Moura, P. L., Lizarralde Iragorri, M. A., Francais, O., Le Pioufle, B., Dobbe, J. G. G., Streekstra, G. J., El Nemer, W., Toye, A. M., & Satchwell, T. (2019). Reticulocyte and red blood cell deformation triggers specific phosphorylation events. *Blood Advances, 3*(17), 2653-2663. https://doi.org/10.1182/bloodadvances.2019000545
Reticulocyte and red blood cell deformation triggers specific phosphorylation events

Pedro L. Moura,1 Maria A. Lizarralde Iragorri,2-4 Olivier Francais,5 Bruno Le Pioufle,6 Johannes G. G. Dobbe,7 Geert J. Streekstra,7 Wassim El Nemer,2-4 Ashley M. Toye,1,8,9,* and Timothy J. Satchwell1,8,9,*

1School of Biochemistry, University of Bristol, Bristol, United Kingdom; 2Universite de Paris, Biologie Integree du Globule Rouge Unité Mixte de Recherche, S1134, INSERM, Université de la Réunion, Institut National de la Transfusion Sanguine, Paris, France; 3Institut National de la Transfusion Sanguine, Paris, France; 4Laboratoire d’Excellence GR-Ex, Paris, France; 5ESIEE-Paris, Unité Électronique, Systèmes de Communication et Microsystèmes FRE2028, University Paris-Est, Noisy Le Grand, France; 6Ecole Normale Supérieure Paris-Saclay, Le Centre National de la Recherche Scientifique Institut d’Alembert, Systèmes et Applications des Technologies de l’Information et de l’Énergie, Université Paris, Saclay, France; 7Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 8Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Bristol, United Kingdom; and 9National Institute for Health Research Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, United Kingdom

Key Points

- Specific phosphorylation events are associated with RBC deformation.
- Inhibition of GSK3 and Lyn impairs RBC capacity to undergo successive deformation and resist shear stress.

The capacity to undergo substantial deformation is a defining characteristic of the red blood cell (RBC), facilitating transit through the splenic interendothelial slits and microvasculature. Establishment of this remarkable property occurs during a process of reticulocyte maturation that begins with egress through micron-wide pores in the bone marrow and is completed within the circulation. The requirement to undertake repeated cycles of deformation necessitates that both reticulocytes and erythrocytes regulate membrane-cytoskeletal protein interactions in order to maintain cellular stability. In the absence of transcriptional activity, modulation of these interactions in RBCs is likely to be achieved primarily through specific protein posttranslational modifications, which at present remain undefined. In this study, we use high-throughput methods to define the processes that underlie the response to deformation and shear stress in both reticulocytes and erythrocytes. Through combination of a bead-based microsphiltration assay with phosphoproteomics we describe posttranslational modification of RBC proteins associated with deformation. Using microsphiltration and microfluidic biochip-based assays, we explore the effect of inhibiting kinases identified using this dataset. We demonstrate roles for GSK3 and Lyn in capillary transit and maintenance of membrane stability following deformation and show that combined inhibition of these kinases significantly decreases reticulocyte capacity to undergo repeated deformation. Finally, we derive a comprehensive and integrative phosphoproteomic dataset that provides a valuable resource for further mechanistic dissection of the molecular pathways that underlie the RBC’s response to mechanical stimuli and for the study of reticulocyte maturation.

Introduction

The capacity to undergo substantial deformation is a defining characteristic of the red blood cell (RBC). Establishment of this remarkable property occurs during a process of reticulocyte maturation that begins in the bone marrow and is completed within the circulation in which the nascent reticulocyte, having expelled its nucleus, remodels its membrane to acquire the recognizable biconcave morphology of the
mature erythrocyte. While the deformability of early reticulocytes is known to be lower than that of erythrocytes but increase progressively throughout the maturation process, reticulocytes themselves must undergo extreme deformations without damage or lysis. These include bone marrow egress (before entering peripheral circulation) as well as multiple traversals of the splenic interendothelial slits (during circulatory maturation) and the microvasculature. As a result, reticulocytes are necessarily exposed to high pressures and shear stress, which in turn may partially drive the processes underlying maturation.

Modulation of reticulocyte and erythrocyte properties through response to shear stress is a well described phenomenon. Shear stress has been reported to be implicated in the regulation of adenosine triphosphate (ATP) release by erythrocytes, removal of autophagic vesicles from circulating reticulocytes, and general induction of autophagy in other mammalian cells. In erythrocytes, shear stress is known to induce calcium ion entry through activation of the mechanically activated cation channel Piezo1, regulating the volume changes necessary for the maintenance of homeostasis during deformation. Increases in intracellular calcium are known to promote phosphorylation of multiple proteins through interaction with sensors such as calmodulins and C2 domain-containing proteins. Phosphorylation of multiple proteins through interaction with sensors as well as the stability of the erythrocyte membrane.

Understanding the biochemical mechanisms that enable or are activated upon RBC deformation is an extremely difficult proposition given the challenges associated with isolating cells undertaking this process. Various types of shear stress/deformation-inducing systems exist specifically for the study of RBC properties, but most of the focus of the use of those systems has been on the assessment of the mechanical and physical properties of the cells or the high-throughput screening of chemical compound effects on these characteristics rather than elucidation of the molecular basis of RBC deformation.

In this study, we aim to better define the phosphorylation events that underlie the response to deformation and shear stress in both reticulocytes and erythrocytes. Using in vitro systems that mimic deformation through the spleen and microvasculature, respectively, we have captured cells in states immediately pre-, mid-, and postdeformation and used phosphoproteomics to obtain a unique and comprehensive shear-response dataset, providing a valuable resource for further studies of the processes involved in RBC deformation and reticulocyte maturation. We then validate the importance of 2 of these modifications in the cellular response to shear stress through chemical inhibition of the respective proteins.

Methods

Erythrocyte isolation and in vitro erythroid culture

Erythrocytes were isolated by leukofiltration from the RBC fraction obtained by Histopaque separation of healthy donor platelet apheresis waste blood. In vitro–cultured reticulocytes were differentiated from CD34+ cells isolated from the mononuclear cell fraction according to previously published protocols. All source material was provided with written informed consent for research use given in accordance with the Declaration of Helsinki (National Health Service Blood and Transplant, Filton, Bristol, United Kingdom). The research into the mechanisms of erythropoiesis was reviewed and approved by the Bristol Research Ethics committee (REC Number 12/SW/0199).

Proteomics experimental design, data acquisition and analysis

Two experiments were performed: (1) A comparison of erythrocytes and in vitro–derived reticulocytes lysed before, during, and after shear stress exposure through microsphere filtration (microsphiltration) was performed, with at least 3 biological repeats per cell type and shear stress exposure condition, generating a total of 21 individual samples that were processed through qualitative titanium dioxide–enriched phosphoproteomics; and (2) a comparison of reticulocytes lysed before and after shear stress exposure through passage in successive microfluidic constrictions with 3 biological repeats and generating a total of 6 individual samples. Each sample corresponds to \(10 \times 10^6 \) cells. The protein content between samples was equalized through hemoglobin estimation via the use of Drabkin’s reagent, using different standard curves for reticulocytes and erythrocytes due to their differences in average hemoglobin concentration. Data are available via ProteomeXchange with identifiers PXD013652 and PXD013960, with corresponding DOIs 10.6019/PXD013652 and 10.6019/PXD013960. Further information and reasoning for the chosen proteomics design may be found in the supplemental Rationale material. Extended methods for sample preparation, data acquisition and analysis are provided in the supplemental Methods.

ARCA sample preparation and analysis

A total of \(2 \times 10^6 \) cells were diluted in 200 mL of a polyvinylpyrrolidone solution (viscosity, 28.1 mPa·s; Mechatronics Instruments). Samples were assessed in an Automated Rheoscope and Cell Analyzer (ARCA) according to previously published protocols. At least 1500 valid cells per sample were analyzed using bespoke ARCA analysis software.

Microsphiltration

A microsphiltration device was built as originally described by Deplaine et al. A 1:1 mixture of 15 to 25 \(\mu \)m and 5 to 15 \(\mu \)m diameter metal microspheres (1 g; 1 g consisting of 96.50% tin, 3.00% silver, and 0.50% copper; Industrie des Poudres Sphériques) was resuspended in 5 mL PBSAG (phosphate-buffered saline + 1 mg/mL bovine serum albumin + 2 mg/mL glucose). A total of 600 \(\mu \)L of the microsphere suspension were loaded directly on top of the antiaerosol filter of the inverted pipette tip. The remaining volume was filled with PBSAG. A 50-mL syringe was used to load the cell suspension into the microsphiltration system through the stopcock. Pressure was created manually through slow and constant depression of the 50-mL syringe plunger.

For the proteomics experiment, cells were lysed at 3 points: (1) before use of the microsphiltration system, (2) during the point of maximum cell density in the bead layer, and (3) postrecovery of the cells from the microsphiltration system. For recovery during the point of maximum cell density in the bead layer, pressure was stopped immediately, and the top of the pipette filter tip was cut open. Then, the PBSAG present in the system was aspirated. Forty microliters of lysis buffer were carefully added to the bead layer and incubated for 10 minutes at 4°C. The bead layer and lysate were collected into a microcentrifuge tube and centrifuged for 10 minutes.
PBSAG aspirated as described earlier. A total of 100 spheritation and analyzed through flow cytometry. The resulting cell suspension was subjected to microfiltration, the cells were stained with CellTracker Green CMFDA Dye (Invitrogen) for 45 minutes at 37°C. After staining, the cells were mixed in PBSAG to remove any remaining microbeads. The fixed cells was collected into new microcentrifuge tubes. The fixed cells was centrifuged for 5 minutes at 400g, 4°C, and the cells were counted and lysed. Lysates were then equalized in regard to cell number through quantitation of hemoglobin using Drabkin’s reagent.

For the percentage of cell recovery experiment, cells were treated overnight with 1:1000 dimethyl sulfoxide (DMSO) as a control, or a pharmacological inhibitor (3 μM bafilinib [specific Lyn inhibitor, 50% inhibition concentration (IC50): 19 nM; Insight Biotechnology], 10 nM CHIR-98014 [specific GSK3 inhibitor, GSK3α IC50: 0.65 nM, GSK3β IC50: 0.58 nM, closest homolog Cdc2 IC50: 3.7 μM; Strattech Scientific], or a combination of both). Following treatment, the cells were stained with CellTracker Green CMFDA Dye (Invitrogen) for 45 minutes at 37°C. After staining, the cells were mixed in untreated, unstained cells in a 5:95 mixture and resuspended in PBSAG. The resulting cell suspension was subjected to microspheritation and analyzed through flow cytometry.

For fixation of cells in the bead layer, the filter tip was cut and the PBSAG aspirated as described earlier. A total of 100 μL of fixing solution (1% paraformaldehyde and 0.0075% glutaraldehyde [v/v] in PBSAG) were carefully added to the bead layer and incubated for 10 minutes at room temperature. One milliliter of PBSAG was added for resuspension of the bead layer and the suspension was collected into microcentrifuge tubes. The beads were let to sediment by gravity and, 5 minutes later, the supernatant containing the fixed cells was collected into new microcentrifuge tubes. The cell suspension was centrifuged, and the cells were washed twice in PBSAG to remove any remaining microbeads. The fixed cells were then stored at 4°C.

Microfluidic multi-constriction assay

The microfluidic biochip was designed and fabricated as described by Lizarralde Iragorri et al. An MFCS-EZ microfluidic flow control system (Fluigent) was used to regulate the flow pressure in the microfluidic biochip. The biochip was connected to the pump by 1.6-mm silicone tubing and male Luer connectors and mounted on the stage of an inverted AxioObserver Z1 microscope (Zeiss) with a Phantom Miro M 320S high-speed camera, with imaging at ×100 magnification.

For each assay, 60 μL of reticulocyte or erythrocyte suspensions at 2.5% hematocrit were loaded in the input well of the biochip and perfused at constant pressure (150 mBar). The 2.5% hematocrit, lower than the literature value of 30%, was used to allow for the identification of individual cells in the acquired images. For inhibitor treatment, the cells were treated with 1:1000 DMSO as a control, or an adequate inhibitor (3 μM bafilinib, 10 nM CHIR-98014, or a combination of both) for an hour and resuspended in PBS with the respective inhibitor for use in the microfluidics chip. High-speed videos were obtained at 900 to 1500 frames per second and converted into .tiff frame sequences with the use of Phantom Camera Control (PCC) v2.2 or Cine Viewer (CV) v3.1 software.

High-speed video analysis

All images resulting from the high-speed videos were processed with the use of Fiji v. 2.0.0-rc-54/1.51h. A detailed method for high-speed video analysis is provided in the supplemental Methods.

Raw proteomics data and data preprocessed with Proteome Discoverer are available via ProteomeXchange with identifiers PXD013652 and PXD013960, with corresponding DOIs 10.6019/PXD013652 and 10.6019/PXD013960. Proteomics data tables from preprocessing with Proteome Discoverer may also be found in the supplemental Data.

Filtered proteomics data from the microspheritation and microfluidics proteomics analyses may be respectively found in supplemental Tables 1 and 2.

Results

The RBC phosphoproteome is modulated in response to deformation

Due to the relatively short timeframe required for the deformation and recovery of RBCs and the general lack of transcriptional machinery, we hypothesized that any underlying mechanism for responding to deformation would necessarily be driven by post-translational modification of proteins via phosphorylation. Altered phosphorylation of cytoskeletal and membrane proteins is known to influence multiple properties in the erythrocyte (eg, membrane stability and tension, deformability, effective viscosity, principally through changes in cytoskeletal stability and in the association between cytoskeletal proteins and the multiprotein membrane complexes. Given the reported increased kinase activity of reticulocytes and the fact that many proteins are lost during reticulocyte maturation to the erythrocyte, investigating reticulocyte response to deformation may allow for increased sensitivity in the detection of deformation-induced signaling cascades. Thus, to investigate any possible changes underlying deformation and recovery, we produced 2 qualitative phosphoproteomics datasets comparing erythrocytes from 3 donors and in vitro CD34+-derived cultured reticulocytes from 4 donors lysed before, during, and after passage through the spleen-like microspheritation system originally developed by Deplaine et al. In vitro–generated reticulocytes were used in preference to reticulocytes isolated from donors because of the high number of cells required per complete sample set in the microspheritation experiment, although we have previously shown that in vitro and in vivo reticulocytes are proteomically similar both in qualitative protein abundance and presence of specific phosphopeptides.

Figure 1A summarizes the design of the experiment and includes micrographs of erythrocytes in the 3 conditions. Cells analyzed in the beginning of the experiment possess the characteristic biconcave morphology, whereas a majority of the cells fixed during passage through the microspheritation system are in the process of being deformed (although the degree to which they are deformed varies for each cell). Cells that have undergone passage through the system regain their biconcave morphology without any visible alteration. Resulting processed proteomics data from the experiment may be found in supplemental Table 1.

A significant proportion of the detected phosphopeptides were unique to the deform or recovery states in erythrocytes (52.4% of detected phosphopeptides) and reticulocytes (24.3% of detected phosphopeptides), as summarized in Figure 1B. Further analysis of these phosphopeptide groups through use of the STRING database revealed a predicted common underlying protein-protein interaction network, which is shown in Figure 1C. Two main groups of proteins were observed to be connected through this network, namely kinases and intracellular transport proteins (as identified by

From www.bloodadvances.org at University of Bristol Library on October 2, 2019. For personal use only.
location of the phosphorylation site in the protein sequence (as predicted by SEQUEST and/or PhosphoSitePlus data50), as well as the effect of its phosphorylation if described in low-
phosphopeptides were sorted by the sum of their counts in both datasets and filtered for their presence in at least 2 samples per condition. PhosphoSite location indicates the predicted
across all samples in RBCs (left, n

Figure 1. Red blood cell deformation induces measurable changes in the phosphoproteome. (A) Experimental design for proteomic comparison: RBCs and cultured reticulocytes were subjected to flow in a microsphiltration system and lysed before, during, and after passage. The lysates were equalized through hemoglobin quantification using

(Microsphiltration schematic adapted from Duez et al.48) (B) Venn diagram of differentially phosphorylated proteins with

VOLUME 3, NUMBER 17

Figure 1 (continued). (C) In-depth qualitative analysis using NanoLC-MS/MS

Protein Description (Gene Name)	Counts	Phosphosite Location
Nucleoside diphosphate kinase A (NME1)	3 2 5	S120 - Increased activity
FAS-associated factor 1 (FAP1)	3 2 5	S582
Protein phosphatase methyltransferase 1 (PPM1E)	2 3 5	S243
HECT, UBA and WWE domain containing 1 (HUCW1)	2 2 4	S1395
GTPase activating protein and VPS9 domain 1 (GAPVD1)	3 3 3	S902
Solute carrier family 14 member 1 (SLC14A1)	3 - 3	S12
Ubiquitin associated domain containing 1 (UBAADI1)	3 - 3	S352

Protein Description (Gene Name)	Counts	Phosphosite Location
Glucose Transporter 1 (SLC2A1)	2 4 8	S490 - Increased transport
Glycogen Synthase Kinase 3 Alpha (GSK3A)	4 4	Y279 - Increased activity
Tyrosine-protein kinase Lyn (LYN)	3 3	Y397 - Increased activity
Beta-glucuronidase (BGLU)	2 3 5	T48
Gm (GMITF)	2 3 5	S26
Glucose Transporter 1 (SLC2A1)	2 3 5	T478
Tubulin-specific chaperone C alpha (TCMT1)	2 3 5	S18
Glycogen Synthase Kinase 3 Alpha (GSK3A)	4 4	S39
Guanine nucleotide exchange factor for Rab-3A (RAB3A)	- 4 4	S168
Jupiter microtubule-associated homing 1 (JPM1)	2 2 4	S88
Kell blood group glycoprotein (KEL)	2 2 4	S15
Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (INPP5D)	4 4	S21
Vertebrate receptor Membrane Component 2 (VPMMC2)	3 2 4	S104
Tenascin-T (TNST)	- 4 4	S907
TBCD2 Domain Family Member 4 (TBCD2D4)	4 4	S82
Ubiquitin Conjugating Enzyme U2 O (UBE2O)	4 4	S896
ATP-dependent 8-phosphofructokinase (PFK)	3 3	S386
DSP9 inducible protein kinase (DSPIK)	3 3	S7029
Cdc associated protein (CDOAP)	3 3	S585
Chinovirus protein homing 3 (CBX3)	3 3	S93
Cytoplasmic linker associated protein 2 (CLASP2)	3 3	S327
SRE-rich sequence mRNA binding factor 2 (SREBF2)	3 3	S450
Guanine nucleotide exchange factor for Rab-3A (RAB3A)	3 3	S199
Mitogen-activated protein kinase kinase 7 (MAP2K7)	- 3 3	S439
Peroxisomal 6 (PRDX6)	- 3 3	T44
Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (INPP5D)	- 3 3	S971
Poly(ADP-ribose) Polymerase Family Member 10 (PARP10)	- 3 3	S431
Rep-related protein Rab-8A (RAB8A)	- 3 3	S185
Somatic-like protein 2, melinite (STM1L2)	- 3 3	T267

(F) List of phosphoproteins exclusive to the reticulocyte mid-deformation and mid-/postintersection datasets, with no significant detection in the predeformation dataset; dataset analysis, filtering, and annotation were performed as previously described. (G) List of phosphoproteins present among both reticulocyte and RBC mid-/postdeformation datasets, with no significant detection in the predeformation dataset; dataset analysis, filtering, and annotation were performed as previously described.

From www.bloodadvances.org at University of Bristol Library on October 2, 2019. For personal use only.
red and blue outlines, respectively). The only KEGG pathway detected in the dataset through enrichment analysis was related to AMPK signaling (KEGG enrichment performed with the use of DAVID 6.8, \(P = .029 \)), although no AMPK-related phosphopeptides were detected (suggesting we are capturing downstream phosphorylation events). Phosphopeptides detected only in erythrocyes are listed in the table in Figure 1D, whereas phosphopeptides detected only in reticulocytes are listed in Figure 1E. As expected, a much broader variety of novel peptides phosphorylated during or after deformation was detected in reticulocytes compared with erythrocytes. Although this finding may be related to the previously mentioned higher kinase activity in reticulocytes,\(^{29}\) it may also potentially highlight the existence of only a temporary role for the detected proteins and respective phosphorylations. Interestingly, only a small overlap was detected between erythrocytes and reticulocytes (Figure 1F), which could also be related to differences in the activation kinetics for signaling and recovery of the cell from deform (or, again, due to known differences in kinase abundances between the cell types). It is noteworthy that only the phosphopeptide corresponding to NSFL1C was consistently detected among the 2 cell types in both the mid- and postdeformation states, despite no information existing on its effect in erythroid cells.

Inhibition of Lyn and GSK3 decreases RBC capacity to undergo repeated deformation

Notably, phosphorylations with well-defined effects on kinase activity were also detected by our experimental approach in reticulocytes. Because of the ubiquitous presence of their phosphopeptides in the reticulocyte postdeformation samples, we focused our attention on the kinases Lyn and GSK3α. The tyrosine kinase Lyn is a known regulator of the erythrocyte protein band 3, a cytoskeleton-interacting protein known to be the most abundant membrane protein in RBCs.\(^{33}\) Its kinase activity is partially regulated through autophosphorylation of the tyrosine residue in site Y397, which was detected in this dataset and has been well-described to induce further activation of the protein.\(^{34}\) Conversely, serinethreonine kinases of the GSK3 family have been shown to participate in the phosphorylation of β-adducin,\(^{35}\) which is also known to interact with the spectrin-actin cytoskeleton in erythrocytes.\(^{36}\) Tyrosine phosphorylation of GSK3α at the Y279 site, which we have detected in this dataset, is known to increase enzymatic activity.\(^{37}\)

Given that modulating the activity of both kinases could have a quantifiable impact on the erythrocyte cytoskeleton, we decided to attempt chemical inhibition and subsequent cell microsphiltration to investigate a putative effect on the ability of reticulocytes to undergo successive deformations. In addition to the 2 kinase inhibitors, treatment with an anti-glycopherin A (GPA) antibody was used as a positive control for detrimental effects on cell deformability, as GPA ligation has been demonstrated to increase cell rigidity.\(^{38}\) After treatment, the cells were mixed at approximately 5:95 ratio with untreated erythrocytes, as per a previously published method by Cluitmans et al,\(^{39}\) and allowed to settle on the surface of the microbead layer. Even, manual pressure was applied and the percentage of reticulocytes that traversed the system was evaluated using flow cytometry through the detection of CellTracker Green CMFDA-labeled cells. The results for this experiment are shown in Figure 2A.

Predictably, pretreatment with the anti-GPA antibody significantly affected cell traversal through microsphiltration. Inhibition of Lyn kinase showed a nonsignificant reduction in the percentage of cells obtained after passage through the system, whereas inhibition of GSK3 showed a significant reduction that was comparable to treatment with the anti-GPA antibody. Importantly, and in contrast to cells treated with the anti-GPA antibody, treatment with either inhibitor did not affect intrinsic capacity to undergo initial deformation as assayed through the Deformability Index distributions obtained by an Automated Rheoscope and Cell Analyzer (supplemental Figure 1). To further investigate the effect of inhibiting these 2 kinases, we used a microfluidics-based system (previously published by Lizarralde-Iragorri et al\(^{19}\)) to subject the cells to shear stress and successive deformations in an observable manner. The chip is shown in Figure 2B, with an accompanying example of cells passing through the system (which may also be observed in supplemental Video 1) and being subjected to automatic tracking (supplemental Video 2). Through use of this system, we identified a general decrease in microcapillary traversal velocity in both reticulocytes and erythrocytes after treatment to inhibit Lyn or GSK3, as summarized in Figure 2C. In cases in which the comparison \(P \) value was higher than the significance cutoff, a decrease in cell velocity is still observed across all samples, with a large variation between samples causing the low significance.

Concomitant treatment with both inhibitors had a compounding effect, resulting in near-complete inability of cells to traverse the microfluidics chip and leading to highly variable results (eg, complete blockage of the system led to extremely slow traversal as shown in supplemental Video 3). We thus identify for the first time a requirement for both Lyn and GSK3 for regulating the capacity of cells to undergo successive deformations and resist shear stress.

Cells passing through the microfluidics system can be lysed near-immediately after deformation (we estimate there to be a maximum interval of 3 seconds between the last constriction point and the end of the capillary traversal), an interval that we considered significantly different to the approximately 5-minute period necessary to obtain samples following microsphiltration. Therefore, we combined the phosphoproteomics data from both experiments to create a comprehensive integrative dataset (shown in Table 1, with processed phosphoproteomics data from the microfluidics experiment provided in supplemental Table 2), which lists the phosphorylation sites most likely to be modulated as a result of shear stress recognition in the reticulocyte, generating a unique and unprecedented dataset that characterizes a highly transient state of this dynamic cell.

Discussion

Studying the dynamic processes involved in reticulocyte maturation or changes in the erythrocyte in response to mechanical stimulus presents inherent challenges due to the short-lived nature of said processes and, consequently, the technical difficulties of obtaining cells in a physiologically relevant state of deformation/posttranslational modification. Previous proteomic studies of the RBC and reticuloocyte have mostly focused mainly on deriving definitive descriptive proteomes or studying quantitative differences in protein content between these cell types,\(^{29,40-43}\) although we have also recently published a dataset that characterizes important differential phosphorylation between erythrocytes and endogenous/cultured reticulocytes.\(^{29}\)
However, none of these studies have investigated the possibility of posttranslational modifications actively changing within the cell over time as a direct consequence of the physiological stress involved in circulation. Previous studies have indicated that signaling pathways are at least involved in the changes induced in RBC aging, but the use of pharmacological compounds to induce a response will most likely generate outcomes that range beyond what the cell normally experiences.

Therefore, in this study, we report the first qualitative phosphoproteomic dataset that dissects the response to deformation and shear stress in the human reticulocyte and erythrocyte, identifying previously unreported protein modifications and signaling pathways and investigating the impact of inhibiting part of those pathways.

To achieve this, we have combined the use of 2 established systems that mimic physiological deformation of RBCs with high-throughput proteomics based on titanium dioxide enrichment, allowing us to investigate the difference in phosphorylation events present before, during and after deformation. By combining datasets derived from systems that mimic splenic passage and capillary deformation, we identify posttranslational modifications in several reticulocyte membrane and cytoskeletal proteins, including ankynin, dematin, α/β-spectrin, and Piezo1, which we show are associated with mechanical stimulus and hypothesize may be modulated as part of the shear-induced reticulocyte maturation process due to their detection in reticulocytes occurring only after exposure to deformation.

Focusing on the signaling pathways that seemingly activate upon reticulocyte deformation, we used pharmacological kinase inhibitors to inhibit Lyn and GSK3, 2 kinases with a predicted impact on the erythroid cytoskeleton, and thus identified an effect of those kinases on the cell's capacity to undergo successive deformations. Together with Syk, the tyrosine kinase Lyn has been reported to phosphorylate the erythrocyte membrane protein band 3, leading to changes in red cell properties, including membrane stability and intracellular pH. Altered Lyn kinase activity resulting in band 3 hyperphosphorylation and disruption in erythrocyte membrane-cytoskeletal connectivity and compromised RBC stability is among the defining features of the disease chorea-acanthocytosis. The regulation of Lyn activity occurs partially through autophosphorylation of the tyrosine residue in site Y397, which we have detected in this dataset and is well-described to induce further activation of the protein. Interestingly, no phosphorylated tyrosine residues of band 3 were found to be exclusive to mid- or postdeformation samples, although the residue targeted by Lyn kinase (tyrosine 359)
Table 1. Integrative list of deformation-induced phosphorylations in the reticulocyte

Accession no.	Gene symbol	Protein name	Sequence	Count	Site
E9PU1	AMPD2	AMP deaminase 2	TDSDSDLQLYK	7*	S190/S197
A0A0U1GOT1	ACAP2	Art-GAP with coiled-coil, ANK repeat, and PH domain-containing protein 2	SSPSTGSLDSGNESK	7*	S384
B7Z39	ALAD	Δ-aminolevulinic acid dehydratase	SSPAFGDR	7	S215
P49840	GSK3A	Glycogen synthase kinase-3 α	GEPVNSYICSR	7*	Y279
P49840	GSK3A	Glycogen synthase kinase-3 α	TSSFAEPGGGGGGSAGGPGGGTGGGK	7*	S21/S39
E9PK89	RAB3L1	Guanine nucleotide exchange factor for Rab-3A	TLVITSTAPSNR	7	S168
B4DRA2	HSP90AB1	Heat shock protein HSP 90-β	IEDVGSDEEDSGKDK	7*	S255
Q9H1E3	NUCKS1	Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1	VVDYSQFQESDDADEDYGR	7*	S19
S4R2Y4	CBX3	Chromobox protein homolog 3	SLSDSVESDDSK	6	S93
Q08495	DMTN	Dematin	DSSVPGPSPIVAK	6	S26
Q9UG54	MAP3K7	Mitogen-activated protein kinase kinase kinase 7	SQDLTIVTGEPOGVSSR	6	S439
P61006	RAB8A	Ras-related protein Rab-8A	KLEGNSPQGSNSGKV	6	S181/S185
B3KVN0	SLC2A1	Solute carrier family 2, facilitated glucose transporter member 1	TPEELFHPLGADSQV	6	S490
A0A07WYB4	STOML2	Stomatoid-like protein 2, mitochondrial	APVPGTPDSLSSGSSR	6	T327
Q8V54	TSC2D4	TSC2D4 protein	NGSSPPGAPSSR	6	S62
P16157	ANK1	Ankrylin-1	NGASPEVSDGTTPLAIK	5	S79
A0A0U1GOT1	ACAP2	Art-GAP with coiled-coil, ANK repeat, and PH domain-containing protein 2	YSISLSPEGQK	5	S521
P27824	CANX	Calnexin	OKSADAEDGTVSQEEDR	5	S664
G3V238	EEF1AKMT2	EEF1A lysine methyltransferase 2	SDKGSPGDGVPSALGTR	5	S21
P05198	EIF2S1	Eukaryotic translation initiation factor 2 subunit 1	VVTDTDETLEGAR	5	T279
F8WAE5	EIF2A	Eukaryotic translation initiation factor 2A	SDKSPDAPTPAQGPTFR	5	S506
C9J84	GCFC2	GC-rich sequence DNA-binding factor 2	ELPVPSAESEEPPGGGR	5	S40
Q2VPJ6	HSP90A1	HSP90A1 protein	DKEVSDDEAEKEK	5	S231
DSDWY2	IK3KG	Inhibitor of γ light polypeptide gene enhancer in B-cells, kinase γ	SPPPEPDFFCCPK	5	S387
O60307	MAST3	Microtubule-associated serine/threonine-protein kinase 3	SSENVLDEEGGR	5	S134
F222K0	NSF1C	NSF1L cofactor p47	SPNELVDDLFK	5	S114
B7Z5Y1	NFATC2	Nuclear factor of activated T-cells, cytoplasmic 2	TSPDPSVSAAPSSK	5	S330
H0YSQ5	INPP5D	Phosphatidylinositol 4,5,4,5-triphosphate 5-phosphatase 1	GESSTPTPGQPSPK	5	T963
D6RC77	PGM3	Phosphoacetylglucosamine mutase	STIGVMYTASHNPEEDNGW	5	S64
MAQHP2	PIEZ01	Piezo-type mechanosensitive ion channel component	SGSEEAVTPDGER	5	S1621
Q9BVG4	PBDC1	Protein PBDC1	GADSSKEEKEINR	5	S197
B4E3V2	SQSTM1	Sequestosome-1	LTPVSPESSSTEK	5	T269/S272
Q6PJD5	SHARPIN	SHARPIN protein	SPGNIETL	5	S165
B2RMN7	SPTB	Spectrin β chain	TSPVLWLSR	5	S2114/S2117
C9JWF0	SMAC4	Structural maintenance of chromosomes protein 4	RREEGPPPSPDGSADAEPEEPSGSR	5	S22
HOYN01	TLN2	Talin-2	LDEGTPPEP	5	T1843
C9J3F6	TBC1D5	TBC1 domain family member 5	NISSPSVESLPGGR	5	S541/S544
E9PJJ0	TBCEL	Tubulin-specific chaperone cofactor E-like protein	YSPENFYPR	5	S18
Q9X0G3	C9orf40	Uncharacterized protein C9orf40	RDSQGDNAPGQGGER	5	S76
Q5JS3H	WDR44	WD repeat-containing protein 44	VGNSEPVQELK	5	S50
F8WB58	PSMD2	26S proteasome non-ATPase regulatory subunit 2	DKAAYQPPGQSPAAAAPGTDKEPSGK	4	S16
Q92825	ANK1	Ankrylin repeat and SAM domain-containing protein 1A	SESLSNCSIGK	4	S647

List of significantly enriched or exclusive phosphopeptides in reticulocytes after deformation, as assayed through microsphiltration and microcapillary traversal. Generally, only phosphopeptides present in at least 4 of the 7 postdeformation samples (4 microsphiltration 1 microfluidics) and not present in at least 4 of the 7 predeformation samples were included. The exception to this analysis consists of the phosphopeptides counted as 7*, which were present in all postdeformation samples but also in 4 of 7 of the predeformation samples. The prediction of the most probable phosphosites in the phosphopeptide was included according to the count of occurrences in previous low-throughput and high-throughput studies, as assayed through PhosphoSitePlus.50
was observed to be phosphorylated across all samples. It is important to note that our experimental analysis is focused on the identification of phosphopeptides which are uniquely associated with deformation. Therefore, basally phosphorylated proteins for which deformation-induced changes constitute an alteration in abundance of the phosphorylated population would not be included in our list. This approach will undoubtedly result in a smaller list of candidate deformation-associated modifications relative to that which could be achieved using comparative quantitative alternatives (such as TMT labeling). Nevertheless, it both enables a greater input of material to be used (increasing the likelihood of detecting phosphopeptides that are only present in low abundance) and, crucially, generates targets that are easier to modulate experimentally because no quantity-based effects need to be accounted for.

Table 1. (continued)

Accession no.	Gene symbol	Protein name	Sequence	Count	Site
E9PJF4	EPB41L2	Band 4.1-like protein 2	EVAENQNQSDPDEDPEEEKGSOPPPAAESEQSSLR	4	S39/S55
Q9NY1	BSG	Basigin	RKPDFVLDDOOGASFLK	4	S362
Q9NSY1	BMP2K	BMP-2-inducible protein kinase	DSQSSNEFLTIDSK	4	S1029
A0A0C4GDG1	CAST	Calpastatin	DTQDSDKDLDLADK	4	S563
Q9Y5K6	CD2AP	CD2-associated protein	KNSDELRE	4	S582
Q8TEH3	DENND1A	DENN-domain-containing protein 1A	TGGTLSDPDEVOR	4	T24
B4DU91	EPN1	Epsin-1	SPQAFMSGVR	4	S435
M0QXW7	KHSRP	Far upstream element-binding protein 2	VGQPDSGGLPER	4	S181
F6H1C6	FERM1	FERMian family homolog 3	TASGGYDSSWELR	4	Y11
P04075	ALDOA	Fructose-bisphosphate aldolase A	GILADETSQSIAKR	4	S36
H0YJ30	GPHN	Gephyrin	ASHSAVDTIK	4	S303/S305
Q2C9B7	G6PD	Glucose-6-phosphate 1-dehydrogenase	VQPNEAVYTK	4	Y401
E9PK9	RAB3J1L1	Guanine nucleotide exchange factor for Rab-3A	ELHPQOLPTK	4	S179
Q7OS3	GNAS	Guanine nucleotide-binding protein Gs α subunit isoform L3	ISTASGDGR	4	S352
Q6SH922	HUBE1	HECT, UBA, and WWE domain containing 1	REESMDVDQPSAQDTSQASDGTQPGQEK	4	S3186
A0A0F7NG8	LRRFIP1	Leucine rich repeat	IDGATQSSPAEPK	4	S714
E9PJF4	CLNS1A	Methylome subunit pcIn	EPVADDEESDSDDVPEITFR	4	S102
S4RD3	AIP	Methylothiouribuloside-1-phosphate dehydratase	DGSPSPSKK	4	S87
Q6NT16	SLC18B1	MFS-type transporter SLC18B1	SKSNOLESTEER	4	S438
B4DS42	OAT1	Ornithine aminotransferase-like 1	QASLGDGLOLQRL	4	S506
P30041	PRDX6	Peroxiredoxin-6	DFTPVCTTELGR	4	T44
I3L1U0	RILP	Rab-interacting lysosomal protein	AESSEDETTSPASPK	4	S354
Q9P227	ARHGAP23	α GTPase-activating protein 23	SAALGPGAVLSPR	4	S361/S372
Q16513	PKN2	Serine/threonine-protein kinase N2	ASSLGGEDESSLR	4	S563
C9JG9	OXSR1	Serine/threonine-protein kinase OSR1	TEDGGWEEWDDDEFDEEESEEGK	4	S339
P02549	SPTA1	Sperm centrin α chain, erythrocytic 1	QDTLDASLSQFOQER	4	S1976
B2RMM7	SPTB	Sperm centrin β chain	LSSSWESLOPEPSHY	4	S212/S212S/S2128
B4DZC9	SLK	STE20-like serine/threonine-protein kinase	VDESDAEQDTOSDSIGQK	4	S571
P17987	TCP1	T-complex protein 1 subunit α	HGSYEDAVHSGALND	4	S544/S545
B4DU5	TP1	Triosephosphate isomerase	IUYGGSVTGATCK	4	Y246
Q8VS4	TSC22D4	TSC22D4 protein	VEADAEGSGARTPPLSR	4	T229
B4DQ79	LYN	Tyrosine-protein kinase	VIEDNEYTR	4	Y937
A0A024R8B2	UBADC1	Ubiquitin association domain containing 1, isoform CRA_c	APSPLPK	4	S98
Q5VQVO1	YOD1	Ubiquitin thioesterase OTU1	SSPAPFTK	4	S130
B3KW31	VPS13A	Vacuolar protein sorting 13A	QAFSTDRDPSLKD	4	S1416
A0A05Z3K9	CRK	V-ckr sarcoma virus CT10 oncogene-like protein isoform 2	DSSTRPQKDYLVSSENSR	4	S41
when interfering with protein activity (given that these modifications are not present in the nondeformed cell and thus are not essential for their survival, at least in vitro).

In contrast to Lyn, the impact of GSK3\(\beta\) in RBCs is markedly less well-characterized. GSK3\(\beta\) is a serine/threonine kinase which has been shown to phosphorylate multiple sites in \(\beta\)-adducin and consequently regulate its activity in cortical neurons.\(^{35}\) In erythrocytes, \(\beta\)-adducin interacts with band 3 and with the spectrin-actin cytoskeleton, stabilizing the junctional complex and regulating membrane deformability.\(^{36}\) No phosphorylated residue of \(\beta\)-adducin was detected in our datasets to be exclusive to cells undergoing or recovering from deformation; however, given the presence of the GSK3-phosphorylated \(\beta\)-adducin peptide in the predeformation samples and the previously described limitations, it is tantalizing to speculate that modification of this site could be involved in the regulation of membrane-cytoskeletal connectivity of RBCs.

Interestingly, a compounding effect was repeatedly observed when inhibiting the 2 kinases, suggesting the existence of independent mechanisms that are activated by the same initial stimulus. However, neither inhibitor affected the inherent capacity of the cells to undergo deformation (as assessed by rheoscope) in contrast to treatment with an anti-GPA antibody. Although we cannot exclude that varying shear stress levels or exposure times induced by the different modalities may contribute to this result, we hypothesize that inhibiting these mechanisms results in an inability to recover from successive deformations rather than an inability to deform. The initial deformability of the cell could, therefore, be primarily related to its inherent biophysical properties\(^{46}\) and not necessarily to a signaling pathway response (especially given the very short timeframe required for deformation). Nonetheless, as showcased by our functional assay studies, kinase activity and thus phosphorylation is clearly an important event in the regulation of physiological deformation.

In conclusion, our results not only present previously undescribed mechanisms for shear stress and deformation response in human erythrocytes and reticulocytes, but also serve as a valuable resource for further mechanistic dissection of the molecular pathways that underlie the RBC’s response to mechanical stimuli and for the study of reticulocyte maturation.

Acknowledgments

The authors thank Stephanie Pellegrin (University of Bristol, Bristol, United Kingdom) for her contributions to CD34\(^+\) cell isolation and culture; Kate Heesom and Marieangela Wilson, as well as the proteomics facility of the University of Bristol, for proteomics sample processing and data acquisition; Stephen Cross, as well as the Wolfson Bioimaging Facility of the University of Bristol, for helpful discussions and macro creation for imaging data preprocessing; and Judith Cluitmans (Radboud University Medical Center, Nijmegen, The Netherlands) for support in initial establishment of microfiltration assays.

P.L.M. was funded by the European Union (H2020-MSCA-ITN-2015, “RELEVANCE,” grant agreement number 675117). M.A.L.I. and W.E.N. were funded by the INSERM, the Institut National de la Transfusion Sanguine, and the Laboratory of Excellence GR-Ex, reference ANR-11-LABX-0051; GR-Ex is funded by the program “Investissements d’avenir” of the French National Research Agency, reference ANR-11-IDEX-0005-02. M.A.L.I. was additionally funded by the Ministère de l’Enseignement Supérieur et de la Recherche (Ecole Doctorale BioSFC) and received financial support from the Club du Globule Rouge et du Fer and the Société Française d’Hématologie. O.F. and B.L.P. acknowledge the Labex LaSIPS (ANR-10-LABX-0040-Lasips), the Institut d’Alembert and the CNRS for project funding (microfluidics). A.M.T. and T.J.S. were funded by a National Health Service Blood and Transplant research and development grant (WP15-04 and WP15-05) and the National Institute for Health Research Blood and Transfusion Research Unit (NIHR-BTRU) in Red Cell Products (NIHR-BTRU-2015-10032).

The views expressed are those of the authors and not necessarily those of the National Health Service, NIHR, or the Department of Health and Social Care.

Authorship

Contribution: P.L.M. performed the majority of experiments, analyzed data, and prepared figures; M.A.L.I. and P.L.M. performed microfluidics experiments under supervision of W.E.N.; O.F. and B.L.P. provided essential reagents for microfluidics experiments; J.G.D. and G.J.S. provided essential Automated Rheoscope and Cell Analyzer equipment and analysis software; P.L.M, M.A.L.I., W.E.N., A.M.T., and T.J.S. conceived and designed experiments; P.L.M., A.M.T., and T.J.S. wrote the manuscript; A.M.T. and T.J.S. contributed equally to conception and supervision of the work; and all authors read and edited the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

ORCID profiles: P.L.M., 0000-0002-0493-5394; W.E.N., 0000-0001-8184-427X; A.M.T., 0000-0003-4395-9396; T.J.S., 0000-0003-0590-292X.

Correspondence: Timothy J. Satchwell, School of Biochemistry, University of Bristol, Medical Science Building, University Walk, Bristol BS8 1TD, United Kingdom; e-mail: tsatchwell@bristol.ac.uk; or Ashley M. Toye, School of Biochemistry, University of Bristol, Medical Science Building, University Walk, Bristol BS8 1TD, United Kingdom; e-mail: ash.m.toye@bristol.ac.uk.

References

1. Malleret B, Xu F, Mohandas N, et al. Significant biochemical, biophysical and metabolic diversity in circulating human cord blood reticulocytes. PLoS One. 2013;8(10):e76062.
2. Xie L, Sun D, Yao W, Wen Z. Microrheological characteristics of reticulocyte in vivo. Sci China C Life Sci. 2002;45(1):50-56.
3. Malleret B, Li A, Zhang R, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015;125(8):1314-1324.
4. Wan J, Ristenpart WD, Stone HA. Dynamics of shear-induced ATP release from red blood cells. Proc Natl Acad Sci USA. 2008;105(43):16432-16437.
6. Holroyde CP, Gardner FH. Acquisition of autophagic vacuoles by human erythrocytes. Physiological role of the spleen. Blood. 1970;36(5):566-575.
7. King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress. Autophagy. 2011;7(12):1490-1499.
8. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1, a sensor of fluid shear stress, regulates mechanically induced calcium transients. Science. 2005;307(5708):304-308.
9. Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C. Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica. 2014;99(1):70-75.
10. Zipser Y, Piade A, Barbul A, Korenstein R, Kosower NS. Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem J. 2002;368(Pt 1):137-144.
11. Coussens L, Parker PJ, Rhees L, et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986;233(4766):859-866.
12. Govekar RB, Zingde SM. Protein kinase C isoforms in human erythrocytes. J Mol Biol. 1981;88(2):430-440.
13. Pinder JC, Bray D, Gratier WB. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977;270(5639):752-754.
14. Boivin P. Role of the phosphorylation of red cell membrane proteins. Biochem J. 1988;256(3):689-695.
15. Griffiths RE, Kupzig S, Sykes C. ATP-dependent mechanics of red blood cells. Methods Mol Biol. 2013;923:291-297.
16. Waugh RE. Reticulocyte rigidity and passage through endothelial-like pores. Blood. 1991;78(11):3037-3042.
17. Lizarralde Iragorri MA, El Hoss S, Brousse V, et al. A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease. Lab Chip. 2018;18(19):2975-2984.
18. Duez J, Carucci M, Garcia-Barbazan I, et al. High-throughput microfiltration to assess red blood cell deformability and screen for malaria transmission-blocking drugs. Nat Protoc. 2018;13(6):1362-1376.
19. Griffiths RE, Kupzig S, Cogan N, et al. Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood. 2012;119(26):6296-6306.
20. Dobbe JG, Streexstra GJ, Hardeman MR, Ince C, Grimbergen CA. Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometry. 2002;50(6):313-325.
21. Stevekstra GJ, Hardeman MR, Ince C, Grimbergen CA. Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometry. 2002;50(6):313-325.
22. Griffiths RE, Kupzig S, Cogan N, et al. Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood. 2012;119(26):6296-6306.
23. Dobbe JG, Streexstra GJ, Hardeman MR, Ince C, Grimbergen CA. Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometry. 2002;50(6):313-325.
38. Chasis JA, Reid ME, Jensen RH, Mohandas N. Signal transduction by glycophorin A: role of extracellular and cytoplasmic domains in a modulatable process. J Cell Biol. 1988;107(4):1351-1357.
39. Cluitmans JC, Gevi F, Siciliano A, et al. Red blood cell homeostasis: pharmacological interventions to explore biochemical, morphological and mechanical properties. Front Mol Biosci. 2016;3:10.
40. Wilson MC, Trakarnsanga K, Heesom KJ, et al. Comparison of the proteome of adult and cord erythroid cells, and changes in the proteome following reticulocyte maturation. Mol Cell Proteomics. 2016;15(6):1938-1946.
41. Chu TTT, Sinha A, Malleret B, et al. Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 2018;180(1):118-133.
42. Prenni JE, Vidal M, Olver CS. Preliminary characterization of the murine membrane reticulocyte proteome. Blood Cells Mol Dis. 2012;49(2):74-82.
43. Gautier EF, Leduc M, Cochet S, et al. Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes. Blood Adv. 2018;2(20):2646-2657.
44. Puchulu-Campanella E, Turrini FM, Li YH, Low PS. Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Proc Natl Acad Sci USA. 2011;108(20):8552-8557.
45. De Franceschi L, Tomelleri C, Matte A, et al. Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood. 2011;118(20):5652-5663.
46. Pivkin IV, Peng Z, Kamaidakis GE, Buffet PA, Dao M, Suresh S. Biomechanics of red blood cells in human spleen and consequences for physiology and disease [published correction appears in Proc Natl Acad Sci USA. 2017;114(22):E4521]. Proc Natl Acad Sci USA. 2016;113(28):7804-7809.
47. Vizcaíno JA, Csordas A, del-Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447-D456.
48. Duez J, Holleran JP, Ndour PA, et al. Splenic retention of Plasmodium falciparum gametocytes to block the transmission of malaria. Antimicrob Agents Chemother. 2015;59(7):4206-4214.
49. Jensen LJ, Kuhn M, Stark M, et al. STRING 8: a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37(database issue):D412-D416.
50. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(database issue):D512-D520.
51. Tinevez JY, Perry N, Schindelin J, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80-90.