Introduction

Endoscopic balloon dilation (EBD) is a common initial treatment for benign gastrointestinal strictures, and is safe and effective in the short-term, but often requires multiple sessions, and strictures frequently recur [1,2]. Fully covered self-expanding metal stents (fcSEMS) relieve the symptoms of refractory benign gastrointestinal strictures [3], but stent migration and intolerance are major limitations [4,5], and strictures frequently recur after stent removal [6]. Lumen-apposing fully covered SEMS (LA-SEMS) consist of a barbell-shaped, flexible nitinol stent designed for deployment through a therapeutic linear echoendoscope (Fig. 1a). In this series, we describe the use of LA-SEMS for the management of selected benign gastrointestinal strictures and discuss the benefits and limitations of this approach.

Case series

We retrospectively identified all cases of benign gastrointestinal luminal stenosis treated with placement of a LA-SEMS (Axios 15 mm; Xlumena, Mountain View, CA, USA) at our institution between November 2014 and April 2015, and reviewed patient medical records and images. The protocol was approved by the Mayo Clinic Rochester IRB.

Case 1

A 45-year-old woman was referred for treatment of a benign pyloric stricture which had recurred after prior EBD. An upper gastrointestinal series demonstrated a short stricture of the pyloric channel which could not be traversed endoscopically (Fig. 2a). Under fluoroscopic guidance, a LA-SEMS was deployed across the pyloric stenosis and dilated to 15 mm (Fig. 2c). Her symptoms resolved, and the stent was removed endoscopically 3 months later (Fig. 2d). The previously strictured area was widely patent and allowed easy passage of the endoscope. Symptoms have not recurred during 3 months of follow-up after stent removal.
opened within the stricture (Fig. 3a). An LA-SEMS was placed with the proximal 18-mm × 15.3-cm fcSEMS was placed which was removed after 1 month due to non-tolerance, and a symptomatic stricture subsequently recurred. An LA-SEMS was placed to create a new gastrojejunal anastomosis (Fig. 4a, Fig. 4d). A contrast study showed no extravasation (Fig. 4e). The vertical staple line leak was closed with an over-the-scope clip. The LA-SEMS was removed at 8 weeks (Fig. 4f). Twelve weeks later, the patient was eating well with no symptoms.

Case 4
An 83-year-old woman presented for treatment of a pyloric channel peptic stricture which had recurred after EBD. Colonoscopy revealed a severely narrowed, short stricture at the anastomotic site (Fig. 5a). She was deemed a high risk surgical candidate due to her advanced age and poor nutritional status. A LA-SEMS was placed and the stent lumen was dilated to 12 mm (Fig. 5b, Fig. 5c, Fig. 5d). The obstruction was relieved and the patient subsequently underwent low anterior resection with diverting loop ileostomy.

Case 5
A 34-year-old man with a past history of sigmoid colectomy with an end-to-side colorectostomy was admitted for management of bowel obstruction secondary to a benign anastomotic stricture. Colonoscopy revealed a severely narrowed, short stricture at the anastomotic site (Fig. 6a). We opted to place a LA-SEMS, since a longer stent would potentially have a higher likelihood of migration and cause excessive patient discomfort due to stent proximality to the anal verge (Fig. 6b, Fig. 6c). The lumen of the stent was dilated up to 12 mm (Fig. 6d). The obstruction was relieved and the patient subsequently underwent low anterior resection with diverting loop ileostomy.

Discussion
We found that LA-SEMS were effective and safe for the treatment of a variety of benign gastrointestinal stenoses. The stents were easy to deploy and remove, well tolerated, and did not migrate. In contrast to repeated EBD for difficult strictures, patients in this series required at most two endoscopies, and the fully covered stents potentially mitigate the risk of perforation associated with endoscopic treatment. Several studies have described the use of SEMS for the management of benign gastrointestinal strictures [4,7–9]. The technical success of SEMS placement in these series approaches 100% with reported clinical success rates of 80–90% [4,7–9]. Although there are no randomized clinical trials comparing SEMS to EBD, the clinical response to SEMS appears to be more durable compared to EBD alone [9]. Moreover, SEMS can be effective in refractory cases that have failed previous EBD [9,10]. A retrospective study of 10 patients with pyloric stenosis treated with SEMS reported 90% clinical success rate over a mean follow-up of 11 months, with half of the patients having previously failed EBD [9].

Case 2
A 24-year-old woman with a history of Roux-en-Y gastric bypass was referred for management of a gastrojejunalostomy stricture. EBD at another hospital had been complicated by contained perforation. Esophagogastroduodenoscopy (EGD) showed a 4-cm long anastomotic stricture (Fig. 3a, Fig. 3b). Initially, an 18-mm × 15.3-cm fcSEMS was placed which was removed after 1 month due to non-tolerance, and a symptomatic stricture subsequently recurred. An LA-SEMS was placed with the proximal flange in the gastric pouch, and the distal flange partially opened within the stricture (Fig. 3c). To fully bridge the long stricture, a second LA-SEMS stent was placed in an overlapping fashion (Fig. 3d), and both stents were dilated to 15 mm. A follow-up upper gastrointestinal series and EGD at 6 weeks showed a widely patent gastrojejunalostomy with excellent stent position (Fig. 3e, Fig. 3f). In view of high surgical risk, a shared decision was made to leave the two LA-SEMS in place indefinitely. During 3 months of follow-up, she continues to be symptom-free.

Case 3
A 51-year-old woman presented for management of an anastomotic leak. She had previously undergone bariatric Roux-en-Y gastric bypass and subsequent revision gastrojejunalostomy. EGD showed an edematous gastric pouch and complete anastomotic stenosis precluding access to the jejunum (Fig. 4a). A single-balloon enteroscope was inserted into the excluded distal stomach via an existing gastrostomy tube, and advanced in a retrograde fashion to the anastomosis (Fig. 4b). A curvilinear echoendoscope was advanced via the mouth to meet the enteroscope in a rendezvous fashion. The Roux limb was distended with water and punctured under endoscopic ultrasound (EUS) guidance, and the tract was balloon dilated to 6 mm. A LA-SEMS was placed and the stent lumen was dilated to 12 mm (Fig. 4c, Fig. 4d). A contrast study showed no extravasation (Fig. 4e). The vertical staple line leak was closed with an over-the-scope clip. The LA-SEMS was removed at 8 weeks (Fig. 4f). Twelve weeks later, the patient was eating well with no symptoms.
Fig. 3 a Contrast study demonstrating the anastomotic stricture.
 b Endoscopic view of the stricture.
c The distal flange of the stent was partially opened inside the Roux limb stricture.
d To fully bridge the 4-cm ischemic stricture, a second stent was placed inside the first one, with the distal flange of the stent in the jejunum and the proximal flange inside the lumen of the first stent.
e A follow-up upper gastrointestinal series after 6 weeks showed a widely patent gastrojejunostomy with free flow of contrast to the Roux limb.
f Endoscopic view demonstrating excellent stent position at follow-up endoscopy.

Fig. 2 a Contrast study demonstrating the stricture.
b Endoscopic view of the stricture.
c The proximal flange was opened inside the gastric antrum.
d At 3-month follow-up, the stent was easily removed by grasping the proximal end with a rat-tooth forceps.

Majumder Shounak et al. Novel endoscopic management of benign gastrointestinal strictures ... Endoscopy International Open 2016; 04: E96–E101
Common adverse events associated with fcSEMS placed for benign strictures include migration and intolerance. A study of 22 patients with benign pyloric channel strictures treated with fcSEMS reported a migration rate of 63% [4]. Partially covered SEMS have a lower migration rate, but are more difficult to remove due to tissue ingrowth [9]. Reported migration rates of SEMS in benign colorectal strictures range from 31% to 60% [11, 12]. A concern with the use of traditional SEMS for benign strictures, especially colonic, is the increased risk of perforation. In a meta-analysis of 4086 patients who underwent colorectal stent placement, the perforation rate was significantly higher for benign compared with malignant strictures (18.4% vs. 7.5%) [13]. LA-SEMS designed for EUS-guided deployment have design features making them suitable for treatment of benign strictures [14, 15]. Anti-migratory flanges, short saddle, and moderate radial force may decrease the risk of migration and improve patient tolerance, allowing for a longer duration of therapy. In our series, none of the patients developed any stent-related symptoms and, in two patients, the stents were left in place permanently. Design modifications would enhance the use of LA-SEMS for management of benign gastrointestinal strictures. The current delivery system is optimized for delivery during EUS, and when deployed via a forward-viewing therapeutic channel endoscope, the stent’s deployment handle requires stabilization by a second operator to prevent inadvertent deployment of the entire stent distal to the stricture (Fig. 1b). A range of saddle lengths and larger stent diameters would improve the applicability of these devices. The limitations of our study include the small number of patients, absence of a control group, subjective interpretation of clinical outcomes, and short duration of follow-up. Despite these limitations, our series adds to the one previous case report [16] describing the use of LA-SEMS in a benign stricture, and demonstrates the feasibility and potential safety and efficacy of LA-SEMS for management of various types of benign gastrointestinal stenoses. Prospective comparative trials of conventional SEMS, LA-SEMS, and balloon dilatation are warranted.

Fig. 4 a Contrast study demonstrating anastomotic leak at the gastric vertical staple line and complete gastrojejunostomy stricture. b Rendezvous endoscopic approach with single-balloon enteroscope inserted via the excluded stomach. c The echolinear ELIS scope was simultaneously advanced to the gastric pouch. d Lumen-apposing, double-flanged, fully-covered SEMS, 15 mm in diameter, was deployed to create a new gastrojejunal anastomosis. e Contrast injection showing excellent seal of this newly created anastomosis with good flow of contrast into the Roux limb. f Stent endoscopically removed at 8 weeks demonstrating well-healed patent anastomosis.
Fig. 5

a Short, tight, benign gastroduodenal stricture.
b, c Endoscopic view of lumen-apposing, double-flanged, fully covered SEMS in the pyloric channel.
d Stent lumen dilated to an internal diameter of 12 mm using a wire-guided hydrostatic dilation balloon.

Fig. 6

a Endoscopic view of the tight anastomotic stricture.
b Fluoroscopic image showing guidewire placement before stent deployment.
c Endoscopic view of the proximal stent flange immediately after deployment.
d Final stent position after balloon dilation of the SEMS lumen to 12 mm.
Competing interests: None

References
1. DiSario JA, Fennerty MB, Tietze CC et al. Endoscopic balloon dilation for ulcer-induced gastric outlet obstruction. Am J Gastroenterol 1994; 89: 868
2. Boylan JJ, Gradzka MI. Long-term results of endoscopic balloon dilatation for gastric outlet obstruction. Dig Dis Sci 1999; 44: 1883
3. Tringali A, Didden P, Repici A et al. Endoscopic treatment of malignant gastric and duodenal strictures: a prospective, multicenter study. Gastrointest Endosc 2014; 79: 66
4. Choi WJ, Park JJ, Park J et al. Effects of the temporary placement of a self-expandable metallic stent in benign pyloric stenosis. Gut Liver 2013; 7: 417–422
5. Vanbiervliet G, Bichard P, Demarquay JF et al. Research Committee of the French Society of Digestive Endoscopy (SFED). Fully covered self-expanding metal stents for benign colonic strictures. Endoscopy 2013; 45: 35–41
6. Holm AN, de la Mora Levy JG, Gostout CJ et al. Self-expanding plastic stents in treatment of benign esophageal conditions. Gastrointest Endosc 2008; 67: 20–25
7. Dormann AJ, Deppe H, Wiegginghaus B. Self-expanding metallic stents for continuous dilatation of benign stenoses in gastrointestinal tract: first results of long-term follow-up in interim stent application in pyloric and colonic obstructions. Z Gastroenterol 2001; 39: 957–960
8. Han HW, Lee IS, Park JM et al. Self-expandable metallic stent therapy for a gastrointestinal benign stricture. Korean J Gastrointest Endosc 2008; 37: 1–6
9. Heo J, Jung MK. Safety and efficacy of a partially covered self-expandable metal stent in benign pyloric obstruction. World J Gastroenterol 2014; 20: 16721–16725
10. Park S, Chun HJ, Keum B et al. Successful salvage treatment of peptic duodenal stenosis with repeat insertion of self-expanding stent after failed balloon dilation. Endoscopy 2011; 43: E187–E188
11. Park CH, Yoon JY, Park SJ et al. Clinical efficacy of endoscopic treatment for benign colorectal stricture: balloon dilatation versus stenting. Gut Liver 2015; 9: 73–79
12. Attar A, Maunoury V, Vahedi K et al. GETAID. Safety and efficacy of extractible self-expandable metal stents in the treatment of Crohn’s disease intestinal strictures: a prospective pilot study. Inflamm Bowel Dis 2012; 18: 1849–1854
13. van Halsema EE, van Hooft JE, Small AJ et al. Perforation in colorectal stenting: a meta-analysis and a search for risk factors. Gastrointest Endosc 2014; 79: 970–982
14. Itai T, Binmoeller KF, Shah J et al. Clinical evaluation of a novel lumen-apposing metal stent for endosonography-guided pancreatic pseudocyst and gallbladder drainage (with videos). Gastrointest Endosc 2012; 75: 870–876
15. Shah RJ, Shah JN, Waxman I et al. Safety and efficacy of endoscopic ultrasonound-guided drainage of pancreatic fluid collections with lumen-apposing covered self-expanding metal stents. Clin Gastroenterol Hepatol 2015; 13: 747–752
16. Gornals JB, Albines G, Trenti L et al. EUS-guided recanalization of a complete rectal anastomotic stenosis using a lumen-apposing metal stent. Gastrointest Endosc [Epub 2015 June 9]