2-LC triangulated manifolds are exponentially many

Marta Pavelka
joined work with Bruno Benedetti

University of Miami

Bielefeld 2022, September 9
• **Facets**: inclusion-maximal faces of a complex.

• **Pure complex**: all facets of the same dimension.

• **Star** of a face σ: the smallest subcomplex containing all facets that contain σ.

• $\text{link}(\sigma, K) := \{ \tau \in \text{star}(\sigma, K) : \tau \cap \sigma = \emptyset \}$

• **Triangulation of a smooth d-manifold M**: a d-dim simplicial complex whose underlying space is homeomorphic to M.

• **d-sphere**: a triangulation of the d-dimensional sphere.

• **d-pseudomanifold**: a d-dim pure simplicial regular CW-complex where each $(d - 1)$-cell is in ≤ 2 facets.
Gromov’s question (2000)

How many triangulations of the 3-sphere with N tetrahedra are there?

- Two triangulations are equivalent \iff same face poset.
- Exponentially many?
- Crucial for discrete version of quantum gravity
 - If yes, all good
 - If no, divergence issues
Theorem (Folklore)

There are more than exponentially many surfaces with N triangles.

Corollary (via coning)

There are more than exponentially many 3-pseudomanifolds with N tetrahedra.
• LC manifolds are those obtainable from a tree of \(d\)-simplices by recursively gluing two adjacent boundary facets.
• Mogami manifolds: ... gluing two incident ...
• All shellable spheres are LC.
Locally constructible picture

- LC manifolds are those obtainable from a tree of d-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... gluing two incident ...
- All shellable spheres are LC.
• LC manifolds are those obtainable from a tree of d-simplices by recursively gluing two *adjacent* boundary facets.
• Mogami manifolds: ... gluing two *incident* ...
• All shellable spheres are LC.
Theorem (Durhuus–Jonsson 1995; Benedetti–Ziegler 2011)

LC triangulations of d-manifolds with N facets are at most 2^{d^2N}.

- Works also for LC pseudommanifolds.

Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with N facets are exponentially many.
Later pictures

Classes of exponential size

- (d=2) Surfaces with fixed genus (Tutte 1962)
- (d=3) Causal triangulations (Durhuus–Jonsson 2014)
- (any d) Bounded geometry (Adiprasito–Benedetti 2020)

- Triangulations with bounded discrete Morse vector (Benedetti 2012)
 - contains all classes above
 - does not contain Mogami triangulations
Definition (Benedetti–P. 2022)

t-LC d-manifolds are those obtainable from a tree of d-simplices by recursively gluing two boundary facets whose intersection has dimension at least $d - 1 - t$.

- 1-LC the same as LC
- 1-LC \subset 2-LC $\subset \cdots \subset d$-LC
- All connected d-manifolds are d-LC
Definition (Benedetti–P. 2022)

t-LC d-manifolds are those obtainable from a tree of d-simplices by recursively gluing two boundary facets whose intersection has dimension at least $d - 1 - t$.

- 1-LC the same as LC
- 1-LC \subset 2-LC $\subset \cdots \subset d$-LC
- All connected d-manifolds are d-LC

Main Theorem (Benedetti–P. 2022)

2-LC triangulations of d-manifolds with N facets are at most $2^{\frac{d^3}{2}} N$.
Theorem (Benedetti–P. 2022)
Cones over t-LC d-pseudomanifolds are t-LC.

⇒ 2-LC d-pseudomanifolds more than exponentially many!
 • Unlike the Benedetti-Ziegler result, our result really uses the manifold assumption: without it, it’s false.

Crucial facts for our proof
• Links of $(d – 3)$-faces in a manifold are homeomorphic to S^2 or a disk.
• Planar gluings lead to count by Catalan numbers.
• Our proof makes precise and extends to all dimensions the intuition for $d = 3$ by Mogami.
A d-dimensional complex C is called [homotopy-]Cohen–Macaulay if for any face F, for all $i < \dim \text{link}(F, C)$, $[\pi_i(\text{link}(F, C)) = 0] \ H_i(\text{link}(F, C)) = 0$.

Constructible simplicial complex is defined inductively:
- every simplex, and every 0-complex, is constructible;
- a d-dim pure simplicial complex C that is not a simplex is constructible if and only if it can be written as $C = C_1 \cup C_2$, where C_1 and C_2 are constructible d-complexes, and $C_1 \cap C_2$ is a constructible $(d-1)$-complex.
• A \(d \)-dimensional complex \(C \) is called \textit{[homotopy-]}Cohen–Macaulay if for any face \(F \), for all \(i < \dim \text{link}(F, C) \), \([\pi_i(\text{link}(F, C)) = 0] \) \(H_i(\text{link}(F, C)) = 0 \).

• \textit{Constructible simplicial complex} is defined inductively:
 - every simplex, and every 0-complex, is constructible;
 - a \(d \)-dim pure simplicial complex \(C \) that is not a simplex is constructible if and only if it can be written as \(C = C_1 \cup C_2 \), where \(C_1 \) and \(C_2 \) are constructible \(d \)-complexes, and \(C_1 \cap C_2 \) is a constructible \((d - 1)\)-complex.

\textbf{Results to generalize}

• Constructible manifolds are LC. (Benedetti–Ziegler 2011)

• Constructible complexes are homotopy-Cohen–Macaulay. (Hochster 1972)
Definition (Benedetti–P. 2022)

Let $0 < t \leq d$ be integers. t-constructible d-dimensional simplicial complexes defined inductively:

- every simplex is t-constructible;
- a 1-dimensional complex is t-constructible if connected;
- a d-dimensional pure simplicial complex C that is not a simplex is t-constructible if $C = C_1 \cup C_2$, where C_1 and C_2 are t-constructible d-complexes, and $C_1 \cap C_2$ is a $(d - 1)$-complex whose $(d - t)$-skeleton is constructible.
Theorem (Benedetti–P. 2022)

t-constructible pseudomanifolds are t-LC.

Theorem (Benedetti–P. 2022)	The $(d - t + 1)$-skeleton of a t-constructible d-complex is homotopy-Cohen–Macaulay.
	(In other words, t-constructible d-complexes have (homotopic) depth $> d - t$.)