Direct monitoring of microgel formation during precipitation polymerization of N-isopropylacrylamide using in situ SANS

Otto L. J. Virtanen,† Michael Kather,‡¶ Julian Meyer-Kirschner,§ Andrea Melle,†¶# Aurel Radulescu,|| Jörn Viell,§ Alexander Mitsos,§ Andrij Pich,†¶ and Walter Richtering*,†

†Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52064 Aachen, Germany
‡Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringenweg 2, 52074 Aachen, Germany
¶DWI - Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
§Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
||Juelich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
⊥Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany, Worringenweg 2, 52056 Aachen, Germany
#Present address: Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany

E-mail: wrichtering@pc.rwth-aachen.de
1 Supporting Information

1.1 Effect of cross-linker bisacrylamide on particle growth rate

Total volume growth rate in dependence of BIS concentration was calculated from Eq. 12 and are shown in Figure S1.

![Figure S1: Total volume growth rate during the precipitation polymerization of NIPAM with increasing BIS concentration.](image)

\[y(x) = y_0 + A_1 \exp\left(\frac{x}{t_1}\right) + A_2 \exp\left(\frac{x}{t_2}\right) \]

(S1)

To calculate the initial reaction rate from this fit, the first derivative has to be calculated:

\[\frac{dy}{dx} = \frac{A_1}{t_1} \exp\left(\frac{x}{t_1}\right) + \frac{A_2}{t_2} \exp\left(\frac{x}{t_2}\right) \]

(S2)

At a reaction time of 0 this equation simplifies to:

1.2 Effect of cross-linker bisacrylamide on initial reaction rate

To determine the initial reaction rate \(r_{\text{initial}} \) of the NIPAM precipitation polymerization in dependence of the cross-linker concentration, the conversion is plotted against the reaction time (Figure S2). This plot is then fitted with the following two exponential equation:
\[
\frac{dy}{dx}_{(t=0)} = \frac{A_1}{t_1} + \frac{A_2}{t_2}
\]

Figure S2: Conversion of the precipitation polymerization of NIPAM in dependence of reaction time, fitted with the single exponential Eq. 11 and the two exponential Eq. S1.

With this equation the initial reaction rate in dependence of the cross-linker concentration can be calculated using the fitting parameters found in Table S3 (see Table S1).

Table S1: Initial reaction rate in dependence of BIS concentration

\(c_{\text{BIS}} \times 10^{-3}\)	\(r_{\text{initial}}\)
1.8	0.6120
1.5	0.5356
0	0.4537
Table S2: Conversion fit with Eq. 11

$c_{BIS} \times 10^{-3}$	V_M/np	t	χ^2	r^2	cor. r^2
1.8	74.3502	150.9645	0.3415	0.9975	0.9975
	±0.0174	±0.2933			
1.5	70.6655	160.0966	0.7553	0.9969	0.9969
	±0.0500	±0.5559			
0	69.4449	164.2591	0.4485	0.9982	0.9982
	±0.0390	±0.4456			

Table S3: Conversion fit with two exponential Eq. S1

$c_{BIS} \times 10^{-3}$	y_0	A_1	t_1	A_2	t_2	χ^2	r^2	cor. r^2
1.8	74.5264	-40.7241	-93.9698	-37.6271	-210.6464	0.1262	0.9991	0.9991
	±0.0125	±1.9407	±2.4102	±1.9872	±4.1741			
1.5	72.1159	-47.2412	-106.2111	-27.2607	-300.1492	0.1347	0.9989	0.9989
	±0.0141	±0.8615	±1.4974	±0.8983	±4.9010			
0	73.4011	-68.1594	-151.2669	-6.5663	-2090.4057	0.2782	0.9976	0.9976
	±0.2223	±0.1562	±0.7051	±0.1249	±173.1407			