ON ABEL CONVERGENT SERIES OF FUNCTIONS
ERDAL GÜL AND MEHMET ALBAYRAK
Yildiz Technical University, Department of Mathematics, 34210 Esenler, Istanbul
egul34@gmail.com
mehmetalbayrak12@gmail.com

ABSTRACT
In this paper, we are concerned with Abel uniform convergence and Abel point-wise convergence of series of real functions where a series of functions \(\sum f_n \) is called Abel uniformly convergent to a function \(f \) if for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that
\[
|f_x(t) - f(t)| < \varepsilon
\]
For \(1 - \delta < x < 1 \) and \(\forall t \in X \), and a series of functions \(\sum f_n \) is called Abel point-wise convergent to \(f \) if for each \(t \in X \) and \(\forall \varepsilon > 0 \) there is a \(\delta(\varepsilon, t) \) such that for \(1 - \delta < x < 1 \)
\[
|f_x(t) - f(t)| < \varepsilon.
\]

2010 Mathematics Subject Classification: 40A30.
Key Words: Pointwise convergence; Uniform convergence; Abel convergence
1 INTRODUCTION

Firstly, we give some notations and definitions in the following. Throughout this paper, \(N \) will denote the set of all positive integers. We will use boldface \(p, r, w, \ldots \) for sequences \(p = (p_n), \ r = (r_n), \ w = (w_n), \ldots \) of terms in \(R \), the set of all real numbers. Also, \(s \) and \(c \) will denote the set of all sequences of points in \(R \) and the set of all convergent sequences of points in \(R \), respectively.

A sequences \((p_n) \) of real numbers is called Abel convergent (or Abel summable), (See [1,3]), to \(\ell \) if for \(0 \leq x < 1 \) the series \(\sum_{k=0}^{\infty} p_k x^k \) is convergent and

\[
\lim_{x \to 1^-} (1 - x) \sum_{k=0}^{\infty} p_k x^k = \ell
\]

Abel proved that if \(\lim_{n \to \infty} p_n = \ell \), then \(\text{Abel} \lim_{n \to \infty} p_n = \ell \) (Abel).

A series \(\sum_{n=0}^{\infty} p_n \) of real numbers is called Abel convergent series (See [1,3]), (or Abel summable) to \(\ell \) if for \(0 \leq x < 1 \) the series \(\sum_{k=0}^{\infty} p_k x^k \) is convergent and

\[
\lim_{x \to 1^-} (1 - x) \sum_{k=0}^{\infty} S_k x^k = \ell, \text{ where } S_n = \sum_{k=0}^{n} p_k
\]

In this case we write \(\text{Abel} \sum_{n=0}^{\infty} p_n = \ell \). Abel proved that if \(\lim_{n \to \infty} \sum_{k=0}^{n} = \ell \), then \(\text{Abel} \sum_{n=0}^{\infty} p_n = \ell \) (Abel), i.e. every convergent series is Abel summable. As we know the converse is false in general, e.g. \(\text{Abel} \sum_{n=0}^{\infty} (-1)^n = \frac{1}{2} \) (Abel), but \(\sum_{n=0}^{\infty} (-1)^n \neq \frac{1}{2} \).

2 RESULTS

We are concerned with Abel convergence of sequences of functions defined on a subset \(X \) of the set of real numbers. Particularly, we introduce the concepts of Abel uniform convergence and Abel point-wise convergence of series of real functions and observe that Abel uniform convergence inherits the basic properties of uniform convergence.

Let \((f_n) \) be a sequences of real functions on \(X \) and for all \(t \in X \) let \(f_n(t) = (1 - x) \sum_{n=0}^{\infty} S_n(t) x^n \), where \(S_n(t) = \sum_{k=0}^{n} f_k(t) \).

Definition 2.1 A series of functions \(\sum f_n \) called Abel point-wise convergent to a function \(f \) if for each \(t \in X \) and \(\forall \varepsilon > 0 \) there is a \(\delta(\varepsilon, t) \) such that for \(1 - \delta < x < 1 \)

\[
|f_n(t) - f(t)| < \varepsilon.
\]

In this case we write \(\sum f_n \to f \) (Abel) on \(X \).

It is easy to see that any point-wise convergent sequence is also Abel point-wise convergent. But the converse is not always true as being seen in the following example.

Example 2.1 Define \(f_n : [0,1] \to R \) by

\[
f_n(t) = (-1)^n = \begin{cases} 1, & n \in N \text{ and } n \text{ odd;} \\ -1, & n \in N \text{ and } n \text{ even} \end{cases}
\]

and

\[
S_n(t) = \begin{cases} 0, & n \text{ odd;} \\ 1, & n \text{ even} \end{cases}
\]

Then, for every \(\varepsilon > 0 \),

\[
\left| (1 - x) \sum_{n=0}^{\infty} (S_n(t) - \frac{1}{2}) x^n \right| < \varepsilon.
\]

Hence

\[
\lim_{x \to 1^-} (1 - x) \sum_{n=0}^{\infty} S_n(t) x^n = \frac{1}{2}
\]

So \(\sum f_n \) is Abel point-wise convergent to \(\frac{1}{2} \) on \([0,1]\). But observe that \(\sum f_n \) is not point-wise on \([0,1]\).
Definition 2.2 A series of functions $\sum f_n$ is called Abel uniform convergent to a function f if for each $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f_x(t) - f(t)| < \varepsilon$$

for $1 - \delta < x < 1$ and $\forall t \in X$.

In this case we write $\sum f_n \rightarrow f$ (Abel) on X.

The sequence is equicontinuous if for every $\varepsilon > 0$ and every $x \in X$, there exists a $\delta > 0$, such that for all n and all $x' \in X$ with $|x' - x| < \delta$ we have

$$|f_n(x') - f_n(x)| < \varepsilon.$$

The next result is a Abel analogue of a well-known result.

Theorem 2.1 Let (f_n) be equicontinuous on X. If a series of functions $\sum f_n$ converges Abel uniform to a function f on X, then f is continuous on X.

Proof. Let t_0 be an arbitrary point of X. By hypothesis $\sum f_n \rightarrow f$ (Abel) on X. Then, for every $\varepsilon > 0$, there is a $\delta_1 > 0$ such that $1 - \delta_1 < x < 1$ implies $|f_x(t) - f(t)| < \frac{\varepsilon}{3}$ and $|f_x(t_0) - f(t_0)| < \varepsilon$ for each $t \in X$. Since f_n is quicontinuous at $t_0 \in X$, there is a $\delta_2 > 0$ and $n \in N$ such that $|t - t_0| < \delta_2$ implies $|f_n(t) - f_k(t_0)| < \frac{\varepsilon}{3n}$ for each $t \in X$, so

$$|f_x(t) - f_x(t_0)| = |(1 - x)\sum_{n=0}^{\infty} S_n(t) x^n - (1 - x)\sum_{n=0}^{\infty} S_n(t_0) x^n|$$

$$= |(1 - x)\sum_{n=0}^{\infty} (S_n(t) - S_n(t_0)) x^n|$$

$$\leq (1 - x)\sum_{n=0}^{\infty} |S_n(t) - S_n(t_0)| x^n$$

$$\leq (1 - x)\sum_{n=0}^{\infty} \frac{\varepsilon}{3} x^n = \frac{\varepsilon}{3}.$$

Now for all $0 < x < 1$, for $\delta = \min(\delta_1, \delta_2)$ and for all $t \in X$ for which $|t - t_0| < \delta$, we have

$$|f(t) - f(t_0)| = |f(t) - f_x(t) + f_x(t) - f_x(t_0) + f_x(t_0) - f(t_0)|$$

$$\leq |f(t) - f_x(t)| + |f_x(t) - f_x(t_0)| + |f_x(t_0) - f(t_0)| < \varepsilon.$$

Since $t_0 \in X$ is arbitrary, f is continuous on X.

The next example shows that neither of the converse of Theorem 2.1 is true.

Example 2.2 Define $f_n : [0, 1] \rightarrow R$ by

$$f_n(t) = n^2 t (1 - t)^n$$

Then we have $\sum f_n : [0, 1] \rightarrow f = 0$ (Abel) on $[0, 1]$. Though all f_n and f are continuous on $[0, 1]$, it follows from Definition 2.2 that the Abel point-wise convergence of (f_n) is not uniform, since

$$c_n = \max_{0 \leq s \leq 1} |\sum_{k=0}^{n} f_k(s) - f(s)| = \infty$$

and Abel-$\lim c_n = \infty \neq 0$.

The following result is a different form of Dini’s theorem.

Theorem 2.2 Let X be compact subset of R, (f_n) be a sequence of continuous functions on X. Assume that f is continuous and $\sum f_n \rightarrow f$ (Abel) on X. Also let $\sum_{k=0}^{n} f_k$ be monotonic decreasing on X ; $\sum_{k=0}^{n} f_k(t) \geq \sum_{k=0}^{n+1} f_k(t)$ for all $t \in X$. Then

$$\sum_{k=0}^{\infty} f_k(t) \rightarrow f(t)$$

for all $t \in X$. If in addition $\sum_{k=0}^{n} f_k(t)$ is continuous for all n then so is $f(t)$, and the converse is also true.
(n = 1,2,3, ...) for every t ∈ X. Then ∑f_n ⇒ f (Abel) on X.

Proof. Put h_n(t) = ∑_{k=0}^{n} (f_k(t) - f(t)). By hypothesis, each h_n is continuous and h_n → 0 (Abel) on X, also h_n is a monotonic decreasing sequence on X. Since continuous functions h_n on set compact X, it is bounded on X. As all a series of functions h_n is bound and monotonic decreasing, it is pointwise convergence for all a t ∈ X. Since h_n is Abel pointwise to zero for all a t ∈ X, it find pointwise converge to zero for all a t ∈ X. Hence for every ε > 0 and each t ∈ X there exists a number n(t) := n(ε,t) ∈ N such that 0 ≤ h_n(t) < ε for all n ≥ n(t).

Since h_n(t) is continuous a t ∈ X for every ε > 0, there is an open set V(t) which contains t such that |h_n(t)(t) - h_n(t)(t)| < ε/2 for all ℓ ∈ V(t). Hence for given ε > 0, by monotonicity we have

0 ≤ h_n(ℓ) ≤ h_n(t)(ℓ) = h_n(t)(t) - h_n(t)(t) + h_n(t)(t) < ε

for every ℓ ∈ V(t) and for all n ≥ n(t). Since X ⊂ U_{t∈X} V(t) and it is compact set, by the the Heine Borel theorem it has a finite open covering as

X ∈ V(t_1) ∪ V(t_2) ... U V(t_m).

Now, let N = max{n(t_1), n(t_2), n(t_3), ..., n(t_m)}. Then 0 ≤ h_n(ℓ) < ε for every t ∈ X and for all n ≥ N. So ∑f_n ⇒ f (Abel) on X.

Using Abel uniform convergence, we can also get some applications. We merely state the following theorems and omit the proofs.

Theorem 2.3 If a series function sequence ∑f_n converges Abel uniformly on [a, b] to a function f on [a, b] and each f_n is integral on [a, b], then f is integral on [a, b]. Moreover,

\[\lim_{x \to a^+} f(x) = f(ax) dt = f(b) dt \]

Theorem 2.4 Suppose that ∑f_n is a function series such that each (f_n) has a continuous derivative on [a, b]. If ∑f_n → f on [a, b] and ∑f_n ⇒ g (Abel) on [a, b], then ∑f_n ⇒ f (Abel) on [a, b], where f is differentiable and f' = g.

3 FUNCTIONS SERIES THAT PRESERVE ABEL CONVERGENCE

Recall that a function sequence (f_n) is called convergence-preserving (or conservative) on X ⊂ R if the transformed sequence (f_n(p_n)) converges for each convergent sequence p = (p_n) from X (see [4]). In this section, analogously, we describe the function sequences which preserve the Abel convergence of sequences. Our arguments also give a sequential characterization of the continuity of Abel limit functions of Abel uniformly convergent function series. First we introduce the following definition.

Definition 3.1 Let X ⊂ R and let ∑f_n be a series of real functions, and f a real function on X. Then series of functions ∑f_n is called Abel preserving Abel convergence (or Abel conservative) on X, if it transforms Abel convergent sequences to Abel convergent sequences, i.e. series of functions ∑f_n = (p_n) is Abel convergent to f(ℓ) whenever (p_n) is Abel convergent to f. If series of functions ∑f_n is Abel conservative and preserves the limits of all Abel convergent sequences from X, then series of functions ∑f_n is called Abel regular on X.

Hence, if series of functions ∑f_n is conservative on X, then series of functions ∑f_n is Abel conservative on X. But the following example shows that the converse of this result is not true.

Example 3.1 Let f_n: [0,1] → R defined by

\[f_n(t) = (-1)^n n = \begin{cases}
-1/n, & n \text{ odd}; \\
1/n, & n \text{ even}
\end{cases} \]

and

\[S_n(t) = \begin{cases}
-n + 1/2, & n \in N \text{ and } n \text{ odd}; \\
2/n, & n \in N \text{ and } n \text{ even}
\end{cases} \]

Suppose that (w_n) is an arbitrary sequence in [0,1] such that \(\lim_{x \to 1^{-}}(1 - x)\sum_{n=0}^{\infty} w_n(t)x^n = L \). Then, for every ε > 0, \((1 - x)\sum_{n=0}^{\infty} (S_n(w_n) - (-1/4^2)x^n) < \epsilon \). Hence \(\lim_{x \to 1^{-}}(1 - x)\sum_{n=0}^{\infty} S_n(w_n) = -1/4 \). So \(\sum f_n \) is Abel conservative on [0,1]. But observe that \(\sum f_n \) is not conservative on [0,1]. The next well-known theorem plays an important role in the proof of Theorem 3.2.
Theorem 3.1 If the series \(\sum_{n=0}^{\infty} f_n \) is Abel pointwise convergent to \(f \) on \(X \) and \(f_n(t) \geq 0 \) for \(n \) sufficiently large for all \(t \in X \) then \(\sum_{n=0}^{\infty} f_n \) converges to \(f \) for all \(t \in X \).

Proof. There exists \(n_0 \) such that if \(n > n_0 \) then \(f_n(t) > 0 \) for all \(t \in X \). Thus the \((S_n)_{n=0}^{\infty} \) is an increasing sequence if \(S_n \) is bounded then \(\sum_{n=0}^{\infty} f_n(t) = f(t) \) for all \(t \in X \). So for all \(t \in X \)

\[
\lim_{x \to 1^{-1}} (1-x) \sum_{k=0}^{\infty} f_k(t) x^k = \sum_{k=0}^{\infty} f_k(t)
\]

If \(S_n \) is not bounded \(\lim_{n \to \infty} S_n = \infty \), so \(\sum_{n=0}^{\infty} f_n(t) \) is not Abel point-wise convergent for all \(t \in X \) (which contradicts the hypothesis).

Now we are ready to prove the following theorem.

Theorem 3.2 Let \((f_n) \) be a sequence of nonnegative functions defined on a closed interval \([a, b] \subseteq R\), \(a, b > 0 \). Then a series of nonnegative functions \(\sum f_n \) is Abel conservative on \([a, b]\) if and only if a series of nonnegative functions \(\sum f_k \) converges Abel uniformly on \([a, b]\) to a continuous function.

Proof. Necessity. Assume that a series of nonnegative functions \(\sum f_n \) is Abel conservative on \([a, b]\). Choose the sequence \((r_n) = (r, r, \ldots)\) for each \(r \in [a, b] \). Since \(A - \lim_{n \to \infty} r_n = r \), \(A = \lim_{n \to \infty} S_n(r_n) \) exists, hence \(A - \lim_{n \to \infty} S_n(r) = f(r) \) for all \(r \in [a, b] \). We claim that \(f \) is continuous on \([a, b]\). To prove this we suppose that \(f \) is not continuous at a point \(p_0 \in [a, b] \). Then there exists a sequence \((p_k)\) in \([a, b]\) such that \(\lim_{k \to \infty} p_k = p_0 \), but \(\lim f(p_k) \) exists and \(\lim f(p_k) = L \neq f(p_0) \). Since a series of nonnegative functions \(\sum f_k \) is Abel pointwise convergent to \(f \) on \([a, b] \), we obtain \(\sum f_n \to f (Abel) \) on \([a, b]\) from Theorem 3.1. Hence we write,

\[
\begin{align*}
\text{for } k = 1 & \Rightarrow \lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} (S_n(p_1) - f(p_1) x^n) = 0 \Rightarrow \lim_{n \to \infty} S_n(p_1) = f(p_1) \\
\text{for } k = 2 & \Rightarrow \lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} (S_n(p_2) - f(p_2) x^n) = 0 \Rightarrow \lim_{n \to \infty} S_n(p_2) = f(p_2) \\
\text{for } k = 3 & \Rightarrow \lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} (S_n(p_3) - f(p_3) x^n) = 0 \Rightarrow \lim_{n \to \infty} S_n(p_3) = f(p_3) \\
& \quad \quad \quad \quad \vdots \\
\text{for } k = j & \Rightarrow \lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} (S_n(p_j) - f(p_j) x^n) = 0 \Rightarrow \lim_{n \to \infty} S_n(p_j) = f(p_j).
\end{align*}
\]

Now, by the “diagonal process” as in [5] and [6]

\[
|1-x| \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n | \leq |(1-x) \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n |
\]

So we have

\[
\lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n = 0
\]

(3.1)

Then,

\[
\sum_{n=0}^{\infty} S_n(p_n)x^n = \sum_{n=0}^{\infty} (S_n(p_n) - f(p_n)) x^n + \sum_{n=0}^{\infty} f(p_n) x^n
\]

and hence from (3.1) one obtains

\[
\lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} S_n(p_n) x^n = \lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} f(p_n) x^n
\]

If \(\lim f(p_n) = L \), then

\[
\lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} f(p_n) x^n = L
\]

So we find that

\[
\lim_{x \to 1^{-1}} (1-x) \sum_{n=0}^{\infty} S_n(p_n) x^n = L.
\]

(3.2)

Hence series of nonnegative functions \(\sum_{n=0}^{\infty} f_n(p_n) \) is not Abel convergent since the series of functions \(\sum_{n=0}^{\infty} f_n(p_n) \) has two different limit value. So, the series of nonnegative functions \(\sum f_n(p_n) \) is not Abel convergent.
convergent, which contradicts the hypothesis. Thus \(f \) must be continuous on \([a, b]\). It remains to prove that series of nonnegative functions \(\sum f_n \) converges Abel uniformly on \([a, b]\) to \(f \). Assume that a series of functions \(\sum f_n \) is not Abel uniformly convergent to \(f \) on \([a, b]\). Hence there exists a number \(\epsilon_0 > 0 \) and numbers \(r_n \in [a, b] \) such that
\[
\left| (1 - x) \sum_{n=0}^{m} (S_n(r_n) - f(r_n))x^n \right| > 2\epsilon_0.
\]
We obtain from Theorem 3.1 that \(|S_n(r_n) - f(r_n)| \geq 2\epsilon_0 \). The bounded sequence \(r = (r_n) \) contains a convergent subsequence \((r_{n_i}) \), \(\lim_{i \to \infty} (1 - x) \sum_{n=0}^{m} r_{n_i} x^n = \alpha \), say. By the continuity of \(f \),
\[
\lim f(r_{n_i}) = f(\alpha).
\]
So there is an index \(i_0 \) such that \(|f(r_{n_i}) - f(\alpha)| < \epsilon_0 \), \(i \geq i_0 \). For the same \(i \)'s, we have
\[
\left| (1 - x) \sum_{i=0}^{n} (S_i(r_{n_i}) - f(\alpha))x^n \right| \geq \left| (1 - x) \sum_{i=0}^{n} (S_i(r_{n_i}) - f(r_{n_i}))x^n \right| - \left| (1 - x) \sum_{i=0}^{n} (f(r_{n_i}) - f(\alpha))x^n \right| \geq \epsilon_0.
\]
Hence a series of nonnegative functions \(\sum f_n(r_{n_i}) \) is not Abel convergent, which contradicts the hypothesis. Thus a series of nonnegative functions \(\sum f_n \) must be Abel uniformly convergent to \(f \) on \([a, b]\).

Sufficiency. Assume that \(\sum f_n = f \) (Abel) on \([a, b]\) and \(f \) is continuous. Let \(p = (p_n) \) be a Abel convergent sequence in \([a, b]\) with \(\Lambda \lim \sum f_n = p_0 \). Since Theorem 3.1 and \(\sum f_n = f \) (Abel) on \([a, b]\) and, we obtain that \(\lim p_n = p_0 \). Since \(\lim p_n = p_0 \) and \(f \) is continuous, we obtain that there is \(A = \lim f(p_n) \) and let
\[
\Lambda \lim f(p_n) = f(p_0).
\]
Let \(\epsilon > 0 \) be given. We write \(\left| (1 - x) \sum_{n=0}^{m} (f_n(t) - f(t))x^n \right| < \frac{\epsilon}{2} \) for every \(t \in [a, b] \). Hence taking \(t = (p_n) \) we have
\[
\left| (1 - x) \sum_{n=0}^{m} (f_n(p_n) - f(p_0))x^n \right| \leq \left| (1 - x) \sum_{n=0}^{m} (f_n(p_n) - f(p_0))x^n \right| + \left| (1 - x) \sum_{n=0}^{m} (f_n(p_n) - f(p_0))x^n \right| < \epsilon.
\]
This shows that \(\sum f_n(p_n) = f(p_0) \) (Abel), whence the proof follows.

Theorem 3.2 contains the following necessary and sufficient condition for the continuity of Abel limit functions of function series that converge Abel uniformly on a closed interval.

Theorem 3.3 Let \(\sum f_k \) be a series of nonnegative functions that converges Abel uniformly on a closed interval \([a, b] \), \(a, b \geq 0 \) to a function \(f \). The A-limit function \(f \) is continuous on \([a, b] \) if and only if the series of nonnegative functions \(\sum f_k \) is Abel conservative on \([a, b] \).

Now, we study the Abel regularity of function series. If series of nonnegative functions \(\sum f_k \) is Abel regular on \([a, b] \), then obviously \(\Lambda \lim \sum f_k(t) = t \) for all \(t \in [a, b] \), \(a, b > 0 \). So, taking \(f(t) = t \) in Theorem 3.2, we immediately get the following result.

Theorem 3.4 Let \(\sum f_k \) be a series of nonnegative functions on \([a, b] \), \(a, b > 0 \). Then series of nonnegative functions \((f_k) \) is Abel regular on \([a, b] \) if and only if series of nonnegative functions \(\sum f_k \) is Abel uniformly convergent on \([a, b] \) to the function defined by \(f(t) = t \).

REFERENCES

[1] N.H. Abel Reshercheres sur la srie N.H. Abel, Recherches sur la srie \(1 + \frac{m}{1}x + \frac{m(m-1)}{1 \cdot 2} x^2 + \cdots \), J. Fr. Math. 1 (1826) 311-339
[2] Tauber, A, Ein Satz aus der Theorie der Unendlichen Reihen. Monatsh. Phys., VII (1897)273-277
[3] Hardy, G. H., 1991. Divergent series. Second Edition, AMS Chelsea Publishing, 396s. USA.
[4] Kolk, E. Convergence-preserving function sequences and uniform convergence. J. Math. Anal. Appl. 238 (1999), 599-603.
[5] Bartle, R. G. Elemnts of Real Analysis. John and Sons Inc., New York, 1964.
[6] Duman, O. and Orhan, C., \(\mu \) – statistacally convergent function sequences, 84 (129) (2004), 413-422.