Tumors are characterized by uncontrolled proliferation of abnormal cells that frequently display morphological and functional heterogeneity [1]. Two models have been proposed to explain the heterogeneity of tumors, namely the stochastic [2] and hierarchical models [3].

The stochastic model suggests that all cells within a tumor are biologically homogenous and, therefore, have equal capacity to regenerate the tumor. The hierarchical model, also known as the cancer stem cell model, proposes that only a small subset of tumor cells, designated cancer stem cells (CSCs) or tumor-initiating cells, within a tumor exhibit the capacity to initiate and sustain tumor growth. CSCs possess two important properties similar to those of normal stem cells, namely self-renewal and differentiation capacity [4]. Although CSCs were first identified 26 years ago in acute myelogenous leukemia with the cell surface marker CD34CD38 [5], the isolation of these cells from solid tumors was accomplished only in 2003 [6]. This study showed that CD44CD24 cells from breast cancer specimens are able to generate xenografts that phenotypically resemble the initial tumor. Furthermore, the xenografts could be serially passed to generate similar tumors, indicating the self-renewal ability of these cells. Following this seminal study, CSCs were isolated from various solid tumors such as brain, colon, pancreas, lung and liver. The isolation of CSCs was based on a series of cell surface markers, including CD133, CD44, CD90, CD24 and EpCAM, as well as functional markers such as ALDH1 and ABCB5, and side population (SP) cells [16].

Hepatocellular carcinoma (HCC) is a deadly disease with no promising therapeutic options. It is the fifth most prevalent cancer in the world, and the third leading cause of cancer-related death, with an annual death rate exceeding 500,000. The incidence of HCC among the population between the ages of 45 and 60 years is rising dramatically, particularly in the western world, due to an increase in hepatitis C virus infection, and alcoholic and non-alcoholic fatty liver disease. While surgical resection/ablation and liver transplantation are potentially curative, the high mortality is due to diagnosis at an advanced stage [17,18]. Although the multikinase inhibitor sorafenib has recently been approved for treatment of HCC, poor response of the late-stage cancer to this and almost all other available chemotherapeutic agents continues to be a major obstacle to successful HCC therapy. The 5-year survival rate for this cancer is only 5%, and the death rate is expected to rise in the next 20 years. Primary HCC, the most common malignant tumor, accounts for >90% of all primary liver cancer. Its development is a complex, multistep process. Elucidation of the molecular mechanisms of liver carcinogenesis is critical to determine the specific pathways involved in the initiation and progression of HCC that will eventually lead to identification of novel molecular targets for therapy. As observed in other solid tumors, recent studies suggested that CSCs may be involved in the development of liver cancer [10,13,19-21].

This review will summarize recent progress in the potential role of CSCs in hepatocarcinogenesis.
**Table 1. Cell surface markers of liver cancer stem cells**

| Marker | Cell line/primary tumor | Reference |
|--------|-------------------------|-----------|
| Side population | Huh7 and PLC/PRF5 cell lines | Chiba et al. (2006) [19] |
| CD133* | SMMC-7721 cell line, human primary HCC | Yin et al. (2007) [20] |
| CD133* | Huh7, PLC8024, Hep3B cell lines, human primary HCC | Ma et al. (2007) [21] |
| CD133* CD44+ | SMMC-7721, MHCC-LM3 and MHCC-97L cell lines | Zhu et al. (2010) [29] |
| CD90 | HepG2, Hep3B, PLC, Huh7, MHCC97L, and MHCC97H cell lines, human primary HCC | Yang et al. (2008) [10] |
| EpCAM | Huh1, Huh7, and Hep3B cell lines, human primary HCC | Yamashita et al. (2009) [13] |
| OV6 | Huh7, PLC, SMMC7721, Hep3B, and HepG2 cell lines | Yang et al. (2008) [30] |

HCC, hepatocellular carcinoma.

**Cellular origin of liver CSCs**

It has been proposed that CSCs may arise through mutations accrued in normal tissue stem cells or more differentiated tissue progenitor cells [31]. Recently, crypt cells expressing Lgr5 in small intestine and colon tissues have been identified as long-lived stem cells [32]. Apc deletion in these cells was necessary and sufficient to produce tumors *in vivo* [32]. Another study showed that CD133 marks the intestinal stem cells, and overproduction of β-catenin can transform CD133+ cells into CSCs and generate tumors [33]. Those studies suggested that normal stem cells may be the origin of CSCs. In contrast, introduction of MLL-AF9 into committed granulocyte macrophage progenitors produced leukemia stem cells [34], suggesting that CSCs could also be derived from committed progenitors.

The existence of stem cells in adult liver has been debated for many years. Recent studies have suggested that hepatic progenitor cells (HPCs) or oval cells, a subset of small epithelial cells with an oval nucleus located in the bile ductules and canals of Hering in adult liver [35], may function as stem cells in adult liver. HPCs can be activated to proliferate and differentiate into hepatocytes and biliary lineage in response to severe liver damage [36-41], such as that induced by treatment of rats with 2-acetylaminofluorene after partial hepatectomy (AAF/PH model) [42]. Under this condition, hepatocytes were unable to proliferate to replace the lost tissues. HPCs are, therefore, considered to be the bipotent liver stem cells.

HPCs play an important role in carcinogenesis in at least some subtypes of HCC. The number of HPCs in human chronic liver diseases, such as hepatitis B and C infection and alcoholic liver disease, are directly related to disease severity, suggesting that oval cell proliferation is associated with increased risk of development of HCC.
in chronic liver disease [41]. A recent study has shown that certain subtypes of primary human HCCs with poor prognosis may be derived from HPCs [43], based on the identification of human HCCs that exhibited gene expression profiles identical to that of hepatoblasts. Further, this subtype of HCC can be distinguished from other types by the markers of HPCs. HPCs are also activated in several mouse models of hepatocarcinogenesis, suggesting their potential role in the initiation and progression of liver cancer [44-48]. Fang et al. [44] found that oval cell proliferation was prominent from the initial liver injury stage to the occurrence and development of HCC in a HCC model fed 3,3’-diamino benzidine. More importantly, blocking the expansion of oval cells by targeting c-Kit with imatinib mesylate significantly reduced liver tumor formation in mice fed a choline-deficient, ethionine-supplemented diet [49]. Similarly, TNF was upregulated during oval cell proliferation induced by a choline-deficient, ethionine-supplemented diet, and was produced by oval cells [50]. Oval cell proliferation and tumorigenesis were substantially impaired in TNF receptor type 1 knockout mice. These two studies suggested that oval cells may be directly involved in the initiation and progression of liver cancer in this mouse model. More direct evidence for the involvement of oval cells in hepatocarcinogenesis was revealed in a study that demonstrated tumor formation in nude mice upon subcutaneous injection of p53 null oval cells [46]. Further studies showed that CD133+CD45- oval cells isolated from Mat1a (methionine adenosyltransferase 1a) [51] and Pten (phosphatase and tensin homolog deleted on chromosome 10) [52] knockout mice exhibited greater tumorigenic capacity. Furthermore, these oval cells exhibited high levels of resistance to chemotherapeutic agents, consistent with cancer stem cell characteristics. These findings, together with the notion that CSCs may arise from adult stem cells or progenitor cells, suggest that liver CSCs are probably derived from HPCs.

However, it should be noted that not all HCCs arise from HPCs, since oval cell proliferation is very rare in diethylnitrosamine-induced HCC. It is widely accepted that the HCC induced by this carcinogen develops from hepatocytes [53]. Based on these observations, the exact origin of CSCs in the liver appears to depend on the etiology of the cancer.

**Signaling pathways involved in maintaining the characteristics of liver CSCs**

The maintenance of self-renewal and tumorigenic capacity of CSCs involves several cancer-related signaling pathways, including Bmi-1 [54], Wnt/β-catenin [55], Notch [56], and Sonic Hedgehog [55,57] (Figure 1). Bmi-1, a polycomb group (PcG) gene, has previously been shown to regulate the self-renewal of hematopoietic stem cells [58]. Overexpression of Bmi-1 enhanced self-renewal of both hematopoietic stem cells and neural stem cells, indicating that Bmi-1 may function as a universal determinant of stem cell self-renewal. Overexpression of Bmi-1 in HPCs dramatically promoted the self-renewal of these cells, and transplantation of Bmi-1-transduced HPCs produced tumors in vivo, indicating the important role of Bmi-1 in regulating the self-renewal of normal or cancer stem cells in the liver [54]. Notably, upregulation of Bmi-1 has also frequently been observed in human primary HCC [59].

The Wnt/β-catenin signaling pathway can play a critical role in stem cell proliferation and potency maintenance [60], as well as differentiation of stem cells in a variety of tissues [61]. The activation of Wnt/β-catenin has been shown to be associated with hepatocyte proliferation in liver development, regeneration and tumor growth [62]. As observed in Bmi-1, mutation in β-catenin and
consistent activation of this signaling pathway significantly enhanced the self-renewal of HPCs and promoted cancer initiation [54].

Although the Notch signaling pathway plays an important role in regulating stem cell self-renewal and differentiation [3], it may function as a tumor suppressor or oncogene in different tissues depending on other signaling pathways [63]. In breast tissue, the Notch signaling pathway was shown to be upregulated, and inhibition of the Notch pathway reduced the formation of mammosphere, an indicator of stem-like cells [56]. Similarly, inhibition of the Notch pathway selectively depleted glioblastoma CSCs [64]. The role of the Notch signaling pathway in HCC is controversial. One study found that activation of Notch1 signaling inhibits growth of human HCC [65], suggesting that it may function as a tumor suppressor. In contrast, another study showed that the Notch1 signaling pathway is constitutively activated in HCC [66], indicating a potential oncogenic role of this pathway in HCC.

A variety of tumors exhibit activating mutations or up-regulation of Sonic Hedgehog (HH) pathway components, such as PTCH1, SMO and GLI1[67]. Recent studies showed that the HH pathway also regulates the self-renewal ability of CSCs in breast cancer [68], glioma [69] and multiple myeloma [70]. Although the role of the HH pathway in liver CSCs has not been well characterized, this pathway is known to be activated in HCC [71]. It would be of interest to investigate its potential role in regulating the self-renewal ability of liver CSCs.

**Therapeutic implications of liver CSCs**

Recent studies have shown that CSCs are more resistant to chemotherapy [11,72] and radiotherapy [73] compared with non-CSCs within the same tumor, indicating that CSCs may be responsible for the recurrence and eventual metastasis of these tumors. It is conceivable that targeting liver CSCs would provide new alternatives to treat HCC, since HCC is more resistant to traditional therapies. Drugs targeting signaling pathways involved in regulating the self-renewal ability of CSCs may prove to be effective in HCC therapy. For example, cyclopamine, which targets the HH pathway, significantly reduces the self-renewal of glioma [74], whereas gamma secretase inhibitor, which targets the Notch pathway, decreases self-renewal of breast CSCs [75]. It is worth investigating whether such drugs can also effectively eliminate liver CSCs. Another strategy to target CSCs is to induce differentiation of liver CSCs. In this context, Yin et al. [76] have shown that the forced expression of HNF4α, a central regulator of the differentiated hepatocyte phenotype, in CSCs can induce the differentiation of CSCs into mature hepatocytes and abolish their tumorigenesis in mice, implicating a novel strategy for HCC therapy.

**Conclusions**

Although significant progress has been made in liver cancer stem cell research in HCC, many issues remain to be resolved, such as the identity and origin of liver CSCs. Several markers are currently used to isolate CSCs. Although CSCs thus identified are known to form tumors in a xenograft model, it is not known whether these markers coexist or whether they are present in different cells. Additionally, the origin of liver CSCs needs to be studied by a lineage tracing study. The development of single cell sorting and in vivo imaging technology, as well as the use of mouse HCC models and syngeneic transplantation, will facilitate the identification of unique and specific liver CSC markers. It is critical to elucidate the detailed mechanisms underlying the transformation of liver CSCs. Comparing the gene expression profiles between normal stem cells (HPCs) and CSCs by micro-array analysis or next-generation sequencing may prove to be useful to identify the dysregulated oncogenes or tumor suppressors and signaling pathways that are involved in the transformation of liver CSCs. Finally, these findings are likely to lead to the development of new diagnostic markers and therapeutic targets for HCC.

**Abbreviations**

CSC, cancer stem cell; HCC, hepatocellular carcinoma; HH, Sonic Hedgehog; HPC, hepatic progenitor cell; SP, side population; TNF, tumor necrosis factor.

**Competing interests**

The authors declare that they have no competing interests.

**Authors’ contributions**

BW extensively reviewed the literature and prepared the first draft after discussion with SJ. SJ reviewed the draft, edited and helped to prepare the final draft.

**Acknowledgements**

We thank Dr Kalpana Ghoshal for critical review of the article and useful suggestions. The work done in the authors’ laboratory was supported, in part, by NIH grants CA101956 and CA086978 (STJ).

**Published:** 22 February 2011

**References**

1. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8:755-768.

2. Nowell PC. The clonal evolution of tumor cell populations. Science 1976, 194:23-28.

3. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414:105-111.

4. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006, 355:1253-1261.

5. Laplctôt T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 1994, 367:645-648.

6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-3988.

7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.

8. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445:106-110.
9. Prince ME, Sivanandan R, Kacorzukowski A, Wolf GT, Kaplan MJ, Darbea P, Weissman IL, Clarke MF, Allels LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007, 104:973–978.

10. Yang Z, Ho DW, Ng NN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST: Significance of CD133+ cancer stem cells in human liver cancer. Cancer Cell 2008, 13:153–166.

11. Li C, Heidt DG, Darbea P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67:1030–1037.

12. Darbea P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Guney A, Huang EH, Simeone DM, Shlomai AA, Parmiani G, Castelli, C, Clarke MF: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007, 104:10158-10163.

13. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Ji H, Ye Q, Qin LX, Wauthier E, Reid LM, Minato H, Kaneko S, Tang ZY, Wang XW: EpCAM-positive hepatoplastic carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009, 136:1012–1024.

14. Gnestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Ginestier C, Hur MH: highly enriched in CD133 CA.

15. Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, Li J, Liu J: Cancer stem/progenitor cells are highly enriched in CD133-CD44+ population in hepatocarcinoma. Int J Cancer 2010, 126:2067-2078.

16. Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY: Wnt/b-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008, 68:4267-4275.

17. Akhtar K, Bussen W, Scott SP: Cancer stem cells - from initiation to elimination, how far have we reached? Int J Onco 2009, 34:1491-1503.

18. Barker N, Ridgway RA, van ES, JH, van der Wetening, Beeghth H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H: Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009, 457:608-611.

19. Zhu L, Gibson F, Currie DS, Tong Y, Richardson RJ, Balyaiovt IP, Poppeleton H, Zakherkaenko S, Ellison DW, Gilbertson RJ: Prominin 1 marks intestinal stem cell populations that are susceptible to neoplastic transformation. Nature 2009, 457:603-607.

20. Krivtsov AV, Tomewey D, Feng Z, Stubbins MC, Wang Y, Faber J, Levine DE, Wang J, Hahn WC, Gilliss DG, Golub TR, Armstrong SA: Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature 2006, 442:818-822.

21. These ND: Gastrointestinal stem cells. Ill. Emergent themes of stem cell biology: niche, quiescence, self-renewal, and plasticity. Am J Physiol Gastrointest Liver Physiol 2006, 290:G189-G193.

22. Dabeva MD, Alpinsky G, Hurston E, Shafritz DA: Models for hepatic progenitor cell activation. Proc Soc Exp Biol Med 1993, 204:242-252.

23. Wang X, Foster M, Al-Dhalimi M, Llages E, Finegold M, Grompe M: The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A 2003, 100 Suppl 1:11881-11888.

24. Simeone DM: Significance of CD90+ cancer stem cells in human liver cancer. Hepatology 2007, 45:1537-1547.

25. Theise ND, Serpell LC: Stem and progenitor cells. Gastroenterology 2007, 132:2557-2576.

26. Gordon GJ, Coleman WB, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

27. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

28. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

29. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

30. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

31. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

32. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

33. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

34. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

35. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

36. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

37. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

38. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

39. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

40. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

41. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

42. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

43. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

44. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

45. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

46. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

47. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

48. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.

49. Gordon GJ, Coleman WB, Hixson DC, Grisham JW: Hepatic progenitor cells in the developing mouse liver. Proc Natl Acad Sci U S A 2004, 101:15590-15595.
52. Rountree CB, Ding W, He L, Stiles B: Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice. Stem Cells 2009, 27:290-299.

53. Scherer E, Hoffmann M, Emmelot P, Friedrich-Freksa M: Quantitative study on foci of altered liver cells induced in the rat by a single dose of diethylnitrosamine and partial hepatectomy. J Natl Cancer Inst 1972, 49:93-106.

54. Chiba T, Zheng YW, Kita Y, Yokosuka S, Saisho H, Onodera M, Miyoshi H, Nakano M, Zen Y, Nakanuma Y, Nakaiishi H, Iwama A, Taniguchi H: Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 2007, 133:937-950.

55. Weng DJ, Xi H, Ridd K, Castorino D, Segal E, Chang H: Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008, 2:333-344.

56. Donut G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Welch WM: Notch1 signaling inhibits tumor growth in human hepatocellular carcinoma. Mol Cancer Ther 2009, 8:358-366.

57. Merchant AA, Matsu W: Targeting Hedgehog - a cancer stem cell pathway. Clin Cancer Res 2010, 16:3130-3140.

58. Liu S, Donut G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006, 66:6063-6071.

59. Dong Q, Sanchez P, de Tribolet N, Radvanovic I, Ruiz A, Altaa A: Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007, 17:165-172.

60. Dierks C, Grbic J, Zirlik K, Beri R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mentelmann R, Kelleher J, Schultz P, Warmuth M: Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007, 13:944-951.

61. Dick I, Klemm A, Jeltsch A, Kaelin W, Umeda Y: Disruption of the hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006, 27:748-757.

62. Todaro M, Perez A, Sappell A, Medema J, Stassi G: Hedgehog signaling inhibits growth of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2008, 134:535-541.

63. Sato N, Meier L, Skalskou T, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004, 10:55-63.

64. Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L: Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005, 23:1489-1501.

65. Symeon S, Gutierrez P, Lan BY, Feng S, Hrebek M: Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 2007, 45:361-368.

66. Weng AP, Aster JC: Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 2004, 14:48-54.

67. Fan X, Khaki L, Zhu TS, Soules ME, Talima CE, Gu N, Koh C, Zhang J, Ly YM, Maciackz K, Nihkhah G, Demiro F, Piccirillo S, Vescovi AL, Eberhart CG: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010, 28:5-16.

68. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X: Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 2003, 63:8323-8329.

69. Ning L, Wentworth L, Chen J, Weber SM: Down-regulation of Notch1 signaling inhibits tumor growth in human hepatocellular carcinoma. Am J Transl Res 2009, 1:358-366.

70. Walczak P, de Triboulet N, Radvanovic I, Ruiz A, Altaa A: Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007, 17:165-172.

71. Dierks C, Grbic J, Zirlik K, Beri R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mentelmann R, Kelleher J, Schultz P, Warmuth M: Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007, 13:944-951.

72. Dick I, Klemm A, Jeltsch A, Kaelin W, Umeda Y: Disruption of the hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006, 27:748-757.

73. Todaro M, Perez A, Sappell A, Medema J, Stassi G: Hedgehog signaling inhibits growth of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2008, 134:535-541.

74. Sato N, Meier L, Skalskou T, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004, 10:55-63.

75. Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L: Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005, 23:1489-1501.

76. Sekine S, Gutierrez P, Lan BY, Feng S, Hrebek M: Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 2007, 45:361-368.

77. Weng AP, Aster JC: Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 2004, 14:48-54.

78. Fan X, Khaki L, Zhu TS, Soules ME, Talima CE, Gu N, Koh C, Zhang J, Ly YM, Maciackz K, Nihkhah G, Demiro F, Piccirillo S, Vescovi AL, Eberhart CG: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010, 28:5-16.

79. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X: Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 2003, 63:8323-8329.

80. Ning L, Wentworth L, Chen J, Weber SM: Down-regulation of Notch1 signaling inhibits tumor growth in human hepatocellular carcinoma. Am J Transl Res 2009, 1:358-366.

81. Walczak P, de Triboulet N, Radvanovic I, Ruiz A, Altaa A: Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007, 17:165-172.

82. Dierks C, Grbic J, Zirlik K, Beri R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mentelmann R, Kelleher J, Schultz P, Warmuth M: Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007, 13:944-951.

83. Dick I, Klemm A, Jeltsch A, Kaelin W, Umeda Y: Disruption of the hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006, 27:748-757.

84. Todaro M, Perez A, Sappell A, Medema J, Stassi G: Hedgehog signaling inhibits growth of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2008, 134:535-541.

85. Sato N, Meier L, Skalskou T, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004, 10:55-63.