ORIGINAL ARTICLE

3d phase-contrast nanotomography of unstained human skin biopsies may identify morphological differences in the dermis and epidermis between subjects

Marina Eckermann1,2 | Niccolò Peruzzi3 | Jasper Frohn1 | Martin Bech3 | Elisabet Englund4 | Béla Veress5† | Tim Salditt1,2 | Lars B. Dahlin6,7 | Bodil Ohlsson8

1Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
2Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
3Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
4Division of Oncology and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
5Department of Pathology, Skåne University Hospital, Malmö, Sweden
6Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
7Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
8Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden

Abstract

Background: Enteric neuropathy is described in most patients with gastrointestinal dysmotility and may be found together with reduced intraepidermal nerve fiber density (IENFD). The aim of this pilot study was to assess whether three-dimensional (3d) imaging of skin biopsies could be used to examine various tissue components in patients with gastrointestinal dysmotility.

Material and methods: Four dysmotility patients of different etiology and two healthy volunteers were included. From each subject, two 3-mm punch skin biopsies were stained with antibodies against protein gene product 9.5 or evaluated as a whole with two X-ray phase-contrast computed tomography (CT) setups, a laboratory µCT setup and a dedicated synchrotron radiation nanoCT end-station.

Results: Two patients had reduced IENFD, and two normal IENFD, compared with controls. µCT and X-ray phase-contrast holographic nanotomography scanned whole tissue specimens, with optional high-resolution scans revealing delicate structures, without differentiation of various fibers and cells. Irregular architecture of dermal fibers was observed in the patient with Ehlers-Danlos syndrome and the patient with idiopathic dysmotility showed an abundance of mesenchymal ground substance.
1 | INTRODUCTION

Conventional histology and immunohistochemistry of skin biopsies with quantification of the intraepidermal nerve fiber density (IENFD) are used for clinical diagnosis of a number of conditions, as well as in research for assessment of the autonomic nervous system and diabetic neuropathy. The association of neuropathy between different organs in an affected subject suggests that a punch biopsy of the skin may be an easily available way to study a general neuropathy. At the same time, as we show here, such biopsies can ideally be investigated with newly available phase-contrast µCT techniques, covering scalable volumes without slicing or staining. This so-called three-dimensional (3d) virtual histology based on X-ray propagation-based phase-contrast computed tomography (PC-CT) has the potential to extend classical histology by an additional dimension and also to achieve higher resolution using synchrotron holographic nanotomography.

Although neuropathy is the most common etiology in gastrointestinal dysmotility, other causes may be recognized. Ehlers-Danlos syndrome is characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Recently, gastrointestinal dysmotility and peripheral neuropathy have been described as well. Abnormal wider collagen fibrils with irregular patterns have previously been described in the reticular dermis by transmission electron microscopy in some patients with Ehlers-Danlos syndrome. From a 3d analysis, the organization of collagen fibrils along with the neuropathy might be further visualized. Only a few X-ray tomography studies have focused on the dermal tissue in normal human skin, with or without comparison with scarred tissue, and in the skin of various animals.

We herein present data of skin biopsies from four women with various clinical diagnoses related to gastrointestinal dysmotility and enteric neuropathy, as well as from two healthy control women. Two punch biopsies were obtained: One biopsy was examined by conventional immunohistochemistry and the other biopsy was processed and evaluated as a whole with two X-ray PC-CT setups, a laboratory µCT setup and a dedicated synchrotron radiation nanoCT end-station, allowing appraisal of specific skin components. The aim of the present pilot study was to examine whether 3d analysis of unstained human skin biopsies could be used to study various tissue components in patients with gastrointestinal dysmotility, independently of etiology, and peripheral neuropathy.

2 | MATERIAL AND METHODS

2.1 | Subjects

Four female patients with gastrointestinal dysmotility and enteric neuropathy, one with chronic intestinal pseudo-obstruction (CIPO) and three with enteric dysmotility (ED), were included in the study. One of the women with ED was diagnosed with Ehlers-Danlos syndrome, one was diagnosed with idiopathic ED and one was diagnosed with type 1 diabetes since childhood. Data regarding clinical symptoms and IENFD from the patients with drug-induced CIPO and Ehlers-Danlos syndrome have recently been presented in a case report. Two healthy women served as controls (Table 1).

2.2 | Skin biopsies and immunohistochemistry

Skin biopsies and histopathologic immunohistochemistry were performed according to clinical routines for the assessment of

Age (years)	Symptoms of peripheral neuropathy	Diagnosis	Intraepidermal nerve density (n/mm)
1		Control	5
2		Control	5
3		+ ED/Ehlers-Danlos	0
4		Idiopathic ED	5
5		+ ED/Type 1 diabetes	5
6		+ Drug-induced CIPO	0.5

Abbreviation: CIPO, Chronic intestinal pseudo-obstruction; ED, enteric dysmotility.

Conclusions: 3d phase-contrast tomographic imaging may be useful to illustrate traits of connective tissue dysfunction in various organs and to demonstrate whether disorganized dermal fibers could explain organ dysfunction.

KEYWORDS

skin biopsy, synchrotron nanotomography, three-dimensional imaging, X-ray phase-contrast tomography

TABLE 1 Basic characteristics of the four women with gastrointestinal dysmotility and neuropathy of various causes, as well as two healthy women
IENFD, that is, number of long nerve fibers/mm, as previously defined.2,26 During local anesthesia, two different 3-mm punch biopsies were taken at about 1 cm distance from each other and about 10 cm proximal to the lateral malleolus in the lower leg. Biopsies were fixed in 4% formaldehyde solution, dehydrated, and embedded in paraffin. One of each pair of the specimens was divided into two halves, cut into 5-µm sections, and then stained with a polyclonal antibody against protein gene product 9.5 (PGP9.5).27 Distinct from previous accounts, the antibody was purchased from a different brand (Cellmarque/318A-15; Sigma Aldrich Ed.).

The paraffin-embedded skin biopsy samples for X-ray imaging were then further harvested with a 1-mm punch using a dissection microscope. The specimens were imaged using phase-contrast tomography, at different levels of resolution and field-of-views (FOV), based on the epidermis and various elements in the dermis, as emerging from immunohistochemical analysis, whereas the other two patients had similar IENFD as the healthy controls (Table 1). Figure 1 illustrates the procedures for tomography (alignment, control, and analysis) have been detailed.11 Phase retrieval has been carried out using a collection of self-written scripts, the so-called holo-tomography toolbox.28 Finally, we have used a home-built laboratory µCT instrument, in view of sample overviews and screening before the beamtimes, and also in view of future translation of the methods toward a clinical setting where synchrotron radiation is not available. The setup employed a liquid metal jet anode source (Excillum Sweden) and a high-resolution detector (XSight; Rigaku). All geometric and experimental parameters as well as reconstruction algorithms parameters of the scans shown here are given in Table 2.

3 | RESULTS

Two of the patients showed decreased IENFD in the previous immunohistochemical analysis, whereas the other two patients had similar IENFD as the healthy controls (Table 1). Figure 1 illustrates the epidermis and various elements in the dermis, as emerging from the laboratory µCT setup. The different layers of the epidermis, including stratum basale, stratum spinosum and granulosum, stratum lucidum and stratum corneum, were clearly visible. In the dermis, sebaceous glands, hair follicles, and blood vessels were observed within fibers of the connective tissue (Figure 1).

Overviews on the well-defined epidermis and dermis using GINIX in parallel-beam configuration are shown in Figure 2, with

TABLE 2 Experimental and reconstruction parameters used in the multiscale phase-contrast tomography approach

Scan configuration	Effective pixel size (µm)	Energy (keV)	Number of projections	Phase retrieval scheme	Phase retrieval parameter	Ring removal algorithm
Laboratory scan	0.92^a	9.25 (Ku)	1 × 1000 (50 s)	BAC	α = 0.008, β = 0.16	Wavelet
GINIX parallel-beam	0.65	8.0	1 × 1500 (0.35 ms)	Non-linear Tikhonov^b	δ/β = 35, lim1 = 5e-5, lim2 = 5e-1	Additive (2x, using different σ_{Gauss})
GINIX waveguide (drug-induced CIPO & Ehlers-Danlos)	0.176	7.5	4 × 1000 (0.5 s)	Non-linear Tikhonov^b	δ/β = 50, lim1 = 1e-4, lim2 = 0	–
GINIX waveguide (Type 1 Diabetes)	0.159	8.0	3 × 1500 (0.1 s)	Non-linear Tikhonov^b	δ/β = 80, lim1 = 5e-3, lim2 = 0	Additive

Abbreviation: CIPO, chronic intestinal pseudo-obstruction.

^aAfter voxel binning of 2 × 2 × 2.

^bNo support, no restriction on phase shift.
magnification of selected areas of one healthy control with normal IENFD (Figure 2A, A1, A2), one patient with Ehlers-Danlos syndrome with decreased IENFD (Figure 2B, B1, B2) and one patient with idiopathic enteric dysmotility and overweight with normal IENFD (Figure 2C, C1, C2). The third patient had normal IENFD (Figure 2D), whereas the last one had decreased number of IENFD (Figure 2E). In the dermis sample from the healthy control, the various cellular elements and nerves could not be differentiated in the high-resolution pictures so far. The organization of the dermal fibers differed in the patient with Ehlers-Danlos syndrome. The architecture of the dermis in the Ehlers-Danlos patient was irregular, both thinner and thicker fibers radiated in different directions with slightly increased inter-fibrillar ground substance between the fibers (Figure 2B1, B2). In the patient with dysmotility and overweight, the organization of the dermal fibers also differed to a certain degree compared with the control, that is, the fibers were thin and loosely arranged due to moderately increased inter-fibrillar ground substance (Figure 2C1, C2).
Furthermore, when scanning the tissue specimens at a higher resolution in X-ray phase-contrast nanoCT using the wave-guided GINIX-configuration, the keratinocytes could be clearly visualized (Figure 3). However, no other types of cells as melanocytes, Langerhans cells, and Merkel cells, which are regular epidermal components, could be differentiated. Regarding the organization of the dermal fibers, there was a clear difference between these patients (Figure 3). In the upper dermis, the dermal fibers were fine, parallel, and loosely arranged in the patient with drug-induced CIFO and reduced IENFD (Figure 3A), parallel and quite coarse in the patient with type 1 diabetes and normal IENFD (Figure 3B), whereas the fibers were disorganized in the patient with Ehlers-Danlos syndrome and decreased IENFD (Figure 3C).

A filament-like structure, interpreted as a single nerve fiber, could be identified in the epidermis in the patient with type 1 diabetes. The structure could be followed through repeated imaging sections (Figure 4B-K). A conventional immunohistochemistry-stained PGP9.5 image is shown for comparison (Figure 4A).

Structural details and the spatial behavior of the different components of the skin (ie, hair follicles, muscularis arrector pili, various glands, and blood vessels) could also be studied at sufficient resolution, but individual cellular details were limited at the level of overview parallel-beam synchrotron data, which made it impossible to separate various cell types (Figure 5).

4 | DISCUSSION
The present observations showed that phase-contrast nano- and µCT can be used in the study of unstained skin biopsies from the lower extremity. We demonstrated the eligibility of the method to show that the architecture of the dermal fibers was irregular in some patients with dysmotility compared with the controls and other patients with dysmotility. Nevertheless, nanotomography has limitations at this stage, that is, the lack of differentiation between collagen and elastic fibers, recognition of dermal nerves, and various cellular elements. Additional contrasting agents may be required to highlight various cells, which has recently been emphasized for 3d reconstruction of myelinated nerve fibers in nerve biopsies from healthy and diseased (diabetes) subjects. Our observation of lack of cell recognition is in accordance with the findings of Cnudde and co-workers. Furthermore, the structure of the skin varies in different parts of the body, which requires extensive analysis from healthy individuals. With adequate questions, however, nano- and µCT can be well suited for the analysis of the connective tissue and its volume compared with the other dermal components. In this aspect, the study of connective tissue diseases or the diagnosis of atrophy can be relevant.

To date, the present established methods as immunohistochemistry and electron microscopy appear cheaper, quicker, and more reliable in view of structural contrast and resolution, to identify cell types and collagen fibrils. However, considering the volume throughput when screening for sparse structures, X-ray PC-CT beats the established methods, with a volume throughput reached here of about 1mm³/minute at sub-micron voxel size. Combined with stitching, and robotic sample exchange, an unprecedented number of biopsies could be rapidly screened and evaluated automatically, provided that the entire workflow including structure interrogation was automatized. At the same time, specific volume stains could bring pivotal added benefit. Finally, recent developments in laboratory phase-contrast nanoCT may lead to a translation from synchrotron to innovative, yet relatively
cheap and compact instrumentation, which could become accessible for clinical practice in the future.\(^{31}\)

The Ehlers-Danlos syndromes are a heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility.\(^{25}\) The pathophysiology behind the neuropathy in Ehlers-Danlos syndrome is unknown.\(^{15}\) One hypothesis is that lack of supportive tissue to the blood vessels may lead to hypoxia in the organs.\(^{27}\) Another hypothesis could be the role of the telocytes, which are present in many organs including the skin, and form a "protective" sheet around nerve structures.\(^{30}\) Dysfunction of telocytes is assumed to play a major role for tissue homeostasis, such as tissue repair and inflammation, and is supposed to be involved in the pathophysiology of several diseases.\(^{32}\) The previously demonstrated finding of abnormal collagen fibrils in Ehlers-Danlos syndrome can be viewed at wileyonlinelibrary.com\(^{31}\).
The irregular architecture of dermal fibers is observed in a patient with Ehlers-Danlos syndrome and a patient with idiopathic dysmotility shows abundance of ground substance, compared with a healthy subject. The ability to separate various cell types and collagen fibrils is still inferior to the established methods of immunohistochemistry and electron microscopy. However, 3d analysis of cells in skin with corresponding volumetric analysis would be the next step as the technique is still under considerable development.

5 | ETHICS APPROVAL

The study was approved by Regional Ethics Review Board at Lund University (2012/527, 2016/943, 2018/583. Date of approval 16/10/2012, 15/11/2016, 21/06/2018).

ACKNOWLEDGEMENTS

We want to acknowledge the technical staff at Department of Pathology, SUS, Lund, for help with sample staining and Michael Sprung, Fabian Westermeier and Markus Osterhoff for the crucial help with all technical issues during the beamtime.

CONFLICT OF INTEREST

There are no conflicts of interest for any of the authors.

AUTHOR CONTRIBUTIONS

All authors designed and performed the research study. ME, JF, and NP acquired and analyzed the data. BV, LD, and BO wrote the paper. All authors contributed to the intellectual process during the writing and finalization of the final manuscript.

CONSENT TO PARTICIPATE

Subjects gave their written, informed consent to participate before entering the study.

CONSENT FOR PUBLICATION

Subjects gave their written, informed consent to the publication.

DATA AVAILABILITY STATEMENT

The data are available from the author upon request.

ORCID

Bodil Ohlsson
https://orcid.org/0000-0002-9142-5244

REFERENCES

1. Mellgren SI, Nolano M, Sommer C. The cutaneous nerve biopsy: technical aspects, indications, and contribution. Handb Clin Neurol. 2013;115:171-188.
2. Thomsen NO, Englund E, Thrainsdottir S, Rosen I, Dahlin LB. Intraepidermal nerve fibre density at wrist level in diabetic and non-diabetic patients. Diabet Med. 2009;26(11):1120-1126.
3. Wang N, Gibbons CH. Skin biopsies in the assessment of the autonomic nervous system. Handb Clin Neurol. 2013;117:371-378.
4. Løseth S, Stalberg EV, Lindal S, et al. Small and large fiber neuropathy in those with type 1 and type 2 diabetes: a 5-year follow-up study. J Peripher Nerv Syst. 2016;21(1):15-21.
5. Ekman L, Thrainsdottir S, Englund E, et al. Evaluation of small nerve fiber dysfunction in type 2 diabetes. Acta Neurol Scand. 2020;141(1):38-46.
6. Alam U, Jeziorska M, Petropoulos IN, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One. 2017;12(7):e0180175.
7. Divisova S, Vlckova E, Srotova I, et al. Intraepidermal nerve-fibre density as a biomarker of the course of neuropathy in patients with Type 2 diabetes mellitus. Diabet Med. 2016;33(5):650-654.
8. Farmer AD, Pedersen AG, Brock B, et al. Type 1 diabetic patients with peripheral neuropathy have pan-enteric prolongation of gastrointestinal transit times and an altered caecal pH profile. Diabetologia. 2017;60(4):709-718.
9. Albers J, Pacile S, Markus MA, et al. X-ray-based 3D virtual histology-adding the next dimension to histological analysis. Mol Imaging Biol. 2018;20(5):732-741.
10. Bartels M, Krenkel M, Cloetens P, et al. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography. J Struct Biol. 2015;192(3):561-568.
11. Tupperwien M, van der Meer F, Stadelmann C, Salditt T. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc Natl Acad Sci USA. 2018;115(27):6940-6945.
12. Khimchenko A, Deyhle H, Schulz G, et al. Extending two-dimensional histology into the third dimension through conventional micro computed tomography. NeuroImage. 2016;139:26-36.
13. Khimchenko A, Bikis C, Pacureanu A, et al. Hard X-ray nanoholography: large-scale, label-free, 3D neuroimaging beyond optical limit. Adv Sci (Weinh). 2018;5(6):1700694.
14. Wingate D, Hongo M, Kellow J, et al. Disorders of gastrointestinal motility: towards a new classification. J Gastroenterol Hepatol. 2002;17(Suppl):S1-S14.
15. Ohlsson B, Dahlin LB, Englund E, Veress B. Autonomic and peripheral neuropathy with reduced intraepidermal nerve fibre density can be observed in patients with gastrointestinal dysmotility. Clin Case Rep. 2020;8(1):142-148.
16. Hauser I, Anton-Lamprecht I. Differential ultrastructural aberrations of collagen fibrils in Ehlers-Danlos syndrome types I-IV as a means of diagnostics and classification. Hum Genet. 1994;93(4):394-407.
17. Vogel A, Holbrook KA, Steinmann B, et al. Abnormal collagen fibril structure in the gravis form (type I) of Ehlers-Danlos syndrome. Lab Invest. 1979;40(2):201-206.
18. Angwin C, Brady AF, Colombi M, et al. Absence of collagen flow- ers on electron microscopy and identification of (Likely) pathogenic COL5A1 variants in two patients. Genes (Basel). 2019;10(10):762.
19. Jiang Y, Tong Y, Xiao T, Lu S. Phase-contrast microtomography with synchrotron radiation technology: a new noninvasive tech- nique to analyze the three-dimensional structure of dermal tissues. Dermatology. 2012;225(1):75-80.
20. Walton LA, Bradley RS, Withers PJ, et al. Morphological character- isation of unstained and intact tissue micro-architecture by X-ray computed micro- and nano-tomography. Sci Rep. 2015;5:10074.
21. Cnudde V, Masschaele B, De Cock HE, et al. Virtual histology by means of high-resolution X-ray CT. J Microsc. 2008;232(3):476-485.
22. Robinson AM, Stock SR, Soriano C, et al. Using synchrotron X-ray phase-contrast micro-computed tomography to study tissue damage by laser irradiation. Lasers Surg Med. 2016;48(9):866-877.
23. Salditt T, Osterhoff M, Krenkel M, et al. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction. J Synchrotron Radiat. 2015;22(4):867-878.
24. Bartels M, Krenkel M, Haber J, et al. X-ray holographic imaging of hydrated biological cells in solution. Phys Rev Lett. 2015;114(4):e048103.
25. Malfait F, Francomano C, Byers P, et al. The 2017 international clas- sification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8-26.
26. Pourhamidi K, Dahlin LB, Englund E, Rolandsson O. No difference in small or large nerve fiber function between individuals with normal glucose tolerance and impaired glucose tolerance. Diabetes Care. 2013;36(4):962-964.
27. Cortini F, Marinelli B, Seia M, et al. Next-generation sequencing and a novel COL3A1 mutation associated with vascular Ehlers-Danlos syndrome with severe intestinal involvement: a case report. J Med Case Rep. 2016;10(1):303.
28. Lohse LM, Robisch AL, Töpperwien M, Maretzke S, Krenkel M, Hagemann J, Salditt T. A phase-retrieval toolbox for X-ray holography and tomography. Synchrotron Radiat. 2020;27(Pt 3):852-859.
29. Dahlin LB, Rix KR, Dahl VA, et al. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci Rep. 2020;10(1):7592.
30. Veress B, Ohlsson B. Spatial relationship between telocytes, interstitial cells of Cajal and the enteric nervous system in the human ileum and colon. J Cell Mol Med. 2020;24(6):3399-3406.
31. Eckermann M, Topperwien M, Robisch AL, et al. Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with sub-micron resolution. J Med Imaging (Bellingham). 2020;7(1):e013502.
32. Diaz-Flores L, Gutierrez R, Diaz-Flores L, et al. Behaviour of telo- cytes during physiopathological activation. Semin Cell Dev Biol. 2016;55:50-61.
33. Chisholm C, Miedler J, Etufugh CN, et al. Unusual and recently described cutaneous atrophic disorders. Int J Dermatol. 2011;50(12):1506-1517.