Strong gravity effects of rotating black holes: quasi-periodic oscillations

Alikram N Aliev¹, Göksel Daylan Esmer² and Pamir Talazan³

¹ Faculty of Engineering and Architecture, Yeni Yüzyıl University, Cevizlibağ-Topkapı, 34010 Istanbul, Turkey
² Department of Physics, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
³ TÜBİTAK-BİLGEM, 41470 Gebze, Kocaeli, Turkey

E-mail: alikram.n.aliev@gmail.com

Received 28 July 2012, in final form 7 December 2012
Published 30 January 2013
Online at stacks.iop.org/CQG/30/045010

Abstract
We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs.

PACS numbers: 04.20.Jb, 04.70.Bw, 04.50.+h

1. Introduction

Black holes are among the most exciting objects of study in modern theoretical physics and astrophysics. They occupy a central place in all theories of gravity formulated in various spacetime dimensions.
1.1. Black holes in general relativity and braneworld gravity

In four dimensions, general relativity (GR) admits a family of stationary black hole solutions which turns out to be crucial for understanding its nature and the occurrence of spacetime singularities [1]. These solutions possess a number of striking properties such as uniqueness and stability, hidden symmetries and integrability of geodesics etc [2–4] (see also [5, 6]). Altogether, these properties pave the way for astrophysical implications of GR in the regime of strong gravity, stimulating the search for black holes in the physical universe.

An astrophysical black hole is thought to be described by an exact solution of GR, discovered by Kerr [7]. This solution is uniquely characterized by two parameters: the mass and the angular momentum. In [4], it was first shown that the Hamilton–Jacobi equation for geodesics in the Kerr metric admits a complete separation of variables, that is, the geodesic motion is completely integrable in this spacetime. In subsequent developments, various aspects of the geodesic motion in the Kerr metric have been extensively explored by many authors (for instance, see [5] and references therein). Among these results, the calculations of the observable orbits of test particles are of particular interest. The authors of [8] were the first to give a complete description of these orbits for the circular motion in the equatorial plane of the Kerr black hole. In particular, they found that for an extreme rotating Kerr black hole, the binding energy of the innermost stable circular orbit (ISCO) (the maximum amount of energy released by a particle approaching this orbit) can attain nearly 42% of the particle rest-mass energy, whereas for a Schwarzschild black hole it is about 6%. The high efficiency of this process led to the idea of invoking an accretion disc around a black hole to explain enormous energy output from both x-ray binaries and active galactic nuclei (for details, see [9]).

In higher dimensions, there exist a number of important black hole solutions with unexpected physical characteristics, such as dynamical instability, different horizon topologies and different rotation dynamics. Among them, the most interesting black hole solution is given by the Myers–Perry metric [10], which is supposed to be a generalization of the Kerr solution to all number of spacetime dimensions. However, this solution is not unique, unlike the Kerr solution. In five-dimensional vacuum gravity there exists a rotating black ring solution [11], which may have the same mass and angular momentum as the Myers–Perry solution.

On the other hand, the higher dimensional black holes may have observable consequences as well. We recall that some phenomenological aspects of string/M theory led to braneworld scenarios, which imply that our physical universe is geometrically described by a (3 + 1)-dimensional hypersurface (a ‘3-brane’) embedded in higher dimensions [12, 13]. A complete description of black holes in such scenarios is a thorny issue and many aspects of it still remain open. Remarkably, there are several simplifying approaches which provide an intriguing description. For instance, if the size of the black hole is much smaller than the scale of the extra dimensions, then the black hole would behave as a higher dimensional object. To good enough approximation, one can argue that these black holes are described by Myers–Perry-type solutions of the Einstein field equations in higher dimensions. Furthermore, the fact that in the braneworld scenarios the scale of quantum gravity becomes as low as TeV-energy scales indicates that the small-size black holes would have been detected at high energy experiments [14, 15]. Of course, there always exists the question of gravitational stability of the Myers–Perry-type black holes on the brane, whose final status is still not clear. Some interesting aspects of this issue were investigated in [16].

As for the large black holes, for which the size of the horizon is much larger than the length scale of the extra dimensions, they would also carry the imprints of the extra dimensions though ‘effectively’ they must look like four-dimensional objects. In one approach employed in [17], it was suggested that such a black hole in the Randall and Sundrum (RS) braneworld
scenario could be described by the ordinary Schwarzschild solution on the brane, which in five dimensions would look like a black string. The main drawback here is that the black string solution suffers from curvature singularities, propagating along the extra dimension. This solution also suffers from classical Gregory–Laflamme instabilities [18]. In another approach, such black holes were described by postulating the metric form and solving the effective gravitational equations on the RS brane [19, 20]. This idea is also reinforced by the fact that in the low energy limit, the RS braneworld scenario supports the properties of four-dimensional GR on the brane [21, 22]. It is interesting that in this approach one can analytically describe, to some extent, the braneworld black holes by a Reissner–Nordstrom-type solution in the static case [19] and a Kerr–Newman-type solution in the rotating case [20]. The tidal charge appearing in both solutions and being the imprint of the extra fifth dimension supersedes the square of the electric charge in the usual Reissner–Nordstrom and Kerr–Newman solutions. Furthermore, the tidal charge in these solutions may have both positive and negative values. On a par with the Kerr black hole, the rotating braneworld black hole can be considered as the useful and the simplest model to explore the physical effects of the tidal charge, though the gravitational stability of the latter remains an open problem. Some astrophysical implications of the braneworld black holes have recently been discussed in [23–26].

1.2. High-frequency quasi-periodic oscillations

Nowadays, astronomical observations provide compelling evidence for the existence of black holes in the universe. To focus only on black holes in x-ray binaries, today 23 black holes are known and 32 x-ray binaries are thought to contain black hole candidates [27]. Observations of the x-ray binaries with both black holes and black hole candidates have revealed finite-width peaks in the x-ray spectra, which can be thought of as signatures of high-frequency (>40 Hz) quasi-periodic oscillations (QPOs) of the black hole accretion disc. Furthermore, in a number of sources, two peaks of QPOs have been detected. The associated frequencies of these peaks are 300, 450 Hz for X-ray binary GRO J1655−40, 113, 168 Hz for X-ray binary GRS 1915 + 105, 184, 276 Hz for X-ray binary XTE J1550−564 and 165, 241 Hz for X-ray binary H 1743−322, harboring a black hole candidate. The twin frequencies are in a 3:2 ratio. The source GRS 1915 + 105 also exhibits a pair (164, 328 Hz) which is in a 2:1 ratio (see [28] for further details).

Observations of such frequencies are certainly of fundamental importance as they may provide crucial probes of strong gravity near the black holes. Moreover, when combined with the measurements of the angular momenta of black holes [29, 30], they raise once again the old compelling question: what is the bona fide geometry of the spacetime around the black holes? For instance, as argued in [30], the lower bound on the angular momentum of a black hole in the X-ray binary GRS 1915 + 105 turns out to be very close to the (upper) Kerr bound in GR. This raises the question: does the Kerr solution of GR describe the observed black holes with the high value of the angular momentum? Today it remains unknown how future observational data will deal with these questions. However, this perspective in itself is very challenging for further study of the observable effects of black holes in both GR and beyond it, including the cases with the violation of the Kerr bound. Some effects of rotating black holes in string theory, for which the Kerr bound is breached, were recently studied in [31].

It is also interesting that in a number of theoretical models explaining the origin of high-frequency QPOs, general relativistic epicyclic frequencies of the geodesic motion have been considered as ‘building blocks’, though the precise mechanism still remains unknown [32–34, 28]. The successive theory of the epicyclic motion around the Kerr black holes in GR (with an electric charge or with an external uniform magnetic field) was developed in
[35] (see also companion papers [36–38]). The authors, for the first time, obtained closed analytical expressions for the epicyclic frequencies of radial and vertical oscillations and put forward an idea of nonlinear resonances, which may occur when these frequencies are in a rational relation [35]. Afterwards, analytic expressions for the frequency of radial and vertical oscillations also appeared in [39, 40] in the context of the analysis of trapped oscillations of an accretion disc around the Kerr black hole. The theory of the epicyclic motion and the idea of nonlinear resonances have been utilized in [33, 34], even reproducing in some cases the plots of [35] for the positions of nonlinear resonances, to explain the observed frequency ratios of high-frequency QPOs in black hole binaries.

1.3. Motivation and the basic idea

In light of all these developments, it becomes of interest to return once more to the exploration of the observable effects of a strong gravity regime encoded in the geodesic motion around rotating black holes. Our motivation for this arises from the fact that the epicyclic frequencies of the geodesic motion, as mentioned above, lie at the root of theoretical models for the observed high-frequency QPOs in black hole binaries. Furthermore, the continuing success with the measurements of the angular momentum of black holes motivates us to explore the effects of the geodesic motion not only for rotating black holes in GR, where the Kerr bound on the angular momentum holds, but also for rotating black holes in a braneworld, for which the Kerr bound may be breached. The basic idea of this paper is as follows.

(i) To perform a detailed numerical analysis of the epicyclic frequencies at the stable circular orbits of interest in the Kerr field, using the general analytical expressions found in earlier papers [35, 36]. Thus, ‘monitoring’ the behavior of these frequencies at the stable orbits, especially at those where the radial (or the vertical) epicyclic frequency attains its highest value, we intend to clarify the question: whether the simple model of pure general relativistic geodesic motion can provide observationally viable values for the epicyclic frequencies and their ratios?

(ii) To extend the numerical analysis of the epicyclic frequencies to the case of a rotating braneworld black hole as well. The fact that the associated spacetime metric has the Kerr–Newman-type form with the tidal charge (instead of the square of the electric charge) and for the negative tidal charge, the angular momentum of the black hole exceeds the Kerr bound makes this model very instructive. It is also important to note that the circular motion in this model may occur in stable orbits, unlike the case of the ordinary black holes in higher dimensions, for instance, the case of Myers–Perry black holes [41]. Exploring the behavior of the epicyclic frequencies at particular orbits of interest and comparing the results with those for the Kerr black hole we want to address the issues: how does the presence of the tidal (positive or negative) charge influence the values of the epicyclic frequencies? Does the potential existence of over-rotating braneworld black holes confront with modern observations of high-frequency QPOs in black hole binaries?

The organization of the paper is as follows. In section 2, we begin with a brief review of the salient features of the geodesic motion in the Kerr metric and give analytic expressions for the epicyclic frequencies of radial and vertical oscillations. Next, we present the results of a detailed numerical analysis of these frequencies at the stable circular orbits of interest. In section 3, we briefly discuss the salient properties of a rotating black hole, localized on a 3-brane in the RS scenario as well as those of the geodesic motion in the field of this black hole. Here, we present analytic expressions for the epicyclic frequencies of radial and vertical oscillations and perform their full numerical analysis, focusing on the stable orbits, where
the radial epicyclic frequency reaches its maximum value. We also discuss the observational
signature of the negative tidal charge carried by the braneworld black hole and argue that the
idea that such a black hole can potentially exist in the universe does not confront with the
observations of high-frequency QPOs in black holes binaries. In section 4, we conclude with
a brief discussion of our new results.

2. Geodesic motion and epicyclic frequencies in the spacetime of Kerr black holes

We begin with the Kerr spacetime which in the Boyer–Lindquist coordinates is given by the
metric
\[
ds^2 = -\frac{\Delta}{\Sigma} (dt - a \sin^2 \theta \, d\phi)^2 + \frac{\Sigma}{\Delta} \left(\frac{dr^2}{\Delta} + \frac{d\theta^2}{\Sigma} \right) + \frac{1}{\Sigma} \left[a dt - (r^2 + a^2) \, d\phi \right]^2,
\]
(1)
where
\[
\Delta = r^2 + a^2 - 2Mr, \quad \Sigma = r^2 + a^2 \cos^2 \theta,
\]
(2)
and \(M\) is the mass, \(a\) is the rotation parameter or the angular momentum per unit mass, \(a = J/M\). The most striking feature of this spacetime is that it contains a rotating black hole. This becomes evident by the existence of the event horizon which is governed by the equation \(\Delta = 0\). The largest root of this equation given by
\[
r_+ = M + \sqrt{M^2 - a^2}
\]
determines the radius of the horizon. The event horizon, as follows from this expression, exists provided that \(a \leq M\). Thus, a rotating black hole in GR must possess an angular momentum not exceeding its mass.

Another remarkable feature of the Kerr spacetime is that it admits the complete separation of variables in the Hamilton–Jacobi equation for geodesics. The global time-translational and rotational symmetries of this spacetime, along with its hidden symmetries, make the Hamilton–Jacobi equation completely integrable \([4]\) (see also \([5]\)). For our purposes in the following, we will focus only on the motion of test particles in the equatorial plane \(\theta = \pi/2\). From the symmetry considerations, it follows that such a motion will occur in circular (cyclic) orbits. Following works of \([35–38]\), one can simply describe the circular motion and its perturbations, i.e. off-equatorial (epicyclic) motion, using the method of successive approximations in the geodesic equation
\[
\frac{d^2 \chi^\mu}{ds^2} + \Gamma^\mu_{\alpha\beta} \frac{dx^\alpha}{ds} \frac{dx^\beta}{ds} = 0,
\]
(4)
where the parameter \(s\) denotes the proper time along the geodesics and \(\Gamma^\mu_{\alpha\beta}\) are the Christoffel symbols of the spacetime metric. Clearly, for the circular motion in the equatorial plane \(r = r_0, \theta = \pi/2\), one can introduce the position vector \(z^\mu(s) = \{t(s), r_0, \pi/2, \Omega_0 t(s)\}\), where \(\Omega_0\) is the orbital frequency. Next, using the Christoffel symbols for the Kerr metric it is easy to show that for the circular motion, the \(\mu = 0, 2, 3\) components of equation (4) become trivial, whereas the remaining component with \(\mu = 1\) yields
\[
\Omega_0 = \pm \frac{\Omega_e}{1 \pm a \Omega_e},
\]
(5)
where \(\Omega_e = M^{1/2}/r_+^{3/2}\) is the usual Kepler frequency, the upper sign refers to direct orbits (the motion of the particle and the rotation of the black hole occur in the same direction) and the lower sign refers to retrograde orbits (the motion of the particle is opposite to the rotation
of the black hole). Using equation (5) in the normalization condition for the four-velocity, $g_{\mu\nu}u^\mu u^\nu = -1$, we obtain the expression for energy of the particle

$$E = \frac{r^2 - 2Mr \pm a \sqrt{M^2 - r^3}}{r(r^2 - 3Mr \pm 2a\sqrt{M^2 - r^3})^{1/2}},$$

(6)

where $E = m_{\text{in}}$. This expression was first found and studied in [8]. The vanishing denominator of this expression determines the radius r_{ph} of the limiting photon orbit. That is, the circular motion exists only in the region $r > r_{\text{ph}}$. It is not difficult to show that for an extreme Kerr black hole, $a = M$, we have $r_{\text{ph}} = M$ for direct orbits and $r_{\text{ph}} = 4M$ for retrograde orbits, while for $a = 0$, we find that $r_{\text{ph}} = 3M$.

To describe the epicyclic motion, we introduce a deviation vector

$$\xi^\mu(s) = x^\mu(s) - \xi^\mu(s),$$

(7)

and expand equation (4) in powers of $\xi^\mu(s)$ about the circular orbits. Focusing on the linear approximation, it is straightforward to show that the epicyclic motion amounts to two decoupled oscillations in the radial and vertical directions (the details can be found in [35, 36] and in recent works [25, 42]). For the frequency of radial oscillations, we have

$$\Omega_r^2 = \Omega_0^2 \left(1 - \frac{6M}{r} - \frac{3a^2}{r^2} \pm 8a\Omega \right),$$

(8)

whereas the frequency of vertical oscillations is given by

$$\Omega_\theta^2 = \Omega_0^2 \left(1 + \frac{3a^2}{r^2} \mp 4a\Omega \right).$$

(9)

The stability of the circular motion against small oscillations is determined by the conditions $\Omega_r^2 \geq 0$ and $\Omega_\theta^2 \geq 0$. From the condition for the radial stability, one can infer the radii of the (ISCOs). As it was first shown in [8], for a nonrotating black hole, $a = 0$, we have $r_{\text{ms}} = 6M$, while for the extreme rotating case, $a = M$, we find that $r_{\text{ms}} = M$ for the direct orbit and $r_{\text{ms}} = 9M$ for the retrograde one. Meanwhile, it is easy to verify that the expression in (9) is always non-negative in the region of existence and radial stability of the circular motion. That is, the motion is stable with respect to small oscillations in the vertical direction.

To summarize, the description of the circular motion and its small perturbations in the Kerr field inevitably results in three different fundamental frequencies, Ω_0, Ω_r, and Ω_θ, unlike the case of Newtonian gravity, where all the three frequencies turn out to be the same as the Kepler frequency, $\Omega_0 = \Omega_r = \Omega_\theta$. (We note that for the Schwarzschild black hole two of these different frequencies are different. Namely Ω_r and $\Omega_\theta = \Omega_0 = \Omega_\psi$.) It is the regime of strong gravity near the Kerr black hole, combined with its rotational dynamics, that distinguishes between the three fundamental frequencies. Therefore, the values of these frequencies at the radii of physical interest are of great importance for astrophysical implications of the Kerr black hole.

In the following, we use the coordinate frequency ν in physical units, instead of the angular frequency $\Omega = 2\pi \nu$, as well as the characteristic frequency scale $v_l = c^3/2\pi GM \simeq 3.2 \cdot 10^4 (M_\odot/M) \text{Hz}$. We recall that here c is the speed of light, G is the gravitational constant and M_{\odot} is the mass of the Sun. With this in mind and using expression (5), we find that the orbital frequency around an extreme rotating black hole ($a = M$) is

$$v_0 = \frac{1}{2} v_l \simeq 1.6 \cdot 10^4 \left(\frac{M_{\odot}}{M} \right) \text{Hz}$$

(10)

for the direct ISCO, whereas it is given by

$$v_0 = \frac{1}{26} v_l \simeq 1.2 \cdot 10^3 \left(\frac{M_{\odot}}{M} \right) \text{Hz}$$

(11)
for the retrograde ISCO. We have performed a detailed numerical analysis of the orbital and vertical frequencies at ISCOs around a Kerr black hole with mass $M = 10M_\odot$. The results of calculations are given in table 1. We note that as the rotation parameter of the black hole grows, the radius of the direct ISCO moves toward the event horizon and the associated orbital frequency increases, approaching its maximum value in (10). The vertical epicyclic frequency attains its maximum value and then decreases to zero, i.e. $\nu_\theta = 0$ for $a = M$, $r = M$. The ratio of the frequencies, ν_0/ν_θ, essentially differs from unity only for the fast enough rotation of the black hole. For the retrograde motion, both frequencies decrease with the growth of the rotation parameter (see also equation (11)), whereas their ratio remains about unity.

It is also of interest to calculate all the three frequencies at direct stable orbits beyond ISCO ($r > r_{\text{ISCO}}$) around an extreme rotating black hole, $a = M$. The results of numerical calculations are presented in table 2. We observe that at particular orbits near the black hole, the predicted values of the epicyclic frequencies (bolded in the table) are close to the corresponding frequencies of twin peaks QPOs, which are in a 3:2 ratio and have been detected in some black

Table 1. Orbital and vertical frequencies at ISCOs ($M = 10M_\odot$).

a/M	r_{ms}/M	$\nu_0 (\text{Hz})$	$\nu_\theta (\text{Hz})$	ν_0/ν_θ
0.00	6.00	217.73	217.73	1.00
0.10	5.67	235.32	231.91	1.01
0.20	5.33	255.93	248.03	1.03
0.30	4.98	280.49	266.52	1.05
0.40	4.61	310.32	287.97	1.08
0.50	4.23	347.48	313.16	1.11
0.60	3.83	395.41	343.20	1.15
0.70	3.39	430.62	379.58	1.21
0.80	2.91	556.00	423.99	1.31
0.90	2.32	721.41	474.68	1.52
0.99	1.24	1348.05	304.86	4.42

Table 2. Frequencies at direct stable orbits ($r > r_{\text{ISCO}}$, $a = M = 10M_\odot$).

r/M	$\nu_r (\text{Hz})$	$\nu_\theta (\text{Hz})$	$\nu_0 (\text{Hz})$	ν_0/ν_r
2.00	234.08	484.35	835.85	2.07
2.30	244.60	462.27	712.99	1.89
2.90	373.48	538.85	681.27	1.68
3.50	217.25	333.58	423.96	1.55
3.80	206.12	311.02	338.61	1.51
4.10	195.14	287.13	344.02	1.47
4.30	188.05	272.60	322.69	1.45
4.60	177.86	252.71	294.50	1.42
4.90	168.28	234.89	270.12	1.40
5.00	**165.23**	**229.37**	**262.72**	**1.39**
5.30	156.49	213.94	242.40	1.37
5.60	148.36	200.05	224.53	1.35
5.90	140.81	187.51	208.73	1.33
6.20	133.80	176.17	194.67	1.32
6.50	127.30	165.87	182.11	1.30
6.80	121.27	156.50	170.83	1.29
7.00	**117.48**	**150.71**	**163.93**	**1.28**
hole binaries. For instance, to 184, 276 Hz for X-ray binary XTE J1550−564, to 165, 241 Hz for X-ray binary H1743−322 and to 113, 168 Hz for X-ray binary GRS 1915 + 105.

2.1. The highest epicyclic frequencies

It is interesting that there exist the highest epicyclic frequencies of small oscillations around circular orbits in the Kerr field. This fact was first noted in [39], for the frequency of radial oscillations given by expression (8). Evaluating the first derivative of this expression with respect to r, we obtain the equation

$$r^3(8M - r) + a^2(5r^2 - 4Mr) \pm 2a\sqrt{Mr}[a^2 + r(M - 6r)] = 0. \tag{12}$$

This equation determines the radii for both direct and retrograde orbits, at which the radial epicyclic frequency attains its highest value. For the Schwarzschild case, $a = 0$, it follows that $r_{\text{max}} = 8M$ and the associated frequency $\nu_r(\text{max}) \simeq 707.1 \left(\frac{M_\odot}{M}\right)$ Hz. Meanwhile, for $a \neq 0$, equation (12) can be solved only numerically. In particular, for $a = M$ and for the direct orbit, we find that $r_{\text{max}} \simeq 2.4M$ and

$$\nu_{r(\text{max})} \simeq 2453 \left(\frac{M_\odot}{M}\right) \text{ Hz}. \tag{13}$$

Similarly, for the retrograde orbits at $a = M$, we have $r_{\text{max}} \simeq 11.8M$ and

$$\nu_{r(\text{max})} \simeq 422.6 \left(\frac{M_\odot}{M}\right) \text{ Hz}. \tag{14}$$

In figure 1, we plot the dependence of the radial epicyclic frequency on the radii of circular orbits around the Kerr black hole for different values of the rotation parameter and for $M = 10M_\odot$. The full numerical analysis of equation (12) and the associated values of the radial, vertical and orbital frequencies along with their corresponding ratios are given in tables 3 and 4.

Comparing figure 1 and table 3, we see that for the direct orbits, with increasing rotation parameter of the black hole, the maxima of the radial epicyclic frequency shifts toward the event horizon and in the limiting case $a = M$, the frequency attains its highest value in the near-horizon region. The accompanying vertical and orbital frequencies at the same radii also increase to their highest values for $a = M$. It is also interesting to note that the characteristic ratios $\nu_\theta : \nu_{r(\text{max})} = 2 : 1$, $\nu_0 : \nu_{r(\text{max})} = 2 : 1$ and $\nu_0 : \nu_\theta = 1 : 1$ remain almost
Table 3. The highest radial frequency and the associated vertical and orbital frequencies at direct orbits \((M = 10 M_\odot)\).

\(a/M\)	\(r_{\text{max}}/M\)	\(v_r\) (Hz)	\(v_\theta\) (Hz)	\(v_0\) (Hz)	\(v_\theta/v_r\)	\(v_0/v_r\)	\(v_0/v_\theta\)
0.00	8.00	70.71	141.42	141.42	2.00	2.00	1.00
0.10	7.58	75.73	151.17	152.60	2.00	2.02	1.01
0.20	7.15	81.52	162.37	165.68	1.99	2.03	1.02
0.30	6.70	88.27	175.45	181.26	1.99	2.05	1.03
0.40	6.24	96.29	190.74	199.97	1.98	2.08	1.05
0.50	5.76	105.99	209.23	223.29	1.97	2.11	1.07
0.60	5.26	118.03	231.78	252.90	1.96	2.14	1.09
0.70	4.71	133.53	260.59	292.71	1.95	2.19	1.12
0.80	4.11	154.57	298.90	349.83	1.93	2.26	1.17
0.90	3.42	185.95	353.95	442.93	1.90	2.38	1.25
0.99	2.45	243.45	447.52	662.11	1.84	2.72	1.48

Table 4. The highest radial frequency and the associated vertical and orbital frequencies at retrograde orbits \((M = 10 M_\odot)\).

\(a/M\)	\(r_{\text{max}}/M\)	\(v_r\) (Hz)	\(v_\theta\) (Hz)	\(v_0\) (Hz)	\(v_\theta/v_r\)	\(v_0/v_r\)	\(v_0/v_\theta\)
0.00	8.00	70.71	141.42	141.42	2.00	2.00	1.00
0.10	8.41	66.31	132.83	131.72	2.00	1.99	0.99
0.20	8.81	62.42	125.20	123.24	2.01	1.97	0.98
0.30	9.21	58.95	118.38	115.74	2.01	1.96	0.98
0.40	9.60	55.84	112.25	109.08	2.01	1.95	0.97
0.50	9.98	53.03	106.70	103.10	2.01	1.94	0.97
0.60	10.36	50.48	101.65	97.72	2.01	1.94	0.96
0.70	10.73	48.16	97.04	92.85	2.02	1.93	0.96
0.80	11.10	46.03	92.81	88.41	2.02	1.92	0.95
0.90	11.47	44.07	88.92	84.35	2.02	1.91	0.95
1.00	11.83	42.26	85.32	80.63	2.02	1.91	0.95

unchanged up to large enough values of the rotation parameter. However, for \(a \rightarrow M\), we have the approximate ratios \(v_\theta : v_r = 9 : 5\), \(v_0 : v_r = 5 : 2\) and \(v_0 : v_\theta = 3 : 2\). Thus, we conclude that at the characteristic stable circular orbits, where the radial epicyclic frequency attains its highest value, the ratio \(v_\theta : v_r = 2 : 1\) remains nearly the same even for \(a \rightarrow M\).

Remarkably, this fact is in good enough agreement with the observed twin QPOs frequencies in the x-ray spectrum of some black hole binaries. For instance, for \(a \simeq (0.8–0.9) M\), the detected pair \((164, 328\, \text{Hz})\) in the source GRS 1915 + 105 falls in the expected ranges of the radial \(v_r\) and vertical \(v_\theta\) epicyclic frequencies given in table 3. Meanwhile, figure 1 and table 4 for the retrograde orbits show that the highest value of the radial frequency at \(a = 0\) as well as the associated values of the vertical and orbital frequencies decrease with the growth of the rotation parameter and attain their characteristic values in the limiting case \(a = M\). It is also interesting to note that the frequencies exhibit, to a good enough accuracy, the ratios \(v_\theta : v_{r,\text{max}} = 2 : 1\), \(v_0 : v_{r,\text{max}} = 2 : 1\) and \(v_0 : v_\theta = 1 : 1\)

We turn now to the expression of the vertical epicyclic frequency given in (9). For direct orbits and for sufficiently large values of the rotation parameter, this frequency attains its highest value as well. The radii of characteristic orbits, pertaining to the maxima of the vertical frequency, are given by the equation

\[r[r^3 + a^2(5r - 2M)] + 2a\sqrt{Mr}(a^2 - 3r^2) = 0. \]
Solving this equation numerically for \(a = M\), we find that \(r_{\text{max}} \simeq 1.86M\) and the highest vertical frequency is

\[
\nu_{\theta(\text{max})} \simeq 4875 \left(\frac{M_\odot}{M}\right) \text{ Hz},
\]

whereas the radial frequency at this radius has the value

\[
\nu_r \simeq 2236 \left(\frac{M_\odot}{M}\right) \text{ Hz}.
\]

It is easy to see that the approximate ratio \(\nu_{\theta(\text{max})} : \nu_r = 2 : 1\) holds in this case as well.

In figure 2, we plot the vertical epicyclic frequency as a function of the radius of direct orbits, for given values of the rotation parameter and for \(M = 10M_\odot\) (left). Here, we also plot the positions of ISCOs and \(\nu_{\theta(\text{max})}\) as the functions of the rotation parameter (right). We see that the vertical frequency reaches its highest value in the region of physical interest, \(r_{\text{max}} > r_{\text{ISCO}}\).

3. Geodesic motion and epicyclic frequencies around rotating braneworld black holes

The measurements of the angular momenta of black holes harbored in a number of x-ray binaries reveal high enough values, approaching in some cases the extreme Kerr limit. For instance, the lower bound on the rotation parameter of the black hole in the x-ray binary GRS 1915 + 105 turns out to be very close to the (upper) Kerr bound for rotating black holes in GR [30]. Although similar results are somewhat model-dependent, nevertheless they reinforce the belief that a black hole that possesses an angular momentum greater than the Kerr bound could exist. This in turn stimulates the study of the observable effects of black holes with over-Kerr bound angular momenta (‘over-rotating’ black holes). In this section, we explore this possibility in an instructive model of geodesic motion around a rotating black hole localized on a 3-brane in the RS scenario [20]. Such a black hole carries a tidal charge, as an imprint of the extra fifth dimension, and breaches the Kerr bound for the negative value of the tidal charge. The associated spacetime metric in Boyer–Lindquist coordinates is given by

\[
ds^2 = -\frac{\Delta}{\Sigma} (dt - a \sin^2 \theta \, d\phi)^2 + \Sigma \left(\frac{dr^2}{\Delta} + d\theta^2 \right) + \frac{\sin^2 \theta}{\Sigma} \left[a dt - (r^2 + a^2) \, d\phi \right]^2,
\]

where \(\Delta = r^2 - 2Mr + a^2\) and \(\Sigma = r^2 + a^2 - 2Mr\).
where
\[\Delta = r^2 + a^2 - 2Mr + \beta, \quad \Sigma = r^2 + a^2 \cos^2 \theta. \] (19)

Here \(M \) and \(a \) are the mass and rotation parameters, respectively, and the parameter \(\beta \) is the tidal charge. This metric is the reminiscent of the usual Kerr–Newman metric in which the electric charge of the black hole is superseded by the tidal charge. Solving the equation \(\Delta = 0 \), we find that the radius of the event horizon is given by
\[r_+ = M + \sqrt{M^2 - a^2 - \beta}, \] (20)
which implies the relation
\[M^2 \geq a^2 + \beta, \] (21)
where the equality holds in the extreme case. We see that for the positive tidal charge, the angular momentum of the braneworld black hole does not exceeds its mass, whereas for the negative tidal charge it is greater than the mass. The detailed analysis of the properties of metric (18) can be found in [20, 25].

The circular motion of test particles in metric (18) occurs in the equatorial plane \(\theta = \pi/2 \), whose orbital frequency \(\Omega_0 \) has the same form as given in (5), where the Kepler frequency is now given by \(\Omega_0 = (Mr - \beta)^{1/2}/r^2 \). As for the energy of the test particles, it can be found by substituting in equation (4) the nonvanishing components of the Christoffel symbols and repeating all the steps leading to equation (6) or simply replacing the square of the electric charge by the tidal charge, in the corresponding expression for the usual Kerr–Newman metric (see, for instance [35]). As a result, we have
\[\frac{E}{m} = \frac{r^2 - 2Mr + \beta \pm a \sqrt{Mr - \beta}}{r(r^2 - 2Mr + 2\beta \pm 2a \sqrt{Mr - \beta})^{1/2}}. \] (22)

The vanishing denominator of this expression gives the radius of the limiting photon orbit. For \(\beta = M^2 \), the limiting radius is the same as for an extreme Reissner–Nördstrom black hole, \(r_{ph} = M (r_+ = M) \). Meanwhile, for the negative tidal charge \(\beta = -M^2 (a = \sqrt{2}M) \), the limiting radii are \(r_{ph} = M \) for the direct motion and \(r_{ph} = 4.82M \) for the retrograde one [20].

As for the epicyclic motion, it is frequency in the radial direction is given by
\[\Omega_r^2 = \frac{\Omega_0^2}{Mr - \beta} \left[Mr \left(1 - \frac{6M}{r} - \frac{3a^2}{r^2} + \frac{9\beta}{r^2} \right) + \frac{4\beta}{r^2} (a^2 - \beta) \pm 8a\Omega_0 (Mr - \beta) \right], \] (23)
while for the frequency in the vertical direction, we have
\[\Omega_\theta^2 = \Omega_0^2 \left[1 + \frac{a^2}{r^2} \left(1 + \frac{2Mr - \beta}{Mr - \beta} \right) \mp 2a\Omega_0 \frac{2Mr - \beta}{Mr - \beta} \right]. \] (24)

We note that these expressions were also given in [25] and they can be obtained from the general expressions for the Kerr–Newman field, earlier found in [35], in which one needs to change the square of the electric charge to the tidal charge, keeping in mind that the latter may have both positive and negative values. For the vanishing tidal charge, \(\beta = 0 \), these expressions go over into those given in (8) and (9). The boundaries of the ISCOs in the radial direction are governed by the equation \(\Omega_r^2 = 0 \). The analysis of this equation shows that for \(\beta = M^2 \), the limiting radius is \(r_{ms} = 4M \) just as for an extreme Reissner–Nördstrom black hole, whereas for an over-rotating black hole with \(\beta = -M^2 (a = \sqrt{2}M) \), we have \(r_{ms} = M \) for the direct motion and \(r_{ms} \approx 11.25M \) for the retrograde one (see [20, 25] for details). Meanwhile, the analysis of expression (24) shows that the vertical motion is stable against linear perturbations in this direction.
It turns out that the radial epicyclic frequency in (23) has maxima at some characteristic orbits, just as expression (8) for the Kerr field. In what follows, we will focus on this case. Assuming first that the black hole has a small positive tidal charge, we compute all three fundamental frequencies and their corresponding ratios at direct orbits, for which the radial frequency in (23) attains its maximum value. The numerical results are summarized in Table 5.

Comparing these results with those given in Table 3, we see that the observed pair of frequencies (164, 328 Hz) in the source GRS 1915 + 105 falls in the range of the radial ν_r and vertical ν_θ frequencies that corresponds to less values of the rotation parameter, $a \simeq (0.7–0.8)M$. On the other hand, recent observations give the lower bound $a > 0.98M$ on the rotation parameter of the black hole in GRS 1915 + 105 [30]. Nevertheless, this discrepancy still might not be enough on its own to judge about the observational appearance (or non-appearance) of the positive tidal charge as the reported constraint on the bound of the rotation parameter is highly model-dependent. In some other cases, this constraint is found to be much below (see, for instance, [43, 44]). The reason for this is that the measurements of the rotation parameter of the black hole are obtained by modeling the thermal x-ray continuum of its accretion disc spectra to infer the inner radius of disc with subsequently identifying it with that of ISCO, which depends only on the mass and rotation parameter of the black hole. However, the accretion disc spectra are generally complex being accompanied by a radiative tail of non-thermal nature as well as by the imprints of relativistic effects. Depending on the model under consideration, these may have a large impact on the estimate of the rotation parameter.

Meanwhile, there exists a fundamental constraint on the values of the positive tidal charge and the rotation parameter, governed by equation (20), i.e. by the very existence of the black hole. It follows from this equation that with the growth of the positive tidal charge, the rotation parameter must decrease and for the large enough charge, $\beta \to M^2$, the rotation parameter tends to zero. Furthermore, performing the above numerical analysis of the epicyclic frequencies for the tidal charge $\beta = 0.99M^2$, which implies the highest rotation parameter $a = 0.1M$, we find the pair of frequencies $(v_r, v_\theta) = (118, 249 \text{ Hz})$. This pair lies far enough away from the detected pair of frequencies (164, 328 Hz) in the source GRS 1915 + 105. On the basis of all that has been said above, we can conclude that at least, the large enough positive tidal charge is not supported by the observations of QPOs in black hole systems.

Next, we suppose that the black hole possesses the negative tidal charge $\beta = -M^2$ and again calculate all three frequencies at the characteristic direct orbits, at which the radial epicyclic frequency attains its maxima. The results are given in Table 6. Comparing these results

a/M	r_{max}/M	$\nu_r(\text{Hz})$	$\nu_\theta(\text{Hz})$	ν_r/ν_θ	ν_0/ν_r	ν_0/ν_θ
0.00	7.81	72.78	145.69	2.00	2.00	1.00
0.09	7.41	77.83	155.54	2.00	2.02	1.01
0.19	6.99	83.65	166.83	1.99	2.03	1.02
0.28	6.56	90.42	179.91	1.99	2.05	1.03
0.38	6.12	98.43	195.30	1.98	2.08	1.05
0.47	5.66	108.10	213.71	1.98	2.11	1.07
0.57	5.17	120.05	236.29	1.97	2.14	1.09
0.66	4.64	135.38	264.85	1.96	2.19	1.12
0.76	4.07	156.08	302.77	1.94	2.26	1.17
0.85	3.39	186.74	357.31	1.91	2.38	1.24
0.95	2.42	244.13	452.24	1.85	2.73	1.47
Figure 3. The radial epicyclic frequencies for the direct orbits. The solid line corresponds to the extreme Kerr black hole, $\beta = 0$, $a = M$ and the dotted line refers to the braneworld black hole, $\beta = -M^2$, $a = \sqrt{2}M$.

Table 6. The highest radial frequency and the associated vertical and orbital frequencies for the negative tidal charge.

a/M	r_{max}/M	v_r(Hz)	v_θ(Hz)	v_ϕ/v_r	v_θ/v_r	v_0/v_r
0.00	9.64	56.20	112.29	2.00	2.00	1.00
0.14	9.09	60.69	121.06	1.99	2.01	1.01
0.28	8.53	65.94	131.25	1.99	2.03	1.02
0.42	7.95	72.15	143.25	1.99	2.06	1.04
0.57	7.36	79.63	157.61	1.98	2.08	1.05
0.71	6.74	88.84	175.16	1.97	2.11	1.07
0.85	6.09	100.51	197.15	1.96	2.15	1.10
0.99	5.40	115.87	225.74	1.95	2.21	1.13
1.13	4.64	137.33	264.91	1.93	2.28	1.18
1.27	3.77	170.50	323.56	1.90	2.42	1.27
1.41	2.53	236.74	431.78	1.82	2.80	1.54

with those given in table 3, it is easy to see that the negative tidal charge has an enlarging effect on the radii r_{max}, whereas with increasing the rotation parameter of the black hole, the radii again move toward the event horizon, approaching the limiting value for $a = \sqrt{2}M$. We also see the appearance of the approximate 2:1 ratio between the vertical and radial epicyclic frequencies. It is important to note that in the over-rotating case, $a \simeq 1.27M$, the values of the radial v_r and vertical v_θ frequencies and their ratio are in good enough agreement with the detected pair of frequencies (164, 328 Hz) in the source GRS 1915 + 105.

Figure 3 displays the positions of the maxima of the radial epicyclic frequencies for an extreme Kerr black hole and for an over-rotating braneworld black hole with the negative tidal charge $\beta = -M^2$. We see that the epicyclic frequencies in the field of these black holes are observationally almost indistinguishable. We note that it is the value of the angular momentum (for instance, reported from independent observations) that would play a crucial role to distinguish between these two black holes and the over-Kerr bound value of the angular momentum would be in favor of the potential existence of the braneworld black hole in the universe.
4. Conclusion

In general relativity, the circular motion of test particles around rotating black holes can be described in terms of three fundamental frequencies: the orbital (cyclic) frequency, the epicyclic frequency of radial oscillations and the epicyclic frequency of vertical oscillations [35–38]. All three of these frequencies are different, encapsulating somewhat the effects of a strong gravity regime near the black holes. Remarkably, the epicyclic frequencies of radial and vertical oscillations can be related to the frequencies of twin peaks high-frequency QPOs, discovered in a number of black hole binaries. The purpose of this paper was to explore these issues in more detail from the general relativistic point of view. We have considered two instructive models of the geodesic motion, around a Kerr black hole in general relativity and around a rotating black hole in braneworld gravity. In both cases, we have performed a detailed numerical analysis of the fundamental frequencies at the stable orbits of interest and found the examples of observationally viable cases of the epicyclic frequencies.

As the main result for the Kerr black hole, we have found that for a class of stable orbits, where the radial (or the vertical) epicyclic frequency attains its maxima, the vertical and radial epicyclic frequencies are in an approximate 2 : 1 ratio, occurring even for near-extreme rotation of the black hole. We have also found that for the rotation parameter in the range $a \simeq (0.8–0.9)M$, the values of the epicyclic frequencies underlying this ratio exhibit good enough qualitative agreement with the detected twin peaks frequencies of QPOs in the source GRS 1915 + 105 which, to our best knowledge, appears to be a unique case so far. Furthermore, we have found that at particular class of orbits near the black hole, the predicted values of the epicyclic frequencies (bolded in table 2) are close to the frequencies of twin peaks QPOs, which are in a 3:2 ratio and have been detected in some black hole binaries: For instance, to 184, 276 Hz for X-ray binary XTE J1550−564, to 165, 241 Hz for X-ray binary H1743−322 and to 113, 168 Hz for X-ray binary GRS 1915 + 105. These findings are substantially new.

As we noted in the introduction, the idea of nonlinear resonances that may happen when the epicyclic frequencies are in a rational relation [35] has been utilized in the literature [33, 34] to develop the models for the observed high-frequency QPOs. The results of our paper show that the simple model of pure geodesic motion can also provide, to some extent, the observationally viable values for the epicyclic frequencies, without invoking nonlinear resonances between them.

For the rotating braneworld with a tidal charge, we have performed the full numerical analysis of the epicyclic frequencies, focusing on the stable orbits, where the radial epicyclic frequency reaches its maximum value. Here we have found that while the large enough value of the positive tidal charge is not supported by the observations of high-frequency QPOs, the situation is different for the negative tidal charge. For the large enough value of the negative tidal charge, the braneworld black hole exhibits close similarities with the Kerr black hole, including the appearance of the approximate 2:1 ratio between the vertical and radial epicyclic frequencies. We have also found that in the case under consideration, the over-rotating braneworld black hole and the extreme Kerr black hole are almost indistinguishable in the high-frequency QPOs observations. We note that these results are also substantially new. On these grounds, we concluded that the potential existence of the over-rotating braneworld black hole with the negative tidal charge does not confront with modern observations of the black hole systems in the universe.

Acknowledgments

One of us (A N Aliev) thanks Ekrem Çalkılıç for his invaluable support and encouragement. The work of GDE is supported by Istanbul University Scientific Research Project (BAP) no. 3149.
References

[1] Penrose R 1965 Phys. Rev. Lett. 14 57
 Hawking S W and Penrose R 1970 Proc. R. Soc. Lond. A 314 529
[2] Israel W 1967 Phys. Rev. 164 1776
 Carter B 1971 Phys. Rev. Lett. 26 331
[3] Hawking S W 1972 Commun. Math. Phys. 25 152
 Robinson D C 1975 Phys. Rev. Lett. 34 905
[4] Carter B 1968 Phys. Rev. D 174 1559
[5] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Clarendon)
[6] Frolov V P and Novikov I D 1998 Physics of Black Holes (Dordrecht: Kluwer)
[7] Kerr R P 1963 Phys. Rev. Lett. 11 237
[8] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347
[9] Shapiro S L and Teukolsky S A 1983 Black Holes, White Dwarfs and Neutron Stars (New York: A Wiley-Interscience)
[10] Myers R C and Perry M J 1986 Ann. Phys., NY 172 304
[11] Emparan R and Reall H S 2002 Phys. Rev. Lett. 88 101101
[12] Carter B 1968 Phys. Rev. D 174 1559
[13] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Clarendon)
[14] Frolov V P and Novikov I D 1998 Physics of Black Holes (Dordrecht: Kluwer)
[15] Kerr R P 1963 Phys. Rev. Lett. 11 237
[16] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347
[17] Hawking S W 1972 Commun. Math. Phys. 25 152
 Robinson D C 1975 Phys. Rev. Lett. 34 905
[18] Gregory R and Laflamme R 1993 Phys. Rev. Lett. 70 2837
[19] Dabrowski A, Nowak D and Rezzolla L 2000 Phys. Rev. D 62 024012
[20] Aliev A N and Gümrükçüoğlu A E 2005 Phys. Rev. D 71 104027
[21] Shiromizu T, Maeda K and Sasaki M 2000 Phys. Rev. D 62 024012
[22] Aliev A N and Gümrükçüoğlu A E 2004 Class. Quantum Grav. 21 5081
[23] Kotlarczyk A, Stuchlík Z and Toth G 2008 Class. Quantum Grav. 25 225016
[24] Stuchlík Z and Kotlarczyk A 2009 Gen. Rel. Grav. 41 1305
[25] Aliev A N and Talazan P 2009 Phys. Rev. D 80 044023
[26] Bambi C 2012 Phys. Rev. D 85 043002
[27] Özel F, Psaltis D, Narayan R and McClintock J E 2010 Astrophys. J. 725 1918
[28] Remillard R A and McClintock J E 2006 Annu. Rev. Astron. Astrophys. 44 49
[29] Gou et al 2011 Astrophys. J. 742 85
[30] McClintock J E et al 2006 Astrophys. J. 652 518
[31] Gomułka J and Horava P 2009 Phys. Lett. B 672 299
[32] Abarzúza M A and Kluźniak W 2001 Astron. Astrophys. 379 L19
[33] Abramowicz M A and Kluźniak W 2003 X-ray Timing 2003: Rossie and Beyond (AIP Conference Proceedings vol 714) p 21 arXiv:astro-ph/0312396
[34] Aliev A N and Gal'tsov D V 1981 Gen. Rel. Grav. 13 899
[35] Aliev A N and Gal'tsov D V 1986 Astrophys. Space Sci. 124 137
[36] Aliev A N and Gal'tsov D V 1988 Sov. Astron. Lett. 14 48
[37] Aliev A N and Gal'tsov D V 1989 Sov. Phys. Usp. 32 75
[38] Tsybulevskii A, Kato S and Sato K 1990 Phys. Rev. D 42 99
[39] Okazaki A, Kato S and Fujii K 1990 Publ. Astron. Soc. Japan 42 17
[40] Aliev A N 2006 Proceedings of the 11th Marcel Grossmann Meeting on General Relativity (Berlin) p 1057 arXiv:astro-ph/0612730
[41] Middleton M, Done C, Gierlinski M and Davis S W 2006 Mon. Not. R. Astron. Soc. 373 1004
[42] Blum J L et al 2009 Astrophys. J. 706 60

