Electrically tunable multi-terminal SQUID-on-tip

Aviram Uri1,*, Alexander Y. Meltzer1, Yonathan Anahory1, Lior Embon1,†, Ella O. Lachman1, Dorri Halbertal1, Naren HR1, Yuri Myasoedov1, Martin E. Huber1,2, Andrea Young1,3, and Eli Zeldov1,*

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
2Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, Colorado 80217, USA
3Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530

ABSTRACT

We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically \textit{in-situ}. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field “blind spots”. We demonstrate spin sensitivity of 5 to 8 μ_B/Hz1/2 over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging.

KEYWORDS: superconducting quantum interference device, SQUID on tip, nanoscale magnetic imaging, current-phase relations
In recent years, there has been a growing effort to develop and apply nanoscale magnetic imaging tools in order to address the rapidly evolving fields of nanomagnetism and spintronics. These include magnetic force microscopy (MFM)1,2, magnetic resonance force microscopy (MRFM)3–5, nitrogen vacancy (NV) centers sensors6–9, scanning Hall probe microscopy (SHPM)10–12, x-ray magnetic microscopy (XRM)13, and micro- or nano-superconducting quantum interference device (SQUID)14–20 based scanning microscopy (SSM)21–32. Scanning micro- and nanoscale SQUIDs are of particular interest for magnetic imaging due to their high sensitivity and large bandwidth15,19. The two main technological approaches to the fabrication of scanning SQUIDs are based on planar lithographic methods21,26,33–36 and on self-aligned SQUID-on-tip (SOT) deposition22,24,37.

In the planar SQUID architecture, spatial resolution is limited but pickup and modulation coils can be integrated to allow operation of the SQUID at optimal flux bias conditions using a flux-locked loop (FLL) feedback mechanism15,18,19,21,33,38,39. Because the magnetic field of the sample is not coupled to the SQUID loop directly, but rather through a pickup coil, integration of a modulation coil or an integrated current-carrying element15,19,21,33,38,39 allows the total flux in the SQUID loop to be maintained at its optimal bias while the magnetic field of the sample is varied independently.

SOTs, in contrast, have better spatial resolution due to their small size and close proximity to the sample, attain higher spin sensitivity, and can operate at high magnetic fields24. The nanoscale proximity of the SOT to the sample surface, which is its key advantage, dictates however that the flux in the SQUID loop is directly coupled to the local field of the sample and therefore cannot be modified independently. As a result, the FLL concept cannot be implemented in direct nanoscale magnetic imaging. This poses a significant drawback, since the high sensitivity of the SOT is achieved only at specific field values—leaving substantial “blind spots” at intermediate magnetic fields.

We present here a new approach that heals these blind spots by current-controlled phase bias of a multi-terminal/multi-junction SQUID. Instead of controlling the magnetic flux in the SQUID loop, we use a multi-terminal/multi-junction SQUID-on-tip (mSOT) in which we can electrically control in-situ the phase of the superconducting order parameter across the junctions. The resulting phase control provides a highly sensitive SQUID operation at optimal bias conditions at any value of the applied field and opens the possibility of implementing a
superconducting-phase locked loop (SPLL), the phase bias equivalent of the FLL commonly used with two-terminal/two-junction SQUIDs.

The operation of the mSOT is based on the incorporation of extra degrees of freedom by integrating additional junctions and terminals in the SQUID loop as shown schematically in Fig. 1a. Multi-junction devices, as well as multi-terminal configurations, have been proposed and used in the past for logic circuits, enhanced SQUID capabilities, voltage rectification, current amplification, kinetic inductance modulation, flux pumps, and flux modulation.

Here, in contrast, the extra degrees of freedom are used for phase rather than flux control of the interference pattern of the SQUID.

The basic principle of the mSOT phase-biased operation can be understood by considering an ideal two-terminal/two-junction SQUID with no inductance, which is described by

$$\varphi_1 + \varphi_2 + 2\pi \frac{\Phi_a}{\Phi_0} = 2\pi n,$$

where φ_i is the superconducting phase difference across each of the Josephson junctions, Φ_a is the applied flux in the loop, $\Phi_0 = h/2e$ is the flux quantum, and n is an integer. In the following we consider $n = 0$ for simplicity. The requirement for maximum total supercurrent through the SQUID sets $\varphi_1 - \varphi_2 = \pi$, resulting in the well-known quantum interference pattern $I_c = 2J_0 |\cos \pi \Phi_a / \Phi_0 |$, where J_0 is the maximal supercurrent each junction can support. The highest sensitivity of the SQUID is achieved when $|\varphi_1 + \varphi_2| \approx \pi/2$, which corresponds to $|\Phi_a| \approx \Phi_0/4$. The two phases are therefore uniquely defined, hence operation at the optimal sensitivity can be achieved only if the FLL maintains the net flux in the SQUID loop at $|\Phi_a| \approx \Phi_0/4$.

Figure 1a presents a schematic mSOT configuration consisting of four identical junctions and four terminals. The primary bias current I_1 is applied to terminal 1, while terminals 2 and 4 are used to provide the superconducting phase control currents I_2 and I_4, respectively. In this structure, Eq. 1 is replaced by

$$\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 + 2\pi \frac{\Phi_a}{\Phi_0} = 0,$$

where we took $n = 0$ for simplicity. In an mSOT, the current through terminal 1 is determined by only two of the four phases: $I_1 = I_2 - I_4 = J_0 (\sin \varphi_1 - \sin \varphi_4)$. Therefore, a deviation of Φ_a from the optimal value $\Phi_0/4$ can be compensated by adjusting φ_2 or φ_3 according to Eq. (2) to preserve the original I_1. The result is a shift of the interference pattern $I_{c1}(\Phi_a)$ that allows the
mSOT to maintain its optimal sensitivity despite the change in \(\Phi_a \). The adjustments of \(\varphi_2 \) or \(\varphi_3 \) are implemented by using the control currents \(I_2 \) or \(I_4 \) as described below.

Figure 1. Structure of the mSOT. (a) Schematic diagram of an mSOT showing a SQUID loop with four junctions and four terminals. (b) Schematic cross section of the quartz tube with its four grooves and Pb film formed by two side depositions along the directions indicated by the arrows. (c, d) Scanning electron micrographs of device A showing side view (c) and top view (d) of the apex ring. Four weak superconducting links are formed by constrictions at the groove locations.

In the absence of control currents, the critical current \(I_{c1}(\Phi_a) \) reaches its maximum value of \(I_{c1}^{max} = 2J_0 \) at zero applied flux \(\Phi_a = 0 \), where junctions 1 and 4 each carry their maximal dissipationless current \(J_0 \) inducing phase drops of \(\varphi_1 = -\varphi_4 = \pi/2 \). Let us for simplicity fix \(I_4 = 0 \), so that \(J_3 = J_4 \) and hence \(\varphi_3 = \varphi_4 \). The control current \(I_2 \) is then \(I_2 = J_2 - J_1 = J_0(\sin\varphi_2 - \sin\varphi_1) = J_0(\sin\varphi_2 - 1) \). For any applied flux \(\Phi_a \), we can keep \(\varphi_1 = -\varphi_4 = -\varphi_3 = \pi/2 \) fixed and modify \(\varphi_2 \) by adjusting \(I_2 \) to fulfill Eq. 2. Since \(\varphi_1 \) and \(\varphi_4 \) have not changed, the current \(I_1 \) of the mSOT remains at its maximal critical value; namely, \(I_{c1}(\Phi_a,I_2) = I_{c1}(0,0) = I_{c1}^{max} = 2J_0 \), where the control current \(I_2 \) required to keep \(I_{c1} \) at its maximum is given by

\[
I_2 = J_0(\sin\varphi_2 - 1) = J_0(\sin\left(\frac{\pi}{2} - 2\frac{\Phi_a}{\Phi_0}\right) - 1) = J_0(\cos(2\frac{\Phi_a}{\Phi_0}) - 1).
\]

(3)
This result shows that the quantum interference pattern $I_{c1}(\Phi_a)$ of the mSOT can be readily shifted as a whole by the electric means of applying superconducting phase control currents I_2 and I_4. In particular, for any value of the applied flux Φ_a, control currents exist that will bias the mSOT to the most sensitive working point, thus eliminating the blind spots. A more detailed theoretical study shows that this powerful control is applicable to any SQUID with at least three junctions and three terminals, including asymmetric junctions, non-sinusoidal current-phase relations, and the presence of finite inductance.\(^{49}\)

Note that due to its very small size, the geometric inductance of the SOT is about two orders of magnitude smaller than its kinetic inductance\(^{22,24,49}\) (see S2 for details). As a result, the control currents affect the superconducting phases across the junctions with negligible change to the self-induced flux in the SQUID loop.

SOTs are fabricated by self-aligned two-sided deposition of superconducting leads along a pulled quartz pipette followed by a third deposition on the apex ring\(^{24,50}\). The main challenge in the fabrication of the mSOT is creating nanoscale multi-terminal connections to the apex. We achieve this by using a quartz tube of, initially, 1 mm outer diameter with four 0.1 x 0.15 mm\(^2\) grooves equally spaced on its circumference (Fig. 1b), which maintain their relative shape upon pulling and extend all the way to the tip. The grooves provide shadowing during the two side depositions of Pb, creating gaps separating the four leads (Fig. 1c). In the third deposition on the apex, a Pb ring with four constrictions in the gap regions is formed, creating Dayem-bridge weak links (Fig. 1d) and establishing a self-aligned nanoscale four-terminal/four-junction mSOT.

Three mSOT devices (see S1 for details) were characterized at 4.2 K using the electrical circuit in Fig. 2a. The current bias I_{B1} was applied to the mSOT in parallel with a shunt resistor R_{S1}. The resulting current I_1 flowing into the mSOT is measured using a SQUID series array amplifier (SSAA)\(^{51}\). The superconducting phase control currents I_2 and I_4 are provided by applying control bias currents I_{B2} and I_{B4}. Figure 2b presents electrical characteristics $I_1(I_{B1})$ of mSOT device A showing the measured I_1 vs. the applied bias current I_{B1} at several values of the field B_a, applied perpendicular to the mSOT loop plane. For $I_1 < I_{c1}(B_a)$, the mSOT is in the superconducting state and most of the applied current I_{B1} flows through the device (see S3 for details). When I_1 reaches $I_{c1}(B_a)$ the mSOT becomes resistive and a significant part of the current is diverted to R_{S1}. A number of resonances are visible at higher biases.
Figure 2. (a) A schematic electrical circuit of the mSOT system. (b) Electrical characteristics of mSOT device A at various values of B_a acquired at $I_{B2} = 74 \mu A$ and $I_{B4} = 0$. (c) Current noise spectral density $S_{I_i}^{1/2}$ (left axes) and corresponding flux noise $S_{\Phi_5}^{1/2}$ (right axis) at $B_a = 0.2$ T at the optimal working point.

The interference pattern of the critical current $I_{c1}(B_a)$ derived from the electrical characteristics is shown in Fig. 3a. The interference period of 97 mT, corresponding to an effective loop diameter of 165 nm, is in good agreement with the SEM image in Fig. 1d. The remarkable feature demonstrated in Fig. 3a, however, is the in-situ electric tunability of the mSOT. The three presented $I_{c1}(B_a)$ curves reveal that the entire pattern is readily shifted horizontally by varying the control bias current I_{B2} (keeping $I_{B4} = 0$ for simplicity). Figure 3b demonstrates that the critical current interference pattern $I_{c1}(B_a, I_{B2})$ is shifted continuously with I_{B2} and over a large span of about half a period between the lowest and highest presented values of I_{B2}, in agreement with the theoretical prediction\(^{49}\). This implies that, for any value of B_a, there is a current I_{B2} for which maximum mSOT sensitivity can be attained at this field – thus allowing, through phase biasing, optimal operation at any B_a without blind spots.

Note that the first two terms of Eq. 3 can be rewritten as $I_2(B_a) = J_2(\varphi_2) - J_0$; namely, the trace of the maximum critical current I_{c1}^{max} presented in bright color in Fig. 3b directly depicts the current-phase relation $J_2(\varphi_2)$ of junction 2. This correspondence holds for any form of current-phase relations\(^{49}\) and therefore can provide a general tool, adding to existing techniques\(^{52-55}\), for direct probing of current-phase relations in various unconventional superconductor systems.
Figure 3. Electric tunability of the quantum interference pattern in mSOT device A. (a) Interference pattern $I_{c1}(B_a)$ at three values of the superconducting phase control current $I_{B2} = -150, -30, \text{ and } 90 \, \mu\text{A}$ at $I_{B4} = 0$. (b) Color coded plot of $I_{c1}(I_{B2}, B_a)$ showing a continuous shift of the interference pattern with the control current I_{B2} at $I_{B4} = 0$. (c-e) The mSOT flux-to-current transfer function $dI_1/d\Phi_a$ maps for three values of I_{B2} at $I_{B4} = 0$, showing the shift in field of the sensitive regions (dark red and blue) with varying the control current (see Movie M1).

In order to achieve a highly sensitive continuous operation with low flux noise $S_i^{1/2} = S_i^{1/2}/|dI_1/d\Phi_a|$, one requires a high transfer function $|dI_1/d\Phi_a|$ and a low current noise $S_i^{1/2}$ at any value of the applied field. Figure 3c shows the measured color-coded $dI_1/d\Phi_a$ vs. bias current I_{B1} and applied field B_a. The dark blue and red colors describe the regions of high transfer function, while the green color reflect regions of no sensitivity due to either $I_1 < I_{c1}(B_a)$ or the blind spots where $dI_1/d\Phi_a \approx 0$. By varying the control current I_{B2}, one can readily shift the sensitive regions to the desired value of B_a, as demonstrated in Figs. 3c-e. A continuous shift of the transfer function with I_{B2} is presented in Movie M1.
Figure 4. Flux noise (left) and spin noise (right) in mSOT device B. Red: The noise vs. applied field in the standard two-terminal configuration ($I_2 = I_4 = 0$) showing largely enhanced noise in the blind spots regions. Blue: Noise in the same device operating in the multi-terminal mode in which the superconducting phase control currents I_2 and I_4 are used to bias the mSOT to its optimal working point at each value of B_a. The blind spots are eliminated and a spin noise of ~ 5 to 8 $\mu_B/\text{Hz}^{1/2}$ is attained over the entire range of B_a from 0 to 0.5 T, spanning six Φ_0 periods.

A typical spectrum of the current noise $S_i^{1/2}$ of the mSOT is shown in Fig. 2c, displaying a $1/f$-like behavior at low frequencies $f \lesssim 100$ Hz followed by white noise at higher frequencies. By measuring the white noise level and the transfer function, the flux noise $S_{\phi}^{1/2} = S_i^{1/2} / |dI_1/d\Phi_a|$ of the mSOT vs. B_a is attained as shown in Fig. 4. The red curve displays the flux noise measured at $I_{B2} = I_{B4} = 0$, reflecting the conventional two-terminal SOT operation24. The large peaks in the noise show the blind spots regions of low transfer function. The corresponding spin noise$^{56} S_{\phi}^{1/2} = S_i^{1/2} r / r_e$ in units of $\mu_B/\text{Hz}^{1/2}$, assuming a point like magnetic dipole in the center of the SQUID loop, oriented perpendicular to it, is shown on the right axis, where $S_{\phi}^{1/2}$ is in units of $\Phi_0/\text{Hz}^{1/2}$, $r_e = 2.82 \times 10^{-15}$ m is the classical electron radius, and $r = 89$ nm is the effective radius of the mSOT device B. The blue curve, in contrast, shows the performance of the
mSOT in multi-terminal operation. For every B_q, the optimal values of the control currents I_{B2} and I_{B4} were attained in order to minimize the flux noise (see S6 and Movie M2 for details). The additional degrees of freedom provided by the control currents result in a remarkably uniform and low noise of 5 to 8 µB/Hz$^{1/2}$ over an unprecedentedly wide continuous range of applied fields from 0 to 0.5 T spanning six Φ_0 periods.

In summary, we have developed a novel multi-terminal/multi-junction SQUID-on-tip that provides highly sensitive continuous operation over a wide range of fields with spin sensitivity better than 8 µB/Hz$^{1/2}$. Instead of the flux-bias used in FLLs in conventional SQUIDs, we introduce a superconducting phase control mode of operation that allows in-situ electric control of the quantum interference pattern without the need to modify the flux in the SQUID loop. As a result, nanoscale magnetic imaging can be performed with optimal sensitivity at any value of the local field without blind spots and without affecting the local field. By driving a current through a control terminal, the superconducting phase across one of the junctions is modified, thus shifting the quantum interference pattern. A single control terminal allows shifting the pattern by half a period while two terminals enable a shift by a full period. This control of the interference pattern through superconducting phase biasing opens the door for a new form of feedback control, the superconducting phase locked loop (SPLL). As a result, various additional noise reduction schemes analogous to the ones based on FLL protocols39 can be implemented with mSOTs through an SPLL. The mSOT thus provides a new electrically tunable tool for highly sensitive quantitative imaging and study of magnetic phenomena on the nanoscale over an extremely large dynamic range.

Supporting Information.

This material is available free of charge via the Internet at http://pubs.acs.org.

mSOT fabrication; Estimate of mSOT inductance and noise limit; Electrical circuit; Movie M1 - interference pattern shift; Noise characterization; Movie M2 - optimal working point; Shift of the interference pattern by control current I_4; Shift of the interference pattern by concurrent application of I_2 and I_4.

9
Corresponding Authors

*Aviram Uri, E-mail: aviram.uri@weizmann.ac.il.

*Eli Zeldov, E-mail: eli.zeldov@weizmann.ac.il

Present Addresses

† Department of Physics, Columbia University, New York, New York 10027, USA.

ACKNOWLEDGMENTS

This work was supported by the US-Israel Binational Science Foundation (BSF grant 2014155), by the European Research Council (ERC) under the European Union’s Horizon 2020 program (grant No 655416), and by Rosa and Emilio Segré Research Award.

REFERENCES

(1) Auslaender, O. M.; Luan, L.; Straver, E. W. J.; Hoffman, J. E.; Koshnick, N. C.; Zeldov, E.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Moler, K. A. Nat. Phys. 2009, 5 (1), 35–39.

(2) Häberle, T.; Haering, F.; Pfeifer, H.; Han, L.; Kuerbanjiang, B.; Wiedwald, U.; Herr, U.; Koslowski, B. New J. Phys. 2012, 14 (4), 043044.

(3) Rugar, D.; Budakian, R.; Mamin, H. J.; Chui, B. W. Nature 2004, 430 (6997), 329–332.

(4) Nichol, J. M.; Hemesath, E. R.; Lauhon, L. J.; Budakian, R. Phys. Rev. B 2012, 85 (5), 054414.

(5) Poggio, M.; Degen, C. L. Nanotechnology 2010, 21 (34), 342001.

(6) Balasubramanian, G.; Chan, I. Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P. R.; Krueger, A.; Hanke, T.; Leitenstorfer, A.; Bratschitsch, R.; Jelezko, F.; Wrachtrup, J. Nature 2008, 455 (7213), 648–651.
(7) Grinolds, M. S.; Hong, S.; Maletinsky, P.; Luan, L.; Lukin, M. D.; Walsworth, R. L.; Yacoby, A. *Nat. Phys.* **2013**, *9*(4), 215–219.

(8) Schmid-Lorch, D.; Hämberle, T.; Reinhard, F.; Zappe, A.; Slota, M.; Bogani, L.; Finkler, A.; Wrachtrup, J. *Nano Lett.* **2015**, *15*(8), 4942–4947.

(9) Thiel, L.; Rohner, D.; Ganzhorn, M.; Appel, P.; Neu, E.; Müller, B.; Kleiner, R.; Koelle, D.; Maletinsky, P. *Nat. Nanotechnol.* **2016**, *11*(8), 677–681.

(10) Kalisky, B.; Kirtley, J. R.; Nowadnick, E. A.; Dinner, R. B.; Zeldov, E.; Ariando; Wenderich, S.; Hilgenkamp, H.; Feldmann, D. M.; Moler, K. A. *Appl. Phys. Lett.* **2009**, *94*(20), 202504.

(11) Curran, P. J.; Kim, J.; Satchell, N.; Witt, J. D. S.; Burnell, G.; Flokstra, M. G.; Lee, S. L.; Cooper, J. F. K.; Kinane, C. J.; Langridge, S.; Isidori, A.; Pugach, N.; Eschrig, M.; Bending, S. J. *Appl. Phys. Lett.* **2015**, *107*(26), 262602.

(12) Raes, B.; de Souza Silva, C. C.; Silhanek, A. V.; Cabral, L. R. E.; Moshchalkov, V. V.; Van de Vondel, J. *Phys. Rev. B* **2014**, *90*(13), 134508.

(13) Fischer, P. *Magn. IEEE Trans.* **2015**, *51*(2), 31.

(14) Foley, C. P.; Hilgenkamp, H. *Supercond. Sci. Technol.* **2009**, *22*(6), 064001.

(15) Kirtley, J. R. *Reports Prog. Phys.* **2010**, *73*(12), 126501.

(16) Antler, N.; Levenson-Falk, E. M.; Naik, R.; Sun, Y.-D.; Narla, A.; Vijay, R.; Siddiqi, I. *Appl. Phys. Lett.* **2013**, *102*(23), 232602.

(17) Nagel, J.; Buchter, A.; Xue, F.; Kieler, O. F.; Weimann, T.; Kohlmann, J.; Zorin, A. B.;
Rüffer, D.; Russo-Averchi, E.; Huber, R.; Berberich, P.; Fontcuberta i Morral, A.; Grundler, D.; Kleiner, R.; Koelle, D.; Poggio, M.; Kemmler, M. Phys. Rev. B 2013, 88 (6), 064425.

(18) Schwarz, T.; Wölbing, R.; Reiche, C. F.; Müller, B.; Martínez-Pérez, M. J.; Mühl, T.; Büchner, B.; Kleiner, R.; Koelle, D. Phys. Rev. Appl. 2015, 3 (4), 044011.

(19) Granata, C.; Vettoliere, A. Phys. Rep. 2016, 614, 1–69.

(20) Wölbing, R.; Schwarz, T.; Müller, B.; Nagel, J.; Kemmler, M.; Kleiner, R.; Koelle, D. Supercond. Sci. Technol. 2014, 27 (12), 125007.

(21) Koshnick, N. C.; Huber, M. E.; Bert, J. A.; Hicks, C. W.; Large, J.; Edwards, H.; Moler, K. A. Appl. Phys. Lett. 2008, 93 (24), 243101.

(22) Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M. L.; Ne’eman, L.; Vasyukov, D.; Zeldov, E.; Huber, M. E.; Martin, J.; Yacoby, A. Nano Lett. 2010, 10 (3), 1046–1049.

(23) Kalisky, B.; Bert, J. A.; Klopfer, B. B.; Bell, C.; Sato, H. K.; Hosoda, M.; Hikita, Y.; Hwang, H. Y.; Moler, K. a. Nat. Commun. 2012, 3 (May), 922.

(24) Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Zeldov, E. Nat. Nanotechnol. 2013, 8 (9), 639–644.

(25) Nowack, K. C.; Spanton, E. M.; Baenninger, M.; König, M.; Kirtley, J. R.; Kalisky, B.; Ames, C.; Leubner, P.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Goldhaber-Gordon, D.; Moler, K. a. Nat. Mater. 2013, 12 (9), 787–791.
(26) Hykel, D. J.; Wang, Z. S.; Castellazzi, P.; Crozes, T.; Shaw, G.; Schuster, K.; Hasselbach, K. J. Low Temp. Phys. 2014, 175 (5–6), 861–867.

(27) Talanov, V. V; Lettsome Jr, N. M.; Borzenets, V.; Gagliolo, N.; Cawthorne, A. B.; Orozco, A. Supercond. Sci. Technol. 2014, 27 (4), 044032.

(28) Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E. Sci. Rep. 2015, 5, 7598.

(29) Lachman, E. O.; Young, A. F.; Richardella, A.; Cuppens, J.; Naren, H. R.; Anahory, Y.; Meltzer, A. Y.; Kandala, A.; Kempinger, S.; Myasoedov, Y.; Huber, M. E.; Samarth, N.; Zeldov, E. Sci. Adv. 2015, 1 (10), e1500740–e1500740.

(30) Wang, Y. H.; Kirtley, J. R.; Katmis, F.; Jarillo-Herrero, P.; Moodera, J. S.; Moler, K. A. Science 2015, 349 (6251), 948–952.

(31) Anahory, Y.; Embon, L.; Li, C. J.; Banerjee, S.; Meltzer, A.; Naren, H. R.; Yakovenko, A.; Cuppens, J.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Michaeli, K.; Venkatesan, T.; Ariando; Zeldov, E. arXiv 2015, 1509.01895.

(32) Kremen, A.; Wissberg, S.; Haham, N.; Persky, E.; Frenkel, Y.; Kalisky, B. Nano Lett. 2016, 16 (3), 1626–1630.

(33) Kirtley, J. R.; Ketchen, M. B.; Stawiasz, K. G.; Sun, J. Z.; Gallagher, W. J.; Blanton, S. H.; Wind, S. J. Appl. Phys. Lett. 1995, 66 (9), 1138.

(34) Huber, M. E.; Koshnick, N. C.; Bluhm, H.; Archuleta, L. J.; Azua, T.; Björnsson, P. G.; Gardner, B. W.; Halloran, S. T.; Lucero, E. A.; Moler, K. A. Rev. Sci. Instrum. 2008, 79
(5), 053704.

(35) Hasselbach, K.; Ladam, C.; Dolocan, V. O.; Hykel, D.; Crozes, T.; Schuster, K.; Mailly, D. J. Phys. Conf. Ser. 2008, 97, 012330.

(36) Hazra, D.; Kirtley, J. R.; Hasselbach, K. Appl. Phys. Lett. 2014, 104 (15), 152603.

(37) Anahory, Y.; Reiner, J.; Embon, L.; Halbertal, D.; Yakovenko, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Zeldov, E. Nano Lett. 2014, 14 (11), 6481–6487.

(38) Bending, S. J. Adv. Phys. 1999, 48 (4), 449–535.

(39) Clarke, J. and Braginski, A. I. The SQUID Handbook: Vol. 1 Fundamental and Technology of SQUIDs and SQUIDs Systems; Wiley: New York, 2004.

(40) Chiorescu, I.; Nakamura, Y.; Harmans, C. J. P. M.; Mooij, J. E. Science 2003, 299 (5614), 1869–1871.

(41) Suzuki, K.; Okabe, Y. IEEE Trans. Appiled Supercond. 1993, 3 (1), 1841–1844.

(42) Enpuku, K.; Doi, H.; Tokita, G.; Maruo, T. IEEE Trans. Appiled Supercond. 1995, 5 (2), 2762–2765.

(43) Sterck, A.; Kleiner, R.; Koelle, D. Phys. Rev. Lett. 2005, 95 (17), 177006.

(44) Sterck, A.; Koelle, D.; Kleiner, R. Phys. Rev. Lett. 2009, 103 (4), 047001.

(45) Pepe, G. P.; Scaldaferrri, R.; Parlato, L.; Peluso, G.; Granata, C.; Russo, M.; Rotoli, G.; Booth, N. E. Supercond. Sci. Technol. 2001, 14 (12), 987–993.

(46) McCaughan, A. N.; Zhao, Q.; Berggren, K. K. Nat. Publ. Gr. 2016, No. January, 6–9.
(47) Mizugaki, Y.; Chen, J.; Nishikata, S.; Sugi, K.; Nakajima, K.; Yamashita, T. Appl. Phys. Lett. 2002, 80 (24), 4585–4587.

(48) Tesche, C. D.; Clarke, J. J. Low Temp. Phys. 1977, 29, 301–331.

(49) Meltzer, A. Y.; Uri, A.; Zeldov, E. arXiv 2016, 1606.05682.

(50) Finkler, A.; Vasyukov, D.; Segev, Y.; Neeman, L.; Anahory, Y.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Martin, J.; Yacoby, A.; Zeldov, E. J. Phys. Conf. Ser. 2012, 400 (5), 052004.

(51) Huber, M. E.; Neil, P. A.; Benson, R. G.; Burns, D. A.; Corey, A. M.; Flynn, C. S.; Kitaygorodskaya, Y.; Massihzadeh, O.; Martinis, J. M.; Hilton, G. C. IEEE Trans. Applied Supercond. 2001, 11 (1), 1251–1256.

(52) Della Rocca, M. L.; Chauvin, M.; Huard, B.; Pothier, H.; Esteve, D.; Urbina, C. Phys. Rev. Lett. 2007, 99 (12), 127005.

(53) Frolov, S. M.; Van Harlingen, D. J.; Oboznov, V. A.; Bolginov, V. V.; Ryazanov, V. V. Phys. Rev. B 2004, 70 (14), 144505.

(54) Kurter, C.; Finck, A. D. K.; Hor, Y. S.; Van Harlingen, D. J. Nat. Commun. 2015, 6, 7130.

(55) Sochnikov, I.; Maier, L.; Watson, C. A.; Kirtley, J. R.; Gould, C.; Tkachov, G.; Hankiewicz, E. M.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Moler, K. A. Phys. Rev. Lett. 2015, 114 (6), 066801.

(56) Ketchen, M. B.; Awschalom, D. D.; Gallagher, W. J.; Kleinsasser, A. W.; Sandstrom, R. L.; Rozen, J. R.; Bumble, B. IEEE Trans. Magn. 1989, 25 (2), 1212–1215.
Supporting Information
Electronically tunable multi-terminal SQUID-on-tip

Aviram Uri1*, Alexander Y. Meltzer1, Yonathan Anahory1, Lior Emhon1,†, Ella O. Lachman1,
Dorri Halbertal1, Naren HR1, Yuri Myasoedov1, Martin E. Huber1,2, Andrea Young1,3, and Eli
Zeldov1*

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

2Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, Colorado 80217, USA

3Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530

S1. mSOT fabrication

A 1.0 mm outer diameter, 0.4 mm inner diameter quartz tube with four 0.1 × 0.15 mm² grooves equally spaced on its circumference (see Fig. 1b) was laser heated and pulled to a diameter ranging from 100 to 200 nm using a Sutter Instruments P-2000 puller. A thin film of Pb was deposited on the pulled pipette in a three-step self-aligned thermal evaporation process (15 to 16 nm thickness for the leads and 12 to 14 nm for the apex ring). The pipette was cooled to cryogenic temperatures during the evaporation using a flowing He cryostat to ensure good adhesion of the Pb to the quartz surface1. In this work we present three devices. Device A had a field period of 97 mT corresponding to an effective diameter of 165 nm and a critical current of 105 µA. Device B had a field period of 84 mT corresponding to an effective diameter of 177 nm and a critical current of
Device C had a field period of 114 mT, effective diameter of 152 nm and a critical current of 69 µA.

S2. Estimate of mSOT inductance and noise limit

To estimate the geometric inductance L_g of our devices we approximate the mSOT as a loop of wire with circular cross section, giving rise to a very low $L_g = \mu_0 R \left[\log \left(\frac{8R}{r} \right) - 2 \right] \approx 0.2$ pH, where $R \approx 82$ nm is the loop radius, and $r \approx 13$ nm is the radius of the wire. The largest possible circulating current in the loop is $J_0 \approx l_c/2 \approx 50$ µA, resulting in the upper bound of self-induced flux in the loop of $\Phi = L_g J_0 \approx 10^{-17}$ Wb $\approx 5 \times 10^{-3} \Phi_0$. The contribution of the geometric inductance to the shift of the interference pattern is therefore negligible.

Similar to the two-junction SOTs1,2, the total inductance $L = L_g + L_k$ of the mSOT is governed by the kinetic inductance L_k. The inductance L can be estimated from the modulation depth of the critical current with the magnetic field, which for the case of mSOT device A was $\sim 39\%$. For an ideal four-junction SQUID this modulation depth corresponds3 to $\beta_L = \frac{i_c L}{\Phi_0} \approx 0.4$ resulting in $L \approx 8.5$ pH. Since similarly to SOTs the mSOT has very low inductance and capacitance1, its ultimate flux noise is expected to be limited by shot noise $S_{\Phi}^{1/2} = \sqrt{hL}$. For the above value of L this results in $S_{\Phi}^{1/2} = 36 n\Phi_0 Hz^{-1/2}$ which is about 5 times lower than the measured mSOT flux noise in Fig. 2c.

S3. Electrical circuit

Figure 2a shows the schematic electrical circuit used for the bias and the readout of the mSOT. The current bias I_{B1} (voltage source followed by a series resistor of 5 kΩ (device A) or 2.1 kΩ
(devices B and C)) was applied to the mSOT in parallel with the shunt resistor $R_{s1} = 5 \, \Omega$, which is much smaller than the normal state resistance of the mSOT junctions typically ranging from 50 to 100 Ω. Terminal 3 was grounded, thus acting as a drain. This gave a steep load line, close to voltage bias, allowing non-hysteretic operation of the underdamped mSOT which exhibits negative differential resistance\(^1\) (see Fig. 2b). The current I_1 was measured using a SQUID series array amplifier (SSAA)\(^4\). When the mSOT is in the superconducting state, most of the bias current I_{B1} flows through the device and only a small part of it is diverted to the shunt resistor R_{s1}. The parasitic resistance R_p in series with the device and its ratio to the shunt resistance R_{s1} determines the amount of current diverted to the shunt. This is reflected in the linear part of $I_1(I_{B1})$ shown in Fig. 2b. When the mSOT is biased above the critical current and into the voltage state, the device becomes resistive and a larger portion of the bias current I_{B1} is diverted to the shunt resistor R_{s1}.

The superconducting phase control currents I_2 and I_4 were applied as shown schematically in Fig. 2a. In case of device A, the shunt resistor $R_{s2} = 5 \, \Omega$ was used and R_{s4} was absent. For devices B and C, the control bias currents I_{B2} and I_{B4} were applied directly, with no R_{s2} and R_{s4} resistors.

S4. Movie of the interference pattern shift

Movie M1 shows the device A transfer function $dI_1/d\Phi_a$ maps for increasing values of I_{B2}, at $I_{B4} = 0$, showing the shift in field of the mSOT interference pattern as the control current is varied. Figures 3e-h show four frames from this movie.
S5. Noise characterization

Noise characterization of the mSOT can be very time consuming if the full noise spectrum is acquired at every point in the large parameter space ($I_{B1}, I_{B2}, I_{B4}, B_a$). To overcome this, white noise in a frequency band centered at 10 kHz was measured using a diode as a rectifier, as shown in Fig. S1, allowing for a fast measurement of the noise (~1 ms per data point). The SSAA output signal was fed into the circuit input V_{in}, band-pass filtered around 10 kHz, amplified by $G_1 = 2 \cdot 10^4$ V/V, high-pass filtered to remove offsets and rectified using a diode (Herotek DZM040AA for device A and PMEG6010 Schottky diode for devices B and C). The rectified signal was amplified by $G_2 = 10$ V/V and averaged using a low-pass filter. The output DC signal V_{out} was proportional to the device noise at 10 kHz and the proportionality factor was determined by a calibration measurement against the full spectral density like the one shown in Fig. 2c. Figure S2 shows electrical characteristics of mSOT device A over the full range of applied field with corresponding measurement of the white current noise in Fig. S2c.

Figure S1. Electrical circuit used to measure white noise using a diode rectifier.
Figure S2. Electrical characteristics of mSOT device A as function of applied field B_a and current bias I_{B1}, keeping $I_{B2} = I_{B4} = 0$. (a) The mSOT current I_1. (b) The transfer function $dI_1/d\Phi_a$ derived numerically from (a). (c) Current noise $S_I^{1/2}$ measured using the scheme in Fig. S1. (d) Flux noise $S_{\Phi}^{1/2} = S_I^{1/2}/|dI_1/d\Phi_a|$ attained numerically from (b) and (c).

S6. Optimal working points

For every field value B_a, we define the optimal working point as the set of bias and control currents I_{B1}, I_{B2} and I_{B4} that result in the minimal flux noise $S_{\Phi}^{1/2}(I_{B1}, I_{B2}, I_{B4}; \Phi_a)$. Movie M2 presents this concept applied to device A, keeping $I_{B4} = 0$ for simplicity. Several frames from this
movie are given in Figs. S3e-h, showing color-coded flux noise $S_{\Phi}^{1/2}(I_{B1}, I_{B2})$ at various applied fields B_a with corresponding transfer function $dI_1/d\Phi_a(I_{B1}, I_{B2})$ shown in Figs. S3a-d. The central region in the figures with $dI_1/d\Phi_a = 0$ (green) represents the superconducting state of the mSOT with $I_1 < I_{c1}(I_{B2}, I_{B4}, \Phi_a)$, as described theoretically in Ref. 3. The optimal working point with lowest flux noise is denoted by a white circle. Figure 4 shows the resulting flux noise along the optimal working point trajectory in device B.

Figure S3. Color coded transfer function $dI_1/d\Phi_a(I_{B1}, I_{B2})$ (a-d) and flux noise $S_{\Phi}^{1/2}(I_{B1}, I_{B2})$ (e-h) at different applied fields B_a as indicated on the plots (device A). For each applied field B_a, the optimal working point with the lowest flux noise is marked by a white circle (frames taken from Movie M2).

S7. Shift of the interference pattern by control current I_4

The superconducting phase control current I_4 shifts the interference pattern similarly to I_2 but in the opposite direction, as demonstrated in Fig. S4a, which shows the behavior in device C over an extended range of I_4. Since device C was connected without shunt resistors R_{s2} and R_{s4}, the control
currents $I_4 = I_{B4}$ and $I_2 = I_{B2}$. The dashed curve in Fig. S4a, $B^\text{max}_a(I_4)$, traces the field location of the maximum of the critical current I_{c1}^max as the interference pattern is shifted by I_4. The curve $B^\text{max}_a(I_4)$ thus describes the field shift of the entire interference pattern as induced by the phase bias. As derived in Ref. 3 and as seen in Fig. S4, $B^\text{max}_a(I_4)$ has a cusp and changes the shift direction at the demarcation line $I_4 = J_{03} - J_{04} = -6 \, \mu A$, where J_{03} and J_{04} are the critical currents of junctions 3 and 4 respectively. It can be readily shown3 that for $I_4 < J_{03} - J_{04}$ the I_{c1}^max along the $B^\text{max}_a(I_4)$ curve is constant, $J_4 = -J_{04}$, $\varphi_4 = -\pi/2$, and φ_3 is given by $J_{03} \sin \varphi_3 = -J_{04} - I_4$. In this region, the $B^\text{max}_a(I_4)$ curve represents the current-phase relation of junction 3. An equivalent case of using the control terminal 2 for shifting the interference pattern in the regime of $I_2 < J_{02} - J_{01}$ is presented in Fig. 3b.

Above the demarcation line $I_4 > J_{03} - J_{04}$ the I_{c1}^max along the $B^\text{max}_a(I_4)$ decreases linearly with I_4, $J_3 = -J_{03}$, $\varphi_3 = -\pi/2$, and φ_4 is given by $J_{04} \sin \varphi_4 = I_4 - J_{03}$. In this region the $B^\text{max}_a(I_4)$ curve reflects the current-phase relation of junction 4. Since I_{c1}^max is not constant, this regime is less convenient for practical applications.

S8. Shift of the interference pattern by concurrent application of I_2 and I_4

By utilizing the two control currents I_2 and I_4 concurrently, an extensive control of the interference pattern can be attained. In particular, a single control current allows a shift of the interference pattern by about half a period. By using both control currents, a shift of a full period can be attained3. This is demonstrated in Fig. S4b, where $B^\text{max}_a(I_2, I_4)$ is plotted in color code. The vertical black dashed line shows the values of $B^\text{max}_a(I_4)$ along the dashed line in Fig. S4a for $I_2 = 0$. The maximum variation of $B^\text{max}_a(I_2, I_4)$ along any vertical or horizontal line in Fig. S4b corresponds to about half a period. However, by utilizing both control currents along a diagonal
curve like the dotted white line, a shift of B_{a}^{max} of about a full period is achieved. In addition to attaining optimal sensitivity at any value of the applied field, this wide control opens the possibility of implementation of noise reduction schemes based on the described SPLL similar to the common FLL methods5.

Figure S4. The interference pattern shift in device C. (a) Color coded $I_{c1}(B_a, I_4)$ at $I_2 = 0$ showing positive and negative field shifts of the interference pattern with I_4 for $I_4 \approx -6 \, \mu A$ and $I_4 \approx -6 \, \mu A$ respectively. The dashed line, $B_{a}^{max}(I_4)$, traces the field location of the maximum of the critical current I_{c1}^{max}. (b) Color coded $B_{a}^{max}(I_2, I_4)$ showing the extent of the shift of the interference patterns upon application of the two superconducting phase control currents. The vertical dashed line shows the values of $B_{a}^{max}(I_4)$ along the dashed line in (a) for $I_2 = 0$. The dotted diagonal line shows the trajectory of the concurrent use of the two superconducting phase control currents along which a shift of the interference pattern of about a full period is attained.

Present Addresses

† Department of Physics, Columbia University, New York, New York 10027, USA.
REFERENCES

(1) Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Zeldov, E. *Nat. Nanotechnol.* **2013**, *8* (9), 639–644.

(2) Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M. L.; Ne’heman, L.; Vasyukov, D.; Zeldov, E.; Huber, M. E.; Martin, J.; Yacoby, A. *Nano Lett.* **2010**, *10* (3), 1046–1049.

(3) Meltzer, A. Y.; Uri, A.; Zeldov, E. *arXiv* **2016**, 1606.05682.

(4) Huber, M. E.; Neil, P. A.; Benson, R. G.; Burns, D. A.; Corey, A. M.; Flynn, C. S.; Kitaygorodskaya, Y.; Massihzadeh, O.; Martinis, J. M.; Hilton, G. C. *IEEE Trans. Applied Supercond.* **2001**, *11* (1), 1251–1256.

(5) Clarke, J. and Braginski, A. I. *The SQUID Handbook: Vol. 1 Fundamental and Technology of SQUIDs and SQUIDs Systems*; Wiley: New York, 2004.