Spectrum of biliary complications following live donor liver transplantation

Priya Simoes, Varun Kesar, Jawad Ahmad

Liver transplantation is the optimal treatment for many patients with advanced liver disease, including decompensated cirrhosis, hepatocellular carcinoma and acute liver failure. Organ shortage is the main determinants of death on the waiting list and hence living donor liver transplantation (LDLT) assumes importance. Biliary complications are the most common post operative morbidity after LDLT and occur due to anatomical and technical reasons. They include biliary leaks, strictures and cast formation and occur in the recipient as well as the donor. The types of biliary complications after LDLT along with their etiology, presenting features, diagnosis and endoscopic and surgical management are discussed.

Key words: Liver transplantation; Biliary stricture; Bile leak

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Living donor liver transplantation (LDLT) is associated with increased risk of post transplant biliary complications in recipients and donors, namely bile leaks and biliary strictures. Large bile leaks present early after LDLT and are treated with endoscopic stenting. Ischemic injury to cholangiocytes is the main cause of stricture formation. These may present early or late and are managed with endoscopic dilation followed by stent placement. Occasionally, surgical repair may be required. Cast formation may complicate biliary strictures, requiring endoscopic extraction and frequent replacement of stents with cleaning of biliary sludge and debris.

Abstract
Liver transplantation is the optimal treatment for many patients with advanced liver disease, including decompensated cirrhosis, hepatocellular carcinoma and acute liver failure. Organ shortage is the main determinant of death on the waiting list and hence living donor liver transplantation (LDLT) assumes importance. Biliary complications are the most common post operative morbidity after LDLT and occur due to anatomical and technical reasons. They include biliary leaks, strictures and cast formation and occur in the recipient as well as the donor. The types of biliary complications after LDLT along with their etiology, presenting features, diagnosis and endoscopic and surgical management are discussed.

Conflict-of-interest statement: No conflict of interest to disclose.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
many patients with advanced liver disease, including decompensated cirrhosis, hepatocellular carcinoma and acute liver failure. The vast majority of LT involves the use of organs from deceased donors but despite strategies to increase the supply of deceased donors, organ shortage continues to be the main determinant of death on the waiting list\[1\]. Due to the lack of organs and also cultural and societal beliefs against the use of deceased donors, living donor LT (LDLT) with split liver grafts was developed in the late 1980s\[2,3\]. LDLT has potential benefits over deceased donor LT (DDLT) including lower overall costs with elective transplantation, better graft viability and reduced cold ischemia time, and theoretical immunological advantages suggested by the lower incidence of steroid resistant rejection\[4-6\]. Recipient survival is higher in LDLT but this has to be tempered against the risk of donor complications. Recipient morbidity in LDLT is primarily related to the risk of biliary complications which are twice as common as seen with DDLT\[7\]. Hospitalization rates and duration of hospital stay post LDLT are also significantly higher than after DDLT even in experienced centers and this is primarily attributed to the higher incidence of biliary complications\[8\].

The incidence of biliary complications after orthotopic liver transplantation varies between 11%–35%\[7,9\], with a decreasing trend in recent years. These include strictures, leaks, casts, sludge, stones and Sphincter of Oddi dysfunction of which strictures, bile leaks and cast formation are the commonest, affecting patient and graft survival as well as re transplantation rates. Biliary complications occur because of several anatomical and technical reasons and the management depends on a multi-disciplinary approach involving surgery, hepatology and radiology.

ANATOMICAL CONSIDERATIONS IN THE BILIARY TRACT

It is important to have an understanding of hepatic vascular anatomy as it explains the high incidence of biliary complications after LT. The liver parenchyma has a dual blood supply via the hepatic artery and portal vein, but the biliary system is only supplied arterially. The biliary epithelium is more liable to ischemic injury than hepatocytes. While bile ducts are relatively more tolerant than hepatocytes to anoxic injury, they are more susceptible to reoxygenation/reperfusion injury\[10\]. This in part explains the biliary complication rate as does the higher incidence of ischemic cholangiopathy in donation after cardiac death (DCD) organs compared to donation after brain death organs\[11,12\].

The biliary tree is divided into 3 segments: the hilar segment consisting of the right and left hepatic ducts, the supra-duodenal segment consisting of the common hepatic duct (CHD) and the upper common bile duct (CBD) and the retro-pancreatic segment consisting of the lower CBD. The supra-duodenal duct receives its blood supply in the form of a plexus of many small arteries, mainly the 3 o’clock artery and the 9 o’clock artery running along the lateral borders of the duct arising from the retro-portal, retro-duodenal artery, gastro-duodenal artery, right branch of the hepatic artery, and/or cystic artery. Around 60% of the arterial supply runs superiorly, mainly from the gastro-duodenal artery, around 40% runs inferiorly from the common hepatic artery with a tiny fraction coming off the main trunk of the middle hepatic artery\[11,12\] (Figure 1).

The hilar and intrahepatic ducts are supplied by the peri-biliary vascular plexus, a network of capillaries arising from the terminal arterial branches of the right and left hepatic artery which also connects with the peri-ductal plexus supplying the supra-duodenal bile duct. A communicating arcade of blood vessels connecting the right and left arterial system of the liver is located within the hilar plate originating from the segment 4 artery and the right branch of the middle hepatic artery. This communicating arcade is spared during LDLT to provide adequate blood supply to the donor duct\[15\].

Most of the arterial supply of the middle portion of the CBD comes from the retro-duodenal and retro-portal arteries below, and less comes from the right hepatic artery above. During surgery, when these are dissected the middle part of the CBD is prone to ischemic injury. The nature of the arterial supply is the basis for why ischemia chiefly affects the middle third of the CBD, followed by the hepatic duct confluence, with intrahepatic involvement being the least common. Segment 4 and the central portion of the left hepatic duct are often supplied by the right arterial system which is generally transected while performing a right hepatectomy compromising the blood supply to the donor biliary system contributing to
donor morbidity[11,13,14]. Generally the stump of the donor bile duct is divided away from the confluence of bile ducts to avoid a stricture of the bile duct remaining in the donor liver resulting in a higher incidence of multiple ducts in the right liver graft[14,16]. Two or more ductal anastomoses has been shown to be a risk factor for developing biliary complications[17,18]. However, studies published[19] since 2008 have shown a considerable drop in overall incidence of biliary complications in recipients owing to more experience and better technique of the biliary anastomosis.

Biliary complications occurring after LDLT are classified according to the Clavien system described below[20,21] (Table 1).

RECIPIENT BILIARY COMPLICATIONS

The incidence of biliary complications after LDLT is very variable but can be divided into two main categories: bile leaks and strictures of the biliary tree (Table 2). The type of graft used in LDLT affects the complication rate, depending on whether the right or the left lobe is used. To try and ensure adequate graft function and prevent small for size syndrome, the graft size required is dependent on the weight of the recipient (typically at least 0.8%-1% of the recipient weight). Hence, in adult to adult liver transplantation the larger right lobe is almost always used. This typically increases the complication rate but the management strategies remain similar.

Bile leaks

Bile leaks are a common biliary complication after LDLT compared to DDLT. In the United States, the multicenter A2ALL study reported two thirds of biliary complications after LDLT were due to bile leaks compared to less than a third after DDLT. Studies have reported a 6%-27% overall incidence of bile leaks after LDLT[31,33-35]. Most of these bile leaks were Clavien grade 2 or 3 complications resulting in prolonged hospital stay or permanent disability while a few resulted in graft failure, re transplantation and occasionally death of the recipient, though grade 4 complications in LDLT were less common than in DDLT. Anastomoses involving three or more donor bile ducts were associated with an increased risk while hepatitis C virus cirrhosis as the indication for LT and greater surgical expertise were associated with a lower risk for developing bile leaks[21].

There are two main types of bile leak after LDLT-anastomotic leaks, and cut surface leaks[31]. Anastomotic leaks are the more common type and occur more frequently with Roux-en-Y anastomoses than with duct

Table 1 Clavien system for classification of complications in general surgery and solid organ transplantation
Grade

1
2
3
4

Table 2 Biliary complications in recipients after live donor liver transplantation

Ref.	Year	Country	Grafts (n)	Right	Left	Leaks	Strictures	Overall rate
Ghobrial et al[22]	2001	United States	20	25	-	-		
Gondolesi et al[23]	2004	United States	96	0	21.9	22.9	40.6	
Liu et al[24]	2004	China	41	0	7.3	24.3	24.3	
Giacomoni et al[25]	2006	Italy	23	0	21.7	21.7	34.8	
Soejima et al[26]	2006	Japan	50	132	11.5	25.3	36.8	
Shah et al[27]	2007	Canada	128	0	14.8	17.1	26.0	
Mita et al[28]	2008 Japan	5	226	-	9.5	-		
Freise et al[29]	2008	United States (A2ALL)	384	0	27.2	18	35.5	
Marubashi et al[30]	2009	Japan	57	26	1.2	7.2	8.4	
Lin et al[31]	2009	China	-	-	-	-	8.9	
Wadhawan et al[32]	2010	India	338	8.8	10.3	19		
Kim et al[33]	2010	South Korea	22	0	9.1	-		
Sohn et al[34]	2010	India	218	26	2	3.7	5	

ICU: Intensive care unit.
Anastomotic strictures: Anastomotic strictures occur at the site of duct to duct anastomosis and are typically isolated and shorter in length.

The development of AS is associated with multiple operative factors such as biliary ischemia, cold ischemia time, type of anastomosis (duct to duct vs hepato-jejunostomy), surgical expertise, prior bile leak and donor factors such as age, gender, weight, blood type and liver steatosis. In DDLT, transplantation in the post MELD era and the use of DCD organs also appears to influence AS formation.[23,31,40-44]

The incidence of AS is reported to be around 8%-31% after LDLT[23,24,39], with a cumulative incidence of 6.6%, 10.6% and 12.3% after 1, 5 and 10 years respectively after DDLT.[41]

Anastomotic strictures may present either early or late post-transplant. The median time to presentation reported varies between 2.5-9 mo post-transplant[23], with most presenting within 6 mo[18].

The most common presentation is an asymptomatic patient with elevated cholestatic liver enzymes. Abdominal pain, jaundice, fever, increased liver enzymes and recurrent cholangitis may also be presenting features and if present, warrant further investigation for an AS.

If an AS is suspected, liver ultrasound with Doppler imaging or computed tomography angiography to rule out hepatic artery thrombosis should be performed. Ultrasound alone has poor sensitivity for detecting a stricture and is generally followed by magnetic resonance cholangiopancreatography which is a non-invasive diagnostic test with 94.9% sensitivity and 88.9% specificity. The gold standard for diagnosing biliary strictures remains ERCP.

Serial endoscopic balloon dilatation with stenting is the main treatment for an AS. Balloon dilatation followed by plastic stent placement has shown better results than stenting alone. In general, stents are changed every few months, and if the stricture is adequately treated, they are removed between 3-12 mo[45]. Verdonk et al[41] showed that 75% of AS could be successfully stented by ERCP, with a median of 3 ERCP sessions for diagnosis and...
success of endoscopic treatment of the stricture. They also showed a higher number of ERCP sessions and greater number of stents were required to treat strictures presenting after 6 mo compared with those presenting earlier. The success of endoscopic treatment varies between 53%-88% depending on center experience[23,31,34,46] and is preferred as the initial method of treatment. In cases where endoscopic management has failed, percutaneous trans hepatic biliary dilatation and stenting of strictures may be attempted, however the success rate of this method is lower and has a higher complication rate[23,41].

Surgical management may be attempted if both endoscopic and percutaneous treatment fails, especially if there are concomitant bile leaks. This may involve surgical repair or revision of the anastomosis from a duct to duct anastomosis to hepaticojejunostomy[27].

The most common complications of endoscopic, percutaneous and surgical methods of treating biliary strictures are recurrent cholangitis, post procedural bleeding, post ERCP pancreatitis, peritonitis and rarely death[45,48].

Figure 3 illustrates a typical anastomotic stricture which was treated with multiple dilations and stent placement.

Non anastomotic strictures: Non anastomotic strictures usually occur in the hilar region but may occur diffusely in the recipient biliary tract. They are thought to be related to ischemic and/or immune injury to the biliary mucosa during LT.

A number of operative factors such as total ischemia time, hepatic artery thrombosis, total operative time, type of bile duct anastomosis, and recipient factors such as pre transplant liver disease especially primary sclerosing cholangitis (PSC), bile salt composition and chronic ductopenic rejection as well as donor factors like ABO incompatibility, cytomegalovirus (CMV) infection, donor and recipient gender matching and miscellaneous factors like preservation techniques have all been variably associated with development of NAS[49-51].

Studies by Moench et al[52] and Buis et al[53] attempted to classify NAS into those caused by macro-angiopathy (hepatic artery thrombosis), micro-angiopathy (prolonged ischemia times and preservation injury) and immunological causes (ABO incompatibility, CMV infection, autoimmune hepatitis, or PSC and rejection).

In DDLT early NAS are found more often at the bifurcation of the CHD common hepatic duct or around the CBD common bile duct while late NAS are more often peripherally located within the liver[54].

Hepatic artery thrombosis and prolonged ischemia times both result in ischemic injury to the biliary endothelium, which heals by fibrosis and stricture formation. Previous studies have shown that the biliary epithelium is exquisitely sensitive to ischemia[10]. During LT, the blood supply to the bile ducts via the pancreatic head and gastro duodenal artery is interrupted, making the bile ducts solely dependent on the hepatic artery for perfusion, and thus more susceptible to ischemic injury. In LDLT cold ischemia time is short so interruption to hepatic artery flow is the main concern. Immunologically mediated injury of the biliary epithelium may be from direct cytokine mediated activation of inflammatory cells and thus more often affects the peripheral bile ducts.

The reported incidence of NAS varies between 9%-32%[49,55]. Guichelaar et al[49] found the mean duration to presentation varies between 23.6 ± 34.2 wk to after LDLT. Other studies have described the presentation being between 3.3-5.9 mo, with a median of 4.1 mo[55,56].

Non-anastomotic strictures present in the same way as AS with elevated cholestatic liver enzymes, abdominal pain, pruritus or cholangitis. Biliary ductal dilatation may also be seen incidentally on imaging. Studies have suggested a variation in the time to presentation with NAS secondary to ischemic causes presenting before 1 year and NAS secondary to immunological causes presenting after 1 year[55].

Initial evaluation may include liver United States with Doppler examination of the vasculature. However, this method has only 33%-66% sensitivity and may not be suitable for detecting biliary complications in liver transplant recipients. Magnetic resonance cholangiogram has good sensitivity and specificity and is the best initial non-invasive diagnostic test. Endoscopic
Biliary complications after LDLT are less likely to respond to endoscopic therapy than in DDLT, so preventive strategies to avoid these are important. In right lobe LDLT, high hilar dissection to create a short donor stump and a long recipient stump and ductoplasty to ensure adequate vascularization of the duct ends and intraoperative cholangiogram to early identify biliary leaks are being examined as strategies to reduce the incidence of both AS and NAS which is below that of NAS seen with DDLT or for AS in LDLT. Percutaneous interventions have a success rate of 40%-85%, but are more invasive and associated with hemorrhagic complications and bile leaks. Non-anastomotic strictures require regular surveillance. Long term outcomes of NAS include recurrent cholangitis, development of biliary cirrhosis and decreased graft survival. Endoscopic and percutaneous methods are often only a temporary solution and re-transplantation has to be considered.

Biliary complications after LDLT are less likely to respond to endoscopic therapy than in DDLT, so preventive strategies to avoid these are important. In right lobe LDLT, high hilar dissection to create a short donor stump and a long recipient stump and ductoplasty to ensure adequate vascularization of the duct ends and intraoperative cholangiogram to early identify biliary leaks are being examined as strategies to reduce the incidence of both AS and NAS. However, leaving too long a common hepatic duct remnant in the recipient also poses a risk, as some part of this may develop ischemia and later develop a stricture.

Other techniques like side to side duct anastomosis and use of interrupted vs uninterrupted biliary sutures have shown minimal benefit. Generally, good perfusion of the biliary end and avoidance of vascular injury is the best way to prevent biliary complications.

Another potential complication of NAS is the formation of casts that deposit in the biliary tree, typically in the setting of ischemic injury. There are 2 main types, composed of either collagen from sloughed off necrotic biliary epithelium or precipitated bile with high bilirubin content. The second type are more frequently seen with biliary strictures and lead to obstruction and an increased incidence of cholangitis.

Biliary casts develop in 4%-18% of LDLT recipients and are associated with an increased morbidity in the recipient. Ischemic events, hepatic artery thrombosis and the presence of biliary strictures are all independently associated with the development of biliary casts. Recurrent cholangitis, prolonged cold ischemia time and acute cellular rejection have also been hypothesized as risk factors.

Biliary cast syndrome presents within a year of transplant, usually within 16 wk, though some delayed cases have been described. Elevated cholestatic liver enzymes or incidental bile duct dilatation with echogenic material filling the bile duct may be seen on ultrasound. However, ultrasound has low sensitivity and biliary casts can only reliably be detected by ERC or percutaneous transhepatic cholangiography (PTC), where they may appear as irregular filling defects within the biliary tree.

Endoscopic or percutaneous removal of casts with the use of basket or balloon devices, irrigation and hydraulic or mechanical lithotripsy is the typical management strategy. The success of endoscopic and percutaneous methods is reported at 25%-70%.

A complex NAS is shown in Figure 4 with biliary cast formation. Several ERCPs and dilation, cast extraction and stenting were required over several years with preservation of graft function.
donor beyond the typical complications associated with abdominal surgery. Various studies (Table 3) have reported a 6%-18% incidence of donor biliary complications\cite{39,71-73}. Most of these complications were classified as Clavien grade 3 or 4.

In contrast to the recipient, bile leaks and biliary fistulas are more common in the donor than strictures. The A2ALL study in the United States reported on almost 400 patients who donated the right lobe and found an incidence of 9% of bile leak or biloma, with a 0.5%-1.5% incidence of post-operative biliary strictures since no biliary anastomosis is required in the donor\cite{72,74}. Due to larger graft size, complications are most after right lobe donation and least with left lateral grafts\cite{74-76}.

Factors associated with developing bile leaks include elevated pre-operative alkaline phosphatase levels to > 86 IU/L and requiring a blood transfusion during surgery but center experience was not a factor in donor biliary complications\cite{72}. Figure 5 demonstrates a bile leak from the right common hepatic duct stump a few days after right lobe donation.

Donor biliary complications generally present within 2 wk of surgery. Bile leaks can be noted from bilious drain output or present with pain or suspicion for an intra-abdominal collection. Imaging can also be helpful. As in the recipient, strictures present with elevated cholestatic liver enzymes or jaundice.

Management of bile leaks and strictures is similar to the recipient with ERCP and stent placement the mainstay. Almost 80% of leaks were successfully treated by ERCP or percutaneous drainage, though a few required surgical revision or repair\cite{75}. Strictures can be more difficult to manage after right lobe donation as they form as the liver regenerates and wire access to the remaining left lobe biliary tree can be very difficult either endoscopically or percutaneously. Surgical revision is then required. Figure 6 shows a stricture that developed at the takeoff of the left common hepatic duct a few weeks after right lobe donation which could not be treated at ERCP or PTC. The patient was asymptomatic but presented with rising cholestatic enzymes and was successfully treated with biliary bypass surgery.

CONCLUSION

The development of LDLT with split liver grafts has

Ref.	n	Graft type	Leak (%)	Stricture (%)	Overall rate (%)
Iida et al\cite{76}	500	Right	10.6	1.6	12.2
762	Left	4.7	0.3	4.9	
El-Meteini et al\cite{77}	207	Right	22	1.6	13.04
Taketomi et al\cite{78}	69	Right	-	-	10.1
137	Left	-	-	2.9	
Lo et al\cite{79}	561	Right	6.1	1.1	7.1
939	Left	-	-	2.4	
Shio et al\cite{80}	434	Right	9.9	2.1	11.1
297	Left	1.7	1	2.4	
Chobrial et al\cite{81}	393	Right	9	0.5	9.6
Ozgor et al\cite{82}	500	Right	-	-	10.8
European Liver Transplant Registry \cite{83}	276	Right	5	3	8

![Figure 5](image1.png)
Figure 5 Endoscopic retrograde cholangiogram from a patient with a leak from the remnant right common hepatic duct a few days after right lobe live donor liver transplantation. The drain to the left can be seen filling when contrast is injected into the right common hepatic duct. This was managed successfully by a transpapillary stent.

![Figure 6](image2.png)
Figure 6 Stricture in donor after right lobe live donor liver transplantation. A: Endoscopic retrograde cholangiogram showing minimal filling of the left system a few weeks after right lobe live donor liver transplantation; B: Percutaneous transhepatic cholangiogram from the same patient in Figure 4A demonstrating a tight stricture at the take off the left common hepatic duct.
allowed for elective liver transplants with shortened wait times. It offers several advantages over DDLT but carries an increased risk of biliary complications, mainly bile leaks and strictures. These present within a few weeks to months post transplant. They are usually managed endoscopically, with stenting for bile leaks and dilatation followed by stenting for strictures. Occasionally, endoscopic methods fail and surgical repair or even re transplantation may be required. Strategies to avoid vascular injury and ischemia of the biliary tree are important in preventing these complications.

REFERENCES

1. Song AT, Avelino-Silva VI, Pecora RA, Pugliese V, D’Albuquerque LA, Abdala E. Liver transplantation: fifty years of experience. World J Gastroenterol 2014; 20: 5363-5374 [PMID: 24833866 DOI: 10.3748/wjg.v20.i18.5363]

2. Rai A, Nery JR, Mies S. Liver transplantation from live donors. Lancet 1989; 2: 497 [PMID: 2570198]

3. Pichlmayr R, Ringe B, Kuberdnatis G, Hauss J, Bunzendahl H. [Transplantation of a donor liver to 2 recipients (splitting transplantation)—a new method in the further development of segmental liver transplantation]. Langenbecks Arch Chir 1988; 373: 127-130 [PMID: 2621004.4]

4. Maluf DG, Stravitz RT, Metzger RB, Shiffman ML, Ham JM, Marcos A, Behmke MK, Fisher RA. Adult living donor versus deceased donor liver transplantation: a 6-year single center experience. Am J Transplant 2003; 5: 149-156 [PMID: 15636624 DOI: 10.1111.j.1600-6143.2003.00654.x]

5. Freise CE, Gillespie BW, Koffron AJ, Sternal JK, Enomoto JT, Emond JC, Fair JLH, Fisher RA, Oltkhoff MM, Trotter JF. Biliary complications after liver transplantation: findings from the A2ALL Retrospective Cohort Study. Am J Transplant 2008; 8: 2569-2579 [PMID: 18976306 DOI: 10.1111/j.1600-6143.2008.02440.x]

6. Merion RM, Shearon TH, Berg CL, Abecassis MO, Mita A, Terada M, Yamamoto H, Miyagawa S. Nonsurgical reconstruction technique in 400 consecutive living donor liver transplants. J Am Coll Surg 2013; 217: 102-112; discussion 113-114 [PMID: 25639200 DOI: 10.1016/j.jamcollsurg.2013.03.00 3]

7. Maluf DG, Stravitz RT, Cotterell AH, Posner MP, Nakatsuka M, Sterling RK, Luketic VA, Shiffman ML, Ham JM, Marcos A, Behmke MK, Fisher RA. Adult living donor versus deceased donor liver transplantation: a 6-year single center experience. World J Gastroenterol 2014; 20: 5363-5374 [PMID: 24833866 DOI: 10.3748/wjg.v20.i18.5363]

8. Freise CE, Gillespie BW, Koffron AJ, Lok AS, Pruett TL, Emond JC, Fair JLH, Fisher RA, Oltkhoff MM, Trotter JF, Gabor RM, Everhart JE. Recipient morbidity after living and deceased donor liver transplantation: findings from the A2ALL Retrospective Cohort Study. Am J Transplant 2003; 5: 149-156 [PMID: 15636624 DOI: 10.1111.j.1600-6143.2003.00654.x]

9. Freise CE, Gillespie BW, Koffron AJ, Lok AS, Pruett TL, Emond JC, Fair JLH, Fisher RA, Oltkhoff MM, Trotter JF, Gabor RM, Everhart JE. Recipient morbidity after living and deceased donor liver transplantation: findings from the A2ALL Retrospective Cohort Study. Am J Transplant 2003; 5: 149-156 [PMID: 15636624 DOI: 10.1111.j.1600-6143.2003.00654.x]

10. Noack K, Bronk SF, Kato A, Gores GJ. The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia. Implications for the pathogenesis of biliary strictures after liver transplantation. Transplantation 1993; 56: 495-500 [PMID: 8212138]

11. Deltenre P, Valla DC. Ischemic cholangiopathy. Semina Liver Dis 2008; 28: 235-246 [PMID: 18140077 DOI: 10.1055/s-0028-1085092]

12. Chan EY, Olson LC, Kisthardt JA, Perkins JD, Bhatkavatsalam R, Haldorsson JB, Reyes JD, Larson AM, Levy AE. Ischemic cholangiopathy following liver transplantation from donation after cardiac death recipients. Liver Transpl 2008; 14: 604-610 [PMID: 18433032 DOI: 10.1002/lt.21361]

13. Castaing D. Surgical anatomy of the biliary tract. HPB (Oxford) 2008; 10: 72-76 [DOI: 10.1080/13651820801992518]

14. Song AS, Kumarar V, Rastogi AN, Mohanka R, Mehta N, Saigal S, Saran N, Mohan N, Nundy S. Evaluation of a reliable biliary reconstructive technique in 400 consecutive living donor liver transplants. J Am Coll Surg 2010; 211: 24-32 [PMID: 20610245 DOI: 10.1016/j.jamcollsurg.2010.02.048]

15. Gunji H, Cho A, Tohma T, Okazumi S, Makino H, Shuto K, Mochizuki R, Matsurba K, Hayano K, Mori C, Murakami G, Ochiai T. The blood supply of the hilar bile duct and its relationship to the communicating arcade located between the right and left hepatic arteries. Am J Surg 2006; 192: 276-280 [PMID: 16920417 DOI: 10.1016/j.amjsurg.2006.01.046]

16. Soejima Y, Fukuhara T, Morita K, Yoshizumi T, Ikegami T, Yamashita Y, Sugimachi K, Taketomi A, Maehara Y. A simple hilar dissection technique preserving maximum blood supply to the bile duct in living donor liver transplantation. Transplantation 2008; 86: 1468-1469 [PMID: 19034019 DOI: 10.1097/TP.0b013e3181884dcd]

17. Wang SF, Huang ZY, Chen XP. Biliary complications after living donor liver transplantation. Liver Transpl 2011; 17: 1127-1136 [PMID: 21761548 DOI: 10.1002/lt.22238]

18. Schöder H, Dörr P, Potthof J. Biliary complications after liver transplantation: old problems and new challenges. J Am J Transplant 2013; 13: 253-265 [PMID: 23331505 DOI: 10.1111/ja.12034]

19. Blumgart LH, Hann LE. Blumgart’s Surgery of the Liver, Pancreas and Biliary Tract. 5th ed. Elsevier, 2012: 31-57.e1 [DOI: 10.1016/B978-1-4377-1454-8.00107-7]

20. Clavien PA, Camargo CA, Croxford R, Langer B, Levy GA, Greig PD. Definition and classification of negative outcomes in solid organ transplantation. Application in liver transplantation. Ann Surg 1994; 220: 109-120 [PMID: 8053733]

21. Broelsch CE, Frilling A, Testa G, Malago M. Living donor liver transplantation in adults. Eur J Gastroenterol Hepatol 2005; 13: 3-6 [PMID: 12544687]

22. Gabor RM, Saab S, Lassman C, Lu DS, Raman S, Limanond P, Kunder G, Marks K, Anselmo D, Chen P, Farmer D, Freise CE, Frilling A, Testa G, Malago M. Liver donor transplantation. Liver Transpl 2002; 8: 901-909 [PMID: 12361043 DOI: 10.1053/jlts.2002.35548]

23. Gondolesi GE, Varotti G, Florman SS, Huoéz L, Fishbein TM, Emre SH, Schwartz ME, Miller C. Biliary complications in 96 consecutive right lobe living donor liver transplantation recipients. Transplantation 2004; 77: 1842-1848 [PMID: 15223901 DOI: 10.1097/00007910-200301000-00077]

24. Liu CL, Lo CM, Chan SC, Fan ST. Safety of duct-to-duct biliary reconstruction in right-lobe live-donor liver transplantation without bile duct drainage. Transplantation 2004; 77: 726-732 [PMID: 15021836]

25. Giacomoni A, Lauterio A, Slim AO, Vanzulli A, Calcagno A, Mangoni I, Belli LS, De Gasperi A, De Carlisi L. Biliary complications after living donor adult liver transplantation. Transpl Int 2006; 19: 466-473 [PMID: 16771867 DOI: 10.1111/j.1600-6143.2006.02747.x]

26. Soejima Y, Taketomi A, Yoshizumi T, Uchiyama H, Nishida T, Urata K, Nakazawa Y, Komatsu M, Yamamoto H, Miyagawa S. Non-surgical policy for treatment of biliointestinal anastomotic stricture after living donor liver transplantation. Transplant Int 2008; 21: 320-327 [PMID: 18433032 DOI: 10.1002/lt.21361]
Marubashi S, Dono K, Nagano H, Kobayashi S, Takeda Y, Umeshita K, Monden M, Doki Y, Mori M. Biliary reconstruction in living donor liver transplantation: technical invention and risk factor analysis of anastomotic stricture. Transplantation 2009; 88(11): 1123-1130 [PMID: 19989209 DOI: 10.1097/TP.0b013e3181ba198a]

Lin TS, Concejero AM, Chen CL, Chiang YC, Wang CC, Wang SH, Liu YW, Yang CH, Yong CC, Jawan B, Cheng YF. Routine microsurgical biliary reconstruction decreases early anastomotic complications in living donor liver transplantation. Liver Transpl 2009; 15: 1766-1775 [PMID: 19938121 DOI: 10.1002/lt.21947]

Wadhawan M, Kumar A, Gupta S, Goyal N, Shandil R, Taneja S, Sibal A. Post-transplant biliary complications: an analysis from a predominantly living donor liver transplant center. J Gastroenterol Hepatol 2013; 28: 1056-1060 [PMID: 23432435 DOI: 10.1111/jgh.12169]

Kim SH, Lee KW, Kim YK, Cho SY, Han SS, Park SJ. Tailored telescopic reconstruction of the bile duct in living donor liver transplantation. Liver Transpl 2010; 16: 1069-1074 [PMID: 20818745 DOI: 10.1002/lt.22116]

Scanga AE, Kowdley KV. Management of biliary complications following orthotopic liver transplantation. Curr Gastroenterol Rep 2007; 9: 31-38 [PMID: 17335675]

Yazumi S, Yoshimoto T, Hisatsune H, Hasegawa K, Kida M, Tada S, Uenoyma Y, Yamauchi J, Shio H, Kasahara M, Ogawa K, Egawa H, Tanaka K, Chiba T. Endoscopic treatment of biliary complications after right-lobe living-donor liver transplantation with duct-to-duct biliary anastomosis. J Hepatobiliary Pancreat Surg 2016; 23: 502-516 [PMID: 17139423 DOI: 10.1007/s00534-005-1084-y]

Testa G, Malagó M, Valentin-Gamazo C, Lindell G, Broelsch CE. Biliary anastomosis in living related liver transplantation using the right liver lobe: techniques and complications. Liver Transpl 2000; 6: 710-714 [PMID: 11084056 DOI: 10.1053/jlts.2000.18706]

Gunawan N, McCall JL, Holden A, Plank L, Munn SR. Biliary complications following orthotopic liver transplantation: a 10-year audit. HPB (Oxford) 2011; 13: 391-399 [PMID: 21609371 DOI: 10.1111/j.1477-2574.2011.00300.x]

Jassem W, Heaton ND, Rela M. Reducing bile leak following segmental liver transplantation: understanding biliary anatomy of the caudate lobe. Am J Transplant 2008; 8: 271-274 [PMID: 18162089 DOI: 10.1111/j.1600-6143.2007.02069.x]

Zimmerman MA, Baker T, Goodrich NP, Freise C, Hong JC, Kumar S, Aft P, Cotterell AH, Samstein B, Everhart JE, Miron RM. Development, management, and resolution of biliary complications after living and deceased donor liver transplantation: a report from the adult-to-adult living donor liver transplantation cohort study consortium. Liver Transplant 2013; 19: 259-267 [PMID: 23459079 DOI: 10.1002/lt.23595]

Azoulay D, Bhangui P, Andreani P, Salloum C, Karam V, Hotei E, Pascal G, Adam R, Samuel D, Ichai P, Saliba F, Castaing D. Short- and long-term donor morbidity in right lobe living donor liver transplantation: 91 consecutive cases in a European Center. Am J Transplant 2013; 11: 101-110 [PMID: 21199351 DOI: 10.1111/ajt.12383]

Park JB, Kwon CH, Choi GS, Chun JM, Jung GO, Kim SJ, Joh JW, Lee SK. Prolonged cold ischemic time is a risk factor for biliary complications in duct-to-duct biliary reconstruction in living donor liver transplantation. Transplantation 2008; 86: 1536-1542 [PMID: 19077886 DOI: 10.1097/TP.0b013e3181b26522]

Verdonk RC, Buis CI, Porte RJ, van der Jagt EJ, Limburg AJ, van den Berg AJ, Slooff MJ, Peeters PM, de Jong KP, Kleibeuker JH, Haagsma EB. Anastomotic biliary strictures after liver transplantation: causes and consequences. Liver Transpl 2006; 12: 726-735 [PMID: 16628689 DOI: 10.1002/lt.20714]

Foley DP, Fernandez LA, Levendor G, Anderson M, Mezrich J, Sollinger HW, D’Alessandro A. Biliary complications after liver transplantation from donation after cardiac death donors: an analysis of risk factors and long-term outcomes from a single center. Ann Surg 2011; 253: 817-825 [PMID: 21475025 DOI: 10.1097/SLA.0b013e318204e365]
Tsujino T, Sugawara Y, Omata M. Management of biliary strictures after living liver transplantation. *Gastrointest Endosc* 2009; 70: 599-600; author reply 600-601 [PMID: 19699984 DOI: 10.1016/j.gie.2009.01.033]

Buxbaum JL, Biggs SW, Bagatellos KC, Ostroff JW. Predictors of endoscopic treatment outcomes in the management of biliary problems after liver transplantation at a high-volume academic center. *Gastrointest Endosc* 2011; 73: 37-44 [PMID: 21074761 DOI: 10.1016/j.gie.2010.09.007]

Isikyo T, Egawa H, Kasahara M, Nakamura T, Oike F, Kaihara S, Kiuchu T, Uemoto S, Inomata Y, Tanaka K. Duct-to-duct biliary reconstruction in living donor liver transplantation utilizing right lobe graft. *Am Surg* 2002; 68: 235-240 [PMID: 12170029 DOI: 10.1097/01.SLA.0000220262.90761.FC]

Chok KS. Lo CM. Prevention and management of biliary anastomotic stricture in right-lobe living-donor liver transplantation. *J Gastroenterol Hepatol* 2014; 29: 1756-1763 [PMID: 24909190 DOI: 10.1111/jgh.12648]

Davidson BR, Rai R, Kuzawinski TR, Selves L, Farouk M, Dooley JS, Burroughs AK, Rolles K. Prospective randomized trial of end-to-end versus side-to-side biliary reconstruction after orthotopic liver transplantation. *Br J Surg* 1999; 86: 447-452 [PMID: 10215812 DOI: 10.1046/j.1365-2168.1999.01073.x]

Castaldo ET, Pinson CW, Feurer ID, Wright JK, Gorden DL, Kelly BS, Chari RS. Continuous versus interrupted suture for end-to-end biliary anastomosis during liver transplantation gives equal results. *Liver Transpl* 2007; 13: 234-238 [PMID: 17256781 DOI: 10.1002/lt.20986]

Starzl TE, Putnam CW, Hansbrough JF, Porter KA, Reid HA. Biliary complications after liver transplantation: with special reference to the biliary cast syndrome and techniques of secondary duct repair. *Surgery* 1977; 81: 212-221 [PMID: 319551]

Yang YL, Zhang C, Lin MJ, Shi LJ, Zhang HW, Li JY, Yu Q. Biliary casts after liver transplantation: morphology and biochemical analysis. *World J Gastroenterol* 2013; 19: 7772-7777 [PMID: 24282366 DOI: 10.3748/wjg.v19.i45.7772]

Shah JN, Haigh WG, Lee SP, Lucey MR, Brensinger CM, Kochman ML, Long WB, Othoff K, Shaked A, Ginsberg GG. Biliary casts after orthotopic liver transplantation: clinical factors, treatment, biochemical analysis. *Am J Gastroenterol* 2003; 98: 1861-1867 [PMID: 12907345 DOI: 10.1016/S0002-9270(03)00508-2]

O’Connor HJ, Vickers CR, Buckels JA, McMaster P, Neuberger JM, West RJ, Elias E. Role of endoscopic retrograde choledochopancreatography after orthotopic liver transplantation. *Gut* 1991; 32: 419-423 [PMID: 2026341 DOI: 10.1136/gut.32.4.A19]

Spier BJ, Pflue PR, Lorenzo KR, Knetschle SJ, Said A. Risk factors and outcomes in post-liver transplantation bile duct stones and casts: A case-control study. *Liver Transpl* 2008; 14: 1461-1465 [PMID: 18825682 DOI: 10.1002/lt.21511]

Pflue PR, Kochman ML, Lewis JD, Long WB, Lucey MR, Othoff K, Shaked A, Ginsberg GG. Endoscopic management of postoperative biliary complications in orthotopic liver transplantation. *Gastrointest Endosc* 2000; 52: 55-63 [PMID: 10882963 DOI: 10.1067/mge.2000.106687]

Berg CL, Gillespie BW, Merion RM, Brown RS, Abecassis MM, Trotter JF, Fisher RA, Freise CE, Ghoebrial RM, Shaked A, Fair JH, Everhart JE. Improvement in survival associated with adult-to-adult living donor liver transplantation. *Gastroenterology* 2007; 133: 1806-1813 [PMID: 18054553 DOI: 10.1053/j.gastro.2007.09.004]

Ghoebrial RM, Freise CE, Trotter JF, Tong L, Ojo AO, Fair JH, Fisher RA, Emond JC, Koffron AJ, Pruett TL, Othoff KM. Donor morbidity after living donation for liver transplantation. *Gastroenterology* 2008; 135: 468-476 [PMID: 18505689 DOI: 10.1053/j.gastro.2008.04.018]

Beavers KL, Sandler RS, Shruesta R. Donor morbidity associated with right lobectomy for living donor liver transplantation to adult recipients: a systematic review. *Liver Transpl* 2002; 8: 110-117 [PMID: 11862585 DOI: 10.1053/jlts.2002.31315]

Ozgor D, Diciran A, Ates M, Gönültaş E, Ara C, Yılmaz S. Donor complications among 500 living donor liver transplantations at a single center. *Transplant Proc* 2012; 44: 1604-1607 [PMID: 22841225 DOI: 10.1016/j.transproceed.2012.04.002]

Shio S, Yazumi S, Ogawa K, Hasegawa K, Tsuji Y, Kida M, Yamanechi J, Ida H, Tada S, Uemoto S, Chiba T. Biliary complications in donors for living donor liver transplantation. *Am J Gastroenterol* 2008; 103: 1393-1398 [PMID: 18510614 DOI: 10.1111/j.1572-0241.2008.01786.x]

Iida T, Ogura Y, Oike F, Hatano E, Kaido T, Egawa H, Takada Y, Uemoto S. Surgery-related morbidity in living donors for liver transplantation. *Transplantation* 2010; 89: 1276-1282 [PMID: 20216482 DOI: 10.1097/TP.0b013e3181d66e55]

El-Metenei M, Hanra D, Abdalala A, Fathy M, Bahaa M, Mukhtar A, Abouelfetouh F, Mostafa I, Shaheer M, Abdellahab S, El-Dorry A, El-Menayeri M, Hobballah A, Sabry H. Biliary complications including single-donor mortality: experience of 207 adult-to-adult living donor liver transplantations with right liver grafts. *HPB* (Oxford) 2010; 12: 109-114 [PMID: 20495654 DOI: 10.1111/j.1477-2574.2009.01042.x]

Taketomi A, Kayashima H, Soejima Y, Yoshizumi T, Uchiyama H, Ikegami T, Yamashita Y, Harada N, Shimada M, Maehara Y. Donor risk in adult-to-adult living donor liver transplantation. *Ann Surg* 2007; 246: 55-63 [PMID: 17254733 DOI: 10.1097/01.SLA.0000220464.15271.21]

European Liver Transplant Registry. [Accessed 2015 Jan 8]. Available from: URL: http://www.eltr.org/
