Compressibility of CeMIn\textsubscript{5} and Ce\textsubscript{2}MIn\textsubscript{8} (\textit{M} =Rh, Ir and Co) Compounds

Ravhi S. Kumar and A.L. Cornelius
Department of Physics, University of Nevada, Las Vegas, Nevada, 89154-4002

J.L. Sarrao
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: Today)

Abstract

The lattice parameters of the tetragonal compounds CeMIn\textsubscript{5} and Ce\textsubscript{2}MIn\textsubscript{8} (\textit{M} =Rh, Ir and Co) have been studied as a function of pressure up to 15 GPa using a diamond anvil cell under both hydrostatic and quasihydrostatic conditions at room temperature. The addition of MIn\textsubscript{2} layers to the parent CeIn\textsubscript{3} compound is found to stiffen the lattice as the 2-layer systems (average of bulk modulus values \(B_0\) is 70.4 GPa) have a larger \(B_0\) than CeIn\textsubscript{3} (67 GPa), while the 1-layer systems with the are even stiffer (average of \(B_0\) is 81.4 GPa). Estimating the hybridization using parameters from tight binding calculations shows that the dominant hybridization is \(fp\) in nature between the Ce and In atoms. The values of \(V_{pf}\) at the pressure where the superconducting transition temperature \(T_c\) reaches a maximum is the same for all CeMIn\textsubscript{5} compounds. By plotting the maximum values of the superconducting transition temperature \(T_c\) versus \(c/a\) for the studied compounds and Pu-based superconductors, we find a universal \(T_c\) versus \(c/a\) behavior when these quantities are normalized appropriately. These results are consistent with magnetically mediated superconductivity.
I. INTRODUCTION

Ce based heavy fermion (HF) and antiferromagnetic (AF) compounds have been the subject of intensive investigations due to their unconventional magnetic and superconducting properties. In these compounds the electronic correlations, the magnetic ordering temperature and the crystal field effects are sensitive to pressure, and pressure induced superconductivity near a quantum critical point (QCP) has been observed in a variety of compounds such as CePd$_2$Si$_2$, CeCu$_2$Ge$_2$, CeRh$_2$Si$_2$ and CeIn$_3$.1,2,3,4,5 The appearance of superconductivity in these systems and the deviation from Fermi liquid behavior as a function of pressure are still challenging problems to be studied.

Ce$_n$MIn$_{2n+3}$ (M=Rh, Ir and Co) with $n = 1$ or 2 crystallize in the quasi-two-dimensional (quasi-2D) tetragonal structures Ho$_n$CoGa$_{2n+3}$.6,7 The crystal structure can be viewed as (CeIn$_3$)$_n$(MIn$_2$) with alternating n (CeIn$_3$) and (MIn$_2$) layers stacked along the c-axis. By looking at the crystal structure, we would expect that AF correlations would develop in the cubic (CeIn$_3$) layers in a manner similar to bulk CeIn$_3$.8 The AF (CeIn$_3$) layers will then be weakly coupled by an interlayer exchange interaction through the (MIn$_2$) layer leading to a quasi-2D magnetic structure. Indeed, in the Rh compounds, the magnetic properties, as determined by thermodynamic,9 NQR,10 and neutron scattering11 are less 2D as the crystal structure becomes less 2D going from single layer CeRhIn$_5$ to double layer Ce$_2$RhIn$_8$ (note that as $n \to \infty$, one gets the 3D cubic system CeIn$_3$). CeRhIn$_5$ and Ce$_2$RhIn$_8$ are antiferromagnets at ambient pressure but are found to superconduct at high pressures.12,13,14,15 The systems CeCoIn$_5$, CeIrIn$_5$ and Ce$_2$CoIn$_8$ display superconductivity at ambient pressure.13,14,16,17,18 The only member of the series that does not display magnetic order or superconductivity at ambient pressures is Ce$_2$IrIn$_8$ that is believed to be near a QCP.19

While not proven definitively, it is generally believed that the origin of the superconductivity in Ce$_n$MIn$_{2n+3}$ is magnetic in origin. The value of the superconducting transition temperature T_c in magnetically mediated superconductors is believed to be dependent on dimensionality in addition to the characteristic spin fluctuation temperature. Theoretical models and experimental results suggest that the SC state in CeRhIn$_5$ may be due to the quasi-two dimensional (2D) structure and anisotropic AF fluctuations which are responsible for the enhancement of T_c relative to CeIn$_3$.20,21 A strong correlation between the ambient
pressure ratio of the tetragonal lattice constants \(c/a \) and \(T_c \) in the CeMIn\(_5\) compounds is indicative of the enhancement of the superconducting properties by lowering dimensionality (increasing \(c/a \) increases \(T_c \)).\(^{20}\) In order to explain the evolution of superconductivity induced by pressure and the suppression of AF ordering, it is important to probe the effect of pressure on structure for these compounds and look for possible correlations between structural and thermodynamic properties.

Here we report on high pressure x-ray diffraction measurements performed on Ce\(_n\)MIn\(_{2n+3}\) (\(M = \text{Rh, Ir and Co} \)) with \(n = 1 \) or \(2 \) up to 15 GPa under both hydrostatic and quasi-hydrostatic conditions. Previously, we have reported results on CeRhIn\(_5\);\(^{22}\) we present a comparative study of the complete set of Ce\(_n\)MIn\(_{2n+3}\) compounds with emphasis on the behavior near the QCP. While there is no direct correlation between \(c/a(P) \) and \(T_c(P) \) as an implicit function of pressure in an individual system, the value of \(c/a \) at the pressure where \(T_c \) reaches its maximum value DOES show linear behavior as previously hypothesized.\(^{20}\) Also, the \(pf \) hybridization \(V_{pf} \) between the Ce and In atoms is the dominant hybridization in these compounds and takes on the same value for all CeMIn\(_5\) compounds at the pressure \(P_{\text{max}} \) where \(T_c \) reaches its maximum value. These results will be compared to isostructural Pu compounds and all of the results are consistent with unconventional, magnetically mediated superconductivity.

II. EXPERIMENT

Ce\(_n\)MIn\(_{2n+3}\) single crystals were grown by a self flux technique described elsewhere.\(^{23}\) The single crystals were crushed into powder and x-ray diffraction measurements show the single phase nature of the compound. In agreement with previous results,\(^{23,24}\) the crystals were found to have tetragonal symmetry with cell parameters in agreement with literature values.

The high pressure x-ray diffraction (XRD) experiments were performed using a rotating anode x-ray generator (Rigaku) for the quasi-hydrostatic runs and synchrotron x-rays at HPCAT, Sector 16 at the Advanced Photon Source for hydrostatic measurements. The sample was loaded with NaCl or ruby powder as a pressure calibrant and either a silicone oil or 4:1 methanol:ethanol mixture (hydrostatic) or NaCl (quasi-hydrostatic) as the pressure transmitting medium in a Re gasket with a 180 \(\mu \)m diameter hole. High pressure was
FIG. 1: X-ray diffraction patterns of CeCoIn$_5$ at ambient pressure and a hydrostatic pressure of 4.2 GPa. The data were taken using synchrotron radiation of wavelength $\lambda = 0.37214$ Å. The various reflections from CeCoIn$_5$ are labeled and one peak due to excess In flux is noted.

achieved using a Merrill-Basset diamond anvil cell with 600 μm culet diameters. The XRD patterns are collected using an imaging plate ($300 \times 300 \text{ mm}^2$) camera with 100×100 μm2 pixel dimensions. XRD patterns were collected up to 15 GPa at room ($T = 295$ K) temperature. The images were integrated using FIT2D software.25 The structural refinement of the patterns was carried out using the Rietveld method on employing the FULLPROF and REITICA (LHPM) software packages.26

III. RESULTS AND DISCUSSION

In Fig. 1 we show the XRD patterns for CeCoIn$_5$ obtained at ambient pressure and a hydrostatic pressures of 4.2 GPa with silicone oil used as the pressure transmitting media. In other measurements, diffraction peaks from the Re gasket, pressure markers (NaCl) and the sample are all observed. The known equation of state for NaCl27 or the standard ruby fluorescence technique28 was used to determine the pressure. The refinement of the XRD patterns was performed on the basis of the Ho$_{n}$CoGa$_{2n+3}$ structure with the P4/mmm
FIG. 2: Normalized volume V/V_0 and ratio of tetragonal lattice constants c/a plotted versus pressure for CeMIn$_5$ compounds at room temperature. Data for both quasihydrostatic (open symbols) and hydrostatic (closed symbols) are displayed. The solid line through the volume data is a fit as described in the text. The dashed vertical lines in the c/a plots shows the pressure where the maximum value of T_c is observed. The solid lines in the c/a plots are guides for the eye.

space group (No. 123). When comparing the crystallographic data and bulk modulus of CeIn$_3$ relative to Ce$_n$MIn$_{2n+3}$ it is evident that the Ce atom in Ce$_n$MIn$_{2n+3}$ experiences a chemical pressure at ambient conditions9,12 leading one to expect the Ce$_n$MIn$_{2n+3}$ to be less compressible than CeIn$_3$ as the bulk modulus increases with increasing pressure.

The $V(P)$ data have been plotted in Fig. 2 for CeMIn$_5$ ($M=$Rh, Ir and Co) and Fig. 3 for Ce$_2$MIn$_8$ ($M=$Rh or Ir) for both quasihydrostatic and hydrostatic measurements (the data for CeRhIn$_5$ has been previously reported22). Note that the vertical and horizontal scales are the same for all graphs. Unfortunately, we have not had success growing single crystals of Ce$_2$CoIn$_8$, though others have reported successful growth of single crystals.18 Since the
FIG. 3: Normalized volume V/V_0 and ratio of tetragonal lattice constants c/a plotted versus pressure for Ce_2MIn_8 compounds at room temperature. Data for both quasi-hydrostatic (open symbols) and hydrostatic (closed symbols) are displayed. The solid line through the volume data is a fit as described in the text. The dashed vertical lines in the c/a plots shows the pressure where the maximum value of T_c is observed. The solid lines in the c/a plots are guides for the eye.

Maximum volume compression is only of the order of 10%, the $V(P)$ data has been fit using a least squares fitting procedure to the first order Murnaghan equation of state

$$P = \frac{B_0}{B'_0} \left[\left(\frac{V_0}{V(P)} \right)^{B'_0} - 1 \right],$$

where B_0 is the initial bulk modulus and B'_0 is the pressure derivative of B_0. For the room temperature ($T = 295 \text{ K}$) data V/V_0 data shown in Figs. 2 and 3, the values of B_0 and B'_0 and the initial linear compressibilities κ_a and κ_c calculated below 2 GPa are given in Table II. First, we note that the $n = 2$ compounds show more anisotropy (κ_a is 15-20% smaller than κ_c) in the the compressibilities than the $n = 1$ compounds. As mentioned, the $n = 1$ compounds appear to be more 2D than the $n = 2$ compounds, making this result somewhat surprising. We also note the deviation from the typical inverse relationship between B_0 and V_0; namely, CeIrIn_5 has the largest value of B_0 AND the largest ambient pressure volume. These results hint that the valence of Ce and hybridization between the Ce 4f electrons and the conduction electrons needs to be taken into account. Pressure is known to make Ce
TABLE I: Summary of the determined bulk modulus B_0 and its pressure derivative B'_0 as determined from fits to the Murnaghan equation for the Ce$_n$MIn$_{2n+3}$ compounds. Also listed are the ambient pressure values of V_0 and c/a along with the initial linear compressibilities κ_a and κ_c. Values for CeIn$_3$ are taken from Vedel et al.29

System	n	V_0(Å3)	c/a	B_0 (GPa)	B'_0	κ_a(10$^{-3}$ GPa$^{-1}$)	κ_c(10$^{-3}$ GPa$^{-1}$)
CeRhIn$_5$	1	163.03	1.621	78.4 ± 2.0	5.60 ± 0.62	3.96 ± 0.08	4.22 ± 0.10
CeIrIn$_5$	1	163.67	1.612	87.6 ± 2.0	5.04 ± 0.58	3.44 ± 0.06	3.48 ± 0.08
CeCoIn$_5$	1	160.96	1.638	78.2 ± 1.8	3.94 ± 0.41	4.35 ± 0.08	3.43 ± 0.16
Ce$_2$RhIn$_8$	2	266.48	2.624	71.4 ± 1.1	3.85 ± 0.31	4.20 ± 0.04	4.85 ± 0.11
Ce$_2$IrIn$_8$	2	266.26	2.610	69.4 ± 1.7	5.73 ± 0.52	4.02 ± 0.06	4.93 ± 0.12
CeIn$_3$	∞	103.10	1	67.0 ± 3.0	2.5 ± 0.5	4.98 ± 0.13	4.98 ± 0.13

compounds more tetravalent, and since the tetravalent ion is smaller than the trivalent ion, makes the more tetravalent system less compressible. The explanation for the unexpected difference in the linear compressibilities may lie in the fact that c/a seems to be coupled to T_c as will be discussed later. As a larger c/a favors superconductivity, if pressure reduces c less than expected, the compressibility will be lowered and the c/a ratio will increase as seen in CeRhIn$_5$ and CeCoIn$_5$. As expected, the lattice appears to be stiffer the more 2D the system becomes as the MIn$_2$ layers in Ce$_2$MIn$_8$ stiffen the structure relative to CeIn$_3$. CeIn$_3$ has a smaller bulk modulus ($B_0 = 67$ GPa)29 than the 2-layer systems (average of B_0 is 70.4 GPa) that in turn is smaller than the 1-layer systems (average of B_0 is 81.4 GPa). The bulk modulus values compare well with those reported for other HF systems30,31,32,33. The fact that we see no discernible difference between the hydrostatic and quasihydrostatic measurements is likely due to the nearly isotropic compressibilities.

Figs. 2 and 3 also show the ratio of the lattice constants c/a as a function of pressure. The systems display a wide range of behavior from the apparent double peaked structure in CeRhIn$_5$ to the single peaked structure in CeCoIn$_5$ to a monotonic decrease for the other systems. Vertical dashed lines show the pressure where a maximum in $T_c(P)$ has been observed: 2.4 GPa for CeRhIn$_5$,12,14 1.4 GPa for CeCoIn$_5$,34,35 2.9 GPa for CeIrIn$_5$,36 and 2.4 GPa for Ce$_2$RhIn$_8$.15

As mentioned, a strong correlation between the ambient pressure c/a ratio and T_c in the
CeMIn$_5$ compounds has been observed (increasing c/a increases T_c). This can be seen in Fig. 4 that is adapted from Pagliuso et al.\cite{Pagliuso20} (Note that we have corrected a labeling error found in Pagliuso et al.\cite{Pagliuso20} where two systems are labeled as CeCo$_{0.5}$Ir$_{0.5}$In$_5$.) However, some discrepancies exist, namely magnetic systems like CeRhIn$_5$ whose c/a ratio of 1.62 would lead one to erroneously conclude that superconductivity near 1.0 K should be observed, rather than the experimentally observed AF order at 3.8 K. The reason for this discrepancy can be seen if one considers theoretical treatments of magnetically mediated superconductivity.\cite{Calculations}

Calculations show that superconductivity occurs at a QCP where long range magnetic order is suppressed and the infinite range magnetic correlations give way to short range magnetic correlations that are responsible for the superconductivity. Recent work has shown a similar sort of behavior when a system is near a valence instability and critical density fluctuations give rise to superconductivity.\cite{In either of theses scenarios, one then finds $T_c(P)$ behavior that displays the experimentally observed inverse parabolic behavior with the maximum value of T_c becoming larger as correlations become more 2D in character. Slight deviations from the inverse parabolic behavior observed in CeRhIn$_5$ on the high pressure side may be indicative of density fluctuations or a "hidden" 3D magnetically ordered state.\cite{In the magnetic fluctuation scenario, the maximum value of $T_c(P)$ is found at a pressure P_{max} and depends on the spin fluctuation temperature T_{sf} and the dimensionality of the magnetic interactions. The maximum possible values of T_c will occur for more 2D systems with the highest possible value of T_{sf}. This leads to the natural conclusion that the correct quantities to plot are not the ambient pressure ones, but rather the value of T_c at P_{max} and the corresponding value of c/a. Note that while one should use the structural information near T_c, we have shown that the c/a versus P behavior is similar at room temperature and near T_c leading to the conclusion that the room temperature lattice constants can be used for our analysis.\cite{This has been done in Fig. 4 where the filled circles correspond to the c/a ratios from the current study where T_c reaches its maximum value at P_{max} taken from the literature.\cite{As can be seen, CeRhIn$_5$ now fits in with the rest of the data quite well. Also, CeIrIn$_5$ and CeCoIn$_5$ both have their values of T_c and c/a enhanced from their ambient pressure values. Note that all of the points from the current study lie on or above the line. These results are consistent with theory and it would be of great interest to measure more values of the maximum T_c as a function of c/a at that pressure to look for universal behavior.\cite{8}}
FIG. 4: The ambient pressure values of the superconducting transition temperature versus the room temperature value of c/a (open circles) for various CeMIn$_5$ compounds. Also shown (solid circles) are the values of c/a determined at room temperature at the pressure P_{max} where $T_c(P)$ displays a maximum. The line is a least squares fit to the ambient pressure values.

To conclude that the dependence of T_c on c/a in Fig. 4 is due mainly to dimensionality, it is necessary to prove that T_{sf} does not change drastically for the various compounds. To estimate T_{sf}, we have used the tight binding approximation of Harrison to calculate the hybridization V_{pf} between the Ce (or Pu) f-electrons and In (or Ga) p-electrons and V_{df} between the Ce f-electrons and M atom d-electrons. As $T_{sf} \propto \exp(-1/V^2)$, the hybridization can be directly linked to T_{sf}. It can be shown that the pf and df hybridization are given by

$$V_{pf} = \frac{\eta_{pf} \hbar^2}{m_e} \frac{\sqrt{r_p r_f}}{d^5}, \quad V_{df} = \frac{\eta_{df} \hbar^2}{m_e} \frac{\sqrt{r_d^3 r_f}}{d^6},$$

where η is a constant (for σ bonds, $\eta_{pf} = 10\sqrt{21/\pi}, \eta_{df} = 450\sqrt{35/\pi}$; m_e is the mass of an electron; r_p, r_d and r_f are tabulated electron wavefunction radii for a particular atom; and d is the distance between the atoms in question.40,41,42,43 We tabulate ambient pressure values along with values at the pressure where T_c reaches its maximum value P_{max} of both the fp (V_{fp}) and the df (V_{df}) hybridization, summing over all nearest neighbors, in Table III. Note
that though we have done the calculation only for σ bonds, the inclusion of bonding with higher \(m \) quantum numbers will simply multiply the final result by a constant (that should approximately be the same for all members of an isostructural series). From Table II it is evident that \(V_{pf} > V_{df} \) for all of the compounds. This is consistent with the electronic structure calculations of Maehira et al. that consider the \(fp \) hybridization only and get good agreement to measured Fermi surfaces.\(^{46}\) This dominance of the \(fp \) hybridization also gives a natural explanation to some facts regarding the robustness of superconductivity. For \(M \) site substitution, superconductivity is robust and exists for numerous Ce\(M \)In\(_5\) compositions.\(^{20,47}\) Substitution of Sn for In, however, has been shown to rapidly suppress superconductivity in CeCo\((\text{In}_{1-x}\text{Sn}_x)\)\(_5\).\(^{48}\) These results show that the \(M \) atom serves mainly to affect the spacing between the Ce and In atoms that determine the hybridization, and the sensitivity to Sn substitution shows that disorder of the Ce-In strongly perturbs the \(pf \) interactions leading to superconductivity.

For the Ce\(M \)In\(_5\) series, the \(V_{pf} \) values increase in the order \(\text{Rh} \rightarrow \text{Ir} \rightarrow \text{Co} \). One expects the important parameter describing the magnetic interaction to be the magnetic coupling \(J \propto V^2 \). This is consistent with a Doniach model\(^{49,50}\) of the competition between the non-magnetic Kondo state and the magnetic RKKY state shown schematically if Fig. 5 which qualitatively captures the pressure dependent behavior in Ce\(M \)In\(_5\) compounds. After a sys-

TABLE II: Calculated \(fp (V_{fp}) \) and the \(df (V_{df}) \) hybridization in eV as described in text. Values are given at ambient pressure and the pressure where \(T_c \) displays a maximum \(P_{max} \). Necessary structural parameters for PuCoGa\(_5\) are taken from Wastin et al.\(^{44}\) and for Ce\(_2\)CoIn\(_8\) from Kalychak et al.\(^{45}\)

System	\(V_{df}(0) \)	\(V_{pf}(0) \)	\(P_{max} \) (GPa)	\(V_{df}(P_{max}) \)	\(V_{pf}(P_{max}) \)
CeRhIn\(_5\)	0.572	2.030	2.4	0.607	2.136
CeIrIn\(_5\)	0.627	2.031	2.9	0.665	2.135
CeCoIn\(_5\)	0.307	2.066	1.4	0.317	2.130
Ce\(_2\)RhIn\(_8\)	0.272	1.977	2.4	0.292	2.086
Ce\(_2\)IrIn\(_8\)	0.297	1.993	-	-	-
Ce\(_2\)CoIn\(_8\)	0.147	2.018	-	-	-
PuCoGa\(_5\)	0.955	5.229	-	-	-
FIG. 5: Schematic phase diagram for the CeMIn₅ compounds showing the competition between magnetic order and superconductivity. For small values of the hybridization V^2, the magnetically ordered state (dashed line) is favored. As pressure is applied, systems move to the right in the diagram and the magnetically ordered state gives away to superconductivity (solid lines). The approximate ambient pressure position is shown for various CeMIn₅ materials. The superconducting curve for CeRhIn₅ lies between the CeIrIn₅ and CeCoIn₅ curves.

As the system has reached its maximum magnetic ordering temperature, the magnetic order is rapidly suppressed and the system moves toward a QCP. This type of behavior has been seen in numerous Ce compounds. Near the QCP, many different behaviors can be observed. For the CeMIn₅ compounds, superconductivity with a characteristic inverse parabolic shape is observed. As shown by the dotted line, magnetic order may or may not coexist in regions with superconductivity. In Fig. 5, the compounds were placed from left to right in order of increasing V_{pf}. The location was chosen to agree with the measured behavior of all three compounds. Namely, CeRhIn₅ is an antiferromagnet at ambient pressure while CeIrIn₅ and CeCoIn₅ are ambient pressure superconductors, and all three display a maximum in T_c as a function of pressure. The inverse parabolic shape of T_c is consistent with the behavior expected for magnetically mediated superconductivity, where the height of the maximum depends on the hybridization and the dimensionality. The larger maximum value of T_c as a function of pressure for CeCoIn₅ with larger c/a (and hence more 2D character) relative to CeIrIn₅ then follows naturally. From Fig. 5, one would expect that the pressure to reach the...
maximum in T_c would increases in order Rh→Ir→Co. Surprisingly, both Rh and Ir display
the maximum at about the same pressure of 2.4 GPa. This can be explained, however, by
noting that CeIrIn$_5$ has the larger bulk modulus so that while the pressure is the same, the
volume change is considerably less. A more reasonable variable to use than pressure would
be the hybridization V. From Table III the value for the hybridization at the pressure P_{max}
where T_c reaches its maximum value is nearly identical for all three CeMIIn$_5$ compounds.
This gives strong support for the magnetically mediated superconductivity scenario as one
would expect that the maximum value of T_c would occur for approximately the same value
of V and variations in T_c would then be attributed to differences in dimensionality. We note
that the values of $V_{p,f}$ for the Ce$_2$MIIn$_8$ compounds is very similar to the CeMIIn$_5$ compounds
and the progression of increasing $V_{p,f}$ being Rh→Ir→Co; this is consistent with the progression
of ground states from magnetic order (Rh) to heavy fermion (Ir) to superconductivity (Co) in the Ce$_2$MIIn$_8$ series. This is in line with the experimental finding of very similar
electronic specific heat coefficients $\gamma \propto 1/T_{sf} \propto \exp(1/V^2)$. Also, in a scenario of
magnetically mediated superconductivity, the most obvious route to higher T_c values would
be to raise the value of T_{sf} by switching to actinide compounds with larger r_f values, and
hence hybridization relative to rare earths. The affect of moving to the actinides is seen in
PuCoGa$_5$ that has $V_{p,f} \sim 2.6$ times larger than the corresponding Ce compounds.

Recently, Pu based superconductivity was observed for the first time in PuCoGa$_5$ above
18 K, an order of magnitude larger than the Ce compounds that also have the HoCoGa$_5$
structure. It was subsequently shown by Wastin et al. that a similar universal linear
behavior of T_c versus c/a is observed in PuMGa$_5$ compound with nearly the same logarithmic
slope as the CeMIIn$_5$ compounds. While this may at first seem a surprising result, in fact
it follows straight from the theoretical conclusions that T_c should scale as a characteristic
temperature $T^* \propto T_{sf}$. That the value T_c is an order of magnitude larger in Pu based
compared to Ce based compounds then is a consequence of a value of T_{sf} that is an order
of magnitude larger in Pu compounds. This estimate is reasonable in light of the previous
discussion showing a significantly larger value of $V_{p,f}$ in the Pu compounds remembering
that $T_{sf} \propto \exp(-1/V^2)$, and also because the electronic specific heat coefficient γ is an
order of magnitude smaller in Pu compounds relative to Ce compounds and $T_{sf} \propto 1/\gamma$. We also note that the Ce$_2$MIIn$_8$ compounds at ambient pressure do not seem to not follow
the linear T_c versus c/a behavior as only Ce$_2$CoIn$_8$ displays superconductivity at ambient
TABLE III: Summary of the normalization values used to plot the data in Fig. 6. T^* is a characteristic temperature that is related to the spin fluctuation or Kondo temperature. $(c/a)^*$ is chosen as described in text.

System	$T^*(K)$	$(c/a)^*$
CeMIn$_5$	2.0	1.620
PuMGa$_5$	20	1.596
Ce$_2$MIn$_8$	2.0	2.610

pressure. However, Ce$_2$RhIn$_8$, like CeRhIn$_5$, magnetically orders at ambient pressure but the application of pressure reveals superconductivity. To further analyze these systems, we plot normalized values of T_c versus $\Delta c/a$ in Fig. 6, where T_c is normalized by T^* and $\Delta (c/a)$ is found by subtracting a value $(c/a)^*$. T^* was chosen as 2 K for CeMIn$_5$ and Ce$_2$MIn$_8$ as it is approximately T_{sf} for CeCoIn$_5$ and as discussed previously, we don’t expect much variation in T_{sf} for these compounds. $T^* = 20$ K was used for PuMGa$_5$ as we expect an order of magnitude increase in T_{sf} for Pu compounds relative to Ce compounds. $(c/a)^*$ was chosen in such a way to shift the curves on top of each other. The values of T^* and $(c/a)^*$ are given in Table III. The normalized values are plotted in Fig. 6. The universality is readily apparent with all of the pressure points lying on or above the straight line. That the points lie on or above the line for the ambient pressure points is likely due to higher values of T_{sf} for the optimal pressure data relative to ambient pressure data rendering the assumption of a single T^* value to normalize all data tenuous. The ambient pressure ”misplacement” of Ce$_2$RhIn$_8$ (AF order at ambient pressure) now can be explained by the pressure induced superconductivity and the universal line now goes through the high pressure Ce$_2$MIn$_8$ data. While Ce$_2$IrIn$_8$ does not display superconductivity, the value of c/a reaches a nearly constant value above 5 GPa and we have plotted a point assuming $T_c = 0$ at high pressure. This assumption gains validity as these results would predict that superconductivity will not be seen in Ce$_2$IrIn$_8$ under pressure as $\Delta (c/a)$ falls below the x-intercept of the T_c/T^* versus $\Delta (c/a)$ line. Also, Ce$_2$CoIn$_8$ should see a dramatic enhancement of T_c under pressure; if c/a doesn’t change as a function of pressure, this estimate for the maximum in T_c would be around 3 K which is slightly larger than what is seen in CeCoIn$_5$ under pressure.
FIG. 6: The ambient pressure values of T_c/T^* versus the room temperature value of $\Delta (c/a)$ (open symbols) for various Ho$_n$CoGa$_{2n+3}$ based compounds; CeMIn$_5$ (circles), Ce$_2$MIn$_8$ (diamonds) and PuMGa$_5$ (squares) are all shown. Also shown (solid symbols) are the values of $\Delta (c/a)$ determined at room temperature at the pressure P_{max} where $T_c(P)$ displays a maximum. The straight line is the same as that shown in Fig. 4.

IV. CONCLUSIONS

We have studied the elastic properties of Ce$_n$MIn$_{2n+3}$ ($M=$Rh, Ir and Co) with $n = 1$ or 2 under hydrostatic and quasihydrostatic pressures up to 15 GPa using x-ray diffraction. The addition of MIn$_2$ layers to the parent CeIn$_3$ compound is found to stiffen the lattice. By plotting the maximum values of the superconducting transition temperature T_c versus c/a, we are able to expand upon the proposed linear relationship between the quantities by Pagliuso et al.20 We have also found that the dominant hybridization is between the Ce (or Pu) f—electrons and In (or Ga) p—electrons V_{pf}. Also, the value of V_{pf} where T_c reaches its maximum is nearly identical for all three CeMIn$_5$ compounds. These results explain the lack of superconductivity in Ce$_2$IrIn$_8$ and predict that T_c should increase dramatically in Ce$_2$CoIn$_8$ at high pressure. Comparing the results to Pu-based superconductors shows a universal T_c versus c/a behavior when these quantities are normalized by appropriate quantities consistent with what is expected of magnetically mediated superconductivity.
Acknowledgments

Work at UNLV is supported by DOE EPSCoR-State/National Laboratory Partnership Award DE-FG02-00ER45835. Work at LANL is performed under the auspices of the U.S. Department of Energy. HPCAT is a collaboration among the UNLV High Pressure Science and Engineering Center, the Lawrence Livermore National Laboratory, the Geophysical Laboratory of the Carnegie Institution of Washington, and the University of Hawaii at Manoa. The UNLV High Pressure Science and Engineering Center was supported by the U.S. Department of Energy, National Nuclear Security Administration, under Cooperative Agreement DE-FC08-01NV14049. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

1 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).
2 D. Jaccard, K. Behina, and J. Sierro, Phys. Lett. A 163, 475 (1992).
3 R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, Phys. Rev. B 53, 8241 (1996).
4 F. M. Grosche, S. R. Julian, N. D. Mathur, and G. G. Lonzarich, Physica B 223-224, 50 (1996).
5 N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).
6 Y. N. Grin, Y. P. Yarmolyuk, and E. I. Gladyshevskii, Sov. Phys. Crystallogr. 24, 137 (1979).
7 Y. N. Grin, P. Rogl, and K. Hiebl, J. Less-Common Met. 121, 497 (1986).
8 J. M. Lawrence and S. M. Shapiro, Phys. Rev. B 22, 4379 (1980).
9 A. L. Cornelius, A. J. Arko, J. L. Sarrao, M. F. Hundley, and Z. Fisk, Phys. Rev. B 62, 14181 (2000).
10 N. J. Curro, P. C. Hammel, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. B 62, R6100 (2000).
11 W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 62, R14621 (2000).
12 H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).
13 R. A. Fisher, F. Bouquet, N. E. Phillips, M. F. Hundley, P. G. Pagliuso, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. B 65, 224509 (2002).
14 T. Mito, S. Kawasaki, G. q. Zheng, Y. Kawasaki, K. Ishida, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. B 63, 220507(R) (2001).
15 M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, C. Petrovic, Z. Fisk, J. L. Sarrao, and J. D. Thompson, Phys. Rev. B 67, 020506 (2003).
16 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.:Condens. Matter 13, L337 (2001).
17 C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
18 G. Chen, S. Ohara, M. Hedo, Y. Uwatoko, K. Saito, M. Sorai, and I. Sakamoto, J. Phys. Soc. Jpn. 71, 2836 (2002).
19 J. D. Thompson, R. Movshovich, Z. Fisk, F. Bouquet, N. J. Curro, R. A. Fisher, P. C. Hammel, H. Hegger, M. F. Hundley, M. Jaime, et al., J. Magn. Magn. Mater. 226, 5 (2001).
20 P. G. Pagliuso, R. Movshovich, A. D. Bianchi, M. Nicklas, N. O. Moreno, J. D. Thompson, M. F. Hundley, J. L. Sarrao, and Z. Fisk, Physica B 312-313, 129 (2002).
21 P. Monthoux and G. G. Lonzarich, Phys. Rev. B 63, 054529 (2001).
22 R. S. Kumar, H. Kohlmann, B. E. Light, A. L. Cornelius, V. Raghavan, T. W. Darling, and J. L. Sarrao, Phys. Rev. B 69, 014515 (2004).
23 E. G. Moshopoulou, Z. Fisk, J. L. Sarrao, and J. D. Thompson, J. Solid State Chem. 158, 25 (2001).
24 N. O. Moreno, M. F. Hundley, P. G. Pagliuso, R. Movshovich, M. Nicklas, J. D. Thompson, J. L. Sarrao, and Z. Fisk, Physica B 312-313, 274 (2002).
25 A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Haüsermann, High Pressure Research 14, 235 (1996).
26 J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
27 J. M. Brown, J. Appl. Phys. 86, 5801 (1999).
28 G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).
29 I. Vedel, A. M. Redon, J. M. Mignot, and J. M. Leger, J. Phys. F: Metal Phys. 17, 849 (1987).
30 T. Penney, B. Barbara, T. S. Plaskett, H. E. J. King, and S. J. LaPlaca, Solid State Commun. 44, 1199 (1982).
31 I. L. Spain, F. Steglich, U. Rauchschwalbe, and H. D. Hochheimer, Physica B 139-140, 449 (1986).
32 A. P. G. Kutty and S. N. Vaidya, in Theoretical and Experimental Aspect of Valence Fluctuations and Heavy Fermions, edited by L. C. Gupta and S. K. Malik (Plenum, New York, 1987), p. 621.
33 C. Wassilew-Reul, M. Kunz, M. Hanfland, D. H"ausermann, C. Geibel, and F. Steglich, Physic B 230-232, 310 (1997).
34 V. A. Sidorov, M. Nicklas, P. G. Pagliuso, J. L. Sarrao, Y. Bang, A. V. Balatsky, and J. D. Thompson, Phys. Rev. Lett. 89, 157004 (2002).
35 G. Sparn, R. Borth, E. Lengyel, P. G. Pagliuso, J. L. Sarrao, F. Steglich, and J. D. Thompson, Physica B 319, 262 (2002).
36 T. Muramatsu, T. C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, Y. Haga, and Y. Onuki, Physica C 388-389, 539 (2003).
37 P. Monthoux and G. G. Lonzarich, Phys. Rev. B 69, 064517 (2004).
38 T. Muramatsu, N. Tateiwa, T. C. Kobayashi, A. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga, and Y. Onuki, J. Phys. Soc. Jpn. 70, 3362 (2001).
39 M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, J. L. Sarrao, and J. D. Thompson, Phys. Rev. B 70, 020505(R) (2004).
40 W. A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).
41 W. A. Harrison, Phys. Rev. B 28, 550 (1983).
42 G. K. Straub and W. A. Harrison, Phys. Rev. B 31, 7668 (1985).
43 W. A. Harrison and G. K. Straub, Phys. Rev. B 36, 2695 (1987).
44 F. Wastin, P. Boulet, J. Rebizant, E. Colineau, and G. H. Lander, J. Phys.:Condens. Matter 15, S2279 (2003).
45 Y. M. Kalychak, V. I. Zaremba, V. M. Baranyak, V. A. Bruskov, and P. Y. Zavalii, Izv. Acad. Nauk SSSR Metally 1, 209 (1989).
46 T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa, J. Phys. Soc. Jpn. 72, 854 (2003).
47 P. G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. B 64, 100503(R) (2001).
E. D. Bauer (2004), private Communication.

S. Doniach, in *Valence Instability and Related Narrow Band Phenomena*, edited by R. D. Parks (Plenum, New York, 1977).

S. Doniach, Physica B 231-234, 231 (1977).

J. D. Thompson and J. M. Lawrence, *Handbook on the Physics and Chemistry of Rare Earths* (North-Holland, Amsterdam, 1994), vol. 19, chap. 133, pp. 383–477.

A. L. Cornelius and J. S. Schilling, Phys. Rev. B 49, 3955 (1994).

A. L. Cornelius, A. K. Gangopadhyay, J. S. Schilling, and W. Assmus, Phys. Rev. B 55, 14109 (1997).

A. L. Cornelius, P. G. Pagliuso, M. F. Hundley, and J. L. Sarrao, Phys. Rev. B 64, 144411 (2001).

J. D. Thompson, M. Nicklas, A. Bianchi, R. Movshovich, A. Llobet, W. Bao, A. Malinowski, M. F. Hundley, N. O. Moreno, P. G. Pagliuso, et al., Physica B 329, 446 (2003).

J. L. Sarrao, L. A. Morales, J. D. Thompson, B. L. Scott, G. R. Stewart, J. R. F Wastin, P. Boulet, E. Colineau, and G. H. Lander, Nature 420, 297 (2002).

F. Wastin, P. Boulet, E. Colineau, J. Rebizant, G. H. Lander, J. D. Thompson, J. L. Sarrao, and L. A. Morales (2004).

S. Nakatsuji, S. Yeo, L. Balicas, Z. Fisk, P. Schlottmann, P. G. Pagliuso, N. O. Moreno, J. L. Sarrao, and J. D. Thompson, Phys. Rev. Lett. 89, 106402 (2002).