MATRIX FACTORIZATIONS AND DOUBLE LINE IN \mathfrak{sl}_n QUANTUM LINK INVARIANT

YASUYOSHI YONEZAWA

Dedicated to Professor Akihiro Tsuchiya on the occasion of his retirement

Abstract. This article gives matrix factorizations for the trivalent diagrams and double line appearing in \mathfrak{sl}_n quantum link invariant. These matrix factorizations reconstruct Khovanov-Rozansky homology. And we show that the Euler characteristic of the matrix factorization for a double loop equals the quantum dimension of the representation $\wedge^2 V$ of $U_q(\mathfrak{sl}_n)$ in Section 3.2.

Contents

1. Introduction 1
2. Category of matrix factorization 3
2.1. Matrix factorization 3
2.2. \mathbb{Z}-graded matrix factorization 5
2.3. Koszul matrix factorization 6
3. Matrix factorization for trivalent diagrams and double line 9
3.1. Khovanov Rozansky homology 9
3.2. Definition of matrix factorization for trivalent diagrams and double line 11
References 17

1. Introduction

L. Kauffman introduced a graphical link invariant which is the normalized Jones polynomial [4][5]. It is well-known that the polynomial is derived from the fundamental representation of the quantum group $U_q(\mathfrak{sl}_2)$. Further, G. Kuperberg constructed a graphical link invariant associated with the fundamental representation of the quantum group $U_q(\mathfrak{sl}_3)$ [10]. H. Murakami, T. Ohtsuki and S. Yamada introduced a graphical regular link invariant for the fundamental representation of the quantum group $U_q(\mathfrak{sl}_n)$ [11]. In general, we can also obtain a graphical link invariant for a given quantum group $U_q(\mathfrak{g})$ and the fundamental representation. These invariants are collectively called \mathfrak{g} quantum link invariants.

M. Khovanov constructed a categorification of \mathfrak{sl}_2 quantum link invariant [6]. A categorification generally means the replacement of a set with a category by corresponding an element to an object. The morphism of the category is properly chosen to carry theory well-done. For a categorification, there is an inverse operation called a decategorification which is the replacement of a category with a set. The decategorification of equivalent objects in the category is a same element in the set.

The Khovanov’s theory is a beautiful example of the categorification; this is the replacement of Jones polynomial $J(L)$, which is a map from the set of links to “$\mathbb{Z}[g, q^{-1}]$”, by a map C_K from the set of links to “the homotopy category of the bounded complex of graded \mathbb{Z}-modules”. The bounded complex $C_K(L)$ and the $\mathbb{Z} \oplus \mathbb{Z}$-graded homology groups $KH^{i,j}(L)$ associated with $C_K(L)$ also become link invariants under the Reidemeister
moves. The decategorification is a \mathbb{Z}-graded Euler characteristic χ_{KH} with the normalized Jones polynomial $J(L)$:

$$\chi_{KH} \left(\bigoplus_{i,j \in \mathbb{Z}} KH^{i,j}(L) \right) := \sum_{i,j \in \mathbb{Z}} (-1)^i \dim_{\mathbb{Q}}(KH^{i,j}(L) \otimes \mathbb{Q}) q^j = J(L).$$

Recently, M. Khovanov and L. Rozansky introduced a categorification of \mathfrak{sl}_n quantum link invariant using the homotopy category of the bounded complex of matrix factorizations [7][8]. Since a resolution of a link diagram consists of a combination of the two local diagrams (See FIGURE 2), a matrix factorization for the resolution is defined by a tensor product of some matrix factorizations for the two local diagrams. Then, the categorification of \mathfrak{sl}_n quantum link invariant is constructed as the map C_{KR} from the set of links to the homotopy category of the bounded complex of matrix factorizations for some resolutions.

The bounded complex C_{KR} and the $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$-graded homology groups $KRH^{i,j,k}(L)$ associated with $C_{KR}(L)$ also become link invariants under the Reidemeister moves. The Euler characteristic χ_{KRH} is defined by

$$\chi_{KRH} \left(\bigoplus_{i,j,k \in \mathbb{Z}, \mathbb{Z}_2} KRH^{i,j,k}(L) \right) := \sum_{i,j,k \in \mathbb{Z}, \mathbb{Z}_2} (-1)^i \dim_{\mathbb{Q}}(KRH^{i,j,k}(L)) q^j.$$

This equals \mathfrak{sl}_n quantum link invariant $\langle L \rangle_n$ for the link L.

![Figure 1. \mathfrak{sl}_n quantum link invariant](image-url)
In this paper, we define matrix factorizations for the more general local diagrams and the double line. And we show that these matrix factorizations have some suitable properties; Proposition 3.5 and corollary 3.6 in Section 3.2.

Proposition 3.5 claims that the inner marking made by gluing these local diagrams can be removed in the homotopy category of a matrix factorization. For example, the matrix factorization for the diagram is obtained as a tensor product of two matrix factorizations for and .

M. Khovanov and L. Rozansky showed that the Euler characteristic of a matrix factorization for the single loop equals to the quantum dimension of the fundamental representation of . Corollary 3.6 claims that the Euler characteristic of a matrix factorization for the double loop also equals to the quantum dimension of of .

Acknowledgements: The author would like to thank Hiroaki Kanno, Hiroyuki Ochiai, Hidefumi Ohsugi and Akihiro Tsuchiya for many helpful discussions. And he would also like to thank Mikhail Khovanov and Lev Rozansky for supplying their paper [9] (preliminary version) to him.

2. Category of matrix factorization

2.1. Matrix factorization. We describe a category of a matrix factorization. M. Khovanov and L. Rozansky first imported this algebraic object into link theory [7] [8].

Let be a polynomial ring over and let be free -modules permitted infinite rank. is a matrix factorization with a potential such that and .

For a polynomial ring and a polynomial , let be a category of a matrix factorization whose object is a matrix factorization and whose morphism between and consists of a pair of -module morphisms such that .

For , we define the tensor product by

\[
\mathbf{M} \boxtimes \mathbf{N} := \begin{pmatrix}
(M_0 \otimes N_0) & (M_1 \otimes N_0) \\
(M_1 \otimes N_1) & (M_0 \otimes N_1)
\end{pmatrix}
\begin{pmatrix}
d_{M_0} & d_{M_1} \\
d_{N_0} & d_{N_1}
\end{pmatrix}
\begin{pmatrix}
d_{M_0} \cdot d_{N_0} \\
d_{M_1} \cdot d_{N_1}
\end{pmatrix},
\]

Figure 2. Two type resolutions for crossing
where
\[\begin{pmatrix} d_{M_0} & -d_{N_1} \\ d_{N_0} & d_{M_1} \end{pmatrix} \text{ and } \begin{pmatrix} d_{M_1} & d_{N_1} \\ -d_{N_0} & d_{M_0} \end{pmatrix} \]
simply denote
\[\begin{pmatrix} d_{M_0} \otimes \text{Id}_{N_0} & -\text{Id}_{M_1} \otimes d_{N_1} \\ \text{Id}_{M_0} \otimes d_{N_0} & d_{M_1} \otimes \text{Id}_{N_1} \end{pmatrix} \text{ and } \begin{pmatrix} d_{M_1} \otimes \text{Id}_{N_0} & \text{Id}_{M_0} \otimes d_{N_1} \\ -\text{Id}_{M_1} \otimes d_{N_0} & d_{M_0} \otimes \text{Id}_{N_1} \end{pmatrix}. \]

Remark 2.1. We consider \(R \otimes R \) as a tensor product of polynomial rings \(R \) and \(R \) over \(R \cap R \). We also consider \(M \otimes M' \) as a tensor product of an \(R \)-module \(M \) and an \(R \)-module \(M' \) over \(R \cap R \).

Lemma 2.2. (1) For \(\overline{M} \in \text{Ob}(\text{MF}_{R,\omega}) \) and \(\overline{N} \in \text{Ob}(\text{MF}_{R,\omega'}) \), there is an isomorphism in \(\text{MF}_{R \otimes R, \omega + \omega'} \)
\(\overline{M} \otimes \overline{N} \cong \overline{N} \otimes \overline{M} \).
(2) For \(\overline{L} \in \text{Ob}(\text{MF}_{R,\omega}) \), \(\overline{M} \in \text{Ob}(\text{MF}_{R,\omega'}) \) and \(\overline{N} \in \text{Ob}(\text{MF}_{R,\omega'}) \), there is an isomorphism in \(\text{MF}_{R \otimes R \otimes R, \omega + \omega' + \omega''} \)
\((\overline{L} \otimes \overline{M}) \otimes \overline{N} \cong \overline{L} \otimes (\overline{M} \otimes \overline{N}) \).

Proof. (1) For \(R \)-modules \(M \) and \(N \), we define \(T : M \otimes N \rightarrow N \otimes M \) by \(T(m \otimes n) := n \otimes m \). \(\overline{T} = \begin{pmatrix} T & 0 \\ 0 & -T \end{pmatrix} \) is a morphism from \(\overline{M} \otimes \overline{N} \) to \(\overline{N} \otimes \overline{M} \) and also a morphism from \(\overline{N} \otimes \overline{M} \) to \(\overline{M} \otimes \overline{N} \). Since \(\overline{T}^2 = \text{Id} \), \(\overline{T} \) gives isomorphic between these matrix factorizations.
(2) By definition, we have
\[d_{(\overline{L} \otimes \overline{M}) \otimes \overline{N})} = \begin{pmatrix} d_{L_0} & -d_{M_1} & -d_{N_1} & 0 \\ d_{M_0} & d_{L_1} & 0 & -d_{N_1} \\ d_{N_0} & 0 & d_{M_1} & d_{L_0} \\ 0 & d_{N_0} & -d_{M_0} & d_{L_0} \end{pmatrix}, \]
d\[d_{(\overline{L} \otimes \overline{M} \otimes \overline{N})} = \begin{pmatrix} d_{L_0} & 0 & -d_{M_1} & -d_{N_1} \\ 0 & d_{L_0} & d_{N_0} & -d_{M_1} \\ d_{M_0} & -d_{N_1} & d_{L_1} & 0 \\ d_{N_0} & d_{M_1} & 0 & d_{L_1} \end{pmatrix}. \]
Thus it is obvious that \(\overline{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \) : \((\overline{L} \otimes \overline{M}) \otimes \overline{N} \rightarrow \overline{L} \otimes (\overline{M} \otimes \overline{N}) \) is an isomorphism.

Lemma 2.3. The matrix factorization \(\overline{M} \xrightarrow{R \otimes R} \overline{M} \) is the unit object in \(\text{MF}_{R,\omega} \). That is, for any matrix factorization \(\overline{M} \in \text{MF}_{R,\omega} \),
\(\overline{M} \otimes (\overline{M} \otimes R) \) is isomorphic to \(\overline{M} \).

Proof. By definition, we have
\[\overline{M} \otimes (\overline{M} \otimes R) = \begin{pmatrix} 0 & d_{M_0} & 0 \\ 0 & d_{M_1} & 0 \\ M_0 \otimes R & M_1 \otimes R & M_0 \otimes R \end{pmatrix} \]
\[\simeq \overline{M}. \]
\(\square \)
The translation functor \((1) \) changes the matrix factorization \(\overline{M} = (M_0, M_1) \) into
\[
\overline{M} \langle 1 \rangle = \left(M_1 \xrightarrow{-d_{M_1}} M_0 \xrightarrow{-d_{M_0}} M_1 \right).
\]
The functor \((2) = (\langle 1 \rangle)^2 \) is the identity functor.

Lemma 2.4. For \(\overline{M} \in \text{Ob}(\text{MF}_{R,\omega}) \) and \(\overline{N} \in \text{Ob}(\text{MF}_{R,\omega}) \), there is an isomorphism in \(\text{MF}_{R \otimes R, \omega + \omega} \)
\[
(\overline{M} \boxtimes \overline{N}) \langle 1 \rangle = (\overline{M} \langle 1 \rangle) \boxtimes \overline{N} \simeq \overline{M} \boxtimes (\overline{N} \langle 1 \rangle).
\]

Proof. We directly find that \((\overline{M} \boxtimes \overline{N}) \langle 1 \rangle\) equals \((\overline{M} \langle 1 \rangle) \boxtimes \overline{N}\) by definition. The second equivalence is correct by Lemma 2.4 (1) and the first equality. \(\square\)

The morphism \(\overline{f} : \overline{M} \rightarrow \overline{N} \in \text{Mor}(\text{MF}_{R,\omega}) \) is null-homotopic if morphisms \(h_0 : M_0 \rightarrow N_1 \) and \(h_1 : M_1 \rightarrow N_0 \) exist such that \(f_0 = h_1 d_{M_0} + d_{N_1} h_0 \) and \(f_1 = h_0 d_{M_1} + d_{N_0} h_1 \). And \(\overline{f}, \overline{g} : \overline{M} \rightarrow \overline{N} \in \text{Mor}(\text{MF}_{R,\omega}) \) are homotopic if \(\overline{f} - \overline{g} \) is null-homotopic.

Let \(\text{HMF}_{R,\omega} \) be the quotient category of \(\text{MF}_{R,\omega} \) which has the same objects to \(\text{Ob}(\text{MF}_{R,\omega}) \) and has morphisms of \(\text{Mor}(\text{MF}_{R,\omega}) \) modulo null-homotopic. A matrix factorization in \(\text{MF}_{R,\omega} \) is called contractible if it is isomorphic to the zero matrix factorization
\[
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array} \right)
\]
in \(\text{HMF}_{R,\omega} \).

Example 2.5. Let \(R_0, R_1 \) be a ring \(R \) and \(\omega \in R \).
\[
\left(\begin{array}{ccc}
R_1 & \omega & \rightarrow & R_0 & \rightarrow & 1 & \rightarrow & R_1 \\
\end{array} \right)
\]
and
\[
\left(\begin{array}{ccc}
R_1 & \rightarrow & 1 & \rightarrow & R_0 & \rightarrow & \omega & \rightarrow & R_1 \\
\end{array} \right)
\]
are contractible.

2.2. \(\mathbb{Z} \)-graded matrix factorization

Let \(R \) be replaced with a \(\mathbb{Z} \)-graded polynomial ring over \(Q \) whose each parameter has a \(\mathbb{Z} \)-grading and let \(M_0, M_1 \) be also replaced with free \(\mathbb{Z} \)-graded \(R \)-modules. The category \(\text{MF}_{R,\omega}^{gr} \) is the category of a \(\mathbb{Z} \)-graded matrix factorization whose object is the same object to \(\text{Ob}(\text{MF}_{R,\omega}) \) except having a \(\mathbb{Z} \)-grading and whose morphism consists of a morphism with preserving a \(\mathbb{Z} \)-grading shift \(\{n\} \) turns the matrix factorization \(\overline{M} \) into
\[
\left(\begin{array}{ccc}
M_0 \{n\} & \xrightarrow{d_{M_0}} & M_1 \{n\} & \xrightarrow{d_{M_1}} & M_0 \{n\} \\
\end{array} \right).
\]

Lemma 2.6. For \(\overline{M} \in \text{Ob}(\text{MF}_{R,\omega}^{gr}) \) and \(\overline{N} \in \text{Ob}(\text{MF}_{R,\omega}^{gr}) \), there is an equality in \(\text{MF}_{R \otimes R, \omega + \omega}^{gr} \)
\[
(\overline{M} \boxtimes \overline{N}) \{n\} = (\overline{M} \{n\}) \boxtimes \overline{N} = \overline{M} \boxtimes (\overline{N} \{n\}).
\]

Proof. We find that these objects are really identical by definition. \(\square\)

For the \(\mathbb{Z} \)-graded matrix factorization \(\overline{M} \) in \(\text{MF}_{R,\omega}^{gr} \), we can consider \(\mathbb{Z} \oplus \mathbb{Z}_2 \)-graded homology group as follows;
\[
\text{H}(\overline{M}) = \bigoplus_{j \in \mathbb{Z}, k \in \mathbb{Z}_2} \text{H}^{j,k}(\overline{M})
\]
whose k is a complex grading of the matrix factorization \overline{M}, i.e. $i = 0$ or 1, and j is a \mathbb{Z}-grading induced by the \mathbb{Z}-graded modules of the matrix factorization \overline{M}. The Euler characteristic χ is defined by

$$\chi(H(M)) = \sum_{j \in \mathbb{Z}, k \in \mathbb{Z}_2} \dim_{\mathbb{Q}} H^j \overline{M} q^j.$$

2.3. Koszul matrix factorization. Let R be a \mathbb{Z}-graded polynomial ring over \mathbb{Q} and let $\deg_{\mathbb{Z}}(a)$ denote a \mathbb{Z}-grading of the polynomial $a \in R$. For polynomials $a, b \in R$ and a \mathbb{Z}-graded R-module M, we define the matrix factorization $K(a; b)_M$ with the potential ab by

$$K(a; b)_M := \left(\begin{array}{ccc} M & a & M \left(\frac{1}{2}(\deg_{\mathbb{Z}}(b) - \deg_{\mathbb{Z}}(a)) \right) & b & M \end{array} \right).$$

Remark 2.7. Let R be a polynomial ring over \mathbb{Q} and let R_y be the polynomial ring $R[y]$. For polynomials a and b in R, $K(a; b)_{R_y}$ is a matrix factorization of R_y-modules with rank 1 as an object in $\text{MF}^{gr}_{R_y, ab}$. And we can consider that $K(a; b)_{R_y}$ is a matrix factorization of R-modules with infinite rank as an object in $\text{MF}^{gr}_{R, ab}$.

Lemma 2.8.

$$K(a; b)_M \langle 1 \rangle = K(-b; -a)_M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right\}.$$

Proof. By definition, we have

$$K(a; b)_M \langle 1 \rangle = \left(\begin{array}{ccc} M & a & M \left(\frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right) & b & M \end{array} \right) \langle 1 \rangle$$

$$= \left(\begin{array}{ccc} M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right\} & -b & M \end{array} \right) - a \left(\begin{array}{ccc} M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right\} \end{array} \right)$$

$$= \left(\begin{array}{ccc} M & -b \end{array} \right) - a \left(\begin{array}{ccc} M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} a - \deg_{\mathbb{Z}} b) \right\} \end{array} \right) - a \left(\begin{array}{ccc} M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right\} \end{array} \right)$$

$$= K(-b; -a)_M \left\{ \frac{1}{2}(\deg_{\mathbb{Z}} b - \deg_{\mathbb{Z}} a) \right\}.$$

□

In general, for the sequences $a = \langle a_1, a_2, \ldots, a_k \rangle$ and $b = \langle b_1, b_2, \ldots, b_k \rangle$ of polynomials in R, we define the matrix factorization $K(a; b)_M$ with the potential $\sum_{i=1}^k a_i b_i$ by

$$K(a; b)_M := \bigotimes_{i=1}^k K(a_i; b_i)_M.$$

This matrix factorization is called a Koszul matrix factorization.

Lemma 2.9. Let c be a non-zero element in \mathbb{Q}.

There is an isomorphism in $\text{MF}^{gr}_{R, ab}$

$$K(a; b)_M \simeq K(ca; c^{-1}b)_M.$$

Proof. $\overline{f} = (1, c) : K(a; b)_M \to K(ca; c^{-1}b)_M$ and $\overline{g} = (1, c^{-1}) : K(ca; c^{-1}b)_M \to K(a; b)_M$ satisfy that $\overline{f} \overline{g} = \overline{1}$ and $\overline{g} \overline{f} = \overline{1}$. Thus, these matrix factorizations are isomorphic.

□

Theorem 2.10. [Khovanov-Rozansky, Theorem 2.2.] We put $R = \mathbb{Q}[x_1, x_2, \ldots, x_n]$ and $R_y = R[y]$. Let $\langle a_1, a_2, \ldots, a_k \rangle$ and $\langle b_1, b_2, \ldots, b_k \rangle$ be sequences of polynomials $a_j, b_j \in R_y$.

We assume that $K(a; b)_{R_y}$ is a Koszul matrix factorization with the potential $\omega \in R$. That is to say, we can see that this matrix factorization is an object in $\text{HMF}^{gr}_{R, \omega}$, which consists of infinite rank R-modules R_y.

□
Furthermore, we assume that $b_i = cy^n + p$ for some i, where c is a non-zero element in \mathbb{Q} and p is the polynomial in R_y whose degree for y is less than n. Then, there is an isomorphism in $\text{HMF}_{R,\omega}^{gr}$:

$$K(a; b)_{R_y} \simeq K(\hat{a}; \hat{b})_{R_y}/(b_i),$$

where \hat{a} and \hat{b} are associated with a and b removing the i-th polynomial.

Proof. We can replace b_i with $y^n + p$ using Lemma 2.9. Then, we repeat proof by M.Khovanov and L.Rozansky in [9]. By definition and the above assumption, we have

$$K(a; b)_{R_y} = K(\hat{a}; \hat{b})_{R_y} \boxtimes K(a_i; y^n + p)_{R_y}.$$

The Koszul matrix factorization $K(\hat{a}; \hat{b})_{R_y}$ is described as:

$$(R_y^{\hat{a}} \xrightarrow{D_0} R_y^{\hat{b}} \xrightarrow{D_1} R_y^{\hat{c}}),$$

where $D_0, D_1 \in M_r(R_y)$ and $r = 2^{k-2}$. Thus, we obtain

$$K(a; b)_{R_y} = \begin{pmatrix}
R_y^{a_i} & \oplus & R_y^{b_i} \\
D_0' & \oplus & D_1'
\end{pmatrix},$$

where $D_0' = \begin{pmatrix} D_0 & (-y^n - p) \text{Id}_{R_y^{a_i}} \\
a_i \text{Id}_{R_y^{a_i}} & D_1
\end{pmatrix}, \quad D_1' = \begin{pmatrix} D_1 & (y^n + p) \text{Id}_{R_y^{b_i}} \\
-a_i \text{Id}_{R_y^{b_i}} & D_0
\end{pmatrix}.$

The ring R_y is split into the direct sum as an R-module as follows;

$$R_y \simeq R_{<n} \oplus R_{\geq n},$$

where $R_{<n} = \bigoplus_{i=0}^{n-1} R \cdot y^i$ and $R_{\geq n} = \bigoplus_{i=0}^{\infty} R \cdot y^i (y^n + p)$.

The R-module morphism $R_y \xrightarrow{y^n + p} R_y$ induces the R-module isomorphism

$$f_{iso} : R_y \xrightarrow{y^n + p} R_{\geq n}.$$

Moreover, there are the natural R-module injection

$$f_{inj} : R_{<n} \rightarrow R_y,$$

and the natural R-module projections

$$f_{proj_{<n}} : R_y \rightarrow R_{<n}$$

and

$$f_{proj_{\geq n}} : R_y \rightarrow R_{\geq n}.$$

The R-module R_y^r is also split into the direct sum

$$R_y^r \simeq R_{<n}^r \oplus R_{\geq n}^r.$$

Then, there are the R-module isomorphism

$$F_{iso} : R_y^r \xrightarrow{(y^n + p) \text{Id}_{R_y^r}} R_{\geq n}^r,$$

the R-module injection

$$F_{inj} : R_{<n}^r \rightarrow R_y^r.$$
and the R-module projections
\[
F_{\text{proj} < n} : R_y^r \rightarrow R_{< n}^r
\]
and
\[
F_{\text{proj} \geq n} : R_y^r \rightarrow R_{\geq n}^r.
\]

It is easy to find that the R-module morphisms
\[
\phi_0 = \begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_y^r \\
\oplus \\
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\]
\[
\phi_1 = \begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_y^r \\
\oplus \\
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\]
are R-module isomorphisms. Let \overline{M} be the matrix factorization
\[
\overline{M} = \begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\]

Then, $\overline{\phi} = (\phi_0, \phi_1)$ is an isomorphism from \overline{M} to $K(a; b)_{R_y}$ in $\text{MF}_{R_{\omega}}^{gr}$.

Since $\overline{\phi}^{-1}$ consists of
\[
\phi_0^{-1} = \begin{pmatrix}
F_{\text{proj} < n} \\
\oplus \\
\phi_1^{-1} D_0 \phi_0 \\
\oplus \\
R_y^r
\end{pmatrix}
\]
and $\phi_1^{-1} = \begin{pmatrix}
F_{\text{proj} < n} \\
\oplus \\
\phi_0^{-1} D_1 \phi_1 \\
\oplus \\
R_y^r
\end{pmatrix}$,
the morphisms $\phi_0^{-1} D_0 \phi_0$ and $\phi_0^{-1} D_1 \phi_1$ are described by
\[
\phi_0^{-1} D_0 \phi_0 = \begin{pmatrix}
F_{\text{proj} < n} D_0 F_{\text{inj}} \\
\oplus \\
\omega F_{i_0}^{-1} 0 \\
\oplus \\
R_y^r
\end{pmatrix}
\]
and $\phi_0^{-1} D_1 \phi_1 = \begin{pmatrix}
F_{\text{proj} < n} D_1 F_{\text{inj}} \\
\oplus \\
\omega F_{i_0}^{-1} 0 \\
\oplus \\
R_y^r
\end{pmatrix}$.

The matrix factorization obtained by restricting $R_{< n}^r \oplus R_{\geq n}^r \oplus R_y^r$ of \overline{M} to $R_{< n}^r \oplus R_y^r$
\[
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{\geq n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\]
is contractible in $\text{MF}_{R_{\omega}}^{gr}$. Thus, \overline{M} is isomorphic to the quotient matrix factorization
\[
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R_{< n}^r \\
\oplus \\
R_y^r
\end{pmatrix}
\]

in $\text{HMFR}^R_{R_\infty}$. By the choice of a basis of R_∞ as an R-module, it is easy to find that this quotient matrix factorization equals $K(\pi_1; \pi_2)_{R_\infty/(b_i)}$. □

3. Matrix factorization for trivalent diagrams and double line

3.1. Khovanov Rozansky homology. We briefly recall Khovanov-Rozansky link homology theory, only the definition of matrix factorizations for planar diagrams and some properties of the matrix factorizations. See Section 6 in [7] for further details.

In [7], M. Khovanov and L. Rozansky defined a categorification of planar graphs as a Koszul matrix factorization.

We assign a parameter x_i on the end point of a single line. And each \mathbb{Z}-grading of parameters x_i is 2. This \mathbb{Z}-grading induces a \mathbb{Z}-grading of a matrix factorization in $\text{MF}^R_{R_\infty}$ and $\text{HMFR}^R_{R_\infty}$. The function $f(s_1, s_2)$ is obtained by expanding the power sum $x^{n+1} + y^{n+1}$ with the elementary symmetric polynomials $x + y$ and xy, i.e. the function $f(s_1, s_2)$ satisfies that

$$f(x + y, xy) = x^{n+1} + y^{n+1}.$$}

We define matrix factorizations for the planar diagrams

$$C\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_n = K(\pi_{12}; x_1 - x_2)_{\mathbb{Q}[x_1, x_2]},$$

$$C\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}_n = K(\begin{pmatrix} u_{1, 2}, v_{1, 2} \\ u_{3, 4}, v_{3, 4} \end{pmatrix}; \begin{pmatrix} x_1 + x_2 - x_3 - x_4 \\ x_1 x_2 - x_3 x_4 \end{pmatrix})_{\mathbb{Q}[x_1, x_2, x_3, x_4]} \cdot (-1),$$

where $\pi_{12}(x_1 - x_2) = x_1^{n+1} - x_2^{n+1}$, $u_{1, 2} = f(x_2, x_3, x_4) - f(x_2, x_1, x_4)$ and $v_{3, 4} = f(x_1, x_3, x_4) - f(x_2, x_3, x_4)$.

Furthermore, we construct a matrix factorization for the more complex planar diagrams produced by combinatorially joining the diagrams and . Now, suppose the planar diagrams and , which can match at x and x' with keeping the orientation. For the matrix factorizations

$$C\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix}_n \in \text{Ob}(\text{MF}^R_{R_\infty + x^{n+1}}) \quad \text{and} \quad C\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix}_n \in \text{Ob}(\text{MF}^R_{R_\infty - x^{n+1}}),$$

we define the matrix factorization

$$C\begin{pmatrix} \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix} \end{pmatrix}_n \in \text{Ob}(\text{MF}^R_{R_\infty \otimes R_\infty}) \quad \text{by} \quad C\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix}_n \otimes C\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \end{pmatrix}_n |_{x = x'}.$$
Proposition 3.2. \(1\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x] \otimes R, x^{n+1} - \omega}\), where \(R\) is a polynomial ring generated by boundary parameters except \(x\),

\[
C\left(\begin{array}{c}
\text{Diagram 1}
\end{array}\right)_n \cong C\left(\begin{array}{c}
\text{Diagram 2}
\end{array}\right)_n.
\]

\(2\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x] \otimes R, \omega - x^{n+1}}\), where \(R\) is a polynomial ring generated by boundary parameters except \(x\),

\[
C\left(\begin{array}{c}
\text{Diagram 3}
\end{array}\right)_n \cong C\left(\begin{array}{c}
\text{Diagram 4}
\end{array}\right)_n.
\]

\(3\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q, 0}\)

\[
C\left(\begin{array}{c}
\text{Diagram 5}
\end{array}\right)_n = K(\pi_{12}; x_1 - x_2)_{Q[x_1, x_2]} \bigg|_{x_1 = x_2} \cong \left(0 \to Q[x]/(x^n) \{1 - n\} \to 0\right).
\]

\(4\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x_1, x_2, x_5, x_6, x_1^{n+1} + x_2^{n+1} - x_5^{n+1} - x_6^{n+1}}\)

\[
C\left(\begin{array}{c}
\text{Diagram 6}
\end{array}\right)_n \cong C\left(\begin{array}{c}
\text{Diagram 7}
\end{array}\right)_n \{-1\} \oplus C\left(\begin{array}{c}
\text{Diagram 8}
\end{array}\right)_n \{1\}.
\]

\(5\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x_1, x_2], x_1^{n+1} - x_2^{n+1}}\)

\[
C\left(\begin{array}{c}
\text{Diagram 9}
\end{array}\right)_n \cong \bigoplus_{i=0}^{n-2} C\left(\begin{array}{c}
\text{Diagram 10}
\end{array}\right)_n \{2 - n + 2i\} \{1\}.
\]

\(6\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x_1, x_2, x_3, x_4], x_1^{n+1} - x_2^{n+1} + x_3^{n+1} - x_4^{n+1}}\)

\[
C\left(\begin{array}{c}
\text{Diagram 11}
\end{array}\right)_n \cong C\left(\begin{array}{c}
\text{Diagram 12}
\end{array}\right)_n \oplus \bigoplus_{i=0}^{n-3} C\left(\begin{array}{c}
\text{Diagram 13}
\end{array}\right)_n \{3 - n + 2i\}.
\]

\(7\) There is an isomorphism in \(\text{HMF}^\text{gr}_{Q[x_1, x_2, x_3, x_4, x_5, x_6, x_1^{n+1} + x_2^{n+1} + x_3^{n+1} - x_4^{n+1} - x_5^{n+1} - x_6^{n+1}}\)

\[
C\left(\begin{array}{c}
\text{Diagram 14}
\end{array}\right)_n \oplus C\left(\begin{array}{c}
\text{Diagram 15}
\end{array}\right)_n \cong C\left(\begin{array}{c}
\text{Diagram 16}
\end{array}\right)_n \oplus C\left(\begin{array}{c}
\text{Diagram 17}
\end{array}\right)_n.
\]

\[\text{Proof.}\] See [7].
The matrix factorization for the single loop \(\bigcirc \) is defined as the following matrix factorization:

\[
C\left(\bigcirc \right) = \left(0 \to \mathbb{Q}[x]/(x^n) \to \{1-n\} \to 0 \right).
\]

Since the potential of the matrix factorization \(C\left(\bigcirc \right)_n \) is 0, we can take the homology group \(H \) of this matrix factorization.

Corollary 3.3. The Euler characteristic of the homology \(H(C(\bigcirc)_n) \) equals the value of sl\(_n\) quantum link invariant for the single loop:

\[
\chi(H(C(\bigcirc)_n)) = [n].
\]

Proof. See [7]. □

The map \(C \) from a planar diagram to a matrix factorization extends the map \(C \) from the projection diagram associated with a link to a complex of matrix factorizations.

\[
C\left(\begin{array}{c}
\text{projection diagram} \\
\text{single line}
\end{array} \right) := \left(\begin{array}{c}
C\left(\begin{array}{c}
\text{end point of a single line} \\
\text{and a double line}
\end{array} \right) \{n\} (1) \\
C\left(\begin{array}{c}
\text{end point of a single line}
\end{array} \right) \{n-1\} (1)
\end{array} \right) \to 0
\]

\[
C\left(\begin{array}{c}
\text{projection diagram} \\
\text{double line}
\end{array} \right) := \left(\begin{array}{c}
\text{end point of a single line}
\end{array} \right) \{0\} (1) \to C\left(\begin{array}{c}
\text{end point of a double line}
\end{array} \right) \{0\} (1)
\]

Theorem 3.4. [Khovanov-Rozansky, 7] The map \(C \) is an oriented link invariant in the homotopy category of a complex of matrix factorizations.

Proof. See [7]. □

3.2. Definition of matrix factorization for trivalent diagrams and double line. We extend the map \(C' \) for a planar diagram with two kinds of the boundaries, which consist of end points of a single line and a double line. We define matrix factorizations for the essential planar diagrams \(\searrow, \nearrow \), and \(\triangle \) as follows.

After this, we assume that \(n \geq 3 \). We assign the parameter \(x_i \) on the end point of a single line and the pair of parameters \((y_j, z_j)\) on the end point of a double line. And each \(\mathbb{Z} \)-grading of \(x_i \) and \(y_j \) also equals 2, but the \(\mathbb{Z} \)-grading of \(z_i \) equals 4:

\[
\deg (x_i) = 2, \quad \deg (y_i) = 2 \quad \text{and} \quad \deg (z_i) = 4.
\]

Define a matrix factorization for the first diagram, double line, by

\[
C\left(\begin{array}{c}
y_1, z_1 \\
y_2, z_2
\end{array} \right) = K\left(\begin{array}{c}
f(y_1, z_1) - f(y_2, z_1) \\
f(y_2, z_2) - f(y_2, z_1)
\end{array} \right) \left(\begin{array}{c}
y_1 - y_2 \\
z_1 - z_2
\end{array} \right) \mathbb{Q}[y_1, y_2, z_1, z_2]
\]

in \(\text{MF}^{gr}_{\mathbb{Q}[y_1, y_2, z_1, z_2], f(y_1, z_1) - f(y_2, z_2)} \).

Define a matrix factorization for the second trivalent diagram by

\[
C\left(\begin{array}{c}
y_3, z_3 \\
x_1, x_2
\end{array} \right) = K\left(\begin{array}{c}
f(y_3, z_3) - f(x_1 + x_2, z_3) \\
f(y_3, z_3) - f(x_1 + x_2, z_3)
\end{array} \right) \left(\begin{array}{c}
y_3 - x_1 - x_2 \\
z_3 - x_1 - x_2
\end{array} \right) \mathbb{Q}[x_1, x_2, y_3, z_3]
\]
in $\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)-z_3^{n+1}-x_3^{n+1}}$.

Define a matrix factorization for the third trivalent diagram by

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) = K\left(\begin{array}{cc}
\frac{f(x_1+x_2,x_1x_2)-f(y_3,x_1x_2)}{x_1+x_2-y_3} & \frac{y_3-x_1x_2}{x_1x_2-z_3}
\end{array}\right) \in \text{Ob}(\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)-z_3^{n+1}-x_3^{n+1}}).$$

The basic potential of a double line is the polynomial $f(y,z)$ obtained by expanding the power sum with the elementary symmetric polynomials. This polynomial $f(y,z)$ is a non-homogeneous polynomial, but it has the homogeneous \mathbb{Z}-grading $2n+2$.

Now, we consider two planar diagrams, which can match at end points of oriented double lines with keeping the orientation. For the matrix factorizations $C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \in \text{Ob}(\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)})$ and $C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \in \text{Ob}(\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)})$, the matrix factorization $C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \in \text{Ob}(\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)})$ is defined by the tensor product

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \otimes C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \in \text{Ob}(\text{MF}^{gr}_{\mathbb{Q}[x_1,x_2,y_3,z_3], f(y_3,z_3)})$$

For a polynomial $f \in \mathbb{Q}[x_1,x_2,\ldots,x_k]$, the Jacobi algebra J_f is defined as the quotient ring

$$\mathbb{Q}[x_1,x_2,\ldots,x_k]/\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_k} \rangle,$$

where $\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_k} \rangle$ is the ideal of $\mathbb{Q}[x_1,x_2,\ldots,x_k]$ generated by $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_k}$.

Proposition 3.5.

1. There is an isomorphism in $\text{HMF}^{gr}_{\mathbb{Q}[y,z] \otimes R, f(y,z)-\omega}$, where R is a polynomial ring generated by boundary parameters except y and z,

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \simeq C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right).$$

2. There is an isomorphism in $\text{HMF}^{gr}_{\mathbb{Q}[y,z] \otimes R, f(y,z)}$, where R is a polynomial ring generated by boundary parameters except y and z,

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \simeq C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right).$$

3. There is an isomorphism in $\text{HMF}^{gr}_{\mathbb{Q}, 0}$

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \simeq K\left(\begin{array}{cc}
\frac{f(y_1,z_1)-f(y_2,z_2)}{y_1-z_2} & \frac{y_1-z_2}{z_1-z_2}
\end{array}\right) \mid (y_1,z_1)=(y_2,z_2).$$

4. There is an isomorphism in $\text{HMF}^{gr}_{\mathbb{Q}[y_1,y_2,z_1,z_2], f(y_1,z_1)-f(y_2,z_2)}$

$$C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \simeq C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \otimes C\left(\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}\right) \{1\}.$$
(5) There is an isomorphism in $\text{HMF}^{gr}_{\mathbb{Q}[x_1, x_2, x_3, x_4, x_1^{n+1} + x_2^{n+1} - x_3^{n+1} - x_4^{n+1}]}$

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{
x_1 & x_2 \\
\ar@{-}[rr] & & \ar@{-}[rr] \ar@{.}[rr] & & \ar@{-}[rr] \ar@{.}[rr] & & (y_5, z_5) \\
\}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{
x_1 & x_2 \\
\ar@{-}[rr] & & \ar@{-}[rr] \ar@{.}[rr] & & \ar@{-}[rr] \ar@{.}[rr] & & n \\
\}
\end{array}
\end{array}
\]

Proof. (1) The matrix factorization $C\left(\begin{array}{c} (y, z), \ \\
\end{array}\right)_n$ is described by

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{
M_0 & M_1 & M_0 \\
\}
\end{array}
\end{array}
\]

where M_i is an $R \otimes \mathbb{Q}[x', y']$-module. Then, we have

\[
C\left(\begin{array}{c} (y, z), \ \\
\end{array}\right)_n = \left(\begin{array}{c} M_0 & M_1 & M_0 \\
\end{array}\right) \otimes \mathbb{K} \left(\begin{array}{c} f(y, z) - f(y', z) \ \\
\end{array}\right)_n \left(\begin{array}{c} y - y' \ \\
\end{array}\right)_n \mathbb{Q}[y, y', z, z].
\]

Since the potential of this matrix factorization does not include the parameters y' and z', we can apply Theorem 2.11 to $y - y'$ and $z - z$. Hence, we obtain the following isomorphic

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{
M_0 & M_1 & M_0 \\
\}
\end{array}
\end{array} \otimes \mathbb{K} \left(\begin{array}{c} f(y, z) - f(y', z) \ \\
\end{array}\right)_n \left(\begin{array}{c} y - y' \ \\
\end{array}\right)_n \mathbb{Q}[y, y', z, z]
\]

\[
\approx \left(\begin{array}{c} M_0 / (y - y', z - z) & M_1 / (y - y', z - z) & M_0 / (y - y', z - z) \\
\end{array}\right)
\]

\[
\approx C\left(\begin{array}{c} (y, z), \ \\
\end{array}\right)_n.
\]

(2) This proof is similar to (1)

(3) The polynomial $f(y_1, z_1)$ is explicitly described as

\[
f(y_1, z_1) = y_1^{n+1} + (n + 1) \sum_{1 \leq 2i \leq n+1} (-1)^i \binom{n - i}{i - 1} y_1^{n+1-2i} z_1^i.
\]

Then, we have

\[
\frac{\partial f(y_1, z_1)}{\partial y_1} = (n + 1)y_1^n + (n + 1) \sum_{1 \leq 2i \leq n} (-1)^i(n + 1 - 2i) \binom{n - i}{i - 1} y_1^{n-2i} z_1^i,
\]

\[
\frac{\partial f(y_1, z_1)}{\partial z_1} = (n + 1) \sum_{1 \leq 2i \leq n+1} (-1)^i \binom{n - i}{i - 1} y_1^{n+1-2i} z_1^{i-1}.
\]

In the case that n is even:

The sequence $\left(\frac{\partial f(y_1, z_1)}{\partial y_1}, \frac{\partial f(y_1, z_1)}{\partial z_1}\right)$ can be described as

\[
\left((n + 1)y_1^n + (-1)^{\frac{n}{2}} (n + 1)z_1^{\frac{n}{2}} + p(y_1, z_1), -(n + 1)y_1^{n-1} + q(y_1, z_1) \right),
\]

where the polynomial degree $p(y_1, z_1)$ for y_1 satisfies

\[
\deg_{y_1}(p(y_1, z_1)) < n - 1
\]
and the polynomial degree for z_1 satisfies
\[\deg_{z_1}(p(y_1, z_1)) < \frac{n}{2} \]
and the polynomial $q(y_1, z_1)$ satisfies
\[\deg_{y_1}(q(y_1, z_1)) < n - 2 \]
and
\[\deg_{z_1}(q(y_1, z_1)) < \frac{n}{2}. \]

It is easy to find that this sequence is a regular sequence. By Lemma 2.3 and Lemma 2.8, we have
\[C(\bigcirc_{y_1}(y_1, z_1))_n \simeq K \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} -(n + 1)y_1^n - (-1)^\frac{n}{2}(n + 1)z_1^\frac{n}{2} - p(y_1, z_1) \\ (n + 1)y_1^{n-1} - q(y_1, z_1) \end{pmatrix} \right)_{\mathbb{Q}[y_1, z_1]} \{1 - n\} \{3 - n\} \]
\[\simeq K \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} -(n + 1)y_1^n - (-1)^\frac{n}{2}(n + 1)z_1^\frac{n}{2} - p(y_1, z_1) \\ (n + 1)y_1^{n-1} - q(y_1, z_1) \end{pmatrix} \right)_{\mathbb{Q}[y_1, z_1]} \{4 - 2n\}. \]

We apply Theorem 2.10 to the polynomial $(n + 1)y_1^{n-1} - q(y_1, z_1)$ for y_1. Then, we obtain
\[K \left(0; -(-1)^\frac{n}{2}(n + 1)z_1^\frac{n}{2} - y_1q(y_1, z_1) - p(y_1, z_1) \right)_{\mathbb{Q}[y_1, z_1]/\langle (n + 1)y_1^{n-1} - q(y_1, z_1) \rangle} \{4 - 2n\}. \]

Since we have $\mathbb{Q}[y_1, z_1]/\langle (n + 1)y_1^{n-1} - q(y_1, z_1) \rangle \simeq \mathbb{Q}[y_1]/\langle y_1^{n-1} \rangle \{z_1\}$, $\deg_{z_1}(y_1q(y_1, z_1) + p(y_1, z_1)) < \frac{n}{2}$ and the sequence $\langle (n + 1)y_1^{n-1} - q(y_1, z_1) \rangle$ is regular, we can apply Theorem 2.10 to the polynomial $(-1)^\frac{n}{2}(n + 1)z_1^\frac{n}{2} - y_1q(y_1, z_1) - p(y_1, z_1)$ for z_1. Hence, we obtain
\[C(\bigcirc_{y_1}(y_1, z_1))_n \simeq J_{f(y_1, z_1)} \{4 - 2n\} \rightarrow 0 \rightarrow J_{f(y_1, z_1)} \{4 - 2n\}. \]

In the case that n is odd:
The sequence $\left(\frac{\partial f(y_1, z_1)}{\partial y_1}, \frac{\partial f(y_1, z_1)}{\partial z_1} \right)$ can be described as
\[((n + 1)y_1^n + p(y_1, z_1), -(n + 1)y_1^{n-1} + (-1)^\frac{n+1}{2}(n + 1)z_1^\frac{n+1}{2} + q(y_1, z_1)), \]
where the polynomial degree $p(y_1, z_1)$ for y_1 satisfies
\[\deg_{y_1}(p(y_1, z_1)) < n - 1 \]
and the polynomial degree for z_1 satisfies
\[\deg_{z_1}(p(y_1, z_1)) < \frac{n + 1}{2} \]
and the polynomial $q(y_1, z_1)$ satisfies that
\[\deg_{y_1}(q(y_1, z_1)) < n - 2 \]
and
\[\deg_{z_1}(q(y_1, z_1)) < \frac{n - 1}{2}. \]
By Lemma 2.3 and Lemma 2.8 we have
\[C\left(\bigodot_{n}(y_1, z_1)\right) \cong K \left(\begin{array}{c}
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\end{array} \right) \begin{pmatrix}
-(n+1)y_1^n - p(y_1, z_1) \\
(n+1)y_1^n - (n+1)z_1^{n-1} - q(y_1, z_1)
\end{pmatrix} \} \{1 - n\} \{3 - n\}.\]

Now, we have that \(\deg_{y_1}(p(y_1, z_1)) < n - 1\), \(\deg_{z_1}(q(y_1, z_1) - (n + 1)y_1^{n-1}) < \frac{n - 1}{2}\) and the sequence \((\frac{\partial f(y_1, z_1)}{\partial y_1}, \frac{\partial f(y_1, z_1)}{\partial z_1})\) is regular. Thus, after we apply Theorem 2.10 to the polynomial \(z_1 \rightarrow (n + 1)y_1^n - (n+1)z_1^{n-1} - q(y_1, z_1)\) for \(z_1\). We also obtain
\[C\left(\bigodot_{n}(y_1, z_1)\right) \cong J_{f(y_1, z_1)}(4 - 2n) \}
\]

(4) By definition, we have
\[C\left(\bigodot_{n}(x_3, y_4)\right) \cong K \left(\begin{array}{c}
\begin{pmatrix}
\frac{f(y_1, z_1)}{f(x_3 + x_4, z_1)} \\
\frac{f(x_3 + x_4, z_1)}{f(x_3 + x_4, x_4)} \\
\frac{f(x_3 + x_4, x_4)}{f(y_2, x_2 + x_4)} - \frac{y_2}{x_2 x_4 - z_2}
\end{pmatrix}
\end{array} \right) \begin{pmatrix}
y_1 - x_3 - x_4 \\
z_1 - x_3 x_4 \\
x_3 + x_4 - y_2 \\
x_3 x_4 - z_2
\end{pmatrix} \}_{Q[y_1, z_1, y_2, z_2, x_3, x_4]}.\]

Since the potential of this matrix factorization does not include the parameter \(x_3\) and \(x_4\), we can apply Theorem 2.10 to the polynomial \(y_1 - x_3 - x_4\) for \(x_3\). Thus, this matrix factorization is equivalent to the following matrix factorization
\[K \left(\begin{array}{c}
\begin{pmatrix}
\frac{f(y_1, z_1)}{f(x_3 + x_4, z_1)} \\
\frac{f(x_3 + x_4, z_1)}{f(y_2, x_2 + x_4)} - \frac{y_2}{x_2 x_4 - z_2}
\end{pmatrix}
\end{array} \right) \begin{pmatrix}
z_1 + x_2^2 - y_1 x_4 \\
y_1 - y_2 \\
-x_2^2 + y_1 x_4 - z_2
\end{pmatrix} \}_{Q[y_1, z_1, y_2, z_2, x_3, x_4]/(y_1 - x_3 - x_4)}.\]

Since the quotient ring \(Q[y_1, z_1, y_2, z_2, x_3, x_4]/(y_1 - x_3 - x_4)\) is isomorphic to \(Q[y_1, z_1, y_2, z_2, x_3, x_4]\), we once apply Theorem 2.10 to the polynomial \(z_1 + x_2^2 - y_1 x_4\) for \(x_4\). Then, this matrix factorization is equivalent to the following matrix factorization
\[K \left(\begin{array}{c}
\begin{pmatrix}
\frac{f(y_1, z_1)}{f(y_2, z_2)} \\
\frac{f(y_1, z_1)}{f(y_2, z_2)}
\end{pmatrix}
\end{array} \right) \begin{pmatrix}
y_1 - y_2 \\
z_1 - z_2
\end{pmatrix} \}_{Q[y_1, z_1, y_2, z_2, x_3, x_4]/(z_1 + x_2^2 - y_1 x_4)}.\]

The quotient ring \(Q[y_1, z_1, y_2, z_2, x_3, x_4]/(z_1 + x_2^2 - y_1 x_4)\) \(-1\) is isomorphic to \(Q[y_1, z_1, y_2, z_2, x_3, x_4]\) \{-1\} \oplus \(Q[y_1, z_1, y_2, z_2] x_4 \{-1\}\). Furthermore, this ring is equivalent to \(Q[y_1, z_1, y_2, z_2] \{-1\} \oplus Q[y_1, z_1, y_2, z_2] \{1\}\).
as a \mathbb{Z}-graded $\mathbb{Q}[y_1, z_1, y_2, z_2]$-module. Hence, we obtain the following matrix factorization

$$K\left(\begin{pmatrix}
\frac{f(y_2, z_2)}{y_1 - y_2} & \frac{f(y_2, z_2)}{z_1 - z_2} \\
\frac{y_1 - y_2}{y_1 - y_2} & \frac{z_1 - z_2}{z_1 - z_2}
\end{pmatrix} : \begin{pmatrix}
y_1 - y_2 \\
z_1 - z_2
\end{pmatrix}\right) \{1\}.$$

This is the right-hand side of the equivalent of Proposition (4).

(5) By definition, we have

$$\text{deg} y_5 = 10 YASUYOSHI YONEZAWA$$

Since the potential of the matrix factorization does not include the parameter y_5 and z_5, we apply Theorem 2.10 to the polynomials $y_5 - x_3 - x_4$ and $z_5 - x_3 x_4$. Then, it is easy to find that we obtain the right-hand side of the equivalent of Proposition (5).

A matrix factorization for the double loop \bigcirc is defined as the above matrix factorization:

$$C\left(\bigcirc\right)_n = \left(J_{f(y, z)}\{4 - 2n\} \to 0 \to J_{f(y, z)}\{4 - 2n\}\right).$$

Since the potential of the matrix factorization $C\left(\bigcirc\right)_n$ is 0, we can take the homology group H of this matrix factorization.

Corollary 3.6. The Euler characteristic of the homology $H(C\left(\bigcirc\right)_n)$ equals the value of \mathcal{A}_n quantum link invariant for the double loop;

$$\chi(H(C\left(\bigcirc\right)_n)) = \frac{n(n - 1)}{2}.$$

Proof. By proof of the above Proposition 3.5 (3), we have

$$J_{f(y, z)} \simeq \left\{
\begin{array}{ll}
\mathbb{Q}[y, z]/\langle y^{n-1}, z^{n+1} \rangle & n : \text{even} \\
\mathbb{Q}[y, z]/\langle y^n, z^{n+1} \rangle & n : \text{odd}
\end{array}\right.$$

(i) $n : \text{even}$

Since $\deg_z(y_1) = 2$ and $\deg_z(z_1) = 4$, we have

$$\chi(H(C\left(\bigcirc\right)_n)) = \chi(J_{f(y, z)}\{4 - 2n\})$$

$$= \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} q^{4-2n+2i+4j}$$

$$= \sum_{i=0}^{n-2} q^{2-n+2i} \sum_{j=0}^{n-2} q^{2-n+4j}$$

$$= (q^{2-n} + q^{4-n} + q^{6-n} + \ldots + q^{n-4} + q^{n-2})(q^{2-n} + q^{6-n} + q^{10-n} + \ldots + q^{n-6} + q^{2-n})$$

$$= \frac{n(n - 1)}{2}.$$
(ii) n : odd

We have

$$\chi \left(H(C'(\bigotimes_n)) \right) = \chi \left(J_{f(y,z)} \{4 - 2n\} \right)$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{\frac{n-3}{2}} q^{4-2n+2i+4j}$$

$$= \sum_{i=0}^{n-1} q^{4-2i+4n-3+4j}$$

$$= \left(q^{1-n} + q^{3-n} + q^{5-n} + \ldots + q^{n-3} + q^{n-1} \right) \left(q^{3-n} + q^{7-n} + q^{11-n} + \ldots + q^{n-7} + q^{n-3} \right)$$

$$= \left[\frac{n}{2} \right] \left[\frac{n-1}{2} \right]$$.

□

References

[1] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005), 1443–1499.
[2] B. Gornik, Note on Khovanov link cohomology, arXiv:math.QA/0402266.
[3] S. Gukov, J. Walcher, Matrix Factorizations and Kauffman Homology, arXiv:hep-th/0512298.
[4] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103–111.
[5] L. Kauffman, State models and the Jones polynomial, Topology. 26 (1987), 395–407.
[6] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.
[7] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, arXiv:math.QA/0401268.
[8] M. Khovanov, L. Rozansky, Matrix factorizations and link homology II, arXiv:math.QA/0505056.
[9] M. Khovanov, L. Rozansky, Virtual crossings, convolutions and a categorification of the $SO(2N)$ Kauffman polynomial, arXiv:math.QA/0701333.
[10] G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no.1, 109–151.
[11] H. Murakami, T. Ohtsuki, S. Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325–360.
[12] J. Rasmussen, Some differentials on Khovanov-Rozansky homology, arXiv:math.GT/0607544.
[13] Y. Yonezawa, in preparation.
[14] B. Webster, Khovanov-Rozansky homology via a canopolis formalism, arXiv:math.GT/0610650.
[15] H. Wu, On the quantum filtration of the Khovanov-Rozansky cohomology, arXiv:math.GT/0612406.