Does board gender diversity affect firm performance? Empirical evidence from Standard & Poor’s 500 Information Technology Sector

Liliana Nicoleta Simionescu, Ştefan Cristian Gherghina* , Hiba Tawil and Ziad Sheikha

Abstract

The essence of this study is to investigate the influence of the board gender diversity on firms' accounting and market-based performance using a sample of Standard & Poor’s 500 companies belonging to the information technology sector over 12 years. Using the pooled ordinary least squares (OLS) method, the outcomes provide evidence for a positive influence of women on corporate boards on both measures of company performance, except for the percentage of female executives in the case of return on assets (ROA). After estimating the fixed effects and random-effects through panel data, the econometric outcomes show no statistically significant association among board gender diversity and ROA but a positive influence of the number and percentage of women on board on price-to-earnings ratio.

Keywords: Gender diversity, Firm performance, Pooled OLS, Fixed-effects, Random-effects

Introduction

During the last decade, there was a noticeable trend of increasing the representation of women on boards in several countries worldwide, argued by the fact that corporations with female executives make better decisions for shareholders (Huang and Kisgen 2013). Although European countries were the leading parties in promoting women's rights in the workplace, other countries followed the trend through mandatory laws or recommendations (Wang 2020). As companies' boards are becoming more balanced in gender (Kumar and Zattoni 2016), Jourova (2016) expected a 40% share target of women on boards of directors among listed companies in 2020. Moreover, Ben Slama et al. (2019) confirmed that the uppermost level of accounting performance is achieved when the quota of 40% of women on board is fulfilled. Reguera-Alvarado et al. (2017) reinforced the need for regulatory interventions to avoid the social and labor criticisms that females have usually encountered and which downgrades them to microscale jobs. From an ethical viewpoint, Martinez and Rambaud (2019) argued that if the occurrence of females rises, the objective is reached autonomously of the company’s return. However, the economic perspective claims that women must be promoted according to their education
and professional knowledge, or else the corporation might register a decline in its profitability. Hence, this phenomenon gained substantial attention in recent studies as women show various ethical and social behaviors than men (Mahmood et al. 2018). Intensifying gender diversity in the boardroom can enhance the power of boards to perform their control and strategic roles (Kang et al. 2010). For instance, the presence of females on boards could enhance corporate governance mechanisms, such as transparency and accountability, because of their contribution to mitigating fraud (Capezio and Mavissakalyan 2016). Loukil et al. (2020) proved that women executives raise transparency and disclosure and reduce asymmetric information, particularly in family corporations. Further, Mobbs et al. (2021) claimed that informed women executives could reduce anomalous CEO payment and the probability of a financial restatement. Thus, female directors’ support alleviates agency issues and could encourage firm innovation by ensuring effective supervision (Chen et al. 2018). Conversely, Bhuiyan et al. (2020) advised that companies with corrupted women managers have greater real earnings management and larger audit fees.

The empirical evidence is mixed and sometimes contradictory (Kilic and Kuzey 2016; Martínez and Rambaud 2019). Prior studies have found that women could improve the decision-making process because of their different insights and innovative ideas that boost firm performance (Terjesen et al. 2009). Moreover, women on board increase perceptions of the board’s lawfulness and reliability, thus promoting stockholder confidence in the company (Perrault, 2015). Zalata et al. (2019) argued that women directors with oversight duties lessen managerial opportunism as measured by the discretionary accrual. Further, Dadanlar and Abebe (2020) suggested that women CEO-led companies have a low probability of discrimination lawsuits. García-Sánchez et al. (2019) concluded that boards with more women directors decrease the risk of impression management policies in sustainability reporting. Furthermore, Luo et al. (2017) emphasized that larger board female representation is related to lesser levels of real activity manipulation. However, women’s participation in the boardroom could reduce the effectiveness in executive tasks as a more diversified board has communication glitches, thus adding organizational and operational risks to the company and dropping firm performance (Westphal and Milton 2000).

This study would contribute to the literature as it focuses on the impact of board gender diversity on firm performance in the information technology (IT) sector of the United States (US). Prior literature that investigated high-technology companies was focused on female directors and earnings management (Gavious et al. 2012) or risk (Mukarram et al. 2018). Carmen, (2019) merely explored gender diversity in US computer industries but only at the senior management level. Therefore, the novelty of this study is depicted by providing fresh evidence on board gender diversity and firm performance for the IT sector, also considering other specific corporate governance mechanisms such as board independence and compensation. Even if European nations quickly force gender quotas, in the US, publicly traded companies are not required to fulfill a gender diversity quota, except those registered in California. Nevertheless, Terjesen et al. (2015) emphasized that some nations set out quotas for women’s presence, while others established non-binding gender quotas to fulfill the “comply or explain” rule. According to 2020 Women on boards (2020), females hold 22.6% of the board seats of Russell 3000
companies, whereas Catalyst (2020) reported that 26% of S&P 500 companies' boards constitute women. Concerning US technology companies, Sullivan et al. (2020) found that female board members, on average, account for 20.6%. The examination of the IT sector is argued by the fact that this industry faces several challenges, regular transformations, and constant insecurity (Gavious et al. 2012). Additionally, the IT sector is facing male gender stereotyping (Turner, 2001) since the era wherein females were advised to abandon the job market and rest at domicile with their infants (Oost 2000). In several societies, females are usually supposed to be accountable for performing tasks like cooking, cleaning, and raising children; hence their capacity to enter the workforce is constrained (Peng and She 2020). Consequently, gender-segregated opinions in the computer sector are unfavorable to females, favor gender bias and sexism, and drive to fewer possibilities for women in the field (Gumbus and Grodzinsky 2004; Oost 2000). However, greater gender diversity on corporate boards is required in this sector as long as it fosters innovation and technology, as it is also associated with higher research and development intensity and more patents (Cheng and Groysberg 2020), but their critical mass is necessary (Chijoke-Mgbame et al. 2020; Saggese et al. 2020). Further, Vafaei et al. (2021) reinforced that women executives are aligned with enhanced innovation activity independent of the firm type. Moreover, Chen et al. (2021) emphasized that female directors are related with a stronger link among research and development and upoming firm performance. Hence, assorted groups yield a greater fraction of premium quality solutions rather than unvaried communities (Richard and Norman 1961). Dezso and Ross (2012) asserted that the more a company's approach is centered on innovation, the more woman representation in top leadership enhances firm performance.

The study is organized as follows. Section 2 discusses prior literature and related theories. Section 3 depicts the sample, selected variables, and the quantitative framework. Section 4 presents and discusses the results. Finally, we conclude the study.

**Prior literature and theoretical background**

Various findings are reflected in the theoretical literature wherein agency philosophy, upper echelons, and the resource dependence theory advise that greater board diversity enhances performance. However, role incongruity and the gender-stereotyping theory prose a negative influence of female directors on company performance (Yang et al. 2019).

Agency theory emphasizes the information asymmetry among executives and stockholders, as well as the conflict amid directors (agents) and owners (principals) (Reddy and Jadhav 2019). However, the board's responsibility is to certify managers' active supervision (Fama and Jensen 1986). Accordingly, diverse boards exhibit a reasonable number of independent directors to oversee directors properly (Aggarwal et al. 2019). Consequently, increased gender diversity may lead to an activist board (Marinova et al. 2016). Further, Ain et al. (2020) proved that boards showing a significant majority of female directors register a better inclination to lower agency costs as related to their token membership.

The resource dependence view suggests that some corporations are more powerful than others, given their interconnection and positioning in social space (Pfeffer and Salancik 2003). Hillman et al. (2000) claimed that variations of conditions drive
adjustments in corporate policy, which may be supported through an amendment in board structure. Further, Robinson and Dechant (1997) asserted that women ensure an improved knowledge of markets and customers.

Additionally, the upper echelon theory postulates that executives act according to their individual experiences, values, personalities, and other related human factors (Hambrick and Mason 1984). Usually, females are supposed to be welcoming, gentle, respectful, and interpersonally experienced, but men are thought to be resilient, influential, forceful, and goal-centered (Diana and Eugene 1999). However, female directors are required to embrace organizational patterns that are not masculine or feminine but are satisfactory to male collaborators, overseers, and underlings—a circumstance not encountered by their masculine colleagues (Ragins 1998). To secure board positions, Solimene et al. (2017) noticed an increase in the share of women executives with specialized diplomas. However, Heilman (2001) argued that being experienced does not certify that a female will go forward to the matching corporate rank as a correspondingly performing male. Dezsö and Ross (2012) reinforced that females should be far more effective than males to surmount impediments to their progress, suggesting that tenured women executives are of a greater typical class than their male peers. Therefore, women do not benefit from equitable attention concerning their aptitudes and capabilities on account of the beliefs that they are inexperienced to accomplish ordinarily males’ jobs (Heilman 2012). Nevertheless, Unite et al. (2019) claimed that women directors have personal skill levels similar to those of males and that the nomination of female managers does not influence firm performance.

Theories corresponding to social groups, like social identification and social categorization, assess the way people attempt to encircle themselves with humans having comparable qualities that support them to strengthen intra-group interaction (Martín-Ugedo et al. 2019). Conjectures from social psychology advise that varied executives may not impact board rulings attributable to the board’s interior group dynamics (Akram et al. 2020; Carter et al. 2010). According to the similarity-attraction viewpoint, interlocking male executives would prefer males over females for board assignments because men have more confidence and optimism than women (Markoczy et al. 2020). Oldford et al. (2021) found that for a large sample of US companies, female board affiliation is negatively related to firm performance in social groups that are not pro-diverse. Nielsen and Huse (2010) asserted that a female is self-assured in her fundamental beliefs and is expected to speak up when concerns raised in the board are contrary to her principles. As such, Milliken and Martins (1996) emphasized the cognitive and emblematic gains of diversity and the negative influence on turnover and performance. Further, the member familiarity and information distribution view as formulated by Gruenfeld et al. (1996) suggest that parties with close representatives may be more successful at systematizing data and incorporating additional standpoints than collectivities whose participants are not acquainted.

Numerous studies explored the impact of boardroom gender diversity on firm-specific outcomes (Nadeem et al. 2019). In this vein, Table 1 summarizes the outcomes of the most recent studies on the impact of women directors on firm performance. Owing to its consequences, researchers have tried to analyze it from various points. Therefore, board diversity was defined based on particular attributes. For instance, there was
| Author(s) | Period | Database | Econometric techniques | Quantitative results |
|-----------|--------|----------|------------------------|---------------------|
| Mastella et al. (2021) | 2010–2018 | 150 Brazilian listed enterprises | OLS, quantile and panel data regressions | Positive link among board gender diversity and firm performance |
| Saleh et al. (2021) | 2010–2017 | 48 firms listed on Palestine Stock Exchange | Fixed-effects regressions ad one-step system generalized method of moments | Positive impact, but statistically insignificant, of board gender diversity on company performance |
| Soare et al. (2021) | 2010–2017 | 4080 Belgian companies | Difference-in-difference | Rise in diversity adversely influence some company performance variables |
| Sun and Zou (2021) | 2002–2018 | Listed corporations in China | Propensity score matching technique | Companies lead by women CEOs register superior performance than corporations lead by male CEOs |
| Ahmad et al. (2020) | 2011–2013 | Top 200 Malaysian quoted firms | Multiple regression analysis | The share of female directors on board is negatively associated with return on assets |
| Arioglu (2020) | 2009–2017 | Corporations quoted at the Borsa Istanbul | System-GMM and 2SLS-IV regressions | Women directors positively influence firm financial performance |
| Đặng et al. (2020) | 2004–2015 | 369 firms listed on the Standard & Poor’s 500 | Pooled OLS, fixed-effects, system GMM, control function | The presence of women on corporate boards positively influence return on assets |
| Ozdemir (2020) | 2007–2016 | 36 US tourism firms | Fixed-effects regressions | Board diversity positively influence Tobin’s Q |
| Shahzad et al. (2020) | 2008–2018 | 5879 US corporations | Regression analysis by incorporating the Sobel intermediary factor test method | Board gender diversity positively influence company performance |
| Song et al. (2020) | 1993–2018 | Publicly traded US lodging companies | Panel regression models | Gender diversity positively influence firm performance |
| Brahma et al. (2020) | 2005–2016 | FTSE100 constituent companies | Fixed-effects and system GMM | Positive influence of board gender diversity on return on assets, as well as Tobin’s Q |
| González et al. (2020) | 1996–2006 | 523 Colombian family companies | Fixed and random-effects regressions | Outside female directors positively influence industry-adjusted ROA, but family women directors exert a contrary effect |
| Xing et al. (2020) | 2000–2014 | 2325 firms listed on the Shanghai and Shenzhen Stock Exchanges | OLS, fixed-effects, 2SLS, Probit | Female top managers positively influence ROA in more gender-diverse boards |
| Nikura and Seko (2020) | 2015 | All firms listed in Tokyo Stock Exchange | Two-stage least squares method | The share of women on board and female inside and outside board members positively influence return on equity |
Table 1 (continued)

| Author(s)                          | Period    | Database                                                                 | Econometric techniques                                           | Quantitative results                                                  |
|-----------------------------------|-----------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| Garanina and Muravyev (2020)      | 1998–2014 | All companies listed on the RTS and/or MICEX, as well as MOEX            | Fixed and random-effects, 2SLS, dynamic panel data models, quantile regressions | Gender-diverse boards register superior market values and improved profitability |
| Sarkar and Selarka (2020)         | 2005–2014 | 1,348 firms listed on National Stock Exchange (NSE)                     | Panel data models, instrumental variable technique, difference in difference analysis | The existence of a woman director on board determines better firm performance |
| Fernández-Temprano and Tejerina-Gaite (2020) | 2005–2015 | 87 non-financial Spanish companies                                      | Fixed and random-effects regressions                              | Lack of statistically significant association between gender diversity and performance |
| Chijoke-Mgbame et al. (2020)      | 2008–2016 | 77 companies listed on Nigerian Stock Exchange                           | Fixed-effects and dynamic GMM                                     | The presence of women on boards positively influences company performance |
| Ararat and Yurtoglu (2020)        | 2011–2018 | Whole firm listed on the Borsa Istanbul                                  | Pooled OLS, fixed and random-effects regressions                  | No association between female representation and firm performance       |
| Belaounia et al. (2020)           | 2007–2016 | 1,986 public companies from 24 nations                                  | Firm and year fixed-effects regressions                           | Companies with higher representation of women on board register superior overall performance |
| Pucheta-Martínez and Gallego-Álvarez (2020) | 2004–2015 | 10,314 firm-year observations from 34 states                            | Pooled OLS regressions                                            | Board gender diversity positively influence Tobin’s Q                   |
| Akram et al. (2020)               | 2010–2016 | 375 non-financial companies listed on Pakistan Stock Exchange           | Fixed and random-effects regressions                              | Gender diversity negatively influence firm performance                 |

Source: Authors’ selection based on the earlier studies
noticed demographic board diversity that covers age, gender, nationality, and education (Ararat et al. 2015) or structural board diversity that embraces the size of the board and the directors’ independence (Srivastava 2015). Additionally, board diversity may improve a firm’s value as it allows persons with different experiences, backgrounds, ages, and gender to participate in the decision-making process (Carter et al. 2003). Terjesen et al. (2016) explored 3,876 public companies in 47 states and provided evidence that more female directors drive better market and accounting firm performance.

Women on boards exert a significant impact on firm performance (Adams and Ferreira 2009) because they can improve managerial duties through their preparation of meetings, different viewpoints, and leadership skills compared to men (Huse and Solberg 2006). Wang Jr et al. (2018) claimed that women CEOs own more human capital than men CEOs. Therefore, as many countries, such as Norway, Denmark, Spain, France, or Belgium, have understood the status of women in the boardroom of companies, gender quotas have been required for the number of females as board members (Adams and Funk 2012). However, women are still a minority on boards and other top management positions as almost 20% of the world’s largest corporations have no women directors (Desvaux et al. 2010).

The benefits that ensue from the participation of females on board are varied. First, women on board can affect corporate governance and thus enhance firm performance (Alabede 2016). This fact was supported by Adams and Ferreira (2009), who reported that women have a crucial impact on corporate governance as they are more dedicated to attending meetings and that men are also more likely to improve their presence when there are women directors. As such, Dah et al. (2020) confirmed that women CEOs are less likely to be substituted when the company is performing badly as related to men CEOs. Second, board gender diversity exerts an essential role in improving firm reputation because engaging women on the board of directors signals that the corporation does not encounter discrimination issues, mirroring a good image to the community (Kaur and Singh 2017). Third, Arguden (2012) argued that women know what consumers need better, meaning they can develop successful products and services. Resultantly, women in Europe and the US motivate between 70 and 80% of consumers’ purchase decisions, respectively. Fourth, companies that have women on board and top management are disposed to be successful because their employees are recruited according to their qualifications instead of their demographic features. Furthermore, women employees will work hard, registering higher productivity to reach the top, because they perceive women in top positions as role models (Lückerath-Rovers 2013). Finally, women show new ideas and innovative insights, which boost the policymaking process. Nevertheless, their contribution may add value to problem-solving through their communication and easiness of gaining information from different sources (Sánchez 2017). The behavioral theory of the corporation suggests that the rigor of policymaking operations can impact innovation in companies; however, homogeneous communities may hinder innovation (Torchia et al. 2018). Therefore, varied parties have a larger array of opinions and unique views.

The presence of female directors may also be influenced by cultural features. Institutional theory (Meyer and Rowan 1977) contended that companies operating in a strongly institutionalized setting register a higher likelihood to subsist. As such, Li and Harrison
Simionescu et al. (2008) proved that regulations enclosed in a society’s culture influence board structure. Further, Carrasco et al. (2015) reinforced that specific characteristics of the culture of a nation influence female presence on boards. Regarded as a component of societal culture (masculinity-femininity), Hofstede et al. (2010) exposed that men are oriented on profits, appreciation, progress, and tasks, while women are focused on having proper teamwork with superiors, collaboration, living space, and labor security. Moreover, Parboteeah et al. (2008) evidenced that uncertainty avoidance constrains female managers’ profession, while gender egalitarianism supports it.

Gender theory emphasizes that women prioritize ethical issues in an assignment, even if its completion is expected to be successful (Eccles 1994). Kaplan et al. (2009) argue that women’s reporting commitment for an unknown reporting line is greater than males’ reporting plans. Moreover, women directors enhance the board’s operation and productivity alongside company performance (Gavious et al. 2012). Accordingly, the more women and independent directors on the board, meaning diversified boards, the more directors undertake their monitoring, controlling, and auditing tasks effectively, thus boosting firm performance (Woschkowiak 2018). Female directors provide new opinions along with qualified backgrounds dissimilar from those of the “old boys’ club” (Bennouri et al. 2018). Thus, a setting of disagreements regarding sexual intimidation is related to a context of acceptance for disparities toward nationality, education, or faith, with workers’ development, involvement, and authorization being promoted using tutoring, coaching courses, and impartial recompense for the entire personnel (Bell et al. 2002).

Conversely, the trend of increasing women on board may have some drawbacks for corporations. Hence, having women on the board of directors would exert a negative impact on firm performance, as explained by the increased time needed to make decisions in more diversified boards (Smith et al. 2006). Additionally, board diversity imposes additional costs on the firm, and any increase in the firm performance might not be sufficient to offset those costs (Marinova et al. 2016). Further, Cox and Blake (1991) claimed that turnover and non-attendance are frequently greater among females.

According to the cross-disciplinary set of theories, the association between board gender diversity and firm performance may either be positive or negative founded on the approached philosophy. Therefore, in line with Carter et al. (2010), the main hypotheses of our study are framed in a null shape, as follows:

Hypothesis 1. The number of women on board does not influence firm performance.
Hypothesis 2. The percentage of women on board does not influence firm performance.
Hypothesis 3. The percentage of female executives does not influence firm performance.

Data and research design
Sample and measurement of variables
Our sample comprises all IT companies covered by Standard & Poor’s 500 Index. Therefore, 71 companies have been studied during the period 2009–2020. We collected data starting from 2009, arguing that Lee et al. (2015) pretended that there is an increase in the growth rate of new female chairs since this year. The entire quantitative data were extracted from primary sources, namely the Bloomberg database.
Table 2 reveals the variables employed in the empirical analysis. Concerning dependent variables, this study employs both an accounting-based indicator (ROA) and a market valuation indicator (PER) to measure firm performance as in Aggarwal et al. (2019); Niikura and Seko (2020); Terjesen et al. (2016); Unite et al. (2019) and Yang et al. (2019). Accounting-based indicators such as ROA show backward-looking predictions as they provide a view of a company’s performance in prior years (Kou et al. 2021) and, hence, unbiased estimates. Conversely, stock market-based measures like PER reveal investors’ forward-looking projections, being idiosyncratic (Chauhan and Dey 2017). Further, ROA may be altered by accounting standards and manipulated by the board, but PER is not easily handled (Chijoke-Mgbame et al. 2020). The explanatory measures capture board gender diversity along with other specific corporate governance variables and several firm-level control variables.

**Econometric approach**

To assess the impact of corporate board gender diversity on firm performance, our base regression models are depicted below, similar to Brahma et al. (2020); Chijoke-Mgbame et al. (2020); Garanina and Muravyev (2020); González et al. (2020); Liu et al. (2014); Mastella et al. (2021) and Nadeem et al. (2019):

\[
\begin{align*}
\text{ROA}_{it} &= \alpha + \beta \text{Board\_gender}_{it} + \lambda \text{Corporate\_governance}_{it} + \Omega \text{Firm\_controls}_{it} + \varepsilon_{it} \\
\text{PER}_{it} &= \alpha + \beta \text{Board\_gender}_{it} + \lambda \text{Corporate\_governance}_{it} + \Omega \text{Firm\_controls}_{it} + \varepsilon_{it}
\end{align*}
\]

where \( \beta \) is the coefficient of board gender diversity variables, \( \lambda \) is the vector of other specific corporate governance variables, \( \Omega \) is the vector of firm-level control variables, and \( \varepsilon \) depicts the error term for firm \( i \) at time \( t \). First, in line with Bennouri et al. (2018) and Pucheta-Martínez and Gallego-Álvarez (2020), a basic OLS estimation of the influence of female directorship on firm performance is employed. However, there may emerge biased estimates because of the endogeneity issue. Second, to check the robustness of pooled OLS outcomes, as in Ararat and Yurtoglu (2020), we estimate the panel data fixed-effects (FE) and random-effects (RE). To control if unobservable heterogeneity is correlated with the independent variables, we employ the Hausman test to select the appropriate method among fixed and random-effects, similar to Akram et al. (2020); Chauhan and Dey (2017); Garanina and Muravyev (2020); González et al. (2020); Martínez and Rambaud (2019) and Zalata et al. (2019). Moreover, under Yang et al. (2019), we incorporate several substitute control variables to distinguish how the influence of board diversity changes over with their inclusion.

**Empirical findings and discussion**

**Descriptive analysis and correlations**

The summary statistics are presented in Table 3. The mean ROA is 8.99%, while the mean PER is 35.23. However, there is a large variation in firm performance as the disparity between the minimum and maximum values is large. The average number of women on board is 1.73, whereas the related share is 16.53%. Similarly, the percentage of female executives is merely 12.36%. Figure 1 reveals the mean values of gender diversity
| Variable name                                      | Abbreviation | Definition                                                                 | Prior Studies                                                                                                                                 |
|---------------------------------------------------|--------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| **Dependent variables**                           |              |                                                                             |                                                                                                                                             |
| Return on Assets                                   | ROA          | Net income divided by average total assets                                 | Ahmadi et al. (2018), Đặng et al. (2020), Frijns et al. (2016), Jiang et al. (2020), Liu et al. (2014), Ye et al. (2019)                   |
| Price to Earnings Per Share                        | PER          | Stock price divided by earnings per share                                   | Fu et al. (2016), Letting’ et al. (2012)                                                                                                   |
| **Independent variables**                         |              |                                                                             |                                                                                                                                             |
| **Board gender diversity variables**              |              |                                                                             |                                                                                                                                             |
| Number of Women on Board                          | NOWOMBRD     | Number of women on board                                                    | Byoun et al. (2016), Liu et al. (2014), Maj and Bebenek (2017), Ye et al. (2019)                                                            |
| Percentage of Women on Board                      | PERWOMBRD    | Number of women on board divided by board seats                             | Ahmadi et al. (2018), Conyon and He (2017), Haque and Jones (2020), Low et al. (2015)                                                     |
| Percentage of Female Executives                   | PERFEMEXE    | Number of women executives divided by total executives                       | Liu et al. (2014), Low et al. (2015)                                                                                                     |
| **Other specific corporate governance variables** |              |                                                                             |                                                                                                                                             |
| Size of the Board                                 | SIZEBRD      | Number of directors                                                         | Aggarwal et al. (2019), Frijns et al. (2016), Haque and Jones (2020), Rockey and Zakir (2020)                                           |
| Number of Board Meetings                          | BRDMEET      | Number of board meetings                                                    | Aggarwal et al. (2019)                                                                                                                      |
| Board Duration                                    | BRDDUR       | Number of years since board appointment                                     | Byoun et al. (2016), Haque and Jones (2020)                                                                                               |
| Age of the Youngest Directors                     | AGEYNGDIR    | Age of the youngest directors                                                | Eulerich et al. (2014), Song et al. (2020)                                                                                                |
| Age of the Oldest Directors                       | AGEOLDDIR    | Age of the oldest directors                                                  | Eulerich et al. (2014), Song et al. (2020)                                                                                                |
| Number of Independent Directors                   | INDEPDIR     | Number of independent directors                                              | Chen et al. (2017), Jiang et al. (2020), Naciti (2019)                                                                                     |
| Total Board Compensation Paid                     | BRDCOMP      | Board members total compensation                                            | Conyon and He (2004)                                                                                                                        |
| Total Executive Compensation Paid                 | EXECOMP      | Executives’ total compensation                                              | Badertscher et al. (2013), Conyon and He (2004)                                                                                           |
| **Firm-level control variables**                  |              |                                                                             |                                                                                                                                             |
| **Variables towards firm size**                   |              |                                                                             |                                                                                                                                             |
| Firm size                                         | TA           | Total assets                                                                | Badertscher et al. (2013), Byoun et al. (2016)                                                                                            |
| Employees                                         | EMP          | Number of employees                                                         | Naciti (2019)                                                                                                                               |
| **Variables regarding cash-flow**                 |              |                                                                             |                                                                                                                                             |
| Free Cash Flow                                    | FCF          | Cash available to be distributed to owners                                  | Ogbeide and Akanji (2017)                                                                                                                  |
| Cash Flow from Operating Activities               | CFFO         | Cash inflows and outflows from main operations                              | Ogbeide and Akanji (2017)                                                                                                                  |
| Cash Flow from Financing Activities               | CFFF         | Cash to raise capital or repay investors                                     | Ogbeide and Akanji (2017)                                                                                                                  |
| **Variables regarding corporate liquidity**       |              |                                                                             |                                                                                                                                             |
| Cash Ratio                                        | CR           | Cash and cash equivalent divided by current liabilities                      | Delen et al. (2013)                                                                                                                         |
| Current Ratio                                     | CURR         | Current assets divided by current liabilities                               | Delen et al. (2013)                                                                                                                         |
| Quick Ratio                                       | QR           | Current assets minus inventory divided by current liabilities               | Delen et al. (2013)                                                                                                                         |
measures over the selected period. In line with 2020 Women on boards (2020), we notice an increase in the presence of women on US corporate boards, argued by the fact that major corporations are experiencing excessive pressure from stockholders. Conversely, in smaller enterprises, CEOs and nominating committees count on individuals they meet in their friendship groups.

Table 4 reveals the mean values of ROA and PER depending on the number of women on board, consistent with Ahmadi et al. (2018). We observe that the mean ROA is higher in companies with at least one woman on board than in firms with no female director, but after the threshold of four females, the performance decreases. The facts are consistent with those of Kristie (2011), who claimed that “one is a token, two is a presence, and three is a voice.” Furthermore, Garanina and Muravyev (2020) documented that three women on board are necessary to achieve a positive effect. Regarding PER, the situation is opposite as long as the highest mean value is registered when no woman director is registered.

Table 5 reports the Pearson correlations among the included variables. We notice high correlations between firm-level control variables, but different models will be estimated for each of these measures to avoid the multicollinearity issue.

Regression results

Table 6 reports baseline estimates of the relation between board gender diversity and ROA via pooled OLS. We checked for multicollinearity using the variance inflation factor statistic (VIF), but all related values were lower than the cut-off value of ten recommended by Wooldridge (2012). The number and percentage of women on board
positively influence ROA, consistent with Đặng et al. (2020); thus, the null Hypothesis 1 and Hypothesis 2 are rejected. In line with Martínez and Rambaud (2019), the positive impact may depict a competitive gain as women offer wider knowledge, skills, viewpoints, and experiences. However, the adverse influences emphasize an increased likelihood of struggles in the decision-making process. Likewise, consistent with Ahmadi et al. (2018), gender diversity can enhance board supervision, provide legitimacy to the board, augment the teamwork and coaching of managers, and strengthen stakeholder connection. Moreover, the findings support those of Pucheta-Martínez and Gallego-Álvarez (2020), who argued that women’s conduct harmonizes all stockholders’ interests and prevents disputes, improving corporate performance.

Nevertheless, the percentage of female executives exerted a negative influence, consistent with the identification and social categorization theories. Further, null Hypothesis 3 is rejected. Contrary to Brahma et al. (2020), a female executive does not own sufficient managerial power, adequate information, and time to impact policymaking, thus

| Table 3 | Descriptive statistics |
|---------|------------------------|
| Variables | Obs | Mean | Std. Dev | Min | Max |
| ROA | 747 | 9.00 | 8.12 | −47.23 | 35.92 |
| PER | 766 | 35.23 | 88.39 | 3.78 | 1,880.06 |
| NOWOMBRD | 659 | 1.74 | 1.22 | 0.00 | 7.00 |
| PERWOMBRD | 695 | 16.54 | 10.20 | 0.00 | 50.00 |
| PERFEMEXE | 660 | 12.36 | 11.86 | 0.00 | 50.00 |
| SIZEBRD | 695 | 9.90 | 2.22 | 3.00 | 19.00 |
| BROOMEET | 689 | 7.76 | 3.37 | 2.00 | 34.00 |
| BRODUR | 683 | 1.50 | 0.94 | 1.00 | 5.00 |
| AGEYNGDIR | 654 | 49.04 | 5.33 | 31.00 | 63.00 |
| AGEOOLDDIR | 654 | 72.43 | 4.92 | 59.00 | 89.00 |
| INDEPIDIR | 690 | 8.06 | 2.05 | 2.00 | 16.00 |
| BRCOMP | 681 | 2.72 | 1.48 | 0.06 | 14.12 |
| EXECOMP | 692 | 33.98 | 39.64 | 0.47 | 436.61 |
| TA | 756 | 23,447.70 | 44,475.20 | 51.37 | 375,319.00 |
| EMP | 695 | 40,888.60 | 76,820.80 | 375.00 | 492,000.00 |
| FCF | 770 | 2,864.05 | 7,080.56 | −2,649.00 | 70,019.00 |
| CFFO | 770 | 3,641.61 | 8,666.13 | −637.00 | 81,266.00 |
| CFFF | 770 | −1,663.90 | 6,568.26 | −102,977.00 | 14,324.00 |
| CR | 752 | 1.36 | 1.33 | 0.00 | 9.84 |
| CURR | 752 | 2.39 | 1.68 | 0.62 | 11.85 |
| QR | 752 | 1.85 | 1.45 | 0.03 | 10.76 |
| DY | 426 | 2.30 | 2.69 | 0.04 | 32.91 |
| DPS | 806 | 0.81 | 1.44 | 0.00 | 18.50 |
| DPR | 745 | 44.57 | 230.54 | 0.00 | 5,425.46 |
| TDTA | 752 | 20.65 | 16.76 | 0.00 | 96.91 |
| TDC | 748 | 34.52 | 41.34 | 0.00 | 585.91 |
| TDE | 720 | 76.11 | 174.66 | 0.00 | 2,762.64 |
| AM | 762 | 18.61 | 15.39 | −105.20 | 66.15 |
| ETR | 642 | 29.26 | 58.60 | 0.00 | 1,366.33 |
| R&D | 256 | 1,865.72 | 3,193.30 | 0.00 | 16,876.00 |

Source: Authors’ computations. Notes: For the definition of variables, please see Table 2
Fig. 1 The annual means of a number of women on board and b percentage of women and female executive on board. Source: Authors' work

Table 4 Comparison among companies that have no women on board and those that have at least one woman on board

| Number of women directors | Mean performance |
|---------------------------|------------------|
|                           | ROA (%) | PER       |
| 0                         | 7.74385 | 44.46645  |
| 1                         | 8.737377| 34.78452  |
| 2                         | 9.839072| 24.60696  |
| 3                         | 9.207485| 33.27893  |
| 4                         | 12.00326| 19.83047  |
| 5                         | 8.258044| 20.03975  |
| 7                         | 4.226931| 25.34961  |

Source: Authors' computations. Notes: For the definition of variables, please see Table 2
### Table 5  Pearson correlation matrix

| Variables       | (1)  | (2)  | (3)  | (4)  | (5)  | (6)  | (7)  | (8)  | (9)  | (10) | (11) | (12) | (13) | (14) | (15) |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| (1) ROA         | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| (2) PER         | 0.25 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |
| (3) NOWOMBDRD   | 0.14 | 0.08 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |
| (4) PERWOMBRD   | 0.25 | 0.22 | 0.86 | 1.00 |      |      |      |      |      |      |      |      |      |      |      |
| (5) PERFEMEEX   | 0.07 | -0.12| 0.56 | 0.31 | 1.00 |      |      |      |      |      |      |      |      |      |      |
| (6) SIZBRD      | -0.20| -0.26| 0.49 | -0.00| 0.53 | 1.00 |      |      |      |      |      |      |      |      |      |
| (7) BRDMEET     | -0.33| -0.10| -0.01| -0.09| 0.01 | 0.16 | 1.00 |      |      |      |      |      |      |      |      |
| (8) BRDDUR      | -0.30| -0.05| -0.43| -0.44| -0.22| -0.15| 0.10 | 1.00 |      |      |      |      |      |      |      |
| (9) AGEYNGDIR   | -0.01| -0.35| 0.02 | -0.09| 0.06 | 0.24 | -0.03| -0.11| 1.00 |      |      |      |      |      |      |
| (10) AGEOOLDDIR| -0.11| -0.00| 0.02 | -0.20| 0.21 | 0.37 | -0.19| -0.20| 0.20 | 1.00 |      |      |      |      |      |
| (11) INDEPDIR   | -0.16| -0.30| 0.56 | 0.16 | 0.50 | 0.86 | 0.24 | -0.28| 0.30 | 0.09 | 1.00 |      |      |      |      |
| (12) BRDCOMP    | -0.13| -0.13| 0.14 | -0.13| 0.25 | 0.52 | -0.09| 0.30 | 0.11 | 0.27 | 0.34 | 1.00 |      |      |      |
| (13) EXECOMP    | 0.06 | -0.19| 0.07 | -0.04| 0.30 | 0.23 | -0.15| -0.01| 0.24 | 0.48 | 0.03 | 0.27 | 1.00 |      |      |
| (14) TA         | 0.17 | -0.34| 0.27 | 0.20 | 0.54 | 0.16 | -0.19| -0.15| 0.43 | 0.05 | 0.26 | 0.06 | 0.43 | 1.00 |      |
| (15) EMP        | -0.05| -0.43| 0.36 | 0.05 | 0.42 | 0.66 | 0.31 | -0.11| 0.58 | 0.11 | 0.72 | 0.31 | 0.18 | 0.42 | 1.00 |
| (16) FCF        | 0.30 | -0.31| 0.12 | 0.15 | 0.38 | -0.06| -0.24| -0.15| 0.42 | -0.00| 0.08 | -0.06| 0.41 | 0.94 | 0.30 |
| (17) CFFO       | 0.28 | -0.30| 0.14 | 0.16 | 0.39 | -0.04| -0.23| -0.14| 0.41 | -0.01| 0.10 | -0.06| 0.39 | 0.95 | 0.32 |
| (18) CFFF       | -0.13| 0.15 | -0.14| -0.17| -0.41| 0.03 | 0.24 | 0.09 | -0.42| 0.00 | -0.10| 0.04 | -0.17| -0.67| -0.24|
| (19) CR         | 0.09 | 0.00 | 0.18 | 0.01 | 0.39 | 0.31 | -0.06| -0.17| -0.04| 0.42 | 0.08 | 0.23 | 0.42 | 0.21 | -0.12|
| (20) CURR       | 0.02 | -0.10| 0.15 | -0.06| 0.37 | 0.38 | -0.01| -0.12| 0.01 | 0.38 | 0.15 | 0.27 | 0.42 | 0.20 | -0.04|
| (21) QR         | -0.01| -0.11| 0.19 | -0.04| 0.39 | 0.40 | 0.04 | -0.14| 0.01 | 0.39 | 0.18 | 0.25 | 0.40 | 0.19 | -0.03|
| (22) DY         | 0.08 | 0.12 | 0.08 | -0.01| 0.12 | 0.12 | 0.29 | -0.10| 0.22 | -0.04| 0.24 | -0.04| -0.25| 0.06 | 0.20 |
| (23) DPS        | 0.07 | -0.10| 0.39 | 0.23 | 0.33 | 0.37 | 0.13 | -0.15| 0.52 | -0.08| 0.58 | 0.16 | -0.11| 0.34 | 0.73 |
| (24) DPR        | 0.04 | 0.09 | 0.09 | 0.08 | 0.14 | 0.02 | -0.03| -0.03| -0.04| 0.08 | -0.03| -0.01| 0.00 | -0.04| 0.04 |
| (25) TDTA       | -0.43| -0.20| 0.02 | -0.28| 0.38 | 0.52 | 0.01 | 0.15 | 0.27 | 0.40 | 0.37 | 0.37 | 0.27 | 0.30 | 0.33 |
| (26) TDC        | -0.34| -0.21| 0.12 | -0.18| 0.37 | 0.56 | 0.16 | 0.01 | 0.38 | 0.31 | 0.56 | 0.30 | 0.11 | 0.27 | 0.58 |
| (27) TDE        | -0.27| -0.20| 0.17 | -0.10| 0.33 | 0.53 | 0.23 | -0.04| 0.34 | 0.23 | 0.55 | 0.24 | 0.03 | 0.18 | 0.58 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|
| (28) OM   | 0.51| -0.03| 0.17| 0.18| 0.31| 0.01| -0.37| -0.22| 0.08| 0.33| -0.20| 0.06| 0.50| 0.35| -0.04|
| (29) ETR  | -0.31| 0.06| -0.07| -0.03| -0.15| -0.09| -0.04| 0.07| -0.07| 0.01| -0.08| -0.09| 0.03| -0.16| -0.16|
| (30) R&D  | 0.16| -0.33| 0.36| 0.21| 0.71| 0.31| -0.07| -0.19| 0.31| 0.07| 0.37| 0.09| 0.34| 0.90| 0.44|

| (16) FCF | 1.00 |
| (17) CFFO | 1.00 | 1.00 |
| (18) CFFF | -0.70 | -0.69 | 1.00 |
| (19) CR | 0.09 | 0.08 | 0.04 | 1.00 |
| (20) CURR | 0.07 | 0.06 | 0.07 | 0.97 | 1.00 |
| (21) QR | 0.05 | 0.04 | 0.08 | 0.97 | 0.99 | 1.00 |
| (22) DY | -0.01 | -0.00 | 0.01 | 0.17 | 0.19 | 0.22 | 1.00 |
| (23) EPS | 0.26 | 0.29 | -0.30 | -0.34 | -0.31 | -0.29 | 0.47 | 1.00 |
| (24) DFF | -0.03 | -0.04 | -0.14 | 0.09 | 0.07 | 0.08 | 0.20 | 0.01 | 1.00 |
| (25) TDA | 0.13 | 0.14 | -0.20 | 0.21 | 0.24 | 0.26 | 0.15 | 0.21 | 0.02 | 1.00 |
| (26) TND | 0.12 | 0.14 | -0.25 | -0.02 | -0.01 | 0.03 | 0.27 | 0.54 | 0.02 | 0.86 | 1.00 |
| (27) FDE | 0.05 | 0.07 | -0.20 | -0.15 | -0.14 | -0.10 | 0.23 | 0.60 | -0.02 | 0.69 | 0.92 | 1.00 |
| (28) OM | 0.39 | 0.37 | -0.15 | 0.46 | 0.42 | 0.40 | -0.17 | -0.20 | -0.01 | -0.05 | -0.22 | -0.20 | 1.00 |
| (29) ETR | -0.17 | -0.16 | 0.04 | -0.04 | -0.04 | -0.01 | -0.11 | 0.55 | -0.01 | -0.05 | -0.13 | -0.07 | 1.00 |
| (30) R&D | 0.81 | 0.81 | -0.63 | 0.38 | 0.37 | 0.38 | 0.09 | 0.27 | 0.02 | 0.28 | 0.25 | 0.16 | 0.41 | -0.19 | 1.00 |

Source: Authors’ computations. Notes: For the definition of variables, please see Table 2.
Table 6: The outcomes of pooled OLS regarding the impact of board gender diversity on ROA

| Variables       | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| NOWOMBRD        | 0.35  | -0.10 | -0.39 | 0.72  | 0.60  | 0.73  | 0.74  | 0.01  | -0.02 | -0.04 |
|                 | (0.3720) | (0.6916) | (0.6887) | (0.3659)** | (0.3748) | (0.3795)* | (0.3696)** | (0.0350) | (0.0661) | (0.0662) |
|                 | (0.4036) | (0.7323) | (0.7482) | (0.3802)* | (0.3676)* | (0.3828)* | (0.3709)** | (0.0374) | (0.0690) | (0.0729) |
| PERWOMBRD       | 0.01  | -0.02 | -0.04 | -0.08 | 0.09  | 0.18  | 0.01  | 0.03  | 0.04  | 0.05  |
|                 | (0.0056) | (0.0054) | (0.0053)* | (0.0053)* | (0.0056) | (0.0056) | (0.0056) | (0.0056) | (0.0056) | (0.0056) |
| PERFEMEXE       | -0.53 | -0.12 | -0.48 | -0.68 | -0.28 | -0.34 | 0.68  | 0.68  | -0.22 | -0.23 |
| SIZEBRD         | -0.53 | 0.09  | -0.12 | -0.48 | -0.68 | -0.28 | -0.34 | 0.68  | 0.68  | -0.22 | -0.23 |
|                 | (0.2288)** | (0.5300) | (0.5058) | (0.2567)* | (0.2593)** | (0.2471)** | (0.2287) | (0.2029)* | (0.4098) | (0.4180) |
|                 | (0.2596)** | (0.4986) | (0.4466) | (0.2430)* | (0.2516)*** | (0.2421) | (0.2436) | (0.4187) | (0.4035)* |
| INDEPDIR        | -0.50 | -0.24 | -0.20 | -0.21 | -0.10 | -0.21 | -0.21 | -0.21 | -0.21 | -0.21 |
|                 | (0.2471)*** | (0.2878)* | (0.2287) | (0.2421) | (0.2436) | (0.4187) | (0.4035)* |
| AGEYNGDIR       | -0.20 | -0.34 | -0.38 | -0.48 | -0.68 | -0.28 | -0.34 | 0.68  | 0.68  | -0.22 | -0.23 |
|                 | (0.0591)*** | (0.1374)** | (0.1430)*** | (0.0624)*** | (0.0658)*** | (0.0655)*** | (0.0585)* | (0.0594)*** |
|                 | (0.0642)*** | (0.1398)** | (0.1406)*** | (0.0632)*** | (0.0692)*** | (0.0682)*** | (0.0734) | (0.0628)*** |
| AGEOLDDIR       | -0.21 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 |
|                 | (0.0542) | (0.0592) | (0.0575) | (0.0567)* | (0.0592) | (0.0575) | (0.0567)* | (0.0592) | (0.0575) | (0.0567)* |
| BRDDUR          | -2.13 | -2.55 | -2.78 | -2.90 | -2.55 | -2.78 | -2.90 | -2.55 | -2.78 | -2.90 |
|                 | (0.3833)*** | (1.671194) | (1.6653)* | (0.4071)*** | (0.4334)*** | (0.4244)*** | (0.4204)*** | (0.3958)*** | (1.9153) | (1.9247) |
|                 | (0.3467)*** | (1.17031)*** | (1.1785)*** | (0.4027)*** | (0.4668)*** | (0.4277)*** | (0.4225)*** | (0.3847)*** | (1.6066) | (1.6163) |
| BRDMEET         | 0.07  | -0.72 | -0.78 | -0.80 | -0.80 | -0.80 | -0.80 | -0.80 | -0.80 | -0.80 |
|                 | (0.01134) | (0.3090)*** | (0.3037)*** | (0.1184) | (0.1240) | (0.1234) | (0.1211) | (0.1063) | (0.2530)*** | (0.2530)*** |
|                 | (0.1045) | (0.3186)*** | (0.3192)*** | (0.1167) | (0.1240) | (0.1234) | (0.1211) | (0.1063) | (0.2530)*** | (0.2530)*** |
| EXECOMP         | 0.003 | -0.003 | 0.007 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 |
|                 | (0.0056) | (0.0057) | (0.0054) | (0.0053)* | (0.0053)* | (0.0056) | (0.0056) | (0.0056) | (0.0056) | (0.0056) |
Table 6 (continued)

| Variables | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-----------|------|------|------|------|------|------|------|------|------|------|
| BRDCOMP   |      |      |      |      |      |      |      |      |      |      |
|           | 0.003| -0.0008| 0.02| -0.15| -0.04| -0.10| 0.24| 0.23 |      |      |
|           | (0.3532)| (0.3533) | (0.2159)| (0.2156) | (0.2233) | (0.2128) | (0.3399) | (0.3425) |      |      |
|           | (0.2666) | (0.2664) | (0.1598) | (0.1712) | (0.1691) | (0.1768) | (0.2739) | (0.2774) |      |      |
| CFFO      | 0.0001| 0.0001| 0.0001|      |      |      | 0.0001| 0.0009 |      |      |
|           | (0.0000)** | (0.0000)** | (0.0000)** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)*** | (0.0000)* |      |      |
|           | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)*** |      |      |
| CFFF      | -0.0001| 0.00005| 0.00004|       |       |       | -0.0001| 0.00009 |       |       |
|           | (0.0000)** | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)***** |       |       |
|           | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)***** | (0.0000)***** |       |       |
| CFF       | 0.03  |      |      |      |      |      |      |      |      | 0.03  |
|           | (0.0068)*** |      |      |      |      |      |      |      |      | (0.0066)*** |
|           | (0.0090)*** |      |      |      |      |      |      |      |      | (0.0089)*** |
| TDE       | -0.15| 0.17 |      |      |      |      |      |      |      | 0.14  |
|           | (0.0288)*** | (0.0290)*** | (0.0327)*** | (0.0350)*** |      |      |      |      |      | (0.0299)*** |
|           | (0.0363)*** |      |      |      |      |      |      |      |      | (0.0389)*** |
| TDC       |      |      |      |      |      |      |      |      | 0.11  | 0.12  |
|           |      |      |      |      |      |      |      |      | (0.0212)*** | (0.0220)*** |
|           |      |      |      |      |      |      |      |      | (0.0220)*** | (0.0218)*** |
| TDTA      |      |      |      |      |      |      |      |      | 0.11  |      |
|           |      |      |      |      |      |      |      |      | (0.0198)*** | (0.0212)*** |
|           |      |      |      |      |      |      |      |      | (0.0204)*** | (0.0210)*** |
| CR        | 0.54 |      |      |      |      |      |      | 0.43  |      |      |
|           | (0.4177) |      |      |      |      |      |      | (0.4107) |      |      |
|           | (0.5838) |      |      |      |      |      |      | (0.5620) |      |      |
| CURR      | -0.95| -0.87|      |      |      |      |      |      |      |      |
|           | (0.9639) | (0.9729) |      |      |      |      |      |      |      |      |
|           | (0.9830) | (1.0250) |      |      |      |      |      |      |      |      |
| QR        | 0.16 | -0.61| -0.35| -0.94 |      |      |      |      |      |      |
Table 6 (continued)

| Variables | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|           | (0.4960) | (0.4830) | (0.5014) | (0.3756)** | (0.7770) | (0.7556) | (0.7590) | (0.5069)* |       |     |
|           | (0.3952)*** | (0.6104)*** |       |       |       |       |       |       |       |     |
| DPS       | 2.58 |     |     |     |     |     |     |     |     |     |
|           | (0.6090)*** |       |       |       |       |       |       |       |       |     |
|           | 2.62 |     |     |     |     |     |     |     |     |     |
|           | (0.3956)**|       |       |       |       |       |       |       |       |     |
| DY        | 1.84 | 1.91 |     |     |     |     |     |     |     |     |
|           | (0.3300)*** | (0.3325)*** |       |       |       |       |       |       |       |     |
|           | (0.4698)*** | (0.4457)*** |       |       |       |       |       |       |       |     |
| DPR       | 0.002 | 0.002 | 0.001 | 0.002 |       |       |       |       |       |     |
|           | (0.0007)*** | (0.0007)*** | (0.0007)*** | (0.0007)*** |       |       |       |       |       |     |
| EMP       | 0.0001 | 0.0002 | 0.0001 | 0.0001 |       |       |       |       |       |     |
|           | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** |       |       |       |       |       |     |
|           | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** |       |       |       |       |       |     |
| TA        | 0.36 | 0.30 | 0.32 | 0.38 | 0.39 | 0.38 | 0.37 | 0.36 | 0.36 | 0.38 |
|           | (0.0362)*** | (0.0723)*** | (0.0738)*** | (0.0327)*** | (0.0339)*** | (0.0341)*** | (0.0338)*** | (0.0371)*** | (0.0774)*** | (0.0803)*** |
|           | (0.0355)*** | (0.0664)*** | (0.0678)*** | (0.0319)*** | (0.0307)*** | (0.0321)*** | (0.0309)*** | (0.0346)*** | (0.0676)*** | (0.0696)*** |
| ETR       | −0.02 | −0.09 | −0.11 | −0.02 | −0.01 | −0.10 | −0.08 | −0.08 | −0.08 | −0.08 |
|           | (0.011)*** | (0.0255)*** | (0.0259)*** | (0.0213)*** | (0.0225)*** | (0.0221)*** | (0.0225)*** | (0.0110)*** | (0.0254)*** | (0.0258)*** |
|           | (0.0161)* | (0.0339)*** | (0.0315)*** | (0.0179)*** | (0.0198)*** | (0.0189)*** | (0.0211)*** | (0.0162)* | (0.0334)*** | (0.0330)** |
| R&D       | −0.0005 | −0.0005 | −0.0006 | −0.0001 | −0.0001 | −0.0008 | −0.0006 | −0.0003 | −0.0001 |     |
|           | (0.0001)*** | (0.0002)* | (0.0002)*** | (0.0000)*** | (0.0001)*** | (0.0000)*** | (0.0001)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** |
|           | (0.0002)* | (0.0002)* | (0.0002)*** | (0.0001)*** | (0.0001)*** | (0.0001)*** | (0.0002)*** | (0.0002)*** | (0.0001)*** | (0.0001)*** |
| _cons     | 19.75 | 33.77 | 38.73 | 27.86 | 27.81 | 29.11 | 23.45 | 18.17 | 27.09 | 28.89 |
|           | (36139)*** | (9.6238)*** | (9.6454)*** | (5.3350)*** | (5.5547)*** | (5.5682)*** | (5.3992)*** | (3.5587)*** | (12.5326)** | (12.5175)** |
Table 6 (continued)

| Variables  | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | (3.8662)*** | (8.7564)***| (8.7270)***| (5.2876)***| (5.5026)***| (5.5394)***| (5.2919)***| (3.7200)***| (12.1702)**| (12.1583)**|
| **F statistics** | 22.81***    | 7.88***    | 7.89***    | 20.85***   | 18.26***   | 18.72***   | 19.58***   | 22.31***   | 22.21***   | 7.77***    |
| R-Sq       | 0.6302     | 0.6051     | 0.6054     | 0.6732     | 0.6434     | 0.6489     | 0.6158     | 0.625      | 0.6036     | 0.5706     |
| Mean VIF   | 2.43       | 3.6        | 3.11       | 2.45       | 1.87       | 1.94       | 1.48       | 2.23       | 2.89       | 2.46       |
| # Obs      | 188        | 87         | 87         | 179        | 179        | 179        | 186        | 188        | 188        | 90         |
|            | 11         | 12         | 13         | 14         | 15         | 16         | 17         | 18         | 19         | 20         | 21         |
| NOWOMBRD   | 0.06       | 0.05       | 0.06       | 0.09       |            |            |            |            |            |            |
|            | (0.0339)*  | (0.0353)   | (0.0352)*  | (0.0192)***|            |            |            |            |            |            |
| PERWOMBRD  |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |
| PERFEMEXE  |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |
| SIZEBRD    |            |            |            |            |            |            |            |            |            |            |
| INDEPDOIR  | -0.08      | -0.15      | 0.23       | 0.59       | 0.29       |            | -0.07      | -0.10      |            |            |
|            | (0.2066)   | (0.2143)   | (0.1228)*  | (0.1594)***| (0.1182)** |            | (0.2123)   | (0.2111)   |            |            |
|            | (0.2324)   | (0.2405)   | (0.1325)*  | (0.1626)***| (0.1288)** |            | (0.2493)   | (0.2469)   |            |            |
| AGEYNGDIR  | -0.14      | -0.19      | -0.11      | -0.06      | -0.04      | -0.12      | -0.19      | -0.05      | -0.20      | -0.11      |
|            | (0.0577)** | (0.0659)***| (0.0601)*  | (0.0375)*  | (0.0429)   | (0.0575)** | (0.0585)***| (0.0385)   | (0.0660)***| (0.0605)*  |
|            | (0.0694)***| (0.0723)***| (0.0737)   | (0.0380)*  | (0.0434)   | (0.0601)** | (0.0608)***| (0.0377)   | (0.0744)***| (0.0750)   |
|            |            |            |            |            |            |            |            |            |            |            |
| AGECOLDIR  | -0.09      | -0.07      | -0.09      | -0.08      | -0.08      | -0.08      | -0.06      | -0.08      | -0.08      | -0.08      |
|            | (0.0668)   | (0.0709)   | (0.0693)   | (0.0411)** | (0.0423)** | (0.0706)   | (0.0697856)| (0.0696)  | (0.0568)   | (0.0561)   |
|            | (0.0525)   | (0.0571)   | (0.0555)*  | (0.0345)*  | (0.0368)** | (0.0561)   | (0.054362) | (0.0547)   | (0.054362) | (0.0547)   |
| BRDDUR     | -1.61      | -1.39      | -1.44      | -1.17      | -1.20      | -0.64      | -0.92      | -0.88      | -1.55      | -1.61      |
|            | (0.4150)***| (0.4285)***| (0.4306)** | (0.2152)** | (0.2550)***| (0.4436)   | (0.4550)** | (0.2302)** | (0.4166)***| (0.4253)***|
|            | (0.4325)***| (0.4035)***| (0.4414)** | (0.1756)** | (0.2341)** | (0.4190)   | (0.4396)** | (0.2135)** | (0.3742)** | (0.4233)***| (0.4204)***|
| Variables  | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   |
|------------|------|------|------|------|------|------|------|------|------|------|------|
| BRDMEET    | 0.01 | -0.11| -0.05| -0.33| -0.31| -0.49| -0.40| -0.34| -0.09| -0.03| -0.05|
|            | (0.1190) | (0.1238) | (0.1224) | (0.0639)** | (0.0715)** | (0.0909)** | (0.0920)** | (0.0645)** | (0.1238) | (0.1233) | (0.1224) |
| EXECOMP    | 0.009 | 0.0053* | 0.0054* | 0.0050 | 0.0057 | 0.0052 | 0.0053 | 0.0054* | 0.0053 | 0.0000 | 0.0000 |
|            | (0.0057) | (0.0076) | (0.0082) | (0.0090) | (0.0108) | (0.0075) | (0.0073) | (0.0079) | (0.0078) | (0.0000)*** | (0.0000)*** |
| BRDCOMP    | 0.07  | -0.22 | -0.06 | -0.14 | -0.18 | -0.18 | -0.04 | -0.20 | -0.07 | -0.08 | 0.0001 |
|            | (0.2093) | (0.2111) | (0.2129) | (0.1422) | (0.1898) | (0.1866) | (0.1529) | (0.2115) | (0.2146) | (0.2144) | (0.0000)*** |
| CFF        | 0.009 | 0.0003** | 0.0000** | 0.0000 | 0.0000 | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)** | (0.0000)*** |
|            | (0.1715) | (0.1894) | (0.1794) | (0.1376) | (0.1478) | (0.1574) | (0.1360) | (0.1911) | (0.1828) | (0.1809) | (0.0000)*** |
| CFFF       | 0.006 | 0.000004* | 0.000002 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 |
|            | (0.0000) | (0.0000) | (0.0000) | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)** | (0.0000)*** | (0.0000)** | (0.0000)*** |
| FCF        | 0.000006 | 0.000000** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** | (0.0000)*** |
| TDE        | -0.004 | -0.004 | -0.003 | -0.004 | -0.003 | -0.004 | -0.003 | -0.004 | -0.003 | -0.004 | -0.003 |
|            | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** | (0.0210)** |
| TDC        | -0.09  | -0.12 | -0.10 | -0.06 | -0.06 | -0.07 | -0.13 | -0.11 | -0.11 | -0.11 | -0.11 |
|            | (0.0198)** | (0.0207)** | (0.0208)** | (0.0115)*** | (0.0114)** | (0.0217)** | (0.0216)** | (0.0216)** | (0.0216)** | (0.0216)** | (0.0216)** |
| TDTA       | -0.09  | -0.12 | -0.10 | -0.06 | -0.06 | -0.07 | -0.13 | -0.11 | -0.11 | -0.11 | -0.11 |
|            | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** |
|            | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** | (0.0217)** |
| Variables | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CR        | 0.50|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| CURR      | 0.35|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| QR        | -0.32| -0.74| -0.78| 0.71|     |     |     |     |     |     |     |
|           | (0.3910) | (0.4756) | (0.3895)** | (0.1385)*** | (0.1561)*** | (0.1692)*** | (0.1627)** | (0.1632)*** | (0.1780)*** | (0.1624)*** | (0.1651)*** |
| DPS       | 0.32|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| DY        | 0.14|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| DPR       | 0.002|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| EMP       | 0.0001|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| TA        | 0.00001|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |
| OM        | 0.36|     |     |     |     |     |     |     |     |     |     |
|           |     |     |     |     |     |     |     |     |     |     |     |

**Note:** The table continues with similar data entries for other variables.
| Variables | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   |
|-----------|------|------|------|------|------|------|------|------|------|------|------|
| ETR       | -0.10| -0.10| -0.10| -0.09| -0.006| -0.008| -0.009| -0.10| -0.10| -0.10| -0.10|
|           | (0.0217)***| (0.0224)***| (0.0225)***| (0.0150)***| (0.0041)*| (0.0035)**| (0.0153)***| (0.0224)***| (0.0227)***| (0.0227)***| (0.0227)***|
|           | (0.01)***| (0.0196)***| (0.0212)***| (0.0143)***| (0.0054) | (0.0031)***| (0.0028)***| (0.0147)***| (0.0195)***| (0.0213)***| (0.0209)***|
| R&D       | -0.0004| -0.0001| 0.00001| -0.0001| 0.00003| 0.00| -0.0001| 0.00001| 0.00001| 0.00000| 0.00000|
|           | (0.0001)***| (0.0001) | (0.0001) | (0.0001)***| (0.0001)***| (0.0001)***| (0.0001)***| (0.0001)***| (0.0001)***| (0.0001)***| (0.0001)***|
| _cons     | 22.32| 24.67| 22.62| 18.52| 8.77| 12.47| 18.51| 18.24| 24.80| 22.54| 21.93|
|           | (5.1632)***| (5.4185)***| (5.3811)***| (3.9099)***| (2.4709)***| (3.2567)***| (3.1437)***| (3.4687)***| (5.4351)***| (5.4261)***| (5.3937)***|
|           | (4.9336)***| (5.4235)***| (5.0672)***| (3.2113)***| (2.4010)***| (3.3496)***| (3.3155)***| (3.3418)***| (5.5496)***| (5.1910)***| (5.1703)***|
| F statistics | 20.49***| 19.04***| 18.32***| 43.8***| 309.5***| 20.42***| 20.89***| 37.99***| 20.12***| 19.03***| 20.41***|
| R-Sq      | 0.6439| 0.6366| 0.6178| 0.5693| 0.4277| 0.4375| 0.4785| 0.5184| 0.6321| 0.6091| 0.6067|
| Mean VIF  | 2.06| 1.73| 1.62| 1.3| 1.39| 1.24| 1.46| 1.31| 1.73| 1.61| 1.42|
| # Obs     | 186| 179| 186| 479| 510| 328| 310| 509| 179| 186| 186|

Source: Authors’ computations. Notes: *, **, and *** represent significance at 10%, 5%, and 1%, respectively. The first and second numbers between the brackets are the standard error and robust standard error, respectively. For the definition of variables, please see Table 2.
yielding a negative influence on firm performance. According to Akram et al. (2020), women executives may have close connections with the stockholders, which limits their capacity to operate autonomously.

Table 7 shows the outcomes of pooled OLS concerning the influence of board gender diversity on PER. The VIF of less than ten for all independent variables reveals that multicollinearity is not a concern. Contrary to Bennouri et al. (2018) and Martín-Ugedo et al. (2019), as the coefficients of board gender diversity variables are statistically significant and positive, market-based performance is enhanced by investors' judgment of the supervision effectiveness of the board. As such, all three null hypotheses are rejected. In line with Carmen et al. (2019), gender diversity supports a competitive edge, also contributing to greater supervision (Chijoke-Mgbame et al. 2020), which enhances performance. Concerning the theory, the outcomes are consistent with the agency conjecture and resource dependence hypotheses. Therefore, investors remark gender diversity as a method to amend the oversight efficiency of the board.

Robustness checks
To further confirm our findings, we perform robustness examinations employing panel data FE and RE. Table 8 reports the estimates concerning the impact of board gender diversity on ROA using FE and RE regression models. The econometric outcome reveals the lack of statistical significance for all board gender diversity measures. Therefore, the three hypotheses cannot be rejected. Hence, the findings are in line with the theories from social psychology. Consistent with Ararat and Yurtoglu (2020), Carter et al. (2010) and Marinova et al. (2016), there is no variance in ROA of companies with and without women on corporate boards. Further, Ionascu et al. (2018) indicated that women on the board of directors have no contribution in driving the company's performance as measured by ROA. According to Chauhan and Dey (2017), the outcomes endorse the tokenism assumption and advocate that women directors are viewed merely as a token to fulfill conventional requirements. From a cultural perspective, as the US show a high masculinity setting (Hofstede et al. 2010), the existence of female directors does not exert a substantial impact on company performance (Martín-Ugedo et al. 2019).

In line with Wang (2014), the presence of independent directors is not statistically significant, and this explains why outsiders usually fail in their monitoring role. Moreover, leverage ratios show a negative relationship between the share of debt and firm performance, meaning the higher the firm dependency on financing through debt, the worse its performance. This result is confirmed by Evgeny (2015), who explained that highly levered firms do not implement particular projects even if it shows a positive net present value. This is because such corporations have to pay their debt obligations, thus disregarding good opportunities that may enhance their performance. However, other studies, such as those of Ibhegu and Olokoyo (2018), have an opposite explanation depending on the firm size. If small-sized firms have debt, then it enhances their
| Variables   | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| **NOWOMBRD** | 5.98       | 3.74       | 3.70       | 4.47       | 2.14       | 4.55       | 1.96       |            |            |            |
|             | (3.4668)*  | (1.5628)** | (1.5492)** | (3.3853)   | (3.3791)   | (3.3916)   | (3.2331)   |            |            |            |
| **PERWOMBRD** | 0.52       | 0.42       | 0.45       |            |            |            |            |            |            |            |
|             | (0.3239)   | (0.1498)***| (0.1510)***|            |            |            |            |            |            |            |
| **PERFEMEXE** |            |            |            |            |            |            |            |            |            |            |
| **SIZEBRD**  | −0.68      | −0.51      | −0.18      | −6.29      | −5.78      |            |            |            |            |            |
|             | (2.1464)   | (1.1977)   | (1.1377)   | (2.3751)***| (2.3174)***|            |            |            |            |            |
|             | (2.2296)   | (1.0463)   | (1.0474)   | (2.9122)** | (2.7425)** |            |            |            |            |            |
| **INDEPOIR** |            |            |            | −1.90      | −2.44      | 1.33       | −2.16      | −1.80      |            |            |
|             |            |            |            | (2.2280)   | (2.0007)   | (1.8867)   | (0.9284)** | (0.9537)*  |            |            |
|             |            |            |            | (2.5105)   | (2.0554)   | (2.4917)   | (0.9069)** | (0.9926)*  |            |            |
| **AGEYNGDIR** | −0.67      | −0.14      | −0.29      | −0.83      | −0.70      | −0.81      | −1.09      | −0.69      |            |            |
|             | (0.5521)   | (0.3105)   | (0.3216)   | (0.5779)   | (0.5940)***| (0.5859)   | (0.5119)** | (0.5502)   |            |            |
|             | (0.3699)*  | (0.2749)   | (0.2768)   | (0.3818)** | (0.3678)*  | (0.3830)** | (0.3925)***| (0.3686)*  |            |            |
| **AGEOLDDIR** | 3.54       | 3.38       | 3.55       | 3.42       |            |            |            |            |            |            |
|             | (0.6384)***| (0.6482)   | (0.6397)***| (0.6069)***|            |            |            |            |            |            |
|             | (1.0921)***| (1.0736)***| (1.0945)***| (1.0215)***|            |            |            |            |            |            |
|             | (0.3555)   | (0.3608)   |            |            |            |            |            |            |            |            |
| **BRDDUR**  | 15.95      | −0.39      | −0.19      | 12.54      | 13.33      | 12.67      | 13.34      | 16.86      | −0.78      | −0.23      |
|             | (3.5715)***| (3.7764)   | (3.7456)   | (3.7662)***| (3.9074)***| (3.7928)***| (3.6782)***| (3.6956)***| (4.3385)   | (4.3906)   |
|             | (6.3001)***| (2.6077)   | (2.5612)   | (5.5575)***| (6.1555)***| (5.6994)***| (5.4790)***| (6.1657)***| (2.9509)   | (3.1207)   |
|             | (1.0736)***| (0.6983)   | (0.6832)   | (1.0953)***| (1.1101)***| (1.0900)** | (1.0622)** | (1.0774)***| (0.5937)   | (0.6051)   |
|             | (1.0381)***| (0.5770)   | (0.5368)   | (0.9508)***| (0.9854)***| (0.9578)***| (0.9052)***| (1.0757)***| (0.5825)   | (0.5792)   |
| **BRDMEET** | −3.06      | −0.17      | −0.03      | −2.52      | −2.43      | −2.42      | −2.51      | −3.16      | −0.58      | −0.35      |
|             | (1.0736)***| (0.6983)   | (0.6832)   | (1.0953)***| (1.1101)***| (1.0900)** | (1.0622)** | (1.0774)***| (0.5937)   | (0.6051)   |
|             | (1.0381)***| (0.5770)   | (0.5368)   | (0.9508)***| (0.9854)***| (0.9578)***| (0.9052)***| (1.0757)***| (0.5825)   | (0.5792)   |
| **EXECOMP** | 0.06       |            |            | −0.01      | −0.04      | −0.04      | −0.05      | 0.07       |            |            |
|             | (0.0528)   |            |            | (0.0528)   | (0.0487)   | (0.0473)   | (0.0470)   | (0.0519)   |            |            |
| Variables | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           |       |       |       |       |       |       |       |       |       |       |
| BRDCOMP   | 0.26  | 0.16  | 3.03  | 1.89  | 3.26  | 1.70  | 0.31  | 0.29  |       |       |
|           | (0.7983) | (0.7946) | (1.9979) | (1.9441) | (1.9956) | (1.8619) | (0.7701) | (0.7813) |       |       |
| CFFO      | −0.0002 | −0.0001 | −0.0005 |       | −0.0002 | −0.0001 |       |       |       |       |
|           | (0.0004) | (0.0001) | (0.0004) |       | (0.0003) | (0.0001) |       |       |       |       |
| CFFF      | −0.0001 | 0.0003 | 0.0003 |       |       |       |       |       | −0.00002 |       |
|           | (0.0001) | (0.0003) | (0.0003) |       |       |       |       |       | (0.0001) |       |
| FCF       |       |       |       |       |       |       |       |       |       |       |
| TDE       | −0.07 |       |       |       |       |       | −0.08 | 0.01 |       |       |
|           | (0.0635) |       |       |       |       |       | (0.0619) | (0.0678) |       |       |
| TDC       | 0.03  | 0.03  |       |       |       |       | 0.01  |       |       |       |
|           | (0.0517) | (0.0652) | (0.0654) |       |       |       | (0.0508) | (0.0581) |       |       |
| TDTA      | −0.25 | −0.28 | −0.21 | −0.32 |       |       |       |       |       |       |
|           | (0.1962) | (0.1987) | (0.1969) | (0.1908) |       |       |       |       |       |       |
| CR        | −1.75 |       |       |       |       |       |       |       | −1.79 |       |
|           | (3.9378) |       |       |       |       |       |       | (3.8330) |       |       |
| CURR      | −1.89 | −1.05 |       |       |       |       |       | −0.60 | 0.76 |       |
|           | (2.1783) | (2.1883) |       |       |       |       | (1.8468) | (1.7577) |       |       |
| QR        | −5.90 | −84.2 | −5.24 | −5.54 |       |       |       |       |       |       |
|           | (2.2593) | (2.4952) |       |       |       |       | (1.7394) | (1.7345) |       |       |
Table 7 (continued)

| Variables | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|           | (4.5880)   | (4.3543)*  | (4.4808)   | (3.2855)*  |            |            |            |            |            |            |
|           | (6.2949)   | (6.8278)   | (6.2875)   | (4.0850)   |            |            |            |            |            |            |
| DPS       |            |            |            |            |            |            |            |            |            |            |
|           | −3.36      |            |            |            |            |            |            |            |            | −3.41      |
|           | (3.7425)   |            |            |            |            |            |            |            |            | (3.7171)   |
|           | (4.3179)   |            |            |            |            |            |            |            |            | (4.4687)   |
| DY        |            |            |            |            |            |            |            |            |            |            |
|           | 1.21       | 1.32       |            |            |            |            |            |            |            |            |
|           | (0.7458)   | (0.7479)*  |            |            |            |            |            |            |            |            |
|           | (1.4399)   | (1.4626)   |            |            |            |            |            |            |            | (4.687)    |
| DPR       |            |            |            |            |            |            |            |            |            |            |
|           | −0.0009    | 0.001      | 0.001      | 0.0008     |            |            |            |            |            |            |
|           | (0.0068)   | (0.0071)   | (0.0069)   | (0.0068)   |            |            |            |            |            |            |
|           | (0.0036)   | (0.0038)   | (0.0036)   | (0.0036)   |            |            |            |            |            |            |
| EMP       |            |            |            |            |            |            |            |            |            |            |
|           | −0.00004   | −0.00004   | −0.0001    | −0.0001    | −0.00002   |            |            |            |            |            |
|           | (0.0000)*  | (0.0000)*  | (0.0000)   | (0.0000)   |            |            |            |            |            |            |
|           | (0.0000)** | (0.0000)*  | (0.0000)   | (0.0000)   |            |            |            |            |            |            |
| TA        |            |            |            |            |            |            |            |            |            |            |
| OM        |            |            |            |            |            |            |            |            |            |            |
|           | −2.31      | 0.07       | 0.10       | −1.52      | −1.35      | −1.54      | −1.31      | −2.29      | −0.11      | −0.11      |
|           | (0.3426)** | (0.1634)   | (0.1661)   | (0.3031)** | (0.3058)** | (0.3047)** | (0.2959)** | (0.3476)** | (0.1753)   | (0.1832)   |
|           | (0.5985)** | (0.1671)   | (0.1661)   | (0.4339)** | (0.4157)** | (0.4430)** | (0.3969)** | (0.6572)** | (0.2240)   | (0.2338)   |
| ETR       | 0.07       | −0.009     | −0.10      | 0.10       | 0.12       | 0.11       | 0.08       | 0.08       | −0.07      | −0.07      |
|           | (0.1143)   | (0.0577)   | (0.0584)*  | (0.1977)   | (0.2029)   | (0.1981)   | (0.1975)   | (0.1140)   | (0.0576)   | (0.0590)   |
|           | (0.0796)   | (0.1009)   | (0.1049)   | (0.1842)   | (0.1826)   | (0.1865)   | (0.1811)   | (0.0823)   | (0.1022)   | (0.1046)   |
| R&D       | 0.001      | −0.0003    | −0.0009    | 0.003      | 0.002      | 0.002      | 0.0008     | 0.0001     | 0.00005    | −0.0008    |
|           | (0.0017)   | (0.0006)   | (0.0004)*  | (0.0019)   | (0.0014)   | (0.0014)   | (0.0009)   | (0.0017)   | (0.0006)   | (0.0004)*  |
|           | (0.0015)   | (0.0005)   | (0.0006)   | (0.0018)** | (0.0014)   | (0.0014)   | (0.0007)   | (0.0016)   | (0.0005)   | (0.0005)   |
| _cons    | 114.04     | 32.97      | 34.66      | 89.75      | −122.57    | −98.28     | −104.22    | 98.10      | 23.73      | 16.56      |
|           | (3.37247)**| (21.7472)  | (21.6944)  | (493484)*  | (50.0761)**| (49.7598)* | (472286)** | (32.9288)**| (28.3881)  | (28.5540)  |
### Table 7 (continued)

| Variables | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           | (27.9184)*** | (21.0156) | (21.9717) | (54.2176)* | (62.5617)* | (57.3167)* | (53.2063)* | (27.3981)*** | (25.6836) | (26.3533) |
| F statistics | 6.16*** | 2.92*** | 3.00*** | 6.22*** | 5.65*** | 6.18*** | 6.79*** | 6.19*** | 2.68*** | 2.44*** |
| R-Sq       | 0.3163 | 0.3622 | 0.3686 | 0.3806 | 0.358  | 0.379  | 0.3571 | 0.3176 | 0.3141 | 0.2946 |
| Mean VIF   | 2.45  | 3.6    | 3.11  | 2.45  | 1.87   | 1.94   | 1.48   | 2.26   | 2.89   | 2.46   |
| # Obs      | 187   | 87     | 87    | 179   | 179    | 179    | 186    | 187    | 90     | 90     |

### Table 7 (continued)

| Variables | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| NOWOBRD    | 0.36  | 0.31  | 0.38  | −0.16 | 0.3069 | 0.3154 | 0.3074 | 0.2435 | 0.2427 |
| PERWOMBRD  | 0.45  | 0.20  | (0.2162)** | (0.1954) | (0.2464)* | (0.2102) |
| PERFEMEXE  | −2.45 | −2.51 | −1.32 | −2.91 | (1.8709) | (1.8705) | (1.3914) | (1.3986)** | (1.8409) |
| SIZEBRD    | 0.052 | 2.044 | 0.8613 | (0.9472)** | 1.0052 | (1.8705) | (1.3914) | (1.3986)** | (1.8409) |
| AGEYNGDIR  | −1.04 | −0.65 | −1.00 | 0.07  | (0.5224)** | (0.5884) | (0.5247)* | (0.4777) | (0.4870) |
| AGEOULDIR  | 3.40  | 3.28  | 3.43  | 0.95  | (0.3909)*** | (0.3785)* | (0.3828)** | (0.3227) | (0.4214) |
| BRDDUR     | 14.20 | 14.68 | 14.37 | 3.32  | 3.40   | 3.28   | 3.43   | 0.95   | 1.04   | 3.35   | 3.48   | 3.45   | 3.45   | 3.45   | 3.45   |
|            | 1.0116** | 1.0328*** | 1.0195*** | 0.5008* | (1.0116)** | (1.0328*** | (1.0195)** | (0.5008)* | (1.0469)** |
|            | 0.5050** | 0.6290*** | 0.5197* | (0.5197)* | (0.5050)** | (0.6290)** | (0.5197)* | (0.5050)** | (1.0469)** |
|            | 0.3672*** | 3.6434*** | 0.5908** | 0.3672*** | 3.6434*** | 0.5908** | 0.3672*** | 3.6434*** | 0.5908** | 0.3672*** |
|            | 0.5253** | 0.5109** | 0.5030*** | 0.5253** | 0.5109** | 0.5030*** | 0.5253** | 0.5109** | 0.5030*** | 0.5253** | 0.5109** | 0.5030*** | 0.5253** | 0.5109** | 0.5030*** | 0.5253** | 0.5109** | 0.5030*** |

### Table 7 (continued)

| Variables | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| F statistics | 6.16*** | 2.92*** | 3.00*** | 6.22*** | 5.65*** | 6.18*** | 6.79*** | 6.19*** | 2.68*** | 2.44*** |
| R-Sq       | 0.3163 | 0.3622 | 0.3686 | 0.3806 | 0.358  | 0.379  | 0.3571 | 0.3176 | 0.3141 | 0.2946 |
| Mean VIF   | 2.45  | 3.6    | 3.11  | 2.45  | 1.87   | 1.94   | 1.48   | 2.26   | 2.89   | 2.46   |
| # Obs      | 187   | 87     | 87    | 179   | 179    | 179    | 186    | 187    | 90     | 90     |
Table 7 (continued)

| Variables | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   |
|-----------|------|------|------|------|------|------|------|------|------|
| BRDMEET   | −2.64| −2.55| −2.65| −1.94| −1.46| −1.57| −2.47| −2.58| −2.49|
|           | (1.0780)** | (1.1056)** | (1.0688)** | (0.8072)** | (0.8074)* | (0.7616)** | (1.1023)** | (1.0691)** | (1.0598)** |
| EXECOMP   | −0.03| −0.03| −0.04| 0.00  | 0.03  | −0.00| −0.04| −0.05| −0.05|
|           | (0.0517) | (0.0478) | (0.0472) | (0.0637) | (0.0643) | (0.0619) | (0.0472) | (0.0468) | (0.0467) |
| BRDCOMP   | 1.60 | 1.58 | 1.74 | 2.94  | 2.68  | 1.67 | 1.70 | 1.76 |      |
|           | (1.8951) | (1.8850) | (1.8586) | (1.7955) | (1.8048) | (1.8823) | (1.8612) | (1.8563) |      |
|            | (2.4888) | (2.6425) | (2.4811) | (1.8879) | (1.8035) | (2.6991) | (2.5213) | (2.5368) |      |
| CFFO      | 0.0002 | 0.0002 |     |      |      |      |      |      |      |
|           | (0.0002) | (0.0002) |     |      |      |      |      |      |      |
| CFFF      | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 | 0.0002 | 0.0002 |
|           | (0.0003) | (0.0003) | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| FCF       | −0.0001 |     |      |      |      |      |      |      |      |
|           | (0.0003) | (0.0001) |     |      |      |      |      |      |      |
| TDE       |      | −0.06 |      |      |      |      |      |      |      |
|           |      | (0.0247)** |      |      |      |      |      |      |      |
| TDC       |      |      |      |      |      |      |      |      |      |
| TDFA      | −0.31 | −0.28 | −0.29 | −0.17 | −0.13 | −0.32 | −0.33 | −0.34 |      |
|           | (0.1914) | (0.1968) | (0.1911) | (0.1422) | (0.1362) | (0.1935)* | (0.1879)* | (0.1873)* |      |
|           | (0.1762)* | (0.1767) | (0.1744)* | (0.1611) | (0.1456) | (0.1797)* | (0.1806)* | (0.1808)* |      |
| CR        |      |      |      |      |      |      |      |      | −1.60 |

(continued)
| Variables | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   |
|-----------|------|------|------|------|------|------|------|------|------|
| CURR      |      |      |      |      |      |      |      |      |      |
| QR        | 6.17 | -8.85| -6.18| -2.32| -2.14| -904 | -5.95| -5.30|      |
|           | (3.5400)* | (4.2463)** | (3.4004)* | (1.7493) | (1.6444) | (4.2413)** | (3.4007)* | (3.2564) |      |
|           | (4.3891) | (6.6768) | (4.4440) | (1.0308)** | (0.8666)** | (6.6387) | (4.4140) | (4.0908) |      |
| DPS       | -1.50|      |      |      |      |      |      |      |      |
|           | (1.8325) | (1.4770) |      |      |      |      |      |      |      |
| DY        |      |      |      |      |      |      |      |      |      |
| DPR       | 0.0004 | 0.0005 | 0.001 | -0.004 | -0.005 | 0.0009 | 0.001 | 0.0009 |      |
|           | (0.0068) | (0.0070) | (0.0069) | (0.0092) | (0.0091) | (0.0070) | (0.0069) | (0.0068) |      |
|           | (0.0037) | (0.0039) | (0.0036) | (0.0034) | (0.0038) | (0.0039) | (0.0036) | (0.0036) |      |
| EMP       | -0.0001|      |      |      |      |      |      |      |      |
|           | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) |      |
| TA        |      |      |      |      |      |      |      |      |      |
|           | -0.0001|      |      |      |      |      |      |      |      |
|           | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) |      |
| OM        | -1.36 | -1.32 | -1.39 | -0.86 | -0.97 | -0.70 | -1.24 | -1.28 | -1.26 |
|           | (0.2995)*** | (0.2939)*** | (0.3008)*** | (0.2127)*** | (0.2159)*** | (0.1928)*** | (0.2823)*** | (0.2873)*** | (0.2860)*** |
|           | (0.4100)*** | (0.4033)*** | (0.4196)*** | (0.2525)*** | (0.2849)*** | (0.2352)*** | (0.3913)*** | (0.4006)*** | (0.3936)*** |
| ETR       | 0.08 | 0.14 | 0.08 | 0.35 | 0.12 | 0.34 | 0.15 | 0.10 | 0.09 |
|           | (0.1971) | (0.2003) | (0.1970) | (0.1895)* | (0.0478)*** | (0.1814)* | (0.2001) | (0.1969) | (0.1965) |
### Table 7 (continued)

| Variables | 11  | 12  | 13  | 14      | 15          | 16          | 17          | 18          | 19          |
|-----------|-----|-----|-----|---------|-------------|-------------|-------------|-------------|-------------|
|           | 0.1810 | (0.1945) | (0.1816) | (0.2052)* | (0.0595)** | (0.2003)* | (0.1923) | (0.1795) | (0.1785) |
| R&D       | 0.001 | 0.002 | 0.001 |         |             |             |             |             |             |
|           | 0.0016 | (0.0014) | (0.0012) |         |             |             |             |             |             |
|           | 0.0012 | (0.0014) | (0.0010) |         |             |             |             |             |             |
| _cons     | -107.40 | -134.49 | -111.29 | -16.94 | 51.35 | -7.37 | -133.70 | -111.75 | -108.22 |
|           | (46.7375)** | (48.3777)*** | (46.9686)** | (43.0349) | (28.0742)* | (41.1471) | (48.3661)*** | (47.0405)** | (46.6802)** |
|           | (53.4346)** | (62.1733)*** | (55.0738)** | (35.2621) | (19.6373)*** | (31.0901) | (61.8780)** | (55.2773)*** | (53.5548)** |
| F statistics | 6.43*** | 6.07*** | 6.47*** | 3.06*** | 3.44*** | 2.79*** | 6.44*** | 680*** | 731*** |
| R-Sq      | 0.362 | 0.3584 | 0.3633 | 0.0846 | 0.0773 | 0.0734 | 0.3546 | 0.3575 | 0.3558 |
| Mean VIF  | 206 | 1.73 | 1.62 | 1.3 | 1.4 | 1.31 | 1.73 | 1.61 | 1.42 |
| # Obs     | 186 | 179 | 186 | 478 | 506 | 507 | 179 | 186 | 186 |

Source: Authors' computations. Notes: *, **, and *** represent significance at 10%, 5%, and 1%, respectively. The first and second numbers between the brackets are the standard error and robust standard error, respectively. For the definition of variables, please see Table 2.
Table 8 The outcomes of panel data fixed-effects and random-effects regression regarding the impact of board gender diversity on ROA

| Variables       | 1 FE | 2 FE | 3 FE | 4 RE | 5 FE | 6 FE | 7 RE | 8 FE | 9 FE | 10 FE |
|-----------------|------|------|------|------|------|------|------|------|------|-------|
| NOWOMBRD        | −0.05| −0.30| −0.25| 0.04 | 0.11 | 0.01 | 0.02 | −0.0002| −0.05| −0.004|
|                 | (−0.14)| (−0.37)| (−0.31)| (0.12)| (0.26)| (0.03)| (0.07)| (−0.01)| (−0.65)| (−0.61)|
| PERWOMBRD       | −0.0002| −0.05| −0.004| (−0.14)| (−0.37)| (−0.31)| (0.12)| (0.26)| (0.03)| (0.07)|
| PERFEMEXE       | −0.0002| −0.05| −0.004| (−0.14)| (−0.37)| (−0.31)| (0.12)| (0.26)| (0.03)| (0.07)|
| SIZEBRD         | 0.27  | 0.86  | 0.80  | 0.12  | 0.50* | (−0.01)| (−0.65)| (−0.61)|
|                 | (−1.06)| (1.45)| (1.36)| (0.47)| (1.7)| |
| INDEPDIR        | −0.09 | −0.09 | −0.13 | −0.11*| −0.10 | −0.09 | −0.08 | −0.09 | −0.16 | −0.17 |
|                 | (−1.33)| (−0.6)| (−0.83)| (−1.67)| (−1.26)| (−1.15)| (−1.23)| (−1.39)|
| AGEYNGDIR       | −0.11 | 0.76  | 0.68  | −0.94*| −0.42 | −0.16 | −0.83*| −0.27 | −0.009| −0.009|
|                 | (−0.22)| (0.44)| (0.4)| (−1.95)| (−0.73)| (−0.29)| (−1.75)| (−0.53)| (0)| (−0.01)|
| AGEDLDIR        | 0.10  | −0.28 | −0.31 | 0.06  | 0.09  | 0.10  | 0.07  | 0.09  | −0.31 | −0.32|
|                 | (0.57)| (0.79)| (0.79)| (0.73)| (0.73)| (0.73)| (0.73)| (0.73)| (−0.93)| (−0.96)|
| EXECOMP         | 0.006 | 0.009 | 0.008 | 0.001**| 0.007 | (−1.26)| (1.59)| (1.61)| (1.48)| (2.05)| (1.31)|
| BRDCOMP         | −0.27 | −0.24 | −0.13 | −0.10 | −0.15 | −0.13 | −0.26 | −0.25 | −0.0006| −0.0001|
|                 | (−0.81)| (−0.73)| (−0.65)| (−0.47)| (−0.72)| (−0.68)| (−0.78)| (−0.75)| (−1.08)| (−0.06)|
| CFFO            | −0.00007| −0.00007| 0.00005| −0.00006| −0.00001| (−1.17)| (−0.47)| (1.02)| (−0.98)| (−0.92)| (−0.86)| (−0.62)|
| CFFF            | −0.00004| −0.00003| −0.00003| −0.00003| −0.00003| (−1.08)| (−0.06)| (−0.62)|
| FCF             | −0.098| −0.92| −0.86| −0.62|
Table 8 (continued)

| Variables | 1 FE | 2 FE | 3 FE | 4 RE | 5 FE | 6 FE | 7 RE | 8 FE | 9 FE | 10 FE |
|-----------|-----|-----|-----|------|-----|-----|------|-----|-----|-------|
| TDE       | −0.02*** (−4.68) | | | | | | | | | | −0.02*** (−4.55) |
| TDC       | −0.22*** (−5.27) | −0.22*** (−5.07) | | | | | | | | | −0.20*** (−4.67) |
| TDTA      | −0.13*** (−5.08) | −0.13*** (−4.25) | −0.14*** (−4.49) | −0.13*** (−4.91) | | | | | | | |
| CR        | −1.21** (−2.55) | | | | | | | | | | −1.15** (−2.44) |
| CURR      | −1.42 (−1.18) | −0.95 (−0.74) | | | | | | | | | −0.97 (−0.83) |
| QR        | −0.05 (−0.11) | 0.13 (0.22) | −0.01 (−0.02) | −0.31 (−0.76) | | | | | | | |
| DPS       | 1.71*** (−3.52) | | | | | | | | | | 1.65*** (3.37) |
| DY        | 1.48*** (3.59) | 1.54*** (3.72) | | | | | | | | | 1.26*** (3.25) |
| DPR       | | | | | | | | | | | | 1.27*** (3.3) |
| EMP       | 0.00006 (1.48) | 0.00006 (1.59) | 0.00001 (1.22) | 0.00002 (0.97) | 0.00002 (0.86) | | | | | | |
| TA        | 0.54*** (−9.46) | 0.47*** (3.44) | 0.45*** (3.29) | 0.41*** (9.53) | 0.41*** (7.33) | 0.44*** (7.63) | 0.41*** (9.33) | 0.52*** (9.34) | 0.42*** (3.35) | 0.41*** (3.29) |
| OM        | −0.01 (−1.62) | −0.07*** (−2.71) | −0.12*** (−2.85) | −0.12*** (−6.94) | −0.12*** (−6.91) | −0.12*** (−6.88) | −0.12*** (−7.08) | −0.12*** (−1.61) | −0.06** (−2.3) | −0.06** (−2.36) |
| R&D       | −0.0003 | 0.0001 | −0.003 | −0.0004 | −0.0006* | −0.0006 | −0.0001 | −0.0003 | 0.0003 | 0.0006 |
Table 8 (continued)

| Variables          | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|--------------------|------|------|------|------|------|------|------|------|------|------|
|                    | FE   | FE   | RE   | FE   | FE   | RE   | FE   | FE   | RE   | FE   |
| _cons              | -1.31| (0.25)| -0.62| -1.6 | -1.67| -1.62| -0.99| -1.32| 0.63 | 0.14 |
|                    | 3.18 | 3.87 | 6.172917 | 16.54*** | 11.91 | 9.51 | 15.49** | 5.64 | 21.64 | 22.84 |
|                    | (-1.31) | (0.25) | (0.54) | 26.8 | 1.51 | 1.24 | 2.46 | 1.23 | 1.29 | 1.36 |
| F statistics       | 11.66*** | 4.63*** | 4.74*** | 10.69*** | 11.04*** | 11.53*** | 4.77*** | 4.83*** |
| Wald chi²          | 205.47*** | 199.94*** |
| R²                 | 0.4998 | 0.5192 | 0.5251 | 0.5412 | 0.5499 | 0.5578 | 0.5334 | 0.4965 | 0.4923 | 0.4953 |
| Hausman test       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| # Obs              | 188 | 87 | 87 | 179 | 179 | 179 | 186 | 188 | 90 | 90 |
| Variables          | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   |
|                    | RE   | FE   | RE   | FE   | FE   | FE   | RE   | FE   | RE   | RE   |
| NOWOMBRD           | 0.005 | 0.01 | 0.007 | 0.01 | 0.005 | 0.01 | 0.007 | 0.01 | 0.007 | 0.01 |
| PERWOMBRD          | 0.16 | 0.37 | 0.23 | 0.5 |
| PERFEMEXE          | -0.01 | -0.01 | -0.01 | -0.01 | -0.02 | (-0.098) | (-0.52) | (-0.52) | (-1.47) |
| SIZEBRD            | 0.03 | 0.01 | 0.28** | 0.52*** | 0.26* | 0.02 | 0.09 |
| INDEPDIR           | 0.13 | 0.05 | 2.03 | 2.63 | 1.94 | (0.09) | (0.09) | (0.04) |
| AGEYNGDIR          | -0.09 | -0.10 | -0.08 | -0.04 | -0.03 | 0.06 | 0.05 | -0.03 | -0.10 | -0.09 | -0.08 |
|                    | (-1.37) | (-1.28) | (-1.35) | (-1.15) | (-0.056) | 1.04 | 1.1 | (-0.039) | (-1.3) | (-1.38) | (-1.24) |
| AGEOLODDIR         | -0.06 | -0.03 | -0.07 | -0.02 | 0.07 | 0.09 | -0.23 | -0.24 | -0.64 | -1.11** | -0.83* |
|                    | (-0.87) | (-0.36) | (-0.97) | (-0.42) | (-0.3) | (-0.38) | (-1) | (-0.78) |
| BRDDUR             | -1.02** | -0.61 | -1.08** | -0.33 | 0.07 | 0.09 | -0.23 | -0.24 | -0.64 | -1.11** | -0.83* |
|                    | (-2.2) | (-1.18) | (-2.35) | (-1.21) | (0.25) | (0.21) | (-0.51) | (-0.92) | (-1.26) | (-2.43) | (-1.76) |
Table 8 (continued)

| Variables | 11 RE | 12 FE | 13 RE | 14 FE | 15 FE | 16 RE | 17 FE | 18 RE | 19 FE | 20 RE | 21 RE |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| BRDMEET   | 0.06  | 0.09  | 0.05  | −0.02 | 0.02  | −0.0004| −0.16*| −0.01 | 0.09  | 0.05  | 0.07  |
|           | (0.62)| (0.78)| (0.53)| (−0.42)| (0.38)| (0)   | (−1.81)| (−0.28)| (0.8) | (0.53) | (0.73) |
| EXECOMP   | 0.01* | 0.01* | 0.01**| 0.009**| 0.001 | 0.007*| 0.01* | 0.01**| 0.01**| 0.01**|       |
|           | (1.91)| (1.72)| (2.17)| (2.11) | (0.32)| (1.77)| (1.72)| (2.17) | (2.06) |       |       |
| BRDCOMP   | −0.09 | −0.06 | −0.12 | 0.008 | −0.19 | −0.08  | −0.16 | −0.05 | −0.12 | −0.13 |       |
|           | (−0.47)| (−0.29)| (−0.63)| (0.06)| (−1.07)| (−0.47)| (−1.25)| (−0.26)| (−0.63)| (−0.68)|       |
| CFFO      | 0.00005|       |       |       |       |       |       |       |       |       | −0.00004|
|           |       |       |       |       |       |       |       |       |       |       | (−1.2)  |
| CFFF      |       | −0.0003| −0.00001| −0.00004| −0.00003| −0.00001|
|           |       | (−0.91)| (−0.19)| (−1.36)| (−0.88)| (−0.19)|       |       |       |       |       |
| FOF       |       |       |       | −0.00001|       |       |       |       |       |       |       |
|           |       |       |       | (−0.042)|       |       |       |       |       |       |       |
| TDE       |       |       |       |       | −0.003*|       |       |       |       |       |       |
|           |       |       |       |       | (−1.66)|       |       |       |       |       |       |
| TDC       |       |       |       |       | −0.04***| −0.03***|       |       |       |       |       |
|           |       |       |       |       | (−3.71)| (−2.97)|       |       |       |       |       |
| TDTA      | −0.12***| −0.13***| −0.12***| −0.10***|       |       | −0.09***| −0.13***| −0.12***| −0.13***|       |
|           | (−4.9)| (−4.21)| (−4.97)| (−6.87)|       |       | (−7.2)| (−4.21)| (−5.0)| (−4.93)|       |
| CR        |       |       |       |       |       |       |       |       |       |       | 0.26 |
|           |       |       |       |       |       |       |       |       |       |       | (1.54)|
| CURR      |       |       |       |       |       |       |       |       |       |       | 0.49***| 0.43**|
|           |       |       |       |       |       |       |       |       |       |       | (2.63)| (2.45)|
| QR        | −0.25 | 0.15  | −0.36 | 0.30**|       |       |       |       |       |       |       |
|           | (−0.61)| (0.25)| (−0.89)| (1.97)|       |       |       |       |       |       |       |
| DPS       |       |       |       |       |       |       |       |       |       |       | −0.02 |
|           |       |       |       |       |       |       |       |       |       |       | (−0.19)|
Table 8 (continued)

| Variables | 11 RE | 12 FE | 13 RE | 14 FE | 15 FE | 16 FE | 17 RE | 18 FE | 19 FE | 20 RE | 21 RE |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| DY        | 0.001*** | 0.0002 | 0.00002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
|           | (3.23) | (2.98) | (3.05) | (3.25) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) |
| DPR       | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** | 0.001*** |
|           | (3.23) | (2.98) | (3.05) | (3.25) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) | (3.39) |
| EMP       | 0.00002 | −0.00001 | 0.00001 | −1.15  | 0.0001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (−1.15) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| TA        | 0.00002 | −0.00001 | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* | 0.00001* |
|           | (0.93) | (−1.15) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) | (1.77) |
| OM        | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** | 0.40*** |
|           | (9.48) | (7.37) | (7.99) | (20.35) | (21.53) | (13.03) | (11.67) | (22.52) | (7.46) | (10.05) | (9.46) |
| ETR       | −0.12*** | −0.13*** | −0.12*** | −0.11*** | −0.004  | −0.008*** | −0.008*** | −0.12*** | −0.12*** | −0.12*** | −0.12*** |
|           | (−6.9) | (−6.93) | (−6.73) | (−10.19) | (−3.01) | (−1.32) | (−1.32) | (−1.32) | (−1.32) | (−1.32) | (−1.32) |
| R&D       | −0.0003 | −0.0006 | −0.0001 | −1.64  | −1.64   | −1.64   | −1.64   | −1.64   | −1.64   | −1.64   | −1.64   |
|           | (−1.27) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) | (−1.64) |
| _cons     | 16.88*** | 13.68*  | 17.71*** | 7.56*  | −1.65  | −4.96  | 7.58** | 5.05  | 14.09* | 17.96*** | 15.47*** |
|           | (2.78) | (1.85) | (2.95) | (1.95) | (0.64) | (−1.27) | (2.21) | (1.34) | (1.94) | (3.01) | (2.48) |
| F statistics | 11.4***  | 46.29*** | 52.76*** | 27.39*** | 55.8*** | 12.27*** |
| Wald chi2  | 203.94*** | 204.01*** | 204.01*** | 257.27*** | 55.8*** | 12.27*** |
| R-Sq      | 0.5267   | 0.548   | 0.526   | 0.6201  | 0.5955  | 0.5499  | 0.4976  | 0.6466 | 0.5475 | 0.5253  | 0.5334  |
| Hausman test | Prob > chi2 | 0.9983 | 0.0794 | 0.0033 | 0.0135 | 0.0711 | 0.09064 |
| # Obs     | 186      | 179     | 186     | 479     | 510     | 328     | 310     | 509    | 179    | 186    | 186    |

Source: Authors’ computations. Notes: *, **, and *** represent significance at 10%, 5%, and 1%, respectively. FE indicates fixed-effects within the regression, RE indicates random-effects Generalized Least Squares (GLS) regression. The number between the brackets is the t-statistic for FE and z-statistic for RE. For the definition of variables, please see Table 2.
performance less than large-sized firms. Owing to the several benefits large firms have over small ones, they can yield higher returns than their smaller counterparts—offsetting their costs of debt. Thus, they have economies of scale as an advantage, and they could reduce the costs of debt through negotiations and thereby take more favorable debt deals. Nevertheless, in line with Farrukh et al. (2017), dividend policy measures are statistically significant in most models and show a positive impact on firm performance. Hence, the higher the dividend payments, the better the company’s performance because of the company’s good image from the shareholders’ perspective.

Table 9 presents the fixed-effects and random-effects regressions’ results when PER is employed as the dependent variable. The outcome reveals that the presence of women on the board enhances their performance, in line with Kang et al. (2010), who noticed that investors generally react positively to the nomination of female directors. In line with Mastella et al. (2021), the results endorse the perception that the presence of women boosts company performance by enhancing the managerial process, variety of opinions, skills, and innovations. The null Hypothesis 1 and Hypothesis 2 are rejected, but null Hypothesis 3 cannot be rejected. As the corporations belonging to the S&P 500 Information Technology segment are centered on innovation, the findings reinforce those of Dezső and Ross (2012), who remarked that a superior female presence in senior staff enhances company performance. Additionally, consistent with Ararat and Yurtoglu (2020), the appointment of women directors smooths the creation of higher quality financial statements, diminishes the frequency of infringement of financial market guidelines, and reduces bad news hoarding. Nonetheless, the number of board meetings showed a significant negative impact on firm performance. The outcome is opposed to that of Al-Daoud et al. (2016), who revealed that if board meetings are frequent, numerous matters could be discussed and judged based on various opinions, thus improving the decision-making process that boosts the overall firm performance. Concerning the theory, the findings prove the assumption that a gender-responsive board will drive superior performance, as contended by the information and decision-making approach presumption (Gruenfeld et al., 1996), contrary to Yang et al. (2019).

**Concluding remarks**

This study investigated the effect of board gender diversity on firm performance for S&P 500 companies belonging to the IT sector, considering several other specific corporate governance variables and firm-level control measures. We found evidence for a positive effect of women on corporate boards on both measures of company performance—ROA and PER—apart from the percentage of female executives in the case of ROA when estimated through pooled OLS. However, the outcomes of panel data fixed-effects and random-effects revealed the lack of connection between board gender diversity and ROA but a positive impact of the number and percentage of women on board on PER.

Our results provide several managerial insights and policy suggestions. Consistent with Đặng et al. (2020), the findings advise that companies should consider a larger share of women on board as long as their presence may positively influence firm performance. Further, increased diversity may enhance productivity, creativity, and innovation. Similarly, governments and market regulators should impose gender quotas for women on
Table 9 The outcomes of panel data fixed-effects and random-effects regression regarding the impact of board gender diversity on PER

| Variables     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---------------|----|----|----|----|----|----|----|----|----|----|
|               | RE | FE | RE | FE | RE | RE | RE | FE | FE | FE |
| NOWOMBRD      | 9.07*** | 4.10*** | 4.23*** | 7.39*** | 6.31** | 7.55*** | 7.80** | 0.91*** | 0.28** | 0.29** |
|               | (3.04) | (2.98) | (3.08) | (2.78) | (2.22) | (2.82) | (2.53) | (3.25) | (2.11) | (2.17) |
| PERWOMBRD     |     |     |     |     |     |     |     |     |     |     |
| PERFEMIXE     |     |     |     |     |     |     |     |     |     |     |
| SIZEBRD       | −1.08 | 0.20 | 0.22 | −2.52 | −2.40 |     |     |     |     |     |
|               | (−0.54) | (0.21) | (0.23) | (−1.26) | (−1.21) |     |     |     |     |     |
| INDEPOIR      |     |     |     |     |     |     |     |     |     |     |
|               |     |     |     |     |     |     |     |     |     |     |
| AGEYNGDIR     | 0.62 | 0.12 | 0.10 | 0.19 | 0.22 | 0.17 | 0.13 | 0.63 | 0.01 | 0.01 |
|               | (1.17) | (0.49) | (0.41) | (0.37) | (0.42) | (0.33) | (0.23) | (1.2) | (0.04) | (0.04) |
| AGEOOLDIR     | 1.50 | −2.62 | −2.49 | 4.88 | 7.09* | 5.07 | 5.04 | 2.47 | −2.16 | −1.96 |
|               | (0.37) | (−0.89) | (−0.86) | (1.28) | (1.86) | (1.33) | (1.23) | (0.61) | (−0.71) | (−0.65) |
| BRDDUR        | −3.10*** | −0.62 | −0.66 | −2.92*** | −2.86*** | −2.90*** | −3.15*** | −3.20*** | −0.042 | −0.44 |
|               | (−3.53) | (−1.02) | (−1.08) | (−3.64) | (−3.55) | (−3.61) | (−3.5) | (−3.66) | (−0.74) | (−0.79) |
| EXECOMP       | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 |     |     |     |
|               | (1.19) |     |     |     |     |     |     |     |     |     |
| BRDCOMP       | 0.09 | 0.01 | 1.91 | 1.34 | 1.79 | 2.40 |     | 0.02 | 0.007 |     |
|               | (0.18) | (0.19) | (1.29) | (0.92) | (1.23) | (1.49) |     | (0.04) | (0.01) |     |
| CFFO          | 0.0002 | 0.00008 | 0.0003 |     |     |     | 0.0002 | 0.0001 |     |     |
|               | (0.48) | (0.32) | (0.71) |     |     |     | (0.41) | (0.66) |     |     |
| CFF           | −0.00002 | −0.0001 | −0.0001 |     |     |     |     |     | −0.00001 |     |
|               | (−0.34) | (−0.061) | (−0.66) |     |     |     |     |     | (−0.16) |     |
| RCF           |     |     |     |     |     |     |     |     |     |     |
Table 9 (continued)

| Variables | 1 RE | 2 FE | 3 FE | 4 RE | 5 RE | 6 RE | 7 RE | 8 RE | 9 FE | 10 FE |
|-----------|------|------|------|------|------|------|------|------|------|-------|
| TDE       | 0.01 |      |      | 0.01 |      |      |      |      |      |       |
|           | (0.25) |      |      | (0.34) |      |      |      |      |      |       |
| TDC       |      |      |      | −0.20*** |      |      | −0.18*** |       |       |       |
|           |      |      |      | (−2.88) |      |      | (−2.46) |      |      |       |
| TDTA      |      |      |      |      |      |      |      |      | 0.11 |      |
|           |      |      |      |      |      |      |      |      | (0.54) |      |
| CR        | −2.85 |      |      |      |      |      |      | −2.62 |      |       |
|           | (−0.77) |      |      |      |      |      |      | (−0.72) |      |       |
| CURR      | −1.50 |      |      |      |      |      |      |      | −0.81 |      |
|           | (−0.74) |      |      |      |      |      |      |      | (−0.42) |      |
| QR        |      |      |      | −4.00 |      |      | −3.99 |      |      |       |
|           |      |      |      | (−0.98) |      |      | (−1.16) |      |      |       |
| DPS       | −3.43 |      |      |      |      |      |      |      |      | −3.87 |
|           | (−0.9) |      |      |      |      |      |      |      | (−1.03) |      |
| DY        | −1.13 |      |      |      |      | −1.27* |       |      |      |       |
|           | (−1.64) |      |      |      |      | (−1.96) |      |      |      |       |
| DPR       |      |      |      |      |      |      |      |      |      | −1.25* |
|           |      |      |      |      |      |      |      |      |      | (−1.93) |
| EMP       | 0.00006 | 0.00007 |      | 0.00004 | 0.00005 | 0.00006 |      |      |      |       |
|           | (0.96) | (1.09) |      | (0.35) | (0.44) | (0.54) |      |      |      |       |
| TA        | −2.95*** | −0.85*** | −0.85*** | −2.73*** | −2.56*** | −2.71*** | −2.42*** | −2.91*** | −0.80*** | −0.78*** |
|           | (−6.77) | (−3.67) | (−3.68) | (−7.27) | (−6.97) | (−7.27) | (−6.18) | (−6.77) | (−3.75) | (−3.67) |
| ETR       | 0.07 | 0.02 | 0.02 | 0.09 | 0.10 | 0.09 | 0.05 | 0.07 | 0.02 | 0.02 |
|           | (0.96) | (0.61) | (0.55) | (0.76) | (0.8) | (0.72) | (0.4) | (0.99) | (0.57) | (0.58) |
| R&D       | −0.002 | 0.00007 | 0.00001 | −0.003 | −0.003 | −0.001 | −0.002 | 0.0004 | 0.0007 |     |
### Table 9 (continued)

| Variables | 1           | 2     | 3      | 4    | 5     | 6     | 7    | 8     | 9     | 10    |
|-----------|-------------|-------|--------|------|-------|-------|------|-------|-------|-------|
|           | RE          | FE    | FE     | RE   | RE    | RE    | RE   | RE    | FE    | FE    |
| _cons     | (-1.04)     | (0.09)| (0.01) | (-1.52)| (-1.42)| (-1.48)| (-1.01)| (-1.03)| (0.57)| (0.89)|
|           | (2.32)      | (1.89)| (1.9)  | (0.54)| (0.18)| (0.58)| (−0.03)| (1.91)| (1.25)| (1.24)|
| F statistics | 4.02***     | 4.02***|        |       |       |       |       | 4.15***| 4.09***|        |
| Wald chi2  | 66.17***    |       | 81***  |       | 78.85***| 80.87***| 71.35***| 69.41***|        |
| R-Sq       | 0.2903      | 0.4839| 0.484  | 0.3375| 0.3326| 0.3386| 0.2957| 0.3009| 0.4574| 0.4539|
| Hausman test |           |       |        |       |       |       |       |       |       |       |
| Prob > chi2| 0.097       | 0     | 0      | 0.9773| 0.9714| 0.9347| 0.933 | 0.9975| 0     | 0     |
| # Obs      | 187         | 87    | 87     | 179  | 179  | 179  | 186  | 187  | 90   | 90   |

| Variables | 11          | 12     | 13     | 14    | 15    | 16    | 17    | 18    | 19    |
|-----------|-------------|--------|--------|-------|-------|-------|-------|-------|-------|
|           | RE          | FE     | FE     | RE    | RE    | FE    | FE    | RE    | RE    |
| NOWOMBDRD | 0.90***     | 0.84***| 0.91***| 0.27  |       |       |       |       |       |
|           | (3.31)      | (3.44)| (3.31)| (0.74)|       |       |       |       |       |
| PERWOMBDRD |           |       |        |       |       |       |       |       |       |
| PERFEMIXE |             | 0.37   |        |       |       |       |       |       |       |
|           |             | (1.16) |        |       |       |       |       |       |       |
| SIZEBRD   |             |       |        |       |       |       |       |       |       |
| INDEPDIR  | −0.02       | 0.10   | 2.97   | 3.47  | 1.88  | 1.86  |       |       |       |
|           | (−0.01)     | (0.05) | (1.3)  | (1.47)| (0.9) | (0.89)|       |       |       |
| AGEYNGDR  | 0.13        | 0.22   | 0.11   | 0.002 | 0.36  | 0.27  | 0.09  | 0.04  | 0.03  |
|           | (0.23)      | (0.43)| (0.21)| (0)   | (0.55)| (0.42)| (0.18)| (0.07)| (0.06)|
| AGEOLODDD | 1.44**      | 1.20** | 1.42** | 1.66* | 1.08  | 1.14* | 1.35**| 1.40**|       |
|           | (2.31)      | (2.08)| (2.27)| (19)  | (1.3) | (1.92)| (2.11)| (2.19)|       |
| BRDDUR    | 4.84        | 6.68*  | 4.95   | −4.81 | −5.14 | −4.33 | 504   | 4.77  | 5.01  |
|           | (1.2)       | (1.96)| (1.22)| (1)   | (−1.09)| (−0.94)| (1.44)| (1.15)| (1.21)|
| Variables     | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------|----|----|----|----|----|----|----|----|----|
|              | RE | RE | RE | FE | FE | FE | RE | RE | RE |
| BRDMEET      | -3.30*** | -2.98*** | -3.28*** | -2.51** | -1.96* | -2.32** | -2.84*** | -3.15*** | -3.15*** |
|              | (-3.72) | (-3.76) | (-3.7) | (-2.35) | (-1.89) | (-2.29) | (-3.44) | (-3.44) | (-3.44) |
| EXECOMP      | 0.04 | 0.05 | 0.05 | 0.03 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
|              | (1.06) | (1.37) | (1.21) | (0.46) | (0.74) | (0.58) | (1.22) | (0.97) | (0.93) |
| BRDCOMP      | 2.65* | 1.53 | 2.52 | -2.29 | -1.57 | 2.04 | 2.65 | 2.62 | 2.62 |
|              | (1.64) | (1.11) | (1.59) | (-0.94) | (-0.68) | (1.42) | (1.62) | (1.6) | (1.6) |
| CFO          | 0.0002 | -0.0001 | -0.0001 | -0.0003 | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 |
|              | (0.6) | (-0.66) | (-0.43) | (-0.47) | (-0.24) | (-0.19) | (-0.47) | (-0.24) | (-0.19) |
| FCF          | 0.01 | -0.0003 | -0.0003 | -0.0003 | -0.0003 | -0.0003 | -0.0003 | -0.0003 | -0.0003 |
| TDE          | -0.09 | 0.08 | -0.09 | 0.03 | 0.04 | 0.09 | -0.12 | -0.13 | -0.13 |
|              | (-0.41) | (0.43) | (-0.42) | (0.14) | (0.19) | (0.46) | (-0.51) | (-0.55) | (-0.55) |
| TDC          | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| TOTA         | 0.08 | -0.09 | -0.09 | -0.09 | -0.09 | -0.09 | -0.09 | -0.09 | -0.09 |
|              | (0.43) | (-0.42) | (-0.42) | (-0.42) | (-0.42) | (-0.42) | (-0.42) | (-0.42) | (-0.42) |
| CR           | 2.87 | -3.81 | -3.02 | 2.69 | 1.78 | -5.82 | -3.80 | -3.90 | -3.90 |
|              | (-0.83) | (-0.96) | (-0.88) | (0.98) | (0.7) | (-1.42) | (-1.07) | (-1.11) | (-1.11) |
| DPR          | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 |
|              | (-0.01) | (-0.01) | (-0.01) | (-0.01) | (-0.01) | (-0.01) | (-0.01) | (-0.01) | (-0.01) |
| DY           | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 |
| DPR          | -0.0002 | -0.0002 | -0.0002 | -0.0002 | -0.0002 | -0.0002 | -0.0002 | -0.0002 | -0.0002 |
Table 9 (continued)

| Variables | 11     | 12     | 13     | 14    | 15     | 16     | 17     | 18     | 19     |
|-----------|--------|--------|--------|-------|--------|--------|--------|--------|--------|
|           | RE     | RE     | RE     | FE    | FE     | FE     | FE     | RE     | RE     | RE     |
| EMP       | (∼0.04)| (∼0.38)| (∼0.15)| (∼0.48)| (∼0.56)| (∼0.26)| (∼0.09)| (∼0.06)|        |
|           | 0.0001 | 0.0001 | 0.0001 | 0.0001| 0.0002 |        |        |        |        |
|           | (0.47) | (1.17) |       |       | (0.17) |        |        |        |        |
| TA        |        |        |        | −0.0001| (−0.67)|        |        |        |        |
|           | −2.55***| −2.66***| −2.53***| −2.23***| −2.20***| −2.18***| −2.53***| −2.29***| −2.27***|
|           | (−6.44)| (−7.59)| (−6.44)| (−5.18)| (−5.32)| (−5.53)| (−7.04)| (−5.78)| (−5.78) |
| ETR       | 0.03   | 0.08   | 0.03   | 0.32  | −0.04  | 0.25   | 0.11   | 0.06   | 0.07   |
|           | (0.27) | (0.65) | (0.24) | (1.61)| (−0.84)| (1.34) | (0.9)  | (0.47) | (0.49) |
| R&D       | −0.002 | −0.003 | −0.002 | −0.002| −0.002 |        | −0.001 | −0.0007| −0.0004|
|           | (−1.17)| (−1.58)| (−1.1) |       |       |        | (−0.66)| (−0.37)| (−0.33) |
| _cons     | −15.54 | −1.53  | −14.07 | −32.10| 55.51  | −26.68 | 21.22  | −10.48 | −13.98 |
|           | (−0.29)| (−0.03)| (−0.26)| (−0.47)| (1.32) | (−0.41)| (0.43) | (−0.19)| (−0.25) |
| F statistics |       |        |        |        |        |        |        |        |        |
|           | 2.8*** | 3.09***| 3.3*** |       |       |        |        |        |        |
| Wald chi2 | 77.58***| 866.4***| 77.32***|       |       |        |        |        |        |
| R-Sq      | 0.3202 | 0.3542 | 0.3161 | 0.0673| 0.0802 | 0.0981 | 0.2996 | 0.2662 | 0.2652 |
| Hausman test Prob > chi2 | 0.9808 | 0.8539 | 0.9781 | 0.0316| 0.0716| 0.0610| 0.5933 | 0.8861 | 0.785  |
| # Obs     | 186    | 179    | 186    | 478   | 506    | 507    | 179    | 186    | 186    |

Source: Authors’ computations. *, **, and *** represent significance at 10%, 5%, and 1%, respectively. FE indicates fixed-effects within the regression, RE indicates random-effects Generalized Least Squares (GLS) regression. The number between the brackets is the t-statistic for FE and z-statistic for RE. Notes: For the definition of variables, please see Table 2.
board like in European nations. Gender diversity should be enlarged, compulsory laws being a crucial aspect in this vein (Reguera-Alvarado et al. 2017).

This study provides a source of reference to the academicians and scholars for future research. The study is oriented toward the largest companies, while other company types may provide different outcomes because of their specific features regarding capital structure or ownership. Upcoming research should cover the ownership form as the related kind might change the statistical relationships identified in this study. Moreover, female attributes such as age or education level should be covered. Additionally, other measures of board diversity, like the Blau index or the Shannon index, may be used.

Acknowledgements
The authors are very grateful for the valuable suggestions and precious recommendations formulated by the editor and the three anonymous referees.

Authors’ contributions
L.N.S. carried out conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review & editing. S.C.G. carried out conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review & editing. H.T. carried out conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review & editing. Z.S. carried out conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review & editing. All authors read and approved the final manuscript.

Funding
We do not receive any financial assistance from any agency.

Availability of data and materials
The data was extracted from Bloomberg database. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
Competing interests
The authors declare that they have no competing interests.

Received: 12 February 2021   Accepted: 10 June 2021
Published online: 01 July 2021

References
2020 Women on boards. (2020). 2020 WOMEN ON BOARDS. GENDER DIVERSITY INDEX. 2020 Progress of Women Corporate Directors by Company Size, State and Industry Sector. Retrieved from Los Angeles, CA 90012: https://2020wob.com/wp-content/uploads/2020/10/2020-GDI-FINAL.pdf
Adams RB, Ferreira D (2009) Women in the boardroom and their impact on governance and performance. J Financ Econ 94(2):291–309. https://doi.org/10.1016/j.jfineco.2008.10.007
Adams RB, Funk P (2012) Beyond the glass ceiling: does gender matter? Manage Sci 58(2):219–235. https://doi.org/10.1287/mnsc.1110.1452
Aggarwal R, Jindal V, Seth R (2019) Board diversity and firm performance: the role of business group affiliation. Int Bus Rev 28(6):101600. https://doi.org/10.1016/j.ibusrev.2019.101600
Ahmadi A, Nakaa N, Bouri A (2018) Chief Executive Officer attributes, board structures, gender diversity and firm performance among French CAC 40 listed firms. Res Int Bus Financ 44:218–226. https://doi.org/10.1016/j.ibusfin.2017.07.083
Ain QU, Yuan X, Jiaida HM, Usman M, Haris M (2020) Female directors and agency costs: evidence from Chinese listed firms. Int J Emerg Mark (ahead-of-print)
Akram F, Haq MA, u., Natarajan, V. K., Chellakan, R. S. (2020) Board heterogeneity and corporate performance: An insight beyond agency issues. Cogent Bus Manag 7(1):1809299. https://doi.org/10.1080/23311975.2020.1809299
Al-Daoud KI, Sadin S2, Abdin S (2016) Board meeting and firm performance: evidence from the Amman Stock Exchange. Corp Board: Role Duties Compos 12(2):6–11. https://doi.org/10.22495/cbvol12iar1
Alabed EO (2016) Effect of Board diversity on Corporate Governance Structure and Operating Performance: Evidence from the UK Listed Firms. Asian J Account Govern 7:67–80. https://doi.org/10.17576/ajag-2016-07-06
Ararat M, Aksu M, Cetin AT (2015) How board diversity affects firm performance in emerging markets: evidence on channels in controlled firms. Corp Govern Int Rev 23(2):83–103. https://doi.org/10.1111/corg.12103
Ararat M, Yurtoglu BB (2020) Female directors, board committees, and firm performance: time-series evidence from Turkey. Emerg Mark Rev. https://doi.org/10.1016/j.ememar.2020.100768
Arguden Y (2012) Why boards need more women. Harvard Bus Rev
Bell MP, McLaughlin ME, Sequeira JM (2002) Discrimination, harassment, and the glass ceiling: women executives as change agents. J Bus Ethics 37:65–76. https://doi.org/10.1023/A:1014730102063
Bennoun M, Chitou T, Nagati H, Nekhilli M (2018) Female board directorship and firm performance: What really matters? J Bank Finance 88:267–291. https://doi.org/10.1016/j.jbankfin.2017.12.010
Bhuiyan MB, Rahman A, Sultana N (2020) Female tainted directors, financial reporting quality and audit fees. J Contemp Account Econ 16(2):100189. https://doi.org/10.1016/j.jcae.2020.100189
Brahma S, Nwafo C, Boating A (2020) Board gender diversity and firm performance: the UK evidence. Int J Finance Econ Early View. https://doi.org/10.1002/ife.2089
Capelo A, Mavisalaky A (2016) Women in the boardroom and fraud: evidence from Australia. Aust J Manag 41(4):719–744. https://doi.org/10.1177/03128996215579463
Carmen M, d., Richard, T. O. C., Su, W. (2019) Gender diversity in senior management, strategic change, and firm performance: examining the mediating nature of strategic change in high tech firms. Res Policy 48(7):1681–1693. https://doi.org/10.1016/j.respol.2019.03.013
Carrasco A, Francisco C, Labelle R, Laffarga J, Ruiz-Barbadillo E (2015) Appointing women to boards: is there a cultural bias? J Bus Ethics 129:429–444. https://doi.org/10.1007/s10551-014-2166-z
Carter DA, D’Souza F, Simkins BJ, Simpson WG (2010) The Gender and Ethnic Diversity of US Boards and Board Committees and Firm Financial Performance. Corporate Governance: an International Review 18(5):396–414. https://doi.org/10.1111/j.1467-8683.2010.00809.x
Carter DA, Simkins BJ, Simpson WG (2003) Corporate governance, board diversity, and firm value. Financ Rev 38(1):33–53. https://doi.org/10.1111/1540-6288.00034
Catalyst (2020) Women on Corporate Boards: Quick Take Retrieved from https://www.catalyst.org/research/women-on-corporate-boards/
Chauhan Y, Dey DK (2017) Do female directors really add value in Indian firms? J Multinatl Financ Manag 42–43:24–36. https://doi.org/10.1016/j.mulfin.2017.10.005
Chen J, Leung WS, Evans KP (2018) Female board representation, corporate innovation and firm performance. J Empir Financ 48:236–254. https://doi.org/10.1016/j.jempfin.2018.07.003
Chen R, YixingTong J, Zhang FF, Zhou GS (2021) Do female directors enhance R&D performance? Int Rev Econ Financ 74:253–275. https://doi.org/10.1016/j.irefin.2021.03.003
Cheng J-Y, Greysberg B (2020) Gender diversity at the board level can mean innovation success. MIT Sloan Manag Rev
Chijoke-Mgbame AM, Boateng A, Mgbame CO (2020) Board gender diversity, audit committee and financial performance. Account Forum. https://doi.org/10.1080/01559982.2020.1766280
Cox TH, Blake S (1994) Understanding women’s educational and occupational choices: applying the Eccles et al, model of achievement-related choices. Psychol Women Q 18(4):585–609. https://doi.org/10.1111/j.1471-6402.1994.tb01038.x
Cox TH, Blake S, Rhee J (1995) Sex discrimination. Psychol Public Policy Law 5(3):665–692. https://doi.org/10.1037/1076-8971.5.3.665
Catalyst (2020) Does board gender diversity influence firm profitability? A control function approach. Econ Model 90:168–181. https://doi.org/10.1016/j.econmod.2020.05.009
Devsuav G, Devillard S, Sancier-Sultan S (2010) Women at the top of corporations: making it happen. Retrieved from https://www.aix.com.au/documents/media/2010_mckinsey_co_women_matter.pdf
Dezsö CL, Ross DG (2012) Does female representation in top management improve firm performance? A panel data investigation. Strateg Manag J 33(9):1072–1089. https://doi.org/10.1002/smj.1955
Diana B, Eugene B (1999) Who women are, who women should be: descriptive and prescriptive gender stereotyping in sex discrimination. Psychol Public Policy Law 5(3):665–692. https://doi.org/10.1037/1076-8971.5.3.665
Dah MA, Jia MI, Kebbie R (2020) CEO gender and managerial entrenchment. Res Int Bus Financ. https://doi.org/10.1016/j.rbaf.2020.101237
Đặng R, Houanti LH, Reddy K, Simonis M (2020) Does board gender diversity influence firm profitability? A control function approach. Econ Model 90:168–181. https://doi.org/10.1016/j.econmod.2020.05.009
Evgeny L (2015) The impact of financial leverage on firm performance: evidence from Russia. J Corp Finance Res 2(2):24–36
Fama EF, Jensen MC (1986) Separation of ownership and control. J Law Econ 29(2):301–325
Farrukh K, Irsahad S, Khakwani MS, Ishaque S, Ansari N (2017) Impact of dividend policy on shareholders wealth and firm performance in Pakistan. Cogent Bus Manag 4(1):1408208. https://doi.org/10.1080/23311975.2017.1408208
Garania T, Muravev A (2020) The gender composition of corporate boards and firm performance: evidence from Russia. Emerg Mark Rev. https://doi.org/10.1016/j.ememar.2020.100772
García-Sánchez I-M, Suárez-Fernández O, Martínez-Ferrero J (2019) Author links open overlay panel García-SánchezOscarSuárez-FernándezbJenniferMartínez-Ferreroa. Int Bus Rev 28(2):359–374. https://doi.org/10.1016/j.ibusrev.2018.10.007
Gavious I, Segev E, Yosef R (2012) Female directors and earnings management in high-technology firms. Pac Acc Rev 24(1):4–32. https://doi.org/10.1080/01140581212121533
González M, Guzmán A, Pablo E, Trujillo MA (2020) Does gender really matter in the boardroom? Evidence from closely held family firms. RMS 14:221–267. https://doi.org/10.1007/s11846-019-0202-1
Gruenberg DR, Mannix EA, Williams KY, Neale MA (1996) Group composition and decision making: how member familiarity and information distribution affect process and performance. Organ Behav Hum Decis Process 67(1):1–15. https://doi.org/10.1006/obhd.1996.0061
Gumbus A, Grodzinsky F (2004) Gender bias in internet employment: a study of career advancement opportunities for women in the field of ICT. J Inf Commun Ethics Soc 2(3):133–142. https://doi.org/10.1177/14797960480002/48
Hambirk DC, Mason PA (1984) Upper echelons: the organization as a reflection of its top managers. Acad Manag Rev 9(2):193–206. https://doi.org/10.5465/amr.1984.427628
Heilman ME (2001) Description and prescription: how gender stereotypes prevent women’s ascent up the organizational ladder. J Soc Issues 57(4):657–674. https://doi.org/10.1111/0022-4537.00234
et al. Financ Innov (2021) 7:52

Loukil N, Yousfi O, Yerbanga RW-K (2010) Does gender diversity on boards reduce information asymmetry problems? J Financ Econ 108(3):822–839. https://doi.org/10.1016/j.jfineco.2012.12.005

Huse M, Sollberg AG (2006) Gender-related boardroom dynamics: how Scandinavian women make and can make contributions on corporate boards. Women Manag Rev 21(2):113–130. https://doi.org/10.1007/0-96494206-10850569

Ilbough OW, Olokoyo FO (2018) Leverage and firm performance: new evidence on the role of firm size. North Am J Econ Finance 45:57–82. https://doi.org/10.1016/j.najef.2018.02.002

Ionsacu M, Ionascu I, Sacarin M, Minu M (2018) Women on boards and financial performance: evidence from a European emerging market. Sustainability 10(5):1644. https://doi.org/10.3390/su10051644

Kang E, Ding DK, Charenwong C (2010) Investor reaction to women directors. J Bus Res 63(8):888–894. https://doi.org/10.1016/j.jbusres.2009.06.008

Kaplan S, Pany K, Samuels J, Zhang J (2009) An examination of the association between gender and reporting intentions for fraudulent financial reporting. J Bus Ethics 87:15–30. https://doi.org/10.1007/s10551-008-9666-1

Kaur A, Singh B (2017) Construing reputation from gender diversity on boards: Indian evidence. Paradigm 21(2):111–125. https://doi.org/10.1007/971890717736195

Kilic M, Kuzey C (2016) The effect of board gender diversity on firm performance: evidence from Turkey. Gender Manag. https://doi.org/10.1108/GM-10-2015-0086

Kou G, Xue Y, Peng F, Chen F, Chen Y, Chang K, Kou S (2021) Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decis Support Syst. https://doi.org/10.1016/j.dss.2020.113429

Kristj J (2011) The Power of Three 35(5):22–32

Lee L-E, Marshall R, Rallis D, Moscardi M (2015) Women on Boards. Global Trends in Gender Diversity on Corporate Boards. Retrieved from https://www.msci.com/documents/10199/04b6f646-d638-4878-9c61-1eb91748aa82b

Li J, Harrison JR (2008) National culture and the composition and leadership structure of boards of directors. Corp Gov. Int Forum. https://doi.org/10.1108/GM-06-2019-0088

Luo J-H, Xiang Y, Huang Z (2017) Female directors and real activities manipulation: evidence from China. China J Account Res 10(2):141–166. https://doi.org/10.1108/cjar.2016.12.004

Mahmood Z, Kouser R, Ali W, Ahmad Z, Salman T (2018) Does corporate governance affect sustainability disclosure? A Mixed Methods Study. Sustainability 10(1):207. https://doi.org/10.3390/su10010207

Manjora L, Plantenga J, Remeny C (2016) Gender diversity and firm performance: evidence from Dutch and Danish boardrooms. Int J Human Resour Manag 27(15):1777–1790. https://doi.org/10.1080/09585192.2015.1079229

Markoczy L, Sun SL, Zhu J (2020) Few women on boards: what’s identity got to do with it? J Bus Ethics 165:311–327. https://doi.org/10.1007/s10551-019-04104-z

Martin-Ugedo JF, Mínguez-Vera A, Rossi F (2019) Women on corporate boards and firm’s financial performance in Italian and Spanish listed firms: does masculinity matter? Academia Revista Latinoamericana De Administración 32(3):411–436. https://doi.org/10.1108/ARLA-06-2018-0124

Martínez M, d. C. V., Rambaud, S. C. (2019) Women on corporate boards and firm’s financial performance. Women’s Stud Int Forum. https://doi.org/10.1016/j.wsif.2019.102251

Mastella M, Vancini D, Perlin M, Kirch G (2021) Board gender diversity: performance and risk of Brazilian firms. Gender Manag. https://doi.org/10.1108/GM-06-2019-0088

Meyer JW, Rowan B (1977) Institutionalized Organizations: Formal Structure as Myth and Ceremony. Am J Sociol 83(2):340–363

Milliken FJ, Martins LL (1996) Searching for common threads: understanding the multiple effects of diversity in organizational groups. Acad Manag Rev 21(2):402. https://doi.org/10.5465/amt.1996.963056217

Mobbs S, Tan Y, Zhang S (2021) Female directors: why are some less informed than others? J Corp Finan. https://doi.org/10.1016/j.jcfp.2021.101938

Mukaram SS, Ajmal T, Saeed A (2018) Women directors’ propensity towards risk in technology firms. Corp Govern: Int Manag. https://doi.org/10.1108/CG-09-2017-0213

Nadeem M, Suleman T, Ahmed A (2019) Women on boards, firm risk and the profitability nexus: does gender diversity moderate the risk and return relationship? Int Rev Econ Finance 64:427–442. https://doi.org/10.1016/j.iref.2019.08.007

Nikura H, Seko M (2020) The effect of inside and outside female directors on firm performance: comparison of the First section, Second section, Mothers, and Jisaq in the Tokyo Stock Exchange Market. Int J Econ Policy Stud 14:123–166. https://doi.org/10.1007/s42495-019-00025-x

Oldford E, Ullah S, Hossain AF (2021) A social capital view of women on boards and their impact on firm performance. Manag Finance. https://doi.org/10.1108/MF-02-2020-0091

Oost EV (2000) Making the computer masculine. The historical roots of gendered representations. In: Balka E, Smith R (eds) Women, work and computerization. charting a course to the future. Springer, Boston, pp 9–16
Richard HL, Norman MR (1961) Quality and acceptance of problem solutions by members of homogeneous and heterogeneous groups. J Abnorm Soc Psychol 62(2):401–407. https://doi.org/10.1037/h0044025

Robinson G, Dechant K (1997) Building a business case for diversity. Acad Manag Execut (1993–2005), 11(3), 21–31

Saggese S, Sarto F, Vigano R (2020) Do women directors contribute to R&D? The role of critical mass and expert power. J Manag Govern. https://doi.org/10.10997-020-09513-1

Sánchez MS (2017) Women on Corporate Boards and Firm Performance: Evidence from Spain. (Bachelor’s Degree in Business Administration and Management-English track), Universitat Autònoma de Barcelona

Smith N, Smith V, Vermer M (2006) Do women in top management affect firm performance? A panel study of 2500 Danish firms. Int J Product Perform Manag 55(7):569–593. https://doi.org/10.1108/1741040061072160

Solimene S, Coluccia D, Fontana S (2017) Gender diversity on corporate boards: an empirical investigation of Italian listed companies. Palgrave Commun. https://doi.org/10.1057/palcomms.2016.109

Srivastava NK (2015) Does governance structure have any effect on firm performance during the financial crisis? Evidence from selected Indian companies. J Strateg Manag 8(4):368–383. https://doi.org/10.1108/jsm-02-2015-0014

Sullivan A, Abraham M, Amiot M, Burke RM, Burks B, Jaeger O, Nematzadeh A, Posey M, White L (2020) The changing face of tech. Retrieved from https://www.spglobal.com/_media/documents/women-in-tech-final.pdf

Terjesen S, Aguilera RV, Lorenz R (2015) Legislating a woman’s seat on the board: institutional factors driving gender quotas for boards of directors. J Bus Ethics 18:233–251. https://doi.org/10.1007/s10551-014-2083-1

Terjesen S, Couto EB, Francisco PM (2016) Does the presence of independent and female directors impact firm performance? A multi-country study of board diversity. J Manage Govern 20:447–483. https://doi.org/10.1007/s10997-014-9307-8

Terjesen S, Sealy R, Singh V (2009) Women directors on corporate boards: a review and research agenda. Corp Govern Int Rev 17(3):320–337. https://doi.org/10.1111/j.1467-8683.2009.00742.x

Torchia M, Calabro A, Gabaldon P, Kanadi SB (2018) Women directors contribution to organizational innovation: a behavioral approach. Scand J Manag 34(2):215–224. https://doi.org/10.1016/j.scjmanag.2018.02.001

Turner E (2001) The case for responsibility of the IT industry to promote equality for women in computing. Sci Eng Ethics 7:247–260. https://doi.org/10.1016/s11948-001-0046-2

Unite AA, Sullivan MJ, Shi AA (2019) Board diversity and performance of Philippine ﬁrms: do women matter? Int Adv Econ Res 25:65–78. https://doi.org/10.1016/j.iaer.2019.04.018-0718-7

Vafaee A, Henry D, Ahmed K, Alipour M (2021) Board diversity: female director participation and corporate innovation. J Account Inf Manag 29(2):247–279. https://doi.org/10.1108/JAIM-06-2020-0080

Wang G Jr, R. M. H., Devine, R. A., Bishoff, J. (2018) CEO gender differences in careers and the moderating role of country culture: A meta-analytic investigation. Organ Behav Hum Decis Process 148:30–53. https://doi.org/10.1016/j.obhdp.2018.04.002

Wang, W. (2014). Independent Directors and Corporate Performance in China: A Meta-Empirical Study. Westphal JD, Milton LP (2000) How experience and network ties affect the influence of demographic minorities on corporate boards. Adm Sci Q 45(2):366–398. https://doi.org/10.2307/2667075

Wooldridge JM (2012) Introductory econometrics: a modern approach (Fifth ed.). Mason, OH 45040. South-Western Cengage Learning.

Woschowikat, A. (2018). Board Diversity and Firm Financial Performance: Gender-, Nationality- and Age Diversity in European Boardrooms. (Master Thesis in International Economics & Business Master Thesis), Nijmegen School of Management, Nijmegen

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.