Citation for published version (APA):
Easton, A. C., Lourdusamy, A., Havranek, M., Mizuno, K., Solati, J., Golub, Y., ... Müller, C. P. (2014). CaMKII controls the establishment of cocaine's reinforcing effects in mice and humans. Translational psychiatry, 4, [e457]. https://doi.org/10.1038/tp.2014.97
ORIGINAL ARTICLE

αCaMKII controls the establishment of cocaine’s reinforcing effects in mice and humans

AC Easton, A Lourdusamy, M Havranek, K Mizuno, J Solati, Y Golub, T-K Clarke, H Vallada, R Laranjeira, S Desrivières, GH Moll, R Mössner, J Kornhuber, G Schumann, KP Giese, C Fernandes, BB Quednow and CP Müller

Although addiction develops in a considerable number of regular cocaine users, molecular risk factors for cocaine dependence are still unknown. It was proposed that establishing drug use and memory formation might share molecular and anatomical pathways. Alpha-Ca²⁺/calmodulin-dependent protein kinase-II (αCaMKII) is a key mediator of learning and memory also involved in drug-related plasticity. The autophosphorylation of αCaMKII was shown to accelerate learning. Thus, we investigated the role of αCaMKII autophosphorylation in the time course of establishing cocaine use-related behavior in mice. We found that αCaMKII autophosphorylation-deficient αCaMKII^{T286A} mice show delayed establishment of conditioned place preference, but no changes in acute behavioral activation, sensitization or conditioned hyperlocomotion to cocaine (20 mg kg⁻¹, intraperitoneal). In vivo microdialysis revealed that αCaMKII^{T286A} mice have blunted dopamine (DA) and blocked serotonin (5-HT) responses in the nucleus accumbens (NAcc) and prefrontal cortex after acute cocaine administration (20 mg kg⁻¹, intraperitoneal), whereas noradrenaline responses were preserved. Under cocaine, the attenuated DA and 5-HT activation in αCaMKII^{T286A} mice was followed by impaired c-Fos activation in the NAcc. To translate the rodent findings to human conditions, several CAMK2A gene polymorphisms were tested regarding their risk for a fast establishment of cocaine dependence in two independent samples of regular cocaine users from Brazil (n = 688) and Switzerland (n = 141). A meta-analysis across both samples confirmed that CAMK2A rs3776823 TT-allele carriers display a faster transition to severe cocaine use than C-allele carriers. Together, these data suggest that αCaMKII controls the speed for the establishment of cocaine’s reinforcing effects.

Translational Psychiatry (2014) 4, e457; doi:10.1038/tp.2014.97; published online 7 October 2014

INTRODUCTION

Cocaine is the second most prevalent illegal drug in the United States and Europe after Cannabis, with a lifetime prevalence among young adults of 6.3% in Europe (15–34 years),¹ 13.3% in the United States (18–25 years)² and 10.8% in Brazil (30–39 years).³ The use of cocaine develops into addiction in a significant number of individuals;⁴ 5–6% of cocaine users become dependent in the first year of use, while 15–16% establishing cocaine dependence within 10 years. It was proposed that development of drug-use behavior⁶ and later of addiction may be mediated by learning and memory pathways.⁷ Ca²⁺/calmodulin-dependent protein kinase-II (CaMKII) has a key role in the plasticity of glutamatergic synapses of the brain⁸ and appears crucial for learning and memory, with the α-subunit composed heteromer (αCaMKII) being the most influential.^{9,10} CaMKII activation contributes to the development and maintenance of drug use associated behaviors.^{11–13} Cocaine exposure increases αCaMKII expression levels and αCaMKII phosphorylation at Thr286 in the striatum of rodents and humans,^{14,15} which is essential for the motivation to self-administer cocaine.¹⁶ Drug-induced reinstatement of cocaine self-administration was associated with enhanced Ca²⁺ channel stimulation, Ca²⁺ influx, CaMKII activation and phosphorylation of CaMKII at the Thr286 site, and subsequent AMPA receptor regulation.¹⁷ A recent study identified the ventral tegmental area–nucleus accumbens (NAcc) axis as a crucial site of CaMKII action in the establishment of cocaine-induced synaptic plasticity and conditioned place preference (CPP).^{18,19}

Following transient Ca²⁺/calmodulin activation, αCaMKII can phosphorylate itself which renders the kinase autonomous. This action is known as autophosphorylation. It depends on a phosphorylation at the Thr286 site. Mice with a point mutation in position 286 of the protein (αCaMKII^{T286A}) do not show autophosphorylation, but severe learning impairments^{19,20} and emotional dysregulation²¹ suggesting that autophosphorylation controls in particular the speed of learning, but not the capacity of learning or retrieval.²² Previous work indicates that αCaMKII autophosphorylation has an important role in the establishment of alcohol reinforcement²³ and drinking behavior in both mice and humans.²⁵

Here we asked which role αCaMKII has in the rate by which cocaine use-related behavior is established in mice and humans. We hypothesized that a genetically induced deficiency in αCaMKII
autophosphorylation results in slower establishment of drug use behavior mediated by reduced activation of mesolimbic monoaminergic activation. Furthermore, we investigated in two independent human samples whether single-nucleotide polymorphisms (SNPs) putatively impacting cAMKII function can influence the risk for a fast transition to heavy cocaine use once consumption had commenced.

MATERIALS AND METHODS

Animals

Male and female CaMKII286A mutant mice20 were studied in sex-balanced designs in all experiments (overall: \(n=30 \); WT: \(n=15 \); WT−/−: \(n=15 \)). These mutations block the autophosphorylation of CaMKII, but does not affect the Ca2+-dependent activity23 (for details: see the Supplementary Information). All housing and experimental procedures were performed in accordance with the UK Home Office Animals (Experimental Procedures) Act 1986.

CPP, sensitization and conditioned hyperactivity

Apparatus: TSE Place Preference test boxes (Bad Homburg, Germany) were used24 (for details: see Supplementary Information). CPP Establishment: Cocaine-naive animals (Mt: \(n=14 \); WT: \(n=14 \); Ht: \(n=16 \)) were injected (intraperitoneally) before each trial with either saline or cocaine (20 mg kg-1), immediately transferred (15–20 s) to the testing suite and placed into the CPP boxes. The experiment involved four phases; habituation trial (one session), conditioning trials (14 sessions) and preference tests (four sessions). Trials were performed once daily. Habituation (d1): Mice were injected with saline and introduced into the center compartment with free access to all three compartments for 20 min. Pre-test (d2): Mice were injected with saline and introduced into the center compartment with free access to all three compartments for 20 min. Conditioning trials (d3-4, d6-9 and d11-18): Mice were conditioned using a counterbalanced design. All animals received seven pairings with saline and seven pairings with cocaine in total. Mice were injected with either saline or cocaine (20 mg kg-1, intraperitoneally) and introduced into one of two compartments, with restricted access, for 20 min. Preference tests (d5, d10, d19 and d26): Preference tests were performed after one, three and seven conditioning trials. Before each test, mice were injected with saline and introduced into the center compartment with free access to all three compartments for 20 min.24 Place preference was calculated as preference change vs baseline for each individual animal. A preference score was calculated from log-transformed values to normalize skewed data.29

Acute locomotor effects and sensitization. Cocaine- and saline-induced locomotor activity and their sensitization were automatically scored as locomotor activity in the conditioning and pseudo-conditioning compart- ment after the first and seventh treatment, respectively.

Conditioned hyperactivity. Cocaine- and saline-conditioned activity was automatically scored as the locomotor activity in the conditioning and pseudo-conditioning compart- ment after the first and seventh treatment, respectively.

In vivo microdialysis

Mice were deeply anesthetized and two guide cannulas were aimed at the prefrontal cortex (PFC) and the NAcc.27 In vivo microdialysis for dopamine (DA), serotonin (5-HT) and noradrenaline (NA) was performed as described previously.30,31 An injection of cocaine was administered intraperitoneally (20 mg kg-1) and further nine samples were collected. Cocaine-naive animals were used for this test (Mt: \(n=8 \); WT: \(n=8 \); Ht: \(n=8 \); for more details: see Supplementary Information).

C-Fos activation after cocaine treatment

Cocaine-naive animals were used for this test (Mt: \(n=8 \); Ht: \(n=7 \); WT: \(n=8 \)). Animals were transferred from the homecage to a temporary cage and injected with either saline or cocaine (15 mg kg-1, intraperitoneally). Mice were left undisturbed for 70 min after injection. In line with previously established protocols32 and to coincide with the peak neurotransmitter response seen in vivo, C-Fos activity was measured 70 min after cocaine administration. Thereafter, mice were culled under isoflurane narcosis and transectually perfused. Brains were taken and C-Fos activation was measured in the NAcc (for details: see Supplementary Information).25

Genetic association in two independent samples of cocaine users

Initially, a total of 1459 individuals (688 cocaine/crack users and 754 healthy controls) were examined. All controls with mean age of 31.4 (\textpm9.8) and cocaine abusers with mean age of 26.7 (\textpm7.1) were recruited from the Blood Transfusion Unit of the Hospital das Clínicas, Faculty of Medicine, University of São Paulo and from seven drug-dependence treatment clinics in São Paulo, Brazil, respectively. The characteristics of this sample were detailed previously elsewhere.33 Cocaine consumption was determined by a structured interview to evaluate cocaine use and risk behavior.30 We selected 12 SNPs that cover the entire CAMK2A gene region. SNP genotyping was performed by Prevention Genetics, Marshfield, WI, USA. Individual SNPs were removed on the basis of the following criteria: call rate < 95\%, minor allele frequency < 0.01, significant deviation from Hardy–Weinberg equilibrium \(P<0.05 \), which led to the removal of three SNPs. We used linear regression to assess associations of remaining CAMK2A SNPs with cocaine consumption vs healthy controls and in the group of cocaine users with an index for the time to establish cocaine dependence from initial exposure to present day: \(K_t = C/\Delta T \); with \(C \): current consumption score of powder or crack cocaine (1–4); with \(1 = \) low consumption, \(4 = \) very high consumption; \(\Delta T \): current age minus age at onset of consumption. Accordingly, higher the \(K_t \), faster the transition to severe cocaine consumption was made. We used the PLINK v.1.07 software (http://pngu.mgh.harvard.edu/~purcell/plink/) for genetic association analyses including filtering.31 Haplotype blocks were defined accordingly.22 We used the Bonferroni correction procedure for multiple comparisons and selected SNPs for significant association with \(P \)-value < 0.006. To replicate the gene effect found in this discovery sample, we analyzed three SNPs showing the strongest association effect sizes (Supplementary Table 1) in a second and independent sample of regular cocaine users from Switzerland. We genotyped the three CAMK2A SNPs (rs4958469, rs3776823, rs6881743) in 141 recreational and dependent cocaine users from the Zurich Cocaine Cognition Study, which has been described in detail before.33 The isolation of the DNA from blood followed the Qiagen protocol for the Blood & Cell Culture DNA Maxi Kit (Qiagen, Hilden, Germany). PCR was performed using 12.5 ng of DNA. The CAMK2A SNPs were analyzed by TaqMan assays (Applied Biosystems, Darmstadt, Germany). In the Swiss sample, current severity of cocaine use was determined by 6-month hair toxicologies (6 cm), in which the concentration of cocaine and of three cocaine metabolites benzoylco- nine, norcocaine and ethylcocaine was measured as described before.33 The isolation of the DNA from blood followed the Qiagen protocol for the Blood & Cell Culture DNA Maxi Kit (Qiagen, Hilden, Germany). PCR was performed using 12.5 ng of DNA. The CAMK2A SNPs were analyzed by TaqMan assays (Applied Biosystems, Darmstadt, Germany). In the Swiss sample, current severity of cocaine use was determined by 6-month hair toxicologies (6 cm), in which the concentration of cocaine and of three cocaine metabolites benzoylco- nine, norcocaine and ethylcocaine was measured as described before.33 The isolation of the DNA from blood followed the Qiagen protocol for the Blood & Cell Culture DNA Maxi Kit (Qiagen, Hilden, Germany). PCR was performed using 12.5 ng of DNA. The CAMK2A SNPs were analyzed by TaqMan assays (Applied Biosystems, Darmstadt, Germany). In the Swiss sample, current severity of cocaine use was determined by 6-month hair toxicologies (6 cm), in which the concentration of cocaine and of three cocaine metabolites benzoylco- nine, norcocaine and ethylcocaine was measured as described before.33 The isolation of the DNA from blood followed the Qiagen protocol for the Blood & Cell Culture DNA Maxi Kit (Qiagen, Hilden, Germany). PCR was performed using 12.5 ng of DNA. The CAMK2A SNPs were analyzed by TaqMan assays (Applied Biosystems, Darmstadt, Germany). In the Swiss sample, current severity of cocaine use was determined by 6-month hair toxicologies (6 cm), in which the concentration of cocaine and of three cocaine metabolites benzoylco- n...
mice displayed a significantly attenuated CPP establishment than WT or Ht mice. A two-way ANOVA for CPP establishment revealed a significant effect of the genotype ($F_{2,41} = 3.64, P = 0.035$) and test trial ($F_{2,82} = 3.26, P = 0.043$), but no interaction ($P > 0.05$; Figure 1a). In the WT group there was a significant CPP observed vs baseline after one ($t = 3.07, P = 0.009$), three ($t = 5.56, P < 0.0001$) and seven conditioning trials ($t = 4.57, P = 0.0005$). Ht mice also showed a CPP, which became significant only after three conditioning trials ($t = 4.92, P = 0.0002$). CaMKIIT286A mice showed a reduced CPP for the cocaine-paired compartment ($P > 0.05$ vs baseline). Compared with WT, CaMKIIT286A mice showed a significantly lower CPP after one ($P = 0.002$), three ($P = 0.0002$) and seven pairings ($P < 0.0001$). Ht mice CPP was only after seven pairings reduced compared with WT mice ($P < 0.0001$).

We found no evidence for a role of CaMKII autophosphorylation in acute cocaine-induced hyperlocomotion, sensitization of hyperlocomotion (Figures 1b and c) or conditioned hyperlocomotion (Figures 1d and e; for statistical details: see Supplementary Information).

Attenuated DA responses to cocaine in CaMKII autophosphorylation-deficient mice

CaMKII autophosphorylation deficiency led to adaptations in basal DA and 5-HT levels (Figure 2; for statistical details: see Supplementary Information). Cocaine typically leads to an acute increase in extracellular DA levels in the NAcc and PFC of freely moving animals. This was also observed in the present study in WT mice. In CaMKIIT286A mice, the DA increase in the NAcc was blunted and in its peak delayed. In Ht mice, the DA response was completely absent (Figure 3a). WT animals showed a significant DA increase vs baseline 60 and 160 min after injection ($P = 0.02$ and $P = 0.03$). In Ht mice, there was a small but significant decrease vs baseline 140 min after injection ($P = 0.02$). In CaMKIIT286A mice, the DA increase was statistically significant vs baseline in all intervals measured after the injection (20–40 min and 100–180 min: $P < 0.05$; 60–80 min: $P < 0.01$). A two-way ANOVA revealed significant effects of time ($F_{11,165} = 2.04, P = 0.03$) and genotype ($F_{2,15} = 6.41, P = 0.01$), and a significant interaction ($F_{22,165} = 2.12, P = 0.004$). Planned comparisons revealed a difference between CaMKIIT286A and Ht mice 40 min ($P = 0.013$), 80 min ($P = 0.01$), 100 min ($P = 0.01$), 120 min ($P = 0.003$) and 140 min ($P = 0.03$) after cocaine injection.

In CaMKIIT286A and Ht mice, the DA increase in the PFC was attenuated (Figure 3c). Extracellular DA levels increased following cocaine treatment and peaked 40 min after cocaine injection in all the groups. WT animals showed a significant DA increase vs baseline 20 min ($P = 0.02$), 40 min ($P = 0.003$), 60 min ($P = 0.0002$) and 80 min ($P = 0.02$) after injection. In Ht mice there was a significant increase vs baseline 40 min after injection ($P = 0.05$). In CaMKIIT286A mice, the increase was not statistically significant ($P > 0.05$). A two-way ANOVA revealed an effect of time ($F_{11,110} = 8.61, P < 0.001$) and genotype ($F_{2,10} = 4.42, P = 0.04$), but no interaction ($P > 0.05$). Planned comparisons revealed a
mice 60 min after cocaine injection. There was no major role for oCaMKII autophosphorylation in the acute NA response to cocaine (Supplementary Figure 1; for statistical details, see Supplementary Information).

Reduced c-Fos activation in the NAcc after cocaine in oCaMKII autophosphorylation-deficient mice
Cocaine induces neuronal activation in the NAcc, which is the base for long-term cellular, morphological and drug use-related behavior and plasticity.42,43 To determine the downstream effects of a reduced monoaminergic response to cocaine in the oCaMKII autophosphorylation-deficient mice as measured by in vivo microdialysis, we investigated the effects of acute cocaine administration on c-Fos activation in the NAcc in a parallel design (Figure 4). WT mice showed a significant increase in c-Fos expression in the NAcc after cocaine treatment (P < 0.01). In Ht mice, there was a tendency for an increase, which did not reach statistical significance (P > 0.05). In oCaMKIIΔ286A mice, the cocaine-induced increase in c-Fos activity was much reduced and not significant vs saline treatment (P > 0.05).

An SNP in human CAMK2A gene predicts fast transition to severe cocaine use
While no functional gene mutation affecting the autophosphorylation site in humans is known, there are SNPs in the CAMK2A gene that may affect general activity and indirectly autophosphorylation. In the Brazilian discovery sample, the genotype distributions of all investigated SNPs were in accordance with Hardy–Weinberg expectations (HWE, P > 0.1). Of the nine SNPs analyzed from the CAMK2A gene, none predicted whether a person was a cocaine user or not (P > 0.05). However, within the population of the cocaine users, there was a significant association of Kt, the speed to establish severe cocaine consumption, and SNP rs3776823 (P < 0.003; Supplementary Table 1). Haplotype-based analysis of human genotype data showed that the highest risk for fast transition to severe cocaine use was transmitted by the presence of two T-alleles: CC=CT< TT (Figure 5a and Supplementary Figure 2).

In the Swiss replication sample, three of the CAMK2A SNPs were genotyped, which have shown the strongest associations with Kt in the Brazilian sample (rs4958469, rs3776823, rs6881743). Again, the genotype distributions of these SNPs were in accordance with HWE (P > 0.25). In this sample, Ktar was significantly associated with SNP rs6881743 (CC, n = 73: mean Ktar = 0.91 ± 0.20; CT, n = 53: Ktar = 1.72 ± 0.27; TT, n = 13: Ktar = 0.55 ± 0.23), whereas the genotype effect for rs3776823 was not significant (Supplementary Table 2). However, SNP rs3776823 showed the exact same pattern regarding Ktar as for Kt in the Brazilian sample (CC<CT< TT, Figure 5b) and meta-analyses of all three SNPs, considering P-values, sample sizes and effect directions, confirmed that only the rs3776823 SNP showed a robust and significant overall genotype effect on Kt measures across both samples (Stouffer’s z-trend: P = 0.0024), whereas the other two SNPs were not confirmed (rs4958469, P = 0.20; rs6881743, P = 0.63). As in the Brazilian sample, homozygous carriers of the T-allele displayed a faster development to severe cocaine use than C-allele carriers (Brazilian sample Cohen’s d = 0.60, Swiss sample d = 0.37). A further meta-analysis employing a random-effects model according to Hedges and Olkin40 to combine both effect sizes of the contrast CC+CT vs TT revealed a moderate-to-strong gene effect on Kt measures (delta = 0.54, P = 0.00008). These findings suggest a functional effect of genetic mutations in the CAMK2A gene on how fast humans develop cocaine dependence once consumption has begun, but not on whether they become cocaine users per se.

Figure 2. Baseline extracellular monoamine levels in the nucleus accumbens and prefrontal cortex (mean±s.e.m.). (a and b) dopamine, (c and d) serotonin. (Mt—oCaMKIIΔ286A, Ht—heterozygous, WT—wildtype; *P < 0.05, **P < 0.01, ***P < 0.001 vs WT; ###P < 0.001 vs Ht.)

Eliminated 5-HT responses to cocaine in oCaMKII autophosphorylation-deficient mice
The cocaine-induced 5-HT increase is essential for the establishment of cocaine CPP.41 5-HT levels were increased in response to cocaine in the NAcc in this study in WT mice (Figure 3b). This effect was absent in oCaMKIIΔ286A and Ht mice. WT animals showed a significant 5-HT increase vs baseline 20 min after injection (P < 0.03) after injection. Neither Ht nor oCaMKIIΔ286A mice showed a significant change in 5-HT levels (P > 0.05). A two-way ANOVA revealed a significant effect of time (F11,176 = 1.99, P = 0.03), but not genotype effect or interaction (P > 0.05). Planned comparisons revealed a significant difference between Ht and WT animals 20 min after injection (P < 0.05).

A similar effect was observed for 5-HT in the PFC (Figure 3d). WT animals showed a tendency for a 5-HT increase vs baseline after 60 min (P = 0.06), followed by a small decrease 100 min (P = 0.005) after injection. In Ht mice there was a significant decrease vs baseline observed 20 min after injection (P = 0.02). In oCaMKIIΔ286A mice, 5-HT levels were decreased vs baseline 100 min (P = 0.004), 160 (P = 0.02) and 180 min (P < 0.0001) after injection. Although a two-way ANOVA did not show significant effects (P > 0.05), planned comparisons revealed a significant difference between oCaMKIIΔ286A and WT (P = 0.01) and between Ht and WT (P < 0.05)
which may explain the reduced CPP establishment in the conditioned locomotor effects of cocaine between genotypes study, however, we did not activity in the NAcc shell in the establishment of cocaine CPP. While CPP re-derived from a number of different behavioral processes. In this insensitivity to cocaine in the activity may also rule out a reduced bioavailability or general coding gene (rs3776823) and the speed of establishing severe increase in the PFC. NA responses were not affected. In the NAcc, this led to a reduced cellular activation as determined by c-Fos activity. These data suggest that the reinforcing, but not locomotor stimulant effects of cocaine are under the control of CaMKII autophosphorylation. A translational approach, using two independent human samples of cocaine-dependent individuals revealed a robust link between a polymorphism in the coding gene (rs3776823) and the speed of establishing severe cocaine consumption. A major finding of this study was that CaMKII autophosphorylation controls the establishment rate of cocaine CPP. This finding is in line with recent reports, which support a role of CaMKII in the ventral tegmental area and of CaMKII autonomous activity in the NAcc shell in the establishment of cocaine CPP. While CPP reflects the rewarding properties of a drug, it can be derived from a number of different behavioral processes. In this study, however, we did not find differences in acute locomotor or conditioned locomotor effects of cocaine between genotypes which may explain the reduced CPP establishment in the CaMKII mice. The lack of a genotype effect on locomotor activity may also rule out a reduced bioavailability or general insensitivity to cocaine in the CaMKII mice. Although CaMKII mice have severe problems to learn averesively motivated tasks, they have little problems to establish positively reinforced behavior using natural reinforcers. A limitation of the present study is that no compulsive self-administration paradigm could be applied in the mice. Therefore, conclusions must be limited to the role of CaMKII autophosphorylation in controlled cocaine use, rather than in addiction. Altogether, present data may suggest that a lack of CaMKII autophosphorylation prevented the association of the incentive properties of cocaine with environmental cues. The DA system is critical for the establishment of the acute reinforcing effects of cocaine. We have shown that an acute cocaine challenge induces a DA increase in the NA and PFC of WT mice. This response was entirely absent in Ht mice and blunted or attenuated in the CaMKII mice. Neuroadaptive processes initiated by drugs of abuse are sensitive to the rate of drug administration. It was suggested that a fast rate of administration will facilitate neurobehavioral plasticity, which in turn contributes to excessive drug use. The slower initiation of the DA response in CaMKII mice could, therefore, account for the delay in cocaine-induced CPP. The present finding suggests that CaMKII autophosphorylation is required for the cocaine-induced DA increase in the NAcc. However, we also observed increased basal DA levels in the PFC of CaMKII mice. Transmitter levels before cocaine treatment may re-influence response to cocaine administration and rate of transmitter release. CaMKII can phosphorylate a number of intracellular targets including AMPA receptors, NMDA receptors, L-type Ca²⁺ channels and tyrosine hydroxylase the rate-limiting enzyme in DA synthesis. Furthermore, tyrosine hydroxylase, DAT, calmodulin and CaMKII are co-distributed in mesolimbic projections, and it has been suggested that DA synthesis is regulated by CaMKII-controlled tyrosine hydroxylase activity. Thus, the increase in basal DA levels may, in our study, have limited the capacity for further DA increase in the PFC.

DISCUSSION

We found that CaMKII mice were impaired in their ability to establish cocaine-induced CPP. CaMKII autophosphorylation was not involved in the acute locomotor stimulant effects of cocaine, in the sensitization of hyperlocomotion or in the establishment of conditioned hyperlocomotion. The complete lack of CaMKII autophosphorylation enhanced basal levels of monoaminergic transmitters DA and 5-HT in the NAcc and PFC, but less of NA. At the same time it attenuated the cocaine-induced DA and 5-HT increase in both brain regions. NA responses were not affected. In the NAcc, this led to a reduced cellular activation as determined by c-Fos activity. These data suggest that the reinforcing, but not locomotor stimulant effects of cocaine are under the control of CaMKII autophosphorylation. A translational approach, using two independent human samples of cocaine-dependent individuals revealed a robust link between a polymorphism in the coding gene (rs3776823) and the speed of establishing severe cocaine consumption.

A major finding of this study was that CaMKII autophosphorylation controls the establishment rate of cocaine CPP. This finding is in line with recent reports, which support a role of CaMKII in the ventral tegmental area and of CaMKII autonomous activity in the NAcc shell in the establishment of cocaine CPP. While CPP reflects the rewarding properties of a drug, it can be derived from a number of different behavioral processes. In this study, however, we did not find differences in acute locomotor or conditioned locomotor effects of cocaine between genotypes which may explain the reduced CPP establishment in the CaMKII mice. The lack of a genotype effect on locomotor activity may also rule out a reduced bioavailability or general insensitivity to cocaine in the CaMKII mice. Although CaMKII mice have severe problems to learn averesively motivated tasks, they have little problems to establish positively reinforced behavior using natural reinforcers. A limitation of the present study is that no compulsive self-administration paradigm could be applied in the mice. Therefore, conclusions must be limited to the role of CaMKII autophosphorylation in controlled cocaine use, rather than in addiction. Altogether, present data may suggest that a lack of CaMKII autophosphorylation prevented the association of the incentive properties of cocaine with environmental cues. The DA system is critical for the establishment of the acute reinforcing effects of cocaine. We have shown that an acute cocaine challenge induces a DA increase in the NAcc and PFC of WT mice. This response was entirely absent in Ht mice and blunted or attenuated in the CaMKII mice. Neuroadaptive processes initiated by drugs of abuse are sensitive to the rate of drug administration. It was suggested that a fast rate of administration will facilitate neurobehavioral plasticity, which in turn contributes to excessive drug use. The slower initiation of the DA response in CaMKII mice could, therefore, account for the delay in cocaine-induced CPP. The present finding suggests that CaMKII autophosphorylation is required for the cocaine-induced DA increase in the NAcc. However, we also observed increased basal DA levels in the PFC of CaMKII mice. Transmitter levels before cocaine treatment may re-influence response to cocaine administration and rate of transmitter release. CaMKII can phosphorylate a number of intracellular targets including AMPA receptors, NMDA receptors, L-type Ca²⁺ channels and tyrosine hydroxylase the rate-limiting enzyme in DA synthesis. Furthermore, tyrosine hydroxylase, DAT, calmodulin and CaMKII are co-distributed in mesolimbic projections, and it has been suggested that DA synthesis is regulated by CaMKII-controlled tyrosine hydroxylase activity. Thus, the increase in basal DA levels may, in our study, have limited the capacity for further DA increase in the PFC.
Previous work by Sora et al. using monoamine transporter knockout mice showed that neither DAT nor SERT deletion alone can block the establishment of cocaine CPP, but that concurrent deletion of both, DAT and SERT, can prevent it. A major role of 5-HT in the establishment of cocaine CPP is also supported by lesioning approaches. Cocaine induces a robust 5-HT increase in the mesocorticolimbic system, which was also observed in this study. The 5-HT increase after cocaine in the NAcc and PFC was abolished in the αCaMKII^{T286A} and Ht mice. However, basal 5-HT levels were significantly enhanced in these animals before treatment. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthesis of 5-HT in the brain and can be activated by CaMKII. Thus, alterations in the activity of CaMKII, and consequently activity of TRP2, could ultimately influence the function of serotonergic nerve endings by increasing or decreasing the amount of transmitter available for release into the extracellular space. This might suggest a limiting capacity for cocaine-induced increase in extracellular 5-HT activity in αCaMKII^{T286A} mice. Absence of a cocaine-induced 5-HT response in αCaMKII^{T286A} mice may have contributed towards the observed

Figure 4. αCaMKII autophosphorylation-deficient mice show a reduced increase in c-Fos expression after single cocaine (15 mg kg$^{-1}$, intraperitoneal) treatment in the nucleus accumbens (mean±s.e.m.). (a) Localization of the scored c-Fos activation in the brain (white square). (b) Low amplification image of the localization of sample photomicrographs. c-Fos labeling in (c) wildtype (WT), (d) heterozygous (Ht) and (e) αCaMKII^{T286A} (Mt) mice (**P < 0.01). Photomicrographs show c-Fos-labeled cells (black) of the nucleus accumbens (scale: 80 × 80 μm).
Figure 5. A human CAMK2A gene polymorphism predicts fast transition to severe cocaine use. (a) Significant associations of the CAMK2A polymorphism, rs3776823, with the fast transition to severe cocaine use in a Brazilian population of cocaine-dependent individuals (mean±s.e.m.). Kt is an index for the time to establish severe cocaine consumption from initial exposure to present day. Kt = C/ΔT; with C: current consumption score of powder or crack cocaine (1–4; with 1 = low consumption, 4 = very high consumption). Homozygous T-allele carriers displayed significantly higher Kt scores than C-allele carriers reflecting a faster transition to severe cocaine consumption (***P < 0.001, analysis of variance (ANOVA), TT vs CC+CT). (b) Associations of the CAMK2A polymorphism, rs3776823, with the fast transition to severe cocaine consumption in a Swiss population of recreational and dependent cocaine users (mean±s.e.m.). Here, Kt_{hair} was calculated using cocaine hair concentrations as a severity marker: Kt_{hair} = C_{hair}/ΔT; with C_{hair}: current cocaine hair concentration in ng mg⁻¹; ΔT: current age minus age at onset of consumption. Similar to the Brazilian sample, homozygous T-allele carriers revealed higher Kt_{hair} scores than C-allele carriers, however, the difference was not significant due to a much smaller sample size but showed a considerable effect size (ANOVA TT vs CC+CT: P = 0.27, d = 0.37).

COCNFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Jörg Distler, Vera Guttenhle, Lea M Hulka, Katrin H Preller and Matthias Vonmoos for their expert technical assistance. This work was supported by funds of the Institute of Psychiatry, King’s College London, and by Friedrich-Alexander- University of Erlangen-Nuremberg. ACE was a recipient of a studentship from the European Union-funded FP6 Integrated Project IMAGEN (reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT-2007-037286), the FP7 project IMAGEMEND (IMAging GEnetics for MENTal Disorders) and the Innovative Medicine Initiative Project EU-AIMS (115300-2), Medical Research Council Programme Grant ‘Developmental pathways into adolescent substance abuse’ (939538), as well as...
the Swedish funding agency FORMAS. Further support was provided by the Bundesministerium für Bildung und Forschung (BMBF grant #01EVO711). The Swiss study part and BBQ were supported by grants from the Swiss National Science Foundation (SNSF; Grant No. PPO01P-123516/1 and PPO01P-146326/1) and the Olga Mayenfisch Foundation. The Brazilian sample was recruited thanks to local government funding (FAPESP and CNPq).

REFERENCES

1 European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Annual Report 2012: the State of the Drugs Problem in Europe. Publications Office of the European Union: Luxembourg, 2012.
2 Substance Abuse and Mental Health Services Administration (SAMHSA). Results from the 2010 National Survey on Drug Use and Health: Volume I. Summary of National Findings. Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2011.
3 Abdalla RD, Madruga CS, Ribeiro M, Pinsky I, Caetano R, Laranjeira R et al. Prevalence of cocaine use in Brazil: data from the II Brazilian National Alcohol and Drugs Survey (BNADS). Add Behav 2014; 39: 297–301.
4 Glantz MD, Anthony JC, Berglund PA, Degenhardt L, Kalaydjian A et al. Mental disorders as risk factors for later substance dependence: estimates of optimal prevention and treatment benefits. Psychol Med 2009; 39: 1365–1377.
5 Wagner FA, Anthony JC. From first drug use to drug dependence: developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 2002; 26: 479–488.
6 Müller CP, Schumann G. Drugs as instruments: a new framework for non-addictive psychotherapeutic use. Behav Brain Sci 2011; 34: 293–310.
7 Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry 2005; 162: 1414–1422.
8 Couttrap S, Bayer KU. CaMKII regulation in information processing and storage. Trends Neurosci 2013: 36: 607–618.
9 Easton AC, Lourdusamy A, Anand L, Ribeiro M, Caetano R, Laranjeira R et al. Phosphorylation of CaMKII and cocaine reinforcement: the role of d1 dopamine receptor. Neuropsychopharmacology 2014; 39: 310–1028.
10 Schierberl K, Hao J, Tropea TF, Ra S, Giordano TP, Xu Q. Cognitive dysfunctions in reward and dependent cocaine users: role of attention-deficit hyperactivity disorder. Br J Psychiatry 2013; 203: 35–43.
11 Dunn J, Laranjeira R. The development of a structured interview to evaluate cocaine use and risk behaviour. Rev Bras Psiquiatr 2000; 22: 11–16.
12 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.
13 Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2223–2229.
14 Voonmoos M, Hulka LM, Preller KH, Jenni D, Baumgartner MR, Stohler R et al. Cognitive dysfunctions in recreational and dependent cocaine users: role of attention-deficit hyperactivity disorder, craving and early age at onset. Br J Psychiatry 2013; 203: 35–43.
15 Preller KH, Hulka LM, Voonmoos M, Jenni D, Baumgartner MR, Siffrinz E et al. Impaired emotional empathy and related social network deficits in cocaine users. Addict Biol 2014; 19: 452–466.
16 Whitlock MC. Combining perspectives from independent tests: the weighted Z method is superior to Fisher's approach. J Evol Biol 2005; 18: 1368–1375.
17 Hedges LV, Ollin K. Statistical methods for meta-analysis. Academic. New York, NY, USA, 1985.
18 Zapata A, Chefr V, Serpokaps M. Microdialysis in rodents. Curr Protoc Neurosci 2009; Chapter 7: Unit 7.2.
19 Szumlinski K, Lominac KD, Oleson E, Walker JK, Mason A, Dehoff MH et al. Homez is necessary for EtOH-induced neuroplasticity. J Neurosci 2005; 25: 7054–7061.
20 Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85: 5274–5278.
21 Pum ME, Carey RJ, Huston JP, Müller CP. Role of medial prefrontal, entorhinal, and occipital S-HT in cocaine-induced place preference and hyperlocomotion: evidence for multiple dissociations. Psychopharmacology (Berl) 2008; 201: 391–403.
22 Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47: 33–46.
23 Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 2008; 154: 327–342.
24 Kourich S, Klug JR, Mayford M, Thomas MJ. AMPAR-independent effect of striatal alphaCaMKII promotes the sensitization of cocaine reward. J Neurosci 2012; 32: 6578–6586.
25 Huston JP, Silva MA, Topic B, Müller CP. What's conditioned in conditioned place preference? Trends Pharmacol Sci 2013; 34: 162–166.
26 Carvalho OM, Silva AJ, Balleine BW. Evidence of selective learning deficits on tests of pavlovian and instrumental conditioning in alphaCaMKII T286A mutant mice. Int J Comp Psychol 2001; 14: 161–174.
27 McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 1999; 101: 129–152.
28 Mahana AN, Robinson TE. Why does the rapid delivery of drugs to the brain promote addiction? Trends Pharmacol Sci 2005; 26: 82–87.
29 Hukumaki DK, Fochman MW. Crack cocaine and cocaine hydrochloride. Are the differences myth or reality?. JAMA 1996; 276: 1580–1588.
30 Bayer KU, De Koninck P, Leonard AS, Hell JW, Schuman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001; 411: 801–805.
31 Ponce JC, Esteban JA, Malinow R. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+ /calmodulin-dependent protein kinase II. J Neurosci 2002; 22: 4406–4411.
52 Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2000; 2: 173–177.

53 Griffith LC, Schulman H. The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase. J Biol Chem 1988; 263: 9542–9549.

54 Steinkellner T, Yang JW, Montgomery TR, Chen WQ, Winkler MT, Susic S et al. Ca2+/calmodulin-dependent protein kinase Ilalpha (alphaCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome. J Biol Chem 2012; 287: 29627–29635.

55 Sutoo D, Akiyama K, Yabe K. Comparison analysis of distributions of tyrosine hydroxylase, calmodulin and calcium/calmodulin-dependent protein kinase II in a triple stained slice of rat brain. Brain Res 2002; 933: 1–11.

56 Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 1998; 95: 7699–7704.

57 Müller CP, De Souza Silva MA, Huston JP. Double dissociating effects of sensory stimulation and cocaine on serotonin activity in the occipital and temporal cortices. Neuropharmacology 2007a; 52: 854–862.

58 Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 2007b; 81: 133–178.

59 Pum M, Carey RJ, Huston JP, Müller CP. Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats. Psychopharmacology (Berl) 2007; 193: 375–390.

60 Kuhn DM, Sakowski SA, Geddes TJ, Wilkerson C, Haycock JW. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine-19 as the substrate site for calcium, calmodulin-dependent protein kinase II. J Neurochem 2007; 103: 1567–1573.

61 Robertson HA, Paul ML, Moratalla R, Graybiel AM. Expression of the immediate early gene c-fos in basal ganglia: induction by dopaminergic drugs. Can J Neurol Sci 1991; 18: 380–383.

62 Bhat RV, Baraban JM. Activation of transcription factor genes in striatum by cocaine—role of both serotonin and dopamine systems. J Pharmacol Exp Therap 1993; 267: 496–505.

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)