Supporting information for: GW100: A Slater Type Orbital Perspective

Arno Förster* and Lucas Visscher

Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands

E-mail: a.t.l.foerster@vu.nl

The following three tables contain additional information on the calculation we have performed. The first table contains the KS eigenvalues calculated with PBE, and the second and third table contain the quasi-particle energies at the aug-TZ3P and aug-QZ6P level of theory, respectively. They also list technical parameters which we have used in the calculations.

Table 1: PBE HOMO and LUMO energies at finite basis sets (all values in eV). TZ denotes aug-TZ3P and QZ denotes aug-QZ6P

Name	HOMO	LUMO		
	TZ	QZ	TZ	QZ
1 Helium	-15.76	-15.76	1.41	0.34
2 Neon	-13.36	-13.35	0.59	-0.02
3 Argon	-10.29	-10.29	0.29	-0.28
4 Krypton	-9.30	-9.28	-0.16	-0.40
5 Xenon	-8.30	-8.29	-0.30	-0.43
6 Hydrogen	-10.39	-10.38	0.29	0.26
7 Lithiumdimer	-3.23	-3.22	-1.79	-1.79
8 Sodiumdimer	-3.13	-3.13	-1.78	-1.78
9 Sodiumtetramer	-2.68	-2.68	-2.09	-2.09
10 Sodiumhexamer	-2.99	-2.99	-1.89	-1.89
11 Dipotassium	-2.56	-2.56	-1.61	-1.61
12 Dirubidium	-2.44	-2.44	-1.54	-1.54
13 Nitrogen	-10.27	-10.27	-1.96	-1.96
14 Phosphorusdimer	-7.14	-7.13	-3.43	-3.43
15 Arsenicedimer	-6.59	-6.57	-3.45	-3.44
16 Fluorine	-9.46	-9.45	-5.82	-5.80
17 Chlorine	-7.30	-7.31	-4.24	-4.24

Continued on next page
Name	HOMO	LUMO		
	TZ	QZ	TZ	QZ
18 Bromine	−6.86	−6.85	−4.48	−6.46
19 Iodine	−6.34	−6.33	−4.33	−4.32
20 Methane	−9.46	−9.46	−0.39	−0.39
21 Ethane	−8.16	−8.16	−0.44	−0.45
22 Propane	−7.76	−7.76	−0.48	−0.49
23 Butane	−7.58	−7.58	−0.49	−0.50
24 Ethylene	−6.78	−6.78	−1.07	−1.07
25 Acetylene	−7.20	−7.20	−0.42	−0.42
26 Tetracarbon	−7.27	−7.26	−6.12	−6.11
27 Cyclopropane	−7.05	−7.05	−0.34	−0.36
28 Benzene	−6.34	−6.34	−1.26	−1.25
29 Cyclooctatetraene	−5.31	−5.30	−2.32	−2.32
30 Cyclopentadiene	−5.41	−5.41	−1.49	−1.49
31 Vinyl fluoride	−6.55	−6.55	−0.97	−0.97
32 Vinyl chloride	−6.44	−6.44	−1.43	−1.44
33 Vinylbromide	−5.86	−5.85	−1.37	−1.37
34 Vinyl fluoride	−6.10	−6.09	−1.71	−1.70
35 Carbontetrafluoride	−10.43−10.41	−0.42	−0.43	
36 Carbontetrachloride	−7.67−7.68	−2.78	−2.77	
37 Carbontetrafluoride	−7.00−6.99	−3.56	−3.53	
38 Carbontetrabromide	−6.29−6.28	−4.29	−4.28	
39 Silane	−8.53	−8.52	−0.47	−0.49
40 Germane	−8.38	−8.37	−0.67	−0.68
41 Disilane	−7.30	−7.29	−0.68	−0.69
42 Pentasilane	−6.59	−6.58	−1.68	−1.67
43 Lithium hydride	−4.36	−4.36	−1.62	−1.64
44 Potassium hydride	−3.46	−3.46	−1.62	−1.62
45 Borane	−8.50	−8.49	−3.07	−3.07
46 Diborane6	−7.87	−7.87	−2.04	−2.04
47 Ethane	−6.19	−6.18	−0.74	−0.75
48 Hydrogen azide	−6.81	−6.80	−2.10	−2.10
49 Phosphine	−6.72	−6.72	−0.67	−0.67
50 Arsine	−6.73	−6.74	−0.77	−0.77
51 Hydrogensulfide	−6.30	−6.30	−0.86	−0.87
52 Hydrogen fluoride	−9.66	−9.65	−0.97	−0.97
53 Hydrogen chloride	−8.04	−8.04	−1.12	−1.12
54 Lithium fluoride	−6.13	−6.13	−1.53	−1.52
55 Magnesium fluoride	−8.30−8.30	−2.58	−2.58	
56 Titanium fluoride	−10.45−10.44	−4.19	−4.19	
57 Aluminum fluoride	−9.72−9.71	−2.54	−2.54	
58 Fluoroborane	−6.79	−6.78	−2.15	−2.14
59 Sulfetetrafluoride	−8.25	−8.24	−2.97	−2.96
60 Potassium bromide	−4.76	−4.76	−1.87	−1.87
61 Gallium monochloride	−6.53−6.53	−2.44	−2.43	
62 Sodium chloride	−5.29	−5.29	−2.24	−2.24
63 Magnesium chloride	−7.63−7.63	−2.55	−2.54	
64 Aluminum triiodide	−6.72−6.71	−2.71	−2.71	
65 Boron nitride	−7.46	−7.46	−7.29	−7.29
66 Hydrogen cyanide	−9.04	−9.04	−1.11	−1.11
67 Phosphorous mononitride	−7.77−7.76	−3.41	−3.40	
68 Hydrazene	−5.30	−5.30	−0.96	−0.96
69 Formaldehyde	−6.28	−6.27	−2.71	−2.71
70 Methanol	−6.35	−6.35	−0.65	−0.66

Continued on next page
Name	HOMO	LUMO		
	TWZ	TQZ	TWZ	TQZ
Ethanol	-6.16	-6.16	-0.67	-0.68
Acetaldehyde	-5.98	-5.98	-2.16	-2.16
Ethoxethane	-5.81	-5.80	-0.51	-0.53
Formic Acid	-6.95	-6.94	-1.56	-1.56
Hydrogenperoxide	-6.46	-6.45	-1.69	-1.68
Water	-7.26	-7.25	-0.94	-0.93
Carbon dioxide	-9.10	-9.09	-0.91	-0.95
Carbon disulfide	-6.81	-6.80	-2.86	-2.86
Carbonoxysulfide	-7.49	-7.48	-1.95	-1.95
Carbonoxyselenide	-6.99	-6.98	-2.07	-2.07
Carbon monoxide	-9.35	-9.34	-3.35	-3.35
Ozon	-7.96	-7.96	-6.16	-6.16
Sulfur dioxide	-8.09	-8.08	-4.41	-4.40
Beryllium monoxide	-6.14	-6.14	-4.81	-4.81
Magnesium monoxide	-4.80	-4.80	-4.29	-4.29
Toluene	-6.01	-6.01	-1.23	-1.23
Ethylbenzene	-6.01	-6.01	-1.16	-1.16
Hexafluorobenzene	-6.66	-6.66	-2.22	-2.22
Phenol	-5.64	-5.64	-1.37	-1.36
Aniline	-5.03	-5.03	-1.12	-1.12
Pyridine	-5.96	-5.95	-1.91	-1.90
Guanine	-5.30	-5.29	-1.43	-1.43
Adenine	-5.53	-5.53	-1.71	-1.71
Cytosine	-5.73	-5.73	-2.07	-2.07
Thymine	-6.06	-6.05	-2.29	-2.28
Uracil	-6.29	-6.28	-2.45	-2.44
Urea	-5.94	-5.93	-1.01	-1.02
Silver dimer	-4.75	-4.77	-2.75	-2.76
Silver dimer (ZORA)	-5.21	-3.11		
Copper dimer	-4.78	-4.78	-2.94	-3.00
Copper cyanide	-6.69	-6.72	-4.00	-4.04

Table 2: IPs and EAs on the aug-TZ3P level of theory (in eV) and technical parameters used in the calculations: Number of grid points, number of orbitals and fit set (N = Normal, G = Good, VG = Very Good).
Name	IP	EA	N_o	N_T	N_{bas}	fit set
Phosphorusdimer	9.88	0.38	20	20	96	N
Arsenicdimer	9.07	0.50	24	24	140	N
Fluorine	14.62	-0.14	17	17	80	N
Chlorine	10.73	0.33	21	21	96	N
Bromine	9.91	0.90	24	24	140	N
Iodine	9.01	1.28	27	29	200	N
Methane	13.80	-0.97	14	14	112	VG
Ethane	12.23	-0.96	15	15	188	VG
Propane	11.64	-0.92	15	15	264	VG
Buthane	11.37	-0.89	15	15	340	VG
Ethylene	10.09	-2.12	16	16	152	VG
Acetylene	10.83	-2.76	16	16	116	VG
Tetracarbon	10.56	2.27	19	19	160	G
Cyclopropane	10.39	-0.98	16	16	228	VG
Benzene	8.82	-1.26	17	17	348	G
Cyclooctatetraene	7.92	-0.30	18	18	464	G
Cyclopentadiene	8.13	-1.17	18	18	308	G
Vinylfluoride	9.98	-2.21	18	18	174	G
Vinylchloride	9.48	-1.61	20	20	182	G
Vinylbromide	8.76	-1.50	23	23	204	N
Vinylidolide	8.82	-1.06	27	32	234	N
Carbbontetrafluoride	15.10	-0.92	16	16	200	G
Carbontetrachloride	10.68	-0.41	20	20	232	G
Carbontetra bromide	9.64	0.62	24	24	320	N
Carbontetraiodide	8.63	1.64	27	31	440	N
Silane	12.17	-0.92	17	17	120	VG
Germane	11.85	-1.00	22	22	143	G
Disilane	10.11	-0.93	18	18	204	G
Pentasilane	8.73	-0.39	19	19	456	G
Lithiumhydride	5.98	-0.02	16	16	55	N
Potassiumhydride	4.83	0.06	23	23	76	N
Borane	12.68	-0.48	15	15	94	G
Diborane6	11.75	-1.07	16	16	188	G
Amonia	10.00	-0.93	17	17	94	G
Hydrogenazide	10.16	-1.67	16	16	138	G
Phosphine	9.99	-0.84	19	19	102	G
Arsine	9.87	-0.84	22	22	124	G
Hydrogensulfide	9.73	-0.94	19	19	84	N
Hydrogenfluoride	14.88	-1.22	16	16	58	N
Hydrogenchloride	11.81	-1.38	19	19	66	N
Lithiumfluoride	9.80	-0.08	15	15	77	N
Magnesiumfluoride	12.16	0.08	17	17	128	N
Titaniumfluoride	13.67	-0.89	20	20	223	N
Aluminumtrifluoride	14.94	-0.21	18	18	168	G
Fluoroborane	10.21	-1.49	16	16	80	N
Sulfetetrafluoride	11.78	-0.73	19	19	208	G
Potassiumbromide	7.24	0.23	24	24	128	N
Galliummonochloride	9.28	-0.24	24	24	119	N
Sodiumchloride	8.02	0.30	21	21	93	N
Magnesiumchloride	10.67	0.27	19	19	144	N
Aluminumtrioiodide	9.17	0.39	27	30	348	N
Boronitrile	10.95	3.09	24	24	80	N
Hydrogencyanide	13.01	-2.59	14	14	98	N
Phosphorusmononitride	10.91	-0.16	19	19	88	N

Continued on next page
Name	IP	EA	N_ω	N_T	N_{bas}	fit set
Hydrazene	8.94	-0.82	18	18	152	G
Formaldehyde	10.13	-1.34	19	19	116	G
Methanol	10.32	-1.05	18	18	152	VG
Ethanol	9.89	-0.97	18	18	228	VG
Acetaldehyde	9.36	-1.43	19	19	192	VG
Ethoxyethane	9.12	-0.83	17	17	380	VG
Formalic Acid	10.46	-2.12	18	18	156	G
Hydrogen peroxide	10.69	-2.38	18	18	116	G
Water	11.50	-1.02	18	18	76	N
Carbon dioxide	13.05	-1.03	17	17	120	N
Carbon disulfide	9.42	-0.17	19	19	136	N
Carbon oxysulfide	10.62	-1.52	19	19	128	N
Carbon oxyselenide	9.88	-1.25	24	24	151	N
Carbon monoxide	13.23	-1.16	18	18	80	N
Ozon	11.63	1.70	20	20	120	N
Sulfurdioxide	11.61	0.58	20	20	128	N
Beryllium monoxide	9.16	1.85	20	20	80	N
Magnesium monoxide	6.76	1.55	23	23	88	N
Tuleone	8.48	-1.15	18	18	424	G
Ethyl benzene	8.33	-1.17	17	17	500	G
Hexafluoro benzene	9.26	-0.46	17	17	480	G
Phenol	8.21	-1.13	17	17	388	G
Aniline	7.49	-1.30	18	18	406	G
Pyridine	8.82	-0.77	16	16	330	G
Guanine	7.55	-0.87	19	19	530	VG
Adenine	7.77	-0.66	18	18	490	G
Cytosine	8.04	-0.56	19	19	410	G
Thymine	8.51	-0.36	19	19	468	G
Uracil	9.03	-0.34	19	19	392	VG
Urea	8.99	-0.64	18	18	232	G
Silver dimer	6.99	0.70	27	31	178	N
Copper dimer	7.13	0.64	24	24	126	N
Copper selenide	9.58	1.08	24	24	143	N
Table 3: IPs and EAs on the aug-QZ6P level of theory (in eV) and technical parameters used in the calculations: Number of grid points, number of orbitals and fit set (N = Normal, G = Good, VG = VeryGood).

Name	IP	EA	\(N_\omega\)	\(N_{\tau}\)	\(N\text{bas}\)	fit set
1 Helium	23.28	−0.84	14	14	33	N
2 Neon	20.08	−1.22	19	19	68	N
3 Argon	14.81	−0.82	24	24	82	N
4 Krypton	13.41	−0.75	27	31	120	N
5 Xenon	11.76	−0.68	27	32	150	N
6 Hydrogen	15.72	−0.90	14	14	66	N
7 Lithiumdimer	4.90	0.43	18	18	128	N
8 Sodiumdimer	4.79	0.50	24	24	146	N
9 Sodiumtetramer	4.19	0.92	24	24	292	N
10 Sodiumhexamer	4.24	0.95	24	24	438	N
11 Dipotassium	3.93	0.53	24	24	198	N
12 Dirubidium	3.76	0.59	27	28	274	N
13 Nitrogen	14.71	−2.54	18	18	140	N
14 Phosphorusdimer	10.05	0.49	24	24	172	N
15 Arsenicdimer	9.28	0.74	24	24	238	N
16 Fluorine	14.78	0.15	21	21	140	N
17 Chlorine	10.93	0.56	24	24	174	N
18 Bromine	10.15	1.12	27	32	248	N
19 Iodine	9.02	1.36	27	31	274	N
20 Methane	13.84	−0.89	17	17	196	VG
21 Ethane	12.28	−0.88	18	18	326	VG
22 Propane	11.73	−0.83	18	18	456	VG
23 Butane	11.44	−0.81	18	18	586	VG
24 Ethylene	10.17	−2.03	18	18	260	VG
25 Acetylene	10.95	−2.65	17	17	194	VG
26 Tetracarbon	10.63	2.40	22	22	256	G
27 Cyclopropane	10.49	−0.88	18	18	390	VG
28 Benzene	8.92	−1.14	19	19	582	G
29 Cyclooctetraene	8.01	−0.17	20	20	776	G
30 Cyclopentadiene	8.25	−1.07	19	19	518	G
31 Vinylfluoride	10.09	−2.09	20	20	297	G
32 Vinylchloride	9.62	−1.49	24	24	314	G
33 Vinylbromide	8.87	−1.39	27	32	351	N
34 Viniliodide	8.86	−0.95	27	32	372	N
35 Carbontetrafluoride	15.24	−0.90	19	19	344	G
36 Carbontetracloride	10.93	−0.21	24	24	412	G
37 Carbontetrahalide	9.81	0.78	27	29	560	N
38 Carbontetraiodide	8.66	1.81	27	32	644	N
39 Silane	12.26	−0.83	22	22	213	VG
40 Germane	11.95	−0.77	24	24	251	G
41 Disilane	10.26	−0.85	24	24	360	G
42 Pentasilane	8.88	−0.26	24	24	801	G
43 Lithiumhydride	6.21	0.01	14	14	97	N
44 Potassiumhydride	4.85	0.11	24	24	132	N
45 Borane	12.78	−0.39	17	17	163	G
46 Diborane6	11.83	−0.99	18	18	326	G
47 Amonia	10.12	−0.85	19	19	169	G
48 Hydrogenazide	10.28	−1.55	19	19	243	G
49 Phosphine	10.12	−0.76	24	24	185	G

Continued on next page
Name	IP	EA	$N_ω$	$N_τ$	N_{bas}	fit set
Arsine	10.06	-0.73	24	24	218	G
Hydrogensulfide	9.90	-0.85	24	24	148	N
Hydrogenfluoride	14.99	-1.15	19	19	103	N
Hydrogenchloride	12.06	-1.30	24	24	120	N
Lithiumfluoride	9.90	-0.06	21	21	134	N
Magnesiumfluoride	12.27	0.15	20	20	213	N
Titaniumfluoride	13.78	-0.48	27	27	384	N
Aluminumtrifluoride	14.16	-0.10	22	22	291	G
Fluoroborane	10.36	-1.38	21	21	134	N
Sulfertetrafluoride	12.02	-0.55	24	24	362	G
Potassiumbromide	7.50	0.27	27	32	223	N
Galliummonochloride	9.50	-0.13	24	24	206	N
Sodiumchloride	8.14	0.35	24	24	160	N
Magnesiumchloride	10.84	0.44	24	24	247	N
Aluminumtriiodide	9.24	0.64	27	31	516	N
Borontritridioxide	10.95	3.47	24	24	134	N
Hydrogencyanide	13.05	-2.48	17	17	167	N
Phosphorusmononitride	10.99	-0.04	24	24	156	N
Hydrazene	9.14	-0.77	19	19	272	G
Formaldehyde	10.26	-1.22	21	21	195	G
Methanol	10.41	-0.95	19	19	261	VG
Ethanol	10.01	-0.87	20	20	391	VG
Acetaldehyde	9.46	-1.32	21	21	325	VG
Ethoxyethane	9.24	-0.74	20	20	651	VG
Formic Acid	10.61	-2.00	20	20	260	G
Hydrogenperoxide	10.80	-2.25	19	19	196	G
Water	11.69	-0.96	19	19	131	N
Carbon dioxide	13.17	-1.03	19	19	194	N
Carbon disulfide	9.58	-0.06	24	24	228	N
Carbonoxysulfide	10.73	-1.40	24	24	211	N
Carbonoxyselenide	10.08	-1.13	24	24	248	N
Carbon monoxide	13.39	-1.04	20	20	129	N
Ozon	11.67	1.83	23	23	195	N
Sulfur dioxide	11.71	0.69	24	24	212	N
Beryllium monoxide	9.10	1.90	23	23	129	N
Magnesium monoxide	6.78	1.62	24	24	138	N
Toluene	8.58	-1.05	19	19	712	G
Ethylbenzene	8.46	-1.05	19	19	842	G
Hexafluorobenzene	9.44	-0.29	21	21	804	G
Phenol	8.31	-0.99	20	20	647	G
Aniline	7.58	-1.14	20	20	685	G
Pyridine	8.96	-0.64	19	19	555	G
Guanine	7.64	-0.71	21	21	900	VG
Adenine	7.92	-0.50	20	20	835	G
Cytosine	8.20	-0.40	21	21	696	G
Thymine	8.65	-0.20	20	20	788	G
Uracil	9.13	-0.18	21	21	658	VG
Urea	9.10	-0.58	20	20	401	G
Silver dimer	7.02	0.78	27	31	284	N
Copper dimer	7.56	0.78	27	32	210	N
Coppercyanide	9.85	1.24	27	29	239	N
Table 4: Ionization potentials and electron affinities for the subset of 250 molecules from the GW5000 database using TZ3P and QZ6P basis sets as well as complete basis set limit extrapolated values. All values are in eV.

Name	TZ3P	IP	QZ6P	extra	TZ3P	EA	QZ6P	extra
16	7.20	7.39	7.63	−0.20	0.05	0.36		
212	8.01	8.14	8.30	0.34	0.59	0.90		
389	8.29	8.46	8.66	0.33	0.55	0.84		
584	10.50	10.43	10.60	1.44	1.65	1.92		
964	8.16	8.22	8.30	0.27	0.50	0.78		
1145	7.30	7.48	7.69	0.51	0.73	1.01		
1304	8.58	8.70	8.86	1.27	1.44	1.65		
1415	7.83	8.00	8.22	−0.30	−0.02	0.33		
1627	7.50	7.70	7.95	1.34	1.56	1.84		
1761	8.05	8.24	8.48	0.12	0.35	0.65		
1942	7.77	7.92	8.10	−0.29	−0.05	0.24		
2142	8.07	8.26	8.49	0.57	0.82	1.14		
2403	7.14	7.32	7.54	0.65	0.86	1.12		
2686	7.71	7.87	8.08	1.16	1.38	1.66		
2869	8.58	8.71	8.86	0.80	1.00	1.25		
3133	10.76	10.90	11.06	1.51	1.74	2.03		
3387	7.51	7.68	7.88	0.50	0.73	1.01		
3793	8.71	8.88	9.08	−0.06	0.20	0.53		
4002	7.93	8.06	8.23	2.01	2.20	2.45		
4257	8.23	8.32	8.45	−0.10	0.17	0.54		
4465	7.87	8.09	8.36	0.32	0.56	0.86		
4727	7.73	7.92	8.16	−0.18	0.07	0.37		
4986	8.52	8.64	8.80	−0.17	0.13	0.51		
5179	7.16	7.34	7.58	0.83	1.07	1.37		
5330	8.28	8.47	8.70	0.35	0.57	0.84		
5760	10.49	10.61	10.75	0.13	0.41	0.74		
5948	6.73	6.91	7.14	−0.10	0.17	0.49		
6247	7.74	7.89	8.08	−0.08	0.17	0.47		
6527	8.48	8.65	8.87	1.00	1.23	1.53		
6838	8.71	8.87	9.08	−0.13	0.10	0.39		
7071	7.37	7.53	7.72	0.17	0.40	0.68		
7348	8.07	8.33	8.66	−0.18	0.05	0.33		
7474	8.14	8.32	8.54	0.45	0.68	0.96		
7729	8.66	8.80	8.96	0.64	0.86	1.14		
7902	8.04	8.26	8.52	0.07	0.35	0.70		
8115	7.90	8.08	8.29	0.53	0.78	1.10		
8314	8.88	9.06	9.27	−0.26	0.01	0.34		
8509	8.93	9.10	9.32	0.19	0.42	0.71		
8740	7.93	8.12	8.36	−0.02	0.26	0.62		
9040	6.85	6.97	7.12	−0.22	−0.04	0.19		
9202	8.11	8.28	8.48	0.91	1.10	1.33		
9538	8.36	8.55	8.79	1.27	1.48	1.73		
9844	8.35	8.48	8.64	0.08	0.36	0.71		
10214	10.05	10.20	10.38	2.06	2.25	2.48		
10450	7.64	7.79	7.97	0.05	0.30	0.60		
10698	9.21	9.41	9.65	0.54	0.78	1.08		
10978	7.17	7.35	7.57	−0.10	0.15	0.46		
11151	7.89	8.05	8.25	0.55	0.77	1.05		
11403	11.14	11.26	11.41	−0.40	−0.17	0.12		
11661	8.33	8.43	8.56	−0.18	0.07	0.37		
12004	7.39	7.58	7.81	0.15	0.39	0.70		

Continued on next page
Name	TZ3P	IP QZ6P	extra	TZ3P	EA QZ6P	extra
12143	8.25	8.43	8.65	0.52	0.74	1.01
12405	7.89	8.03	8.20	0.13	0.37	0.66
12569	9.32	9.46	9.64	0.20	0.43	0.72
12919	7.51	7.72	7.97	0.18	0.42	0.73
13151	7.82	7.98	8.17	-0.02	0.21	0.49
13321	7.88	8.03	8.21	1.04	1.28	1.58
13505	7.49	7.66	7.88	0.17	0.41	0.70
13702	6.72	6.91	7.14	-0.35	-0.06	0.30
13712	7.71	7.86	8.04	0.82	1.02	1.26
13722	7.85	8.05	8.30	0.29	0.52	0.80
13736	7.03	7.18	7.36	0.00	0.19	0.43
13760	7.17	7.33	7.54	0.19	0.46	0.80
14098	6.89	7.09	7.33	0.34	0.58	0.87
14226	7.59	7.78	8.01	-0.06	0.18	0.48
14670	7.98	8.17	8.41	0.48	0.73	1.05
14979	8.66	8.85	9.08	-0.24	0.07	0.47
15273	7.35	7.50	7.68	0.01	0.25	0.54
15429	6.40	6.58	6.80	0.58	0.84	1.15
15634	8.29	8.46	8.67	-0.27	-0.03	0.27
15938	7.85	8.00	8.18	0.08	0.36	0.71
16245	7.45	7.68	7.96	-0.12	0.14	0.47
16444	8.20	8.39	8.63	0.62	0.84	1.11
16704	6.21	6.37	6.58	0.93	1.16	1.45
16849	7.78	7.97	8.19	0.08	0.32	0.62
16982	7.66	7.81	8.02	0.11	0.31	0.57
17264	7.14	7.30	7.50	0.78	1.04	1.37
17502	8.37	8.53	8.73	0.40	0.64	0.95
17807	7.46	7.53	7.62	-0.02	0.16	0.39
18111	7.01	7.14	7.31	0.15	0.39	0.69
18255	8.65	8.79	8.97	0.96	1.20	1.49
18460	6.97	7.19	7.46	0.75	0.98	1.28
18611	8.54	8.69	8.88	-0.28	-0.01	0.33
18825	7.18	7.35	7.58	0.47	0.71	1.02
19062	7.57	7.75	7.98	-0.03	0.23	0.57
19347	8.36	8.45	8.57	1.64	1.88	2.18
19664	8.57	8.76	9.00	0.69	0.98	1.34
19910	9.48	9.61	9.77	1.03	1.27	1.56
20065	7.90	8.06	8.26	0.58	0.80	1.08
20311	8.63	8.78	8.97	-0.17	0.08	0.38
20649	7.67	7.81	7.99	-0.23	0.01	0.29
20821	8.15	8.33	8.56	0.82	1.06	1.36
21105	8.06	8.24	8.46	1.96	2.16	2.41
21210	7.92	8.07	8.26	0.13	0.37	0.67
21361	8.24	8.38	8.56	1.20	1.42	1.69
21611	6.53	6.69	6.90	0.50	0.73	1.02
21895	9.28	9.42	9.59	0.03	0.25	0.52
22078	7.20	7.34	7.53	1.24	1.47	1.76
22407	8.66	8.81	9.00	1.19	1.42	1.70
22699	8.15	8.29	8.45	1.19	1.40	1.66
22875	7.39	7.58	7.83	-0.17	0.07	0.38
23028	8.66	8.79	8.96	0.39	0.60	0.86
23303	7.34	7.48	7.66	1.31	1.51	1.76
23652	7.86	8.02	8.23	0.17	0.42	0.72
23853	7.41	7.59	7.81	0.10	0.34	0.64
24031	6.23	6.40	6.62	0.11	0.37	0.70
24201	6.68	6.87	7.10	-0.19	0.06	0.36

Continued on next page
Name	TZ3P	IP	QZ6P	extra	TZ3P	QZ6P	extra
24419	8.52	8.69	8.92	-0.17	0.08	0.40	
24722	7.11	7.26	7.46	0.10	0.33	0.61	
24951	7.36	7.52	7.73	0.22	0.47	0.78	
25240	9.45	9.64	9.88	-0.14	0.10	0.41	
25412	7.74	7.83	8.04	0.47	0.71	1.00	
25789	8.60	8.77	8.98	0.08	0.32	0.62	
25995	7.21	7.39	7.61	0.01	0.25	0.55	
26246	7.83	7.99	8.18	0.69	0.90	1.17	
26458	7.58	7.75	7.97	-0.04	0.21	0.51	
26685	7.82	7.99	8.20	0.41	0.65	0.94	
26821	7.93	8.07	8.24	0.12	0.36	0.66	
27000	7.46	7.65	7.90	-0.02	0.22	0.53	
27374	7.80	7.95	8.13	-0.08	0.16	0.46	
27959	9.37	9.50	9.66	1.05	1.24	1.49	
28001	7.81	8.00	8.23	-0.08	0.20	0.53	
28006	7.50	7.67	7.89	0.33	0.57	0.88	
28162	7.23	7.33	7.54	-0.01	0.15	0.35	
28450	7.33	7.42	7.53	0.73	0.90	1.31	
28674	8.08	8.23	8.41	-0.08	0.18	0.51	
28988	7.56	7.77	8.03	0.15	0.43	0.78	
29288	9.34	9.43	9.55	-0.09	0.20	0.57	
29484	7.88	8.07	8.30	0.42	0.67	0.97	
29738	7.84	8.00	8.22	-0.17	0.08	0.40	
30014	6.81	6.98	7.20	0.91	1.16	1.47	
30240	7.10	7.30	7.55	-0.19	0.06	0.37	
30510	6.64	6.86	7.13	0.10	0.37	0.71	
30647	7.72	7.86	8.04	0.01	0.26	0.58	
30833	7.59	7.78	8.01	0.75	0.97	1.23	
31114	7.56	7.75	7.99	0.25	0.49	0.78	
31332	7.79	7.94	8.14	0.24	0.49	0.81	
31529	7.69	7.87	8.08	-0.22	-0.03	0.19	
31853	7.67	7.74	7.83	0.69	0.85	1.06	
32294	6.55	6.76	7.03	1.36	1.61	1.91	
32571	8.97	9.10	9.27	-0.09	0.18	0.52	
32947	7.09	7.20	7.33	0.62	0.82	1.06	
33146	9.04	9.18	9.35	-0.08	0.16	0.46	
33372	7.48	7.61	7.75	-0.19	0.02	0.29	
33531	7.43	7.57	7.74	0.29	0.52	0.80	
33692	8.40	8.56	8.77	0.42	0.67	0.99	
34005	7.40	7.58	7.81	0.08	0.36	0.70	
34307	7.42	7.61	7.84	0.97	1.23	1.56	
34564	6.52	6.72	6.96	0.42	0.68	1.00	
34913	7.08	7.24	7.45	0.28	0.52	0.84	
35225	7.99	8.12	8.29	-0.23	0.06	0.43	
35442	6.91	7.07	7.27	0.53	0.78	1.11	
35790	7.20	7.37	7.58	0.16	0.46	0.82	
36205	8.35	8.50	8.70	0.72	0.96	1.26	
36515	7.76	7.98	8.26	0.35	0.60	0.92	
36735	7.15	7.33	7.55	1.10	1.34	1.64	
37128	8.40	8.55	8.74	1.94	2.11	2.32	
37381	8.17	8.31	8.48	-0.26	-0.02	0.28	
37765	9.23	9.36	9.51	-0.06	0.16	0.43	
38018	7.08	7.27	7.51	0.14	0.40	0.72	
38315	8.49	8.66	8.87	0.41	0.64	0.93	
38639	6.41	6.58	6.79	0.07	0.32	0.63	
38920	6.89	7.06	7.26	0.69	0.94	1.24	

Continued on next page
Name	TZ3P	IP QZ6P	extra	TZ3P	EA QZ6P	extra
39175	6.59	6.79	7.05	0.02	0.29	0.62
39418	7.94	8.12	8.34	0.66	0.91	1.21
39685	7.75	7.92	8.14	0.82	1.02	1.27
39917	7.80	7.93	8.09	−0.19	0.06	0.36
40143	7.87	8.08	8.34	0.66	0.91	1.22
40494	7.88	8.04	8.26	0.39	0.61	0.90
40764	8.44	8.56	8.70	1.73	1.96	2.25
40978	8.71	8.89	9.12	−0.38	−0.15	0.14
41377	8.24	8.38	8.57	0.13	0.40	0.74
41571	6.44	6.62	6.85	0.55	0.83	1.17
41897	7.69	7.90	8.15	0.65	0.77	0.93
42090	7.54	7.74	7.99	0.15	0.42	0.75
42424	7.82	8.03	8.29	−0.23	0.05	0.40
42754	7.95	7.24	7.96	0.94	0.70	1.01
42908	7.20	7.40	7.96	0.25	0.49	0.80
43000	6.59	6.70	6.85	0.83	1.01	1.24
43385	7.30	7.47	7.68	0.49	0.73	1.04
43634	7.76	7.96	8.21	0.20	0.45	0.74
43905	7.45	7.66	7.93	0.07	0.31	0.62
44205	7.17	7.23	7.31	0.28	0.40	0.56
44586	6.15	6.31	6.51	0.57	0.78	1.04
44870	8.15	8.33	8.57	−0.03	0.22	0.53
45218	8.04	8.22	8.45	0.23	0.42	0.66
45485	7.91	8.10	8.35	1.13	1.37	1.67
45666	8.63	8.76	8.92	−0.12	0.14	0.47
45995	7.67	7.88	8.15	0.26	0.52	0.84
46362	8.57	8.72	8.91	−0.20	0.03	0.32
46610	8.42	8.59	8.81	0.01	0.30	0.67
46821	6.97	7.14	7.35	0.71	0.94	1.22
46991	8.69	8.81	8.97	0.47	0.72	1.03
47200	7.04	7.65	7.77	0.32	0.57	0.87
47575	7.68	7.87	8.12	0.54	0.80	1.13
47797	7.10	7.32	7.59	0.46	0.73	1.06
47960	5.93	6.17	6.47	1.15	1.39	1.70
48162	8.03	8.18	8.36	0.81	1.06	1.37
48399	7.68	7.86	8.08	0.91	1.13	1.40
48653	7.49	7.65	7.84	1.29	1.50	1.75
48947	6.89	7.09	7.35	−0.10	0.14	0.44
49106	7.64	7.81	8.01	0.66	0.91	1.22
49471	6.01	6.19	6.42	1.46	1.70	2.00
49946	7.66	7.83	8.03	0.26	0.50	0.80
50224	8.39	8.55	8.75	0.35	0.61	0.95
50401	7.72	7.91	8.14	−0.14	0.10	0.41
50771	7.76	7.91	8.09	−0.08	0.16	0.45
51045	7.49	7.70	7.97	−0.07	0.14	0.39
51317	6.98	7.18	7.43	0.40	0.66	0.98
51639	7.67	7.83	8.02	1.04	1.25	1.51
51981	8.30	8.45	8.64	0.21	0.46	0.78
52259	8.23	8.41	8.62	0.48	0.76	1.10
52590	6.50	6.69	6.92	0.69	0.82	0.98
52978	8.17	8.33	8.52	−0.40	−0.15	0.15
53229	8.52	8.65	8.81	0.16	0.47	0.86
53566	9.70	9.77	9.86	−0.41	−0.15	0.16
53842	8.08	8.22	8.40	0.96	1.17	1.43
54009	7.61	7.78	8.00	−0.27	−0.02	0.30
54233	7.60	7.77	7.97	−0.24	0.00	0.31

Continued on next page
Name	TZ3P	IP QZ6P	extra	TZ3P	EA QZ6P	extra
54412	8.48	8.62	8.80	0.89	1.10	1.36
54680	7.16	7.41	7.72	-0.04	0.21	0.52
54908	6.95	7.15	7.39	1.60	1.80	2.06
55110	8.31	8.49	8.73	-0.10	0.15	0.45
55259	7.57	7.73	7.93	0.66	0.87	1.13
55516	8.98	9.12	9.31	0.19	0.42	0.72
55803	8.93	9.09	9.29	0.64	0.87	1.14
56050	8.72	8.86	9.04	-0.18	0.07	0.39
56219	8.67	8.88	9.14	0.58	0.81	1.10
56406	7.22	7.39	7.60	0.46	0.70	0.98
56584	9.88	9.99	10.14	1.05	1.26	1.52
56782	8.59	8.72	8.87	0.13	0.37	0.65
57147	7.10	7.28	7.49	0.37	0.59	0.87
57383	9.26	9.37	9.50	1.02	1.22	1.46
57610	7.95	8.11	8.31	-0.27	0.01	0.35
57896	7.59	7.68	7.80	0.54	0.76	1.04
58206	6.85	7.02	7.24	0.60	0.83	1.12
58443	8.82	8.96	9.13	-0.24	0.01	0.34
58653	9.14	9.30	9.49	0.09	0.32	0.61
58846	8.03	8.15	8.30	-0.01	0.23	0.53
59124	7.06	7.23	7.43	1.14	1.33	1.57
59304	9.51	9.60	9.71	1.41	1.58	1.78
59631	7.32	7.47	7.65	0.58	0.80	1.06
59849	8.58	8.76	8.99	-0.04	0.21	0.51
60181	7.80	7.95	8.13	0.74	0.97	1.25
60360	8.46	8.69	8.95	0.44	0.66	0.92
60545	7.77	7.95	8.18	0.13	0.36	0.64
60749	7.67	7.82	8.01	0.78	1.01	1.31
60961	7.86	7.97	8.10	0.97	1.19	1.46
61133	7.17	7.35	7.56	0.13	0.35	0.63
61346	7.74	7.90	8.11	-0.05	0.21	0.54