Routing of Biomolecules and Transgenes’ Vectors in Nuclei of Oocytes

Marek Malecki1,2* and Bianca Malecki2,3

1Western University of Health Sciences (WUHS), Pomona, CA, USA
2Phoenix Biomolecular Engineering Foundation (PBMEF), San Francisco, CA, USA
3Jagiellonian University (JU), Krakow, PL, EU

Abstract

The molecular architecture of Nuclear Pore Complexes (NPCs), as well as the import and export of molecules through them, has been intensively studied in a variety of cells, including oocytes. However, the structures and mechanisms, involved in the transport of molecules beyond the NPCs, remained unclear until now. The specific aim of this work was, therefore, to determine, if there exist any intranuclear structures in continuum with the NPCs. This information could help in explaining the mechanisms, which propel the distribution of biomolecules and vectors inside the cell nuclei.

To attain this aim, we used rapid cryo-immobilization to capture molecular processes of living cells with millisecond resolution. We pursued molecular imaging, including electron energy loss spectroscopy and energy dispersive x-ray spectroscopy, to reveal structures with nanometer spatial resolution. We also bioengineered single chain variable fragments to track biomolecules and transgenes’ constructs.

Herein, we reveal the Nuclear Routing Networks (NRNs) in the oocytes of Xenopus laevis. The NRNs originate at and extend from the tops of intranuclear baskets of the NPCs to interconnect them, while creating a complex, intra-nuclear, three-dimensional architecture. The NRNs guide the export of both RNA, as well as the Nuclear Export Signal (NES) equipped vectors, from the nuclei. Moreover, the NRNs guide the import of both nucleoplasmin, as well as the Nuclear Localization Signals (NLS) modified transgenes’ vectors, into the nuclei. The vectors equipped with these NLS and NES shuttle back and forth through the NPCs and NRNs.

To summarize, we reveal the NRN, which functions as the guided distribution system in the Xenopus laevis oocytes’ nuclei. We further proceed with the identification of its molecular components.

Nevertheless, development of some mutations involves passing of molecules through the NPCs and reaching the gDNA, e.g., HIV leading to the congenital AIDS. Engineering viral blockers of the NPC docking sites for importinβ /karyopherinβ clusters could be a preventive step. While retroviruses used in gene therapy trials exert their therapeutic effects upon genomic integration, but can also present a threat of the virus-induced insertional mutagenesis in genes of oocytes. Intelligent biomolecular engineering of the transgenes’ vectors, with the precisely defined transporting steps, should be one of the safeguards [26-28].

However, the structures and mechanisms involved in the transport of molecules beyond the NPCs remained unclear until now. Interestingly, in various published images of the NPCs, there existed apparent, short, thin filaments radiating out from the inner ring of the NPCs towards the nuclear interior and from the cytoplasmic ring towards the cytoplasm [29-39]. The relationships of these short filaments to the NPCs and their ultrastructural organization indicated structures entirely different from lamins or matrices [38,39]. In addition, a few publications on nucleo-cyttoplasmic transport contained observations, that viruses, gold-tagged molecules, or transcripts were often aligned in the nuclei into single file tracks; however the authors neither revealed any supporting structures, nor interpreted underlying mechanisms [40-44].
Nevertheless, rapid trafficking of histones had to be supported by very efficient transport system [45]. Studies suggested compartmental organization of chromatin and patterns of expression contingent upon the distribution of genes in relation to the NE [45–49]. Furthermore, molecules contributing to the buildup of the NPCs were shown as having DNA binding properties [50].

The ultimate goal of our work is genomic nanosurgery, which would include guided trafficking of the vectors to the defined loci on chromosomes for: (1) repairing of the mutated genes, (2) safeguarding gDNA against induction of mutations, or/and (3) inserting genes promoting resistance against diseases [51]. Precise knowledge of the functional structures involved in the nuclear transport processes is essential. The specific aim of this work was, therefore, to determine, if there are any intranuclear structures in continuum with the NPCs. In this regard, our report helps in explaining mechanisms, which propel transport of molecules, of importance for biology and medicine, inside the nuclei of oocytes.

Materials and Methods

Oocytes of Xenopus laevis

Mature Xenopus laevis oocytes were used in this study as the well-established model of nucleo-cytoplasmic transport. They were gifts from Dr J. Dahlberg, Dr E. Lund of UW Madison, Dr M. Kloc, UT Dallas, and Dr D. Forbes, UC San Diego. The oocytes were defolliculated during all procedures that followed [32]. The NE samples were either deg. C. Nuclear envelopes (NE) remained attached to the sticky carriers in low salt buffer (LSB: 0.5mM MgCl2, 1mM KCl, 0.1mM ATP, 10 mM Hepes, pH 7.4) by tearing the oocyte surface at the pigment border with forceps. They were then cleaned of yolk with dissecting needles and attached to glass, gold, or carbon chips treated with silane and glutaraldehyde [30]. Live recording was performed using a CCD camera (C5985, Hamamatsu, Japan) under and MetaMorph imaging software (Universal Imaging, Corporation, West Chester, PA).

Isolation of nuclear envelopes

The oocyte nuclei contained a contractile gel due to the presence of actomyosin. In order to see the structures on the inside of the NE, the nuclei were rinsed for 5 min in Macgregor’s 5:1 buffer (10 mM HEPES, 83 mM KCl, 17 mM NaCl, 0.5 mM MgCl2, 0.1 mM ATP, pH 7.4) and opened with microinjectors. For studies of the active transport of the vectors, the buffers were supplemented with 0.3 mM apyrase or maintained at 4°C. Nuclear envelopes (NE) remained attached to the sticky carriers during all procedures that followed [32]. The NE samples were either chemically fixed or rapidly cryo-immobilized.

Nucleoplasm, histone, transfer RNA, messenger RNA, NLS and NES equipped vectors

Nucleoplasm, a 165kDa karyophilic protein known to be imported through the NPCs, was prepared according to the classical protocol [52–53]. Briefly, oocytes were rinsed in Ca-free Ringer’s solution containing phenylmethylsulfonyl fluoride, homogenized, cleared by centrifugation, extracted with 1,1,2-trichlorotritluoroethane, and maintained in amphibian Ringer’s solution containing phenylmethylsulfonyl fluoride, homogenized, and NLS equipped vectors.
different organelles of the oocytes were measured by means of elemental analysis with EDXS or EELS [63].

Cryo-immobilization

At the completion of the experiment, the cells were cryo-immobilized within 10 ms down to –196°C at 2000 atm within the pressure chamber of the high pressure freezing machine HPM10 (Bal-Tec, Liechtenstein). Alternatively, if the nuclear envelopes were isolated and attached to the chips, they were cryo-immobilized within liquid pentane using the plunge freezer [30]. All the samples were stored in liquid nitrogen until further processing by freeze-substitution and embedding for sectioning FSD010 (Bal-Tec, Liechtenstein) or freeze-fractured and freeze-dried BAF060 (Bal-Tec, Liechtenstein).

Chemical fixation

Isolated *Xenopus laevis* oocyte nuclei attached to the chips were fixed in 1% glutaraldehyde and 0.2% tannic acid in the LSB. This was followed by post-fixing in 1% osmium tetroxide in the LSB. They were cryo-immobilized by plunge freezing and stored in liquid nitrogen. After freeze-substitution with acetone on FSD010 (Bal-Tec, Liechtenstein), the preparations were embedded in epon 812 (Ladd, Williston, VT) and sectioned. Alternatively, the samples were dehydrated in ethanol, dried in critical point of CO₂, and cryo-sputter-coated with Pt/C on BAF060 (Bal-Tec, Liechtenstein) [30].

Molecular imaging and elemental analysis

The field emission, transmission, electron microscope FE-STEM HB501 (Vacuum Generators, Kirkland, WA) was equipped with the energy dispersive x-ray spectrometer (EDXS) (Noran, Middleton, WI) and the post-column electron energy loss spectrometer (EELS) (Gatan, Pleasanton, CA). The cryo-energy filtering transmission electron microscope 912 Omega was equipped with the in-column, (Zeiss, Oberkochen, Germany). The images were acquired using the ccd camera operating under the image acquisition and processing software (SIS, Herzogenrath, Germany or Emispec Systems, Tempe, AZ). The field-emission scanning electron microscopes S3400 was equipped with the EDXS (Hitachi Tokyo, Japan) and SEM1530 (Zeiss, Oberkochen, Germany) was equipped with EDXS (Noran, Middleton, WI). For stereo-viewing, the in-register pairs of images were acquired electronically with +/- 6 degrees tilt of the stage. The control elemental spectra were acquired on the standards from the National Institute of Standards and Technology (NIST, Gaithersburg, MD). The concentrations of the vectors at different compartments were determined using EDXS and EELS spectral mapping. All the vectors contained the domains chelating Gd, Tb, Eu, Au, Er or Pt. EDXS and/or EELS elemental spectra were acquired for every single pixel of the imaged area to create the elemental data stack. From this stack, the map of the selected element was extracted to create the map of this element’s distribution with the element’s concentration determined. The overall oocyte ultrastructure was revealed using EELS at zero energy loss. The elemental maps of the exogenous atoms (e.g., Gd atoms chelated into the vectors) were overlapped over the ultrastructural map of the oocyte. This way the concentrations of the vectors within the oocytes’ compartments were determined. For the overviews of the cell architecture either high voltage transmission electron microscope operated at 1 MeV (AEI, EM7) or energy filtering transmission electron microscope operated at 120 keV at zero energy loss (LEO912) were used.

Results

Figure 1 illustrates the work-flow of the project. The oocytes were de-folliculated. (a) They were spun down to move the nuclei to the poles, in order to facilitate intra- or peri-nuclear microinjections of the vectors. That was followed by rapid cryo-immobilization, processing, and determination of the transgenes’ concentration with the aid of the EDXS and EELS. (b) Alternatively, the nuclei were isolated. (c) Thereafter, the nuclei were opened to remove nucleoplasm. (d) The nuclear envelopes, attached to the carriers, were cryo-immobilized and processed for (e) molecular imaging and elemental analysis with the aid of the EDXS or EELS.

The intra-nuclear surface of the nuclear envelope (NE) was exposed by gentle removing chromatin gel, which followed by chemical fixation, critical point drying, and cryo-sputter-coating. It was revealed in the field emission scanning electron microscope (FESEM), as illustrated in the figure 2. In the field of view, there are present numerous “baskets” of the nuclear pore complexes (NPC), which protrude from the nuclear envelope. They are marked with the red arrows pointing toward the entries into the nucleus. Bundles of 6 nm thin filaments project from the tops of most of the NPC “baskets”. The bundled filaments create empty nanotubes. They project into the nucleus’ interior. These bundles extend for distances from 2 micrometers to more than 10 micrometers in lengths. Short and long stretches of the filamentous bundles interconnect with each other to form nuclear networks. In a few cases, attached fibers have all broke off the “baskets”, thus revealing the top rings only. At all distal ends of the eight fibers (projecting from the 145 nm diameter, nuclear ring of the NPCs) there are the 10 nm in diameter spheres. These spheres attach to each other to form the “necklace-like” rings - as if they would be holding together the bundles of filaments. These rings are distributed along the filamentous bundles with the regular periodicity of approximately 50 nm. They are pointed with the red arrow-heads. Lamins networks are marked with the red stars. They seem to create a stabilizing base for the NPCs inserted in their nets.

Organization of the filaments projecting from the NPCs was also revealed by cryo-electron loss spectroscopy at the zero-loss energy setting as shown in the figure 3a. The oocytes were prepared by rapid cryo-immobilization, freeze-substitution, and sectioning of 250 nm sections. This technique of the specimen preparation was entirely different from that used for the FESEM preparations. Yet, the bundles of filaments project from the tops of the NPCs on the identical way as the ones shown in the figure 2. They also have the "necklace-like"
rings distributed along their lengths with the periodicities identical to those revealed above. They are also pointed with the red arrow-heads. Although, the NPCs are buried within the thick sections, the baskets of the NPCs are clearly seen. The red arrows point to the entries into the nucleus through the NPCs. Alternatively, the oocytes were embedded through the conventional methods and imaged with the high voltage transmission electron microscope as shown in the figure 3b.

Yet, the third, entirely different method of the oocytes’ preparation for molecular imaging, shown in the figure 4, resulted in the identical appearance of the filamentous networks projecting from the NPCs as those illustrated in the figures 2,3. In this case, the nuclear envelopes were rapidly cryo-immobilized, embedded, cut into the serial 250nm thick sections, and de-embedded. The NPCs with the associated structures were revealed in the FESEM. In this image, there is the NPC basket with its smaller, intra-nuclear ring pointed with the white arrow. The NPC has larger ring at the bottom, at the level of the intra-nuclear surface of the nuclear envelope, which holds the NPC basket. From the top of this NPC basket, project bundles of filaments. Along their lengths and with the regular 50nm periodicity, there are the necklace-like rings consisting of the 10 nm in diameters spheres. These bundles form inside-hollow nano-tubes.

The data acquired with these three different methods revealed the networks of the filamentous bundles held together by small spheres assembled into the necklace-like rings. Summarizing the data from the figure 2-4, the bundled filaments, create nanotubes interconnected into the three-dimensional networks. These data were integrated into the model presented in the figure 5. This structure has all of the characteristics expected from networks routing molecules throughout the nucleus. Therefore, we hypothesized that it be the nuclear routing network (NRN). To test this hypothesis, functional studies of these newly discovered networks followed.

The vectors were bioengineered to carry the closed, circular dsDNA
Malecki M, Malecki B (2012) Routing of Biomolecules and Transgenes’ Vectors in Nuclei of Oocytes. J Fert In Vitro 2:108. doi:10.4172/2165-7491.1000108

For intra-nuclear import, the vectors consisted of the nuclear localization signal (NLS) domain, anti-dsDNA, anti-digoxigenin or anti-biotin domain - anchoring the dsDNA, and chelating domain - harboring Gd, Tb, Eu, Er, Ag, or Au. For nuclear export, the vectors consisted of the nuclear export signal (NES) domain, anti-dsDNA, anti-biotin, and anti-digoxigenin domain anchoring dsDNA plasmids, and metal binding domain coordinating Eu, Er, Gd or Tb. The third and fourth type of the vectors - named shuttle vectors consisted of the NES and NLS domains bioengineered either with the anti-DNA/anti-digoxigenin and Gd chelating domains, or with the anti-biotin/

Figure 3b: This oocyte was chemically fixed. It was further processed by embedding, cutting 250 nm thick sections, and staining with uranyl acetate and lead citrate. The image was acquired at the 1MeV HVEM. The arrows point to the entries into the nucleus through the NPCs. Horizontal field width 2030 nm.

Three-dimensional architecture of the Nuclear Routing Networks (NRNs) revealed by Field Emission Scanning Electron Microscopy (FESEM) on the cross-sections through the nuclear envelope

Figure 4: The oocytes were rapidly cryo-immobilized after microinjection of the transgene vectors, embedded, sectioned perpendicular to the nuclear envelope, de-embedded, and cryo-sputter coated with Pt/C. The entry into the nucleus through the NPC is pointed with the red arrow. The intra-nuclear ring of the NPC basket is pointed with the white arrow. The periodicities along the NRN are pointed with the red arrow heads. Horizontal field width 345 nm.

Figure 5: It illustrates a graphic interpretation of the NRN after the complete removal of chromatin and nucleoplasm. This model was created based upon the data acquired with 3 different techniques of molecular imaging presented in this study.
increasing. These transgenes were initially absent from the NRN and the concentrations of the transgenes exported outside the nucleus were steadily decreased, which was followed by less rapid pace until the complete depletion. The concentrations of the transgenes inside the nuclei were initially rapidly decreasing, which was followed by less rapid pace until the complete depletion. The concentrations of the transgenes imported into the nucleus were steadily increasing. The passage of the NLS-guided transgenes through the NRN had the profile similar to that shown by the NES guided transgenes. This was indicative of the wave of the exported vectors passing through the NRN. The trafficking profiles of the shuttle vectors guided by the NLS and NES, which were injected into the perinuclear cytoplasmic or intranuclear spaces, were characterized by the initial gradual increase of the concentrations within the NPCs and NRNs. However, within approximately 30 minutes, the concentrations in the NPCs and NRNs reached plateau. This was indicative of the saturation of the NRNs’ transporting capabilities. Microinjections of the vectors, which were modified with both the NLS and NES resulted in the initial increase of the concentration in the NRN and NPC fractions. This was indicative of the vectors shuttled back and forth.

Trafficking of the non-viral, transgene vectors through the NRN revealed by electron energy loss and energy dispersive X-ray spectroscopies

Figure 6a-d: The NLS guided transgene vectors consisting of the scFv (anchoring the closed, circular, double stranded plasmid DNA) and metal binding domain (chelating Gd) were microinjected into the perinuclear space of the oocyte. After 1h, the oocytes were rapidly cryo-immobilized, freeze-substituted, epon embedded, and sectioned. An overview of the NPC and NRN architecture was acquired at zero-loss setting of the EELS on the HB505 FESTEM. (a) The complete elemental spectrum was acquired for every pixel of the scan with the EDXS. This created the elemental spectra database for this scan - the spectrum of one pixel shown as an example (peaks of Gd, C, O are prominent). (b) The spectrum was gated only for Gd and extracted from the complete data base to create the map of the elemental distribution. (c) This elemental map was equivalent to the map of the transgene vectors’ distribution. The map of the vectors’ distribution (from “c”) is overlapped over the architecture of the NPCs and NRNs (from “a”) to determine location of the vectors in the oocyte’s compartments. (d) Many electron-dense beads were eliminated as the false positive in the TEM, due to the ability to identify the true vectors based upon the elemental map. Horizontal field width in a,c.d 540 nm.

Analysis of the transgenes’ trafficking through various oocytes compartments was pursued in a few steps as illustrated in the figure 6. First, the structural overview at the zero energy loss edge by contrast tuning was acquired (a). Second, the elemental spectrum profile was acquired for every pixel of the image to create the elemental composition data bank (b). Third, a map of Gd distribution in the sample was extracted from the elemental composition data bank (c). Since the Gd atoms were chelated within the dedicated domains of the transgenes’ vector, and then the Gd distribution map was indicative of the distribution of the vectors. Fourth, superimposing the Gd map from “c” over the cell structure from “a” revealed distribution of the vectors within the cell structures (d). This approach eliminates false positive identification of the electron-dense particles as transgenes as it may happen in transmission electron microscopy (TEM) and of the strong secondary electron emitters in the scanning electron microscopy (SEM). It also eliminates missed - as false negative, poorly stained transgenes. After outlining areas of the oocyte compartments on the computer screen, the vectors containing Gd atoms were automatically calculated by the elemental analysis software ceiled at 10M counts. The data from ten experiments for each of the transgenes were measured and averaged, the standard deviations calculated and normalized as the ratios between three main compartments: intra-nuclear, nuclear envelope associated structures (NPC + NRN), peri-nuclear. The results are presented in the figures 7-10. The outcome of the intra-nuclear injections of the transgenes guided by the NES is shown in the figure 7. The concentrations of the transgenes inside the nuclei were initially rapidly decreasing, which was followed by less rapid pace until the complete depletion. The concentrations of the transgenes exported outside the nucleus were steadily increasing. These transgenes were initially absent from the NRN and NPCs, but shortly after the microinjections they started to increase, while passing through the NRNs and NPCs. The results of the cytoplasmic injections of the transgenes guided by the NLS are illustrated in the figure 8. The concentrations of the transgenes in the cytoplasm were initially rapidly decreasing, which was followed by less rapid pace until the complete depletion. The concentrations of the transgenes imported into the nucleus were steadily increasing. The passage of the NLS-guided transgenes through the NRN had the profile similar to that shown by the NES guided transgenes. This also was indicative of the wave of the exported vectors passing through the NRN. The trafficking profiles of the shuttle vectors guided by the NLS and NES, which were injected into the perinuclear cytoplasmic or intranuclear spaces, were characterized by the initial gradual increase of the concentrations within the NPCs and NRNs. However, within approximately 30 minutes, the concentrations in the NPCs and NRNs reached plateau. This was indicative of the saturation of the NRNs’ transporting capabilities. Microinjections of the vectors, which were modified with both the NLS and NES resulted in the initial increase of the concentration in the NRN and NPC fractions. This was indicative of the vectors shuttled back and forth.

Nucleoplasmin, histones, tRNA, and mRNA were used as the most established internal biocompatibility reference tests [52,53]. Import of nucleoplasmin (Np), which was modified with biotin or digoxigenin followed by tagging chelating scFv and injected into the oocytes’ cytoplasm is shown in the figure 10. It was trafficking exactly as the native nucleoplasmin shown described previously [52]. Within minutes after microinjection, the Np was already passing through the NPCs and NRNs. Within hours, it entirely cleared from the cytoplasm. Export of tRNA, which was transcribed to incorporate biotin GTP followed by tagging chelating scFv and injected into the oocytes’ nuclei, is shown in the figure 9. As in the earlier reports, tRNA swiftly moved into the cytoplasm. It appeared within the NRNs and NPCs within minutes. It entirely cleared from the nucleoplasm within hours.

Altogether, the data acquired in these experiments provide the evidence that, the filamentous bundles, which originate at the NPCs and create complex three-dimensional networks of nano-tubes inside the oocyte nuclei, function as the transporters of the molecules. Therefore, we named them nuclear routing networks (NRNs).
The NES-modified transgenes’ vectors were microinjected into the oocyte nuclei. Every 45 minutes from the time of microinjections, the oocytes were rapidly cryo-immobilized, processed, and analyzed as in the figure 6. The concentrations were measured and normalized against the counts at the zero time as 100%. Series 1 - counts of the NES-modified vectors present in the oocyte nucleus. Series 2 - counts for the vectors in the NRNs and NPCs. Series 3 - counts of the vectors without modification with the NES present in the oocyte nucleus. Series 4 - counts for the non-NES-modified vectors in the NRNs and NPCs. The concentration in the intranuclear space was rapidly falling after microinjections. The concentration in the NPCs and NRNs showed the gradual increase, which followed by the reduction indicative of the passage of the vectors through the NRNs. The concentrations of the transgene vectors were constantly increasing outside of the nucleus as the result of the constant export of the vectors driven by the NES. The concentrations of the vectors which were not modified with the NES gradually reduced due to diffusion, but they did not appear in the NRN and NPC or cytoplasm.

Discussion

We revealed the NRN by means of the most advanced molecular imaging techniques [30,52]. The first technique, time-resolved with millisecond resolution, rapid cryo-immobilization retained the NPCs and associated structures in their native state. They were not distorted or degraded during preparation for imaging. The second, EELS and EDXS facilitated unequivocal identification of the labeled molecules with the genetically engineered scFv at the supramolecular level of resolution 3D architecture, what was not possible before. Moreover, these imaging modes facilitated imaging of the entire NPCs and NRNs contained within thick sections or whole mounts, which was not possible before. Moreover, thinness of sections and limited depth of field of high...
resolution microscopes used in previous studies could not capture the complex architecture of the NRNs. The third, biomolecular engineering of the biocompatible molecules and transgene vectors, modified with the NLS and NES, as well as tagged with the exogenous elements (Gd, Eu, Tb, Er, Ag, Au) helped to reveal their transport through the NRN.

We revealed the NRN in oocytes of *Xenopus laevis*. However, considering the conserved nature of the nuclear pore transport and based upon our works on the human cancer and germ cells, we hypothesize, that the NRN is universal for all eukaryotic cells [52-60]. This may lead to explaining the data reported by other authors. For example, Human Immune-Deficiency Viruses (HIV) in the nuclei of human T lymphocytes moved along the well defined tracks [47]. Similarly, during infecting human lymphoma cells Epstein-Barr virus, the viral DNA did not diffuse uniformly through the nucleus, but occurred in curvilinear tracks between the nuclear center and the NPCs [48]. Their pathways resembled geometries of the NRNs. Hypotheses can be raised, that the viruses moved along the NRNs to the preferred locations within the nuclei. As another example, the nup140 kDa phosphoproteins, that shuttle between the nucleolus and the cytoplasm, which were tagged with gold beads for TEM, were arranged into single tracks, heading towards the NPCs [40]. Hypotheses can be raised, that these phosphoproteins moved along the NRNs. As another example, the movements of Poly (A) + RNA, from the sites of transcription to the NPCs in mammalian cell cultures showed that the mRNAs did not diffuse randomly inside the nuclei, but rather were arranged in narrow ribbons [41,43]. Hypotheses can be raised, that the NRNs could be their guiding systems.

This work creates foundation for identifying the molecular components of the NRNs. Clearly, short filaments, projecting from tops of the NPCs, as shown in the earlier publications, can now be considered to be elements of the NRN, which were damaged during the preparations [31, 34, 37]. Nevertheless, those short filaments were identified to contain Nup153, Trp. Moreover, the labels suggesting presence of Trp analogs in the interchromatin spaces were shown [44]. Moreover, nucleoporins were shown to bind to distinct loci of the genome [61,62]. Therefore, the NRNs could serve as the speed-ways between the NPCs and genes’ loci on chromosomes. Thus, these data suggest the significant role of the NPCs and NRNs they may play in the regulation of gene expression, which is the subject of our currently ongoing works.

All these data suggest a distinct possibility that the NRN exists as a very ergonomically organized distribution system, which efficiently delivers specific molecules to targeted sites within chromosomes. This may be in accord with the hypothesis of the chromosomal domains [45,46]. Identification of the checkpoints and signals within the NRN would be essential for our ability of targeting the therapeutic molecules to the desired destinations inside the nuclei. It would also be essential for controlling accessing of gDNA by mutagenic factors inflicting genetic errors. Futuristically thinking, it would facilitate genomic nanosurgery, i.e., excising disease carrying mutations and inserting the healthy genes, as well as genomic prevention, i.e., introducing molecular safeguards into the transporting mechanisms of the nuclei. Despite the great progress in high throughput genomics and proteomics of the NPCs, elucidation of the functional structure of the NRNs (unlike the very symmetrical NPCs) will most likely be attained by laborious identification of their individual molecular components within the three-dimensional architecture of these macromolecular assemblies in situ.

Conflict of interest

The authors declare no conflict of interest.
19. Vollebergh MA, Jonkers J, Linn SC (2012) Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci 69: 223-245.

20. Scriven PN, Ogilvie CM, Khalaf Y (2012) Embryo selection in IVF: is polar body array comparative genomics hybridization accurate enough? Hum Reprod 27: 951-953.

21. Musters AM, Repping S, Korevaar JC, Mastenbroek S, Limpens J, et al. (2011) Pregnancy outcome after preimplantation genetic screening or natural conception in couples with unexplained recurrent miscarriage: a systematic review of the best available evidence. Fertil Steril 95: 2153-2157.

22. Dan S, Chen F, Choy KW, Jiang F, Lin J, et al. (2012) Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS One 7: e27835.

23. Bianchi DW (2011) Gene expression analysis of amniotic fluid: new biomarkers and novel antenatal treatments. Clin Biochem 44: 448-450.

24. Wang N, Zheng YM, Li L, Jin F (2010) Preimplantation genetic screening: an effective testing for infertility and repeated miscarriage patients? Obstet Gynecol Int 2010: 120130.

25. McCabe LL, McCabe ER (2011) Down syndrome: coercion and eugenes. Genet Med 13: 708-710.

26. Cooray S, Howe SJ, Thrasher AJ (2012) Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol 507: 29-57.

27. Malecki M, Malecki R (2008) Ovarian cancer suicide gene therapy. Proc SD Acad Sci 87: 249-260.

28. Nowrouzi A, Glimm H, von Kalle C, Schmidt M (2011) Retroviral vectors: post entry events and genomic alterations. Viruses 3: 429-455.

29. Fawcett DW (1966) On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am J Anat 119: 129-145.

30. Malecki M (1991) High voltage electron microscopy and low voltage scanning electron microscopy of human neoplastic cell culture. Scanning Microsc Suppl 5: 553-73.

31. Franke WW, Scheer U, Krohne G, Jarasch ED (1991) The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol 2: 396-50s.

32. Malecki M, Ris H (1992) Surface topography and intracellular organization of human cells in suspension as revealed by scanning electron microscopy. Scan- ning 14: 76-85.

33. Ris H, Malecki M (1993) High-resolution field emission scanning electron micro- scope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J Struct Biol 111: 148-157.

34. Strambio-de-Castillicia C, Blobel G, Rout MP (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144: 839-855.

35. Kiselova E, Drummond SP, Goldberg MW, Rutherford SA, Allen TD, et al. (2004) Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J Cell Sci 117: 2481-2490.

36. Kosova B, Pante N, Rollenhagen C, Podtelejnikov A, Mann M, et al. (2000) Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nick6p. J Biol Chem 275: 343-350.

37. Cordes VC, Reidenbach S, Köhler A, Stuurman N, van Driel R, et al. (1993) Intranuclear filaments containing a nuclear pore complex protein. J Cell Biol 123: 1333-1344.

38. Wan KM, Nickerson JA, Kroczmalnic G, Penman S (1999) The nuclear matrix prepared by amine modification. Proc Natl Acad Sci U S A 96: 933-938.

39. Goldberg MW, Allen TD (1996) The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J Mol Biol 267: 848-865.

40. Meier UT, Blobel G (1992) Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70: 127-138.

41. Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493-502.

42. Murti KG, Brown PS, Ratner L, Garcia JV (1993) Highly localized tracks of human immunodeficiency virus type 1 Nef in the nuclei of cells of a human CD4+ T-cell line. Proc Natl Acad Sci U S A 90: 11895-11899.

43. Huang S, Deerinck TJ, Ellisman MH, Spector DL (1997) The dynamic organ- ization of the perinuclear compartment in the cell nucleus. J Cell Biol 137: 965-974.

44. Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110: 927-944.

45. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292-301.

46. Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, et al. (2010) Functional nuclear organization of transcription and DNA replication: a topographical mar- riage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 75: 475-492.

47. Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, et al. (2010) Glo- bal chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5: e10531.

48. Jakel S, Alibi W, Kutay U, Bischoff FR, Schwamborn K, et al. (1999) The import- inori beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBOJ 18: 2411-2421.

49. Wohwend D, Strasser A, Dickmanns A, Doenecke D, Finzer R (2007) Thermo- dynamic analysis of H1 nuclear import: receptor tuning of importinbeta/importin- iota. J Biol Chem 282: 10707-10719.

50. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chro- matin-bound nuclear pore components regulate gene expression in higher eu- karyotes. Cell 140: 372-383.

51. Malecki M, Pietruszkiewicz J (2006) Nanosurgery of cancer with the aid of in- cellular, nanoengineered antibodies against antioxidative enzymes. Euro J of Surg Onc 32: 519.

52. Dingwall C, Laskey RA (1986) Protein import into the cell nucleus. Annu Rev Cell Biol 2: 367-390.

53. Feldherr CM, Kallenbach E, Schultz N (1984) Movement of a karyophilic pro- tein through the nuclear pores of oocytes. J Cell Biol 99: 2216-2222.

54. Dahlberg JE, Lund E, Semin (1997) Coupling of nuclear RNA export and pro- tein import in vertebrate cells. Cell Dev Biol 8: 65-70.

55. Dworetzky SI, Feldherr CM (1988) Translocation of RNA-coated gold particles through the nuclear pores of oocytes. The J Cell Biol 106: 575-584.

56. Jarmolowski A, Boeioes WC, Izaurralde E, Mattaj IW (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124: 627-635.

57. Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requi- rements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33-38.

58. Lanford RE, Kanda R, Kennedy RC (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575-582.

59. Dworetzky SI, Lanford RE, Feldherr CM (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol 107: 1279-1287.

60. Ulman KS, Shah S, Powers MA, Forbes DJ (1999) The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol Biol Cell 10: 649-664.

61. Delangio MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22: 446-458.

62. Sarma NJ, Buford TD, Haley T, Barbara-Haley K, Santangelo GM, et al. (2011) The nuclear pore complex mediates binding of the Mig1 repressor to target promoters. PLoS One 5: e27117.

63. Malecki M, Hsu A, Truong L, Sanchez S (2002) Molecular immunolabeling with recombinant single-chain variable fragment (scFv) antibodies designed with metal-binding domains. Proc Natl Acad Sci U S A 99: 213-218.