Data S1.

Supplemental Methods

Human aortic samples

Human AAA tissue was obtained from 5 patients undergoing open AAA repair, and the control samples were trimmed from the nondilating aorta surrounding the lesions from the same patients. Written informed consent was obtained from all subjects before participation. All the studies involving human samples were approved by the Ethics Committee of Ren Ji Hospital (KY2020-151), School of Medicine, Shanghai Jiao Tong University, and conformed to the principles outlined in the Declaration of Helsinki.

Nur77−/− mice construction

CRISPR/Cas9 technology was used to introduce the mutation by non-homologous end joining (NHEJ), resulting in a frameshift of the Nur77 protein reading frame and loss of function. The brief process is as follows: The transcript of Nur77 was obtained from the Ensemble database(ENSMUST00000023779.7). The gRNAs were constructed through the website (http://crispr.mit.edu/), and gRNAs with the highest score were selected (The sequence is provided in Table S2). Then Cas9 mRNA and gRNAs were obtained by vitro transcription. Cas9 mRNA and gRNAs were microinjected into the fertilized eggs of C57BL/6J mice. The injected fertilized eggs were transplanted into pseudo-pregnant female mice, and the born mice were F0 generation mice. Since the early cleavage rate of fertilized eggs is very fast, the F0 generation mice obtained were chimeras and may not have the ability to stabilize heredity. The F0 generation mice identified by PCR (primer information is provided in Table S2) were mated with wild-type C57BL/6J mice to obtain F1 generation heterozygous mice (Nur77+/−). Nur77+/− mice were
inbred to obtain Nur77−/− mice. The baseline date of Nur77−/− mice is presented in Figure S1.

Blood Pressure Measurement

The blood pressure was measured by a noninvasive blood pressure system for mice (BP-2010A, Softron Biotechnology). Briefly, mice’s blood pressure was measured by putting the mice tail into the tail-cuff system in a dark quiet room and waiting for the mice to calm down to read the meter. The measurements were carried out in conscious mice without anesthesia. To avoid variations in blood pressure due to day cycle, all measurements were performed between 2 and 6 pm. Systolic blood pressure values were derived from an average of five measurements per animal.

Tissue collection

After 4 weeks, mice were euthanized with an inhalation overdose of isoflurane (3%). Then, left cardiac ventricles were immediately perfused with ice-cold isotonic saline (10ml) with an exit through the severed right atrium. After aortic tissues were isolated, the aorta’s morphology was photographed. And the maximum diameters of the abdominal aortas were measured using calipers. An aneurysm was defined as a >50% increase in suprarenal aorta diameter compared with aortas from saline-infused mice. Then the abdominal aortic was dissected into two sections. One section was stored at -80°C for molecular analysis and the other section was fixed overnight in 10% formalin and then embedded in paraffin or optimal cutting temperature (OCT) embedding compound (Tissue-Tek). Serial sections (8-10 mm) of the aortas were prepared for morphometric analysis and immunofluorescence staining.

Histomorphology analysis

After the serial 8μm sections were cut, the paraffin-embedded abdominal aorta sections were stained with hematoxylin and eosin for general morphology, Masson’s Trichrome for fibrosis detection, or Verhoeff-van Gieson staining (EVG) for elastin. Serial sections of aneurysm were processed with hematoxylin and eosin staining. Section levels with lesions severity ranked among the top
three were chosen to undergo further histomorphology analysis and immunohistochemistry processes to acquire the averages of indicated parameters. All samples were processed with the same protocol. Images were captured under the identical microscope (Leica DM3000B, Germany), and were analyzed using Image-Pro Plus 6.0 (Media Cybernetics Inc). Determination of elastin degradation was performed by semiquantitative grading as described previously\(^3\). The grades were defined as follows: grade 1, no degradation; grade 2, mild elastin degradation; grade 3, severe elastin degradation; and grade 4, aortic rupture.

Immunohistochemistry staining of F4/80 and MMP9 was used to observe the macrophage infiltration, as well as expression of MMP9 in the mice aorta, as previously described\(^4\). In brief, primary antibody against F4/80 (1:200) or MMP-9 (1:200) were used. Specific labeling was detected with an HRP-conjugated goat anti-rabbit secondary antibody (1:200), and then were incubated with DAB substrate (cat#ab64238, Abcam) for 10 min. Representative images were captured by light microscopy.

Immunofluorescence staining

Frozen sections were fixed by 4% paraformaldehyde for 15 min and permeabilized in cold methanol for 10 min at room temperature. After blocking with 5% BSA for 1 h, the sections were incubated with primary antibodies against Nur77(1:200), CD68(1:200), LOX-1(1:200), overnight at 4°C, followed by incubation with Secondary antibodies, an Alexa Fluor 488 goat anti-mouse secondary antibody (1:200) or an Alexa Fluor 555 goat anti-rabbit secondary antibody (1:200), for 1 h at room temperature. DAPI (S36973, Thermo Scientific) was used to identify nuclei. The stained sections were viewed using fluorescence microscopy.

In situ MMP zymography

In situ MMP zymography was performed using Gelatinase Assay Kit following the manufacturer's instruction (GMS80062.1, Genmed Scientifics Inc). In brief, abdominal aortas were OCT embedded and freshly cut into 8 μm
sections using a freezing microtome. Gelatinolytic activity was analyzed in unfixed frozen sections using FITC-labeled gelatin as a substrate. Slides were incubated at room temperature, protected from light for 2h. Proteolytic activity was detected as green fluorescence (530 nm) by fluorescence microscopy (Leica DM3000B, Germany).

Cell culture and treatment

Ang II was used to induce AAA in vitro model. Raw264.7 cells (murine macrophage cell line) and Movas (mouse aorta smooth muscle cell line) from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China) were cultured in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco), 100U/mL of penicillin and 100μg/mL of streptomycin at 37°C in a humidified 5% CO₂ atmosphere. Cells were collected after incubating with Ang II (1μmol/L) for the selected time (0, 0.5, 1, 3, 6, 12h). In a separate experiment, the Cells were pretreated with or without celastrol (0.3μM) for 2h, followed by treatment with Ang II (1μmol/L) for 12h. Cells were treated with serum-free DMEM for 12h before drug treatment.

Bone marrow-derived macrophage (BMDM) isolation and culture

Bone marrow cells were prepared from femurs and tibiae of 6- to 8-week-old WT and Nur77⁻/⁻ mice as previously described\(^{15}\). Briefly, mice were euthanized with an inhalation overdose of isoflurane (3%). Next, surgically removed cleaned bones were transferred into a sterile Petri dish containing ice-cold, sterile 1x PBS (10 ml), and the marrow was flushed with PBS in a syringe with a 27-gauge needle. Simultaneously, the needle was moved up and down while scraping the inside of the bone to dissociate the cells until the bone appears clear. Cell suspension was centrifuged at 150g for 5 minutes at 4°C. The supernatant was discarded and the cells were resuspended and seeded in 6-well plates with complete DMEM containing 10% FBS, 2 mM glutamine, 100 U/ml penicillin, 100μg/ml streptomycin, and supplement with 30 ng/ml recombinant M-CSF (416-ML-050, R&D Systems). The plate was incubate at 37 °C and 5% CO₂. Fresh BMDM growth medium was changed on day 3. On
day 7, the mature BMDM can be used for subsequent experiments.

Lentiviral transduction, LOX-1 overexpression and knockdown

To overexpress Nur77, lentivirus was purchased from Genomeditech Co, Ltd. (Shanghai, China) and stable cell lines were constructed by the lentivirus infection. A similar lentiviral vector encoding the green fluorescent protein (GFP) gene (LentiGFP) was used as a control. Raw264.7 cells were transduced with lentiviral in diluted media at a multiplicity of transduction of 100 for 48h and then cultured in DMEM media containing 10% bovine serum.

To overexpress and knockdown LOX-1. Plasmids including overexpression negative control plasmid (oe-NC), LOX-1 overexpression plasmid (oe-LOX-1), small interfering RNA targeting LOX-1 (si-LOX-1), and si-NC were all purchased from Shanghai Genomeditech (Shanghai, China). Cells in 6-well plates were transfected with plasmid or siRNA using Lipofectamine™3000 (L3000150, Invitrogen) according to the manufacturer's instructions. After transfection for 24h, the mRNA and protein expression of the cells were detected, respectively.

MRI screening assay

Magnetic resonance imaging (MRI) was performed at weeks 4 after surgery. All scanning was carried out with a 7.0-T small animal, Superconducting magnet and BioSpec spectrometer (BioSpec 70/20 USR: Bruker, Bruker Biospin, Ettlingen, Germany). All mice were induced and maintained under isoflurane anesthesia (1.5% to 2%) in medical-grade and monitored simultaneously via a sensor positioned on the abdomen for respiration rate (30-50 breath/min). All MRI images were acquired according to the manufacturer’s instruction. RadiAnt DICOM Viewer (Poznan, Poland) software was used to delineate an ROI to determine the abdominal aorta cross-sectional area.

Vascular ultrasound imaging

Micro-ultrasound images were obtained using the Vevo770 system (Visual Sonics) 4 weeks after surgery. Mice were anesthetized using 1.5%-2.0% isoflurane, the abdominal hair was removed using depilatory cream and
ultrasound transmission gel was added onto the abdomen area to acquire optimal images. Heart rate and respiration were monitored throughout the procedure. An ultrasonic probe was first applied on the transverse plane to locate the abdominal aorta, the “Portal Triad” (hepatic artery, hepatic vein, and bile duct) was used as anatomic markers to confirm the location of the aorta. The aorta was centered and the probe was moved down to find the kidney. Color mode Doppler was activated to help localize the two renal arteries, and the probe then switched to the long axis. The probe was placed parallel to the aorta to obtain a longitudinal axis view of the abdominal aorta. Images were recorded to acquire measurements of the aortic diameter.

Quantitative real-time PCR

Total RNA was extracted from AAA and sham control tissues or cells using RNAiso Plus (Takara). cDNA was synthesized using PrimeScript RT Master Mix kit (Takara). qRT-PCR of mRNAs was performed using TB Green® Premix Ex Taq™ (Takara) and real-time PCR experiments were carried on a LightCycler® 480 System (Roche). Quantitative results were normalized against GAPDH and presented by the \(2^{-\Delta\Delta Ct}\) method. The primers used for q-PCR are listed in Table S3.

Western blot analysis

Total proteins were extracted from cells or from abdominal aortas of the mice and lysed in lysis buffer (Roche, USA) with the protease and phosphatase inhibitor (Thermo Scientific) for 30 min on the ice. The supernatant fluid was then collected after centrifugation. Proteins were separated by 7%-12.5% SDS-PAGE gels and transferred onto PVDF membranes (Millipore, Bedford, MA). Membranes were blocked with 5% non-fat dry milk in TBST for 1h at room temperature and incubated overnight at 4°C with different primary antibodies. Membranes were washed and incubated with horseradish peroxidase-conjugated anti-rabbit IgG (cat#111-035-003, Jackson ImmunoResearch) for 1h at room temperature. GAPDH, β-actin, or tubulin acted as the control. Protein bands were detected with LAS-4000 mini system (Fujifilm, Japan).
Chromatin immunoprecipitation (ChIP) analysis

ChIP assay was performed with SimpleChIP® Enzymatic Chromatin IP Kit (Cat#9003, Cell Signaling Technology) according to manufacturer’s instructions. Raw 264.7 cells were treated with PBS or Ang II (1 μmol/L) for 12h. Crosslinking of chromatin was performed by treatment with 1% formaldehyde for exactly 10 minutes at room temperature. Then, glycine was added into the culture medium to terminate the crosslinking reaction. After termination of crosslinking, nuclear extraction from cell pellets was performed with SimpleChIP® Enzymatic Chromatin IP Kit. Crosslinked chromatin was sheared to 150-900 bp with micrococcal nuclease. Then the lysate was treated with 3 sets of 20-sec pulse using an Ultrasonic Sonicator. Immunoprecipitation was performed with 2μg anti-IgG antibody (CST) and 10ul anti-Histone H3 Rabbit antibody (CST) as negative and positive control of ChIP, respectively. As a target antibody, 10μg polyclonal anti-Nur77 antibody was used. ChIP PCR was performed with primers encompassing the following loci of the LOX-1 promoter in mice: forward:5’-TGGACTGGATGGTTCGACTTG-3’ reverse:5’-ACTCAGGAGCCAGGAATGGAA-3’. Then LOX-1 promoter-specific PCR products were subjected to agarose gel electrophoresis analysis.

RNA sequencing

Total RNA was extracted using the mirVana miRNA Isolation Kit (Ambion) following the manufacturer’s protocol. RNA quality was verified using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Then the libraries were constructed using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Then, these libraries were sequenced on the Illumina sequencing platform (Illumina HiSeq X Ten) and 125 bp/150 bp paired-end reads were generated. Differentially expressed genes (DEGs) were identified using the DESeq R package functions to estimate Size Factors and nbinomTest. P-value < 0.05 and foldchange>2 or foldchange<0.5 was set as the threshold for significantly differential expression. KEGG pathway enrichment analysis of DEGs was
performed respectively using R based on the hypergeometric distribution. RNA-Seq Data had been submitted to GEO (GSE174768). Principal component analysis (PCA) is presented in Figure S4. QC metrics for the RNA-seq data are shown in Table S4.

ChIP-sequencing analysis

The data downloaded from the GEO database (GSE102393) were, respectively, SRR5914767.1, SRR988407.2, SRR988408.2, SRR1694053.1. The quality control of clean data was performed by FastQC. All reads were mapped to the mm10 mouse genome using bwa program, and uniquely mapped reads were processed further for peak identification. MACS14 was used to identify significant peaks with input DNA (ChIP-seq) as the control, and -p 10^{-7} was used as the threshold for peak calibration. Then R package ChIPseeker was used to annotate the peak identification results. The consensus binding motif analysis for Nur77 was performed by MEME.

Supplemental statistical analysis

Blinding was used in the study. According to our randomization and blinding strategy, animals were grouped by Dr. Che, and the surgery was operated by Dr. Zhang. The color Doppler ultrasound and MRI scans were carried out by Dr. Geng. Slide scoring and follow-up study were performed by Dr. Sun, assisted by Dr. Chen. The researchers except Dr. Che were unaware of the treatment group assignment or genotype.
Table S1. Key Resource Table.

Regents or Resources	Source	Identity
Angiotensin-II	Sigma-Aldrich	A9525
Celastrol	MedChemExpress	HY-13067
Isoflurane	RWD	R510-22
OCT embedding compound	Sakura	4583
H&E kit	Servicebio	G1005-500ML
Masson’s Trichrome kit	Servicebio	G1006-100ML
EVG dye solution set	Servicebio	G1042
DAPI	Thermo Scientific	S36973
Gelatinase Assay Kit	Genmed Sciences	GMS80062.1
DMEM	Gibco	10569-010
Fetal bovine serum	Gibco	10099-141
M-CSF	R&D Systems	416-ML-050
Cell Counting Kit-8 assay	Beyotime	C0041
Lipofectamine™3000	Invitrogen	L3000150
RNaIso Plus	Takara	9108
PrimeScript RT Master Mix kit	Takara	RR036A
TB Green® Premix Ex Taq™	Takara	RR420A
Complete lysis-M	Roche	04719964001
Protease and phosphatase inhibitor	Thermo Scientific	78443
SimpleChIP®Enzymatic	Cell Signaling	9003
Chromatin IP Kit	Technology	
Osmotic Pumps	Alzet	2004
DAB substrate	Abcam	ab64238
Mouse anti-CD68	Abcam	ab31630
Mouse anti-CD68	Abcam	ab955
Rabbit anti-Nur77	Abcam	ab13851
Antibody	Supplier	Catalogue Number
---	-------------------------	------------------
Mouse anti-alpha smooth muscle Actin	Abcam	Ab7817
Rabbit anti-LOX-1	Abcam	ab60178
Rabbit anti-GAPDH	Abcam	ab371668
Rabbit anti-β-actin	Cell Signaling Technology	4970
Rabbit anti-MMP-2	Abcam	ab37150
Rabbit anti-MMP-9	Abcam	ab38898
Rabbit anti-F4/80	Abcam	ab111101
Goat anti-rabbit (HRP)	Jackson ImmunoResearch	111-035-003
Alexa Fluor 488 goat anti-Mouse	Cell Signaling Technology	A-11001
Alexa Fluor 555 goat anti-Rabbit	Cell Signaling Technology	A-21428
Goat Anti-Rabbit IgG H&L (HRP polymer)	Abcam	ab214880
Raw264.7 cell	Cell Bank of the Chinese Academy of Sciences (Shanghai, China)	
Movas cell	Cell Bank of the Chinese Academy of Sciences (Shanghai, China)	
ApoE^{−/−} mice on a C57BL/6 background	Shanghai Model Organisms Center	NM-KO-190565
C57BL/6 mice	Beijing SPF Biotechnology Co., Ltd.	SPF-A04-001
Table S2. gRNAs sequence.

gRNAs	Sequence (5’-3’)
gRNA1	CCTTCCTCTACCAGCTGCCGGGG
gRNA2	ACCAGCCACCCACCAGCTTGGGG

Primer information

Primer Type	Sequence (5’-3’)
Forward	CCCTCCCCGGCCTACCAAGTT
Reverse	TGTGCCCTGCTGAATAAAAAGTCC

The primer information for F0 generation mice identification
Supplemental Table S3

PCR production	Oligoes for mutations (forward/reverse)
Human GAPDH	5'-ACAACTTTGGTATCGTGGAAGG-3'
Human Nur77	5'-GCCATCACGCCACAGTTTC-3'
Mouse GAPDH	5'-TGTCGAGTTGGATCTCAGTTGGAACAG-3'
Mouse Nur77	5'-TGGCTGAGGACGAGGATGTGG-3'
Mouse MMP9	5'-GCACCTTCATGGACCGCTACAC-3'
Mouse IL-1β	5'-GATGGCTGCACATCTCTCTATGAC-3'
Mouse TNF-α	5'-ATGGCTCTGAGAGAGTGGTGATGAGAGGAG-3'
Mouse CCL2	5'-ATGGCTCTGAGAGAGTGGTGATGAGAGGAG-3'
Mouse IL-6	5'-GCCTCTTGGGACTGATGCT-3'
Mouse LOX-1	5'-CAAAACAGCACAGGAGATGAC-3'
Mouse FATP2	5'-AACAGAGCAGAGATGAC-3'
Mouse BMAL1	5'-TGACTCGGATGTTGCTTATG-3'
Mouse Lipe	5'-AACAGGAGCAGAGATGAC-3'
Mouse LOX-1 promoter	5'-ACTCAGGGCCAGGGATGAGA-3'
Table S4. QC metrics for the RNA-seq data.

Sample	raw_reads	raw_bases	clean_reads	clean_bases	valid_bases	Q30	GC	Total mapped reads	Uniquely mapped
ApoE1	57.57M	8.64G	56.77M	8.06G	93.3%	95.54	50.42	56008857(98.65%)	50792134(89.46%)
ApoE2	55.88M	8.38G	55.12M	7.84G	93.59%	95.59	50.9%	54379283(98.65%)	50108049(90.90%)
ApoE3	54.41M	8.16G	52.80M	7.35G	90.04%	91.14	50.82	51996454(98.47%)	46979689(88.97%)
KO1	53.01M	7.95G	52.20M	7.47G	93.9%	95.28	50.13	51471056(98.61%)	47573941(91.15%)
KO2	54.09M	8.11G	53.34M	7.61G	93.81%	95.58	50.95	52631363(98.66%)	48959442(91.78%)
KO3	57.08M	8.56G	56.30M	8.08G	94.38%	95.44	50.61	55510843(98.59%)	51602334(91.65%)
KO4	53.11M	7.97G	52.32M	7.45G	93.51%	95.48	51.05	51553451(98.53%)	47854627(91.46%)

raw_reads: Number of original reads
raw_bases: Number of bases
clean_reads: Number of clean reads obtained after pretreatment
clean_bases: Number of bases obtained after pretreatment
valid_bases: Percentage of effective bases
Q30: The percentage of bases with a Qphred value more than 30 in raw_bases to the total bases
GC: The percentage of the total number of G and C in clean bases to the total number of bases
Total mapped reads: Number of sequences that can be mapped to the genome
Uniquely mapped: Number of sequences with unique alignment positions on the reference sequence
Table S5. Blood pressure and heart rate in Ang II-infused mice.

Groups	sBP (mmHg)	dBP (mmHg)	HR (Beats/min)
ApoE^{−/−}	105.1 ± 1.6	57.9 ± 3.3	457.1 ± 15.6
ApoE^{−/−} + Ang II	141.3 ± 3.3*	91.3 ± 3.6*	440.8 ± 16.6
ApoE^{−/−}Nur77^{−/−}	106.5 ± 1.6	63.0 ± 2.9	449.5 ± 23.5
ApoE^{−/−}Nur77^{−/−} + Ang II	145.7 ± 4.1#	91.2 ± 2.5#	463.1 ± 21.5

N is 4-5 in each group. Data are expressed by mean ± SD.

*P<0.05 compared to control ApoE^{−/−} mice

#P<0.05 compared to ApoE^{−/−}+Ang II mice
Table S6. Blood pressure and heart rate in Celastrol-treated mice.

Groups	sBP (mmHg)	dBP (mmHg)	HR (Beats/min)
Sham + Veh	104.3±3.6	53.7±4.9	446.1±18.9
Sham + Cel	104.8±2.7	60.3±7.1	441.8±29.5
AAA + Veh	147.3±5.8*	92.1±3.4*	463.9±29.8
AAA + Cel	146.7±3.2#	92.3±1.9#	438.1±24.0

N is 4-5 in each group. Data are expressed by mean ± SD.

*P<0.05 compared to control Sham+ Veh mice

#P<0.05 compared to control AAA+ Veh mice
Figure S1. Physiological condition of different groups.

A and B, The relative mRNA and protein levels of Nur77 in WT and Nur77⁻/⁻ group (n=3 mice per group). **C,** SBP, DBP, and Heart rate in the indicated groups (n=5 mice per group). **D,** The external diameter of abdominal aortas measured with vernier calipers in the indicated groups (n=5 mice per group). **E,** The internal diameter of abdominal aortas measured with ultrasonography (n=5 mice per group). **F,** Representative images of suprarenal aortic sections stained with hematoxylin and eosin (H&E), Masson Trichrome (collagen) and Van Gieson (elastin). Data are presented as mean± SEM. Student's two-tailed t test for A, B; one way-ANOVA followed by Tukey's multiple comparisons test for C, D. ns, nonsignificant; WT, wild type; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Figure S2. Representative immunofluorescence and immunohistochemical images.

A, Representative images of dual immunofluorescence staining of Nur77 (red) and CD68 (green) in the abdominal aorta tissue from mice with AAA and sham control. B, Representative immunohistochemical staining images showing macrophages (F4/80) and MMP-9 in mouse abdominal aortas. AAA, abdominal aortic aneurysm; MMP, matrix metalloproteinase.
Figure S3. Full blots of the Western data
Figure S4. Principal component analysis of the RNA-seq data

ApoE:ApoE\(^{-/-}\) mice; DKO: ApoE\(^{-/-}\)Nur77\(^{-/-}\) mice
Figure S5. Characteristics of abdominal aortic aneurysm in ApoE^{−/−} Nur77^{+/−} mice.

ApoE^{−/−} and ApoE^{−/−}-Nur77^{+/−} mice were subjected to AAA surgery. A, Representative photographs showing mouse aortas infused with saline or Ang II at 4 Weeks. Scale bar indicates 5mm. B, The incidence of AAA of the Ang II-infused mice compared with their sham controls. n=10 in each group of ApoE^{−/−}, ApoE^{−/−}-Nur77^{+/−} mice infused with saline, n=15 each for ApoE^{−/−}, ApoE^{−/−}-Nur77^{+/−} mice infused with Ang II. C, Maximal abdominal aortic diameter, total aortic weight-to-BW ratio of the indicated groups (n=7). D, Representative views of the internal diameter of the abdominal aorta measured with ultrasonography and the quantification of the maximal abdominal aortic diameter (n=5). Data are presented as mean± SEM. Fisher's exact test for B. Two-way ANOVA followed by Tukey's multiple comparisons test for C and D. ns, nonsignificant; AAA, abdominal aortic aneurysm; BW, body weight.
Figure S6. Celastrol attenuated the macrophages infiltration and MMP-9 expression.

A, Representative immunohistochemical staining images showing macrophages (F4/80) and MMP-9 in mouse abdominal aortas, with the quantification results in the right panels (n=3 mice per group). **B,** The q-PCR analysis of inflammatory cytokines (IL-1β, TNF-α, CCL2, and IL-6) in the aortic wall. Results were normalized against GAPDH and converted to fold induction relative to their respective controls (n=3 mice per group). **C,** Gene expression of MMP9 in AAA lesioned tissues. Results were normalized against GAPDH and converted to fold induction relative to their respective controls (n=3 mice per group). **D,** Western blot analysis and quantitative results of MMP9. Results were normalized against tubulin and converted to fold induction relative to their respective controls (n=4 mice per group). **E,** In situ zymography for gelatinase activity (n=3 per group). *P<0.05 vs Sham-vehicle mice, **P<0.01 vs Sham-vehicle mice.
vehicle mice; #P<0.05 vs AAA-vehicle mice, ##P<0.01 vs AAA-vehicle mice. Data are presented as mean± SEM. Two-way ANOVA followed by Tukey's multiple comparisons test for A-D. Student's two-tailed t test for E. ns, nonsignificant; Veh, vehicle; Cel, celastrol; IL-1β, Interleukin-1β; TNFα, tumor necrosis factor-α; CCL2, chemokine (C-C motif) ligand 2; IL-6, Interleukin-6; MMP, matrix metalloproteinase.
Figure S7. The expression level of Nur77.

A and B, The expression of Nur77 in Raw264.7 cells transduced with LentiGFP or LentiNur77 to overexpress Nur77. The mRNA level (A) or the protein level (B) of Nur77 (n=3 independent experiments per group). C and D, The expression of Nur77 in bone marrow-derived macrophages (BMDMs) from WT or Nur77⁻/⁻ mice. The mRNA level (C) or the protein level (D) of Nur77 (n=3 independent experiments per group). Data are presented as mean± SEM. Student's two-tailed t test for A-D. Lenti, lentiviral; GFP, green fluorescent protein; WT, wild type.
Figure S8. The expression level of LOX-1.

A and B, The expression of LOX-1 in Raw264.7 cells transduced with LOX-1 overexpression plasmid (oe-LOX-1) to overexpress LOX-1. The mRNA level (A) or the protein level (B) of LOX-1 (n=3 independent experiments per group). **C and D,** The expression of LOX-1 in BMDMs transfected with control siRNA(si-NC) or LOX-1 siRNA(si-LOX-1). The mRNA level (C) or the protein level (D) of Nur77 (n=3 independent experiments per group). Data are presented as mean±SEM. Student’s two-tailed t test for A-D. BMDM, bone marrow-derived macrophage; LOX-1, lectin like Ox-LDL receptor-1; oe, overexpression; si, small interfering RNA.
Figure S9. Expression of Nur77 in vascular smooth muscle cells in AAA.

A, Representative images of dual immunofluorescence staining of Nur77 (red) and α-SMA (green) in the abdominal aorta tissue from mice with AAA and sham control (n=3 per group). Scale bar indicates 200μm. B, Quantification of the relative Nur77 fluorescence intensity in aortas from mice with AAA and sham control. C, The relative mRNA level of Nur77 in Movas cells after stimulated with Ang II (1μM) for the indicated time (n=3 per group, *P<0.05 vs PBS, **P<0.01 vs PBS). D, Representative images of dual immunofluorescence staining of Nur77 (red) and α-SMA (green) in Movas cells, and quantification of the relative Nur77 fluorescence intensity. Scale bar indicates 200μm. Data are presented as mean± SEM. Student's two-tailed t test for B and D. One way-ANOVA followed by Dunnett’s T3 multiple comparisons test for C. AAA, abdominal aortic aneurysm; Ang II, angiotensin II; α-SMA, alpha smooth muscle actin.