miRNome of inflammatory breast cancer

Diana V Maltseva1*, Vladimir V Galatenko1,2†, Timur RSamatov1†, Svetlana O Zhirikovetskaya1, Nadezhda A Khaustova1, Ilya N Nechaev2, Maxim U Shkurnikov3, Alexey E Lebedev1, Irina A Mityakina1,3, Andrey D Kaprin3, Udo Schumacher4 and Alexander G Tonevitsky2,3*

Abstract

Background: Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer which can be easily misdiagnosed. Conclusive prognostic IBC molecular biomarkers which are also providing the perspectives for targeted therapy are lacking so far. The aim of this study was to reveal the IBC-specific miRNA expression profile and to evaluate its association with clinicopathological parameters.

Methods: miRNA expression profiles of 13 IBC and 17 non-IBC patients were characterized using comprehensive Affymetrix GeneChip miRNA 3.0 microarray platform. Bioinformatic analysis was used to reveal IBC-specific miRNAs, deregulated pathways and potential miRNA targets.

Results: 31 differentially expressed miRNAs characterize IBC and mRNAs regulated by them and their associated pathways can functionally be attributed to IBC progression. In addition, a minimal predictive set of 4 miRNAs characteristic for the IBC phenotype and associated with the TP53 mutational status in breast cancer patients was identified.

Conclusions: We have characterized the complete miRNome of inflammatory breast cancer and found differentially expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the mRNAs and pathways likely regulated by these miRNAs are highly relevant to cancer progression. Furthermore a minimal IBC-related predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients was identified.

Keywords: Inflammatory breast cancer, miRNA, Microarray, tp53 mutational status

Background

Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer characterized by early metastases formation and high lethality with the 10 year-survival not exceeding 30% [1]. For one third of patients distant metastases are already detected within 3 months after first symptoms appeared [2]. As IBC does not produce solid tumors it can easily be misdiagnosed as mastitis or bacterial infection [3]. This makes independent IBC molecular markers having predictive and prognostic value and providing the perspectives for targeted therapy highly desirable.

Today a number of studies on molecular characterization of IBC patient samples have been published including several genome-wide transcriptomic analyses [4-9]. However, the suggested miRNA biomarkers differed from one study to another possibly indicating the heterogeneous nature of IBC.

MiRNAs are small non-coding RNAs regulating gene expression which are involved in diverse biological processes [10]. MiRNAs proved to be reliable markers of various diseases including cancers [11]. Recently two pioneering studies have been published discovering miRNA profile of IBC using PCR-based approach [12,13]. Although they have analyzed a limited number of miRNAs and identified completely different profiles, they provided initial insight in the miRNAs regulating RNA networks characteristic for IBC and highlighted the potential of miRNAs as IBC molecular biomarkers.

The aim of the present study was to reveal the complete miRNome and regulated miRNA-mRNA networks of the IBC. Samples from IBC and non-IBC patients analyzed by...
the Affymetrix GeneChip miRNA 3.0 microarray platform formed the basis for this study. Differentially expressed miRNAs and pathways regulated by them were revealed. In addition a minimal predictive set of miRNAs characteristic for IBC phenotype was identified taking clinico-pathological parameters of breast cancer patients into consideration.

Methods

Ethics statement
The study was approved by the ethics committee of Scientific Research Center Bioclinicum (Moscow, Russia) and all participants signed an informed consent statement.

Patients and material
Tumor samples were collected from 30 women comprising 13 IBC and 17 non-IBC patients. IBC was diagnosed according to the well-accepted criteria described in the AJCC Cancer Staging Manual [14]. IBC patients presented with diffuse enlargement of the involved breast as well as erythema and oedema of the skin above it. Immediately after surgery the tumor samples were stored in RNAlater buffer (Qiagen, Germany) at −80°C until RNA extraction.

Tumor samples characteristics are presented in Table 1. One patient was assigned to each of IIB, III, IIC and IV stage subgroups and nine patients were staged as IIIB subgroup within the IBC group whereas non-IBC patients tended to have moderate stages (4 stage I, 1 II, 8 IIA, 1 IIB, 2 IIIA and 1 IIC). Remarkably 15% of IBC patients (2 out of 13) had already distant metastases while no metastases were detected among non-IBC group. These data are consistent with the known IBC aggressiveness.

RNA extraction
Total RNA was extracted from the breast tissue using miRNeasy Mini Kit (Qiagen, Germany) as recommended by the manufacturer. RNA concentrations were determined by the Nanodrop photometer (NanoDrop, USA). RNA quality was checked using the Agilent Bioanalyser 2100 System (Agilent Technologies, USA). For all samples RNA integrity number (RIN) was greater than 7.

Microarray analysis
For complete miRNome profiling the samples were prepared using FlashTag Biotin HSR RNA Labeling Kit as recommended by the manufacturer [15]. The samples were hybridized on GeneChip miRNA 3.0 Arrays (Affymetrix) for 16 h at 48°C. Arrays were washed to remove nonspecifically bound nucleic acids and stained on Fluidics Station 450 (Affymetrix) and then scanned on GeneChip Scanner 3000 7G system (Affymetrix).

Table 1 Clinico-pathological characteristics of breast cancer samples

Characteristics (nb,%)	Breast carcinomas	p-value^{ab}			
	nonIBC	IBC			
Age Mean ± SD			57.4 ± 12.4	54.4 ± 13.4	0.27^a
≤50	5 (29%)	5 (38%)	0.71^b		
>50	12 (71%)	8 (62%)			
Stage					
I			4 (24%)	0 (0%)	<0.001^b
II			1 (6%)	0 (0%)	
IIA			8 (47%)	0 (0%)	
IIIB	1 (6%)	1 (8%)			
III	0 (0%)	1 (8%)			
IIA	2 (12%)	0 (0%)			
IIIB	0 (0%)	9 (69%)			
IIC	1 (6%)	1 (8%)			
IV	0 (0%)	1 (8%)			
Distant metastases					
Yes	0 (0%)	2 (15%)	0.18^b		
No	17 (100%)	11 (85%)			
Estrogen receptor status					
Positive	12 (71%)	5 (38%)	0.14^b		
Negative	5 (29%)	8 (62%)			
Progesterone receptor status					
Positive	9 (53%)	2 (15%)	0.06^b		
Negative	8 (47%)	11 (85%)			
HER2 status					
Positive	4 (24%)	2 (15%)	0.67^b		
Negative	13 (76%)	11 (85%)			
Molecular subtypes					
HR[−]HER2[−]	3 (18%)	7 (54%)	0.19^b		
HR⁺HER2[−]	1 (6%)	1 (8%)			
HR[−]HER2[−]	10 (59%)	4 (31%)			
HR⁺HER2[−]	3 (18%)	1 (8%)			

^aStudent’s t test, ^bFisher’s exact test. HR: Hormone Receptor; HR[−]: ER and PR negative; HR⁺: ER and/or PR positive.

Microarray data processing and bioinformatic analysis
GeneChip miRNA 3.0 microarrays were processed using Affymetrix Expression Console (version 1.3.1) [15] implementation of Robust Multichip Average (RMA) method [16]. The processing included background adjustment based on a global model for the distribution of probe intensities [16], quantile normalization [17] and summarization based on Tukey’s median polish procedure [18].

The detection of differentially expressed transcripts was restricted to human miRNAs, the signals from all
other microarray probesets were ignored. The detection of differentially expressed miRNAs was performed using Bioconductor [19] package limma [20]: moderated t-test [21] was applied to log-scaled expression values, and the thresholds were set to 0.01 for the p-value and 1.2 for the fold change.

Hierarchical clusterization for the heatmap (Figure 1) was constructed based on the normalized log-scaled expression values (i.e., log-scaled expression values decreased by the mean value and divided by standard deviation) using Euclidean distance and average cluster method. The construction was performed by the Heatmap online service [22] that utilizes the heatmap tool of R package gplots [23]. For the hierarchical sample clusterization the p-value indicating the association of two resulting clusters with IBC status was obtained using one-sided binomial test. This p-value is the probability of observing the same or better classification accuracy for a classifier.
with no information rate, i.e., a classifier that attributes a sample to a class with the probability equal to the class percentage in the data.

The validated target mRNAs of differentially expressed miRNAs were found using TARBASE [24], miRecords [25] and miR TarBase [26] databases. The identification of the enriched pathways was performed using DAVID online service [27,28].

The construction of a set of 4 miRNAs for the classification of IBC vs. non-IBC samples was performed using the approach of Galatenko et al. [29]. This approach is based on the Support Vector Machine [30] with linear kernel and greedy-type transcript selection. During the construction the set of the samples was randomly divided into a training set and a testing set. MiRNA log-scaled expressions were normalized using mean expression and standard deviation that were calculated based on the training set. The classifier construction utilized R packages Kernlab [31] and Caret [32].

The assessment of the connection between resulting classifier values and TP53 mutational status for the GSE19536 dataset [33] was performed as follows. The expression values of 4 selected miRNAs were normalized using mean expression and standard deviation that were calculated based on the GSE19536 expression matrix downloaded from the Gene Expression Omnibus data repository. MiRNAs with no expression values were considered to have zero expression and normalized expression was set to zero for these miRNAs. Then classifier values (or, more precisely, values of the linear combination utilized for the classification) were calculated using normalized expression values without any changes in classifier coefficients. Finally, the set of classifier values associated with TP53-mutated samples was compared with the set of classifier values associated with TP53-wild type samples using Mann–Whitney U-test.

Results and discussion

MiRNA differential expression profile

The IBC-specific profile of miRNA expression has been identified using comprehensive Affymetrix GeneChip miRNA 3.0 microarray platform. The expression data for 1733 miRNAs are presented in the Additional file 1. 31 miRNAs with the fold change of at least 1.2 times and the p-value not higher than 1% between non-IBC and IBC groups were considered to be differentially expressed and are listed in the Table 2.

Remarkably, the majority of them are known to be associated with breast cancer, and the up-regulation of highly expressed miRNAs is linked with more aggressive phenotype and poor prognosis. More specifically, hsa-miR-3165, hsa-miR-4687-5p, hsa-miR-3661, hsa-miR-4749-3p, hsa-miR-3170, hsa-miR-4672, hsa-miR-4670-5p, hsa-miR-4786-5p, and hsa-miR-2355-5p have been detected in breast cancer when compared with normal breast tissue [34]. Circulating hsa-miR-718 was suggested to be a fluid biomarker for breast cancer [35]. Expression of hsa-miR-106b is elevated in higher stage tumors and correlated with tumor progression [36]. Hsa-miR-142-5p has been demonstrated to be up-regulated in lymph node breast cancer patients [37].

Other up-regulated miRNAs have been associated with different types of malignomas including hsa-miR-1260 and hsa-miR-1273c for melanoma [38], hsa-miR-633 for endometrial cancer [39], hsa-miR-1244 for hepatocellular

miRNA	Fold change value	p-value	Adjusted p-value
up-regulated in IBC			
hsa-miR-3165	1.32	2.4 x 10^{-5}	0.04
hsa-miR-4687-5p	1.62	1.1 x 10^{-4}	0.06
hsa-miR-4259	1.52	1.4 x 10^{-4}	0.06
hsa-miR-3661	1.41	4.6 x 10^{-4}	0.15
hsa-miR-4749-3p	1.57	5.1 x 10^{-4}	0.15
hsa-miR-3170	1.31	9.2 x 10^{-4}	0.22
hsa-miR-4672	1.53	1.1 x 10^{-3}	0.22
hsa-miR-633	1.27	1.2 x 10^{-3}	0.22
hsa-miR-4454	1.80	1.3 x 10^{-3}	0.22
hsa-miR-1260	1.67	1.9 x 10^{-3}	0.28
hsa-miR-4670-5p	1.31	2.3 x 10^{-3}	0.30
hsa-miR-718	1.76	2.4 x 10^{-3}	0.30
hsa-miR-106b	1.56	2.9 x 10^{-3}	0.31
hsa-miR-1244	2.29	3.2 x 10^{-3}	0.31
hsa-miR-4530	1.53	5.5 x 10^{-3}	0.43
hsa-miR-4786-5p	2.35	5.9 x 10^{-3}	0.43
hsa-miR-3646	1.49	6.1 x 10^{-3}	0.43
hsa-miR-142-5p	1.24	7.9 x 10^{-3}	0.47
hsa-miR-2355-5p	1.28	8.0 x 10^{-3}	0.47
hsa-miR-1273c	1.57	8.1 x 10^{-3}	0.47
down-regulated in IBC			
hsa-miR-4778-5p	1.72	7.0 x 10^{-5}	0.06
hsa-miR-3164	1.39	1.8 x 10^{-3}	0.28
hsa-miR-4645-5p	1.44	3.0 x 10^{-3}	0.31
hsa-miR-4420	1.26	3.2 x 10^{-3}	0.31
hsa-miR-4510	1.63	3.5 x 10^{-3}	0.32
hsa-miR-548h	1.24	6.1 x 10^{-3}	0.43
hsa-miR-569	1.45	6.2 x 10^{-3}	0.43
hsa-let-7a-2-star	1.33	7.2 x 10^{-3}	0.47
hsa-miR-204	1.45	7.3 x 10^{-3}	0.47
hsa-miR-193a-5p	1.59	9.0 x 10^{-3}	0.50
hsa-miR-489	2.14	9.4 x 10^{-3}	0.51

The miRNAs with p-value <0.01 and fold change >1.5 are marked with bold.
carcinoma [40], hsa-miR-4454 and hsa-miR-4530 for malignant B cells [41].

The miRNAs down-regulated in IBC group include hsa-miR-204 which has been characterized as a tumor suppressor in breast cancer [42], ovarian cancers and pediatric renal tumors [43]. Hsa-miR-193a-5p is also less expressed in IBC patients and is known to play a suppressive role in breast cancer [44]. Another down-regulated miRNA is hsa-miR-489 targeting Smad3 transcription factor thus inhibiting epithelial-mesenchymal transition of breast cancer cells which prevents metastases formation and makes the cells more susceptible to chemotherapy [45]. The let-7 family of miRNAs is reduced in rare self-renewing breast tumor-initiating cells [46].

Consistent with the expression level of the above listed miRNAs, down-regulated hsa-miR-548h is more abundant in normal lung tissue than in lung cancer [47], and hsa-let-7a-2 is less expressed in aggressive hepatocellular carcinoma [48] and its down-regulation is correlated with poor survival in lung cancer [49].

The hierarchical clustering of breast cancer samples according to the differentially expressed miRNAs is presented in Figure 1. Remarkably, the patients were indeed separated into non-IBC and IBC clusters with the only one IBC sample misclassified resulting in the p-value of 9.5×10^{-7}.

All these data are consistent with the more aggressive nature of IBC and suggest the differentially expressed miRNAs to be molecular biomarkers for IBC. Notably, the revealed miRNA pattern does not overlap with the previously identified profiles [12,13]. This can be explained by the larger number of miRNAs covered by the comprehensive microarrays used in this study as compared to both previous studies.

During IBC progression breast tumors are infiltrated by inflammatory cells, in particular monocytes/macrophages [50,51]. We checked miRNA profile of these cells which has been recently published [52]. Only 6 out of 20 up-regulated in IBC miRNAs are pronouncedly expressed in macrophages, namely hsa-miR-142-5p, hsa-miR-106b, hsa-miR-4454, hsa-miR-2355-5p, has-miR-1273c and hsa-miR-4687-5p (Table 2). This moderate intersection clearly indicates that the identified miRNA profile is indeed IBC-specific and cannot be due to the migrated macrophages.

mRNA targets of differentially expressed miRNAs

The mRNAs which have been validated to be targets for the differentially expressed miRNAs were found using online databases as described in Methods. All 31 differentially expressed miRNAs have 428 target mRNAs in total. We performed pathway enrichment analysis for these genes (Table 3). The top of revealed pathways includes phosphoproteins, regulation of kinase activity and cell proliferation all known to be highly relevant to malignant progression. Besides, acetylation, transcription, DNA binding and protein biosynthesis are the key interrelated steps in gene expression and their deregulation is involved in cancer progression [53].

The same mRNA can be targeted by more than one miRNA thus providing for more efficient and specific regulation [54]. Table 4 lists the miRNAs regulated by 2 differentially expressed miRNAs. These 11 miRNAs are more likely involved in the IBC progression.

More specifically, amyloid beta precursor-like protein 2 (APLP2) is targeted by hsa-miR-106b and hsa-miR-1260. These miRNAs are up-regulated in IBC thus potentially suppressing the expression of this gene. Notably, hsa-miR-106b and hsa-miR-1260 follow the more stringent criteria in t-test, namely p-value <0.01 and fold change >1.5, supporting their functional relevance. Remarkably, APLP2 mRNA is known to be down-regulated in neuroendocrine tumors and lung cancer [55,56]. The same two miRNAs target amyloid beta precursor protein (APP) which has been identified as a hub protein in differentially expressed networks between ER+ and ER- breast cancer patients [57]. Another target of these miRNAs is cyclin-dependent kinase inhibitor 1A (CDKN1A). Low expression of this gene in breast cancer

Pathway	Number of genes	Adjusted P-value
Phosphoprotein	256	2.3×10^{-18}
Acetylation	127	8.0×10^{-17}
Transcription	86	1.4×10^{-6}
Regulation of kinase activity	28	4.6×10^{-4}
DNA binding	100	4.6×10^{-4}
Regulation of cell proliferation	45	6.9×10^{-4}
Protein biosynthesis	17	2.3×10^{-4}

Table 4 mRNAs targeted with 2 differentially expressed miRNAs

miRNAs	Validated target genes
hsa-miR-106b †	APLP2, APP, CDKN1A, EEF1A1, PRMT3
hsa-miR-1260 †	ELOVL6, IPO7
hsa-miR-204 ↓	ENO1, RPL3
hsa-let-7a-2-star ↓	HMGA2
hsa-miR-204 ↓	VEGFA
hsa-miR-106b †	
hsa-miR-548 h ↓	

Up- and down-regulated miRNAs in IBC vs. non-IBC patients are indicated by the upward and downward arrows, respectively.
patients is associated with poor survival after chemotherapy which is consistent with the aggressiveness of IBC [58]. Hsa-miR-106b and hsa-miR-1260 also regulate alpha 1 subunit of eukaryotic translation elongation factor 1 (EEF1A1). This protein is involved in regulation of epithelial-mesenchymal transition in breast cancer cells [59]. At the same time EEF1A1 has been identified as a reliable reference gene for quantitative PCR assay of breast cancer patient biopsies, i.e. this mRNA is equally abundant across multiple breast cancer samples [60]. Finally these two miRNAs target protein arginine methyltransferase 3 (PRMT3) mRNA, an enzyme interacting with DAL-1/4.1B protein thus inducing apoptosis in breast cancer cells [61].

Fatty acid elongase 6 (ELOVL6) is targeted by hsa-miR-106b and hsa-miR-204. The expression of these miRNAs is changed in opposite directions implying balanced and delicate regulation of the target mRNA. The functional link of this rate-limiting enzyme of de novo lipogenesis to the breast tumorigenesis has been revealed using mouse models [62]. The expression of the protein of nuclear import importin 7 (IPO7) is also regulated by these oppositely directed miRNAs. This protein is known to be involved in the regulation of prostate cancer cells proliferation [63]. Additionally the importin 7-mediated nuclear import plays an important role in the keratin 19 tumor suppressor mechanism in breast cancer cells [64].

The mRNA of enolase 1 (ENO1) is targeted by both up-regulated hsa-miR-1260 and down-regulated hsa-miR-204. The increased level of this protein is associated with a poor prognosis for breast cancer patients and involved in tamoxifen and methotrexate resistance of breast cancer cells [65,66]. Another target of these miRNAs is the gene RPL3 coding for the ribosomal protein L3. This protein is a member of the Pes1-Bop1 complex involved in the colorectal tumorigenesis [67].

The decreased in IBC patients hsa-let-7a-2-star and hsa-miR-204 are expected to increase the level of the transcriptional regulator high mobility group AT-hook protein 2 encoded by the HMG2A gene. Remarkably, the rare self-renewing breast tumor-initiating cells have been described to contain more of HMG2A mRNA in combination with reducing of its regulator hsa-let-7a-2-star [46]. Also recently the overexpression of this gene was found to make the breast cancer cells more metastatic [68,69].

Finally the VEGFA miRNA is targeted by the oppositely directed hsa-miR-106b and hsa-miR-548 h. This gene encodes vascular endothelial growth factor A, a protein with well-established role in cancer progression. Its increased expression is associated with loss of wild type tp53 status and predicts poor outcome for the breast cancer patients [70] which can functionally be explained by the induction of angio- and lymphangiogenesis [71].

Recently an angiogenesis-independent function of VEGFA has been reported, namely the protein produced by tumor cells can act in an autocrine manner to promote cell growth, and reducing its expression resulted in a differentiated phenotype in vitro and inhibited tumor forming capacity in vivo [72].

The presented data support the functional relevance of the revealed miRNA-mRNA networks to the IBC progression and denote potential targets for the IBC-specific therapy.

A predictive set of 4 miRNAs associated with TP53 mutation status

As IBC is characterized by high aggressiveness and poor survival we tried to identify a minimal set of miRNAs which could reliably classify patients to IBC or non-IBC group and have overall predictive value for breast cancer patients. We have investigated sets of 4 miRNAs using a bioinformatic approach based on the Support Vector Machine [30] with linear kernel and greedy-type transcript selection as described in Methods. The collection of the samples was randomly divided into a training set and a testing set. The classifier was constructed based solely on the training set which contained 7 IBC and 9 non-IBC samples. It used the expression values of hsa-let-7a, hsa-miR-582-5p, hsa-miR-591 and hsa-mir-16-2-3p as follows. Normalized log-scaled expression values of these miRNAs were combined in a linear combination with weights of \(-1.73, 1.36, -0.57, \text{ and } -0.56\), respectively. Then the value of this linear combination was compared with a threshold of 0.49, namely the higher values attributed a sample to IBC class and the lower values attributed a sample to non-IBC class. This means that the sample classification performed by this classifier is based on the value of the linear combination:

\[
L = -1.73\text{Expr}_{\text{let}-7a} + 1.36\text{Expr}_{\text{miR}-582-5p} - 0.57\text{Expr}_{\text{miR}-591} - 0.56\text{Expr}_{\text{miR}-16-2-3p} - 0.49,
\]

where Expr is a normalized log-scaled expression of the corresponding miRNA for the sample, and positive values of \(L\) attribute a sample to the IBC class while negative values of \(L\) attribute a sample to a non-IBC class. In case of the training set this classifier successfully classified 14 samples and 2 IBC samples were misclassified as belonging to non-IBC class resulting in the accuracy of 87.5%. For the testing set comprising 6 IBC and 8 non-IBC samples only one sample was misclassified (a non-IBC sample was attributed to IBC class), and hence the resulting accuracy was 92.9%. The fact that miRNAs from the identified predictive set are not differentially expressed is due to the used algorithm which is aimed at the maximization of a cumulative informative
power of a miRNA set irrespectively of the individual informative power of selected miRNAs.

We hypothesized that the identified set of 4 miRNAs could be associated with clinicopathological characteristics of breast cancer patients in general. To test this hypothesis we used published miRNA dataset of 101 breast cancer patient collection with GEO accession number GSE19783 [33]. The analysis revealed significant association of miRNA set with the TP53 mutational status characterized by the p-value of 1.7×10^{-4} (Figure 2). The dataset included 64 wild-type TP53 samples and 37 samples with mutated TP53.

The tumor suppressor gene TP53 encodes a transcription factor which possesses multiple functions. It has been reported to often have missense mutations in many cancers compromising its suppressor function. Although current experimental data on the acquisition of oncogenic activities by the mutant forms of this protein are too heterogenous to directly conclude about its impact on tumor development and outcome, TP53 is considered to be an important prognostic marker [73]. In combination with other parameters, e.g., expression profile of selected genes, TP53 mutational status can provide the information on the overall survival and response to treatment for breast cancer patients [74].

Figure 3 demonstrates overall survival of the patients from the dataset GSE19783 classified using the same IBC-specific set of 4 miRNAs. The patients with the expression pattern characteristic for IBC have poor prognosis (blue curve) whereas the non-IBC-like patients have better survival (red curve). Although the Cox F-test p-value is only 7.3% here indicating moderate statistical significance, the result is consistent with the clinical value of TP53 status and points out to the functional relevance of IBC-specific miRNA expression pattern.

Conclusions

We have characterized the complete miRNome of inflammatory breast cancer and revealed differentially expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the miRNAs and pathways likely regulated by these miRNAs are highly relevant to cancer progression. Also we identified a minimal IBC-related predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients. The described miRNAs should be investigated in future as potential biomarkers and targets for therapy.

Additional file

Additional file 1: miRNA expression data of the patients.

Abbreviations

miRNA: microRNA; mRNA: Messenger RNA; IBC: Inflammatory breast cancer.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conception and design of the experiments: AGT, DVM, MUS, ADK. Collection, analysis and interpretation of data: DVM, VG, SOZ, NAK, INN, MUS, AEL, IAM, TRS. Drafting the article and revising it critically TRS, AGT, US. All authors read and approved the final manuscript.
Acknowledgements
We thank Drs Nikita Savelov, Vyacheslav Grinevich and Erik Saribekyan for providing the samples and Daniil Maximenko for technical assistance. This work was supported by the Russian Ministry of Science Grant 14.579.21.0054.

Author details
1 SRC Bioclinicum, Ugreskaya str 2/85, 115088 Moscow, Russia. 2 Moscow State University, Leninskiy Gory, 119991 Moscow, Russia. 3 P.A. Hertsen Moscow Research Oncology Institute, 2nd Botkinskiy p. 3, Moscow 125284, Russia. 4 Department of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany.

Received: 26 August 2014 Accepted: 28 November 2014 Published: 4 December 2014

References
1. Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH: Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst 2005, 97:966–975.
2. Yamauchi H, Woodward WA, Valero V, Alvarez RH, Luci A, Buchholz TA, Iwamoto T, Krishnamurthy S, Yang W, Reuben JM, Hortobágyi GN, Ueno NT: Inflammatory breast cancer: what we know and what we need to learn. Oncology 2012, 79:901–909.
3. Boutet G: Breast inflammation: clinical examination, aetiological pointers. Diagn Interv Imaging 2012, 92:78–84.
4. Bertucci F, Finetti P, Pougemont J, Charafe-Jauffret E, Loriod B, Jonsson G, Naya H, Hoglund M, Borg A, Rovira C: Identification of new microRNA-target interactions. Nucleic Acids Res 2009, 37:D853–D856.
5. Van Laere SJ, Van den Eynden G, Van Hummelen P, Van Dam P, Van Marck E, Vermeulen PB, Dirix LY, Dist L: Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer 2007, 97:1165–1174.
6. Van Laere S, Beissbarth T, Van der Auwera I, Van den Eynden G, Van Hummelen P, Van Dam P, Van Marck E, Vermeulen PB, Dirix L: Relapse-free survival in breast cancer patients is associated with a gene expression signature characteristic for inflammatory breast cancer. Clin Cancer Res 2008, 14:7452–7460.
7. Iwamoto T, Bianchini G, Qiu Y, Cristofanilli M, Luci A, Woodward WA, Reuben JM, Matsuoka J, Gion G, Krishnamurthy S, Valero V, Hortobágyi GN, Robertson S, Semmanns WP, Pusztai L, Ueno NT: Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 2011, 125:785–795.
8. Shkumovik MY, Nechaev IN, Khastova NA, Krainova NA, Savelov NA, Grinevich VN, Saribekyan EK: Expression profile of inflammatory breast cancer. Bull Exp Biol Med 2013, 155:677–672.
9. Van Laere SJ, Ueno NT, Finetti P, Vermeulen PB, Luci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, Masuda H, van Dam P, Woodward WA, Verhe P, Cristofanilli M, Bimbam S, Dist L, Reuben JM, Bertucci F: Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 2013, 19:4665–4666.
10. Turchinovich A, Samatov TR, Tondievsky AG, Burwinke B: Circulating miRNAs: cell-cell communication function? Front Genet 2013, 4:179.
11. Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6:585–596.
12. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ: Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 2010, 103:532–541.
13. Lerebours F, Cizeron-Claicar G, Susini G, Aicher V, Soutier F, Moutet-Fourene E, Bellard C, Brain E, Albizri EL, Syparos F, Leducan R, Beche I: miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer 2013, 133:1614–1623.
14. Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A: AJCC Cancer Staging Manual. 7th edition. New York, NY: Springer, 2010.
15. Affymetrix® Expression Console™ Software 1.4 User Manual. ©Affymetrix, Inc. [http://media.affymetrix.com/support/downloads/manuals/expression_consoles_userguide.pdf]
16. Irazny RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bioinformatics 2003, 19:249–264.
17. Bostad BM, Irazny RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185–193.
18. Tukey JW: Exploratory data analysis. Reading: Addison-Wesley, 1977.
19. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang YJ, Ziegenhain C, Biostatistics: an open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80.
20. Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397–420.
21. Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article 3.
22. Los Alamos National Security, LLC: Heatmap Online Service. 2013. [http://www.lanl.gov/content/society/HEATMAP/heatmap.html]
23. Wares GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liavv A, Lumley T, Maechler M, Magnusson A, Hootier S, Schwartz M, Venables B: R package gplots. 2014. [http://cran-project.org/web/packages/gplots/gplots.pdf]
24. Vengouls T, Vachos IS, Alexiou P, Georgakilas G, Maragakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzieorgiou AG: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012, 40:D222–229.
25. Xiao F, Zuo C, Cai G, Kang S, Gao X, Li T: miRecords: an integrated resource for miRNA-target interactions. Nucleic Acids Res 2009, 37:D105–110.
26. Hsu SD, Tseung YT, Shreevals S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, Jian TY, Lin FM, Chang TH, Weng SL, Liao KW, Liao IE, Loo CC, Huang HD: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2014, 42:D78–D85.
27. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 2009, 4:444–57.
28. Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1–13.
29. Galensten I, Lebedev AY, Suvannin IH, Shkurikhov MV, Tanevskiy EA, Podshski SF: On the construction of medical test systems using greedy algorithm and support vector machine. Bull Exp Biol Med 2014, 156:706–709.
30. Cortes C, Vapnik V: Support-vector networks. Machine Learning 1995, 20:273–297.
31. Karatzoglou A, Smola A, Hornik K, Zeileis A: kernlab - An S4 Package for Kernel Methods in R. J Stat Software 2004, 11:1–20.
32. Kuhn M: R package Caret. 2014. [http://cran-project.org/web/packages/caret/caret.pdf]
33. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Rassnes HG, Renneberg JA, Johnsen H, Navon R, Radlak A, Maliké R, Naume B, Peralia M, Kallionemi O, Kristen森 VN, Yahzini Z, Bar Perez-Dale AL: miRNA-miRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 2011, 6:e16915.
34. Persson H, Kvist A, Rega N, Staal J, Vollist-Christenssen L, Juts L, Loman N, Jonsson G, Naya H, Hoglund M, Borg A, Roxina C: Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res 2011, 71:778–86.
35. Schrauder MK, Strick R, Schulz-Wendtland A, Stüssel PL, Kahmann L, Loehberg CR, Lux MP, Jud SA, Hartmann A, Hein A, Bayer CM, Bani MR, Richter S, Adamietz BR, Wenkel E, Rau C, Beckmann MW, Fachsinger PA: Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 2012, 7:e29770.
36. Gong C, Qu S, Liu B, Pan S, Xiao J, Ye N, Yu S, Liu Q, Song E: Mir-106b expression determines the proliferation paradox of TGF-β in breast cancer cells. Oncogene 2013, 10:1038/ Oncol.2013.525.
Wang B, Li J, Sun M, Sun L, Zhang X. miRNA expression in breast cancer varies with lymph node metastasis and other clinicopathological features. *JLBM* Life 2014, 10.1002/jlb.1273.

Sampath S, Sivakumar V, Prabakaran V, Ranganathan R, Ponnusamy R. Comparative microarray analysis of miRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. *Cell Tissue Res* 2013, 351:85–98.

Bae J, Won M, Kim DY, Kim JH, Kim YM, Kim YT, Nam JH, Suh DS. Identification of differentially expressed miRNAs in endometrial cancer cells after progesterone treatment. *Int J Gynecol Cancer* 2012, 22:561–565.

Zha R, Guo W, Zhang Z, Ou Z, Wang Q, Ding J, Huang S, Chen T, Gu J, Yao M, He X. Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting zebrafish *β1* in hepatocellular carcinoma. *PLoS One* 2014, 9:e87665.

Jima DD, Zhang J, Jacobs C, Richards KL, Dunphy CH, Choi WW, Au WY, Wang B, Li J, Sun M, Sun L, Zhang X. Identification of differentially expressed microRNAs in endometrial carcinoma. *BMC Res Notes* 2012, 5:871.

Jiang L, He D, Yang D, Chen Z, Pan Q, Gao B, Hu J, Chen L, Li X, Xing H, Shi M, Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Stöhr R, Hartmann A, Wieland W, Wullich B, Grässer FA. Identification of ZNF217, hnrNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. *Int J Cancer* 2013, 132:775–784.

Jiang W, Newsham IF. The tumor suppressor DAL-1:4/18 and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells. *Mol Cancer* 2006, 5:14.

Khalidakov M, Mitra S, Kang BY, Wang X, Kudlur S, Novell V, Raj V, Winters M, Carter WC, Mehta JL. Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. *PLoS One* 2011, 6:e20277.

Druryba J, Nolte E, Hart M, Döll C, Wach S, Taubert H, Keck B, Kremmer E, Stöhr R, Hartmann A, Wieland W, Wullich B, Grässer FA. Identification of the tumor suppressor DAL-1/4.1B and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells. *PLoS One* 2012, 7:e52597.

Tahiri A, Leivonen SK, Lüders T, Steinfeld I, Ragle Aure M, Geisler J, Mäkelä R, Nord S, Ris ML, Yakhini Z, Kleivi Sahlgren K, Baar Golden-Glenn AL, Peralta M, Buhkholm IR, Kristensen VN. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. *Carcinogenesis* 2014, 35:76–85.

Hussey GS, Chaudhury A, Dawson AE, Lindner DJ, Knudsen CR, Wilce MC, Merrick WC, Howe PH. Identification of an miRNA complex regulating tumorigenesis at the translational elongation step. *Mol Cell* 2011, 41:419–431.

Maltseva DV, Khastova NA, Fedotov NN, Matveeva EO, Galatenko VN, Schumacher U, Tonwitsky AG. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. *J Clin Bioinforma* 2013, 3:13.

Jiang W, Newsham IF. The tumor suppressor DAL-1:4/18 and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells. *Mol Cancer* 2006, 5:14.

Khalidakov M, Mitra S, Kang BY, Wang X, Kudlur S, Novell V, Raj V, Winters M, Carter WC, Mehta JL. Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. *PLoS One* 2011, 6:e20277.

Druryba J, Nolte E, Hart M, Döll C, Wach S, Taubert H, Keck B, Kremmer E, Stöhr R, Hartmann A, Wieland W, Wullich B, Grässer FA. Identification of ZNF217, hnrNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. *Int J Cancer* 2013, 132:775–784.

Ju JH, Yang W, Lee KM, Oh S, Nam K, Shim S, Shin SY, Gye MC, Chu IS, Shin J. Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. *Clin Cancer Res* 2013, 19:4335–4346.

Tu SH, Chang CC, Chen CS, Tam KW, Wang YJ, Lee CH, Lin HW, Cheng TC, Huang CS, Chu JS, Shih NY, Chen LC, Leu SJ, Ho YS, Wu CH. Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. *Breast Cancer Res Treat* 2010, 121:539–555.

Chen S, Cai J, Zhang W, Zheng X, Hu S, Lu J, Xing J, Dong Y. Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. *Int J Oncol* 2014, 41:448–458.

Illerskog AC, Ahlman H, Lamazhapova D, Nilsson O. Identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. *J Clin Bioinforma* 2013, 3:13.

Chen P, Chen J, Chada KK, He C, Rosner MR. Identification of a tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. *Cancer Res* 2014, 74:2285–2294.

Cairo S, Wang Y, de Reynies A, Duroc K, Dahan J, Redon MJ, Fabre M, McClelland M, Wang XW, Croce CM, Buendia MA. Stem cell-like micro-RNA expression profiling in polarized macrophages. *Genome Biology* 2014, 15:391–403.

Buchkholm IR, Kristensen VN. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. *Carcinogenesis* 2014, 35:76–85.

Wang L, Wang Q, Guo T, Li H, Song B, Wang Y, He J, Zhang X, Wang J, Li Y, Zhang X. Identification of differentially expressed microRNAs in endometrial carcinoma. *BMC Res Notes* 2012, 5:871.
73. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M: TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007, 26:2157–2165.

74. Langerød A, Zhao H, Borgan Ø, Nesland JM, Bukholm IR, Ikdahl T, Kåresen R, Borresen-Dale AL, Jeffrey SS: TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 2007, 9:R50.

doi:10.1186/1756-0500-7-871
Cite this article as: Maltseva et al.: miRNome of inflammatory breast cancer. BMC Research Notes 2014 7:871.