Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis

Xiaoyu Xing1*, Zhijing Jin2*, Di Jin3, Bingning Wang4, Qi Zhang1, Xuanjing Huang1
1Fudan University 2Amazon Web Services, 3CSAIL, MIT, 4Sogou Inc.
{xyxing18,qz,xjhuang}@fudan.edu.cn
zhijing.jin@connect.hku.hk
jindi15@mit.edu, wangbingning@sogou-inc.com

Abstract
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspect’s sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%.

1 Introduction
Aspect-based sentiment analysis (ABSA) is an advanced sentiment analysis task that aims to classify the sentiment towards a specific aspect (e.g., burgers or fries in the review “Tasty burgers, and crispy fries.”). The key to a strong ABSA model is it is sensitive to only the sentiment words of the target aspect, and therefore not be interfered by the sentiment of any non-target aspect. Although state-of-the-art models have shown high accuracy on existing test sets, we still question their robustness. Specifically, given the prerequisite that a model outputs correct sentiment polarity for the test example, we have the following questions:

(Q1) If we reverse the sentiment polarity of the target aspect, can the model change its prediction accordingly?

(Q2) If the sentiments of all non-target aspects become opposite to the target one, can the model still make the correct prediction?

(Q3) If we add more non-target aspects with sentiments opposite to the target one, can the model still make the correct prediction?

A robust ABSA model should both meet the prerequisite and have affirmative answers to all the questions above. For example, if a model makes the correct sentiment classification (i.e., positive) for burgers in the original sentence “Tasty burgers, and crispy fries”, it should flip its prediction (to negative) when seeing the new context “Terrible burgers, but crispy fries”. Hence, these questions together form a probe to verify if an ABSA model has high aspect robustness.

Unfortunately, existing ABSA datasets have very limited capability to probe the aspect robustness. For example, the Twitter dataset (Dong et al., 2014) has only one aspect per sentence, so the model does not need to discriminate against non-target aspects. In the most widely used SemEval 2014 Laptop and Restaurant datasets (Pontiki et al., 2014), for 83.9% and 79.6% samples in the test sets, the sentiments of the target aspect, and all non-target aspects are all the same. Hence, we cannot decide whether models that make correct classifications attend only to the target aspect, because they may also wrongly look at the non-target aspects, which are confounding factors. Only a small portion of the test set can be used to answer our target questions proposed in the beginning. Moreover, when we test on the subset of the test set (59 samples in Laptop, and 122 samples in Restaurant) where the target aspect sentiment differs from all non-target aspect sentiments (so that the confounding factor is disentangled), the best model (Xu et al., 2019a) drops from 78.53% to 59.32% on Laptop and from 86.70% to 63.93% on Restaurant. This implies that the success of pre-
Table 1: The generation strategies and examples of the prerequisite (Prereq) and three questions (Q1)-(Q3). Each example are annotated with the target aspect (Tgt), and altered sentence parts.

SubQ.	Generation Strategy	Example	
Prereq	SOURCE: The original sample from the test set Tasty burgers and crispy fries. (Tgt: burgers)		
Q1	REVGT: Reverse the sentiment of the target aspect	Terrible burgers, but crispy fries.	
Q2	REVNON: Reverse the sentiment of the non-target aspects with originally the same sentiment as target	Tasty burgers, but soggy fries.	
Q3	ADDDIFF: Add aspects with the opposite sentiment from the target aspect	Tasty burgers, crispy fries, but poorest service ever!	

Table 2: Three strategies and examples of REVGT.

Strategy	Example
Flip Opinion	It’s light and easy to transport. → It’s heavy and difficult to transport.
Add Negation	The menu changes seasonally. → The menu does not change seasonally.
Adjust	The food is good, and the decor is nice. Conjunctions → The food is good, but the decor is nasty.

2 Data Generation

As shown in Table 1, we aim to build a systematic method to generate all possible aspect-related alternations, in order to remove the confounding factors in the existing ABSA data. In the following, we will introduce three generation strategies.

2.1 REVGT

The first strategy is to generate sentences that reverse the original sentiment of the target aspect. The word spans of each aspect’s sentiment of SemEval 2014 data are provided by (Fan et al., 2019). We design two methods to reverse the sentiment, and one additional step of conjunction adjustment on top of the two methods to polish the resulting sentence.

Flip Opinion Words Suppose we have the sentence “Tasty burgers and crispy fries,” where the sentiment term for the target aspect is Tasty. We aim to generate a new sentence that flips the sentiment Tasty. A baseline approach is antonym replacement by looking up WordNet (Miller, 1995). However, due to polysemy, the simple lookup is very likely to derive an inappropriate antonym and cause incompatibility with the context. Among the retrieved set of antonyms, we only keep words with the same Part-of-Speech (POS) tag as original, using the stanza package2 which takes the context into account by the state-of-the-art neural

2https://stanfordnlp.github.io/stanza/
network-based model.\(^3\) Lastly, in the case of multiple antonyms, we prioritize the words that are already in the existing vocabulary, and then randomly select an antonym from the candidate set.

Add Negation As the above strategy of flipping by the antonym is constrained the availability of antonyms. For those cases without suitable antonyms, including long phrases, we add negation according to the linguistic features. In most cases, the sentiment expression is an adjective or verb term, so we simply add negation (i.e., “not”) in front of it. If the sentiment term is not an adjective or verb, we add negation to its closest verb. For example, in Table 2, there are no available antonyms for “change” in the original example “The menu changes seasonally.”, so we simply negate it as “The menu does not change seasonally.”

Adjust Conjunctions As pinpointed in Section 1, 79.6\textup{–}83.9\% of the test examples have the same sentiment for all aspects. A possible result of reverting one aspect’s sentiment is that the other aspects’ sentiments will be opposite to the altered one. So we need to adjust the conjunctions for language fluency. If the two closest surrounding sentiments of a conjunction word have the same polarity, then cumulative conjunctions such as “and” should be applied; otherwise, we should adopt adversative conjunctions such as “but.” In the example in Table 2, after flipping the sentiment, we derive the example “The food is good, and the decor is nasty” which is very unnatural, so we replace the conjunction “and” with “but,” and thus generate the example “The food is good, but the decor is nasty.”

2.2 REVNON

Changing the target sentiment by REV\textsubscript{GT} can test if a model is sensitive enough towards the target-aspect sentiment, but we need to further complement this probe by perturbing the sentiments of the non-target aspects (REV\textsubscript{NON}). As showed in Table 3, for all the non-target aspects with the same sentiment as the target aspect’s, we reverse their sentiments using the same method as REV\textsubscript{GT}. And for all the remaining non-target aspects, whose sentiments are already opposite from the target sentiment, we exaggerate the extent by randomly adding an adv (e.g., “very”, “really” and “extremely”) from a dictionary of adverbs of degree that is collected based on the training set. The resulting test example will be a solid proof of the ABSA quality, because only the target aspect has the desired sentiment, and all non-target aspects have been flipped to or exaggerated with the opposite sentiment.

2.3 ADDDIFF

The first two strategies, REV\textsubscript{GT} and REV\textsubscript{NON}, have explored how the sentiment changes of existing aspects will challenge an ABSA model, and ADDDIFF further investigate if adding more non-target aspects can confuse the model. Moreover, the existing SemEval 2014 test sets have only on average 2 aspects per sentence, but the real-world applications can have more aspects. With these motivations, we develop ADDDIFF as follows.

We first form a set of aspect expressions AspectSet by extracting all aspect expressions from the entire dataset. Specifically, for each example in the dataset, we first identify each sentiment term (e.g., “reasonable” in “Food at a reasonable price”) and then extract its linguistic branch as the aspect expression (e.g., “at a reasonable price”) by pretrained constituency parsing (Joshi et al., 2018). Table 4 shows several examples of AspectSet in the restaurant domain.

Using the AspectSet, we randomly sample 1-3 aspects that are not mentioned in the original test sample and whose sentiments are different from the target aspect’s, and then append these to the end of the original example. For example, “Great food

Strategy	Example
Original sentence & sentiment	It has great food and a reasonable price, but the service is poor.
REV\textsubscript{NON}	It has great food but an unreasonable price, and the service is extremely poor.
Flip same-sentiment non-target aspects (and adjust conjunctions)	It has great food and a reasonable price, but the service is poor.
Exaggerate opposite-sentiment non-target aspects	It has great food but an unreasonable price, and the service is extremely poor.

Table 3: The generation process of REV\textsubscript{NON}. The target aspect (Tgt), and sentiments of all aspects are annotated.
Table 4: Example aspect expressions from AspectSet of the restaurant domain.

and best of all GREAT beer!”

Table 5: Overall statistics of the ARTS test set and results of fluency and sentiment checks.

3 ARTS Dataset

3.1 Overview

Our source data is the most widely used ABSA dataset, SemEval 2014 Laptop and Restaurant Reviews (Pontiki et al., 2014). We follow (Wang et al., 2016; Ma et al., 2017; Xu et al., 2019a) to remove samples with conflicting polarity and only keep positive, negative, and neutral labels. We use the train-dev split as in (Xu et al., 2019a). The resulting Laptop dataset has 2,163 training, 150 validation, and 638 test instances, and Restaurant has 3,452 training, 150 validation, and 1,120 test instances.

Building upon the original SemEval 2014 data, we generate enriched test sets of 1,877 samples (294.20% of the original size) in the laptop domain, and 3,530 samples (315.17%) in the restaurant domain using generation method introduced in Section 2. The statistics of our ARTS test set are in Table 5.

3.2 Quality Inspection

We conduct human evaluation to validate the generation quality of our ARTS dataset on two criteria:

1. Fluency: Does the generated sentence maintain the fluency of the source sentence?
2. Sentiment Correctness: Does the sentiment of each aspect have the desired polarity?
 - REVGT: Is the target sentiment reversed?
 - REVNON: For non-target aspects with originally the same sentiment as the target, is it reversed? For the rest, are they exaggerated?
 - ADDDIFF: Is the target sentiment unchanged?

Each task is completed by two native-speaker judges. We first calculate the inter-agreement rate of the human annotators, and then resolve the divergent opinions on samples that they disagree with. We accept the samples that both judges considered as correct or are resolved to be correct after our check. Finally, we ask the annotators to fix the rejected samples by minimal edit which does not change the aspect term or the sentence meaning, but satisfies both criteria.

Fluency Check The evaluation results on fluency are showed in Table 5. Most samples (92.27% of Laptop and 92.35% of Restaurant test sets) are accepted as fluent text. The inter-agreement rate between the two human judges is also high, 91.10% and 92.69% on both datasets.

Sentiment Check We also evaluate the sentiment correctness of the generated text. Note that for REVNON, we count the samples with all “yes” answers as accepted samples. Overall, the acceptance rate of the generated samples is 93.93% on Laptop and 95.24% on Restaurant, along with inter-agreement rates of over 94.14% on both datasets.

3.3 Dataset Analysis

After checking the quality of our enriched ARTS test set, we analyze the dataset characteristics and make comparisons with the original test sets.

For general statistics, we can see from Table 6 that the sentence length in the new test set is on average 4 words more than the original, and the vocabulary size is also larger by around two hundred. For the label distribution, we can see that the new test set has an increasing number of all labels, and especially balances the ratio of positive-to-negative...
Table 6: Characteristics of the ARTS test sets in comparison to the Original (“Ori”) Laptop and Restaurant test sets.

	Laptop	Restaurant		
	Ori	ARTS	Ori	ARTS
#Words/Sent	18.56	22.27	19.37	23.15
Vocab Size	1565	1746	2197	2451
Labels Positive	341	883	728	1953
Negative	128	587	196	1104
Neutral	169	407	196	473
#Positive/#Negative	2.66	1.5	3.71	1.77
Aspect-Related Challenge				
#Aspects/Sent	2.05	2.75	2.57	3.28
Opp. Nontgt ≥ 1	16%	59%	20%	67%
Opp. Nontgt = All	9%	38%	11%	42%
#Opp. Nontgt/Sent	0.23	1.16	0.27	1.39

For the aspect-related challenge in the test set, the new test set, first of all, has a larger number of aspects per sentence than the original. Our test set also features the higher disentanglement of the target aspect from the non-target aspects that have the same sentiment as the target: the portion of samples with at least one non-target aspects of sentiments different from the target is 59∼67%, and on average 45% higher than the original test sets. And the portion of the most challenging samples where all non-target aspects have sentiments different from the target one on the new test set is on average 30% more than that of the original test set. The average number of non-target aspects with opposite sentiments per sample in the new test set is on average 5 times that of the original set.

3.4 Aspect Robustness Score (ARS)

As mentioned in Section 1, a model is considered to have high aspect robustness if it satisfies both the prerequisite and all three questions (Q1)-(Q3). So we propose a novel metric, Aspect Robustness Score (ARS), that counts the correct classification of the source example and all its variations (REV:TGT, REV:NON, and ADD:DIFF) as one unit of correctness. Then we apply the standard calculation of accuracy. Note that the three variations correspond to questions (Q1)-(Q3), respectively.

4 Evaluating ABSA Models

We use our enriched test set as a comprehensive test on the aspect robustness of ABSA models.

4.1 Models

For a comprehensive overview of the ABSA field, we conduct extensive experiments on models with a variety of neural network architectures.

TD-LSTM: (Tang et al., 2016a) uses two Long Short-Term Memory Networks (LSTM) to encode the preceding and following contexts of the target aspect (inclusive) and concatenate the last hidden states of the two LSTMs to make the sentiment classification.

AttLSTM: Wang et al. (2016) apply an Attention-based LSTM on the concatenation of the aspect and word embeddings of each token.

GatedCNN: Xue and Li (2018) use a Gated Convolutional Neural Networks (CNN) that applies a Tanh-ReLU gating mechanism to the CNN-encoded text with aspect embeddings.

MemNet: Tang et al. (2016b) use memory networks to store the sentence as external memory and calculate the attention with the target aspect.

GCN: Aspect-specific Graph Convolutional Networks (GCN) (Zhang et al., 2019a) first applies GCN over the syntax tree of the sentence and then imposes an aspect-specific masking layer on its top.

BERT: Xu et al. (2019a) uses a BERT-based baseline (Devlin et al., 2019) and takes as input the concatenation of the aspect term and the sentence.

BERT-PT: Xu et al. (2019a) post-train BERT on other review datasets such as Amazon laptop reviews (He and McAuley, 2016) and Yelp Dataset Challenge reviews, and finetune on ABSA tasks.

CapsBERT: (Jiang et al., 2019) encode the sentence and the aspect term with BERT, and then feed it into Capsule Networks to predict the polarity.

BERT-Sent: For more in-depth analysis, we also implement a sentence classification baseline that only feeds the sentence without aspect information into BERT, and directly predicts the sentiment.

4.2 Implementation Details

For all existing models, we use the authors’ official implementation. For our self-proposed BERT-Sent, we use Adam optimizer with a learning rate of 5e-5, weight decay of 0.01, batch size of 32, apply the l_2 regularization with $\lambda = 10^{-4}$, and train 50 epochs.

4.3 Results on ARTS

We list the accuracy\(^5\) of the nine models on the Laptop and Restaurant test sets in Table 7.

\(^5\)For ABSA, accuracy is the standard metric to be reported (Wang et al., 2016; Xue and Li, 2018; Tang et al., 2016b). For
Table 7: Model accuracy on Laptop and Restaurant data. We compare the accuracy on the Original and our New test sets (Ori → New), and calculate the change of accuracy. Besides the Entire Test Set, we also list accuracy on subsets where the generation strategies REVGTG, REVNON and ADDDIFF can be applied. The accuracy of Entire Test-New is calculated using ARS. * indicates whether combining several strategies can make a statistically significant (with p-value ≤ 0.05 by Welch’s t-test).

Overall Performance
On the entire test set, we can see that the accuracy of all models on the original test set is very high, achieving up to 78.53% on Laptop and 86.70% on Restaurant, but it drops drastically (−69.9%−25%) on our new test sets.

Performance of Different Models
From the overall performance on our new test set, we can see that BERT models on average are more robust to the aspect-targeted challenges that our new test set poses. The most effective model BERT-PT scores the best on both original accuracy and robustness. It has 53.29% ARS on Laptop and 59.29% on Restaurant. However, the accuracy of non-BERT models on average drops drastically to under 30% by over 50%.

Performance on Different Subsets
We list in detail the performance of each model on the three subsets of our new test set: REVGTG, REVNON, and ADDDIFF. They correspond to the three questions (Q1)- (Q3). REVGTG on average induces the most performance drop, as it requires the model to pay precise attention to the target sentiment words. REVNON makes the performance of the sentence classifier BERT-Sent drops the most by up to 45.93%, and the model CapsBERT also drops by up to 39.26%. The last subset ADDDIFF causes most non-BERT models to drop significantly, indicating that these models are not robust enough against an increased number of non-target aspects, which should have been irrelevant.

5 Analysis

5.1 Variations of Generation Strategies

Combining Multiple Strategies Each sample in the ARTS test set is generated by one of the three strategies. However, it is also worth exploring whether combining several strategies can make a more challenging probe on the aspect robustness of ABSA models. As a case study, we analyze the model robustness against test samples generated by the combination of REVNON+ADDDIFF. By comparing the performance decrease caused by REVNON+ADDDIFF in Table 8 and by only REVNON and ADDDIFF in Table 7, we can see that the accuracy of each model decreases by a much larger extent on REVNON+ADDDIFF than either of REVNON and ADDDIFF.

ADDDIFF with More Aspects Some strategies such as ADDDIFF can be parameterized by k,
where k is the number of additional non-target aspects to be added. We select three models (the best, the worst, and an average-performing one), and plot their accuracy on test samples generated by $\text{ADDDIFF}(k)$ on Laptop in Figure 1. As k gets larger, the test samples become more difficult. The sentence classification baseline BERT-Sent drops drastically, BERT-PT remains high, and GCN lies in the middle.

Figure 1: Accuracy of BERT-PT, GCN, and BERT-Sent on the test samples in the laptop domain generated by $\text{ADDDIFF}(k)$ where k varies from 1 to 5.

5.2 How to Effectively Model the Aspect?

An important usage of our ARTS is to understand what model components are key to aspect robustness. We list the aspect-specific mechanisms of all models according to the ascending order of their ARS on Laptop dataset in Table 9. We can see that for BERT-based models, BERT-PT, which is further trained on large review corpora, gets the best accuracy and aspect robustness. More complicated structures like CapsBERT underperforms the basic BERT by 25.08%.

Among the non-BERT models, the aspect position-aware models TD-LSTM and GCN are the most robust, as they have a stronger sense of the location of the target aspect in a sentence. On the contrary, the other models with poorer robustness (9.87%~16.93% in Table 9) only use mechanisms such as aspect-based attention, or concatenating the aspect embedding to the word embedding.

To summarize, the main takeaways are

- For BERT models, additional pretraining is the most effective.
- For non-BERT models, explicit position-aware designs lead to more aspect robustness.

5.3 Does Better Training Help?

The following three settings explore whether better training can improve the aspect robustness.

Training and Testing on MAMS

A recent dataset, Multi-Aspect Multi-Sentiment (MAMS) (Jiang et al., 2019), is collected from the same data source as the SemEval 2014 Restaurant dataset (Ganu et al., 2009). However, the sentences are more complicated, each having at least two aspects with different sentiment polarities. Table 10a checks the aspect robustness of models trained on MAMS using the original MAMS test set (O→O) and the new test set that we produced by applying the same generation strategies to its test set (O→N). Models trained and tested on MAMS have a smaller decrease rate than those on the Restaurant dataset. This shows that a more challenging training set can make models more robust.

Training on MAMS and Testing on Restaurant

As MAMS and Restaurant are collected from the same source data, we test whether MAMS-trained models perform well on the new test set of Restaurant (in the column “MAMS→N” of Table 10b). We can see that all models trained on MAMS are more robust than those trained on the Restaurant
We analyze the error types in the subset that was work. It needs more advanced models such as text which causes grammatical errors (weight of the laptop is light).

5.4 Error Analysis

We analyze the error types in the subset that was fixed by human judges. Two most significant error types are wrong antonyms (~2%), such as “the weight of the laptop is light→dark”, and negation which causes grammatical errors (~1.1%). In future work, we can fix the latter by applying a grammatical error correction system on top of our generation. Also, RevTGT and RevNON cannot be applied to 1.4~6.6% samples with complicated sentiment expressions which rely on commonsense. For example, “a 2-hour wait” is negative but too difficult to alter in our current generation framework. It needs more advanced models such as text style transfer (Shen et al., 2017; Jin et al., 2019b).

6 Related Work

Robustness in NLP

Robustness in NLP has attracted extensive attention in recent works (Hsieh et al., 2019; Li et al., 2016). As a popular method to probe the robustness of models, adversarial text generation becomes an emerging research field in NLP. Techniques include adding extraneous text to the input (Jia and Liang, 2016), character-level noise (Belinkov and Bisk, 2018; Ebrahimi et al., 2018), and word replacement (Alzantot et al., 2018; Jin et al., 2019a). Using the adversarial generation techniques, new adversarial test sets are proposed for several tasks such as paraphrasing (Zhang et al., 2019b) and entailment (Glockner et al., 2018).

Aspect-Based Sentiment Analysis

ABSA has emerged as an active research area recently. Early works hand-craft sentiment lexicons and syntactic features for rule-based classifiers (Vo and Zhang, 2015; Kiritchenko et al., 2014). Recent neural network-based models use architectures such as LSTM (Tang et al., 2016a), CNN (Xue and Li, 2018), Attention mechanisms (Wang et al., 2016), Capsule Network (Jiang et al., 2019), and the pre-trained model BERT (Xu et al., 2019a). Similar to the motivation in our paper, some work shows preliminary speculation that the current ABSA datasets might be downgraded to sentence-level sentiment classification (Xu et al., 2019b).

7 Conclusion

In this paper, we proposed a simple but effective mechanism to generate test samples to probe the aspect robustness of the models. We enhanced the original SemEval 2014 test sets by 294% and 315% in laptop and restaurant domains. Using our new test set, we probed the aspect robustness of nine ABSA models, and discussed model designs and better training that can improve the robustness.
Acknowledgements

We appreciate Professor Rada Mihalcea for her insights that helped us plan this research. We also thank Yuchun Dai for helping to code some functions in our annotation tool. This work was partially funded by China National Key R&D Program (No. 2018YFC0831105, 2018YFB1005104, 2017YFB1002104), National Natural Science Foundation of China (No. 61751201, 61976056, 61532011), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01), Science and Technology Commission of Shanghai Municipality Grant (No.18DZ1201000, 17JC1420200).

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang. 2018. Generating natural language adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2890–2896. Association for Computational Linguistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break neural machine translation. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. 2014. Adaptive recursive neural network for target-dependent twitter sentiment classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 49–54, Baltimore, Maryland. Association for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. Hotflip: White-box adversarial examples for text classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pages 31–36. Association for Computational Linguistics.

Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shujian Huang, and Jiajun Chen. 2019. Target-oriented opinion words extraction with target-fused neural sequence labeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2509–2518. Association for Computational Linguistics.

Gayatree Ganu, Noemie Elhadad, and Amélie Mariani. 2009. Beyond the stars: Improving rating predictions using review text content. In 12th International Workshop on the Web and Databases, WebDB 2009, Providence, Rhode Island, USA, June 28, 2009.

Max Glockner, Vered Shwartz, and Yoav Goldberg. 2018. Breaking NLI systems with sentences that require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pages 650–655. Association for Computational Linguistics.

Ruining He and Julian J. McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 507–517. ACM.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On the robustness of self-attentive models. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 1520–1529. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12–22, Berlin, Germany. Association for Computational Linguistics.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and Min Yang. 2019. A challenge dataset and effective models for aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 6279–6284. Association for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2019a. Is BERT really robust? natural
language attack on text classification and entailment. CoRR, abs/1907.11932.

Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, and Enrico Santus. 2019b. Imat: Unsupervised text attribute transfer via iterative matching and translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3095–3107. Association for Computational Linguistics.

Vidur Joshi, Matthew E. Peters, and Mark Hopkins. 2018. Extending a parser to distant domains using a few dozen partially annotated examples. In Proceedings of the 56th Annual Meeting of the Association for Natural Language Processing, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 1190–1199. Association for Computational Linguistics.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and Saif Mohammad. 2014. Nrc-canada-2014: Detecting aspects and sentiment in customer reviews. In Proceedings of the 8th International Workshop on Semantic Evaluation, SemEval@COLING 2014, Dublin, Ireland, August 23-24, 2014, pages 437–442. The Association for Computer Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding neural networks through representation erasure. CoRR, abs/1612.08220.

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. 2017. Interactive attention networks for aspect-level sentiment classification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 4068–4074. ijcai.org.

George A. Miller. 1995. Wordnet: A lexical database for English. Commun. ACM, 38(11):39–41.

Maria Pontiki, Dimitris Galanis, John Pavloupolous, Harris Papageorgiou, Ion Androustopoulos, and Suresh Manandhar. 2014. SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 27–35, Dublin, Ireland. Association for Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 6830–6841.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. 2016a. Effective lstms for target-dependent sentiment classification. In COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages 3298–3307. ACL.

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect level sentiment classification with deep memory network. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 214–224. The Association for Computational Linguistics.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent twitter sentiment classification with rich automatic features. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1347–1353. AAAI Press.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 606–615. The Association for Computational Linguistics.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019a. BERT post-training for review reading comprehension and aspect-based sentiment analysis. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2324–2335. Association for Computational Linguistics.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019b. A failure of aspect sentiment classifiers and an adaptive re-weighting solution. CoRR, abs/1911.01460.

Wei Xue and Tao Li. 2018. Aspect based sentiment analysis with gated convolutional networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 2514–2523. Association for Computational Linguistics.

Chen Zhang, Qiuchi Li, and Dawei Song. 2019a. Aspect-based sentiment classification with aspect-specific graph convolutional networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4567–4577. Association for Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019b. PAWS: paraphrase adversaries from word scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
