005–2011	2012–2017	P value
Hypertension	422(28.7)	9799(54.1)	< 0.001
CKD stage 2 and 3	72(4.9)	2872(15.9)	< 0.001
Malignancy	182(12.4)	3560(19.7)	< 0.001
Cirrhosis	21(1.4)	779(4.3)	< 0.001
ICU	99(6.7)	6626(36.6)	< 0.001
Types of Shock			
No shock	677(46.1)	13937(77)	< 0.001
Septic shock	721(49.1)	2674(14.8)	< 0.001
Hypovolemic shock	68(4.6)	920(5.1)	0.45
Cardiac shock	41(2.8)	897(5)	< 0.001
Two or more kinds of shock	39(2.7)	305(1.7)	0.01
Types of infection			
Pneumonia	842(57.4)	14320(79.1)	< 0.001
Urinary infection	144(9.8)	1347(7.4)	0.001
Intra-abdominal infection	100(6.8)	1681(9.3)	0.002
CRBSI	29(2)	628(3.5)	0.002
CNS infection	3(0.2)	44(0.2)	0.77
Others	495(33.7)	2720(15)	< 0.001
Types of organ function damage			
Respiratory insufficiency	661(45)	11123(61.4)	< 0.001
Acute liver injury	131(8.9)	3865(21.3)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	2005–2011	2012–2017	P value
DIC	199(13.6)	481(2.7)	< 0.001
MODS	585(39.9)	2800(15.5)	< 0.001
Metabolic encephalopathy	17(1.2)	221(1.2)	0.83
Expenses			
Total expense (Yuan)	62115.33(24502.22-134419.29)	60158.84(28824.21-121703.84)	0.88
Average daily expense (Yuan)	3859.29(2200.42-6547.85)	5406.94(3280.57-8719.52)	< 0.001
Western medicine expense (Yuan)	25847.1(9208.77-58538.56)	13329.13(5430.34-28760.24)	< 0.001
Chinese medicine expense (Yuan)	31.06(0-305.98)	107.58(0-917.56)	< 0.001
Length of hospital stay (day)	16(7–35)	12(6–23)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).

The incidence of S-AKI post the KDIGO guideline era was higher than pre-KDIGO (48.9% versus 39.7%, P < 0.001), but the mortality rate was significantly lower after the KDIGO guideline era (54.4% versus 63.9%, p < 0.001, Fig. 2). Comparing with the patients before the KDIGO guideline era (period 2005–2011), patients after the KDIGO guideline era (2012–2017) were older (p < 0.001), but no gender difference was observed (p = 0.69). In these two time periods, there were significant differences in the distribution of patients visiting tertiary and level-II hospitals (p < 0.001): more patients started to attend level-II hospitals although the vast majority of patients still went to tertiary hospitals (10.75% versus 89.2%. (p < 0.001)). There were more S-AKI diagnosed in patients with underlying comorbidities (hypertension, CKD, cirrhosis and malignant tumors) in the post-KDIGO guideline era. Patients were also more likely to be admitted in ICU (p < 0.001). Pneumonia (p < 0.001) and abdominal infection (p = 0.002) appeared to be more commonly complicated by S-AKI patients in the post KDIGO era. Although the average daily cost of patients in the second period was higher (p < 0.001), the hospital stays were shorter (p < 0.001), making no difference in the total cost related to the hospitalization (p = 0.88).

AKI patients in both level-II and tertiary hospitals (Table 4)
Table 4
Comparison between level II and tertiary hospitals

Variables	Level-II hospital	Tertiary hospitals	P value	
N (%)	2059(100)	17520(100)		
Death	1277(62.7)	9370(54.1)	<0.001	
Age median [IQR]	80(70–85)	78(64–84)	<0.001	
Age stratification(years)				
18–39	45(2.2)	904(5.2)	<0.001	
40–59	213(10.3)	2444(13.9)		
60–79	737(35.8)	6552(37.4)		
≥ 80	1064(51.7)	7620(43.5)		
Gender			0.02	
Female	817(39.7)	6478(37)		
Male	1242(60.3)	11042(63)		
Classification of insurance	BMI			
	1384(67.2)	9448(53.9)	<0.001	
	RCMTI	263(12.8)	1219(7)	
	GMP	193(9.4)	3118(17.8)	
	OPP	96(4.7)	1167(6.7)	
	Others	123(6)	2568(14.7)	
Hospital nature	Western Medicine hospital	1967(95.5)	16041(91.6)	<0.001
	Hospital of TCM	92(4.5)	1479(8.4)	
Time Period	2005–2011	111(5.4)	1357(7.7)	<0.001
	2012–2017	1948(94.6)	16163(92.3)	
Comorbidities(n)	Diabetes	719(34.9)	6301(36)	0.35
	Hypertension	1085(52.7)	9136(52.1)	0.64

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	Level-II hospital	Tertiary hospitals	P value
CKD stage 2 and 3	403(19.6)	2541(14.5)	< 0.001
Malignancy	258(12.5)	3484(19.9)	< 0.001
Cirrhosis	40(1.9)	760(4.3)	< 0.001
ICU	613(29.8)	6112(34.9)	< 0.001
Types of shock			
No shock	1593(77.4)	13021(74.3)	0.003
Septic shock	312(15.2)	3083(17.6)	0.006
Hypovolemic shock	108(5.2)	880(5)	0.66
Cardiac shock	78(3.8)	860(4.9)	0.02
Two or more kinds of shock	31(1.5)	313(1.8)	0.36
Types of infection			
Pneumonia	1582(76.8)	13580(77.5)	0.49
Urinary infection	122(5.9)	1369(7.8)	0.002
Intra-abdominal infection	131(6.4)	1650(9.4)	< 0.001
CRBSI	22(1.1)	635(3.6)	< 0.001
CNS infection	3(0.1)	44(0.3)	0.36
Others	382(18.6)	2833(16.2)	0.006
Types of organ function damage			
Respiratory insufficiency	1064(51.7)	10720(61.2)	< 0.001
Acute liver injury	286(13.9)	3710(21.2)	< 0.001
DIC	37(1.8)	643(3.7)	< 0.001
MODS	300(14.6)	3085(17.6)	< 0.001

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).
Variables	Level-II hospital	Tertiary hospitals	P value
Metabolic encephalopathy	28(1.4)	210(1.2)	0.53
Expenses			
Total expense (Yuan)	41047.75(17598.47-92271.23)	62702.87(30227.13-125862.83)	< 0.001
Average daily expense (Yuan)	3822.54(2297.78-6014.34)	5499.86(3329.52-8886.23)	< 0.001
Western medicine expense (Yuan)	9085.04(3349.65-22224.82)	14510.38(5984.67-31314.93)	< 0.001
Chinese medicine expense (Yuan)	78.04(0-650.52)	98.49(0-869.4)	0.19
Length of hospital stay (day)	13(4–25)	13(6–23)	0.15

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCM = traditional Chinese medicine. Values are expressed as the median (interquartile range and N (%)).

The majority of S-AKI patients (89.5%) were presented and admitted to tertiary hospitals, despite an overall increase in presentation to level-II hospitals over the observed time period. The proportion rose from 7.56% in the pre KDIGO guideline era to 10.75% in the post KDIGO guideline era (P < 0.001). Patients over 80 years old were mostly in level-II hospitals (p < 0.001) whilst tertiary hospitals had younger patients (p < 0.001). Patients were predominantly male in both levels of the hospitals.

The ICU admission rate of S-AKI patients in level-II hospitals was significantly lower than that in tertiary hospitals (29.77% versus 34.89%, p < 0.001). Compared with level-II hospitals, the proportion of patients with septic shock (p = 0.006), abdominal infection (p < 0.001), bloodstream infection (p < 0.001), respiratory failure (p < 0.001) and MODS (p < 0.001) was higher in tertiary hospitals. Despite similar length of stay was seen in both hospitals (p = 0.15), the total cost, and average daily cost for patients being treated in tertiary hospitals were all higher (p < 0.001).

Both the incidence (50.8% versus 47.7%, p < 0.001) and the mortality rate (62.1% versus 54.1%, p < 0.001, Fig. 3) of S-AKI were significantly higher in level II hospitals than those in tertiary hospitals.

S-AKI patients in Traditional Chinese Medicine hospitals and Western Medicine hospitals (Table 5)
Table 5
Comparison between Traditional Chinese Medicine hospitals and Western Medicine hospitals

Variables	TCMHs	WMHs	P value
N (%)	1573 (8.0)	18006 (92.0)	
Survivors (n)	512 (32.9)	8200 (46.1)	< 0.001
Age median [IQR]	80 (71–85)	78 (64–84)	< 0.001
Age stratification (years)			
18–39	24 (1.5)	924 (5.1)	< 0.001
40–59	133 (8.4)	2526 (14)	
60–79	590 (37.5)	6703 (37.2)	
≥ 80	826 (52.5)	7853 (43.6)	
Gender			
Female	653 (41.5)	6642 (36.9)	< 0.001
Male	920 (58.5)	11364 (63.1)	
Classification of insurance			
BMI	1166 (74.2)	9659 (53.6)	< 0.001
RCMTI	109 (6.9)	1376 (7.6)	
GMP	133 (8.4)	3173 (17.6)	
OPP	113 (7.2)	1148 (6.4)	
Others	52 (3.3)	2650 (14.7)	
Hospital level			
Tertiary hospitals	1481 (94.2)	16038 (89.1)	< 0.001
Second-class hospital	92 (5.8)	1968 (10.9)	
Time interval (year)			
2005–2011	117 (7.4)	1351 (7.5)	
2012–2017	1456 (92.6)	16655 (92.5)	
Comorbidities (n)			
Diabetes	521 (33.1)	6503 (36.1)	0.02

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCMHs = traditional Chinese medicine hospitals, WMHs = western medicine hospitals. Values are expressed as the median (interquartile range and N (%)).
Variables	TCMHs	WMHs	P value
Hypertension	828(52.6)	9399(52.1)	0.73
CKD stage 2 and 3	299(19)	2645(14.7)	< 0.001
Malignancy	240(15.2)	3510(19.5)	< 0.001
Cirrhosis	22(1.4)	778(4.3)	< 0.001
ICU	159(10.1)	6566(36.4)	< 0.001
Types of shock			
No shock	1294(82.2)	13323(73.9)	< 0.001
Septic shock	182(11.6)	3240(18)	< 0.001
Hypovolemic shock	58(3.7)	930(5.2)	0.01
Cardiac shock	60(3.8)	879(4.9)	0.06
Two or more kinds of	18(1.1)	327(1.8)	0.05
shock			
Types of infection			
Pneumonia	1260(80)	13916(77.2)	0.01
Urinary infection	106(6.7)	1386(7.7)	0.17
Intra-abdominal infection	86(5.5)	1696(9.4)	< 0.001
CRBSI	55(3.5)	602(3.3)	0.74
CNS infection	3(0.2)	44(0.2)	0.68
Others	256(16.3)	2973(16.5)	0.81
Types of organ function damage			
Respiratory insufficiency	850(54)	10947(60.7)	< 0.001
Acute liver injury	359(22.8)	3641(20.2)	0.01
DIC	54(3.4)	626(3.5)	0.93
MODS	305(19.4)	3081(17.1)	0.02

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCMHs = traditional Chinese medicine hospitals, WMHs = western medicine hospitals. Values are expressed as the median (interquartile range and N (%)).
Table

Variables	TCMHs	WMHs	P value
Metabolic encephalopathy	34(2.2)	204(1.1)	< 0.001
Expenses			
Total expense (Yuan)	46013.3(20515.42-94055.27)	61667.38(29297.85-125052.5)	< 0.001
Average daily expense (Yuan)	4166.6(2721.57-6398.43)	5413.71(3248.88-8781.84)	< 0.001
Western medicine expense (Yuan)	9744.02(3425.73-21786.67)	14285.38(5896.72-31166.39)	< 0.001
Chinese medicine expense (Yuan)	995.2(182.92-3489.11)	73.09(0-686.88)	< 0.001
Length of hospital stay (day)	13(5–22)	13(6–23)	0.03

Abbreviations: BMI = basic medical insurance, RCMTI = rural cooperative medical treatment insurance, GMP = governmental medical payment, OPP = out-of-pocket payments, ER = emergency room, CRBSI = Catheter Related Blood Stream Infection, CNS = central nervous system, DIC = disseminated intravascular coagulation, MODS = multiple organ dysfunction syndrome, TCMHs = traditional Chinese medicine hospitals, WMHs = western medicine hospitals. Values are expressed as the median (interquartile range and N (%)).

Compared with S-AKI patients seen in the TCMS, the vast majority (92%) of S-AKI patients were treated in WMHs. The survival rate of patients treated in the WMHs was significantly higher patients treated in TCMHs (45.5% versus 32.5%, P < 0.001, Fig. 4). Patients from WMHs was younger than those from TCMHs (P < 0.001).

The proportion of S-AKI patients admitted in ICU in WMHs was also higher than in TCMHs (36.4% versus 10.1%, p < 0.001). The proportion of S-AKI patients with septic shock and abdominal infections in WMHs was higher than in TCMHs hospital (p < 0.001). In contrast, there were less patients with lung infections in TCMHs than in WMHs (P = 0.01). The proportion of MODS patients admitted in TCMHs was higher than in WMHs (19.4% versus 17.1%, p = 0.02).

The total cost, and the average daily cost were all higher in patients of WMHs (p < 0.001). S-AKI patients from WMHs had longer length of hospitalization than patients from TCMHs (P = 0.03).

Discussion

In this study, we analyzed the epidemiology of S-AKI in all inpatients, including ICU and non-ICU patients from 158 hospitals in Beijing, China from January 2005 to December 2017. We found the overall incidence of S-AKI was 48.1%, with 59.2% in ICU patients and 31.6% in non-ICU patients, respectively, and overall mortality rate of 55% among the S-AKI patients. Certain risk factors including advanced age, male
and the presence of comorbidities such as hypertension, CKD and liver cirrhosis, and severity of the diseases as assessed by requirements for ICU admission and shock status were significantly associated with the incidence of AKI. Pneumonia was the most likely source of sepsis in this cohort. The reported incidence of S-AKI was higher after KDIGO guideline was used to define AKI. The majority of AKI patients in this study was admitted to tertiary teaching hospitals and western Medicine hospitals.

There is an increasing incidence of AKI worldwide1–5. According to the nationwide survey regarding AKI across Mainland China, 28% of AKI episodes occurred in ICU, while 72% occurred in the non-ICU setting. The incidence of S-AKI in Li's paper was only 6.416. The current literature reported incidence of S-AKI is from 39.4–60.7% in ICU21,22, which is consistent with our finding (48%).

Our study showed that certain demographic characteristics, including advanced age, male and the presence of comorbidities such as hypertension, CKD and liver cirrhosis, requirements for ICU admission and shock status were significantly associated with the incidence of AKI. These results were consistent with previous studies13,23. However, an Australian S-AKI study revealed female patients had increased risk to develop AKI2, whereas some other studies showed no significant difference in age or sex4,13. These inconsistent findings may be due to different population and demographic characteristics in each study.

The overall in-hospital mortality among S-AKI in this cohort was 55%, which was higher than the results from previous studies4,24. The healthcare system in China is different from some developed countries where patients can have free access to certain procedures such as dialysis therapy21, which may be a potential factor contributing to higher mortality rates.

Comparison of the incidence of S-AKI between pre and post KDIGO guideline for AKI definition.

There have been multiple attempts to universally standardize the classification and definition of Acute Kidney Injury (AKI) to enable consistent diagnosis and treatment across different health-care systems. These classifications include the RIFLE (Risk, Injury, Failure, Loss, End Stage), AKIN (Acute Kidney Injury Network) and KDIGO (Kidney Disease: Improving Global Outcomes) which have been good predictors of mortality in critically ill patients25. Despite slight variations in the definitions, systematic review has found that these definitions do not significantly differ in their predictive outcomes26.

The introduction of new AKI definition in the KDIGO guideline attempted to unify the definition of AKI of both the RIFLE and AKIN criteria. In our study, we found that the change in definitions used may have attributed to an increase in incidence of AKI. According to the AKIN criteria, the incidence of S-AKI in our cohort of patients was 39.7% from the period of 2005–2011. When the updated KDIGO criteria was used, the incidence was higher (48.9%) from the period of 2012–2017. This finding is similar to previous studies27,28, which compared utilization of different classifications and found that the AKIN classification had consistently reported lower incidence levels when compared with KDIGO and RIFLE classifications. However, the higher incidence in our study in the later time period may also be attributed
to population aging and the increased incidence of multiple chronic illnesses. Despite the increase in incidence, the mortality rates declined from pre (63.9%) to post (54.4%) KDIGO guideline era.

The declining mortality rates post the KDOGO guideline era may be due to multiple factors including, standardized classifications of AKI leading to early recognition and treatment by clinicians; significant advancements in supportive medical technologies such as continuous renal replacement therapy (CRRT) and other measures for treating sepsis, such as early appropriate antibiotic administration and fluid resuscitation and so on; majority of patients seeking treatment in tertiary hospital, where the highest level of medical staff and equipment exist.

Outcomes between level II and tertiary hospitals

To the best of our knowledge, present studies in literature are limited and do not directly provide comparisons of the mortality rates between tertiary hospitals and those with limited healthcare resources such as level II, rural or peripheral hospitals. The incidence of S-AKI in level II and tertiary hospitals in this study were similar, 50.8% and 47.7% respectively. The mortality rate in level II hospitals was 9% higher than that in tertiary hospitals.

The higher mortality rates in level II hospitals in our cohort could be attributed to two main reasons. Firstly, the proportion of patients over 80-year-old in level-II hospitals was higher than that in tertiary hospitals (51.7% versus 43.5%). Secondly, there is a limited access to more interventional management strategies in the level-II hospital. For those who had clinical indications for being transferred to a tertiary hospital for advanced treatment but were unable to be transferred in a timely fashion (e.g. due to bed block or change of the treatment goal to conservative treatments), they would only be able to receive limited treatment based on the hospital resource.

Traditional Chinese Medicine Hospitals (TCMHs) vs Western Medical Hospitals (WMHs)

In China, the health care system is uniquely divided into both a western and traditional Chinese medical system. The Chinese cultural heritage has traditionally focused on the administration of traditional Chinese service and products (such as medicinal herbs, acupuncture and dietary therapy), however, there has been a shift by the Chinese government to 'integrate both Chinese and Western medicine' through the implementation of modern medicine and technologies within TCMHs since the 1970’s.

A distinct aspect of this study is the comparison of the patient outcomes between TCMHs and WMHs. In our study, the majority of the patients (92%) were diagnosed and treated with S-AKI in WMHs. Furthermore, the number of patients admitted to WMHs was 5.6 times that of the TCMHs in 2018 alone. This can be explained by fewer availability of TCMHs when compared to WMHs. However, in both kinds of hospitals, the incidence of AKI is increasing annually. The mortality rate of S-AKI patients in WMHs is lower than that of patients in TCMHs. This can be explained by more sufficient means of supporting and treating patients in WMHs. This is likely to explain higher costs for patients receiving treatment in WMHs compared to patients in TCMHs.
In addition, many Chinese patients, especially the elderly, take Chinese herbal medicine as the first choice for treating diseases. However, some herbal medicines are also known to cause nephrotoxicity, which is often overlooked by physicians and patients. The incidence of kidney injury induced by Chinese herbal medicines is difficult to assess. One cross-sectional survey of AKI in China found that Chinese patients (71.6%) were more likely to be exposed to traditional Chinese medicine before and during AKI than patients from developed countries (20–50%). This high proportion of nephrotoxic drug exposure is probably consistent with the increasing incidence of drug-induced disease in China. Therefore, the use of Chinese herbal medicine may be a double-edged sword in the treatment of AKI patients.

Strengths and Limitations

To our knowledge, this large retrospective cohort study assessed epidemiological features of S-AKI at the municipal level, in China, consisting 40720 patients and 158 hospitals. This is the first study investigated the impact of levels (level II versus tertiary teaching hospitals) and types of hospitals (TCMHs versus western medicine hospitals) as well as definition of AKI on incidence, and risk factors of S-AKI.

Our study has several limitations. Firstly, our study used a large administrative dataset with insufficient information in the stages of AKI, use of RRT and the long-term prognosis of renal function. Therefore, the epidemiology of S-AKI patients is mainly limited to incidence and hospital mortality. Secondly, even though a number of statistical analyses were conducted in our study, potential confounders still exist, which may have an impact on the study finding. Thirdly, due to the nature of the study using an administrative dataset, a diagnosis of S-AKI in this study was made when based upon a septic patient developed an episode of AKI at the same time. This may overestimate the incidence of S-AKI. Fourthly, the use of different definitions of AKI during our study can lead to variations in overall incidence. From an epidemiologic standpoint it may be difficult to compare results of future studies which highlights the necessity for a standardised and comprehensive AKI classification system. Finally, there were large differences in the patients’ numbers in different time periods and different levels and types of hospitals, so the results of the comparisons may have a certain deviation.

Conclusions

AKI is a common complication in all hospitalized patients with sepsis, and its incidence increases over time, especially when ICU admission is required. Our findings provide valuable information about the epidemiology of hospitalized patients with S-AKI in Beijing, China. Exploring interventional strategies to address modifiable risk factors will be important to reduce incidence and mortality of S-AKI.

Abbreviations
AKI	Acute kidney injury
S-AKI | Sepsis-associated acute kidney injury
ICU | Intensive care unit
ESKD | End-stage kidney disease
TCMHs | Traditional Chinese medicine hospitals
WMHs | Western medicine hospitals
CKD | Chronic kidney disease
AKIN | Acute Kidney Injury Network
KDIGO | Kidney Disease Improving Global Outcomes
RIFLE | Risk, Injury, Failure, Loss, End Stage
CRRT | Continuous renal replacement therapy
DM | Diabetes mellitus
HT | Hypertension

Declarations

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Nisula, S. et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39, 420–428 (2013).
2. Bagshaw, S. M., George, C., Dinu, I. & Bellomo, R. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23, 1203–1210 (2008).
3. Ostermann, M. & Chang, R. W. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35, 1837–1843; quiz 1852 (2007).
4. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41, 1411–1423 (2015).
5. Xu, X. et al. Epidemiology and Clinical Correlates of AKI in Chinese Hospitalized Adults. Clin J Am Soc Nephrol 10, 1510–1518 (2015).
6. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).
7. Case, J., Khan, S., Khalid, R. & Khan, A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract 2013, 479730 (2013).

8. Gammelager, H. et al. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care 17, R145 (2013).

9. Bellomo, R. et al. Acute kidney injury in sepsis. Intensive Care Med 43, 816–828 (2017).

10. Bagshaw, S. M., George, C., Bellomo, R. & ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 12, R47 (2008).

11. Jiang, L. et al. Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study. BMC Nephrol 20, 468 (2019).

12. Fan, H., Zhao, Y., Chen, G. D., Sun, M. & Zhu, J. H. Health insurance status and risk factors of mortality in patients with septic acute kidney injury in Ningbo, China. J Int Med Res 47, 370–376 (2019).

13. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Suppl 2, 1-138 (2012).

14. Bellomo, R. et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8, R204-212 (2004).

15. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11, R31 (2007).

16. Yang, L. et al. Acute kidney injury in China: a cross-sectional survey. Lancet 386, 1465–1471 (2015).

17. Ali, T. et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 18, 1292–1298 (2007).

18. Cruz, D. N. & Ronco, C. Acute kidney injury in the intensive care unit: current trends in incidence and outcome. Crit Care 11, 149 (2007).

19. Lafrance, J. P., Djurdjev, O. & Levin, A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol Dial Transplant 25, 2203–2209 (2010).

20. James, M. T. et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet 376, 2096–2103 (2010).

21. Peters, E. et al. A worldwide multicentre evaluation of the influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and without sepsis at ICU admission: results from The Intensive Care Over Nations audit. Crit Care 22, 188 (2018).

22. Zhao, Y. & Yang, L. Perspectives on acute kidney injury strategy in China. Nephrology (Carlton) 23 Suppl 4, 100–103 (2018).

23. Khosla, N. et al. Preexisting chronic kidney disease: a potential for improved outcomes from acute kidney injury. Clin J Am Soc Nephrol 4, 1914–1919 (2009).

24. Fiorentino, M. et al. Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS One 13, e0198269 (2018).
25. Levi, T. M. et al. Comparison of the RIFLE, AKIN and KDIGO criteria to predict mortality in critically ill patients. Rev Bras Ter Intensiva25,290–296(2013).
26. Thomas, M. E. et al. The definition of acute kidney injury and its use in practice. Kidney Int87,62–73(2015).
27. Sutherland, S. M. et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol10,554–561(2015).
28. Fujii, T., Uchino, S., Takinami, M. & Bellomo, R. Validation of the Kidney Disease Improving Global Outcomes criteria for AKI and comparison of three criteria in hospitalized patients. Clin J Am Soc Nephrol9,848–854(2014).
29. Srisawat, N. et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int80,545–552(2011).
30. Bagshaw, S. M. et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med35,871–881(2009).
31. Meersch, M. et al. Long-Term Clinical Outcomes after Early Initiation of RRT in Critically Ill Patients with AKI. J Am Soc Nephrol29,1011–1019(2018).
32. Zarbock, A. et al. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA315,2190–2199(2016).
33. Wang, S. T. et al. F. A study of the referral patterns of obstetric clinics and the performance of receiving neonatal intensive care units in Taiwan. Public Health111,149–152(1997).
34. Zhu, D., Shi, X., Nicholas, S. & He, P. Regional disparities in health care resources in traditional Chinese medicine county hospitals in China. PLoS One15,e0227956(2020).
35. Wang, L. et al. An investigation Into Traditional Chinese Medicine Hospitals in China: Development Trend and Medical Service Innovation. Int J Health Policy Manag6,19–25(2017).
36. Yang, B. et al. Nephrotoxicity and Chinese Herbal Medicine. Clin J Am Soc Nephrol13,1605–1611(2018).
37. Katsoulieris, E. et al. Lipotoxicity in renal proximal tubular cells: Relationship between endoplasmic reticulum stress and oxidative stress pathways. Free Radic Biol Med 48,1654–1662(2010).