Robust ILC of Nonlinearly Parametric Time-Delay Systems with Input Deadzone

Xidan Wang, Yuhan Ma, Qizhen Yan, Yuntao Zhang and Xiaohui Guan

College of Information Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, Zhejiang, China
Email: zjyqz@126.com

Abstract. The trajectory tracking problem for a class of nonlinearly parametric systems with input deadzone and time-delay is studied in this work. An adaptive iterative learning control (ILC) scheme is developed by using Lyapunov synthesis. The alignment condition is applied to solve the initial position problem of ILC. Robust control and ILC are used to deal with input deadzone, delay and nonlinearly parametric uncertainties, together. As the iteration learning cycle increases, the system state may precisely track the reference signal over the whole interval. A numerical simulation is presented to verify the efficacy of the proposed adaptive iterative learning control method.

Keywords. Adaptive iterative learning control; robust control; input deadzone; time-delay;

1. Introduction

For pursuing better control performance, researchers exploit new control technologies in industrial applications. Iterative learning control (ILC) is a fantastic control technology for two advantages, including low demand on system modelling and good control precision [1]. ILC came out in the early 1980s, which is suitable to tackle repetitive control tasks during a finite time interval. In recent years, ILC has earned a great deal of attention due to the excellent tracking control performance during whole time interval. In recent years, it has been widely applied in the controller design of industrial applications [2-7].

Adaptive ILC is actually a combination of adaptive control and ILC, which has been a hot issue in the field of learning control since this century. In [8], French et al. developed a differential learning law for the parametric systems within known constant parameters during a finite time interval. Xu et al. investigated the controller design for systems within known time-varying but iteration-independent parameters, with difference learning method being used to deal with such uncertainties [1]. In [9], the ILC design for time-iteration-varying parametric uncertain system was studied. In recent years, the ILC design for more complicated systems has been exploited, such as nonparametric systems and nonlinear parametric systems. In most existing ILC results, a common assumption is the initial state error of controlled system should be zero [10]. This initial error condition is so strict that it cannot be satisfied in almost all practical industries. Up to now, some remedies have been reported to remove the zero initial error assumption, inclusive of time-varying boundary layer method, initial rectification action, initial state learning and so on [11-13]. Among them, the alignment condition is useful for the controller design in the cases that the desired trajectories are spatially closed [14].

Time delays are abundant in many industrial applications inherently, which degrade the performances of control systems, more or less, and even result in system error divergences in serious cases. Due to the damages caused by time delays, researchers the corresponding remedies for long.
Time delays have become rising concerns in many ILC applications and systems nowadays. In [15], Li et al. investigated the 2-D theory based ILC for linear continuous multivariable time-delay systems. In [16], Meng et al. proposed a robust ILC algorithm for uncertain time-delay systems, with LMI approach used for controller design. The adaptive ILC algorithms for nonlinearly parametric systems with time-delay have been discussed in [17-19].

On the other hand, deadzone is a typical non-smooth nonlinearity, which exists in the actuators of various industrial applications, such as valves, DC servo motors and so on. Because deadzone nonlinearities do harm to the stability of control systems, it should be dealt with properly during the controller design. Recker, Tao et al. respectively exploited adaptive inverse model approach to directly estimate the deadzone parameters [20-22]. Later, Wang and Ibrir proposed robust adaptive compensating method to deal with symmetric/nonsymmetric deadzone nonlinearity [23, 24]. Besides, neural networks [25] or fuzzy systems [26] were also considered in deadzone remedies. In the adaptive learning field, researchers investigated robust adaptive learning compensating method to tackle deadzones nonlinearities.

In the above-mentioned ILC results, the ILC algorithms for uncertain systems with time-delay systems or for uncertain systems with input deadzone have been studied, but the ILC results for time-delay systems with input deadzone is few. In this work, we propose a robust adaptive ILC algorithm for a class of nonlinearly parametric systems with time-delay and input deadzone, with alignment condition adopted to remove the zero initial error requirement. Adaptive iterative learning mechanism and robust feedback compensating mechanism are used to deal with uncertainties.

2. Problem Formulation
A class of uncertain with time-delay and input deadzone is considered as follows:

\[
\begin{align*}
\dot{x}_k &= x_{i,k}, \quad i=1,2,\ldots,n-1 \\
\dot{x}_k &= \eta(x_k(t-\tau),\theta(t),t) + g(t)u(v_i) \\
x_0(t) &= \sigma(t), \quad \forall t \in [-\tau_{\text{max}},0]
\end{align*}
\]

where \(t \in [0,T] \), \(k \) represents iteration index, system state \(x_k \triangleq [x_{1,k},x_{2,k},\ldots,x_{n,k}]^T \in \mathbb{R}^n \) is measurable, and \(\eta(x_k(t-\tau),\theta(t),t) \in \mathbb{R} \) and \(\tau \in [-\tau_{\text{max}},0] \) meet Assumption 1 and Assumption 2, respectively. \(u(v_i) \) and \(v_i \) respectively denote the input and output of an unknown deadzone:

\[
u_i = \begin{cases}
m_i(v_i - b_i) & v_i \geq b_i \\
0 & b_i \leq v_i \leq b_i \\
m_i(v_i - b_i) & v_i < b_i
\end{cases}
\]

The deadzone nonlinearity in (2) is similar to the one discussed in [23], i.e., \(u(v_i) \) is assumed to be not available for measurement, \(m_r = m_l = m \), and the exact values of \(b_r > 0, b_l < 0 \) and \(m > 0 \) are all unknown.

Assumption 1:

\[
\left| \eta(\xi_1,\theta(t),t) - \eta(\xi_2,\theta(t),t) \right| \leq \|\xi_1 - \xi_2\| h(\theta,t), \quad \forall \xi_1, \xi_2 \in \mathbb{R}^n
\]

holds, where the smooth function \(h(\theta,t) \) is unknown.

Assumption 2: The time delay \(\tau \) meets \(\dot{\tau} \leq \phi < 1 \), i.e.,

\[
\frac{1 - \dot{\tau}}{1 - \phi} \leq -1.
\]
For the reference trajectory \(x_d(t) = [x_d, ẋ_d, \ldots, x_d^{(n-1)}]^T \) with \(x_d \in C^n[0, T] \), the control task is to let \(x_k(t) \) track \(x_d(t) \) over \([0, T]\) where \(x_k(0) = x_{k-1}(T) \) and \(x_d(T) = x_d(0) \).

In the remainder of this paper, arguments sometimes may be omitted for brevity. Also \(\eta_k(t-\tau) \) denotes \(\eta_k(x_k(t-\tau), \theta(t), t) \).

3. Control System Design

Let \(e_k(t) = [e_k, \ldots, e_n]^T = x_k(t) - x_d(t) \) and

\[
s_k = \left(\frac{d}{dt} + \lambda\right)^{-1} e_k
\]

with \(\lambda > 0 \). From (4), we have

\[
s_k = c_1 e_{k,1} + \cdots + c_{n-1} e_{n-1,k-1} + e_{n,k}
\]

in which \(c_j = \frac{(n-1)!}{(j-1)!(n-j)!} \lambda^{n-j}, j = 1, 2, \ldots, n-1 \).

It follows from (1) that

\[
\begin{align*}
\dot{e}_{k,1} &= \dot{e}_{i,1,k}, \quad i=1, 2, \ldots, n-1 \\
\dot{e}_{n,k} &= \eta_k(t-\tau) + gu_k - x_d^{(n)}
\end{align*}
\]

Then, defining a Lyapunov function

\[
V_k = \frac{1}{2gm} s_k^2
\]

and taking its time derivative, we have

\[
\dot{V}_k = \frac{1}{gm} s_k \left(gu_k + \eta_k(t-\tau) - x_d^{(n)} \right)
\]

Based on Assumption 1, the following conclusion may be drawn:

\[
\begin{align*}
\frac{1}{gm} s_k \eta_k(t-\tau) &= \frac{1}{gm} s_k \left(\eta_k(t-\tau) - \eta_k(t-\tau) + \eta_k(t-\tau) \right) \\
\leq |\eta_k(t-\tau)| \left[\frac{1}{gm} h(\theta, t) + \frac{1}{gm} s_k \eta_k(t-\tau) \right] &\leq \frac{s_k^2}{2gm} + \frac{1}{2} e_k^2(t-\tau) + \frac{s_k}{gm} \eta_k(t-\tau)
\end{align*}
\]

Combining (8) with (9), we get

\[
\dot{V}_k \leq \dot{V}_k + s_k \max(h, |p_k|) + \frac{s_k^2}{2gm} + \frac{1}{2} e_k^2(t-\tau) + \frac{s_k}{gm} \eta_k(t-\tau)
\]

with \(\varphi = \left(\frac{1}{2gm} h^2(\theta, t), \frac{1}{gm} \eta_k(t-\tau) - \frac{x_d^{(n)}}{gm} \right)^T \) and \(\varphi_k = \left(s_k, 1 \right)^T \). Then, we design the controller as follows:

\[
v_k = -\gamma_0 v_k - \varphi_k \varphi - \frac{2s_k}{s_k^2 + \varepsilon^2} \left[\rho_k + \frac{1}{2(1-\phi)} e_k^2(t) e_k(t) \right]
\]
in which
\[\sigma_k = \text{sat}_{\sigma}(\sigma_{k-1}) + \gamma_s s_k \phi_k, \sigma_{k-1} = 0 \] (12)
and
\[\rho_k = \text{sat}_{\rho}(\rho_{k-1}) + \gamma_s |s_k|, \rho_{k-1} = 0 \] (13)

In the above learning laws (12)-(13), \(\text{sat}_{\sigma, \rho}(t) \) is defined as follows: for a scalar \(\hat{a} \),
\[\text{sat}_{\sigma, \rho}(\hat{a}) \triangleq \begin{cases} \hat{a} & \hat{a} > \bar{a} \\ a & a \leq \hat{a} \leq \bar{a} \\ \bar{a} & \hat{a} < \bar{a} \end{cases} \] (14)
for a vector \(\hat{a} = [\hat{a}_1, \hat{a}_2, \cdots, \hat{a}_p] \in \mathbb{R}^p \), \(\text{sat}_{\sigma, \rho}(\hat{a}) \triangleq [\text{sat}_{\sigma, \rho}(\hat{a}_1), \text{sat}_{\sigma, \rho}(\hat{a}_2), \cdots, \text{sat}_{\sigma, \rho}(\hat{a}_p)]^T \).

4. Convergence Analysis

Theorem 1: As far as the dynamic system (1) meeting Assumptions 1-2 is concerned, the proposed ILC law and learning laws (11)-(13) may ensure that \(|s_k(t)| \leq \epsilon \) and \(e_{i,k}^{(i)}(t) \leq (2 \lambda)^i \frac{e}{\lambda^{n-1}} \), \(i = 0, 1, \cdots, n-1 \) as the learning cycle increases. The boundedness of all signals is guaranteed.

Proof: Let us define
\[V_{2,k} = V_k + \frac{1}{2(1-\phi)} \int_{t-\tau}^{t} e_k^T e_k d\sigma \] (15)
whose time derivative is
\[\dot{V}_{2,k} \leq s_k (v_k + \sigma^T \phi_k) + |s_k| \rho + \frac{1}{2(1-\phi)} e_k^T (t) e_k (t) \] (16)
Substituting (11) to (16), we have
\[\dot{V}_{2,k} \leq -\gamma_s s_k^2 + s_k \sigma^T \phi_k + \frac{1}{2(1-\phi)} e_k^T (t) e_k (t) + |s_k| \rho - \frac{2s_k^2}{s_k^2 + \epsilon^2} \left[\rho_k + \frac{1}{2(1-\phi)} e_k^T (t) e_k (t) \right] \] (17)

While \(|s_k| > \epsilon \), \(\frac{2s_k^2}{s_k^2 + \epsilon^2} > 1 \) holds. By this property, we deduce
\[\frac{1}{2(1-\phi)} e_k^T (t) e_k (t) - \frac{2s_k^2}{s_k^2 + \epsilon^2} \frac{1}{2(1-\phi)} e_k^T (t) e_k (t) \leq 0 \] (18)
and
\[|s_k| \rho - \frac{2s_k^2}{s_k^2 + \epsilon^2} \rho_k = |s_k| \rho - |s_k| \rho_k + |s_k| \rho_k - \frac{2s_k^2}{s_k^2 + \epsilon^2} \rho_k \] (19)
Note that \(\rho_k \geq 0 \). Therefore, \(|s_k| \rho_k \leq \frac{2s_k^2}{s_k^2 + \epsilon^2} \rho_k \leq 0 \) and
\[|s_k| \rho - \frac{2s_k^2}{s_k^2 + \epsilon^2} \rho_k \leq |s_k| \tilde{\rho}_k \]

(20)

hold while \(|s_k| > \epsilon\), where \(\tilde{\rho}_k = \tilde{\rho} - \tilde{\rho}_k\). Substituting (18) and (20) into (17) leads to

\[\dot{V}_{2,k} \leq -\gamma_0 s_k^2 + s_k \tilde{\omega}_k^T \varphi_k + |s_k| \tilde{\rho}_k \]

(21)

Let us define a Lyapunov functional as

\[L_k = V_{2,k} + \frac{1}{2\gamma_1} \int_0^t (\tilde{\omega}_k^T \tilde{\omega}_k + \rho_k^2) d\sigma + \frac{1}{2\gamma_2} \int_0^t \tilde{\rho}_k^2 d\sigma \]

(22)

with \(\tilde{\omega}_k = \omega - \omega_k\). While \(k > 0\),

\[L_k - L_{k-1} \leq V_{2,k} (0) + \int_0^t (\gamma_0 s_k^2 + |s_k| \tilde{\rho}_k) d\sigma - V_{2,k-1} \]

\[+ \frac{1}{2\gamma_1} \int_0^t (\tilde{\omega}_k^T \tilde{\omega}_k - \tilde{\omega}_{k-1}^T \tilde{\omega}_{k-1}) d\tau + \frac{1}{2\gamma_2} \int_0^t (\tilde{\rho}_k^2 - \tilde{\rho}_{k-1}^2) d\tau \]

(23)

Applying (12), we get

\[\frac{1}{2\gamma_1} (\tilde{\omega}_k^T \tilde{\omega}_k - \tilde{\omega}_{k-1}^T \tilde{\omega}_{k-1}) + s_k \tilde{\omega}_k^T \varphi_k \]

\[\leq s_k \tilde{\omega}_k^T \varphi_k + \frac{1}{2\gamma_1} ((\omega - \omega_k)^T (\omega - \omega_k) - (\omega - sat_{z,\sigma}(\omega_{k-1}))^T (\omega - sat_{z,\sigma}(\omega_{k-1}))) \]

\[- \frac{1}{2\gamma_1} (2\omega - \omega_k - sat_{z,\sigma}(\omega_{k-1}))^T (sat_{z,\sigma}(\omega_k) - \omega_k) + s_k \tilde{\omega}_k^T \varphi_k \]

\[\leq \frac{1}{\gamma_1} (\omega - \omega_k)^T (sat_{z,\sigma}(\omega_k) - \omega_k + \gamma_1 s_k \varphi_k) \]

\[= 0 \]

(24)

Combining (23) with (24) leads to

\[L_k - L_{k-1} \leq V_{2,k} (0) + \int_0^t (\gamma_0 s_k^2 + |s_k| \tilde{\rho}_k) d\sigma - V_{2,k-1} + \frac{1}{2\gamma_2} \int_0^t (\tilde{\rho}_k^2 - \tilde{\rho}_{k-1}^2) d\sigma \]

(25)

It follows from (13) that

\[\frac{1}{2\gamma_1} (\tilde{\rho}_k^2 - \tilde{\rho}_{k-1}^2) + |s_k| \tilde{\rho}_k \leq \frac{1}{2\gamma_1} (2\rho_k - \rho_k - sat_{z,\sigma}(\rho_{k-1}))(sat_{z,\sigma}(\rho_{k-1}) - \rho_k) + |s_k| \tilde{\rho}_k \]

\[\leq \frac{1}{\gamma_1} (\rho_k - \rho_k)(sat_{z,\sigma}(\rho_{k-1}) - \rho_k) + |s_k| \tilde{\rho}_k = 0 \]

(26)

From (26) and (25), we get

\[L_k - L_{k-1} \leq V_{2,k} (0) - \gamma_0 \int_0^t s_k^2 d\sigma - V_{2,k-1} \]

(27)

It follows that

\[L_k (t) \leq V_{2,k} (0) - \gamma_0 \int_0^t s_k^2 d\sigma - V_{2,k-1} \leq L_{k-1} (T) - \gamma_0 \int_0^T s_k^2 d\sigma \]

(28)

It follows from \(x_{k-1} (T) = x_k (0)\) and \(x_d (T) = x_d (0)\) that \(e_k (0) = e_{k-1} (T)\). By using this conclusion and (28), we obtain

\[L_k (T) - L_{k-1} (T) \leq -\gamma_0 \int_0^T s_k^2 d\sigma \]

(29)
which further yields
\[L_k(T) \leq L_{k-1}(T) \leq \ldots \leq L_{\min}(T) \] (30)

Combining (29) with (30) gives
\[L_k(t) \leq L_{\min}(T) - \int_0^t s_i^2(\sigma) d\sigma \] (31)

According to the continuity of Lyapunov functional, we deduce that \(L_k(T) \) is bounded. By using this conclusion, it follows from (31) that
\[0 \leq L_k(t) < +\infty \] (32)

Then, it follows from the definition of \(L_k \) that \(s_k \) is bounded, which can further yield the boundedness of \(e_k \). \(\|s_k\| \). Then, we can assert that \(|s_k| < +\infty \) while \(|s_k| > \epsilon \), which means that \(s_k \) is continuous while \(|s_k| > \epsilon \). Further, the boundedness of other system signals can be deduced. According to (30) and (31), we have
\[L_k(T) \leq L_{\min}(T) - \sum_{i=1}^k \int_0^t s_i^2(\sigma) d\sigma \] (33)

Because \(L_{\min}(T) \) is a bounded positive number, and \(L_k(T) \) is positive, if \(|s_k(t)| > \epsilon \) holds as the learning cycle increases, then \(L_k(T) \) would be negative, which is contrary to the positiveness of \(L_k(T) \). Hence, as the learning cycle increases, \(|s_k(t)| \leq \epsilon \) may hold, which leads to
\[|e^{(i)}_{k,i}(t)| \leq (2\lambda)^i \frac{\epsilon}{\lambda^{n-i}} \] (34)
for \(i,0,1,\ldots,n-1 \).

5. Illustrative Example
Let us consider the uncertain system as follows:
\[\begin{align*}
 x_{1,k} &= x_{2,k} \\
 x_{2,k} &= e^{-\theta(s_{1,k}(t)-s_{2,k}(t))} + g(t)u_v(t) \\
 \left[x_{1,i}(t), x_{2,i}(t) \right]^T &= [1.5, 0.2], t \in [-\tau_{\max}, 0]
\end{align*} \] (35)

where \(\theta = 0.5 + |\sin(2t)| \), \(\tau(t) = 1 - 0.5 \sin^2 t \), \(g(t) = 1 + 0.5 \sin^2 t \), \(\tau_{\max} = 1 \) and \(\dot{\tau}(t) \leq 0.5 \), \[x_{1,d}, x_{2,d} \] \Rightarrow \cos(\pi t), -\pi \sin(\pi t) \] .

We put the control algorithm (11)-(13) into effect with \(T = 4 \), \(\gamma_0 = 10 \), \(\gamma_1 = 4.5 \), \(\gamma_2 = 0.1 \), \(\epsilon = 0.01 \), \(\lambda = 2 \). In figures 1-2, \(x_1 \) and \(x_2 \) respectively follow \(x_{1,d} \) and \(x_{2,d} \) at the 50th cycle, with the corresponding tracking error provided in figures 3-4. Figure 5 shows the control input signal at the 50th cycle. The convergence history of \(s_k \) is given in figure 6, where \(J_k \triangleq \max_{t\in[0,T]}|s_k(t)| \).
Figure 1. The system state x_1.

Figure 2. The system state x_2.

Figure 3. State error e_1.
Figure 4. State error e_2.

Figure 5. Control input.

Figure 6. History of s_k convergence.
6. Conclusion
An adaptive ILC scheme is developed in this work, with alignment condition being used to deal with the initial position problem of ILC. Robust control technology and ILC technology are jointly applied to deal with input deadzone, time-delay and nonlinearly parametric uncertainties.

Acknowledgments
This work was supported in part by the National Natural Science Foundation of China [grant number 61673050], in part by Key Research and Development Plan of Zhejiang Province [grant number 2021C03019], and in part by Zhejiang Province Welfare Technology Applied Research Project [grant number LGF20F020007, LGF21F030001].

References
[1] Xu J X and Tan Y 2002 A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties IEEE Transactions on Automatic Control 47 (11) 1940-1945.
[2] Huang D, Yang W, Huang T, Qin N et al. 2021 Iterative learning operation control of high-speed trains with adhesion dynamics IEEE Transactions on Control Systems Technology in press doi:10.1109/TCST.3049958.
[3] Shen D 2018 Iterative learning control with incomplete information: A survey IEEE/CAA Journal of Automatica Sinica 5 (5) 885-901.
[4] Meng D 2019 Convergence conditions for solving robust iterative learning control problems under nonrepetitive model uncertainties IEEE Transactions on Neural Networks and Learning Systems 30 (6) 1908-1919.
[5] Liu J, Ruan X and Zheng Y 2020 Iterative learning control for discrete-time systems with full learnability IEEE Transactions Neural Networks and Learning Systems in press doi:10.1109/TNNLS.3028388.
[6] Li J and Li J 2016 Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems International Journal of Systems Science 47 (10) 2318-2329.
[7] Chi R, Liu X, Zhang R et al. 2017 Constrained data-driven optimal iterative learning control Journal of Process Control 55 10-29.
[8] French M and Rogers E 2000 Nonlinear iterative learning by an adaptive Lyapunov technique International Journal of Control 73 (10) 840-850.
[9] Yin C K, Xu J X and Hou Z S 2010 A high-order internal model based learning control scheme for nonlinear systems with time-iteration-varying parameters IEEE Transactions on Automatic Control 55 (11) 2665-2670.
[10] Xu J X and Yan R 2005 On initial conditions in iterative learning control IEEE Transactions on Automatic Control 50 (9) 1349-1354.
[11] Chien C J, Hsu C T and Yao C Y 2004 Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors IEEE Transactions on Fuzzy Systems 12 (5) 724-732.
[12] Yan Q Z, Liu X B, Zhu S and Cai J P 2020 Suboptimal learning control for nonparametric systems with uncertain input gains Acta Automatica Sinica 46 (5) 1051-1060.
[13] Yan Q Z, Sun M X and Li H 2016 Iterative learning control for nonlinear uncertain systems with arbitrary initial state Acta Automatica Sinica 42 (4) 545-555.
[14] Jin X and Xu J X 2013 Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties Automatica 49 (8) 2508-2516.
[15] Li X D, Chow T W S and Ho J K L 2005 2-D system theory based iterative learning control for linear continuous systems with time delays IEEE Transactions on Circuits and Systems I: Regular Papers 52 (7) 1421-1430.
[16] Meng D, Jia Y, Du J, et al. 2010 Robust iterative learning control design for uncertain time-delay systems based on a performance index IET Control Theory & Applications 4 (5) 759-772.

[17] Li J M, Wang Y L and Li X M 2011 Adaptive iterative learning control for nonlinear parameterized-systems with unknown time-varying delays Control Theory & Applications 28 (6) 861-868.

[18] Zhang R K, Hou Z S, Chi R H, et al. 2015 Adaptive iterative learning control for non-linearly parameterised systems with unknown time varying delays and input saturations International Journal of Control 88 (6) 1133-1141.

[19] Chen W S and Zhang L 2010 Adaptive iterative learning control for non-linearly parameterized systems with unknown time-varying delays International Journal of Control, Automation, and Systems 8 (2) 177-186.

[20] Recker D A, Kokotovic P V, Rhode D and Winkelmann J 1992 Adaptive nonlinear control of systems containing a deadzone Proceedings of the 30th IEEE Conference on Decision and Control pp 2111-2115.

[21] Tao G and Kokotovic P V 1994 Adaptive control of plants with unknown dead-zones IEEE Transactions on Automatic Control 39 (1) 59-68 Feb.

[22] Zhou J, Wen C, and Zhang Y 2016 Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity IEEE Transactions on Automatic Control 51 (3) 504-511.

[23] Wang X S, Su C Y and Hong H 2004 Robust adaptive control of a class of nonlinear systems with unknown dead-zone Automatica 40 (3) 407-413.

[24] Ibrir S, Xie W F and Su C Y 2007 Adaptive tracking of nonlinear systems with non-symmetric dead-zone input Automatica 43 (3) 522-530.

[25] Selmic R R and Lewis F L 2000 Deadzone compensation in motion control systems using neural networks IEEE Transactions on Automatic Control 45 (4) 602-613.

[26] Lewis F L, Tim W K, Wang L Z and Li Z 1999 Deadzone compensation in motion control systems using adaptive fuzzy logic control IEEE Transactions on Control Systems Technology 7 (6) 731-742.