Light Regulation of LHCX Genes in the Benthic Diatom *Seminavis robusta*

Lander Blommaert*1, Emmelien Vancaester2,3, Marie J. J. Huysman1,2,3, Cristina M. Osuna-Cruz2,3, Sofie D’hondt1, Johann Lavaud4, Bernard Lepetit5, Per Winge6, Atle M. Bones6, Klaas Vandepoele2,3, Wim Vyverman1 and Koen Sabbe1

1 Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium, 2 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium, 3 VIB Center for Plant Systems Biology, VIB, Ghent, Belgium, 4 UMI3376 Takuvik Joint International Laboratory, Département de Biologie, Centre National de la Recherche Scientifique/Université Laval, Québec, QC, Canada, 5 Pflanzliche Ökophysiologie, Zukunftskolleg, Universität Konstanz, Konstanz, Germany, 6 Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway

Intertidal benthic diatoms experience a highly variable light regime, which especially challenges these organisms to cope with excess light energy during low tide. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the most rapid mechanisms diatoms possess to dissipate excess energy. Its capacity is mainly defined by the xanthophyll cycle (XC) and Light-Harvesting Complex X (LHCX) proteins. Whereas the XC and its relation to NPQ have been relatively well-studied in both planktonic and benthic diatoms, our current knowledge about LHCX proteins and their potential involvement in NPQ regulation is largely restricted to planktonic diatoms. While recent studies using immuno-blotting have revealed the presence of light regulated LHCX proteins in benthic diatom communities and isolates, nothing is as yet known about the diversity, identity and transcriptional regulation or function of these proteins. We identified LHCX genes in the draft genome of the model benthic diatom *Seminavis robusta* and followed their transcriptional regulation during a day/night cycle and during exposure to high light conditions. The *S. robusta* genome contains 17 LHCX sequences, which is much more than in the sequenced planktonic model diatoms (4–5), but similar to the number of LHCX genes in the sea ice associated diatom *Fragilariopsis cylindrus*. LHCX diversification in both species, however, appears to have occurred independently. Interestingly, the *S. robusta* genome contains LHCX genes that are related to the LHCX6 of the model centric diatom *Thalassiosira pseudonana*, which are lacking in the well-studied pennate model diatom *Phaeodactylum tricornutum*. All investigated LHCX genes, with exception of *SrLHCX6*, were upregulated during the daily dark-light transition. Exposure to 2,000 µmol photons m−2 s−1, furthermore, increased transcription of all investigated LHCX genes. Our data suggest that the diversification and involvement of several light regulated LHCX genes in the photophysiology of *S. robusta* may represent an adaptation to the complex and highly variable light environment this benthic diatom species can be exposed to.

Keywords: diatom, microphytobenthos, light stress, LHCX, physiology
INTRODUCTION

Due to the complex interplay of diurnal and tidal cycles and weather conditions, the surface sediments of tidal flats experience highly variable light conditions. Nevertheless, they are very productive ecosystems thanks to the presence of biofilms dominated by benthic microalgae (microphytobenthos) and especially diatoms (Underwood and Kromkamp, 1999). The fluctuating light conditions challenge these diatoms to maximize light harvesting under low light (LL) conditions while avoiding oxidative damage to their photosynthetic apparatus under high light (HL), either by minimizing light absorbance or by the dissipation of excess light energy. Benthic diatoms possess two main strategies which are fast enough to track rapid fluctuations in light intensity, namely, vertical migration and dissipation of excess energy as heat (Lavaud and Goss, 2014; Laviale et al., 2016). Raphid pennate diatoms possess a special cell wall structure called the raphé through which mucilage is secreted, allowing the diatoms to move. Such motile diatoms, often referred to as epipelagic diatoms, can form dense biofilms on fine-grained sediments (Sabbe, 1993; Ribeiro et al., 2013) and are able to position themselves within the sediment light gradient via vertical migration (Admiraal, 1984; Consalvey et al., 2004; Seródio et al., 2006; Cartaxana et al., 2016). Dissipation of excess light energy as heat can be measured as Non-Photochemical Quenching of chlorophyll a fluorescence (NPQ). In diatoms, NPQ comprises a quickly and a slowly relaxing component (Lavaud and Goss, 2014). We will refer to the quickly relaxing component as “flexible NPQ” (Niyogi and Truong, 2013) and to the slowly relaxing component as “sustained NPQ” or NPQs (Lavaud and Goss, 2014). The capacity for flexible NPQ is mainly defined by the xanthophyll cycle (XC) pigment diatoxanthin (Dtx) produced via de-epoxidation of diadinoxanthin (Ddx) (Lavaud and Goss, 2014; Barnett et al., 2015; Goss and Lepetit, 2015; Blommaert et al., 2017), and the presence of Light-Harvesting Complex X (LHCX) proteins (Bailleul et al., 2010; Ghazaryan et al., 2016; Taddei et al., 2016, 2018; Lepetit et al., 2017). While the XC in benthic diatoms has been well-studied in natural communities (van Leeuwe et al., 2016; Buck et al., 2019). The P. tricornutum genome contains four LHCX genes (LHCX1–4). Of these four genes, LHCX1 is highly expressed in non-stressful light conditions, whilst additional expression upon HL exposure is low (Nymark et al., 2009; Lepetit et al., 2013; Taddei et al., 2016, 2018). Its corresponding protein is consequently present in LL conditions, where it provides the diatom with a basal capacity for NPQ, localized mainly near the PSII core in P. tricornutum, to cope with sudden changes in light climate (Taddei et al., 2018). In addition, the different content in LHCX1 between different P. tricornutum ecotypes has been related to their natural variability in NPQ capacity (Bailleul et al., 2010). In (prolonged) HL conditions, both transcription of LHCX2 and LHCX3 is strongly induced (Nymark et al., 2009; Lepetit et al., 2013, 2017; Taddei et al., 2016). As both proteins accumulate in concert with the de novo synthesis of Ddx + Dtx, they may provide additional Ddx/Dtx binding sites to activate NPQ in the antenna to enhance the basal NPQ provided by LHCX1 (Lepetit et al., 2013, 2017; Taddei et al., 2018; Buck et al., 2019). Indeed, overexpression of both LHCX2R3 has been shown to rescue NPQ in a low-NPQ ecotype of P. tricornutum (Pt4) (Taddei et al., 2016).

LHCX4 gene expression is inhibited by light, whilst its transcript accumulates in prolonged darkness, questioning its role in photoprotection (Lepetit et al., 2013; Nymark et al., 2013; Taddei et al., 2016; Buck et al., 2019).

The findings for P. tricornutum may not be directly transferable to other pennate diatoms, as for instance 11 LHCX genes were discovered in the genome of the sea ice diatom Fragilariaopsis cylindrus, none of which could readily be related to the four LHCX genes in P. tricornutum (Mock et al., 2017). In addition, the F. cylindrus genome contains an LHCX gene that is related to the LHCX6 in Thalassiosira pseudonana, whereas a similar sequence is absent in the P. tricornutum genome. The T. pseudonana LHCX6 protein has been hypothesized to be associated with Dtx binding and as such play a direct role in excess energy dissipation via NPQs during acclimation to
prolonged HL stress (Zhu and Green, 2010). This protein, furthermore, is downregulated in fluctuating light conditions (Grouneva et al., 2016), underscoring its potential role in more prolonged oversaturating light conditions.

Recent studies using immuno-blotting revealed the presence of several light-regulated LHCX-proteins in natural communities and isolates of the microphytobenthic diatom *S. robusta*, of which some differ in size from *P. tricornutum* homologs (Laviale et al., 2015; Blommaert et al., 2017). To date, however, nothing is known about the diversity, organization and transcriptional regulation of these LHCX proteins in truly benthic diatoms. In the present study, we therefore identified LHCX genes in the *S. robusta* draft genome and followed their transcriptional regulation during a day/night cycle and during exposure to HL conditions. In addition, we investigated the conservation of potential ΔpH sensing amino-acid residues.

MATERIALS AND METHODS

Culture Conditions

Seminaivis robusta strain 85A was obtained from the diatom culture collection (BCCM/DCG) of the Belgian Coordinated Collection of Micro-organisms, accession number (DCG 0105). Diatom cultures were grown at 20°C in semi-continuous batch culture in 1.8 L glass Fernbach flasks (Schott) under a day/night rhythm of 16/8 h with a light intensity of 20 µmol photons m⁻² s⁻¹. Cells were cultured in Provasoli’s enriched f/2 seawater medium (Guillard, 1975) using Tropic Marin artificial sea salt (34.5 g L⁻¹) enriched with NaHCO₃ (80 mg L⁻¹) and NaCl (50 mM EDTA, and 10% β-mercapto-ethanol) and subsequently beaten with carbide beads for 30 min in a bead-beater at 30 Hz. One hundred microliters of 10% Chelex-100 was added before the samples were incubated for 15 min at 56°C with occasional vortexing. One volume of chloroform:isoamyl alcohol (24:1, Vol/Vol) was subsequently added before shaking the samples for 25 min at 5 Hz. After centrifugation, the upper phase was transferred to a new tube and mixed with 0.3 volume of absolute ethanol to precipitate polysaccharides. One volume of chloroform was added and after centrifugation the upper phase was transferred to a fresh tube. RNA was precipitated overnight at −20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-mercapto-ethanol. The next day, the RNA was pelleted, dried and washed with 70% ethanol. Residual DNA was eliminated with DNase I (Turbo DNase, Ambion) according to the manufacturer’s instructions. Extraction was performed with 1 volume Phenol-Chloroform (1:1, Vol/Vol). After centrifugation three phases were transferred to a fresh tube, extracted with one volume of chloroform:isoamyl alcohol (24:1, Vol/Vol) and centrifuged again. The upper phase was precipitated overnight at −20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-mercapto-ethanol. The next day, the RNA was pelleted, dried and washed with 70% ethanol. Residual DNA was eliminated with DNase I (Turbo DNase, Ambion) according to the manufacturer’s instructions. Extraction was performed with 1 volume Phenol-Chloroform (1:1, Vol/Vol). After centrifugation the upper phase was transferred to a fresh tube. RNA was precipitated overnight at −20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-mercapto-ethanol. The next day, the RNA was pelleted and kept overnight at −20°C. After the samples were centrifuged for 1 h at −20°C, the supernatant was discarded, and the pellet washed with 70% ethanol. The pellet was finally resuspended in RNase-free water. The samples were reverse transcribed using Bio-Rad iScript cDNA kit.

High Light Exposure

High light exposure was identical to the conditions described in Blommaert et al. (2017) and imposed about 6–8 h after the onset of the daily light period. Cultures in exponential growth were concentrated to 10 mg L⁻¹ Chl a (determined spectrophotometrically) and centrifuged at 4,000 RCF for 5 min and were allowed to recover in growth conditions (20°C, 20 µmol photons m⁻² s⁻¹) for 2 h. Immediately before the start of the experiment, NaHCO₃ (4 mM) was added from a 2 M stock to prevent carbon limitation during the experiment. Four 65 W white light energy-saving lamps (Lexman) were used to provide HL conditions (2,000 µmol photons m⁻² s⁻¹) as used by Lepetit et al. (2013). Cells were continuously stirred in a glass test tube to obtain a homogenous cell suspension. The glass test tube was continuously cooled in a custom-made glass cooler by a water bath at 20°C. Three biological replicates were sampled immediately before the onset of 2,000 µmol photons m⁻² s⁻¹ and after 15, 30, and 60 min of HL. Gene expression in the treated samples was compared to the samples before HL (0 min).

RNA Extraction and cDNA Synthesis

Four milliliters of cell culture was sampled each time on 3 µm Versapor filters (PALL Corporation). The filter was washed with ice-cooled phosphate buffered saline (PBS) and immediately frozen in liquid nitrogen. Samples were stored at −80°C before RNA extraction. RNA extraction was based on Le Bail et al. (2008). Frozen samples were immediately incubated in 500 µL extraction buffer (100 mM Tris–HCl pH 7.5, 2% CTAB, 1.5 M NaCl, 50 mM EDTA, and 10% β-mercapto-ethanol) and centrifuged at 4°C for 1 h at 15,000 g. After centrifugation, the upper phase was transferred to a fresh tube, and the 10% Chelex-100 was added before the samples were incubated for 15 min at 56°C with occasional vortexing. One volume of chloroform:isoamyl alcohol (24:1, Vol/Vol) was subsequently added before shaking the samples for 25 min at 5 Hz. After centrifugation, the upper phase was transferred to a new tube and mixed with 0.3 volume of absolute ethanol to precipitate polysaccharides. One volume of chloroform was added and after centrifugation the upper phase was transferred to a fresh tube. RNA was precipitated overnight at −20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-mercapto-ethanol. The next day, the RNA was pelleted, dried and washed with 70% ethanol. Residual DNA was eliminated with DNase I (Turbo DNase, Ambion) according to the manufacturer’s instructions. Extraction was performed with 1 volume Phenol-Chloroform (1:1, Vol/Vol). After centrifugation the upper phase was transferred to a fresh tube, extracted with one volume of chloroform:isoamyl alcohol (24:1, Vol/Vol) and centrifuged again. The upper phase was precipitated overnight at −20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-mercapto-ethanol. The next day, the RNA was pelleted and kept overnight at −20°C. After the samples were centrifuged for 1 h at −20°C, the supernatant was discarded, and the pellet washed with 70% ethanol. The pellet was finally resuspended in RNase-free water. The samples were reverse transcribed using Bio-Rad iScript cDNA kit.

Identification of LHCX Genes in the S. robusta Draft Genome

LHCX sequences from *T. pseudonana*, *P. tricornutum*, *F. cylindrus* and *Pseudo-nitzschia multiseries* (with kind permission of E. V. Armbrust) were obtained from the JGI database. These LHCX sequences were used to build an amino-acid HMM (Hidden Markov Model) profile using HMMer (version 3.1b1; Mistry et al., 2013), which was used to search all genes (annotation version 1.0) predicted for the
TABLE 1 | Gene ID, GenBank accession number, Name, calculated molecular weight (Mw) and primer specificity. Name colours match the clade colours used in Figure 1.

Gene ID	GenBank accession	Name	Mw (kDa)	Primers:	SrLHCX1	SrLHCX2	SrLHCX3	SrLHCX3h	SrLHCX4a	SrLHCX4b	SrLHCX6
Sr0149_g068340	MN603019	SrLHCX1a	19.24								
Sr0288_g018750	MN603018	SrLHCX1b	19.27								
Sr0149_g068330	MN603017	SrLHCX2	19.51								
Sr0666_g182410	MN603023	SrLHCX3a	20.83								
Sr0235_g094670	MN603022	SrLHCX3b	20.78								
Sr0243_g327210	MN603015	SrLHCX3c	20.88								
Sr1506_g278310	MN603014	SrLHCX3d	20.87								
Sr1430_g271970	MN603013	SrLHCX3e	20.82								
Sr0844_g209920	MN603012	SrLHCX3f	20.81								
Sr0829_g208070	MN603011	SrLHCX3g	20.88								
Sr122_g059170	MN603010	SrLHCX3h	20.96								
Sr02297_g322430	MN603021	SrLHCX3i	20.81								
Sr0412_g137900	MN603024	SrLHCX4a	19.27								
Sr0652_g181650	MN603016	SrLHCX4b	19.34								
Sr1207_g252450	MN603020	SrLHCX4c	19.42								
Sr0698_g189330	MN603025	SrLHCX6a	30.52								
Sr0698_g189300	MN603026	SrLHCX6b	27.01								

Primer specificity was tested using FastPCR in silico PCR with default settings. Green shading represents an amplified PCR product, whereas orange represents the possibility of an amplified gene product, however, with one of both primers having a melting temperature 40°C < tm < 50°C when binding on the corresponding LHCX transcript. As most LHCX3 sequences are rather similar in the primer regions, the primer LHCX3 picks up multiple related transcripts. The LHCX6 primer was designed on the SrLHCX6 RNA trailer and denoted with an “*.”

RT-qPCR

RT-qPCR was performed with a Light Cycler® 480II (ROCHE). Primer sets were designed using Primer3 (Supplementary Table S1). Primer specificity was tested in silico with FastPCR (PrimerDigital). Single nucleotide polymorphisms (SNPs) between the whole genome sequenced strain (D6) and the strain used in the experiments (85A) were identified using in-house RNAseq data (Bilcke et al., 2020) using Integrative Genomics Viewer (IGV, Broad Institute) and did not affect primer specificity. CDKA1, V4 and V1 (Moeys et al., 2016) were used for normalization as these were most stably expressed (Qbase + software). Qbase + normalized data is shown in Supplementary Figure S3. Log2 expression ratios were compared with REST2013 software. The RT-qPCR program contained the following steps: pre-incubation: 95°C – 5 min, amplification: 95°C – 10 s, 58°C – 10 s, 72°C – 20 s (40 cycles), melting curve: 95°C – 5 min, 65°C – 1 min, 97°C.

RESULTS

LHCX Presence in the Genome of S. robusta

A HMMER search, with a profile based on annotated LHCX genes from *T. pseudonana, P. tricornutum, F. cylindrus* and *P. multiseries*, yielded 17 putative LHCX sequences in the draft *S. robusta* genome (SrLHCX), all with a calculated Mw of about 20 kDa (Table 1), with exception of SrLHCX6a and SrLHCX6b, the latter being truncated on the C-terminus and possibly being a pseudogene, see Supplementary Figure S1. The resulting
FIGURE 1 | Phylogenetic tree of LHCX genes in Seminavis robusta (Sr, colored), based on a multiple alignment made using MAFFT L-INS-i and constructed using IQ-tree. Total of 10,000 ultra-fast bootstrap approximation iterations were run (values are shown at the nodes). LHCX/LHCSR sequences are shown for the diatoms Thalassiosira pseudonana (Tp), Thalassiosira oceanica (To), Cyclotella cryptica (Cc), Phaeodactylum tricornutum (Pt), Fragilaropsis cylindrus (Fc), Fistulifera solarii (Fs), Synedra acus (Sa), Pseudo-nitzschia multiseries (Pm, with kind permission of E. V. Armbrust), the green alga Chlamydomonas reinhardtii (Cr), the moss Physcomitrella patens (Pp) and the brown alga Ectocarpus siliculosus (Es).

maximum-likelihood phylogenetic tree (Figure 1) shows two main well-supported clades, the uppermost diatom-specific clade comprising centric as well as pennate diatom sequences, but lacking sequences from the pennate model P. tricornutum and the araphid pennate Synedra acus. SrLHCX6a and b are found in a subcluster containing also TpLHCX6 and FcLHCX6.

The lower cluster contains all other SrLHCX proteins, all P. tricornutum proteins and proteins from the green alga Chlamydomonas reinhardtii, the moss P. patens and the brown algae E. siliculosus. Most SrLHCX proteins (apart from SrLHCX6a and b and LHCX2) cluster together with PtLHCX3 in one relatively well supported cluster. Within this cluster, three well-supported subclusters can be distinguished (grouping the SrLHCX1, three and four sequences). The seven Synedra acus LHCX proteins also cluster closely together and are related to SrLHCX1,3&4.

On a lower hierarchical level, the relatedness between both Pseudo-nitzchia species and F. cylindrus is evident, as is the case for both Thalassiosira species and C. cryptica.

LHCX Gene Expression

We studied LHCX expression in S. robusta during 24 h of a 16 h light (20 μmol photons m$^{-2}$ s$^{-1}$)–8 h dark cycle (Figure 2A). Cultures kept in prolonged darkness were sampled in parallel (Figure 2B). Note that for several primer sets multiple related transcripts can be amplified; the specificity of primer sets is given in Table 1. We will refer to the primer pair that amplifies multiple SrLHCX transcripts as “LHCX3.” Gene expression levels were compared to expression levels in samples 2 h before the light period (time point 6:00 in Figures 2A,B) and samples taken during the light period, compared to samples taken in parallel during the extended darkness treatment (Figure 2C). As in some
replicates SrLHCX2 and SrLHCX4a transcripts were not detected at 0:00, data for this timepoint is not shown. Due to considerable variance between technical replicates of SrLHCX6 throughout the 24-h cycle, these data are not shown.

All investigated SrLHCX genes showed a significant upregulation 15 min after the dark/light transition compared to 2 h before light onset (Figure 2B), which was not the case for samples kept in prolonged darkness (Figure 2B). For samples kept in prolonged darkness only SrLHCX1a,b and SrLHCX2 were significantly upregulated 1 h after the light period would have started, compared to 6:00. Transcript levels for all investigated SrLHCX genes were significantly higher in the cells sampled 15 and 60 min after the dark/light transition, compared to cells which were kept in prolonged darkness (Figure 2C).

In addition, we studied the expression of SrLHCX genes in S. robusta in response to HL (Figure 3). All investigated SrLHCX genes were highly upregulated after 15, 30, and 60 min of HL, compared to the LL before HL exposure, except for LHCX3h at 60 min. SrLHCX4b and SrLHCX6 showed significantly higher expression at 30 min, compared to 15 min of HL, whereas SrLHCX2 declined significantly in expression between 15 and 30 min of HL. Between 30 and 60 min of HL, LHCX2, LHCX3, and LHCX3h declined significantly in expression.

We investigated the presence of three amino-acid residues which are known to function as sensors of the thylakoid lumen pH in the LHCSR3 in Chlamydomonas reinhardtii and which are indispensable for NPQ functioning (Ballottari et al., 2016). Two of these are also present in P. tricornutum LHCX1-3 sequences, but only one in LHCX4 (Figure 4). SrLHCX6 contains none of the protonatable residues in C. reinhardtii as is the case for LHCX6 in T. pseudonan. The same residues are conserved in all SrLHCX sequences as in PtLHCX1-3, with the exception of SrLHCX4a,b,c which lack the same residue as PtLHCX4. However, unlike the PtLHCX4 sequence, the SrLHCX4a-c sequences contain a glutamate residue (E, highlighted in yellow), which may have a protonatable function.

DISCUSSION

As LHCX proteins play a central role in the NPQ mechanism of planktonic diatoms (Bailleul et al., 2010; Zhu and Green, 2010; Lepetit et al., 2013, 2017; Taddei et al., 2016) and light responsive LHCX-proteins have been observed in benthic diatom isolates and communities (Laviale et al., 2015; Blommaert et al., 2017), we investigated the presence of LHCX genes in the benthic diatom S. robusta and studied their transcriptional regulation during HL conditions and a darkness/LL transition.

We detected 17 LHCX genes in S. robusta, which is a high number compared to the model diatoms P. tricornutum (4) and T. pseudonana (5) but in the same range as in the psychrophilic sea ice diatom F. cylindrus (11) (Armbrust et al., 2004; Bowler et al., 2008; Mock et al., 2017), the brown alga E. siliculosus (13) and the haptophyte Emiliania huxleyi (15) (see Dittami et al., 2010 for an overview and a comprehensive phylogenetic tree). Even though a comparable number of LHCX genes was discovered in both S. robusta and F. cylindrus, LHCX diversification in both raphid diatoms seems to have occurred independently as LHCX genes of both species were found to belong to different clades, with most diversity in S. robusta being related to PtLHCX3. Interestingly, a diversification of LHCX genes related to PtLHCX3 seems to have occurred as well in the araphid diatom Synedra acus. There seems, however, no general
trend in the amount of *LHCX* genes in the genomes of centric and pennate diatoms.

Even though a certain degree of functional redundancy can be expected due to the high number of *LHCX* genes in *S. robusta*, transcription appears to be light regulated for all the studied genes and all investigated *LHCX* transcripts were strongly upregulated in HL conditions. However, the limited specificity of the *LHCX*3 primer combination makes it difficult to generalize about *LHCX* genes in this clade. Our results, as such, do not allow to conclude why *S. robusta* has such a high number of *LHCX* genes. The expansion of gene families seems to be a general feature of *S. robusta* and is not exclusive to the *LHCX* genes. The large genome size of *S. robusta* allows for duplication events which could in turn lead to adaptive evolution (Osuna-Cruz et al., 2020).

A large set of *LHCX* genes could be required to cope with highly variable light conditions. However, *P. tricornutum* only possesses four *LHCX* genes, and these still enable the species to rapidly migrate away from strong light conditions to finely regulate LHCX content (Taddei et al., 2016; Buck et al., 2019).

FIGURE 3 | *LHCX* transcription levels during exposure to high light (2,000 µmol photons m⁻² s⁻¹). Expression ratios are log² transformed and indicated by the color chart. Values are averages of three independent biological replicates and relative to the respective initial values (LL). Significant changes at *p* < 0.05 (Pairwise Fixed Reallocation Randomization Test performed by REST2006) are indicated with an asterisk.

FIGURE 4 | Amino-acid alignment of regions 1 and 2 of *Chlamydomonas reinhardtii* CrLHCSR3, *P. tricornutum* LHCSR1-4, *T. pseudonana* LHCX6, and all *LHCX* sequences of *S. robusta*. The highlights in green represent conserved pH-sensing residues, whereas red highlights represent the absence of a conserved pH-sensing residue. Glutamate residues (E) in SrLHCX4a-c are highlighted in yellow.
et al., 2018). HL induced transcription of LHCX genes in *S. robusta* is indeed reflected on the protein level after 1 h (Blommaert et al., 2017). Even though we did not study the effect of prolonged HL on LHCX accumulation, *S. robusta* is able to increase its NPQ capacity together with its XC features during long-term acclimation upon a shift from 20 to 75 μmol photons m−2 s−1 (Barnett et al., 2015). The accumulation of LHCX proteins during HL was also reported for natural benthic communities and in the benthic diatom *Navicula phyllepta* (Laviale et al., 2015) and may together with XC pigments allow epipelagic species to acclimate to prolonged high light conditions (Barnett et al., 2015; Ezequiel et al., 2015).

SrLHCX6, interestingly, is not closely related to the majority of LHCX genes in *S. robusta*: SrLHCX6 clusters in a clade containing LHCX6 of the centric diatom *T. pseudonana* and of the pennate diatom *F. cylindrus*. As SrLHCX6 was strongly upregulated in HL, it may play a role in sustained quenching (NPQs), as proposed for the LHCX6 protein in *T. pseudonana* (Zhu and Green, 2010; Grouneva et al., 2016). This matches the observation of sustained quenching and de novo Dtx synthesis in *S. robusta* under identical HL conditions (Blommaert et al., 2017). In *N. phyllepta*, which is phylogenetically closely related to *S. robusta* (Chepurnov et al., 2008), the anti-LHCX6 antibody raised against LHCX6 in *T. pseudonana* recognized a HL inducible LHCX protein, whose size (~33 kDa) is similar to the calculated size of SrLHCX6 (Table 1; Laviale et al., 2015). The same antibody, nonetheless, failed to recognize a protein of any size in *S. robusta* (Blommaert et al., 2017).

SrLHCX4b was highly expressed upon HL exposure and remained highly expressed even after 60 min of HL exposure. This gene is closely related to *SrLHCX4a* and *SrLHCX4c* and seems to be differentiated from the majority of *SrLHCX3* sequences. A major difference between the SrLHCX4 proteins and the other SrLHCX proteins (except for SrLHCX6) is that only one instead of two protonatable amino-acid residues (compared to the three amino-acids responsible for the switch to energy-dissipating mode in *C. reinhardtii*) is conserved. A similar difference in amino-acid sequence has been reported for PtLHCX4, compared to the other *P. tricornutum* proteins, the former, however, being induced only in prolonged darkness (Nymark et al., 2013; Taddei et al., 2016). Even though NPQ regulation by a light-induced luminal pH change in diatoms is less clear than in green algae and plants, which relax NPQ immediately after ΔpH breakdown (Goss and Lepetit, 2015), the above findings may suggest that SrLHCX4a–c as PtLHCX4 are not, or only to a lesser degree, controlled by a trans-thylakoidal proton gradient. They could contribute to a more sustained NPQ component as was suggested for PtLHCX6 (Zhu and Green, 2010), which completely lacks these residues and may provide binding sites for Dtx.

In this study, we demonstrated the presence of multiple light-regulated LHCX genes, which may allow epipelagic species to respond and/or acclimate to prolonged higher light conditions (Barnett et al., 2015; Ezequiel et al., 2015), either through an increase of the flexible NPQ component or through more sustained quenching (Lavaud and Goss, 2014). Our study paves the way for future detailed investigations with defined experimental approaches in order to dissect the specific regulation and function of individual *SrLHCX* genes and proteins, involving e.g. experiments including natural light simulation conditions such as gradual increasing fluctuating light (Grouneva et al., 2016; Lepetit et al., 2017) or nutrient starvation (Taddei et al., 2016; Hippmann et al., 2017), the localization of NPQ (Taddei et al., 2018) as well as reverse genetics approaches (Bailleul et al., 2010) as soon as *S. robusta* becomes transformable.

DATA AVAILABILITY STATEMENT

The datasets for this study can be found in GenBank: https://www.ncbi.nlm.nih.gov/genbank/. Accession numbers are provided in Table 1.

AUTHOR CONTRIBUTIONS

LB: experimental design, practical work, and manuscript writing. EV and MH: bioinformatics and manuscript writing. CO-C: bioinformatics. SD: molecular lab work. JL, BL, and KS: experimental design and manuscript writing. PW and AB: *S. robusta* sequencing, gene annotation, and bioinformatics. KV: supervision bioinformatics. WV: manuscript writing.

FUNDING

The authors would like to thank the Research Foundation Flanders (FWO project G.0222.09N), Ghent University (BOF-GOA 01G01911 and BOF-GOA 01G01715) and the Egide/Campus France-PHC Tournesol (n128992UA) exchange program for their financial support. JL thanks the CNRS for their financial support. MH acknowledges a Postdoctoral Fellowship of the Research Foundation Flanders. AB and PW were supported by grant 267474 from the Norwegian Research Council.

ACKNOWLEDGMENTS

We would like to thank E. V. Armbrust (University of Washington, United States) for granting us access to the *Pseudo-nitzschia multiseries* genome. A preliminary version of this manuscript was part of the doctoral thesis “Photoprotection in intertidal benthic diatoms” of LB (Blommaert, 2017), with promotors KS and WV and published by Ghent University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2020.00192/full#supplementary-material
REFERENCES

Admiraal, W. (1984). The ecology of estuarine sediment-inhabiting diatoms. Prog. Physiol. Res. 3, 269–322.

Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., et al. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86. doi: 10.1126/science.1101156

Bailleul, B., Rogato, A., De Martino, A., Coesel, S., Cardol, P., Bowler, C., et al. (2010). An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc. Natl. Acad. Sci. U.S.A. 107, 18214–18219. doi: 10.1073/pnas.1007703107

Ballotti, M., Truong, T. B., De Re, E., Erickson, E., Stella, G. R., Fleming, G. R., et al. (2016). Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J. Biol. Chem. 291, 7334–7346. doi: 10.1074/jbc.M115.704601

Barnett, A., Métré, V., Blommaert, L., Lepetit, B., Gaudin, P., Vyverman, W., et al. (2015). Growth form defines physiological photoprotective capacity in intertidal benthic diatoms. ISME J. 9, 32–45. doi: 10.1038/isme.2014.105

Beer, A., Gundermann, K., Beckmann, J., and Büchel, C. (2006). Subunit composition and pigmentation of fucoxanthin-chlorophyll Proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45, 13046–13053. doi: 10.1021/bi061249h

Bendtsen, J. D., Nielsen, H., Von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptide: SignalP 3.0. J. Mol. Biol. 340, 783–795. doi: 10.1016/j.jmb.2004.05.028

Bilcke, G., Van den Berge, K., De Decker, S., Bonneure, E., Poulsen, N., Bulankova, P., et al. (2020). Mating type specific transcriptional response to sex inducing pheromone in the pennate diatom Seminavis robusta. BioRxiv [Preprint]. Available online at: https://www.biorxiv.org/content/10.1101/2020.03.16.987719v1 (accessed March 19, 2020).

Blommaert, L. (2017). Photoprotection in Intertidal Benthic Diatoms. Belgium: Ghent University.

Blommaert, L., Huysman, M. J. J., Vyverman, W., Lavaud, J., and Sabbe, K. (2017). Comparing NPQ dynamics and xanthophyll cycling in a motile and a non-motile intertidal benthic diatom. Limnol. Oceanogr. 62, 1466–1479. doi: 10.1002/lno.10515

Blommaert, L., Lavaud, J., Vyverman, W., and Sabbe, K. (2018). Behavioural versus physiological photoprotection in epipelagic and epipsammic benthic diatoms. Eur. J. Physiol. 53, 146–155. doi: 10.1007/s00424-017-1397-19

Bonente, G., Ballotti, M., Truong, T. B., Morosinotto, T., Ahn, T. K., Fleming, G. R., et al. (2017). Chlorophyll-binding proteins from a brown algal perspective. In Photoacclimation state determines the photobehaviour of motile microalgae: the case of a benthic diatom. J. Exp. Mar. Bio. Ecol. 468, 11–20. doi: 10.1016/j.jembe.2015.03.004

Ghazaryan, A., Akhtar, P., Garab, G., Lambrev, P. H., and Büchel, C. (2016). Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Biochim. Biophys. Acta Bioenerg. 1857, 1373–1379. doi: 10.1016/j.bbabio.2016.04.288

Goss, R., and Lepetit, B. (2015). Biodiversity of NPQ. J. Plant Physiol. 172, 13–32. doi: 10.1016/j.jplph.2014.03.004

Grouneva, I., Muth-Pawlak, D., Batchikova, N., and Aro, E.-M. (2016). Changes in relative thylakoid protein abundance induced by fluctuating light in the diatom Thalassiosira pseudonana. J. Proteome Res. 15, 1649–1658. doi: 10.1021/acs.jproteome.6b00124

Gruber, A., Rocap, G., Kroth, P. G., Armbrust, E. V., and Mock, T. (2015). Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81, 519–528. doi: 10.1111/tpj.12734

Guillard, R. L. (1975). Culture of Marine Invertebrate Animals, eds W. L. Smith and M. H. Chanley (Boston, MA: Springer), doi: 10.1007/978-1-4615-8714-9

Hippmann, A. A., Schuback, N., Moon, K.-M., McCrow, J. P., Allen, A. E., Foster, L. J., et al. (2017). Contrasting effects of copper limitation on the photosynthetic apparatus in two species of the open ocean diatom Thalassiosira oceanica. PLoS One 12:e0181753. doi: 10.1371/journal.pone.0181753

Jeffrey, S. W., and Humphrey, G. S. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. Bd 167, 191–194. doi: 10.1006/jbph.2016.3796(17)30778-3

Jesus, B., Brotas, V., Ribeiro, L., Mendes, C. R., Cartaxana, P., and Paterson, D. M. (2009). Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont. Shelf Res. 29, 1624–1634. doi: 10.1016/j.csr.2009.05.006

Kalyanaamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285

Kato, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mso10

Lavaud, J., and Goss, R. (2014). “The peculiar features of the non-photochemical fluorescence quenching in diatoms and brown algae,” in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds B. Demmig-Adams, G. Garab, W. Adams, and Govindjee (Berlin: Springer), doi: 10.1007/978-1-4612-2920-12728

Laviale, M., Frankenbach, S., and Serôdio, J. (2016). The importance of being fast-comparative kinetics of vertical migration and non-photochemical quenching of benthic diatoms under light stress. Mar. Biol. 163:10. doi: 10.1007/s00227-015-2793-2797

Le Bail, A., Dittami, S. M., de Franco, P.-O., Rousvoal, S., Cock, M. J., Tonon, T., et al. (2008). Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus. BMC Mol. Biol. 9:75. doi: 10.1186/1471-2199-9-75

Lepetit, B., Gélin, G., Lepetit, M., Sturm, S., Vugrinec, S., Rogato, A., et al. (2017). The diatom Phaeodactylum tricornutum adjusts non-photochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol. 214, 205–218. doi: 10.1111/nph.14337
Lepetit, B., Sturm, S., Rogato, A., Gruber, A., Sachse, M., Falciaitore, A., et al. (2013). High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Cell 161, 853–865. doi: 10.1104/pp.112.207811

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195. doi: 10.1093/molbev/mst024

Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., and Punta, M. (2015). Challenges in homology search: HMMER3 and convergent evolution of coiled–coil regions. Nucleic Acids Res. 43:e121. doi: 10.1093/nar/gkt263

Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, I., et al. (2017). Evolutionary genomics of the cold-adapted diatom Fragilaropsis cylindrus. Nature 541, 536–540. doi: 10.1038/nature20803

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300

Nyberg, K. O., and Tsueng, T. B. (2013). Evolution of flexible non-photochemical quenching. Curr. Opin. Plant Biol. 16, 307–314. doi: 10.1016/j.pbi.2013.03.011

Nymark, M., Valle, K. C., Brembu, T., Hancke, K., Winge, P., Andresen, K., et al. (2009). An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4:e7743. doi: 10.1371/journal.pone.0007743

Oeljen, A., Krumbein, W. E., and Rhiel, E. (2002). Investigations on transcript sizes, steady state mRNA concentrations and diurnal expression of genes encoding fucoxanthin chlorophyll a/c light harvesting polypeptides in the centric diatom Cyclotella cryptica. Plant Biol. 4, 250–257. doi: 10.1055/s-2002-25737

Osuna-Cruz, C. M., Bilcke, G., Vancaster, E., De Decker, S., Poulsen, N., Bulankova, P., et al. (2020). The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. BioRxiv [Preprint]. Available online at: https://www.biorxiv.org/content/10.1101/2020.02.11.942037v1 (accessed February 12, 2020).

Park, S., Jung, G., Hwang, Y., and Jin, E. (2010). Dynamic response of the transcriptionist of a psychrophilic diatome, Chaetoceros neogracile, to high irradiance. Planta 231, 349–360. doi: 10.1007/s00425-009-1044-x

Ribeiro, L., Brots, V., Rincé, Y., and Jesus, B. (2013). Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. J. Phycol. 49, 258–270. doi: 10.1111/jpy.12031

Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENScript server. Nucleic Acids Res. 42, W320–W324. doi: 10.1093/nar/gku316

Sabbe, K. (1993). Short-term fluctuations in benthic diatom numbers on an intertidal sandflat in the Westerschelde estuary (Zeeland, The Netherlands). Hydrobiologia 26, 275–284. doi: 10.1007/BF00028026

Serôdio, J., Ezequiel, J., Barnett, A., Mouget, J.-L., Mélèder, V., Laviale, M., et al. (2012). Efficiency of photoprotection in microphytobenthos: role of vertical migration and the xanthophyll cycle against photoinhibition. Aquat. Microb. Ecol. 67, 161–175. doi: 10.3354/ame01591

Serôdio, J., Marques da Silva, J., and Catarino, F. (2001). Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 218, 45–61. doi: 10.3354/meps18045

Serôdio, J., Vieira, S., Cruz, S., and Coelho, H. (2006). Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth. Res. 90, 29–43. doi: 10.1007/s11120-006-9105-9

Taddei, L., Chukhutsina, V. U., Lepetit, B., Stella, G. R., Bassi, R., van Amerongen, H., et al. (2018). Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation. Plant Physiol. 177, 953–965. doi: 10.1104/pp.18.00448

Taddei, L., Stella, G. R., Rogato, A., Bailleul, B., Fortunato, A. E., Annunziata, R., et al. (2016). Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. J. Exp. Bot. 67, 3939–3951. doi: 10.1093/jxb/erw198

Underwood, G. J. C., and Kromkamp, J. (1999). Primary production by phytoplankton and microphytobenthos in estuarine microalgae. Adv. Ecol. Res. 29, 93–153. doi: 10.1016/S0065-2408(04)60192-0

Valle, K. C., Nyberg, K. O., Amnot, I., Hancke, K., Winge, P., Andresen, K., et al. (2014). System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One 9:e114211. doi: 10.1371/journal.pone.0114211

van Leeuwe, M., Brots, V., Consalvey, M., Forster, R., Gillespie, D., Jesus, B., et al. (2008). Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Eur. J. Phycol. 43, 123–132. doi: 10.1080/09670260701726119

Yang, Z. (1995). A space-time process model for the evolution of DNA sequences. Genetics 139, 993–1005.

Zhu, S.-H., and Green, B. R. (2010). Photoprotection in the diatom Thalassiosira pseudonana: role of L1818-like proteins in response to high light stress. Biochim. Biophys. Acta 1797, 1449–1457. doi: 10.1016/j.bbapap.2010.04.003

Zhu, S.-H., Guo, J., Maldonado, M. T., and Green, B. R. (2010). Effects of iron and copper deficiency on the expression of members of the light-harvesting family in the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 46, 974–981. doi: 10.1111/j.1529-8817.2010.00884.x

Conflict of Interest: MH is currently an employee of the European Research Council Executive Agency. The views expressed are purely those of the writer and may not in any circumstances be regarded as stating an official position of the European Commission.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Blommaert, Vancaster, Huysman, Osuna-Cruz, D’Hommet, Lavaud, Lepetit, Winge, Bones, Vandepoele, Vyverman and Sabbe. This is an open-access article distributed under the terms of the Creative Commons Attribution license (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.