Validating a segment on chromosome 7 of *japonica* for establishing low-cadmium accumulating *indica* rice variety

Kai Wang1,2,3,5, Tian-ze Yan1,5, Shi-long Xu1,5, Xu Yan1,4, Qun-feng Zhou1, Xin-hui Zhao1, Yan-feng Li1, Zhong-xiu Wu1,2, Peng Qin1, Chen-jiang Fu1, Jun Fu1, Yan-biao Zhou1 & Yuan-zhu Yang1,2,3,*

Cadmium (Cd) contamination of rice is a serious food safety issue that has recently been gaining significant public attention. Therefore, reduction of Cd accumulation in rice grains is an important objective of rice breeding. The use of favourable alleles of Cd accumulating genes using marker-assisted selection (MAS) is theoretically feasible. In this study, we validated a segment covering *OsHMA3-OsNramp5-OsNramp1* on chromosome 7 of *japonica* for establishing low-cadmium accumulating *indica* rice variety. The *OsHMA3-OsNramp5-OsNramp1* haplotype significantly decreased grain Cd concentration in middle-season *indica* genetic background. The improved 9311 carrying the *OsHMA3-OsNramp5-OsNramp1* haplotype with recurrent parent genome recovery of up to 91.6% resulted in approximately 31.8% decrease in Cd accumulation in the grain and with no penalty on yield. There is a genetic linkage-drag between *OsHMA3-OsNramp5-OsNramp1* and the gene conditioning heading to days (HTD) in the early-season *indica* genetic background. Because the *OsHMA3-OsNramp5-OsNramp1-Ghd7* haplotype significantly increases grain Cd concentration and prolongs growth duration, the linkage-drag between *OsHMA3-OsNramp5-OsNramp1* and *Ghd7* should be broken down by large segregating populations or gene editing. A novel allele of *OsHMA3* was identified from a wide-compatibility *japonica* cultivar, the expression differences of *OsNramp1* and *OsNramp5* in roots might contribute the Cd accumulating variation between *japonica* and *indica* variety.

Contamination of agricultural soils with heavy metals is a serious threat to crop production. Cadmium (Cd), one of the most dangerous heavy metals, has long been recognised as a major threat to human health through contamination of the food chain1. Rice (*Oryza sativa* L.) is the staple food for more than half of the world’s population, as well as a crop with high Cd accumulating ability2. To suppress Cd pollution of food, rice has a strict upper level of Cd content. According to the Codex Alimentarius Commission of the FAO/WHO, the maximum Cd concentration in polished rice should not exceed 0.4 mg/kg, whereas stricter limits were implemented in China, with a maximum level for Cd of 0.2 mg/kg4,5. Rice-derived products are subject to the risk of Cd contamination, and consequent threats to consumer health if rice is grown in Cd-contaminated agricultural soil6. In some areas of China, Japan, Thailand, Bangladesh, Indonesia and Korea, the production of rice grains with high Cd levels, and subsequent transfer of the contaminant to the human food chain, is a serious environmental and food safety issue6,7. Fortunately, rice germplasm carries a large number of genetic variations related to grain Cd concentration. *japonica* cultivars generally accumulate lower concentrations of Cd than *indica* and *aus* cultivars8-10, suggesting that Cd accumulation is genetically controlled in rice. It should, therefore, be possible to breed rice cultivars with a low Cd accumulation based on genetic improvement. Cd, from soil to grains in

1Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410128, China. 2State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China. 3Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China. 4College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. 5These authors contributed equally: Kai Wang, Tian-ze Yan and Shi-long Xu. 6*email: yzhyah@163.com*
risky, has been a subject of considerable research and several relevant genes have been identified in recent years, including OsIRT1, OsHMA3, OsNramp1, OsNramp5, OsHMA2, OsLCD and OsLCT1119. Although genotypic differences in Cd concentration and several genes have been studied, only limited efforts have been made to breed rice with reduced Cd content, especially in indica cultivars.

Of the Cd transport-related genes of rice, OsHMA3, which is a major quantitative trait locus (QTL) mapped and cloned from low Cd-accumulating japonica cultivars (Akita 63 and Nipponbare), plays a transporter in Cd compartmentation into root cell vacuoles. Non-functional allele of OsHMA3 results in high efficiency of root-to-shoot Cd translocation12,13. OsNramp1 and OsNramp5 are metal transporter genes that have been suggested to mediate the adsorption of Cd from soil to root14,16. The expression of OsNRAMP1 in roots was found to be higher in high Cd-accumulating indica cultivars (Habataki, Anjana Dhan, Jarjan) than in low Cd-accumulating japonica varieties (Sasanishiki, Nipponbare)14. The expression of OsHMA3 and OsNRAMP5 in roots was lower in high Cd-accumulating indica cultivars (9311) than in low Cd-accumulating varieties, including PA64S, which was derived from an indica/japonica cross14,2022. Variations in the promoter sequences was found between indica and japonica cultivars, which might lead to differences between in the expression levels of OsHMA3, OsNRAMP1 and OsNRAMP5, as well as in Cd accumulation in the grains14,2022. In addition, mutant osnhramp5 produced by carbonion-beam irradiation greatly decreases Cd uptake by roots, resulting in decreased Cd in grain and exhibit no agriculturally adverse traits15. The combined action of OsHMA3, OsNRAMP1 and OsNRAMP5 might contribute to the difference in grain Cd accumulation between indica and japonica varieties. Coincidentally, these three genes—OsHMA3, OsNramp5 and OsNramp1—are all located on 7.4 Mb to 9.0 Mb of chromosome 7 within a region of about 1565 kb, according to the Rice Genome Annotation Project Database23. The segment covering OsHMA3-OsNramp5-OsNramp1 from a low Cd-accumulating japonica cultivar may be valuable for improving indica varieties to produce low Cd accumulation.

The severity of rice grain Cd pollution in some areas of China led to the initiation of a national key breeding programme to reduce the Cd content of indica rice in 2014. This study was conducted with the objectives of (1) validating the effect of the OsHMA3-OsNramp5-OsNramp1 region on chromosome 7 for grain Cd accumulation; (2) evaluating the use of OsHMA3-OsNramp5-OsNramp1 for indica improvement with low Cd accumulation in grains and (3) improving the elite indica cultivar with low Cd grain accumulation by MAS.

Results

Phenotypic variation and the effects of OsHMA3-OsNramp5-OsNramp1 in recombinant inbred lines derived from an indica–japonica cross. A recombinant inbred line (RIL) population was bred from crosses between indica variety 9311 and a japonica landrace IRAT129. The 9311 variety is an elite two-line middle-season indica hybrid restorer in China that accumulates Cd at high levels, and the IRAT129 variety is a high-compatibility japonica landrace that has a low ability to accumulate Cd. IRAT129, 9311, and RILs with 133 lines were grown in a Cd-polluted paddy field at Ningxiang in the 2016 middle-season rice growing season (Table 1). The Cd concentrations of IRAT129 and 9311 brown rice were 0.493 and 1.020 mg/kg, respectively. The Cd concentration in brown rice RILs was continuously distributed with Cd concentrations ranging from 0.133 to 1.463 mg/kg, averaging to 0.609 mg/kg (Fig. 1a). The kurtosis (0.174) and skewness (0.649) of the distribution of Cd concentrations were <1, indicating a normal distribution. Transgressive segregation in both directions was observed, indicating predominance of additive gene action contributed by both parental alleles.

A total of 133 RILs were genotyped using three pairs of intragenic molecular markers for OsHMA3, OsNramp5 and OsNramp1 genes (Table 2). Overall, 78 F2 lines with a homozygous genomic region covering OsHMA3, OsNramp5 and OsNramp1 genes (25 OsHMA3-OsNramp5-OsNramp1 homozygotes and 53 OsHMA3-OsNramp5-OsNramp1 heterozygotes) were selected and their phenotypes were investigated in 2017. The frequency distribution of Cd concentration was not distinguishable among different genotypes, but OsHMA3-OsNramp5-OsNramp1 homozygous lines tended to have lower values and OsHMA3-OsNramp5-OsNramp1 heterozygous lines had higher values (Fig. 1b). Results of a two-way ANOVA on the phenotypic differences between OsHMA3-OsNramp5-OsNramp1 homozygous lines in 2016 and 2017 are presented in Table 3. Significant variation was apparent between the two homozygous genotypic groups over the 2 years. Genotypes of OsHMA3-OsNramp5-OsNramp1 explained 10.9% of the phenotypic variance in

Population	Generation	Segregating target genes	Samples	Growing season	Trait measured
RILs	F2	OsHMA3-OsNramp5-OsNramp1	133 lines, containing 25 lines of IRAT129, 53 lines of 9311	Middle-season rice cropping season in 2016/2017	Cd
	F2		25 lines of IRAT129, 53 lines of 9311	Middle-season rice cropping season in 2017	Cd
NIL611	BC2;F2;3	OsHMA3-OsNramp5-OsNramp1	30 lines of IRAT129, 30 lines of H611 and 60 lines of heterozygote	Early-season rice cropping season in 2017	HTD, Cd
NIL819	BC2;F2;3		30 lines of IRAT129, 28 lines of H819 and 60 lines of heterozygote	Early-season rice cropping season in 2017	HTD, Cd
NIL9311	BC2;F2;3		23 lines of IRAT129, 30 lines of 9311 and 59 lines of heterozygote	Middle-season rice cropping season in 2017	HTD, Cd

Table 1. Populations used to validate the effect of OsHMA3-OsNramp5-OsNramp1 from IRAT129. The IRAT129, 9311, H611 and H819 presented in the column of samples indicate the haplotype of OsHMA3-OsNramp5-OsNramp1.
OsHMA3-OsNramp5-OsNramp1 haplotype of IRAT129 appeared to be associated with decreased Cd concentration in brown rice.

Validation of OsHMA3-OsNramp5-OsNramp1 effects in the indica genetic background. Three sets of NILs of OsHMA3-OsNramp5-OsNramp1 in an indica genetic background replaced with 9311 (an elite

Cd concentration in 2016 and 8.6% of the variance in 2017. The OsHMA3-OsNramp5-OsNramp1 haplotype of IRAT129 appeared to be associated with decreased Cd concentration in brown rice.

Table 2. Three developed intra-genic markers used to amplify Cd accumulating genes.

Gene	Marker	Primer sequence	Expected size (bp) of IRAT129 and 9311 (IRAT129/9311)	Restriction enzyme
OsHMA3	HMA3	AAT CCA TCC AAC CAA ACC	280 bp	BsaI
OsNramp5	Nramp5	TTG TCA AGA TAC CAC ATC	140/144 bp	
OsNramp1	Nramp1	GGC TGT AGA TAC CAC ATC	761/355 bp	

Table 3. Brown rice Cd concentration and HTD of different genotypes differing in the OsHMA3-OsNramp5-OsNramp1 region. HTD is the days to heading. japonica and indica are lines carrying homozygous OsHMA3-OsNramp5-OsNramp1 haplotype from IRAT129 and indica variety (9311, H611 or H819), respectively. H, the lines carrying heterozygous OsHMA3-OsNramp5-OsNramp1 haplotype. A, additive effect of replacing OsHMA3-OsNramp5-OsNramp1haplotype with OsHMA3-OsNramp5-OsNramp1haplotype. D, degree of dominance. R^2, the proportion of phenotypic variance explained by OsHMA3-OsNramp5-OsNramp1.

Population	Year	Trait	Phenotype of different genotypes (Mean ± SD)	ANOVA	A	D	D/[A]	R^2
RIL	2016	Cd	0.486 ± 0.186	0.10	10.9			
	2017	Cd	0.769 ± 0.260	0.13	8.6			
NIL9311	2017	Cd	1.491 ± 0.160	0.01	17.9			
		HTD	106.7 ± 2.0	0.50	6.8			
NIL611	2017	Cd	0.791 ± 0.081	0.14	37.1			
		HTD	89.0 ± 2.7	7.0	84.3			
NIL819	2017	Cd	0.820 ± 0.092	0.07	45.4			
		HTD	92.0 ± 1.9	9.5	96.6			
IRAT129	2017	Cd	0.465 ± 0.107					
9311	2017	Cd	1.838 ± 0.216					
H611	2017	Cd	0.412 ± 0.044					
H819	2017	Cd	0.436 ± 0.062					
IRAT129(Ghd7-2) 9311(Ghd7-1) 1 1MSMPAAGECGCGLCDGDDGGCCSRHRDDDFPVFPSPACQGIAGAPFVHEFQFQFDND
IRAT129(Ghd7-2) 9311(Ghd7-1) 1MGGGGDESSVAVFDYFPPVPAAMHGRRQPPYDGVAPSLLFRNTRGAGGTLTDVSL
IRAT129(Ghd7-2) 9311(Ghd7-1) 121QREPDALGLGLGGGSRHAEAAASATIMYCGSTTDAASSMPKAVMQAGGRELNP
IRAT129(Ghd7-2) 9311(Ghd7-1) 181NTVVGAVREAEKLRYEKRRKRCYEQKRIYASKRANADMRPRVGRFAKDBQEAAP
IRAT129(Ghd7-2) 9311(Ghd7-1) 241PSTYVDPSSLLEQLQWFR
IRAT129(Ghd7-2) 9311(Ghd7-1) 241PSTYVDPSSLLEQLQWFR

Figure 2. The predicted protein sequences of GHD7 for IRAT129, 9311, H611 and H819.

two-line middle-season indica hybrid restorer in China), and H611 and H811 (two elite two-line early-season indica hybrid restorers in China) were developed to validate the practicality and effectiveness of OsHMA3-OsNramp5-OsNramp1jap in molecular marker-assisted improvement of indica rice with low Cd-accumulating ability. Discrete distributions of Cd concentration were not observed in the three sets of NILs, but the frequency distributions were distinguishable among the different genotypes. OsHMA3-OsNramp5-OsNramp1jap homozygous, OsHMA3-OsNramp5-OsNramp1ind homozygous and heterozygous lines tended to have lower, higher and higher values in NIL9311, whereas it exhibited the opposite response in NIL611 and NIL819. These results indicated that different genotypic groups of NIL9311, NIL611 and NIL819 might carry different alleles for Cd, whereas OsHMA3-OsNramp5-OsNramp1ind in NIL611 and NIL819 has a different genetic effect direction from that in NIL9311. Two-way ANOVA was used to examine differences among the three genotypic groups in each of the two NIL sets. As expected, major allele effects were detected for Cd in all the three NIL sets and explained 17.9%, 37.1% and 45.4% of the phenotypic variance in NIL9311, NIL611 and NIL819, respectively. The OsHMA3-OsNramp5-OsNramp1ind haplotype decreased Cd concentration in NIL9311 by 0.25 mg/kg (Table 3). However, in contrast to the results from RIL and NIL9311, the favourable Cd-decreasing allele was found in indica cultivars H611 and H819, and the OsHMA3-OsNramp5-OsNramp1ind haplotype increased Cd by 0.13 mg/kg in NIL611 and 0.21 mg/kg in NIL819 (Table 3).

Major effects were detected for HTD in NIL611 and NIL819. The enhancing alleles were all from IRAT129, they increased HTD by 7.0 and 9.5 days and explained 84.3% and 96.6% of the phenotypic variance in NIL611 and NIL819, respectively. A minor effect was detected for HTD in NIL9311, and the enhancing allele came from 9311, increasing HTD by 0.5 days and explaining 6.8% of the phenotypic variance. These results indicated that the segment containing OsHMA3-OsNramp5-OsNramp1ind from IRAT129 has major effects on HTD in early-season indica rice and minor effects in middle-season indica rice and the directions of the genetic effects are opposite.

Heading date and yield potential gene (Ghd7) analysis of NIL population. A cloned gene Ghd7, an important regulator of heading date and yield potential in rice, which plays a crucial role in increasing productivity and adaptability of rice globally is located close to OsNramp1, within a physical distance of about 181.5 kb (Chr.7: 8,970,856–9,152,377), according to the Rice Genome Annotation Project Database. To investigate the role of Ghd7 gene on the expression of OsHMA3-OsNramp5-OsNramp1ind in early-season and middle-season indica genetic backgrounds, we obtained the Ghd7 sequence of IRAT129, H611, H819 and 9311. Comparison of the predicted protein sequences identified three alleles, equivalent to Ghd7-0, Ghd7-1 and Ghd7-2 in a previous study. IRAT129 and 9311 carried a functionally weaker allele of Ghd7-2 and a fully functional allele of Ghd7-1, respectively (Fig. 2). The Ghd7 locus of H611 and H819 was completely deleted (Ghd7-0). The genotyping of the three sets of NILs with an intragenic marker for Ghd7 showed that the segment of OsHMA3-OsNramp5-OsNramp1ind also contained Ghd7-0 in three sets of NILs. The HTD effects in early-season and middle-season indica rice could be a result from the effects of different Ghd7 alleles.

Genetic background and agronomic traits of improved 9311 with the OsHMA3-OsNramp5-OsNramp1-Ghd7haplotype. Eight improved homozygous plants from the NIL9311 population were genotyped using high-density SNP markers to check the genome recovery rate of the recurrent parent in the improved lines. Of the 1125 SNP markers covering 12 chromosomes, 630 SNPs showed polymorphism between the donor IRAT129 and recipient 9311. The selected improved plants showed a high genome recovery rate of the recurrent parent, at 90.4–91.6% (Table 4). A graphical genotype map of NIL9311-58 was constructed based on the SNP genotyping results (Fig. 3), assuming that the size of the target chromosome segment containing the OsHMA3-OsNramp5-OsNramp1ind was approximately 14.3 Mb. The genetic background of NIL9311-58 was also analysed with 48 SSR makers, which are used for the identification of rice varieties. The result showed only one polymorphic SSR marker RM542 (Chr. 7: 12,712,017–12,712,178), neighbouring

![Genetic background and agronomic traits of improved 9311 with the OsHMA3-OsNramp5-OsNramp1-Ghd7haplotype.](https://example.com/genetic-background.png)
OsHMA3-OsNramp5-OsNramp1-Ghd7 (Chr. 7: 7,405,745–9,155,030)27, was identified between improved 9311 (NIL9311-58) and original 9311.

To test whether the OsHMA3-OsNramp5-OsNramp1-Ghd7jap haplotype has a negative effect on the yield, the agronomic traits and grain metallic element of eight lines derived from NIL9311-58 (improved 9311 carrying OsHMA3-OsNramp5-OsNramp1jap with favourable agronomic performance and lower Cd accumulation in the grain) and the control 9311 were evaluated in the middle rice-cropping season at Niangxiang in 2018. The improved 9311 showed a significant increase in Mn concentration, panicle numbers and yield, and a significant decrease in DTH and grain Cd accumulation compared with the control 9311 (Table 5). Overall, the improved 9311 had no negative effect on yield, whereas it decreased grain Cd accumulation by about 31.8% and increased Mn accumulation by about 21.2%.

Table 4. Genome recovery rate of eight improved homozygous plants from NIL9311 population.

Line no	No. of SNP	No. of SNP allele	Genome ratio (%)			
		Recipient	Donor	Hetero	Recipient	Donor
NIL9311-11	617	558	56	3	90.7	9.3
NIL9311-12	619	560	56	3	90.7	9.3
NIL9311-21	620	561	56	3	90.7	9.3
NIL9311-54	619	563	53	3	91.2	8.8
NIL9311-58	617	565	52	0	91.6	8.4
NIL9311-62	619	560	57	2	90.6	9.4
NIL9311-61	619	562	54	3	91.0	9.0
NIL9311-62	618	556	57	5	90.4	9.6

Figure 3. Graphical genotype maps of the improved 9311 (NIL9311-58). NIL9311-58 with the OsHMA3-OsNramp5-OsNramp1-Ghd7jap haplotype was genotyped using 1.2 K SNP markers. Six hundred and thirty polymorphic SNPs between bi-parents were used for the construction of the genotype maps.

Table 5. Agronomic performance of improved 9311 (NIL9311-58) lines carrying OsHMA3-OsNramp5-OsNramp1jap in the genetic background of 9311. NL: number of lines; DTH: days to heading; PH: plant height; PN: number of panicles per plant; NGP: number of grains per panicle; SF: spikelet fertility; TGW: 1000-grain weight; YP: yield per plant; Cd, Fe, Mn, Cu, Zn: Cd, Fe, Mn, Cu and Zn content in brown grains. *Significance at P<0.01.

Genotype	NL	DTH	PH	PN	NGP	SF (%)	TGW (g)	YP (g)	Cd (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Cu (mg/kg)	Zn (mg/kg)
9311	5	92.0 ± 0.3	119.0 ± 1.1	8.3 ± 1.1	208.7 ± 7.1	89.1 ± 7.8	29.9 ± 1.0	36.7 ± 2.7	1.57 ± 0.25	19.97 ± 0.01	42.73 ± 0.75	3.29 ± 0.26	31.7 ± 0.70
NIL9311-58	8	89.4 ± 1.5*	117.9 ± 2.6	9.6 ± 1.2*	213.9 ± 15.2	88.1 ± 1.9	29.1 ± 0.6	38.4 ± 2.1*	1.07 ± 0.12*	20.8 ± 0.07	51.77 ± 2.17*	3.45 ± 0.20	31.37 ± 1.31

OsHMA3-OsNramp5-OsNramp1-Ghd7 (Chr. 7: 7,405,745–9,155,030)27, was identified between improved 9311 (NIL9311-58) and original 9311.

To test whether the OsHMA3-OsNramp5-OsNramp1-Ghd7jap haplotype has a negative effect on the yield, the agronomic traits and grain metallic element of eight lines derived from NIL9311-58 (improved 9311 carrying OsHMA3-OsNramp5-OsNramp1jap with favourable agronomic performance and lower Cd accumulation in the grain) and the control 9311 were evaluated in the middle rice-cropping season at Niangxiang in 2018. The improved 9311 showed a significant increase in Mn concentration, panicle numbers and yield, and a significant decrease in DTH and grain Cd accumulation compared with the control 9311 (Table 5). Overall, the improved 9311 had no negative effect on yield, whereas it decreased grain Cd accumulation by about 31.8% and increased Mn accumulation by about 21.2%.
Table 6. OsHMA3 haplotypes of 9311, H611 and IRAT129. The data was cited from Yan et al.24, bThe data was cited from Miyadate et al.23.

Haplotype and expression of OsHMA3, OsNramp1 and OsNramp5 in IRAT129, 9311, NIL9311-58, H611 and H819. At least eight alleles (I to VIII) of OsHMA3 have been identified in previous reports25. The coding regions of OsHMA3 of IRTA129, 9311, H611 and H819 were therefore sequenced. Results indicated that 9311, H611 and H819 have the same functional allele of type V, whereas IRTA129 did not belong to any of the eight haplotypes, which has a single amino acid mutation at 550th position with Ile being substituted by Val compared to type V allele (designated as type X here) (Table 6). Liu et al. reported that the expression difference of OsHMA3, which due to natural variation in the promoter of OsHMA3, contributes to differential grain cadmium accumulation between indica and japonica rice20. We therefore compared the expression level of OsHMA3 in roots of IRTA129, 9311 and NIL9311-58. In inconsistent with the results of Liu et al., there were no significant differences in OsHMA3 expression between the three cultivars tested in either the absence or the presence of Cd. The presence of Cd tended to decrease the expression of OsHMA3, and the effect was significant in all tested lines (Fig. 4a). Sequence variations in the about 2 kb OsHMA3 promoter were therefore investigated. The results showed that promoter sequences in 9311, H611 and H819 are the same as that of type 1 (indica type) in the research of Liu et al.20. Thirteen nucleotide variations were identified between type 1 and IRTA129 promoter (Table S1). Liu et al. revealed that the differential transcriptional activity of OsHMA3 promoter between indica and japonica could be attributed to the seven nucleotide changes occurring in the region between −683 and −557 bp20. However, there was no nucleotide variation between type1 indica and IRTA129 japonica promoter.

The coding regions of OsNramp1 and OsNramp5 of IRTA129, 9311, H611 and H819 were also sequenced. Results indicated that 9311, H611 and H819 have the different allele of OsNramp1 with that of IRTA129, which has three single amino acid mutation at 34th, 252th and 512th position, respectively (Table S2). Consistent with results of Takahashi et al.14 and Chang et al.23, the level of OsNramp1 expression in the roots of indica 9311 was higher than that of japonica IRTA129 and NIL9311-58 in either the absence or the presence of Cd. The presence of Cd tended to increase the expression of Nramp1, and the effect was significant in all tested lines (Fig. 4b). Sequence variations in the about 2 kb OsNramp1 promoter were therefore investigated. The results showed that promoter sequences in 9311, H611 and H819 are the same as that of type 1 (indica type) in the research of Liu et al.20. Nineteen nucleotide variations including the 406 bp InDel variation were identified between IRTA129 and 9311 promoters (Table S3). The 406 bp were missing in 9311, as well as in H611 and H819. Sequencing analysis results showed that 9311, H611, H819 and IRTA129 have the same allele of OsNramp5 with no amino acid variation. Similar results with the research of Liu et al.20, the level of OsNramp5 expression in the roots of 9311 was significantly higher than that of IRTA129 and NIL9311-58 in either the absence or the presence of Cd (Fig. 4c). Twelve nucleotide variations were found in the promoter region (Table S4). These sequence variations in the promoter region could lead to the expression level difference of OsNramp1 and OsNramp5 between 9311 and NIL9311-58.
Discussion

Accumulation of Cd in crops is a serious agricultural issue. Reducing Cd concentration in the edible parts of crops through breeding is a promising option for decreasing risks to human health without any additional cost to farmers. The incorporation of favourable alleles of major Cd accumulation QTLs/gene(s) could be an important measure to decrease the grain Cd concentration of rice. *Japonica* rice generally accumulates lower amounts of Cd in the grain than do *indica* and *aus* cultivars. Three genes (*OsHMA3*, *OsNramp5* and *OsNramp1*), located in a region of about 1565 kb on chromosome 7 (physical location: 7:405,745–8,970,856), have previously been identified as playing critical roles in Cd accumulation in rice. However, there is no evidence that *OsHMA3*, *OsNramp5* or *OsNramp1* is/are the casual gene(s) for general differences in Cd accumulation between *indica* and *japonica* rice, and there is no previous report on the use of *OsHMA3*, *OsNramp5* or *OsNramp1* from low Cd accumulation *japonica* cultivars in *indica* improvement for low Cd accumulation. In this study, we investigated the role of genomic segment covering *OsHMA3*-OsNramp5-OsNramp1 by introgressing it in an *indica* breeding programme aimed at decreasing potential grain Cd pollution risk in elite *indica* cultivars. For the evaluation of the effect on Cd accumulation, the *OsHMA3*-OsNramp5-OsNramp1 haplotype was tested in an *indica*-*japonica* cross background and a different season-type *indica* cultivar background using RILs and NILs population over two cropping seasons.

In this study, *OsHMA3*-OsNramp5-OsNramp1 was found to explain 8.6–10.9% of the grain Cd concentration variance in RILs derived from *japonica* crossing (9311 × IRAT129) in two cropping seasons, and the favourable allele came from *japonica*, as expected. For the further evaluation of the *OsHMA3*-OsNramp5-OsNramp1 haplotype in the *indica* breeding programme, we removed the *japonica* donor genome from the breeding lines. NILs of *OsHMA3*-OsNramp5-OsNramp1 in different *indica* backgrounds (9311, H611 and H819) were developed by advanced-backcross and MAS. 9311 is an elite male parent of two-line middle-season hybrid rice, as well as a favourable *indica* variety in China. 9311 is the male parent of Liangyoupe9 and Y-liangyou1, which are representative varieties of the first- and second-stage super-hybrids in China. Liangyoupe9 was the hybrid rice variety with the largest yearly promotion area from 2002 to 2007, except in 2004, and Y-liangyou-1 had the largest yearly promotion area from 2010 to 2013 in China. However, 9311 and the hybrid rice varieties derived from 9311 have high Cd accumulation, especially in grains. H611 and H819 are the elite male parents of two-line early-season hybrid rice. Zhulinagyou819, the combination of Zhus1 and H819, is the first hybrid rice to be identified as a low Cd accumulation variety in Hanan province, China. The *OsHMA3*-OsNramp5-OsNramp1 haplotype significantly decreased grain Cd concentration in a middle-season *indica* 9311 genetic background. The homozygotes of *OsHMA3*-OsNramp5-OsNramp1 accumulated 24.7% less Cd in grains than did homozygotes of *OsHMA3*-OsNramp5-OsNramp1 and *OsHMA3*-OsNramp5-OsNramp1. These results indicate that the *OsHMA3*-OsNramp5-OsNramp1 haplotype can be used in middle-season *indica* improvement for low Cd concentration in the grains. Among the 23 homozygous lines of *OsHMA3*-OsNramp5-OsNramp1, NIL 9311-58 showed the lowest Cd concentration in the grain, 40.7% less than 9311. Eight lines (improved 9311) were derived from NIL 9311-58 to evaluate whether the *OsHMA3*-OsNramp5-OsNramp1-Ghd7 haplotype had negative effects on yield performance. The improved 9311 significantly decreased grain Cd accumulation, by about 31.8%, and significantly increased yield, of about 4.6%. This improved 9311 line, a near isogenic line, is similar to 9311 variety in all agronomic aspects except low Cd accumulation in the grain. Therefore, the improved 9311 could replace 9311 for rice production in areas where Cd pollution is a potential threat. However, in contrast to the performance in middle-season *indica* background, the *OsHMA3*-OsNramp5-OsNramp1 haplotype significantly increased grain Cd concentration in two early-season *indica* (H611 and H819) background. In addition, major effects were detected for HTD in NIL611 and NIL819, and the *OsHMA3*-OsNramp5-OsNramp1 haplotype has significantly increased HTD. This observation might imply the existence of a linkage-drag or pleiotropic effect of the segment containing *OsHMA3*-OsNramp5-OsNramp1 for grain Cd concentration in the early-season *indica* background. Some previous works also reported the QTLs related to grain Cd concentration overlap or contained the QTLs/gene(s) for DTH28,29. The pleiotropic effect of QTLs for grain Cd concentration and/or water management difference of the genotypes with different heading time in one trial plot is/are probably the main reason(s), which caused the experiment results above.30,31

Beside OsHMA3-OsNramp5-OsNramp1, an HTD gene, *Ghd7*, is located at a physical distance of about 181.5 kb from *OsNramp1*. Xue et al. (2008) reported that *Ghd7-1* is a fully functional allele and *Ghd7-2* is a weak functional allele. The *Ghd7* locus was completely deleted in early-season rice (*Ghd7-0*). Our study showed that *Ghd7* of *japonica* IRAT129, middle-season *indica* 9311, and early-season *indica* H611 and H819 was equivalent to the *Ghd7-2*, *Ghd7-1* and *Ghd7-0* type, respectively. All three NIL populations carried *OsHMA3*-OsNramp5-OsNramp1-Ghd7-0. A minor HTD effect was identified in the NIL9311 population, possibly because of the effects of the *Ghd7-1* and *Ghd7-2* alleles on HTD. Linkage-drag with *Ghd7* could be the reason for the *OsHMA3*-OsNramp5-OsNramp1-Ghd7 haplotype to significantly increase HTD in early-season *indica* background. The linkage-drag with *Ghd7* should be broken if the *OsHMA3*-OsNramp5-OsNramp1 haplotype is to be used in early-season *indica* improvement. The improved early-season *indica* lines with *OsHMA3*-OsNramp5-OsNramp1-Ghd7 showed late heading, and these cannot be cropped as early-season *indica*. *Ghd7* is located in the centromeric region of chromosome 7, therefore the recombination rate is considerably low. Xue et al. (2008) reported that the recombination rate around *Ghd7* region is about 37-fold lower than the genome average of approximately 200 kb/cM. A large segregating population (≥ 4077 plants, theoretically) should be developed to identify recombination events between *OsNramp1* and *Ghd7*, if we are to use the *OsHMA3*-OsNramp5-OsNramp1 haplotype to improve early-season *indica* for low Cd grain concentration. The target chromosome segment of *OsHMA3*-OsNramp5-OsNramp1 was selected using three intragenic markers for *OsHMA3*, *OsNramp5* and *OsNramp1* and none recombinant was used. To further investigate the effect of low Cd accumulation in grain is from one
or several gene(s) of OsHMA3, OsNramp5 and OsNramp1, the recombinants should be identified from the large segregating population derived from heterozygotes of OsHMA3-OsNramp5-OsNramp1.

A novel allele of OsHMA3 was identified from a wide-compatibility japonica cultivar IRAT129 with low Cd-accumulating ability. Nucleotide variations were identified between IRAT129 and higher Cd-accumulating indica variety (9311, H611 and H819) promoter, but there were no significant differences in OsHMA3 expression between 9311 and NIL9311 tested in either the absence or the presence of Cd. Whether OsHMA3 allele from IRAT129 has stronger function on decreasing Cd-accumulating ability need be further studied. The expressions of OsNramp1 and OsNramp5 in roots all were lower in lower Cd-accumulating variety/line (IRAT129 and NIL9311-58) than that in higher Cd-accumulating variety (9311). The 400 bp deletion in the promoter region of OsNRAMP1 and sequence variations identified in the promoter region of OsNRAMP5 could lead to differences in the expression level of OsHMA3 and OsNramp5, as well as in Cd accumulation in the grain between 9311 and NIL9311-58. Our results provide evidence that segment covering OsHMA3-OsNramp5-OsNramp1 on chromosome 7 of a japonica cultivar IRAT129 can be used in indica varieties improvement with accumulating low levels of Cd. But, the linkage-drag between OsHMA3-OsNramp5-OsNramp1 and Ghd7 should be broken down by large segregating populations or gene editing in early-season indica improvement. The improved 9311 with introgression of OsHMA3-OsNramp5-OsNramp1IRAT129 showed significant decrease in grain Cd accumulation without yield loss. However, the improved 9311 still cannot produce Cd-free grain (<0.2 or 0.4 mg/kg) in mild Cd-polluted paddy field with intermittent irrigation management. Assembling large numbers of favourable low-Cd gene/QTL alleles or edit Cd accumulating genes (such as OsNramp5, etc.) could be further studied for improving rice with Cd-free grain.

Methods

Plant materials. A RIL (F$_{2}$-) population consisting of 133 lines was generated from an F$_{1}$ hybrid between 9311 (an elite two-line middle-season indica hybrid restorer with high Cd-accumulating ability in China) and IRAT129 (a wide-compatibility japonica cultivar with low Cd-accumulating ability) by single seed descent.

Three sets of NILs including the genomic region covering the OsHMA3, OsNramp5 and OsNramp1 genes, with different genetic backgrounds, were also developed. IRAT129 was the paternal parent, and the IRTA129-type OsHMA3-OsNramp5-OsNramp1 haplotype (OsHMA3-OsNramp5-OsNramp1$_{IRAT129}$) donor was crossed with two elite two-line early-season indica hybrid restorers (H611 and H811) and an elite two-line middle-season indica hybrid restorer (9311) as maternal recipients. The resulting F$_{2}$ plants were backcrossed with the recipients. Plants heterozygous for the target region in the progeny were selected using molecular markers and crossed to recipients. Finally, BC$_{1}$F$_{1}$ plants heterozygous for the target region were selected to produce BC$_{1}$F$_{2}$, which were genotyped using molecular markers, and japonica-type homozygotes (OsHMA3-OsNramp5-OsNramp1$_{IRAT129}$), indica-type homozygotes (OsHMA3-OsNramp5-OsNramp1$_{IRAT129}$) and heterozygotes (OsHMA3-OsNramp5-OsNramp1$_{IRAT129}$) were selected. The three sets of NILs were derived from the selected seeds and named NIL611, NIL819 and NIL9311 with H611, H819 and 9311 genetic backgrounds, respectively. Eight plants selected from the NIL9311-58 line were named improved 9311.

DNA preparation, molecular marker development, sequencing and expression analysis. Genomic DNA was extracted from 2-week-old seedlings using the CTAB method as described by Murray and Thomson. Three newly developed intragenic markers were developed (Table 2) based on publicly available rice genome sequences. Gene cloning and sequencing were done following the methods described in Yan et al. Quantitative reverse transcription PCR (qRT-PCR) analysis was done following the methods described in Yan et al. Primers for cloning, sequencing and qRT-PCR in this study were listed in Table S5.

Background genotyping and construction of a graphical genotype map. Genomic DNA was prepared using the CTAB method as described by Murray and Thomson. A 1.2 K multiplex-PCR panel, which was based on GBS platform from MolBreeding Biotechnol (http://www.molbreeding.com), was employed for background genotyping. A total of 48 SSR makers were also used in background genotyping, following the protocol of the identification of rice varieties by SSR marker method (NY/T 1433–2014).

Field experiments and phenotypic analysis. Field experiments were conducted in a Cd-polluted paddy field (Niangxiang, China) in the 2016, 2017 and 2018 rice-growing seasons. The soil Cd concentration was around 0.40 mg/kg with pH 6.4. The irrigation water Cd concentration was about 0.027 ug/L. Field trials of RILs were conducted in the 2016 and 2017 middle-season rice growing seasons. NILs of NIL611 and NIL819 were conducted in the 2017 early-season rice growing season, as well as NIL9311 in the 2017 middle-season rice growing season. The experiments were arranged in a randomised complete block design with three replicates, with 10 plants per line. Field management followed normal agricultural practices, except that intermittent irrigation was adopted to maximise the phenotypic differences. DTH was counted from seed sowing to the flowering of 50% of the plants of each line. At maturity, the middle eight plants of each line in each replication were harvested, and the Cd concentrations of brown rice were determined using NX-100FA.

The 9311 and improved 9311 lines were cropped in the 2018 middle-season rice growing season, arranged in a randomised complete block design with three replicates and 40 hills per replicate. Field management followed that of the 2016 and 2017 field experiments. Days to heading (DTH) was counted from seed sowing to the flowering of 50% of the plants of each line. The plant height (PH) of five normal plants in the middle of each plot was measured at the fully mature stage, and these five plants were harvested to evaluate various agronomic traits in the laboratory, including the number of grains per panicle (NGP), spikelet fertility (SF), 1000-grain weight (TGW) and yield per plant (YP).
Statistical analysis. The SAS (V8.01) procedure GLM was used to evaluate phenotypic variation among the different genotypic groups in the RILs and NILs.

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files. The seeds of RILs, NILs and the parents are available from the corresponding author on reasonable request.

Received: 29 July 2019; Accepted: 23 February 2021

Published online: 15 March 2021

References

1. Clemens, S. et al. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).
2. Sun, L. et al. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front. Plant Sci. 7, 1407 (2016).
3. FAO & WHO. Codex Alimentarius Commission (2014). http://www.fao.org/news/story/en/item/238558/code/
4. MOH. National Food Hygienic Standard of China (GB 2762-2012 (2012). http://www.moh.gov.cn/ewebeditor/uploadfile/2013/01/20130121114328937.pdf.
5. Sebastian, A. & Prasad, M. N. V. Cadmium minimization in rice. Agron. Sustain. Dev. 34(1), 155–173 (2014).
6. Xie, L. H. et al. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chem. 217, 217–224 (2017).
7. Bolan, N. S. et al. Cadmium contamination and its risk management in rice ecosystems. Adv. Agron. 119, 183–273 (2013).
8. Arao, T. & Ae, N. Genotypic variations in cadmium levels of rice grain. J. Crop Sci. Biotech. 13(2), 69–73 (2010).
9. He, J. et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe3+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 52(4), 464–469 (2006).
10. Usami, T. et al. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. 107(38), 16500–16505 (2010).
11. Miyadate, H. et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 180(1), 190–199 (2011).
12. Takahashi, R. et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 62(14), 4843–4850 (2011).
13. Ishishuka, S. et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. P. Natl. Acad. Sci. 109(47), 19166–19171 (2012).
14. Sasaki, A. et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5), 2155–2167 (2012).
15. Takahashi, R. et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 35(11), 1948–1957 (2012).
16. Shimo, H. et al. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J. Exp. Bot. 62(15), 5727–5734 (2011).
17. Uruguchi, S. et al. Low-affinity cation transporter (OsLC1) regulates cadmium uptake into rice grains. Proc. Natl. Acad. Sci. 108(52), 20959–20964 (2011).
18. Liu, C. L. et al. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J. Integr. Plant Biol. 62(3), 314–329 (2020).
19. Chang, J. D. et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 43(10), 2476–2491 (2020).
20. Liu, C. et al. Characterization of a major QTL for manganese accumulation in rice grain. Sci. Rep. 7(1), 17704 (2017).
21. Kawahara, Y. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1), 4 (2013).
22. Xue, W. et al. Natural variation of Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40(6), 761 (2008).
23. Yan, J. et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 39(9), 1941–1954 (2016).
24. MGRA Protocol for identification of rice varieties-SSR marker method (NY/T 1433-2014) (2014).
25. Cold Spring Harbor Laboratory, Oregon State University & EMBL-EBI. Gramene (2019). http://www.gramene.org/
26. Ishikawa, S. et al. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol. 168(2), 345–350 (2005).
27. Abe, T. et al. Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshikihari chromosome substitution lines. Breeding Sci. 63(3), 284–291 (2013).
28. Honma, T. et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 50(8), 4178–4185 (2016).
29. Arao, T. et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol. 43(24), 9361–9367 (2009).
30. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8(19), 3431–3432 (1980).
31. International Rice Genome Sequencing Project. The rice annotation project database (2019). http://rapdb.dna.affrc.go.jp/}
32. Lu, L. et al. Evolution and association analysis of Ghd7 in rice. PLoS ONE 7(5), e34021 (2012).
33. SAS Institute. SAS/STAT User’s Guide (1999) https://v8doc.sas.com/sashelp/stat/index.htm

Acknowledgements

This work was supported by grants from Science and technology innovation program of Hunan (2019RS2054), National Key Technology Research and Development Program of China (2016YFD0101801), Major Project of Low-cadmium Early-season Rice Breeding Project of Hunan (Xiangmonglian [2018]70), State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center) Open Project Fund (2018KF03), Special Project of National Independent Innovation Demonstration Zone (2018XK2005) and Science and Technology Innovation Program of Hunan (2018KZK020).
Author contributions
Y.Y. designed the experiments. Y.Y. and C.F. constructed the populations. T.Y., S.X., Y.X. and Y. Z. performed molecular marker development, sequencing and expression analysis. Q.Z., Z.W, X.Z. and Y.L. conducted the field trials. K.W., P.Q. and J.F. analyzed the data. K.W. and Y.Y. wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-85324-0.

Correspondence and requests for materials should be addressed to Y.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021