The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization

Bernard J. Koch, Joseph F. Ryan, Andreas D. Baxevanis

Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

Background: Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass.

Results: We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study.

Conclusion: Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.

Introduction

LIM is an ancient eukaryotic protein domain that originated prior to the last common ancestor of plants, fungi, amoebae, and animals. The domain name is an acronym of the first three genes in which it was identified: Lin-11 from Caenorhabditis elegans [1], Isl1 from rat [2], and Mer from C. elegans [3]. LIM domain-containing proteins participate in cytoskeletal complexes such as focal adhesions and adherens junctions to regulate cell growth, motility, and division (reviewed in [4,5,6]). Many LIM proteins also shuttle to the nucleus, where they regulate gene expression and cell fate decisions [6,7]. Given their roles in focal adhesion dynamics, LIM proteins are prominent in tissues having elevated levels of cell-cell interactions (e.g., striated muscle; reviewed in [8,9]). In addition, their influence on intercellular communication makes them crucial to processes involving complex cellular navigation (e.g., axon guidance; [10]). It is, therefore, unsurprising that LIM proteins are implicated in a variety of heart and muscle conditions, neurological disorders, cancers, and other diseases [11,12,13,14,15,16].

The LIM domain is 50–65 amino acids in length and is defined by two cysteine-histidine-rich zinc fingers separated by a hydrophobic linker. The defining feature of the domain is its eight structural zinc-coordinating residues (usually cysteines). Outside of these highly conserved residues, LIM domains are highly diverse and lack a consensus protein-binding sequence (reviewed in [6]). In terms of diversity of domain architectures, LIM domains are considered to be amongst the most promiscuous [17]. In comparison to those found in plants, animal LIM proteins are particularly numerous and diverse in their architectural complexity [18,19,20].

In humans, the LIM superclass has been previously divided into established groups based on sequence and characteristic domain architectures. These groups have been further subdivided into at least three categories based on function, domain architecture, and cellular localization [6,7,21]. Two of these reviews classified individual LIM domains by sequence similarity. However, promiscuity and low sequence conservation make it difficult to resolve homologous relationships between LIM domains without rigorous phylogenetic analyses. There have been few evolutionary studies aimed at deducing the relationships between LIM groups
We retrieved the full amino acid sequences of all 265 hypothetical proteins and scanned them for non-LIM PFAM domains using HMMER [25,26]. We also scanned these sequences for motifs using the motif discovery program MEME [27]. We used the following criteria to define the domain architecture of a particular LIM protein: (1) the number of LIM domains, (2) the presence of any non-LIM PFAM domains, (3) the presence of any sequence motifs, and (4) the arrangement of these features. We used these domain architectures, along with the assignment of each LIM domain into one of the homology groups described above, as parallel lines of evidence to systematically place each protein into one of the 14 LIM classes (Table S1).

ABLIM class

ABLIM genes code for focal adhesion and adherens junction scaffolding proteins that mediate interactions between actin filaments and cytoplasmic targets; they also activate cytoskeletal signaling cascades that lead to transcription [28,29,30]. These proteins consist of a carboxyl-terminal villin headpiece (VHP) domain and four amino-terminal LIM domains (Fig. 1A). The domain architecture of ABLIM proteins makes them important components for cell-cell adhesion in epithelial tissues; the VHP domain confers F-actin-binding properties, while the LIM domains localize these proteins to adherens junctions [29]. Defects in the Drosophila ABLIM protein unc-115 lead to axon navigation errors [31].

In addition to the three human ABLIMs, we found a single ABLIM in Drosophila, Nematostella, and Amphimedon with the canonical architectural four of LIM domains and a VHP domain (Table S1). M. mansoni has two ABLIM proteins: one containing a VHP and one without. Similarly, Trichoplax has two ABLIM proteins that are both missing the VHP domain. One of the Trichoplax ABLIMs is also missing the most carboxyl-terminal LIM. Capsaspora, Monosiga, and Salpingoea do not have ABLIM proteins, suggesting that ABLIM is a metazoan novelty (Fig. 2).

CRP class

CRP is an ancient class of LIM proteins. It is the only LIM class that includes proteins from plants and the amoeba Dictyostelium discoideum [19,20,30,32]. As in plants, animal CRP proteins have been reported to modulate cytoskeletal dynamics [19]. CRP proteins stabilize α-actinin [33] and are involved in scaffolding at focal adhesions [34]. They also can shuttle to the nucleus where they serve as transcriptional regulators [32]. A CRP gene in Nematostella is expressed in the developing mesenteries, the coelenteron lining, and tentacles – all muscle-associated tissues [35].

CRP proteins typically contain two LIM domains separated by an approximately 50-residue linker, although some class members contain only a single LIM domain (Fig. 1B). A conserved 15–20 amino acid glycine-rich motif can be found on the carboxyl-terminus of each LIM domain [7]. In human CRP1, this motif is required for its localization to the cytoskeleton and ability to bundle actin [36]. This region may also overlap with a CRP nuclear localization signal [32].

If we root our multi-species tree with CRP, which is reasonable given that CRP is present in plants, the LIM domains of this class form a clade that is almost monophyletic (Fig. 3, S2 and S3). All but four of the proteins within this clade have a glycine-rich motif. Two of these four (Nv_68197, and Aq_223000) appear to be partial isoforms from CRP proteins that are already represented in our dataset (Nv_78916 and Aq_229999). We consider these proteins to be misannotated and have removed them from our table of classified LIM proteins (Table S1). An alternative gene
model for the single LIM protein Nv_7949 encodes two CRP LIM domains and a glycine-rich motif. Therefore, we have designated this protein as belonging to the CRP class. We have classified Co_04145T0 (from *Capsaspora*) as "unclassified" rather than a *bona fide* CRP, since we are unable to generate any corroborating evidence to ally this protein with the CRP class.

We identified six CRP proteins in humans, eight in *Nematostella*, one in *Mnemiopsis*, two in *Amphimedon*, and two in *Capsaspora* (Table S1). Two *Drosophila* CRP-related proteins each contain five tandemly duplicated LIMs and glycine-rich motifs. We were unable to unambiguously recognize CRP proteins in *Trichoplax*, *Salpingoeca*, or *Monosiga*.
ENIGMA class

The ENIGMA class consists of three families with differing numbers of LIM domains: Alp family proteins have one, Enigma family proteins have three, and Tungus family proteins have four (Fig. 1C). The proteins of this class include a PDZ domain that binds \(\alpha \)-actinin and modulates actin dynamics. ENIGMA proteins are able to enter the nucleus to modulate gene expression and signal transduction (reviewed in [37, 38]).

In addition to the LIM and PDZ domains, two motifs have been described in a subset of the ENIGMA class of proteins. The Zap (ZM) motif helps localize the Pdlim7 protein to \(\alpha \)-actinin [39]. Using the HMM from the SMART database [40], we identified this motif (Table S2) in the Drosophila Tungus protein, the human Alp proteins Pdlim1 and Pdlim3, as well as in the human Enigma protein Ldb3 (Table S1). This suggests that this motif was established prior to the divergence of the Alp, Enigma, and Tungus families.

A second motif of unknown function, the Alp motif (AM), was previously thought to be present only in the Alp family of proteins (e.g., human Pdlim1-4) [22]. However, we find that most of this motif is conserved in all members of the human Enigma family (Pdlim3, Ldb3, and Pdlim7). In addition, we recovered the Alp motif in Nematostella and Muenipos Enigma proteins (Nv_231944, Ml_108023b), as well as in a Tungus protein encoded by the cephalochordate Branchiostoma flavidae (Bf_123730). This suggests that this motif was also established prior to the divergence of these three families.

In Drosophila, a single ENIGMA class protein, Tungus, exists with a PDZ domain and four LIM domains. The first Tungus LIM forms a clade with the LIM domain from the Alp family, while the other three LIM domains are related to each of the three Enigma LIM domains (Fig. 3, S2, and S3). Tungus is present in the nematode Caenorhabditis elegans (Ce_alp-1) and the invertebrate chordate Branchiostoma floridæ (Bf_123730), but absent from all other species in our study (Fig. S6, S7 and S8).

We found a single Enigma protein in Nematostella, Trichoplax, Mnemiopsis, and Amphimedon. We did not find an Enigma in Drosophila or in C. elegans, but in addition to the three human Enigma proteins, we detected one Enigma in the lophotrochozoan Capitella teleta (JGI Capca1|63591). We were unable to recover an Alp from any of the non-bilaterian species, Drosophila, or C. elegans, but we did find Alp proteins in Capitella (JGI Capca1|190169) and Branchiostoma (Bf_124330), as well as human.

A previous study, based on the distribution of domains and relationship of a limited set of bilaterian LIM proteins, suggested that a Tungus-like ancestor gave rise to the Alp and Enigma families [22]. However, this hypothesis seems unlikely given the presence of the Enigma family in Capitella, as well as in non-bilaterian genomes; all these data were unavailable at the time of the previous study. The presence of the ALP motif throughout the ENIGMA class further contradicts this hypothesis. The most parsimonious explanation given this new data is that an Enigma-
like ancestor originated in the stem of the Metazoa and gave rise to the Alp and Tungus families in the stem of the Bilateria (Fig. 2).

EPLIN class

EPLIN class proteins promote the bundling and stabilization of actin stress fibers and act as scaffolds to associate cell adhesion machinery (specifically, cadherin-catenin complexes) with the cytoskeleton [41]. The mammalian EPLIN gene Lima1 can be found in the cleavage furrow during early embryogenesis (potentially as a recruiter protein) and is also required for cytokinesis [42]. Xirp2 is expressed in skeletal muscle and intercalated discs, where it is required for normal heart development in mice [43].

Figure 3. LIM domain cladogram. Alternating blue and grey coloring delineates homology groups; black regions are unclassified. For the homology group of each taxon, see Table S3. White circles with red outlines denote visually identified clades that contain a specific LIM domain conserved within a class or family. Colored circles indicate which species have taxa present within that manually annotated clade. For tip labels, branch lengths, and bootstrap values see Figures S2 and S3.

doi:10.1371/journal.pone.0033261.g003
We identified a highly conserved 22-amino acid motif, which we have named the Eplin Motif, positioned adjacent to the carboxy-terminal of the EPLIN LIM domain (Fig. 1D, Table S2). In addition to human Lml1 and Xirp2 proteins, we identified this motif-domain combination in a third human protein, Lml2. We also found a single EPLIN class protein with this architecture in each of Drosophila, Trichoplax, Nematosotella, Amphimedon, Salpingoeca, Cephalochordate Branchiostoma floridae [46]. This phylogenetic distribution supports the hypothesis that an ancestral LASP gene gave rise to all genes that code for nebulin repeats in metazoan evolution [46]. The rigid spatial requirements on the domains of the LASP proteins might be why there have been so few redeployments of nebulin repeats in the evolution of animals.

LHX class

LIM homeodomain proteins (LHX) are transcription factors that usually consist of two amino-terminal LIM domains and one carboxy-terminal homeodomain (Fig. 1F). This class of LIM proteins plays an important role in tissue specification, particularly in the nervous system, where LHX proteins work in combination to determine neuronal fates. This cooperative interaction has been termed the "LIM code" (reviewed in [47]).

In vertebrates, LHX proteins are involved in patterning the head and limbs, and the organogenesis of the forebrain, spinal cord, pituitary, heart, kidneys, eyes, and pancreas (reviewed in [6,48,49]). In Drosophila, LHX proteins are involved in axon guidance, patterning, and muscle formation (reviewed in [50]). LHX gene expression has been observed in presumptive neural territories during Nematosotella development and in the photoreceptor ring of Amphimedon [23].

Previous studies have suggested that LHX proteins are metazoan innovations (e.g., [23]). Consistent with these studies, we recovered LHX proteins from all of the metazoans in our study, whereas none were found in the three non-metazoan protostomes. This phylogenetic distribution suggests that LHX proteins originated at the stem of the Metazoa (Fig. 2). In total, we recovered three Amphimedon, four Mnemiopsis, four Trichoplax, six Nematosotella, six Drosophila, and 12 human LHX proteins (Table S1). Trichoplax has two additional LHX proteins that are absent from JGI's proteome version 1.0, but were described by Srivastava and coauthors, making for a total of six LHX proteins [23].

LMO class

Unlike LHX transcription factors, nuclear LMO proteins lack a DNA-binding homeodomain (Fig. 1G). However, the two LIM domain-containing LMO proteins each form a corresponding clade with the two LIM domains of LHX proteins, suggesting that these two classes are sister groups (Fig. 3, S2 and S3). LMO proteins regulate gene expression by binding transcription factors and other nuclear proteins. For example, in many cell types, "LIM Only" (LMO) proteins are co-expressed with LHX proteins and are thought to play a role in antagonizing selected LHX combinations (reviewed in [51]). In this way, LMO proteins negatively regulate the "LIM code."

In addition to the four human LMO proteins and two Drosophila LMO proteins, we identified three LMO proteins in Nematosotella and one protein in Trichoplax (Table S1). No LMO proteins were recovered from Cephalochordate Branchiostoma floridae, Cephalochordate Branchiostoma floridae, Cephalochordate Branchiostoma floridae, or Amphimedon. Given the phylogenetic distribution of these lineages and the corresponding relationship of the two LIM domains of LMO and LHX in our tree (Fig. 3, S2, and S3), the most parsimonious explanation is that an ancestral LHX-like gene lost its homeobox somewhere in the stem of the ParaHoxozoa, thereby forming the LMO class (Fig. 2).

LIMK class

LIMK proteins are serine/threonine kinases that inhibit actin disassembly by phosphorylating cofilin proteins (reviewed in [4,32]). Through this interaction, LIMK proteins regulate cell spreading, motility, growth, and cytokinesis. Moreover, LIMK...
proteins localize to focal adhesions, where they catalyze signaling cascades, or they can be shuttled to the nucleus where they regulate transcription [52]. Homo-dimerization of LIMK proteins may inhibit kinase activity or, in complex with a mediator, can enhance kinase activity (reviewed in [4]).

LIMK proteins contain two amino-terminal LIM domains, a PDZ domain, and a kinase domain (Fig. 1H). In addition to the human LIMK1 and LIMK2 proteins, we identified single LIMKs in Drosophila, Nemastella, and Amphimedon. No LIM domains from Trichoplax, Mnemiopsis, Salpingoa, or Monosiga are present in the two clades that comprise the LIMK LIM domains (Fig. 3, S2 and S3). Furthermore, we were unable to identify any proteins with both a kinase domain and a LIM domain from these four species. LIMK appears to be absent from these species.

Capsaspora has three proteins that have both kinase and LIM domains. We chose to exclude two of the Capsaspora proteins (Co_06515T0 and Co_08582T0) from the LIMK class. These two have atypical domain architectures, which lack PDZ domains; in addition, each contains more than two LIM domains, none of which share phylogenetic affinity with the bona fide LIMK LIM domains. The other (Co_05847T0) has a typical LIMK domain architecture, but also contains an additional TFIIB domain (Pfam PF03153). Although the first LIM of this protein is highly divergent, the second LIM is phylogenetically related to the second LIM of the metazoan LIMK proteins (Fig. 3, S2 and S3). We have classified this as a true LIMK and as such, date the origin of this class prior to the last common ancestor of animals and Capsaspora (Fig. 2).

LMO7 class

The canonical LMO7 proteins consist of a CH domain, a PDZ domain, and a single LIM domain (Fig. 1). The mammalian Lmo7 protein is involved in actin polymerization and stabilizing F-actin [53,54]. It localizes to focal adhesions, but in response to mechanical stress, can shuttle to the nucleus, where it is a potent transcriptional regulator [55].

We found related single LIM proteins in both Drosophila and Nemastella. The Drosophila protein, which lacks both PDZ and CH domains (Dm_CG31534), had previously been designated as an LMO7 [22]. In Nemastella, we recovered a single protein (Nv_216756) with a LIM domain and a degraded CH, but no PDZ. Interestingly, we identified LMO7 proteins, each with a single PDZ and CH domain, in Amphimedon and Mnemiopsis, but did not find any LMO7 proteins in the non-metazoan species. The presence of these proteins in the two earliest animal lineages suggests that LMO7 originated at the stem of the Metazoa (Fig. 2).

According to our phylogenetic analysis, the human Limch1 and Znf185 proteins are closely related to human Lmo7 (Fig. S4 and S5). Limch1 contains a single LIM domain and a CH domain, but lacks the PDZ domain. Znf185 lacks both the PDZ and CH domain but unlike other LMO7 class protein, has an amino-terminal domain called an actin-targeting domain (ATD), which is required for Znf185 to localize to actin-structured regulated structures [56]. In our multi-species tree (Fig. 3, S2 and S3), Limch1 and Znf185 form a clade with human Lmo7 and the Drosophila Lmo7 within the larger LMO7 clade suggesting that these proteins are likely the product of bilaterian-specific gene duplications.

MICAL class

MICAL is a single LIM domain-containing class consisting of the Mical and Mical-like families. Proteins of the Mical family are involved in destabilizing actin for neuronal growth and axon guidance during embryogenesis. They are expressed throughout adulthood in lung, brain, heart, thymus, and particularly in neuronal and muscular tissues. Mical-like proteins are involved in vesicular trafficking and the recycling of tight junction components (reviewed in [57]).

In addition to a single LIM domain, MICAL class proteins have an actin-binding calponin homology (CH) domain and a highly conserved carboxyl-terminal region, represented by PFAM model DUF5385 (Pfam PF12130; Fig. 1]. The Mical family is distinguished from the Mical-like family by an additional amino-terminal catalytic FAD-binding/oxidoreductase domain, which is required for Mical to bind F-actin [57]. We found that the Pfam FAD-binding HMM (Pfam PF01494.12) was not sensitive enough to identify all FAD-binding domains of the Mical family. Furthermore, we found that the entire region from the amino-terminus to the CH domain, which incudes the FAD-binding domain in MICAL proteins, is highly conserved across Metazoa. Therefore, we constructed two HMMs to represent the regions surrounding the PFAM-predicted FAD-binding domain in Mical family proteins (Fig. S9).

We were unable to identify any MICAL class proteins from the non-animal genomes in this study. On the other hand, both Mical and Mical-like proteins were found in each animal we investigated except for Trichoplax, which encoded a single Mical protein. This phylogenetic distribution suggests that both the MICAL class and the Mical and Mical-like families were established at the metazoan stem (Fig. 2). In an attempt to better resolve the relationships between the ENIGMA, LIMK, LMO7, and MICAL classes, we performed a phylogenetic analysis on the PDZ and CH domains of these proteins (data not shown). Unfortunately, the results of this analysis were inconclusive and were, therefore, not included.

PXN class

Like ABLIM, PXN (Paxillin) is a class of focal adhesion scaffolding and integrin-mediated signaling proteins [58]. PXN proteins encode four carboxy-terminal LIM domains, which localize these proteins to focal adhesions. They also encode one or more amino-terminal LD motifs, which are short leucine-aspartate-rich regions that have the consensus sequence LDxxLxxL (Fig. 1K). These LD motifs are required for interaction with many other proteins [59].

When phosphorylated, PXNs can recruit complexes of proteins to focal adhesions and regulate Rho GTPase signaling to effect cell adhesion, spreading, motility, and survival (reviewed in [60,61]). In human cells, the Tgfb1i1 and Pxn proteins have been shown to shuttle between the cytoplasm and nucleus, where they serve as nuclear receptor co-activators [58,62].

PXNs can be found in both fungi and amoebae and, as such, are an ancient class of LIM protein (Fig. 2) [60]. We found a single PXN in each genome we surveyed except for human, which encodes three (Table S1). We identified LD motifs in the PXNs of all animals and Capsaspora, but not in either of the choanoflagellates. In addition to a true PXN protein, Capsaspora has an additional PXN-like protein with four divergent PXN LIM domains as well as a Rap-GAP domain, but no identifiable LD motifs (Co_06505T0 in Table S1).

PINCH class

PINCH (sometimes called LIMS) proteins are adapters responsible for focal adhesion assembly and linking integrins to multiple signaling pathways (reviewed in [61,63,64]). PINCH proteins complex with integrins at muscle attachment sites [65] and also have been shown to shuttle to the nucleus in Schwann cells and neurons [66].

PINCH proteins contain five tandem LIM domains (Fig. 1L). We also identified a highly conserved twelve amino acid PINCH...
motif. This leucine-rich motif occurs immediately adjacent to the C-terminal side of the five LIM domains (Table S2). We found a single PINCH protein in *Drosophila, Nematostella, Trichoplax,* and *Amphimedon.* The *Mnemiopsis* genome encodes two PINCH proteins and the human genome encodes three (Table S1). No PINCH proteins were observed in either of the choanoflagellates, but a PINCH protein exists in *Capsaspora,* which sets the origin of the PINCH class prior to the last common ancestor of metazoans and *Capsaspora* (Fig. 2).

TES Class

The TES class consists of the Tes, Etes, and Fhl families. The PET domain is a highly conserved putative protein-protein interaction domain [67] that is specific to metazoans and choanoflagellates. The domain is characteristic of Tes and Etes families. The Fhl family originated recently in evolution and is characterized by the loss of the PET domain.

We identified two novel motifs in TES class proteins that we call TMA1 and TMA2 (Table S2). These motifs always occur to the amino-terminal region of the PET domain (Table S1). Seven of the TES class proteins have both of these motifs, which, in all cases, are separated by 17 or 18 amino acids. This suggests that they are part of a larger ~60 amino acid motif. 18 of the 28 proteins that make up the Tes and Etes families have at least one of these motifs (Table S1). In the human Lmcd1 protein, the region corresponding to the TMA2 motif is reported to bind the GATA6 transcription factor [68], suggesting that this motif is somehow related with transcriptional activities. We did not detect the motif in any of the FHL proteins. The presence of this motif in Tes family proteins of *Mnemiopsis* suggests that this motif was one of the founding components of the class.

Tes family. Proteins of the Tes family are characterized by an amino-terminal PET domain and two to three carboxyl-terminal LIM domains (Fig. 1M). The PET domain is capable of binding its own LIM domains and subsequently altering its set of binding partners; this, in turn, regulates its cellular localization [69]. Human Tes localizes to focal adhesions and is involved in cell spreading [70]. It has been shown to be present in the nucleus and is potentially involved in shuttling, similar to other LIM proteins [71].

Drosophila Prickle and Human Prickle1 and Prickle2 are classically described as core components in the non-canonical Wnt planar cell polarity (PCP) pathway. In this pathway, these proteins antagonize Dsh on the proximal side of the cell, inducing a distal Fz-Dsh complex and establishing cell polarity (reviewed in [72]).

We identified Tes family proteins in all species surveyed except for *Capsaspora.* This phylogenetic distribution suggests that Tes proteins originated just prior to the last common ancestor of choanoflagellates and animals (Fig. 2).

Etes family. We have designated TES class proteins that contain a PET domain and six LIM domains as the Etes (for “Extended testin’’) family (Fig. 1M). We recovered one Etes family protein from both *Drosophila* and *Amphimedon* and two from *Nematostella* (Table S1). There is limited literature describing the Etes proteins from these three species. However, the *C. elegans* ortholog, lim-8, is a component of the focal adhesion complex at muscle wall sarcomeres [73], and is expressed in neurons, depressor muscles, and other tissues [74]. The presence of an Etes protein in *Amphimedon* but not in any of the non-metazoans suggests that this family originated in the stem lineage of Metazoa (Fig. 2).

Fhl family. Fhl (for “Four and a half LIM”) proteins contain four LIM domains and a LIM-like amino-terminal zinc-finger domain (the “half LIM”; Fig. 1M). These five domains share corresponding homology with the terminal five LIM domains of *Nematostella* and *Drosophila* Etes family proteins. Humans lack an Etes family protein and are the only species in our study with Fhl proteins. The most parsimonious explanation for this data is that an ancestral Etes-like protein lost its PET domain somewhere in the lineage to humans after it split from *Drosophila* (Fig. 2).

Members of the human Fhl (Four and a half LIM) family are highly expressed in striated muscle, osteoblasts, and testes, where they have documented interactions with more than 50 other proteins [9,75]. They are involved in integrin-mediated, Notch, TGF-β, and Rho signaling, co-transcriptional activation and repression, cell differentiation, cytoskeletal remodeling, and mechanical stress response [6,9,75]. Their involvement in skeletal/cardiac myopathies and metastatic cancers is well-characterized [75].

ZYX class

ZYX (*Zyxin*) class proteins act as adapter proteins that facilitate the assembly of protein complexes at focal adhesions and take part in traffic to and from the nucleus (reviewed in [76]). ZYX proteins are characterized by three closely spaced carboxyl-terminal LIM domains that are required for localization to focal adhesions and adherens junctions (reviewed in [77,78]; Fig. 1N). The amino-terminal region of ZYX proteins are highly variable, leading to a diverse set of binding partners within the class [77]. ZYXs are implicated in cell fate determination, cell motility, oncogenesis, and cell growth [76,77]). Recent work has shown that ZYXs also play a role in microRNA silencing and telomere protection [79,80].

We recovered seven ZYX proteins from human, three from *Drosophila,* two from *Nematostella,* and one each from *Amphimedon* and *Mnemiopsis* (Table S1). We were not able to identify any ZYX proteins in the *Trichoplax* or non-animal genomes. The phylogenetic distribution of the ZYX class suggests that this class arose in the stem of the Metazoa (Fig. 2).

We identified a leucine-rich amino-terminal motif in *Drosophila* Jup, five of the seven human ZYXs, and one of the *Nematostella* ZYXs. In the human LPP protein, this motif overlaps with a functional leucine-rich nuclear export signal. We used the NetNES algorithm to predict putative nuclear export signals in the non-bilaterian ZYXs and found one overlapping with this same motif in the *Nematostella* ZYX protein [81]. In addition, we also found putative nuclear export signals in the *Mnemiopsis* and *Amphimedon* ZYXs despite the lack of the motif in these proteins, suggesting that nuclear shuttling is an ancestral trait of this class.

Unclassified Proteins

Fifty-nine proteins did not meet the criteria required to be included in one of the LIM classes. Depending on the complexity of domain architecture in a class, our criteria included a reasonable subset of these requirements: (1) conservation of LIM quantity, (2) phylogenetic affinity of LIM domains with the LIM domains of human proteins within the class, (3) presence of non-LIM domains and/or motifs that are characteristic of the group, and (4) correct order of LIM and non-LIM domains and/or motifs.

Most of these 59 proteins include domain architectures not seen in any of the described classes. Many of these proteins could not be categorized since they represent lineage-specific innovations that no longer fit the criteria for membership to an existing class. Others may be the result of erroneous gene predictions in the genomic region of a classifiable LIM gene. However, we were able to identify a group of possibly related proteins from *Drosophila,*
Discussion

LIM domains are building blocks of subcellular complexity

LIM domain-containing proteins have a range of binding partners and are considered “molecular adapters” because of their ability to assemble proteins that would otherwise be unable to interact directly. The binding flexibility of the LIM domain is also used for autoregulation, as well as for the combinatorial or direct regulation of other proteins. Most LIM proteins serve in cytoskeletal complexes but can also translocate to the nucleus to regulate transcription. In this way, they are vital for communicating extracellular signals between the surface of a cell and the nucleus. This dual localization makes LIM proteins important for the modulation of cell motility, structure, and division.

In this study, we have identified 265 LIM domain-containing proteins from nine proteomes. We divided this LIM complement up into 14 classes. Our classification relied on both phylogenetic analyses of LIM domains, as well as domain and motif architecture; in one case, phylogenetic analyses of non-LIM domains were also applied. For each class and family, we have provided plausible estimates of origin, which are summarized in Figure 2.

New LIM domain architectures in the metazoan stem

Novel combinations of protein domains have been produced by domain fusion and recombination events throughout evolution. These events (and their fixation) are somewhat rare, but have been shown to be relatively constant, with bursts of increased domain promiscuity occasionally occurring between various ancestral nodes [82]. Our analysis suggests that an impressive burst of domain promiscuity occurred in the stem lineage of the Metazoa (Fig. 2 and 4). This LIM architecture expansion is especially remarkable, considering how important adaptations to cell-surface signaling would be to a lineage in transition to a multicellular lifestyle. The shift of a cell’s surface substrate from an external to one consisting primarily of adjacent cells and a protein matrix provided the niches necessary for these new LIM classes to become fixed in the metazoan lineage. The organisms with a larger array of these proteins most likely had a better chance of inventing new cell types.

Similarly, *Trichoplax* appears to have lost the LASP, LMO7, LIMK, ZYX and CRP classes. If it is true, as most phylogenetic [reviewed in [83]] and morphological [84] evidence suggests, that *Trichoplax* has secondarily lost musculature and a traditional nervous system, it is perhaps not surprising that this species would have lost these classes of proteins, which serve a prominent role in the formation of these tissues. Moreover, it is not inconceivable that these losses might have contributed to a reduction of the cell types necessary for the maintenance of these systems in the *Trichoplax* lineage.

Conclusion

Our analysis and classification of the LIM superclass has revealed a pattern of expansion consistent with these proteins...
playing a major role in the origin of animal multicellularity. The increasing availability of genome-scale sequence data (especially from invertebrate metazoans and close outgroups) will continue to further our understanding of the history of the LIM superclass, allowing for a more precise chronicle of the evolution of the individual LIM classes and families. Furthermore, because human LIM proteins are implicated in diseases as diverse as leukemia, epilepsy, cardiomyopathy, osteoporosis, and muscular dystrophy, understanding the evolutionary history of this superclass can help translational researchers with the identification of medically relevant sequence motifs, the determination of appropriate model species, and the proper association of findings from model systems to human homologs [11,12,13,14,85,86].

Methods

Sequences

The filtered protein models for Nematostella v. 1.0 [87], Trichoplax v. 1.0 [88] and Monoisga v. 1.0 [89] were downloaded from each species’ Joint Genome Institute (JGI) genome website. The Amphimedon predicted proteome was downloaded from the ftp site in July 2009. As part of our Origins of Multicellularity Sequencing project, Broad Institute of Harvard and MIT (see http://www.broadinstitute.org) in March 2011. The Drosophila v. 3.0 proteome was downloaded from the FlyBase Web site [91]. Human protein sequences were downloaded from the National Center for Biotechnology Information’s RefSeq ftp site in July 2009. As part of our Mnemiopsis sequencing effort, we generated protein-coding gene models using a combination of Fgenesh [92], PASA [93], and EvidenceModeler [94]. The Mnemiopsis proteins used in this study are publicly available in GenBank. GenBank accession numbers for all Mnemiopsis sequences used in this study can be found in Table S1.

For convenience, we have adopted a simplified naming convention to refer to sequences. For all sequences, the first two characters refer to the genus and species followed by an underscore. For human and Drosophila sequences the rest of the name is the EntrZ gene symbol or the FlyBase name, respectively (e.g., human gi|5453710|ref|NP_006139.1| is named Hs_LASP1 and Drosophila FBpp0075109 is named Dm_Lasp). In the case of human sequences with more than one isoform, the Entrez gene symbol is followed by a hyphen and the number or letter of the isoform as it appears in RefSeq. In the case of genomes sequenced by the Joint Genome Institute, the JGI ID follows the underscore (e.g., gi|Nemve1|178184|estExt_GenewiseH_1.C_50530 is named Nv_178184). For Amphimedon sequences, we used the first number in the sequence header (e.g., AquI.224097|PA-Cid:15722625 is named Aq_224097). For Salpingoeca and Capsaspora, we use the complete gene model ID that was assigned by the Origins of Multicellularity Sequencing project. Similarly, we used the Mnemiopsis gene model IDs that our group generated as part of the Mnemiopsis genome project. We refer to the LIM domains within these sequences in amino to carboxyl order (e.g., Dm_Lnpt.A corresponds with the most amino terminal LIM domain found in the Dm_Lnpt protein).

Alignment

We used the LIM HMM (Piam PF00412.15) from the Pfam protein domain database [25,26] and the hmmsearch program from the HMMER suite v. 3.0b to recover all LIM domain sequences from each of the nine proteomes. We aligned LIM domains to the LIM HMM using the output of hmmsearch. The hmmsearch program was run using its default settings. The carboxyl-terminus of the LIM domain is quite variable, which makes it difficult for an HMM-based domain detection method like hmmsearch to identify this region of the domain. Consequently, there are carboxyl-terminal gaps in 528 of the 645 LIM domains that we recovered. In about 10% of our sequences, the method failed to detect even the ultra-conserved cysteine at position 50 and the highly conserved residue at position 53 (usually cysteine, aspartic acid, or histidine) of the canonical LIM domain. However, given the vast evolutionary distance between the sampled taxa, these variable regions are not likely to be phylogenetically informative. Therefore, we did not replace this missing data.

For human and Drosophila genes with alternatively spliced transcripts, we selected a single representative isoform. We discarded proteins with domains that were highly truncated or had very poor sequence conservation. These sequences represented zinc fingers that were mispredicted as LIM domains. In one case, (Ta_20314) a zinc finger made it into our data set and trees, but was later removed after we performed more detailed analyses. For each domain sequence in our main dataset, all characters predicted as insertions within the HMM (represented as lowercase letters) were removed. We added all individually processed domains to a single file to construct our nine-species alignment (Fig. S1).

Phylogenetics

We used maximum likelihood (ML) and Bayesian methods in a likelihood framework to construct two phylogenetic trees. We generated one tree (Fig. S2 and S3) from the complete nine-species alignment (Fig. S1) and a second (Fig. S4 and S5) from an alignment consisting of only the human subset of sequences. We ran ProcTest v2.4 [95] to determine that the LG model with gamma distribution of rates and invariant site categories was the most appropriate model to evaluate trees. For each alignment, we conducted two independent maximum likelihood searches using RAXML v.7.2.8a [96]: one with 25 random starting trees with the following command line (raxmlHPC-MPI -f d -m PROTGAMMAILG -s input.phy -N 1000 -k 10; another with 25 parsimony starting trees (raxmlHPC-MPI -f d -m PROTGAMMAILG -s input.phy -N 1000 -k 10).

We used MrBayes v. 3.1.2 to construct Bayesian trees for each dataset [97]. Because MrBayes does not support the LG model of evolution and no other models received an AIC weight greater than 0.0001, we ran two independent 500,000-generation runs of five chains with the related WAG model [98] for each alignment with the following execution block (prset aamodelpr= fixed (wag); last rates= Invgamma; mccp mccmcdiagn= no run= 1ngen= 5000000 printfreq= 5000 samplefreq= 500 chains= 5 savebrlens= yes; mcmcr); All runs were found to be asymptotic before the relative burn-in fraction of 0.25. We computed likelihood scores for all trees using the LG matrix in PHYML v.3.0 [99] with the following command line (phylml -i 01-Input.phy -c -m LG -a e -olr -f d -u 01-Input.tre -ve= d aa =b 0 -s NNT). We then chose the tree with the highest likelihood from all 50 ML searches and both Bayesian trees (Fig. 3, S2 and S3). Support for clades was assessed with 100 bootstrap replicates with the following command line (raxmlHPC-MPI -m PROTGAMMAILG -s 01-Input.phy -N 100 -h 100BS -k).

Classification of LIM Domain Sequences

Because bootstrap support for the main dataset phylogeny was poor, we used a consensus approach to identify clades that were recovered independently in both the main dataset and the human-
specific subset. We created a strict consensus cladogram of human taxa using Figure S5 and a pruned version of Figure S3. We rooted this tree at the midpoint to create 38 basal clades of human LIM domains. For convenience, we call these clades “homology groups” and the human LIM domains within them “members” of these homology groups.

Beginning with the nine-species tree (Fig. S3), we used a nearest neighbor approach to assign non-human LIM domains to homology groups. For each non-human leaf, we identified the most recent common node shared with a human leaf. If all human leaves descending from that common node belong to the same homology group, the leaf was placed in that homology group. If the most recent common node belonged to multiple homology groups, the leaf was declared unclassifiable. The homology group to which each LIM domain belongs is listed in Table S3, along with the class and position of the conserved LIM domain most common in that group. In Figure 2 and S2 the alternating branch colorings distinguish between different homology groups.

Domain Architecture Description

We used the HMMER program hmmmscan and Pfam v 24.0 to detect other domains in all the proteins of our main dataset [25,26]. The hmmmscan program was run using its default settings. Predictions with an independent E-value above 0.05 were excluded. In the case of overlapping domain envelopes, the prediction with the lowest independent E-value was selected. Predictions removed in this manner were checked individually.

Motif Discovery

Low complexity regions were masked out of all proteins in the main dataset using TANTAN v. 3 [100], as were Pfam-predicted domains with an E-value below 0.05. The TANTAN program was run using its default settings. We then ran the MEME motif discovery program iteratively, searching for a single motif in at least four proteins with the following command line (meme -minsites 4 -p 6 -maxsize 1000000 INPUT_FILE) [27]. All discovered motifs were masked before running additional iterations. This process was repeated until motifs with E-values greater than 0.01 were reported. The results of these analyses are shown in Table S2.

We ran MEME on an unmasked version of the LIM proteins to identify instances of existing motifs that may have been masked. We did not consider new motifs from this unmasked alignment, but in some cases extended existing motifs. All modifications stemming from this unmasked analysis are indicated in Table S2.

MICAL Hidden Markov Models

We identified multiple motifs in the highly conserved N-terminus in MICAL proteins in the motif discovery analysis. We aligned the proteins containing these motifs using MUSCLE v3.8.31 [101]. We then used HMMER’s hmmbuild program to create HMMs (Fig. S9) for the regions N-terminal and C-terminal to the envelope of the FAD-binding domain predicted by Pfam (Pfam PF01494). The default settings for hmmbuild were used for this analysis.

ENIGMA Class Phylogenetic Analyses

To more precisely date the origin of the Alp and Tungus families, we expanded our main dataset to include PDZ- and LIM-containing proteins from the following additional bilaterian proteomes: Canorhabitida elegans WS219 (from Wormbase), Capitella teleta v1.0 (from JGI), Lottia gigantea v1.0 (from JGI), Sacoglossus kowalevskii (from RefSeq), Strongylocentrotus purpuratus (from SpBase), Branchiostoma floridae v2.0 (from JGI), Ciona intestinalis v2.0 (from JGI), Gallus gallus (from RefSeq), Danio rerio (from RefSeq) [102,103,104,105,106]. We also BLASTed Dm_Tungus, Hs_PDLIM3, and Hs_PDLIM7 against the C. elegans, Capitella, and Branchiostoma genomes to ensure that no unpredicted genes were omitted from these species (see Table S1 for accessions).

We used hmmmscan (as described above) to identify proteins containing both PDZ and LIM domains in each additional species [26]. We constructed a new multiple alignment, which included the LIM domains from these sequences and the LIM domains of the PDZ-LIM proteins from our nine-species dataset (Fig. S6). We then used the same strategy employed for the LIM trees above on this alignment and generated a tree (Fig. S6 and S7).

ZASP and ALP Motifs

We searched for the Zasp Motif in all proteins in the main dataset using the corresponding SMART HMM (SM00735; Table S2) [40]. The Alp motif was recovered in the motif analysis (Table S2), but for greater resolution, we created a HMM from the multiple sequence alignment curated by te Vethuis et al. [30]. We searched for this motif in the full dataset combined with the Branchiostoma, Capitella and C. elegans PDZ-LIM models identified above with the following command (hmmsearch –max –incE 10 AM_MOTIF.hmm Input.fa). The results are reported in Table S2.

Nebulin Repeat Analysis

In order to increase our confidence that nebulin repeats are specific to the Lasp family in non-bilaterians, we performed the following analysis. First, we ran Augustus and HMMgene on each of the non-bilaterian genomes in our study [107,108]. Next, we translated these genomes in six frames. Finally, we searched these hypothetical proteomes, along with the published proteomes, for nebulin repeats using hmmmscan.

LIM Protein Classification Criteria

We classified the human LIM proteins into 14 classes based on sequence similarity and domain architectures. Our phylogenetic analysis validates these groups. We assigned non-human LIM proteins to these groups if they (1) shared the same number of LIM domains as human members of the class, (2) shared the same complement of LIM homology groups as human members of the class; (3) shared the conserved order of LIM domains found in human members of the class; and (4) shared non-LIM domains, motifs, and arrangement of these architectural features distinctive of the class.

Missing Domains and LIM Classes

To be certain that species-specific class absences of classes were not a result of errors in published proteomes, we performed the following analysis. First, we used Fgenesh [92] to predict proteins de novo in the Amphimedon and Salpingoea genomes and created a multiple alignment of the LIM domains found in these models. To this alignment, we added LIM domains found in JGI unfiltered protein models for Nematoctetia, Trichoplax, and Monosiga. After removing duplicates from our main analysis, we repeated the full phylogenetic and LIM domain classification analyses to place these LIM domains into homology groups. For each species, we looked for homology groups not present for that species in the main dataset. We recovered one Amphimedon protein in this analysis and submitted it to Genbank (GenBank JN015191).

For some JGI proteins, we found alternative models with more conserved domain architectures than the filtered model following phylogenetic characterization of the LIM domains. When a
superior model was discovered, that model (and not the filtered model) was entered into Table S1. In almost all cases, the LIM sequences in these new models are either identical to or more complete than those from the filtered models used in the phylogenetic analysis. Where they do exist, discrepancies between LIM domain sequences from different models are noted in Table S1.

Supporting Information

Figure S1 Multiple sequence alignment of LIM domain. This alignment includes LIM domains from nine species. The alignment is in FASTA format. Due to the automatic nature of our LIM identification, many of the LIM domains are incomplete, especially at the carboxyl-terminus. This is discussed in more detail in the Methods.

Figure S2 LIM domain tree. Midpoint rooted phylogram of LIM domain phylogeny (maximum likelihood). Alternating blue and grey coloring delineates homology groups; black regions are unclassified. Conserved LIM group labels appear within the upper edge of a clade. See Figure 2 for more details on homology groups and tree labeling. See Table S1 for details on individual sequences. See Table S1 for the corresponding alignment. Node values denote the percentage of 100 bootstrap replicates recovered for that particular bipartition.

Figure S3 LIM domain tree in Newick format. Newick version of Figure S2. This file can be opened and manipulated in tree-viewing software like Figtree or Treeview.

Figure S4 Human LIM domain tree. Midpoint rooted phylogram of human LIM domain phylogeny (maximum likelihood). See Table S1 for details on individual sequences. Node values denote the percentage of 100 bootstrap replicates recovered for that particular bipartition.

Figure S5 Human LIM domain tree in Newick format. Newick version of Figure S4. This file can be opened and manipulated in tree-viewing software like Figtree or Treeview.

Figure S6 Multiple sequence alignment of ENIGMA, LIMK, and LMO7 LIM domains. This alignment contains the subset of sequences from Figure S1 that were found in proteins classified as ENIGMA, LIMK, or LMO7. LIM domain sequences taken from proteins that contain PDZ and LIM domains from Branchiostoma floridae, Caenorhabditis elegans, Capitella teleta, Ciona intestinalis, Dana vivo, Gallus gallus, Lottia gigantea, Saccoglossus kowalevskii, and Strongylocentrotus purpuratus were added to this alignment. The alignment is in FASTA format.

Figure S7 LIM domain tree from ENIGMA, LIMK, and LMO7 class proteins. Midpoint rooted phylogram of ENIGMA, LIMK, and LMO7 class LIM domain phylogeny (maximum likelihood). See Table S1 for details on individual sequences. Node values denote the percentage of 100 bootstrap replicates recovered for that particular bipartition.

Figure S8 LIM domain tree in Newick format from ENIGMA, LIMK, and LMO7 class proteins. Newick version of Figure S7. This file can be opened and manipulated in tree-viewing software like Figtree or Treeview.

Table S1 Classification of LIM proteins. Species, accession numbers, and domain architectures are provided for each LIM protein in our analysis. Blue and grey columns indicate the amino acid position of a particular domain or motif as well as the E-Value from hmmsearch, in the case of domains, and MEME, in the case of motifs. Blank blue and grey columns indicate that the particular domain or motif was not found. A single asterisk indicates a feature that was not identified in the original protein sequence, but is present in alternative protein models. A note at the end of the row describes the alternative model associated with the asterisk. A double asterisk refers to a class-level note listed at the top of the class. Domains in red indicate domains that are not typical of the class.

Table S2 Motifs of LIM proteins. Each motif includes a MEME score in parenthesis next to the motif name, as well as a regular expression that defines the motif. We manually adjusted regular expressions in some cases to ensure that they matched all sequences identified by MEME. Residues in red represent those that were discovered by MEME using an unmasked version of the LIM proteins. Notes at the bottom of a section indicate other proteins where this motif was identified in the unmasked version of the MEME analysis. In the case of motifs missed by MEME, but discovered using our manually adjusted regular expression, the term “Regex” appears in the E-Value column.

Table S3 LIM domain homology groups. We created 38 LIM domain homology groups based on concordant clades from a strict consensus of our human LIM domain tree (Fig. S3) and a pruned version of our nine-species LIM domain tree (Fig. S5). We assigned non-human LIM domains to these homology groups based on a nearest-neighbor analysis. Letters following the protein name represent the position of the LIM domain within the particular protein (e.g., Hs_ABLIM2.B refers to the second LIM domain in the Hs_ABLIM protein).

Acknowledgments

We would like to thank Mark Q. Martindale, David Simmons, and Kevin Pang for insightful conversations and inspiration to compile this study in a timely manner. We thank Iiai Yanai, Tyra Woldberg, and Christine Schneider for their critical reading of this manuscript and valuable comments. Lastly, we would like to thank two anonymous referees for their thoughtful and insightful suggestions, which led to considerable improvements to the final manuscript.

Author Contributions

Conceived and designed the experiments: JFR BJK ADB. Performed the experiments: BJK JFR. Analyzed the data: BJK JFR. Contributed reagents/materials/analysis tools: BJK. Wrote the paper: JFR BJK ADB.
References

1. Freyd G, Kim SK, Horvitz HR (1990) Novel cytosine-rich motif and homeodomain in the product of the C. elegans htp-1 gene. Nature 344: 874-879.

2. Karlsson O, Thor S, Norberg T, Olhsson H, Edlund T (1990) Insulin gene enhancer binding protein Id-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344: 879-882.

3. Way JC, Chaffie M (1998) mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54: 3-16.

4. Manetti F (2011) LIM kinases are attractive targets with many macromolecular complexes: the multifaceted nature of FHL family proteins. Proceedings/International Conference on Intelligent Systems for Molecular Biology ; ISMB International Conference on Intelligent Systems for Molecular Biology 2: 28-36.

5. Basu MK, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of the LIM homeobox gene family. BMC biology 8: 4.

6. Basu AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A Class of Actin Cytoskeleton Organizers in Plants. Plant signaling & behavior 2: 129-132.

7. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

8. Zhang H, Xiao F, Wang F, Zhao J, Zhang K, et al. (2009) LPP gene is fused to MLL in a secondary acute leukemia with a t(3;11) and fusion transcript is functional. Leukemia 23: 1470-1472.

9. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) Identification of entire LMX1B gene deletions in nail patella syndrome: evidence for haplosufficiency as the main pathogenic mechanism underlying dominant inheritance in man. European journal of genetics : EJHG 16: 391-398.

10. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

11. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

12. Basu AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) Identification of entire LMX1B gene deletions in nail patella syndrome: evidence for haplosufficiency as the main pathogenic mechanism underlying dominant inheritance in man. European journal of genetics : EJHG 16: 391-398.

13. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

14. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

15. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

16. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

17. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

18. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

19. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

20. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

21. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

22. Basu AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

23. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

24. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

25. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

26. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

27. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

28. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, et al. (2008) A novel member of the ABLIM protein family, ABLIM-3, associates with STARS and directly bind F-actin. The Journal of biological chemistry 282: 1111-1118.

29. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

30. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.

31. Babcook M, Carmel L, Rogozin IB, Koonin EV (2008) Evolution of protein motifs in ZASP define a novel form of molecular duality in humans. Annals of neurology 57: 269-276.
83. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, et al. (2011) The inferred ancestral domain architectures. Molecular bioSystems 7: 784–792.

78. Wu C (2005) Migfilin and its binding partners: from cell biology to human cancer. Molecular biology of the cell 18: 4317–4326.

72. Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129: 897–906.

70. Coutts AS, MacKenzie E, Griffith E, Black DM (2003) TES is a novel focal adhesion protein that regulates the PINCH-1-ILK interaction, cell spreading, and migration. The Journal of biological chemistry 277: 38338–38344.

66. Campana WM, Myers RR, Rearden A (2003) Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 41: 213–223.

64. Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, et al. (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111: 943–955.

60. Deakin NO, Turner CE (2008) Paxillin comes of age. Journal of cell science 121: 2435–2444.

58. Dong JM, Lau LS, Ng YW, Lim L, Manser E (2009) Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. The Biochemical journal 418: 173–184.

54. Kussel CR, Marcon M, Pinto RG, Mendonça AL (2008) Human TRIP6 and LPP are involved in the nuclear localization of paxillin. FEBS letters 582: 101–107.