Sensitivity of animal-derived *Trypanozoon* stocks from sleeping sickness endemic foci of Nigeria to trypanocides and human plasma

A.U. Kalu

Twelve *Trypanozoon* stocks isolated from semi-nomadic cattle in known sleeping sickness foci of central and northern Nigeria were studied in terms of susceptibility to two trypanocides, diminazene aceturate (Berenil) and isometamidium chloride (Samorin) and human plasma. In infected small ruminants, three of the stocks were resistant to diminazene aceturate at doses of 7.0 - 14.0 mg/kg body weight (b.w.) while isometamidium chloride at doses of 1.0 mg/kg b.w. or higher failed to effect parasitological cure of infections with two of the diminazene-resistant stocks. The two isometamidium-resistant stocks were also consistently resistant to the trypanolytic action of human plasma. It is suggested that cattle are reservoirs of *Trypanosoma brucei* subspecies potentially infective to man and resistant to the therapeutic action of the known sanative pair (diminazene and isometamidium).

Key words: Sleeping sickness - *Trypanosoma* - Cattle - Swine - Blood plasma - Nigeria.

INTRODUCTION

In West Africa, *Trypanosoma vivax*, *T. congolense* and *T. b. brucei* are the most important trypanosome species for livestock. The last two enjoy a wide host range, infecting also laboratory animals, wildlife and pigs as reviewed by Losos and Ikede (18) and Anosa (3). *T. brucei gambiense*, the main cause of sleeping sickness in the subregion has been isolated from pigs (10, 19, 27), sheep (26), dogs (10), game animals (20) and domestic chickens (31).

Spot surveys, abattoir samples and occasional outbreaks have provided the main sources of epidemiological studies of trypanosomosis in Nigerian livestock over several decades (2). Although the study of the prevalence and distribution of the disease in ruminants is currently benefiting from a European grant (4), knowledge of the role of domestic animals and wildlife in its transmission in man and livestock is limited to the report of Joshua et al. (14) on the potential of migratory cattle to harbour human-infective trypanosomes. Also, despite reports on drug resistance among haematic trypanosome species viz *T. vivax* and *T. congolense* (2, 5) few attempts have been made to study the phenomenon among *Trypanozoon* species under Nigerian field conditions. This study was designed to assess the sensitivity to trypanocides of *T. brucei* subspecies isolated from ruminants and pigs in sleeping sickness zones of Nigeria and to test the potential infectivity of the stocks to man.

MATERIALS and METHODS

Sleeping sickness foci, survey areas

The sleeping sickness endemic areas surveyed included the primordial foci in Tiv Province of Benue State. This area has been regarded as one of the oldest permanent foci of sleeping sickness in Nigeria. Others were the more northern areas of Jema’a Local Government (Kaduna State) and Plateau State. The areas lie within 7°10’ - 10°25’ North and 8°00’ - 9°45’ East and extend from the Southern to the Northern Guinea vegetation zones (fig. 1).

The livestock

Samples were taken from bovine and porcine hosts reared semi-intensively. The pigs were housed in piggeries in the vicinity of owners’ houses, while the cattle were either provided with shelter or housed in open enclosures in front of owners’ residence, after the day’s grazing within a mean of 5 km radius, as described by Kalu et al. (16).

Trypanozoon stocks

Primary isolates of *T. brucei* subspecies were made from the Livestock Investigation and Breeding Centre (Benue State) and other herds and piggeries in Gboko West and Katsina Ala Local Government Areas of Benue State. *Zebu* (Bunaji) cattle in Wamba and Jos (Plateau State) and Manchok/Kafanchan in Jema’a Local Government Area of Kaduna State formed the sources of the other stocks (see table III and fig. 1).

Control *Trypanozoon* stocks were obtained from the Nigerian Institute for Trypanosomiasis Research (NITR), Vom and were :

- *T. brucei brucei* 8/18, isolated from a pig at Nsukka, Nigeria (11);
A.U. Kalu

Figure 1: Sleeping sickness endemic areas of Nigeria surveyed for animal trypanosomosis.

- *T. brucei gambiense* Kwa strain, isolated from the gland juice of a sleeping sickness patient in Shendam Local Government Area, Plateau State (28).

Isolates were maintained by stabilization in liquid nitrogen at -196°C till required. Mixed populations were differentially eluted through a DEAE cellulose (DE 52, Whatman Chemical Ltd, UK) anion exchange column with PSG according to Lanham and Godfrey (17), passaged through trypanosome naive suckling mice, and cloned derivatives were stabilized. All trypanosome stabilates irrespective of source were passaged twice through mice.
and their Trypanozoon morphology was confirmed by differentiation on Giemsa-stained thin films prior to the studies.

Experimental animals

Adult Wister mice (18.2 ± 1.5 kg) were obtained from the Laboratory Animal Unit of the Parasitology Division, NITRI, Vom. Red Sokoto goats (mean weight 14.6 ± 2.2 kg) and West African dwarf sheep (12.5 ± 1.8 kg) were purchased at various times from the local markets in Mangu LGA on the tsetse-free Jos plateau. They were screened for trypanosomes and other haemoparasites, dewormed with thiophanate (Nemafax, May & Baker, U.K.) and given doses of iron dextran (Myofer 100, Farbweke Hoechst, Germany) during a 3 month acclimatization period. The animals were fed concentrates supplemented by a grass/legume mixture and Acha hay (Digitaria exilis) ad libitum. Only parasite-free animals were used in the experiments.

Infection of goats and sheep

Cardiac blood of donor mice infected with Trypanozoon stocks was pooled and the trypanosomes counted in a Neubauer haemocytometer. Each experimental small ruminant was then syringe-inoculated, via the intramuscular route, with approximately 1 x 10⁷ bloodstream trypanomastigotes contained, after dilution in phosphate buffered saline (PBS; pH 7.4), in 2 to 3 ml of the inoculum.

Drug susceptibility trials

Drug treatment started at different days following preparation (table I), depending on the pathogenicity of the strains. Diminazene aceturate (Berenil, Farbweke Hoechst AG, Germany) and isometamidium chloride (Samorin, May & Baker Ltd, U.K.) were used at the recommended doses for ruminants of 3.5 mg and 0.5 mg/kg body weight, respectively or higher (tables I, II). Cures and relapse of infection following treatment were monitored daily by detection of parasites in ear vein blood using the dark ground buffy coat examination (23) and the haematocrit centrifugation technique (29), as described by Kalu et al. (15).

Blood incubation infectivity test (BIIT)

The potential infectivity of Trypanozoon isolates to man was evaluated by the blood incubation infectivity test. The technique employed was that described by Rickman (24). Each incubated sample was inoculated into 5 test mice as recommended by ILCA’s manual (22). Experimental animals were housed in separate cages to prevent oral transmission (21). Stocks were designated sensitive or resistant to human plasma according to the criteria of Hawking (12).

RESULTS

Susceptibility to trypanocides

Twelve T. brucei isolates were each tested for susceptibility to Berenil and Samorin. Out of these, 3 were consistently resistant to Berenil at 7.0 mg/kg b.w. or higher doses (table I). Also 2 T. brucei stocks were resistant to Samorin at 1.0 mg/kg b.w. (or more) (table II). The two Samorn-resistant stocks (ICS/CT 40 and GBS 2/CT 18) were among the Berenil-resistant ones. All the stocks susceptible to Berenil were also cleared from small ruminant hosts by Samorin at 0.5 mg/kg b.w.

Sensitivity to human plasma

Two of twelve stocks tested were repeatedly resistant to normal human plasma (table III). Morphologically, the Trypanozoon stocks were pleomorphic like the others, susceptible to human plasma, had longer prepatent periods and also exhibited lower parasitaemia in caprine/ovine hosts (table III).

DISCUSSION

Drug resistance among trypanosomes has been reported mostly among the haematic trypanosomes (T. vivax and T. congolesens) which are more pathogenic and prevalent among ruminants in Nigeria (3, 4, 18). Trypanosomes of the brucei group require higher doses to effect a cure (especially with Berenil) as they invade tissues and cause relapse infections from their locations e.g. the brain (3, 4, 13). They may also become more pathogenic under stress conditions and in the areas where other trypanosome species have been effectively reduced by chemotherapy. The finding of a high proportion of stocks of this species resistant to trypanocides indicates the necessity of more judicious drug use and suggests that adequate diagnosis should be made prior to any therapy under field conditions.

It has long been believed that human infective T. brucei gambiense and T. brucei rhodesiense occur in animal hosts (8, 30). Direct evidence using human volunteers (9) and indirect evidence by the blood incubation infectivity test (6, 20, 25) support this belief. Also, the role of domestic animals as reservoirs of trypanosomes infective to man has been reviewed by Mehlitz et al. (20) while, in West Africa, various domestic animals including cattle, pig, sheep, dog and chicken have been incriminated by various workers (10, 19, 20, 26, 27, 31).

In Nigeria, the only evidence of the involvement of domestic livestock in the transmission of sleeping sickness is that provided by Joshua et al. (14) from nomadic cattle grazing on the Jos plateau. The observation by Hawking (12) that all forms of Gambian (West African) type human-infective trypanosomes are resistant to human plasma has been
confirmed by Brun and Jenni (7). This study provides evidence that semi-nomadic cattle, in close proximity to herd-owners, harbour trypanosomes potentially infective to man in sleeping sickness endemic areas of Nigeria. The Nigerian control Trypanozoon strains were either inactivated by the normal human plasma (T. brucei brucei 8/18) in line with the trypanolytic action of human plasma, serum or blood, or resistant to it (T. brucei gambiense Kwa) (6, 9).

In addition to being resistant to human plasma and trypanocides, the low parasitaemia of the 2 stocks in experimental ruminants, close contact between livestock and their owners in known sleeping sickness endemic foci is highly suggestive of the reservoir status of cattle in this area. G. tachinoides, a riverine tsetse fly species with high vectoral capacity for the sleeping sickness parasite, has recently been reported to be the only vector of hyper-endemic ruminant trypanosomosis in Gboko, Benue state (16) - one of the areas covered by this study. These findings, under conditions where transmission could be essentially from animal to man (1), are of epidemiological importance for human sleeping sickness.

TABLE I

Test Animal	T. brucei Stock Number	Prepatent period (days)	Days of infection before treatment	Parasitaemia on treatment day	Dose (mg/kg body weight)	Days between treatment and relapse	Remarks
Goats (6)*	ICS/CT 6	7	8	2/1	7.0	10	Relapsed
Goats (6)	ICS/CT 10	16	13	L	10.5	32	Resistant
Sheep (2)	ICS/CT203	9	3	1/1	7.0	21	Sensitive
Goat (2)	ICS/CT90	5	3	6/1	7.0	—	Sensitive
Goat (2)	GBS 12/PG 30	4	3	1/1	7.0	—	Sensitive
Goat (2)	GBS 12/PG 32	12	28	12/1	7.0	—	Sensitive
Goat (2)	GBS 12/PG 33	8	15	M	7.0	—	Sensitive
Goat (2)	GBS 12/PG 40	3	7	1/1	7.0	—	Sensitive
Sheep (1)	GBS 2/CT 6	6	4	1/1	7.0	7	Sensitive
Goat (3)	GBS 2/CT 16	11	8	1/1	7.0	7	Sensitive
Sheep (2)	WA/CT 40	4	3	1/5	14.0	(9 : dead)	Sensitive
Goat (1)	KAF 2/SH 5	7	1	5/1	7.0	—	Sensitive

*All figures are given as mean of the number of ruminants used for each trypanosome stock.

Parasitaemia: wet film examination at low power (10 x 40) magnification.

Remarks
L
M

Remarks
P-f

Bracketed values indicate number of experimental animals used.

Number of parasites/Number of microscopic fields.

Table II

Test host (Number used)	Trypanozoon stock	PPP* (Days)	Treatment day after PPP	Parasitaemia on treatment day	Dose (mg/kg)	Relapse (Day after treatment)	Remarks
Goat (2)	ICS/CT 6	14	6	1/2	0.5	15	Susceptible
Goat (2)	ICS/CT 40	13	3	1/1	0.5	20	Resistant
Goat (2)	GBS 2/CT 18	14	7	1/2	0.5	18	Relapse
Goat (2)	GBS 2/CT 18*	18	5	4/1	1.0	17	Resistant

* PPP = prepatent period.

Number of parasites/Number of microscopic fields.

Retour au menu
Table III

Susceptibility of Trypanozoon stocks to normal human plasma (NHS)

Stock Number	Source	Locality	Incubation in plasma	Infection in mice	Remarks		
ICS/CT 6	Muturu (M)	Raav (Benue)	+	+	5	5	Sensitive to NHS
ICS/CT 40	Zebu (Z)x N'Dama (N)	—	—	+	5	0	Resistant
ICS/CT 203	N'Dama (N)	—	—	+	5	5	Sensitive
ICS/CT 690	Zebu X N	—	—	+	5	5	
GBS 12/PG 30	Pig	Gboko (Benue)	+	+	5	5	
GBS 12/PG 32	Pig	—	—	+	5	0	
GBS 12/PG 40	Pig	Manchok (Kaduna)	+	+	5	5	
GBS 2/CT 9	White Fulani (Zebu)	Gboko	+	+	5	5	Resistant
WAM/CT 46	White Fulani	Wamba (Plateau)	—	—	5	0	Sensitive
KAF 2/SH 5	Sheep	Kafanchan (Kaduna)	—	—	5	5	
T. brucei 8/18	Pig	Nsukka	+	+	5	5	Sensitive
T. gambiense (Kwa)	Man	Kwa	+	+	6	6	Resistant

1 Reference stocks for animal (*T. brucei* 8/18) and human (Kwa) infective Trypanozoon.

CONCLUSION

In the sleeping sickness endemic foci of Nigeria and particularly the Tiv Province primordial area, cattle harbour trypanosome strains potentially infective to man. These *Trypanozoon* strains are also resistant to both diminazene aceturate and isometamidium chloride which are two commonly used trypanocides. This phenomenon may be responsible for cases of reported drug resistance under field conditions.

Acknowledgements

The technical assistance of F. Doro and E. Haruna is gratefully acknowledged. Funds for this study were provided by the Nigerian Institute for Trypanosomiasis Research (NITR), Kaduna, Kaduna State, Nigeria.

References

1. ABEBE M., BULTO T., ENDESHA T., NIGATU W., 1988. Further studies on the *Trypanosoma brucei* group trypanosomes isolated from a patient infected in Anger-Delassa valley, West Ethiopia using the blood incubation infectivity test. *Acta trop.*, 45: 185-186.

2. AGU W.E., KALEJAYYE J.O., OLATUNDE O.A., 1989. Prevalence of bovine trypanosomiasis in Kaduna and Plateau states of Nigeria. *Bull Anim. Hlth Prod. Afr.*, 37: 161-166.

3. ANOSA V.O., 1983. Disease produced by *T. vivax* in ruminants, horse and rodents. *Zentbl. VetMed. B.*, 30: 717-741.

4. ANOSA V.O., IKEDE B.O., AGBEDE R., AIAYI S.A., ANIKA S.M., ANING R.G., KALU A.U., OYCHIDE A., OGUNSUSI R.A., NANTUYLA V.M., 1991. Prevalence of trypanosomiasis in Nigerian ruminants. In: 21st meeting ISCTRC, Yamoussoukro, Côte d'Ivoire, 21-25 October 1991.

5. AROWOLO R.O., IKEDE B.O., 1977. Susceptibility of a rodent-adapted strain of *T. vivax* to Berenil, Samorin and Novidium. *Acta trop.*, 34: 61-64.

6. AWAN M.A.Q., 1971. The use of human plasma in the blood incubation infectivity test to differentiate *Trypanosoma brucei* and *T. gambiense*. *Trop. Anim. Hlth Prod.*, 3: 183-186.
14. Joshua R.A., Magaji Y., Kayit Y.S., 1983. Isolation of human serum resistant Trypanozoon from cattle in Nigeria. Tropenmed. Parasit., 29: 201-202.

15. Kalu A.U., Edgiehere H.U., Lawani F.A., 1986. Comparison of diagnostic techniques during subclinical single infections of trypanosomiasis in goats. Vet. Parasit., 22: 51-54.

16. Kalu A.U., Uzoukwu M., Ikeeme M.M., Magaji Y., 1991. Trypanosomiasis in Nigeria: high prevalence among ruminants in Gobo Local Government Area, Bull. Anim. Hlth Prod. Afr., 39: 3-8.

17. Lanham S.M., Godfrey D.G., 1970. Isolation of salivarian trypanosomes from man and other mamals using DEAE-Cellulose. Vet. Parasit., 28: 521-534.

18. Losos G.J., Ikeede B.O., 1972. Review of the pathology of the diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Vet. Path. Suppl., 9: 1-177.

19. Melhitz D., 1977. The behaviour of blood incubation infectivity test of four trypanosome strains isolated from pigs in Liberia. Trans. R. Soc. trop. Med. Hgy., 71: 86.

KALU (A.U.). Sensibilité aux trypanocidas et au plasma humain de souches de Trypanozoon isolées d’animaux provenant de foyers endémiques de maladie du sommeil au Nigeria. Revue Elev. Méd. vét. Pays trop., 1995, 48 (2): 139-144.

La sensibilité de douze souches de Trypanozoon isolées d’animaux provenant de foyers endémiques de maladie du sommeil situés dans le Centre et au Nord du Nigeria a été étudiée vis-à-vis de deux trypanocidas, l’acéturate de diminazène (Berenil) et le chlorhydrate de isometamidé (Samorin), et du plasma humain. Chez les petits ruminants infectés, trois souches ont monté une résistance vis-à-vis de l’acéturate de diminazène administré à doses de 7,0 - 14,0 mg/kg de poids vif, alors que le chlorhydrate d’isometamidium administré à des doses de 1,0 mg/kg de poids vif ou à des concentrations supérieures n’est pas parvenu à guérir les infections dues à deux des souches résistantes à l’acéturate de diminazène. De même, les deux souches ayant manifesté une résistance vis-à-vis du chlorhydrate d’isometamidium se sont montrées régulièrement résistantes à l’activité trypanolytique du plasma humain. Cela tend à indiquer que les bovins jouent le rôle de réservoir du sous-genre Trypanozoon brucei, lequel est une source potentielle d’infection pour l’homme et résiste à l’action thérapeutique de ces deux médicaments, l’acéturate de diminazène et le chlorhydrate d’isometamidium.

Mots clés : Maladie du sommeil - Trypanozoon - Bovin - Porcín - Plasma sanguin - Nigeria

20. Melhitz D., Zillmann U., Scott C.M., Godfrey D.G., 1982. Epidemiological studies on the animal reservoirs of gambiense sleeping sickness. Part III. Characterization of Trypanozoon stocks by isoenzyme and sensitivity to human serum. Tropenmed. Parasit., 53: 115-118.

21. Moloo S.K., Losos G.J., Kutuzs S.B., 1973. Transmission of T. brucei to casts and dogs by feeding on infected goats. Trans. R. Soc. trop. Med. Hgy., 67: 531-534.

22. Murray M. ed., 1987. Trypanotolerance: Network training manual. Addis Ababa, Ethiopia, ILCA, p. 42.

23. Murray M., Murray P.K., McIntyre W.L.M., 1977. An improved parasitological technique for the diagnosis of African trypanosomiasis. Trans. R. Soc. trop. Med. Hgy., 71: 325-326.

24. Rickman L.R., 1987. The blood incubation infectivity test (BIIT) as an epidemiological tool in the study of African human trypanosomiasis (sleeping sickness). Geneva, Switzerland, WHO, p. 199-216. (UNDP/World Bank/WHO Tropical Disease Research Series, 5)

25. Rickman L.R., Robson J., 1974. Some observations on the identification of Trypanozoon (Trypanozoon) brucei species strains isolated from non-human hosts. Trans. R. Soc. trop. Med. Hgy., 68: 166-167.

26. Scott C.M., 1981. Mixed populations of Trypanozoon brucei in a naturally infected pig. Tropenmed. Parasit., 32: 221-222.

27. Scott C.M., Frezil J.L., Yorke W., Adams A.R.D., 1930. Studies in chemotherapy (ii) the action in vitro of normal human serum on the pathogenic trypanosomes and its significance. Ann. trop. Med. Parasit., 24: 115-163.

28. Uzoigwe N.R., 1986. A comparative study of the infectivity and course of infection of different strains of T. brucei gambiense in Guinea pigs. NITR, annual report 1986. Kaduna, Nigeria, NITR, p. 20-22.

29. Wouter P.K.T., 1970. The haematocrit centrifugation technique for the diagnosis of African trypanosomiasis. Acta trop., 27: 384-396.

30. Yorke W., Adams A.R.D., Murgatroyd D., 1930. Studies in chemotherapy (ii) the action in vitro of normal human serum on the pathogenic trypanosomes and its significance. Ann. trop. Med. Parasit., 24: 115-163.

31. Zillmann U., Melhitz D., 1979. The natural occurrence of Trypanozoon in domestic chicken in the Ivory Coast. Tropenmed. Parasit., 30: 24-28.

KALU (A.U.). Sensibilidad hacia tripanocidas y plasma humano de stocks de Trypanozoon de derivados animales, provenientes de focos endémicos de la enfermedad del sueño en Nigeria. Revue Elev. Méd. vét. Pays trop., 1995, 48 (2): 139-144.

Se estudió la susceptibilidad hacia dos tripanocidas, el acetato diminazénico (Berenil) y el clorhidato de isometamidion (Samorin), así como del plasma humano, en doce stocks de Trypanozoon aislados a partir de ganado semi-nómada, proveniente de focos conocidos de la enfermedad del sueño, en Nigeria central y del norte. Tres de los stocks provenientes de pequeños rumiantes infectados, fueron resistentes al acetato diminazénico, a dosis de 7,0 - 14,0 mg/kg de peso vivo, mientras que el clorhidato de isometamidion a dosis de 1,0 mg/kg de peso vivo, fue incapaz de producir un efecto parasitológico curativo de las infecciones en dos de los stocks diminazénico-resistentes. Los dos stocks isometamidion-resistentes, presentaron también resistencia a la acción tripanolítica del plasma humano. Se sugiere que este gama do representa un reservorio de subspecies de Trypanozoon brucei potencialmente infeccioso al hombre y resistente a la acción terapéutica de los dos productos curativos mencionados (diminazénico y isometamidion).

Palabras clave: Enfermedad del sueño - Trypanozoon - Bovino - Cerdo - Plasma sanguíneo - Nigeria