Segregation Lag in Polyploid Cells of the Pathogen Genus *Borrelia*: Implications for Antigenic Variation

Christopher D. Crowder*, Richard L. Denny*, and Alan G. Barbour*

*Departments of Medicine and Microbiology & Molecular Genetics University of California Irvine. Irvine, California; †Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Relapsing fever agents like *Borrelia hermsii* undergo multiphasic antigenic variation that is attributable to spontaneous DNA non-reciprocal transpositions at a particular locus in the genome. This genetic switch results in a new protein being expressed on the cell surface, allowing cells with that phenotype to escape prevailing immunity. But the switch occurs in only one of several genomes in these spirochetes, and a newly-switched gene is effectively “recessive” until homozygosity is achieved. The longer that descendants of the switched cell expressed both old and new proteins, the longer this lineage risks neutralization by antibody to the old protein. We investigated the implications for antigenic variation of the phenotypic lag that polyploidy would confer on cells. We first experimentally determined the average genome copy number in daughter cells after division during mouse infection with *B. hermsii* strain HS1. We then applied discrete deterministic and stochastic simulations to predict outcomes when genomes were equably segregated either linearly, i.e. according to their position in one-dimensional arrays, or randomly partitioned, as for a sphere. Linear segregation replication provided for a lag in achievement of homozygosity that was significantly shorter than could be achieved under the random segregation condition. For cells with 16 genomes, this would be a 4-generation lag. A model incorporating the immune response and evolved matrices of switch rates indicated a greater fitness for polyploid over monoploid bacteria in terms of duration of infection.

INTRODUCTION

Borrelia hermsii and other species that cause relapsing fever are noted for their evasion of the host’s adaptive immunity through multi-phasic antigenic variation [1]. A change in antigenic identity, or serotype, of a cell is the consequence of a spontaneous, non-reciprocal transposition, in which a previously silent allele for a surface protein supplants another allele occupying an expression site through a stochastic recombination [2]. We call this genetic event and the accompanying change in phenotype a “switch.” The serotype of a cell is determined by the expression of one out of several Variable Major Proteins (VMP) [3]. The serotype-specific antibodies that are elicited by cells expressing the prevailing VMP over time rise to a concentration sufficiently high to clear that particular...
serotype from the blood, i.e. at ~10³ bacteria per milliliter [4]. The minority of cells expressing a different VMP, to which the vertebrate host has not previously been exposed, continue to proliferate in the presence of the initial immune response. But as numbers of cells expressing the different VMP increase, adaptive immunity to that serotype follows in turn. Other serotypes and the immune responses to them succeed until either the host dies, or the VMP repertoire is exhausted and the host recovers (reviewed in [4]).

These events occur among linear plasmids, which are each in approximate equal numbers with chromosomes in a cell [4-6]. A single chromosome and each of the several types of linear and circular plasmids constitute a single genome. Inactive, or silent versions of genes for VMPs occur on five different plasmids, while the expression site, defined by a particular promoter and an upstream enhancer, occurs on only one plasmid [7,8]. If there was one genome per cell, which is the case for most bacteria under natural conditions, the daughter cell with the recently switched VMP gene may go through a transitional period where both the remaining VMP molecules and the newly-made VMPs are represented at the cell’s surface. But given the turnover of membranes in Borrelia spp. [9], this phenotypic lag would probably be less than the generation time of 5 to 8 hours [4]. But what if there were several genomes in the cell, as is the case for the several Borrelia species that cause relapsing fever, as well as the agents of Lyme disease [10,11]? These genomes are tandemly-arrayed along the lengths of these filamentous cells. As Hinnebusch and Bendich described it, the “DNA content of a borrelia is not contained within a central condensed nucleoid, as it is for E. coli, but instead is distributed throughout the approximately 20-µm length of the spirochete during most stages of growth” [12]. The rate of switching from expression of one VMP was estimated as 10⁻⁴ to 10⁻³ per cell per generation [13,14], so the likelihood of two or more independent genetic switches occurring the same cell is very low. How then do cells contend with their hazardous environment containing antibodies targeted to them if only one of its several genomes has undergone a switch? We address this question here.

We follow the Oxford English Dictionary in defining a cell as “polyplloid” when it contains “more than two homologous sets of chromosomes” [15]. When there are two or more haploid genomes in a cell, we have to consider whether relationships of “recessive” and “dominant” apply [16]. All microbes, no matter how many genomes, have to contend with the inevitable phenotypic lag while proteins turnover [17]. But our interest here is the delay imposed on polyploid organisms by “segregation lag,” that is, the number of generations that elapse before identical genomes with respect to the genotype of interest is achieved [18].

For this study, we apply “homozygous” to a cell in which all copies of its genomes are identical at the locus of interest, in this case the expression site of gene for a VMP, which, for an example, we name VMP1. “Heterozygous” refers then to a cell in which at least one of its genomes has a different allele at the specified locus. This definition also holds for cells in which all but one of its genomes has the variant allele. It would apply to any genome copy number of ≥ 2, of course. But the cases of greatest interest for us have genome copy numbers ≥ 4, since there may be four complete or near-complete dichotomously replicating chromosomes during rapid growth of bacteria, e.g. Escherichia coli, that have only a single chromosome under slow growth conditions [19,20]. For this study we also assume that a recently switched gene for a different VMP, which we name VMP2, is “recessive.” That is, the antigenic identity of cell is dominated by the original VMP—VMP1 in the example—until that protein is absent from the cell’s surface. Plausibly, some VMP1 molecules persist on the surface but so sparsely that the circulating specific antibodies to VMP1 have no effect on the cells. In other words, the cell may still be strictly heterozygous in genotype but the phenotype is effectively pure VMP2, not a mélange of new VMP2 and retained VMP1. But for simplicity, we specify that the newly-transposed vmp2 allele is strongly recessive and that only when identity of all genomes at this locus is achieved can the cell evade specific immunity to VMP1-expressing cells in its environment.

Conceivably, a newly-switched expression site (e.g. with vmp2) somehow either silences or out-expresses the unsubstituted expression loci in the cell’s other genomes. An epigenetic phenomenon like this could effect a phenotype change sooner than expected in post-switch lineages. This may be the case for Azotobacter vinelandii, which may have up to 80 copies of its chromosome per cell [21]. But lacking evidence to the contrary, we here assume that in Borrelia cells all the vmp expression sites in the cell have equivalent transcriptional activity.

Two other assumptions for the modeling are, first, random pool replication, i.e. each of the genomes is replicated once per generation [22], and, second, equal-number segregation of genomes at division through a faithful partitioning mechanism [23]. The reports of Hinnebusch et al. and Lopez et al. on plasmid stability in Borrelia spp. over long periods of serial cultivation provide justification for these assumptions [10,24].

We are left then with these three specifications for the model: (1) The polyploid cell has to be homozygous for vmp2 (or another VMP gene), if it is to avoid the immunity that has been elicited by its VMP1-expressing (VMP1⁺) predecessors. (2) Replicons are equally reproduced and distributed. (3) The post-switch, newly-activated allele is recessive, and there is no silencing.
or other expression bias favoring newly-switched loci. Under these conditions the question then is how soon—measured in number of generations—can homozygosity be achieved? Presumably, the longer a bacterium and its descendants retain a complete or partial \(VMP1^+ \) phenotype, either as a homozygote or heterozygote, the longer it is at risk of neutralization or clearance by the prevailing immunity against \(VMP1 \).

How genomes segregate at division is an important factor. The two options we consider are, first, random but equable segregation of unimpeded genomes in a 3-dimensional space, like a sphere, and, second, segregation outcomes that depend on genome locations in a linear or 1-dimensional array. The latter circumstance, termed “linear segregation,” would seem to apply to \(Borrelia \) spp., what with their filamentous shapes and tandemly-arrayed genomes in single file. But the consequences of this or other arrangement for antigenic variation have not been fleshed out. Accordingly, our starting point is this null hypothesis: random segregation is indistinguishable from linear segregation in terms of number of generations to achieve homozygosity. By “indistinguishable” we mean within one generation. This hypothesis was addressed through simulations, after first carrying out an empirical study of the number of genomes per cell during infection of a mouse.

MATERIALS AND METHODS

Strain and culture conditions. The “Browne Mountain” isolate of \(B. hermsii \) strain HS1 (BioSample SAMN04481062) was originally obtained by Willy Burgdorfer in 1968 from an \(Ornithodoros hermsi \) tick collected in eastern Washington in 1968 [25]. Twenty-five different serotypes, each identified by a single number, e.g. serotype 21, were isolated from this population by Stoenner et al. [14] and further characterized by Restrepo et al. [26]. The complete genome of this isolate of \(B. hermsii \) has been sequenced [8]. All serotype stocks in plasma from infected mice were kept frozen at -80°C. For the present study, serotype 7 was cloned again by limiting dilution in vitro [28].

Cell counts by microscopy. Spirochetes were counted by phase-contrast microscopy of a Petroff-Hauser counting chamber with a depth of 20 μm (Hauser Scientific) and under 400x magnification. A volume of 4.5 μl plasma or culture medium was placed in the chamber, and spirochetes in 400 squares were counted. Lengths of spirochetes were determined from digital photographs of phase-contrast microscopy fields that included for calibration the 50 μm divisions of the counting chamber. Each spirochete was measured 10 times by tracing along its length with ImageJ (http://rsb.info.nih.gov/ij/) and converting pixels to μm.

Mouse infection. Five adult female CB17-Prkdcscid/J mice with severe combined immunodeficiency (SCID) (Jackson Laboratories) were inoculated intraperitoneally with serotype 7 cells in 100 μl of infected plasma diluted in phosphate-buffered saline with 5 mM MgCl₂. The group of mice were monitored daily for the presence of spirochetes by phase-contrast microscopy of a wet mount of tail vein blood. Once spirochete densities had reached their peak, the mice were terminally bled under anesthesia by cardiac puncture with heparin-coated syringes. Blood samples were briefly centrifuged at 93 x g for 1 min in a table top centrifuge to reduce the concentration of erythrocytes prior to microscopy of the plasma and DNA extractions.

Quantitative PCR. DNA was extracted with the Qiagen QIAmp DNA kit from plasma depleted of erythrocytes and erythrocytes and with the Qiagen DNeasy kit from \(B. hermsii \) cells of \(in vitro \) cultures. PCR reactions were carried out as described [13]. The forward primer, reverse primer, and probe for the single-copy 16S ribosomal RNA gene were 5’-GGTCAAGACTGACGCTGAGT-3’, 5’-GGCGGCACACTTAACACGTTAG-3’, and 5’-TCTACGCTGTAACCGATGCACACTTTGGTG-3’, respectively. The DNA standard was total genomic DNA extracted using a phenol-chloroform protocol, as described [29]. Genome copies in the standard were calculated from the total DNA concentration, as determined by spectrometry, with a mass for a single \(B. hermsii \) genome size of 1.5 fg [8]. The qPCR result was the mean of three replicates. The linear slope of 16S ribosomal RNA gene copies regressed on cells counted by microscopy was ~1 over a 100-fold range [4].

Statistics. Descriptive statistics, frequency distributions, and linear regressions were carried out with SYSTAT v.13 (SYSTAT Software, Inc.). Unless otherwise specified, variances were 95 percent confidence intervals (95 percent CI). Confidence intervals for ratios were calculated with SAS/STAT v. 9.2 (SAS Institute, Inc.). Probabilities of different outcomes for linearly-segregated genomes were exact. The likelihoods of specified genome compositions in a growing population of cells undergoing random segregations were inferred using Excel v. 14.7 (Microsoft, Inc.) and the hypergeometric function HYPGEOM.DIST.

Computer models. Two Python programs were written for each of the types of genome segregation under consideration: linear and random. The endpoints for both programs were the number of generations that elapsed before at least one cell in the population was homozygous with respect to a variant allele for a new serotype. The
independent variable was the number of genomes in a cell. In the linear segregation model the outcomes vary according to the randomly-determined position of the switched genome in a linear array. But from that initial state onwards, i.e., as cells divide and the population expands, the probabilities were exact. In the random segregation model, stochasticity applied both for the initial state and then the distribution of genomes within cells as the population increased. For both models means and variances (standard error) from 1000 runs of the program were calculated.

Another Python program simulated both the growth of the pathogen and antibody response to it. It was derived from Frank’s model for African trypanosome infections [30]. The serotype-specific antibody concentration, a, in Frank’s equation 1 was replaced by $a(1 + a/b)$ where a is the serotype-specific antibody concentration and the b parameter represents synergy between antibodies in their effect on the bacteria as their concentrations increase. Other parameters in the model were the following: the number of possible serotypes, the range of switch rates, the amount of specific antibody to the serotype at time 0, the number of cells of a given serotype that would elicit a half maximal antibody response, the loss of specific antibody by degradation, the carrying capacity (maximum density) of the host for the bacterium, a constant that represents the rate of death of the bacteria in the presence of specific antibody, the growth rate of bacteria, and the accumulation rate for the specific antibody. We solved this system of equations using a distribution of Python from Enthought (Austin, TX), and a finite difference method with forward Euler time steps [31], which are specified in their number and length. Rather than supplying a random matrix of switch rates, we evolved sets of switch rates within specified ranges [30,32]. The program starts with matrix of random switch rates within the given range (e.g. 10^{-6} to 10^{-3} per generation) in a $(n-1) \times (n-1)$ matrix, where n is the number of serotypes. For each set of conditions the program is run 1000 times and each matrix is evaluated for the sum of bacterial cells at each time step. The duration of infection after 1000 runs was recorded. To account for more than one genome in a cell, the switch rate was multiplied by the number of cells that were present g number of generations earlier, where g is the number of generations for a polyploid cell to become homozygous for a new allele. Each simulation with a given set of values was replicated 5 to 10 times.

The three programs (linear_segregation, random_segregation, and infection_model) are available at https://github.com/borrelialab/Borrelia-genome-copy.

RESULTS

Genome copy number. We first revisited the question of the number of genomes in a *Borrelia* cell. Kitten et al., using both hybridization with probes and intercalation of a dye into double-stranded DNA, estimated that the mean copy number per cell was 16 (11-20) for the chromosome and 14 (11-18) for the plasmid bearing the expression site for VMP genes for spirochetes in the blood of infected mice [11]. The ratio of ~1 expression site plasmid for each chromosome holds for different spirochete densities in culture and phases of growth (unpublished findings). For the present study we used quantitative PCR of a stably-maintained, single-copy chromosomal gene and microscopic counts of whole cells to estimate genome copy numbers. A possible confounder for this analysis were agglomerates of organisms. Spirochetes divide by binary transverse fission [33], so it was possible that a fraction of the cells in the population were in chains of

![Figure 1. Frequency distribution of the lengths of a log-phase population of *Borrelia hermsii* cells by phase contrast microscopy.](image-url)
The spirochetes were cultivated in the broth medium at 34°C and were studied in log-phase of growth, when the cell density was \(\sim 10^6 \text{ml} \). The lengths of 193 randomly-selected cells were determined by image analysis of photomicrographs and calibration of the pixels with a scale in µm in the photographs. The lengths were measured end-to-end without adjustment for amplitude of the tightly helical cells. Figure 1 shows the frequency distribution of the cell lengths. A similar distribution of lengths of another relapsing fever species was found by Bates et al. in their study of the blood of an animal model [34]. In the present study the mean length was 25.9 µm, the standard deviation was 8.9, the standard deviation interval was 17.0 to 34.9 µm, and the median length was 24.7 µm. Only 6 (3 percent) of the 193 cells were greater than 2 standard deviations than the mean in length. Some of these appeared to be daughter cells that had physically-separate protoplasmic cylinders but retained a transient attachment by a residual fusion of outer membranes. Occasional pairs of tethered cells may have counted as single cells but this false assignment would have had a negligible (≤ 3 percent) effect on determinations of genome copies per cell.

The spirochetes were also entangled spirochetes [28]. If these were counted as single cells, genome copy numbers could be overestimated. We assessed the frequency of these forms for B. hermsii growing in broth medium. This was preferable to blood, because of greater accuracy of length measurements in the absence of other cellular elements, such as platelet and fibrin strands. In a previous study of cells growing in culture or mouse blood we did not observe a difference in the distributions of lengths of B. hermsii under these two conditions [11]. Since this strain of B. hermsii does not grow as colonies on solid medium, we could not perform colony counts.

To estimate the number of genomes per cell, five SCID mice were each inoculated with \(\sim 50 \) cells of serotype 7, and then the infection was monitored by microscopy of tail vein blood. As soon as the density of spirochetes in the blood reached its expected peak [4], anti-coagulated blood was obtained. After a brief centrifugation, plasma from each sample was pooled, mixed, and then divided into 6 aliquots. These were individually subjected to microscopic quantitation of cells and qPCR for respective determinations of cell and genome counts per milliliter. The mean cell count was 3.3 (2.9-3.7) \(\times 10^7 \), and the mean genome count was 75 (47-100) \(\times 10^7 \). From this we calculated that there were a mean of 22 (12-32) genomes per cell in this population in the blood. If the genomes were distributed along the length of the cell,
as previous studies of Borrelia spp. indicated [11,12], there would ~1 genome for every micron of cell length. The copy genome copy number by qPCR was somewhat higher than our previous estimate for bacteria in the blood [11], but the confidence intervals overlapped.

For this simulation-based investigation of the consequences of polyploidy for B. hermsii, the simplest case is of a cell just after division. Among the genomes of this hypothetical cell, there is single one that that has different expressed VMP allele. For the simulation we assume that the switch occurred during replication in the parent, resulting in distribution of the switched genome to the one daughter cell but not the other. If the mean number of genomes per cell in the population is 22, then the mean number genomes immediately after the division is 22 divided by loge 2, or 32 [35]. Each daughter cell then would have on average ~16 genomes.

Segregation of genomes. Figure 2 shows schematically three examples of daughter cells with 10 genomes per cell. Each was bequeathed a single switched genome from the parent. (The second daughter cell did not have a switched genome and is not shown.) The leftmost and center cells are shown as filaments, have tandemly-arrayed genomes, and segregate linearly. The two cells differ in the position of the newly-switched genome in the line of genomes. Counting from the left, when the switched genome is in position one, at least one cell of the progeny is homozygous for the new VMP by generation 4. However, if the variant genome is at position three, then not until generation 5 could a homozygous cell for the new VMP be expected.

The rightmost cell is shown as a sphere rather than as a filament for convenience of presentation, but the genomic arrangement it depicts is plausibly possible for cylindrical cell as well as a spherical one. The point is that the initial position of the switched genome in this daughter cell does not matter. According to this model, the genomes are equably but randomly distributed to daughter cells during subsequent divisions in that population. The likelihood for each of the possible configurations of switched and non-switched genomes can be exactly calculated, as exemplified in Figure 2. The state only through generation 2 is shown, but it is apparent that it may be several more generations before homozygosity for the new VMP is achieved under these conditions.

The effect of genome copy number and position on the outcome of linear segregation is summarized in Figure 3. This shows the mean number of generations for a population to achieve at least one homozygous cell for the new VMP by genome copy number. As an example, consider two cells, one with 7 genomes and the other with 8, each with one switched genome right after a division. In the 7-genome cell, homozygosity is achieved in four generations, no matter what the position of switched genome is in the cell. Cells with other integer exponents of 2 (2^n), e.g. 16 (2^4), for genome copy number faster achievement of homozygosity than cells with fewer genomes but not in powers of 2.

The greater variation in outcomes and the greater lag to homozygosity for populations with randomly-segregating genomes is shown in Figure 4. This summarizes the outputs of two simulation programs: one for randomly-segregating genomes (top) and the other for linearly-segregating genomes (bottom). Both cases specify cells with 16 genomes after division. By generation 14 (i.e. 16,384 cells) of a population beginning from one
Figure 4. Frequency distributions of the number of cells with different proportions of genomes with a switched VMP gene in descendent populations 14 generations after the genetic switch in the ancestor. The cells in these populations have 16 genomes. The top panel shows the results under the condition of random segregation of genomes. The bottom panel shows the results under the condition of linear segregation. Error bars denote the standard errors.

cell, 1024 cells in population with linearly-segregating genomes are homozygous for the new VMP and 15,360 are homozygous for the old VMP. There are no heterozygotes. On the other hand, after generation 14 in the population with the randomly-segregating genomes there are about the same number of cells with no switched genes, but on average only 10 cells are homozygous for the new VMP after 14 generations. The rest of the descendants of the switch genome are distributed in various numbers among the other heterozygous cells, all of which would presumably be expressing the old VMP and be susceptible to immunity elicited by that VMP. A simulation of outcomes for populations featuring randomly- and linearly-segregating genomes in 10 copies revealed a similar pattern. However, there are still expected to be a few heterozygous cells in the population of linearly-segregating cells, because of the asymmetries at divisions for genome copy numbers that are not powers of 2 (Figure S1 of Supplementary Material, Appendix A).

Figure 5 summarizes results of applying the hypergeometric distribution for inferring probabilities of outcomes for populations with randomly-segregating genomes of different copy numbers. In the top panel of the figure the dependent variable is the number of generations to produce a homozygous daughter cell for the new VMP. It was 15 generations by this analysis. This compares with 4 generations for the population of cells with 16 linearly-segregating genomes. For lower panel of the figure the dependent variable is the probabilities of a homozygous variant cell in the population with randomly-segregating genomes by different copy number.

Infection model with different genome copy numbers. The theoretical advantage of linear segregation for expeditiously achieving homozygosity of an otherwise recessive allele is clear. But does polyploidy make any difference for the infection itself, such as for the duration of infection? For a polyploid organism there are more genomes in which a “mutation” or gene switch might occur each generation, but weighed against this advantage is the consequent generational lag before a descendent cell achieved homozygosity for new serotype. We first examined the consequences of polyploidy with a discrete deterministic model under the following initial conditions: an expanding population starting from a single cell of one serotype, a switch rate to a new serotype that ranged from 10^-3 to 10^-6 per genome per generation, a number of genomes per cell that ranged from 1 to 32, and a constant cell density at which the immune response to the infecting serotype clears cells with that phenotype. In this case, this was generation 25 of binary reproduction. This would be 16,777,216 (~2 x 10^7) bacteria per milliliter, which is the approximate density achieved by B. hermsii in immunocompetent Mus musculus before clearance by antibody begins [4,36]. The endpoint for this simulation was the number of cells that were homozygous for the new serotype at the generation of peak density. We also examined the relative fitness, or fold increase, of polyploid cells over cells with single genomes under these various conditions.

For each specified switch rate, the number of cells homozygous for the new serotype increased with greater numbers of genomes for each of the specified switch rates (Figure 6). The comparative advantages over a sin-
Crowder et al.: Polyploidy of Borrelia and antigenic variation

202

Figure 5. Differences in outcomes in the generations until homozgosity for a switch gene is achieved under the random segregation and linear segregation models. The top panel gives the number of generations by number of genomes per cell. For the random segregation condition the plotted values are means calculated from a hypergeometric distribution. The best-fit curve ($R^2 = 0.998$) is a second-order quadratic polynomial. For the linear segregation model the values are exact for genomes numbering 2^n, where n is an integer ranging from 0 to 4. The best-fit curve ($R^2 = 1.0$) is a logarithmic function. The bottom panel gives probability of a homozygous variant cell after four generations by the number of genomes per cell and when there is random segregation.

each with 256 genomes. The model also applied a matrix of randomly-applied switch rates that were bounded at their upper and lower limits within a range specified at input and were then evolved over a 1000 runs for the specific set of conditions to maximize duration of infection. While this was designed to “select” for an optimal matrix, the particular characteristics of an output matrix depended on stochastic events, i.e. the timing of a randomly-generated switch in an expanding population. For this reason up to 10 replicates of the simulation were carried out for each set of conditions.

Figure 7 summarizes the results of this simulation for three different ranges of switch rates per genome per generation: 10^{-6} to 10^{-3}, 10^{-7} to 10^{-4}, and 10^{-8} to 10^{-5}. The number of serotypes was 12. Specific antibody appeared after there were at least 100 bacteria and then accumulated at a rate equivalent to the doubling rate for the bacteria, as we had noted [4]. The values for other parameters are given in the legend for the figure. The dependent variable was the duration of infection in arbitrary time units over continuous scale. When there were no switches and, consequently, no antigenic variation, the duration of infection was ~50 time steps. This was the outcome when the generation lag was long and the switch rate was low. When antigenic variation occurred at a high enough frequency for variant cells to appear before antibody accumulations reached a neutralizing level, the infection was extended. Infection duration was least for cells with only one genome. It increased in time for all sets of switch rates as genome copies increased, up to the point when there was too much generation lag for a given switch rate range (e.g. 7 when the switch range was 10^{-7} to 10^{-4}). As the critical nexus of long generation lag and low switch rate was approached, the variances of the outcomes among the replicates increased (e.g. a generation lag of 7 for a switch range of 10^{-4} to 10^{-5}). For genome copies in range of 8 to 32 per cell the durations of infection were comparatively robust and were at or near its maximum—about 3-fold the durations for cells incapable of immune evasion—for all three sets of switch rates. As detailed in the

We next included the immune response of the host and selected parameters associated with that, such as rate of increase in serotype-specific antibody levels and degradation of antibody. The segregation of genomes was assumed to be linear, and genome number cashed out in the model as “generation lag”, i.e., the number of generations for a daughter cell to be homozgous for a new VMP gene after a switch in one of the copies at time 0. The lag was the exponent value when 2^n were the genome copies. The lag ranged from 0 for lineage of one genome cells to 8 for a more improbable lineage of cells...
next section, the overall range of 10^{-4} to 10^{-3} for switch rates encompassed rates that were observed in experimental infections [13].

Re-evaluation of VMP switch rate in B. hermsii.

The estimate of the switch in serotype rate by Stoener et al. was 10^{-4} to 10^{-3} per cell per generation [14]. We examined in more detail the data of that paper’s Table V, which provided the frequencies of new serotypes in populations in mouse blood after immunosuppressed mice had been treated with serotype-specific antisera to the infecting serotype, in that case serotype 7. We applied a simple estimate of mutation rate (equivalent here to switch rate) that is based on the Poisson distribution and the proportions of the null class, i.e. no detectable variants in the replicate [39]. The frequencies of null class replicates were 20 of 20 for sample sizes of 333 cells, 14 of 20 for 1,000 cells, 4 of 20 for 10,000 cells, and none of 20 for 100,000 cells. On this basis, the switch rate for a population serotype 7 to any other serotype could more precisely be estimated as between 0.7×10^{-4} and 3.3×10^{-4} per cell per generation based.

We also analyzed data from our previous study of serotype 7 and serotype 19 B. hermsii infections in mice [13]. Table 2 of the Supplementary Information for that paper provided 9 replicates each of infected mouse bloods for the quantitative determinations of the frequencies of serotype 7 in a growing population of serotype 19 cells and of serotype 19 in a growing population of serotype 7 cells. Although differential growth rates between wild-type and mutant can confound mutation rates estimates [18], our observation of mixtures of the two serotypes was that serotype 7 and serotype 19 grew at the same rate in mice [13]. A fluctuation analysis using FALCOR [40] was applied. The estimated switch rate (with 95 percent CI) for serotype 19 to serotype 7 was $1.5 (0.7-2.2) \times 10^{-4}$ per cell per generation. The corresponding rate for cells of serotype 19, an infrequently observed serotype in mice during relapses [13], in a population of serotype 7 cells was $2.5 (2.3-4.9) \times 10^{-7}$, a thousand-fold lower. If the count of cells with a new serotype for the population size when we measured it actually was the result of switches that occurred in genomes 3-4 generations earlier in the population’s history, then the genome switch rates per generation in the blood of mice from serotype 19 to serotype 7 or from serotype 7 to any other serotype was $\sim 10^{-3}$.

DISCUSSION

Ryan and Wainwright noted in 1954 that a mutation in only one of the “nuclei” of a bacterium with four chromosomes could result in a two-generation delay in the growth of a mutant clone in an environment selecting against the parent phenotype and called this phenomenon “segregation delay” [41]. Our observations from experiments and from computer simulations lead us to a similar conclusion about Borrelia species. There likely is a delay of a few generations in the complete change of phenotype of cells after a switch has occurred in one among the many tandemly-arrayed genomes, but it is not nearly so long as would be expected if the segregation of genomes was random.

By the criterion of duration of infection, there appear to be advantages of polyploidy over monoploidy for organisms with the adaptation of antigenic variation, and possibly for other forms of genetic variation in the face changing environment, such as transmission from one species of vertebrate host to another species. However, the advantage accrues only for the contingency of linear segregation. Under this mode of replication, there is the accumulation in the bacterial population of many heterozygotes, some descendants of which will be homozygotic for an antigen that is novel in the context of an the infected animal. As Lark remarked about organisms with multiple chromosomes, “...non-random segregation can be viewed as a mechanism for preserving cell lineages with useful adaptation” [42].

Our studies focused on relapsing fever and one species, B. hermsii, in particular. Under the limits of the model, the favorable range of switch rates for linear-
ly-segregating polyploid cells undergoing antigenic was similar to what was empirically observed in infected mice [14,27]. Other *Borrelia* species of relapsing fever agents, such as *B. duttonii* and *B. turicatae*, have multiple VMP genes which sequentially manifest during relapses [1], so presumably the same circumstances apply. But what about that other clade in the family Borreliaceae, the agents of Lyme disease? There are multiple genomes in these spirochetes as well [12]. An antigenic variation system in *Borrelia hermsii* involves the VlSE gene, which is located on a linear plasmid [43]. Instead of a complete or near-complete replacement of the antigen gene at an expression site, as occurs in *B. hermsii*, in *B. burgdorferi* there is the accumulation of more localized conversions that are sequentially templated by partial *vlsE* sequences at another locus. But the same challenge exists for *B. burgdorferi*: achieving homogeneous expression of the converted *vlsE* gene after a conversion event as soon as possible in an environment of circulating antibodies to the unaltered VlsE protein.

Acknowledgements. The work was supported National Institute of Health grant AI-24424. We thank Steven Frank for helpful discussions in the past and his suggestion for incorporation of antibody synergy in the model. We also thank the several colleagues who over the years at conferences and seminars asked about the implications of polyploidy for antigenic variation. These questions finally spurred us to examine the possible consequence of multiple genomes for this pathogen.

REFERENCES

1. Barbour AG, Guo BP. The pathogenesis of relapsing fever. In: Radolf JD, Samuels DS, editors. Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Norfolk, UK: Caister Academic Press; 2010. p. 333-58.
2. Kussell E, Leibler S. Phenotypic diversity, population growth, and information in fluctuating environments. Science. 2005;309(5743):2075-8.
3. Barbour AG, Tessier SL, Stoenner HG. Variable major proteins of Borrellia hermsii. J Exp Med. 1982;156(5):1312-24.
4. Crowder CD, Ghalyanchi Langeroudi A, Shojaee Estabragh A, Lewis ER, Marcsisin RA, Barbour AG. Pathogen and host response dynamics in a mouse model of Borrelia hermsii relapsing fever. Vet Sci. 2016;3(3):19.
5. Kitten T, Barbour AG. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc Natl Acad Sci U S A. 1990;87(16):6777-81.
6. Plasterk RH, Simon MI, Barbour AG. Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature. 1985;318(6043):257-63.
7. Barbour A, Burman N, Carter C, Kitten T, Bergström S. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol. 1991;5:489-93.
8. Barbour AG. The chromosome and plasmids of the tick-borne relapsing fever agent Borrelia hermsii. Genome Announc. 2016;4(3):e00528-16.
9. Bergström S, Zückert WR. Structure, function and biogenesis of the Borrelia cell envelope. In: Samuels DS, Radolf
Crowder et al.: Polyploidy of Borrelia and antigenic variation

10. Hinnebusch J, Barbour AG. Linear- and circular-plasmid copy numbers in Borrelia burgdorferi. J Bacteriol. 1992;174(16):5251-7.

11. Kitten T, Barbour AG. The relapsing fever agent Borrelia hermsii has multiple copies of its chromosome and linear plasmids. Genetics. 1992;132(2):311-24.

12. Hinnebusch BJ, Bendich AJ. The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J Bacteriol. 1997;179(7):2228-37.

13. Barbour AG, Dai Q, Restrepo BI, Stoenner HG, Frank SA. Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci U S A. 2006;103(48):18290-5.

14. Stoenner HG, Dodd T, Larsen C. Antigenic variation of Borrelia hermsii. J Exp Med. 1982;156(5):1297-311.

15. OED Online. Oxford University Press; 2016. “polyploid, adj. and n.”.

16. Lieb M. Forward and reverse mutation in a histidine-requiring strain of Escherichia coli. Genetics. 1951;36(3):460.

17. Newcombe HB. Delayed phenotypic expression of spontaneous mutations in Escherichia coli. Genetics. 1948;33(5):447-76.

18. Kissling GE, Grogan DW, Drake JW. Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus. Mut Res. 2013;749(1-2):16-20.

19. Schaechter M, Maaleo O, Kjeldgaard NO. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958;19(3):592-606.

20. Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968;31(3):519-40.

21. Maldonado R, Jimenez J, Casadesus J. Changes of ploidy during the Azotobacter vinelandii growth cycle. J Bacteriol. 1994;176(13):3911-9.

22. Jacob F, Brenner S, Cuzin F, editors. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symposia on Quantitative Biology; 1963. Cold Spring Harbor Laboratory Press.

23. Novick R, Wyman L, Bouanichaud D, Murphy E. Plasmid life cycles in Staphylococcus aureus. Microbiology-1974 American Society for Microbiology, Washington, DC. 1975:115-29.

24. Lopez JE, Schrumpf ME, Raffel SJ, Policastro PF, Porcella SF, Schwan TG. Relapsing fever spirochetes retain infectivity after prolonged in vitro cultivation. Vector Borne Zoonotic Dis. 2008;8(6):813-20.

25. Thompson RS, Burgdorfer W, Russell R, Francis BJ. Outbreak of tick-borne relapsing fever in Spokane County, Washington. JAMA. 1969;210(6):1045-50.

26. Restrepo BI, Kitten T, Carter CJ, Infante D, Barbour AG. Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol. 1992;6(22):3299-311.

27. Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol. 2006;60(6):1329-43.

28. Barbour AG. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984;57(4):521-5.

29. Meier JT, Simon MI, Barbour AG. Antigenic variation is associated with DNA rearrangements in a relapsing fever Borrelia. Cell. 1985;41(2):403-9.

30. Frank SA. A model for the sequential dominance of antigenic variants in African trypanosome infections. Proc Biol Sci. 1999;266(1426):1397-401.

31. LeVeque RJ. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems: Siam; 2007.

32. Frank SA, Barbour AG. Within-host dynamics of antigenic variation. Infect Genet Evol. 2006;6(2):141-6.

33. Holt SC. Anatomy and chemistry of spirochetes. Microbiol Rev. 1978;38:114-60.

34. Bates LB, Dunn LH, St John J. Relapsing fever in Panama. The human tick, Ornithodoros Talaje, demonstrated to be the transmitting agent of relapsing fever in Panama by human experimentation. Am J Trop Med. 1921;1(4):183-210.

35. Koch A. The variability and individuality of the bacterium. In: Neidhardt F, editor. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. 2. Washington D.C: American Society for Microbiology; 1987. p. 1606.

36. Crowder CD. Infection dynamics of the relapsing fever agent Borrelia hermsii. Irvine, CA: University of California Irvine; 2007.

37. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol. 2003;170(7):3819-27.

38. Melenev HE. Relapse phenomena of Spironema recurrentis. J Exp Med. 1928;48:65-82.

39. Foster PL. Methods for determining spontaneous mutation rates. Meth Enzymol. 2006;409:195-213.

40. Hall BM, Ma CX, Liang P, Singh KK. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics. 2009;25(12):1564-5. Epub 2009/04/17.

41. Ryan FJ, Wainwright LK. Nuclear segregation and the growth of clones of spontaneous mutants of bacteria. J Gen Microbiol. 1951;36(5):460.

42. Lark KG. Discovering non-random segregation of sister chromatids: the naive treatment of a premature discovery. Front Oncol. 2012;2:211.

43. Zhang JR, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998;66(8):3698-704.
Appendix A.

I. LINEAR SEGREGATION PROGRAM

We input a number of genomes per cell and generations, and it randomly configures our initial cell. We limit ourselves to dealing only with initial configurations that have one genome of the new variant. The advantage is that now, for a given number of genomes per cell and generations, we can run this “linear” many times and see the average results, along with the variance.

gpc=16 # genomes per cell
trials=1000 # number of trials we want to average

import numpy as np
import pylab as pl
import random
def linear(genomes, generations):
a=np.ones(genomes)
 for i in range(genomes):
a[i]=0
 ran=random.randint(0,genomes-1)
a[ran]=1

b=len(a)
def next(x):
 y=np.ones(2*len(x))
 for i in range(0,len(x)):
 y[2*i+1]=x[i]
 y[2*i]=x[i]
 return y

for n in range (1,generations+1):
a=next(a)

z=np.ones(genomes+1)
for i in range(genomes+1):
z[i]=0

for n in range(0,2**(generations)):
 q=0
 for i in range(0,b):
 q=q+a[i+b*n]
 z[q]=z[q]+1
return z

import numpy as np
s=(trials ,gpc+1)
p = np.ones(s)
for i in range(trials):
 p[i, :] = linear(gpc, 14)

import numpy as np
s = (2, gpc + 1)
table = np.ones(s)
for i in range(gpc + 1):
 table[0, i] = np.average(p[:, i])
 table[1, i] = np.std(p[:, i]) / np.sqrt(trials)

Finally we plot a bar graph of our results, including the standard error.

glab = np.ones(gpc + 1)
for i in range(gpc + 1):
 glab[i] = i
import pylab as pl
table[:, :] = np.log10(table[:, :])
pl.clf()
fig = pl.figure()
ax = fig.add_subplot(1, 1, 1)
y = table[0, :]
N = len(y)
ind = range(N)
err = table[1, :]
ax.bar(ind, y, facecolor='#777777', align='center', yerr=err, ecolor='black')
ax.set_ylabel('Log base 10; Number of cells')
ax.set_xlabel('Number of genomes of the new variant per cell')
ax.set_title('Cylindrical Model', fontstyle='italic')
ax.set_xticks(ind)
group_labels = glab
ax.set_xticklabels(group_labels)
fig.autofmt_xdate()
pl.show()

II. RANDOM SEGREGATION PROGRAM

We simulate the random segregation model as it would be simulated in real life, in the sense that trials
beginning with the same starting conditions will not have identical outcomes. This program runs many
trials, averages them, and shows the standard error. To change the number of genomes per cell cell
replace "16" in the next line with the desired value.

gpc = 16 # genomes per cell
trials = 1000 # number of trials we want to average
import numpy as np
import pylab as pl
import random

def duplicate(cell, genomes):
 new = 0
 for i in range(genomes):
 if cell[i] == 1:
 new = new + 1
 newcell = np.ones(2 * genomes)
 for i in range(2 * genomes):
 newcell[i] = 0
 i = 0
 while i < 2 * new:
 ran = random.randint(0, 2 * genomes - 1)
 if newcell[ran] != 1:
 newcell[ran] = 1
 i = i + 1
 return newcell

for an array that can have many cells, next duplicates each cell along this array, returning an array that is twice as long, and has twice as many cells.
def next(x, genomes):
 y = np.ones(2 * len(x))
 v = len(x) / genomes
 for i in range(v):
 cell = np.ones(genomes)
 for j in range(genomes):
 cell[j] = x[j + i * genomes]
 newcell = duplicate(cell, genomes)
 for j in range(2 * genomes):
 y[j + 2 * i * genomes] = newcell[j]
 return y

The Random Segregation model takes a given starting cell and determines a next generation for however many generations we specify. After this many generations, it outputs the number of cells that have each given number of genomes of the new variant.
def spherical(genomes, generations):
 a = np.ones(genomes)
 for i in range(genomes):
 a[i] = 0
 ran = random.randint(0, genomes - 1)
a[ran]=1

b=len(a)

for n in range(generations):
 a=next(a,genomes)
 z=np.ones(genomes+1)
 for i in range(genomes+1):
 z[i]=0

for n in range(2**(generations)):
 q=0
 for i in range(genomes):
 q=q+a[i+b*n]
 z[q]=z[q]+1

return z

s=(trials,gpc+1)
p=np.ones(s)
for i in range(trials):
 p[i,:]=spherical(gpc,14)

import numpy as np
s=(2,gpc+1)
table=np.ones(s)
for i in range(gpc+1):
 table[0,i]=np.average(p[:,i])
 table[1,i]=np.std(p[:,i])/np.sqrt(trials)

import pylab as pl

for i in range(gpc+1):
 glab[i]=i

table[:,0]=np.log10(table[:,0])
pl.clf()
fig = pl.figure()
ax=fig.add_subplot(1,1,1)
y=table[0,:]
N=len(y)
ind=range(N)
err=table[1,:]
ax.bar(ind,y,facecolor='#777777', align='center', yerr=err,ecolor='black')
ax.set_ylabel('Log base 10; number of cells')
ax.set_xlabel('Number of genomes of the new variant')
ax.set_title('Random Segregation Model', fontstyle='italic')
ax.set_xticks(ind)
group_labels=glob
ax.set_xticklabels(group_labels)
fig.autofmt_xdate()
pl.show()
pl.savefig('a')

III. INFECTION SIMULATION PROGRAM

#!/usr/bin/env python
mutatewlag simulates our infection by evolving the switch rates and including the four generation lag

import random

def mutate(n,m,k,lvariable,P):

 our function "mutate" will start with a given infection, P, and corresponding matrix of switch rates, lvariable.
 it will randomly mutate one of the matrix elements into a number in the range 9*10^-3 to 1*10^-6.
 it will simulate an infection with this matrix. if this new infection is more fit, we keep the change.
 otherwise, we change our matrix back. the function outputs the matrix we end up with and the
 infection, including the individual serotypes.

 summation1=0
 summation2=0
 for i in xrange(m):
 summation1=summation1+P[i]

 A=np.ones(m)
 for i in xrange(m):
 P[i]=0
 A[i]=0
 varone=random.randint(0,n**2 -1)
 mant=random.randint(mantBaseMin,mantBaseMax)
 exp=random.randint(expMin,expMax)
 save=lvariable[varone]
 lvariable[varone]=mant*10**(-exp)

 s=(n,m)
 p = np.ones(s)
 for i in xrange(n):
 p[i,0]=0
 p[0]=1
a2 = np.ones(n)
for i in xrange(n):
 a2[i] = 0
a = np.ones(s)
for i in xrange(n):
 for j in range(m):
 a[i, j] = 0
for i in xrange(m-1):
 for j in xrange(n):
 x = 0
 y = 0
 for l in xrange(n):
 if j != l:
 if i <= mutateGeneration/k - 1:
 x = 0
 y = 0
 if i > mutateGeneration/k - 1:
 x = x + (p[j, i - mutateGeneration/k] * lvariable[j * n + l]) # the product of the amount of cells of serotype j that were present four generations prior, with the switch rate from j to l, summed over every l.
 y = y + (p[l, i - mutateGeneration/k] * lvariable[l * n + j]) # the product of the amount of cells of serotype l that were present four generations prior, with the switch rate from l to j, summed over every l.
 # We use a finite difference method with Forward Euler time stepping to solve our system of equations. The antibody response to a serotype will not be triggered until there are 1000 cells of that serotype.
 slope = k * (p[j, i] * (r * (1 - P[i] / c) - kappa * abeffect[j, i]) - x + y)
 if p[j, i] + slope >= 0:
 p[j, i + 1] = p[j, i] + slope
 if p[j, i] + slope < 0:
 p[j, i + 1] = 0
 a[j, i + 1] = a[j, i] + k * (a[j, i] * (rho * p[j, i] / (p[j, i] + phi) - u) + pi)
 abeffect[j, i + 1] = a[j, i + 1] * (1 + a[j, i + 1] / beta)
 P[i + 1] = P[i + 1] + p[j, i + 1]
for i in xrange(m):
 summation2 = P[i] + summation2
if summation1 > summation2:
lvariable[varone]=save
return [lvariable,p,P]

we must initialize our program by simulating a reaction with random switch rates
import numpy as np
import pylab as pl

print "Please enter the number of serotypes [12].":
n = raw_input(">") #12, number of serotypes
if n == "":
 n = 12
else:
 n = int(n)

print "Please enter the number of time steps [300].":
m = raw_input(">") #300, number of time steps
if m == "":
 m = 300
else:
 m = int(m)

print "Please enter the length of a time step [0.1].":
k = raw_input(">")
if k == "":
 k = 0.1
else:
 k = float(k)

print "Please enter the antibody synergy factor [0.5].":
beta = raw_input(">")
if beta == "":
 beta = 0.5
else:
 beta = float(beta)

print "Please enter the minimum base value for the mutation rate [1].":
mantBaseMin = raw_input(">")
if mantBaseMin == "":
 mantBaseMin = 1
else:
 mantBaseMin = int(mantBaseMin)

print "Please enter the maximum base value for the mutation rate [9].":
mantBaseMax = raw_input(">")
if mantBaseMax == "":
 mantBaseMax = 9
else:
mantBaseMax = int(mantBaseMax)

print "Please enter the minimum negative exponent value for the mutation rate [3]:"
expMin = raw_input(">")
if expMin == "":
 expMin = 3
else:
 expMin = int(expMin)
 if expMin < 0:
 expMin = -1 * expMin
 print "Please remember that this is already assumed negative. Using ", expMin

print "Please enter the maximum negative exponent value for the mutation rate [6]:"
expMax = raw_input(">")
if expMax == "":
 expMax = 6
else:
 expMax = int(expMax)
 if expMax < 0:
 expMax = -1 * expMax
 print "Please remember that this is already assumed negative. Using ", expMax

print "Please enter the number for how many generations the infection takes to mutate [4]:"
mutateGeneration = raw_input(">")
if mutateGeneration == "":
 mutateGeneration = 4
else:
 mutateGeneration = int(mutateGeneration)
 if mutateGeneration < 0:
 mutateGeneration = -1 * mutateGeneration
 print "This number can not be negative. Using ", mutateGeneration

print "Please enter the ratio for the amount of antibody to serotype, at first generation [0.001]:"
pi = raw_input(">")
if pi == "":
 pi = 0.001
else:
 pi = float(pi)
 if pi < 0:
 pi = -1 * pi
 print "This number can not be negative. Using ", pi

print "Please enter the amount of cells of a certain serotype that would evoke half of the maximal immune response [52]:"
phi = raw_input(">")
if phi == "":
 phi = 52 #5*10^6
else:
phi = int(phi)
if phi < 0:
 phi = -1 * phi
 print "This number can not be negative. Using ", phi

print "Please enter the rate of loss of antibody due to degradation [0.001]:"
u = raw_input(">")
if u == "":
 u = 0.001
else:
 u = float(u)
if u < 0:
 u = -1 * u
 print "This number can not be negative. Using ", u

print "Please enter the maximum cell density the host can support [10000000]:"
c = raw_input(">")
if c == "":
 c = 10**7
else:
 c = int(c)
if c < 0:
 c = -1 * c
 print "This number can not be negative. Using ", c

print "Please enter the death rate constant [0.0001]:"
kappa = raw_input(">")
if kappa == "":
 kappa = 0.0001
else:
 kappa = float(kappa)
if kappa < 0:
 kappa = -1 * kappa
 print "This number can not be negative. Using ", kappa

print "Please enter the undamped growth rate of bacteria [2]:"
r = raw_input(">")
if r == "":
 r = 2
else:
 r = int(r)
if r < 0:
 r = -1 * r
 print "This number can not be negative. Using ", r

print "Please enter the relative growth rate of antibody response [1.6]:"
rho = raw_input(">")
if rho == "":
rho = 1.6
elif:
 rho = float(rho)
 if rho < 0:
 rho = -1 * rho
 print "This number can not be negative. Using ", rho

print "Please enter the number of times you would like to run mutations [10000]:"
mutationRuns = raw_input(">")
if mutationRuns == "":
 mutationRuns = 10000
else:
 mutationRuns = int(mutationRuns)
 if mutationRuns < 0:
 mutationRuns = -1 * mutationRuns
 print "This number can not be negative. Using ", mutationRuns

print "Please enter the length of time for one generation, in hours [8]:"
genTime = raw_input(">")
if genTime == "":
 genTime = 8
else:
 genTime = int(genTime)
 if genTime < 0:
 genTime = -1 * genTime
 print "This number can not be negative. Using ", genTime

print "Running program with..."
print n,m,k,beta,mantBaseMin,mantBaseMax,expMin,expMax,mutateGeneration,pi,phi,u,c,kappa,r,rho,mutationRuns,genTime

P=np.ones(m) # total number of B. hermsii cells
A=np.ones(m) # total antibody reaction
for i in xrange(m):
 P[i]=0
 A[i]=0

lvariable= np.ones(n**2) #matrix of switch rates
for i in xrange(n**2):
 lvariable[i]=0

for i in xrange(n):
 for j in xrange(n):
 mant=random.randint(mantBaseMin,mantBaseMax)
 exp=random.randint(expMin,expMax)
 lvariable[j*n+i]=mant*10**(-exp)
s = (n,m)
p = np.ones(s) # matrix where each row corresponds to the infections of a certain serotype
for i in xrange(n):
 p[i,0]=0
p[0,0]=1

a2=np.ones(n)
for i in xrange(n):
 a2[i]=0

a = np.ones(s) # matrix where each row corresponds to the antibody response to a certain serotype
abeffect=np.ones(s)

for i in xrange(n):
 for j in xrange(m):
 a[i,j]=0
 abeffect[i,j]=0

b2=np.ones(n)
for i in range(n):
 b2[i]=0

for i in xrange(m-1):
 for j in xrange(n):
 x=0
 y=0
 for l in xrange(n):
 if j!=l:
 if i <= mutateGeneration/k-1:
 x=0
 y=0
 if i > mutateGeneration/k-1:
 x=x+(p[j,i-mutateGeneration/k]*lvariable[j*n+l])
 y=y+(p[l,i-mutateGeneration/k]*lvariable[l*n+j]) # switch rates demonstrate lag #time of 4 generations
 slope=k*(p[j,i]*(r*(1-P[i]/c)-kappa*abeffect[j,i])-x+y)
 if p[j,i]+slope>=0:
 p[j,i+1]=p[j,i]+slope
 if p[j,i]+slope<0:
 p[j,i+1]=0

 a[j,i+1]=a[j,i]+k*(a[j,i]*(rho*p[j,i]/(p[j,i]+phi)-u)+pi)
 abeffect[j,i+1]=a[j,i+1]*(1+a[j,i+1]/beta)
P[i+1]=P[i+1]+p[j,i+1]
We run "mutate" many times to produce a fit matrix of switch rates.
for i in xrange(mutationRuns):
 [lvariable,p,P]=mutate(n,m,k,lvariable,P)

x=np.ones(m)
for i in range(m):
 x[i]=i*k*genTime #Set each generation's duration, in hours.

z=np.ones(m)
for i in range(m):
 z[i]=1000

Calculate the log for each Y coordinate
P3=np.ones(m)
for i in range(m):
 P3[i]=np.log(P[i])

Create CSV file and write headers
import csv
csvFile = csv.writer(open("MutateWLag_Plot_Data.csv", "wb"))
csvFile.writerow(["X","Y"])
Clear new plot, plot points, and save X,Y coordinates to a CSV file
pl.clf()
for i in range(n):
 pl.plot(x,p[i,0:])
 csvFile.writerow([x,p[i,0:]])
 #pl.plot(x,z)
 pl.plot(x,P)
 csvFile.writerow([x,P])
 #pl.plot(x,a[i,0:])
 #pl.plot(x,A)
Save plotted points as graph, in a postscript file
pl.savefig('MutateWLag_Graph.ps')

Clear new plot, plot points, and save X,Y coordinates to a CSV file
pl.clf()
pl.semilogy(x, P3)
#csvFile.writerow([x, P3[i]])
Save plotted points as graph, in a postscript file
pl.savefig('MutateWLag_Graph_Ylog.ps')
Figure S1. Frequency distributions of the number of cells with different proportions of genomes with a switched VMP gene in descendant populations 14 generations after the genetic switch in the ancestor. The cells in these populations have 10 genomes. The top panel shows the results under the condition of random segregation of genomes. The bottom panel shows the results under the condition of linear segregation. Error bars denote the standard errors.